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PREFACE

Since the publication of the first edition of this treatise, in

1889, many advances have been made in Hydraulics. Some of

these have been briefly 'noted in later editions, but to properly
record and correlate them it has now become necessary to

rewrite and reset the book. In so doing the author has en-

deavored to incorporate other features that have been suggested

to him by teachers and engineers, to whom he here expresses

his thanks. All of these suggestions could not be followed, foi

thereby the work would have been expanded to two volumes.

Indeed the question as to what should be left out has often been

a more difficult one than that as to what should be inserted, and

the author has made the decision from the point of view of the

probable benefit that may accrue to students in engineering

colleges and to engineers in ordinary conditions of practice.

The same plan of arrangement as in former editions has

been followed, but two new chapters have been added, one on

Hydraulic Instruments and Observations which treats of the

methods of measuring pressures and velocities, and another on

Pumps and Pumping in which the various machines for raising

water are discussed from a hydraulic point of view. Among
the new topics introduced in the other chapters may be noted

the vortex whirl that occurs in emptying a vessel, new coeffi-

cients for dams and for steel and wood pipes, the loss of head in

pipes due to curvature, branched circuits or diversions in pipe

systems, the influence of piers in producing backwater, canals

for water-power plants, discharge curves for rivers, the tidal

and the land bore, w^ter-supply estimates, water hammer in

pipes, the stability of a ship, and hydraulic-electric analogies.

Many new examples and problems are given and in these the

author has endeavored not only to exemplify the theory of the

subject, but also to illustrate the conditions of actual practice.

Historical notes and references to hydraulic literature are

presented with greater fullness than before. The number of

iii
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articles has been increased from 164 to 196, the number of cuts

from 123 to 199, the number of tables from 29 to 55, the num-
ber of problems from 190 to 330, and the number of pages from

x+ 427 to viii +585.

Many letters from foreign countries have urged the author

to introduce the metric system of measures into the book. To
meet this demand, the most important metric data, coefficients,

formulas, and problems are given at the end of each chapter,
and the student who follows these will have no occasion to

transform English measures, but may learn to think in metric

units and to use them without hesitation. The hydraulic tables

have been gathered together at the end of the volume, instead

of being scattered throughout the text, and it is believed that

this plan affords the advantage that a table can be more readily

found. The most important tables are presented both in the

English and in the metric system, the latter not being a mere

transformation of the former, but being arranged to be used
with metric arguments.

In former editions of this work, as in most other books, the

numbers of the articles, formulas, cuts, and problems were con-

secutive and independent. In this edition, however, only the

articles are numbered consecutively, while the number of any
formula, cut, or problem agrees with that of the article and this

number is placed at the top of the right-hand page. While the

main purpose in rewriting the book has been to keep it abreast

with modern progress, the attempt has also been made to pre-
sent the subject more concisely and clearly than before, in

order to advance the interests of thorough education and to

promote sound engineering practice.

MANSFIELD MERRIMAN.

UNIVERSITY, SOUTH BETHI.EHEM, PA.,

April, 1903.
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TREATISE ON HYDRAULICS

CHAPTER I

FUNDAMENTAL DATA

ART. 1. HISTORICAL NOTES

Hydraulics is that branch of the mechanics of fluids

which treats of water in motion, while Hydrostatics treats

of water at rest. These two branches are sometimes

regarded as a part of Hydromechanics, the name of the

mechanics of fluids and gases. While the main purpose
of this book is to treat of water in motion, the most im-

portant principles of hydrostatics will also be discussed,

since these are necessary for a complete development of

the laws of flow. The word Hydraulics is hence here used

as closely synonymous with the hydromechanics of water.

Hydraulics is a modern science which is still far from

perfect. Archimedes, about 250 B.C., established a few

of the principles of hydrostatics and showed that the

weight of an immersed body was less than its weight in

air by the weight of the water that it displaces. Chain

and bucket pumps were used at this period by the Egyp-
tians, and the force pump was invented by Ctesibius about

120 B.C. The Romans built aqueducts as early as 300

B.C., and later used earthen and lead pipes to convey water

from them to their houses. They knew that water would

rise in such a pipe to the same level as in the aqueduct
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and that a slope was necessary to cause flow in the latter,

but had no conception of such a simple quantity as a

cubic foot per minute. But after the destruction of Rome,
in 475 A -D -> even this slight knowledge was lost and Europe,
for a thousand years sunk in barbarism, made no scientific

inquiries until the Renaissance period began.

Galileo, in 1630, studied the subject of the flotation of

bodies in water, and a little later his pupils Castelli and
Torricelli made notable discoveries, the former on the

flow of water in rivers and the latter on the height of a

jet issuing from an orifice. Pascal, about 1650, extended

Torricelli 's researches on the influence of atmospheric

pressure in causing liquids to rise in a vacuum. Mariotte,
about 1680, was the first to consider the influence of fric-

tion in retarding the flow in pipes and channels, and Newton,
in 1685, was the first to note the contraction of a jet issuing

from an orifice.

During the eighteenth century notable advances were

made. > Daniel and John Bernoulli extended the theory
of the equilibrium and motion of fluids, and this theory
was much improved and generalized by D'AlemberL

Bossut and Dubuat made experiments on the flow of water

in pipes and deduced practical coefficients, while Chezy
and Prony, near the close of the century, established

general formulas for computing velocity and discharge.

During the nineteenth century progress in every branch

of hydraulics was great and rapid. Eytelwein, Weisbach,
and Hagen stood high among German experimenters';

Venturi and Bidone among those of Italy ; Poncelet, Darcy,
and Bazin among those of France

;
while Kutter in Switzer-

land, Rankine in England, and James B. Francis and
Hamilton Smith in America also took high rank for either

practical or theoretical investigations. By the experiments
and discussions of these and many other engineers the

necessary coefficients for the discussion of orifices, weirs>
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jets, pipes, conduits, "and rivers have been determined and
the theory of the flow of water has been much extended

and perfected. The invention of the turbine by Fourneyron
in 1827 exerted much influence upon the development of

water power, while the studies necessary for the construc-

tion of canals and for the improvement of rivers and har-

bors have greatly promoted hydraulic science. In this

advance the engineers of the United States have done good
work during the latter part of the nineteenth century, as

is shown by the numerous valuable papers published in

the Transactions of the American engineering societies,

many of which will be cited in the following pages.

Galileo said in 1630 that the laws controlling the motion

of the planets in their celestial orbits were better understood

than those governing the motion of water on the surface

of the earth. This is true to-day, for the theory of the flow

of water in pipes and channels has not yet been perfected.

Experiment is now in advance of theory, but it is the pur-

pose of the author to present both in this volume as far

as practicable, for each is necessary to a satisfactory under-

standing of the other.

Prob. 1. Rankine published in the Philosophical Maga-
zine of September, 1858, the following anagram of 219 letters

which contains his discovery regarding the hydraulic resistance

to the motion of a boat: 2oa, 46, 6c, gd, 34?, 8/, 4g, i6h, loi,

5/ f 3w, isw, 140, 4P, sq, nr, 135, 25*, 4^, 2V, 2W, ix, $y. What
is its meaning?

ART. 2. UNITS OF MEASURE

The unit of linear measure universally used in English
and American hydraulic literature is the foot, which is de-

fined as one-third of the standard yard. For some minor

purposes, such as the designation of the diameters of orifices

and pipes, the inch is employed, but inches should always
be reduced to feet for use in hydraulic formulas. The unit

of superficial measure is usually the square foot, except
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for the expression of the intensity of pressures, when the

sqxiare inch is more commonly employed.

The units of volume employed in measuring water are

the cubic foot and the gallon, but the latter must always
be reduced to cubic feet for use in hydraulic formulas.

In Great Britain and its colonies the Imperial gallon is

used, but in the United States the old English gallon has

continued to be employed, and the former is 20 percent

larger than the latter. The following are the relations

between the cubic foot and the two gallons :

i cubic foot =6.232 Imp. gallons= 7.48 1 U. S. gallons;

i Imp. gallon = o.i6o5 cubic feet =1.200 U. S. gallons;

i U. S. gallon = 0.1 33 7 cubic feet =0.8331 Imp. gallons;

In this book the word gallon will always mean the United

States gallon of 231 cubic inches, unless otherwise stated.

The unit of force is the force exerted by gravity on the

avoirdupois pound, which is also the unit for measuring

weights and pressures of water. The intensity of pressure

is measured in pounds per square foot or in pounds per

square inch, as may be most convenient, and sometimes in

atmospheres. Gages for recording the pressure of water

are usually graduated to read pounds per square inch.

The unit of time to be used in all hydraulic formulas is

the second, although in numerical problems the time is

often stated in minutes, hours, or days. Velocity is de-

nned as the space passed over by a body in one second, under

the condition of uniform motion, so that velocities are to be

always expressed in feet per second, or are to be reduced

to these units if stated in miles per hour or otherwise.

Acceleration is the velocity gained in one second, and it is

measured in feet per second per second.

The unit of work is the foot-pound ;
that is, one pound

lifted 'through a vertical distance of one foot. Energy is

work which can be done
;
for example, a moving stream of
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water has the ability to do a certain amount of work by
virtue of the quantity of moving water and its velocity, and
this is called kinetic energy. Again, a quantity of water
at the top of a fall has the ability to do a certain amount
of work by virtue of its height above the foot of the fall,

and this is called potential energy. Potential energy
changes into kinetic energy as the water drops, and kinetic

energy is either changed into heat or is transformed, by
means of a water motor, into useful work. Power is work
or energy, done or existing in a specified time, and the

unit for its measure is the horse-power, which is 550 foot-

pounds per second.

In French and German literature the metric system of

measure is employed and this is far more convenient than

the English one in hydraulic computations. This system
is understood and more or less used in all countries, and
its universal adoption is sure to occur during the present

century, but the time has not yet come when an American

engineering book can be prepared wholly in metric meas-

ures. This treatise will, therefore, mainly use the English
units described above, but at the close of most of the

chapters hydraulic data and empirical formulas will be

given in metric measures. At the end of the volume the

most important tables will be found in both systems.

Tables 1 and 2 give the fundamental hydraulic constants,

while Tables 3 and 4 show the equivalents in each system
of the principal units in the other system.

Prob. 2. If 1600 pounds of water fall every second from a

height of 1 6 feet, what is the greatest horse-power that can

be developed by the stream?

ART. 3. PHYSICAL PROPERTIES OF WATER

At ordinary temperatures pure water is a colorless liquid

which possesses perfect fluidity; that is, its particles have

the capacity of moving over each other, so that the slightest
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disturbance of equilibrium causes a flow. It is a conse-

quence of this property that the surface of still water is

always level; also, if

several vessels or tubes

be connected, as in Fig.

,
f^ |

3, and water be poured
\-/ into one of them, it

rises in the others until,

when equilibrium ensues, the free surfaces are in the same

level plane.

The free surface of water is in a different molecular

condition from the other portions, its particles being drawn

together by stronger attractive forces, so as to form what

may be called the
" skin of the water," upon which insects

walk. The skin is not immediately pierced by a sharp

point which moves slowly upward toward it, but a slight

elevation occurs, and this property enables precise determi-

nations of the level of still water to be made by means of

the hook gage (Art. 35).

At about 32 degrees Fahrenheit a great alteration in the

molecular constitution of water occurs, and ice is formed.

If a quantity of water be kept in a perfectly quiet condition,

it is found that its temperature can be reduced to 20 or

even to 15 Fahrenheit, before congelation takes place,

but at the moment when this occurs the temperature rises

to 32. The freezing-point is hence not constant, but the

melting-point of ice is always at the same temperature of

32 Fahrenheit or o centigrade.

Ice being lighter than water, forms as a rule upon its

surface ;
but when water is in rapid motion a variety called

anchor ice may occur. In this case the ice is formed at the

surface in the shape of small needles, which are quickly
carried to the lower strata by the agitation due to the

motion
;
there the needles adhere to the bed of the stream,

sometimes accumulating so as to raise the water level
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several feet.* Anchor ice sometimes causes obstruction in

conduits leading to water motors or even clogs and stops

the motors themselves.

Water is a solvent of high efficiency, and is therefore

never found pure in nature. Descending in the form of rain

it absorbs dust and gaseous impurities from the atmosphere ;

flowing over the surface of the earth it absorbs organic

and mineral substances. These affect its weight only

slightly as long as it remains fresh, but when it has reached

the sea and become salt its weight is increased more than

two percent. The flow of water through orifices is only in

a very slight degree affected by the impurities held in

solution, but in the flow through pipes they often cause

incrustation or corrosion which increases the roughness of

the surface and diminishes the velocity.

The capacity of water for heat, the latent heat evolved

when it freezes, and that absorbed when it is transformed

into steam, need not be considered for the purposes of

hydraulic investigations. Other physical properties, such

as its variation in volume with the temperature, its com-

pressibility, and its capacity for transmitting pressures, are

discussed in the following pages. The laws which govern
its pressure, flow, and energy under various circumstances

belong to the science of Hydraulics, and form the subject-

matter of this volume.

Prob. 3. How many degrees centigrade are equivalent to

15 Fahrenheit? How many degrees Fahrenheit are equiv-
alent to 25 centigrade?

ART. 4. THE WEIGHT OF WATER

The weight of water per unit of volume depends upon
the temperature and upon its degree of purity. The

* Francis, Transactions of the American Society of Civil Engineers, 1884,

vol. 10, p. 192.
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following approximate values are, however, those generally

employed except when great precision is required:

i cubic foot weighs 62.5 pounds,
i U.S. gallon weighs 8.355 pounds.

These values will be used in this book, unless otherwise

stated, in the solution of the examples and problems.

The weight per unit of volume of pure distilled water is

the greatest at the temperature of its maximum density,

39. 3 Fahrenheit, and least at the boiling-point. For

ordinary computations the variation in weight due to

temperature is not considered, but in tests of the efficiency

of hydraulic motors and of pumps it should be regarded.

Table 7 at the end of this book contains the weights of one

cubic foot of- pure water at different temperatures as de-

duced by Smith from the experiments of Rossetti.*

Waters of rivers, springs, and lakes hold m suspension
and solution inorganic matters which cause the weight per
unit of volume to be slightly greater than for pure water.

River waters are usually between 62.3 and 62.6 pounds per
cubic foot, depending upon the amount of impurities and
on the temperature, while the water of some mineral springs

has been found to be as high as 62.7. It appears that, in

the absence of specific information regarding a particular

water, the weight 62.5 pounds per cubic foot is a fair

approximate value to use. It also has the advantage
of being a convenient number in computations, for 62.5

pounds is 1000 ounces, or -f$- is the equivalent of 62.5.

Brackish and salt waters are always much heavier than

fresh.water. For the Gulf of Mexico the weight per cubic

foot is about 63.9, for the oceans about 64.1, while for the

Dead Sea there is stated the value 73 pounds per cubic foot.

* Hamilton Smith, Jr., Hydraulics: The Flow of Water through
Orifices over. Weirs, and through open Conduits and Pipes (London and

New York, 1886), p. 14.
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The weight of ice per cubic foot varies from 57.2 to 57.5

pounds. The sewage of American cities is impure water
which weighs from 62.4 to 62.7 pounds per cubic foot, but
the sewage of European cities is somewhat heavier on
account of the smaller amount of water that is turned

into the sewers.

Prob. 4. How many gallons of water are contained in a

pipe 6 inches in diameter and 12 feet long? How many pounds?

ART. 5. ATMOSPHERIC PRESSURE

Torricelli in 1643 discovered that the atmospheric

pressure would cause mercury to rise in a tube from which

the air had been exhausted. This instrument is called the

mercury barometer, and owing to the great density of

mercury the height of the column required to balance the

atmospheric pressure is only about 30 inches. When
water is used in the vacuum tube the height of the column
is about 34 feet. In both cases the weight of the barometric

column is equal to the weight of a column of air of the

same cross-section as that of the tube, both columns being
measured upward from the common surface of contact.

The atmosphere exerts its pressure with varying inten-

sity as indicated by the readings of the mercury barometer.

At and near the sea level the average reading is 30 inches,

and as mercury weighs 0.49 pounds per cubic inch at com-
mon temperatures, the average atmospheric pressure is

taken to be 30X0.49 or 14.7 pounds per square inch. The

pressure of one atmosphere is therefore defined to be a

pressure of 14.7 pounds per square inch. Then a pressure
of two atmospheres is 29.4 pounds per square inch. And
conversely, a pressure of 100 pounds per square inch may
be expressed as a pressure of 6.8 atmospheres.

Pascal in 1646 carried a mercury barometer to the top
of a mountain and found that the height of the mercury
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column decreased as he ascended. It was thus definitely

proved that the cause of the ascent of the liquid in the

vacuum tube was due to the pressure of the air. Since

mercury is 13.6 times heavier than water a column of water

should rise to a height of 30X13.6=408 inches = 34 feet

under the pressure of one atmosphere, and this was also

found to be the case. A water barometer is impracticable
for use in measuring atmospheric pressures, but it is con-

venient to know its approximate height corresponding to

a given height of the mercury barometer. Table 9 at the

end of this volume shows heights of the mercury and water

barometers, with the corresponding pressures in pounds per

square inch and in atmospheres. It also gives, in the fifth

column, values from the vertical scale of altitudes used in

barometric leveling which show approximate elevations

above sea level corresponding to barometer readings,

provided that the reading at sea level is 30 inches.* In the

last column are approximate boiling-points of water cor-

responding to the readings of the mercury barometer.

The atmospheric pressure must be taken into account

in many computations on the flow of water in tubes and

pipes. It is this pressure that causes water to flow in

syphons and to rise in tubes from which the air has been

exhausted. By virtue of this pressure the suction pump
is rendered possible, and all forms of injector pumps depend

upon it to a certain degree. On a planet without an atmos-

phere many of the phenomena of hydraulics would be quite

different from those observed on this earth.

Prob. 5a. Find from Table 9 the height of the mercury
barometer when the boiling-point of water is 205 Fahrenheit.

Prob. 5b. A mercury barometer reads 29.66 inches at the

foot of a hill, and at the same time another barometer reads

28.56 inches at the top. What is the difference in height be-

tween the two stations?

* Plympton, The Aneroid Barometer (New York, 1885), p. 88.
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ART. 6. COMPRESSIBILITY OF WATER

The popular opinion that water is incompressible .s not

justified by experiments, which show in fact that it is more

compressible than iron or even timber within the elastic

limit. These experiments indicate that the amount of

compression is directly proportional to the applied pressure,

and that water is perfectly elastic, recovering its original

form on the removal of the pressure. The decrease in the

unit of volume caused by a pressure of one atmosphere

varies, according to the experiments of Grassi, from 0.000051
at 35 Fahrenheit to 0.000045 at 8 Fahrenheit.* As a

mean value 0.00005 may be taken for this cubical unit-

compression.

A vertical column of water accordingly increases in

density from the surface downward. If its weight at the

surface be 62.5 pounds per cubic foot, at a depth of 34
feet the weight of a cubic foot will be

62.5(1 +0.00005) =62.503 pounds,

and at a depth of 340 feet a cubic foot will weigh

62.5(1 +0.0005) = 62.53 pounds.

The variation in weight, due to compressibility, is hence too

small to be regarded in hydrostatic computations.

The modulus of elasticity of volume for water is the

ratio of the unit-stress to the cubical unit-compression, or

E= '- -^ =294 ooo pounds per square inch.
0.00005

The modulus of elasticity of volume for steel, when subjected

to uniform hydrostatic pressure, is the same as the com-

mon modulus due to stress in one direction only, or E =

30 ooo ooo pounds per square inch. Hence water is about

100 times more compressible than steel.

* Grassi, Annales de chemie et physique, 1851, vol. 31, p. 437.
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The velocity of sound or stress in any substance is given

by the formula u = \/Eg/w, where w is the weight of a

cubic unit of the material weighed by a spring balance at

the place where the acceleration of gravity is g (Art. 7).

For water having 1^ = 62.4 pounds per cubic foot at a place

where g = 32 . 2 feet per second per second, and E = 42 300 ooo

pounds per square foot, this formula gives 24 = 4670 feet

per second for the velocity of sound, which agrees well

with the results of experiments.

In order to deduce the above formula for the velocity

of stress it is necessary to use some of the fundamental

principles of elementary mechanics and of the mechanics

of elastic bodies. Let a free rigid body of weight W be

acted upon for one second by a constant force F and let

/ be the velocity of the body at the end of one second.

Let g be the velocity gained in one second byW when falling

under the action of the constant force of gravity. Then,
since forces are proportional to their accelerations,

F/W-f/g or F-W.f/g

and during the second of time the body has moved the

distance J/. Now, consider a long elastic bar of the length

u, so that a force applied at one end will be felt at the other

end in one second, it being propagated by virtue of the

elasticity of the material. Let A be the area of the cross-

section of the bar and E the modulus or coefficient of

elasticity of the material. When a constant compressive
force jp is applied to the bar the shortening ultimately

produced is zFu/AE* but if this be done for one second

only the elongation is only half this amount, since the first

increment of stress is just reaching the other end of the bar

at the end of the second. The center of gravity of the bar

has then moved through the distance ^Fu/AE, and its

velocity v is Fu/AE. If w be the weight of a cubic unit of

*Merriman's Mechanics of Materials (New York, 1902), pp. 13, 197.
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the material, the weight W is wAu. Inserting these values

of v and W in the above equation, there is found

F Fu \Eg
^r = , F whence ^=Nj -

(6)wAu AEg >* w

which is the formula for the propagation of sound or stress

in elastic materials first established by Newton.

Prob. 6a. Compute the velocity of sound in distilled water

at 35 and also at 80 Fahrenheit.

Prob. 66. If the weight of a cubic foot of water at the sur-

face of the ocean is 64.3 pounds, what is the weight of a cubic

foot at the depth of two miles?

ART. 7. ACCELERATION DUE TO GRAVITY

The motion of water in river channels,, and its flow

through orifices and pipes, is produced by the force of gravity.

This force is proportional to the acceleration of the velocity

of a body falling freely in a vacuum
;
that is, to the increase

in velocity in one seetfnd. Acceleration is measured in feet

per second per second, so that its numerical value represents

the number of feet per second which have been gained in

one second. The letter g is used to denote the acceleration

of a falling body near the surface of the earth. In pure
mechanics g is found in all formulas relating to falling

bodies; for instance, if a body falls from rest through the

height h it attains in a vacuum a velocity equal to V2gh.
In hydraulics g is found in all formulas which express the

laws of flow of water under the influence of gravity.

The quantity 32.2 feet per second per second is an

approximate value of g which is often used in hydraulic
formulas. It is, however, well known that the force of

gravity is not of constant intensity over the earth's surface,

but is greater at the poles than at the equator, and also

greater at the sea level than on high mountains. The
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following formula of Peirce, which is partly theoretical and

partly empirical, gives g in feet for any latitude /, and

any elevation e above the sea level, e being in feet:

g = 32.0894 (1+0.0052375 sin
2

/) (10,00000009570) (7) 4

and from this its value may be computed for any locality.

The greatest value of g is at the sea level at the pole,

and for this locality I = 90, e = o, whence =
32.258. The

least value of g is on high mountains at the equator; for

this there may be taken /=o, = 10000 feet, whence
= 32.059. The mean of these is the value of the accel-

eration used in this book, unless otherwise stated, namely,

= 32.16 feet per second per second,

and from this the mean values of the frequently occurring

quantities \/2g and i/2g are found to be

= 8.020, I/2=O.OI555. (7),

If greater precision be required, which will sometimes be the

case, g can be computed from the above formula for the

particular latitude and elevation. Table 11 gives multiples
of the quantities g, 2g t i/2g and V/

2 which will often be

useful in numerical computations.

Prob. 7a. The acceleration of gravity on the planet Mars
is 12.2 feet per second per second and the weight of a cubic

foot of water is 23.7 pounds. Compute the velocity of sound

in the water of the Martian canals.

Prob. 7b. Compute to four significant figures the values of

g and \/2g for the latitude 40 36' and the elevation 400 feet.

Also for the same latitude and the elevation 4000 feet.

ART. 8. NUMERICAL COMPUTATIONS.

The numerical work of computation should not be

carried to a greater degree of refinement than the data of

the problem warrant. For instance, in questions relating
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to pressures, trie data are uncertain in the third significant

figure, and hence more figures than three in the final result

must be delusive. Thus, let it be required to compute the

number of pounds of water in a box containing 307.37
cubic feet. Taking the mean value 62.5 pounds as the

weight of one cubic foot, the multiplication gives the result

19 210.625 pounds, but evidently the decimals here have no

precision, since the last figure in 62.5 is not accurate, and
is likely to be less than 5, depending upon the impurity
of the water and its temperature. The proper answer to

this problem is 19 200 pounds, or perhaps 19 210 pounds,
and this is to be regarded as a probable average result

rather than an exact definite quantity.

Three significant figures are usually sufficient in the

answer to any hydraulic. problem, but in order that the

last one may be correct four significant figures should be

used in the computations. Thus, 307.37 has five significant

figures and this should be written 307.4 before multiplying
it by 62 . 5 . The zeros following a decimal point of a decimal

are not counted significant figures; thus, 0.0019 nas two
and 0.0003742 has. four significant figures.

The use of logarithms is to be recommended in hydraulic

computations, as thereby both mental labor and time are

saved. Four-figure tables are sufficient for common prob-

lems, and their use is particularly advantageous in all

cases where the data are not precise, as thus the number
of significant figures in final results is kept at about three,

and hence statements implying great precision, when none

really exists, are prevented. The four-place logarithmic

table at the end of this volume will be found very convenient

in solving numerical problems. As an example, let it be

required to find the weight of a column of water 2.66 inches

square and 28.7 feet long. The computation, both by
common arithmetic and by logarithms is as follows, and it

will be found, by trying similar problems, that in general the
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By Arithmetic. By Logarithms,

2.66 0.04914
2.66 28.7

5-32 9^28
i 596 39312

160)144 3439

7.076(0.04914
576

1316
1296

14 Ans. 88.1 pounds.

2.66 0.4249
2

0.8498
144 2.1584

2.6914
28.7 1-4579
62.5 1-7959

Ans. 88.1 1.9452

use of logarithms effects a saving of time and labor. The
common slide rule, which is constructed on the logarithmic

idea, will also be found very useful in the numerical work
of hydraulic problems.

The tables of constants, squares, and areas of circles

at the end of this volume will also be advantageous in

abridging computations. For instance, it is seen at once

from Table 50 that the square of 2.66 to four significant

figures is 7.076, while Table 51 shows that the area of a

circle having a diameter of 0.543 inches is 0.2316 square
inches. The logarithms of hydraulic and mathematical

constants are given in Tables 1, 2, and 55. Tables 5, 6, 11,

12, 13, 14, 15, and 16 give multiples of constants which may
be advantageously used when it is necessary to multiply
several numbers by the same constant. For example, if

it be required to reduce 333.4, 318.7, and 98.6 cubic feet

to U. S. gallons, the book is opened at Table 6 where the

multiples of 7.481 are given, and the work is as follows:

318.7

2244.2
74.8
59-8

737-5

2384.0

These results are more accurate than can be obtained with

four-place logarithmic tables. The logarithmic work for

this case would be the following:
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333-4 3i8.7 98.6

2.5229 2.5034 1.9939
0.8740 0.8740 0.8740

3.3969 3-3774 2.8679
2494 2384 737-7

In all cases it is desirable that computations should be

checked, and a good method of doing this is to make one

computation by common arithmetic and another by
logarithms.

As this book is mainly intended for the use of students in

technical schools, a word of advice directed especially to

them may not be inappropriate. It will be necessary for

students, in order to gain a clear understanding of hydraulic

science, or of any other engineering subject, to solve many
numerical problems, and in this a neat and systematic

method should be cultivated. The practice of performing

computations on any loose scraps of paper that may happen
to be at hand should be at once discontinued by every
student who has followed it, and he should hereafter solve

his problems in a special book provided for that purpose,
and accompany them by such explanatory remarks as may
seem necessary in order to render the solutions clear.

Such a note-book, written in ink, and containing the fully

worked out solutions of the examples and problems given
in these pages, will prove of great value to every student

who makes it. Before beginning the solution of a problem,
a diagram should be drawn whenever it is possible, for a

diagram helps the student to clearly understand the problem,
and a problem thoroughly understood is half solved. Be-

fore commencing the numerical work, it is also well to make
a mental estimate of the final result.

Prob. 8a. Compute the diameter, in inches, of a cylindrical

column of water 34 feet high which weighs 14.73 pounds at

the temperature of 62 Fahrenheit.

Prob. 86. When the height of the water barometer is 33.3

feet, what is the height of the mercury barometer, and what
is the atmospheric pressure in pounds per square inch?
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ART. 9. DATA IN THE METRIC SYSTEM

When the metric system is used for hydraulic computa-
tions the meter is taken as the unit of length, the cubic

meter as the unit of volume, and the kilogram as the unit

of force and weight. Lengths are sometimes expressed in

centimeters and volumes in liters, but these should be

reduced to meters and cubic meters for use in the formulas.

The unit of time is the second, the unit of velocity is one

meter per second, and accelerations are measured in meters

per second per second. Pressures are usually expressed

in kilograms per square centimeter and densities in kilo-

grams per cubic meter. The metric horse-power is 75

kilogram-meters of work per second, and this is about ij

percent less than the English horse-power. Tables 3 and 4

give the equivalents in each system of the units of the other

system, but the student will rarely need to use these tables.

He should, on the other hand, when using the metric

system employ it exclusively and learn to think readily in

it. The following matter is supplementary to the cor-

responding articles of the preceding pages.

(Art. 3) At about o centigrade ice is generally formed.

If water be kept perfectly quiet, however, it is found that

its temperature can be reduced to -7 or 9 before

freezing begins, but at this instant the temperature rises

to o centigrade.

(Art. 4) In the metric system the following approxi-
mate values are used for the weight of water :

i cubic meter weighs 1000 kilograms,
i liter weighs i kilogram.

It may be noted that the constants for the weight of water
differ slightly in the two systems. Thus, the equivalent of

62.5 pounds per cubic foot is about 1001 kilograms per
cubic meter. The weight per unit of volume of pure
distilled water is greatest at the temperature of maximum
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density, 4.i centigrade, and least at the boiling-point.

Table 8 gives weights of distilled water at different tempera-
tures in kilograms per cubic meter, as determined by Ros-

setti.* River waters are usually between 997 and 1001

kilograms per cubic meter, depending upon the amount of

impurities and the temperature, while the water of some
mineral springs has been found as high as 1004. It appears
then that 1000 kilograms per cubic meter is a fair average
value to use in hydraulic work for the weight of fresh water.

Brackish and salt waters are heavier. For the Gulf of

Mexico the weight per cubic meter is about 1023, for the

oceans about 1027, while for the Dead Sea there is stated

the value 1169 kilograms per cubic meter. The weight of

ice per cubic meter varies from 916 to 921 kilograms.

(Art. 5) Near the sea level the average reading of the

mercury barometer is 76 centimeters, and, since mercury
weighs 13.6 grams per cubic centimeter, the average at-

mospheric pressure is taken to be 76X0.0136 = 1.0333

kilograms per square centimeter. One atmosphere of

pressure is therefore slightly greater than a pressure of

one kilogram per square centimeter. Conversely, a pressure
of one kilogram per square centimeter may be expressed
as a pressure of 0.968 atmospheres. In a perfect vacuum
water will rise to a height of about 10^ meters under a
mean pressure of one atmosphere, for the average specific

gravity of mercury is 13.6, and 13.6X0.76 = 10.33 meters.

Table 10 shows atmospheric pressures, altitudes, and boil-

ing-points of water corresponding to heights of the mercury
and water barometers.

(Art. 6) If the weight of a cubic meter of water is

1000 kilograms at the surface of a pond the weight of a
cubic meter at a depth of loj meters will be

1000 (i +0.00005) = 1000.05 kilograms,

* Annales de chimie et de physique, 1869, vol. 17, page 370.
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and at a depth of 103^ meters a cubic meter will weigh

i ooo ( i +0.0005) = 1000.5 kilograms.

Hence the variation due to compression is too. small to be

generally taken into account. The modulus of elasticity

of volume for water is

E = ' = 20 700 kilograms per square centimeter,
0.00005

while that of steel is about 2 100 ooo. Using g = 9.8 meters

per second per second, the mean velocity of sound in

water is v = \/Eg/w = 14.20 meters per second.

(Art. 7) The formula of Peirce for the acceleration of

gravity on the earth's surface is

= 9.78085(1+0.0052375 sin
2

/) (1-0.0000003 140) (9) t

in which g is the acceleration in meters per second per
second at a place whose latitude is / degrees and whose

elevation is e meters above the sea level. The greatest

value of g is at the sea level at the pole ;
here / = 90 and

e = o, whence = 9.8322. The least value of g in hydraulic

practice is found on high lands at the equator; here Z = o

and = 4000 meters, whence = 9.7683. The mean of

these is 9.800, which closely agrees with that found in Art.

7, since 32.16 feet equals 9.802 meters; accordingly

= 9.800 meters per second per second

is the value of the acceleration that will be used in the

metric work of this book. From this are found

\/2 = 4.427 i/2 = 0.05102 ; (9) 2

Table 12 gives multiples of these values which will often

be of use in numerical computations.

(Art. 8) The remarks as to precision of numerical

computation also apply here. Thus, if it be required to

find the weight of water in a pipe 38 centimeters in diameter



ART. 9 DATA IN THE METRIC SYSTEM 21

and 6 meters long, Table 51 gives 0.1134 square meters for

the sectional area, the volume is then 0.6804 cubic meters,

and the weight is 680 kilograms, the fourth figure being
omitted because nothing is known about the temperature
or purity of the water. In general, hydraulic computations
are much easier in the metric than in the English system.

Prob. 9a. What is the pressure in kilograms per square
centimeter at the base of a column of water 97.3 meters high?

Prob. 96. Compute the value of g at Quito, Ecuador, which

is in latitude o 13' and at an elevation of 2850 meters

above sea level.

Prob. 9c. Compute the velocity of sound in fresh distilled

water at the temperature of 12 centigrade, and also its mean

velocity in salt water.

Prob. 9d. How many cubic meters of water are contained

in a pipe 3150 meters long and 30 centimeters in diameter?

How many kilograms? How many metric tons?

Prob. 9e. What is the boiling-point of water when the

mercury barometer reads 735 millimeters? How high will

water rise in a vacuum tube at a place where the boiling-point

of water is 92 centigrade?
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CHAPTER II

HYDROSTATICS

ART. 10. TRANSMISSION OF PRESSURE

One of the most remarkable properties of a fluid is its

capacity of transmitting a pressure, applied at one point of

the surface of a closed vessel, unchanged in intensity, in all

directions, so that the effect of the applied pressure is to

cause an equal force per square inch upon all parts of the

enclosing surface. Pascal, in 1646, was the first to note

that great forces could be produced in this manner; he

saw that the total pressure in-

creased proportionally with the

area of the surface. Taking a

closed barrel filled with water

he inserted a small vertical tube

of considerable length tightly

into it and on filling the tube

the barrel burst under the great

pressure thus produced on its sides, although the weight of

the water in the tube was quite small. The first diagram
in Fig. 10a represents Pascal's barrel, and it is seen that

the unit-pressure at B is due to the head AB and inde-

pendent of the size of the tube AC.

Pascal clearly saw that this property of water could be

employed in a useful manner in mechanics, but it was not

until 1796 that Bramah built the first successful hydraulic

press. This machine has two pistons of different sizes and

a force applied to the small piston is transmitted through
the fluid and produces an equal unit-pressure at every

- 10a
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FIG. 106

point on the large piston. The applied force is here multi-

plied to any required extent, but the work performed by
the large piston cannot ex-

ceed that imparted to the

fluid by the small one. Let

a and A be the areas of the

small and large pistons, and

p the pressure in pounds per

square unit applied to a
;
then

the unit-pressure in the fluid

is /?, and the total pressure on

the small piston is pa, while that on the large piston is pA.
Let the distances through which the pistons move during

one. stroke be d and D. Then the imparted work is pad,

and the performed work, neglecting frictional resistances,

is pAD. Consequently ad=AD, and since a is small as

compared with A, the distance D must be small compared
with d. Here is found an illustration of the popular maxim
'" What is gained in force is lost in velocity."

The Keely motor, one of the delusions of the nineteenth

century, is said to have employed this principle to produce
some of its effects. Very small pipes, supposed by the

spectators to be wires conveying some mysterious force,

were used to transmit the pressure of water to a receiver

where the total pressure became very great in consequence
of greater area.

In consequence of its fluidity the pressure existing at

any point in a body of water is exerted in all directions

with equal intensity. If water be confined by a bounding
surface, as in a vessel, its pressure against that surface

must be normal at every point, for if it were inclined the

water would move along the surface. When water has a

free surface the unit-pressure at any depth depends only
on that depth and not on the shape of the vessel. Thus
in the second diagram of Fig. 10a the unit-pressure at C
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produced by the smaller column of water aC is the same
as that caused by the larger column AC, and the total

pressure on the base B is the product of its area into the

unit-pressure caused by the depth AB.

Prob. 10. In a hydrostatic press the diameter of the small

piston is 2 inches and that of the large piston is 12 inches,
while the pressure in the fluid is 1750 pounds per square inch.

If the small piston moves 3 inches per minute, how far does the

large one move? What horse-power is transmitted by the press ?

ART. 11. HEAD AND PRESSURE

The free surface of water at rest is perpendicular to

the direction of the force of gravity, and for bodies of water

of small extent this surface may be regarded as a plane.

Any depth below this plane is called a "
head," or the head

upon any point is its vertical depth below the level surface.

In Art. 10 it was seen that the unit-pressure at any depth

depends only on the head and not on the shape of the

vessel. Let h be the head and w the weight of a cubic unit

of water; then at the depth h one horizontal square unit

bears' a pressure equal to the weight of a column of water

whose height is h, and whose cross-section is one square

unit, or wh. But the pressure at this point is exerted in

all directions with equal intensity. The unit-pressure p
at the depth h then is wh, and conversely the depth, or

head, for a unit-pressure p is p/w, or

p=wh h=p/w

If h be expressed in feet and p in pounds per square foot,

these formulas become, using the mean value of w,

Thus pressure and head are mutually convertible, and in

fact one is often used as synonymous with the other,

although really each is proportional to the other. Any
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unit-pressure p can be regarded as produced by a head h,

which is frequently called the
"
pressure head."

In engineering work p is usually taken in pounds per

square inch, while h is expressed in feet. Thus the pressure

in pounds per square foot is 62 . 5/1, and the pressure in pounds

per square inch is -^ of this, or

=0.4340^ h = 2.$o4p (11),

These rules may be stated in words as follows :

i foot head corresponds to 0.434 pounds per square inch;

i pound per square inch corresponds to 2.304 feet head.

These values, be it remembered, depend upon the assump-
tion that 62.5 pounds is the weight of a cubic foot of water,

and hence are liable to variation in the third significant

figure (Art. 4). The extent of these variations for fresh

water may be seen in Table 13, which gives multiples of the

above values, and also the corresponding quantities when
the cubic foot is taken as 62.3 pounds.

The atmospheric pressure, whose average value is 14.7

pounds per square inch, is transmitted through water, and
is to be added to the pressure due to the head whenever it

is necessary to regard the absolute pressure. This is im-

portant in some investigations on the pumping of water,

and in a few other cases where a partial or complete vacuum
is produced on one side of a body of water. For example,
if the air be exhausted from a small globe, so that its

tension is only 6.5 pounds per square inch, and it be sub-

merged in water to a depth of 250 feet, the absolute pressure

per square inch on the globe is

=0.434X250 + 14.7 = 123.2 pounds

and the resultant effective pressure per square inch is

p'
= 123.2 6.5

= 116.7 pounds.

Unless otherwise stated, however, the atmospheric pressure
need not be regarded, since under ordinary conditions it
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acts with equal intensity upon both sides of a submerged
surface.

Prob. lla. How many feet head correspond to a pressure
of 100 pounds per square inch? How many pounds per square
inch correspond to a head of 230 feet?

Prob. lib. In the first diagram of Fig. 10a the diameter

of AC is } inches and that of BC is 12 inches. Compute the

total pressure on the base if the heights AC and CB be 3 and
2 feet.

ART. 12. Loss OF WEIGHT IN WATER

It is a familiar fact that bodies submerged in water lose

part of their weight ;
a man can carry under water a large

stone which would be difficult to lift in air and timber

when submerged has a negative weight or tends to rise

to the surface. The following is the law of loss which was

discovered by Archimedes, about 250 B.C., when considering

the problem of King Hiero's crown:

The weight of a body submerged in water is less than

its weight in air by the weight of a volume of water equal
to that of the body.

i ,

To demonstrate this, consider that the submerged body
is acted upon by the water pressure in all directions, and

that the horizontal components of these pressures must

balance. Any vertical elementary prism is subjected to

an upward pressure upon its base which is greater than the

downward pressure upon its top, since these pressures are

due to the heads. Let h
l
be the head on the top of the

elementary prism and h
2
that on its base,

land a the cross-section of the prism;
then the downward pressure is wah^ and

the upward pressure is wahy The differ-

ence of these, wa(h2 h^) is the resultant

upward water pressure, and this is equal

to the weight of a column of water whose

cross-section is a and whose height is that of the elementary
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prism. Extending this theorem to all the elementary

prisms, it is concluded that the weight of the body in water

is less than its weight in air by the weight of an equal
volume of watgr.

It is important to regard this loss of weight in construc-

tions Binder water. If, for example, a dam of loose stones

allows the water to percolate through it, its weight per
cubic foot is less than its weight in air, so that it can be

more easily moved by horizontal forces. As stone weighs
about 150 pounds per cubic foot in air, its weight in water

is only about 150 62=88 pounds per cubic foot. If a

cubic foot of sand, having voids amounting to 40 percent
of its volume, weighs no pounds, its loss of weight in water

is 0.60X62.5=37.5 pounds, so that its weight in water is

110 37.5 =72.5 pounds.

The ratio of the weight of a substance to that of- an

equal volume of water is called the specific gravity of the

substance, and this is easily computed from the law of

Archimedes after weighing a piece of it in air and then in

water
; or, if w be the weight of a cubic unit of water and

w' the weight of a cubic unit of any substance, the ratio

w''/w is the specific gravity of the substance.

Prob. 12. A box containing 1.17 cubic feet weighs 19.3

pounds when empty and 133.5 when filled with sand. It is

then found that 29.7 pounds of water can be poured in before

overflow occurs. Show that the percentage of voids in the

sand is 40.6, that the specific gravity of the sand mass is 1.56,

and that the specific gravity of a grain of sand is 2.65.

ART. 13. DEPTH OF FLOTATION

When a body floats upon water it is sustained by an

upward pressure of the water equal to its own weight, and
this pressure is the same as the weight of the volume of

water displaced by the body. Let W be the weight of

the floating body in air, and W be the weight of the dis-
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placed water
;
then W = W. Now let z be the depth of

flotation of the body; then to find its value for any par-

ticular case W is to be expressed in terms of the linear

dimensions of the body, and W in terms of the depth of

flotation z.

For example, a cone which weighs w' pounds per cubic

foot floats with its base downward, its altitude being d

and the radius of its base b. The

weight of the floating cone is

W =wr

.7tb\\d

and the weight of the displaced

water is that of a frustum of the

altitude z, orFIG. 13a

3 \ a I 3

Equating these values and solving for z gives

which is the depth of flotation.
' Here w'/w is the specific

gravity of the floating body.

To find the depth of flotation for a cylinder lying hori-

zontally, let w' be its weight per cubic unit, / its length,

and r the radius of its cross-

section. The depth of flota-

tion is DE, or if be the

angle ACE,
z = (icos6)r

The weight of the cylinder is

W'=7tr 2l.wf
FIG. 136

and that of the displaced water is

r2 sin0 cosd^l.w
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Equating the values of W and W', and substituting for

sin 6 cos# its equivalent J sin20, there results

2 arc# sin20 = 27rs
>

in which s represents the ratio w'/w or the specific gravity
of the material of the cylinder. From this equation
is to be found by trial for any particular case, and then z

is computed. For example, if ^'=26.5 pounds per cubic

foot, then 5- is 0.424, and

2 arc# sin2$ 2.664 =

To solve this equation, values are to be assumed for 6,

until one is found that satisfies it
;
thus from Table 52,

for 6 = 83 2.897 0.242 2.664 = 0.009

for #=83^ 2.906 0.234 2.664= +0.008

Therefore 6 lies between 83 and 83 15', and is probably
about 83 8'. Hence the depth of flotation is z = (i o.i2o)r
= o.88r, or if the diameter be one foot the depth of flota-

tion is 0.44 feet.

Prob. 13a. Show that the depth of flotation for a sphere
of radius r is one of the positive roots of the cubic equation
z* T,rz

2 + 4r
3
s= o. If the diameter of a sphere is 2 feet and

its specific gravity 0.65, find the depth z.

Prob. 136. A wooden stick i\ inches square and 10 feet long
is to be used for a velocity float which is to stand vertically in

the water. How many square inches of sheet lead ^ inch

thick must be tacked on the sides of this stick so that only 4
inches will project above the water surface? The wood weighs

27 and the lead 710 pounds per cubic foot.

ART. 14. STABILITY OF FLOTATION

The equilibrium of a floating body is stable when it

returns to its primitive position after having been slightly

moved therefrom by extraneous forces, it is indifferent

when it floats in any position, and it is unstable when the
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FIG. 14

slightest force causes it to leave its position of flotation.

For instance, a short cylinder with its axis vertical floats

in stable equilibrium, but a long cylinder in this position
is unstable, and a slight force causes it to fall over and float

with its axis horizontal in indifferent equilibrium. It is

evident that the equilibrium is the more stable the lower
the center of gravity of the body.

The stability depends in any case upon the relative

position of the center of gravity of the body and its center

of buoyancy, the latter being the center of gravity of the

displaced water. Thus in Fig.

14 let G be the center of gravity
of the body and let C be its

center of buoyancy when in an

upright position. Now if an ex-

traneous force causes the body
to tip into the position shown t

the center of gravity remains

at G, but the center of buoyancy moves to D. In this new

position of the body it is acted upon by the forces W and

W, which are equal and parallel but opposite in direction.

These forces form a couple which tends either to restore

the body to the upright position or to cause it to deviate

farther from that position. Let the vertical through D
be produced to meet the center line CG in M. If M is

above G the equilibrium is stable, as the forces W and W
tend to restore it to its primitive position; if M coincides

with G the equilibrium is indifferent; and if M be below

G the equilibrium is unstable.

The point M is called the
'

metacenter,
' and the theorem

may be stated that the equilibrium is stable, indifferent, or

unstable according as the metacenter is above, coincident

with, or below the center of gravity of the body. The

measure of the stability of a stable floating body is the

moment of the couple formed by the forces W and W.
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But GM is proportional to the lever arm of the couple, and
hence the quantity W XGM may be taken as a measure of

stability. The stability, therefore, increases with the weight
of the body, and with the distance of the metacenter above

the center of gravity. (See Art. 180.)

The most important application of these principles is

in the design of ships, and usually the problems are of a

complex character which can only be solved by tentative

methods. The rolling of the ship due to lateral wave action

must also receive attention, and for this reason the center

of gravity should not be put too low.

Prob. 14. A square prism of uniform specific gravity s

has the length h and the cross-section b 2
. When placed in

water with its axis vertical, show that it is in stable, indifferent,

or unstable equilibrium according as b 2
is greater, equal to,

or less than 6h2
s(i s). When placed with its axis at an incli-

nation of 45, show that it will assume the vertical or horizontal

position according as b 2
is greater or less than 4h

2

s(i s).

ART. 15. NORMAL PRESSURE

The total normal pressure on any immersed surface may
be found by the following theorem:

The total normal pressure is equal to the product of the

weight of a cubic unit of water, the area of the surface,

and the head on its center of gravity.

To prove this let A be the area of the surface, and imagine
it to be composed of elementary areas, av a

2 ,
a

3 , etc., each

of which is so small that

the unit-pressure over it

may be taken as uniform ;

let kv h
2 ,

/z
3 , etc., be the

heads on these elementary

areas, and let w denote

the weight of a cubic unit

of water. The unit-pressures at the depths hv h
2 ,
h

3 , etc.,
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are whv wh
2 ,
wh

3 ,
etc. (Art. 11), and hence the normal

pressures on the elementary areas av a
2 ,

a
B , etc., are wajiv

wa
2
h

2 ,
wa

3
h

3 ,
etc. The total normal pressure P on the

entire surface then is

P =w(a 1
h

l + a
2
h

2 + a
3
h

3 + etc.)

Now let h be the head on the center of gravity of the sur-

face
; then, from the definition of the center of grayity,

as^3 + etc. =Ah

Therefore the normal pressure is

'p=wAh (15)

which proves the theorem as stated.

This rule applies to all surfaces, whether plane, curved,

or warped, and however they be situated with reference to

the water surface. Thus the total normal pressure upon
the surface of an immersed cylinder remains the same what-

ever be its position, provided the depth of the center of

gravity of that surface be kept constant. It is best to take

h in feet, A in square feet, and w as 62.5 pounds per cubic

foot
;
then P will be in pounds. In case surfaces are given

whose centers of gravity are difficult to determine, they
should be divided into simpler surfaces, and then the total

normal pressure is the sum of the normal pressures on the

separate surfaces.

The normal pressure on the base of a vessel filled with

water is equal to the weight of a cylinder of water whose

base is the base of the vessel, and whose height is the depth
of water. Only in the case of a vertical cylinder does this

become equal to the weight of the water, for the pressure
on the base of a vessel depends upon the depth of water and
not upon the shape of the vessel. Also in the case of a dam,
the depth of the water and not the size of the pond deter-

mines the amount of pressure.
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When a surface is plane the total normal pressure is

the resultant of all the parallel pressures acting upon it.

This is not true for curved surfaces, for, as the pressures
have different directions, their resultant is not equal to

their numerical sum, but must be obtained by the rules for

the composition of forces. For example, if a sphere of

diameter d be filled with water the total normal pressure as

found by the formula (15) is

"but the resultant pressure is nothing, for the elementary
normal pressures act in all directions so that no tendency
to motion exists. The weight of water in this sphere is

-J-WTrd
3

,
or one third of the total normal pressure, and the

direction of this is vertical.

Prob. 15a. A board 3 feet wide at one end and 2.5 feet wide
at the other end is 8 feet long. What is the normal pressure

upon each of its sides when placed vertically in water with the

narrow end in the surface?

Prob. 156. An ellipse, with major and minor axes equal to

12 and 8 feet, is submerged so that one extremity of the major
axis is 3.5 and the other 8.5 feet below the water surface. Show
that the normal pressure on one side is 28 300 pounds.

ART. 16. PRESSURE IN A GIVEN DIRECTION

The pressure against an immersed plane surface in a

given direction may be found by obtaining the normal

pressure by Art. 15 and computing its component in the

required direction, or by means of the following theorem :

The horizontal pressure on any plane surface is equal
to the normal pressure on its vertical projection; the

vertical pressure is equal to the normal pressure on its

horizontal projection; and the pressure in any direction is

equal to the normal pressure on a projection perpendicular
to that direction.
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To prove this let A be the area of the given surface, repre-

sented by AA in Fig. 16a, and P
the normal pressure upon it, or

P =wAh. Now let it be required
to find the pressure P' in a direction

making an angle with the nor-

mal to the given plane. Draw
A rA f

perpendicular to the direc-

tion of P'
,
and let A 1 be the area

of the projection of A upon it. The value of P' then is

P'=P co$d=wAhcosd

But A cos# is the value of A' by the construction. Hence

FIG. 16a

P'=wA'k

and the theorem is thus demonstrated.

(16)

This theorem does not in general apply to curved sur-

faces. But in cases where the head of water is so great that

the pressure may be regarded

as uniform it is also true for

curved surfaces. For instance,

consider a cylinder or sphere

subjected on every elementary
area to the unit-pressure p due

to the high head h, and let it

be required to find the pressure

in the direction shown by qv q2 ,

and
<?3

in Fig. 166. The pres-

sures pv p2 , p3 , etc., on the elementary areas av a
2 ,
a

3 , etc.,

have the values

FIG. 166

and the components of these in the given direction are

, etc.,
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whence the total pressure Pf
in the given direction is

Pr

=p(a l
cosd

1 + a
2
cos#

2 + a
3
cos#

3 +etc.)

But the quantity in the parentheses is the projection of

the given surface upon a plane perpendicular to the given

direction, or MN. Hence there results

which is the same rule as for plane surfaces.

For the case of a water pipe let p be the interior pressure

per square inch, / its thickness, and d its diameter in inches.

Then for a length of one inch the force tending to rupture
the pipe longitudinally is pd. The tensile unit-stress 5
in the walls of the pipe acting over the area 2t constitutes

the resisting force 2/5. As these forces are equal, it follows

that 2St=--pd is the fundamental equation for the discus-

sion of the strength of water pipes under static water

pressure. For example, if the tensile strength of cast iron

be 20 ooo pounds per square inch, the pressure p required
to burst a pipe 24 inches in diameter and 0.75 inches thick

is 1250 pounds per square inch, which corresponds to a

head of 2880 feet.

Prob. 16a. A circular plate 3 feet in diameter is immersed
so that the head on its center is 18 feet, its plane making an

angle of 27 with the vertical. Compute the horizontal and
vertical pressures upon one side of it.

Prob. 166. What should be the thickness of a water pipe
1 8 inches in diameter in order that the tensile unit-stress in

it may be 1600 pounds per square inch when under a head of

water of 230 feet?

ART. 17. CENTER OF PRESSURE ON RECTANGLES

The center of pressure on a surface immersed in water

is the point of application of the resultant of all the nor-

mal pressures upon it. The simplest case is the following:
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If a rectangle be placed with one end in the water sur-

face, the center of pressure is distant from that end two
thirds of its length.

This theorem will be proved by the help of the graph-
ical illustration shown in Fig. 17a. The rectangle, which

in practice might be a board,
is placed with its breadth per-

pendicular to the plane of the

drawing, so that AB repre-
sents its edge. It is required
to find the center of pressure
C. For any head h the unit-

pressure is wh (Art. 15), and
hence the unit-pressures on

one side of AB may be graphically represented by arrows

which form a triangle. Now if a force P equal to the total

pressure is applied on the other side of the rectangle to

balance these unit-pressures, it must be placed opposite
to the center of gravity of the triangle. Therefore AC
equals two thirds of AB, and the rule is proved. The
head on C is evidently also two thirds of the head on B.

FIG. 17a

Another case is that shown in Fig. 17b, where the rect-

angle, whose length is B B
21

is wholly immersed, the head
on B

l being hv and on B
2 A

being hy Let AB
l
=b

19

AC=y,andAB2
= b

2
. Now

the normal pressure Pl
on

>

x
is applied at the dis-

tance |6 X
from A, and the

normal pressure P
2

on

AB
2

is applied at the distance |62
from A. The normal

pressure P on B
t
B

2
is the difference of P

l
and P

2 ,
or P =

P
2
P

1
. Also by taking moments about A as an axis,
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Now, by Art. 15, the normal pressures P2 and P 1
for a rect-

angle one unit in breadth are P
2
= %wb2

h
2
and P

v
=
%wbji^

whence the total normal pressure is P = %w(b2
h

2
b

l
h

1), and

accordingly the center of pressure is given by

.v*.-v*.
*

Now if 6 be the angle of inclination of the plane to the

water surface the values of h
2
and h

i
are b

2
sin# and b^ sin#.

Accordingly the expression becomes

(17)

Again, if hf be the head on the center of pressure, y =

hf

cosectf, b
2
=h

2 cosec6, and b
l
=h

l
cosecO. These inserted

in the last equation give

h, 'V-v
fl7)

3*i
J-V ( ''

These formulas are very convenient for computation, as

the squares and cubes may be taken from tables.

If /^ equals h2 the above formula becomes indeterminate,

which is due to the existence of the common factor h
2

h
l

in both numerator and denominator of the fraction ; divid-

ing out this common factor, it becomes

2 V + ft.ft.+V \

~3~ *, + *,

from which, if h
2
=h

l =h, there is found the result h' =h.

Prob. 17a. In Fig. 17a let the length of AB be 8 feet and

its inclination to the vertical be 30 degrees. Find the depth
of the center of pressure.

Prob. 176. A rectangle 8 feet long is immersed in water with

its ends parallel to the surface, the head on one end being 7 feet

and that on the other 5 feet. Find the head on the center of

pressure, and also the value of P.
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ART. 18. GENERAL RULE FOR CENTER OF PRESSURE

For any plane surface immersed in a liquid, the center

of pressure may be found by the following rule :

Find the moment of inertia of the surface and its stati-

cal moment, both with reference to an axis situated at the

intersection of the plane of the surface with the water

level. Divide the former by the latter, and the quotient
is the perpendicular distance from that axis to the center

of pressure.

The demonstration is analogous to that in the last

article. Let BJ3.2 in Fig. 176 be the trace of the plane sur-

face, which itself is perpendicular to the plane of the draw-

ing, and C be the center of pressure, at a distance y from

A where the plane of the surface intersects the water level.

Let a lt a2 ,
a3 , etc., be elementary areas of the surface, and

^i> ^2 ^s e"tc -> "the heads upon them, which produce the

normal elementary pressures, waji^ wa2h2 ,
wa3h3l etc. Let

y ?2> ?3> etc., be the distances from A to these elementary

areas. Then taking the point A as a center of moments,
the definition of center of pressure gives the equation

(wa l
h

1 + wa2h2 + wa3h3 + etc.)?
=

1 + wa2h2y2 + wa3
h

3y3 + etc.

Now let 6 be the angle of inclination of the surface to the

water level; then h
1 =y l sin6, h2 =y2 smO, h3 =y3 sin6, etc.

Hence, inserting these values, the expression for y is

_o^
2 + a2y2

2 + a3y3

2 + etc.

The numerator of this fraction is the sum of the products
obtained by multiplying each element of the surface by
the square of its distance from the axis, which is called the

moment of inertia of the surface. The denominator is the

sum of the products obtained by multiplying each element
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of the surface by its distance from the axis, which is called

the statical moment of the surface. Therefore

moment of inertia _ /'

statical moment
=
S~

is the general rule for finding the position of the center of

pressure of an immersed plane surface.

The statical moment of a surface is simply its area mul-

tiplied by the distance of its center of gravity from the given
axis. The moments of inertia of plane surfaces with refer-

ence to an axis through the center of gravity are deduced
in works on theoretical mechanics; the following are a

few values, the axis being parallel to the base of the rect-

angle or triangle:

for a rectangle of base b and depth d, I

for a triangle of base b and altitude d, I =
for a circle with diameter d, /=-g

-1 7rd4

To find from these the moment of inertia with reference to

a parallel axis, the well-known formula I'=I +Ak 2
is to

be used, where A is the area of the surface, k the distance

from the given axis to the center of gravity of the sur-

face, and /' the moment of inertia required.

For example, let it be required to find the center of

pressure of a vertical circle immersed so that the head on

its center is equal to its radius. The area of the circle is

^7r<i
2

,
and its statical moment with reference to the upper

edge is \nd
2 Xd. Then from (4)

J*d'.#

or the center of pressure is at a distance Jd below the cen-

ter of the circle.

Prob. 18. Find the center of pressure for the triangle in

Fig. 13a when its vertex is in the water surface. Also the center

of pressure when the base is in the surface.



40 HYDROSTATICS CHAP. It

ART. 19. PRESSURE ON GATES AND DAMS

In the case of an immersed plane the water presses

equally upon both sides so that no disturbance of the

equilibrium results from the pres-

sure. But in case the water is

at different levels on. opposite sides

of the surface the opposing pres-

sures are unequal. For example, the

cross-section of a self-acting tide-= gate, built to drain a salt marsh is

shown in the figure. On the ocean

side there is a head of h
l above the

sill, which gives for every linear foot

of the gate the horizontal pressure

which is applied at the distance J/^ above the sill. On
the other side the head on the sill is H 21 which gives the hori-

zontal pressure P2
= ^wh2

2

acting in the opposite direction

to that of Pj. The resultant horizontal pressure is

and if z be the distance of the point of application, of P
above the sill, the equation of moments is

from which z can be computed. For example, if h be

7 feet and H2 be 4 feet the resultant pressure on one linear

foot of the gate is found to be 1031 pounds and its point
of application to be 2.82 feet above the sill. The action

of this gate in resisting the water pressure is like that of a

beam under its load, the two points of support being at

the sill and the hinge. If h be the height of the gate, the

reaction at the hinge is Pz/h and from the above expres-
sion for Pz it is seen that this reaction has its greatest value
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when hi becomes equal to h and H2 is zero. In the case

of the vertical gate of a canal lock, which swings horizon-

tally like a door, a similar problem arises and a similar

conclusion results.

When the water level behind a masonry dam is lower

than its top, as in Fig. 196, the water pressure on the back

is normal to the plane AB, and this may be resolved into

horizontal and vertical components. The horizontal com-

ponent is the only one usually necessary to be considered,

and this will be called P, and its distance above the base

of the dam will be called p. From Arts. 16 and 17 the

values of these, for one linear foot of the dam, are

in which h is the height of the dam and w the weight of a

cubic unit of water. The horizontal water pressure is hence

independent of the slope of the back of the dam. The

normal pressure on the back, however, is %wh
2

sec/9, its

horizontal component being %wh
2 and its vertical com-

ponent %wh
2 tan 0.

When the water runs over the top of the dam as in

Fig. 19c, let h be the height of the dam and d the depth of

FIG.

water on the crest. Then by Art. 16 the horizontal pres-

sure against the back is

and by Art. 17 the vertical distance of its point of applica-

tion above the base BD is found to be
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If d = o, these expressions become P = %wh
2 and p = %h.

If d is infinite, the value of p becomes /&, and hence in no
case can the pressure P be applied as high as the middle
of the height of the dam.

It is not the place here to enter into the discussion of

the subject of the design of masonry dams, but two ways
in which they are liable to fail may be noted. The first

is that of sliding along a horizontal joint, as BD
;
here the

horizontal component of the thrust overcomes the resist-

ing force of friction acting along the joint. If W be the

weight of masonry above the joint, and / the coefficient

of friction, the resisting friction is fW, and the dam will

slide if the horizontal component of the pressure is equal
to or greater than this. The condition for failure by slid-

ing then is P=fW. For example, consider a masonry
dam of rectangular cross-section which is 4 feet wide and

h feet high, the water being level with its top. Let its

weight per cubic foot be 140 pounds, and let it be required

to find the height h for which it would fail by sliding along

the base, the coefficient of friction being 0.70. The hori-

zontal water pressure is JX62.5 Xh 2 and the resisting fric-

tion is o.yXi4oX4X/. Placing these equal there is found

h = i2.$ feet.

The second method of failure of a masonry dam is by
overturning, or by rotating about the toe D. This occurs

when the moment of P equals the moment of W with

respect to D, or if p and q are the lever arms dropped from

D upon the directions of P and W the condition for failure

by rotation is Pp = Wq. For example, if it be required

to find the height of the above rectangular dam so that

it will fail by rotation, the lever arms p and q are %h and

2 feet, and the equation of moments with respect to an

axis through the toe of the dam is

i X 62. 5 xh*X%h = 140X4X^X2

from which there is found h = io.4 feet. The horizontal
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water pressure for one linear foot of the dam at the instant

of failure is %wh* = 33&o pounds.

Prob. 19. A water pipe passing through a masonry dam is

closed by a cast-iron circular valve AB, which is hinged at A,
and which can be raised by a vertical

chain EC. The diameter of the

valve is 3 feet, its plane makes an

angle of 27 with the vertical, and

the depth of its center below the

water level is 12 feet. Compute the

normal water pressure P, and the

distance of the center of pressure
from the hinge A . Disregarding the

weight of the valve and chain, com-
. , . FIG.

pute the force F required to open
the valve. If the weight of the chain is 25 pounds and that

of the valve 240 pounds, compute the force F.

ART. 20. HYDROSTATICS IN METRIC MEASURES

(Art. 11) If the head h be in meters and the unit-

pressure p be in kilograms per square meter, the formulas

(11)! become

p = ioooh h = o.ooip

In engineering practice p is usually taken in kilograms

per square centimeter, while h is expressed in meters. Then

p = o.ih h = iop (20)

Stated in words these practical rules are:

i meter head corresponds to o.i kilogram per square
centimeter ;

i kilogram per square centimeter corresponds to 10

meters head.

These values depend upon the assumption that 1000

kilograms is the weight of a cubic meter of water, and

hence results derived from them are liable to an uncertainty

in the third or fourth significant figure as Table 14 shows.
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The atmospheric pressure of 1.033 kilograms per square
centimeter is to be added to the pressure due to the head

whenever it is necessary to regard the absolute pressure.

For example, if the air be exhausted from a small globe

so that its pressure is only 0.32 kilograms per square
centimeter and it be submerged in water to a depth of

86 meters, the absolute pressure per square centimeter

on the globe is 0.1X86 + 1.033=9.633 kilograms, and

the resultant effective pressure per square centimeter is

9.633-0.32=9.313 kilograms.

(Art. 12) The specific gravity of a substance is ex-

pressed by the same number as the weight of a cubic

centimeter in grams, or the weight of a cubic decimeter in

kilograms, or the weight of a cubic meter in metric tons.

Thus, if the specific gravity of stone is 2.4, a cubic meter

weighs 2.4 metric tons or 2400 kilograms. A bar one

square centimeter in cross-section and one meter long

contains 100 cubic centimeters; hence if such a steel bar

be steel having a specific gravity of 7.9, it weighs 790

grams or 0.79 kilograms in air, while in water it weighs"

690 grams or 0.69 kilograms.

(Art. 15) Here h is to be taken in meters, A in square

meters, and w as 1000 kilograms per cubic meter; then

P will be in kilograms.

(Art. 16) For a water pipe let P be the interior pres-

sure in kilograms per square centimeter and d its diameter

in centimeters. Then for a length of one centimeter the

force tending to rupture the pipe longitudinally is pd.

Let S be the stress in kilograms per square centimeter

in the walls of the pipe; this acts over the area 2t, if t

be the thickness. As these forces are equal, the equation

2St=pd is to be used for the investigation of water pipes.

For example, let it be required to find what head will

burst a cast-iron pipe 60 centimeters in diameter and 2

centimeters thick; the tensile strength of the material
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being 1400 kilograms per square centimeter. Using the

equation the value of p is found to be 93.3 kilograms per

square centimeter, and then, from Art. 9, the required
liead h is 933 meters.

(Art. 19) Consider a rectangular masonry dam which

weighs 2400 kilograms per cubic meter and which is 1.4

meters thick. First, let it be required to find the height

of water for which it would fail by sliding, the coefficient

of friction being 0.75. The horizontal water pressure is

JXioooX/*
2

,
and the resisting friction is 0.7 5 X 2400 X

I.4X/&; placing these equal there is found ^ = 5.04 meters.

Secondly, to find the height for which failure will occur

by rotation, the equation of moments is

jXioooX/*
2

Xj/* = 2400X1.4X^X0. 75

from which there is found ^ = 3.89 meters. The horizontal

water pressure for one linear meter of this dam is %wh
2=

7560 kilograms.

Prob. 20a. In a hydrostatic press one half of a metric horse-

power is applied to the small piston. The diameter of the

large piston is 30 centimeters and it moves 2 centimeters per
minute. how that the pressure in the liquid is 159 kilograms

per square centimeter.

Prob. 206. What is the specific gravity of dry hydraulic
cement of which 20.6 cubic centimeters weigh 63.2 grams?
If a cube of stone 12.4 centimeters on each edge weighs 4.88

kilograms, what is its specific gravity?

Prob. 20c. In Fig. 19a let the head on one side of the gate
be 2.5 and on the other side 0.6 meters above the sill. Find

the resultant pressure for one linear meter of the gate and the

distance of its point of application above the sill.



46 THEORETICAL HYDRAULICS CHAP. IIL

CHAPTER III

THEORETICAL HYDRAULICS

ART. 21. LAWS OF FALLING BODIES

Theoretical Hydraulics treats of the flow of water when
unretarded by opposing forces of friction. In a perfectly

smooth inclined trough water would flow with accelerated

velocity and be governed by the same laws as those for

a body sliding down an inclined plane. Such a flow is,

however, never found in practice, for all surfaces over

which water moves are more or less rough. Friction

retards the motions caused by gravity so that the theoretic

velocities deduced in this chapter constitute limits which

cannot be exceeded by the actual velocities. Many of the

laws governing the free fall of bodies in a vacuum are sim-

ilar to those of both theoretical and practical hydraulics,

and hence they will here be briefly discussed.

When a body is at rest above the surface of the earth

it immediately falls if its support be removed. If the

fall occurs in a vacuum its velocity at the end of one

second is g feet, the mean value of g being 32.16, and at

the end of / seconds its velocity is V=gt. The distance

passed through in the time t is the product of the mean

velocity \V by the number of seconds, or h = %gt
2

. Elim-

inating t from these two equations gives the well-known

relations between h and V:

V = V^gh or h = V 2

/2g: (21) r

which show that the velocity varies with the square root

of the height and that the height varies as the square of

the velocity.
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When a falling body has the initial velocity u at the

beginning of the time t its velocity at the end of this time
is V = u + gt and the distance passed over in that time is

h=ut + $gt
2

. Eliminating t from these equations gives

or h = (V
2-u 2

)/2g (21),

as the relations between V and h for this case. These
formulas are also true whatever be the direction of the
initial velocity u.

When a body of weight W is at the height h above
a given horizontal plane its potential energy with re-

spect to this plane is Wh. When it falls from rest to

this plane the potential energy is changed into the kinetic

energy W . V 2

/2g, if no work has been done against frac-

tional resistance, and therefore V 2 =
2gh. If it has an

initial velocity u in any direction at the height h above
the plane its energy there is partly potential and partly

kinetic, the sum of these being Wh +W .u 2

/2g't on reaching
the plane it has the kinetic energy WV 2

/2g. Placing these

equal there results V 2 = 2gh + u 2 as found above by an-

other method. In general, reasoning from the stand-

point of energy is more satisfactory than that in which

the element of time is employed.

The general case of a body moving toward the earth

is represented in Fig. 21. When the body is at A it is

at a height h^ above a certain hori-

zontal plane and has the velocity

v^. When it has arrived at B its

height above the plane is h2 and its

velocity is v2 . In the first position

the sum of its potential and kinetic i-
energy with respect to the given
horizontal plane is
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and in the second position the sum of these energies is

If no energy has been lost between the two positions, these

two expressions are equal, and hence

This equation contains two heights and two velocities,

and if three of these quantities be given the fourth can be

found. Thus if v
lr
h

lt and h2 be given, the value of v2 is

where k^ h^ is the vertical height of A above B. With

proper changes in notation this expression reduces to (21 ) 2 ,

which is for the case where the horizontal plane passes

through B, and to (21)^ which is the case where there is

no initial velocity.

Prob. 21a. A body is projected vertically upward with a

velocity of 105 feet per second. What is its velocity after it

has reached a height of 170 feet above the initial position?

Prob. 216. A body enters a room through the ceiling with

a velocity of 250 feet per second, and in a direction making an

angle of 30 with the vertical. If the height of the room is

14 feet, find the velocity of the body as it strikes the floor,

resistances of the air being neglected.

ART. 22. VELOCITY OF FLOW FROM ORIFICES

If an orifice be opened, either in the base or side of a

vessel containing water, the water flows out with a velocity

which is greater for high heads than for low heads. The

theoretic velocity of flow is given by the following theorem

established by Torricelli in 1644 :
*

* Del moto del gravi (Florence, 1644).
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FIG. 22

The theoretic velocity of flow from the orifice is the

same as that acquired by a body falling from rest in a

vacuum through a height equal to the head of water on

the orifice.

One proof of this theorem is by experience. If a vessel be

arranged, as in the first diagram of Fig. 22, so that a jet

of water from an orifice is

directed vertically upward,
it is known that it never

attains to the height of the

level of the water in the ves-

sel, although under favor-

able conditions it nearly

reaches that level. It may
hence be inferred that the

jet would actually rise to that height were it not for the

resistance of the air and the friction of the edges of the

orifice. Now, since the velocity required to raise a body
vertically to a certain Height is the same as that acquired

by it in falling from rest through that height, it is regarded

as established that the velocity at the orifice is that stated

in the theorem.

The following proof rests on the law of conservation of

energy. Let, as in the second diagram of Fig. 22, the water

surface in a vessel be at A and let the flow through the

orifice occur for a very short interval of time during which

the water surface descends to A^ Let W be the weight
of water between the planes A and A lt which is evidently

the same as that which flows from the orifice during the

short time considered. Let W be the weight of water

between the planes A^ and B, and /^ the height of its center

of gravity above the orifice. Let h be the height of A
above the orifice, and dh the small distance between A
and A lt At the beginning of the flow *the water in the

-vessel has the potential energy W^ + WQi ^dh) with
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respect to B. If V be the velocity at the orifice the same
water at the end of the short interval of time has the energy
Wfa +W .V 2

/2g. By the law of conservation these are

equal if no energy has been expended in overcoming fric-

tional resistances; thus h %dh = V 2

/2g. Here oh is very
small if the area A is large compared with the area of the

orifice, and thus V 2 =
2gh, which is the same as for a body

falling from rest through the height h. Or h ^dh may
be regarded as an average head corresponding to an aver-

age velocity V, so that in general V 2

/2g is equal to the

average head on the orifice.

For any orifice, therefore, whether its plane be hori-

zontal, vertical, or inclined, provided the head h be so

large that it has practically the same value for all parts
of the orifice,

V = 2gh h = V 2

/2g (22) L

the first of which gives the theoretic velocity of now due

to a given head, while the second gives the theoretic head

that will produce a given velocity. The term "
velocity-

head" will generally be used to designate the expression

V 2

/2g, this being the height to which the jet would rise

if it were directed vertically upward and there were no

frictional resistances. Using for g the mean value 32.16

feet per second per second (Art. 7), these formulas become

V = S.o2oVh h = 0.01 555 V 2

(22)*

in which h must be in feet and V in feet per second. Table

15 gives values of the velocity V corresponding to a given

head h and also values of the velocity-head h correspond-

ing to a given velocity V. It is seen that small heads

produce high theoretic velocities. The relation between

h and V is the same as that between the ordinate and

abscissa of the common parabola when the origin is at

the vertex. It may also be noted that the discussion here

given applies not only to water but to any liquid; thus.
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V 2 = 2gh is theoretically true for alcohol and mercury as

well as for water.

Prob. 22a. Find from Table 15 the velocity due to a head
of 0.05 feet, and the velocity-head corresponding to a velocity
of 0.6 feet per second.

Prob. 226. Compute the theoretic velocity due to a head of

0.064 feet, and the velocity-head corresponding to velocity of

0.18 feet per second.

ART. 23. DISCHARGE FROM SMALL ORIFICES

The term
"
discharge" means the quantity of water

flowing in one second from a pipe or orifice, and the letter

Q will designate the theoretic discharge, that is, the dis-

charge as computed without considering the losses due
to frictional resistances. When all the filaments of water

issue from the pipe or orifice with the same ^velocity, the

quantity of water issuing in one second is equal to the

volume of a prism having a base equal to the cross-section

of the stream and a length equal to the velocity. If this

area be a and the theoretic velocity be V, then Q=^aV is

the theoretic discharge. Taking a in square feet and V
in feet per second, Q is cubic feet per second.

For a small orifice on which the head h has the same
value for all parts of the opening, the theoretic discharge is

Q=aV = aV^gh (23)

and in English measures Q = S.o2aVh. For example, let

a circular orifice 3 inches in diameter be under a head

of 10.5 feet, and let it be required to compute Q. Here

3 inches =0.25 feet and from Table 51 the area of the

circle is 0.04909 square feet. From Art. 22 the theoretic

velocity Vis 8.02X10.5^ = 25.99 feet per second. Accord-

ingly the theoretic discharge is 0.04909X25.99 =-1.28 cubic

feet per second.

The above formula for Q applies strictly only to hori-

zontal orifices upon which the head h is constant, but it
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will be seen later that its error for vertical orifices is less

than one half of one percent when h is greater than double

the depth of the orifice. Horizontal orifices are but little

used, as it is more convenient in practice to arrange an

opening in the side of a vessel than in its base. In apply-

ing the above formula to a vertical orifice, h is taken as

the vertical distance from its center to the free-water sur-

face. Vertical orifices where h is small are discussed in

Arts. 47 and 48.

Since the theoretic velocity is always greater than the

actual velocity, the theoretic discharge is a limit which can

never be reached under actual conditions. Theoretically
the discharge is independent of the shape of the orifice, so

that a square orifice of area a gives the same theoretic dis-

charge as a circular orifice of area a; it will be seen in

Chapter V that this is not quite true for the actual dis-

charge.

In this chapter it is supposed that the velocity of a jet
is the same in all parts of the cross-section, as this would
be the case if h has the same value throughout the section

were it not for the retarding influence of friction. Actually,

however, the filaments of water near the edges of the

orifice move slower than those near the center. If q be
the actual discharge from any orifice and v the mean

velocity in the area a, then q = av, or the equation v = q/a

may be regarded as a definition of the term
' ' mean veloc-

ity.
' ' The theoretic mean velocity is S/2g&, but the actual

mean velocity is slightly smaller, as will be seen in Chap. V.

Formula (23) may be used for computing h when Q
and a are given, and it shows that the theoretic head

required to deliver a given discharge varies inversely as.

the square of the area of the orifice.

Prob. 23. Compute the theoretic head required to deliver

288 gallons of water per minute through an orifice 3 inches in

diameter. Compute also the theoretic velocity.
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ART. 24. FLOW UNDER PRESSURE

The level of water in the reservoir and the orifice of

outflow have been thus far regarded as subjected to no

pressure, or at least only to the pressure of the atmos-

phere which acts upon both with the same mean force of

14.7 pounds per square inch, since the head h is rarely or

never so great that a sensible variation in atmospheric

pressure can be detected between the orifice and the water

level. But the upper level of the water may be subject

to the pressure of steam or to the pressure due to a heavy

weight or to a piston. The orifice may also be under a

pressure greater or less than that of the atmosphere. It

is required to determine the velocity of flow from the

orifice under these conditions.

First, suppose that the surface of the water in the ves-

sel or reservoir is subjected to the uniform pressure of p Q

pounds per square unit above the atmospheric pressure,

while the pressure at the orifice is the same as that of the

atmosphere. Let h be the depth of water on the orifice.

The velocity of flow V is greater than \/2gh on account

of the pressure p ,
and it is evidently the same as that from

a column of water whose height is such as to produce the

same pressure at the orifice. If w be the weight of a cubic

unit of water the unit-pressure at the orifice due to the

head is wh, and the total unit-pressure at the depth of the

orifice is p=wh-\-p^ and from formula (II)* the head of

water which would produce this total unit-pressure is

w w

Accordingly the theoretic velocity of flow from the orifice is

or, if h denote the head corresponding to the pressure
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The general formula (22) t thus applies to any small orifice

if H be the head corresponding to the static pressure at

the orifice.

Secondly, suppose that the surface of the water in the

vessel is subjected to the unit-pressure p Q ,
while the orifice

is under the external unit-pressure p^. Let h be the head

of actual ,water on the orifice, h the head of water which

will produce the pressure p 0t and h
1 the head which will

produce pv The velocity of flow at the orifice is then the

same as if the orifice were under a head h + h h or

hfco-fci) (24)i

in which the values of h Q and h t are

ko=Po/w h
1 =p l/w

Usually /> and p 1 are given in pounds per square inch,

while h and h t are required in feet; then (Art. 11)

7*0
=

2.304^0, ^1
= 2.304^

The values of p and p may be absolute pressures, or merely

pressures above the atmosphere. In the latter case p l may
sometimes be negative, as in the discharge of water into a

condenser.

As an illustration of these principles let the cylindrical

tank in Fig. 24 be 2 feet in diameter, and upon the surface

of the water let there be a

tightly fitting piston which

with the load W weighs 3000

pounds. At the depth 8 feet

below the water level are three

small orifices: one at A, upon
which there is an exterior head

of water of 3 feet; one not

shown in the figure, which dis-

charges directly into the atmosphere ;
and one at C, where

the discharge is into a vessel in which the air pressure is

only 10 pounds per square inch. It is required to deter-
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mine the velocity of efflux from each orifice. The head h Q

corresponding to the pressure on the upper water surface is

p = __ 2
w 3.142X62.5

The head h^ is 3 feet for the first orifice, o for the second,

and -2.304(14.7 10) = 10.83 feet for the third. The
three theoretic velocities of outflow then are:

F = 8.o2\/8 + 15.28 3 =36.1 feet per second,

V =8.o2V/8 + i5.28 o 38.7 feet per second,

F = 8.02\/8 + 15.28+ 10.83 =46.8 feet per second.

In the case of discharge from an orifice under water, as

at A in Fig. 24, the value of h h^ is the same wherever

the orifice be placed below the lower level, and hence the

velocity depends upon the difference of level of the two

water surfaces, and not upon the depth of the orifice.

The velocity of flow of oil or mercury under pressure is

to be determined in the same manner as water by finding

the heads which will produce the given pressure. Thus in

the preceding numerical example, if the liquid be mercury,
whose weight per cubic foot is 850 pounds, the head of mer-

cury corresponding to the pressure of the piston is

7 3

and, accordingly, for discharge into the atmosphere at the

depth h = & feet the velocity is

F = 8.o2\/8 + 1. 1 2 =24.2 feet per second,

while for water the velocity was 38.7 feet per second. The

general formula (22) 1 is applicable to all cases of the flow

of liquids from a small orifice if for h its value p/w be sub-

stituted, where p is the resultant unit-pressure at the depth
of the orifice and w the weight of a cubic unit of the liquid.

Thus for any liquid

V = V2gp/w (24),
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is the theoretic velocity of flow from the orifice. Accord-

ingly for the same unit-pressure p the velocities are inversely

proportional to the square roots of the densities of the liquids.

Prob. 24a. What is theoretic velocity of flow from a small

orifice in a boiler i foot below the water level when the steam-

gage reads 60 pounds -per square inch? What is the theoretic

velocity when the gage reads o?

Prob. 246. A vessel i foot square has a small orifice in the

base. What is the theoretic velocity of flow from the orifice

when the vessel contains 125 pounds of mercury? What is

the theoretic velocity when the vessel contains 125 pounds of

oil whose specific gravity is 0.75?

ART. 25. INFLUENCE OF VELOCITY OF APPROACH

Thus far in the determination of the theoretic velocity

and discharge from an orifice, the head upon it has been

regarded as constant. But if the cross-section of the vessel

'is not large, the head can only be kept constant by an inflow

of water and this will modify the previous formulas. In

this case the water approaches the orifice with an initial

velocity. Let a be the area of the orifice and A the area of

A the horizontal cross-section of the vessel.

Let V be the velocity of flow through a

and v be the vertical velocity of inflow

through A. Let W be the weight of

water flowing from the orifice in one

second
;
then an equal weight must enter

FIG. 25a . . , . .

at A in one second in order to maintain a

constant head h. The kinetic energy of the outflowing

water is W.V 2

/2g and this is equal, if there be no loss of

energy, to the potential energy Wh of the inflowing water

plus its kinetic energy W .v
2

/2g, or

V 2
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Now since the same quantity of water Q passes through the
two areas in one second, Q=aV=Av, whence v = V .a/A.
Inserting this value of v in the equation of energy, there
is found

_
which is always greater than the value V2gh.

The influence of the velocity of approach on the velocity
of flow at the orifice can now be ascertained by assigning
values to the ratio a/A. Thus, if a=A the velocity V
must be infinite in order that the water may fill the entire

section of the vessel and orifice. Further,

for a= |A V
for a= %A V
for a= %A V
for a= iA V
for a

It is here seen that the common formula (22^ is in error 23
percent when a=fA, if the head be maintained constant

by a uniform vertical inflow at the water surface, and 0.5

percent when a = -faA . Practically, if the area of the ori-

fice be less than one twentieth of the cross-section of the

vessel, the error in using the formula V = \/2gh is too

small to be noticed even in the most precise experiments,
and fortunately most orifices are smaller in relative size

than this.

A more common case is that where the reservoir is of

large horizontal and small vertical cross-section, and where

the water approaches the orifice with velocity in a hori-

zontal direction, as in Fig. 256. Here let A be the area

of the vertical cross-section of the trough or pipe, a the

area of the orifice and h the head on its center. Then if

h be large compared with the depth of the orifice, exactly

the same reasoning applies as before and the theoretic
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velocity at the orifice is given by the above formula (25) t .

The same is also true for the case shown in Fig. 25c, where

FIG. 256 FIG. 25c

water is forced through a hose with the velocity v and

issues from a nozzle with the velocity V, the head h being

that due to the pressure at the entrance of the nozzle.

The ' '

effective head
" on an orifice is the head that will

produce the theoretic velocity V. If H be this effective

head, then H = V 2

/2g, and from the first equation of this

article its value may be written

(25)

The effective head on an orifice is, therefore, the sum of

the pressure and velocity heads which exist behind it.

Another expression for the effective head can be obtained

from formula (25) v namely,

H
=i-(a/A)*

When H has been found from either of these formulas the

theoretic velocity and discharge are given by

and 0=aV =

for all instances where h is sufficiently large so that its value

is sensibly constant for all parts of the orifice. But if this

is not the case the value of Q is to be found by the methods

of Arts. 47 and 48.

Prob. 25. In Fig. 25c let the head h be 50 feet, the diameter

of the nozzle ij inches, and the diameter of the hose 3 inches.

Compute the effective head H, and also the discharge Q in

cubic feet per second.
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ART. 26. EMPTYING A VESSEL

Let the depth of water in a vessel be H
; it is required

to determine the theoretic time of emptying it through an
orifice in the base whose area is a. Let Y be , ,

the area of the water surface when the depth
of water is y\ let dt be the time during which

the water level falls the distance 'dy. During
this time the quantity of water Y .dy passes

through the orifice. But the discharge in one FIG. 26a

second under the constant head y is a\/2gy y
and hence the

discharge in the time dt is adtV2gy. Equating these two

expressions, there is found the general formula which

gives the time for the water surface to drop the distance dy.

(26)

The time of emptying any vessel is now determined by
inserting for Y its value in terms of y, and then integrating

between the limits H and o.

For a cylinder or prism the cross-section Y has the

constant value A, and the formula becomes

aV2g

the integration of which, between limits H and h, gives

av 2g

as the theoretic time for the head H to fall to h. If h =o r

this formula gives the time of emptying the vessel. If

the head were maintained constant the uniform discharge

per second would be a\/2gH, and the time of discharging

a quantity equal to the capacity of the vessel is AH divided

by aV2gH, which is one half of the time required to empty it.
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To find the time of emptying a hemispherical bowl of

radius r through a small orifice at its lowest point, let x

be the radius of the cross-section Y\ then x 2

+(r y)
2 =r 2

is the equation of the circle, from which the area Y is

y
2

). The general formula then becomes

aV 2g

and by integration between the limits r and o

which is the theoretic time required to empty the hemi-

spherical bowl.

The only important application of these principles is

in the case of the right prism or cylinder, and here the

formula for the time is modified in practice by introduc-

ing a coefficient, as may be seen in Art. 58. The theoretic

time found by the above formula is always too small,

since frictional resistances have not been considered.

Moreover, the formula does not strictly apply when the

head is very small owing to a whirling motion that occurs

and which tends to increase the theoretic time.

Venturi, in 1798, first described the phenomena of this

whirl.* When the head becomes less than about three

diameters of the orifice the water is observed in whirling

motion, the velocity being greatest near the vertical axis

through the center of the orifice, and as the head decreases

a funnel is formed through the middle of the issuing stream.

The direction of this whirl, as seen from above, may be

either clockwise or contraclockwise, depending on initial

motions in the water or on irregularities in the vessel or

orifice, but under ideal conditions it should be clockwise

in the southern hemisphere of the earth and contraclock-

*Tredgold's Tracts on Hydraulics (London, 1799 and 1826) gives a

translation of trie memoir of Venturi.
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FIG. 266

wise in the northern hemisphere, this being the effect of

the earth's rotation. Fig. 266 represents a vertical sec-

tion of this funnel, on which A
is any point having the coordi-

nates x and y with respect to the

rectangular axes OX and OY.

The axis OF is drawn through
the center of the orifice, and OX
is tangent to the level water sur-

face at a distance H above the

bottom of the vessel. Let r be the radius of the funnel in

the plane of the orifice. It is required to find the relation

between ,r, y, H, and r, or the equation of the curve shown
in the figure.

An approximate solution may be made by supposing
that the particle of water at A is moving nearly horizon-

tally around the axis Y with the velocity v
;
this velocity

must be due to the head y, whence v 2 =
zgy. This particle

is acted upon by the downward force AB, due to gravity,

and by the horizontal force AC, due to centrifugal action,

and they are proportional to g and v 2

/x, these being the

accelerations due to gravity and centrifugal force. The
ratio AC/AB is the tangent of the angle which the water

surface at A makes with the axis OX, for this surface must

be normal to the resultant AD of the two forces AB and

AC. When the ordinate y is increased to y + dy the ab-

scissa x is decreased to x - dx, and hence the value of tan#

must be the same as dy/dx. Accordingly

AC v 2

y dy
tan0=-r^= =2^- = -

AB gx x dx

and the integration of this differential equation gives

y = C/x
2

,
in which C is the constant of integration. When

y equals H, the value of x is r, and hence C =Hr 2

,
and thus

y=Hr 2

/x
2
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is the equation of the curve, which may be called a quad-
ratic hyperbola, the surface of the funnel being then a

quadratic hyperboloid. This equation represents the curve

at one instant only, for H continually decreases as the

water flows out, since the direction of v is not quite hori-

zontal as the investigation assumes. The general phe-
nomena are, however, well explained by this discussion.

Prob. 26a. A prismatic vessel has a cross-section of 18

square feet, and an orifice in its base has an area of 0.18 square
feet. Show that the theoretic time for the water level to drop

7 feet, when the head upon the orifice at the beginnning is 16

feet, is 24.9 seconds.

Prob. 266. Why does the rotation of the earth tend to cause

a counterclockwise rotation of the water when a vessel is emptied
in the northern hemisphere ? Make experiments on this phenom-
enon in a stationary wash-basin, and explain why the funnel

does not form when a large piece of cardboard floats on the

water surface above the orifice.

ART. 27. THE PATH OF A JET

When a jet of water issues from a small orifice in the

vertical side of a vessel or reservoir, its direction at first

is horizontal, but the force of gravity

immediately causes the jet to move

^ in a curve which will be shown to be

jg / .rir_ l_ the common parabola. Let x be the

abscissa and y the ordinate of any

point of the curve, measured from

the orifice as an origin, as seen in

Fig. 27a. The effect of the impulse

at the orifice is to cause the space x

to be described uniformly in a certain time t, or, if v be

the velocity of flow, x = vt. The effect of the force of

gravity is to cause the space y to be described in accord-

ance with the laws of falling bodies (Art. 21), or y =
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Eliminating t from these two equations and replacing v 2

by its theoretic value 2gh, gives

which is the equation of a parabola whose axis is vertical

and whose vertex is at the orifice.

The horizontal range of the jet for any given ordinate y
is found from the equation x 2 =

^hy. If the height of the

vessel be /, the horizontal range on the plane of the base is

This value is o when h = o and also when h=l, and it is a

maximum when h = \l. Hence the greatest range is from

an orifice at the mid-height of the vessel.

A more general case is that where the side of the vessel

is inclined to the vertical at the angle 6, as in Fig. 27b.

Here the jet at first issues

perpendicularly to the side

with a velocity v having the

theoretic value V2gh, and

under the action of the impul-

sive force a particle of water

would describe the distance *

AB in a certain time t with FIG. 276

the uniform velocity v. But in that same time the force

of gravity causes it to descend through the distance EC.

Now let x be the horizontal abscissa and y the vertical

ordinate of the point C measured from the origin A. Then

AB=xsecd, and BC=xtand y. Hence

xsecd=vt, xtB,n6 y = %gt
2

The elimination of t from these expressions gives, after

replacing v 2

by its value 2gh,

which is also the equation of a common parabola.
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To find the horizontal range in the level of the orifice

make y = o in the last equation ;
then

This is o when 6 = o or 6 = 90 ;
it is a maximum and equal

to 2h when #=45. To find the highest point of the jet

the first derivative of y with reference to x is to be equated
to zero in order to obtain the maximum ordinate, and by
this method there results

which are the coordinates of the highest point with respect

to the origin A. In these if 6 = 90, x is o and y is h, that

is, if a jet be directed vertically upward it will, theoretically,

rise to the height of the water level in the reservoir.

As a numerical example let a vessel whose height is 16

feet stand upon a horizontal plane DE, Fig. 276, the side of

the vessel being inclined to the vertical at the angle 6 = 30.
Let a jet issue from a small orifice at A under a head of 10

feet. The jet rises to its maximum height, y = JXio = 2.5

feet, at the distance x = J\/3 X 10 = 8.66 feet from A. At
# = 17.32 feet the jet crosses the horizontal plane through
the orifice. To locate the point where it strikes the plane

DE, the value of y is made 6 feet
; then, from the equa-

tion of the curve, x is found to be 24.6 feet, whence the

distance DE is 21.2 feet.

In practice the above equations are modified by the

frictional resistance of the edges of the orifice which ren-

ders v less than the theoretic value \/2gh, and also by the

resistance of the air. They are, indeed, extreme limits

which may be approached but not reached by equations
that take these resistances into account.

Prob. 27. A jet issues from a vessel under a head of 6 feet,

the side of the vessel being inclined to the vertical at an angle
of 45 and its depth being 8 feet. Find the maximum height
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to which the jet rises and the point where it strikes the hori-.

zontal plane of the base. Show that its theoretic velocity as

it strikes that plane is 22.7 feet per second.

ART. 28. THE ENERGY OF A JET

Let a jet or stream of water have the velocity v, and let

W be the weight of water per second passing any given
cross-section. The kinetic energy of this moving water

is the same as that stored up by a body falling freely tinder

the action of gravity through a height h and thereby ac-

quiring the velocity v. Thus, if K be its kinetic energy

Therefore, for a constant quantity of water per second

passing through the given cross-section, the energy of the

jet is proportional to the square of its velocity. If this

energy can all be transformed into useful work, the work
that the jet will perform in one second is Wh.

The weight W, however, may be expressed in terms of

the cross-section of the jet and its velocity. Thus, if a

be the area of the cross-section, and w the weight of a cubic

unit of water, W is the weight of a column of water whose

length is v and whose cross-section is a, or W =wav\ and

hence the above formula reduces to

K = wav*/2g (28),

In general, then, it may be stated that for a constant cross-

section, the energy of a jet, or the work which it is capable
of doing per second, varies with the cube of its velocity.

The expressions just deduced give the theoretic energy
of the jet, that is, the maximum work which can be obtained

from it; but this in practice can never be fully utilized.

The amount of work which is realized when a jet strikes

a moving surface, like the vane of a water-motor, depends



66 THEORETICAL HYDRAULICS CHAP, in

upon a number of circumstances which will be explained

in a later chapter, and it is the constant aim of inventors

so to arrange the conditions that the actual work may be

as near to the theoretic energy as possible. The "
effi-

ciency" of an apparatus for utilizing the energy of moving
water is the ratio of the work actually utilized to the

theoretic work; or, if k be the work realized, the efficiency

e is e = k/K (28),

The greatest possible value of e is unity, but this can never

be attained, owing to the imperfections of the apparatus
and the frictional resistances. Values greater than 0.90

have, however, been obtained; that is, 90 percent or more

of the theoretic energy of the water has been utilized in

some of the best forms of hydraulic motors.

For example, let water issue from a pipe 2 inches in

diameter with a velocity of 10 feet per second. The
cross-section in square feet is 3.142/144, and the kinetic

energy of the jet in foot-pounds per second is

= 0.01555

which is 0.0385 horse-powers. If the velocity is 100 feet

per second, the theoretic horse-power will be 38.5; if

this jet operates a moter yielding 27.7 effective horse-

powers, the efficiency of the apparatus is 27.7/38.5=0.72,
or 72 percent of the theoretic energy is utilized.

The energy of a jet is the same whether its direction

of motion be vertical, horizontal, or inclined, and its

energy per second is always Wh, where h is the velocity-

head corresponding to actual velocity v, and W is the

weight of water delivered per second. The energy should

not be computed from the theoretical velocity V, as this

is usually greater than the actual velocity.

Prob. 28a. A small turbine wheel, using 102 cubic feet of

water per minute under a head of 40 feet, is found to give 5.5

horse-powers. Find the efficiency of the wheel.
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Prob. 286. When water issues from a pipe with a velocity

of 6 feet per second its kinetic energy is sufficient to generate

1.3 horse-powers. What is the horse-power when the velocity

becomes 12 feet per second?

ART. 29. IMPULSE AND REACTION OF A JET

When a stream or jet is in motion delivering W pounds
of water per second with the uniform velocity v, that

motion may be regarded as produced by a constant force

F, which has acted upon W for one second and then

ceased. In this second the velocity of W has increased

from o to v, and the space %v has been described. Con-

sequently the work F X \v has been imparted to the water

by the force F. But the kinetic energy of the moving
water is W.v*/2g, and hence by the law of conservation

of energy FX$v = WXv*/2g, from which the constant

force is

F-Wj (29)!

This value of F is called the "impulse" of the jet. As

W is in pounds per second, v in feet per second, and g
in feet per second per second, the value of F is in pounds

In theoretical mechanics the term "impulse" is used

in a slightly different sense, namely, as force multiplied

"by time. In hydraulics, however, W is not pounds, but

pounds per second, and thus the impulse is simply pounds.

The force F is to be regarded as a continuous impulsive

pressure acting in the direction of the motion. For, by
the definition, F acts for one second upon the W pounds
of water which pass a given section; but in the next

second W pounds also pass the section, and the same

is the case for each second following. This impulse will

be exerted as a pressure upon any surface placed in the

path of the jet.

The reaction of a jet upon a vessel occurs when water

flows from an orifice. This reaction must be equal in
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value and opposite in direction to the impulse, as in all

cases of stress action and reaction are equal. In the

direction of the jet the impulse produces motion, in the

opposite direction it produces an equal pressure which

tends to move the vessel backward. The force of reaction

of a jet is hence equal to the impulse but opposite in

direction. For example (Fig. 29), let a vessel containing
water be suspended at A so that it can swing freely, and

let an orifice be opened in its side at B.

The head of water at B causes a pressure
which acts toward the left and causes W
pounds of water to move during every
second with the velocity of v feet per

second, and which also acts toward the
FIG. 29

right and causes the vessel to swing out

of the vertical; the first of these forces is the impulse
and the second is the reaction of the jet. If a force R
be applied on the right of a vessel so as to prevent the

swinging, its value is

R=F = W.v/g (29) 2

and this is the reaction of the jet.

The impulse or reaction of a jet issuing from an orifice

is double the hydrostatic pressure on the area of the

orifice. Let h be the head of water, a the area of the

orifice, and w the weight of a cubic unit of water; then,

by Art. 15, the normal pressure when the orifice is closed

is wah. When the orifice is opened the weight of water

issuing per second is W =wav, and hence the impulse

or reaction of the jet is

R=F==wav . v/g = 2wa . v*/2g = 2wah

which is double the hydrostatic pressure. This theo-

retic conclusion has been verified by many experiments.

(Art. 144.)

When a jet impinges normally on a plane it produces
a dynamic pressure on that plane equal to the impulse
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F, since the force required to stop W pounds of water
in one second is the .same as that required to put it in

motion. Again, if a stream moving with the velocity v,

is retarded so that its velocity becomes v2 , the impulse
in the first instant is W .v^/g and in the second W .v2/g.
The difference of these, or

Fi-Ft-Wfa-vJ/g (29).

is a measure of the dynamic pressure which has been

developed. It is by virtue of the pressure due to change
of velocity that turbine wheels and other hydraulic motors

transform the kinetic energy of moving water into useful

work.

Prob. 29. If a stream of water 3 inches in diameter issues

from an orifice in a direction inclined downward 26 to the

horizon with a velocity of 15 feet per second, show that its

upward reaction on the vessel is 9.4 pounds and that its hori-

zontal reaction on the vessel is 19.3 pounds. Show that the

pressure exerted by this stream, when stopped by a plane nor-

mal to its direction, is 21.5 pounds.

ART. 30. ABSOLUTE AND RELATIVE VELOCITIES

Absolute velocity is defined in this book as that with

respect to the surface of the earth, and relative velocity

as that with respect to a body moving on the earth. Thus

absolute velocity is that seen by a spectator who is on

the earth and relative velocity is that seen by one who
is on the moving body. For instance, if a body be dropped

by a person who is on a moving railroad car it appears to

a person standing outside to move obliquely, but to one

on the car it appears to move vertically. On a car in

uniform motion all the laws of mechanics prevail exactly

as if it were at rest, hence if dropped through a height

h the body acquires a theoretic velocity of \/2gh with

respect to the car. But if the velocity of the car be M

the kinetic energy of the body at the moment of letting
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it fall is W .u 2

/2g and its potential energy is Wh, so that,

neglecting frictional resistances, its total energy as it

reaches the earth is the sum of these and accordingly

its absolute velocity as it reaches the earth is \/2gh + u'
i

.

When a vessel containing water with a free surface, as

in Fig. 30a, has an orifice under the head h and is in motion

in a straight line with the uniform absolute velocity u, the

theoretic velocity of flow rela-

tive to the vessel is V = \/2gh,

or the same as its absolute ve-

locity if the vessel were at rest,

for no accelerating forces exist

to change the direction or the

value of g. The absolute ve-

locity of flow, however, may be greater or less than V,

depending upon the value of u and its direction. To illus-

trate, take the case of a vessel in uniform horizontal motion

from which water is flowing through three orifices. At A
the direction of V is horizontal, and as the vessel is moving
in the opposite direction with the velocity u, the absolute

velocity of the water as it leaves the orifice is v = V u.

It is also plain, if the orifice were in front of the vessel and

the direction of V horizontal, that the absolute velocity

of the water as it leaves the orifice isv = V + u.

Again, at B is an orifice from which the water issues

vertically with respect to the vessel with the relative velocity

V, while at the same time the orifice moves horizontally

with the absolute velocity u. Forming the parallelogram,

the absolute velocity v is seen to be the resultant of the

velocities V and u, or

Lastly, at C is shown an orifice in the front of the vessel so

arranged that the direction of the relative velocity V makes

an angle <j>
with the horizontal. From C draw Cu to rep-

resent the velocity u, and CV to represent V, and complete
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the parallelogram as shown; then Cv, the resultant of u
and V, is the absolute velocity with which the water leaves

the orifice. From the triangle Cuv

(30)

In this, if < =
o, the absolute velocity v becomes V+ u as

before shown for an orifice in the front; if ^ = 90, it be-

comes the same as when the water issues vertically from

the orifice in the base; and if < = i8o, the value of v is

V u as before found for an orifice in the rear end.

Another case is that of a revolving vessel having an

opening from which the water issues horizontally with the

relative velocity V, while the orifice is

moving horizontally with the absolute

velocity u. Fig. 306 shows this case,

ft being the angle wrhich V makes with

the reverse direction of u, and here also

v =VV 2 + u 2 2uV cos/?
FIG. 306

is the absolute velocity of the water as it leaves the vessel.

In all cases the absolute velocity of a body leaving a mov-

ing surface is the diagonal of a parallelogram one side of

which is the velocity of the body relative to the surface

and the other side is the absolute velocity of that surface.

If a vessel move with a motion which is accelerated or

retarded, this affects the value of g, and the reasoning of

the preceding articles does not give the correct value of V.

For instance, if a vessel move vertically upward with an

acceleration /, the relative velocity of flow from an orifice,

in it is V = \/2(g + f)ti, and if u be the velocity of the vessel

at any instant, the absolute downward velocity of flow is

u + V. Again, if a vessel be moving downward with the

acceleration /, the relative velocity of flow is V = \/2(g f)h

and the absolute is u V. If the downward acceleration

be gj or the vessel be freely falling, V will be zero, since



72 THEORETICAL HYDRAULICS CHAP, nr

both vessel and water are alike accelerated and there is

no pressure on the base.

Prob. 30. In Fig. 30a let the orifice at A be under a head
of 4 feet and its height above the earth be 4.5 feet, while

the car moves with a velocity of 40 miles per hour. Compute
the relative velocity V, the absolute velocity v, and the absolute

velocity of the jet as it strikes the earth.

ART. 31. FLOW FROM A REVOLVING VESSEL

Water in a vessel at rest on the surface of the earth is

acted upon only by the vertical force of gravity, and hence

its surface is a horizontal plane. Water in a revolving
vessel is acted upon by centrifugal force as well as by
gravity, and it is observed that its surface assumes a curved

shape. The simplest case is that of a cylindrical vessel

rotating with uniform velocity about its vertical axis, and

it will be shown that here the water surface is that of a

paraboloid.

Let BC be the vertical axis of the vessel, h the depth,

of water in it when at rest, and h^ and h2 the least and

D greatest depths of water in it when
in motion. Let G be any point on

2 the surface of the water at the hori-

zontal distance x from the axis, and
B E let y be the vertical distance of G

FIG. sia above the lowest point C. The head
of water on any point E in the base is EG or h

l + y. Now
this head y is caused by the velocity u with which the point
G revolves around the axis, or, in other words, the position
of G above C is due to the energy of rotation. Thus if W
be the weight of a particle of water at G the potential energy

Wy equals the kinetic energy Wu z

/2g, and hence y=u 2

/2g.

Let n be the number of revolutions made by the vessel

and water in one second. Then u = 2nx. n, and hence

y = u
2

/2g = 2X*n 2X 2

'/g
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which is the equation of a common parabola with respect
to rectangular axes having an origin at its vertex C. The
surface of revolution is hence a paraboloid.

Since the volume of a paraboloid is one half that of

its circumscribing cylinder, and since the same quantity
of water is in the vessel when in motion as when at rest, it

is plain that in the figure i(/&2 ^i) equals k h^ Conse-

quently h h l equals h2 h, or the elevation of the water

surface at D above its original level is equal to its depres-
sion at C. If r be the radius of the vessel, the height h2 h

l

is, from the above equation, 2x 2n 2
r

2

/g, and hence the dis-

tances h hi and h2 h are each equal to x 2n 2
r

2

/g. The
head at the middle of the base of the vessel during the

motion is now h^
= h n 2n 2

r
2

/g and the head at any 'point E
is h

i +y=h+(2X 2 -r 2

)n
2n 2

/g. .

The theoretic velocity of flow from the small orifice in

the base is that due to the head h + or

V = \/2g(h l

which is less than ^/2gh when x 2
is less than Jr

2
,
and greater

when x 2
is greater than Jr

2
. For example, let r = i foot and

& = 3 feet, then 1^ = 13.9 feet per second when the vessel is

at rest. But if it be rotating three times per second around

its axis with uniform speed the velocity from an orifice in

the center of the base, where x = o, is 3.9 feet per second,

while the velocity from an orifice at the circumference of

the base, where x = i foot, is 19.2 feet per second. At this

speed the water is depressed 2.76 feet below its original

level at the center and elevated the same amount above

that level around the sides of the vessel.

In the case of a closed vessel where the paraboloid can-

not form, the velocity of flow from all orifices, except one

at the axis, is increased by the rotation. Thus in Fig. 316,

if the vessel be at rest and the head on the base be h the

velocity of flow from all small orifices in the base is \/2gh.
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But if the vessel be revolved about the vertical axis BC
t

c so that an orifice at E has the velocity u around

that axis, then the pressure-head at E is

,
and accordingly

(31)

is the theoretic velocity of flow from an orifice at E. This

formula is an important one in the discussion of hydraulic
motors. Here, as before, the value of u may be expressed
as 27r.m, when x is the distance of E from the axis and
n is the number of revolutions per second. As an ex-

ample, suppose a closed vessel full of water to be revolved

about an axis 120 times per minute, and it be required
to find the theoretic velocity of flow from an orifice ij

feet from the axis, the head on which is 4 feet when the

vessel is at rest. The velocity u is found to be 18.85

feet per second, and then the theoretic velocity of flow

from the orifice is 24.8 feet per second, whereas it is only
16.0 feet per second when the vessel is at rest.

The velocity V in both these cases is a relative

velocity, for the pressure at the moving orifice produces
a velocity with respect to the vessel. The absolute ve-

locity, or that with respect to the earth, is greater than

the relative velocity when the stream issues from an

orifice in the base, for the orifice moves horizontally with

the absolute velocity u and the stream moves downward
with the relative velocity V, and hence the absolute ve-

locity of the stream is W2 + u 2
. When the stream issues

from an orifice in the side of the vessel upon which the

head is h, formula (31) gives its relative velocity and
then the absolute velocity is found by formula (30).

Prob. 31a. For the curve in Fig. 31a deduce the equation

y Coc2 by a method of proof similar to that used in the latter

part of Art. 26.

Prob. 316. A cylindrical vessel 2 feet in diameter and 3 feet

deep is three fourths full of water, and is revolved about its
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vertical axis so that the water is just on the point of overflowing
around the upper edge. Find the number of revolutions per
minute. Find the relative velocity of flow from an orifice in

the base at a distance of 0.75 feet from the axis. Show that

the velocity from all orifices within 0.707 feet of the axis is less

than if the vessel were at rest.

ART. 32. STEADY FLOW IN SMOOTH PIPES

When water flows through a pipe of varying cross-

section and all sections are filled with water, the same

quantity of water passes each section in one second. This

is called the case of steady flow. Let q be this quantity
of water and let v lt v2t v3 be the mean velocities in three

sections whose areas are a
lf
a2 ,

a3 . Then

Q.Qfy = a<u = ai) (32}

This is called the condition for steady flow, and it shows

that the velocities at different sections vary inversely

as the areas of those sections. If v be the velocity at

the end of the pipe where the area is a, then also q = av.

When the discharge q and the areas of the cross-sections

have been measured, the mean velocities maybe computed.

When a pipe is filled with water at rest the pressure

at any point depends only upon the head of water above

that point. But when the water is in motion it is a fact

of observation that the

pressure becomes less than |

that due to the head. The g

unit-pressure in any case =-

may be measured by the |

height of a column of water. E^E^IE="^-

Thus if water be at rest in

the case shown in Fig. 32a,

and small tubes be inserted
FIG. 32a

at the sections whose areas are at and a2 ,
the water will

rise in each tube to the same level as that of the water
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surface in the reservoir, and the pressures in the sections

will be those due to the hydrostatic heads H
l and H

2 .

But if the valve at the right be opened the water levels

in the small tubes will sink and the mean pressures in

the two sections will be those due to the pressure-heads

7^ and h2 .

Let W be the weight of water flowing in each second

through each section of the pipe, and let v^ and v2 be the

mean velocity in the section a
i and a2 . When the water

wras at rest the potential energy of pressure in the section

a x was VVH1 ;
when it is in motion the energy in the section

is the pressure energy Wh 1 plus the kinetic energy W .i\
2

/2g.

If no losses of energy due to friction or impact have oc-

curred, the energy in the two cases must be equal. The
same reasoning applies to the section a2 ,

and hence

(32),

These equations exhibit the law first deduced by Daniel

Bernouilli in 1738,* and which may be stated in words

as follows:

At any section of a tube or pipe, tinder steady flow

without friction, the pressure-head plus the velocity-head

is equal to the hydrostatic head that obtains when there

is no flow.

This theorem of theoretical hydraulics is of great importance
in practice, although it has been deduced for mean veloc-

ities and mean pressure-heads, while actually the velocity

and the pressure are not the same for all points of the

cross-section.

The pressure-head at any section hence decreases

when the velocity of the water increases. To illustrate,

let the depths of the centers of a x and a2 be 6 and 8 feet

below the water level, and let their areas be 1.2 and 2.4

* Hydrodynamica (Strassburg, 1738), pp. 35, 144.
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square feet. Let the discharge of the pipe be 14.4 cubic

feet per second. Then from (32) x
the mean velocity in

a
v

is ^ =
14.4/1.2

= 12 feet per second, which corresponds
to a velocity head of o.oi555^

2 = 2.24 feet, and conse-

quently from (32) 2 the pressure-head in a
t is 6.0 2.24 =

3.76. For the section a 2 the velocity is 6 feet per second

and the velocity head is 0.56 feet, so that* the pressure-

head is 8.0 0.56
= 7.44 feet.

The theorem of (32) 2 may be also applied to the jet

issuing from the end of the pipe. Outside the pipe there

can be no pressure, and if h be the hydrostatic head and
V the velocity the equation gives h = V 2

/2g, or V =
\/2gh,

that is, if frictional resistances be not considered, the

theoretic velocity of flow from the end of a pipe is that

due to the hydrostatic head upon it. In Chapter VIII it

will be seen that the velocity is much smaller than this,

for a large part of the head h is expended in overcoming
friction.

A negative pressure may occur if the velocity-head
becomes greater than the hydrostatic head, for (32) 2

shows that h^ is negative when v^/2g exceeds H
lf A case

of this kind is given in Fig. 326, where the section at A
is so small that the velocity is greater than that due to

the head H lt so that if a tube be inserted at A no water

runs out, but if the tube be carried down-

ward into a vessel of water there will

be lifted a column CD whose height

is that of the negative pressure-head
hv For example, let the cross-section

of A be 0.4 square feet, and its head h

be 4.1 feet, while 8 cubic feet per second

are discharged from the orifice below. Then the velocity

at A is 20 feet per second, and the corresponding velocity-

head is 6.22 feet. The pressure-head at A then is, from

the theorem of formula (32).,

/^=4. i 6.22 = 2.12 feet
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and accordingly there exists at A an inward pressure

p l
= -2.12X0.434= -0.92 pounds per square inch

This negative pressure will sustain a column of water
CD whose height is 2.12 feet. If the small vessel be

placed so that its water level is less than 2.12 feet below

A, water will be constantly drawn from the smaller to

the larger vessel. This is the principle of the action of

the injector-pump.

Prob. 32. In a horizontal tube there are two sections of

diameters i.o and 1.5 feet. The velocity in the first section

is 6.32 feet per second, and the pressure-head is 21.57 feet -

Find the pressure-head for the second section if no energy is

lost between the sections.

ART. 33. COMPUTATIONS IN METRIC MEASURES

(Art. 22) Using for the acceleration of the mean value

9.80 meters per second per second, formulas (22) 2 become

(33)

in which h is in meters and V in meters per second. Table

16 shows values of the velocity for given heads, and values

of the velocity-head for given velocities.

(Art. 23) The area a is in square meters, the velocity

V in meters per second, and the discharge Q in cubic

meters per second. Thus if a pipe 20 centimeters in

diameter discharges 0.15 cubic meters per second the

area of the cross-section is 0.03142 square meters and the

mean velocity is 0.15/0.03142 =4-77 meters per second.

(Art. 24) For Fig. 24 let the reservoir be one meter

in diameter, the load W be 2000 kilograms, and the orifices

be 3 meters below the piston. , Let the exterior head on

A be 1.5 meters, the orifice B be open to the atmosphere,
and the orifice C be in air whose pressure is 0.7 kilograms

per square centimeter. The area of the piston is 0.7854
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square meters, and the head corresponding to the pressure
on the upper water surface is

2000Q
h = =-^ ;

- = 2.546 meters.w 0.7854X1000

The head h
l
i& 3 meters for the first orifice, o for the second,

and 10(1.033 0.7)
=

3.33 meters for the third. The
three theoretic velocities of outflow then are

V = 4.427\/3+2.546-i.5 =
8.91 meters per second;

V =
4.42 7\/3 +2.546-0 =10.43 meters per second,

V=4.427^3 + 2.546+3.33 =13.19 meters per second.

If in this example the liquid be alcohol which weighs 800

kilograms per cubic meter, the head of alcohol correspond-

ing to the pressure of the piston is

2000
-3-183 meters

-

and accordingly for discharge into the atmosphere at the

depth hi
=

3 meters the velocity is

F = 4.427V
/
3+3.i8 = u.oi meters per second,

while for water the velocity was 10.43 meters per second.

(Art. 28) As an illustration of (28) 2 let water issue

from a pipe 6 centimeters in diameter with a velocity of

4 meters per second. The cross-section is found from

Table 51 to be 0.002827 square meters, and then the

theoretic work in kilogram-meters per second is

K = o.oio2 X

which is 0.123 metric horse-powers. If the velocity be

1 6 meters per second the stream will furnish 7.87 horse-

powers.

(Art. 32) In Fig. 32a, suppose the sections a
t
and

a2 to be 0.06 and 0.12 square meters, and the depths of
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their centers below the water level of the reservoir to

be 4.5 and 5.5 meters. Let 0.24 cubic meters per second

be discharged from the pipe, then from (32) 1 the mean
velocities in a t and a 2 are 4.0 and 2.0 meters per second.

The velocity-heads are then 0.82 meters for a
x and 0.20

meters for a2 ,
so that during the flow the pressure-head

at A is 4.5 0.82 =3.68 meters and that at B is 5.5 0.20 =

5.30 meters.

Prob. 33a. What theoretic velocities are produced by heads

of o.i, o.oi, and o.ooi meters? What is the velocity-head of

a jet, 7.5 centimeters in diameter, which discharges 500 liters

per second?

Prob. 336. A prismatic vessel has a cross-section of 1.5

square meters and an orifice in its base has an area of 150 square
centimeters. Compute the theoretic time for the water level

to drop 3 meters when the head at the beginning is 4 meters.

Prob. 33c. A small turbine wheel using 3 cubic meters of

water per second under a head of ioj meters is found to deliver

5.1 metric horse-powers. Compute the efficiency of the wheel.

Prob. 33d. In an inclined tube there are two sections of

diameters 10 and 20 centimeters, the second section being

1.536 meters higher than the first. The velocity in the first

section is 6 meters per second and the pressure-head is 7.045
meters. Find the pressure-head for the second section.
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CHAPTER IV

INSTRUMENTS AND OBSERVATIONS

ART. 34. GENERAL CONSIDERATIONS

Some of the most important practical problems of

Hydraulics are those involving the measurement of the

amount of water discharged in one second from an orifice,

pipe, or conduit under given conditions. The theoretic

formulas of the last chapter furnish the basis of most of

these methods, and in the chapters following this one

are given coefficients derived from experience which

enable those formulas to be applied to practical conditions.

These coefficients have been determined by measuring

heads, pressures, or velocities with certain instruments,

and also the amount of water actually discharged, and

then comparing the theoretic results with the actual

ones. It is the main object of this chapter to describe

the instruments used for this purpose, and a few remarks

concerning advantageous methods for the discussion of the

observations will also be made.

The engineer's steel tape, level, and transit are in-

dispensable tools in many practical hydraulic problems.
For example, two reservoirs M M
*and Ar

,
connected by a pipe

line, may be several miles apart.

To ascertain the difference in

elevation of their water sur-

faces lines of levels may be run

and bench marks established

near each reservoir as also at other points along the pipe
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line. From the bench marks at the reservoirs there can

be set up simple board gages, so that simultaneous read-

ings can be taken at any time to find the difference in

elevation. From the bench marks along the pipe line a

profile of the same can be plotted for use in the discussion.

With the transit and tape the alignment of the pipe line

and the lengths of its curves and tangents can also be taken

and mapped. All of these records, in fact, are necessary
in order to determine the amount of water delivered

through the pipe.

For work on a smaller scale, like that of the discharge
from an orifice in a tank, the steel tape may be used to

mark points from which a glass gage tube

may be set upon which the height of the

water surface above the orifice can be

read at any time during the experiment.
Another method is to have a float on the

water surface, the vertical motion of which

Fi 346
*s communicated to a cord passing over a

pulley, so that readings can be taken on a

scale as the weight at the lower end of the cord moves

up or down. When the head is very small, however,

these methods are not sufficiently precise and the hook

gage, described in Art. 35, must be used.

A small quantity of water flowing from an orifice may
be measured by allowing it to run into a barrel set upon
a platform weighing scale. The weight of water dis-

charged in' a given time is thus ascertained, the time being

noted by a stop-watch, and the volume is then computed

by the help of Table 7. If the flow is uniform the dis-

charge in one second is then found by dividing the volume

by the number of seconds. A larger quantity of water

may be measured in a rectangular tank, the cross-section

of which is accurately known
;
here the water surface is

noted at the beginning and end of the experiment, and

the volume is then computed by multiplying the area



ART. 34 GENERAL CONSIDERATIONS 83

by the difference of the two elevations. For example,
if a square tank be 4 feet 2 inches inside dimensions, and
if the gage reads 3.17 feet at the beginning and 4.62 feet

at the end of the experiment, which lasted 304 seconds,

the flow, if uniform, is 0.0828 cubic feet per second.

Larger quantities of water still are sometimes measured

in the reservoir of a city supply. The engineer, by the

use of his level, transit, and tape, makes a precise contour

map of the reservoir, determines with the planimeter
the area enclosed by each contour curve, and computes
the volume included between successive contour planes.

For instance, if the area of

the contour curve AB be

84 320 square feet and that

of CD be 79 624 square
feet and the vertical dis-

tance between the contour

planes be 5 feet, the volume

included is 409 860 cubic

feet by the method of

mean areas. A more pre-

cise determination, how-

ever, may be made by measuring the area of a contour

curve half-way between AB and AC; if this be found to

be 82 150 square feet, the volume included between AB
and AC is computed by the prismoidal formula and found

to be 410 450 cubic feet.

These direct methods of water measurement form the

basis of all hydraulic practice. In this manner water

meters are rated, and the coefficient determined by which

practical formulas for flow through orifices, weirs and

pipes are established. These coefficients being known,
indirect methods may be used for water measurement,

namely, the discharge can be computed from the formulas

after area and heads have been ascertained. There are

also methods of indirect measurement from observed

FIG. 34<;
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velocities which will be described later, and which are

especially valuable in finding the discharge of pipes, con-

duits and streams.

Prob. 34. Water flows from an orifice uniformly for 93.5
seconds and falls into a barrel on a platform weighing scale.

The weight of the empty barrel is 28 pounds and that of the

barrel and water is 267 pounds. What is the discharge of the

orifice in gallons per minute, if the temperature of the water
is 52 Fahrenheit?

ART. 35. THE HOOK GAGE

The hook gage, invented by Boyden about 1840, con-

sists of a graduated metallic rod sliding vertically in fixed

supports, upon which is a vernier by which readings can be

taken to thousandths of a foot. At the lower

end of the rod is a sharp-pointed hook, which is

raised or lowered until its point is at the water

level. Fig. 35a represents the form of hook gage
made by Gurley, the graduation on the rod being
to feet and hundredths. The graduation has a

length of 2.2 feet, so that variations in the water

level of less than this amount can be measured,

by using the vernier, to thousandths of a foot.

To take a reading on a water surface, the point

of the hook is lowered below the surface and then

slowly raised by the screw at the top of the in-

strument. Just before the point of the hook

pierces the skin of the water (Art. 3) a pimple
or protuberance is seen to rise above it

;
the hook

is then depressed until the pimple is barely visi-

ble and the vernier is read. The most precise

hook gages read to ten-thousandths of a foot, arid

it has been stated that an experienced observer

can, in a favorable light and on a water surface

perfectly quiet, detect differences of level as
FIG. 35a small a 0.0002 feet.

A cheaper form of hook gage, and one sufficiently pre-
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else in some classes of work, can be made by screwing a

hook into the foot of an engineer's leveling rod. The back

part of the rod is then held in a vertical position by two

clamps on fixed supports, while the front part is free to

slide. It is easy to arrange a slow-motion movement so

that the point of the hook may be precisely placed at the

water level. The reading of the vernier is determined when
the point of the hook is at a known elevation above an ori-

fice or the crest of a weir, and by subtracting from this the

subsequent readings the heads of water are known. A
New York rod, reading to thousandths of a foot, is to be

preferred.

Hook gages are principally used for determining the

elevations of the water surface above the crest of a weir,

as the heads of water are small and must
be known with precision. In Fig. 35b,

the crest of the weir is seen and the hook

gage is erected at some distance back

from it, where the water surface is

level. In this case great care should

be taken to determine the reading cor-

responding to the level of the crest. In the larger forms of

hooks this may be done by taking elevations of the crest

and of the point of the hook by means of an engineer 's level

and a light rod. With smaller hooks it may be done by
having a stiff permanent hook, the elevation of whose point
with respect to the crest is determined by precise levels;

the water is then allowed to rise slowly until it reaches the

point of this stiff hook, when readings of the vernier of the

lighter hook are taken. Another method is to allow a small

depth of water to flow over the crest and to take readings

of the hook, while at the same time the depth on the crest

is measured by a finely graduated scale. Still another way
is to allow the water to rise slowly, and to set the hook at

the water level when the first filaments pass over the crest ;

this method is not a very precise one on account of capillary
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attraction along the crest. As the error in setting the

hook is a constant one which affects all the subsequent
observations, especial care should be taken to reduce it to

a minimum by taking a number of observations in order

to obtain a precise mean result.

The hook gage is also used to find the difference of the

water levels in tanks for experiments for the determination

of hydraulic coefficients, and in wells along pipe lines when

experiments are made to investigate frictional resistances.

In general its use is confined to cases where the head is

small, as for high heads so great a degree of precision is

not required (Art. 55).

Prob. 35. A wooden tank, 4.52 by 5.78 feet in inside dimen-

sions, has leakage near its base. The hook gage reads 2.047 feet

at 11.57 A.M., 1.470 feet at 12.05 p -M -> and 0.938 feet at 12.13 P.M.

Show that the probable leakage in the first and last minutes was

1.96 and 1.66 cubic feet.

ART. 36. PRESSURE GAGES

A pressure gage, often called a piezometer, is an instru-

ment for measuring the pressure of water in a pipe. The
form most commonly found in the market has a dial and

movable pointer, the dial being graduated to read pounds

per square inch. The principle on which this gage acts

is the same as that of the Richard aneroid barometer and

the Bourdon steam gage. Within the case is a small coiled

tube closed at one end, while the other end is attached to

the opening through which the water is admitted. This

tube has a tendency to straighten when under pressure

and thus its closed end moves and the motion is communi-

cated to the pointer ;
when the pressure is relieved the tube

assumes its original position and the pointer returns to zero.

There is no theoretical method of determining the motion

of the pointer due to a given pressure, and this is done by
tests in which known pressures are employed, and accord-
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ingly the divisions on the graduated scale are usually un-

equal. These gages are liable to error after having been
in use for some time, especially so at high pressures, and
hence should be tested before and after any important
-series of experiments.

In most hydraulic work the head of water causing the

pressure is required to be known. If p be the gage reading
in pounds per square inch the head of water in feet is

A = 2. 304/7, or if p be the gage reading in kilograms per

square centimeter, the head of water in meters is h = lop.

The graduation of the gage dial may be made to read heads

directly, so as to avoid the necessity of reduction.

The pressure at any point of a pipe may be measured

"by the height of a column of water in an open tube, as seen

at A in Fig. 36a. The upper

portion of the tube may be of

glass, so that the position of

the water level may be noted

on a scale held alongside. It is

not necessary that the water

column should be vertical, and =

a hose is often used, as seen at FIG. 36a

B, with a glass tube at its top. At C is shown a dial pres-

sure gage. When the head h is directly read in feet, the

pressure in pounds per square inch may be computed from

^ = 0.434/2. In order to secure precise results when the

water in the pipe is in motion, it is necessary that a piez-

ometer tube be inserted into the pipe at right angles; if

inclined toward or against the current the head h is greater

or less than that due to the actual pressure at its mouth.

For high pressures a water column is impracticable on

account of its great height, and hence mercury gages are

used. Fig. 366 shows the principle of construction, a bent

tube ABC with both ends open, having mercury in its lower

portion, and the water column of height h being balanced
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by the mercury column of height z. If the atmospheric-

pressures at A and C are the same, it is evident,
L

ri from Art. 5, that the height h is about 13.6

times the height 0, since the specific gravity of

mercury is about 13.6. Now z can be read on
a scale placed between the legs of the tube,

and thus h'is known, as also the water pressure

at the point B. If the atmospheric pressures

t at A and C are different, as will be the case when
h is very large, let b be the barometer reading
at A and b2 that at C, both being in the same
linear unit as h and z. The absolute pressure

at B is that due to the height sh + s
f
b

l1 where

5 and s
f
are the specific gravities of water and

mercury, and the absolute pressure at the same

elevation in the other leg is that due to the height
FIG. 36b s*(z + b2). Since these pressures are equal,

h = (s
f

/s) (z + b2 b^

is the head corresponding to the distance z on the scale..

The ratio s'/s is 13.6 approximately, its actual value de-

pending on the purity of the water and mercury and on the

temperature.

Fig. 36c shows the mercury gage as arranged for

measuring the pressure-head at a point A in a water pipe.

The top is open to the air and through it

the mercury may be poured in, the cock

E being closed and F open; the mercury

then stands at the same height in each

tube. The cock F being closed and E
opened, the water enters the left-hand tube,

depressing the mercury to B, causing it

to rise to C on the other side. The dis-

tance z is then read on a scale between

the two tubes, and the height of B above
~~

A by another scale. The pressure of the

water at B is that due to the head 13.62, and the pressure
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at A is that due to the head y + i$.6z. In precise work
it is necessary to determine the exact specific gravity of

the mercury and water at different temperatures, so that

precise values of the ratio s
f

/s may be known. The value

of s' depends upon the purity of the mercury and is some-

times lower than 13.56.

For very high pressures, such as are used in operating

heavy forging-presses, the mercury column of the above

gage would be so long as to render it impracticable, and

accordingly other methods must be employed. Fig. 36d

represents a mercury gage constructed on the principle

of the hydraulic press (Art. 10). W is a small cylinder
into which the water is admitted through the small pipe
at the top, and M is a large cylinder containing mercury
to which a glass tube is attached.

Before the water is admitted

into W the mercury stands at

the level of B in both the glass

tube and large cylinder, if the

piston does not rest on the

mercury. When the water is

admitted its pressure on the

upper end of the piston is pa,

if p be the unit-pressure and a

the area of the upper end. If A be the area of the lower

end of the piston the total pressure upon it is also pa,

and hence the unit-pressure on the mercury surface is

p. aI'A, and this is balanced by the column of height z

in the glass tube. For example, suppose that A = 2ooa,

then the unit-pressure on the mercury surface is o.oo$p;

further, if z be 60 inches, the unit-pressure at B is about

2X14.7=29.4 pounds per square inch (Art. 5), and ac-

cordingly the pressure in W is = 200X29.4 = 5880

pounds per square inch, which corresponds to a head of

water of about 13 550 feet.

FIG. 3Qd
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Prob. 36. The diameter of the large end of the piston in the
last figure is 15 inches, and the diameter of the mercury column
is J inch. Find the distance the piston is depressed when the

mercury rises 60 inches. What is the total pressure on the

piston ?

ART. 37. DIFFERENTIAL PRESSURE GAGES

A differential gage is an instrument for measuring
differences of heads or pressures, and this must be frequent-

ly done in hydraulic work. One of the simplest forms

is that seen in Fig. 37a where two
water columns from A and D are

brought to the sides of a common
scale' upon which the difference of

height EC is directly read. A better

form is one having two glass tubes

fastened to a scale, these tubes being

provided with attachments upon which

cari be screwed the hose leading
from the pipe. With these forms, however, large heads

cannot be managed even if their difference be small, and
hence the mercury gage was devised.

Fig. 376 shows the principle of the mercury differential

gage.* Two parallel tubes are open at the top, and here

the mercury is poured in, the cocks E and

F being open and A and C closed; the mer-

cury then stands at the same height in each

tube. The cocks E and F being now closed

and A and C opened, the water enters at

A and C, and the mercury is depressed in

one tube and elevated in the other. Let

the pressure at E be that due to the head

hv and the pressure at C be that due to the

head h2 ,
and let h^ be greater than h 2 ;

also let the distance

FIG. 37a

E

FIG. 376

* For the details of construction see paper by Kuichling in Transac-

tions American Society of Civil Engineers, 1892, vol. 26, p. 439.
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read on the scale between the two tubes be z. Then

7^= ^2 + 13. 60, or the difference of the heads of water on
B and C is h

1
h2
=

13.60. Thus if z be 1.405 feet, the

difference of the heads is 19.1 feet. Here, as for the mer-

cury gage of Art. 36, the specific gravity of the mercury
and water must be known for different temperatures,
or comparisons of the instrument with a standard gage
must be made.

When the difference of the heads is small the water

gage, explained in the first paragraph, cannot measure

it with precision, especially when the columns are subject
to oscillations. To increase the distance between B and

C and at the same time decrease the amount of oscillation,

the oil differential gage, invented by Flad in 1885, may
be used. Fig. 37c shows the principle of construction.*

The cocks A and D being closed and F
open, sufficient oil is poured in at F to

partially fill the two tubes. Then F is

closed and the water admitted at A and

D, when it rises to B in one tube and to

C in
. the other, the oil filling the tubes

above the water. Let 5 be the specific

gravity of the water and s' that of the

oil,
1

let hi be the head of water on B and Fio. 37c

/z2 that on C, then sh2 =sk l
s

f

z, whence h2 h
l =(s'/s)z.

Kerosene oil having a specific gravity of about 0.79 is gen-

erally used, and if the specific gravity of the water be unity,

the difference of the heads is 0.792. Thus z is greater

than h2
-h

lJ and hence an error in reading z produces a

smaller error in h
2

h
l

. The specific gravities of the oil

and water must be determined, however, so that s?/s

can be expressed to four significant figures when precise

work on low heads is to be done.

* For the details see paper by Williams, Hubbell, and Fenkell in

Transactions of American Society of Civil Engineers, 1902, voL 47,

pp. 72 83.
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The difference of head h
t h2l determined by these

differential gages, is the difference of the heads due to

the pressure at the water levels B and C. The difference

of the actual heads at the points of connection with the

pipe under test is next to be determined. Fig. 37'd shows
a mercury gage set over a water pipe for the purpose of

determining the loss of head due to a valve, the velocity

FIG. 37d FIG. 37e

of the water being high, so that the. difference of pressure
at A and D is large. Fig. 37'e shows an oil gage set over

a similar pipe, the velocity being low, so that the difference

of pressure is small. Let a horizontal plane, represented

by the broken line, be drawn through the zero of the scale

of the gage, and let d be the distance of this plane above

the horizontal pipe. Let b and c be the readings of this

scale at the water levels B. and C in the gage tubes, the

difference of these readings being z. Let h l and h2 be the

pressure-heads on B and C, and H1 and H2 those on A
and D. Then H

l
=h

1 + b + d and H2 =h2+ c+ d, and the

difference of these heads is

which is applicable to both kinds of differential gages.

For the mercury gage the head/^ h2 equals 13.62, while

the value of b c is z
;
hence

I H2
=

13.60 2 = 12. 6z



ART. 38 WATER METERS 93

For the oil gage h
1

h2
is 0.792, while b c is z, hence

In general, if s
f be the ratio of the specific gravity of the

mercury or oil to that of the water, the difference of the

pressure-heads at A and D which is the loss of head due

to the valve, is (5' 1)2 for the mercury gage and (is')z
for the oil gage.

The principle of the mercury gage can also be applied
to the measurement of small differences of head by using
a liquid having a specific gravity but little heavier than

water. Thus Cole, in 1897,* employed a mixture of carbpn
tetrachloride and gasoline which had a specific gravity of

1.25; for this mixture H1
H2 equals' 0.252, or 2 is four

times the head H^ H 2y and accordingly when H
1
H2 is

small the error in determining it by the reading z is greatly

diminished. It may be also noted that when the tube or

pipe is not horizontal the expressions (s' i)z and (is')z

give the loss of head between the two points A and D,

although the difference of the actual pressure-heads may
be greater or less according as A is lower or higher than

D (Art. 82).

Prob. 37. In the case of Fig. 37d let the point D be lower

than A by 0.45 feet, and let the reading z be 0.127 feet- Show
that the pressure-head at A is 1.15 feet greater than that at D.

ART. 38. WATER METERS

Meters used for measuring the quantity of water sup-

plied to a house or factory are of the displacement type,

that is, as the water passes through the meter it displaces

or moves a piston, a wheel, or a valve, the motion of which

is communicated through a train of clock wheels to dials

where the quantity that has passed since a certain time

* Transactions American Society Civil Engineers, 1902, vol. 47, p. 276.
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is registered. There is no theoretical way of determining
whether or not the readings of the dial hands are correct,

but each meter must he rated by measuring the discharge
in a' tank. Several meters may be placed on the same pipe
line in this operation, the same discharge then passing

through each of them. When impure water passes through
a meter for any length of time deposits are liable to impair
the accuracy of its readings, and hence it should be rerated

at intervals.

The piston meter is one in which the motion of the water

causes two pistons to move in opposite directions, the water

leaving and entering the cylinder by ports which are opened
and closed by slide valves somewhat similar to those used

in the steam-engine. The rotary meter has a wheel en-

closed in a case so that it is caused to revolve as the water

passes through. The screw meter has an encased helical

surface that revolves on its axis as the water enters at one

end and passes out at the other. The disk meter has a

wabbling disk so arranged that its motion is communicated
to a pin which moves in a circle. In all these, and in many
other forms, it is intended that the motion given to the

pointers on the dials shall be proportional to the volume of

water passing through the meter. The dials may be arranged
to read either cubic feet or gallons, as may be required by
the consumers. These meters are of different sizes, accord-

ing to the quantity of water required to be registered, and

the capacity of the largest size is about 200 cubic feet per
minute.

The Venturi meter, named after the distinguished

hydraulician who first experimented on the principle by
which it operates, was invented by Herschel in 1887.*

Fig. 38a shows a horizontal pipe having an area a
x at each

end, and the central part contracted to the area a2 , with

two small piezometer tubes into which the water rises.

* Transactions American Society Civil Engineers, 1887, vol. 17, p. 228,
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When there is no flow the water stands at the same level

in these two columns, but when it is in motion the heights of

these columns above

the axis of the pipe

are h
l
and H2 . Let v

t

and v2 be the mean
velocities in the two

cross-sections. Then

by Art. 25 the effect- FlG - 38a

ive head in the upper section is h
1 + v

l

2

/2g, and that in

the small section is h2 + v2

2

/2g', if there be no losses caused

by friction these two expressions must be equal, and

hence by the theorem of (32) 2 ,

Now let Q be the discharge through the pipe, or Q = a lvl

and also Q = a 2v2 . Taking the values of v
t and v2 from these

expressions, inserting them in the above equation, and

solving for Q gives

(38)

which may be called the theoretic discharge. Owing to

frictional losses which occur between the two cross-sections

the actual discharge q is always less than Q, or q = cQ, in

which c is a coefficient whose value generally lies between

0.95 and 0.99. To determine q, when the coefficient is

known, it is hence only necessary to measure the difference

hi h 2l and then compute Q by formula (38).

The Venturi meter is used for measuring the discharge

through water mains of six inches or more in diameter.

The contracted area is usually one-ninth of the area of the

pipe and hence the velocity through it is nine times that

in the pipe. The two columns of water in practice are led

to a mercury gage where the difference of head h^ k^ is

shown by the difference in level of the two mercury col-
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umns (Art. 36). A scale with unequal divisions enables

the discharge q to be read at a glance, and a continuous

record of the same is also made by an automatic register-

ing device. This meter is extensively used for measuring
the quantity of water flowing from a reservoir, or that

delivered to a town, and its capacity is far greater than

that of any other form yet devised.

All meters cause a loss in pressure, so that the pressure-
head in the pipe beyond the meter is less than that in the

pipe as it enters the meter. This is due to the energy lost

in overcoming friction. For a Venturi meter of the pro-

portions indicated above the loss of head in feet is about

0.002 1?;
2

,
where v is the velocity in the contracted section

in feet per second. Thus, if the velocity in a water main
be 3 feet per second, the velocity in the contracted section

will be 27 feet per second, and the loss of pressure-head
due to the meter is about 1.53 feet.

Another method of gaging the flow of a pipe is by means
of the Pitot tube (Art. 41) and a differential gage, whereby
the velocity is determined by measurement of a head of

water. This apparatus is called the pitometer, and it has

the advantage that little or no loss of head results from the

introduction of the tube into the pipe, but careful rating
is necessary in order that recorded discharges may be

correct.

Prob. 38. A 1 2-inch pipe delivers 810 gallons per minute

through a Venturi meter. Compute the mean velocities in

the sections a
t
and a

2 . If the pressure-head in a
t

is 21.4 feet

compute the pressure-head in a
2 .

ART. 39. MEASUREMENT OF VELOCITY

In Chapter III the velocity of flow from an orifice, or

in a tube or pipe, was regarded as uniform over the cross-

section. If a be that area, and v the uniform velocity, the

discharge is q = av; hence, if a and v can be found by meas-
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urement q is known. In fact, however, the velocity varies

in different parts of a cross-section, so that the determin-

ation of v cannot be directly made. Yet there always is

a certain value for v, which multiplied into a will give the

actual discharge g, and this value is called the mean velocity.

In the case of a stream or open channel the velocity is

much less along the sides and bottom than near the middle.

A rough determination of the mean velocity may be made,

however, by observing the greatest surface velocity by a

float, and taking eight-tenths of this for the approximate
mean velocity. Thus, if the float requires 50 seconds to

run 120 feet, the mean velocity is about 1.9 feet per second;

then if the cross-section of the stream be 820 square feet

the approximate discharge is 1560 cubic feet per second.

The practical object of determining the mean velocity

is, in nearly all cases, to determine the discharge, but as

a rule the mean velocity cannot be directly observed.

A knowledge of its value, however, is necessary in all

branches of hydraulics, since hydraulic coefficients and

formulas are based upon it. Accordingly, many experi-

ments have been made upon small orifices and pipes by
catching the flow in tanks and thus determining q, then

the mean velocity has been computed from v=q/a. This

process has been extended, by indirect methods, to large

orifices and pipes, and finally to canals and rivers.

A common method of finding the discharge of a stream

is to subdivide the cross-section into parts and determine

their areas a
lt

a2 , etc.,

the sum of which is the

total area a. Then, if

v ly
v2 , etc., be the mean

velocities in these areas, FIG. 39a

and if these be deter-

mined by observations, the discharge is

q = a1
v

1 -f a2v2 + as
v3 + etc. (39)
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Here the mean velocities may be roughly found by observ-

ing the passage of a surface float at the middle of each

subdivision and multiplying this surface velocity by 0.9,

There are, however, more precise methods, one of which
will be explained in Art. 40, while others will be described

in Chapter X. When q has been found in this manner
the mean velocity of the stream may be computed, if

desired, by v = q/a.

Formula (39) applies also to a cross-section of any
kind. Thus, let the pipe of Fig. 39b be divided by con-

centric circles into the areas a lt a 2 ,
a

3 ,
a

4J>

and let the mean velocities v
lt

v 2 ,
v

3 ,
v 4 ,

be determined by observation for each of

these areas; the discharge q is then given

by (39). Again, in the conduit of Fig.

118, let a velocity observation be taken

at each of the 97 points marked by a dot,

these points being uniformly spaced over the cross-section,

so that each of the areas a lf
a 2 , etc., may be regarded

as -faa. Then from (39) the discharge is

q=-faa(v l + v2 + v3 + .... +v16)=av

or v is the sum of the individual velocities divided by 97.

In general, if a cross-section be divided into n equal

parts the mean velocity is the average of the n observed

velocities. This result is the more accurate the greater

the number of parts into which the cross-section is

divided. If the number of parts be infinite and the water

passing through each be called a filament, the mean veloc-

ity may be defined as the average of the velocities of all

the filaments.

Prob. 39. A water pipe, 3 inches in diameter, is divided into

three parts by concentric circles whose diameters are 1,2, and

3 inches. The mean velocities in these parts are found to be

6.2, 4.8, and 3.0 feet per second. Compute the discharge and
mean velocity for the pipe.
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ART. 40. THE CURRENT METER

In 1790 the German hydraulic engineer Woltmann
invented an apparatus for measuring the velocity of flow-

ing water which was later improved by Darcy and others,

and is now extensively used for streams and open channels.

This meter is like a windmill, having three or more vanes

mounted on a spindle, and so arranged that the face of

the wheel always stands normal to the current, the pressure
of which causes it to revolve. The number of revolutions

of the wheel is approximately proportional to the velocity

of the current. In the best forms of instruments the

number of revolutions made in a given time is determined

by an apparatus on shore or in a boat from which wires

lead to the meter under water; at every revolution an

electric connection is made and broken which affects a

dial on the recording apparatus. The observer has hence

only to note the time of beginning and ending of the ex-

periment, and to read the number of revolutions which

have occurred during the interval. For a canal or small

stream the meter is best operated from a bridge; in large

streams a boat must be used.

Fig. 40a shows the recording dial of a current meter

which should be supposed to be on a bridge or in a boat

with an electric battery. Fig. 406 shows the Price current

meter, a form extensively used in the United States,

and the wires connecting the dial and battery are seen

to run down the standard to the revolving wheel where

the electric current is broken at each revolution. The

cups or vanes are kept facing the current of the stream

by means of the cross-shaped rudder. At the lower end

of the standard is a heavy lead weight which serves to

keep the standard in a vertical position. At the upper
end of the standard is seen the vertical wire which is held

by the observer on the bridge, while the inclined line
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represents a cord that is sometimes used to give steadiness-

to the meter.

A current meter cannot be used for determining the

velocity in a small trough, for the introduction of it into

FIG. 406

the cross-section would contract the area and cause a

change in the velocity in front of the wheel. In large

conduits, canals, and rivers it is, however, one of the most
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convenient and accurate instruments. By holding it at

a fixed position below the surface the velocity at that

point is found; by causing it to descend at a uniform

rate from surface to bottom the mean velocity in that ver-

tical is obtained
;
and by passing it at a uniform rate over

all parts of the cross-section of a channel the mean velocity

v is directly determined. It is usually attached to the

end of a long chain or pole, which is graduated so that

the depth of the meter below the water surface can be

directly read.*

To derive the velocity of the water from the number

of recorded revolutions per second, the meter must be

first rated by pushing it at a known velocity in still water.

The best place for doing this is in a navigation canal where

the water has no sensible velocity, or in a pond. A track

is built along the bank on which a small car can be moved
at a known velocity, and on this car the observer holds

the meter in the water at the end of a pole and records

the number of revolutions made and the time elapsed in

passing over a certain distance. The lowest velocity of

the car should be about 0.2 feet per second, and the highest

about 10 feet per second. It is always found that the

number of revolutions per minute is not exactly pro-

portional to the velocity of the car, and hence when the

meter is placed stationary in running water the velocity

of the water is not proportional to the number of revo-

lutions per second.

From these observations there is prepared a rating

table showing the velocity of the water corresponding to

the number of revolutions in a minute or other given time.

To make such a table the knowrn velocities of the car are

taken as abscissas on cross-section paper and the numbers

of revolutions as ordinates, and a point is plotted corre-

sponding to each observation. A mean curve may then

*See U. S. Geological Survey's Water Supply and Irrigation Papers,

No. 56 (Washington, 1901).
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be drawn to agree as closely as possible with the plotted

pointer, and from this curve the velocity corresponding
to any number of revolutions can be taken off. This

curve may also be expressed by an equation of the form

V =a + bn + cn 2
,
in which V is the velocity of the car in feet

per second and n the number of revolutions of the meter

per minute
;
and by the help of the Method of Least Squares

the constants a, b, and c may be computed (Art. 42).

Prob. 40. In order to rate a certain current meter, three

observations were taken in still water, as follows:

= 2.0 3-8

60
7.4 feet per second

120
Velocity of the car

Revolutions per minute = 30

Plot these observations on cross-section paper and deduce,
without using the Method of Least Squares, the relation be-

tween V and n.

ART. 41. THE PITOT TUBE

About 1750 the French hydraulic engineer Pitot in-

vented a device for measuring the velocity in a stream

by means of the velocity-head which it will produce. In

its simplest form it consists of a bent tube, the mouth of

which is placed so as to directly face the current. The

water then rises in the vertical part of the tube to a height

FIG. 41a FIG. 416

h above the surface of the flowing stream, and this height
is theoretically equal to v*/2g, so that the actual velocity

v is in practice approximately equal to \/ 2gh. As con-

structed for use in streams, Pitot 's apparatus consists of
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two tubes placed side by side with their submerged mouths
at right angles, so that when one is opposed to the current,

as seen in Fig. 416, the other stands normal to it, and the

water surface in the latter tube hence is at the same level

as that of the stream. Both tubes are provided with cocks

which may -be closed while the instrument is immersed,
and it can be then lifted from the water and the head h be

read at leisure. It is found that the actual velocity is

always less than */2gh, and that a coefficient must be de-

duced for each instrument by moving it in still water at

known velocities. Pitot's tube has the advantage that

no time observation is needed to determine the velocity,

but it has the disadvantage that the distance h is usually

very small, so that an error in reading it has a large in-

fluence. Although the instrument was improved by Darcy
in 1856 and used by him for some stream measurements,
it was for a long time regarded as having a low degree of

precision.

In 1888 Freeman made experiments on the distribution

of velocities in jets from nozzles, in which an improved
form of Pitot tube was used.* The point of the tube facing

the current was the tip of a stylographic pen, the diameter

of the opening being about 0.006 inches. This point was

introduced into different parts of the jet and the pressure

caused in the tube was measured by a Bourdon pressure

gage reading to single pounds. The velocities of the jets

were high; for example, in one series of observations on

a jet from a ij-inch nozzle, the gage pressures at the cen-

ter and near the edge were 51.2 and 18.2 pounds per square

inch, which correspond to velocity-heads of 118.2 and 42.0

feet, or to velocities of 87.2 and 52.0 feet per second. By
computing the mean velocity of the jet from measurements

in concentric rings (Art. 39) and also from the measured

discharge, Freeman concluded that any velocity as deter-

mined by the tube was smaller than that computed from

* Transactions American Society Civil Engineers, 1889, vol. 21, p. 413.
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v = \/2gh by less than one percent. This investigation
established the fact that the Pitot tube is an instrument

of great precision for the measurement of high velocities.

Experiments on the flow of water in pipes, in which

Pitot tubes were successfully used, were made in 1897 by
Cole at Terra Haute, and in 1898 by Williams, Hubbell,

and Fenkell at Detroit.* In the Detroit experiments the

tube was introduced into the pipe through an opening pro-

vided with a stuffing-box, so that the point of the tube

might be placed at any desired position. The tubes had

openings at their points -sV-inch in diameter and other open-

ings of the same size on their sides to admit the static pres-

sure of the water. These latter openings led to a common
channel parallel to that leading from the point, and each

of these was connected to a rubber hose running to a dif-

ferential gage, consisting of two parallel glass tubes open
at the top, where the difference of head was read on a scale.

In order to be able to deduce the velocities in the pipe from

the readings of the gage, the Pitot tubes were rated by
moving them in still water at known velocities as for the

current meter (Art. 40). Thus a coefficient c was de-

rived for each tube for use in the formula v = c\/2gh.

This coefficient was found to range from 0.86 to 0.95 for

different tubes, and it was shown that it varied but little

with the velocity. By these tubes it was found possible

to measure velocities ranging from i to 6 feet per second

with a higher degree of precision than had ever before been

anticipated.

Prob. 41a. What will happen if the point of a Pitot tube be

turned down stream?

Prob. 416. If the height h in Fig.41ais 0.169 meters and the-

velocity v is known to be 1.65 meters per second, show that the

coefficient of the tube is 0.91.

* Transactions American Society of Civil Engineers, 1902, vol. 47, pp.

12, 275.
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ART. 42. DISCUSSION OF OBSERVATIONS

An observation is the recorded result of a measurement.

All measurements are affected with errors due to imper-
fections of the instrument and lack of skill of the observers,

and the recorded results contain these errors. Thus, if

6.05, 6.02, 6.01, and 6.04 inches be four observations on the

diameter of an orifice, all of these cannot be correct and

probably each is in error. The best that can be done is

to take the average of these observations, or 6.03 inches,

as the most probable result, and to use this in the compu-
tations.

An observer is often tempted to reject a measurement

when it differs from others, but this can only be allowed

when he is convinced that a mistake has been made. A
mistake is a large error, due generally to carelessness, and

must not be confounded with the small accidental errors

of measurement. When a series of observations is placed

before a computer he should never be permitted to reject

one of them, unless there be some remark in the note-book

which casts doubt upon it.

Graphical methods of discussing and adjusting obser-

vations, like that mentioned in Art. 40, are of great value

in hydraulic work. As another example, the following

observations made by Darcy and Bazin on the flow of water

in a rectangular trough, 1.812 meters wide and having the
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the mean velocity (Art. 39) and the hydraulic mean depth
(Art. 105) was determined by measurement. Let v be the

mean velocity and r the hydraulic mean depth; then five

measurements gave the following observations, v being in

meters per second and r in centimeters. Let it be assumed

No. = i 2 3 4 5

v= 1.73 1.98 2.17 2.33 2.46

r = n.4 14.4 17.0 19.2 21.2

that the relation between v and r is of the form v = mrn
,
and

let it be required to determine the most probable values of

m and n.

For each of these observations a point may be plotted
on cross-section paper, taking the values of v as ordinates

and those of r as abscissas, and a smooth curve may then

be drawn so as to agree as nearly as possible with the points.

Such a curve, however, is of little assistance in determin-

ing the values of* m and n, unless the curve should be a

straight line drawn through the origin, in which case it is

plain that n is unity and that m is the tangent of the an-

gle that the line makes with axis of abscissas. In this case

no straight line can be drawn approximating to the points
and passing through the origin, but the plot gives the

curve shown in Fig. 42a. If, however, the logarithm of

each side of the assumed formula be taken it becomes

log v = n log r + log m

which represents a straight line, if log v be considered as

the variable ordinate and log r as the variable abscissa, log

m being the intercept on the axis of ordinates and n the

tangent of the angle which the line makes with the axis

of abscissas. On plotting the points corresponding to the

values of log v and log r, it is seen that a straight line can

be drawn closely agreeing with the points, that this line

cuts the axis of ordinates at a distance of about 0.35 below

the origin and that the tangent of the angle made by it
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the smallest discrepancies. To do this, let each equation

be multiplied by the coefficient of n in that equation
and the results be added; also let each equation be- multi-

plied by the coefficient of log m in that equation and the

results be added. Thus are found the two normal equa-
tions containing the two unknown quantities:

1.998 = 7.375^ + 6.054 log m
1.629=6.054^+5.000 log m

and the solution of these gives ^ = 0.571 and log m =

0.366. Since 0.366 equals 1.634, the value of m is

0.431, and then

log v =0.571 log r 0.366 or v=o.4^ir-
571

is the empirical formula for this particular case.

The Method of Least Squares is usually more laborious

than the graphical method, but it has the great advantage
that its results are the most probable ones that can be

derived from the given data. It has the further advantage
that all computors will derive the same results, whereas

in the graphic method the results will usually differ, be-

cause the position of the line drawn on the plot is affected

by the different degrees of judgment and experience of

the draftsmen. It will be seen from Fig. 42b that it is

not very easy to determine close values of log m since the

points are so far away from the origin.

Prob. 42a. Show that the formula v= o.43if-
671 reduces to

v= 5-97*'
SIl

i
if f he in meters and v in meters per second.

Prob. 426. Show that this formula becomes v= ^.g4r
Q -5n

if

r be in feet and v in feet per second.

Prob. 42c. In order to rate a certain current meter four

observations were taken in still water, as follows:

Velocity of the car 0.7 2.4 4.7 9.3 feet per second
Revolutions of meter 18 60 120 240 per minute

Find the values of a and b in the formula v = a+bn, both by
plotting and by the method of Least Squares.
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CHAPTER V

FLOW OF WATER THROUGH ORIFICES

ART. 43. STANDARD ORIFICES

Orifices for the measurement of water are usually placed
in the vertical side of a vessel or reservoir, but may also

be placed in the base. In the former case it is understood

that the upper edge of the opening is completely covered

with water; and generally the head of water on an orifice

is at least three or four times its vertical height. The
term "standard orifice" is here used to signify that the

opening is so arranged that the water in flowing from

it touches only a line, as would be the case in a plate of

no thickness. To secure this result the inner edge of

the opening has a square corner, which alone is touched

by the water. In precise experiments the orifice may be

in a metallic plate whose thick-

ness is really small, as at A in

the figure, but more commonly
it is cut in a board or plank,
care being taken that the inner

edge is a definite corner. It is

usual to bevel the outer edges
of the orifice as at C, so that the

escaping jet may by no possibility

touch the edges except at the inner corner. The term
"
orifice in a thin plate

"
is often used to express the con-

dition that the water shall only touch the edges of the

opening along a line. This arrangement may be regarded
as a kind of standard apparatus for the measurement of

FIG. 43a
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water, for, as will be seen later, the discharge is modified

if the inner corner is rounded, and different degrees of

rounding give different discharges. Orifices arranged as

in Fig. 43a are accordingly always used when water is

to be measured by the use of orifices.

The contraction of the jet which is always observed

when water issues from a standard orifice as described

above is a most interesting and important phenomenon.
It is due to the circumstance that the particles of water

as they approach the orifice move in converging directions,

and that these directions continue to converge for a short

distance beyond the plane of the orifice. It is this con-

traction of the jet that causes only the inner corner of

the orifice to be touched by the escaping water. The

appearance of such a jet under steady flow, issuing from

a circular orifice, is that of a clear crystal bar whose

beauty claims the admiration of every observer. The

convergence due to this cause ceases at a distance from

the plane of the orifice of about one-half its diameter..

Beyond this section the jet enlarges in size if it be directed

upward, but decreases in size if it be directed downward

or horizontally.

The contraction of the jet is also observed in the case

of rectangular and triangular orifices, its cross-section

being similar to that of the

orifice un"til the place of great-

est contraction is passed. Fig.

436 shows in the top row

(~\
<

\j^p ^{f
cross-sections of a jet from

a square orifice, in the middle

row those from a triangular
r\ s~\ /^ __ one, and in the third row those

from an elliptical orifice. The

left hand diagram in each case

is the cross-section of the jet near the place of greatest

contraction, while the following ones are cross-sections

' ,~ n

\j II



ART. 44 COEFFICIENT OF CONTRACTION 111

at greater distances from the orifice, and the jets are

supposed to be moving horizontally, or nearly so.

Owing to this contraction the discharge from a standard

orifice is always less than the theoretic discharge. It is

the object of this chapter to determine how the theoretic

formulas of Chapter III are to be modified so that they

may be used for the practical purposes of the measure-

ment of water. This is to be done by the discussion of

the results of experiments. It will be supposed, unless

otherwise stated, that the size of the orifice is small com-

pared with the cross-section of the reservoir, so that the

effect of velocity of approach may be neglected (Art. 25).

Prob. 43. At a distance from a circular orifice of one-half

its diameter a jet has a diameter of i inch and a velocity of

1 6 feet per second. If it be directed vertically downward,
what is the diameter of a section 4 feet lower? If it be directed

vertically upward, what is the diameter of a section 3 feet

higher ?

ART. 44. COEFFICIENT OF CONTRACTION

The coefficient of contraction is the number by which

the area of the orifice is to be multiplied in order to give
the area of the section of the jet at a distance from the

plane of the orifice of about one-half its diameter. Thus,
if c' be the coefficient of contraction, a the area of the

orifice, and a' the area of the contracted section of jet,

a'=c'a (44)

The coefficient of contraction for a standard orifice is

evidently always less than unity.

The only direct method of finding the value of c' is

to measure by calipers the dimensions of the least cross-

section of the jet. The size of the orifice can usually be

determined with precision, and with care almost an equal

precision in measuring the jet. To find c' for a circular
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orifice let d and df be the diameters of the section a and

a'; then

Therefore the coefficient of contraction is the square of

the ratio of the diameter of the jet to that of the orifice.

The first measurements were made by Newton* who
found the ratio of d' to d to be 21/25 which gives for c

the value 0.73. The experiments of Bossut gave from

0.66 to 0.67; a,nd Michelotti found from 0.57 to 0.624

with a mean of 0.6 1. Eytelwein gave 0.64 as a mean

value, and Weisbach mentions 0.63.

The following mean value will be used in this book

and it should be kept in mind by the student:

Coefficient of contraction c' =0.62

or, in other words, the minimum cross-section of the jet

is 62 percent of that of the orifice. This value, however,

undoubtedly varies for different forms of orifices and for

the same orifice under different heads, but little is known

regarding the extent of these variations or the laws that

govern them. Probably c' is slightly smaller for circles

'than for squares, and smaller for squares than for rect-

angles; particularly if the rectangle be long compared with

its width. Probably also c' is larger for low heads than

for high heads.

Prob. 44. The diameter of a circular orifice is 1.995 inches.

Three measurements of the diameter of the contracted section

of the jet gave 1.55, 1.56, and 1.59 inches. Find the mean
coefficient of contraction.

ART. 45. COEFFICIENT OF VELOCITY

The coefficient of velocity is the number by which the

theoretic velocity of flow from the orifice is to be multiplied
in order to give the actual velocity at the least cross-section

*
Philosophise naturalis principia mathematica, 1687, Book II, prop-

osition 36.
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of the jet. Thus, if <7
t be the coefficient of velocity, V the

theoretic velocity due to the head on the center of the ori-

fice, and v the actual velocity at the contracted section,

(45)

The coefficient of velocity must be less than unity, since the

force of gravity cannot generate a greater velocity than that

due to the head.

The velocity of flow at the contracted section of the jet

cannot be directly measured. To obtain the value of the

coefficient of velocity, indirect observations have been

taken on the path of the" jet. Referring to Art. 27, it will

be seen that when a jet flows from an orifice in the vertical

side of a vessel it takes a path whose equation is y =gx*/2V
2

,

in which x and y are the co-ordinates of any point of the

path measured from vertical and horizontal axes, and v

is the velocity at the origin. Now placing for v its value

c
1\/2gh, and solving for c

lt gives

c =x/2\/hy

Therefore c becomes known by the measurement of the

head h and the co-ordinates x and y. In making this experi-

ment it would be well to have a ring, a little larger than the

jet, supported by a stiff frame which can be moved until

the jet passes through the ring. The flow of water can

then be stopped, and the co-ordinates of the center of the

ring determined. By placing the ring at different points

of the path different sets of co-ordinates can be obtained.

The value of x should be measured from the contracted

section rather than from the orifice, since v is the velocity

at the former point and not at the latter.

By this method of the jet Bossut in two experiments
found for the coefficient of velocity the values 0.974 and

0.980, Michelotti in three experiments obtained 0.993,

0.998, and 0.983, and Weisbach deduced 0.978. Great

precision cannot be obtained in these determinations, nor
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indeed is it necessary for the purposes of hydraulic investi-

gation that c
1 should be accurately known for standard

orifices. As a mean value the following may be kept in the

memory :

Coefficient of velocity c
t =0.98

or, the actual velocity of flow at the contracted section is 98

percent of the theoretic velocity. The value of c
l for the

standard orifice is greater for high than for low heads, and

may probably often exceed 0.99.

Another method of finding the coefficient c
l

is to place
the orifice horizontal so that the jet will be directed ver-

tically upward, as in Fig. 22. The height to which it rises

is the velocity-head h =v 2

/2g, in which v is the actual

velocity c
l\/

2gh. Accordingly, h =
clh, from which c^

may be computed. For example, if, under a head of 23

feet, a jet rises to a height of 22 feet, the coefficient of ve-

locity is

cl
= \/h

()/h = \/22/23 =0.978

This method, however, fails to give good results for high

velocities, owing to the resistance of the air, and more-

over it is impossible to measure with precision the height h Q .

For a vertical orifice Poncelet and Lesbros found, in

1828, that the coefficient c was sometimes slightly greater

than unity, and this was confirmed by Bazin in 1893. This

is probably due to the fact that the head is greater for the

lower part of the orifice than for the upper part and hence

\/2gh does not represent the true theoretic velocity. The

same experimenters found no instance of a horizontal ori-

fice where the coefficient exceeded unity.

Prob. 45a. To what height will a jet rise when ^= 0.9 and

v= 4 feet per second?

Prob. 456. The range of a jet is 13.5 feet on a horizontal

plane 2.82 feet below the orifice which is under a head of 14.38

feet. Compute the coefficient of velocity.
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ART. 46. COEFFICIENT OF DISCHARGE

The coefficient of discharge is the number by which the

theoretic discharge is to be multiplied in order to obtain the

actual discharge. Thus, if c be the coefficient of discharge,

Q the theoretical and q the actual discharge per second,

q-cQ (46),

Here also the coefficient c is a number less than unity.

The coefficient of discharge can be accurately found by
allowing the flow from an orifice to fall into a vessel of con-

stant cross-section and measuring the heights of water by
the hook gage (Art. 35). Thus q is known, and Q having
been computed,

(46),

For example, a circular orifice of o.i feet diameter was kept
under a constant head of 4.677 feet; during 5 minutes and

32^ seconds the jet flowed into a measuring vessel which

was found to contain 27.28 cubic feet. Here the actual

discharge was

2 = 27.28/332.2 =0.08212 cubic feet per second.

The theoretic discharge, from formula (23) is

Q = 7rXo.o5
2 X8.o2V/

4.677 =0.1361 cubic feet per second.

Then the coefficient of discharge is found to be

c = o.08212/0. 1361 =0.604

In this manner thousands of experiments have been made

upon different forms of orifices under different heads, for

accurate knowledge regarding this coefficient is of great im-

portance in practical hydraulic work.

The following articles contain values of the coefficient of

discharge for different kinds of orifices, and it will be seen
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that in general c is greater for low heads than for high heads r

greater for rectangles than for squares, and greater for

squares than for circles. Its value ranges from 0.59 to 0.63

or higher, and as a mean to be kept in mind the following

value may be stated :

Coefficient of discharge c = o.6i

or, the actual discharge from a standard orifice is, on the-

average, about 61 percent of the theoretic discharge.

The coefficient c may be expressed in terms of the coef-

ficients c' and c. Let a and a' be the areas of the orifice and
the cross-section of the contracted jet, and Q and q the theo-

retic and actual discharge per second. Then, since a'/a = c',.

q a
C = ~z. = . * i

Q aV 2gh
^ J

and therefore the coefficient of discharge is the product of

the coefficients of contraction and velocity.

Prob. 46. The diameter of a contracted circular jet was.

found to be 0.79 inches, the diameter of the orifice being i inch..

Under a head of 4 feet the actual discharge per minute was.

found to be 3.21 cubic feet. Find the coefficient of velocity.

ART. 47. CIRCULAR VERTICAL ORIFICES

Let a circular orifice of diameter d be in the side of a,

vessel and let h be the head of water on its center. Then,,

from Art. 22, the theoretic mean velocity is \/2gh, and from
Art. 23 the theoretic discharge is

which applies when h is large compared with d.

To deduce a more exact formula, let the radius of the
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circle be r, and let an elementary strip be drawn at a dis-

tance y above the center
;
the length .

of this is 2VV 2

j
2

, its area is 1

2dyVr
2

y
2

,
and the head upon it

is h y. Then the theoretic dis-

charge through this strip is

dQ = 2dyVr
2

-y*\/2g(h-y)

To integrate this (h-y)l is to be

expanded by the binomial formula. Then it may be written

Each term of this expression is now integrable, and taking
the limits of y as + r and r the entire circle is covered, and

Q is found. Finally, replacing r by \d there results

which is the theoretic discharge from the circular orifice.

It is plain that this formula gives values which are

always less than those found from the approximate formula

of the first paragraph. Thus for h=d the quantity in the

parenthesis is 0.992 and for h = 2d it is 0.998. Hence the

error in using the approximate formula is less than three-

tenths of one percent when the head on the center of the

orifice is greater than twice its diameter.

For most cases, then, the actual discharge from a cir-

cular vertical orifice of area a may be computed from

q=c.a\/2gh = 8.o2ca\/h (47) t

in which c is the coefficient of discharge. When h is smaller

than two or three times the diameter of the orifice, and

when precision is required,

q = 1 1 0.078127-^ 0.0003067-;) &.o2ca\/h (47) 3
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is the formula to be used. Here a may be taken from Table

51 for the given diameter expressed in feet, h is to be taken.

in feet, and then q will be in cubic feet per second.

Table 17 gives values of c for circular orifices as deter-

mined by Hamilton Smith in a discussion of all the best

experiments.* They apply only to standard orifices with

definite inner edges. The table shows that the coefficient

of discharge decreases as the size of the orifice increases,

and that in general it rlso decreases as the head increases.

In this table the coefficients found above the horizontal lines

in the last three columns are to be used in the exact formula

(47) 2 and all others in the approximate formula (47) v

For example, let it be required to find the discharge

through a standard circular orifice, 2 inches in diameter,

under a head of 2.35 feet. First, 2 inches = 0.1667 feet, and

by interpolation in Table 17 the coefficient c is found to

be 0.602. Next, from Table 51 the area a is 0.02182 square
feet. Then formula (47)! gives the discharge q as 0.161

cubic feet per second. As the coefficient is probably liable

to an error of one or two units in the last figure, the third

figure of this value of q is subject to the same uncertainty.

Prob. 47a. Find from the table the coefficient of discharge
for an orifice, 2 inches in diameter, under a head of 1.75 feet.

Prob. 476. Compute the probable actual discharge from an

orifice, 8 inches in diameter, under a head of 15 inches.

ART. 48. SQUARE VERTICAL ORIFICES

If the size of an orifice in the side of a vessel be small

com- 1 with the head, the theoretic velocity of the

outiVi = water may be taken as V2gh9
where h is the

heai < iie center of the orifice. For a rectangular
orifk e under this condition the theoretic discharge is

*
Hydraulics (London and New York, 1886), page 59.
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where b is the width and d the depth of the orifice. When
b is equal to d the rectangle becomes a square.

To deduce a more exact formula, let k^ be the head

on the upper edge of the orifice and k2 that on the lower

edge. Consider an elementary strip .

of area b . dy at a depth y below the

water level. The .velocity of flow

through this elementary strip is \/2gy
and the theoretic discharge per second

through it is

Integrating this between the limits h2 and k^ there results

which is the true theoretic discharge from the orifice.

To ascertain the error caused by using the approximate
formula, let k be the head on the center of the rectangle;

then h 2
= h + $d and h

l
=h %d. Developing by the bino-

mial formula the values of k$ and h^ t
the last formula

Incomes

and this shows that the discharge computed by using
the approximate formula is always too great. For h=d,
the quantity in the parenthesis is 0.989, and for h = 2d

it is 0.997. Accordingly, the error of the approximate
formula is only three-tenths of one percent when the

head on the center of the rectangle is twice the depth
of the orifice.

For most cases, then, the actual discharge from a

square vertical orifice may be computed from

q=c. b*Vl2gh = S.o2cb 2V~h
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where b is the side of the square and c is the coefficient

of discharge. When h is smaller than two or three times

the side of the orifice, and when precision is required,

-fci*) (48),

is the formula to be used. The linear quantities are

to be taken in feet, and then q will be in cubic feet per

second.

Table 19 gives values of the coefficient c for standard

square orifices, taken from a more extended one formed

by Hamilton Smith in 1886 by the discussion of all the

best experiments. It is seen that the coefficient decreases

as the size of the orifice increases and as the head increases.

Comparing this table with Table 17 it is seen that the

coefficient of discharge for a square is always slightly

larger than that for a circle having a diameter equal to

the side of the square. The values above the horizontal

lines in the last three columns are to be used in the exact

formula (48) 2
when precision is required, and all other values

in the approximate formula (48) A .

There are few recorded experiments on large square

orifices: Ellis measured the discharge from a vertical

orifice 2 feet square* and deduced the following coeffi-

cients for use in the ~

approximate formula:

for /i = 2.07 feet, c = o.6n
for /& = 3.05 feet, = 0.597

for /* = 3. 54 feet, c =0.604

which indicate that a mean value of 0.60 may be used

for large square orifices under low heads.

Prob. 48a. Find from the table the coefficient for an orifice

3 inches square when the head on its center is 1.8 feet.

Prob. 486. Compute the probable actual discharge from a

vertical orifice one foot square when the head on its upper edge
is one foot.

* Transactions American Society Civil Engineers, 1876, vol. 5, p. 92.
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ART. 49. RECTANGULAR VERTICAL ORIFICES

The theoretic formulas of Art. 48 apply to rectangles
of width b and depth d, and the approximate formula

for computing the actual discharge is

q = cbd\/2gh = 8.02cbdVh (49)

in which c is the coefficient of discharge, b the width and
d the depth of the rectangular orifice, and h the head on
its center.

Table 21 gives values of the coefficient c which have
been compiled and rearranged from the discussion given

by Fanning.* It is seen that the variation of c with

the head follows the same law as for circles and squares.

It is also seen that for a rectangle of constant breadth

the coefficient increases as the depth decreases, from

which it is to be inferred that for a rectangle of constant

depth the coefficient increases with the breadth, and
this is confirmed by other experiments. The value of c

for a rectangular orifice is seen to be only slightly larger

than that for a square whose side is equal to the depth
of the rectangle. All the coefficients in this table are for

the above approximate formula, since that formula was
used in computing them.

A comparison of the values of c for the orifice one foot

square with those in the last article shows that the two
sets of coefficients disagree, these being about one percent

greater. This is probably due to the less precise character

and smaller number of experiments from which they
were deduced.

Prob. 49a. What constant head is required to discharge

5 cubic feet of water per second through an orifice 3 inches

deep and 12 inches long?

Prob. 496. What is a probable coefficient of discharge for

an orifice 3 inches deep and 6 inches long, the head on the

upper edge being 6 inches?

* Treatise on Water Supply Engineering (New York, 1888), p. 205.
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ART. 50. THE MINER'S INCH

The miner's inch may be roughly defined to be the

quantity of water which will flow from a vertical standard

orifice one inch square, when the head on the center of

the orifice is 6J inches. From Table 19 the coefficient of

discharge is seen to be about 0.623, and accordingly the

actual discharge from the_orifice in cubic feet per se'cond

is g=Ti*Xo.623 X8.o2\/6. 5/12 =0.0255 and the discharge
in one minute is 60X0.0255 = 1.53 cubic feet. The mean
value of one miner's inch is therefore about 1.5 cubic

feet per minute.

The actual value of the miner's inch, however, differs

considerably in different localities. Bowie states that in

different counties of California it ranges from 1.20 to

1.76 cubic feet per minute.* The reason for these varia-

tions is due to the fact that when water is bought for

mining or irrigating purposes a much larger quantity
than one miner's inch is required, and hence larger orifices

than one square inch are needed. Thus at Smartsville

a vertical orifice or module 4 inches deep and 250 inches

long, with a head of 7 inches above the top edge, is said

to furnish 1000 miner's inches. Again, at Columbia

Hill, a module 12 inches deep and 12! inches wide, with

a head of 6 inches above the upper edge, is said to furnish

200 miner's inches. In Montana the customary method
of measurement is through a vertical rectangle, one inch

deep, with a head on the center of the orifice of 4 inches,

and the number of miner's inches is said to be the same
as the number of linear inches in the rectangle; thus

under the given head an orifice one inch deep and 60 inches

long would furnish 60 miner's inches. The discharge
of this is said to be about 1.25 cubic feet per minute, or

75 cubic feet per hour.
,

* Treatise on Hydraulic Mining (New York, 1885), p. 268.
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The following are the values of the miner's inch in

different parts of the United States: In California and
Montana it is established by law that 40 miner's inches

shall be the equivalent of one cubic foot per second, and
in Colorado 38.4 miner's inches is the equivalent. In

other States and Territories there is no legal value, but

by common agreement 50 miner's inches is the equivalent
of one cubic foot per second in Arizona, Idaho, Nevada,
and Utah; this makes the miner's inch equal to 1.2 cubic

feet per minute.

A module is an orifice which is used in selling water,

and which under a constant head is to furnish a given
number of miner's inches, or a given quantity per second.

The size and proportions of modules vary greatly in

different localities, but in all cases the important feature

to be observed is that the head should be maintained

nearly constant in order that the consumer may receive

the amount of water for which he bargains and no more.

The simplest method of maintaining a constant head
is by placing the module in a chamber which is provided
with a gate that regulates the entrance of water from

the main reservoir or canal. This gate is raised or lowered

by an inspector once or twice a day so as to keep the

surface of the water in the chamber at a given mark.

This plan is a costly one, on account of the wages of the

inspector, except in works where many modules are used

and where a daily inspection is necessary in any event,

and it is not well adapted to cases where there are frequent
and considerable fluctuations in the surface of the water

in the feeding canal.

Numerous methods have been devised to secure a
constant head by automatic appliances; for instance,

the gate which admits water into the chamber may be
made to rise and fall by means of a float upon the surface ;

the module itself may be made to decrease in size when
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the water rises, and to increase when it falls, by a gate
or by a tapering plug which moves in and out and whose

motion is controlled by a float. These self-acting con-

trivances, however, are liable to get out of order, and

require to be inspected more or less frequently. Another

method is to have the water flow over the crest of a weir

as soon as it reaches a certain height.*

The use of the miner's inch, or of a module, as a standard

for selling water, is awkward and confusing, and for the

sake of uniformity it is greatly to be desired that water

should always be bought and sold by the cubic foot per
second. Only in this way can comparisons readily be

made, and the consumer be sure of obtaining exact value

for his money.

Prob. 50. If a miner's inch be 1.57 cubic feet per minute,
how many miner's inches will be furnished by a module 2

inches deep and 50 inches long with a head of 6 inches above

the upper edge?

ART. 51. VELOCITY OF APPROACH

It was shown in Art. 25 that the theoretic velocity

of flow from an orifice is greater than \/2gh when the ratio

of the cross-section of the orifice to that of the vessel or

tank is not small. The same is true for the actual velocity,

but formula (25) j
must be modified because it takes no

account of the contraction of the jet. Let v be the ve-

locity at the contracted section of the jet and a' the area

of that section
;
let v be the velocity through the horizontal

cross-section A of the vessel; then a'v = Av
l . But if a

be the area of the orifice and c' the coefficient of contraction,

then a' equals ac' and hence c'av^Av^ Now the effective

head on the orifice is

*Foote, Transactions American Society of Civil Engineers, 1887, voL

i6,p. 134.
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and the velocity v is given by c
l\/2gH where c

l is the

coefficient of velocity. Substituting in the last equation
v 2

/2gc^ for H and' c'va/A for v lt and noting that c^c' is

equal to the coefficient of discharge c, it reduces to

which is the velocity of the jet at a section distant from

the orifice about one-half its diameter. The discharge q

is found by multiplying this by the area c'a of that cross-

section, whence

is the formula for the actual discharge, and this includes

no coefficient except that of discharge.

These formulas apply to orifices of any kind, and

when c equals unity they reduce to the theoretic expressions

established in Art. 25. When a/A is less than 1/5, as

is almost always the case in practice, the last formula

may be written, with sufficient precision,

(51),

For example, let a square tank, 4X4 feet in horizontal

cross-section, have a standard square orifice one square
foot in area, and let the head on its center be 16 feet.

From Table 19 the coefficient of discharge is 0.60, and the

formula gives

q = (i +0.0007) Xo.6oX i X8.02 X4
=

19.3 cubic feet per second.

For this case it is seen that the influence of velocity of

approach is expressed by the addition of 0.0007 to unity,

which is an increase of less than one-tenth of one percent.

In general the increase in discharge due to velocity of

approach is expressed, if a/A be not greater than 1/5,

by & 3
a(a/A)

2

\/~2gh.
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A common case is that where the vessel or tank is

of large horizontal and small vertical cross-section, and
where ' the water approaches the oriffce with a horizontal

velocity, as in a canal or conduit. Here let A be the area

of the vertical cross-section of the vessel, a the area of the

orifice and h the head on its center. Then, if the head h

be large compared with the depth of the orifice, the same

reasoning applies as in Art. 25, the theoretic velocity is

given by (25) t and the actual discharge by (51) 2
.

When the head h is not large let h
t and ht be the heads

on the upper and lower edges of the orifice, which is

taken as rectangular and
of the width b. Let v be

the velocity of approach,
which is regarded as uni-

form over the area A.

Then, by the same . reasoii-

FIG. 51 ing as that in Art. 25, the

theoretic velocity in the plane of the orifice at the depth

y below the water level is given by V 2 = 2gy + v 2
. The

theoretic discharge through an elementary strip of the

length b and the depth dy now is

and, by integration between the limits h2 and h
lt the total

theoretic discharge is found. If v 2

/2g be replaced by
h

ot the head which would cause the velocity v, the theoretic

discharge is

Q = |6V^[(/z2 + ^ )
l-(^ + ^o)

1
] (51),

and the actual discharge q is found by multiplying this

by a coefficient of discharge. When there is no velocity

of approach the formula reduces to that found in Art.

49 for this case.

Prob. 51a. If n be a small quantity compared with unity,
show that (i + w)* = i + Jn, and that i/(i-f-n) = i n. Deduce
formula (51 ) 3

from (51 ) 2 .
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Prob. 516. In the case of horizontal approach, as seen in

Fig. 51, let 6 = 4 feet, /*
2
= o.8 feet, h

l
= o

1
^ = 2.5 feet per second,

and c = o.6. Show that the discharge is 10.5 cubic feet per
second.

ART. 52. SUBMERGED ORIFICES

It is shown in Art. 24 that the effective head h which
causes the flow from a submerged orifice is the difference

in level between the two water surfaces. The discharge
from such an orifice, its inner edge being a sharp definite

one as in Fig. 43a, has been found by experiment to be

slightly less than when the flow oc-

curs freely into the air, and hence

the values of the coefficients of dis-

charge are slightly smaller than those

given in Tables 17-21. For large

orifices and large heads the difference -

is very small, and for orifices one inch
.

1 , . FIG. 52
square under six inches head it is

about 2 percent. In all cases of submerged orifices the

discharge is to be found from q = ca\/2gh.

Table 22 gives values of the coefficient of discharge
for submerged orifices as determined from experiments
made by Hamilton Smith in 1884. The depth of sub-

mergence of the orifices varied from 0.57 to 0.73 feet.

As a mean value of the coefficient of discharge for standard

submerged orifices 0.6 is frequently used.

The theoretic discharge from a submerged orifice is

the same for the same effective head h whatever be its

distance below the lower water level. The theoretic

velocity in all parts of the orifice is the same, as may be

proved from Fig. 52, where the triangles ACD and BCE
represent the distribution of pressure on AC and BC
when the orifice is closed (Art. 17). Making CF equal to

CE and drawing BF the unit-pressure on BC is seen to
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have the constant value DF. Now when the orifice is

opened the velocity at any point depends on the unit-

pressure there acting, as seen by (24) lf and accordingly

the theoretic velocity is uniform over the section. For

this reason the coefficients of discharge probably vary
less with the head than for the previous cases.

Submerged orifices are used for canal-locks, tide-gates,

filter-beds, for the discharge of waste water through dams,
and for the admission of w^ater from a canal to a power-

plant. The inner edges of such orifices are usually rounded

so that the contraction is suppressed, and the coefficient

of discharge may then be higher than 0.9 (Art. 54).

Prob. 52. An orifice one inch square in a gate such as shown
in Fig. 19a, Art. 19, is 3 feet below the higher water level and
2 feet below the lower water level. Compute the discharge in

cubic feet per second, and also in gallons per minute.

ART. 53. SUPPRESSION OF THE CONTRACTION

When a vertical orifice has its lower edge at the bottom

of the reservoir, as shown at A in Fig. 53, the particles

of water flowing through its lower por-

tion move in lines nearly perpendicular
to the plane of the orifice, or the con-

traction of the jet does not form on

the lower side. This is called a case of

suppressed or incomplete contraction.

The same thing occurs, but in a lesser

degree, when the lower edge of the orifice is near the bottom

as shown at B. In like manner, if an orifice be placed
so that one of its vertical edges is at or near a side of the

reservoir, as at C, the contraction of the jet is suppressed

upon one side, and if it be placed at the lower corner

of the reservoir suppression occurs both upon one side

and the lower part of the jet.
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The effect of suppressing the contraction is, of course,
to increase the cross-section of the jet at the place where
full contraction would otherwise occur, and it is found

by experiment that the discharge is likewise increased.

Experiments also show that more or less suppression' of

the contraction will occur unless each edge of the orifice

is at a distance at least equal to three times its least diameter

from the sides or bottom of the reservoir.

The experiments of Lesbros and Bidone furnish the

means of estimating the increased discharge caused by
suppression of the contraction. They indicate that for

square orifices with contraction suppressed on one side

the coefficient of discharge is increased about 3.5 percent,
and with contraction suppressed on two sides about 7.5

percent. For a rectangular orifice with the contraction

suppressed on the bottom edge the percentages are larger,

being about 6 or 7 percent when the length of the rectangle
is four times its height, and from 8 to 12 percent when
the length is twenty times the height. The percentage
of increase, moreover, varies with the head, the lowest

heads giving the lowest percentages.

It is apparent that suppression of the contraction

should be avoided if accurate results are desired. The

experiments from which the above conclusions are deduced

were made upon small orifices with heads less than 6

feet, and it is not known how they will apply to large

orifices under high heads. For a rectangular orifice of

length about three times its height, with contraction sup-

pressed on the ends and bottom, the coefficient of discharge
is probably about 0.75.

Prob. 53a. Compute the probable discharge from a vertical

orifice one foot square when the head on its upper edge is 4 feet,

the contraction being suppressed on the lower edge.

Prob. 536. Compute the discharge for the same data when
contraction is suppressed on all sides.
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ART. 54. ORIFICES WITH ROUNDED EDGES

If the inner edge of the orifice be made rounded, as

shown in Fig. 54, the contraction of the jet is modified,
and the discharge is increased.

With a slight degree of rounding,
as at A, a partial contraction

occurs; but with a more complete

bounding, as at C, the particles

o
of water issue perpendicular to

the plane of the orifice and there

is no contraction of the jet. If a

be the area of the least cross-

section of the orifice, and a' that of the jet, the coefficient

of contraction as defined in Art. 44 is

c'=af

/a (54)

For a standard orifice with sharp inner edges (Art. 43)

the mean value of c
f
is 0.62, but for an orifice with rounded

edges, c' may have any value between 0.62 and i.o, de-

pending upon the degree of rounding.

The coefficient of discharge c for standard orifices has

a mean value of about 0.6 1
;
this is increased with rounded

edges and may have any value between 0.61 and i.o.

A rounded interior edge in an orifice is therefore always
a source of error when the object of the orifice is the

measurement >f the discharge. If a contract provides

that water shall be gaged by standard orifices, care should

always be taken that the interior edges do not become

rounded either by accident or by design.

Prob. 54a. Compute the discharge from an orifice 4 inches

in diameter under a head of 6 feet, when =0.89.

Prob. 546. If an orifice with rounded edges has a coefficient

of velocity of 0.88 and a coefficient of discharge of 0.75, find

the coefficient of contraction.
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ART. 55. WATER MEASUREMENT BY ORIFICES

In order that water may be accurately measured by
the use of orifices many precautions must be taken, some

of which have already been noted, but may here be briefly

recapitulated. The area of the orifice should be small

compared with the size of the reservoir in order that

velocity of approach may not exist, or if this cannot be

avoided it should be taken into account by formula (51)!.

The inner edge of the orifice must have a definite right-

angled corner, and its dimensions are to be accurately
determined. If the orifice be in wood, care should be

taken that the inner surface be smooth, and that it be

kept free from the slime which often accompanies the

flow of water even when apparently clear. That no

suppression of the contraction may occur, the edges of

the orifice should not be nearer than three times its least

dimension to a side of the reservoir.

Orifices under very low heads should be avoided,

because slight variations in the head produce relatively

large errors, and also because the coefficients of discharge

vary more rapidly and are probably not so well determined

as for cases where the head is greater than four times the

depth. If the head be very low on an orifice, vortices

will form which render any estimation of the discharge
unreliable.

The measurement of the head, if required with pre-

cision, must be made with the hook gage described in

Art. 35. For heads greater than two or three feet the

readings of an ordinary glass gage placed upon the out-

side of the reservoir will usually prove sufficient, as this

can be read to hundredths of a foot with accuracy. An
error of o.oi feet when the head is 3.00 feet produces an

error in the computed discharge of less than two-tenths

of one percent; for, the discharges being proportional
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to the square roots of the heads, the square root of 3.01

divided by the square root of 3.00 equals 1.0017. For
the rude measurements in connection with the miner's

inch a common foot-rule will usually suffice.

The effect of temperature upon the discharge remains

to be noticed; this is only appreciable with small orifices

and under low heads and hence such orifices and heads

are not desirable in precise measurements. Unwin found

that the discharge was diminished one percent by a rise

of 144 degrees in temperature; his orifice was a circle

0.033 fe^ *n diameter under heads ranging from i.o to

1.5 feet. Smith found that the discharge was diminished

one percent by a rise of 55 degrees in temperature; his

orifice was a circle 0.02 feet in diameter under heads rang-

ing from 0.56 to 3.2 feet.

The coefficients given in Tables 17-22 may be supposed
liable to a probable error of about two units in the third

decimal place: thus a coefficient 0.615 should really be

written o.6i5o.oo2; that is, the actual value is as likely

to be between 0.613 and 0.617 as to be outside of those

limits. The probable error in computed discharges due

to the coefficient is hence nearly one-half of one percent.

To this are added the errors due to inaccuracy of observa-

tion, so that it is thought that the probable error of care-

ful work with standard circular orifices is at least one

percent. The computed discharges are hence liable to

error in the third significant figure, so that it is useless

to carry numerical results beyond three figures when
based upon tabular coefficients. As a precise method
of measuring small quantities of water, standard orifices

take a high rank when the observations are conducted

with care.

Prob. 55. If e be a small error in measuring the head hf

show that the error in the computed discharge q due to this

cause is qe/zh.
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ART. 56. Loss OF ENERGY OR HEAD

A jet of water flowing from an orifice possesses by
virtue of its velocity a certain kinetic energy, which is

always less than the theoretic potential energy due to

the head (Art. 28). Let h be the head and W the weight
of water discharged per second, then the theoretic energy

per second is

Let v be the actual velocity of the water at the contracted

section of the jet ;
then the actual energy per second of the

water as it passes that section is

k.-W.v*/ag

Now let c
t
be the coefficient of velocity (Art. 45) ;

then

v2 = c
l

2

.2gh, and accordingly the actual energy of the jet

per second is

The efficiency of the jet, or the ratio of the actual to the

theoretic energy now is

e = k/K = c* (56)

which is a number always less than unity.

For the standard orifice the mean value of c
l is 0.98,

and hence a mean value of c^
2

is 0.96. The actual energy
of a jet from such an orifice is hence about 96 percent
of the theoretic energy, and the loss of energy is about

4 percent. This loss is due to the fractional resistance

of the edges of the orifice, whereby the energy of pressure

or velocity is changed into heat.

In the plane of the standard orifice the velocity is

slower than at the contracted section since the area there

is greater. If v
l be this velocity, a the area of the orifice,

and a' that of the jet at the contracted section, it is clear

that Q,VI
= a'v or v^

=
c'v, where c' is the coefficient of con-
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traction 0.62. The kinetic energy in the plane of the

orifice is W.v 1*/2g, or o.^Wv z

/2g, or o.tfWh. Thus,
in the plane of the orifice 4 percent of the theoretic energy
is lost overcoming friction, 37 percent is in the form of

kinetic energy, and the remaining 59 percent exists in

the form of pressure energy. This 59 percent is trans-

formed into kinetic energy when the water has reached

the contracted section.

In hydraulics the terms energy and head are often

used as synonymous, although really energy is proportional

to head. Thus the pressure-head that causes the flow

is h and the velocity-head of the issuing jet is v z

/2g, and

these are proportional to the theoretic and effective en-

ergies. The lost head h' is the difference of these, or

and this applies not only to an orifice but to any tube

or pipe. Inserting for v 2
its value this becomes

which gives the lost head in terms of the total head. In-

serting for h its value in terms of v reduces this to

which gives the lost head in terms of the velocity-head.

Thus, for an orifice whose coefficient of velocity is 0.97

the lost head h' is o.o6oh or o.o6$v
2

/2g. For the standard

orifice the lost head h' is 0.040/2. or o.o4iv
2

/2g. When

velocity of approach exists the value of h is to be increased

by the velocity-head of the approaching water.

Prob. 56. Water approaches an orifice with a velocity of

1.5 feet per second, the pressure-head on the orifice is 2.435 feet,

and the coefficient of velocity is 0.975. Compute the loss of

head.
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ART. 57. DISCHARGE UNDER A DROPPING HEAD

If a vessel or reservoir receives no inflow of water

while an orifice is open, the head drops and the discharge

decreases in each successive second. Let H be the head

on the orifice at a certain instant, and h the head t seconds

later; let A be the area of the uniform horizontal cross-

section of the vessel, and a the area of the orifice. Then,

the theoretic time t is given by the second formula in

Art. 26. To determine the actual time the coefficient of

discharge must be introduced. Referring to the demon-

stration, it is seen that a*V2gy. dt is the theoretic discharge

in the time dt] hence the actual discharge is c.a\/2gydt,

and accordingly a in the above-mentioned formula is to be

replaced by ca, or

(57),
cav 2g

is the practical formula for the time in which the water

level drops from H to h. In using this formula c is to

be taken from the tables at the end of this volume, an

average value being selected corresponding to the average
head.

Experiments have been made to determine the value

of c by the help of this formula; the liquid being allowed

to flow, A, a, H, h
t
and t being observed, whence c is com-

puted. In this way c for mercury has been found to be

about 0.62.* Only approximate mean values can be

found in this manner, since c varies with the head, par-

ticularly for small orifices (Art. 47). For a large orifice

the time of descent is usually so small that it cannot be

noted with precision, and the friction of the liquid on

the sides of the vessel may also introduce an element

of uncertainty. Further, if h be small a vortex forms

* Downing's Elements of Practical Hydraulics (London, 1875), p. 187.
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which renders the formula unreliable. This experiment
has therefore little value except as illustrating and con-

firming the truth of the theoretic formulas.

The discharge in one second when the head is H at

the beginning of that second is found as follows: The
above equation may be written in the form

VJT- tca\/2g/2A = Vh

By squaring both members, transposing, and multiplying

by A, this may be reduced to

A(H-h)=

But the first member of this equation is the quantity

discharged in t seconds; therefore the discharge in the

first second is

q = ca\/2g(VH - ca\/2g/4A)

If A = oo
,

this becomes cay2gH, which should be the

case, for then H would remain constant. At the end of

the first second the water level has fallen the amount

q/A, so that the head at the beginning of the second

second is H q/A.

For example, let an orifice one foot square in a reservoir

of 10 square feet section be under a head of 9 feet, and

c = 0.602. Then the discharge in one second is 13.9 cubic

feet, and the head drops to 7.61 feet. The discharge in

the next second is 12.7 cubic feet, and the head drops to

6.34 feet.

Prob. 57a. For the data of the last paragraph compute the

number of seconds required to lower the head of 9 feet down
to 3 feet.

Prob. 576. Find the time required to discharge 480 gallons

of water from an orifice 2 inches in diameter at 8 feet below the

*vater level when the cross-section of the tank is 4X4 feet.
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ART. 58. EMPTYING AND FILLING A CANAL LOCK

A canal lock is emptied by opening one or more orifices

in the lower gates. Let a be their area and H the head
of water on them when the lock is full; let A be the area

of the horizontal cross-section of the lock. Then in the

first formula of the last article h=o, and the time of

emptying the lock is

t = 2AVW/caVlzg (58)

If the discharge be free into the air, H is the distance

from the center of the orifice to the level of the water in

the lock when filled; but if, as is usually the case, the

orifices be below the level of the water in the tail bay,
H is the difference in height between the two water levels.

The tail bay is regarded as so large compared with the

lock that its water level remains constant during the time

of emptying.

For example, let it be required to find the time of
p

emptying a canal lock 80 feet long and 20 feet wide through
two orifices each of 4 square feet area, the head upon
which is 1 6 feet when the lock is filled. Using for c the

value 0.6 for orifices with square inner edges, the formula

gives

2X80X20X4
* =

0.6X8X8.02
= 333 Sec nds = 5* ^nutes

If, however, the circumstances be such that c is 0.8, the

time is about 250 seconds, or 4^ minutes. It is therefore

seen that it is important to arrange the orifices of discharge

in canal locks with rounded inner edges.

The filling of the lock is the reverse operation. Here

the water in the head bay remains at a constant level

and the discharge through the orifices in the upper gates

decreases with the rising head in the lock. Let H be the

effective head on the orifices when the lock is empty,
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and y the effective head at any time t after the beginning
of the discharge. The area of the section of the lock

being A
t
the quantity Ady is discharged in the time dt,

Head Bay_~^r ITr" ~.~ 12 zrzzn=

FIG. 28

and this is equal to ca\r*gy dt, if a be the area of the

orifices and c the coefficient of discharge. Hence the same

expression as (58) results, and the times of filling and

emptying a lock are equal if the orifices are of the same
dimensions and under the same heads. The area required
for the orifices may be found for any case from (58) when

A, H, t, and c are given.

Prob. 58a. Compute the areas of the two orifices when
A = 1800 square feet, 2 = 3 minutes, ^ = 0.7, # =

7 feet for the

upper and 12 feet for the lower orifice.

Prob. 586. A lock 90 feet long and 20 feet wide, with a lift

of 12 feet, contains a boat weighing 500 net tons. When the

lock is emptied in order to lower the boat, how much water

flows from the lower orifices? If the cross-section of these

orifices is 12.3 square feet and =
0.7, what is the time of

emptying?

ART. 59. COMPUTATIONS IN METRIC MEASURES

Most of the formulas of this chapter are rational and

may be used in all. systems of measures. The coefficients

of contraction, velocity, and discharge are abstract num-

bers, which are the same in all systems, like the constants

of mathematics. In the metric system the area a is to
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be taken in square meters, the head h in meters, \/2g
as 4.427, and then the discharge q willbe in cubic meters

per second.

(Art. 47) For standard circular vertical orifices the

formulas (47) t
and (47) 2 apply to the metric system if

8.02 be replaced by 4.427. In using these the coefficient

c may be taken from Table 18 which has been adapted
to metric arguments from Table 17. For example, if

the diameter of the orifice be 2.5 centimeters and the head

on its center be 0.6 meters, interpolation in the table

gives the value of c as 0.606.

(Art. 48) For standard square vertical orifices^ the

formulas (48) t and (48) 2 are changed to the metric system

by substituting 4.427 for 8.02 and 2.951 for 5.347. Table

20 gives values of the coefficient c for arguments in metric

measures.

(Art. 49) Table 21 has not been transformed into

one with metric arguments, as it applies only to the special

case where the rectangular orifice is one foot wide. If

the heads in the first column be changed into meters,

by writing 0.12 meters for 0.4 feet, 0.18 meters for 0.6

feet, etc., and the numbers at the top be changed into

centimeters by writing 3.8 centimeters for 0.125 feet,

7.6 centimeters for 0.25 feet, etc., the table will be ready
for use with metric arguments for rectangular orifices 30.5

centimeters wide.

(Art. 50) The miner's inch, when the head on the

center of the orifice is 16.5 centimeters, is 0.0433 cubic

meters or 43.3 liters per minute.

(Art. 58) In using (58) in the metric system, a and

A are to be taken in square meters, H in meters, g as

9.80 meters per second per second, and \/2g as 4.427;

q will then be found in cubic meters.

Prob. 59a. Michelotti found the range of a jet to be 6.25

meters' on a horizontal plane 1.41 meters below the vertical
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orifice, which was under a head of 7.19 meters. Compute the

coefficient of velocity.

Prob. 596. An orifice 3 centimeters square was under a

constant head of 4 meters, and during 230 seconds the jet

flowed into a tank which was found to contain 112.2 liters.

Show that the coefficient of discharge was 0.612.

Prob. 59c. Find from the table the coefficient of discharge
for a standard circular orifice 2.5 centimeters in diameter

under a head of 2.5 meters.

Prob. 59d. Compute the discharge through a standard

orifice 7.5 centimeters square under a head of 8 meters.

Prob. 59e. Compute the time required to empty a canal

lock 7 meters wide and 32 meters long through an orifice of

0.9 square meters area, the head on the center of the orifice

being 5.1 meters when the lock is filled.
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CHAPTER VI

FLOW OF WATER OVER WEIRS

ART. 60. DESCRIPTION OF WEIRS

A weir is a notch in the top of the vertical side of a

vessel or reservoir through which water flows. The notch

is generally rectangular, and the word weir will be used

to designate a rectangular notch unless otherwise speci-

fied, the lower edge of the rectangle being truly horizontal,

and its sides vertical. The lower edge of the rectangle

is called the "crest" of the weir. In Fig. 60a is shown

the outline of the most usual form, where the vertical

edges of the notch are sufficiently removed from the sides

FIG. 60a FIG. 606

of the reservoir or feeding canal, so that the sides of the

stream may be fully contracted; this is called a weir with

end contractions. In the form of Fig. 606 the edges of

the notch are coincident with the sides of the feeding

canal, so that the filaments of water along the sides pass

over without being deflected from the vertical planes in
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which they move; this is called a weir without end con-

tractions, or with end contractions suppressed. Both kinds

of weirs are extensively used for the measurement of wrater

in engineering operations.

It is necessary in order to make accurate measurements

of discharge by a weir that the same precaution should

be taken as for orifices (Art. 55), namely, that the inner

edge of the- notch shall be a definite angular corner so

that the water in flowing out may touch the crest only

in a line, thus insuring complete contraction. In precise

observations a thin metal plate will be

used for a crest, while in common
work it may be sufficient to have the

crest formed by a plank of smooth

hard wood with its inner corner cut-

FIG. 60c to a sharp right angle and its outer

edge beveled. The vertical edges of the weir should be

made in the same manner for weirs with end contrac-

tions, while for those without end contractions the sides

of the feeding canal should be smooth and be prolonged

a slight distance beyond the crest. It is also necessary

to observe the same precautions as for orifices to prevent
the suppression of the contraction (Art. 53), namely, that

the distance from the crest of the weir to the bottom of

the feeding canal, or reservoir, should be greater than three

times the head of water on the crest. For a weir with end

contractions a similar distance should exist between the

vertical edges of the weir and the sides of the feeding

canal.

The head of water H upon the crest of a weir is usually

much less than the breadth of the crest b. The value

of H should not be less than o.i foot, and it rarely ex-

ceeds 1.5 feet. The least value of b in practice is about

0.5 feet, and it does not often exceed 20 feet. Weirs

are extensively used for measuring the discharge of small
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streams, and for determining the quantity of water sup-

plied to hydraulic motors; the practical importance of

the subject is so great that numerous experiments have

been made to ascertain the laws of flow, and the coefficients

of discharge.

Since the head on the crest of a weir is small, it must
be determined with precision in order to avoid error in

the computed discharge. The hook gage which is illustrated

in Art. 35 is generally used for accurate work in connection

with hydraulic motors, and the simpler form, consisting

of a hook set into a leveling rod, is usually of sufficient

precision for many cases. For rough gagings of streams

the heads may be determined by setting a post a few

feet up-stream from the weir and on the same level as

the crest, and measuring the depth of the water over the

top of the post by a scale graduated to tenths and hun-

dredths of a foot, the thousandths being* either estimated

or omitted entirely.

The head H on the crest of the weir is in all cases to

be measured several feet up-stream from the crest, as

indicated in Fig. 60c. This is necessary because of the

curve taken by the surface of the water in approaching
the weir. The distance to which this curve extends back
from the crest of the weir depends upon many circum-

stances (Art. 69), but it is generally considered that

perfectly level water will be found at 2 or 3 feet back

of the crest for small weirs, and at 6 or 8 feet for

very large weirs. It is desirable that the hook should

be placed at least one foot from the sides of the feeding

canal, if possible. As this is apt to render the position

of the observer uncomfortable, some experimenters have

placed the hook in a pail a few feet away from the canal,

the water being led to the pail by a pipe which joins the

feeding canal several feet back from the crest, and the

water should enter this pipe, not at its end, but through a

a number of holes drilled at intervals along its circumfer-
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ence. Piezometers (Art. 36) consisting of a glass tube and
scale are also sometimes used for large heads, the water

being led to the tube by such a pipe.

Prob. 60. The trough of a weir, several feet back from the

crest, is 4.0 feet wide, and the depth of water in it is 1.96 feet.

What is the mean velocity in this trough when the flow over
the weir is 4.24 cubic feet per second?

ART. 61. FORMULAS FOR DISCHARGE

Referring to the demonstration of Art. 48 it is seen

that a rectangular orifice becomes a weir when the head
on its top is zero. Let b be the breadth of the notch,

commonly called the length of the crest, and H thejiead
of water-QQjbhe crest. Then replacing h by o and h 2 by
H, the theoretic discharge per second is

(61),

The head H is not the depth measured in the plane of

the crest, for since the deduction of the formula assumes

nothing regarding the fall due to the surface curve, and

regards the velocity at any point vertically over the crest

as due to the head upon that point below the free water

surface, it seems that H should be measured with reference

to that surface, as is actually done by the hook gage.

The above formula then gives the theoretic discharge per

second, provided that there be no velocity at the point
where H is measured, which can only be the case when
the area of the weir opening is very small compared to

that of the cross-section of the feeding canal. This con-

dition would be fulfilled for a rectangular notch placed
at the side of a large pond.

When there is an appreciable velocity of approach
of the water at the point where H is measured by the

hook gage, the above formula must be modified. Let v

be the mean velocity in the feeding canal at this section;
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this velocity may be regarded as due to a fall, h, from
the surface of still water at

some distance up-stream from

the hook, as shown in Fig. 61.

Now the true head on the crest

of the weir is H + h, as this

would have -been the reading FIG 61

of the hook gage had it been

placed where the water had no velocity. Accordingly the

theoretic discharge per second is

in which H is read by the hook and h is to be determined

from the mean velocity v.

The actual discharge is always less than the theoretic

discharge, due to the contraction of the stream and the

resistances of the edges of the weir. To take account

of these a coefficient is applied to the theoretic formulas

in the same manner as for orifices; these coefficients be-

ing determined by experiment, the formulas may then

be used for cornputing the actual discharge. It has also

been proposed by Hamilton Smith to modify the head

h, owing to the fact that the velocity of approach is not

constant throughout the section, but greater near the

surface than near the bottom, as in conduits and streams.

(Art. 118). Accordingly the following may be written as

an expression for the actual discharge :

q = c.%V^.b(H + nh)* ^T (61) 2

in which c is the coefficient of discharge whose value is

always less than unity, and n is a number which lies be-

tween i.o and 1.5. For the English system of measures

a mean value of \/2g is 8.020, but a more precise value

can be computed from (7)! for any locality.

The above formulas are not in all respects perfectly

satisfactory, and indeed many others have been proposed,
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one of these being derived from (51 ) 4 by making h =h,

h2 =H, and 7i
1
=o. The actual discharge differs, however,

so much from the theoretical that the final dependence
must be upon the coefficients deduced from experiment,

and hence any fairly reasonable formula may be used

within the limits for which its coefficients have been

established. In spite of the objections which may be

raised against all forms of formulas, the fact remains

that the measurement of water by weirs is one of the most

convenient methods, and probably the most precise method,
unless the quantity is so small as to pass through a circular

orifice less than one foot in diameter. With proper pre-

cautions the probable error in measurements of discharge-

by weirs should be less than two or three percent.

Prob. 61a. Find the velocity-head h when the mean velocity

of approach is 20 feet per minute.

Prob. 616. Show by using formula (61) that an error of

about one-half of one percent results in the computed discharge
if an error of o.ooi feet be made in reading the head when.

#=0.3 feet.

%

ART. 62. VELOCITY OF APPROACH

The head h which produces the velocity v is expressed

by v*/2g, and in the case of a weir, the velocity of approach
v is due to a fall from the height h\ thus the velocity-

head is

h =

and when v is known h can be computed. One way of

finding v is to observe the time of passage of a float through
a given distance; but this is not a precise method. The
usual method is to compute v from an approximate value

of the discharge, which is first computed by regarding v,

and hence h, as zero. This determination is rendered

possible by the fact that v is usually small, and hence

that h is quite small as compared with H.
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Let B be the breadth of the cross-section of the feeding
canal at the place where the readings of the hook are

taken, and let G be its depth below the crest (Fig. (61).

The area of that cross-section then is

The mean velocity in this section now is

v^/A
in which q' is found from the formula

This value of q' is an approximation to the actual dis-

charge; from it v is found, and then h, after which the

discharge q can be computed. If thought necessary, h

may be recomputed by using q instead of q''; but this

will rarely be necessary.

For example, the small weir with end contractions

used in the hydraulic laboratory of Lehigh University

prior to 1896 had B =
7. 8 2 feet and =

2.5 feet. The

length of the weir b was adjustable according to the quan-

tity of water delivered by the stream. On April 10, 1888,

the value of b was 1.330 feet, and values of H ranged
from 0.429 to 0.388 feet. It is required to find the velocity
v and the head h, when # = 0.429 feet. Here the co-

efficient c is 0.602 (Table 23), hence the approximate dis-

charge per second is

(f
= 0.602 Xf X8.02 X 1.33 Xo.429

or </
=

1.203 cubic feet per second.

The mean velocity of approach then is

1.203

""(2.5+0.4)7.82
=0 - 53 feet per second>

and the head h producing this velocity is

h = o.01555 Xo.o53
2 = 0.00004 feet,
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which is too small to be regarded, since the hook gage
used determined the heads only to thousandths of a foot.

The head h may be directly expressed in terms of

the discharge by substituting for v its value q/A ;
thus

(62)

and, in general, this expression will be found the most
convenient one for computing the value of the head cor-

responding to the velocity of approach.

With a weir opening of given size under a given head

H, the velocity of approach is less the greater the area

of the section of the feeding canal, and it is desirable in

building a weir to make this area large so that the velocity
v may be small. For large weirs, and particularly for

those without end contractions, v is sometimes as large
as one foot per second, giving ^=0.0155 feet, and these

should be regarded as the highest values allowable if

precision of measurement is required.

Prob. 62. Fteley and Stearns' large suppressed weir had the

following dimensions: 6 =^ = 18.996 feet, =
6.55 feet, and the

greatest measured head was 1.6038 feet. Taking ^ = 0.622,,

compute the velocity of approach and its velocity-head.

ART. 63. WEIRS WITH END CONTRACTIONS

Let b be the breadth of the notch or length of the

weir, H the head above the crest measured by the hook

gage, and c an experimental coefficient. Then if there

be no velocity of approach the discharge per second is

(63) t

But if the mean velocity of approach at the section where

the hook is placed be v, let h be the head which would

produce this velocity as computed by (62). Then the

discharge is

)* (63).
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The quantity // 4-1.4/2 is called the effective head on

the crest, and, as shown in the last article, h is usually
small compared with the head H.

Table 23 contains values of the coefficient of discharge
c as deduced by Hamilton Smith, from a discussion of the

experiments made by Lesbros, Francis, Fteley and Stearns,

and others.* In these experiments q was determined by
actual measurement in a tank of large size, and the other

quantities being observed the coefficient c was computed.
Values of c for different lengths of weir and for different

heads were thus obtained, and after plotting them mean
curves were drawn from which intermediate values were

taken. The heads in the first column are the effective

heads H+ i .4/2; but as h is small, little error can result in

using H as the argument with which to enter the table

in selecting a coefficient.

It is seen from the table that the coefficient c increases

with the length of the weir, which is due to the fact that

the end contractions are independent of the length. The
coefficient also increases as the head on the crest diminishes.

The table also shows that the greatest variation in the

coefficients occurs under small heads, which are hence

to be avoided in order to secure accurate measurements

of discharge.

Interpolation may be made in this table for heads

and lengths of weirs intermediate between the values

given, regarding the coefficient to vary uniformly be-

tween the values given. When coefficients are frequently

required for a weir of given length it will be best to make
out a special table for that weir and to diagram the re-

sults to a large scale on cross-section paper, so that inter-

polation for different heads can be more readily made.

As an example of the use of the formulas and Table

23, let it be required to find the discharge per second

* Hydraulics (London and New York, 1884), p. 132.
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over a weir 4 feet long when the head H is 0.457
there being no velocity of approach. From the table

the coefficient of discharge is 0.614 for 77 = 0.4 and 0.6095
for 77 = o.5, which gives about 0.612 when 77 = 0.457.
Then the discharge per second is

q = 0.612X1X8.02X4X0.457! =4.04 cubic feet.

If the width of the feeding canal be 7 feet, and its depth
below the crest be 1.5 feet, the velocity-head is

0.00134 feet.

The effective head now becomes 77+1.4^ = 0.459 feet,

and the discharge per second over the weir is

q =0.612 XfX8.02 X4X 0.459! =4.07 cubic feet.

It is to be observed that the reliability of these computed
discharges depends upon the precision of the observed

quantities and upon the coefficient c\ this is probably
liable to an error of one or two units in the third decimal

place, which is equivalent to a probable error of about

three-tenths of one percent. On the whole, regarding
the inaccuracies of observation, a probable error of one

percent should at least be inferred, so that the value

9 = 4.07 cubic feet per second should strictly be written

9 = 4.07 0.04, that is, the discharge per second has 4.07

cubic feet for its most probable value, and it is as likely

to be between the values 4.03 and 4.11 as to be outside

of those limits.

In very precise work the value of the acceleration g
should be computed from formula (7)! for the particular

latitude and elevation above sea level where the weir is

located.

Prob. 63a. A weir in north latitude 40 24' and 395 feet

above sea level has a length of 2.5 feet . Compute the dis-

charges over it, the feeding canal having the width 6 feet and the
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depth below crest 1.6 feet, when the heads on the crest are

0.314, 0.315, and 0.316 feet.

Prob. 636. Compute the coefficient of discharge for the fol-

lowing experiment by Francis, in which q was found by actual

measurement in a large tank: 6 = 9.997 feet, -8 = 13.96 feet,

G= 4. 19 feet, H= 1.5243 feet, 2g = 64.3236, and 3 = 61.282

cubic feet per second.

ART. 64. WEIRS WITHOUT END CONTRACTIONS

For weirs without end contractions, or suppressed
weirs as they are often called, when there is no velocity
of approach, the discharge per second is

and when there is velocity of approach,

(64)

Here the notation is the same as in the last article, and
c is to be taken from Table 25, which gives the coefficients

of discharge as deduced by Smith, in 1888.

It is seen that the coefficients for suppressed weirs

are greater than for those with end contractions: this

of course should be the case, as contractions diminish

the discharge. They decrease with the length of the

weir, while those for contracted weirs increase with the

length. Their greatest variation occurs under low heads,

where they rapidly increase as the head diminishes. It

should be observed that these coefficients are not reliable

for lengths of weirs under 4 feet, owing to the few ex-

periments which have been made for short suppressed
weirs. Hence, for small quantities of water, weirs with

end contractions should be built in preference to sup-

pressed weirs. For a weir of infinite length it would be

immaterial whether end contractions exist or not; hence

for such a case the coefficients lie between the values
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for the ip-foot weir in Table 23 and those for the 1 9-foot
weir in Table 25.

For a numerical illustration a suppressed weir having
the same dimensions as in the example of the last article

will be used, namely, 6 = 4 feet, G = i.$ feet, and H = 0.457
feet. The coefficient is found from Table 25 to be 0.630;
then for no velocity of approach the discharge per sec-

ond is

<?
= 0.630X1 X8.02 X 4X0.45 7!

= 4.16 cubic feet.

Here the width B is also 4 feet; the head corresponding
to the velocity of approach then is by (62),

=-44 feet,

and the effective head on the crest is

//+ ij/z =0.463 feet,

from which the discharge per second is

q = o.630X1X8.02 X4Xo.463! =4.24 cubic feet.

This shows that the velocity of approach exerts a greater
influence upon the discharge than in the case of a weir

with end contractions.

Prob. 64. Compute the discharge per second over a weir

without end contractions when 6 = 9.995 ^eet
>
^ ==o-7955 feet,.

= 4.6 feet.

ART. 65. FRANCIS' FORMULAS

The formulas most extensively used for computing
the flow through weirs are those established by Francis

in 1854* from the discussion of his numerous and carefully

conducted experiments, but as they are stated without

tabular coefficients they are to be regarded as giving only
mean approximate results. The experiments were made
on large weirs, most of them 10 feet long, and with heads,

* Lowell Hydraulic Experiments (4th edition, New York, 1883), p. 133.
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ranging from 0.4 to 1.6 feet, so that the formulas apply

particularly to such, rather than to short weirs and low

heads. The length b and the head H being expressed in

feet, the discharge per second, when there is no velocity
of approach, is, for weirs without end contractions, or

suppressed weirs,

? = 3 .33fcH* (65),

and for weirs with end contractions,

q = 3.33(b-o. 2H)H* (65) 2

Here it is regarded that the effect of each end contraction

is to diminish the effective length of the weir by o.iH.

In these formulas b and H must be taken in feet and q

will be in cubic feet per second.

Francis' method of correcting for velocity of approach
differs from that of Smith, and is the same as that ex-

plained in Art. .51. The head h causing the velocity of

approach is computed in the usual way, and then the

formulas are written, for weirs without end contractions,

and for weirs with end contractions,

It is necessary that this method of introducing the velocity
of approach should be strictly observed, since the mean
number 3.33 was deduced for this form of expression.

It is seen that the number 3.33 is c.f\/2g, where c

is the true coefficient of discharge. The 88 experiments
from which this mean value was deduced show that the

coefficient 3.33 actually ranged from 3.30 to 3.36, so that

by the use of the mean value an error of one percent in

the computed discharge may occur. When such an error

is of no importance the formula may be safely used for

weirs longer than 4 feet and heads greater than 0.4 feet.
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Prob. 65. Find by Francis' formulas the discharge when
=

7 feet, b = 4 feet, # = 0.457 &&>, and G=i.$ feet, the weir

being one with end contractions.

ART. 66. SUBMERGED WEIRS

When the water on the down-stream side of the weir

is allowed to rise higher than the level of the crest the

weir is said to be submerged. In such cases an entire

change of condition results, and the preceding formulas

are inapplicable. Let H be the head above the crest

measured up-stream from the weir by the hook gage in

the usual manner, and let H' be the head above the crest

of the water down-stream from the weir measured by
a second hook gage. If H be constant, the discharge

is uninfluenced until the lower

water rises to the level of the

crest, provided that free access

|T
of air is allowed beneath the

descending sheet of water. But

as soon as it rises slightly above

the crest so that H' has small values, the contraction is

suppressed and the discharge hence increased. As Hr

increases, however, the discharge diminishes until it be-

comes zero when H' equals H. Submerged weirs cannot

be relied upon to give precise measurements of discharge

on account of the lack of experimental knowledge regard-

ing them, and should hence always be avoided if possible.

The following method for estimating the discharge

over submerged weirs without end contractions is taken

from the discussion given by Herschel* of the experiments

made by Francis and by Fteley and Stearns. The ob-

served head H is first multiplied by a number n, which

depends upon the ratio of H' to H, and then the discharge

* Transactions of the American Society of Civil Engineers, 1885, vol.

14, p. 194.
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is to be computed by using the modified Francis* formula

The values of n deduced by Herschel are given in Table

27. They are liable to a probable error of about one
unit in the second decimal place when Hf

is less than

0.2H, and to greater errors in the remainder of the table,

values of n less than 0.70 being in particular uncertain. It

is seen that H' may be nearly one-fifth of H without affect-

ing the discharge more than two percent.

A rational formula for the discharge over submerged
weirs may be deduced in the following manner. . The
theoretic discharge may be regarded as composed of two

portions, one through the upper part H H', and the

other through the lowrer part H'. The portion through
the upper part is given by the usual weir formula, HH'
being the head, or

and that through the lower part is givfen by the formula

for a submerged orifice (Art. 52), in which b is the breadth,
H' the height, and H H' the effective head, or

The addition of these gives the total theoretic discharge,

Q =%V^b(H-H'^+ V^bH'(H-H')*
which may be put into the more convenient form,

ti r
The actual discharge per second may now be written,

in which c is the coefficient of discharge.

Fteley and Stearns adopt the above formula for the

discharge, or placing M for c .\\/2, they write,*

q
= Mb(H + i

2H')(H-H')l (66) 2

* Transactions American Society Civil Engineers, 1883, vol. 12, p. 103.
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and from their experiments deduce the following values

of the coefficient M :

for H'/H = o.oo 0.04 0.08 0.12 0.16 0.2 0.3

M=3-33 3-35 3-37 3-35 3-32 3^8 3.21

for H'/H = o.4 0.5 0.6 0.7 0.8 0.9 i.o

M = 3- I 5 3- 11 3-9 3-9 3- J 2 3- J 9 3-33

These are for suppressed weirs; for contracted weirs few

or no experiments are on record.

In what has thus far been said velocity of approach
has not been considered. This may be taken into account

in the usual way by determining the velocity-head h,

and thus correcting H. But it is unnecessary, on account

of the limited use of submerged weirs, and the consequent
lack of experimental data, to develop this branch of the

subject. What has been given above will enable a prob-
able estimate to be made of the discharge in cases where

the water accidentally rises above the crest, and further

than this the use of submerged weirs cannot be recom-

mended.

Prob. 66. Compute by two methods the discharge over a

submerged weir when 6 = 8, # = 0.46, and H f = o.22 feet.

ART. 67. ROUNDED AND WIDE CRESTS

When the inner edge of the crest of a weir is rounded,

as at a in Fig. 67, the discharge is materially increased

as in the case of orifices (Art. 54), or rather the coefficients

of discharge become much

larger than those given for

the standard sharp crests.

The degree of rounding
influences so much the

FIG. 67
amount of increase that no

definite values can be stated, and the subject is here merely
mentioned in order to emphasize the fact that a rounded
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inner edge is always a source of error. If the radius of

the rounded edge is small, the sheet of escaping water

is at a point below the top (a in the figure), which has the

practical effect of increasing the measured head by a

constant quantity. The experiments of Fteley and Stearns

show that when the radius is less than one-half an inch,

the discharge can be computed from the usual weir

formula, seven-tenths of the radius- being first added to

the measured head H.

Two wide-crested weirs with square inner corners are

shown in Fig. 67, the one at B being of sufficient width

so that the descending sheet may just touch the outer

edge, causing the flow to be more or less disturbed, while

that at C has the sheet adhering to the crest for some

distance. In both cases the crest contraction occurs,

although water instead of air may fill the space above

the inner corner. For B the discharge may be equal
to or greater than that of the standard weir having the

same head //, depending upon whether the air has or has

not free access beneath the sheet in the space above the

crest. For C the discharge is always less than that of

the standard weir with sharp crest.

Table 28 is an abstract from the results obtained by
Fteley and Stearns,* and gives the corrections in feet to

be subtracted from the depths on a wide crest, like C
in Fig. 67, in order to obtain the depths on a standard

sharp-crested suppressed weir giving the same discharge.

Prob. 67. Compute" the discharge ov~er a crest 1.5 feet wide

for a weir 10 feet long when the head is 0.850 feet.

ART. 68. WASTE WEIRS AND DAMS

Waste weirs are constructed at the sides of reservoirs

in order to allow the surplus water to escape. They are

usually arranged so that the end contractions are suppressed.

* Transactions American Society Civil Engineers, 1883, vol. 12, p. 96.
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When the crest is narrow and the front vertical, so that

the descending sheet of water has air upon its lower side,

the discharge is approximately given by Francis' weir

formula (Art. 65),

in which b is the length of the crest, and H the head

measured some distance back from the crest. When the

crest is wide and the approach to it is inclined, as is often

the case, the discharge is somewhat smaller. For a crest

about three feet wide and level, with an inclined approach
back of it, Francis deduced from his experiments,

which, for a head of one foot, gives a discharge ten percent
less than that of the first formula.

In constructing a waste weir the discharge q is generally

known or assumed, and it is required to determine b and

H. The latter being taken at i, 2, or 3 feet, as may be

judged safe and proper, b is found by one of these formulas.

For example, if the crest be wide, q be 87 cubic feet per

second, andHbe two feet, then

log b =log 87 -log 3.01
-

1.53 log 2

from which log b = 1.0004, whence 6 = 10.0 feet. If, how-

ever, the crest be narrow, the first formula gives 6 = 9.2

feet. Evidently no great precision is needed in comput-

ing the length of a waste weir, since it is difficult to de-

termine the exact discharge which is to pass over it, and

an ample factor of safety should be introduced to cover

unusual floods.

The above formulas may be used for obtaining the

approximate flow of a stream in which a dam with level

crest has been built. The water, however, is often re-

ceived upon an apron of timber or masonry, and the

inclination of this, as well as the inclination of the ap-
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proach to the crest, materially modifies the discharge.

The formula

q = c.$\/2g &H*-w6H* (68) t

is usually employed for dams and it is found that the

value of M, for English measures, may range under differ-

ent circumstances from 2.5 to 4.2. This is modified below

for velocity of approach (Art. 62).

Experiments were made by Bazin in 1897
* on dams

from 1.6 to 2.5 feet high with heads of water on the crests

ranging from 0.2 to 1.4 feet. For the case of Fig. 68a

FIG. 68a FIG. 686 FIG. 68c

the approach had an inclination of i on 2 and the front

was vertical; when the width of the crest was 0.33 feet,

the coefficient M varied from 3.24 to 4.12 as the head

increased from 0.27 to 1.41 feet; when the width of the

crest was 0.66 feet, M varied from 3.10 to 3.89 for similar

heads. For the case of Fig. 686 both approach and apron
had slopes of i on 2 and the crest was 0.66 feet wide;
here M increased from 2.83 to 3.75 as the head ranged
from 0.22 to 1.42 feet. For Fig. 68c, with a crest 2.62

feet wide, M ranged from 2.47 to 2.76, but when the up-
stream corner was rounded to a radius of 4 inches it

ranged from 2.71 to 3.12. Here it is seen that widening
the crest decreases the discharge, as already noted in Art.

67, and that the apron produces a similar influence.

Experiments on a larger scale were made by Rafter,

in 1898, for the U. S. Deep Waterways Commission

at the canal of the Cornell hydraulic laboratory, in which

the flow over dams was measured by a standard weir.

* Annales des ponts et chaussees, 1 898 ;
translated by Rafter in Trans-

actions American Society Civil Engineers, 1900, vol. 44, p. 254.
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The results of these experiments are given in Table 29,

the first five being for darns of the form shown in Fig.

68a, the next three for dams like Fig. 686, and the next

four for dams like Fig. 68c, those marked with an asterisk

having the up-stream corner rounded to a radius of 4

inches. The last line of the table refers to a section whose

top was five feet wide and rounded to a radius of 3.37

feet, the rounding beginning on the up-stream side one

foot below the crest. The height of these dams varied

from 4.56 to 4.91 feet, and the length of the crest was in

all cases 6.58 feet.*

Rafter also made experiments on some other forms

of dams. The one shown in Fig. QSd had a vertical front

FIG. QSd FIG. 6&?

4.57 feet deep, and the two back slopes were i on 6 and
i on |, the width of the former being 4.5 feet; the values

of M for this case ranged from 3.33 to 3.46 for heads rang-

ing from i.o to 6.0 feet. The one shown in Fig. QSe had
a total width of about 23 feet and a height of 4.53 feet,

the slopes of the approach and apron being i on 6, and
that just below the crest about i on J, the vertical depth
of this being 0.75 feet

;
for this the mean values of M ranged

from 3.07 to 3.27 for heads ranging from i.o to 6.0 feet,

the smaller coefficients being due to the contact of the

water with the apron.

By the use of these coefficients the discharge of a

small stream over a dam under medium heads may be

computed with a degree of precision probably as high
as other methods will give. After finding q from (68) j

the head h corresponding to the velocity of approach is

to be determined by (62) x and then

q = ub(H + h)* (68),

* Transactions American Society Civil Engineers, 1900, vol. 44, p. 266.
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is to be used for obtaining a more precise value of the

discharge. For example, suppose a darn of the form of

Fig. 68a to be 226 feet long with a back slope of i on 4,

and to have a head of 1.25 feet on its crest. From Table

29 there is found by interpolation M=3.45, and then by
(^8) t

the approximate discharge is 1090 cubic feet per

second. Let the stream be 150 feet wide and 6.5 feet

-deep at the place where the head is measured, then from

(62) the head causing the velocity of approach is 0.02

feet, and from (68) 2 the discharge is mo cubic feet per

.second, which is to be regarded as liable to a probable

error of five percent.

Prob. 68. Find the length of a waste weir which will be

ample to discharge a rainfall of one inch per hour on a drainage
area of 3.65 square miles, the head on the crest of the weir

being 2.12 feet. Also when the head is 4.24 feet.

ART. 69. THE SURFACE CURVE

The surface of the water above a weir or dam assumes

a curve whose equation is a complex one, but some of

the laws that govern the drop in the plane of the crest

may be deduced. Let H be the head on the level of the

crest measured in perfectly level water at some distance

back of the weir, and let d be the

depression or drop of the curve be-

low this level in the plane of the

weir (Fig. 69). Then .the discharge per
second q can be expressed in terms

of H and d by formula (51) 4 , placing
H for h 2 and d for h

lt and making
FlG - 69

7z = o. This formula becomes, after replacing \\Tzg by M,

and Q by q,

This expression, it may be remarked, is the true weir
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formula, and only the practical difficulties of measuring
H and d prevent its use. This may be written

from which the drop d in the plane of crest of the weir

can be found. Let B be the breadth of the feeding canal,

G its depth below the crest, and v the mean velocity of

approach; then also

q
= B(G+H)v

and inserting this in the expression for d% it becomes

d* =
PI%-JI-b(G+H)v (69)

which is an expression for the drop of the curve in terms

of the dimensions of the weir, the total head, and the ve-

locity of approach.

The approximate value of the coefficient M is about

3.3 for English measures, but precise values of d cannot

be computed unless M and H are known with accuracy.
The formula, however, serves to exemplify the laws which

govern the drop of the curve in the plane of the weir.

It shows that the drop increases with the head on the

crest and with the length of a contracted weir, that it de-

creases with the breadth and depth of the feeding canal,

and that it decreases with the velocity of approach. It

also shows for suppressed weirs, where B =b, that the

drop is independent of the length of the wr
eir. All of

these laws except the last have been previously deduced

by the discussion of experiments.

The path of the stream after leaving the weir is closely

that of a parabola. In the plane of the crest the mean

velocity is

V = q/b(H-d)

and the direction of this may be taken as approximately
horizontal. The range of a stream on a horizontal plane
at the distance y below the middle of the weir notch is
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then readily found. For, if x be this range which is

reached in the time t, then x = Vt, and also y = %gt
2

, whence,

by the elimination of /, there results gx* = 2V 2

y, and

accordingly the horizontal range at the depth y is

H*-d* \vyX = M-rj "TVH-d v g

in which d is given by (69). For example, take a case

where # =
3 feet, = 23 feet, and ^ = 0.5 feet per second.

From (69) the value of d is found to be 1.17 feet. Now,
if y = $o feet, the last formula gives # = 6.i feet, which

is the distance of the middle of the stream from the ver-

tical plane through the crest at 50 feet below that crest.

Prob. 69. In the above example what velocity of approach
is necessary in order that there may be no drop in the plane
of the crest. What is the range for this case ?

ART. 70. TRIANGULAR WEIRS

Triangular weirs are sometimes used for the measure-

ment of water, the arrangement being as shown in Fig.

70. Let b be the width of

the orifice at the water level,

and H the head of water on

the vertex. Let an elemen-

tary strip of the depth dy
""

FlG 7Q
be drawn at a distance y
below the water level. From similar triangles the length

of this strip is (H y)b/H and the elementary discharge

through it then is

The integration of this between the limits H and o gives

the theoretic discharge through the triangular weir, namely,
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If the sides of the triangle are equally inclined to the

vertical, as should be the case in practice, and if this

angle be a, the surface width b may be expressed in terms

of a and H
,
so that the last formula becomes

Q-Atanor.v^g.//* (70) 2

The discharge is thus equal to a constant multiplied by
the 2-J power of the measured depth.

Triangular weirs are used but little, as in general they
are only convenient when the quantity of water to be

measured is small. Such a weir must have sharp inner

corners, so that the stream may be fully contracted, and

the sides should have equal slopes. The angle at the

lower vertex should be a right angle, as this is the only
case for which coefficients are known with precision.

The depth of water above this lower vertex is to be measured

by a hook gage in the usual manner at a point several

feet up-stream from the notch. Making the angle at

the vertex a right angle, and applying a coefficient, the

actual discharge per second is given by the expression

in which H is the head of water above the vertex. Ex-

periments made by Thomson * indicate that the coefficient

c varies less with the head than for ordinary weirs; this,

in fact, was anticipated, since the sections of the stream

are similar in a triangular notch for all values of H, and

hence the influence of the contractions in -diminishing

the discharge should be approximately the same. As

the result of his experiments the mean value of c for heads

between 0.2 and 0.8 feet may be taken as 0.592, and hence

the mean discharge in cubic feet per second through a

right-angled triangular weir may be written

* British Association Report, 1858, p. 133.
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in which, as usual, H must be expressed in feet. About

4 feet is probably the greatest practicable value for H,
and this gives a discharge of only 81.0 cubic feet per
second. If velocity of approach exists, H in this formula

should be replaced by H+i.tft, as for rectangular weirs

with end contractions.

Prob. 70. A triangular orifice in the side of a vessel has a

horizontal base b and an altitude d, the head of water on the

base being h and that on the vertex being h-\-d. Show that the

theoretic discharge is T
1-
3
-V

/

Jg(6/J)[4(/i+^)^-(4/j+ iod)h$].

ART. 71. TRAPEZOIDAL WEIRS

Trapezoidal weirs are sometimes used instead of rect-

angular ones, as the coefficients vary less in value. The

theoretic discharge through a trapezoidal weir which has

the length b on the crest, the

head H, and the length b + 2Z

on the water surface, as seen

in Fig. 71, is the sum of the

discharges through a rect-

angle of area bH and a

triangle of area zH. Taking the former from (61)! and

the latter from (70) 2 ,
and replacing tan a by z/H

is the theoretic discharge. Here z/H, which is the slope

of the ends, may be any convenient number, and it is

usually taken as i, as first recommended by Cippoletti.*

The reasoning from which this conclusion was derived

is based upon Francis' rule that the two end contractions

in a standard rectangular weir diminish the discharge

by a mean amount 3.33X0.2/7* (Art. 65), or in general

by the amount .f\/2gXo.2/-A If the sides be sloped,

*
Cippoletti, Canal Villoresi, 1887 ;

see Engineering Record, Aug. 13, 1892.



166 FLOW OVER WEIRS CHAP, vi

however, the discharge through the two end triangles is

c.-f^\/2gX!2H^. If, now, the slope is just sufficient so

that the extra discharge balances the effect of the end

contractions, these two quantities are equal. Equating

them, and supposing that c has the same value in each,

there results z = \H. Hence for such a trapezoidal weir

the discharge should be the same as that from a sup-

pressed rectangular weir of length fr, or, according to

Francis, 9 = 3.33^*. Cippoletti, however, concluded from

his experiments that the coefficient should be increased

about one percent, and he recommended

5=3.36767/1

as the formula for discharge over such a trapezoidal weir

when no velocity of approach exists.

Experiments by Flinn and Dyer* indicate that the

coefficient 3.367 is probably a little too large. In 32

tests with trapezoidal weirs of from 3 to 9 feet length

on the crest and under heads ranging from 0.2 to 1.4 feet,

they found 28 to give discharges less than the formula,

the percentage of error being over 3 percent in eight cases.

The four cases in, which the discharge was greater than

that given by the formula show a mean excess of about

3.5 percent. The mean deficiency in all the 32 cases was

nearly 2 percent. These experiments are not very precise,

since the actual discharge was computed by measure-

ments on a rectangular weir, so that the results are neces-

sarily affected by the errors of two sets of measurements.

Cippoletti 's formula, given above, may hence be allowed

to stand as a fair one for general use with trapezoidal

weirs in which the slope of the ends is J. It can, of course,

be written in the form

where the coefficient c has the mean value 0.629, while

* Transactions American Society of Civil Engineers, 1 894, vol. 32, pp. 9-33.
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Table 25 may be used to obtain more reliable values for

special cases.

If velocity of approach exists, H in this formula is to

be replaced by H+i.^h where h is the head due to that

velocity. In order to do good work, however, h should

not exceed 0.004 feet. Other precautions to be observed

are that the cross-section of the canal should be at least

seven times that of the water in the plane of the crest,

and that the error in the measured head should not be

greater than one-third of one percent. On the whole,

however, the coefficients for the standard rectangular
weir with end contractions are so definitely established,

and those for trapezoidal weirs so imperfectly known,
that the use of the latter cannot be recommended in any
case where the greatest degree of precision is required.

The above formula for the theoretic discharge may
be applied to the Cippoletti trapezoidal weir by putting
z \H, and introducing a coefficient

; thus,

is a formula for the actual discharge, in which the values

of c are probably not far from those given in Table 23

for rectangular contracted weirs. Here the term o.2H/b
shows the effect of the two end triangles in increasing

the discharge.

Prob. 71. For a head of 0.7862 feet on a Cippoletti weir of

4 feet length the actual discharge in 420 seconds was 3912.3
cubic feet. Compute the discharge by the formula and find

the percentage of error.

ART. 72. COMPUTATIONS IN THE METRIC SYSTEM

The formulas for discharge in Arts. 61-64 are rational

and may be used in all systems, the coefficients c being
abstract numbers. In the metric system b and H are

often expressed in centimeters but they should be reduced



168 FLOW OVER WEIRS CHAP, vr

to meters for use in the formulas, and then q will be in

cubic meters per second. The mean value of V 2g is

4.427 and that of i/2g is 0.05102.

(Art. 62) The head h in meters corresponding to the

mean velocity of approach is to be computed from the

formula
h = o.o$io2(q/A)* (72) t

in which A is in square meters. For example, take a
weir where B = 2oo, =

90, 6 = 45.1, H = 26.2& centimeters,

and = 0.620. Then by (63) t the discharge q' is 0.1112

cubic meters per second, and from (72) l
the head h is

0.0002 meters.

(Art. 63) Table 24 gives values of the coefficient c

for weirs with end contractions, with arguments in the

metric system. Thus, if H =
5.45 centimeters and 6 = 0.45

meters, there is found, by interpolation, c = 0.620, which

is liable to a probable error of about two units in the third

decimal place.

{Art. 64) Coefficients for weirs without end contrac-

tions, with metric arguments, are given in Table 26,

which has been prepared by the help of Table 25.

(Art. 65) When b and H are in meters and q in cubic

meters per second, Francis' formula for suppressed weirs-

takes the form

g = i.84Wf* (72)*

and for weirs with end contractions,

(72),.

the number 1.84 being a mean value of c.

(Art. 66) Table 27 applies to any system of measures,

and the formula g -i.84&(nH)* then gives the discharge

in cubic meters per second, if 6 and H be in meters. The

metric values of m for use in (66) are found by multiplying.

those in the text by 0.5522.
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(Art. 68) The formulas of the first paragraph are

transformed into metric measures by replacing 3.33 by
1.84 and 3.01 by 1.72. For formula (68)1 the value of

M for dams, may range from about 1.4 to 2.3. Table 30

gives metric values of M as deduced from the experiments
made by Bazin in 1897, and by Rafter in 1898. The

explanation of this table is in all respects like that of

Table 29. All values of M given in Art. 68 may be re-

duced to metric measures by multiplying by 0.5522, this

being the ratio of the value of V'

2g expressed in meters

to that expressed in feet.

(Art. 70) The metric formula for discharge over the

triangular weir is q = 1.40^.

(Art. 71) The metric formula for Cippoletti's trape-

zoidal weir takes the form q = i.S6bH%.

Prob. 72a. Compute the head that produces a velocity of

approach of 50.5 centimeters per second.

Prob. 726. What are the discharges, in liters per minute,
over a suppressed weir 2.35 meters long when the heads on the

crest are 12.3, 12.4, and 12.5 centimeters?

Prob. 72c. Compute the discharge over a submerged weir

when 6 = 2.35, H = 0.123, and H r = 0.027 meters.

Prob. 72d. Compute the discharge over a dam, like Fig.

686, when the side slopes are i on 2, the length of the crest

4.25 meters, and the head on the crest 1.07 meters.
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CHAPTER VII

FLOW OF WATER THROUGH TUBES

ART. 73. Loss OF ENERGY OR HEAD

A tube is a short pipe which may be attached to an
orifice or be used for connecting two vessels. The most
common form is a cylinder of uniform cross-section, but

conical forms are also used and in some cases a tube is

made of cylinders with different diameters. The laws

of flow through tubes are important as a starting point
for the theory of flow through pipes, for the discharge
from nozzles, and for the discussion of many practical

hydraulic problems. The theorem of Art. 32, that pressure-

head plus velocity-head is a constant for a given section

of a tube, is only true when there are no losses due to fric-

tion and impact. As a matter of fact such losses always
exist and must be regarded in practical computations.

Energy in a tube filled with moving water exists in

two forms, in potential energy of pressure and in kinetic,

energy of motion. Thus in the horizontal tube of Fig.

73a let two piezometers (Art.

37) be inserted at the sections

a
L and a2 where the velocities

are v^ and v2 and it is found

that the water rises to the

heights h and h2 above the

middle of the tube. Let W
be the weight of water that

FlG- 73a
passes each section per second.

Then in the first section the pressure energy is Wh^ and
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the kinetic energy is W.v
1

2

/2g, so that the total energy
of the water passing that section in one second is

In the same manner the total energy of the water passing
the second section in one second is

Wh2 + VV.v2

2

/2g

but this is less than the former because some energy has

been expended in friction and impact. Let Wh f be the

amount of energy thus lost; then equating this to the

difference of the energies in the two sections, the W
cancels out and

*'-*.-*+:H (73) >

The quantity h' is called the lost head, and the equation
shows that it equals the difference of the pressure-heads

plus the difference of the velocity-heads.

In hydraulics the terms energy and head are often

used as equivalent, although really energy is proportional
to head. In the general case, the lost head is not a loss

of pressure-head only, but a loss of both pressure-head and

velocity-head. When, however, the two sections are of

equal area, the velocities v
l and v2 are equal, since the same

quantity of water passes each section in one second;
then the lost head h r

is h
l

h2 or the loss occurs in pressure-
head only. Here the loss is mainly due to the roughness
of the interior surface of the tube or pipe. It should be

noted that it is only necessary to measure the difference

h
l

h2 and this can be done by the methods of Art. 37.

Formula (73) t is applicable to all horizontal tubes

and pipes, and with a slight modification it is also ap-

plicable to inclined ones, as will be shown in Art. 82.

It also applies to a flow from a standard orifice, or to

the flow from an orifice to which a tube is attached. Thus
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for the large vessel of Fig. 736 let the sections be taken

through the vessel and through the stream as it leaves

the tube. Then h
i =h, and since there is no pressure

outside the tube h2
= o; also v

1
= o and v2

= v
;

then

h' =h v 2

/2g. For the case in Fig. 73c, where the stream

approaches with the velocity v
lt the formula becomes

h' = h
1 + (v l

2 v 2

)/2g. In both cases, if h' be made zero,

these equations reduce to those established in the chapter

FIG. 736 FIG. 73c

on theoretical hydraulics, where losses of energy were not

considered ;
thus for the second case the theoretic effective

head h is equal to h
1 + v

l

2

/2g.

In order to use (73) t
for numerical computations

three quantities must be known, the difference h^ h^
and the velocities v

1 and v2 . As a direct measurement

of the velocities is usually impracticable, these are generally

computed from the measured discharge q and the areas

aj and a2 of the cross-sections
;

thus v
v
=
q/a^ and v2

=

q/a2 . For example, let the cross-section be circular,

having diameters of 18 and 6 inches, and let the discharge

be 4.7 cubic feet per second; then from Table 51 the

areas are 1.767 and 0.196 square feet, and the velocities

are 2.66 and 23.94 feet per second. If the difference

of the pressure-heads is 8.85 feet the lost head is

h' = 8.85+0.01555(2.66
2 -

23. 94
2

) =0.05 feet
'

The general formula (73) t may be expressed in terms of

the areas of the sections and one of the velocities. Since

a
l
v

1
=a2v2 ,

it may be written

(73) *
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(73).

which are often more convenient forms for numerical

computations.

Prob. 73a. When no energy is lost between the sections

show that the velocity v2 is V2g(h1
h2 ) + v

l

2
.

Prob. 736. In Fig. 73a let the areas a
x
and a2 be i.o and 0.5

square feet, h
1

h2
=

o.6<)'j feet, and ^ = 3.5 feet per second.

Show that the lost head is 0.126 feet.

ART. 74. Loss DUE TO EXPANSION OF SECTION

When a tube or pipe is filled with flowing water a

loss of head is found to occur when the section is en-

larged so that the velocity is diminished. This case is

shown in Fig. 74a, where v^ and v2 are the velocities in the

smaller and larger sections and

hi and h 2 the corresponding

pressure-heads. The interior

surface may be very smooth,

so that friction has but little

influence, and yet there will

usually be more or less loss

due to the fact that the ve-

locity v
l

is changed to the

smaller value v2 . Formula (73)!
FIG. 74o

is here directly applicable and gives the loss of head.

It is seen that /i
t

/2 2 must be negative for this case and

that its numerical value will be less than that of the

difference of the velocity-heads. The general formula

(73) ! gives the loss of head due not only to expansion
of section, but to all resistances between any two sections

of a horizontal tube or pipe.

When there is a sudden enlargement of section, as

in Fig. 746, energy is lost in impact. In the section AB
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the pressure-head is h^ and the velocity-head is v^/2g, while

in the section CD the pressure-head has the larger value h2

and the velocity-head has the

smaller value vS/2g. At the

section MN, near the place of

sudden expansion, the pressure-
head is also h

lt since the velocity
v

l
is maintained for a short

distance after leaving the small

section, its direction, however,

being changed so as to form

whirls and foam. In this region
the impact occurs, the velocity

v
1 being finally decreased to vv Let a, be the area of the

sections MN and CD, and w the weight of a cubic unit of

water. Then by (15) the hydrostatic pressure normal to

the section CD is iva
2
h

2 ,
and that normal to the section

MN is wajt^ The difference of these pressures is the force

which causes the velocity v
l
to decrease to v

2 ,
and by Art.

29 this force is equal to W^u^ v^/g, where W is the weight

of water passing the section CD in one second. Hence

D

FIG. 746

g

and, since W equals wa2v2 ,
this equation becomes

(74),

Inserting this value of h^h^ in (73),, it reduces to

which is the loss of head due to sudden expansion of sec-

tion, or rather due to the sudden diminution of velocity

caused by that expansion.

If the expansion of section be made gradually and

with smooth curves, the velocity v
l
will decrease without
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whirl and foam, so that no loss in impact occurs. In this

case the kinetic energy w.v l

2

/2g is changed into pressure

energy, as the velocity v^ decreases to v2 . There is, how-

ever, no distinct line of demarkation between sudden and

gradual expansion, so that in many practical cases it

is necessary to make measurements of the discharge and
of the head h^ h^ in order to compute the lost head hr

from (73)^ which is a formula applicable to all cases.

Sudden enlargement of section should always be
avoided in tubes and pipes owing to the loss of head that

it causes, which may often be very great. For example,
let there be no pressure-head in the section a^ and let

Vi be due to a head h so that v
l =\/2gh ;

let the area a2

be four times that of a
t so that v2 is one-fourth of vlt The

loss of head due to the sudden expansion then is

so that more than one-half of the energy of the water
in a

1
is lost in impact, having been changed into heat.

In the section a2 the effective head is &h, of which -fak

is velocity-head and TV* is pressure-head. %

Formula (74) ^ may be expressed in terms of the areas

of the sections and one of the velocities, since a
l
v

l
= a2v2 .

The value of h f
takes the two forms w

}

/ 2g
\

and these show that no loss of head occurs when a
i
=a2 .

Prob. 74a. What part of the energy of the water is lost

wlien a
2

is ten times a, ?

Prob. 746. In a horizontal tube like Fig. 74a the diameters
are 6 inches and 12 inches, and the heights of the pressure-
columns or piezometers are 12.16 feet and 12.96 feet above
the same bench-mark. Find the loss of head between the two
sections' when the discharge is 1.57 cubic feet per second, and
also when it is 4.71 cubic feet per second.
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ART. 75. Loss DUE TO CONTRACTION OF SECTION

When a sudden contraction of section in the direction

of the flow occurs, as in Fig. 75, the water suffers a con-

traction similar to that in the standard orifice, and hence

in its expansion to fill the second

section a loss of head results. Let

v^ be the velocity in the larger

section and v that in the smaller,

while vf
is the velocity in the con-

tracted section of the flowing stream
;

and let a
lt a, and a' be the corre-

sponding areas of the cross-sections.

From the formula (74) 2 the loss

of head due to the expansion of
FIG. 75

section from a! to a is

\2^2 /j
\2 V 3

= -7- i I (75)j
2g V I 2g

in which c
f

is the coefficient of contraction of the stream

or the ratio of a' to a (Art. 44).

The value of c
r

depends upon the ratio between the

areas a and a
lt

When a is small compared with a
lt the

value of c' may be taken at 0.62 as for orifices (Art. 44).

When a is equal to a
A there is no contraction or expansion

of the stream and c
f
is unity. Let d and d^ be the diam-

eters corresponding to the areas a and a
lf and let r be

the ratio of d to d
lt

Then experiments seem to indicate

that an expression of the form

n
c' =m + -

i.i r

gives the law of variation of c' with r. Placing c
f =0.62

and r = o gives one equation between m and n\ placing

c' = 1.00 and r = i gives another equation; and the solution

of these furnishes the values of m and n. Thus is found

0.0418
'=0.582

i.i r
(75),
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from which approximate values of c
f can be computed;

for r = o.o 0.4 0.6 0.7 0.8 0.9 0-95 i.o

'=0.62 0.64 0.67 0.69 0.72 0.79 0.86 i.oo

and from these intermediate values may often be taken

without the necessity of using the formula.

For a case of gradual contraction of section, such as

shown in Fig. 73a, the loss of head is less than that given

by formula (74) v and it can only be determined from

three measured quantities by the help of the general

formulas of Art. 73. If the change of section be made
so that the stream has no subsequent enlargement, loss

of head is avoided, for, as the above discussions show,
it is the loss in velocity due to sudden expansion which

causes the loss of head.

The loss due to sudden contraction of a tube or pipe
is often much smaller than that due to sudden expansion.
For instance, if the diameter of the large section be three

times that of the smaller, and the velocity in the large

section be 2 feet per second, the loss of head when the

flow passes from the small to the large section is by Art. 74

hf

=0.01555(18 2)
2

=4.o feet

But if the flow occurs in the opposite direction the ratio r

is J, the coefficient c' is about 0.64, and the loss of head is

/ j \ 2

&'=o.01555! 7 i) 1 8 2 = 1.6 feet

When, however, the ratio r is higher than 0.77, the loss

due to sudden contraction is greater than that due to

sudden expansion. Thus, if the diameter of the small

section be nine-tenths that of the large one and the ve-

locity in the large section be 2 feet per second, the loss of

head when the flow passes from the small to the large

section is

/ T \2
hr = o.oi^"d 5 i) 2 2 = 0.0034 feet

).OI /
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But if the flow occurs in the opposite direction the ratio

r is 0.9, the coefficient c' is 0.79, and the loss of head is

/i V
h' = o.01555! 1) 2.47

2= o.oo66 feet

As formula (75) 2 is an empirical one the results derived

from it are to be regarded as approximate.

Prob. 75a. Show that the loss due to sudden contraction

is the same as that due to sudden expansion when the ratio

r is equal to 0.77.

Prob. 756. Compute the loss of head when a pipe which dis-

charges 1.57 cubic feet per second suddenly diminishes in section

from 12 to 6 inches in diameter.

ART. 76. THE STANDARD SHORT TUBE

An adjutage is a tube inserted into an orifice, and the

short-tube adjutage, consisting of a cylinder whose length
is about three times its diameter, is the most common
form. For convenience it will be called the standard

short tube, because its theory and coefficients form a

starting point with which all other adjutages may be

compared. This short tube is of little value for the

measurement of water, since the coefficients for standard

orifices are much more definitely known. The discussion

here given is for the case where the inner edge is a sharp,

definite corner like that of the standard orifice (Art. 43).

If the tube be only two diameters in length the stream

passes through without

touching it, as in the

first diagram of Fig.

76
>
and the discharge

is the same as from the

orifice. If it be length-

ened sufficiently the stream expands and fills the tube, as in

the second diagram, and the discharge is much increased. By
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observations on glass tubes it is seen that the stream

usually contracts after leaving the inner end of the tube

and then expands. This contraction may be apparently

destroyed by agitating the water or by striking the tube,

and the entire tube is then filled, yet if a hole be bored

in the tube near its inner end water does not flow out,

but air enters, showing that a negative pressure exists.

An estimate of the velocity and discharge from this

short-tube adjutage may be made as follows: Let h be

the head on the inner end of the tube and v the velocity

of the outflowing water. The head h equals the velocity-

head v 2

/2g plus all the losses of head. At the inner edge
a loss of o.o4V

2

/2g occurs in entering the tube, as in the

standard orifice (Art. 56), and then there is a loss of

(v' v)
2

/2g when the contracted stream suddenly expands
so that its velocity v' is reduced to v (Art. 74). If a'

and a be the areas of these two sections, their ratio a''/a

is the coefficient of contraction c''. Then

V 2 /I \ 2 V 2 V 2

h = 0.04 -f ( -7 i I
142g^V / 2g 2g

Now, taking for c
r

its mean value 0.62, this equation
reduces to v = o.%4\/2gh, or the coefficient of velocity

of the issuing jet is 0.84. Since the cross-section of the

stream at the outer end of the tube is the same as that

of the tube, the coefficient of contraction for that end is

unity, and hence (Art. 46) the coefficient of discharge
is also 0.84.

Experiments indicate, however, that this coefficient

is too large, and this is to be expected, since the above

investigation does not include the loss due to friction

along the sides of the tube after the stream has expanded.
From the experiments of Venturi and Bossut it appears
that a mean value is

Coefficient of discharge = 0.82
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This coefficient, however, ranges from 0.83 for low heads

to 0.79 for high heads. It is greater for large tubes than

for small ones, its law of variation being probably the same
as for orifices (Art. 47), but sufficient experiments have
not been made to state definite values in the form of a

table.

A standard orifice gives on the average about 61 per-

cent of the theoretic discharge, but by the addition of a

tube this may be increased to 82 percent. The velocity-

head of the jet from the tube is, however, much less than

that from the orifice. For, let v be the velocity and h
the head, then (Art. 45) for the standard orifice

or

and similarly for the standard tube

or

Accordingly the velocity-head of the stream from the

standard orifice is 96 per-
cent of the theoretic ve-

locity-head, and that of

the stream from the stand-

ard tube is only 67 per-
Cent. Or if jets be directed

vertically upward from a

standard orifice and tube,

as in Fig. 76c, that from

the former rises to the
FlG - 76c

height 0.96/2, while that

from the latter rises to the height 0.67/2, where h is the

head from the level of water AB in the reservoir to the

point of- exit.

The energy lost in the stream from the standard orifice

is hence 4 percent of the theoretic energy, but in that

from the standard tube 33 percent is lost. In reality

energy is never lost, but is merely transformed into other
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forms of energy. In the tube the one-third of the total

energy which has been called lost is only lost because it

cannot be utilized as work; it is, in fact, transformed

into heat, which raises the temperature of the water.

The above explanation shows that most of this loss is

due to the impact resulting from the sudden expansion
of the stream.

The loss of head in the flow from the short tube is

large, but not so large as might be expected from theoretical

considerations based on the known coefficients for orifices.

If the tube has a length of only two diameters the water

does not touch its inner surface, and the flow occurs as

from a standard orifice. The velocity in the plane of

the inner end is then 61 percent of the theoretic velocity,

since the mean coefficient of discharge is 0.6 1. -Now when

the tube is sufficiently increased in length its outer end

will be filled, and if the contraction still exists, it might
be inferred that the coefficient for that end would be

also 0.6 1
;

this would give a velocity-head of (0.6 i)
2
/2 or

0.37/2, so that the loss of head would be 0.63/2. Actually,

however, the coefficient is found to be 0.82 and the loss

of head only 0.33/2. It hence appears that further ex-

planation is needed to account for the increased discharge

and energy.

In the first place, a loss of about 0.04/2 occurs at the

inner end of the tube in the same manner as in the stand-

ard orifice, and only the head 0.96/2 is then available for

the subsequent phenomena. If the coefficient c
f

for the

contracted section have the value 0.62, the velocity in

that section is

, 0.82 / r / rV = -7~V 2gk = 1.32V 2gk

and the velocity-head for that section is
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and consequently the pressure-head in that section is

0.96/2 1.75^ = o.yg/i

There exists therefore a negative pressure or partial
vacuum near the inner end of the tube which is sufficient

to lift a column of water to a height
of about three-fourths the head.

This conclusion has been confirmed

by experiment for low heads, and
was in fact first discovered ex-

perimentally by Venturi. For high
heads it is not valid, since in no

event can atmospheric pressure raise

a column of water higher than

about 34 feet (Art. 5) ; probably
under high heads the coefficient

of contraction of the stream in

the tube becomes much greater than 0.62.

The cause of the increased discharge of the tube over

the orifice is hence a partial vacuum, which causes a portion

of the atmospheric head of 34 feet to be added to the head

h, so that the flow at the contracted section occurs as if

under the head h + h^. The
'

occurrence of this partial vac-

uum is attributed to the friction of the water on the air.

When the flow begins, the stream is surrounded by air

of the normal atmospheric pressure which is imprisoned
as the stream fills the tube. The friction of the moving
water carries some of this air out with it, thus rarefying

the remaining air. This rarefaction, or negative press-

ure, is followed by an increased velocity of flow, and the

process continues until the air around the contracted

section is so rarefied that no more is removed, and the

flow then remains permanent, giving the results ascertained

by experiment. The partial vacuum causes neither a

gain nor loss of head, for although it increases the velocity-

head at the contracted section to 1.75/1, there must be
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expended 0.79/2 in order to overcome the atmospheric

pressure at the outer end of the tube. The experiments
of Buff have proved that in an almost complete vacuum
the discharge of the tube is but little greater than that

of the orifice.*

Prob. 76. If the coefficient of contraction for the contracted

section is 0.70, show that the probable coefficient of discharge
is about 0.90. Also show that," for these data, the negative

pressure-head is about o.yo/t.

ART. 77. CONICAL CONVERGING TUBES

Conical converging tubes are used when it is desired

to obtain a high efficiency in the energy of the stream

of water. At A is shown

a simple converging tube,

consisting of a frustum of f^
a cone, and at B is a

similar frustum provided ~~.'\
A

with a cylindrical tip. The

proportions of these con-

verging tubes, or mouthpieces, vary somewhat in practice,

but the cylindrical tip when employed is of a length equal
to about 2\ times its inner diameter, while the conical

part is eight or ten times the length of that diameter,

the angle at the vertex of the cone being between 10 and

20 degrees.

The stream from a conical converging tube like A
suffers a contraction at some distance beyond the end.

The coefficient of discharge is higher than that of the

standard tube, being generally between 0.85 and 0.95,

while the coefficient of velocity is higher still. Experi-

ments made by d'Aubuisson and Castel on conical con-

verging tubes 0.04 meters long and 0.0155 meters in

diameter at the small end, under a head of 3 meters, ftir-

* Annalen der Physik und Chemik, 1839, vol. 46, p. 242.
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nish the coefficients of discharge and velocity given in

Table 31. The former of these was determined by measur-

ing the actual discharge (Art. 46), and the latter by the

range of the jet (Art. 45). The coefficient of contraction

as computed from these is given in the last column, and

this applies to the jet at the smallest section, some dis-

tance beyond the end of the tube. While these values

show that the greatest discharge occurred for an angle

of about 13^ degrees, they also indicate that the coefficient

of velocity increases with the convergence of the cone,

becoming about equal to that of a standard orifice for

the last value. Hence the table seems to teach that a

conical frustum does not usually give as high a velocity as

a standard orifice.

Under very high heads, over 300 feet, Hamilton Smith

found the actual discharge to agree closely with the theo-

retical, or the coefficient of discharge was nearly i.o, and

in some case slightly greater.* His tubes were about

0.9 feet long, o.i feet in diameter at the small end and

0.35 feet at the large end, the angle of convergence being

17 degrees. As these figures indicate a contraction of

the jet beyond the end, it cannot be supposed that the

coefficient of discharge in any case was really as high as

his experiments indicate. Under these high heads the

cylindrical tip applied to the end of a tube produced no

effect on the discharge, the jet passing through without

touching its surface.

Prob. 77. If the coefficient of discharge is 0.98 and the

coefficient of velocity 0.995, compute the coefficient of con-

traction.

ART. 78. INWARD PROJECTING TUBES

Inward projecting tubes, as a rule, give a less dis-

charge than those whose ends are flush with the sides

of the reservoir, due to the greater convergence of

* Smith's Hydraulics, p. 286.
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the lines of direction of the filaments of water. At A
and B are shown inward projecting tubes so short that

the water merely touches their inner edges, and hence

they may more properly be called orifices. Experiment
shows that the case at A, where the sides of the tube

B=SW^ =^^=_=^ =l&m=

FIG. 78

are normal to the side of the reservoir, gives the minimum
coefficient of discharge c = 0.5, while for B the value lies

between 0.5 and that for the standard orifice at C. The

inward projecting cylindrical tube at D has been found to

give a discharge of about 72 percent of the theoretic dis-

charge, while the standard tube (Art. 76) gives 82 percent.

For the tubes E and F the coefficients depend upon the

amount of inward projection, and they are much larger

than 0.72 for both cases, when computed for the area of the

smaller end.

It is usually more convenient to allow a water-main to

project inward into the reservoir than to arrange it with

its mouth flush to a vertical side. The case D, in Fig.

78, is therefore of practical importance in considering the

entrance of water into the main. As the end of such a

main has a flange, forming a partial bell-sha'ped mouth,
the value of c is probably higher than 0.72. The usual

value taken is 0.82, or the same as for the standard tube.

Practically, as will be seen later, it makes little difference

which of these is used, as the velocity in a water-main

is slow and the resistance at the mouth is very small com-

pared with the frictional resistances along its length.

Prob. 78. Find the coefficient of discharge for a tube whose
diameter is one inch when the flow under a head of 9 feet is

22.1 cubic feet in 3 minutes and 30 seconds.
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FIG. 79

ART. 79. DIVERGING AND COMPOUND TUBES

In Fig. 79 is shown a diverging conical tube, BC, and
two compound tubes. The compound tube ABC consists

of two cones, the converging one, AB, being much shorter

than the diverging one, BC,
so that the shape roughly

approximates to the form of

the contracted jet which is-

sues from an orifice in a

thin plate. In the tube AE
the curved converging part
AB closely imitates the con-

tracted jet, and BB is a

short cylinder in which all

the filaments of the stream

are supposed to move in lines

parallel to the axis of the tube, the remaining part being
a frustum of a cone. The converging part of a com-

pound tube is often called a mouthpiece and the diverging

part an adjutage.

Many experiments with these tubes have shown the

interesting fact that the discharge and the velocity through
the smallest section, B, are greater than those due to

the head; or, in other words, that the coefficients of dis-

charge and velocity for this section are greater than unity.

One of the first to notice this was Bernoulli in 1738, who
found c = i.o& for a diverging tube. Venturi in 1791

experimented on such tubes, and showed that the angle

of the diverging part, as also its length, greatly influenced

the discharge. He concluded that c would have a maxi-

mum value of 1.46 when the length of the diverging part
was 9 times its least diameter, the angle at the vertex of the

cone being 5 06'. Eytelwein found c = i.i8 fora diverg-

ing tube like BC in Fig. 79, but when it was used as an
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adjutage to a mouthpiece AB, thus forming a compound
tube ABC, he found ^ = 1.55.

The experiments of Francis in 1854 on a compound
tube like ABCDE are very interesting.* The curve of

the converging part AB was a cycloid, BB was a cylinder,

and the diameters at A, B, C, D, and E were 1.4, 0.102,

0.145, - 2 34> and -3 21 fe^ The piece BB was o.-i feet

long, and the others each i foot; these were made to

screw together, so that experiments could be made on

different lengths. A sixth piece, EF, not shown in the

figure, was also used, which was a prolongation of the

diverging cone, its largest diameter being 0.4085 feet.

The tubes were of cast iron, and quite smooth. The

flow was measured with the tubes submerged, and the

effective head varied from about o.oi to 1.5 feet. Ex-

cluding heads less than o.i feet, the following shows the

range in value of the coefficients of discharge:
c for Section BB. c for Outer End.

for tube AB, 0.80 to 0.94 0.80 to 0.94

for tube AC, 1.43 to 1.59 0.70 to 0.78

for tube AD, 1.98 to 2.16 0.37 to 0.41

for tube AE, 2.08 to 2.43 0.21 to 0.24

for tube AE, 2.05 to 2.42 0.13 to 0.15

The maximum discharge was thus found to occur with

the tube AE, and to be 2.43 times the theoretic discharge

that would be expected for the small section BB. In

general the coefficients increased with the heads, the value

2.08 being for a head of 0.13 feet and 2.43 for a head of

1.36 feet; for 1.39 feet, however, c was found to be 2.26.

These coefficients of discharge are the same as the

coefficients of velocity, since the tube was entirely 'filled.

Thus, when the coefficient for the section BB was 2.43

the velocity was v = 2.^\/2gh, and the velocity-head was

^ 2

/2g = (2. 43)
2
/* = 5.9o/*

* Lowell Hydraulic Experiments, 4th Edition, pp. 209-232.
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Therefore the flow through the section BB was that due

to a head 5.9 times greater than, the actual head of 1.36

feet; or, in other words, the energy of the water flowing
in BB was 5.9 times the theoretic energy. Here, ap-

parently, is a striking contradiction of the fundamental

law of the conservation of energy. The explanation of

this apparent contradiction is the same as that given
in Art. 76 for the short tube adjutage. The increased

velocity and discharge is due to the occurrence of a par-
tial vacuum near the inner end of the adjutage BC. The

pressure of the atmosphere on the water in the reservoir

thus increases the hydrostatic pressure due to the head,

and the increased flow results. The energy at the smallest

section is accordingly higher than the theoretic energy.

but the excess of this above that due to the head must
be expended in overcoming the atmospheric pressure

on the outer end of the tube, so that in no case does the

available exceed the theoretic energy. No contradiction

of the law of conservation therefore exists.

To render this explanation more definite, let the ex-

treme case be considered where a complete vacuum exists

near the inner end of the adjutage, if that were possible,

as it perhaps might be with a tube of a certain form.

Let h be the head of water in feet on the center of the

smallest section. The mean atmospheric pressure on the

water in the reservoir is equivalent to a head of 34 feet

(Art. 5). Hence the total head which causes the discharge

into the vacuum is / + 34 and the velocity of flow is nearly

Neglecting the resistances, which are very

slight if the entrance be curved, the coefficients of velocity

and discharge can now be found; thus:

for h = 100,

iorh= 10,

35
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The coefficient hence increases as the head decreases.

That this is not the case in the above experiments is

undoubtedly due to the fact that the vacuum was only

partial, and that the degree of rarefaction varied with

the velocity. The cause of the vacuum, in fact, is to be

attributed to the velocity of the stream, which by fric-

tion removes a part of the air from the inner end of the

adjutage.

It follows from this explanation that the phenomena
of increased discharge from a compound tube could not

be produced in the absence of air. The experiment has

been tried on a small scale under the receiver of an air-

pump, and it was found that the actual flow through
the narrow section diminished the more complete the rare-

faction. It also follows that it is useless to state any
value as representing, even approximately, the coefficient

of discharge for such tubes.

Prob. 79. Compute the pressure per square inch in the sec-

tion BB of Francis' tube when /*= 1.36 feet and =
2.43. What

is the height of the column of water that can be lifted by a small

pipe inserted at

ART. 80. NOZZLES AND JETS

For fire service two forms of nozzles are in use. The
smooth nozzle is essentially a conical tube like A in Fig.

77, the larger end being attached to a hose, but it is often

provided with a cylindrical tip and sometimes the larger

end is curved as shown in Fig. 80a. The ring nozzle is

FIG. 80a FIG. 806

a similar tube, but its end is contracted so that the water

issues through an orifice smaller than the end of the tube.

The experiments of Freeman show that the mean coefficient
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of discharge is about 0.97 for the smooth nozzle and about

0.74 for the ring nozzle.* The smooth nozzle is used

much more than the ring nozzle.

Let d be the diameter of the pipe or hose and D the

diameter of the outlet at the end of the nozzle, and let

v and V be the corresponding velocities. Let h
1
be the

pressure-head at the entrance to the nozzle; then the

effective head at the entrance to the nozzle is

and the velocity at the end of the nozzle is V = c
1\/2gH r

where c
1

is the coefficient of velocity. The reasoning of

Art. 51 applies here, if the ratio D 2

/d
2 be used in place

of a/A, and h
t
in place of h, and hence

(80) '

is the velocity of flow from the nozzle, c being the co-

efficient of discharge. The discharge per second is, from

formula (51) 2

(80) -

The effective head at the nozzle entrance is

rr .j_y!_~

and the velocity-head of the issuing jet is

which gives the height to which the jet would rise if there

were no atmospheric resistances. In these formulas D/d
* Transactions American Society of Civil Engineers, 1889, vol. 21, pp.

303-482.
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is an abstract number and to find its value D and d may
be taken in any unit of measure.

When hi and D are in feet, g is to be taken as 32.16

feet per second per second. Then (80) t gives V in feet

per second and (80) 2 gives q in cubic feet per second.

When the gage at the nozzle entrance gives the pressure

pi in pounds per square inch, hi in feet is found from

2.$o4pi. It is a common practice in figuring on fire-

streams to compute the discharge in gallons per minute.

For this case, if D be taken in inches,

gives the discharge in gallons per minute.

For smooth nozzles the value of the coefficient of

velocity c^ is the same as that of the coefficient of dis-

charge c, since the jet issues without contraction. The

experiments of Freeman furnish the following mean
values of the coefficient of discharge for smooth cone

nozzles of different diameters under pressure-heads rang-

ing from 45 to 180 feet:

Diameter in inches= f | i i| i\ ij

Coefficient c =0.983 0.982 0.972 0.976 0.971 0.959

These values were determined by measuring the pressure

pi and the discharge q, from which c can be computed

by the last formula. For example, a nozzle having a

diameter of i.ooi inches at the end and 2.50 inches at

the base discharged 208.5 gallons per minute under a

pressure of 50 pounds per square inch at the entrance.

Here Z> = i.ooi, ^ = 2.5,^=50, and 9 = 208. 5, and in-

serting these in the formula and solving for c, there is

found c = 0.985.

In ring nozzles the ring which contracts the entrance

is usually only TV or \ inch in width. The effect of this

is to diminish the discharge, but the stream is sometimes
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thrown to a slightly greater height. On the whole, ring

nozzles seem to have no advantage over smooth ones

for fire purposes. As the stream contracts after leaving

the nozzle, the coefficient of velocity c
l is greater than

the coefficient of discharge c. The value of c being about

0.74, that of c
l

is probably a little larger than 0.97. In

using (80) t
for ring nozzles these values of c

v
and c should

be inserted, but in using (80) 2 only the value of c is needed.

According to Freeman's experiments, the discharge of

a f-inch ring nozzle is the same as that of a f-inch smooth

nozzle, while the discharge of a ij-inch ring nozzle is

about 20 percent greater than that of a i-inch smooth

nozzle. The heights of vertical jets from a ij-inch ring

nozzle are about the same as those from a i-inch smooth

nozzle, while the jets from a if-inch ring nozzle are slightly

less in height than those from a ij-inch smooth nozzle.

The vertical height of a jet from a nozzle is very much

less, on account of the resistance of the air, than the value

deduced above for V 2

/2g. For instance, let a smooth

nozzle one inch in diameter attached to a 2. 5 -inch hose

have = 0.97 and the pressure-head ^ = 230 feet; then

the computation gives the velocity-head V 2

/2g as 221

feet, whereas the average of the highest drops in still air

will be about 152 feet high and the main body of water

will be several feet lower. Table 32, compiled from the

results of Freeman's experiments, shows for three different

smooth nozzles the height of vertical jets, column A
giving the heights reached by the average of the highest

drops in still air, and column B the maximum limits of

height as a good effective fire-stream with moderate

wind. The discharges given depend only on the pressure,

and are the same for horizontal as for vertical jets.

The maximum horizontal distance to which a jet can

be thrown is also a measure of the efficiency of a nozzle.

The following, taken from Freeman's tables, gives the



ART. 80 NOZZLES AND JETS 193

horizontal distances at the level of the nozzle reached by
the average of the extreme drops in still air:

Pressure at nozzle entrance, 20 40 60 80 100 pounds.

From f-inch smooth nozzle, 72 112 136 153 167 feet.

From i -inch smooth nozzle, 77 133 167 189 205 feet.

From i ^-inch smooth nozzle, 83 148 186 213 236 feet.

From i |-inch ring nozzle, 76 131 164 186 202 feet.

From i \-inch ring nozzle, 78 138 172 196 215 feet.

From i f-inch ring nozzle, 79 144 180 206 227 feet.

The practical horizontal distance for an effective fire-

stream, is, however, only about one-half of these figures.

The ball nozzle, often used for sprinkling, has a cup at

the end of the nozzle and within the cup a ball, so that the

jet issuing from the tip of the nozzle is deflected sidewise

in all directions. This apparatus exhibits a striking illus-

tration of the principle of negative pressure, for the ball

is not driven away from the tip, but is held close to it by
the atmospheric pressure, the negative pressure-head being
caused by the high velocity of the sheet of water around the

ball. The cup is usually so arranged that the ball cannot

be driven out of it, for this might occur under the first

impact of the jet, but when the flow has become steady
there is no tendency of this kind, and the ball is seen slowly

revolving without touching any part of the cup.

Prob. 80a. Find from Table 32 the heights of vertical jets

for a f-inch and a i|-inch nozzle, and the discharges in gallons

per minute, when the indicated pressure at the entrance is 75

pounds per square inch.

Prob. 806. A nozzle if inches in diameter attached to a

play-pipe i\ inches in diameter discharges 310.6 gallons per
minute under an indicated pressure of 30 pounds per square
inch. Find the velocity of the jet and the coefficient c.

Prob. 80c. Insert a pin through the center of a piece of

cardboard about 2 inches in diameter. Put the pin into one end

of a straw tube and blow hard into the other end. Explain the

phenomena which are observed.
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ART. 81. LOST HEAD IN LONG TUBES

When water issues from an orifice, tube, pipe, or nozzle

with the velocity v, its velocity-head is v z

/2g and it is

only this part of the total effective head h that can be

utilized for the production of work. The lost head then is

Now if c be the coefficient of velocity for the section

where_the discharge occurs, the velocity v is given by
c
l\/2gh t

and hence

is a general expression for the lost head in terms of the

velocity-head. For the standard orifice (Art. 45), the

mean value of c is 0.98 and for an orifice perfectly smooth

c
l
is i. oo, hence from

are the losses of head for these two cases.

For the standard short cylindrical tube (Art. 76)

the value of c
1 is about 0.82, and the loss of head is

i \ v 2 v 2

n 9 * I ^ *-rV
V
0.82

2

/ 2g
Yy
2g

For the inward projecting cylindrical tube (Art. 78) the

value of c
l is about 0.72, and hence the loss of head is

Accordingly the loss of head for the inward projecting
tube is nearly equal to the velocity-head of the issuing

stream, while that from the standard tube is about one-

half the velocity-head.

When a tube is longer than three diameters it be-

comes a long tube or a pipe. Here the loss of head is
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much greater because the water meets with frictional

resistances along the interior surface, and the longer the

pipe the greater is this resistance and the slower is the

velocity. The formula (81)! gives the total loss of head

for this case also. For example, the experiments of

Eytelwein and others have given values of c
l for the

cases below, and from these the corresponding values of

the total lost head have been computed. If / denotes the

length of the pipe and d its diameter, the end connected

with the reservoir being arranged like the standard tube;

then
<:

i
=:0 -77 h' =o.6c)V

2

/2g

^ = 0.67 h' = i.23V
2

/2g

^=0.60 h' = i.'jjv
2

/2g

Now in each of these cases the amount o.4gv
2

/2g is lost

in entering the tube and in impact, as in the standard

short tube. Hence the loss of head in friction in the

remaining length of the pipe is h" = h' o.^v
2

/2g, or

for/ = i2d h" = 0.20V 2

/2g
h" =

which show that the frictional losses increase with the

length of the pipe. The length of the pipe in which

the entrance losses occur is about $d\ hence if $d be

subtracted from each of the above lengths, the lengths

in which the friction loss occurs are gd, 33^, and 570?,

and it is seen that the above losses of head in friction

are closely proportional to these lengths. By these and

many other experiments it has been shown that the loss of

head in friction varies directly with the length of the pipe.

The lost head has here been expressed in terms of

the velocity-head, but it can also be expressed in terms

of the total head h that causes the flow. For, substituting

in (81)! the value of v given by c
1\/2gh, it reduces to
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Thus, for the standard short tube h' =0.33/2; for the in-

ward projecting tube kf = 0.48h, and for the above tube

or pipe whose length is 60 diameters h' =0.64/2.

Prob. 81a. If a standard orifice and a standard tube be of

the same diameter, show that the former will deliver about
6 percent more power than the latter.

ART. 82. INCLINED TUBES AND PIPES

The tubes discussed in this chapter have generally
been regarded as horizontal, but, if this is not the case,

the formulas for velocity and discharge may be applied

to them by measuring the head from the water level in

the reservoir down to the center of the head of the pipe.

Thus, for the nozzles of Art. 80, it is understood that the

tip is at the same level as the gage which registers the

pressure p l
or the pressure-head h

1 ;
if the tip be lower than

the gage by the vertical distance d
lt the true pressure-

head to be used in the formula is /^H-c^; if it be higher

the true pressure-head is k
v d^ Then the velocity-head

v 2

/2g is to be measured upward from the tip of the nozzle.

The theorem of Bernouilli, given in Art. 32, is true

for inclined as well as for horizontal pipes under uniform

flow, but it will be convenient to express it in a slightly

different form. Let

a
x and a2 be two

sections of a pipe,

where the velocities

are ^ and v2 ,
and

the pressure - heads

are h^ and h2 ,
and

let the flow be steady
FIG. 82

so that the same

weight of water, w, passes each section in one second.

Let MN be any horizontal plane lower than the lowest
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section, as for instance the sea level, and let e
l and e2 be

the elevations of a
1 and a2 above it. With respect to

this plane the weight W at a^ has the potential energy
Wel

the pressure-energy Wh^ and the kinetic energy
VV.v1

2

/2g, or the total energy is

Similarly with respect to this plane the energy in a3 is

If no losses of energy occur between the two sections,

these expressions are equal, and hence

i + *i +^-'a
+ * +^ (82),

and accordingly the theorem may be stated as follows :

In any pipe, under steady flow without impact or friction,

the gravity-head plus the pressure-head plus the velocity-

head is a constant quantity for every section.

Now let H l
and H2 be the heights of the water levels in

the piezometer tubes above the datum plane; then e
1 +

h l
=H

1 and e2 +h2 =H2) and accordingly (82) l becomes

H
>+Tr

H>+V
-fs

(82)>

or, the piezometer elevation for a^ plus the velocity-head
is equal to the sum of the corresponding quantities for

any other section.

This theorem belongs to theoretical hydraulics, in

which frictional resistances are not considered. Under

actual conditions there is always a loss of energy or head,

so that when water flows from a
1
to a2 the first member

of the above equation is larger than the second. Let

Wh' be the loss in energy, then this is equal to the dif-
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ference of the energies in a
l and a2 with respect to the

datum plane, and

or
'

h>=Hl-H, +fg-fg (82).

that is, the lost head is equal to the difference in level

of the water surfaces in the piezometer tubes plus the

difference of the velocity-heads. If the pipe be of the

same size at the two sections, the velocities v
l and v2 are

equal when the flow is uniform, and the lost head is simply

h'-H^H, (82) 4

Piezometers or pressure gages hence furnish a very con-

venient method of determining the head lost in friction

in a pipe of uniform size. For a pipe of varying section

the velocities v^ and v2 must also be known, in order to

use (82) 3 for finding the lost head.

Prob. 82. A large Venturi water meter placed in a pipe of

57.823 square feet cross-section, had an area of 7.047 square
feet at the throat. When the discharge was 54.02 cubic feet

per second, the elevations of the water levels in the piezometers
at a

t
and a2 in Fig. 38a were 99.858 and 98.951 feet. Compute

the loss of head between the two sections.

ART. 83. VELOCITIES IN A CROSS-SECTION

Thus far the velocity has been regarded as uniform

over the cross-section of the tube or pipe. On account

of the roughness of the surface, however, the velocity

along the surface is always smaller than that near the

middle of the cross-section. There appears to be no

theoretical method of finding the law which connects the

velocity of a filament with its distance from the center of

the pipe, and yet it is probable that such a law exists.
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The mean velocity is evidently greater than the velocity
at the surface and less than the velocity at the middle,
and if the position of a filament were known whose ve-

locity is the same as the mean velocity, a Pitot tube

(Art. 41) with its tip at that position would directly
measure the mean velocity.

Let Fig. 83 be a longitudinal section of a pipe, and
let AB be laid off to represent the surface velocity v8 and
CD to represent the central velocity

v
c

. Then the velocity v at any
distance y from the axis will be an

abscissa parallel to the axis and

limited by the line AC and the

curve BD. Suppose this curve to

be a parabola whose equation is y
2

=mx, the origin being
at D and x measured toward the left. When y is equal
to the radius of the pipe r, the value of x is v

c
v8 and

hence m = r
z

/(vc
vs). The velocity v y

'

at the distance

y above the axis is v
c x, and accordingly

It thus is seen that the velocity at any distance from the

axis cannot be found unless the surface and central ve-

locities are known. The position of the filament having
the same velocity as the mean velocity v can, however,
be determined, since the mean velocity is the mean length
of the solid of revolution whose section is shown by the

broken lines. This solid consists of a cylinder having
the volume nr*v8 and a paraboloid having the volume

%nr*(vc
v8 ), and the sum of these is %xr

2
(vc + v8). Divid-

ing this by the area of the cross-section gives %(ve + v)
as the value of the mean velocity, and inserting this for

v y in the above equation there is found y = o.jir for the

ordinate of a filament whose velocity is the same as mean

velocity v. If the parabolic curve gives the true Jaw of

variation of velocity, a Pitot tube with its tip placed
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o.2()r below tne top of the pipe would measure the mean

velocity directly.

The first measurements of velocities of filaments were

made by Freeman in 1888 with the Pitot tube.* They
were on jets issuing from fire nozzles and also from a

ij-inch tube under high velocities. For smooth nozzles

the velocities were practically constant for a distance of

o.6r from the center, and then rapidly decreased, and
the ratio of the surface velocity to the central velocity
was about 0.77. For the pipe the velocities decreased

quickly near the center but more rapidly toward the

surface. The velocity curve for the nozzle lies outside

and that for the pipe lies within the parabolic curve rep-
resented by the equation (83) t .

Bazin made experiments in 1893 on jets from stand-

ard orifices, using also the Pitot tube.f He found the

velocities near the center to be smaller than others within

o.2r of the surface. Thus if vy = c\/2gh the following

are some of his values of c for a vertical circular and a

vertical square orifice, h being the head on the center.

r=+o.8 +0.6 -f-o.2 o.o 0.2 0.6 0.8

c= 0.68 0.64 0.62 0.63 0.64 0.72 0.86

c= 0.71 0.67 0.64 0.64 0.65 0.71 0.82

These are for velocities in the plane of the orifice and he

found similar variations for a section of the jet at a dis-

tance from the orifice of about one-half its diameter.

Cole, in 1897, made measurements of velocities in

pipes, I using the Pitot tube with a differential gage

(Art. 37). For pipes 4, 6, and 12 inches in diameter he

found the ratio of the mean velocity to the center velocity

to range from 0.91 to i.oi, while for a 1 6-inch pipe he

* Transactions American Society Civil Engineers, 1889, vol. 21, p. 412.

f Experiments on the Contraction of the Liquid Vein. Trautwine's

translation, New York, 1896.

J Transactions American Society Civil Engineers, 1902, vol. 47, p. 276.
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found it to range from 0.83 to 0.86. His velocity curves

show that the surface velocity was sixty percent or more
of the center velocity.

Williams, Hubbell, and Fenkell, in 1899, made numer-

ous measurements of velocities in water mains with the

Pitot tube, and arrived at the conclusions that the ratio

of the mean velocity to the central velocity was about

0.84, and that the surface velocity was about one-half

the central velocity.* These ratios agree with an ellipse

better than with a parabola. Let the curve BD in Fig.

83 be an ellipse having the semi-axes ED and BE, the

ellipse being tangent to the pipe surface at B. As before

let AB represent the surface velocity va and CD the central

velocity v
c ;

then ED is v
c

v8 and BE is the radius r.

The equation of the ellipse with respect to E as an origin is

in which x is measured toward the right and y upward.
The velocity v y at any distance y from the axis CD is

v9 + x, and accordingly

v y =v. + (ve -v.)Vi-y*/r* (83),

Now the mean velocity is the mean length of the solid

of revolution formed by the cylinder whose volume is

xr 2v8 and the semi-ellipsoid whose volume is $nr*(vc
va ).

The volume of the solid is hence Kr 2

($vc + $v8 ) and the

mean velocity is $vc + %v8 . Inserting this for v y in (83),

there is found y=o.*]$r for the position of the filament

having the same velocity as the mean velocity, while

the parabola gave y = o.jir. If v8 be one-half of v
c ,

the

mean velocity under the elliptic law is $vc + $v8 =o.&3vt

while under the parabolic law it is %ve + %vs =0.75^.

Much irregularity is observed in velocity curves plotted

from actual measurements, this being due to pulsations

* Transactions American Society Civil Engineers, 1902, vol. 47, p. 63.
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in the water and to errors of observations. The above

experiments were on pipes having diameters of 12, 16,

30, and 42 inches and under velocities ranging from 0.5

to 7 . 5 feet per second
;
and they are a very valuable addi-

tion to the knowledge of this subject. The conclusion

that Vg is one-half of v
c is, however, one that appears to

be liable to some doubt. The conclusion that the mean

velocity v is about 0.84^ appears well established, and a

Pitot tube with its tip at the center of the pipe will hence

determine a fair value of the mean velocity, several read-

ings being taken in order to eliminate errors of observation.

Prob. 83. Let vs
=

s .and vc
= 6 feet per second. Plot the

parabola from (83)! and the ellipse from (83) 2 .

ART. 84. COMPUTATIONS IN METRIC MEASURES

Nearly all the formulas of the chapter are rational

and may be used in all systems of measures. In the

metric system lengths are to be taken in meters, areas in

square meters, velocities in meters per second, discharges

in cubic meters per second, and using for the acceleration

constants the values given in Table 12.

(Art. 80) The coefficients of discharge and velocity

for smooth fire nozzles 2.0, 2.5, 3.0, and 3.5 centimeters

in diameter are 0.983, 0.972, 0.973, anô -959 respectively.

In using the formula (80) 2 the values of d and h
t should

be taken in meters, but in finding the ratio D/d the values

of D and d may be in centimeters or any other convenient

unit. The constant g being 9.80 meters per second, the

discharge q will be in cubic meters per second. When it is

desired to use the gage reading p t
in kilograms per square

centimeter and to take D in centimeters, the formula

<?=:65 -96c'jD \ I -^(d/D)
4

may be used for finding the discharge in liters per minute.
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Prob. 84a. Compute the loss of head which occurs when a

pipe, discharging 18.5 cubic meters per second, suddenly en-

larges in section from 30 to 40 centimeters.

Prob. 846. Find the coefficient of discharge for a tube 8

centimeters in diameter when the flow under a head of 4 meters

is 18.37 cubic meters in 5 minutes and 15 seconds.

Prob. 84c. Compute the discharge from a smooth nozzle

2.5 centimeters in diameter, attached to a hose 7.5 centimeters

in diameter, when the pressure at the entrance is 5.2 kilograms

per square centimeter.

Prob. 84d. For a pipe of uniform diameter the piezometer

heights in two tubes at joints one kilometer apart are 693.143
meters above sea level when there is no flow. If the loss in

friction during the flow is 0.032 meters per linear meter of pipe,

and the upper piezometer level stands at the elevation 650.043

meters, what should be the elevation of the lower piezometer
level?
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CHAPTER VIII

FLOW OF WATER THROUGH PIPES

ART. 85. FUNDAMENTAL IDEAS

Pipes made of clay were used in very early times for

conveying water. Pliny says that they were two digits

(0.73 inches) in thickness, that the joints were filled with

lime macerated in oil, and that a slope of at least one-

fourth of an inch in a hundred feet was necessary in order

to insure the free flow of water.* The Romans also used

lead pipes for conveying water from their aqueducts to

small reservoirs and from the latter to their houses. Fron-

tinus gives a list of twenty-five standard sizes of pipes,!

varying in diameter from 0.9 to 9 inches, which were

made by curving a sheet of lead about ten feet long and

soldering the longitudinal joint. The Romans had con-

fused ideas of the laws of flow in pipes, their method of

water measurement being by the area of cross-section, with

little attention to the head or pressure. They knew that

the areas of circles varied as the squares of the diameters,

and their unit of water measurement was the quinaria,

this being a pipe ij digits in diameter; then the denaria

pipe, which had a diameter of z\ digits, was supposed
to deliver 4 quinarias of water.

In modern times lead pipes have also been used for

house service, but these have now been largely superseded

by iron ones. For the mains of city water supplies cast-

iron pipes are most common, and since 1890 steel-riveted

* Natural History, book 31, chapter 31, line 5.

fHerschel, Water Supply of the City of Rome (Boston, 1899), p. 36.
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pipes have come into use for large sizes. Lap-welded

wrought-iron or steel pipes are used in some cases where

the pressure is very high, and large wooden stave pipes

are in use in the western part of the United States.

The simplest case of the flow of water through a pipe

is that where the diameter of the pipe is constant and

the discharge occurs entirely at the open end. This case

will be discussed in Arts. 86-95, and afterwards will be

considered the cases of pipes of varying diameter, a

pipe with a nozzle at the end, and pipes with branches.

Most of the principles governing the simple case apply

with slight modification to the more complex ones. Pipes

used in engineering practice range in diameter from \ inch

up to 6 feet.

The phenomena of flow for this common case are

apparently simple. The water from the reservoir, as

it enters the pipe, meets with more or less resistance de-

FIG. 85a FIG. 856

pending upon the manner of connecting, as in tubes (Art.

78). Resistances of friction and cohesion must then be

overcome along the interior surface, so that the discharge
at the end is much smaller than in the tube (Art. 81).

When the flow becomes steady, the pipe is entirely

filled throughout its length; and hence the mean velocity
at any section is the same as that at the end, since the

size is uniform. This velocity is found to decrease as

the length of the pipe increases, other things being equal,

and becomes very small for great lengths, which shows

that nearly all the head has been lost in overcoming the

resistances. The length of the pipe is measured along
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its axis, following all the curves, if there be any. The

velocity considered is the mean velocity, which is equal

to the discharge divided by the area of the cross-section

of the pipe. The actual velocities in the cross-section

are greater than this mean near the center and less than

it near the interior surface of the pipe, the law of distribu-

tion being that explained in Art. 83.

The object of the discussion of flow in pipes is to enable

the discharge which will occur under given conditions

to be determined, or to ascertain the proper size which

a pipe should have in order to deliver a given discharge.

The subject cannot, however, be developed with the

definiteness which characterizes the flow from orifices,

and weirs, partly because the condition of the interior

surface of the pipe greatly modifies the discharge, partly

because of the lack of experimental data, and partly on

account of defective theoretical knowledge regarding
the laws of flow. In orifices and weirs errors of two
or three percent may be regarded as large with careful

work
;

in pipes such errors are common, and are generally

exceeded in most practical investigations. It fortunately

happens, however, that in most cases of the design of

systems of pipes errors of five and ten percent are not

important, although they are of course to be avoided

if possible, or, if not avoided, they should occur on the

side of safety.

The head which causes the flow is the difference in

level from the surface of the water in the reservoir to

the center of the end, when the discharge occurs freely

into the air as in Fig. 85a. If h be this head, and W the

weight of water discharged per second, the theoretic

potential energy per second is Wh
;
and if v be the actual

mean velocity of discharge the kinetic energy of the dis-

charge is W.v 2

/2g. The difference between these is

the energy which has been transformed into heat in over-
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coming the resistances. Thus the total head is h, the

velocity-head of the outflowing stream is v*/2g, and the

lost head is h v*/2g. If the lower end of the pipe is

submerged, as in Fig. 856, the head h is the difference

in elevation between the two water levels.

The total loss of head in a straight pipe of uniform

size consists of two parts, as in a long tube (Art. 81).

First, there is a loss of head h' due to entrance, which is

the same as in a short cylindrical tube, and secondly

there is a loss of head h" due to the frictional resistance

of the interior surface. The loss of head at entrance

is always less than the velocity-head and in this chapter

it will be expressed by the formula

h'=m (85).
2g

in which m is 0.93 for the inward projecting pipe, 0.49

for the standard end, and o for a perfect mouthpiece,

as shown in Art. 81. When the condition of the end

is not specified, the value used for m will be 0.5, which

supposes that the arrangement is like the standard tube,

or nearly so. For short pipes, however, it may be necessary

to consider the particular condition of the end, and then

m is to be computed from

m =
(i/c 1)

2-i (85),

in which the coefficient c
l

is to be selected from the evi-

dence presented in the last chapter.

It should be noted that the loss of head at entrance

is very small for long pipes. For example, it is proved

by actual gagings that a clean cast-iron pipe 10 ooo feet

long and i foot in diameter discharges about 4^ cubic

feet per second under a head of 100 feet'. The mean velocity

then is, if q be the discharge and a the area of the cross-

section,

v = = =
15.41 feet per second,

a 0.7854
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and the probable loss of head at entrance hence is

/*'=o.5Xo.oi555X5-4i
2

=o.23 feet,

or only one-fourth of one percent of the total head. In

this case the effective velocity-head of the issuing stream

is only 0.45 feet, which shows that the total loss of head

is 99.55 feet, of which 99.32 feet are lost in friction.

Prob. 85. Under a head of 20 feet a pipe i inch in diameter

and 100 feet long discharges 15 gallons per minute. Compute
the loss of head at entrance.

ART. 86. Loss OF HEAD IN FRICTION

The loss of head due to the resisting friction of the

interior surface of a pipe is usually large, and in long pipes

it becomes very great, so that the discharge is only a

small percentage of that due to the head. Let h be the

total head on the end of the pipe where the discharge

occurs, v z

/2g the velocity-head of the issuing stream,

h' the head lost at entrance and h" the head lost in friction.

Then if the pipe be straight and of uniform size, so that

no other losses occur,

Inserting for the entrance-head h' its value from Art. 85,

this equation becomes

which is a fundamental formula for the discussion of flow

in straight pipes of uniform size.

The head lost in friction may be determined for a

particular case by measuring the head h, the area a

of the cross-section of the pipe, and the discharge per

second^. Then q divided by a gives the mean velocity
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v, and from the above equation, inserting for m its value

from (85) 2 ,
there is found

which serves to compute h"
', the value of c

l being first

selected according to the condition of the end. This

method is not a good one for short pipes because of the

uncertainty regarding the coefficient ^ (Art. 81), but

for long pipes it gives precise results.

Another method, and the one most generally employed,
is by the use of piezometers (Art. 82). A portion of the

pipe being selected which is free from sharp curves, two

piezometer tubes are inserted into which the water rises,

or the pressure-heads are measured by gages (Art. 36).

The difference of level of the water surfaces in the piezom-
eter tubes is then the head lost in the pipe between them

(Art. 82), and this loss is caused by friction alone if the

pipe be straight and of uniform size.

By these methods many observations have been made

upon pipes of different sizes and lengths under different

velocities of flow, and the discussion of these has enabled

the approximate laws to be deduced which govern the

loss of head in friction, and tables to be prepared for

practical use. These laws are :

i . The loss of head in friction is proportional to the length

of the pipe.

2. It increases with the roughnesses of the interior surface.

3. It decreases as the diameter of the pipe increases.

4. It increases nearly as the square of the velocity.

5. It 'is independent of the pressure of the water.

These five laws may be expressed by the formula

/^=/4 (86)
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in which / is the length of the pipe, d its diameter, / is.

an abstract number which depends upon the degree of

roughness of the surface, and v 2

/2g is the velocity-head

due to the mean velocity of flow.

This formula may be justified by reasonings based

on the assumption that what has been called the loss in

friction is really caused by impact of the particles of

water against each other. Fig. 86 represents a pipe with

the roughness of its surface

|E| enormously exaggerated and im-

-j. perfectly shows the disturbances

thereby caused. As any particle

I^G. ge of water strikes a protuberance
on the surface, it is deflected

and its velocity diminished, and then other particles

of water in striking against it also undergo a diminution

of velocity. Now in this case of impact the resisting

force F acting over each square unit of the surface is-

to be regarded as varying with the square of the velocity

(Arts. 29 and 74). The total resisting friction for a pipe

of length / and diameter d is then xdlF, and the work

lost in one second is ndlFv. Let W be the weight of water

discharged in one second, then Wh" is also the energy
lost in one second. But W = wq, if w be the weight of

a cubic unit of water and q the discharge per second,

and the value of q is \nd?v. Then, equating the two

expressions for the lost energy, and replacing F by Cv*

where C is a constant, there results

^ = ' F =4C/ ,

wd w d

Now C must increase with the roughness of the surface

and hence this expression is the same in
.
form as (86)

and it agrees with the five laws of experience.

The values of h" having been found by experiments,.

in the manner explained above, values of the quantity
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/ can be computed. In this way it has been found that

/ varies not only with the roughness of the interior surface

of the pipe, but also with its diameter, and with the ve-

locity of flow. From the discussions of Fanning, Smith,

and others, the mean values of / given in Table 33 have

been compiled, which are applicable to clean cast-iron and

wrought-iron pipes, either smooth or coated with coal-tar,

and laid with close joints.

The quantity / may be called the friction factor, and

the table shows that its value ranges from 0.05 to o.oi

for new clean iron pipes. A rough mean value, often

used in approximate computations, is

Friction factor /
= o.o2 ^^

It is seen that the tabular values of / decrease both when
the diameter and when the velocity increases, and that

they vary most rapidly for srnall pipes and low velocities.

The probable error of a tabular value of / is about one

unit in the third decimal place, which is equivalent to

an uncertainty of ten percent when /
= o.on, and to five

percent when /
= 0.021. The effect of this is to render

computed values of h" liable to the same uncertainties;

but the effect upon computed velocities and discharges

is much less, as will be seen in Art. 89.

To determine, therefore, the probable loss of head

in friction, the velocity v must be known, and / is taken

from Table 33 for the given diameter of pipes. The
formula (86) then gives the probable loss of head in friction.

F...r example, let /= 10000 feet, d= i foot, ^ = 5.41 feet per

second. Then, from Table 33 the factor / is 0.021, and

h" = 0.021X^4^X0.455= 95. 5 feet,

which is to be regarded as an approximate value, liable

to an uncertainty of five percent.

From Table 33 and formula (86) the losses of head

in friction for 100 feet of clean cast-iron pipe have been
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computed for different values of d and / and are given

in Table 35, from which approximate computations may
be rapidly made. Thus, for the above data, by inter-

polation in Table 35, there is found 0.952 feet for the

loss in 100 feet of pipe, and then for 10 ooo feet the loss

of head is 95.2 feet.

Prob. 86. Determine the actual loss of head in friction from

the following experiment: / = 6o feet, ^ = 8.33 feet, d = 0.08 7 8

feet, (7
= 0.03224 cubic feet per second, and c = o.8. Compute

the probable loss for the same data from formula (86) and also

from Table 35.

ART. 87. Loss OF HEAD IN CURVATURE

Thus far the pipe has been regarded as straight, so

that no losses of head occur except at entrance and in

friction. But when the pipe is laid on a curve the water

suffers a change in direction whereby an increase of pressure

is produced in the direction of the radius of the curve

and away from its center (Art. 147). This increase in

pressure causes eddying motions of the water, from which

impact results and energy is transformed into heat. The

total loss of head k" r due to any curve evidently increases

with its length, and should be greater for a small pipe

than for a large one. Hence the loss of head due to the

curvature of a pipe may be written

v"-**Tg (87) '

in which I is the length of the curve, d the diameter of

the pipe, v the mean velocity of flow, and /t
is an abstract

number called the curve factor, that depends upon the

ratio of the radius of the curve to the diameter of the pipe.

Let R be the radius of the circle in which the center line of

the pipe is laid. Then, if R is infinity, the pipe is straight

and / t
= o; but as the ratio R/d decreases the value of

increases.
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There are few experiments from which to determine

the values of /r Weisbach, about 1850, from a discussion

of his own experiments and those of Castel, deduced a

formula for the value of fj/d for curves of one-fourth

of a circle,* and from this the following values of the curve

factor /j have been computed :

for R/d= 20 10
-5 3 2 1.5 i.o

^=0.004 0.008 0.016 0.030 0.047 0.072 0.184

These values of /x
are applicable only to small smooth

iron pipes where the entire curve is without joints, since

most of the pipes on which the experiments were made
were probably of this kind.

Freeman, in 1889, made measurements of the loss of

head in fire hose 2.49 and 2.64 inches in diameter, and

the curves were complete circles of 2, 3, and 4 feet radius. |

From the results given for the smaller hose the following

values of the curve factor /x
have been found :

iorR/d= 19.2 14.4 9.6

^=0.0033 0.0034 0.0048

while for the larger hose the values are

iorR/d= 16.2 13.6 8.1

^=0.0036 0.0046 0.0045

These values are in fair agreement with those given above

for the small iron pipes.

Williams, Hubbell, and Fenkell, in 1898 and 1899,

made measurements in Detroit on cast-iron water mains

having curves of 90 degrees. From their results for a

3o-inch pipe the values of the curve factor f have been

* Die Experimental Hydraulik (Freiberg, 1855), p. 159. Mechanics of

Engineering (New York, 1870), vol. i, p. 898.

f Transactions American Society Civil Engineers, 1889, vol. 21, p. 363.
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computed and are found to be as follows :

for R/d = 24 16 10 6 4 2.4

^=0.036 0.037 0.047 0.060 0.062 0.072

while from their work on a 12 -inch pipe the values are

for R/d=4 3 2 i

^=0.05 0.06 0.06 0.20

Of these values, those derived from the larger pipe are

the most reliable, and it is seen that they are much greater
than the values deduced from Weisbach's investigations

on small pipes. Probably some of this increase is due

to the circumstance that the curves had rougher surfaces

and that the joints were nearer together than on the

straight portions. These experiments* were made with

the Pitot tube in the manner explained in Arts. 41 and

83. They show that the law of distribution of the ve-

locities in the cross-section is quite different from that

for a straight pipe, the maximum velocity being not at the

center but between the center and the outside of the curve.

While the above values of f1
are few in number they

may serve as a basis for roughly estimating the loss of

head due to curvature. For example, let there be two

curves of 24 and 16 feet radius in a pipe 2 feet in diameter,

each curve being a quadrant of a circle. The ratios R/d
are 12 and 8, and the values of /x ,

taken from those de-

duced above from the large Detroit pipe, are 0.044 and

0.053. The lengths of the curves are 37.7 and 25.1 feet,

and then from (87) l

* Transactions American Society of Civil Engineers, 1902, vol. 47, pp.

185, 360.
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are the losses of head for the two cases. Here it is seen

that the easier curve gives the greater loss of head. By
the use of the values of fl

deduced from Weisbach's in-

vestigation, the loss of head is much smaller and the sharper
curve gives the greater loss of head, since the coefficients

of the velocity-head are found to be 0.13 and 0.14 instead

of 0.83 and 0.66. The subject of losses in curves is, indeed,

in an uncertain state, since sufficient experiments have

not been made either to definitely establish the validity

of (87) l
or to determine authoritative, values of the curve

factor /r Probably it will be found that fl
varies with

the diameter d as well as with the ratio R/d.

When there are several curves in a pipe line the value

of iv (l/d) for each curve is to be found and then these

are to be added in order to find the total loss of head.

Thus, in general, there may be written,

*'"-,^ (87),

for the total loss of head, in which m
l represents the sum

of the values of f^l/d) for all the curves.

The lost head due to curvature in a pipe line is usually

low compared with that lost in friction, since the number

of curves is always made as small as possible. For ex-

ample, take a pipe 1000 feet long and 3 inches in diameter,

which has ten curves, five being of 90 degrees and 6 inches

radius and five being of 57.3 degrees and 5 feet radius.

From (86), using 0.02 for the mean friction factor, the

loss of head in friction is Sov 2

/2g. From (87) lf using the

curve factors deduced from Weisbach, the loss of head for

the five sharp curves is o.j$v
2

/2g, and that for the five easy

curves is o.4V
2
/2g.

Prob. 87a. Compute the values in the last sentence.

Prob. 876. If the central angle of a curve of 63.5 inches

radius is 229 06', what is the length of the curve? If a hose,
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2\ inches in diameter, be laid on this curve, compute the loss in

head due to curvature when the velocity in the hose is 30 feet

per second and also when it is 15 feet per second.

ART. 88. OTHER LOSSES OF HEAD

Thus far the cross-section of the pipe has been supposed
to be constant, so that no losses of head occur except
at entrance (Art. 85), in friction (Art. 86), and in curvature

(Art. 87). But if the pipe contain valves, or have ob-

structions in its cross-section, or be of different diameters,

other losses occur which are now to be considered.

The figures show three kinds of valves for regulating

the flow in pipes : A being a valve consisting of a vertical

sliding-gate, B a cock-valve formed by two rotating

FIG. 88

segments, and C a throttle-valve or circular disk which

moves like a damper in a stovepipe. The loss of head

due to these may be very large when they are sufficiently

closed so as to cause a sudden change in velocity. It

may be expressed by

in which m has the following values, as determined by
Weisbach from his experiments on pipes of small diameter.*

For the gate-valve let d' be the vertical distance that

the gate is lowered below the top of the pipe ;
then

for (*'/<* =o i i ! i I I 1

m=o.o 0.07 0.26 0.81 2.1 5.5 17 98

* Mechanics of Engineering, vol. i, Coxe's translation, p. 902.
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For the cock-valve let 6 be the angle through which it. is

turned, as shown at B in Fig. 88
;
then

for l9=o 10 20 30 40 50 55 60 65

m=o 0.29 1.6 5.5 17 53 106 206 486

In like manner, for the throttle-valve the coefficients are :

for 6= 5 10 20 30 40 50 60 65 70

w = o.24 0.52 1.5 3.9 ii 33 118 256 750

The number m hence rapidly increases and becomes very

great when the valve is fully closed, but as the velocity

is then zero there is no loss of head. The velocity v here,

as in other cases, refers to that in the main part of the

pipe, and not to that in the contracted section formed

by the valve.

Kuichling's experiments* on a gate-valve for a 24-inch

pipe give values of m which are somewhat greater than

those deduced by Weisbach from pipes less than 2 inches

in diameter. Considering the great variation in size

the agreement is, however, a remarkable one. He found

for <*'/<* -i T
5
* i I f ft

w=o.8 1.6 3.3 8.6 22.7 41.2

and his computed value of m for the case where d'/d

equals t is 75- 6 -

An accidental obstruction in a pipe may be regarded

as causing a sudden expansion of section, and the loss

of head due to it is, by Art. 74,

inn I* YV* V*
h =71 = m

\a' / 2g 2g

where a is the area of the section of the pipe, and a' that

of the diminished section. This formula shows that

when a' is one-half of a, the loss of head is equal to the

velocity-head, and that m rapidly increases as a' diminishes.

* Transactions American Society Civil Engineers, 1892, vol. 26, p. 449.
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The same formula gives the loss of head due to the sudden

enlargement of a pipe from the area a' to a.

Air-valves are placed at high points on a pipe line

in order to allow the escape of air that collects there.

Mud-valves or blow-offs are placed at low points in order

to clean out deposits that may be formed. These are

arranged so as not to ^contract the section and the losses

of head caused by them are generally very small. When
a blow-off pipe is opened and the water flows through
it with the velocity v, the loss of head at its entrance,

even when the edges are rounded, is as high as or higher
than 0.56 v 2

/2g, according to the experiments of Fletcher.

In the following pages the symbol h"" will be used

to denote the sum of all the losses of head due to valves

and contractions of section. Then

/j""=w (88)2

2g

in which m
2

will denote the sum of all the values of m
due to these causes. In case no mention is made regard-

ing these sources of loss they are supposed not to exist,

so that both m
2
and h"" are simply zero.

Prob. 88. Which causes the greater loss in a 24-inch pipe,

a gate valve one-half closed, or five 9o-degree curves of 16 feet

radius ?

ART. 89. FORMULA FOR MEAN VELOCITY

The mean velocity in a pipe can now be deduced for

the condition of steady flow. The total head being //,

and the effective velocity-head of the issuing stream

being v*/2g, the lost head is h v 2

/2g, and this must be

equal to the sum of its parts, or

h- =
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Substituting in this the values 9f the four lost heads,

as determined in the four preceding articles, it becomes

h --- = m + /-j ,

2g 2g 'dig
I

2g

and by solving for v there is found

=
\ (89) '

which is the general formula for the mean velocity in

a pipe of constant cross-section.

The most common case is that of a pipe which has

no curves, or curves of such large radius that their influ-

ence is very small, and which has no partially closed valves

or other obstructions. For this case both m
l
and m

2

are zero, and, taking m as 0.5, the formula becomes

-^wm (89) *

which applies to the great majority of cases in engineering

practice.

In this formula the friction factor / is a function

of v to be taken from Table 33, and hence v cannot be

directly computed, but must be obtained by successive

approximations. For example, let it be required to com-

pute the velocity of discharge from a pipe 3000 feet long

and 6 inches in diameter under a head of 9 feet. Here

/ = 3ooo, ^=0.5, and h = g feet, and taking for / the rough
mean value 0.02, formula (89) 2 gives

2X32.16X9
2.2 feet per second.

:.5+0.02X3000X2
The approximate velocity is hence 2.2 feet per second,

and entering the table with this, the value of / is found

to be 0.026. Then the formula gives

2X32.16X0 - =
1.92 feet per second.

1.5+0.026X3000X2
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This is to be regarded as the probable value of the ve-

locity, since the table gives /
= 0.026 for v = 1.92. In this

manner by one or two trials the value of v can be com-

puted so as to agree with the corresponding value of /.

The error in the computed velocity due to an error

of one unit in the last decimal of the friction factor / is

always relatively less than the error in / itself. For in-

stance, if v be computed for the above example with /
= 0.02 5 ,

which is four percent less than 0.026, its value is found

to be 1.96 feet per second, or two percent greater than

1.92. In general the percentage of error in v is less than

one-half of that in /. It hence appears that computed
velocities are liable to probable errors ranging from one

to five percent, owing to imperfections in the tabular

values of /, for riew clean pipes. This uncertainty is as

a rule still further increased by various causes, so that

five percent is to be regarded as a common probable error

in computations of velocity and discharge from pipes.

Velocities greater than 15 feet per second are very
unusual in pipes, and but little is known as to the values

of / for such cases. For velocities less than 0.5 feet per

second, the values of / are also not known (Art. 103),

so that only. a rough reliance can be placed upon com-

putations. The usual velocity in water mains is less

than five feet per second, it being found inadvisable to

allow swifter flow on account of the great loss of head

in friction.

To illustrate the use of the general formula (89) l
let

the pipe in the above example be supposed to have forty

9o-degree curves of 6 inches radius, and to contain two

gate-valves which are half closed. Then from Arts. 87

and 88 there are found m
l
= n.6 for the curves and m

2 =4.2

for the gates. The mean velocity then is

I 2X32.16X9
v**\- -=1.83 feet per second,

>f 17. 3 +0.026X6000
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which is but a trifle less than that found before. With
a shorter pipe, however, the influence of the curves and

gates in retarding the flow would be more marked.

The head required to produce a given velocity v can

be obtained from (89^ or (89)r Thus from the general

formula the required head is

\ v*--
/ o

in which for common computations 7^ = 0.5, while m
l

and m
2
are neglected.

Prob. 89a. Compute the mean velocities for the above ex-

amples if the pipe be 1000 feet long.

Prob. 896. Using for / the mean value 0.02, compute the

head required to cause a velocity of 10 feet per second in a pipe

15 ooo feet long and 1.5 feet in diameter.

ART. 90. COMPUTATION OF DISCHARGE

The discharge per second from a pipe of given diameter

is found by multiplying the velocity of discharge by the

area of the cross-section of the pipe, or

q=lxd
2

v=o.'j&$4d'*v (90)
i

in which v is to be found by the method of the last article.

For example, let it be required to find the discharge

in gallons per minute from a clean pipe 3 inches in diameter

and 1500 feet long tinder a head of 64 feet. Here ^=0.25,
/ = 1500, and h =64 feet. Then for /

= o.o2 the velocity

is found from (89) 2
to be 5.82 feet per second; then from

Table 33 is found /
= o.o24 and the velocity is 5.30 feet

per second. The discharge in cubic feet per second is

q =0.7854 Xo.25
2 X 5-30 =0.260

which is equal to 116.7 gallons per minute. This is the

probable result, which is liable to the same uncertainty
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as the velocity, say about three percent; so that strictly

the discharge should be written 116.7 3. 6 gallons per
minute.

By inserting the value of v from (89) a
in the above

expression for q it becomes

2gh

:.5 +#*/<*)

and from this the value of the head required to produce
a given discharge is

These formulas are not more convenient for precise computa-
tions than the separate expressions for v, q, and h previously

established, since v must be computed in order to select

/ from the table. For approximate computations, how-

ever, when / may be taken as 0.02, they may advantageously
be used. In the English system of measures h and d
are to be taken in feet and q in cubic feet per second,

and the constants in these two formulas have the values

7rg
= 0.0252

The last formula shows that the head required for a pipe of

given diameter varies directly as the square of the proposed

discharge. Thus, if a head of 50 feet delivers 8 cubic

feet per second through a certain pipe, a head of about

200 feet will be necessary in order to obtain 16 cubic feet

per second.

Prob. 90a. Compute the probable discharge from a pipe i

inch in diameter and 1000 feet long under a head of 10 feet.

Prob. 906. What head is required to discharge 6 gallons per
minute through a pipe i inch in diameter and 1000 feet long?

Prob. 90c. Compute the probable discharge from a pipe 4
inches in diameter and 630 feet long under a head of 25, when
it has three Qo-degree curves of 4 feet radius.
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ART. 91. COMPUTATION OF DIAMETER

It is an important practical problem to determine

the diameter of a pipe to discharge a given quantity of

water under a given head and length. The last equation

above serves to solve this case, if the curve and valve

resistances be omitted, as all the quantities in it except
d are known. This equation reduces to the form

and for the English system of measures this becomes

(91)

which is the formula for computing d when h, /, and d

are in feet and q is in cubic feet per second. The value

of the friction factor / may be taken as 0.02 in the first

instance, and the d in the right-hand member being

neglected, an approximate value of the diameter is com-

puted. The velocity is next found by the formula

v = q/a = g/o. 78540^

and from Table 33 the value of / thereto corresponding
is selected. The computation for d is then repeated,

placing in the right-hand member the approximate value

of d. Thus by one or two trials the diameter is computed
which will satisfy the given conditions.

For example, let it be required to determine the diam-

eter of a new pipe which will deliver 500 gallons per second,

its length being 4500 feet and the head 24 feet. Here the

discharge is

q = 500/7.481 =66.84 cubic feet per second.

The approximate value of d then is

/o.o2X45ooX66.84
2

\i .
,

0.479^ ^
-

) =3.35 feet.



224 FLOW THROUGH PIPES CHAP, vin

From this the mean Velocity of flow is

66.84
o. 7854X3.35'

and from the table the value of / for this diameter and

velocity is found to be 0.013. Then

r/ ,66.84
2

-^d = o.
479^(1.5X3- 35+o. 013 X45oo)

J

from which ^ = 3.125 feet. With this value of d the

velocity is now found to be 8.71 feet, so that no change
results in the value of /. The required diameter of the

pipe is therefore 3.1 feet, or about 37 inches; but as the

regular market sizes of pipes furnish only 36 inches and

40 inches, one of these must be used, and it will be on

the side of safety to select the larger.

It will be well in determining the size of a pipe to also

consider that the interior surface may become rough

by erosion and incrustation, thus increasing the value

of the friction factor and diminishing the discharge. It

has been found that some waters deposit incrustations

which in a few years render the values of / more than

double those given in Table 33. The increase in / from

these causes is not likely to be so great in a large pipe
as in a small one, but it is not improbable that for the above

example they might be sufficient to make / as large as

0.03. Applying this value to the computation of the

diameter from the given data there is found ^ = 3.6 feet =

about 43 inches.

The sizes of iron pipes generally found in the market

are J, }, i, i^, if, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 27,

30, 36, 40, 44, and 48 inches, while intermediate and

larger sizes must be made to order. The computation
of the diameter is merely a guide to enable one of these

sizes to be selected, and therefore it is entirely unnecessary
that the numerical work should be carried to a high degree
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of precision. In fact, three-figure logarithms are usually

sufficient to determine reliable values of d from formula

(91).

Prob. 91. Compute the diameter of a pipe to deliver 50

gallons per minute under a head of 4 feet when its length is

500 feet. Also when its length is 5000 feet.

ART. 92. SHORT PIPES

A pipe is said to be short when its length is less than

about 500 times its diameter, and very short when the

length is less than about 50 diameters. In both cases

the coefficient c
1

should be estimated according to the

condition of the upper end as precisely as possible, and

the length / should not include the first three diameters

of the pipe, as that portion properly belongs to the tube

which is regarded as discharging into the pipe. In attempt-

ing to compute the discharge for such pipes, it is often

found that the velocity is greater than given in Table 33,

and hence that the friction factor / cannot be ascertained.

For this reason no accurate estimate can be made of the

discharge from short pipes under high heads, and fortu-

nately it is not often necessary to use them in engineering

constructions.

For example, let it be required to compute the velocity

of flow from a pipe i foot in diameter and 100 feet long

under a head of 100 feet, the upper end being so arranged

that ^=0.80, and hence 7^ = 0.56 (Art. 85.) Neglecting

m
l
and mv since the pipe has no curves or valves, formula

(89) 1
for the velocity becomes

2gh

. 56+f(l/d)

and, using for / the rough mean value 0.02 and taking Z

as 97 feet, there is found 42.9 feet per second for the mean

velocity. Now there is no experimental knowledge regard-
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ing the value of the friction factor / for such high velocities

in iron pipes, but judging from the table it is probable
that / may be about 0.015. Using this instead of 0.02

gives for v the value 46 feet per second. The uncertainty
of this result should be regarded as at least ten percent.

The general equation for the velocity of discharge
deduced in Art. 89 may be applied to very short pipes

by writing / $d in place of /, and placing for m its value

in terms of the coefficient cr It then becomes

(92)

If in this / equals 3^, the velocity is ^V^gS, which is the

same as for the short cylindrical tube. If I = i2d, /
= o.o2

and ^=0.82, it gives v= o.fj4\/2gh t
which agrees well

with the value given in Art. 81 for this case. If / = 6od,

it gives v = o.6is\/2gh, which is two percent greater than

the value given in Art. 81.

Prob. 92. Compute the discharge per second for a pipe
i inch in diameter and 40 inches long under a head of 4 feet.

ART. 93. LONG PIPES

For long pipes the loss of head at entrance becomes very
small compared with that lost in friction, and the velocity-

head is also small. Formula (89) 2
for the mean velocity is

2gh

:-S +/('/

in which the first term in the denominator represents the

effect of the velocity-head and the entrance-head, the

mean value of the latter being 0.5. Now it may safely

be assumed that 1.5 may be neglected in comparison
with the other term, when the error thus produced in
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v is less than one percent. Taking for / its mean value,

this will be the case when

. .== = i.oi, whence -3
= 375

V0.02//d

Therefore when / is greater than about 4000^ the pipe
will be called long.

For long pipes under uniform flow the velocity is

found from the above equation by dropping 1.5, and the

discharge is found by multiplying this mean velocity by
the area of the cross-section. Hence

which for the English system of measures becomes

Ihd hd*
(93),

From these expressions for q the general and special for-

mulas for computing the diameter of the pipe for a given

discharge, length, and head are found to be

These equations show that for very long pipes the dis-

charge varies directly as the 2\ power of the diameter,

and inversely as the square root of the length.

In the above formulas d, h, and I are to be taken in

feet, q in cubic feet per second, and / is to be found from

Table 33, an approximate value of v being first obtained

by taking / as 0.02. It should not be forgotten that

computations of discharge or diameter from these formulas

are liable to uncertainty on account of imperfect knowl-

edge regarding the friction factors. Especially when the

velocities are lower than one or higher than fifteen feet
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per second the results obtained can be regarded as rough
estimates only. The value of h in these formulas is really

the friction-head hn
', since in their deduction the other

heads, h'
,
h" 1

',
and /&"", have been neglected as insensible.

Hence when the diameter d, the length /, the total head h,

and the discharge q have been measured for a long pipe the

friction factor } may be computed. In this manner much
of the data was obtained from which Table 33 has been

compiled.

For circular orifices and for short tubes of equal length
under the same head, the discharge varies as the square
of the diameter. For pipes of equal length under a given
head the discharges vary more rapidly owing to the influence

of friction, for formula (93) 2
shows that if / be constant,

q varies as d$. The relative discharging capacities of pipes

hence vary approximately as the z\ powers of their diam-

eters. Thus, if two pipes of diameters d
t
and d

2
have same

length and head, and if ql
and q2

be their discharges,

For example, if there be two pipes of 6 and 12 inches-

diameter, djd^ equals 2 and hence ^ =
5.7^, or the second

pipe discharges nearly six times as much 'as the first. If

the variation in the friction factor be taken into account,

the formula gives

Now as the values of / vary not only with the diameter

but with the velocity, a solution cannot be made except
in particular cases. For the above example let the ve-

locity be about 3 feet per second; then from the table

fj =0.023 and /2 =0.019, and accordingly

42 =^(2)^(1. 2)' =6.2^

or the 1 2-inch pipe discharges more than six times as much
as the 6-inch pipe.
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Prob. 93a. How many pipes, 6 inches in diameter, are equiv-

alent in discharging capacity to one pipe 24 inches in diameter?

Prob 936. Compute the diameter required to deliver 15 ooo

cubic feet per hour through a pipe 26 500 feet long under a head

of 324.7 feet. If this quantity is carried in two pipes of equal

diameter, what should be their size?

ART. 94. PIEZOMETER MEASUREMENTS

Let a piezometer tube be inserted into a pipe at any point

D! at the distance /
t
from the reservoir measured along the

pipe line. Let AJ) be the vertical depth of this point

below the water level of Ai

the reservoir ;
then if the

" "

flow be stopped at the

end C, the water rises in

the tube to the point A r

But when the flow occurs,

the water level in the pi-

ezometer stands at some

point C\, and the pressure-head at D
l

is hv or C
1
D

1
in the

figure. The distance Af^ then represents the velocity-

head plus all the losses of head between D
x
and the reser-

voir. If no losses of head occur except at entrance and in

friction, the value of A
1
C

l
then is

H
1
= +m +M-

2g 2g 'd 2g

from which the piezometric height can be found when v has

been determined by direct measurement or by gaging.

For example, let the total length = 3000 feet, d = 6

inches, h=q feet, and 7^=0.5. Then, as in Art. 89, there

is found /
= 0.026 and ^ = 1.917 feet per second. The

position of the top of the piezometric column is then given by

H
l
=

(1.5 + 0.052^) Xo.05714
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and the height of that column above the pipe is

h
l
=A

l
D

l
-H

l

Thus if /
t
= iooo feet, 7^ = 3.06 feet; and if ^ = 2000 feet,

H
l =6.03 feet. If the pipe is so laid that A

l
D

l
is 9 feet, the

corresponding pressure-heads are then 5.94 and 2.97 feet.

For a second piezometer inserted at D
2
at the distance /

2

from the entrance, the value of H
2
is

v 2 v 2 L v 2

#2
= +m + /-2

2g 2g
J

d2g

Subtracting from this the expression for Hv there is found

The second member of this formula is the head lost in fric-

ti3n in the length /
2

/
t (Art. 86), and the first member is

the difference of the piezometer elevations. Thus is again

proved the principle of Art. 82, that the difference of two

piezometer elevations shows the head lost in the pipe be-

tween them; in Art. 82 the elevations H
l
and H

2
were

measured upward from the datum plane, while here they
have been measured downward from the water level in the

reservoir.

By the help of this principle the velocity of flow in a

pipe may be approximately determined. A line of levels

is run between the points D t
and D

2 , wr^ich are selected so

that no sharp curves occur between them, and thus the

difference H2
H

l
is found, while the length /

2
/
x

is ascer-

tained by careful chaining. Then, from the above formula,

-fr W*
i ^2

~~y
from which v can be computed by the help of the friction

factors in Table 33. For example, Stearns, in 1880, made
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experiments on a conduit pipe 4 feet in diameter under

different velocities of flow.* In experiment No. 2 the

length /
2 /!

was 1747.2 feet, and the difference of the

piezometer levels was 1.243 feet. Assuming for / the mean
value 0.02, and using 32.16 feet per second per second for

g, the velocity was

(64.32 X i. 243X4
v =\- -

=3.0 feet per second.X 0.02X1747

This velocity in the table of friction factors gives /
= 0.015

for a 4-foot pipe. Hence, repeating the computation, there

is found v = 3.50 feet per second
;

it is accordingly uncertain

whether the value of / is 0.015 or 0.014. If the latter value

be used, there is found v = 3.62 feet per second. The actual

velocity, as determined by measurement of the water over

a weir, was 3.738 feet per second, which shows that the

computation is in error about 4 percent.

In order that accurate results may be obtained with

piezometers it is necessary, particularly under low pres-

sure-heads, that the tubes be inserted into the pipe at

right angles. If they be inclined with or against the cur-

rent, the pressure-head h^ will be greater or less than that

due to the pressure at the mouth. Let 6 be the angle
between the direction of the flow and the inserted piezom-
eter tube. Since the impulse in the direction of the cur-

rent is proportional to the velocity-head (Art. 29), the

component of this in the direction of the inserted tube

tends to increase the normal pressure-height h
l
when 6 is

less than 90 and to decrease it when 6 is greater than 90.
Thus

may be written as approximately applicable to the two
cases in which n is a coefficient whose value has not been

* Transactions American Society of Civil Engineers, 1885, vol. 14, p. 4.
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ascertained. In this, if the tube be inserted normal to

the pipe, 6 = 90 and h becomes hv the height due to the

static pressure in the pipe; if v = o, the angle 6 has no
effect upon the piezometer readings. But if 6 differs from

r FIG. 946

90 by a small angle, the error in the reading may be large
when the velocity in the pipe is high.

The question as to the point from which the pressure-
head should be measured deserves consideration. In the

figures of preceding articles h^ and h
2
have been estimated

upward from the center of the pipe, and it is now to be

shown that this is probably correct. Let

Fig. 94c represent a cross-section of a pipe
to which are attached three piezometers as

shown. If there be no velocity in the tube

or pipe, the water surface stands at the same
level in each piezometer, and the mean

pressure-head is certainly the distance of

that level above the center of the cross-section. If the

water in the pipe be in motion, probably the same would

hold true. Referring to formula (73)! and to Fig. 73a, it is

also seen that if there be no velocity h' =h
1

h
2 , which

cannot be true unless h
l

h
2
=^o

j
since there can be no loss

of head in the transmission of static pressures; hence h
v

and h
2
cannot be measured from the top of the section. In

any event, since the piezometer heights represent the mean

pressures, it appears that they should be reckoned upward
from the center of the section. The piezometer couplings
for hose devised by Freeman are arranged with connections

FIG. 94c
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on the top, bottom, and sides, as are also those used for

the Venturi meter (Art. 38), and thus the results obtained

correspond to mean pressures or pressure-heads. Even in

cases where the two points of connection are so near together
that the difference H

2
H

l
can be measured by a differential

manometer (Art. 37), the method of connecting the tubes

to the pipes should receive careful attention.

Prob. 94a. To a pipe of uniform size two piezometers are

attached at points A and B one mile apart, the point A being

82.13 feet higher than B. The pressure-heads read simul-

taneously at the two stations are 6.07 feet for A and 88.21 feet

for B. In which direction does the water flow?

Prob. 946. At a point 500 feet from the reservoir, and 28

feet below its surface, a pressure gage reads 10.5 pounds per

square inch; at a point 8500 feet from the reservoir and 280.5
feet below its surface, it reads 61 pounds per square inch. If

the pipe be 12 inches in diameter, compute the discharge.

ART. 95. THE HYDRAULIC GRADIENT

The hydraulic gradient is a line which connects the

water levels in piezometers placed at intervals along the

pipe ;
or rather, it is the line to which the water levels would

rise if piezometer tubes A
were inserted. In Fig. 94a

'

"~f~

the line EC is the hydraulic

gradient, and it is now to

be shown that for a pipe
of uniform size this is ap-

proximately a straight line.

For a pipe discharging

freely into the air, as in Fig. 94a, this line joins the outlet

end with a point B near the top of the reservoir. For a

pipe with submerged discharge, as in Fig. 95a, it joins the

lower* water level witli the point B.

Let D
l
be any point on the pipe distant /

t
from the reser-
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voir, measured along the pipe line. The piezometer there

placed rises to Cv which is a point in the hydraulic gradient.

The equation of this line with reference to the origin A is

given by the first equation of Art. 94,

H

in which H
l

is the ordinate Af^ and l
t

is the abscissa

AA
lt provided that the length of the pipe is sensibly equiva-

lent to its horizontal projection. In this equation the

first term of the second member is constant for a given

velocity, and is represented in the figure by AB or A^B^\
the second term varies with /

lf
and is represented by

Bfr The gradient is therefore a straight line, subject

to the provision that the pipe is laid approximately hori-

zontal; which is usually the case in practice, since quite

material vertical variations may exist in long pipes with-

out sensibly affecting the horizontal distances.

When the variable point D 1
is taken at the outlet end

of the pipe, Hl
becomes the head h, and /

x
becomes the

total length /, agreeing with the formula of Art. 89, if

the losses of head due to curvature and valves be omitted.

When d
t

is taken very near the inlet end, l
t
becomes zero

and the ordinate H
l
becomes AB, which represents the

velocity-head plus the loss of head at entrance.

When there are easy horizontal curves in a pipe line,

the above conclusions are unaffected, except that the

gradient BC is always vertically above the pipe, and
therefore can be called straight only by courtesy, although
as before the ordinate B

l
C

l
is proportional to lr When

there are sharp curves, the inclination of hydraulic gradient
becomes greater and it is depressed at each curve by an

amount equal to the loss of head which there occurs.

When an obstruction occurs in a pipe or a valve is 'par-

tially closed there is a sudden depression of the gradient.



ART. 95 THE HYDRAULIC GRADIENT 235

FIG. 956

If the pipe is so laid that a portion of it rises above

the hydraulic gradient as at D
1

in Fig. 956, an entire

change of condition generally results. If the pipe be

closed at C, all the piez-

ometers stand in the line

AA, at the same level

as the surface of the

reservoir. When the
valve at C is opened, the

flow at first occurs under

normal conditions, h being
the head and BC the hydraulic gradient. The pressure-
head at DI is then negative, and represented by D

l
Cr

As a consequence air tends to enter the pipe, and when
it does so, owing to defective joints, the continuity of the

flow is broken, and then the pipe from D
l
to C is only

partly filled with water. The hydraulic gradient is then

shifted to BDV the discharge occurs at D
l
under the head

AJ)V while the remainder of the pipe acts merely as a

channel to deliver the flow. It usually happens that

this change results in a great diminution of the discharge,
so that it has been necessary to dig up and relay portions
of a pipe line which have been inadvertently run above

the hydraulic gradient. This trouble can always be

avoided by preparing a profile of the proposed route,

drawing the hydraulic gradient upon it, and excavating
the pipe trench well below the gradient. In cases where
the cost of this excavation is so great that it is resolved

to lay the pipe above the gradient, all the joints of the

pipe above the gradient should be made absolutely tight
so that no air can enter.

When a large part of the pipe lies above the hydraulic

gradient it is called a siphon. Conditions sometimes exist

which require a pipe line to be laid as a siphon for a short

distance. In such a case an air chamber is sometimes
built at the highest elevation so that air may collect
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in it instead of in the pipe, and provision is made for

recharging the siphon when the flow ceases by admitting
water at the highest elevation, or by operating a suction-

pump placed there, or by forcing water into the pipe

by a pump located at a lower elevation. Probably the

largest siphon ever constructed is that laid about 1885
at Kansas City, Mo., it being 42 inches in diameter, and

730 feet long, with the summit 10 feet above the general
level of the pipe line. The air that collected at the summit
was removed by operating a steam ejector for a few

minutes each day.*

The pressure-head h l
at any distance /

t
from the reservoir

may be expressed in terms of the total head h by an in-

spection of Fig. 95a where Af)^ is the hydrostatic head

H
l
and C

l
D

l
is hr Thus h

1
=H

l
-A

l
C

l and, since A
l
B

l

is very small for long pipes, the similar triangles give

This result can also be obtained from the above formula for

H^ by making i+m equal to zero and placing for v its

value from (86). The loss of head in friction is represented
in the figure by Bfv and the value of this is (ljl)h for

long pipes ; that is,

'

this loss of head is proportional to

the length of the pipe.

The above discussion shows that it is immaterial where

the pipe enters the reservoir, provided that it enters

below the hydraulic gradient point B. It is also not to

be forgotten that the whole investigation rests on the

assumption that the lengths /
x
and / are sensibly equal

to their horizontal projections.

Prob. 95. A pipe 3 inches in diameter discharges 538 cubic

feet per hour under a head of 12 feet. At a distance of 300
feet from the reservoir the depth of the pipe below the water

surface in the reservoir is 4.5 feet. Compute the probable

pressure-head at this point.
* Engineering News, 1891, vol. 26, p. 519; 1893, vol. 29, pp. 423, 588.
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ART. 96. A COMPOUND PIPE

A compound pipe is one having different sizes in

different portions of its length. The change from one

length to another should be made by a
' *

reducer,
' '

which

is a conical frustum

several feet long, so that

losses of head due to sud-

den enlargement or con-

traction are avoided (Art.

74). Let dv dv dv etc., FIG. 96

be the diameters; l
lt

lv 1
9 , etc., the corresponding lengths,

the total length being /
1 + /

2 + etc. Let vv vv etc., be

the velocities in the different sections. Neglecting the

loss of head at entrance and also that lost in curvature,

the total head h may be placed equal to the loss of head

in friction, or

ia
1 2g

'

*a
2 2g

Now if the discharge per second be q, and the flow be steady

Substituting these velocities and solving for q, gives

(96)

in which the friction factors flt fv etc., corresponding to

the given diameters and the computed velocities are to be

taken from Table 33.

For example, consider the case of a pipe having only

two sizes
;

let d
t

= 2 and /
t
= 2800 feet, d

2
=

1.5 and 1
2
= 2 145

feet, and ^=127.5 feet. Using for fl
and /2 the mean
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value 0.02, and making the substitutions in the formula,
there is found

2 = 26.2 cubic feet per second,

from which ^ =
8.3 and v

2
=

14. 8 feet per second.

Now from Table 33 it is seen that ^=0.015 and /2
= 0.015;

and repeating the computation,

'2
=
30.2 cubic feet per second,

which gives v
l
=
9.6 and v

2
=

17.1 feet per second.

These results are probably as definite as the table of friction

factors will allow, but are to be regarded as liable to an un-

certainty of several percent.

To determine the diameter of a pipe which will give the

same discharge as the compound one, it is only necessary to

replace the denominator in the above value of q by fl/d
5

,

where I =/
1 + /

2 + etc., and d is the diameter required. Tak-

ing the values of / as equal, this gives

*

Applying this to the above example, it becomes

4945^2800 2145
d5

2
5 h

i.s
5

from which d = 1.68 feet, or about 20 inches.

A compound pipe is sometimes used to prevent the

hydraulic gradient from falling below the pipe line. Thus,

it is seen in Fig. 96 that the hydraulic gradient rises at D
t

and falls at D
2 ,
and that its slope over the larger pipe is

less than over the smaller one. These slopes and amount
of rise at D

l
can be computed for a given case. Using the

above numerical data the loss of head in friction for 100

feet of the large pipe is

100 V&" p.o'is
-- = 1.07 feet
2 2g

'
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while the same for the small pipe is 4.55 feet. Hence the

slope of the gradients ACl
and Cf is more than four times

as rapid as that of the gradient EJLy In the large pipe
at D

1
the velocity-head is 0.01555 XQ.6

2 =
1.43 feet, and,

supposing that no loss occurs in the reducer, the velocity-
head for the small pipe is 4.55 feet. The vertical rise C

l
E

l

of the hydraulic gradient at D
l
is hence the rise in pressure-

head 4.55 1.43=3.12 feet, and a fall of equal amount
occurs at D

2
.

When a portion of a small pipe is to be replaced by a

large one it is immaterial in what part of the length it is

introduced, for it is seen that formula (96) takes no note

of where the length /
t
is placed in the total distance /. The

Romans knew that an increase in the diameter of a pipe
after leaving the reservoir would increase the discharge,
and the law passed by the Roman senate about the year
10 B.C. forbade a consumer to attach a larger pipe to the

standard pipe within 50 feet of the reservoir to which the

latter was connected.*

Prob. 96a. A pipe 400 feet long leads from a reservoir to a

house, the first 50 feet being i inch and the remainder 2 inches

in diameter. Compute the discharge in gallons per minute for

a head of 16 feet. Compute also the discharge if the entire

length be i inch in diameter. Draw the hydraulic gradient for

each case.

Prob. 966. At Rochester, N. Y., there is a pipe 102 277 feet

long, of which 50 828 feet is 36 inches in diameter and 51 449
feet is 24 inches in diameter. Under a head of 143.8 feet this

pipe is said to have discharged in 1876 about 14 cubic feet per
second and in 1890 about 10^ cubic feet per second. Compute
the discharge by (96), and draw the hydraulic gradient.

Prob. 96c. Frontinus said that the diameter and circum-

ference of a denaria pipe (Art. 85) in digits were 2+ and

T+i+ iV+ 'sIff an(i that it had a capacity of 4 quinarias. What
value of TT did Frontinus probably use in his computations ?

* Herschel, Water Supply of the City of Rome (Boston, 1889), p. 77.
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ART. 97. A PIPE WITH A NOZZLE

Water is often delivered through a nozzle in order to

perform work upon a motor or for the purposes of hydraulic

mining, the nozzle being attached to the end of a pipe

which brings the flow from a reservoir. In such a case it

is desirable that the pressure

at the entrance to the nozzle

=^ should be as great as possi-

ble, and this will be effected

when the loss of head in the

pipe is as small as possible.
' 97 The pressure column in a

piezometer, supposed to be inserted at the end of the pipe,

as shown at CJ) l
in Fig. 97, measures the pressure-head

there acting, and the height Af^ measures the lost head

plus the velocity-head, the latter being very small.

Let h be the total head on the end of the nozzle, D its

diameter, and V the velocity of the issuing stream. Let

d and v be the corresponding quantities for the pipe, and /

its length. Then the effective velocity-head of the issuing

stream is V 2

/2g and the lost head is h V2

/2g. This lost

head consists of several parts that lost at the entrance

D', that lost in friction in the pipe; that lost in curves

and valves, if any ;
and lastly, that lost in the nozzle. Thus

h- - v^ f-
v~ ^1

^
'

2g 2g ~d2g
I

2g
2
2g 2g

Here m is determined by Art. 85, / by Art. 86, ml by Art.

87, w2 by Art. 88, while m' for the nozzle is found in the

same manner as m is found for the pipe, or m' = (i/^)
2

i,

where
,
is the coefficient of velocity for the nozzle (Art. 80).

This value of m' takes account of all losses in the nozzle, so

that it is unnecessary to consider its length; for a perfect

nozzle Cj
is unity and m' is zero.



ART. 97 A .flPE WITH A NOZZLE 241

The velocities v and V are inversely as the areas of the

corresponding cross-sections (Art. 32), since the flow is

steady, whence V=v(d/D)
2

. Inserting this in the above

equation and solving for v gives, if m
l
and m

2
be neglected,

(97)

for the velocity in the pipe. The velocity and discharge

from the nozzle are then given by

V = (d/D)
2v q = \nD

2V

and the velocity-head of the jet is V 2

/2g. These equations

show that the greatest value of V obtains when D is as

small as possible compared to d, and that the greatest dis-

charge occurs when D is equal to d. When the object of

a nozzle is to utilize the velocity-head of a jet, a large pipe

and a small nozzle should be employed. When the object

is to utilize the energy of the jet in producing power by a

water wheel, there is a certain relation between D and d

that renders this a maximum (Art. 161).

As a numerical example, the effect of attaching a nozzle

to the pipe whose discharge was computed in Art. 90 will

be considered. There / = i5oo, ^ = 0.25, and ^=64 feet;

w =
o.5, ^ = 5-3 feet, and 3 = 0.26 cubic feet per second.

Now let the nozzle be one inch in diameter at the small

end, or D =0.0833 feet, and let its coefficient c
t
be 0.98.

Here d/D = 3, and for /
= 0.025 ^ne velocity in the pipe is

2X32.16X64
0.5+0.025 X 1 500X4 + 1.041 X8i

or v = 4. 2 feet per second. The effect of the nozzle, therefore,

is to reduce the velocity in the pipe. The velocity of the

jet at the end of the nozzle is, however,

V =v(d/D)
2 = 37.8 feet per second
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and the discharge per second from the nozzle is

q = ^nD
zV ^=0.206 cubic feet

which is about 30 percent less than that of the pipe before

the nozzle was attached. The nozzle, however, produces
a marvellous effect in increasing the energy of the discharge ;

for the velocity-head corresponding to 5.3 feet per second

is only 0.44 feet, while that corresponding to 37.8 feet per
second is 22.2 feet, or about 50 times as great. As the

total head is 64 feet, the efficiency of the pipe and nozzle

is about 35 percent.

If the pressure-head h
l
at the entrance of the nozzle be

observed, either by a piezometer tube or by a pressure gage,

the velocity of discharge from the nozzle can be computed

by the formula

the demonstration of which is given in Art. 80. This can

be used when a hose and nozzle is attached at any point of

a pipe or at a hydrant. It can also be used to compute h
t

when V has been found. Thus, for the above example,

/i D*\V2

k=(-^ n- 1 -22.8 feet

which shows that the loss of head in the nozzle is about 0.6

feet. The loss of head at entrance, for this case, is 0.2 feet,

and the loss of head in friction in the pipe is 41.0 feet.

Prob. 97a. Compute the velocity, discharge, velocity-head,

and friction-head for a pipe and nozzle, taking the data of the

above numerical example, except that 1=2 500 feet.

Prob. 976. A pipe 12 inches in diameter and 4320 feet long
leads from a reservoir to a gravel bank against which water is

delivered from a nozzle 2 inches in diameter. The head on the

end of the nozzle is 320 feet and the coefficient of velocity of the

nozzle is 0.97. Compute the velocity in the pipe, the velocity-

head of the jet, and the discharge.
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ART. 98. HOUSE-SERVICE PIPES

A service pipe which runs from a street main to a house

is connected to the former at right angles, and usually

by a
' *

ferrule
' ' which is smaller in diameter than the pipe

itself. The loss of head

at entrance is hence larger

than in the cases before

discussed, and m should

probably be taken as at

least equal to unity. The

pipe, if of lead, is frequently

carried around sharp cor-
- 11

ners by curves of small

radius; if of iron, these curves are formed by pieces form-

ing a quadrant of a circle into which the straight parts
are screwed, the radius of the center line of the curve

being but little larger than the radius of the pipe, so that

each curve causes a loss of head equal nearly to double

the velocity-head (Art. 87). For new iron pipes the loss

of head due to friction may be estimated by the rules of

Art. 86 or by Table 35.

A water main should be so designed that a certain

minimum pressure-head h^ exists in it at times of heaviest

draft. This pressure-head may be represented by the

height of the piezometer column AB, which would rise

in a tube supposed to be inserted in the main, as in Fig.

98a. The head h which causes the flow in the pipe is then

the difference in level between the top of this column

and the end of the pipe, or AC. Inserting for h this value,

the formulas of Arts. 90 and 91 may be applied to the

investigation of service pipes in the manner there illus-

trated. As the sizes of common house-service pipes are

regulated by the practice of the plumbers and by the

market sizes obtainable, it is not often necessary to make

computations regarding them.
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The velocity of flow in the main has no direct influence

upon that in the pipe, since the connection is made at

right angles. But as that velocity varies, owing to the

varying draft upon the main, the effective head h is

subject to continual fluctuations. When there is no
flow in the main, the piezometer column rises until its

top is on the same level as the surface of the reservoir;

in times of great draft it may sink below C, so that

no water can be drawn from the service pipe.

The detection and prevention of the waste of water

by consumers is a matter of importance in cities where

the supply is limited and where meters are not in use.

Of the many methods devised to detect this waste, one

by the use of piezometers may be noticed, by which an

inspector without entering a house may ascertain whether

water is being drawn within, and the approximate amount

per second. Let M be the street main from which a

service pipe MOH runs to a house H. At the edge of the

sidewalk a tube OP is connected to the service pipe, which

has a three-way cock at 0, which can

be turned from above. The inspector,

passing on his rounds in the night-time,

attaches a pressure gage at P and

turns the cock so as to shut off the

water from the house and allow the

full pressure of the main pl
to be registered. Then he

turns the cock so that the water may flow into the house,

while it also rises in OP and registers the pressure py
Then if p2

is less than p l
it is certain that waste is occurring

within the house, and the amount of this may be approxi-

mately computed, if desired, and the consumer be fined

accordingly.

The pitometer, which consists of a rated Pitot tube

(Art. 41) facing the current in the pipe, with a differential

gage (Art. 37) to determine the pressure-head clue to

the current, is also used for the measurement cf the flow
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in water mains and for the detection of water waste.

A photographic record of the difference in height of the

columns of liquid in the gage tube is kept, and this shows
the discharge through the water main at any instant,
as also all fluctuations in the flow.*

When the pressure in the street main is very high,
a pressure regulator may be placed between the main
and the house in order to reduce the pressure and thus

allow lighter pipes to be used in the house. Fig. 98c

shows the principle of its action, where A represents
the pipe from the main and B the pipe leading to

the house. A weight W is placed upon a piston which
covers the opening into the cham-

ber C. This weight and that of

the piston is sufficient to over-

come a certain unit-pressure in C
and therefore the unit-pressure in

B is less than that in A by that
^ - FIG. 98c

amount. For example, suppose
the pressure in A to be 100 pounds per square inch, and let it

be required that the pressure in B shall not rise above 60

pounds per square inch
;
then the piston must be so weighted

that it may exert on the water in C a pressure of 40 pounds

per square inch. If water be drawn out anywhere along
the pipe B the pressure in the chamber above the piston

falls below 60 pounds per square inch, and hence the

piston rises and water flows from A into B until the pres-

sure is restored. Instead of a weight, a spring is generally

used, or sometimes a weighted lever.

Prob. 98. In Fig. 986 let the house pipe be one inch in diam-

eter and the pressure at the gage be 32 pounds per square inch

when there is no flow. The distance from the main to the gage
is 1 5 feet and from the gage to the end of the pipe is 28 feet. At.

the end of the pipe, which is 4 feet higher than the gage, 1.8

gallons of water are drawn per minute. Compute the pressure;

at the gage.
* Engineering Record, 1903, vol. 47, p. 122.
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ART. 99. WATER MAINS IN TOWNS

The simplest case of the distribution of water is that
where a single main is tapped by a number of service

pipes near its end, as shown in Fig. 99. In designing such
a main the principal consider-

ation is that it should be large

enough so that the pressure-

head hv when all the pipes
are in draft, shall be amply
sufficient to deliver the water

FIG Q9
into the highest houses along
the line. It is generally recom-

mended that this pressure-head in commercial and manu-

facturing districts should not be less than 150 feet, and

in suburban districts not less than 100 feet. The height
H to the surface of the water in the reservoir will always
be greater than h

iy
and the pipe is to be so designed that

the losses of head may not reduce h^ below the limit

assigned. The head h to be used in the formulas is the

difference H hr The discharge per second q being
known or assumed, the problem is to determine the diam-

eter d of the main.

A strict theoretical solution of even this simple case

leads to -very complicated calculations, and in fact cannot

be made without knowing all the circumstances regarding
each of the service pipes. Considering that the result

of the computation is merely to enable one of the market

sizes to be selected, it is plain that great precision cannot

be expected, and that approximate methods may be used

to give a solution entirely satisfactory. It will then be

assumed that the service pipes are connected with the main
at equal intervals, and that the discharge through each

is the same under maximum draft. The velocity v in

the main then decreases and becomes o at the dead
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end. The loss of head per linear foot in the length /
t

(Fig. 99) is hence less than in /. To determine the total

loss of head in the length l
l}

let v
l
be the velocity at a dis-

tance x from the dead end
;
then v

l
v. x/lt

and the loss of

head in friction in the length dx is

' d 2g
'

dl^ 2g

and hence between the limits o and ^ that loss of head .is

provided that / remains constant. This is really not

the case, but no material error is thus introduced, since

/ must be taken larger than the tabular values in order

to allow for the deterioration of the inner surface of the

main. The loss of head in friction for a pipe which dis-

charges uniformly along its length may therefore be taken

at one-third of that which occurs when the discharge
is entirely at the end.

Now neglecting the loss of head at entrance and the

effective velocity-head of the discharge, the total head h

is entirely consumed in friction, or

h=f
l

il
~'d2g '

$d 2g

Placing in this for v its value in terms of the total discharge

q and the diameter of the pipe, and solving for d, gives

This is the same as the formula of Art. 93, except that / has

been replaced by / + J/r The diameter in feet then is

when h and / are in feet and q in cubic feet per second.
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For example, consider a village consisting of a single

street with length Z
t
= 3000 feet, and upon which there are

TOO houses, each furnished with a service pipe. The prob-
able population is then 500, and taking 100 gallons per day
as the consumption per capita, this gives for the average

discharge per second along the length /
x

500X100
q = =0.0774 cubic feet,

7.48X3600X24

and since the maximum draft is often double of the

average, q will be taken as 0.15 cubic feet per second. The

length / to the reservoir is 4290 feet, whose surface is 90.5

feet above the dead end of the main, and it is required that

under full draft the pressure-head in the main shall be

75 feet. Then ^=90.5 75
=

15.5 feet, and taking /
= o.o3

in order to be on the safe side, the formula gives

^ = 0.36 feet =4. 3 inches.

Accordingly a four-inch pipe is nearly large enough to sat-

isfy the imposed conditions.

To consider the effect of fire service upon the diameter

of the main, let there be four hydrants placed at equal in-

tervals along the line l
lt
each of which is required to deliver

20 cubic feet per minute under the same pressure-head of

75 feet. This gives a discharge 1.33 cubic feet per second,

or, in total, 9 = 1.33 + 0.15
=

1.5 cubic feet. Inserting this

in the formula, and using for / the same value as before,

^ = 0.897 feet = 10.8 inches.

Hence a ten-inch pipe is at least required to maintain the

required pressure when the four hydrants are in full draft

at the same time with the service pipes.

Prob. 99. Compute the velocity v and the pressure-head h^

for the above example, if the main be 10 inches in diameter and

the discharge be 1.5 cubic feet per second. Also when the

main is 12 inches in diameter.
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ART. 100. BRANCHES AND DIVERSIONS

In Fig. lOOa is shown a main of length / and diameter d,

connected with a storage reservoir, which has two branches

with lengths /
x
and /

2 ,
and diameters d

t
and d

2 leading to

FIG. lOOa

two smaller distributing reservoirs. These data being given,
as also the heads H^ and H

2
under which the flow occurs,

it is required to find the discharges ql
and q2

. Let v, v
l9

and v
2
be the corresponding velocities

;
then for long pipes,

in which all losses except those due to friction may be

neglected, the friction-heads for the two branches are

where y is the difference in level between the reservoir sur-

face and the surface of the water in a piezometer tube

supposed to be inserted at the junction. This y is the

friction-head consumed in the flow in the large main, and
hence from formula (86) its value is

A v 2

Inserting this in the two equations, and placing for the ve-

locities their values in terms of the discharges, they become

from which q1
and q2

are best obtained by trial
; although by

solution the value of each may be directly expressed by a
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quadratic equation in terms of the given data, the expres-

sions for ql
and q2

are too complicated for general use.

When it is required to determine the diameters from the

given lengths, heads, and discharges, there are three un-

known quantities, d, d
lt
d

2 ,
to be found from only two equa-

tions, and the problem is indeterminate. If, however, d

be assumed, values of d
v
and d

2 may be found; and as d

may be taken at pleasure, it appears that an infinite num-
ber of solutions is possible. Another way is to assume a

value of y, corresponding to a proper pressure-head at the

junction; then the diameters are directly found from

formula (93) 3
for long pipes, in which h is replaced by y

for the large main, and by H1 y and H
2 y for the two

branches.

When two reservoirs, A l
and A

2 ,
are at a higher elevation

than a third one into which' they are to deliver water by
pipes of lengths /

t
and /

2 ,
both of which connect with a

third pipe of length / which leads to the third reservoir, the

above formulas also apply. In this case H
l
and H

2
are

the heights of the water levels in the reservoirs A
l
and A

2

above that in the third reservoir.

When the principal main of a water-supply system
enters a town, it divides into branches which deliver the

water to different districts, and when such branches con-

nect again with the principal main they form what may
be called "diversions." Fig. 1006 shows a simple case,

A being the reservoir and AB the principal main, while

the pipe lines BCE and BDE form two routes or diversions

through which water can flow to F. Let the main AB
have the length / and the diameter d, the line BCE the

length /j
and the diameter dv the line BDE the length /

2

and the diameter dv while the line EF has the length /
3

and the diameter d
s

. Suppose that no water is drawn
from the pipes except at F and beyond, that the pressure-

head Ff at F is h
3 ,
and that the static head F^ on F is h,

and let it be required to find the velocity and discharge
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for each of the pipes. The total head H lost in friction is

hhy and if W, Wv Wv and W
3 represent the weights of

water that pass any sections of the four pipes per second,

H

FIG. 1006

the theorem of energy, neglecting the entrance head at A
and the velocity-head at F, gives

Now referring to the figure where piezometers are shown
on the profile at B and E it is seen that the loss of head
in friction is the same for the diversions BCE and BDE\
accordingly there must exist the condit'on

and since W equals W1 +Wz
and also equals Wv the above

energy equation reduces to the simple form

The values of v
t
and v

a
in terms of T; are now to be inserted

in this equation in order to determine v. From the con-

ditions of continuity of flow and that of equality of friction-

head in the diversions, are found three equations,
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and accordingly, if the square roots of the quantities fl
l
l/dl

and /2
/
2/d2

be called e^ and e
z
for the sake of abbreviation,

*
~
d

~
e,d? + e?d

The above formula for H then reduces to

from which v can be computed. Then vv vv and v
3 may.

be found, as also the discharges q, qlt q2 ,
and q3

.

As a numerical example, let / = 10 ooo, /
t
= 2200, /

2
= 2800,

/
?
= i2oo feet, and d = i2, ^=8, d

2
= io, <i

3
= io inches; let

F be 184 feet below the water level in the reservoir and

let the required pressure-head at F be 155 feet, so that

H = 29 feet. Taking for the friction factors the mean value

0.02 (Art. 86), the value of fl/d is 200, that of flljd1
is 66,

that of /2
/
2/d2

is 67.2, and that of fj<z/d3
is 28.8. The value

of e
1
is then 8.12 and that of e

2
is 8.20, while d/da

is 1.2. In-

serting these in the last formula, there is found v = 2.45 feet

per second; then 1^
= 2.16, v

2
= 2.i4, and ^3

=
3.53 feet per

second. As a check on these results the friction-heads for

the four pipes may be computed, and these are found to

be 1 8. 6 feet for /, 4.8 feet for /
x
and /

2 ,
and 5.5 feet for Z

3 ;

the sum of these is 28.9 feet, which is a sufficiently close

agreement with the given 29.0 feet for a preliminary com-

putation. The discharges are q = q.A
= i .93, ql

= o. 7 5 , q2
= i . 1 8

cubic feet per second, and the sum of q1
and q2 equals q,

as should be the case. The computation may now be

repeated, if thought necessary, the above velocities being
used to take better values of the friction factors from

Table 33.

There are marked analogies between the flow of water

in pipes and the flow of electricity in metallic conductors.

Thus in Fig. 1006, let BCE and BDE be two wires that
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carry the electric current passing from A to F. If C
l
and

C
2
be the currents in these circuits and R^ and jR

2
the resist-

ances of the wires, it is an electric law that R
1
C

l
=R

2
C

2f

or the currents are inversely as the resistances. For water

the discharges q l
and q2

are analogous to the electric cur-

rents, and, from the above equation which expresses the

equality of the friction-heads, it is seen that

and accordingly the same law holds if the coefficients of

q^ and q2
be called resistances. If there be a third diver-

sion BGE of length /
4
and diameter d

4 connecting B and E,

the current or the discharge through AB divides between

the three diversions according to the same law, and

from which it is seen that (fJ4/d4

5

)?q4
is equal to each of the

corresponding expressions for the other diversions. This

subject will receive further discussion in Art. 193.

Prob. lOOa. In Fig. lOOa let ql
=

o-S and
<?2
= o.4 cubic feet

per second; H
l
= 140 and H2

= 125 feet; ^ = 3810, ^ = 2455, and
I=i2 314 feet. If d

l equals d
2 find the values of d and d

lt and
also the pressure-head at the junction if its depth below the

reservoir level is 108 feet.

Prob. 1006. Connecting two points M and N there are three

diversions having the lengths /
lf

/
3 ,

/
3 and the diameters d

lt
d

2 ,
d
3 .

If q be the total discharge of the three pipes, show that

in which D represents the quantity ^3
J

1

2 +^1
^
3
af

2

2 +^2<i3

2
,
while

e
lt

ez ,
e
3 are the square roots of fA/d/, /2/2/^2

5 *

Prob. lOOc. From a reservoir A a pipe 10 ooo feet long and
1 6 inches in diameter runs to a point B from which two diver-

sions lead to E. The diversion BCE is 1600 feet long and 10

inches in diameter, while BDE consists of 2000 feet of lo-inch

pipe and 1 500 feet of 8-inch pipe. From the junction E, a pipe
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EF, 1000 feet long and 12 inches in diameter, leads to the busi-

ness section of the town, where it is desired to have four fire

streams deliver a total discharge of 900 gallons per minute

through four hose lines of 2^-inch smooth rubber-lined hose

and ij-inch smooth nozzles. The point F is 180 feet below

the water level in the reservoir. Compute the velocity and dis-

charge for each pipe and hose line, the pressure-head at -F, and

the friction-head lost in each pipe and hose line.

ART. 101. RIVETED AND WOOD PIPES

Large pipes are sometimes made /oi wrought iron or

steel plates riveted together. Each section usually con-

sists of a single plate which is bent into the circular form

and the edges united by a longitudinal riveted lap joint.

The different sections are then riveted together in trans-

verse joints so as to form a continuous pipe. At AB

eTTT!

; . oo/

1- -fr t
FIG. i 01

is shown the so-called taper joint, where the end of each

section goes into the end of the following one, as in a

stove-pipe, the flow occurring in the direction from A
to B. At CD is seen the method of cylinder joints where

the sections are alternately larger and smaller. For the

large sizes double rows of rivets are used both in the

longitudinal and transverse joints. Riveted pipes have

also been built with butt transverse joints, a lap plate

being used on the outside.

Pipes of this kind have long been in use in California

in temporary mining operations, the diameters being

from 0.5 to 1.5 feet. In 1876 one was laid at Rochester,

N. Y., partly 2 and partly 3 feet in diameter. Since 1892

several lines of large diameter have been constructed,

notably the East Jersey pipe of 3, 3.5, and 4 feet diameter,
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the Allegheny pipe of 5 feet diameter, and the Ogden pipe

of 6 feet diameter.

Owing to the friction of the rivets and joints the dis-

charge of such riveted pipes is less than that of common
cast-iron pipes. The following values of the friction

factor /, which have been derived from the data given

by Herschel,* are applicable to new clean riveted pipes,

coated in the usual manner with asphaltum:

Velocity, feet per second, v= i 2 3 4 5 6

T . ^ ( T, ft. diam., / =0.03 5 0.029 0.024 0.021 0.019 0.017
Cylinder Joints] ^ ft diam

; /=0.O25 0.022 0.026 0.020 0.021 0.021

T .j
.

j 3$ ft. diam., /
= 0.027 0.023 0.022 0.021 0.021 0.022

I 4ft. diam., / =0.027 0.026 0.025 0.024 0.023 -O23

These friction factors are approximately double the values

given for new cast-iron pipes in Table 33, this increase

being mostly due to the friction of the rivet heads. It

should be noted that these friction factors increase with

age, Herschel' s gagings showing that after four years' use

the cylinder pipe of 4 feet diameter gave /
= o.o34 for

v = i, /
= 0.028 for v = 2, and /

= 0.026 for v greater than

2 feet per second. In designing a pipe an allowance

should be made for this fact.

Gagings by Marx, Wing, and Hoskinsf of the flow

through a steel-riveted pipe 6 feet in diameter with butt

joints, when new and again after two years' use, furnish

the following values of the friction factor / corresponding
to several velocities in feet per second :

Velocity, v= i 2 3 4 5

1897, / =O.O2 1 O.O2I O.O22 O.O2I

1899, / =0.039 0.027 0.025 0.024 0.023

These also show that the roughness of the surface materially
increases with time.

* 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits. New York, 1897.

f Transactions American Society of Civil Engineers, 1898, vol. 40,

p. 471; and 1900, vol. 44, p. 34.
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Wood pipes were used in several American cities during
the years 1750-1850, these being made of logs laid end

to end, a hole 3 or 4 inches in diameter having been first

bored through each log. Pipes formed of redwood staves

were first used in California about 1880, these staves

being held in place by bands of wrought iron arranged
so that they could be tightened by a nut and screw. Sev-

eral long lines of these large conduit pipes have been

built in the Rocky mountains and Pacific states, and

they have also been used there for city water mains to a

limited extent.

Gagings of a wood pipe 6 feet in diameter were made

by Marx, Wing, and Hoskins in connection with those of

the steel pipe cited above. The values of the friction

factor / deduced from their results for velocities ranging
from i to 5 feet per second are as follows:

Velocity, v= i 2 3 4 5

1897, /=o.O26 0.019 0.017 0.016

1899, /=o.oi9 0.018 0.017 k 0.017 0.017

These show that this wood pipe became smoother after

two years' use, while the steel pipe became rougher.

Noble's gagings of wood pipes 3.67 and 4.51 feet in

diameter furnish similar values of /.* For the smaller

pipe / ranges from 0.021 to 0.019, with velocities ranging
from 3.5 to 4.8 feet per second. For the larger pipe /

ranges from 0.019 to 0.016, with velocities ranging from

2.3 to 4.7 feet per second. -From Adams' measurements

on a pipe 1.17 feet in diameter the values of / range from

0.027 to 0.02, with velocities ranging from 0.7 to 1.5 feet

per second. Noble's discussion of all the recorded gagings
on wood- pipes show certain unexplained discrepancies,

and he proposes special empirical formulas to be used

for precise computations. Wooden stave pipes after

* Transactions American Society of Civil Engineers, 1902, vol. 49,

pp. 112, 143.
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being in service some time may undergo considerable

alteration in form, as the circle is apt to be deformed

into an ellipse.

By the help of the formulas of the preceding pages,

computations for the velocity and discharge of steel and

wood pipes under given heads may be readily made.

As such pipes are generally long the formulas of Art. 93

will usually apply. In designing a steel pipe a liberal

factor of safety should be introduced by taking a value

of / sufficiently large so that the discharge may not be

found deficient after a few years' use has deteriorated

its surface.

Prob. lOla. Find the diameter of a riveted pipe, ten miles

long, to deliver 30 million gallons per day under. a head of 105.6
feet.

Prob. 1016. What is the discharge, in gallons per day, of a

wood stave pipe 5 feet in diameter when the slope of the hy-
draulic gradient is 47.5 feet per mile?

ART. 102. FIRE HOSE

Fire hose is generally 2\ inches in diameter, and lined

with rubber to reduce the frictional losses. The following
values of the friction factor / have been deduced from

the experiments of Freeman.*

Velocity in feet per second, o>= 4 6 10 15 20

Unlined linen hose, / =0.038 0.038 0.037 0.035 0.034

Rough rubber-lined cotton, / =0.030 0.031 0.031 0.030 0.029
Smooth rubber-lined cotton, / =0.024 0.023 0.022 0.019 0.018

Discharge, gallons per minute = 61 92 153 230 306

By the help of this table computations may be made
on flow of water through fire hose, in the same manner as

for pipes. It is seen that the friction factors for the best

hose are slightly less than those given for 2j-inch pipes
in Table 33.

* Transactions American Society of Civil Engineers, 1889, vol. 21,

PP- 303, 346.
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When the hose line runs from a steamer to the nozzle,

instead of from a reservoir, the head h is that due to the

pressure p at the steamer pump (Art. 11). If this hose

line is of uniform diameter the velocity in the hose and

nozzle may be computed by Art. 97 and the discharge is

then readily found. For example, let the hose be i\

inches in diameter and 400 feet long, the pressure at the

steamer be 100 pounds per square inch, which corresponds

to a head of 230.4 feet, and the nozzle be ij inches in

diameter with a coefficient of velocity of 0.98. Then,

neglecting the loss of head at entrance, and using for /

the value 0.03, the velocity from the nozzle is found to

be 66.0 feet per second, which gives a velocity-head of

67.7 feet and a discharge of 180 gallons per minute. The
head lost in friction is 230.4 67.7

= 162.7 feet, of which

2.8 feet is lost in the nozzle and the remainder in the hose.

. Sometimes the hose near the steamer is larger in diam-

eter than the remaining length. Let ^ be the length and

dj the diameter of the larger hose, and 1
2
and d

2
the same

quantities for the smaller hose. Let c
}
be the coefficient

of velocity for a smooth nozzle, D its diameter, and V the

velocity of the stream issuing from the nozzle. By reason-

ing as in Arts. 89 and 97, and neglecting losses of head at

entrance and in curvature, there is found

V-

and the discharge is given by q = \nD
2 V. For example,

let h = 230.4, Zj
= 100, /

2
= 300 feet; d

t =3, d
2
=

2.5, D =
1.125

inches; ^=0.98, and ^=f2=0.03. Then, by' the formula,
1^ = 69.7 feet per second, which gives a velocity-head of

75.5 feet and a discharge of 190 gallons per minute. This

example is the same as that of the preceding paragraph,

except that a larger hose is used for one-fourth of the length,
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and it is seen that its effect is to increase the velocity-head

nearly 12 percent and the discharge nearly 6 percent. For

this case the head lost in friction is 154.9 feet, of which 3.1

feet is lost in the nozzle and the remainder in the hose.

In using the above formula the tip of the nozzle is sup-

posed to be on the same level with the pressure gage at

the steamer pump and the head h is given in feet by 2.304^,

^here p be the gage reading in pounds per square inch.

If the tip of the nozzle is a vertical distance z above this

gage, h is to be replaced by h z in the formula; if it be

the same vertical distance below the gage, h is to be re-

placed by h + z. In the former case gravity decreases and

in the latter case it increases the velocity and discharge.

The above formula applies also to the case of a hose con-

nected to a hydrant, if h be the effective-head at the en-

trance, that is, the pressure-head plus the velocity-head
in the hydrant. In Art. 192 will be found further dis-

cussions regarding pumping through fire hose.

Prob. 102a. For the above numerical examples compute the

head lost in the hose and that lost in the nozzle.

Prob. 1026. When the pressure gage at the steamer indi-

cates 83 pounds per square inch, a gage on the leather hose 800

feet distant reads 25 pounds. Compute the value of the friction

factor /, the discharge per minute being 121 gallons. If the

second gage be at the entrance to a i^-inch nozzle, compute its

coefficient of velocity.

Prob. 102c. At a hydrant of diameter d
l
the pressure-head

is hr To this is attached a hose of length / and diameter d

and to the end of the hose a nozzle of diameter D and velocity
coefficient cv Neglecting losses at entrance and in curvature

is the formula for computing the velocity of the jet issuing from
the nozzle when its tip is held at the same level as the gage that

indicates the pressure-head.
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ART. 103. OTHER FORMULAS FOR FLOW IN PIPES

The formulas thus far presented in this chapter are

based upon the assumption that all losses of head vary
with the square of the velocity. This is closely the case

for the velocities common in engineering practice, but for

velocities smaller than 0.5 feet per second the losses of

head due to friction have been found to vary at a less

rapid rate, and in fact nearly as the first power of the

velocity. Probably at usual velocities the loss of head in

friction is composed of two parts, a small part varying

directly with the velocity which is due to cohesive resist-

ance along the surface, and a large part varying as the

square of the velocity which is due to impact as illustrated

in Fig. 86. This was recognized by the early hydraulicians

who, after denning the friction-head and friction-factor

as in (86), by the formula

endeavored to express / in terms of the velocity v. Thus,
D 'Aubisson deduced

0.00484
/=0.0269 + f~

and Weisbach advocated the form

0.00172
7
= 0.0144 H 7

=-
Vv

Darcy, on the other hand, expressed / in terms of d, namely,,

0.00167
/
= 0.0199 H -j

-

All these expressions are for English measures, v being in

feet per second and d in feet. Later investigations show,

however, that / varies with both v and d, and the best that

can now be done is to tabulate its values as in Table 33.

In fact it may be said that the theory of the flow of water

in pipes at common velocities is not yet well understood.
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Many attempts have been made to express the velocity
of flow in a long pipe by an equation of the form

in which a, /?,
and

7-
are to be determined from experiments

in which v, d, h, and / have been measured. The ex-

ponential formula deduced by Lampe for clean cast-iron

pipes varying in diameter from one to two feet is

55
(103)

in which d, h, and / are to be taken in feet, and v will be

found in feet per second. From this are derived

by which discharge and diameter may be computed. Other

investigators find different values of
ft and

/-,
the values

/?
= and f = \ being frequently advocated.

The formula of Ckezy (Art. 106), that of Kutter (Art.

Ill), and that of Bazin (Art. 115) are frequently used for

the discussion of long pipes, care being taken to select the

proper value of c for the first, of n for the second, and of
r>n for the third. In some cases the use of the formulas of

Kutter and Bazin is more advantageous than those of the

preceding cases, because they enable the influence of the

roughness of the surface to be better taken into account.

The formulas of this chapter do not apply to very small

pipes and very low velocities, and it is well known that for

such conditions the loss of head in friction varies as the

first power of the velocity. This was shown in 1843 by
Poiseuille who made experiments in order to study the

phenomena of the flow of blood in veins and arteries. For

pipes of less than 0.03 inches diameter he found the head h
to be given by h = CJv/d

2
,
where C

l
is a constant factor for a

given temperature, v is the velocity, d the diameter, and I

the length of the pipe. Later researches indicate that the



262 FLOW THROUGH PIPES CHAP, vin

laws expressed by this equation also hold for large pipes

provided the velocity be very small, and that there is a

certain critical velocity at which the law changes and beyond
which h=C

2
lv

2

/d, as for the common cases in engineering

practice. This critical point appears to be that where

the filaments cease to move in parallel lines and where the

impact disturbances illustrated in Fig. 86 begin. For a

very small pipe the velocity may be high before this critical

point is reached; for a large pipe it happens at very low

velocities. Experiments devised by Reynolds enable the

impact disturbance to be actually seen as the critical veloc-

ity is passed, so that its existence is beyond question. It

may also be noted that the velocity of flow through a sub-

merged sand filter bed varies directly as the first power of

the effective head.

Prob. 103. Solve Problems 90 and 91 by the use of the above

formulas of Lampe.

ART. 104. COMPUTATIONS IN METRIC MEASURES

Nearly all the formulas of this chapter are rational in

form, the coefficient of velocity cv the factors / and fv and

the factors m, mv m2 ,
and m' are abstract numbers and may

be used in any system of measures.

(Art. 86) The mean value of the friction factor / is

0.02, and Table 34 gives closer values corresponding to

metric arguments. For example, let / = 3ooo meters,

^ = 30 centimeters =0.3 meters, and ^ = 1.75 meters per

second. Then from the table /is 0.022, and

h" =0.022 X~
X-^f- =34-3 meters

which is the probable loss of head in friction. By the use

of Table 36 approximate computations may be made more

rapidly; thus for this case the loss of head for 100 meters
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of pipe is found to be i.io meters, hence for 3000 meters

the loss of head is 33 meters.

(Art. 90) The metric value of \K\/zg is 3.477 and
that of 8/Vg is 0.2653.

(Art. 91) When (91) is used in the metric system the

constant 0.4789 is to be replaced by 0.6075; nere
<?

is to

ba in cubic meters per second, and / and d in meters.

(Art. 93) In (93) 2
the two constants are 4.43 and

3.48 instead of 8.02 and 6.30. In (93) 3
the constant is

0.607 instead of 0.479.

(Art. 101) The friction factors / for steel and wood

pipes may be taken for metric arguments by using the

velocities in meters per second, namely, by writing 0.3,

0.6, 0.9, 1.2, 1.5, 1.8 meters per second, instead of i, 2,

3, 4, 5, 6 feet per second.

(Art. 102) For fire hose the values of the friction

factor / for metric data are as follows, for hose 6.35

centimeters in interior diameter:

Velocity, meters per second, v = i. 2 2 1.83 3.05 4.57 6.10

Unlined linen hose, / =0.038 0.038 0.037 -35 -34
Rough rubber-lined cotton, / =0.030 0.031 0.031 0.030 0.029

Smooth rubber-lined cotton, / =0.024 0.023 0.022 0.019 0.018

Discharge, liters per minute, 193 348 579 871 1158

(Art. 103) In the metric system the formulas for

the friction factor / are the same as those in the text,

except that the numerator of the last term is to be divided

by 3.28 in the formulas of D'Aubisson and Darcy and

by i. 8 1 in that of Weisbach. Lampe's formula is

and his formulas for discharge and diameter are

in which d, h, and / are in meters, v in meters per second,

and q in cubic meters per second.
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Prob. 104a. Compute the diameter, in centimeters, for a

pipe to deliver 500 liters per minute under a head of 2 meters,
when its length is 100 meters. Also when the length is 1000

meters.

Prob. 1046. Compute the velocity-head and discharge for a

pipe i meter in diameter and 856 meters long under a head of

64 meters. Compute the same quantities when a smooth nozzle

5 centimeters in diameter is attached to the end of the pipe.

Prob. 104:0. A compound pipe has the three diameters 15,

20, and 30 centimeters, the lengths of which are 150, 600, and

430 meters. Compute the discharge under a head of 16 meters.

Prob. 104J. A steel riveted pipe 1.5 meters in diameter is

7500 meters long. Compute the velocity and discharge under
a head of 30.5 meters.

Prob. 104<?. The value of C l
in Poiseuille's formula for small

pipes is 0.0000177 f r English measures at 10 centigrade. Show
that its value is 0.0000690 for metric measures.

Prob. 104/. In Fig. 1006 let the pipe AB be 3000 meters long
and 30 centimeters in diameter, BCD be 800 feet long and 20

centimeters in diameter, BDE be 1000 feet long and 20 centi-

meters in diameter, and EF be 300 meters long and 30 centi-

meters in diameter. Compute the velocity and discharge for

each pipe when the total lost head H is 12.5 meters.
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CHAPTER IX

FLOW IN CONDUITS AND CANALS

ART. 105. DEFINITIONS

From the earliest times water has been conveyed
from place to place in artificial channels, such as troughs,

aqueducts, ditches, and canals, there being no head to

cause the flow except that due to the slope. The Roman
aqueducts were usually rectangular channels about 2J-

feet wide and 5 feet deep, lined with cement, sometimes

running underground and sometimes supported on arches.

The word ' '

conduit
' '

will be used as a general term for

a channel of any shape lined with timber, mortar, or

masonry, and will also include large metal pipes, troughs,
and sewers. Conduits may be either open as in the case

of troughs, or closed as in sewers and most aqueducts.
Ditches and canals are conduits in earth without artificial

lining. Most of the principles relating to conduits and
canals apply also to streams, and the word channel will

be used as applicable to all cases.

The wetted perimeter of the cross-section of a channel

is that part of its boundary which is in contact with the

water. Thus, if a circular sewer of diameter d be half

full of water the wetted perimeter is \nd. In this chapter
the letter p will designate the wetted perimeter.

The hydraulic radius of a water cross-section is its

area divided by its wetted perimeter, and the letter r
will be used to designate it. If a be the area of the cross-

section, the hydraulic radius is found by

r^a/p
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The letter r is of frequent occurrence in formulas for the

flow in channels; it is a linear quantity which is always

expressed in the same
unit as p and hence its

numerical value is dif-

ferent in different sys-

tems of measures. It is frequently called the hydraulic

depth or hydraulic mean depth, because for a shallow

section its value is but little less than the mean depth
of the water. Thus in Fig. 105, if b be the breadth on
the water surface, the mean depth is a/ b, and the hydraulic
radius is a/p\ and these are nearly equal, since p is but

slightly larger than b.

The hydraulic radius of a circular cross-section filled

with water is one-fourth of the diameter; thus

The same value is also applicable to a circular section

half filled with water, since then both area and wetted

perimeter are one-half their former values.

The slope of the water surface in the longitudinal

section, designated by the letter s, is the ratio of the fall

h to the length / in which that fall occurs, or

s-k/l

The slope is hence expressed as an abstract number, which

is independent of the system of measures employed.
To determine its value with precision h must be obtained

by referring the water level at each end of the line to a

bench-mark by the help of a hook gage or other accurate

means, the benches being connected by level lines run

with care. The distance / is measured along the inclined

channel, and it should be of considerable length in order that

the relative error in h may not be large. If s=o there

Is no slope and no flow; but if there be even the smallest
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slope the force of gravity furnishes a component acting
down the inclined surface, and motion ensues. The ve-

locity of flow evidently increases with the slope.

The flow in a channel is said to be steady when the

same quantity of water per second passes through each

cross-section. If an empty channel be filled by admitting
water at its upper end the flow is at first non-steady or

variable, for more water passes through one of the upper
sections per second than is delivered at the lower end.

But after sufficient time has elapsed the flow becomes

steady; when this occurs the mean velocities in different

sections are inversely as their areas (Art. 32).

Uniform flow is that particular case of steady flow

where all the water cross-sections are equal, and the

slope of the water surface is parallel to that of the bed

of the channel. If the sections vary the flow is said to

be non-uniform, although the condition of steady flow

is still fulfilled. In this chapter only the case of uniform

flow will be discussed.

The velocities of different filaments in a channel are

not equal, as those near the wetted perimeter move slower

than the central ones owing to the retarding influence

of friction. The mean of all the velocities of all the fila-

ments in a cross-section is called the mean velocity v.

Thus if i/
9 v", etc., be velocities of different filaments,

v*+ v"+etc.
v =

n

in which n is the number of filaments. Let a be the area

of the cross-section and let each filament have the small

cross-section of area a'; then n = a/a', and hence

av=*a'(v'+ ?;"+ etc.)

.But the second member is the discharge q, that is, the

quantity of water passing the given cross -section in one
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second. Therefore the mean velocity may be also de-

termined b the relation

The filaments which are here considered are in part imagi-

nary, for experiments show that there is a constant sinuous

motion of particles from one side of the channel to the

other. The best definition for mean velocity hence is,

that it is a velocity which multiplied by the area of the

cross-section gives the discharge, or v=q/a.

Prob. 105a. Compute the hydraulic radius of a rectangular

trough whose width is 4.4 feet and depth 1.3 feet.

Prob. 1056. Compute the mean velocity in a circular sewer

of 4 feet diameter when it is half filled and discharges 120 gal-

lons per second.

ART. 106. FORMULA FOR MEAN VELOCITY

When all the wetted cross-sections of a channel are

equal, and the water is neither rising nor falling, having
attained the condition of steady flow, the flow is said to be

uniform. This is the case in a conduit or canal of constant

size and slope whose supply does not vary. The same

quantity of water per second then passes each cross-section,

and consequently the mean velocity in each section is

the same. This uniformity of flow is due to the resistances

along the interior surface of the channel, for were it per-

fectly smooth the force of gravity would cause the veloc-

ity to be accelerated. The entire energy of the water due

to the fall h is hence expended in overcoming resistances

caused by surface roughness. A part overcomes friction

along the surface, but most of it is expended in eddies

of the water, whereby impact results and heat is generated.

A complete theoretic analysis of this complex case has

not been perfected, but if the velocity be not small the

discussion given for pipes in Art. 86 applies equally well-

to channels.
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Let W be the weight of water passing any cross-section

in one second, F the force of friction per square unit along

the surface, p the wetted perimeter, and h the fall in the

length /. The potential energy of the fall is Wh. The

total resisting friction is Fpl, and the energy consumed per

second is Fplv, if v be the velocity. Accordingly Fplv

equals Wh. But the value of W is wav, if w be the weight

of a cubic foot of water and a be the area of the cross-section

in square feet. Therefore Fpl=wah, and since a/p is the

hydraulic radius r, and h/l is the slope s, this reduces to

F = wrs, which is an approximate expression for the resist-

ing force of friction on one square unit of the surface of

the channel. In order to establish a formula for the mean

velocity the value of F must be expressed in terms of v,

and this can only be done by studying the results of experi-

ments. These indicate that F is approximately propor-

tional to the square of the mean velocity. Therefore if

c be a constant, the mean velocity is

v=cVrs (106)

which is the formula first advocated by Chezy in 1775.

This is really an empirical expression, since the relation

between F and v is derived from experiments. The coeffi-

cient c varies with the roughness of the bed and with other

circumstances.

Another method of establishing Chezy 's formula for

channels is to consider that when a pipe on a uniform

slope is not under pressure, the hydraulic gradient coincides

with the water surface. Then formula (86) may be used

by replacing h" by h and d by its value 41-. Accordingly

=-- or

in which VSg/f is the Chezy coefficient.

This coefficient c is different in different systems of

measures since it depends upon g. For the English system
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it is found that c usually lies between 30 and 160, and that

its value varies with the hydraulic radius and the slope, as

well as with the roughness of the surface. To determine

the value of c for a particular case the quantities v, r, and s

are measured, and then c is computed. To find r and s

linear measurements and leveling are required. To deter-

mine v the flow must be gaged either in a measuring vessel

or by an orifice or weir, or, if the channel be large, by floats

or other indirect methods described in the next chapter,
and then the mean velocity v is computed from v=q/a.
It being a matter of great importance to establish a satis-

factory formula for mean velocity, thousands of such

gagings have been made, and from the records of these

the values of the coefficients given in the tables at the end

of this volume and in the following articles have been

deduced.

Prob. 106. Compute the value of c for a circular masonry
conduit 4 feet in diameter which delivers 29 cubic feet per
second when running half full, its slope or grade being 1.5 feet

in 1000 feet.

ART. 107. CIRCULAR CONDUITS, FULL OR HALF FULL

When a circular conduit of diameter d. runs either full

or half full of water the hydraulic radius is %d, and the

Chezy formula for mean velocity is

v = cVrs = c . -JVS
The velocity can then be computed when c is known, and
for this purpose Table 37 gives Hamilton Smith's values

of c for pipes and conduits having quite smooth interior

surfaces, and no sharp bends.* The discharge per second

then is

in which a is either the area of the circular cross-section or

one-half that section, as the case may be.
"*"

^vdraulics (London and New York, 1886), p. 271.
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To use Table 37 a tentative method must be employed,
since c depends upon the velocity of flow. For this purpose

there may be taken roughly

mean Chezy coefficient = 125

and then v may be computed for the given diameter and

slope ;
a new value of c is then taken from the table and a

new v computed; and thus, after two or three trials, the

probable mean velocity of flow is obtained. The value of

d must be expressed in feet.

For example, let it be required to find the velocity and

discharge of a semicircular conduit of 6 feet diameter when

laid on a grade of o.i feet in 100 feet. First,

v = 12$X%V6X0.001 =4.8 feet per second.

For this velocity the table gives 147 for c
;
hence

T; = 147 XjV'0.006 = 5.7 feet per second.

Again, from the table c = 150, and

v = 150 X jVo.oo6 = 5-8 feet per second.

This shows that 150 is a little too large; for c = 149.5, *; is

found to be 5.79 feet per second, which is the final result.

The discharge per second now is

q = o. 7854X4X36X5. 79 =81.9 cubic feet

which is the probable flow under the given conditions.

To find the diameter of a circular conduit to discharge a

given quantity under a given slope, the area a is to be ex-

pressed in terms of d in the above equation, which is then

to be solved for d\ thus,

the first being for a conduit running full and the second for

one running half full. Here c may at first be taken as 125 ;

then d is computed, the approximate velocity found from
2 and with this value of v a value of c is selected
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from the table, and the computation for d is repeated. This

process may be continued until the corresponding values

of c and v are found to be in close agreement.

As an example of the determination of diameter let it

be required to find d when 9 = 81.9 cubic feet per second,

^=0.001, and the conduit runs full. For = 125 the f r-

mula gives ^ = 4.9 feet, whence ^ = 4.37 feet per second.

From the table c may be now taken as 142, and repeating

the computation ^ = 4.64 feet, whence ^=4.84 feet per

second, which requires no further change in the value of c.

As the tabular coefficients are based upon quite smooth

interior surfaces, such as occur only in new, clean iron pipes,

or with fine cement finish, it might be well to build the

conduit 5 feet or 60 inches in diameter. It is seen from

the previous example that a semicircular conduit of 6 feet

diameter carries the same amount of water as is here pro-

vided for.

Circular conduits running full of water are long pipes and

all the formulas and methods of Arts. 90 and 91 can be

applied also to their discussion. From Art. 106 it is seen

that

c=\/8g77 or c = i6.04/v/
f

in which / is to be taken from Table 33. Values of c com-

puted in this manner will not generally agree closely with

the coefficients of Smith, partly because the values of / are

given only to three decimal places, and partly because

Table 33 for pipes was constructed from experiments on

smoother surfaces than those of conduits. An agreement
within 5 percent in mean velocities deduced by different

methods is all that can generally be expected in conduit com-

putations, and if the actual discharge agrees as closely as

this with the computed discharge, the designer can be con-

sidered a fortunate man.

All of the laws deduced in the last chapter regarding the

relation between diameter and discharge, relative discharg-
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ing capacity, etc., hence apply equally well to circular con-

duits which run either full or half full. If the conduit be

full it matters not whether it be laid truly to grade or whether

it be under pressure, since in either "case the slope s is the

total fall h divided by the total length. Usually, however,
the word conduit implies a uniform slope for considerable

distances, and in this case the hydraulic gradient coincides

with the surface of the flowing water.

Prob. 107a. Find the discharge of a conduit when running
full, its diameter being 6 feet and its fall 9.54 feet in one mile.

Prob. 1076. Find the diameter of a conduit to deliver when

running full 16 500 ooo gallons per day, its slope being 0.00016.

ART. 108. CIRCULAR CONDUITS, PARTLY FULL

Let a circular conduit with the slope 5 be partly full

of water, its cross-section being a and hydraulic radius

r. Then the mean velocity and the discharge are given by

v = c\/rs q = ca\/rs

The mean velocity is hence proportional to V'r and the

discharge to aVr, provided that c be a constant. Since,

however, c varies slightly with r, this law of proportion-

ality is not exact but approximate.

When a circular conduit of diameter d runs either full

or half full its hydraulic radius is \d (Art. 105). If it is

filled to the depth d'
', the wetted perim-

eter is

. 2d'-d
p = \iid + a arc sin -7

and the sectional area of the water
surface is

a=dp + (d'
-

-d)Vdf

(d
-

d')

From these p and a can be computed, and then r is found

by dividing a by p. Table 39 gives values of p, a, and r for
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a circle of diameter unity for different depths of water.

To find from it the hydraulic radius for any other circle it

is only necessary to multiply the tabular values of r by the

given diameter d. The table shows that the greatest

value of the hydraulic radius occurs when d'=o.8id,
and that it is but little less when d' =o.8d. In the fifth

and sixth columns of the table are given values of VV
and aVr for different depths in the circle of diameter

unity ;
these are approximately proportional to the veloc-

ity and discharge which occur in a circle of any size.

The table shows that the greatest velocity occurs when
the depth of the water is about eight-tenths of the di-

ameter, and that the greatest discharge occurs when the

depth is about 0.95^, or -- of the diameter.

By the help of Table 39 the velocity and discharge

may be computed when c is known, but it is not possible

on account of the lack of experimental knowledge to

state precise values of c for different values of r in circles

of different sizes. However, it is known that an increase

in r increases c, and that a decrease in r decreases c. The

following experiments of Darcy and Bazin show the extent

of this variation for a semicircular conduit of 4.1 feet

diameter, and they also teach that the nature of the in-

terior surface greatly influences the values of c. Two
conduits were built; each with a slope s =0.0015 an<^ d = 4.i

feet. One was lined with neat cement, and the other

with a mortar made of cement with one-third fine sand.

The flow was allowed to occur with different depths,

and the discharges per second were gaged by means of

orifices; this enabled the velocities to be computed, and
from these the values of the coefficient c were found. The

following are a portion of the results obtained, df

denoting
the depth of water in the conduit, r the hydraulic radius,

v the mean velocity, and all linear dimensions being in.

English feet:
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For cement lining. For mortar lining.

df r v C d' r v C

2.05 1.029 6.06 154 2.04 1.022 5.55 142

1.61 0.867 5-29 147 1-69 0.900 4.94 135

1.03 0.605 4-i6 138 1.09 0.635 3- 8 7 125

-59 0.366 3.02 129 0.61 0.379 2.87 120

It is here seen that c decreases quite uniformly with r,

and that the velocities for the mortar lining are 8 or 10

percent less than those for the neat cement lining.

The value of the coefficient c for these experiments

may be roughly expressed for English measures by

in which c
t
is the coefficient for the conduit when running

half full. How this will apply to different diameters

and velocities is not known; when d' is greater than o.&d

it will probably prove incorrect. In practice, however,

computations on the flow in partly filled conduits are of

rare occurrence.

Prob. 108. Compute the hydraulic radius for a circular con-

duit when it is three-fourths filled with water, and also the mean

velocity if it be lined with neat cement and laid on a grade of

0.15 per 100, the diameter being 4.1 feet.

ART. 109. RECTANGULAR CONDUITS

In designing an open rectangular trough or conduit

to carry water there is a certain ratio of breadth to depth
which is most advantageous, because thereby either the

discharge is the greatest or the least amount of material

is required for its construction. Let b be the breadth

and d the depth of the water section, then the area a is

bd and the wetted perimeter p is b + 2d. If the area a is

given it may be required to find the relation between b

and d so that the discharge may be a maximum. If the

wetted perimeter p is given, the relation between b and
d to produce the same result may be demanded. It is

now to be shown that in both cases the breadth is double
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the depth, or b = 2d. This is called the most advantageous

proportion for an open rectangular conduit, since there

is the least head lost in- friction when the velocity and

discharge are the greatest possible.

Let r be the hydraulic radius of the cross-section, or

a bd

~P
=
b+2d

then, from, the Chezy formula (106), the expressions for

the velocity and discharge are

bd

In these expressions it is required to find the relation

between b and d, which renders both v and q a maximum.

Let the wetted perimeter p be given, as might be the

case when a definite amount of lumber is assigned for the

construction of a trough; then b + 2d=p, or d = %(p b),

and

Ib(p-b) /- \b\p-b

in which p is a constant. Differentiating either of these

expressions with respect to b and equating the derivative

to zero, there is found b = \p, and hence d = \p. Accord-

ingly b = 2d, or the breadth is double the depth.

Again, let the area a be given, as might be the case

when a definite amount of rock excavation is to be made ;

then bd=a, or d = a/b, and

-
I a sb

in which a is constant. By equating the first derivative

to zero there is found 6
2 = 2a, and hence d 2

=%a. Accord-

ingly b = 2d, or the breadth is double tho depth, as before.

It is seen in the above cases that the maximum of

both v and q occur when r is a maximum, or when r = Jd.



ART. 109 RECTANGULAR CONDUITS 277

It is indeed a general rule that r should be a maximum
in order to secure the least loss of head in friction. The
circle has a greater hydraulic radius than any other figure

of equal area.

In these investigations c has been regarded as constant,

although strictly it varies somewhat for different ratios

of b to d. The rule deduced is, however, sufficiently

close for all practical purposes. It frequently happens
that it is not desirable to adopt the relation b = 2 d, either

because the water pressure on the sides of the conduit

becomes too great or because it is desirable to limit the

velocity so as to avoid scouring the bed of the channel.

Whenever these considerations are more important than

that of securing the greatest discharge the depth is made
less than one-half the breadth.

The velocity and discharge through a rectangular con-

duit are expressed by the general equations

v = c\/rs q=av = ca\/rs

and are computed without difficulty for any given case

when the coefficient c is known. To ascertain this, how-

ever, is not easy, for it is only from recorded experiments
that its value can be ascertained. When the depth of

the water in the conduit is one-half of its width, thus

giving the most advantageous section, the values of c

for smooth interior surfaces may be estimated by the

use of Table 37 for circular conduits, although c is prob-

ably smaller for rectangles than for circles of equal area.

When the depth of the water is less or greater than \d,

it must be remembered that c increases with r. The
value of c also is subject to slight variations with the

slope 5, and to great variations with the degree of rough-
ness of the surface.

Table 40, derived from Smith's discussion of the

experiments of Darcy and Bazin, gives values of c for
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a number of wooden and masonry conduits of rectangular

sections, all of which were laid on the grade of 0.49 percent
or 5=0.0049. The great influence of roughness of surface

in diminishing the coefficient is here plainly seen. For

masonry conduits with hammer-dressed surfaces c may be

as low as 60 or 50, particularly when covered with moss

and slime.

Prob. 109a. Compare the discharge of a trough 3 feet wide

and i foot deep with that of two troughs each 1.5 feet wide and
i foot deep.

Prob. 1096. Find the size of a trough, whose width is double

its depth, which will deliver 125 cubic feet per minute when its

slope is 0.002, taking c as 100.

ART. 110. TRAPEZOIDAL SECTIONS

Ditches and conduits are often built with a bottom

nearly flat and with side slopes, thus forming a trapezoidal

section. The side slope is fixed by the nature of the soil

or by other circumstances, the grade is given, and it may
be then required to ascertain the relation between the bot-

tom width and the depth of water, in order that the section

shall be the most advantageous. This can be done by the

same reasoning as used for the rectangle in the last article,

but it may be well to employ a different method, and thus

be able to consider the subject in a new light.

Let the trapezoidal channel have the bottom width b,

the depth d, and let 6 be the angle made by the side slopes

with the horizontal. Let it be

required to discharge q cubic

units of water per second. Now
q = caVrs and the most advan-

FIG 11Q tageous proportions may be said

to be those that will render the

cross-section a a minimum for a given discharge, for thus

the least excavation will be required. From the figure

) p = b + 2d/sind
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and from these the value of r may be expressed in terms of

a, d, and 6
; inserting this in the formula for q, it reduces to

C 2sa 3

q*a J- -- =
lQ

\sin0

in which the second member is a constant. Obtaining the

first derivative of a with respect to d, and then replacing

q
2

by its value c z
a*rs, there results

which is the relation that renders the area a a minimum,
that is, the advantageous depth is double the hydraulic
radius. Now since a/p =r it is easy to show that

or, the top width of the water surface should equal the

sum of the two side slopes in order to give the most advan-

tageous section. Since c has been regarded constant the

conclusion is not a rigorous one, although it may safely be
followed in practice. As in all cases of an algebraic mini-

mum, a considerable variation in the value of the ratio d/b
may occur without materially affecting the value of the area

a. In many cases it is not possible to have so great a depth
of water as the rule d = 2r requires because of the greater
cost of excavation at such depth, or because width rather

than depth may be needed for other reasons.

When a trapezoidal channel is to be built the general
formulas v =cv/

rs and q=av may be used to obtain a rough'

approximation to the discharge, c being assumed from the

best knowledge at hand.' The formula of Kutter (Art. Ill)

may be used to determine c when the nature of the bed
of the channel is known. For a channel already built, com-

putations cannot be trusted to give reliable values of the

.discharge on account of the uncertainty regarding the

coefficient, and in an important case an actual gaging of

the flow should be made. This is best effected by a weir,
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but if that should prove too expensive, the methods ex-

plained in the next chapter may be employed to give more

precise results than can usually be determined by computa-
tion from any formula.

The problem of determining the size of a trapezoidal
channel to carry a given quantity of water, does not require
c to be determined with great precision, as an allowance

should be made on the side of safety. For this purpose
the following values may be used, the lower ones being for

small cross-sections with rough and foul surfaces, and the

higher ones for large cross-sections with quite smooth and
clean earth surfaces:

For unplaned plank, c = 100 to 120

For smooth masonry, c = 90 to 1 10

For clean earth, c = 60 to 80

For stony earth, c = 40 to 60

For rough stone, c= 35 to 50
For earth foul with weeds, c = 30 to 50

To solve this problem, let a and p be replaced by their values

in terms of b and d. The discharge then is

Now when q, c, 0, and 5 are known, the equation contains

two unknown quantities, b and d. If the section is to be

the most advantageous, b can be replaced by its value in

terms of d as above found, and the equation then has but

one unknown. Or in general, if b=md, where m is any
assumed number, a solution for the depth gives the formula

_ q\msmd + 2)

~c 2
s(m + cotd)

3
sin'6

For the particular case where the side slopes are i on i or

= 45, and the bottom width is to be equal to the water

depth, or m = i
,'
this becomes

4 = 0.863 (2
2

/c
2

<r)*
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These formulas are analogous to those for finding the diam-

eter of pipes and circular conduits, and the numerical oper-

ations are in all respects similar. It is plain that by assign-

ing different values to m numerous sections may be deter-

mined which will satisfy the imposed conditions, and usually
the one is to be selected that will give both a safe velocity

and a minimum cost. In Art. 113 will be found an example
of the determination of the size of a trapezoidal canal.

Prob. llOa. For the most advantageous trapezoidal cross-

section show that the area is d2

(2 cos#)/sin#, and that the bot-

tom width is 2d tan W..

Prob. 1106. If the value of c is 71, compute the depth of a

trapezoidal section to carry 200 cubic feet of water per second,

being 45, the slope 5 being o.ooi and the bottom width being

equal to the depth. Compute also the area of the cross-section

and the mean velocity.

ART. 111. KUTTER'S FORMULA

An elaborate discussion of all recorded gagings of chan-

nels was made by Ganguillet and Kutter in 1869, from

which an important empirical formula was deduced for the

coefficient c in the Chezy formula v=cVrs. The value of

c is expressed in terms of the hydraulic radius/, the slope s,

and the degree of roughness of the surface, and may be

computed when these three quantities are given. When
r is in feet and v in feet per second, Kutter 's formula is

1.811 0.00281
+ 41.65+-

(HI)n

in which n is an abstract number whose value depends only

upon the roughness of the surface. v By inserting this value

of c in the. Chezy formula for v, the meai velocity is made

to depend upon r, s, and the roughness of the surface. The
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following are the values of n assigned by Kutter to different

surfaces :

n = 0.009 for well-planed timber,
n = o.oio for neat cement,
n = o.on for cement with one-third sand,
n = 0.012 for unplaned timber,
n = 0.013 f r ashlar and brick work,
n = 0.015 for unclean surfaces in sewers and conduits,
^ = 0.017 for rubble masonry,
n 0.020 for canals in very firm gravel,
^ = 0.025 for canals and rivers free from stones and weeds,
n 0.030 for canals and rivers with some stones and weeds,
^ = 0.035 for canals and rivers in bad order.

The formula of Kutter has received a wide acceptance
on account of its application to all kinds of surfaces. Not-

withstanding that it is purely empirical, and hence not

perfect, it is to be regarded as a formula of great value, so

that no design for a conduit or channel should be completed
without employing it in the investigation, even if the final

construction be not based upon it. In sewer work it is

extensively employed, n being taken as about 0.015. The
formula shows that the coefficient c always increases with

r, that it decreases with 5 when r is greater than 3.28 feet,

and that it increases with 5 when r is less than 3.28 feet.

When r equals 3.28 feet the value of c is simply i.Sn/n.
It is not likely that future investigations will confirm these

laws of variation in all respects.

In the following articles are given values of c for a few

cases, and these might be greatly extended, as has been

done by Kutter and others.* But this is scarcely necessary

except for special lines of investigation, since for single cases

there is no difficulty in directly computing it for given data.

For instance, take a rectangular trough of unplaned plank

3.93 feet wide on a slope of 4.9 feet in 1000 feet, the water

* Flow of Water in Rivers and Other Channels. Translated, with

additions, by Hering and Trautwine, New York, 1889.
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being 1.29 feet deep. Here 5=0.0049, and r = 0.779 feet.

Then n being 0.012, the value of c is found to be

1.811 0.00281
- + 41.65+-0.012 J

0.0049
/~\

f~\
T r\ I /^ /"\ x% /** Q T \ *J

1 +
Vo.779

/ 0.0028l\
41.65 + -

\* 0.0049 /

The data here used are taken from Table 40, where the actual

value of c is given as 117 ;
hence in this case Kutter's for-

mula is about 5 percent in excess. As a second example, the

following data from the same^ table will be taken : a rect-

angular conduit in neat cement, 6 = 5.94 feet, ^ = 0.91 feet,

5=0.0049. Here #=o.oio, and r=o.6q'j feet. Inserting
all values in the formula, there is found c = 148, which is 8

percent greater than the true value, 138. Thus is shown
the fact that errors of 5 and 10 percent are to be regarded
as common in calculations on the flow of water in conduits

and canals.

Prob. 111. The Sudbury conduit is of horse-shoe form and
lined with brick laid with cement joints one-quarter of an inch

thick, and laid on a slope of 0.0001895. Compute the discharge
in 24 hours when the area is 33.31 square feet and the wetted

perimeter 15.21 feet.

ART. 112. SEWERS
'

Sewers smaller in diameter than 18 inches are always
circular in section. When larger than this they are built

with the section either circular, egg-shaped, or of the horse-

shoe form. The last shape is very disadvantageous when a

small quantity of sewage is flowing, for the wetted perimeter

is then large compared with the area, the hydraulic radius

is small, and the velocity becomes low, so that a deposit of

the foul materials results. As the slope of sewer lines is

often very slight, it is important that such a form of cross-

section should be adopted to render the velocity of flow
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sufficient to prevent this deposit. A velocity of 2 feet per
second is found to be about the minimum allowable limit,

and 4 feet per second need not be usually exceeded.

The egg-shaped section is designed so that the hydraulic
radius may not become small even when a small amount of

sewage is flowing. One of the

most common forms is that

shown in Fig. 112, where the

greatest width DD is two-thirds

of the depth HM. The arch

DHD is a semicircle described

from A as a center. The invert

LML is a portion of a circle de-

scribed from B as a center, the

distance BA being three-fourths

of DD and the radius BM being one-half of AD. Each side

DL is described from a center C so as to be tangent to the

arch and invert. These relations may be expressed more

concisely by
HM = i^D AB=ID BM = \D CL = iD

in which D is the horizontal diameter DD\

Computations on egg-shaped sewers are usually confined

to three cases, namely, when flowing full, two-thirds full,

and one-third full. The values of the sectional areas,

wetted perimeters, and hydraulic radii for these cases, as

given by Flynn,* are apt
Full 1. 1485!)' 3.965!)

Two-thirds full o.^^D 2
2.394!}

One-third full o. 2840^2 1.375!)

0.2897!)

0.3157!)
0.2066!)

This shows that the hydraulic radius, and hence the velocity,

is but little less when flowing one-third full than when

flowing with full section.

* Van Nostrand's Magazine, 1883, vol. 28, p. 138.
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Egg-shaped sewers and small circular ones are formed by
laying consecutive lengths of clay or cement pipe whose in-

terior surfaces are quite smooth when new, but may become
foul after use. Large sewers of circular section are made
of brick, and are more apt to become foul than smaller ones.

In the separate system, where systematic flushing is em-

ployed and the pipes are small, foulness of surface is not

so common as in the combined system, where the storm

water is alone used for this purpose. In the latter case

the sizes are computed for the volume of storm water to be

discharged, the amount of sewage being very small in com-

parison.

The discharge of a sewer pipe enters it at intervals along
its length, and hence the flow is not uniform. . The depth of

the flow increases along the length, and at junctions the size

of the pipe is enlarged. The strict investigation of the

problem of flow is accordingly one of great complexity.
But considering the fact that the sewer is rarely filled, and

that it should be made large enough to provide for contin-

gencies and future extensions, it appears that great pre-

cision is unnecessary. The practice, therefore, is to discuss

a sewer for the condition of maximum discharge, regarding
it as a channel with uniform flow. The main problem is

that of the determination of size; if the form be circular,

the diameter is found, as in Art. 107, by

d = (8g/;rcV7)* = 1.45 (g/c\/f)*

If the form be egg-shaped and of the proportions above ex-

plained, the discharge when running full is

g = acVrs == i . i485L>
2cVo. 2897!).?

from which the value of D is found to be

Thus, when q has been determined and c is known, the re-

quired sizes for given slopes can be computed. The velocity
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should also be found in order to ascertain if it be low enough
to prevent scouring (Art. 127).

Experiments from which to directly determine the co-

efficient c for the flow in sewers are few in number, but

since the sewage is mostly water, it may be approximately
ascertained from the values for similar surfaces. Kutter's

formula has been extensively employed for this purpose,

using 0.015 for the coefficient of roughness. Table 42 gives

values of c for three different slopes and for two classes of

surfaces. The values for the degree of roughness repre-

sented by ^=0.017 are applicable to sewers with quite

rough surfaces of masonry; those for 7^ = 0.015 are appli-

cable to sewers with ordinary smooth surfaces, somewhat

fouled or tuberculated by deposits, and are the ones to be

generally used in computations. By the help of this table

and the general equations for mean velocity and discharge,

all problems relating to flow in sewers can be readily solved.

Prob. 112. The grade of a sewer is one foot in 960, and its

discharge is to be 65 cubic feet per second. What is the diam-

eter of the sewer if circular?

ART. 113. DITCHES AND CANALS

Ditches for irrigating purposes are of a trapezoidal sec-

tion, and the slope is determined by the fall between the

point from which the water is taken and the place of de-

livery. If the fall is large it may not be possible to con-

struct the ditch in a straight line between the two points,,

even if the topography of the country should permit, on

account of the high velocity which would result. A veloc-

ity exceeding 2 feet per second may often injure the bed of

the channel by scouring, unless it be protected by riprap

or other lining. For this reason, as well as for others, the

alignment of ditches and canals is often circuitous.

The principles of the preceding articles are sufficient to

solve all usual problems of uniform flow in such channels
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when the values of the Chezy coefficient c are known. These

are perhaps best determined by Kutter's formula, and for

greater convenience Table 44 has been prepared which gives
their values for three slopes and two degrees of roughness.

By interpolation in this table values for intermediate data

may also be found; for instance, if the hydraulic radius

be 3.5 feet, the slope be i on 1000, and n be 0.025, the

value of c is found to be 74.5.

As an example of the use of the table let it be required
to find the width and depth of a ditch of most advantageous

cross-section, whose channel is to be in tolerably good order,

so that ^=0.025. The amount of water to be delivered is

200 cubic feet per second and the grade is i in 1000, the

side slopes of the channel being i on i. From Art. 110 the

relation between the bottom width and the depth of the

water is, since the angle 6 is 45,

/ 2 \
b =d( -rjr-2 cot 6 =0.828^

\sm 6 }

The area of the cross-section then is

and the wetted perimeter of the cross-section is

whence the hydraulic radius is o.$d, as must be the case

for all trapezoidal channels of most advantageous section.

Now, since d is unknown, c cannot be taken from the table,

and as a first approximation let it be supposed to be 60.

Then in the general formula for discharge the above values

are substituted, giving

200 =6oX i.828d 2
>/o. 5^X0.001

from which d is found to be 5.8 feet. Accordingly ^ = 2.9

feet, and from the table c is about 71. Repeating the com-
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putation with this value of c there is found ^ = 5.44 feet,

which, considering the uncertainty of c, is sufficiently close.

The depth may then be made 5.5 feet, the bottom width is

6=0.828X5.5 =4-55 feet

and the area of the cross-section is

a = i.828X5.5
2 =

55-3 square feet
+

which gives for the mean velocity

v= =3.62 feet per second

This completes the investigation if the velocity is regarded
as satisfactory. But for most earths this would be too

high, and accordingly the cross-section of the ditch must
be made wider and of less depth in order to make the hy-
draulic radius smaller and thus diminish the velocity.

The following statements show approximately the veloc-

ities which are required to move different materials :

0.25 feet per second moves fine clay,

0.5 feet per second moves loam and earth,

i.o feet per second moves sand,

2.0 feet per second moves gravel,

3.0 feet per second moves pebbles i inch in size,

4.0 feet per second moves spalls and stones,

6.0 feet per second moves large stones.

The mean velocity in a channel may be somewhat larger

than these values before the materials will move, because

the velocities along the wetted perimeter are smaller than

the mean velocity. More will be found on this subject in

Art. 127.

Prob. 113. A ditch is to discharge 200 cubic feet per second

with a mean velocity of 3.4 feet per second. If its bottom width
is 1 6 feet and the side slopes are i on i, compute the depth of

water and the slope.
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ART. 114. LARGE STEEL AND WOOD PIPES

Long pipes of large size are usually regarded as conduits

even when running under pressure, for in formula (93) 2 the

ratio h/l may be replaced by the slope s and the diameter

d is four times the hydraulic radius r
;
then it becomes

v V^Sg/f^/rs =

which is the same as the Chezy formula. Values of c may
be directly computed from observed values of v, r, and s,

and this has been done by many experimenters. When
values of c are known, all computations for long pipes may
be made exactly like those for circular conduits.

By Herschel's discussion of the gagings of new steel

riveted pipes made prior to 1897 (Art. 101), the following

values of the coefficient c were derived for such pipes with

taper joints:

Velocity, feet per second, v= i 2 3 4 5 6

for 1.2 feet diameter, c= ........ in 113 116

for 3.5 feet diameter, c= 98 106 109 no 109 109

for 4.0 feet diameter, c= 97 100 102 104 105 105

and the following are values for cylinder jointed pipes:

Velocity, feet per second, o> = i 2 3 4 5 6

for 3.0 feet diameter, c= 86 95 103 in 117 124

for 4.0 feet diameter, c = ioi 109 113 113 112 112

The following values were derived by Marx, Wing, and

Haskins from their gagings of a 6-foot steel riveted pipe
with cylinder joints:

Velocity, i>= I 2 3 4 5

1897
j Chezy, c= no no 108 in

{ Kutter, w=o.oi3 0.014 0.015 0.014

(Chezy, c= 82 98 102 104 105
?9

( Kutter, n=o.oi8 0.016 0.015 0.015 0.015

and the increase in roughness of the surface during two

years' use is indicated by the decrease in c or by the

increase in n.
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For wooden stave pipes the gagings of Noble and those

of Marx, Wing, and Haskins, already referred to in Art. 101,

furnish the following values of the coefficients c, those given
for the 6-foot diameter in the first line being for new pipe,

and those in the second line after two years
'

use :

Velocity, T>= i 2 3 4 5

3.7 feet diameter, c= ... ... (109) 113 116

4.5 feet diameter, c=(ii2) 122 126 128

6.0 feet diameter, c= 100 115 122 125 ...

6.o feet diameter, c= 116 120 121 122 122

Here the two values in parentheses have been found by a

graphic discussion of the results of the observations. For

the first of these pipes the value of Kutter's n ranges from

0.013 to 0.012, while for the second and third it is prac-

tically constant at 0.013.

Prob. 114. Compute the discharge of a new steel riveted pipe
with cylinder joints, and also that of a wooden pipe, the length
of each being 6490 feet, the head 37 feet, and the diameter 60

inches. Compute also the probable discharge after two years'

use.

ART. 115. BAZIN'S FORMULA

In 1897 Bazin proposed a formula for open channels as

the result of an extended discussion of the most reliable

gagings.* In it the coefficient c is expressed in terms of

the hydraulic radius and the roughness of the surface, but

the slope does not enter. It is

,
,-

0.552 +m/vr
(115)

This is for English measures, r being in feet and v in feet

per second, and the quantity m has the following values :

m = o.o6 for smooth cement or matched boards,

m = o.i6 for planks and bricks,

* Annales des ponts et chaussees, 1897, 4" trimestre, pp. 20-70.
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m = 0.46 for masonry,
w = o.85 for regular earth beds,

m = 1.30 for canals in good order,

m = i .75 for canals in very bad order.

Table 46 gives values of c computed from (115) for these

values of m and for several values of r, from which coeffi-

cients may be selected for particular surfaces. It may be

noted that for a perfectly smooth surface where m=o, the

formula gives v = i$&Vrs, which cannot be correct since

uniform velocity could not exist. For this extreme case

Kutter's formula appears to be more satisfactory, for if

n=o the value of c is infinite. However, no empirical

formula can be tested by applying it to an extreme case.

A comparison of the values of c obtained from the

formulas of Kutter and Bazin only serves to emphasize the

uncertainty regarding the selection of the proper coefficient

in particular cases. Kutter's n = o.oio corresponds to

Bazin's m=o.i6, and for several different hydraulic radii,

the coefficients for this degree of roughness are as follows:

Hydraulic radius r in feet,
= i 3 5 7

From Bazin's formula, = 142 149 151 152

From Kutter, s=o.oi, = 156 179 187 196

From Kutter, =0.001, = 147 178 191 203
From Kutter, ^=0.00005, = 140 178 193 209

while the agreement is fair for a hydraulic radius of one foot

it fails to be satisfactory for larger radii. This is perhaps
a severe comparison because it is probable that no channel

in neat cement has ever been constructed having a hydraulic
radius as great as 5 feet, but it serves to show that these

empirical formulas differ widely when applied to unusual

cases. For the present, at least, the formula of Kutter

appears to receive the most general acceptance, but un-

doubtedly the time will come when it will be replaced by
a more satisfactory one. An actual gaging of the discharge

by the method of Art. 123 will always give more reliable

information than can be obtained from any formula.
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For a hydraulic radius of 3.28 feet Kutter's formula for

c reduces to the convenient expression

i.&n/n whence v= Vrs
n

and this may be used for approximate computations when
r lies between 2 and 6 feet. Here n is the roughness factor,

the values of which are given in Art. 111. When r=3.2&
feet, Bazin's formula gives =

136. for brickwork, while

Kutter's gives = 140; for canals in good order Bazin's

formula gives c =69, while Kutter's gives =
72. The com-

parison is very satisfactory, and so close an agreement is

not generally to be expected when computations are made
from different formulas. The formula of Bazin is largely

used in France and England, and that of Kutter in other

countries.

Prob. 115a. Solve Problem 111 by the use of Bazin's coeffi-

cients. Also solve Problem 1106.

ART. 116. OTHER FORMULAS FOR CHANNELS

Many attempts have been made to express the mean

velocity and discharge in a channel by the formulas

v=Crxsy q=aCr*sy

where x and y are derived from the data of observations

by processes similar to those explained in Art. 42. As a

rule these attempts have not proved successful except for

special classes of conduits, as the exponents of r and s vary
with different values of r and with different degrees of

roughness. For conduits having the same kind of surface

a formula of this kind may be established which will give

good results. The values x = f and x = \ are frequently

advocated, y being not far from J; with such values C is

found to vary less for certain classes than the c of the Chezy
formula, and this is the only argument in favor of expo-
nential formulas.



ART. 116 OTHER FORMULAS FOR CHANNELS 293

From their gagings of the Sudbury conduit, Fteley and
Stearns determined a formula for its mean velocity. The
section consists of a part of a circle of 9.0 feet

diameter, having an invert of 13.22 feet

radius, whose span is 8.3 feet and depression

0.7 feet, the axial depth of the conduit being

7.7 feet. The conduit is lined with brick,

having cement joints one-quarter of an inch

thick. The flow was allowed to occur with different depths,
for each of which the discharge was determined by weir

measurement. A discussion of the results led to the con-

clusion that in the portion with the brick lining the coeffi-

cient c had the value i27r-
12 when r is in feet, and hence

results the exponential formula

In a portion of the conduit where the brick lining was coated

with pure cement the coefficient was found to be from 7

to 8 percent greater than 127. In another portion where

the brick lining was covered with a cement wash laid on

with a brush the coefficient was from i to 3 percent greater.

For a long tunnel in which the rock sides were ragged, but

with a smooth cement floor, it was found to be about 40

percent less.*

As a sample of the many exponential formulas which

have been advocated, those derived by Foss may be cited.

For surfaces corresponding to Kutter's values of n less

than 0.017 he finds |

or v

in which C has the following values:

forn= 0.009 o.oio o.on 0.012 0.013 0.015 0-017

(7 = 23 ooo 19 ooo 15 ooo 12 ooo 10 ooo 8000 6000

* Transactions American Society Civil Engineers, 1883, vol. 12, p. 114.

t Journal of Association of Engineering Societies, 1894, vol. 13, p. 295.
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For surfaces corresponding to Kutter's values of n greater

than 0.018, his formula is

or v

and the values of C for this case are

0.025 0.030 0.035
C= 5000 3000 2000 1500

For circular sections running full he also proposes the for-

mula 5 = o.oo6$q^/d*. These formulas are open to objec-

tion on account of the large range in the values of C.

In conclusion, it may be noted that when the velocity

is very low the Chezy formula is not valid. In such a case

the velocity does not vary with the square root of the slope,

but with its first power, the same conditions obtaining as

in pipes (Art. 103). A glacier moving in its bed at the

rate of a few feet per year has a velocity directly propor-

tional to its slope. Water flowing in a channel with a

velocity less than one-quarter of a foot per second follows

the same law, and the formulas of this chapter cannot be

applied. The formula for this case is v = Cr*s, but values

of C are not known.

Prob. 116. Compute the fall of the water surface in a length

of 1000 feet for a ditch where 77 = 3.62 feet per second, 7-^2.75

feet, and n 0.025; first, Foss' formula, and second, by formula

(115) and Bazin's coefficients

ART. 117. LOSSES OF HEAD

The only loss of head thus far considered is that due to

friction, but other sources of loss may often exist. As in

the flow in pipes, these may be classified as losses at en-

trance, losses due to curvature, and losses caused by ob-

structions in the channel or by changes in the area of

cross-section.
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When water is admitted to a channel from a reservoir or

pond through a rectangular sluice there occurs a contraction

similar to that at the entrance

into a pipe, and which may be

often observed in a slight de-

pression of the surface, as at D
in the diagram. At this point,

therefore, the velocity is greater than the mean velocity v,

and a loss of energy or head results from the subsequent

expansion, which is approximately measured by the differ-

ence of the depths d^ and dy the former being taken at the

entrance of the channel, and the latter below the depres-
sion where the uniform flow is fully established. According
to the experiments of Dubuat, the loss of head is

d
l
d-=m

2g

in which m ranges between o and 2 according to the con-

dition of the entrance. If the channel be small compared
with the reservoir, and both the bottom and side edges of

the entrance be square, m may be nearly 2
;
but if these

edges be rounded, m may be very small, particularly if the

bottom contraction is suppressed. The remarks in Chapter
V regarding suppression of the contractipn apply also here,

and it is often important to prevent losses due to contrac-

tion by rounding the approaches to the entrance. Screens

are sometimes placed at the entrance to a channel in order

to keep out floating matter ;
if the cross-section of the chan-

nel is n times that of the meshes of the screen, the loss of

head, according to (74), is (n i)v
2

/2g.

The loss of head due to bends or curves in the channel is

small if the curvature be slight. Undoubtedly every curve

offers a resistance to the change in direction of the velocity,

and thus requires an additional head to cause the flow be-

yond that needed to overcome the frictional resistances.

Several formulas have been proposed to express this loss,
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but they all seem unsatisfactory, and hence will not be

presented here, particularly as the data for determining
their constants are very scant. It

will be plain that the loss of head

due to a curve increases with its

length and decreases with its radius,

as in pipes (Art. 87). When a chan-

nel turns with a right angle, as in Fig.
FIG. 1176 117^ the loss of head may

as equal to the velocity-head, since the experiments of Weis-

bach on such bends in pipes indicate that value. In this

case there is a contraction of the stream after passing the

corner and the subsequent impact causes the loss of head.

The losses of head caused by sudden enlargement or by
sudden contraction of the cross-section of a channel may be

estimated by the rules deduced in Arts. 74 and 75. In order

to avoid these losses changes of section should be made

gradually, so that energy may not be lost in impact. Ob-

structions or submerged dams may be regarded as causing
sudden changes of section, and the accompanying losses of

head are governed by similar laws. The numerical estima-

tion of these losses will generally be difficult, but the prin-

ciples which control them will often prove useful in arrang-

ing the design of a channel so that the maximum work of

the water can be rendered available. But as all losses of

head are directly proportional to the velocity-head v 2

/2g, it

is plain that they can be rendered inappreciable by giving

to the channel such dimensions as will render the mean

velocity very small. This may sometimes be important in

a short conduit or flume which conveys water from a pond
or reservoir to a hydraulic motor, particularly in cases

where the supply is scant, and where all the available head

is required to be utilized.

If no losses of head exist except that due to friction,

this can be computed from (86) if the velocity v and the
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coefficient c be known. For since the value of 5 is v 2

/c
2
r

and also h/l, where h is the fall expended in overcoming
friction, h may be found from

h=ls=lv*/c*r (117)

but this computation will usually be liable to a large per-

centage of error.

As an example of the computations which sometimes
occur in practice the following actual case will be discussed.

From a canal A water is carried through a cast-iron pipe B

Tf\ V

FIG. 117c

to an open wooden forebay C, where it passes through the

orifice D and falls upon an overshot wheel. At the mouth
of the pipe is a screen, the area between the meshes being
one-half that of the cross-section of the pipe. The pipe
is 3 feet in diameter and 32 feet long. The forebay is of

unplaned timber, 5 feet wide and 38 feet long and it has

three right-angled bends. The orifice is 5 inches deep and

40 inches wr
ide, with standard sharp edges on top and sides

and contraction suppressed on lower side so that its coeffi-

cient of contraction is about 0.68 and its coefficient of

velocity about 0.98. The water level in the canal being

3.75 feet above the bottom of the orifice, it is required to

find the loss of head between A and D.

The total head 0:1 the center of the orifice
;

s 3.75 0.208
=
3.542 feet. Let v

1
be the mean velocity in the pipe, v

that in the forebay, and V that in the contracted section

beyond the orifice. The area of the cross-section of the

pipe is 7.07 square feet; that of the forebay, taking the

depth of water as 3.7 feet, is 18.5 square feet, and that of

the contracted section of the jet issuing from the orifice



298 FLOW IN CONDUITS AND CANALS CHAP, ix

is 0.945 square feet. It will be convenient to express all

losses of head in terms of the velocity-head v*/2g, and
hence the first operation is to express v^ and V in terms

of v, or v
1
= 2.62V and V = 19.68^. Starting with the screen,

the loss of head due to expansion of section after the water

passes through it is, by Art. 74,

The loss of head in friction in the pipe, using 0.02 for the

friction factor is, by Art. 86,

,, ,
/ V v

s

h =f~r = i-4d 2g *2g

The loss of head in the expansion of section from the pipe
to the forebay is, by Art. 74,

The loss of head in friction in the forebay, taking c from

Table 46 for the hydraulic radius 1.5 feet and the degree
of roughness w = o.i6, is

cr

The loss of head in the three right-angled bends of the fore-

bay is estimated, as above noted, by

The loss of head on the edges of the orifice is, by Art. 56,

V 2 v 2

hf

=0.041 = 15.9
2

V
2g

Now the total head is expended in these lost heads and in

the velocity-head of the jet issuing from the orifice, or

v 2 V 2 v 2

=29.9--1

-- =417V
2g 2g

h '

2g
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from which the value of v 2

/2g is found to be 0.00851 feet.

Finally the total loss of head before reaching the orifice is

v 2

(29.9 15.9)
= 14.0X0.00851 =0.119 feet

and therefore the water surface at D is o.i 19 feet lower than

that at A
,
and the pressure-head on the center of the orifice

is 3.433 feet. This is the result of the computations, but

on making measurements with an engineer's level the water

surface at D was found to be 0.125 feet lower than that at

A
;
the error of the computed result is therefore 0.006 feet.

Prob. 117. Compute from the above data the velocities v,

v^ and V and the discharge through the orifice. Show that the

head lost in passing through the screen was 0.059 feet, which is

more than half of the total.

ART. 118. VELOCITIES IN A CROSS-SECTION

For a circular conduit running full and under pressure

the velocities in different parts of the section vary similarly

to those in pipes (Art. 83). When it is partly full, so that

the water flows with a free surface, the air resistance along

that surface is much smaller than that along the wetted

perimeter, and hence the surface velocities are greater than

those near the perimeter. Fig. 118 illustrates the varia-

tion of velocities in a cross-section of the Sudbury conduit

when the water was about 3 feet deep, as determined by
the gagings . of Fteley and Stearns.* The 97 dots are

the points at which the velocities were measured by a cur-

rent meter (Art. 40) and the velocity for each point in feet

per second is recorded below it. From these the contour

curves were drawn which show clearly the manner of varia-

tion of velocity throughout this cross-section. Since the

dots are distributed over the area quite uniformly, that area

may be regarded as divided into 97 equal parts, in each of

* Transactions American Society Civil Engineers, 1883, vol. 12, p. 234.
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which the velocity is that observed, and hence the mean
of the 97 observations is the mean velocity (Art. 39). Thus
is found v = 2.62o feet per second, and this is 85 percent of

the maximum observed velocity.

SCALE OF FEET

FIG. 118

If all the filaments of a stream of water in a channel

have the same uniform velocity v, the kinetic energy per
second of the flow is the weight of the discharge multiplied

by the velocity-head ;
or

V 2 V 2 V 3

K =W = wq =wa
2g ^2g 2g

in which W is the weight of the water delivered per second,

w is the weight of one cubic unit, q the discharge per second,

and a the area of the cross-section. For this case, there-

fore, the energy of the flow is proportional to the area of

the cross-section and to the cube of the velocity. Since,

however, the filaments have different velocities this expres-

sion may be applied to the actual flow by regarding v as

the mean velocity. To show that this method will be essen-

tially correct, the above figure may be discussed, and for it

the true energy per second of the flow is

_
v97*\

2g/
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now the ratio of this true kinetic energy to the kinetic energy

expressed in terms of the mean velocity is

Kr

= v
l

* + v
2

3 + . . . +v97
3

K
"

By cubing each individual velocity and also the mean ve-

locity, there is found Kf = 0.9992^, so that in this instance

the two energies are practically equal, and hence it is prob-
able that in most cases computations of energy from mean

velocity give results essentially correct.

Prob. 118. Draw a vertical plane through the middle of Fig.

118 and construct a longitudinal vertical section showing the

distribution of velocities. Also draw a horizontal plane through
the region of maximum velocity and construct a longitudinal

horizontal section. Ascertain whether the curves of velocity for

these sections are best represented by parabolas or by ellipses.

ART. 119. COMPUTATIONS IN METRIC MEASURES

(Art. 106) The coefficient c in the Chezy formula de-

pends upon the linear unit of measure. Let c
x
be the value

when v and r are expressed in feet and c
2
the value when v

and r are expressed in meters, and let gl
and g2

be the cor-

responding values of the acceleration of gravity. Then
since c = V8g//, it is seen that

.80/32 .16 =0.5520,

Hence any value of c in the English system may be trans-

formed into the corresponding metric value by multiplying

by 0.552. The metric value of c for conduits and canals

usually lies between 16 and 100.

(Art. 107) Table 38 gives values of the Chezy coeffi-

cient c for circular conduits, full or partly full. In using
it a tentative method must be employed, and for this pur-

pose there may be used at first,

mean Chezy coefficient c =68
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and then, after v has been computed, a new value of c is

taken from the table and a new v is found. For example,
let it be required to find the velocity and discharge of a

circular conduit of 1.5 meters diameter when laid on a

grade of 0.8 meters in 1000 meters. First,

i) = 68XiVi-5 X 0.0008 = 1. 1 8 meters per second

and for this velocity the table gives about 77 for c. A
second computation then gives ^ = 1.33 meters per second

and from the table c is 78.2. With this value is found

^ = 1.35 meters per second, which maybe regarded as the

final result. When running full the discharge of this con-

duit is o.7854Xi.5
2

Xi-35 =2.39 cubic meters per second.

(Art. 108) Table 39 is the same for all systems of

measures. The results on page 275, for Bazin's semi-

circular conduits of 1.25 meters diameter on a slope

5 =0.0015, are as follows, when all dimensions are in meters:.

For cement lining. For mortar lining.

d' r v C dr r v c

0.625 0.314 1.85 85 0.625 0.312 1.69 78

0.491 0.264 1-61 81 0.515 0.275 1.51 75

0.314 0.185 1.27 76 0.332 0.194 1.18 69

0.180 0.112 0.92 71 o.i 86 0.116 0.88 66

Here the coefficient c for any depth d' may be roughly ex-

pressed by c
l 3o(^d d'), where c

l
is the coefficient for

the conduit when running half full.

(Art. 109) Table 41 gives metric values of c for wooden

and rectangular sections on a slope 5 = 0.0049, as deter-

mined by the work of Darcy and Bazin.

(Art. 110) In designing channels in earth the following,

values may be used for preliminary computations:

for unplaned plank, c = 55 to 66

for smooth masonry, c = 50 to 61

for clean earth, c = 33 to 40
for stony earth, . c = 22 to 33

for rough stone, = 19 to 28

for earth foul with weeds, = 17 to 28



ART. 119 COMPUTATIONS IN METRIC MEASURES 303

(Art. Ill) When r is in meters and v in meters per
second Kutter's formula takes the form

i 0.00155- + 23+-n s

.ooi
-

vV
in which the number n depends upon the roughness of the

surface, its values being those given on page 282. It may
be noted that when the hydraulic radius r is one meter,

the value of c is i/n.

(Art. 112) Metric coefficients for sewers will be found'

in Table 43. As these are given to the nearest unit only,

the error in using them is slightly greater than with the

larger coefficients of the English system. In important
cases the values of c may be directly computed from Kutter's

formula.

(Art. 113) Table 45 in metric measures corresponds to

Table 44 in English measures and is used in the same manner.

(Art. 114) The metric coefficients c for steel and wood

pipes may be obtained from those in the text by mul-

tiplying by 0.552, while the velocities and diameters may
easily be replaced by metric equivalents with the help of

Table 3.

(Art. 115) The values of c in Table 47 have been taken
from the more extended table published in 1897 by Bazin,
while those in Table 46 have been computed by (115).
In metric measures Bazin's formula is

i +m/Vr
in which m has the values given on page 290.

(Art. 116) The metric formula for the Sudbury conduit

is ^ = 8o.9r-
625- 5

,
and Foss' formula for circular conduits

or large pipes when running full is s=o.on8q-"-/d
5

.
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Prob. 119a. Compute the value of c for a circular conduit 1.4

meters in diameter which delivers 4.86 cubic meters per second

when running full, its slope being 0.008.

Prob. 1196. Find the hydraulic radius for a circular conduit

of 1.6 meters diameter when the water is 1.2 meters deep.

Prob. 119c. If the value of c is 30, compute the depth of a

trapezoidal section to carry 10 cubic meters per second, the

slope s being 0.0015, the bottom width double the depth, and
the sides making an angle of 34 degrees with the horizontal.

Prob. 119d. A conduit lined with neat cement has a cross-

section of 3.45 square meters and a wetted perimeter of 5.02

meters and its slope is 0.00025. Compute the discharge in liters

per 24 hours, (a) by Kutter's formula, and (6) by Bazin's

formula.
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CHAPTER X

THE FLOW OF RIVERS

ART. 120. GENERAL CONSIDERATIONS

Steady flow in a river channel occurs when the same

quantity of water passes each section in one second; here

the mean velocities in different sections vary inversely as

the areas of those sections. Uniform flow is that particular

case of steady flow where the sections considered are equal
in area. Uniform flow and some other cases of steady flow

will be mainly considered in this chapter. Non-steady flow

occurs when the stage of a river is rising or falling, and Art.

126 treats of this case.

No branch of hydraulics has received more detailed

investigation than that of the flow in river channels, and

yet the subject is but imperfectly understood. The great

object of all these investigations has been to devise a sim-

ple method of determining the mean velocity and discharge
without the necessity of expensive field operations. In gen-

eral it may be said that this end has not yet been attained,

even for the case of uniform flow. Of the various formulas

proposed to represent the relation of mean velocity to the

hydraulic radius and the slope, none has proved to be of

general practical value except the empirical one of Chezy

given in the last chapter, and this is often inapplicable

on account of the difficulty of measuring the slope 5 and

determining the coefficient c. The fundamental equations

for discussing the laws of variation in the mean velocity v

and in the discharge q are

where a is the area of the cross-section and r its hydraulic
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radius, and all the general principles of the last chapter are

to be taken as directly applicable to uniform flow in natural

channels.

Kutter's formula for the value of c is probably the best

in the present state of science, although it is now generally

recognized that it gives too large values for small slopes.

In using it the coefficients for rivers in good condition may
be taken from Table 44, but for bad regimen n is to be

taken at 0.03, and for wild torrents at 0.04 or 0.05. It is,

however, too much to expect that a single formula should

accurately express the mean velocity in small brooks and

large rivers, and the general opinion now is that efforts to

establish such an expression will not prove successful. In

the present state of the science no engineer can afford in

any case of importance to rely upon a formula to furnish

anything more than a rough approximation to the discharge
in river channels, but actual field measurements of velocity

must be made.

When these formulas are used to determine the dis-

charge of a river a long straight portion or reach should be

selected where the cross-sections are uniform in shape and

size. The width of the stream is then divided into a num-
ber of parts and soundings taken at each point of division.

The data are thus obtained for computing the area a and
the wetted perimeter p, from which the hydraulic depth r

is derived. To determine the slope 5 a length / is to be

measured, at each end of which bench-marks are established

whose difference of elevation is found by precise levels.

The elevations of the water surfaces below these benches

are then to be simultaneously taken, whence the fall h in

the distance / becomes known. As this fall is often small,

it is very important that every precaution be taken to

avoid error in the measurements, and that a number of

them be taken in order to secure a precise mean. Care

should be observed that the stage of water is not varying
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while these observations are being made, and for this and

other purposes a permanent gage board must be established.

It is also very important that the points upon the water

surface which are selected for comparison should be situated

so as to be free from local influences such as eddies, since

these often cause marked deviations from the normal sur-

face of the stream. If hook gages can be used for referring

the water levels to the benches probably the most accurate

results can be obtained. It has been observed that the

surface of a swiftly flowing stream is not a plane, but a

cylinder, which is concave to the bed, its highest elevation

being where the velocity is greatest, and hence the two

points of reference should be located similarly with respect

to the axis of the current. In spite of all precautions, how-

ever, the relative error in h will usually be large in the case

of slight slopes, unless / be very long, which cannot often

occur in streams under conditions of uniformity.

Owing to the uncertainty of determinations of discharge
made in the manner just described, the common practice is

to gage the stream by velocity observations, to which sub-

ject, therefore, a large part of this chapter will be devoted.-

The methods given are equally applicable to conduits and

canals, and in Art. 125 will
.
be found a summary which

briefly compares the various processes.

Prob. 120. Which has the greater discharge, a stream 2 feet

deep and 85 feet wide on a slope of i foot per mile, or a stream

3 feet deep and 40 feet wide on a slope of 2 feet per mile?

ART. 121. VELOCITIES IN A CROSS-SECTION

The mean velocity v is the average of all the velocities

of all the small sections or filaments in a cross-section (Art.

105). Some of these individual velocities are much smaller,

and others materially larger, than the mean velocity.

Along the bottom of the stream, where the ffictional resist-

ances are the greatest, the velocities are the least; along
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FIG. 121

the center of the stream they are the greatest. A brief

statement of the general laws of variation of these velocities

will now be made.

In Fig. 121 there is shown at A a cross-section of a
stream with contour curves of equal velocity; here the

greatest velocity is seen to be near the deepest part of the

section a short dis-

tance below the sur-

face. At B is shown
a plan of the stream

with arrows roughly

representing the sur-

face velocities
; the

greatest of these is

seen to be near the deepest part of the channel, while the

others diminish toward the banks, the curve showing the

law of variation resembling a parabola. At C is shown

by arrows the variation of velocities in a vertical line, the

smallest being at the bottom and the largest a short dis-

tance below the surface; concerning this curve there has.

been much contention, but it is commonly thought to be

a parabola whose axis is horizontal. These are the general

laws of the variation of velocity throughout the cross-sec-

tion; the particular relations are of a complex character
,.

and vary so greatly in channels of different kinds that it

is difficult to formulate them, although many attempts
to do so have been made. Some of these formulas which
connect the mean velocity with particular velocities, such

as the maximum surface velocity, mid-depth velocity in

the axis of the stream, etc., will be given in Art. 124.

Humphreys and Abbot deduced in 1861 for the Missis-

sippi river* an equation of the mean curve of mean ve-

locities in a vertical line, namely,

V =
3. 261 -0.7922(^)2

* Physics and Hydraulics of the Mississippi River, edition of 1876, p. 243.



ART. 121 VELOCITIES IN A CROSS-SECTION 309

in which V is the velocity at any distance y above or below

the horizontal axis of the parabolic curve and d is the

depth of the water, the axis being at the distance 0.297^

below the surface. The depth of the axis was found, how-

ever, to vary greatly with the wind, an up-stream wind

of force 4 depressing it to mid-depth and a down-stream

wind of force 5.3 elevating it to the surface.

In a straight channel having a bed of a uniform nature

the deepest part is near the middle of its width, while the

two sides are approximately symmetrical. In a river

bend, however, the deepest part is near the outer bank,
while on the inner side the water is shallow; the cause of

this is undoubtedly due to the centrifugal force of the cur-

rent, which, resisting the change in direction, creates cur-

rents which scour away the outer bank or prevents deposits

from forming there. It is well known to all that rivers

of the least slope have the most bends
; perhaps this is due

to the greater relative influence of such cross currents

(see Art. 147).

The theory of the flow of water in channels, like that of

flow in pipes, is based upon the supposition of a mean ve-

locity which is the average of all the parallel individual veloc-

ities in the cross-section. But in fact there are numerous
sinuous motions of particles from the bottom to the surface

which also consume a portion of the lost head. The influ-

ence of these sinuosities is as yet but little understood;
when in the future this becomes known a better theory

may be possible.

Prob. 121a. Find the approximate - discharge of a stream
whose width is 200 feet, depth 3 feet, slope 0.6 feet per mile,

when the bottom is very stony and in bad condition.

Prob. 1216. Show that the above formula for velocities in

a vertical can be put into the form

in which x is the depth below the surface.
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ART. 122. VELOCITY MEASUREMENTS

The method for measuring the discharge of streams

which has been most extensively used is by observing the

velocity of flow by the help of floats. Of these there are

three kinds surface floats, double floats, and rod floats.

Surface floats should be sufficiently submerged so as to

thoroughly partake of the motion of the upper filaments,

and should be made of such a form as not to readily be

affected by the wind. The time of their passage over a

given distance is determined by two observers at the ends

of a base on shore by stop-watches ;
or only one watch may

be used, the instant of passing each section being signalled

to the time-keeper. If / be the length of the base, and t

the time of passage in seconds, the velocity of the float is

i) = l/t. When there are many observations the numerical

work of division is best done by taking the reciprocals of t

from a table and multiplying them by /, which for con-

venience may be an even number, such as 100 or 200 feet.

A sub-surface float consists of a small surface float

connected by a fine cord or wire with the large real float,

which is weighted so as to remain submerged and keep
the cord reasonably taut. The surface float should be

made of such a form as to offer but slight resistance to

the motion, while the lower float is large, it being the

object of the combination to determine the velocity of the

.lower one alone. This arrangement has been extensively

used, but it is probable that in all cases the velocity of

the large float is somewhat affected by that of the upper

one, as well as by the friction of the cord. In general

the use of these floats is not to be encouraged, if any
other method of measurement can be devised.

The rod float is a hollow cylinder of tin, which can

be weighted by dropping in pebbles or shot so as to stand

vertically at any depth. When used for velocity determi-
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nations they are weighted so as to reach nearly to the

bottom of the channel, and the time of passage over a

known distance determined as above explained. It is

often stated that the velocity of a rod float is the mean

velocity of all the filaments in contact with it. Theoretically

this is not the case, but the rod moves a little slower.

However, in practice a rod cannot reach quite to the bed

of the stream, and Francis has deduced the following

empirical formula for rinding the mean velocity Vm of

all the filaments between the surface and the bed from
the observed velocity Vr of the rod :

Vm = Vr(i.oi2-o.ii6\
/dr/d)

in which d is the total depth of the stream and df the

depth of water below the bottom of the rod.* This ex-

pression is probably not a valid one, unless df

is less than

about one-quarter of d\ usually it will be best to have

d' as small as the character of the bed of the channel

will allow.

The log used by seamen for ascertaining the speed
of vessels may be often conveniently used as a surface

float when rough determinations only are required, it

being thrown from a boat or bridge. The cord of course

must be previously stretched when wet, so that its length

may not be altered by the immersion; if graduated by
tags or knots in divisions of six feet, the log may be allowed

to float for one minute, and then the number of divisions

run out in this time will be ten times the velocity in feet

per second.

The determination of particular velocities in streams

by means of floats appears to be simple, but in practice

many uncertainties are found to arise, owing to wind,

eddies, local currents, etc., so that a number of observations

are generally required to obtain a precise mean result.

* Lowell Hydraulic Experiments, 4th Edition, p. 195.
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For conduits, canals, and for many rivers the use of a

current meter will often be found to be more satisfactory

and less expensive if many observations are required.

The current meter, described in Art. 40, is generally

operated from a bridge in the case of a small stream,

but it must be often operated from an anchored boat

in large rivers. In the latter case precise measurements

of surface velocities may be difficult on account of the

eddies around the boat. Even when operated from a

bridge successful operation is not easy when the velocity

exceeds 4 or 5 feet per second, and special expedients are

necessary to keep the meter in position. However, the

current meter, accurately rated, will in general do better

work than can be done by floats.

Other current indicators less satisfactory for work in

streams are the Pitot tube and the hydrometric pendulum,
shown in Fig. 122. The former has not been found valua-

ble for river measurements, although it has proved to be
an instrument of great precision for other classes of work

(Art. 41), and the latter, al-

though used by some of the early

hydraulicians, has long been dis-

: carded as giving only rough in-

5 - dications. The same may be

said of the hydrometric balance,
FIG. 122 . . .

in which weights measure the

intensity of the pressure of the current, and of the torsion

balance, in which the pressure of the current on a sub-

merged plate causes the tightening of a spring. These

instruments were used only for measurements of velocities

in small channels, and they are now mere curiosities.

Prob. 122. A rod float runs a distance of 100 feet in 42 sec-

onds, the depth of the stream being 6 feet, while the foot of the

rod is 6 inches above the bottom. Compute the mean velocity
in the vertical.
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ART. 123. GAGING THE DISCHARGE

For a very small stream the most precise method of

finding the discharge is by means of a weir constructed

for that purpose. Streams of considerable size often

have dams built across them, and these may also be used
like weirs with the help of the coefficients given in Art.

68, if there be no leakage through the dam. When there

are no dams the method now to be explained is generally

employed. In all cases the first step should be to set up
a board gage, graduated to feet and tenths, and locate

its zero with respect to the datum plane used in the vicinity,

so that the stage of water may at any time be determined

by reading the gage.

The place selected for the gaging should be one where

the flow is uniform. One or more sections at right angles

to the direction of the current are to be established, and

soundings taken at intervals across the stream upon them,
the water gage being read while this is done. The dis-

tances between the places

of soundings are meas-

ured either upon a cord

stretched across the stream

or by other methodsknown
to surveyors. The data are thus obtained for obtaining
the areas av a

2 ,
a

3 , etc., shown upon Fig. 123, and the

sum of these is the total area a. Levels should be run
out upon the bank beyond the water's edge, so that in

case of a rise of the stream the additional areas can be
deduced. If a current meter is used, but one section

is needed; if floats are used, at least two are required,
and these must be located at a place wiiere the channel

is of as uniform size as possible.

The mean velocities vv v
2 ,

v
z , etc., are next to be de-

termined for each of the sub-areas. If a current meter
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is used, this may be done by starting at one side of a

subdivision, and lowering it at a uniform rate until the
bottom is nearly reached, then moving it a few feet hori-

zontally and raising it to the surface, then moving it a
few feet horizontally and lowering it, and thus continuing
until the sub-area has been covered. The velocity then

deduced from the whole number of revolutions during
the time of immersion is the mean velocity for the sub-

area. Or, the meter may be simply raised and lowered

in a vertical at the middle of the sub-area, and the result

will be a close approximation to the mean velocity in

the sub-area; this in fact is the usual method employed,
the division lines of the sub-areas being taken as near to-

gether as 5 or 10 feet. When rod floats are used they
are started above the upper section, and the times of

passing to the lower one noted, as explained in Art.

122, the velocity deduced from a float at the middle of

a sub-area being taken as the mean for that area. It will

be found that the rod floats are more or less affected by
wind, the direction and intensity of which should always
be noted.

The discharge of the stream is the sum of the discharges

through the several sub-areas, or

q = ajil + a
2
v
2 + a

3
v

3 + etc.

and if this be divided by the total area a, the mean velocity

for the entire section is determined.

The following notes give the details of a gaging of the

Lehigh River, near Bethlehem, Pa., made at low water in

1885 by the use of rod floats. The two sections were 100

feet apart, and each was divided into 10 divisions of 30 feet

width. In the second column are given the soundings in

feet taken at the upper section, in the third the mean of

the two areas in square feet, in the fourth the times of

passage of the floats in seconds, in the fifth the velocities
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in feet per second, which were obtained by dividing 100

feet by the times, and in the last are the products a^, a
2
v
2 ,

which are the discharges for the subdivisions av a
2 ,

etc.

The total discharge is found to be 826 cubic feet per second,

Subdivisions
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ART. 124. APPROXIMATE GAGINGS

If by any means the mean velocity v of a stream can be

found, the discharge is known from the relation q=av, the

area a being measured as explained in the last article. An
approximate value of v may be ascertained by one or more
float measurements by means of relations between it and

the observed velocity of the floats which have been deduced

by the discussion of observations. Such measurements are

always less expensive than those explained in Art. 123,

and often give information sufficient for the inquiry in hand.

The ratio of the mean velocity v to the maximum Surface

velocity V has been found to usually lie between 0.7 and

0.85, and about 0.8 appears to be a rough mean value.

Accordingly,
v = o.SV]

from which, if V be accurately determined, v can be com-

puted with an uncertainty usually less than 20 percent

Many attempts have been made to deduce a more reliable

relation between v and V. The following rule derived

from the investigations of Bazin makes the relation de-

pendent on the coefficient c, the value of which for the par-

ticular stream tinder consideration is to be obtained from

the evidence presented in the last chapter:

It is probable, however, that the relation depends more on

the hydraulic radius and the shape of the section than upon
the degree of roughness of the channel, which c mainly

represents.

The ratio of the mean velocity v in any vertical to its

surface velocity V1
is less variable, for it is found to lie

between 0.85 and 0.92, or
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may be used with but an uncertainty of a few percent. If

several velocities V
lt
V

2 , etc., be determined by surface

floats, the mean velocities vv v
2 , etc., for the several sub-

areas a
lf

a
2 , etc., are known, and the discharge is q=a1

v
l +

a
2
v

2 + etc., as before explained. This method will usually

prove unsatisfactory as compared with the use of rod floats.

Since the maximum surface velocity is greater than the

mean velocity v, and since the velocities at the shores are

usually small, it follows that there are in the surface two

points at which the velocity is equal to v. If by any means
the location of either of these could be discovered, a single

velocity observation would give directly the value of v.

The position of these points is subject to so much variation

in channels of different forms, that no satisfactory'method
>of locating them has yet been devised.

The influence of wind upon the surface velocities is so

great that these methods of determining v may not give

good results except in calm weather. A wind blowing up
stream decreases the surface velocities, and one blowing
down stream increases them, without materially affecting

the mean velocity and discharge.

By means of a sub-surface float, or by a current meter,

the velocity V at mid-depth in any vertical may be meas-

ured. The mean velocity v^ in that vertical is very closely

1^=0.987'

In this manner the mean velocities in several verticals across

the stream may be determined by a single observation at each

point, and these may be used, as in Art. 123, in connection

with the corresponding areas to compute the discharge.

It was shown by the observations of Humphreys and

Abbot on the Mississippi that the' velocity V is practically

unaffected by wind, the vertical velocity curves for different

intensities of wind intersecting* each other at mid-depth.
The mid-depth velocity is therefore a reliable quantity to
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determine and use, particularly as the corresponding mean

velocity v
l
for the vertical rarely varies more than i or 2

percent from the value 0.98^'.

Prob. 124. A stream 60 feet wide is divided into three sec-

tions, having the areas 32, 65, and 38 square feet, and the surface

velocities near the middle of these are found to be 1.3, 2.6, and

1.4 per second. What is the approximate mean velocity of the

stream and its discharge?

ART. 125. COMPARISON OF METHODS

This chapter, together with those preceding, furnishes

many methods by which the quantity of water flowing

through an orifice, pipe or channel, may be determined.

A few remarks will now be made by way of summary
and comparison.

The method of direct measurement in a tank is always
the most accurate, but except for small quantities is

expensive, and for large quantities is impracticable. Next
in reliability and convenience come the methods of gaging

by orifices and weirs. An orifice one foot square under

a head of 25 feet will discharge about 40 cubic feet per

second, which is as large a quantity as can be usually

profitably passed through a single opening. A weir 20

feet long with a depth of 2.0 feet will discharge about

200 cubic feet per second, which may be taken as the

maximum quantity that can be conveniently thus gaged.
The number of weirs may be indeed multiplied for larger

discharges, but this is usually forbidden by the expense of

construction. Hence for larger quantities of water indi-

rect measurements must be adopted.

The formulas deduced for the flow in pipes and channels

in Chaps. VIII and IX enable an approximate estimation

of their discharge to be determined when the coefficients

and data which they contain can be closely determined.

The remarks in Art. 120 indicate the difficulty of ascertain-



ART. 125 COMPARISON OF METHODS 319

ing these data for streams, and show that the value of

the formulas lies in their use in cases of investigation

and design rather than for precise gagings. For pipes an

accurately rated water meter is a convenient method of

measuring the discharge, while for conduits it will often

be found difficult to devise an accurate and economical

plan for precise determinations, unless the conditions

are such that the discharge may be made to pass over a

weir or to be retained in a large reservoir the capacity
of which is known for every tenth of a foot in depth.

For large aqueducts, and for canals and streams, the

only available methods are those explained in this chapter.

Surface floats are not to be recommended except for rude

determinations, because they are affected by wind and
because the deduction of mean velocities from them is

always subject to much uncertainty. Nevertheless many
cases arise in practice where- the results found by the use

of surface floats are sufficiently precise to give valuable

information concerning the flow of streams. The double

float for sub-surface velocities is used in -deep and rapid

rivers, where a current meter cannot be well operated
on account of the difficulty of anchoring a boat. In

addition to its disadvantages already mentioned may be

noted that of expense, which becomes large when many
observations are to be taken.

The method of determining the mean velocities in

vertical planes by rod floats is very convenient in canals

and channels which are not too deep or too shallow. The

precision of a velocity determination by a rod float is

always much greater than that of one taken by the double

float, so that the former is to be preferred when circum-

stances will allow. In cases where the velocity is rapid,

or where there are no bridges over the stream, rod floats

may often give results more reliable than can be obtained

by any other method.
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Current-meter observations are those which now

generally take the highest rank for precision in cases

where the conditions are not abnormal. The first cost

of the outfit is greater than that required for rod floats,

but if much work is to be done it will prove the cheaper.

The main objection is to the errors which may be intro-

duced from the lack of proper rating: this is required

to be done at intervals, as it is found that the relation

between the velocity and the recorded number of revo-

lutions sometimes changes during use.

In the execution of hydraulic operations which involve

the measurement of water a method is to be selected

which will give the highest degree of precision with

given expenditure, or which will secure a given degree
of precision at a minimum expense. Any one can build

a road, or a water-supply system; but the art of engineer-

ing teaches how to build it well, and at the least cost of

construction and maintenance. Similarly the science of

hydraulics teaches the laws of flow and records the results

of experiments, so that when the discharge of a conduit

is to be measured or a stream is to be gaged the engineer

may select that method which will furnish the required

information in the most satisfactory manner and at the

least expense.

Prob. 125. Consult Humphreys and Abbot's Physics and

Hydraulics of the Mississippi River (Washington, 1862 and

1876), and find two methods of measuring the velocity of a

current different from those described in the preceding pages.

ART. 126. VARIATIONS IN DISCHARGE

When the stage of water rises and falls a corresponding
increase or decrease occurs in the velocity and discharge.

The relation of these variations to the change in depth

may be approximately ascertained in the following manner,

the slope of the water surface being regarded as remaining
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uniform: Let the stream be wide, so that its hydraulic

radius is nearly equal to the mean depth d\ then

v = cVds = cs^cfi

Differentiating this with respect to v and d gives

Here the first member is the relative change in velocity

when the depth varies from d to d dd, and the equation

hence shows that the relative change in velocity is one-

half the relative change in depth. For example, a stream

3 feet deep, and with a mean velocity of 4 feet per second,

rises so that the depth is 3.3 feet; then ^ = 4X^X0.3/3 =

0.2, and the velocity becomes 4 + 0.2 =4.2 feet per second.

In the same manner the variation in discharge may
be found. Let b be the breadth of the stream, then

q = cbdVds = tbs^cft

and by differentiating with respect to q and d,

dq/q =%dd/d

Hence the relative change in discharge is ij times that of

the relative change in depth. This rule, like the preceding,

supposes that dd is very small, and will not apply to large

variations in depth.

The above conclusions may be expressed as follows:

If the mean depth changes i percent, the velocity changes

0.5 percent, and the discharge changes 1.5 percent. They
are only true for streams with such cross-sections that the

hydraulic radius may be regarded as proportional to the

depth, and,even for such sections are only exact for small

variations in d and v. They also assume that the slope

5 remains the same after the rise or fall as before; this

will be the case if a condition of permanency is established,

but, as a rule, while the stage of water is rising the slope

is increasing, and while falling it is decreasing.



322 FLOW OF RIVERS CHAP. X

Gages for reading the stages of water are now set up
on many rivers and daily observations are taken. Such

a gage is usually a vertical board graduated to feet and

tenths and set with its zero below the lowest known water

level. Another form is the box and chain gage which

consists of a box fastened on a bridge with a graduated

scale within it and a chain that can be let down to the

water level. Such observations of the daily stage of a

river are of great value in planning engineering constructions,.

and they are now made at many stations by the United

States government through the Department of Agriculture

and the Geological Survey Bureau.

When several measurements of the discharge of a

stream have been made for different stages of water a

curve may be drawn to show the law of variation of dis-

charge, and from this curve the discharge corresponding

to any given stage of water may be approximately ascer-

tained. These discharge curves have been determined

by the U. S. Geological Survey for many stations where

daily records of the water stage are kept.* Fig. 126 shows
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is over 100 ooo cubic feet per second. Each station on

a river has its own distinctive discharge curve, for the

local topography determines the heights to which the

water level will rise.

Prob. 126. A stream of 4 feet mean depth delivers 800 cubic

feet per second. What will be the discharge when the depth is

decreased to 3.87 feet? If the stream is 100 feet wide, what
will be the velocity when the depth is 4.12 feet?

ART. 127. TRANSPORTING CAPACITY OF CURRENTS

The fact that the water of rapid streams transports large

quantities of earthy matter, either in suspension or by
rolling it along the bed of the channel, is well known, and
has already been mentioned in Art. 114. It is now to be

shown that the diameters of bodies which can be moved

by the pressure of a current vary as the square of its ve-

locity, and that their weights vary as the sixth power of

the velocity.

When water causes sand or pebbles to roll along the bed
of a channel it must exert a force approximately propor-
tional to the square of the velocity and to the area exposed

(Art. 29), or if d be the diameter of the body and C a con-

stant, the force required to move it is

F =CdV
But if motion just occurs, this force is also proportional to

the weight of the body, because the frictional resistances of

one body upon another varies as the normal pressure or

weight. And as the weight of a sphere varies as the cube

of the diameter, it follows that

d*=CdW or d = Cv*

Now since d varies as v 2
,
the weight of the body, which is

proportional to d 3

,
must vary as ve

;
which proves the prop-

osition enunciated above. Hence an increase in velocity

causes far greater increase in transporting capacity.
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Since the weight of sand and stones when immersed in

water is only about one-half their weight in air, the fric-

tional resistances to their motion are slight, and this helps
to explain the circumstance that they are so easily trans-

ported by currents of moderate velocity. It is found by
observation that a pebble about one inch in diameter is

rolled along the bed of a channel when the velocity is about

3J feet per second
; hence, according to the above theoretical

deduction, a velocity five times as great, or 17^ feet per

second, will carry along stones of 25 inches diameter. This

law of the transporting capacity of flowing water is only
an approximate one, for the recorded experiments seem

to indicate that the diameters of moving pebbles on the

bed of a channel do not vary quite as rapidly as the square
of the velocity. The law, moreover, is applicable only to

bodies of similar shape, and cannot be used for comparing
round pebbles with flat spalls.

The following table gives the velocities on the bed or

bottom of the channel which are required to move the

materials stated. The corresponding approximate mean
velocities in the cross-section given in the last column are

derived from the empirical formula deduced by Darcy,

in which v f
is the bottom and v the 'mean velocity. The

bottom or transporting velocities were deduced by Dubuat
from experiments in small troughs, and hence are probably

slightly less than the velocities which would move the same

materials in channels of natural earth.

Bottom Mean
velocity velocity

Clay, fit for pottery, 0.3 0.4

Sand, size of anise-seed, 0.4 0.5

Gravel, size of peas, 0.6 0.8

Gravel, size of beans, 1.2 1.6

Shingle, about i inch in diameter, 2.5 3.5

Angular stones
,
about i J inches

, 3.5 4.5
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The general conclusion to be derived from these figures is

that ordinary small, loose earthy materials will be trans-

ported or rolled along the bed of a channel by velocities of
2 or 3 feet per second. It is not necessarily to be inferred

that this movement of the materials is of an injurious
nature in streams with a fixed regimen, but in artificial

canals the subject is one that demands close attention.

The velocity of the moving objects after starting has been
found to be usually less than half that of the current.*

Prob. 127a. A stone weighing 0.5 pounds is moved by a cur-

rent of 3 feet per second
;
what is the weight of the largest stone

that can be moved by a current of 9 feet per second?

Prob. 1276. In the early history of the earth the moon was
half its present distance from the earth's center, and the tides

were about eight times as high as at present. It is supposed that
these tides rolled over the low lands and moved great rocks from

place to place. The greatest velocity of such a wave is \/gd
where d is the depth of the water. What is the probable weight
and size of the largest rock that such a current could move?

ART. 128. INFLUENCE OF DAMS AND PIERS

When a dam is built across a stream it is often desired

to compute its height so that the water level may stand at

a given elevation. Thus, in the figures, CC represents the

FIG. 128a FIG. 1286

surface of the stream before the construction of the dam,
the depth of the water being D, and it is required to find

the height G of the dam so that the water surface may be

raised the vertical distance d. There are two cases, the

* Herschel, on the erosive and abrading power of water, in Journal

Franklin Institute, 1878, vol. 75, p. 330.
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first where the crest is above the original water level CCy

and the second where it is below that level; in both cases

the discharge q must be known in order to compute the

height of the dam.

When the crest is not submerged, as in Fig. 128a, it is

seen that the value of G is D + d H, where H is the head

on the crest. Now from Art. 64 the value of q is mb(H + i$h)
$

where b is the length of the crest and h is the head due to

velocity of approach. Hence there results

in which M is to be taken from Art. 68 or from Table 29.

For example, let the discharge be 18 ooo cubic feet per

second, and let the width of the stream above the dam be

600 feet, and the width on the crest be 525 feet; also let

D and d be 8.5 and 6.0 feet, and let M be taken as 3.33.

The mean velocity of approach is

18 ooo
v = 7 - = 2 . i feet per second

600X14-5

whence the velocity-head is h = o.0155X2. i
2 =o.07 feet.

Then from the formula there results =
9.9 feet, which is

the required height of the dam. In many cases it will be

unnecessary to consider velocity of approach and h may
be omitted from the formula

;
if this be done for the exam-

ple in hand the value of G is 9.8 feet.

When it is desired to raise the water level only a short

distance the crest of the dam will be submerged. For this

case Fig. 1286 gives H =D +d-G and H'=D-G. By
inserting these heads in formula (66) 2

and neglecting

velocity of approach, there is found

G=D+$d-%q/MbVd (128) 2

Here the coefficient M lies between 3.09 and 3.37 depending
on the value of the ratio H'/H, and as a mean 3.1 may be

used. For example, let ^ = 400 cubic feet per second,
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FIG. 128c
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D=4, d = i, b = $o feet; then G is found to be 2.95 feet.

The value of H is then 2.05 feet and that of H f
is 1.05,

whence H'/H is 0.5 closely, and from Art. 66 the value

of M is 3.11, which indicates that the assumed value is

close enough. Accordingly 3.0 feet may be taken as the

height of the submerged dam.

When bridge piers are built in a stream its cross-section

is diminished and the water level up-stream from the piers

stands at a greater height than before. The most common

problem is to find how high
the water will rise when the

original width B is to be con-

tracted to the width b. Let

D be the mean depth of the

water before the building of

the piers, H the rise in the

water level, and q the dis-

charge of the stream. Then the discharge q may be re-

garded as consisting of two parts, first that passing over a

weir of breadth B under the head H
,
and second that pass-

ing through the submerged orifice of breadth b and height

D under the head H. Hence, from Arts. 64 and 52,

cV^($B(H + h)* + bD(H + h)*) =q (128),

in which h is the head due to the velocity of approach.
The coefficient of discharge c for weirs and orifices is about

0.6, but here it is much larger, since there is no crest. From

experiments by Weisbach on a small round pier, c appears

to be over 0.9, and from other discussions it appears in

some cases to be a little lower than 0.8. Its value in any
event depends upon the shape of the piers and their cut-

waters, and probably the best that can now be done is to

take it as 0.9 for piers with round ends and at 0.8 for piers

with triangular cutwaters.

As an example of the determination of c, take the case
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of a flood -in the Gungal River,* where =
650, 6 = 578,

and > = 35 feet and 3 = 477 800 cubic feet per second, and
where it was observed that the height H was 3.6 feet. The
mean velocity above the piers was 11=477 800/38.6x650
= 19.0 feet per second, whence the velocity-head ^ = 5.61

feet. Inserting all these data in the formula and solving

for c, there is found c = 0.79. This is an unusual case where

the velocity was very high, and the piers had sharp cut-

waters.

As an example of the determination of the height

H, take the case of a bridge over the Weser,f where B =
593,

6 = 315, .D = i6.4 feet and 3 = 46 550 cubic feet per second.

As nothing is known about the shape of the piers, c may
taken as 0.8; then formula (128) 3

reduces to

from which H+ h is found by trial to be 1.55 feet. Now,

assuming H as 1.2 feet, the mean velocity above the piers

is found to be 4.3 feet per second, whence h is 0.29 feet.

Accordingly # =
1.55 0.29=1.26 feet, and with this

value the velocity above the pier is found to be 4.44 feet

per second, whence a better value of k is 0.31 feet. This

gives H = i.24 feet, which may be regarded as the final

result for the height of the backwater.

Prob. 128a. A stream 4 feet deep which delivers 150 cubic

feet per second is to be dammed so as to raise the water 6 feet

higher. Find the height of the dam when the length of the

overflow crest is 112 feet.

Prob. 1286. A river 940 feet wide has a mean depth of 4.1

feet and a mean velocity of 3.3 feet per second. Ten piers,

each 12 feet wide, are to be built in it. Compute the probable
rise of backwater caused by the piers. Compute also the proba-
ble rise during a flood which increases the mean depth to 18.5,

feet and the mean velocity to 5.8 feet per second.

* Proceedings British Institution Civil Engineers, 1868, vol. 27, p. 222.

f D'Aubuisson's Treatise on Hydraulics, Bennett's translation (New
York, 1857), p. 189.
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ART. 129. STEADY NON-UNIFORM FLOW

In Arts. 105-125 the slope of the channel, its cross-

section, and its hydraulic radius have been regarded as

constant. If these are variable in different reaches of

the stream the case is one of non-uniformity and this

will now be discussed. The flow is still regarded as steady,

so that the same quantity of water passes each section

per second, but its velocity and depth vary as the slope

and cross-section change. Let there be several reaches

lr /
2 ,

. . .
, /, which have the falls h

lt
h

z ,
. . .

,
h
n ,

the water

sections being a
t ,

a
2 ,

. . .
,
aM ,

the hydraulic radii r
lt

r
2 ,

. . . ,rn ,
and the velocities vv v

2 ,
. . .

,
v
n . The total fall

h
l +h2 + . . .+hn is expressed by h. Now the head corre-

sponding to the mean velocity in the first section is v^/2g.
The theoretic effective head for the last section is h + v

1

2

/2g
while the actual velocity-head is vn

2

/2g. The difference

of these is the head lost in friction; or by (117),

...
2g 2g C,\ C

2\ Cn\
in which c

x

2

,
C

2

2
,

. . . CM
2

,
are the Chezy coefficients for the

different lengths. Now let q be the discharge per second;

then, since the flow is steady, the mean velocities are

and, inserting these in the equation, it reduces to

*

which is a fundamental formula for the discussion of

steady flow through non-uniform channels. This formula

shows that the discharge q is a consequence not only of

the total fall h in the entire length of the channel,! but
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also of the dimensions of the various cross-sections. The

assumption has been made that a and r are constant in

each of the parts considered; this can be realized by
taking the lengths lv 1

2 ,
. . . ln sufficiently short. If only

one part be considered in which a and r are constant,

an and a
x
are equal, all the terms but one in the second mem-

ber disappear, and the last equation reduces to q = ca\/rh/l
which is the Chezy formula for the discharge in a channel

of uniform cross-section.

An important practical problem is that where the

steady flow is non-uniform in a channel having a bed

with constant slope, a condition which may be caused

by an obstruction below the part considered or by a sud-

den fall below it. Let a
t
and a

2
be the areas of the two

sections, I their distance apart, and v
l
and v

2
the mean

velocities. Then, if a and r be average values of the areas

and hydraulic radii of the cross-sections throughout the

length /, the last formula becomes

Now the important problem is to discuss the change in

depth between the two sections. For this purpose let

in Fig. 129 be the longitudinal profile of the water

surface, let AJD be hori-

zontal, and Af be drawn

parallel to the bed B<f>v
The depths A

l
B

l
and A

2
B

2

are represented by d
l

and
FlG - 129 dv the latter being taken as

the larger. Let i be the constant slope of the bed BJ32 ;

then DC=il, and since DA
2
=h and A

2
C = d

2
dv there is

found for the fall in the length /,

h=n-(d2
-d

l )

Inserting this value of h in the preceding equation and
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solving for /, there is obtained the important formula

w-4> -
7__

from which the length / corresponding to a change in

depth d
2

d
l

can be approximately computed. This

formula is the more accurate the shorter the length /,

since then the mean quantities a and r can be obtained

with greater precision, and c is subject to less variation.

The inverse problem, to find the change in depth when
I is given cannot be directly solved by this formula, be-

cause the areas are functions of the depths. Since d
2

d
t

is small compared with either d
1
or dv it is allowable to

regard d
2
as equal to d

1
when they are to be added or

multiplied together. Hence

_i_
i g

2*-aS_d2

2 -d
1

2

_(d2 + d
l)(d2

-d
l ) 2(d2

-d
1 )

a,
2 af a,

2a
2

2 b 2

d,
2d

2

2
b

2

d^ b 2

d,
3

also making a equal to a
t
and r equal to d

1
in the last

formula, and solving for d
2

dv there is found

S
^ 2

from which the change in depth can be computed when
all the other quantities are given.

Fig. 129 is drawn for the case of depth increasing

down-stream, but the reasoning is general and the formulas

apply equally well when the depth decreases with the fall of

the stream. In the latter case the point A 2
is below C, and

d
2

d
l
will be negative. As an example, let it be required

to determine the decrease in depth in a rectangular conduit

5 feet wide and 333 feet long, which is laid with its bottom

level, the depth of water at the entrance being maintained

at 2 feet, and the quantity supplied being 20 cubic feet per
second. Here / = 333, 6 = 5,^ = 2,^ = 20, and i = o. Taking
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c = 89, and substituting all values in the formula,
there is found d

2
d

1
=

o.og feet; whence d
2
=

i.gi feet,

which is to be regarded as an approximate probable value.

It is likely that values of d
2

d
1 computed in this manner are

liable to an uncertainty of 15 or 20 percent, the longer the

distance / the greater being the error of the formula. In

strictness also c varies with depth, but errors from this

course are small when compared to those arising in ascer-

taining its value.

Prob. 129. Explain why formula (129)3 cannot be used for

the above example when the slope i is o.oi.

ART. 130. THE SURFACE CURVE

In the case of steady uniform flow, in the channel where

the bed has a constant grade, the slope of the water surface

is parallel to that of the bed, and the longitudinal profile of

the water surface is a straight line. In steady non-uniform

flow, however, the slope of the water surface continually

varies, and the longitudinal profile is a curve whose nature

is now to be investigated. As in the last article, the width

of the channel will be taken as constant, its cross-section

will be regarded as rectangular, and it will be assumed that

the stream is wide compared to its depth, so that the wetted

perimeter may be taken as equal to the width and the hy-
draulic radius equal to the mean depth (Art. 105). These

assumptions are closely fulfilled in many canals and rivers.

The last formula of the preceding article is rigidly exact

if the sections a
t
and a

2
are consecutive, so that / be-

comes dl and d
2 d^ becomes dd. Making these changes,

dd i- 2
c*b

2d 3

dl ~i-q 2

/gb
2d 3

in which d is the depth of the water at the place considered.

This is the general differential equation of the surface curve,
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I being measured parallel to the bed BB, and d upward,
while the angle whose tangent is the derivative dd/dl is

also measured from BB.

To discuss this curve, let CC be the water surface if the

slope were uniform, and let D be the depth of the water in

the wide rectangular channel. The sjope s of the water

FIG. 130a FIG. 1306

surface is here equal to the slope i of the bed of the channel,

and from the Chezy formula (106),

= av= cbDVri

This value of q, inserted in the differential equation of the

surface curve, reduces it to the form,

in which d and / are the only variables, the former being the

ordinate and the latter the abscissa, measured parallel to

the bed BB, of any point of the surface curve. The deriv-

ative dd/dl is the tangent of the angle which the tangent
at any point of the surface ctirve makes with the bed BB
or the surface CC.

First, suppose that D is less than d, as in Fig. 130a,

where AA is the surface curve under the non-uniform flow,

and CC is the line which the surface would take in case of

uniform flow. The numerator of (130) 2
is then positive,

and the denominator is also positive, since i is very small.

Hence 3d is positive, and it increases with d in the direction

of the flow; going up-stream it decreases with d
lt and the
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surface curve becomes tangent to CC when d=D. This

form of curve is that usually produced above a dam
;

it is

called the
"
backwater curve," and will be discussed in

detail in Art. 131.

Second, let d be less than D, as in Fig. 1306. The
numerator is then negative and the- denominator positive ;

dd is accordingly negative and AA is concave to the bed

BB, whereas in the former case it was convex. This form

of surface curve is produced when a sudden fall occurs in

the stream below the point considered; it is called the

"drop-down curve" and will be discussed in Art. 132.

Formula (130)! may also be put into another form by
substituting for q its value bdv, where v is the mean velocity
in the cross-section whose depth is d. It thus becomes

dl c 2 v 2

-gd

and by its discussion the same conclusions are derived as

before. When v is equal to cVtft the inclination dd/dl

becomes zero, and the slope of the water surface is parallel

to the bed of the stream. When v is less than c\/di the
i

^

numerator is negative, and if the denominator is also neg-
ative, the case of Fig. 130a results. When v is greater

than cVdi and the denominator is positive the case of Fig.

1306 obtains. When v equals \/gd, ttye value of dd/dl is

infinity and the water surface stands normal to the bed

of the stream; this remarkable case can actually occur

in two ways and they will be discussed in Art. 133.

Prob. 130a. Let i= i/ioo, c = 8o, and D = i foot. Compute-
values of dd/dl for ^=1.23, d=i.24, ^=1.25, ^=1.26, and d =

1.27 feet; then draw the surface curve.

Prob. 1306. Let the velocity of the stream be 20 feet per

second, the value of cbeSo, and the slope be i on 2000. Com-

pute values of dd/dl for depths of 12.2, 12.3, 12.4, 12.5, and 12.6

feet
;
then draw the surface curve.
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ART. 131. THE BACKWATER CURVE

When a dam is built across a channel the water surface

is raised for a long distance up-stream. This is a fruitful

source of contention, and accordingly many attempts have

been made to discuss it theoretically, in order to be able to

compute the probable increase in depth at various dis-

tances back from a proposed dam. None of these can be

said to have been successful except for the simple case

where the slope of the bed of the channel is constant and

its cross-section such that the width may be regarded as

uniform and the hydraulic radius be taken as equal to the

depth. These conditions are closely fulfilled for some

streams, and an approximate solution may be made by the

formula (129) 2
. It is desirable, however, to obtain an

exact equation of the surface curve, so as to secure a more
reliable method.

For this purpose take the differential equation of the

surface curve given in (130) 2 ,
and let the independent vari-

able d/D be represented by x. Then it may be put into

the more convenient form

*rT"
in which i is the abscissa and Dx the ordinate of any point
of the curve. The general integral of this is

which is the equation of the surface curve, C being the con-

stant of integration. To use this let the logarithmic and
circular function in the second parenthesis of the second

member be designated by $(%) or </>(d/D), namely,

1-
log,
~-- arc cot-=
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Then the above value of / may be written

Now let d
2
be the depth at the dam and let I be measured

up-stream from that point

to a section where the depth
c is dr Then, taking the in-

teSral Between these limits

FIG. 131 the constant C disappears,

and

which is the practical formula for use. In like manner d
2

may represent a depth at any given section and d
l any

depth at the distance / up the stream.

When d = D, the depth of the backwater becomes equal

to that of the previous uniform flow, x is unity, and hence

/ is infinity. The slope CC of uniform flow is therefore an

asymptote to the backwater curve. Accordingly the depth
d

l
is always greater than D, although practically the differ-

ence may be very small for a long distance /.

In the investigation of backwater problems there are

two cases : first, d2
and d

1 may be given and / is to be found
;

and second, I and one of the depths are given and the other

depth is to be found* To solve these problems the values

of the backwater function <j>(d/D) computed by Bresse are

given in Table 48.* The argument of the table is D/d,

which, being always less than unity, is more convenient

for tabular purposes than d/D, since the values of the latter

range from i to oo . By the help of Table 48 practical

problems may be discussed, and the following examples
will illustrate the method of procedure.

* Bresse's Mecanique appliques (Paris, 1868), vol. 2, p. 556.
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A stream of 5 feet depth is to be dammed so that the

water shall be 10 feet deep a short distance up-stream from

the dam. The uniform slope of its bed and surface is

0.000189, or a little less than one foot per mile, and its

channel is such that the coefficient c is 65. It is required
to find at what distance up-stream the depth of water is

6 feet. Here D =
$, d

2
= io, d

t
=6 feet, 1/2

=
5 291, and

c 2

/g
=

i3i. Now D/d2 =o.$, for which the table gives

<j)(d2/D) =0.1318, and D/d =
0.833, for which the table gives

<t>(djD) =0.4792. These values inserted in (131) 2 give

/ = 5291 (10- 6) + 5(5291-131) (o-4792 -0.1318)

from which = 30 125 feet = 5. 70 miles. In this case the

water is raised one foot at a distance 5.7 miles up-stream
from the dam, in spite of the fact that the fall in the bed

of the channel is nearly 5.7 feet.

The inverse problem, to compute d
2
or dv when one of

these and / are given, can only be solved by repeated trials

by the help of Table 48. For example, let = 30 125 feet,

the other data as above, and let it be required to determine

d
2
so that d

l
shall be only 5.2 feet, or 0.2 feet greater than

the original depth of 5 feet. Here 1^/^=0.962, for which

the table gives <f>(dJD) =0.9717. Then (131) 2
becomes

30 125=5291(^-5.2)4-25 8oo[o.97i7-<(</2/>)]

which is easily reduced to the simpler form

32 566 = 5291^ 25 Soo<f)(d2/D)

Values of d
2
are now to be assumed until one is found that

satisfies this equation. Let d
2
= 8> feet, then (D/d2) =0.625

and, from the table, <j)(dJD) =0.2180; substituting these,

the second member becomes 36 703, which shows that the

assumed value is too large. Again, take d
2
=

7 feet, then

Z)/d2
= 0.714, for which (j)(D/d2) =0.303^ whence the second

member is 29 202, showing that 7 feet is too small. If
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^2
=

7.4 feet, then D/d2 =0.675 and 4>(dJD) =0.2629,
with these values the equation is nearly satisfied, but 7.4

is still too small. On trying 7.5 it is found to be too large.

The value of d
2
hence lies between 7.4 and 7.5 feet, which

is as close a solution as will generally be required. The

height of dam required to maintain this depth may now
be computed from Art. 128.

If the slope, width, or depth of the stream changes ma-

terially, the above method, in which the distance / is meas-

ured from the dam as an origin, cannot be used. In such

cases the stream should be divided into reaches, for each of

which the slope, width, and depth can be regarded as con-

stant. The formula can then be used for the first reach and

the depth of its upper section be determined
;
then the appli-

cation can be made to the next reach, and so on in order.

For common rivers and for shallow canals it will probably be
a good plan to determine D by actual measurement of the

area and wetted perimeter of the cross-section, the hydraulic

radius computed from these being taken as the value of D.

Strictly speaking the coefficient c varies with the slope

and with D, and its values may be found by Kutter's for-

mula, if it be thought worth the while. Even if this be done,

the results of the computations must be regarded as liable

to considerable uncertainty. In computing depths for

given lengths an uncertainty of 10 percent or more in the

value of d
2

dv should be expected.

Prob. 131a. A stream, having a cross-section of 2400 square
feet and a wetted perimeter of 300 feet, has a uniform slope of

2.07 feet per mile, and its channel is such that =
70. It is

proposed to build a dam to raise the water 6 feet above the

former level, without increasing the width. Compute the rise

of the backwater at a distance of one mile up-stream.

Prob. 1316. A stream has the same cross-section, wetted

perimeter, slope, and coefficient as above, and the dam is to

be built to the same height. At what distance up-stream will

the mean depth be 10.5 feet?
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ART. 132. THE DROP-DOWN SURFACE CURVE

When a sudden fall occurs in a stream, the water surface

for a long distance above it is concave to the bed, as seen

in Fig. 1306 or in Fig. 132. This case also occurs when the

entire discharge of a canal is

allowed to flow out through a

forebay F to supply a water-

power plant. Let D be the

original uniform depth of

water having its surface paral-

lei to the bed, the slope of both FIG. 132

being i. Let d
l
and d

2
be two of the depths after the steady

non-uniform flow has been established by letting water out

at F, and let d^ be greater than d
2 ,

the distance between

them being /. The investigation of the last article applies

in all respects to this form of surface curve, and

is the equation for practical use, in which c is the coefficient

in the Chezy formula v = cVrs, and g is the acceleration of

gravity. Table 48 cannot, however, be used for this case

because d/D in that table is greater than unity, while here

it is less than unity.

The function $(d/D) with values of d/D less than unity
is here called the "drop-down function," in order to dis-

tinguish it from the backwater function of the last article,

although the algebraic expression for the two functions is

the same. Table 49, clue also to Bresse, gives values of this

drop-down function for values of the argument d/D ranging
from o to i, and by its use approximate solutions of prac-
tical problems can be made. For example, take a canal 10

feet deep, having a coefficient c equal to 80, and let the

slope of its bed be 1/5000 and its surface slope be the same
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when the water is in uniform flow. HereD = 10 feet, c
2

/g =

200, and 1/2
=
5000. Then

/- -5 ooo(dl
-d

2)

Now suppose that a break occurs in the bank of the canal

out of which rushes more water than that delivered in nor-

mal flow when the depth is 10 feet, and let it be required to

find the distance between two points where the depths of

water are 8 and 7 feet. Here d
1 /D =0.8 for which $(dJD)

=
0.3459, and d

2/D=o.j for which </>(d2/D) =0.1711. In-

serting these values in the equation there is found/ = 3390
feet.

In this case there is a certain limiting depth below which
the above formula is not valid. This limit is the value of

x for which dl/dx becomes zero or the value of x where the

surface curve is vertical and the bore occurs (Art. 133).

From (131) 1
it is seen that this happens when

x 3 = c 2

i/g or d=D(c 2

i/g)*

and for the above example this limiting depth is found to be

3.4 feet. Near this limit, however, the velocity becomes

large, so that there is much uncertainty regarding the value

of the coefficient c.

When a given discharge per second is taken out of a fore-

bay at the end of a canal having its bed on a slope i
,
the

above formula must be modified. Let q be the discharge
and let D

t
be the depth at a section where the slope is s;

then q equals cbD^D^s. If this value of q be substi-

tuted in the equation (130)! and then the same reasoning
be followed as at the beginning of Art. 131, it will be found

that formula (132) will apply to this case if D^s/i)* be

used instead of D. For example, let q = 3000 cubic feet per

second, D
l
= io feet, i = i/io ooo, c = 8o, and the width

= ioo feet. Then

s=q*/c*b*Dl

* = 1/7100 D =D
1 (s/i)*

= 11. 2 feet.
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Now if it be required to find the distance between two

points where the depths of water are 10 and 9 feet, formula

(132) can be directly applied, and accordingly there is found,

by the help of Table 49,
"

/= 10 000(10 9) + 109 800(0.578 0.355) =14 400 feet

and hence a forebay admitting the given discharge will not

draw down the water to a depth less than 9 feet if it be
located 1 4 400 feet down-stream from the section where the

mean depth is 10 feet.

Navigation canals are often built with the bed horizontal

between locks, and here i = o. The above formula cannot
be applied to this case because the differential equation

(130) 2
vanishes when i is zero. To discuss it, equation (130) 4

must be resumed, and, inverting the same,

dl c 2W 3

_c
2

dd~ q* ~g

The integration of this between the limits d^ and d
2 gives

from which / may be computed when q is known. As an

example, take a rectangular trough for which q = 2o cubic

feet per second, 6 = 5 feet, 0=89, and let 0^
= 2.00 feet and

d
2
=

1.91 feet. Then from the formula I is found to be 329
feet. This is the reverse of the example at the end of Art.

129, where / was given as 333 feet, so that the agreement is

very good.

To compare a canal having a level bed with the one pre-

viously considered, the same data will be used, namely,

^ = 10 feet, d
2 =9 feet, b = ioo feet, c=8o, and ^ = 3000

cubic feet per second. Then from (132) 2
there is found

Z = i. 778(10* 9
4

) 200(10 9) =59 2
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and accordingly the water level is drawn down in one-third of

the distance of that of the previous case. The quantity of

water that can be obtained from a navigation canal is always
less than from one having a sloping bed, and it has frequently

happened, when such a canal is abandoned for navigation

purposes and is used to furnish water for power or for a

public supply, that the quantity delivered is very much
smaller than was expected.

Prob. 132. A canal from a river to a power house is two
miles long, its bed is on a slope of i/io ooo, and c is 70. When
the water is in uniform flow the depth D is 6.0 feet, and the

discharge is 800 cubic feet per second. If there be a power
house which takes 1000 cubic feet per second, find the probable

depth of water at the entrance to its forebay.

ART. 133. THE JUMP AND THE BORE

A very curious phenomenon which sometimes occurs

in shallow channels is that of the so-called "jump," as

shown in Fig. 133a. This happens when the denominator

in (130) 3
is zero; then dd/dl is

infinite, and the water surface
^ stands normal to the bed.

Placing that denominator equal
to zero, there is found v 2

=gd.

Now by further consideration it will appear that the varying

denominator in passing through zero changes its sign. Above

the jump where the depth is d
1
the velocityjs slightly greater

than Vgc^ and below it is less than Vgd2
. The conditions

for the occurrence of the jump are that an obstruction should

be in the stream below, that the slope i should not be small,

and that the velocity v
1
should be greater than \/gdr To

find the necessary slope, the algebraic conditions are

v
1
=c\/d

1
i and v

1 ^>Vgd1
whence

and accordingly the jump cannot occur when i is less than
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g/c
2

. For an unplaned planked trough c may be taken at

about 100; hence the slope for this must be equal to or

greater than 0.00322.

To determine the height of the jump, let d
2 d^ be repre-

sented by /.
It is then to be observed that the lost velocity-

head is (v l

z v
2

2

)/2g, and that this is lost in two ways first

by the impact due to the expansion of section (Art. 74),

and second by the uplifting of the whole quantity of water

through the height ^(d2
d

1 ),
loss in friction between d

t
and

d
2 being neglected. Hence

V-V^K-pJ
2

/

2g 2g 2

Inserting in this the value of v
2 ,

found from the relation

f) =Vjdlt
and solving for /, gives

(133)

The following is a comparison of heights of the jump com-

puted by this formula and the observed values in four ex-

periments made by Bidone, the depths being in feet :

Depth di.



344 FLOW OF RIVERS CHAP, x

^=4.33 feet per second and ^=0.039 feet, the observed

value of / was 0.166 feet, whereas the value computed from

the above formula is 0.173 ^eet
'
nere tne

J
umP is more than

four times the depth dv while it is usually less than twice

d
l
in the above records from Bidone.

Another remarkable phenomenon is that of the so-called
' '

bore
' ' where a tidal wave moves up a river with a vertical

front. It is also seen when a large body of water moves

down a canon after a heavy rainfall, or when a reservoir

bursts and allows a large discharge to suddenly escape down

a narrow valley. In the great flood of 1889 at Johnstown,

Pa., such a vertical wall of water, variously estimated at

from 10 to 30 feet in height, was seen to move clown the

valley carrying on its front brush and logs mingled with

spray and foam.* In 41 minutes it travelled a distance 'of

13 miles down the descent of 380 feet. The velocity was

hence about 28 feet per second.

Fig. 1336 shows the form of surface curve for this case

and by reference to (130) 8
it is seen that dd/dl must be nega-

tive and that it has the value oo at the vertical front.

The conditions for the occurrence of the bore then are

\/gd and z;>c\/5t whence i<g/c
2

For the Johnstown flood, taking v as

28 feet per second, the value of d found
w/mw////Mti/z\ from this equation is 24 feet; it was

FIG. 1336
probably greater than this in the

upper part of the valley and less in the lower part. Since

the value of i is about 1/180, it follows that c must have

been less than 76. The conditions here established show

that the flood bore will occur when the velocity becomes

equal to Vgd, provided c is less than Vg/i. It appears,

therefore, that roughness of surface is an essential 'condition

for the formation of the bore in a steep valley.

* Transactions American Society Civil Engineers, 1889, vol. 21. p. 564.
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The bore can also occur in a canal with horizontal bed

when a lock breaks above an empty level reach, provided v

becomes equal to \^gd. No case of this kind appears to be

on record, and there seems to be no way of ascertaining

whether the actual velocity will reach the limit Vgd. If

the bore occurs and the depth of the vertical wall be d
2
its

distance from a point where the depth is d
l
is found from

(132) 2 by inserting in it the value of g corresponding to the

critical velocity v. Thus may be shown that for c = 80

and d
2 =^d1

the length / is about 275^.

The tidal bore, which occurs in many large rivers when
the tide flows in at their mouths, obeys similar laws. Here

the slope i may be taken as zero, while c is probably very

large, so that roughness of surface is not an essential condi-

tion. The great bore at Hangchow, China, which occurs

twice a year, is said to travel up the river at a rate of from

10 to 13 miles per hour, the height of the vertical front

being from 10 to 20 feet.* Fromv = \/gd, the velocity

corresponding to a depth of 10 feet is 12.6 miles per hour,

while that corresponding to a depth of 20 feet is 17 miles

per hour, so that the statements have a fair agreement
with the theoretical law. This investigation indicates that

the velocity of the tidal bore depends mainly upon the

depth of the tidal wave above the river surface, but it may
be noted that other discussions! regard the depth of the

river itself as an element of importance, and Art. 182 con-

siders this question with respect to common waves.

Prob. 133a. When the height of the jump is three times the

depth d
lt
show that the velocity v

l must be 2\/2gdl
. Also show

that 0.4146^ is the minimum height of a jump.

Prob. 1336. Assuming that c was 32 for the valley of the

Johnstown flood, and that this was of uniform width, show that

* Skidmore's China, the Long-lived Empire (New York, 1900), p. 294,

\ G. H. Darwin, The Tides, p. 65 ; Century Magazine, vol. 34, p. 903.
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the depth of the vertical front at the city was not less than one-

half of the depth a short distance below the reservoir.

Prob. 133c. Show that the formula on page 324, when re-

duced to the metric system, becomes v = vr + 6.i^/rs.

Prob. 133d. A^ stream 181 meters wicle and 5 meters deep
has a discharge of 1318 cubic meters per second. Find the

height of backwater when the stream is contracted by piers

and abutments to a width of 96 meters.

Prob. 133<?. Which has the greater discharge, a stream 1.2

meters deep and 20 meters wide on a slope of three meters per

kilometer, or a stream 1.6 meters deep and 26 meters wide on

a slope of two meters per kilometer?

Prob. 133/. A stream 2 meters deep is to be dammed so that

water shall be 4 meters deep at the dam. Its slope is 0.0002 and

its channel is such that the metric value of c is 39. Compute
the distance to a section up-stream where the depth of water is

3.6 meters.
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CHAPTER XI

WATER SUPPLY AND WATER POWER

ART. 134. RAINFALL AND EVAPORATION

All the water that flows in streams has at some previous
time been precipitated in the form of rain or snow. The
word " rainfall" means the total rain and melted snow, and

it is usually measured in vertical inches. The annual rain-

fall is least in the frigid zone and greatest in the torrid zone
;

at the equator it is about 100 inches, at latitude 40 about

40 inches, and at latitude 60 about 20 inches. There are,

however, certain places where the annual rainfall is as high
as 500 inches, and others where no rain ever falls. In the

United States the heaviest annual rainfall is near the Gulf

of Mexico, where 60 inches is sometimes registered, and near

Puget Sound, where 90 inches is not uncommon. In

that large region, formerly called the Great American

Desert, which lies between the Rocky and Sierra Nevada

mountains, themean annual rainfall does not exceed 1 5 inches,

and in Nevada it is only about 7^ inches. The amount of

rainfall in any locality depends upon the winds and upon
the neighboring mountains and oceans.

At any place the rainfall in a given year may vary con-

siderably from the mean derived from the observations

of several years. Thus, at Philadelphia, Pa., the mean
annual rainfall is about 40 inches, but in 1890 it was 50.8

inches and in 1885 it was only 33.4 inches. Similarly at

Denver, Col., the mean is about 14 inches, but the extremes

are about 20 and 9 inches. When a very low annual rain-
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fall occurs, that of the year preceding or following is also apt
to be low, and estimates for the water supply of towns must
take into account this minimum annual rainfall. The dis-

tribution of rainfall throughout the year must also be con-

sidered, and for this purpose the rainfall records of the given

locality should be obtained from the publications of the

U. S. Weather Bureau and be carefully discussed. In

making plans for a water supply it should be the aim to

secure an ample amount during the driest months of the

driest year. The following shows the average rainfall in

inches in several states and in the United States for the

four seasons and for the year; for very wet years about

25 percent may be added to these values, while for very

dry years about 25 percent may be subtracted.
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sion of the observed evaporation in the eastern and middle

parts of the United States, Vermeule has deduced the formula

=
(15.5+0.16^X0.057- i. 48)

where R is the annual rainfall and E the annual evaporation
in inches, and T is the mean annual temperattire in Fahren-

heit degrees.* If T = 49. 6, this becomes =15.5 + 0.16^,

which is a mean value for New Jersey and neighboring states
;

if T be 47 the evaporation is ten percent less, and if T be

52 it is ten percent more, than this mean.

The evaporation in different months varies greatly, the

mean monthly temperature being the controlling factor.

The following are average values given by Vermeule for the

vicinity of New Jersey, where the mean annual temperature
is 49. 6; r representing mean monthly rainfall and e mean

monthly evaporations in inches :

Jan., e=o.2j+ o.ior July, e = 3.oo+o.3or

Feb., e=o.30+o.ior Aug., e = 2.62+ o.2$r

March, e=o.48+ o.ior Sept., e = i.63+o.2or

April, e=o.87+ o.ior Oct., e=o.88+ o.i2r

May, = 1.874- o.2or Nov., e=o.66+o.ior

June, e = 2.5o+o.25r Dec., e=

To obtain the monthly evaporations for places of mean
annual temperature T, the values found for e are to be multi-

plied by 0.0571.48. Thus, if there be 8 inches of rain

in July, e = 5.40 inches, and if the mean annual temperature
be 56, this is to be increased by 32 percent.

Prob. 134. Show that one inch of rainfall per month is, very

nearly, 0.9 cubic feet per second per square mile.

ART. 135. GROUND WATER AND RUNOFF

When the ground is frozen and the precipitation does

not accumulate in the form of ice and snow, the runoff from

a watershed is closely equal to the rainfall minus the evapo-
* U. S. Geological Survey of New Jersey (Trenton, 1894), vol. 3, p. 76.



350 WATER SUPPLY AND WATER POWER CHAP, xi

ration. If three inches of rain falls per month and one-

third of this evaporates, the runoff will be nearly 2 cubic

feet per second for each square mile of the watershed. The

discharge due to a heavy rainfall occurring in a short period
or to the melting of snow may be twenty or thirty times as

great. A rainfall of 10 inches occurring in two days, if three-

fourths of it is delivered at once to the streams, will give a

flood discharge of about 100 cubic feet per second per square
mile of watershed area. It is not usually necessary to con-

sider these flood discharges in estimates for water supply
and water power, except in order to take precautions against
the damage they may cause.

During the spring the ground is filled with water which

is slowly flowing toward the streams, and this ground water

is the main source of the runoff from a watershed during
the dry months. The velocity of flow of this ground water

varies directly as the slope of its surface, for this velocity
is slow so that no losses occur in impact (Art. 117). When
the slope of the surface of the ground water becomes zero,

the streams are dry if there be no rainfall. The discharge
of a stream in a dry season hence depends upon the depth
and slope of the ground water, and this in turn depends

upon the previous rainfall, the topography of the country,
and the character of the soil.

While data regarding rainfall and evaporation will fur-

nish valuable information regarding the mean annual flow

of a stream, they will usually fail to indicate the mean dis-

charge during different months. For this purpose the

study of discharge curves (Art. 126) is important, and if

there be none for the stream in hand, it will be necessary
to make a few gagings at different stages of water and to

collect information regarding the lowest stages that have

been observed in dry years.

In irrigation work quantities of water are often esti-

mated in terms of a convenient unit called the
' *

acre-foot.
' '
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One acre-foot of water is the quantity which will cover one
acre to a depth of one foot, namely, 43 560 cubic feet. The
discharge of a stream is often stated in acre-feet per day.
One acre-foot per day is 0.5042 cubic feet per second, or
one cubic foot per second is 1.983 acre-feet per day. One
acre-foot of water is 325851 U. S. gallons, and i ooo ooo

gallons is 3.0689 acre-feet.

The hydraulics of irrigation engineering differs in no re-

spect from that of water supply and water power. Water
is collected in reservoirs or obtained by damming a river, and
it is led by a main canal to the area to be irrigated, and
there it is distributed through smaller lateral canals to the

fields. The smaller the canal or ditch the steeper becomes
its slope, and in the final application to the crops the flow

in the furrows is often normal to the contours of the sur-

face. In a river system the brooks feed the creeks, and
the creeks feed the river, the flow being from the smaller

to the larger; in an artificial irrigation system, however,
the flow is from the larger to the smaller channel.

vSeepage into the earth from an irrigation canal con-

stantly goes on, unless its bed be puddled or lined with

concrete, and this loss of water is often very heavy. For

new canals it is often as high as 50 percent of the water,
but for old canals it may become lower than 10 percent.
In making estimates for an irrigation- supply it is hence

necessary to take into account this seepage loss, and also

to consider that due to evaporation.

In irrigation estimates the "duty" of water is to be

regarded. This is defined as the number of acres that can

be irrigated by a supply of one cubic foot per second, and
it usually ranges from 60 to 100 acres. An inverse meas-

ure of duty is the number of vertical inches of water required
to irrigate any area, this usually ranging from 1 8 to 24 inches.

The acre-foot is also frequently used in statements of duty,
one acre-foot per acre being the same as 12 vertical inches
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of water. The methods of measuring the water by orifices

and modules in terms of the miner's inch unit have been

explained in Art. 50.

Prob. 135. If all the rainfall that does not evaporate flows

into the streams, find the runoff in cubic feet per second from
a watershed of 1225 square miles during a month when the

rainfall is 3.6 inches, the mean annual temperature being 48. 5

Pahrenheit. Also for the temperature of 49. 5.

ART. 136. ESTIMATES FOR WATER SUPPLY

The consumption of water in American cities is, on the

average, about 100 gallons per person per day, the large

cities using more and the small ones less than this amount.

The daily consumption in July and August is from 15 to

20 percent greater than the mean, owing to the use of water

for sprinkling, while during January and February it is also

greater than the mean in the colder localities owing to the

large amount that is allowed to run to waste in houses in

order to prevent the freezing of the pipes On Mondays,
when every household is at work on the weekly washing,
the consumption may be put at 50 percent higher than the

mean for the week. Accordingly if the yearly mean be

100 gallons per person per day, the Monday consumption

during very hot or very cold weather may be as high as 150

gallons per person per day. When a large fire occurs the

hourly consumption for this purpose alone in a fire district

of i o ooo people may be at the rate of 1 7 5 gallons per per-

son per day. In general the maximum available hourly

supply should be from three to four times as great as that

of the mean daily consumption.

When water is to be pumped from a river directly into

the pipes, without tank or reservoir storage, the capacity

of the pumps should be such that during the occurrence

of fires at least three times the mean daily consumption
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may be furnished. When a pump delivers water to a dis-

tributing reservoir, its capacity need not be so high as in

the case of direct pumping, for the reservoir storage can be

drawn upon in case of fire. When the reservoir is large the

pump capacity need be only sufficient to lift the annual

consumption during the time when it is in operation. The

subject of pumping is an extensive one, but it will be briefly

treated from a hydraulic standpoint in Arts. 187 and 191.

Gravity supplies are those furnished by impounding the

runoff of a watershed in a reservoir. As an example of a

preliminary investigation of such a case, suppose a town
of 6000 people desires to obtain a mean supply of 100 gal-

lons per person per day or in total 1.86 acre-feet per day
(Art. 135). A certain watershed a few miles from the

town has an area of 1410 acres, and the minimum annual

rainfall is 31 inches, of which 15 inches evaporates. The
available storage is hence 1880 acre-feet, or 5.1 acre-feet

per day, and accordingly sufficient water can be obtained

for the supply of the town if storage capacity can be pro-
vided. To estimate the capacity of the reservoir, suppose
that in the dry years August is a wet month, so that the

reservoir may be full at the end of that month. Let the

September rainfall be 1.2 inches, of which 40 percent evap-
orates, and the October rainfall be 0.6 inches, of which 30

percent evaporates. Then during September the maxi-

mum available storage is 84.6 acre-feet, while the consump-
tion is 55.8 acre-feet, so that the reservoir is also full at

the end of that month. During October, however, the

available storage is 49.3 acreTfeet, while the consumption
is 57.7 acre-feet, and hence the deficiency of 8.4 acre-feet

must be provided for by storing the September rainfall.

The capacity of the reservoir, therefore, must be more than

8.4 acre-feet; if it is to be half-full at the end of October,

its capacity must be 16.8 acre-feet, or about 5 400 ooo

gallons.
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The above estimate, being based on rainfall and evapora-
tion records, is liable to some uncertainty, for it has been

assumed that all the rainfall that does not evaporate reaches

the reservoir. This uncertainty can be removed by gaging
the stream at the place where it is proposed to build the

reservoir. Three gagings made at high, medium, and very
low stages of water will furnish data from which a discharge
curve can be drawn (Art. 126), and from this, in connection

with records of the stages in dry months of dry years, a

much more reliable estimate of reservoir capacity may be

made. For instance, suppose the September discharge

is found to be i.io cubic feet per second, or 65.4 acre-feet,

and the October discharge 0.75 cubic feet per second, or

46.1 acre-feet; then it is seen that the reservoir capacity
should be about 40 percent greater than the previous esti-

mate. After the height of the water level of the reservoir

is fixed the dimensions of its waste-weir may be computed
from Art. 68, and the size of the main pipe line by Art. 93 ;

for the latter computation proper pressures must be assumed

throughout the town, so that ample head may be provided
for fire contingencies. When the main divides into branches

the problem of computing the diameters from the given
data is indeterminate (Art. 100), and hence it will probably
be as well to assume at the outset the sizes of the main and
its branches. The velocities corresponding to the given

quantities and the assumed sizes are then computed, and
from these the pressure-heads at a number of points are

found. If these are not satisfactory, other sizes are to be

taken and the computation be repeated. The successful

design will be that which will furnish the required quantities

under proper pressures with the least expenditure.

Prob. 136. Let the main for the above case be 4 inches in

diameter and 15 ooo feet long, and the fall be 175 feet. Com-

pute the pressure-head in the town when the consumption is

150 gallons per person per day.
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ART. 137. ESTIMATES FOR WATER POWER

The methods of estimating the water power that can be

derived by damming a stream are similar to those for water

supply. In the absence of gagings the records of rainfall

and evaporation are to be collected and discussed, but a

few gagings will give much more definite information if

records of water stages during several years can be had.

Here also the minimum flow of the stream must receive

careful attention, particularly when the plant is to generate

electric power for trolley and light service, for the inter-

ruption of such service is a serious public inconvenience.

It has frequently happened, indeed, that a water-power

plant built without sufficient investigation has proved
unable to furnish sufficient power during dry seasons, and

it has been necessary to install an auxiliary steam plant

to make good the deficiency.

Let W be the weight of water delivered per second to a

hydraulic motor, and h be its effective head as it enters the

motor, h being due either to pressure (Art. 11), or to veloc-

ity (Art. 22), or to pressure and velocity combined (Art. 25).

The theoretic energy per second of this water is

K=Wh (137),

and if W be in pounds and k in feet, the theoretic horse-

power of the water as it enters the motor is

(137),

and this is the power that can be developed by a motor of

efficiency unity. The work k delivered by the motor is,

however, always less than K owing to losses in impact and

friction, and the horse-power hp of the motor is less than

HP. The efficiency of the motor is

e=k/K=k/Wh or e =hp/HP (137),

and the value of this for turbine wheels is usually about
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0.75, that is, the wheel transforms into useful work about

75 percent of the energy of the water that enters it.

In designing a water-power plant it should be the aim

to arrange the forebays and penstocks which lead the water

to the wheel so that the losses in these approaches may
be as small as possible. The entrance from the head race

into the forebay, from the forebay into the penstock, and

from the penstock to the motor, should be smooth and well

rounded
;
sudden changes in cross-section should be avoided ,

and all velocities should be low except that at the motor.

If these precautions be carefully observed, the loss of head

outside of the motor can be made very small. Let H be

the total head from the water level in the head race to that

in the tail race below the motor. The total available en-

ergy per second is WH, and it should be the aim of the

designer to render the losses of head in the approaches as.

small as possible so that the effective head h may be as

nearly equal to H as possible. Neglect of these precautions

may render the effective power less than that estimated.

The efficiency ^ of the approaches is the ratio of the

energy K of the water as it enters the wheel to the maxi-

mum available energy WH, or ^ =K/WH. The efficiency

.E of the entire plant, consisting of both approaches and

wheel, is the ratio of the work k delivered by the wheel to

the energy WH, or

E =k/WH =eK/WH =ee^

or, the final efficiency is the product of the separate effi-

ciencies. If the efficiency of the wheel be 0.75 and that

of the approaches 0.96, the efficiency of the plant as a

whole is 0.72, or only 72 percent of the theoretic energy is

utilized. Usually the efficiency of the approaches can be

made higher than 96 percent.

In making estimates for a proposed plant, the efficiency

of turbine wheels may be taken at 75 percent ;
the effective
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work is then 0.75!^, and accordingly if the wheels are

required to deliver the work k per second, the approaches
are to be so arranged that Wh shall not be less than 1.33^.

Especially when the water supply is limited it is important
to make all efficiencies as high as possible.

Prob. 137. A stream delivers 500 cubic feet of water per
second to a canal which terminates in a forebay where the

water level is 8.1 feet above the tail race. The wheels deliver

335 horse-powers and their efficiency is known to be 75 percent.

How much power is lost in the forebay and penstock ?

ART. 138. WATER DELIVERED TO A MOTOR

To determine the efficiency of a hydraulic motor by for-

mula (137) 3 ,
k is to be measured by the methods of Art. 140,

and h found by Art. 139. In order to find the weight W
that passes through the wheel in one second, there must

be known the discharge per second g-and the weight w of a

cubic unit of water; then
W =wq

Here w may be found by weighing one cubic foot of the

water, or when the water contains few impurities its tem-

perature may be noted and the weight be taken from

Table 7. In approximate computations w may be taken

at 62.5 pounds per cubic foot. In precise tests of motors,

however, its actual value should be ascertained as closely

as possible.

The measurement of the flow of water through orifices,

weirs, tubes, pipes, and channels has been so fully discussed

in the preceding chapters, that it only remains here to

mention one or two simple methods applicable to small

quantities, and to make a few remarks regarding the sub-

ject of leakage. In any particular case that method of

determining q is to be selected which will furnish the re-

quired degree of precision with the least expense (Art. 125).
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For a small discharge the water may be allowed to fall

into a tank of known capacity. The tank should be of

uniform horizontal cross-section, whose area can be accu-

rately determined, and then the heights alone need be

observed in order to find the volume. These in precise

work will be read by hook gages, and in cases of less accu-

racy by measurements with a graduated rod. At the be-

ginning of the experiment a sufficient quantity of water

must be in the tank so that a reading of the gage can be

taken; the water is then allowed to flow in, the time

between the beginning and end of the experiment being

determined by a stop-watch, duly tested and rated. This

time must not be short, in order that the slight errors in

reading the watch may not affect the result. The gage is

read at the close of the test after the surface of the water

becomes quiet, and the difference of the gage-readings gives

the depth which has flowed in during the observed time.

The depth multiplied by the area of the cross-section gives

the volume, and this divided by the number of seconds

during which the flow occurred furnishes the discharge per

second q.

If the discharge be very small, it may be advisable to

weigh the water rather than to measure the depths and

cross-sections. The total weight divided by the time of

flow then gives directly the weight W. This has the advan-

tage of requiring no temperature observation, and is proba-

bly the most accurate of all methods, but unfortunately

it is not 'possible to weigh a considerable volume of water

except at great expense.

When water is furnished to a motor through a small pipe

a common water meter may often be advantageously used

to determine the discharge (Art. 38). No water meter,

however, can be regarded as accurate until it has been

tested by comparing the discharge as recorded by it with

the actual discharge as determined by measurement or
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weighing in a tank. Such a test furnishes the constants for

correcting the result found by its readings, which otherwise

is liable to be 5 or 10 percent in error.

The leakage which occurs in the flume or penstock before

the water reaches the wheel should not be included in the

value of W, which is used in computing its efficiency,

although it is needed in order 'to ascertain the efficiency of

the entire plant. The manner of determining the amount

of leakage will vary with the particular circumstances of

the case in hand. If it be very small, it may be caught in

pails and directly weighed. If large in quantity, the gates

which admit water to the wheel may be closed, and the

leakage being then led into the tail race it may be there

measured by a weir, or by allowing it to collect in a tank.

The leakage from a vertical penstock whose cross-section

is known may be ascertained by filling it with water, the

wheel being still, and then observing the fall of the water

level at regular intervals of time. In designing construc-

tions to bring water to a motor, it is best, of course, to

arrange them so that all leakage will be avoided, but this

cannot often be fully attained, except at great expense.

The most common method of measuring q is by means of

a weir placed in the tail race below the wheel. This has

the disadvantage that it sometimes lessens the fall which

would be otherwise available, and that often the velocity

of approach is high. It has, however, the advantage of

cheapness in construction and operation, and for any con-

siderable discharge appears to be almost the only method
which is both economical and precise. If the weir is

placed above the wheel, the leakage of the penstock must

be carefully ascertained.

Prob. 138. A weir with end contractions and no velocity of

approach has a length of 1.33 feet, and the depth on the crest

is 0.406 feet. The same water passes through a small turbine
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under the effective head 10.49 feet- Compute the theoretic

horse-power.

ART. 139. EFFECTIVE HEAD ON A MOTOR

The total available head H between the surface of the

water in the reservoir or head race and that in the lower

pool or tail race is determined by running a line of levels

from one to the other. Permanent bench marks being

established, gages can then be set in the head and tail races

and graduated so that their zero points will be at some

datum below the tail-race level. During the test of a

wheel each gage is read by an observer at stated intervals,

and the difference of tHe readings gives the head H . In

some cases it is possible to have a floating gage on the lower

level, the graduated rod of which is placed alongside a

glass tube that communicates with the upper level; the

head H is then directly read by noting the point of the

graduation which coincides with the water surface in the

tube. This device requires but one observer, while the

former requires two; but it is usually not the cheapest

arrangement unless a large number of observations are to

be taken.

From this total head H are to be subtracted the losses

of head in entering the forebay and penstock, and the loss

of head in friction in the penstock itself, and these losses

may be ascertained by the methods of Chapters VIII and

IX. Then
fc-H -*'--*"

is the effective head acting upon the wheel. In properly

designed approaches the lost heads h f and h" are very
small.

When water enters upon a wheel through an orifice

which is controlled by a gate, losses of head will result,

which can be estimated by the rules of Chapters V and VI.

If this orifice is in the head race, the loss of head should be
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subtracted together with the other losses from the total

head H. But if the regulating gates are a part of the wheel

itself, as is the case in a turbine, the loss of head should not

be subtracted, because it is properly chargeable to the con-

struction of the wheel, and not to the arrangements which

furnish the supply of water. In any event that head

should be determined which is to be used in the subsequent
discussions : if the efficiency of the fall is desired, the total

available head is required; if the efficiency of the motor,

that effective head is to be found which acts directly upon
it (Art. 139).

When water is delivered through a nozzle or pipe to an

impulse wheel, the head h is not the total fall, since a large

part of this may be lost in friction in the pipe, but is merely
the velocity-head v*/2g of the issuing jet. The value of v

is known when the discharge q and the area of the cross-

section of the stream have been determined, and

2g

In the same manner when a stream flows in a channel against

the vanes of an undershot wheel the effective head is the

velocity-head, and the theoretic energy is

_
2g 2ga

If, however, the water in passing through the wheel falls a

distance h below the mouth of the nozzle, then the effective

head which acts upon the wheel is given by

In order to fully utilize the fall h it is plain that the wheel

should be placed as near the level of the tail race as possible.

Lastly, when water enters a turbine wheel through a

pipe, a piezometer may be placed near the wheel entrance

to register the pressure-head during the flow
;

if this pres-
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sure-head, measured upon and from the water level in the

tail race, be called ht and if the velocity in the pipe be v, then

is the effective head acting on the wheel. It is here sup-

posed that the turbine has a draft tube leading below the

water level in the tail race
;

if this is not the case, h
t should

be measured upward from the lowest part oi the exit orifices.

Prob. 139. A pressure gage at the entrance of a nozzle regis-

ters 116 pounds per square inch, and the coefficient of velocity

of the nozzle is 0.98. Compute the effective velocity-head of

the issuing jet.

ART. 140. MEASUREMENT OF EFFECTIVE POWER

The effective work and horse-power delivered by a

water-wheel ,or hydraulic motor is often required to be

measured. Water-power may be sold by means of the

weight W, or quantity g, furnished under a certain head,

leaving the consumer to provide his own motor
;
or it may

be sold directly by the number of horse-power. In either

case tests must be made from time to time in order to in-

sure that the quantity contracted for is actually delivered

and is not exceeded. It is also frequently required to meas-

ure effective work in order to ascertain the power and

efficiency of the motor, either because the party who buys
it has bargained for a certain power and efficiency, or because

it is desirable to know exactly what the motor is doing in

order to improve if possible its performance.

The test of a hydraulic motor has for its object: first,

the determination of the effective energy and power;

second, the determination of its efficiency; and third,

the determination of that speed which gives the greatest

power and efficiency. If the wheel be still, there is no

power; if it be revolving very fast, the water is flowing

through it so as to change but little of its energy into work :
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and in all cases there is found a certain speed which gives
the maximum power and efficiency. To execute these tests,

it is not at all necessary to know how the motor is con-

structed or the principle of its action, although such knowl-

edge is very valuable, and is in fact indispensable, in order

to enable the engineer to suggest methods by which its

operation may be improved.

A method in which the effective work of a small motor

may be measured is to compel it to exert all its power in

lifting a weight. For this purpose the weight may be

attached to a cord which is fastened to the horizontal axis

of the motor, and around which it winds as the shaft re-

volves. The wheel then expends all its power in lifting;

this weight Wt through the height h
l in t{ seconds, and

the work performed per second then is k =Wl
h

1/t l . This

method is rarely used in practice on account of the diffi-

culty of measuring ^ with precision.

The usual method of measuring the effective work of

a hydraulic motor is by means of the friction brake or

power dynamometer invented by Prony about 1780. In

Fig. 140 is illustrated a simple

method of applying the appa-

ratus to a vertical shaft, the

upper diagram being a plan

and the lower an elevation.

Upon the vertical shaft is a

fixed pulley, and against this

are seen two rectangular pieces

of wood hollowed so as to fit

it, and connected by two bolts.

By turning the nuts on these

bolts while the pulley is re-

volving, the friction can be

increased at pleasure, even so

as to stop the motion ;
around

these bolts between the blocks are two spiral springs (not
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shown in the diagram) which press the blocks outward when
the nuts are loosened. To one of these blocks is attached

a cord which runs horizontally to a small movable pulley
over which it passes, and supports a scale-pan in which

weights are placed. This cord runs in a direction opposite
to the motion of the shaft, so that when the brake is tight-

ened it is prevented from revolving by the tension caused

by the weights. The direction of the cord in the horizontal

plane must be such that the perpendicular let fall upon it

from the center of the shaft, or its lever-arm, is constant;

this can be effected by keeping the small pointer on the

brake at a fixed mark established for that purpose.

To measure the work done by the wheel, the shaft is dis-

connected from the machinery which it usually runs, and
allowed to revolve, transforming all its work into heat by
the friction between the revolving pulley and the brake,

which is kept stationary by tightening the nuts, and at

the same time placing sufficient weights in the scale-pan to

hold the pointer at the fixed mark. Let n be the number
of revolutions per second as determined by a counter

attached to the shaft, P the tension in the cord which is

equal to the weight of the scale-pan and its loads, / the lever-

arm of this tension with respect to the center of the shaft,

r the radius of the pulley, and F the total force of friction

between the pulley and the brake. Now in one revolution

the force F is overcome through the distance 2nr, and in n

revolutions through the distance 2xrn. Hence the effec-

tive work done by the wheel in one second is

k =jp. 2-nrn =

The force F acting with the lever-arm r is exactly balanced

by the force P acting with the lever-arm /; accordingly

the moments Fr and PI are equal, and hence the work

done by the wheel in one second is
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If P be in pounds and / in feet, the effective horse-power

of the wheel is given by

As the number of revolutions in one second cannot be ac-

curately read, it is usual to record the counter readings

every minute or half-minute
;

if N be the number of revo-

lutions per minute,

hp = 27rATP//33 ooo (140) 2

It is seen that this method is independent of the radius of

the pulley, which may be of any convenient size; for a

small motor the brake may be clamped directly upon the

shaft, but for a large one a pulley of considerable size is

needed, and a special arrangement of levers is used instead

of a cord.

The efficiency of the motor is now found by dividing the

-effective work per second by the theoretic work per second.

Let K be this theoretic work, which, is expressed by Wh,
where W and h are determined by the methods of Arts.

138 and 139
;
then

e=k/K or e=Tip/HP

The work measured by the friction brake is that delivered

at the circumference of the pulley, and does not include

that power which is required to overcome the friction of

the shaft upon its bearings. The shaft or axis of every
water wheel must have at least two bearings, the friction

of which consumes probably about 2 or 3 percent of the

power. The hydraulic efficiency of the wheel, regarded as

a user of water, is hence 2 or 3 percent greater than the

computed value of e.

There are in use various forms and varieties of the fric-

tion brake, but they all act upon the principle and in the

manner above described. For large wheels they are made
of iron, and almost completely encircle the pulley; while
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a special arrangement of levers is used to lift the large

weight P.* If the work transformed into friction be large,

both the brake and the pulley may become hot, to prevent

which a stream of cool water is allowed to flow upon them.

To insure steadiness of motion, it is well that the surface

of the pulley should be lubricated, which for a wooden

brake is well done by the use of soap. It is important

that the connection of the cord to the brake should be

so made that the lever-arm I increases when the brake

moves slightly with the wheel
;

if this is not done, the wheel

will be apt to cause the brake to revolve with it.

Prob. 140a. What is the horse-power of a motor which in

75.5 seconds lifts a weight of 320 pounds through a vertical

height of 42 feet?

Prob. 1406. Find the power and efficiency of a motor when
the theoretic energy is 1.38 horse-power, which makes 670 revo-

lutions per minute, the weight on the brake being 2 pounds 14.

ounces and its lever-arm 1.33 feet.

ART. 141. TESTS OF TURBINE WHEELS

The following description of a test of a 6 -inch Eureka

turbine may serve to exemplify the methods of the pre-

ceding articles. The water was measured by a weir from

which it ran into a vertical penstock 15.98 square feet in

horizontal cross-section. This plan of having the weir

above the wheel is not a good one, but it was here adopted
on account of lack of room below the turbine. When a

constant head was maintained in the penstock the quantity
of water flowing through the wheel was the same as that

passing the weir; if, however, the head in the penstock
fell oo feet per minute the flow through the wheel in cubic

feet per minute was 6og + 15.98*, in wh;ch q is the discharge

per second over the weir. As the supply of water was very

* Thurston, Transactions American Society Mechanical Engineers, i886>

vol. 8, p. 359.
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limited the wheel could not be run to its full capacity.
The level of water in the penstock was read upon a head

gage consisting of a glass tube behind which a graduated
scale was fixed, the zero of which was a little above the

water level in the tail race. The latter level was read upon a
fixed graduated scale having its zero in the same horizontal

plane as the first; these readings were hence essentially

negative. The head upon the wheel is then found by add-

ing the readings of the two gages.

The vertical shaft of the turbine, being about 15 feet

long, was supported by four bearings, and to a small pulley

upon its upper end was attached the friction dynamometer
as described in the last article. The number of revolutions

was read from a counter placed in the top of this shaft.

The observations were taken at minute intervals, electric

bells giving the signals, so that precisely at the beginning
of each minute simultaneous readings were taken by ob-

servers at the weir, at the head gage, at the tail gage, and

Time on Depth Penstock Tail-race
*e lu

;
Wei ht

April 1 3, r̂

ir
Gage. Gage. ^ in

Bf
n

Remarks.
_QQQ v^resb. T?n=+- 17^^-4- ^jnc jjraKC.
>88 '

Feet.
eet -

Minute. Pounds.

7h I7m 0.288 II.2<5 0.21 2.5
615 Length of weir,

18 0.289 11.17 0.20 2.5 .'

625 = 1. 909 feet.
19 0.289 11.13 0.21 2.< T __. ,,

675 Length of lever-
20 0.288 ii. 10 0.21 2.1; arm on brake,

3
h 22m 0.287 10.81 0.20 3.0 /=i.43i feet.

23 0.287 10.69 0.20
5

3 . o
Gate of wheel f

24 0.287 10.62 0.21 3.0
open during all ex-

25 0.286 10.57 0.21 3.0
Periments.

at the counter, the operator at the brake continually keep-

ing it in equilibrium with the resisting weight in the scale-

pan by slightly tightening and loosening the nuts as re-

quired. The -above shows notes of all the observations

of two sets of tests, each lasting three minutes, the weight
in the scale-pan being different in the two sets.

The following are the results of the computations made
from the above notes for each minute interval. The second
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column is derived from formula (63)^ using the coefficient

corresponding to the given length of weir and depth on

crest. The third column is obtained by taking the differ-

ences of the observed readings of the penstock head gage.

The fourth column gives the discharge Q through the wheel

Interval
of

Time.
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effective power utilized by the wheel, are models of careful

and precise experimentation.* In determining the speed
of the wheel he used a method somewhat different from
that above explained, namely, the counter attached to the

shaft was connected with a bell which 'struck at the com-

pletion of every 50 revolutions
;
the observer at the counter

had then only to keep his eye upon the watch, and to note

the time at certain designated intervals say at every
sixth stroke of the bell. The number of revolutions per
second was then obtained by dividing the number of revo-

lutions in the interval by the number of seconds, as deter-

mined by the watch. This method requires a stop-watch
in order to do good work, unless the observer be very

experienced, as an error of one second in an interval of one

minute amounts to 1.7 percent.

At Holyoke, Mass., there is a permanent flume for test-

ing turbines arranged with a weir which can be varied up
to lengths of 20 feet, so as to test the largest wheels which
are constructed. As the expense of fitting up the appa-
ratus for testing a large turbine at the place where it is to

be used is often great, it is sometimes required in contracts

that the wheel shall be sent to a place where a special outfit

for such work exists. The wheel is mounted in the testing

flume, and there, by the methods explained in the preced-

ing articles, it is run at different speeds in order to deter-

mine the speed which gives the maximum efficiency as well

as the effective power developed at each speed. As the

efficiency of a turbine varies greatly with the position of

the gate which admits the water to it, tests are made with

the gate fully opened and at various partial openings. The
results thus obtained are not only valuable in furnishing
full information concerning the effective power and effi-

ciency of the wheel, but they also convert the turbine into

a water meter, so that when running under the same head

* Lowell Hydraulic Experiments, ist Edition, 1855; 4tn > 1883.
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ART. 142. FACTS CONCERNING WATER POWER

The number of horse-powers generated by water wheels

and turbines and used in manufacturing establishments in

the United States was i 130 431 in 1870, i 225 379 in 1880,

i 263 343 in 1890, and i 727 258 in 1900. These figures

do not include the electric power derived from water, which

in 1900 was probably nearly i ooo ooo horse-powers. Since

1890 there has been a large development of water power in

connection with electric light and trolley service, and this

development promises to attain great proportions during
the twentieth century. It has been estimated that the

rivers of the United States can furnish about 200 ooo ooo

horse-powers, so that the possibilities for the future are

almost unlimited, and when coal becomes very high in price

water is sure to take the place of steam.

Water power is sometimes sold by what is called the
' *

mill power,
' '

which may be roughly supposed to be such

a quantity as the average mill requires, but which in any
particular case must be defined by a certain quantity of

water under a given head.
*

Thus at Lowell the mill power
is 30 cubic feet per second under a head of 25 feet, which

is equivalent to 85 . 2 theoretic horse-power. At Minneapolis
it is 30 cubic feet per second under 22 feet head, or 75 theo-

retic horse-power. At Holyoke it is 38 cubic feet per second

under 20 feet head, or 86.4 theoretic horse-power. This

seems an excellent way to measure power when it is to be

sold or rented, as the head in any particular instance is not

subject to much variation; or if so liable, arrangements
must be adopted for keeping it nearly constant, in order

that the machinery in the mill may be run at a tolerably

uniform rate of speed. Thus nothing remains for the water

company to measure except the water used by the con-

sumer. The latter furnishes his own motor, and is hence

interested in securing one of high efficiency, that he may
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derive the greatest power from the water for which he pays.
The perfection of American turbines is undoubtedly largely

due to this method of selling power, and the consequent
desire of the mill owners to limit their expenditure of water.

The turbine itself when tested and rated becomes a meter

by which the company can at any time determine the quan-

tity of water that passes through it.

A common method of selling the power which is gen-

erated by turbines is by the nominal horse-power of the

wheel as stated in the catalog of the manufacturer. The

seller fixes a price per annum for one horse-power on this

basis, and the buyer furnishes his, own wheel. By this

method no controversy can arise regarding the amount

of water used, for the purchaser has the right to use all

that can pass through the turbine. This method cannot

be used for other kinds of wheels, because the gates that

regulate the flow of water through the motor is not a part

of the motor itself.

The power of electric generators is usually expressed

in kilowatts. One English horse-power is 0.746 kilowatts,

and one metric horse-power is 0.736 kilowatts. One kilo-

watt is 1.340 English horse-powers or 1.360 metric horse-

powers. The efficiency of a good electric generator is about

95 percent, so that it delivers 95 percent of the work im-

parted to it by the turbine wheel; if the efficiency of this

wheel be 75 percent, the combined efficiency of the hydraulic

and electric plant is 71 percent. Electric power is often

sold by the kilowatt-hour, this being measured by a watt-

meter.

In Art. 173 will be found an account of the power devel-

opment at Niagara Falls by one company, its plant of

105 ooo electrical horse-power being completed at the close

of 1903. The mean discharge of the Niagara River is about

280 ooo cubic feet per second, and the fall obtainable by the

use of turbines is about 145 feet. If only two-thirds of the
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power due to these quantities can be electrically developed,

the number of horse-powers obtainable is nearly 3^ millions.

If the plans of other companies are carried out, about

500 ooo horse-powers will probably be generated at these

great falls by the year 1910. If this process of power de-

velopment is continued during the following years, a great

diminution in the quantity of water passing over the falls

will result.

The available power of natural waterfalls is very great,

but it is probably excee4ed by that which can be derived

from the tides and waves of the ocean. Twice every day,

under the attraction of the sun and moon, an immense

weight of water is lifted, and it is theoretically possible to

derive from this a power due to its weight and lift. Con-

tinually along every ocean beach the waves dash in roar

and foam, and energy is wasted in heat which by some

device might be utilized in power. The expense of deriv-

ing power from these sources is indeed greater than that

of the water wheel under a natural fall, but the time may
come when the profit will exceed the expense, and then it

will certainly be done. Coal and wood and oil may become

exhausted, but as long as the force of gravitation exists,

and the ocean remains upon which it can act, power, heat,

and light can be generated in unlimited quantities.

Prob. 142a. Deduce the simple and useful rule that one

cubic foot per second of runoff is very closely equivalent to two
acre-feet per day.

Prob. 1426. Find the theoretic horse-power of a plant where

1 200 cubic feet of water per second is used under a total head

of 49.5 feet. If the efficiency of the approaches is 99 percent,

the efficiency of the turbines 76 percent, and the efficiency of

the dynamos 96 percent, what power in kilowatts is delivered?

Prob. I42c. What is the theoretic metric horse-power of a

plant where 112 cubic meters of water per second are used under

a head of 23.5 meters? If the efficiencies of the approaches.
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turbines, and electric generators are 98.5, 74.3, and 97.5 percent

respectively, compute the number of metric horse-powers de-

livered, and also the power in kilowatts.

Prob. 142<i. When a turbine is tested by a friction dyna-
mometer, show that its power in kilowatts is o.ooio^NPl, if P
be the load on the brake in kilograms, / its lever-arm in meters,

and N the number of revolutions per minute. When N = 2oo,

P = 2$o kilograms, and / = 2.oi meters, what electric power is

delivered by a dynamo attached to the turbine when the effi-

ciency of the dynamo is 97.2 percent?

Prob. 142e. The hectare-meter is a convenient unit for es-

timating large quantities of water in irrigation and water

supply work. Show that one hectare-meter is 10 ooo cubic

meters. Show that 100 centimeters of rainfall per month is,

very nearly, 0.004 cubic meters per second per hectare.
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CHAPTER XII

DYNAMIC PRESSURE OF WATER

ART. 143. DEFINITIONS AND PRINCIPLES

The pressures exerted by moving water against surfaces

which change its direction or check its velocity are called

dynamic, and they follow very different laws from those

which govern the static pressures that have been discussed

and used in the preceding chapters. A static pressure due

to a certain head may cause a jet to issue from an orifice;

but this jet in impinging upon a surface may cause a dynamic

pressure less than, equal to, or greater than that due to the

head. A static pressure at a given point in a mass of water

is exerted with equal intensity in all directions; but a

dynamic pressure is exerted in different directions, with

different intensities. In the following chapters the words

static and dynamic will generally be prefixed to the word

pressure, so that no intellectual confusion may result.

The dynamic pressure exerted by a stream flowing with

a given velocity against a surface at rest is evidently equal

to that produced when the surface moves in still water with

the same velocity. This principle was applied in Art. 40

in rating the current meter, the vanes of which move under

the impulse of the impinging water. The dynamic pressure

exerted upon a moving body by a flowing stream depends

upon the velocity of the body relative to the stream.

The ''impulse" of a jet or stream of.water is defined as

the dynamic pressure which it is capable of producing in the

direction of its motion when its velocity is entirely destroyed
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in that direction. This can be done by deflecting the jet

normally sidewise by a fixed surface; if the surface is

smooth, so that no energy is lost in frictional resistances,

the actual velocity remains unaltered, but the velocity in

the original direction has been rendered null. In Art. 29

it is proved that the theoretic force of impulse of a stream

of cross-section a and velocity v is

F = W- = wq-
o o

(143)

FIG. 143

in which W and q are the weight and volume delivered per

second, and w is the weight of one cubic unit of water. This

equation shows that the dynamic pressure that may be pro-

duced by impulse is equal to the static pressure due to twice

the head corresponding to the veloc-

ity v. It would then be expected
that if two equal orifices or tubes be

placed exactly opposite, as in Fig..

143, and a loose plate be placed ver-

tically against one of them, that the

dynamic pressure upon the plate

caused by the impulse of the jet

issuing from A under the head h

would balance the static pressure caused by the head 2/z.

This conclusion has been confirmed by experiment, when
the tube A has a smooth inner surface and rounded inner

edges so that its coefficient of discharge is unity.

The reaction of a jet or stream is the backward dynamic

pressure, in the line of its motion, which is exerted against
a vessel out of which it issues, or against a surface away
from which it moves. This is equal and opposite to the

impulse, and the equation above given expresses its value

and the laws which govern it. The expression for the

reaction or impulse F in (143) may be also proved as fol-

lows: The definition by which forces are compared with

each other is, that forces are proportional to the accelera-
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tions which they can produce. The weight W if allowed

to fall acquires the acceleration g\ the force F which can

produce the acceleration v is hence related to W and g by
the equation F/W =v/g, and accordingly F =W .v/g.

The forces of impulse and reaction do not really exist

in a stream flowing with constant velocity and direction,

but F indicates the force that was exerted in putting the

stream into motion and the force that is required to stop
it. If the direction of the stream be changed by opposing

obstacles, the impulse and reaction produce dynamic pres-

sure; if in making this change the absolute velocity is.

retarded, energy is converted into work. Impulse and.

reaction are of no practical value, except in so far as the

resulting dynamic pressures may be utilized for the pro-
duction of work. For this purpose water is made to im-

pinge upon moving vanes, which alter both its direction

and velocity, thus producing a dynamic pressure P, which,

overcomes in each second an equal resisting force through
the space u. The work done per second is then k =Pu, and

it is the object in designing a hydraulic motor to make this

work as large as possible ;
for this purpose the most advan-

tageous values of P and u are to be selected.

The word "impact" is sometimes popularly used to-

designate impulse or pressure, but in hydraulics it refers

to those cases where energy is lost in eddies and foam, as

when a jet impinges into water or upon a rough plane sur-

face. Impact is not denned in algebraic terms, but the

energy lost in impact may be so denned and computed.
When the energy of a stream of water is to be utilized T

losses due to impact should be avoided. Whenever im-

pact occurs kinetic energy is transformed into heat.

Prob. 143. If a jet is one inch in diameter, how many gallons

per second must it deliver in order that its impulse may be 100

pounds ?
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ART: 144. EXPERIMENTS ON IMPULSE AND REACTION

A simple device by which the dynamic pressure P exerted

upon a surface by the impulse and reaction of a jet that

glides over it can be directly weighed is shown in Fig. 144a.

It consists merely of a bent lever

supported on a pivot at 0, and

having a plate A attached at

the lower end of the vertical arm

upon which the stream impinges,
while weights applied at the end
of the other arm measure the

dynamic pressure produced by
the impulse. By means of an apparatus of this nature,

experiments have been made by Bidone, Weisbach, and

others, the results of which will now be stated.

When the surface upon which the stream impinges is a

plane normal to the direction of the stream, as shown at A,
the dynamic pressure P closely agrees with that given by
the theoretic formula for F in the last article, namely,

v ?;
2

(144)

FIG. 144a

being about 2 percent greater according to Bidone, and

about 4 percent less according to Weisbach. The actual

value of P was found to vary somewhat with the size of

the plate, and with its distance from the end of the tube

from which the jet issued.

When the surface upon which the stream impinges is

curved, as at B, or so arranged that the water is turned back-

ward from the surface, the value of the dynamic pressure

P was found to be always greater than the theoretic value,

and that it increased with the amount of backward incli-

nation. When a complete reversal of the original direction

of the water was obtained, as at C, it was found that P, as
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measured by the weights, was nearly double the value of

that against the plane. This is explained by stating that
as long as the direction of the flow is toward the surface

the dynamic pressure of its impulse is exerted upon it;

when the water flows backward away from the surface

the dynamic pressure due to both impulse and reaction

is exerted upon it. The sum of these is

P=F +F = 2W-= 4wa
g 2g

which agrees with the results experimentally obtained.

An experiment by Morosi* shows clearly .that the dy-
namic pressure against a surface may be increased still

further by the device shown in Fig. 1446, where the stream

is made to perform two complete reversals upon the sur-

face. He found that in this case the value

of the dynamic pressure was 3.32 times as

great as that against a plane, for P = 332F,
whereas theoretically the 3.32 should be 4. In

this case, as in those preceding, the water in

passing over the surface loses energy in fric-

tion and foam, so that its velocity is dimin-

ished, and it should hence be expected that the experimental
values of the dynamic pressures would be less than the theo-

retic values, as in general they are found to be.

While the experiments here briefly described thoroughly
confirm the results of theory, they further show it is the

change in direction of the velocity when in contact with the

surface which produces the dynamic pressure. If the stream

strikes normally against a plane, the direction of its ve-

locity is changed 90, and this is the same as the entire

destruction of the velocity in its original direction, so that

the dynamic pressure P should agree with the impulse F.

This important principle of change in direction will be

theoretically exemplified later.

* Ruhlman's Hydromechanik (Hannover, 1879), p. 586.
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The dynamic pressure which is produced by the direct

reaction of a stream of water when issuing from a vertical

orifice in the side of a vessel was measured

by Ewart with the apparatus shown in

Fig. 144<;, which will be readily under-

stood without a detailed description.

The discussion of these experiments made

by Weisbach * shows that the measured
values of P were from 2 to 4 percent less

FIG. 144c than the theoretic value F as given by
(144), so that in this case also theory and observation are

in accordance.

An experiment by Unwin,f illustrated in Fig. 144d, is

very interesting, as it perhaps explains more clearly than

formula (143) why it is that the dynamic pressure due to

impulse is double the static pres-

sure. Two vessels having converg-

ing tubes of equal size were placed

so that the jet from A was directed

exactly into B. The head in A
was kept uniform at 20^ inches,

when it was found that the water FlG - U4d

in B continued to rise until a head of 18 inches was reached.

All the water admitted into A was thus lifted in B by the

impulse of the jet, with a loss of 2\ inches of head, which

was caused by foam and friction. If such losses could be

entirely avoided, the water in B might be raised to the same
level as that in A. In the case shown in the figure where

the water overflows from B, the impulse of the jet has not

only to overcome the static pressure due to the head h, but

also to furnish the dynamic pressure equivalent to a second

head h in order to raise the water through that height.

But the level in B can never rise higher than in A, for the

* Theoretical Mechanics, Coxe's translation, vol. i, p. 1004.

f Encyclopaedia Britannica, 9th Edition, vol. 12, p. 467.
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velocity-head of the jet cannot be greater than that of the

static head which generates it.

Prob. 144a. In Fig. 144a the diameter of the tube is i inch,
and it delivers 0.3 cubic feet per second. Compute the theoretic

dynamic pressure against the plane.

Prob. 1446. Accepting as an experimental fact that the force

of impulse or reaction is double the static pressure, show that

the theoretic velocity of flow is \/2gh.

ART. 145. SURFACES AT REST

Let a jet of water whose cross-section is a impinge in

permanent flow with the uniform velocity v upon a surface

at rest. Let the surface be smooth, so that no resisting

forces of friction exist, and let the stream be prevented from

spreading laterally. The water then passes over the surface,

and leaves it with the original velocity v, producing upon

D

it a dynamic pressure whose value depends upon its change
of direction. At B in Fig. 145a the stream is deflected

normal to its original direction, and at D a complete rever-

sal is effected. Let 6 be the angle between the initial and

final directions, as shown. It is required to determine the

dynamic pressure exerted upon the surface in the same

direction as that of the jet. In the above figures, as in

those that follow, the stream is supposed to lie in a horizon-

tal plane, so that no acceleration or retardation of its

velocity will be produced by gravity.

The stream entering upon the surface exerts its impulse
F in the same direction as that of its motion; leaving

the surface it exerts its reaction F in opposite direc-
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tion to that of its motion. Let P be the dynamic pressure
thus produced in the di-

*fi*
F
\\* \ rection of the initial mo-

the reactionF in the same
direction. Then

F
:

FIG. 1456

and inserting for F its value as given by (143),

P =
(i -cos6)W- (145) t

which is the formula for the dynamic pressure in the direc-

tion of the impinging jet. If in this 6=0, the stream

glides along the surface without changing its direction, and

P becomes zero; if 6 is 90, the dynamic pressure is

v
P =F =W

g

and if 6 becomes 180 a complete reversal of direction is

obtained, and the dynamic pressure that is exerted by the

jet against the surface is

v

g

These theoretic conclusions agree with the experimental
results described in the last article. In the deduction of

(145)! the angle 6 has been regarded as less than 90, but

the same formula results if 6 be considered greater than

90, since then the sign of F
x

is positive.

The resultant dynamic pressure exerted upon the sur-

face is found by combining by the parallelogram of forces

the impulse F and the equal reaction F. In Fig. 1456 it

is seen that this resultant bisects the angle 180 6, and

that its value is

P' = 2F cos ^(180 - 0)
= 2 sin . W-

o
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It is usually, however, more important to ascertain the pres-
sure in a given direction than the result-

ant. This can be found by taking the

component of the resultant in that direc-

tion, or by taking the algebraic sum of the

components of the initial impulse and the

final reaction.

To find the dynamic pressure P in a

direction which makes an angle a with

the entering and the angle with the departing stream, the

components in that direction are

P
l
=F cosa P2

= F cos#

and the algebraic sum of these two components is

P =F(cosa -cosfl) = (cosa -costf)W- (145) 2
o

This becomes equal to F when a =o and 6 =90, as at B in

Fig. 145a, and also when a = 90 and 6 = 180. When a: =0
and 6 = 180 the entering and departing streams are parallel,

as at D in Fig. 145a, so that the value of P is 2F, which in

this case is the same as the resultant pressure.

The formulas here deduced are entirely independent of

the form of the surface, and of the angle with which the jet

enters upon it. It is clear, however, if, as in the planes in

Fig. 145a, this angle is such as to allow shock to occur, that

foam and changes in cross-section may result which will

cause energy to be dissipated in heat. These losses will

diminish the velocity v and decrease the theoretic dynamic

pressure. These effects cannot be formulated, but it is a

general principle, which is confirmed by experiment, that

they may be largely avoided by allowing the jet to impinge

tangentially upon the surface.

In all the foregoing formulas the weight W which im-

pinges upon the surface per second is the same as that which
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issues from the orifice or nozzle that supplies the stream, or

W =wq =wav

To find W it is hence necessary to use the methods of the

preceding chapters to determine either the discharge q or

the mean velocity v.

Prob. 145. If F is 10 pounds, a = o, and 6 = 60, show that

the pressure parallel to the direction of the jet is 5 pounds, that

the pressure normal to that direction is 8.66 pounds, and that

the resultant dynamic pressure is 10 pounds.

ART. 146. IMMERSED BODIES

When a body is immersed in a flowing stream, or when

it is moved in still water, so that filaments are caused to

change their direction, a dynamic pressure is exerted by

^^_ _,^ -^^^
the stream or

wOfjJT ^^ ^W)^^ ^^S overcome by the

body. It is to

be inferred from

what has pre-

ceded that the dynamic pressure in the direction of the

motion is proportional to the force of impulse of a stream

which has a cross-section equal to that of the body, or

P =m . wa

in which m is a number depending upon the length and

shape of the immersed portion, and whose value is 2 for a

jet impinging normally upon a plane.

Experiments made upon small plates held normally to

the direction of the flow show that the value of m lies be-

tween 1.25 and 1.75, the best determinations being near 1.4

and 1.5. It is to be expected that the dynamic pressure on

a plate in a stream would be less than that due to the im-

pulse of a jet of the same cross-section, as the filaments of
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water near the outer edges are crowded sideways, and hence

do not impinge with full normal effect, and the above results

confirm this supposition. The few experiments on record

were made with small plates, mostly less than 2 square feet

area, and they seem to indicate that m is greater for large
surfaces than for small ones.

The determination of the dynamic pressure upon the

end of an immersed cylinder or prism is difficult because

of the resisting friction of the sides; but it is well ascer-

tained to be less than that upon a plane of the same area,

and within certain limits to decrease with the length. For
a conical or wedge-shaped body the dynamic pressure is

less than that upon the cylinder, and it is found that its

intensity is much modified by the shape of the rear surface.

When a body is so shaped as to gradually deflect the

filaments of water in front, and to allow them to gradually
close in again upon the rear, the impulse of the front fila-

ments upon the body is balanced by the reaction of those in

the rear, so that the resultant dynamic pressure is zero.

The forms of boats and ships should be made so as to secure

this result, and then the propelling force has only to over-

come the fractional resistance of the surface upon the water.

The dynamic pressure produced by the impulse of ocean

waves striking upon piers or lighthouses is often very great.

The experiments of Stevenson on Skerryvore Island, where

the waves probably acted with greater force than usual,

showed that during the summer months the mean dynamic
pressure per square foot was about 600 pounds, and during
the winter months about 2100 pounds, the maximum ob-

served value being 6100 pounds. At the Bell Rock light-

house the greatest value observed was about 3000 pounds

per square foot. The observations were made by allow-

ing the waves to impinge upon a circular plate about 6

inches in diameter, and the pressure produced was regis-
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tered by the compression of a spring. Such high unit-pres-

sures do not probably act upon large areas of masonry

exposed to wave action.*

Prob. 146. Compute the probable dynamic pressure upon a

surface i foot square when immersed in a current whose velocity
is 8 feet per second, the direction of the current being normal

to the surface.

ART. 147. CURVED PIPES AND CHANNELS

The dynamic pressures discussed in the preceding article

have been those caused by jets, or isolated streams, of

water. There is now to be considered the case of dynamic

pressures caused by streams flowing in pipes, conduits, or

channels of any kind; these are sometimes called limited

or bounded streams, the boundary being the surface whose

cross-section is the wetted perimeter. When such a stream

is straight and of uniform section, and all its filaments move
with the same velocity v, the impulse, or the pressure which

it can produce, is the quantity F given by the general ex-

FIG. 147a

pression in Art. 143; under these conditions it exerts no

dynamic pressure, but if a body be immersed and held

stationary, pressure is produced upon it. If its direction

changes in an elbow or bend, pressure upon the bounding
surface is produced; if its cross-section increases or de-

creases, pressure is developed or absorbed.

*
Cooper, on Ocean Waves, in Transactions American Society of Civil

Engineers, 1896, vol. 36, p. 150.
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The resultant dynamic pressure Pf

upon a curved pipe
which runs full of water with the uniform velocity v de-

pends upon the angle 6 between the initial and final direc-

tions, and must be the same as that produced upon a sur-

face by an impinging jet which passes over it without

change in velocity. The formula of Art. 145 then directly

applies, and

P' =2 sini0.F = 2 sinitf.T^-
o

If =0, there is no bend, and Pf =o
;

if 6 = 180, the direc-

tion of flow is reversed, and P' = 2p. If the direction is

twice reversed, as at C in Fig. 147 a, the value of 6 is 360, and

the resultant is the initial impulse F minus the final reac-

tion F, or simply zero
;
in this case, however, there may be

a couple which tends to twist the pipe, unless the impulse
and reaction lie in the same line.

The dynamic pressure developed in a unit of length of

the curve will now be found. Let the pipe at A in Fig. 147a

have the length dl, and let be nearly o, so that its value is

the elementary angle dd. Then in the above formula Pr

becomes the elementary radial pressure $P lt and

Now since dd = dl/R, where R is the radius of the curve,

the dynamic pressure developed in the distance dl is Fdl/R,
and that for a unit of length is F/R. Accordingly, by
Art. 144, this pressure is

F

The unit-pressure pf is found by dividing Pl by a, and the

corresponding head h
t
is found by dividing p

f

by w\ hence

2WV2 2 V*

p'
= and i 5R 2g R2g

are the values for one unit of length of the curve.
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The dynamic pressure-head h
1 is developed in every unit

of length of the pipe. It is not known how these influence

the static pressure or how they affect piezometers. Nor
is it known whether they combine so that the dynamic

pressure becomes greater with the distance from the be-

ginning of the curve. Undoubtedly, however, a part of

HI is expended in causing cross-currents whereby impact
results and some of the static head is lost. This loss should

be proportional to h
1
and proportional to the length / of

the curve, or, if d is the diameter of the pipe

in which the curvature factor /A depends upon the ratio

R/d. This investigation appears to indicate that pipes
of the same diameter and of different curvatures give the

same loss of head, if the central angle is the same; but, as

seen in Art. 87, certain experiments seem to point to the

conclusion that the loss per linear unit is greatest in the

pipe having the longest radius.

The same reasoning applies approximately to the

curves of conduits, canals, and rivers. In any length I

there exists a radial dynamic pressure P lt acting toward
the outer bank and causing;

currents in that direction,

which, in connection with

the greater velocity that

naturally there exists, tends

to deepen the channel on

that side. This may help
to explain the reason why

FlG 147&
rivers run in winding courses.

At first the curve may be

slight, but the radial flow due to the dynamic pressure causes

the outer bank to scour away; this increases the velocity
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v2 and decreases v^ (Fig. 1476), and this in turn hastens

the scour on the outer and allows material to be deposited
on the inner side. Thus the process continues until a
state of permanency is reached, and then the existing
forces tend to maintain the curve. The cross-currents

which the radial pressure produces have been actually
seen in experiments devised by Thomson,* and it is found

that they move in the manner shown in the above figure,

the motion toward the outer bank being in the upper part
of the section, while along the wetted perimeter they flow

toward the inner bank. When the slope is small and the

mean velocity low the influence of the cross-currents is.

relatively greater than for higher slopes, and this is prob-

ably one of the reasons why the sharpest curves are found
in streams of slight slope. Perhaps another reason for this

is that at very low velocities the law of flow is different,

the head varying as the first power of the velocity

(Art. 116), and the energy being expended in friction along
the banks instead of in impact.

The elevation of the water on the outer bank of a bend
is higher than on the inner. This is only a partial conse-

quence of the radial dynamic pressure, as in straight
streams it is also seen that the water surface is curved,
the highest elevation being where the velocity is greatest.

In this case cross-currents are also observed which move
near the surface toward the center of the stream, and near

the bottom toward the banks, their motion being due to

the disturbance of the static pressure consequent upon
the varying water level.

Prob. 147. The mean velocity in a pipe is 9 feet per second.

If it be laid on a curve of 3 feet radius, show that the dynamic
pressure-head for each foot in length of the pipe is 0.84 feet.

If the radius of the curve be 6 feet, what is the dynamic pressure-
head? What is the dynamic pressure-head for each case when
the mean velocity is 3 feet per second?

*
Proceedings Royal Society of London, 1878, p. 356.
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ART. 148. WATER HAMMER IN PIPES

CHAP. XII

When a valve in a pipe is closed while the water is

flowing the velocity of the water is retarded as the valve

descends and thus a dynamic pressure is produced. When
the valve is closed quickly this dynamic pressure may be

much greater than that due to the static pressure, and it

is then called
"
water hammer" or

"
water ram." Pipes

have often been known to burst under this cause, and hence

the determination of the maximum dynamic pressure of

the water hammer is a matter of importance. Fig. 148a

illustrates the phenomena of water hammer for the closing

of a valve at the end of a pipe where the water issues

through a nozzle. At the entrance there is supposed to

be a gage which registers the static unit-pressure p lt while

the flow is in progress, and the static unit-pressure ^> when
there is no flow. The abscissas represent time, and at B
the valve begins to close. After a short interval of time

BC the gage registers the unit-pressure Cc\ after another

short interval the unit-pressure has decreased to Dd, and

a series of oscillations follows until finally the disturbance

ceases. A diagram of this kind may be autographically

drawn by suitable mechanism connected with the pressure

gage, and such were made in the experiments conducted

by Carpenter,* as also in those of Fletcher,f

* Transactions American Society of Mechancial Engineers, 1894, vol. 15,

p. 150. f Engineering News, 1898, vol. 39, p. 323.
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Let P represent the excess of maximum dynamic unit-

pressure over the static unit-pressure when there is no flow;

that is, the difference of the ordinates Cc and Ee. This

is the excess unit-pressure due to the water hammer and
it is required to determine an expression for its value.

It is first to be noted that the actual dynamic unit-pressure

produced by the retardation of the velocity is the difference

of the ordinates Cc and Bb and this difference is p + p Q p^
The dynamic pressure on the area a of the cross-section

of the pipe is then (p +popja, and for brevity this may
be represented by P. If this pressure be regarded as

varying uniformly from o up to P during the time t in

which the valve closes, its mean value is \P and its total

impulse during this time is \Pt. If / be the length of the

pipe, w the weight of a cubic unit of water, and v the veloc-

ity during the flow, the total weight of water in the pipe
is wal and its impulse is wal.v/g. Equating these ex-

pressions of the impulse there is found P =
2wal/gt, and

replacing P by its value, there results

2Wl

P=-gV
+ Pi-p* (148),

as the excess dynamic unit-pressure due to closing the valve

in the time t. This formula, having been deduced with-

out considering the fact that time is required for the trans-

mission of stress through water, cannot be regarded as

applicable to all cases.

In Art. 6 it was shown that the velocity with which

any disturbance is propagated through water is about

4670 feet per second, and this velocity may be represented

by u. Now let the pipe of length I have an open valve at

the end, and let the water be flowing through every sec-

tion with the velocity v. Then the time l/u must elapse
after the valve begins to close before the velocity begins
to be checked at the upper end of the pipe, and the further

time of l/u must elapse before the pressure due to this



392 DYNAMIC PRESSURE OF WATER CHAP, xn

retardation can be transmitted back to the valve. The

total time 2l/u is then required before the gage at the

valve can indicate the pressure due to the retardations

of the velocity in the length /. Hence, if the time in which

the valve closes be equal to or less than 2l/u, the time t

in the above formula is to be replaced by 2l/u, and thus

wuP=v + Pi-p (148) a

&

is the maximum excess dynamic unit-pressure that can

occur in the pipe. This depends upon the velocity of the

water and upon the initial and final static pressures.

The subject of water hammer in pipes is one of the

most difHcult in hydromechanics, and the above investi-

gation cannot be regarded as final. Formula (148)i is

probably correct only for a certain law of valve closing.

Formula (148) 2 , however, is certainly correct, for it may
be proved by other methods, one of which is as follows:

When the water is in motion the kinetic energy in a length

dl Sit the gage is wal.v 2

/2g; when it is brought to rest

under the unit-stress s its stress energy is adl.s z

/2E, if E
be the modulus of elasticity of the water.* Equating
these expressions, and substituting p +pipo for s, there

results for the excess dynamic unit-pressure

and this reduces to (148) 2 if E be replaced by wu*/g, which

is its value according to formula (6).

When v is in feet per second, and p Q , p lf and p are in

pounds per square inch, these formulas become

p=o.o2>j(l/t)v + p 1 -p p=62,v + p 1 -p (148),

the first of which is to be used when t is greater than

o.00042 8/ and the second when t is equal to or less than it,

* Merriman's Mechanics of Materials (New York, ^1901), p. 202.
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/ being in feet. From the first of these formulas the value

of /, when p = o, is found to be
Iv

which is the time of valve closing in order that there may
be no water hammer. For example, let p be 83 and p 1

be 58 pounds per square inch, / be 1903 feet, and v be 5 feet

per second, then t is 10.3 seconds. To prevent the effects

of water hammer, it is customary to arrange valves so that

they cannot be closed very quickly, and the last formula

furnishes the means of estimating the time required in

order that no excess of dynamic pressure over the static

pressure p may occur.

The elaborate experiments of Joukowsky at Moscow in

1898* have fully confirmed the truth of formula (148) 2 .

Horizontal pipes of 2, 4, and 6 inches diameter, with lengths
of 2494, 1050, and 1066 feet, were used, and the valve at

the end was closed in 0.03 seconds. Ten autographic re-

cording gages were placed along the length of a pipe, and
it was found that substantially the same dynamic pressure
was produced at each, but that the time length of a wave
was the shorter the further the distance of a gage from the

valve; this wave length is shown in the above figure by
the distance BD. The following is a comparison of the

For the 4-inch pipe: For the 6-inch pipe:
Velocity. Observed. Computed. Velocity. Observed. Computed.

0.5 3i 3i 0.6 43 38

1.9 115 118 1.9 106 118

2.9 168 183 3.0 173 189

4-i 232 258 5.6 369 353

9.2 519 580 7.5 426 472

observed values of p + p p^ for a few of these experiments
with the values computed from 63^. It is seen that the

observed are less than the computed values except in one

* Stoss in Wasserleitungsrohren, St. Petersburg, 1900. Translation from

the Memoirs of the St. Petersburg Academy of Sciences.
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instance, and Joukowsky concludes that, owing to the in-

fluence of the metal of the pipes, the velocity u with which

stress is transmitted in the water is about 4200 instead of

4670 feet per second. This conclusion may be applied in

practice by using 597; instead of 6$v in (148) 3 .

If the pipe be a compound one (Art. 96) the above for-

mulas also hold for any cross-section, if v be the velocity

and p and p t the static and hydraulic pressures at that

section, and / be the length of the pipe from the valve to

the reservoir. In a system of pipes having diversions and

branches (Art. 100), it is often difficult to tell what length
to use for / in (148)j. For a house-service pipe connected

with a street main, / is usually the length from the valve to

X, :
"

FIG. 1486

the main. In computing the thickness of water pipes, it

is customary to allow 100 pounds per square inch for the

influence of water hammer. This is equivalent, if p { be

zero, to making ioo + ^> equal to 631;; if v be 3 .feet per

second, p is then 89 pounds per square inch. Since these

values of v and p are larger than the usual ones for a city

water supply, the customary practice is on the safe side for

this case, but for the high velocities and pressures used for

conveying water to some power plants it would not give

sufficient security. When a wave of dynamic pressure

travels in a pipe toward a closed end, the water hammer
at that end may be two or three times as great as the maxi-

mum given by the formula. Air chambers at the ends of

pipes slightly reduce the effects of Water hammer.

Prob. 148a. The pressure-head at the entrance to a nozzle

is 64.0 feet when there is no flow and 22.8 feet when the water

is flowing. The pipe is 1500 feet long and 4 inches in diameter,
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and the velocity in the pipe is 4.2 feet per second when the valve

at the nozzle entrance is open. Compute the excess dynamic
unit pressure when the valve is closed in one second, and also

when it is closed in 0.4 seconds.

Prob. 1486. For the data of the last problem, find the pres-

sures due to water hammer for the two cases at a point in the

pipe which is at a distance x from the valve (see Fig. 1486), if

the elevation of this point below the water level of the reservoir

is 23 feet.

ART. 149. MOVING VANES

A vane is a plane or curved surface which moves in a

given direction under the dynamic pressure exerted by an

impinging jet or stream. The direction of the motion of

the vane depends upon the conditions of its construction;

for example, the vanes of a water wheel can only move in a

circumference around its axis. The simplest case for con-

sideration, however, is that where the motion is in a straight

line, and this alone will be considered in this article. The

plane of the stream and vane is to be taken as horizontal,

so that no direct action of gravity can influence the action

of the jet.

Let a jet with the velocity v impinge upon a vane which

moves in the same direction with the velocity u, and let the

velocity of the jet relative to the sur-

face at the point of exit make an angle

/?
with the reverse direction of u, as

shown in Fig. 149a. The velocity of

the stream relative to the surface is

vu. and the dynamic pressure is the
.-

1
> FIG. 149a

same as if the surface were at rest and

the stream moving with the absolute velocity vu. Hence
formula (145) x directly applies, replacing v by vu and

by 180 /?,
and the dynamic pressure is

o
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In this formula W is not the weight of the water which

issues from the nozzle, but that which strikes and leaves

the vane, or W=wa(vu)\ for under the condition here

supposed the vane moves continually away from the nozzle,

and hence does not receive all the water which it delivers.

Another method of deducing the last equation is as fol-

lows: At the point of exit let lines be drawn representing

the velocities v u and u\ then, completing the parallelo-

gram, the line v
l

is the absolute velocity of the departing

jet (Art. 30). Let 6 be the angle which v
l
makes with the

direction of u, and /? as before the angle between v u and

the reverse direction of u. Then the dynamic pressure on

the vane is that due to the absolute impulse of the entering

and departing streams: the former of these is W .v/g and

the latter is W . vt co$6/g. Hence the resultant dynamic

pressure in the direction of the motion of the vane is the

difference of these impulses, or

But from the triangle between v 1 and u

v
l
cos/9 =u (vu) cos/?

Inserting this, the value of the dynamic pressure is

&

which is the same as that found before. If /?
= 180 there is

no pressure, and if
/?
= the stream is completely reversed,

and P attains its maximum value. The dynamic pressure

may be exerted with different intensities upon different

parts of the vane, but its total value in the direction of the

motion is that given by the formula.

Usually the direction of the motion is not the same as

that of the jet. This case is shown in Fig. 1496, where the
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FIG. 1496

arrow marked F designates the direction of the impinging

jet, and that marked P the direction of the motion of the

vane, a being the angle be-

tween them. The jet hav-

ing the velocity v impinges

upon the vane at A, and in

passing over it exerts a

dynamic pressure P which

causes it to move with the

velocity u. At A let lines

be drawn representing the

intensities and directions of v and M, and let the parallelo-

gram of velocities be formed as shown
;
the line V then rep-

resents the velocity of the water relative to the vane at A.

The stream passes over the surface and leaves it at B with

the same relative velocity V, if not retarded by friction or

foam. At B let lines be drawn to represent u and V, and
let

/?
be the angle which V makes with the reverse direction

of u
;

let the parallelogram be completed, giving v
l for the

absolute velocity of the departing water, and let be the

angle which it makes with u. The total pressure in the

direction of the motion is now to be regarded as that caused

by the components in that direction of the initial and the

final impulse of the water. The impulse of the stream

before striking the vane is W . v/g and its component in the

direction of the motion is W .v cosa/g. The impulse of the

stream as it leaves the vane is W .vjg and its component
in the direction of the motion is W .v

t cosO/g. The differ-

ence of these components is the resultant dynamic pressure
in the given direction, or

o

This is a general formula for the dynamic pressure in any
given direction upon a vane moving in a straight line, if

a and 6 be the angles between that direction and those of
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v and v
lt

If the surface be at rest v and v
1 are equal and

the formula reduces to (145) 2 .

If it be required to find the numerical value of P, the

given data are the velocities v and u and the angles or

and
ft.

The term v t cosd is hence to be expressed in terms

of these quantities. From the triangle at B between v l

and u, there is found

v cos# =u V cos/?

und substituting this the formula becomes

_ v cosa u+V cos/?

g

which is often a more convenient form for discussion.

The value of V is found from the triangle at A between
u and v, thus:

V 2 =u 2 + v 2 2uv cosa

and hence the dynamic pressure P is fully determined in

terms of the given data.

In order that the stream may enter tangentially upon
the vane, and thus prevent foam, the curve of the vane at A
should be tangent to the direction of V. This direction

can be found by expressing the angle <j>
in terms of the

given angle a. Thus from the relation between the sides

and angles of the triangle included between u, v, and V
there is found

sin
(<j> a) /sin <j>

= u/v

which is easily reduced to the form

u
cot< =cota :

v sine*

from which < can be computed when u, v, and a are given.
For example, if u be equal to %v, and if a be 30, then

cot $ is 0.732, whence the angle < should be 53'! in order

that the jet may enter without impact. If the angle made
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by the vane with the direction of motion be greater or

less than this value some loss due to impact will result at

the given speed.

Prob. 149a. Given ^ = 70.7 and v=ioo.o feet per second,
a = 45 and

/?
= 3O. Compute the dynamic pressure P when

the quantity of water striking the vane is 0.6 cubic feet per
second.

Prob. 1496. Given w = 86.6 and ?;=ioo.o feet per second,
and a = 30. What should be the value of the angle <fr

in order

that no loss by impact may occur? Draw the parallelogram

showing the velocities u, v, and V.

ART. 150. WORK DERIVED FROM MOVING VANES

The work imparted to a moving vane by the energy of

the impinging water is equal to the product of the dynamic
pressure P, which is exerted in the direction of the motion
and the space through which it moves. If u be the space
described in one second, or the velocity of the vane, the

work per second is

k=Pu

This expression is now to be discussed in order to deter-

mine the value of u which makes k a maximum.

When the vane moves in a straight line in the same
direction as the impinging jet and the water enters it

tangentially, as shown in Fig. 1456, the work imparted
is found by inserting for P its value from (145)j. If a be

the area of the cross-section of the jet and w the weight
of a cubic unit of water, the weight W is wa(v u), and then

5

The value of u which renders k a maximum is obtained by
equating to zero the derivative of k with respect to u, or

dk ^ wa ,

-^
= (i+cosp)~(v

2
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from which the value of u is Jv, and accordingly

v 3

k = 8
T (i +cos/?)wa

is the maximum work that can be done by the vane in one

second. The theoretic energy of the impinging jet is

v 2 v 3

K =W=wa-
2g 2g

and the efficiency of the vane is the ratio of the effective

work of the vane to the theoretic energy of the water, or

e = k/K =&(! + cos/?)

If /?
= 180, the jet glides along the vane without producing

work and e =o
;

if
/? =90, the water departs from the vane

normal to its original direction and e=^r\ ^ /? =0 >
the

direction of the stream is reversed and e=ffi

It appears from the above that the greatest efficiency

which can be obtained by a vane moving in a straight line

under the impulse of a jet of water is |f; that is, the effec-

tive work is only about 59 percent of the theoretic energy
attainable. This is due to two causes: first, the quantity
of water which reaches and leaves the vane per second is

less than that furnished by the nozzle or mouthpiece from

which the water issues; and, secondly, the water leaving

the vane still has an absolute velocity of %v. A vane

moving in a straight line is therefore a poor arrangement
for utilizing energy, and it will also be seen upon reflection

that it would be impossible to construct a motor in which

a vane would move continually in the same direction away
from a fixed nozzle. The above discussion therefore gives

but a rude approximation to the results obtainable under

practical conditions. It shows truly, however, that the

efficiency of a jet which is deflected normally from its path
is but one-half of that obtainable when a complete reversal

of direction is made.
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Water wheels which act under the impulse of a jet

consist of a series of vanes arranged around a circum-

ference which by the motion are brought in succession

before the jet. In this case the quantity of water which

leaves the wheel per second is the same as that which enters

it, so that W does not depend on the velocity of the vanes,

as in the preceding case, but is a constant whose value is

wq, where q is the quantity furnished per second. A close

estimate of the efficiency of a series of such vanes can be

made by considering a single vane and taking W as a con-

stant. The water is supposed to impinge tangentially

and the vane to move in the same direction as the jet

(Fig. 149a). Then the work imparted per second by the

water to the moving vane is

o

This becomes zero when u=o or when u=v, and it is a

maximum when u =
%v, or when the vane moves with one-

half the velocity of the jet. Inserting this value of
,

and, dividing this by the theoretic energy of the jet, the

efficiency of the vane is found to be

When /?
= i8o, the jet merely glides along the surface

without performing work and e=o', when ^=90, the jet

is deflected normally to the direction of the motion and

e = \ ;
when /?

= o, a complete reversal of direction is ob-

tained and the efficiency attains its maximum value e = i .

These conclusions apply closely to the vanes of a water

wheel which are so shaped that the water enters upon
them tangentially in the direction of the motion. If the

vanes are plane radial surfaces, as in simple paddle wheels,
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the water passes away normally to the circumference, and
the highest obtainable efficiency is about 50 percent. If

the vanes are curved backward the efficiency becomes

greater, and, neglecting losses in impact and friction, it

might be made nearly unity, and the entire energy of the

stream be realized, if the water could both enter and leave

the vanes in a direction tangential to the circumference.

The investigation shows that this is due to the fact that the

water leaves the vanes without velocity; for, as the ad-

vantageous velocity of the vane, is %v, the water upon its

surface has the relative velocity v%v=%v; then, if /?=o,
its absolute velocity as it leaves the vane is %v %v=o.
If the velocity of the vanes is less or greater than half the

velocity of the jet, the efficiency is lessened, although

slight variations from the advantageous velocity do not

practically influence the value of e.

Prob. 150. A nozzle 0.125 feet in diameter, whose coeffi-

cient of discharge is 0.95, delivers water under a head of 82 feet

against a series of small vanes on a circumference whose diam-

eter is 18.5 feet. Find the most advantageous velocity of revo-

lution of the circumference.

ART. 151. REVOLVING VANES

When vanes are attached to an axis around which they
move, as is the case in water wheels, the dynamic pressure

which is effective in causing the motion is that tangential

to the circumferences of revolution
;
or at any given point

this effective pressure is normal to a radius drawn from the

point to the axis. In Fig. 151 are shown two cases of a

rotating vane; in the first the water passes outward or

away from the axis, and in the second it passes inward or

toward the axis. The reasoning, however, is general and
will apply to both cases. At A, where the jet- enters upon
the vane, let v be its absolute velocity, V its velocity relative

to the vane, and u the velocity of the point A ;
draw u nor-
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mal to the radius r and construct the parallelogram of ve-

locities as shown, a being the angle between the directions

of u and v, and
<j>
that between u and V. At B, where the

water leaves the vane, let u
v
be the velocity of that point

normal to the radius r 1? and V l the velocity of the water

relative to the vane
;
then constructing the parallelogram,

U i

FIG. 151

the resultant of u t and Vt is v lt the absolute velocity of the

departing water. Let /? be the angle between V l and the

reverse direction of u
lt and be the angle between the

directions of v^ and u^.

The total dynamic pressure exerted in the direction of

the motion will depend upon the values of the impulse of

the entering and departing streams. The absolute impulse
of the water before entering is W . v/g, and that of the water

after leaving is W .vjg. Let the components of these in

the directions of the motion of the vane at entrance and

departure be designated by P and P v ;
then

_

These, however, cannot be subtracted to give the resultant

dynamic pressure, as was done in the case of motion in a

straight line, because their directions are not parallel, and
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the velocities of their points of application are not equal.

The resultant dynamic pressure is not important in cases

of this kind, but the above values will prove useful in the

next article in investigating the work that can be delivered

by the vane.

If n be the number of revolutions around the axis in one

second, the velocities u and % are

u = 27irn u^ = 2nr1
n

and accordingly the relation obtains

u
1/u=r1/r or ^

1r=^r1

which shows that the velocities of the points of entrance

and exit are directly proportional to their distances from

the axis. If r and rx are infinity, u equals u^ and the case

is that of motion in a straight line as discussed in Art. 149.

The relative velocities Vl and V are connected with the

velocities of rotation % and u by a simple relation. To de-

duce it, imagine an observer standing on the outward-flow

vane and moving with it; he sees a particle of weight w
at A which to him appears to have the velocity V, while the

same particle at B appears to have the velocity V
1

'

t
the

difference of their kinetic energies or w(V* V 2

)/2g is

the apparent gain of the wheel-energy. Again, consider

an observer standing on the earth and looking down

upon the vane
;
from his point of view the energy gained is

w(u* u 2
)/2g. Now these two expressions for the gain of

the wheel in energy must be equal, or

VS-V'-its-u* (151)

and this is the formula by which Vl is to be computed when
V and the velocities of rotation are known. The same

reasoning applies to the inward-flow vane by using the

word loss instead of gain, and the same formula results.

The given data for a revolving vane are the angles a,
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0, and
/?,

the radii r and rlt the velocity v, the number of

revolutions per second, and the weight of water delivered

to the vane per second. The value of v cosa, and hence

that of P, is immediately known. From the speed of revo-

lution the velocities u and u^ are found. The relative

velocity V is, from the triangle between u and v,

V =v sina/sin <j>

and by (151) the relative velocity Vt is then found from

V1

2 =U
1

2 -M 2+V 2

Lastly, the value of v^ cos# is, from the triangle between
u and V lt

v
l cosO = u l Vl cos/?

and accordingly the values of P and P l are fully deter-

mined. Numerical values of these, however, are never

needed, but the work due to them is to be found, as will

be explained in the next article.

Prob. 151a. If a point 14 inches from the axis moves with a

uniform velocity of 62 feet per second, how many revolutions

does it make per minute?

Prob. 1516. Given r=2 feet, ^ = 3 feet, a =45, ^ = 90,
v= 100 feet per second, and-w = 6 revolutions per second. Com-

pute the velocities u, u
lt V, and Vr

ART. 152. WORK DERIVED FROM REVOLVING VANES

The investigation in Art. 150 on the work and efficiency

of a revolving vane supposes that all its points move with

the same velocity, and that the water enters upon it in the

same direction as that of its motion, or that a=o. This

cannot in general be the case in water motors, as then the

jet would be tangential to the circumference and no water

could enter. To consider the subject further the reasoning
of the last article will be continued, and, using the same

notation, it will be plain that the work of a series of vanes

arranged around a wheel may be regarded as that due
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to the impulse of the entering stream in the direction of the

motion around the axis minus that due to the impulse of

the departing stream in the same direction, or

k=Pu-P 1
u

1

Here P and P are the pressures due to the impulse at A
and B (Fig. 151), and inserting their values as found,

This is a general formula applicable to the work of all wheels

of outward or inward flow, and it is seen that the useful

work k consists of two parts, one due to the entering and

the other to the departing stream.

Another general expression for the work of a series of

vanes may be established as follows: Let v and v
l be the

absolute velocities of the entering and departing water;
the theoretic energy of this water is W.v*/2g, and when it

leaves the wheel it still has the energy W.v l

2

/2g. Neglect-

ing losses of energy in impact and friction the work that

can be derived from the wheel is

7;2 _ ni 2

k =W~~ (152),

This is a formula of equal generality with the preceding,
and like it is applicable to all cases of the conversion of

energy into work by means of impulse or reaction. In both

formulas, however, the plane of the vane is supposed to be

horizontal,
Nso that no fall occurs between the points of en-

trance and exit.

Formula (151) may be demonstrated in another way
by equating the values of k in the preceding formulas

;
thus

uv cosa u^ cos# =%(v
2

v^)

Now from the triangle at A between u and v

i)* = V 2 n 2 + 2uv cosa
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and from the triangle at B between % and v^

v i

2 = VV US + 2U
1V 1 COS0

Inserting these values of v 2 and v^
2 the equation reduces to

Vl

2 -V 2 =u
l

2 -u 2

This shows that if u t be greater than u, as in the outward-
flow vane of the first diagram of Fig. 151, then Vt is greater
than V\ ii HI is less than u, as in an inward-flow vane,
then V l

is less than V.

The above principles will now be applied to the simple
case of an outward-flow wheel driven by a fixed nozzle, as

in Fig. 152a. The wheel is so built that r = 2 feet, rt
=

3 feet,

a =45, 0=90, and ^ = 30. The velocity of the water

FIG. 152a FIG. 1526

issuing from the nozzle is v = ioofeet per second, and the

discharge per second is 2.2 cubic feet. It is required to

find the work of the wheel and the efficiency when its speed
i 337-5 revolutions per minute.

The theoretic work of the stream per second is the

weight delivered per second multiplied by its velocity-

head, or

k =62.5 X 2. 2 Xo.01555 Xioo 2 = 2i 380 foot-pounds

which gives 38.9 theoretic horse-powers. The actual

work of the wheel, neglecting losses in foam and friction,

can be computed either from (152)! or (152) 2 . In order

to use the first of these, however, the velocities u, u
lt vlt

and the angle 6 must be found, and to use the second, v
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must be found; in each case V and F
x
must be determined.

The velocities u and u^ are found from the given speed
of 5.625 revolutions per second, thus:

u =2 X3.i4i6 X2 X5.625 = 70.71 feet per second

^ = 1^X70.71 =106.06 feet per second

The relative velocity V at the point of entrance is found
from the triangle between V and v, which in this case is

right-angled; thus

V =v cos(< a) =i'cos 45 =
70. 7 1 feet per second

The relative velocity Vl at the point of exit is found from

the relation (151), which gives 1^=^ = 106.06 feet per
second. And since % and V

l
are equal, v bisects the angle

between V^ and u lt and accordingly

0=i(i8o-/?)= 75 degrees

The value of the absolute velocity v l then is

v l
= 2%cos# = 54.90 feet per second

and v^/2g is the velocity-head lost in the escaping water.

The work of the wheel per second, computed either

from (152)! or (152) 2 ,
is now found to be = 14934 foot-

pounds or 27.2 horse-powers, and hence the efficiency,

or the ratio of this work to the theoretic work, is e =0.699.

Thus 30.1 percent of the energy of the water is lost, owing
to the fact that the water leaves the wheel with such a

large absolute velocity.

In this example the speed given, 337.5 revolutions per

minute, is such that the direction of the relative velocity

V is tangent to the vane at the point of entrance. For

any other speed this will not be the case, and thus work

will be lost in shock and foam. It is observed also that

the approach angle a is one-half of the entrance angle <
;

with this arrangement the velocities u and V are equal,

as also Ut and V^ Had the angle /? been made smaller the

efficiency would have been higher.
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Prob. 152a. Compute the power and efficiency for the above

example if the angle ft
be 15 instead of 30. Explain why ft

cannot be made very small.

Prob. 1526. Compute the power and efficiency of the inward

flow wheel in Fig. 1526, when r = 3 feet, r
l
= 2 feet, a = 30, <f>

= 60,

/?
= 6o, z;=ioo feet per second, q = 2.2 cubic feet per second,

and the speed being 184 revolutions per minute.

ART. 153. REVOLVING TUBES

The water which glides over a vane can never be under

static pressure, but when two vanes are placed near together

and connected so as to form a closed tube, there may exist

in it static pressure if the tube is filled. This is the condi-

tion in turbine wheels, where a number of such tubes, or

buckets, are placed around an axis and water is forced

through them by the static pressure of a head. The work

in this case is done by the dynamic pressure exactly as in

vanes, but the existence of the static pressure renders the

investigation more difficult.

The simplest instance of a revolving tube is that of an

arm attached to a vessel rotating about a vertical axis,

as in Fig. 153. It was shown in Art. 31

that the water surface in this case as-

sumes the form of a paraboloid, and

if no discharge occurs it is clear that

the static pressures at any two points

B and A are measured by the pressure-

heads //! and H reckoned upwards to

the parabolic curve, and, if the veloci-

ties of those points are u^ and u, that

FIG. 153
Now suppose an .orifice to be opened
in the end of the tube and the flow to

occur while at the same time the revolution is continued.
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The velocities V l and V diminish the pressure-heads so

that the piezometric line is no longer the parabola but

some curve represented by the lower broken line in the

figure. Then, according to the theorem of Art. 32, that

pressure-head plus velocity-head remains constant during

steady flow, if no loss of energy occurs,

V, 2 u 2 V 2 u 2

H+lL _!!!_#+-!: !
(153)

2g 2g 2g 2g

in which Hl and H are the heads due to the actual static

pressures. This is the theorem which gives the relation

between pressure-head, velocity-head, and rotation-head

at any point of a revolving tube or bucket. If the tube

is only partly full, so that the flow occurs along one side,

like that of a stream upon a vane, then there is no static

pressure, and the formula becomes the same as (151).

An apparatus like Fig. 153, but having a number of

arms from which the flow issues, is called a reaction wheel,

since the dynamic pressure which causes the revolution is

wholly due to the reaction of the issuing water. To in-

vestigate it, the general formula (152) x may be used. Mak-

ing u = o, the work done upon the wheel by the water is

k _w -UM cosfl =w^Vi cos/? -u,
2

g g

But since there is no static pressure at the point B, the

value of Vl is, from (153), or also from Art. 31,

The work that can be derived from the wheel now is

g
This becomes nothing when u

t =o, or when u^ = 2gh cot 2

/?,

and by equating the first derivative to zero it is found that

k becomes a maximum when the velocity is given by

M *-^L.-ekMl
"sin/?

g"
,
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Inserting this advantageous velocity, the maximum work is

k=Wh(i- sin/?)

and therefore the efficiency of the reaction wheel is

e = i - sin/?

When /?
= 9o, both u

l
and e become o, for then the direc-

tion of the stream is normal to the circumference and no
reaction can occur in the direction of revolution. When

/?
= o the efficiency becomes unity, but .the velocity u^

becomes infinity. In the reaction wheel, therefore, high

efficiency can only be secured by making the direction of

the issuing water directly opposite to that of the revolu-

tion, and by having the speed very great. If
ft
= 19,$

or sin/?=J, the advantageous velocity u
l becomes \/2gh

and e becomes 0.67. The effect of friction of the water

on the sides of the revolving tube is not here considered,

but this will be done in Art. 163.

Prob. 153a. Compute the theoretic efficiency of the reaction

wheel when # = 180, /?
= o, and u

l
= V/

2gh.

Prob. 1536. A reaction wheel has
/3
= 3o, ^ = 0.302 meters,

and ^ = 4.5 meters. Compute the most advantageous number
of revolutions per minute. If the quantity of water delivered

to the wheel is 1600 liters per minute, compute the power of the

wheel in metric horse-powers and in kilowatts.

Prob. 153^. When / is in meters, v in meters per second, and

p, pi, and pQ
are in kilograms per square centimeter, the formulas

(148) 3 for water hammer become

the first of which is to be used when t is greater than 0.0014042

and the second when t is equal to or less than it, / being in

meters.
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CHAPTER XIII

WATER WHEELS

ART. 154. CONDITIONS OF. HIGH EFFICIENCY

A hydraulic motor is an apparatus for utilizing the energy
of a waterfall. It generally consists of a wheel which is

caused to revolve either by the weight of water falling from

a higher to a lower level, or by the dynamic pressure due to

the change in direction and velocity of a moving stream.

When the water enters at only one part of the circumfer-

ence the apparatus is called a water-wheel; when it enters

around the entire circumference it is called a turbine. In

this chapter and the next these two classes of motors will

be discussed in order to determine the conditions which

render them most efficient. Overshot wheels, which move
under the weight of water caught in their buckets, and under-

shot wheels, which move under the impact of a flowing

stream, are forms that have been used for many centuries.

Impulse wheels, which owe their motion to a jet of water

striking their vanes with high velocity were perfected in

the eighteenth century.

The efficiency e of a motor ought, if possible, to be inde-

pendent of the amount of water used, or if not, it should be

the greatest when the water supply is low. This is very
difficult to attain. It should be noted, however, that it

is not the mere variation in the quantity of water which

causes the efficiency to vary, but it is the losses of head

which are consequent thereon. For instance, when water

is low, gates must be lowered to diminish the area of ori-
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fices, and this produces sudden changes of section which
dimmish the effective head h. A complete theoretic ex-

pression for the efficiency will hence not include W
t
the

weight of water supplied per second, but it should, if possi-

ble, include the losses of energy or head which result when
W varies. The actual efficiency of a motor can only be

determined by tests with the friction brake (Art. 140) ;

the theoretic efficiency, as deduced from formulas like those

of the last chapter, will as a rule be higher than the actual,

because it is impossible to formulate accurately all the

sources of loss. Nevertheless the deduction and discus-

sion of formulas for theoretic efficiency is very important
for the correct understanding and successful construction

of hydraulic motors.

When a weight of water W falls in each second through
the height h, or when it is delivered with the velocity v,

its theoretic energy per second is

K =Wh or K =W
2g

The actual work per second equals the theoretic energy
minus all the losses of energy. These losses may be divided

into two classes: first, those caused by the transformation

of energy into heat
;
and second, those due to the velocity

^ with which the water reaches the level of the tail race.

The first class includes losses in friction, losses in foam and
eddies consequent upon sudden changes in cross-section

or from allowing the entering water to dash improperly

against surfaces; let the loss of work due to this be Wh'
t

in which h' is the head lost by these causes. The second

loss is due merely to the fact that the departing water

carries away the energy W.v l

2
/2g. The work per second

imparted by the water to the wheel then is
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and dividing this by the theoretic energy the efficiency is

in which v is the velocity due to the head h. This formula,

although very general, must be the basis of all discussions

on the theory of water wheels and motors.
. It shows that

e can only become unity when h r =o and v =o, and accord-

ingly the two following fundamental conditions must be

fulfilled in order to secure high efficiency :

i . The water must enter and pass through the wheel

without losing energy in friction and foam.

2. The water must reach the level of the tail race

without absolute velocity.

These two requirements are expressed in popular language

by the well-known maxim ' '

the water should enter the

wheel without shock and leave without velocity.
' '

Here

the word shock means that method of introducing the water

which produces foam and eddies.

The friction of the wheel upon its bearings is included in

the lost work when the power and efficiency are actually

measured as described in Art. 140. But as this is not a

hydraulic loss it should not be included in the lost work kr

when discussing the wheel merely as a user of water, as will

be done in this chapter. The amount lost in shaft &nd jour-

nal friction in good constructions may be estimated at 2

or 3 percent of the theoretic energy, so that in discussing

the hydraulic losses the maximum value of e will not be

unity, but about 0.98 or 0.97. This will usually be ren-

dered considerably smaller by the friction of the wheel

upon the air or water in which it moves, and which will

here not be regarded. The efficiency given by (154) is

called the hydraulic efficiency to distinguish it from the

actual efficiency as determined by the friction brake.
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Prob. 154. A wheel using 70 cubic feet of water per minute

under a head of 12.4 feet has an efficiency of 63 percent. What
effective horse-power does it deliver?

ART. 155. OVERSHOT WHEELS

In the overshot wheel the water acts largely by its

weight. Fig. 155 shows an end view or vertical section,

which so fully illustrates its action that no detailed explan-

ation is necessary. The total fall from the surface of the

water in the head race or

flume to the surface in the

tail race is called h, and the

weight of water delivered

per second to the wheel is

called W. Then the theo-

retic energy per second im-

parted to the wheel is Wh.

It is required to determine

the conditions which will

render the effective work
of the wheel as near to Wh s

as possible.

The total fall may be FIG. 155

divided into three parts ; that in which the water is filling

the buckets, that in which the water is descending in the

filled buckets, and that which remains after the buckets

are emptied. Let the first of these parts be called h
,
and

the last h
lt

In falling the distance h the water acquires a

velocity V Q which is approximately equal to V 2gh Q ,
and then,

striking the buckets, this is reduced to u, the tangential

velocity of the wheel, whereby a loss of energy in impact
occurs. It then descends through the distance h-h -h

lt

acting by its weight alone, and finally, dropping out of the

buckets, reaches the level of the tail race with a velocity
which causes a second loss of energy. Let h' be the head
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lost in entering the buckets, and let v
l be the velocity of

the water as it reaches the level of the tail race. Then the

hydraulic efficiency of the wheel is given by the general
formula (154), or

h

and to apply it, the values of h' and v^ are to be found. In

this equation v is the velocity due to the head h,orv=V-2gh.

The head lost in impact when a stream of water with the

velocity V Q is enlarged in section so as to have the smaller

velocity u, is, as proved in Art. 74,

7 ' ^

The velocity v
l
with which the water reaches the tail race

depends upon the velocity u and the height h
lm Its kinetic

energy as it leaves the buckets is W .u 2

/2g, the potential

energy of the fall h^ is Wh lt and the resultant kinetic energy
as it reaches the tail race is W . v^/2g ;

hence the value of v
t
is

Inserting these values of h' and v l in the formula for e, and

placing for v 2 its equivalent 2gh, there is found

2U
e = i

-
2gh

The value of u which renders e a maximum is found by
equating the first derivative to zero, which gives

n=v
or the velocity of the wheel should be one-half that of the

entering water. Inserting this value, the hydraulic effi-

ciency corresponding to the advantageous velocity is

t, i ~~
j

2gh
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and lastly, replacing ^ 2

by its value 2ghQ ,
it becomes

'-'-IT-!
(155)

which is the maximum efficiency of the overshot wheel.

This investigation shows that one-half of the entrance

fall h and the whole of the exit fall h
l are lost, and it is

hence plain that in order to make e as large as possible

both h Q and h
l should be as small as possible. The fall h Q

is made small by making the radius of the wheel large;

but it cannot be made zero, for then no water would enter

the wheel: it is generally taken so as to make the angle 6 Q

about 10 or 15 degrees. The fall h^ is made small by giving
to the buckets a form which will retain the water as long
as possible. As the water really leaves the wheel at several

points along the lower circumference, the value of h^ can-

not usually be determined with exactness.

The practical advantageous velocity of the overshot

wheel, as determined by the method of Art. 140, is found

to be about o.4V ,
and its efficiency is found to be high,

ranging from 70 to 90 percent. In times of drought, when
the water supply is low, and it is desirable to utilize all

the power available, its efficiency is the highest, since then

the buckets are but partly filled and h^ becomes small.

Herein lies the great advantage of the overshot wheel;
its disadvantage is in its large size and the expense of con-

struction and maintenance.

The number of buckets and their depth are governed

by no laws except those of experience. Usually the num-
bers of buckets is about $r or 6r, if r is the radius of the

wheel in feet, and their radial depth is from 10 to 15 inches.

The breadth of the wheel parallel to its axis depends upon
the quantity of water supplied, and should be so great that

the buckets are not fully filled with water, in order that

they may retain it as long as possible and thus make h
l
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small. The wheel should be set with its. outer circum-

ference at the level of the tail water.

Prob. 155. Estimate the horse-power and efficiency of an over-

shot wheel which uses 1080 cubic feet of water per minute under

a head of 26 feet, the diameter of the wheel being 23 feet, and

the water entering 15 from the top and leaving 12 from the

bottom.

ART. 156. BREAST WHEELS

The breast wheel is applicable to small falls, and the

action of the water is partly by impulse and partly by
weight. As represented in Fig. 156, water from a

reservoir is admitted

through an orifice upon
the wheel under the

head h with the ve-

locity V Q \
the water

being then confined

between the vanes and

the curved breast acts

by its weight through
a distance h

2t which is

approximately equal to
FlG - 156 h-h

,
until finally it

is released at the level of the tail race and departs with

the velocity u, which is the same as that of the circum-

ference of the wheel. The total energy of the water being

Wh, the work of the wheel is eWh, if e be its efficiency.

The reasoning of the last article may be applied to the

breast wheel, h
l being made equal to zero, and the ex-

pression there deduced for e may be regarded as an approxi-

mate value of its theoretic efficiency. It appears, then,

that e will be the greater the smaller the fall h
;
but owing to

leakage between the wheel and the curved breast, which

cannot be theoretically estimated, and which is less foi
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high velocities than for low ones, it is not desirable to

make v and h small. The efficiency of the breast wheel

is hence materially less than that of the overshot, and usu-

ally ranges from 50 to 80 percent, the lower values being
for small wheels.

Another method of determining the theoretic efficiency

of the breast wheel is to discuss the action of the water in

entering and leaving the vanes as a case of impulse. Let

at the point of entrance Av Q and Au be drawn parallel and

equal to the velocities V Q and u, the former being that of

the entering water and the latter that of the vanes. Let

a be the angle between v and u, which may be called the

angle of approach. Then the dynamic pressure exerted

by the water in entering upon and leaving the vanes is,

from Art. 149,

g

and the work performed by it per second is

This expression has its maximum value when

u=%v cosa

which gives the advantageous velocity of the circumference

of the wheel, and the corresponding work of the dynamic

pressure is

Vcos^a
4g

Adding this to the work Wh2 done by the weight of the

water, the total work of the wheel when running at the

advantageous velocity is found to be

or, if vQ
2 be replaced by its value c . 2gh Q ,

where c^ is the
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coefficient of velocity for the stream as it leaves the orifice

of the reservoir,

whence the maximum hydraulic efficiency of the wheel is

*=K 2 cos 2

a.y +J (156)

If in this expression h 2 be replaced by hh Q ,
and if c

l
= i

and a = o, this reduces to the same value as found for the

overshot wheel. The angle a, however, cannot be zero>

for then the direction of the entering water would be tan-

gential to the wheel, and it could not impinge upon the

vanes; its value, however, should be small, say from 10

to 25. The coefficient c is to be rendered large by making
the orifice of the discharge with well-rounded inner corners.

so as to avoid contraction and the losses incident thereto.

The above formulas cannot be relied upon in practice to

give close values of k and e, on account of losses by foam

and leakage along the curved breast, which of course can-

not be algebraically expressed.

Prob. 156. A breast wheel is 10.5 feet in diameter, and has

^ = 0.93, h = 4.2 feet, and a = 12 degrees. Compute the most

advantageous number of revolutions per minute.

ART. 157. UNDERSHOT WHEELS

The common undershot wheel has plane radial vanes,

and the water passes beneath it in a direction nearly hori-

zontal. It may then be regarded as a breast wheel where

the action is entirely by impulse, so that in the preceding

equations h
z becomes o, h becomes h, and a will be o.

The theoretic efficiency then is e=%c^. In the best con-

tractions the coefficient c
l is nearly unity, so it may be

concluded that the maximum efficiency of the undershot

wheel is about 0.5. Experiments show tha its actual

efficiency varies from 0.20 to 0.40, and that the advanta-
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geous velocity is about o.4V instead of o.$v . The lowest

efficiencies are obtained from wheels placed in an unlimited

flowing current, as upon a scow anchored in a stream; and

the highest from those where the stream beneath the wheel

is confined by walls so as to prevent the water from spread-

ing laterally.

The Poncelet wheel, so called from its distinguished

inventor, has curved vanes, which are so arranged that the

water leaves them tangentially, with its absolute velocity

less than that of the velocity of the wheel. If in Fig. 156

the fall h
2 be very small, and the vanes be curved more

than represented, it will exhibit the main features of the

Poncelet wheel. The water entering with the absolute

FIG. 157

velocity v takes the velocity u of the vane and the velocity

V relative to the vane. Passing then under the wheel, its

dynamic pressure performs work
;
and on leaving the vane

its relative velocity V is probably nearly the same as that

at entrance. Then if V be drawn tangent to the vane at

the point of exit, and u tangent to the circumference, their

resultant will be vv the absolute velocity of exit, which

will be much less than u. Consequently the energy carried

away by the departing water is less than in the usual forms

of breast and undershot wheels, and it is found by experi-

ment that the efficiency may be as high as 60 percent.

In Fig. 157 is shown a portion of a Poncelet wheel. At
A the water enters the wheel through a nozzle-like opening
with the absolute velocity V Q and at B it leaves with the

absolute velocity v lf In the figure A and B have the
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same elevation. At A the entering stream makes the

approach angle a with the circumference of the wheel and
the same angle with the vane, so that the relative velocity
V is equal to the velocity of the outer circumference u.

If h be the head on A the theoretic work of the water is

Wh, and the work of the wheel is

and the efficiency, neglecting friction and leakage, is

v 2 v 2

2gh

Now, let c
i be the coefficient of velocity of the entrance

orifice, then v =c
1\/2gh. From the parallelograms of ve-

locity at A and B, there are found

u= v* =2U sino: =v tana:
2 cosa

and for this velocity u the efficiency of the wheel is

=c (i tan OL) (Io7)

If c
l
= i and a=o, the efficiency becomes unity. In the

best constructions ^ may be made from 0.95 to 0.98, but a

cannot be a very small angle, since then no water could

enter the wheel. If a =30 and 1=0.95 the efficiency is

0.60, which is probably a higher value than usually attained

in practice. If the velocity be greater or less than Jz; /cosa:,

the efficiency will be lowered on account of shock and
foam at A.

Prob. 157a. Estimate the horse-power that can be obtained

from an undershot wheel with plane radial vanes placed in a

stream having 3r mean velocity of 5 feet per second, the width

of the wheel being 15 feet, its diameter 8 feet, and the maxi-

mum immersion of the vanes being 1.33 feet. How many rev-

olutions per minute should this wheel make in order to fur-

nish the maximum power? Make sketches showing how you
would mount the wheel in the stream and provide against

damage by floods.
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Prob. 1576. What width of wheel is necessary for the data
of the last problem in order that 75 horse-powers may be

generated ?

Prob. I57c. Estimate the horse-power that can be obtained
from a Poncelet wheel under a head of 4 feet, when the orifice

at A is 2 feet wide and 3 inches deep, taking a= 30 and
^ = 0.90.

ART. 158. VERTICAL IMPULSE WHEELS

A vertical wheel like Fig. 157, Jsut having smaller vanes

against which the water is delivered from a nozzle, is often

called an impulse wheel, or a
' '

hurdy-gurdy
' '

wheel. The
Pelton wheel, the Cascade wheel, and other forms, can be

purchased in several sizes, and are convenient on account
of their portability. Fig. 158a shows
an outline sketch of such a wheel with

the vanes somewhat exaggerated in

size. The simplest vanes are radial

planes as at A
,
but these give a low

efficiency. Curved vanes, as at B, are

generally used, as these cause the water

to turn backward, opposite to the direc-

tion of the motion, and thus to leave

the wheel with a low absolute velocity

(Art. 150) . In the plan of the wheel it is seen that the vanes

may be arranged so as also to turn the water sidewise while

deflecting it backward. The experiments of Browne * show
that with plane radial vanes the highest efficiency was 40.2

percent, while with curved vanes or cups 82.5 percent was
attained. The velocity of the vanes which gave the highest

efficiency was in each case almost exactly one-half the

velocity of the jet.

The Pelton wheel is used under high heads, and also

being of small size it has a high velocity. The effective head
is that measured at the entrance of the nozzle by a pressure

* Bowie's Treatise on Hydraulic Mining (New York, 1885), p. 193.
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FIG. 1586

gage, corrected for velocity of approach and the loss in the

nozzle by formula (80) j. These wheels are wholly of iron,

and are provided with

a casing to prevent the

spattering of the water.

Fig. 1586 shows a form

with three nozzles, by
which three streams

are applied at different

parts of the circum-

ference, in order to ob-

tain a greater power
than by a single nozzle,

or to obtain a greater

speed by using smaller

nozzles. For an effec-

tive head of 100 feet

and a single nozzle

the following quantities are given by the manufacturers :

Diameter in feet,

Cubic feet per minute,
Revolutions per minute,

Horse-powers,

and these figures imply an efficiency of 85 percent.

The general theory of these vertical impulse wheels is

the same as that given for moving vanes in Art. 149. Owing
to the high velocity, more or less shock occurs at entrance,

and as the angle of exit /? cannot be made small, the water

leaves the vanes with more or less absolute velocity. The

advantageous velocity of the vanes or cups is between 40
and 50 percent of that of the entering jet.

Prob. 158. The diameter of a hurdy-gurdy wheel is 12.58
feet between centers of vanes and the impinging jet has a ve-

locity of 58.5 feet per second and a diameter of 0.182 feet. The

efficiency of the wheel is 44.5 percent when making 62 revolu-

tions per minute. What horse-power does it furnish?

I
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ART. 159. HORIZONTAL IMPULSE WHEELS

When a wheel is placed with its plane horizontal and is

driven by a stream of water from a nozzle it is called a

horizontal impulse wheel. There are twdyformsV known as

the outward-flow and the inward-flow wheel. In the

former, shown in Fig. 159a, the water enters the wheel upon
the inner and leaves it upon the outer circumference; in

the latter, shown in Fig. 1596, the water enters upon the

outer and leaves upon the inner circumference. .The water

issuing from the nozzle with the velocity v impinges upon

FIG. 159a FIG. 1596

the vanes, and in passing through the wheel alters both its

direction and its absolute velocity, thus transforming its

energy into useful work. The energy of the entering water

is W .v z

/2g and that of the departing water is W .v t

2

/2g.

Neglecting frictional resistances, the work imparted to the

wheel by the water is

k=w(- v
-

and dividing this by the theoretic energy, the efficiency is

This is the same as the general formula (154) if h' =o, that

is, if losses in foam and friction are disregarded, and if the

wheel is set at the level of the tail race. It is now required
to state the conditions which will render these losses and
also the velocity v

l
as small as possible. The reasoning will
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be general and applicable to both outward- and inward-

flow wheels.

At the point A where the water enters the wheel let the

parallelogram of velocities be drawn, the absolute velocity
of entrance being resolved into its two components, the

velocity u of the wheel at that point, and the velocity V
relative to the vane

;
let the approach angle between u and

v be called a, and the entrance angle between u and V be

called
<t>.

At the point B where the water leaves the wheel

let V1 be its velocity relative to the vane, and u^ the veloc-

ity of the wheel at that point ;
then their resultant is v lt the

absolute velocity of exit. Let the exit angle between V
l

and the reverse direction of % be called
/?.

The directions

of the velocities u and u
l
are of course tangential to the cir-

cumferences at the points A and B. Let r and r
A be the

radii of these circumferences; then the velocities of revo-

lution are directly as the radii, or ur
1
=

ujr.

In order that the water may enter the wheel without

shock and foam, the relative velocity V should be tangent
to the vane at A, so that the water may smoothly glide

along them. This will be the case if the wheel is run at

such speed that the parallelogram at A can be formed, or

when the velocities u and v are proportional to the sines

of the angles opposite them in the triangle Auv. The

velocity v
l
will be rendered very small by running the im-

pulse wheel at such speed that the velocities u and V
l
are

equal, since then the parallelogram at B becomes a rhombus,
and the diagonal v^ is very small. Hence

u sm((j> a)-
si*-

and M'= F- <159)'

are the two conditions of maximum hydraulic efficiency.

Now, referring to the formula (151), which expresses
the relation between the velocities of rotation and the

relative velocities of the water for revolving vanes, it is

seen that if u
l
= Vlt then also u = V. But u cannot equal
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V unless
(j>
= 2a, and then u=v/2 cosa, which is the advan-

tageous velocity of the circumference at A. Therefore the

two conditions above reduce to

<f>
= 2a and u= (159),

2 cosa

which show how the wheel should be built and what speed it

should have to secure the greatest efficiency. When this

speed obtains the absolute velocity v^ is

fj i r\ 4J C 11U i 2. iAr-\ oJLJ

and the corresponding hydraulic efficiency is

e = i-(-^^-) (159),
\r cosa/

by the discussion of which proper values of the approach

angle a and the exit angle /? can be derived.

This formula shows that both the approach angle a and
the exit angle /? should be small in order to give high effi-

ciency, but they cannot be zero, as then no water could

pass through the wheel; values of from 15 to 30 degrees are

usual in practice. It also shows that /? is more important
than a, and if /? be small a may sometimes be made 40 or

45 degrees. It likewise shows that for given values of a
and /? the inward-flow wheel, in which r

x is less than r, has

a higher efficiency than the outward-flow wheel.

The condition Vl
=% renders the absolute exit velocity

v^ very small, but it does not give its true minimum. This

will be obtained by making Vl
= u

l cos/9, so that the direction

of v
l is normal to that of V\, and thus v

1
=u

l sin/9. The
discussion of water wheels and turbines under this condi-

tion of the true minimum leads to very complex formulas,

and hence in this work, as in many others, the simpler con-

dition Vl
=u

l
is used.

Prob. 159a. Compute the maximum efficiency of an outward-
flow impulse wheel when ^ = 3 feet, r = 2 feet, a = 45, ^ = 90,
/5
= 30, and find the number of revolutions per minute required
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to secure such efficiency when the velocity of the entering stream

is ^ = 100 feet per second.

Prob. 1596. For an inward-flow impulse wheel let the angle
a = 36, the inner radius 12 inches, and the outer radius 21

inches. If the hydraulic efficiency is 0.89, what should be the

values of the angle /? and </>?
If the velocity of the entering

jet is 92 feet per second, what should be the number of revolu-

tions of the wheel per minute?

ART. 160. DOWNWARD-FLOW IMPULSE WHEELS

In the impulse wheels thus far considered the water

leaves the vanes in a horizontal direction. Another form

used less frequently is that of a horizontal wheel driven

by water issuing from an inclined nozzle so that it passes
downward along the vanes without approaching or reced-

ing from the axis. Fig. 160 shows an outline plan of such

an impulse wheel and a

'development of a part of

a cylindrical section. Let

v be the velocity of the

entering stream, u that of

the wheel at the point
where it strikes the vanes,

and v
l
the absolute veloc-

ity of the departing water.

At the entrance A the

direction of v makes with

that of u the approach

angle a, and the direction

of the relative velocity V
makes with that of u the

entrance angle <. The

water then passes over

the vane, and, neglecting
FlG - 16 the influence of friction

and gravity, it issues at B with the same relative velocity V,

making the exit angle @ with the plane of motion.
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The condition that impact and foam shall be avoided at

A is fulfilled by making the relative velocity V tangent to

the vane, and the condition that the absolute velocity v
l

shall be small is fulfilled by making the velocities u and V
equal at B. Hence, as in the last article, the best construc-

tion is to make < =20:, and the best speed of the wheel is

u=v/2 cosa. Also by the same reasoning the efficiency

-under these conditions is

e = i (sinJ/?/cosa )
2

which shows that a, and especially /?, should be a small

angle to give a high numerical value of e. For instance, if

both these angles are 30 degrees, the efficiency is 0.92, but

if a =45 and /?
= 10, the efficiency is 0.94.

Although these wheels are but little used, there seems

to be no hydraulic reason why they should not be employed
with a success equal to or greater than that attained by ver-

tical impulse wheels. It will be possible to arrange several

nozzles around the circumference, and thus to secure a high

power with a small wheel. The fall of the water through
the vertical distance between A and B will also add slightly

to the power of the wheel, and if this be taken into account

the above values of advantageous velocity and efficiency

will be modified, both being slightly increased, as the follow-

ing investigation shows.

Let hi be the vertical fall between A and B, then the

theoretic energy of the water with respect to B is

7;
2

q
i 2

hl+ - V--

and the hydraulic efficiency of the wheel is

v
,

V 2 + 2

Here the relative velocity V^ at B is greater than V, or
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and since u should equal V lf this equation becomes, after

inserting for V its value in terms of u, v, and a,

H
v I 2gh\

o i

2 cosa \ v 2

]

which gives the advantageous velocity of the wheel. Since

v
1
= 2U sinj/?, the above expression for the theoretic hydraulic

efficiency reduces to

For this case the approach angle < must be a little greater

than 2 a, and its value can be found by

cot6 =cota 2
.

v sin2a

and by using this angle <, losses due to impact will be

avoided when the wheel is run at the advantageous speed.

For example, if v = 50 feet per second,- and h = i foot, and
a =30, the value of

<j>
is about 63 instead of 60 as the

simpler condition requires, while the increase in the advan-

tageous speed is about 2 percent over the former value.

Prob. L60a. A wheel like Fig. 160 is driven by water which
issues from a nozzle with a velocity of 100 feet per second. If

the diameter is 3 feet, the efficiency 0.90, and the approach

angle 01=45 degrees, find the best values of the entrance and
exit angles and the best speed.

Prob. 1606. For a wheel of the same dimensions and data.

let the vertical fall h^ be 1.25 feet. Compute the entrance and
exit angles and the best speed. If the discharge from the

nozzle is 0.87 cubic feet per second, what is the horse-power of

the wheel.

ART. 161. NOZZLES FOR IMPULSE WHEELS
s

Impulse wheels are driven by the dynamic pressure of

water issuing from nozzles attached to the end of a pipe
which conducts the water from a reservoir. It is shown
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in Art. 97 that the greatest velocity is secured when the

diameter of the nozzle is as small as possible and that the

greatest discharge occurs when there is no nozzle. To
secure the greatest power, however, there is a certain

diameter of nozzle which will now be determined, and it is

advisable for economical reasons to use a nozzle of this size

and adjust the speed of the wheel thereto.

Let h be the hydrostatic head on the nozzle, I the length,

and d the diameter of the pipe, and D the diameter of the

nozzle. Let all the resistances except that due to friction

in the pipe and nozzle be neglected; then from Art. 97,

the velocity of the jet from the nozzle is

2gh

in which / is the friction factor for the pipe and c
l
is the

coefficient of velocity for the nozzle. Let w be the weight
of a cubic foot of water; then the theoretic energy of the

jet per second is

and the value of D which renders this a maximum is, by
the usual method of differentiation, ascertained to be^
and for a nozzle of this size the velocity of the jet is

V =o.8i6<;1\/ 2gh

or, since c is about 0.97, the velocity of the jet when leaving

the nozzle is about 80 percent of the theoretic velocity due

to the head on the nozzle.

As an example let a pipe be 1200 feet long and one foot

in diameter
; then, taking for / the mean value 0.02 and

using c
1 =cu]j there is found 17=0.39 feet, and hence a
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nozzle 4! inches in diameter is required to give the maxi-

mum power. This result may be revised, if thought neces-

sary, by finding the velocity in the pipe and thus getting a

better value of / from Table 33. If the head be 100 feet,

this velocity is found to be 9.2 feet per second, whence

/=o.oi8, and on repeating the computation there is found

1^=0.40 feet =4. 8 inches. If the pipe be 12 ooo feet long,

the advantageous diameter of the nozzle will be found to

be much smaller, namely i\ inches.

When there is more than one nozzle at the end of the

pipe the above investigation must be modified. Let there

be two nozzles with the diameters D^ and D 2 ,
each having

the coefficient c^. Then the discharge \Tid
2v through the

pipe equals the discharge ^n(D 1

2V1 +D2
2V2). But the ve-

locities Y! and V2 are equal if the tips of the nozzles are on

the same elevation, and hence d 2v equals (Df +D^V,
where V is the velocity of flow from each nozzle. Now,

referring to Art. 97 and to the proof of (161), it is seen that

it applies to this case provided D 2 be replaced by D^-\~D2
2

,

and accordingly
c

1

2
l)* (161),

is the formula for determining the sizes of the two nozzles

which will furnish the maximum power ;
if D

l
be assumed,

the value of D 2 can be computed. The area of the circle

of diameter D found from (161^ is equal to the sum of the

areas of the two circles found from (161) 2 . If there be

three or more nozzles, the sum of their areas is equal to

that corresponding to the diameter D as computed from

(161)!. For example, let there be a pipe 1200 feet long

and one foot in diameter to which three nozzles of equal
size are attached. The diameter found above for one noz-

zle is 4.80 inches, and the corresponding area is 18.10 square

inches; hence the area of the cross-section of the tip of

each of the three nozzles is 6.03 square inches, which corre-

sponds to a diameter of 2.77 inches.
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Prob. 161a. A pipe 15 ooo feet long and 18 inches in diam-

eter runs from a mountain reservoir to a power plant, where the

water is to be delivered through two nozzles against a hurdy-

gurdy wheel. If the diameter of one nozzle is 2 inches, find the

diameter of the other in order that the maximum power may
be developed. If the head on the nozzles is 623 feet and the

efficiency of the wheel 79 percent, compute the horse-power
that may be expected.

Prob. 1616. A compound pipe of lengths ^ and 1
2
and diam-

eters d^ and d
2 conveys water to an impulse wheel against which

it is delivered by three nozzles having the diameters D^ D
2 ,

and D
3 ,

the tips of which are on the same elevation. Taking
the coefficients of velocity of the nozzles as equal and regarding
the diameters D^ and D2 as known, find the diameter D3 that

will render the energy of the jets a maximum.

ART. 162. SPECIAL FORMS OF WHEELS

Numerous varieties of the water wheels above described

have been used, but the variation lies in mechanical details

rather than in the introduction of any new hydraulic princi-

ples. In order that a wheel may be a success it must fur-

nish power as cheaply as or cheaper than steam or other

motors, and to this end compactness, durability, and low

cost of installation and maintenance are essential.

A variety of the overshot wheel, called the back-pitch

wheel, has been built in which the water is introduced on

the back instead of on the front of the wheel. The buckets

are hence differently arranged from those of the usual form,

and the wheel revolves also in an opposite direction. One
of the largest overshot wheels ever constructed is at Laxey,
on the west coast of England. It is 72 J feet in diameter,

about 10 feet in width, and furnishes about 150 horse-power,

which is used for pumping water out of a mine.

A breast wheel with very long curved vanes extending
over nearly a fourth of the circumference has been used for
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small falls, the water entering directly from the penstock
without impulse, so that the action is that of weight alone.

This form is made of iron and gives a high efficiency.

Undershot wheels with curved floats for use in the open
current of a river have been employed, but in order to obtain

much power they require to be large in size, and hence have

not been able to compete with other forms. The great

amount of power wasted in all rivers should, however, incite

inventors to devise wheels that can economically utilize it.

Currents due to the movement of the tides also afford oppor-

tunity for the exercise of inventive talent.

The conical wheel, or Danaide, is an ancient form of

downward-flow impulse wheel, in which the water approaches
the axis as it descends, and thus its relative motion is de-

creased by the centrifugal force. The theory of this is

almost precisely the same as that of an inward-flow impulse

wheel, and there seems to be no hydraulic reason why it

should not give a high efficiency. Another form of danaide

has two or more vertical vanes attached to an axis, which

are enclosed in a conical case to prevent the lateral escape

of the water.

A water-pressure engine is a hydraulic motor which

moves under the static pressure of water acting against a

piston or a revolving disk. The piston forms are recipro-

cating in motion like the steam-engine and operate in the

same way, the water entering and leaving through ports

which are opened and closed by a link motion connected

with the piston-rod. The other forms give rotary motion

directly from the revolving vanes or disks. The piston

engine has been employed in Germany to a considerable

extent to drive pumps for draining mines, but the rotary

engine has not been widely used and it cannot be advan-

tageously arranged to deliver a high power. On account of

the incompressibility of water special devices for regulating

the opening and closing of the valves are necessary.
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Numerous other special devices for utilizing the energy
of water by means of water wheels have been invented, but

they do not introduce any new hydraulic principle. The

efficiency of these special forms is often low on account of

the imperfections of the apparatus, but it should be borne

in mind that high efficiency is only obtained after trials

extending over much time, such trials enabling the imper-
fections to be discovered and removed. The formulas for

hydraulic efficiency deduced in the preceding pages do not in-

clude losses due to friction, and these may often amount to

ten or twenty percent of the theoretic energy, so that due

allowance for them should be made in estimating the power
which a proposed design may deliver.

Power may be obtained from the ocean waves, which are

constantly rising and falling, by a suitable arrangement of

wheels and levers, and some inventions in this direction have

given fair promise of success. One in operation on the

coast of England about 1890 consisted of a large buoy
which rose and fell with the waves on a fixed vertical shaft

fastened in the rock bottom. As the buoy moved up and
down it operated a system of levers and wheels which drove

an air-compressor, and this in turn ran a dynamo that gen-
erated electric power. The rise of the ocean tide also affords

opportunity for impounding water which may be used to

generate power when the tide falls. Plants for this pur-

pose are to be located along tidal rivers where opportuni-
ties for impounding occur, the wheels being idle during the

rise of the tide and in operation during its fall. Owing to

this intermittent generation of power, it will be necessary
to provide for its storage, so that industries using it may
be in continuous operation.

Prob. I62a. A wheel using 10.5 cubic meters of water per
minute under an effective head of 23.4 meters has an efficiency

of 75 percent. What metric horse-power does it deliver? What
is its power in kilowatts?
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Prob. 1626. A breast wheel has ^ = 0.95, h =i.^ meters, and

a = 12 degrees. If its diameter is 3.5 meters, compute the most

advantageous number of revolutions per minute.

Prob. 162c. An inward-flow impulse wheel has = 104,
a = 52, and

/?
= i2, its inner diameter being 0.82 meters and

its outer diameter 1.22 meters. If this wheel uses 0.86 cubic

meters of water per second under an effective head of 7.9 meters,

compute its efficiency and its probable horse-power.

Prob. 162d. A pipe 3200 meters long and 40 centimeters in

diameter delivers water through two nozzles against a hurdy-

gurdy wheel. When the diameter of one nozzle is 5 centimeters

find the diameter of the other nozzle in order that the energy
of the two jets may be a maximum. If the head on the nozzles

is 107 meters and the efficiency of the wheels is 81 percent, com-

pute the horse-power which the wheels will deliver.
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CHAPTER XIV

TURBINES

ART. 163. THE REACTION WHEEL

The reaction wheel, invented by Barker about 1740,

consists of a number of hollow arms connected with a hollow

vertical shaft, as shown in Fig. 163. B
The water issues from the ends of the

arms in a direction opposite to that

of their motion, and by the dynamic

pressure due to its reaction the energy
of the water is transformed into useful

work. Let the head of water CC in

the shaft be h
;
then the pressure-head

BE which causes the flow from the

arms is greater than h, on account of

the centrifugal force due to the rota-

tion of the wheel. Let % be the abso-

lute velocity of the exit orifices, and

V
1
be the velocity of discharge relative

to the wheel; then, as shown in Art.

31, and also in Art. 153, FJG. 153

N
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that F! must be greater than n^ for any finite values of h

and u^. To deduce an expression for the efficiency the work

of the wheel W(h v^/2g) is to be divided by the theoretic

energy of the water Wh, and this gives

which shows, as before, that e equals unity when Vl
=u

l
= oo.

If Fj = 2%, the value of e is 0.667 ;
if Vl =^u lt the value of e

is reduced to 0.50.

This investigation indicates that the efficiency of a reac-

tion wheel increases with its speed. If a t be the area of the

exit orifices and w the weight of a cubic unit of water, the

weight of the water discharged in one second is wa^V^ which

becomes infinite when Vl
=u

1
= oo. Nothing approaching

this can be realized, and on account of losses due to friction,

a 1

very high speed is impracticable. The reaction wheel,

indeed, is like the jet propeller (Art. 177).

To consider the effect of friction in the arms, let c
l be the

coefficient of velocity (Chapter VII), so that

Then the effective work of the wheel is

s

and the corresponding efficiency of the wheel is

The value of u lt which renders this a maximum, is

and this reduces the value of the efficiency to
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If G!
=

i, there is no loss in friction, and u^ = oo and e = i, as

before deduced. If c^ =0.94, the advantageous velocity u
l

is very nearly \/2gh, and e is 0.66
;
hence the influence of

friction in diminishing the efficiency is very great. In order

to make c
t large, the end of the arm where the water enters

must be well rounded to prevent contraction, and the in-

terior surface must be smooth. If the inner end has sharp

square edges, as in a standard tube (Art. 76), c
1 is 0.82, and

e becomes 0.43.

The reaction wheel is not now used as a hydraulic motor

on account of its low efficiency. Even when run at high speeds
the efficiency is low on account of the greater friction and
resistance of the air. By experiments on a wheel one meter

in diameter under a head of 1.3 feet Weisbach found a maxi-

mum efficiency of 67 percent when the velocity of revolution

u was \/2gh. When u^ was 2\/
2gh the efficiency was noth-

ing, or all the energy was consumed in frictional resistances.

The reaction wheel is here introduced at the beginning
of the discussion of turbines mainly to call attention to the

fact that the discharge varies with the speed. Although
sometimes called a turbine, it can scarcely be properly con-

sidered as belonging to that class of motors.

Prob. 163. The sum of the exit orifices of a reaction wheel
is 4.25 square inches, their radius is 1.75 feet, and their velocity

32.1 feet per second. Compute the head necessary to furnish

.1.6 horse-powers, when ^ = 0.95.

ART. 164. CLASSIFICATION OF TURBINES

A turbine wheel may be defined as one in which the
water enters around the entire circumference instead of

upon one portion, so that all the moving vanes are simul-

taneously acted upon by the dynamic pressure of the water
as it changes its direction and velocity. The turbine was
invented by Fourneyron in 1827, and owing to its compact-
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ness, cheapness, and high efficiency it has largely replaced

the older forms of water wheels. Turbines are usually hori-

zontal wheels, and like the impulse wheels of the last chap-

ter, they may be outward-flow, inward-flow, or downward-

flow, with respect to the manner in which the water passes

through them. In the outward-flow type the water enters

the wheel around the entire inner circumference and passes

out around the entire outer circumference (Fig. 1656). In

the inward-flow type the motion is the reverse (Fig. 165c).

In the downward-flow type the water enters around the

entire upper annular openings, passes downward between

the moving vanes, and leaves through the lower annulus

(Fig. 170a). In all cases the water in leaving the wheel

should have a low absolute velocity, so that most of its

energy may be surrendered to the turbine in the form of

useful work.

The supply of water to a turbine is regulated by a gate

or gates, which can partially or entirely close the orifices

where the water enters or leaves. The guides and wheel,

with the gates and the surrounding casings, are made of iron.

Numerous forms with different kinds of gates and different

proportions of guides and vanes are in the market. They
are made of all sizes from 6 to 60 inches in diameter, and

larger sizes are built for special cases. The great turbines

at Niagara are of the outward-flow type, the inner diameter

of a wheel being 63 inches and each twin turbine furnishing
about 5000 horse-powers. The smaller sizes of turbines

used in the United States are mostly of the inward-flow type
or of a combined inward- and downward-flow type.

The three typical classes of turbines above described are

often called by the names of those who first invented or per-

fected them ;
thus the outward-flow is called the Fourneyron,

the inward-flow the Francis, and the downward-flow the

Jonval turbine. There are also many turbines in the market

in which the flow is a combination of inward and downward
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motion, the water entering horizontally and inward, and

leaving vertically, the vanes being warped surfaces. The
usual efficiency of turbines at full gate is from 70 to 85 per-

cent, although 90 percent has in some cases been derived.

When the gate is partly closed the efficiency in general de-

creases, and when the gate opening is small it becomes very
low. This is due to the loss of head consequent upon the

sudden change of cross-section; and therein lies the disad-

vantage of the turbine, for when the water supply is low, it

is important that it should utilize all the power available.

Another classification is into impulse and reaction tur-

bines. In an impulse turbine the water enters the wheel

with a velocity due to the head at the point of entrance,

just as it does from the nozzle which drives an impulse wheel

(Art. 159). In a reaction turbine, however, the velocity of

the entering water may be greater or less than that due to

the head on the orifices of entrance, and, as in the reaction

wheel, it is also influenced by the speed. This is due to the

fact that in a reaction turbine the static pressure of the water

is partially transmitted into the moving wheel, provided
that the spaces between the vanes are fully filled. Any
turbine may be made to act either as an impulse or a reac-

tion turbine. If it be arranged so that the water passes

through the vanes without filling them, it is an impulse tur-

bine
;
if it be placed under water, or if by other means the

flowing water is compelled to completely fill all the passages,

it acts as a reaction turbine. As will be seen later, the

theory of the reaction turbine is quite different from that

of the impulse turbine.

Prob. 164a. If the efficiency of a turbine is 75 percent when

delivering 5000 horse-powers under a head of 136 feet, how

many cubic feet of water per minute pass through it?

Prob. 1646. An outward-flow turbine has a diameter of

3.317 feet. What is the velocity of the circumference when the

number of revolutions per minute is 86 ?
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ART. 165. REACTION TURBINES

A reaction turbine is driven by the dynamic pressure of

flowing water which at the same time may be under a cer-

tain degree of static pressure. If in the reaction wheel of

Fig. 163 the arms be separated from the penstock at A
,
and

be so arranged that BA revolves around the axis while AC
is stationary, the resulting apparatus may be called a reac-

tion turbine. The static pressure of the head CC can still

be transmitted through the arms, so that, as in the reaction

wheel, the discharge will be influenced by the speed of rota-

tion. The general arrangement of the moving part is, how-

ever, like that of an impulse wheel, the vanes being set

between two annular frames, which are attached by arms

to a central axis, In Fig. 165a is a vertical section showing

FIG. 165a

an outward-flow wheel W to which the water is brought by
guides G from a fixed penstock P. Between the guides and
the wheel there is an annular space in which slides an an-

nular vertical gate E ;
this serves to regulate the quantity

of water, and when it is entirely depressed the wheel stops.



ART. 165 REACTION TURBINES 443

Many other forms of gates are, however, used in the different

styles of turbines found in the market.

FIG. 165<;. FIG. 1656.

In the following figures are given horizontal and vertical

sections of both the outward- andthe inward-flow types, show-

FIG. lQ5d

ing the arrangement of guides and vanes. The fixed guide

passages which lead the water from the penstock are marked
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G, while the moving wheel is marked W. It is seen that

the water is introduced around the entire circumference of

the wheel, and hence the quantity supplied, and likewise the

power, is far greater than in the impulse wheels of the last

chapter.

In order that the static pressure may be transmitted

into the wheel it is placed under water, as in Fig. 165a, or

the exit orifices are partially closed by gates, or the air is

prevented from entering them by some other device.

In Fig. 165d a Leffel turbine of the inward-flow type is

illustrated, the arrows showing the direction of the water

as it enters and leaves. The
wheel itself is not visible, it

being within the enclosing
case through which the water

enters by the spaces between

the guides. In Fig. 1650 is

shown a view of a Hunt tur-

bine, which is also of the

inward- and downward-flow

type. In both cases the guides
are seen with the small shaft

for moving the gates, these

being partly raised in Fig.

165e. The flange at the base

of the guides serves to support
the weight of the entire ap-

paratus upon the floor of the

enclosing penstock, which is

FIG. 1650 filled with water to the level

of the head bay. The cylinder below the flange, commonly
called a draft-tube, carries away the water from the wheel,

and the level of the tail water should stand a little higher

than its lower rim in order to prevent the introduction of

air, and thus ensure that the wheel may act as a reaction
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turbine. Iron penstocks are frequently used instead of

wooden ones, and for the pure outward- and inward-flow

types the wheel is often placed below the level of the tail

race.

Turbines are sometimes placed vertically on a horizontal

shaft. Fig. 165/ shows twin Eureka turbines thus arranged

in an enclosing iron casing. The water enters through a

FIG. 165/

large pipe attached to the cylinder opening, and having
filled the cylindrical casing it passes through the guides,

turns the wheels, and escapes by the two elbows. Large
twin vertical turbines furnishing 1200 horse-powers have

been built by the James Leffel Company.

All reaction turbines will act as impulse turbines when
from any cause the passages between the vanes, or buckets,

as they are generally called, are not filled with water. In

this case the theory of their action is exactly like that of the

impulse wheels described in the last chapter. In Arts. 166-

169 reaction turbines of the simple outward- and inward-

flow types will be discussed, the downward-flow type being
reserved for special description in Art. 170.

Prob. 165a. Consult Engineering Record, Feb. 5, 1898, and

describe methods of regulating the speed of turbines.

Prob. 1656. Consult Bodmer's Hydraulic Motors, Slagg's
Water or Hydraulic Motors, and Weisbach's Mechanics of Engi-

neering, vol. 2
;
make sketches showing several different arrange-

ments of the gates of turbines.
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ART. 166. FLOW THROUGH REACTION TURBINES

The discharge through an impulse turbine, like that for

an impulse wheel, depends only on the area of the guide ori-

fices and the effective head upon them, or q=av=a\/2gh.
In a reaction turbine, however, the discharge is influenced

by the speed of revolution, as in the reaction wheel, and
also by the areas of the entrance and exit orifices. To find

an expression for this discharge let the

wheel be supposed to be placed below

the surface of the tail water, as in Fig.

166. Let h be the total head between

the upper water level and that in the

tail race, H^ the pressure-head on the

exit orifices, and H the pressure-head
at the gate opening as indicated by a

_ piezometer supposed to be there in-

FIG. 166 serted. Let u
i and u be the velocities

of the wheel at the exit and entrance circumference, which

have radii r
l and r (Fig. 1656) . Let V

l and V be the relative

velocities of exit and entrance, and v be the absolute ve-

locity of the water as it leaves the guides and enters the

wheel; the entering velocity v may be less or greater than

\/2gh, depending upon the value of the pressure-head H.

Let a
x , a, and a be the areas of the orifices normal to the

directions of V\, V, and V Q . Now, neglecting all losses of

friction between the guides, the theorem of Art. 32, that

pressure-head plus velocity-head equals the total head,

gives the equation

Also, neglecting the friction and foam in the buckets, the

corresponding theorem of Art. 153 gives

2g 2g 2g 2g
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Adding these equations, the pressure-heads Hl and H disap-

pear, and there results the formula

VS -V 2 + v Q
2 = 2gh + u^ -u 2

(166)!

Now, since the buckets are fully filled, the same quantity of

water, q, passes in each second through each of the areas a lt

a, and a
,
and hence the three velocities through these areas

have the respective values,

Introducing these values into the formula (166)^ solving for

q, and multiplying by a coefficient c to account for losses in

leakage and friction, the discharge per second is

1=c FF (166),

This is the formula for the flow through a reaction turbine

when the gate is fully raised. The reasoning applies to an

inward-flow as well as to an outward-flow wheel. In an

outward-flow turbine u^ is greater than u, and consequently
the discharge increases with the speed ;

in an inward-flow

turbine ^is less than u, and consequently the discharge de-

creases as the speed increases.

The value of the coefficient c will probably vary with the

head, and also with the size of the areas a
lt a, and a . When

a turbine has been tested by the methods of Arts. 138-141,

and the areas have been measured, the values of c for dif-

ferent speeds may be computed. For example, take the

outward-flow Boyden turbine, tests of which at full gate are

given in Art. 141. The measured dimensions and angles of

this wheel are as follows :

Outer radius of wheel r
l
=

3 . 3 1 6 7 feet

Inner radius of wheel r =2.6630 feet

Outer radius of guide case r = 2 . 59 1 1 feet
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Outer depth of buckets ^ = 0.722 feet

Inner depth of buckets d =0.741 feet

Outer area of buckets a
x
= 4.61 square feet

Inner area of buckets a =12.12 square feet

Outer area of guide orifices 0^
= 4.76 square feet

Exit angle of buckets /? =13.5 degrees
Entrance angle of buckets

(j>
= 90 degrees

Entrance angle of guides a =24 degrees
Number of buckets, 52 Number of guides, 32

Inserting in the above formula the values of a lt a, and a
,

placing for u^ u 2
its value(^u:N)

2
(rt

2 r 2
), where N is the

number of revolutions per minute, it reduces to

q =$.44C\2gh + 0.04287V
2

From this the value of c may be computed for each of the

seven experiments and the following tabulation shows the

results, the first four columns giving the number of the ex-

periment, the observed head, number of revolutions per

minute, and discharge in cubic feet per second. The fifth

column gives the theoretic discharge computed from the

above formula, taking the coefficient as unity, and the last

column is derived by dividing the observed discharge q by
the theoretic discharge Q. The discrepancy of 5 or 6 per-
cent is smaller than might be expected, since the formula

does not consider fractional resistances.

No.
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those given in Art. 88 for the sliding gate in a water pipe
and the values of these for turbines are not known. It is,

however, certain that for each particular gate opening the

discharge is given by

q=m\/2gh + u
l

* u-

in which m depends upon the areas of the orifices and the

height to which the gate is raised. For instance, in the

tests of the above Boyden turbine the mean value of m for

full gate opening is 3.25, but when the gate was only six-

tenths open its value was 2.81, and when the gate was two-

tenths open its value was 1.36. Each form and size of reac-

tion turbine has its own values of m, depending upon the

area of its orifices, and when these have been determined a

turbine may be used as a water meter to measure the dis-

charge with a fair degree of precision.

Prob. 166a. Check the constants in the above formula for

the Boyden turbine, and compute the values of c for experi-
ments 15 and 21.

Prob. 1666. Consult Francis' Lowell Hydraulic Experiments,

pages 67-75, and compute the coefficient m for experiments 30

and 31 on the center vent Boott turbine.

ART. 167. THEORY OF REACTION TURBINES

The theory of reaction turbines may be said to include

two problems : first, given all the dimensions of a turbine and
the head under which it works, to determine the maximum
efficiency, and the corresponding speed, discharge, and

power; and second, having given the head and the quantity
of water, to design a turbine of high efficiency. This article

deals only with the first problem, and it should be said at

the outset that it cannot be fully solved theoretically, even

for the best-conditioned wheels, on account of losses in foam,

friction, and leakage. The investigation will be limited to

the case of full gate, since when the gate is partially de^
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pressed a loss of energy results from sudden expansion.

The notation will be the same as that used in Chapters
XI and XIII, and as shown in Figs. 1656 and 165<?

;
the rea-

soning will apply to both outward- and inward-flow tur-

bines. Let r be the radius of the circumference where the

water enters the wheel and r
l that of the circumference

where it leaves, let u and u
l
be the corresponding velocities

of revolution
;
then url

= up. Let v be the absolute velocity

with which the water leaves the guides and enters the wheel,

and V its velocity of entrance relative to the wheel
;
let a be

the approach angle and < be the entrance angle which these

velocities make with the direction of u. At the exit circum-

ference let Vi be the relative velocity with which the water

leaves the guides, and v l its absolute velocity; let /? be the

exit angle which V makes with this circumference. Let a
,

a, and a t be the areas of the guide orifices, the entrance, and

the exit orifices of the wheel, respectively, measured per-

pendicular to the directions of v
, V, and Vlf Let d Q , d, and

dl be the depths of these orifices; when the gate is fully

raised d Q becomes equal to d.

The areas a
, a, a

lt neglecting the thickness of the guides
and vanes, and taking the gate as fully open, have the values

. a = 2nrd sina: a = 2nrd sin< a
t
= 2nr

1d1 sin/?

and since these areas are fully filled with water,

q=v .27:rd sina =V .znrd sin< = F1 . 27ir
1
d

1 sin/? (167)!

These relations, together with the formulas of the last article

and the geometrical conditions of the parallelograms of ve-

locities, include the entire theory of the reaction turbine.

In order that the efficiency of the turbine may be as high
as possible the water must enter tangentially to the vanes,
and the absolute velocity of the issuing water must be as

small as possible. The first condition will be fulfilled when
n and V Q are proportional to the sines of the angles < a and
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(/>.
The second will be secured by making u

l
= V1 in the

parallelogram at exit, as then the diagonal v l becomes very
small. Hence

= sin(^-a)
v sm<f>

are the two conditions which should obtain in order that

the hydraulic efficiency may be a maximum.

Now making Vt =u^ in the third quantity of (167)! and

equating it to the first, there results

u
l _ rd sina u r2d sina

==
i ~r\ and ==

ir~j . ~n

V Q r^ sin/? ^o r^d sm/j

Also making Vl
=u

1 in (166)! and substituting for V 2
its

value M Z + V O
? 2MV Q cosa from the triangle at A between u

and v
,
there is found the important relation

uv Q cosa=gh (167),

which gives another condition between u and V Q . The ve-

locity v
,
with which the water enters, hence depends upon

the speed of the wheel as well as upon the head h.

Thus three equations between two unknown quantities u

and v have been deduced for the case of maximum hy-
draulic efficiency, namely,

u sm(<f> a) u r"*d sina gh

If the values of the velocities u and v be found from the

first and third equations, they are

gh sin(< a) gh

the first of which is the advantageous velocity of the circum-

ference where the water enters, and the second is the abso-

lute velocity with which the water leaves the guides and

enters the wheel. In order, however, that these expressions
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may be correct, the first and second values of U/VQ must also

be equal, and accordingly

'r^d, sin/?

which is the necessary relation between the dimensions and

angles of the wheel in order that this theory may apply.

For a turbine so constructed and running at the advan-

tageous speed the hydraulic efficiency is

v^ 2U^ sin 2

^/?= I --r == I 7
'

2gh gh

and substituting for u^ its value in terms of u from (167) 4

and having regard to (167 ) 5 ,
this becomes

e = i - -T tana tanj^ (167)

The discharge under the same conditions is q=a Qv , and

lastly the work of the wheel per second is k = wqhe.

The result of this investigation is that the general prob-

lem of investigating a given turbine cannot be solved theo-

retically, unless it be so built as to approximately satisfy

the condition in (167) 5 . If this be the case, it may be dis-

cussed by the formulas deduced. Even then no very satis-

factory conclusions can be drawn from the numerical values,

since the formulas do not take into account the loss by
friction and that of leakage. To determine the efficiency,

best speed, and power of a given turbine, the only way is

to actually test it by the method described in Art. 140. The

above formulas are, however, of great value in the discussion

of the design of turbines. More exact formulas, from a

theoretical standpoint, may be derived by using the con-

dition V 1
= HI cos/? instead of Vl

= u^ to determine the exit

velocity v l (Art. 159), but these are very complex in form,

and numerical values computed from them differ but little

from those found from the formulas here established.
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If the coefficient of discharge of a turbine be known (Art.

166), the advantageous speed and corresponding discharge

may be closely computed. For this purpose the condition

u
t
= V

l =q/a l is to be used. Inserting in this the value of

q from (167) 2 and solving for u ly there is found

U 2 =
r. * n

which gives the advantageous velocity of the circumference

where the water leaves the wheel, and then by (166) 2 the

discharge can be obtained. As an example, take the case

of Holyoke test No. 275, where r
x
= 27^ inches, r = 2 1 J inches,

^ = 23.8 feet, a = 2.o66, a = 5. 526, a
x
= 1.949 square feet,

a=2 52> </>=9o> /?
= I if- Assuming ^=0.95, as the

turbine is similar to that investigated in the last article, the

above formula gives u^ =31.24 feet per second, which corre-

sponds to 130 revolutions per minute, and this agrees well

with the actual number 138. The efficiency found by the

test at that speed was 0.79, which is a very much less value

than the above theoretic formula gives, since this formula

was derived without taking into account the friction losses

within and without the wheel.

Prob. 167. For the case of the last problem r= 4.67, ^ = 3.95,

^=1.01,^ = 1.23,^=13.4 feet, a =9. 5, </>
= i 19, /?=n. Com-

pute the areas a
, a, a

lt
and the advantageous speed. Compute

also the velocity with which the water enters the wheel.

ART. 168. DESIGN OF REACTION TURBINES

The design of an outward- or inward-flow turbine for a

given head and discharge includes the determination of the

dimensions r, r^ d, dly and the angles a, /?, and
<j>.

These

may be selected in very many different ways, and the for-

mulas of the last article furnish a guide how to do this so as

to secure a high degree of efficiency.
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First, it is seen from (167) 6 that the approach angle a

and the exit angle /? should be small, but that, as in other

wheels, /? has a greater influence than a. However, /? must

usually be greater for an inward-flow than for an outward-

flow wheel in order to make the orifices of exit of sufficient

size. For the entrance angle <j>
a good value is 90 degrees,

and in this case the velocity u is always that due to one-

half the head, as seen from (167) 4 . The radii r and rx should

not differ too much, as then the frictional resistance of the

flowing water and the moving wheel would be large. It is

also seen that the efficiency is increased by making the exit

depth dl greater than the entrance depth d, but usually these

cannot greatly differ, and are often taken equal.

Secondly, it is seen that the dimensions and angles should

be such as to satisfy the formula (167) 5 ,
since if this be not

the case losses due to impact at entrance will occur which

will render the other formulas of little value.

As a numerical illustration let it be required to design an

outward-flow reaction turbine which shall use 120 cubic feet

per second under a head of 18 feet and make 100 revolutions

per minute. Let the entrance angle <f> be taken at 90 de-

grees, then from formula (167) 4 the advantageous velocity of

the inner circumference is

u=\/ 32.16 Xi8 =24.06 feet per second,

and hence the inner radius of the wheel is .

60X24.06
271 XlOO =2.298 feet.

Now let the outer radius of the wheel be three feet, and also

let the depths d and d^ be equal ;
then from (167) 5

sin/? /2.298V- = - -
=0.5866tana \3.ooo/

If the approach angle a be taken as 30 degrees, the value of

the exit angle ft to satisfy this equation is 19 48', and from



ART. 168 DESIGN OF REACTION TURBINES 455

(167) 6 the hydraulic efficiency is 0.899. If, however, a be 24

degrees, the value of
/?

is 15 08' and the hydraulic efficiency
is 0.941 ;

these values of a and /? will hence be selected.

The depth d is to be chosen so that the given quantity of

water may pass out of the guide orifices with the proper

velocity. This velocity is, from (167) 4 ,

v = 24.o6/cos 24 = 26.34 feet per second
;

and hence the area of the guide orifices should be

a = i2o/26.34 =4.556 square feet,

from which the depth of the orifices and wheel is

d =4.556/27^ sin 24 =0.7 76 feet.

As a check on the computations the velocities V and V19

with the corresponding areas a and a
, may be found, and d

be again determined in two ways. Thus,

V= v sin 24 =
10.71 Fl

= w
1
= ttr

1/r
= 3i.42 ft. per sec.

a= 120/10.71 = 11.204 a
x
= 120/31.42 =3.820 square feet.

6^
= 3.820/27^ sin/?

= o.776 feet.

And this completes the preliminary design, which should

now be revised so that the several areas may not include

the thickness of the guides and vanes (Art. 169).

Although the hydraulic efficiency of this reaction tur-

bine is 94 percent, the practical efficiency will probably not

exceed 80 per cent. About 2 percent of the total work will

be lost in axle friction. The losses due to the friction of

the water in passing through the guides and vanes, together
with that of the wheel revolving in water, and perhaps also

a loss in leakage, will probably amount to more than one-

tenth of the total work. All of these losses influence the

advantageous velocity, so that a test would be likely to

show that the highest efficiency would obtain for a speed
somewhat less than 100 revolutions per minute.
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Prob. 168. Design an inward-flow reaction turbine which
shall use 120 cubic feet of water per second under a head of i&

feet while making 100 revolutions per minute, taking <^>
= 68,

a = 10, and
/?
= 2i. Also taking 9=75, a =15, and /?=2o.

ART. 169. GUIDES AND VANES

The discussions in the last two articles have neglected

the thickness of the guides and vanes. As these, however,

occupy a considerable space, a more correct investigation will

here be made to take them into account. Let / be the thick-

ness of a guide and n their number, ^ the thickness of a vane

and HI their number.' Then the areas a
, a, and a

t perpen-
dicular to the directions of v

, V, and Vx are strictly

sina nt)d a

l sin/? n^t^d^

and the expressions for the discharge in (167) l are

q = a v Q =aV =a 1F1

and, since V
l equals ult these give

also, the necessary condition in (167) 5 becomes

sin ((ft a) _ a r

sin
cf) a^i

and the greatest hydraulic efficiency of the turbine when

running at the advantageous speed is given by

r^
r2 sin< cosa

in which, of course, sin (<f> a)/sin < may be replaced by its

equivalent aQr/a^. The advantageous speed is, as before,,

given by (167>.,



ART. 169 GUIDES AND VANES 457

To discuss a special case, let the example of the last

article be again taken. An outward-flow turbine is to be

designed to use 120 cubic feet of water under a head of 18

feet while making 100 revolutions per minute, the gate being

fully opened. The preliminary design has furnished the

values r = 2.2gS feet, ^=3.000 feet, d=dl =o.^6 feet,

<
= 9o, a =24, P = i$ 08'. It is now required to revise

these so that 24 guides and 36 vanes may be introduced.

Each of these will be made one-half an inch thick, but on

the inner circumference of the wheel the vanes will be

thinned or rounded so as to prevent shock and foam that

might be caused by the entering water impinging against

their ends (see Fig. 1730). If the radii and angles remain

unchanged, the effect of the vanes will be to increase the

depth of the wheel, which is now 0.702 feet wide and 0.776

feet deep. As these are good proportions, it will perhaps
be best to keep the depth and the radii unchanged, and to

see how the angles and the efficiency will be affected.

Since the vanes are to be thinned at the inner circumfer-

ence, the area a is unaltered and its value is simply znrd sin<.

Hence ^ remains 90 degrees, and V is unchanged. This

requires that the area a should remain the same as before.

The area a^ is also the same, as its value is q/u. Accord-

ingly the equations result

4.556 =(27rr sina 24*)^ 3.820 = (27^ sin/? 36^)^

in which a and /?
are alone unknown. Inserting the nu-

merical values and solving, a =28 26' and /?
= 19 55', both

being increased by about 4^ degrees. The efficiency is

now found to be 0.898, a decrease of 0.043, due to the intro-

duction of the guides and vanes.

The efficiency may be slightly raised by making the outer

depth d
l greater than the inner depth d. For instance, let

dl =0.816, while d remains 0.776; then /?
is found to be 19

06', and 0=0.906. But another way is to thin down the
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vanes at the exit circumference and thus maintain the full

area ax with a small angle ft.
If this be done in the present

case d^ may be kept at 0.776 feet, ft
be reduced to about 16

degrees, and the efficiency will then be about 0.92 or 0.93.

No particular curve for the guides and vanes is required,

but it must be such as to be tangent to the circumferences

at the designated angles. The area between two vanes on

any cross-section normal to the direction of the velocity

should also not be greater than the area at entrance; in

order to secure this vanes are frequently made much thicker

at the middle than at the ends (see Fig. 173e).

Prob. 169a. Find the advantageous speed and the probable

discharge and power of the turbine designed above whenBunder
a head of 50 feet.

Prob. 1696. Revise the design of Prob. 168 by finding the

influence of 16 guides and 12 vanes upon the radii of the cir-

cumferences and the depth of the wheel.

ART. 170. DOWNWARD-FLOW TURBINES

Downward- or parallel-flow turbines are those in which

the water passes through the wheel without changing its

FIG. 170a

distance from the axis of revolution. In Fig. 170a is a semi-

vertical section of the guide and wheel passages, and also a

development of a portion of a cylindrical section showing
the inner arrangement. The formula for the discharge can

be adapted to this by making u = u. In this turbine there

is no action of centrifugal force, so that the relative exit
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velocity Vx is equal to the relative entrance velocity V.

The great advantage of this form of turbine is that it can

be set some distance above the tail race and still obtain the

power due to the total fall. This distance cannot exceed 34

feet, the height of the water

barometer, and usually it does

not exceed 25 feet. Fig. 1706

shows in a diagrammatic way a

cross-section of the penstock P,

the guide passages G, the wheel

W, and the air-tight draft tube

T, from which the water escapes

by a gate E to the tail race. The

pressure-head H^ on the exit ori-

fice is here negative, so that the

air pressure equivalent to this

head is added to the water pres-

sure in the penstock, and hence

the discharge through the guides

occurs as if the wheel were set at

the level of the tail race. Strict-

ly speaking a vacuum, more or

less complete, is formed just be-

low the wheel into which the water drops with a low abso-

lute velocity, having surrendered to the wheel nearly all its

energy. Draft tubes are also often used with inward-flow

turbines when these are set above the tail race.

Let h be the total head between the water levels in the

head and tail races, h the depth of the entrance orifices of

the wheel below the upper level, h
l the vertical height of the

wheel, and h2 the height of the exit orifices above the tail

race; so that h =/* + /
1 + ^2 . Let H and Ht

be the heads

which measure the absolute pressures at the entrance and

exit orifice of the wheel, and h
a the height of the water ba-

rometer. Let v be the absolute velocity with which the

FIG. 1706
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water leaves the guides and enters the vanes, and V and V
l

the relative velocities at entrance and exit. Then from the

theorem of energy in steady flow (Art. 32),

Adding these two equations there results

v *-V* + V1

* = 2g(h +h1

But ha Hi is equal to h2 ,
and hence

This formula is the same as (166)i if u be made equal to u
lt

and >hence all the formulas of the last three articles apply to

the downward-flow reaction turbine by making equal the

velocities u and uv as also the radii r and rr

Let r be the mean radius and u the mean velocity of the

entrance and exit orifices of the wheel, let d be the width of

-the entrance orifices and d
l that of the exit orifices. Let a

be the approach angle which the direction of the entering

water makes with that of the velocity u, or the angle which

the guides make. with the upper plane of the wheel (Fig.

170a) ;
let

<f>
be the entrance angle which the vanes make

with that plane, and /? the acute exit angle which they make
with the lower plane. Then the values of the advantageous

velocity u and the entering velocity v are

u =
I

\<cosa sin(0 a)

and the necessary relation between the angles of the vanes

and the dimensions of the wheel is

sin(< a) _ d sma a

sin0 d^ sin/?

~
a t

while the hydraulic efficiency of the turbine is

a sinH/? d
0=1-2- ^ =!i - -T- tana tan-|/?a

x cosa a
t

To these equations is to be added the condition that the

pressure-head Ht cannot be less than that of a vacuum, and



ART. 171 IMPULSE TURBINES 461

on account of air leakage it must be practically greater ;
thus

H l > o and h2 < h
a

that is, the height of the wheel orifices above the tail race

must be less than the height of the water barometer.

As an example of design, let
<f> =90 and a =30. Then

u = \/gh, or the velocity due to one-half the head; and

v o
= \/%gh, or a velocity due to two-thirds of the head.

Prom the above formulas, taking dl =%d, the value of
/? is

22 38' and the efficiency is found to be 0.92. This value

will be lowered by the introduction of guides and vanes, as

well as by friction, so that perhaps not more than 0.80 will

"be obtained in practice.

Prob. 170a. A downward-flow turbine has d= d^ a = i6,

^=15, h = $o feet; compute the angle <, the best speed, and

the hydraulic efficiency.

Prob. 1706. A downward-flow turbine with draft tube has

its exit orifices 7.5 feet above the level of the tail race, and it

uses 87 cubic feet of water per second under a head of 25 feet.

What horse-power will this turbine deliver if its efficiency, as

measured by the friction brake, is 76 percent?

ART. 171. IMPULSE TURBINES

Whenever a turbine is so arranged that the channels be-

tween the vanes are not fully filled with water, it ceases to

act as a reaction turbine and becomes an impulse turbine.

A turbine set above the level of the tail race becomes an im-

pulse turbine when the gate is partially lowered, unless the

gates are arranged over the exit orifices.

The velocity with which the water leaves the guides in

an impulse turbine is simply \/2gh ,
where h Q is the head on

the guide orifices. The rules and formulas in Art. 159 apply
in all respects, and for a well-designed wheel the entrance

angle < is double the approach angle a, the advantageous

speed and corresponding hydraulic efficiency are

A
2 cos 2a r cosa
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while the discharge is q =a V2gh and the work of the tur-

bine per second is k =wqh e.

As an example, suppose that the reaction turbine de-

signed in Art. 168 were to act as an impulse turbine, and

the angles a and /? remaining at 24 and 15 08', the radii r

and r
1 being 2.298 and 3.000 feet. It would then be neces-

sary that
(j>

should be 48 instead of 90 in order to secure

the best results. Under a head of 18 feet the velocity of

flow from the guides would be 34.02 feet per second instead

of 26.34. The velocity of the inner circumference would be

18.63 feet per second instead of 24.06, so that the number

of revolutions per minute would be about 77 instead of 100.

The efficiency would be 0.96, or almost exactly the same

as before. If, however, the angle < were to remain 90,
the efficiency would be materially lowered, since then the

water could not enter tangentially to the vanes and a loss

in impact would necessarily result.

Impulse turbines revolve slower than reaction turbines

under the same head, but the relative entrance velocity V
is greater, and hence more energy is liable to be spent in

shock and foam. In impulse turbines the entrance angle

<j>
should be double the approach angle a, but in reaction

turbines it is often greater than 30:, and its value depends

upon the exit angle /?; hence the vanes in impulse turbines

are of sharper curvature for the same values of a and
/?.

In

impulse turbines the efficiency is not lowered by a partial

closing of the gates, whereas the sudden enlargement of sec-

tion causes a material loss in reaction turbines. The advan-

tageous speed of an impulse turbine remains the same for

all positions of the gate, but with a reaction turbine it is

very much slower at part gate than at full gate. For many
kinds of machinery it is important to maintain a constant

speed for different amounts of power, and with a reaction

turbine this can only be done by a great loss in efficiency.

When the water supply is low the impulse turbine hence has

a marked advantage in efficiency. A further merit of the
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impulse turbine is that it may be arranged so that water

enters only through a part of the guides, while this is impos-
sible in reaction turbines. On the other hand, reaction tur-

bines can be set below the level of the tail race or above it,

using a draft tube in the latter" case, and still secure the

power due to the total fall, whereas an impulse turbine must

always be set above the tail-race level and loses all the fall

between that level and the guide orifices.

Prob. 171a. Compare the advantageous speeds of impulse
and reaction turbines when the velocity of the water issuing from

the guide orifices is the same.

Prob. 1716. Design an outward-flow impulse turbine which

shall use 120 cubic feet of water per second under a head of

1 8 feet and make 100 revolutions per minute. Compare the

dimensions and angles with those of the reaction turbine de-

signed for the same data in Art. 168.

ART. 172. SPECIAL DEVICES

Many devices to increase the efficiency of reaction tur-

bines, particularly at part gate, have been proposed. In

the Fourneyron turbine a common plan is to divide the

wheel into three parts by horizontal partitions between the

vanes so that these are completely filled with water when

the gate is either one-third or two-thirds closed (see Fig.

173d). The surface exposed to friction is thus, however,

materially increased at full gate.

The Boyden diffuser is another device used with out-

ward-flow reaction turbines. This consists of a fixed wooden

annular frame D placed around

the wheel W, through which the

water must pass after exit from

the wheel. Its width is about

four or five times that of the

wheel, and at the outer end its

depth becomes about double that FIG. 172

of the wheel. The effect of this is like a draft tube, and al-
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though the absolute velocity of the water when .ssuing from

the wheel is greater than before, the absolute velocity of

the water coming out of the difluser is less, and hence a

greater amount of energy is imparted to the turbine. It has

been shown above that the efficiency of a reaction turbine

is increased by making the exit depth d
t greater than the

entrance depth d, and the fixed diffuser produces the same
result. By the use of this diffuser Boyden increased the ef-

ficiency of the Fourneyron reaction turbine several percent.

The pneumatic turbine of Girard was devised to over-

come the loss in reaction turbines due to a partial closing of

the gate. The turbine was enclosed in a kind of bell into

which air could be pumped, thus lowering the tail-water

level around the wheel. At part gate this pump is put into

action, and as a consequence the air is admitted into the

wheel, and the water flowing through it does not fill the

spaces between the vanes. Hence the action becomes like

that of an impulse turbine, and the full efficiency is main-

tained. A wheel thus arranged should properly have the

entrance angle (f>
double the approach angle a in order that

the advantageous speed may be always the same.

Turbines without guides have been used. Here the ap-

proach angle a is probably about 90 degrees, as the water

would probably approach the wheel by the shortest path.
The entrance angle <j>

would then be made greater than 90

degrees, and the reliance for high efficiency must be upon a

small value of the exit angle /?.
But as this can scarcely be

made smaller than 15 degrees, the hydraulic efficiency will

rarely exceed 80 percent, which by friction and foam will in

practice be reduced to about 65 percent.

The screw turbine consists of one or two turns of a heli-

coidal surface around a vertical shaft, the screw being en-

closed in a cylindrical case. At a point of entrance the

downward pressure of the water can be resolved into two

components, a relative velocity V parallel to the surface and
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a horizontal velocity u which corresponds to the velocity of

the wheel. At the point of exit it can be resolved in like

manner into Ft and u
lm But, as in other cases, the condi-

tion for high efficiency is u1
= V

l ,
and since the water moves

parallel to the axis, u^ =u. Applying the general formulas

of Art. 166, it is seen that this can only occur when the head
h is zero or when the velocity u is infinite. The screw tur-

bine is hence like a reaction wheel, and high efficiency can

never practically be obtained.

Prob. 172a. Consult Riihlmann's Maschinenlehre, vol. i,

pp. 360-425, and describe a scheme for "ventilating" a tur-

bine in order to increase its efficiency.

Prob. 1726. Consult Weisbach's Mechanics of Engineering,
vol. ii (Du Bois' translation), and make sketches of a rotary

water-pressure engine. Show that its action depends on static

pressure only, and that it cannot be considered as either an im-

pulse or a reaction turbine.

ART. 173. THE NIAGARA TURBINES

A number of turbines have been installed at Niagara

Falls, N. Y., for the utilization of a portion of the power of

the great falls. Those to be here briefly described are the

ten large wheels designed by Faesch and Picard, of Geneva,

Switzerland, and erected from 1894 to 1900 for the Niagara
Falls Power Company. The entire plant is to include

twenty-one twin outward-flow reaction turbines, each of

about 5000 horse-power. It is located about i miles above

the American fall, where a canal leads water from the river

to the wheel pit. The water is carried down the pit through
steel penstocks to the turbines, which are placed 136 feet

below the water level in the canal. After passing through
the wheels the waste water is conveyed to the river below

the American fall by a tunnel 7000 feet long.*

Fig. 173a shows a cross-section of the wheel pit, with an

end view of a penstock, wheel case, and shaft. Fig. 1736

*
Engineering News, 1892, vol. 27, p. 74, and 1893, vol. 29, p. 294.
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exhibits part of a longi-

tudinal section of the wheel

pit and a side view of two

of the penstocks, with the *

enclosing cases and shafts S|

of the turbines. These

figures show a rock-surface

wheel pit, but this surface

was later protected by a

brick lining having a thick-

ness of about 15 inches.

The width of the wheel pit

is 20 feet at the top and 16

feet at the bottom, and the

cylindrical penstock is 7^

feet in diameter. The shaft

of the turbine is a steel tube

38 inches in diameter, built

in three sections, and con-

nected by short solid steel

shafts 1 1 inches in diameter

which revolve in bearings.

At the top of each shaft is

a dynamo for generating

the electric power.

In Fig. 173c is shown a

vertical section of the lower

part of the penstock, shaft,

and twin wheels. The water

fills the casing around the

shaft, passes both upward
and downward to the guide

passages, marked , through
which it enters the two

wheels, causes them to re-

volve; and then drops down
FIGt
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FIG. 1736
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to the tail race at the entrance to the tunnel, which carries

it away to the river. The gate for regulating the discharge
is seen upon the outside of the wheels.

FIG. 173c

Fig. 173d gives a larger vertical section of the lower wheel

with the guides, shaft, and connecting members. The guide

passages, marked G, and the wheel passages, marked W, are

triple, so that the latter may be filled not only at full gate,

but also when it is one-third or two-thirds opened, thus

avoiding the loss of energy due to sudden enlargement of the

flowing stream. The two horizontal partitions in the wheel

are also advantageous in strengthening it. The inner radius

of the wheel is 31 \ inches and the outer radius is 37^ inches,

while the depth is about 1 2 inches. In this figure the gates

are represented as closed.

In Fig. 1730 is shown a half-plan of one of the wheels, on

a part of which are seen the guides and vanes, there being 36
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of the former and 32 of the latter. The value of the ap-
proach angle a is 19 06', the mean value of the entrance

STEEL

AST-STEEL,

BRONZE

FIG. 173d

angle < is 110 40', and the exit angle /?
is 13 17^'. Al-

though the water on leaving the wheel is discharged into the

FIG.

air, the very small annular space between the guides and

vanes, together with the decreasing area between the vanes
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from the entrance to the exit orifices, ensures that the

,wheels act like reaction turbines for the three positions
of the gates corresponding to the three horizontal stages.

The average discharge through one of these twin tur-

bines is about 430 cubic feet per second, and the theoretic

power due to this discharge is 6645 horse-powers. Hence
if 5000 horse-powers be utilized the efficiency is 75.2 percent.

Under this discharge the mean velocity in the penstock is

nearly 10 feet per second, but the loss of head due to friction

in the penstock will be but a small fraction of a foot. The

pressure-head in the wheel case is then practically that due

to the actual static head, or closely 141 J feet upon the lower

and 130 feet upon the upper wheel. Although the penstock
is smaller in section than generally thought necessary for

such a large discharge, the loss of head that occurs in it is

insignificant ;
and it will be seen in Fig. 173a to be connected

with the head canal and with the wheel case by easy curves,

and that its section is enlarged in making these approaches.

A test of one of these wheels, made in 1895, showed that

5498 electrical horse-powers were generated by an expendi-
ture of 447.2 cubic feet of water per second under a head of

135.1. The efficiency of the dynamo being 97 percent, the

efficiency of the wheel and approaches was 82 J percent.

The water was measured, when entering the penstock, by a

current meter of the kind illustrated in Art. 40.

From formula (167) 4 the advantageous velocity of the

inner circumference of the upper wheel, taking h = 130^ feet,

is found to be 68.88 feet per second, and that for the lower

wheel, taking ^ = 141^ feet, is found to be 71.73 feet per

second. Perhaps the mean of these, or 70.3 1 feet per second,

closely corresponds with the advantageous velocity for the

two combined. The number of revolutions per minute for

the condition of maximum efficiency is then closely 250.

The absolute velocity of the water when entering the wheel

is about 66 feet per second, so that the pressure-head in the
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guide passages of the upper wheel is nearly 66 feet. The
mean absolute velocity of the water when leaving the wheels

is about 19 feet per second, so that the loss due to this is only
about 4 percent of the total head.

The weight of the dynamo, shaft, and turbine is balanced,
when the wheels are in motion, by the upward pressure of

the water in the wheel case on a piston placed above the

upper wheel. The upper disk containing the guides is, for

this purpose, perforated, so that the water pressure can be

transmitted through it. In Fig. 17 3c these perforations can

"be seen, and the balancing piston is marked B. The lower

disk, on the other hand, is solid, and the weight of the water

upon it is carried by inclined rods upward to the wheel case,

which together with the penstock is supported upon several

girders. At the upper end of the shaft is a thrust bearing
to receive the excess of vertical pressure, which may be

either upward or downward under different conditions of

power and speed.

A governor is provided for the regulation of the speed,

and this is located on the surface near the dynamo. It is of

the centrifugal-ball type, and so connected with the main
shaft and the turbine gates that the latter are partially

closed whenever from any cause the speed increases. These

gates are so set that the orifices of the upper and lower

wheels are not simultaneously closed, one gate being in ad-

vance of the other by about the width of one division

stage. The . revolving field magnets of the dynamo also

serve as a fly-wheel for equalizing the speed. With this

method of regulation it is ensured that the speed cannot

increase more than 3 or 4 percent when 25 percent of the

work is suddenly removed.

The above description refers to the ten turbines in wheel

pit No. 1. The illustrations are those of the wheels called

-units 1, 2, and 3 which were installed in 1894 and 1895.

Units 4 to 10 inclusive, installed in 1898-1900, are of the
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same type except that both the penstock and wheel case

have cast-iron ribs on their sides which rest on massive cast-

ings built into the masonry of the side walls. This arrange-
ment dispenses with the supporting girders shown in Figs.

173a-173, and gives much greater rigidity to both penstocks
and wheels.

The excavation of a new wheel pit, called No. 2, was

begun in 1896, and the installation of units 11-21 was com-

pleted in 1903. These wheels have penstocks and shafting

similar to those of units 1-10, but the wheels are of the Jou-
val type, the flow being inward and downward. The wheel

case has the form of a flattened sphere, the water entering
from one side and passing through the guides to a single

turbine 64 inches in diameter and 23.5 inches deep. After

leaving the wheel, the water passes to two draft tubes, each

about 58 inches in diameter, and is discharged near the

invert of the tail race at an angle of 45 to the horizontal

axis of the wheel pit. The wheel case is supported on these

two draft tubes as on two legs, while the penstock is sup-

ported on iron lugs in the same way as those of units

4-10. By these draft tubes the head on the wheel is in-

creased to 144 feet, this being the difference from the water

level in the head race to that in the tail race. The bal-

ancing pistons are below the wheels, and are supported from

an independent pipe instead of from the penstock. Each
shaft is also supplied with an oil step-bearing which is de-

signed to support, if necessary, the entire revolving weight
at the normal speed of 250 revolutions per minute.

Prob. 173a. Compute the hydraulic efficiency of the tur-

bines described above. Compute the velocity v with which the

water enters the lower wheel and the velocity v^ with which it

leaves the same when the speed is 250 revolutions per minute.

Prob. 1736. Compute the efficiency of a reaction wheel under

a head of 3.5 meters when the radius of the exit orifices is

0.64 meters, the coefficient of velocity 0.95, and the number
of revolutions per minute is 130.
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Prob. 17'3c. Compute the discharge through a reaction tur-

bine for which ^==0.64 and r=i.oo meters, ^ = 0.32, # = 1.26,

a = o.47 square meters, when the coefficient of discharge is

0.95 and the wheel makes 220 revolutions per minute.

Prob. 173d. Design an outward-flow reaction turbine which
shall use 8 cubic meters of water per second under a head of

12.4 meters, taking the entrance angle <j>
as 90 degrees.

Prob. 173e. A dynamo delivering 4100 kilowatts has an

efficiency of 97.5 percent, while the efficiency of the turbine is

81.3 percent and that of the approaches to the turbine is 99.7

percent. The turbine is of the Jouval type, and the difference

between the levels of head and tail race is 14.4 meters. How
many cubic meters of water are used per second?
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CHAPTER XV

NAVAL HYDROMECHANICS

ART. 174. GENERAL PRINCIPLES

In this chapter is to be discussed in a brief and elementary
manner the subject of the resistance of water to the motion
of vessels, and the general hydrodynamic principles relating
to their propulsion. The water may be at rest and the ves-

sel in motion or both may be in motion, as in the case of a

boat going up or down a river. In either event the velocity
of the vessel relative to the water need only be considered,

and this will be called v. The simplest method of propul-
sion is by the oar or paddle; then come the paddle wheel,

and the jet and screw propellers. The action of the wind

upon sails will not be here discussed, as it is outside of the

scope of this book.

The unit of measure used on the ocean is generally the

nautical mile or knot, which is about 6080 feet, so that knots

per hour may be transformed into feet per second by multi-

plying by 1.69, and feet per second may be transformed into

knots per hour by multiplying by 0.592. On rivers the

speed is estimated in statute miles per hour, and the corre-

sponding multipliers will be 1.47 and 0.682. One kilometer

per hour equals 0.621 miles per hour or 0.91 feet per second.

On the ocean the weight of a cubic foot of water is to be

taken as about 64 pounds (it is often used as 64. 3 2 pounds,

so that the numerical value is the same as 2g) ,
and in rivers

at 62.5 pounds.

The speed of a ship at sea is roughly measured by obser-

vations with the log, which is a triangular piece of wood
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attached to a cord which is divided by tags into lengths of

about 50J feet. The log being thrown into the water, it re-

mains stationary, the ship moves away from it, and the

number of tags run out in half a minute is counted; this

number is the same as the number of knots per hour at

which the ship is moving, since 50! feet is the same part of

a knot that a half minute is of an hour. The patent log,

which is a small self-recording current meter, drawn in the

water behind the ship, is however now generally used,

this being rated at intervals (Art. 40). In experimental
work more accurate methods of measuring the velocity are

necessary, and for this purpose the boat may run between

buoys whose distance apart has been found by triangulation

from measured bases on shore.

When a boat or ship is to be propelled through water,

the resistances to be overcome increase with its velocity,

and consequently, as in railroad trains, a practical limit of

speed is soon attained. These resistances consist of three

kinds the dynamic pressure caused by the relative velocity
of the boat and the water, the frictional resistance of the

surface of the boat, and the wave resistance. The first of

these can be entirely overcome, as indicated in Art. 146, by
giving to the boat a "fair

"
form, that is, such a form that

the dynamic pressure of the impulse near the bow is bal-

anced by that of the reaction of the water as it closes in

around the stern. It will be supposed in the following pages
that the boat has this form, and hence this first resistance

need not be further considered. The second and third

sources of resistance will be discussed later.

The total force of resistance which exists when a vessel

is propelled with the velocity v can be ascertained by draw-

ing it in tow at the same velocity, and placing on the tow
line a dynamometer to register the tension. An experi-
ment by Froude on the Greyhound, a steamer of 1157 tons,

gave for the total resistance the following figures :
*

* Thearle's Theoretical Naval Architecture (London, 1876), p. 347.
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at 4 knots per hour, 0.6 tons
;

at 6 knots per hour, 1.4 tons;

at 8 knots per hour, 2 . 5 tons
;

at 10 knots per hour, 4.7 tons;

at 12 knots per hour, 9.0 tons.

This shows that at low speeds the resistance varies about as

the square of the velocity, and at higher speeds in a faster

ratio. For speeds of 15 to 25 knots per hour, the usual ve-

locity of ocean steamers, the law of resistance is not so well

known, but as an approximation it is usually taken as vary-

ing with the square of the velocity.

Prob. 174. What horse-power was expended in the above

test of the Greyhound when the speed was 12 knots per hour?

ART. 175. FRICTIONAL RESISTANCES

When a stream or jet moves over a surface its velocity

is retarded by the frictional resistances, or if the velocity

be maintained uniform a constant force is overcome. In

pipes, conduits, and channels of uniform section the velocity

is uniform, and consequently each square foot of the surface

or bed exerts a constant resisting force, the intensity of

which will now be approximately computed. This resist-

ance will be the same as the force required to move the same

surface in still water, and hence the results will be directly

applicable to the propulsion of ships.

Let F be the force of frictional resistance per square foot

of surface of the bed of a channel, p its wetted perimeter, I

its length, h its fall in that length, a the area of its cross-

section, and v the mean velocity of flow. The force of fric-

tion over the entire surface then is Fpl, and the work per

second lost in friction is Fplv. The work done by the water

per second is Wh or wavh. Equating these two expressions

for the work, there results

F =w(a/p) (h/l)
= wrs
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in which r is the hydraulic radius and 5 the slope of the water

surface. Now inserting for rs its value from formula (106),

there results

F=wv 2

/c
2

in which w is the weight of a cubic foot of water and c is the

coefficient in the Chezy formula, the values of which are

given in Chapter IX and the accompanying tables. Inas-

much as the velocities along the bed of a channel are some-

what less than the mean velocity v, the values of F thus

determined will probably be slightly greater than the actual

resistance.

For smooth iron pipes the following are values of the

frictional resistance in pounds per square foot of surface at

different velocities, as computed from the above formula:

Velocity, feet per second =2 4 6 10 15

for i foot diameter, F=o.O23 0.080 0.17 0.43 0.92

for 4 feet diameter, F=o.oi5 0.053 - 11 0.28 0.59

These figures indicate that the resistance is subject to much
variation in pipes of different diameters; it is not easy to

conclude from them, or from formula (106), what the force

of resistance is for plane surfaces over which water is moving.

Experiments made by moving flat plates in still water so

that the direction of motion coincides with the plane of the

surface have furnished conclusions regarding the laws of

fluid friction similar to those deduced from the flow of water

in pipes. It is found that the total resistance is approxi-

mately proportional to the area of the surface, and approxi-

mately proportional to the square of the velocity. Accord-

ingly the force of resistance per square foot may be written

F=fv\ (175)

in which v is the velocity in feet per second and / is a number

depending upon the nature of the surface. The following
are average values of / for large surfaces, as given byllnwin :*

* Encyclopaedia Britannica, Ninth Edition, vol. 12, p. 483.
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Varnished surface, /
= o.00250

Painted and planed plank, /
= 0.00339

Surface of iron ships, /
= 0.003 51

Fine sand surface, /
= o.00405

New well-painted iron plate, /
= 0.0047 3

Undoubtedly the value of / is subject to variations with the

velocity, but the experiments on record are so few that the

law and extent of its variation cannot be formulated. It

should, however, be remarked that the formulas and con-

stants here given do not apply to low velocities, for the rea-

sons given in Art. 116. At the same time they are only ap-

proximately applicable to high velocities. A low velocity

of a body moving in an unlimited stream may be regarded
as i foot per second or less, a high velocity as 25 or 30 feet per
second.

It may be noted that the above-mentioned experiments
indicate that the value of F is greater for small surfaces than

for large ones. For instance, a varnished board 50 feet long

gave / =0.00250, while one 20 feet long gave / =0.00278, and
one 8 feet long gave /

= 0.00325, the motion being in all cases

in the direction of the length. The resistance is the same
whatever be the depth of immersion, for the friction is unin-

fluenced by the intensity of the static pressure. This is

proved by the circumstance that the flow of water in a pipe
is found to depend only upon the head on the outlet end,
and not upon the pressure-heads along its length.

The frictional resistance of a boat or ship may be roughly
estimated by taking o.oo4^

2 and multiplying it by the im-

mersed area. For instance, if this area be 8000 square feet,

the frictional resistance at a velocity of 10 feet per second

is 3200 pounds, but at a velocity of 20 feet per second it is

1 2 800 pounds ;
the horse-powers needed to overcome these

resistances are 58 and 464 respectively. To these must be
added the power necessary to overcome the friction of the

air and that wasted in the production of waves.
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The above discussion refers to the case of boats moving
in the ocean and lakes or in a stream of large width and

depth. In a canal the resistance is much greater, and it

depends upon the ratio of the cross-section of the canal to

that of the immersed portion of the boat. When the width

of the canal is about five times that of the boat and the area

of its cross-section about seven times that of the boat, the

resistance is but slightly greater than in an unlimited stream.

For smaller ratios the resistance rapidly increases, and when
two boats pass each other in a small canal the utmost power
of the horses may be severely taxed. The reason for this

increased resistance appears to be largely due to the fact

that the velocity of the water relative to the boat increases

with the diminution of the cross-section of the canal.

Thus, if a and A be the areas of the cross-section of the

canal and of the immersed part of the boat, the effective

area of the water cross-section is a A
,
and the water flow-

ing backward through this area must have a higher relative

velocity as A increases. The value of F given by formula

(175) is accordingly increased to fv
2

/(i (A/a))
2

.

Prob. 175a. What horse-power is required to overcome the

frictional resistance of a boat moving at the rate of 9 knots per
hour when the area of its immersed surface is 320 square feet?

Prob. 1756. A canal has a cross-section of 360 square feet,

while that of a canal boat is 60 square feet. Show that when
two boats pass each other the resistance of each is increased

about 60 percent.

ART. 176. WORK REQUIRED FOR PROPULSION

When a boat or ship moves through still water with a

velocity v, it must overcome the pressure due to impulse of

the water and the resistance due to the friction of its surface

on the water and air. If the surface be properly curved,

there is no resultant pressure due to impulse, as shown in

Art. 146. The resistance caused by friction of the im-

mersed surface on the water can be estimated, as explained
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above. If A be the area of this surface in square feet, the

work per second required to overcome this resistance is

k=AFv=fAv* (176)

The work, and hence the horse-power, required to move a

boat accordingly varies approximately as the cube of its

velocity. By the help of the values of / given in the last

article an approximate estimate of the work can be made
for particular cases. The resistance of the air, which in

practice must be considered, will be here neglected.

To illustrate this law let it be required to find how many
tons of coal will be used by a steamer in making a trip of

3000 miles in 6 days, when it is known that 800 tons are

used in making the trip in 10 days. As the power used is

proportional to the amount of coal, and as the distances

traveled per day in the two cases are 500 miles and 300

miles, the law gives

7/480 = (5/3)
3

whence T = 2220 tons. By the increased speed the expense
for fuel is increased 277 percent, while the time is reduced 40

percent. If the value of wages, maintenance, interest, etc.,

saved on account of the reduction in time, will balance the

extra expense for fuel, the increased speed is profitable.

That such a compensation occurs in many instances is ap-

parent from the constant efforts to reduce the time of trips

of passenger steamers.

When a boat moves with the velocity v in a current

which has a velocity u in the same direction the velocity of

the boat relative to the water is vu, and the resistance is

proportional to (v u)
2 and the work to (v u)

3
. If the boat

moves in the opposite direction to the current the relative

velocity is v + u, and of course v must be greater than u or

no progress would be made. In all cases of the application

of the formulas of this article and the last, v is to be taken

as the velocity of the boat relative to the water.
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Another source of resistance to the motion of boats and

ships is the production of waves. This is due in part to a

different level of the water surface along the sides of the ship
due to the variation in static pressure caused by the velocity,

and in part to other causes. It is plain that waves, eddies,

and foam cause energy to be dissipated in heat, and that

thus a portion of the work furnished by the engines of the

boat is lost. This source of loss is supposed to consume
from 10 to 40 percent of the total work, and it is known to

increase with the velocity. On account of the uncertainty

regarding this resistance, as well as those due to the friction

of the water and air, practical computations on the power
required to move boats at given velocities can only be ex-

pected to furnish approximate results.

The investigations of Rankine on this difficult subject
led to the conclusion announced in 1858 in the anagram
given in Prob. i. The meaning of this is given in the fol-

lowing sentence, published in 1861: "The resistance of a

sharp-ended ship exceeds the resistance of a current of water

of the same velocity in a channel of the same length and
mean girth by a quantity proportional to the square of the

greatest breadth divided by the square of the length of the

bow and stern."

Prob. 176a. How many tons of coal are required to make a

trip in 4 days if 650 tons are used in making the trip in 5 days?

Prob. 1766. Compute the horse-power required to maintain
a velocity of 18 knots per hour, taking ^. = 7473 square feet

and /
= 0.004.

ART. 177. THE JET PROPELLER

The method of jet propulsion consists in allowing water

to enter the boat and acquire its velocity, and then to eject

it backwards at the stern by means of a pump. The reac-

tion thus produced propels the boat forward. To investigate

the efficiency of this method, let W be the weight of water
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ejected per second, V its velocity relative to the boat, and v

the velocity of the boat itself. The absolute velocity of the

issuing water is then V v, and it is plain without further

discussion that the maximum efficiency will be obtained

when this is o, or when V =
v, as then there will be no energy

remaining in the water which is propelled backward. It is,

however, to be shown that this condition can never be real-

ized and that the efficiency of jet propulsion is low.

The effective work which is exerted on the boat by the

reaction of the issuing water is

g

and the work lost in the absolute velocity of the water is

The sum of these is the total theoretic work, or

V2 - v 2

Therefore the efficiency of jet propulsion is expressed by

k 2V\=K =
V+^}

This becomes equal to unity when v = V as before indicated,

but then it is seen that the work k becomes o unless W is

infinite. The value of W is waV, if a be the area of the ori-

fices through which the water is ejected; and hence in order

to make e unity and at the same time perform work it is

necessary that either V or a should be infinity. The jet

propeller is therefore like a reaction wheel (Art. 163), and it

is seen upon comparison that the formula for efficiency is

the same in the two cases.

By equating the above value of the useful work to that

established in the last article there is found

fgAv
2 =waV(V-v)
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and if this be solved for V, and the resulting value be substi-

tuted in the formula for e, it reduces to

c _ 4

3 + Vi + (4fgA/wa)

which again shows that e approaches unity as the ratio of a

to A increases. The area of the orifices of discharge must

hence be very large in order to realize both high power and

high efficiency. For this reason the propulsion of vessels

by this method has not proved economical, although in the

case of the boat Waterwitch, built in England about 1860,

a fair speed was attained. In nature the same result is

seen, for no marine animal except the cuttle-fish uses this

principle of propulsion. Even the cuttle-fish cannot de-

pend upon his jet to escape from his enemies, but for this

relies upon his supply of ink with which he darkens the

water about him.

Prob. 177. Compute the velocity and efficiency of a jet pro-

peller driven by a i-inch nozzle under a pressure of 150 pounds

per square inch when A = 1000 square feet and /
= 0.004. Com-

pute also the efficiency when the diameter of the nozzle is 3

inches.

ART. 178. PADDLE WHEELS

The method of propulsion by rowing and paddling is well

known to all. The power is furnished by muscular energy
within the boat, the water is the fulcrum upon which the

blade of the oar acts, and the force of reaction thus produced
is transmitted to the boat and urges it forward. If water

were an unyielding substance, the theoretic efficiency of the

oar should be unity, or, as in any lever, the work done by
the force at the rowlock should equal the work performed

by the motive force exerted by the man on the handle of

the oar. But as the water is yielding, some of it is driven

backward by the blade of the oar, and thus energy is lost.

The paddle or side wheel so extensively used in river

navigation is similar in principle to the oar. The power
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is furnished by a motor within the boat, the blades or vanes

of the wheel tend to drive the water backward, and the reac-

tion thus produced urges the boat forward. On first thought
it might be supposed that the efficiency of the method would

be governed by laws similar to those of the undershot wheel,

and such would be the case if the vessel were stationary and

the wheel were used as an apparatus for moving the water.

In fact, however, the theoretic efficiency of the paddle wheel

is much higher than that of the undershot motor.

The work exerted by the steam-engine upon the paddle
wheels may be represented by PV, in which P is the pressure

produced by the vanes upon the water, and V is their ve-

locity of revolution
;
and the work actually imparted to the

boat may be represented by Pv, in which v is its velocity

with respect to the water. Accordingly the efficiency of

the paddle wheel, neglecting losses due to foam and waves, is

-
V

in which vl is the difference V v, or the so-called
"
slip." If

the slip be o, the velocities V and v are equal, and the theo-

retic efficiency is unity. The value of V is determined from

the radius r of the wheel and its number of revolutions per

second; thus V = 2nrn.

On account of the lack of experimental data it is difficult

to give information regarding the practical efficiency of pad-
dle wheels considered from a hydromechanic point of view.

Owing to the water which is lifted by the blades, and to the

foam and waves produced, much energy is lost. They are,

however, very advantageous on account of the readiness

with which the boat can be stopped and reversed. When
the wheels are driven by separate engines, as is sometimes

done on river boats, perfect control is secured, as they can

be revolved in opposite directions when desired. Paddle

wheels with feathering blades are more efficient than those

with fixed radial ones, but practically they are found to be



ART. 179 THE SCREW PROPELLER 485

cumbersome, and liable to get out of order. In ocean navi-

gation the screw has now almost entirely replaced the paddle
wheel on account of its higher efficiency.

Prob. 178. The radius of the blades of a paddle wheel is

10.5 feet and the number of revolutions per minute is 24. If

the efficiency is 75 percent, what is the velocity of the boat in

miles per hour ? Show that for this case the slip is 33 percent
of the velocity of the boat.

ART. 179. THE SCREW PROPELLER

The screw propeller consists of several helicoidal blades

attached at the stern of a vessel to the end of a horizontal

shaft which is made to revolve by steam power. The dy-
namic pressure of the reaction developed between the water

and the helicoidal surface drives the vessel forward, the theo-

retic work of the screw being the product of this pressure

by the distance traversed. The pitch of the screw is the

distance, parallel to the shaft, between any point on a helix,

and the corresponding point on the same helix after one turn

around the axis, and the pitch may be constant at all dis-

tances from the axis, or it may be variable. If the water

were unyielding, the vessel would advance a distance equal
to the pitch at each revolution of the shaft; actually, the

advance is less than the pitch, the difference being called the
"
slip." The effect thus is that the pressure P existing be-

tween the helical surfaces and the water moves the vessel

with the velocity v, while the theoretic velocity which should

occur is V, being the pitch of the screw multiplied by the

number of revolutions per second. The work expended is

hence PV or P(v + v^, if v
l
be the

"
slip" per second, and the

work utilized is Pv. Accordingly the efficiency of screw

propulsion is, approximately,

which is the same expression as before found for the paddle
wheel. Here, as in the last article, all the pressure exerted
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by the blades upon the water is supposed to act backward

in a direction parallel to the shaft of the screw, and the above

conclusion is approximate because this is actually not the

case, and also because the action of friction has not been

considered.

The pressure P which is exerted by the helicoidal blades

upon the water is the same as the thrust or stress in the shaft,

and the value of this may be approximately ascertained by
regarding it as due to the reaction of a stream of water of

cross-section a and velocity v, or

Another expression for this may be found from the indicated

work k of the steam cylinders of the engines ;
thus

P=k/v

Numerical values computed from these two expressions do

not, however, agree well, the latter giving in general a much
less value than the former.

In Art. 176 the work to be performed in propelling a

vessel of fair form having the submerged surface A was

found to be

k=fAv 3

If the value of v is taken from this and inserted in the ex-

pression for efficiency, there obtains

which shows that e increases as v lt /, and A decrease, and

as k increases. Or for given values of / and A the efficiency

decreases with the speed.

It has been observed in a few instances that the
"
slip"

v l
is negative, or that V, as computed from the number of

revolutions and pitch of the screw, is less than v. This is

probably due to the circumstance that the water around

the stern is following the vessel with a velocity v'
',
so that

the real slip is V v + v
f instead of Vv. The existence
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of negative slip is usually regarded as evidence of poor

design.

In some cases twin screws are used, as with these the

vessel can be more readily controlled. Fig. 179 shows the

twin screws of the New York, an ocean steamer of 580 feet

FIG. 179

length, 63.5 feet breadth, and 42 feet depth, with a gross

tonnage of 10 500 and an estimated horse-power of about

1 6 ooo. These screws revolve in opposite directions. The

practical advantage of the screw over the paddle wheel has

been found to be very great, and this is probably due to the

circumstance that less energy is wasted in lifting the water

and in forming waves.

Prob. 179. A steamer having a submerged surface of 30 ooo

square feet is propelled at 18 knots per hour by an expenditure
of 6000 horse-powers. If the pitch of the screw is 20 feet, its

number of revolutions 120 per minute, and /
= 0.004, compute

the number of lost horse-powers.

ART. 180. STABILITY OF A SHIP

In Art. 14 the general principles regarding the stability

of a floating body were stated, and these are of great im-

portance in the design of ships. The center of gravity is,

of course, always above the center of buoyancy, and the

metacenter must be above the center of gravity in order to

ensure stability. The distance between the metacenter and
the center of gravity is denoted by m, and if the body be in-
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clined slightly to the vertical at the angle 6, the moment of

the couple formed by the weight W of the body which acts

downward through the center of gravity and the upward

pressure W of the displaced water which acts through the

center of buoyancy is Wm tan 6. Hence m tan 6 is a measure

of the stability of the body, and the greater its value the

greater is the tendency of the body to return to the upright

position.

The metacentric height m cannot, however, be made very

great, for the rapidity of rolling increases with it. When a

floating body or ship is displaced from its vertical position

it rolls to and fro with isochronous oscillations like those

of a pendulum and the time of one oscillation from port
to starboard is given by the formula

t =xVr2

/mg

in which r is the radius of gyration of the weight of the ship
about a horizontal axis passing through its center of gravity.

Hence if m be large, t is small and the ship rolls quickly,

but if m be small, t is large and the ship rolls slowly. The

metacentric height m for ocean vessels usually ranges from

2 to 15 feet, about 6 or 8 feet being the usual value.

FIG. 180<z FIG. 1806

. The determination of the values of m and r for a ship is

a laborious process owing to its curved shape and the irregu-

lar distribution of its weight and cargo. The process will

here be applied to the simple case of a rectangular prism of

uniform density. Let h be the height and b the breadth

of the prism, and I its length perpendicular to the plane
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of the drawing in Fig. 180a. When the prism is in the ver-

tical position its' depth of flotation is sh, Us be its specific

gravity (Art. 13), and this is also the length of the immersed

portion of the axis AB when the prism is inclined to the

vertical at the angle 6, as in Fig. 1806. In the latter posi-

tion the center of buoyancy D, being the center of gravity
of the displaced water, is easily located, and

_6
2 tan0 _sh b 2 tan 2

/?

I2Sk
~

2 24Sk

are its coordinates with respect to B, % being measured nor-

mal and y parallel to AB. The distance m from the center

of gravity g to the metacenter M is then found to be

If m is positive the metacenter is above the center of gravity
and the equilibrium is stable, for the moment Wm tan0 re-

stores the prism to the vertical position; if m is zero the

equilibrium is indifferent; if m is negative the equilibrium
is unstable and the prism falls over.

The square of the radius of gyration of the prism with

respect to a horizontal longitudinal axis through G is its

polar moment of inertia ^I(bh
3 + hb 3

) divided by its volume

Ibd, whence r2 = ^(h 2 + b 2

). For example, if h be 5 feet, b be

8 feet, and 5 be 0.5, the value of r
2
is 7:42 feet 2

. The value

of m to be used in the above formula for the time of one

roll is that obtained by making equal to zero, since that

formula is strictly true only for small deviations from the

vertical. For the above data this value of m is +0.88 feet,

the plus sign denoting stability, and hence the time of one

oscillation from port to starboard is t = i.6i seconds. It is

seen that t can be increased either by increasing r2 or by de-

creasing m ;
since a decrease in m is unfavorable to stability

it is often preferable to increase r2
. For instance, in loading

a ship the cargo may be placed along the sides rather than

near the middle of the hold, and this will increase r
2

,
as the
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width of a ship is always greater than its depth. The gen-

eral rule to promote stability and prevent quick rolling is

hence to place the cargo as far as possible from the center

of gravity.

The above formula for m shows that the moment Wm
tan/9 which restores the floating prism to the vertical in-

creases with the angle 6 up to a maximum value, then de-

creases, and when D arrives vertically beneath G it becomes

zero and the prism upsets. For the case where h = 5 feet,

6=8 feet, and s = 0.5, the value of m tan# is o.oo feet for

=
,
o.i 6 feet for 6 = 10, 0.37 feet for 6 = 20, and 0.72

feet for 6 = 30; at 6 =32 the corner of the prism becomes

immersed so that the formula no longer holds, but up to this

point the moment constantly increases. From the above

expression for m the solution of the two cases of Prob. 14

is readily made, but the condition given for the second

case holds good only when no part of the top of the prism
is immersed.

Prob. 180a. Deduce the above values of x, y, and m.

Prob. 1806. An open rectangular wooden box caisson of

length /, breadth 6, and depth d has sides of mean thickness b
l

and a bottom of thickness d^. Deduce formulas for the meta-

centric height m and the squared radius of gyration r2
. Com-

pute m, r2
,
and t for a numerical case.

ART. 181. ACTION OF THE RUDDER

The action of the rudder in steering a vessel involves a

principle that deserves discussion. In Fig. 181 is shown a

plan of a boat with the rudder

turned to the starboard side, at an

angle d with the line of the keel.

The velocity of the vessel being v,

the action of the water upon the

rudder is the same as if the vessel

FIG. 181 were at rest and the water in

motion with the velocity v. Let W be the weight of water
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which produces dynamic pressure against the rudder, due

to the impulse W. v/g (Art. 143). The component of this

pressure normal to the rudder is

P = Wv sind/g

and its effect in turning the vessel about the center of gravity
C is measured by its moment with reference to that point.

Let b be the breadth of the rudder and d the distance CH be-

tween the center of gravity and the hinge of the rudder, then

the lever arm of the force P is

and accordingly the turning moment is

To determine that value of 6 which produces the greatest

effect in turning the boat the derivative ofM with respect to

6 must vanish, which gives

b II W
cos0 = -&-7+\-

~
Sd * 2

and from this the value of 6 is found to be approximately

45, since d is always much larger than b.

Values of the angle 6 for several values of the ratio b/d

may now be computed as follows :

b/d= i I & Tfr O
cos0 =0.6825 0.6916 0.6947 0.7069 0.7071

6 =46 58' 46 15' 46 oo' 45 01' 45

which show that about 45 is the advantageous angle.

In practice it is usual to arrange the mechanism of the

rudder so that it can only be turned to an angle of about 42

with the keel, for it is found that the power required to turn

it the additional 3 or 4 is not sufficiently compensated

by the slightly greater moment that would be produced.
The reasoning also shows that intensity of the turning mo-
ment increases with v, so that the rudder acts most promptly
when the boat is moving rapidly. For the same reason a
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rudder on a steamer propelled by a screw is not required to

be so broad as one on a boat driven by paddle wheels, for the

effect of the screw is to increase the velocity of the im-

pinging water, and hence also to increase the dynamic pres-

sure against the rudder.

Prob. 181. Explain how it is that a boat can sail against the

wind. What is the influence of the keel in this motion?

ART. 182. TIDES AND WAVES

The complete discussion of the subject of waves might,
like so many other branches of hydraulics, be expanded
so as to embrace an entire treatise, and hence there can be

here given only the briefest outline of a few of the most im-

portant principles. There are two classes or kinds of waves,

the first including the tidal waves and those produced by
earthquakes or other sudden disturbances, and the second

those due to the wind. The daily tidal wave generated by
the attraction of the moon and sun originates in the South

Pacific Ocean, whence it travels in all directions with a ve-

locity dependent upon the depth of water and the configu-

ration of the continents, and which in some regions is as high
as 1000 miles per hour. Striking against the coasts, the

tidal waves cause currents in inlets and harbors, and if the

circumstances were such that their motion could become

uniform and permanent, these might be governed by the

same laws which apply to the flow of water in channels.

Such, however, is rarely the case
;
and accordingly the sub-

ject of tidal currents is one of much complexity and not

capable of general formulation.

The velocity of a tidal wave on the ocean is \/gD where

D is the depth of the water. When such a wave rolls over

the land the greatest velocity it can have is Vgd, where d

is its depth, this being the case of the bore (Art. 133). The

velocity of a wave produced by a sudden disturbance in a
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channel of uniform width has also been found to

where D is the depth of the water.

Rolling waves produced by the wind travel with a velocity
which is small compared with those above noted, although
in water where the disturbance can extend to the bottom it

is generally supposed that their velocity is VgD. Upon

FIG. 182

the ocean the maximum length of such waves is estimated

at 550 feet and their velocity at about 53 feet per second.

For this class of waves it is found by observation that each

particle of water upon the surface moves in an elliptic or

circular orbit, whose time of revolution is the same as the

time of one wave length. Thus the particles on the crest

of a wave are moving forward in the direction of the mo-
tion of the wave while those in the trough are moving back-

ward. When such waves advance into shallow water their

length and speed decrease, but the time of revolution of the

particles in their orbits remains unaltered, and as a conse-

quence the slopes become steeper and the height greater,

until finally the front slope becomes vertical arid the wave
breaks with roar and foam. Below the surface the particles

revolve also in elliptic orbits, which grow smaller in size

toward the bottom. The curve formed by the vertical sec-

tion of the surface of a wave at right angles to its length is

of a cycloidal nature.

The force exerted by ocean waves when breaking against
sea walls is very great, as already mentioned in Art. 146, and
often proves destructive. If walls can be built so that the

waves are reflected without breaking, as is sometimes possible
in deep water, their action is rendered less injurious. Upon
the ocean waves move in the same direction as the wind, but
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along shore it is observed that they move normally toward

it, whatever may be the direction in which the wind is blow-

ing. The force of wave action is felt at depths of over 100

feet below the surface, for sand has been brought up from

depths of 80 feet and dropped upon the decks of vessels.

Shoals also cause a marked increase in the height of waves

even when such shoals are 500 feet or more below the

water surface.

Prob. 182a. In a channel 6.5 feet wide, and of a depth de-

creasing 1.5 feet per 1000 feet, Bazin generated a wave by sud-

denly admitting water at the upper end. At points where the

depths were 2.16, 1.85, 1.46, and 0.80 feet, the velocities were

observed to be 8.70, 8.67, 7.80, and 6.69 feet per second. Do
these velocities agree with the theoretic law?

Prob. 1826. Show that the values of / given in Art. 175 for

use in the formula F = fv
2 are to be multiplied by 5.255 when v

is in meters per second and F in kilograms per square meter.

Prob. 182c. Compute the metric horse-power required for

a velocity of 25 kilometers per hour for a boat which has a

submerged area of 237 square meters.

Prob. lS2d. A ship rolls from starboard to port in 7.5 seconds.

If the metacentric height m is 2.4 meters, what is the value of

the transverse radius of gyration of the ship ? How much must

the radius of gyration be increased in order to increase the time

of rolling 15 percent?
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CHAPTER XVI

PUMPS AND PUMPING

ART. 183. GENERAL NOTES AND PRINCIPLES

Among the simple devices for raising water that have

been used for many centuries, and which may be called lift

pumps in a general way, are the sweep and windlass, buckets

attached to a revolving wheel, the chain and bucket pump
where the buckets move in a cylinder, and the Archimedian

screw. The chain and bucket pump was probably first used

by the Chinese in the form of an inclined trough in which

moved the buckets attached to the endless chain, and this

device in various forms has been used in all countries for

lifting water from wells. The Archimedian screw, invented

by the great engineer Archimedes when he was in Egypt,
about 240 B.C., consists of a tube wound spirally around an

inclined cylinder. If the lower end be placed under water

and the cylinder be revolved the water is lifted and flows out

of the upper end of the tube. This screw pump is still in

use in Egypt and it is said to be an efficient apparatus for a

low lift.

The fact that water would sometimes rise into a space
from which the air had been removed was known at a re-

mote antiquity, and this was frequently explained by the

statement that
"
nature abhors a vacuum." It was not

until the middle of the seventeenth century that the true

reason of this phenomenon was explained through the

researches of Torricelli and Pascal (Art. 5), but prior to this

time a rude form of suction pump, made by attaching a

pipe to a bellows at the opening where the air usually enters,
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was used in both France and Germany. In 1732 the first

true suction and lift pump was devised by Boulogne, and a

little later the suction and force pump came into use.

The force pump is a device for raising water by means

of pressure exerted on it by a piston. The syringe, which

has been known from very early times, is an example of

this principle, but the first true force pump was invented

in Egypt about 250 B.C., by Ctesibius, a Greek hydraulician,

and the description of 'it given by Vitruvius indicates that it

was used to some extent by the Romans. The early force

pumps were placed with their cylinders below the level of

the water to be lifted and had valves which closed under the

back pressure of the water. By placing the cylinders above

the water level and utilizing the principle of suction the

suction and force pump originated.

All devices for raising water may be classified under the

three principles above mentioned, that of lifting in buckets,

drawing it up by suction, or forcing it up by pressure, or

under combinations of these. The lift or bucket principle

is mainly employed for small quantities of water and has

only a limited use in engineering practice. The suction

principle, combined with lift or pressure, is, extensively used,

but in no event can the height of the suction exceed 34 feet,

for it is the atmospheric pressure that causes the water to

rise when the air above it is exhausted
;
under this principle

also may be put injector pumps which operate under the

action of negative pressure-head (Art. 32). The principle of

direct pressure governs not only the force pump, but rotary

and centrifugal pumps and also the devices for raising water

by compressed air.

Whenever water is raised from a lower to a higher level

an amount of work must be expended greater than the

theoretic work required to lift the given weight of water

through the given height. The excess, called the lost work,

is spent in overcoming resistances of friction and inertia.

In designing pumps it is the object to reduce these losses
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to a minimum, so that the greatest economy in operation

may result. The subject will here be mainly considered

from a hydraulic standpoint, the object being to set forth the

fundamental principles by which hydraulic losses may be
avoided as far as possible.

Let W be the weight of water raised per second and h
the height of the lift, then the useful work per second k is

Wh. Let the total work expended per second be called K,
then the efficiency of the apparatus is e = k/K. The work
K to be considered here is that delivered to the pump and
does not include that lost in transmission from the motor,
since this, of course, is not fairly chargeable against the

pump or lifting apparatus. If K be replaced by W(h + hf

)

where hf
is the head lost in overcoming the frictional resist-

ances, then the efficiency may be written

k h
p __ _ /I OQ\
~K

~
'

which is less than unity, since h' cannot be made zero.

The power required to operate a pump to raise the weightW of water per second through the height h is easily com-

puted if the efficiency of the pump is known. For ex-

ample, to raise 150 gallons per second through a height of

20 feet with a pump having an efficiency of 62 percent, the

work imparted to the pump per second is

K =k/e = (i$o X8.355 X2o)/o.62 =25 ooo foot-pounds

and this, divided by 550, gives 45.5 horse-powers.

Prob. 183a. What is the efficiency of a bucket pump which
raises 840 gallons of water per minute through a height of 18

feet with an expenditure of 5 horse-powers?

Prob. 1836. A pump raises 20.5 cubic feet of water per second

through a height of 127.5 feet. The lost head in the pump and

pipes amounts to 13.5 feet. Compute the efficiency of the pump-
ing plant and the power required to operate it.
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ART. 184. RAISING WATER BY SUCTION

The term suction is a misleading one unless it be clearly

kept in mind that water will not rise in a vacuum tube unless

the atmospheric pressure can act underneath it. For ex-

ample, no amount of rarefaction above the surface of the

water in a glass bottle will cause that water to rise. When
the tube is inserted into a river or pond, however, the water

will rise in it when a partial vacuum is formed, since the

atmospheric pressure which is transmitted through the

water pushes it up until equilibrium is secured (Art. 5).

The mean atmospheric pressure of 14.7 pounds per square
inch at the sea level is equivalent to a height of water of

34 feet, and this is the limit of raising water by suction

alone. In practice this height cannot be reached on account

of the impossibility of producing a perfect vacuum, and it is

found that about 28 feet is the maximum practicable height,

of suction lift.

The height of the water barometer varies with the

state of the weather, with the elevation above sea level,,

and with the temperature. The value of 34 feet is that

corresponding to a reading of 30 inches on the mercury
barometer at a temperature of 32 Fahrenheit. For higher

temperatures more or less vapor is evaporated from the

water surface and fills the suction tube, so that a complete
vacuum cannot be formed. When the mercury barometer

reads 30 inches, the water barometer is only 33.4 feet if

the temperature of the water is 60 Fahrenheit, 32.4 feet

at 90, about 30 feet for 120, about 23 feet for 160, about.

6 feet for 200, and for 212 it is zero, since the tube is filled

with steam. Hence water at the boiling-point cannot be

raised by suction.

Fig. 184 gives two diagrams illustrating the principle

of action of the common suction and lift pump. It consists

of two vertical tubes BD and BE, the former being called

the suction pipe and the latter the pump cylinder. The
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piston A in the pump cylinder has a valve opening upward,
and the valve B at the top of the suction pipe also opens

upward. In the left-hand

diagram the piston is de-

scending, the valve A be-

ing open and B being
closed under the pressure
of the air in the space be-

tween them. In the right-

hand diagram the piston
is ascending, the valve A
being closed by the pres-

sure of the air or water

above it, while B is open

owing to the excess of at-

mospheric pressure in BD
above that in AB. In the FlG - 184

first diagram the piston has made only one or two strokes

so that the water has risen but a short distance in the suc-

tion pipe. In the second diagram the piston has made a

sufficient number of strokes so that the pump cylinder is

full of water which is flowing out at the spout C.

Let h
l
be the distance from the water level D to the

lowest position of the piston; this is called the height of

lift by suction. Let h2 be the height from the lowest posi-

tion of the piston to the spout where the water flows out;

this is called the height of lift by the piston. The distance

h
l + h2 is the vertical height through which the water is

raised, and if W be the weight of water raised in one second,

the useful work per second is W(ht+hJ. The energy im-

parted to the pump through the piston rod is always greater

than this useful work, since energy is required to overcome

the. ffictional resistances due to the motion of the water and

piston, as also to overcome the resistance of inertia in put-

ting them into motion.

To discuss the action of the pump in detail, let I be the
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stroke of the piston, that is, the distance between its highest
and lowest positions. Let A be the area of the cross-sec-

tion of the pump cylinder and a that of the suction pipe.

Let the piston be supposed to be at its lowest position at

the beginning of the operation when no water has been

raised in the suction pipe above the level D in Fig. 184.

On raising the piston through the stroke / it describes the

volume Al, and the volume of air ah^ now has the volume

Al + aki. Let h a be the height of the water barometer

corresponding to the temperature and atmospheric pres-

sure
;
then since by Mariotte's law the pressure of a given

quantity of air is inversely as its volume, the pressure-head
h x corresponding to the volume Al + ah t is ha . ah

l/(Al + ah^,

and the height x to which the water will rise in the suction

tube in order to maintain equilibrium is h
a

h
x ,
whence

Al Ik.x=h
l + h^a/A)

For example, let A be 6 and a be 3 square inches, \ be 20

and / be i foot; then, under ideal conditions, in the first

upward stroke of the piston the water rises to the height

# = 34X0.09091=3.09 feet, and the air above the new
water level now has the normal atmospheric pressure.

For a second upward stroke of the piston the data are the

same as before except that h
l
is 203.09 =16.91 feet, and

at the end of the stroke the water has risen a further dis-

tance # = 34X0.1058=3.60 feet, so that its surface stands

at the height of 16.913.60 = 13.31 feet below the lowest

limit of the piston. Proceeding in like manner it is found

that after the third upward stroke the water level is 8.84

feet below the top of the suction pipe, and at the end of

the fourth upward stroke only 2.57 feet below it. During
the fifth upward stroke the water enters the pump cylinder,

during the next downward, stroke it flows through the

piston valve, and in the sixth upward stroke the water

above the piston is lifted and flows out of the spout.
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The preceding discussion supposes that there is no

leakage of air through and around the piston, but this can-

not be attained in practice ;
hence the degree of rarefaction

below the piston is never so great as the above formula

gives, and the number of strokes required to elevate the

water above the valve B is larger than the computed num-
ber. When the suction height is greater than 25 feet, it

becomes difficult to secure sufficient rarefaction to lift the

water and hence a foot valve, also opening upward, is

placed in the suction pipe below the water level D. The

pump cylinder and suction pipe can then be primed, or

filled with water from above, and after this is done there

will be no difficulty in operating the pump. If there be

no foot valve it will be necessary to have a very long piston
stroke in order to start the pump, but with a foot valve

the stroke may be any convenient length.

The action of this pump is intermittent and water flows

from the spout only during the upward stroke of the pis-

ton. When there are N upward strokes per minute the

discharge in one minute is NAl, if the piston and its valve

be tight. The useful work per minute is NwAl(hi+h$ t

if w be the weight of a cubic unit of water. When / and

hi + hi are in feet, A in square feet, and w in pounds per
cubic foot, the horse-power expended in this useful work is

ooo

and to this must be added the horse-power required to

overcome the resistances of friction and inertia. This

additional power often amounts to as much as that needed

for the useful work and in this case the efficiency of the

pump is 50 percent. Suction and lift pumps are of numer-

ous styles and sizes, the simplest being of square wooden

tubes or of round tin-plate tubes with leather valves, and

these can be readily made by a carpenter or tinsmith.

They are mainly used for small quantities of water and

for temporary purposes.
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Prob. 184. The diameter of the pump cylinder As 8 inches

and that of the suction pipe is 6 inches, while the vertical dis-

tance from the water level to the spout is 23 feet. If.the pump
piston makes 30 upward strokes per minute, each 9 inches long,

what horse-power is required to operate the pump if its efficiency

is 45 percent ?

ART. 185. THE FORCE PUMP

A force pump is one that has a solid piston which can

transmit to the water the pressure exerted by the piston rod

and thus cause it to rise in a pipe. The early force pumps
had little or no suction lift, as the pump cylinder was
immersed in the body of water which furnished the supply,

but the modern forms usually

operate both by suction and

pressure, the former occur-

ring in a suction pipe and the

latter in the pump cylinder.

Fig. 185a shows the princi-

ple of action of the common
vertical single-acting suction

and force pump in which

there is no water above the

piston. In the left-hand dia-

gram the piston is ascending,

and the water is rising in the

suction pipe BD under the
FIG. I85a upward atmospheric pres-

sure
;
this ascent of the water occurs in exactly the same

manner as explained in Art. 184, and after several strokes

its level rises above the suction valve B. The right-hand

diagram shows the piston descending and forcing the water

up the discharge pipe CE. At C, where this pipe joins the

pump cylinder, is a check valve which closes on the upward
stroke and thus prevents the water in CE from returning

into the pump cylinder, while it opens on the downward

stroke under the pressure of the water.

B
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Let A be the area of the cross-section of the pump
cylinder and / the length of the stroke of the piston. Then
at each upward stroke a volume of water equal to Al is

raised through the suction pipe and in each downward
stroke the same volume is raised in the discharge pipe.

If h be the total lift above the water level D and w the

weight of a cubic unit of water, the work done in each

double stroke is wAlh. If there be made N double strokes

per minute, the useful work per minute is NwAlh. When
all dimensions are in feet, the horse-power required to do

this useful work is found by dividing this quantity by
33 ooo, and the actual horse-power required to run the

pump is greater than this by the amount needed to over-

come the ffictional resistances. This additional power will

depend upon the length of the suction and discharge pipes,

the speed at which the pump is operated, the friction along
the sides of the piston, the losses of head in the passage
of the water through the valve openings, and the losses of

energy due to putting the water into motion at each stroke.

The efficiency of single-acting suction and lift pumps hence

varies between wide limits, 90 percent or more being ob-

tained only for very low speeds and lifts, while for high

speeds and lifts it may be 20 percent or less.

FIG. 1856 FIG. 185<;

The cylinder of the single-acting pump may be placed

horizontal, as seen in Fig. 1856, where BD is the suction

piston and CE the discharge pipe. When the piston moves
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toward the left, the suction valve B opens and the check

valve C closes; when it moves toward the right, B closes

and C opens. The discharge is intermittent, as in the

previous case, but the horizontal position of the piston
sometimes renders the connection of the piston rod to the

motor more convenient. If the height of the suction lift

be equal to that of the discharge lift, the force required to

move the piston will be the same in each stroke and the

pump will work with less shock than where the two lifts

are unequal. Usually, however, the height of the dis-

charge lift is greater than that of the suction lift and the

force required to move the piston is then the greatest when
it moves from left to right in Fig. 1856. In order to equalize

the forces exerted by the motor the duplex pump was de-

vised; this consists of two single-acting cylinders placed
side by side and connected to the same suction and dis-

charge pipe, the pistons moving so that one exerts suction

while the other is forcing the water upward. Three single-

acting cylinders are also sometimes connected with the

same suction and discharge pipe, in which case it is called

the triplex pump. Duplex and triplex pumps give a

continuous flow of water in both the suction and discharge

pipes and thus diminish the shocks that occur in a pump
with one cylinder, while the efficiency is materially in-

creased because the losses due to starting and stopping
the columns of water are in large part avoided.

A double-acting pump is one having a single cylinder
in which a solid piston or plunger exerts suction and pres-

sure in both strokes and thus gives a nearly continuous

flow through suction and discharge pipes. Fig. 185d shows

the form known as the piston pump, while Fig. 185e is

that called the plunger pump, the piston being replaced

by a long cylinder moving in a short stuffing box AA. In

both figures D is the suction pipe and E the discharge pipe.

When the piston moves from left to right, the valves B
L

and C2 open, while B2 and Cl close; when it moves in the
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opposite direction B2 and C1 open, while B
1 and C2 close.

The plunger pump was invented in the seventeenth cen-

tury, and its advantages over the piston type are so

great that it is now extensively used for large pumping
machinery. The cylinder of the piston pump must be

bored to an exact and uniform size and its piston must be

FIG. 185d

carefully packed, while in the plunger pump only the short

length of the stuffing box is bored and packed, the plunger
itself having no packing. The water lifted in one stroke

of either pump is Al, where A is the area of the piston and
/ the length of its stroke, provided there is no leakage past
the packing.

For all these forms of pumps a foot valve should be

placed in the suction pipe, if the suction lift exceeds 20

feet, in order that the pump may be readily primed (Art.

184). To reduce the shocks that occur to a certain extent

even in the double-acting pumps, an air chamber is fre-

quently attached to the discharge pipe so that the con-

fined air may distribute and lessen the shock that would

otherwise be concentrated on the end of the discharge pipe.

Fig. 185c shows such an air chamber attached to a single-

acting pump ;
in the upper part of it is seen the compressed

air which is receiving the pressure from the piston. After

the check valve C closes the pressure of this air maintains

the flow up the discharge pipe E and hence the air chamber
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helps to avoid the losses due to intermittent flow. A
duplex pump or a double-acting pump, when provided
with an air chamber of proper size, will work very smoothly.

Prob. 185. Consult Ewbanks' Hydraulics and Mechanics

(New York, 1847) and describe a method of raising water through
a low lift by means of a frictionless plunger pump. Ewbank
notes that a stout young man weighing 134 pounds raised 8J

cubic feet per minute with this machine to a height of 1 1 J feet

and worked at this rate nine hours per day. If the efficiency of

this pump was unity, what horse-power did the stout young man
exert? Was his performance high or low?

ART. 186. LOSSES IN THE FORCE PUMP

A reliable numerical computation of the hydraulic

losses of energy in the force pump cannot be made without

knowing the constants to use in finding the losses of head

due to the valves (Art. 88), and these have been experi-

mentally determined for only a few special forms. The

valves shown in most of the figures of the preceding articles

are simple flap valves, but puppet valves are more gen-

erally used, and Fig. 185^ indicates such. In passing

through a valve the water loses energy in friction, and also

in impact due to the subsequent expansion. Since pumps are

made in numerous forms having different details, general

discussions of losses are difficult to make. The attempt will,

however, be undertaken for the plunger force pump of

Fig. 185^. Let h be the total height through which the

water is lifted by both suction and pressure, and h f be the

sum of all the hydraulic losses of head. Let K be the

energy delivered per second to the piston rod, k' the energy

expended in friction in the stuffing boxes of the piston rod

and plunger, q the discharge per second, and w the weight

of a cubic unit of water. Then



ART. 188 LOSSES IN THE FORCE PUMP 507

and the pump should be so arranged as to make the losses

k' and h f as small as possible. Only the hydraulic losses

will be considered in the following discussion.

By means of the principles of Chapter VII a rough for-

mulation of the elements that make up the lost head h' can

be effected, supposing the flow in the pipes to be steady.
Let /! be the length, d

1 the diameter, and v
l the velocity for

the suction pipe, and /2 ,
d

2 ,
and v2 the same things for the

discharge pipes. Let 2H be the number of valves in the suc-

tion and discharge chambers (Fig. 1850), all being taken of

the same size, and let V denote the velocity of the water

through each valve opening. Let these chambers be so

large that the velocity of the water through them is very
small compared to that in the pipes and valve openings.
Then

g+f^ (186)

gives all the hydraulic losses of head. In the first paren-
thesis m indicates the loss due to entrance at the foot of

the suction pipe (Art. 85), fl^/d^ the friction loss in the suc-

tion pipe (Art. 86), and i the loss due to expansion (Art. 74)

as the water enters the suction chamber B
1
B2 . In the

second parenthesis nm indicates the loss due to the open
valves (Art. 88) and n that due to sudden expansion as the

water enters the- pump cylinder through the suction valves

and the discharge chamber C\C2 through the discharge
valves. The last term gives the loss due to friction in the

discharge pipe. If there is an air chamber on the discharge

pipe another term might be introduced, but as the effect

of the air chamber in reducing water hammer is a beneficial

one, this term need not be used. The starting and stopping
of the piston brings in other losses of energy, but as these

are not hydraulic losses they will not be considered here.

When the pipes are long the losses due to pipe fric-

tion will far exceed those in the pump and are not fni 1 v
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chargeable against it as a machine; hence to consider the

pump alone the lengths l^ and 12 may be made equal to zero,

as also m in the first parenthesis. Then (186) becomes

v 2 V 2

h' = +(nm

in which the first term of the second member gives the loss

of head in entering the suction chamber, and the second

those occurring in entering and leaving the pump cylinder.

This equation appears, at first thought, to indicate that a

suction chamber is not a hydraulic advantage, although it

is known to afford a practical advantage in causing the

valves to operate successfully, as also in permitting ready
access to them. If a be the area of each valve opening, and

a
x that of the suction pipe, then a^ must equal \ndV ,

since

the same quantity of water passes per second through the

suction pipe and" through \n valves. Accordingly the total

loss of head in the pump may be written

na
which clearly shows that this loss decreases as the number of

valves increases. But the number of valves cannot con-

veniently be made greater than four without using the suc-

tion and discharge chambers
;
such chambers may therefore

be made to give a real hydraulic advantage by using 8, 12,

or 1 6 valves- and making the area of each valve opening

sufficiently large.

As a numerical example, take a plunger force pump, like

Fig. 1850, having a piston area A = 0.84 square feet and a

stroke of 1.25 feet, the number of single strokes per minute

being 30. The volume of water lifted per second is hence

30 Xo.82 x i. 25/60 =0.525 cubic feet. Let the diameter of

the suction pipe be 10 inches and the area of its cross-section

a
L
= 0.545 square feet. The mean velocity in the suction

pipe is then 0.5 2 5/0. 5 45 =0.96 feet per second. Let there be

12 valves in the suction chamber, so that n =6, and let the
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area of each valve opening be a = 8 square inches =0.05 5 6

square feet. The velocity through each of the open valves

is then 1^=0.525/3 X 0.05 56 =3. 15 feet per second. As Art.

88 does not give the values of m for puppet valves, it may be

here noted that the experiments of Bach* indicate that

they range from i.i to 2.8, depending upon the height of

valve lift and the width of the seat. Taking 2 as a mean
value of m, the lost head in the pump is

*'
-0.01555(1

+3
xf( ô )')o. 96>- 2 .77 feet.

The useful head h, when the lengths of the suction and dis-

charge pipes are disregarded, is probably about 3 feet, so

that the hydraulic efficiency is e=h/(h + h r

) =0.52. If the

lengths of the vertical suction and discharge pipes be each

20 feet and their diameters be 10 inches, the useful head h

is about 43 feet and from (186) the value of h' is found to

be about 5.8 feet, so that the hydraulic efficiency is about

0.88. The velocity-head v.?/2g which is lost at the top of

the discharge pipe is here only o.oi feet, so that it is unneces-

sary to consider it in determining the efficiency.

This discussion shows that the losses of head in force

pumps may be made very slight by running them at low

speeds in order that the velocity v
l may be small. It shows

that the losses decrease as the areas of the valve openings
and their number are increased. It shows that, for vertical

suction and discharge pipes, the efficiency increases with

the useful lift h, if the velocity in the pipes is the same for

different lifts. These conclusions are verified by experi-

ments, some of which will be noted in the next article.

Since the flow through the valves and pump cylinder is not

quite steady, numerical computations like the above cannot,

however, be expected to give more than rough approximate
results

;
nevertheless such results are useful in indicating the

influence of the resistances upon the efficiency.

* Zeitschrift deutscher Ingenieur Verein, 1886, p. 421.
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Prob. 186. For the above numerical example, compute the

horse-power required to run the pump when the useful lift is

43 feet, assuming that 3 percent of that power is expended in

overcoming friction in the stuffing boxes.

ART. 187. PUMPING ENGINES

The steam engine was invented and perfected through
the desire to devise methods of pumping water better than

those in which the power of men and horses were used.

Worcester in 1633, and Papin in 1695, used the direct pres-

sure of steam upon water in a cylinder, and Savery in 1700
used both such pressure and the partial vacuum caused by
the condensation of the steam. Newcomen in 1705 used

a piston on one side of which steam was applied and con-

densed, the motion of the piston being communicated by a

walking beam to the piston rod of a pump. Watt, about

1775, introduced the crank, the parallel motion, the cut-off,

the governor, and other improvements ;
he also brought the

steam on both sides of the piston, thus making the engine

double-acting. The first important application of the steam

engine was in operating pumps to drain mines, but it soon

came into use in all branches of industry where power was

needed. Its influence on modern progress has been great.

The modern pumping engine consists of one or more

steam cylinders connected to the same number of pump
cylinders by piston rods, so that the steam pressure is directly

transmitted through them to the water. It is important
that the pressure in the water cylinder should be maintained

nearly constant during the length of the stroke and hence

the steam should not be used expansively in the usual way ;

to insure constant steam pressure some form of compensator
is used. The water cylinders are usually of the plunger

type, and these are connected to the same suction and dis-

charge pipes, an air chamber being placed on the latter to

relieve the pump chambers of shock and ensure steady flow..
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The boilers, steam cylinders, and water cylinders constitute

one machine or apparatus called a pumping engine. The

efficiency of this apparatus is low, for it is equal to the

product of the efficiencies of its separate parts. The effi-

ciency of the furnace and boiler is about 75 percent in the

best designs, the efficiency of the steam cylinders about 30

percent, and that of the water cylinders about 80 percent,

so that the efficiency of the pumping engine as a whole is

only 1 8 percent. This means that only 18 percent of the

energy of the fuel is utilized in lifting the water, and this,

figure is, indeed, a high efficiency, for many pumping plants,

are operated with an efficiency of less than 10 percent.

The term
' '

duty
' '

is often employed as a measure of

the performance of a pumping engine, instead of expressing
it by an efficiency percentage. This term was devised by
Watt, who defined duty as the number of foot-pounds of

useful work produced by the consumption of 100 pounds,

of coal. On account of the variable quality of coal a more

precise definition of duty was introduced in 1890 by a com-

mittee of the American Society of Mechanical Engineers,

namely, that duty should be the number of foot-pounds
of work produced by the expenditure of i ooo ooo English
thermal heat units. One English thermal heat unit is that

amount of energy which will raise one pound of pure water

one Fahrenheit degree in temperature when the water is

at or near the temperature of maximum density (Art. 4) ;

this amount of energy is 778 foot-pounds, and this constant

is called the mechanical equivalent of heat. The duty of

a perfect pumping engine, in which no losses of any kind

occur, would be 778 ooo ooo foot-pounds. The highest

duty obtained in a test is about 160 ooo ooo foot-pounds
and the efficiency of such an engine is 160/778=0. 21. Com-
mon pumping engines have duties ranging from 120 ooo ooo

to 60 ooo ooo, the corresponding efficiencies being from 1.5

to 7.5 percent. The modern definition of duty agrees with

that of Watt, if the coal used be of such quality that one



512 PUMPS AND PUMPING CHAP, xvi

pound of it possesses a potential energy of 10 ooo English
heat units, which is somewhat less than that obtain-

able from average coal. The higher the duty of a pumping
engine the greater is the amount of work that can be per-

formed by burning a given quantity of coal. A high-duty

engine is hence economical and a low-duty engine is waste-

ful in coal consumption, but the first cost of the former is

much greater than that of the latter.

A duty test of a pumping engine consists in determining
the number of heat units furnished by a given quantity of

coal, the quantity of water lifted by the pump, the leakage

past the piston packing, the pressure-heads in the suction

and discharge pipes, the indicated horse-power of the

steam cylinders, and many other minor quantities needed

for estimating the efficiency of the boiler and steam part
of the apparatus. The usual method of determining the

discharge is by the displacement of the piston or plunger;
if A be the area of its cross-section, / the length of the stroke,

N the number of single strokes during the test, and T the

number of seconds during which the test lasted, then NAl
is the total quantity of water lifted, and

q=cNAl/T
is the quantity lifted per second, c being a coefficient which

takes account of the leakage or slip past the plunger. The
value of c is to be found by removing one of the cylinder
heads and admitting water on the other side of the plunger,

and its value is usually from 0.99 to 0.95 in new pumps.
The total pressure-head H is found from

where h and h 2 are the pressure-heads corresponding to the

mean readings of the gages on the suction and discharge

pipes and d the vertical distance between the centers of

the gages ;
here the plus sign is to be used when the corre-

sponding pressure is below and the minus sign when it is

above that of the atmosphere. The total work done by
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the pump during the trial is then cNAl.H and then the

duty of the pumping engine

Duty = i ooo ooocNAlH/heat units.

in which the denominator is determined by the thermo-

dynamic tests made on the boiler and steam engine. The

capacity of the pump, or the quantity of water lifted in

24 hours, is 24X3600X9.

The efficiency of pump cylinders, which are tested in

the above manner, is usually found by dividing the work

wqH done by them in one second by that done by the steam

as determined by indicator cards taken from the steam

cylinders. This method differs from that used in the

previous articles, and gives results too small from the

standpoint of hydraulic losses. A discussion by Webber *

of several tests shows that this efficiency increases with

the lift as follows :

Lift in feet, 5 15 30 100 170 270

Efficiency, 0.30 0.45 0.65 0.85 0.91 0.88

The highest value of 91 percent was obtained from a test

of a Leavitt pumping engine having a duty of in 549 ooo

foot-pounds and a capacity of 4 400 ooo gallons per 24

hours
;
the duration of this test was 15.1 hours.

Prob. 187a. Using coal of the standard quality, show that

100 pounds burned in one hour produces 75.8 horse-powers with

a 150 ooo ooo-duty pumping engine.

Prob. 1876. In a test lasting 12 hours, 27 502 ooo heat units

were produced under the boiler. The area of the plunger was

172 square inches, the length of the stroke was 18.9 inches, the

number of single strokes was 76 ooo, and the leakage past the

plunger packing was 5900 cubic feet. The pressure gage on

the force pipe read i oo and the vacuum gage on the suction pipe
read 9.3 pounds per square inch, the distance between the cen-

ters of these gages being 8 feet. The mean indicated horse-

power of the steam cylinders was 128. Compute the discharge

* Transactions American Society of Mechanical Engineers, 1886, vol.

7, p. 602.
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of the pump in cubic feet per second and its capacity in gallons

per day. Compute the total pressure-head H. Compute the

duty of the pumping engine. Compute the efficiency of the

pump cylinders.

ART. 188. THE CENTRIFUGAL PUMP

The centrifugal pump is the reverse of a turbine wheel

and any reaction turbine, when run backwards by power

applied to its axle, will raise water through its penstock.

The centrifugal pump, like the turbine, is of modern origin

and development. A rude form, devised by Ledemour in

1730, consisted of an inclined tube attached by arms to a

vertical shaft; the lower end of the tube being immersed,

the water flowed from its upper end when the shaft was

rotated. It was not, however, until about 1840 that the

first true centrifugal pumps came into use, and they have

since been perfected so as to be of great value in engineering

operations, especially for low lifts.

Fig. 188 shows the principle of the arrangement and

action of the centrifugal pump. The power is applied

through the axis A
to rotate the wheel

BB in the direction

indicated by the ar-

row. This wheel is

formed of a number
of curved vanes like

those in a turbine

wheel (Art. 165).

The revolving vanes

produce a partial

FIG. 188 vacuum and this

causes the water to rise in the suction pipe DD which enters

through the center of the wheel case and delivers the water

at the axis of the wheel. The water is then forced outward

through the vanes and passes into the volute chamber CC
t

*
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which is of varying cross-section in order to accommodate
the increasing quantity of water that is delivered into it

and all of which passes up the discharge pipe E. The rota-

tion of the wheel hence produces a negative pressure at

the upper end of the suction pipe and a positive pressure

in the volute chamber, and the water rises in the pipes
in the same manner as in those of a suction and force

pump. The height of the suction lift cannot usually ex-

ceed about 28 feet.

The parallelograms of velocity shown in Fig. 188 are

the same as in the reaction turbine (Art. 165) and a similar

notation will be used. The velocities of rotation of the

inner and outer circumferences will be called u and u
lt the

absolute velocities of the water as it enters and leaves the

wheel are V Q and v lt and the corresponding relative velocities

are V and Vlt
The angles of entrance, approach, and exit

are called a, <, and
/2,

while 6 denotes the angle between

v
l and u r Let H be the pressure-head at' the top of the

entrance pipe and Hl that at the foot of the discharge pipe,

while h and h^ are the heights of the suction and force lifts

estimated downward and upward from the center of the

wheel, and let ha be the height of the water barometer.

Then from (153)

and also from (32) 2 ,
not considering ffictional resistances,

.

Combining these equations, and replacing h^ + h^ by h,

where h is the total lift, the fundamental equation for the

discussion of frictionless centrifugal pumps results. To
introduce the ffictional losses, however, h + h' should be
used instead of h, where h' is the total head lost in all the

liydraulic resistances. Then
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is the formula applicable to actual cases. If q be the dis-

charge per second and w the weight of a cubic unit of water,

the work of the pump per second, not including axle friction,

A centrifugal pump, like a reaction turbine, must be run

at a certain speed in order to give the maximum efficiency,

and this is now to be determined. In the first place, it must

be noted that the water enters the vanes radially, since

there are no guides ;
hence the entrance angle a must be

90, and accordingly V2 =u2 +vQ
2

. Secondly, the parallel-

ogram of velocities at exit gives V^ = u
1

2 + v l

* 2U
i
v

l cos 0.

Introducing these conditions into (188) ,
it reduces to

UM cosd=g(h + h') (188),

Now, in order that the water may enter the volute chamber

with as little loss in impact as possible, the velocity v
t cos#

should be the same as that in the volute chamber and the

latter should be the same as that in the discharge pipe. Let

q be the discharge per second and a the area of the cross-

section of that pipe, then vt cos# should equal q/a t
and con-

sequently

is the advantageous velocity of the outer circumference of

the wheel. For a given discharge q the advantageous speed
of the centrifugal pump increases directly as the total pres-

sure-head h + h'; for a given head h + h f the speed varies in-

versely as the discharge q.

Since the speed must increase with the lift, and since the

losses of head increase with the speed, it follows that the effi-

ciency of the centrifugal pump in general decreases with the

lift. This theoretic conclusion has been verified by prac-

tical tests. Webber, in his discussion cited in the last article,

gives the following as the mean results derived from a num-
ber of experiments, the efficiency computed being the ratio

of the work done by the pump to that obtained from indi-

cator cards taken on the cylinders of the steam motor :
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Lift in feet, 5 10 20 40 60

Efficiency, 0.56 0.64 0.68 0.58 0.40

For a low lift the centrifugal pump has a hydraulic efficiency

higher than these figures indicate, but, as in the case of the

force pump, it is difficult to determine reliable values by
numerical computations.

The centrifugal pump possesses an advantage over the

force pump in having no valves and in being able to handle

muddy water, for even gravel may pass through the vanes

without injuring them. The above figure represents the

principle rather than the actual details of construction.

Usually the suction pipe is divided into two parts which

enter the axis upon opposite sides of the wheel, and the

volute chamber is often made wider than the wheel case,

thus forming what is called a whirlpool chamber, which pre-

vents some of the losses of head due to impact. The vanes

are sometimes curved in the opposite direction to that shown
in the figure, as by so doing the angle 6 is made smaller and
the speed of the pump is lessened, as is seen from formula

(188) 2- The theory of the centrifugal pump is, however,
much less definite than that of the reaction turbine, and

experiment is the best guide to determine the advantageous

shape of the vanes.

Prob. 188. A centrifugal pump lifts 120 cubic feet of water

per minute through a discharge pipe having a diameter of i

foot. The outer diameter of the wheel is 2 feet and the num-
ber of revolutions per second is 60. If the height through
which the water is lifted is 20 feet, show that the hydraulic

efficiency is about 67 percent.

ART. 189. THE HYDRAULIC RAM

The hydraulic ram is an apparatus which employs the

dynamic pressure produced by stopping a column of moving
water to raise a part of this water to a higher level than that

of its source. The principle of its action was recognized by
Whitehurst in 1772,* but the credit of perfecting the ma-

* Transactions Royal Society, 1775, vol. 65, p. 277.
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chine is due to Montgolfier, who in 1796 built the first self-

acting ram. It has since been widely used for pumping
small quantities of water from streams to houses, but is not

so well adapted to lifting a large quantity; many attempts
have been made in this direction, some of which give promise,

of much usefulness.

The principle of the action of the hydraulic ram is shown

in Fig. 189, where A is the reservoir that furnishes the supply,

FIG. 189

BCD the ram, AB the drive pipe which carries the water to

the ram, DE the discharge pipe through which a part of the

water is raised to the tank E. The ram itself consists

merely of the waste valve B through which a part of the

water from the drive pipe escapes, and the air vessel D
which has a valve C that allows water to enter it through

BC, but prevents its return. The waste valve B is either

weighted or arranged with a spring so that it will open when
acted upon by the static pressure due to the head H. As

soon as it opens the water flows through it, but as the velocity

increases the dynamic pressure due to the motion of the

column AB (Art. 148) becomes sufficiently great to close

the valve B. Then this dynamic pressure opens the valve

C and compresses the air in the air chamber or forces water

up the discharge pipe. A moment later when equilibrium
has obtained in the air vessel the valve C closes and the air

pressure maintains the flow for a short period in the discharge

pipe while the water in the drive pipe comes to rest. Then

the waste valve B opens again and the same operations are

repeated.
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The algebraic discussion of the hydraulic ram is very dif-

ficult because it involves the time in which the waste valve

closes and the law of its rate of closing. The investigation
in Art. 148, however, clearly shows that the operations
above described will take place if the drive pipe is long

enough to produce a dynamic pressure sufficient to close

the waste valve. Let / be the length of that pipe, v the

velocity in it, p the static unit --pressure due to H, w the

weight of a cubic unit of water, g the acceleration of gravity,

and t the time in which the valve closes. Then, since there

is no static pressure at the valve during the flow, (148)j gives

p = 2Wlv/gt-p Q

which is a good approximation to the excess of dynamic
pressure over the static pressure p . It is seen that this ex-

cess p may be rendered very great by making / large and t

small, and that its greatest value is

p=wuv/g-pQ

in which u is the velocity of sound in water. It is rare, how-

ever, that a drive pipe is sufficiently long to furnish the ex-

cess dynamic pressure given by the last formula.

The efficiency of the hydraulic ram is the ratio of the

useful work done to the energy expended in the waste water.

Let q be the quantity of water lifted per second through the

height h from the level of the reservoir A to that of the tank

E. Let Q be the discharge per second through the waste

valve and H the height through which it falls, then the effi-

ciency of the ram and its pipes is

wqh qh
<i/ii/~) LJ /") T T

UU\)L~L \J r~L

It is found by experiment that the efficiency decreases as

the ratio h/H increases. Eytelwein found that e was 0.92

when h/H was unity, 0.67 when h/H was 5, and 0.23 when

h/H was 20, but these values were probably derived by

using a different formula for the efficiency.
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Experiments in 1890 at Lehigh University on a Gould

ram No. 2, in which the waste valve made 55 strokes per

minute, gave a mean efficiency of 35 percent. The length

of the supply pipe was 38 feet and its fall 12 feet, the length

of the discharge pipe 60 feet, and the lift h was 12 feet, so

that the ratio h/H was unity. These experiments showed

also that the efficiency increased as the number of strokes

per minute was decreased by lessening the weight on the

waste valve. The maximum quantity of water raised per

minute, however, occurred with a heavier waste valve than

that which gave the maximum efficiency. The efficiency

was also found to increase as the length of the stroke of the

waste valve decreased.

The least possible fall in the drive pipe of the hydraulic
ram is about i J feet and the least length of drive pipe about

1 5 feet. It is customary to make the area of the discharge

pipe from one-third to one-fourth that of the drive pipe,

and with these proportions a fall of 10 feet will force water

to a height of nearly 150 feet. A common rule of manufac-

turers is that about one-seventh of the water flowing down
the drive pipe may be raised to a height five times that of

the fall in the drive pipe ;
this is a rough rule only, for the

length of the discharge pipe is one of the controlling factors

as well as its vertical rise.

The Rife hydraulic engine is a water ram on a large scale,

two or more being connected to the same discharge pipe so

that the flow in it is continuous.* Three of these engines are

said to raise 864 ooo gallons of water per day to an elevation

of 150 feet, the fall in the drive pipe being 30 feet. The
diameter of the drive pipe is 8 inches and that of the dis-

charge pipe is 4 inches; the waste valve weighs 50 pounds
and it is provided with an adjusting lever in order that its

effective weight may be regulated so as to cause the maxi-

mum discharge to be delivered.

*
Engineering News, 1896, vol. 36, p. 429.
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Prob. 189a. The supply of air in the air chamber D is main-

tained by having a small hole in the pipe near B. Explain the

phenomena and the reasons thereof.

Prob. 1896. A hydraulic ram raises 32^ pounds of water in

5 minutes through a discharge pipe 60 feet long. The drive pipe
is 38 feet long and the amount of water wasted in 5 minutes is

41 \ pounds. The fall of the drive pipe is 12 feet and the vertical

rise of the discharge pipe above the ram is 24 feet. Compute
the efficiency of the ram.

ART. 190. OTHER KINDS OF PUMPS

The lift and force pumps described in Arts. 184 and 185

are called displacement pumps, because the volume of water

lifted in one stroke is that displaced by the piston or plunger.

If there be no leakage past the piston packing, and if no air

is mingled with the water, the discharge in a given time

may be very accurately determined by counting the number
of strokes and multiplying this number by the displacement
in one stroke. On account of the reciprocating motion of

the piston these forms are often called reciprocating pumps.
There is always a loss of energy due to putting the piston

into motion at the beginning of each, stroke, and to avoid

this many forms of rotary pumps have been devised, yet

notwithstanding this loss the plunger force pump is probably
the most efficient and economical of all kinds.

A rotary or impeller pump is one in which the moving

parts have a circular motion only, and the centrifugal pump
described in Art. 188 is of this kind. Numerous other

rotary pumps have been invented but none is widely used

except the centrifugal one. Fig. 190a shows one where

the moving parts consist of two wheels which are rotated

in opposite directions as indicated by the arrows; this

motion produces a partial vacuum whereby the water rises

in the suction pipe D, and is then carried between the teeth

and the case and forced up the discharge pipe E. Fig. 1906

shows a form where the moving parts are two lobes or
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impellers so shaped that they are always in contact with
each other and each in contact with the enclosing case. In

the left-hand diagram the water rising in the 'pipe D is

FIG. 190a FIG. 1906

flowing toward the right, but a moment later the lobe B
has assumed the position shown in the right-hand diagram
and the water is imprisoned between the lobe and the case.

An instant later the two lobes are forcing this water up
the pipe E while the water coming in at D is flowing to the

left. The greatest objection to these pumps is that it is

difficult to maintain close contact between the case and
the lobes or wheels, owing to wear, so that after being in

use for some time there is much back leakage of water and
the capacity and efficiency of the pump are diminished. The

only apparent advantage of the rotary pump is that it

has no valves. Five rotary pumps of the type of Fig. 1906

were installed in 1902 at a pumping station near Chicago,
the lobes or impellers being 4 feet long and the distance

between their centers 2.7 feet; these pumps run at 100

revolutions per minute and each has a capacity of 6000 cubic

feet per minute under the total lift of about 8 feet.*

The pumps thus far described, with the exception of

the hydraulic ram, maybe called mechanical pumps, because

they act under energy communicated to them from motors.

All mechanical pumps are reversible, that is, when the

*
Engineering News, 1903, vol. 49, p. 172.
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water moves in the opposite direction under a pressure-

head they become hydraulic motors. The reverse of the

chain and bucket pump is the overshot or breast wheel,

that of the suction and lift pump is the water-pressure

engine, and that of the centrifugal pump is the turbine.

The hydraulic ram does not operate under the action of a

motor, and it does not appear to be reversible.

Pumps which have no moving parts and which operate

through the action of air suction and dynamic pressure
constitute another class which will now be briefly con-

sidered. Here belong the jet or injector pumps which act

largely through suction, and the injector pump used on

locomotives. The latter pro-
duces a vacuum through the

flow of steam, and cannot be dis-

cussed here, as it involves prin-

ciples of thermodynamics. The
fundamental principle, however,
is indicated in Fig. 190c, which

shows the jet apparatus in-

vented by James Thomson in FlG - 190c

1850.* The water to be lifted is at C, and it rises by suction

to the chamberJ?, from which it passes through the discharge

pipe to the tank D. The forces of suction and pressure are

produced by a jet of water issuing from a nozzle at the

mouth of the discharge pipe, the nozzle being at the end

of a pipe AB through which water is brought from a reser-

voir
;
or the water delivered from the nozzle may come from

a hydrant or from a force pump. Let H be the effective

head of the jet as it issues from the nozzle, h the suction

lift, and h2 the lift above the tip of the nozzle
;

let q be the

discharge through the nozzle and ql that through the suction

pipe. Then, neglecting frictional resistances,

.rJ

* Report of British Association, 1852, p. 130.
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and the efficiency of the apparatus is

e=q1 (h l +h 2)/qH

It is found by experiments that the efficiency of this jet

pump is very low, usually not exceeding 20 percent, the

highest efficiencies being for low ratios of h
t -f h2 to H . This

form of pump has, however, been found very convenient

in keeping coffer dams and sewer trenches free from water,

as it requires little or no attention and has no moving parts

to get out of order.

Another class of pumps uses the pressure of air or of

steam in order to elevate water. The idea of these pumps
is old, yet it was not until 1875 that the steam pulsometer
was perfected by Hall, while the air-lift pump of Frizell

dates from 1880. The air-lift pump is now extensively

used for raising water from deep wells, the compressed air

being forced down a vertical pipe in the well tube and

issuing from its lower end. As it issues, bubbles are formed

in the entire column of water in the well tube, and being

lighter than a column of common water, it rises to a greater

height under the atmospheric pressure, assisted by the

upward impulse of the bubbles to a slight extent. In this

manner water having a natural level 50 feet or more below

the surface of the ground may be caused to rise above that

surface. It has been found in practice that for lifts of 15

to 50 feet from 2 to 3 cubic feet of air are necessary for

each cubic foot of water that is elevated. The efficiency

of this form of pump is low, rarely reaching 30 percent,

although a maximum of 50 percent has been claimed.*

Among the many forms of pumps operating under the

pressure of compressed air only the ejector pump used in

the Shone system of sewerage can here be mentioned. The

sewage from a number of houses flows to a closed basin,

called an injector, in which it continues to accumulate until

a valve is opened by a float. The opening of this valve

allows compressed air to enter and this drives out the sew-
*
Journal of Association of Engineering Societies, 1900, vol. 25, p. 173.
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age through a discharge pipe to the place where it is desired

to deliver it. 'In the installation of this system of sewerage
at the World's Fair of 1893 in Chicago, there were 26

ejectors which lifted the sewage 67 feet, the total pressure-

head being about 108 feet. Vacuum methods of moving
sewage have also been used in Europe, but these cannot

compete in efficiency with those using compressed air.

Prob. 190. For Fig. 190^ let the diameter of the nozzle be

i inch and that of the discharge pipe 4 inches. Let H be 64

feet, h^ be 1 8 feet, h.
2 be 3 feet, and the discharge from the nozzle

be 0.25 cubic feet per second. Compute the greatest quantity
of water that can be lifted per second through the suction pipe,

and the efficiency of the apparatus when doing this work.

ART. 191. PUMPING THROUGH PIPES

When water is pumped through a pipe from a lower to a

higher level, the power of the pump must be sufficient not

only to raise the required amount in a given time, but also

to overcome the various resistances to flow. The head due

to the resistances is thus a direct source of loss, and it is

desirable that the pipe be so arranged as to render this as

small as possible. The length of the pipe is always much

greater than the vertical lift, so that the losses of head in

friction are materially higher than those indicated by the

discussion of Art. 186, where vertical pipes were alone con-

sidered.

Let w be the weight of a cubic foot of water and q the

quantity raised per second through the height h, which, for

example, may be the dif-

ference in level between

a canal C and a reservoir

R, as in Fig. 19 la. The

useful work done by the

pump in each second is

wqh. Let h' be the head

lost in entering the pipe at the canal, h" that lost in friction
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in the pipe, and h'" all other losses of head, such as those

caused by curves, valves, and by resistances in passing

through the pump cylinders. Then the total work per-

formed by the pump per second is

k =wqh + wq(h'+h"+h"') (191),

Inserting the values of the lost heads from Arts. 85-88, this

expression takes the form

in which v is the velocity in the pipe, / its length, and d its

diameter. In order, therefore, that the losses of work may
be as small as possible, the velocity of flow through the pipe
should be low; and this is to be effected by making the

diameter of the pipe large. The size of the pipe is here re-

garded as uniform from the canal to the reservoir; in prac-

tice the suction pipe is usually larger in diameter than the

discharge pipe, in order that the suction valves may receive

an ample supply of water.

For example, let it be required to determine the horse-

power of a pump to raise i 200 ooo gallons per day through
a height of 230 feet when the diameter of the pipe is 6 inches.

and its length 1400 feet. The discharge per second is

i 200 ooo
q = -

5 7 = 1.86 cubic feet,
7.481

and the velocity in the pipe is

1.86

oT2 =9 '47

The probable head lost in entering the pipe is, by Art. 85,

v 2

h f

=0.5 =0.5 Xi-39 =0.7 feet.

When the pipe is new and clean the friction factor / is about
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0.020, as shown by Table 33; then the loss of head in fric-

tion in the pipe is, by Art. 86,

/*"= 0.020 X X 1.39 =77.8 feet.

The other losses of head depend upon the details of the pump
cylinder and the valves; if these be such that ^, = 4, then

#"=4X1.39 =5.6 feet.

The total losses of head hence are

# + #" + #"=84.1 feet.

The work to be performed per second by the pump now is

=62.5 XL86(230 + 84.1) =36 510 foot-pounds,

and the horse-power to be expended is 36 510/550=66. 4.

If there were no losses in friction and other resistances the

work to be done would be simply

k =62.5 Xi.86 X23O = 26 740 foot-pounds,

and the corresponding horse-power would be 26 740/550 =
48.6. Hence 17.8 horse-power is wasted in injurious resist-

ances, or the efficiency of the plant is only 73 percent.

For the same data let the 6-inch pipe be replaced by one

14 inches in diameter. Then, proceeding as before, the

velocity of flow is found to be 1.74 feet per second, the head
lost at entrance 0.03 feet, the head lost in friction 1.13 feet,

and that lost in other ways 0.19 feet. The total losses of

head are thus only 1.35 feet, as against 84.1 feet for the

smaller pipe, and the horse-power required is 48.9, which is

but little greater than the theoretic power. The great ad-

vantage of the larger pipe is thus apparent, and by increasing
its size to 1 8 inches the losses of head may be reduced so low

as to be scarcely appreciable in comparison with the useful

head of 230 feet.
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A pump is often used to force water directly through the

mains of a water-supply system under a designated pressure.

The work of the pump in this

case consists of that required

to maintain the pressure and

that required to overcome the

frictional resistances. Let h
t

be the pressure-head to be

maintained at the end of the

main, and z the height of the

FIG. 1916 main above the level of the

river from which the water is pumped; then h^ + z is the

head H, which corresponds to the useful work of the pump,

and, as before,

To reduce the injurious heads to the smallest limits the

mains should be large in order that the velocity of flow may
be small. In Fig. 1916 is shown a symbolic representation

of the case of pumping into a main, P being the pump, C
the source of supply, and DM the pressure-head which is

maintained upon the end of the pipe during the flow. At

the pump the pressure-head is AP, so that AD represents

the hydraulic gradient for the pipe from P to M. The total

work of the pump may then be regarded as expended in

lifting the water from C to A, and this consists of three parts

corresponding to the heads CM or z, MD or h
lt and AB or

h' + h" + h'", the first overcoming the force of gravity, the sec-

ond maintaining the discharge under the required pressure,

while the last is transformed into heat in overcoming fric-

tion and other resistances. In this direct method of water

supply a standpipe, AP, is often erected near the pump, in

which the water rises to a height corresponding to the re-

quired pressure, and which furnishes a supply when a tem-

porary stoppage of the pumping engine occurs. This stand-

pipe also relieves the pump to some extent from the shock

of water hammer (Art. 148).
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Prob. 191. Compute the horse-power of a pump for the fol-

lowing data, neglecting all resistances except those due to pipe
friction: # = 1.5 cubic feet per second, which is distributed uni-

formly over a length Z
t
= 3000 feet (Art. 99), the remaining length

of the pipe being 4290 feet; d=io inches, ^ = 75.8 feet, and
2=10.6 feet.

ART. 192. PUMPING THROUGH HOSE

In Art. 102 the flow of water through fire hose was

briefly treated and the friction factors given for different

kinds of hose linings. It was shown that the loss of head

in a long hose line becomes so great, even tinder moderate

velocities, as to consume a large proportion of the pressure

exerted by the hydrant or steamer. As another example,
let the pressure in the pump of the fire engine be 1 2 2 pounds

per square inch, corresponding to a head of 281 feet, and let

it be required to find the pressure-head in 2^-inch rough
rubber-lined cotton hose at 1000 feet distance, when a noz-

zle is used which discharges 153 gallons per minute, the hose

being laid horizontal. The discharge is 0.341 cubic feet pet-

second, which gives a velocity of 10.0 feet per second in the

hose. Hence by (86) the loss of head in friction is 231 feet,

so that the pressure-head at the nozzle, entrance is only 50

feet, which corresponds to about 22 pounds per square inch.

The remedy for this great reduction of pressure is to employ
a smaller nozzle, thus decreasing the discharge and the ve-

locity in the hose
;
but if both head and discharge are desired

they may be obtained either by an increase of pressure at

the steamer or by the use of a larger hose.

Another method of securing both high velocity-head and

quantity of water is by the use of siamesed hose lines, and
this is generally used when large fires occur. This method
consists in having several lines of hose, generally four, lead

from the steamer to a so-called Siamese connection, from

which a short single line of hose leads to the nozzle. In Fig.

192 the pump or fire steamer is represented by A, the
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Siamese joint by B, the nozzle entrance by C, and the nozzle

tip by D. From A let n lines of hose, each having the

length /! and the diameter d
lt lead to B

;
and from B let there

be a single line of length /2 and diameter d2 leading to the

nozzle which has the diameter D. The hydraulic gradient

(Art. 95) is shown by abcD, the pressure-heads at A, B, C

*i """*;. i \

i
-^B G D

FIG. 192

being represented by Aa, Bb, Cc. Let h be the pressure-

head on the nozzle tip or the difference of the elevations of

the points a and D. It is required to deduce a formula

for the velocity at the nozzle tip and to determine the pres-

sure-heads at B and C.

This case is one of diversions, already treated in Art.

100, and the sam'e principles may be applied to its solution.

Neglecting losses in entrance, in curvature, and in the

Siamese joint, the total head h is expended in friction in the

hose lines and in the nozzle, or

a
x 2g d2 2g c

l 2g

in which vt and v2 are the, velocities in the lines l
l and 12> and

V is that from the nozzle, while c
1
is the coefficient of ve-

locity of the nozzle (Art. 80). The first term of the second

member is the head lost between A and B, and the alge-

braic expression for this is independent of the number of

hose lines between those points; the velocity v
1
in these

hose lines depends, indeed, upon their number, but the

hydraulic gradient ab is the same for each and all of them.

The law of continuity of flow (Art. 32) gives, however,

nd1

2vi
=d2

2v2 =D 2V

and, taking from these the values of vl and v2 in terms of V
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and inserting them in the expression for h, there results

d,d
(192)

from which the velocity V and the velocity-head V2

/2g
can be computed, while the discharge is given by q = \KD*V.
The pressure-head h 2 at the nozzle entrance and the pressure-

head h^ at the Siamese joint may then be found from

and, as a check, the latter should equal h minus the drop of

the hydraulic gradient between a and b.

This discussion shows that, by increasing the number n,

the loss of head between A and B may be made very small,

the effect being practically the same as that of moving the

steamer to B and using but a single hose line /2 . As a nu-

merical example, let h = 230.4 feet, /x
= 500 feet, 12 =60 feet,

^i =d2
=

2.5 inches, D = i inch, and c
1 =0.975. Then, taking

/ as 0.03, the computed results for different values of n are

as follows, V being in feet per second, V2

/2g in feet, and q

n= 12346 oo

V=68.9 92.2 99.8 10.3 105 107

t/2/2g = 73-7 i3 2 !55 165 173 180

2=169 226 244 252 258 263

in gallons per minute. It is seen that for four lines the veloc-

ity-head is more than double that for a single line and that

the discharge is 50 percent greater. With more than four

lines the velocity-head and discharge increase slowly, and

for n = oo they are practically the same as for n = 10. The

number of hose lines generally used is four, since the slight

advantage of more lines is not sufficient to warrant their use.

Many other interesting problems relating to hose lines

may be solved by using the same principles. If there be

four lines of hose between the pump and the Siamese joint,
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three having the diameter d
1 and one having the diameter

d, it can be shown that the formula (192) applies, provided
n be replaced by 3 + (d/d$* For instance, if d be 3 inches

and d be 2\ inches, this makes n 2 about 19. In deducing
this expression for n it is assumed that the friction factors

are the same for both sizes of hose, although in strictness

the smaller hose has the higher value of /.

Another case is where two of the hose lines between A
and B have the diameter d

l and the length /t ,
while the two

other lines are of the length l + ly the length / having the

diameter d and the length Z3 the diameter d3 . Here the

principles regarding compound pipes (Art. 96) are also to

be regarded, and it will be found that formula (192) applies

likewise to this case, if n be computed from

in which e represents f(l/d), while e
1 and e3 represent

and fa (la/dB) respectively. For instance, if /
t
= 100, 13

= ioo>

and / = 5o feet, while d
1
=da

= 2$ inches and d = $ inches,

then the value of n 2
is about 21, so that this arrangement

is more effective than that of the preceding paragraph.

In the deduction of the above formulas losses of head

at entrance and in the Siamese joint have not been regarded,
and it is unnecessary to consider these when the hose lines

are long. For lines less than 100 feet in length the losses

of head at entrance may be taken into account by adding
the term o.^(D/d 1)

2

/n
2 to the denominator of (192). The

loss of head due to the Siamese joint may, in the absence

of experimental data, be approximately accounted for by
adding about 0.02 to that denominator, thus considering
its influence about one-half that of the nozzle. In a case

like that of the last paragraph, where the length / in two
of the hose lines is nearest the pumps, the values of e and e

t

may be increased by 0.5 in order to introduce the influence

of the entrance heads. Errors of 5 percent or more are
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liable to occur in computations on pumping through short

hose lines.

Prob. 192a. Three hose lines run from a pump to a Siamese

connection, each being 500 feet long and 2^ inches in diameter,
and from the Siamese one line 50 feet long and 2\ inches in diam-

eter leads to a i -J-inch nozzle having a velocity coefficient of 0.96.

When the pressure at the pump is 100 pounds per square inch,

what is the discharge from the nozzle and the velocity-head of

the jet? What friction heads are lost in the hose and nozzle?

Prob. 1926. In a fire-engine test made in 1903, the lengths l
t

and 13 were 50 feet, the length / was 12 feet, and /2 was zero, as

the nozzle was attached directly to the Siamese joint. The
diameter d

l
was 3 inches, while d and d

3 were 2 J inches, and D
was 2 inches. The pressure gage on the steamer read 90, while

one on the siamese joint read 63 pounds per square inch. Com-

pute the pressure-head at the siamese joint.

Prob. 192c. What is the efficiency of a bucket pump which
lifts 2000 liters of water per minute through a height of 3.5
meters with an expenditure of 2.5 metric horse-powers?

Prob. 192J. When the height of the mercury barometer is

760 millimeters, water at a temperature of o centigrade is

raised by suction in a perfect vacuum to a height of 10.33 meters

(Art. 184). Under the same atmospheric pressure, how high
can it be raised when the temperature is 32 centigrade?

Prob. 192^. What metric horse-power is required to raise

4 ooo ooo liters per day through a height of 75 meters when the

diameter of the pipe is 20 centimeters and its length 500 meters?

Prob. 192/. The calorie is the metric thermal unit, this being
the energy required to raise one kilogram of water one degree

centigrade when the temperature of the water is near that of

maximum density. How many calories are equivalent to

i ooo ooo English thermal units?



534 APPENDIX ART. 193

APPENDIX

ART. 193. HYDRAULIC-ELECTRIC ANALOGIES

It is well known that there are certain analogies between

the flow of water in pipes and that of the electric current

in wires, and some of these will here be briefly explained

from a hydraulic point of view. The electric analog of a

water pump is the dynamo, both being driven by mechan-

ical power and both transforming it into other forms of

energy. The analog of a water wheel is the electric motor,

each of which delivers mechanical power by virtue of the

energy transmitted to it through the water pipe or electric

wire. While the water is flowing from the pump to the

wheel much of its energy is lost in overcoming frictional

resistances, whereby heat is produced ;
while the electricity

is flowing from the dynamo to the electric motor some of

its energy is lost in overcoming molecular resistances,

whereby heat is produced. The steady flow of water cor-

responds to the continuous flow of electricity in one direc-

tion, or to the direct current, and the following discussion

compares hydraulic phenomena with those of the direct

electric current. The phenomena of the alternating cur-

rent have also certain hydraulic analogies, but these will

not be discussed here.

Let q represent electric current, R the electric resistance

of a wire of length Z, cross-section a, and diameter d, and p
the electromotive force under which the current is pushed

through the wire. Then Ohm's law gives, if s be the specific

resistance of the material of the wire,

(193),
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in which A is a constant depending only on the material of

the wire. This equation shows that the electric pressure

p varies directly with the length of the wire, inversely as

the square of its diameter, and directly as the current. By
increasing the length of the wire or by decreasing its diam-

eter, the electromotive force required to maintain a given
electric current is increased. Similarly in a water pipe the

friction-head required to maintain a given discharge in-

creases directly as the length of the pipe, and is greater for

a small pipe than for a large one (Art. 86).

In Art. 100 it was pointed out that the distribution of

water flow among several diversions of a pipe follows laws

analogous to those of the electric current. It was there

shown that the discharge q divides between the diversions

inversely as their resistances, provided (fl/d
5

)^ be taken

as the measure of resistance. In electric flow the direct

current is the analog of the discharge in the water pipe, but

Ohm's law shows that the resistance is the simpler quantity

fl/d
2

. The hydraulic analog of electromotive force is often

taken to be the lost friction-head or its corresponding unit

pressure, and this will be followed here. The loss in water

pressure is represented by the hydraulic gradient (Art. 95),

and the loss in electric pressure is often represented in a sim-

ilar way, the gradient being a straight line in both cases.

In order to make an algebraic comparison of the two

phenomena, take the expression for friction-head in (86) and

replace h" by p/w, where p is the loss of unit pressure in

the length /, and w is the weight of a cubic unit of water
;

also replace v by q/a, and a by \xd
2

. Then (86) becomes

P-^^-BZ? (193),

in which the constant B depends upon the roughness of the

surface and the force of gravity. Accordingly the lost

pressure varies directly as the length of the pipe, inversely
as the fifth power of its diameter, and directly as the square
of the discharge.
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Thus, in the case of a single water pipe or electric wire,

for electric flow p=A^q

for hydraulic flow p=B-^q
2

If each of these flows be divided among n diversions, as in

Fig. 192, the expressions for the pressure become

Al
for electric flow P=~~T2 CL

7?Z

for hydraulic flow p =-^Tb(f

so that the drop of the gradient is far more rapid in the

latter case
; thus, if n be 3 the electromotive force for three

wires is one-third of that for a single wire, but the hydraulic

pressure for three pipes is one-ninth of that for a single pipe.

The conclusion to be derived from this comparison is

that the analogies between hydraulic and electric flow are

rough ones and cannot embrace all the quantities involved.

The only perfect analogy is that p varies directly as /
;
the

analogy between hydraulic discharge and electric current is

perfect only as regards its distribution between branches or

diversions; the analogy between hydraulic and electric re-

sistance is an imperfect one that is liable to lead to con-

fusion. Although a decrease in size of the pipe or wire

causes an increase in resistance, the law of increase is quite

different in the two cases. If hydraulic resistance be de-

fined as in Art. 100, then the lost pressure p is not pro-

portional to resistance, but to its square root, while the lost

electric pressure p varies directly as electric resistance.

Thus far the common motion of water in pipes has been

considered, namely, flow at such velocities as are usual in

engineering practice. In Art. 103, however, it was noted

that the laws governing the flow of water at low velocities

are very different, the lost head varying directly as the ve-

locity and inversely as the area of the cross-sections. This
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kind of flow may be called viscous, implying that the resist-

ances are those of sliding friction only and that no losses

occur in impact. For this case of viscous hydraulic flow let

h be replaced by p/w and v by q/a ;
then

I ^ I

which shows that the lost pressure is proportional to the

discharge as in Ohm's law. Further in this viscous flow the

product of the lost unit pressure p and the discharge q is

energy per second
;
in electric flow also the product of the

lost voltage p and the current q is energy per second. The
formal algebraic expressions for the two cases agree, except
in regard to the resistance, which varies inversely as the

area of the wire in electric flow and inversely as the square
of the area of the pipe in viscous hydraulic flow. Thus this

analogy breaks down, as all analogies correlating electric

with mechanical phenomena are found to do sooner or later.*

Hydraulic flow can be directly observed by the senses;

electric flow, whether it be in the wire or in the ether out-

side of the wire, can be only indirectly observed ; yet in both

cases energy is transmitted or transformed into heat. Elec-

tric phenomena are undoubtedly manifestations of matter,

ether, and motion
;
and electricity, whatever its real nature

may be, is governed by the same laws of energy that pervade
all branches of hydraulics.

Prob. 193a. A copper wire having a specific resistance of

0.0000016 ohms is 12 kilometers long and one centimeter in

diameter. Compute the loss in voltage required to maintain
a direct current of 150 amperes.

Prob. 1936. Let 9 kilometers of the above line be copper
wire, and 3 kilometers be a steel rail having a specific resist-

ance of 0.0000145 ohms and a cross-section of 8.5 square inches.

Compute the loss in voltage to maintain the current of 150

amperes. If the pressure at the beginning of the line be 2500
volts and the rail section be at the middle of the line, draw
the electric gradient.

* Heaviside, Electromagnetic Theory (London, 1894), vol. i, p. 232.
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ART. 194. MISCELLANEOUS PROBLEMS

The following problems introduce subjects that have not

been specifically treated in the preceding pages. Teach-

ers who wish to offer prize problems to their classes may
perhaps find some of these suitable for that purpose.

Prob. 194a. A wooden water tank 18 feet in diameter and

24 feet high is to be hooped with iron bands which may be

safely spaced 6 inches apart at the middle of the height. How
far apart should they be spaced at the bottom?

Prob. 1946. A house is 60 feet lower than a spring A and

30 feet higher than a spring B. A pipe from A to the house

runs near B. Explain a method by which the water from B
can be drawn into the pipe and be delivered at the house.

Prob. 194c. A river having a width of 300 feet on the sur-

face, a cross-section of 1800 square feet, a hydraulic radius of

5.3 feet, and a slope of i on 10 ooo, discharges 10 400 cubic

feet per second. If it be frozen over to the depth of one foot,

what will be its discharge?

Prob. 194J. From a pumping station water is forced by
direct pressure through a compound pipe, consisting of 7500
feet of i4-inch pipe, 4100 feet of 12-inch pipe, and 780 feet of

8-inch pipe, to a 6-inch pipe on which there are three hydrants A,
B, and C. A is 133 feet from the end of the 8-inch pipe and

115 feet above the gage at the pumping station
;
B is 433 feet

from the end of the 8-inch pipe and 135 feet above the gage;
C is 733 feet from the end of the 8-inch pipe and 125 feet above
the gage. To each of these hydrants is attached 50 feet of

2j-inch rubber-lined hoSe with a i-inch smooth nozzle at the

end. When the gage at the pumping station reads 175 pounds
per square inch, to what heights will the three streams be

thrown from the three nozzles?

Prob. 194<?. When a body falls vertically in water its ve-

locity soon becomes constant. For a smooth sphere an approx-
imate formula for this velocity is v = \/2gd(s i), in which
d is the diameter of the sphere and 5 its specific gravity. Com-

pute the velocity v for a sphere having a diameter of o.ooi feet

and a specific gravity of 1.25.
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Prob. 194/. The velocity with which water flows through
a sand filter bed varies directly as the head (Art. 103). If V
be the velocity in meters per day, d the effective size of the

sand grains in millimeters, h the head, / the thickness of the

sand bed, and t the temperature on the centigrade scale,

V= 1000(0.70 + 0.030(^/0^
is the formula deduced by Hazen.* When 2 = 32.4 centigrade,
^ = 0.4 millimeters, / = 4 feet, and h = o.4 feet, find how many
million gallons per day will pass through one acre of filter beds.

Prob. 194g. A bent U tube of uniform size is partly filled

with water. Let the water in one leg be depressed a certain

distance, causing that in the other to rise the same distance.

When the depressing force is removed the water oscillates up
and down in the legs of the tube, the times of oscillation being
isochronous. If / be the entire length of the water in the tube,

show that the time of one oscillation is n\/l/2g. If the legs

are inclined to the horizontal at the angles d and
<j>,

show that

the time of one oscillation is 7rV7/g(sin# + sin</>).

Prob. 194/z. The bottom of a canal has the width 26 and it

is desired to shape the banks so that the hydraulic radius of

the cross-section may be constant. Show that the equation of

the curve is

y=r
in which y is the depth of the water, x the half width of the

water surface, and r the constant hydraulic radius.

Prob. 194t. A river having a slope of i on 2500 runs due
east. A line drawn due north at a point A on the river strikes

at B, 5000 feet from A, the edge of a large swamp which it is

desired to drain. The level of the water in this swamp is 0.5

feet below the river surface at A and it is desired to lower that

level 1.5 feet more. For this purpose a ditch is to be dug run-

ning from A in a straight line on a uniform slope until it joins

the river at a point C eastward from A . The discharge of this

ditch, in order to properly drain the swamp, will be 25 cubic

feet per second, its side slopes are to be i on i, the mean veloc-

ity is not to exceed 2.5 feet per second, and the coefficient c in

the Chezy formula is estimated at 70. Find the length and

width of the most economical ditch.

* Report Massachusetts State Board of Health, 1892, p. 553.
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ART. 195. ANSWERS TO PROBLEMS

Below will be found answers to some of the problems

given in the preceding pages, the numbers of the problems

being placed in parentheses. In general it is not a good

plan for a student to solve a problem in order to obtain a

given answer. One object of solving problems is, of course,

to obtain correct results, but the correctness of those results

should be established by methods of verification rather than

by the authority of a given answer. It is more profitable

that a number of students should obtain different answers

to a problem and engage in a discussion as to the correctness

of their solutions than that all discussion should be stopped
because a certain answer is given in the text. However

satisfactory it may be to know in advance the result of the

solution of an exercise, let the student bear in mind that after

commencement day answers to problems will not be given

him, while the collection of the data for a problem will

often prove as difficult as its solution. The remarks in

Art. 8 may be again read in this connection, and the student

is urged to follow the advice there given. An answer here

given should in no event be consulted until the student

has completed the solution of the problem.

(1) See Rankine's Miscellaneous Writings. (2) 46.5 horse-

powers. (3) See Tables 3 and 4. (4) 147. 2 pounds. (66)65.3

pounds. (86) 29.38 inches. (9a) 9.73 kilograms per square
centimeter. (9d) 223 ooo kilograms. (10) 0.0416 horse-powers.

(13a) 2=1.203 feet. (14) See Art. 180. (15a) 5670 pounds.

(166) TT inches. (176) 6.06 feet. (18) y= \d for the second

case. (206) 3.07 for cement. (20c) 2945 kilograms. (2 la)

8.98 feet per second. (216) 252 feet per second. (24a) 94.6
and 8.0 feet per second. (25) #=53.3 feet. (286) 10.4 horse-

powers. (32) 22.07 f^et. (33c)
=
0.73 when q is 3 cubic

meters per minute. (36) 0.017 inches. (38) 14.4 feet for

a
2

. (426) Replace v by 7^/3.28 and r by 7/3.28, then the

new constant is 5.97X3.28
-431

. (456)^=1.06. (46) ^ = 0.99.

(48a) {7 = 0.605. (49a) 17.2 feet. (50) 103 miner's inches.
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(52) 2.04 cubic feet. (56) 0.122 feet. (58) 9.4 and 12.3

square feet. (59a) c
1
=

o.gS. (60) 0.541 feet per second.

(62)- 0.837 feet per second 1 and 0.0109 feet - (636) c = 0.602.

(65) 4.039 cubic feet per second. (66) 7.10 and 6.97 cubic feet

per second. (67) 21.1 cubic feet per second. (71) 0.74 percent.

(72a) 1.30 centimeters. (746) 0.13 and 7.60 feet. (756) 0.28

feet. (77)^ = 0.985. (78) c = o.8o2. (79) 6.67 feet. (806)

q = 0.963. (82) 0.007 feet - (85 ) - 2 9 feet - (86) Actual loss

=
7.64 feet. (90a) 3.07 gallons per minute. (91) 3.o6and4.94

inches. (93a) 32 pipes. (936) 11.3 and 8.7 inches, so that 12-

and 9-inch pipes should be used. (946) About 6 cubic feet per

second. (99) 2.75 feet per second; 68 feet. (1016) /
= o.o36.

(1056) 2.55 feet per second. (107a) 227 cubic feet per second.

(1076) 4.4 feet. (108) 1.237 ^eet an<i 7-3 2 ^ee^ Per second.

(1096) 0.64 feet deep. (1106) 5.20 and 3.69 feet per second.

(Ill) 57 400 ooo gallons. (113) 6^= 3.09 feet. (1196) 0.48 me-

ters. (121a) 546 cubic feet per second. (124) 1.59 feet per
second. (126) 761 cubic feet per second. (127a) 364 pounds.

(128a) 7.6 feet. (131a) ^=12.5 feet. (133d) #= 0.41 meters.

(137) 13.5 horss-powers. (138) 1.32 horse-powers. (139) 257

feet. (1406) 35.4 percent. (142c) 65.800 kilowatts. (143) 3.96

gallons. (146) 93 pounds. (150) 34.5 feet per second. (151a)

507. (1526) =
0.85. (153a) ^ = 0.83. (155) from 48 to 50

horse-powers. (156) 13.6. (157c) 1.8 horse-powers. (159s)

338 revolutions per minute. (162a) 30.1 kilowatts. (163) 16

feet. (1666) 4.117 and 4.120. (169a) 167. (170a) uo4o'.
(173<?) 27.0 cubic meters. (174) 743 horse-powers. (1766)

1530 horse-powers. (177) e is less than o.io. (182<i) r=n.6
meters. (183a) 76.6 percent. (1896) ^ = 0.78. (191) 17.8

horse-powers. (192J) 9i meters. (194/) See Hazen's Filtra-

tion of Public Water Supplies (New York, 1900), p. 22.

Evolvi varia problemata. In scientiis enim ediscendis pro-

sunt exempla magis quam pra3cepta. Qua de causa in his fusius

expatiatus sum. NEWTON.
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ART. 196. EXPLANATION OF TABLES

The following hydraulic tables have been mostly ex-

plained in the text, and at the foot of each table a reference

is given to the article where the explanation may be found.

Table 50 gives squares of numbers from i.oo to 9.99,.

the arrangement being the same as that of the logarithmic
table. By properly moving the decimal point, four-place

squares of other numbers are also readily taken out. For

example, the square of 0.874 is 0.7639, and that of 87.4 is

7639, correct to four significant figures. This table may also

be used for finding square roots of numbers.

Table 51 gives areas of circles for diameters ranging
from i.oo to 9.99, arranged in the same manner, and by
properly moving the decimal point, four-place areas for all

circles can be found. For instance, if the diameter is 4.175

inches, the area is 13.69 square inches; if the diameter is

0.535 feet, the area is 0.2248 square feet. This table may
also be used for finding diameters of circles corresponding
to given areas.

Table 52 gives trigonometric functions of angles and

Table 53 the logarithms of these functions. The term "
arc"

means the length of a circular arc of radius unity, while
" coarc

"
is the complement of the arc, or a quadrant minus

the arc. If 6 be the number of degrees in any angle, the

value of arc0 is nd/i8o.

Table 54 gives four-place common logarithms of num-

bers, and these are of great value in hydraulic computations

(Art. 8). Table 55, taken from the author's " Elements of

Precise Surveying and Geodesy," gives mathematical con-

stants and their logarithms to nine decimals
;
this is a greater

number than will ever be needed in hydraulic work, but

they are sometimes required for the discussion of geodetic

and physical measurements.
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TABLE 1. FUNDAMENTAL HYDRAULIC CONSTANTS

English Measures

Name
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TABLE 3. METRIC EQUIVALENTS OF ENGLISH UNITS

EngHsh Unit
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TABLE 5. INCHES REDUCED TO FEET

English Measures

Inches
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TABLE 7. WEIGHT OF DISTILLED WATER

English Measures

Temperature
Fahrenheit
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TABLE 9. ATMOSPHERIC PRESSURE

English Measures

Mercury
Barometer
Inches
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TABLE 11. ACCELERATION OP GRAVITY

English Measures

No.
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TABLE 13. HEADS AND PRESSURES

English Measures

Head
in Feet
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TABLE 15. VELOCITIES AND VELOCITY-HEADS

English Measures

iV-Va2P-*'Oao>/5
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TABLE 17. COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES

Arguments in English Measures

Head
h

in Feet
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TABLE 19. COEFFICIENTS FOR SQUARE VERTICAL ORIFICES

Arguments in English Measures

Head
h

in Feet
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TABLE 21. COEFFICIENTS FOR RECTANGULAR ORIFICES

i FOOT WIDE
Arguments in English Measures

Head
h

in Feet
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TABLE 23. COEFFICIENTS FOR CONTRACTED WEIRS

Arguments in English Measures

Effective
Head
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TABLE 25. COEFFICIENTS FOR SUPPRESSED WEIRS
Arguments in English Measures

Effective
Head

in Feet
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TABLE 27. FACTORS FOR SUBMERGED WEIRS
For all Measures

H'

~H
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TABLE 29. COEFFICIENTS FOR DAMS
English Measures

Up-
Stream
Slope
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TABLE 31. COEFFICIENTS FOR CONICAL TUBES

For all Measures

Angle of Cone
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TABLE 33. FRICTION FACTORS FOR CLEAN IRON PIPES

Arguments in English Measures

Diameter
in

Feet
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TABLE 35. FRICTION HEAD FOR 100 FEET OF CLEAN IRON PIPE

English Measures

Diameter
in Feet
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TABLE 37. COEFFICIENTS FOR CIRCULAR CONDUITS

English Measures

Diameter
in Feet
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TABLE 39. CROSS-SECTIONS OF CIRCULAR CONDUITS

For all Measures

Depth

a
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TABLE 41. COEFFICIENTS FOR RECTANGULAR CONDUITS
Metric Measures

Unplaned Plank
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TABLE 43. KUTTER'S COEFFICIENTS FOR SEWERS
Metric Measures

Hydraulic
Radius r
in Meters
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TABLE 45. KUTTER'S COEFFICIENTS FOR CHANNELS
Metric Measures

Hydraulic



566 HYDRAULIC TABLES

TABLE 48. VALUES OF THE BACKWATER FUNCTION

D
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TABLE 49. VALUES OF THE DROP-DOWN FUNCTION

d
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TABLE 50. SQUARES OF NUMBERS

n
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TABLE 50. SQUARES OF NUMBERS

n
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TABLE 51. AREAS OF CIRCLES

d
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TABLE 51. AREAS OF CIRCLES

1
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TABLE 52. TRIGONOMETRIC FUNCTIONS

Angle
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TXBLE 53. LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

Angle
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TABLE 54. LOGARITHMS OF NUMBERS

n
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TABLE 54. LOGARITHMS OF NUMBERS

n
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TABLE 55. CONSTANTS AND THEIR LOGARITHMS

Name.

(Radius of circle or sphere = i.)
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INDEX

Absolute velocity, 69, 74, 402, 426

Acceleration, 4, 13, 20, 548

Acre-foot, 350

Adams, A. L., 256

Adjutage, 178, 186

Advantageous nozzle, 431

section, 276, 279

velocity, 402, 417,

45i, 5i6
Air chamber, 235, 394, 503
Air-lift pump, 523
Air valve, 218

Anchor ice, 6

Answers to problems, 540

Approach, angle of, 426, 450

velocity of, 56, 124, 146

168, 153

Aqueducts, i, 204, 265

Archimedes, i, 26, 495
Areas of circles, 16, 560

Atmospheric pressure, 2, 9, 19, 25,

44, 498, 547

Backpitch wheel, 433

Backwater, 326, 334, 335

function, 336, 566
Ball nozzle, 193
Barker's mill, 437

Barometer, 9, 19, 498
Bazin, H., 2, 105, 159, 169, 200,

2 74, 5 6 5

Bazin's formula, 290, 303

Bernouilli, D., 2, 76, 186, 196

Bidone, G., 2, 129, 343, 378
Blow-offs, 218

Bodmer, G. R., 445

Boiling point, 10, 498

Bore, 344, 345

Bossut, C., 2, 112, 113

Buoyancy, center of, 30

Bowie, A. J., 122, 423

Boyden, U., 84, 464
Boyden diffuser, 463

hook gage, 84

turbine, 370, 447
Bramah, J., 22

Branched pipes, 249
Bresse, M., 336, 339
Breast wheels, 418, 434
Brick conduits, 282, 293

sewers, 285

Brooks, 265, 306
Browne, R. E., 423
Buckets, 417
Bucket pumps, i, 495, 523
Buff, H., 183

Canals, 265, 286, 339, 341, 351
Canal boat, 479

lock, 128, 137

Carpenter, R. C., 390
Cascade wheel, 423

Castel, 183, 213

Castelli, B., 2

Cast-iron pipes, 204, 261, 559, 560
Center of buoyancy, 30, 488

of gravity, 32
of pressure, 35, 38

Centrifugal force, 71

pump, 514
Chain pximp, i, 495
Channels, 265, 280, 302, 386, 565
Chezy, 2

Chezy's formula, 261, 269, 301

Cippoletti, 165, 1 66

Circles, areas of, 542, 570

properties of, 273, 558
Circular conduit, 266, 270-275,

301, 561-564
orifices, 52, 116, 139, 551

Classification of pumps, 496, 521
of surfaces, 282, 290
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Classification of turbines, 439
Coal used by steamers, 480
Coefficient of contraction, in, 179

in nozzles, 190
in orifices, 112, 130
in tubes, 176, 179

Coefficient of discharge, 115
in nozzles, 191

in orifices, 115-121, 127,

130,132
in pipes, 195
in tubes, 179, 195, 206

in turbines, 448
in weirs, 145-169

Coefficient of roughness, 282, 290
Coefficient of velocity, 112, 179

in orifices, 113
in nozzles, 191, 240
in tubes, 179, 195

Cole, E. S., 93, 200

Compound pipes, 237

tubes, 1 86

Compressibility of water, n, 20

Computations, 14, 17

Conduit pipes, 255, 289

Conduits, 265-304, 561-564
Conical tubes, 183, 558

wheel, 434
Conservation of energy, 76, 188

Constants, tables of, 543-576
Consumption of water, 352
Contracted weirs, 141, 148, 554
Contraction of a jet, 2, no

coefficient of, in
gradual, 177

sudden, 176

suppression of, 128

Cooper, T., 386
Cotton hose, 257
Crest of a weir, 85, 141

rounded and wide, 156
Critical -velocity, 262

Ctesibius, i, 495
Cubic foot, 4, 8, 546
Current indicators, 312

meters, 99, 312, 320
Curvature factors, 213

Curve of backwater, 161, 335
Curved surfaces, 34
Curves in pipes, 212, 386

in rivers, 309, 388

Darcy, H., 2, 105, 260, 274

Dams, 32, 41, 45, 157, 325, 557
Danaide 434

Data, fundamental, 1-21, 543

D'Aubisson, J. F., 183, 260, 328

Depth of flotation, 27

Design of turbines, 453
of power plants, 356
of water wheels, 435

Diameters of pipes, 223
water mains, 248, 354

Differential pressure gages, 90

Diffuser, 463

Discharge, 51, 82, 97, in
coefficient of, 115

conduits, 265-304
curves, 322

nozzles, 191, 202

orifices, 109-140

tubes, 107-203

pipes, 204-264

rivers, 305-346
turbines, 446

weirs, 141-169

Discharging capacity, 228

Disk valve, 216

Displacement pumps, 521
Distilled water, 8, 19

Ditches, 265, 286

Diverging tubes, 186

Diversions, 250, 530, 534

Downing, S., 135
Downward-flow wheels, 428

turbines, 440, 458
Draft tube, 428, 472

Drop-down curve, 334

function, 567

Dropping head, 135
Du Bois, A. J., 465

Dubuat, N., 2, 295

Duplex pump, 504

Duty of pumps, 511
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Duty of water, 351

Dynamic pressure, 67, 375411
Dynamo, 372, 470

Dynamometer, 363

Effective head, 56, 124, 240, 360

power, 356, 362

Efficiency, 66, 356, 412
of jet, 133, 1 80, 400
of jet propeller, 482
of motors, 355, 365
of moving vanes, 400
of paddle wheels, 484
of pumps, 497-528
of reaction wheel, 411
of screw propeller, 486
of turbines, 356, 362,

441-464
of water wheels, 356,

407, 412, 414, 427-

435. 484

Egg-shaped sewers, 284

Elasticity of water, n, 20

Electric analogies, 252, 534

generators, 372, 469 .

Elevations by barometer, 10

Ellis, T. G., 120

Emptying a canal lock, 137
a vessel, 59, 72

Energy, 4, 5. 7 6 J 97
loss of, 133
in channels, 269, 300
tubes, 170, 197
of a jet, 65

English measures, 3

Enlargement of section, 173, 296
Entrance angle, 426, 450
Errors in computations, 15, 108

in measurements, 105, 132,

142, 35 8

Eureka turbine, 367, 445

Evaporation, 347

Ewbank, T., 506

Ewart, P., 380
Exit angle, 426, 450

Expansion of section, 173

Eytelwein, J. A., 2, 112, 186, 195

Faesch and Picard, 446

Falling bodies, 13, 21, 46, 538
Fanning, J, T., 121

Filaments, 210, 267
Filter bed, 262, 539
Fire hose, 213, 257, 263, 530

service, 248, 354
Flad, H., 91

Fletcher, R., 218, 390
Flinn and Dyer, 166

Floats, 310, 319

Flotation, depth of, 27

stability of, 29, 488

Flow, dynamic pressure of, 375-410
from orifices, 48, 109-140
over dams, 157
of electricity, 252, 534
in canals and conduits, 265

34, 340
in rivers, 305-345

through pipes, 75, 104, 204-

265, 289

through tubes, 170-203
through turbines, 446
under pressure, 53, 79

Flynn, P., 284
Foot valve, 501, 505

Foote, A. D., 124
Force pump, i, 496, 502, 506

Forebay, 298, 340

Foss, F. E., 293

Fourneyron turbine, 3, 440, 463
Francis, J. B., 2, 149, 152, 154, 157^

186, 310, 368, 449
Francis turbine, 440

float formula, 311
weir formula, 152

Freeman, J. R., 103, 200, 213
Free surface, 6, 24

Frictional resistances, 46
in channels, 269, 294
in pipes, 195, 208, 477
in pumps, 501, 507
in turbines, 414, 438
in water wheels, 414, 435
of ships, 475, 478

Friction brake, 363
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Friction factors, 210, 257, 559

heads, 209, 226, 297, 560

Frizell, J. P., 524

Fteley, A., 148, 149, 154, 155, 157

Gages, 4, 84-93

Gaging flow, 83, 131, 142, 318
of rivers, 313, 316, 319,

3 22 35
Galileo, 2, 3

Gallon, 4, 8, 545

Ganguillet, E., 281

Gasoline differential gage, 93
Gate of a turbine, 440, 442, 463

Gates, pressure on, 40

Gate valve, 217

Girard, P., 464

Glacier, flow of, 294

Governor, 471

Gradient, hydraulic, 233, 238

Graphic methods, 105

Grassi, G., n
Gravity, acceleration of, 13, 20

center of, 32

Ground water, 350

Guides, 443, 450, 456

Head, 24, 87, 143, 206, 360
and pressure, 24, 43, 410,

543- 549
losses of, 133, 1 80, 194, 294
measurement of, 82, 85, 131,

360
Heat units, 511, 533

Hering, C., 282

Height of jets, 49, 180, 192

. Herschel; C., 94, 154, 255, 289
Historical notes, i, 22, 204, 265

Holyoke tests, 369, 447
Hook gage, 6, 84, 131, 143, 307
Horizontal impulse wheels, 424

range of a jet, 63, 193

Horse-power, 5, 18, 355, 371
Horseshoe conduits, 293

Hose, 213, 257, 263, 529
House-service pipes, 243

Humphreys and Abbot, 308, 320
Hunt turbine, 444

Hurdy-gurdy wheel, 423

Hydraulic engine, 520

gradient, 233, 238

jump, 343
mean depth, 266

motors, 355-373, 407-

47 2
. 5 2 3

radius, 265

ram, 517

Hydraulics, defined, i, 7

theoretical, 46-80

Hydromechanics, i, 392, 474

Hydrometric balance, 312

pendulum, 312

Hydrostatic head, 24, 76, 87

Hydrostatics, i, 22-45

Ice, 6, 18, 538
Immersed bodies, 384, 477

Impact, 174, 210, 378

Impeller pump, 521

Impulse, 67, 375

turbines, 441, 461

wheels, 423-432
Inclined tubes, 196

Inertia, movements of, 39, 489

Injector pump, 78, 523

Instruments, 81-103
Inward-flow turbines, 440, 459

Inward-projecting tubes, 184

Irrigation, hydraulics, 351

Jet propeller, 481

Jet pump, 523

Jets, 63-69, 556
contraction of, 2, no, in
energy of, 65
from nozzles, 192, 431

height of, 113, 192

impulse of, 67, 397
on vanes, 310, 395

path of, 63

range of, 63, 64

Jonval turbine, 440

Joukowsky, N., 393

Jump, 334, 342
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Keely motor, 23

Kilowatt, 372
Kinetic energy, 5, 76

Knot, 474

Kuichling, E., 217

Kutter, W. R., 2, 281, 564
Kutter's formula, 261, 281,303,306

Lampe's formula, 261, 263
Lead pipes, 204

Leakage, 359, 456, 501, 512
Least squares, method of, 107
LefFel turbine, 444, 445

Lesbros, J. A., 114, 129, 149
Lift pump, 499

Lighthouses, 385
Linen hose, 257

Log, 311, 474

Logarithms, 15, 573-576

Long pipes, 226

Loss of head, 133, 180, 194, 207,

216, 294, 560
in contraction, 176
in curvature, 212

in entrance, 185, 207,

226, 295
in expansion, 173,

2 95. 57
in friction, 195, 208,

247, 297, 507
measurement of, 82,

132, 197, 230
Loss of weight in water, 26

Lowell tests, 368

Mariotte, 2, 500

Mars, water on, 14

Marx, Wing, and Hoskins, 255, 256,

289

Masonry dams, 32, 45
Mathematical constants, 568-576
Mean velocity, 52, 97, 199, 218, 267

Measuring instruments, 81-103

Mercury, 9, 55, 135

Mercury gage, 88, 90

Merriman, M., 392

Metacenter, 30, 488

Meters, current, 99

water, 93, 131, 319, 358
Venturi, 94

Metric system, 5, 18, 43, 78, 137,

167, 202, 262, 301

Michelotti, F. D., 112, 113, 139
Mill power, 371
Miner's inch, 122

Module, 123
Modulus of elasticity, n, 20

Moments of inertia, 39, 489
Morosi, J., 379
Motors, 357-370

Mouthpiece, 186

Moving vanes, 399

Naval hydromechanics, 474-494
Navigation canals, 341, 479

Negative pressure, 77, 180

Newton, I., 2, 13, 112

Niagara power plants, 372, 465
turbines, 440, 446

Noble, T. A., 256, 289
Non-uniform flow, 329
Normal pressure, 31

Nozzles, 189, 202, 240, 390, 430, 530

jets from, 103, 191, 242
Numerical computations, 14

Oar, action of, 483

Observations, discussion of, 105
Obstructions in channels, 295

in pipes, 217
Ocean waves, 373, 386, 435
Oil, 55, 91
Oil differential gage, 91

Orifices, .48-6 2, 109-140, 551-553
Oscillations, 488, 538
Outward-flow turbine, 441, 443
Overshot wheels, 415, 433

Paddle wheels, 483

Paraboloid, 73

Pascal, 2, 9, 22, 495
Path of a jet, 63
Patent log, 475

Peirce, C. S., 14, 20
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Pelton water wheel, 424

Penstock, 356, 359, 466

Physical properties of water, 5

Piers, 327

Piezometer, 84, 198, 209, 229

gagings, 230

Pipes, 75, 104, 196, 204-264, 390,

5 2 5> 559-5 60

curves in, 212, 386
friction factors for, 211, 232
friction heads for, 560

smooth, 75

Pitometer, 244
Pitot's tube, 96, 102, 200, 312

Plates, moving, 384, 477

Plunger pumps, 504

Plympton, G. W., 10

Pneumatic turbine, 464
Poiseuille's law, 261

Poncelet, J. V., 2, 114
Poncelet wheel, 421
Potential energy, 5

Power, 5, 18, 355, 371

dynamometer, 363

Press, hydraulic, 22

Pressure, center of, 35, 38

dynamic, 375-411

energy of, 170
flow under, 53, 79

gages, 4, 86, 93

horizontal, 33
measurement of, 8493,

230, 512

negative, 77

normal, 31

of waves, 385, 493
on dams, 32, 41

on pipes, 205, 232
on planes, 33, 35

regulator, 245
transmission of, 22, 375
unit of, 2

Pressure gage, 4, 84-93

head, 24, 43, 84, 90, 232
Price current meter, 100

Probable errors, 132

Prony, G. F., 2, 363

Propeller, 481, 485

Propulsion, work in, 479

Pumps, i, 10, 495-533

Pumping through hose, 529

Pumping through pipes, 525

Pumping engines, 510

Puppet valve, 506

Rafter, G. W., 159, 160, 169

Ram, hydraulic, 518
in pipes, 390

Range of a jet, 63, 193

Radius, hydraulic, 265

Rainfall, 347

Rankine, W. J. M., 2, 3, 481

Rating a meter, 94, 101

Reaction, 67, 377

experiments on, 378

turbines, 442, 453

wheel, 410, 437, 4^2

Reciprocating pumps, 521

Rectangular conduits, 275, 562

orifices, 52, 121, 126,

i39 553

Reducer, 237

Regulatgr, 245
Relative capacities of pipes, 228

velocity, 69, 395

Reservoirs, 83, 205, 353
Resistance of plates, 477

of ships, 476

Reversibility, 523

Revolving tubes, 409

vanes, 402

vessel, 71

Reynolds, O., 262

Ring nozzle, 189, 192

Rivers, 35-345> 388

River water, 8,19
Riveted pipes, 204, 254, 289
Rochester water pipe, 239
Rod float, 310

Rolling of a ship, 31

Roman aqueducts, i, 204, 265

pipes, i, 204, 239

Rossetti, G., 8, 19

Rotary pumps, 521
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Rounded crests, 156

orifices, 130

Rudder, action of, 490
Ruhlmann, M., 379

Runoff, 348

Salt water, 7, 8, 19, 474
Sand, weight in water, 27

filter bed, 262

Screens, 295, 297
Screw propeller, 485

turbine, 464

Seepage, 351

Sewage, 9, 524

Sewers, 9, 283, 303, 563-564

Ships, 31, 385, 474-491
Short pipes, 195, 225

tube, 178
Siamese joint, 530

Siphon, 235
Skin of water, 6, 84

Slagg, C., 445

Slip, 484, 486

Slope, 204, 266, 306

Smith, H., Jr., 2, 8, 118, 120, 127,

149, 151, 184, 270, 272, 275
Smooth nozzle, 189, 191

pipes, 104

Sound, velocity of, 12, 19

Specific gravity, 27, 44

Speed of wheels, 408, 417, 423
of ships, 475
of turbines, 441, 447

Sphere, 29

Square vertical orifices, 118, 139,

552

Squares, table of, 568

Stability of dams, 42
of flotation, 29, 488

Standard orifice, 109

tube, 178

Standpipe, 206

Statical moment, 39

Steamer, coal used by, 480

Stearns, F. P., 148, 149, 157,

Steady flow, 75, 197, 329
Steel pipes, 204, 254, 289

Stevenson, T., 318

Storage of water, 353

Strength of pipes, 35, 44

Submerged bodies, 26

orifices, 127

surfaces, 477

turbines, 442

weirs, 154, 554
Sub-surface float, 310

velocities, 308, 317

Suction, 10, 495, 498
Suction pump, 499

Sudbury conduit, 283, 293, 300

Suppressed weirs, 141,151,.! 68, 555

Suppression of contraction, 128

Surface curve, 161, 322, 335, 339

velocity, 308, 317

Surfaces, center of pressure, 35^38
jets upon, 381, 395
motion of, 395

pressure on, 31, 35

Tables, viii, 16, 542-576
Tank, 82, 126, 358

Temperature, 6, 132, 498
Test of motors, 362

of pumping engines, 512
of turbines, 366, 470

Thearle, S. J. P., 475
Theoretical hydraulics, 46-80
Theoretic discharge, 51

velocity, 48, 50

Thomson, J., 164, 389
Throttle valve, 171

Thurston, R. H., 366
Tidal bore, 345
Tidal waves, 373, 492
Tide gate, 49

Tides, 325, 373, 435, 492

Time, 4, 18

Torricelli, E., 2, 48, 495
Transmission of pressures, 22

Transporting capacity, 28$, 323

Trapezoidal conduits, 278

weirs, 165

Trautwinc, J. C., Jr., 282

Triangular orifices, no
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Triangular weirs, 163

Trigonometric functions, 572

Triple nozzle, 424

Troughs, 265, 275

Tubes, 170-203, 409

Tunnel, Niagara, 465

Turbines, 356, 366, 437-472
Twin screws, 487

turbines, 445

Undershot wheels, 420, 434
Uniform flow, 75, 197, 267

Units of measure, 3, 18, 544

Unsteady flow, 321

Unwin, W. C., 132, 380
U. S. Department Agriculture, 322

Geological Survey, 322

Weather Bureau, 348

Vacuum, 2, 9, 77, 188, 495, 498
in compound tube, 188

in pumps, 498, 523
in standard tube, 182

in turbines, 459

Valves, 43, 216, 499, 505

Vanes, 68, 395, 45 6

in motion, 399

revolving, 402, 405

Variations in discharge, 132, 307,

320, 324
Velocities in a cross-section, 198,

299, 308

Velocity, 4, 18, 46, 48

absolute, 69
coefficient of, 112

critical, 262

curves of, 199, 308
from orifices, 48

in conduits, 268

in pipes, 218

in rivers, 308

mean, 97, 199, 218, 267

measurement of, 96-103,
200, 310

of approach, 56, 124,

146, 168, 153

of stress in water, 12, 19,

391

Velocity of the bore, 345
of waves, 494
relative, 69
to move materials, 288,

3 2 4

Velocity-head, 50, 76, 550

Venturi, J. B., 2, 60, 186

Venturi water meter, 94, 198, 233

Vermeule, C. C., 349
Vertical jets, 49, 113, 192, 558

orifices, 116-121, 139

turbines, 445

wheels, 423

Vessel, emptying of, 59

moving, 70

revolving, 72

Vortex whirl, 60

Waste of water, 244

weirs, 157
Water barometer, 10, 19

boiling point of, 10

compressibility, n
dynamic pressure, 375-411

freezing of, 6, 18

hammer, 390

mains, 185, 220, 246
maximum density, 8, 18

measurement of, 82, 131

meters, 93

physical properties, 5

pipes, 35, 44

power, 355-374

pressure of, 22, 24, 31

supply, 347-354, 5 28

surface of, 6, 24

vapor, 498
waste of, 244

weight of, 7, 19, 474, 546

Water-pressure engine, 434, 465
Water wheels, 356, 362, 407, 412-

. 436, 5 2 3

Waterwitch, 483

Watt, J., 510

Waves, 373, 385, 492

Webber, C. A., 513, 516

Weighing water, 82, 358
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Weight of ice, 6, 9, 19

masonry, 42

mercury, 10, 88

sand, 27

sewage, 9

submerged bodies, 26

water, 7, 18, 474, 546

Weirs,

Weisbach, J., 2, 112, 113, 213, 260,

378, 380, 445
Wetted perimeter, 265
Wheel pit, 466

Wheels, breast, 418, 434
horizontal, 425, 443

impulse, 423-432
overshot, 415, 433
reaction, 410, 437, 462

turbine, 437-472
undershot. 420, 434

Wheels, vertical, 423, 445
Whirl at orifice, 60

Whitehurst, J., 517
Wide crests, 156, 556

Williams, Hubbeil, and Fenkell, 91 ,

104, 201, 2J3

Woltmann, R.
, 99

Wood conduits, 276, 282

pipes, 205, 254, 289

Work, defined, 4, 355
in propulsion, 479
in pumping, 496
of friction, 210, 269, 480
of motors, 413-470
of vanes, 399, 405
units of, 4, 1 8

Young man, 17, 506, 540
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* Ballistic Tables 8vo, i 50
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. .8vo, each, 6 oo
* Marian's Permanent Fortifications. (Mercur.) 8vo, half morocco, 7 50
Manual for Courts-martial i6mo, morocco, i 50
* Mercur's Attack of Fortified Places i2mo, 2 oo
* Elements of the Art of War 8vo 4 oo

2



Metcalf's Cost of Manufactures And the Administration of Workshops. .8vo, 5 oo
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Murray's Infantry Drill Regulations .i8mo, paper, 10
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* Phelps's Practical Marine Surveying 8vo, 2 50
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Doolittle's Treatise on Practical Astronomy 8vo, 4 oo

Gore's Elements of Geodesy 8vo, 2 50
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Ladd's Manual of Quantitative Chemical Analysis i2mo, i oo

Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 oo
* Langworthy and Austen. The Occurrence of Aluminium in Vegetable

Products, Animal Products, and Natural Waters 8vo, 2 oo

Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) I2mo, i oo

Application of Some General Reactions to Investigations in Organic

Chemistry. (Tingle.) I2mo, i oo

Leach's The Inspection and Analysis of Food with Special Reference to State

Control 8vo, 7 50

Lob's Electrochemistry of Organic Compounds. (Lorenz.) 8vo, 3 oo

Lodge's Notes on Assaying and Metallurgical Laboratory Experiments 8vo, 3 oo

Low's Technical Method of Ore Analysis 8vo, 3 oo

Lunge's Techno-chemical Analysis. (Cohn.) , i2mo, i oo

Mandel's Handbook for Bio-chemical Laboratory I2mo, i 50
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . i2mo, 60

Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

3d Edition, Rewritten 8vo, 4 oo

Examination of Water. (Chemical and Bacteriological.) i2mo, i 25

Matthew's The Textile Fibres 8vo, 3 50

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). ,i2mo, i oo

Miller's Manual of Assaying. . . i2mo, i oo

Minet's Production of Aluminum and its Industrial Use. (Waldo.) .... i2mo, 2 50

Mixter's Elementary Text-book of Chemistry I2mo, i 50

Morgan's Elements of Physical Chemistry I2mo, 3 oo
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Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50
Mulliken's General Method for the Identification of Pure Organic Compounds.

Vol. I Large 8vo, 5 oo

O'Brine's Laboratory Guide in Chemical Analysis 8vo, 2 oo
O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 oo
Ostwald's Conversations on Chemistry. Part One. (Ramsey.) I2mo, i 50

" " " Part Two." (Turnbull.) i2mo, 200
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, 50
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo, 5 oo

Pinner's Introduction to Organic Chemistry. (Austen.) 12010, i 50
Poole's Calorific Power of Fuels 8vo, 3 oo

Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis i2mo, i 23
* Reisig's Guide to Piece-dyeing 8vo, 25 oo

Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

point. . . -. 8vo, 2 oo

Richards's Cost of Living as Modified by Sanitary Science i2mo, i oo

Cost of Food, a Study in Dietaries 12010, i oo
* Richards and Williams's The Dietary Computer 8vo, i 50
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.

Non-metallic Elements.) 8vo, morocco, 75
Ricketts and Miller's Notes on Assaying 8vo, 3 oo

Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 3 50
Disinfection and the Preservation of Food 8vo, 4 oo

Rigg's Elementary Manual for the Chemical Laboratory 8vo, i 25
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo,

Rostoski's Serum Diagnosis. (Bolduan.) i2mo, i oo

Ruddiman's Incompatibilities in Prescriptions 8vo, 2 oo
* Whys in Pharmacy I2mo, i oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Salkowski's Physiological and Pathological Chemistry. (Orndorff.) 8vo, 2 50

Schimpf's Text-book of Volumetric Analysis I2mo, 2 50
Essentials of Volumetric Analysis I2mo, i 25

* Qualitative Chemical Analysis 8vo, i 25

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 oo

Handbook for Cane Sugar Manufacturers i6mo, morocco, 3 oo

Stockbridge's Rocks and Soils 8vo, 2 50
* TiUman's Elementary Lessons in Heat 8vo, I 50
* Descriptive General Chemistry 8vo, 3 oo

Treadwell's Qualitative Analysis. (Hall.) 8vo, 3 oo

Quantitative Analysis. (Hall.) 8vo, 4 oo

Turneaure and Russell's Public Water-supplies 8vo, 5 oo

Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i2mo, i 50

.

* Walke's Lectures on Explosives 8vo, 4 oo

Ware's Beet-sugar Manufacture and Refining Small 8vo, cloth, 4 oo

Washington's Manual of the Chemical Analysis of Rocks 8vo, 2 oo

Wassermann's Immune Sera : Haemolysins, Cytotoxins, and Precipitins. (Bol-

duan.) I2mo, i oo

Well's Laboratory Guide in Qualitative Chemical Analysis 8vo, i 50

Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students I2mo, i 50

Text-book of Chemical Arithmetic i2mo, i 25

Whipple's Microscopy of Drinking-water 8vo, 3 50

Wilson's Cyanide Processes I2mo, i 50

Chlorination Process i2mo, i 50
Winton's Microscopy of Vegetable Foods 8vo, 7 50

Wulling's Elementary Course in Inorganic, Pharmaceutical, and Medical

Chemistry I2mo, 2 oo
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CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING
RAILWAY ENGINEERING.

Baker's Engineers' Surveying Instruments lamo, 3 oo

Bixby's Graphical Computing Table Paper 19* X 24* inches. 25
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage,

27 cents additional.) 8vo, 3 50
Comstock's Field Astronomy for Engineers 8vo, 2 50
Davis's Elevation and Stadia Tables 8vo, i oo
Elliott's Engineering for Land Drainage I2mo, i 50

Practical Farm Drainage I2mo, i oo

*Fiebeger's Treatise on Civil Engineering 8vo, 5 oo
Folwell's Sewerage. (Designing and Maintenance.) 8vo, 3 oo

Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 3 50
French and I/es's Stereotomy

'

8vo, 2 50
Goodhue's Municipal Improvements I2mo, i 75
Goodrich's Economic Disposal of Towns' Refuse 8vo, 3 50
Gore's Elements of Geodesy 8vo, 2 50

Hayford's Text-book of Geodetic Astronomy 8vo, 3 oo

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Howe's Retaining Walls for Earth i2mo, i 25

Johnson's (J. B.) Theory and Practice of Surveying Small 8vo, 4 oo

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo, 2 oo

Laplace's Philosophical Essay on Probabilities. (Truscoit acd Emory.) . I2mo, 2 oo

Mahan's Treatise on Civil Engineering. (1873.) (Wood.). .8vo, 5 oo
* Descriptive Geometry 8vo, i 50
Merriman's Elements of Precise Surveying and Geodesy . Svo, 2 50
Merriman and Brooks's Handbook for Surveyors. ... i6mo, mor&v- - oo

Nugent's Plane Surveying 8vo, 3 3~

Ogden's Sewer Design I2mo, 2 oo

Patton's Treatise on Civil Engineering 8vo half leather, 7 50
Reed's Topographical Drawing and Sketching 4to, 5 oo

RideaPs Sewage and the Bacterial Purification of Sewage 8vo, 3 50

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, i 50

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50

Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches.

8vo, 2 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced 8vo, 5 oo
* Trautwine's Civil Engineer's Pocket-book i6mo, morocco, 5 oo

Wait's Engineering and Architectural Jurisprudence 8vo, 6 oo

Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 oo

Sheep, 5 50

Law of Contracts 8vo, 3 oo

Warren's Stereotomy Problems in Stone-cutting 8vo, 2 50

Webb's Problems in the Use and Adjustment of Engineering Instruments.
i6mo, morocco, i 23

Wilson's Topographic Surveying 8vo, 3 50

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway Bridges. .8vo, 2 oo

* Thames River Bridge 4to, paper, 5 oo

Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and

Suspension Bridges 8vo, 3 50



Burr and Falk's Influence Lines for Bridge and Roof Computations. . . .8vo, 3 oo

Design and Construction of Metallic Bridges 8vo, 5 oo

Du Bois's Mechanics of Engineering. Vol. II. .. Small 4to, 10 oo

Foster's Treatise on Wooden Trestle Bridges 4to, 5 oo

Fowler's Ordinary Foundations 8vo, 3 50
Greene's Roof Trusses 8vo, i 25

Bridge Trusses 8vo, 2 50
Arches in Wood, Iron, and Stone 8vo, 2 50

Howe's Treatise on Arches 8vo, 4 oo

Design of Simple Roof-trusses in Wood and Steel 8vo, 2 oo

Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, ro oo

Merriman and Jacoby's Text-book on Roofs and Bridges :

Part I. Stresses in Simple Trusses 8vo, 2 50
Part II. Graphic Statics 8vo, 2 50
Part III. Bridge Design 8vo, 2 50
Part IV. Higher Structures 8vo, 2 50

Morison's Memphis Bridge 4to, 10 oo

Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . i6mo, morocco, 2 oo

Specifications for Steel Bridges i2mo, i 25

Wright's Designing of Draw-spans. Two parts in one volume 8vo, 3 50

HYDRAULICS.

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from
an Orifice. (Trautwine.) 8vo, 2 oo

Bovey's Treatise on Hydraulics 8vo, 5 oo

Church's Mechanics of Engineering. 8vo, 6 oo

Diagrams of Mean Velocity of Water in Open Channels paper, i 50

Hydraulic Motors 8vo, 2 oo

Coffin's Graphical Solution of Hydraulic Problems i6mo, morocco, 2 50
Flather's Dynamometers, and the Measurement of Power i2mo, 3 oo

Folwell's Water-supply Engineering 8vo, 4 oo

Frizell's Water-power 8vo, 5 oo

Fuertes's Water and Public Health i2mo, i 50
Water-filtration Works i2mo,

- 2 50

Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Bering and Trautwine.) 8vo, 4 oo

Hazen's Filtration of Public Water-supply 8vo, 3 oo
Hazlehurst's Towers and Tanks for Water-works 8vo, 2 50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits 8vo, 2 oo

Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

8vo, 4 oo

Merriman's Treatise on Hydraulics 8vo, 5 oo
* Michie's Elements of Analytical Mechanics .8vo, 4 oo

Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply Large 8vo, 5 oo
** Thomas and Watt's Improvement of Rivers. (Post., 440. additional. ).4to, 6 oo

Turneaure and Russell's Public Water-supplies 8vo, 5 oo

Wegmann's Design and Construction of Dams 4to, 5 oo

Water-supply of the City of New York from 1658 to 1895 4to, 10 oo

Williams and Hazen's Hydraulic Tables '. 8vo, i 50
Wilson's Irrigation Engineering Small 8vo, 4 oo

Wolff's Windmill as a Prime Mover , 8vo, 3 oo

Wood's Turbines 8vo, 2 50
Elements of Analytical Mechanics 8vo, 3 oo
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MATERIALS OF ENGINEERING.

Baker's Treatise on Masonry Construction 8vo, 5 oo

Roads and Pavements. . . . 8vo, 5 oo
Black's United States Public Works Oblong 4to, 5 oo
* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering 8vo, 7 50

Byrne's Highway Construction 8vo, 5 oo

Inspection of the Materials and Workmanship Employed in Construction.

i6mo, 3 oo

Church's Mechanics of Engineering 8vo, 6 oo

Du Bois's Mechanics of Engineering. Vol. I Small 4to, 7 50
*Eckel's Cements, Limes, and Plasters 8vo, 6 oo

Johnson's Materials of Construction Large 8vo, 6 oo

Fowler's Ordinary Foundations 8vo, 3 50
* Greene's Structural Mechanics 8vo, 2 50

Keep's Cast Iron 8vo, 2 50
Lanza's Applied Mechanics 8vo, 7 50
Marten's Handbook on Testing Materials. (Henning.) 2 vols 8vo, 7 50
Maurer's Technical Mechanics 8vo, 4 oo

Merrill's Stones for Building and Decoration 8vo, 5 oo

Merriman's Mechanics of Materials 8vo, 5 oo

Strength of Materials i2mo, i oo

Metcalf's Steel. A Manual for Steel-users i2mo, 2 oo

Patton's Practical Treatise on Foundations 8vo, 5 oo

Richardson's Modern Asphalt Pavements 8vo, 3 oo

Richey's Handbook for Superintendents of Construction i6mo, mor., 4 oo

Rockwell's Roads and Pavements in France 12010, i 25

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Smith's Materials of Machines i2mo, i oo

Snow's Principal Species of Wood 8vo, 3 50

Spalding's Hydraulic Cement i2mo, 2 oo

Text-book on Roads and Pavements i2mo, 2 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced 8vo, 5 oo

Thurston's Materials of Engineering. 3 Parts . .8vo, 8 oo

Parti. Non-metallic Materials of Engineering and Metallurgy 8vo, 2 oo

Part II. Iron and Steel 8vo, 3 50

Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
*

Constituents 8vo, 2 50

Thurston's Text-book of the Materials of Construction 8vo, 5 oo

Tillson's Street Pavements and Paving Materials 8vo, 4 oo

Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.). . i6mo, mor., 2 oo

Specifications for Steel Bridges i2mo, i 25

Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on

the Preservation of Timber 8vo, 2 oo

Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 oo

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and

Steel .8vo, 4 oo

RAILWAY ENGINEERING.

Andrew's Handbook for Street Railway Engineers 3x5 inches, morocco, i 25

Berg's Buildings and Structures of American Railroads 4to, 5 oo

Brook's Handbook of Street Railroad Location i6mo, morocco, i 50

Butt's Civil Engineer's Field-book i6mo, morocco, 2 50

Crandall's Transition Curve i6mo, morocco, i 50

Railway and Other Earthwork Tables 8vo, I 50

Dawson's "Engineering" and Electric Traction Pocket-book. . i6mo, morocco, 5 oo
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Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 oo

* Drinker's Tunnelling, Explosive Compounds, and Rock Drills. 4to, half mor., 25 oo

Fisher's Table of Cubic Yards Cardboard, 25

Godwin's Railroad Engineers' Field-book and Explorers' Guide. . . i6mo, mor., 2 50

Howard's Transition Curve Field-book i6mo, morocce, i 50

Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-
bankments 8vo, i oo

Molitor and Beard's Manual for Resident Engineers i6mo, i oo

Nagle's Field Manual for Railroad Engineers i6mo, morocco, 3 oo

Philbrick's Field Manual for Engineers i6mo, morocco, 3 oo

Searles's Field Engineering i6mo, morocco, 3 oo

Railroad Spiral i6mo, morocco, i 50

Taylor's Prismoidal Formulae and Earthwork 8vo, i 50
* Trautwine's Method of Calculating the Cube Contents of Excavations and

Embankments by the Aid of Diagrams 8vo, 2 oo

The Field Practice of Laying Out Circular Curves for Railroads.

i2mo, morocco, 2 50

Cross-section Sheet Paper, 25

Webb's Railroad Construction i6mo, morocco, 5 oo

Wellington's Economic Theory of the Location of Railways Small 8vo, 5 oo

DRAWING.

Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 oo
* " "

Abridged Ed 8vo, i 50

Coolidge's Manual of Drawing 8vo, paper i oo

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-
neers Oblong 4to, 2 50

Durley's Kinematics of Machines 8vo, 4 oo

Emch's Introduction to Projective Geometry and its Applications 8vo, 2 50
Hill's Text-book on Shades and Shadows, and Perspective 8vo, 2 oo

Jamison's Elements of Mechanical Drawing 8vo, 2 50
Advanced Mechanical Drawing 8vo, 2 oo

Jones's Machine Design:
Part I. Kinematics of Machinery 8vo, i 50
Part H. Form, Strength, and Proportions of Parts 8vo, 3 oo

MacCord's Elements of Descriptive Geometry 8vo, 3 oo
Kinematics ; or, Practical Mechanism 8vo, 5 oo
Mechanical Drawing 4to, 4 oo

Velocity Diagrams 8vo, i 50
MacLeod's Descriptive Geometry Small 8vo, i 50
* Mahan's Descriptive Geometry and Stone-cutting 8vo, i 50

Industrial Drawing. (Thompson.) 8vo, 3 50
Meyer's Descriptive Geometry 8vo, 2 oo
Reed's Topographical Drawing and Sketching 4to, 5 oo
Reid's Course in Mechanical Drawing 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 oo
Robinson's Principles of Mechanism 8vo, 3 oo
Schwamb and Merrill's Elements of Mechanism 8vo, 3 co
Smith's (R. S.) Manual of Topographical Drawing. (McMillan.) 8vo, 2 50
Smith (A. W.) and Marx's Machine Design 8vo, 3 oo
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. i2mo,

Drafting Instruments and Operations i2mo,
Manual of Elementary Projection Drawing i2mo,
Manual of Elementary Problems in the Linear Perspective of Form and

Shadow i2mo,
Plane Problems in Elementary Geometry I2mo,
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Warren's Primary Geometry I2mo, 75
Elements of Descriptive Geometry, Shadows, and Perspective 8vo, 3 50
General Problems of Shades and Shadows 8vo, 3 oo
Elements of Machine Construction and Drawing 8vo, 7 50
Problems, Theorems, and Examples in Descriptive Geometry 8vo, 2 50

Weisbach's Kinematics "and Power of Transmission. (Hermann and
Klein.) 8vo, 5 oa

Whelpley's Practical Instruction in the Art of Letter Engraving 12mo, 2 oo
Wilson's (H. M.) Topographic Surveying 8vo, 3 50
Wilson's (V. T.) Free-hand Perspective 8vo, 2 50
Wilson's (V. T.) Free-hand Lettering 8vo, i oo
Woolf's Elementary Course in Descriptive Geometry Large 8vo, 3 oo

ELECTRICITY AND PHYSICS.

Anthony and Brackett's Text-book of Physics. (Magie.) Small 8vo, 3 oa
Anthony's Lecture-notes on the Theory of Electrical Measurements. . . . 12mo, i oo

Benjamin's History of Electricity 8vo, 3 oo
Voltaic Cell 8vo, 3 oo

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).Svo, 3 oo
Crehore and Squier's Polarizing Photo-chronograph 8vo, 3 oo
Dawson's "Engineering" and Electric Traction Pocket-book. i6mo, morocco, 5 oo
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von

Ende.) i2mo, 2 50
Duhem's Thermodynamics and Chemistry. (Burgess.) 8vo, 4 oo
Flather's Dynamometers, and the Measurement of Power I2mo, 3 oo
Gilbert's De Magnete. (Mottelay.) 8vo, 2 50
Hanchett's Alternating Currents Explained i2mo, i oo

Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Holman's Precision of Measurements 8vo, 2 oo

Telescopic Mirror-scale Method, Adjustments, and Tests. . . .Large 8vo, 75
Xinzbrunner's Testing of Continuous-current Machines 8vo, 2 oo
Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 oo
Le Chateliers High-temperature Measurements. (Boudouard Burgess.) i2mo, 3 oo
Lob's Electrochemistry of Organic Compounds. (Lorenz.) 8vo, 3 oo
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. Svo, each, 6 oo
* Michie's Elements of Wave Motion Relating to Sound and Light Svo, 4 oo

NiaudetVElementary Treatise on Electric Batteries. (Fishback.) i2mo, 2 50
* Rosenberg's Electrical Engineering. (Haldane Gee Kinzbrunner.). . .8vo, i 50

Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I .8vo, 2 50
Thurston's Stationary Steam-engines Svo, 2 50
* Tillman's Elementary Lessons in Heat Svo, i 50

Tory and Pitcher's Manual of Laboratory Physics Small Svo, 2 oo
Ulke's Modern Electrolytic Copper Refining Svo, 3 oo

LAW.

* Davis's Elements of Law Svo, 2 50
* Treatise on the Military Law of United States Svo, 7 oo
* Sheep, 7 50
Manual for Courts-martial i6mo, morocco, i 50
Wait's Engineering and Architectural Jurisprudence Svo , 6 oo

Sheep, 6 50
Law of Operations Preliminary to Construction in Engineering and Archi-

tecture Svo 5 oo

Sheep, 5 50

Law of Contracts Svo, 3 oo

Winthrop's Abridgment of Military Law I2mo s 2 So
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MANUFACTURES.

Bernadou's Smokeless Powder Nitro-cellulose and Theory of the Cellulose

Molecule i2mo, 2 50
Holland's Iron Founder I2mo, 2 50

"The Iron Founder," Supplement I2mo, 2 50
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the

Practice of Moulding i2mo, 3 oo

Eissler's Modern High Explosives 8vo, 4 oo

Effrent's Enzymes and their Applications. (Prescott.) 8vo, 3 oo

^itzgerald's Boston Machinist I2mo, i oo
Ford's Boiler Making for Boiler Makers i8mo, i oo

Hopkin's Oil-chemists' Handbook 8vo, 3 oo

Keep's Cast Iron 8vo, 2 50
Leach's The Inspection and Analysis of Food with Special Reference to State

Control Large 8vo, 7 50
Matthews's The Textile Fibres 8vo, 3 50
Metcalf's Steel. A Manual for Steel-users 12 mo, 2 oo
Metcalfe's Cost of Manufactures And the Administration of Workshops. 8vo, 5 oo

Meyer's Modern Locomotive Construction 4to, 10 oo

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50
* Reisig's Guide to Piece-dyeing 8vo, 25 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish; 8vo, 3 oo
Smith's Press-working of Metals 8vo, 3 oo

Spalding's Hydraulic Cement I2mo, 2 oo

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 oo

Handbook for Cane Sugar Manufacturers i6mo, morocco, 3 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced 8vo, 5 oo

Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-
tion 8vo, 5 oo

* Walke's Lectures on Explosives 8vo, 4 oo
Ware's Beet-sugar Manufacture and Refining Small 8vo, 4 oo

West's American Foundry Practice i2mo, 2 50
Moulder's Text-book I2mo, 2 50

Wolff's Windmill as a Prime Mover 8vo, 3 oo
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 4 oo

MATHEMATICS.

Baker's Elliptic Functions 8vo, i 50
* Bass's Elements of Differential Calculus izmo, 4 oo

Briggs's Elements of Plane Analytic Geometry lamo,

Compton's Manual of Logarithmic Computations i2mo,
Davis's Introduction to the Logic of Algebra 8vo,
* Dickson's College Algebra Large i2mo,
* Introduction to the Theory of Algebraic Equations Large xarno,

Emch's Introduction to Projective Geometry and its Applications 8vo,

Halsted's Elements of Geometry 8vo,

Elementary Synthetic Geometry 8vo,

Rational Geometry i2ino,
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size. paper, 15

100 copies for 5 oo
* Mounted on heavy cardboard, 8 X 10 inches, 25

10 copies for 2 oo

Johnson's (W. W.) Elementary Treatise on Differential Calculus. .Small 8vo, 3 oo

Johnson's CW. W.) Elementary Treatise on the Integral Calculus. Small 8vo, i 50
11



Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates i2mo, i oo

Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations.
Small 8vo, 3 50

Johnson's (W. W.) Theory of Errors and the Method of Least Squares. lamo, i 50
* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 oo

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). i2mo, 2 oo
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 oo

Trigonometry and Tables published separately Each, 2 oo
* Ludlow's Logarithmic and Trigonometric Tables 8vo, i oo

Mathematical Monographs. Edited by Mansfield Merriman and Robert
S. Woodward. . .' Octavo, each i oo

No. i. History of Modern Mathematics, by David Eugene Smith.

No. 2. Synthetic Projective Geometry, by George Bruce Halsted.

No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-
bolic Functions, by James McMahon. No. 5. Harmonic Func-

tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,

by Edward W. Hyde. No. 7. Probability and Theory of Errors,

by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,

by Alexander Macfarlane. No. 9. Differential Equations, by
William Woolsey Johnson. No. 10. The Solutism of Equations,

by] Mansfield Merriman. No. u. Functions of a Complex Variable,

by Thomas S. Fiske.

Maurer's Technical Mechanics 8vo, 4 oo

Merriman and Woodward's Higher Mathematics 8vo, 5 oo

Merriman's Method of Least Squares 8vo, 2 oo

Rice and Johnson's Elementary Treatise on the Differential Calculus. . Sm. 8vo, 3 oo

Differential and Integral Calculus. 2 vols. in one Small 8vo, 2 50
Wood's Elements of Co-ordinate Geometry 8vo, 2 oo

Trigonometry: Analytical, Plane, and Spherical . i2mo, i oo

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Forge Practice i2mo, i 50

Baldwin's Steam Heating for Buildings i2mo, 2 50
Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 oo
* " " "

Abridged Ed 8vo, 150
Benjamin's Wrinkles and Recipes i2mo, 2 oo

Carpenter's Experimental Engineering 8vo, 6 oo

Heating and Ventilating Buildings. 8vo, 4 oo

Cary's Smoke Suppression in Plants using Bituminous CoaL (In Prepara-

tion.)

Clerk's Gas and Oil Engine Small 8vo, 4 oo

Coolidge's Manual of Drawing 8vo, paper, i oo

Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 50

Cromwell's Treatise on Toothed Gearing i2mo, i 50

Treatise on Belts and Pulleys i2mo, i 50

Durley's Kinematics of Machines 8vo, 4 oo

. Flather's Dynamometers and the Measurement of Power. i2mo, 3 oo

i Rope Driving I2mo, 2 oo

^ Gill's Gas and Fuel Analysis for Engineers i2mo, i 25

Hall's Car Lubrication i2mo, i oo

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
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Button's The Gas Engine 8vo, 5 oo

Jamison's Mechanical Drawing 8vo, 2 50

Jones's Machine Design:

Part I. Kinematics of Machinery 8vo, I 50
Part II. Form, Strength, and Proportions of Parts 8vo, 3 oo

Kent's Mechanical Engineers' Pocket-book i6mo, morocco, 5 oo

Kerr's Power and Power Transmission 8vo, 2 oo

Leonard's Machine Shop, Tools, and Methods 8vo, 4 oo
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . . 8vo, 4 oo

MacCord's Kinematics; or, Practical Mechanism 8vo, 5 oo

Mechanical Drawing 4to, 4 oo

Velocity Diagrams 8vo, i 50

MacFarland's Standard Reduction Factors for Gases 8vo, i 50

Mahan's Industrial Drawing. (Thompson.) 8vo, 3 50

Poole's Calorific Power of Fuels 8vo, 3 oo

Reid's Course in Mechanical Drawing 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 oo

Richard's Compressed Air i2mo, i 50

Robinson's Principles of Mechanism 8vo, 3 oo

Schwamb and Merrill's Elements of Mechanism 8vo, 3 oo

Smith's (O.) Press-working of Metals 8vo, 3 oo

Smith (A. W.) and Marx's Machine Design 8vo, 3 oo

Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo, 3 oo

Animal as a Machine and Prime Motor, and the Laws of Energetics . I2mo, i oo

Warren's Elements of Machine Construction and Drawing 8vo, 7 50

Weisbach's Kinematics and the Power of Transmission. (Herrmann
Klein.) 8vo, 5 oo

Machinery of Transmission and Governors. (Herrmann Klein.). .8vo, 500
Wolff's Windmill as a Prime Mover 8vo, 3 oo

Wood's Turbines, , 8vo, 2 50

MATERIALS OP ENGINEERING.

* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition.

Reset 8vo, 7 50
Church's Mechanics of Engineering 8vo, 6 oo
* Greene's Structural Mechanics 8vo, 2 50

Johnson's Materials of Construction 8vo, 6 oo

Keep's Cast Iron 8vo, 2 50
Lanza's Applied Mechanics 8vo, 7 50
Martens's Handbook on Testing Materials. (Henning.) 8vo, 7 50
Maurer's Technical Mechanics 8vo, 4 oo

Merriman's Mechanics of Materials 8vo, 5 oo

Strength of Materials I2mo, i oo

Metcalf's Steel. A manual for Steel-users i2mo, 2 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Smith's Materials of Machines I2mo, i oo

Thurston's Materials of Engineering 3 vols., 8vo, 8 oo

Part II. Iron and Steel 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their .

Constituents 8vo, 2 5^
Text-book of the Materials of Construction 8vo, 5 oo

Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on

the Preservation of Timber 8vo, 2 oo
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Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 oo
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and

SteeL 8vo, 4 oo

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram i2mo, i 25
Carnot's Reflections on the Motive Power of Heat. (Thurston.) i2mo, i 50
Dawson's "Engineering" and Electric Traction Pocket-book. . i6mo, mor., 5 oo
Ford's Boiler Making for Boiler Makers i8mo, I oo
Goss's Locomotive Sparks 8vo, 2 oo

Hemenway's Indicator Practice and Steam-engine Economy i2mo, 2 oo

Button's Mechanical Engineering of Power Plants 8vo, 5 oo
Heat and Heat-engines 8vo, 5 oo

Kent's Steam boiler Economy 8vo, 4 oo
Kneass's Practice and Theory of the Injector 8vo, T 50
MacCord's Slide-valves 8vo, 2 oo

Meyer's Modern Locomotive Construction 4to, 10 oo

Peabody's Manual of the Steam-engine Indicator I2mo. i 50
Tables of the Properties of Saturated Steam and Other Vapors 8vo, i oo

Thermodynamics of the Steam-engine and Other Heat-engines 8vo, 5 oo

Valve-gears for Steam-engines 8vo, 2 50

Peabody and Miller's Steam-boilers 8vo, 4 oo

Pray's Twenty Years with the Indicator Large 8vo, 2 50

Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.

(Osterberg.) I2mo, i 25

Reagan's Locomotives: Simple Compound, and Electric i2mo, 2 50
Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 5 oo
Sinclair's Locomotive Engine Running and Management I2mo, 2 oo
Smart's Handbook of Engineering Laboratory Practice I2mo, 2 50
Snow's Steam-boiler Practice 8vo, 3 oo

Spangler's Valve-gears 8vo, 2 50
Notes on Thermodynamics i2mo, i oo

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 oo

Thurston's Handy Tables 8vo, i 50
Manual of the Steam-engine 2 vols., 8vo, 10 oo
Part I. History, Structure, and Theory 8vo, 6 oo
Part II. Design, Construction, and Operation 8vo, 6 oo
Handbook of Engine and Boiler Trials, and the Use of the Indicator and

the Prony Brake 8vo, 5 oo

Stationary Steam-engines 8vo, 2 50
Steam-boiler Explosions in Theory and in Practice I2mo, i 50

Manual of Steam-boilers, their Designs, Construction, and Operation 8vo, 5 oo

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) 8vo, 5 oo

Whitham's Steam-engine Design 8vo, 5 oo

Wilson's Treatise on Steam-boilers. (Flather.) i6mo, 2 50
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. ..8vo, 4 oo

MECHANICS AND MACHINERY.

Barr's Kinematics of Machinery 8vo, 2 50
* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Chase's The Art of Pattern-making I2mo, 2 50
Church's Mechanics of Engineering 8vo, 6 oo

Notes and Examples in Mechanics '. 8vo, 2 oo

Compton's First Lessons in Metal-working i2mo, i 50

Compton and De Groodt's The Speed Lathe I2mo. i sa
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Cromwell's Treatise on Toothed Gearing I2mo, I 50
Treatise on Belts and Pulleys i2mo, ~

50
Dana's Text-book of Elementary Mechanics for Colleges and Schools. .i2mo, i 50

Dingey's Machinery Pattern Making izmo, 2 oo

Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 410 half morocco, 5 oo

Du Bois's Elementary Principles of Mechanics:

Vol. I. Kinematics 8vo, 3 50
Vol. II. Statics 8vo, 400
Mechanics of Engineering. Vol. I Small 4to, 7 50

Vol. IL Small 4to, 10 oo

Durley's Kinematics of Machines 8vo, 4 oo

Fitzgerald's Boston Machinist i6mo, i oo

Flather's Dynamometers, and the Measurement of Power i2mo, 3 oo

Rope Driving i2mo, 2 oo

Goss's Locomotive Sparks 8vo, 2 oo
* Greene's Structural Mechanics 8vo, 2 50
Hall's Car Lubrication i2mo, i oo

Holly's Art of Saw Filing i8mo, 75

James's Kinematics of a Point and the Rational Mechanics of a Particle.

Small 8vo, 2 oo
* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 oo

Johnson's (L. J.) Statics by Graphic and Algebraic Methods 8vo, 2 oo

Jones's Machine Design:
Part I. Kinematics of Machinery 8vo, i 50
Part II. Form, Strength, and Proportions of Parts 8vo, 3 oo

Kerr's Power and Power Transmission 8vo, 2 oo

Lanza's Applied Mechanics 8vo, 7 50
Leonard's Machine Shop, Tools, and Methods '. 8vo, 4 oo
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.). 8vo, 4 oo

MacCord'* Kinematics; or, Practical Mechanism 8vo, 5 oo

Velocity Diagrams 8vo, i 50
Maurer's Technical Mechanics. . . . 8vo, 4 oo

Merriman's Mechanics of Materials 8vo, 5 oo
* Elements of Mechanics 12010, i oo
* Michie's Elements of Analytical Mechanics 8vo, 4 oo

Reagan's Locomotives: Simple, Compound, and Electric. . I2mo, 2 50
Reid's Course in Mechanical Drawing 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 oo

Richards's Compressed Air i2mo, i 50
Robinson's Principles of Mechanism 8vo, 3 oo

Ryan, Norris, and Hoxie's Electrical Machinery. Vol. 1 8vo, 2 50

Schwamb and Merrill's Elements of Mechanism 8vo, 3 co

Sinclair's Locomotive-engine Running and Management I2mo, 2 oo

Smith's (O.) Press-working of Metals 8vo, 3 oo

Smith's (A. W.) Materials of Machines 12 mo, i oo

Smith (A. W.) and Marx's Machine Design , . m 8vo, 3 oo

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 oo

Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo, 3 oo

Animal as a Machine and Prime Motor, and the Laws of Energetics.

I2mo, i oo

Warren's Elements of Machine Construction and Drawing 8vo, 7 50
Weisbach's Kinematics and Power of Transmission. (Herrmann Klein.). 8vo, 5 oo

Machinery of Transmission and Governors. (Herrmann Klein. ).8vo, 5 oo

Wood's Elements of Analytical Mechanics. 8vo, 3 oo

Principles of Elementary Mechanics i2mo, i 25
Turbines 8vo, 2 50

The World's Columbian Exposition of 1893 4to, i oo
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METALLURGY.

Egleston's Metallurgy of Silver, Gold, and Mercury:
Vol. I. Silver 8vo, 7 50
Vol. II. Gold and Mercury 8vo, 7 50

** Iles's Lead-smelting. (Postage 9 cents additional.) i2mo, 2 50

Keep's Cast Iron 8vo, 2 50
Kunhardt's Practice of Ore Dressing in Europe 8vo, i 50
Le Chatelier's High-temperature Measurements. (Boudouard Burgess. )i2mo. 3 oo

Metcalf's Steel. A Manual for Steel-users i2mo, 2 oo

Minet's Production of Aluminum and its Industrial Use. (Waldo.). . . . i2mo, 2 50

Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo,

Smith's Materials of Machines I2mo, i oo

Thurston's Materials of Engineering. In Three Parts 8vo, 8 oo

Part II. Iron and Steel 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50
Ulke's Modern Electrolytic Copper Refining 8vo, 3 oo

MINERALOGY.

Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 oo

Map of Southwest Virignia Pocket-book form. 2 oo

Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo, 4 oo

Chester's Catalogue of Minerals 8vo, paper, i oo

Cloth, i 25

Dictionary of the Names of Minerals 8vo, 3 50

Dana's System of Mineralogy f . . . .Large 8vo, half leather, 12 50
First Appendix to Dana's New "

System of Mineralogy." Large 8vo, i oo

Text-book of Mineralogy 8vo, 4 oo

Minerals and How to Study Them i2mo, 50

Catalogue of American Localities of Minerals Large 8vo, oo

Manual of Mineralogy and Petrography lamo, oo

Douglas's Untechnical Addresses on Technical Subjects I2mo, oo

Eakle's Mineral Tables 8vo, 25

Egleston's Catalogue of Minerals and Synonyms 8vo, 50

Hussak's The Determination of Rock-forming Minerals. (Smith.). Small 8vo, 2 oo

Merrill's Non-metallic Minerals: Their Occurrence and Uses 8vo, 4 oo
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, 50

Rosenbusch's Microscopical Physiography of the Rock-making Minerals.

(Iddings.). . . 8vo, 5 oo
* Tollman's Text-book of Important Minerals and Rocks 8vo, 2 oo

MINING.

Beard's Ventilation of Mines i2mo, 2 50

Boyd's Resources of Southwest Virginia. 8vo, 3 oo

Map of Southwest Virginia Pocket-book form 2 oo

Douglas's Untechnical Addresses on Technical Subjects i2mo, i oo
* Drinker's Tunneling, Explosive Compounds, and Rock Drills. .4to,hf. mor., 25 oo

Eissler's Modern High Explosives 8vo> 4 oo
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Fowler's Sewage Works Analyses i2mo, 2 oo
Goodyear's Coal-mines of the Western Coast of the United States i2mo, 2 50
Ihlseng's Manual of Mining 8vo, 5 oo
** lles's Lead-smelting. (Postage pc. additional.) i2mo, 2 50
Kunhardt's Practice of Ore Dressing in Europe 8vo, i 50
O'Driscoll's Notes on the 'treatment of Gold Ores 8vo, 2 oo
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo,
* Walke's Lectures on Explosives 8vo, 4 oo
Wilson's Cyanide Processes i2mo, i 50

Chlorination Process
'

i2mo, i 50
Hydraulic and Placer Mining I2mo, 2 oo
Treatise on Practical and Theoretical Mine Ventilation i2mo, i 25

SANITARY SCIENCE.

Bashore's Sanitation of a Country House I2mo, i oo
FolwelTs Sewerage. (Designing, Construction, and Maintenance.) 8vo, 3 oo

Water-supply Engineering 8vo, 4 oo
Fuertes's Water and Public Health i2mo, i 50

Water-filtration Works I2mo, 2 50
Gerhard's Guide to Sanitary House-inspection i6mo, i oo
Goodrich's Economic Disposal of Town's Refuse Demy 8vo, 3 50
Hazen's Filtration of Public Water-supplies 8vo, 3 oo
Leach's The Inspection and Analysis of Food with Special Reference to State

Control 8vo, 7 50
Mason's Water-supply. (Considered principally from a Sanitary Standpoint) 8vo, 4 oo

Examination of Water. (Chemical and Bacteriological.) i2mo, i 25

Ogden's Sewer Design i2mo, 2 oo
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis i2mo, 25
* Price's Handbook on Sanitation I2mo, 50
Richards's Cost of Food. A Study in Dietaries i2mo, oo

Cost of Living as Modified by Sanitary Science i2mo, oo
Richards and Woodman^ Air. Water, and Food from a Sanitary Stand-

point 8vo, oo
* Richards and Williams's The Dietary Computer 8vo, 50
Rideal's Sewage and Bacterial Purification of Sewage 8vo, 3 50
Turneaure and Russell's Public Water-supplies ". .8vo, 5 oo
Von Behring's Suppression of Tuberculosis. (Bolduan.) I2mo, i oo

Whipple's Microscopy of Drinking-water 8vo, 3 50
Winton's Microscopy of Vegetable Foods 8vo, 7 50

Woodhull's Notes on Military Hygiene i6mo, i 50

MISCELLANEOUS.

De Fursac's Manual of Psychiatry. (Rosanoff and Collins.). . . .Large I2mo, 2 50
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large 8vo, i 50
Ferrel's Popular Treatise on the Winds 8vo, 4 oo
Haines's American Railway Management I2mo, 2 50
Mott's Fallacy of the Present Theory of Sound i6mo, i oo
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894.. Small 8vo, 3 oo
Rostoski's.Serum Diagnosis. (Bolduan.) I2mo, i oo
Rotherham's Emphasized New Testament Large 8vo, 2 oo
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Steel's Treatise on the Diseases of the Dog 8vo, 3 50
The World's Columbian Exposition of 1893 4to, i oo

Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i oo

Winslow's Elements of Applied Microscopy i2mo, i 50
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance;

Suggestions for Hospital Architecture: Plans for Small Hospital. 12mo, i 25

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Elementary Hebrew Grammar I2mo, i 25

Hebrew Chrestomathy 8vo, 2 oo

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.

(Tregelles.) Small 4to, half morocco, 5 oo

Letteris's Hebrew Bible. 8vq, 2 25
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