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PREFACE TO THE SECOND EDITION.

THE first edition of this treatise has been for

several years out of print, and I had for sometime

given up the idea of reprinting it. The work, having

been written at a time when the Modern Higher

Algebra was still in its infancy, required extensive

alterations in order to bring it up to the present

state of the science
; and, as I had failed to bring out

a new edition before my appointment to the office

which I now hold, I judged it impossible to do so,

now that other engagements left me no leisure to

make acquaintance with recent mathematical dis

coveries, or even to keep up my memory of what

I had previously known. When, however, years

passed and mine still remained the only work in

English professing to give a systematic account of

the modern theory of curves, I began to consider

whether republication might not be possible, if I

could obtain the assistance of some younger mathe-
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VI PREFACE.

matician competent to contribute additional sections

representing the later progress of the science.

Consulting Professor Cayley on this subject I was

much and agreeably surprised by his offering himself

to give me the help I required. It is needless to

say how gladly I embraced a proposal calculated

to add so much to the value of my book; and the

only scruple I have felt in profiting by it is lest

the time and labour which Professor Cayley has

devoted to the work of another may, for a time

at least, have deprived the mathematical world

of a better work on the same subject by himself.

My original plan for the division of the labour was

that Professor Cayley should contribute certain new

sections or chapters, of which he should take the

entire responsibility, while I should content myself

with revising the older part of the book; and

accordingly the first chapter is entirely Professor

Cayley s. But I found it would be impossible in

this method to give the book the unity it ought to

possess; and actually our work has been combined

in a manner that makes it not easy to separate

our respective shares. Professor Cayley has carefully

gone over the whole, and there is scarcely a page

that has not in some way been influenced by his

suggestions; on the other hand, I have completely

re-written many of his contributions either for the
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purpose of making them fit in better with the rest

of the book, or if I thought I could make some

simplification in his process or some addition to

his results. I have in fact dealt in the same

manner with some of the manuscript materials which

he was so good as to place at my disposal, as I

have done with published memoirs of his, the results

of which I have incorporated in the work. On

looking through the pages the parts which I re

cognize as taken from Professor Cayley, with but

slight or with no alteration, are Chap. I.
;
the account

of the forms of triple points, Art. 40; Art. 47,

the view taken in which I have not myself in

other places fully accepted ;
Ex. 6, p. 43

;
and Arts.

5658, 8789, 138, 139, 151, 198, 243, 270,

282291, 407, 408. Besides these I have worked

into Chap. III. a manuscript of his on envelopes,

including the theory of evolutes and quasi-evolutes

and of parallel curves; from another manuscript

of his I obtained my knowledge of Sylvester s

theory of residuation; and I have used one on

the classification of quartics and one on the bi-

tangents of quartics. The additions made to the

chapter in the former edition on the transformation

of curves are almost entirely derived from a manu

script of Professor Cayley s, from which Arts. 370

to the end are taken nearly without alteration^



V1U PREFACE.

Arts. 401 406 are founded on a manuscript of his

on Steiner s theory of polar curves.

The first edition of this work contained a chapter

on the application of the Integral Calculus to the

theory of curves
;
this I have now omitted principally

on account of the extension which this subject has

since received. Such a chapter now, in order

to have any pretensions to completeness, ought to

contain an account of the applications which the

lamented Clebsch, in continuation of Riemann s

researches, made of elliptic and Abelian integrals

to the theory of curves. But it seems impossible

that those subjects could be done justice to, except

in a work having the Integral Calculus as its main

object ;
and as such works ordinarily contain chapters

on the theory of curves, I have thought that this

branch of the theory might safely be omitted from

the present treatise.

The causes which delayed the publication of

the Second Edition have also retarded the issue

of this Third, and have prevented me from doing

all that might be desired in the way of including

recent investigations. My friend Mr. Cathcart, to

whose help in correcting the press on this as on

former occasions I am greatly indebted, had called
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my attention while the printing was in progress

to various points which needed fuller treatment.

These I had hoped to deal with in an Appendix

at the end, but all I have found time to do has

reduced itself to the addition of a few references.

Professor Cayley, it will be observed, has kindly

given me one or two new contributions.

TRINITY COLLEGE, DUBLIN,

July, 1879.
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HIGHER PLANE CURVES,

CHAPTER L*

COORDINATES.

POINT-COORDINATES.

1. WE have In the plane a special line, the line infinity ;

and on this line two special (imaginary) points, the circular

points at infinity. A geometrical theorem has either no re

lation to the special line and points, and it is then descriptive ;

or it has a relation to them, and it is then metrical.

2. The coordinates used for determining the position of

a point in the plane are Cartesian (rectangular or oblique)

or else trilinear; the latter, however, including as a particular

case the former. Speaking generally we may say that the

Cartesian (rectangular) coordinates are best adapted for the

discussion of metrical properties ;
trilinear coordinates for that

of descriptive properties ;
but for metrical properties there is

often great convenience in using the notation of trilinear

coordinates, the equation of a curve being presented as a

homogeneous equation in (#, y, 2), where #, y are ordinary

rectangular coordinates, and z is = 1.

It is proper to consider in some detail the theory of the

foregoing kinds of coordinates.

3. As defined Conies, Art. 62, the trilinear coordinates of a

point are its perpendicular distances (p, q, r) from three given
lines : it is assumed that the lines form a triangle (viz. that

* This chapter is by Professor Cayley.
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no two of them are parallel), and then if (, 6, c) are the sides

of this triangle, and A its area, and
if, moreover, the co

ordinates (p, q, r) are taken to be positive for a point within

the triangle, the coordinates p^ q, r satisfy the relation
( Conies,

Art. 63)

ap + bq -j- cr = 2A.

By means of this relation, an equation, not originally homo

geneous, can be made homogeneous ;
and it is always assumed

that this has been done, and, in fact, the equations made use of

are always homogeneous.

4. But a more general definition of trilinear coordinates

is advantageous ; viz., without in anywise fixing the absolute

magnitudes of the coordinates (#, ?/, 3), we may take them to

be proportional to given multiples (op, /%, jr) of the original

trilinear coordinates (p, q, r).

Observing that the distance measured in a given direction

is a given multiple of the perpendicular distance of a point from

a line, the definition may be stated with equivalent generality
in several forms as follows : the trilinear coordinates (#, y, z)

of a point in the plane are proportional to

given multiples of the perpendicular distances

given multiples of the distances measured in given direc

tions

given multiples of the distances measured in one and the

same given direction

the distances measured in given directions

of the point from three given lines.

The three given lines, say the lines x = 0, y = 0, 3 = 0, are

said to be the axes of coordinates, or simply the axes
;
and the

triangle formed by them, the fundamental triangle, or simply the

triangle.

Observe that while the quantities (a?, #, z} remain indeter

minate as regards absolute magnitude, there can be no identical

relation connecting them
;

and the equations which we use,

being necessarily homogeneous, express relations between the

mutual ratios of the coordinates.
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5. It is not in general desirable to do so, but we may,
if we please, fix the absolute magnitudes of the coordinates,

and say (#, y, z] are equal to
(a/?, $q, 7**) respectively ;

the

coordinates are in this case connected by the relation

ax it cz

which relation serves to determine the absolute magnitudes of

the coordinates
(ic, y, z) of any particular point when their

ratios are known.

It is scarcely necessary to remark that the distance of a

point from a line is considered to change its sign as the point

passes from one to the other side of the line. The selection

of the positive and negative sides might be made at pleasure

for each of the three lines, but it is in general convenient to

fix them in suchwise that for a point within the triangle

the ratios (x : y : z), or (when these are determinate in absolute

magnitude) the coordinates (#, ?/, 2), shall be positive.

6. Taking the lines x =.
0, y = 0, z = to be given lines, the

values of the ratios x : y : z depend upon those of the implicit

constants a, /3, 7, and are thus not as yet completely defined
;

but we can fix them so that for a given point the ratios (x : y : z)

shall have given values. Thus, if for the given point whose

perpendicular distances are p^ &amp;lt;?,,

r
l
the ratios are to have the

given values #, : yl
: z^ this completes the determination of

the coordinates, viz., we have

x. y. 2.
ie : w : 2 = : o . r.

Pi 9i r
t

Again, what is nearly the same thing, we can choose our co

ordinates so that a given linear equation Ax -f By + Cz =
shall represent a given line. In fact, if the equation of the

given line in terms of the coordinates (p, q, r) is np -f bq +cr = 0,

then we have thus the determination

It is not in general desirable to make any use of the equations

just written down; the convenient course is to consider the
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coordinates to have been fixed in suchwise that the point

(1 : 1 : 1) shall be a given point of the figure, or that the line

# + y -f z = shall be a given line of the figure.

7. It is to be observed that we may properly speak of the

point (a, /3, 7), meaning thereby the point, the coordinates of

which have the mutual ratios x : y : z equal to a : ft : 7. And

when we speak of the coordinates of a point as being (a, /3, 7),

or of (Xj y, z} as being equal to (a, /3, 7), we mean the same

thing ;
that is to say, we only assert the equality of ratios, for

the very reason that the absolute magnitudes are indeterminate.

Thus, in the last paragraph, instead of the point (1:1:1),
we might have spoken of the point (1, 1, 1).

8. The point (1, 1, 1) and line x + y + z = Q (or generally
/y nj 2

the point (a, #, 7) and line -
-f

-|
+ - = 0) stand in a well-

known geometrical relation to the fundamental triangle, viz.

if the point be 0, the line M
will be LMN which joins

the intersections with the

sides of the fundamental

triangle ABC of the cor

responding sides of the

triangle DEF formed by
the points where the lines N A P B

joining to the vertices of the fundamental triangle meet the

opposite sides; or, conversely, if the line LMN is given, we

geometrically construct the point by joining the points Z-,

M) N where the line intersects the sides of the fundamental

triangle to the opposite vertices of that triangle; the joining

lines form a new triangle, and the lines joining its vertices to

the corresponding vertices of the fundamental triangle meet in

the point 0. The line and point are in fact &quot;

harmonics,&quot; or,

as will be hereafter explained, they are
&quot;pole

and
polar&quot;

in

regard to the triangle considered as a cubic curve, or we may
say simply in regard to the triangle. Thus, if either the point

or the line be given, the other is known, and it is. the same
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thing whether we assume the point (1, 1, 1) to be a given point,

or the line # + # + 3 = to be a given line.

Considering the line # + #+2 = as a given line, we
have in all four given lines, and writing for convenience

x+y+z+w= Q (that is, considering w as standing for xyz],
the determination of the coordinates is such that # = 0, # = 0,

z = 0, 10 = are given lines.

9. The coordinates may be such that the point (1, 1, 1)

shall be the centre of gravity of the triangle ; or, what is the

same thing, that the line x + y + z shall be the line infinity.

Reverting to the equation ap + bq + or = 2A, this comes to

assuming x : y : z = ap : bq : cr] viz. if we join the point to

the three vertices, so dividing the fundamental triangle into

three triangles, then the coordinates cc, #, z are proportional to

the three component triangles (or, what is the same thing, each

coordinate is proportional to the perpendicular distance from

a side, divided by the perpendicular distance of the opposite

vertex from the same side). And it may be noticed that if,

fixing the absolute magnitudes of the coordinates, we assume

ap bq cr
x

&amp;gt;y&amp;gt;*

=
2A&amp;gt; 2A 2A

that is, take #, #, z to be equal to the component triangles, each

divided by the fundamental triangle ;
then the relation satisfied

by the coordinates will be

10. A particular case is when the fundamental triangle is

equilateral; here if
a?, #, z be proportional to the perpendicular

distances from the sides, (1, 1, 1) is the centre of the figure,

and x + y + z = Q is the line infinity; if, fixing the absolute

magnitudes, we take (#, #, z) to be equal to the perpendicular

distances, and moreover take as unity the perpendicular distance

of a vertex from the opposite side, then the coordinates of the

centre of the figure are (J, J, J), and the relation between the

coordinates is # + # + 2 = 1.

In this case, where the fundamental triangle is equilateral

and a; + # + 2 = the line infinity, the coordinates of the cir

cular points at infinity arc x : y : z = 1 : o&amp;gt; : co
2 and 1 :

a
: w,
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where w is an imaginary cube root of unity; in fact, taking

X, Y as Cartesian (rectangular) coordinates, the origin being
at the vertex (x = 0, y = 0) of the triangle, and the coordinate

X. being along the side x = 0, we have

v X^-Y 2-X^-Yx,yi* = Y,

-- -- ~ ~~ ~
respectively.

But for the circular points at infinity X and Y are infinite and

XiY=Q (where i=*J(- 1), as usual) ;
wherefore

-1+/V3 -1 + /V3x : y : z = I : :
-=

2 2

, , . ,
- 1 - i V3 - 1 + i V3

or taking w to be =----
,
and therefore o&amp;gt;

= - -
,

2i 2

this is x : y : z = 1 : co : co
z
or = 1 : a? : to.

11. Let one of the axes, say that of 2, be the line infinity :

the distance r has here the value co
,
which must be regarded

as an infinite constant
; yr is therefore a constant, which may

be made finite, and without loss of generality put = 1
;
we

have therefore x : y : z =
a.p : Pq : 1, where the coefficients a, /3

may be so determined that
a/?, /3q shall represent the dis

tances from the line x and from the line y = 0, each

measured in the direction parallel to the other of these lines
;

that is,
if X, Y are the Cartesian coordinates of the point,

then x : y : z =Y : X : 1
; or, what is the same thing, fixing

the absolute magnitudes of the coordinates, a?, y and 8 = 1, will

be the Cartesian coordinates of the point referred to any two

axes of coordinates.

12. In what just precedes we have used only the line

infinity, not the circular points at infinity ;
and the resulting

Cartesian coordinates are in general oblique, but they may
be rectangular; viz. taking the lines x 0, ?/

= as any two

lines harmonically related to the circular points at infinity; or,

what is the same lliing, at right angles to each other, then the

coordinates will be rectangular. The harmonic relation re

ferred to is that the two lines meet the line infinity in a pair

of points forming with the circular points at infinity a range
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of four harmonic points ; or, what is the same thing, the two

lines and the lines from their intersection to the circular points

at infinity form a harmonic pencil. (See Conies, Art. 356).

13. It is in some cases convenient to use the imaginary
coordinates = x 4 iy, rj x iy, and z = 1 : these may be

called circular coordinates.

CIRCULAR POINTS AT INFINITY.

14. For a given system of trilinear coordinates, the coordi

nates of the circular points at infinity may be obtained as

follows. Suppose, first, that the coordinates X, ?/,
z denote the

perpendicular distances from the sides of the fundamental

triangle ;
then taking an arbitrary origin and system of

rectangular axes X, Y, if p, q, r are the perpendicular dis

tances of from the sides of the triangle, and X, /i,,
v the

inclinations of these distances to the axis OX, the relations

between the two sets of coordinates (x, y, z] and (X, F), are

x =X cosX -f Y sin A, - p,

y X COS/A + Y sin
/JL q,

z =X cosv -fFsinv r.

Write for shortness cosX 4- i sinX, cos//, + i sin/*, cosi&amp;gt; -f i sin v

(or e*x
, e*&amp;gt;,

eiv
)
= Z, M, N respectively ;

then taking X and Y
infinite, and XiY=Q, we have for the two circular points

respectively

x : y : z = L : M : N and x : y : z = -=. : -r-, :
-^-,

.

Li ill J\

Writing A, J5, C for the angles of the fundamental triangle, we
have between A, B, C and X, //,,

v a set of relations such as

A = 7T + fJL Vj

.# = _7r-fv-X,
C= 7T -f X-

//,,

and hence writing cosA + i sin A, cosB+i sin I?, cos(7-f i sin C
(or eiA

,
e
is

j
e
ic

)
-

a, /3, 7 respectively, we find

M N L



8 CIRCULAR POINTS AT INFINITY.

and the coordinates of the circular points at infinity are thus

x :y : z=-l: -
:

,
and ziy:z = -l: 7 :

-g

-i::-l, - :

;
-

,

the three expressions for each set of coordinates being of course

identical in virtue of the relation a(3y = I.

The same formulae obviously apply to the case where the

coordinates #, ?/, 2, instead of being equal, are only proportional

to the perpendicular distances from the sides of the triangle ;

and they are thus the formulae belonging to the system of

coordinates for which the equation to the line infinity is

x sin-4-f y smB+z cos (7= 0.

15. It may be added, that the original system of relations

between #, y, z and JT, Y, gives

(
z + r

] (
x +P) sin.5 + (x +p) (y + q) sinG

or, what is the same thing, we have

yz sinA + zx sinB + xy sin (7= sinA sin J5 sin C (X* -f I
7

&quot;*)

+ linear function of JT, F, 1,

viz. the equation yz sinA + zx amB -\-ocy sin (7=0 is the equa
tion of a circle, and this being so, it is obviously the equation

of the circle circumscribed about the fundamental triangle ;

and the formula holds good in the case where
cc, y, z are

proportional to the perpendicular distances
;
the circular points

at infinity are therefore the intersections of the circle

yz sin^l + za; sinJ5+ xy sin (7= 0,

by the line infinity

x sinA -f y sinB + z sin 0=0,

(compare Conies, Art. 359), and it is easy to verify that the fore

going expressions of the coordinates of the circular points at
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infinity in fact satisfy these two equations. It is to be re

marked also, that the general equation of a circle is

(yz sinA + zx smB + xy sin C)

4 (Px + Qy+Rz] (x sinJ + y $mB+z sin(7)
=

0,

where P, Q, E are arbitrary coefficients.

16. In the system of coordinates wherein #, y, z are pro

portional to the perpendicular distances, each multiplied by the

corresponding side, or where the equation of the line infinity is

x + y + z = 0, we have only in place of the foregoing #, y, z

to write -s -s*L __ the coordinates of the circular
sm.Zj

7
sin (7

points are therefore given by

*
. _JL._ __
*

sinJ5* sinC

j

and the general equation of a circle is

(yz sinM 4 zx sm2

B+xy sin
2 6T

) 4 (Px 4 &amp;lt;?#
4 Rz}(x+y+ z)

= 0.

LINE-COOKDINATES.

17. The coordinates above considered are coordinates for

determining the position of a point ; say they are point-

coordinates. We have also line-coordinates (tangential co

ordinates, see Conies
,
Art. 70) for determining the position of

a line
;

viz. if with any given system of trilinear coordinates

(x, #, z), the equation of the line is %x 4 rjy 4 fy = 0, then

we have a corresponding system of line-coordinates, wherein

C
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(f? Vj ?) are said to be the coordinates (line-coordinates) of

the line in question. Observe that according to this definition

(f , ?), f) are given as to their ratios only, their absolute magni
tudes are indeterminate; herein resembling point-coordinates

according to their most general definition.

18. The coordinates (f, 77, f) belong to a line; a linear

equation af -f by. + cf= between these coordinates refers to

the whole series of lines, the coordinates of any one of which

satisfy this equation; but all these lines pass through a point,

viz. the point whose coordinates in the corresponding system
of point-coordinates (a?, y, z) are (, Z&amp;gt;, c) ;

the linear equation

&f + ^ + cf= in fact expresses that the equation in point-

coordinates %x + riy-\- fs = is satisfied on writing therein (a, , c)

for
(a?, y, 2). The conclusion

is, that in the line-coordinates

({,% ),
the equation af -t- 77 -f cf= represents a point, viz.

tlie point whose trilinear coordinates in the corresponding

system are (a, &, c). And, generally, any homogeneous equa
tion in the line-coordinates (,. 77, f) represents the curve which

is the envelope of all the lines (x + qy+$s=s 0, which are such

that the coefficients (, 77, ) satisfy the relation in question ;

and this relation is said to be the line- or tangential equation
of this envelope ;

in other words, the line-equation of a curve

is the equation between (f, 77, f), which expresses that the line

%x + rjy -+ z = Q is a tangent to the curve.

19. In what precedes the line-coordinates (f, 77, )
are

defined by means of a corresponding system of trilinear co

ordinates
(a?, y, 2), the signification of the ratios f : 77 : f being

thereby in effect completely determined. This is the most con

venient course
; but, not so much for any application thereof,

as in order to more fully establish the analogy between the

two kinds of coordinates, it is proper to give an independent

quantitative definition of line-coordinates. We may say that

the trilinear coordinates (f , 77, f) of a line are proportional

to given multiples of the distances measured in given directions

of the line from three given points. Suppose, to fix the ideas,

we take them proportional to the perpendicular distances of

the line from the three given points. If referring the figure
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to Cartesian coordinates, the coordinates of the points are

(a, y3), (a , /3 ), (a&quot;, /3&quot;),
and the equation of the line is

then we have

g:ij: S=Az + B/3 + C:Aa. + Bff + C: Ax&quot; + Bff + C,

or, what is the same thing, the equation of the line is

A
, Y, 1 =0;

O
/) , Pi

r, &quot;, F, i

the coefficients of f, 77, f are here given linear functions of

(A, I
7

, 1), and denoting these coefficients by (a?, ?/, 2) we shall

have (xj y, z) a system of bilinear coordinates, and the equation

will be %x + rjy + f& = 5
the definition thus agrees with the one

given above.

&quot;VVe may in like manner, as in Art. 6, determine the line-

coordinates (f, 77, f)j so that the line (1 : 1 : 1) shall be a given
line of the figure, or that the point ( 4-77+ =0 shall be a

given point of the figure.

20. Some particular systems may be mentioned. Let a, /3, 7
denote respectively the distances

in a given direction of the vari

able line from the points A, B,

then the coordinates f , 77, f may
be taken proportional to these

distances, : 77 : f = a : /3 : 7. & 6 c

Imagine the point G to move off to infinity in the given
direction

; 7 has an infinite value which must be regarded as

f
a constant ; and writing f : 77 :

- = a : /3 : 1, we may, instead

of the original coordinates, f , 77, f, take as coordinates f , 77,
-

;

that is, a, /5, 1. &quot;VVe have here a system of two coordinates

a, /3,
which are respectively equal to the distances in a given

direction of the line from two fixed points.
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21. Again, in the annexed figure we have

or, what is the same thing?

Ap Bq Cp Cq

Imagine A, B to go off to infinity

in the given directionspC^qC re&amp;lt;-

spectively ; Ap^ Bq have infinite
&quot;

y ~~p
values which must be regarded as constants; and instead of

coordinates proportional to a, /3, 7, we may take coordinates

proportional to
jp &amp;gt; 7T j ^ ^at *s

&amp;gt;

we ma^ ta^e as co &quot;

ordinates -^- ,
-~-

,
1

;
we have thus a system of two coordinates,

which are respectively the reciprocals of the distances in two

given directions of the line from a fixed point.

22. There is little occasion for any explicit use of line^

coordinates, but the theory is very important; it serves in

fact to show that in demonstrating by point-coordinates any

descriptive theorem whatever, we demonstrate the correlative

theorem deducible from it by the theory of reciprocal polars

(or that of geometrical duality), viz. we do not demonstrate

the first theorem and deduce from it the other, but we do

at one and the same time demonstrate the two theorems;
our (#, I/, z) instead of meaning points-coordinates may mean

line-coordinates, and the demonstration is in every step thereof

a demonstration of the correlative theorem,

23. And in like manner when any theorem is demonstrated

by line^coordinates, this is also a demonstration of the corre

lative theorem
;
the only difference is that we here pass from the

somewhat less familiar theory of line^coordinates to the more

familiar one of point-coordinates ;
the transition is rendered

clearer if we consider the original line-coordinates (f , 97, f)
as

being the point-coordinates of the point which is the pole of

the line in regard to the conic of -f y* + z* = 0.
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CHAPTER II.

ON THE GENERAL PROPERTIES OF CURVES OF THE n DEGREE.

SECT. I. ON THE NUMBER OF TERMS IN THE GENERAL EQUATION.

24. The first step towards obtaining a knowledge of the

general properties of curves of the ?i
th

degree is the ascertaining

the number of terms in the general equation. We should thereby

be enabled, on being given any equation of the ft
th

degree,

by simply counting the number of independent constants in the

equation, to know whether or not the given form were one to

which all equations of the n
th

degree could be reduced. For

example, the general equation of the second degree contains

five independent constants.. If, then, we were given any other

equation of the second degree, containing five constants, for

instance

or \(x- ay+(y-/3} + {(x-ar+(y-13y}- = c,

we could expand, and comparing the equation (as at Comes,
Art. 77) with the general equation of the second degree, should

obtain a sufficient number of equations to determine a, /3, &c.,

in terms of the coefficients of the general equation. We see,

then, that any equation of the second degree may, in general,

be reduced to either of the above forms, and we might thus

obtain a proof of the properties of the foci and of the directrix.

The equation

(ax 4- ly 4- c)
2
=; (a x 4- Vy 4- c) (a x -f V y 4-

c&quot;)

contains seven independent constants. The problem, therefore,

to express these in terms of the coefficients in the general

equation is indeterminate, as is also geometrically evident,

since the equation may be thrown into this form by taking

ax 4 Vy + c
,
a x 4 V y + c&quot;
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to represent any two tangents, and ax -f by -f c their chord of

contact. The equations

(ax 4- lyf = ex -f dy + e,

(ax + by + l) (a x -f Vy + 1)
=

0,

contain each but four independent constants, and must, therefore,

implicitly involve one other condition; or, in other words, the

general equation cannot be thrown into either of these forms,

unless one other condition be fulfilled. This is geometrically

evident, since the first equation denotes a parabola and the

second two right lines. The general equation of a circle,

(*-a) +(y-/S) =
f&amp;gt;

containing but three expressed constants, must implicity involve

two conditions, or the general equation cannot be thrown into

this form unless two conditions be fulfilled. And so, again,

the equation
&--**- 0,

(where $, $ are given quadric functions of the coordinates)

containing but one expressed constant must imply four con

ditions; as we otherwise know, since the conic expressed by
this equation passes through four fixed points.

25. Some caution must be used in the application of these

principles. Thus, the equation

appears to contain five constants, and, therefore, to be a form to

which every equation of the second degree is reducible. But

if we expand, we shall see that the constants do not enter into

the highest terms of the equation, and that there are but three

equations available to determine a, /3, &c. The equation can,

therefore, not be thrown into this form unless two other con

ditions be fulfilled. In like manner, the equation

where $,, &c., are six conies, is a form to which the equation
of any conic may be reduced

;
but suppose three of the equations

of these conies to be connected by the relation S
3
= kS

l
+ IS

2 ;

substituting this value, the equation would be found to contain

but four independent constants, and the general equation could
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not be reduced to tins form unless some one condition were

fulfilled.

26. Having thus endeavoured to give the reader an idea of

the nature of the advantage to be gained by a knowledge of

the number of terms in the general equation of the ?i
th

degree,

we proceed to an investigation of this problem. The general

equation of the nih
degree between two variables ma}7 be written,

A
+ BX+CIJ

+ Dx* + Exy -f Fy*

-f ...........................

+ Px + Qx
n- l

y +. . .+ Exy
1 -1 +

Sy&quot;

= 0.

And the number of terms in this equation is plainly the sum

of the series 1 -f 2 + 3 4- ...+ (n -f 1), and is therefore equal to

^ (n + 1) (n + 2), as has been already proved (Conies, Art. 78).

We shall sometimes write the general equation in the

abbreviated form,

where ?* denotes the absolute term, and u^ u^ u
n , &c., denote

the terms of the first, second, ?i
th

3 &c., degrees in x and y.

AVe shall also sometimes employ the equation in trilinear

coordinates, which only differs from that just written in having
a third variable z introduced, so as to make the equation homo

geneous, viz.,

U
Q

Z&quot; 4 w/&quot;

1 + w/
~2
+...+ u^z + u

n
= 0.

The number of terms is evidently the same as in the preceding
case (Conies, Art. 289).

27. The number of conditions necessaiy to determine a

curve of the ?2
th

degree is one less than the number of terms

in the general equation, or is equal to \n (n-\- 3). For the

equation represents the same curve if it be multiplied or divided

by any constant; we may therefore divide by A, and the curve

is completely determined if we can determine the ?i(H + 3)

J3 G
quantities -^ ,

-r
?
& c&amp;gt;
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Thus a curve of the nih
degree is in general determined when

we are given \n (n + 3) points on it
;
for the coordinates of each

point through which the curve passes, substituted in the general

equation, give a linear relation between the coefficients. We
have, therefore, \n (n + 3) equations of the first degree to

determine the same number of unknown quantities, a problem
which admits in general of but one solution. We learn, then,

that a curve of the third degree can be described through nine

points, one of the fourth degree through fourteen points, and

in general through \n (n + 3) points can be described one, and

but one, curve of the wth
degree.

28. When we say that \n (n -f 3) points determine a curve

of the nih
degree, we would not be understood to mean that

they always determine a proper curve of that degree. All

that we have proved is,
that there exists an equation of the nth

degree satisfied for the given poirrts, but this equation may be

the product of two or more others of lower dimensions. Thus,
five points in general determine a conic, but if three of them

lie on a right line, the conic is the improper quadric curve

formed by this right line and the line joining the other two

points. And, in general, it is evident that, if of the \n (n + 3)

points more than np lie on a curve of the p
ih

degree (p being
less than n), & proper curve of the nth

degree cannot be described

through the points, for we should then have the absurdity of

two curves of the wth and p
th

degrees intersecting in more than

np points ( Conies, Art. 238). The system of the nih
degree through

such a set of points is the curve of the p
ih

degree, together with

a curve of the (n p)
ih

degree through the remaining points.

We may even fix a lower limit to the number of points

determining a proper curve of the nih
degree which can lie on

a curve of the p
ih

degree, and can show that this number

cannot be greater than np -| (p 1) (p 2). For if we suppose
that one more of the points (viz. np \ (p 1) (p 2) + 1) lie

on a curve of the p
ih

degree, subtracting this number from

Jw(w + 3), it will be found that the number of ^remaining

points is ^ (n p) (n p -f- 3), and that, therefore, a curve of the

(n p)
th

degree can be described through them. This with the

curve of the pth
degree forms a system of the wth

degree through
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the points; and it follows from the last Article that it is in

general impossible to describe through them any other.

29. There are cases, however, in which the solution of

Art. 27 fails : a very simple instance will show that this is so.

The number of points required for the determination of a cubic

curve is nine; but nine points do not in every case determine

a single cubic, for any two cubics intersect in nine points ;
and

through these nine points there pass the two cubics; as will

presently appear, there are in fact through the nine points an

infinity of cubics. The explanation is that although m linear

equations are in general sufficient to determine m unknown

quantities, the equations may be not all of them independent,

and they will in this case be insufficient for the determination

of the unknown quantities. The given points are then in

sufficient to determine the curve, and through them can be

described an infinity of curves of the wth
degree. The geo

metrical reason why such cases occur requires to be further

explained.

Let us, for simplicity, commence with the example of curves

of the third degree. Let U= 0, F= 0, be the equations of two

such curves, both passing through eight given points ;
then the

equation of any curve of the third degree passing through these

points must be of the form U &F=0. For this equation,

from its form, denotes a curve of the third degree passing

through the eight given points, and it contains an arbitrary

constant Jc which can be so determined that the curve shall pass

through any ninth point. We should, in fact, have k =
,

where Z7
,
V are the results of substituting the coordinates of the

ninth point in U and V. This gives a determinate value for k

in every case but one, viz. when the ninth point lies on both U
and F; for since two curves of the mih and ?i

th
degrees intersect

in mn points, U and V intersect not only in the eight given

points, but also in one other. For the coordinates of this point

k takes the value -; and indeed the form of the equation suffi

ciently shows that every curve represented by the equation

U-klr=Q passes through all the intersections of U and V.

D
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Hence we have the important theorem, All curves of the third

degree which pass through eight fixed points pass also through
a ninth. And we perceive that nine points are not always
sufficient to determine a curve of the third degree ;

for we can

describe a curve of the third degree through the intersections of

two such curves, and through any tenth point.

30. The same reasoning applies to curves of any degree. If

there be given a number of points one less than that which will

determine the curve [\n(n-}-) 1}, then U &F=0 (where U
and Fare any two particular curves of the system) is the most

general equation of a curve of the wth
degree passing through

these points. For the equation contains one arbitrary constant,

to which we can assign such a value that the curve shall pass

through any remaining point, and be therefore completely de

termined. But the form of the equation shows that the curve

must pass through all the ri* points common to U and F, and

therefore not only through the ^n (n -f 3)
- 1 given points, but

also through as many more as will make up the entire number

to n
z
. Hence, All curves of the wth

degree which pass through

%n (n + 3)
- 1 fixed points pass also through -J (n 1) (n

-
2}

other fixedpoints.

31. The following is a useful deduction from the preceding

theorem : If of the nz

points of intersection of two curves of the

nih
degree , np lie on a curve of the p

ih
degree (p being less than

),

the remaining n (n p} will lie on a curve of the (n p)
ih

degree. For describe a curve of the (n p)
th

degree through

^ [np] (n-p + 3) of these remaining points, and this, together

with the curve of the
/&amp;gt;

th
degree, form a curve of the wth

degree

passing through ^ (n p] (n p + 3) + np points ;
and since this

number {being equal to \n (n + 3)
- 1 + i (p 1) (p

-
2)) cannot

be less than Jrc(n + 3) 1, this curve will pass through all the

remaining points ; but, obviously, the remaining points do not any

of them lie on the curve of the p
ih

degree, and therefore they

lie all of them on the curve of the (n
-
p}^ degree.

It is to be understood in these theorems concerning the

intersections of curves of the w
th

degree, that the curves need not

be proper curves of that degree, for the demonstration in Art. 30
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holds equally even though U or V be resolvable into factors.

As an illustration of the theorem of this Article, we add the

following: If a polygon of 2n sides be inscribed in a conic, the

n(n 2) points, where each odd side intersects the non-adjacent even

sides, will lie on a curve of the (n 2)
th

degree. For the product
of all the odd sides forms one system of the rc

m
degree, and the

product of all the even sides another; these systems intersect

in n2

points, viz. since each odd side has two adjacent and n 2

non-adjacent even sides, in the 2 vertices of the polygon, and

the n[n 2) points, which are the subject of the present theorem.

But since, by hypothesis, the 2n vertices lie on a conic, the

remaining n (n 2) points, by this Article, lie on a curve of

the (n
-

2)&quot;

1

degree.

32. Pascal s theorem is a particular case of the theorem just

given, but on account of the importance that the learner should

clearly understand the principle of the foregoing demonstrations,
we think it advisable to repeat in other words the proof already

given.

Denote the sides of the hexagon by the first six letters of

the alphabet .4 = 0, &c.
;

then ACE-kBDF=Q is the equa
tion of a system of curves of the third degree passing through

AB, BC, CD, DE, EF, FA, and also through AD, BE, CF.

If the first six points lie on a conic S, then the curve of the

system determined by the condition that it shall pass through

any seventh point of the conic S must give A CE- l^BDF SL.

For it cannot be a proper curve of the third degree, since no

such curve can have more than six points common with S.

The right line L will therefore contain the three points AD,
BE, CF.

We may add, .that it is this proof of Pascal s theorem which

leads most readily to Steiner s and Kirkman s theorems (Conies,

p. 361). Thus, let

12.34.56-45.61.23 =
,

where 12 denotes the line joining the vertices 1, 2, &c.
;
and

where L consequently denotes the line through the intersections

of the opposite sides, 12, 45
; 34, 61

; 56, 23; and let

12.34.56-36.25.14



20 ON THE NUMBER OF TERMS

then, obviously,

or the Pascal line indicated by the latter equation passes

through the intersection of the other two.

It may, however, be remarked that the theorem of Art. 31,

in the case in question n = 3, is a particular case of the theorem

of Art. 30
; viz., the system of the three odd sides is one of the

cubics, and the system of the three even sides the other of the

cubics U= 0, V of Art. 30. And we may deduce Pascal s

theorem directly from that theorem
; viz., considering the conic

through the six vertices, and the line joining two of the three

points of intersection of the opposite sides, the conic and line

form a cubic through eight of these nine points, and therefore

through the ninth point; that
is,

the line passes through the

remaining one of the three points of intersection of the opposite

sides
; viz., these three points lie in a line.

33. It has been proved that, although two curves of the

w
th

degree intersect in n2

points, yet r? points, taken arbitrarily,

will not be the intersections of two such curves; but that

n* ~ i (
n ~ 1) (

n 2) of them being given, the rest will be deter

mined. A similar theorem holds with regard to the np points

of intersection of two curves of the wth and p
ih

degrees. Thus,

though a curve of the third degree intersects one of the fourth

,
in twelve points, yet through twelve points taken arbitrarily

on a curve of the third degree, it will, in^general, be impossible

to describe a proper curve of the fourth degree. For the

system of the fourth degree through these twelve and any
other two points will, in general, be no other than the curve

of the third degree and the line joining the two points. And,

generally, Every curve of the w*h degree ivhich is drawn through

np \(p 1) (p
~

2) points on a curve of the p
th

degree (p being

less than n) meets this curve in \ (p l)(p 2) other fixed points.
For we had occasion in Art. 31 to see that

therefore, by Art. 30, every system of the nth
degree described

through the given points, and ^(n p) (n p + 3) others, passes

through | (n- 1) (n- 2) other fixed points. But one system of
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the nih
degree which can be described through the points is

the given curve of the p
ih

degree and one of the (n ^&amp;gt;)

th

through the additional assumed points. The \(n l)(n 2)

new points must therefore lie, some on one, some on the other

of these two curves. And it is evident that these points must

be so distributed between them as to make up the total number

of points, in the first case, to np, in the second to n(n p).

Hence the truth of the theorem enunciated is manifest.

34. A further extension of this theorem has been given by
Prof. Cayley :

&quot;

Any curve of the rth degree (r being greater than

m or n, but not greater than m + n 3), which passes through all

but J (m + n r 1) (m + n r 2) of the inn intersections of two

curves of the mih and nih
degree^ will pass also through the

remaining intersections.&quot;

The reader will more easily understand the spirit of the

general proof we are about to give by applying it first to a

particular example. &quot;Any
curve of the fifth degree which

passes through fifteen of the intersections of two curves of the

fourth degree will also pass through the remaining intersection.&quot;

For take two arbitrary points on each of the curves of the

fourth degree. These four, with the fifteen given points, make

nineteen points, through which, if several curves of the fifth

degree pass, they will (by Art. 30) pass through six other fixed

points. But each curve of the fourth degree, together with

the line joining the two arbitrary points on the other curve,

forms a system of the fifth degree through the nineteen points.

Hence all the intersections of the given curves of the fourth

degree lie on every curve of the fifth degree through the

points. Q. E. D.

So, in general, take J (r
-
m} (r

- m -f 3) arbitrary points on

the curve of the nth
degree, and through them draw a curve of

the (r
- m)^ degree ;

and take \ (r
-

n) (r
- n + 3) points on

the curve of the ?/i
th

degree, and through them draw a curve of

the (r
-

n)
ih

degree ;
take as many of the mn points of inter

section as with the arbitrary points make up ^r (r+ 3) 1
; then,

since the curves of the (r ??i)
th and mth

degree make one system
of the rth degree through the points, and the curves of the

(r
-

7i)

th and nth make another, the intersection of these two
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systems will be common to every curve of the rth degree through
the points. But

= mn - \ (m -f- n r 1) (m -f n r 2),

as the reader may verify without difficulty. Hence the truth

of the theorem appears. To make the proof applicable r must

be at least equal to the greater of m or n
;

and also r m
must be less than

ft,
since otherwise it would not be possible

to describe, through the assumed points on the curve of the

nih
degree, a curve of the (r- m)

th
degree, distinct from or not

including as part of itself the curve of the wth
degree ; and, since

the theorem is nugatory for r = m +nl or m -f n 2, the

condition is r not greater than m + n 3.*

SECT. II. ON THE NATURE OF THE MULTIPLE POINTS AND
TANGENTS OF CURVES.

35. The simplest method of introducing to the reader the

subject of the singular points and lines connected with curves

seems to be, first, to illustrate by particular examples the nature

of these points and lines, and afterwards to lay down rules by
which their existence may be detected in general.

We shall employ the Cartesian equation given in Art. 26.

* Euler appears first to have noticed the paradox, that two curves of the wth degree

may intersect in a greater number of points than are sufficient to determine such a

curve (see a Memoir in the Berlin Transactions for 1748,
&quot; On an apparent Contra

diction in the Theory of Curves&quot;).
The same difficulty is pointed out by Cramer,

in his &quot; Introduction a 1 Analyse des Lignes courbes algebriques,&quot; published in the

year 1750. It was only comparatively recently, however, that the important geo

metrical theorems were observed, which are derived from this principle. In the year

1827 M. Gergonne gave the theorem of Art. 31 (Annales, vol. xvu., p. 220). The

general theorem of Art. 30 was given about the same time by M. Pliicker (Entwicke-

lungen, vol. I., p. 228
;
and Gergonne s Annales, vol. xix., pp. 97, 129). It was some

years afterwards that the cases were discussed of the relation which exists between

the points of intersection of curves and surfaces of different degrees (as in Art. 33).

These cases were discussed in two papers sent at the same time for publication in

Crelle s Journal, one by M. Jacobi (vol. xv., p. 285), the other by M. Pliicker

(vol. xvi., p. 47). Besides the papers just mentioned, the reader may also consult

a Memoir by Prof. Cayley (Cambridge Math. Journal, vol. in., p. 211). The historical

sketch given in the present note is taken from Pliicker s Iheorie far Algebraischeu

Curven, p. 13.
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If we transform this equation to polar coordinates, by sub

stituting p cos#, p smO for x and y (or if the axes be not

rectangular, mp, np, as at Conies^ Art. 136), we get an equation
of the nth

degree in p, whose roots are the distances from the

origin of the n points, where the curve is met by a line drawn

through the origin, making an angle 6 with the axis of x.

36. If in the general equation the absolute term ^4 = 0,

then the origin is a point on the curve ; for the equation is

evidently satisfied by the values x = 0, y = 0, that
is, by the

coordinates of the origin.

The same thing appears from the equation expressed in polar

coordinates,

(cos0+&amp;lt;7sin0)p+(cos
2
&amp;lt;9+.E cos0 si

for this equation being divisible by p, one of its roots must be

p = 0, whatever be the value of 0, and therefore one of the

n points, in which every line drawn through the origin meets

the curve, will, in this case, coincide with the origin itself.

The other (n 1) points will in general be distinct from the

origin ;
there is, however, one value of 0, for which a second

point will coincide with the origin, viz., if 6 be such that

C sin0 = 0.

The equation then becoming

(D cos
2
+ E sin 6 cos 6 +F sin

2

0) /&amp;gt;*
-f &c. = 0,

is divisible by p\ and has, therefore, for two of its roots, p = 0.

The line, therefore, answering to this value of #, meets the

curve in two coincident points, or is the tangent at the origin.

Since we have a simple equation to determine tan0, we see

that at a given point on a curve there can, in general, be drawn

but one tangent. Its equation is evidently

p (B cos0 + C sin 0)
=

0, or Bx+Cy = 0.

Hence if the equation of a curve be u^ -f w2 + &c. = (the origin

being a point on the curve) ,
then u

t
is the equation of the

tangent.

If B= 0, the axis of x is a tangent ;
if C 0, the axis of y.
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37. Let us now, however, suppose that A, B, C are all =0;
the coefficients of p will then = 0, whatever be the value of

;

in this case, therefore, every right line drawn through the origin

meets the curve in two points which coincide with the origin.

The origin is then said to be a double point.

We may see now, exactly as in the last Article, that it is in

this case possible to draw through the origin lines which meet the

curve in three coincident points. For let 6 be such as to render

the coefficient of p
z =

0, or D cos*# -f E sin 6 cos 6 -f- F sin
2# = 0,

then the equation becomes divisible by p
3

,
and three values of p

are = 0. Since we have a quadratic to determine tan #, it

follows that there can be drawn through a double point two right

lines, each of which meets the curve in three coincident points ;

their equation is

p*(Dcos
2Q+ E sin cos + F sin *0)

=
0, or Dx* + Jxy + Fif = 0.

We learn hence that although every line through a double

point meets the curve in two coincident points, yet there are

two of these lines which have besides contact (viz., a conse

cutive point common) with the curve at that point 5
so that it

is usual to say that at a double point on a curve there can be

drawn two tangents. If the equation of the curve (the origin

being a double point) be written u
z -f w

a -f &c. = 0, then u
t
=

is the equation of the pair of tangents at the origin.

38. It is necessary to distinguish three species of double

points, according as the lines represented by w
2
= are real,

imaginary, or coincident.

I. In the first case the tangents are both real
;
the double

point or node is such as that represented in the second figure

(Art. 39) ;
an inspection of the curve shows that there are at the

node two branches each with its own proper tangent ;
and the

foregoing quadratic equation in fact determines the directions of

these two tangents : such a point is termed a crunode.

A simple illustration of such double points occurs when the

given equation is the product of two equations of lower dimen

sions, or U=PQ. The equation U= then represents the two

curves denoted by P=0 and Q = Q. But if these two be con

sidered as making up a complex curve of the n* degree, this
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curve must be said to have pq double points (the points, namely,
where P intersects Q) j

and at each of these points there are

evidently two tangents (viz., the tangents to Pand Q).

II. The equation i^
= may have both its roots imaginary.

In this case no real point is consecutive to the origin, which

Is then called a conjugate point or acnode. Its coordinates satisfy

the equation of the curve, but it does not appear to lie on the

curve, and, in fact, the existence of such points can only be

made manifest geometrically by showing that there are points,

no line through which can meet the curve in more than n 2

points.

III. The equation w
2 may be a perfect square ;

in this case

the tangents at the double point coincide, and the curve takes

*he form represented in the fourth figure (Art. 39). Such

points are called cusps or spinodes. They are also sometimes

called stationary points ; for if we imagine the curve to be

generated by the motion of a point, at every such cusp the

motion in one direction is brought to a stop, and is exchanged
for a motion in the opposite direction.

The reader might suppose that we could illustrate these

points, as in the last paragraph, by supposing the curve U to

break up into two, P and Q, which touch
;

for

every point of contact will be a double point, the

tangents at which coincide. But such a point

must be classed among singularities of a higher

order than those which we are now considering ;

for the tangent has at it four points along
the complex curve, viz., two on each of the simple curves,

while at the cusps we are considering we have seen that the

tangent generally meets the curve in only three consecutive

points. In order that the tangent at a cusp should meet the

curve in four consecutive points, it is necessary not merely that

u
2
should be a perfect square, but further, that its square root

should be a factor in u
3 ;

that is to say, that the equation should

be of the form

v? + v& + w
4 4 &c. = 0.

Such points arise from the union of two double points, as

the reader will readily perceive from the example which we
E
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have already given, for when the curves P and Q touch, the

point of contact takes the place of two points of intersection.

It is proper to remark that the crunode and the acnode are

varieties of the node, and varieties of the same generality, the

difference being that of real and imaginary. The cusp has in

the investigation presented itself as a particular case of the

node, but it is really a distinct singularity ;
the force of this

remark will appear in the sequel.

39. As the learner may probably find some difficulty in

conceiving the relation of conjugate points to the curve, we

shall illustrate the subject by the following example. Let us

take the curve

tf=(x-a)(x-b)(x- c),

where a is less, and c greater than b. This curve is evidently-

symmetrical on both sides of the axis of #, since every value of x

gives equal and opposite values to y. The curve meets the axis

of x at the three points x = a, x = 6, x = c. When x is less than

a, 2/

2
is negative, and therefore y imaginary ; y* becomes positive

for values of x between a and b
; negative again for values

between b and c; and, finally, positive for all values of x

exceeding c. The curve therefore consists of an oval lying

between A and B, and a branch

commencing at
(7,

and extending

indefinitely beyond it.

Let us now suppose b = c and

the equation will become

y*
= (x-a)(x-b}\

where I is greater than a. The point B has now closed up to C &amp;gt;

as B approaches to
(7,

the oval and infinite branch sharpen out

towards each other, and when ulti

mately the two points are united

together the oval has joined the in

finite branch, and the point B has

become a double point, with branches

cutting at an angle.

But, on the other hand, let b = a, then the equation

becomes c
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Q,

where a is less than ^ the oval has shrunk into the point A,
and the curve is of the annexed form.

This example sufficiently shows the ^^^
analogy between conjugate points and A

double points, the tangents at whicli are

real. If we suppose =Z&amp;gt;=c,
the equation becomes y*=(x a)

3

,

the point A becomes a cusp, as in III. of ^/
last Article, and the tangent at the cusp

meets the curve in three coincident points

A, B, O.

40. If in the general equation A,B,C, D, E, F were all = 0,

then the origin would be a triple point, every line through the

origin meeting the curve in three coincident points ;
and it is easy

to see, as before, that at a triple point there are three tangents,

which are the three lines represented by the equation u
3
= 0.

We may also, as before, distinguish four species of triple

points, according as the three tangents are (a) all three real

and (1) all three distinct, (2) two coincident, (3) all three co

incident, or (b) one real and two imaginary. A triple point

may be regarded as arising from the union of three double

points : viz. in the cases (a) these are (1) three crunodes, (2) two

crunodes and a cusp, (3) a crunode and two cusps ;
as illustrated

in the annexed figures, which exhibit the three double points

as they are about to unite

into a triple point. The
case (3) scarcely differs

visibly from an ordinary

point on the curve, but

when the figure is drawn accurately there is a certain sharpness
of bend at the singular point. In the case (&), there is in like

manner a real branch which comes to pass through an acnode :

to the eye the singular point does not appear to differ from any
other point on the curve.

We may, in like manner, investigate the conditions that the

origin should be a multiple point of any higher degree (4).

The coefficients of all terms of a degree below k will vanish;
and the equation will be of the form

u
k -f ut+l -f &c. = 0.
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At the multiple point there can be drawn k tangents, represented

by the equation u
k
=

;
and the nature of the multiple point

varies according as the roots of this equation are all real and

unequal, or two or more of them equal or imaginary.
A multiple point of the order Jc may be considered as

resulting from the union of ^k(k 1) double points. This may
be illustrated by the case of Jc right lines, which must be

regarded as a system having \lc (k 1) double points, namely,
the mutual intersections of the lines. But if all the lines pass

through the same point, this is in the system a multiple point
of the order &, and takes the place of all the double points.

And the principle is the same whether the lines which intersect

be straight or curved. A curve by the mutual crossing of

k branches may have \Jc (k ]
)
double points, but if all the

branches pass through the same point, these double points are

replaced by a multiple point of the order k,

41. To be given that a particular point is a double point

of a curve is equivalent to three conditions. For if we take it

for the origin, three terms of the equation vanish (Art. 37),

and the constants at our disposal are three less than in the

general case. If we are further given the tangents at the

double point, this is equivalent to two conditions more
;
for in

addition to .4 = 0, J5= 0, (7=0, we are now also given the ratios

D : E, D : F.

Being given a triple point is equivalent to six conditions;

for, making it the origin, the six lowest terms of the equation

vanish
;
and so in general if it is given that a certain point is

a multiple point of the order &, this is equivalent to ^k (k + 1)

conditions.

42. There is a limit to the number of double points which

a curve of the n
m

degree can possess, when it does not break

up into others of lower dimensions.

For example, a curve of the third degree cannot have two

double points ;
for if it had, the line joining them must be con

sidered as meeting the curve in four points ;
but more than three

points of a curve of the third degree cannot lie on a right

unless the curve consist of this right line and a conic,
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Again, a curve of the fourth degree cannot have four double

points; for if it had, the conic determined by these and any
fifth point of the curve must be considered as meeting the curve

in nine* points ;
whereas no conic, distinct from the curve, can

meet it in more than 2x4 points. And, in general, a curve of

the 7i
th

degree cannot have more than J (n 1) (n 2) double

points ;
for if it had one more, through these \ (n 1) (n 2) + 1

and 7i 3 other points of the curve, we could describe a curve

of the degree n 2 (Art. 27), which must be considered as

meeting the given curve in 2 [\ (n 1) (n 2) + 1} + n 3 points,

or in n (n 2) -f- 1 points, which is impossible if the given curve

be a proper curve. Of course, the demonstration given only
shows that curves cannot have more than a certain number of

double points, and does not show (what in fact is the case)

that they can always have so many.

43. If the curve have multiple points of higher order, the

same criterion applies, each multiple point of order k being
counted as equivalent to ^k(k 1) double points. But there

are limitations to the possibility of substituting for a certain

number of double points a multiple point of higher order.

Thus a curve of the fifth degree may have six double points,

and three of these may be replaced by a triple point; but

in this case the other three cannot be replaced by a second

* If a point of intersection of two curves be a double point on one of them, that

intersection must be reckoned as two, and the curves can only intersect in np 2 other

points. If it be a double point on both, the intersection must be reckoned as four.

And in general if it be on the one curve a multiple point of the degree A
,
and on the

other of the degree /,
that intersection must be counted as A L Thus, for example, a

system of k right lines meets a system of I right lines in kl points ;
but if all the lines

of the first system pass through a point on a line of the second system, that point

clearly counts as k intersections, and the lines intersect only in k (I 1) other points.

And if every line of both systems pass through the same point, that point counts as

kl intersections, and the lines meet nowhere else.

If two curves touch at their point of intersection, the point of contact will, of

course, count as two intersections, since they have two coincident points common.
If the point of intersection be a multiple point on one or both curves, and if one

of the tangents at the multiple point be common to both curves, we must add one

to the number of intersections to which it has been already shown that the multiple

point is equivalent ; for, besides the points just proved to be common, they have a

consecutive point in common on one of the branches through the multiple point.

The reader will have no difficulty in seeing the effect of any combination of

tangents and multiple points.
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triple point, since the line joining the two would meet the

curve in more points than five. Or, generally, if a curve have

a multiple point of the order n 2, it can have no other higher

than a double point, and of these according to the criterion not

more than n 2.

44. We call the deficiency of a curve the number
Z&amp;gt;, by

which its number of double points is short of the maximum ;

this number playing a very important part in the theory of curves.

If .Z) = 0, that
is, if a curve have its maximum number of double

points, the coordinates of any point on the curve can be expressed
as rational algebraic functions of a variable parameter. For

the J (n
-

1) (n 2) double points, and n 3 other assumed points

on the curve, making together ^ (n + 1) (n
-

2)
- 1 points, or one

less than enough to determine a curve of degree n 2, we can

describe through these points a system of such curves included

in the equation U\V. .Now if we eliminate either variable

between this equation and that of the given curve, we get

to determine the other coordinate for their points of intersection,

an equation of the n (n 2) degree in which A, enters in the

wth
degree. But of this equation all the roots but one are

known
;
for the intersections of the curves consist of the double

points counted twice, of the n 3 assumed points, and only of

one other point, since

(n-l)(w-2) + (w-3) + l=w(w-2).

Dividing out, then, the known factors of the equation, the only

unknown root remains determined as an algebraic function of

the nth
degree in X.

It is true, conversely, that if the coordinates can be expressed

as rational functions of a parameter, the curve has the maximum
number of double points. Curves of this sort are called unicursal

curves. When we are given #, ?/,
z respectively proportional to

Xw + &c., a XM
4 &c., a&quot;X

n + &c., the actual elimination of \ is

easily performed dialytically. Writing down the three equations

and multiplying each successively by X, X
8

,...^&quot;&quot;

1

,
we shall have

3n equations, exactly enough to eliminate linearly all the

quantities 0, 0X, &c., X, X2

,
&c. The equation of the curve,
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then, appears in the form of a determinant of the order 3w,

but only n rows will contain the variables
;

the curve therefore

will be of the rt
th

order, and its equation will involve the co

efficients
, bj &c., in the 2?i

th
degree. All this will be more

clearly understood if we actually write down the result for the

case n = 2. We have, then, the three equations

&r = X2
+Z&amp;gt;X + c, % = a X2 + & X-f c

,
6z = a&quot;X

2 + b&quot;\ + c&quot;.

Multiplying each by X, and then eliminating linearly from the

six equations the quantities 0, 0X, X3

,
X2

, X, the result appears

as the determinant

Xj



32 MULTIPLE POINTS AND TANGENTS OF CURVES.

a curve of the sixth order having the nine points for double

points, and in general the only such curve is U* = 0, viz. the cubic

twice repeated.

And so in like manner for curves of higher degrees, when

they have their maximum, or even some number less than their

maximum, number of double points there must be relations

connecting them. Except in the case of curves of the fourth

degree, we are not aware that any attempt has been made to

express these relations geometrically, but there must remain an

extensive class of theorems of this nature still to be discovered,

46. What has been said is sufficient to enable the reader to

form a conception of the nature of multiple points on curves.

We shall now proceed to show that a curve may in like manner

have multiple tangents ; or, in other words, that there may be

lines which touch the curve in two or more points, or which

have with the curve a contact of the second or higher order.

What are commonly called the &quot;

singular points&quot;
of curves may

be reduced to the two classes, either of multiple points, or of

points of contact of multiple tangents. As we introduced

multiple points to the reader by an examination of the particular

case where the origin was a multiple point, so it will be more

simple to commence our discussion of multiple tangents by

examining the condition that the axis
(j/
=

0) should be a

multiple tangent.

We find in general the points where this line meets the curve

by making y = in the general equation, whence we get

an equation which can be reduced to the form

P(x-a}(x- 1) (x
-

c) (x- d) &c. = 0,

where a, Z, &c., are the values of x for the points where the

axis meets the curve.

The axis will be a tangent when two of these points coincide,

that
is,

when there is between the roots a single equality a b.

The equation here is

P(x-a(x-c)&c. = Q.

The axis then touches the curve at the point y ^^xa. If

-4 = 0, B = 0, the axis touches the curve at the origin. We
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consider only the case a real, because the equation being real, an

equality a = b between two imaginary roots would imply another

equality c d between two other imaginary roots.

The axis is a double tangent if we have between the roots

two equalities c = a, d= b; the equation is then

P(x- a)
a

(a;- &)&quot; (x-e) &c. =0.

We have here the two cases

I. a and b each of them veal, when the axis is a tangent
at the two real points, x = a

}
x = b. It is evident that such a

tangent, meeting the curve in two pairs ^^ S~\

of coincident points, cannot occur in any f \ / \ y \

curve of a degree lower than the fourth.
/

*
\

II. a and b imaginary, viz., the equation is here

and we have a double tangent with two- imaginary points of

contact.

Again, we may have between the roots an equality a = b = c.

Here the equation is of the form, a being supposed real,

The axis then meets the curve in three consecutive points.

In general, taking three consecutive points on a curve, the line

joining the first and second of these is a tangent, and the line

joining the second and third is the consecutive tangent. In

the present case
r therefore, two consecutive tangents coincide.

Hence too, in such a case, the axis may be called a stationary

tangent ;
for if we consider the curve as the envelope of a move-

able line, in this case two consecutive positions of the moveable
line coincide. The point of contact of a stationary tangent is

called a point of inflexion.

If .4 = 0, 5 = 0, Z&amp;gt;
=

0, the origin is a

point of inflexion, and y = the tangent at it
,

since then the equation is of the form

47. The crunode and acnode (Art. 38) correspond precisely
to the double tangent with real contacts and the double tangent
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with imaginary contacts; the cusp or stationary point also

corresponds precisely with the stationary tangent. But there

is no correspondence in the analytical theories for the cusp we
have an equality a = &, which is a particular case of the unequal
values (a, 5), which belong to the crunode and to the acnode

;

for the inflexion we have a double equality a = b c, which is

a relation distinct in kind from the equalities a l^c d^ which

belong to the double tangent with real or imaginary contacts.

The double point was discussed with point-coordinates ;
to make

the analytical theories agree, the double tangent should have

been discussed with line-coordinates the stationary tangent
would then have presented itself as a particular case of the

double tangent. But in what precedes the stationary tangent

presents itself as a distinct singularity from the double tangent :

so with lime-coordinates the cusp would have presented itself as a

distinct singularity from the double point,- and in reference

hereto the remark was inade
r
Art 38, that the cusp was really

a distinct singularity. The singularities then mutually corre

spond as follows r

To a double point or node

(crunode or acnode),

To a cusp, spimode, or sta

tionary point,

A double tangent (contacts,

real or imaginary),

A stationary tangent, or tan

gent at inflexion
;

and it is only in a certain paint of view that the cusp is a

particular case of the double point, and in a different point of

view (the reciprocal one) that the stationary tangent is a parti

cular case of the double tangent.

Considering the curve as described by a point which moves

along a line at the same time that the line revolves round the

point : there is at the cusp a real peculiarity in the motion, the

point first becomes stationary, and then reverses the sense of

its motion
j

and so at the inflexion, the line first becomes

stationary and then reverses the sense of its motion. At a

double point there is no peculiarity in the motion, all that

happens is that the point in its course comes twice into the

same position ;
and so, for the double tangent, there is no

peculiarity in the motion all that happens is,
that the line in

its course comes twice into the same position. The cusp and
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stationary tangent are singularities in a more precise sense than

are the double point and the double tangent.

48. In ordinary cases the curve lies altogether at the same

side of the tangent, but at a point of inflexion the curve crosses

the tangent, and lies part on one side and part on the other.

This is a particular case of the following more general

theorem: Two curves which have common an even number of

consecutive points touch without cutting ; those which have common

an odd number of consecutive points cross one another at their

point of meeting.

Let the equations of the two curves be y ==
&amp;lt;#, y ^rx ;

let

them intersect at the point x = a; then, by Taylor s theorem,

the values of the ordinates of the two curves, for the point

x = a -f h* are

k3

h

where
&amp;lt;, -^,

-?
, &c., are the values of $#, ^c, --j~- , &c.,

when x = a. Now, by hypothesis, &amp;lt;/&amp;gt;

=
tjr,

since the curves inter

sect at the point x a
;
therefore

___
da?) 1.2.3

+

Now, by the principles of the differential calculus, when h is in

definitely small, the sign of the sum of this series is the same aa

the sign of its first term, but the sign of this term is changed
when the sign of h is changed ; therefore, if at the infinitely

near point (x = a+ h], the ordinate of the curve
&amp;lt;/&amp;gt;

be greater

than that of the curve
T/T,

it will be less at the point (x a h).

Hence if two curves have one point common, in general, that

which is uppermost at one side of the point will be undermost

at the other.

But now suppose that ~- = -~-
,
the first term of the series

will then be (-y^
~

) ,
which does not change sign

\dx ax J \

when h changes sign. The same curve, therefore, which is
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uppermost on one side of the given point, will be uppermost also

on the other. But when -Ju = -^- , the curves are manifestly
ax ax

closer to each other than in the previous case, since the difference

of the ordinates no longer involves the first power of h
;
which

is equivalent to what is expressed geometrically, by saying that

the curves have two consecutive points common. Or the same

thing may be shown thus : x y , x&quot;y&quot; being the coordinates to

rectangular axes of any two points on a curve, ,
is plainlyx x

the tangent of the angle which the chord joining them makes

with the axis of x
;
but if the points coincide, we learn that

the value of
~-

for the given point expresses the tangent of the

angle which the line joining it to the consecutive point (i.e. the

tangent} makes with the axis of x
; consequently, if two curves

have a point common, and ~ for that point the same for both

curves, it follows that the consecutive point is also common.

49. When the curves have three consecutive points common,

we shall have -~
i
= -

;
the first term of the series for y t yn

. fd
3

cj) d^\ h9
, . . , .. ,

is ( -r-g- -T~
) ,

which does change its sign with
/^,

and
\ax ax / 1 . 2i . o

therefore, as before, the curves cross at the given point. And

so, in general, if the expansion of y t yn commence with an

even power of A, it will not change sign with A, and therefore

the curves touch without crossing ;
but if it commence with an

odd power of A, the sign will change with ^, and therefore the

curves cross at the given point.

The reader has already had an illustration of this, in the case

of the circle which osculates a conic at any point, and which, in

general, having three points common with the curve, touches

and crosses the curve (Conies, Art. 239) ;
but at the extremities

of the axes the osculating circle passes through four consecutive

points, and touches without crossing.

The same investigation applies when one of the curves

becomes a right line. A tangent, therefore, at a point of in-
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flexion, or any line meeting the curve in an odd number of

consecutive points, is crossed by the curve
;
but a tangent which

meets the curve in an even number of consecutive points has

the neighbouring part of the curve all at the same side of it.

50. The axis y = will be a triple tangent when the equa
tion which determines the points where it meets the curve is

of the form

p
(
x - ay (x

-
1]

2

(x
-

c)* (x
-

d) &c. = 0.

It is evident such a tangent cannot occur in a curve of any

degree lower than the sixth. We may, as in Art. 40, dis

tinguish four species of triple tangents according as the points

of contact are real and distinct, one real and two imaginary,
one real and two coincident, or all three coincident. The last

will be the case when the equation is of the form

P(x-a)*(x-b)&c. = ,

and the axis meets the curve in four coincident points : the point
of contact of such a tangent is called a point of undulation. In

like manner there may be multiple tangents of still higher

orders, or again, points of undulation of higher orders, arising

when a line meets the curve in more than four coincident points.

Cramer calls those points at which the tangent meets the curve

in an odd number of consecutive points, points of visible inflexion,

to distinguish them from those points de serpentement, or points

of undulation, which do not, to the eye, differ from ordinary

points on the curve.

51. We have hitherto only illustrated the case where the

origin is a multiple point, or one of the axes a multiple tangent ;

it is evident, however, that the form of the equation might, in

like manner, show the existence of multiple points and tangents

situated anywhere.

I. For instance, if the equation be of the form

a$ + j3^ = 0,

where a, /3 are linear functions of the coordinates, and $, ty

are any functions of the coordinates, then $ is one point on the

curve. The equation of the tangent at this point is

ap +W =
0,



38 MULTIPLE POINTS AND TANGENTS OF CURVES.

where &amp;lt;

, ty are the values which
&amp;lt;j&amp;gt;

and ty assume when we
introduce the conditions a = 0, /3 = 0. For if we seek the n 1

points, in which any line through a/3, (a
=

7c/3) meets the curve,
we get an equation of the form

/3 [k (# + M/3 -f NF + &c.) +W + M {3 +NF + &c.)}
=

;

and in order that a second root of this should be ft = 0, we must

have Jcfi + -\Jr
=

; whence, substituting for k its value -5 ,
we

get for the equation of the tangent

&amp;lt; -f J3 = 0.

II. In general the curve represented by

passes through the points

aa,, a/3,, ay,, &c., /3a,, /3/3v , /3x, &c., 7^, 7/3v , 77,, &c.

III. If the equation be of the form

we see (as at Conies, Art. 252), that a is the tangent at the point

a/3, for two of the points in which this line meets the curve

coincide.

Or again, if the curve be

1?
&c. are the tangents at the n points, where /3 meets the curve.

The form of the equation shows that if the points of contact of
n tangents lie on a right line

fi, the remaining points where these

tangents meet the curve lie on the curve of the (n 2)
th

degree (j&amp;gt;.

IV. If the equation be of the form

and if we seek the points where any line
(a=7&amp;lt;;/3) through a/3 meets

the curve, we find that two of these always coincide with a/3,

and therefore that this is a double point. It appears precisely as

in I., and in Art. 37, that the tangents at this double point are

where
, ^ , ^ are the values which these functions take for

the coordinates of the point a = 0, /3
= 0.
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V. So again, if the equation be of the form

the point a/3 is a triple point ;
the three tangents being given by

the equation
+ /3V = 0.

VX If the equation be of the form

a is a double tangent at the points a/37 07.

VII. If the equation be of the form

a/3 is a point of inflexion, and a the tangent at it.

52. We shall first illustrate the last Article by showing how
the equation enables us to discern the nature of the points of

the curve at an infinite distance. The trilinear equation is

(Art. 26)
u
n 4 u^z 4 u

n_/ 4 &c. = 0.

Writing herein 2=0, the directions of the n points at infinity

are found from the equation un 0, which, solved for y : #, is of

the form

(y
-
m^x] (y

-
mjc} (y

- m
3x] (&c.) (y

- m
nx)

= 0.

A curve of the ?i
th

degree has, in general, n asymptotes, namely &amp;gt;

the tangents at the n points, where 2, the line at infinity, meets

the curve. We can find their equations readily as follows, when
the equation u

n
= has been solved for y : x. It appears, from

III. of the last Article, that if the equation were reduced to

the form

f
1}
&c. would be the n asymptotes. But the given equation

may always be reduced to the form

(y m^x 4 \z) (y mjc 4 \z] &c. = z
2

(f&amp;gt; ;

for the terms of the th
degree in x and y are obviously the same

for both equations, and the n arbitraries, X t , &c., in the second,

can be so determined as to make the n terms of the (n
-

l)
th

degree the same for both equations.
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The reader will have no difficulty in understanding this method,
if he tries to apply it to a particular example ;

for instance,

.(x + y} (2aj + y) (3a5 + y) + 17x2 + 1 Ixy + 2y
2 + I2x + Wy + 36 = 0,

which it is desired to throw into the form

(x + y + \)(2x + y + \) (3a? + y + \) + Ax + By + G=0.

To determine X
x ,
X

2 ,
X

3
we should then have the three equations

6\ + 3X
2 +2X3 =17, 5X

t
+ 4X.2 43X3

= n, \ -f X
2
-f X

3
= 2

;

and the equation may be reduced to the form

(x + y + 4) (2x + y - 3) (3x 4 y + 1) + 43tf + 2 ly + 48 = 0.

Observe that the values X,, X
2 , \ are such that we have

identically

X
2

X
3

.

and so- in general the values X
1?
X

2 ,
... are determined by decom

posing w
n_j H- w

n
into its simple fractions.

53. If two roots of the equation z^
= be equal (w, =^ 2),

the general equation takes the form (y m^)* &amp;lt;j&amp;gt;

-\- zty
=

;
two

of the points where z meets the curve coincide, and the line at

infinity is therefore a tangent to the curve. But if the factor

y m^x is also a factor in w
n_,,

then the curve has a double

point at infinity ;
for the equation is of the form

(y
- m^J

2

&amp;lt;j&amp;gt;

+ z(y- m vx) ^ + z*X = 0.

Should three roots of the equation u
n
= be equal, the line

at infinity meets the curve in three coincident points, and there

fore touches at a point of inflexion.

If in the general equation the coefficient of y
1

be = 0, the axis

of y passes through a point at infinity, and we have evidently

only an equation of the (n l)
th

degree to determine the re

maining points where it meets the curve.

Should the coefficient of y
1 1

also vanish, the axis of y will be

an asymptote.

54. We shall in a future section show how the singular

points of a curve may, in general, be found. But the application

of the general methods being usually a work of some difficulty,
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the examples given in works on the differential calculus are, for

the most part, cases where the existence of the singular points

more readily appears from mere inspection of the equations; a

selection, including all the most difficult of these examples,

will therefore serve to illustrate the preceding Articles. (See

Gregory s Examples, p. 170, &c.)

Ex. 1. x* - ax*y + by
3 = 0.

Ex. 2. x* - 2ax*y + 2x2
y
2 + ay* + y* = 0.

In both cases the origin is a triple point. The tangents of the first are given by
the equation ax-y by

s
; and of the second by the equation 2x*y = y*. By Art. 43

neither curve can have any other multiple point.

Ex. 3. ay* -x3 bx* = 0.

The origin is a double point, whose tangents are given by the equation ay- bx2 = 0.

If the sign be given positive, the origin is a conj agate point.

Ex. 4. (x*
- a2

)

2 = af (2y + 3a), or (x
-

a)
2
(x + o)

2 - ay* (2y + 3a).

Here evidently (x a, y) and (x + a, y) are double points. To get the tangents

at the first, we are to make x = a, y = in the parts which multiply (x a)
2

, y
1
^

and we get
4 (x

-
a)

2 = 3y*.

In like manner for the tangents at the other double point,

4 (x + ay- = 3y*.

The curve has a third double point, whose existence can be shown by throwing the

equation into the form

#2
(x*

- 2a2
)
= a(2y- a) (y + a)

2
.

Hence, (x, y + a) is a double point, and the tangents at it are

2z2 = 3 (y + a)
2
.

Having found these three, we know, by Art. 42, that the curve can have no other

multiple point.

Ex. 5. (by
- cxY = (x- o)

s
.

The point (by -ex, x- a) is a cusp of such a nature that the tangent at it meets

the curve in five consecutive points.

Ex. 6. x4
(x + b)

= a^2
.

The origin is a double point, the tangent at which meets the curve in four

consecutive points. There is a triple point at infinity, to which the line at infinity is

the only tangent. The line x + b touches the curve where it meets the axis of x,

and also at a point of inflexion at infinity.

Ex.7.
f+f

l+ l =a
This equation, cleared of radicals, becomes

(aj* + y
2 + z2

)
3 = 27x2#V j

and in this form the existence of six cusps is manifest, for each of the points where

x meets y
2 + z1 is a double point, and x the only tangent at it. Similarly for

(y, x* + 22) and (z, x
1 + y

2
). But the cusps are all imaginary.

The curve has also four double points, viz. (x y = 0, x z 0).

This can be proved by putting y + x = u, z + x = v; and therefore

y = ux, z = vx.
G
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Substituting these values in the given equation, it is of the form

it?cfr- + uv\}f + v2x-

The tangents at any of the double points will be found to be given by the equation
2 + uv + v- = O

f

and therefore the double points in question are conjugate points; and, in fact, these

are the only real points of the curve.

Or again, the equation may be written

9X-
2

(a:
4 - x2

(f + z2
) + y*

-
y-z

2 + 3*}.
-

(2z
2 - f - z2

)
3 = 0,

which is one of three like forma, viz. writing , ij,
= if z2

,
z2 x2

,
x2 y

2
,
the

form is 9x2
(if + ?} + 2

) (n )
3 =

; putting in evidence the double points tj
= 0,

=
j or, what is the same thing, 5 = 0, TJ

=
0,

= 0, that is, or- = y
1 - z2 .

SECT. III. TRACING OF CURVES.

55. It is proper to give some examples of the method of

tracing the figure of a curve from its equation. If we give any
value (a) to either of the variables X, the resulting numerical

equation can be solved (at least approximately) for
?/,

and will

determine the points in which the line x = a meets the curve,

By repeating this process for different values of x
7
as at Conies,

Art. 16, we can obtain a number of points on the curve
; and,

by drawing a line freely through them, can obtain a good idea

of its figure. By taking notice what values of x render any
of the values of y imaginary, we can perceive the existence of

ovals, or can observe whether the curve is limited in any
direction and we have already shown (Art. 52) how to find

whether the curve has infinite branches, and how to determine

its asymptotes. It will be shewn in the next section how to find

its multiple points and points of inflexion. Th value of ~
ctx

at any point gives the direction of the tangent at that point

(Art. 48) ;
and if we examine for what points

~- =
0, or = GO

,
CtJC

we shall have the points at which the course of the curve is

parallel or perpendicular to the axis of x.

In practice we must, of course, take advantage of any

simplifications which the equation of the curve suggests. Thus,
if we consider a series of lines parallel to one of the asymptotes

(or a series of lines passing through a point on the curve), the

equation which determines the other points in which each of

them meets the curve is of a degree one lower than the degree
of the curve. If the equation shows that the curve has a double
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or other multiple point, it is advantageous to consider a series

of lines drawn through this point, since then the equation in

question will lose two or more dimensions.

There is scarcely any exercise more instructive for a student

than the tracing of curves, and more particularly those in which

the equation contains one or more parameters which assume a

succession of different v-alues. In the case of a single parameter,
this may be conceived of as an ordinate z in the third dimension

of space, and the problem thus, in effect, is to find the form of

the several parallel sections of a surface.

It will suffice to add a few examples to those which will

incidentally occur in the course of these pages. We refer

the reader who may wish for further illustration, to Gregory s

Examples, Chap. XI.
; or, if still unsatisfied, to the source

whence all later writers on the subject have drawn largely.

Cramer s Introduction to the Analysis of Curves.

Ex. 1. x -
axty + by

3 = (see Ex. 1, p. 41).

Here, the origin being a triple point, it is advan

tageous to consider a series of lines drawn through it.

Substituting y = mx, we find af= m (a bin*), a func

tion which, as m passes from to + x
,
increases from 0,

when m =
0, to a maximum value when a 3?nb2

;

then decreases, and vanishes when a Lin- = 0, and has

an indefinitely increasing negative value as m increases

further. The curve is manifestly symmetrical in re

gard to the axis of y. Hence the figure is that here

represented.

Ex. 2. (x
2 - a2

)
2 = ay* (3a + 2^), (see Ex. 4, p. 41).

Hence x2 = o2 + J{ay- (3a + 2^)}. The curve is plainly symmetrical in regard to

the axis of y. It has on each side two branches, corresponding to the two signs

which may be given to the radical. The two branches intersect when y 0, and ac

cordingly we have seen that there are on the axis of x two double points at the distance

x = + a. As y increases positively, the radical increases indefinitely ;
hence the value

of. ar, corresponding to the one branch, increases

indefinitely ;
that corresponding to the other de

creases, until we* come to the value of y corre

sponding to the single positive root of the equation

Say
3 + Ba-y

2 = a 4
, (2y = a), beyond which this

branch can extend no higher. For negative values

of y, the radical increases to a maximum value

when y + a =
;
the one pair of branches then

intersect in a double point on the axis of y. and

the other pair is at its furthest distance from that

axis. Evidently neither branch can proceed lower



44 TRACING OF CURVES.

than the value 3a -f 2y = 0. Hence the shape of the curve is that represented in

the figure.

Ex. 3. Given base of a triangle 2&amp;lt;? and rectangle under sides m2
,
the locus of vertex

is Cassini s oval, whose equation is, the origin

being the middle point of base,

(a;
2 + y*

- c2)
2 - 4c2#2 = m*.

The accompanying diagram represents the

figure for different values of m. The dark

curve represents the figure for m =
c, the curve

being then known as the lemniscate of Ber-

nouilli. When m is less than c, Cassini s curve

consists of two conjugate ovals within the parts of this figure: when m is greater

than c, of one continuous oval outside it.

Ex. 4. On the radius vector from a fixed point to a fixed line MN a portion

RP of given length is taken on either side of the right line. The locus pf P is a

curve called the conchoid of Nicomedes, invented by that geometer for the solution

of the problem of finding two mean proportionals.

If OA -p, RP = m, the polar equation is (p m) cosw =p, and the rectangular

equation

The line MN (p = y] touches at a singular point at infinity, and there meets the

curve in four consecutive points.

The point is also a double point, the tangents at which are given by the equations

It will therefore be a node, conjugate point, or cusp, according as m is greater, less

than, or equal to^?. The continuous line represents the case when m is greater than

p ;
the dotted line that when m is less than p.

Ex, 5. In like manner on the radius vector to a fixed circle from a fixed point on it

a portion of fixed length is taken on either side of the circle. The curve is called

PascaTs Jima^on. The polar equation is p =p cos o&amp;gt; + m
;

and the rectangular

(ic
2 + y

1
px)* = m? (x

2 + y
2
). The origin is evidently a double point and is a node

or conjugate point according as p is greater or less than m. When/? = m, the origin

is a cusp, and the curve is of the form of a heart, and is called the cardioide. This

is represented by the dark curve in the figure, the inner and outer curves repre

senting the forms with a node and with a conjugate point respectively.
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Ex. 6. (a;
2 - a2

)
2 + (y*

- J2)
2 = c4

,
where b is supposed less than a. When e - 0,

the curve consists of the four conjugate points a
t

b. The figures represent the

cases, (1) c less than b, (2) c = b, (3) c intermediate between b and a, (4) c = a,

(5) c&amp;gt; a, &amp;lt; \l(a* + b*}, (6) c = *J(a
* + ^4)- When c has a greater value, the curve

ia of similar form, but without the conjugate point at the origin. When c = a = 6,

the double points of (2) and (4) present themselves simultaneously, and the curve in

fact breaks up into two ellipses as in (7).

(1)
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(6)

56. If a curve pass through the origin, then if this be an

ordinary point on the curve, y may be developed in the form

y=Ax-{-Bx*+... when the origin is a singular point, the form is

y=Ax*+BxP+&c., where a is positive and y3 and all the indices

which follow are greater than a
;

it is for determining the nature

of the singular point, and the form of the curve in its neighbour

hood, very convenient to find even the first term of this develop
ment

;
in fact, in the neighbourhood of the origin the figure

resembles that of the curve y Ax*, which can easily be con

structed. In order to effect such a development, we can employ
the process given by Newton,* which is most conveniently
used in the following form. Write in the equation y = Ax*, and

determine the positive quantity a by the condition that the

indices of two or more terms shall be equal, and less than the

index of any other of the terms. This can always be done

by trial, by equating the indices of each pair of terms, and

observing whether the resulting value of a is positive, and

the equal indices not greater than the indices of some other

term. Having thus found a, we determine A by equating to

zero the quantity multiplying the terms with equal index.

* See Methodus Fluxionum et Serierum infinitarum, $c., under the heading

De reductione affectarum equationum (Opusc. ed. Castillon, vol. I., p. 37). See also

a paper by Professor De Morgan, Quarterly Journal, vol. I., p. 1, and Transactions

of the Cambridge Philosophical Society, vol. IX., p. 608. Newton gives the rule

by means of a diagram of squares, in a form different from that given above.
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&quot;We can then carry on the expansion by substituting y^A
where A and a have the values already found

;
and /3 and B are

determined, if need be, by a similar process; but it usually

happens that after the first term or terms the indices will

proceed in a regular order, and the coefficients will be each of

them linearly determined. Thus, for example, let the curve be

a?
3 + ?/

3

3azy = Q, where the origin is a double point having the

two axes for tangents; then, writing y=Ax* the equation becomes

We are now to make two indices equal. Trying first 3 = 3a,

or a =
1, we reject this value because it makes the equal indices

greater than the index a + 1 of the other term. Trying next

3 = a4l, or a = 2, we find that this value will make the equal

indices less than that of the third term. The equation will

become (1 3aA) x* + A*x* = 0, and determining A so as to

make the coefficient of x3

vanish, we see that the equation may

be expressed in the form y = x2 + &c., where the indices of
od

the remaining terms are greater than 2
;
and we learn that the

form of one branch of the curve at the origin resembles that

of the parabola 3ay = x*. And in the third place equating

the indices 3a, a+1, we find a = \. Here again, the equal

indices are the lowest and the coefficients of the two terms are

A3

, 3aA, whence A =
\/(3a), and the branch is y= V(3a)#*4&c.,

wherefore near the origin the form approaches to that of the

parabola if
= Sax. It is not necessary for our present purpose,

but if we desire to continue the expansion we should substitute

y = -- x2

4 BxB
. The lowest terms would then be

Od/

We can then make the indices of two terms equal, and lower

than the remaining one, by making /3 = 5,
whence =

5 .

We have shown, then, that if we trace in the

neighbourhood of the origin the two parabolas \

Say = xz

j y*
=

3ax, we have approximately the -
figure in that neighbourhood of the curve we wish

to construct.
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O

57. The same process will lead to a determination of the

infinite branches of the curve. We must then expand y in

descending powers of x, and the only dif

ference in the process is that we now make

the equal indices greater than that of any
other term. Thus, in the example already

given, equating the indices 3, 3a, we have

a= 1, and their coefficient AA

+ 1. Attending

only to the real value for A (= 1) we sub

stitute y = x + Bx/3
&amp;lt;
and find in like manner 0, B=-a.

We thus get the expression y x a 4- &c., and we see that

the line # + ?/ -h a = is an asymptote. The figure is as in the

diagram.

58. In the case of the simple cusp of which we have had an

example, see Art. 39, the two branches which meet at the cusp
lie on opposite sides of the common tangent, and have their

convexities opposed to each other
;
but there is a cusp (which

is a singularity of higher order) in which the branches lie on

the same side of the tangent. Thus, in the curve m(ayx
z

)^=x
6

^

it is plain that any positive values of x give real values for y
sd

and if we write the equation in the form ay xz

,
then since

the last term is less than the preceding when x is small, we see

that, whether we use the upper
or lower sign, the value ofy will

be positive for small values of x.

The axis of x, then, is a tangent

and both branches lie on the

upper side of it. The figure is

as here represented. These two kinds of cusps have been

called keratoid and ramphoid from a fancied resemblance to the

forms of a horn and a beak. We have seen (p. 27) that

ordinary multiple points of higher order may be regarded as

resulting from the union of a number of double points. Professor

Cayley has shewn (Quarterly Journal, vol. vn. p. 212) that

any higher singularity whatever may be considered as

equivalent to a certain number of the simple singularities, the

node, the ordinary cusp, the double tangent, and the in-
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flexion. Thus, a cusp of the kind described in this article is

equivalent to one node,
one cusp, one double

tangent, and one inflex

ion, as will appear from &quot;^=z

the annexed figure which

exhibits the node and

cusp on the point of uniting themselves into the higher sin

gularity in question.

SECT. IV, POLES AND POLARS.

59. The method that we shall presently use in investigating

the conditions that a curve should have multiple points or

tangents, and in ascertaining their position, is the same as that

already employed in the case of the origin. We shall consider

a series of radius vectors drawn through -a given point ;
we

shall form the equation which determines the coordinates of

the n points where any such radius vector meets the curve, and

we shall examine the conditions that one or more of these

points may coincide with the given point itself. In order to

determine the coordinates of these n points we shall use

Joachimsthal s method explained Conies, Art. 290. Since the

trilinear coordinates of any point on the line joining two points

ar?/V, e&quot;?/
V are of the form \x -f /JLX&quot; , \y +

py&quot; i
^ -f

/zz&quot;,

the points where the joining line meets any curve are found

by substituting these values for a?,y, 2, and then determining the

ratio A : ^ by the resulting equation. And it will be a necessary

preliminary to the following investigation to discuss carefully

the functions which present themselves in this substitution.

If then in
Z7,

which is a homogeneous function of the nih order

in X, y, 2, we substitute \x + px , \y + //,?/,
\z + pz for

a-, ?/, z,

it is evident by Taylor s theorem that the coefficient of A,&quot; will

be
Z7,

and that of
V&quot;&amp;gt;

will be

or x&amp;gt; + u + z&amp;gt; u or x L +

using the abbreviations
Z7j, Z7,,

Z7
3
or L, J/, JV (as the case may

be) for the differential coefficients. We shall use the symbol A
H
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to denote the operation x -r- + y ~r + z&amp;gt; ~r i
an(^ the coefficient

dx y
dy dz

of \n~l

jju may thus be written A U. In like manner the coeffi

cient of X- will be half

x - - -
j-j~ ;; T- &amp;gt;dzdx *

dxdy
which may be written

Uor
dx y

dy
The second differential coefficients are often written with double

suffixes Un , U^ U^ U^ U
3l , U^ but we find it more con

venient to- use the letters, a, 5, c,/J g, h, and so to write A2 7

in the form we have used in expressing the general equation

of a conic

ax* -4- %2 + cz* + %fyz 4 2#&r -f 2^^.
In like manner the coefficient of XM

~y in the expansion is

A 3
Z7. and so on: the last coefficient being

-
A&quot;Z7.

1 . 2 .o 1 . ...71

It is evident however from the symmetry of the substitution

that this coefficient will be Z7
,
and in general, that the co

efficients of any two corresponding terms XV? ^V only differ

by an interchange of accented and unaccented letters. We
see thus that A&quot;&quot;

1 U only differs by a numerical factor from

xU\ + y U\ + z Z7
3 ,
and generally that

d ,
d

, d\&quot;-

p

TT ( d d d\
P
T7 ,

y+Y-5-+V:r) u
-&amp;gt; \

x
^-&amp;gt;

+ y-H + z
^-&amp;gt;)

u
&amp;gt;dx y

dy dzj \ dx dy dz )

only differ by a numerical factor. We may write the last

function AP Z7
,
the accent on the U serving to mark the inter

change of accented and unaccented letters.

60. The curve of the (n
-

l)
th

degree A Z7= is called the

first polar of the point xyz, with respect to U. In like

manner A 2
E7&quot;=0 is called the second polar, and so on, the

degrees of the successive polar curves regularly diminishing by

one, the (w-2)
th

polar being a conic, and the (n- l)
th a right

line. And, from the remark just made, it is plain that the

equations of the polar line and conic are respectively

,

dx a
dy dz j \ dx a

dy
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Since &?U is obtained by performing tbe operation A upon
A Z7, it is plain that the second polar of x yz, with respect to U,

is the first polar of the same point with respect to A U] and

generally that the polar curve of any rank is also a polar of the

same point with respect to all polar curves of a rank lower than

its own
;
as is evident from the equation A* (A

1

7)
=

A*&quot;*&quot; {7.

For the origin, for which x and y vanish, the operation
A reduces to differentiating with respect to z. If the ordinary

Cartesian equation be made homogeneous by the introduction

of the linear unit z (Conies, Art. 69), it may be written

u
Q
z
n
+ M/-

1 + w/-
2 + &c .

=
0,

and we find without difficulty, by differentiating with respect to z^

that the equations of the polar line, conic, &c. of the origin are

nu
Q
z + M

X
=

0, %n (n
-

1) U
Q
Z* -f (n

-
1) up + w

2
=

0, &c.

61. The locus of all the points ichose polar lines pass through
a given point is the first polar of that point.

The equation xU^ + yU^ + zU3 expresses a relation

between xyz the coordinates of any point on the polar line,

and xyz those of the pole. And, as in Conies^ Art. 89, we
indicate that the former coordinates are known and the latter

variable, by accentuating the former and removing the accent

from the latter coordinates, when the equation becomes

x U
v
+ y U^ -f z U

3
= 0. There are (n- I)

2

points, whose polar
lines with respect to U will coincide with any given line, or,

more briefly, every right line has (n 1)&quot; poles. For take any
two points on

it, the poles of the right line must lie on the

first polar of each of these points; therefore they are the

intersections of these curves. Also the first polars of all the

points of a right line have (n I)
2 common points^ viz. the (n I)

51

poles of the right line.

In like manner, the locus of points whose polar conies

pass through a given point is the second polar of the point ;

and so on.

If the polar line (or any other polar) of a point pass through
the point, that point will be on the curve. For if we substi

tute xyz for xyz in the equation of the polar, it becomes

identical with the equation of the curve, since the operation
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x-, \- y i + z ~r performed on a homogeneous function only

affects it with a numerical factor.

62. If a curve have a multiple point of the order &, that point

will be a multiple point of the order k l on every first polar,

of the order k 2 on every second polar, and so on. For if the

origin be at the multiple point, the lowest terms in x and y
will be of the degree k

;
in the first polar, which involves only

first differentials of U, the lowest terms in x and y will be of

the degree &- 1, and therefore the origin will be a multiple

point of that order; the equation of the second polar, involving

second differentials of
Z7,

will contain x and y at lowest in the

degree k 2, and so on.

If two tangents at the multiple point in the curve coincide,

the coincident tangent will be a tangent to the first polar.

For the lowest term u
k

is of the form d bcd..., where a, &, ...

represent linear functions of the coordinates, and hence its

differentials will contain a as a factor, and therefore the

lowest terms in the equation of the polar contain a as a factor.

And, in general, if I tangents to the multiple point on the

curve coincide, I - 1 of them will be coincident tangents at

the multiple point on the first polar, Z 2 at the multiple point

on the second polar, and so on. For if u
k
have any factor

in the Z
th

degree, that factor will be one of the (I l)
th

degree
in all the first differentials of uk \

of the (Z-2)
th in all the

second differentials, &c.

SECT. V. GENERAL THEORY OF MULTIPLE POINTS AND
TANGENTS.

63. We proceed now to apply the method indicated in

Art. 59 to the investigation of the multiple points and tangents
of curves. In order to find where the line joining the points

x y z, x&quot;y&quot;z&quot;
meets the curve, we substitute in the equation

\x -f px&quot;
for Xj &c., and we get in order to determine the ratio

X. :
ft,

an equation which we may refer to as A =
0, and which

may be written

X&quot; U -f X&quot;&amp;gt;
A IT -f

iA,&quot;VA*U -f &c. = 0,

it being supposed that in A U
, &c., as previously written, x&quot;y&quot;z&quot;
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have been substituted for xyz. In order that one of the points

\x +
j*x&quot;, \y +

pi/&quot;,
\z -f pz&quot;

should coincide with xy z
,

it is

obviously necessary that one of the roots of the equation A =

should be /z
= 0. But this clearly will not be the case unless

7 = 0; and it is otherwise evident that the condition that

xyz should be on the curve is, that its coordinates substituted

in the equation of the curve should satisfy it.

64. Two of the points in which the line meets the curve

will coincide with xyz, if the above equation be divisible by

//,* ;
that

is,
if not only U = but also A U = : now it is plain

that if the line joining xyz a point on the curve to
x&quot;y&quot;z&quot;

meet

the curve in two points which coincide with xyz }
then

x&quot;y&quot;z&quot;

must lie on the tangent (or tangents if more than one) which can

be drawn to the curve at x y z : but we have now proved that in

this case x y z&quot; must satisfy the equation x Z7/ -f yU2 + z U^ = 0.

Hence, in general, at a given point on the curve there is but

one tangent, whose equation is that just written. It appears
thus that the polar line of a point on the curve is the tangent.

All the other polar curves of the point x y z will touch the

curve at that point. For it was proved (Art. 60) that the polar

line with respect to the curve U will also be the polar line

with respect to each of the polar curves; and (Art. 61) the

coordinates x y z satisfy the equation of each of the polar

curves
;
and therefore, by what has been just proved, the polar

line with respect to any of them will coincide with the tangent.

65. The points of contact of tangents drawn to a curve from

any point lie on the first polar of that point. This is a particular

case of what was proved in Art. 61, or it may be established

directly in the same way. The equation of the tangent at the

point x y z having been shewn to be xU{ + y U^ + z U
3
=

0, then

by an interchange of accented and unaccented letters we in

dicate that the coordinates of a point on the tangent are sup

posed to be known, and those of the point of contact unknown
;

and we see that the latter coordinates must satisfy the equation

x U
l
+ y Uz + z U

z
= Q. The curve and its first polar clearly

intersect in n (n 1
) points, and since at each of these inter

sections U 0, A U= will be satisfied, we see that from a
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given point there can lie drawn n(nl) tangents to a curve of
the rc

th
degree. Or, again, (Conies, Art. 303) the degree of the

reciprocal of a curve of the nth
degree is in general n (n I).

66. If, however, the curve have a double point, it was

proved (Art. 62) that the first polar of any given point must

pass through that double point. The double point) therefore

(see note, p. 29), counts for two among the intersections of the

curve with its first polar. But the line joining the point x y z&quot;

to the double point is not a tangent in the ordinary sense of

the word, though it is indeed included among the solutions to

the problem we have been discussing (viz., to draw a line

through x y z
1

)
so as to meet the curve in two coincident

points) ;
for we have shewn that every line through the double

point must be considered as there meeting the curve in two

coincident points. Now the entire number of solutions to this

problem being always n (n I) (viz., the intersections of U and

A 7), the number of tangents, properly so called, which can be

drawn to the curve is diminished by two for every double point

on the curve
;
or the degree of the reciprocal of a curve of the

wth
degree having 8 double points is n (n I

}
28.

67. If the curve have a cusp, we have proved (Art. 62) that

the first polar not only passes through the cusp, but also has its

tangent the same with the tangent at the cusp. Hence (see

note, p. 29) this cusp counts as three among the intersections

of the curve with its first polar, and the remaining intersections

are consequently diminished by three for every cusp on the

curve. Hence the degree of the reciprocal of a curve having o

ordinary double points and K cusps ,
is

*
According to Poncelet, Waring was the first who investigated the problem

of the number of tangents which can be drawn from a given point to a curve of the

7t
th

degree. (Miscellanea Analytica, p. 100). This number he fixed as at most n2
.

Poncelet shewed (Gtergonne s Annales, vol. vin. p. 213) that this limit was fixed

too high ;
that the points of contact lie on a curve of the (n l)th degree, and that

their number cannot exceed n (n 1). Finally, Pliicker established the formula

in the text, and thereby fully explained (as we shall do further on) why it is that

only n tangents can be drawn to the reciprocal of a curve of the th degree, though
that reciprocal is, in general, of the degree n (n 1).
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68. The same principles would shew the effect of any higher

multiple point on the degree of the reciprocal. A multiple point

of the order k would (Art. 62) be a multiple point of the order

&-1 on the first polar, a: d therefore the number of remaining

intersections, and consequently the degree of the reciprocal,

would be diminished by k(kl).
We have shewn (p. 28) that a multiple point of the order

k is equivalent to \k (k I) double points, each of which would

diminish the degree of the reciprocal by two. And the result

we have now obtained may be stated : the effect of a multiple

point on the degree of the reciprocal is the same as that of the

equivalent number of double points. And so generally (see

Art. 58) for a multiple point equivalent to B double points, K

cusps, T double tangents, and i inflexions, the effect on the

degree of the reciprocal is =28 -\-Sic .

69. We have already seen that the line joining x y z and

x y z&quot; will meet the curve in two points which coincide with

x y z if Z7 = 0, and if x y z be so taken as to satisfy the

equation x&quot;U,
-f

y&quot;U^
+ z U^ = 0. But if it should happen

that the coordinates x y z satisfy the three equations Z7,
=

0,

U
9
=

0, L\
=

0, then the second condition x&quot; 7/4 y&quot; UJ+ z&quot; Z7
8
=

is satisfied, no matter what x y z&quot; may be. The point x y z is

then a double point, and every line drawn through it meets the

curve in two coincident points.

AYe see then that the curve expressed by the general equa
tion in Cartesian or trilinear coordinates will not have any
double point unless the coefficients be connected by a certain

relation. For the three curves U
}

=
0, Z7

2
=

0, Z7
8
= will not in

general have any point common to all three, and therefore the

functions Z7,, U^ U
s
cannot all be made to vanish together. If

between these three equations we eliminate x : y : z, we shall have

a relation between the coefficients, which will be the condition

that these three polars should intersect, or that the curve U
should have a double point. This condition is called the dis

criminant of the equation of the curve. Thus (Conies, Art. 292)

we found the discriminant of a conic by eliminating x : y : z

between the three equations

ax + hy + gz - 0, hx -|- by +fz = 0, gx +fy + cz = 0,
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each of which must be satisfied by the coordinates of the double

point if the curve have one, and we found

abc + 2/gh
- af - If - ch* = 0.

In general the discriminant will be of the degree 3 (n
-

I)
2

in the coefficients of the given equation; for (see Higher

Algebra, Art. 76) since the three derived equations are each of

the degree n 1, their resultant contains the coefficients of each

in the degree (n- I)
2

,
but the coefficients of the derived equa

tions are each of the first degree in the coefficients of the original

equation. See also Higher Algebra, Art. 105.

70. We may apply these principles to examine the con

ditions which must be satisfied when the first polar of any point

A, xy z, has a double point. Differentiating the equation
x ^i+/ 2̂

+ 2
3̂
=

&amp;gt;

an(l using for the second differentials the

notation of Art. 59, we see that if there be a double point B,
its coordinates must satisfy the three equations

ax + Jiy + gz =
Q, hx + by +fz =

Q, ax +fy + cz = 0.

These are three relations connecting xyz\ the coordinates of

the point A with xyz, the coordinates of the double point 5,
of which coordinates a, 5, &c. are functions each of the (n 2)

th

degree. But on comparing these equations with those cited

in the last article, we see that if we write the polar conic of

the point B
ax* + by* + cz

2 + 2fyz 4 Zgzx + %hxy = 0,

the three relations are exactly the conditions that must be

fulfilled when A or x y z is a double point on the polar conic.

Hence we infer, if the first polar of any point A has a double

point B, then the polar conic of B has a double point A / and
vice versa.

Between the three equations we can eliminate xy z\ and

obtain as a relation which must be satisfied by xyz^

abc -f 2fffh
- af - bg*

- ch* = 0.

This equation then is the equation of the locus of points B, and

it appears from what has been said, that it may be described

either as the locus of points which are double points on first

polar curves, or as the locus of points whose polar conies break
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up into two right lines. Since the second differentials
&amp;lt;?, ,

&c.

are each of the order n 2 in xyz, the equation just written is

of the order 3 (n
-

2). The curve which it represents has im

portant relations to the given curve, of which it is a covariant

(Higher Algebra, p. 124). On account of its having been first

studied by Hesse, it is called the Hessian of U.

If between the three equations we eliminated xyz, the re

sulting equation in x y z would give the locus of points A,
which may be described either as the locus of points whose

first polar has a double point, or of points which are double

points on polar conies. This locus we shall call after the

geometer Steiner, the Steineriau of U. In order actually to

perform the elimination in any case, it would be necessary to

write out a, b, &c., explicitly ;
but we can easily see that the

degree of the resulting equation is 3 (n
-

2)
2

,
since it is the

resultant of three equations each of the degree n -
2, and each

containing #, y^ z in the first degree.

71. Eeturning now to the equation A = 0, we see that it will

have three roots
//, =0, or that the line in question will meet

the curve in three points coincident, with x y z
,

if the three

conditions are satisfied U =
0, A IT = 0, A

2U = 0. Let us con

sider first the case when x y z is a double point ; then, as we have

seen, U and AZ7 vanish independently of
x&quot;y&quot;z&quot;,

and the third

condition expresses that x y z&quot; must be on the polar conic of

x y z. But clearly the point x y z&quot; may be any point on either

of the two tangents at the double point, since each of these

meets the curve in three coincident points. Hence the polar
conic of x y z must be identical with these two lines; or, in

other words, the equation of the pair of tangents at the double

point is A*7 =
0, or

a *e
2
-f &y + c z* 4 Zfyz 4 fy zx 4 Ilixy 0.

The double point, being one whose polar conic has thus been

proved to break up into two right lines, is a point in the

Hessian
;

and we shew directly that it satisfies its equation.

For, by the theorem of homogeneous functions, the three

equations Z7/
=

0, ET = 0, 7
3
=

0, which are satisfied for the

double point, may be written

ax 4 h y
f

4 gz =
0, lix 4 I y +fz =

0, gx +f y 4 c z = 0,

I
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whence eliminating x y z we see that the .equation of the

Hessian is satisfied for the double point.

72. The double point will be a cusp if the equation which

represents the two tangents be a perfect square ;
that is,

if

lc =/
2

,
ca = fj\ ab = ti*. These three are only equivalent to

one new condition, for if any one of these be satisfied, and the

coordinates x y z of the double point have any finite magnitude,

the others must also be satisfied. For, solving for the ratios

x : z
j y : z, successively from each pair of the equations at

the end of the last article, we have

a _ //- bg _ Ic-f _fg-ch
7

&quot;

ab^Tf
~

hf-bff

~
gh-af

y gh ~ f fg~ c^ ca ~ 9*

7
~
ab^T? W11^

=
W~*f

Hence if ab h*, and neither of the ratios is infinite, both

numerator and denominator of every one of these fractions

must vanish.

73. The origin will be a triple point if all the second dif

ferential coefficients a, , &c., vanish; for then A 2
7 vanishes

independently of
x&quot;y&quot;z&quot;,

and if the second differential coefficients

vanish, the theorem of homogeneous functions shews that the

first differential coefficients vanish likewise, and therefore A?/

also vanishes. Hence every line through x y z meets the curve

in three coincident points ;
and it is obvious that the three

tangents at that point are given by the equation A3
7 = 0.

There is no difficulty in extending the same considerations

to higher multiple points. The point x y z is a multiple point

of the order &, if all the differential coefficients of the order

Jc 1 vanish for that point, and the tangents at the multiple

point are given by the equation A* U = 0.

74. Let us now examine in what case a line can be drawn

through a point x y z on the curve (but which is not a double

point) so as to meet the curve in three points coincident with

xyz: to fix the ideas we may in the first instance assume

that the curve has no multiple points. We have seen, Art. 71,

that every point on such a line must fulfil the conditions
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The first condition expresses that the line must coincide with

the tangent at x y z, as is geometrically evident
;
the second

condition expresses that every point on it satisfies the equation
of the polar conic. The polar conic A 2 7 must therefore, in

this case, contain the line A Uf

as a factor
;
and therefore the

point xy z must be one of the points whose polar conies break

up into factors
;

that is to say, it must be a point on tke

Hessian (Art. 70). And, conversely, every point where the

Hessian meets Z7is a point at which a line can be drawn to

meet the curve in three coincident points; in other words, is

a point of inflexion. For (Art. 64) the polar conic of every

point on U touches U at that point ;
and if the point be also

on the Hessian H, and the polar conic consequently break up
into factors, one of these factors must be the tangent at x y z.

Any point on that tangent will then satisfy both the conditions

AZ7 =
0, A?U = Q. It follows, then, that every one of the in

tersections of the curves
/,
H will be a point of inflexion on

Z7, and since H is of the degree 3 (n 2), that a curve of the

nth
degree has in general 3 (n 2) points of inflexion.

75. If the curve, however, have multiple points, the number

of points of inflexion will be reduced. We have already shewn

(Art. 71) that every double point on the curve is a point on

the Hessian, but we shall now shew that it is a double point

on that curve, and more generally that every multiple point

on the curve of the order k is a multiple point of the order

3& 4 on the Hessian. The easiest way to shew this is to

suppose that the multiple point has been taken for the origin,

and consequently that the equation contains no terms in x and

y below the degree k. Let us examine, then, the degree of the

lowest terms in x and y in the second differential coefficients
;

then evidently where there have been two differentiations with

respect to x or y, the order of the lowest terms will be k 2
;

where there has been one differentiation with respect to x or y
and one with respect to z, the order will be & 1, and where

both have been with respect to z, the order will be k
;
that is

to say, the order of the lowest terms will be

&-2, -2, k, k-1, -1, fc-2

in a
,

b
, &amp;lt;?, / , g ,

h respectively.
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And combining these, we see that the order of the lowest

terms in x and y, in every term of

will be S&-4.

But further, we say that every tangent at a multiple point

on Z/will be also a tangent at the multiple point on II. For

suppose the line x to be a tangent at the origin, and therefore

(Art. 40), that the lowest terms in x and y all contain a? as a

factor, then evidently x will also be a factor in the lowest

terms of each of the second differential coefficients in which

there has been no differentiation with respect to x that is to

say, it will be a factor in &, c,
and /. But, on inspection, it

appears that every term of

abc + 2fyh
- af - bf - ch*

contains either &, c, or/.

76. We arc now in a position to calculate the amount of

reduction in the number of points of inflexion which occurs

when U has multiple points. If U has a double point, this

will also be a double point on H, and the two tangents will

be common to both curves
;
but (see note, p. 29) when two

curves have a common double point and the tangents at it also

common, this point counts for six in the number of their inter

sections. The number of intersections therefore of U and //

distinct from the double point will be reduced by 6, and we

infer that if a curve have S double points, the number of its

points of inflexion will be 3n (n 2)
- GS.

Similarly, if U have a multiple point of order &, we have

seen that it is a multiple of the order 3k 4 on H, and that

there are k tangents common to the two curves. The multiple

point therefore counts among the intersections as

But we have seen (Art. 40) that the multiple point is equi

valent to \k (k\] double points; hence our present result may
be stated, the multiple point has exactly the same effect in re-

* It is a useful exercise on the method of Art. 56 to show that at a double point

the Hessian and the curve touch the tangents on opposite sides (Clebsch, Vorksungen,

p- 325).
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du.ci.ng the, number ofpoints of inflexion as the equivalent number

of double points.

77. The case of a cusp on U requires special consideration.

Let it be taken for origin and let x = be the tangent at
it,

so

that the equation is of the form icY
1 &quot;2

-f u
3
z
n~3 + &c. =

;
then it

will be seen that the orders of the lowest terms in the second

differential coefficients are 0, I, 2, 2, 1,
1 respectively; the terms

in fact being

a = 2*-, b =^ z-3

,
c = (n

-
2) (*

-
3)W,

f= (
n _ 3

) ^3 ^-4 = 2
(
_

2) ^n-, h =
#U

z
n-

Sf
1

dy dxdy

It will be found then that the order of the lowest terms in

is three, and that only in the terms abc and
&quot;bcf

is the order so

low, but each of these terms contains x2
as a factor. The point

on H is thus a triple point arising from a cuspidal point with

a simple branch passing through it
;

and the two coincident

tangents (or cuspidal tangent) coincide with the cuspidal

tangent of U. Now when two curves have a common point
which is double on one and triple on the other, that point counts

for six intersections; and
if, moreover, two tangents at the

double point are also tangents at the triple point, the curves

have two more consecutive points common, and therefore this

point counts for eight intersections. Hence if a curve have 8

double points and tc cusps, the number of its inflexions will

be =3n(w-2)- 68-8/c.

78. We shall hereafter shew how to use the equation A =

to discuss the conditions for double tangents ;
but the investi

gation being a little difficult, we postpone it for the present.

We shall shew presently that the results already obtained,

combined with the theory of reciprocal curves, are sufficient

to determine indirectly the number of double tangents of a

curve of the nih order.

The equation of the system of tangents which can be drawn

to the curve from any point x y z, may be derived from the

equation A= by the method used (Conies, Arts. 92, 294). Any
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point on one of these tangents is obviously such that the line

joining it to xyz meets the curve in two consecutive points,

and in such a case the equation A = will have two equal roots.

We obtain then the equation of the system of tangents, by

equating to zero the discriminant of A considered as a binary

quantic in X, /-t.

Thus, for example, let U be of the third order. Then A is

X3 U 1

+ XVA + X^
2A +^U= 0,

where, for brevity, we have written A and A for AU and A U.

The discriminant of A equated to zero is

(27 UU&quot; + 4A 3 - 18AA U
)
U= (A

2 - 4A U
)
Aa

.

Now
7, A, A are respectively of the third, second, and first

degrees in xyz ;
the preceding equation then, being of the sixth

degree, shews that six tangents can be drawn from x yz to
/,

as we know already.

The form of the equation shews that it represents a locus

touching 7 in the points where U meets A. The other points

where U meets the locus lie on the curve A J 4A U = 0.

Hence, iffrom any point six tangents be drawn to a curve of the

third order
,
their six points of contact lie on a conic A = 0, and

the six remaining points, where these tangents meet the curve, lie

on another conic A *
4A U =

0, which two conies have evidently

double contact with each other in the points A = 0, A = 0.

If xyz be on the curve U =
0, then A reduces itself to

X2A 4- XyLtA +IA*U: equating the discriminant to zero, we have

A2 = 4A
C7&quot;,

an equation of the fourth degree in xyz. Hence

through a point on a curve of the third order can be drawn

in general only four tangents. The tangent at the point in

fact counts for two.

79. And so in like manner in general. The discriminant of

A or of
/*&quot;
U+ //-

XXA + // VA 2

+ &c. is of the degree n (n
-

1)

in xyz, and (Higher Algebra, Art. Ill) is of the form kU-\- (A)
2

$,

where is the discriminant of A deprived of the first term.

Hence the locus touches U at its points of intersection with A,
as it plainly ought to do.

Each of the n (n 1) tangents meets the curve again in

n 2 points, and the form of the discriminant shews that these

n (n
-

1) (n-2) points lie on a curve $ of the order (n
-

1) (n
-

2).
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Moreover, &amp;lt; is Itself of the form & A + (A
2

)S|r. Hence the two

curves
&amp;lt;f&amp;gt;

and
i|r

touch each other at the points where the first

and second polars of x y z intersect.

Writing A, V U -f X&quot;

1

/*A f &c. we see that the discrimi

nant may also be written in the form kU + (A )

2

$ ;
hence if

xy z is on the curve, and therefore U =
0, the discriminant

contains the double factor
A&quot;,

or the system of tangents con

sists of the tangent at xy z counted twice, and ?i
2

?i 2 other

tangents represented by &amp;lt;

= 0. In the same way &amp;lt;f&amp;gt;

is itself of

the form 7^A + (A *)

a

^. If then x y z be a double point, and

therefore not only U but A =
0, &amp;lt;,

which was already of

the degree n~ n 2, contains the double factor (A *)*; that is

to say, among the ri
z

n 2 tangents are included the two tan

gents at the double point, each counted twice, and therefore only
ri

z
n 6 other tangents represented by ty = 0. And so, in like

manner, we can prove that the number of tangents which can

be drawn from a multiple point of the order k is n
2

n k (k + 1).

The theory already given of the effect of multiple points

upon the number of tangents which can be drawn from any

point to a curve shews that the discriminant of A, which in

general represents the n (n
-

1) tangents, will include as factors

the square of the line joining x y z to every double point of the

curve, the cube of the line joining it to every cusp, the sixth

power of the line joining it to every triple point, and so on.

SECT. VI. RECIPROCAL CURVES.

80. We have seen (Conies, Art. 303) that the degree of the

reciprocal curve is always the same as the class of the given

curve, and vice versa. It is evident also, that to a double point,

on either curve will correspond a double tangent on the other
;

that to a stationary point on one curve corresponds a stationary

tangent on the other
; and, in general, that to a multiple point

of the kih order corresponds a multiple tangent of the same

order; that the k points of contact of the multiple tangent

correspond to the k tangents at the multiple point ;
and that if

two or more of these last coincide, so will the corresponding

points of coctact.

81. We have seen that the general equation in Cartesian
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or trilinear coordinates represents a curve which has no double

or other multiple point, unless certain conditions be fulfilled.

But the general equation represents a curve which ordinarily

must have double and stationary tangents. For the abscissae

of the points, where the curve is met by any line y = ax-\-b, are

found by substituting the value for y in the equation of the

curve
;
and since we have two arbitrary constants a and b at

our disposal, we can determine them so that the resulting equa
tion shall fulfil any two conditions we please. With one

constant at our disposal, we could make the equation fulfil any
one condition

;
for instance, have a pair of equal roots. The

problem
&quot;

given a to determine &, so that the resulting equation

should have a pair of equal roots,&quot;
is no other than the problem

to draw a tangent parallel to y = ax. With the two constants

at our disposal, we can either cause the resulting equation to

have two distinct pairs of equal roots, or three roots all equal to

each other. The first is the problem of double tangents, the

second that of stationary tangents and points of inflexion.

Thus the double and stationary tangents may be counted as the

ordinary singularities of a curve whose equation is expressed in

point coordinates
;

all higher multiple tangents and all multiple

points being extraordinary singularities which a curve will not

possess except for special values of the coefficients of its equa
tion. But this is reversed if the equation be expressed in tan

gential coordinates. Then the curve represented by the general

equation ordinarily has double and stationary points and cusps,

but no singular tangents. Hence double and stationary points

on the one hand, and double and stationary tangents on the

other hand, are equally entitled to be ranked among the ordinary

singularities of curves
; they are such, that if any curve possess

the one its reciprocal will possess the other.

82. We shall now denote

the degree of a curve by m,
its class n,

the number of its double points ,

double tangents r,

stationary points #,

, stationary tangents t,
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and the corresponding numbers for the reciprocal curve are

found by interchanging m and
rc,

8 and T, i and K. ~\Ve have

already obtained (Arts. 67, 77) the values of n and i in terms

of
7/2, 8, K] hence, from the reciprocal curve we have the

values of m and K in terms of
??, T, i

;
and from these four

equations (equivalent, as will presently be seen, to three equa
tions only) we can obtain the value of T in terms of m, 8, /e,

and that of 8 in terms of
T?, T, L. We have thus Plucker s six

equations, viz, these are

(1) n = m2 -m-28- SK.

(2) t = 3??i
2 - 6^-68-8*.

(3) 2r = m (m
-

2) (m*
-

9)
- 2 (m

2 - m -
6) (28 + 3/c)

+ 48 (8
-

1) + 128* + 9* (*
-

1).

(4) w = ^-7*-2T-3t.

(5) K = 3rc
2 -6?z-6T-8t.

(6) 2S =
7z(tt-2)(&amp;gt;i

2

-9)-2X-tt-6)(2T-h30
-f 4r (T

-
1) + 12rt -h 9t (t

-
1).

If from (1) and (2) we eliminate 8, or from (3) and (4) we
eliminate T, the result is in each case

(7) *-/e = 3 (w-wi),

shewing that the four equations are equivalent to three only.

This may also be written in the forms

3m K = 3n
t,

and 3m -f i = 3n + K.

By taking the difference of the equations (1) and (4), we obtain

w2 -28-3/c = ?z
a - 2r-3t.

A\7hence, replacing t, K by its value from (7), we obtain

(8) 2(T-8) = (H-w)(w-Mn-9).

The last preceding equation, substituting therein for n and
j,

or for m and K their values, gives the foregoing equations (3)

and (6). From (7) and (8) we obtain also

(9) %m (m + 3)
- 8 - 2* = ?i (n -f 3)

- T - 2*.

(10; 4(7-l)(w-2)-8-* = -J(n- l)(w-2)-T-.

(11) ??i
2 - 28 - 3 = w* - 2r - 3t = 7?z -}- n.

The entire system of equations is,
of course, equivalent to
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three equations only, and by means of it given any three of

the six quantities wz, w, 8, /e, T, t,
we can determine the remain

ing three; thus
???, 8, K being given, n is given by (1), i by (2),

or more easily by (7), and T by (3), or more easily by (8).

Ex. Suppose we were given m = 6, 5 = 4, K = 6
; then, by (1), n = 4

;
therefore

m n = 2, n m = 2.

Hence (5) * - K = 6, or i =
;

n + m 9 = 1
j

therefore T d 1
;

therefore T = 3.

83. Since when a curve is given its reciprocal is determined,
it is evident that the same number of conditions must suffice

to determine each. Now to be given that a curve has 8 double

points is equivalent to 8 conditions. Thus, for example, a conic

is determined by five conditions
;
but if it have a double point,

that is, if it reduce to a system of two right lines, it is deter

mined by four conditions
; by two points for instance on each

of the right lines. So, again, to be given that a curve has a

cusp is equivalent to two conditions. Hence (and Art. 27)

a curve of the mth
degree with 8 double points and K cusps is

determined by \m (m + 3) 8 2 conditions, and its reciprocal

by \n (n 4- 3) T 2t conditions. And the foregoing equation

(9) shews that these two numbers are in fact equal.

The foregoing equation (10) shews that the deficiency (Art. 44)

is the same for a curve and its reciprocal. In a subsequent

chapter it will be proved that this is true for all curves derived

one from the other in such a way that to any point of one

answers a single point or tangent of the other.

If (with Prof. Cayley) we write 3m + t,
= 3w +

,
=

a, then

everything may be expressed in terms of (m, n^ a), viz. we have

* = a-3,
i = a 3m,

2r = wa - n -f 8m - 3a.

The meaning of equation (11) will appear in the following

chapter.



CHAPTER III.

ENVELOPES.

84. IF a curve depend in any manner upon a single variable

parameter, so that giving to the parameter a series of values,

we have a series of curves; these all touch a certain curve,

which is called the envelope of the system. Each curve is

intersected by the consecutive curve in a set of points depend

ing on the parameter, and the locus of these points is the

envelope. See Conies, Arts. 283, &c., where the problem of

envelopes is considered in the case where the variable curve

is a right line.

Analytically, the equation of the curve may contain a single

variable parameter, or it may contain two or more variable

parameters connected by an equation or equations, so as to

represent a single variable parameter. The two cases are

essentially equivalent, but it is often convenient to treat the

second in a different manner, by a method of indeterminate

multipliers, which we shall presently explain. The form of the

second case, which is of most frequent occurrence, is when

the equation of a curve contains the coordinates of a variable

point, limited however to a fixed curve
; or, as we may say,

when the variable curve depends on a parametric point moving
on a given parametric curve. For example, it was shewn

(Conies, Art. 321) that the problem to find the reciprocal, with

respect to x2 + ?/ + z
z

,
of a given curve, is the same as to find

the envelope of ax 4- /% + 72, where a, /3, 7 satisfy the equation

of the given curve. Here the equation of the variable line

contains the two variable parameters a : 7, /3 : 7, these two

ratios being connected by the equation of the given curve.

85. Suppose, first, that the equation of the curve, say T= 0,

contains a single variable parameter t. The curves belonging
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to the consecutive values
t,

t + dt, may be represented by the

equations T=0, 2^
= 0. These equations, or the equivalent

equations T= 0, 7T

1 -T=0, determine therefore the coordinates

of the points of intersection of the two consecutive curves. We
have T^

= T+ d
(
T. dt + &c., or T

t

- T= d
t
T. dt + &c., where dt

being infinitesimal, the terms after the first are to be neglected.

The equations become therefore T=0, d( T=Q, which equations

determine a set of points depending on the parameter t
;
and

eliminating t from these equations we get the equation of the

locus of all points of intersection of consecutive curves of the

system ;
that is to say, the equation of the envelope.

An important case is where the equation contains t rationally ;

we may then, without loss of generality, take Tio be an integral

as well as rational function of
,
and the process described for

finding the equation of the envelope is equivalent to forming

the discriminant of T considered as a function of
,
and equating

it to zero. Thus, if a, b, c, &c. be any functions of the

coordinates, and if T be

at&quot; -f nbt*-
1 + iw (n

-
1) ct^ + &c.,

the equations of the envelope for the cases of most common

occurrence, viz. n = 2, 3, and 4, are respectively (see IJiyher

Algebra, Arts. 193, 195, 207),

(2) ac -&* =
&amp;lt;),

(3) a*d* + 40c
8

+ 4Z/V - Baled - 35V = 0,

(4) (ae
- U+ 3c*)

3 - 27 (ace + 2bcd -ad*- tfe - c
8

)

2 =
0,

and in using the last of these equations, when we desire to infer

its order in the coordinates from knowing the order in which

they enter into a, 5, &c., it is useful to remember that when

the equation is developed, the terms containing c
6 and c*bd

respectively cancel each other, so that the order of the envelope

may happen to be lower than that of either of the two members

of which the equation, as written above, consists.

If we substitute in T the coordinates of any point, and solve

for t the resulting equation a t
n
+ nb t

n~l

4 &c. = 0, there will

evidently be n solutions; that is to say, the system of curves

represented by Tis such, that n of them can be drawn to pass

through any fixed point ; and, from what has been just paid, it
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appears that If the fixed point be on the envelope two of these n

curves will coincide.

The case where T depends on a parametric point may be

reduced to that just considered if the parametric curve be a line,

conic, or any other unicursal curve; for then (Art. 44) the

coordinates of the parametric point can be expressed as rational

functions of a parameter.

Ex. 1. To find the envelope of at* + btP + c = 0, where, as well as in the other

examples a, b, fec. are supposed to be any functions of the coordinates. Combining
the given equation with its differential with respect to t, we have

natn~P +pb = Q, (n
-

jj] btP + nc = 0,

whence, eliminating t,
we have

n*aPc*-PpP (n -p)&amp;lt;-i&amp;gt;
bn = 0,

where the sign + is to be used when n is odd and when it is even.

Ex. 2. To find the envelope of a cos&quot;0 + b sin&quot;0 = c, where 6 is the parameter.

We have -
d$ T = - a cos*-^ sin + b sin&quot;-^ cos =

;

_L _L JL
a&quot;-

2 bn 2
n&quot;-

2

whence tan =
j- ,

cos =----
,

sin =---
.~

Substituting these values, and reducing, we find the equation of the envelope

a1-n +

In particular (as we saw, Conies, Art. 283), the envelope of a cos0 4- b sin0 c is

a2 + b2 c2 . Conversely, any tangent to the curve xm + if*
= cm may be expressed by

=
c,

&quot;L 1
the coordinates of the point of contact being x c cosni0, y = c sinf

&quot;0.

This example might have been stated as an example of an envelope depending
on a parametric point lying on a unicursal curve. For if we write cos = a,

sin0 = /3, then a, /3 are the coordinates of a point lying on the circle a2 + fP = 1,

and the circle being a unicursal curve, these coordinates can be expressed rationally

in terms of a parameter. Thus if t be cos + i sin 0, we may write for a or cos 0,

_ (t + -
]

,
and for /3 or sin 6, .. (t

J
,
and the equation, for example, aa + b(3 = c,

becomes
(a
-

bi) f - let + (a + bi)
= 0,

whose envelope, as before, is

( + b t) (a
-

bi}
= c2

,
or a- + F- = c2 .

If we desired to avoid the introduction of imaginaries we might write tan |0 = t,

and (as at Conies, Art. 283) express cos 0, sin rationally in terms of t.

Ex. 3. Let the curve be

a cos20 + b sin 20 + c cos +

Putting t = cos + i sin 0, this becomes



70 ENVELOPES.

or (a
-

bi) &amp;lt;

4 + (c
-

di) t
3 + Set* + (c + di) t + (a + bi)

= 0.

And applying to this the form already given for the discriminant of a quartic written

with binomial coefficients, we have

{
a* + & _ ^ (

e* + ^2) + ^}s = 27
[ (a

2 + 2
) e +^ (c

2 + d-} e - -\a (c
2 - d2

)
-#* -

2Ve
3
}

2
;

or, clearing of fractions,

{12 (a
2 + 52

)
-

3(c
2 + d2

) + 4e2
}

3 = {72 (a
2+ 62

) e + 9 (c
2+ &amp;lt;?

2
)e
- 27a (c

2 - rf
2
)
-

546c&amp;lt;2
- 8e9

}

2
;

and, again, it is useful to remark that the expanded result will contain neither of

the terms e6
, (c

2 + d2
)

e*.

Ex. 4. To find the envelope of the chords of curvature of the points of a conic.

The equation of the chord is (Conies, Art. 244, Ex. 1)

x y .

cos a 7 sin a = cos 2a.
a b

The envelope is therefore fe + f^
~ 4

)
+ 27 (~y

~
fi)

= -

Ex. 5. To find the equation of the curve parallel to a conic
;
that is to say, the

curve obtained by measuring from the conic on each normal a distance equal to r.

This problem has been already solved (Conies, Art. 872, Ex. 2) by considering the

parallel curve as the locus of the centre of a circle of constant radius touching the

given conic. But it is easy to see that the parallel curve may also be considered as

the envelope of a circle of constant radius whose centre is on the given conic
;
that is

to say, we are to seek the envelope of (x a)
2 + (y /3)

2 r2
,
where the parametric

point a(3 lies on the conic
;
and the conic being a unicursal curve, this may be reduced

x2
ij

1

to the case already discussed. Thus, let the conic be + ^ =
1, and write for a,

a cos 0, for /3, b sin 0, when

a2 + /3
2 - 2ax - 2py + x2 + f/

2 - r2

becomes (a
2 - 2

)
cos 20 - 4ax cos -

4by sin + 2 (x
2 + y

1
} + a- + b* - 2r2

,

a form included under the last example, by the help of which we should obtain a

result which, when expanded, is identical with that given, Conies, Art. 372.

86. A little further notice may fitly be given to the case

where T is algebraic in
t,

and of the first degree in the

coordinates, so as to denote a right line
;

that is to say, to the

envelope of at
n
4 nbt

n~l + &c. where a, 5, &c. are all linear in

the coordinates. In this case the envelope is clearly a curve

of the nth
class, being such that n tangents can be drawn

through any assumed point (Art. 85) ;
and since the discriminant

of at
n
-\-&c. is of the order 2 (n 1) in the coefficients

, 5, &c.

(Higher Algebra, Art. 105), which each contain the coordinates

in the first degree, the order of the envelope is 2
(72
-

1). Two
other characteristics of the envelope can easily be obtained.

It has ordinarily no points of inflexion. At a point of inflexion

two consecutive tangents coincide; and therefore T and dtT
represent the same right line

;
but in order that two linear
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equations should represent the same right line, two conditions

must be fulfilled, and it will generally not be possible to de

termine the single parameter t at our disposal, so as to satisfy

both conditions.

The number of cusps on the envelope is 3 (n 2). As the

tangent at a point of inflexion on a curve contains three con

secutive points, so reciprocally a cusp is the point of intersection

of three consecutive tangents. At a cusp, therefore, on the

envelope the three equations will be satisfied, T=0, d
t T=0,

d*T=- 0, which may easily be reduced to

Tn = af-* -f (n
-

2) bt
n-3 + (n

-
2) (n

-
3) ct

n~4 + &c. = 0,

T
19
= W~* + (n

-
2) ct

n-* + i (71
-

2) (n
-

3) df + &c. = 0,

T
22
= cr* + (n

-
2) dr

z + (n- 2) (72
-

3) et
n~* 4 &c. = 0,

^n T
i
T being the tbree second differential coefficients if T7

,

considered as a binary quantic, had been made homogeneous by
the introduction of a second variable. Now, if from these

equations we eliminate x and
?/,

which enter in the first degree
into each, the resulting equation in t will be of the degree
3 (72-2). If in fact we write T, xU+ y F-f * IF, where Z7, F, W
contain only t and constants, we have obviously the determinant

rnt wn

U , F , TF
22 22&amp;gt; 22

=
0,

which gives the values of t corresponding to the 3 (n 2) cusps.

The problem of finding the number of double points on the

envelope is the same as that of finding the order of the system
of conditions that T should have two distinct pairs of equal
roots (Higher Algebra, Art. 264), and the problem of finding the

number of double tangents is the same as that of finding the

order of the system of conditions that T should represent the

same line for different values of t or, in other words, the

number of ways in which it is possible to find a pair of values

t
j t&quot;)

for which we shall have the equality of ratios

U 1

: V : W = U&quot; : V&quot; : IF&quot;.

It is not necessary for us, however, to deal with these problems

directly, since we have already more than enough of conditions

to determine B and T, by Pliicker s equations, Art. 82. Sub-
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stituting in these equations 2 (n 1) and n for the order and

class of the curve, and putting L 0, we find

* = 3(w-2), S = 2(w-2)(w-3), t = i(w-l)(w-2).

87. Let us now consider the case where the equation contains

Jc parameters connected by k I equations. To fix the ideas,

suppose that we have the equation U containing the three

parameters a, /3, 7 connected by the two equations F=0,
W= 0. We may, if we please, regard /3, 7, as functions of a,

determined by the two equations F=0, TF=0. The process,

in its original form, would then consist in the elimination of a

from the given equation, and

dU
+
dUd0 ^dUdy^^

da. dj3 da. dy da.

Here r-
,
-
7 are functions of a determined by

dor da.

dV
*
dV

da. d(3 da. dy da.

dW dW dP dW dy = Qm
da.

r

dp da. dy da.

and from these three equations we have V = 0, where

dU dU dU
da. dp dy

dV
da.

dW

V =

dV dV_
~dp ~dy

dW dW
dp

J

dy

and the final result is got by eliminating a, /3, 7 between

U= 0, F= 0, W= 0, v = 0.

But v = is obviously the result of eliminating X, ft between

the equations
dU . JF dTF

dV^ dW
-T- -f it -j- = ;
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so that the result may be got by eliminating a, /?, 7, X, /A

between the last three equations and those originally given.

This is the method of indeterminate multipliers referred to

(Art. 84).

88. An important case is where U is homogeneous in 7c + 1

parameters connected by k 1 other homogeneous equations.

This is really equivalent to the foregoing, since the k + 1

parameters may be replaced by the ratios which any Jc of them

bear to the remaining one. But it is more symmetrical to retain

all the k + I equations given by the method of indeterminate

multipliers, which equations in virtue of the theorem of homo

geneous equations are connected by a relation making them really

equivalent to only k equations. Thus, let U contain homo

geneously a, , 7 the coordinates of a parametric point moving on

the parametric curve F=0
;
the method of indeterminate multi

pliers gives us, in addition to the two original equations,

jL* n ^ n ^ n
3- + X -T =

0, -yb + X -7-3
=

0, + X -y-
= 0.

da da.
J

d/3 dfi dy dy

But these three are really equivalent to two, since if we multiply

them by a, /3, 7 respectively, we get mU+\n F=0, which

is included in the equations U= 0, F= 0. We have then four

equations from which on account of the homogeneity we can

eliminate the four quantities a, /3, 7, X, and so obtain the equa
tion of the envelope.

Ex. To find the envelope of U= (Aa)
m + (Bfi)

m + (Cy)
m
=Q, where a, /3, 7 are

connected by the relation V= (a) + (fy3)
n + (cy)

n = 0.

The method of indeterminate multipliers gives us

mAmam- 1 + \na nan~ l = 0. mT?
&quot;^-

1 + \nbn
fi
n- 1 =

0, mCm
y
m- 1 + Xncny

n~ l = 0;

whence, writing for shortness = /x
m~n

,
we have

and substituting these values in U, we have the envelope required, \iz.
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89. Prof. Cayley has considered the case of a curve U= 0,

the equation of which contains two or more independent para

meters. If, for instance, there are the two parameters a, /?,

then from the equations

eliminating a, /9,
we have the equation of an envelope. But

observe that we can from these same equations eliminate the

coordinates (#, y\ and that the equations thus imply a relation

(f) (a ? /3)
= between the parameters. This gives in the double

system of curves U= 0, a single system wherein the parameters

satisfy this relation. Taking any curve of the double system

and the consecutive curve belonging to the values a -\- da,

/3 + d{3 of the parameters, the two curves intersect in a set of

points depending in general on the value of the ratio d/3 : da. of

the increments. But if the curve belong to the single system,

then the set of points will be independent of the ratio in

question ;
the coordinates of the points of intersection satisfy

the equations U= 0,
~=- =

0, -^
=

0, and consequently the

equation U+ -j- da -f
~ d@ = 0, whatever be the value of the

aa. dp
ratio d{3-t-da. And we thus see that a curve of the single

series is intersected by every consecutive curve of the double

series in one and the same set of points, and that the locus of

these points is the envelope. In the case of a single parameter,

the envelope is the locus of a set of points on every curve of

the system, and it may be termed a &quot;

general envelope &quot;;

in the

case of the two parameters, the envelope is the locus of a set of

points not on every curve of the system, but only on the curves

of the single system wherein the parameters satisfy the equation

$ (a, /3)
=

0, and it may be termed a &quot;

special envelope.&quot;
And

the like theory applies to the case of any number whatever of

parameters : there is always a resulting single system of curves.

89 (a). A difficulty in the theory of envelopes as given in

Art. 84 has been explained by Prof. Cayley. In that article we
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have considered an envelope as the locus of the intersections of a

variable curve with consecutive curves of the system. But each

curve has with the consecutive a number of common tangents

depending on its parameter, and the envelope of these lines is

also the envelope ; viz., each common tangent of the curve and

its consecutive curve is at a common point of the same two

curves a tangent of the envelope. But if the variable curve be of

the order in and the class
?*,

the number of common points is = ?ft
a

,

and the number of common tangents = ?i
2

;
and yet the common

points and common tangents have to correspond to each other

in pairs. The explanation depends on the singularities of the

variable curve. Suppose this has in general 8 double points,

K cusps T double tangents and i inflexions; then, as is easily

seen, the curve meets the consecutive curve in 2 points contiguous

to each double point and in 3 points contiguous to each cusp

(viz. there are thus 2 4 3/c intersections), and besides in

m2
28 3/c points, and reciprocally the curve has with the

consecutive curve 2 common tangents contiguous to each double

tangent and 3 common tangents contiguous to each stationary

tangent (viz., there are thus 2r-f- 3t common tangents), and there

are besides ?i
2 2r 3t common tangents: we have, see Art. 82,

m*- 28-3 = n
2 -2T-3t = m +

;
each of the mz -2S-3fc

points is (not a point of contact but) an ordinary intersection of

the two curves, but it has contiguous to it one of the

n* 2T 3i common tangents of the tsvo curves; and the

envelope is thus cotemporaneously the locus of the m* 28 3/c

(=m + n] points, and the envelope of the nz 2r - 3i (= m -f n)

tangents.

It may be added that the complete envelope of the variable

curve consists of the proper envelope as just explained together

with (1) the locus of the double points twice, (2) the locus of

the cusps three times, (3) the envelope of the double tangents

twice, and (4) the envelope of the stationary tangents three

times.

In what precedes, the numbers w, ?z, S, #, r, L apply to the

curve corresponding to the general value of the variable para
meter

;
for particular values of the parameter, the variable curve

may acquire or lose point- or line- singularities, and the several

numbers be thus altered.
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RECIPROCAL CURVES.

90. Let it be required to find the envelope of a line

ax + {3y + 72, being given that a, /3, 7 are connected by a re

lation 2 = 0. In other words, let there be given 2 = the

tangential equation of a curve, or its equation in line coor

dinates, and let it be required to pass to the equation in point-
coordinates. Here then we have the two equations S = 0,

ax -f $y + 73 = 0, and the method of Art. 88 shews that the

result is to be obtained by eliminating a, /?, 7, X from the two

given equations combined with

-7- + \X = 0. -73 + ty = 0, -y- + \Z = 0.
dot.

7

dj3 dy

The solution of the reciprocal problem, given the point-equation

$=0, to pass to the tangential equation, depends on a precisely
similar elimination

; namely, to eliminate #, ^, z, \ between

S= 0, ax -J- fty + &amp;lt;yz

=
0, and

f+*a = 0) !+Vuo, f+ x,=o,

a system of equations which would also present itself naturally

from the consideration that if ax + @y + 7^ be identical with

the tangent at the point xyz, then the well-known form of

the equation of the tangent (Art. 64) shews that a, /3, 7 must

, . . . .
. as ds ds

be respectively proportional to -7- , -j- , -7- .

It has been mentioned (Art. 84, and Conies, Art. 321) that the

problem of passing from the point equation of a curve to its

tangential equation is the same as that of finding its polar

reciprocal with regard to x* + #
2 + z* = 0.

Ex. To find the tangential equation of (ctx}
m + (by)

m + (cz]
m =

0, We have here

whence immediately

91. The method just indicated, however, is not always the

most convenient one for finding the equation of the reciprocal.

Let the equation of the curve be un -f MB-I + wB.a
*
+ &c. = 0,
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then we eliminate z by the equation ax + $y -f 72 = 0, and get

7X -
7&quot;-

1

(ax + /^K., + 7&quot;- (* -f /%)V2
- &c. = 0,

which is now homogeneous in x and y ;
and the discriminant

of this considered as a binary qnantic, equated to zero

gives the equation of the reciprocal curve, multiplied however

by the irrelevant factor
7&quot;

l
&quot;&quot;lj

.

Thus, for example, if it were required to find the reciprocal of

#3 + y* + 2
3 + bmxyz = 0,

eliminating z, it becomes

(OB + y)
3 +6^7 (ax + /%)

- 7
3

(x
3 + ?/

3

)
=

0,

or (a
8 - 7

3

, OL*/3 + 2mzy\ a/3
2

-f 2w/37
2

, /3
3 - 7

3

;j&amp;gt;, y)
3 = *

the discriminant of which is divisible by 7
6

,
the quotient being

a
6 + /3

6 + 7
6 -

(2 + 32m9

) (/3

3

7
3 + 7V + a

/S&quot;)

- 2iri
2

aPv (a
3 + yS

3 + 7
3

)
-
(24m + 48m4

) a*V = 0.

In precisely the same way may be found the reciprocals of the

cubic or quartic given by the general equation, the results of

which are given at full length in subsequent chapters.

92. One chief advantage of the foregoing method of

obtaining the equation of the reciprocal is that it enables us

immediately to write down the equation of the reciprocal in

the symbolical form explained, Higher Algebra, chap. XIV.

If a ternary quantic be reduced to a binary by eliminating
z by the help of the equation a.x -f (3y -f 72, we have imme

diately the following rules for the differentials of the binary

quantic with respect to x and y,

d
_

d a d
d_ _ d d

dx dx ydz
j

dy dy 7 dz

Applying these rules to the symbol (12) which denotes

A d. A, &amp;lt;L

dx, dy^ dx
2 dy,

* We use the notation (a, b, c, ...~^[x, y)
n for the binary quantic written with

binomial coefficients axn + nbx*~ l

y + i (n 1) cxn~-y- + &c.
; using the notation

(a, 6, c, ..?x, y}
n when the quantic is written without binomial coefficients (see

Higher Algd&amp;gt;ra,
Art. 104).
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it becomes

1 f / d
d_ d_ _d\ s

t
d_ d_ d_ d\

7 1 \&amp;lt;fyt dz^ dy% dzj \dz
l dx^ dz^ dxj

of, in other words, the symbol applied to the binary quantic

differs only by the factor 7 from the contravariant symbol (a!2)

applied to the ternary. Hence, if a line ax -f jBy + yz cut a

curve so that the points of section satisfy any invariant relation

whose symbolical form is known, we can at once write down

in the same form the tangential equation of its envelope. For

instance, the symbolical form of the discriminant of a binary

cubic is known to be (12)
2

(34)
2

(13) (24) ; hence, if a line

B&+fy+yz cut a cubic curve in three points whose discrimi

nant vanishes, that is to say, if it touch the curve, we must

have (a!2)
2

(a34)
2

(a!3) (a24) =0. In like manner the discrimi

nant of a binary quartic is known to be of the form S3 = 27 T2

,

where S and T are two invariants, whose symbolical form is

(12)
4

,
and (12)

2

(23)
2

(31)
2

respectively. It follows that the

equation of the reciprocal of a quartic is of the form S3 = 27 J72

,

where S is (a!2)
4

,
and Tls (a!2)

2

(a23)
2

(a31)
2

,
where =0 de

notes the curve of the fourth class which is the envelope of lines

cutting the quartic in four points for which the invariant S

vanishes, and T denotes the curve of the sixth class which is

the envelope of lines cut harmonically by the curve, and for

which therefore the invariant T vanishes.

93. We have already (Art. 78) given one method of forming

the equation of tangents drawn from any point x y z to the

curve, but the problem is in effect solved when we are in

possession of the equation of the reciprocal, or, in other words,

of the condition that a.x + /% + yz should touch the curve. For

we have only to substitute in that condition for a, /3, 7 respec

tively yz zy, zx xz
, xy yx, when we shall have the

condition that the line joining the points xyz, x y z shall touch

the curve, a condition which obviously must be satisfied when

xyz is a point on any tangent through xy z (see Conies^

Art. 294).
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Conversely3 the equation of the system of tangents as found

by the process explained (Art. 63), is readily obtained in the

form, homogeneous function of (yz yz, zx -
zx, xy xy] = ;

and then, substituting for these quantities a, /:?, 7, we have the

equation of the reciprocal curve.

94. We have then immediately a theorem corresponding

to that of Art. 92, that when we are in possession of the tan

gential equation of a curve, we can at once write down

symbolically the equation of the locus of a point, such that the

system of tangents from it to the curve shall satisfy any given
invariant relation. If we make z = in the equation of the system
of tangents, we have the equation of a system of lines parallel

to the tangents through the point xy, which will satisfy the

same invariant relation. But from the method just given for

forming the equation of the system of tangents we have

d
,
d

,
d d

,
d

,
d

whence, as before

s

\
x

+ ,(_ . } +Z ( . \+ y
Uy, rfo. dy, d*J U, d/3, &amp;lt;fa, dpj

so that we have at once the rule, for every factor (12) in the

invariant symbol required to be satisfied by the system of

tangents to substitute (a; 12) and operate on the equation of the

reciprocal curve.

95. When the equation of a curve is given in polar co

ordinates, that of its reciprocal with regard to a circle whose

centre is the pole may be found directly. If on any radius

vector OP there be taken a portion OP equal to the con

secutive radius vector OQ, then obviously PP dp, FQ = pdw,

tan OPQ = ^7 ,
and p sin OPQ is the perpendicular on the

tangent. Thus let the curve be p
m = a

m
cosr/zw; take the loga

rithmic differential, and we have

dp .. pd(o= -
tan?ttft&amp;gt;aa&amp;gt; : -5 =

cot??*a&amp;gt;,

p dp
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and if be the acute angle made by the radius vector with the

tangent = 90 mco, and the perpendicular on the tangent
= p sin# = p cosraa&amp;gt;. The angle between the perpendicular and

the radius vector = ma), and between the perpendicular and the

line from which co is measured is (m + 1) o&amp;gt;. But the radius

vector of the reciprocal curve is the reciprocal of the perpen
dicular on the tangent ;

hence it is easy to see that the equation
of the reciprocal curve is also of the form p

m = a
m

cos max, the

771

new m being equal to . This family of curves in

cludes several important species ;
for instance, the circle (m = 1),

the right line
(r/i
=

1), the common lemniscate
(??2
=

2), the

equilateral hyperbola (m = 2), the cardioide (w = -|),
tne para

bola ra = &c.

THE TACT-INVARIANT OF TWO CURVES.

96. It was remarked (Art. 90) that the problem of finding

the equation of the reciprocal curve is the same as that of find

ing the condition that a right line should touch the given curve,

both being solved by finding the envelope of ax + @y + ryz,

where a, /3, 7 are parameters satisfying the equation of the

curve. More generally, the problem of finding the condition

that two curves
7J
V should touch (which condition is called

their tact-invariant] is the same as that of finding the envelope

of either, the coordinates being regarded as variable parameters

satisfying also the equation of the other. For if the two curves

touch, the coordinates of the point of contact aj3y satisfy the

equation of both
;
and also since the tangents are the same, we

must have at that point the differential coefficients of
Z7,

respectively proportional to those of V. The condition of

contact is then found by eliminating a, /3, 7, X, between

Z7= 0, 7= 0, and

- -
da

=

da. d$~ d$ dy~ dy

but these are the equations given (Art. 88) for solving the

problem of the envelope.
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97. Let the degrees of U and V be
??i,
m respectively, and

let it be required to determine the order in which the coeffi

cients of either curve, say F, enter into the condition of contact.

Let the coefficients in Fbe a
,
&

,
c

, &c., and let us take another

curve W of the same order whose coefficients are
a&quot;, J&quot;, c&quot;,

&c.

Then if in the condition of contact we substitute for each coeffi

cient a
,
a + kd

, &c., we shall have the condition that F+ kW
should touch Uj which will plainly contain k in the same degree
as the order in which the coefficients of F enter into the

condition of contact. This latter order, therefore, is the same

as the number of curves of the form F+&IF, which can be

drawn so as to touch U. But, as before, the point of contact

must satisfy the equations

whence eliminating &, X,

V = o

and the intersections of v with U determine the points on U
which can be points of contact with curves of the form V+kW.
Since the orders of

C/j,
F

t ,
IF

1? &c., are respectively m 1, m -
1,

m 1, the order of v is m + 2m 3, and the number of inter

sections is m (m + 2m f

3). This then is the order in which the

coefficients of F enter into the tact-invariant, and in like

manner the coefficients of U enter in the order m (2m + m -
3).

By making m = 1 we have the result already obtained that the

condition that ax + j3y + yz should touch a curve contains
ct, /3, 7,

in the degree m (m 1), and the coefficients of the curve in the

degree 2 (m 1). See also Conies, Art. 372.

If U have a double point, then since we have already seen

that 7. Z7
2 ,
U

3 pass through that point, and that if that point be

a cusp they have there the same tangent, the same things are

true for y ;
and we see that the order of the condition of contact

in the coefficients of F must be diminished by two for every
double point, and by three for every cusp on U. The order is

therefore m (m + 2m -
3)

- 2S - 3/c orn + 2m (m I).

M
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98. These results might have been otherwise obtained thus :

Take any arbitrary line ax -f ly + cz, and equate to zero the

determinant

a, Z&amp;gt;,

c

U U

This equation represents the locus of a point, such that its polars

with respect to U and F intersect on the assumed line. Now
at a point common to U and F, the polars are the two tangents

intersecting in the common point ;
there are, therefore, plainly

only two cases in which a point common to U and F can

lie also on y j
V

*

1Z - either the assumed line passes through an

intersection of U, F, or at that point the two curves have a

common tangent. If then we eliminate between y, Z7, F, the

resultant will contain as factors the condition that ax -f % + cz

should pass through an intersection of
7, F, and the condition

that U and F should touch. But since in the resultant of three

equations, the order in which the coefficients of each enter is

the product of the orders of the other two equations, and since

the orders of y, ty V are respectively m + m 2, m, m, the

order of a, Z&amp;gt;,

c in the resultant is mm, of the coefficients of Z7,

is mm + m (m + m -
2)
= m (2m -f m 2), and of the coefficients

of F, m (2m -f m 2). Similarly the orders of the resultant of

ax -|- by -f cz, /, F, in the several coefficients are respectively

mm, m, m. Subtracting these numbers from the preceding,

we find, as before, that the orders of the condition of contact

are m (2m f m 3), and m (Zm + m 3) in the coefficients of

U and F.

EVOLUTES.

99. We have hitherto only dealt with descriptive theorems,

and have postponed the consideration of any questions belonging

to the class described as metrical (Art. 1). The relation of

perpendicularity belongs to the latter class, since, as explained

(Conies, Art. 356), two perpendicular lines may be considered

as lines which cut harmonically the line joining the two imaginary
circular points at infinity. It is convenient not to exclude from

this chapter the discussion of some important cases of envelopes
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which involve the relation of perpendicularity, and the theorems

may be made descriptive if we substitute for the two circular

points at infinity any assumed points /, /, and wherever, in our

theorems lines at right angles occur, substitute lines cutting /, J

harmonically.

One of the most important and the earliest investigated class

of envelopes is that of the evolutes of curves. We have defined

the evolute of a curve (Conies, Art. 248) as the locus of the

centres of curvature of the curve
;
but the evolute may also be

defined as the envelope of all the normals of the curve. For the

circle of curvature is that which passes through three consecutive

points of the curve, and its centre is the intersection of perpen
diculars at the middle points of the sides of the triangle formed

by the points. But the lines joining the first and second, and the

second and third points, are two consecutive tangents to the curve J

and the perpendiculars to them just mentioned are two consecutive

normals; the centre of curvature is therefore the intersection

of two consecutive normals
;
and the locus of all the centres of

curvature must be the same as the envelope of all the normals.

Ex. 1. To find the evolute of - + ^ = 1.
a- b-

The normal is (Conies, Art. 180) ?-? - ^ = c2
,

or, writing x = a cos &amp;lt;, y = b sin
&amp;lt;,

- - by = cz

cos
&amp;lt;p

sin
&amp;lt;p

an equation of the class considered Art. 85, Ex. 2, whose envelope is therefore

c$x*+ b3y$ = c$.

Ex. 2. The normal to a parabola is (Conies, Art. 213).

or

an equation of the class considered Art. 85, Ex. 1, whose envelope, y being the

parameter, is

2 Cp-2x)*+ 27/^=0.

Ex. 3. To find the evolute of the semicubical parabola py* = x*.

The equation of the normal is

Substitute for y
1
in terms of x from the equation of the curve, divide by x *, and

(putting x *: =
t), the equation becomes

3t*+ 2pP - 3p*yt
- 2px = 0,

whose envelope is

P(P-
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Ex. 4. To find the evolute of the cubical parabola p*y=x*.
The equation of the normal is

or 3x 5 -
3p*yx

2 +pV -_p&amp;lt;z
= 0.

Now the envelope of

at* + Wdt2 + Set+/=
is (a/

2 -
12(^e)

2 + 128 (2e
2- 3d/

1

) (ae
s - adef- 9tf&amp;lt;)

- 0.

Therefore the envelope in the present case is

Ex. 5. To find the evolute of the cissoid (x
2 + y~) x ay&quot;

2
.

This is a unicursal curve, and writing the equation in the form (a x) y
1 = x*,

it is at once seen that this is satisfied by the values x=-
, y = aT, m\ The

equation of the tangent at the point in question is easily seen to be

263
y

equation of the normal is therefore

or

Forming the discriminant of this it will be found to contain as a factor

the remaining factor giving the equation of the evolute proper, viz.

Ex. 6. To find the evolute of x 3 + y
3 = a$. For any point of this curve we may

write (see Art. 85, Ex. 2) a/= acos3
&amp;lt;, /

= asin3
&amp;lt;. The tangent at that point

will be

x y _
cos &amp;lt; sin

&amp;lt;/&amp;gt;

~~
a&amp;gt;

and the normal x cos
&amp;lt;$&amp;gt; y sin &amp;lt;

= a cos
2&amp;lt;,

or (x + y) (cos&amp;lt;
sin 0) + (x y] (cos &amp;lt; + sin

&amp;lt;)

= 2a (cos
2

&amp;lt;/&amp;gt;

- sin2
&amp;lt;),

g +.V *-
sin (0 + k*) cos

(4&amp;gt;

whose envelope is (Art. 85, Ex. 2)

100. The following investigation leads to the expressions for

the coordinates of the centre of curvature, and for the radius

of curvature ordinarily given in books on the Differential

Calculus. In this and the next article we use Cartesian rect

angular coordinates. If a, ft be the coordinates of any point

on the tangent, x and y those of its point of contact, the

equation of the tangent is ft y= -r(a- #) ;
where -~

,
which

Cl JC ClJC
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we shall call for shortness p, is to be found from the equation of

the curve. For the tangent passes through the point xy, and

makes with the axis of x an angle whose tangent is p (Art. 38).

The normal then being a perpendicular to this at the point xy,

has for its equation

We have now to find the envelope of this line which contains

the parameters x and #, which is given in terms of x by the

equation of the curve. Differentiating then with respect to
cc,

and writing ~JL = q^ we see that the point of contact of the line
CttJG

with its envelope is found by combining the equation with its

differential

-l-/ + (/3-y} ?
= .................. (2).

Solving for a or and ft y from these equations, we have

and the radius of curvature is given by the equation

The values which have been obtained for the intersection of

two consecutive normals might have been found for the same

point considered as the centre of curvature.

Take the equation of any circle

{.- )+(--*,
and differentiate it twice, when we have

But if the circle osculate a curve at any point, then (Art. 48)
7 72

at that point
-j-

, -j-f ,
have the same values for both. We

may therefore in these equations write for the differential coeffi

cients, the values p and q obtained from the equation of the

curve, when they become identical with equations (1) and (2)

already obtained from other considerations.
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101. Since in practice y is not given explicitly in terms of
oj,

but both are connected by an equation 7=0, it is convenient

to substitute for these expressions in terms of p and q, expres

sions in terms of the differential coefficients of U. Let us write

as before

77-7 JTT J^ 77 J%77 3*77au j au ~g. a U a U , a U ,

j
== J-J* T ==

-&quot;^J ~7 V~
== ^1 7 5&quot;

=z U* ~~j T~
==

&quot;*

ax ay ax ay
1 axay

then, since the coefficients of x and y in the equation of the

tangent are L and M respectively, the equation of the normal is

whence differentiating

But from the equation of the curve, L +M =
0, whence sub-

., ctx

stituting for
-j-

we have

Solving, then, between equations (1) and (2), we have

whence It =

102. This expression can be made to assume a more symme
trical form by introducing the linear unit 2, so as to give

the equation the trilinear form. For, by the theorem of homo

geneous functions,

(n- 1) M= hx + ly +fz,

whence (n
-

1) (bL
- hM] = (ab

-
tf) x + (bg -fh} z,

(
-

1) (aM- hL) = (ab
-

tf) y + (af-gh) z.

Multiplying the first equation by L, the second by M, and adding

(n
-

1) (bU - 2hLM+ aW] =
(ab

- h
z

) (xL+yM )
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or since, by the equation of the curve xL +yM+zN= 0,

= - z {(fh
-

bg] L + (gh
-

af] M+ (db
- A2

) N }.

Substitute for
, J/, N their values given above, and we have

(n\Y(bL* 2ALJ/+ aM*} = z\abc of* bg*ch
z

+2fgli) Hz^
}

and the expression for the radius of curvature becomes

. (n-\]*(U-

For any point whose coordinates satisfy the equation Z7&quot;=0,

the radius of curvature becomes infinite, and the centre of

curvature at an infinite distance. This will take place when

three consecutive points of the curve are on a right line, for

then the circle through them becomes a right line, and its

centre becomes at an infinite distance. We might then, from

this value of the radius of curvature, arrive, independently of

Art. 74, at the conclusion that the intersections of U and H are

points of inflexion. The above equation gives us as conditions

that two curves should osculate, that we should have in addition

to the condition for ordinary contact L = 6L
,
M 6M

,
also

H 6
3H

The double sign in the value of the radius of curvature is

analogous to that in the value of the perpendicular on a right

line
( Conies, Art. 34) ; and, of course, if we agree to use the sign +

when the radius of curvature, and therefore the concavity of the

curve, is turned in one direction, we must use the sign when

it is turned in the opposite direction. Since every algebraic

function changes sign in passing through zero, we see that at a

point of inflexion the radius of curvature changes sign, and

that as we pass such a point the concavity of the curve changes
to convexity, and vice versa (see fig. Art. 45). At a double point

the radius of curvature assumes the form -
,
and its value must

be determined by the ordinary rules in such cases. In fact,

each branch of the curve has its own curvature at the point.

At a cusp it will be found that the radius of curvature vanishes.
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103. The length ofany arc ofthe evolute is equal to the difference

of the radii of curvature at its extremities
t

For, draw any three consecutive nor

mals to the original curve : let C be the

point of intersection of the first and

second, C of the second and third
;
then

since, ultimately, CR = CS, C S =
C&quot;T;

CO
,
which is the increment of the arc

of the evolute, is also the increment of /

the radius of curvature.

Hence, if a flexible thread be supposed rolled round the

evolute, and wound off, any point of it will describe an involute

of the curve CC
;
that is,

a curve of which CC is the evolute.

It was from this point of view that Huyghens, the inventor of

evolutes, first considered them, and it was hence that the name

evolute was given.

104. We add here a formula which is sometimes useful

for finding the radius of curvature of a curve given by polar

coordinates. The polar equation /?=/(&&amp;gt;),
can be transformed

into one of the form p=f(p)i where p is the perpendicular

from the pole on the tangent, and is given by the equations

(Art. 95),

p = p sin #, tan 6 p -j-
.

Let the distance from the pole to the centre of curvature be p^
and the radius of curvature J2, then (Euclid II. 13)

If we pass to the consecutive point of the given curve, p l
and R

remain constant, and differentiating, we have R =
/?--, which

is the required expression for the radius of curvature.

When R has been thus expressed in terms of
/o, p, if we

eliminate p, p between the equations

the last of which is obviously true, we shall have the relation

which subsists between the
/o t

and p v
of the evolute

;
but it is

not always easy to pass hence to the relation between the p }

and the
o&amp;gt;,

of the evolute.
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As an example take the curve p
m = a

m
cos

m&&amp;gt;,
we find here

= p cosrao), and hence
p&quot;

l+1 = a
m
p, for the relation between p

and p. And we then have R= .

,
=-

, v
t/t-1

for
l

the radius of curvature.

The equations

give at once p*, p* each as a function of p, and thus virtually

the equation of the evolute in the form p l
=

&amp;lt;t&amp;gt; (p^ but the

elimination cannot be actually performed.
It is however easy to find the equation of the reciprocal of

the evolute in regard to a circle described about the pole as its

centre. Taking for convenience the radius of the circle to be

= a
;
then if p2

is the radius vector for the reciprocal curve, and

o&amp;gt;

2
the inclination to a line at right angles to that from which

o&amp;gt; is measured, we have^ x =p sin??2o&amp;gt;,
and then

cos 1 &quot;

wo&amp;gt; smmco

Moreover (Art. 95), a&amp;gt;

2
= (m -f- 1)

a&amp;gt;

;
wherefore the relation

between p 2 ,
o&amp;gt;

2 ,
or equation of the reciprocal of the evolute is

p.* 008 -!-&quot;,
smm -f 1 w + 1

It will readily appear that the locus of the extremity of the

polar subtangent (see Conies, Art. 192) of any curve is the

reciprocal of the evolute of the reciprocal curve. Thus this

locus is a right line for the focal conies, since the evolute of the

reciprocal then reduces to a point.

105. When we are given the tangential equation of a curve

u = 0, we can obtain directly the line coordinates of the normal

and the tangential equation of the evolute. For if a /3
&amp;lt;y

be the

, da _ du du
line coordinates of any tangent, then a -y-, -f p -7-=, + 7 -7-7= is

ay. dp ay
the equation of the point of contact

;
and if v = be the tangential

f * A rr At dv dv dv
equation of any pair ot points 1J, then a -j~, -f p -

-f j ---, o

H
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is the equation of the pole of the given tangent with respect to

IJ\ or, in other words, of the harmonic conjugate in respect to

these points of the point where // is met by the given tangent.

When IJ are the circular points at infinity, the second equation

represents the point at infinity on the normal
;
the two together

determine the line coordinates of the normal
;
and if between

them and the equation of the curve we eliminate a jSY, we shall

have the equation of the evolute. In the system of tangential

coordinates which answers to ordinary rectangular coordinates,

the equation which represents the circular points // is a
2

-h /3
2 =

0,

(see Conies, Art. 385), and the second equation a -y-, +y8 -^ +7^-7

is the well-known condition of perpendicularity aa + /3/3 = 0.

Ex. To find the equation of the evolute of a central conic given by its tangential

equation (see Conies, Art. 169, Ex. 1) a2a2 + 2
/3

2 = 1. Here the two equations which

determine the coordinates of the normal are a?aa + &2
/3/3

=
1, aa + /3/3

= 0, whence

aa = -
/3/3

= - . Substituting for a and /3 in aV2 + 2
/3

2 =
1, we get the tangential

equation of the evolute + = c*.

106. We give next some examples of the more general

problem in which that of evolutes is included, viz. (see Art, 99)

to find the envelope of the harmonic conjugate of the tangent to

a curve with respect to the lines joining its point of contact to

two fixed points /, J. This line may be called the quasi-normal

and its envelope the quasi-evolute.

Ex. 1. Let the curve be a conic. Take the line IJ as the base of the triangle of

reference, and let its vertex be the pole of this line with respect to the conic, then

the equation of the conic will be of the form (ax + y) (x + by) z2
,
and that of any

tangent will be

62 (ax + y)
- 20z + (a: + by} = 0.

The equation then of any line which together with this and the lines x, y, divides

z harmonically will be of the form

62 (ax -y) + (x- by) = Mz.

We determine M from the consideration that the line is to pass through the point

of contact, for which we have 6 (ox + y] z, Qz = x + by. whence

~
a (oo

-
1)

~
(ab

-
1)

. 2fr^ff
and we find * =
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If we write then ax - y = Y, x - by = X, 82 = (ab
-

1) Z, the equation of the quaai-

normal becomes

ad*Z + 463F + IdX -bZ = 0,

and the envelope is a curve of the fourth class whose equation is

(abZ
2 + 4*r) 3 + 27 Z* (aX

2 - bY2
)
2 =

0,

which represents a curve of the sixth degree having the points XZ, YZ for cusps, Z

being their common tangent, and besides four other cusps at the intersections of

abZ2 + 4XY, aX2 - bY2
.

Ex. 2. Let the conic pass through one of the points 7, J ; or, as we may say,

let it be semicircular. Then we have say b = 0, and xz is on the curve, x being the

tangent. The equation of the quasi-normal then becomes

,

and the envelope is only of the third class, its equation being 64F3 + 27a2XZ2 = 0,

which represents a cubic having YZ for a cusp and XY for a point of inflexion.

If the curve pass through both / and /; making a and b both = 0, we see that the

equation of the quasi-normal reduces to sY+ X, and that the line therefore passes

through a fixed point j namely, the intersection of X, Y, the tangents at /, /.

Ex. 3. Let the conic touch the line //. The most convenient lines of reference

then to choose are this line together with the two other tangents through /, J, and the

equation of the conic is

x2 + y
1 + z2 - 2yz

- 2zx - 2xy = 0,

or z (2x + 2y-z) = (x- y]~.

The equation of the tangent then is

2x + 2y
- z - 20 (x

-
y} + 2z = 0,

and we have for the point of contact

x - y = 6z, 2x + 2y
- z = 62z.

The equation of the quasi-normal then is

x-y-6(x + y )
= z{0-Zd(l + 62)},

or 63z -e(2x + 2y + z} + 2(x-y} = 0,

and the envelope is also of the third class, viz. the cuspidal cubic whose equation is

Ex. 4. The three preceding examples might also have been investigated by

supposing the conic to have been given by its general equation. The tangent then

at any point a8y being

(aa + hp + gy)x+ (ha + b(3 +/y) y + (go. +//3 + cy) z - 0,

the quasi-normal is

y {(aa 4- hp + gy}x- (ha + b(3+fy] y} - (aa?
-

b(P + gay -//3y) .

We have then to find the envelops of

azaz -
bzfi

2 + (fy
-

gx) y
2 + (by -fz - hx} fiy + (hy + gz

-
ax} ya,

where a, /3, y, are parameters, also satisfying the condition

aa2 + bp
2 + cy

2 + 2//3y + 2#ya + 2hap = 0.

And (Art. 96) the envelope is formed by the process given (Conies, Art. 372) for

finding the condition of contact of two conies. We must form then the invariants
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of this system of quadratic functions, and the discriminant of the first is 2zS,

where S is

(ab
- #) (ax*

-
fy ) + (bg*

-
of*) z* + 1b (gh

-
af) yz

- la (hf- bg} xz.

We have

= -
(ab

- A2
) (ax*

-
Ihxy + %2

) + (Sa/
2 + 3bg*

- 4ac - Ijgh] z*

+ (4bgh
- labf- 2/fc

2
) yz + (4a&/- 2abg

- 2gW) xz.

6 vanishes and the envelope is therefore 27 &z-S- = B 3
, which, as before, is of the

sixth degree having six cusps, two of which lie on z. But first let z touch the

conic, then ab - h2 =
0, and S and 6 take the form Lz, Mz where L and -V are

linear and the envelope takes the form zL* = - 3
,
and is a cuspidal cubic having z

as a stationary tangent. Secondly, let the conic pass, say through / or yz. then

a = 0, S becomes b (hy + gzY, and 9 takes the form (hy + gz) M. The equation
then becomes divisible by (hy + gz}

3
,
and the envelope is of the form z1

(hy + gz) = M 3
.

It will be observed that hy + gz is the tangent to the conic at the point /, and that

it is an inflexional tangent of the envelope.

107. In general, as Professor Cayley has remarked, if

Lx + My -f Nz be the tangent at any point x y z\ and a/3y,

oifi y the coordinates of /, &amp;lt;/,

the equation of the quasi-normal is

y, x

7

z

x, y z

, ^, 7

= 0.

For the two determinants, which we shall call for the moment

A, A , severally represent the lines joining x y z to /and /, and

since the tangent passes through their intersection we must

have an identity of the form Lx + My + ~Nz=*A& B& .

Substitute successively in this identity a. ft y and a.fiy for xyz,
and we determine A and B as proportional to La! + M$ -f- ^7
and La.+ Mf}+ Nf) and therefore the equation of the harmonic

conjugate of the tangent with respect to A, A is of the form

written above.

108. Let us examine more particularly the case where one

of the points a/3y is in the curve, and, for simplicity, we take

its coordinates 1, 0, 0; that is to say, we suppose the point to

be yz ;
and we take the line z to be the tangent at it

;
and we

shall prove that the envelope contains z as a factor. &quot;VVe

may also without loss of generality take the second point
as 0, 0, 1 or xy. Making /3 and 7, a and /3

= in the preceding

equation, it becomes

N(yz zy) -f- L (xy
-
yx] = 0.
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Let us suppose now that x, y, z are expressed in terms of a

parameter ,
the point a, /3, 7 answering to the value =

0, and

we must have t as a factor in the expression for y ,
and ? in

that for z
,

in order that the equation of the tangent may
reduce to z = 0. In general, since the tangent is the line joining

the point x y z to the consecutive x + dx, y + dy ,
z -f dz, its

equation is

x (y dz z dy] -f y (zdx x dz) -f z (xdy y dx) 0.

L, M, N are the coefficients of x, y, z in this equation, and t is

a factor in J/, and t&quot; in Z. If then the equation of the quasi-

normal be arranged according to the powers of
,

it will be

found that there is no term independent of
t,

and that z is

a factor in the coefficients both of t and of f. Xow the

discriminant of a function A + Bt 4- Ct~ + &c. is of the form

A(J&amp;gt;-{-
B

\]r (Htgher Algebra, Art. 107), and therefore a factor

which enters into both A and B will be a factor in the

discriminant. Also if in the discriminant we make 5=0, the

remainder will be of the form A
(A(f&amp;gt;

+ C3

\jr)
: thus it appears

that the envelope will have z for an inflexional tangent (compare
Art. 99, Ex. 4).

109. It has been remarked (Conies, Art. 385) that the

relation of perpendicularity may be further extended by
substituting for the points /, J, a fixed conic, and by regarding
two lines as perpendicular if each pass through the pole of the

other with regard to that conic. In this extension then, what

answers to the normal, is the line joining any point on a curve

to the pole of its tangent with respect to the fixed conic; or, in

other words, the line joining the point to the corresponding

point on the reciprocal curve with regard to the fixed conic.

Thus the curve and its reciprocal have the same normals. For

example, taking the fixed conic as x~ -f if -I- z\ the coordinates of

the pole of any tangent to a curve are L, M, JV, and the

equation of the line answering to the normal is

x (Mz
- Ny ) + y (Nx - Lz) + z(Ly ~ MX] = 0.

If the curve were a conic, this equation would be of the second

degree in x y z, and the envelope would be found as in Ex. 4,

Art. 106.
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110. The following remarks are a useful preliminary to the

investigation of the characteristics of the evolute of any curve.

The normal at any point of a curve at infinity coincides with the

line at infinity itself. It has been already remarked (Art. 105)

that we may generalize the conception of a normal by substi

tuting for the two circular points at infinity two finite points

/, J&quot;,

and that then if the tangent at any point P meet IJ in M,
and ifM 1

be the harmonic conjugate of M with respect to /, &amp;lt;/,

the line PM may be regarded as the normal. From this

construction it appears at once, that if the point P be on the line

//, then PM will coincide with that line. An exception occurs

where the point P coincides with either 1 or /; then the points

Jf, M coincide, and the normal coincides with the tangent (see

Conies, Art. 382, note). Thus, then, if the curve pass through

either of the circular points at infinity, the normal at that point

will coincide with the tangent.

111. We proceed now to determine the class of the evolute

of a given curve
j
or in other words, the number of normals to

the curve (tangents to the evolute) which can be drawn through

any point. By the law of continuity, the number of normals

is the same, whatever be the point through which they pass. It

is enough, therefore, to examine the case when the point is at

infinity. But the number of normals, distinct from the line at

infinity itself,
which can be drawn parallel to a given line, is

equal to the number of tangents which can be drawn parallel to

a given line, that
is,

to the class of the curve. And we have

seen in the last article that the m normals, corresponding to

the m points of the curve at infinity, coincide with the line

at infinity, and therefore also pass through the assumed point.

Thus then the number of normals which can be drawn to the curve

from any point, is equal to the sum of the order and class of
the curve or, what is the same thing, the sum of the orders of the

curve and its reciprocal. If the line at infinity be a tangent to

the curve, then the number of finite tangents which can be

drawn through a point at infinity, is plainly one less than in the

general case, and therefore the number of normals is also one

less. Thus four normals can be drawn from a given point to a

conic in general, but only three to a parabola.
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Again, if the curve pass through either circular point, we

saw (Art. 110) that the normal at that point does not coincide

with the line at infinity, and therefore, that for every passage

through a circular point, the number of normals is one less

than in general. Thus in the case of the circle which passes

through the two points /, J, the number of normals through
a point is reduced by two, and is two instead of four. Thus

then if m and n be the degree and class of a curve which passes

f times through a circular point, and touches the line at infinity

g times, the class of the evolute is

ri = m 4 n -f g.

These results might equally have been obtained from the con

sideration that if in the equation of the normal M(ax) =L(@y)
we suppose a, /3 given and #, y variable, we shall have the

equation of a curve of the m h
degree, whose intersection with

the given curve determines the points the normals at which

pass through a, ft. If the curve have no multiple points, the

number of intersections will be evidently m
z
or m + n : and there

is no difficulty in showing, that in the general case of S double

points and re cusps, the order is mz 28
3/c, that is m + n.

112. We next examine the degree of the evolute, and again
it suffices to examine the number of points in which the line at

infinity meets the evolute. Now if two consecutive normals

to the original curve be parallel, the corresponding tangents will

coincide
;
the points at infinity therefore on the evolute arise

in general from the points of inflexion on the given curve.

But to these must be added those arising from points at infinity

on the given curve, which points (Art. Ill) also give rise to

points at infinity on the evolute. But we say, moreover, that

these will be cusps on the evolute having the line at infinity for

their tangent. Let j\f be any point on the line /J, and M its

harmonic conjugate, then we saw that the line answering to the

normal at M is the line //: but if the consecutive points of the

curve, antecedent and subsequent to M be L and N, their

normals are LM
,
NM . Hence M is a point through which

three consecutive tangents to the evolute pass, and is therefore

a cusp having // for its tangent. Since then the tangent at a

cusp meets the curve in three consecutive points, the m points
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at infinity of the given curve, give rise to the same number

of cusps on the evolute which are met by the line at infinity in

3m points. If we add these to those already obtained, we find

the degree of the evolute = i + 3m, or the number which we
have called a (Art. 83).

If the curve pass through either point 7, J, we have seen

that these give rise to no points at infinity on the evolutej and

therefore the degree will be less by three.

If the line // touch the curve, the normals for the two

consecutive points in which it meets the curve coincide with //;
we have therefore two consecutive tangents to the evolute

coincident, or a point of inflexion on the evolute having 7&amp;lt;/for

its tangent. As this takes the place of two cusps which we

have when // meets the curve in distinct points, the degree of

the evolute is reduced by three
;
and if we use f and g in the

same sense as in the last article, we have for the degree of the

evolute

The values given show that the degree and class are the same

of the evolute of a curve and of its reciprocal as Art. 109 might
lead us to expect.

113. There will in general be no points of inflexion on the

evolute. For if there be such a point, two consecutive tangents

to the evolute (normals to the curve) coincide
;
but it is plain,

on considering the figure, that two consecutive normals cannot

coincide unless the corresponding tangents coincide with their

normals and with each other, which could only happen in the

exceptional case where the original curve had an inflexional

tangent passing through / or /.

If, however, the curve touch 7J, we have seen (Art. 112)

that there is a point of inflexion at infinity, and if the curve

pass through I or J (Art. 108), that the evolute has an

inflexional tangent passing through the same point. We have

thus conditions enough to determine all the characteristics of

the evolute, viz.

* Some particular examples show that these formulae must be modified when I or

J is a multiple point at which two or more tangents coincide. Thus if either be a

cusp, the diminution of degree is 4 not 6.
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whence by Pliicker s formula K = 3a 3 (m 4- n) 5 [f+ #),

a! = 3a 8 (/-f g] ;
and we can in like manner write down the

number of double points of the evolute, and of its double

tangents ;
these double tangents are, it is clear, double normals

of the original curve.

The u
deficiency

&quot;

(Art 44) of the evolute is the same as

that of the original curve, as may be verified by using the

expression for the deficiency \ (a 2 (m + n}} + 1.*

114. The number of cusps on the evolute may also be

investigated directly. We shall have a cusp on the evolute,

when three of its consecutive tangents (normals to the curve)

meet in a point ; or, in other words, when four consecutive

points of the curve lie on a circle. If this be the case the

radius of curvature remains constant when we pass to a con

secutive point. Differentiating then the expression given

(Art. 102) we have

(Z*+J/
2

)

(
dx+*?dy}=SH{(aL+hM) dx+(hL + bM}dy],

and eliminating dx : dy by the equation Ldx + Mdy = 0, we
have

(I? + JP) M- L~ = 3N[(a - i) LM+ h (M* - U)}.

Since H is of the order 3 (m 2), L and J/of the order m 1,

and a, 5, li of order m 2, this equation represents a curve of

the order 6m 10, whose intersections with the given curve are

the points where the osculating circle has contact of the third

order.f If the curve have no multiple points, these m (fan 10)

points together with m points at infinity give rise to m (fan 9)

cusps on the evolute, a number in accordance with the

preceding formulas.

We might, in like manner, investigate the characteristics of

* In general the deficiency of two curves is the same, if one is derived from the

other by such a process that to one point on either curve answers one point on the

other.

t In a subsequent part of the work the question of conies having with the curve

contact of a higher order than the second is more fully considered, and a formula

given for the aberrancy of curvature or deviation of the curve from the circular

form.

O
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the evolute in the more general sense of the word indicated

Art. 109, and we should find that the formulae we have already
obtained will apply, / being now the number of contacts of

the curve with the fixed conic, and there being no singularity

answering to g.

CAUSTICS.

115. As a further illustration of envelopes, we add some

mention of caustics, the investigation of which, though suggested
to mathematicians by the science of optics, belongs purely to

the theory of curves. The subject has some historical interest,

caustics being among the earliest questions, involving the

problem of envelopes, actually discussed.*

If light be incident on a curve from any point, the reflected

ray is found by drawing a line, making with the normal the

same angle which is made with it by the incident ray ;
the

envelope of all these reflected rays is the caustic by reflection.

It is easy to form the general equation of the reflected ray.

Let the equations of the tangent and normal at the point of

incidence be T= 0, N= ;
then the equation of the incident

ray is TN TN =
0, where TN1

are the results of substituting

the coordinates of the radiant point in T and N\ the

reflected ray then, which is the fourth harmonic to these three

lines, will have for its equation

and the envelope can then be found by the preceding rules.

Ex. Tofold the caustic by reflexion of a circle.

The reflected ray is, by the preceding (a/3 being the coordinates of the radiant

point, and the tangent and normal being x cos 6 + y sin r, and x sin 6 y cos 6),

(a cos0 + p sin -
r) (x sin -

y cos0) + (x cos0 + y sin -
r) (a sin0 - (3 cos 6) = 0,

or (ay + PX) cos20 + (py
-

ax) sin20 + r (x + a) sin - r (y + ft) cos =
0,

whose envelope is (Ex. 3, Art. 85)

[4 (a
2 + /3

2
) (x

2 + y
2
)
- r2

{(x + a)
1 + (y + /3)

2
}]

3 = 27 (px
-

ay)* (x
2 + ?/

2 - a2 -
f?)*.

116. Instead of finding directly the envelope of the reflected

ray, M. Quetelet has given a method, which is more convenient

in practice, of reducing the problem to that of evolutes
;
since

the caustic would be sufficiently determined if we knew the curve

of which it was the evolute.

* The subject of caustics was introduced by Tschirnhausen, Acta Eruditorum

1682, referred to by Gregory, Examples, p. 224.
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&quot; If with each point successively of the reflecting curve as

centre, and its distance from the radiant point as radius, we

describe a series of circles, the envelope of all these circles will

be a curve, the evolute of which will be the caustic required.&quot;

The following (due to M. Dandelm) is a more convenient form

of stating the same theorem : If we let fall from the radiant

point the perpendicular OP on the tangent, and produce it

so that PR = OP, then the caustic is the evolute of the locus of R.

For RTls evidently the di

rection of the reflected ray, and

if we draw the consecutive ray,

then, since OT, TV ,
OT

, TV,
make equal angles with TT,
OT+ TV= OT + TV (Conies,

Art. 392) ;
therefore VR: = VR,

and therefore VR is normal to the locus of R.

The locus of P, the foot of the perpendicular on the tangent,

we call the pedal of the given curve. The locus of R is plainly

a similar curve, and its equation can always be written down

when the equation of the reciprocal of the given curve with

2

regard to is known, by substituting
- for p in the polar

equation of that reciprocal. Thus the caustic by reflexion, of a

circle, is the evolute of the limacon, (see Ex. 5, Art. 55), since its

equation (the radiant point being pole) as found by the rule

just given is of the form

p=p (1 -fecosoj).

117. If light be incident from any point on a curve, the

refracted ray is found by drawing a line, making with the normal

an angle whose sine is in a constant ratio to that of the angle

made with the normal by the incident ray, and the envelope of

all these rays is the caustic by refraction.

M. Quetelet has reduced in like manner these caustics to

evolutes by the following theorem, the truth of which it is easy

to see.
&quot; If with each point successively of the refracting curve

as centre, and a length in a constant ratio to its distance from

the radiant point as radius, we describe a series of circles, the

envelope of all these circles will be a curve whose evolute is the
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caustic by refraction.&quot; In fact, the method of infinitesimals

readily shows that, in consequence of the law of refraction, the

increments of the incident and refracted rays are connected by
the relation mdp -f dp =

0, it follows then that
if,

on the

refracted ray produced, TR be taken =mOT, TM =mOT
9

then VR = VR, and therefore the refracted ray is normal to

the locus of R.

We add geometrical investigations in relation to two

interesting cases of caustics by refraction.

(1) To find the caustic by refraction of a riglit line.

Let fall a perpendicular on the line, and produce it so that

AP=PB] and let a circle be described L

through A, B, and the point of incidence

R
j

let LR be the refracted ray ;
then

obviously the angle ALB is bisected, and

LB .ABr.AL .AO
:: smAOL : sinALO

,

but AOL is the angle which the re

fracted ray makes with the perpendicular to the line, and

ALO = BLO =BAR is the angle which the incident ray makes

with the perpendicular ;
the ratio of AL + LB to AB is there

fore given ;
the locus of L is an ellipse, of which A and B are

the foci, to which LR is normal, and of which, therefore, the

caustic is the evolute.

(2) To find the caustic ~by refraction of a circle.

Let a circle be described through A, the radiant point, and

R, the point of incidence, to touch OR
;
then

the point B is given, since OA. OB = OR*.

The ratio RA : RB is by similar triangles

equal to the given ratio OA : OR. The ratio

RA : RM is equal to zmKBA : sinRUM;
but RBA = PRA, the angle which the in

cident ray makes with the normal to the

curve, and RBM=PRM, the angle which

the refracted ray makes with the same

normal
;
hence the ratio RA : RM is also

given. Now since

AM. RB + MB. AR = RM. AB,

\
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if we denote the distances of M from A and B by, /?, p ,
these

distances are connected by the relation

EB

Now, a Cartesian is defined as the locus of a point whose

distances from two given foci are connected by the relation

mp + np = c
;
and it is proved precisely as at Conies, Art. 392, that

the normal to such a curve divides the angle between the focal

radii into parts whose sines are in the ratio m : n. Hence the

locus of M is a Cartesian, of which A and B are foci, and

it is obvious that MR is normal to the locus, and therefore the

caustic is the evolute of this curve.*

The ellipse in (1) and the Cartesian in (2) are curves cutting

at right angles the refracted rays ;
the curve cutting at right

angles the reflected or refracted rays is termed the secondary
caustic.

PARALLEL CURVES AND NEGATIVE PEDALS.

117 (a). It remains briefly to notice one or two other classes

of envelopes. We have already mentioned the problem of

finding the curve parallel to a given one. This may either

be treated as that of finding the envelope of a tangent parallel

to each tangent of the given curve, and at a fixed distance

from
it,

and so of finding the envelope of

Lx + My + Nz = kz
&amp;lt;J(U

+ J/2

),

or else, as we have already seen, it may be regarded as

that of finding the envelope of the circle of given radius

(x a)
2 + (y

-
/3)

e= &2

,
whose centre a/3 satisfies the equation of

the curve, or, what is the same thing, of finding the condition

that this circle should touch the given curve. The result will

evidently be a function of k
z
. In some exceptional cases to be

mentioned presently, the result can be resolved into factors, as

for instance, the parallel at a distance k to a circle of radius a

consists of a pair of circles of radii a + k. But, ordinarily, such a

resolution is not possible, and the two tangents at the distance

* This proof was communicated to me by Dr. Atkins,
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Jc from any tangent will touch the same parallel curve.

Hence, the number of tangents which can be drawn parallel

to any given line is double that which can be so drawn to the

original curve, or ri = 2n. In like manner, to each inflexional

tangent on the original correspond two on the parallel curve,

or i 2t. To find the order of the parallel it suffices to make

k = in its equation, which will not affect the terms of highest

dimensions in the equation ;
but what was proved for the conic

(Conies, Art. 372, Ex. 2) is true in general, that the result of

writing k = in the equation of the parallel is the original curve

counted twice, together with the two sets of n tangents drawn

from the points 7, / to the curve. The order then is 2 (m + n).

There is no difficulty in seeing how these numbers are modified

if the original curve touch the line at infinity or pass through
the points /, /. We arrive in this way at Professor Cayley s

formulas

m = 2 (m 4- n)
- 2 (/+#), n = 2, i = 2i=-6m + 2a,

* = 2a - 6 (/+ g) :/ = 2 (n
-

.?), g =
2g.

The parallel curve and the original have the same normals and

the same evolute, but every normal to the parallel curve is so

generally in two places, answering to the values k.

Ex. 1. To find the parallel to the ellipse or parabola. See Conies, Art. 372.

3 2. 2.

Ex. 2. To find the parallel to Xs + y
3 = a3

. The equation of any tangent is

(see Art. 99, Ex. 6)

x
cos&amp;lt;j(&amp;gt;

+ y sin $ = a sin &amp;lt;

cos&amp;lt;/&amp;gt;.

Hence, that of a parallel at the distance Jc is

x cos
&amp;lt;f&amp;gt;

+ y sin
&amp;lt;p

Jc + a sin
&amp;lt;p

cos
(/&amp;gt;,

whose envelope is (see Art. 85, Ex. 3)

{3 (x
2 + y

2 - a2
)
- 4 2

}
3 + {27axy -9k (x

2 + y
2
)
- 18a?k + 8 3

)
2 = 0.

This is one of the cases where the parallels answering to the values + k are different

curves and not different branches of the same curve.

The curve whose equation has been just obtained is the envelope of a line on

which a constant intercept is made by two fixed lines. If the lines are at right

angles, taking them for axes it is seen immediately that the equation of a line whose

length is a inclined at an angle &amp;lt;$

to the axis of a; is x sin
&amp;lt;J&amp;gt;

-f y cos &amp;lt;

= a cos
&amp;lt;p sinj&amp;lt;/&amp;gt;,

2. 2. 2.

whose envelope is a;
3 + y

3 = a . But consider for a moment a diameter and a parallel

chord of a circle, and it is evident that if a line whose length is a subtend a right

angle at any point, a parallel line at a distance %a cos &amp;lt; will make an intercept

a sin &amp;lt; on a pair of lines including an angle (ft,
and equally inclined to the rectangular

lines. Hence, obviously the envelope of a line whose length is a sin &amp;lt; intercepted

between the oblique lines is a parallel (answering to the value k = |a cos
&amp;lt;)

to the

envelope for the rectangular lines, ce
3
+jy

3 -a 3
.
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118. If ax -f fiy -f 7 be a tangent to a curve (the equation

being expressed in ordinary rectangular coordinates), then

evidently ax + j3y + 7 + & V(a
2 + /3

2

)
is a tangent to the parallel

curve; and it follows at once, that if we have the tangential

equation of the given curve, we obtain that of the parallel by

writing in it for 7, y + kp where p is V(
a
+ /3

2

). Hence the

tangential equation of the parallel to a curve whose tangential

equation is V is

dV 1

The equation is cleared of radicals by transposing to one side

the terms containing the odd powers of p and squaring, when
we obtain an equation the order of which is double that of the

original tangential equation, in conformity with what was proved
in the last article.

&amp;lt;2 2

Ex. 1. To find the tangential equation of the parallel to - + ^ = 1. The

tangential equation of the ellipse is (see Cojiics, Art. 169, Ex. 1) a-a- + Fp2 = y
2
,
whence

that of the parallel is

or {(a
2 - 2

)
a2 + (6

2 -
k-) (3?

- y
2
}

2 = 4 2
(a

2 + /?) y2

Ex. 2. To find the tangential equation of the parallel to the parabola y^px.
The corresponding tangential equation is p(F = 4ay ;

hence that of the parallel is

(pp
2 -

4ay)
2 = 16 2a2 (a

2 + /8=).

Ex. 3. To find the tangential equation of the parallel to a circle. The tangential

equation to the circle whose centre is the point a, b, and radius c, is (Conies, Art. 86)

(aa + bfi + y)
2 = c2 (a

2 + /S
2
) ;

therefore that of the parallel is

(ao + bp + y + fy)
2 =

f-p-,

which breaks up into factors, and gives

act + bfi + y + kp = cp ;

whence, clearing of radicals,

6/3 + y)
2 =

(e *)
2

(

representing a pair of concentric circles whose radii are c
,
as is geometrically

evident.

119. In precisely the same manner, as in the last example,
it is proved that if the tangential equation of a curve be of the

form i? (a
2

-t- /3
2

)
= v

2

,
the parallel will break up into two factors

of like form with the original, the parallels answering to the
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values Tc being distinct curves, and not different branches of

the same curve. For suppose that by the substitution of 7 4 kp
for 7, u becomes u 4 u kp 4 u ltff 4 &c., and similarly for v

;

then u?p
2 = v* becomes

(u + u kp 4 u tfp
2
4 &c.)

a

p*
=

(v 4 v kp 4- v&quot;k

z

p* + &c.)
2

,

which is at once resolvable into factors which can be rationalized

separately, giving the result

{u 4 u&quot;tfp* 4 &c. (v k + v
&quot;k*p*

4 &c.)}V
=

{v + v&quot;kY 4 &c. (uV 4 **
&quot;#&amp;gt;*

+ &c.))
2
.

Thus the equation given for the parallel of a conic is of the

form considered in this article, and it can be now easily verified

that the parallel to that parallel at the distance k
1

consists of

the two parallels to the conic at the distances k k
,
as manifestly

ought to be the case. Take again the curve already mentioned,

x* 4 y^
= a

j
whose tangential equation is (a* 4 /3

2

)
v
2 = aV/3

2

,

which being of the form here considered, shows that the parallel

breaks up into factors. The tangential equation of the parallel

is in fact (a* +
2

) 7* = {aa/3 k (a
51 + /3

2

)

2

}.

If we take for u and v respectively the most general functions

of the first and second degrees in a, /3, 7, u*p*
= v* denotes a

curve of the fourth class having two double tangents, and

which is therefore of the eighth order. But these functions may
be so taken that the double tangents shall become stationary

tangents, and that the curve may have another double or

stationary tangent, and in this way we can form the equation

of a curve of the third or fourth order whose parallels break

up into factors. Of this kind is the reciprocal of a Cartesian, as

will afterwards be shown.

120. If we had been using trilinear instead of rectangular

equations, it follows, from Conies, Art. 61, that the equation of a

parallel to ax 4- fty 4 73, at a constant distance from
it,

is of

the form

ax 4 fry 4 72 4 m (x sin A + y sinB 4 2 sin C) *j(

where 8 is

a
* 4 ^

2 4 7
a -

2/?7 cos .4 - 27a cos.Z? - 2a/3 cos (7,
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and we see that if in the tangential equation of a curve we

write for a, $, 7,

a+msinA V(), j3 +mswB &amp;lt;J(S), y + msm C&amp;lt;J(S),

we shall have the tangential equation of a parallel curve. We
saw, Conies^ Art. 382, that S= is the tangential equation of the

points //; and it is at once suggested, that if S=0 be the

tangential equation of any two points, and ax -f
l&amp;gt;y

-f cz =
the line joining them, then considering the circular points at

infinity as replaced by the two points in question, the envelope
of ax + fiy + 73, and of ax + fiy + 72 4- (ax + by 4- cz) ^(S) are

quasi-parallel curves.

121. We called (Art. 116) the locus of the foot of the

perpendicular on the tangent from a given pole or centre, the

pedal of the given curve. Having found the pedal we may
find its pedal again, &c., and so have a series of second, third, &c.,

pedals of the given curve. Or we may continue the series

the other way, the curve of which the given curve is the pedal

being the first negative pedal, and so on. The problem of

finding the negative pedal is that of finding the envelope of a

line drawn perpendicular to the radius vector through its

extremity ; or, in other words, it is that of finding the envelope of

ax + /3y = a
2 +

/S&quot;,

where a, fB satisfy the equation of the curve. We have just

seen that the problem of finding the parallel curve is that of

finding the envelope of

2ox+ 2y% -f tf-x*- y
l = a

2 + yS
J

,

subject to the same conditions
;
and accordingly Mr. Roberts

has remarked that the two geometrical problems are both

reducible to the same analytical problem, viz. that of finding
an envelope of the form

and that if we had the equation of the parallel curve we could

deduce that of the negative pedal, by writing in it tf = x* + y
z

,

and then writing \x, ^y for x and y. Ordinarily, indeed, the

problem of finding the parallel curve is the more difficult of the

two; but this method gives immediately the negative pedal of

p
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the right line or circle. For the parallel to a right line is a

pair of equidistant parallel lines, and the parallel to a circle

of radius a is two concentric circles of radii a Jc. In either of

these cases, then, the equation of the parallel curve can be

written down without calculation, and the negative pedal thence

derived by the process just indicated.

122. If for any curve there is taken on each radius vector

OP from an arbitrary origin or centre of inversion a portion

OF equal to the reciprocal of (9P, the locus of P is said

to be the inverse of the given curve. From this definition it

is easily inferred that the pedal of a curve is the inverse of

its polar reciprocal, and that the first negative pedal is the

polar reciprocal of its inverse; the reciprocation being per
formed in regard to a circle described about the origin or centre

of inversion as its centre.

There is no difficulty in deducing, by reasoning similar to

that used in other similar cases, the characteristics of the curve

inverse to a given one, and hence those of the pedal and of the

negative pedal respectively, and it is sufficient to give the

results. We use f and g in the same sense as before to denote

the number of times that the curve passes through a point / or

J, or that it touches the line //; f and g denote the reciprocal

singularities, viz. the number of times the curve touches a line

01 or OJ, or that it passes through the origin ; p and q denote

the number of coincidences of tangents when the origin or when

a point I or J is a multiple point [for example, we should have

2?
=

1, if the origin were a cusp], andp , q denote the reciprocal

singularities ;
then for the inverse curve we have

Hence we must have for the pedal

and for the negative pedal

M= n + 2m-2 (/-}- g ) -(f + ff)+p + q, #= 2w -/-,
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Ex, 1. To find the negative pedal of the parabola, the pole being at the focus.*

Let the equation be y- = 4 (mx + m2
). We may then express any point on the

curve by x + m - X2
w, y = 2\m, and the equation ax + py = a- + p2 becomes

(\2 -l) x + 2\y- (X
2 + I)

2 m.

The invariants of this quartic in X are

S - 8 (x + 4/?i)
2
,
T = (x + 4/rt)

3 - 54w (x- + y-}.

The discriminant therefore S*-11T- becomes divisible by x2 + y
1 and gives the

equation

This is equivalent to the polar equation /&amp;gt;*
cos

]o&amp;gt;

= m 3
,
which might have been other

wise obtained, since it immediately follows, from Art. 95, that if the equation of any

curve can be expressed in the form p
m am cos ma, the equations of its pedal and

negative pedal are of the same form, the new m being ;
-- and

^-^ respectively.

It may be remarked that the equation of the tangent to a parallel to this curve is

(X
2 -

1) x + 2\y = (X
2 + I)

2 m + (X
2 + 1) k,

the envelope of which is of the fifth order, the curves answering to the values + k

being distinct. And so in general the parallels will be unicursal of curves, the

equation of whose tangent is

If we take &amp;lt; (X) m\3 we get a curve of the third class and fourth order touched

by the line at infinity and passing through the points /, J.

x- v2

Ex. 2. To find the negative pedal of -.
-

z
+ ^ = 1, the pole being at the centre.

Writing as usual for the coordinates of any point a cos (p and b sin $, we have to

find the envelope of

ax cos0 + by sin&amp;lt; = a- cos2^ + 62 sin2 ( = (a
2 + b-) + (a

2 - 62) cos2c.

Hence, writing for the moment (a
2 + 2

)
= m, (a

2 b2) = n, the envelope is (see

Art. 85, Ex. 3).

{3 (a?x
2+ b-y*)

- 4 (w
2 + 3ra2)}

3 + {9 (m
-

3n) a?x*+9 (m + 3) b-y-
- Sm (m-

- 9n2
)}

2= 0.

Tor Professor Cayley s solution of the same problem, see Geometry of Three Dimen

sions, (Art. 481).

Ex. 3. To find the negative pedal of the ellipse, the pole being at the focus.

The x measured from the focus is c + a cos &amp;lt; and the focal radius vector a + c cos
c/&amp;gt;.

We have therefore to find the envelope of

x (c + a cos
&amp;lt;)

+ yb sin &amp;lt;

= (a + c cos
&amp;lt;)

2
,

or of c- cos 2^ + a (4c - 2x) cos^ - 2fy sin + (2a
2 + c2 - 2cx) =

and the envelope is

{3&
2
(x

2 + #
2
)
-

(26
2 + ex)*}* + 9J2 (a

2 - ex + 2c2) (x
2 + #

2
)
-

(26
2 + ex)

3
}
2 = 0,

which, when expanded, will plainly be divisible by x2 + y- and will represent a curve

of the fourth degree, having the lines x2 + y
2 as stationary tangents.

* It may easily be seen that this is the same problem as to find the caustic by

reflexion, the rays being perpendicular to the axis.
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CHAPTER IV.

METKICAL PROPERTIES OF CURVES.

123. IN this chapter we shall give some of the more

important of the metrical properties of curves. In the investi

gation of such properties Cartesian rectangular coordinates are

most advantageously employed ; then, as we saw in Art. 35, by

substituting p cos 6 and p sin 6 for x and y, we obtain the lengths

of the segments made by the curve on any line through the

origin ;
and so on any line whatever, since by transformation

of coordinates any point may be taken for origin.

The theorem given ( Conies, Art. 148) may be generalized as

follows: If through any point two chords be drawn, meeting

a curve of the nih
degree in the points R^Rz

...Rn , S^.,.8^ then

(\T&amp;gt; C)~P f) 7?

the ratio of the products
**
^

2
&quot;

^
n
will le constant, what-

OS
l .O^...O\

ever be the position of the point 0, provided that the directions of

the lines OR, OS be constant*

And the proof is the same as that already given in the case

of conic sections. From the polar equation of the curve, Art. 26,

we see that the product of all the values of the radius vector on a

line through the origin making an angle 6 with the axis of x is

A_~
P cos&quot;0 + Q cos

1 1
*? sin 6 -f- &c.

and the same product for any other line is

A
&quot;

jPcos&quot;0, + Q cos&quot;&quot;

1

^ sin0, + &c.

The ratio is therefore

P cos&quot;0 + Q cos
n-l

sin 9 + &c.

&quot;Pcos&quot;0,
+ Q cos&quot;

1

^ sin 9, + &c.
&quot;

* This theorem was first given by Newton, in his Enumeratio Linearum Tertia

Ordin is.
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But we have seen (Conies, Art. 134) that, by a transformation to

any parallel axes, the coefficients of the highest powers of the

variables, and therefore this ratio, will be unaltered.

We may (as at Conies, Art. 148) express the same theorem

thus: If through two fixed points, and o, any two parallel lines

be drawn, then the ratio of the products OJR
l
.OR

2
.OB

3
...&c.

: or
l .or^.ors ,

&c. will be -constant, whatever be the common direction

of these lines.

For the value of the second product is ~j^ ^ ,
whereP cos 6 -f &c.

A is the absolute term when o is made the origin ;
and the ratio

of the products is A : A, and independent of 6. We have seen

(Conies, Art. 134) that the new absolute term will be the result of

substituting the coordinates of o in the given equation. We see,

therefore, that the result of such a substitution is always propor
tional to the product of the segments intercepted between o and

the curve on a line whose direction is given (Conies, Art. 262).

124. From the preceding theorem is deduced at once

Carnot s theorem, of which we have given a particular case

( Conies, Art. 313). Let each of the sides of a polygon ABC, &c.,

meet a curve of the nth
degree in n real points. We shall

denote by (B) the continued product of the n segments made on

the side BC between B and the curve
; by (B) the product of

the sements made on the side BA. Then

(A) (B) (Cf (D) &c. = (A) (B) (C] (D) -fee.

For through any point draw radii vectores parallel to the sides

of the polygon, and denote the continued product of the seg

ments on each of these lines by (a), (b}, (c), &c., then, disregarding

signs,

(B): (B) ::():(&),

&c.,

and, compounding all these ratios, the truth of the theorem is

evident.
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125. Some ambiguity will be avoided by attention to the

sign +. Considering the segments on the line AB^ we have

(A) the product of n segments measured from A to B] and

(B) the product of n segments measured from B to A, and

therefore according to the rule of signs (Conies^ Art. 7), each term

in the latter product is to be regarded as of an opposite sign

from each term in the former, so that if we give to (A)
the sign +, we must give to (B) the sign ( )&quot; ;

that is to

say, + when n is even and when it is odd. And if 7c be the

number of sides of the polygon, then since each side of the

equation of the last article consists of k factors such as (A) ,
that

equation must be written

(A) (B) (C) &c. = (-)- (A) (B) (CO &c.;

that is to say, the right-hand side will have the sign -f when

either the degree of the curve or the number of sides of the

polygon is even
;
but when both are odd, the sign is to be

used.*

Ex. 1. Let a right line meet the sides of a triangle AB, DC, CA, in the points

c, a, b. Then

Ac . Ba . Cb = - Ab . Be . Ca (Conies, Art. 42),

and the sign shows that, if it cut two sides internally, it must cut the third externally.

The equation

Ac, . Ba . Cb = + Ab . Be, . Ca (Conies, Art. 43)

will be fulfilled if the three lines Aa, Bb, Cc
t ,
meet in a point ;

and the line AB is

cut harmonically in the points c and cr

Ex. 2. Let each side of the triangle touch a conic in the points a, t&amp;gt;,

c. Carnot a

theorem gives us

Ac*. Ba?. CV = + Ab*. Be*. Co*
;

and, therefore, Ac.Ba.Cb = Ab .Bc.Ca.

The lower sign cannot be used, since no line can meet a conic in three points : we
learn then that if a conic be inscribed in a triangle, the lines joining each vertex to

the opposite point of contact meet in a point.

Ex. 3. Let a, b, c be points of inflexion on a curve of the third degree, at which

BC, CA, AB, are tangents ;
then by Carnot s theorem,

Ac3
. Ba3

. Cb3 = - Ab3
. Be3

. Ca3
,

the only real root of which is

Ac. Ba.Cb = - Ab.Bc. Ca.

Hence, if a curve of the third degree have three real point! of inflexion, they must lie

on one right line. Hence, too, a curve of the third degree can have only three

* See Pliicker s System der Analytischen Geometric, p, 44.
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real points of inflexion; for this argument would show that a 11 the real points of

inflexion must lie on a right line
;
and a right line can only meet the curve in three

points.

The same reasoning proves that if any curve of an odd degree n have three real

points, at each of which the tangent meets the curve in n points, these three points

must lie on one right line.

Ex. 4. Let a curve of the fourth degree have three double tangents ;
we have

Ac- . Ac? . Ba? . Ba? . Cb- . Cb? = AF . Ab? . Be1
. Be? . Co? . Ca?,

whence Ac . Ac
t

. Ba . Ba, .Cb.Cbl
= Ab. Ab

t
. Be . Bc

t
. Ca . Ca, ;

but on account of the double sign we can only infer that &quot;

if a curve of the fourth

degree have three double tangents, the conic through five of the points of contact

will either pass through the sixth, or through the point which, with the sixth, divides

harmonically the side of the triangle on which the sixth lies.&quot; There are thus two

distinct kinds of triads of double tangents, according as one or the other of these

geometrical relations holds good.

126. There are some particular cases for which Carnot s

theorem requires to be modified. First, if one of the angles

(A) of the polygon were at infinity, that is to say, if two

adjacent sides be parallel, then (A} ultimately
=

(-4), and we
still have the equation

Secondly, if one of the angles (A) were on the curve
;
then

one of the n terms vanishes in each of the products (A) and (A) ;

. AR smRR A
but now. since the ratio of any two lines -r-^ = -

, . . weAR sin RRA
may substitute for the ratio of these two vanishing sides the

ratio of the sines of the angles which the sides of the polygon at

A make with the tangent at -4, and the theorem becomes

sn a sn a

where (A) , (A} have each but n- 1 factors, and where a, a are

the angles which the sides on which (A) , (A) are measured

make with the tangent at A. In this manner we can deduce

that,
&quot;

if any polygon be inscribed in a conic the continued

product of the sines of the angles, which each side makes with

the tangent at its right-hand extremity, is equal to the similar

product of the sines of the angles made with the tangent at the

other extremity.&quot;
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DIAMETERS.

127. If there be n points in a right line, a point on the line,

such that the algebraic sum of its distances from these points
shall vanish, is called the centre of mean distances of the given

points. Let the distance of the centre from any assumed point
on the line be y, let that of the other points be y^ y^ y^ &c.,
then the distances of the centre from the given points are yy^
y y^ &c., and the condition given by the definition is

whence we learn that the distance of any assumed point from the

centre is equal to the sum of the distances of the assumed point
from the given points, divided by the number of these points ;

or is equal to the mean distance of the assumed point from the

given points. Thus, if there be only two given points, the

centre of mean distances is the middle point of the line joining

them, and the distance of any point on the line from the

middle point is half the sum of its distances from the two

given points.

The well-known properties of the diameters of conies have

been generalized by Newton into the following theorem, true for

all algebraic curves : If on each of a system of parallel chords

of a curve of the nih
degree there be taken the centre of mean

distances of the n points where the chord meets the curve, the locus

of this centre is a right line, which may be called the diameter

corresponding to the given system of parallel chords.

To prove this theorem, we adopt the same method of inves

tigation as in the case of conic sections (Conies, Art. 141). The

origin would be the centre of mean distances for a chord making
an angle 6 with the axis of x, if,

when we transform to polar

coordinates by substituting p cos 6, p sin 6 (or in case of oblique

axes, mp, np], for x and y, 6 be such as to cause the coefficient

of p
n~l

to vanish. If we seek then the condition that any other

point xy should be the centre of mean distances for a parallel

chord, we must examine what relation should exist between

X, y ,
in order that when we transform the axes to this point

the new coefficient of p
n~l

should vanish for the same value

of 6. But when the given equation U= is transformed to
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parallel axes by substituting x -f x
, y -f y, for x and y, it

becomes

,dUx -j-+ y T- +
efo

?

.dy

only the three first terms can contain powers of the variables as

high as the (n l)
tb

,
and since these involve xy only in the first

degree, the required locus must be a right line. Its equation is,

in fact,

du du

where, in w
n ,
u
n_^ cos 9 and sin 6 (or, if the axes be oblique, m

and n) have been substituted for x and y.

128. Newton has also remarked, that if any chord cut the

curve and its asymptotes, the same point will be the centre of

mean distances for both, and that therefore the algebraic sum of

the intercepts between the curve and its asymptotes = 0. This

is the extension of the well-known theorem (Conies^ Art. 197).

The truth of it follows at once from the equation of a diameter

given m the last Article, and from what was proved (Art. 52)

that the terms u
n ,
M
M_I ,

are the same in the equation of the curve

and in that of its n asymptotes.

129. We may in like manner seek the locus of a point such

that the sum of the products in pairs of the intercepts, measured

in a given direction between it and the curve, shall vanish.

The origin would be such a point if the coefficient of
/&amp;gt;*&quot;&quot;*

vanished for the given value of 0, and the locus is found, as in

Art. 127, by examining what relation must exist between x and

y in order that the coefficient of p
n~~

in the transformed equa
tion should vanish. But since the terms of the (n 2)

th

degree

in x and y involve no powers higher than the second of x and ?/ ,

the locus will be a conic section, which we shall call the

diametral conic.

Its equation is readily seen to be

du . du . / d*u d2
u d*

where, in w
n_2 , &c., cos# and sin# have been substituted for

Q



DIAMETERS.

x and y. The distance of any point from either point on the

diametral conic being y, arid from the curve y^ y^ &c., we have,

by the definition,

S(y-&)(y-ya)=0.

The number of terms in this sum is the same as the number

of combinations in pairs of n things, and is therefore = \n (n 1).

This, therefore, will be the coefficient of #
2 when we multiply out

each of these products and add them together. In the same

case the coefficient of y will consist of \n (n 1) terms, each of

the form to+#a),
and since it must involve the n quantities

y\i y*i &c
&quot;) symmetrically, it must be (n 1) 2 (y}. Hence

2 (y
-

y,} (y
-

y,}
= i (n

-
1)f -

(
-

1) yi (y,} + s (yl2/2)
= o.

This quadratic gives the distances of any point from the diame

tral conic when we know its distances from the curve. \n (n 1)

times the product of these two distances = 2
(yjj^)-,

or theproduct

of the distances from the diametral conic is equal to the mean

product in pairs of the distances from the curve, since there

are \n (n
-

1) such products. The sum of the distances from

2
the diametral conic = - 2 (y). The mean distance is then the

same for both curves, since there are two such distances in

the one case, and n in the other; and the two curves have

the same diameter.

130. There is no difficulty in seeing that a curve of the rc
th

degree may have other curvilinear diameters of any degree up
to the (n l)

th
. Thus the locus of a point such that the sum

of the products in threes of its distances from the curve should

vanish, is found by putting the coefficient of
p&quot;~

3
in the trans

formed equation
= 0; and since this coefficient involves no

higher than the third powers of the variables, the locus will

be of the third degree. We may see too, in like manner, that

2 (y-yj (y -&) (y
-

y*}
= i* (n

-
1) (n

-
2) y*

-
i (n

-
I) (n

-
2) ys to) + (n

-
2) yS toy,)

~ S to&y,),

and we can readily infer hence that the curve and its cubical

diameter will have the same mean distance, mean product in

pairs, and mean product in threes of the distances
;

so in like

manner for diameters of higher dimensions. More light will
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be thrown on the subject of these curvilinear diameters by con

siderations which we shall explain presently.

131. To the mention we have made of diameters we may
add some notice of centres. If all the terms of the degree n 1

were wanting in the equation, then the algebraic sum of all the

radii vectores through the origin would vanish, and the origin

might in one sense be called a centre.

The name centre, however, is ordinarily only applied to the

case where every value of the radius vector is accompanied by
an equal and opposite one. In this case, if the equation be

transformed to polar coordinates, it must be a function of p*

only. If the curve then be of an even degree, its equation in

x and y, referred to the centre, can contain none of the odd

powers of the variables, and must be of the form

If the curve be of an odd degree, its polar equation must be

reducible to a function of p
a

by dividing by p ;
and the x and y

equation can contain none of the even powers of the variables,

but must be of the form

This form shows that if a curve of an odd degree have a

centre, that centre must be a point of inflexion. It is also

evident that it is only in exceptional cases that a curve of any

degree above the second will have a centre
;
since it is not

generally possible, by transformation of coordinates, to remove

so many terms from the equation as to bring it to either of

the forms given above.

POLES AND POLARS.

132. We pass now to an important theorem, first given by
Cotes in his Harmonia Mensurarum: If on each radius vector^

through a fixed point 0, there be taken a point R, such that

_^ J_ 1 1

OR OR.

then the locus of R will be a right line.
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For, making the origin, the equation which determines

ORtf &c., is of the form

A 4 4- (B cos e + C sin 0)
-*-

P P

+ (
cos

&amp;gt;2 +E cos sin + F sin
2

0) -4, + &c. = 0.

Hence JL = _ (*co80+_0sjn0)
0^ ^.4

or, returning to a? and # coordinates,

j&c + 0y -f nA 0.

This is the equation found (Art. 60) for the polar line of the

origin, and the property just proved is the extension of the

well-known harmonic property of poles and polars of conic

sections (see Conies, Art. 146).

133. The preceding property may also be established with

out taking the point as the origin, by a method corresponding
to that used, Conies, Art. 92. We have seen (Art. 63) that

given two points 0, xy z, and R, xyz, then the equation

A = 0, or

\nU + X
M

&amp;gt;
A U1 + 4VVA2U + &c. = 0,

determines the ratios RR^ : OR^ &c., in which the line joining

these two points is cut by the curve. It follows then from

the theory of equations, that At/
T =0 expresses the condition

that the sum of the roots of the equation A = should vanish :

that is to say, A U = is the locus of a point R, such that

EU.

But writing for RR^ OR
l

- OR, &c., this equation is at once

seen to be

134. It can be seen in like manner that the polar conic

A 2 U = is the locus of a point, such that

and similarly for polar curves of higher order. The polar curve
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of the &th order possesses the properties (if OR denote a radius

vector to the curve, and Or to the polar curve)

n OR
~

k Or

1 1.2

135. If the point (9 be at infinity, then the distances

2 , &c., may be regarded as having to each other the ratio of
r&amp;gt; r&amp;gt; 7? 7?

equality, and the denominators in all the fractious _ *

,

*

,

&c., may be considered as equal. The property then of the

7? 7?

polar line 2 - =
0, reduces, when is at infinity, to 2 (RR^ = ;

or the sum vanishes of the intercepts between the polar and the

curve on the parallel chords which meet at 0. Thus then the

polar line of a point at an infinite distance is the diameter of the

system of parallel chords which are directed to that infinitely

distant point.
/ P 7? 7? 7? \

So again for the polar conic. The equation 2 (T
reduces when is infinitely distant to 2 (RR^.RR.) =0, or

^(OR-OR^ (OR-ORJ =
0, the equation (Art. 129) which

determines the diametral conic. And so in general, the curvilinear

diameter of any order is identical with the polar curve of the

same order of the infinitely distant point on the system of parallel

chords to which the given diametral curve corresponds.

136. Mac Laurin has given a theorem, which is the extension

of Newton s theorem (Art. 128) :
u
If through any point a

line be drawn meeting the curve in n points, and at these points

tangents be drawn, and if any other line through cut the curve

in Rtf Rtf &c., and the, system of n tangents in r^ r^ cfrc.,
then

&quot; OB Or

It is evident that two points determine the polar line; that,

therefore, if two lines through meet two curves in the same
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points, jfrj,
7?

2 , &c., S
l Stf &c., the polar of 0, with regard

to both curves, must be the same, since two points of it,

R and $, are the same for both. This will be equally true

if the two lines OR, OS coincide, that is to say :
&quot; If two

curves of the nih
degree touch each other at n points in a right

line, then the polar of any point on that right line will be the

same for both curves
;
and therefore if any radius vector through

such a point meet both curves, we must have S
-prp

~^
~7T

&quot;

137. We know that the centre of a conic may be regarded

as the pole of the line at infinity with respect to the curve.

With respect to curves of higher order, however, every right

line has (n I)
2

poles (Art. 61), and there is therefore no

unique point for a curve of higher order answering to the centre

of a conic section. But it is different if we consider curves of

higher class. The preceding investigations are evidently appli

cable also to tangential coordinates
;
and thus every right line

has a pole, a polar curve of the second, third, &c. class, and,

finally, a polar curve of the (n l)
th

class, touched by the n

tangents at the points where the right line meets the curve.

And if we thus by tangential coordinates seek the pole of the

line at infinity we find a unique point.

Let us examine what metrical property is possessed by the

pole of a line expressed in tangential coordinates, and, in par

ticular, by the pole of the line at infinity. We take the system

of Art. 19, in which the coordinates of a line are proportional

to the perpendiculars let fall on it from three fixed points ;
and

then it may be seen, without difficulty, that I : m denotes the

ratio of the sines of the angles, into which the angle between

two lines a/ity, a /3y is divided by the line la -f ?#a
, 1/3 -t- m/3

f

,

ly _}. my. The equation then which answers to A = determines

the ratio of the sines of the parts into which the angle

between any two lines is divided by each of the tangents which

can be drawn through their intersection to a curve of the nih

class. And, as in Art. 133, the pole R of any line possesses the

property S
[
-i p p Xj

=
0, where P is a variable point on the

\sm -t*i-*- t//

given line; R^ R^ &c,, the points of contact of tangents from
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the point P, any fixed point on the given line. Thus for a

curve of the second class the relation is

sin EPE
}

sin EPE
9 _

sin E^PO
+

sin EfO
&quot;&quot;

that is to say,
&quot;

if from any point P, on a fixed line OP, we

draw tangents PE^ PE^ to a conic, and draw PE so that

{P. OE^EE^ shall be a harmonic pencil, then OR passes through

a fixed
point.&quot;

This is the fundamental definition of pole and

polar with regard to a conic considered as a curve of the second

class.

We may write the relation

where M^ is the foot of the perpendicular from E^ on the line

EP, and 0, the foot of the perpendicular from the same point

on the line OP. Now let the line OP go off to infinity, then

all the denominators in this latter sum tend to equality, and we

have simply 2 (MJR^ = ;
or the sum vanishes of the perpen

diculars let fall from the points of contact of any system of

parallel tangents on a parallel line through E. In other words

then, the centre of mean distances of the points of contact of any

system ofparallel tangents to a given curve is a fixed point, which

may le regarded as a centre of the curve. Thus in a conic the

middle point of the line joining the points of contact of parallel

tangents is a fixed point ;
in a curve of the third class, the

centre of gravity of the triangle formed by them, &c. This,

theorem is due to M. Chasles (Quetelet, VI. 8).

FOCI.

138. It was shown (Conies, p. 228) that the foci of conies

possess the property that the lines joining them to the circular

points at infinity touch the curve. Hence we are led to the

following definition of foci in general : A point F is said to

be a focus of a curve, if the lines FI, FJ both touch the curve,

or, as we may say, when it is the intersection of an /-tangent
with a /-tangent.* A curve of the nth class has in general n*

* This conception is Plucker s, Crdk, vol. x. p. 84.
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foci, namely the points of intersection of the n /-tangents with

the n /-tangents. But the curve being real, n and only n of

these foci are real
;
in fact the equation of one of the /-tangents

being A + iB=Q (where A and B are linear functions of the

coordinates), that of one of the /-tangents will be A iB= 0, and

these intersect in the real point ^4 = 0, B 0, and there is not on

either of these tangents any other real point. Thus a conic

(n
=

2) has 4 foci, two of them real.

In what precedes it is assumed that the points /, / have no

special position with respect to the curve. Let us now suppose

that the line // is an ordinary, or singular, tangent at one or

more points A, /?, &c., which for the present we suppose to be

distinct from the points /, /; say that // reckons g times

among the tangents from I or J to the curve; then the

/-tangents are made up of the line // counting g times, and

of n g other tangents; and similarly for the /-tangents.

Then the only foci which do not lie at infinity evidently consist

of the intersections of the n g /-tangents with the n g

J-tangents, and there are (n g)
2
finite foci, of which, as before,

only n g are real. The total number of nz
foci is made up of

these (n gY foci, together with the point / counting g(ng)
times (namely, as the intersection of each of the n g /-tangents

with each of the g /-tangents which coincide with //) ; similarly,

of the point / counting g (ng] times, and lastly of the g*

intersections of the g /-tangents coincident with // with the

g /-tangents coincident with //. In this last case any /-tangent

IA must be regarded as intersecting the corresponding /-tangent
JA at the point of contact A, but its intersection with any
other /tangent JB will be indeterminate. Thus, if the line at

infinity touch the curve in g real points, there will still be n

real foci, viz. n g finite foci, and the g points of contact of //

with the curve.* For instance, the parabola (n
=

2, # = 1) has

one finite focus, the other real focus being infinitely distant in

the direction of the axis.

Again, let the point / be on the curve
;
then assuming the

curve to be real, the point / is also on the curve, and if /

* Prof. Cayley thinks that the preferable view is that the only foci are the (n

foci, and consequently that the only real foci are the ( n - g) foci.
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be a singular point, J will have the same kind of singularity.

Confining our attention for the moment to the case .where both

are ordinary points, the n g /-tangents consist of the tangent
at /counted twice, together with n -cj 2 other tangents; and

similarly for the /-tangents. Then the (ng)* foci are made

up as follows : the real intersection of the tangents at / and /
counting as four

;
the n g - 2 imaginary intersections of the

tangent at / with the ng 2 J-tangents, each counting for

two; the ng2 imaginary intersections of the tangent at J
with the n #2 /-tangents, each counting for two; and lastly,

the (n g 2)
2
intersections of the two sets of n g 2 tangents.

Of these last, as before, ng 2 and only n-g 2 are real,

and the intersection of the tangents at / and / takes the place of

two of the n g real foci. Paying attention then only to real

foci, this point is commonly called a double focus; and we find

it convenient to use this language, though, as we have just seen,

if we considered imaginary as well as real foci, it ought to

be called a quadruple focus. Thus, in the case of the circle,

the only focus is the centre, which must be regarded as a

quadruple focus, if we consider that it takes the place of the four

foci which conies in general possess, but which may be spoken
of as a double focus if we only pay attention to the two real foci.

Similarly, if each of the points /, J is an /-tuple point on the

curve, it is seen in the same way that there are/
2

foci, which

each count for four and of which/ are real; 2f(ng 2f)

imaginary foci which each count as two, and (n g- 2/)
2

single

foci of which n- g- 2/ are real. Considering then both real

and imaginary foci, we should say that there are/*
2

quadruple,

2/(-#-2/) double, and (n-g-2f)
2

single foci; but con

sidering real foci only, we may say that there are f double,

n g 2/ single foci, and g foci at infinity.

If / and J be each of them an inflexion, or each a cusp, then

the tangent at / or J counts three times among the / or /-tan

gents ;
ard there are from each point n g 3 other tangents.

The (n (/Y f ci are tnen as before seen to be made up of one

which counts as nine, of (n g 3) -f (n g 3) which each

count as three, and (n g 3)
2

single foci. Of these last

n g 3 are real, and the only other real focus is the intersec

tion of the tangents at / and /, which is commonly called a

R



122 FOCI.

triple focus as counting for three among the real foci, though
if we took into account imaginary as well as real foci, it ought
to be regarded as a 9-tuple focus. There is no difficulty in

extending the theory to the cases where / and J are multiple

points of higher order at which several tangents coincide, or

where they are points at which the tangent has contact with the

curve of a higher order than the second, or where they are

ordinary or singular points having //for their common tangent.

139. Given any two real foci A, A of a curve, the lines

AIj AJ A lj A J, meet in two imaginary points Z?,
B which

are also foci of the curve; and the relation between the two

pairs of points is, that the lines AA, BB bisect each other at

right angles in a point 0, such that OA (= OA) is equal to

iOB(=iOB ). The points A, A and J5, B have been termed

&quot;anti-points.&quot;
The relation is one of frequent occurrence in

plane geometry; thus a conic has two pairs of foci, which

are anti-points of each other; any circle through A, A cuts

at right angles any circle through B, B ,
&c. It is to be added,

that being given the n real foci, we form with these \n (n I)

pairs, each giving rise to a pair of anti-points, and thus obtain

the remaining n* - n foci.

140. The coordinates of the foci of a curve are obtained by

forming the equation of the tangents which can be drawn from

the point / to the curve. This will be of the form P-\-iQ = Q,

the corresponding equation for the point J will be P iQ = 0,

and the intersection of the two systems of tangents are given by
the equations P=0, Q = 0. Thus denoting the first differential

coefficients with respect to x and y by U^ U
z ;

the second by
Z7

lt ,
Z7

12 ,
7
22 ,

&c.
; then, by Art. 78, the equation of the system

of tangents from 1,^,0 is got by forming the discriminant of

\nU+ X&quot;-

1

( Z7, 4 iU% ] + K~2

( &;, + 2i J7
ia
- UJ + &c. = 0. Thus,

if the curve be a conic, the discriminant is

and the foci are got by equating the real and imaginary parts

separately to zero. By combining these equations, we get the

equation of the two right lines, the axes, on which the foci

lie, viz.
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The very same equations determine the foci of a cubic passing

through the points /, &amp;lt;7;

of a quartic having these points for

double points, &c.
;
for in any of these cases it is easy to see that

all the terms but those written above vanish of the equation

whose discriminant is to be found.

141. We can also determine the foci, as at Conies, Art. 258,

Ex., by expressing the condition thatxx +i(yy }
should touch

the curve
; or, in other words, by substituting in the tangential

equation, 1, ,

-
(x + iy }

for a, /3, 7. The real and imaginary

parts of the equation then separately equated to zero determine

the coordinates of the foci. It is not difficult to find a real

geometric interpretation of each of these equations. Let the

condition that x x +p (y y }
should touch the curve be written

ap
n
+ bp

1&quot;1 + cp
n~* + &c. = 0,

where
, 6, &c. are functions of ce

, y ;
then by the theory of

o c

equations ,

-
,
&c. are the sum, sum of products in pairs,

&c. of the tangents of the angles, which the tangents to the

curve through x y make with the axis of x. If now we write

p = ij
and equate to zero the real and imaginary parts of the

equation, we get the two equations

a-c + e-&c. = 0, &-^+/-&c. = 0;

the second of which, by the well-known formula for the tangent
of the sum of several angles, expresses that the sum of the

angles made with the axis of x by the tangents through xy
is either zero or is some multiple of TT; and the first of

the equations expresses that the sum of the angles is some odd

multiple of \TT. Hence the locus of a point such that the sum

of the angles made with a fixed line by the tangents through it

to a curve of the ??

tn
class shall be given is a curve of the

n
tu

degree, whose equation, the fixed line being taken for axis

of X) is easily seen to be

(a
- c + e - &c.) tan 6 = b - d +/- &c.

Whatever be the fixed line or the angle, the locus will pass

through the foci of the curve. This may appear paradoxical,

since it follows hence, that the sum of the angles made with
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any line by the tangents from a focus may be equal to any

given quantity. The reason of this is that the tangents of two

of these angles are
?*,
and the tangent of their difference assumes

the form -
,
and may be any assignable quantity. In fact, if

tan&amp;lt;
=

/, cj) may be regarded as an infinite angle, since it pos
sesses the properties sin

&amp;lt;/&amp;gt;

= cos
(/&amp;gt;

= oo and tan ($ -f a)
= tan

(/&amp;gt;,

and the difference of two infinites is indeterminate.

We have seen (Art. 110) that a tangent through one of the

points /, J coincides with the normal
;
and hence every focus of

a curve is also a focus of its involutes and evolute.

142. An important property of the perpendiculars let fall

from the foci on any tangent is at once derived from the

equation expressed in that system of line-coordinates (Art. 19

and Conies, p. 364) in which the variables are the perpendi

culars let fall from three fixed points on any line. Let a, /3, 7, S,

&c. be the n foci : let coco denote the points /, J] then, since

the lines
a&&amp;gt;,

aeu
,
&c. are to be tangents to the curve, the

tangential equation must be of the form aj3yS &c. =
&&amp;gt;o/0,

where
&amp;lt;f&amp;gt;

is a function of the order n 2 in the line-coordinates.

For curves of the second class, this at once gives the property

that the product of the perpendiculars from the two foci on any

tangent is constant, since it was proved (Conies, p. 363) that

for coo) we may substitute a constant.

Similarly, replacing &amp;lt;oo&amp;gt; by a constant, the general equation

of curves of the third class is a{3y = k8, where a, /8, 7 denote the

three foci, and S a certain fourth point: viz., we may from

each focus draw to the curve (besides the two tangents through

/, J respectively) a single tangent; and the form of the

equation shows that the three tangents from the points a, /?, 7

respectively meet in a point 8.* We learn, then, that the

product of the three focal perpendiculars on any tangent to

a curve of the third class is in a constant ratio to the per

pendicular on the same tangent from the point 8. If the

curve pass through the points /, /, there is a double focus,

* The reciprocal theorem for curves of the third order cut by any two lines

is given post, Art. 148.
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and the equation takes the form a
2

/3
=

&S, the interpretation of

which is obvious. If a focus A is at infinity, we can see how
the formula is to be modified, by first using for the coordinate a

the perpendicular distance of A from any tangent divided by
AB\ and then, when A goes to infinity in the direction AB,
it is easy to see that a will be cos where 9 is the angle made

by AB with the direction of the perpendiculars on the tangent.
Thus the formula for a conic, a./3

=
A?, becomes in the case of

the parabola where A passes to infinity, /3cos# = &, showing
that the locus of the foot of the perpendicular from the focus @
in a tangent is a right line. In like manner for a curve of the

third class the formula a/37 = 8 becomes /3ycos6 = kS^ which

may be written /3y = &S
,

if we understand by & the intercept

made by the variable tangent on a line drawn through D
parallel to AB.

For curves of the fourth class the equation is a/3yS = Jc
2

(f)

where
&amp;lt;f&amp;gt;

is the conic section which, as the equation shows, is

touched by the eight focal tangents which do not pass through

7, J. But if the foci of this conic be
, ?, the equation may be

put into the form a./3y& tfz%+ Z
4

,
the geometrical interpreta

tion of which is obvious. This equation includes the form

aftyS = Z
4

or = a)
2 3

,
which represents a curve on which the

foci a, /?, 7, 8 are double foci
;

the form a
3

/3
=

a&amp;gt;

2
a&amp;gt;

2
in which

/, /are points of inflexion, &c.

And so in general the tangential equation of a curve of the

?2
th

class gives a relation of the first degree connecting the

product of the n focal perpendiculars, of n 2 other perpen

diculars, of n 4 other perpendiculars, &c., and so on until we
come either to a single perpendicular or a constant term.

143. From relations connecting the focal perpendiculars on

the tangent can be deduced relations connecting the angles

between the focal radii and the tangent. For if AP be the

perpendicular a on the tangent at any point R of the curve,

and if
d(j&amp;gt;

be the angle between two consecutive tangents,

we have da =
RPd&amp;lt;f&amp;gt;. Similarly d{3 = RP dfa &c. So that

if we differentiate the relation connecting the perpendi

culars, we may substitute for each da, EP the corresponding

intercept on the tangent between the foot of the focal per-
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pendicular and the point of contact. Thus from afly =
we deduce

da. d/3 dy d8 _
T H ~~&quot; &quot;

7&quot; 8
=

RP RP RP&quot; RP&quot;

whence
CP* DP

or cot 6 -f- cot& -t- cot 6&quot;
- cot &&quot; = 0,

where 9 is AR P, the angle of inclination of the tangent to the

focal radius vector AR^ &c.

144. The example of conies would lead us to expect to find

simple relations connecting the distances of any point on the

curve from the foci. There does not appear to be any general

theory of such relations, but we can without difficulty find

particular curves for which they exist, for we have only to

write down any relation connecting the distances of a variable

point from fixed points, and find the locus for which it is

satisfied. Each distance, if expressed in terms of the coor

dinates, involves a square root; arid if,
as will commonly

happen, the equation when cleared of radicals is of the form

up
2 =

wv*, the two imaginary lines denoted by p
a = are tan

gents to the carve, and the fixed point F is a focus. In

this way we might study the relations p -\ mp =
J, for which

the locus is an ellipse or hyperbola when m = l, a circle

when c? = 0, and in other cases a Cartesian: lp + mp -\-
np&quot;

=
for which the locus is in general a quartic having the points IJ

for double points, or, as we may say, a bicircular quartic ;
but

when lmn =
0, the curve is a cubic passing through the

points IJ9 or, as we may say, a circular cubic: pp =d ^^
for which

the locus is a Cassinian (see Art. 55, Ex. 3) ; or, more generally,

ap
z

-|- bpp + cp
z = d\ which is in general a quartic, but is a

cubic if a b + c = 0, that is to say, if the left-hand side of the

equation is divisible by p + /o ,
&c. We postpone the further

discussion of this subject until we come to treat of the curves

referred to.

From a relation connecting the focal distances we can infer

a relation connecting the angles which the focal radii make
with the tangent; for it is proved, as in Art. 95, that each

)
where 6 is the angle between the focal radius and



FOCI. 127

the tangent. Thus from p -f mp = d we infer cos 6+m cos =
0,

&c. From the value given in the last article for da., &c. we

may infer Eda. = pdp, &c., where R is the radius of curvature.

Thus, for example, if we are given that Za 4 m/3 + &c. is con

stant, we can infer that If + mp
2 + &c. is constant.

145. Denoting by JV the number of conditions (Art. 27)

necessary to determine a curve of the nih
order, then if we

are given that such a curve is circular, that is to say, that it

passes through the points /, J&quot;;
and if we are given N 3 other

points on the curve, the locus of the double focus (or inter

section of the tangents at /, &amp;lt;/)

is a circle. For since but one

curve of the nth order can be described to pass though N
points, if in addition to the above conditions we are given
a consecutive point at /, that is to say, if we are given FI
the tangent at /, the curve will be completely determined,
and therefore FJ the tangent at J is determined. The point
F is then the intersection of corresponding lines of two homo-

graphic pencils (Conies, Art. 331), that is to say, two pencils

such that to any line of one answers one and only one line of

the other. The locus of F is therefore a conic passing through
the vertices of the pencils /, J, that is to say, it is a circle.

This conic breaks up into the line IJ and another line, when to

the line IJ of one pencil answers the line JI of the other. This

will be the case in the present example when n 2, since IJ
cannot be a tangent to a conic passing through the points /, J,

unless the conic break up into two right lines, and the theorem

then is that for the circles which pass through two fixed points,

the locus of the centres is a line
;
but when n is greater than 2,

the locus will in general be a circle.

146. In like manner if we are given N 1 tangents to a

curve of the nih
class, the curve is completely determined if one

more tangent Fl be given. The reasoning of the last article

will apply, and the locus of the focus will be a circle, if the con

ditions are such that when the curve is determined, only one

tangent can be drawn to it from the point /. This will be the

case, if among the given conditions is,
that the line IJ is a

tangent of the multiplicity n 1, since then but one more tangent
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can be drawn to the curve from any point on that line. We
have seen, Art. 41, that to be given that a point is a multiple point
of the order &, is the same as if ^k(k+l) points were given

Similarly to be given that // is an (n l)-tuple tangent, is

equivalent to being given \n (n 1) tangents. Observing then

that N \n (n 1)
=

2w, we infer that if we are given 2n 1

tangents of a curve of the n
h

class, and also that the line at

infinity is an (n l)-tuple tangent, the locus of the focus (in

this case there being but one focus) is a circle. Thus being

given three tangents to a parabola, the locus of the focus

is a circle. Again, the locus of the focus is a circle if we
are given five tangents to a curve of the third class, among
whose tangents the line at infinity counts for two. A particular

curve of this system is the complex made up of the point at

infinity on any of the five tangents, and the parabola touching
the other four

;
the focus of the parabola being the focus of the

complex. Hence we have Miquel s theorem (Conies, Art. 268,

Note) that the foei of the five parabolas which touch any four

of five given lines lie on a circle.*

* This proof of Miquel s theorem is Mr. Clifford s, for whose other inferences from

the same principle, see Messenger of Mathematics, Yol, v., p. 137.
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CHAPTER V.

CURVES OF THE THIRD ORDER.

147. IT has been proved (Art. 42) that a curve of the third

order, or, as we shall for shortness call
it,

a cubic, may have one

double point, but cannot have any other multiple point. Hence

is suggested the fundamental division of cubics into non-singular ,

having no double point ; nodal, having a double point at which

the tangents are distinct, and cuspidal, having a double point

at which the tangents coincide. Pliicker s numbers (Art. 82)

for the three cases respectively are :

in 8 K n r i

300609
310403
301301.

It thus appears that the curves are of the sixth, fourth, and

third class respectively, or are such that six, four, or three

tangents respectively can be drawn to the curve from an

arbitrary point. If the point be on the curve, the tangent at

the point counts for two among these tangents (Art. 79), and

the number of tangents distinct from the tangent at the point

is four, two, or one. If the point be a point of inflexion, the

stationary tangent counts for three, and the number of other

tangents which can be drawn through the point of inflexion

is further reduced by one.

Nodal cubics may obviously be subdivided (Art. 38) into

crunodal and acnodal, according as the tangents at the double

point are real or imaginary. We shall hereafter see that there

is a parallel subdivision of non-singular cubics. But for the

present we postpone the further discussion of the classification

of cubics, as the reader will be able to follow it with more

intelligence when he has first been put in possession of some of

the general properties of these curves. We likewise postpone
s
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the discussion of the general equation and the examination

of its invariants, and we commence by applying to the case

of cubics theorems we have already obtained for curves of any

degree, beginning with the theorems on the intersection of

curves established in the first Section of Chapter II.

SECT. I. INTERSECTION OF A GIVEN CUBIC WITH OTHER CURVES.

148. It has been proved (Art. 29) that all cubics which pass

through eight fixed points on a given cubic also pass through

a ninth fixed point on the curve. This is a fundamental

theorem leading to the greater part of the properties of cubic

curves. In particular we infer that if two right lines whose

equations are ^1 = 0, 5 = 0, meet a cubic in points a, a
, a&quot;,

Z&amp;gt;,

Z&amp;gt;

,
~b&quot; respectively, and if the lines a&, &

,
a&quot;b&quot; (whose

equations we write Z&amp;gt;
=

0, .Z7=0, :F=0), meet the cubic in

points c,
c

, c&quot;,
then the line cc (G0) joining two of those

points will pass through the third. For the lines J9, j, F
make up a cubic passing through the nine points; the lines

A, J3, C make up a cubic passing through eight of these points,

therefore it will pass through the ninth
c&quot;,

and since this point

cannot lie on either of the lines A, B which already meet the

curve each in three points^ it must lie on C. Since the given cubic

passes through the intersection of the cubics ABC=Q, DFF=Oj
its equation must be capable of being written in the form

DEF-kABC=0.

149. Let us suppose that the lines A, B coincide, then we

deduce as a particular case of the preceding theorem, that if a

right line, -4 = 0, meet the curve in three points a, a
, a&quot;,

the

tangents at these points, Z&amp;gt;
=

0, i=0, 7^=0, meet the curve in

points c,
c

,
c&quot; respectively, which lie on a right line (7=0,

and the equation of the curve may in that case be written

DEF-kA*C=Q. The point c,
in which the tangent at any

point a meets the curve again is called the tangential of the point

a; and the line C on which lie the tangentials of the three

points a is called the satellite of the line A. We shall hereafter

show how when the equation of A is given, ax -t- /% + 72 = 0,

the equation of C can be formed. The line A will have a real

satellite, even though instead of meeting the curve in three real
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points it meets it in one real and two imaginary points. The

equations of the tangents at the imaginary points will be of the

form P iQ = Q- their product will be real
;
and the equation of

the curve can be written in the form D (P
2
-f Q*)

= kA*C.

Two cases of the theorem of this article deserve to be

noticed. First, let the line A be at infinity, then the tangents

Z&amp;gt;, Ej F at the points where it meets the curve are the three

asymptotes ;
each asymptote meets the curve in one finite point,

and we learn that these three points lie on a right line (7,

the satellite of the line at infinity. In this case the equation of

the curve is reducible to the form DEF=kC, and we have the

theorem that the product of the perpendiculars from any point

of the curve on the three asymptotes is in a constant ratio

to the perpendicular from the same point on the line C.

Secondly, let the points a, a be points of inflexion; then

evidently the tangentials of these points coincide with the

points themselves
;

the satellite line C therefore coincides with

-4, and consequently the third point a&quot; in which it meets the

curve is also a point of inflexion (see Art. 125, Ex. 3). The equa
tion of the curve is thus reducible to the form DEF= JcA

3

,
where

A = is the equation of the line through the three inflexions,

and D =
0, E=Q, F=0 are the equations of the tangents at

these three points respectively.

150. The theorem of Art. 149 may be otherwise stated,

starting with the line C instead of with A
;

viz. given three

collinear points c, c
,

c&quot; of a cubic, the line joining a the point

of contact of any of the tangents from c, to a the point of

contact of any of the tangents from c will pass through the

point of contact of one of the tangents from c&quot;. Only one

tangent can be drawn at a point of a curve, and therefore to

any position of A corresponds but one position of (7; but in

the case of a non-singular cubic four tangents can be drawn

from any point on the curve, and therefore to any position of

G correspond sixteen positions of A. The twelve points of

contact lie on the sixteen lines A, viz. each line A contains

three points of contact, and through each point of contact there

pass four lines A.

Let us consider more particularly the case where C touches



132 INTERSECTION OF A GIVEN CUBIC

the curve, and let us suppose the points c, c to coincide.

Then we see that the line joining a&quot;,
one of the points of

contact of tangents drawn from
c&quot;,

to a, one of the points

of contact of tangents from c, must pass through one of the

other points of contact from c, say o
a
. In like manner, the line

joining a^ as passes through #
4

. We have then the following

theorem : The four points a^a^a^ which are the points of

contact of tangentsfrom any point c of the curve are the vertices

of a quadrangle, the three centres of winch are also points on

the curve, and are such that the tangents at these points and

the tangent at c all meet the curve in the same point.

151. Keturning to the case where C does not touch the

curve, we have the tangents from c touching at the points

,, 2 , 3 , 4,
and the tangents from c touching at the points

ttj , 2 , 3 , 4
. Attending only to two points, say o

]? 2
of the

first tetrad, it appears that separating the points of the second

tetrad into pairs in a definite manner, say these are a, , 2
and

3 , 4 ,
then combining the pair a

t ,
a

2 first with the pair /, 2 ,

the lines a/*/, &
2
#

2
meet in a point on the curve, and also the

lines !/, a
2
a

t
meet in a point on the curve

;
and secondly with

the pair 3 4 ,
the lines

t
a

3 , 2 4
meet in a point on the curve,

and also the lines ,/, a
9a^ meet in a point on the curve : viz.

the four new points are the points of contact of the tangents

from c&quot; to the curve. Any two points such that the tangents

at these points respectively meet on the curve may be said to be
&quot;

corresponding points ;&quot;

thus any two of the points a
t , 2 ,

#
3 ,
a
4

are corresponding points ;
and so any two of the points a/, 2 ;

a
3 , 4

are corresponding points. But starting with the two

points a
l7
o

2 ,
the points a/, 2 (as also the points a

8 , oj may be

said to be corresponding points of the same kind with a
1? 2

: viz.

the property is that, given two pairs of the same kind, if w
form a quadrilateral by joining each point of the one pair with

each point of the other pair, the two new vertices of the quadri

lateral are points on the curv&amp;lt;e (they are in fact corresponding

points of the same kind with the original two pairs). It is

obvious that there are three kinds of corresponding points,

viz. those of the kind a
t
a.2

or
3 4 ,

the kind a^az
or a,2 4 ,

and the kind ct
}

a
4

or
&amp;lt;y*s

. And, moreover, starting with the
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pair a^a^ to obtain the whole system of corresponding points of

the same kind, we have only to take on the curve a variable

point jfif,
and joining it with the two points a,, 2 respectively,

these lines again meet the curve in a pair of corresponding

points of the kind a^. It may be mentioned that the envelope

of the line joining two corresponding points of a given kind is

a curve of the third class. The theory is, for the most part,

due to Maclaurin (see the &quot; De Linearum Geometricarum Pro-

prietatibus Generalibus Tractatus,&quot; published with the 5th edition

of his Algebra), and it may appropriately be called Maclaurin s

Theory of corresponding points on a cubic curve.

152. In further consideration of the case where C does not

touch the curve, let D^ E^ F^ be tangents through the points

c, c
,

c&quot; respectively, and we have seen that the equation of the

curve may be written in the form D
1
E

1
F

1
-A*C= 0. Let Z&amp;gt;

2 ,
E

z

be another pair of tangents through c, c
,

such that their

chord of contact passes through the point of contact of F^
and fhe equation of the curve may also be written in the

form D^E2
F

1
A

2

Z C=0. Hence we can deduce an identity

(D1
E

1-D^)F1

= (A 1

2 -A
2

2

)C. The right-hand side of the

equation denotes three right lines, therefore the left-hand side

must denote the same three lines. One of the factors therefore

of D^^ D^E12

must be
&amp;lt;?,

which passes through the points

D&amp;gt;rt E^. The other factor which joins the points D^
D^ must be A

t

A
z ,
F

t being A t

+A
2

. We see, then, that

the latter two lines and the two chords A^ A
2
form a harmonic

pencil, whose vertex is the point of contact of F
lt
We shall

afterwards apply this theorem to the case where the points c, c

are the imaginary points at infinity /, &amp;lt;7;

the points D^E^ D^E^
are then foci, and F

t
is a tangent parallel to the single real

asymptote of the curve.

If the points c, c coincide, the line joining c to the point
of contact of F^ Fl itself, and the two chords A^ A^ form a

harmonic pencil.

153. Hence can be deduced another theorem of Maclaurin s.

Any line drawn through a point A on a cubic is cut harmonically
in the two points /3, 7, where it meets the cubic again, and the
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two points S, 5
,
where it meets a pair of chords joining the

points of contact of tangents from A. Let the line meet the

tangent G in the point e, then, since it meets A
t
and B

l
at -4,

by Art. 136,

1 1 1 2 1

_! JL JL 1
$

+
87

~
84

+
Be

But, by the last Article, 8S is a harmonic mean between BA
and Se, therefore also between 8/3 and 87. Q. E. D.

When the curve has a double point, only two tangents can

be drawn to the curve; but the theorem of this Article will be

still true, if for the chord D we substitute the line joining the

double point to the point where the chord D meets the curve

again.

154. We add one more application of the theorem, that

all cubics which pass through eight fixed points on a cubic

pass also through a ninth fixed point. If any conic be described

through four fixed points on a cubic, the chord joining the two

remaining intersections of the conic with the cubic will pass

through a fixed point on the cubic. Consider any conic through

the four points (a) and meeting the curve in two other points

(/3), and a second conic through the points (a) and two other

points ( ),
then the conic through a, /3 and the right line

joining the two points /3 make up a cubic system through the

eight points a, /3, /3 ;
the conic through a, ft and the right

line joining ft make up a second system through the same

eight points ;
hence the ninth point of intersection with the

curve must be common to both systems; that is to say, the

lines joining the points /3, /3 meet the curve in the same point/

Q.E.D. This point was in the first edition called the opposite

of the system of four given points ;
but now, in conformity

with the nomenclature of Prof. Sylvester s remarkable theory

of residuation, which will be presently explained, is called the

coresidual of the system of four points. This point is easily

constructed by taking for the conic through the four points

a pair of lines. Let the line joining the points 1, 2 and

the line joining the points 3, 4 meet the cubic in points o and 6
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respectively, then the line joining 5, 6 meets the curve in the

coresidual required. And since the grouping of the four points

is arbitrary, the construction can, it is clear, be performed in

three different ways.

Hence, for example, we infer that through four points on

a cubic four conies can be drawn to touch the curve elsewhere,

viz. the conies passing through the points of contact of the four

tangents which can be drawn from the coresidual.

155. Let us apply the rule just given to construct the point

coresidual to four consecutive points on the curve. The line

joining the points 1,
2 is then a tangent, and the point 5 in

which it meets the curve is the tangential of the point 1
;

similarly, the line 34 meets the curve in a point 6, which is

consecutive to the point 5
;

it follows that the coresidual re

quired is the point where the tangent at the tangential point 5

meets the curve again ;
that is to say, it is the tangential of

the tangential, or, as we shall say, the second tangential.

If then, for example, it be required to draw a conic passing

through the four consecutive points, or, as we may say, having
a four-point contact with the curve, and elsewhere touching
the curve, the point of contact

is,
as we have seen, a point

of contact of tangents from the second tangential to the curve.

One of these is the tangential of the point (1), and the corre

sponding conic degenerates into two right lines
;
the remaining

three give solutions of the problem.

Again, if it be required to describe a conic passing through
five consecutive points of the curve (or having a five-point

contact with the curve), this is done by constructing the sixth

point in which the conic meets the cubic, viz. this is the point

where the line joining the point (1) to its second tangential

meets the curve again. In order that this point should coincide

with the point (1) it is necessaiy that the line last named should

touch the curve at (1) ; or, what is the same thing, it is

necessary that the first and second tangential should coincide.

Now a point which coincides with its tangential is a point of

inflexion
; hence, on a non-singular cubic there are twenty-seven

points at each of ivhich a conic can be drawn^ having a six-

point contact with the curve / viz. these are the points of contact
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of the three tangents which can be drawn from the nine points of

inflexion.

156. The theorem (Art. 29) as to the intersection of two

cubics was generalized in Art. 33. The theorem there given

is applied to the case of the cubic by writing p 3, and it then

becomes every curve of the nih
degree which passes through 3n 1

fixed points on a cubic passes through one other fixed point on

the cubic. It is to be observed, that for n = 1, or n = 2, one and

only one curve of the nth
degree can be described passing

through 3n 1 points on a cubic, and the theorem asserts

nothing; when n is greater than 2, more than one such

curve can be described, and the curves all pass through one

other fixed point on the curve, as has been just stated. And,
as was explained in Art. 33, if it were attempted to describe a

curve of the nih order through 3n points taken arbitrarily on

a cubic, n being greater than 2, the curve so described would

in general not be a proper curve, but would be a complex

consisting of the cubic itself, and a curve of the order n- 3.

157. If of the 3 (m -f n) intersections of a curve of the (m 4- w)
th

order with a cubic, 3m lie on a curve of the mth order Um,
the

remaining 3n lie on a curve of the nth order. For, as has been

just remarked, through 3n - 1 of these 3n points, a curve of

the nih order Un can always be described; and this, together

with Um makes up a system of the order m + n which (Art. 156)

passes through the remaining point, and since this point cannot

lie on Um )
which already meets the cubic in 3m points, it must

lie on Un
.

158. We shall now explain the nomenclature introduced by
Prof. Sylvester, and in conformity with it re-state and extend

some of the preceding propositions. If two systems of points

a, /3, together make up the complete intersection with the cubic

of a curve of any order, one of these systems is said to be

the residual of the other. Since the total number of intersec

tions of a cubic with any curve must be a multiple of three,

it is evident that if the number of points in the system a be

of the form 3j?+ 1, that in the system ft must be of the form

3q 1, and vice versa. We may call these positive and negative
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systems respectively, and say that the residual of a positive

system is a negative system, and vice versa. The simplest

positive system consists of a single point, answering to p = ;

the simplest negative system of a pair of points, answering to

2 = 1. In this case, evidently the one is the residual of the

other when the three points are on a right line. Since through
a given system of points a, an infinity of curves of different

orders may be described, it is evident that a given system of

points a has an infinity of residuals $, /? , $&quot;,
&c. Two

systems of points /3, ft are said to be coresidual if both are

residuals of the same system a. For example, in Art. 154

through four points a on a cubic we supposed conies to be

described meeting the curve again in pairs of points /3, /3 ,
&c.

;

then any one of these pairs is a residual of a, and any two of

them are coresidual. Again, if the line joining the pair ft

meet the curve again in a point a
,

this point, as well as the

four original points, is a residual of the group ft,
and this point

a is therefore, as we already called
it,

coresidual with the four

points a. It is obvious that two coresidual systems of points

must either be both positive or both negative.

The theorem of Art. 156 may be stated thus: two points

which are coresidual must coincide. In fact, we there saw that

if through 3p
- 1 points a we describe a curve U^ meeting the

cubic in the residual point /S, and if through the same points

a we describe a second curve of the p
tn

order meeting the

cubic again in a point ft ,
the coresidual points ft, ft

1

arrived

at by the two processes, are one and the same point.

159. If two systems ft, ft be coresidual, any system OL which

is a residual of one will be a residual of the other. Say that

through any system a two curves U^ U
g
are described meeting

the cubic again in systems ft, ft ,
then these two systems are

by definition coresidual; and what is now asserted is that if

through ft be drawn any curve U
r meeting the cubic again in

a system of points a
,
then the points ft and a also make up

the complete intersection of a curve with the cubic. For since

the systems a and ft together make up the intersection of a

curve U
p ,

with the cubic, and a and ft make up its intersection

with a curve Z7
r ,

the four together make up the intersection

T
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with the cubic of a curve whose order is p -f r : but the systems

a and ft together make up the intersection with the curve U
q

of the order q, therefore (Art. 157) the systems a! and ft together

make up the complete intersection of the cubic with a curve

whose order is^? + r q.

Hence also two systems which are coresidual to the same are

coresidual to each other. If ft and ft are coresidual as having

a common residual a, and if ft and
ft&quot;

have a common residual

a
,
then by what has been just proved a is a residual also of

/3&quot;,
and a! of ft: that is,

if
, ft&quot;

are each of them coresidual

with ft ,
then ft, ft&quot;

are coresidual with each other, for a, a are

each of them a common residual of /3, &&quot;.

160. We can now give for the theorem of Art. 154 a proof

which will at once suggest Prof. Sylvester s generalization of

that theorem. The conic through four points a on a cubic

meets the curve in two points ft,
which are a residual of the

system a. The line through the two points ft meets the curve

in a point a which is residual to ft, and therefore coresidual

to a. If the same process were repeated with a different conic

we should arrive at a point a&quot;,
also coresidual to the system

a, and therefore to the point a
;
and the two points a

,
a&quot; being

coresidual must coincide (Art. 158).

Now, in the first place, it is evident that the same proof
would hold good, if instead of four points we started with any

positive system of 3/? + 1 points P. A curve through them of

order p + 1 meets the cubic again in two other points, and the

line joining these meets the curve in a point coresidual to P,

and which is the same point whatever be the curve of order ^H- 1.

But, in the second place, instead of proceeding from the group
P to the coresidual point by two stages, we might employ any
even number of stages. Thus through the 3p + 1 points P de

scribe a curve 27
/)+r ,

and the residual is the negative system N
of 3?- - 1 points. Through N describe a curve U

r+t ,
and we get

a residual P of 35 -f 1 points. In like manner, from P we

can derive a residual of 3^ 1 points, and so on. And at

this or any subsequent stage where we have a negative

system of 3t 1 points, by describing through them a curve

U
t
we can obtain a residual of a single point. Prof. Sylvester s
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theorem is, that this point is in all cases the same, no matter

what the process of residuation by which it is arrived at.

In fact, the system N is a residual of P; P is a residual

of N, and is coresidual of P; N is a residual of P
,
coresidual

therefore with JV, and therefore residual also to P, and so on.

Any positive system in the series is residual to every negative

system, and coresidual to every positive system. The point

therefore at which we ultimately arrive, is coresidual to the

original positive system, and must be identical with the point

coresidual of the same system obtained by any other process.

For example, if through four points we describe a cubic meeting
the curve in five other points ; through these five another cubic

giving a residual of four other points, through these four a

quartic giving a residual of eight points j finally, through these

eight a cubic meeting the curve in one other point, this point is

the same as that obtained from the original four by the process

of Art. 154. And similarly, starting with any negative system
of 3^-1 pointa N, we may after any odd number of stages

arrive at a single point, which will be the residual of the original

system, and as such, independent of the particular process of

residuation.

161. The principles just established, enable us to find by
linear constructions, the point residual or coresidual to a given

negative or positive system. For example, if it were required

to find the point residual to eight given points, join them any

way in pairs, and the joining lines form a quartic system meet

ing the curve in four new points residual to the given eight :

join these again in pairs, and we obtain a system of two pointa

coresidual to the given eight ;
the point where the line joining

these meets the curve is the residual point required. Or,

again, we may replace any four of the given points by their

coresidual point, constructed as in Art. 154, and the problem
is reduced to finding the residual of a system of five points ;

and similarly, replacing any four of these by their coresidual,

reduce the problem to finding the residual of a system of two.

It is in any of these ways easily seen, that the residual of a

system of eight consecutive points at a given point of the cubic

is the third tangential of the given point.
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In this method of finding by linear construction the ninth

point common to all cubics which pass through eight given

points, it is assumed that one cubic through the eight points

is given; and thus the question is not the same as that of

finding the ninth point when only the eight points are given.

Dr. Hart has shown, that in the latter question the ninth point

can also be found by linear construction, though by a more

difficult process.*

162. We conclude this section with a few remarks as to

systems of cubics having several points common. If we are given

eight points on a cubic, or eight linear relations between the

coefficients in the general equation, we can eliminate all the

coefficients but one, so as to bring the equation to the form

Z7-t-&F=0. Similarly, if we are given seven points, or seven

linear relations, the general form of the equation can be reduced

to U+kV+lW=0, 17, V, W being three cubics fulfilling the

seven given conditions, and the two constants &, I still at our

disposal, enabling us to fulfil any two other conditions. And so

again if we are given six points, the general form of the equa
tion is U+kV+lW+mS=0. We may take for

C7, V, &c.

systems of three lines passing each through two of the given

points. Thus, the six points being a, , c, d, e,f, and ab=Q

denoting the equation of the line joining a, ,
one form of the

equation of the required cubic is

db.cd.ef-\- k.ac.be.df+ Lad.bf.ce-t m.ae.bd.cf=Q.

Since this equation contains three indeterminates, every other

cubic through the six points (for example, af.bc.de) must be

capable of being expressed in the above form, and the pre

ceding equation would gain no generality if we were to add to

it a term n. af.bc.de, since this itself must be the sum of the

preceding four terms multiplied each by some factor.

In precisely the same manner as (Conies, Art. 259) we derived

the anharmonic property of the points of a conic from the equa
tion ab.cd = k.ac.bd, we can derive from the equation just

written the following, which is the extension of the anharmonic

theorem to curves of the third degree :
&quot; If six given points on

*
Cambridge and Dublin Mathematical Journal, vol. vi. p. 181.



WITH OTHER CURVES. 141

such a curve be joined to any seventh, and if any transversal

meet this pencil in points a, b, c, d, e, f] then the relation holds

ab.cd.ef+k.ac.be.df+ Lad.~bf.ce-i m.ae.bd.cf=Q,

where &, 7,
m are constants, whose value is the same for each

particular curve through the six
points.&quot;

The reader can easily

conceive the number of particular theorems which may be

derived from this (as in Comes, Art. 326), by examining the

cases where some of the points are at an infinite distance.

163. We saw (Art. 41) that to be given a double point was

equivalent to three conditions. If then we have a double point

and five other points, one more condition will determine the

curve, which may, therefore, be expressed by an equation of

the form S kS =
Q, where $, S are two particular curves of

the system. We may write it in the form

(oabcd) oe Jc (oabce) od = 0,

where (oabcd} denotes the conic through the double point o and

the four points abed.

In like manner we may write the equation of the cubic

through the double point and four other points

oa.ob.cd + ~k.ob.oc. ad + l.oc.oa.bd = b]

and, as in the last Article, the same relation holds between the

intercepts on any transversal by the line joining these points to

any point of the curve.

164. By the help of the same method (Conies, Art. 259) of

expressing the anharmonic ratio of a pencil in terms of the perpen
diculars let fall from its vertex on the sides of any quadrilateral

whose vertices lie each on a leg of the pencil, we can find the

locus of the common vertex of two pencils, whose anharmonic

ratio is the same, and whose legs pass through fixed points,

two of the fixed points being common to both pencils. For if

ab=0 denote the equation of the line joining the points ab, we

get an equation of the form

ao .bp co. dp

ab.po cd.op*

or ao .bp .cd = ab.co. dp.
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When o
: p are the two circular points at infinity, this gives us

( Conies, Art. 358) the locus of the common vertex of two triangles

whose bases are given and vertical angles are equal, and we
see that it is a curve of the third degree passing through those

circular points.

If the difference of the vertical angles were given, this would

be equivalent (Conies, Art. 358) to the ratio of two anharmonic

functions, and we should be led to an equation of the form

ao.lp , co. dp
L
- ~

J 1

ap .00 cp.ao
1

which represents a curve of the fourth degree, having the two

circular points for double points.

SECT. II. POLES AND POLARS.

165. We next recapitulate and apply to the cubic the

theorems about poles and polars which we have already

obtained. Every point (# , y, z] has, with respect to a cubic,

a polar line and a polar conic, whose equations respectively are

dU dU dU ,dU ,dU ,dU
x , r + y , , + z -T ,

=
0, x -j~ + y -j~ + z -, = 0.

djc
*
dy dz dx dy dz

The equation of the polar conic may also be arranged according

to the powers of
ic, ?/, z, and will then be

dx* + I y* + c z
2 + Zfyz + Vg zx + 2h xy = 0,

where a
,

&amp;gt;

,
&c. represent the second differential coefficients

written with the accented letters.

The polar conic is the locus of the poles of all right lines

which can be drawn through (),
and thus every right line has,

with respect to a non-singular cubic, four poles, namely the

intersections of the polar conies of any two points on the line.

The polar conic passes through the points of contact of the six

tangents which can in general be drawn from 0. In the case

of a nodal cubic, the polar conic passes through the double

point and meets the curve elsewhere only in four points ;
and

every line has but three poles ;
since the two polar conies (each

passing through the double point) intersect in only three other

points. In the case of a cuspidal cubic, the polar conic passes

through the cusp, touches the cuspidal tangent and meets the
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curve elsewhere only in three points; and every line has but

two poles. If the cubic break up into a conic and a right line,

the polar conic of a point passes through their intersections,

and every line has but two poles. The polar conic also passes

through the intersection of the conic with the polar of with

respect to it
;

for it is easily seen that if we perform on LS,

the operation A or x
^~ -f y % -f z -r i

the result is I/S+ L&S.

If the cubic reduce to three right lines, 2*7/2
=

0, every polar

conic passes through the vertices of the triangle formed by

them, and every right line has but one pole. In this case the

equations of the polar line and polar conic are respectively

xyz + yz x -f zxy 0, xyz 4- y zx + z ocy
=

0,

x y z xyz
or _ + -^ + _ =

0,
_ + + - = 0.xyz 1 x y z

The equation just given affords at once a geometrical con

struction for the polar line,

since it appears from Conies^

Art. 60, that if the point in I.

the figure be x y z
,
the line

LMN will be that whose

equation has been just

written. The tangent to

thepolarconic at any vertex N A F B
/y /)t

xu is (Conies* Art. 127) , + ,
= 0, and is therefore constructed

& y

by joining the vertex xy to the point where the polar line meets

the opposite side z.

166. If any line through meet the cubic in points A, B, 0^

the point P in which it meets the polar line is determined, since

(Art. 132) we have ~=-^ ~ + ~ If

through meet the cubic in points A, B , C\ the point F in

which the polar meets this line is also determined, and therefore

the polar line itself, which must be the same for all cubics pass

ing through the six points A, B, C, A, B ,
C . Thus then we

can by the ruler alone construct the polar line of with respect

to the cubic
;

for we have only to draw two radii through 0,
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and construct, by Art. 165, the polar of with respect to the

triangle formed by AA ,
BB

,
CO .

The metrical relations, given Art. 134, shew also that when

the points A, B, C are given the two points in which the line

OA meets the polar conic are likewise given. We see then,

as before, that if we draw three radii through the origin meet

ing the curve in A, B, 0, A , B, C
, A&quot;, B&quot;, C&quot;,

the polar

conic of is the same with regard to all cubics passing through
these nine points. The points A, A

,
A&quot; may be taken as

the points in which any transversal meets the curve, and the

problem of constructing the polar conic of with respect to

a cubic may be reduced to constructing it with regard to the

system made up of the line AAA 1

,
and the conic through the

six remaining points.

We consider now in more detail the cases (1) where is a

point on the curve, (2) where it is a point on the Hessian.

167. If from two consecutive points 0, of the curve we

draw the two sets of tangents OA, OB, 00, OD- O A, OB,
C, O D, any tangent OA intersects the consecutive tangent

O A in its point of contact. Now the four points of contact

A, B, C, D lie on the polar conic of 0, which also touches the

cubic at the point (Art. 64) ;
hence the six points OOABCD

lie on the same conic, and therefore the anharmonic ratio of

the pencil [O.ABCD] is the same as that of the pencil

{O .ABCD}. Since then this ratio remains the same when we

pass from one point of the curve to the consecutive one, we lean!

that the anharmonic ratio is constant of the pencil formed by the

four tangents which can be drawnfrom any point of the curve.

We shall afterwards give an algebraical proof of this

theorem, by shewing that the anharmonic ratio of four lines

given by a homogeneous biquadratic in x and y, can be ex

pressed in terms of the ratio of the invariants S 3 and T* of the

biquadratic, and that when the four lines are tangents drawn

from a point on a cubic, this absolute invariant of the pencil can

be expressed in terms of an absolute invariant of the cubic, so

as to be the same, no matter where the point be taken. This

invariant is a numerical characteristic of the cubic unaltered by

projection or any other linear transformation. It was shown
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(Higher Algebra, Art. 213) that by the value of this invariant of

a biquadratic, we can discriminate those whose roots are two

real and two imaginary, from those whose roots are either

all real or all imaginary. Consequently, if from any point of a

cubic the four tangents which can be drawn to the curve are

two real and two imaginary, the same will be the case from

every point of the curve
; and, in like manner, if the tangents

from any point are either all real or all imaginary, the tangents

from every point are either all real or all imaginary. On this

is founded a fundamental division of non-singular cubics into

two classes, those to which from each of their points can be drawn

two and only two real tangents, and those to which the tangents

may be either all real or all imaginary. This remark will

be further developed in the section on the classification of cubics,

and it will there be shewn that, in the second case the cubic

consists of two distinct portions, from every point on one of

which portions the tangents are all real, and on the other

portion are all imaginary.

168. It follows, from Art. 167, that, if 0, Pbe any two pom s

of the curve, through these points can be drawn a conic passing

through the four points where each of the tangents from the

first point meets the corresponding tangent from the second.

The anharraonic ratio of four points abed is unaltered by writing

them in the order bade or cdab or dcba
; hence, by taking the

legs of the second pencil successively in each of these four

orders, we see that the sixteen points of intersection of the

first set of tangents with the second, lie on four conies, each

passing through the points OP.

Let the cubic be circular, that is to say, let it pass through
the imaginary points /, J at infinity ;

then by taking these

for the points 0, P we see that the sixteen foci of a circular

cubic lie on four circles, four on each circle.*

169. When is a point on the curve, every chord through it

is cut harmonically by the curve and by the polar conic of 0.

* This theorem was first otherwise obtained by Dr. Hart, and thence was

suggested to me the theorem of Art. 167.

U
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We saw (Art. 78) that the intersections with the curve of the line

joining any two points are determined by the equation

X3V + XVA + \u
2A + ^U= 0.

When xyz is on the curve, U =
0, and the preceding equation

becomes divisible by /z,
and if further, the points xyz, xyz are

connected by the relation A =
0, the remaining quadratic is of

the form X.
2 A -f y? 17= 0, the roots of which being equal and

opposite, we see, as at Conies, Art. 91, that the line joining the

two points is cut harmonically by the curve. The same thing

may also be proved by taking the point for the origin, and

finding the locus of harmonic means of all radii vectores through
0. We proceed exactly as in Art. 132, making first ^4=0,
and we find immediately

which is the equation of the polar conic of the origin.

It is proved (as in Art. 136) that the tangent to the polar

conic at the point where any chord meets it passes through
the intersection of the tangents to the cubic at the points where

it is met by the same chord, and is the harmonic conjugate to

the line joining their intersection to the point 0.

170. Let us now consider more particularly the case where

is a point of inflexion. It was shewn (Art. 74) that the

polar conic of a point of inflexion breaks up into two right

lines, one of them being the tangent at the point. And the

same thing would appear from the equation of the polar conic

of the origin just given. For, in order that the origin should

be a point of inflexion and the axis of y the tangent at
it, we

must have (see Art. 46) ^4 = 0, J5 = 0, D =
0, when the equation

of the polar conic (Art. 169) reduces to

The factor y is evidently irrelevant to the problem of the locus

of harmonic means
;
we learn therefore that if radii vectores be

drawn through a point of inflexion, the locus of harmonic means

will be a right line.* And, conversely, if the locus of harmonic

* This theorem is Maclaurin s
;
De Linearum Geometricarum Proprietatibus

Genernltbvt, Sec. HI. Prop. 9.
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means be a right line, the point is a point of inflexion. For,

Art. 74, the only other case in which the polar conic can break

up into two right lines is when is a double point, and that

case does not apply to the present problem, since a line

through the double point must meet the curve only in one

other point.

We shall call the line just found the harmonic polar of the

point Oj to distinguish it from the ordinary polar line which

is the tangent at 0.

171. The point possesses, with regard to the harmonic

polar, properties precisely analogous to those of poles and polars

in the conic sections. Thus if two lines be drawn through 0,
and their extremities be joined directly and transversely, the

joining lines must intersect on the harmonic polar. This is an

immediate consequence of the harmonic properties of a quad
rilateral.

Hence again, as a particular case of the last, tangents at the

extremities of any radius vector through must meet on the

harmonic polar.

The harmonic polar must pass through the points of contact

of tangents which can be drawn through 0, for, since OE RR&quot;

is cut harmonically, if E 1

coincide with
R&quot;,

it must coincide

with R. Hence through a point of inflexion but three tan

gents can be drawn, and their points of contact lie on a

right line.

If the curve have a double point, it is proved, in precisely

the same way, that it must lie on the harmonic polar.

The first theorem of this Article may be otherwise stated

thus: if three points A B C lie on a right line, and the lines

joining to them meet the curve again in A B&quot;G \ these wilt

also lie on a right line, and the two lines will meet the harmonic

polar in the same point. If now we suppose A,B ,C to coincide,

we arrive again at the theorems that the line joining two points

of inflexion must pass through a third, and that the tangents at

any two meet on the harmonic polar of the remaining one.

172. If through any point of inflexion there be drawn

three right lines meeting the curve in A^ A
t \ B^ B^ (7

1?
&amp;lt;7

2 ,
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then every curve of the third degree through the seven points

QAyApJ&JQfli will have for a point of inflexion. For let

the three lines meet the harmonic polar in A, B, (7,
then these

points are also common to the loci of harmonic means of the

point Oj with regard to all curves through the seven points.

This locus, then, which would in general be a conic, must,
since these three points of it are in a right line, be for all these

curves this same right line
;
and therefore (Art. 170) the point

must be a point of inflexion.

173. We have seen (Art. 74) that the points of inflexion of a

curve of the third degree are the intersections of the curve U
with the curve H, which is also a curve of the third degree.

Every curve of the third degree has therefore, in general, nine

points of inflexion, only three of which, however, are real (see

Art. 125, Ex. 3). Since, also, we have proved that the line

joining two points of inflexion must pass through a third,

through each point of inflexion can be drawn four lines, which

will contain the other eight points. It follows then, as a par
ticular case of the last Article, that any curve of the third degree,

described through the nine points of inflexion, will have these

points for points of inflexion*

174. Of the lines which each contain three points of inflexion,

since four pass through each point of inflexion, there must be in

all (4x9) = 12.t

If we attempt to form a scheme of these lines, it will be found

that it can only differ in notation from the following :

123, 456, 789; 147, 258, 369 #
159, 267, 348; 168, 249, 357.

Hence it will follow that any cubic passing through any seven

* This theorem is due to Hesse, who showed that if U be a cubic, U its

Hessian, a U + bH = the equation of any cubic through their intersections, then

the equation of its Hessian is of the same form. The method of proof here

adopted is Dr. Hart s.

f It is easy to see that we may have nine real points lying by threes in ten

lines, but not in a greater number of lines : thus the nine points of inflexion cannot

be all real, which agrees with the remark, Art. 178.

J Clebsch has remarked that if we arrange the nine elements 1, 2, 3 the systems

4, 5, 6

7, 8, 9

of lines are the three rows, the three columns, those forming positive, and those

forming negative, elements of the determinants..
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of the points of inflexion will have one of these for a point of

inflexion; for, take any seven (say the first seven), and it will

appear from the above table that they lie on three right lines

(147, 267, 357), intersecting in a common point on the curve,

and therefore, by Art. 172, that common point (7) is a

point of inflexion on them all.

From the manner in which these lines have been written, it

appears that they may be divided into four sets of three lines,

each set passing through all the nine points ;
or that, if we form

the equation U+ \H 0, there are four values of X, for which

the equation reduces itself to a system of three right lines.

For a direct proof of this, see the last section of this Chapter.

175. Let us now consider the case (2) where x y z is on the

Hessian^ and where its polar conic therefore breaks up into two

right lines. It was proved in general (Art. 70) that if the first

polar of any point A has a double point B, the polar conic of B
has a double point A. But in the case of cubics, the first polar
is the polar conic, and this theorem becomes, If the polar conic

of A breaks up into two lines intersecting in B, the polar conic of
B breaks up into two right lines intersecting in A. In fact, if the

polar conic of x y z breaks up into two right lines, the coor

dinates of their intersection xyz satisfy the three equations

got by differentiating the equation of the polar conic. But

(Art. 165) this last equation may be written in either of the

equivalent forms

or dx* + &y + c z* 4 tf yz + Zgzx + Zh xy = 0,

and the differentials may therefore be written in either of the

equivalent forms

ax + hy -f gz = 0, Tix + ly +fz =
0, gx +fy + cz = 0,

ax + h y -f g z = 0, h x + I y -+fz = 0, gx +fy + cz = 0,

whence we see that these equations are symmetrical between

xyz and x y z
^
and therefore that the relation between those

points is reciprocal. Both A and B are evidently points on the

Hessian, on which they are said to be corresponding points,

and it will presently be shewn that they are so also in the

sense explained, Art. 151, that is, the tangents to the Hessian
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at the points A, B respectively meet in a point of the Hessian.*

In the case of the cubic, therefore, the curve called the Steinerian

(Art. 70) is identical with the Hessian.

176. The equation of the polar conic of any point what

ever %Y]% being f U^ 4 ^Z72 4 fR,
=

0, the whole system of polar

conies form a system of conies such as that discussed, Conies )

Art. 388, viz. the equation of which involves linearly two in-

determinates. The equation of the polar of the point A with

regard to any conic of the system is

f (ax
1

+ hy + gz ) 4 rj (lix

1

4 by
1

+fo ) 4 S(gx +fy 4 cz
)
=

0,

which is satisfied by the coordinates of B, whence we see that

the polar of either point A, B passes through the other, and

that therefore the Hessian of the cubic is the Jacobian (Conies,

Art. S88) of the system of polar conies. Since A and B are

conjugate with regard to any conic of the system, the line

joining them is cut harmonically by every one of these conies,

and the points in which the conies meet that line form a system
in involution of which A and B are the foci. The two points

in which any of these conies meets the line AB can only coin

cide at either of the points A, B; and, consequently, if any of

the conies break up into two right lines intersecting on AB,
the point of intersection must be either A or B, unless AB
be itself one of the lines. Now since the Hessian of a cubic

is itself a cubic, AB meets it in three points; that is to say,

in a third point C besides the points A, B. Every point on

the Hessian is,
as we have seen, the intersection of the two

lines into which some polar conic of the system breaks up, and

it follows from what has been just proved, that of the two

lines which intersect in C one must be AB. Thus, then, from

the system of points whose locus is the Hessian we may derive

a system of lines, viz. by taking the pairs of lines which are

the polar conies of each point on the Hessian. Each line of

the system meets the Hessian in three points ;
two of them

* It will subsequently be shown that there are three cubic curves having each

of them the same Hessian : the correspondence of the points A, B on the Hessian is

of one or another of the three kinds of correspondence according as the cubic curve

is one or another of the three cubics.
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A, B are corresponding points on the Hessian, and the third, (7,

which we may call the complementary point, is the point in

which the line meets the conjugate line.

177. The curve which is the envelope of the system of

lines just mentioned has been studied by Prof. Cayley, and

has on -that account been called by Cremona the Cayleyan of

the cubic.* It is of the third class, as we see by examining
how many of these lines can pass through an arbitrary point P.

Any point M whose polar conic passes through P must lie

on the polar line of P (Art. 61), and in order that the polar
conic should break up into lines, M must be on the Hessian.

There are then evidently three points J/, whose polar conic

reduces to a pair of lines, one of which passes through P. There

is not any double or stationary tangent, and the curve is there

fore of the sixth order.

Every line of the system joins corresponding points on the

Hessian (Art. 176) ;
therefore the Cayleyan may at pleasure

be considered as the envelope of the lines into which the polar

conies of the points of the Hessian break up, or as the envelope
of the lines joining corresponding points on the Hessian. In

the case, however, of curves of higher degree, the envelope of

the lines joining the corresponding points A, B (Art. 70) is

distinct from the envelope of the lines into which polar conies

may break up.

The Cayleyan may also be regarded (Art. 176) as the

envelope of lines which are cut in involution by the system of

polar conies. It was shewn, Conies (Art. 388a), how the equation
of the envelope regarded from this point of view may be written

down, and that the curve is of the third class.

178. Let us now examine what are the four poles with

respect to the cubic of the tangent to the Hessian at any point A.

The four poles in question are the intersections of the polar conic

of A with the polar conic of the consecutive point A on the

Hessian. The polar conic of A is the pair of lines BL, BN (see

fig. p. 153), and the polar conic ofA is a pair of lines consecutive

* It was denoted by Prof. Cayley himself by the letter P, and called by him
the Pippian.
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to these. Now EL meets the line consecutive to BN in the

point J9; BN meets the line consecutive to BL in the same

point; and BL, BN meet the lines respectively consecutive

to them in their points of contact with their envelope. The
four poles in question are thus the point B counted twice, and

the points of contact with the Cayleyan of the lines BL, BN.

Thus, in particular, the polar line with respect to the cubic of

any point on the Hessian is the tangent to the Hessian at the

corresponding point. It may be directly inferred from what

has been said, that the Cayleyan is, as stated above, of the

sixth order. For the equation of the locus of the poles with

respect to the cubic of the tangents to the Hessian, is found

by expressing the condition that xU^yU^ + zU^ should touch

the Hessian. This condition involves the quantities U^ 7
2 ,
U

3

in the sixth degree, and the locus is therefore of the twelfth

order. But, from what has been proved, the Hessian must

enter doubly as a factor into this equation; the remaining
factor therefore, which is the Cayleyan, is of the sixth order.

179. The locus of points whose polar lines with regard to

one curve U touch another curve F, evidently meets U at its

points of contact with the common tangents to U and F; for

the polar of any point on U is the tangent to U at the point,

and if it is also a point on the locus, the polar by hypothesis

touches F. We have just seen that when U is a cubic and

Fits Hessian, the locus consists of the Cayleyan together with

the Hessian itself counted twice. The cubic and the Hessian

being each of the sixth class have thirty-six common tangents.

And we now see that these common tangents consist of the

tangents to Z7at the 18 points where it is met by the Cayleyan,
and of the tangents to Z7at the points where it is met by the

Hessian
; (that is to say, of the nine stationary tangents) these

last tangents each counting for two
;
and in fact it was remarked

(Art. 46, p. 33), that each stationary tangent to a curve

may be regarded as a double tangent, as joining both the first

to the second, and the second to the third of three consecutive

points.*

* Eeasons were given (Art. 47) for treating the cusp and the node, the stationary

and double tangent, as distinct singularities; but in counting the intersections of
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The polar conic of a point of inflexion A consists (Art. 170)

of the inflexional tangent itself, together with the harmonic polar
of A and the point B corresponding to A is therefore the point
in which the inflexional tangent meets the harmonic polar.

And the tangent to the Hessian at B is the polar of A with

respect to the cubic; that is to say, is the inflexional tangent
itself. Hence, then, the nine points where the stationary tan

gents touch the Hessian are the points where each stationary

tangent meets the corresponding harmonic polar.

It may be inferred from what has been just proved, and it

will afterwards be shewn independently (see note p. 150), that

the problem to find a cubic, of which a given cubic shall be the

Hessian, admits of three solutions. For the points of inflexion

being common to both curves (Art. 173), we are given nine points

(equivalent to eight conditions) through which the required cubic

is to pass, and if we were given the tangent at any of these

points A, the cubic would be completely determined. But what

has been just proved shews that this tangent may be any one of the

three tangents (Art. 171) which can be drawn from A to the curve.

180. The tangents to the Hessian at corresponding points

A, By meet on the

Hessian. Let the

polar conic of A
be BL, BN, and

of be ./1ft, AN-j
then Z, J/, N9

R
are the four poles

of the line AB,
and the polar conic

of every point of

AB passes through
these four points.

If, therefore, this

polar conic breaks

up into two right lines, these lines must be LR, MN; and

two curves, a cusp or node on one of them alike counts for two
;
and a stationary

or double tangent to one of them alike counts for two among their common

tangents.
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we see that D is a point on the Hessian, and that it cor

responds to the point C in which AB meets the Hessian again.

But the tangent at B to the Hessian is the polar of A with

respect to the cubic, which must also be its polar (Art. 60) with

respect to the polar conic of A (BL, BN) ; therefore, by the

harmonic properties of a quadrilateral, this tangent is the line

BD
;
and in like manner the tangent at A is the line AD.

If we are given the Hessian and a point on it A, the

problem to find the corresponding point B admits of three

solutions (see Art. 151). For if we draw the tangent at A
meeting the curve again in D, B may be the point of contact of

any of the three other tangents besides AD, which can be drawn

from D to the curve. These three solutions answer to the

three different cubics, of which the given curve may be the

Hessian.

181. The points of contact with the Cayleyan of the four lines

BL, BN, AR, AN lie on a right line. The poles of AD with

respect to the cubic are the intersections of the polar conies

of A and D
;
the former is the pair of lines BL, BN; the latter

consists of the line AB and a conjugate line passing through G.

The four poles are therefore the point B counted twice, and the

two points where Ca meets BL, BN. But AD being a tangent
to the Hessian, it appears, from Art. 178, that the latter two

poles are the points of contact of the lines BL, BN, with their

envelopes. In like manner the points of contact of AR, AN
with their envelope lie on the same right line. This right line

is itself a tangent to the Cayleyan, therefore the&quot; six points
where it meets the Cayleyan are completely accounted for. In

other words, any tangent to the Cayleyan is one of a pair of

lines into which some polar conic breaks up ;
the other line

of the pair joins two corresponding points on the Hessian
;

the four lines which make up the polar conies of these two

points pass respectively through the four points where the

given tangent meets the Cayleyan again.

Again, to find the point of contact of any given tangent
with the Cayleyan, the rule we have arrived at is to take what

we have called the complementary point on the given tangent,

and join it to the corresponding point on the Hessian
;
the line
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conjugate to this meets the given tangent in the point required.

But we may hence deduce a simpler rule : for since the two

lines last mentioned make up a polar conic, and since every

polar conic divides harmonically the line joining two corre

sponding points, the rule is to take the three points in which

the given tangent meets the Hessian, consisting of two corre

sponding points and one complementary, and to take the har

monic conjugate of the complementary point with respect to

the two corresponding points.

182. Let us apply the preceding rules to the case where

A is a point of inflexion, and B, the corresponding point, is the

point in which the inflexional tangent meets the harmonic polar.

The polar conic of B is then a pair of lines through A, and the

polar conic of A is the inflexional tangent together with the

harmonic polar. In order to find the points in which these

four lines touch the Cayleyan, we take the point in which the

line AB meets the Hessian again ;
but this is the point j5, since

AB touches the Hessian
;
and the line through B conjugate to

AB, on which the four points of contact lie, is the harmonic

polar. Thus, then, the point of contact of the inflexional tangent

with the Cayleyan is the point where it meets the harmonic

polar; or (Art. 179) the Cayleyan and the Hessian touch each

other, having the nine inflexional tangents for their common

tangents. The Cayleyan, as a non-singular curve of the third

class, has nine cusps, and the construction just given shews

that the harmonic polars are the nine cuspidal tangents.

183. It has been shown that the tangent to the Hessian at

any point A meets the Hessian again in the point D, where it

meets the polar of A with respect to the cubic. It follows that

the tangent to a cubic at any point A meets the cubic again
in the point where it meets the polar of A with respect to a

cubic having the given cubic for its Hessiaru Now such a cubic

passes through the inflexions of the given cubic, and therefore

its equation will be of the form aU+ IH 0, and the equation
of the polar of any point with respect to it will be of the form

dU dU dU\ dff dH . dH\
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It follows, then, that the point where any tangent meets the

cubic again is found by combining the equations

dU dU dU dH 3H dll&amp;gt;

x j ) J-T
-

J -

dy dz dx dy dz

In other words, the tangential of a point x y z on the cubic is

the intersection of the tangent to the cubic at that point with

the polar of the same point with regard to the Hessian
;
and

hence may immediately be derived expressions for the coor

dinates a, y, z of the tangential in terms of x
, ?/, z\ viz. they

are proportional to UJS^-U^ VJS^U.H^ U&-
functions of the fourth degree in a;

, y ,
z .

184. The polar lines of the points on a given line

envelope a conic, which we call the polar conic of the given line.

The equation of the polar of any point xy z may be written

ax19 + ly* + cz* -f 2fy z + Zgz x + Zhxy =
0,

and the problem of finding the envelope of this, subject to the

condition ax + fiy -f 72 = 0, is the same (Art. 96) as that of

finding the condition that a line should touch a conic. The

equation of the envelope required is therefore

A + B& + Cy
2
-f 2F/3y + 2 Gya + 2Ha0 = 0,

where -4, B, &c. have the same meaning as in the Conies,

\iz.bcf
Z

)Ca g*,&c. They are therefore functions of the

second degree in the coordinates
a?, y, z. It is obvious that the

polar conic of a line might have also been defined as the locus

of points whose polar conies touch the given line.

If the method of Art. 88 had been applied to find this

envelope, the solution would be found to depend on the

equations

ax + Jiy 4 ffz
= Xa, hx -f ly +fz =

X/9, gx +fy + cz = Xy.

But these are the equations by which (Conies, Art. 293) we
should determine the pole of the given line with regard to

xQ+y U^ + z U^. Hence, as might also be seen from geo
metrical considerations, the polar conic of a line is also the locus

of the poles of the line with respect to the polar conies of all

the points of the line.
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185. Since the polar line of any point on a line is the same

as if taken with regard to the three tangents at the points
where that line meets the curve, the polar conic of a line is

the same as if taken with regard to those three tangents. Let

their equation be xyz = 0. Then to find the polar conic of a

line is (Art. 165) to find the envelope of xyz + yz x -f zxy =
0,

subject to the condition ax + j3y + yz( ;
and this is (see

Co-nics, Art. 127)

V (fltr)

It follows that if the given line meet the cubic in the points

P, Q, R) the tangents at

these points forming the

triangle ABC, then the

polar conic of the line

touches the sides of this

triangle in the points D,

E, F, which are the har

monics of the points P,

Q, E in respect to the

point-pairs BC, CA, AB
respectively. It is evident a priori that the polar conic is

touched by the tangents to the cubic at P, Q, .#, these being

particular positions of the line whose envelope is sought.

186. It follows from the definition that the tangents wnich

can be drawn from any point to the polar conic of a right line

are the polars of the two points where the polar conic of the

point meets the right line. Hence the polar conic of a point
meets a right line in real or imaginary points according as the

point is outside or inside the polar conic of the line
;

a point

being said to be outside a conic when from it real tangents can

be drawn to the conic. It has been already remarked, that if

a point lie on the polar conic of a line, its polar conic touches

the line.

In particular, since the polar conic of a double point is the

pair of tangents at that double point, the polar conic of every
line with regard to a crunodal cubic has the node outside the

conic, and with regard to an acnodal cubic has the conjugate
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point within it. If the cubic be cuspidal, the polar conic of

every line passes through the cusp.

187. It follows from the foregoing definitions, and from

Art. 135, that if the given line be at infinity, its polar conic

may be defined either as the envelope of the diameters of the

cubic, or as the locus of the centres of the diametral conies

of the cubic, or as the locus of points whose polar conic is a

parabola. Its equation is found by making a and /3 = in

the formula of Art. 184, and is (7=0, or ab ^
2 = 0; that is

to say,

dx* dy* \dxdy

And it appears, from Art. 185, that this is the equation of the

ellipse touching at their middle points the three sides of the

triangle formed by the asymptotes.

188. If the given line touch the cubic, then since the polar

of the point of contact is the line itself, that line coincides

with one of the positions of the enveloped line of Art. 184,

and therefore touches the polar conic; and in no other case

can a line be touched by its polar conic with regard to a non-

singular cubic. Accordingly this principle has been used to

form the tangential equation of a cubic. Since A, B, &c. are

functions in the coordinates of the second degree, the equa
tion of the polar conic, Atf + &c. = 0, may be written in

the form

A x* +By + C z* -f ZF yz + 2 G zx -f 2H xy = 0,

where J/, &c. are functions of the second degree in a, /:?, y, and

then the condition that this should touch the given line is

(B C
1 - jF

2

)
a
2 + &c. = 0, which is of the sixth degree in a,

j8, 7, and is the required condition that the given line should

touch the cubic.

If the given line touch the Cayleyan, then since
it, together

with another line makes up the polar conic of a certain point,

the polar line of every point on the line passes through that

point, and the envelope of Art. 184 accordingly reduces to a

point.
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189. We next consider two cables
Z7, F, and investigate the

problem to find a point whose polar with respect to each shall

be the same; or, what is the same thing, whose polar with

regard to any cubic Z7+XF=0 shall be the same. In order

that xU
l -\-yU2 -}-zU3 and xV

l
+ yF2 -f z F

s may represent the

same line, we must have

5-5-5
y, v, v

or tf,F2 -^F, = 0, ff.F.-Djr.-O, Z7, P;
-

DJ 7,
= 0.

From the first form in which the equations were written, it is

plain that the three equations are equivalent to two
;
and that

the curves of the fourth degree represented by the equations

written in the second form have common points. But all their

points of intersection are not common, for any values which make
the numerator and denominator of any of the three fractions to

vanish, satisfy two of the resulting equations but not the third.

Subtracting then from the sixteen points common to the quartics

represented by the first two equations the four points common to

Utf F2 ,
there remain twelve points common to all three quartics,*

and these are the points required.

190. Since the discriminant of a cubic is of the twelfth degree
in the coefficients (Art. 69), there are in general twelve values

of X, for which the discriminant of Z7+XF will vanish; for

if in the general expression for the discriminant we substitute

for each coefficient a, a 4- Xa
,
we have evidently an equation of

the twelfth degree to determine X (see Conies, Art. 250). The

coordinates of the double point on any of these cubics satisfy

the three equations (Art. 69)

And the system of equations obtained by eliminating X between

each pair of these equations is the same as that considered

* So generally if Uv Z72,
U3 be functions of the ??ith degree in the coordinates, and

VD T j, V3 functions of the n& degree, the system of equations

Ei - 2 - E?
v

l

~
v\~ v3

represents three curves of the order m + , having w2 + mn + ns common points

(see Higher Algebra, Art. 257).
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in the last article. Hence, through the intersections of two cubics

Uj V there can be drawn twelve nodal cubics, and the polar of

any of the twelve double points will be the same with regard to

all cubics of the system U+ X V. These points have been called

the critic centres of the system of cubics.

191. If we are given three cubics
Z7, F, TF, then the

coordinates of the double point of any cubic of the system,
XU+ fj, F+ vW 0, satisfy the equations

therefore eliminating X, /*, v we see that the locus of the double

points is the Jacobian

U
t (V,Wt

- 7
3 T7,) + ^(7,17,- 7,T7a)+ 77

3 (7,T72
- F

2 T7) = 0.

If the three cubics have a common point, this is a double point

on the Jacobian
;
for if the lowest terms in x and y be in

Uj F, W respectively ax + by, a x + by, a x +
b&quot;y,

the terms in

the Jacobian below the second degree in x and y are easily

seen to be

a
,
b

,
a x + b y

a
, V, a x + b y

a&quot;, b&quot;, a&quot;x+b&quot;y

which vanishes identically. Thus, then, the locus of double

points on all nodal cubics passing through seven fixed points

is a sextic having these seven points for double points, since

Z7, F, W may be taken for any three cubics through the seven

given points. So likewise the double points on the nodal cubics,

which can be drawn through eight points, are determined as the

intersections of the two sextic loci, which we get by leaving out

first one and then another of the eight given points. And since

these sextics have six double points common, the number of

their other intersections is 36 24 or 1 2, which agrees with the

result of the last article.

192. Of some of the twelve critic centres, the position can

in some cases be at once perceived. Thus, in the system

Kxyz + uvw = 0, where u, v, w represent right lines, it is obvious

that xyz is one cubic of the system, having for double points

xy, y%) zx
;
in like manner uv, vw, wu are double points ; there
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are therefore but six other critic centres. We shall more par

ticularly study the system \xyz + u*v = 0, and will presently

show that this system has but three critic centres, exclusive of

the points xy, yz, zx, uv. Pliicker s classification of cubics was

derived from the study of this equation for the case where u

is the line at infinity, and consequently v its satellite, and

x, y, z the three asymptotes. We may then for any position

of the lines #, ?/, z, V, study the forms which the curve assumes

as we give different values to the parameter \
;
and it will be

readily understood, that each nodal curve in the series corre

sponds to a change from one form of the curve to another.

Thus we have seen (Art. 39) that an acnodal cubic is the limiting

form of a cubic including an oval as part of the curve; and

again, if for one value of the constant, a cubic has two real

branches intersecting in a node, the example of conies makes

it easily understood, that for a small increase in the value of the

constant, the cubic will have separated portions in two of the

vertically opposite angles formed by the intersecting branches,

while for a small decrease in the constant it will have portions

in the other pair of vertically opposite angles. Hence the

importance of the critic centres in this mode of studying the

form of the cubic.

193. Since the polar of any point with regard to i?v passes

through the point uv, any point which has the same polar with

regard to xyz must lie on the polar conic of uv with regard

to xyz^ and it is therefore evident a priori, that this is a locus on

which the critic centres lie. In order completely to determine

them, let us suppose that we have u x + y + z, v = ax + Inj -f cz

and we get our result in a more convenient form, if before

differentiating \xyz + ifu we first divide all by w2
. We then

have, differentiating successively with respect to #, ?/, 2,

\yz(p-_ y-z}_ \zx(y-z-x] _ \xy(z-x-y] =~ ~&quot;

&quot; 3

ax ~by cz
whence - =-- - =-

,xy-z yz-x z x y

and the form of the equations shows that the problem has been

reduced to that of finding the critic centres of a system of two

Y
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conies, and that the three points required are the vertices of

the common self-conjugate triangle of the conies

ax* + by
2
H- cz

2 =
0, and x* + y* + z* - 2yz

- %zx - 2xy = 0,

where it will be observed that the latter conic is the polar

conic of u with respect to xyz] that is to say, when u is at

infinity, it is the conic touching at their middle points the

sides of the triangle formed by the asymptotes. Two critic

centres will coincide in the point of contact when ax* + by
2
-f cz* =

touches this conic
; hence, if v be regarded as variable, the locus

of double critic centres is the polar conic of u with respect to xyz.

The condition of contact of these two conies is easily seen, by
the ordinary rule, to be

(Ic + ca + ab}
3 = 27 a* b* c

2

,
or a~* + b~* + c~* = 0,

which is the tangential equation of the envelope of the satellite

of u when two critic centres coincide. This answers (Ex. Art. 90)

to the equation in point coordinates x* + y% + z* = 0.*

194. Any point on \xyz + u*v may be determined as the

intersection of * = 6v with 6\xy + u* = 0. When u is at infinity,

the latter equation denotes a system of hyperbolas having #, y
for their asymptotes, and by the property of the hyperbola, the

chords intercepted by these hyperbolas on any line z = 0v have

a common middle point ; namely, the point of contact of this

line with one of the hyperbolas of the system. Evidently, if z = 6v

either touch the cubic or pass through a double point on it,
it

must touch the hyperbola, the critic centre being in the latter

case the point of contact. Hence, if any of the critic centres

be joined to the finite points where the asymptotes meet the

curve, the critic centres are the middle points of the chords

intercepted by the cubic on the joining lines.

SECT. III. CLASSIFICATION OF CUBICS.

195. We shall shew in the first place that the equation of

every cubic may be brought to the form

zy*
= ax3

-f 3bx
y
z 4- Scxz* 4- dz

5
.

* For a fuller discussion of this theory, see papers by Prof. Cayley,
&quot; On a case

of the involution of cubic curves,&quot; and &quot; On the classification of cubic curves,

Transactions of Cambridge Philosophical Society, vol. XL, 1864.
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Every real cubic has at least one real point of inflexion, for

imaginaries enter by pairs, and the total number of points of

inflexion is odd, viz. either nine, three, or one (Art. 147). If

we take for the line z the tangent at the point of inflexion, and

for x any other line through that point, the equation of the

curve (Art. 51, VII.) will be of the form
z&amp;lt;f&amp;gt;

= ax5

,
where

&amp;lt;j&amp;gt;

is

a function of the second degree, say

y* + 2lyz + 2??iyx +px* 4 2qxz + rz*.

But now if we transform the lines of reference so as to take

y -\-lz-\- mx for the new y, the terms in &amp;lt; containing y only in

the first degree are made to disappear, and the equation takes

the form first written in this article. The geometric meaning
of the transformation we have made is that we take for z as

above stated the tangent at a real point of inflexion zx, and

for y, the harmonic polar (Art. 170) of that point : for if we

examine where any line through the point of inflexion meets the

curve represented by the above equation, we find, on making
the substitution z \x, that we obtain for y values of the form

/ACT, shewing that the points where the line meets the curve

are harmonically conjugate with respect to the point where it

meets the line
?/,

and to the point of inflexion.

196. In classifying curves those distinctions may be

regarded as fundamental which are unaffected by projection ;

or, in other words, which separate not only curves, but cones,

of the same order. Among curves of the second order there

is no such distinction, for there is but one species of cone.

In order to ascertain whether such distinctions exist among
cubics, it suffices to take the form to which, as shown in the

last article, the equation of every cubic may be reduced, and to

examine whether any and what varieties, unaffected by projec

tion, exist among the curves capable of being represented by
it. And since we are now only concerned with varieties

unaffected by projection, we may suppose the line z to be at

infinity, and discuss the form

y
1 ax3 + 3bx* + f

6cx -f- d,

as one capable of representing a projection of any given cubic.

It will be observed that when a point of inflexion is at infinity,
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a system of lines through it becomes a system of parallel ordi-

riates, and the harmonic polar becomes a diameter bisecting

them
; and, in fact, for every value of

a?,
the above equation

gives equal and opposite values of y.

The preceding equation has already been partially discussed

(Art. 39), and from what was there said, it appears that the

curves represented by it may be divided into the five following

principal classes :

The right-hand side of the equation may be resolvable into

three unequal factors, and (I.) these factors are all real. The

curve then consists (Art. 39) of an oval and an infinite

branch. Or (II.) the factors are one real and two ima

ginary. The oval then disappears and the infinite branch

alone remains.

The right-hand side of the equation may be resolvable

into two equal and one unequal factors, being of the form

(x a)
2

(x /3).
Then we have the cases (III.), a less than (3

when the curve is acnodal (Art. 39), the oval being reduced to

a conjugate point; or (IV.), a greater than
/3,

when the curve is

crunodal, the oval and the infinite branch being each sharpened
out so as to form a continuous self-intersecting curve

; (V.) the

factors of the right-hand side may be all equal, and the curve

is cuspidal (Art. 39).

Newton has given the name &quot;

divergent parabolas
&quot;

to the

curves considered in this article
;

and his theorem, which we
have just established, is that every cubic may be projected

into one of the five divergent parabolas.

197. Instead of, as in the last article, supposing the

stationary tangent to be projected to infinity, we may suppose

the harmonic polar to be so projected. The point of inflexion

will then become a centre, and every chord through it will be

bisected. Interchanging z and y in the equation of Art. 195,

and then putting 3 = 1, the equation for this case becomes

y = ax3 + 3bx*y + Sexy* + dy\

which is the equation of a central curve (Art. 131). As in

Art. 196, there are five kinds of central curves according to

the nature of the factors of the right-hand side of the equation,

and in this way is established Cliaslcs s supplement of Newton s
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theorem, viz. that every cubic may be projected into one of the

five central cubics.

198. Corresponding to these five kinds of cubic, there are

five essentially distinct species of cubic cones. A cone of any
order may comprise two forms of sheet, viz. (1) a twin-

pair sheet, or sheet which meets a concentric sphere in a pair

of closed curves, such that each point of the one curve is

opposite to a point of the other curve (a cone of the second

order affords an example of such a sheet) and (2) a single

sheet, viz. one which meets a concentric sphere in a closed

curve, such that each point of the curve is opposite to another

point of the curve (the plane affords an example of such a

cone). Now corresponding to the parabola I. of Art. 196, we
have a cone consisting of a twin-pair sheet and a single sheet,

and corresponding to II., we have a cone consisting of a single

sheet only. It is evident that the crunodal, acnodal, and cus

pidal singularities are reproduced in the corresponding cones.

The classification of cubic cones just made might, if we pleased,

be carried further. Not only is there but one species of cone of

the second order, but, with some limitations, any two curves of

that order may be regarded as sections of one and the same

cone. This is not so as regards cubics
;
for it has been proved

(Art. 167) that every cubic curve has a certain numerical cha

racteristic, expressing the anharmonic ratio of the four tangents
which can be drawn from any point on the curve, and represented

by the ratio of the invariants S3
: T* of the biquadratic, which

determines those tangents. This characteristic being unaltered

by projection, two curves, for which it is different, cannot be

cut from the same cone
;
and the parameter in question may

be regarded as a characteristic, not only of a cubic curve, but

also of every cone from which it can be cut. The five

kinds of cone we have enumerated might, therefore, be further

subdivided at pleasure, according to the values of this parameter.

Such subdivisions have in fact been made, but it is not thought

necessary to notice them here. In the last section of this

chapter, however, the cases S = 0, T= will be discussed
;
and

it is now pointed out that these represent families not only of

curves but of cones.
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199. Let us now examine, more minutely than in Art. 39,

the figure of the cubic represented by the equation considered

in Art. 196, and it will be convenient to take the origin at

the middle point of the diameter of the oval, so that the

equation may be written

a^=(x
z - m2

) (x ri),

where n is greater than m. Differentiating, we find that the

values of x which correspond to maximum values of
?/,

or to

points where the tangent is parallel to the axis of #, are given

by the equation

Zxz - 2nx - m & =
;
whence x = J [n tj(r? + 3m*)}.

If we give the negative value to the radical, we get the value

of x corresponding to the highest point of the oval, and since

this is negative, we see that the highest point on the oval

is on the side remote from the infinite branch, and that the

oval is therefore not, like the ellipse, symmetrical with regard

to two axes. This oval is symmetrical with regard to the axis

of a;,
and not with regard to the axis of

?/,
but rises more

steeply on the one side and slopes more gradually on the other.

The greater n is for any given value of m, that is to say, the

greater in proportion the distance between the oval and the

infinite part the more nearly does the oval approach to the

elliptic form
;

while on the other hand, the difference is greatest

when the oval closes up to the infinite part, that is to say,

when the curve is crunodal. In this case the highest point

of the loop corresponds to the point of trisection of its axis.

If we give the positive value to the radical, the corre

sponding value of x is intermediate between m and n, and the

corresponding value of y is imaginary. The form of the

equation shews that the point of contact with the curve of

the line at infinity is on the line x 0, unlike the common

parabola y
1

px^ which is touched by the line at infinity on

3/
= 0. The infinite branches of the cubic, therefore, tend to

become parallel to the axis of y and not to the axis of x\
and there must be a finite point of inflexion on each side of

the diameter where the curve changes from being concave

to being convex towards the axis of x. Hence the name
&quot;

divergent parabola.&quot;
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The form of the curve is then represented by the oval and

the right-hand infinite branch on the

figure. If, however, we have in the

equation + ??i
2
instead of m*, then there

will be no real oval, and the infinite

branch will be either of the left-hand

or right-hand form, that is to say, there

will or will not be points for which y is

a maximum, and at which the tangent is parallel to the axis,

according as 3?/i* is less or greater than ?z
2

;
and there is of

course the intermediate case 3m* = w8

,
where there is on each

side of the axis of x a point of inflexion, the tangent at which

is parallel to this axis.

The figures of the crunodal, acnodal, and cuspidal forms do

not seem to require further discussion than was given in Art. 39.

200. Returning to the case where the curve has an oval,

it is plain that in general every right line must meet any
closed figure in an even number of real points, and therefore

that every line which meets the oval part of the cubic once,

must meet it once again and not oftener; since when a line

crosses to the inside of the oval, it must cross it again to come

out, and cannot meet the oval in four points. Every line,

therefore, must meet the infinite part of the curve once. It

follows that no tangent to the curve can meet the oval again,

and therefore that none of the points of inflexion can lie on

the oval. It is easy to see, on inspection of the figure, that from

any point outside the oval two tangents can be drawn to it.

Thus, then, the oval is a continuous series of points, from

none of which can any real tangent, distinct from the tangent
at the point, be drawn to the curve. The cubic then, which

includes an oval, is of the class (Art. 167), the four tangents
from every point of which are either all real or all imaginary.
The tangents from every point on the oval are all imaginary,
and from every point on the infinite branch are all real

;
viz.

two can be drawn to the oval and two to the infinite branch

itself. In fact, the tangent at any point on the infinite branch

must meet that branch again, since the third point in which

it meets the curve cannot be on the oval.
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201. What has been just said, may be used to illustrate

the essential property of unicursal curves (Art. 44). The co

ordinates of any point on such a curve can be expressed

rationally as functions of a parameter, so that by giving to

this parameter values continuously increasing from negative

to positive infinity, we obtain all the points of the curve in

a continuous series, the coordinates being always real. In

the present example, on the contrary, it is geometrically

evident that if we commence with any point on the oval and

proceed on continuously, we return to the point whence

we set out, without passing through any point on the in

finite branch
;

and it is algebraically impossible to express

the coordinates of any point in terms of a parameter without

including a radical in the expression. For instance, we might
take s =

l, oj=(9, y = ^/(a0* + 3b0*+ 3c0 + d). We shall then

call the curve we have been considering a bipartite curve, as

consisting of two distinct continuous series of points.

A curve of the second kind considered, Art. 196, has no

oval, and is unipartite^ all the real points of the curve being
included in one continuous series; but the curve is not on

that account unicursal, for the coordinates of any point cannot

be rationally expressed in terms of a parameter, and a unipartite

curve is not necessarily unicursal, just as an equation having

only one real root is not necessarily a simple equation. A cru-

nodal cubic, on the other hand, is unicursal and unipartite ;
all

the points of the curve succeed each other in a definite order

forming a single series. The curve may, however, be regarded
as comprising a loop and an infinite branch consisting of two

parts separated by the loop. The argument used, Art. 200,

shews that no point of inflexion can lie on the loop, neither can

any tangent meet the loop. The loop, therefore, includes a series

of points from none of which can any real tangent be drawn to

the curve, while from every other point on the curve, two real

tangents to it can be drawn, one of them to the loop, the other

to the infinite branch. So also an acnodal cubic and a cuspidal

cubic are each of them unicursal and unipartite.

202. Having thus divided cubics into five genera, we proceed
to subdivide these genera into species, according to the nature
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of their infinite branches. And, obviously, we must have

at least four species under each genus, according as the line

infinity meets the curve, (a) in three real and distinct points,

(b) in one real and two imaginary points, (c)
in one real and

two coincident points, (d) in three coincident points. But in

the case of crunodal, acnodal, and cuspidal cubics, we must

distinguish under (c) whether the line infinity be properly a

tangent, or whether it pass through a double point; and in

the case of crunodal and cuspidal cubics we must distinguish

under (d) whether the line infinity be a tangent at a point of

inflexion or at the node or cusp. Further, in the case of

a bipartite or a crunodal cubic it is important to distinguish

under (a) and (c) whether the three points in which infinity

meets the curve all belong to the infinite branch or whether

two of them belong to the oval or loop and only the re

maining one to the infinite branch. The differences thence

resulting in the figures of the curves are so great that the two

cases may properly be classed as distinct species. These are the

only differences which are made in what follows, grounds of

distinction of species. The only other differences which would

seem to have equal claims to be put on the same level are that

the points of the curve at infinity may either all be ordinary

points, or else one or three of them may be points of inflexion.

But as the changes thus made in the figure of the curves are

slighter, and as it is desirable not to have more species than can

be easily remembered, I have preferred to class curves differing

only in the respect last mentioned, not as distinct species, but as

different varieties of the same species. It is obviously a good
deal arbitrary how many varieties of cubics may be counted,

and much depends on the point of view from which these

curves are discussed.

203. The figures for the case where the line infinity is a

stationary tangent have already been discussed, and the figure

for any other case may be regarded as a projection of one of

the figures for this case. Let us commence with bipartite cubics,

and consider first the projection of the oval. And it will be

readily understood that if the line projected to infinity do not

meet the oval, the projection of the oval will remain a closed

z
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curve, while if the line touch the oval, or if it meet it in two
real points, the projection will have the same kind of rough
resemblance to a parabola or a hyperbola respectively that the

oval itself has to an ellipse ;
that is to say, while the figures

have not the symmetry of the conic sections, the projection is in

the former case, like the parabola, a single curve whose branches

proceed to infinity in a common direction without approaching
to contact with any finite asymptote, and in the latter case

consists of a pair of curves having two common asymptotes, and

lying in two of the vertically opposite angles formed by them.

Such a pair we shall briefly refer to as a hyperbolic pair,
It will be observed that an ordinary asymptote to a curve has a

positive and negative branch at opposite sides of it. The

theory of projection teaches us to regard the extremities of a

line at positive and negative infinity as projections of the same

point, and similarly to regard the branches of a curve which

touch an asymptote at positive and negative infinity as con

tinuous with each other. Thus, then, as when the oval is a closed

curve, its points form a continuous series, such that commencing
with any point we can proceed continuously round the curve till

we return to the point whence we set out
;

so this is equally true

of all projections of the oval, and the twin hyperbolic branches are

to be regarded as forming one continuous curve, the part where

one branch touches an asymptote at its positive extremity being

regarded as continuous with the part where the other branch

touches the same asymptote at its negative extremity.

204. Let us next consider the projection of the infinite part

of the curve (Art. 196) which must be met by every line cither

in one or three real points. First, let the

line projected to infinity meet it only in one,

and then the branches of the projected curve

instead of spreading out indefinitely, will

approach to contact with a finite asymp

tote, as in the left-hand curve on the figure.

The curve, which will hereafter be briefly

referred to as the serpentine, must obviously

have three points of inflexion
;

for it is

convex towards the asymptote at positive infinity (since every
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curve is convex towards its tangent on both sides of the point of

contact) ;
it must change this convexity into concavity in order

to cut the asymptote once again : having cut
it,

it must bend

again, else it would continually recede from the asymptote;
and it must bend once more in order to become convex towards

the asymptote at negative infinity. The points in the curve

represented in the figure form a continuous series, since it ap

pears, from what was said in the last article, that the branches

of the curve in contact with the asymptote at its opposite

extremities are to be regarded as continuous with each other.

In the above it was assumed that the point at infinity on

the serpentine is an ordinary point on the curve. If, however,
it be a point of inflexion, the difference is that instead of the

positive and negative infinite branches lying as usual on opposite

sides of the asymptote, they lie on the same side, as in the right-

hand curve on the figure. It is obvious that the curve has

then but two finite points of inflexion. We refer to this

as the conchoidal form.

205. Next, let the line projected to infinity meet the infinite

branch in three ordinary points. It may be seen that it will

always divide the curve into three parts, one of which has no

points of inflexion, another

one, and the other two.

The projection will consist

of three infinite branches
;

one, which we shall call a

simple hyperbola, having
no point of inflexion, and

not intersecting its asymp

totes; the second, which

we shall call an inflected liy~

perbola^ crossing one asymp

tote, and consequently hav

ing one point of inflexion
;
and the last, which we shall call

a doubly inflected hyperbola crossing both asymptotes, and

having therefore two inflexions.* No two of these parts form

* Newton calls the first of these an inscribed, the third a circumscribed, and the

second an ambigenous hyperbola.
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a hyperbolic pair, but the three together form a continuous

series* Thus, in the figure, if we commence by descending
the vertical branch of the doubly inflected hyperbola, the path,

after passing through negative infinity on the vertical asymptote,

is continued from positive infinity on the same asymptote along
the singly inflected branch, until having passed to infinity on

the other asymptote it returns along the simple hyperbola, and

so back to the doubly inflected hyperbola.

If one of the points at infinity be a point of inflexion, either

the singly inflected hyperbola becomes simple or the doubly
inflected becomes singly inflected. If all three inflexions be at

infinity, the curve consists of three simple hyperbolas.

Cubics having three hyperbolic branches are called by
Newton redundant hyperbolas, as having one more than the

conic sections; those having but one infinite branch, as in

the last article, are called by him defective hyperbolas; and

those touched by the line at infinity, and having besides one

finite asymptote, are called parabolic hyperbolas.

206. We now enumerate the following species of bipartite

cubics. (1) The line projected

to infinity meets the oval twice

and the other part of the curve

once. If the last point of meet

ing be (a) an ordinary point,

the curve consists of a serpen

tine and a hyperbolic pair, as in

the figure. If it be (b) an in

flexion, the only difference
is,

that the serpentine is exchanged for the conchoidal form.

(2) The line infinity meets the curve in three real points,

none of which belong to the oval. If the points be (a) all

ordinary points, the figure is that of Art. 205. If one of the

points be an inflexion, the curve consists either (b) of an oval

with two simple and one doubly inflected hyperbolas, or else

(c) of an oval with one simple and two singly inflected hyper
bolas, (d) If the three inflexions be at infinity, the curve

consists of an oval with three simple hyperbolas. In all these

cases the oval lies within the triangle formed by the asymptotes,
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and the curves may be further distinguished according as the

hyperbolas lie in the angles which contain the asymptotic

triangle, or, as in the figure, in the vertically opposite angles.

(3) Infinity meets the curve in two imaginary points; and

we have an oval (a) with a serpentine, or (b) with

a conchoidal branch (see Art. 204).

(4) Infinity touches the oval, which then as

sumes the parabolic form, and is accompanied (a)

with a serpentine, (b) with a conchoidal branch.

(5) Infinity touches the other part of the curve.

The oval then remains a closed figure, while the

other part of the curve spreads into a parabolic

form. If (a) the remaining point at infinity be ordinary, one

branch crosses the asymptote and has two

inflexions, while the other branch has only
one. If (b) it be a point of inflexion, the

branches are both at the same side of the

asymptote, and each has only one in

flexion.

(6) Infinity meets the curve in three

coincident points. This is the case with

which we set out (Art. 199).

207. We come next to the division of non-singular unipartite

cubics, and it is evident that we have now nothing corresponding
to the species 1 and 4 of the last article. We have, therefore,

only four species of such unipartite cubics, viz. redundant,

defective, and parabolic hyperbolas, and the divergent parabola ;

according as the points of the curve at infinity are all real and

distinct, two imaginary, two coincident, or all three coincident.

The same varieties of each may be counted as in the last article,

and the figures of the last article will serve by omission of

the oval
;
but for further illustration we give a figure for a

case where the satellite cuts the sides of the asymptotic triangle,

and where two critic centres (Art. 192) lie within that

triangle. We have, then, a portion of the doubly inflected

hyperbola in a purse-shaped form within that triangle ;

and it is easy to conceive that by a change in the value of
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the constant the mouth of the purse closes, and we have a

double point at one of the critic centres, while, by a further

change, we have a separate oval, at last shrinking into a

conjugate point at the other critic centre.

In like manner

we have the same

four species of ac-

nodal cubics, to

gether with a

fifth, for which the

acnode is at in

finity. The figures

for bipartite cubics

suffice to illustrate

this class if we

suppose the oval

to shrink into a

conjugate point.

The figures for the case where the acnode is at infinity do not

strikingly differ from those where infinity meets the curve in

one real and two imaginary points.

208. Of crunodal cubics we have the following species:

(1) Infinity cuts the loop in two real points. We have, then,
two simple and one inflected hyperbola as in the left-hand

figure. It will be observed by tracing the curve in its

passages through infinity that the curve is unicursal. There

are two varieties according, as the remaining point is ordinary
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or an inflexion. In the latter case, all the hyperbolas are

simple.

(2) There are three real points at infinity, none of which

are on the loop. There are an inscribed, ambigenous, and

circumscribing hyperbola, the last forming a loop within

the asymptotic triangle. There are two varieties, according

as there
is,

or is not, an inflexion at infinity.

(3) Infinity meets the curve in two imaginary

points. There are, as before, two varieties.

(4) Infinity touches the loop, and (5) infinity

touches the spreading part of the curve. The

figures explain themselves, and in the former case

there are two varieties, the curve lying all on

the same side of the asymptote when there is

an inflexion at infinity.

There is a double point at infinity, and consequently two

parallel asymptotes; and the remaining point at infinity is

(6) on the spreading part, (7) on the loop. In the former

case, the point of inflexion is outside the parallel asymptotes,
in the latter, between them. If the inflexion were also at

infinity, the two branches in the former case would lie on

the same side of the asymptote.
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(8) Infinity touches at an inflexion, and we have the diver

gent parabola of Art. 199.

(9) Infinity is a tangent at a double

point, and we have a curve called the

trident^ whose figure is here given.

209. Of cuspidal cubics there are

evidently no species answering to 1, 4,

7 of the last article. The species, then,

are (1) Three real points at infinity; two varieties. (2) One
real and two imaginary points at infinity ;

two varieties. (3)

Infinity an ordinary tangent; two varieties. (4) The cusp at

infinity ;
two varieties. (5) Infinity, a stationary tangent. (6)

Infinity, a cuspidal tangent. The figures for the cases 1, 2, 3

can easily be conceived with the help of the figures of the last

article, by supposing the loop removed which is dotted in those

figures, and the double point replaced by a cusp. The figure for

case 4 is obtained from the left-hand figure (Art. 208) for

the case of two parallel asymptotes, by imagining those asymp
totes united and the branch between them suppressed. We
have then a single asymptote with two infinite branches on

opposite sides, but at the same end of it.

The figure for case 5, the semi-cubical para

bola, wi?/
a = c

3

,
is given, Art. 39. Finally,

the figure for case 6, the cubical parabola^
m z

y = x3

,
is here represented.

210. Though we have here counted as many as thirty

species of cubics, it is not difficult to remember the classification,

if it is borne in mind that nothing has been done, but combine

the five-fold division of Art. 196 with the division of Art. 202,

depending on the nature of the points at infinity. It remains

to say something as to previous classifications of cubics. The
first was made by Newton, Enumeratio Linearum tertii

ordinis,
whose classification is substantially the same as that here given,

except that what we have counted as varieties are made by
him distinct species ;

and that whereas in the case of a hyper
bolic branch, touched by two asymptotes, we do not regard in

which of the vertically opposite angles formed by them the
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branch lies, Newton discriminates the cases where it lies in the

angle crossed by the third asymptote, or in the opposite angle.

The cases where three real asymptotes meet in a point are

treated as distinct species. By attending to these distinctions

the number of species is made up to seventy-eight. Also,

whereas we have made the five-fold division primary, and that

depending on the infinite branches secondary, Newton s course

of proceeding is the reverse.

Newton s method of reducing the general equation is as

follows: one of the axes being taken parallel to the real

asymptote, the coefficient say of y* vanishes, and the equation
of the curve is of the form

y
z

(ax + b)+y (fx* + gx + h) +^e
3 4 qx* + rx 4 5 = 0.

Now the locus of middle points of chords parallel to the asymp
tote is obviously

and if we suppose the axes transformed to the asymptotes of

this hyperbola, the terms 6, /, g evidently vanish, shewing that

the same transformation will bring the equation of the cubic to

the form

xy
2 4 liy =px* 4 qx

z 4 rx 4 s,

or with Newton s letters

xy* 4 ey = ax* 4 bx* 4 ex 4 d.

This is Newton s most general form. If, however, in the

equation ;
as we have written it a and b vanish, the locus is not

a hyperbola but a right line, and according as this is (1)

the line x = 0, (2) an arbitrary line which may be taken

for y = 0, or (3) the line at infinity, the equation of the cubic is

similarly brought to the forms

xy = ax* 4 bx
2
-i-cx + d,

y
2 = ax* 4 lx

z

4 ex 4 d,

y = axz 4 bx* 4 ex 4 d.

The only apparently different case is when in the equation, as

we have written
it,

a = 0, and the locus a parabola ;
but in this

case there is another real asymptote, the locus of middle points
of chords parallel to which is a hyperbola, and the reduction

AA
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proceeds as in the first case, only that the coefficient of x* vanishes

in the transformed equation. Newton s results are obtained

from a discussion of these four forms. If y = &amp;lt;

(a:)
be the

equation of any curve, Newton calls the curve xy = (f&amp;gt; (x) a

hyperbolism of that curve. Thus then he calls cubics which

have a double point at infinity, and whose equation can therefore

be brought to the form

xy* -f ey
= ex + d^

hyperbolisms of the ellipse, hyperbola, or parabola, since the

equation just written is brought to that of a conic by writing

y for xy.

211. We have already noticed Pliicker s discussion of cubic

curves, contained in his System der Analytischen Geometrie. In

this discussion the nature of the points at infinity is the primary

ground of classification. Commencing with the case of three

real asymptotes, when the equation is of the form xyz = ku*v,

the cases when the asymptotes meet in a point, or form a

triangle, are first distinguished ;
then all possible positions of

the satellite line v are examined
;
whether for instance it cross

the triangle, pass through a vertex, or meet all the sides

produced, whether two critic centres (Art. 192) coincide, and so

forth. All the curves capable of being represented by the

above equation for any given position of the lines x, y, z, V, are

said to form a group, and by giving all possible values to &,

the different species included under the same group are dis

tinguished. This will be more readily understood from the

figure of Pliicker s first group, which we reproduce on the next

page, and which answers to the case where the satellite line meets

the sides produced of the asymptotic triangle, and where we have

three real critic centres, one inside, two outside the triangle.

Fig. 1 represents a bipartite curve of the species in this volume

numbered I., 2. By a change in the value of k the oval shrinks

into a point, and we have (2) the acnodal curve III., 1. As
k is further changed, the curve becomes (3) unipartite II., 1

;
and

the branches recede further from their asymptotes. In (4) the

branches cross to the other asymptotes, and the curve becomes

crunodal, IV., 2. Fig. 5 is bipartite, I., 1. Fig. 6 is in our

enumeration of the same species as 5, 7 as 4, and 8 as 3, but the
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position of the branches with regard to the asymptotic triangle

R

--P

is different. Pllicker s division into groups has been carefully

re-examined by Prof. Cayley, Transactions of the Cambridge

Philosophical Society, 1864, who also gives a comparison of

Newton s species with those of Pliicker, of which there are

two hundred and nineteen. It does not enter into the plan of

this treatise to give a more minute account of this classifica

tion. It will suffice to mention, that in the case of the

parabolic curves an important part is played by the osculating

asymptotic parabola, or parabola which passes through five

consecutive points of the curve where it touches the line infinity.

The equation of the curve may be brought to the form

x (if -f 2zx + z
2

)
= z

2

(ay + lz\

where obviously the parabola y* 4- 2zx + z* meets the curve in

the point yz reckoned five times. The groups are then deter

mined by the position of the osculating parabola with respect

to the linear asymptote x, and to the satellite line ay + bz.

SECT. IV. UNICURSAL CUBICS.

212. We have seen (Conies ,
Art. 270) that computation is

facilitated when the coordinates of a point on a curve can_b.e
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expressed in terms of a single parameter, and it has been

proved (Art. 44) that this is always possible in the case of

a unicursal curve. Of the application of this principle to cubics

we now give some examples. The equation of a cuspidal

cubic can always be reduced to the form x^zy^^ where xy is

the cusp, x the cuspidal tangent, and z the stationary tangent.

Any point on the curve may then be expressed as the inter

section of 6xy^ 6*y
= zf:

or, in other words, the coordinates

of any point on the curve may be taken as 1, $,
3

,
where 6 is

a variable parameter. The line joining any two points on the

curve will then have for its equation, as may be easily verified,

B& (6 -f ff) x
-

(&amp;lt;9*+
66 + 6

2

) y + z = 0.

Let 6 and & coincide, and we have the equation of the tangent

If we seek the points where any line ax + ly + cz = meets the

curve, substituting 1, $, O
z
for

a?, y, 0, we have the equation
a -f W 4 c6

3 =
0, and as this equation in 6 wants the second

term, the sum of its roots vanishes, and we learn that the para
meters of three points on a right line are connected by the

relation 6 + & + 6&quot;
= 0. Hence, in particular, the tangential

of the point 6 is 20, and the point of contact of the tangent
from 6 is \9.

In like manner, if we make the substitution 1, 0, 6
s

for

or, y, Z) in the equation of a curve of the
j:&amp;gt;

th
order, the term

3 &quot; 1
will be wanting in the equation, and the relation connecting

the parameters of the 3p points of intersection of the curve

with the cubic is that their sum vanishes. Thus, then, the

of the residual of a system of points is the negative sum, and

of the coresidual is the sum of the # s of the several points ;

and generally the theorems concerning residuation, Art. 158, &c.,

are thus intuitively evident for cuspidal cubics. For instance,

denoting the parameters of the points by a, 5, &c., the condition

that six points shall lie on a conic is

* These equations considered as belonging to tangential coordinates give the

theorem &quot;If / be the inflexion, C the cusp, and T the intersection of tangents at

742 77?
these points, any tangent AB cuts the sides of the triangle ICT, so that A^ = kj,
and when the line at infinity is a tangent h = 1.&quot; Compare Conies, Art. 327.
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which at once gives the theorem (Art. 154), that given four

points on a cubic, the line joining the points e^ f, where any
conic through them meets the curve again, passes through the

fixed point (a -f b + c + d] ;
and that this point may be con

structed by joining &, cd
y
and joining the points where these

lines meet the curve again, since

-
(a + 1)

-
(c + d) -r (a + I + c + d)

= 0.

So, again, various constructions for the ninth point where the

cubic through eight points meets the curve again are obtained

by inspection of the equation

(a + b -f- c -f d) -f (e +/+ # -f ) + i = Q.

213. The parameters of the points whose tangents pass

through a given point are found by substituting the coordi

nates of that point in 263x 36
2

y + z = Q and since in the

resulting cubic the coefficient of 9 vanishes, the sum of the

reciprocals of the roots vanishes; or, three points whose tangents

meet in a point are connected by the relation -
n + ^ 4- -r,,

= 0.
v v o

In like manner, since the condition that 263x 302

y -}- 2 =

should touch a curve of the p
ih class is a relation of the j9

th

order between the coefficients 2613
,

30
2

, 1, and since such a

relation obviously does not contain the term 0, it follows that

the 3p points where tangents touch a curve of the p
th class

are connected by the relation 2 [3 ]
=0. We give some illus-

trations of this application of the method to examples.

Ex. 1. To find the locus of the intersection of tangents whose chord of contact

passes through a fixed point on a cuspidal cubic.

This is to eliminate a and /3 between the three equations

2a3x - 3a-y + z = 0, 2fi
3x - 3(Fy + z - 0, a + j8 + y = 0,

where y is known. We easily find y (2yx + 3y}- + 2xz = 0, the equation of a conic.

Ex. 2. If a polygon of an even number of sides be inscribed in a cubic, and all

the sides but one pass through fixed points on the curve, the last side will also pass

through a fixed point on the curve.

Denote the parameters of the vertices by &amp;lt;/

1?
o2 , &amp;lt;tc.,

and of the fixed points by

5,, 52 , &c. &quot;We take the case of the quadrilateral for simplicity, but the proof

is general. We have then the equations

2 + 3
= 0,

bt + ffj
= 0.
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Adding, we have
t + b3 b* + 54 , shewing that the lines joining b, b3 ;

62 , b^ meet on

the curve, and that, when three of the points are known, the fourth is known also-

The theorem is true for all cubics, for the proof here given may easily be translated

into the language of the theory of residuation, shewing that the pairs of points bu b3 ;

t&amp;gt;2 , b^ are coresidual, a common residual being the system of vertices au a2 ,
a3 ,

av
It follows, as a particular case of this theorem, that if the sides of a polygon of an

odd number of sides pass through fixed points on the curve, the tangent at any
vertex passes through a fixed point on the curve

;
and hence, that the problem to

construct such a polygon whose sides pass through fixed points on a non-singular

cubic admits of four solutions.

Ex. 3. To find the quasi-evolute, the two fixed points being on the curve (see also

Ex. 5, Art. 99). The equation of the quasi-normal (Art. 107) is

(/3
2
+(36 - 202

) [6a (0 + a) x - (0
2 + 0a + a2

) y + z]

+ (2 + aQ _ 202) {00 (fl + ) 3 _ (02 + 0j9

If we transform this by writing =
-^ _ .

,
we get then, in conformity with

Art. 108, a biquadratic in X, in which the two extreme terms at each end respectively

differ only by a constant factor, and the discriminant, having as factors the equations

of the tangents at a and /3, represents besides a curve only of the 4th degree.

214. It remains to mention a few of the more remarkable

examples of cubics of the third class. We have already noticed

the semi-cubical parabola, which is the evolute of the parabola

of the second degree. In its equation, py* = x
3

,
the cusp is at

the origin, and the point of inflexion at infinity. In the cubical

parabola, on the other hand, p*y = x3

,
the point of inflexion

is at the origin and the cusp at infinity. In the cubical para

bola the origin is a centre, and all the diameters of the curve

coincide with the axis of y ;
for if we draw any line y = mx + n,

the sum of the values of x is = 0.

To the cusped class also belongs the Cissoid of Diodes, a

curve imagined by that geometer for the solu

tion of the problem of finding two mean pro

portionals. It may be defined as the locus of

a point M ,
where the radius vector to the

circle AM is cut by an ordinate, such that

AP = BP. We must have

AM = EM, and therefore p = AR- AM,
or p 2r sec co 2r cos o&amp;gt;

= 2r tan &&amp;gt; sin
;

or, in rectangular coordinates,

x (x* + y
1

}
= 2r/, or (2r- x) y* = x5

.
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The origin is therefore a cusp, and 2r- x an asymptote meeting
the curve at an infinitely distant point of inflexion.

Xewton has given the following elegant construction for the

description of this curve by continuous

motion : A right angle has the side OF
of fixed length, the point Amoves along

the fixed line 07, while the side GH
passes through the fixed point E; a

pencil at the middle point of GF will

describe the cissoid. The proofwe leave G

to the reader. (Lardner s Algebraic Geometry, pp. 196, 472).

The cissoid is also the locus which we should find if we take

on each of the radii vectores from the vertex of a parabola a

portion equal to the reciprocal of its length. It is consequently

also the locus of the foot of a perpendicular let fall from the

vertex of a parabola on the tangent ; or, in other words, if a

parabola roll on an equal one, the locus of the vertex of the

moving parabola will be the cissoid.

215. We can in like manner express in terms of a single

parameter the coordinates of any point on a crunodai or acnodal

cubic. The double point being the origin, the equation is of

the form

axs + 6bx*y 4- Scxtf -f dif + 3/a? 4 Ggxy + 3Jtf
=

0,

and if we pnt y = 6x, we have immediately rational expressions

for x and y in terms of 6. The discussion will, however, be

simpler if we suppose the equation transformed, as it always

may be, to the form (x
2

y
2

}
z = x\ Here z is the tangent at

the one real point of inflexion which the curve must have:

x is the line joining the point of inflexion to the double point,

and x2

z/

2
are the tangents at the double point, the upper sign

belonffine: to the case of the acnodal, and the lower to that ofO O
the crunodai cubic. The coordinates then of any point on the

curve may be taken proportional to (1 0*), 0(1 + s

),
1. If

we substitute these values in the equation of an arbitrary

line \x 4 py + vz = 0, we get, in order to determine the para
meters of the points where this line meets the cubic,
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and these parameters are connected by the relation

6 0&quot;+6&quot;0&quot; + 6&quot;

t = l.

If the line touch at a point of inflexion & 6&quot; 6&quot;

,
and there

fore 0* = J. Hence, an acnodal cubic has three real points of

inflexion, and a crunodal cubic one real and two imaginary.
The equation of the line joining two points will be found

to be

00

and therefore the equation of a tangent is

(3&amp;lt;9

2

l)x- 20y = (1
2

)

v

z,

whence we see that if four tangents meet in a point, the sum of

the corresponding parameters vanishes, and if two of the points

be given, we can at once form the quadratic which determines

the parameters of the other two. There is no difficulty in

applying this method to examples.
At Art. 122, Ex. 1 we have noticed the crunodal cubic, whose

polar equation is p* cosjo&amp;gt;=jw ,
and whose rectangular equation

is 27
(a;

2
+ y*} m = (4ra

-
x}* ;

a curve having three points of

inflexion at infinity, one real and the others being the two

circular points. The node is on the axis of x at the point x -8m.

216. When a nodal cubic has three real points of inflexion, the

conjugate point is the pole of the line joining these three points ,

with regard to the triangle formed by the three tangents. Let

the equation of a cubic be

then, if this has a double point, its coordinates must satisfy the

equations got by differentiation, viz.

3 (x + y + z)
2 = myz = mzx = mxy.

From these equations we get x = y = ,
which (Art. 165) proves

the theorem enunciated, and we then have for the nodal cubic

m 27, and the equation of the curve may be written in the form

In this case the coordinates of any point on the curve may be

taken proportional to $
3

, (1 0J
3

, 1, and the equation of the

corresponding tangent is (1
-

6]*x + 0*y -f 0* (I
-
Q^z = 0.
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UNICURSAL CUBICS.

216 (a). The subject of unicursal cubics may be otherwise

treated.* We may start with the most general expression
for

the coordinates in terms of a parameter X

y d X3
-f- 35 X2

//, -f 3c X//,
2

and we can at once (as in Art. 44) write down in the form of a

determinant the equation of the resulting cubic. But again,

there are in general three linear functions of x, y, z, whose

expressions in X, /* are perfect cubes. For if in the equation

Lx + My + Nz = (aX + /fy)
8

,

we substitute for #, y, z their expressions in X :
//., equate

coefficients of X3

,
X2

/*,
&c. and linearly eliminate L

} J/, N from

the resulting equations, we get

ef/3, 5, V, V
iyi i a

cup , c, c
j

c

/3
3

, d, d
,

d&quot;
= 0;

that is to say, we have a cubic for the determination of a. :

which we may write

Ao? + 3Ba2

j3 -f 3 Oafi? + ^/3
3 =

0,

A, 35, 3
(7,
D being the determinants of the system

a
,
I

,
c

,
d

a
,
5

,
c

,
d

a -iti a jna
; 6 ,

c
,
d

Corresponding to the three values of a : /?, there are three

values of Lx, + My +^ ;
and

if, writing down the three

equations

Lx -f M y 4 N z = (a X + /3
3

, &c.,

we take the cube roots of both sides, and linearly eliminate X :
/*,

we get the equation of the curve in the form of a linear relation

* For further developments of the method here explained see Igel, 3

AnnaL, vi, 633; Haase, Math, Annal. II. 526.

BB
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between the cube roots of three linear functions. This is

expressed in the simplest form by writing

= a

when we have the equation of the curve in the form (Art. 216)

X%+ Yb + Z$ = Q) which denotes a nodal cubic, X, Y, Z being
the three inflexional tangents, X+ Y+Z the line joining the

three inflexions, and X= Y=ZthQ node.

216 (&). We might arrive by another process at a cubic

identical with the Canonizant cubic of the last article. The

general condition that three points should be on a right line

being got by equating to zero the determinant formed with

the constituents a?
, ?/ ,

z
, &c., if we substitute for x, aX/3

4 &c.,

we get the condition that three points of the curve should be

on a right line. This is easily seen to be resolvable into partial

determinants, each of which is divisible by
f-\ in i it i\ /~i ii ni -\ in n\ /-\ m i -\ i tn\

(X/lt XyU,)(X/l, X A6 ) l^ /* Affc J5

and the condition in question may be written

A I II III ~D t-\ I II III -\ II III I
i ~\ &quot;

&quot;\

AfJL fjU /JU + B (\ fJU fJL -t-X fJ, fjb +\ fJUfjb )

i /&quot;Y /^ &quot;&quot;v
&quot;

i ~\ &quot;
&quot;\

&quot;
i &quot;\ &quot;\

&quot;
&quot;\ i T l N f~\ &quot;^

&quot; A+ (7(X\ ytt+X X/A -fXX/A )+ D\ XX =0,

where -4, J5, &c., have the same meaning as in the last article.

In other words, if the X :
yu,

of three points be determined by the

cubic

^1 X3 + 3 XV -f 3 C \tf + D&amp;gt;

3 =
0,

then the condition that these three points should be on a right

line is

(AD - AD] - 3
(BC&amp;gt;

- B C) = 0.

The X : //,
of a point of inflexion we get by writing X =X&quot;=X

&quot;,

fjb
=

fj,&quot;

=
fju

&quot;

in the preceding equation, and we thus fall back

on the cubic

Ap* + 3J5X/4
2 + 3

&amp;lt;7XV + Z&amp;gt;X

3 = 0.

We might arrive at the same cubic in a somewhat different

form. From the general determinant form of the equation of

the line joining two points, it follows that for a unicursal cubic,
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in which we are given expressions for #, #, z in terms of a

parameter, the equation of the tangent at any point is

x
? y j

z

where the suffixes denote differentiation with regard to X or fi

of the expressions for x, y, or 2
5 and, in like manner, that the

condition that three consecutive points shall lie on a right

line is

x^

X
fifJL

= 0.

Thus, then, for the case of the cubic which we are con

sidering, the X : /a of the inflexions is given by the equation

b

=
0,

which may be seen (as Higher Algebra, Art. 169) to be identical

with the cubic already mentioned.

216
(c).

A node on the curve will arise when the same

point answers to two different values of the ratio X : //,.
If

\ : fi, X&quot; :
p&quot;

be two values answering to the same point, then,

no matter what other point X &quot;

:
//&quot;

we take on the curve, the

condition of the last article (that it shall be on a right line with

the two coincident points of the node) must be fulfilled. Thus,

equating separately to zero the parts in that condition multiplied

by X
&quot;, p!&quot; respectively, we have

t*&quot;
4 B

(X&amp;gt;&quot;
+ \

&amp;gt; ) + &amp;lt;7X X&quot;
=

0,

IL&quot;
+ c (xy + \v) + D** *

&quot; =
v,

and since, from the theory of equations, if the two values of

X : p, corresponding to the node be given by a quadratic

equation, that equation must be

x&quot; - X/A (xy + xy ) + ff\ \&quot; = o
;
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eliminating ju,V, &c., we get the quadratic, which determines

the values of the nodal parameter

A, B
,

S, G
,
D = 0.

In other words (see Higher Algebra, Art. 195), the quadratic

which determines the two values of the nodal parameter is

the Hessian of the canonizant cubic.

If in the condition of the last article we write X&quot; :
fjt!
= V : //,

we get the relations connecting the parameter of any point with

that of its tangential, and it will be observed that the factors

multiplying X
&quot;, ///&quot;

are the differentials of the cubic with

regard to X, /u.

216
(df).

In the preceding it has been assumed that the roots

of the canonizant cubic are unequal. To consider in the

simplest form the case where there are two equal roots let

x and y be two of the linear functions, which, expressed in terms

of the parameter, are perfect cubes; that is to say, let us

take x = X3

, y = ^
3

,
and if z =-

a&quot;A

3 + 3&&quot;XV + 3c&quot;X/A

a
4 ^V, the

canonizant cubic becomes a/3 (b&quot;/3

-
c&quot;a)

=
0, which will have

two equal roots only, on the supposition that b&quot; or c&quot;
= 0. In

this case we can, by linear transformation, bring the third

equation to the form z X2

yct,
and the cubic will be Z? = x2

y ; or,

in other words, it will have a cusp. Clebsch has shown

(Crelle, LXIV. 43), that in general the equation of the 3 (n 2)

degree, which determines the parameters of the points of in

flexion, will have a pair of equal roots for every double point

which becomes a cusp.

If the canonizant have three equal roots, the curve breaks

up into a right line and a conic.

SECT. V. INVARIANTS AND COVARIANTS OF CUBICS.

217. The equation of a non-singular cubic can always be

reduced to the canonical form

In this form x, y, z contain each implicitly three constants;

and these, together with the one expressed constant, make up
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ten, the number of constants, which, according to the test of

Art. 24, a form must contain if it be general enough to represent

any cubic. We shall presently shew how the equation of any
cubic can be reduced to the form just given. We may write it

(x+y-2mz) (cox + co
2

y - 2mz) (co

zx + coy
- 2mz) + (14- 8??i

3

)
z

3=
0,

where co is an imaginary cube root of unity. In this form it

is apparent that the line z joins three points of inflexion, and

the same thing is proved in like manner for the lines x and y.

Hence these three lines constitute one of the four systems of

three lines which we saw (Art. 174) can be drawn through
the nine points of inflexion

;
and we can foresee that the

problem to reduce the equation of any cubic to the canonical

form admits of four solutions.

The form here given is that which we shall generally use

in our investigation concerning cubics
;

but it is necessary

first to obtain the invariants for the equation in its general

form, which we write

*ax3 + by
3 + cz* + 3aj?y + 3tf

3 4 Sbjfx + Sbjfz

z
z

2

y + Qmxyz = 0.

218. We form now first the equation of the Hessian. The

second differential coefficients of the cubic, omitting the factor

6 common to all, are

la = ax -f a^y 4- o
3
z

; / = mx -f b
3y + c.

t
z

;

I = b
t
x -f by + b

3
z

; g = a
s
x + my + c

t
z

;

cz h = a.x + + mz.

* In Prof. Cayky s Memoirs the coefficients of the terms y-z, z-x, x-y, yz-, zx-, xy~,

are written respectively f, ff, h, i, /, k. In German Memoirs the variables are

usually denoted by xi. ov. j*3 . and the coefficients in question are written a,3 , 0331, no,

233&amp;gt; 3iu ai2- The first notation has greatly the advantage in compactness ;
the

advantage of the second is that each coefficient shews on the face of it to which

term it belong?. In formulae which we have much occasion to work with, the use

of suffixes is less convenient than a notation in which each coefficient is denoted by
a single character

;
but since the general equation of the cubic, is only used in the

articles immediately following, and there chiefly for purposes of reference, I have

thought the second advantage to be that which in this instance it was most important

to secure. The notation used in the text agrees with the German, replacing au , a.,

a33 by a
j
^ c

&amp;gt; respectively. On the same principle the coefficients of x3
, y

3
,
z3

, might

be written a
1? 2,

c3,
and were so written in the first edition. I now omit

suffixes in the case of these three coefficients, not only for brevity but ako to

diminish the risk of confounding any of them with one of the group of six coefficients.
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Forming then H= ale + Vfgh a/
a

lg* cff,

H is the cubic, the coefficients of which are respectively

b = la^ - bm* + &quot;2ml^ -
aj&amp;gt;f

-

c = ca
3
b
3

cm* 4 2mc^cl

-
3
c
2

2 -
32

3a
2
=

alc^ 2amb
3 4 ab^c2

- ba* 4 m*a
t

3a
3
= acl

t

- 2amc
t + ab

3
c

}

- ca* 4 m\ -

3b
1
=

lac^
- 2bma

3 + la^ - ab* + m*b
l

-

3b
3
=

bca^
- ^bmc

l
+ ba

s
c
2
- cb* -f m\ -

3c,
= cab

3
2cma

2 -!- ca
s
&

t

- ac* + m\ -

3c
2
= c5a

3 Vcml^ 4 ca
a
^
3 Z&amp;gt;Cj

2 + w2
c
a

6m = ale abc +^0+ ca& 4 2m8 -

As a particular case of the preceding, the Hessian of

+ 2
3 + 6w;r#2 = is - ra*

(aj

3 + j/

3 + z
3

) 4(1 + 2m
8

) XJ/2J
= 0.

219. We are also able to form the equation of the Cay-

leyan. This contravariant expresses the condition that the line

ax 4 $y 4 72 shall be cut in involution by the system of conies

Ua UZJ
Z7

8 ,
where

Z7
t
= a x* 4

&quot;bjf
4 c^* 4 Zmyz 4

U
a
=

ajc? 4 ^ y
2 4 c

8
s
2 4 25

3^ 4

Z7
8
= a

3
x2 4 &

33/

2 4 c z* 4 2c
2?/2; 4

The method of forming this contravariant is given, Conies
^

Art. 388a
;
and the result is there found in terms of the coeffi

cients of the three conies. Applying the formulae to the present

example, we find

P= Ao? 4 BF 4 Oy
s 4 3^2

a
a

/S 4 3^
8
a

&amp;lt;y
4 3^/8

2
a 4 3 3̂

/8
2

7

4 3 Ctfa 4 3 Crffi 4 6J/a^y,
where

-4 = Icm lc
v
c
z

cb
1
b
3

mb
s
c
z 4 &quot;b^c*

4 cf^
B = caw ca

2
a
s
- ac

v
c
2 ma^ 4 2

c
t

2
4 c

2
a
s

2

,

C= aim - ab
t
b
3
- la

za^ mb^ 4 b
9
a* 4 ajb*, **
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^Smb^ 4 c
9afa-+b^c^ 2

2
c
s

8

,

3 (7,=
- abc

z
-b

3 (7
2
= -abc^am

61= ac - (a5s
c
2 -f ^ + ca

8
- 4w 4- 4??i ^ + c

8
o
s 4- a8

- 3 (Ac
i

-

In particular, the Cayleyan of x* + y
3 + + Qmxyz is

7?i (a
3
-f /S

3 + 7
3

) + (1
- 4i3

) a^ = 0.

220. If in the contravariant just found we substitute for

a, /3, 7, symbols of differentiation with respect to
cc, y, 2 respec

tively, and then operate on the given cubic
Z7,

the result will

be an invariant (Higher Algebra, Art. 139).

This invariant, which we denote by S, is of the fourth degree
in the coefficients, and is

8 = abcm (bca-t
a

a -f cabfa 4- a5c
a
c
a)

772
(aZ&amp;gt;3

c
2
+ bc^ -f ca^)

+lc^+cfaa^w^

-^
It amounts to the same thing to say that the equation of the

Cayleyan may be written

We have explained, Higher Algebra, Art. 162, the symbolical

method by which Aronhold originally obtained this invariant

S] its symbolical notation being (123) (234) (341) (412), that of

its evectant, the Cayleyan, being (123) (a23) (a 31) (a!2). For

the canonical form S is m ??i
4

,
and since S vanishes when

m =
;

that is to say, when the equation is of the form

x*-\-y*+ z*= 0, it follows that S vanishes when the cubic function

equated to zero can be reduced to the sum of three cubes.
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221. When we have a quantic 17= ax
n +

by&quot;
+ cz

n
4 &c., and

a covariant V of the same degree ax
n
4

by&quot;
4- cz

n
4 &c., then if

we have any invariant of
7,
and if we form the corresponding

invariant of Z7+XF, the coefficients of the several powers of

\ will obviously be invariants. We learn hence that, in the

case supposed, from any invariant of U we can form a new in

variant by performing on it the operation a -r + b-jr-t c -7- 4 &c.
da do dc

Applying this principle to the cubic and its Hessian we can

from the invariant S derive a new invariant T of the sixth order

in the coefficients
; or, what amounts to the same thing, we can

obtain T by writing differential symbols for a, /:?, 7 in the

Cayleyan, and then operating on the Hessian. We thus find

for T the value

V- 6abc (a53
c
a+ &&amp;lt;&amp;gt;&+ cajbj

- 2Qabcm3+ IZabcm (5^

4 36m2

(Z&amp;gt;ca2
tf
3 -f ca&

- 24m (Sc&^g
5*

4- Icc^a* + cac^^ + caa
2
5
3

2 + ala^ 4- a&^c,
2

)

- 3 (a*W+ 1&amp;gt;\\*+c*a*b*) 4 18 (5cJlCla8
a

a+ cac
9
a

12 (bcc2a3
a* + I&amp;gt;cb

3
a

2a*+ cacfab*-}- caaj)fi*+ aba

12m3

(ab3
c
2 + Jc^ 4- ca^J

+ 12w8

(abtf 4 ac&amp;gt;8

a 4 Ja^ + lc^ 4- c&
8^ 4 ^5,

- 60m (abfac^ 4 Ic^czaz
a

9 4 cajifij)^

4- 12jw (aa8
J
a
c
8

a + aa
3
c
8
5
8

* + WgCA* +^^ + cc
i

4 6 (&3
c
2
+ lc^ + cflr^j) (a^ 4 rt

3
^

t
c
2 )

+ 24 (oJAV 4 acrfb* 4 ic
lClV + 5a. 3V + ca

3
a*b* 4 c&AV)

- 12 (aal)^ 4- fl^.^/^
3 4 bb&a* 4- W,^,

8 4 ccpj)? 4 cc
2^2

3

)

- 8m6 4 24?/i
4

(bfr + c
a
a

8 4- 3
&
3 )

- 36?
8

( 2
&
3
c

l
4 fl^cj

- 12m2

(ft^c.a. 4 c,a,a 8
&
8
+ 0.5,5^)

- 24m1

(bft + &amp;lt;V
+ .*V)

+ 36m
( fljl

&
8c, + &quot;A&amp;lt;0 (^A +% + aA) + 8(W 4 c.V + &amp;lt;V)

- 12
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For the canonical form this invariant reduces to 1 20?/i
3

8??^.

Its symbolical form is (123) (124) (235) (316) (456)
2
. We can

7 rn 7 rn

derive from the invariant T an evectant a
3

~j- 4 /3
3

-j=~ 4 &c. = 0.
da db

the coefficients of which it is needless to write at length. For

the canonical form, this contravariant, which we denote by $, is

(1
- 10??i

3

) (a
3 4 /3

3 4 7
3

)

-
(30m

2 + 24m5

) a#y = 0.

Every invariant of the cubic can be expressed as a rational

function of S and T. This can be proved in the same way as

the corresponding theorem is proved (Higher Algebra, Art. 215)

for a binary quartic, there being much resemblance between

the theory of the binary quartic and that of the ternary cubic.

222. The method of finding the equation of the reciprocal of

a cubic has been explained (Arts. 91, 188). We give the result

for the general equation, only writing at length, however, those

terms the form of which is really distinct. The other coefficients

may be obtained from those we give by symmetrical inter

change of letters.

a
6

{5V
- 6&c&

8c, 4 45c
2

3 4 4c&
8

&quot; -
3Z&amp;gt;

3

6a
5

/3 {-bc\ 4

}

4 3c - 2cc
8
a
3 -f

3
-f 4c&amp;lt;7

3
Z&amp;gt;

3

2
6ca

4 3
c
2

6c5
1

-f b (2

2a
3

yS
3

{- aJc
8 - 9^5,

-f cm (18^0,4-180^-24^) + 9c (a,^ + o^c,)

4 6w (^ 3
c
2

J

4 Ij?) 4 Ga^c, - 18J^c,
- 18a

a
c

t
c
t

f

},

ca^ 2acb* + ^
3
c
2

2
-f 2mbc*

4
6
s
-f 2c&//3

&
3
-

GcJ^Cj + 9c
a
c
2
^

1
+

0^- lla
8
5Af

},

cc
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4 ca

4 5 (abtf + acfc* + bc^a* 4 laj? 4 cbpf 4 ca^*)

- 8m4 4 4m2

(^c, -f C
2
a

2 4 o
8
J
8) + 18m (a8

J
8c, 4 a^cj

+ 4 (&.V + &amp;lt;V
+

&amp;lt;V)
- 19 (5/^,4 c^ah 4

8
&
.
J

,
c
i)l-

The contravariant just formed is the second evectant of T] that

is to say, the equation of the reciprocal may be written

d d o d _ d d8 -4a2

y3
-- +^.

a
3

db dc

4- + a^/Vc?c dm)

It has been mentioned, Art. 91, that the equation for the

canonical form is

a
6

+/3
6 + 7

6 -
(2 4 32m8

) (/3

3

7
3 4 7

3
a
3 4 a

3

/3
3

)

- 24m2

a/37 (a
3
4 & 4 7 )

-
(24m 4 48m4

) a*/3y = 0.

223. The invariants of a cubic may also be calculated by
means of the differential equations which invariants must satisfy

(Higher Algebra, Art. 143). For this purpose it is convenient

to arrange the equation according to one of the variables, and

to write it

rz* 4 3 (a x 4 a
ty) z* 4 3 (5 aj

f 4 ^\xy 4 I
9y*)ss

4 (cn
x3 4 Bc^y 4 3c

a&amp;lt;

&amp;lt;r?/* 4 c^
3

)
= 0.

If we desire then to form an invariant of any given order and

weight, the literal part may be written down without calculation.

For instance, we can foresee that 8 is of the form

r (c*b) 4 (cV) 4 (cVa) 4 (Z&amp;gt;

4

),

where by (c
2

b) we mean a function of the second degree in the

c, and of the first in the b coefficients
;
and we know also that

it must be an invariant of that order of b x* 4 &c., c #3 4 &c.,

considered as a binary quadratic and cubic. The theory, there

fore, of binary quantics enables us to foresee the form of this

term. Similarly for the others. And the invariant must

further satisfy the differential equation

d f d d\ / , d d d\
r 4 26*^-4^ -5T 4 3 -y-425, -=- +b2

-r =0.
da \ db

Q

1

dbj \ dc
Q

J

dc^
*

dcj
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In this way we find S to be

-r(c*ZO + (cV)+(c&
2

a)-(5
2

^
where (c

&amp;lt;2

3)
=

(c/2
-

c,

2

) \ - (cQ
c
3
-

Cl
c
a) \ + (ct

c
8
- c

2

2

)
b
Q

(cV) = (c c
2
-O &amp;lt;

-
(c c

s
-

Cl
c
t) a,a + (cA -

c,&quot;)

a
2

,

(c& a)
= cA*

- (W +
3&amp;lt;vO \\ + (

c
2 -f a

t
c
t ) (2V + b

Qb,)

In like manner T is

r
2

(c
4

J
- 6r (c ia) + 4 (cV) + 4r (c

2
^
3

)

- 3 (cW) - 12 (6
2

) (c J&quot;a)
+ 8(6

2

)

9

,

where (c
4

)
= cV -H 4c c

a

8 + 4c
3
c

t

3 -
Sc/c,*

-
Bc^c.c.,

(c
3

^a)
= 5 (c c

3

2 + 2c
2

3 - 3c
t
c
2
c
3)

( A

2 (2V
- 6

ftJ

ftV) = o V, - 2c c
t (6,Vo + 2ftAO

- 2c c
2 (&M* + 2W - 10&A., + *V

+ 2c c
3 (45AV +*.* - 6V oi

-3%
4 Cl (8&X + 9

Vo&quot;
- l 2^Aot + ^A,*)

& -* 2& - 6i
* - 6

9 -

or, we may write,

4 c^a
8

6* - 8

where (c&a)
= C

3
a 6 - c

2 (afa + 2a
5,) + c

t (A + 2rt
i
S

i)
- c A
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224. If the curve have a double point, this point may be made
the origin ;

when we shall have r, ,
a

L
all =

;
S reduces to

-
(&*)

a and Tto 8 (b
2

)

3

or, in the notation of Art. 217, 8 reduces to

-
(asb3

- m2

)

2 and T to 8
(aj&amp;gt;3

- m2

)

3
. We see then that T2 + 64

3

vanishes when the curve has a double point. This, therefore, is

the discriminant, as will afterwards be proved in other ways.
If the curve have a cusp (b*) vanishes, and therefore so do

both S and T. For the canonical form, the discriminant

225. In the articles next following we use the canonical

form. It has been proved, Art. 218, that the equation of the

Hessian of %3 + y
3 + z* 4 6mxyz = Q is of the same form with

a different value of m, and hence that the system of three lines

xyz passes through the intersection of the curve and its Hessian,

as was otherwise shown, Art. 217. It appears also that the

equation of the Hessian of the Hessian is of the same form,

and hence that the points of inflexion of a cubic are in

flexions also on its Hessian, as was otherwise proved, Art. 173.

Any equation of the form a (x
3 4 y

z 4 z
3

) 4 ftxyz can obvi

ously be reduced to the form XU+ pH 0. In fact we have

Xs 4f 4 z* 4 bmxyz = U,
- m2

(x
3 4 y* -f z

3

) 4(1 + 2w 3

) xyz = II.

Solving, (1 + 8m3

) (x
3 4/ 4 z

3

)
=

(1 4 2m3

)
U- Gmff,

whence (1 4 8m3

)
X = a (1 4 2m3

) 4 /3m
2

, (1 4 8m8

) /*
= - 6ma 4 /3.

Let us now form the equation of the Hessian of XU+ 6/zJ7;

that is to say, of

(X
- 6/Am

8

) (x
3 4 y

9 4 z
3

) 4 6 [\m 4 /* (1 4 2m
3

)} xyz = 0,

and the result is

-
(X
-

6/*m
2

) {Xm 4^(14 2m3

)}

2

(x
3 4 y

8 4 z
3

)

+ [{(X
- 6/zm

2

)

3 4 2 {Xm 4 /* (1 4 2m3

)}

3

&amp;gt;?/z
=

;

and, by what has been just proved, this is of the form

X 17+ pH= 0, whence

(1 + 8m3

)
V = -

(1 4 2r&amp;lt;) (X
- 6/^m

2

) {Xm 4 /* (1 4 2m3

)}

4 m2

[(X
-

Gyum
2

)

3 4 2 {Xm 4 /a (1 4 2m3

)}

3

],

(1 4 8/7i
3

) / = 6m (X
- 6/W) {Xm 4^(14 2m3

){
a

4 [(X
- 6/*m

2

)

3 4 2 {Xm 4 /A (1 4 2m
3

)}

3

].
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Expanding, and remembering that we have

S = m- ?n\ T= 1 - 20m3 - 8m6

,

these values may be written

V = -
2SV//,

-
TA,//,

2 + 8SV, /*
=

&amp;gt;~

3 + 12/SV + 2
7&amp;gt;

8
.

The values of V and p being expressed in terms of the in

variants, the expressions just given will hold good, no matter

how the equation be transformed, and therefore the Hessian

of XU+ GyLtZT, where U and H have the general values of

Arts. 217, 218 is V U+ p H, V and yu/ having the values just given.*

Thus when X : /// is given, we have a cubic to determine

the ratio X :
yu, ;

that is to say, there are, as has been already

stated, three cubics which have a given cubic as their Hessian.

Since, as a particular case of the foregoing, the second

Hessian

it follows that T=0 expresses the condition that the second

Hessian shall be the original curve. If $=0; that is to say,

(Art. 220) if the equation is reducible to the sum of three

cubes, the Hessian coincides with its own Hessian, and there

fore consists of three right lines, as the next article will show.

226. The Hessian meets a curve in the points of inflexion
;

that is to say, in the places where three consecutive points of

the curve are on a right line. If, then, the curve be not a

proper curve, but a complex, including a right line as part of

it, every point on that line is a point on the Hessian; and

therefore when the curve consists of three right lines, these lines

constitute the Hessian. This may be verified by forming the

Hessian of xyz = 0. Thus, then, the system of conditions that

the general equation shall represent three right lines is written

down by expressing that the coefficients in the equation of

the Hessian (Art. 218) are proportional to the corresponding

coefficients in the equation of the cubic, viz.

a_b_c_a? = a
j==

b
1 = b

3 ^c1 = c
i = m &amp;gt;

a
~

I
~~

c
~

a
t

~
a

s

~~

b,

~
b
3

~~

c,
c
2

~
m

a system of forty-five equations, on the face of them equivalent

* This was proved by direct calculation in the first edition, and it was thus

that the values of S and T were there obtained.
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to nine, but which can be really equivalent only to three in

dependent equations. For (Conies, Art. 78) only three con

ditions are necessary in order that an equation of the third

degree, containing nine independent constants, should represent

a system of three lines ^involving only six constants. It may
be verified, by means of the values (Art. 218) of a, b, &c., that

the forty-five equations actually are equivalent to three, as has

been stated.

227. The Hessian of XU+ GyctZTbeing VZ7-f p H, the former

will represent three right lines if =
; which, introducingX X

the values (ArL 225) for X
, ///, gives us the equation

X4 + 24#xy + 8 T\p? - 4S/SV
4 = 0.

This being a biquadratic, we see that, as has been already more

than once stated, four systems of three right lines can be drawn

through the intersections of 7 and H. This biquadratic, solved

by the ordinary methods (see Todhunter s Theory of Equations,

Chap, xiii.), gives

where
x , 2 ,

t
a
are the roots of the equation

t* + 128P + 8S*t- T =
0, or

(t + 4#)
3 = T*

Thus, then, the reduction of the equation of any non-singular
cubic to the canonical form can be effected. We first form

the equation of its Hessian (Art. 218), and calculate the values

of the invariants S and T (Arts. 220, 221). The present article

then shows how we can form an equation X U+ 6jj,H= 0, which

shall be resolvable into three linear factors. By solving a

cubic equation we can find these factors X
) F, Z. And then

comparing the given equation with the form

we can determine
, &, c, ra, by equations of the first degree.

Ex. 1. Calculate the invariants of the cubic

ax (if
- z2) + by (3

2 - a:
2
) + cz (x*

- /) = 0.

228. Of the four tangents which can be drawn from any
point of a cubic to the curve, two can coincide only when the
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curve has a double point, since a cubic has no double tangents.

The equation of the four tangents is (Art. 78) A2 = 4A Z7,
where

if U= x 3 + y
6 + z

3 + Gmzyz,

A = 3 {x (x* + 2myz) + y (y* + tonzx] + z (z
2 + 2mxy)},

A = 3 {x (x
2
-f 2my z

) + y (y* + tonz x
}
+ z (z* + 2mxy )}.

Making z = Q in A* = 4A 7,
we get the quartic, which determines

the four points in which the tangents meet the line 0, viz.

3 (x x
2 + y y

z
-f 2?nz xyY=^ (x

3

-\-y

3

) {x (x
z

-\-tony z] +y(y *+2mz x )},

or (x
* + Smy z) cc

4
4- 4

(?/

a mz x) x
3

y
- 6 (xy 4 2wV 2

) ajy + 4 (x
* - my z

} xy
5 + (y

2 + Qmz x
) y

4 = 0.

From what has been said it appears that the discriminant of

this quartic must contain as a factor the discriminant of the

cubic. Now remembering that x 3 + y
3 + z

3 + Qmx y z = 0, we
find for the invariants s and t of the quartic

5 = 12
(?7i

4 -
m) z

* = - l2z
4

S,

t = -
(1
- 20??i

3 - 8m6
) z

6 = - z
G
T.

/0~
Hence the discriminant of the quartic, 27

5 -s3

,
is 27z *

(2
TO
+64/S

13

);

and it is easy thence to see that the discriminant of the cubic is

229. The anharmonic function of the four points determined

by the quartic of the last article evidently is the same as the

anharmonic function of the pencil of four tangents. Now if the

roots be a, /S, 7, S, the anharmonic function of these roots is

any one of the mutual ratios of the quantities (a /3) (7 8),

(a-7)(/3-S), (a -5) (-7). We can form by the method

of symmetric functions the equation which determines these

quantities; and if the coefficients of the quartic be a, 4&, 6c,

4d, e, we find cfif
- 12asy+ 16 \/(s

3 - 27 1
2

)
=0. The mutual

ratios of the roots are not altered if we increase them all in the

same proportion, by substituting, say ay = 2zs~j when we see

that the anharmonic ratios are the mutual ratios of the roots of

Thus, then, the anharmonic function depends solely on the ratio

T2
: /S

3

,
and is independent of the point whence the tangents



200 INVARIANTS AND COVARIANTS OF CUBICS.

are drawn (Art. 167). If T=0, the equation just given reduces

to z* 3z -f 2 = 0, of which two roots are equal ; one, therefore, of

the ratios becomes unity, and the anharmonic becomes an

ordinary harmonic ratio. If $=0, the equation in y wants

its second term and becomes of the form y
z m3

,
whose roots are

of the form m, mo&amp;gt;, mu&amp;gt;\
where CD is an imaginary cube root of

unity ]
and the common ratio of the roots is co. This has been

called equi-anharmonic section.

230. By the help of the canonical form can be calculated, as

in Art. 225, the invariants 8 and T of X U+ 6//,ZT, or of

(X
-

Gfim
2

) (x
3

-f- y
8
4- z

z

) -f 6 (wX + p (I + 2m3

)} xyz,

and we find, without difficulty,

4 240
2rxy - 48 (ST

2

-f 96
4

) X//,
5 - 8 (12S

3T+ T3

) p*.

And
if, by the help of these, we form the discriminant R or

T2 +
64/S&quot;,

we find

E (XU+ fyH) = E (X
4 + 24 Sxy + 8 TXyLt

3 - 48#y)
3

,

where the factor multiplying E is the cube of the quartic function

of X, /A,
in Art 227

;
as might have been foreseen, since if the

cubic U have not a double point, the only cubics with double

points which can be drawn through the points of inflexion are

the four systems of right lines. The values just given for the

$and T of \U-\-6jmH are covariants of this quartic function

of X, fji differing only by the numerical factors 4 and 2 respec

tively from the Hessian, and the covariant called J, (Higher

Algebra, Art. 209) ;
and the coefficients of 7 and ^Tin the value

of H(\U+6/jiH) differ only by numerical factors from the

differentials of the same quartic with respect to X and
yu-.

All covariant cubics can be expressed in the form XU+ pH,
as is illustrated by the following examples :

Ex. 1. If a, 6, c, &amp;lt;fec. denote the second differential coefficients, and A, B, &c
denote be f2

, &c., as Art. 184, and if a
, V, A , ,

&c. denote the corresponding

quantities for the Hessian then

Aa + Bb + Co + 2Ff +
&amp;lt;2Gg

+ 2J5TA =
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is a covariant cubic. &quot;We use the values

a x^fmx; A = yz mtx2
,
F= m-yz mx-,

?&amp;gt;
= y, 9 = y] B = zx- m*y*, G = m-zx - my*,

c-z, h = mz; C-xy- mtz2
,
H = m?xy - mzz

,

a ~- 6m*x, f- (1 4- 2m3
)x ;

A - 36m*yz
-

(1 + 2m3
)
2*2

,
F = (l+2m

3
}V+6m2

(l+2;?i*)sr
2

,

C = 36m*xy-(l+2m3
)-z

2
,
3 =

Hence the covariant in question is found to be 2SU. It might hare been

foreseen that it could only differ by a numerical factor from SLT
,
for it is a covariant

of the fifth degree in the coefficients
; and, therefore, if it be of the form aU + bff,

a must be of the fourth, and b of the second degree in the coefficients
j
but there is

no invariant of the second degree, and S is the only one of the fourth.

Ex. 2. Calculate in like manner the covariant

A a + B b + C c + 2Ff+ 2G g + 2H h. Ans. - TU + 12SH.

231. The order in the variables of any covariant of a cubic

is a multiple of three
; and, generally, if the order of any ternary

quantic is a multiple of three, so is that of every covariant.

This appears at once from the symbolical method explained,

Higher Algebra, Chap. XIV., for every symbol (123) diminishes

by three the order of the function on which it operates, and

in the symbolical method the order of the function operated on

is a multiple of that of the given quantic.

It is easy to see that the equation of every cubic covariant

to x3 + y
3+ z

3 + bmxyz = is of the form a
(a:

3 + y
3
+z

a

)+pxyz=Q,

which, as we have seen, is reducible to the form \U+ ^H= 0.

In order, however, to express covariants of higher order, it is

necessary to have a third fundamental covariant. That which

we select may be defined as follows : consider the polar conic of

a point ax2 + &c., and the polar conic of the same point with

regard to the Hessian ax2 + &c., then there is (Conies, Art. 378)

a conic covariant to these two, viz.

(BC
1

-f B C- 2FF
)
x* -f &c. =

;

and the condition that this conic passes through the original

point gives a covariant of the cubic. Since B, C, &c. contain

the variables each in the second degree, this covariant is of the

sixth degree in these variables
5

and since 2?, C are of the

second, and B
^
C of the sixth degree in the coefficients, it is

of the eighth order in the coefficients. The actual value of this

covariant for the general equation has not been calculated, but

D D
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using the values for A, B, &c. given in tbe last article, we
find that for the canonical form the covariant is 40 where is

3ms

(1 + 2m3

) (x
5 + tf +

8

)* -m(l- 20m8 - 8m6

) (^ + y* + z*} xyz

- 3m2

(1
- 20m3 - Sm6

) otyV - (1 + 8ms

)

2

(?/V -f *V + a3

/),

or m3

(2 + m
3

)
U* - m (1 + 2m3

)
UH

There are two other eovariants of the same order in the variables

and in the coefficients as 0, which had equal claims to be

selected as the fundamental covariant of the sixth order. The
first represents the locus of a point whose polar line with regard
to the Hessian touches the polar conic of the same point with

regard to the cubic, or

AL * + BM&quot; + CN12 + 2FMN + 2GNL + 2HLM ,

where Z
,
M N

,
are the differential coefficients of the Hessian.

This covariant is expressed at once in terms of by the help

of the formula (Conic*, Art. 381, Ex. 1) QS -F. We are

here to write for 0, -2SU; for
, 6H; for F, 40 ;

and thus the

covariant is found to be 4 (0 -1- 3SUH}. In like manner there

is a covariant which represents the locus of a point, whose

polar with respect to the cubic touches the polar conic of the

same point with regard to the Hessian, or

AU -{- B M* + (7 iY
2 + 2FMN+ 2 G NL + 2HLM = 0.

Calculating this by the formula $ F (Conies, Art. 381), and

writing for
,

- TU+ 12SH; for 8, U; and for F, 40, the

covariant in question becomes

232. Every covariant of a?
3 + 3/

a + z* + Gmxyz will plainly be

a symmetric function of x, y, z, and therefore capable of being

expressed in terms of x3 + y
3
-f 2

3

, xyz, y*z* + sV + x*y
3

;
and

therefore in terms of
Z7, H, 0, together with the invariants.

But a covariant is not necessarily a rational function of Z7,

H, 0. In fact, we can, as at Higher Algebra, Art. 223, form

a covariant of which the square, but not the covariant itself,



INVARIANTS AND COVARIANTS OF CUBICS. 203

is a rational function of these quantities. Let the coefficients

of the cubic

=
0,

be
/&amp;gt;, q, r

; then, by the theory of cubic equations, if / be

(1 + Sin*)* (y*
- s

3

) (z
3 - x3

) (x
3 -

y*), we have

J*=P*f + 18W - 27/-
2 - 42

3 -
4rp*.

But pj q, r are each immediately expressible in terms of

Z7, 17&quot;, 0, and substituting their values in the equation just

written, it becomes

4 (- 4
3 U* + 2STIFH- 728* IT H** - 1STUH5 + IOSSH4

)

5H- 11S*TU*H* -

The identity just given may be written in the form

40 (0 + X U*) (0 + pU 2

)
= J 2 + H&,

from which it appears that the system (0 + \U*} (0 + pU*) is

touched by H ;
that is to say, H either touches each of the curves

represented by the three factors, or passes through the inter

sections of every two. But 0, U and ZThave no point common
to all three, therefore must be touched by H. The curve J
which passes through the points of contact consists of the

harmonic polars of the nine points of inflexion. We add an

example or two to illustrate the possibility of expressing all

other covariants in terms of
Z7, H, 0.

Ex. 1. To obtain the equation of the nine inflexional tangents. It was shewn

(Art. 217) that the inflexional tangents are U - (1 + 8m3
}
x3

,
U - (1 + 8??i3)^

3
,

U (1 + 8m3
) x3

. Multiplying together these three factors, we have

73 _ (i + 8m 3
) (x

3 + y
3 + z3

)
Z72 + (1 + 8/ 3

)
2

(t/
3z3 + z3x* + x3^) U- (1 + Sm3

)
8*3^3 = 0.

Substituting for (1 + 8m 3
) (x

3 + y* + z3), (1+ 8w3
)
2
(jfz

3 + z3x3 + x3^) and (1 + 8m3
) xyz

their values previously given, we find, for the required equation of the nine tangents,

$SU*H-H*- 79 = 0,

the form of the equation showing that H and 0, which have been proved to touch

each other, have the nine tangents for their common tangents.

Ex. 2. To find the equation of the Cayleyau in point coordinates. We have to

form the reciprocal of the tangential equation of the Cayleyan, viz. (Art. 219)

m (a
3 + /3

3 + y
3
) + (1

- 4ras
) a/3y = 0.
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The reciprocal of this is formed by Art. 222, and the quantities x* + y* + z8
,
&c.

then expressed in terms of Z7, //, 0. The resulting equation of the Cayleyan ia

4/S0 - TH* - 16S2UH= 0.

233. In like manner every contravariant of the cubic can be

expressed in terms of three fundamental contravariants
;
and for

these three we may employ the three already mentioned, viz.

the evectants of S and T (Arts. 219, 221), which we have called

P and Qj in terms of which every contravariant cubic can be

expressed, and the reciprocal F (Art. 222). We can, as in

Art. 230, form the invariants of XP+ pQ, which for the canonical

form is

{m\+ (1
- 10m3

) fjk] (a
3

+/3
3+ 7

8

) -f {(1 -4m
3

)
X-

6w&amp;gt; (5 -Km
3

)] a/fy,

and we find

= (1925
3 - T2

)
X4 + 7685*!F\V

-f 216 (35T
7 * - 6454

)
XV + 216 (T

3 - 64 TO3

) X//

6 + 288 (55*T* - 19255

+ 540 (35T
3- 32054 77

) \y+ 540 (T
4- 4485&quot; I

7

&quot;) \y
- 19440 (75*T

8 - 6455

T) \y
- 11664 (35T

4 - 325* T* + 20485 7

)

- 5832
(
T 5

+ 40/S
3T 3 + 2560&amp;gt;S

6

T)

725 A.y

and, as in Art. 230, the quartic and sextic functions of X, ^
which occur in the values of S and T are the covariants of the

quartic function whose cube occurs in the value of R.

Again, H(\P+fjiQ)

-f 1 08 T 2 - 1653 P

the quantities multiplying P and respectively being the differ

entials with respect to /* and X of the same quartic function.

234. In like manner we can form the P and Q of XU+ Q^ffj

and we find

P (XU+ GpH) = PX3 + &amp;lt;2XV - 12&PX/*
2 + 4 (SQ - TP) //,

Q (\u+ ^H) = $x
5 + 605P\v - sorpxy - iorcxy

4 120 (2&Q-STP) X/*
4 + 24 {ST# - (T

2 + 24&amp;gt;S

3

) PJ /A
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Now if we denote by s and t the S and T of

as given Art. 230, these values differ only by the factors

3 (T* + 64
3

)
and (T* + 64

3

) respectively from

(48S
2P+ TQ)

So again, forming the Pand Q of \P+ pQ, the results are

P(XP+ fiQ) =X
3

(8S
2 Z7- 2!ff

) + 18X&amp;gt; (STU+ SS*H)

- 64/S
3

) 5}
-

324/i
5

{(T
4 + 24T 3 3 + 512

6

)
Z7- 6ST(T* + 128/S

3

) ^},

and if we now write 5 and Z for the S and T of XP+yttQ, as

given Art. 233, these values differ only by factors from

(SS*U+ 1STH)^+ (TU-^SH) ^- ,

and (48S
2U+lSTR)~ + (

TU- 2SH)~ .

To these formulae may be added the reciprocal of XU+ 6/j,H,

which is

(X
4
+ 24/Sxy + 8 r\yu,

3 - 48/SfV) F- 24yLt (\
3 + 2

2&amp;gt;

3

)
P 2

-
24/.

2

(X
2 - 4/V) ^G -

8A/*
3

g
2

,

and of \P+/j,Qj which is

4 {\4 + T\3

fj, + 72&amp;gt;S

2XV + lOS^TX/^
3 + 27

(
T 2 - 16# 3

) /t
4

)

108 (T
72 - Gi^X^

3 - 3888 TOV} -#
2

235. We next mention a useful identical equation. If in a
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cubic U we substitute x + \x, y + 7u/ ,
z 4- Kz for #, y, z, let

the result be written

that is to say, let 8 and P denote the polar conic and polar line

of xy z with respect to Z7; or, for the canonical form, let

S=(x* + 2myz )
x -f (y

2 + 2mzx
) y + (z* + Zmxy )

2
,

P= (x
* + 2my z

)
x 4 (y* + 2mz x) y + (z

z 4 2mxy) z.

Similarly, let the result of a similar substitution in H be written

H+ 3XS 4 3X2n -l- XlET,

that is to say, let S and n denote the polar conic and polar line

of xy z with regard to the Hessian
; then, by the help of the

canonical form, we can verify the following identical equation

3 (8U - SP) =H1 U- HU .

It follows hence, that when xy z is on the curve, and therefore

U =
0, the equation U may be written in the form

#n-2P=o.

From this form the following consequences immediately
follow :

(a) The lines P, IT intersect on the cubic; that is to say,

the tangential of the point xy z, or the point where the tangent
P meets the cubic again, is the intersection of P with n, the

polar of xy z with respect to the Hessian (see Art. 183).

(&) The points of contact of tangents from x y z to the

cubic, which are known to be the intersections of S with U^ are

also the intersections of S with 2, the polar conic of xy z with

respect to the Hessian.

(c) The equation $IT-SP=0 is that which would be

obtained by eliminating an indeterminate between S-\- #2 = 0,

P+ 6H = 0. The first denotes a conic through the intersections

of $, 2 ;
the second denotes the polar of xy z with regard to

the same conic. Hence the given cubic may be generated as

the locus of the points of contact of tangents from a point xy z

to a system of conies passing through four fixed points.

(d) If $+02 denote two right lines, P+6U obviously

passes through the intersection of these lines
;

this intersection
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is therefore a point on the cubic, and P+ On the tangent at it.

Hence the four points of contact of tangents to the cubic from

x y z form a quadrangle, the three centres of which are

on the cubic, and are the points cotangential with ocy z

(see Art. 150).

(e) If we consider the intersections of the curve and its

Hessian by any line, for instance, 3 = 0, the identity of this

article gives us

a&amp;gt; ba = 3 (a.^
-
b^J,

that is to say, the invariant P of the two binary cubics vanishes.

Hence, again appears that the Hessian meets the curve in its

inflexions. For since P 0, the eliminant of the two binaries

is Q (Higher Algebra, Art. 200) ;
therefore at points of

intersection u + \v includes a perfect ,cube.

236. I have used this identical equation (PhiL Trans., 1858,

p. 535) to form the equation of the conic through five con

secutive points on the cubic. Since S touches the cubic, and

P is the common tangent, the general equation of a conic

touching U at xy z is SLP=0, where L ax -f jSy + 72 is

an arbitrary right line. Now by means of the identity estab

lished, the equation of the cubic may be written in the form

Hence, the four points where 8 - LP meets the cubic again are

its intersections with 2 - LH and if the latter conic pass

through x y z
,
the former will pass through three consecutive

points on the cubic. But on substituting x y z for xyz, we
have 2 = FT =H

,
and the condition that 2 LU should pass

through x y z is L = 1.

Next, in order that S LP may pass through four consecutive

points, 2 LH must have P for a tangent at the point xy z .

Now the tangent to 2 LU (being the polar of xy z with

respect to this function) is

or (since L =
1, and IT =H

}
is n - H L, and since this is to be

proportional to P, we have L QP-\
JT&amp;gt;

H.
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The general equation, therefore, of a conic through four

consecutive points is

_0P*__L

and 2-fftl--gnVO
Jd.

passes through the two points where the former conic meets the

cubic again, the equation of the cubic being reducible to the

form

n
(#

-
6&amp;gt;p

2 - i pn\ = p
(2

-

237. Since these two conies have P for a common tangent,

it will be possible, by adding the equations multiplied by suitable

constants, to obtain a result divisible by P, and the quotient

will represent the line joining the points where the conic meets

the cubic again. It is necessary then to determine
/-t,

so that

P&+ 2
jf,
n2

may be divisible by P, which we do by equating

to nothing the discriminant of this quantity. Now this discrimi-

nant when calculated will be found to be jj?H + 4/u,

2

-=p
. This

40
quantity, therefore, will be divisible into factors if

ytt
= -=

,

and since one of the factors is P, if we denote the other by M,
we have

-~n &amp;gt;2

By the help of this equation, the equation of the cubic given at

the end of the last article is transformed to

The form of the equation shews that IT -f fjuP is the tangent at

the tangential of the given point on the cubic, and that M - IT

passes through the second tangential of the given point (see

Art. 155).
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238. In order that the conic may pass through five con

secutive points, the coordinates a/, y, z must satisfy the equation

The only difficulty is to determine the result of substituting the

coordinates x, y, z in M. Now if we differentiate with regard
to X, y, or 2, the equation

and substitute #
, y ,

z for #, ?/,
z in the result, observing that

dS dP dV n dfl ,

-y-7 = 2 -
7 r . -,7= 2 -^-7 . we have M = 2ft* and hence the

dx dx dx dx

result of substituting x y z for ar?/2 in

40
is

jit

- ^^T = 0, and since p has been found to be =
&amp;gt;,, a ,H

40
We have 9 -

,
and the problem is completely solved.

239. We next mention another general form to which the

equation of a cubic may be brought, viz.

ax3 + %3 + cz
3 + du* = 0, where x + y + z + u = Q.

The polar conic of any point x y z u being

ax x* + ty y* + cz z* + duu* = 0,

the polar conic of the point for which x =
0, y =

0, is a pair of

lines passing through the point u = 0, 3 = 0, &c.
;
and hence it

appears that the points xy, zu
; xz^ yu xu, yz are pairs of cor

responding points on the Hessian. The form just written

contains implicitly eleven constants, and is one to which the

general equation of a cubic may be reduced in an infinity of

ways. The values of the invariants for this form are S- abcd
y

T= Vc\T
2 + cW+ tfcfV+ a*bV- Zabcd(ab+ac+ad+bc+cd+db).

The discriminant is formed from the three equations got by

differentiating with respect to #, y, z respectively, viz.

EE
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whence we have
a?, y, z, u respectively proportional to the

reciprocals of V()j V(&)&amp;gt; V(c), *J(d). Substituting, these values

in x + y 4 z 4 u 0, we have the discriminant in the form

*J(bcd) 4 *J(cda) 4 V(&amp;lt;fa&) + V(&c) = 0,

which cleared of radicals
is, as before, R = T* 4 64$s = 0.*

240. We conclude this chapter with a few remarks on the

case where the cubic breaks up into a conic and a right line.

If a curve have either two double points, or a cusp, not only
does its discriminant vanish, but also the functions obtained by

differentiating, with respect to any of the coefficients of the

original equation, the general expression for the discriminant

in terms of these coefficients. See Higher Algebra, Arts. 103, 113.

Now the expression for the discriminant of a cubic being of

the form T* 4 64$ 3 =
0, its differentials are of the form

,da da db

If the curve have a cusp, we have $=0, T=0 (Art. 224), and

all these differentials vanish in conformity with the theory. If

the curve have two double points, that is to say, if the cubic

break up into a conic and right line, we have the equality

of ratios

da da db db dc dc

These equations if written at length would form a system of

equations, each of the eighth order in the coefficients, which are

the system of conditions that the ^general equation of the

third degree should be resolvable into factors.

241. There is another form in which the foregoing conditions

may be written. In the first place we remark, that since a double

point on a curve is also a double point on its Hessian, the

coordinates of such a point satisfy the equations got by differen

tiating with respect to #, y, z, the equations both of the

* For the other covariants and contravariants when the equation is written in thia

form, see Phil. Trans. 1860, p. 252
;
and for some remarks on the method of forming

invariants, &c., when the equation has been written with an additional variable con

nected by a linear relation with the original variables, see Geometry of Three



INVARIANTS AND COVARIANTS OF CUBICS. 211

curve and of the Hessian. In the case of the cubic, these six

differential equations are all of the second degree, and we

can linearly eliminate from them the six quantities #2

, ?/*,
z
2

,

ye, zxj xy, so as to obtain the discriminant in the form of

the determinant

c*

m, a , a.

m = 0.

We have seen also (Art. 226) that the conditions that the curve

should have three double points are expressed by taking any
of the first three rows, and the corresponding one of the second

three rows, and then equating to zero the determinant

formed with any two columns from these rows. So now in

like manner the conditions that the curve should have two

double points are expressed by taking any two of the first

three rows, and the two corresponding rows of the second

set, and equating to zero the determinant formed with any
four columns from these rows. In order to prove this it is

enough to observe that, as we shall show in the next article, if

U= PF, where V represents a conic, and P is ax + $y + 72,

then the Hessian of U is of the form XZ7+/iP
3
. Consequently

we have

whence

dH
-j-=^-j-4ax dx

8 -
dx

dH
-=-
dy

dU
-=- 4
dy

dH
dy

-rdx -r
dy

shewing that the differentials of H and U, with respect to x

and y, are connected by a linear identical relation, and there

fore that the determinant formed with the coefficients of four

corresponding terms in these equations vanishes.

242. The Hessian of PZ7, where P denotes the right line

ax + @y -f 73, and U is a function of any degree, may be found

in various ways. The second differential coefficients of PU are
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Pf+{3N+yM,
Ph + a.M+ @L, where Z, M^ JV, as before, denote the first, and

a, b, &c. the second differential coefficients of U. Using these

values in forming the equation of the Hessian, and reducing by
means of the equations of homogeneous functions

(n \) L = ax -\-hy + gz, &c.,

we get, for the Hessian of PU,

^?P*H--&quot;-FPU,
(tl
-

1) 71-1

where F denotes the quantity (be-f
2

)
a
2 + &c., Art. 184, which

geometrically represents the locus of points whose polar conies

touch the given line.

More generally the Hessian of UV is found by the same

process to be

-!) IPR ,
, (n + n -l) ,

)

2

(-!)&quot;

urw,

where 0, ,
as at Conies^ Art. 370, denote (bc-f

2

)
a

(b c f
12

)
a + &c., and W denotes the covariant

The form just written shews that the intersections of
Z7,
V are

double points on the Hessian, the tangents at any such point

being the tangents to ZJand V respectively.*

* On the general theory of ternary cubic forms, see Aronhold s Memoirs, Crelle,

vol. xxxix., p. 140, 1850, and vol. LV., p. 97, 1858; Professor Cayley s &quot;Third

and Seventh Memoirs on Quantics,&quot; in the Philosophical Transactions, 1856 and

1861, and Clebsch and Gordan s Memoirs in the Mathematische Annalen, vol. I.,

p. 56, 1869, and vol. vi., p. 436, 1873
;
also Gundelfinger, vol. iv., p. 144, 1871.
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CHAPTER VI.

CURVES OF THE FOURTH ORDER.

243. IT will be remembered that we have classified curves

of the third order by combining a division founded on

characteristics unaltered by projection, with a division founded

on the nature of their infinite branches. The same principles

of classification are applicable to curves of the fourth order,

or, as we shall call them, quartics but the number of

species is so great, and the labour of discussing their figures

so enormous, that it seems useless to undertake the task of

an enumeration. It will be sufficient here generally to direct

attention to the principal points that must be taken into

account in a complete enumeration. A quartic may be non-

singular having no multiple point ;
or it may have one,

two, or three double points, any or all of which may be

cusps. In this way we have ten genera, of which the

Pliickerian characteristics and the deficiency (Arts. 44, 82) are
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arising from the coincidence of nodes and cusps, which have to

be considered.

1. Two nodes may coincide, giving rise to the singularity
called a tacnode / this is, in fact, an ordinary (two-pointic)

contact of two branches of the curve (see p. /tff). It is to be

noticed that the common tangent counts twice as a double

tangent of the curve
; thus, supposing that there is not (besides

the tacnode) any node or cusp, the curve belongs to the

genus IV., and its characteristics are as stated above
;
but 8 = 2

means the tacuode, and T = 8 means that the double tangents
are the tangent at the tacnode counting twice, and 6 other

double tangents.

2. A node and cusp may coincide, giving rise to the sin

gularity on that account called node cusp, and called ramphoid-

cusp, Art. 58. It is to be noticed that the tangent counts once as

a double tangent, and once as a stationary tangent ; thus, sup

posing that there is not any other node or cusp, the curve

belongs to the genus V., and the characteristics are as above
;
but

8=1, K = l means the node-cusp; r = 4 means the tangent
at the cusp and 3 other double tangents ;

i = 10 the tangent
at the cusp and 9 other stationary tangents.

3*. Three nodes may coincide as consecutive points of a

curve of finite curvature, giving rise, not to a triple point, but

to the singularity called an oscnode / this is,
in fact, an osculation

or three-pointic contact of two branches of the curve. The

tangent at the oscnode counts 3 times as a double tangent

of the curve
;

the genus is VII., and the characteristics are

as above, but 8 = 3 means here the oscnode
;
and r 4 means

the tangent at the oscnode counting 3 times, and 1 other

double tangent.

4. Two nodes and a cusp, or a tacnode and a cusp, may
coincide as consecutive points of a curve of finite curvature

giving rise, not to a triple point, but to the singularity called

a tacnode-cusp ;
this

is,
in fact, an osculation or four-pointic

intersection of the two quasi-branches at a cusp. The genus is

VIII., and the characteristics are as above, 8 = 2, K = 1 mean

ing the cusp; r = 2 the tangent at the cusp counting twice

as a double tangent; i = 4 the tangent at the cusp, counting
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once as a stationary tangent, and three other stationary

tangents.

5. Three nodes may coincide, as vertices of an infinitesimal

triangle, giving rise to a triple point (ordinary triple point with

three distinct tangents). The curve belongs to the genus VII.,

and the characteristics are as above, S = 3 meaning the triple

point.

6. Two nodes and a cusp may coincide, giving rise to a

special triple point, at which an ordinary branch of the curve

passes through a cusp. The curve belongs to the genus VIII.
,

and the characteristics are as above, 5 = 2, /c=l here meaning
the special triple point.

7. A node and two cusps may coincide, giving rise to a

special triple point not visibly different from an ordinary point

of the curve. The curve belongs to the genus IX., and the

characteristics are as above, 8=1, =
2, here meaning the

special triple point.

244. In order to illustrate the distinction between the

different kinds of double points which we have enumerated,
let us suppose the origin to be a double point at which the

two tangents coincide with the line y = 0, then the equa
tion of the quartic will be of the form #* + w

8 + w
4
=

0, where

U
B
= ax* + ~bx*y + cxy* + dy*, u

4
= &c

4

+fx*y +&^
We proceed now as in Art. 56: In order to determine the

form of the curve in the neighbourhood of the origin, we sub

stitute y = mxP, we determine /3, so that two or more of the

indices of x shall be equal and less than the index of any other

term
5
and we attend only to the terms of lowest dimension

in x. Then let a be not = 0. We find /5 = f ;
the form of the

curve near the origin is the same as that of the curve #
2+ ax3=

0,

and the origin is an ordinary cusp.

(1) Let a = 0. We then have/3 = 2, and m is determined

by the quadratic m* + bm + e = 0. There are then two branches

whose forms near the origin are respectively the same as those

of the curves y = m^*, y mjc
2

,
where m^ m^ are the roots of

the above equation. The branches touch each other, and the

origin is a tacnode.
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(2) Let this quadratic have equal roots, the form of the

equation then is

(y
-

ma?)* + cxy* + dy
3

+fx*y + &c. = 0,

and to the degree of approximation to which we have as yet

proceeded the two branches in the neighbourhood of the

origin coincide. In order to discriminate them we substitute

y = mx
2 + nx 1

)
and determine n and 7 as before. We find then

7 = f and ri* = (cm* +fm). The form then of the curve near

the origin approaches to that of the curve y = mx* 4- nOTj which

has been considered, Art. 58. The origin is then a
ramphoidjf

cusp or node-cusp.

(3) If, however, in addition to the preceding conditions we

have/= cm, the equation of the curve is of the form

(y
- mx2

}
2 + cxy (y

- mx2

)
4 dy* 4 gx*y* 4 &c. = 0,

and on substituting y = mx* 4 nx* we find 7 = 8, and n is de

termined by the quadratic

n* 4 cmn 4 m* (dm 4 g]
=

;

and if nn n^ be the roots of the quadratic, the curve in the

neighbourhood of the origin consists of two osculating branches,

whose forms are represented by the equations y = mx* 4 w^
3

,

y mx* -f n
2
x3

. Since the difference of these values of y com

mences with an odd power of
a?,

the branches cross as well as

touch at the origin. The origin is now an oscnode.

(4) If, however, in addition to the former conditions we

have the roots of the last-mentioned quadratic equal, or

dm -1- g ^c\ the equation of the curve is of the form

(y
_ ma? - cxy

_ dy^ = Axf -f By\

and, as before, we find that its form near- the origin is given by

the equation y = mx* + cmx3 + px
2

. The origin is then a tac-

node-cusp. The node can have no higher singularity in a

proper quartic, for the next step would be to suppose A to

vanish, in which case the equation would break up into two

of the second degree. The case where the origin is a triple

point does not seem to require illustration.
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245. We have thus far not attended to the distinction of

real and imaginary. Assuming that the quartic curve is real,

then imaginary nodes or cusps can present themselves only in

pairs, and we may distinguish the cases accordingly ;
thus we

may have one real node, two real or two imaginary nodes,

three real or one real and two imaginary nodes
;
and the like

for cusps. Again, any real node may be a crunode or an

acnode. The distinctions as to real and imaginary scarcely

present themselves in regard to the special singularities above

referred to (the condition that imaginaries must present them

selves in pairs, implying for the most part that these singu

larities are real) ;
the only distinction seems to be in regard

to the ordinary triple point, which may be a point with three

real tangents, or with one real and two imaginary tangents,

viz. in the former case the point is the common intersection of

three real branches of the curve, in
^ the latter case it is the

common intersection of one real and two imaginary branches

of the curve
; or, what is the same thing, we have a real

branch passing through an acnode. The point does not visibly

differ from an ordinary point of the curve, resembling in this

respect the special triple point 7 above referred to. The dif

ference is,
that in the case of an ordinary branch through an

acnode the tangents are one real and two imaginary; in the

case of the special triple point they are all real and coincident.

246. There are yet other specialties which may be taken

account of. A node may be in regard to one of the branches

through it a point of inflexion
;

that
is, the tangent to the

branch at the node may meet the branch in three consecutive

points (or the curve in four coincident points); or, again, the

node may be in regard to each of the branches through it a

point of inflexion. Such a node may be considered as the

union of an ordinary node with (in the first case) a point of

inflexion, and with (in the second case) two points of inflexion
;

and the node may be termed a flecnode or a biflecnode in the

two cases respectively. The point or points of inflexion thus

coinciding with the node must be reckoned among the inflexions

of the curve, and the number of the remaining inflexions

diminished accordingly. A biflecnode has properties analogous
FF
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to those established (Art. 170, et seq.} for the inflexions of cubics.

In general, if we look for the locus of harmonic means on

radii-vectores drawn through the origin, which is supposed
to be a double point on the quartic u

4 + u
s + u^ 0, we find

u
3 + 2u

2
= 0. When, therefore, u^ is a factor in u^ the locus

becomes a right line, and the double point, having a harmonic

polar, has the properties established (Art. 170). The points

of contact of tangents from it lie on a right line, and the

curve may be projected so that this point shall become a

centre, or else so that all chords parallel to a given line

shall be bisected by a fixed diameter. In the latter case,

the form of the equation is in general

y* (x-a) (x l}=A(x-c}(x- d) (x
-

e) (x -/).

There is no difficulty in discussing, as in Arts. 39, 199, the

different possible forms of curves included in this equation,

according to the reality, and to the relative magnitude of

a, &, &c.
;
and in deriving thence the different possible forms of

the projections of these curves.

247. Once more, a quartic may have another kind of

singular point, of which account might be taken in the

classification, viz. a point of undulation, that is to say, one in

which the tangent meets the curve in four consecutive

points. The tangent at such a point replaces two stationary

tangents and one ordinary double tangent. A quartic may
have four real points of undulation, as we can see by writing

down the equation wxyz = $
2

,
where 8 is any conic touching

the four lines
M?, cr, ?/,

z.

248. We have not yet exhausted the list of characteristics

unaltered by projection which would have to be taken into

account in a complete classification of quartics. It will be

remembered that we divided non-singular cubics into unipartite

and bipartite according as all the real points of the curve are or

are not included in one continuous series
;
and it is natural to sup

pose that similar distinctions exist in regard to quartic curves.

The possible forms of non-singular quartics have been studied

in detail by Zeuthen (Math. Annalen, Yii. 411). He remarks

that the branches of a curve may be divided into those of odd
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order met by any line in an odd number of points, and those of

even order. The latter are what we have called ovals (Art. 200),

using the word to include not only ovals in the ordinary sense

but also their projections. In this sense, for instance, all the

forms of conies would be described as ovals. Zeuthen shows

that a non-singular curve cannot have more than one branch of

odd order, and therefore that a curve of even degree cannot have

any. A quartic, therefore, can only have ovals. It is at once

apparent that if a quartic have two ovals, one wholly inside the

other, it can have no other real point. For if it had, the line

joining this to a point inside the interior oval must cut the curve

in five points. For the same reason the interior oval cannot

have bitangeuts or inflexions. A quartic of this kind having
two ovals, one inside the other, is called an annular quartic.

This reasoning does not exclude the case of ovals exterior to

each other, but the quartic can at most have four such ovals for

if it had any other real point the conic passing through this and

through points inside the four ovals respectively would meet the

curve in nine points. That a quartic may actually have four

such ovals appears as well from the curve (x
2 2

)

2

+(y
2- &

2

)

2=c4

,

(c &amp;lt; b) considered p. 43, as from the following illustration which

Pliicker gives in order to show that the 28 tangents which a

non-singular quartic can have may be all real. Consider

the curve 12 = + &, where

Now the equation 12 = represents a

quartic having three double points as

shown in the dark curve in the annexed

figure ;
and the equation 12 = k denotes

a curve not meeting 11 in any finite

point, which deviates less from the

form of the curve 12 the less we

suppose kj and which according to

the sign we give k is either altogether

within or altogether without the curve

12. When it is altogether without,

the curve is unipartite ;
when it is

altogether within, the curve in the first instance consists of four
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meniscus-shaped ovals, one in each of the compartments into

which the curve li is divided. Each meniscus has one tangent

touching it doubly; and, besides, it will be seen that any two

ovals have four common tangents, and that there are six pairs of

ovals. It will readily be conceived that, as the value of the

constant is supposed to change, first one, then another of these

ovals becomes imaginary, so that non-singular quartics may be

either unipartite, bipartite, tripartite, or quadripartite. We can

in like manner conclude that a quartic having one double point

may be either unipartite, bipartite, or tripartite ;
and one having

two double points, either unipartite or bipartite.*

248 (a). Zeuthen takes as the basis of his classification of

quartics the real bitangents of the curve, which he divides into

two classes. When a quartic has a pair of ovals exterior to each

other, it is easy to see that (just as if they were two conies)

these ovals have four common tangents and cannot have more.

These common tangents are Zeuthen s bitangents of the second

kind. If the quartic have two ovals exterior to each other the

number of such bitangents is 4
5

if it have three such ovals the

number of such bitangents is 12
;

if it have four, the number

is 24. Zeuthen s bitangents of the first kind may be either

(a) lines doubly touching a single branch of the curve; or

(b) bitangents, both of whose points of contact are imaginary.
Zeuthen has proved that every quartic has four real

bitangents of one or other of these two species, which four we
shall call the Zeuthen bitangents. The total number then of

real bitangents to a quartic is got by adding to these four

the 0, 4, 12, or 24 bitangents of the second kind
;
and accordingly

is either 4, 8, 16 or 28. Zeuthen s method of proof is to consider

the series of quartics, S+\S ,
where 8 and S are any two

non-singular quartics. The number of real bitangents of a

curve of the series will only alter when X is such that the curve

has some singularity. Zeuthen shows that as X passes through
the value for which the curve has a double point, only real

bitangents of the second kind are lost or come into existence
;

and that for no ordinary singularity do bitangents of the first

* In general the maximum number of &quot;

parts&quot;
of a curve is one more than the

&quot;deficiency.&quot;
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kind change into those of the second, or vice versa. But

consider a bitangent of the first kind touched by a branch in

two real points. As a parameter in the equation alters, these

points may approach each other and the intervening arc of the

curve become smaller. At last the points coincide and the curve

has a point of undulation
;
after that the bitangent has imaginary

points of contact. Thus we see that at the value of X, for

which the curve has a point of undulation, Zeuthen bitangents

of the form (a) may change into the form (), or vice versa.

The only change then that affects bitangents of the first kind

being an interchange of these two forms, the total number of such

bitangents is the same for the whole series of quartics included in

the form S +
X/S&quot;,

and therefore is the same for every quartic ;

and Pliicker s example shows that the number is four.

248 (b). When a branch has a tangent touching it in two

real points, it is obvious that the arc at each of these points

turns its convexity towards the tangent, and that there is an

intermediate part of the arc which turns its concavity towards

it,
this concave part being separated by a point of inflexion at

each end from the convex parts. Every such bitangent then

implies two real points of inflexion
;
and it is not difficult to see

that the converse of this is also true. Since there can be at

most four such tangents, a quartic can have at most eight real

inflexions. Zeuthen confines the name oval to a branch, having
no real bitangent or inflexions : one with a single real bitangent
he calls a unifoliurn; one with 2, 3, or 4 such bitangents, a

bifolium, trifolium or quadrifolium. Thus the external curve in

Pliicker s figure is a quadrifolium ;
the four internal curves are

unifolia. The figure, p. 45 (3), represents two bifolia; p. 46 (5),

represents an annular quartic, quadrifolium with internal oval.

248 (c). Zeuthen further shows by the method of Art. 125,

Ex. 4, that the points of contact of any three of his bitangents

lie on a conic; and further, that it is the same conic which

passes through the contacts of all four bitangents. If then

Wy x, y, 2, represent four lines, and V a conic, the equation of the

quartic must be of the form wxyz = V
1
. Zeuthen s analysis of

the possible forms of quartics is made by discussing the different
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positions which the intersections of the four lines with the conic

can have with respect to the quadrilateral found by them. Thus

when V meets all the lines in real points, he enumerates the

following cases: (1), annular quartic, quadrifoliurn and internal

oval; (2), quadrifolium and 2 ovals
; (3), 4 unifolia; (4), trifolium,

unifolium and oval
; (5), bifolium, 2 unifolia and oval

; (6), 2

bifolia and oval; (7), 2 bifolia and 2 ovals; (8), bifolium and

2 unifolia
; (9), trifolium, unifolium and 2 ovals. He enumerates

thus 36 cases in all, but the figures which he gives for the nine

cases just mentioned sufficiently illustrate the rest, a very slight

modification being enough to turn a unifolium into an oval, &c.

It will be observed that the classification just made rests solely

on protective properties and has no reference to the line infinity.

In Art. 249 we state the principles on which these classes may
be subdivided into species when the nature of the infinite branches

is taken account of.

248 (d). Zeuthen also applies his method of classification to

nodal quartics considered as limiting cases of non-singular quartics.

He enumerates and discusses the following cases: (a), conjugate

points considered as limiting cases of ovals; (&), nodes which

arise when in limiting cases of annular quartics the inner branch

comes to meet the outer; in neither of these cases are the

Zeuthen bitangents affected; (c), nodes which arise when two

mutually external branches come to meet
; (d), which arise when

a branch of even order breaks up into the intersection of two of

odd order; (e), the case of two imaginary double points. In the

cases where the Zeuthen bitangents are affected, the investigation

is carried on by considering the forms represented by the equa
tion wxyz = F2

,
when V passes through the intersection of two

of the lines, or when two of the lines coincide with each other.

249. In order to see how quartics might be classified in

respect of their infinite branches, we observe that the line

infinity may meet a quartic, (a) in four real points, (b) in two

real and two imaginary, (c)
in four imaginary points, (d) in

two coincident and two real points, (e)
in two coincident and

two imaginary points, (/) twice in two coincident points, these

points being real, or (g) these points being imaginary, (h) in
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three coincident and one real point, (*)
in four coincident

points. Again, the cases (d), (e), (/), (g) would have to be

further distinguished according as the line infinity when meeting
the curve in two coincident points is simply a tangent or a line

passing through a double point, which double point may be

either crunode or acnode, cusp, or one of the special kinds above

mentioned. Similarly in the case (/*), the line infinity may be

either an ordinary stationary tangent, or a tangent at a double

point or cusp, or it may pass through a triple point, and in

the case (i) it may be either a tangent at a point of undulation,

a tangent at a double point of the special kind, or a tangent
at a triple point. Lastly, any of the points which count only as

single intersections of the line infinity with the curve may be

on the curve a point of inflexion or undulation, and where this

happens a difference in the figure will result which would have

to be taken into account in a complete classification of quartics.

250. We have already shown (Art. 70) how to form the

equation of the Hessian of a quartic, which is a curve of the

sixth degree, intersecting the quartic in the twenty-four points

of inflexion. We have also seen (Art. 92) that the equation of

the reciprocal of a quartic is of the form &amp;gt;S^= J\ where 8

represents a curve of the fourth and T of the sixth class,

and the form of the equation shows that both are touched by
the twenty-four stationary tangents. We have postponed to

another chapter the solution of the problem to form the equation
of a curve passing through the points of contact of double

tangents of a given curve. It will there be shown that,

in the case of the quartic, the equation of such a bitangential

curve may be written in the form =
3#&amp;lt;t&amp;gt;,

where is the

covariant AL^ + titc., as in Art. 231; that is to say, L &c.

represent the first differential coefficients of the Hessian, and A
denotes lcf2

,
where a, 5, ccc. are the second differential

coefficients of U. In like manner &amp;lt;f&amp;gt; denotes Ad 4- &c., as in

Ex. 1, Art. 230.

THE BITANGENTS.

251. It is convenient to commence by studying a more

general theory in which that of the bitangent is included.

Let us then consider first the form UW= F2

,
where

Z7, F, W
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represent conies
;
a form containing implicitly sixteen constants,

and therefore one to which the equation of any quartic

may be reduced in a variety of ways, as we shall after

wards more fully see. The form of the equation shows that

U and W each touch the quartic in four points, namely, the

points where they respectively meet F. Now we have already
discussed (see Conies, Art. 270, &c.) the equation UW= F 55

,
when

U, F, W represent right lines, and the results hold good with

the proper alterations when they represent conies. It is merely

necessary to remember, that two conies represented by equations
of the form XU+ JJL F-f v TF= 0, instead of intersecting in a

single point, intersect in four points ;
and that if we are given

one point on a conic whose equation is to be of this form,
three other points are necessarily given; for if we have

XZ7 + ^F + vTF =
0, the conic XU+ p F-f v TF= will, it is

clear, pass through the four points determined by the equations
U V W
yjr

f
= ,= -==?, . It follows then from the discussion in the

Conies just cited, that the quartic UW= F2

may be considered

as the envelope of the variable conic 7^U-\- 2XF+ W
where X is variable, and which touches the given quartic in the

four points determined by \U-\- F=0, XF+ TF=0. The two

sets of four points in which any two of the enveloping conies

touch the quartic lie on another conic, as appears by writing
the given equation in the form

(X*U+ 2XF+ W) (^U+ 2^F+ TF) = (X/* U-}- (X + M ) F-f W}\
In like manner, the properties of poles and polars may be

extended to the curve under consideration. Through any point

(or, if we please, we may say through any set of four points)

may be drawn two conies of the system X2

U-\- 2X F+ TF, the two

sets of four points of contact lying on a conic UW+ WU 2 FF
,

which may be called the polar of the given point or set of

points, and the symmetry of the equation shows that the polar,

in this sense of the word, of any point on the latter conic

will pass through the given point. Conversely, any conic

aU+bV + cW meets the quartic in two sets of four points,

through each of which sets a quadruply tangent conic may be

drawn, the two intersecting in a set of points which constitute

in this sense the pole of a U-}- b F-f c TF.
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252. It is useful now to recall the properties established

(Conies ,
Art. 388, &c.) for a system of conies included in the

equation a.U+ j3 F+ 7W 0. In the first place, if this equation

represents a pair of right lines, their intersection lies on a

fixed cubic, the Jacobian of
7, F, TF; a curve which may

also be defined as the locus of a point, whose polars with

respect to all conies of the system a.U-\- /3V+yW meet in

a point. If we consider two conies included in this system,

the equation of any conic through their intersections must

be of similar form; and hence, the intersection of each of

the three pairs of lines joining the four intersections of

the two conies must lie on the Jacobian. If the two conies

touch, two of these three intersections coincide with the

point of contact; and, therefore, if two conies of the system
a.U+ yS F+ 7W touch each other, the point of contact lies on

the Jacobian.

Secondly, the system aU+ /3 F+ 7 IF may be regarded as

a system of polar conies of the variable point a@y with regard
to a certain fixed cubic, which has for its Hessian the Jacobian

of the system, and the equation of which can be formed when

those of the three conies are given.

Thirdly, if aU+ /3F+ 7W represents a pair of right lines,

all such right lines touch a curve of the third class, the Caylejan
of the cubic last mentioned.

253. Hence then, in particular, since any enveloping
conic Xa Z7+2\F+ IF, and the conic through the four points

of contact are each included in the form a7+/3F-j- 7 IF,

if we draw the three pairs of lines connecting the points of

contact of any conic enveloping 7JF= F2

,
the intersections

of each pair lie on a certain fixed cubic, viz. the Jacobian;
and the lines themselves are all touched by a fixed curve of

the .third class, viz. the Cayleyan.

Again, if the two conies \U+ F, XF+ IF touch each other,

then the conic X2 ?7+2XF+ TF, instead of touching the quartic

in four distinct points, has ordinary contact with it twice and

meets it once in four consecutive points. And from what we
have just seen, this point of contact of higher order lies on the

Jacobian. We infer then, that twelve conies of the system
GG
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X2U+ 2X F+ W have this higher contact with the quartic,

namely, the twelve passing each through one of the intersections

of the Jacobian with the quartic.

254. Six conies of the system X2
Z7-f 2XF+ W reduce to a

pair of right lines
;
for the discriminant of this form being a

function of the third degree in its coefficients will be one of

the sixth degree in X, and therefore six values of X can be found

for which it vanishes. When an enveloping conic reduces to

a pair of right lines, the four points of contact lie two on each

line, and each line is therefore a double tangent to the quartic.

It appears from Art. 249, that if ab, cd be any two of these

six pairs of bitangents, the equation of the quartic may be

transformed to abcd= F 2

,
the eight points of contact lying on a

conic F. Thus we see that the form X2 Z7+2XF+ W includes

six pairs of the bitangents of the quartic, these twelve bitangents
all touching a curve of the third class, viz. the Cayleyan of

the system, and the intersections of each pair lying on the

Jacobian. So again, if the points of contact of any of these

pairs of bitangents be joined directly or transversely, the joining
lines also touch the Cayleyan, and the intersection of each pair

lies on the Jacobian. This may be stated in a slightly

different form by considering the cubic $, of which
Z7, F, W

are polar conies. Then if the equation of a quartic is a function

of the second degree in
Z7, F, JF, since the vanishing of such a

function expresses the condition that the line xU+ y F+ zW
should touch a fixed conic, it is easy to see that the quartic

may be defined as the locus of a point whose polar with

respect to S touches a fixed conic, or, in other words, the locus

of the poles with respect to 8 of the tangents of that fixed

conic; or, it will come to the same thing if it be defined

as the envelope of the polar conies of the points of that conic.

The double tangents of the quartic correspond to the points

where the conic meets the Hessian of 8.

255. Let us now consider any two of the bitangents of a

quartic, which we take for the lines x^ y ;
then if we make

# = 0, the equation of the quartic is to reduce to a perfect
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square, say (z* + ayz -f &y)*, and if we make y = 0, the equation

is to reduce to, say (z
2 + cxz + dx*)*. Hence, evidently the

equation of the quartic must be of the form

xy U= (z* + ayz + by* + cxz + dx2

)* ;

that is to say, of the form xy U= F
2

,
which we have just discussed

;

an equation which may also be written

xy (X
2U+ 2X F4 xy)

=
(xy + \ V)\

There are, as we have seen, beside the value \ = 0, corresponding
to the pair of lines ary, five other values of X for which

\2

U+2\V+xy will represent a pair of lines; and thus in

five different ways the equation can be reduced to the form

wxyz = F 2
. Hence, through the four points of contact of any

two bitangents we can describe Jive conies, each of which passes

through the four points of contact of two other bitangents.

A non-singular quartic has 28 bitangents; and there are

therefore ^(28.27), or 378 pairs of bitangents ;
each of these

pairs gives rise to five different conies, but each conic may arise

from any one of the six different pairs formed by the four

bitangents which correspond to that conic, hence there are in

all f (378) or 315 conies, each of which passes through the points

of contact offour bitangents of a quartic.*

256. We have seen that each pair of bitangents combines

with five other pairs to form a group of six pairs, the points of

contact of any two of which pairs lie on a conic. It follows

that the 378 pairs may be distributed into 63 such groups of six.

The twelve bitangents of each group touch the same curve of

the third class
;
and this is touched also by the lines joining

directly and transversely the points of contact of each pair.

The intersections of each pair of bitangents, and also those of

each pair of joining lines, lie on a cubic. Corresponding to each

group there are twelve conies, each of which touches the quartic

twice with ordinary contact, and once so as to meet it in four

* Pliicker first noticed the possibility of bringing the equation of any quartic to

the form wxyz V-, but he hastily inferred that the six points of contact of any
three bitangents he on a conic, and thence drew an erroneous conclusion as to the

total number of conies passing through eight points of contact of bitangents (see

the Theorie far Algebraischen Curven, p. 246).
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consecutive points, the twelve points of higher contact lying
on the cubic last mentioned. There being 63 groups, 756 such

conies may in all be drawn.

257. We shall show how to form a scheme of the 315

conies, and for that purpose we denote provisionally the first

26 bitangents by the letters of the alphabet, adding the symbols

$ and ty to denote the other two. We denote by abed the

conic passing through the eight points of contact of the

bitangents a, 6, c, d. If now abed, dbef, be two of the 315

conies, the pairs a&, cd, ef belong to the same group, and from

what we have seen, cdef will be another of the conies. This

may also be shown directly as follows. Let the equation of

the quartic be abcd= F2

,
or

ab (cd+ 2A,F+ Kob} = (F+ Xa&)
2

,

and we can determine X so that cd -f 2X F + ^ab = ef. Solve

for Ffrom this equation, and substitute in the equation of the

quartic, when it becomes

XW + c\f + e
2

/
2 - Ztfabcd - Vtfabef- 2cdef= 0,

or cdef= (cd + ef- tfab}\

a form which proves the theorem stated. It appears thus, that

given three pairs of lines which are to be pairs of bitangents

of the same group of a quartic, the equation of the quartic will

be of the form I \J(ab] + m \J(cd) -f n*J(ef] = 0, so that if

two points were given in addition, a single quartic could be

found satisfying the prescribed conditions. Corresponding to

any group there are 15 conies, passing respectively through
the points of contact of each two of the six pairs of which

the group consists. There would thus seem to be 63 x 15 = 945

conies
;
but then every conic abed is counted three times over,

as belonging to the three groups aZ&amp;gt;, cd, &c., ac, hd, &c.,

adj be, &c.
;
the total number is therefore 315 as before.

258. Consider any conic alcd^ then the group 5, cd, &c.,

and the group ac, bd, &c., can have no other bitangent common,
the quartic being supposed to be non-singular. For example,
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if abef\)Q a conic of the first group, aceg cannot be a conic of

the second. For (Art. 257) the equation of the conic through
the points of contact of a, Z&amp;gt;, c, d may be written in the form

\ab-t -
(cd-ef) = Q,

A/

and if aceg be another conic, this must be identical with the form

fjbac + -
(bd eg]

= 0.

From this identity we at once infer

It follows that
e, being identical with one of the factors into

which the left-hand side breaks up, passes through the inter

section either of b and c or of a and d. But in either case the

point through which e is thus proved to pass will be a double

point on

and therefore the quartic could not be non-singular.

In precisely the same way we see that if abef, acmn be two

conies, there is an identity

and hence the diagonals of the quadrilateral efmn pass one

through ad, the other through be] or, in other words, the inter

sections of each pair of bitangents lie, according to a certain

rule, three by three on right lines. When once a scheme of

the 315 conies has been made, there is no difficulty in discri

minating which diagonal passes through ad and which through
be. For example, if it appears that aemu, afnv, aduv are conies

of the system, we infer in like manner that the diagonals of

the quadrilateral emfn pass through ad and uv
;
and thence we

infer that ad lies on the line joining en^fm. Thus then consider

any conic abed, this belongs to the three groups ab, cd, &c.,

ac, bd, &c., and ad, be, &c., and it appears now that each of

the sixteen quadrilaterals formed by combining one of the four

other pairs belonging to the group ac, bd with a pair from
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the group ad, be, will have a diagonal passing through ab.

Now the pair ab belongs to five different conies, and therefore

there are eighty quadrilaterals having a diagonal passing

through ab. But it will be found, as we have intimated, that

these quadrilaterals may be distributed into pairs having a

common diagonal; hence, through each of the 378 points ab

can be drawn 40 lines, each passing through two others of

these points, and there are in all 5040 such lines.

259. We are now in a position to form a scheme of the

315 tangents, in which nothing but the notation shall be

arbitrary. Commence by writing down the group ab, cd, ef, ght

ij, klj then since the groups ac, bd
, ad, be can have no

bitangent common with the preceding nor with each other,

these groups may be written, ac, bd, mn, op, qr, st
; ad, be, uv,

wx, yz, (frty.
Proceed now to write down the group ae, bf;

this must include no bitangent from the group ab
;
but in each

term one of the bitangents from the group ac will be combined

with one from the group ad. Now since it was free to us

to write down the pairs of each group in any order we pleased,

it is a mere matter of notation, and does not introduce any

geometrical condition, if we take this group to be ae, bf, mu,

ow, qy, s&amp;lt;f&amp;gt;.

In like manner, it is a mere matter of notation to

suppose that the bitangents have been so lettered, that ag and

mx, ai and mz, ak and m-fr shall respectively belong to the

same group. This being assumed, it will be found that the

group of, be is necessarily nv, px, rz, tty, and we can thus

proceed, step by step, to write out the whole system. A table

of the 315 conies was accordingly given in the first edition,

but I do not occupy space with it now, because an algorithm

has been given by Hesse (Crelle, 1855, XLIX, 243), and more

minutely discussed by Professor Cayley (Grelle, 1868, LXVIII,

176), which exhibits in an easily recognizable form the mutual

relations of the 28 tangents. Hesse s method introduces

considerations from the geometry of three dimensions. He

equates to zero the discriminant of a U-\- ft F+ 7W where

U, V, W denote quadric surfaces. This discriminant being a

function of the fourth degree in a, ft, 7, if these quantities

be regarded as variables, the equation denotes a plane quartic.
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But for any value of a, /3, 7 for which the discriminant vanishes,

a 74 /3V+yW denotes a cone, so that to every point on the

plane quartic corresponds a point in space, namely, the vertex

of this cone
;
and Hesse s method connects the double tangents

of the plane quartic with the lines connecting each pair of 8

points in space which are the intersections of three quadric
surfaces. We make no use here of any principles of solid

geometry, but merely borrow the notation which Hesse s

method suggests.*

260. Take then eight symbols 1, 2, 3, 4, 5, 6, 7, 8. Their

combination in pairs gives us 28 symbols 12, 13... 7 8, which

we use to denote the 28 bitangents. This notation, the symbols

being properly applied to the 28 bitangents, enables us correctly

to represent their geometrical relations, though it fails com

pletely to exhibit the symmetry of the system. In fact, the

notation might suggest that the bitangent 12 was related in a

different manner to the bitangents 13, 14, &c., and to the

bitaugents 34, 56, &c., whereas actually there is no geometric
difference between the relations of any pair of bitangents.

So again we suppose the symbols so applied, that 12, 34, 56, 78

shall denote bitangents whose 8 points of contact lie on a

conic. The same property will then belong to every tetrad

of bitangents represented by a like set of duads; that is,

by any four duads containing all the eight symbols. But

if we count, we shall find that we can only make 105 arrange
ments of the 8 symbols into sets, such as 12, 34, 56, 78.

The remaining 210 conies correspond to four bitangents,

whose symbols are such as 12, 23, 34, 41
;

that is to say,

the duads are formed cyclically from any arrangement of

four of the eight symbols, and it will be found that we

* Another mode of connecting the theory of 28 bitangents with Solid Geometry
is used by Gei&amp;gt;er, Mathematische Annakn I. 129, as follows : From any point on a

cubic surface can be drawn a quartic cone touching the surface. This will be non-

singular, its bitangent planes being the tangent plane to the cubic at the vertex, and

the planes joining the vertex to the 27 lines on the surface. Zeuthen shows that his

classification of quartics with regard to the reality of their bitangents leads by a

different process to the results obtained by Schliini in classifying cubic surfaces with

respect to the reality of their right lines.
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can have 210 such tetrads. Thus then the group belonging
to the pair 12, 34, consists of 56, 78

; 57, 68
; 58, 67

; 13, 24
;

14, 23
;
and the group belonging to a pair such as 12, 13, is

24, 34; 25, 35; 26, 36; 27, 37; 28, 38. Thus the notation

shows completely how the bitangents are to be combined

in groups. It suggests, however, that the 105 conies of the

form 12, 34, 56, 78 differ in their properties from the 210

of the form 12, 23, 34, 41. This is not the case, the whole

315 tetrads forming an indissoluble system.

261. Professor Cayley remarks that Hesse s researches

establish the following general rule : A bifid substitution

makes no alteration in the geometrical relations of the bitangents

denoted by any set of symbols. What is meant by a bifid

substitution is, that writing down such a symbol of substitution

as 1234*5678, we interchange everywhere the duads 12, 34; 13,

24; 14, 23; and again, 56, 78; 57, 68; 58, 67; but leave

unchanged such duads as 15, 36, where one of the first set

of symbols is combined with one of the second. The number

of possible bifid substitutions is 35, or, if we add unity (viz.

no alteration of any duad) the number is 36.

For example, now if we apply the bifid substitution

1234*5678 to the pair 12, 34, we get the same pair in opposite

order; if we apply it to 12, 13, we get 34, 24, a pair of

the same type as 12, 13
;

if we apply it to 12, 15, we

get 34, 15, a pair of apparently a different type, but not

different in geometrical relations. Thus, then, if we apply
the same bifid substitution as before to the tetrad 15, 67,

28, 34, which is one of the set of 105 already referred to,

we get 15, 58, 82, 21, which is one of the set of 210,

and which, according to the rule, possesses the same geometrical

properties.

262. Professor Cayley has exhibited in the following table

the geometrical relations of the bitangents, taken singly in

twos, threes, or fours, and the number of terms belonging to

each type of arrangement of the symbols.
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Representative
term. No. of terms. Geometrical character.

f
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To the foregoing may be joined the following two groups
of hexads of bitangents :

AA
I

&amp;lt;o

Wl

Representative term No. of term$

12.23.31.45.56.64

12.34.35.36.37.38

12.13.14.56.57.58

12.23.31.14.45.51
140^

12.23.34.45.56.61 1680 &amp;gt; 5040

1234353667.68 2520J

These 1008 and 5040 hexads have been studied by Hesse

and Steiner as bitangents whose twelve points of contact lie

on a proper cubic, the former set having no six contacts

on a conic, but the twelve points of contact in the latter

case being divisible into two sets of six lying each on a

conic. It may be added, that the six tangents of each of

the 1008 hexads all touch the same conic, as will appear

from Aronhold s investigations, which will be presently given.

The six tangents of each of the 5040 hexads may be dis

tributed into three pairs, whose points of intersection lie on

a right line (see Art. 258).

263. We conclude this discussion of the bitangents with

an account of the method by which Aronhold has shewn

(see Berlin Manatsberichte, 1864, p. 499), that when seven

arbitrary lines are given, a quartic can be found having these

lines as bitangents, and of which the other bitangents can be

found by linear constructions. The method depends on pro

perties of a system of curves of the third class having seven

common tangents, but it seems convenient to state them first

in the reciprocal form with which the reader is more familiar,

viz. as properties of a system of cubics passing through seven

given points. (1) Consider any one cubic of the system, then

if the eighth and ninth points in which it is intersected by any

other cubic of the system be joined, the joining line passes

through a fixed point on the assumed cubic, viz. the coresidual

of the seven given points (Art. 160). (2) Through any assumed

point
8 can be described one and but one cubic on which
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this point shall be the coresidual of the seven given points.

For all cubics of the system through the point 8 pass through
another fixed point 9, and, by definition, the coresidual is the

point where the line joining these points meets the curve again.

If, therefore, the coresidual is to coincide with the point 8,

the cubic must be that one which is determined by having the

line 89 as its tangent at the point 8. (3) Four cubics of the

system can be described to touch a given cubic of the system,

the points of contact being obviously the points of contact of

tangents drawn to the given cubic from the coresidual point

on it. (4) If the points 8, 9 coincide, that is to say, if cubics

of the system touch, the envelope of the common tangent 89

is a curve of the fourth class. For consider how many such

lines can pass through any assumed point P. Suppose a cubic

described through P, and through the points 8, 9, then, by

definition, P is the coresidual point on that cubic, and by (2)

this cubic having P for the coresidual is a determinate known

cubic. We see then, from (3), that the envelope in question

is of the fourth class, the four tangents from any point P being
constructed by finding the cubic which has P for its coresidual,

and drawing the four tangents from P to that cubic. (5) The

point Pwill be a point on the envelope curve, if two of the

tangents drawn from it coincide; but from the construction

just given, it appears that this can only happen when the

curve having P for its coresidual has a node
;
for in this case

two tangents coincide with the line joining P to the node.

Hence the envelope we are considering may also be defined as

the locus of the coresidual of the given system of points on all

the nodal cubics of the system. (6) If the cubic through the

seven points break up into a conic through five of them, and a

line joining the other two, it has two nodes, namely, the inter

section of the line and conic. Any other cubic of the system
meets this complex cubic in two other points, one on the line,

one on the conic, and the coresidual is the point P where the

line joining these two meets the conic again. In this case,

then, P is a double point, the two tangents at it being the lines

joining it to the intersections of line and conic. Now seven

points can be divided in 21 different ways into a system of

two and of five. The curve we are considering has, therefore,
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21 double points, one on each of the 21 conies determined

by any five of the given points. (7) In addition, the seven

given points themselves are double points on the same curve.

For a cubic can be described through six of the given points

and having the remaining point for a double point, and it is

easy to see that the double point is the coresidual for that

cubic. The four tangents from it to the cubic reduce to two

pairs of coincident tangents, namely, the tangents to the cubic

at the double point. The envelope curve, therefore, has 28

double points, 7 of them being the seven given points, and

the pair of tangents at each of these seven points being the

same as those of the cubic of the system having that point

for a double point.

264. Keciprocally, then, if we have a system of curves of

the third class touching seven given lines, and consider any
one curve of the system, the eighth and ninth tangents common
to it with any other curve of the system, intersect on a fixed

tangent of the selected curve, which may be called the core

sidual, for that curve, of the seven given tangents. (2) Cor

responding to any arbitrary line, there is a curve of the system

having that line as the coresidual for it of the given tangents.

(3) Any fixed curve of the system is touched by four others,

the points of contact being the points where the coresidual

tangent again meets the curve, which, being a general curve

of the third class, is of the sixth degree. (4) The locus of

points where two curves of the system touch is a curve of

the fourth degree, the points where any line meets that locus

being the four points where it meets the curve for which it is

a coresidual tangent. (5) If the curve of the third class have

a bitangent, the coresidual for that curve touches the locus,

the point of contact being the intersection of the coresidual with

the bitangent. (6) If the curve consists of a conic touching

five of the given tangents together with a point, the intersec

tion of the other two tangents ;
the coresidual for that system

will then be a bitangent to the locus. There will be 21 such

bitangents. (7) In addition, the seven given lines themselves

are bitangents, the points of contact being the same as those

jn which any of them is touched by the curve of the third
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class having that line for a bitangent and the six other given

lines as ordinary tangents.*

265. We can now, as has been stated, from the seven

given bitangents find the rest by linear constructions. We
have in fact to construct the coresidual tangents for the several

systems 12345, 67, &c., where 12345 denotes the conic touching the

first 5 lines, and 67 is the point of intersection of the other two.

Now the two systems 12345, 67 and 12346, 57 have obviously

seven common tangents, and the remaining common tangents
are the tangents to 12345 from the point 57, and to 12346 from

67. But Brianchon s theorem enables us, when one point on a

tangent to a conic is given, to find by linear constructions

the remaining tangent. These two tangents, then, having
been constructed, and their intersection found, the remaining

tangents drawn from it to each of the two conies in ques
tion will be the two required coresiduals, and therefore two

of the bitaugents. Or otherwise, if we consider the three

systems 12345, 67
; 12346, 57

; 12347, 56, and determine

in the manner just described the remaining eighth and ninth

tangent common to each pair of systems, the three intersec

tions of these pairs of tangents will, when joined, give three

of the required bitangents. The bitaugent which is the core

sidual for the system 12345, 67 may be called the bitangent

(67) ;
and thus the twenty-one bitangents may be denoted by

combinations of the symbols 1, 2, 3, 4, 5, 6, 7. In addition we
have the seven given lines; and if introducing for symmetry
a new symbol 8, we denote these (18), (28), (38), (48), (58), (68),

(78), we are led by Arouhold s method to an algorithm identical

with that of Hesse.

266. The intersection of the eighth and ninth tangents
common to any two curves of the system is a point through

* The point of contact of each, of the seven given lines -with the locus being thus

given, we have fourteen points on the quartic, which is thus completely determined,
and there is but one quartic satisfying the prescribed conditions. There may, however,
be several quartics having the seven given lines as bitangents ;

but the one deter

mined by Aronhold s method has them as unrelated bitangeuts, viz. such that no

three of them belong to the same group.
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which passes the coresidual tangent for each of these curves.

Consider, then, the complex cubic systems 12, 34567
; 34, 12567,

and one of the common tangents is the line joining the points

12, 34
;
that is to say, in the algorithm just referred to, the line

joining the intersections of the lines (38), (28); (38), (48); and

we now see that this line passes through the intersection of the

coresiduals of the two systems under consideration, that is to say,

through the point (12), (34). In this way we get the theorem

already proved (Art. 258), that the intersections of the lines

(18), (28); (38), (48); (12), (34), are in a right line; and

Art. 262 shows that by an ordinary or bifid substitution we
can find 5040 lines possessing the same property.

267. We conclude with Aronhold s algebraic investigation

of the equation of the quartic generated according to his method.

Let us use tangential coordinates a, /3, 7; and let u, v, w be

any linear functions of them, aa 4- bff + 07, &c., then the equations

fiv yu = 0, yw - OLU = 0, OLU @v = 0,

denote three conies having four tangents common, and of which

each touches one of the sides of the triangle of reference. And

a (@v yw) = 0, @ (yw OLU)
=

0, 7 (OLU ffv)
=

0,

denote three curves of the third class having seven common

tangents, viz. the four common to the two conies, and the sides

of the triangle of reference. Any other cubic having the same

7 common tangents will be of the form

U OL (/3v yw) + v/3 (yw OLU) + w y (OLU ffv)
=

0,

where w
, t/, wf

are arbitrary constants, which are supposed

to be of the form aa! -I- b/3 + 07 , &c., where a
, /3 , 7 are the

coordinates of an arbitrary line. Writing the above equation

in the form

w, u
, ^7

v, v, ya =0,

w, w
, a/3

it is evidently satisfied by the coordinates a /3 7 ,
which therefore

are those of a tangent to this curve. And further, this tangent
is the coresidual for that curve

;
for we shall find the other two

tangents through any point in that line, by substituting in the
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above Xa -f
yu,a&quot;

for a, &c. The equation then is divisible by
and after division becomes

v&quot;, v&quot;, 7 a 4
1 &quot; ; .o

&amp;gt;,?0 ,a/3

v
, v&quot;, 7 a&quot; 7 t &amp;lt;

, 7&quot;*&quot; =0,

and the symmetry of the equation shows that the pairs of

tangents are the same which can be drawn from the intersection

of the lines a Yj a&quot;0Y to the curves

,
*

, 7

v, t/,

,
10

, a/3

=
0,

, 10&quot;, a/3

= 0.

Thus then the tangents a
Y&amp;gt; a.&quot;j3&quot;y&quot; being respectively

the third tangents drawn to each curve from the intersection

of the eighth and ninth tangents common to both, are, by

definition, the coresidual tangents. The two curves will

touch provided that the quadratic equation in X, /x,
has

equal roots
;

or if we write the coefficients of that quad
ratic P, 5 -Rj provided we have Q* = 4PZ?. If we denote by

X, Yj Z the minor determinants v w&quot; v&quot;w
}
w u&quot; w&quot;u

j

uv&quot; w V, we have

P=
Q = (^ V 7+ ^ + a

Now for /8V -
/3 Y, 7

r

a
/r - 7 V, a ^&quot;

-
a&quot;
-

a&quot;/^ we may write

#, T/, 2, these being the point-coordinates of the point of inter

section of the two lines a Y ,
a&quot; Y The equation $

2 = 4P.fi

is then equivalent to

x*x* + y r2
-f s

sz* - 23/2 rz- 2^zz- 2^zr= o,

or V(aJ^) + V(y y) + V(^) = 0.

It will be remembered that X stands for v w&quot; w V, and if we

put for these their values

v = aV + & /3 + cY, w = /r

a -f &&quot;/3 + c Y,

t/ = aV -f J
/3&quot; + cY ,

w&quot; = aV + &&quot;&quot; + cV,
we have Z= (5V - &V) a + (cV - cV) y + (a b&quot;

- a
/r
6

r

)
0.
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Similarly Y= (b&quot;c
-

Ic&quot;)
x +

(c&quot;a

- ca
) y + (a&quot;b

-
al&quot;} z,

Z= (be
- b c

)
x + (ca

- c a)y + (ab
- al

)
z.

Thus X, Y) Z represent known lines. They are in fact the

sides of the triangle whose vertices are represented by u, v, w.

It will be observed that the coefficients in X, Y, Z are the

constituents of the determinant reciprocal to that formed by
the coefficients of u^ v, w ;

so that if JT, I
7

,
Z had been originally

given, u, Vj w would be found by similar formulae.

268. The same investigation would hold if the equations

of the three conies had been la.u = m/3v = n&amp;lt;yw.
The values

of Xj Y) Z would remain as before, but we should have

P= mnp&amp;lt;/X+ ntya!Y+ lma. /3 Z, &c.,

and the equation would be

V (mnxX) + V (nly Y] + V (ImzZ) = 0.

This is the most general equation of a quartic having three

given pairs of lines
a?, JT, &c., as pairs of bitangents of the same

group. If we were given a seventh bitangent, then
?, m, n

would be completely determined by the equations supposed
to be satisfied by the coordinates of that bitangent, viz.,

lafu = mft v = nyw ,
whence mn^ nl, Im are respectively pro

portional to a i/, /3V, y w . Thus, then, if we are required
to describe a quartic having seven given lines as bitangents,
besides the one quartic determined (Art. 265) on the supposition
that no two of the tangents belong to the same group, we
can describe (7 x 15 =) 105 others according to the method of

this article, by leaving out any one of the seven and dividing
the six remaining into three pairs, which can be done in fifteen

different ways.

BINODAL AND BICIECULAR QUARTICS.

269. Except in connection with the bitangents, the theory
of non-singular quartics has been little studied, and what else

we have to state on this subject will be given in the concluding
section of this chapter, that on the Invariants and Covariants.

In order to complete the theory of the bitangents, we ought
to consider the modifications which that theory receives when
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the curve has one or more double points. The case, however,

where the quartic has but one node has received no attention,

and will not be here discussed. Quartics with two nodes, in

the case where these are the circular points at infinity, have

been extensively studied under the name of bicircular quartics,*

and some of the principal results obtained will be here given.

All the projective properties obtained for bicircular quartics may
of course be stated and proved as properties of binodal quartics,

but we shall find it convenient to give several of them in their

original form, as the reader will have no difficulty in making
the proper generalization. Quartics having the two circular

points as cusps have also been much studied under the name of

Cartesians,f the properties of which may similarly be gene
ralized and stated as properties of bicuspidal quartics. If a

quartic have one of the circular points as a cusp and the other

as a node, it cannot be real
; consequently this case has been

little studied, and therefore we have little to state as to the

properties of quartics having one node and one cusp.

270. From each of the two nodes of a binodal quartic may
be drawn four tangents to the curve (Art. 79), and we shall

now prove that the anharmonic ratios of these two pencils are

equal. The general equation of a quartic having for nodes

the intersections of the line z with the lines x and y is

a?
8

/* 2xyz (Ix + my] + z* (ax*+ by*+ cz
&amp;gt;2+ 2/yz + 2gzx + 2hxy)

= 0.

The pairs of tangents at the nodes are given by the equations

x* + Smxz + bz* = 0, y
2
-f Zlyz + az* = 0,

and we lose nothing in generality by supposing I and m to be

both = 0, which is equivalent to assuming that for the lines x

and y have been taken the harmonic conjugate, with respect to

the pair of tangents at each node, of the line z which joins the

nodes. Arranging now the equation of the quartic

y
z

(x* -f bz
2

)
+ 2yz

z

(fz + hx) + z
z

(ax* -f
&quot;2gzx

+ cz
z

)
=

0,

*
See, in particular, Dr. Casey s paper, Transactions of the Royal Irish Academy,

vol. xxiv. p. 457, 1869.

t See Chasles Aper$u Historique, p. 350; Quetelet, Nouveaux Memoires de

Bruxelles, torn. v.
; Cayley, Liouville, vol. xv. p. 354.

I I
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we see immediately that the four tangents from the node zx are

given by the equation

(x
2
4 If] (ax* + 2gzx + cz*)

= z* (fz + hx)*,

or ax*+ Zgx*z + (c + ab- A
2

) a?V+ 2 (bg hf) z
3x + (be -f} 2

4=0.

The invariants of this quartic are

/= abc - af - If +fgh -f TV (c + ab - A
2

)

2

,

6J= (abc
- af - If - \fgh) (c + ab- A

2

)
-
fA (a/ + fy

2

)

+ Zabfgh -f |/y -^ (
C + a5 - A2

)

8
.

Now these values are symmetrical between a and &,/and g, and

we see therefore that they are the same as the invariants of the

quartic which corresponds to the pencil of tangents from the

node yz, and that therefore the two pencils are homographic.

271. It follows at once, as in Art. 168, that a conic can be

drawn passing through the two nodes, and through the four

points where each of the tangents from one node meets the

corresponding tangent from the other
;
and further, since there

are four orders in which the legs of the second pencil can be

taken without altering the anharmonic ratio, that the sixteen

points of intersection of the first set of tangents with the second

lie on four conies, each passing through the two nodes. When
the quartic is bicircular, that is to say, when the two nodes

are the circular points at infinity, the theorem becomes that the

sixteen foci of a bicircular quartic lie on four circles, four on each

circle.* It is to be noted that any one of the conies through
the two nodes may degenerate into a right line together with

the line joining the nodes, so that four of the foci of a bicir

cular quartic may lie on a right line.

272. We have already stated that the equation of any

quartic may, in an infinity of ways, be thrown into the form

a J7 + 1 y* 4 c W* -f 2/FT7+ 2gWU+ 2h UV= 0,

where
7, F&quot;,

W represent three conies. If the quartic is non-

singular, the three conies cannot have a common point, since it

* In point of fact, this theorem, which is due to Dr. Hart, was first obtained, and

the theorem of Art. 270 thence inferred. The proof given in Art. 270 is in substance

the same as Professor Cayley s. See his Memoir on Polyzomal Curves, Edinburgh

Trans., 18G9.
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Is obvious that any point common to
7, F, W must be a double

point on the quartic whose equation we have written. In the

case of binodal quartics, Z7, F, W may be taken as three conies

passing each through the two nodes, and when these nodes are

the circular points at infinity, 7, F, W are three circles. We
lose nothing in generality by confining our attention to the

equation UW= F 2

,
to which, as in the theory of conies, the

preceding equation may in a variety of ways be reduced. It

may, for instance, be written

(aU+gW+ h F)
2 =

(h*
-

db) F
2 + 2 (gh

-
af) FIF+ (/

-
ac) W\

where the right-hand side of the equation breaks up into factors.

Bicircular, therefore, and binodal quartics may be discussed

by considering the form UW= F2

,
and by regarding the quartic

as the envelope of X2U+ 2X F+ TF= 0, where
/, F, W are in

the former case circles, and in the latter case conies passing

through the two nodes
;
and it is only necessary to examine

how this limitation modifies the results already obtained,

Arts. 251, &c.

273. When three conies have two points common, their

Jacobian breaks up into the line joining them, together with a

conic passing through the two points ;
and when the three

conies are circles, the Jacobian conic is the circle which cuts

them at right angles (Conies^ Art. 388, Ex. 3). The Jacobian

being a determinant, the Jacobian of three conies whose equations

are of the form aU+ p F+ yW= is the same as that of Z7, F,

W\ and when U, F, W are circles, all circles included in this

form have a common orthogonal circle.

If
Z7, F, W are circles, the coordinates of whose centres

are &$&, x )tf x^/z
z
zi
^e coordinates of the centre of

VZ7-r- 2\F+ W will be proportional to

and the locus of the centre, as \ varies, is evidently a conic.

Hence the quartic UW= F 2

may be regarded as the envelope
of a circle whose centre moves on a fixed conic* F, and which

* Dr. Casey has shown that the foci of this fixed conic are the same as the double

foci of the quartic. In fact, if a tangent from a point / meets the conic F in two

consecutive points P, P ,
the line IP will be a common normal to the two circles whose

centres are P, P ,
and which pass through /. If then / be one of the circular points at
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cuts a fixed circle / orthogonally. And in the more general

case of the binodal quartic, where
7, F, W are conies through

the fixed points, UW F 2
is the envelope of the variable conic

X2
Z7-}- 2XF+ JF, passing through the fixed points; all the

variable conies having a common Jacobian conic, and the pole,

with regard to any, of the line joining the fixed points moving
on a fixed conic F.

274. The nature of the quartic will be modified if any

special relations exist between the conic F and the Jacobian.

Thus, if F touch the Jacobian, the point of contact will be an

additional node on the quartic, and if F touches the Jacobian

twice, then each point of contact will be a node; that
is,

the

quartic will break up into two conies, each passing through the

fixed points. So if F pass through one of the fixed points, that

point instead of being a node of the quartic will be a cusp, and if

F pass through both of the points both will be cusps, and we
have a bicuspidal quartic. Thus, in the case of bicircular quartics,

if the conic Fwhich is the locus of centres be a circle, the quartic,

having the points at infinity as cusps, will be a Cartesian.

If the conic F touch the line joining the points, that line

becomes part of the quartic. Thus, in the case of bicircular

quartics, if the conic F be a parabola, the quartic will degenerate

into a circular cubic, together with the line at infinity.

If the centres of U, F, W lie on a right line, the Jacobian

reduces to the line joining the centres.

275. Let us now return to the equation UW= F 2
. We

have seen that there are in general six values of \, for which

XJ
t/&quot;4-2XF+TF breaks up into factors, and that the right lines

represented by the several factors are bitangents to the quartic

Z7JF= F 2
. Now when

Z7, F, W all pass through fixed points,

Xa

Z7+2XF+TF, which denotes a curve passing through the

same points, must, if it denote right lines, denote two lines

passing one through each of the points, or else the line joining the

points together with another line. In the former case the two

infinity, it follows that the tangents from I to F are normals, and therefore tangents

to the quartic at 7. The same argument holds, whatever be the curve F, or whatever

the law according to which the circles are described. Thus, the single foci of any

curve are double foci of any parallel curve.
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lines are not proper bitangents to the quartic UW F 8

,
but

ordinary tangents passing through a node (any line passing

through a node being improperly a tangent) ;
in the latter case

one of the two lines is a proper bitangent, the other is the line

joining the nodes. Of the six values of X, only two correspond

to the case of proper bitangents ;
for if L be the chord common

to U, F, TF, then F and TF will be of the forms respectively

aU+LM, IU+LN; and X2 27+2XF+ TF will have L for a

factor if \ be one of the roots of X2 + 2Xa +5 = 0. Thus, in the

case of bicircular quartics, when
Z7, F, TF all represent circles,

there are evidently two values of X for which the coefficient of

x* + y* vanishes in Xa
7-h2XF+ TF=0, and for each of these

values the equation denotes a right line bitangent to the quartic

Z7TF= F 2
. Or we may see the same thing geometrically

from the construction in Art. 273. If the circle \*U+ 2XF+TF
becomes a right line, its centre passes to infinity, and must there

fore be the point at infinity on one of the two asymptotes of the

conic F] and the two bitangents are therefore the perpendiculars

let fall from the centre of the Jacobian on these asymptotes.

In each of the four other cases where the discriminant of

X2

7+2XF-|- TF=0 vanishes, the equation denotes a pair of

tangents to the quartic, passing each through one of the circular

points at infinity, and whose intersection therefore is a focus of

the quartic ; or, what comes to the same thing, X*Z7-f-2AF+TFis

an infinitely small circle whose centre is the focus, and which

has double contact with the quartic. If one of two orthogonal

circles reduce to a point, that point must lie on the other circle
;

hence if X2 Z7+2XF+ TF reduce to a point, that point must be

on the Jacobian circle of 7, F, TF. We have, therefore, obvi

ously four foci, viz. the intersections of this Jacobian circle with

the conic F, which is the locus of centres of circles included in

the equation X2 U+ 2XF+ TF= 0, and which may, therefore, be

called a focal conic.

The four points in which the Jacobian circle meets the quartic

will be points in which circles of the system X2 Z7+2XF+ TF

meet the quartic in four consecutive points (Art. 251).

There are four ways in which the equation of a given
bicircular quartic can be reduced to the form UW= V 2

;
cor

responding to each there are four foci, two bitangents and four
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cyclic points, or points on the curve where four consecutive

points lie on a circle (see Art. 114) ;
the quartic having in all

16 foci, 8 bitangents, and 16 cyclic points.

276. If one of the foci of the quartic be taken as origin,

the equation of the quartic must be of the form (a^ + y*)W F2

,

where V and W represent circles; and the quartic is the

envelope of xz + y* + 2XF+ X2 TF= 0. Besides the value X = 0,

there are three other values of X, for which this variable circle

reduces to a point ;
and one of these values must be real. We

can then write the equation

(x* + y&amp;gt;) (x* +y + 2XF+ X&quot; W) = (x* + y* + \ F)
2

,

or, in other words, when we have a focus we can at once bring
the equation of the quartic to the form AB= F 2

,
where A and

B are point-circles. Bicircular quartics may be divided into

two classes, according as the other two values of X, for which

-4 + 2XF+ X2
J5 reduces to a point-circle, are real or imaginary,

or, in other words, according as the four real foci do or do not

lie on a circle. In the former case let C denote one of the two

point-circles, and, as in Art. 257, eliminate F between the

equations AB=V*^ A + 2XF+ \*B =
&amp;lt;7,

and we see that

the equation of the quartic may be written in the form

I *J(A) + m J(B) + n V( C) = 0, that is to say, that the quartic is

the locus of a point whose distances from three fixed points

are connected by the relation lp + mp + np&quot;
= 0.

The condition that I *J(A) -t m *J(B) + n\/(C) shall be touched

T* rri* n2

by \A + fj,B+ vG is (Conies. Art. 130)
- + + =0; and
X

/L6
V

when A, B, C are point-circles, and a, b, c the lengths of

the lines joining the points, it is easy to verify that the dis-

% 7*2 &amp;lt;J

criminant of \A + aB +vC vanishes if 1 1 =0. The
X p v

two equations just given determine X, /&, v, and therefore the

fourth focus.

We have seen
( Conies, Art. 94) that ifA, B, (7,

D be four point-

circles, we have identically bcd.A-\- cda .B + dab . C+ abc.D = 0,

where abc is the area of the triangle whose vertices are a, b, c, &c.

Hence, X, ytt,
v are proportional to the areas of the triangles formed

by the fourth focus and each pair of the other three foci. In the
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case where the three points a, J, c are in a right line, it can

easily be proved that the squares of the distances from any point

of four points on a right line are connected by the equation

A *
-4- =o.

ab .ac.ad ba.bc.bd ca.cb .cd da.db .dc

Hence we see that the reciprocals of X, p,,
v are proportional

to ab. ac.ad, ba.bc.bd, ca.cb. cd, and that we have the equation

I
2
ab .ac.ad+ m2

ba .bc.bd + n
2
ca .cb.cd=Q.

If we had I
2
ab . ac + m2

ba . be + n2
ca .cd = Q,

the fourth focus would be at infinity, and the curve would be a

Cartesian.

277. When we are given four coneydie foci of a bicircular

quartic, two suck quartics can be described through any point, and

these cut each, other at right angles. If we are given the fourth

focus, we are given the values of X, JJL, v, for which \A +n*B+ vC
reduces to a point ;

and evidently two systems of values of

f m2 n2

I, 77z,
n can be found to satisfy the equations

-
-f 1-

=
0,

lp+mp +
np&quot;

=
Q, where p, p, p&quot;

or
&amp;gt;J(A), &amp;gt;J(B), *J(C) denote

the distances from the three foci of a point on the curve sup

posed to be given.

Two quartics

I */(A) 4 m V(5) 4 n J(G) = 0, ? J(A) + m *J(B] + n V(#) =

will be confocal if

d2

(mV - mV) + b
2

(n
z
l
fz - n

2
l
2

) + c
2

(TV - IW) =
0,

as appears immediately on eliminating X, /z-,
v from the three

equations

P m2
ri

l
I

2 m 2 n
f2 a2 V c

2

- + + - =
0,

- + + =
0,
- + -+-=0.

X /JL v X p v \ p v

In order next to find the condition that the quartics should

cut at right angles, we first premise, and the reader can verify

without difficulty, that if A, B, C be point-circles, and a, &, c have

the same meaning as before, the condition that \A -f /j,B + v C^

\ A + p B+ vG should cut each other at right angles is

4- p v) + b
2

(v\ + v X) -f c
2(V + X = 0.
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We observe further that, as at Conies, Art. 130, the quartic

Z \/(A} + m *J(B) + n *J(C) will be touched at any point for

which the values of *J(A) } *J(B\ *J(C) are p, /o , p&quot;, by the circle

- A + -. B + .(7=0. The condition that this circle should cut

P P P

orthogonally the tangent circle to l
f

J(A] +m \J(B} + n J(G) is

,, mnr + mf
n

7&amp;gt;2

nl
f + ril lm

f + I m ~
a + V 77 + c

2
T = 0.

PP P P PP

But, solving between the two equations

Ip + mp +
np&quot;

=
0, I p + m p + n

p&quot;

=
0,

we find p, p , p&quot; respectively proportional to mn m n, nl n l
9

In I m. Substituting in the preceding equation, we find that

the condition that the quartics should be mutually orthogonal is

a2 (mV -mV) + b* (nT - n T) + c
2

(IV2 - IW) =
0,

the same as the condition already found that the quartics should

be confocal; and the theorem stated is therefore proved. It

does not appear to be necessary to the validity of this proof

that C should be real, and hence the theorem is true that con-

focal quartics cut at right angles, even though the four real

foci should not lie in a circle.

278. The theorem of Art. 277 was originally obtained from

geometrical considerations by Dr. Hart for the case of the

circular cubic. If we seek the locus of a point whose dis

tances from three fixed points are connected by the relation

Ip -f mp + np&quot; 0, the coefficient of (x* + #
2

)

2
will be found to be

(Z -f m + n) (m + n -
1) (n + I - m) (l+m-n).

Consequently, the locus, which is ordinarily a bicircular quartic,

reduces to a circular cubic if Zra + w = 0, and the theorems

already here proved are true for circular cubics, which have also

sixteen foci lying in general in four circles. Dr. Hart s proof,

which was given at length in the first edition, shews that if

0, P, Q be the centres of the quadrangle formed by the four foci

-4, B, C) I), the cubic must pass through these points, the tan

gents at any of these points being one of the bisectors of

the angle made by the intersecting lines AC, BD, and being

parallel to the real asymptote of the cubic
;
and that the cubic



BINODAL AND BICTRCULAR QUARTICS. 249

also passes through E the centre of the focal circle, the tangent
at E being parallel to

the same asymptote.*

Since then 0, P, Q, E
are points of contact

of tangents from the

same point of the

curve, the point where

OP meets QE (or the

foot of the perpendi- g

cular from on QE)
is also a point on the

curve (Art. 150), and

similarly the points

where OQ meets Pft,

and OE, PQ ;
and it

can be shewn that the

tangents at each of

these points to the

two cubics which pass

through them cut at right angles. Thus the seven points common
to the two cubics having A,B^ C^D for their foci, are determined

by simple constructions, and we may arrive by projection at

theorems, some of which have been already stated
;
for instance

(see Art. 152), if corresponding tangents, taken in any order,

from two points 7, J mutually intersect in points A, B, (7, D,
the centres of the quadrangle formed by these points will be

also points on the cubic, having for a common tangential point

the point where IJ meets the curve again and the point of

contact of the fourth tangent from this point will be the pole of

/e/with respect to the conic through the points A, -B, (7, /?, /, J.

279. The method by which Dr. Hart proved these theorems

was by shewing that when the foci are given, the relations

established Art. 276, combined with the condition l-\-n m^
suffice to determine

7, wi, n, and that actually, denoting the

* Thus the centres of the four focal circles of a circular cubic are the points of

contact of tangents parallel to the real asymptote.

KK,



250 BINODAL AND BICIRCULAR QUARTICS.

distances of from the four foci by a, &, c, J, the curve must

either have the property

(b+ c)p(a-b)p&quot;=(a+c)p, or (c- b}p (a+b) /&amp;gt;&quot;=(a
+ c) p.

Each coefficient is given a double sign, because, when the equa
tion Ip + mp + np&quot;

= is cleared of radicals, it only contains

the squares of
Z, w, n. The two equations answer to two dif

ferent cubics having the given points as foci
;
the different signs

answer to different branches of the same cubic. The upper

signs belong to a branch extending to infinity; for then the

equation is satisfied by the values p = p =
p&quot;,

which are true

for an infinitely distant point. The centre of the focal circle

obviously lies on this branch. The lower signs belong to an

oval, the equations then not being satisfied by p = p =
p&quot;.

The equations being satisfied by the values a, &, c for p, p , p&quot;,

we see that is a point on the cubic.

In like manner we have the relations

(c-d}p(a+d}p&quot;= (a+c)//&quot;
or (c+d) p(a-d}p&quot;

=
(a-f c)p &quot;,

whence, combining the equations,

p + p&quot; = p + p &quot;.

a + c b + d

or the two cubics make up the locus of the intersection of two

similar conies whose foci are respectively A and (7,
B and D.

The similar conies which intersect at have evidently as a

common tangent one of the bisectors of the angles at 0\
these therefore are, as has been stated, the tangents to the

two cubics which constitute the locus, and which therefore cut

at right angles.

280. Bicuspidal quartics may be considered as a limiting case

of binodal quartics. In the case where the two cusps are the

circular points /, J at infinity, the curve is called a Cartesian.

Des Cartes studied this curve (thence known as the oval of

Des Cartes), as the locus of a point 0, whose distances from

two fixed points A, B are connected by the relation Ip mp = c.

Chasles shewed, and it can be verified without difficulty, that

whenever this relation holds good, a third point C can be

found on the line AB, whose distance from satisfies a

relation of the form lpnp&quot;
= c; in other words, that the
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oval possesses, besides the two foci considered by Des Cartes, a

third possessing the same property. We use the word Cartesian

here in a somewhat wider sense. We shall shew that when
a quartic has the two points /, / for cusps, it has three foci

lying on a right line. When these foci are real, the curve

is the same as that studied by Des Cartes
;
when two are

imaginary we still call the curve a Cartesian, though Des Cartes

mode of generation is no longer applicable.

The equation of the Cartesian may generally be brought
to the form S2 = k3

L, where S represents a circle and L a right

line, Jc being a constant (or, what is the same thing, & =

being the right line at infinity), from which form it is evident

that the intersections of 8 and Jc are cusps, the cuspidal

tangents meeting in the centre of $, which is therefore the

triple focus of the Cartesian, while L is evidently a bitangent

of the curve.* The curve is then obviously the envelope
of the variable circle \2kL + 2\S + W = 0, the centre of

which obviously moves along a right line perpendicular to

L) and equating the discriminant to zero, there are easily

seen to be three values of X, for which the circle reduces

to a point, and therefore three foci. From the theory already

given, if A, B^ C be any three of the variable circles,

the equation of the envelope may be written in the form

I */(A)+m */(B)+n \f(C)=Q ;
and therefore we have the property

lp -f mp +
np&quot;

=
0, where p, p , p&quot;

denote the distances from the

three foci; or, again, since &2
is a circle of the system

answering to the value X = 0, we have Ip + mp = nk.

A Cartesian may also be generated as the locus of the

vertex of a triangle, whose base angles move on two fixed

circles, while the two sides pass through the centres of the

circles, and the base passes through a fixed point on the line

joining them.

If any chord meet a Cartesian in four points^ the sum of their

distances from any focus is constant; for the polar equation,

the focus being pole, is easily seen to be of the form

p
2 - 2 (a + 1 coso)) p + c

2 =
0,

* This equation has been studied by Prof. Cayley under the form

(x
t + 3,2

_ fl2)2 + 16.4 (X - TO)
= 0.



252 BINODAL AND BICIRCULAR QUARTICS.

and if we eliminate a&amp;gt; between this and the equation of an

arbitrary line, we get for p a biquadratic of which 4a is the

coefficient of the second term.

When, in the preceding c = 0, the equation becomes

p = a + b cos w, and in addition to the two cusps /, /, the curve

has the origin for a node. It is then called Pascal s limagon^

and may evidently be generated by taking a constant length on

the radii vectores to a circle from a point on it. If, further,

a &, the curve becomes tricuspidal, and is called the cardioidej

a curve generated by adding or subtracting a portion equal to

the diameter, on the radii vectores to a circle from a point on it.

The equation may be written in the form p* m^ cos
\&amp;lt;a.

281. The focal properties we have been discussing may
be investigated by the method of inversion (Art. 122). It

is easy to shew, that to a focus of any curve corresponds
a focus of the inverse curve, and that the origin or centre

of inversion will be a focus if the points /, / at infinity

are cusps. Thus, for the Cartesian which has three col-

linear foci, the inverse with regard to any point is a bi-

circular quartic having three foci on a circle passing through
the origin, which is also a focus. In inverting, if be the

origin, A, B any two points, a, b the inverse points, then for

the distance AB we are to substitute ^ 7-7 . To any relation
Oa.Ob

then of the form \AP+ pBP= c will correspond one of the form

\ ap + pbp=c Op) and thus by considering the bicircular quartic

as the inverse of a Cartesian we arrive at the fundamental property

of bicircular quartics ; and, in like manner, from any relation of

the form \AP-t- pBP-\- vCP=Q may be deduced a relation

\ ap + fjfbp + v cp
= 0. The inverse of a bicircular quartic from

any point on the curve is a circular cubic which, therefore,

possesses the same focal properties. A circular cubic or bi

circular quartic is its own inverse with respect to any of the

points 0, P, Qj R (p. 249). The angle at which two curves cut

is not altered by inversion, and therefore the theorem as to

confocal curves cutting at right angles, if proved for cubics, is

proved also for quartics. The inverse of a conic is a bicircular

quartic having the origin for an additional node, and from
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the focal property of conies may be inferred that such quartics

have the property

where a and b are two foci and the node. In like manner,

by inverting the focus and directrix property of conies, we

arrive at another method, given by Dr. Hart, for generating

this kind of quartic. If the radius vector from a fixed point

C to P meet a fixed circle passing through C in E, and if

A be another fixed point, the quartic is the locus of the point

P, for which PA = PE.

282. There exists for the binodal quartic* a theory of the

inscription of polygons, analogous to Poncelet s theory in

regard to conies. Let A, B be the nodes : starting from a point

P of the curve, if we join this with A, the line AP meets the

curve in one other point, say Q joining this with J9, the line

BQ meets the curve in one other point, say R\ joining this

again with A, the line AR meets the curve in one other point,

say S, and so on. We have thus, in general, an unclosed

polygon PQRS...J of which the alternate sides PQ, BS, ...

pass through A, and the other alternate sides QR, ... pass

through B. For a binodal quartic taken at random, it is not

possible to find the point P, such that there shall be a closed

polygon of a given even number of sides; for instance, a

quadrilateral PQRSP, of which the sides PQ, RS pass through
A and the sides QR, SP pass through B. But the quartic

may be such that there exists a polygon of the kind in question

(as regards the quadrilateral this is obviously the case, since

considering a quadrilateral PQRSP drawn at pleasure and

taking A for the intersection of PQ, RS, and B for that of

QR, SP, we can describe a quartic passing through the points

P, Q, R, S, and having the points A, B for nodes), and when

this is so, that
is, when there is one polygon, there are an

infinity of polygons ;
viz. any point P whatever of the curve may

be taken as the first summit, and the polygon, constructed as

above, will close of itself.

*
Steiner, Geometrische Lekrsatze, Crelle, vol. xxxn. p. 186 (1846).
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283. Taking the nodes to be at the angular points of the

triangle of reference, the equation of the curve must be of

the form

yV + IzV + cxY + 2/%z + Zgifzx 4- Mz xy = 0,

which may be written

y \z yz zx xy

Thus we see that the quartic may be generated from a conic by
writing, in the equation of the latter, for each coordinate its

reciprocal ;
a process which may be called &quot;

inversion,&quot; using
the word in a wider sense than that in which we have already

employed it. It is easy to express this transformation by a

geometrical construction. Let the coordinates be proportional

to the perpendicular distances from the sides of the triangle of

reference, and let P, P
f
be two points, whose coordinates are

connected by the reciprocal relations

x : y : z=yz : zxf

: xy
f

;
x : y

f

: z
f = yz : zx : xy

then we have seen, Conies, Art. 55, that the lines joining P, P to

the vertices of the triangle make equal angles with the sides
;
or

otherwise, Conies, p. 263, that if P be one focus of a conic touch

ing x, #, 2, then P f
will be the other focus. In general, in this

method to any position of P corresponds a single definite posi

tion of P . If, however, we have x =
0, or P anywhere on

the line BC, we have y and z both = 0, and P coincides with A
&amp;gt;

and reciprocally to A corresponds any point on BC. It is to be

remarked, however, that when xf =
0, the corresponding values

of y and z, being respectively zx ,
xf

y , though evanescent, have

to each other the definite ratio z : y ;
and therefore to any

point P on BC corresponds a definite element of direction

through A. We have, in fact, P indefinitely near to A, but in

a given definite direction, viz. such that (as in the general case)

AP) AP make equal angles with the sides. If now P describe

any locus, the other point P will describe a corresponding

locus; thus if the locus described by P be the right line

ax + by + cz = 0, that described by P will be the conic

,
and vice versa (compare Conies, Art. 297,
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Ex. 13) ;
if a=0, that is to say, if the line pass through A, the conic

reduces to x (bz
f + cy] 0, and leaving out the line x or BC,

we may say that to the line ~by -f cz corresponds the line bz -f cy ;

and, as already mentioned, if the one locus be any conic, the

other will be a trinodal quartic.

284. The correspondence of the conic and quartic may be

examined in detail
;
the conic meets each side of the triangle,

say -SO in two points; corresponding hereto we have through
A two elements of direction, viz. these are the tangents of the

quartic at its node A. Hence, according as the conic meets

BC in two imaginary points, touches
it,

or meets it in two

real points, the quartic has at A an acnode, cusp, or crunode,

and the like for the other sides. Thus, if the conic be an

ellipse or, say, a circle, situate wholly within the triangle, the

quartic is a triacnodal curve composed of a trigonoid figure

within the triangle and of the three vertices as acnodes (fig. 1);

if the ellipse is inscribed in the triangle, the quartic is tricus-

pidal (fig. 2) ;
if the ellipse cuts each side in two real points,

then the quartic is tricrunodal
;

viz. if on each side the inter

sections are internal we have the fig. 3, whereas if the inter

sections are external we have the fig. 4. It is to be observed,

Fig. (1). Fig. (2).

Fig. (3). Fig. (4).
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that in the transition from the one form to the other the

ellipse must pass successively through the vertices of the tri

angle; and that when the ellipse passes through a vertex

the corresponding quartic breaks up into a right line and a

cubic
;
the transition cannot be made (as at first sight it would

appear it might) through a quartic having a triple point.

The complete discussion of the different forms would be

interesting and not difficult, but it would occupy a good deal

of space; it would be necessary (in the present case of plane

curves) to consider the conies which in each figure correspond

to the line at infinity of the other figure. For the like theory,

as regards spherical figures, there are no such conies, and the

theory is considerably simplified.

285. The foregoing mode of generation of the trinodal

quartic leads at once to various properties of the curve. It

is well known that if a conic cuts the sides BC, CA, AB of

a triangle, and from each vertex we draw lines to the inter

sections on the opposite sides, these six lines touch a conic
;

and it is easy to shew further, that if instead of the two lines

through each vertex we consider the two inverse lines, these

meet the oppsite sides in six points lying on a conic; and

consequently that the six inverse lines also touch a conic.

In fact, if the lines (x
=

a.y, x = afy), (y
=

/3z, y = j3 z),

(z
=

70?,
z = y x) meet the sides # = 0, # = 0, z = respec

tively in six points lying on a conic, it is easily seen that

aa/3/3 &amp;lt;yy

=
1,

a relation which remains unaltered when a, /3, 7,

a
, /3 , 7 are changed into their reciprocals. Now, if a conic

is transformed into a binodal quartic, then by what precedes

the tangents at a node A of the quartic are the inverses of

the lines from A to the intersections of BG with the conic;

hence, the tangents at the nodes A, J5, (7, touch one and the same

conic; a theorem which may also be derived directly from

the equation of the quartic.

286. Similarly, if from the points A, B, C we draw tangents

to a conic, then it may be shewn that the six inverse lines are

also tangents to a conic. But transforming the conic into a

trinodal quartic, the tangents from A to the conic are trans-
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formed into the tangents from the node A to the quartic (for a

curve of class
??,

the number of tangents from a node is n 4,

and therefore for a trinodal quartic it is = 2) ;
and we have thus

the theorem, that the six tangents from the three nodes to the

quartic touch one and the same conic.

287. To the bitangents of the quartic correspond conies

through A, J5, 67, having double contact with the conic; and

to the stationary tangents of the quartic correspond conies

through A, B, C, having stationary contact with the conic.

It can be shewn, that the numbers of such conies are 4 and 6

respectively, agreeing with r = 4, 4 = 6. But the result as to

the bitangents can immediately be obtained from the equation

of the curve, which may be written in the form

{yz V(a) -f zx V(&) + xy \/(c)}
2

- 2xyz [{V@c) -/} x + {V(ca) -&amp;lt;j}y+ (&amp;gt;J(al)

-
h}z],

where the factor multiplying 2xyz evidently denotes a bitangent,

and by changing the signs of the radicals, we have in all four

bitangents. Write for a moment fx + gy+hz = s,
x ^(bc) = ?,

ytj(ca)
= mj z^(ab) = n^ and if = denote the equation of

the four bitangeuts, we have

=
(
s I m -

n) (s
- I -h m + n] (s + I - m + n) (s + I + m -

n)

=
(
5
* _ p _ m* _ wy _ 4

(
WV + nT + IV +

In other words, the equation of the curve may be written

{(fx 4- gy -f hz)*
- lex

2 -
cay*

- abz^ -0 =
0,

shewing that the eight points of contact of the bitangents lie on

a conic.

If the four bitangents be denoted by , w, r, w, the equation

of the quartic may be written

# + M* + V* + W* = 0,

or (? -f w
2+ v

2+ w*-2tu - 2tv-2tw - 2viv - 2wu - 2uv}* = Sttuvw.

In this form it is evident that
f, M, v, w are bitangents whose

points of contact lie on a conic, and it can be verified without

much difficulty, that (t w, v w), (t-v, u w\ (t w^u v)

are nodes.

LL
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288. We have just shewn how in one way the equation
of the quartic can be reduced to the form UW V*, and

generally if u, iv, and v denote any two tangents to the conic

and their chord of contact, since the equation of the conic can

be written in the form uw = v\ that of the quartic is thence

immediately given in the form UW= V\ where U, F, W are

linear functions of yz, zx, xy.

In connecting the trinodal quartic as above with a conic,

we have also verified that the curve is unicursal. Since the

coordinates x, y ,
z of a point on the conic can be expressed

as quadratic functions of a parameter #, the coordinates yz,
z x

, xy of the corresponding point on the quartic are imme

diately given as biquadratic functions of the same parameter.
The preceding theory of trinodal quartics extends to the

case when any or all of the singular points are cusps. If all

are cusps the equation of the curve is reducible to the form

#
*+?/&quot;*+2f^=0, and the tangents at the cusps are x=-y=z, which

meet in a point ;
as we may also see by reciprocation, the re

ciprocal being a cubic whose equation may be written in the form

x^ -f y* + z^ = 0. When the curve has two cusps and a node,
the line joining the two points of inflexion, the line joining

the two cusps, and the bitangent all pass through the same

point. The cases of the higher singularities, described Art. 243,

require to be separately treated.

289. The equation of a quartic having a tacnode, as given
Art. 244, is

?/V -}- Ix yz -+ cxy z + dfz + ex* +fx*y + gx*y* + Jixy
z + iy*

= 0.

Let it also have a node, and since, in Art. 244, it was only
assumed that the point xy was the tacnode and the line y the

tangent at
it,

we may take the point zx as the other node.

In order that this point should be a node we must have d, li,

and i = 0, and the equation becomes

(yz}
z + ~bx*.yz + cxy .yz + ex

4

+fx
2
. xy + gx^y* 0.

We have written the equation so as to exhibit that it is a

quadratic function of xy, x\ yz. Hence, if in the general

equation of a conic we write xy, x\ yz for x, y, z respectively,
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we shall have the equation of a quartic with node and tacnode.

It will be seen that the relations

x : y
f

: z
f

xy : x2
: yz

imply reciprocally x : y : z = xy : x *
: y z,

so that we have a like theory to that which exists for a quartic

with three distinct nodes. The constants may be determined

so that the node shall become a cusp, or the tacnode a node-

cusp, or that both these changes should take place, and the

theory thus extends to quartics having two distinct singular

points, one of them a node or cusp, the other a tacnode or

node-cusp.

290. The equation of a quartic having an oscnode has been

given, Art. 244, as

(yz
- mx2

)

2 + cxy (yz
- mx2

)
-f dy*z -|- gx*y* -f hxy* 4- iy*

= 0.

It is obviously a quadratic function of yz mx*, xy, y*. Now
the relations

x : y : z = xy : y* : yz
- mx*

will be found to imply

x\y\z = xy\y
f&amp;lt;i

\ yz + mx\
so that there is for the present case a theory analogous to that

established for trinodal quartics. The constants may be parti

cularized, so that the oscnode becomes a tacnode-cusp, and the

theory thus extends to the case of quartics having a tacnode

cusp. In all these foregoing cases we have expressed the

coordinates x, y, z of any point on the quartic, as quadratic
functions of x

, y , z\ a variable point on a conic; and since

the latter coordinates can be expressed as quadratic functions

of a parameter 0, the former coordinates are expressed as

quartic functions of the same parameter.

291. In the remaining case of a quartic curve having a

triple point (general or of any special form), the mode of

treatment used in the last articles is not applicable, but we can

otherwise immediately express the coordinates as rational func

tions of a parameter. Taking the point xy as the triple point,

the equation of the curve is of the form su-
3
= u^ where

3 ,
u
4
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are homogeneous functions of the third and fourth degrees

respectively in #, y. If we now substitute y 6x, we get
s0

8
= #0

4 ,
where

3 , 4
denote cubic and quartic functions of

6
;
and we have #, ?/,

z respectively proportional to
3 ,
00

3 , 4
.

The method here employed is exactly that suggested in

Art. 44. A variable line y 6x drawn through the triple point

meets the curve in but one other point, the coordinates of which

are therefore rationally expressible in terms of 6. And we should

be led to substantially the same results if we employed the

same method in the cases previously considered; for example,
if in the case of a trinodal quartic we determine each point

of the quartic as the intersection of the curve with a variable

conic passing through the three nodes, and through another

fixed point on the curve.

The special case of a quartic with a triple point x*y z* may
be particularly noticed, as it can be treated by exactly the same

method as was used (Art. 212). The curve has, beside the

triple point, no singular point but a point of undulation, and

its reciprocal is a curve of like nature.

291 (a). Unicursal quartics may also be treated by the

method of Art. 216 (a). We may express the coordinates

V +6c \V
z = a&quot;\

4 + 4ft&quot;XV + 6c&quot;Jiy + 4efV8 + *V,
and can (Art. 44) write down the equation of the corresponding

quartic. The equation determining the parameters of the points

of inflexion, and the relation between the parameters of three

points which lie in a right line, may be found as in the articles

referred to, or else as follows. Substituting the above written

values for the coordinates in Ix + my + nz = 0, we get a quartic

determining the parameters of the points in which that line

meets the curve.* The theory of equations then enables ua

* It is evident that by forming the discriminant of that quartic we get the

equation of the reciprocal, or tangential equation, in the form S 3 = T-.
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to write down

la + ma + na&quot; = /A/*W&quot;,

- 4 (Ib + mV + nb&quot;}
=

X/*&amp;gt;

6 (Ic + me +
nc&quot;}

= XX &quot;

- 4

261

y X &quot;+ XX X
V&quot;,

le+me +ne = XX X&quot;X&quot; .

From these equations, if we linearly eliminate
?, w, w, X &quot;, //&quot;,

we get the relation connecting the parameters of three points on

a right line, viz.

-4&, -4^, -45&quot;, 5, 4
6c, 6c

,
6c

r/

, (7,
5

-4J, -4&amp;lt;f, -4^, D, (7

=
0,

where we have written

If we make X :
//.
= V : pf = X&quot; :

/u,&quot;,
we find that the para

meters of the points of inflexion are determined by

a
, ,

a
, ju, ,

-45, -46
, -46&quot;, 3/*

2

X,

6c, 6c
,

6c&quot;
, 3yu-X

J

j

e , c , e
/r

, X3
0.

The first determinant expanded may be written

24 (ab c&quot;)
D* + 16

(aZ/&amp;lt;T)
OZ&amp;gt; + 4 (a&V) (

O a -

+ 24 (acO 5/&amp;gt; + 6 (ac e&quot;) (5(7
-

+ 4 (ad e&quot;) (B*
- A C) + 24 (5cV) ^10+16 (5cfO AS
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and the second determinant expanded and divided by 24 gives,

for determining the inflexions, the sextic

(o&V) X
6 + 2 (ab d&quot;) XV + {(ab e&quot;)

+ 3 (ac d&quot;)} XV
+ (2 (cuff) + 4 (5c &amp;lt;T)} XV + {(ad e&quot;)

+ 3 (5cY )} X&amp;gt;

4

+ 2 (wo x/*
5 + (c^vv6 = o.

If in the preceding relation two of the parameters be made

equal, we get the relation connecting the parameter of any point

A with that of one of the points B where the tangent at A
meets the curve again, viz. writing for D, (7, 7?,

A respectively

X2X
, 2\fj,\ + XV, /*

2X -f 2X/A//, ///V, we have

X&quot; [24 (aVc&quot;)
X4 + 32 (ab d&quot;} X&amp;gt; + {12 (ate&quot;) + 24 (ac &amp;lt;T)} X&amp;gt;*

+ {4 (ab e&quot;)
+ 24 (ac cT)} X&amp;gt; + {12 (ace&quot;) + 48

(bed&quot;)}
XV

+ {4
/a^V/ + 24

(bee&quot;)} \^ + 8
(Me&quot;) ^}

p&quot; {4 (ab e&quot;)
X4

+ 12 (acY ) XV + (12adY + 24
(bee&quot;}}

XV 4- 32 (6JV
r

) X//,
3

from which equation we can determine the parameters, either of

the two points B answering to any point on the curve A^ or of

the 4 points A answering to any point B. If we form the

condition that the equation in X : /// should have equal roots,

we get an octavic in X :
yu-, determining the, parameters of the

8 points of contact of the 4 bitangents of the quartic.

When it has been proved that it is possible to find four

linear functions t, u, v, w of x, y, z, which expressed in terms of

X, fju
are perfect squares, it is evident by extraction of roots and

linear elimination of X2

, X//,, yu,

2

,
that the equation of the curve

can be written in the form At* + But + Go* -f Dw* = 0.

291 (b). Conditions to be satisfied by the parameters of a

node are obtained as in Art. 216 (c), from the consideration that

the relation connecting the parameters of three collinear points

must be satisfied when two of these parameters correspond to the

same node, and the third to any point whatever on the curve.

Write
/*&amp;gt;&quot;

=
a, X / -f XV =

, VX&quot;=y, then we have A =^
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B= Xa + ^a/3, (7= X/3 + yL&7, D\^. Substituting these values in

the determinant of the last article, and equating separately to

zero the coefficients of X2

, X/z-, y? we have the three conditions

/ //
a , a , da

,
a

,
a

, a,

-
45, -46 , -46&quot;, /3,

a

6c, 6c
, 6c&quot;, 7, /3

-
4d,

- 4d
,

-
4&amp;lt;T, 7

=
0,

-45,- 46
, -46&quot;,

a

6c, 6c
,

6c
r/

, /3

-45, -45
, -45&quot;, /3,

6c
,

6c
, 6c&quot;, 7, a

-4&amp;lt;7, -4&amp;lt;f, -4&amp;lt;T, /

e
,

e
,

e
r

, 7=0.
Conditions which expanded are

24 (ab c&quot;} 7
2
-f 16 (a6X) 0y + 4 (aJV) (/S

2 - 7) + 24 (ac rf&quot;) ^7

+ 6 (ac e&quot;)
a,/3 + 4

(acTe&quot;)
a
2 =

0,

4 (db e&quot;) 7
2 + 6 (acV) ^7 + 4 (aJV) (/S*

-
ay) + 24

(bee&quot;) ay

+ 16
(btfe&quot;) a/3 + 24

(&amp;lt;tfe&quot;)
a
2 =

0,

l&(ab d&quot;) 7
2 + 4 (ab e&quot;) /3y + 24

(acW&quot;) /S7 4- 6 (acV) /3
2

+ 96
(6cW&quot;) a7 + 4 (ad e&quot;) a/3 -f 24

(bee&quot;) a/3 + 16 (5^ e&quot;)
a
2 = 0.

With these equations we combine the three obtained by mul

tiplying the equation X2
a /ctX/S + ^7 = by a, /3, 7 respec

tively, and linearly eliminating a
2

, /3
2

, 7
2

, /3y, 7a, a/3 we get a

sextic for determining the parameters of the three nodes.

There is no difficulty in analysing, as in Art. 216
(&amp;lt;?),

the

different cases where the sextic of the last article can have equal

roots, and so arriving at the different special cases of unicursal

quartics already enunciated.

INVARIANTS AND COVARIANTS OF QUARTICS.

292. When we have occasion to write the equation of a

quartic at length, we shall write it

ax* + ly* + cz
4
+ 6/yV + 6gzV +

+ IZlx yz + 12??2?/
2
2ic+

= 0.
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The concomitant of lowest order in the coefficients is the con

travariant (Art. 92) of the second order in the coefficients,

whose symbolical expression is (a!2)
4

,
and whose vanishing

expresses that the line cca? + /??/ + 72 cuts the quartic in four

points, for which the invariant S vanishes. We shall call this

contravariant er; it is of the fourth order in the variables

a, /3, 7, and its coefficients are

A =
Z&amp;gt;c + 3/

2 - 4&
3
c
2 ,
B = ca + 3f - 4c^3 ,

C= ab -f 3&
2 - 4^,

F = af+ gh + 2Z* - 2a
2
n - 2a

3m,

a =
Iff + A/ + 2m* - 25

8
Z - 2J.W,

H =ch +fg -f 2n
2 - 2c

t
m- 2c

2Z,

M = 2^m w? ^c
x

- fa3 4- C
2
a

2 ,

^7&quot; =2hn Im fa2 g\ + a
a
b
S)

- 3w/ - c5
t + J^, -4

3
= 3w5

3
- 3m/-

293. The contravariant just mentioned is the evectant of

the simplest invariant A, which is of the third order in the

coefficients, and has for its symbolical expression (123)*; that

is to say, cr is found by performing on A the operation

. d m d . d ~ ,, d
a T-+^^A+ yS-+ V j:- + &c.

;da do dc df

and conversely from the values already given for the coefficients

of a- the value of A can be inferred. This is

A = abc + 3 (af + If + ctf)
- 4 (a 3

c
2 + J

Cl
a

a + cafr)

+ 12 (/Z
2
-f gm

z + hri
2

} + 6/^A
- I2lmn

- 12 (aan/+ a
amf+ Ipg 4 ^

3 ?^7 + c.mh + cjh)

-f 12 (Ib^ + mc
t
a

t + na
3
b
3)
f 4 (o^ -f a3

&
x
c
2).

If we use the same notation as in Art. 223, the value of

A may be written

r (d
2

) + 4 (eZca) + 3
(&amp;lt;$&quot;}

- 12
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where

(^)

(dca)

(eft-)

-
Cl )

- ^ (Co
c
8
-

Cl
c
8)

the invariants (d*), (dca), &c., being all known in the theory

of the binary quantics.

294. The next simplest invariant B is of the sixth order

in the coefficients. It may be formed by taking the six

equations obtained by twice differentiating the given equation

with respect to
.r, y or z, and from these six equations elimi

nating dialytically #2

, y\ z
2

, yz, zx, xy. We thus have B in

the form of a determinant

li, ft, /, 6
S , TW, 5,

772
I,

k

We shall presently give the developed expression for B.

Meanwhile, we remark that Clebsch has used this invariant

to shew that the form

p* 4 q
4
+ r* + s

4 + t* = 0,

where
&amp;gt;, j. r, 5, are linear functions of the coordinates, is not

one to which the equation of every quartic can be reduced.

Since j9, q, &c., each implicitly contain three constants, the

form just written involves fourteen independent constants, and

therefore, at first sight, seems capable of being used as a

canonical form sufficiently general to represent any quartic.

But on forming for the above equation the invariant B, it will

be found to vanish, and therefore this form will only represent

quartics for which JB=0.*

* This class of quartics has been studied by Luroth, Mathematische Annalen,
vol. I. p. 37 (1870).

MX
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295. In calculating the value of B, it is convenient to use

the following value for a symmetrical determinant of six rows

and columns, the constituents of which are denoted by a
2

, ab, ac
r

&c., ba, b\ bcj &c.

aW^V/ 2 - SaWaP (efY 4 2SaW. de . ef.fd+ 2az
b* (cd )

2

(ef?

- 22a2
6
2

. cd . de . ef .fc 4 22a2
. bc.cd.de. ef.fb

- 22a2

(be)* de . ef.fd

4 22 (alYcd.de . ef .fc
- S (ab)

z

(cd)
2

(ef? -2Vab.be. cd.de. ef.fa

4 2 2ab .bc.ca.de. ef.fd.

The expanded value of B is as follows :

abc (fgJi -fl*
-
gm*

- hri* 4 2Z?w)

4 be {?
-
Pgh + 2 (gm

-
nl) aj, + 2 (hn

-
ml) a} + (n

2

-fy] a*

4- (m
z

-fh] a* + 2 (fl- mn] a
t
a
9]

4 ca {w
4 - 2

/A + 2 (fl
-
mn) bjn + 2 ^ -

w7) Z
3
?n + (n

1

-fg] I?

?i
4 - T?

2

/^ -f 2 (/Z
-

?7Z7z) cji -f 2 (^m
-

In) c
3
n + (w*

2

-//i) c

+ (F-ffh)c*+2(kn-lm)c
- (/ + If + ^ 2

) (/^A -/Z
8 -

&amp;lt;/m

2 -
/iw&quot; + Am)

^ + cjim] 4 2J/ (c/Z + a 4 2cA
2

(a^/wi 4^
1
n3
4 cX) - 2^ (c2

Z
3 4 X) ~ 2cA

( 3
w3 4 bf)

4 2o/&quot;Z (5X + CX) + 2^w K^ + X) 4 2cA^
( 2
^2 4 bf)

- 2afmn (bzg 4 cji)
-

2bgln (cji 4 ,/)
- 2c/iZw (aa/4 &

Jt̂ )

- 2a (^3w7i
3 4 c

a
?/i

8

w)
- 25 (c^Z

3 4 fl
8
Z?i

3

)
- 2c

( 2
Zm3 4 bjn?)

4 (58V +
&amp;lt;

2/rf
) + * (c^Z

51 4 affi] 4 c
(a&amp;gt;i

2
4 bffl)

4 2a/Z (wz^c, 4 nbft) 4 2^/w (wc^ 4 k
t
a

9) 4 2cA^ (Za8^ 4

t
4 w5,ca)

4 2JwZ (?zc8
a

8 4 Z^aJ 4 2c/??z (Za3
J

t
4

4 2 (^*nj$^^
- 2 (qflbfa 4 bf/*mcta9

4 cffnafij

~ 2 V8 (
J
iJ7
w + c

i
/iw

)
~ 2^i 3 (

GJil + aJn)
-
200^ (o8/wi 4 %/)

4 2a6
lCl (cX + &X) + 25c

f
flf
s (X + c

x
?

) + 2ca
8J, (^Z&quot;

4 X)
^c^ 4 ncfc)

- 2bm (ncrf 4 Za.c,*)
- 2c (a/;,

2
4 ft

8O
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;v) + ft c/w +W) + cW +

4 afbfc? + bgc*a* 4 cha*b*+ 2alb
sc^c {

4 2&roc
1
a
8
c
8
a
a 4

-
2^,0, (wzcA 4 n^cj

-
2Z&amp;gt;c

2
a

2 (na^ 4 fc
2 3)

- 2ca
8
6
s (ft8

a

+ 2/yA* -/^ (fl +gm
2 4 An*) 4 Wfghlmn

-
(fl

1

+gm
2 +

+ limn (fl* + ^m -f kn*)
- IVn2

-f 2 (bgn + c,A??i) (^wi* -fM2 - 2/f
8

-.^^ - Imri)

+ 2 (J + cjil] (Jin

2

+fP - 2gm
2

-fgli
-

Imn]

+ 2 (ajm + &
8^) (/f

8 + gm*
-

2h&amp;gt;i

2

-fgh - Imn)

(fgh -f

-
Zghmnb^

-f 2 (5^7/1 -f J
8Ci

- 2 (a/c,^^ -f ft.V^ -f c,VZ -f a,V* +V^ + ^

+ 2/wn
2

c, 4 a
3

2
^
3 ) + Zgln (bfr + b

3\) -f 2hlm
(cfr

4

- 2 (a8
J
aCj 4 Og^jC.J (fP 4 ^wi* 4 A?i* 4 Imn)

~ 2A 3 (cX +V) -W. (
c

/&quot;
+ X) - 2*c

lCa (J^ 4

4 2 (/Z
-

win) (^a, 4 Ac.a^J 4 2 (0w
-

TzZ) (kct aj&amp;gt;a +/

+ 2
(
J
3
c

i 2
-Wi) (

J
s.

,
4 c, aA) ~ ZA/^a, 4 a

s\cj -
*fy (afV, + &

tV.)
4 (-i//

-
2mw) C

2
a

2
a
3
5
3
4 (4^wi

-
2nZ) a3

b
3
b

1
c

l
4 (4A

4 2 (a 2
J
sC] 4 aj&amp;gt;,c9) (Ib^ 4 wzc

8a, 4 na^ -
(a^c, + afrcj.

296. In the notation of Arts. 223, 293, the value of B is

r (d
3

) (5
2

)

- r (tf(?b) 4 r (dc*)
-

(tf) (ba*) 4 (&amp;lt;FcV)
4

-
(J) (cf5&quot;)

- 2 (dc
3

6a) 4
where (d*)

=
c^&amp;lt;74 4 2rf â

- 2 -^ -
*,
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(&amp;lt;*Vft)

= &
(e,&quot; (dA - d ) 4 2c

sC.2 (dA - ) 4- 2c,e,W-
+

C,&quot; (d& - d:) 4 2C
,c2 (&amp;lt;?/;,

- dA) 4 c,

2

+ ^ {c.&quot; (dA -V,
1

) 4 2o
c, (^, -d^ 4 2c

o, (rf,rf,
- d

+ c, W, -
4, ) + 2c,c2 K&amp;lt;/2

- dA) 4
c,&quot;

-
26, {V, (4rf4

-
&amp;lt;*,)

4 cA (c//3
-

rf,rf4) 4 o.c, (dtd,
-
d^

4 C
,

C
, ,,- 3

4
, ,,

-
. 4 c,

2

)
is formed from (d*c

2

b) by writing ^7
2

, a^, tf
&amp;lt;?,,

for

a)
=

(i.a.c,
-

5, (a.o,, 4 ff^J 4 J./ cj P

where P= 5 (rf/4
-

df.)
-

J, (rf^
-

3̂ ) 4 J, (d,rf,
-

rf, ),

- 5 &amp;lt;*

= (/ 4
-

3 4 c
4
-

4 2
J, J, (

- dA)* 2*A (rf^
-

&amp;lt;&quot;)

+ 2i
ci, (/,/,

-
rf.c/4).

(Mb*} = a
c {P(C ,

C
,
- c

2

2

) 4 C (c,c,
- c c.) 4 n (cA -

c,

2

)J

+
, {^ (V,

-O 4 # (c,o,
- O c

3)
4 S (c,o,

-
c, ;j,

where P = J
(c.rf,

-
c/7,) 4 &, (c/

-
c/,) 4 S, (c,e?,

-
&amp;lt;!//),

&amp;lt;2

= J M, -
&amp;lt;y-/2) 4 J, (c3 &amp;lt;

-
c/y 4 5

2 (c,rf2
-

c/,),

= J M, -
&quot;A)

+
ft, (A - A) + ft, M. - V.

1

.

=
ft. M, -

c,&amp;lt;)
4

ft, (cA - cA) + b
* (A - CA\

= J
o (c 2&amp;lt;?,

-
Ciij 4 5, (c rf

2
- c^ ) + ft, (0,4,

- o
crf,),

2C
,c,

(ft.*,

1 + sftA
1

)
- ^A*,

1 +W
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- 2V, (V*. + 2
JA&quot;)

+ 2Vo (i,

3 + W.)
- * * + 2

4 &amp;lt;* KW - 2V, (

(c*6)
= J

2 (o c
2

-
c, )

-
i, (e c

s
-

c,^) + fi
(c,cs

-
c/).

297. We have seen (Art. 221) that if we had a covariant

quartic, we could, from the invariants already obtained, derive

a series of others. One such covariant can be at once obtained

by forming the equation of the locus of a point whose first

polar is a cubic for which the invariant S vanishes; in other

words, by equating to nothing the S of the polar cubic. The

symbolical expression for this covariant is (123) (234) (314) (124).

The covariant $ of the quartic

ax* + %4
-+ c.2

4
-f du* -l- ev* = Q

- . - abode
is of the form -

-\
---

1

---
1

---1--=0.
x y z u v

Hence, as we have already seen, that the first form, though

apparently containing a sufficient number of constants, is a

special one to which the equation of a quartic cannot in general
be reduced; so is the second form also one to which the equa
tion of a quartic cannot be brought unless a certain relation

between its invariants be satisfied.

There are other covariant quartics, but that just described is

of the lowest order in the coefficients. Any other covariaut

quartic of the fourth order in the coefficients must be of the form

S+kAU, where k is a numerical constant and A the first

invariant. This may easily be verified with respect to the

covariant obtained by forming the contravariant of the contra-

variant of Art. 292.

298. The general values of the coefficients of 8 have not

been calculated, nor have any of the higher invariants. I have

thought it worth while, however, to examine the special case

a^ + A/ + c;
4
-f 6/yV -f fysV + 6/by = 0.
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This form only implicitly contains eleven constants, and there

fore is a very particular case of the general equation of the

quartic; but it lends itself easily to calculation, because the

covariant S is of the same form

a*4 + b/ + cz
4 + 6fyV + 6gaV -f 6hx

2

?/

2 =
;

and, therefore (Art. 221), from any invariant can be derived

another by performing on it the operation a
-y- -f b -= -f &c., an

operation which we shall denote by the symbol &amp;lt;f&amp;gt;. Although
invariants which exist in general may vanish for the special case

here considered, yet invariants, which in this case are distinct,

will be distinct in general. By calculating the invariants for

the special case, we obtain all the terms of the general in

variants which contain only the coefficients a, &, c,/, g, h.

The values of the coefficients of $, for the form in question,

are

a = 6/
2

,
b = M*f*, c = 6/y,

f = Icgh -/ (If + cJi
2

) -f*gh,

h = abfg
- h (af + If) -fgh*.

It is convenient to remember, that for the same form the

values of the coefficients of the contravariant
er,

Art. 292, are

G = bg + hf, H=ch+fg.

299. We find it convenient to use the abbreviations

abc = L, a/
2

+Z&amp;gt;/+c/i

2 = P, Icfh* + cah
2

f* + ab/y=Q, fgli
= E

,

then the values of the invariants previously found are, for the

special case we are considering,

A=L+3P+QR, B = LR + 2R*-PE-, or B=AR-PR
The results of the operation (f&amp;gt;

on these several quantities are

&amp;lt;t&amp;gt;(Q)

= - 2PQ -IRQ- QLR* + 12PR* -f

whence
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&quot;\Ve can then obtain a new invariant of the ninth order in

the coefficients by performing on B the operation &amp;lt;. The

result is

&amp;lt; (B]
= C = Q(L- P+ UR)- LR (2P+ 9-B) + (2P

2- 3PR-30R2

).

The invariant jfcst found is not, however, the only independent
invariant of the ninth order in the coefficients. If we write the

general equation of a quartic u
4 4 u

3
s + u^ 4- uj? -f- cz* = 0, then

generally the highest power of c which occurs in an invariant

of the ninth order will be the third, and c will be multiplied by
an invariant of the sixth order in the coefficients of the binary

quartic u
4

. This latter invariant must be of the form s
3 + k?

;

and any assumed invariant of the ninth order can be resolved

into two parts, in one of which c
3

will be multiplied by s
3

,
and

in the other by ?. The former part can be expressed in the

form lA* + mAB + nC
l i

where A, B, C
1

are the invariants

already calculated
;

for the expression of the latter a new in

variant is necessary, and we proceed to give one of several ways
in which it may be obtained. It will first, however, be neces

sary to mention some other covariants and contravariauts.

300. The value of the Hessian for this case is

agha?+ bfify
6+

&amp;lt;-fy*f+ (&amp;lt;%
+

&amp;lt;*tf- 30#&amp;gt;y+ (ach + afg-3fh) x z*

+ (dbf+ bah- 3/A&quot;)yV+ (b ch+ bfy
-

3/7*) ?/V-f (caf+ dig
-

3#&amp;gt;
V

+ (beg + cfh
-
Zfg] s*y* + (ale

-
3af

2 -
3bg

2 - ZcV -4- 18^) atyV.

Again, it has been stated (Art. 92) that a quartic has also a

contravariant sextic, the symbol for which is (a!2)
2

(a23)
s

*(a31)
a
.

The value of this, for the case we are considering, is

-f]
* + (caff -/) ff + (abh

-
h*) 7

s

fff)a?0*+ (bch+ ttfg-Zfh] aV+(ac/-f Gcgh- 3//JjS*a*

+ (ach -f- Qafff
-
3fh) /3V -f (abf+ Zbgk

-
Zfh*) 7V

+ (dbg + Qafh
- 3^) 7

4
/3

2+ {aJc- 3(a/
2+ bg*+ ck

z

] + 8fyJi] afffy*.

If, introducing differential symbols in either of these, we operate
on the other, the result is ^ + 576#. If we operate on the

Hessian with the contravariant
&amp;lt;r,

we get a covariant quadratic
of the fifth order in the coefficients

;
and if we operate on the

contravariant sextic with the quartic itself, we get a contra-
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variant quadratic of the fourth order in the coefficients. The
values of these quadratics are respectively

(afx* -f%2
-f c/^

2

) (L + 3P+ 307?)

-f (ffha?+ hfy*+fffz*) (IQL - 6P- nB) - 4 (a
2/V4 %y+ cW) ;

(/a
2 + ffP + 7*) (3L + 5P+ 2JB)

- 8 (a/V + ty&+ ^V)
+ 4 (Icffko? + calif& -f a&#/).

If we introduce differential symbols into either of these two

concomitants and operate on the other, the result is a new
invariant

- 32P+ 448P) Q+ 3P 3 -6P 2Z- I34P 2P
2 + 128PLP - 60PR2 + 1 02ZAB + 408L^ - 72E3

.

There appears to be for the quartic we are considering no

other independent invariant of the ninth order. If, for ex

ample, we operate with the contravariant conic on the quartic

itself, the result is expressible in terms of the invariants

already found, being 3&amp;lt;7

2
- 80^- 180AR We might perhaps

more simply have taken for the second independent invariant

* (67,
-32

(7,),
or

R +

301. We proceed next to form invariants of the twelfth

order in the coefficients. We can form the cubic invariant of

the quartic S by help of the formulas

whence L + 3P + GR = 6D
17
where

D^ltf+Q (- 6P5 - 2LR - 12R2

)

+ 5P2^ - 6PZJS* -f 10P72
3 + UP? + 22 LR3

Again, by performing the operation c/&amp;gt;

on
(7,,

we get

Z&amp;gt;

2
= 24

&amp;lt;3

2
-f (4P

2 - 4PL - 84P7? - 20Z72 - 2487?
1

)

+ 444PS8
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and, by combining these, we have D
t

6D
l
=

4Z&amp;gt;

3 ,
where

D
3
= Q (P* -PL -12PR- 2LR - 445

)
- P 35 - llP 5*

+ PUB + 45PL52 + 96P53 - QUIT - 54L53 - 1254
.

In terras of these and of the other invariants already given
can be expressed the other invariants of the twelfth order, such

as
&amp;lt;/&amp;gt;(Ct ),

and the discriminant of the contravariant conic.

So, again, we can express in terms of the preceding the

invariants of the contravariaut quartic j
we have

PL + 24P5 + L2 - SLR + 65*)

+ PL*R + 10PLR*+ 3QPR*-3Q

whence A = A*+WB B = D + AC + A2B- 12B*.

302. It is to be noted, that though there is only one con

travariant conic of the fourth order in the coefficients, there

are two covariant conies of the fifth, viz., in addition to that

already given, that obtained by operating with the contravariant

conic on the quartic itself, the result being

(3L + 9P+ 105) (afy? + bgy* + chz*)

+ (WL + 2P+ 4R) (ghJ+ htf+fgz*)
- 12 (a

8

/

and if this be combined with that previously given, we can write

it in the simple form

45 (afj? + Igif + ck?) + (L-P- 25) (ghx* + hfif +fgz
z

}.

The discriminant of this last conic gives the simplest invariant

of the fifteenth order, viz., writing L P 25 = Jf,

E
1
= 16J/5* Q + 4lf52P+ M X* + 64Z,54

;

or, at length,

E^ = 16 (L
- P- 25) QR* + 5* {3P

3 - 5P2L + 10P25
+ PU - 4PL5 + 4P5* + L3 - SDR + 76LR2 -

8R*}.

The other three invariants of the system of conies are, of course,

also invariants of the quartic of the same order, besides which

NN
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we might also calculate c^Z^, 4&amp;gt;D^
&c. All these are expressible

in terms of E
l
and E

2

* where

E
z
= 16 (L

- P- 2JK) C
2 + (3P

3 - 5P*L -

+ PL*- 22SPLE - 2I72P#2+ L3+298L2E + 2636Z5
2-4296 R3

) Q

+ 5 (- 12P 4
4 44P3 - 52P ai* + 20 PL3

)

+ R* (348P
3 - 852P 2Z -1- 308PL2 + 324Z3

)

There are also two independent invariants of the eighteenth

order, the first being the C
Y
of the contravariant quartic, viz.

F1=
= 128 Q

3
-}- Q\- 48P2

-}-

+ Q (9P
4 - 12P 3Z

- 400

^ -f

jp;
= 1 28 Q

3 +Qz

(- 8P
2 - 240PL - 5312P2? + 312

2 +

+ 116805&quot;) + Q (-18P
4 + 54P3Z+ 1146P35 -54P2Z2

+ 7548P252 + 18PL3 + 262PL25 - 4432PL52
-f 49272PZ2

3

6648L53 + 7780854

) + 24P 55
- 13032P 353

- 113904Z55 + 2592056
.

It does not appear that, even in the special case we are

considering, the invariants of higher order that we have given
are linearly expressible in terms of those of lower order; nor

have I been able to find that, even in this case, the discriminant

is expressible in terms of lower invariants.

* The values of these and of the next two following invariants were calculated

for me by Mr. J. J. Walker.
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CHAPTER VII.

TRANSCENDENTAL CURVES.

303. WE have hitherto exclusively discussed equations re

ducible to a finite number of terms involving positive integer

powers of x and y ;
it remains to mention something of the pro

perties of curves represented by transcendental equations. Since

these involve functions only expressible by an infinite series of

algebraical terms, all transcendental curves may be considered

as curves of infinite degree ; they may be cut by any right line

in an infinity of points, and must have an infinity of multiple

points and multiple tangents. There
is, then, no room for a

general theory of the singularities of these curves, and it is

only necessary to mention the names and principal properties of

some of the most remarkable of them. We may notice, in

passing, a class of equations, called by Leibnitz interscendental,

or which involve the variables with exponents not commen

surable with any rational number
;

for example, y = xv*. Here,

as we successively substitute for \/2 the series of rational

fractions which approximately express the value of the radical,

we shall find a series of algebraic curves of constantly increasing

degree, more and more nearly resembling the figure of the

required curve, but not accurately expressing it as long as the

degree of the curve is finite. We pass on to the cycloid,

which holds the first place among transcendental curves, both

for historical interest and for the variety of its physical applica

tions. This curve is generated by the motion of a point on

the circumference of a circle which rolls along a right line.

Let A be the point where the motion commences
;
then (see fig.

next page), in any position of the generating circle, if p be the

generating point, we must have the a,rcpm = Am, and denoting
the angle pan by &amp;lt;,

and cwz, the radius of the circle, by a, we
shall have

y a (1
-

cos$), x = a
(&amp;lt; -sin&amp;lt;) ;
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whence, eliminating, we shall have the equation of the curve,

ay a cos

It is, however, generally more convenient to retain
&amp;lt;,

and to

consider the curve as represented by the two equations given

above. It is easily seen that the form of the curve is that

represented in the figure ;
and since the circle may roll on

indefinitely in either direction, that the curve consists of an

infinity of similar portions, and that there is a cusp at the point

of union of any two such portions.

Let MPN be the position of the generating circle correspond

ing to the highest point of the cycloid, then, since Am = arc^w,

AM=MPN, we have MmpP=^rcPN] or the curve is gene
rated by producing the ordinates of a circle until the produced

part be equal to the corresponding arc, measured from the extre

mity of the diameter. Denoting the angle PGN by 6, the curve

referred to the axes AM, MN is represented by the equations

y a(\ -f cos 0), x = a (# + sin#).

04. We can readily see how to draw a tangent to the curve,

for at any instant of the motion of the generating circle m
(its

lowest point) is at rest, and the motion of every point of the

circle is for the moment the same as if it described a circle

about m] hence the normal to the locus of p must pass through

m and its tangent must always be parallel to NP. The same

thing appears analytically for -J- = -
=cot^6; the tan-

CIX 1 COS (p

gent therefore makes with the axis of x an angle the comple

ment of CNP, which is
^c/&amp;gt;.

It is so easy to give geometrical proofs of some of the principal

properties
of the cycloid that we add them here. The area of the
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Curve is three times the area of the generating circle. For the

element of the external area (pprr =pptt =PFQQ )
is equal to

the element of the area of the circle
;

the whole external area

therefore, AENFB, is equal to the area of the circle
;
and therefore

the internal area ANB is three times the area of the circle.

The arc Np of the cycloid is double NP the chord of the circle.

For it is easy to see that the triangle PP L is isosceles, and

therefore that if a perpendicular, MK, be let fall on the base,

PL, the increment of the arc of the cycloid, is double P/T, the

increment of the chord of the circle.

Hence, if s denote the arc of the cycloid, Z&amp;gt; the diameter of the

generating circle, x the abscissa NQ from the vertex, then the

equation of the curve is s* = 4foe, a form useful in Mechanics.

The radius of curvature is double the normal.

For the triangle formed by two consecutive normals has its

sides parallel to those of the triangle MPK ,
but the base of the

first triangle is equal to PL, and, as we have just proved, is

double PK, the base of the second hence the radius of cur

vature is double MP.

The evolute of the cycloid is an equal cycloid.

For if we suppose a circle touching the base at w, and passing

through R the centre of curvature, it is equal to the generating

circle, and the arc nR is equal to NP= nD
;
hence the locus of.fi

is the cycloid described by the circle mRn rolling on the base EF.*

M

E
JL

* The properties of the cycloid were much studied by the most eminent mathe
maticians of Europe during the first half of the seventeenth century. Their attention

was first called to these problems by Mersenne; but Galileo claims to have inde-
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We might also seek the locus of any point in the plane of the

generating circle carried round with it
5
when the point is inside

the circle, the locus is called the prolate cycloid ;
when it is out

side it is called the curtate cycloid ;
these loci are by some called

trochoids. There is no difficulty in calculating their equations or

in ascertaining their figures, but it does not seem worth while to

devote any space to them here. The method of drawing tangents

given for the cycloid applies equally to these curves. These

curves may (as the reader can easily see) be generated by a point

on the circumference of a circle, rolling so that the arc pm shall

be in a constant ratio to the line Am.

305. When the properties of the cycloid had been investi

gated, it was a natural extension to discuss the curve traced by
a point connected with a circle rolling on the circumference of

another. When the point is on the circumference of the rolling

circle, the curve generated is called an epicycloid or hypocycloid,

according as the circle rolls on the exterior or interior of the

fixed circle
;

if the generating point be not on the circumference,

the curve is called an epitrochoid or hypotrochoid.

Let us take for the axis of x that position of the common
diameter of the two circles which passes through the generating

point ;
let CO be any other position of it, Q the generating

point; let (7JV=a, ON=b^
then since BN= JVP, we have

O

and the coordinates of Q are

in&amp;lt; d s

x= (a+ b) cos&amp;lt;

or if a + b = mb,

y mb
sin&amp;lt;f&amp;gt;

d

x = mb cos - d

pendently imagined the description of this curve. Galileo, having failed in obtaining

the quadrature of the curve by geometrical methods, attempted to solve the problem

by weighing the area of the curve against that of the generating circle, and arrived

at the conclusion that the former area was nearly, but not exactly, three times the

latter. The problem of the quadrature was correctly solved by Roberval in 1634;
the method of drawing tangents was discovered by Dea Cartes, the rectification by

Wren, the evolute by Huyghens j several other important properties by Pascal.
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Eliminating $ from these equations we obtain the equation

of the curve, which is not necessarily transcendental. In fact,

when the circumferences of the circles are commensurable, after

a certain number of revolutions, the generating point returns to

a former position, the curve is closed, and of finite algebraic

dimensions
;
but if they be not commensurable, the generating

point will not in any finite number of revolutions return to the

same position, and the curve will be transcendental.

To obtain the equations of the epicycloid we have only to

make d=bj and we have

y = b(m sin&amp;lt; sin
?&amp;lt;),

x = b (m cos&amp;lt;f&amp;gt; cos77i(f&amp;gt;) ;

the lower sign answers to the case when the axis of x passes

through the generating point when it is on the fixed circle
;

the

upper sign, when it is at its greatest distance from it.

306. The coordinates for the case of the hypotrochoid and

hypocycloid are found, as the reader can easily verify, by

changing the sign of b in the equations given above. These will

be included in the equations which we shall use, by giving nega

tive values to
772,

or by supposing m = ?z,
where n =

j
.

The equations given above, if we alter b into mb, and m

into
,
becomem

y = mb I sin(f&amp;gt; + sin - 6
) ,

\m m J

x = mb I cos 6 + cos 6 } ;

\m m ^
)

and making &amp;lt;

=
wi/r, we see that these equations belong to the

same locus as the preceding. We can thus prove that the same

hypocycloid is generated whether we take b = ^(ca). (Euler
de duplici genesi Epicycloidum, Acta Petrop. 1784, referred

to by Peacock, Examples, p. 194). The hypocycloid, when
the radius of the moving circle is greater than that of the

fixed circle, may also be generated as an epicycloid, for then

/ a-b\ .

[

-
,

j
is positive.771
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307. Tangents can easily be drawn to these corves, for by
the same reasoning as that used in Art. 304 the line NQ is

normal to the curve. We can thus see also that when a curve is

generated by a point on the circumference of one figure rolling

on another, there must be a cusp at every point where the

generating point meets the fixed curve. For by this construction,

at such a point the generating point approaches the fixed curve

in the direction of its normal, and recedes from it in the same

direction
;
hence it is a stationary point. An epicycloid then

consists of a number of similar portions, each united to the next

by a cusp ;
and the extreme radii, from the centre of the fixed

2Z&amp;gt;7T

circle to any such portion, are inclined at an angle = .

CL

When the radii of the circles are commensurable and the curve

therefore algebraic, the number of cusps is finite, but when the

curve is transcendental, the number of cusps is infinite. Every

point of the base is in its turn a cusp, and therefore the base

may be said to be the locus of the cusps of the curve; but,

obviously, consecutive points of the base are not consecutive

points of the locus.

308. These curves have besides, as have epitrochoids in

general, a number of double points crunodal or acnodal, the

number being finite for algebraic curves and infinite for

transcendental, and all the nodal points being ranged in

circular loci. Consider the equations (Art. 305)

y = mb sin
(f&amp;gt;

d sin mcf), x mb cos
&amp;lt;f&amp;gt;

d cos
??i0,

where =
0, corresponds to what we may regard as the initial

position of the generating point, viz. that where it is in a line

with the two centres, this line being taken as the axis of x, and

the initial distance of the origin from the generating point

being mb d. But there are other positions of the moving
circle for which the generating point lies on the axis, the

values of
&amp;lt;f&amp;gt; corresponding to these positions being found by

solving the equation mb sin&amp;lt; = d sinw0. And setting aside the

root =
0, the other roots of this equation are obviously dis

tributable into pairs equal with opposite signs, and for each pair

the value of ^, mb cos&amp;lt; d
cos??z&amp;lt;,

is the same. The corre-
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spending points are therefore double points on the locus. The
value mb cos

cj&amp;gt;

d cos m
&amp;lt;/&amp;gt; may, by means of the condition

mb sm(f)=dsmm(f) J
be written in the form xs\u(j)

= ds\u(m 1) &amp;lt;.

Every time that the generating point returns to a similar

position with regard to the two centres we have a line on

which double points lie, the number of such lines being, as

has been stated, finite for algebraic curves and infinite for

transcendental.

309. The equations of the tangents to the epi- or hypo-

cycloids admit of being written in a very simple form. For

dy _ cos(f)cosm&amp;lt;t&amp;gt; cos^(m + l)&amp;lt;b ^ _ sin

dx sin

And, attending to the condition that the tangent must pass

through the point whose coordinates have been given in Art. 305,

the equation of the tangent becomes

x cos \ (m + 1) &amp;lt;/&amp;gt;

+ y sin \ (m + 1) (f&amp;gt;

= (m + 1) b cos | (in
-

1) $,

when the axis passes through the generating point at its greatest

distance from the centre of the fixed circle
;
and

x sin \ (m + 1) $ -
y cos \ (m -f 1) &amp;lt;j&amp;gt; (m + 1) b sin | (m 1) &amp;lt;,

when the axis of x passes through the generating point at its

least distance from the centre of the fixed circle.

The equation of the normal in the latter case is in the same

manner seen to be

x cos \ (m + 1
) (f&amp;gt;

-f y sin \ (m -f 1) &amp;lt;f&amp;gt;

= (m 1) b cos ^ (m I)
(f&amp;gt;.

Comparing this with the first form of the equation of the

tangent, it follows that the evolute of an epicycloid is a similar

epicycloid^ the radii of the circles being altered in the ratio

r
fl~L : 1--

,
and the generating point of the evolute being at its

greatest distance from the centre of the fixed circle when on the

same diameter on which the generating point of the original

curve is at its least distance.

The same remarks, of course, apply to the hypocycloid.

The equation of the tangent to an epitrochoid is in like manner

(b cos
(f)

d cos
?&amp;gt;?(/&amp;gt;)

x + (b sin
&amp;lt;f&amp;gt;

d sin 111$} y

= {mb* + d*- (m -f 1) bd cos (m - 1) &amp;lt;}.

00
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310. We give examples of some of the simplest cases where

the equations of these curves are algebraic, and can be easily

formed. These cases are (a) when the equation of the tangent
is included in the form

a cos 29 -f- b sin 20 + c cos 6 + d sin + e = 0,

the envelope of which is given, Ex. 3, p. 69
; (b) when the equa

tion of the tangent is included in the form

a cos 3d + b sin 30 + 3c cos 6 + 3d sin 6 = 0,

an envelope, which when treated by the same method as that

just mentioned, is solved by forming the discriminant of a

cubic equation, the result being

(
a 4 IJ+ 8 (ac

3- bd
3

)
- 2cd(ad- be]

= 3 (c
2+ d2

)

2+ 6 (a
8+ b2

) ((?+ d
2

)
.

(c) when m is a fraction whose numerator and denominator

differ by one. If we square and add the equations

x mb cos
n^&amp;gt;

d cos (w + 1) 0, y mb sin ncf) d sin (n + 1) $,

we have a?
2
4- y

z = vn*b* -f d* 2mbd cos 0,

and by solving for cos &amp;lt; from this equation, and substituting in

the value for x, the elimination is performed.

Ex. 1. To find the epitrochoid in general when d = mb. The equations are then

reducible to the form

x = 3d sin \(m - 1) &amp;lt; sin \ (m + !)&amp;lt;, y = 2(7 sin \ (m - 1) &amp;lt; cos | (TO + 1) &amp;lt;p,

whence obviously | (TO + 1) &amp;lt; is the angle w made by the radius vector with the

axis of y ;
and the polar equation is p 2d sin

^37^
&quot;&amp;gt;

Ex. 2. To find the equations of the epitrochoid and epicycloid when the radii

of the circles are equal, and therefore m 2. Dealing, as in (c), with the equations

x = 2b cos ( d cos 20, /
= 2b sin &amp;lt; d sin 20,

we find (x
2 + /

2 - 262 - tZ
2
)
2 = 4 2

(d
2 + 2rf2 - 2dx),

the equation of a Cartesian, having, as may be easily verified, y = 0, x = d, as a double

point ;
the curve is therefore a lima^on. We see from the theory already explained

that this point corresponds to the value cos = -
. When therefore d is greater than

b
;
that is to say, when the generating point is outside the moving circle, the node

corresponds to two real positions of the moving circle and is a crunode
;
but if the

generating point be inside the moving circle, the node corresponds to no real position

of that circle, and the curve is acnodal.

The case of the epicycloid is obtained by putting d = b, when we have

(a;2 + y
i _

352)8
_ 453 (36

_
2x).

The double point now becomes a cusp, and the curve is a cardioide. It is plain from

what has been said that the evolute of a cardioide is a cardioide.
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Ex. 3. To find the equation of the epicycloid when the radius of the rolling circle

is half that of the fixed circle. The equation of the tangent is

x cos 20 + y sin 20 = 46 cos 0,

an equation included in the form p. 69, the envelope of which 13

(x
i + y

z-
452)3

- i08iz2
.

Ex. 4. To find the hypotrochoid and hypocycloid when the radius of the rolling

circle is half that of the fixed circle. We have m 1
;
the equations are

x = b cos &amp;lt; + d cos
&amp;lt;, y = b sin &amp;lt; d sin

&amp;lt;p,

and the hypotrochoid is the ellipse

* y
2

-

(b + d)
2 (b- d)

2
~

which reduces to the diameter y in the case of the hypocycloid where b = d.

Ex. 5. To find the hypocycloid when the radius of the fixed circle is three times

that of the moving circle. Here m = 2, and the equation of the tangent is of

the form
x cos

&amp;lt;j&amp;gt; y sin
&amp;lt;/&amp;gt;

= b cos
3&amp;lt;,

and the envelope is, by the form (b) given above,

(x- + #
2
)
2 + 8bx3 - 24&xy

z + 18 2
(z

2 + if-}
- 27i,

the equation of a tricuspidal quartic, the tangents at the cusps meeting at the centre

of the fixed circle.

This curve has been studied by Steiner as the envelope of the line joining the

feet of the three perpendiculars on the sides of a triangle from any point on the

circumscribing circle. In fact, taking the centre of the circle as origin, and the

coordinates of the vertices r cos 2a, r sin 2a, &c., if the point from which the perpen
diculars are let fall is r cos 20, r sin

2&amp;lt;,
the equation of the line joining the feet is

x sin (a + /3 + y - &amp;lt;/&amp;gt;)

-
y cos (a + ft + y - 0)

= |r (sin (a + /3+ y 3&amp;lt;)
+ sin (/3 + y a

&amp;lt;/&amp;gt;)

+ sin (y + a /3 &amp;lt;)
+ sin(o + /3 y &amp;lt;/&amp;gt;)},

a form easily reducible to that considered in this example.

Ex. 6. To find the hypocycloid when the radius of the fixed circle is four times

that of the moving circle. We have here m 3
;
the equation of the tangent is

x sin &amp;lt; + y cos
&amp;lt;/&amp;gt;

= &quot;2b sin
2&amp;lt;/&amp;gt;,

and that of the envelope x* + y* = (4)3.

311. The equation of the reciprocal of an epicycloid is

readily obtained, for the tangent being

x cos ^ (m -f- 1) &amp;lt; + y sin ^ (m + 1)
= (m + 1) I cos \ (m

-
I) $,

it is plain that the perpendicular on the tangent makes an

angle \(m +!)&amp;lt;/&amp;gt;
with the axis of

a-,
and that its length is

(m + 1) b cos ^ (m 1) &amp;lt;f&amp;gt; ;
the locus, therefore, of the foot of this

perpendicular is

p = (m + 1
)
&cos

and the reciprocal curve is

(m 1 \
, x 7

p cosl ay
]
= (m -f- 1} b.

\m+l J
^
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The radius of curvature is found by the formula It = ~
7 .

dp
In the original curve we have

p*
= x2 + / =

Z&amp;gt;

2

{m
a + 1 + 2ra cos (m -1)0},

or
2 = b

2 m-l

,P= +

Hence

312. Another general expression for the radius of curvature

in roulettes (or curves generated by a point on a rolling curve)

may be found as follows : Let P, P be two consecutive points of

the curve, M the point of contact of the rolling with the fixed

curve, and R the centre of curvature
;

then PP
,
the element of

the arc of the roulette, is = MP. PMP
; but, by considering the

curves as polygons of an infinite number of sides, we can see that

jPMP
,
the angle through which PM turns, is equal to the sum

(or difference) of the angles between two consecutive tangents to

the fixed and to the rolling curve. Hence, if da be the element

of the arc of the roulette, ds the common element of the arcs of

the fixed and generating curves, p and p the radius of curvature

of each, we have

but this element, dcr, is also equal to PR, the radius of curvature,

multiplied by the angle between two consecutive normals
;
and

if we call
(/&amp;gt;

the angle OMP, between the normals to the roulette

and to the fixed curve, then the angle between two consecutive

normals to the roulette is

cos

&quot;

MR
MP+MR 1 /I 1

MP.MR
=

cos

* The invention of epicycloids is attributed to the Danish astronomer, Roemer,

who, in the year 1674, was led to consider these curves in examining the best form

for the teeth of wheels. The rectification of these curves was given by Newton,

, Prop. 49.
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1
_!

PR= .

&quot;p p

+ _. cos 6
p p I

(See Liouville, vol. x, p. 150.)

313. A large class of transcendental curves is obtained by

taking the ordinate some trigonometrical function of the abscissa.

There is no difficulty in deriving the shape of such curves from

their equation. For example, y= sinx has positive and constantly

increasing ordinates until x = \ir^ the ordinates then decrease in

like manner until x = TT, when the curve crosses the axis at an

angle of 45, and has a similar portion on the negative side of the

axis between x ir and x = 2?r. The curve, therefore, consists

of an infinity of similar portions on alternate sides of the axis.

So again, i/
= tano; represents a curve, of which the ordinates

increase regularly from x= Q to #= |TT, when y is infinite, and the

line x = \TT an asymptote. For greater values of #, y alters from

negative infinity to when x = TT. The curve then consists of

an infinity of infinite branches, having an infinity of asymptotes,
x = ^7r}

# = f7r, &c., and, as may be readily seen, points of

inflexion at x = 0, x =
TT,

x = 2?r, &c.

In like manner the reader may discuss the figure of y = seco?,

which also consists of a number of infinite branches, only that

each branch, instead of crossing the axis, as in the last case, lies

altogether at the same side of it. The branches lie alternately on

the positive and negative sides of the axis of x. To the same

family belongs a curve called the companion to the cycloid. It is

generated by producing the ordinates of a circle, not as in the

case of the cycloid, until the produced part be equal to the arc,

but until the entire be equal to the arc. If, then, the centre be

the origin, the curve is represented by the equations

v
x a cos $. ?/

= a6. x = a cos :

a

a curve of the same family as the curve of sines.

314. Next, after curves depending on trigonometrical, we may
mention those depending on exponential functions. The loga

rithmic curve is characterized by the property that the abscissa is
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proportional to the logarithm of the ordinate, and its equation
therefore is

x = m log y, or y = a
x

.

The curve then has the axis of x for an asymptote, since, if

x = - GO
; y = 0, it cuts the axis of y at a distance equal to the

unit of length, and x and y then increase together to positive

infinity. The subtangent of the logarithmic curve is constant
;

for its value, being in general
~^-

,
becomes for this curve = m.

Some controversy has arisen as to the proper interpretation
of the equation of this curve y = e

x
. Attention was at first only

paid to the branch of the curve on the positive side of the axis

of x, arising from taking the single real positive value of e
x

,
which

corresponds to every value of x. Euler, in his Analysis Infini-

torum, II. p. 290, contended for the necessity of attending to the

multiplicity of values which the function admits of; and the

same subject has been more fully developed by M. Vincent

(Gergonne s Annales, vol. XV. p. 1). Thus, if x be any fraction

with an even denominator, e
x
has a real negative as well as a

positive value, and therefore there must be a point corresponding
to this value of x on the negative side of the axis, but there is

no continuous branch on that side of the axis, since, when x is

a fraction with an odd denominator, e
x
can have only a real

positive value. The general expression, including all values of

the ordinate, is found by multiplying the numerical expression
for e

X

) by the imaginary roots of unity, whose general expression
is cos 2mx7r + i sin 2mx7r^ where m must be made to receive in

succession every integer value, and
/,

as usual, denotes \/( 1).

This is equivalent to saying that the equation y = e
x
must be

considered as representing not only one real branch, but also an

infinity of imaginary branches included in the formula y=e
X(l+ &quot;mi7r)

.

Any one of these imaginary branches contains a number of real

points where it meets the branch y e^imm\ and which must

be considered as conjugate points on the curve. There are an

infinity of such points, all lying either on the real branch of the

curve, or on the similar branch on the negative side of the axis

of x. The latter branch is curious, since, though every point of

it may be considered as belonging to the logarithmic curve, no

two points of it are consecutive to each other, for two consecu-
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tive points will belong to different branches. There is thus

formed what M. Vincent calls a &quot; courbe
pointillee.&quot;

In one

point, however, M. Vincent appears to rne to have fallen into a

grave error. He says that the points of this branch are to be

carefully distinguished from conjugate points ;
for that at a con

jugate point the differential coefficients have imaginary values,

but that at one of these points, on the negative side of the axis,

the differential coefficients, being all equal to /, are all real, and

only differ in sign from those of the corresponding points on the

positive side of the axis. It is truly astonishing that M. Vincent

should have failed to observe that if the differential coefficients

were all real, it would follow from Taylor s theorem that the

next consecutive point must be a real point on the curve, and so

that the negative branch would be an ordinary branch of the

curve. But, in fact, any one of these negative points must be

considered as belonging to a branch whose equation is of the

form y = e
x

(
l+2m

^^ an(J the corresponding differential coeffi

cient will be y(\ +2??ziV). Considering, then, an acnode in

general as the intersection of imaginary branches, in the same

manner as a crunode is the intersection of real branches, the

points here in question being points of intersection of imaginary
branches seem properly regarded as acnodal. We have already
seen that a transcendental curve may have an infinity of nodes

or acnodes, and, in the case of epitrochoids, that such points may
be ranged in a discontinuous manner on certain loci.*

315. The catenary is the form assumed by an inelastic chain

of uniform density when left at rest. Very simple mechanical

considerations lead to the property, which we shall take as the

mathematical definition of the curve, viz. that the arc, measured

from the lowest point, is proportional to the tangent of the

angle made with the horizontal tangent by the tangent at

the upper extremity. If, then, the axes be a vertical and a hori

zontal line through the lowest point, we have s = c-,- . Now,

* The illustration here used is Dr. Hart s. Some objections to M. Vincent s views,
which are worth being considered, will be found in a paper by Mr. Gregory, Cambridge
Mathematical Journal, vol. I. pp. 231, 26-4. Prof. Cayley considers that & (which he
writes by preference exp.x) is a true one-valued function of x, and that there is

nothing else than the real branch, the values being those of the function
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to rectangular axes the element of the arc is the base of a

right-angled triangle, of which dx and dy are the sides, or

ds***da? + dy*. By the equation of the curve we shall have,

therefore,
o ., ds* -. cds

C
(

C

the constant being taken so that s and x shall vanish together.

Hence

~~c
5 T

But in like manner the equation of the curve gives

s
2
4 c

2
ds* ., sds

Hence y
z = s

2
-t- c

2

, provided we suppose the axes so taken that

when s or x 0, y shall be = c. This value of y gives at once

the equation of the curve, viz. :

c - --

3/
=

(e
c

-f e
c

).

A very convenient notation is

J (e
x
+

e&quot;^)

= cosh x, -J (e* 6&quot; ^}
= sinh x

(read hyperbolic cosine and sine) ;
we have then for the catenary

x x
ii c cosh . s = c sinh - .

c c

316. We get from the equation of the curve

Hence we are led to the follow

ing construction. From the foot

of the ordinate M draw the tan

gent MT to the circle described

with the centre C and radius c
;

then MC =
y, CT = c,

MT=

IM

hence the tangent
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PS is parallel to MT. The same values prove also that

PS= MT=ihe arc from P to the lowest point. The locus of

the point S is therefore the involute of the catenary, and SN
parallel to TO is its tangent, since PS must be normal to the

locus of S, being tangent to its evolute. The involute of the

catenary is therefore a curve such that the intercept SNj on

its tangent between the point of contact and a fixed right line,

is constant.* Such a curve is called the tractrix.

317. The equation of the tractrix can be obtained without

much difficulty. For the length between the foot of the ordinate

from S and the point N is J(c*-y*) ;
it also is, by making y

in the equation of the tangent, *L . Hence the differential

equation of the curve is

which at once is made rational by putting z
z =

&amp;lt;? ?/

2

,
and gives

, &amp;lt;?dz

dx = ,
-

5 az.

We have then

It will be readily seen that the curve consists of four similar por

tions, as in the dotted curve on the figure ;
and the construction

of the last Article shows at once geometrically how to draw a

tangent to the curve.

The syntractrix is the locus of a point Q on the tangent to

the tractrix, which divides into portions of given length the

constant line SN. Let the coordinates of the point on the

tractrix be x y\ of those on the required locus xy ;
let the length

=d) then we shall have y d = yc] and

* The form of equilibrium of a flexible chain was first investigated by Galileo, who

pronounced the curve to be a parabola. His error was detected experimentally in 1669

by Joachim Jungius, a German geometer ;
but the true form of the catenary was only

obtained by James Bernoulli in 1691. Gregory (in his Examples, p. 234) refers to

what would seem to be an interesting memoir by Professor Wallace on this curve

(Edinburgh Transactions, vol. XIV. p. 625).

PP
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and since, by the equation of the tractrix,

that of the syntractrix will be

The tractrix is a particular case of the general problem of

equi-tangential curves, where it is required to find a curve such

that the intercept on the tangent between the curve and a fixed

directrix shall be constant.

318. The problem of curves of pursuit was first presented
in the form To find the path described by a dog which runs

to overtake its master. It may be stated mathematically as

follows: The point A describes a known curve, and it is re

quired to find the curve described by the point B, the motion

of which is always directed toward A. We suppose both

points to move with uniform velocities, and A to move along
a right line which we take for axis of y.* The intercept made

by the tangent on this axis of y is y x -
,
and by hypothesis

the increment of this is to be proportional to the increment of

dy
the arc, or putting

~
=^&amp;gt;,

-
xdp = h V(l +p

2

) dX)

log x* + log [p + V(l +/)} + log A =
0,

This curve will then be algebraic, except in the case when h = 1,

of*&quot;

1
&quot;1

when we have to substitute log x for -= -
.

Ht ~&quot; L

319. The involute of the circle is another transcendental curve

whose equation can be obtained without much difficulty. This

* See Bouguer, Memoires de F Academie, 1732, Correspondence sur T ecole polytech-

nique, n. 275. St. Laurent, Gergonne s Annales, xui. 145.
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is equivalent to the following problem :
&quot; If on the tangent at

any point P of a circle there be taken a portion PQ, such that

it shall be equal to the arc AP measured from any fixed point

A
;
to find the locus of

Q.&quot;
Let the radius of the circle = a,

the centre being C and the radius vector

CQ = p; let PCA = 4, QCA = 0. Then

PQ = ,J(p* a
2

)
and it also =

a&amp;lt;j&amp;gt; by hy

pothesis; but

6 = 6+ cos&quot;

1 -.
P

Hence the polar equation of the locus is

a p

The involute of the circle is the locus of the intersection of tan

gents drawn at the points where any ordinate to GA meets the

circle and the corresponding cycloid having its vertex at A.

320. We shall conclude this Chapter with some account of

spirals. In these curves referred to polar coordinates, the radius

vector is not a periodic function of the angle, but one which

gives an infinity of different values when we substitute o&amp;gt;
=

0,

(o 2-7T + 0j a) = 4-7T -f 0j &c. The same right line then meets

the curve in an infinity of points, and the curve is transcendental.

Let us first take the spiral of Archimedes, which is the path
described by a point receding uniformly from the origin, while

the radius vector on which it travels moves also uniformly round

the origin. The polar equation of the curve is then

p = aco.

This spiral is the locus of the foot of the perpendicular on the

tangent to the involute discussed in the last Article. For, from

the nature of evolutes, the tangent to the locus of Q is per

pendicular to PQ] and the length of the perpendicular on

that tangent from C will =P$ = a$, and
&amp;lt;/&amp;gt;

is the angle this

perpendicular makes with a fixed line. Hence, too, the reci

procal of the involute is the hyperbolic spiral pea
=

a, which we
shall discuss in the next Article. The spiral of Archimedes is

one of a family included in the general equation p = aw
71

,
in all

which the tangent approaches more nearly to being perpendicular
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to the radius vector the further the point recedes from the origin.

For
-^

= -
;
therefore (Art. 95) the tangent of the angle made

by the radius vector with the tangent increases as &&amp;gt; increases,
but does not actually become infinite until ay is infinite.

321. We have just mentioned the equation of the hyperbolic

spiral pco
= a* This spiral has an asymptote parallel to the

line from which o&amp;gt; is measured
;
for the perpendicular from any

point of the spiral on this line is p sin &&amp;gt;
=

, which, when

G&amp;gt; vanishes, and p becomes infinite, has the finite value a. Or,

again, we might calculate the length of the perpendicular from

the origin on the tangent. The tangent of the angle made by

the radius vector with the tangent is
^-^-

=
o&amp;gt;

;
hence the

perpendicular is
a
f , which, when p becomes infinite, is

V (a ~r p )

= a. The form of the curve is

then as here given. The polar

subtangent of the hyperbolic spiral

is constant. The arc AS of the

circle described with the radius

OA to any point of the curve is

obviously constant.

Another spiral worth mentioning is the lituus p*a)
= a

2

this also has an asymptote, viz., the line from which co is

measured; for the distance of any point of it from this line,

a sin CM iri i

p sin ft) =
,
decreases indefinitely as p increases, and G)

/3ft)

consequently diminishes.

322. We shall mention in the last place the logarithmic

spiral, pa^. In this curve p increases indefinitely with a)
;
when

G) is it =1, and diminishes further for negative values of
ft),

but it does not vanish until co becomes negative infinity ;
hence

the curve has an infinity of convolutions before reaching the

pole. One of the fundamental properties of this curve is,
that

it cuts all the radii vectores at a constant angle, for -^
becomes



TRANSCENDENTAL CURVES. 293

the modulus of the system of logarithms which has a for its

base
;
the angle, therefore, made by the radius vector with the

tangent always has this modulus for its tangent. From this

property we at once obtain the rectification of the curve
;
for if

we consider the elementary triangle which has the element of

the arc for its hypothenuse, and the increment of the radius

vector for one side, we see that the element of the arc is equal

to the increment of the radius vector multiplied by the secant

of this constant angle, and hence that any arc is equal to the

difference of the extreme radii vectores multiplied by the secant

of the same angle. The entire length, measured from any point

P to the pole being p sec #, is constructed by erecting at the

pole OQ perpendicular to OP to meet the tangent at P;
PQ will then be the required length. The locus of Q will

evidently be an involute of the curve, but the angles of the

triangle OPQ being constant, OQ is proportional to OP,
and it makes with OP a right angle ;

the locus of Q is

therefore also a logarithmic spiral, constructed by turning round

the radii vectores of the given curve through a right angle,

and altering them in a fixed ratio. Conversely, the evolute

of a logarithmic spiral is a logarithmic spiral. The locus

of the foot of the perpendicular on the tangent is likewise a

logarithmic spiral, for it also bears a fixed ratio to the radius

vector, and makes with it a constant angle. The caustics by
reflexion and refraction, the light being incident from the pole,

are likewise logarithmic spirals.*

* The logarithmic spiral was imagined by Des Cartes, and some of its properties

discovered by him. The properties of its reproducing itself in various ways, as stated

above, were discovered by James Bernoulli, and excited his warm admiration.
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CHAPTER VIII.

TRANSFORMATION OF CURVES.

323. HAVING in former parts of this work explained par
ticular methods by which the properties of one curve may be

derived from those of another, such as the methods of Projection,
of Reciprocal Polars, of Inversion, &c., we purpose in this

chapter to consider the general theory of such methods. In

such methods we have in general to consider the correspondence
of two points P, P which may be either in the same plane or in

different planes. In the latter case the two planes may be

regarded as existing in a common space, and the two points

P, P
f

may be connected by geometrical relations in such space.

For example, in the method of Projection the line joining the

points P, P
f

is subject to the condition of always passing through
a fixed point. 0. Similarly, we should have another system of

transformation if the line PPf

were subject to the condition of

always meeting two fixed lines
;
and so forth. The development

of such theories belongs to solid geometry ;
here we consider the

two planes as existing irrespectively of any common space. To
take the simplest example, suppose that we have a pair of axes

in one plane, and another pair of axes in the other plane ;
and

that the coordinates of P referred to the first pair of axes are to

be always respectively equal to the corresponding coordinates of

P referred to the second pair of axes, we have evidently a system
in which to any point P in the first plane corresponds a point P

f

in the second, and vice versa.

The two planes may be regarded as superimposed one on the

other, and so as forming a single plane. Supposing this done,

there will be theorems dependent on the superimposition of the

two planes ;
besides these there remain the theorems which

existed when the two planes were distinct, and the theory is not

really altered. Or, to express this otherwise, instead of two
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figures in different planes, we have two figures in the same

plane, where by the word figure is meant any system of points,

lines, or curves
; or, it may be 3 all the points of the plane. The

kind of transformation chiefly studied has been the rational

transformation
; viz., where to a given position of P corresponds

in general a single position of Pf

,
and to a single position of P

a single position of P. The most simple instance of this is the

linear or homographic transformation, which we proceed to

consider in detail.

LINEAR TRANSFORMATION.

324. Let the coordinates of P referred to any system of

axes in the first plane be x, y, z- and let those of P referred

to any system of axes in the other plane be a:
, ?/ ,

z
]

then

the correspondence of the two points is said to be linear if

the latter coordinates are proportional to linear functions of the

former

x : y : z = ax + ly -f- cz : ax 4 ~b y + cz : a&quot;x } Wy +
c&quot;z,

by solving which equations we have evidently also linear

expressions for #, y^ z in terms of x
, y , /,

x : y : z = Ax + By + Cz : Ax + Ky + Cz : A x + K y -t- C&quot;z .

It is easy to see that, properly assuming as well the funda

mental triangles as the ratios of the implicit constants, these

equations may, without loss of generality, be written in the form

x \ y : z x : y : z. Thus then to any position of either point cor

responds a single position of the other. If P describes any curve

&amp;lt;

(xj ?/, z]
=

0, by substituting in this equation the values of #, ?/,
z

just written, we obtain the equation of the curve described by
P . This latter equation is evidently of the same order as the

former
; therefore, to any curve in one plane corresponds a curve

of the same order in the other; in particular, to a right line

in one plane corresponds a right line on the other. It is

also obvious, that to a node or cusp on one curve will answer a

node or cusp on the other, so that two curves corresponding in

this method will have the same Pliickerian characteristics. Since

a/, 2/ ,
z expressed in terms of X, y, z contain each three con

stants, there are nine constants employed in this method of
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transformation
;

but since we are only concerned with the

mutual ratios of x, y ,
2

,
one constant may be divided out, and

the method of homographic transformation is to be regarded as

involving eight arbitrary constants.

325. To a pencil of four lines meeting in a point corresponds
a pencil whose anharmonic ratio is the same. For it was shewn

( Conies^ Art. 59) that the anharmonic ratio of four lines a
/3,

a
Iff, a w/3, a w/3, is a function only of

/&amp;lt;;, Z, m, n, and

therefore is the same as the anharmonic ratio of a -
k/3 ,

&c.

Similarly to four points on a right line correspond four points
whose anharmonic function is the same. And it hence appears
how given any four points of the first figure and the correspond

ing points A ,
J5

, C&quot;,
D of the second figure, we can construct

the point P
f

which corresponds to any other point P of the first

figure. For the anharmonic ratio of the pencil A
f

(B , C\ D ,
P

)

is equal to that of the pencil A (B, (7, 1), P), and we can hence

construct the line A P
; similarly we can construct B P

,
C P

,

D P
,
and the four lines will of course meet in a point which is

the point P. The construction is applicable whether the two

planes are distinct or superimposed.

326. Let us now suppose the planes superimposed, and in

vestigate another geometrical construction to express the relation

between corresponding lines and points. Let A, B, C be the ver

tices of the triangle formed by the lines x,y,z; and A
^
Bf

,
C

those of the triangle formed by the corresponding lines x
, y ,

z

then since all lines through A form a system homographic with the

corresponding lines through A\ the locus of the intersection of

corresponding lines is a conic. Or, analytically, since the line

y + kz corresponds to y + kz
, eliminating &, the locus of inter

section is yz = y z. In like manner all lines through B and

through C meet the corresponding lines on the fixed conies

zx xz
1

, xy
f - yx

f

. The construction thus assumes that in

addition to three pairs of corresponding points A, A ; B, B
(7,

(7
,
we are given three fixed conies each passing through a

pair of corresponding points; and the form of the equations

=,= -, shows that these three conies have also three
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common points. In order then to construct the point of the

second system corresponding to any point P of the first, let

the line PA meet the curve yz
-

zy in the point F, then AF
is the line corresponding to PA

; similarly, let PB, PC meet

respectively the conies zx xz
, xy yx

f

in points 6r, H] and

R G, CH will be the respectively corresponding lines. The

three lines AF, B G, C H \vi\l have a common point P ,
which

will be the required point corresponding to P. The line cor

responding to any given one is constructed by constructing for

the points corresponding to any two points on it.

327. In the foregoing method the relation between two

points is in general not reciprocal ;
that is to say, if to P in the

first system corresponds P in the second, it will not be true that

to P considered as a point in the first will correspond P in the

second. In fact, if we consider P as belonging to the second

system, we construct the corresponding point, as in the last

article, by joining P to A, B ,
C : let the joining lines meet

the respective conies in F
, ,

H
;
then to PA\ PR ,

PC will

correspond lines in the first system AF ,
BG

,
CH meeting in

a point P&quot; which will ordinarily not be identical with P .

Consider, however, the three points L, JU, N which are

common to the three conies yz z y, z x x z, xyy x, then

the construction shews that to the lines LA, LB, LC, answer

respectively the lines LA ,LB ,LC
f

. It follows that the two

systems have common the three points L, J/, N\ each of these

points, considered as belonging to one system, having itself as

the corresponding point in the other system. In like manner

the lines joining these points are evidently the same for both

systems. And starting with the points L, J/, N as given, then

if we have a single pair of corresponding points we can at once,

in virtue of the theorem, Art. 325, construct the point in either

system corresponding to any point whatever of the other system.
If we express the equations in trilinear coordinates, assuming

these three lines ZJ/, MN, NL as lines of reference, then since the

equations in the second system, answering to x= Q, ?/
=

0, z=0 in

the first, are still to represent the same lines, they can only differ

from these by constant multipliers, and must be of the form

Ix 0, my 0, nz = 0. Thus, then, by a suitable choice of lines

QQ
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of reference, hornographic correspondence may always be

expressed in the form that to any point x, ?/ ,
z in the first

system corresponds the point lx
f

, my ,
nz

f

in the second
;
and

homographic transformation is then effected by writing in the

equation of any curve Ix, my, nz instead of x, y, z respectively.
We cannot here, as in Art. 324, write xf

: y : z =x : y : z, for

the two figures would then be identical.

328. The method of Projection is a case of this homo-

graphic transformation. In this method the line joining any
two corresponding points passes through a fixed point, viz.,

the vertex of the projecting cone
;
and any two corresponding

lines intersect on a certain fixed line, viz., the intersection of

the two planes of section. If one of the planes were turned

about this line so as to be brought to coincide with the other,

the figures would still have the property that the line joining
two corresponding points would pass through a fixed point;
for consider the triangles formed by three pairs of corresponding
lines

;
and since the corresponding sides intersect in a right line,

the lines joining corresponding vertices meet in a point. It is

easy to form the most general equations of such a system. Let

ax + ly -f cz = be the equation of the line on which the cor

responding lines intersect, then it is evident that the equations
of xy z

f

(the lines corresponding to xyz) will be of the form

x = ax + by + cz =0,

y = ax + Vy -f cz =
0,

z ax + by 4- cz = 0,

a system involving three constants less than in the general case,

and therefore only five in all.

We shall call the point at which the lines joining corre

sponding points meet, the pole of the system, and the line on

which corresponding lines intersect, the axis of the system. By
subtracting one from the other successively each pair of the

equations just written, it will be seen that the pole of the system
whose equations we have written is given by the equations

(a-a )x=(l}-V)y = (c-c )z.

The simplest forms of the equations of projective trans

formation are derived as follows : Any line passing through the
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pole is the same for the new figure; for any two points of

it have corresponding to them two points on the same line.

Hence if the pole be taken at the point xy, the two lines x

and y are unaltered by transformation; and any other line,

Ax + By-\- Ck = 0, has corresponding to
it,

Ax + By + Cf=0,
the two lines intersecting on the fixed axis, 2 f=0. Any
line Ax-\-By ^ passing through the pole evidently remains

unchanged.

329. Conversely, if two homographic figures in the same

plane have the property that any corresponding lines intersect

on a fixed axis, one of the figures may be considered as a

projection of the other. For let the plane of one of the figures

be turned round this axis, and consider any three pairs of

corresponding points ABC, abc, the corresponding sides of these

triangles intersecting in L, JJ/,
N. Then, when the plane is

turned round, Aa, Bb must still intersect (since the lines AB,
ab intersect in N, and are therefore in the same plane) ;

and by
the theory of transversals Aa when produced is cut by Bb in the

same ratio as before the figures were turned round. But in

like manner Cc, and the line joining any other pair of cor

responding points, meets Aa in the very same point.

330. The general homographic method of transformation,

containing three constants more than the projective method,

appears at first sight a more powerful instrument of research,

and we should expect to arrive, by its means, at extensions of

known theorems more general than those with which the method

of Projection had furnished us. It is obvious, however, that

if a figure were transferred bodily to some other position, we
should have a linear transformation, in which to every line of

the first figure would correspond a line of the second figure, but

yet which would give us no new geometrical information. Now
we owe to M. Magnus the remark, that the most general trans

formation may be reduced to a projective transformation by

turning the figure round a given angle, and then moving it

for a given length along a given direction
;

these three latter

constants being just the number by which the transformation

appears to be more general than the projective.
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To see this, we must first observe, that if a&quot; figure be moved

in any direction without twisting, since all lines remain parallel

to their first position, the position of every point at infinity

remains unaffected by the operation.

Next, let the whole figure be made to turn round any fixed

point, and any system of parallel lines will still remain a system
of parallel lines, although no longer parallel to its former direc

tion
; hence, any point at infinity will still remain at infinity, and

therefore the line at infinity is the same for the figure in both its

positions, Moreover, since any circle will remain a circle, how

ever it be moved, we see that the two circular points at infinity

will not be disturbed, no matter how the figure be moved.

If then it be required to move a figure so as to have a projec-

tive position with a given homographic figure, let the two circular

points be
&&amp;gt;, &/, the two corresponding points of the second figure

&amp;lt;?, &amp;lt;/,

since no motion of the first figure can alter the position of

co and a/, the only possible position of the required pole of the

two figures is the point X, where the lines
oa&amp;gt;,

o w intersect. Let

then the first figure be moved so as to bring the point Z,
which

corresponds to X, to coincide with it. Moreover, let the first

figure be turned about I so as to bring 7/2, fju (any other pair of

corresponding points) into a line with ?; then we say that the

two figures will have a projective position, and the line joining

any other two corresponding points, w, v, must also pass through I.

For the anharmonic ratio of
[1. ww^v] =

{l.oo mn} (Art. 325),

and since three lines of the system are the same for both, the

fourth must also be the same for both. M. Magnus s theorem

has then been proved.

331. There is no difficulty in expressing analytically the

geometrical theory of the last article. Thus if it be required

to find the coordinates of the point I in the case of the general

transformation, we are, first, by the theory just laid down, to

find the line ow joining the point (x + iy } z) to

[{ax + ly 4 cz + i (ajc + 1$ + c^) } , ajc + b$ + c^~\ ,

this will be

( 2
-

2) {(ax + by + cz) -f i (a t
x + 1$ + c^z}}

c,z)
=

0,
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or (&8
-

aj&amp;gt;)

x 4 (afc
- a&] y + {(cb.2

-
cf] + (c/z,

-
c^,)} z

+ i{(apz
- b^2)

x + (a\
-

aj)) y + (c,&8
-
^cj 2 + (acz

- ca
2 ) 2;}

= 0.

The line joining o&amp;gt;V will only differ from this in the sign of

the quantity multiplying i. The point required is therefore the

intersection of the two lines found by putting the real and

imaginary parts of the equation separately
= 0.

It is not necessary to dwell on particular species of linear

relation, such, for example, as similarity. AVe only mention

one kind of homographic relation, in which the area of any

space on the one figure is equal to that of the corresponding

space on the other figure. It is easy to see that such a transfor

mation is possible. For let the triangle formed by xyz be equal

to that formed by x y z
, then, if we take any point on the first

figure, it will be easy to determine a corresponding point o on the

second, such that Oxy=oxy and Oxz=ox z
;
and therefore that

Oyz = oy z and the triangle formed by any three points OPQ
will be equal to that formed by opq, the corresponding points

so determined.

This species of homographic relation differs from orthogonal

projection just as the general collinear relation differs from

projection in general.

INTERCHANGE OF LINE AND POINT COORDINATES.

332. In the method of transformation just described and in

the others to be considered in this chapter, point corresponds to

point, and line to line
;
but there are transformations where a

point in the one figure corresponds to a curve in the other

figure. We have such a transformation in the method of

Reciprocal Polars, in which point corresponds to line and vice

versa. And the like is the case in the more general homo-

graphic transformation, or say in the theory of skew re

ciprocals, which is as follows: Let there be any system of

point-coordinates xyz^ and a system of line coordinates a/3y,

in the same or in a different plane; then a point in the

first system corresponds to a line in the second, if the co

ordinates X) y, z of the point are respectively proportional to

a, /3, 7, the coordinates of the line. In the same case to

any line Ix + my + nz in the first system corresponds the point

7a + m$ + ny in the second. Plainly, then, to four points in
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a line will correspond a pencil of four lines having the same

anharmonic ratio; for the anharmonic ratio of y- Ix, y mx,

y nXj y px, is the same function of
I, m, n, p, whether x and

y denote point- or line-coordinates. The method now described

may be combined with any of the other transformations described

in this chapter; that is to say, in any of them, one of the

systems of coordinates may be supposed to be changed from

point- to line-coordinates
;

and in this way we can get all

possible transformations in which point answers to line and

line to point.

333. Let us now suppose the two systems to be in the same

plane, and let us endeavour to express the transformation

altogether in point-coordinates. To any point xyz is to corre

spond a line whose coordinates referred to a certain system of

line-coordinates a/37 are #
? V -&amp;gt;

z But tms ls equivalent to

saying that its equation is to be x X-\- y Y+ z Z=0, where

X= 0, Y= 0, Z= denote the lines joining the points repre

sented by a = 0, /3 = 0, 7 = 0. And these being known lines,

the equation of the line answering to the point x y z must be

of the form

x (ajc + \y + cp) -f y (a2
x -f l^y + c

2z) + z (as
x + \y + c

az)
= 0.

This is an equation involving eight constants, and would

coincide with the equation of the polar of a point with regard

to a conic section, only if
&,
= a

2 , ^ = #3, &
3
= c

2 ;
the equation

in this case involving but five constants.

334. In the general case every point has a different line cor

responding to it according as the point is considered as belonging

to the first or to the second system. Thus the equation just

written expresses the relation between any point x y z of the

first system and any point xyz on a corresponding line of the

second system. If now the latter point be fixed, and the former

variable, we have, for the equation of the line of the first

system corresponding to any point of the second,

(a^x
f

+ &y + c/) x + (ajf -f &y + c/J y + (aax
f

+ Ijf + c/) z = 0.

In the case of reciprocals with regard to a conic, the same

line corresponds to a point, whether that point be considered as

belonging to the first or to the second system.
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335. In order to give, in the general case, a geometric con

struction for the line corresponding to any point, we shall first

seek for the locus of the points which lie on their corresponding

lines. This is obviously

X + (a2 + bj xy 4 %2 + (58
+

&amp;lt;J yz + (aa + cj xz 4 c/ = U= 0,

and is the same conic whether the point be considered as belong

ing to the first or to the second system. We shall call this the

pole conic.

Next let us seek the envelope of lines which pass through
their corresponding points. The line \x 4 f*y + vz (where x y z

is a point on the conic just written) touches (see Conies,

Art. 151)

-f (4a

4 (a* + c* + 2a
3
c

l

-

+ (46

4 -f +2-

The envelope is therefore a conic, which we shall call the polar

conic, and which is also the same whether the lines in question

belong to the first or to the second system.

Using now the words pole and polar to express the kind of

correspondence we are here considering, we have at once the

polar of any point on the pole conic. For from that point draw

two tangents to the polar conic : one of these is the polar

when the given point is considered to belong to the first system ;

the other, when it is considered to belong to the second system.

Or, conversely, to find the pole of any tangent to the polar
conic. We have only to take the two points where this line

meets the pole conic
;
one of these points is its pole in the first,

and the other in the second system.
Let it be required now to find the polar of any point 0.

Draw from it two tangents, OT^ OT^ to the polar conic. Let

OjTj meet the pole conic in the points A^A^ and let OT
Z
meet

it in the points JB
t
B

z
. Then if A

l
be the point in the first

system which corresponds to OT^ and B
l
that which corresponds
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to OT^ plainly A
1
B

1
is the line in the first system which

corresponds to 0, considered as belonging to the second

system ;
that

is, A^B^ is one of the polars of 0. Similarly,

AJ3^ is the other polar of 0.

Or, to find the pole of a given line meeting the pole conic in

the points AB, from these draw tangents AP^ AP^ BQ^ BQ2

to the polar conic; and if AP^ BQ 1
be the lines in the first

system, which are the polars of A, B, their intersection gives the

point in the first system, which is the pole of AB. And, in

like manner, the intersection of AP^ BQ2 gives the point in

the second system, which is the pole of AB.
The reader will readily see how these constructions reduce

to the ordinary polar reciprocals if a
2
= #

t ,
b
3
= c

2 ,
c

t

= a
3

. The

pole and polar conic will then coincide
;

the polar of any point

on that conic is the tangent at that point, and the polar

of any other point is the same for both systems, and is the

line joining the points of contact of tangents from the point
to the conic.

336. It follows at once from these principles that in the

general case the pole conic and the polar conic have double

contact with each other. For, take any point of intersection,

its two polars coincide with the tangent at that point to the

polar conic
;
the two poles of this line must therefore coincide,

and therefore the two points where it meets the pole conic must

coincide, therefore the tangent to the polar conic at their inter

section must touch the pole conic also. The same thing is

proved for their other point of intersection. Prof. Cayley has

proved the same thing analytically, by shewing that if U0
be the equation of the pole conic, that of the polar conic (found

by putting for X, yu,,
v their values, in the equation of the last

Article) may be thrown into the form

[x (afa
- afa + a^ -

a^J + y (b9c,
- b& + faa^

- l^}

+ 4 U. fa (c2 Z&amp;gt;

3
-

Z&amp;gt;

2
c
3) + a, (b.c,

- b
3
c

t ) + a
3 (\GI

-
b^)}

=
0,

a form which shews at once that it has double contact with U.
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337. There are, in the general case, three points whose polars

are the same with regard to both systems. For let the equations

of the polars in each system be

\x + py + vz = 0, and \ x -f py -f vz = 0,

then the system of equations

X _ /JL _ v

X~&quot;7

/ 7 j

p V
J

is manifestly satisfied for three points; and the theory laid

down in the last Article shews at once what the three points are.

For the two points of contact of the pole and polar conies have

each the same polar in both systems, viz., the common tangents
at these points ;

and the point at which these tangents intersect

has also the same polar in both systems, viz., the chord of

contact of the conies.

There are then three points which have the same polar in

both systems ;
and two of these points lie on their polars, but

the third does not.

338. It is desirable to shew that in the constructions which

we have given no ambiguity occurs, and that we need be at no

loss to know, of the two poles of a given line, which belongs to

the first, and which to the second system.

Since two conies having double contact may always be pro

jected into two similar concentric conies, we use these in the

figure for greater simplicity.

Let A, B be the two poles of any

tangent to the polar conic, then of the

two poles of any other tangent A ,
B

,

A will belong to the first system, since

if AB were moved round to coincide

with A B
j
A would coincide with A, and B with If. The dis

tinction between the points may be readily made by the help of

the following theorem :
&quot; AB and AH are parallel in the case

of two concentric conies
;
and by the method of projections, in

the general case, intersect on the chord of contact of the conies.&quot;

Reciprocally, if we draw tangents to the polar conic from two

points on the pole conic, we must so number them, oa
tj

oa
a , pb^

RR
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pbtf that the line joining the intersection of oa^ pbz
to that of

oa^pb^ may pass through the pole of the chord of contact of

the conies.

339. The number of constants in the case of skew recipro

cals only exceeding by three the number of constants in the case

of reciprocals with regard to a conic, it is natural to inquire

whether the latter does not only differ from the former by

displacement of the figure. It is evident, at any rate, that the

skew reciprocal here considered is only a homographic trans

formation of the reciprocal with regard to a conic, and that

therefore the use of skew reciprocals can lead to no geometric

theorem which we might not obtain by combining the use of

ordinary reciprocals with the method of projections.

It is very easy to see what must be the first step if it be

required to move the two figures into such a position that the

polar of every point may be the same, no matter to which system
that point be considered to belong. For, since the position of the

line at infinity is unaffected by any displacement of the figure,

we must begin by taking its pole in each system, and then

moving the systems so that these points shall be brought to

coincide. The pole and polar conies will then become concentric

and similar, this point being their common centre.

340. Now we say, that if by turning the figures round their

common centre 0, they can be given such a position that the

polar of any point A at infinity shall be the same line OB for

both systems ;
then if the polar of any other point G at infinity

be the line OD for the first system, it must be also so for the

second system. For the anharmonic ratio of the four points of

the first system ABCD is equal to the corresponding pencil

of the second system, viz., OB.OA.OD.OX, and since three

legs are the same in two pencils, OX must coincide with 0(7,

or the polar of the point D must be the same whether it belong

to the first or second system ;
so also must then the polar of C.

Since BOW the circular points at infinity are unmoved by any

turning of the figure, we have only to take the two polars of

either of these points, which in general will not pass through

the point, and turn either figure round, so as to bring these
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polars to coincide
;
and then, from what has been just proved,

the polars of every other point will coincide.

341. We can readily obtain an expression for the ang e

through which the figure is to be turned. The two figures

being in a concentric position, and the origin being the centre,

it is readily seen that the most general equations of the two

polars of any point are

(ajc 4- &y)
x -t- (ajc + b$ ) y + c

3
=

0,

and (ap + a
zy }

x + (\x + bg ) y + c
3
= 0.

The two polars of the point at infinity, for which y ix
,
are

and (a, + taj x + (b l
+ ibj y = ;

and the angle through which one of these lines must be turned

to coincide with the other is the difference of the angles whose

tangents are

a. -f ib.

but this is the real angle whose tangent is ~
.

342. Or the same result may more simply be obtained as

follows : If in general the line of the second system corre

sponding to the point x y
f

in the first be

then, when the second system is turned round an angle #, the

equation of this line will become

(al
xf

+b
1y

f

)(x cos0-y sin0) + (a^x -1- b^)(x sin0 + y cos^) + c
3
=

0,

or {(a, cos + a
2
sin 6) x + (5t

cos + J
2
sin 0) /} cc

+ {(a2
cos - a

t
sin 0) ic

r

+ (\ cos - \ sin 0) /} y + c
3
= 0.

But the locus of points of the first system whose polars pass

through xy
f

,
that is to say, the line corresponding to x y ,

considered as belonging to the transformed system, will be

{(at
cos + a

2
sin 0) x + (aa

cos - a
v
sin 0) y \

x

+ {(5, cos0 + Z&amp;gt;

2 sin0) 0;&quot;+ (5, cos0 - b
l
sin 0) ^J y + c

,
= 0.
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This line will always coincide with the other, if we have

b
l
cos 6 -f 5

2
sin 6 = a

2
cos 6 a, sin 6

;

or, as before, tan 6 = ~~-
.

QUADRIC TRANSFORMATION.

343. Before proceeding to the general theory, it will be in

structive to consider in detail one other special method, viz. when

the coordinates of the point P
f
are functions of the second degree

of the coordinates of P, or say in which xf

: y : z = U : V i W.
Thus to the lines # = 0, y = 0, 2 = will answer three conies

U 0, V= 0, W=*
j and, in general, to a curve of the n

th

order will answer one of the 2#th
,
whose equation is found

by substituting Z7,
V

9
W respectively for x, y, z in the given

equation. We have already used this method, Arts. 252, 272.

A simple example is when the relation between P f and P is

expressed by the equations x : y : z = x2
: y* : z

2

;
then to any

right line Ix -f my + nz will answer a conic lx* -\ my
1* + nz*

touching the sides of the triangle xyz, while to a right line in

the second figure answers also a conic in the first. To a

conic in the first figure (, &amp;gt;, c, /, #, hjjv, y^ zf answers the

quartic

ax + ly -f cz + 2/#M + 2gz*x* + 2hxty = 0.

And, as the general equation of a conic may be written in the

form

x y z
(( 1 a\ 2 /I I \ /I

7
+
9
+ i- U75

- * + - * + -

it follows that the equation of the corresponding quartic may be

written in the form ax* + ly* + cz* -f dw* = 0. It is therefore

trinodal and has the lines X, y, z, w for bitangents.

344. The method of transformation just described, wherein

x : y
f

: z
f U : V : W is in general not rational. For, given

x
j #&amp;gt;

s we nave ^
j y i

* rationally, but when x1

, ;/, 2 are given,
U V W

then to find #, y, z we have =
,
= -7- ; equations which

x y z

represent conies having four common intersections, and therefore
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to any position of the point xyz answer four positions of

the point xyz. If the conies
7, V, W had a common point,

this point being independent of the position of the variable

point xyz might be set aside
;
and to any position of the

one point would answer three of the other. Similarly, if U,

V, IF had two common points; and finally, if they have three

U V W
common points, the conies ,

= = have, besides the three

fixed points, only one other common point. The transformation

is therefore in this case rational, and to any position of either

point answers a single position of the other. It wrould be a

mere change of coordinates, if instead of the conies U, V, W
we took three conies of the form lU+mV+nWj making the

corresponding lines Ix + my -f nz our new lines of reference.

There is therefore no loss of generality if we take for Z7, V, W
the three line-pairs got by joining each of the fixed points to

the two others. The most general rational qtiadric transfor

mation is therefore that which we have already used, Art. 283,

where two corresponding points are connected by the reciprocal

relations

x : y : z = y z : zx : x y
f

and x : y : z yz : zx : xy.

345. It was stated, Art. 283, that to the point xy will cor

respond any point on the line z 0, &amp;lt;fcc. If we transform

any curve, to each of the n points where it meets the line z

will correspond the point xy, which will accordingly be a rc-fold

point, or, more strictly, to each of the n points corresponds
the direction of a tangent at the ?z-fold point. There will be

a coincidence among these tangents should the original curve

touch the line z . To a curve therefore of the w
th

degree, which

does not pass through any of the three fixed points y z
,
zx

, xy ,

will correspond a curve of the 2?i
tn

degree having the three

points yz, zx, xy as 71-fold points. Let us suppose, however,
that the curve passes through the point yz, then the line x
must be part of the corresponding figure, and setting this aside

the order of the corresponding curve is reduced by unity. Also

since the line x passes once through each of the points zx, xy,

the corresponding curve will only pass through each of these

points (n
-

1) times instead of n. And, in like manner, we
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see in general that to a curve of the nih
degree which passes

through the three principal points, as we shall call them,

/, &amp;lt;/,

and h times respectively, will correspond a curve whose

order ri is 2nf g h, and which passes through the three

principal points on the other figure / , # ,
and Ji times re

spectively, where/ = n g $, g = n h -/, hf = n f g.

346. It is easy to verify that the numbers thus assigned

satisfy the reciprocal relation which exists between the corre

sponding curves
;
that is to say, that we have also

n=2n -f-g- h ,f= n -g - h
, g= n - h -/, A=n -/ -/.

We shall shew also that the two corresponding curves have the

same deficiency. For if a curve pass / times through a point,

this is equivalent to i/(/- 1) double points, (Art. 43). Hence

the deficiency of the first curve is

i {(n
-

1) (n- 2) -/(/- 1) -g (g
-

1)
- h (h

-
1)},

and using the values just obtained for n
, f, &amp;lt;/,

k
,

it is easy

to verify that the number just written is equal to

J {(n -l)(n -2)-/ (/-!)-/(/- l)-A (A -l)}.

347. A particular case of quadric transformation is the

method of inversion, or transformation by reciprocal radius

vectors, described Art. 122, and Conies, Art. 121
(c). In this

method we have a fixed point ;
and corresponding points P,

P lie on a line through 0, at distances whose product is con

stant
; say OP. OP = 1 . Taking as origin, it is easy to see

that the relations between the rectangular coordinates of P
and P are

f_ y
y =
^y^ * &quot;

But these equations give

/ 1
x -f iy ,

x iv =
x iy

1

Hence, writing

X, Y,Z=x-iy, x + iy, 1; X ,
Yf

,
Z = x + iy ,

x -iy , 1,

we have X : T : Z = YZ : ZX : XY,
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or the transformation is of the kind considered in this section.

The point is called the centre of inversion
;
and the circle

whose radius is the square root of the given value of OP. OP is

called the circle of inversion, and if P describe any curve, the

curve described by P
f

is called the inverse curve.

In particular, the inverse of a right line is a circle passing

through 0; viz. if OA is the perpendicular on the line, and

A the point corresponding to A, the circle is that which has

OA for its diameter. The point corresponds to the point at

infinity on the line. Again, the inverse of any circle is a circle

(Conies, Art. 121 (c)},
and in particular, the inverse of a circle G

which cuts at right angles the circle of inversion is this same

circle C
;
that is to say, the point P corresponding to P lies on the

same circle, which is therefore its own inverse. We give this ex

ample to illustrate a theory which will be more fully considered

in a separate section, where the general theory of transforma

tion presents itself as a theory of correspondence of points on

a given curve. Here confining our attention to the circle
(7,

the points P, P on it correspond to each other
;
and in order

to find the point corresponding to a given one P, we have

only to join it to a fixed point 0, and take the point where

OP meets the circle again.

348. To return to the general theory of inversion, it is

obvious that two pairs of corresponding points A^ A \ B, B ^

lie on a circle which cuts orthogonally the circle of inversion
;

and by the property of a quadrilateral inscribed in a circle,

the line joining two points A, B makes the same angle with

the radius vector OA that the line joining the corresponding

points A, & makes with the radius vector OB . In the

limit, if AB be the tangent at any point A, the corresponding

tangent to the inverse curve makes the same angle with the

radius vector. It follows immediately that the angle which

two curves make with each other at any point is equal to the

angle which the inverse curves make^ with each other at the

corresponding point.

The inverse is immediately formed of curves included in

the equation p
n = a

n
cosnw. Thus ?z = 2, the lemniscate is the

inverse of the equilateral hyperbola; n = ^, the cardioide is the
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inverse of a parabola having the origin for its focus, &c.

The inverse of a conic in general is a trinodal quartic, the

nodes being the origin and the circular points at infinity. If

the origin be the focus of the conic, the inverse is the limagon ;

if the origin be on the curve, the inverse is a nodal circular

cubic, the origin being the node. Evidently in general to a

circle osculating one curve will correspond a circle osculating

the inverse curve
;
but if the circle passes through the origin

the inverse will be an inflexional tangent.

Ex. 1. The three points of inflexion of a nodal circular cubic lie on a right line.

Hence, through any point on a conic can be drawn three circles elsewhere osculating

the curve, and their points of contact lie on a circle passing through the given point.

The three points will be all real when the curve is an ellipse, but if it be a hyperbola,

two will be imaginary.*

Ex. 2. In like manner, through any point on a circular cubic or bicircular quartic

can be described nine circles elsewhere osculating the curve, and of these circles three

will be real and their points of contact will lie on a circle passing through the given

point.

Ex. 3.
&quot; The feet of the perpendiculars on the sides of a triangle from any point

on the circumscribing circle lie in one right line.&quot; Inversely, if on three chords of a

circle, AS, AC, AD as diameters, circles be described, the points of intersection of

these circles with each other lie on a right line.

Ex. 4.
&quot; The circle circumscribing a triangle whose sides touch a parabola passes

through the focus.&quot; Inversely, if three circles be described through the cusp to touch

a cardioide, their points of intersection with each other lie on a right line.

Ex. 5.
&quot; If a right line meet a lima^on in four points, the sum of their distances

from the node is constant.&quot; Inversely, if a circle through the focus meet a conic

in four points the sum of the reciprocals of their distances from the focus is constant.

Ex. 6. To find the envelope of circles passing through a fixed point and whose

centres lie on a given curve. Take the fixed point for centre of inversion, and the

locus of the other extremity of the diameters passing through that point is evidently

a curve similar to the given one. &quot;It is easy then to see that the negative pedal

(Art. 121) of the inverse of this last curve is the inverse of the required envelope,

and, therefore (Art. 122), that the envelope is the inverse of the polar reciprocal

of that curve.f

349. It remains to mention the cases of rational quadric

transformation which cannot be reduced to the substitution

x : y : z yz : z x : xy . Of the three points common to the

conies
Z7, F, W, two may coincide : let the line y be supposed

* This theorem is Steiner s, see Conies, Art. 244, Ex. 3. The proof here given is

Dr. Ingram s.

t This example is taken from Dr. Stubbs s paper on this method, Phil. Mag.
vol. xxin. 18.
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to be the common tangent to the conies at the point yx, and

let xz be the third point common to the three conies, then

the equation of each must be of the form ax2

-f %fyz + 2hxy = 5

we may take x\ yz, xy as the three conies, and the substitution

is that used Art. 289, x : y : z
f = xy : x* : yz, equations which

imply reciprocally x : y : z = x y : x 2
: y z. In this substitution,

as in the other, to the point xz corresponds the line y^ and

to any curve meeting this line in n points will correspond a

curve having the point as a ?i-fold point. To the point x y

corresponds the line
ic,

but whatever be the point on this line,

the corresponding direction of tangency will be ?/
= 0. To a

curve therefore meeting the line x in n points will correspond
a curve having the point xy as a rc-fold point, at which all

the tangents coincide. The theory, in short, is substantially

the same as before, only modified by the coincidence of two

of the principal points. Again, let all three points coincide, then

(Conies, Art. 239) the equations of the three conies must be of

the form fo/
2 + 2hxy + Zf(yz mx*) = 0, and we are led to the

substitution used in Art. 290, viz. x : y : z = xy : y
2

: yz mx*,

implying reciprocally x : y : z = xy : y
*

: y z* 4- mx *.

350. Before discussing the general theory of rational trans

formation, it is convenient to mention, in extension of what was

stated, Art 347, that the general substitution of X n

,
Tn

,
Z&quot;

for JT, Y, Z assumes a simple form when the line Z is at

infinity, and JT, Y pass through the two circular points. For,

transforming to polar coordinates, the equations of X and Y
become

p (cos 6 i sin 6}
=

;

and it is obvious that substituting for these functions their nth

powers is equivalent to substituting p
n

for p, and nd for 0.

This transformation is not rational, but it may conveniently

be applied to curves of the form p
m = a

m
cosmo), which are

always thus transformed to curves of the same family. For

n = 2 a circle becomes a Cassinian, and for n = ^ a limagon.
A
Ir. Roberts has also noticed (Liouville, xni. 209) that the

angle at which two curves intersect is not altered by this

transformation. For the tangent of the angle which the tan

gent to a curve makes with the radius vector is (Art. 95)

ss



314 GENERAL THEORY OF RATIONAL TRANSFORMATION.

^-7 . and this is unaltered when we substitute ndco for dw
dp

and - for . Thus the theorems given as examples of

inversion lead each to as many theorems as we choose to give
different values to n. Theorems also concerning the angles at

which curves cut are easily transformed by this method, as, for

instance, the theorems that a circle is the locus of intersection

of two right lines cutting at a fixed angle which each pass

through a fixed point; that a series of concentric circles are

cut orthogonally by lines through the common centre, &c.

THE GENERAL THEORY OF RATIONAL TRANSFORMATION.

351. We come now to the general theory of the rational

transformation, in which to any% system of values of xyz

corresponds a single system of values of x y z
]

for example^
x : y : z = U : V i W, where

27, F, W are known functions of

a?, ?/, z, which we suppose to be of the wth order
; and, recipro

cally, to any system of values for x y z corresponds a single

system of values x : y : z U : V : W. When such mutual

expression is possible, /
,
F

,
W must be also of the 7i

th order

in xyz . For to the n intersections of an arbitrary line

Ix + my + nz with any curve a Z7-f b F-f cW will correspond,

in the other system, the intersections of W +mV +nW with

the line ax + by + cz
^
which must also be in number n.

352. Let us now examine the conditions that such mutual

expression may be possible. In general, if we are given the

coordinates of a point in one system x : y : z = a : b : c, there

will correspond in the other system the intersections of the

curves U : V : W a : b : c: and these will be n
2
in number

if U) F, W are general curves of their order. If, how

ever, U, F, W have p points common to all three, the curves

U V W= - = will always pass through these points, and there

will be only ri* p variable points of intersection, which will be

the points in the other system corresponding to the given point.

Finally, if p = wa - 1
,

there is but a single variable point of
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intersection
; or, in other words, all but one of the intersections

of the curves 7: V i W=a : b : c being known, the coordinates

of the remaining intersection are uniquely determinate, and will

thus be rational functions of a, Z&amp;gt;,

c
;
that is to say, of #

, # , ,

and we have expressions of the form x : y : z = U : V i W.

353. Thus, then, one condition for rational transformation is,

that the curves
/&quot;, F, W shall have ri* 1 common intersec

tions
;
but there is a further condition. The system of curves

aU+ bV+ cW must be as general as the system of right lines

ax 4- ty
f + cz to which they correspond ;

that is to say, a curve

of the system must not be determinate unless two conditions are

given to determine the two expressed constants a : b : c. The

number of conditions, therefore, which
Z7, F, W can be made to

satisfy must be at least two less than the number of conditions

necessary to determine a curve of the nih order. For example,
if U, V, IF be cubics, and if we subject them to the condition

of having eight distinct common points, they must also have

a ninth (Art. 29) ;
there would be no variable point of inter

section, and the construction of Art. 352 would fail. But we
can still satisfy the conditions of the problem by supposing
the cubics

Z7, F, W to have common one point, which is a node

on all,
and four ordinary points. These are equivalent to but

seven conditions, since to be given a double point is only

equivalent to three conditions (Art. 41), and therefore two more

conditions are necessary to determine any curve aU+ b F+ c W.

But the common points amount to eight intersections, since

a point which is a double point on two curves counts for four

intersections. And so, in general, we cannot take
Z7, F, W as

curves of the %th
order, having ?z

2
1 distinct common points,

because then (n being greater than two) they would have another

common point, and no variable point of intersection; but we
can satisfy the conditions of the problem by taking for U, F, W
curves having common a, ordinary points, a

2 double, a
3 triple,

&c., in such way that these are equivalent to ?i
2

1 intersec

tions, and that the number of conditions implied shall be less

by 2 than the number necessary to determine a curve of the n
th

order. Kemembering, then, that to be given a multiple point of

the order r is equivalent to %r(r+ 1) conditions, and that such
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a point when common to two curves counts as r* intersections,

we have the two equations

\ = ri
2 - 1 .... (1),

)ar
= Jn(/H-3)-2 .... (2).

Doubling the second equation and subtracting from it the first,

we get an equation which may conveniently be substituted

for (2)

a
1
+ 2a

s,+ 3a
B H-...roP

= 3(n-l) ..(3).

We have then as many modes of transformation by curves of the

wth order as there are solutions of these equations by positive

integer values of a,, a
2 , &c., provided always that the number

of higher multiple points which the curves are supposed to

possess is subject to the limitations assigned, Art. 43.*

354. The argument of Art. 353, strictly, only shews that in

equation (2) the left-hand side cannot be greater than the

value there written. But we can also shew that it cannot be

less, for add a term t and subtracting equation (2) from (1)

we get

o
a
+ 3o

a +...ir(r-l)ar :=i(7i-l) (n-2) +*.... (4).

Kecollecting that a triple point is equivalent to three double

points, and an r-fold multiple point to %r(r- 1) double points, we
see that the left-hand side of the equation represents the number

of double points to which all the multiple points of any curve

aU+ bV+ cW are equivalent. And since it was shewn (Art. 42)

that this number cannot exceed \(n 1) (n 2), we must have

=
0, then equation (4) asserts that the curves of the system

aU+bV+cW have each the maximum number of double

points, or, in other words, that they are unicursal. And it is

otherwise evident that this must be so, since these curves

answer to the right lines of the other system ;
and not only a

right line, but every unicursal curve will be transformed into a

unicursal curve; for if the coordinates of a point are rational

functions of a parameter, the coordinates of the corresponding

* This theory is due to Cremona, see his memoirs Sulle trasformazione geometriche

dellefigure piane, Mem. di Bologna, t. n. 1863, and t. v. 1865
;
see also Prof. Cayley s

paper, Proceedings of the London Mathematical Society, vol. III. 1870, pp, 127-180.
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point being rational functions of these, must also be rational

functions of the same parameter.

355. We have seen that when n is greater than 2, the

equations (1) and (3) cannot be satisfied if the points common
to Uj V, W are only simple intersections. We shall now shew,
in like manner, that if n is greater than 5, there must be

a multiple point of order higher than the second
;
and so on

generally. Let r be the highest index
; multiply equation (3)

by r, and subtract from it equation (1), and we have

(r-l)a1
+ 2(r-2)a2-f3(r-3)a3+...(r-l)ar_ 1=(7i-l)(3r-7i-l).

Every term on the left-hand side is positive, therefore r cannot

be less than J(-f 1). We may take r equal to this number

in the case where J (n + 1
)
is an integer, that is to say, if n be

of the form 3p
-

1, we may take r p ;
but if so all the numbers

a
l5
a
a
...

,
a
r-1

must vanish, and the curves can have no common

points but the &amp;gt;-fold points; and we have pa.p
= 3 (3p 2),

which cannot be satisfied by an integer value of a.f ifp exceed 3,

unless p = 6. Except, then, when n = 2, 5, 8, or 17, r must

be greater than
-J (n + 1) ;

thus always for n greater than 5 there

must be a multiple point of higher than second order.

356. In the same manner is established a theorem from

which we shall presently draw an important inference, viz. that

if we take the three highest in order of the multiple points, the

sum of their orders must exceed n. Let the orders of the

three highest be r, s, ,
where s is supposed not greater than r

and t not greater than s, then transferring the terms contributed

by the two former to the opposite sides of equations (1) and (3),

these equations become

and, as before, we have a limit to the lowest admissible value

of t from the consideration that if we multiply the second

equation by t and subtract the first, the remainder is essentially

positive. Our business now is to shew that n r s is too low

a value for
,
or that, in this case,

w* - 1 - r _ s* &amp;gt; t (3n
- 3 - r - s).
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Substituting r + s = n
t,

this becomes

2rs - 1 + 2nt -t2
&amp;gt;t2n-3 + t.

But since, by hypothesis, r and 5 are not less than
,
the least

value the first quantity can have is found by putting r and s

both =
t)
when the inequality becomes

? + 2nt-l&amp;gt;f + 2nt - 3,

which is obviously true.

357. Cremona has tabulated as far as n = 10 all the ad

missible solutions of the system of equations we have been

considering. Some of his results will be given presently ;
but

enough has been said to shew that we can always take U, V^ W
functions of the nih order in xyz, such that the equations

xf

:y iz =U: V: W
shall represent three curves having common certain fixed points,

equivalent to n
2

1 intersections (which we call the principal

points), and one variable point, the coordinates of which ex

pressed in terms of x y z give the converse system of equations

x:y:z=U : V : W.
We have already seen that Z7

,
F

,
Wf

are functions of the

/i
th order in x y z

,
and it is plain that these also must represent

curves having common a number of fixed points satisfying the

conditions (1) and (2) already explained. It does not
follow,

however, nor is it always true, that the same solution of the

system of equations is applicable in both cases
;

in other words,
the system of curves aU+bV+cW which answer to the right

lines of one system, and the system of curves aU + bV f

+ cWf

which answer to the right lines of the other system, have not

in general the same distribution of multiple points.

358. We have seen that, in the quadric transformation, to one

of the three principal points corresponds in the other figure

not a point but a line
;
and we shall now extend this theorem

by shewing that in general to any of the ar points corresponds

a unicursal curve of the rih order. It is evident that the system
of equations

x :y :z =U: V: W



GENERAL THEORY OF RATIONAL TRANSFORMATION. 319

becomes illusory if we seek the point xyz corresponding to

any point xyz common to the curves
Z7, 7, W. Now, first let

this be a point of simple intersection
; and, by proceeding to a

consecutive point, we have x y z respectively proportional to

where U^ &c., denote differential coefficients. We have thus

a different point xyz corresponding to each element of direc

tion at the assumed point xyz. But if three curves have a

common point their Jacobian passes through that point ; as is

evident by writing the equations 7=0, &c. in the form

Up + Uy + UtZ^ 7^ + 7^ + 7,3
=

0, TF&amp;gt;
+

TT&amp;gt;
+

TT&amp;gt;

=
0,

and eliminating xyz. We thus see that if we eliminate &e, By
from the values just found for x y z

,
Bz will also disappear, and

all the points corresponding to xyz will lie on the right line

x
( V, 17,

- F
2 IF,) + y ( TF,Ut

- W
2 U,) + / ( U, 7.

-
V, V)

= 0.

359. We proceed in like manner if the point common to

UVW be a multiple point. Let
it,

for example, be a double

point, then the values given, Art. 358, for xy
f
z

f

vanish; but

denoting the second differential coefficients as before by a, Z&amp;gt;, c,

&c., we have xy z respectively proportional to

But the relation of the point xyz to UVW is such as to allow of

the simultaneous elimination from these equations of &r, 8y, z.

In fact, the above forms in &e, 8j/,
Bz are only in appearance

ternary, but are really binary. For ax*+ l}y*-\-
cz* + &c. equated

to zero denotes the pair of tangents to the curve U at the

double point, and is reducible to the form

a (x
- mzY + 2k(x- mz] (y -nz) + l(y- nzf.

There are, therefore, but two quantities Bx mSz, Sy-nSz to be

eliminated between the equations, and it will practically come

to the same thing if we write Sz = 0, and eliminate &c, By.

And so for any multiple point we have a/, y ,
z proportional to

(, ...J&t, 8y) ; (* ,.. .fix, By)&quot;, (*&quot;, ...X&r, 8,) ;

and Sx, By are eliminated in the manner explained, Art. 44,
and x, y\ z being rational functions of a parameter, are the

coordinates of a point on a unicursal curve of the rth order.
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360. The curves in one system which answer to the prin

cipal points in the other may be called the principal curves,

and these curves together make up the Jacobian of the system
of curves aU-\- bV+cW. For the Jacobian is the locus of the

new double point on such of the curves of that system as have

a double point in addition to the multiple principal points common
to all. But since each of these curves has already the maximum
number of double points, it can only acquire a new one by break

ing up into inferior curves, and this will happen only when the

corresponding right line in the other system passes through one

of the principal points. In that case the curve aU+bV+cW
breaks up into the fixed ric curve corresponding to the principal

point, together with a residual curve variable with the line

through a.
r
. Now, in general, if we have two unicursal curves, the

sum of whose orders r and / is w, the aggregate multiplicity

arising from the singularities of the two curves and their in

tersections is equivalent to % (r 1) (r 2) 4 J (/I) (/ 2) -fr/,

that is, to ^ (n
-

1) (n 2) + 1 double points. Thus we see that

in the curve we are considering, the complex curve has besides

the principal points one new double point, which will be a point

of intersection of the fixed curve answering to ar ,
with the

residual variable curve
;
and the locus of such points is therefore

the fixed curve. That the sum of the orders of all these prin

cipal curves makes up the order of the Jacobian of the system

aU+ bV+ cW is expressed in equation (3), viz.

From the general theory of Jacobians, which will be more fully

entered into in the next chapter, it appears that the system
of principal curves passes through each of the points a, twice,

through each point a
2

five times, and through each point ar

3r - 1 times. There are other theorems which it is sufficient

to indicate as to the disposition of the principal curves with

respect to the principal points. For instance, take a right

line in one system which does not pass through a principal point

a/, then the corresponding curve aU-\-~bV+cW can have no

ordinary point in common with the principal curve a
r ,
and the

intersections of the two curves would be exclusively principal

points. In this way we can see that every principal right line
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passes through two principal points, the sura of whose orders is

n, and every principal conic through five principal points, the

sum of whose orders is 2n.

361. We are now in a position to determine the charac

teristics of the curve corresponding to a curve of the order &,

which we suppose not to pass through any of the principal

points. Evidently, if we write /

T

, F, W for x
, y ,

z in a

function of the kih
order, we obtain one of the order nk

;
and if

the curves
/, F, IF have a point a in common, the line in the

other figure corresponding to a will meet the curve S in k points,

which will all correspond to a this will, therefore, be a &-fold

point, and similarly, every one of the principal points ar will be

a rAj-fold multiple point. If the original curve have no multiple

points, the transformed curve will have no multiple points other

than the principal points. Thus it appears that the transformed

curve will be of the order nk, the corresponding maximum
number of double points being ^ (nk ].) (nk 2) and the

principal points will be multiple points, and the number of

double points to which they are equivalent will be

fak (&-!)+K2/k
(
2& ~ !) +~4arrk (rk

-
1),

or p2

(aj + 4a
2
+...r

2
ar)
- %k (a x -t- 2a2 + . . .rar),

or, in virtue of equations (1) and (3),

Substituting, the deficiency of the transformed curve is

%(nk-l)(nk-Z)-$(n*-l}tf-%(n-l)lt}, =(&-l)(&-2), the

same as the deficiency of the original curve. If the original curve

has multiple points other than the principle points, to these will

correspond in the transformed curves multiple points of the

same order, and the deficiencies of the two curves remain equal.
If the original curve pass through any of the principal points

a/, then for each time of passage the corresponding curve a.r

is part of the transformed curve, and the degree of the trans

formed curve proper will be reduced accordingly. There will

be also a corresponding reduction in the number of passages
of the transformed curve through the principal points through
which ar passes. The effect of this will still be to preserve
the equality of the deficiencies of the two curves. Thus, for

TT
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example, if the original curve passes through one of the points 1?

the transformed curve will include as part of itself a right line,

and the degree of the residual curve will be reduced from nk

to nk- 1, and there will be a consequent diminution of nk 2

in the maximum number of double points; so if the right

line pass through two points a,, a,, the number of passages
of the residual curve through these will be each reduced by 1,

and the number of equivalent double points will be reduced

by sk 1 and & 1, or by nk 2, since s-\-t = n. It is unne

cessary to enter into more detail, because we shall presently

arrive at the same results by another method.

362. Every Cremona-transformation may he reduced to a

succession of quadric transformations. Consider the most general

transformation in which to the right lines of one figure

answer in the other figure curves of the nih order having
in common a

t ordinary points, 2
double points, &c. We have

seen (Art. 356) that there are three of those points, the sum of

whose orders exceeds n. Take these as principal points

and effect a quadric transformation, the degree of the trans

formed curve, being 2n r s
,

is less than n. In like

manner, by a new quadric transformation, we can reduce the

degree of that curve : and so on until we have at length right

lines corresponding to the curves of the wth order. Since it was

proved (Art. 346) that the deficiency is not altered by any

quadric transformation, the theorem of this article shews that

it is not altered by any Cremona-transformation. The following

particular example will illustrate the method, and will shew how

we can trace the disposition of the principal curves. Consider the

transformation in which right lines are transformed into quintics

having three ordinary points , 2 3 ,
three double points b^bjb^

and one triple point c. Take cb
t

b
9
as principal points, and by a

quadric transformation the quintics become cubics, having 5
8

as

a double point, and a^a^a^c as ordinary points. Again, take

a
3

7&amp;gt;

3
Y as principal points, and apply a new quadric transfor

mation when the cubics become conies passing through a&quot;a^b&quot;,

and finally, a new transformation with these for principal points

brings them to right lines. In like manner we can see how

are transformed the right lines of the first system, or, more
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generally, how are transformed curves of the #h order passing

&amp;lt;i

l
times through the point a,, &c. After the first transformation

we have

k = 2k-c-b
t

- b
sJ

c
&amp;gt; = k-b-b

After the second transformation, in which a
s
&
3
V are the principal

points, we have

k&quot; = 3k-2c-a-b-b-b

Lastly, after the third transformation, the principal points being
we have

c&quot; = 2k - c - b
l

- 6
2
- b

z
-

3 ,

ai &quot;=2k-c-b-b-b-a2 ,
a

And if we put &= 1, and the other letters =0, we see that right

lines are transformed into quintics having common one triple,

three double, and three single points. Again, in order to trace

the correspondence of the principal points, we see that in the

first transformation to the point c corresponds the line /, &
2 ;

to this in the second transformation corresponds a conic through
c&quot;a

3 &quot;6,&quot; 2
&quot;6

3

&quot;

;
and finally, to this a cubic having &

3

&quot;

as a double

point, and the remaining six points as ordinary points. The

following tables give the effects of the different kinds of

Cremona-transformation as far as n = Q. The values also in

dicate the curves answering to the principal points. Thus, in

Ex. 3, the value c = 3k - 2c - 2 (a) indicates that to c corre

sponds a cubic having c as a double point, and passing through
the points a.

Ex. 1. (II.) n = 2, a
l
= 3.

k = 2k aj a., 3 . a = k a., - a3 ,
a.2 = k a3

- a
1? a, = k - a

t a...
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Ex. 2. (III.) n = 3, a, = 4, a2
= 1.

Jc = 3k - 2b - a
l
- a2

- az
- a4 ,

V 2& - b - ^ - a2
- a3

-
4 , aj-k-b- a,, &c

Ex. 3. (IV. 1) =
4, o

x
=

6, 2
=

0, a3
= 1.

k = 4k-Sc-Z (a), c = 3& - 2e - 2 (a), &amp;lt;

- - c - au Ac.

Ex. 4. (IV. 2) n = 4, a
t
= 3, a2 = 3.

Ex, 5. (V. 1)
=

5, Ol = 8, a2
=

0, a3
=

0, a4
-

1.

If = 5 - 4d - 2 (a), d = 4A - 3d - 2 (a), a/ = fc - d -* a^

Ex. 6. (V. 2) 7i = 5, a
x
= 3, a2

= 3, 3
= 1.

=5-c-22()-2(a), c =3-2c-2(6)-2(a), b
1 =2k-c-a 1

-Il (b), a^k-c-b,.
Ex. 7. (V. 3) TO = 5, aj = 0, a2

= 6.

# = 5^ - 2Z (i), */ = 2^ - bz
- bz

-
I,
-

b,
-

b,, Ac.

Ex. 8. (VI. 1) n = 6, &amp;lt;/!

= 10, a5 = 1.

// = 6& - 5e - 2 (a), e = 5^; - 4e - Z (a), aj = k-e- a
lt &c.

Ex. 9. (VI. 2) n = 6, a
x
= 1, a2

=
4, a, = 2.

# = 6A - 32 (c)
- 22 () - a, */ = 3A - 2c,

- c2
- 2 (i)

-
a,

i/ = 2/c - 2 (c) -bz -bz -bu a = A - 2 (c).

Ex. 10. (VI. 3) w = 6, a, = 4, a2
=

1, a3
= 3.

* = 6& - 32 (c)
- 2b - 2 (a), d = 4* - 22 (c)

- 5 - 2 (a),

V = 2A: Z(c) 5 a/, by=&c, b3 = &c., bt = &c., a^-k-cz -c^ a2
= &c., a3

= &c.

Ex. 11. (VI. 4) = 6, fll
= 3, a2 = 4, a3

=
0, a4

= 1.

* = 6^; - 4d - 22 (b)
- 2 (a), c/ = 37^ - 2d - 2 (5)

- a.z
- a3 ,

c2 = &o., c3 = Ac.,

* = 2k - d - 2 (b), a
l
= k d b

lt
a2

= Ac., c
3
= Ac., 4

= Ac.

TRANSFORMATION OF A GIVEN CURVE.

363. The conditions assigned in the last section are neces

sary for the general rational transformation between two planes,

so that to any point in either plane shall correspond a unique

point in the other. But they are not necessary to rational

transformation, if we consider only the transformation of a

given curve S = 0. Let us apply to the curve S a transforma

tion x : y
f

: z = U : V : W, where
/, F, W are functions of the

7i
th

degree in
or, y, z, not necessarily satisfying Cremona s

conditions
; then, obviously, to any point in the first plane will

correspond a single point of the second, since #
, ?/ ,

z are given
as rational functions of #, y, z. But according to the pre

ceding theory, if
Z7, F, W have common

GCj ordinary points,

cc
2
double points, &c., then to any point in the second plane will

correspond n2 - a
l

4
2
- &c. points in the first plane ;

and this

number, which we shall call #, will ordinarily be different from
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unity. The locus of points in the second plane corresponding
to the points of the curve S will be a curve S corresponding
to S, and to any point P of the first curve will correspond a de

finite point P
f

of the second. Now, from what we have just said,

it appears that to P will correspond in the first figure, besides

the point P, 9 1 other points ;
but these points will ordinarily

not lie on S, and the curve in the first figure corresponding
to Sf

will consist of S together with a residuary curve, the

locus of the 6-1 points. And if we attend only to the points
on the curve $, we see that while to any point P of S cor

responds a single point P on
/S&quot;,

so also to any point P on S

corresponds a single definite point P on 8.

Thus then, though the equations x : y : z = U : V: W do

not by themselves suffice to give rational expressions for
rr, y, z

in terms of x
, y ,

z
,

it is otherwise when with these we combine

the equation S = 0. If from all the equations we eliminate

xyz, we obtain an equation $ =
0, which is the condition for

the co-existence of the system of equations. And when this

condition is satisfied, it was shewn (Higher Algebra^ Lesson X.)

that we can in general rationally determine the values for

X) y, z, which will satisfy all the equations of the system. We
see, then, that when a given curve S is transformed by the

substitution of x \ y \ z = U\V \
IF&quot;,

we can in general obtain

a rational converse expression x : y : z = U : V \ W f
.

Ex. Suppose that we are given x : y : z yz + x2
: yz + xy : yz + xz. Here to

right lines in the second plane answer conies in the first, having common only two

points yx, zx
;
and therefore to a point in the second plane will generally answer two

points in the first plane. The general expressions for x, y, z in terms of x
, y ,

z

are easily found by observing that x y, x z are respectively proportional to

x y ,
x z

;
the geometrical meaning of which is, that the points xyz, x y z

,

considered as belonging to the same plane, are collinear with the point 1, 1, 1.

In other words, the equations are satisfied by writing x = x + X, y = y + X,

z z + X, where X is determined by the quadratic

2X2 + (x + y + z ) X + y z =
0,

and plainly to any system of values for x y z answer two systems of values for xyz.

But it is otherwise if we consider the transformation of a given curve. Thus, take

a right line in the first plane ax + /% + yz ;
then the relation between any point on

this line and the corresponding point in the second plane is given by the equations
x = x + X, &amp;lt;tc.,

where (a + ft + y} X = (ax + /% + yz ).

In like manner, if we have any conic S on the first plane, and if by the sub

stitution x = x + X, &c., S becomes X2 + PX + S
,
then the curve corresponding

to S is the quartic whose equation is obtained by eliminating between

X2 + P\ + S = 0, 2X2 + (x -H y + z
)
X + y z -

j

I
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and the expression for x in terms of x is obtained by taking for A. the common root

of these equations given by the equation {2P (x
r + y + z }} \ + 2S y z 0.

364. The deficiency of a curve is unaltered, not only by
Cremona s transformation, as already proved, but by any trans

formation where to a point on either curve corresponds a

single point on the other.* This may be shewn as follows :

In the first place, it is to be observed that in the rational

transformation between two planes, where to a point A corre

sponds a single point A ,
if any curve pass twice through A the

corresponding curve must pass twice through A ,
or to a double

point on one curve must correspond a double point on the

other. But if to A correspond more points than one, A, B , &c.,

then if the second curve pass through both A and B
,
the

first curve will pass twice through A ;
that is to say, a double

point on one curve may correspond to a double point, but it

may also correspond to a pair of distinct points on the other.

In like manner, if the points A, B coincide, we may have a

cusp on one curve corresponding either to a cusp or to a pair

of coincident points on the other.

Let us now consider two fixed corresponding points A, A^
one on each of two corresponding curves $, $

,
whose orders

we suppose to be m and m
,
and which we suppose to be in

the same plane ;
let us consider also two variable corresponding

points M, M and let us examine the degree of the locus of

the intersection of the lines AM, AM . Now take any fixed

position of the line AM, since it meets the first curve in m 1

points distinct from A, there are m - 1 corresponding positions

of the line AM
,
and therefore AM meets the locus in m 1

points distinct from A. But if we consider the line AA, it

is easy to see in like manner that it meets the locus in no

other points than the point A counted m 1 times, and A
counted m 1 times. Thus we see that the locus is of the

* This theorem was first derived by Riemann from the theory of Abelian

functions
;
see Crelle, LIV. 133. The proof here given is substantially the same as that

given by Zeuthen, Mathematische Annalen, ill. 150
;
but I am informed by Dr. Fiedler

that it had been previously given by Bertini, Battaglini Giornale, vii. 105 (1869).

See also a direct proof in Clebsch and Gordan s Theorie der Abelschen Functionen,

p. 54, for the case where the curves in one system answering to right lines in the

other have common no multiple points higher than the second:
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degree m + m 2, the points A, A being multiple points of

the orders respectively m -
1, m 1.

Let us next consider in what cases AM touches the locus.

This will be the case when two of the lines A M corresponding

to AM coincide, without our having at the same time a coin

cidence between two of the lines AM corresponding to AM
-,

for in the latter case the intersection of AM, AM would be

a double point on the locus, and AM would not be an ordinary

tangent. Now (1) if AM touch the curve S, AM will evidently

also touch the locus. (2) If AM pass through a double point

on S, then according as to that double point there corresponds
on S a double point or a pair of distinct points, we have

corresponding on the locus a double point or a pair of distinct

points, but in neither case is AM an ordinary tangent. (3) If

AM pass through a cusp on $, then according as to that cusp cor

responds a cusp on
/S&quot;,

or a pair of coincident points, AM passes

through a cusp on the locus, or else is an ordinary tangent.

It appears from (1) and (3) that the number of ordinary

tangents from A, together with the number of cusps, is the

same for the locus and for the curve S. It is by expressing
this equality that we obtain the relation connecting the two

curves $, S . It was shewn (Art. 79) that the number of

tangents which can be drawn to a curve of the ??z
th

degree from

a multiple point of the order r is m* in r (r+ 1) ;
or is

less than the class of the curve by 2?*. Hence, if N be the

class of the locus curve, the number of tangents which can

be drawn from A, which is a multiple point of order in 1,
is

N- 2 (m 1) ;
and if we denote the number of cusps on the

locus curve by K, and the class of S by w, the equality we
desire to express is

N- 2 (m
-

1) 4 K= n-2 + K.

In like manner, considering the tangents from A,
N- 2 (m -l) + K=n-2 + tc

,

and we have therefore n 2m + K = n - 2m + /c
,

or, writing for n its value m2 m 2S 3r,

i (m
-

1) (m - 2)
- S - K = l

(m
-

1} (m
-

2)
- V - K . Q.E.D.*

* Zeuthen proves in like manner, that if, instead of the correspondence of the
curves being rational, a points on S correspond to any point on S

,
and a points on
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365. It is proved, as in Art. 361, that if we transform a curve

S of the m th order by the transformation x : y : z = U : V: W
7

where
7, F, W are functions of the p

th
order, then since the

points where an arbitrary line meets the transformed curve

correspond to the points where a.U-\- {3V+yW meets $, the

order of the transformed curve is mp a
l

2a
2 , &c., where a

t ,

a
2 ,
&c. denote the number of single, double, &c. points common

to
17^ F, TF, and which also lie on 8. Let us now examine

rhow, by this transformation, we can reduce the order of the

transformed curve as low as possible. As in Art. 353, we

see that
C/&quot;, F, TF may be made to satisfy two conditions less

than the number sufficient to determine a curve of the pih

order, that is to say, \p(p + $) 2; and we evidently apply
these conditions so as most to reduce the order of the transformed

curve, if we make Z7, F, W pass through as many as possible

of the double points of 8. Let the deficiency of 8 be
Z&amp;gt;,

and

the number of its double points accordingly ^ (w
2

3m) D + 1
j

and let us in the first place take p = ml^ in which case

we may make U, F, TF pass through \(w? + m} 3 points.

We may, therefore, make the curves pass through all the

double points and through 2m 4- D 4 other points on 8.

Writing, therefore, a,
= 2m + D -

4, a
2
= J (m* 3m) D + 1,

p = m 1, we find for the order of $
, mp a

l
2a

2
=D -t 2.

Let us next take p = m 2j which of course implies that m
is greater than 2. Proceeding precisely as before, we see that

we may take a
2
=

-J (m
2 - 3m) Z&amp;gt; -f 1, a,

= w + D 4, and that

the order of the transformed curve will still be D + 2. Once

more let us take p = m 3, we may take a
g
= i(w

2

3m) D + 1,

ctj
= D -

3, provided always that D is greater than 2
;
and

we now find for the order of the transformed curve D-f 1.

The transformed curve has, as we have proved, the same

deficiency as the original, so that our result is,
that a curve

of order m with deficiency D, or with \ (m
z

3m) -D + l double

points, may be transformed into a curve of order D + 2 with de

ficiency D, that
is,

with ^ (D* D} double points ; or, when D is

S to any point on S
;
and if t and t denote the number of cases in which two of

these a or a points coincide, then

t - t = 2a (D - 1)
- 2a (D -

1).
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greater than two, into a curve of order D + 1 with ^ (Z&amp;gt;

2 -
3D)

double points.

Thus then, in particular, a curve may be transformed as

follows:

if D = into a conic,*

D=l
,,

a cubic,

D = 2 a quartic with one node,

D = 3 a quartic,

D = 4 a quintic with two nodes, &c.,

D = 5 a sextic with five nodes,

Z&amp;gt;
= 6 7 with 9,

D = 7 ,,8 with 14 or 6 with 3.

366. The case of imicursal curves need not detain us.

Here D =
Q, and the transformed curve a conic

;
the coordinates

a/, # ,
z are, as we know, expressible as quadric functions of

a parameter 0] therefore the coordinates #, ?/, z, which are

expressible as rational functions of x
, y ,

z
,
can be expressed as

rational functions of 6.

Let us then consider the case D=l. Here the transformed

curve is a cubic, and it is to be noted that, however the trans

formation is effected, the resulting cubic will have always the

same absolute invariant; that is to say, the anharmonic ratio

of the four tangents from any point on the curve will be the

same (Art. 229). When
/&amp;gt;=!,

the coordinates of any point
on the curve can be expressed as rational functions of a para
meter 0j and of V() where is a quartic function of 6. It

is sufficient to shew this for the case of a cubic, since #, y, z

can be expressed as rational functions of x, y ,
z and for

the case of the cubic, it appears at once by taking the cubic

to pass through the point xy, and then writing in the equation

* Although by the method just described the case D = is only transformed into

a conic, yet by the Cremona transformation the conic can be further transformed

into a right line.

For some further developments see Jung and Armenante in Battaglini s Giornalei

vn. 235
;
and Brill and Xoether, Jfuth. AnnaL, vn. 298.

UU
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of the curve y 6x, when the ratios x : y : z are immediately
obtained in the form in question. It

is, moreover, clear that

the values of 6 for which = are precisely those answering
to the four tangents from xy to the cubic.

We have thus seen that the coordinates of a point on the curve

for which D= 1 can be expressed as rational functions of 9 and

V() ;
and by a linear transformation of (that is to say, re

placing 6 by a properly determined function a6-}-b + c6 + d) we
can bring V() to the form V(l

-
&*) (1 -tfG*). If we write

= sinamw, this is cosam?^ Aaro^, and we may say that the

coordinates of a curve, whose deficiency is 1, can be expressed
as elliptic functions of a parameter u.

367. There is a like theory where the deficiency is 2, and

where the curve is therefore reducible to a nodal quartic.

Taking the node of the quartic for the point xy and writing

y = 6x, we can immediately express the ratios x : y : z as

rational functions of 6 and V() where is now a sextic

function of #; and this is equivalent to saying that the coor

dinates are expressible as hyper-elliptic functions of the first

kind of a parameter u. For higher values of D the coordinates

are irrational functions of a parameter, and it is onlvjn special

cases that they can be expressed by radicals.

368. Before quitting this part of the subject, another method

may be mentioned by which the same problem may be studied.

We may start with the equations connecting the coordinates

xyz, x y z
\

let these be .4 = 0, !?=(), (7=0, each equation

being homogeneous both in xyz and x yz; and being in

those variables of the orders a, Z&amp;gt;,

c
; , Z/, c respectively. If

between the three equations we eliminate xy z
,
we obtain an

equation S= of the order ab c -f be a + ca b in xyz, and if

we eliminate xyz, we obtain an equation S = Q of the order

a be 4 b ca -f cob in x y z. The conditions $=0, $ = must

be satisfied in order that the equations 4=0, 75=0, 0=0 may
co-exist

;
but for any system of values of xyz satisfying the

equation $=0, we can find a corresponding system of values

of xf

y z satisfying equations 4 =
0, Z?=0, 0=0, and therefore

also S = 0. The number of double points on the curve S may
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be investigated by the methods explained in Higher Algebra^

Lesson XVIIL, and the result I have obtained is

\Vc (b c - 1) a
2

4 \ca (ca -l)tf + \aV (a b -
1) c

2

4 {(a V - 1) (ca
-

1)
- 1

(

-
1) (a

-
2)] be

4 {(b c -
1) (a V -

1)
-
-4 (//

-
1) (V -2)}ca

4 {(ca
-

1) (b c -
1)
- 1

(
c -

1) (
C

f -
2)} ab,

and there is of course a similar expression with interchange of

accented and unaccented letters for the number of double points

on S . In either case we find the deficiency to be J (Q + 2),

where

Q, = a b c 4 6Va 4 cW + a be 4 J&quot;ca 4 c^aft

4 2aa (be 4 b c) 4 2bb (ca + c a) + 2cc (aJ 4 a 6)

- 3 (ab c + JcV + cab -f a ^c + b ca + cab) ;

so that again we have the theorem that the two curves have

the same deficiency.

CORRESPONDENCE OF POINTS ON A GIVEN CURVE.

369. What has been said may sufficiently illustrate the

theory of rational correspondence; in what follows we consider

the general correspondence of two points P, P on the same

curve, such that either determines the other. Suppose that to

a given position of P there correspond of positions of P
,
and

to a given position of P ^a positions of P, the correspondence
is said to be an (a, a

) correspondence. When a = a = 1,

the correspondence is rational.

As a simple instance of correspondence on a given curve

of the ??i
t]l

order, suppose the points P, P to be collinear with

a fixed point (that is to say, that the line PP passes through

0), then if P be given there are m 1 positions of P
,
and

if P be given there are in 1 positions of P; or this is an

(m 1, m1) correspondence. We have already noticed this

particular kind of correspondence in the case of the circle (see

Art. 347). This correspondence is evidently rational in the

case of the conic, or where m = 2.

If the point is on the given curve, then to a given

position of either point there correspond m - 2 positions of the
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other point ;
or more generally, if is an cc-ple point of

the curve, then to a given position of either point there corre

spond m a 1 positions of the other point, viz. the corre

spondence is a (in a. 1, m a 1) correspondence. Observe

that we have in this way a (1, 1) correspondence of points

on a cubic (by taking at pleasure on the curve), or on a

nodal quartic (by taking at the node), but that we cannot

thus obtain a (1, 1) correspondence of points on a general

quartic.

370. In the foregoing instance the correspondence has been

a symmetrical one
;

viz. starting from either point the other

is obtained by the same construction, and of course a a .

But as an instance of a non-symmetric correspondence, suppose
that P is given as a tangential of P- here P being given, P
is any one of the intersections of the tangent at P with the

curve (and thus to a given position of P there correspond m 2

positions of P
) ;

but P being given, P is any one of the points

of contact of the tangents from P to the curve (and thus to

a given position of P there correspond n - 2 positions of P, if n

be the class of the curve); and we have thus a
(ft 2, m 2)

correspondence. It is hardly necessary to remark, that we

may have a = a without the correspondence being symmetrical.

371. In the case of a unicursal curve, to a given point on

the curve corresponds a single value of the parameter 6 : and

to a given value of 0, a single point d*i the curve (or extending

the notion of correspondence we might say that a point on the

curve and the parameter of such point have a (1, 1) corre

spondence). It at once follows that if the point P has a positions,

its parameter 6 must be given by an equation of the order a
;

whence also, if as above, the points P, P have an (a, a
)

corre

spondence, the relation between their parameters 0, & must be

given by an equation of the form (0, 1) (# , !)&quot;

=
0, viz. 6 being

given the equation will be of the order a in
,
but Q being

given it will be of the order a in 6.

372. A point may correspond to itself, and it is then said

to be a united point ;
thus where the points P, P are collinear

with a 6xed point 0, it is clear that the point of contact of any
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tangent from to the curve is a united point ;
and if these are

the only united points, their number is =n.

The only other points which it might at first sight appear can

be united points are the nodes and cusps of the curve
;

in fact,

taking P at a node or a cusp the line OP meets the curve in the

point P, in the same point counting as one of the (m- 1) inter

sections, and in (m 2) other points ; or, what is the same thing,

the line from to the node or cusp meets the curve in the node

or cusp counting twice, and in (m 2) other points. But in the

case of the node, the two intersections at the node belong to

different branches of the curve, or we may say they are coinci

dent, but non-consecutive points; in the case of the cusp they
are consecutive points : the distinction is well seen in the case of

a unicursal curve here for a node we have two distinct values of

0) for each of which the coordinates have the same values
;
for

the cusp these two values of 6 have become identical
; or, what

is the same thing, the line from to a cusp (although not a

proper tangent of the curve) is a tangent in a sense in which

the line from to a node is not a tangent to the curve. The
conclusion is, that a node is not a united point ;

in a special

sense a cusp is a united point ;
and we .have, besides, the proper

united points, which are the points of contact from to the

curve.

Reverting to the unicursal curve and to the equation

(0, l)
tt

(0 , l)
a =

0, at a united point we have =
,
and for

finding these points we have an equation (0, l)
a+a/ =

;
that is,

when the points P, P have an (a, a
) correspondence, the number

of united points is = a -f a ,

Applying the theorem to the case where P, P are coliinear

with the fixed point 0, the correspondence is (m- 1, ? !), or the

number of united points should be = 2 (m 1). The number of

points of contact, or proper united points is =-H, that of the

cusps or special united points is = K or we ought to have

which is in fact the case for a unicursal curve with K cusps.

In the case where P is a tangential of P, it has been seen

that the correspondence was (n 2, m 2) ;
and the number of

united points should be = m + n 4. We have here as proper
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united points the inflexions, and as special united points

the cusps ;
total number =I + K] and the theorem thus is

i -f K = m + n 4, or what is the same thing i 3 (m 2) 2/e
;

which is in fact the case for a unicursal curve with K cusps.

373. Consider the point P as given ;
the geometrical con

struction for the determination of Pf

comes in general to this,

that we have depending on P a certain curve which, by its

intersections with the given curve, determines the points P .

In some cases P is any one of the intersections in question ;

but in others a certain number of them will in general coincide

with the given point P, and are to be excluded. Thus, in the

case where P, P
f
are colliriear with 0, the curve is the line

OP meeting the given curve in the point P counting once (to

be excluded) and in (m 1) other points. So when P is the

tangential of P, the curve is the tangent at P meeting the

given curve in the point P, counting twice (to be excluded) and

in (m 2) other points.

But further; the curve may meet the given curve in

points forming two or more distinct classes, in such wise that

only the points of the one class are positions of the point

P . Thus, in the last preceding instance, interchanging the

points P, P ,
or now considering P f

as the point of contact of

a tangent from P to the curve, the curve is the system of

n2 tangents from P to the curve
;

each of these tangents

meets the curve in the point P counting once, in the point of

contact say P
f

counting twice, and in m ?&amp;gt; other points say

P&quot; (which are cotangentials of P, that is PP&quot; touches the curve

at a point P distinct from P or
P&quot;}. Or, what is the same

thing, the curve of the order n 2 cuts the given curve in

the point P counting n 2 times, in n - 2 points P counting

each twice, and in (n 2) (m 3) points P&quot; counting each once.

The correspondence P, P ,
as was seen, is (m 2, n - 2) ;

the

correspondence (P, P&quot;)
is clearly (n 2m 3,n- 2 m 3).

374. The theorem in regard to a unicursal curve suggests

the theorem that for a curve in general the number of united

points should be = a 4- a -f multiple of the deficiency, or say

& .2Z); but admitting that the curve presents itself
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in the problem, the last instance shews that there is a necessity

for considering the case where the curve has with the given
curve distinct classes of intersection. The general theorem

is, that if for a given curve of deficiency Z&amp;gt;,

the corresponding

points of Pare P
, P&quot;, ..., and if P, P have an (a, a

)
corre

spondence, and the number of the united points is = a : P, P&quot;

a
(y6&amp;gt;,

$ } correspondence, and the number of their united points

is b : &c.
;
and if the curve 0, which, by its intersections with

the given curve, determines the points P , P&quot;, ..., intersects the

given curve in the point P counting 7c times
;
in each of the

points P counting p times, each of the points P&quot; counting

q times, and so on, then we have

Xa-a-a ) + 2(b-/3- )+...= &.2Z&amp;gt;,

where of course in each of the different correspondences the

special united points (if any) must be taken into account.

Thus, in the instances above considered for a unicursal

curve
; first, if P, P are collinear with 0, we have

7H-* = 2(fli-l) + 2J9
(1).

Next, if P is a tangential of P,

i 4- K = m + n - 4 -1- 4D (2);

and in the case where P is a tangential of P
,
and where

b, ft, ft refer to the correspondence P, P&quot; cotangentials,

b-2(w-3)(w-2) + 2(a-a-a )
= (w-2)2l?,

where, by the example immediately preceding,

a - a - a = + A; - (m + n - 4)
=

4/&amp;gt;.

and therefore b - 2 (m
-

3) (n
-

2)
=

(n
-

6) 2Z&amp;gt;.

The proper united points b are here the points of contact of

the double tangents, the number of which is 2r; but we have

also as special united points the cusps each counted n 3 times

(it must be assumed that this is so), and the result is

2r = 2 (m
-

3) (n
-

2) + (n
-

6) 2Z) - (n
-

3) K .. .. (3).

The several equations (1), (2), (3) giving respectively the

class, the number of inflexions and the number of bitangents
of a curve of the order m with 8 nodes and K cusps agree with

the Pliickerian equations; they are most easily verified by
means of the expressions given, Art. 83, for the several quan
tities in terms of ?w, n, and a = 3m- K.
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375. If on any. curve the points P, P have a (1, 1) cor

respondence, the points (P , P&quot;}
a (1, 1) correspondence...and

so on up to the points P^&quot;
1

^ P (U) - then it is clear that the

points P, P(H) have a (1, 1) correspondence. And, conversely,

the points P, P (n) which have a (1,1) correspondence may be

regarded as connected with each other through the series of

intermediate points P ,
P&quot;...P

(n
~
1}

.

In the case of a unicursal curve, the (1,1) correspondence
of the points P, P implies a like correspondence of the para
meters 0, 6 -

viz. this is of the form (0, 1) (0 , 1)
=

0, or what

is the same thing, aQQ -i-W -f c0 + d
;

that is, the para
meters 0, 6 are homographically connected. The transfor

mation depends upon three arbitrary parameters.

Taking the curve to be a conic, then if the points P, P
have a (1, 1) correspondence, it is known that the line PP
envelopes a conic having double contact with the given conic

;

such enveloped conic, as satisfying the condition of double

contact, depends on three parameters. But if taking the points

-4, B at pleasure, we take on the conic P, Q collinear with

-4, and P collinear with B, Q, then the points P, P will have

a (1, 1) correspondence; this apparently depends upon four

parameters, and it follows that the points A, B can .without

loss of generality be subjected to

a single condition. Thus let the

correspondence P, P
f

be given by
means of the conic enveloped by
the line PP

;
if on the chord of

contact we take at pleasure the point

-4, draw PA to meet the conic in

Q and QP to meet the chord in B, then (1,1) correspondence
is also given by means of the points .4, .5; but here A may
be regarded as a determinate point on the chord of contact

(say its intersection with a fixed line), B is then found as

above, and we have the correspondence by means of these two

points, just as well as if A had been assumed at pleasure on

the chord of contact.

A case really included in the foregoing is when the corre

spondence of P, P is such that the line PP passes through a

fixed point C
;

viz. the enveloped conic regarded as a line-curve
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is here the point C taken twice, regarded as a point-curve
it is the pair of tangents from C to the given conic

;
that

is, the chord of contact is the polar of
(7,

and the construc

tion is the same as before, the points A^ B, C forming, as

it is easy to see, a set of

conjugate points in regard
to the conic

;
the original

correspondence of P, P as

collinear with the given

point (7,
is here replaced by

a correspondence by means

of the two points A and B
forming with C a system of

conjugate points.

The foregoing properties have reference to the problem of

the inscription in a conic of a polygon the sides of which either

pass through given points or touch conies having each of them

double contact with the given conic.

376. On a cubic curve (D\] we have a (1, 1) corre

spondence ;
this depends on a single parameter, but there are

two kinds of such correspondence, viz. (1) the points P, P are

collinear with a point A of the cubic. (2) The points P, P
are such that P, Q are collinear with

a point A of the cubic and (), P
collinear with a point B of the cubic

;

this apparently depends on two para

meters, but really on a single one;
for taking C a determinate point on

the cubic, join A C to meet the cubic

in and BO to meet the cubic
JR,

in

D
;
then the same corresponding point P will be obtained by

taking P, E colliuear with D, and RP collinear with
(7,

that

is, by means of the single point D. It is,
in fact, evident that

starting with P and constructing P as the intersection of the

lines QB, EC, then the cubic passing through A, B, (7, I&amp;gt;,

0, P, Qj E will also pass through P ,
so that the points A, B

and the points Z&amp;gt;,
C lead to the same point P .

The theorem involved in the foregoing construction may be

XX
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stated as follows: If on a cubic the points A, B, (?,
D are such

that the lines A
(7,
BD meet in a point of the cubic, then we

have inscribed in the cubic an infinity of quadrilaterals PQPR,
the sides of which pass through A, B, C, D respectively ;

viz.

any point P whatever of the cubic may be taken as a vertex of

such quadrilateral.

377. More generally imagine inscribed in the cubic an

unclosed polygon PQ...X of 2n-l sides, the sides of which

pass through fixed points on the cubic, then the points P, X will

have a (1, 1) correspondence of the first kind, that
is, the closing

side XP will meet the cubic in a fixed point ;
that

is, we have

inscribed in the cubic an infinity of 2rc-gons, the sides of which

pass respectively through fixed points of the cubic. And of the

fixed points all but one are arbitrary, this one being determined

by constructing one such polygon.

378. This theory may be illustrated by the expression of

two points in a cubic by means of parameters, Art. 366. A
(1, 1)

correspondence between two points on a cubic implies a rational

expression for the parameters sinamw
,
cosamw

,
Aamw

,
in

terms of sinamw, cosamw, Aamw; and this again implies an

equation of one or other of the forms u + u =
constant,

u u = constant. Now when three points P, P , A, are col-

linear, we have in general a relation u + u + a A where A is

a constant depending on the absolute invariant of the cubic.

A relation, then, of the form u -f u =
constant, implies that P

and P/
are collinear with a fixed point A. If the relation

be of the form u u =
constant, say = b a, we may write

M + v -f a = A, v + b + u = A
;
and the geometrical meaning is,

that P, Q are collinear with a fixed point A and Q, P with

a fixed point B. We may evidently substitute for the points

-4, B) two others D, (7, provided we have b a cd, or

a + c = b + d, that is to say, provided the lines A G, BD in

tersect on the cubic. We have thus the results already
obtained.

I 379. For a binodal quartic (Z&amp;gt;= 1) there is a like theory of

the (1, 1) correspondence; for a nodal quartic [D = 2] there is a
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(1, 1) correspondence not depending on any arbitrary parameter,

viz. the corresponding points P, P are collinear with the node.

There is an interesting theory of the (2, 2) correspondence
on a unicursal curve, and in particular on a conic. The para

meters which determine the position of the two points P, P
f

are

here connected by an equation (0, 1
j

2

(0^ 1)
J = 0. As regards

the conic we have Poncelet s theorems as to the in-and-cir-

cumscribed polygons.
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CHAPTER IX.

GENERAL THEORY OF CURVES.

380. IN this Chapter we resume the general theory of curves

in continuation of Chap. II., and commence with the theory of

bitangents of a curve of the n* order postponed from Art. 78.

We shall explain two methods by which we can form the

equation of a curve whose intersections with a given curve shall

determine the points of contact of its bitangents.

The theory of the tangents of a curve was studied (Art. 64)

by means of the equation A = 0, or

x&quot; uf

+ xw+1
/iA u

f + ix
n

-yA
2uf

+ &c. = o,

which determines the coordinates of the points in which the

line joining two given points meets the curve. We there saw

that if the point x y z be on the curve, and xyz anywhere on

the tangent, we must have 7 =
0, AE7 =

0, and if the tan

gent meet in three consecutive points we must have besides

A 5!

Z7
/ =

0, if in four consecutive points we must have likewise

A3 Uf =
0, and so on. If the tangent at xy z touch the curve

elsewhere, then making U =
0, A7 =

0, in the equation A = 0,

the reduced equation of the (n 2)
m

degree must have equal

roots, and therefore, if the discriminant of that equation be Y,

the relation Y= must be satisfied by the coordinates x y x
,

xyz. In the case of points of inflexion where we have the two

conditions A Uf =
0, A

2U =
0, the one being of the first degree

and the other of the second in xyz, and both satisfied for any

point on the tangent, it is evident, as was stated (Art. 74),

that AZ7 = is the equation of the tangent, and that A 2
Z7 =

must contain A U = as a factor. In like manner, in the case

of a bitangent, Y=0 must contain A7 = 0as a factor, and

by finding the condition that this shall be the case, we find the

condition that x y z shall be a point of contact of a bitangent.

The special method used, Art. 74, not being applicable to
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the general case, we employ the following method due to

Prof. Cayley, and it is convenient to begin with the follow

ing lemma.

381. Let the equations of two curves contain the variables

xyz in the degrees a, b respectively, and xyz in the degrees

a, b
f

j
and let the ah points of intersection of the two curves

all coincide with xyz ,
it is required to find the order of the

further condition that must be fulfilled in order that they may
have other common points, which can only happen when there

is a factor common to U and V. When this is the case any

arbitrary line ax + {3y + yz = must be sure to have a point

common to U and F; namely, the point or points where the

arbitrary line meets the curve represented by the common

factor. It follows that the result of elimination between U= 0,

F=0, and the equation of the arbitrary line must, in this case,

vanish. This result contains a{3y in the degree ab, xyz in

the degree ab
f

+ ab, and the coefficients of U, V in the de

grees 5, a respectively. But since the result of elimination

is obtained by multiplying together the results of substituting

in ax -f (By + 72 the coordinates of each of the intersections of

7, F, and since by hypothesis these interesectious all coincide

with x y z, the resultant must be of the form H (ax + /3y +yz )

al&amp;gt;

.

The condition ax + fty +
&amp;lt;yz

= merely indicates that the arbi

trary line passes through x y z
,
in which case it passes through

a point common to U and F, whether they have a common
factor or not. Rejecting this factor, the remaining condition

n = is the sought condition that U and F may have a

common factor, and we see that it does not involve a/By, that

it is of the order ab 4 ab ab in xyz, and of the orders &, a

respectively in the coefficients of 7 and F.

382. When the method just described is applied to the inves

tigation of the points of inflexion, that is, to the determination

of the condition that &U
,
A 2 7 may have a common factor,

we have a = 1
,
a = n 1, b = 2, b = n 2, and the formula just

obtained gives 3 (n 2) for the order of n in xyz ,
which is the

order of the Hessian as already found. It appears also that II

is of the second degree in the coefficients of A /
,
and of the
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first in those of A2
Z7

;
and since each of these is of the first

degree in the coefficients of the original equation, n involves

these coefficients in the third degree, which also agrees with

previous results.

To proceed then to the case of the double tangents, since the

equation A = is reduced to the form %A*U \
n~* + ...4 ^&quot;-

=
0,

a specimen term of its discriminant is (tfU )

n
~*~U

n

~*, whence we
see that Y is of the order (n 4- 2) (n

-
3) in xyz, of the order

(n 2) (w 3) in x y z
,
and of the order 2 (n 3) in the coeffi

cients of the original equation. In the next place we can

show that all the intersections of Y and AZ7 coincide with

x y z; for the equation of the system of n* n 2 tangents

through the point x y z found by the method of Art. 78 is of

the form k&U + F(A
8
Z7

)

2 =
0, and this system can evidently

be intersected by A U in no other point than x y z
;

therefore

making A?7 = in the equation last written, we see that

ACT can meet neither Y nor A2 7 in any other point than

x y z . We may then apply the method of Art. 381, writing

a=l, a = n-l, ft = (n + 2) (n
-

3), V = (n-2) (n-3), whence

ab 4- a b = (n
9 + 2n - 4) (n

-
3). We have then for the order of

n in x y z\ (n+3) (n-2) (w-3). It is of the order (w4 2) (rc-3)

in the coefficients of A Z7
,
and of the first order in the coeffi

cients of F, and therefore of the order (n 4 4) (n 3) in the

coefficients of the original equation. The bitangential curve

n = meets the original curve U in n (n + 3) (n 2) (n 3)

points, and since there are two of those points on each bitangent,

the number of bitangents is \n (n 2) (n* 9) as found other

wise, Art. 82.

383. The method of Art. 381 not only enables us to de

termine the order of the required condition n = 0, but by the

actual performance of the operations indicated, to find the con

dition itself. Thus #
, y ,

z being, as before, the coordinates of

the point on the curve, in the case of points of inflexion we
have to eliminate between ax + @y + yz = 0, A U =

0, A2Uf =
0,

and the last equations written at length are

Lx+My + Nz = 0,

oo;
3 4 by* + cs

7 4 %/yz -I- Zgzx 4- 2hxy = 0.
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It will be convenient, in order to avoid numerical multipliers, if

we suppose the original equation to have been written with

binomial coefficients, and the common multipliers to be removed
after differentiation, so that

, A/, N denote the first differentials

of U divided by n
; a, 5, &c., the second differentials of U

divided by n(n 1); and the ordinary equations of homo

geneous functions will be Lx + My + Nz U^ ax-}- hy + gz=L.
&c.

Kow the condition that two lines shall intersect in a point
on a conic may be written in the form of a determinant

I, ff, L, a

&amp;gt;, f, X,

l,N,L,

ft 7,
=

0,

for it may be verified, that this determinant expanded is the

same as the result of substituting in the equation of the conic, the

coordinates of the intersection of the two linesa viz. My- jV/3,

Not.- Ly, Lfi - Ma. Now, in virtue of the equations of homo

geneous functions, the above determinant may be reduced by

multiplying successively the first three lines and columns re

spectively by x
f

, y, z
,
and subtracting from the fourth. It

then becomes, if we denote ox + /% + yz by R,

a, A, g, 0, a

A, ^ /, 0,

ff&amp;gt; / c
&amp;gt; &amp;gt;

7

0, 0, 0,
- U

,

- E
-R,

or

a, h, ff,
a

A, *, /,

&amp;lt;7 ^/l c, y

,, 7

After Clebsch we use the abbreviation f

J
for the determinant

multiplying Z7
r

,
in which the matrix of the Hessian is bordered

vertically and horizontally by a, /3, 7. In like manner the de-



344 GENERAL THEORY OF CURVES.

terminant with which we started, in which the same matrix is

twice bordered, by a, #, 7, and by the differential coefficients of

U, would be written f

jl J
;

and the equation we have

established is

When x y z make / =
0, the equation f

j

= reduces to

H= 0, as it ought.

384. In order to proceed by the same method to find the

equation of the bitangential curve, we have to find the result of

substituting MyNtf, No.- Ly, L(3Ma for #, y, z respectively

in the discriminant of the equation A = (Art. 380), and our

course will be first to find the result of that substitution in the

several coefficients of that equation, viz. A 2
Z7

,
A3

7
, &c., or as

we shall more briefly write them A a

,
A 3

,
&c. The result of sub

stitution in A2
has been calculated, (Art. 383), and Hesse has

shewn by the following process, that the result of substitution

in A* is of the form PkU + Qt (ax + Py + 7z )

2

,
which when

x y z is on the curve reduces to Qk (ax + (By -f 72 )

2
. His

method shews that if this be true for two consecutive A* 1

, A*,

it will be true for A*
+1

,
and enables us to express P/+1 , Q^ in

terms of the corresponding previous coefficients. It will be

remembered, that by definition we have A*+1 =
A(A*), where

d d d ,

A denotes the operation x -=-} + u -7-7 + z -7-7 ;
but in this it was

dx 7
dy dz

assumed that xyz, xy z are independent quantities. In the

case now under consideration, where x is supposed to have

the value My jV/3, and therefore to be implicitly a function

of x y z
,
it must therefore be understood, that in the operation

A the differentiation only affects x yz as far as they appear

explicitly, and not as they are implicitly contained in xyz.
. , d d d

Let us denote by y the operation x -=, 4- y -r-, + z -r, withoutdx J
dy dz

this restriction, then according to the general rule for deriving

differentials with regard to xyz on the supposition that xyz
are variable from the differentials on the supposition that they
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are constant, we have in operating on any function S,

dS
^^dS ?

dS
dx dy dz

385. The next step is to calculate the values of V.T,

The result of operating with v on any function S is easily
O Of Q
Pit ^2) ^3

seen to be Z, M, N ,
and therefore when the function is

Oj n . 7

x or My Nfi the result is

, Jtf,
lY

ft 7

where the coefficient (n 1) arises from the condition we have

introduced, according to which the differentials of Lj &c. are

(n 1) a, &c. The determinant just written is then reduced by
the following process :

/&quot;, c

0,

,

o,

Jf,

7,

ft

+

0,

7, .? j /, c

ft *, *
, /

AT o, z, j/, :v

7 0, a, /3, 7

7^ ax
,

- ax
,

/jo/,

ft *, ^j

7, ff, /,

0, a, ft

#7 /3 C

ift 7

If we denote
( ] by S, and the halves of its several differ

entials with regard to a, /3, 7, by S
t ,
2

2 ,
S

3 ,
these last differ

only in sign from the determinants multiplying E in the values

of \7x* \7V, us, and we have

. /a\ / ,dB +dB ,d8\
} (n-l) ( ) [x -r- + y -j-+* -3-]J

\aj \ dx J
dy dz

Y Y
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7rr j
In particular let 5=A*(F), where V is any function of the

order n in x y z
,
then since

V (A F)=A (F) -*(-!)

-T-, A*
1

( F), we have

.
A&quot; (7)

/ot\ f . d d d

\oc/ \ dx dy
f

dz

Since A1 &quot;1 F is a homogeneous function in x y z of the degree
n & + 1, the last term reduces to

386. It will be convenient to use the abbreviation ty for

the operation S, ;? +
s
*:p+ ^TM and it; wil1 be observed

also that

&amp;lt;z, A, g, V
l

{V\r =
(aj-

The result of operating with ty on x vanishes, as may easily be

seen by substituting in the last column of this determinant for

FH V* F the values hy ~ 9$i by -A/7 - cfr Py - 7/3, when
it at once resolves itself into two, each of which vanishes in con

sequence of having two columns the same. The result then, of

operating, with
i/r

on any function containing #, y, z, is the

same, whether or not these be regarded as constants. The

equation of the last article then, as applied to the quantities

A*, &c. which we desire to calculate, is

Aw = V (A*) +k(n-l)Slr (
A^1

)
- k (n

-
1) (n

- k + 1) 2A*
1
.

387. From the expression just found, we can shew that if

we have A*
1 =

P,_, Z7+ Qk_,R\ A* = P*7-f &amp;lt;yZ,
then Am must

be of like form. For we have only to substitute these values

for A*&quot;

1

,
A* in the equation of the last article

;
and we must

observe that v ( 27) and v (R) both vanish, as at once appears

by substituting either L, M, N}
or a, /3, 7 for 5,, 2 ,

S
a

in
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, If, N . Hence V ( A*)
= t/v (P4) -f JPv ( &) We

have, by substituting n, n3/, w^T, and a, /9, 7 respectively

fS\ /a\
for 5

X ,
&amp;gt;9

2 ,
&amp;gt;S

3
in

( ) , ^ ( Z7)
=-

nffi?, i|r (E) = (
I
,
and therefore

+ A&quot; = Cty (P,J ^ -

,_,.

Collecting then the terms in the expression given for

(Art 386), we have AM = UPM +R QM where

?* - V (PJ - * (n
-

1) (n
- * + 1) 2P,_, + (n

-

t * (n
-

1) JZ^r ( ft.,)
- n (*

-

388. From these formulae we are able to form a table of the

values of P
3 , Q^ &c. Thus to commence, it is obvious that

P
i
=

0, $,=0, and (Art. 383) P
t
= -S, Qt

= -H. Hence

P
3
= -A(2), Qt

=
-*(H).^

When the curve is a cubic A3
is no other than the cubic func

tion itself, and the value just given for Q3 may be geometrically

interpreted as follows : If any line cue + $y + &amp;lt;yz

meet a cubic,

and from each of the points of meeting four tangents be drawn

to the curve, the twelve points of contact lie on the quartic

=
;

for this condition must, as we have seen, be fulfilled by any

point of the curve whose tangent intersects ax + j3y + yz on

the curve. This result also immediately follows from Art. 183.

Proceeding now to $4 ,
we have (Art. 387)

-1) (n-4)

= - V (Afl) +6 (n-1) (w-2) SJET-S (n-1) R^ (H).

But in conformity with the result at the end of Art. 385, writing
&= 1, and denoting by ri the degree of the Hessian, or 3 (n 2),

V (A#) = A
2#- (n

-
1) Jfty (H) + (n- 1) n 2#.

Hence Q4
= - A 2^+ (n

-
1) n 2#- 2 (n

-
1) .R^ (H].
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389. We have now the materials for forming the equation

of the bitangential curve of a quartic. According to the

method explained (Art. 384) we are first to form the discrimi

nant of A = 0, or of^ AV+
i^3

AV + Y^3l
A^2

5
and

then having substituted My N/3, &c. for #, &c. we must, by
the help of the equation of the curve, remove a, /3, 7. By
making the substitution before forming the discriminant, the

equation becomes

whose discriminant differs only by a numerical factor from

Q* - 3 Qz Q^ a function still containing a, /3, 7 in the second

degree, and therefore requiring further reduction. For this

purpose the following formula is useful.

390. If we border the matrix of the Hessian both hori

zontally and vertically with three rows and columns, the

resulting determinant is clearly the product, with sign changed,
of the two determinants added horizontally and vertically.

Thus in particular if F, W be functions of the orders ?i
,

ri
f

we have -A(F)A(JF) =

h,



GENERAL THEORY OF CURVES. 349

the last term denoting the result of writing iu 2, instead of

a, /?, 7, the differential coefficients of H.

In precisely the same way we get a formula of reduction

for A 2 V by writing in the preceding determinant

i&amp;gt;7y&amp;gt;Tz

{ rV 7 F and fOT IF
&quot; ^ W*

and supposing the operation to be performed on V. In the

reduction, then, we have instead of n F, and of n&quot; W,

, d , d . d
x

^r&amp;gt;+y -j- + z IT?ax y
ay dz

and the formula becomes

A F=n (n -l) V -2(n -
1) * +3* 7,

where the last symbol denotes the result of substituting in S

symbols of differentiation instead of a, /3, 7, and operating on V.

Introducing the value thus found for &?H into the value

given for Q^ (Art. 388), we have

Q4
= - n (n

- n
)
2#4 2 (n

f -
n} E+ (H)

- E2
H.

Thus, then, since Q.2
= -

5&quot; we have in general

( -n) Q;-n QtQt
= S?

|(
-B) g)

- nH
and in the case of the quartic, for which n = 4, n =

6,

and accordingly the equation of the bitangential curve is

-*-
that is to say, if 2 written at full length is

Atf +^2 +
&amp;lt;?7

2 + 2^7 + 2 7a

this equation is

+0^ +2F+*0
dz* dy dz dz dx dx dy

tdx dtf dz dydz dzdx dxdyy
a curve of the fourteenth order.
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391. The equation just obtained may be transformed by
the help of the expression given (Conies, Art. 381, Ex. 1), for

the condition that the polar line of a point, with regard to one

conic, may touch another. We there saw that if aic* + &c.,

aV + &c. be the two conies, we have

(be -/*) (a x + h y +/*)*+ &C- K (&c -/*)+&c.} {aV+ &c.}-F,

where F denotes a conic covariant to the two conies. And, in

like manner, that

(Y-/
a

) (
ax + ky 4 gz}*+ &c.= (a (&V-/&quot;) + &c.} (aa; +&c.}-F.

Now if a, J, c, &c. have the same meaning as before, and if

a
,
&c. denote the second differential coefficients of the Hessian,

then, its degree being n
, (ax + h y+g z) &c. are (n 1) times the

first differential coefficients, and (be /*) (a a; 4 A y +^
/

)

8 + &c.

is (n I)
2
times the covariant we have called (Art. 231). We

may give the name & to the corresponding covariant in which

the differential coefficients of the curve and of the Hessian

are interchanged, and whose vanishing expresses the condition

that the polar line of a point with respect to the curve should

touch the polar conic of the same point with regard to the

Hessian. In like manner, a (be f*) + &c. is 4&amp;gt; and a x* + &c.

is ri (n 1) H. We have then the identities

and in the particular case of the quartic where n =
6,

Thus, then, the points of contact of bitangents are the inter

sections with the curve, not only of 3#4&amp;gt; as already obtained,

but also of 150 or of 45#4&amp;gt;
; or, again, bitangential

curves might be expressed in terms of the covariant F.

392. Let ua now proceed to the fifth order. We have

(Art. 387)
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and using the value of Q4
last obtained, and employing the

abbreviations for (
_j

and 3&amp;gt; for ( *\ H, we have

+ 4?i (n
-

1)H (2) + 4 (n
-

1) (n
-

5) 2A#- 4 (n
-

- - 2 (n*
- 13/i + 18) J2AS - 2 (n

2 - 3?z + 8) 2A (H)

+ 4 (w -3) JSA (^JT) -4 (n
-

1)^ (A#) - J?A (*).

In particular when n = 5, we have

&amp;lt;?6
= 44#A (2) -362A (H)

In this case we have also

In order to form the bitangential curve of a quintic, the quantity

to be calculated is

a quantity containing a/3y in the sixth order, and which it is

necessary, by the help of the equation of the curve, to shew to

be divisible by R
9
. Now, in virtue of a formula already ob

tained, we have

It is also easy to shew that 27#a #5 -5&amp;lt;?3 #4
and 5Q*

are each divisible by R ;
but I have not been able to carry the

reduction further.

We shew elsewhere (Higher Algebra, Art. 295) how all these

calculations may be made by symbolical methods.

393. Another method* of solving the problem of double

tangents is suggested, by what was proved (Arts. 183, 235) that

the point where the tangent to a cubic meets it again is

determined by the intersection of the tangent with the line

xH^ +yHt + zH3
= 0. It occurs to attempt to form in like

manner the equation of a curve of the order n 2, which shall

pass through the (n 2) points where the tangent to a curve

* I gave this method in the Philosophical Magazine, Oct. 1858, and Quarterly
Journal of Mathematics, vol. in. p. 317. See also Memoirs by Prof. Cayley,

Phil Trans. (1859), p. 193, and (1861), p. 357.
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of the n
th

order meets it again. If the equation of this tan

gential curve were once formed, then, by forming the condi

tion that the given tangent should touch this curve, we
should immediately have the equation of the bitangential.

Now, what has been proved already as to the order of the

bitangential will enable us to see what must be the order of

the tangential curve in x y z and in the coefficients. The con

dition that the line Lx + My + Nz shall touch a curve of

the (n-2)
th

order is of the order (n-2) (n-3) in L, M, N,
and of the order 2 (n

-
3) in the coefficients of that curve.

Consequently, if the coefficients of the tangential curve con

tain x y z in the order p, and the coefficients of the ori

ginal in the order q, the bitangential must be of the order

(n -l)(n- 2) (n
-

3) + 2p (n
-

3) in x y z, and of the order

(n
-

2) (n
-

3) + 20 (w
-

3) in the coefficients of the original.

But actually the bitangential is of the order (n 2)(?i 3)(n + 3)

in x y z
,
and of the order (n + 4) (n 3) in the coefficients of

the original (Art. 382). It follows then that p = 2 (n
-

2), q = 3
;

that is to say, that the tangential must be of the order 2 (n 2)

in x y z
,
and of the third order in the coefficients of the original.

Further, we know that if x y z be on the Hessian, the tan

gential must pass through x y z
,
and therefore the substitution

of x y z for xyz must reduce the tangential to //. This con

sideration and the known form of the tangential in the case

of the cubic suggests that the tangential in general is the

(n-2)
tn

polar of x y z with regard to 7/or An~2

//, for this is

a curve of the right order in xyz, in x yz, and in the coeffi

cients, and it will pass through x y z when this point is on the

Hessian. Accordingly, in the next article we examine whether

the curve An &quot; a

(II )
does pass through the points where the

tangent meets the curve again, and though the answer is found

to be in the negative, the process of examination leads to the

true form of the tangential.

394. Take then the origin on the curve, and the axis of

y as the tangent, and let the equation of the curve be

nby + jw (n
-

1) (CQ
X* +

n (n
-

1) (n
-

2) (d x*+3^+ H*/+W) + &c. = 0.
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It is to be observed, and the remark will be useful in the

sequel, that the several polars of the origin, with regard to

the curve, are got by writing n 1, n 2, &c., for n in this

equation. Now, in order that a curve may pass through the

tangential points, its equation must be such that when we

make y = it will reduce to

Let us form then the equation of the Hessian, and since we
are about to form its polar curves with regard to the origin,

and then to make y 0, we need only concern ourselves with

those terms of the Hessian which do not contain y. The

second differential coefficients of the given curve are

= c
a
+ (n

-
2) d9

x 4 \ (n
-

2) (n
-

3) e.2
x2 + &c.,

c=

/= b 4 (n
-

2) cp 4 J (n
-

2) (n
-

3) dp* 4 &c.,

A = c
t
4 (n

-
2)^ 4 \ (n

-
2) (n

-
3) e

L
x* 4 &c.

The equation then of the Hessian is readily found to be

CJ? + (
n _ 2) dfx 4 B (*

-
2) (?z

-
3) ,&* 4 (n

- 1
) (n

-
2) P] x

4 ft (n
-

2) (n
-

3) (n
-
4)//r 4 (n

-
1) (n

-
2)

2

Q

4 (w
-

1) (n
-

2) (n
-

3) E] x3 + &c. = 0,

where for brevity we have written

2P= r
2
c

2 - C
Q
C* 4 2Jc^

- 25c rf
lf

2 =^2 - 2^, 4 c W,,

3^ = c
cc/ -

&amp;lt;Cj

2 4 2c J
Cl
- 2c ^,

but the actual values of these quantities are not material to

our purpose. What is important is to notice that the equation

divides itself into groups of terms each having the same function.

of n as a numerical coefficient, so that if we want to form

the equation of the Hessian of the first, second, &c., polar of

the given curve with regard to the origin we have only to

substitute n 1, n 2, &c., for n in the above equation.

?^ow the line polar, with regard to the origin of a curve

of the ?i
fh

degree M 4Wj4&c. = being ?^/ 4w
1

=
0, the line

z z
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polar of the origin, with regard to the Hessian, which is a

curve of the order 3 (n 2) is, from the preceding equation,

3c -f dQ
x = 0, together with a term in y irrelevant to the present

question; and since this equation does not contain w, we see

that the polar of a point on a curve with respect to the Hessian

of either the curve itself or of its polar curves all meet the

tangent in the same point. In fact, the polar is in every
case the same line. When n 3, 3c 4 d^x is the result of

making y = in the equation of the curve
;
that is to say,

the polar with regard to the Hessian is the tangential, as we
have seen already.

The equation of the polar conic of the origin with regard
to a curve of the w

th
order is \n (n 1) ua -f (n 1) u t

-f w2
=

;

and therefore the polar conic with regard to the Hessian is

| (w
-

2) (3w
-

7) cf 4- (n
-

2) (3w
-

7) dfx

and it is evident, on inspection, that in the case of the quartic
this polar conic cannot be the tangential, because it contains

the group of terms P which do not similarly occur in the

equation of the curve. But we can readily form an equation
not containing these terms. Let AlS = denote the equation
we have just obtained, and let

A^-ZZJ denote the polar conic

with respect to the Hessian of the first polar of the origin,

and as we have already seen, &?H
l

is derived from A*// by

writing n 1 for n. Then it is easily verified that

(n
-

3) A H -
(n
- 1

)
A 2^ =

(n
-

3) V {6c + 4d x + e
Q
x2

}
.

But when the given curve is of the fourth degree, the right-

hand side is what the equation of the given curve becomes when
we make # = 0. It follows then that A^ZT-SA2

/^ is the

required tangential of a quartic.

In precisely the same way the polar cubic of the origin,

with regard to the Hessian, is found to be

(3n
-

6} (3n
-

7) (3w
-

8) cj? 4 \ (n
-

2) (3w
-

7) (3w
-

8) dfx

+ 2 (n
-

2) (n
-

3) (3rc
-

8) e JV + (n
-

1) (n
-

2) (3
-

8) Px*

+(*-l)(^
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and AIZ7,, A
3

^, &c. are found by substituting (n 1), (n 2), &c.

for n. And we can verify that

(
n - 3) (n

-
4) A

3#- 2 (n
-

1) (n
-

4) A
35

t
+ (n

-
1) (w

-
2) A

3#
2

= 2 (n
-

4) (10c -f lO^z + 5*X +/x
3

).

And when n = 5 the right-hand side of the equation is what

the original equation becomes when we make in it y 0, and

therefore it follows, as before, that the tangential is

A3#- 4A15; + 6A3
ZT

2
= 0.

When n = 6 the tangential is in like manner

A4#- 5A4^ + 10A4#
2
= 0.

I was hence led, by induction, to the conclusion which

Professor Cayley has verified independently, that the tangential

is in general

AMJI - (n
- 1

)
An

-lS
t
+ J (n

-
1) (n

-
2) A&quot;^

- &c. = 0.

395. It is easy to establish what has been stated above,
that the polar lines of the origin are the same with regard to

its Hessian, and to the Hessian of any of the polar curves.

We have -j- = -j- -y- + &c., or employing the usual abbrevia-
dx da ax

tions A for be /
2

, &c., we have

U;

dx \ da? dif dtf

c?
2

, ^

dydz azdx dxdy]

with similar expressions for the differentials with regard to

y and z. It is to be noted that these may be written in

the abbreviated form -y- = -
-y- ( ,* ]

. Now the differential
dx dx \dj

coefficients of the first polar x U^-\-y
f

U^-\-z Uz
are got from

the corresponding coefficients of the original curve by per

forming on them the operation x -7- -f y
r

-j- + z
-y- ,

which

when we substitute x y z for xyz is equivalent to multiplying

each by the factors n 1, n 2, &c. But the same numerical

factor being common to every term in the expression for H^
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it is plain that xll^ + yII2 -f zHs represents the same line

whether the polar be taken with regard to the Hessian of the

original, or to that of its first polar. And the same argument

applies to the other polar curves.

Let us proceed to the polar conic. If we differentiate the

expressions just given for H, &c., the differential will consist

of two groups of terms, viz. the differential on the supposition

that A^ J5, &c. are constant, together with the terms got by

differentiating these quantities. If we write, for shortness,

, 17, f to denote the symbols of differentiation with regard to

Xj ?/, z, we have

rir= FMr+.zv+&c.} u+ tt iaw-rtY+ * (sr-rfl +fce.} v,

it being understood that the accents in the last group of terms

may be dropped after the expansion, the term ff ai/ f*, for

instance, standing for a
-_,

, -jr-g - The last equation may

be written in the abbreviated form

Thus then the equation of the polar conic of any point, with

regard to the Hessian, may be written V-\- W 0, where V
denotes a group of terms in each of which a fourth differential

is multiplied by the product of two second differentials, and W
a group in each of which a second differential is multiplied by
the product of two third differentials. Now if we take the

Hessian of the first polar, then, as has been stated above, the

second, third, arid fourth differentials become multiplied by
n 2, n 3, n 4 respectively, and the result is

A 2

/^ = (n
-

2) (n
-

4) V+ (n
-

3)
2W= 0,

which when n = 4 reduces to the latter group of terms. The

equation of the tangential of a quartic is then evidently of the

form F-f JcW=Oj and maybe transformed accordingly. Thus

it may be written in the form

/ d d
x -j jdx r dy d

d d
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The equation of the bitaogential curve is got by expressing
the condition that the tangent Lx + My + Nz should touch the

conic just written
j
and it will evidently consist of three groups

of terms, since the condition that a line should touch S 4 kS is

of the form 2 -f &4&amp;gt; 4 k ?! = 0. What answers here to 2 is the

covariant called
;

and I have verified that the other two

groups of terms are also expressible in the form + kH$&amp;gt;.*

POLES AND POLARS.

396. It will be convenient to collect here some properties

of the Jacobian of a system of three curves, stated Higher

Algebra, Arts. 88 and 176, and elsewhere in this volume. The

Jacobian is the locus of points whose polar lines with regard
to three curves meet in a point, its equation being

* I attempted in like manner to obtain the bitangential curve of a quintic

by writing down for the curve whose equation is given Art. 394, a covariant

of the right order, and such that the absolute term vanishes if the axis of x
touches the given curve a second time. For instance, if

\j/
= 49 -

9H$&amp;gt;,
then

A (-T-] + &c. and \*f L4 -y- +
&c.J

are covariants of the right order. Although I

have not been successful, it may be useful for purposes of reference to give the

values I obtained for the covariants in this case. It will be seen that, without loss

of generality, we may suppose c
l
and c2 to vanish. We have then

I=Vc + Bb- (d x + da/) + 3 (b-e
-

4crf,) x2 + 3 (26-e,
- 5bcd2) xy + 3

(
2e2
-

+ (b-f
-

IQbce, + 18c2 &amp;lt;72) X
s + (3b% - 39ce2

- Qbd d2 + Mdf + 18c2e?3) a?

+ (- 66&amp;lt;?/\

- 125^! + 12^! + I8c-e2 + 24cd d2 - 18c^
2
) x

4 + ic.,

= 9 2
{(b*d

* + 66WJ + (44V e + 1263c2e,
- Gi3 - 57W x

- Wbb-c3e2
- 2936-c-d d.

b- (d,-- d d2] -41bc
n
-d3}

+ x- (- 1262
c/!

- 126-^! + 126%^ + Qbc-e2
- 1625cf7 &amp;lt;/2 + IWbcdf- 6cV3) + ic.j.

Of the quantities A, J3, &c. the only ones which contain terms independent of x and

y are ~4 = b-, F = be
;
so that if any quantity &amp;lt;//

of the form Q + JcHQ written at

full length be A + B^x + B$ + C^K- + &c., then the degree of ^ beuig 22, the

absolute term in the covariant A - + &c. is b-B * + ^bcAB
1}

and in A --- + &c.
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We have seen, Art. 191, that the Jacobian is the locus of the

double points of curves of the system

\u -f fiv 4- vw = 0.

If the three curves have a common point, that point is on

the Jacobian. For, from the equations

xu^ y\+ zu
z
= mu, xv

l
+ yv^ + zv

3
= mv, xw^ +yw^ zw

s
=

m&quot;w,

(where TW, wi
,
m f

are the degrees of the three curves respec

tively), we have

Jx = mu (v2w3
v
3wj + m v (w^u3

-
wy/g)

+ m&quot;w (u^v3
- w

avj,

which we may write

Jx = mAu + inBv + m&quot; Cw,

whence evidently J vanishes for any values which make w, v, w
to vanish.

If the three curves be of the same degree, this common point

is a double point on the Jacobian. For differentiating with

respect to #, we have

dJ dA , dB dC
J-\- x-j-

= mu -j- -f m v
j \- m w -= h mAu

l
+ m Bv^ + m Cw^

but since Au
v
+ Bv

t
+ Cw

l

=
J, we see that when m = m =

m&quot;,

-j-
will vanish for any values which make w, v, w and con

sequently / to vanish. So, again,

dJ dA , dB dO /Dx = mu ~ + mv ~- + m w-j~ + mAu,. + m Bv,. 4 m Cw,.
dy dy dy dy

which, since Au
2 -f Bv

&amp;gt;2

+ Cw^ = 0, vanishes for any values that

make w, v, w&amp;gt;,

/to vanish, when m mf mff
. In like manner

the other differential coefficient of J vanishes for the same point.

If only two of the curves be of the same degree, the

Jacobian touches the third curve at the common point. For

the equation written above, when we make m = m
,
becomes

. dJ dA dB dC^ AJ 4- x-j-= mu -7- 4- mv -
7 \-m w-j- + mJ +(m m} Cw..

dx dx dx dx

and for the common point, this reduces to xj^
=

(m&quot; m) Cw
l ;

and we have, in like manner,

xJ
9
=

(m&quot;

- m) Cw
z,
xJ

3
=

(m&quot;

-
m} Cw

3 ;
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so that xJ^ + yjt
+ zJ

3
=

0, XIG
I
+ yw^ + zw

a
=

0,

represent the same right line.

If in this case the common point be a double point on 10,

it will also be a double point on /, having the same tangents
as those for the curve 10.*

The values just obtained for / e/
2 ,
J

3 evidently vanish when

10^ W0 w
3

vanish. Differentiating again, and omitting the

terms which vanish as containing w, Vj w, J, J^ or w^ w^ w^
we have

d*J dA

But from the values previously found for A and B, we have

dA dB
Ul ~fa+ Vl dx

=U
*

(V
*
W

&quot;

~VJ 4 V
* ^A ~ w w

t)j

and by eliminating xyz from the equations

w, + yut + zu
3
=

0, xv
v
-f yvt + zv

a
=

0, xiou + yw;18
+ zw^ = 0,

we have

u
i (
v
*
wu ~ ^Wa) + v

i (
w w

.
- W

i8
tt

t)
= - wn (w.v.

-
*V;J = ~ C^.u

or xJn = (m&quot; 2m) Cwn ,

and similarly the other second differential coefficients of J are

proportional to those of w
;
or the two curves have the same

tangents at their common double point.

397. It is proved, as in Art. 190, that there are

(m
-

I)
2 + (m - 1) (m

-
1) + (m

f -
1)*

points, whose polar lines, with respect to two curves
?*, v, are

the same, and through these points must pass the Jacobian of

i^ V, and any third curve. It was shewn (Art. 97) that the

Jacobian intersects u in the points which can be points of

contact of u with curves of the system v -f \ic. Hence, it

immediately follows that the locus of points, which can be

points of contact of curves of the system u + \u with curves

of the system V + /AI/, where u and u are of the degree T?Z,
and

v and v of the degree m is a curve of the order 2m 4- 2m 3,

* Clebsch and Gordan, Abehche Functionen, p. 62,
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whose equation may be written in either of the equivalent

forms :*

v

u

Again, it appears from the preceding that the points in

which curves of the systems u + Xw
,
v + /JLV ,

w + vw
,
can all

three touch, are among the intersections of two curves of the

degrees respectively 2m + 2m 3, 2m + 2m&quot; 3. But among
these intersections are included the m* points w, u

;
and the

3 (m I)
2

points common to the Jacobian of all curves of the

system u -f- \u . Deducting these numbers, we obtain for the

number of points in which the three curves can touch

4 (mm + mm&quot; + m&quot;m) -$(m + m + m&quot;) -f 6.

398. We have seen (Art. 97) that the order of the condition

of contact of two curves w, v, or, as we shall call
it,

of their

tact-invariant^ is in the coefficients of v, m (m + 2m 3) 25 3/e

or n+2m(m 1) ; and, in like manner, of the order ri+2m(m 1)

in the coefficients of u. The tact-invariant, in the case of

two conies, was found (Conies, Art. 372) by forming the dis

criminant of u-\-\v, and then the discriminant of this con

sidered as a function of X. By similar reasoning to that

used in the case of conies, it may be shewn that if the same

process be employed in the case of two curves of the wth

order, the tact-invariant is a factor in the result. In fact

if A be the tact-invariant, 2?=0 the condition that it may
be possible to determine X so that u-\-\v may have two

double points, and C = the condition that it may be possible

to determine X so that u + \v may have a cusp, then the

discriminant, with respect to X, of the discriminant of u + \v,

* Steiner has remarked that the number of curves of the system u + \u
,
which

osculate curves of the system v + /JLV is 3 {(m + m ) (in + m 6) + 1mm + 5}, Crelle,

vol. XLVII. p, 6. It will be remembered that we have seen, Art. 102, that the con

dition for two curves osculating is, in addition to the conditions of ordinary contact,

that the ratio of // to L3 shall be the same for both.
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is AB*C3
. Thailand C are factors appears by taking u as

a curve which has either two double points or a cusp. In

this case, not only the discriminant of u vanishes, but its

differentials, with respect to each of the coefficients of u (Higher

Algebra, Art. 116); therefore, in the discriminant of u + \v,

the term not containing X and the term containing its first

power both vanish, or Xa
is a factor in the discriminant

;
therefore

its discriminant considered as a function of X vanishes.

Thus, if u and v be cubics, the discriminant of each contains

its coefficients in the twelfth degree, and these coefficients enter

in the one hundred and thirty-second degree into the dis

criminant with respect to X. But the tact-invariant contains

the coefficients of each in the degree eighteen ;
and the invariants

which vanish when u + \v can have a cusp, or a pair of double

points, contain the coefficients of each curve in the degrees

twenty-four and twenty-one respectively. For the degree in

the coefficients is the same as the number of curves of the form

u + \v + /j,w which have the singularities in question. In the

case of the cusp, this number is found by putting the inva

riants =0, T=0] giving thus an equation of the fourth and

one of the sixth degree to determine X, //,,
and we have

twenty-four solutions. In the case of the two double points,

we may suppose U, v, w to have seven points common, and

through these points we can have twenty-one systems of a

line and a conic. We have then 132 = 18 + 2 (21) -1- 3 (24).

399. In general the discriminant being of the degree
3 (m I)

54

,
the discriminant with respect to X contains the co

efficients of each curve in the degree 3 (m I)
2

(3m
2 - 6m -f 2).

Now the tact-invariant contains the coefficients of each in the

degree 3m (m -
1), and from considerations afterwards to be

explained, it appears that the order of the condition that

u -I- \v may have a pair of double points, (or, what is the same

thing, the number of curves of the system u 4- \v -1- JJLIC,
which

have two double points), is f (m
-

1) (3m
s - 9w2 5m -f 22),

and the corresponding number for the case of the cusp is

12 (m 1) (m 2) ;
and it may at once be verified that

3(m-l)*(3m*-6m + 2)

= 3m (m -1)4-3 (m
-

1) (3w
3- 9w2- om -j- 22) + 36 (m

-
l)(m

- 2

AAA
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In like manner, having formed the discriminant of \u 4 pv + vw,
where U, v, w are curves of the same degree, we may form

the discriminant of this considered as a function of X, /^,
v

7

and this discriminant will contain as factors the resultant of

u, V, w, and the conditions that it may be possible that a curve

\u -f JJLV 4- vw may have three nodes, or may have a node and

cusp, or may have a tacnode; the order of any of these

conditions in the coefficients of any of the curves being the

same as the number of curves of the form \u -+ JJLV -H vw -f t 0,

which have the singularity in question. When the curves

are all conies, the discriminant, considered as a function of

X, /j, v, of the discriminant of \u 4- /*v + vw^ is ABZ

,
where A

is the resultant of w, v, w, and i?=0 is the condition that

Xw + JJLV + vw = may be capable of representing two coin

cident right lines, but I am not in possession of the general

theory.

400. In connection with this subject it may be observed

that, the tact-invariant of a curve and its Hessian being of the

order 3 (m 2) (5m 9) in the coefficients of the former, and

of the order m (1m 15) in the coefficients of the latter, is of

the order 6 (Qm
2

17w-f 9) in the coefficients of the original.

When m = 3, this tact-invariant is the sixth power of the dis

criminant
;
and assuming, therefore, that the sixth power of the

discriminant is always a factor, there remains a factor of the

order 6 (m 3) (3m 2), whose vanishing expresses the condition

that the curve has a point of undulation.

Again, take the condition that the curve, its Hessian and

bitangential have a common point; this condition being of

the orders respectively 3 (m 2)
a

(m*
-

9), m (m 2) (m*
-

9),

3m (m 2) in the coefficients of these curves is of the order

3 (m 2)(m 3) (3m
2 + 8m 6) in the coefficients of the original.

When m = 4, this invariant seems only capable of being ac

counted for as the twelfth power of the discriminant multiplied

by the square of the invariant last considered. And assuming
that the same factors are to be found in general, there remains

an invariant of the order 3 (m 4) (3m
3
-f 5m? - 32m -f- 18J,

which will vanish whenever the curve has an inflexional tangent
which elsewhere touches the curve.
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401. As the Jacobian is the locus of points whose polar lines

with respect to three curves meet in a point, so we might
consider the locus of the points in which these polar lines

meet; or, what is the same thing, the locus of points whose

first polars with respect to the three curves have a common

point. We shall confine ourselves to the consideration of the

case when the three curves are the three first polars of a

given curve, in which case the Jacobian is the Hessian of that

curve, and the other locus now mentioned is its Steinerian (see

Art. 70), the theory now to be explained being the generalization

of that given for the cubic* (Art. 175, &c.).

To any point P, then, on the Steinerian corresponds a point

Q on the Hessian
;

the first polar of P has Q for a double

point, and the polar conic of Q consists of two right lines

intersecting in P. Consider two consecutive points P, P
f

on

the Steinerian; then, as in Art. 178, the intersection of their

first polars will be the point Q counted twice, together with

the points of contact of the first polar with its envelope. Thus,

then, the polar, with regard to the curve, of any point Q on

the Hessian, is the tangent to the Steinerian at the corre

sponding point P. In particular, if Q is a point of inflexion

on the curve, its polar will be the tangent at that point ;
thus

we see that the Steinerian is touched by the 3m (m 2) sta

tionary tangents of the curve.

402. We have seen, Art. 70, that the orders of the Hessian

and Steinerian respectively are 3(m 2) and 3(??i-2)
2

;
the

Hessian ordinarily has no double point, and therefore its

Pliickerian characteristics are

^ = 3(m-2), 8 = 0, * = 0, v = 3(wi-2)(3z-7),

T = 2
/ (m

-
1) (m

-
2) (m - 3) (3m

-
8), i = 9 (m

-
2) (Zm

-
8).

Since there is a (1, 1) correspondence between the Hessian

and Steinerian, the deficiencies of the two curves will be the

* The principal theorems of this section were given by Steiner in a paper read

before the Berlin Academy, 1848, and afterwards reprinted in Crelle, 1854, vol. XLVII.

The theory, as regards the cubic, was given by me in the former edition of this

work (1852) in ignorance of what Steiner had done, with which I only became

acquainted through Crelle.
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same. We have also the class of the Stelnerian
;

for any tan

gent thereof which passes through a fixed point M, must have

its pole lying on the first polar of M, and since it must also

lie on the Hessian, it must be one of the 3 (m 1) (m 2)

intersections of the two curves. The characteristics, therefore,

of the Steinerian are

S = f (w-2) (m-3) (3m
2

-9m-5), * = 12(m-2) (m-3),

T = f (wi
-

2) (m - 3) (3m
2 - 3m - 8), i = 3 (m

-
2) (4m

-
9).

A point is a double point or cusp on the Steinerian, if it is a

point whose first polar has two double points or a cusp. The

numbers therefore S and K just obtained are the number of

first polars of points of the given curve which have the singu
larities in question (see Art. 399).

403. If the first polars of any two points A, B touch at

a point Q, having QP for their tangent, then two of the poles

of the line AB coincide with Q, and the first polar of any

point on AB (other than the intersection of AB with PQ)
will also touch QP at Q. The first polar of the excepted

point or intersection of AB with PQ, will have Q for a double

point 5 Q will be a point on the Hessian, and P the corre

sponding point on the Steinerian. Thus the Steinerian is the

envelope of lines, two of whose poles coincide
;
and the Hessian

is the locus of such coincident poles. Steiner has investigated

the envelope of the line P$, which joins two corresponding

points P, Q, or which is the common tangent of two first polars

which touch each other. This curve we shall call, as in the

case of cubics (Art. 177), the Cayleyan.* It has evidently

a (1, 1) correspondence with the Hessian, and with the Steinerian,

and has therefore the same deficiency.

In order to determine its class we use the principle estab

lished, Art. 372, and Conies, Appendix, that if two points on a

line (or two lines through a point) have a (m, m) correspon

dence, there will be m + m cases of coincidence of these points.

Professor Cayley himself calls it the Steiner-Hessian.
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Consider, then, the lines joining* any assumed point J/ to

two corresponding points P, Q. Then, since the Steinerian is

a curve of the order 3 (m 2)
2

,
if the line MP be fixed there

will be 3 (m 2)
a

positions of P and as many positions of MQ.
In like manner, to any position of MQ correspond 3 (m 2)

positions of P. There are, therefore, 3 (m
-

2) + 3 (m - 2) or

3 (m 1) (m 2) lines which can be drawn through M contain

ing two corresponding points P, (), and this is therefore the

class of the Cayleyan. It obviously touches the inflexional

tangents of the given curve. It has no inflexions, and its

characteristics therefore are

p = 3 (m
-

2) (5m
-

11), v = 3 (m
-

1) (m
-

2),

8 = f (771
-

2) (5?/i
-

13) (o?n
2 - 1 9m + 16), * = 18 (m

-
2) (1m

-
5),

T=f(7H-2)
a

(m*-2ro-l), 4 = 0.

404. The definitions already given may be further extended,

by considering the double points not only on first polars, but on

any of the system of polar curves. The locus of a point, such

that its #-polar has a double point, is a curve of the order

3d (m 6 1)*, which is the 0-Steiuerian
;
and the locus of the

double point is then a curve of the order 36* (m -01), which

is the 0-Hessian. We know that if the 0-polar of a point P
passes through a point (),

then the (m 6) polar of Q passes

through P; and it is easy to see also that if the 0-polar of a

point P has a double point Q, then the (m 6 1) polar of

Q has a double point P. Hence the 0-Steinerian is the same

curve as the (m -6 1} Hessian, and the 0-Hessian the same

as the (m 6 1) Steinerian. In like manner we might con

sider the 0-Cayleyan or envelope of the line joining corre

sponding points on the 0-Steinerian and 6- Hessian, the three

curves having the same deficiency. Except in the case of

0=1 these curves have not been much studied.

405. We have studied (Art. 184) the envelope of the polar

lines, with regard to a cubic, of the points on a right line,

which we have called the polar of that right line. So, in

general, if a point P moves along any directing curve S of the

order s, the envelope of its 0-polar, with regard to a given
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curve U of the order m, will be a curve which may
be called the 0-polar of

,
with regard to U. We saw

(Art. 96) that the envelope of a curve, whose equation con

tains as parameters the coordinates of a point which moves

along a curve S, may be found by considering the parameters
as coordinates, and then expressing the condition that the

moving curve should touch S. Hence, the 0-polar of S is

also the locus of points whose (m 6} polars touch 8. Using
then the expression (Art. 97) for the order of a tact-invariant,

we see that the 0-polar of S is a curve of the order

s (s + 20 3) (m 0), this number to be diminished by 2 (m
-

0)

for every double point, and by 3 (in 0) for every cusp

on 8] or, if the class of S be s
,
then the 0-polar will be

of the order

It will be of the order 0(2s + #-3) in the coefficients of 8.

Thus, in particular, if 0=1, the envelope of the first polars

of the points of a curve 8 is the same as the locus of the poles

of the tangents of 8, its order being s (m 1). If in this

case 5=1, this order reduces to 0, as it ought, since the

envelope then reduces to the (w-1)
2

poles of the line 8.

In general, it is obvious that each double tangent of 8 will,

by its (m I)
2

poles, give rise to (m I)
2
double points on

the envelope, and that each stationary tangent of S will give

rise to (m
-

1)* cusps on the envelope. We have, therefore,

for the class of the envelope

(m
-

I)
2

8-(m-l)s -2(m - I)
2 r - 3 (m

-
1)* t

;

or, since s
2

s 2r 3t = s, the class of the 1-polar is

(m-l)(w,-2)s + (w-l)
2
s.

If Q m 1, the envelope of the polar lines of the points

of a curve 8, or locus of points whose first polars touch /S,

is of the order s(s + 2m5) or s + 2s(m 2). And since

the number of these polar lines which pass through an

arbitrary point M is the same as the number of intersections

with 8 of the first polar of M, the class of the envelope is

(m \}s.

In general the number of double points on the 0-polar of

8 is (m-0) times the number of (m-1) polars of a point
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which touch the curve twice, and the number of cusps is

(m 6)* times the number of such polars which osculate the

given curve.

406. If the #-polar of a curve S be a curve R^ then the

(m 6} polar of E must include, as part of itself, the curve S.

Thus, for example, if 6 = m- 1, R is the envelope of the polar

line of a point P which moves on $; but since the pole of

this polar line may not only be the point P, but (m l)
a

1

other points besides, it follows that if we seek the locus of

the poles of the tangents of R (or, what is the same thing,

the envelope of the first polars of the points of R), we shall

get the curve $, together with another curve, which is the locus

of points copolar with the points of S\ that is to say, having
the same polar lines. In this case, where 6 = in 1, we have

seen that the class of R is s (m 1) ; therefore, Art. 405, the

envelope of the first polars of the points of R is of the order

s(m I)
2

; or, in addition to the curve $, there will be a

companion curve of the order sm(m 2). We have seen that

every point on the Hessian is a point at which coincide two

poles of a tangent to the Steinerian
; consequently, the points

in which S meets the Hessian will be points on this companion

curve, which will, besides, meet S in ^s (m 2) (m 3) pairs of

copolar points.

If =
1, R is the locus of the poles of the tangents of S,

and since a given point has one polar, if we seek the envelope
of the polar lines of the points of

jft,
we must fall back on the

curve S, and it would appear that there can be no companion
curve. It is to be noted, however, that the common tangents
of $, and of the Steinerian, form part of the envelope. In fact,

we have seen that to each of these common tangents there

correspond two coincident points on R, and therefore when
we employ the converse process, to these two points answer

two coincident lines, every point on either of which has a

right to be counted in the envelope. Further, the curve S
must be reckoned in that envelope (m I)

2

times, because to

every tangent of 8 there answer (m
-

I)
2

poles lying on R, and,

therefore, when we take conversely the polars of the points of

7?, each tangent of S is counted (m I)
2
times. Now we have
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seen that if the order and class of R be r and /, the order of

its (m
-

1) polar is / + 2 (m - 2) r, but

r =(m- l)(m-2)/ + (ra-l)
2

s,
r = s (m- 1) ;

hence, the order of the polar is 3 (m 1) (m 2) s + (m I)
2

5,

which agrees with what we have established, since, as the

{Steinerian is of the class 3 (m 1) (m 2), the number of its

common tangents with S is 3 (m l}(m 2) /. There must

be a like general theory of the reciprocity when R is the

0-polar of S, and 8 the (m
-

6} polar of R, but this has not

yet been investigated.

OSCULATING CONICS.

407. The form of a curve in the neighbourhood of a point
P thereof is defined by the circle of curvature, but it admits

of a further definition. In fact, drawing parallel to the tangent
at P an infinitesimal chord QR, then if the normal at P meets

this at N, the arcs PQ, PR, and the lines NQ, NR, regarded as

quantities of the first order, are equal to each other, but they
differ by quantities of the second order

;
in particular, NQ, NR

differ by a quantity of the second order or, what is the same

thing, if L be the middle point of QR, then the distance NL is

of the second order. But observe that PN is also of the

second order; hence the angle LPN, = \.tm~
lLN-r- PN is in

general a finite angle ;
that is, joining P with the middle point

of the chord QR (parallel to the tangent at P), we have a

line PL inclined at a finite angle to the normal. In the case

of the circle, PL coincides with the normal
;
hence the angle in

question is a measure of the deviation from the circular form,

or we may call it the &quot;

aberrancy,&quot; and the line PL the axis

of aberrancy.*
In the case of a conic, the axis of aberrancy is the diameter

through P, and the aberrancy is the inclination of this diameter

to the normal. And for a given curve, drawing any conic

having therewith a 4-pointic intersection at P, the curve and

* See Transon,
&quot; Recherches sur la courbure des lignes et des surfaces,&quot; Liouv.,

t. vi. (1841); his term deviation is in the text replaced by the more specific one

&quot;aberrancy.&quot;
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conic have the same axis of aberrancy; that
is, the centres

of all the conies of 4-pointic intersection with the curve at P
lie on the axis of aberrancy at this point. Whence also the

axis of aberrancy at P and the axis of aberrancy at the con

secutive point of the curve, intersect in a point, say the &quot;

centre

of
aberrancy,&quot;

which is the centre of the conic of 5-pointic

intersection with the curve at P; this conic is completely de

termined by the conditions that its centre is this point, that

it touches the curve at P, and that it has there a curvature

equal to that of the curve.

It is easy to show that the aberrancy at the point P is given

by the formula

,

where
/&amp;gt;, &amp;lt;?,

r are the
first, second, and third differential coeffi

cients of y in regard to x.

408. Observe that the axis of aberrancy is a line having
reference to the line infinity, but independent of the circular

points at infinity; viz. if instead of these we had any two

points /, /, then the line in question is constructed by means

of the line // without any use of the points /, J themselves
;

the chord QR is taken so as to pass through the intersection

of the tangent at P with the line //, and we have then

L the harmonic of in regard to the points Q, E.

The theorem that the centres of the conies of 4-pointic

intersection lie in a line may be presented in a more general
form

;
the conies have, of course, a 4-pointic intersection with

each other
; or, what is the same thing, they are conies having

all of them four common tangents (viz. the tangent at P
taken four times); the general theorem is, that for the

system of conies touching four given lines, the poles of any
line in regard to the several conies of the system lie in a line

;

a theorem which is better known under the reciprocal form,

that for the conies passing through four given points, the polars

of any point in regard to the several conies pass all through
one and the same point.

In the case where the circular points at infinity are replaced

by a conic, there is not any analogous theory of aberrancy.

BBB
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409. The investigation, Art. 236, of the equation of the

conic of 5-pointic contact at any point on a cubic may be ex

tended to curves of any degree. Let S represent the polar

conic and T the tangent at the point, then the equation of

any conic touching at the same point will be S PT= 0,

where P is Ix + my + nz; 7, m, n being still undetermined.

Then the equation of the lines joining to the point x y z
,
the

intersections of the conic and the curve is obtained by sub

stituting in the equation of each curve x + \x for
as, &c., and

eliminating X between the two equations. The result of the sub

stitution in the first equation is T+ $\S+ JX
2A3

-f ^X3A4
4 &c.

;

and the result of the substitution in the equation of the conic

ia2(n-l)T-PT+\(8-PT); and if this last be written

6T+\V, the result of eliminating \ between the two equations

becomes divisible by I\ the quotient being

7-i _ 1 vn
~*S+^ F&quot;&quot;

3 Ttf - &c. = 0,

which represents the 2(n 1) lines joining the point xyz io

the 2 (n 1) other points common to the conic and curve. In

order that the conic should have a 3-pointic contact with the

curve, one of these lines must coincide with T, or the equation

just written must be divisible by T; and since every term,

except the two first,
is so divisible, this condition is plainly

equivalent to =
2, which, since = 2(n 1) P

, implies

P =
2(?2 2).* Introducing this value of 0, and performing

the division by T, the equation reduces to

which represents the 2n 3 lines joining the point x yz to the

other points of intersection of the curve and conic.

The contact will be 4-pointic if this equation be again
divisible by T

7

,
or if|A

3 -P be divisible by T. The con

dition that this shall be the case is found, as in Art. 382, by

substituting in this quantity the coordinates of an arbitrary point

on T, viz. My -
JV/3, No. - Ly, L/3 - Ma when it ought iden

tically to vanish, arid in this way we find immediately that P
. , e 4

, , rr,
2 / dH dH dH\ .

must be of the form
//,
7 + -j-r [

x -^ h y i h z T~ where u,

dx y
dy dz)

* The problem of finding the circle of curvature at any point on a curve is

evidently that of describing a 3-pointic conic passing through two fixed points.
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is still indeterminate. Thus the chord of intersection with the

polar conic of every 4-pointic conic meets the tangent in the

fixed point, noticed Art. 394, where the tangent meets both

the polar cubic, and also the polar line of x y z
,
with regard

to the Hessian either of the curve itself or of any of the

polar curves.

. .. i / an dn dH\
Let us denote by fl the line -y^ x -7- + # -7- + ^ -7- ,H\dx y

dy dz /
J

and allowing that we have the identical equation A
3 HS = JT,

then, introducing the value for P, fn+^T, the equation be

comes divisible by T, and gives for the equation of the 2n 4

lines, joining to x yz the other intersections of the curve and

conic

(!/+ p* _ pS] Fn 3 -
J 7&quot;-

4
A* + &c. = 0.

The condition for 5-pointic contact is, that this equation should

be divisible by T, and we determine the value of p correspond

ing to such contact, by substituting in the terms above written

My jY/3, .A
T
a - Ly, L/B - J/a for

ic, ?/,
z. From the identical

equation of Art. 235, we can infer what / is,
and I have

found that, by the substitution just mentioned, / becomes

- 3 (n
-

1) (n
-

2) a +
2 ^ ~ ^

B^ (H], where S, B, and ^H
have the same meaning as in Art. 386. The results of substitution

o
in S, P, and in A4

are # , -jj. Q ,
and Q^ respectively. Using

then the values of Arts. 390, 391, we have

- 6 (n-2) E^ (H] +

-
J

- 6 (n
-

2) (n
-

3) 2#+ 4 (n
-

3) E^r (H)
- -

whence reducing, /*
= =3 (40 - 3ZT4&amp;gt;),

and the 5-pointic conic

is determined.

410. Prof. Cayley has pursued the enquiry so as to ascertain

what condition must be fulfilled by the coordinates xyz in order

that the contact may be 6-pointic (see Phil. Trans., 1865, p. 545).
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The investigation is too long to give here
;

his result is that

xyz must satisfy the equation

(m -
2) (12i

-
27) HJ(U, H, *)

- 3 (m
-

1) HJ ( U, H, 4)

-f- 40 (w-2)
2/(/;#, 0) = 0,

where by J(U,H,&amp;lt;b)
is meant the Jacobian of these three

functions, and by / is meant that, in taking the Jacobian,

4&amp;gt; is to be differentiated on the supposition that the second

differential coefficients of J?, which enter into the expression

for
&amp;lt;J&amp;gt;,

are constant. The equation here written represents a

curve of the order 12m 27 whose intersection with U deter

mines m (12m
-

27) sextactic points.

SYSTEMS OF CURVES.

411. The problem to find how many conies can have a

6-pointic contact with a given curve belongs to the class of

questions on which some remarks were made, Conies^ Ap
pendix on systems of conies satisfying four conditions. We
shall here somewhat develope the theory there indicated.

De Jonquieres, Liouville, t. VI. (1861), considered the properties

of a series of curves of the wth order satisfying \m (m + 3) 1

conditions, that is to say, one less than the number sufficient

to determine the curve, the series being characterized by its

index N, where N is the number of curves of the series which

can pass through an arbitrary point. Thus, if the equation
of the curve algebraically contains a parameter, N will be

the degree in which that parameter enters.* Chasles, in papers
in the Comptes Rendus^ 1864 1867, on the number of conies

which satisfy four conditions, used, instead of De Jonquieres
7

single index, two characteristics, viz.
jj,

the number of curves

of the series which pass through an arbitrary point, and v the

number of them which touch an arbitrary line. This method

* Prof. Cayley has remarked that it is not true conversely that the equation of

a curve belonging to a series whose index is N
t
can be always expressed in this

form. For instance, the index will be plainly N if the equation contain linearly

the coordinates of a parametric point limited to move on a plane curve of the order

N, and unless the curve be unicursal, the equation cannot, without elevation of

order, be made an algebraic function of a single parameter. Or, more generally, the

equation may contain linearly the coordinates of a point limited to move on a curve

in space of k dimensions.
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is especially convenient as giving symmetrical results in the

case of conies which are curves of the same order and class.

A sketch of this method is given in Conies, I.
c.,

and we
shall here repeat a few of the theorems, stating them for a

series of curves of any order.

412. The locus of the poles of a given line, with respect

to curves of the series, is a curve of the degree v. For this

is obviously the number of points in which the line itself can

meet the locus. The envelope of the polars of a given point,

with respect to curves of the system, is,
in like manner, a

curve of the class p.

The locus of a point whose polar, with regard to a fixed

curve (whose order and class are m, w
),

coincides with its polar,

with respect to some curve of the system, is a curve of the order

v + fj, (m 1). For, in order to determine how many points of

the locus lie on a given line, consider two points A, A on that

line, such that the polar of -4, with regard to the fixed curve,

coincides with the polar of A with regard to some curve of

the system, and the problem is to know in how many cases

A and A can coincide. Now, first, if A be fixed, its polar,

with respect to the given curve, is also fixed, and the locus

of poles of this last line, with respect to curves of the system

being by the first theorem of the order F, we see that to any

position of A answer v positions of A. Secondly, let A be

fixed, and since its polars, with respect to curves of the system,

envelope a curve of the class /A, and since the polars, with

respect to the given curve of the points of the given line,

envelope a curve of the class m 1, Art. -405, there are
/j, (m 1)

common tangents to the two envelopes, and therefore as many
positions of A answering to A. The number then of coin

cidences of the points A and A is v + p(m 1), or this is the

degree of the locus in question. It is obvious that this locus

meets the fixed curve in the points where it is touched by curves

of the system, and therefore that the number of these curves,
which touch the fixed curve, is m {v + JA (m- 1)}, or is mv

413. In general, the number of curves of the system which

satisfy any other condition will be of the form pa. + v$, and
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the numbers a, /3 may be taken as the characteristics of this

condition. If a curve be determined by a sufficient number of

conditions of any kind, and if these characteristics be given for

each condition, we can determine the number of curves satisfying

the prescribed conditions. We exemplify this in the case of

conies. The number of conies determined by five points, by
four points and a tangent, by three points and two tangents,
&c. is 1 2 4. 4. 9 iA

J
Z

J
4

)
4

) ^7 X
)

and, consequently, the characteristics of the systems determined

by four points, three points and a tangent, &c. are

(1, 2), (2, 4), (4, 4), (4, 2), (2, 1).

The number then of conies satisfying the condition whose

characteristics are a, /3,
and also passing through four points,

or through three points and touching a line, &c. are

a+2/3, 2a + 4/3, 4a + 4, 4a+2/3, 2a-fy8.

If we call these numbers /* &quot;,

v
&quot;, /D &quot;,

c-
&quot;,

r&quot; respectively,

we see that they are not independent, but we have

ill f\ ill ill ct &quot; &quot; 1 ! &quot;
i &quot;\

v = 2/* ,
&amp;lt;r =2r

, p = i(v -f a- ).

The characteristics of the systems formed with the condition

a, /8 together with three points, or together with two points

and a line, &c. are plainly
/ ;// iu\ i in iu\ f in in\ i in in\

(P 7
V

)) (
V

) P )) (P *
)&amp;gt; (&amp;lt;* J

T
)

And therefore the number of conies of these systems respec

tively which satisfy a new condition a
, /3 is //V + v

&quot;/3 ,

V &quot;OL
+p&quot; l3 )

&c. Or, writing at full length, if we have two

conditions whose characteristics are (a, /9), (a , /3 ),
and if we

denote by /^&quot;, v&quot;, p&quot;,
cr&quot; the number of conies which satisfy

these two conditions, and also pass through three points, or

pass through two points and touch a line, &c. we have

/*&quot;=
aa + 2(/3a + a/3 ) + 4/3/3 ,

v&quot;
= 2aa + 4

( + a/3 ) + 4/3/8 ,

p&quot;

= 4aa + 4 (/3a + a/S )
4 2/8)8 ,

cr&quot;
= 4aa -f 2 (a

f

4- ocy8 ) + ^8/8 ,

and it is to be noted that these numbers are connected by
the identical relation

&quot; o II
, q it II /\

P ~~
2 V &quot;rff&amp;gt;

O&quot; =0.

In like manner the characteristics of the system of conies

satisfying the two conditions (a, /8), (a , /3 ),
and also passing



SYSTEMS OF CURVES. 375

through two points, or through a point and touching a line,

or touching two lines, are
(/&&quot;, v&quot;), (v&quot;, p&quot;), (/&amp;gt;&quot;, o-&quot;),

and there

fore the number of such conies which satisfy a third condition

a&quot;, /3&quot;
are // a&quot; +

v&quot;&quot;,
&c. Or, writing at full length, if we

denote by /i/,
v

, p the number of conies which satisfy three

conditions (a, yS), (a , /3 ), (a&quot;, /3&quot;),
and also pass through two

points, or through a point and touch a line, &c. we have

v = 2aa a&quot;

p
1 = 4aa a&quot;

It is evident that the characteristics of the system formed by

adding to these three conditions a fourth, a
&quot;,

/3&quot; ,
are fia!&quot;+

v /3
&quot;,

v a
&quot;

-f pff&quot;, or, at full length,

v = 2aa a&quot;a

&quot;

And so finally, if we add a fifth condition, the number of conies

satisfying all five is
pa.&quot;&quot;

+
v/8&quot;&quot;,

or

aa aV a&quot;&quot; -f 22aa a&quot;a
&quot;y(3&quot;&quot;

-f 22

Thus this formula gives the number of conies which touch five

given curves, by writing for a, /3, &c. the class and order

of each curve. And in like manner we could find the number

of curves of any order determined by the condition of touching

given curves if we knew the number in each case where the

conditions were only those of passing through points or touch

ing lines.

414. In the preceding article, the conditions we considered

were each independent of the others, but we may have a con

dition equivalent to two or more conditions, as for example,
the condition that a conic shall touch a given curve twice

or oftener, the condition that a curve shall osculate a curve

or have with it contact of higher order. A condition equi

valent to two may be called two inseparable conditions. It

is found that the formulae obtained in the last article for in

dependent conditions are applicable with the necessary modi

fications to inseparable conditions. Thus, if we have two
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inseparable conditions, the characteristics
/A&quot;, v&quot;, p&quot;, &amp;lt;r&quot;,

are

the number of conies determined when we combine with the

given two-fold condition three points, or two points and a

line, &c., and these numbers will be always connected by the

relation
/A&quot; f v&quot; +

fp&quot;
cr&quot; = 0. We proceed precisely as in

the last article to find the number of conies determined, when

with the two-fold condition are combined any three others.

In this way we obtain the following formula?. If m
, ri\ r&quot;,

s&quot;

are the characteristics of a second two-fold condition, then

the characteristics of the system of conies determined by the

pair of two-fold conditions are

roV -
f (/*&quot;*&quot;

+ mV) +
(r&amp;gt;&quot;

+
p&quot;m&quot;)

+ |nV - 4 (*&quot;&quot;&quot;

-f
n&quot;p&quot;)&amp;gt;

a&quot;s&quot;
-

f (o-V + &quot;p&quot;)
+ (&quot;V + nV) + fp V&quot;

-
} (pV + rV).

And if //, v
, p be the characteristics of a three-fold condition,

the number of conies determined by the two-fold and three

fold condition is

iM (**&quot; -p&quot;) + lp (V -
v&quot;)

+ A&quot; (5 (**&quot;
+

P&quot;)

- 6 (X +
&amp;lt;O1-

415. Keturning to the two characteristics /*,
v of a series

of curves of the wth
order, satisfying one condition less than

the number sufficient to determine each curve, we may in

vestigate as follows the relation between these two charac

teristics. Consider the points A, A\ &c., in which a curve

of the series meets a given line
; then, since

JJL
curves of the

series pass through A, each meeting the line in m 1 other

points, it is evident that to each point A corresponds p (m 1)

points A ,
and in like manner to each point A , fj,(m \} points

A. And the number of united points of the correspond

ence is therefore 2//,(w I). This number will be v if the

united points can only arise when a curve of the series touches

the line AA
,
but it may happen that a curve of the series

will be a complex containing a portion which counts twice,

and such a curve would give rise to united points which must

be deducted from 2/*(wi 1) in order to give v the number

of proper tangencies. Thus, in the case of conies which we
shall specially consider, let X be the number of conies of the

series which reduce to two coincident right lines, and we
have v 2/ju

- X.
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416. A conic considered as a curve of the second order

may degenerate into a pair of lines, or line-pair ;
in this case

the tangential equation found by the ordinary rule becomes

a perfect square ; or, geometrically, every line through the

common point of the line-pair is to be considered as doubly

a tangent to the curve. Similarly, a conic considered as a

curve of the second class may degenerate into a pair of points,

or point-pair; and every point of the common line of the

point-pair may be considered as in a sense doubly belonging

to the curve. In the latter case, the point-pair may be con

sidered as the limit of a conic whose tranverse axis is fixed,

and which flattens by the gradual diminution of its conjugate

axis, so as to tend to a terminated right line, the tangents of

the conic becoming more nearly lines through two fixed points,

viz. the terminating points of the line.

Thus then, if X be the number of point-pairs in the system,

and IB the number of line-pairs, we have

In Zeuthen s researches, concerning systems of conies, the

numbers X, are substituted for Chasles characteristics
/*, v,

it being in most cases easier to ascertain the number of conies

of a given system which reduce to line-pairs or point-pairs,

than the number which pass through an arbitrary point or

touch an arbitrary line.

A special case presents itself when the two points of a point-

pair coincide, the line of the pair continuing to exist as a definite

line; or, the two lines of a line-pair may coincide without

their common point ceasing to exist as a definite point. This

may be called a line-pair-point.

417. In a system of conies satisfying four conditions of

contact, it is comparatively easy to see what are the point-

pairs and line-pairs of the system ;
but in order to find the

values of X and
-cr,

each of these pairs has to be counted, not

once, but a proper number of times, and it is in the deter

mination of these multiplicities that the difficulty of the problem
consists. For this purpose Zeuthen uses the following con

siderations : Take the elementary system of a conic determined

CCC
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by four points, then evidently the number of line-pairs is

three, and of point-pairs is 0, but since //
=

!, v = 2, we have

X = 0, ^ = 3
;

whence it is inferred that a pair of lines

joining, two by two, four given points counts once among the

number of line-pairs. But take a system of conies determined

by three points and a tangent, here we may have three line-

pairs, viz. the line joining any two of the points, and the

line joining to the third point the intersection of the fixed

tangent with the line joining the first two points. There

are in this case no point-pairs. We have also
//- 2, v = 4,

hence X = 0, -cr = 6
;
and it is inferred that a line-pair counts

for two if it consists of the line joining two given points,

together with the line joining to a third given point the in

tersection of the first line with a given line.

Lastly, take the system of conies determined by two points

and two tangents, and there can be but a single line-pair, viz.

the pair joining the two points to the intersection of the two

tangents; but since in this case
/u,
=

4, v = 4, X = ts- = 4, it is

inferred that a line-pair counts for four if it joins to two

given points the intersection of two given lines. It is needless

to dwell on the reciprocal singularities.

The movement of a conic which touches a given curve may
be considered either a rotation round the point of contact or a

slipping along the tangent at that point; and hence it is in

ferred in the case of a conic determined by touching four

given curves, that we are to count among the line-pairs, once,

(A )
a pair consisting of two lines, each being a common

tangent to the curves; that we count twice, (B
r

)
a pair con

sisting of a common tangent to two curves, and a tangent

drawn to a third curve from a point where this common tangent

meets the fourth curve, and that we count four times, (C
r

)
a

pair consisting of tangents drawn to two curves from the in

tersection of other two. Keciprocally, we count among the point-

pairs once (A) a line each of whose determinations is the inter

section of two curves, twice (7?) a tangent to a curve terminated

by another curve, and by the intersection of two other curves
;

and four times (G) a double tangent to two curves terminated

on two other curves. In these cases for the intersection of

two curves, may be substituted the intersection of a curve with
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itself or a node, and for a common tangent to two curves

may be substituted a double tangent to a single curve.

418. Thus, for example, to find the number of line-pairs in

the system of conies which touch four given curves. We have

nriri ri&quot; line-pairs consisting of one of the nn common tangents

to the first two, combined with one of the ri ri&quot; common

tangents to the other two; and, since we can in three ways
form two pairs out of the four curves, the numberA is Snnn n &quot;.

Again, there are nriri iri&quot; pairs consisting of a common tangent
to the first two curves, and a tangent to the third from one

of the points where it meets the fourth; and, since we get
the same number if we take a common tangent to the second

and third, or to the first and third, we have R = 32nn n&quot;m &quot;.

Lastly, there are plainly ^nrim m&quot; pairs of tangents of the

kind C . We have therefore

and, in like manner,

\ = ?nnm&quot;m&quot;

and from these numbers are deduced the same values for
/A,

and v, as we have found already.

419. We proceed in the same way if the conditions of the

problem are, that the conic shall touch the same curve more

than once, or shall have with it contact of higher order. Prof.

Cayley uses the following convenient notation. Let (1) denote

single contact, (1, 1) single contact with the same curve in

two places, (2) contact of the second order or 3-point contact)

and so on. Thus the system we have considered of conies

having single contact with four curves is denoted by (1), (1) ?

(1), (1). Let us now consider the system (1, 1), (1), (1), that

is to say, when the conies have double contact with a single

curve and touch two others. Then it is seen, precisely as

before, that A = rn n&quot; + nn .nn&quot;. We have also

nm ri m
) + nn (m

-
2) n&quot; 4 nn&quot; (m

-
2) n

-f nn m&quot; (n
-

1
) + nn m (n

-
1) 4- rin m (n

-
2),

G = SwV + mm (n
-

2) n&quot; + mm&quot; (n
-

2} n + m m&quot;n (n
-

t).
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Lastly, we must count separately (D
f

)
the Kn n&quot; line-pairs,

consisting of a pair of tangents drawn from a cusp of the

first curve to the other two. Zeuthen shews that these last

count each for three, by writing in the formulae in the first

instance an unknown multiplier #, and determining x by an

examination of the elementary cases where the second and third

curves, reduce to points or lines. Collecting then the numbers

A f

-f 2H 4 4
C&quot;,

and reducing, we find

vr = n n&quot;
(ri* 4 6mn - 8n - 4m 4 T -f 48 4 3/e)

4 2 (m n&quot; + m&quot;n
} (n* 4 2mn - n - 4m 4 T) 4 2m m&quot;n (n

-
1),

and there is a corresponding expression for X. From these

we find expressions for
//., v, viz.

fjt
=

fju&quot;

fm m&quot; 4 p&quot; (m n&quot; + m&quot;n
} + p rin&quot;,

v = iTm m&quot; + v&quot; (m n&quot; + m&quot;n
) + v n

n&quot;,

where pf = 2m (m + n 3) -f T,

// = v = 2m (m + 2n - 5) + 2r,

p!&quot;
=

v&quot; =2n(2m + n-5) + 28,

And these numbers denote the number of conies determined by
the conditions of touching one curve twice, together with three

points, two points and a tangent, a point and two tangents, and

three tangents, respectively.

It is unnecessary to consider separately the case (1, 1), (1, 1),

see Art. 413, and the same principles are applicable to the cases

(3) (I), (4).

Referring for further details to Zeuthen s memoir, which

may be most conveniently consulted, Nouvelles Annales, 1866,

and to Prof. Cayley s memoirs, Phil Trans., 1867, we give

the following table, in which Prof. Cayley has summed up the

simpler results expressed in terms of m, ft,
and a (see Art. 83).

(1,1,1) p = fw
3 + 2w2

rc + mnz + Jn
3 - 2?n

2 - 3mn - \n*

-
*s n

~ 2
39n + a (- 3m - fw -f 13),

v = Jwi
3 + 2m*n + 2mri

2 + Jw
3 - m2 - kmn nz

- gm - 4/n + a (- 3m - 3n + 20),

p
f = *m3 + m*n + 2mnz + fn

3 - \m* - 3mn - 2ri
2

13),
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(1, 1,1,1} At
=

TV?/i
4
-f |w

8
-/i -f wV + &amp;gt;?*&quot; -I- ^V?i

4

-
i??z

3 - 3m n - 2m??
2 -

Jf?l

3

- UMw _ 2Imn -W *
4- ^f^-m + J

AH

+ a (- fro*- 3zn - |&amp;gt;i

2 +V + 5
4
5 n - *J

7
) + fa*,

v =
2
Lm4 + Jm

3
n -f mV + f 77i?i

3
f ^n* - Jm

8 - 2m*n

a - wi
8- 3 win -&quot;

(2) /M&quot;

=
a, v

/r =
2a, p

r =
2a, *&quot; = a

;

(2, 1) &amp;gt;

= 12?7z + 12w + a (2??z + n - 14),

v = 24??2 -I- 24?i + a (2m + 2n- 24),

p = 12??i 4- 1272 + a
(
m + 2n - 14),

(2, 1,1) fj,
= 2477i

2 + 36wn 4- 12w* - 168?7z - 16871

+ a (w
2 + 2m7i + J?i

2- 25m - *fn + 138)
-

fa*,

v = 12wi* 4 3677171 + 24?i
2 - 168m - 168n

+ a
(Jm

8
+ 2??z?i + n -*.fm- 25n + 138)

-
f a*,

(3, 2) /A
= 27w + 247Z - 20a -h a

2

,

v = 24/Ti + 27n - 20a + |a
2

,

(3) p = - 4??z - 3n + 3a, / = - 8m - 8?z + 6a,

(3, 1) /a
= - 8?7i

2- 12??2?z - 37i&quot;+ 56m-f-53/i 4- a(6m + 3n-39),

v = - 3??z
2- 12??27z - S7i

2+ 53m-h567i + a(3m -f 6?i-39).

(4) p = - 10771 - STI 4- 6a, v = - 8m - Wn + 6a.

420. It still remains to give formulae for the number of

conies satisfying five inseparable conditions, as for example (5)

the number of conies having contact of the fifth order with a

given curve. These numbers are found from an examination

of the case where a curve touched by the conies is a complex
of two other curves. Thus the conies having contact of the

fifth order with a complex of two curves, are made up of the

conies having like contact with the separate curves, and there-
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fore the expression for (5) must be such a function of
??z, n, cc,

that

&amp;lt;f&amp;gt; (m + m ,
n + w

,
a + a) = $ (w, rc, a) -|-

&amp;lt;j&amp;gt; (m ,
n

,
a ),

whence (5) is plainly of the form am + 5n -f ca. From sym

metry we must have a = l, and knowing the number of

sextactic conies when m 3, we determine a and c, and find

(5)
= -15m- 15ra + 9a.

So, in like manner, the conies (4, 1) are made up of the

conies having this contact with each of the separate curves,

and of the conies having the contact 4 with one curve and the

contact 1 with the other. The number of these last conies

is found by the formulae of the last article, so that we have

&amp;lt;j&amp;gt; (m 4 m ,
n + n, a 4 a

}
&amp;lt; (m, n, a) $ (m , n\ a

)
a known

function of m, rc,
a. By the process here indicated, Prof. Cayley

establishes the table :

(4, 1)
= - 8m2- 20mw - 8

2

-f 104 (m+ri) + 6a (m + n - 11),

(3, 2) =120 (m + n) + a (- m - 4n - 78) -f 3a
2

,

(3, 2, 1)
= -

Jwi
8 - 10m*n - lOwm* - |

+ 1 1 6mw + -45.
s - 434m -

H- a (f ?rc
2
+ 6?/i?2 -f \n*

- 6 m - 6
fn -f 291)

-
fa

2

,

(2, 2, 1)
= 24m2 + 54m?* + 24rc* - 468 (m -f n)

-f a (- 8m - 8/14- 327) + a
2

(Jm + JH - 12),

(2, 1, 1, 1)^
= 6m3+30m2

72+30m/i
2
+6?i

3- 11n (w+w)*+ 1320 (w+n)

+ a (Jm
3+ 7/zV -h mrc

a+ J^
3- *fm

2-2Qmn- J/n
a

+ ILJR.OT + AjJ-w
-

960) + a
2

(- fm -
:
&amp;gt;
+ 28),

(1,1,1,1,1) = T \ o (^
5 + n5

)
4- -&mn (m

3 + n
3

)
+ JwV (m + w)

(m
3
-}- n

3

)

- *$m
Wiw - 3

-Sp (m+ ?i) 4 a(- i?
3-

fm
2
rc-

Zeuthen and Cayley have also investigated formulas for the

cases where the conditions include contact with a curve at a

given point; and Cayley s memoir contains investigations of
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a formula of De Jonquieres, giving the number of curves of

the order r having with a given curve of the order m, t con

tacts of the order a, &, c, &c., and besides passing through p

points on the curve. But the subject is too extensive to be

here further treated of.

.

NOTE BY PROFESSOR CAYLEY ON ART. 416.

Some remarks may be added as to the analytical theory

of the degenerate forms of curves. As regards conies, a line-

pair can be represented in point-coordinates by an equation

of the form xy = Q- and reciprocally a point-pair can be re

presented in line-coordinates by an equation f??
=

0, but we

have to consider how the point-pair can be represented in

point-coordinates: an equation xz = is no adequate repre

sentation of the point-pair, but merely represents (as a two

fold or twice repeated line) the line joining the two points

of the point-pair, all traces of the points themselves being

lost in this representation : and it is to be noticed, that the

conic, or two-fold line xl =
0, or say (ax -f $y + yz)*

= is a

conic which, analytically, and (in an improper sense) geome

trically, satisfies the condition of touching any line ickatever ;

whereas the only proper tangents of a point-pair are the lines

which pass through one or other of the two points of the

point-pair.

The solution arises out of the notion of a point-pair, con

sidered as the limit of a conic, or say as an indefinitely flat

conic; we have to consider conies certain of the coefficients

whereof are infinitesimals, and which when the infinitesimal

coefficients actually vanish reduce themselves to two-fold lines;

and it is, moreover, necessary to consider the evanescent co

efficients as infinitesimals of different orders. Thus consider

the conies which pass through two given points, and touch two

given lines (four conditions) ;
take y = 0, z = for the given

lines, x for the line joining the given points, and (x
=

0,

y - az = 0), (x
=

0, y - /3z = 0) for the given points ;
the equation

of a conic satisfying the required conditions and containing one

arbitrary parameter 6, is

+ 20 V() xz + ff (y
-

as) (y
-

&z) = ;
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or, what is the same thing,

and this equation, considering therein as an infinitesimal, say
of the first order, represents the flat conic or point-pair composed
of the two given points. Comparing with the general equation

(a, 5, c, /,,}&amp;gt;,#, z)
2

=0,
we have

viz. a being taken to be finite, we have g and h infinitesimals

of the first order
; &, c, / infinitesimals of the second order

;
and

the four ratios *J(b) : V(c) : V(/) 9 h are so determined as to

satisfy the prescribed conditions.

Observe that the flat conic, considered as a conic passing

through the two given points and touching the two given

lines, is represented by a determinate equation, viz. consider

ing the condition imposed upon 6 (6
=

infinitesimal) as a de

termination of 0, the equation is a completely determinate

one; but considering the flat conic merely as a conic passing

through the two given points, the equation would contain

two arbitrary parameters, determinable if the flat conic was

subjected to the condition of touching two given lines, or to

any other two conditions.

Generally we may consider the equation of a curve of

the order n
;

such equation containing certain infinitesimal

coefficients, and when these vanish, reducing itself to a composite

equation P*QP...= ;
the equation in its original form represents

a curve which may be called the penultimate curve. Consider

the tangents from an arbitrary point to the penultimate curve
;

when this breaks up, the system of tangents reduces itself to

(1) the tangents from the fixed point to the several component
curves P=0, $ = 0, &c. respectively; (2) the lines through

the singular points of these same curves respectively; (3) the

lines through the points of intersection P=0, $ = 0, &c. of each

two of the component curves; these points, each reckoned a

proper number of times, are called &quot; fixed summits
;&quot; (4) the

lines from the fixed point to certain determinate points

called &quot;free summits&quot; on the several component curves P=0,
$ = 0, &c. respectively. We have thus a degenerate form
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of the n-thic curve, which may be regarded as consisting of

the component curves, each its proper number of times, and

of the foregoing points called summits, and is consequently

only inadequately represented by the ultimate equation

P*Q&amp;lt;*...= Q; the number and distribution of the summits

is not arbitrary, but is regulated by laws arising from the

consideration of the penultimate curve, and there are of

course for any given value of n various forms of degenerate

curve, according to the different ultimate forms P*Q?...= Q
9

and to the number and distribution of the summits on the

different component curves. The case of a quartic curve

having the ultimate form #y = has been considered by

Cayley, Comptes Rendus, t. LXXIV., p. 708 (March, 1872),

who states his conclusion as follows: &quot;there exists a quartic

curve the penultimate of x y
1 =

0, with nine free summits, three

of them on one of the lines (say the line # = 0), and which are

three of the intersections of the quartic by this line (the fourth

intersection being indefinitely near to the point c = 0, y = 0),

six situate at pleasure on the other line x =
;
and three fixed

summits at the intersection of the two lines.&quot;. Other forms

have been considered by Dr. Zeuthen, Comptes Rendus^ t. LXXV.

pp. 703 and 950 (September and October, 1872}, and some

other forms by Zeuthen
;

the whole question of the degenerate

forms of curves is one well deserving further investigation.

The question of the number of cubic curves satisfying given

elementary conditions (depending as it does on the consideration

of the degenerate forms of these curves) has been solved by
Maillard and Zeuthen

;
that of the number of quartic curves

has been solved by Dr. Zeuthen.

DDD





NOTES.

Art. 58, p. 48. On the equivalence of higher singularitier of curves to ordinary

singularities, see Professor H. J. S. Smith, &quot;On the higher singularities of plane

curves, Proceedings London Math. Soc. vi. 153
; Zeuthen, Math. Ann., X. 212.

Art. 151, p. 132. In connection with this theory see Cremona (Nouvelks Annalcs,

1864, p. 23) ;
also Schroter &quot; on a mode of generating cubics&quot;

;
Math. Ann. v. 50,

Durege &quot;on a cubic considered as the locus of the foci of a system of
conies,&quot;

Math. Ann. v. 83; and Clebsch &quot;on two methods of generating cubics,&quot; Math. Ann.

v. 422. Grassmann (Crelle, LII. 254) has generated a cubic as the locus of a point

such that the lines joining it to three fixed points meet three fixed lines in points

which lie on a right line.

Art. 161, p. 139. Investigations of a nature kindred to those of Sylvester on

residuation were made about the same time by Brill and Noether, Gottinger

Nachr., 1873, p. 116. An abstract is given by Fiedler in the notes to his translation

of this work.

p. 185. Add to the note &quot; See also a dissertation by Rosenow Breslau, 1873.&quot;

Art. 220, p. 191. The form in which S is written by Aronhold is as follows :

- S = (Vi - 2
)
2 +

(&amp;lt;V

-
&amp;lt;*3

2
) (be,

- V) + (aJj
-

a,*) (bf -
eft

+ (030,
- ma) (be

-
J,c2) + (&amp;lt;h

- a3&i) (Vi + eft,
- 2c2i)

+ (ma,
-

p. 212. Add to the note,
&quot; In the paper last mentioned Gundelfinger writes down

the 34 forms which constitute the system of concomitants to a ternary cubic, in

conformity with Gordau s theory, Math. Ann. I. 90. See also Gundelfinger s paper
Math. Ann., Tin. 136. On the subject of cubic curves Clebsch ought also to bo

consulted, Vorlesungen tiber Geometric, p. 497.&quot;

ON THE BITANGENTS OF A QUARTIC, BY PROFESSOR CATLEY.

THB equations of the 28 bitangents of a quartic curve were obtained in a very

elegant form by Eiemann in the paper
&quot; Zur Theorie der Abelschen Functionen fiir

den Fallp = 3,&quot; Werke, Leipzig, 1876, pp. 456472; and see also Weber s &quot;Theorie

der Abelschen Functionen vom Geschlecht
3,&quot; Berlin, 1876. Eiemann connects the

several bitangents with the characteristics of the 28 odd functions, thus obtaining for

them an algorithm which it is worth while to explain, but they will be given also

with the algorithm employed p. 231 et seq. of the present work, which is in fact the

more simple one. The characteristic of a triple 0-function is a symbol of the form

*fir t

a p y ,

where each of the letters is = or 1 ;
there are thus in all 64 such symbols, but they

are considered as odd or even according as the sum aa + 0/3* + yy is odd or even ;
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and the numbers of the odd and even characteristics are 28 and 36 respectively ; and,

as already mentioned, the 28 odd characteristics correspond to the 28 bitangenta

respectively.

We have x, y, z trilinear coordinates, a, (3, y, a, /3 , y
f

constants chosen at

pleasure, and then a
, /3&quot;, y&quot;

determinate constants, such that the equations

* + y+ z+ + n + =0,

yz =,

y&quot;z
+ & + ^ +1. = 0,

are equivalent to three independent equations ;
this being so, they determine

, TJ, $
each of them as a linear function of (x, y, z) ;

and the equations of the bitangents
of the curve J(o:) + 4(yn) + J(z) = (see Weber, p. 100) are

18
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Aberrancy of curvature. 97. 368.

Absolute invariant of a cubic, 144, 165.

Acnode, 25, 129.

of cubic constructed when stationary
tangents are given, 184.

Angle made by tangents with axis, 36.

with radius vector, 80.

sum of, given which tangents from a

point make with fixed line, 123.

between focal radii and tangent, 125.

Angle at which curves cut, unaltered by
certain transformations, 314.

Anharmonic, theorems of conies, their

analogues in cubics, 140.

ratio constant of pencil of tangents
from point on cubic. 144.

this ratio expressed in terms of fun
damental invariants. 199.

ratio unaltered by linear transforma

tion, 296.

ratios equal of tangents from two nodes
of quartic, 241.

Antipoints. 122.

Arc of evolute. length of. 88.

Archimedes, spiral of, 291.

Aronhold s invariants of cubics, 191.

discussion of bitangents of quartics.
238.

Asymptotes, their equation how found, 40.

how cut by any transversal, 113.

of cubic, 170.

Atkins on caustics, 101.

Bernoulli, on lemniscate, catenary and
logarithmic spiral, 44, 289, 293.

Bertini on rational transformation, 326.
Bicircular quartics, 126. 142, 241.
Bifid substitution, 232.

Biflecnodes, 217.

Bipartite cubics. 168.

Bitangents, general theory of, 342, &c.
of quartics. 111.220, 223.

Bitangential curve, of quartic, 223, 349,
357.

Brill, on transformation of curves, 329.
on residuation, 387, 389.

Brioschi, on nodal quartics. 389.
Canonical form, of equation of cubic,

188, 196.

general equation of cubic how reduced

to, 198.

Cardioide, 44, 252, 282.

Carnot, theorem of transversals, 109.

Cartesians, 101. 104, 126, 241, 244, 250.
Cartesian coordinates, how related to

trilinear, 6.

Casey, on bicircular quartics, 241.
Cassini s ovals, 44, 126,

Catenary, 287.

Caustics, 98, &c.
of parabola. 107.

Cayley on intersections of two curves,

21, 22.

on equivalence of higher singularities
to a union of simpler, 48.

modification of Pliicker s equations,
66.

on envelope of equation containing
independent parameters, 74.

on quasi-evolutes, 92.

on characteristics of parallel curves,
102.

on problem of negative pedals. 107.
on foci, 120.

on involution, and classification of

cubics, 162, 179.

his notation for equation of cubic,
189.

algorithm for bitangents of quartics,
230, 232.

on tangents from nodes of binodal

quartic, 241.

on cai tesians, 251.

on logarithmic curve, 287.
on skew reciprocals. 304.
on transformation of curves. 316.

solution of problem of bitangents.
341, 351, 355.

on sextactic points, 371.

on systems of curves, 372. 379.
on degenerate forms of curves, 383.
note on bitangents of quartic, 387.

Cayleyan of cubic, different definitions of.

151.

its equation, 190.

in point coordinates, 203.
of a system of conies, 225.
of a curve in general, 364.

. Centres, 115.

I

Central cubics, 164.

Centre of mean distances. 112.

of contacts of parallel tangent?. 119.
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Characteristics of reciprocal, 65.

of evolute, 94.

of parallel, 102.

of inverse curve and pedals, 106.

of system of conies, 372.

Chasles on contact of parallel tangents, 119.

on projection of cubics into central

cubics, 164.

on Cartesians, 241, 250.

on systems of curves, 372.

Circular points at infinity, 1, 83, 90, 119,124.
their coordinates, 7.

normal at, 94.

circular cubic, 126, 142, 248.

Circular coordinates, 7.

Cissoid, 84, 182.

Class of a curve how connected with its

order, 54.

Clebsch, on unicursal cubics, 188.

on canonical form of a quartic, 265.

on Jacobians, 359.

on generation of cubics, 387.
on symbolical notation, 343.

Clifford, on Miquel s theorem, 128.

Conchoid of Nicomedes, 44.

Condition that curve should have a double

point, 55.

a cusp, 58.

a point of undulation, 362.

that two curves should touch, 80.

that four consecutive points on curve
should lie in a circle, 97.

that cubic should be sum of three

cubes, 197.

should represent three lines, 197.

a conic and a line, 210.

that quartic should be sum of five

fourth powers, 265.

Contact of conies with cubics, 135, 207.
with curves in general, 368.

Contravariants of cubic, 190, 204.

of quartic, 264, 271, 273.

Coresiduals, 134.

Correspondence of two points on a cubic,
132.

on Hessian, 149.

general theory of, 255, 324, 331.

Cotes, theorem of harmonic means, 115.
Covariants of cubics, 189, 200.

of quarcics, 264, 269, 273.

Cramer on intersections of two curves, 22.
on points of visible inflexion, 37.

on tracing of curves, 43.

Cremona, on Cayleyans, 151.

on transformation of curves, 316.
on nodal quartics, 3.

Critic centres of system of cubics, 160,

174, 178.

of cubic and Hessian, 200.

Crunodes, 24, 129.

Curvature, centre and radius of, 84, 86.

of roulettes, 284.

aberrancy of, 368.

Cusps, 25, 48, 58.

curvature at, 87.

Cuspidal cubics, 180.

Cycloid, 275.-

Dandelin on caustic?, 99.

Deficiency of a curve defined, 30.
same for curve and its reciprocal, 66.
or for any curve connected with it by

linear correspondence, 97.

unaltered by Cremona transforma

tion, 321.

or any rational transformation,326,33 1 .

Degenerate forms of curves, 377, 383.
De Jonquieres on systems of curves,372,383.
De Morgan on Newton s process for finding

figure of curve at multiple point, 46.

Des Cartes (see Cartesians), on the cycloid,
278.

on the logarithmic spiral, 293.

Descriptive properties, 1, 82.

Diameters, 112.

Diodes, the cissoid, 182.

Discriminant of a curve defined, 55.

of a cubic expressed in terms of

fundamental invariants, 159, 196,

199, 210.

expressed as a determinant, 211.

of discriminant, 360.

Divergent parabolas, 164, 166, 173, 176.

Double points, their species, 24.

equivalent to how many conditions, 28.

limit to their number, 28.

Duality, geometrical, 12.

Durege, on cubic considered as locus of

foci, 387.

Envelopes, general theory of, 67.

of line whose equation is algebraic
function of parameter, 70.

of line whose intercept between two
lines is constant, 102, (see also 69,

84), 283.

of line joining feet of perpendiculars
from point on circle on sides of

inscribed triangle, 283.

of line joining corresponding points
on cubic, 133.

Equitangential curve, 290.

Epicycloids, 278.

Euler, on intersections of two curves, 22.

on epicycloids, 279.

on logarithmic curve, 286.

Evectants of invariants S and T, 191, 194.

Evolutes of conies, 41, 83.

of curves generally, 82.

tangential equation of, 89.

characteristics of, 94.

confocal with curve, 124.

Flecnodes, 217.

Foci, general theory of, 119.

locus of foci under certain conditions,
127.

of circular cubic lie on circles, 248.

of bicircular quartic, 242.

Galileo, on the cycloid, 277.

on the catenary, 289.

Geiser. on bitangents of quartics, 231.

Gergonne, on intersections of two curves,
22.

Gordan, on number of concomitants to u

cubic, 387.
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Grassman, on generation of cubics, 387.

Gregory, on tracing of curves, 43.

on logarithmic curve, 287.

Groups, of cubics, Pliicker s, 178.

Guldenfinger, on concomitants of cubics,
387?

Haase, on unicursal cubics, 185.

Harmonic mean of radii. 115.

pencil by chords of cubic. 133.

polar of point of inflexion of cubic,

146, 203.

Hart, construction for ninth point common
to all cubics passing through eight,
140.

theorem that foci of a circular cubic

lie on circles, 145.

proof of Hesse s theorem on inflexions

of cubics. 148.

on foci of bicircular quartic, 242.

theorem that confocals cut at right

angles, 248.

on logarithmic curve. 287.

Hesse, his theorem that inflexions of cubic

are also inflexions of Hessian, 148.

algorithm for bitangents of a quartic,

230, 234.

reduction of bitangential of quartic,
344.

Hessian, defined, 57.

passes through points of inflexion,

59, 87.

of cubic, its equation, 190.

of quartic. 223.

of Hessian of cubic, 196.

of UV, 212.

Homographic, tangents from nodes of a
binodal quartic are, 241.

transformation, 295.

Huyghens, on evolutes, 88.

on the cycloid, 278.

Hyperbolas, cubical, 170, &amp;lt;tc.

Hyperbolism of any curve, 178.

Hyperelliptic integrals, 330.

Identical equation for cubic, 205.

Igel, on unicursal cubics, 185.

Independent parameters, envelope with, 74.

Infinity, pole of, 117.

normal at, 94.

satellite of, 131.

polar conic of, with respect to cubic,
158.

Inflexion, points of, 33.

tangent at it double, 34.

curve there crosses tangent, 35.

number of, 59.

three inflexions of cubics lie on a

right line. 110. 131.

inverse of this theorem, 312.

real for acnodal cubics, imaginary
for crunodal. 184.

of quartics, how many real, 221.

Inflexional tangents of cubic touch Hes
sian. 152.

equation of system of, 203.

Ingrarn, on inversion, 312.

Interscendental curves, 275.

Intersections of curves, 16.

Inversion, 106.

characteristics of inverse curves, 106.
of parabola, 183.

applied to obtain focal properties,
252.

in wider sense of word. 254.

a case of quadric transformation, 310.

applications of the method, 311.
Involute of circle, 290.

Jacobi, on intersection of two curves, 22.

Jacobian of three curves. 150.

of a system of conies, 225.

common point of three curves of same
degree is double point on, 160, 358.

properties of, 357.

Joachimsthal. his method of determining
point where line meets curve, 49.

Jungius, on catenary, 289.

Keratoid cusps, 48.

Kirkman, on Pascal s hexagon, 19.

Leibnitz, on interscendental curves, 275.

Lemniscate, 44.

Lima9on, 44. 99, 252, 282.

Line coordinates, 9.

Linear transformation, 295.

Lituus. 292.

Locus, of common vertex of two triangles,
whose bases are given, and vertical

angles have given difference, 142.

of point whence tangents to a curve
have given invariant relation. 79.

whence tangents make with fixed

line angles whose sum is given,
123.

of nodes of all nodal cubics through
seven fixed points, 160.

Logarithmic curve, 286.

spiral, 292.

Liiroth, on special class of quartics, 265.

MacLaurin s, general theorem on curves,
117.

theory of correspondence of points on
a cubic, 133.

on harmonic polars of inflexions of

cubic, 146.

Magnus, on reduction of homographic
transformation to projection, 299.

Maillard. on number of cubics satisfying

elementary conditions, 385.

Mersenne, on cycloid, 277.

Metrical theorems defined, 1, 108.

Miquel s theorem, 128.

Multiple points, equivalent to how many
nodes, 28.

how related to polar curves, 52.

how affect points of inflexion, 60.

number of tangents from, 63.

Multiple tangents, 32, 52.

Newton s process for finding figure of

curve at multiple point, 46.

theorem of ratio of rectangles, 108.

on diameters, 112.

EEE
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Newton, on intercept between curve and

asymptotes, 113.

theorem that a cubic may be projected
into one of the five parabolas, 164.

classification of cubics, 176.

description of cissoid by continuous

motion, 183.

Newton s rectification of epicycloids, 284.

Nicomedes, conchoid of, 44.

Node cusps, 214.

Normal, 89.

of point at infinity, 94
Number of terms in general equation,

15.

of conditions which determine a

curve, 15.

of tangents to a curve from a given
point, 54.

of conies which touch five given
curves, 375.

satisfying any five conditions of con

tact, 382.

Oscnodes, 216.

Osculating conies, 368, &c.

Oval, no real tangents can be drawn to

cubic from, 167.

a quartic may have four, 219.

Parabola, cubical and semicubical, 83, 176.

divergent of the third degree, 164.

Parallel curve to a conic, equation of, 70.

tangential equation of, 103.

characteristics in general, 102.

Parallel tangents, have fixed point as

centre of mean distance of their

contacts, 119.

Parametric expression of point on unicursal

cubic, 185.

on cubic in general, 329, 338.
on unicursal quartic, 260.
on nodal quartic, 330.

Partitivity of cubics, 168.

of quartics, 219.

limit in general, 220.

Pascal, theorem of hexagon derived from

theory of cubics, 19.

limaQon, 44, 99.

on cycloid. 278.

Pedal, of a curve, 99, 105.

negative, 105, 106.

Perpendicularity, extension of relation,

82, 93.

Pippian of cubic, 151.

Pliicker, on intersection of curves, 22.

on degree of reciprocal, 54.

his equations connecting reciprocal

singularities, 65.

on theorem of transversals, 110.

on foci, 119.

classification of cubics, 161, 178.
on forms of quartics, 219.

on bitangents of quartics, 227.

Poles and polurs,

general theory of, 49, 115, 357, &c.
in case of cubics, 142.

polar of point with regard to triangle,

.4, 143.

Poles and polars,
of infinity with regard to a curve of

the nlh class, 119.
first polar contains points of contact

of tangents, 53.

polar conic of line, with regard to

cubic, 156.

Polar coordinates, problems discussed in,

23, 79, 88, 108, 112, 116.

Polygons, problem of inscription of, in

conies, 253, 337.
in cubics, 181, 338.
in quartics. 253.

Poncelet, on number of tangents to a
curve from any point, 54.

on inscription of polygons in curves,
253, 339.

Projection, of cubics, 164, 169.

a homographic transformation, 298.

Pursuit, curves of, 290.

Quadrangle formed by contacts of tangents
from point on cubic, 132. 206.

Quasi evolutes and quasi normals, 90, 182.

Quetelet, on caustics, 99.

Ramphoid cusps, 48, 214.
Rational expression for coordinates of

point on unicursal curve, 30, 185, 260.

transformation, 308.

Reciprocal of a curve, its degree, 54.
characteristics of, 65.

method of finding equation of, 67, 76.
of a cubic, 76, 158, 193.
of a quartic, 78, 223.

in polar coordinates, 79.

skew reciprocals, 306.

Residuation, Sylvester s theory of, 134.
for cuspidal cubics, 180.

Riemann, on constancy of deficiency, 326.
on bitangents to a quartic, 387.

Roberts, on problem of parallels and
negative pedals, 105.

on transformation of curves, 313.

Roberval, on the cycloid, 278.

Roerner, on epicycloids, 284.

Roulettes, 284,

Satellite of a line with respect to a cubic,

130,
of line infinity, 131,

envelope of, 162,
used in classification, 161, 178,

Schroter, on generation of cubics, 387.
Sextactic points on cubics, 135.

on curves in general, 371.

Signs of coordinates, how determined, 3.

Singularities, higher equivalent to a union
of simpler, 49.

which to be counted ordinary, 64.

Sinusoid, 285.
Skew reciprocals, 306.

Smith, on singularities of curves, 387.

Spinodes, 25.

Spirals, 291.

Stationary points, 25.

tangents, 33.

of cubic touch Hessian, 153.
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Stationary tangents,equation of system,203.

Steiner, on hexagon, 19.

on inscription of polygons in quartics,
253.

on bitangents of quartics, 234.

on curve enveloping line joining feet

of three perpendiculars, 283.

on circles osculating conic and passing

through given point, 312.

on systems of curves, 360.

Steinerian defined, 57.

identical with Hessian in case of

cubic, 150.

its properties, 363.

Steiner-Hessian. 364.

Stubbs, on inversion, 312.

Sylvester s theory of residuation, 134.

Symbolical form of equation of reciprocal.
77.

of locus of points, whence tangents
satisfy invariant relation, 79.

Systems of curves, 372.

Syntractrix, 289.

Tacnode, 214.

cusp, 214.

Tact-invariant of two curves, 80. 360.

Tangent, at origin, equation .of. 23.

from any point, points of contact,
how determined. 53.

how specially related in case of cubic.

132.

equation of system, 61, 78.

from a multiple point, 63.

locus of point if sum of angles made
with by a fixed line be constant, 123.

if tangents fulfil invariant relation, 79.

Tangential coordinates, 9.

particular cases of, 10.

equation of evolutes. 89.

of a point with respect to a cubic,

130, 180, 20(5.

Tangential,
its coordinates, how found, 156.

points of a curve, how related, 38.

curve, mode of finding its equation,
352.

Tracing of curves, 40.

Tractrix. 289.

Transformation of curves, 294.

Transon, aberrancy of curvature, 368.

Tricuspidal quartics, 258.

Trident, 176.

Trinodal quartic, properties of, 254.

tangents at or from nodes touch conic,
256.

Triple points, their species, 27.

Tschirnhausen on caustics, 98.

Twinpair sheet of cones, 165.

Undulation, point of, 37.

in case of quartics, 218.

general condition for, 362.

Unicursal curve, defined, 31, 69, 107.

cubics, 168, 179.

quartics, 254.

correspondence of points on, 332.

Unipartite cubics, 168.

United points of correspondence, 332.

Vincent, on logarithmic curve, 286.

&quot;Walker on invariants of quartics, 274.

Waring on number of tangents to a curve
from any point, 54.

Wallace on catenary, 288.

Weber, on Abelian functions, 387.

Wren on cycloid, 278.

Zeuthen, proof that deficiency is unaltered

by rational transformation, 326.
on bitangents to a quartic. 220.

on systems of curves, 377, 385.
on singularities of curves, 387.

THE END.
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