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PREFACE

The following treatise is intended to exliibit such a view ot

the principles of Algebra, as shall best prepare the student for

the further pursuit of mathematical studies.

The principles presented I have endeavored to enunciate as

clearly and briefly as possible, to demonstrate rigorously, and to

illustrate by strictly pertinent examples.

Part of the examples are of the most elementary form, part

are purely numerical, and a large part of the rest are expres-

sions employed in the reasonings and investigations of Trigo-

nometry, Analytical Geometry, Mechanics and other branches of

mathematical study. Thus, the application of the principle is

exhibited, relieved of all extraneous difficulty, and connected

with the familiar ideas of Arithmetic
; and, moreover, the forms

and operations employed in demonstrating truths of Geometry,

and of other related sciences, are rendered familiar, and made

ready for use when they shall be needed.

This last consideration is of great importance. Much of the

difficulty which students find in later parts of the course results

from want of familiarity with the algebraic expre'ssions employed,

and with the elementary operations performed upon them. At

the same time, such expressions and operations are frequently

among the most convenient illustrations of algebraic principles.

The discussion of the theory of exponents and powers

(§§ 11-24) is, so far as I know, original. The use and interpre-
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tation of the fractional and negative exponents is exhibited as a

necessary consequence of the definition.

The demonstration of the Binomial Theorem for negative and

fractional exponents (§§ 291-294), and the development of the

fundamental logarithmic formula (§§ 320-323) are substantially

those of Lagrange.

The nature of the Modulus (§§327-332), and some of the

properties of logarithmic differences (§§333-336) are discussed

more fully than I have seen them in any elementary treatise.

Familiarity -with these principles is of great advantage to the

student, and their discussion is, by no means, difficult.

A table of the principal formulae of the book is placed after

the table of contents, for convenience of reference and review.

It has also the advantage of generalizing, and bringing into one

view, principles exhibited, -with more or less fulness, in different

parts of the book. For the suggestion of this table, I am indebt-

ed to Mr. Richards, the able Principal of Kimball Union Acad-

emy.

I am also very greatly indebted to my associates, Professors

Crosby and Young, for valuable suggestions and criticisms. In

correcting the proofs of the last half of the work, I have had the

assistance of Mr. Edward Webster, a recent graduate of the Col-

lege, whose tastes and attainments qualify him to do excellent

service in the cause of science.

S. C.

Dartmouth College, May 1, 1849.
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FORMULA.

§ 6. a.) -}- a > ;
— a < 0. That is,

A positive quantity > ;
a negative quantity < 0.

§ 7. a, b.)
— (— a) =z -\- a. .: — [-— (— a)] =r— a ;

— (—(—(— «))) =+ «; &c. §§63; 68. a, <?.

§13. 'a°=l. §17. a-n= _.

n JL n »
™

§ 23. ya= a", ya'»= (Ja)
m= a\ §§ 1 2, 25.

§57.3. i(«+ 5)+K^— *)'=«

§ 60. 4. £(a+ 5)
—

i(>
—

b) — b.

§§89,90. (a±b)* = a 2
±2ab-{- 6 2

.

§91. (a+.Z>)
2 + («

—
£)

2 = 2(a
2 + &2 ).

(a+ 5)
2 —

(a
—

6)2
— 4a5. .

§92. (a+ b)(a
—

b) = a 2 — 6 2 .

§96. a.) = a»-i-j_ a»-9J . . . -f-a&*-
2 + b"~ l

.

.
,
an— a" „ ,

a— a

§97. -
""

, f""= a 2"- 1— a 2"- s6+ . . 4- a6 2"- 2— & 2"-i.
a-}-6

a 2»+l I £2«+l
§98. 4-= = a 2"— a 9t-lJ-l_. .

_ aJ2«-l I JSn,
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§§ 109, 139, 140.) pr
= co. —= 0. -, indeterminate.

§151, c.) (a
n
)
m = amn. (±a)

2 " = -f-(a
2
»).

(±a)
2"+i = ±(«2»+i).

i 1 i
§ 152. (+ a)*

n=± (a
2
",). (— «)

2
", imaginary.

i i

(±«)
2
;
i+i = ± («

2
h-i).

1158. (-o2f= a(-l)^ffly-l.
§162. (y-l) 2 =-l; (y-l)3=_y_i

(</-l)*=l; (y-i) 5 = y-i.

§185. (.±Ji)^(^ ±(^ ;

where c = (a
2 —

J)
2

.

§ 186. («+ $)(a— $) = a* — b.

§207. iC
2 + 2px+ !?

2 =:0 = (x
—

ai)(x-a 2 ).

2p = — (a 1 + a 2 ). q
2 = aia 2 .

x=z-p±J(p*-qS).
§§ 232, 233. If a : b = k :

I, then al = bk ;

§ 23d. a : & r= 5 : Z ; ltb = k:a;

§ 235. b : a = 1 : k;

§236. a±6:a = £±Z:&;

§ 238. a ± rcJ : £ ± wZ = 5 ± ma : I ± mk ;

§ 239. ma : nb == mk : nl ;

§241. an : b
n z=kn :l n

.

§ 240. If a : 5 = e :/= g : A = h : 2,

then a+ e-[-5
r+ ^ : ^"H/'+^-M — a : *•

§242. a:b = k:l; e:f—g:h; r : s — x : y.

aer : bfs
—

hgx : Ihy.
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§§250,251. l=a+{n — \)D. * = $»(«+ Q-

a[m
n—l) _bn

— a

§§ 258-261. I = am"" 1
; * = —3- ~

m~^l
'

A
§258. A=p(l + ry. P=

^l+ry
^

(l+r)
t— 1 . ar 1 \

And when w= co,

^=^ 1 +^+—2-i-r72-3 +&c
-)

as^= ^(2.718 281)*. §§ 330, 342.

§ 273. No. otpermutations of rc tilings= 1.2.3.4 . . n — [»]-

§ 274. No. of arrangements of w tilings, taken p and ;>
=

»(n
—

1) .... (n—p+ l) = [«, w— i»+ l]-

$ 275. No. of combinations of w things, taken ^? and jp
=

?i(?i—1) . . (w—p+l) _ [w, n—j?+ l]

1 . 2 . 3 . . . p |>]

§ 280. If M+ JVSc+ Pa; 2+ &c.= for all values of x,

then if= ; ST= ; &c/

§ 294. (x +y)
n-

x\+ je-^+^^-**-
2
3/
2 + &c.

$295. i.) (^±^=^(l±f|+^f^^±
&c-)

, „„~ ^ . n(n— 1)
§300. Dn :=±a l ^:na 2 ±-^-——^a 3 q:&c;

taking the upper signs, if n is even ; and the lower,

if it is odd.
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§301. „.= a
,+ (n

- 1 )J>,+ ("~ *>

[

(*~ 2)J8+ Ac.

§304. j=
,.,+sfe^p,+

M

<"7;

1

><7
2>
J,+to

^307.
? = I(±

*
).

§323. !^gT=Jf[y_l_|(3,_l)2_j_ i(y_i)3_&cj.

§§ 327-8. J/= —J- — U,
a— 1— i(«— l)

2 +&c. Xa

§§329,330. J^= .434 294 481. e = 2.718 281.

§340.
. = l + Za.*+I^:+ (Mi|L+&c.

§351. a;
n
4-^4 1

xn~ 1
. . -|-^ n= =

(a;
— aj . .

(a;
—

a,,;.

§355. A
x
= — (a 1 +a 3 +a„);

i 2 =a 1
a2+ a

1
fl 3 -l-&c. -4„=r±(a 1a 2

. . a„).

t§ 365-7. X—sf-^A^- 1
. .+^„:=0, and#= z— a/.

T-y^^-B^-^ .... + JB„_ 1y + .£„-0:

or r=y:»+ f^*+f%py +/(*) = 0.

The parenthesis with the sign of equality, it will be ob-

served, is sometimes used as an explanatory expression.

Thus (§ 18),
" 10-i(=^)" is used for " 10" 1

(i. e. TV-"



ALGEBRA.

INTRODUCTION.

§ 1. Algebra" is that branch of the science of

number, which employs general sy7nboh
h

of quantity*.

a.) Arithmetic*, in its largest sense, includes the whole

science of number ; but, in its popular use, the term is lim-

ited to that branch of the science, which employs symbols

of known and particular numbers only; as 2, 3, 10, 12.

b.) Algebra, on the other hand, employs general symbols

(for the most part, Italic letters of the alphabet), any one of

which may represent any number whatever. Thus a rep-

resents, not some particular number, but simply a number.

Note. Such symbols are termed algebraic or literal", in distinc-

tion from those of common Arithmetic, which are termed numerical'.

A quantity expressed algebraically is often called an algebraic quan-

tity or expression.

c.) For convenience and perspicuity, certain classes of

letters are usually appropriated to distinct uses. Thus, the

first letters of the alphabet, as a, b, c, usually stand for

known or given quantities, and the last, as x, y, z, for un-

(a) A word derived from the Arabic
;
the Arabs having been among

the earliest cultivators of this science. (6) From the Greek av/ij3o?,nr,

token, sign, (c) From the Latin quantus, how much, (d) Greek,
upt&noQ, member, (e) Latin, littera or litera, a letter. (/) Latin,
numerus, number.

AI,G. 2



14 INTRODUCTION. [§ 2.

known ox required quantities; while for exponents (§ 16),

the letters near the middle of the alphabet, as m, n, p, are

oftener used.

Note. A quantity is regarded as known, when it may be assum-
ed at pleasure; as unknown, when it cannot be assumed, but must
be found from its relation to the known quantities.

d.) A quantity is sometimes represented by the first let-

ter, or by several letters of its name : thus interest is repre-
sented by i ; sum, by S; difference, by D ; time, by t ; veloc-

ity, by v ; radius, by r or R ; sine, by sin ; cosine, by cos }

tangent, by tan9 ; &c.

e.) Different quantities of the same kind, or standing in

the same circumstances, are sometimes represented by the

same letter accented. Thus similar known quantities may
be represented by a, a' (read a prime), a" {a second), a'" [a

third), &c. ; similar unknown quantities by x, xJ
, x", &c.

So, if the radius of one circle is represented by R, the radius

of another may be represented by R', &c. A distinction is

sometimes made, by using different forms of the same let-

ter ; as x, X; u, U; r, R.

SIGNS.

§ 2. In addition to the symbols of quantity above

mentioned, Algebra, in common with other branches

of mathematics, employs certain symbols of opera-

tions and relations, called signs*. Thus, the sign of

a.) Equality, =, equal to ; as 1 foot= 12 inches ;
a = b.

b.) Inequality, 1. Superiority, >, greater than ; as 10>7.

2. Inferiority, <, less than; as 7<10; 5«<6a.

Note. The opening of the sign of inequality is always towards

the greater quantity.

(g) Radius, sine, cosine, and tangent are the names of certain lines

;lrawn in or about a circle, and express quantities of great import-

ance, and of continual use in the higher applications of Algebra

(h) Latin, signum, mark, sign.
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signs. lo

•.) Addition, -\-,plus\ or together zvith ; as 6+4= 10 ; x-\-a.

d.) Subtraction,
—

, minus', or less ; as 7—3= 4
;
la—3a.

Note. The quantities, which are connected by the signs + and

—
, are called terms*.

e.) Multiplication, X, or .
, into, or multiplied by; as 4X5 or

4.5= 20; 4aXob= 20a,b= 20ab.

Note. Between numbers and letters, and between letters them-

selves, the sign of multiplication is commonly omitted. Thus 3abc

is the same as 3XaX6Xc. Between numbers, on account of the

local value of figures, the sign can never be omitted. Thus 35 i<

not the same as 3X5.

/".) Division, —, divided by ; as 8-^-2 = 4
; 6a-|-2 = da.

Note. Division is more frequently denoted by writing the divi-

dend above, and the divisor below a fractional line. Thus a divided

by b is written-; 8-^-2
— -= 4.

g.) Inference, .*. , therefore, as a= 5, .\ 4a= 20.

A.) Union. The parenthesis, (), or vinculum 1

,
either hori-

zontal, , or vertical, |
,
is used to show that several

quantities, connected by the signs -4- or—
,
are to be tak-

en together, or subjected to the same operation. Thus

(3+4)X2, or (3-f-4).2, or 3+4.2, or 3 2, shows that 3

and 4 are to be added together, and their sum multiplied

by 2. So (a+b) (a—b) ; 6—(4—2) = 6—2 = 4. With-

out the parenthesis, the last expression would be 6—4—
2= 0.

Other symbols will be introduced and explained, as they
are needed.

§ 3. It should be remembered that these signs are abbre-

viations for words ; that they are, in fact, words and phrases
of the algebraic language.

(i) Lat. plus, more, (j) Lat. minus, less, (k) Gr.repfia, bound,
limit; Lat. terminus, Fr. terme. (Z) Lat., tie, bond.
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a.) Translate the following expressions into common

language.

a\-b . a—b
L—+— =«•

Ans. The quantity obtained by adding b to a and divid-

ing the sum by 2, together with the quantity obtained by

subtracting b from a and dividing the difference by 2, is

equal to a.

Or, The half of a plus b, plus the half of a minus b, is

equal to a.

3. («+&) (c-\-x)
= ac-\-bc-\-ax-\-bx.

4. 7?Xsin(a+£)=sin a cos 6+ cos a sin b. See J. 4,

below.

5. aa+aV+a'V+a"'^'^ (a+a'y-fa'")1-

G. (100+40+4)12 = 144. 10+2= 1728, <200X 10.

5.) "Write, in algebraic language, the following sentences.

1. 10 added to 4, and the sum diminished by 8, is equal

to 3 times 4 divided by 2.

Ans. 10+4—8= 3x4-^-2.

2. a multiplied by b, and the product divided by e, is

equal to x multiplied by a, and the product diminished by b.

3. The diiference between a multiplied by x, and h mul-

tiplied by y, is equal to m multiplied by e.

4. Radius into the sine of the sum of a and b is equal to

the sine of a into the cosine of b, together with the product

of the cosine of a into the sine of b. See a. 4, above.

5. The sum of a and b is greater than c, and c is greater

than the difference of a and b.

The greater brevity and clearness of the algebraic lan-

guage cannot fail to be observed.
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POSITIVE AND NEGATIVE QUANTITIES.

§ 4. In finding the aggregate of any number of

quantities, or terms (§2. d. N.), those, which tend to in-

crease the amount, are called positive"
1

, and, as they

must be added, are preceded by the sign + ; those,

which tend to diminish the result, are called nega-

tive", and are preceded by the sign
—

,
to show that

they must be subtracted.

1. A has Bank Stock, to the amount of $2000, Real Es-

tate, S5000, other property, $1000 ; he owes to B $500,

and to C 8300. What is the net amount of his property ?

Here the items of property tend to increase the amount,

and are, therefore, positive ; the debts diminish the amount,

and are, therefore, negative. The former must, consequent-

ly, be preceded, or affected by, the sign +, and the latter,

by the sign
—

. Hence, we shall have, for the true ex-

pression of the net value of the estate,

+2000+5000+1000—500—300=+ S7200.

a.) The character of every term as positive or negath< .

must, of course, be indicated in the expression. Quantities,

however, are regarded as positive, unless the contrary is

shown ; hence, if no sign is prefixed to a term, the sign +
is always understood. Hence, when a positive term stands

alone or at the beginning of a series of terms, its sign is

usually omitted. Thus 5 is the same as +5 ;

so 4—3= +4—3 ; a=+a ; a-\-b= +«+&.

2. Let the items of property amount to $10,000, the

debts, to $9000. "What is the aggregate, or the net estate ?

3. What is the aggregate, if the property be represented

by a, and the debts by b?

(m) Lat. positivus, from pono, to place, as placing or giving value,

(n) Lat. negativus, from nego, to deny, as denying value.

2*
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4. Again, suppose a surveyor runs on one side of his

field 20 rods east, and, on another, 15 rods west. What is

his distance east of his starting point, i. e. his departure, as

surveyors call it? Am. 20—15= 5 rods,

or E. 20 rods, W. 15 rods=E. 5 rods.

The distance run east is positive, because it increases the distance

east of the starting point; and the distance run west is negative, be-

cause it diminishes that distance.

b.) As each sign indicates simply the character of the

term before which it stands, the order of the terms is obvi-

ously immaterial, provided each retains the proper sign be-

fore it. Thus 4—3 is the same as —3+4. So,

10—8+6= 10+0—8= 6+10—8= —8+6+10.

5. How far will a surveyor be east of his starting point,

if he runs 10 rods west, and 50 rods east ?

Am. —10+50= 50—10= 40 rods.

G. A owes $5000, and holds property to the amount of

$20,000. What is his estate ?

7. What, if he owes a dollars, and holds property to the

amount of b dollars ?

8. What, if he owes $5000, and holds $5000 worth or

property ?

9. What is his estate, if his property amounts to $5000,

and his debts, to $6000 ? Am. 5000—6000= —$1000.

or, property $5000, debt $6000= debt $1000.

In this instance, $5000 of the debt can be paid, and there will re-

main $1000 to be paid afterwards, i. e. to be subtracted from any

property, which may be afterwards acquired.

10. A surveyor runs 20 rods east, and 30 rods west.

What is his distance east of his starting point ?

Am. —10 rods,

or, E. 20 rods, W. 30 rods = W. 10 rods.

20 of the 30 rods run west can be subtracted from the 20 run east,

nnd 10 remain to be subtracted. Thus, if he should afterwards run

15 rods east, his distance east of his first starting point would be

—10 +15= 5 rods.
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c.) If it bud been proposed to find his westerly distance

from the lirst point, the easterly distances would have been

negative, and the westerly, positive.

In like manner, if we had proposed, in the examples

above, to find the net indebtedness, we must have made

debts positive, and property negative.

§ 5. Thus the contrary signs + and — show that

the quantities, before which they are placed, are in

precisely opposite circumstances; that is, that they

produce opposite effects in respect to the aggregate

result
;

—
that, as in the case of the distance east and

west, they are reckoned in opposite directions. In

other words, the sign
— is the algebraic expression

for contrariwise, or, in reference to distances, back-

wards.

Thus, if distance north be positive, distance south is neg-

ative ; if, for instance, north latitude have the sign*-)-, south

latitude must have the sign
—

. If distance upward be

positive, distance downward is negative ;
if future time be

positive, past time is negative ;
if velocity in one direction

be positive, velocity in the opposite direction is negative ;

&c.

§ 6. A negative quantity is frequently said to be less than

zero. This expression is most conveniently illustrated

by examples 8 and 9, above. In example 8, the net estate

is
;
in example 9, it is—$1000. But a man, whose prop-

erty is as represented in example 9, is obviously poorer

than he would be, if, as in example 8, he were worth sim-

ply nothing. He is worth less than nothing. It is not

meant, that the thousand dollars to be subtracted, is less

than zero ; but, that it has less tendency to increase his

estate, than zero would have ; that is, it has a tendency

actually to diminish his estate.

a. In like manner, if he had owed $2000, he would have

been worth less than he is now, when he owes only $1000.
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Hence, we say, that —2000<—1000. That is, the sub-

traction of 2000 leaves a smaller remainder than the sub-

traction of 1000. In other words,
—2000 tends to increase

the debt more, that is to increase the property less, than
—1000, and is therefore said to be itself less.

So, in example 5,
—10 gives a greater distance west

and therefore a less distance east, than —5 could have giv-

en ; and either of them, a less distance east than 0. Hence,

0>—1;—2>—3; —5<—4; +a > ;
—a<0.

b. Again, if we begin with 3 and subtract 1, we diminish

the amount ; and we continue to diminish it, as long as we
continue to subtract 1. Thus,

3—1 = 2; 2—1 = 1; 1—1= 0; 0—1 =—1
;
—1—1=—2.

Or, if, from the same quantity, we subtract continually

greater and greater quantities, we shall obtain less and less

remainders. Thus,

3—2= 1; 3—3= 0; 3—4=—1; 3—5= —2;

that is, the greater the quantity to be subtracted 1 the less

the remainder.

§ 7. As a positive and negative quantity are reck-

oned in opposite directions, the difference between

l hem is greater than either, and is equal to the sum of

the units in both.

Or, as a negative quantity is less than zero, the difference

between a positive and a negative quantity is greater than

the difference between the positive quantity and zero ; and

greater by just so much as the negative quantity is less

than zero ; that is, by the number of units in the negative

quantity.

1. A has $5000, and B owes $5000. What is the dif-

ference of their estates ? i. e. by how much is A richer than

B ? Ans. 5000+5000= $10,000.

«.) If they should combine their estates, the aggregate

value would be 0. The difference between them is clearly
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$10,000, the sum which B must obtain, in order to be as

rich as A. This difference is expressed thus, 5000—
(—5000). Hence,

5000—(—5000) = 5000+5000 ; or —(—5000) =+5000.
So — (

—
a) = +a. Hence,

b.) The subtraction of a negative quantity has the same

effect as the addition of an equal positive quantity.

2. The latitude of New Orleans is 30° North; that of

Buenos Ayres is 34° South. How many degrees is the

one place North of the other ? That is, what is the differ-

ence of their latitudes ?

3. X has a dollars, and Y owes b dollars. "What is the

difference between their estates ?

Ans. a—
(
—

b) ~a-{-b, as in example 1.

4. At sunrise on the 20th of February, the thermome-

ter stood at 30° below zero; at sunrise on .the 20th of

March, it stood at 30° above zero. What is the difference

in the temperatures ?

5. The reading of the thermometer on one day is —10°

(10° below 0) ; on another day, it is —20°. Which indi-

cates the greater heat ? How much? §G. a and b.

§ 8. The process of finding the aggregate of several quan-

tities, regard being had to their character as positive or

negative, is algebraic addition ; the process of finding the

difference between quantities so considered is algebraic sub-

traction. Arithmetical addition and subtraction, on the

other hand, relate to numbers regarded simply as such,

without distinguishing them as positive and negative.

(a) The algebraic sum may be less than the algebraic

difference (§7. a) ; and (b) the algebraic sum may be equal

to the arithmetical difference (§4) ; or (c) the algebra!'

'Ference, to the arithmetical sum.
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FACTORS AND POTTERS.

§ 9. Quantities multiplied together are called, a?

in Arithmetic, factors" in respect to the product.
and are also called coefficients'2 in respect to each

other.

Thus, in the expressions 3a, 2a, ba, bca, and ha, 3, 2, b,

be and I are coefficients of a. In 3xy, 3 is the coefficient

of xy ; ox. of y ; and 3y, of x.

a.) The coefficient shows, how many times the quantity

multiplied is taken as a term (i2. d. N). If the coefficient

is positive, it shows how many times the quantity is added :

if negative, how many times it is subtracted (§4). Thu-.

3a= a-\-a-\-a : 2x =. x-\~ .

—3X+a——a—a—a= 3X—a=—3a.

So —aX-\-b= aX—b= —ab.

—2X—a= —(—a)—(—o ) = a+a (§ 7. a, b)
= 2a.

Note. In the last example,
—a is to be subtracted twice; and

subtracting
—a twice has the same effect as adding +a twice (§7 b).

Hence, if two factors multiplied together are both posi-
tive or both negative, the product is positive : if one is posi-
tive and the other negative, the product is negative. Or.

more briefly.

Like signs give -{-, unlike, —.

1 . What is the product of 2a and—b ? of—2ab and —c ?

aX—xy= what? —3aX—.ry? —3aX—xy? —2
X—3 ?

h.) A letter, or combination of letters, used as a coeffi-

cient, is called a literal coefficient ; a number, so employed,
is called a numerical coefficient. Coefficients are also dis-

tinguished as integral orfractional, &c.

(o) hut., maker, producer, (p) L. productus, produced, i e. by
the multiplication. (</) Lat. coefficio. to aid in forming, a co-fac-

tor, (r) Lat. integer, ivhole : numbers are called integral or whole.
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When no numerical coefficient is expressed, 1 is always

implied. Thus a is the same as la; x=lx; abzzzlab.

1. In labcx, wh t is the coefficient of x? of ex? of bcx'i

2. In xyz, what is the coefficient of x? ofy? of xyz?
3. In (a-\-b)(a

—
b)c, what is the coefficient of c ? of a-\-b ?

of a—J ?

4. In —5a far, what is the coefficient of a:? of ox? of
—5x ? —5a ? —ab ? abx ? —abx ?

§ 10. The combining of factors into a product is the

work of multiplication : the separation of a given fac-

tor from a given product is the work of division.

Thus, by multiplication, we combine the factors, 3 and 4.

into a product 12 : by division, we separate the given fac-

tor 3, from the given product 12, and find the other factor

4.

a.) The given product is called, in reference to division,

the dividend'' ; the given factor the divisor
1

; and the re-

quiredfactor, the quotient".

b.) The divisor and quotient are the factors of the divi-

dend. They are, therefore, coefficients of each other. If

then the letters of the divisor be found in the dividend, we
have only to suppress or cancel them, and the remaining
factors constitute the quotient (division of the numerical co-

efficients being performed as in Arithmetic).

Thus ab-^b— a ; abx-^-ab zzz x
; 7abcxy-^Tac =zl bxg.

1. 2abx-r-b =. what ? IQabcxyz-^Sabz?

2. 3.4.5.6-^3.6= what? 1.2.3.4.5.6^6.5.4?

3. o-r<*=what? ab+ab? 1.2.3-^1-2.3?

Note. When the divisor is equal to the dividend, the quotient is

ob%iously unity.

in distinction from fractional (Lat. frango, to break), or broken
numbers, (s) Lat. Dividendus, to be divided. (I) Lat. divisor, a
divider from divido, to divide, or separate, (u) Lat. quoties, or

quotiens, how many times, as it shows how many times the divisor is

contained in the dividend.



24 INTRODUCTION. [§10.

c.) If the divisor contain factors, which are not found in

the dividend, we may cancel the common factors, and ex-

press the division by the remaining factors of the divisor in

the usual form (§2. /and ~N).

2bc
Thus lahc-^ax= 2bc-Jrx, or .

x

labxu , „ abx _ Ibex „ sin a cos & „
1. -= what? ? ? ?

bcxr be 3bc cos a cos b

a 1.2.3.4 . . 20. 5.4.3.2.1 „
2. = what ? -r

4.5. 15 1.2.3

Note. This, it will be observed, is equivalent td the process of

reducing a fraction to its lowest terms. This process may be applied

in all cases. Whenever all the factors can be cancelled out of either

the divisor or the dividend, unity will be found in their place. If

this happen to the divisor, the quotient will be found in the usual

form as above (b) ; if to the dividend, unity will stand above the line,

or in the place of the dividend, and the remaining factors of the divi-

sor will stand below the line, or after the sign; if to both divisor and

dividend, the result will be 1-^- 1 =z 1.

d.) If the dividend is positive, its factors (the divisor and

quotient) must have like signs (both positive, oi
: both neg-

ative) ; and if the dividend is negative, its factors must have

unlike signs (one positive, and the other negative) (See

§ 9. a). Therefore.

If the dividend is positive, a positive divisor gives a posi-

tive quotient; a. negative divisor, a negative quotient; if the

dividend is negative, a positive divisor gives a negative quo-

tient ; a negative divisor, a positive quotient. Hence, as in

multiplication,

Like signs give -f-, unlike, —.

Thus, ^-= +b, for (+a)(Jrb) = +ab i ±^ = +4.

-\-b,foT(~-a)(+b)= —ab;
'

-a —3
A-ab -4-12TUL= -b, for (-a) (-b) = +ab ; ^ = -4.
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=£= -&, for (+«) (-J) = -*>& ;
~=-4.

1. _9«Z,_^_2a;=what? —2ab-+2a? 2ax^-—a?

2. _iOx-| 10 = what? 60-; 10? —GO-; 10?

§ 11. When a factor occurs more than once in a

product, it is usually ivritten but once, and the num-

ber of times it is employed, is denoted by a number

or letter placed over it at the right, called an expo-

nent", or index™.

Thus, instead of aa, aaa, bbbbbb, we write a 2
,
a3

,
b G ;

instead of 2.2, 2.2.2.2, 3.3.3.3.3.3, we write 2 2
,
2 4

,
3 e

,

the exponent, in every case, showing how many times the

quantity over which it is placed 'is taken as a factor; in

other words, how many equal factors the product contains.

Thus, in the expression, (a~\-b)
3

,
the exponent

3 shows

that a-\-b is taken three times as a factor, or that the pro-

duct consists of three factors each equal to a~\-b. So, the

product a'2 b 3x 6 contains two factors equal to a, three equal
to b, and five equal to x.

1. Write 2.2.3.2.3.2 with exponents. Am. 2 4.3 2
.

2. Write aabcabac with exponents.

3. Write 2 3 .\0 3 .o±.b* without exponents.

4. Write a i b 3 c 2x 5
y

6 without exponents.

Note 1. These expressions may be read thus; a 2
, a taken twice as

a factor; b 3
, b taken three times as a factor; &c. Also, a 1

, (§11.

a), ao (§13), a taken once, a taken no times as a factor; a 2
"

(§ 12) a taken half a time as a factor; a~ 2
(§ 14), a taken minus

twice as a factor; &c. Or, if the teacher prefer, the student may
examine § 22 and a under it, and use the expressions given there.

Note 2. A negative quantity may obviously occur more than once
as a factor; as (—a)(—a)= (—a) 2

; (—b)(—6)(—b) =(—b)
3

.

In such cases, if the number of factors be even, the product will be

positive; for, if they be combined two and two, the product of each

(t>) Lat. exponens, setting forth, showing, (w) Lat. indicator'
mark.

ALG.
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pair will be positive (§ 9. a) ; and the product of these positive pro-
ducts will, of course, be positive. If the number of factors be odd,
the greatest even number will give a positive product, and this, mul-

tiplied by the remaining negative factor, will give a negative pro-
duct (§9. a). Hence,

If the number of negative factors be even, the product will be pos-

itive; if odd, negative. Thus,

(—a) a =+a* ; (—a)
3— —a 3

;

(—a;)*
= -f-a?*; (—x)*

——x 5
.

a.) When a quantity is taken as a factor only once, the

fact may be shown by the exponent
l

; but in this case, the

exponent is usually not written ; and whenever no exponent
is written, 1 is always implied. Thus a is the same as o 1

j

ax=a 1 x 1
; ax 2 =za 1 x 2

.

§ 12. b.) The fraction J shows that the unit is separated
into two equal parts, and that only one of them is taken.

i i
So the exponent

2
,
in the expression a 2

,
shows that a is

separated into two equal factors, and that only one of them

is employed ; in other words, that a is introduced as a fac-

tor, half a time. If this half-factor were introduced two,
2. a ±

three, orfour times, we should have a 2
,
a 2

,
a'-. Thus,

£ i. x Li i 4
a 2 = a 2 .a 2.a~.a 2= (a

2
) .

If a were separated into three, four, or n equal factors,

11-.
and one only employed, we should write a 3

, a*, «" ; if tioo

were employed, a5
,
a4

,
a n

; &c. Hence,
The denominator of a fractional exponent shows, into how

many equalfactors the quantity under the exponent is sepa-

rated ; and the numerator shows, how many of these fac-

tors are employed. Thus,

9^= 3 ; 9^= 9^9^=3.3= 9; 9 *= 3.8.3= 27.

8^= 2; 8^= 2.2= 4; 8^= 2.2.2.2= 16.

1 . What is the meaning of (aa)
2

? of i? 2 ? of a$ ?

2. (#
2
)*= what? 16*! 27 * ? 25 ^ ? 36* ? 49 ^ ?
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e.) Otherwise, as f= i of 4, a 2
indicates, that one half

of four factors each equal to a are introduced ; or that a

had been introduced four times as a factor, and the pro-

duct, so formed, had been afterwards separated into two

equal factors, of which only one was actually employed.

Thus,

a$= a*X 2= (a
4
)
*= (aaaa)?=zaa=a

z
.

Hence, again,

The numerator of a fractional exponent shows, how ma-

ny times the quantity under the exponent has been em-

ployed as a factor ; and the denominator shows, into how

many equalfactors the product so formed has been separated.

1 £ 3
™

Thus a3
,
a3

,
a4

,
an

indicate, that a, a
2

,
a3

,
am have been

separated, the first two into 3, the third into 4, and the

fourth into n equal factors, of which only one is employed.
Or that a is employed as a factor £, ~, f,

" of a time.

Thus, 9^= (9
2
)
2
"= (9.9)'= 9; 8^= (8

2)^= (8.8)^

= 64*= (4.4.4)*= 4.

(i?
2)5— (R2.R2.Esy=(B.B.B.R.R.li.)i=(RG)?=

1. What is the meaning of (aa)*? of 2 2 ? of 3-?

of3 2
? ofxh

2. (£2)
2 — what? 16*? 27*? 5*? 2 2 ? (x

3
)*?

§ 13. d.) Any quantity, which is not found as a factor in

a product, may be introduced with zero for an exponent.
For this exponent will show, that the quantity, though writ-

ten, still is not employed, or is employed no times, as a fac-

tor ; and, of course, the value of the expression is the same
as if the quantity were not written. Thus a°bx 2 is the

same as bz 2
; ax°= a; but oXl=a; that is, aX#° =

aXl; .-. x° = l. Hence,
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Corollary I. Any quantity with zero for its exponent is

equal to unity.

Note. A corollary1 is an inferencefrom a preceding prin-
ciple.

§14. e.) "When a factor is introduced less than no times

(§ 6.), i. e. -when instead of being introduced, it is taken out,

the fact will be properly indicated by a negative exponent

(§§4,5). But a factor is taken out by division (§10).

Consequently, a negative exponent shows, that the quantity
under it is to be employed as a divisor, as many times

(§ 11), or parts of a time (§ 12. b, c), as there are units or

parts of a unit in the exponent. Thus, in the expression
a~ 1

x, a, instead of being multiplied into, is to be divided

x
out of x, and the expression is therefore equivalent to -.

a

Also, in the expression a 2
x, the negative factional ex-

ponent
2
indicates, that a is separated into two equal fac-

tors, and that one of these half-factors (§ 12. b) is taken out

five times by division ; i. e. that the whole factor a is taken

out five halves of a time. This is evidently the same thing

as saying, that it is introduced minus five halves of a time.

In other word3 a 2
indicates, that a product, containing a

five times as a factor, is separated into two equal factors,

and that one of these two factors is to be taken out by di-

vision. The expression is, therefore equivalent to —.

a"

So,

*-»*-*. 10-112-^- 2- 5'-ii-^-

9-*.6= -^= |= 2. See§§17, 19.

^ 3

1. 2~ 1 .3= what? 3-V2? 10~ 2 .30? I5-1.80?

(x) Lat. corollarium, something given over and above, from co-

rolla, a wreath, a common present or mark of honer.
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2. «- 3 5= what? a°b~ lx? b~*x? aV^ar 1
? a~mxm ?

§ 15. /.) If a quantity be found any number of times in

n multiplier and multiplicand, it will be found in the pro-

duct as many times as in both the factors. For

a 2 b 3 Xaib=zaabbbXaaaab= aaaaaabbbb (§2. e. N) =
a G b*. Hence,

Cor. II. The exponent ofany quantity in a product wil

be equal to the sum of its exponents in the factors.

1. a 2b2 Xab= what? ax 2Xa2x? a°bc*Xa*bc* ? a3

x°X« 3
y?

2. 2 3 .3 3 X2.3 2 =what?
Ans. 2*.3 5 = 16X243= 3888.

3. 2 2.34x2°.3= what? 5 3.2x5°2? 10 2 X10 3 ?

4. 100*X 100^= what?

Ans. 10.10 3 = 10* = 10,000.

5. 100*X100 = what? 25*25*? 27*.271 ? 16*.16*?

6. a*Xa 2= what? cfix<$? 16 2 .16 2
? 10*. 10$?.

§ 16. g.) It is also evident, that the exponent of a quan-

tity in one of the factors must be equal to the exponent of

that quantity in the product, minus its exponent in the oth-

er factor. Hence,

Cor. III. The exponent of any quantity in a quotient is

equal to the exponent of that quantity in the dividend, mi-

nus its exponent in the divisor.

5.

m a 5 aaaaa n 10 3
„.„ a 2 4

Thus—= — aa— a 2
;
-—=10 2

;
—= a* =

a3 aaa 10 3

a

{aaaaf = a 2

, x3
,

_ a 7 b3 r « 2 J 2 a 3 b 2 . ax5 .
1. —-= Whftt? rr—i — ?

5
? ?

x 2 a*b ab ab 2 a°x

x 3

2. — = what ? ^4w5. a;
3-3 =:x° = 1 (Cor. I).

*3
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3. cfi-r<$— what? 10 2-M0*? a+c$? a^~a 2 ?

4.—-= what? Ans. x 3~*= x~ 1
, or — =z—. Hence

x* x± x

§ 17.
It.)

We have ar-i =-. See § 14
x

-/
, «?

'/*'> IT10 Y*

In like manner, —,
—

,
—

,
-—

, give x~ 2
,
x~3

, x~*,

1111
«—*=—

,
—

,
—
-,
—
-, respectively. Hence,

x 2 ' x3 '

x* x11
' l J '

Cor. IV. A quantity xoith a negative exponent is equal to

unity divided hy the same quantity with an equal positive

exponent.

§ 18.
?'.)

The quotient obtained by dividing unity by any

quantity is calied the reciprocal 1' of that quantity. Thus

1 1 1 1 -o-

-,
—

, 1-f-a,
—

-, -7-T, 1-i-a
2

,
or the equivalent expressions

x x 2 10 10"

_i
x— l

, x—-, a-1
,
10— x

,
10— 2

,
a 2

,are the reciprocals of x,

x 2
, a, 10, 10 2 and a- respectively. Also the reciprocal of

10~1 (= TV) is
jrpr

= 1 -T- tV = 10 5* tlie reciprocal of

a- 2 (=\) is -i^l-r- 4= « 2 -* Hence,
• \ a 2 / a— a-

To express the reciprocal of any quantity, we have only

to change the sign of its exponent.

Write the answers to the following questions both by means of

exponents with their signs changed, and under the fractional form.

What is the reciprocal of 2 ? of 3 ? of 10 ? of J ? of \ ?

of TV(=10-i)? ofi? of.01? ofx 2 ? ofar-3? f

0- 3 ? of9 2 ? of 8^ ? of 25"^ ?

(y) Lat. reciprocus, returning upon itself, mutual.

*Note. This is evidently true; for, if a unit be divided into 10

equal parts, one of them will be contained in any quantity 10 times

as often as the whole unit is contained in the same quantity; and, if

thi unit be divided into a 2
equal parts, one of these parts will be

contained a 2 times as often as the whole umt.
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L) Positive and negative exponents have the Bame rela-

tion of contrariety or oppositeness as other positive and

negative quantities (§5). Thus, an exponent shows, how-

many times or parts of a time a quantity is introduced as a

factor. The opposite to introducing a factor is taking it

out. When therefore a quantity is said to be introduced

minus three, or minus n times, as a factor, it is the same

thing as saying that it must be taken out three, or n times

(§14). Thus, in example fourth (§ 16), x can be taken

out three times, and the fact, that it is to be taken out once

more, is indicated by the negative exponent
—1 (§

4. c).

It is to be so taken out, whenever, in subsequent multipli-

catiun, x shall be introduced.

If the operation be represented and performed in the

x3 1
fractional form, we have —= —

; that is, three of the four
x+ x

factors of the divisor are cancelled out of the dividend, and

one remains to be taken out, whenever x shall be introduced

into the dividend.

§ 19.
I.)

As the factors under the negative exponent di-

minish the whole number of factors in the product, there-

fore,

(1.) In combining the exponents of a letter in the factors,

to find its exponent in the product, the negative exponents

must be treated precisely as negative terms in making

ud an aggregate (§4). Thus a3X«—1 =a2
;
x 5 Xxr~4,=

x y- —X.

1. x 8 X^- 6 =what? x 13Xar4 ? a 2 b 2 Xa~ 1 b?

2. x 2 Xx~~ 5= what? Ans. x 2~ 5 = x~ 3
.

x 2

But —— x 2~ 5 —x~ 3
.

x b

. . i*/ /\ \Aj —— *Aj ^
*A* .

(2.) In like manner, if negative exponents be found in

a divisor or dividend, they must be treated like negative

terms in finding a difference (§7). Thus,
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a*-^a- 3 = a 2-
(-

3)= a 5
. See § 7. a, h.

But a 2Xa3 =fl 5
.

a 2-ra- 3= a 2Xa3
.

Hence (1, 2),

Cor. IV. To multiply or divide by a quantity with a neg-

ative exponent, is the same as to divide or multiply by the

quantity with an equal positive exponent.

Or, more generally,

To multiply or divide by any quantity is the same at

to divide or multiply by its reciprocal.

Thus ab 2 cx 2
y-^-abc= ab 2cx 2

y X a~ 1 b- 1 c~ i = bx*y.

2 2 .3 -± 2.3 = 2 2 .3 X 2-i.3-i = 2.

1. abc -f- abe z= what ? abcXa— 1 b~ 1 ~c 1 ? o 2xX«-1x?
a-x~ax~ l ?

2. 2 2 .3 2 .4 2 -^-2.3.4rr: what? 2 2 .3 2 .4 2-^2- 1 .3~i.4- 1 ?

2.3.10-^2.3 ? 2.3.10-^2- 1.8-1 ?

3. cAcf*= what? «_2\a~ 2 ? 10-2\10~* ? x.x~h

4. a 2
-^-a~

2
"= what ? z-^""^ ? cT^+cT^? 10^-10"*?

§ 20. m.) When a quantity is taken a9 a factor any num-

ber of times, and the product so formed is again taken as a

factor any number of times, the first quantity will evident-

ly be employed a number of times equal to the product of
the exponents. (See § 12. Examples.) Thus,

(a
3
)
3 =a 3 .a 3 .a 3 =a<>; (a^=flW= o^;

1. («-4)
3 =what? (2

3
)
2 ? (10

2
)*? (x*y? (a

s
)~h

(a
m
)
n
? (2

s
)
3 ?

?i.)
Thus we see that the exponent may be either inte-

gral or fractional, positive or negative, and it may be either

known or unknoion.

§21. 0.) The analogy, as well as the difference, between

the coefficient (§ 9. a) and exponent, is very obvious. Both

relate to the introduction of equal quantities ; the coeffi-
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dent, of equal terms (§ 2. d. K) ; the exponent, of equal /ac-

tors (§ 9). If positive, they ajw-m the introduction of the

quantities; the coefficiently addition (§ 9. a); the exponent,

by multiplication (§ 11). If negative, they aVfty the intro-

duction, i. e. they affirm the removal or taking out of the

quantities ; the coefficient, by subtraction (§ 9. «) ; the ex-

ponent by division (§ 14). Iffractional, they show the in-

troduction or removal, by addition or subtraction, or by

multiplication or division, as the case may be ; the coeffi-

cient of equal fractional parts (§ 9. J) ; the exponent, of

«0M«£ components" (§ 12) of the quantity.

That is, they show, how many times or parts of a time,

a quantity is introduced or taken out ; the coefficient, as a

term ; the exponent, as a. factor. In other words, they show

the introduction, positively or negatively (§ 4), of a term or

factor, so many times as there are units in the coefficient or

exponent.

Thus +2X4= 4+4= +8; 4+ 2 = 4x4=16.

_2X 4=-4-4= -8; 4-«=^=Q=^
+£.16 = i(S+8) = 8 ; 16

+*= (4.4)* = 4.

_i.l6-i(_8-8)=-8; 16"*= -^-
=—^= \

16* (4X4)
2 *

So, x-{-0Xa=.x Jr = x; xXa°—xXl—^-
1. Write abbbccxxxx with exponents.

^4«s. a 1 &3 c 2x 4
.

2. Write in like manner, aayy, fefcc, (a-\-b)(a-\-b).

3. Write a-b 3x 1
y° without exponents. Ans. aabbbx.

4. Write in like manner, a 4
j; 5

, (a+6)
2

, (a
—

6)
3

.

5. Write with exponents 2X2x3x2x3x4.
Ans. 2 3 .3 2 .4 1

.

6. Write with exponents 2X2X2X3X3X2X3X4X4.
7. 4 3 — what? Am. 4X4x4=64.

(z) Lat. coinpono, to compose ; factors, which, multiplied together,

produce a quantity, are called its components.
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8. 4*= what? 53? 7 2 ? 10*? 10 5 ? 21 2 ?

9. What is the difference between 10x4 and 10 4 ?

10. Show the difference between 3a and a 3 ?

Arts. 3a— a-{-a-\-a ;
a3 =zaXaXa.

11. What is the difference between a° and aXO? be-

•ween 10° and 10X0? between 1° and 1X0? between

» u
,
1° and 10° ? between 1°, l 1 and l 2 ?

i

12. Show the difference between \a and a 2
.

Ans. \a-\-la= a, crXa = a.

i

13. What is the difference between l00XHand 1002 ?

ween i of 9 and 9- ? between £.27 and 27 3
? between

§.16 and 16^?

14. What is the difference between —3 2
,
3~ 2

,
3—2 and

3(-2)?

^s.-3 2 =-9; 3~ 2 =p= i; 3-2= 1 ; 3(-2)= -6.

15. Write in like manner 6, 8, 10 and 15, and interpret

the exnressions.

1G. What is the difference between 9" and 9 2
? 8 3

and 8~f ?

17. What is the reciprocal of 10 ? of 10 2 ? of 100?

of—10? ofl? of a? of-^r? of-? of a- 1 ? ofa
?
?

10 a

'«-"? of 100*? of 27"*? of 8^?

18. a2-^a=what? a*+a°? a*+a 2 ? a 2-~a 3 ?

19. « 3
-^-«= what? o 3H-a°? a 3-^" 1 ? a 3-H*- 2 ?

20. Substitute 10 for a in the last two examples.

22. If a is employed m times, and b, n times, what is the

expression for their product ?

§ 22. Any quantity ivith an exponent, is called a

i'ower of the quantity under the exponent.
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Note. The quantity under the exponent is called the base,, of

the power.

a.) A power is designated by its exponent. Thus,
x~ 2

is read x minus second power; x~ 1
,
x minus first power.

'" "
a: zero power; x 1

,
x first power.

x2 " x second power or square* ; re
3

,
x third power or

cube .

1 2.

Xs " x one half power ; x 3
,
x two thirds power.

_i
x 2 " x minus one half power, &c.

b,) It will be observed, that the term power, as used

here, has a wider signification than is attached to it in

Arithmetic. In Arithmetic, the term is applied only to a

product of equal factors. As here defined, it includes a

single factor (§ 11. a), unity (equal to the zero power (§ 18)

of a factor), and all products and quotients formed by mul-

tiplying and dividing (§ 14, 17) unity, any number of times,

by the factor, or by any of its equal components (§ 12, 14).

c.) We have therefore several classes of powers, distin-

guished by the characters of their exponents. Thus, there

are

(1.) Powers with positive integral exponents (§ 11), the

same as ordinary arithmetical powers ;

(2.) Powers with positive fractional exponents (§12),

consisting of equal components and their combinations ;

(3.) Powers with negative integral exponents (§ 14), the

reciprocals of the first class ; and

(4.) Powers with negative fractional exponents (§14),
the reciprocals of the second class.

d.) Powers of these several classes are sometimes called

positive, negative, &c, powers ; meaning, not that they are

positive or negative, integral or fractional quantities, but

(a) Gr. /3aaif, foundation, (b) Lat. quadra, Fr. quarre'; be-

cause the second power of a factor represents the surface of a square,
whese side is represented by the factor (Geom. §§124, 171, 177).

(c) Gr. Kii/3oc; because the third power of a factor represents the solid

content of a cube, whose edge is represented by the factor.
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that they have such exponents. So a power, whose expo-

nent is an even number, is frequently called an even pow-
er ; one whose exponent is an odd number, an odd power.

§ 23. One of the equal factors (§12) of a quantity

is called its root.

a.) A root is called the second or square, the third or

cube, the fourth, the nth, according as it is one of two, three,

four, or n equal factors, which produce the given quantity ;

i. e. into which the given quantity is separated.

Thus 2 is the third or cube root of 8, because it is one of

three equal factors, which produce 8. So a is the third

root of a 3
,
the fourth root of a 4 ; a 2

is the second or square

root of a 3
,
because it is one of the two equal factors, into

which a 3
may be separated (§ 12. c).

b.) A root of any quantity is properly expressed by writ-

ing the quantity under a fractional exponent, whose numer-

ator is unity, and whose denominator is equal to the num-

ber of the root (§ 12. c). For this denotes, that the quan-

tity under the fractional exponent is separated into so many
equal factors, as there are units in the denominator, ami

that only one of them is taken. Thus,
x i

The second or square root of a is cr
;
that of a 2 is («

2
)

— a -

(§ 20) — a ; the third or cube root of a is a6
; that

of a 2
is

2)*=cA
c.) The principle of § 12. b, c may, therefore, be express-

ed as follows :

A fractional exponent shows, either that the root of the

base, denoted by the denominator, is raised to the power de-

noted by the numerator (§ 12. b); or, that the base being
raised to the power denoted by the numerator, the root de-

5

noted by the denominator is taken (§ 12. c). Thus, a 2 ex-

presses the fifth power of the second or square root of a
;

or the square root of the fifth power of a ; so 8^ is equal
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to the square of the cube root of 8 ; or to the cube root of

the square of 8.

d.) A root is also frequently indicated by the radical*

sign, */
c

, placed before the quantity, with a number over

the sign, to show the number of the root. In expressing
the second or square root, however, the number is more

frequently omitted ; and, accordingly, wherever the sign
stands without a number over it, it must always be under-

stood to denote the square root. Thus,
x

.y4= 4 2 = the second or square root of 4.

V8= 8*= " third or cube « «
g.

«V« ==«*= " fifth " " a.

Note. Either of these forms of expressing the root, may be used

at pleasure, and both should be made familiar. The fractional ex-

ponent is, however, generally, more convenient than the radical sign;
and is, besides, to be preferred because it exhibits roots as a class of

poivers, and enables us to refer the operations upon roots to tho gen-
eral principles, which govern the operations upon powers. Quanti-

ties written under a radical sign are frequently called radical quan-
tities.

e.) As the product of an odd number of positive factors

is positive, and of negative factors, negative (§11. Note 2) ;

hence, an odd root (i. e. a root denoted by an odd number)
of any quantity must have the same sign as the quantity it-

self. Thus,

(+a)
3 —+« 3

>
and (

—
a)

3 =—a 3
.

(+a3
)
*

or V+a 3 = +a ;

JL

and (—a 3
)
3

,
or 3y—a 3=—a.

/.) Again, since the product of an even number either of

positive or of negative factors is always positive (§11. Note

2) ; therefore,

(1.) Every even root
(i. e. every root denoted by an

(d) Lat. radix, root, (e) A modified form of the letter r, the
initial of radix.

ALG. 4
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even number) of a positive quantity may be either positive

or negative.

This character of the root is denoted by the double sign

± (read plus or minus). Thus,

(+a)(+a)=:-(-a
2

,
and (—«)(—«) = -(-a

2
.

(a
2
)
2
or ya 2 == ±a.

(2.) An evera root of a negative quantity, can be neither

positive nor negative, and therefore does not really exist,

and is said to be imaginary. For neither (-\-a)(-\-a),nor

(
—

a)(
—

a) can produce
—a 2

.

§ 24. It is evident, from the definition of a power, that

whatever has been demonstrated of quantities with expo-

nents is true of powers. Hence we have the following

rules.

RULE I.

a.) To multiply powers of the same quantity to-

gether.

Add their exponents. § 15. Cor. II.

a4 .a3 = what? a~\a G ? Ac 2 ? aAaf*? 3*.3~ 3 ?

RULE II.

b.) To divide a power of a quantity, by any pow-
er of the same quantity.

Subtract the exponent of the divisor from that of

the dividend. § 16. Cor. III.

_=what? — ? ^? gj? -t? ~?

RULE III.

c.)
To find the reciprocal of a power.

Change the sign of the exponent. § 18.
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What is the reciprocal of a ? of a4 ? of 10 ? of 10 2 ?

of lO-i? ofi^? ofa 2ar 2 ? ofx^? ofa^cc
-5

?

RULE IV.

d.) To find any power of a power.

Multiply the exponent of the given power by that of

the required power. § 20.
3

•-

1. What is the second power of a 2 ? of a 1
?' of 16 2

?

of 16"^? of—a?

2. (a
2
)-

2 — what? («*)
e

? (—10)
3

? (or*)*?

3. (a*)*=what? (10g)
2 ? (R

2)~h (xrf? (lO^h

§ 25. e.) The last rule obviously applies equally to the

finding of a root ; i. e. a power, whose exponent is unity di-

vided by the number of the root (§ 23. b). But to multiply

by such a fraction is the same as to divide by its denomina-

tor. Hence we have the common rule for finding a root of

a power :

Divide the exponent of the power by the number of the

root.

What is the third root of a 3
? of a 2 ? of a ? of 10 6 ?

What is the second root of 10 4 ? of x 3 ? of x 6 ? of 2 ?

What is the third root of 10 2 ? ofa^? ofa^? of af"
3?

Note. It should be borne in mind, that the word power is used,

!n all these cases, in the ividest sense; and that the rules are equally

applicable to all the classes of powers specified in § 22.

§ 26. A quantity, whose value is determined by the

value assigned to another quantity, is said to be a

function7 of that other quantity.

Thus, a2
,
a 3

, a*, are functions of a, because their value

depends upon, and is determined by, the value assigned to

(/) Lat. functio, from fungor, to perform, as depending on the

performance of certain operations upon another quantity.
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a. Thus, let a= 1, then a 2= l; if a= 2, then a- = 4;

if a= 10, then a 2 = 100.

So, if 2«= a; 2
,
or u— 2x, or u— 3x, then m is a function

of a;
; or, as it is usually expressed, u= F(x), or u =zf(x) ;

where F and f are not factors, but mere abbreviations

for the words function of

A power is a function of a quantity, expressed by
an exponent written over the quantity ;

i. e. an expo-

nentialfunction of the quantity.

§ 27. A power is said to be of such a degree^ as

is indicated by the exponent. Thus,
a3 is of the third degree; « 2

,
of the second; a of the

JL

first; «~ 4
,
of the minus fourth; and a 2

,
of the one-half de-

gree.

§ 28. The degree of a term is equal to the sum of
the exponents of its literal factors. Thus,

a, x, 2x, 3a 2
:*:-

1
,
a 3 b°x~ 2 are of the first degree.

L I 3 _X. 2. 1

So a-x-, a-.x -, a'sx's are of the first degree.
\ 3

2ax, 2px, y
2
,
a*b~ 2

, p
2x 2 are of the second degree.

3a-x is of the third, and Aa 3
x, of the fourth degree.

i a
a2

is of the one half, and a 3
,
of the two thirds degree.

a~ 2x~ 2
,
and a 3x~ 7 are of the minus fourth degree.

1. 9c< 5 64 c- 3 is of what degree? 15x 2
y
2 ? 5a3

&X&cy?
5 3 2 7 5 _2 1 _2_

«-&%? 3a%3? a 3x 3 ? a3« 3 ? or 3* ?

Note. A term ia also sometimes said to have as many dimen-

sions 71 as there are units in its degree.

(g) Fr. degre', from Lat. gradus, step, (h) Lat. dimensio, from

dimetior, io measure. The use of this word resulted from taking a

factor to represent a line, and, consequently, a product of two fac-

tors to represent a surfaco, and one of three factors, to represent a

solid. The factors were therefore regarded as the dimensions, or

measures of the magnitudes. See Geom. §§3, 170,177. The word

is, of course, not strictly applicable to any term of a degree higher

than the third (Geom. § 2. a), or lower than the first.
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a,) In estimating the degree of a fractional term, the

exponents of the letters in the denominator must, of course,

be regarded as negative (§ 14, 16), and subtracted from the

sum of the exponents of the letters in the numerator. Thus,
3 n - h * ft I)y— is of the first degree ;

—-r- and ,
are of the second.

a 2 a c

b.) A term is said to be of the first, second, third or nth

degree with respect to a particular letter or letters, when it

contains the first, second, third, ^or nth. degree of the letter

or letters. Thus,

3a 2
x, and a~ 1x are of the first degree with respect to x.

b 2x 2 and ax 2 are of the second " " x.

x

abx2 and +/x are of the one half " " x.

a 2
x°, and abc are of the zero " " x.

axy is of the first degree with respect to either a, x or

y ; and of the second degree with respect to x and y, or

any two of the letters ; while it is of the third degree with

respect to all the letters.

§ 29. Terms of the same degree are said to be ho-

mogeneous'.

Thus,^, 2x, and \a
2x~ x are homogeneous. So a 3

,
Sax-.

. ... ab B2x"
xyz ; m like manner, y,

—
,
and .

2 f /
x,

1. Are A 2
y

2 and B 2x 2
homogeneous? x 3

, 2y
2 and x'r

JR 2 and sin a sin b?

§ 30. Terms, which consist of the same literalfac-

tors, with the same exponents (i.
e. each letter being

of the same degree in the several terms), are called

similar or like terms.

Thus, 2xy, 8xy, and 3yx are similar terms ; so 3x 2
y, and

\x
2
y. But 3x 2

y and 3xy
2 are not similar, because, though

the letters are the same, they have different exponents in

the two terms. Are 3x 2
y and 3xy

2
homogeneous ?

(i) Gr. buoyevris, compounded o( 6/jor, like, and yevoc, kind,
*1
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Are a 2b 2 and x 2
y
2 similar? Are they homogeneous?

a.) Thus terms may be homogeneous without being sim-

lar, but they cannot be similar without being homogeneous.

b.) Terms, in which the same letter, with the same expo-
nent, enters, are sometimes said to be similar with respect
to that letter. Thus the terms ax, obex and c*x are similar

with respect to x.

MONOMIALS AND POLYNOMIALS.

§ 31. A quantity consisting of one term, is called a

monomial*; of more than one, a polynomial'. A
polynomial of two terms is called a binomial'"; one
of three terms, a trinomial".

Thus, 2ax, a, a 2 b 2
,
abc are monomials ; so aby.xy-^z ;

a-\-b, a—b, x-—y
2 are binomials; a-\-b-\-c, a 2

±2ax-\-x
2

are trinomials.

§ 32. A polynomial is said to be homogeneous.
when all its terms are homogeneous (§ 29.).

Thus, a 3±3a 2
b-\-3ab

2 ±b 3
,
A 2

y
2
-{-B

2x 2—A 2B2 are ho-

mogeneous polynomials.

1. Is x 2
-\-y

2—R 2
homogeneous? x 5±ox4

y-\-lQx
:i

y-
±\0x 2

yZ-\-oxy±±y
5 ?

b3 b3

2. Is a 2A-b 3 homogeneous? a 2
1 ? a 3

-\ ?c ' a a

§33. When the several terms of a polynomial contain

different powers of any letter or letters, it is generally con-

venient to arrange the terms according to the powers of

some one letter ; that is, to write the term containing either

the highest, or the lowest power of the letter first, and the

other terms successively, according to the order of their ex-

(fc) monome, from Gr. fiovoc, alone, and bvojia, Lat. nomen,

name; as being expressed by a single name or term. (I) poly-
nome from Gr. -oA<'< , many, and oroiia, name, (m) Lat. bis, twice,

and nomen, name, (n) Lat. tres, three, and nomen, name.
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ponents ; from highest to lowest, or from lowest to highest.

If the highest exponent is placed first, the terms are said to

lie arranged in a descending series, or according to the des-

cending powers of the letter ;
if the lowest is placed first.

the arrangement is said to be in an ascending series, or ac-

cording to the ascending powers of the letter.

Thus, a 2
-\-2ab-\-b~ is arranged according to the ascend-

ing powers of b, and according to the descending powers of

a.

1. Arrange oa Q
b-\-3ab

2
-\-b

3
-\-a

3
according to the des-

cending powers of a ; of b.

2. Arrange
r

qx
n~ 2Jrx

n
-\-px"-

1
-\-rx

n- 3
according to the

descending powers of a?.

Note. The letter, according to whose powers the terms of a po-

lynomial are arranged, is frequently called the letter of arrange-
ment. When there is no special reason for a different order, it is

generally convenient to write the letters of each term in the order of

the alphabet; and also to take the first of those letters, as the letter

of arrangement.

REDUCTION OF POLYNOMIALS.

§ 34. A polynomial, which contains similar terms.

can be reduced to a simpler form.

This is done according to the principles of § 4. Thus,

in the polynomial 4a—6a-f-9a
—

3a, 4a and 9a are to be

added, and 6a and 3a are to be subtracted. It is usually-

most convenient to brino; together the terms which are to

be added, and also the terms which are to be subtracted,

and then take the less from the greater. If the quantity

to be added is greater than that to be subtracted, the result

is to be added ; i. e. is positive. If the quantity to be sub-

tracted is greater than that to be added, the result is to be

subtracted ;
i. e. is negative (§ 4. a, b). Hence, for reduc-

ing or simplifying a polynomial containing similar terms,

we have the following
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RULE.

Add together the coefficients of such similar terms

as have the sign +; and then the coefficients of such

as have the sign
—

; take the less of these sumsfrom
the greater; and prefix the remainder, with the sign of
the greater, to the common letter or letters. Thus,

4a—6a-\-9a
—3a— 4a-f-9a

—6a—oa= 13a—9a= 4a.

a.) Terms of a polynomial, which are not similar, will,

of course, remain as they were ; each being preceded by its

own sign.

Reduce the following polynomials to their simplest form.

1. a 2
—ab—ab-\-b

2
. Ans. aj—2ab+b

2
.

2. a 2
-\-ab—ab—b

2
.

b.) There may be several sets of similar terms in the

same polynomial. In that ease, the above method must, of

course, be applied to each set separately. Reduce,

1. 5a_|_G6—7x—8J-f3a—4a+2ic+9a—3x.

2. «*_3a3x-{-3a
2x 2—ax 3—a 3

x-\-3a
2x 2—3ax 3

-{-x*.

3. l-\-x—l-\-x. 4. 1-4-x+l—x.

5 . y
2
-\-x

2
—px-\-\p

2—x -—px—\p
2

.

6. 2bx-\-2x
2—b 2—2bx—x 2

.

7. a 3+a 2b+ab 2—a 2b—ab 2—!>3
.

c.) If a polynomial contains several terms similar in res-

pecl to a certain letter (§ 30. b), the same principle will ob-

viously apply. Thus, the terms ax-\-bx
—

2cx, are similar

in respect to x. Now, a times x, 2)lus b times x, minus 2c

times x is evidently the same as x taken a-\-b
—2c times,

which (§ 2. h) is expressed (a-\-b—2c)x. Hence, we may
write the coefficients, whether numerical or literal (§ 9. b),

of the common letter or letters in the several terms, in or-

der, with the signs of the terms ; enclose the whole expres-

sion, so formed, in a parenthesis, or put it under a vinculum ;
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and write the common letter or letters, without the paren-

thesis or vinculum, as a separate factor. Eeduce,

1. A 2x 2—c 2x 2
. Ans. (A

2—c 2
)x

2
.

2. 2px"-\-px
—
px".

3. j^yz+B 2x 2—A 2B2—AV 2—B-x" 2
-\-A

2B 2
.

§ 3-5. The numerical value of an algebraic expres-

sion is the result obtained by assigning particular

values to the letters, and performing the operations

indicated by the symbols. Thus,

Let a= 10, and b= 5, then a-f-5= 15; (a-\-b)
2 =z

15 2 = 225 ;
a 2

-\-2ab+b
2 = 10 2

-f2.10.5+5
2 — 225.

1. Let«= 10 and 5= 4, and find the value of a 5
-\-

3a 2
b+3ab?-{-b

3
; (a—b)

2
; a 2—b 2

; (a+b)(a—b).

2. Find the value of the same expressions, when a = 8,

and b= 3; when a= 20, and 5= 5; when a= 10, and

5=10; when a = 10, and 5= 9 • when a= 1, and 5= 1.

3. Find the value of y^-2x— 4, when ?/
= 10, and #= 3 ;

when y= 8, and :c= 2 ; when #= 4, and x= 0.

EQUATIONS.

§3(5. The expression of equality between two

quantities constitutes an equation" ; as,

5+4= 10—1 ; dmXa" = am+n
; 3x= 15 ; ax= b.

a.) The two quantities themselves are called the mem-

bers1' or sides of the equation. The member on the left

of the sign is styled the Jirst, and that on the right, the sec-

ond member.

b.) Most of the investigations and reasonings of Algebra
are carried on by means of equations.

§ 37. c.) The simplest form of equation is that, in which

(o) Lat. sequatio, from icquo, to make equal, (p) L. membruin.

limb.
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the two sides are precisely alike ; as 10= 10 ; x-\-2 ±= x~\-2.

These are called identical'1 equations.

d.) Another class of equations we have already employ-

ed, in expressing the results of operations, or the truth con-

tained in such results. Thus, a 3 X«4 = « ;
;
aman= a'"+" ;

l-7-x=. x~ l
(§17). These may be called absolute equa-

tions ; inasmuch as their truth has no dependence upon the

value assigned to a, x, m or n. The second member

necessarily results from the operation indicated in the first.

§ 38.
e.) In another class of equations, there is no abso-

lute and essential equality between the members ; but they
are equal only on the condition, that some particular value

or values be given to one or more of the quantities involv-

ed. Equations of this kind may be called conditional equa-
tions. Thus, 2x=10 is a conditional equation, in which

the equality of the members depends on the condition, that

x shall be equal to 5. If 4 were taken as the value of x

the two members would not be equal ; we should have 8

on one side, and 10 on the other. But taking x=^5, then

2X5= 10, or 10= 10.

f.) A conditional equation, moreover, itself furnishes the

means of investigating and ascertaining the value which

must be given to x, in order that the members may be

equal ; that the equation may become absolute or identical.

For lx is obviously half as much a3 2x ;
if then, we have

2x=zl0,

we shall have a:= ^ of 10= 5, the necessary value

of x, as above.

Conditional equations may therefore be called equations

of investigation.

§ 39. Any quantity, to which a particular value must be

given, in order to render the members equal, is called an

unknown quantity (§ 1. c, N). That value of an unknown

quantity, which renders the members equal, is called a root

(q) Fr. identique, from Lat. idem, the same.
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of the equation. "When this value is substituted for the un-

known quantity, it is said to satisfy or verify the equation.

The process of finding the root of an equation is called solv-

ing the equation.

Note. When equations, without any specification, are spoken of,

or when the subject of equations is spoken of, as a branch of alge-

braic science, the expression must, in general, be understood to im-

ply conditional equations.

§ 40. Conditional equations are distinguished into

orders, according to their degree.

a.) The degree of an equation depends on the degrees of

its terms with respect to the unknown quantity or quanti-

ties (§ 28. b) ; and is determined by the range of those de-

greesfrom lotvest to highest.

b.) The full consideration of this subject would involve

the consideration of equations containing negative and frac-

tional powers of the unknown quantities.

c.) For the present, however, it is sufficient to consider

those equal ions only, in which the exponents of the un-

known quantity or quantities are all integral, and in which

the least of those exponents is zero.

d.) In this, case, the degree of the equation is ihe

same as the highest degree of its unknown quantity

or quantities. Thus,

ax ~b, 2x— 10, and x-\-y
— 10 are of the first degree.

ax 2 =b, x'2-\-3x = 10, and xy= 20 are of the second

degree.

§ 41. We shall, at present, confine ourselves to the con-

sideration of equations containing but one unknown quanti-

ty ; subject also to the limitation mentioned above (§ 40. c).

These equations are said to be of the same degree
as the highest power of the unknown quantity which

they contain. Thus,

3x= 18 ; ax— b are equations of the first degree.
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x- — 9 ; ax 2
-\-bx= c are equations of the second degree.

ax*-\rbx*-j-cxz=hi x 3 =S « third "

a^+6x 3 =rc; x4 = 16 « fourth «

xn+^"- 1+&c.= 7« is
" nth «

Note. Equations of the_/irs£ degree are sometimes called simple

equations ;
those of the second degree, quadratic*; those of the third,

cubic ; and those of the fourth, biquadratic*.

\ 42. All reasoning by means of equations pro-

ceeds upon a single axiom", or self-evident truth
;

viz. Equal quantities, equally affected, remain

equal. Geom. 20.

The meaning of this axiom, which, though not always

expressed in words, is assumed in all mathematical opera-

tion, may be illustrated by a few familiar examples. Thus,

3x5 = 15 is an equation. Adding 2 to both sides, we

have 3X5+2 = lo-f-2. Subtracting 4 from both sides of

the first equation, we have 3x5—4=15—4. In like

manner, we might multiply or divide both sides by the

same quantity, and obtain equal products or quotients.

Hence, if both members of an equation be

a. increased by the addition of,

h. diminished by the subtraction of, \ equal quantities, the re-

c. multiplied by, [ suits will be equal.

d. divided by, J

§ 43. I.) 1. Given x—3= 7 ; to find the value of x.

Add 3 to each side ;

then a;—3+3= 7+3. § 42. a.

or x= 10, the value required.

2. Given x—5 = 4, to find the value of x.

Ans. x= 9.

3. Given x—1G= 20, to find the value of x.

(s) Lat. quadra, square, (t) Lat. bis, tivice,and quadra, square.

(») Gr. utjiu/ia, from dftou, to deem worthy, suppose, take for grant-
ed.
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II.) 4. Given x-{-3 = 7, to find x.

Subtract 3 from each side ;

then x+3—3 = 7—3. § 42. b.

or x= 4, the value required.

5. Given x-|-10= 15, to find a\ ^4ns. x= 5.

6. Given 2a;= 10-f-#, to find x.

Subtract x from each side ;

then 2x—x= 10-\-x—x. § 42. b.

or a?= 10, the value required.

7. Given 3x—10= 10-(-2x, to find the value of x.

Note. To verify or prove these results, we have only to intro-

duce, into the given equation, the value found for the unknown quan-

tity in place of the unknown quantity itself. Thus, in example 1

above, substituting for x its value found, we have

10—3= 7, an absolute equation. See §39.

Verify the otber equations in like manner.

§ 44. Thus we see that the application of § 42. a and b

causes any term, which stands on one side of an equation,

preceded by the sign either of addition or subtraction, to

disappear from that side, and to reappear on the other

side with the opposite sign. Thus, in § 43. 1, by adding 3

to both sides, and reducing, —3 is canceled in the first

member, and -f-3 appears in the second ; so, in § 43. 4, -f-3

is canceled in the first member, and —3 appears in the

second.

This is called transposition
1
'. For the same effect would

obviously have been produced, if we had simply removed

the term from the one side, and written it with the oppo-
site sign upon the other. In fact, removing—3 (i. e. ceas-

ing to subtract 3) from the first member (§ 43. 1) increases

that member by 3 ; 3 must, therefore, be added to the sec-

ond member, to preserve the equality. So (§ 43. 4), re-

moving -f-3 (i. e. ceasing to add 3) diminishes the first

(t>) Lat. transpositio, from transpono, to place beyond, carry ovi r,

ALG. 5
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member by 3 ; 3 must, therefore, be subtracted from the

second member. Hence,

Any quantity may be transposedfrom one side of an

equation to the other, if, at the same time, we change

sign.

If we transpose all the terms of an equation, the signs

will all be changed, and the members will still be equal.

Hence,

Corollary. The signs of all the terms of an equation

may be changed at pleasure, without affecting the equality

of the members.

It is also evident from § 42. a, b, that the same quan-

tify, with the same sign, occurring on both sides of an equa-

•. may be suppressed.

c.) The object of transposition is, in general, to bring all

the terms containing the unknown quantity to stand on one

^ide of the equation ;
and all the known terms, upon the

i ither. The polynomials so formed should, of course, be

reduced to their simplest form (§ 34).

1. Given 8a+4= 72+12, to find the value of x.

2. Given loy
—3 = 12+5?/—3+9?/, to

L
find the. value

of y.
Ans. y= 12.

3. Given 2x-{-a-\-b= ox-\-2a
—

2x, to find x.

Ans. x= a—b.

4. Given 4a+-3a+25= 4a+3a+S, to find x.

5. Given 2>x—10= 5+2x—15, to find x. Ans. x= 0.

6. Given 2x—10=x—15, to find x. Ans. x=—5.

x
^ 45. 1. Given -+3= 8, to find x.

4

Transpose 3
;

then i— 5 - § 44>
4

Multipl}' by 4 ;

then x= 20. §42. c.
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To verify this equation, substitute 20 for x, and we hav<

20
_-J-3 = 8; or 5+3 = 8, an absolute equation.
4

2. Given ^—5= 3, to find x. Ans. x= 24.
o

X
3. Given -—^x—2= 0, to find x.

Multiply by 2
;

then x—%x—4= 0. -'. c.

Multiply by 3 ;

then 3a;—2x—12= 0.

Reducing, a;—12 = 0. § 34.

x= 12. H4-

4. Given -— -= 5, to find x.
6 4

§ 46. Thus, if a quantity in an equation be divided by

any number, the application of § 42. c enables us to free it

from its divisor, i. e. to clear the equation offractions.

The terms of an equation may, therefore, be freed

from divisors, or, in other words, an equation may be

cleared of fractions, by multiplying- all the terms of
the equation by the denominators of the fractional

terms.

Note. The equation is to be multiplied first by one of the denom-

inators, and then the resulting equation by another, and so on, till all

the terms containing the unknown quantity become whole numbers

In this process improper fractions may always be reduced to whole

numbers, whenever it can be done; and no more multiplication.-

should be performed, than are necessary to clear the equation of

fractions.

a.) The same effect would obviously be produced by mul-

tiplying all the terms of the equation, by any common mul

tiple of the denominators ; i. e. by any number which th<

denominators will all divide without a remainder. For ii

^nominator will divide the multiplier, it will necessarih
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divide the product of its own numerator into that multipli-
er. Thus,

Let -+ -4-^— £^_i_i
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Divide the terms by 8 ;

then x= 2. § 42. d.

2. Given 3x-\-5= x-\-20, to find x. Ans. x— l\.

3. Given 4x—8 — 40—2x, to find x.

Thus it is obvious, that, when, by any means, a

single term containing the unknown quantity is

made to constitute one member of an equation, while

the other member consists wholly of known quanti-

ties, the root of the equation will be found by divid-

ing both members by Vie coefficient of the unknown

quantity.

Note. If the coefficient is unity, there will, of course, be no need
of dividing.

§ 48. Bringing together the principles above explained

(§§ 43-47), we have, for solving equations of the first de-

gree, containing but one unknown quantity, the following

RULE.

Clear the equation of fractions, and bring alt the.

terms containing' the unknown quantity upon one side,

and all the known terms upon the other. Reduce tht

two members to their simplest form, and divide them
both by the coefficient of the unknown quantity.

1. Given - +2= -
-|-

-
-|-3, to find x. Ans. x= 20,

2. Given 6|+^-3=^+^+2H, to find *.

6£ and 2\^ are obviously the same as 6-J-£ and 2-f-}£.
Either form may be used. In this instance, the latter form
will be found more convenient for reduction.

3. Given x—%xz=33—3x, to find x.

*5
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§ 49. Many equations, which are not of the jirst degree.

can be so easily reduced to that form, that they may, pro-

perly enough, be briefly considered in this place.

I. An equation may contain higher or lower powers of

the unknown quantity, which may be canceled by transpo-

sition, so as to leave no power higher than the first, or low-

er than the zero power. Thus,

Let *"+?+ -£+3 = x+af.

Canceling a", we have

—
-|
—

=
—

[-3
= x, an equation of the first degree,

o o

Equations of this form, or which, on reduction, take this

form, need no farther remark.

§ 50. II. An equation may contain only the zero and mi-

nus first powers of the unknown quantity. This may pro-

perly be called an equation of the minus first degree. But,

if we multiply by the unknown quantity, we shall evident-

ly reduce the equation to the common form of the first de-

gree. Thus,

Let x- l+2x~ 1+3x-i = 2
:

or 6a;- 1 — 2.

Multiply by x ;

then 6x° — 2x; or &=2x. < 12. -

x=-2>.

Otherwise, --j [--= 2. '<xx x

Clearing of fractions, 1+2+3= 2x ;
or 6= 2x. §46.

x— o.

Hence,

Equations of the minus first degree can be reduced to the

first degree by multiplying by the unknown quantity.

§51. III. Any equation containing only tico powers of

the unknown quantity, provided their exponents differ by
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unity, may evidently be reduced to the common form of the

first degree, by dividing by the lowest poicer of the unknown

quantity. Thus,

Let x 2—lOx= ; orx 2 = 10./ .

Divide by x ;

then a;—10= 0; or x =10. § 42. c£

So also if .T
n =5a:n

-i,

then, dividing by a.-"
-1

,
x— 5.

1. Given 3x 5
-f-2a;

4—x 3 = lx
5
-{-llx'

1
,
to find x.

3 1 3 X
2. Given x?-\-2x'- = ±x 2

-\-5x
2

,
to find a:.

a.) The principle of § 51 obviously includes that of § 50.

inasmuch as dividing by x~ 1 is the same as multiplying by

h.) The whole class of equations included under § 51, are

actually of the first degree, according to the more general

definition of the degree of an equation. For, the range of
the degrees of the terms with respect to the unknown quan-

tity, from loicest to highest, is expressed by unity (§ 40. a) ;

as is found by subtracting the lowest from the highest.

§ 52. IV. An equation may contain, besides the zero

power of the unknown quantity, only a simple root of the

unknown quantity ;
i. e. it may contain only the zero and

the one half, one third, or ith powers of the unknown

quantity. The equation, in this case, is of the one half,

one third, or Ith degree. Thus,

\ Let x = 5 ; or^Ac— 5.

Squaring both members (§ 42. c),

we have x= 25.

So, if we had x n — a, or
n
*/x =z a, we should find x= a".

Hence,

An equation of the 1th degree can be reduced to tbe first

degree, by raising both members to the nth power.
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Note. This operation evidently comes under §42. c, for the

members being equal, multiplying them by themselves is multiply-

ing them by equal quantities. So, if they be separated into the same

number of equal factors, one factor on one side will be equal to one

on the other; i. e. anyfractional power or root of one side is equal

to the same power or root of the other. For this is formed by divid-

ing all the factors but one out of each member (§ 42. d). Hence,

If both members of an equation be raised to the same power,
whether integral or fractional (§22), the results will be equal.

i i

1. Given Jar
3+2 = ^-\-o, to find x.

2. Given y
4+2 z= -^- -f-8, to find y.o

§ 53. We have classed equations with reference to their

unknown quantities. They are also sometimes distinguish-

ed, with reference to the form in which their hioion quan-

tities are expressed, as numerical or literal.

A numerical equation is one, in which the known quanti-

ties are all expressed by numbers ; as x- =. 10x-(-24.

A literal equation is one, in which a part or all of the

known quantities are expressed by letters ; as ax 2
-{-'2bx=. c.

§ 54. A conditional equation is the algebraic expression

of a problem™ ;
i. e. something proposed to be performed

or discovered.

Thus, the equation x—3= 7 (§ 43. 1), proposes this prob-

lem ; viz. To find a number such that if it be diminished by

3, the remainder shall be 7.

So the equation Ja:-|-3
= 8 (§45. 1), proposes this prob-

lem; viz. To find a number, whose fourth part, increased

by 3, is equal to 8.

State, in like manner, the problems involved in each of

the equations of §§ 43-52. Compare § 3. a.

§55. As we bave seen, an equation is the algebraic ex-

pression of a problem ; and the solution of the equation

gives the solution of the problem. Hence to solve a proL-

(w) Gr. npoffiriua, from Trpoj3u?J,<j, to throw or lay before.
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km, we have only to express its conditions algebraically by

an equation, and then solve the equation.

The process of expressing the conditions of a problem by
an equation is sometimes called putting the problem into an

equation ; and is frequently more difficult than the subse-

quent solution of the equation.

The student will most readily learn the methods ofform-

ing an equation from a problem, by stating the problems
involved in the preceding equations, and observing how the

conditions of each problem are expressed in the equation.

He will find, that the process conforms, in general, to th»

following

RULE.

Represent the unknown quantity by some letter, as

x ; then combine the known and unknown quantities

according" to the conditions of the problem. The re-

sult will be an equation expressing those conditions.

See § 3. b.

In this process, we treat the unknown quantity as if it

were known ; and perform upon it just those operations

which would be necessary to prove the correetnesss of the

result, if we had fixed upon a value for the unknown quan-

tity. We have, in fact, fixed upon a representative of that

value, in the letter which we have chosen to denote the un-

known quantity.

Problem 1. To find a number whose fifth part exceed-

its sixth part by 10.

Let x represent the number sought.
r

Then ±x, or "- will represent its fifth part.o

X
and \x, or - will represent its sixth part.

Then, by the condition,

^
—-10.

6
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6a;—5a;= 300. §46.

or x= 300.

Verification, —_ ££2— 60-50= 10.
5 6

Prob. 2. What sum of money is that, whose fourth part
exceeds its fifth part by 5 dollars ?

Prob. 3. What sum of money is that, whose fourth part

exceeds its fifth part by a dollars ?

Let x= the sum.

Then
*

%
— a.

4 5

• ••
( §46) 5x—4x= 20a ; or x= 20a, the sum.

Note. The last problem, it will be seen, is the same as the pre-

ceding, except that the difference between the fourth and fifth parts

of the number is denoted by a, which may represent any number

whatever. This is called a general solution, or generalization of

the problem. In this solution, a, the given excess of the fourth p;;rt

above the fifth, remains in the result; whence we learn, that the

whole number must be 20 times that excess. Thus, if that excess

be 1, the number must be 20; if the excess be 2, the number must

be 40; if the excess be 5, the number will be 100; &c.

Prob. 4. A, B, and C enter into partnership. A con-

tributes a certain sum ; B contributes three times, and C,

four times as much as A. Their whole stock is $20,000,

How much did each contribute ?

Let x = A's part ; then 3x= B's, and 4x= C's.

x-\-3x+4x= 20,000.

Prob. 8. A man and boy work together, for S75. The

man's work is worth four times as much as the boy's. How

shall they divide the money?



CHAPTER I.

ADDITION AND SUBTRACTION.

I. ADDITION.

§ 56. Addition is the process of finding the aggre-

gate of several quantities. See § 8.

Adding quantities is bringing them together, so that each

may have its proper effect in making up the aggregate ;

those which increase, and those which diminish the amount,

being characterized, each by the proper sign. See § 4.

Hence, for adding quantities, we have the following

RULE.

§
57. Write the quantities to be added, one after

another, each with its own sign.

a.) If the polynomial, thus formed, contain similar terms,

it may, of course, be reduced by § 34.

b.) This reduction can often be easily performed without

first writing out all the terms at full length. For this pur-

pose, there is an advantage in writing the similar terms

under one another. Thus,

Add a*+2a 3
y-\-a*y2,

—2a 3y—4a 2
y
2—

2ay
3

,
and a 2

y
2

+2ay*+y*.
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Writing these expressions with their similar terms un-

<1er one another, we have,

a*+ 2a 3
y+ a*y*— 2a 3
y
— Aa 2

y
2 —

2ay
3

«y + 2«y
3 +y4

a4 — 2a 2
y +y4

1. Add a-\-b to c-\-x. Sum, a-\-b-\-c-\-x.

2. Add a-\-b, and a—b. Sum, 2a.

3. "
Ja-f-^J, and \a

—
\b. Sum, a. That is, the half

sum -f- the half difference of any two quantities == the greater.

4. Add a 2
-\-ab, and aJ-(-5

2
.

5. " a"—ab, and ab—b 2
.

6.
" a 3—2a 2

&-j-«&
2

,
and o 26—2ai 24-£ 3

.

7. "
a;

3
-|-2^

2
^+«y 2

,
and ar^-f-Sx'y

2-^ 3
-

8. "
y

2
-\-x

2—
px-\-\p

2
,
and —x 2—px—\p

2
.

c-x 2
, . „ c 2x 2

9. « ^ 2+2cxH j—,
and A 2

—2cx-\
\

] A 2 ' l A 2

10. «
y

2
-(-^

24-2cx+r
2

,
and y

2+x 2—
2c«-f-c

2
«

o™2 o*3 1^4 "y»5 'y* 6 'y7 t>8 qcO

"• " ^-T+T-T+T-T+T-T+
IT'

^» 2 ^y»3 T*^ 9" ^ /

}
r> ® ^/*^ -1*8 CP^

and -^-T-T""T
_T—6—y—s~T

12. Add a 2
-j-2a5-fJ

2
,
and a 2—2ab+b 2

.

13. " sin a cos £>-|-cos a sin b, to sin a cos b—cos a sin b.

14. " 2a+ a 2x- 1
,

8a*~x""*, 6aar°, lOa5^, —15a°a:,

—12a~-x^, 9a- 1
;*;
2

,
lOa 2^- 1

, lla^aP*, 8«ar° ?

1 3—
5^/a^/x-|-5a a:-f-2a

2x5
,
and 18a x.

15. "
ay-\-bx, and a'y

—J'.t.

+v
Ans. (a-\-a')y-\-(b

—
V)x, or a

+a>'

1 G.
"

ay
—

bx-\-cz, a'y-\-Vx
—

c'z, and —a"y-\-b"x
—c"z.

17. "
y

3
-\-ay

2
-\-aby ; by

2
-\-acy, and cy

2
-\-bcy-\-abc ;

and arrange the result according to the descending powers

ofy (§§33, 34. c).
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18. Add, member by member (Geom. § 22), the equa-

tions —7x-\-5y= 19, and 10a;—5y=—10.

Arts. 3#— 9. .-. x= what?

PROBLEMS.

§ 58. 1. The sum of 2x—10 and 4x—20 is equal to 3a;.

What is the value of x ?

2x—10+4»—20= 3x.

Qx—30= 3x. .-. 6x—3a;= 30 ;

or Sx= 30. .-. x= 10.

2. The sum of 5a;—8, 2x—20, and x—10 is equal to

10—4a;. What is the value of x ?

3. The sum of %x
—

1, 2—|x, l-\-x
—

§x, and x—2 is equal

to ar-f-5. What is the value of x ?

4. The sum of 2x, 7x, fa:, and
—6 is —23. What is

the value of x ?

5. The sum of 13|
—

\x and—2a?4-8§ is nothing. What
is the value of a;?

13|—%x—2x-f8|= 0. .-. 22£ z= 2\x. .-. x= 9.

6. A's property is 3a dollars, and his debts 2a ; B's

property is 5a, and his debts 3a ; if they make common
stock of their property, what is their net capital, x ?

Let a= 100, 500, 1000, 10,000, and find the value of x in each

case.

7. An estate was divided among three sons. The eld-

est received $4000 less than one half; the second received

one third ; and the youngest received S2000 more than one

quarter of the whole. What was the estate, and what did

each receive ?

Let the estate be represented by x. Then we shall have

the share of the first —^ —4000 ;

x" second= -, and
o

ALG. 6
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share of the third= -
-j-2000. The sum of the shares

's, of course, equal to x.

8. Let the first receive a less than half; the second, one

third
; and the youngest, one half of a more than one quar-

ter of the estate. What was the estate, and what did each

receive ?

3C 3C CC Ct

Here the shares are -—a, -, and j+ <j'

x= 6a, the estate.

Let a— 1000, 100, 2000, 10,000, and find the value of the estate,

and the share of each.

9. A, B and C, form a partnership ; A puts in a cer-

tain amount of stock; B puis in $2000 less than the dou-

ble of A's ; and C invests $8000 less than the triple of A's.

The whole stock is $50,000. Required each one's share.

10. Suppose the sum of the distances of Mercury, Ve-

nus, and the Earth from the Sun is, in round numbers,

200 millions of miles ; and that the distance of Mercury is

31 millions less, and of the Earth 58 millions more than

that of Venus. What are their several distances ?

Let xz=z the distance of Venus.

II. SUBTRACTION.

§ 59. Subtraction is the process of finding the

difference between two quantities. See § 8.

a.) We have seen (§ 7. b), that the subtraction of a neg-

ative quantity has the same effect as the addition of an

equal positive quantity. Therefore, to subtract a negative

quantity, we have only to change its sign and add it.
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h.) It is also perfectly obvious, that, to subtract a posi-

tive quantity, we have only to put the sign
— before it ;

i. e. to change its sign, and add it.

Hence, for subtracting one quantity from another, we

have the following

RULE.

§ 60. Change the signs of the quantity to be sub-

tracted, and then add the two quantities.

a.) In expressions of this form, a+(b—c)—(c-f-#)+

(a_j_&)(c
—x), the quantities enclosed in the symbol of union

(§ 2. h), as (b—c), (c—y), and such quantities multiplied to-

gether, as (a+*)(e—x), are to be regarded as single com-

pound, or complex terms ; and the rule applies to the sign

before the whole term, and not to the signs between the

parts of the term. Thus, to subtract a—(b—c)+(«—b)

__(a_g)(_c) from ff,
we write

g—a-\-(b—c)—(a—b)+(a-b)(—c).

Here, the addition of (b—c), and the subtraction of (a—b)
is indicated. If this addition and subtraction also be per-

formed, we shall have g—a-{-b—c—a-\-b-\-(a—b)(—c).
Note. An operation is said to be indicated, when, without be-

ing actually performed, it is denoted by the proper symbol. Thus,

3abX'2ab is an indicated multiplication. So subtraction is indicated

by writing the subtrahend' in a parenthesis, and placing the sign
—

before it. Thus a—{b
—c).

b.) In subtracting a term preceded by the double sign.

the order of the signs will obviously be inverted. Thus,

a—(±b)= a^fb; i. e. plus or minus is changed to minus or

pins. 10—(±5)= 10^:5 =% or 15.

1. From a, subtract b-\-c. Remainder, a—b—c.

2. From a-\-b, subtract c. Rem. a-\-b
—c.

3. a+b—(a—J)
= what? Am. 2b.

(x) Lat. subtrahendus, to be subtracted, from eubtraho to take

away, subtract.
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4. lx-\-Ly—(\x—\y) =. what ? Am. y. That is, the

half sum — the half difference of any two quantities = the

less.

5. From x 2—y 2
, subtract x*-\-xy. Rem. —xy—y 2

.

6. From an—bn
, subtract an—ban- 1

.

7. From y
2
-{-x

2
-\-2cx-\-c

2
, subtract y

3
-f-x

2—
2cx-\-c

2
.

8. From A 2+2cx \

C

*~*\ take A*—2ex 1 °*f .

A* '

J. 2

9. From a 3—5 3
, take « 3—bet

2
.

10. From ba 2—b 3
, take a 2b—ab 2

.

11. From ab 2—b 3
,
take ab 2—b3

.

12. From 3& 23ri+4&V~*—6fy°—10&V+8S"^ take

—2&V 1—%°-f2&V^+5^"—26°y+3&~^—3/>-^ 2
.

# 2 x 3 ic* a? 2 e 3
13. From x — -4— p subtract —.r— —
a:
4T

14. From 1Ox—ly— 30, subtract 8a:—ly= 20.

15. From^V-he^ 2 ^:^ 2^2
,
subtract ^V 2+^ 2

x" 2=A 2B2
. Rem. A 2

{y
2
—y"

2)+B2
{x-—x"

2
)
= 0.

§61. It is sometimes important to indicate the subtrac-

tion of a polynomial, without actually performing it.

Thus, a-\-x
—

(b-\-c
—

d) which, when performed, :

a-\-x
—b—c-\-d.

As, in performing a subtraction which has been ind

ed, we change all the signs of the quantity within the pa-

renthesis ; so we may return from a performed, to an indi-

cated subtraction, by re-changing all the signs of the quan-

tity whose subtraction is to be indicated, and enclosing the

terms hi a parenthesis, with the sign
— before it. We

may, therefore, put a polynomial under different forms,

without affecting its value. Thus,

J2_2Jc_j_c
2 —

J2_(2JC—c 2
)
= —(—b 2

-\-2bc—C' ) .

cf—A 2
-\-B

2 = cy"—{A
2—B2

) .
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1. _ (a:
2—_4 2

)
= what? R 2—

(cos «coa b—sin a sini)?

2. Indicate, in every way possible, without changing the

order of the terms, the subtraction of r—s-\-t—u from a.

§ 62. We have already found, in several instances, two

signs combined before a single term (§§7. a, b, 60. b).

There is nothing to hinder any number of signs from being

thus combined. It is proper therefore to consider the ef-

fect of such a combination.

a.) In the first place, as addition is simply the bringing

of quantities together in their proper character (§ 54), the

sign -\- can never change the previously existing sign of a

term. "Whether employed once or oftener, it simply leaves

the sign of the term as it was before the sign -f- was pre-

fixed. Thus,

a-\-(
—

b) [i.
e. a together with —5] = a—b.

Hence, in estimating the effect of any number of signs,

the positive signs may be disregarded ; the sign of the term

Upends upon the negative signs.

b.) As subtraction, on the other hand, always changes

the sign of a term, the sign
—

always reverses the charac-

ter of the term to which it is prefixed. Thus,

-\-a= a (§4. a); .-.
—
(+«) =—«•

Again
—

(
—

a) = -\-a ; § 7. a, b.

—(—(—«) =—(+a) ——a.
Hence,

§ 63. If the number of negative signs before a term

be evexN, the resulting sign is +; if odd, —. Com-

pare §11. Note 2.

Note. This includes the case, in which the signs are all positive.

For then the number of negative signs is represented by 0, an even

number, being less by unity than 1, which is an odd number.

1. What is the value of—(4-'—26c+c
2
)

?

Ans. —(b*—2bc+c*)=—(&»)—(—2bc)—(+c 3
)
——{,<

-\-2bc—c
2

.

*6
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2. What is the proper sign of— (
—« 2

)? of—(
—

(
—a 3

)?

<rf—(—(—(—«4) ? of+(+a)? of+(+(+a)? of+(—a)'

of+(-(-a)? of +(-(+«)?

PROBLEMS.

§ 64. 1. The remainder found by subtracting
—23—\x

from 2x-\-l is 6a;. What is the value of x ?

2. The difference between 8a;—5 and —7x-(-12 is noth-

ing. What is the value of x ?

8x—5—(—7x+12) = 0.

3a; 7x /7x 3x\

T~"io"
4. Aa—Av—{Bb+Bv)=0. v= what?

Aa—Bh

n ~~ . ~ flX OX\ , „ ,-(———)=—15. a;= what.-'

Am - V~
A+B

5. Divide 54 into two such parts, that the less subtract-

ed from the greater, minus the greater subtracted from

three times the less, shall be equal to nothing.

Let x= the less ;

then 54—x =. the greater.

54—x—x—(3a;—(54—x)) = 0.

§ 65. 1. A is 10 years older than B, and the sum of

their ages is 60. What are their ages ?

Let x— A's age ;

Then x—10= B's age,

and x-\-x—10 = the sum of their ages, which is 60.

x+x—10= 60.

2a;= 70. §§34,44.

x= 35, A's age,

and x—10= 25, B's age.

Or, let x= B's age.

Then x+1 = A's age, &c



65.] PROBLEMS.

( )r, again, let x= A's age ;

and 60—a::=B'sage.

Then x—(60
—

x) = the difference of their a,u>
-

which is 10.

x—(60—x) = 10.

2. The sum of two numbers is 100, and their difference

is 20. What are the numbers ?

3. The sum of two numbers is S, and their difference

i* D. What are the numbers ?

ci_ n
Ans. The greater is —-—

,or hS-\~hD, and the less,

-^-,
or }&-*!>.

Note. The 1st, 2d, and 3d examples propose the same question
under different forma. But, in the 3d, the quantities employed re-

main in the result (§ 55. 3. N.), and show how they are employed
to obtain that result. Thus S denotes the sum of any two numbeis.

and X), their difference ; and we find the greater by adding the differ-

ence to the sum, and dividing by two; and the less, by subtracting
the difference from the sum, and dividing by two. (Compare § 57.

2, 3, §60. 3, 4, and Geom. §22.) Thus,

Let the sum of two numbers be 50, and their difference,

6 ; and find the numbers. Here #=50, and D= G :

S+D 56 no 3
S-£> 44 an^=T= 28,and—=T= 22.

And we find 28+22 =50= S, the sum ;

and 28—22= 6= D, the difference.

Let the sum be 75, and difference 25
;

12,
"

2;
"

12,
« 3;

" " 19 « 7 •

« «
75°27',

" 13°15'

what are

the num-
bers?



CHAPTER II.

MULTIPLICATION AND DIVISION.

I. MULTIPLICATION.

§ 66. Multiplication is the process of combining
factors into a product (see § 10) ;

in other words, it

is the process of taking as a term, one quantity called

the multiplicand
10

,
as many times or parts of a time,

as there are units or parts of a unit, in another quan-

tity called the multiplier.

Thus, if 6 dollars be taken as a term 3 times, the result

is 6x3 = 6—f—6—f—6= 18 ; if 6 dollars be taken as a term §

of a time, the result is 6X|= (2+2+2)§ = 2+2 = 4.

Note. It is obvious, that, in numbers, either factor may be made
the multiplicand, and the other, the multiplier, without affecting the

result. See Geom. § 172.

MULTIPLICATION OF MONOMIALS.

§ 67. All multiplication resolves itself, as we shall see,

into the multiplication of monomials. We shall, therefore,

consider that case first.

Numerical coefficients are, of course, subject to the prin-

ciples of Arithmetic, and must be multiplied accordingly.

Letters, we hare seen, are multiplied by writing them to-

gether (§ 2. e. N.) ; and powers, by adding their exponents

(w) Lat. multiplicandus, to be multiplied, from multiplico, com-

pounded of multus, many, and plico, tofold ; as if the quantity were
folded on, or added to, itself.
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i 24. a). Hence, we have, for the multiplication of mono-

mials, the following

RULE.

§ 68. Multiply the numerical coefficients as in Arith-

metic; and annex the letters of the factors, giving- to

each an exponent equal to the sum of its exponents in

the factors.

a.) We have shown (§ 9. a), that the product of two fa< -

tors of like signs is positive, and of unlike signs, negative ;

and (§11. N. 2), that the product of any even number of

negative factors is positive, and of any odd number, negative.

We have also shown (§ 62. a), that positive signs have no

effect to change the sign of a term ; but that the sign de-

pends upon the negative signs. Hence, whatever be th<

number of factors,

If the number of negative factors be even, the product

is positive ; if odd, negative.

b.) The sign of each factor obviously produces its effect

upon the whole product (§ 9. a). Hence, we may write the

signs of all the factors before the product, and determine

the resulting sign by § 63.

c.) When one only of the factors has a double sign (± or

:f ), the sign of the product will, of course, be double ; and

will be either the same as that of the factor, or inverted,

according as an even or odd number of the remaining fac-

tors may be negative. Thus,

±aXb=±ab; ±aX—b=^:ab; ^:abX—c— ±abc.

(±o) (
—

b) (
—

c)
— ±abc ; ±a.—b.—c.—x= ^abcx.

if two factors have each a double sign, and if it be un-

derstood, that the upper signs must be taken together, and

the lower signs together, the sign of the product will, obvi-

ously, be single; and, if the signs of the factors be alike,

the product will be positive ; if unlike, negative. Thus,

±'>X±b= -\-b; ±aXTb= —'-d. [±a)[±b){^:c)— qpaSe.



7(1 MULTIPLICATION. [§ 69, 7<».

d.) The degree of the product of several monomial fac-

tors is, evidently, equal to the sum of the degrees of those

factors (28).

1. Multiply together 2a-b, —3ab'2
,
Aa~ lb~ 2

,
and —\b.

Product 12« -'/;•-'.

2. SaX—bX—cX—2hy= what ?

3 . a'"X a-"X b"X«Jr 1 = what ? Jns. a"-"+ *
6"
- J

.

4. Multiply together |,
—

J, i?-3
,
—a;

2
,
and —x 2

.

5. (±a#X±#)— what? ax 2
(±x)? (

—«x 3
)(±.r) r

MULTIPLICATION OF POLYNOMIALS.

69. First, let one factor only be a polynomial. Thus,

Multiply together b-\-y and a.

(b-\-y) times a is the same as a times (b-\-y) [see § 66,

X.] ; i. e. a times the sum of b and y ; which is, obviously,

the same as the sum of a times b, and a times y.

(b-\-y)a, or a (&-[-#)
= «&-}-«#•

Hence, the product of a polynomial into a monomial con-

sists of the aggregate of the products of the monomial into

the several terms of the polynomial. See Geom. § 178. 1.

1. Multiply a 2—2ab+b* by a.

Prod a3
—2a*b-\-ab*.

2. (a
2± 2«/;+6

2
) X ± b= what ?

.4ms. ±aVj-\-2ab
2 ±l

3. (j2_L^2_a 2)X_J22
— what?

4. Multiply l+Ja- 2
u;

2—|o-***+A«-8a:e by a.

§ 70. Again let there be two polynomial factors. Thus.

Multiply a-\-b by c-\-y.

(c-j-y) times a-\-b is evidently the same as c times cir\-b,

added to y times a-\-b ; i. e.

[a-\-b)[c-\-y)
= («-f-%-R«+%= ac-j-Je-f-ay+Jy. S. i

§67.
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Hence, we have, for the multiplication of polynomial-

the following

RULE.

§ 71. Multiply each term of the multiplicand by each

term of the multiplier, and add the products. See

Geom. § 178. Cor. III.

a.) This is precisely the method employed in Arithme-

tic. Thus, to multiply 84 by 25, we have

34= 30+ 4

25= 20+ 5

170= 150+2o
68 = 600+80
850= 600+230+20

1. (a
2
+2b)(a~

2—b 2
)
= what ? (a+b){a+b)= (a+b)

2
?

a 2+2b a+b
a- 2—b* a+b
a"+2a~

2 b a 2+ab
—an2—-2b 3 ab+b 2

l+2a~
2b—a 2 b 2—2b3 a 2+2ab+b 2

2 . ^+ay+y*)(a2-ay+y*)= what?

Ans. a*+a 2
y

2
+y±.

(a*—b
2
) (a—b) = what ? yircs. a 3—a 2b—ab 2+b 3

.

{a+b)(a—b)(a—b)= what ? («+£>)(«—6)(a+6) ?

{a
3+3a 2

b+Sab^+b
3
)[a

2+2ab+b 2
)

— what ?

(2a
4—'3« 2

Z>
2
+4&4)(x—^/)2x= what ?

{a+b—c)(a—b+c)= what ? (a-+^)(a;*—y*) ?

o.

4.

5.

6.

8. (x
—

a)(x-\-b)= what ? -4ras. x 2—a

9 . (x+a)(x+b)[x
—

c)(x—e)= what ?

10. (a2±6z
2+cz 3

)(l±H-z
2±z3

)
= what?

cc—ab.

Ans. az±a
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§ 72. If two polynomials are each homogeneous, their

product will be homogeneous also. For the degree of any
term in the product is equal to the sum of the degrees of a

term in each factor (§ 68. d) ; and those degrees being the

same throughout, their sum must be always the same, and

therefore all the terms of the product will be of the same

degree.

Hence, if, in multiplying homogeneous polynomials to-

gether, we observe that the degree of one term is greater

or less than the degree of the other terms, we may know

that some mistake has been made.

This remark is the more important, because so many of

the investigations of Algebra, especially those relating to

Geometry, give rise to homogeneous expressions.

§ 73. If the product of polynomials contains similar

terms, it may, of course, be simplified by § 34. But it is

apparent that, if the factors themselves were reduced to

their simplest form, there will always be some terms of the

product unlike all the others, and, therefore, incapable of

any reduction except the partial reduction explained in

§ 34. c. These are,

1. The product of the terms containing the highest powers

of any letter, in each of the factors ; and

2. The product of the terms containing the lowest pow-
ers of any letter.

For these two terms must contain that letter, the one with

a greater, and the other with a less exponent, than any of

the other terms or partial products ; and, consequently, can-

not be similar to any of them. Hence, no product, involv-

ing a polynomial factor, can consist of less than two terms.

§ 74. If there are no similar terms in the product of two

polynomials, the whole number of terms in the product will

be equal to the product of the number of terms in the mul-

tiplicand by the number of terms in the multiplier.

For, if there be four terms in the multiplicand, and one
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in the multiplier, there will be four terms in the product ;

another term in the multiplier will give another four terms

in the product, and so on.

Also, if we introduce another factor, the same reasoning

will apply to the product of this factor into the former pro-

duct. Hence, in general, if there is no reduction, the num-

ber of terms in any product is equal to the continued pro-

duct of all the numbers of the terms in the several factors.

§ 75. The multiplication of polynomials is frequently in-

dicated, without being performed. Thus,

a(y+A)
2 = a(y*-\-2yh+h*) = ay

2
+2ayh-\-ah*.

(P
—

^) X (p
—

c) ; a-\-b
—c . a-\-c

—b ; is(fs
—

a).

When a multiplication, so indicated, is performed, the

expression is sometimes said to be developed.

MULTIPLICATION BY DETACHED COEFFICIENTS.

§ 76. In multiplying polynomials arranged according to

the powers of any common letter or letters, that letter or

those letters may be omitted in the operation, and the pow-
ers supplied in the result ; the product of the highest or

lowest powers being placed in the first term, and the pow-
ers then regularly descending or ascending through all the

terms.

This is called multiplication by detached coeffi-

cients ; and will be best explained by a few examples.

Thus,
To multiply x 2

+2.z+l by x2—2x+l, we write the co-

efficients, and multiply, as follows :

1+2+1
1—2+1
1+2+1
—2—4—2

1+2+1
1+0—2+0+1. Supplying the powers of x,

we have a^+Oz3—2z 2+0a+l =x4—2x 2
+l.

ALG. 7
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[§ 77.

Multiply « 2+2a&+6 2
by a-\-b.

Here the polynomial factors being arranged with respect
to both the letters, both may be omitted, and afterwards

supplied, one with descending, the other with ascending
powers. Thus,

1+1
1+2+1

1+2+1
1+3+3+1. Supplying the letters,

we have a 3+3a 2
&+8«& 2+& 3

.

a.) In adding the coefficients of the partial products in

the first example, we obtain zero in the second and fourth

places. The cypher must be written, to occupy the place

of the term, and show what powers of the letters fall out.

In like manner, if any power of a letter, between the high-

est and lowest in any factor, be wanting, zero should be re-

garded as its coefficient, and written in its place. This will

fill out the series, aud will, obviously, cause the coefficients

of similar terms to stand under one another. Thus,

3. Multiply a 2
+2a?/+#

2
by a 2—y 9

.

1+2+1
1+0—1
1+2+1

0+0+0
—1—2—1

1+2+0—2—1.
The product is a4+2a 3#—*2ay 3—

y*.

4. Multiply z 3—3z2
#+3z?/

2—y* by z 2—2z#+#
2

.

5. (a+&)
3 = what? (a+5)

4 ? (a+6)*?

C. 3+zVH# 2
+3/

3
)0—y) = what ?

PROBLEMS.

§77. 1. Given *—i(2x+l) = £(a+8) to find x.

Ans. x =13.
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2. Given ^i-+2x= ^=^ +16, to find x.
5 o

an- i« . « O+14)(36x+10)
3. Given 16x+ 5 —

Q \ Q1 » to finc* x-

JX—f—oi.
Ans. x= 5.

4. Given («c+fo-)
2+5 2x:= 2«6er-f-(a

2+£ 2
)c

2
,
to find

-4ws. x= e 2—r2 .

6. Given cc
2
-f-x~

2 = (x—x" 1
)
2
-fx, to find x (§ 49).

Ans. x= 2.

7. A's age is to B's as 2 to 3 ; and if they live 15 years,
A's age will be | of B's. What are their ages ?

Let x= B's age ;

then %x= A's age.

Moreover x-f-15, and §x-}-15 will be their ages after 15

vears.

••• fx+l5 = |(x+15).
Ans. A's age, 30

; B's, 45.

8. A's age is \ of B's ; and 18 years ago, A's age was
B's. What are their ages ?

H. DIVISION.

§ 78. Division is the process, by which, having a

product and one of its factors, ive find the other fac-
tor (see § 10) ;

in other words, it is the process of

finding hoiv many times, or parts of a time, one quan-
tity is contained in another.

Thus, if 12 be a product, and 3 be one of its factors, the

other factor is 4; or 3 is contained in 12, 4 times; if 12
be a product, and 24 be one of the factors, the other factor

• or 24 is contained in 12, \ a time.
'
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DIVISION OF MONOMIALS.

§ 79. As in multiplication, so in division, whatever be

the quantities involved, the operation is actually performed

upon monomials only. "We shall, therefore, consider first

the division of monomials.

Numerical coefficients are, of course, subject to the prin-

ciples of Arithmetic, and must be divided accordingly. Let-

ters, we have seen, are divided by suppressing in the divi-

dend the letters of the divisor (§ 10. b) ;
i. e. by subtracting

the exponents of the letters in the divisor from the expon-
ents of the same letters in the dividend (§§16, 24. b).

See also § 13. Hence, we have, for the division of mono-*

mials, the following

RULE.

§ 80. Divide numerical coefficients as in Arithme-

tic ; and annex all the literal factors, which remain

after suppressing in the dividend those of the divisor,

a.) If the exponent of any letter be greater in the divi-

dend, than in the divisor, its exponent in the quotient will

be positive ;

If equal, it will be zero ; i. e. the letter will disappear ;

and

If less, it will be negative.

Or, in the last case, the division may be expressed, as

we have seen, by placing the letters, with positive expon-

ents, as the denominator of a fraction, of which the remain-

ing factors of the dividend constitute the numerator (§ 10. c).

b.) In case of a single division, we have shown, that, as

in multiplication, like signs give -\-, unlike,
—

. In case of

successive division by several divisors, the same rule, of

course, applies to each operation. Or, bringing the signs

together, as in subtraction (§ 63) and multiplication (§ 68. a)

we may regard only the negative signs. If the number ot

these be even, the quotient is positive ; if odd, negative.
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c.) The law of the signs may be otherwise demonstrated,

as follows. To divide by any quantity is the same as to

multiply by its reciprocal (§ 19. Cor. IV.) ; and the recip-

rocal of a quantity evidently has the same sign as the quan-

tity itself (§ 18). Therefore, to divide by any number of

divisors is the same as to multiply by the same number of

multipliers having each the same sign. Hence, the law of

the signs is the same in division as in multiplication.

d.) One quantity is commonly said to be divisive by

another, when the division does not give rise to fractional

coefficients, or to negative exponents.

Note. Any quantity may be said to be divisible by any other.

For, whatever be the dividend and given factor, another factor can

always be found, which will produce the dividend. It is, however,

convenient, in many cases, to distinguish as perfect or exact, the di-

visibility above mentioned which does not give rise to fractional ex-

preisions.

1. 20a 6 b 3 c —- 4a3 5 3 c 3 = what ? Ans. 5a 2c~ 2
.

2. a 2&~ 2
-i-a-

1 5= what? a^x^-^-c^x-^y ? —a^~-a~^?

3. amb-m-~a"b-n= what ? (ar\-x)%-±(a+x)~% ?

TO DIVIDE A POLYNOMIAL BY A MONOMIAL.

§ 81. In multiplying a polynomial by a monomial, we

multiply each term of the polynomial by the monomial, and

add the products (§ 69). Therefore, reversing the process,

we have, for dividing a polynomial by a monomial, the fol-

lowing

RULE.

Divide each term of the dividend by the divisor,

and add the quotients.

Thus, (ab ± ay)
~ a= b ± y.

1. Divide r?y-\-xy
2
by xy. Quotient, x-\-y.

#7
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2. {ax±x 2
)-

:rx= what? {rs—s)~s?
3. (2rx—x 2)~x=\rhat? {A

2B2—B2x 2)-±B2 J

4. (—R cos b cos c -\- R sin b sin c) -J i?= what ?

5. (a—;c) -^ a z= what ? Ans. 1— a-1^ or 1-

6. Divide Rz—x* by R*.

7. « R— \R-^x 2 — \R-*x* by R.

8. " a_t— §a~^ca + fcT^ar* by

x

a

a 3
.

TO DIVIDE ONE POLYNOMIAL BY ANOTHER.

§ 82. Divide 3a& 2
-f3«

2H-a 3-H 3
by a+5.

a.) This dividend beiDg regarded as the product of the

divisor aud quotient (§ 10), the terms containing the highest
and the lowest powers of a and b must consist of the unre-

duced products of the highest and of the lowest powers of

those letters in the two factors (§ 73. 1, 2).

b.) If, therefore, we divide the term of the- dividend

which contains the highest power of a, by the term of the

divisor which contains the highest power of the same let-

ter, we must obtain the corresponding term of the quotient.

c.) If, now, we multiply the divisor by the term of the

quotient, which we have found, we shall have one of the

partial products whose sum is the dividend.

d.) If, then, we subtract this partial product, there will

remain the sum of the other partial products, viz. of the di-

visor into the other terms of the quotient.

e.) There will, of course, be a highest power of a in this

new or remaining dividend, which term divided by the term

containing the highest power of a in the divisor, as before,

will give a term containing the highest power of a in the

remaining terms of the quotient ; and so on.

/. And, as the sum of the products of all the terms of

the divisor by each term of the quotient must make up the
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dividend, if we subtract those partial products, one after
1

another from the dividend, they must exhaust it ; and the

remainder, after the last subtraction, will be zero.

g.) If we obtain a remainder equal to zero by simply di-

viding the first term of each remainder by the first term of

the divisor, the division is said to be exact, and the dividend

is said to be divisible by the divisor (§ 80. d, N.).

h.) If, however, after exhausting the given terms of the

dividend, wo still have a remainder, the division may be

immediately completed by writing the whole remainder

over the whole divisor, for the last term of the quotient ;

or the division may be still farther continued (§ 87) accord-

ing to the rule, and terminated, whenever we please, by a

fractional term, as above indicated.

i.) These operations will be more conveniently 'perform-

ed, if the dividend and divisor be first arranged with res-

pect to the powers of some one letter (§ 33. a).

This arrangement may be according to either the ascend-

ing or the descending powers of the letter. The descend-

ing order, however, is most commonly employed.

k.) The polynomials above being arranged with refer-

ence to a, and placed in order for division, will stand thus :

the divisor being placed at the right of the dividend, and

the quotient under the divisor.

a3-\-3a
2
b-\-3ab

2
-\-b*
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RULE.

§ 83. 1. Arrange both dividend and divisor accord-

ing to the powers of some common letter, cither as-

cending, or descending in both.

2. Divide the first term of the dividend by the first

term of the divisor (§ 80), and set the result, with its

proper sign, as a term of the quotient.

3. Multiply the divisor by this first term of the quo-

tient, and subtract the product from the dividend.

4. Divide the first term of the remainder by the first

term of the divisor, set the result in the quotient with

its proper sign, multiply, and subtract as before, and
continue the process as long as the case may require.

1. Divide a*-\-3a
2x+x3+3ax 2

by a+x.
2. Dividex^Qy 2

x^ix^i-4:Xy
s
-\-t/t by x *-\-2xy-\~y

n
-.

a.) It is not necessary to write all the remaining terms

of the dividend, after each subtraction. Indeed, none need
be written, except those which change their form by sub-

traction and reduction. It is convenient, however, to bring
down one additional term of the dividend, at each subtrac-

tion. This is the method commonly practised.

1. Divide a 6—Sa^x-{-16a^x-—20a3x 3-\-15a*x*—Sax 5

-\-x
z
by a—x.

2. Divide a±-\-a*zz+z* by a*-\-az-\-z*.

3. Divide x 5
-\-Sx*—10x

3—112oc 2—207x—110 by ar
2

+7x4-10. Quot. x 3—x 2—133—11.
4. Divide a G—3a4x z

-\-3a
2x'i—x* by a 2—x~.

5. Divide 1—a~n by a?—J-. Quot. a"^-fa~i$.

6. Divide ^a 3—\a*b—^ab 2
-{-^b

3
by \a-\b.
Quot. la'—lb"

1
.

7. Divide x 3
-\-ax

2—
bx*-\-cz

2—abx-\-acx—box—abc by
x --\-ax

—bx—ah.
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no mistake in subtracting, as its product always cancels the

term above it, and need not be written.

Divide a*—4a3
a:+6a 2a: 2—4aa; 3 -jr-a;

4
by a 2—

2ax-\-x
2

.

a 4—±a 3x+Qa 2x 2—4ax 3
-f-.T

4

-\-2g3x—a 2x 2

—2a 3x

—±a 2x 2+2ax s

a 2
-\-2ax—cc

2

a 2
—2ax-\-x

2

-\-a
2x 7

-\-2ax
3—x*

d.) The last method is conveniently written as follows.

Write the terms of the divisor under one another, on the

left of the dividend, changing the signs of all but the first.

Write the terms of the partial products, except the first of

each, diagonally under the corresponding terms of the divi-

dend. Below, in a horizontal line, write the first terms of

the remainders as they are formed, each under the column
from which it is produced. Write the quotient also in a

horizontal line below the last, each term under the term of

the dividend, from which it was formed. Thus,

a4—ia 3
x-\-6a

2x 2—iax3
-\-x

i

\-2ax -\-2a
3x—Aa 2x 2

-\-2ax
3

—a 2x 2+2ax 3—x*—x 2

—2a 3
x-\-a

ux'

Quotient, a~—2 ax -j-x
2

.

Notes. (1.) If any term in the series of powers be wanting, its

place should be filled with a cypher (§76. a); or the given terms

should be placed at such distances from each other, that like terms

of the partial products may stand under them. (2.) Each term of

the partial products will stand against that term of the divisor from

which it is formed.

1. Divide a 6
-\-2a

3z 3
-\-z

6
by a 2—

az-f-z
2

.

2. Divide a 3
-\-a

2 b—ah 2—b 3
by a—b.

DIVISION BY DETACHED COEFFICIENTS.

§ 85. Division, as well as multiplication, may be perform-

ed by DETACHED COEFFICIENTS. Thus,
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1. Divide a3—3a 2
£+3a&

2+&3 by a—b.

1—3+3-1
1—1

1—1

1—2+1
—2
—2+2

1

1—1

Supplying the letters, by dividing the first term of the

dividend by the first term of the divisor, we have a 3—2c

+&*.

2. Divide a4—6* by a 2—6 s
.

1+0+0+0—1
1+0—1

0+1
1+0—1

1+0—1
1+0+1. .-. Quot.=za*+b*

SYNTHETIC DIVISION.

86. Synthetic2 division is division with detached co-

efficients, performed by the method of § 84. cL With de-

tached coefficients, however, the method admits of simplifi-

cation, when the first coefficient of the divisor is 1. For,

in this case, the coefficient of each term in the quotient will

be the same as the corresponding coefficient of the first term

of the dividend or remainder ; and may, therefore be found

by simply adding the coefficients above it. Thus, to divide

a*—4a3a+6« 2^ 2—4aa: 3+a:
4
by a 2—2ax+« 2

.

1

+2
—1

1—4+6—4+1
+2—4+2
—1+2—1

1—2+1+0+0 .-. Quot. = a B—
2ax-\-x-.

Moreover, if the fir3t coefficient of the divisor be not 1,

it can evidently be made so, by dividing both divisor and

dividend by the given first coefficient.

(x) Gr. cvv&ecic , composition, putting together; each term of

the quotient being formed by adding the like terms of the dividend

and of the pan 'acts with their signs changed.
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1. Divide x 3—3x 2+3;r—1 by x 2—2a+l.

2. Divide 4a4—9« 2 5 2+6a6 3—5* by 2« 2—3a&+5
2

.

Solve the examples of §§ 83, 84 by this method, observ-

ing, when the series of powers is not complete, to fill the

place of the missing terms with cyphers (76. a).

INFINITE SERIES.

§ 87. When an exact division is impossible, the opera-

tion may still be carried to any extent, forming what is

called an infinite
v series. The process is similar to the pro-

cess of approximation in the division of decimals in arith-

metic.

Thus, to divide a by a-\-x.

a

a-\-x

a-\-x

1—ar l
x-\-ar

2x 2—a~ 3x 3
-\-a~

4:x 4:—&c.

—x
—x—a-1 a?2

a lx-

a~ 1x 2
-\-a~

2x3

-a~ 2x 3

-a~ 2x3—a~ 3x-

a~ 3x*

Or (§ 86), thus,

1

—1

1

-1+1—1+1—&c.

1—1+1—1+1—&c. .-. Quot.= l—a- 1
x-^-a~

2x 2—&c

"We have, therefore,

a = 1—a-*x-\-a- 2x 2—ar3x 3
-\-a-±x*—a"

6a: B+&c.(l.)
a-j-x

or, in another form (§ 14),

ff /y T1 -* >y»3 t»4 <y5 nr*(j n/*7

a-\-x a* a 2 a 3 ' a4 a 5 ' a 6 a 7 ' v

a.) We find here a series of terms, alternately positive

and negative, beginning with unity or the zero power of

(y) Lat. infinitus, without end*
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both x and a, and containing in the successive terms" the

powers of x increasing, and those of a decreasing by unity,
without limit, that is, infinitely ; the numerical coefficient

of each term being unity. As soon as we have discovered

this order, which is called the law of the series, we may
write the terms to any extent, without the labor of dividing.

b.) 1. Let a= 10 and x= 1 ; then

10 _10 _ _1_ 1_ _L 1

11 iaTiaa -, Ann "PTaTvaTT <£C.
a+x 10+1" 11 10

~
100 1000 "^

10000

= * +
Too + loooo + &c

'-(lo + 1000+ &C
')
=

l.OlOlOl&c—(.1010101&C.) = .9090909&C.

2. Let a= l, x=10 ; then

-?— = TT = 1 — 10+ 100—1000+10,000—^M^? —
a-f-x 11 11

—

(1 + 100 + 10,000)
-

(10 + 1000 + 1Q0'00-
)
-

10,101 — 10,1001£ = —•

3. Let a= 100 and a;= l; then -?-f=^W what p

4. Let a= 1000, and x= 1 ; then —^—= what 9

a+cc

c.) 1. Develop (a+xWf—_2_).^ a+x /

^. I-4+^!_&c . or I(i_£+!!!_^a a- a 3 «V «~a 2 7
Let a?=zl, a= 10, 100, &c

2. Develop (a—ar)-i. ^w*. i(l+-+— -kfec \

Substitute for a and a? as above.

5
3. Develop 6(a—or)-i (

— -1—Y
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4. Develop -—.—-. Ans. 1—u 24-u*—z£
6+&c.

\-\-u'
2 '

Letw= £,
i

TV, &c.

5. DevelopH^H=
frj^=gt+8i^0 -

^n5.— (1 3-+&c).a-\ a a 2 a3 J

d.) Series, in which the terms become less and less as we

proceed, as hi b. 1, 3, and 4, above, are called converging

series, and are of great utility in the higher applications of

Algebra. When the terms continually increase, as in b. 2,

above, the series is called diverging.

Converging series may be treated precisely as approxi-

mating decimals in Arithmetic ; viz. a few terms may be ta-

ken for the whole series, the remaining terms being so

small, that they may be neglected without sensible error.

Thus, in reducing \ to a decimal by the common process,

we obtain \^=. .33333333 &c. But, we may apply the for-

mula in c. 3, above, by making b= 3, a— 10, and x— 1 ;

then =——- =z -= -. Making the substitution, we

shall have,

e.) In c. 1, 2, 3, and 5, the series will converge, when-

ever x<a ; when x is >«, they will diverge. The series of

c. 4; will converge, when ^(<l.

f.) In a converging series, the remainder, after a few

terms, may be neglected; in a diverging series, the remain-

der must always be taken into the account, and constitutes

a most important part of the result.

THEOREMS.

§ 88. Algebra employs general symbols of quantity (§ 1).

Its results, therefore, are general (§§ 7. a, b, 55, N., 57. 3, 60.
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4, and 65. N.) ; and whatever is proved of numbers repre-

sented by algebraic symbols, is, of course, demonstrated* of

all numbers whatever. General truths or principles thus

demonstrated, are called theorems".

§ 89. Thus, if we square a-\-b, we have

(a+J)
2 = (a+b) (a+b) = a*+2ab+b*. That is,

Theorem I. The square of the sum of two numbers is

equal to the square of the first, plus twice the product of the

first by the second, plus the square of the second.

Or, more briefly,

The square of the sum of txco numbers is equal to the

sum of their squares, plus twice their product. See Geom.

§ 180. Cor. v.

1. (a+a:)
2= what? (a*-f-x

3
)
2 ? (a+2«)

2 ? (a*+&*)
9?

2. (a5+&c)
2 r=what? (x+J-p)

2 ? (l+2»m) 2?

So in Arithmetic ; (16)
2 = (10+6)

»= 10 2
+2.10.6+6

2

:= 100+120+36= 256.

(75)
2= (70+5)

2= what? (93)
2 ? (II)

2 ? (19)
9 ?

7 3 = (4+3)
2 ? (112)

2 = (100+12)
2 ?

Note. An absolute equation which expresses a general result

or a theorem, is called a formula2
.

§ 90. If we put
—b for Vand apply the principle of § 89,

we have,

(a+(—&))
2—

(a_J)2— a2_f-2a(—&)+(—b)
2 —a^—2ab

+S 2
[§11. N. 2.]. Hence,

The or. II. The square of the difference of two num-

bers is equcd to the sum of their squares, minus twice their

product. See Geom. § 183. Cor. vii.

Multiply a—b by a—b, and see if the same formula re-

sults.

1. (x—^) a =what? (x—O 2
? (y«—y6) 2 ? See

§ 23. d. (x' sin a—i/sm a')
2 ? See § 92. N.

(x) Lat. de:i:onstro, to show, prove beyond the possibility of doubt,

(y) Gr. tieuprifia, from deupsu, to view, contemplate. (2) Lat.,

form, model, rule.
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2- (—^+a;) 2= what? (2a
2—6a; 2

)
2

? (1—<tM) 2 ?

Note. We have evidently (a—b)?= (b—a)2. So (10—1)2—
(i_io)2; or 92= (—9)2 See §11. N. 2.

In like manner in Arithmetic; 9 2
:=(10— 1)

2 =
10 2— 2.10.1+ 12 — 100— 20+ 1 = 81.

(98)
2 = (100

—
2)

2 = what ? (75
2
)
= (80

—
5)

2 ?

(47)2= (50
—

3)
2 ? (93)

2 = (100
— 7)2= (90 + 8)2?

§91. a.) (a-\-b)
2= a*-\-2ab+b

2
. §89.

And (a—b)
2= a 2—

2ab-\-b*. § 90>

.-. Adding and subtracting the equations

(a-f-Z>)
2+(«—*>y= 2a 2+25 2= 2(a

2+5 2
). Geom. § 199.

(a-f-J)
^—

(a—b)
2= Aab. Geom. § 184. Hence,

Cor. (1.) The square of the sum, plus the square of the

difference, of two numbers, is equal to twice the sum of their

squares. (2.) The square of the sum, minus the square of
the difference, of tivo numbers, is equal to four times their

product.

§ 92. Multiply a~\-b by a—b.

We have, («+&) («—&)
= a 2—b 2

. Hence,

Theor. III. The product of the sum and difference of
two numbers is equal to the difference of their squares.

See Geom. § 185. Cor. ix.

1-
(H-f)(*-f)

= what? (A+x)(A-x)? (y-h/O

(2/-y) ? ((i+x)
h+(i-x)*)«i+xy-(i-x)h

2. (R+x) (R—x) = what ? (AB+BC)(AB—BG) ?

(*
2
-h/

2
)(*

2
-2/

2
)

?
(a!8_|^8).(a

.a_
Sfa) ?

3. (sin a cos &-(-sin 5 cos a) (sin a cos b—sin b cos a)
—

what? Ans. sin 2«cos 2
£>
—sin 2£cos 2 a.

Note . Sin 2 a denotes the square of the sine of a. This notation

is more precise than sin a%, which might mean the sine of the square

of a; and is less cumbrous than (sin a)-. The same remark applies

to cos'a, tan 2a, &c
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4. (a+J+c) (a-\-b—c) [i. e/the sum of a-\-b and c, into

the difference of a-\-b and c]= -what ?

^ws. (a+b)
2—c 2 = a 2+2a5+5 2—c 2

.

5. (a+b—c) (a—b+c) (
= (a+5—c)(a—J—c)) = what ?

So in Arithmetic ; 12X8= (10+2) (10-2)= 10 2—2 2

= 100—4= 96.

19X21(= (20—1) (20+1))= what? 103x97? 51X49?

101X99? 1004X996? 1000£X999£?

§ 93. The same formulas, read with the second member

first, give the converse" of the above theorems ; and enable

us to resolve several classes of polynomials into their fac-

tors (§ 75). Thus,

(I.) The sum of the squares, plus twice the product, of
two numbers, is equal to the square of their sum.

1. aj
2
+2a;?/+3r = what? Ans. {x-\-y)

2
.

2.
2/

2+2yy /+y/2= what? l+2?i+?i
2 ? 9a4+24a 2 6 2

+1664 ? 169 (= 100+2.10.3+9 = 10 2
+2.10.3+3

2
)
?

(II.) The sum of the squares, minus twice the product, of

two numbers, is equal to the square of their difference.

1. x 2—pa+£p 2 = what? Ans. {x—^p) 2
.

2. b-—2Z>c+c 2 = what ? 1—4ra+4n 2
? a 2— 12ab

+366 2 ? 81(= 100—2.10.1+1 =10 2—2.10.1+1
2
)?

(III.) The difference of two squares is equal to the pro-

duct of the sum and difference of their roots (§ 23).

1. i? 2—z 2= what? Ans. (H-\-x)(E—x).

2. sin 2 a—sin 2 6= what? x*—y*? {AB)
2—[BC) 2 ?

„G_&6 ? c2_£2_|_2fo—c 2(
— a2_(J_C)2 [§§ 63. 1, 90.]) ?

£2_|_26c+c
2—« 2 ? l_cos 2

i<
= i 2—cos 2

*) ? x 2—x" 2 ?

§ 94. 1. Divide a 2—b 2
by a—b. Quot. a-\-b.

(a) Lat. conversus, turned about. Of two propositions or sen-

tences, each is said to be the converse of the other, when the condi-

tion of the first is the conclusion of the second, and the conclusion

of the first is the condition of the second; or when, in like manner,

subject and predicate change places. See Geom. §32. Note n.

*8
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2. Divide a 3—b3 by a—b. Quot. a*-\-ab-\-b
2

.

3. « a4—54 by a—i.
" a 3+a 2

6+a&
2+6 3

.

4. " an—bn by a—5.

Employ tbe method of § 84. d; thus6
,

aan —b' c

.

+&
Guo*.= a^ 1+a,,- 3H-«

,,~ 3i2+ -\-ab
n- 2+bn-K

Now, in the successive terms of the remainders, the ex-

ponents of a diminish, and those of b increase by unity.

The terms of the quotient, of course, follow the same law ;

and the sum of the exponents in each term of the quotient

is n—1. Hence we shall find a term containing a and

J*-1 . This term, multiplied by b, will give b
n
,
which ad-

ded, will cancel —b
n in the dividend, and leave a remain-

der equal to zero, showing a perfect division (§ 82. g).

§ 95. a.) Otherwise,

an— bn a— b

a—ib— bn=(a
n- 1— b"~ l

)b.

Now, if a—b will divide (§ 82. g) this remainder, it will,

obviously, divide the whole dividend. But it will, evident-

ly, divide this remainder, if it will divide one of its factors,

a»-i_ fr'-i. Hence, if an~ l— b"~ l is divisible by a — b,

aa_ ^ ig^ divisible hy a— b. That is, if the difference

of like powers is divisible by the difference of their roots,

the difference of the powers of the next higher degree is

divisible in like manner.

But we have found a4—&4 divisible by a—b; .: a^—b 5

is divisible by a—b; so a e—b e
,
a"—b 7

;
and so on, with-

out limit. Or, a 1—b l is divisible by a—b; .: a 2—b 2
is di-

visible by a—b; and so on. Hence (§§ 94, 95),

(b) Here, the sign of b being changed, the second term of each

product is, without any reduction, the first term of the corresponding

remainder, and, of course, need be written but once. We cannot

write all the terms of the quotient, unless we assign a particular val-

ue to n. The whole number of terms is, obviously, equal to ?».
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§ 96. Theor. IV. The difference of any two posi-

tive integral powers of the same degree is divisible

by the difference of their roots.

Notes. (I.) This method of proof is of great utility in Algebra,

and should be perfectly understood. It consists in showing, that, in

how many soever instances a principle has been found true, it will

be true in one instance more. If it be true in n—1 cases, it will be

in n; if in n, then in n+l ;
if it be true in one instance, it will be

true in the second; if in the second, then in the third, and so on.

(2.) The limitation to "positive integral powers" is necessary;

for the principle has been applied to such powers only. And, if n—1

is a positive integer, n, obviously, cannot be either negative or frac-

tional.

a^-Jf _ an_i ^ a>i
_ 2b+ _j_a5

»-2
_}_ J«-i.

a—b

a »
b
n

b.) If a= b, we have = m"_1 ; a result which
a—a

will be considered hereafter.

c
.)

a_n_J-n_(a_i)»_(J-l)». §2±.d.

a~n — b~n
is divisible by ar~1—[b—

1
. § 96. Or,

which is the same thing,
-—— 7- is divisible by -7.
an b" a b

d.) ci^m— b^m (
= (o^)"- (fi^m)") is, evidently, di-

±- z±-
visible by a m— 6 »<•

§97. e.) a2"— i2"(= (o
9

)

n—
(5

2
)") is divisible by a 2—b-

(§ 96), i. e. by {a~\-b)(a—b).

a- n— b 2n is divisible by a+ b.

Now 2m, being divisible by 2, is an even number. Hence,

Cor. 1. The difference of any two even positive integral

powers is divisible by the sum of their roots.

To divide a- n—b- n
by «+&, employ the method of § 86.

-1+1-1+ -1+1-1+1
1
IK— 1

1_1_L.1_1+ _l_|_l_l_|-0

(
ai"—b 2n

)-±-{a+b)= a 2 "- 1 — a 2"- 2 &+ a 2*-3
Z>
2—

. . .

+ «3&2»-4 _ a 2Z,2"-3 _L. ab~ n~~ — b 2n
~ l

.
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Thus, if 2n= 4,

(a*
—

b±)+ {a-{-b)= a3—a 2
b-\-a?>S

— b3,

* 98. /.) Divide a 2"+i + & 2«+i bya + b,

a 2«+l _|_J2«+1 a-f
- ^

a 2"—&c.

But & 2n— a 3"
is divisible by a+ 5 (§ 97).

a s«+i _j_ J2H-1 is divisible by a+ b.

Moreover 2w-f-l is an odd number, being greater by uni-

ty than 2n, an even number. Hence,

Cor. ii. The sum of any two odd positive integralpow-
ers of the same degree is divisible by the sum of their roots.

a 2>4-l_l_52>4-l
i- = « 2n— a 2n~ib+ a 2n~*b 2 — a 2 "- 3 £ 3 4-

. . H-G4 62H-*— a 3 5 2
"-3-f «233»-2_ aJ2 ;

»-l_|_J2r. >

Thus, if 2n+l = 5,

§ 99. The principles of § 94-98 obviously enable us to

resolve another large class (§ 93) of polynomials into their

factors. Thus,

a 3+b3 = (a-\-b)(a*+ab+b*).
What are the factors of a4—64 ? of a 5—b r>? of a 5+3 5 ?

of* 3—27(=x3—3 3
)? of a G—x*? ofa:3+64?

THE GREATEST COMMON DIVISOR.

$100. A factor common to two or more quanti-
ties is called a common divisor

;
and the greatest

common factor, i. e. the product of all the common
factors, is called the greatest common divisor, or mea-
sure.

Thus, of the quantities 18abx and 20a^by, 2, a and b are

common divisors
; and the greatest common divisor is evi-

dently 2ab, the product of all the common factors.
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Notes. (I.) The term divisor is used here with reference to

perfect divisibility (§ 82. g). (2.) A single factor, as a, which has

no integral divisor but itself and unity, is called, as in Arithmetic, a

prime factor. (3.) Quantities which have no common divisor but

unity are called incommensurable, or prime to each other.

a.) One of two or more quantities may be either multi-

plied or divided by any factor not found in all the other

quantities, without affecting the greatest common divisor.

For the factor so introduced or taken out, not being com-

mon to all the quantities, can form no part of their greatest

common divisor.

Thus, the greatest common divisor of \'2ax and 20ay is

the same as that of I2ax and 20ayX5b or 20ay-
:r oy.

§ 101. The greatest common divisor of several monomi-

als must evidently consist of all the common literal factors,

multiplied by the greatest common divisor of the numerical

coefficients.

What is the greatest common divisor of 12a 3
a:4 and

2«2X 5? of A-x"y" and B2
x"y"? of ax and a'x? of

A -cy" and c *xf'y" ? of nxn~ 1 0+1)" and nxn
(x+l)"-

1
.

§ 102. The process of finding the greatest common divi-

sor of two polynomials is substantially the same as that

employed in Arithmetic, and depends on the following

principle ; viz.

The greatest common divisor of two quantities is

the same as the greatest common divisor of either of

them, and of the remainder obtained by dividing one

by the other.

To prove this, let the two quantities be A and B, and di-

vide A by B. Let the integral quotient resulting from this

division be Q, and the remainder R. Then A—BQ— R,

ox A— BQ+R.
Now every divisor of Bis, of course, a divisor of BQ.

Therefore every common divisor of A and B is a common

divisor of A and BQ. Also, every'such common divisor is
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a divisor ofA—BQ [§ 8 1 ]
c
,

i. e. of R. That is, every com-
mon divisor of A and B is a common divisor of B and i?.

Again every common divisor ofB and R will divide i?<>

and i?, and, of course, ^^+i? or A. That is, every com-
mon divisor of A and B is a common divisor ofB and i?.

Hence, the greatest common divisor of B and R is the

greatest common divisor of A and B.

§ 103. By the same reasoning, if we proceed to divide B
by R, and obtain a remainder R', the Greatest common di-

visor of R and i2' is the greatest common divisor of B and

R, and, therefore, of A and i?.

Thus, the greatest common divisor of any of these divi-

sors and its remainder is the greatest common divisor of all

the preceding remainders, and also of the original quanti-
ties. If then we find a remainder, which divides the pre-

ceding remainder, it is the greatest common divisor re-

quired.

a.) If the first term of any dividend be not divisible by
the first term of the corresponding divisor, we must (1.)

suppress any factor of the divisor, not found in the divi-

dend ; and (2.) we may, if necessary, multiply the dividend

by any factor not found in the divisor (§ 100. a).

Note. If we suppress in the divisor a factor found also in the

dividend, that factor, originally common, will cease to be so, and the

common divisor will be less than it ought to be. If, on the other

hand, we introduce into the dividend a factor already found in the

divisor, that factor, not originally common, will become so, and the

common divisor will be greater than it ought to be (§ 100).

Hence, to find the greatest common divisor of two quan-

tities, we have the foliowing

RULE.

§104. Divide one quantity by the other; then di-

vide the first divisor by the first remainder^ the second

(c) If, for instance A-—D and BQ-hD are both whole numbers,
their difference or their sum must be a whole number.
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divisor by the second remainder, and so on ; alwetys

rendering the first term of the dividend divisible by the

first term of the divisor (§ 103. a). The divisor which

gives no remainder, is the greatest common divisor

required.

a.) If the first remainder which divides the preceding

remainder be unity, the quantities are said to have no com-

mon divisor, but to be incommensurable, or prime to each

other.

b.) If the greatest common divisor of more than two

quantities be required, we must first find that of two of

them, and then of that divisor and a third, and so on.

1. Find the greatest common divisor of 98 and 112.

112 98

98 ~T

7 .'.14 is the greatest common

98

98

divisor required.

Note. In Arithmetic, it is, of course, proper to divide the great-

er number by the less. In Algebra, the quantity containing the high-

est power of the letter of arrangement will be the first dividend. If

the highest power is the same in both, either may be made the divi-

dend.

2. Find the greatest common divisor of cc
2
-f-5rc-{-6 and

x*+2x—3.

x*+5x-f-6 x
2+2x—3

ar
2+2x—3 i

3x+9= 3(aH-3). Reject 3 (103. a).

x 2
-{-2x—3

x*-\-3x

x+3
x—1

-x—6
-x—3

x-{-3 is the greatest common divisor.

3. Find the greatest common divisor of a 2
-{-2ax-\-x-

and a 3—ax 2
. Ans. a-\-x.
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4. Find the greatest common divisor of 9x 3
-\-53x

2—9x

—18 and x 2
-\-l ls+SO. Ans. x+6.

5. Find the greatest common divisor of 2x 3
-\-x

2—
8rtr-}-5

and 7a;
2—

\2x-\-5. Ans. x—1.

6. Find the greatest common divisor of a 3
x-\-2a-x-

-}-2ax
3
-}-^

4 and 6a 5
-\-\0a*x-\-oa

3x'2 .

§ 105. c.) The application of the above rule (§ 104) to

polynomials is simplified in various ways. Thus, before

applying the rule,

1. Any factor obviously common, may be taken out, and

reserved, as a factor of the common divisor required (§ 100).

2. Any factor, found in a part only of the polynomials,

may be rejected (§ 100. a).

3. If one of two polynomials contain a letter not found in

the other, the common divisor, obviously, cannot contain

that letter, i. e. must be independent of it, and must there-

fore be the common divisor of the coefficients of the seve-

ral powers of that letter. In this case it is often best to

arrange the polynomials with reference to that letter, and

to find the greatest common divisor of its coefficients.

Note. 1 and 2, above, are most easily applied to monomial factors

of the polynomials; for such factors can always be found by inspec-

tion (§§ 69, 81). But they are equally applicable to polynomial fac-

tors, when we can discover them (§§ 93, 99).

1. Find the greatest common divisor of a 3
-\-2a*x-{-ax-

and 5ab 3—oabx-. Ans. a(a-\-x).

2. Find the greatest common divisor of x 3
-\-ax^-\-bx-

—
2a-x-\-abx

—2« 2 5 and x'2-\-2ax
—bsc—2ab.

COMMON MULTIPLE.

§106. A common multiple (§46. a) of two or more

quantities is a quantity which each of them will divide

(§ 80. d). The least common multiple is the least quantity

which they will divide.
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§ 107. A quantity is evidently a multiple of any other

quantity of which it contains all the factors ;
if it contain

the factors of each of several quantities, it is their common

multiple ;
if it contain each factor no oftener, than some

one of the quantities, it is the least common multiple. That

is,

The least common multiple of several quantities consists

of all their factors, each tvith the highest exponent which it

has in any of the quantities.

Thus, the least common multiple of Qab-(= 2.3ab 2
) and

9a 2
c(=:3

2a 2
c) is 2.3 2a 2 6 2 c= 18a 2 6 2

c.

§ 108. The least common multiple of two quantities con-

sists of all their prime factors, each with its greatest expon-
ent (§ 107) ; and the greatest common divisor consists of the

common prime factors, each]with its least exponent (§ 100).

Therefore,

The least common multiple of two quantities is equal to

their product divided by their greatest common divisor.

Thus, the greatest common divisor of x-y and xy
2
is xy ;

their product is x3
y
3

; and their least common multiple is

x 2
y

2 =zx 3
y
z
-—xy.

Note. Every algebraic factor of the first degree, whether mono-
;r,ial or polynomial, is a prime factor.

PROBLEMS.

X 2

§ 109. 1. Given 4a4-x= -——
, to find x.

4a-[-x

x x
2. Given —— -j

= 2, to find x.

a-\-b a—b

ax
,

a
: to
a—x a-\-x

a 2+a 3—1

3. Given — —a= 1
—

, to find x.
a 2—x* a—x a-\-x

Ans. x=
a—a'J

4. A sum of money, x, is divided among several per-

sons, so that A receiving $1000 lesg than half, and B,
alg. 9
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$1000 move than one third, of the -whole, find their por-
tions equal. What is the value of x ?

5. Let A receive a less than half, and B, a more than

one third, and let their portions be equal. What is the

value of x ?

G. Two couriers are traveling on the same route, and in

the same direction. A is 100 miles in advance of B, and

travels 10 miles an hour, while B follows at the rate of 1 2

miles an hour. In how many hours will they be together ?

Let x= the number of hour.:.

Then 10cc =z the distance A will travel ,

and 12x= the distance B will travel, before they come

together.

Now, if B overtake A, he must travel as many miles as

A, and the distance between them, 100 miles, in addition.

12.r=10x+100; or 12x—10z=:100.
x =. 50 hours.

7. In what time will they be together, if A goes 10 miles

an hour, and B 1 1 ?

8. In what time, if A goes 10 miles an hour, and B 10^ ?

A 10, and B 10^? A 10, and B 10^? A 10, and B
10rio? A10,andB10 TIJW? A 10, and B lO^Voo ?

9. In what time, if A goes 10 miles an hour, and B 10 ?

In the last case, we have lQx—10x=z (10
—10)x= 100.

_ 100 _100x~
io=io -"o~"

a.) How shall this result be interpreted ? If we divide

100 by .01, .001, .0001, .00001, &c, the quotient obviously

increases as the divisor diminishes, and in the same pro-

portion. Consequently, if the divisor becomes numerically

less than any quantity whatever, or 0, the quotient must

become greater than any quantity whatever, i. e. infinite.

For no number can be assigned or conceived, so great as,

when multiplied by 0, to produce 100. Hence i#£, or, in

general,
~-

(a being any quantity whatever, numerically
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greater than 0), is infinite,
i. e. greater than any assignable

quantity; and is expressed by the symbol oo.

Now, as the difference of the rates, in the preceding problems, be-

came less (i. e. as B gained less in an hour), the number of hours

required for him to overtake A became greater. When the difference

of tho rates is nothing, the time will be infinite (i. e. B will never

overtake A). In other words, if B gains nothing in one hour, no

number of hours can enable him to gain 100 miles.

10. Again, suppose that A travels 10, and B 8 miles an

hour, when will they be together ?

Here we have 8x—10*=—2x— 100. .-. x~—50 (§ 5).

That is, A and B xvere together 50 hours ago.

Note. Had it been proposed to find when they had been togeth

er, the answer would have been positive (§4. c).

11. Let A be a miles in advance of B ; and let A trav-

el n, and B m miles an hour. When will they be togeth-

er ? Ans. In hours.
m—n

b.) The last problem is the generalization of the preced-

ing (6-10). We shall evidently have, if «>0 (§ 6. a), when

?»>», m—n positive, and, of course, the result positive ;

when m= n, m—n— 0, and the result, infinite ; and when

}«<«, m—n, negative, and the result negative (§ 10. d). If

a =. 0, and m>, or <«, the result is (i. e. they are togeth-

er now) ; and if m= n, the result is % (i.
e. they are togeth-

er now, and must always remain together [§ 109. c]).

12. Let them travel towards each other, A, n, and B, m
miles an hour. When will they meet?

Ans. In —
;

— hours.
m-yn

Let a— 100, m= 12, and n= 8 ; &c.

Note. The formula of 12, above, includes this case also. For

the rate or velocity of one, being positive, and represented by m,
that of the other must be negative (§5), and may be denoted by—n;

and the difference of the rates will be properly expressed by m— (
—n)=m + n. Hence, we have [12],

a a
~

rn— (
—

n) m-\-ri
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14. The age of a father is 36 years ; that of his son is

12. In how many years will the age of the father be just

double that of the son. Ans. 12.

15. In how many years will it be triple?

Ans. (i. e. it is triple now).

1 6. In how years will it be quadruple ? Ans. —4.

That is, it tvas quadruple 4 years ago. If we had inquired, hovr

long since it had been quadruple, the result would have been posi-

tive.

17. In how many years will the ages be equal ?

Ans. co
(i. e. they will never be equal [§ 109. «]).

18. Let A's age be a, and B's, b years ; in how many
d—?2 J

years will A's age be n times B's ? Ans. .J n—\
Here, if «>1, the result will be positive (i. e. the event will be

future), when a^>nb; negative (i. e. the event will be past), when

a^nb; and zero (i. e. the event will be present), when a= ?i6. If

n= 1, the result will be ± oo, when a> or <^6 ;
and the result will

be Sl, when a^=.b. If 7i<l, the result will be positive, when a^nb;
negative, when a'p-nb; and zero, when a= nb.

c.) In regard te the result
-g-,

it is obvious, that any finite

quantity whatever, multiplied by the divisor, 0, will pro-

duce the dividend, 0, and is therefore a proper value of the

expression. This expression may therefore represent any

quantity whatever, and is henco called an indeterminate ex-

pression.

Thus, in problem 12, if a— 0, and m= n (in which case

the result becomes g), A and B are together now, and must

always remain together. Hence, any number of hour-

whatever will truly express the time at the end of which

they will be together. We may, of course, have an infin-

ite number of solutions ; and, as no one of these is better

than another, the problem is said to be indeterminate.



CHAPTER III.

FRACTIONS.

§ 110. A fraction, in Algebra as in Arithmetic, is the

expression of a division (§§ 2./. N., 10. c).

Thus | and j express the division of 3 by 4 and of a

by J.

§ 111. Again a fraction may be regarded as expressing

equal parts of a unit; the denominator6
showing the na-

ture of the parts, and the numerator
,
the number of

them employed.
Thus | shows, that the unit is divided into 4 equal part*,

and that 3 of them are taken. So T shows, that the unit
b

is divided into b equal parts, and that a of them are taken.

Note. The numerator and denominator are called the terms of a

fraction.

§ 112. A quantity expressed without the aid of fractions

is called entire or integral. An expression partly entire

and partly fractional is call : d mixed.

§ 113. Operations upon fractions are of the same nature

in Algebra as in Arithmetic ; and depend on the following

principles, which we shall here assume without demonstra-

tion.

1 . If the numerator of a fraction be midtiplied or divided,
the fraction itself is equally midiiplied or divided.

2. If the denominator of a fraction be midtiplied or di-

(b) Lat., from denomino, to name, because it names the parts,
(c) Lat., from numero, to number.

*9
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vided, the fraction itself is equally divided or multiplied.

And, hence,

3. If the numerator and denominator be either both mul-

tiplied or both divided by the same number, the value of the

fraction will not be affected.

REDUCTION.

§ 114. Let it be required to reduce x to a fraction, whose

denominator shall be a.

We have, evidently, x= -——-. §113.3.

ft ax
Otherwise, 1 =-; .*. x=.—. §§42. c, 113. 1.

a a

Hence, to reduce an entire quantity to a fraction

having a given denominator, we have the following

RULE.

Multiply the quantity by the given denominator, and

place the product over the denominator.

3x4 12
Thus, to reduce 3 to fourths, we have 3=—-—=—.

4 4

1. Reduce R 2 to a fraction whose denominator is 2bc.

2. Reduce 5 2 to a fraction whose denominator is

sin b sin c.

a.) If there be, connected with the entire quantity, a frac-

tional quantity having the given denominator, we may, ob-

viously, reduce the entire quantity as above, and connect

with it by the proper sign the numerator of the given frac-

tion. Thus4fc=y-|4=V-
a 2 #2

1. Reduce x to a fractional form.
x

a:8_(a3_a:2) x2_a 2_|_;r
2 2x^—a 2

Ans. = = •

x xx
x 1 a 2

2. Reduce x to a fractional form.
x
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3. Reduce x+y-\ —- to a fractional form : also

x—y

'—±1 and -±1 ; also x«
n q x

§ 115. Reduce — to an entire form.
a

Divide both numerator and denominator by a (§ 113. 3) ;

ah
,

then — —b.
a

Hence, to reduce a fraction to an entire or mixed

quantity, we have the following

RULE.

Divide the numerator by the denominator.

Note. If the division is exact (§§80. d, 82. g), the fraction is

reduced to an entire quantity ; if not, the fraction can be expressed

in an entire form by means of negative exponents (§ 14) ; or, if the

numerator be a polynomial, the fraction will be reduced to a mixed

quantity.

a 2—x~
1. Reduce to an entire quantity. Ans. a-\-x.

a—x

_ _ , ,
a4—x4 1—cos 2v a 2—x~

2. Reduce also
x lxcosu a-

§ 116. To reduce a fraction to lower terms.

EULE.

Divide both numerator and denominator by a com-

mon divisor. § 113. 3.

Note. To reduce to the lowest terms, we must, of course, divide

by the greatest common divisor (§ 100).

1.2.3Aa 3x 5 1.2x
1. Reduce _ . g - A A to its lowest terms. Ans. -'—.

3.4.5.6a4a;
4 5.6a

2- »*"ct<w>» «»££» <»»»
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, „ , A*B°—B«~cx" . .

4. Reduce -rs
—

r, Q ,. „ to its lowest terms.A 2
cy'
—c 2

x"y"

Ans. —:..

„ n , nx*-U14-x)"—nx
n
(l-\-x)

n- 1

5. Reduce ji—.
—r-=- to its lowest

terms, and simplest form. .4ws.

#3 I
6. Reduce —~—— to its lowest terms.

X"—1

(l+x)*+*

a~c
7. Given (a-f-a:) (5-f-a;)

—
a(b-\-c) =—^--J-a:

2
, to find x.

^dns. a:=—.

b

§ 117. To reduce fractions to a common denominator.

The value of the fraction must remain unchanged. Con-

sequently, in effecting this reduction, we must either multi-

ply the terms by a common multiplier, or divide them by
a common divisor (§ 118. 3). If then the given fractions

be already in their lowest terms, the common denominator

must be a multiple of each of the given denominators.

Hence, the following

RULE.

Multiply all the denominators' together for a new

denominator, and each numerator by all the denomi-

nators except its own, for a new numerator.

a.) Otherwise, Multiply both terms of each fraction by the

denominators of all the otherfractions.

2 1 5
1. Reduce ^,

- and - to a common denominator.
o 4 7

2X4X7_56 1X3X7_21 > 5X3X4_60
3X4X7

-
84

;

4X3X7~"84
;

7X3X4~~ 84*

a x oc

2. Reduce T,

- and T to a common denominator.be b
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aXcXb __ahc xXbXb __b
2x xXbXc __ hex

bXcXb~~b*c
'

'cXbXb~~~b^c' !>XbXc~~ b 2 c
'

u 1
3. Reduce to a common denominator — and -.

v J v

x x
4. Reduce —r-r and r to a common denominator.

a-\-o a—b

XXX X
5. Reduce -, -, -, and -= to a common denominator.

2 o 4 b

b.) It is evident, that the results obtained by the rule

may often be reduced to lower terms, and still have a com-

mon denominator. This will be obviated by taking, for a

common denominator, the least common multiple of the de-

nominators (§ 106). In that case, we must divide the least

common multiple by each of the given denominators, and

multiply the corresponding numerator by the quotient.XX X
0. Reduce r ,

—-—
^r- and —r-p to fractions with the

a—o a 2—o 2
a-\-b

least common denominator.

ADDITION AND SUBTRACTION.

RULE.

§ 118. Reduce to a common denominator; and then

add, or subtract the numerators.

Note. The resulting fractious in the following examples should

be reduced to their lowest terms.

a c a ± c

b
±
b~~b~'

I . Add -, T ,
- and -.

a o c r

a a+b a+b

. a 3
-{-bx

2 a 3
-\-bx

2

Am. — cn—T— "V <.
•

x{a—x){a-f-x) a Jx—x 3

= what ? Ans.
2(z—4) 2(x—2) a;

3—Cx+8"
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a 3 1

2(x—a)
-
~

4 (x—a)
n "

4(a;-fa)

B2x" —y"
A 2y"~c"—x"

= what ?

6. ——
. ,

= what r

MULTIPLICATION AND DIVISION.

§ 119. To MULTIPLY A FRACTION;

RULE.

Multiply the numerator, or divide the denominator,

by the multiplier. § 113. 1, 2.

_, ax c ax ax
Ihus, —Xc=— -=—

; or, :=axc~^ic=zaxc~ 1 =. —
c 2 c i c c

I 14).

x /ax\
aX- (

—
)ox c \ c J ax , , ,

ax
So TX-= —r~ =—r~ =7— 5 or, =«6- 1 a;e- 1 =:-r—.

b c b b be oc

a.) The application of the rule to the last example gives

the common rule for multiplying fractions together ;

Multiply the numerators togetherfor the numerator of the

product, and the denominators for its denominator.

Note. To multiply by
— is to multiply by "z and divide by c.

But the fraction is multiplied by multiplying the numerator, and

divided by dividing the denominator.

, -«r i • i
aArx

,
a—x

1. Multiply
—— by
—

.

JL *C

n a+x x
, , B*x" —y" 9

2. -Z-x—j—=what? —
-r^T/X^-7/ ?

a 2-4-aW-fl 9 a—b . .

3. t_L -X—r-r= what?

: 120. To DIVIDE A FRACTION ;

RULE.

Divide the numerator or multiply the denominator,

by the divisor. § 113. 1, 2.



§ 120.] division. 107

a vc/ a ab— l a .-
"

br T~e= =—(§14)
b

'

b be' b
•

c be

Also^-c=7^^^ (§113 - 3); or'

&X-

^*= aJ-i jL.a-c-1
— ab-^x~^c=:~ (§ 19. Cor. IV.).

Z»

'

c ox

a.) Hence, the common rule for dividing by a fraction ;

Invert the divisor, and multiply.

Note. To divide any quantity by x divided by c, is the same as

to divide c times that quantity by x.

b.) The last rule is otherwise demonstrated thus ;

a x a t\ \ _ fa
m
1\

b
+~c~b~ \c

XX
)
-
\b~cJ

x.

-™ a
. -,

a a
.

1 ac rc .- T _

d» 6 c b
*~

ac

bx

a
.
x fa

.
1\ ac

.

Apply the same reasoning to |
—

f-

c.) Dividing either term of a fraction has the same effect

as multiplying the other term. Hence, to divide one frac-

tion by another, we may divide the terms of the dividend by

the corresponding terms of the divisor (i. e. numerator by

numerator, and denominator by denominator).

Note. This course is convenient, when the divisions can be ex

actly performed (§§ 80. d, 82. g) ;
and it amounts simply to invert-

ing the divisor and canceling equal factors.

1. Divide -z r- by . Quot. —?-. :

—
„.

a 3—x 3 a—x a--\-o.x-\-x-

2 u
a*-p>±x* h

«-*
QuQfl

a 2—x- a-\-x

9 3 , , 10 2, 1.2.3.4.5x5 1.3.5x 2 ,a : — whit 3 : ? - — ?

12
• 4~ IS

•

o" 10.9.8a"
'

9<t»
"

(-\+
* W « - *

)=what?\a—b a-\-b / ^a—b a-\-b /

a 2+2ab—b*

4.

Ans.
« 2+6 9
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Note. In such examples ag the last, it is generally most conven-

ient to reduce the terms of the dividend to a common denominator,

and also those of the divisor; and then apply the rule (§120. a).

d.) 14--=-; or l~xy-i = x~iy (§ 18) — ^. Hence,

The reciprocal of a fraction is the fraction inverted.

B2x" 7) B 2— what 3 —1—-?-? 1— — ? 1—PA 2y"~
'

y'
• A*'

' *'

a
§ 121. Add k to each term of the fraction =• "Which is

a

. a aA-k „
the greater, T or 7

.

7
?

b o-\-/c

Reducing to a common denominator, we have

a ab-\-ak a-\-k ab-{-bk

b~b*~+Fk
;

b+k~ b^-bk'
Now the greater fraction has the greater numerator.

But the numerators having the term ab common, their

relative magnitude depends upon ak and bk, i. e. upon a

and b.

.'. If t<1> then a < b, ab-\-ak < ab-\-bk, and y < ~!~ .

o 6 6-j-a;

If t->1, then a> 5, a5-j"a^'> «H~^"> an<l y> 7T~7~'

If -=•= 1, then a— b, ab -\-ak= ab -}- &£, and 7— ,7, .

£* o b-\-k

Hence, k being any positive quantity,

a ^ «+& ,. « ^ ,

r<» >> or =
, according as T <, >, or = 1

;
i. e. as

o
o-f-/c o

a <, >, or — b.

That is, If any positive quantity be added to both the

terms of a fraction, the primitive fraction will be less, great-

er than, or equal to the new fraction, according as it is less,

greater than, or equal to unity.

Add 100 to the terms of the fractions f, §, and f.



CHAPTER IV.

EQUATIONS OF THE FIRST DEGREE, CONTAINING

TWO OR MORE UNKNOWN QUANTITIES.

TWO UNKNOWN QUANTITIES.

§ 122. I.) Let x-\-y— 10, x and y being both unknown.

Here the only condition (§ 38) is, that the sum of the

unknown quantities shall be 10. Hence we may have

;e= 0, y=10; x=zl, y=9; x =. 7, y =z 3, &c. ; orrcrr
—

1, y=ll; rc:=—2, y=:12, &C ; or y=z—1, 0, &C.,

re= 11, 10, &c. ; or x— ^, y
—

9%; x=—|, y= 10f,&c.

II. . Again, let x—y= 4.

Here the only condition is, that the difference of the

numbers shall be 4. Hence we may have x= 4, y= ;

re= 5, y= 1 ; re= 7, y= 3, &c. ; or a?= 0, #=—4, &c. ;

or x— 20, y= 1 6, &c.

a.) Either of these equations is, by itself, obviously in-

determinate (§ 109. c); and may be satisfied (§39) by any
one of an infinite number of values of x, with correspond-

ing values of y.

b.) But the conditions may be united. That is, it may
be required, (1.) that the sum of two numbers shall be 10,

and (2.) that their difference shall be 4. We shall then

have, at the same time, rc-f-^
= 10, and x—y= 4. And

the same values of x and y must satisfy both equations.

c.) Now, if x— 9, we have, by the first condition, y= 1 ;

and, by the second condition, y= o. Thus, the same val-

ue of re satisfies both conditions, but the values of y are dif-

ferent. Again, if y =. 6, we have, by the first condition,

x= 4 ; and, by the second, re— 10. Here, the same value

ALG. 10
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of y satisfies both conditions, but the values of x are diffe-

rent. The values in both these cases are said to be incom-

patible.

d.) But the same values of both x and y must satisfy-

both conditions (b). And, in fact, among the values found

above (L, II.) there is one set common to the two equations,

viz. x= 7, and y= 3
; thus 7+3= 10, and 7—3= 4.

e.) The solution of the problem consists in finding these

common, or compatible values of x and y.

§ 123. The union (§ 122. b) of the two conditions is alge-

braically expressed by the combination of the equations,

treating x and y as symbols of the same quantities in each.

Note. It is obvious, that, if x represents the same quantity in

the two equations, the sura of x in the first and x in the second, will

be 2x, and their product, a: 2. But if x in the second equation de-

noted a different quantity from x in the first, it might be distinguished

', and the sum of the two quantities would be x+x', and the"

product, xx1
. The same remark, clearly, applies to y.

ELIMINATION.

BY ADDITION AND SUBTRACTION.

§ 124. Combining (§ 123) the equations

x+y= 10

x—y— 4

adding them, member by member (Geom. § 22), we have

2a;= 14; .-. x= 7.

Substituting, in the first equation (x+y— 10), for x its

value, we have

7+y= 10; .-.y=3.

These values of x and y introduced into the second equa-

tion, x—y= 4, satisfy it; thus

7—3= 4, an absolute equation (§ 37. d).

,tes. (1.) The value of y might with equal propriety have

m obtained by the substitution of x in the second equation. Thns
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7_y= 4. ... y= 3. (2.) If we had subtracted the second equa-

tion from the first, we should have found the value of y; and then, by

introducing it in either of the equations, we should find x.

§ 125. The solution of the problem in § 124, it will be

observed, is effected by removing one of the unknown quan-

tities, till the value of the other has been found. This is

called elimination'' ; and the method employed above is

called elimination by addition and subtraction.

1. Given x-{-y=lo, (1)

3x+4?/=54 (2)

.Multiplying (1) by 3, Zx-\-5y = 45.

Subtracting the la3t from (2), y— 9.

Then from
(
1

), x+9— 15 ; .-. x= 6.

2. Given Sx—%y=—27, . . (1)

4z-Hy= 24. . .

Multiplying (1) by 2, and (2) by 3, we have

6as—#=—54, . . (3)

12x-hy=x72. . . I

Then, by adding (3) and (4),

18x=18. .\*=l,y=60.
Eliminate x, by dividing (1) by 3 and (2) by 4, and subtracting

iho first quotient from the second.

§ 126. (1.) When one of the unknown quantities has the

same coefficient in both equations, it can be eliminated, if the

signs of the equal coefficients are alike, by subtraction ;

and if unlike, by addition. See §§ 57. 18 ; 60. 14.

(2.) We may cause one of the unknown quantities to

have the same coefficient in both equations, by suitably

multiplying or dividing one or both of the equations.

1. Given 5x-\-Gy= 40,

Zx-\-2y= 20, to find x and y.

Ans. x= 5, y= 2 \.

(d) Lat. elimino, to turn out of doors.
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2. Given 7aH-10y= 72,

9x+ 3y =± 63, to find x and y.

3. Given 2x—dy= 7,

x-\-2y= 14, to find x and y.

BY COMPARISON.

§ 127. 1. Resuming the equations,

x-\-y= 10, . . . (I)

*—y = 4» ... (2

we have, from (1), x= 10—y,

and from (2), x= 4rj-y.

Equating
6
these values of x, we have

10—y= 4-{-y. .: y= 3, and x == 7.

2. Given 2#—3y= 7, and a;-J-2y
= 14.

From the first, %y= 2x—l ; .-. y =. fa;—$.

From the second, 2^=14—x; .-. y=z7—hx.

%x—£= 7—\x. .: x= 8, y= 3.

In this method, we find from each equation the value of
one of the unknown quantities, in terms of the other un-

known, and of the known quantities. We equate these tws>

values, andfrom this new equation find the value of the oth-

er unknown quantity ; and substitute as before.

Note. This is called elimination by comparison, because we

compare the two values of the unknown quantity.

BY SUBSTITUTION.

§ 128. 1. Taking again the equations

x+y=lO, ... (1)

x—y= 4, ... (2)

we have, from (1), y= 10—x.

(e) Lat. tequo, to make equal. Quantities are said to be equated,
or made equal, when they are made to constitute the members of an

equation.
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Substituting in (2), x—(10—x) = 4. .-. x= 7, y= 3.

2, Given 2z—3y= 7, . . (1)

x+2y=U. . . (2)

From (2), we have y= 7—lx.

Substituting in (1 ),
2x—3(7—\x) = 7; |

or 2x—21+|a;= 7.

x= 8, y= o, as above (§127. 2).

"We here ./mrt*,
as m the last method, the value of one of

the unknown quantities from one equation, and substitute it

in the other equation.

Notes. (1.) This is called elimination by substitution. (2.) Ei-

ther of the above methods may be employed at pleasure. Sometimes

one will be found most convenient, and sometimes another. Practice

will enable one to fix upon the best method in each case. It will be

useful for the learner, at first, to solve each example by all the meth-

ods.

$129. 1. Given %xJr\y= 11,

\x-\-\y= 8, to find x and y.

2. Given 3z—4y=—13,

7x—by= 0, to find x and y.

Ans. x=.b, y—1.
3 . Given —Sx-{-iy— 8,

Sx-\-5y— 3^, to find x and y.

Ans. x——£, y— \.

4. Given y= 2x—4,

y=—Bx-{-8, to find x and y.

Ans.x=2%,y— ?f .

5. Given y= ax-\-b,

y= a'x-\-U, to find x and y.

b—V a'0—aV
Ans.x=— , y

——
.

a!—a a!—a

With what values of a, a', b and V will x and y, in this

result, become zero ? negative? infinite (§ 109. a) ? inde-

terminate (§ 109. c) ?

*10
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6. Given ax-\-by= c,

a'x-\-Vy= d, to find x and y.

_
Vc—bd _ad— a'c

Ans - x-^ZdV y-av^Tb-

7. Given x-\-y= S, and x—y= D,to find x and y.

Am. x= !(£+#)> y= K^—D)- See § 65. 3.

8. A horse and saddle are worth $175 ; the horse is

worth six times as much as the saddle. "What is the value

of each ?

Solve the problem by means of one, and of two unknown quanti-

ties.

9. Let the horse and saddle be worth a dollars ; and let

the horse be worth m times as much as the saddle.

a „ , , ,. iua . nil
Ans, value of the saddle ;

—
;

—
,
that oi the horse.

1+m l+»»

10. A bill of SI 65 was paid in dollars and eagles, the

whole number of pieces being 70. How many were there

of each ?

Let x= the number of dollars,

y= "
eagles.

Then x-\-y= 70, and x+10y= 1 65.

Or, if x= the number of dollars, then 70—x= the num-

ber of eagles ; &c Or, let x= the number of eagles ; &c.

11. a coins of one kind make a dollar, and b of another

kind. How many of each kind must be taken, in order

that c pieces may make a dollar ?

Let x= the number of the first.

Then either y or c—x will be the number of the second.

™ x
, V -•

x
,

c—X 1
Then -+ |= l;or-H—7—= 1.

a b a b

a(e—b) _ , „ , . - b(a—c) „ ,

Am. ——t*- of the first kind ;
-s——- 01 the second.

a—b a—
Let a= 20, 5= 10; and c= 12, 13, 20, 10, 21, 9.

Leta=10, 5=6; andc= 8, 9, 10, 6,5, 11.
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a.) The nature of the question requires whole number

for the answers. Such values, therefore, should be assign-

ed to a, b, and c, that the numerical values of the above re-

sults may be integral. Which of the values above comply

with this condition ?

b.) With what values of a, b and c, will the above results,

or either of them, be positive ? negative ? zero ? infinite ?

indeterminate ? How shall these several results be inter-

preted ?

12. Find a fraction, such that if 1 be added to its nume-

rator, the value will be
|- ; and if 1 be added to its denom-

inator, the valiu will be £.

Let x be the numerator, and y the denominator.

13. A certain number is expressed by two digits whose

sum is 9 ; and if it be increased by five-thirds of itself, tli

order of the digits will be inverted. What is the number ?

Let re= the left hand digit,

and y— the right hand digit.

Then 10x-\-y= the number, &c.

14. A places a sum of money at interest; B invests

1000 more than A, at 1 per cent higher interest, and finds

his income $80 more than A's. C invests $1500 more

than A, at 2 per cent higher interest, and receives an in-

come greater than A's by $150. What are the three sums

invested, and at what rates ?

Let x= A's sum, and y= his rate of interest per cent.

xy
Then Too" *"s mcome?

*»c -

MORE THAN TWO UNKNOWN QUANTITIES.

§130. I. Let x+y+z= 10 .... (1),

x, y and z being all unknown.

Here we may assign any value we please to any one of

the unknown quantities, and still have an infinite number

of values for the other two ; or we may assign any values
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whatever to two of them, and find a corresponding value for

ihe third. Thus, the problem is doubly indeterminate.

II. Again, let 2x—y-\-3z= 7 ... (2)

This equation is equally indeterminate as the first. And
if we unite the two conditions, W6 may still assign any val-

ue we please to one of the unknown quantities, and deduce

corresponding common values for the other two. Or, elim-

inating one of the unknown quantities, we shall have a sin-

gle equation with two unknown quantities.

Thus, adding (1) and (2),

8x+±z= 17 . . . (a)

Hence, the problem is still indeterminate (§ 122. a).

III. But again, let

3x+2y+4z=z27 . . . (3)

Multiplying (1) by 2,

2x+2y+2z= 20 . . .(b)

Subtracting (b) from (3),

x+2z= 7 . . .(c)

Combining (a) and (c), [§ 123], we find x=z3, y= 5, and,

then substituting in (1), (2) or (3), z= 2.

Note. We might, obviously, have employed either of the other

methods of elimination (§ 124-128).

§ 131. Hence, to find the common values of three un-

known quantities, from three equations, we eliminate one of
the unknown quantities from all the equations, thus forming
two equations with two unknown quantities. We then solve

these equations by § 124-128.

1. Given &H4rK*= 12,

*— y+ z= 12
>

2x-\-3y
—4s= 12, to find x, y and z.

2. Given x-\-ly+^s=27

x-\-\y-\-\z=z 16, to find x, y, and z.

Ans. x= 1, y= 12, z = 60.
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§ 132. "We have found one equation with tivo unknown

quantities, and one or two equations with three unknown

quantities to be indeterminate. In like manner, if we had

three equations with four unknown quantities, by eliminat-

ing one of the unknown quantities, we should have two

equations containing three unknown quantities, and, of

course, indeterminate. By like reasoning, we shall find,

that any number whatever of equations must be indetermin-

ate, if the number of unknown quantities is greater than the

number of independent equations.

Notes. (1). Independent equations are those, of which no one

is implied by the rest. Thus x+y=B, and 3x+3y= 9 are not

independent, because one is a necessary consequence of the other.

(2.) When a number of equations containing several unknown

quantities are spoken of, they must be understood to be independent

equations, unless the contrary is stated, or clearly implied by the

connection.

§ 133. If we have four equations involving four un-

known quantities, the elimination of one of the unknown

quantities will result in three equations containing three un-

known quantities, which may be solved by § 131. The
same reasoning will obviously extend to any number of

equations containing an equal number of unknown quanti-

ties.

§ 134. Hence, to find the value of any number ol

unknown quantities from an equal number of equa-

tions, we eliminate one of the unknown quantitiesfrom
all the equations, thus diminishing by one, at the same

time, the number of equations and of unknown quan-
tities contained in them.

We then eliminate, from the new equations, another

unknown quantity, and so on, till we arrive at a sin-

gle equation containing one unknown quantity.

1. Given 7x—2z+3u= 17,

4&—2z+t= ll,

5y—3x—2u=:8,
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Ay—3u+2t=0,
3z-\-8u— 33, to find x, y, z, u and t.

Ans. x= 2,y= 4:,z= 3,u=z3,t=zl.
2. Given 2x—3y+2z= 13,

2u—x=. 15,

2y+z= 7,

5y-\-3u
—

32, to find x, y,"u and z.

Ans. x= 3, y=l, m= 9, z= 5.

3. The sum of four numbers is 25. Half of the first

number is equal to twice the second, and to three times the

third; and the fourth is four times the third. What are

the numbers ?

Let u, x, y and z represent the numbers.

Also let x represent one of the numbers, and solve the

problem with one unknown quantity.

4. Find three numbers, such, that the sum of the first

and second shall be 15
; the sum of the first and third, 16 :

and the sum of the second and third, 17.

Solve the above problem by one, by two, and by three unknown

•quantities.

5. A, B and C form a partnership. A contributes a cer-

tain sum ; B contributes a times, and C, b times as much
as A

; and the whole stock is c. How much did each con-

tribute? See §55. 4.

c etc
Ans. ———, A's part; , , , , ,

B's part, &c.
I-\-a-f-b l-\-a-j-o

5. A and B can perform a piece of work in 8 days ; A
and C, in 9 days ; and B and C, in 10 days ;

in how many
lays could each person, alone, perform the same work ?

Let x, be the number of days required by A ; y, by B ;

and z, by C.

Then, in 1 day, A will perform - of the work ; B, -
;

* y

md C. -. But A and B together perform, in 1 day,
- of

rhe^work; &c
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1,1 1 1,1 1
, 1,,1_1

x y 8 $x z 9 y z 10

Note. Instead of clearing of fractions, regard — ,
— and — as the

x y z

unknown quantities; and from tbeir values, when found, find the

values of x, y and z (§ 50).

Ans. A in 14§§ days; B, in 17|| ; and C, in 133
7
T .

6. Let A and B perform the work in a days ; A, and

C, in b days ; and B and C, in c days ; and find the general

expression for the time in which each person, alone, would

perform the work.

. 2abc .
, . 2abc _,

Ans. -=—
; 7, A s time ; -=—

;

—
5 ,

B s ; and
oc-\-ac

—ao oc-\-ao
—etc

2abc „.
~rr a

-
'
Cs -

ab-\-ac
—be

§ 135. We have seen, that, when the number of unknown

quantities is greater than the number of independent equa-

tions, the problem is indeterminate. "When, on the other

hand, the number of unknown quantities is less than the

number of independent equations, the equations are incon-

sistent in their conditions, and cannot all be satisfied by the

same values of the unknown quantities. For, if the values

found from two equations containing two unknown quanti-

ties would satisfy a third, this would be implied by the rest,

and, of course, would not be independent of them (§ 132.

N. 1). E. g. the equations x-\-y=. 10, x—y— 4, and 2x-{-y

= 40, are obviously inconsistent.

§ 136. When a single equation containing more than one

unknown quantity is considered by itself, the unknown

quantities are frequently called variables ; and one of them

is said to be a function (§ 26) of the rest.

a.) Thus, in the equations 2y-\-3x= 10, y= ax-\-b, y is

a function of 'x, and x of y ; or, as it is usually expressed,

y— F(x), and x= F(y). For, if we give any value what-

ever to one of these quantities, we can deduce a correspond-

ing value for the other ; and, if we vary the value of the first,

the value of the second undergoes a corresponding change.
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h.) If an equation contain more than two unknown quan-

tities, each of them is a function of all the rest. Thus, in

the equation 2x-\-3y-\-z= 75, we have x == F(y, z) [i. e. x

a function of y and z], y— F(xy z), and z= F(x, y).

Notes. (1.) Of two quantities, that of which the other is said

to be a function, is called the independent variable. (2.) Either of

the unknown quantities may, obviously, be made the independent

variable, and the other will be the function. (3.) If there are more

than two variables, one may be regarded as a function of all the rest,

they being all independent; or one may be a function of the second,

the second, of the third, and so on, the last only being independent.

§ 137. Arithmetic, in its ordinary applications, furnishes

only positive and definite solutions. It is, therefore, some-

times said, that negative, infinite and indeterminate results

do not furnish a proper answer to a question. The answers

which they furnish would indeed not be intelligible to one

unacquainted with the algebraic language. But to one fa-

miliar with that language a negative result answers a ques-

tion as directly and intelligibly a3 a positive ; an infinite, as

a finite. See §§ 4. 9, 10 ; 109. 10, 16.

Thus, when we inquire, how long it will be before a cer-

tain event will take place, we equally answer the question

by saying that it will take place in 12 years (§ 109. 14), or

in no years (i.
e. now, § 109. 15), or that it took place 4

years ago (§ 109. 16), or that it will never take place (§ 109.

9, 17), or that it is taking place all the time (§ 109. c).

In like manner, if we inquire how far east a certain point

lies, we equally answer the question by saying an infinite

distance, a finite distance (as 10 miles), no distance, a dis-

tance west, or that such a point exists every where in a line

running east and west.

Arithmetic does not ordinarily take cognizance of infin-

ite or indeterminate results ; and, regarding numbers sim-

ply as such, without respect to their character as positive

or negative (§ 8), its questions must be proposed in such a

manner, that an answer may be expressed by a number

simply.
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§ 188. It will be observed, that between the positive and

negative values, we always have a value equal to zero or

to infinity, i e. equal to or %. See §§ 4. 6-10 ; 109. 8-10,

b, 14-16. That is, between the positive and negative re-

sults, there is one, either equal to 0, or whose denominator

has become 0.

§ 139. We have %— cc (§ 109. a). That is,

(1.) A finite quantity divided by zero is equal to infinity.

Also (§ 42. c), a= OX co. That is,

(2.) Zero multiplied- by infinity is equal to a finite quan-

tity.

Again (§ 42. d),
—= 0. That is,
CO

(8.) A finite, divided by an infinite quantity is equal to

zero.

Note. We arrive at the idea of infinity by continually diminish-

ing a divisor, and thus finding a greater and greater quotient (§ 109.

a). Hence is sometimes said to denote an infinitely small quan-

tity, or an infinitesimal (i. e. a quantity less than any assignable

quantity [§ 109. a]).

§ 140. The expression $ is not always indeterminate.

For, instead of the whole numerator and denominator, a

common factor may have been reduced to 0. If then this

common factor be removed (§ 113. 3), the expression will

no longer be indeterminate. Thus, when b= a,

a 2—b* _ «2_S 3
(a+J)(a—J)

r=7v But -— v ^ JK —J
-=a-\-b— 2a.

a—b a—b a—b '

when b=.a.
oji jf o

So, if bz=z a, r—7;- But, performing the division.
a—b

ft
«

jf
and then making b=i a, we have -z^na"- 1

(§ 96. b).
a—b

xs i
!• -——= what, when x= 1 ? Ans. 3.x—1

2. -z z-= what, if x= y ? Ans. —.—= 0.

x~—y
2 v x+y

ALG. 11
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o. -. ^ = what, if x= y ? ^tns. —^L= o>.

CHAPTER V.

INEQUALITIES.

§ 141. Two quantities, connected by the sign < or > (§ 2.

b), constitute an inequality. An inequality may be cal-

1 ed increasing, or decreasing, according as the second mem-
ber is greater or less than the first. When two inequalities

both increase, or both decrease, they may be said to have the

ne tendency, or to subsist in the same sense or direction ;

otherwise, they are of contrary tendency.

§ 142. Operations upon inequalities are similar to those

upon equations, and depend chiefly upon an analogous ax-

iom (§ 42) ; viz.

Unequal quantities, equally affected, remain unequal.

Hence, if equal quantities be (1.) added to, or (2.) sub-

tractedfrom, both sides of an inequality, or if both sides be

(3.) multiplied, or (4.) divided by equal quantities, the results

vdll be unequal.

§ 143. In transforming an inequality, however, we must

not only preserve the inequality, but we must, at every step,

determine which way it tends (i. e. which member is the

greater). Hence, the necessity of observing the following

obvious principles.

§ 144. a.) If equal quantities be added to, or sub-

tracted from, both members of an inequality, the tenden-

cy of the inequality will always remain unchanged. Thus,

10>6; 10±8>6±8
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—10<—6; —10±12<—6±12. See § 6. a.

Note. Hence, transposition applies to inequalities, in like man-

ner ae to equations. Thus,

10—5>12—8. .-. 10>17—8.

So, ify
3+* 2—E 2

>0, theny
2
-fa:

2>i2 2
, andy

3>i2 2—x*.

§ 145. b.) "With still greater reason,

If two inequalities, having the same tendency, be added,

nember by member, there xvill result an inequality of th

same tendency.

Thus, 9>7 and —1>—3. .-. 8>4.

So if a~>b, and m>n, then a-\-m>bA^n.
Note. If one inequality be subtracted, member by member, fr«fn

nother of the same tendency, the result will not always be an ine-

quality ; nor, if it be, will it necessarily have the same tendency.

§ 146. c.) If the members of an inequality be subtracted

from the same member, the tendency of the inequality will be

"hanged. Thus,

8>6, and 10—8<10— 6.

In like manner, —8<0—6
(i. e. —8<—6). Hence,

d.) If the signs of both members be changed, the tendency
will be changed.

Note. This results directly from the principle, that, of negative

quantities, that which is numerically the greatest is absolutely the

least (i. e. leaves the least remainder). See § 6. a.

§ 147. e.) If both members of an inequality be multi-

plied or divided by the same positive number, the re-

sulting inequality will have the same tendency ; if by the

same negative number, the tendency xoill be changed.

Thus,

6>—8 ; and 6X3>—8x3, or 18>—24.

But 6X—3<—8X—3, or —18<-f24.

So 6-^2>—8-r-2, or 3>—4.

But 6^ 2<—8-i 2, or —3<+4.
Also, if a> b, ah> bk (§ 121), but —ah<— bt
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§ 148. /.) Hence, an inequality may always be cleared

of fractions. For, if we multiply by a positive denomina-

tor, the tendency remains the same ; if by a negative, it is

changed. Or, if the denominator is negative, we may place
its sign before the fraction, and then multiply by the posi-
tive denominator (§§ 68. b, 80. b).

§ 149. g.) If the members of an inequality be positive,
and be both raised to the same positive integral power
of any degree whatever, the tendency of the inequality tvill

remain unchanged.

Thus, 7>3; 7 2>3 2
;

Note. This holds equally of fractional powers or roots (§23.
/>), so long as we confine ourselves to their positive values (23./. 1).
If we regard the negative values of an even root, the tendency is, of

course changed.

§ 150. h.) Whatever be their signs, if the members of an

inequality be both raised to the same odd positive potver.
the tendency will remain unchanged. Thus,

—3<2; (—3)
3
<23«

CHAPTER VI.

POWERS AND ROOTS.

MONOMIALS.

§ 151. To raise a monomial to any power;

Multiply the exponent of each factor by the expo-

nent of the required power. (§24. d).

a.) This rule depeuds on the obvious principle, that a



§ 151.] MONOMIALS. 125

power of a product is equal to the product of the same pow-
ers of the severalfactors. Thus,

{abc)
n—anb

n
c
n

\ [pbc)*= a 2b 2 c 2
; («J)^a¥.

b.) This rule applies equally to numerical and literal

factors ; and, so far as Algebra is concerned, it is sufficient.

It is proper, however, to perform upon the numerical coef-

ficient the arithmetical operations indicated by its expon-
ent. Thus, if its exponent be positive and integral, raise

the coefficient to the arithmetical power denoted by the ex-

ponent ; if the exponent be positive and fractional, raise the

coefficient to the power denoted by the numerator and ex-

tract the root denoted by the denominator ; if the exponent
be negative, perform the same operations as if it were pos-

itive, and place the result in the denominator of a fraction,

of which the other factors of the monomial constitute the

numerator.

c.) The sign of an even integral (§ 22. d) power is posi-
tive ; the sign of an odd integral power is the same as thai

of its base (§ 22. N.). See § 11. N. 2.

1. What is the fourth power of 2ab^x^y~^?

Ans. 2*a*b*x%~%= 16a*h*x*y~$.
2. {—Za-b- 1)3

— what? (—aWcx) 2 ? (aV3
)
2 ?

3. (na-
2
x~?)^ = whsLt? (a~*x~%)~*? (10&)

6
?

(a
nxr

)t? (^)
s-i?

- - - i r
4. (a

nx,J

)
s = Yfhsit? (3a-

2
b*x2y~?)

5
? (fi

2x- 2
)~% ?

d.) In determining the sign of a fractional (§ 22. d) pow-
er, its exponent should be reduced to its lowest terms.

Then, if the numerator of the exponent is an even number,
the power is positive; if the denominator is even, the pow-
er of a positive quantity is ambiguous (i. e. ±), and of a

negative quantity, imaginary (§ 23./) ; and if both numera-
tor and denominator are odd numbers, the power has the

same sign as the quantity itself.

*ll
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e.) A power of &fraction is found by raising both nume-
rator and denominator to the required power (§§ 119. a, 120.

c). Or, all the factors of the denominator may be carried

into the numerator, if we change at the same time the signs
of their exponents (§§14, 17) ; and then the quantity may
be treated like any other monomial.

G)' :

ROOTS.

§ 152. From the preceding rule (§ 151), we deduce the

following specific rule, in which the term root is used in

the same 6ense as in Arithmetic.

To extract any root of a monomial ;

Extract the root of the numerical coefficient as in Arith-

metic ; and divide the exponent of each literal factor by the

number of the root.

a.) This rule is obviously included in the preceding

(§ 25). But for convenience, and on account of the rery

frequent necessity of extracting the square and cube roots,

it is given here in a distinct form.

b.) An odd root of a positive quantity is positive; of a

negative quantity, negative (§ 23. e).

c.) An even root of a 2}ositive quantity is either positive

or negative (§ 23./. 1).

d.) An even root of a negative quantity is imaginary

(22./. 2).
3

1. "What is the square root of 2oaHc- yxz
'?

Ans. J{25a*bc-ix3)= (25a
2bc~^x^— 5a5-c~M.

2. y(49a
3J2a:-3)=what? (100«-

45ma;
2M

)- ? (x^?

3. V-^= what ? (*£)*? fe£L)*P6464y
12 \2(b zzJ \**/c*/r/
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§ 153. Any root of any monomial can be algebraically

expressed, but it is not always possible to perform exactly

the arithmetical operations upon the coefficient. Thus the
jl 1

square root of 2ab- is 2'2a 2
b; but the exact arithmetical

computation of 2 2 cannot be attained. Such a root is cal-

led incommensurable^ irrational or surdh. A numerical

quantity whose root can be exactly found is called a •per-

fect power.
Note. It will be shown hereafter, that, if a root of a whole num-

ber is not a whole number, it cannot be expressed at all except by

approximation.

§ 154. The use of the term perfect power, as applied to

algebraic monomials, is sometimes restricted to the cases in

which the numerical coefficient is a perfect power, and each

exponent is divisible
(<§

80. d) by the number of the root.

The roots of all quantities which are not perfect powers
are called irrational, radical (§ 23. d. N.) or surd quantities.

§ 155. A radical quantity can frequently be reduced to a

simpler form. Thus,

(192a
3
fr
3
c)S=(64a

35 2
X3ac)^= 8a5(3ac)^.

(I08a^x)^= (27a
3 £ 6X4aVp= 3a5 2

(4a
2
x)*.

We here separate the root into two factors, one of which

is rational (i. e. expressed by integral exponents), while the

other is radical (i. e. expressed by fractional exponents).

This can, obviously, be done, whenever, after the extrac-

tion of the root, any of the exponents are improper frac-

tions; or, when, before the extraction, any of them are

greater than the number of the root, and not exact multi-

ples of it.

§ 156. We shall, evidently, effect this simplification, it,

(/) Lat. in, not, con, together and mensura, measure; having
520 common measure (§100) with unity, (g) Lat. in, not and ra-

tio, relation, ratio ; whose ratio to unity cannot be exactly expressed,

(/i) Lat. surdus, that is not heard; because it cannot be expressed.
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in extracting the root, we divide the exponent of each let-

ter by the number of the root, and set the integral part of
the quotient as an exponent of the letter in one factor, and

the fractional part as an exponent of the same letter in

another factor. If the root has been extracted, we have

only to reduce all the improper fractions among the expo-

nents to mixed numbers, and set each letter under its integral

exponent in one factor, and under its fractional exponent
in another.

1. Eeduce y60a 3 64a; to its simplest form.

Ans. (60aH*x)^=: (4.l5)%aah*x^=2ab*(ttaxft=
2ab" +/loax.

2. Reduce (7oa
2 b 5x 7

)
2 to its simplest form.

3. Reduce also 3^/54a 8x 3
; ^/32x

2
y

5
; *Ja s

bpc~
2x;

J(2p)x
2 ?

4. Separate a 2 b3c4x » into rational and radical factors.

CT fin _^n 3r> JL2>'»

Ans. aWcxXahh*x n =aWcxXa^
n
b
12V- n

x
i '- n =

a 2 b 2cx
l aV« 6"&4"<^ 12"'— a*b*cz{a

anb**c* nxi »)A»
See § 1G0.

§ 157. a.) In simplifying an irrational fraction, it is gen-

erally best to multiply both numerator and denominator by
a multiplier which will make the denominator rational.

/3\-
Thus, we may simplify the fraction f-J

2
,
as follows :

/8\i_3*_**7*_(8J7)*_l,sl
aW -^-^|~~7~~7 (^ *

Note. If the sum of the exponents of each letter in two mono-

mials be an integer, the product will, of course, be rational.

§ 158. b.) Every negative quantity can, obviously, be re-
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garded as containing the factor,
—

1, together with a posi-

tive factor.

Thus—a— a{—1) ;
—a 2 = a 2

(—1) ;
—25= 25(—1).

Hence, (—a) 2 — a 2(—1)^ ; (—a
2
)
2 = (a

2
)
2 (—1)^ =

a*/—1.

1. (—^2
)
2"=what? Am. Bj—1.

2. (—2o« 2^) 2
"= what? Ans.halPx^J—\.

Hence, every even root of a negative quantity consists of
a real quantity multiplied by */—1.

Note. Such expressions as the above must not be regarded as

having any actual value whatever. One factor is real, but the other

is imaginary; and the product is, of course, imaginary.

§ 159. Addition, subtraction, multiplication and division

are, of course, performed upon irrational quantities accord-

ing to the general rules. In addition and subtraction, it is

frequently more convenient to separate the quantities into

their rational and radical factors, and reduce the resulting

polynomials by § 33. c.

§ 1 60. After the separation of the rational and radical

factors of a monomial, it is frequently convenient to reduce

all the fractional exponents to a common denominator, and,

writing only the numerator of each exponent over its letter,

enclose the whole in a parenthesis under the reciprocal of

the denominator as an exponent; or, if preferred, place the

whole under a radical sign with the common denominator

over it. See § 156. 4.

Notes. (1.) Radicals which have the same quantities, both nu-

merical and literal, under the same fractional exponent or radical

sign, are called similar radicals. (2.) The rational factor, multi-

plied by a radical, is, of course, properly called the coefficient of the

radical.

§ 161. The rational factors may be placed under the rad-

ical exponent or sign, if their exponents be reduced to frac-

tions having the common denominator. This is commonly
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called carrying the coefficient of the radical under the sign.

Thus,
2 1 i

xja=z&«p= (ax-y, or J(ax-).

1. x(2JRxy= what? Ans. (2Rx*y, or J(2Rx*).

2. x(2ifo)^:=:what? Ans. (2Rx*)$, or V(2ifa 4
).

This transformation is particularly useful in finding an

approximate root of a number. Thus,

7y5= 7X2 (the nearest unit)= 14. But

7^5=7*5*= (7*.5)*= (49.5)*= (245)^= 16 (the
nearest unit).

Note. In extracting the root of 5 and multiplying by 7, we mul-

tiply the error in the root by 7. In the other process, we avoid this

source of inaccuracy.

Remark. In some, especially of the earlier treatises, the radical

sign is used almost to the exclusion of fractional exponents. The
exponent, however, is much more convenient, and many of the diffi-

culties connected with the calculus of radicals, as it is called, dis-

appear, when the exponent takes the place of the sign. Hence, if it

is intended to u«e the radical sign in expressing the result, it is still

generally best to employ the exponent in the operations by which
the result is obtained.

IMAGINARY QUANTITIES.

§ 162. The expression */—1 may be taken as the repre-
sentative of all imaginary quantities. The treatment of

imaginary quantities will be best illustrated by considering
soine of the powers ofJ—1. Thus,

(y-i)
2= (-i)^.(-i)^=-i.

(y-l)3= (-l)^-_l)*=^l(-l)*=-^-l.
k/-l)*=(-l)*=(-l)» = l.

U-l)o-^_l. (y_l)G-_i ; (y_l)7__v/_1;

(^-1)8= 1; &c.

Hence, (,/—a
2
)
2 = (aj—l)°= a 8X—1 = —a 2

.

y—a° y—5 3= ay—lxV—1= abX—1 =—ab.
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Notes. (1.) Caro must be taken not to confound imaginary
with irrational expressions. A numerical surd, as^/2, cannot be

exactly expressed in units or parts of a unit, but we may approximate

as near as wo please to its true value. An imaginary expression,

on the other hand, as ^/
—1, has no actual value, and we can, of

course, make no approach to its value; nor can one quantity be said

to come any nearer to its true value than another. Thus, no quan-

tity can be conceived, which, multiplied into itself, will produce—1;

and the expression /—1 is merely a symbol of an impossible opera-

tion; a symbol, to which there exists no corresponding quantity.

(2.) It may be thought, that such symbols, not representing quanti-

ty, can be of no utility, and should have no place in investigation?

relating to quantity. But some of the most remarkable and useful

results of algebraic reasoning depend upon the presence of imaginary

symbols. (3.) An imaginary result generally indicates, that we

have, in some way, introduced inconsistent conditions into our inves-

tigation; and demonstrates the impossibility of finding, under the cir-

cumstances, such a result as we, at first, proposed to find.

POLYNOMIALS.

v 163. "We shall consider here only the positive integral

powers, and simple roots of polynomials. It is evident,

moreover, that if we can find such powers and roots of a

polynomial, we can find all powers. For the formation of

the power denoted by the numerator, and the extraction of

the root denoted by the denominator will give any positive

fractional power; and the proper combination of those

processes with division will give all negative powers.

§ 164. The most obvious method of finding a positive in-

tegral power of any quantity is by continued multiplication

of the quantity by itself; taking it as a factor as many
times as there are units in the exponent of the power.

Thus we have already found (§ 89)

(a+x)
2= (a+x)(a-\-x) = a 2

+2ax-f-x
2

.

So (a-f-x)
3 = {a-\-x){a-\-x){a-\-x)

— a 3+3a 2x+3ax*+x*.
(a+x)

*= (a+ar)
3
(a+x) == a*+4a 3

a:-f-6a
2
a:

2
+4a2;

3
-|-a;

4
.

(a+x)
5= a5+5a*x+10a 3

2;
2
-f10a

2z 3
-f5ax*+x°.
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§ 165. We find that, in these instances, (1.) the first term

of each power of the binomial, a-\-x, is that power of the

first term of the binomial; (2.) that the exponents of the

first or leading quantity, a, diminish, and those of x increase

by unity in the successive terms ; (3.) that the exponent of

a in the last term is zero, and that of x is the exponent of

the recpiired power ; (4.) that the numerical coefficient of

the second term is the same as the exponent of the recpiired

power ; and (5.) that the numerical coefficients at equal dis-

tances from the two extremities of the series are equal.

Note. It will be shown hereafter, that these principles apply to

all positive integral powers of a binomial, and that all but the third

and fifth apply to every power of a binomial, whether the exponent
be positive or negative, integral or fractional.

§166. "We have enunciated these principles as proved

only so far as we have found them true by actual multipli-

cation. Let us suppose, that we have found the law of the

first and second terms, given above (§ 165. 1, 4), to be true

to the nth. power. See § 95. N. 1.

Then we have (a-\-x)
n= an-\-7ia

n~ l
x-\-&c.

Multiplying by a-\-x,

(«4-;r)
n+i — an

+i-\-(n+l)a
n
x-\-&c.

If then the principles 1, and 4 of § 165 are true for the

nth power, they are true for the n-\-l power, and so on,

without limit, n being any positive integer whatever.

§ 167. If we substitute, in the above expressions (§ 164),
—x for -\-x, we shall, evidently, obtain the powers of a—x.

This substitution will, obviously, cause all the terms con-

taining the odd powers of x to become negative, and will

occasion no other change. Thus,

(a—x)
- — a 2—2ax+x*. See § 90.

(a—xy = a3—3a 2
a:-f-3aa;

2—z 3
.

(a—x)*= a4—4a3
a:-{-6a

5
a:

2—4aa; 3-fx
4

.

$ 1 68. (a-f-z)
2 = a 2

-j-2rtcc-Hc
9

. Substitute b-\-y for x
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Then («+H-3/)
2 = « 2+2«(H^)+(Hiy)

2
. . (1)

or (a+H-y)
2 = («+£)

2+2(«+%-h$/
2

• • • (2)

Developing, (a+b+y)
2 = « 2+2a5+& 2

+2ay+2fy+2/
2

.

That is, The square of the sum of three members is equal

to the sum of their squares, plus twice the sum of their pro-

ducts, taken two and two.

Note. By increasing the number of terms, we might find similar

expressions for the square of any polynomial. Thus,

(a+b+c+z) 2= (a+b+c)2+2(a+b+c)z+z*.

Hence, The square of any polynomial is equal to the sum of the

squares of the terms, plus twice the sum of their products, taken

two and two.

§169. (a+x)
3 = a 3+3a 2a;+3ax2+a:

3
. Substitute

b-\-y for x. Then

(«+Hi/)
3 = « 3+3« 2(H^)+3«(H^)

2+(H^) 3
•W

or(a+6-f-y)3 = (a+5)3-L.3(a+5)2y+3(«+% 241/
3

. (2 )

.-. (a-L.J-fy)3 =a 3
-{-3a

2
b-{-3ab

2
-\-b

3+3a 2
y-\-Qaby+3bSy

+3ay 2
+3fy 2 +#3 = as+b*+yS+Za* (b+y)+3b* (a+y)

+3y*(a+b)+6aby.
That is, The cube of a trinomial is equal to the sum of

the cubes of the terms, plus three times the square of each

term into the sum of the other two, plus six times the product

of the three terms.

Notes. (1.) We might find, in like manner, expressions for the

higher powers of a trinomial. (2.) If one of the terms of the tri-

nomial becomes zero, the formulae of §§ 168, 169 give the square and

•ube of a binomial.

SQUARE ROOT OF A POLYNOMIAL.

§ 170. Find the square root of a 2
+2ab-\-b

2
.

a.) The polynomial being arranged according to the des-

cending powers of a, we know, that a 2 must be the square
©f one term of the root (§§ 73. 1

; 82. a, b).

b.) We know, moreover, that the polynomial containa,
ALG. 12
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besides the square of the first term, twice the product of the

first term by the second (§ 168), and so on. If, therefore,

we divide the next term of the arranged polynomial by 2a,

we shall find another term of the root.

c.) If now we subtract from the given polynomial the

square of the terms of the root already found, the remain-

der, if there be one, will contain the terms which resulted

from the multiplication of the remaining terms of the root

by each other, and by the terms already found (§ 168. 2, N.).

d.) We may, therefore, find another term of the root, by

dividing the first term of the arranged remainder by twice

the first term of the root ; and so on (§ 82. c).

Thus, a 2+2a5+& 3

a*

2ab+b°-

2ab+b
2

a+b

2a+b

Notes. (1.) It will be seen, that we have subtracted the square

of the two terms of the root found (§ 170. c). For., (a+b)^=
a^+2ab+b- =za.2+(2a+b)b. Now we subtracted a 2 at first, and

afterwards subtracted (2a+b)b. (2.) Also, after each subtraction,

we shall have subtracted the square of the whole root then found

(§171. Ex. 1, a).

(3.) As there is no remainder, there can be no other terms in the

root. And whenever we find a remainder equal to zero, the work it

completed (§82. g), and the given polynomial may be said to be a

perfect power.

(4.) If, however, after exhausting the given terms of the polyno-

mial, we still have a remainder, the root cannot be exactly found by

this process.

(5.) We may, however, continue the process, and develop the

root in an infinite series, as in division (§87).

From the reasoning above, we deduce the following

RULE.

§ 171. 1. Arrange the polynomial according to the

powers of some letter.

2. Extract the root of the first term for the first
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term of the required root; and subtract its square

from the given polynomial.

3. Double the part of the root alreadyfound,for a

partial divisor ; and divide the first term of the re-

mainder by the first term of the doubled root; setting

the quotient, with its proper sign, as a term both of the

root and of the divisor.

4. Multiply the divisor thus completed by the new

term of the root, and subtract the product. Continue

the process as long as the case may require.

1. (Ox*—12x; 3
+16a:2—8x-f-4)^= what?

9z4—12z 3
-j-l&c

2—8a>f4 |

3;r 2—2a:+2

9a:*

—12a: 3
j

6a:
2—2x

—12or 3
4-4a;

g

12a; 2
j
6z 3—

4x-f-2

12a; 2—8*4-4

a.) We must be careful, at each step, to double the whole

of the root already found, for a divisor. For

(a+i+c)
2 =z (a+b)*-\-2{a+b)c+c

2
. § 168. 2.

Also, (a-f-S+c-fa-)
2= {a+b+c)

2
+2{a+b+c)x+x

2
; and

eo on. § 168. N.

2. What is the square root of a*-f-4a
3
J-f-6a

2 5 2+4ai'
v

+b* ? Am. a*-\-2ab+b*.

3. (16x*+24a;
3
4-89a;

2
+60a;+100)

*= what ?

4. (a±2a?$+b)
*= what ?

-4»s. a 2±5 2
,
or <Ja±*/b.

5. (a
2
+2aa:S-|-aO*= what? (x

2
-|-pa;+i^

2
)^?

6. (a
3
^fc2a"o:»-f^")^=what? J/w. o"±x".

§ 172. J.) The square root of a trinomial perfect power
may be immediately determined by inspection. For the
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roots of the terms containing the highest and the lowest

powers of the letters being extracted, ihe remaining term

must contain twice the product of those roots (§ 89). More-

over, if this double product of the roots is positive, they
must have like signs ; if negative, unlike. Hence, to ex-

tract the root of a trinomial perfect power, extract the roots

of the terms containing the highest and the lowest jjoivers of
the letters, and give them like or unlike signs, according as

the remaining term is positive or negative. See § 93. I. II.

(a
2±2ax+x-f= a±x.

(n*±2n-\-l)? = what ? (64a
2
-fI12ab+m 2

)
?

§173. c.) 1. Extract the square root of a 2+x 2
. §170=

N. 4.

a 2
-f-:r

2
| a-\-\a~^x

2—
Ja~

3
a:4+&e. = a (1+ \a~

2 x 2—
^a-tx^-j-tScc.a 2
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Let o= 10, and a:= l; then (a
2+x 2

)^= (101)^=10(1

+&c.)= 10(1 + .005 —.0000125 +&c.)=1

200 80,000

10(1.0049875+&c.)= 10.049875 &c.

2. (#
2—cc

2
)^= what?

_,, la;
2 Ix* lx 6

„ v^.i2(l-__-_____&c .)

§ 174. In like manner, in Arithmetic, we extract the

square root of the greatest square contained in the left hand

period ; subtract the square ; divide the remainder by twice

the part of the root found ; set the new figure, at the same

time, in the root and in the divisor ; and multiply the divi-

sor so completed by the new figure of the root.

1. Extract the square root of 5569G.

5'56'96
| 200+30+6 or 5'56'96 I 236

4^00 00
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d.) Consequently, we must divide the remainder of the

first two periods by twice the first figure of the root, re-

garded as denoting tens ; and add to the partial divisor the

figure thus obtained for a complete divisor.

e.) Then the remainder of the first two periods, together
with the third, will, obviously, contain the double product
of the two figures of the root, already found, by the third

figure, together with the square of the third ; and so on.

Notes. (1.) The terms of the power not being distinct, the dou-

ble of the part of the root already found is only a trial divisor; and

the correctness of the next figure of the root can be verified only by

multiplying it into the complete divisor, and subtracting the product.

(2.) The trial divisor, on account of the local value of figures, forms

a large part of the complete divisor, and is therefore an approxima-
tion to it. (3.) (a+l)2—a2=2flrhL. If, therefore, the remain-

der is not less than twice the root found, plus one, the last figure la

too small.

§ 175. f.) If after obtaining the last integral figure of

the root we have not a remainder equal to zero, the given
number is not a perfect square ; and its root cannot be

found but by approximation. For, if a mixed number

(§ 112) could express the exact root of a whole number, the

mixed number being reduced to an improper fraction

whose terms (§111. N.) are prime to each other, the square

of this fraction must be a whole number.

But, if two numbers are prime to each other, the product

of any number of factors equal to the one will, evidently,

be prime to the product of any number of factors equal to

the other. For such a combination of prime factors can

never introduce a common factor. Consequently any pow-

er whatever of the numerator will be prime to the same

power of the denominator ; and the square of the improper

fraction which we supposed to be the root of the whole

number, must be an irreducible fraction, and not a whole

number. Hence no irreducible fraction can be the root of

a whole number ; and, if the root of a whole number is not

a whole number, it cannot be expressed at all except by ap-

proximation (§ 153. N.).
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§ 176. g.) The approximation to a surd (§ 153) root is

effected on the same principle as the simplification of a rad-

ical fraction (§ 157) ;
i. e. by reducing the number to a frac-

tion, whose denominator is a perfect power. Thus,

**=(-5i-j =(25) =5'
Wlthin *•

rt ft
i /2Xl0 2 xi /200x* 14 ,. .,. ,0r'

2
*=(-ioi-) -(100)'=io= 1^ wflnn **

Affun2 -(loor) =(ipoo)
= L41

' Wlthm

.01.

The greater the denominator, the closer, obviously, is the

approximation. For, the root of the numerator being ex-

tracted to the nearest unit, the root of the fraction is found

within a unit divided by the root of the denominator.

h.) The approximation is, of course, most conveniently

performed with the powers of 10, 100, 1000, &c. And this

is the ordinary process of approximation in Arithmetic, in

which the denominator is not written ; and the approxima-
tion may be carried to any extent, by annexing new peri-

ods of cyphers to the number (i. e. by multiplying it repeat-

edly by 10 2
),
and thus extending the root to additional

places of decimals (i. e. dividing the root repeatedly by 10).

i.) In like manner, if the terms of a vulgar fraction are

not perfect powers, we can generally extract its root most

conveniently, by first reducing it to a decimal. If it redu-

ces to a repeating decimal, instead of annexing cyphers in

approximating we should, of course, annex figures of the

repetend.

CUBE ROOT OF A POLYNOMIAL.

§ 177. Find the cube root of a*-\-3a*b-\-§ab*+b
3

.

a.) Reasoning as in respect to the square root (§ 170. a),

we arrange the polynomial, extract the cube root of the

first term, and subtract the cube.
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b.) We then know, that the first term of the arranged

remainder will consist of three times the square of the first

term of the root into another term. We may, therefore,

find another term of the root by dividing the first term of

the remainder by three times the square of the first term

of the root. See § 169.

c.) If now we subtract from the given polynomial the

cube of the part of the root already found, the first term of

the arranged remainder, if there be one, will contain three

times the square of the first term of the root into another

term (§ 1G9) ;
and so on.

d.) The cube of a-\-b consists, besides a 3
already sub-

tracted, of 3a 2b+3ab
2+b3 = {3a*+3ab+b°-)b. The most

convenient method, therefore, of completing the subtraction

of (a-\-b)
3

, is, after having found b by dividing the first

term of the remainder by 3a 2
,
to form the polynomial fac-

tor 3a'2 -\-3ab-\-b'
2

,
and then multiply it by b. That is, we

may add to three times the square of the first term, three

times the product of the two terms, and the square of the

new term ; and multiply the sum by the new term.

Thus, a 3
-}-3aH-\-3ab

2
-\-b

3

a 3

3a 2
b+3ab

2+b 3

3« 2
&-f-3aJ

2
-f-5

3

a-\-b, Hoot.

3a 2
+3a5-}-5

a
,
Divisor.

Notes. (1.) We have, evidently, subtracted the cube of the two

terms of the root. For, (orB)3= a 3+Ba^b+Bab^+b3=za 3+(Za2
+3ab+b*)b. (2.) Remarks similar to § 170. N. 2, 3 4, 5 apply

equally to the cube root. But the approximation by this process to

the cube roots of imperfect powers is so laborious, that other meth-

ods, which will be considered hereafter, are preferable.

From the reasoning above we have the following

RULE.

§ 178. 1. Arrange the polynomial according to th

powers of some letter.
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2. Extract the cube root of the first term, for the

first term of the root, and subtract its cube.

3. Divide the first term of the arranged remainder

by three times the square of the first term of the root.

4. Add to three times the square of the part of the

root previously found, three times the product of the

previous part of the root by the new term, and also

the square of the new term (§ 177. d).

5. Multiply the divisor so completed by the new

term of the root; subtract, multiply the square of the

whole root alreadyfound by 3, divide, complete the di-

visor, multiply and subtract; and continue the process

as long- as the case may require.

1. (te—6t
5+l5t±—20ts

-\-15t*—6t+l)^
— what ?

t*

—6t 5+l5t*—20t 3+l5t
2—6*+l

—6* 5-j-12^— &3

3t*—12t 3
+lot 2—6*+l

3**—12t 3
-\-15t

2—6t+l

t*—2t-\-l, root.

3t*—6t 3+it
2

,
1st

divisor.

3t*—12t 3+l5t*—G(

-\-l, 2d divisor,

2. (aG+3a*x
2+3a 2

x*-\-xrf= what?

3. (JTx
3+§z 2

+4x+8)^==what? Ans. \x-\-2.

4. (a*±
3
,a-\-%a?±%y

3 =xvhat? Ans. o?±\.

§ 179. In like manner, in Arithmetic, the number being

separated into periods of three figures each, (because the

cube of the unit figure must, evidently, be found in the first

three places, the cube of the tens in the next three, and so

on,) we extract the root of the gi-eatest perfect cube in the

left hand period ; subtract the cube from that period ; di-

vide the remainder of that period, with the next, by three

times the square of the first figure of the root regarded as

standing in the place of tens ; then complete the divisor,

multiply, subtract, bring down the next period ; and divide
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by three times the square of the whole root already found,

regarded as denoting tens, and so on.

What is the cube root of 1953125 ?

1'953'125
J
125

1

953
| 300+60-1-4= 364, 1st complete divisor.

728

225125
1

43200+1800+25= 45025, 2d complete divisor.

225125

Notes. (1.) The terms of the power not being distinct, three

times the square of the part of the root already found is only a trial

or approximate (§ 174. N. 2) divisor, and the correctness of the next

figure of the root can be verified only by multiplying it into the com-

pleted divisor, and subtracting the product. (2.) (a+1) 3—a3=
=

3a2+3a+l. If, therefore, the remainder is not less than three timei

the square of the root found, plus three times the root, plus one, the

last figure is too small.

WW ROOT OF A POLYNOMIAL.

§ 180. We know that (a-\-b)
n =: a"+«a

n- 1 5+&c. (§ 166).

Hence we have, for finding the nth root of a polynomial,
the following

RULE.

1. Arrange the polynomial, extract the nth root of the first

term for the first term of the root, and subtract its power.
2. Divide the first term of the arranged remainder by n

rimes the (n
—

1) power of the first term of the root.

3. Raise the whole root so found to the n01

power and
subtract it.

4. Divide the first term of the arranged remainder by the

same divisor as before, subtract the nih

power of the whole

rootfrom the given polynomial, and so on.

a.) If we make n= 2, we have a rule for the square

root ;
if n ~ 3, for the cube root.
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1. (a
5—l0a4

x-{-40a
3x 2—80a 2x 3

H-80ax
4—32x

•"')'

what?

a 5_i0a4a._i_40a3a.2_30a2a.3_L.80ax
4—32a; 5

|

a—2x

-10a4x I 5a4
,
divisor.

as—10a4x+40a 3x 2—80a*x 3
-\-80ax*—32x 5

.

2 . (I6a
4+96a

3x+216a
2x 2+216ax 3+81x 4

)^_what?
Ans. 2a-f-3x.

b.) In the last example, the root may be more easily

found by extracting the square root twice. And, in gene-

ral, whenever the number of the root is a product of two or

more numbers, we may extract successively the roots indi-

cated by the several numbers.

Thus, to find the sixth root, we may extract the square

root, and then the cube root ; to find the eighth root, we

may extract the square root three times ; and so on.

c.) It is best in such cases, if the roots are of different

decrees, as the square and cube roots, to extract the lowest

root first.

§ 181. There is frequently an advantage in simplifying

($ 155) the expression of a root of a binomial, or of any

polynomial which is not a perfect power. See § 173. d.

Thus,

(a
3—a 2

x)
2 _ (a

2
)^(a—x)

2 _a(a—x)i

(«3_L.2a
2
a;-j-ax

2
)^--z (a

2
+2ax-{-x

2)%2 _ (a-\-x)a*.

(a*—o
3
s;
2
)^
—

a(a
2—x 2

)^.

SQUARE ROOT OF CL±b~ .

§ 182. The square root of a binomial of the form a±b J

can sometimes be obtained by a peculiar process, which

depends on the following principles.
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§ 183. I. Let a and x be rational, and «Jb and «/y, irra-

tional ; then if a±^/b= x±*/y, a will be equal to x, and

Jb to Jy.
For t equal to x, let it be equal to x±c.

i i

Then x±c±.+/b— x±.«/y; or c±5'J =y*.

.-. Squari > c 2 ±2c5 2
-|-5=ry.

X y—c 2 b
b 2 = ±£— (§ 42. o, c?) ; that is, an

irrational, equal to a rational quantity, which is absurd

($ 175). See Geom. § 23. Hence,

Two binomials, consisting each of a rational and of an

irrational term, cannot be equal, unless the rational terms

are equal to each other, and also the irrational.

§ 184. Let (a-\-b*y=.x *-\-y , one or both of the quan-
x i

tities x'J and y'
2
being irrational, and x and y monomial.

Then, squaring,

a+5*= x+2x 2
y

2
-\-y ; or a+^b= x+2^(xy)+y.

a= x+y, and b 2 = 2x^y
2

(§ 183).

Hence, subtracting,

a—b 2 = x—2x 2
y^-\-y= (x^—y^)

2
.

(a—b
2
)^= x^—y

2
(§ 52. N.). That is,

If +/{a-\-jV) zrz^x-^y/y, then +/(a—+/b) = +/x—+/y.

Thus, (3+5
2
)

2 = 9+6x5^+5 = 14+6X5 2";

and (3—5
2f = 9—Gx5*+5 = 14—6x5^.

.-. y(14+6^5) = 3+^5, and y(14—6^/5) = 3—^/5.

(2^±3
2
)

2= 2±2x2i3*+3 = 5*2x2^.3^.

^/(5±2y (2X3)) = y2±y3.
Note, x and y being monomials, the squares of Jx and^/y

must be rational, and will, of course, combine by addition, into a

tingle rational term a; while their double product, being equal to
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/b (§ 181), is irrational, and will be positive or negative according

as Jx and Jy have the same or different signs.

§ 185. Now assume (a-\-$)%= x^+y^ (1) ;

then (<*-&*)*= x^-y^ (2). § 184.

Squaring (1) and (2),

a-\-b^— x-\-2x^y
2
-\-y, and

a—$=x—2x^-\-y.

Adding, and dividing by 2, we have

a= x+y{3).

Again, multiplying together (1) and (2), we have

(a
2—

b)^= x—y{4).* §92.

Hence, from (3) and (4),

,. ti=
(fi±±V)\ and ,i= (fc^zS*)*

Hence, substituting in (1) and (2),

(^i=(
f±rf

)

i

+(f=(^)

4

Or, putting (a
2—

b)
2 = c, we have

(a+Jl)l=(2f)i+(2=?)*

or y(o+y*) = y-f- +^^- :

(a+62)i(a-6l)l = [(a+&2-)(a-&2)]£ [§ 151. a ]

-6)2 [§92].

ALG. IS
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(«-h
-)--\rY) -vt; '

a-\-c a—c
or */(«—x/o) =y— ^~2~

'

Note. These expressions will, evidentty, not reduce to a con-

venient form, unless (a 2—b)'$ is rational, i. e. unless a 2—b is a

perfect square.

The above results may be verified by squaring. Thus,

J
f
-
C^ = «±(«

2—c 2
)
2

"= «±(a
3—

(a
2—

J))^= «±^.

1. (3-f-2.y2)*= what?

Here a= 3, and &*= 2(2)*= (2
2
.2)* = 8* (§ 161).

c = (a
2—

ft)*
= (9—8)*= 1*= 1.

•• C4
c

)

i

+(?)
i

=(^i
)

i

+(
2ii

)

i= 2 -+ 1 -

Wc may verify this result by squaring 2 2

-j-l. Thus

(2M-1)
2 = 2+2(2)^4-1 = 3+2^2.

(9±4X5*)* = what ? Ans. 2±oK

3. (7±2XlO-)-=what? Ans. 5-±2 J
.

(£±(f)"*)*= what? Ans.^±<J)K

^(6-1-6^—3)= what?

Here «= G,and 6*=6(-3)*= (6
2
(-3))*= (-108)*.

... &- -108, and c=(a3—5f=(36—(—108))*= (144)*

= 12.

(6+G(-3)^)
2 = 3-h(-3)

2
.

6. y(2+V—2)+y(2—4y—2) = what? -4«s. 4.

7. \bc+2b(bc—ft*)*]*+ [bc-n{bc-b"-yf- ±26.
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8. [ab+lc
2—tf2+2(4aJc

2—
abd°~)*]*= what ?

Ans. Jab-\-*/±c-
—d-.

§ 186. Such expressions as a±*/b, or ^/a±^/b, are

sometimes called binomial surds.

We have (a+&*) («—&"
2
)
= a 2—b (§92).

Also («^±J^)(a*q:i-) = a—6. Hence,

J%e product of the sum and difference of two

roots, or of a square root and a rationed quantity iri-

rational.

Thus, (2-K/5) (2—yo) = 4—5 =—1.

§ 187. a). This principle is frequently useful in fie

>ne of the terms of a fraction, or one of the members of an

equation, of irrational expressions. Thus, let it be required

2 73
to reduce j—j-

—- to a fraction having a rational denomina-

tor.

We have
(W3)X^~^ -<t?W - 7-4^3We have
(2+v3) x (2

_y3)

-
4_3

-< *S*-

1. Reduce in like manner ————-. Ans. ,x/8:f.v/3,

2. Reduce in like manner —^ ,
. 7- ^.

y(i+^)-y(i-x)
i+y(i—Ans

y(a»+l)-l \i,
'

V^02_|_l)_L.l

Rendering the denominator rational by multiplying both

terms by the numerator, there results

{
[V(*

3+i)-ip
I
*_ y0 2-K)-i

4. Simplify the fraction

x

ax

y(« 2+x 2
)+a:

Ans. -Ua 2-\-x-Y—a '.
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5. Given — = Jx-\-7, to find x. Arts. cc= 59.

b.) If the expression consist of more than two terms, we

may proceed as follows :

(7 ^+5^-f-3*) (7 24-5^—3^)= 9+2x7*5^.

(9-1-2x7^5*)(9—2"X7^.5*)=81—47.5=81—140=—59

§ 188. c.) If, instead of the square root, one or both of

the terms of the binomial consist of higher roots, whose

numbers are powers of 2, a repetition of the process will

result in a rational expression. Thus,

(a*+&^) (a*—$)= a^—b*
; {a^—b*) (a?+$)= a—$ ;

i i
and (a

—
b-) (a-\-b-) = a—b,

n n 1 i

§189. d.) We have (§96. d) a"—6== (a"")"
—(b"f =

1 i.

a—b divisible by a"—b
n

.

Dividing, as in § 96. a, we have

1 1
"— 1 ^— 2 1 1 *— 2 m—j;

(a—J)-r-(a"—5") = a "
-fa

" £+ . .+a^5~"-f-&
"

.

j j
n— 1 «— 2 j

- n— 2 »i— 1

[oF—fr) (a~
7r
"+a~"~ 6""-f- . +«"&""""+&"""") = a—5.

Thus, («M)(a^M)= «-5.

§ 190. e.) Again (§ 97), a 2"—£ 2 "
is divisible by «+6 ;

hence a—b is divisible by a in
-\-b

* n
. Dividing, we have

1 j
2«— 1' 2«— 2 . 2n— I

2n— 1 „2n— 2
^

2w— 1

.-. (a*Hrft*)<«
2 " —«

2 '1

* + • • • •
—h

2n =«—&

Thus, (a*+&*)(a*—cftfi+ah
11—a*ft*+a*ft*—b%) =

a—J.

Also. (5*+3*) (5^-5^3^+5*3^—3*)= 5—3 = 2,
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§ 191. /.) Again (§ 98), a+b is divisible by «
2 'i+1

-[-//"

Thus,
1 I 2n 2»— 1 ]

(a+o)-T-(a +6 )=a —a o 4~ . . .

1
o n— 1

2«+l 7 2-1+1 ,

7

12" 2 "

(« -j-6 ) (a
—

-\-b )
— a-\-b.

Thus, {J+$)(a?—a^4-#)= «4-o-

So, (7*4-4*) (7^—7*4*4-4?)= 7-}-4= 11.

CHAPTER VII.

EQUATIONS OF THE SECOND DEGREE.

S 192. We shall, at present, consider only equatio

which the exponents of the unknown quantities art

-

gral.

With this limitation, an equation is of the se<

degree, when the difference between the highest a

the lowest degrees of its terms with respect to \

known quantity or quantities (§28. b) is two (§40.

§ 193. An equation containing but one unknoivn

quantity is, therefore, of the second degree, when

difference between the greatest and least exponent
the unknown quantity is two.

§194. Notes. (1.) We shall, at present, confine our atl

to equations containing but one unknown quantity; and shall sup c

•18
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them to be arranged according to its descending powers (§ 33), and

to be reduced to the simplest form in respect to each of those pow-
ers (§34. c). (2.) Then, each power of the unknown quantity, to-

gether with its coefficient (whether monomial or polynomial), will

constitute a term of the equation. Thus,

Let x 2+2ax+6 2—mx 2—4x= 7ix+r—q
—3x 2

.

Then (1+3—m)x 2+(2a—4—n)x+bz+q—r= 0. §§ 33, 34. c, 44.

Or, making .#= 1+3—m, B= 2a—4—n, and C= b 2+q—r,

Ax^+Bx+C~=0.

§ 195. An equation of the second degree, containing but

one unknown quantity, its powers being all integral, may
contain any three consecutive powers, and no more.

For, if there were more than three consecutive powers,

or if there were three powers not consecutive, the differ-

ence between the greatest and least exponent must be mor

than two.

Thus, Ax3-{-Bx*-\-Cx= 0, Ax
n

--{-Bx+C=0,

Ax+B+ Gc-1
(
= Ax+Bx°+Cxr *)

= 0,

and Ax~ r
-\-Bx---\- Gx~

3— are all of the second degree.

§ 196. Hence an equation of the second degree, when

reduced as above (§ 194), can consist of only three terms

(§ 194. 2) ; anil therefore, an equation of the second degree.

consisting of three terms, is called a complete equation.

§197. Let Ax 3-\-Bx*+Cx= 0.

Dividing by x, Ax*-\-Be+G— 0.

Again let Ax+B+ Cher » = 0.

Dividing by x~ y
,
or multiplying by x,

Ax*+Bx-\-C=0.

Or, again, let Aar+Ba*- 1
-f Car-

2 = 0.

Dividing by a;"- 2
,

Ax s
-\-Bx-\-C= 0. Hence,

Every complete equation of the second degree, containing

only one unknown quantity, can be reduced to theform

Ax°-+Bx-\-C=0,

in which the coefficients, A, B and G, may be either post-
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five or negative, integral or fractional, numerical or alge-

braical, monomial or polynomial.

Reduce the following equations to the above form.

1. ax 2
-{-bx-\-c—(mx

2
-\-nx—p) = 5x 2—

8#-|-7.

2. a 2
-f-2ar cos i>-fr

2 cos 2r+&
2
+25r sin v+r 3 sin- u =

i2'3 ;
r being the unknown quantity.

Sx—3 __ 9 .3x—6

a?—o /

§ 198. As the coefficients may have any value whatever,

they may be equal to zero. But if the coefficient of a term

becomes zero, the term itself becomes zero, and disappears

from the equation. The equation is then sometimes called

incomplete.

Notes. (1.) If all the coefficients become zero at once, the equa-

tion will, of course, disappear. Also, if A and B become zero, we

shall have C=0, and the equation will be annihilated. But, if A
and C become zero, we shall have Bx= 0, and x= 0. Again, if

B and C become zero, we shall have Ax% r=: 0, and x= ±0.

(2. ) Again, let A= 0. Then we shall have Bx+C= 0. Now
this is no longer of the second degree. It is of the first degree, and

must be treated accordingly (§4S). Neither of the above supposi-

tions needs any further consideration.

§199. Now let B— Q. Then the equation becomes

Ax 2+C=0.
C C\

x 2 — —
j-=q

2
(putting q

2 =——
J.

x=(—^)*=.(g')*=±q.
See §52. N.

In this case, we find the values of the unknown quantity

by reducing the equation to the form x 2 = q~, and extract-

ing the square root of both sides.

Thus, let x 2 — 49.

Then x= ^49 = ±7.

Note. The term, incomplete equations of the second degree, i*

sometimes applied exclusively to equations of this form. They are

also sometimes styled pure equations of the second degree, or pure

quadratics (§41. N.).
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a.) This form of equation will, evidently have two roo

(' 39) numerically the same, hut with opposite signs (> 23.

/• 1).

b.) Also, if x n- = q-, then x-—q* = 0.

(x+q) (x—q) = 0. § 93. 111.

Now it is evident, that a product will become zero, only

when one of its factors is zero. The last equation, there-

fore, will be true, when either of its factors is equal to zero
1

in no other case. Hence we may have, either

oc-\-q
= 0, or x—q = ;

and, in either case, we shall have the product

(x+q)(x—q) — x 2—q* = 0.

But, if x~\-q— 0, then x=—q,

I if x—q= 0, then x= -\-q.

So a;
2—49 — gives (x-\-7)(x—7) = 0.

Whence,

#-J-7 = 0, and a?=—7 ; or a;—7 = 0, and a;= +7.

Either of these values of a; will satisfy the equation, and

is consequently a root of the equation (§ 39).

c.) If the equation, x- r= q
2

,
or x-—q- = 0, be pu< un-

der the complete form, thus,

x 2+0a:—«7

2 = 0,

we shall have -\-q
—

q = 0, the coefficient of x '

;

and (~H?)(
—

?) ——l"i tue coefficient of

So, in the equation, a?
2
-|-0a;

—49 — 0, Ave have

+7-7 = 0; (+7)(-7) = -49.

. 200. tZ.) We find here certain results, which will here-

ter be shown to hold of all equations of the second de-

ee, when placed under the form, x 2
±2px±q

2= 0, viz.

1. The equation can be resolved into two binomial

s; of which the first term of each is the unknown quan-

tity, and the second term, with its sign changed, is a root

the equation.
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2. The equation has two roots.

3. The algebraic sum of the roots, with their sign?

changed, is equal to the coefficient of x
1

.

4. The product of the roots is equal to the coefficient of

x°.

Note. The student should illustrate and test these principles by

applying them to the roots of every equation which he solves.

§ 201. e.) If the equation be of the form x 2
-{-q

2 = 0, we

shall have

x 2 =—q
2

, and, consequently, x= ±^/—q
2 = ±q+/— 1,

an imaginary result (§§ 23./. 2, 158).

Thus, let z2_|_49
—

q.

Then x 2 = —49 ; .-. x=y—49 = ±7^—1.
Notes. (1). These expressions do not indeed represent any ac-

tual value, but they are called roots of the equation, because, when
substituted for x, they satisfy the equation (§39). (2.) This imag-

inary result indicates an absurdity in the conditions of the problem.
It is here proposed to find a number, whose square added to another

square shall be equal to zero. That is, the sum of two positive (§11.
N. 2) quantities is required to be zero, which is, evidently, impossi-
ble. See § 162. N. 3.

/.) The results, xz=z-\-q^/
—

1, and x— —qj—1 give

x—qj—1 = 0, and x+qj—l = 0; § 199. b.

and .-. (x—qj—1) (x-\-qJ—1) = x 2
-\-q

2= 0. § 200.

So (a:—7y—1
)(x+7y—1

)
= x 2+49 = 0.

§202. 1. Given 5(x
2—12)= (a:

2
+4), to find x.

Ans. x=-±A,
. _,. a;

2—50
,

x 2—25 . „ ,
2. Given — \-x= \-x, to find x.

z o

Ans. x=. ±10.

3. In a right angled triangle, the square of the hypot-

enuse, or side opposite the right angle, is equal to the sum
of the squares of the other two sides (Geom. § 188). If

then the base is 4 feet, and the perpendicular 3 feet, what

is the hypotenuse ?

Let x= the hypotenuse. Then x 2 = 3 2+4 2
,
&c.
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4. A rope 50 feet long is extended from the top of a flag

staff 40 feet high, in a straight line to the ground on the

east of the flag staff, and on a level with its foot. How far

from the foot of the staff will it strike the ground ?

Ans. ±30 feet (§5).

.">. How far, if the rope be 45 feet long?
Ans. ±20.615 &c. feet.

6. How far, if the rope be 40 feet long?
Ans. ±0

(i. e. it will strike the ground a1

the foot of the staff).

7. How far, if the rope be 32 feet long?
Ans. ±y—576 = ±24y—1.

In this case, the rope, evidently, will not reach the ground; so thai

there is manifest absurdity in inquiring how far from the foot of the

«taft" it will strike the ground. This absurdity is indicated by the im-

aginary result (§201. N. 2).

8. Let the perpendicular drawn from any point of the

circumference of a circle to the horizontal diameter be

represented by y ; and let the distance from the foot of the

perpendicular to tbe centre, measured on the horizontal

diameter, be denoted by x ; and the radius of the circle, by
B. Then we shall have, for every point of the circumfer-

ence, x 2
-\-y

2= R 2
; ovy

2 =R 2—x 2
. §202.3.

Or, if the radius be 10 feet, we shall have R- = 100, and

y* = 100—a;
2

.

What now is the length of y, when x= ?

Ans. y=z-\-10, or —10 (§ 5).

9. "What is the length of y, when x= ±l, 2, 3, 4, 5, 6.

7, 8, 9, 10 ?

10. What is the length of y, when x = ±11 ?

. his. y= */—21.

In this case, the distance measured on the horizontal diameter

from the centre, being greater than the radius, extends beyond the

circumference; and, of course, no perpendicular to that line at it»

extremity can meet the circumference. Hence the imaginary result,

indicating an absurdity (§201. N. 2).



203.] INCOMPLETE EQUATIONS. L55

9. It is required to lay out 10 acres of land in a square.

What must be the length of one side ?

10. The product of two numbers is P, and the quotient

of the greater by the less is Q. What are the numbers ?

P
Let x zr the greater ; then —= the less ; &c.° x

03. Again, resuming the complete equation,

Ax 2-{-Bx+0=Q,
if we suppose C=0, we shall have

Ax^-\-Bx= 0.

Dividing by x (§ 51), we have an equation of the first de-

gree (§51. b),
7)

Ax-\-B =. ; and .\ x— —
.

a.) If, however, we divide by A, we shall have

7? B \

x 2
-\-—x= 0, or x 2

-{-2px= (putting 2p z=z—
J

.

Separating the last expression into factors, we have

x(x-\-2p)'==:Q ;

an equation, which will be satisfied, either when x=z0, or

when x-\-2p= 0; i. e. when x=-0, or when x=z—2p.

The roots, therefore, of this equation regarded as of the

second degree, are 0, and —2p (§ 200. 2).

b.) In this case also, the sum of the roots with their

signs changed is equal to the coefficient of x 1
,
and their

product, to the coefficient of a; (§ 200. 3, 4). The two bi-

nomial factors (§ 200. 1) are x— and x-\-2p.

Note. This form of equa/ion is frequently classed and solved a*

a complete equation of the second degree (§ 206).

1. Given 2Rx—x 2 = 0, to find x.

.Ins. xz=0, or 2R.

2. Given r-—2B cos v r= 0, to find r.

Ans. r= 0, or 2R cos '.'.

3. Given x-—lOx =. 0, to find x.
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§ 204. Returning now to the complete equation,

JB C
and dividing by A, we have x 2

-\~ —x-\-—— ;

B C
or, putting 2p =—,

and q
2 =—

,

x*-\-2px-\-q
2= 0.

a.) This is a complete equation of the second degree

(§196); and it is perfectly general, since every complete

equation can be reduced to this form by dividing by the

coefficient of a:
2

,
and substituting convenient symbols for

the coefficients of a;
1

,
and x°.

b.) This is also the form, to which the principles of § 200

apply, and will, therefore, be commonly employed in our

future discussion of the subject.

§ 205. In solving the complete equation,

x 2
-\-2px-\-q

2 = 0,

we may happen to have q =p. In this case, the equation

becomes

x2
-\-2px-]-p

2= 0,

or (§ 93. L), (x+P) (x+p) = 0.

We have here the equation resolved into two binomial

factors (§ 200. 1), either of which may be equal to zero.

But in this case, the factors are equal ; and, consequently,

the values of x, found from them, will be equal. The

equation is said, in this case, to have equal roots, viz. —p
and —p.

Thus, let » 2
+20ar+100 = 0.

Then (x-f-10)(ar+10)= 0, and x— —10, or —10.

If we had x 2—20x-4-100 = 0,

we should have x= +10, or -[-10.

a.) The sum of the roots, with their signs changed is still

equal to the coefficient of x 1
,
and their product, to the co-

efficient of x°.
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§ 206. But suppose that q is not equal to p ;
i. e. that

q
2

,
the coefficient of a;

,
is not equal to p 2

,
the square of

half the coefficient of a:
1

.

Then the equation, x
2
-\-2px-\-q

2 = 0,

gives x ~-\-2px=—q
2

.

If now we add p 2 to hoth sides of the equation, the first

member will, evidently, become a trinomial perfect square

(§§ 89, 172), and we shall have

x 2
-{-2px-\-p

2 =p 2—
q
2

.

x-\-p
= J(p

2—q 2
); §52. N.

and x= —p-\-*/(2*
2—

9
2

)'
or x= ^p—*/{p

2—
?
2

)-

Thus, let x 2
+8:c+15 = 0.

Then cc
2
+8;c=—15.

Adding 4 2
(=j»

2
), x*-+8x+l6 =—15+16= 1,

Extracting the root, a+4= ±1.

x=—4±1 =—3, or —5.

x+3 = 0, or x-\-o = (§ 199. b) ;

and (a+3)0+5) = a:
2+8.z+15 = (§§ 200, 208. b).

Also (—3)
2+8(—3)+15 = 9—24+15 = ;

and (—5)
2
+8(—5)+l 5 = 25—40+15 = 0.

The process of rendering the first member a perfect

square, is commonly called completing the square.
Hence we have, for solving a complete equation of the

second degree, containing but one unknown quantity, the

following

RULE.

§ 207. 1. Reduce the equalion to the form x 2
±2px

±q-— 0. Transpose the coefficient of x° to the sec-

ond member, and add the square of half the coefficient

ofx 1 to both sides.

2. Extract the square root of both members, ana
solve the equation of the first degree thus obtained.

ALG. 14
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1. Given x-+ix—60 = 0, to find x.

2. Given x-—Oa+lO= 65, to find x.

3. Given 3a: 2—3a:+9 = 8£, to find x.

_4hs. a;= §, or J*

4. ^2_ia;+30^= 52i, to find a;.

Ans. x = 7, or — 6 -*-.

§ 208. a.) The same effect, obviously, will be produced,

if, without transposing the coefficient of x°, or the absolute

term as it is sometimes called, we add to both sides a quan-

tity, tvhich together with that coefficient shall be equal to the

square of half the coefficient ofx
1

, (i. e. p 2—
q
2
). Thus,

x2+2px+q 2+(p 2-q 2
)
=p

2
-q* ;

or x 2
-\-2px-\-p

2 =p 2—
q
2

.

x+p = ±^/(p
2—q 2

). §52. N.

x=—p++/(2^—? 2
)>
or x=—p—«/(p

2—
q*).

b.) These values (§§ 206, 208) give the equations

x+p—(p
2—q 2

)

2
=-Q, and x+2>Mp-—?

2
)

2 =- 0.

[x+p-ljjS-q^lx+ji+iP*-?
2
)^=

(a+p)
2—[{p-—?

2
)

2
]

2

(§ 92) = xJ+2px+p 2—p 2+q 2 =
x 2

-\-2px+q
2 = 0. § 200. 1 .

Also p-(p 2-q"f+p+lP°—V 2
f=2p-> §200.3.

and [-p—{p
n—

<7

2
)

2
][—p+(j* 2—

7
2
)"]
—

<?

2
- §200.4.

1. Given a:
2
-f-6a+8 = 0, to find x.

Here ?
2 = 8, 2p= 6 ; .-.p— 3,p

2= 9, andjo
2—

q
2 = i .

Hence we have x 2
-\-Gx-\-9= 1 ; and x-\-3= ±1.

x=—3+1 =—2, or x=—3— 1 =—4.

jc—(—2) = x-\-2 = 0, or x—(—4)= a+4= 0.

Hence (a+2)(a>H)= a;
2
+6aH-8= 0. §200.1.

Also 2+4= 6= 2;?, and 2X4= 8 = q*. §200.3,4.

2. Given x 2—<6x—40 = 0, to find a\

Ans. x= 10, or —4.

Here ^2—$
2= 9_(_40) =49.
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3. Given x-—16a;-f-63 = 0, to find x.

4. Given ar
2+16x+63 = 0, to find x.

§ 209. c.) Resume the equation Ax 2
-\-Bx-\-C=0 ;

or Ax 2
-\-Bx=— C.

-Multiplying by A, A 2x 2
-\-ABx=—A C.

Adding (%B)
2

,
A 2x 2+ABx+\B2 = \B2—A C.

Extracting the root, Ax+\B= (IB
2—A 0)K

Hence, to complete the square,

Reduce the equation to theform Ax 2
-\-Bx-{-C= ; trans-

pose the
coefficient of x° ; multiply by the coefficient of x

2
;

and then add to both sides the square of half the primitive

coefficient ofx 1
.

1. Given 5x 2+4x—204= 0, to find x.

5x 2
-\-lx=2Qi.

25x 2
+20o:4-4=:1024.

ox+2 = ±32 ; and .-. 5x =± 30, or —34.

x= 6, or —6f.

2. Given 2x 2
-\-8x—90 = 0, to find x.

Ans. x= o, or —9.

d.) Or, Ax 2+Bx+C=z0.
Multiplying by A, A 2x 2+ABx+AC— 0.

Adding ±B 2—AC, A 2x 2+ABx+\B 2 —
\B 2—AC.

Hence, to complete the square,

Multiply the equation, Ax 2
-\-Bx-\- O=0, by A, and add

to both sides \B 2—AQ.
Given 3a: 2

-f-2x—85 = 0, to find x.

9x 2+6z—255 = 0.

Here \B2—AC= 1—(-255) = 256.

9x 2+6x+l = 256.

.-. 3as-|-l = ±16; and.-. 3x=—1±16= 15, or—17.

2x =. 5, or —5^
Note. When ^= l, this solution (§209. c, d) is, evidently,

the same as that of §§ 207, 208.
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§210. e.) Again,

Ax*+Bx-\-C=0; or Ax 2
-\-Bx=— 01

Multiplying by AA,

4A*x 2+4ABx= —4A C.

Adding B*, 4A 2x 2
-\-4ABx-\-B

2 = B^—iAC.

2Ax-{-B
—

(B»—4A C ) *.

_ —B±^(B 2—4AC)
.*. x— ——

.

2A

Hence, to complete the square,

Reduce the equation to the form Ax 2
-\-Bx-\-Cz=i ; trans-

pose the coefficient of x° ; multiply by four times the coeffic-

ient of x
2

; and add to both sides the square of the primitive

coefficient of x 1
.

1. Given 3a;2—3a+§= 0, to find x.

36a; 2—36a;=—8.

36*2—36a+9 = —8+9 == 1.

6a;—3 = ±1 ; .-. Gx= 3±1= 4, or 2.

x= |, or £.

2. Given \x
2—

:\x—22£ == 0, to find x.

Ans. x= 7, or — 6J»

/.) Or, multiply the equation, Ax 2
-\-Bx-\- (7=0, by 4A

Then 4A 2x 2+4ABx-{-4AC=Q.
Adding B 2—4AG,

4A 2x 2
-\-4ABx-{-B

2 = B*—4AC ; as in e above.

Hence, to complete the square,

Multiply the equation, Ax 2+#£+(7=0, by 4A ; and add

to both sides B'2—4AC.

Given x 2—5x—24 = 0, to find x.

4x 2—20a;—96= 0.

Here B2—4A C = 25—(—96) = 25+96= 121,

4a; 2—20a+25 = 121.

2a:—5 = ±11; .-.a;= 8, or —3.

Note. When A — 1, this solution (§210. e,f) is, obviously,

the same as that of §§ 207, 208.
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§ 211. Let x 2
-\-2px-{-q

2 = be any equation whatever

of the second degree, containing but one unknown quanti-

ty ; let also a be one of its roots (i. e. such a quantity as,

being substituted for x in the given equation, will make the

members equal ; or, in other words, will reduce the first

member to zero). See § 39.

1. Since a is a root of the equation, we have x= a, and

x—a— 0.

Divide the given equation by x—a.

Thus x 2
-\-2px-\-q<

x*2—ax

x—a

x-\-{a-\-2p)

(a-\-2j))x

(a-{-2p)x
—a 2—

2pa
a 2

-\-2pa-\-q
2 = 0, because

the remainder is simply the first member of the given equa-
tion with a substituted for x ; which, by hypothesis, redu-

ces it to zero. The division is therefore perfect (§ 82. g).

Hence (x—a)(x+a+2p) = x 2
-\-2px-\-q

2 = 0. §200.1.

2. And the equation will be satisfied, if we take x—a
= 0, or x-\-2p-\-a =: (i. e. if x— a, or x=—2p

—a = b

(by substitution). § 200. 2.

3. We have also —
a-\-(2p-\-a) =z 2p. § 200. 3.

4. Moreover, since a 2
-\-2pa-\-q

2 = 0, (see 1, above),

a(—a—2p)[= —a 2
—2pa'] = q

2
. § 200. -J.

§ 212. 5. It is also evident from § 211. 1, that, if a is a

root of the equation x 2
-\-2px-\-q

2 =. 0, this equation is di-

visible by x—a, and will give a quotient of the form x—
l>,

of which the second term is the other root with its sign

changed.

§ 213. Hence, universally (§ 200),

1. Every equation of the second degree, of the form

x 2
±2])x±q

2 = 0, containing but one unknown quantity,

can be resolved into two binomialfactors, of the first degK e

*14



162 EQUATIONS OF THE SECOND DEGREE. [§ 214-216.

in respect to x (§ 28. b) ; either of which, being put equal
to zero, gives a root of the equation.

2. Every such equation has, of course, two roots.

3. The algebraic sum of the roots, with their signs

changed, is always equal to the coefficient of a; 1
.

4. The product of the roots is always equal to the coef-

ficient ofx°.
5. Every such equation, of which a \s a root, is divisible

by x—a.

§ 214. a.) Hence (§ 213. 3, 4),

Cor. I. (1.). If the coefficient of x 1 be equal to zero, the

roots must be numerically the same, but with opposite signs

(§ 199. a). (2.) If the coefficient of x° be equal to zero, one

of the roots must be zero (§ 203. a).

§215. b.) Also (§§213. 4; 9. a; 213.3),

Cor. ii. (1.) If the coefficient of x° be positive, the

roots must have like signs ; (2.) if negative, unlike.

(3.) If the two roots have the same sign, it will be unlike the

sign of the coefficient of x 1
. (4)7/' they have different

signs, the sign of the root which is numerically the greater

will be unlike that of the coefficient of x
1

.

c.) It is obvious, that, if the roots have like signs, the co-

efficient of x 1 will be numerically equal to their arithmeti-

cal sum ; and, if they have unlike signs, to their arithmeti-

cal difference.

§ 21 6. d.) If q- be positive and greater than p
2

,
the pro-

duct of two numbers is required to be greater than the

square of half their sum. This will be shown to be impos-

sible ({ 220. b), and as no real numbers can satisfy thia

condition, the roots will be imaginary (§§ 201
; 217. I.).

Hence,

Cor. in. If the coefficient of x° be positive and greater

than the square of half the coefficient of x 1
,
the roots must

be imaginary.
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§ 217. e.) The above principles may be otherwise de-

monstrated ; thus,

I. Let q
2

he, positive.

Then x 2
±2px-{-q

2 =
; and x— ^p±^{p 2

^q 2
).

Now, evidently, *J(p
2—

?
2
)<p; and, therefore, both the

roots are negative, when 2p is positive ; and positive, when

2p is negative (§ 215. 1, 3).

It is also evident, that, if q
2>p 2

, «/(p
2—

q
2

is imagina-

ry(§§28./.2; 216.).

It is also manifest, that, if one of the roots is imaginary,

both must be.

II. Again, let q
2 be negative Then x 2

±2px—q
2 =

;

and x = ^p±«/(p
2
-\-q

2
).

Here, obviously, .y(.P
2
4~!7

2
)>/> 5 and, therefore, one

root must be of the same sign as p ; and the other, different

(§215. 2).

Also, the root which is of the same sign as p (i. e. of a

sign different from 2/> on the other side}, will, of course, be

numerically the greater (§ 215. 4).

§ 218. f.) Determine whether the signs of the roots in

the following equations are like or unlike ; if like, whether

positive or negative ; and, if unlike, which is numerically

the greater. Also determine whether any of these equa-

tions have imaginary roots.

1. x 2+21x+110 = 0; x 2—20+75 = 0.

2. x 2—23x4-130 = ; x 2
4-23x-fl30 = 0.

3. x 2
±60x-|-1000 = 0; x 2±60x—1000= 0.

4. x 2±G0x—11200= 0; x 2 ±10x= 200.

g.) 1. Write the equation, of which 3 and 4 are the roots.

Ans. (x—3)0—4) = x 2—7x4-12 = 0.

2. Write the equation, whose roots are —3 and —4;

—11 and 4-20; -4-11 and—20; —10 and -4-10 ;
—10 and

— 10; 104V— 5 and 10—y— 5; — 64~5y— 1 and

—6—5y—1.
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h.) In the last example, we have (§§ 92, 162)

(T+6_5y_l)(.r+6+5y-l) = (r+6)
2-(5y-l) 9 =

^._[_6)2_j_52 = 0; which is, evidently, impossible (§201.

N. 2).

§ 219. ».) Again (§ 210), we shall have the value,

e=— ^Li — -, real, when B-—4J. C is positive ;

2A
and imaginary, when i?2—4J. C is negative. That is, the

roots will be real and unequal, when B-—AA C>0 ;

real and equal,
" B°—\A C—0;

imaginary,
" -B2—4-4 (7<0.

PROBLEMS.

§ 220. 1. Given a;
2—2x—24= 0, to find the values of

x# Ans. x = -4-6, and — 4.

2. Given a: 2 -f-l 2x4-35 = 0, to find x.

Ans. x=—5, Or —7.

3. Given 3x2+2x—10=75, to find a-.

_4ws. jc= 5, or —of.

4. Given x°—x—210 = 0, to find a.

_4rcs. a;= 15, or —14.

5. Given £x
2—£x+6f= 7, to find a:.

_4ws. a;= 1-i-, or —
{?.

6. Find two numbers whose sum is 100, and whose pro-

duct is 2100.

Let x = one of the numbers.

Then 100—x= the other ;

and x(100
—

x) =± 2100, by the second condition.

a;
2—100x=—2100.

We might have formed this equation immediately by

considering, that the sum of the required numbers taken

with a contrary sign must be equal to the coefficient of x '

;

and their product, to the coefficient of a: .

Thus x*—100x+2100 = 0.
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x 2—
100;r-{-2500=:400. §208*

x= 70, or 30.

Otherwise, let x= the excess of the greater number

above 50 (i. e. half the sum of the numbers) ; then 50-}-x=
the greater, and 50—x= the less.

Hence [(50-f-.r)(50—x)
—
]2500—x

2 = 2100.

x 2 = 400; and a:= ±20.

50-f-a:= 70, or 30 ; and 50—x= 30, or 70.

7. Find two numbers, whose sum is 100, and whose

product is 24Q0.

8. Find two numbers, whose sum is 100, and whose

product is 2500 (§ 205).

9. Find two numbers, whose sum is 100, and whose

product is 2600 (§216).

Am. 50+10y—1, and 50—10^—1.
10. Find two numbers, whose sum is S, and product P.

Am. fK?~P)* and4- (f-p)*
a.) In what case will these values be imaginary ?

Am. When P > ^T = (-^)
'1. See 9, above.

Hence,

The product of two numbers can never be greater than

the square of half their sum.

b.) This principle can be proved otherwise ; thus,

Let S be the sum of two numbers, and D, their differ-

ence.

Then l<S+l&= the greater, § 57. 3.

and IS—\D=. the less. § 60. 4.

Also (|£4-i#)(££—\D) = (±S)
2—(W) 2 = their pro-

duct ; which is obviously greatest when (\D)
2

is least, i. e.

when %D=Q.
11. The algebraic sum of two numbers is 8, and their

product is —240. What are the numbers ?
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Here, by § 200, 3, 4,

x 2—82—240= 0, or x 2—8x= 240.

a:= 20, or—12.

Verification. If one of the numbers is 20, the other is

8—20 =—12 ; and 20X—12=—240. Or, if one of the

numbers is —12, the other is 8—(—12) = 20, &c. Or, if

one of the numbers is 20, the other is —240-^20=—12,

and—12+20= 8.

12. Find two numbers, whose difference is 10 ; and such

that, if 600 be divided by each of them, the difference of

their quotients shall be 10.

13. Find a number, which added to its square makes
12. Ans. 6, or —7.

14. Find two numbers, whose sum is 16, and the sum
of whose squares is 130. Ans. 7 and 9.

15. "What two numbers are there, whose sum is S, and

the sum of whose squares is Q ?

Ans. ^S+U(2Q—S*), and \S—W(2 Q—&)•
c.) "When will these results be imaginary ?

Ans. "When S2>2 Q. Whence,
The square of the sum of two numbers cannot be greater

than twice the sum of their squares.

Note. As either of the numbers may be negative, this applies

equally to the square of the difference.

16. The sum of two numbers is 25, and the sum of their

cubes is 8125. "What are the numbers? Ans. 20 and 5.

17. A rectangular field contains 20 acres, and one side

is 40 rods longer than the other. "What are the dimensions

of the field ? Ans. 80 rods long, and 40 wide.

18. A rectangular park, 60 rods long and 40 wide, is

surrounded by a street of uniform width, containing 1344

square rods. How wide is the street?

Ans. 6 rods, or —56 rods.

d.) The second value,
—

56, is clearly not a proper solu-

tion to the problem ; but it is a root of the equation, and.
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in some sense, satisfies the conditions of the problem. For

we find the area of the street by multiplying its width by
each of the sides of the park, and adding to the sum of

these product 5 the squares formed at the four corners.

Thus,

6X60 ;xG0+Gx40-}-6x4(4-4xC
2 = 1344.

So 2(- +-?(—56x40)+4(—56)2 = 1344.

It freqi lappens, as we have already seen (§137 .

that the a>_ expression of a problem is more general,

and admits of more solutions, than the problem itself as

expressed in ordinary language.

x*n+Pxn
-\-Q=0.

§ 221. The preceding methods apply not only to equa-
tions of the second degree, but to all equations of the form

x*-"+Px
n
-\-Q= 0,

in which the unknown quantity appears in only two term? :

and its exponent in one of the terms is double that in the

other.

This equation may be put under the form,

(x
n
)
2+/V-f Q= 0.

Completing the square (§ 207),

O")
2
-fP^'-fiP

2 = i?2_ Q.

xn= —^P±(\P^—Q)^.

x= t—hP± (IP-- Q)
2
]". § 52. N.

1. Given x*—52x 2+576 = 0, to find x.

Jlns. x= ±6, or ±4.

2. Given Xx—\*/x =-\\, to find x.

Ans. */x= o, or —H; .-. x= 9, or 2|.
In verifying these results, Jx must be positive for the first valua,

and negative, for the second. A similar remark applies to the fol-

lowing example.

3. Given (ic-f-12)*+(x-f-12)^= 6, to find x.

(*+12)-
2
-+(*-hl2)H-i

- 1+6 = ~.

il
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1

OH-12)
4 =—\±%—% or —3.

x+12 = lG, or 81. §52.

x= 4, or 69.

4. Given x^+xS= 756, to find x.

Ans. x — 243, or (—28)*.
3

5. Given x 3—x 2= 56, to find x.

^4ws. x= 4, or (
—

7)^.

Note. We have seen (§ 213. 2) that every equation of the sec-

ond degree has two roots. It will be proved hereafter, that every

equation has as many roots as there are units in its degree. Sec

1, above. The above process, however, does not always exhibit all

the roots.

§ 222. If an equation contain radicals which cannot be

treated by the method of § 221, it may frequently be re-

duced by properly arranging the radical terms containing

the unknown quantity, and raising both members to the

requisite power. There is frequently great advantage al-

so in rendering a binomial surd rational (§§ 186, 187).

The radicals, which most frequently occur, are radicals of the

second degree (i. e. expressions of the square root of quantities).

1. Given x-\-J (2ax-\-x
2
)
= a, to find x.

We have */(2ax-\-x-) = a—x.

Then squaring 2ax-\-x
2= a 2—

2ax-\-x
2

.

Aax z=z a2
; and x =l \a.

Clearing of fractions, x-\-a-\-2 ls/(ax) z= b 2x.

Extracting the square root,

•v/r-j-^/a
— ± b^/ x ;

or (lzfb)^/xz=
—

„/«.

(lj:b)
2x= a.

a a

-(i^by-'^iy'
'
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3. Given 2x+2y(a*+x*) =_-JL_, to find x.

Ans. x— \a.

_. Jx-\-J(x—a) n-a
4. Given ——]

-^-j {= ,
to find x,

Jx—+/{x
—

a) x—a

If we render the denominator of the first member ration-

al (§ 187), multiply by a, and extract the square root, we

shall have
±na

Clearing of fractions and transposing,

*/(x
2—

ax)= a±na—x= (l±n)a
—x..

Squaring, x*—ax=z (l±n)
2
a*—2(l±n)ax+x*.

{l±ny-a
l±2n

'

k ^. +/ (a-\-x)-\-+/(a—x) ,

5. Given ,; ( ,; (=J, to find *.

V(«+#)
—y(a—a:)

2a5

6. Given ^+il±^M= 9, to find,.

7 . Glven_______
i

__= __, tofind

the value of a:. Ans. x— ±\.

§ 223. Every complete equation of the second degree,

containing two unknown quantities, and having only posi-

tive integral powers (§ 22. c, d), is, obviously, of the form

(§197)

A^+Bxp-\-Cx
3
+J)i/+JEx-{-F= 0.

That is, it contains terms of the zero, the first, and the

second degree with respect to both and each of the un-

known quantities.

a.) A single equation of this kind is, of course, indeter-

minate (§ 122. a) ; and will give, for any value whatever of

alg. 15
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itlier of the unknown quantities, two values of tlie other

13. 2).

§ 22 4. h.) Such equations are of continual use in tha

;er applications of Algebra, in expressing the relation

rreen two variable (§ 136) quantities which are so con-

nected, that a change in the value of one, in general, in-

volves a change in the value of the other; i. e. between

two variables, which are functions, one of the other (§§ 2G.

136. a).

c.) Thus, let x denote the distance from any point in the

circumference of a circle to a given straight line, and y the

distance from the same point to another line perpendicu-

lar to the first. Then the relation between these distances

will be such, that, if one of them be given, the other will

be determined ; and if another point be taken at a different

distance from the first line, it will also, in general, be at a

different distance from the second. That is, a particular

value of x requires a corresponding value of y ; and a

change in the value of x involves, in general, a correspond-

ing change in the value of y.

d.) An equation, expressing some known relation be-

tween these distances, is called an equation of the curve.

By means of such an equation, the properties of the curve

are easily and rapidly deduced.

e.) The equations of the circle, ellipse, parabola and hy-

perbola are of the second degree, and contain two variables.

Thus, y
2
-\-x

2—R- = is the equation of the circumfer-

ence of a circle, when the distances x and y are measured

from two diameters at right angles to each other. For in

that case these distances for any point of the curve, togeth-
er with the radius drawn to that point, form a right angled

triangle, of which the radius is the hypotenuse. Whence

x*-+y
2 = B* (Geom. §188).

Note. A straight line is represented by an equation of the frst

degree, between two variables. Tliua, y= ax+b; a and b being
either positive or negative.
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f.) The employment of equations of this kind for the d

covery of geometrical truth helongs to Analytical Geome-

try and to the Differential and Integral Calculus. 1

this, at the same time, furnishes one of the most important

applications of the principles, already demonstrated, of equa-

tions of the second degree.

§ 225. The ordinary algebraic treatment of equations of

the second degree, containing two unknown quantities, sup-

poses two equations (§ 122. d, e) ; and deduces values

the unknown quantities, which will satisfy hoth equatio

Let there be given the two equations,

Ay*-\-Byx+Cx*+Dy-\-Ex+F= 0,

and AT

jr»+Bjtx-t- C'x 2
-\-D'y-\-F'x-\-F'= 0.

If now one of the unknown quantities, as y, be found in

terms of x and known quantities, and this value be sub

tuted in the other equation, there will, of course, result an

equation containing but one unknown quantity. If this

equation be solved, and the values found for x be substitu-

ted in one of the primitive equations, corresponding values

of y may be found.

But it is sufficiently evident, that the equation so obtain-

ed by the elimination of one of the unknown quantities will

be of the fourth degree, which, in its general form, we

not yet prepared to solve.

§ 226. Though we are not prepared for a general sol

tion of two equations of the second degree containing two

unknown quantities, yet certain classes of such equation.-!,

can be solved by applying the principles already demon-

strated.

This is true of all those equations, in which the elimina-

tion of one of the unknown quantities results in an equa-
tion either of the second degree, or of the form, x in±Px
±0= (§221).

1. Given x 2+r = 100,

x°~—7ji = 28, to find x and y.
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Adding, subtracting, and dividing by 2, we bare
•

a:
2 = 64, .\*=±8;.

and ^2= 36, .-. y=±&.
2. Given z 2

-fy
2 = 100,

xy= 48, to find x and y.

From tbe second equation,
/48\

s

Substituting in tbe first,

••-©'

^+^=10*
a:*—100a: 2 :=—2304. §221.

a 2 = 64, or 36 ; and x= ±8, or ±6.

y= ±6, or ±8.

a.) Tbe last example may be more conveniently solved

witbout elimination. Tbus, adding and subtracting twice

tbe seeond equation to and from tbe first, we bave

attd *»-2ay+y
9= 4J

x-\-y= ± 14 ;
and ic—y= ± 2.

a:= ±8, or ±6 ;
and y= ±6, or ±8 ; as before.

3. Given x 2
-\-xy-\-y

2 = 112,

ar2_a:y_|_y2
—

43^ to find x and y.

Ans. x= ±8, y= ±4.

4. Given a:
2+a#= 180,

xy-\-y
2= 45, to find ar and y.

^4ns. a: = ±12, y=:±3.

5. Given 4ry= 96—x 2
y

2
,

x-\-y
— 6, to find x and y.

Ans. ar= 4, or 2, or 3±y21

y=2, or 4, or 3:fV2L

6. Given ar
2
+a;4-y= 18—y 2

'

a:y
= 6, to find a? and $,

Ans. x= 3, or 2, or —3±<y3,

y= 2, or 3, or —3:f</3.
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§ 227. b.) If one of the equations be of the first degree,

and one of the quantities be eliminated, then the resulting

equation will be only of the second degree.

1. Given 2x+y=z 10,

2x 2—
xy-\-'3y-

= 54, to find x and y.

From the first, y= 10—2x.

Substituting, 2a;2—a(10—2ar)+3(10—2x)
* = 54.

Ans. x= 3, or 5 J-
; y= 4, or —f .

2. Given 2x-\-y= 9,

;zy
= 10, to find x and y.

Ans. x= 2, or 2?> ; #= 5, or 4.

3. Given x-\-y
= 10,

a; 2_j_^2 = 50
5
to find a; and y.

$ 228. c.) It is sometimes convenient to employ auxilia-

ry unknown quantities, such as the sum and difference, or

the sum or difference and product or quotient.

Note. If one or both of the equations be of a higher degree, the

problem can frequently be solved by an equation of the second de-

gree.

1. Given x-\-y= a,

x3
-\-y

3 = b, to find x and y.

Let x= s-{-t, y= s—t, and .*. (§ 57. 3) s= ^(x-\-y) = \a.

Then x 3+y 3 = (s+t)
3
-f(s—t)

3 = 2s 3
+0si

2 = b.

„ b—2s 3
,

,

/&—2s3 \i
Hence £ 2 = —— , and t= ± ( ) .

6s
' V lis -/

... *= S±(_-) , and^= Sq:(—-)
.

.•., introducing the value of s,

,_ «. /^-^« 3
\i_ «. /46-« 3

x iC_
2
±

v
_
3^ ) -^vi^r) '

_ « /Ab—a 3
\l

and ^2ni^-J-
Let a= 10,and 6= 370; a= 12,and 6=1008; a= 7

}

and b= 217.

*15
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2. Given x-\-y= 8,

x*-\-y*= 70 6, to find x and y.

Let x= s-^-t, y= s—t, and .*. s= l(x-\-y) = 4.

Then z*+y*= (
5+*)4-f(fi_*)4

—
2s*-f-12s

2
i!
2+2^= 706.

Or, as s= 4, 512+192*
2+2^= 706.

*4+96* 2 r=97.

<
2= 1, or —97

; and t= ±l, or±y—97.

x =z 5, and y= 3; or a?= 3, y= 5 ;

or xz= 4±y—97, and y= 4qV—97.

3. Given 4x*—2xy= 12,

2y
2
-{-3xy= 8, to find a; and y.

Assume a;= zy, i. e. substitute zy for x.

Ans. x= ±2,ot ±fv/7.

y=±l,<V:Ffs/7.

4. Given 3x 2+a?y= 68,

fy*-\-3xy= 160, to find a; and y.

^4«5. x=±±, or q:?y
4y3,

<7.) Frequently, by a little reduction, the form of the

equations can be changed, so as to be conveniently solved.

5. Given x"y
—
y =z 21

x^y
—xy= 6, to find x and y.

rinding y from each, and equating the two values, the two sides

of the equations will be found to have a common factor.

6. Given x--{-3x-\-y= 73—2xy,
y--\-3y-\-x— 44, to find x and y.

If we add these equations and transpose, there will result an equa-

tion, from which x+y can be found.



CHAPTER VIII.

RATIO AND PROPORTION.

§ 229. In considering the relative magnitude of quanti-

ties of the same kind, we may inquire, either how much one

exceeds the other, or hoio many times the one contains the

other. The former of these relations is simply the differ-

ence of" the quantities; the latter, their quotient, is also

called their ratio.*

§ 230. The ratio of two quantities is the relation

expressed by dividing one of the quantities by the

other.
2

Thus, the ratio of 2 to 3 is - (otherwise written 2:3);

that of a to b is y (otherwise, a : b).

a.) These are merely different ways of expressing the

same thing ; a ratio being simply a fraction.

b.) The first term (§111. N.) of a ratio is called the an-

tecedent, and the second the consequent, of the ratio.

c.) A ratio being simply a fraction, its terms may be both

multiplied or both divided by the same number without al-

tering the value of the ratio (§ 113. 3). Thus, the ratio of

2 to 3 is the same as that of 2x5 to 3X5, or of f to f . So

the ratio of a to b is the same as that of am to bm, or of

a b— to —. That is,m m

(ft) Lat., relation.



176 RATIO AND PROPORTION.



§233.] MEAN PROPORTIONAL.—EQUAL PRODUCTS. 177

a. Cor. i.) If any three terms of a proportion be given,

the fourth may be found.

For, if the means and one extreme be given, the other

extreme will be found by dividing the product of the

means by the given extreme. Or, if the extremes and one

mean be given, the other mean will be found by dividing

the product of the extremes by the given mean. Thus,

If x : 6 = 11 : 22, then 22a; =66; and x= 3.

So, if 5 : x — 10 : 40, then 10a;= 200 ; and x= 20.

Or, if 5 : 13= 15 : x, then x= 39.

Note. The last is the form ordinarily used in Arithmetic.

b.) Again, let a : x= x : b.

Then ab=zx 2
. Hence,

Cor. II. It three terms be in continued (§ 231. b. N.) pro-

portion, the product of the extremes is equal to the square of
the mean.

Thus, if 2: 12 = 12:72, then 2X72 = 12X12= 12 9
.

c.) Also, if a : x= x : b, then
i

a;
2 = a&; and x=(ab)~. Hence,

Cor. in. The mean proportioned betioeen two numbers is

equal to the square root of their product.

Thus if 3 : x= x : 48, then x= (3X48)^ = 12.

Find a mean proportional between 1 and 9 ; between 2

and 8 ; between 5 and 500 ; between a 2 and 6 2
; between

R-\-x and R—x.

§233. Let al= bL

Dividing both members by b and by 7,

t—ti or a : b= k": I. Hence,
b I'

If the product of two numbers be equal to the product of

two other numbers,^ two factors of either product may be

made the means, and the two factors of the other product the

extremes of a proportion.
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Thus, if 7X15 = 3X35,
then 7 : 3 = 35 : 15, or 7 : 35 = 3 : 15, &c.

So, if x"x—x" 2[= x" (x—x") ]
= A*—x" 2

,

then x" : A—x"— A\-x" : x—x" .

1. What proportion results from the equation &m(a-\-b)
sin(a—b)

= sin 2a—sin 2 5?

Ans. sin (a
—

b) : sin a—sin Z>= sin a-\-e'm b : sin(a-\-b).

2. What proportion from the equation sin b sin G=
sin c sin B?

a.) Also, if x 2= a5, then a : a;= a: : b.

Hence, evidently,

Cor. If the 'product of two numbers be equal to the

square of a third, this last is a mean proportional behceen

the other two.

Thus, if 12 2 = 2x72, then 2: 12 = 12 : 72.

So, if y
2= R 2—

x-, then R-\-x : y= y : R—x.

Transform the following equations into proportions.

1. y
2 = 2Rx—x 2

. Ans. x : y— y '• 2R—x.

2. y
2 = 2px. Ans. x : y= y : 2p.

3. R 2 = tan a cot a ; A 2 =x"x.

§ 234. Let a:b— 7c: I, or y= t-
b I

I. Multiplying by b, and dividing by Jc,

a b
7 7/-= -

; or a : «= b : I.

Mis C

Or, multiplying by /, and dividing by a,

- =-
; or I : b-= k : a. Hence,

b a

The means or the extremes of a proportion may exchange

places.

Thus, if 2 : 3 = 8: 12, then 2 : 8 = 3 : 12.

Note. The interchange of the means is called alternation';

(I) Lat. alterno, to interchange ; hence alternando, by inter-

changing.
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and the quantities are said to be in proportion alternately, or alier-

nando.

a Jc

§235. II. Again 1-~= 1-^- -.

———
; or b : a= l : Jc. Hence,

a k

The terms of each ratio of a proportion may exchange

places ; i. e. the antecedent may be made consequent, and

the consequent, antecedent.

Thus, if 2 : 3 = 8 : 12, then 3 : 2 = 12 : 8.

Note. This is called inversions ; and the quantities are said

te be in proportion by inversion, or inveriendo.

§236. III. Adding ±1 to each side,

.-. (§114. a)

C~- =-T~> or a±b : b= Jc±l: I. (1)

b I b I

Again 8 235) -=-. .M±
:=l±j.

a±b Jc±l
, 7 ,,77=——

; or a±o : a= k±l : Jc. (2
a k

Hence,
The sum or difference of the first and second is to either

the first or second, as the sum or difference of the tJd-d an !

fourth is to the third or fourth.

Thus, if 7:5 = 14: 10, then 7±5 : 7= 14±10 : 14.

Note. In this case the quantities are said to be in proportion by

composition," or componendo, when the sum is taken; and by divis-

ion or dividendo , when the difference is taken.

a.) Also a-\-b : k-\-l— a : Jc; § 234.

and a—b : k—I= a : h.

a+b :
k-\-l
= a—b : k—l.

or (§ 234) a-\-b : a—b= fc+Z : k—l.

(?ft) Lat. inverto, to invert; hence invertendo, by inverting, (n)
Lat. compono, to compound , hence componendo, by compounding.
(o) Lat., from divido, io separate ; by separating.
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Hence,
Cor. The sum of the first and second is to their differ-

ence, as the sum of the third andfourth is to their difference.

Thus 3:2 = 6:4; .-. 3+2 : 3—2 = 6+4 : 6—4.

Hence (f§ 234-236),

§ 237. If four quantities he in proportion, they will be

in proportion by alternation, by inversion, by composition,
or by division.

§ 238. Let a : b= k :
I, or %= T.

b I

Adding ±n (§ 42. a),

a
,

k
,

a±nb k±nl

a±nb : b = k±nl : I. (1)

Again (§ 235),
-= t ',

and - ±m= -±m;
Ct /C (X fc

b±ma l±mk
or =—j—.

a k

b±ma : a= l±mk : k. (2)

We have also (§ 234) a:k= b:l;

and from (1), a±?ib : k±nl= b : l=za : k;

and from (2), b±ma : l±mk =z a : k= b : I.

.'. (§ 231) a±nb : k±nl=b±ma : l±mk. (3)

Now (§ 230. c) ma and wft have the same ratio as a and

k
; also w6 and nl, the same as b and /. Hence,

Jf either both antecedents or both consequents be increased

or diminished by quantities having the same ratio as either

consequents or antecedents, the results will be in proportion
with either the antecedents or consequents, or with each other.

Thus, if 2 : 4= 6 : 12 ; then 2±3 : 4 = 6±9 : 12 ;

and 2 : 4±1 = 6 : 12±3
; 2±3 : 4±1 = 6±9 : 12±3.

Notes. (1.) ma and mk are called equimultiples** (i. e.

products by a common multiplier) of a and k. (2.) If m and n be

(p) Lat. a;quus, equal, and multiplico, to multiply (§66. Note
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each equal to unity, the formula (1) and (2) of this section become

identical with (1) and (2) of §236.

§ 239. Let a : b= k : I.

ma mk
r

a k , ma mk
The" T=T ;

ni,
=M-^nb =

nV H2 ' '' *

ma : b= mk :l; a : nb— k : nl;

and wzrc : nb= m& : n?. Hence,

Equimultiples of the antecedents and of the consequents

of a proportion will be in proportion, either with the origi-

nal antecedents, or consequents, or with each other.

Thus, if 2:4 = 6:12; then 2Xo : 4X7 = 6X0 : 12X7.

Or, 2X5:6X5 = 4X7:12X7 = 4:12 = 2:6.

Note. We may, obviously, multiply both terms of a ratio (§230.

c) or both the antecedents, or consequents (§42. c, d) of Ta propor-

tion, by a common multiplier, without destroying the proportionality.

§240. Let a : b= e :f=g : h= k :l.

Then ab= ab; and (§ 232) af= be; ah= bg ; al= bk.

a(b+f+h+l) = b(a+e+g+k).

.-. (§ 233) a-\-e-\-g+k : b-\-f-\-h-\-l
z=a:b= e:f,&c. Hence,

In any number of equal ratios, the stem of all the antece-

dents is to the sum of all the consequents as any one of the

antecedents is to its consequent.

Thus, if 1:2 = 3:6 = 4:8 = 5:10,

then 1+3+4-1-5 : 2+0+8+10 = 1:2.

§ 241. Let a : b = k : I.

Then (§ 52. N.) ~= ^-
; or a\ : b

n—
k\ : l\ Hence,

Like poxoers ofproportional quantities are proportional.

Thus, if 1:4= 64:256,

then I 3
: 43 = 643

: 256 3
;

and 71:74= ^4: ^256.

Note. The ratio of the squares of two quantities was formerly

called the duplicate ; that of the cubes, the triplicate ; of the square

ALG. 16
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a:id cube roots, the subduplicate and subtriplicatc, ratio of the quan-
tities themselves. The ratio of the square roots of the cubes (i. e. of

the three half powers) is sometimes called the sesquiplicate ratio of

the quantities.

§ 242. Let a :b— k : I; e :f=g : h
; and r : s = x : y.

ml a e r k q x aer kqxThen -
.
-

.
- = -

. | .
_

; or — = -f- ;
u f s Ihy bfs Ihy

or aer : bfs= hgx : Ihy.

The same will evidently hold of any number of propor-

tions. Hence,
The products of the corresponding terms of any number

of proportions are proportional.

Thus, if i : 3 = 6 : 18, and 10 : 6= 15 : 9,

then 1X10:3X6 = 6X15:18X9.
Notes. (1.) When the terms of two ratios are thus multiplied

together, the ratios are said to be compounded. (2.) If equal ra-

tios are compounded, we obtain the ratio of the powers of the quan-
tities (§241).

§ 243. The following exhibits, very briefly, most of the

principles above demonstrated (§§ 232-242). If the truth

of any of these expressions is not self-evident, write the ra-

tios in the form of fractions.

1. ar:a= br: b ; or—= ^(§§113. 1; 114; 230. a).
a b

2. abr— abr. §232.

3. ar:br= a:b. §234. See 113. 3.

4. a : arz=b : br. § 235.

5. ar±a : a= br±b : b ; or a (V±l) : a= b (r±l) : b.

§236.

6. a (r+1) : a (r—1) = b (r+1) : b (r—1). § 236. Cor.

Note. Other principles may be exhibited in like manner.

§ 244. When the first of four quantities is to the second

a3 the fourth is to the third
(i. e. as the reciprocal (§ 18) of

the third is to the reciprocal of the fourth), they are said to

be inversely (§ 235) or reciprocally proportional.
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Thus, if, on a railroad, a freight train runs 15, and a pas-

senger train 30 miles an hour, their times of passing over

equal distances on the road will be inversely or reciprocal-

ly proportional to their velocities. That is,

Time of 1st : Time of 2d = Vel. of 2d : Vel. of 1st =
ovT: T'= V : V— *

Vel. of 1st,

'

Vel. of 2d.
' ut " ' ^ ~ • —

y
•

y"
If, however, they run equal times, as 3 hours, then the

distances will be directly proportional to their relocitiee.

VARIATION.

§ 245. These relations are sometimes concisely express-
ed by saying, that one class of quantities, or, still more

concisely, that one quantity varies directly or inversely
as another. This form of expression is denoted by this

symbol go, or ==, placed between the quantities. Thug,

x&y, or x= y, (read x varies as y).

Thus, in the examples of the last section, the time is said

to vary (or to be) inversely or reciprocally, and the distance

directly, as the velocity. Or, I7
go— ; D go V.

So, the number of men required to accomplish a work in

a given time varies directly as the amount of work ; if the

amount of work be given, the number of men varies in-

versely as the time allowed.

§ 246. If x==y, then we shall have, obviously,

x : x1= y : y>
• ov x :y= x' :y'.

x x'-— -, = m, a constant numbei*. (1 )

Also, x =z my ; and y=—x. (2)m
Hence,
When one quantity varies directly as another, (1.) the

ratio of the numbers by which they are expressed is con-

stant; and (2.) each is equal to the other multiplied by
some constant number.
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§247. Let a: go -. Then x : xfz=- :
- = */: y.

y y y'
y u

xy =.
x'y' =: m, a constant number. (1)

• , otto
Also, 3?=— ;andy= ^-. (2)

y
a x v

Hence,
If one quantity varies reciprocally as another, (1.) the

product of the numbers by which they are expressed is

constant ; and (2.) each is equal to a constant quantity di-

vided by the other.

a.) The converse of the principles in this and the last

section is evidently true.

Hence, (3.) any equation, containing variable quantities,

way be written as an expression of variation ; and may be

simplified by dropping any constant factor on either side.

Also, (4) if all the factors on one side be constant the

other side is constant (§§ 246. 1 ; 247. 1).

Thus, if we have the area of a circle —tiR'2
,
n being

constant 9
, then the area varies as the square of the radius ;

or area= 2i 2
.

So, S representing the space fallen through by a falling

body, and T, the time of its descent, i£ S~ mT2
,
m being

constant, then the space varies as the square of the time ;

or S = T 2
.

Again, if the area (A
2
) of a rectangle — its base (x) X

its altitude (y) ; i. e. if A 2 = xy, then

.. , the area . A 2 1 1
the base = -;

———
; or x=— =A 2-

; and x w -
; or

the altitude
*

y y y
the base varies inversely as the altitude.

b.) In the last example, the area varies as the product of

the base and altitude. So the solidity of a parallelopipe-

don varies a3 the product of its length, breadth and thick-

ness.

(q) it, Greek letter pi, Eng. p ; the initial (§ 1. d) of Trepujtipeta,

periphery, circumference. In common use, 7r= 3.14159 &c the

circumference of the circle whose diameter is unity.
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c.) I£xzc-, then x varies directly as y, and inversely as

z. Thus, the weight ( W) of a body above the surface of

the earth varies directly as its mass {M), and inversely as

the square of its distance [D) from the centre of the earth.

rrr M
That is, W co -r-^.

JJ~

§ 248. 1. If, above the surface of the earth, the weight

of a given body (i. e. its gravitation towards the" earth) va-

ries inversely as the square of its distance from the centre

of the earth, how high must the body be raised, that its

weight may be only half what it was at the surface ?

Let x r= the height above the surface of the earth ;

r= the radius of the earth ; and

w ==. the weight of the body at the surface.

1 1
Then w : %w—— : -—.——= (r-\-z)

2
: r 2

;

r- (r-f-x)-

or 1 : l=(r-\-x)* : r 2
.

i(r-\-x)
2 = r 2

; or x n

--\-2rx= r 2
.

x=—r±r^/2.

Note. Taking the upper sign, and finding ^y2 approximately,
we have x— JtJULr. The lower sign gives the distance, measured

downward (§5) through the centre.

2. How far must the body be removed from the surface,

that its weight may be w' ?

Here we have w : w''= (f-\-x)
2

: r-
;

or «/w : */io'= r-\-x : r

w
x——r±rJy—r.

w'

3. How much weight will the body lose, if it be remov-
ed a given distance (D) from the surface ? and what will

be its weight there ?

Here . w : w>= (r-f-Z>)
2

: r 2

w : w-w'— (r+D)
2

: (r+D)
2-r 2

. § 236.

*16
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,
(2rZ>4-D 2

)w , , „ . ,w-w> =
^2+2rjD+j a .

tlie loss of weight ;

r*

(r+X»)2
If D is very small compared with r, D^ may be neglected, and

we shall have

2D
w—w' = ———-w.

r-\-2D
Let D= l, 2, 5, 10, 100, 1000 miles, w=l pound, and r—

4000 miles
;
and find the values of w' and w—iv'.

CHAPTER IX.

EQUIDIFFERENT, EQUIMULTIPLE
AND HARMONIC SERIES.

I. EQUIDIFFERENT SERIES.

§ 249. A series of quantities such that each differs

from the preceding by a constant quantity, is called

an equidifferent series
;
and sometimes an arith-

metical series or progression.

a.) Such a series can, of course, be continued to any ex-

tent ; and its character is determined, if we know any one

of its terms and their common difference.

Thus, if 7 be one of the terms, and 3 the common differ-

ence, we shall have the series,

.... —5, —2, 1, 4, 7, 10, 13, 16, ... .

Or, if 8 be one of the terms, and —2 the difference, we

shall have

.... 12, 10, 8, G, 4, 2, 0, —2, —4, . . . .
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b.) If the common difference be positive, the series is

called increasing ;
if negative, decreasing. The first of the

series in a above, is an increasing series ; the second, a de-

creasing series.

c.) Though every series may be continued without limit,

we ordinal ily have occasion to consider only some definite

number of terms, of which the two extremes are called the

first and last terms.

§ 250. If a be the first, and I the last of n terms of an

equidifterent series, and D their common difference, we
shall have

1st, 2d, 3d, (n-l)th, nth,

a, a-\-D, a-\-2D, . . a-\-(n—2)D, a-\-(n—\)D or /;

whence, obviously, l=z a-\-(n
—
1)D. (1)

That is,

The last term is equal to the first term, plus the product

of the common difference by the number of terms less one.

Note. Of course, the common difference must be taken positive

or negative, according as the series is increasing or decreasing.

1. What is the 7th term of the series 1, 3, 5, &c. ?

Here a= 1, D— 2, and n— 7.

l= a+(n—l)D=l-\-Gx2 = 13

2. Given a= 25, D= —2, and n= 14 ; to find I.

Ans, — 1.

3. Given a ==. 0, D— 1, and n= 100 ; to find I.

Ans. 99.

§ 251. If s represent the sum of n terms of a series, we
shall have

s= aJr(a+B)+(a+2I)) . . +{ [a-f-0-l)Z>](= Z) y 5

and, writing the terms in the reverse order, obviously

s = l+(l—D)+(l—2D) . +{ [?—(n—l)Z>)](= a) }.

/. Adding the equations,

2s=(a+l)+(a+l)-\-(a+l) . . +(a+l) = n(«+?).
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s= 9

^pl. (2) That is,

The sum of any number of terms of an equidifferent se-

ries is equal to the number of terms into half the sum of the

extremes.

1. What is the sum of 20 terms of the series 1, 3, 5, 7,

&c?
Here a = l, D=z2, and n= 20.

l=a-\-(n—l)Z>= 1+19X2= 39.

s— bi(a+l) = \ . 20(1+39) = 400.

2. Given a= 1, D= 1, and n =. 10 ; to find £ and s.

Arts. 1= 10, s == 55.

3. Given a= 20, Z>=—2, and «= 21 ; to find ? and s.

Ans. I= —20, s= 6.

4. Let a = 20, D=—2, and w= 11 ; and find I and 5.

§ 252. a.) It is obvious from the addition of the two

series above (§ 251), that the sum of any two terms equidis-

tantfrom the extremes is equal to the sum of the ext) ernes.

Or, beginning with a, the mth term= «+(?»
—\)D;

and, beginning with I, the mtla. term = /—(m
—
1)D.

Now the sum of these two terms, equidistant from the

extremes is a-\-l.

b.) Hence, if the number of terms be odd, the middle

term is half the sum of the extremes.

c.) Such a term is called an equidifferent mean, and

sometimes an arithmetical mean.

d.) The equidifferent mean between two quantities is

found by taking half their sum. Thus, the equidifferent

mean between 1 and 2 is 11-, or 1.5
; between 1 and 1.5,

1.25; between 5 and 15, 10.

e.) The middle term is also equal to the sum of all the

terms divided by their number. For

5= \{a-\-l)n ; .'. -= \{a-\-l) = the middle term.
Tit
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Note. A mean of several quantities, whether they be equidiffe-

rent or not, is found by dividing the sum of the quantities by their

number. The mean or average temperature for a week or month is

found in this way from the several daily temperatures observed dur-

ing the given period.

§ 253. /.) If (§§ 250, 251) we substitute in (2) the value

of / in (l),'we shall have s in terms of a, D and n. Thus,

s= nh(a+l) — na-\-hi(n—l)D= w[a-{-£(w—1)2>].

§ 254. The formula?, I == a-\-(ii
—

1)Z>, and s= fyi(a-\-l),

should be carefully remembered. They contain, it will be

observed, five quantities. If any three of these be given,

we shall have two equations containing two unknown quan-

tities which may therefore be determined (§§ 124-128).

a.) In fact, from the first, a= I—(n
—1)D ;
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a, a-\
—

, a-\-2
——

,
. . a4-(m4-l)—— (=b).

m-\-Y
'

m-f-1
' v ' J

m-\-\
K '

1. Interpolate 8 equidifferent means between 1 and 10.

2. Find 6 equidifferent means between 1 and 15.

§256. 1. Given a= 1, D= l, and »= 100; to find 7

and s. Ans. 1=100, s= 5050.

2. What is the rath term of the series of example 1
(i. e.

the rath term of the natural series 1, 2, 3, 4, &c.) ?

Ans. n.

3. What is the sum of n terms of the series 1, 2, 3, &c. ?

Ans. ^±L}
.

4. What is the nth. term of the series 1, 3, 5, 7, &c. ?

.Jras. 2rc— 1.

Substitute for n, 1, 2, 3, 4, 5, &c.

5. What is the sum of n terms of the above series of

odd numbers, 1, 3, 5, &c. ? Ans. n 2
.

Substitute for n as above.

6. Suppose a body, falling freely to the earth, descends

m feet the first second, dm the second'second, bin the third,

&c. Now if its fall occupy T seconds, how far will it fall

in the last second? Ans.. (2T—V)m.
7. How far will it fall in the whole T seconds ? i. e.

what is the sum of the series, m, om, 5m, &c, to T terms ?

Ans. m T2
.

Substitute, in these two examples, for T, 5, 6, 7, 8, 10, &c. Al-

so find the value of the expressions thus obtained, on the supposition
tbat m — 16^.

II. EQUIMULTIPLE SERIES.

§ 2-57. A series, such that each term is formed by

multiplying the term immediately preceding by a con-

stant multiplier, is called an equimultiple series
;

sometimes also a geometrical series or progression,
or a progression by quotient.
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Note. The constant multiplier has been sometimes called the

ratio. For convenience and distinctness, however, we shall call it

the common multiplier, or simply the multiplier.

a.) Such a series can, of course, be continued to any ex-

tent ; and its character is determined, if we know any one

of its terms and the common multiplier.

Thus, if 7 be one of the terms, and 3 the common multi-

plier, we shall have the series,

TJ7 , y, 6h, i, -1, OO, ....
So, if 8 be one of the terms, and | the multiplier, we

shall have

... 32, 1G, 8, 4, 2, 1, i, \, . . .

b.) If the common multiplier be greater than unity, we
shall have an increasing series ;

if less, a decreasing series.

The first of the two series in a, above, is an increasing, the

second a decreasing series.

c.) Though every series may be continued without limit,

we ordinarily have occasion to consider only some definite

number of terms, of which the two extremes are called flhe

first and last terms.

§ 258. If a be the first, and I the last of n terms of an

equimultiple series, and m the common multiplier, we shall

have

1st, 2d, 3d, 4th, 5th, (?i—l)th, Tith,

a, am, am 2
,
am z

, am*, . . . amn~ 2
,
am"' 1 or/.

Whence, obviously, /
— amn_1 . (1)

That is, to find the nth term of an equimultiple series,

Multiply the first term by the (n
—

\)th power of the com-

mon multiplier.

1. What is the 6th term of the series 1, 2, 4, &c ?

Here a =z 1, m= 2, and n z= 6.

l(= am"-
1
) = 1x2 5 = 32.

2. Given a= 3, m= 2, and n= 10 ; to find /.

Ans. 1536.
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8. Given a= 64, m= h, and n= 8 ; to find I.

4. Given a= $100, m = 1.06, and n= 10; to find/;

i. e. to what will $100 amount in 10 years at 6 per cent,

compound interest? Ans. 1=- $179.09.

5. "What is the amount (A) of p dollars, at compound
interest for t years, at the rate r ?

Here we have

1-J-r= the amount of one dollar for one year.

p(l-\-r) = " p dollars "

p(l-\-r)(l+r) = "
^(1+r)

" "

&c.

Or, p= the amount at the beginning of the jirst year ;

p(l-\-r)=
« " wconrf «

• • • •

jp(l-f-r)
re- 1= " « rath "

p(l-j-ry=
« «

(<+l)th
"

i. e. at the ewe? of t years.

The successive amounts constitute, obviously, an equi-

multiple series ; in which we have given a=p, m=- 1-J-r,

and n= t-\-\ ; to find 1= A. Ans. A =zp(l-\-r)
(
.

G. What is the amount of $50 at 6 per cent, compound
interest for 12 years? Ans. $100.61.

7. What sum, at the rate r, will amount to A dollars in

t years ? . A _ .
,J Ans. p= , ,, . See 4, above.

(i-K)
8. What principal at 6 per cent will amount to $1000,

in 10 years? Ans. $558.37.

9. At what rate of compound interest will p dollars

amount to A dollars in t years ? . /A\LJ A?is.r=(—U—1.

Let p = 100, A = 150, and t
— 8 ; &c.

a.) If we have m < 1, and n— &, then putting m=—y
/IS
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(«t' being of course > 1), we shall find I (
= am"- 1

)
=

/l v 00 -! a am' am! rt# . ,« o\« >tm ^ •

«[— l = = =— =0 (§ 138. 3Y. That is,

The last term of a decreasing infinite equimultiple se-

ries is zero.

Notes. (1.) Of an infinite series, there can be no last term.

And, on the other hand, in forming the terms by multiplication, we

can never arrive at zero; though we must evidently approximate to

it. Hence, the inconsistency in speaking of the last term of an in-

finite aeries is compensated by placing it beyond any finite number

of terms; i. e. at an infinite distance.

(2.) In the two series,

1> b h h &c -
5
and 2» 1> b h &c->

any term whatever of the first is half the corresponding term of the

second. Hence, the last terms are said to be in the same ratio.

Now this comparison can, obviously, be made only between terms at

some definite distance from the beginning. That distance, however,
can be taken as great as we please; and the terms, consequently,

can be brought as near zero (and, therefore, as near equality) as we

please, while the ratio remains constant. Thus infinitesimals,

though regarded as equal to zero, may, like finite quantities, have

any definite ratio to each other.

§ 259. b.) It is evident, from the formation of the sev-

eral terms of an equimultiple series, that the product of any
two terms equidistant from the extremes must be equal to

the product of the extremes.

In fact, if a be the first of n terms, the term which has p
term3 before it will be am? ; the one which has p terms

after it, being the (»—/>) th, will be equal to amn~p~'t
.

Hence their product

ampXamn-p-i — a 2mn-i _ flXflmn-i
— a i (§ 258).

c.) Or again, if a be the first term, and m the multipli-

er, we shall have the (jo-j-l)th term= amP.

(s) It is evident that, since m'>l, a finite number of factors,

each equal to m',may be taken sufficient to produce any finite num-
ber whatever. Hence, if we combine an infinite number of these

factors, the result will be infinite.

ALG. 17
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But, if we begin with
I, the multiplier is, obviously,

—
;m

f 1 \ p I
and the (»4-l)th term = l(—

]
=— .v/ J \m ) m"

ampxl—= al.mp

d.) Hence, if the number of terms be odd, the product of
the extremes tvill be equal to the square of the middle term

(it being equally distant from the two extremes).

e.) Such a term may be called an equimultiple mean. It

is sometimes called a geometrical mean, and is simply a

mean proportional between the extremes (§§ 231. b
; 232. b).

§ 260. If s represent the sum of n terms of an equimul-

tiple series, we shall have

s =. a -\- am -j- am - — am 3
-\- . . -f- am

n~ l
.

Multiplying by m,

ms — am -\- am -
-\- am 3

-f- am 4
-f- . -f- am

n
.

Subtracting the first of these equations from the second,

ms—s z=z anf—a
; or (in—l)s= a(m"

—
1).

^«K-=1). (2)

'

That is,m—1

To find the sum of n terms of an equimultiple series,

Raise the midtiplier to the nth power, and subtraot 1 /

multiply the remainder by the first term, and divide the pro
duct by the midtiplier diminished by unity.

ramn—a
§ 2GI. a.) We have s= —

, § 260.
' m—1

and l= amn~K §258.

s
_lrnr-a That is,m—1

To find the sum of n terms of an equimultiple series,

Multiply the last term by the multiplier, subtract the first

term, and divide by the midtiplier less one.
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k) If m < 1, both mn—\ and m—1 will be negative.

In that case it is convenient to change the signs and the

order of the terms, thus ;

«(1—ra
n
) a—lm

s= —^ ,
or s= -

.

1—m 1—m
1. Find the sum of 20 terms of the series 1, 2, 4, 8, &c.

Here a=.l, m — 2, and n = 20 ;

8= -(^-i)= i(^°-i)
=1>048)WS ,

m—1 2—1

2. Given a= 243, m= |3
and n= 7 ;

to find Z and s.

Ans. ?= i, s — 3641.

3. Given a = 1, m= 4, and n= 5
; to find ? and s.

Ans. l=25Q; s= 341. •

4. Given arrl,m= J, and ?z= 6, to find Z and s.

M.11S. I ^^ J4TT 5 ^ ~~ 23T3'

c.) If m < 1, and n= oo, we should have, reasoning as

in § 258. a, am"= am™= 0.

s = "
(4)

1—m
That is,

The sum of a decreasing infinite equimultiple series is

equal to the first term divided by the difference between uni-

ty, and the common multiplier.

We might obtain the same result by substituting the

value of I (§ 258. a) in formula (3) of § 261.

Notes. (1.) If n is infinite, n—1 is infinite also. For, if n—1

were finite, n being greater by unity than a finite number, must be

finite also. In like manner, if any finite quantity whatever be sub-

tractedfrom infinity, the remainder is still infinite. (2.) Hence,
we have co=^r oo±a. That is, an infinite quantity is not affected by
the addition or subtraction of a finite quantity.

1. Given a= 1, m= ^, and n = oo
; to find the sum of

the series. Ans. s= 2.

2. What is the sum of the infinite series, whose first

term is 1, and multiplier ^ ? Ans. 1£.



196 EQUIMULTIPLE SERIES. [§262.

3. Given a and s in a decreasing infinite series, to find

m -
. s—a „ , a

Ans. m =
,

i. e. 1 .

s s

4. Given a= 1, 5 = 3, and n= oo, to find m.

Ans. m= §.

5. Given m and s, when n = oo, to find a.

_<4ns. a= (1
—

/n)s,

6. Given m= -t, s — 10, and «= oo, to find a.

Ans. a= 8.

§ 262. (£.) Suppose that at the end of one year from the

present time, and also at the end of each succeeding year,
a man invests a dollars at r per cent, compound interest.

What will be the whole amount of his investment and in-

terest at the end of t years ?

"We shall have the

amount of the Jirst investment for t—1 years = ^(l-j-?-)'"
1

„

" second " t—2 " = a(l+r)'-
2

;

• • • • •

last but one " 1 year = a(l-f-?") ;

last " " =a.

Hence, ifA1 = the ivhole amount, we shall have

^= a[(l+ry-i+(l-h-)'-
2

. . +(HV> 2
+(l+'-)+l)];

or (§260) Ar =a>-^-± . (1)

Note. This is the amount of an annuity* of a dollars, which has

beenforborne (i. e. left unpaid) t years.

1. Given a= $100, r= .06, and t= 10 years ; to find

A'. Ans. .4'= $1318.08.

2. Given a= $200, r= .05, and£= 8 years, to find

A 1
. Ans. .4'= $1909.82.

e.) The present xoorth of an annuity for any number of

years is, evidently, the same as the present worth of the

amount of the annuity (§ 262. d); i. e. it is such a sum, as,

(t) Fr. annuite', yearly payment ; from Lat. annus, a year.
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put at interest now, will produce that amount in the given

time (§ 258. 7).

Ifp>
— the present worth, we shall have (§ 258. 7 ;

262. d]

,_ A' _a (l+r)«-l _q/ lx
g

.

^-(1+r)«

—
t

r (1+r)' VV 1+r)'/
1. Given a= $100, r=.06, and f= 10 years; to find

p>. Ans.p'= $7S§.Q\.

2. Given a= $500, r= .06, and £= 12 years ;
to find

.4' and/. -4ns. ^£'= $8434.97 ; ^'= $4191.92.

/.) If the annuity be a perpetuity
1'

(i. e. if it last forever),

we have t= cc, and (§ 258. N. s) t
— 0.

.«, j>/
= -, the sum, evidently, whose annual interest is a.

y.) These formulae, as well as those relating to com-

pound interest (§ 258. 5-9), will be the same, whether the

interest and annuity be payable at the end of each year, or

of each half year, quarter, month, day, hour, or other peri-

od ;
r denoting the interest of SI for the given period, and

/, the number of the periods.

h.) Or, ifr= the interest of SI for a year,

t= the number of years, and

n == the number of periods in a year, we shall have

r
-= the interest of SI for the given period ;* andn

nt= the number of periods.

.-.(§258.5) A=p(l+?)
nt

. (3)

Also (§ 262. d) ]
^=v[(1+D"Ll] ; <4>

and (§262..) ^=~\}~ i}+$T]' <«)

Given p— $100, r= .06, n= 4, and t= 3 years ;
to

find A. Ans. A = $119.52.

(u) Lat. perpetuitas, that which lasts forever.

*17
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?'.)
The interest may be conceived to be payable at each

moment as the use of the money is enjoyed. In that case,

n becomes infinite, and formula (1) reduces to a peculiar

form, which will be considered hereafter.

j.) If, while the interest is payable annually, the com-

pound interest for a part of a year be required, the value

of t in the formula of § 258. 5 becomes fractional.

Thus, the compound annual interest for half a year is
i I

^(1-fr)- ; for one third of a year, p(\-\-r)
3

; &c.

So, for two and a half years, we have A=zp(l-\-r)"
2

.

§ 263. k.) This last result corresponds to the case in

which n becomes fractional in the formula, Z=amn-1 of

\ 258. Nothing prevents our assigning a fractional value

to n either in the equidifferent or equimultiple series.

Thus, in the series 1, 3, 5, 7, &c, if n =z
3-|-, we have

/(— a+(n—l)D= 1+2^X2 = 6.

So, in the series 1, 2, 4, 8, &c, if n= 3^, we have

l(
— am"- 1

)
= 1X2

2*= 2^= 32*= 5.65685&C § 258.

Note. This, it will be observed, is equivalent to interpolating a

single mean, equidifferent or equimultiple, as the case may be, be-

tween the third and fourth terms of the series (§§255; 265).

/.) Again, n may, obviously, become zero, or negative.

Thus (§ 250), let a= 1, D— 2, and n = 0.

Then 7[ = a+(n—1)2)] = l-f-(0—1)2 =—1.

If n= —3, then I= l+(—3—1)2 = —7.

Also (§ 258) let a = 1, m— 2, and n= 0.

Then l(
= amn~ 1

)
= 1X2 "1 = 2" 1 = | (§ 17).

Ifw=—3, then 1= 1X2- 3 - 1 = 2~ 4= T\.

ci(m
n

1^

§264. The formula?, l=amn- 1
(1), s= -± -J

(2)
tit J.

and s= (3) should be carefully remembered.
m—1

They contain, it will be observed, five quantities, from any
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three of which the other two may, obviously, be found

(§ 254).

a.) Thus, from the first, a= (4)m

m=(=)* v
b.) To find n, we have mn~ x = -. That is, n—1 is the

exponent of the power to which m must be raised, to pro-

duce -. An equation, in which the unknown quantity is
Ctl

an exponent, is called an exponential equation ; and i^

solved by a peculiar process, which we are not yet pre-

pared to investigate.

§ 2G5. c.) From formula (5) we can interpolate (§ 255.

N. r) any number of equimultiple means between two giv-

en extremes. For, if it be required to intei'polate p terms

between a and b, we shall have the whole number of term?,

n, equal to p-\-2. Hence, n—1 =zp-\-l, l=b,

and m =
(-J

»-i =
\-)

p+1 •

Hence we have the series,

1. Interpolate 2 equimultiple means between 3 and 81.

Here ^= 2,^+1= 3, a= 3, and J= 81.

m=
(-V+

1 = 27 J= 3.

Hence the series is 3, 9, 27, 81.

§266. 1. Given a= ^ wz= 2, and w = 10, to find /

and s. Ans. l=z 32, s = 63if.

2. Given a= l, m= l, and rc= 100; to find / and s.

Jns. 1=1, s= 100.

Note. Here we have

_ a(m
n
—l) ^ 1(1—1) _/_ a\nr—L)\ __ i^i— J

A m—1 / 1—1 0'
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apparently indeterminate (§ 109. c). But when m= l, we have

(§140)

"

m»— I

-—-=nmn- I= 100x1" = 100.
m—1

3. Given a= 1, m =—x (where x < 1), and n = ce, to

find s ; or, in other words, to find the sum of the decreas-

ing infinite series, 1—x-\-x
2—x 3

-\-&c.

Ans. s=——•

l-\-x

If we had x > 1, we should find the same result, but by a different

process.

4. Of four terms of an equimultiple series, the product

of the two least is 8, and of the two greatest 128. What

are the numbers? Ans. 2, 4, 8, 16.

5. "What is the vulgar fraction equivalent to the repeat-

ing decimal .121212 &c. ? Ans. -fa.

Notes. (1.) This is the same thing as finding the sum of the se-

ries .12+.0012+&C. to infinity; where a= .12, 7/i= .01, and

n= co. (2.) In the same way, the value of any repeating deci-

mal may be found. Thus, we have

.1111 &c.= .1+.01+001+&C.= .l-j-(l—-1) = .H-.9 = I

6. Find the vulgar fraction equal to .IOIO&c. ; 222&C ;

.456456&C : 74357435&C.

HARMONIC SERIES.

i 267. 1. Three numbers are said to be in harmonicalv

proportion, when the first is to the third, as the difference

of the first and second is to the difference of the second and

third.

Thus, if a : c = a—b : b—c, then a, b, and c are in

harmonical proportion. So 2, 3 and 6 are in harmonical

proportion, because 2:6= 3—2 : 6—3.

2. Four numbers are said to be in harmonical propor-

tion, when the first is to the fourth, as the difference of the

(») Gr. dp/tovia, joining, harmony.
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first and second is to the difference of the third and fourth.

Thus, 6, 8, 12 and 18 are in harnionical proportion ;

because

6 : 18 = 8-6: 18—12.

£ 268. Let a, b, and c be in harmonical proportion.

Then a : c = a—b : b—c.

ab—ac= ac—be; (1) or (a-\-c)b= 2ac.

b——— ; (2) and c = -. (3)

§ 269. A harmonic series or progression is one in which

any three consecutive terms are in harmonic proportion.

Thus, 6, 3, 2, 1.5, 1.2, 1 form a harmonic series, as will

be readily seen by forming proportions as in § 267. 1.

§270. Let «, b, c,f, g, h, &c, be consecutive terms of a

harmonic series. Then (§ 268. 2)

a+P 6-h/ c+ff

Dividing unity by both sides of each equation,

l_a+o l_l+f l_c+ff
b
~

2ac
4

' c~ 2bf f~2cg
'

C *

o;i=I(I+Iy ---(-+-V i-ifi+Iv&c
b 2\c^J' c~2\f^b)' f~2\g^ c)

'

1 1 1 1 1 „
•'• -, r, -, -;, -, &c. are terms of an equidiflerent se-

tt o c j g
x

ries (§ 252. d). That is,

The reciprocals of the terms of a harmonic series consti-

tute an equidifferent series.

a.) This principle may be shown otherwise. Thus,

ab—ac = ac—be. §268. 1.1111
Dividing by abc, =T . § 249.

c b b a

b.) Conversely, it can be readily shown, that the recip-

rocals of the terms of an equidifferent series constitute a

harmonical series.
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c) In order, therefore, to interpolate any number of har-

monic means between two quantities, or to continue a har-

monic series, of which two terms are given, we have only
to interpolate a like number of equidifferent means between

the reciprocals of the given terms ; or to extend the equi-

different series, of which those reciprocals form a part ;

and take the reciprocals of the terms so found.

Thus, to insert two harmonical means between 60 and'15>

Ave must insert two equidifferent means between ^ and

,' .,. This will give the equidifferent series ^ ^, -
b%, £$.

I fence, the harmonic series is GO, 30, 20, 1-5.

The succeeding terms of the equidifferent serieswill be

n fi_ _7 .

7 > <T O 5 »

and the corresponding terms of the harmonic series,

12, 10, 8f, &c.

§271. One of the most interesting examples of harmonic

series consists of the reciprocals of the natural numbers, 1,

2, 3, 4,5, 6, &c.;

viz - l,hhhkh&*s.i
or, reducing the first six terms to a common denominator'

and taking the numerators,

60, 30, 20, 15, 12, 10.

Note. This series may be regarded as the origin cf the term

harmonical or musical proportion; the name having been applied to

this series on account of the perfect harmony produced by six musi-

cal strings of equal thickness and tension, and having their lengths in

the ratio of these numbers. For the sharpness of the sound produced

by a string, is found to be directly as the number of its vibrations in

a given time; and the number of vibrations is inversely as the length

of the string. Hence, the longest string sounding the key note, the

second string will sound the octave; the third will sound the twelfth,

or fifth of the octave; the fourth, the fifteenth or double octave; the

fifth, the seventeenth or third of the double octave; the sixth, the

nineteenth or fifth of the double octave.



CHAPTER X.

PERMUTATIONS AND COMBINATIONS.

§ 272. Changes in the order of things arranged to-

gether are called permutations'". To determine the

possible number of changes of this kind, is the ob-

ject of the theory of permutations.

§ 273. A single individual, as the letter «, can obviously

give rise to no question of the kind. But, if a second let-

ter, b, be taken, this can be placed either before or after the

first; thus ab or ha. Thu3,

the permutations of two letters = 1.2 = 2.

Let there be a third letter, c. This may have three pla-

ces in each of the permutations of the two letters ; thus,

cab, acb, and abc ; cba, bca, and bac.

That is, it may stand before each of the other letters,

and after them both. Hence, the number of the permuta-
tions of three things will be

2X3 (or, for symmetry) 1.2.8 = 6.

In like manner, a fourth letter might stand in four pla-

ces, in each of the six preceding permutations, and would

give the number of

permutations offour things = 1.2.3.4= 24.

So & fifth letter might stand in five places in each of the

(«.') Lat. permuto, to change.
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274.

24 permutations of four letters ; giving five permutations

for each change of the four. Hence, the number of

permutations ofjive things = 1.2.3.4.5 = 120.

Thus, when the nth letter is introduced, there being n—1

letters in each of the preceding permutations, the new let-

ter can stand in n places in each of those permutations ;

and we shall have the whole number of

permutations of n things = 1.2.3.4.5 . . (?i
—

V)n.

1. How many permutations can be made with the six

vowels a, e, i, o, u, and y ? Ans. 720.

2. How many permutations can be made in writing the

nine digits? Ans. 362880.

Note. The expression [«] is sometimes used to denote the pro-

duct 1 . 2 . 3 . . n. Thus [10]=1.2.3.4.5.6.7.S.9.10.

§ 274. We sometimes inquire the number of

changes in the position of n things taken, not all at

once, but a part at a time. The changes thus pro-

duced are called arrangements or variations.

To find the number of such arrangements, we must con-

sider that we may write any one of the n letters, as a, be-

fore each of the remaining n—1 letters. We shall thus

have n—1 arrangements of n letters taken two and two, ia

each of which a stands first. "We may, in like manner,

have n—1 arrangements in which b shall stand first ; and

so for each of the n letters. Hence, the whole number of

arrangements of n things taken two at a time will be

n(n—1).

Again, each of these n(?i
—

1) arrangements of n letters

taken two at a time can be placed before each of the re-

maining n—2 letters. Hence, the number of arrangements

of n things taken by threes will be

n(n—l)(n—2).

In the same way, placing each of these »(n
—

l)(n
—

2)

arrangements before each of the remaining n—3 letters, the
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number of arrangements of n things taken four at a time

will be «(«—l)(n—2)(n—3).

And, in general, the number of arrangements of n things

taken p at a time will be

n(n—l)(n
—

2) . . (n—p-\-Y) ; or [n, n—£>+l],
by a notation analogous to that of § 273. N.

a.) We have, obviously,

That is, the number of arrangements of n individuals ta-

ken p at a time is equal to the whole number of permuta-
tions of n individuals, divided by the number of permuta-
tions of n—p individuals ; (i. e. by the number of permuta-
tions which can be made with the individuals left out of

each arrangement).

1. How many arrangements can be made with the 10

Arabic numerals, taken 2 at a time ? Ans. 90.

2. How many, if they be taken 3 at a time ?

Ans. 720.

3. How many arrangements can be made from the 72

numbers of a lottery, taking 3 numbers upon each ticket ? \

Ans. 357840.

b.) I£p
—

n, we shall have simply the permutations of n

things= n(n—l) .... 2 . 1, as in § 273.

§ 275. Combinations are the groups, that can be
formed of individuals without reference to the order

of arrangement ; in other words, groups such, that

no two of them shall be composed of the same individ-

uals. Thus ab and ba form two permutations or

arrangements, and but one combination.

And, in general, whatever be the number of things, on-

ly one combination can be formed by taking them all at

alg. 18
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once. For two combinations are not different, unless they
differ in, at least, one of the individuals contained in them.

Hence, each combination of n things may be subjected

to 1 . 2 . 3 . . n permutations, without affecting the combi-

nation. So, if we combine n things,^? at a time, each com-

bination admits of 1.2.3 p permutations or ar-

rangements.
Hence we shall have only one combination for every

1.2.3 p arrangements. If then we divide the

number of arrangements by the number ofpermutations in

each arrangement, we shall have the number of combina-

tions.

That is, if we combine n things, p at a time, we shall

have
_ T ... No. arrangements of n things taken » &»
INo. combinations — — .

No. permutations ofp things.

."

• the number of arrangements of n things taken p at

a time is (§274)

n(n—1) (ii—p-\-\) ; or [n, n—£>+l] ;

and the number of permutations ofp things is

1.2.3 . . . . p ; or \_p~\.

Therefore the number of combinations of n things taken

p at a time is

n(n
—

1) . . . (n—p-\-l) _ [n, n—p-\-\~\

1.2.3 7~. \ .~~p
"

[p]

a.) If the letters denote algebraic quantities, the number

of combinations of n letters taken p at a time is, evidently,

the same as the number of distinct products of the quanti-

ties taken p at a time.

b.) If n things be taken p at a time, then (§$ 274. a
; 275)

n(n— 1
)

. . (n—H-1 ) (n—p) ..3.2.1
No. of arrangements =

No. of combinations =

1.2.3 . . {n—p)

»(n— 1) . . (n—p4-l)(n—p) . .3.2.1

1.2.3...^. 1.2.3... {n—p)
'
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Again, if n things be taken n—p at a time, we have

72(71—1) . . (Jl—p-\-l) («'—p) . . 3 . 2 . 1
No. of arrangements =:

No. of combinations

1.2.3. . . . p

n(»—1
)

. . {n—p-\-l ) (n—p) ..3.2.1

1.2.3 . . . p .1 .2.3 . . . (n
—
p)

Hence, the number of combinations of n individuals, is

the same whether they be taken p, or n—p, at a time.

Thus, the number of combinations of 10 letters will be

the same, whether they be taken 3 and 3, or 7 and 7.

c.) The last principle is evident also from the fact, that,

for each combination of p things taken, a combination of

n—p things must be left.

1. How many products (§ 275. a) can be formed of the 6

quantities, a
15

a 2 ,
a3 ,

«4 ,
a

5 ,
a

6 ,

x
by taking them 1 by 1,

2 by 2, 3 by 3, 4 by 4, and 5 by 5 ?

Ans. Q, 15, 20, 15, and 6.

2. How many products of 4 quantities taken 1, 2, 3, and

4, respectively, at a time? Ans. 4, 6, 4, and 1.

d.) The number of combinations must, of course, be

a whole number. Therefore
'

•% is a whole

number.

(x) These numbers, 1} 2 , 3 , &c, are used as accents (§ 1. e).



CHAPTER XL

UNDETEKMINED COEFFICIENTS.

§ 276. Let the equation

Aa?-\-BaP+ <7af-f-&c.= A>xi»-\-B>x*'+CV+&C. (1)

be true for all values of x (i. e. whatever value may be as-

signed to x) ; A, B, G, &c., and A1

, B', C, &c, being any

quantities whatever not equal to zero or infinity, and each

member of the equation being arranged according to the

ascending powers of x.

It is required to determine the relation existing between

the exponents, and also between the coefficients of x in the

corresponding terms, on the two sides of the equation.

Dividing both members of the equation by xp
,
we have

A+Bx*-*-t- Cx
r
-P+&c.= A'xp'-p-\-Bx

v-p+ G'xr

'-*'+&c.

Now, as this equation is true for all values of x, it i3 true

when x= 0. But if x= 0, the first member reduces to A
(the exponents of x in all the terms, but the first being > 0,

i. e. positive) ; and the second member evidently, becomes

zero, if jt/>p ; infinite, it'p'<p.
Hence, ifp'~>p, we shall have

A— 0, which is contrary to the hypothesis :

and, ifp'<p, A= co, also contrary to the hypothesis.

We must, therefore, have p'=.p ; which gives^/
—p= ;

and, if x= 0,

A= A'.
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Hence, removing equal quantities from both sides of (1),

Bx*+Cx
r

+&c.= B'x«+Cfxr,

-{-&c. (2)

Dividing by x
q
,
and making x= 0, we shall prove q= q',

zn<lB=B'. And, in like manner, r= r', C—C; &c«

Hence,

§ 277. If an equation between two polynomials,

functions of x, be true for all values of x, it must have

like powers of
'

x on both sides; and the coefficients of
the like powers must be severally equal to each other.

§ 278. a.) Let the equation be given of the form,

A-\-Bx+Oe*+&c. =A,

+B'x+C'x 2
+&c. (3)

Then, making x= 0, A=zA';

and canceling A and A' in (3), dividing by x, and again

making x= 0, B=B'; &c.

§ 279. b.) Or, again, transpose all the terms of equation

(3) to the first member, and arrange with reference to the

powers of x. Thus,

A—A'-\-{B—B')x-\-{ G— C>)x
s
-$-&c.= 0. (4)

Making x= 0, A—A'= ; and .-. A — A'.

Then (B—B')x+(C—C r

)x*+&c.=
Dividing by x, B—B>-\-{C— C')x+&c.= 0.

Making x= 0, B—B'=
; and B=B f

; and so on.

Represent A—A' by 31; B—B' by If; C—C by P;
&c Then if we have, for all values of x,

M-\-Nx+Px-+&g.= 0,

we shall have also

M=Q; y=0; P=0; &c. Hence,

§ 280. If any polynomial of theform, M+Nx+Px 2

-\-SfC, be equal to zero for all values ofx, each of the

coefficients of the several powers of x, must be sepa-

rately equal to zero.

*18
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c.) An equation, which is true for all values of a varia-

ble, is said to be true independently of the variable. Such
an equation is an absolute equation (§ 37. d).

Thus, the equation,

(a-\-z)
2 = a 2

+2ax-{-x
2

,

is true independently of x. On the other hand, the equa-

tion, \-\-x- = 2x—x 3
,

may be true ; but its truth depends on the value given to x

(§38).

§ 281. The above principle (§§ 276-280) is the founda-

tion of the method of undetermined coefficients ; a

method of very great utility in the development of func-

tions and the investigation of principles.

1. Develop —-— into a series.

l-\-x

Assume ——=Ax~ 1
-}-Bx +Cx+Dx 2+&c,

Then, if x— 0, we have 1 = oo
; which is absurd.

Again, assume = Ax-{-Bx
2
-\-Cx

3
-\-&c.

Then, if x= 0, we have 1= 0; which is absurd.

Assume then = A-\-Bx-\- Cx
2
-\-Dx

3
-\-&c.

Clearing of fractions and transposing.o>

= A +A x+B x 2+C a;3+&c.

—1 +5 +<7 +Z>

.-. .4—1=0; A+B=0; B+C=0; (7+2)= 0; &c.

A= l; B——A— —\; C=—B=l;
Z>=—C=—1; &c.

Introducing the values of A, B, C, &c, we have

— 1—x+x 2—a;
3+x4—z 5+&c.

1+a:

~ n

Note. The results of the several suppositions, in this instance,

indicate the method of ascertaining the form of the series to be as-

sumed. We may generally determine this, before writing the seiies,
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by making x=:0 in the function to be developed. The series must

be taken, so as to become finite, infinite or zero for x-= 0, according

as the function becomes finite, infinite or zero for the same value of x.

2. Develop (a—x)-
1

. See §87. c. 2.

Assume -±-= A-{-Bx+Cx
2
-\-Dx

3+&c.
a—x

Then(§4G) l=Aa—A
-\-aB

x—B
-\-aC

x n—C
-\-aD

X 3—&c.

Aa— 1; aB—A— 0; aC—B= Q; aD—G=0; &c.

A= 1
-, B=±= L., C= B-= K; B:
a a a- a (I'- ll

-; «fec.

... _J_=i+la+4« s+&c.= -(l+-+ ^-h&c.)a—x a a- a3 a\ a a- /

Or (a—x)- 1 =«- 1+a- 2«+a- 3x 2+«- i x'
3+&c.

= a-i(l+a-ia:+a-
2
a;

2
+&c.)

i
3. Develop (a

—
x)

2
.

Assume (a—x)
*= A-{-Bx-\- Cx

2
-\-Dx

3
-{-&c.

Squaring, a—x=A 2+2ABx+B 2 x 2+2BC
\-2AG +2AD

A 2 — a; 2AB=—1; B 2+2AC=0;
2BCJr2AD= 0; &c.

a;
3+&c

i 11
A= a 2

;
B=--= -:

Z
2a-

(a
—xy2 — a" — 1 x lx 2

C=

±a^

2.4a 2

; &c.

1 x-

2 a 2 2.4a 2 2.2.

! 1 x*

&c.

1 X

2~a~Y74~a 2 2.2

3a;—5

^-&c.Y
a* y

4. Decompose into fractions, whose sum is

x 2—Gx+8
the given fraction, and whose denominators are the factors

of the given denominator.

a;2_ 6a;_|_8
—

(x—4)(x—2). § 213. 1.



212 UNDETERMINED COEFFICIENTS. [$ 281.

Therefore assume

3x—5 A .
B

x 2—6x+8 x—4
^ a;—2

'

3x-5 _ ^(,;-2)+i?(a:-4)

.-. 3a:—5 — A{x—2)-\-B(x—4) = (J+-B)*—(2^4+45).

.-. ^+5= 3, 2A+iB= 5. .-. ^=|, B-—
\.

3a:—5 7 1

X2_qx+s~2(x^ 2^-2)'
^ee§118. 3.

Otherwise ; as the equation,

3a:—5 = A[x—2)-\-B(x—4),
is true for a# values of a:, it is true, when x= 2 (i. e. when
a:—2= 0).

Introducing'this value of x, we have

6—5 = 5(2—4) ; and .-. B=—£.

Again, if a:= 4 (or a:—4= 0), we have

12—5 = J(4—2) ; and .-. A= l,aa before.

j. _ a 34-bx 2 / a 3
-\-bx

2
\

o. Decompose —^ -( =—. -w , ).a 2x—x 3 v x{a—x)(ci-\-x/

. a
,

a4-b a-\-bAm
--*
+Z^)-2^)- See §118. 2.

6.^yelop(l^)-(=^)

-=
iTA_) in an

infinite series.

Ans. 1—2a:+3x 2—4a:3-f&c. Compare § 87. c. 5.

3x 2—1
7. Decompose

a:(a;+l)(x—1)
'

Ana.
x a:-|-l a:—1

l—x
3. Develop —— in an infinite series.

1-j-x

Ans. 1—2a;+2a;
2—2a;3+&c.



CHAPTER XII.

BINOMIAL THEOREM.

§ 282. Any positive integral power of x-\-a can be found

by multiplying x-\-a into itself the requisite number of

times (§ 164). The proper combination of this process

with division and with the extraction of roots will give

negative and fractional powers (§ 163).

But this process, when applied even to positive integral

powers, beyond a few of the lowest, becomes tedious ; its

application to negative and fractional powers would be ex-

tremely inconvenient.

The Binomial Theorem enables us to find im-

mediately any power of a binomial, whether the ex-

ponent be positive or negative, integral or fractional.

§ 283. Let it be required to find the nth. power of x-\-a.

I. Let re be a positive integer.

Then the nth. power of x-\-a is the product of n factors

each equal to x-\-a ;
i. e.

(x-\-a)
n= (x-\-a)(x-\-a)(x-\-a)

. . . to n factors.

To find how the terms of these factors are combined in

the terms of the product, multiply together n unequal fac-

tors, x-\-a x , x-\-a 2 , x-f-«3j #+«»•

Then (x-\-a 1 )(x-\-a 2 )
= x-Jr a

1 x-\-a x
a.2 .

-\-a 2

{x-\-a l){x-\-a 2){x-\-a^)^=x^-\-a l
x 2

-\-a l
a 2 x-\-a^a 2

ay
-\-a 2 -\-a 1

a3

-\-a 3 -j-« 2«3
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(x+^i)(^+a 2)(x+a :i)(x-\-aJ =

+ «
4

+ «1«3«4

-}-« 2a 3 <r'f4

a:-)~ a i
ff

2 3a 4
X 3

-|-« 1 «o

+ «1«3

+ «1«4

~h a 2
f/
3

+ «2°4

+ «3«4

Hence ire find, that, so far as we have proceeded, (1.)

The exponent of a: in the first term is equal to the member

offactors ; and (2.) diminishes by unity in each of the fol-

lowing terms till it becomes zero; also (3.) the coefficient

of x in the first term is unity ; (4.) in the second term it

is the sum of the second terms of the binomial factors ; (5.)

in the third term, the sum of the products of the second

terms taken two and two ; (6.) in the fourth term, the sum
of the products taken three and three ; and so on, that in

the last term being the product of all the second terms.

To show the universality of this law, let us suppose that

we have found it true for n—1 factors, and see whether it

will hold good for n factors (§ 9G. N. 1). Thus, suppose

(x-\-a l )(x-\-a 2)(x-\-a 3 ) .... (ar-L-a^) =

+ «»-!

xn~'2
-\-a l

a 2

+ «1«3

xn~ 3
-\-a l

a 2a 3 \x
ll—i

..-\-a 1
a

2
..an_

]

-\-a x
a 2aA

&c.

T" an-2Un-l

Now introducing the nth factor,

(x+a x)(x+a 2)(x+a 3 ) . . (x+an)
=

xn-\-a l

-J-« 2

xn~ 1
-^-a 1 a 2 xn~ 2

-\-a 1
a ia 3

+ «i«2«4

&c.

xn- 3
..-f-0! 1

a 2 . .a,»«

(1)
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Hence (§ 283. 1-6),

§ 284. (1.) The law of the exponents is obviously the

same as before.

(2.) The coefficient of a; in the first term is unity, as be-

fore.

(3.) The coefficient of x in the second term is the sura

of the second terms of the n factors.

(4.) The coefficient of x in the third terra is the sura of

the products of the n—1 second terms taken two and two,

and also of the products of those n—1 terms by the new
term a„ ; hence it is the sum of the products of the second

terms of the n binomials taken two and two.

(5.) The coefficient of x in the fourth term is composed
of the several products of the n—1 second terms taken

three and three, and also of their products taken two and

two multiplied by the new quantity an ; i. e. it is the sum
of all the products of the n second terms taken three and
three.

(G.) The last term is evidently the product of all the sec-

ond terms taken together ; or, which is the same thing, the

sum of the products of the n second terms taken n and n.

For there can be only one such product (§ 275).

Hence, if the above law is true for n—1 factors, it is true

for n factors. But we have seen, that it is true for 4 fac-

tors ; it is therefore true for 5, for 6, 7, &c. That is, it is

universal.

§ 285. Now, if av a 2 ,
a 3 ,

. . . . an are each equal to «,

the coefficient of x in the second term, will be na ; each

term in the third coefficient of x will be a 2
; each term in

the fourth, a 3
; and so on; each term in the nth. coefficient

of x being a" -1 .

Moreover, a 2
,
in the coefficient of x in the third term,

will be repeated as many time3 as there can be products of

n(n— 1)
n quantities taken two and two : that is (§ 275. a).

JL . a
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Also « 3
,
in the coefficient of x in the fourth term, will

be repeated as many times, as there can be products of

, , , , , n(n—l)(?i
—2)n quantities taken three and three ; that is — ~ -.

J. • Z . o

Hence, we shall have (n being a, positive integer)

71(71—1^

(x+ayi

'= xn-\-nx
n
-ia-\- ,

yx"- sa 2
-l-&c +0".

That is, (1.) the first teim of any positive integral power

of a binomial is equal to that power of the first or leading
term of the binomial; (2.) the exponent of the first term of
the binomial diminishes by unity, till it becomes ; and the

exponent of the other term increases by unity from to n.

(3.) Ths coefficient of the first term is unity ; and (4.)

that of the second term
(i. e. of both x and a) is n.

(5.) The coefficient of any term whatever after the first is

found by multiplying the coefficient of the preceding term by

the exponent of the leading quantity in that term, and divid-

ing by the number of terms preceding the required term.

a.) The exponent of the leading quantity becoming in

the (?i-(-l)th term, the next coefficient found will be ; and

the series will terminate, consisting, as is evident, of n-\-l

terms.

b.) The number of combinations of n things is the same,

whether they be taken p and p, or n—p and n—p, (§ 275. b).

Hence the coefficient of the term, which has p terms be-

fore it, is equal to the coefficient of the term, which has

n—p terms before it, or p terms after it.

Consequently, if we find the coefficients of the first half

of the terms, we have also the coefficients of the last half

in the reverse order.

c.) The last remark is also evidently true, from the fact,

that (a-\-x)
n= (x-\-a)

n
,
and there is no reason why we

should begin with x11 rather than with an . Thus,

(a+g)"= a"+wa
B- 1

a;-f

W
^~^a"- gx 8+ . . . +x\
1 » —
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§ 286. 1. What is the square of x-\-a?

Here we have n = 2.

»•. (x-\-a)*
= (x+a)

2 = xn
-\-nx

n
-ia+

n\^xn-*a*
JL • *»

+ K«-l)(^-2) xn
_3a 3+&c .= s.+toH-Mz o

fl
,

— x*-\-2xa-\-a*.

2. (a;-|-a)
6 = what?

Here « = 6.

6.5 6.5.4
(x-]-a)

6 zr:a; 6
-{-6a:

5
a-(---^--a:

4a 2
-}-

' '

nx
3a s

-\-
1 . & J. • ^ . o

6.5.4.3
g A ,

6.5.4.3.2
s ,

6.5.4.3.2. 1

1.2.3.4*
a + 1.2.3.4.5

Xa +
1 . 2 . 3 . 4. 5 . 6®

= .r"
|

i;x 5
«-}-15a;4a

2
-f20x

3a3
-}-15a;

2a4+6a:a 5+ae
.

3. i>+a:)
3= what? (a:-(-a)

4 ? (1+ar)*?

§ 287. d.) If, in the general formula (§ 285. c), we put—x for -\-x, we have

(«—x)
n= an—nan

~\x-\- \.~
*

a*~*x\—&c. ;

the terms containing the oc?c? powers of aj being negative,

1. (a—a;)
5 := what? (a—x)

2
? (a—x)

3 ?

2. (a
2—x 2

)
5 = what?

Jws. (a
2)s—5(a

2
)*x

2
+10(a

2
)
3
(x2)

2—
10(a

2
)
2
(a:

2
)3+

5(a
2
)(x

2
)
4—

(a;
2
)
5

; or, reduced,

a i °—5« 8
a;

2
H-10a

G
a;4—10a 4a; 6-l-5a

2
a; 8—a;

1
».

3. (a;
2
±2oa?)

3 =what?
Jns. a; e ±6aa; 5

-j-12a2a;*±8a
3
a:

3
.

Make x 2= 6, and 2ax= c; develop (6+c)3, and substitute the

values of 6 and c.

e.) The formula? (§ 285. c ; 287. rf) may be put under

another form. For

a±x=za(l±-Y .-. (a±x)
n=an

(l±~y,
ALG. 19
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, j_ \n nft^l x
i

n (n—1) x2
. n(n—l)(?i—2) X~'

.'. (a±x)
n= a"[ l±n-4-———y — ± -^ y-i L —

;
V aT 1.2 a 2 1.2.3 a- :

w(??—l)(n—2) . . (»—2jp-fl) « 2^ n

H 1.2.3 . .:(2p~l)2p ^ /

Note. The above demonstration proceeds upon the supposition
that n is a positive integer ; and is, of course, applicable to that case

only.

§ 288. II. Whatever be the value of n, whether integral

orfractional, positive, or negative, let it be assumed, that

(x+y)
n= A+By+ Cy?+Dy*+JEy*+&c. ; (1 )

.4, B, G, &c, being functions (§ 26) of aj and w, and entire-

ly independent of;?/.

Note. There can be no negative powers of y, because (x+y)
n is

not necessarily infinite when y= 0. There must, moreover, be a

term containing y®, because (x+y)
n is not necessarily zero, when

y= (§281. N.).

§ 289. 1. Let n be a positive fraction,
-
(p and q being

both integers).

Welrave (x-\-y)* =w '(l+ -V'. § 287. e.

Assume (l-f-^V= l+P'-+&c, for all values of -.
\ x/ a; a;

Then
(l+^)

P

=(l+p|+&c.)*. § 52. N.

.-. (§ 285) l+;>^ +&c. = 1+?P- +&c. ;

the remaining terms on both sides containing only higher

c y
powers or -.

JO

.-.(§277) p — qP', or P= ?-= n.

(x+y)« = xi (1+*-
- +&c.) = xi +t-xz y+&cv *'

q x q

Hence, in the /rsi ftw terms, the same law prevails with
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the positive fractional, as with the positive integral expo-
nent {§ 285. 1, 3, 4).

2. Let n be negative. Then

(^i-y) —
(x_|^)n

—
xn

-{-nx"-
1
y-\-&c.'

(x-\-y)-
n= x~n—?ix~"- 1

y-\-&c, by division ;

tJie remaining terms, evidently, containing successively low-

er powers of a; and higher powers of y.

Hence, again, the first two terms follow the same law

with the negative, as with the positive exponent.

Hence, universally, whatever be the value of n (i. e.

whether it be positive or negative, integral or fractional),

;

0. The first two terms of (x-\-y)
n are xn

-\-nx
n~ 1

y.

We have, therefore, in the series (1) of § 288,
A =. xn

,
and B= ?ix

n~ 1
; and the series may be written

(x-{-y)
n= a;"-f?2x"-iy+ CyS-\-Dy*-\-Ey*-\-&c.

§ 291. Let now each of the quantities x and y be suc-

cessively increased by any quantity whatever k. The
function (x-\-y)

n
will, obviously, undergo an equal change

in each case ; i. e.

Note. The quantity, h, by which x and y are increased, is cal-

led an increment^ of a; and y.

1. Adding h to y, series (1) of § 288 becomes

[»+(*+*)]"= A+B(y+h)+ C(y+h) *-\-D(y+h)3-h&C . ;

or ix+(y+h)Y= A+By+Cy*±By*+By±+&C. (2)

-\-Bh-\-2 Cfyk+8Ih/
2
h-l-4By

3
h-\-&c. ;

&c. &c. &c.

writing only the terms containing A and h 1
.

2. The substitution of x+h for x will, of course, produce
no change iny, or in the manner in which it enters into the

ly) Lat. inerementum, an increase.
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expression ; but it will produce a change in each of the co-

efficients, A, B, O, &c. For, as these coefficients are func-

tions of x, they will, in general, change their value when-

ever the value of x is changed. Therefore, the powers of

y remaining as they are, their coefficients will be what A,

B, C, &c. become, when x is changed into x+h
;

i. e. they
will be the 3ame functions of x+h, as A, B, C, &c. are of x.

Representing, then, by Ax+h , B^, C^ h , &c, the values

assumed by A, B, C, &c, when x becomes x-\-h, we shall

have

[(»+*)+*?=A^+B^jrt- Cx^?,"-+nx+ft y
3+&c. (3)

$ 292. Now we have already found

A= x", and B =. nxn~ 1
.

Ax+h= (x+hy ; and Bx+h= n(x+h)
n-K (4)

But we do not know, what functions C^, JDx+h , &c,
are of x-\~h, because we do not know what functions G, Df

&c. are of x. In other words, we do not know what C, D,
&c. will be, when x-\-h is substituted in them for x, because

we do not know what they are now.

Let it be assumed, then, that

Cx+h= C+ C'h+&c. ; Dx+h= D+iyh+&c. j (5)

and so on ; and assume, for symmetry
Ax+h[=z (*+*)•] = A+A'h+&c. ;

and Bx+h[= n (x-\-h)
n~ *

]
= B+B 'h+&c.

Notes. (1.) This supposition, evidently, involves no absurdity

(§281. N); for, when A= 0, the expressions (5) severally reduce

to C, D, &c, as they ought, being then simply functions of x as at

first (§288).

(2.) It will be observed, that A, B, C, &c, in these assumed

values, are the primitive undetermined coefficients, functions of x

(§288); and that A', B>, C, &c are the coefficients of h* in the

several expressions, when x+h is substituted for x.

(3.) If the variable of a function is increased, and the function

developed, the coefficient of the first power of the increment is a

quantity very much employed in analytical investigations; and is cal-

led the first derived function, or the first derivative, or derivate, or
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differential coefficient, of the primitive function. Thus A 1 is the

first derived function, or derivate of A; B', of B; &c.

(4.) In like manner, if x+/i be substituted for x in A', B' , &c,
the coefficient of At is the first derived function, or derivate of A',B',

&c; and may be called the second derived function, or second de-

rivate of A, B, C, &c; and may be represented by A", B", &c
The same process deduces from the second derivate, a third, A'",

B'", &c; from the third, afourth, A"", B"", &c; and so on.

§ 293. Substituting for A^, Bx+fl ,
O
x+ft , &c., the val-

ues (5) assumed above (§ 292), and writing as in (2) of § 291

only the terms containing h° and h 1
,
we have

t(x+h)+j/]
H= A+A>h+&c.+(B-\-B'k+&c.)y-\-( C-\- C'h

+&e.)y
2+&c;

or, arranging according to the powers of h,

I(»+*)+yr=^+iH-^»+^'+^*-f*c- (6)

+(A'+B'y+CY+D'y3
+&c-)h

-f&c.

Equating (§ 291) the second members of (2) and (6),

A+By-\-Cy'*+&c. )
(A-\-By+Cy*+&c. (7)

+(B+2Cy+&c.)h f
=

-j
+(A'+B'y+C'y*+&c.)h

-f&c.
j <• +&c.

As this equation is true for all values of h, the coeffic-

ients of like powers of h are severally equal $ 277).

The coefficients of h° are identically (§ 37. c) the same.

Passing then to the coefficients of A 1
,

B+2 Cy+ZDij
2
+&c.= ^'+5^f C'y

2+Z>y-f&c. (8)

Again, as this equation is true for all values of y, the

coefficients of like powers of y are severally equal (§ 277).

.-. B— A; 2C= B'; 3B= C> ; ABzzzJD'; &c.

or B— A>; G—\B'; D= \C> ; E—\D; &c. (9)

That is,

a.) B is found by substituting x+h for x in A and tak-

ing the coefficient of A 1
,
viz. A'.

*19
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Cis found by substituting x-\-h for x in B (i. e. in A1

),

and taking half the coefficient of A 1

,
viz. \B'(=.\A").

See § 292. N. 4.

D is found by substituting x-\-h for x in C (z=z \B'=
J^t"), and taking one third of the coefficient of h 1

, viz.

/ B" A'" \
%0'(=-— = 9—5) ; an(l so on - Thus, substituting

these values of B, C, &c. in (1) of § 288,

A" A'" A1V

(x+y)*= A+A>y+ —y 2+— y
5+^-^-f&c. (10)

b.) Or, in otber words, B is the first derivate of A ;
C

is half the first derivate of B, i. e. half the second derivate

of A (§ 292. N. 4) ; D is one third of the first derivate of

G, i. e. one sixth of the second derivate of B, i. e. one sixth

of the third derivate of A ; and so on.

§ 294. Now we have (§§ 290) 292)

A = xn
; and Ax+h= (x-\-h)

n
;

or A-\-A'h-\-&c. = xn+nxn- l
h+&c,

A'zrznx"-*. §277.

B{=.A!)= nxn-^ i

as we found it before (§ 290).

In like manner, Bx+h= n(x-\-h)
n- 1

;

or B-\-B'h+&c.= nxn~ x
-\-n{n—l)x

n- 2h+&c.

B'= n(n—l)x
n- 2

. §277,

C{= \B<= \A') =5&±LV*.

_ n(n—l) t

1.2
So Cx+h =-±^(x+h)»-* ;

or

n(n—1) „ . n(n—l)(n—2) „ ._
, ,

J . _
j

.. X>(_}0 -
2<3

^
-2.3"

1 ' 1.2.3
&c.
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a.) It will not be necessary actually to make the substi-

tution of x-\-7i for x. For the coefficient of each power of

y is of the form Mxn
; and the two first terms of M(x-\-K)

n

are Mxn
-\-Mnx

n~ 1h (§ 290). Hence,
The derivative of each coefficient of y in the series is

found by multiplying that coefficient by the exponent of x,

and diminishing that exponent by unity. Therefore,

To find the coefficient of any power of y,

§295. b.) Multiply the coefficient of the preceding
term by the exponent of x in that term, diminish the

exponent by unity, and divide by the number of terms

preceding the required term.

Thus, the coefficient of y
p

(i. e. of the term which has p

terms before it) will be —-—-^ '—-—£--—J-xn-p . (12)1.2.3 . . . . p

c.) The term -i 7

;

' 1—LJLJx»-r.yP1.2.6 p J

is called the general term of the series ; because if we make
in it p = 1, 2, 3, &c, successively, we shall have the cor-

responding terms of the series.

d.) If n is a positive integer, the series tvill terminate, as

we have seen (§ 285. a). But, if n is negative, the subtrac-

tion of unity will numerically increase the exponent with-

out limit
; and, if n is a positive fraction, the subtraction

of whole units will first render the exponent negative, and
then numerically increase it in like manner. Hence, if n
be either negative, or fractional, the series will be infinite.

e.) The sum of the exponents of x and y in each term

is, evidently, constant, and always equal to n.

f) If—y be substituted for +y,the terms containing the
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odd powers of y will, of course, be negative (§ 237). Thus,

(x—y)l= a»—na?- 1g+
n

^~^xn
-*y*-&c. (13)

g.) Let se= l, and y= 1, in formula (11). Then

,
rcfn—1) ,

w(re—l)(rc—2) . .

Hence, in an_y poiver whatever of the si«n of two quanti-

ties, the sum of the coefficients is equal to that same power

of 2-

h.) Let x= l, and y= l, in formula (13). Then

, n(n—1) w(w—l)(w—2j . .

( 1-1)"= = l-n+A_J

j-^- +&c.

Hence, in any power whatever of the difference of two

quantities,
the sum of the coefficients is equal to zero; i. e.

the sum of the positive, is equal to the sum of the negative

coefficients.

i.) Let n =-. Then

=as±^~Vf^r^»~V±&c- (14)
g 1 . z . q

-u.i-py
i

pip—9) Y~ ±p(p—q)(p—
2
<i) y

3

"^'l
ja:

1"

1.2j»a!
s 1.2.3 ?

3 re 3
"
1
"

P(p-^)(p-2g)(y-8g) y* +jr ? (U)
1.2.3.4 <?* x4 $'

§ 296. 1. (a-\-x)~
l = what ? See § 87. c. 1.

Here «=—1.

(«-|-a;)-i
— a- 1—a~ 2

a;+a-
3
a: 2—a~4a;

3+&c.

= «-i(l—a-
x a;+a-

2
a; 2—&c.)

=i(l_5+5!_Ao.).a\ a a 3 /
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2. (a—x)-
1 — what ? See § 87. c. 2.

3. (1+tt
2
)"

1 = what ? See § 87. c. 4.

4. (a-j-z)-
3 = what? See § 87. c. 5.

5. (a-fx)^rrwhat? Compare §§ 173. 1 ; 281. 3.

Arts. a*-H*-*a4-fc-«^2+^^^a^-ffcc.

i / 1 ar Ik 2
. 1 x 3 5 .r 4 \

&C -= aA 1+2«-8^+T6^-128^ +&C-)-

This might have been put under the form

and the last form of the answer would have been obtained immedi-

ately. The following examples may be similarly reduced. It is well

to solve them under both forms.

Also let a= 100, and x= 1 ; a= 400, and x= 8
; &c

6. (a
2+x 2

)^= what? (i2
2—xrf? See § 173. 2.

7. s(a*—x*)s[= (o»—a*)5=a^(l—^)*J=what?

3/ 3 a;
2 3 cc* 5 a?s 45 ^s .

Jn5 . „^1__
-______-_

--&C.J.

§ 297. 1. Extract the cube root of 65.

65= 64(1+^).

.-. (65)*=(M)*(l+rft)*=4(l+A)*
ii 1 2 , 1 . 2 1 2 5 , 1 x 3

v ~3 64
~

1.2 V64/
~

1.2.3 \64/
X

= 4fl+— - + - &c.)
\ ^3.2 6 3.Q.2 l ^^3.Q.9.2^ J

= 4(1+ 151
~

36^64
+&C'^ *.020,724&c.
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2. What is the tenth root of 1056( = 1024+32) ?

(1056)™= l024™(l+T§f3r)

T* = 2(1+J^
\ ~10 32 200 V32/ ^6000V32/ /

\ ~320 204,800^196,608,000 /

§ 298. Let a—b-\-c—f-\-g
—

h-\-k
—Z+&c. be a converging

series consisting of terms alternately ]^ositive and negative.

It is required to determine the degree of approximation at-

tained when we stop at a particular term.

If we stop at a negative term, as /, there will remain a

set o£positive quantities, g
—

h, h—?, &c., to be added to ob-

tain the true sum of the series. Hence, if we stop at a

negative term, the sum of the terms taken is too small.

1\, on the other hand, we stop at a positive term, as g,

there will remain a set of negative quantities,
—

h-\-h,

—
/+;», &c, to be added to obtain the true sum of the se-

ries. Hence, if we stop at a positive term, the sum of the

terms taken is too great.

Now the sum of the terms, before g was added, being too

small, and, after g was added, too great, the error in the

first instance must have been less than g.

In the same manner, it is evident, that, if we stop at g,

the error is numerically less than h.

Hence, whatever number of terms of a converging se-

ries whose terms are alternately positive and negative we

take, the error will be numerically less than the next suc-

ceeding term.



CHAPTER XIII.

DIFFERENCES.

§ 299. Let there be given the series of square numbers,

1, 4, 9, 16, 25, &c.

If now we subtract the first of these numbers from the se-

cond, the second from the third, &c, we shall obtain what
is called the first order of differences. If then we subtract

the first of these differences from the second, &c, we shall

obtain the second order of differences, and so on.

Thus, 1, 4, 9, 16, 25, 36, 49

3, 5, 7, 9, 11, 13 the first order of differences.

2, 2, 2, 2, 2, second " «'

0, 0, 0, 0, third " "

What are the several orders of differences of the num-

bers, 1, 4, 10,20, 35, 56, &c?
1, 4, 10, 20, 35, 56

3, 6, 10, 15, 21 the fir3t order of difF.

3, 4, 5, 6 second "

1, 1, 1 third «

0, fourth "

§ 300. Let there be an increasing series,

a
,

a 2 ,
*a 3 ,

a4 ,
&c. Then we have

a 2
—a

x ,
a 3
—a 2 ,

a4
—a 3 , &c, first order of difF.

a
3
—2a 2+a 1 ,

a4
—2a3+a 2 , &c., second "

a4
—3a 3+3a 2

—a
x , &c, third "

&c.
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If we represent the first terms of these successive orders

by D j,
D 2 ,

D 3 ,
Z>4 ,

&c. we shall have

D
x
— a 2 a

i >

Dn --±a^na 2±-^-^a z ^.
1 £ 3

'
a4±&c.;(2)

D 2
= a3

—2a 2 -\-a 1 ;

D 3
= a4

—3a 3 -j-3a 2
—a

x ;

Z>4= «
5
—4a4-f-6a 3

—4a 2-\-a 1 ;

and, obviously,
«(w—1) n(n—l)(n—2) ,A= «„+!—««»+ 1>2 «*-i 17273

—" a"- 2+
&c. ; (1) the coefficients of an + van, Sic., being the

coefficients of the wth power of a—x.

Or, reversing the order of the terms,

n(?i
—

1) ^?i(n
—l)(w—2)

I

taking the upper signs throughout, when n is even ; and the

lower signs, when n is odd.

Hence the first terms of the several orders of differences

may be found without finding the remaining terms.

1 . What is the first term of the third order of differences

of the series, 1,3, 6, 10, 15?

Here a
1
= l

}
a 2 •=. 3, a3 z=.Q, a^=z 10, and n= 3.

... D 3 (
= a4

—3a 3-f3a 2
—

x a) = 10—3X G+3X3—1 = 0.

So we should have D 2 =: a
x
—2a 2-\-a3

==. 1—2x3-[-6= 1.

2. Given the series 1, 8, 27, 64, 125, to find B^JD^
D

?
and Z>4 .

Ans. D
x

—
7, D 2

= 12, D 3
= 6, and Z>4 = 0.

§ 301. From the values of D
lf D„, &c. in § 300 we have

a3
= «

1+22) 1+Z) 2 ,

a4= a
1+32> 1+8Z>2»+i>s .

and, obviously,

. / i^n i
(w-l)(n-2) na.= a

l+(n—1)D^ — D
3 +

(tt-l)(tt-2)'(n-3) n , (n-l)(n-2)(n-3) n .—ni—*»+—r^3
—^+&c -

j (2)
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the coefficients of the terms being the coefficients of the

(n
—

l)th power of a-\-x.

1. What is the fourth term of the series of squai'es,

1,4, 9, 16, &c.?

Herea^l, Dl=:3, D 2 =i2,D5
—

0, and n — 4.

... a4(= fl 1+3D 1+3Z> 2+D 3 )
= 1+3X3+3x2+0 = 16.

2. What is the twentieth term of the same series ?

Ans. 400.

3. What is. the nth term of the same series ?

an=a l+(n-l)D 1+MK^j^
== l+3(?*—l)+(w—1) (n—2).

== 1+3 (»—!)+«(«—1)—2(n—1).

= 1+m—l+?z(n
—

1) =n 2
.

4. What is the nth term of the series,

a, a+D, a+2Z>, «+3Z>, &c. ?

^4ns. «+(n—1)Z>,

Notes. (1.) The problem contained in the last example has been

already considered (§250). In fact, the whole subject of equidiffe-

rent series, there treated, is only a particular case of the more gene-
ral subject of differences ; viz. the case, in which the first differences

are constant (§ 249); and, of course, the second, and all higher dif-

ferences are equal to zero.

(2.) It is proper to remark here, that an equidifferent series, hav-

ing its first differences constant, is called a difference series of the

first order ; a series whose second differences are constant, is said to

be of the second order; and so on. Thus, we have the series,

1, 2, 3, 4, 5, 6, of the first order.

1, 3, 6, 10, 15, 21, second."

1, 4, 10, 20, 35, 56, third "

(3.) These, which are only particular examples of the various or-

ders of difference series, have also this property; viz. the nth term

of each series is equal to the («—l)th term of the same series plus
the nth term of the preceding series. And, consequently, the nth

ALG. 20
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In the corresponding series of the fourth order, 1, 5, 15, 35, 70,

126, we should findfour terms equal to zero, and the terms, corres-

ponding to the negative local- indices beyond, positive; and so on, t'ie

number of terms each equal to zero being equal to the number of the

order ; and the terms, corresponding to the negative indices beyond,

being positive or negative according as the number of the order is

even or odd.

§ 302. The formula (2) of the preceding section had pri-

mary reference to those terms only whose place in the se-

ries is expressed by whole numbers ;
i. e. to those denoted

by integral local indices. *\Yq have found, however, by
taking ra= ^, f, &c. in the general solution of examples
Cth and 7th, terms corresponding to those fractional local

indices, and still conforming to the general law of tile-

ries.

"We shall find, in like manner, that the above formula

applies in general to such intermediate terms correspond-

ing to fractional local indices, equally as to terms whose
local indices are integral ; only giving a suitable value to

n (§ 263).

Note. This is simply a more •general form of the problem of in-

terpolation ; and applies to all series, whose differences of any or-

der become either zero, or so small that they may be neglected.

1. Given 2 2 = 4, 3 2 = 9, and 4 2 = 16 ; to find (2£)*.

Here a
1 =4:,D 1

~
5, D 2

—
2, D3

= Oj and n— it
an= a^ = 4+ 1X0 — $X2= 6£.

2. Given (2500)*= 50, (2501)*= 50.009,999,8,

(2502)* =50.019,999,6; to find (2500.5)*.

Here a
1
= 50, D 1

= .009,999,8, D a
=

; and n == 1> .

.-. an= (2500.5)*= 50-Hrx.009,999,8= 50.004,999,9&c.

3. Given 64*= 8, 66*= 8.124,038,

68*= 8.246,211, and 70*= 8.3666; to find 65*.

(z) Lat. locus, place. Local indices indicate the place of the
term in the series.
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Here a
t =8, D^ =.124,038, D 2 =—.001,865,

&3
= J(.000,076-i-.000,081) = .000,078 ; and n= l£.

Ans. (65)^= 8.062,257.

4. Interpolate 3 terms between the fourth and fifth

terms of the series,

4, 8, 12, 16, 20.

Here a x
= 4, D x

= 4, D 2
=

; and n= 4^, 4£, 4|,

«n=4+ 3iX4= 17; &c.

Or «
x
= 16, D x

= 4, D2
=

; and »= 1J, If, If.

«
?1
=16 + 1X4= 17; &c.

Ans. 17, 18 and 19. See § 263.

5. We find, in a table of natural sines,

sin 30= = .5, sin 30= 10' = .502,517,

sin 30= 207= .505,030, sin 30° 30' = .507,538.

What is the sine of 30° 1' ? of 30° 2' ? of 30°, 3' ?

of 30' 4' ?

Ans. sin 30= V = .500,252 ; sin 30= 2'= .500,504 ;

sin 30= 3'= .500,75 6 ; sin 30= 4'= .501,007.

§ 303. a.) In finding a term of the series by § 301, n

being a whole number, the formula (2) will always termi-

nate, because the coefficient n(n
—

1) (?i
—

?i)
= 0,

But, in interpolation (§ 302), the formula will not terminate,

unless we find an order of differences equal to zero. For

n being fractional, none of the factors, n—1, n—2, &c, can

become zero ; but they will become negative, and then in-

crease numerically (§ 295. d). Iii this case, the required

term can be found only by an infinite series.

b.) It will have been observed, that Ave have found terms,

whose places are expressed both by integral and by frac-

tional local indices, without knowing the law of the series

into which they are introduced ; knowing, in fact, nothing

of the series but a few terms ; or even a single term with

the successive differences.
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c.) Hence, obviously, the differences, together with u

single term, determine the character of the series. Tht-v

enable us to continue the series to any extent (§ 301), to

supply intermediate terms (§ 302), and, as we shall sec

(§ 304), to find the sum of any number of terms.

§304. Let it be required to find the sum of n term- oi

the series,

flj, Ct 2 )
Cl s ,

ft 4 ,
65

5 ,
.... Ctn.

Assume a series, whose first differences shall be the

terms of the given series. Thus,

0, ctj,
a

x -\-a 2 ,
a

1 -{-a 2
J
j-a 3 ,

. . a
x -\-a 2 -\-a z . .

-f-c*,,.

Now the (?j-(-l)th term of this last series is,, evidently .

the sum of n terms of the given series; and the (n-\-l)th

differences of the last series are the nth. differences of the

given series.

Hence, marking the terms and differences of the assume

series with the accent ', we have, in formula (2) of § 301,

a? 1
= 0, D\—a x , D'z= I)1,&,c.;

and, putting 7i-\~l in place of n, and denoting by S the re-

quired sum of n terms of the given series (i. e. the (n-\~l)tL

term, ci' n+ 1 ,
of the assumed series), we find

5( = „<„+I ) =na1+^i> 1+
" (

"7
1

»7
2) O a+

1 . What is the sum of n terms of the series,

1, 2, 3, 4, 5, G, &c. ?

Herea
1
= l, D

l =zl, and D 2 =z0.

n(n—l) n(»+l)b= n-\
—^——-=——^—-. See § 2o(j. 3.
1 1.2 2

2. "What is the sum of n terms of the series, a, a-\-D,

a-\-2D, &c. (i. e. an equidifferent series)?

Ans. na+\n(n—l)D. See §§ 253 ; 301. N. 1.

*20
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3. What is the sum of n terms of the series,

1, 3, G, 10, 15, 21, 28, &c. ?

Here a
x
= 1,D 1

= 2, D2 = 1, and D 3
= 0.

a . t in n(n-l)(n-2) _ n(n+l)(n+2)
... S=n+n(n-l)^ r0— 1<2 3

.

4. What is the sum of « terms of the series,

1, 4, 10, 20, 35, &c. ?

n(w+l)(n+2)(n+3 )^nS *

1.2.3.4
'

5. What is the sum of n terms of the series,

1, 3, 5, 7, 9, 11, 13, &c ?

Ans. n 2
. See §256. 5.

*?. What is the sum of n terms of the series,

1 2
, 2*, 3*, 42, 5 2

, &c?

w(n+l)(2H-l )
'4nS -

17273
'

7. What is the sum of n terms of the series,

1 3
, 23, 3 3

, 43, 5 3
, &c?

j^«wv=(&*£y.
Notb. From the result of examples 1st and 7th, we have

13 + 23+33 ..+713 = (1 + 2 + 3 ..+*)*.



CHAPTER XIV.

INFINITE SEEIES.

§ 305. An infinite series, we have seen, may arise

from an imperfect division (§ 87. a) ; or from the extraction

of a root of an imperfect power (§ 170. N. 5) ; or by the

continuation of an equimultiple (§ 261. c) series to infinity*

Infinite series of various forms are also developed by the

method of undetermined coefficients (§ 281), and by the bi-

nomial Theorem (§ 295. d) ; and by many other processes,

which we are not yet prepared to investigate, and some of

which are beyond the reach of elementary Algebra.

§ 306. As the processes of developing infinite series are

so various, the methods of summing them are equally vari-

ous. Even of those which are summed by the elementary

processes of Algebra, we shall consider here only one or

two of the simplest.

a.) The method of summing a converging infinite equi-

multiple series has already been investigated (§ 261. c).

b.) The true sum of an infinite series resulting from di-

vision, or from the development of a fraction by undeter-

mined coefficients, is the fraction from whose development
the series originated ; and this, whether the series be con-

verging or diverging (§ 87. d.f).

We may, moreover, approximate to the value of a con-

verging series by the actual addition of a small number of
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the terms (smaller or greatei', according to the greater or

less rapidity of the convergence).

But the doctrine of infinite series proposes to find con-

venient expressions for the sum of any part, or the whole

of a series, without the labor of adding the several terms.

§307. We have £- 7-= -7~Vv § 118 -

.-. (§42. d) _4—=!(£ £-). (1) Thatis,

A fraction of the form —;
—

;

—- is equal to - of the dif-
m{m-\-p) p

fcrence between the two fractions — and —
;

—
. Now, as

J m m-j-p

this is true of any fraction of this form, it is^true of each of

the terms of a series composed of such fractions. Hence

the sum of such a series will be equal to - of the difference

between two series, one consisting of terms of the form —,

fit

9
and the other, of the form

m-\-p

I. Let it be required to find the sum of the series,

1 1 h&c, to n terms, and also to infinity.
1.2~2.3 o.4^
Here we have

m{m+p) =1.2, 2.3, &c.= l(l-j-l), 2(2+1), &c.

.-. q=z 1, p=zl, and m= 1, 2. 3 . . n, successive ly.

Represent also the sum of n terms by Sn , and, by

gy, the sum of an infinite number of terms by S^. Taen

n 1 — 1 == .

1 if" «+l
~

"+ 1

s"_i * * ' '
"

n n+1 J

If n = 00, we have (§ 138) —r-r= ;
and .-. Sa>= 1.
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Otherwise; when n= cc, we have (§ 261.

1 = -= !; and .•.£„=!
n-\-\ n

1. What i3 the sum of the series,
-—-

-\-
—-

-f-
—--

-f-
1 . c> O . O Hit

&c., to il terms, and also to infinity ?

IIere
o(=i(i^)' o(-3^T2))'

&c ' are of t!l!

form
(2n-l>[(2n-l)-r-2]-

We have, therefore ^
—

1, j*>
:= 2, and m r= 2>i— 1 .

Hence, Sn—-<
1+1+* • ••• +

3
'

5 2n— 1

1

[ 3 5'"'' 2«—1 2n+l J

<? —±h 1
"

> — ?*

rt
—

2 V
1

2n+l)~ 2n+l'

Also, making ?j z= oo, we have

n n n
t r»= °> or orr-r= nr ; and .-. >S' O0

—
-

2«-J-l 2w-hl 2?i
' CO

—
r>

8. Find the sum of n terms of the series,

+J 1
,

1
, »+_+&c;1.4 ' 2.5 ' 3.6 ' 4.7

and also of the whole series to infinity

Here IoW 2(2^3)'
&C - Sive

q= 1, p— 3, and rani, 2, 3 n.

„ lf+2+3+I- + »
^«— *i l i°

i

1 i

>

! n n-\-\ n-\-2 n-f-3 J
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S - Vi+ i+ i I I ±J\
"3\ r 2"r 3 w+1 n+2 n+3J'

s(

w-j-1 «+2 rc+3 ,

n n . n

re+1
'

2n+4
'

3w+9.

n
,

/i
1 w

3w+3
'

6^+12
'

9»+27

AIM:fl.S=i(l+H-*)= H-

4. Find the sum of the series, 1+H~^4-tV+&c -
5 (the

denominators being the terms of a differential series of the

seeond order, viz. the triangular numbers ;).

Dividing the series by 2, we have

by example 1st, above.

S - 2

o. "What is the sum of the series,

1 1.1
+&c.3.8 ' 6.12 ' 9.16

Take out of each term the common factor ^, by divid-

ing the second factors of the denominator by 4, and the

first factors by 3. as *

6. Sum the series,
A __ +_ __ +&c.

Here p— 2,q— n-fl, and m— 2ra+l ; n being taken

= 1, 2, 3, &c.j successively.

\"2 3 4 5 w-fl 1

-iis
-^-^- " ,:f

2»+i
•'• ^»—

2] _2 3 4 w w+1 ('

I 5
+

7 O"1
"' ' ' T

2n+1
'

2?i+3j

Note. If n is infinite,

i-i+i-i+&c.=q^=*.
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The sum of n terms of this series will be equal to 1, if n is finite

and even ; to 0, if it is finite and odd. Hence we have

S0B=*[§-(i-i+i-i+&c.)] = Ki-i) = tV

_1/2_1 1 n+1 x .1(1 /1_ n±l_\}
n~

2V3 2
T

2 2w+3 / 2 1 G
T

V2 2re+3/ j

'

_1/1 L-Wf-L * >

~2VG :F
2(27i+3)y' Vl2 :F

4(2rt+3)>/•

7. What is the sum of the series,

Am. S„= -
i- x̂+~); S„=j.

'

8. What is the sum of the series,

1 1.1— — +~ —&c. ?

1.3 2.4^3.5
Am. S^= -.

9. What is the sum of the series,

1.5^5.9^9.13^13.17^ *

Here q= 4, p= 4, and m= 4»+l; « being taken =0, 1, 2,

3, &c, successively.

rp t

§ 308. Again, as we evidently have (§ 118)

q 9
Ip i m(m-\-p) .. [m-\-(r—l)p) (m+p) {m+2p) . . {m+rp)

I
, (2)

m{m-\-p){m-\-2p) . . . (wi+rp)'

a series of terms in the form of the second member of

this equation is equal to — of the difference of two serie3

of terms in the form of those in the second factor of the

first member.
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A K C

1. Sum the series,
—-

^
.+

^-^.+r
—

g
+&c.

Here
<?
= ?z-}-3, ^= 1, r= 2, and ??*= n— 1, 2, 3, &c.

(i
±
2
+

2
L
3
+ 3

1i+&C')4 by §307- 1 -

1/ 4

2

2. Given _*-,+j^+^ +&C to find 5. .

3 ' Giren iT2^+2^^+ oT4
i
5-^ +&C -'

t0

4. Given , _ „ „- 4- a g ~ a-+ c r? „-< :+ &c->
1

1T3T5T7 "^ 3T57T79 n~ 5T7T9T1 1

5 ' Given i-2^r4+2-^^+3T4^' t0 fmd

S». , « - 89
^In*. /Sao —

gj>



CHAPTER XV.

LOGARITHMS.

§ 309. All finite, positive numbers may be regard-

ed as powers of any finite, positive number except

unity.

Thus, if 10 be taken as the base (§ 22. N.), 1, 10, 100,

1000, &c, xVs xfoy> t^Vo' &c-> Wl^ De expressed as integral

powers of the base; those above 1, positive ; those below,

negative.

Moreover, it is obvious, that all numbers between the in-

tegral powers can be expressed as fractional powers, either

positive or negative. That is, the base can be separated
into factors so small, that^

a certain number of them multi-

plied together (§ 12), or divided out of unity (§ 14), shall

produce, at least to any degree of approximation, any given
number ($319).

a.) It is evident that 1 cannot be taken as a base of such

a system of powers, because every power of 1 is 1.

b.) It is also evident, that, if a proper fraction, as y
1
^, be

taken for the base, fractions will be expressed as positive,
and integers, as negative powers.

c.) The base must be a positive number ; for if it were

negative, only such positive numbers could be expressed as

should coincide with its even powers ; and only such nega-
tive numbers, as should coincide with its odd powers.

alg. 21
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d.) Again, of a positive base no negative number can be

a power, unless the denominator of its exponent be even,,

and the numerator odd (§§ 11. N. 2 ; 23. e,f). Hence the

limitation to positive numbers.

§ 310. If all numbers, with the limitations above

explained, were thus expressed as powers of a sin-

gle number, the labor of multiplication and division

would obviously be reduced to the adding and sub-

tracting of the exponents (§§ 15, 16).

Thus, since 100 = 10 2
,
and 1000 = 10 3

;

100X 1000 = 10 2 X10 3 = 10 5 = 100 000.

Also, iooo= io;>, T
i
¥= io- 2

.

10(KH-Tio = 10 3-M0- 2 — 105 — ioo 000.

8 01 30 JL9897^O
2-=z \Ql'0O0'S'U0 ft

— i()T oo OVISTS^

•2x5 = 10- 3oloso Xl0- G * S07O = 10 l
.

) 311. When numbers are thus expressed as pow-
of another number, the exponents of those powers

are called logarithms" of the numbers so expressed;

and the number whose powers are thus employed, is

ed the base (§22. N.) f
and sometimes also the

radix (§23. d), of the system.
r

. fence, for a given base,

§ 312. The logarithm of any number is the expon-

ent of the power to which the base must be raised, to

produce that number.

Tims', 2 is the logarithm of 100 to the base 10 ;
because

; the exponent of the power to which 10 must be raised

to produce 100.

So, because 2= 10- 301030
,
.301030 is the logarithm of

> the base 10 ;
for .301 030 is the exponent of the pow-

er to which the base, 10, must be raised to produce 2.

t) dr. ?oy»r, ratio, &pt&ftbg, number ;
number of the ratio.
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or.) Cor. I. The logarithm of the base of the system is al-

ways 1. § 11. a.

b.) Cor. II. The logarithm of unity in every system is

zero. § 13.

§313. The base of the system of logarithms in common
use is 10. "We have, therefore,

log 10,000 = log 10 4 = 4, log 1000 = log 10^ — 3,

log (100= 10 2
)=: 2, log (10= lO 1)^,

log(l=10°) = 0, log (TV= 10-i) =_ 1}

log (.01 = 10-2) = —2, log (.001 = 10-3)
_ _

3j &c.

a.) Hence, obviously, the common logarithm of any
number between 1 and 10 is a proper fraction ; that of

any number between 10 and 100 is 1 -f- a fraction; be-

tween 100 and 1000, it is 2 + a fraction
; &c.

b.) Again, the common logarithm of any number between

fo and 1, as .3454, is between —1 and 0, and therefore it

is —1 -\- a fraction ; of a number between .01 and .1, as

.0205, the logarithm is —2 -j- a fraction ; of a number be-

tween .001 and .01, the logarithm is —3 -f- a fraction.

§ 314. c.) The integral part of a common logarithm is

called its characteristic ; because it characterizes the

logarithm by showing, where in the series of the powers of

10 the number of which it is the logarithm falls. TIio

characteristic of the logarithm of a number greater than

ten is positive; of a number less than unity, negatire

(§ 309).

d.) Moreover (§313), the characteristic of the common

logarithm of any number is always equal to tho exponent

of the integral poioer of 10 next below that number; and

hence, in the common system,

(1.) If a number be greater than unity, the characteristic

of its logarithm is one less than the number of its integral

places; (2.) if less than unity, the negative eharacteristii
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is numerically one greater than the number of cyphers be-

tween the decimal point and the first significant figure on

the left, in the decimal expression of the fraction.

e.) Otherwise; the characteristic of a logarithm of a

number is equal to the number ofplacesfrom the unit place
to the highest significant figure, including the latter ; posi-

tive, if that figure be on the left of the unit place ; negative,

if on the right.

§ 315. /.) We have log 20 = log 10+ log 2 = 1 + log 2 :

log200=log 100+ log2 = 2+ log 2;

log 525= log 10+ log 52.5 = 1 + log 52.5 ;

= log 100+ log 5.25 = 2+ log 5.25.

So log .525 = log 525 — log 1000=—3+ log 525.

But adding whole units to a mixed number cannot afi'ec^

its fractional part. Hence, the decimal part of the com-

mon logarithm corresponding to a number expressed by

any figures whatever, is the same, whether those figures

stand all on the right, or a part or all on the left of the dec-

imal point. Thus, we have

log 25 = 1.397 960 ; log 250 = 2.307 9G0 ;

log 25 000= 4.397 9G0 ; log .025 =—2.397.960.

g.) The principles of §§ 313-315 result from the employ-
ment of the base of our scale of notation as base of the sys-

tem of logarithms.
* On account of this peculiarity, the

common, or Briggs's
1

logarithms are much more convenient

than any other for numerical computations ; and are, there-

lore, in universal use for that purpose.

§310. The following principles, resulting from the na-

ture of logarithms as exponents (§§ 309-312), are formally

stated here for reference.

(&) So called from Mr. Henry Biiggs, who first suggested to Lord

Napier, the inventor of logarithms, the employment of 10 as a base;

and who completed the computation of the first table of logarithms
\vith that base.
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1. The sum of the logarithms of any number of fact

is equal to the logarithm of their product {§ 15).

2. The logarithm of a dividend minus the logarithm of a

divisor, is equal to the logarithm of their quotient (§ 16 .

3. The double of the logarithm of a number is equal to

the logarithm of the square of that number ; the triple of ids

logarithm, to the logarithm of its cube, &c. ; the half to the

logarithm of its square root; one third, to the logarithm of

its cube root, &c. ; and, in general, n times the logarithm •</

a number is equal to the logarithm of the nth power of the

number (whether n be integral or fractional, positive or

negative). See § 24. d.

§ 317. It is evident, that if a set of numbers form an

equimultiple (§ 257) series, their logarithms will form an

equidifferent (§ 249) series.

Thus, the logarithms of 1, 10, 100, 1000, are 0, 1, 2, 3.

So the logarithms of a, am, am"2
, &c., form an equidiffe-

rent series, of which the common difference is the logarithm
of/N. Hence,

§ 318. If between two numbers we interpolate any num-

ber of equimultiple means (§ 265), and between the corres

ponding logarithms interpolate the same number of equi-

diiferent means (§ 255), these last terms will form the log-

arithms of the several terms of the first series. Thus,

The equimultiple mean between 1 and 10= 3.162 277 7.

The equidifferent mean between and 1 = \.

102 3.162 277 7 =i.'o

§ 319. If the base, 10, be separated into 1 000 000 equal

factors, 301 030 of these factors multiplied together wil*.

within an extremely small fraction, produce 2; in like

manner, 477 121 will produce 3 ; 602 060 will produce 4
;

500 000 will produce 3.162 277 7
; and so on. Hence

have log 2 = .301 030 ; log 3 = .477 121 :

log 4 = .602 060 ; log 3.162 277 7 — .500 000,

*2i
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If, indeed, instead of taking the mean between 10 and
3.162 277 7, Ave had taken the mean between 1 and
3.162 277 7 (that is, if Ave had taken the square root of

3.162 277 7), Ave should have separated 10 into its four equal

factors, one of which would be the number whose logarithm

is ]. A third extraction of the square root would give us

one of its eight equal factors ; a fourth, one of its sixteen ;

a fifth, one of its thirty-two equal factors; and so on.

Continuing this process, the twentieth extraction of the

square root would separate the base, 10, into more than a

3uillion equal factors (1 018 57 G). Consequently the log-

arithm of one of these factors must be

Todnrnr=-000 000 954.

If now Ave multiply together a number of these factors

sufficient to produce 2, 3, 4, &c, and add together their

logarithms (i. e. as the logarithms of the equal factors are,

of course, equal, if Ave multiply the logarithm of one of

these factors by the number of the factors), the sum of

these logarithms will be the logarithm of the number pro-

duced by the combination of the factors. A combination

of 315 545 of these equal factors will approximately pro-

duce 2. Hence we have

log 2 = 315 545X-000 000 954= .301 030.

§320. Let 10*= & (1)

That is, let x= log 3.

To find x, put equation (1) under the form,

[l+(10-l)]" = [l+(3-l)]<; (2)

which is evidently true, whatever be the value of t. Then

1+te(10-l)+
<

^(10-l)a+
fa^^

(io_ijH&c = i-H(«-i)4-^y(«-i)»+

t(

U2
)

.B~
2)

(d
-

l)
"+ Ĉ' §294"
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Or, canceling 1, and dividing by t,

K1o_1)+5^=l) (1o_1
).»+£fc^)(io-i )

a

+&c.= 3-l+^(8-l)»+
(

'^
)

2

('~2)
(3-l)3+&c.

Developing the coefficients of 10—1 and 3— 1, arrang-

ing according to the powers of t, and putting B, C, &c, B'
',

C, &c. to represent the coefficients of t
l

,
t
2

,
&c. on the

two sides, we have

a:[10—1—i(io—i)
2
+i( 10—!)

3—
&C]-t-Bt-\-CT

2
+&c.

— 3_i_i(3_i)2_|_^(3_x)3_&c.-\-B't-t-Cf
t
2
+&c.

Now this equation being true for all values of t, we

have (§ 277)

z[10—1—4(10—l)
2+i(10—1)3—£(10—l)M-&e.]

= 3-1-4(3-1)
2+i(3_l)3_JL(3-l)*+&c.

_ 3-l-4(3-l) 2+A(3-l)^-&c.
.. X — lOgO — 10_ 1_.i(10

_1 )
S
_L.l( 10_l)3_&c .-

•'

§ 321. But the denominator of this fraction is a diverg-

ing series ;
as is the numerator, unless the number whose

logarithm is sought is very near unity. If, however, we

take the nth root of both sides of ecmation (1), we shall

have

10"=3"; or (10")*= 3".

Then, as before,
JL 1

(1+10"—1)**
= (1+3"— 1)' ;

and, developing as before, we have

S^-l-4(3~'-l)»-H(3
1
«-l)

»-&c. u ,x— log 3 =—
j- j .

(
4

10"—1—4(10"—l)
2+i(10"—l)

3—&c.

§ 322. Now n may be any number whatever ; but, in

order that the series may converge properly, it must be very
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large, and positive. Let it be taken so great, that 3" and

10" may each be expressed by 1-f- a decimal fraction
whose first eight places are cyphers. Then we shall have

10"—1 = a decimal whose first eight places are cyphers.

.-. (10"
—

l)
2= a decimal whose first sixteen places a're cy-

phers.

Hence, the second, and, with still more reason, the sub-

sequent terms of the series can have no effect on the first

fifteen places of the denominator (i. e. on its first seven sig-

nificant figures).

The first term, then, will give the value of the denomi-

nator correct to fifteen places of decimals ; seven of which

are significant.

The same reasoning will apply, with still greater force

to the numerator ; the first term of which will be a still

closer approximation to the true value of the series.

Hence, n being very large, we shall have approximately,
i

x(= \ogS)=--P~. (5)

10"— 1

Let now n = 2 eo . Then we shall find 3", and 10" by

extracting the square root of 3 and of 10 sixty times in

succession, and we shall have

_i

3 260— 1
x— lose 3 = •

.GO
10- — 1

_ .000 000 000 000 00 000 952 894 264 074 589
~
.000 000 000 000 000 001 997 174 208 125 505*

x— log 3 = .477 121 254 719 G62,&c

Note. Brigg* took n= 2 54. A much smaller value of n would

give results sufficiently accurate for all ordinary purposes. The pro-

cess would still, however, be extremely laborious; and has been su-

perseded by far more convenient and rapid processes. T3 u t the for-
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inulte, which we have obtained, furnish a convenient method of ex-

hibiting some very important properties of logarithms.

§ 323. For greater convenience and clearness, we shall

generalize equations (1), (2), (3), (4) and (5), by putting y in

place of 3, and a in place of 10. Then we shall have

ax= y (G); or x= log y ;

( l+a_iy< = (!+,,__!)<; ( 7)

,-w rf
_ y-i-K.y--i) 2+My-i)

3
-&c. m

j-
-w «-y.y-i-Kyy-i)

2+KVy-i )
3-^-

. , 9' ° y ~~
v«—i—K'V«—i)

2-HKV«—i)
3—&c.'

v

and, n being very large, approximately (£ 322),

x— \o<*y— —x
—

. (10)

a"—1

*'
§ 324. Now it is manifest, that, in each of the equations

(8), (9) and (10), for a given value of n, [1.] the value of

the denominator of the second member depends solely on

the base ; and, for the same base (i.
e. in a given system), it

remains constant, whatever be the number whose logarithm

is required ; [2.] the value of the numerator depends sole-

ly on the number whose logarithm is sought, and is, there-

fore, constant for the same number in all systems (i.
e. what-

ever be the base) ; and [3.] the denominator is the •-

i'kaction of a as the numerator is of y.

§ 325. Again, representing the constant denominator by

f(a), we have from (8) of § 323

in which -

/(a)= or-l-i(a-l)»4i(«--l)
s—

i(a-l)*-Hfcc. ; (12)

;"^/(y)=y-i-Kz/-i) 2+Ky-i) 3-Kr-i) 4-r^c,
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In like manner, in another system whose base is a', we

shall have, obviously,

ios'y=^[y-i-My-i)
2+K^-i) 3

-&c.]~^/y.

Hence, log (y) : log' (y) =— :
—-.. (13)

That i-
:
,

§ 326. The logarithm of a number, taken in different sys-

tems, varies (§245) inversely as the function of the base.

a.) If the base, a, be given, /(a) can be found from for-

mula (24); and, on the other hand, if/(«) be given, a val-

ue can be found for the base, a, to correspond.

b.) Thus, Lord Napier, the inventor of logarithms, took

f(a) = 1, and constructed the first table of logarithms ever

published, on that hypothesis. Consequently, denoting the

Naperian logarithm by Log or L, and the logarithm in any

other system by log or I, log' or V, &c, we have

Log y= y_l-|(y_l) 2+i(y-l)
3-&c. (14)

.-.from (11) log y= -=— Logy. (15)
J\a)

That is,

\ 327. The Nitperian logarithm of any number, raulli-

tiplied by
—-

gives the logarithm of that number in the

J \ J

system whose base ia a.

§ 328. The quantity —- is called the modulus of

the system whose base is a; because it expresses or 7neas-

ures the ratio of any logarithm in that system, to the Nape-
rian logarithm of the same number.

Hence [§325.(13)],

a.) Cor. I. The logarithms of any number in different

systems arc to each other as their moduli. And hence,

(c) Lat., a measure.
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b.) Cor. ii. The logarithms of any numbers in one system

are to the logarithms of the same numbers in another system

in a constant ratio, viz. in the ratio of their moduli (§ 328.

a). Thus,

I 2 : I' 2 = I 3 : V 3 = le : Ve— la : l'a=M: M'

[MzxA M' representing the moduli).

»> r •»* h l& le „

c) Also, since ly— M. Ly, M= ~= —=— &c. ( 1 6)
Ly La Le

That is,

Cor. in. The modulus of any system is equal to any log-

arithm in that system divided by the Naperian logarithm of
the same number.

d.) Again, since a is the base, la=z 1.

31=1. „„
That is,

Cor. iv. The modulus of any system is the reciprocal of
th-e Naperian logarithm of the base of the system.

Thus, the modulus of the common system is = —-.J
Log 10

Hence (§ 328)

e.) We have f(a) = Log a. (18)

That is,

The denominator of the second member of equation v8)

in § 323 is the Naperian logarithm of the base.

Note. This is evident also from § 324. 3, and § 326. (14).

/.) Again, if e= the Naperian base, we have Le— 1.

M=le. (19)

That is,

Cor. v. The modulus of any system is equal to the log-

arithm of the Naperian base, taken in that system.

Thus, the modulus of the common system is the common

logarithm of e.
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§329. ^0 f(a)
— La — nLan

. §316.3.

Also [§326. (14)]

Zr^=a"-l-K«"- 1
)
2+K«;;

-l) 3-K«"-l) 4+&c. (20)11 1
... f(a) [= La— nLan

] z= n[a
n—1—\{an —1) 2+&c] ;

=:7i(a"-l), (21)

when n is very large.

/ _1_ _ J. _ L ^ — 1M
Xf{a)

~~
La~~ nL{

n
+/a) ) ~n("\/a—l)

'

=i.^-. (22)
n —
an—\

And, for the common system, taking n = 2 60 ,
we have

approximately (21)

/(a) = Zl0= ??Z10;r

=2Go.(i02
6O
_l).

1 _1_ _L % _1_
1

£10~2«
*

-L- 2co- 2 co

•JQO6 i
*/ IV 1

Now we have

—= 0.000 000 000 000 000 000 867 361 737 988 &c., and
2 |; °

j
10 26O= 1.000 000 000 000 000 001 997 174 208 125 &c

_ 867 361 737 988 &c.—
1 997 174 208 125 &c."

M{— S-= h) — 0.434 294 481 903 251 &c. (2-3

§ 330. k.) If we take/(a) = 1, then (§§ 326. b; 328./)

a— e, and [§ 329. (21)], approximately,

i 11 11
\ =in(e"— l); or-= en— 1; orl-f-= c.

1\"

(1+-). .-.(W4J
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. = 1+B
*

+ »fcL>(i) Vi!!=i}(^!)(I)

3

+&„,
1 n 1.2 \w/ 1 .2 .d w

or, reducing, and neglecting all the terms, which have n,

n-, &c. in the denominator, inasmuch as (n being= 2 60 )

they cannot affect the first sixteen places of decimals,

e= 1+i+iVi^s+nnrT+ &<!' <-"

e= 2.718 281 828 459 045 &c. (25)

Note. To find the sum of any number of terms of this 3eries,

divide the second term by 2 for the third
;
the third term by 3 for the

fourth, and so on; and then add the terms. Thus,

1

2) 1

3) 0.5

4) 0.1 666 666 666 666 666 666 666 666 666 666 666 &c.

&c. 0.0 416 666 666 666 666 666 666 666 666 666 666 &c.

§ 331. i.) If we take f(a) =1, § 330.

we have m(=~= 1-= 1) = 1. [(26)V /(«) f( e) ^e'

That is,

The modulus of (he Naperian system is unity.

This is evident also from §§ 327, 328, c, d, e, or/.

Notes. (1). On account of this property the Jifoperian system
is sometimes-called the natural system; it being the standard to

which all other systems are referred by their moduli. (2.) The Na-

perian system is also, in general, most convenient for algebraic

(§315. g) investigations and expressions; because the modulus, be-

ing unity, need not be written. (3.) Naperian logarithms are also

sometimes called hyperbolic logarithms, because they express cer-

tain areas connected with the hyperbola. This name, however, is

less appropriate, because other systems of logarithms have the same

property with reference to different forms of the hyperbola.

§ 332. We have [§§ 328 ; 325. (12)]

1 1
M:

'/(a) a-l-Ka-l)2+i(a_1)3_&c/
ALG. 22
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.-.,§323.(8), log y=M[y—I—l{y—\y+&<>.]. p,7)
I i i

log y»=M[y»—l—ls(y»—iyjt&Q.] ; (28)

1 j_

.i logy»= M(y
n
—l), (29)

when n is very large.

Also (§327) logy= MIuogy. (30)

- i
§ 333. Let an

l

= y
n
,
n being a very large positive num-

ber, as 2 eo
, and y being a small number greater than uni-

ty ; so that y
n may differ but very little from tm%, and -,n

from aero. Then [§§ 312 ; 332. (30), (29)]

x I 11-= \og y» = M. lag y*= M(yn—I).
fit

x' 1 I re" 1 i

So - =
ly'»
= M{y<»

—
1) ;

—z=
ly"n
—

M(y">j:—l) ; &c.n n1111 I 1 -

ly
n
:ly'

n
: ly"

n—
y

n—l : y'
n—\ : y"

n—l.

l l

»r log y
n=y n—1. §245.

That is, approximately,
1. The logarithms of numbers very wear ttm'Jy are to

:jach other as the differences of the numbersfrom unity.

Thus, log 1.000 001= .000 000 434 294 ;

log 1.000 002= .000 000 868 588 ; and

.000 000 434 294 : .000 000 868 588 =.000 001 : .000 002.

Also (§238)
ii. 1 JL 1 1 1 1

lyin—ly* : ly"
n—ly

n =y,n—y n
: yH«—y\

That is, approximately,

2. The differences of the logarithms of numbers very near

unity are to each other as the differences of the numbers.

See example under 1, above; and under § 335. b, c.

§ 334. a.) Let y be not <2, and w= 2 G0
,
so that y"may
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be a very large number ; also let D= a small number, as

1, 2, &c. Then (§§ 31G. 2 ;
115

;
333. 1)

ii' y
n

is constant (5 247. 3). That is, approximately,

If large numbers differ by quantities very small in com-

parison with themselves, the differences of their logarithms
will be as the differences of the members.

Thus, in the common system, if the logarithms are car-

ried to only seven places of decimals, we have

n0000 = 4; 1 10 001 = 4.000 043 4;

HO 002= 4.000 080 8 &c. ;

where, for equal increments of the number, we have equal
increments of the logarithm.

Note. We must not extend the series far, because the difference?

of the numbers would cease to be very small compared with the num-
bers themselves.

t

§ 335.
b.) We have, by (26) and (29),11 11
Ly n= y

n
—1, and Lyln= yi"—\.

1 III
Ly'

n—Ly n= y"
l

—y>\
That is, approximately,

The difference of the Naperian logarithms of two num-
bers very near unity is equal to the difference of the num-
bers.

Thus, Log 1 =0;
Log 1.000 001 = 0.000 000 999 999, or 0.000 001

;

Log 1.000 002 = 0.000 001 999 998, or 0.000 002.

That is, the numbers differing by .000 001, their Nape-
s-ian logarithms differ, within an extremely small fraction.

by the same quantity.

c.) In any system whatever, we have

I I i i
'

.

log y»= M(y»—1 ) ; log y
ln— M{xj

n—\
).
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I 1 1 i
log y> "-log y«= M(y>»-f).

That is, in any system, approximately,

The difference of the logarithms of two numbers very
near unity is equal to the difference of the numbers multi-

plied by the modulus of the system.

Thus, in the common system,

log 1 =0;
log 1.000 001 = 0.000 000 434 29 ;

log 1.000 002 = 0.000 000 868 58.

That is, having cliff, numbers = .000 001,

we have diff. logarithms = .000 OOlX-434 29. § 329. (23)

Note. If we make M=l, the logarithms become Naperian,
and this principle becomes identical with the preceding.

d.) Reasoning as in § 334, we shall find, that, if any
number whatever receive an increment very small in com-

parison with itself, the corresponding increment of the log-

arithm is approximately ecptal to the modulus into the fo-

ment of the number, divided by the number. Thus,

l(ynJrD)-ly"= l(lJr^;)=M^. [See §§337. a;

332. (28), (29)]. Thus (§334),

log 10 001—log 10 000 = .434X ro J o o = -000 043 4 '

So, log 9865 = 3.994 097, log 9806 = 3.994141. And

log 9866—log 9865 =.434 294x^5 = -000 °44 -

§336. e.) If a number exceed unity by a very small

quantity, its logarithm exceeds zero by a very small quan-

tity. Now, §332. (29), M= -^pU

Therefore, the modulus approximately expresses or mea-

sures the ratio (§ 230) of the infinitesimal excess of the

logarithm above zero, to the corresponding infinitesimal ex-

cess of the number above unity,
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m, .000 000 434 29 . 6jor
Thus (§ 335. b), M=

-^qoqqoI
— = *434 29 *

/.) Or (§335. d), M= .X_/ ,
'

• Thatis,

The modulus approximately expresses the ratio of an

Infinitesimal increment of any logarithm, to the correspond-

inc increment of the corresponding number, divided by tli>

number itself.

Thus (§ 335. d) M= '00°
1

044 = .434 294.

§ 337. Putting, in (27) of § 332, l+y instead of y, and

of course y in place of y
—

1, we have

log(i+y) = ^(y-^ 2'+^3
-|2/

4 + &c.). («)

Putting
—

y for y in («), we have

l0g(l-y)= J/(-y-I2/2_^3_^4_ &c .
)> (/))

Subtracting (5) from (a),

1-4-w E

«(l-^)-'(l-jr)='^=2^(jr+i»?-+4e.)-
W

••• l0g(l+y)=l0g(l-3/)+2iJ/^+^3+i3/ 5
H_&c .

)
. (31)

This series converges with tolerable rapidity, when y is

a small fraction. Thus if y= .1, we have

. 1-f.l 11

log n-iog 9 =
2ir(i 5

+
g(

L
)

-

+^-+&
c).

, log 11= log 9+2^(^+3^-+^-5+&e.).

Here, if no more than seven places of decimals ai*e re-

quired, the fourth term of the series may be neglected.

Now, § 329. (23), M— 0.434 294 48 ;

and, §§ 316. 3 ; 322, log 9 = 2 log 3 = .954 242 5.

*22
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log 11 = .954 242 5-J-.868 588 96(.l+.000 333 3+&c).

log 11 = 1.041392 8.

log

§ 338. Making in (c)

1 1+y *4-l
and

="*^i+SKKF+H '

8(2*fl)«
'

5(22+1)5
+&c

-)'

log (=+1)= logHJJr^+p^s +&c.).(32)

Thus, if *= 10, we have z-\-l = 11 ; and

log 11 = log 10+.868 588
96(^-+-^-3 +&c.).

This series may be summed thus ;

2*4-1= 21.868 588 96 =23f
(2*-f-l)

2 = 441

(2*4-1)
2= 441

041 361 38-r-l --.041 361 38

93 794-3 = 31 26

214-5 = 4

.041 392 68.

log 11 = log 10 4- .041 392 68 = 1.041 392 68.

This series converges much more rapidly than the preceding.

Many still more rapidly converging series have been devised. We
shall give, however, but a single example.

u !—
1, and (32) be-§339. Let*4-l = ?o

2
. Then ;

comes

log .. =l„g («._l)+2Jf
(s-^.+

_—+&*)
Or, as log w 2 = 2 log u,

and log («-
—

1) = log («4-l)4~log (w—1),

we have log (?t -j- 1) = 2 log u— log («
—

1)
—

1Uf(i5r=r+ 3(2«
2 —

l)
3 '

5(2u
2 —

1)

1
_Ti^+

&4 (38)
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Thus, if u= 12, we have

log 13= 21og 12-Iog n-2^(^+ 374? +&c.).

Now 2 log 12 = 2 (log 34-log 4) = 2 (log 3+2 log 2),

= 2(.477 121 25+.602 060) = 2.158 364 ;

and (§ 336) log 11 = 1.041 392 68.

The series may be summed thus ;

2« 2—1 = 287 .868 088 96 = 2,1/

(2**2—l)
2 = 62 369 .003 026 44-KL= .003 066 44

5-^3= 2

.003 026 45.

log 13 = 2.158 362 5—1.041 392 68—.003 026 45.

= 1.113 943.

For all lai-ger numbers, the first term of this series will

give the value correctly to eight places.

Note. The logarithms of the prime numbers only need be com-

puted by such processes ;
the logarithms of all other numbers being

found by the proper combination of the logarithms of primes. Thus,

log 4= 2 log 2
; log 6= log 2+log 3

; &c.

The logarithms of 2 and 3 may be found from formula (32), and

the logarithms of 5 and 7 from (32) or (33).

EXPONENTIAL THEOREM.

§ 340. In the equation ax= y, we have found x in terms

of y ;
i. e. a logarithm in terms of the corresponding num-

ber.

We shall now find y in terms of x ; i. e. a number in

terms of its logarithm.

Put y[= a*= (l+o-l)*] = [(l+«-l )»]"";

n being any number whatever, and of which the value of y
is entirely independent (§ 276 ; 277 ; 280. e).

Developing,

(1+^l)
»= l+n( _l)_L.^d)(

a_l)2+&c..
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or, (1+a—iy= 1+An+B?i*+Cn 3+ &c. ;

A, B, C, &c. being functions of a
; and, evidently,

A= a—1—J-(«—1)
2-B(«— 1 )

5~&c-= La. § 326. £.

Then we have

y= [(i+o-i)*]»;= [i+(^+^2
-Hbc.)]s:

... y= l+^(An+B^+&c.)+^=J
}
(^n+i^+&c.) 2

r^-rc) (*-2»)_
(jw+jR|fl+&c,} 3+&c .

.

$ 295. *.

or ?/
= l+a:(J+JBH-&c.)+^^\-4+JBh+&c.)

2

f
x(x
—n)(x

—2n)

1.2.3 -(^4+^+&c.)
3
+c&c.

A 2x 2 A %x z

.(§277) #=«'=l+^+—+—~
3
+&c. (34)

, (Za)
2
a:

2
, (Za)^3

,

Or af=l+Za.aH-
i
Y72~+

i
i-^73-+&c (3o)

§ 341. a.) We know the value of A from §§ 325. (12) ;

328. e. But, if we did not know it, we might find it from

the equation (34) itself. Thus,

Let x=
-j.

Then (§330)

^= 1+I+l^+ i4.-3+ IT2
L
3-.T+

&C - = e -
<36)

.-. (§52. N.) a— e
A

. (37)

That is, -j-
is the logarithm of e to the base a (§ 328. d,

/') ;
and A is the logarithm of a to the base e (i. e. the Na-

perian logarithm of a [§ 328. e]).

5.) Or thus ; taking the logarithms of both members of

(37),

log a = A log e. §316.3.
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log a 1 1
, .A= r-2—= Lo°- a= -. = ^rp, a being the base.

log e log e M
That is, A is the reciprocal of the modulus of the sys-

tem of logarithms whose base is a.

Note. The logarithms may be taken in any system, provided

both be taken in the same; the logarithms of two numbers having the

same ratio in one system as in another (§ 328. b).

§342. c.) We have found (§341) the value of A, in

terms of a. We may, if Ave prefer, assign a value to A,
and find the corresponding value of a.

Thus, let A = l.

Then, «' = 1+*+~+—^ +&c.

Making x= 1
, a — 1+1+ —%+OT3+&C "= e '

§ 343. d.) This is called the exponential theorem ; and

y, in the equation, y= ax
,
is called an exponential func-

tion of x. On the other hand, x is called a logarithmic

function ofy ; being the logarithm of^ to the base a.

e.) These two classes of functions ai*e also called teans-

cendentai/ functions ; as transcending the elementary op-

erations of Algebra.

EXPONENTIAL EQUATION.

§ 344. The equation, ax= b,

is called an exponential equation. If a is the base of a

system of logarithms, we have simply

x— log b.

But if a is not the base of a system of logarithms, take

the logarithms of both sides of the equation, in any system.

The common system is usually most convenient. Then,

log (a
r
)
= log b

; ov x log a = log b. § 316. 3.

(d) Lat. transcendo, to exceed, surpass.
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_log b

log «

1. Given 12*= 20, to find x.

x log 12 = log 20
;

i. e. 1.079 181 25a:= 1.301 030.

log 20 1.301030
x= f^T^= i n~oiQio* = L205 57 &c -

log 12 1.0/9 181 25

2. Given 603
'= 7, to find x. Am. x= .475 273.

3. Given 125x= 25, to find x. Am. x= §.

§ 345. c?.) If the equation be of the form,

xx= b,

we have x log a; == log b.

This equation, can be most conveniently solved by the

method of trial. For this purpose, find by trial two ap-

proximate values of x. Substitute these values successive-

ly in the equation,

x log x =. log b,

and note the error in each result. Then

Diff. of the results : Diff. of the assumed numbers = the

• rror in either result : the correction to be applied to the cor-

responding assumed number.

This correction, being applied, will give a nearer ap-

proximation to the true value of x. This new value may
now be taken as one of the assumed numbers, and a still

closer approximation obtained ; and so on.

1 . Given x': =z 100, to find x.

Here we have x log x '== log 100= 2.

Also, since 3 3= 27, and 44 z=. 25 G, the value of x

lies between 3 and 4.

Substituting 3 and 4 successively, we have

3 log 3 = 3 X 0.477 121 25 = 1.431 363 75 ;

whence 2 — 1.431 363 75 = .568 636 25, error;
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also 4 log 4= 4 x 0.602 059 99 == 2.408 239 96 ;

whence 2— 2.408 239 96=— .408 239 96, error;

and 0.976 876 21 = difference of results.

.967 876 : 1 =n—.408 239 96 : —.418, correction.

4— .418 = 3.582 = x nearly.

Again, we find x> 3.582, and <3.6. Therefore, substi-

tute these values, and repeat the operation. Thus,

3.582 log 3.582= 3.582 X 0.554 126 5 = 1.984 881.

2— 1.984 881 = .015 119, error.

3.6 log 3.6 = 3.6 X 0.556 301 9 = 2.002 689.

2 — 2.002 689 =— .002 689, error.

Also, .017 811 = difference of results.

.-.. 017 811 : .018=—.002 689 : —.002 717, correction,

3.6 — 0.002 717 = 3.597 283 = x nearly.

That is, 3.597 283 3 -597283 — ioo.

2. Given x''— 5, to find x. Ans. x= 2.1293.

3. Given x*= 2000, to find x.

Ans. x— 4.827 822 63.

4. Given a, m and I of an equimultiple series, to find n

<^64 - J)- A, B= !2|lri21?+1 .

I02; m
5. Let a= 2, I= 162, and m= 3 ; and find n.

Ans. n— 5.

6s In how many years will p dollars amount to A dol-

lars, at r per cent, compound interest ?

We have (§ 258. 5) A —p{l-{-r)
t
.

. low A—log pAns.t— °
n ,\

J
.

log (1+r)

7. In what time will $100 amount to 8200
(i. e. in what

time will a sum of money double itself )$ at 6 per cent

compound interest? Ans. 11.89 years

Here p = 100, A = 200, and 1+r= 1.06.
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Notes. (1.) The solution of most questions relating to com-

pound interest may be greatly facilitated by the use of logarithms.

(2.) The formula? of compound interest apply also to the increase of

population in a country.

8. Find r fro'm the formula, A =p(l-\-ry. See § 258.

5? 9- . , ... , x log A—loo; p
Ans. log (1+r) ==— 5Ll

.

9. The population of the United States in 1830 was

12 866 000, and in 1840, 17 068 000. What was the year-

ly rate of increase ?

Here A= ll 068 000, p'=. 12 866 000, and t
— 10.

. „ ,

. log 17 068 000—log 12 866 000
.-. lug(l+r)=-2 ,

10

7.232183—7.110118= .012 206 5.
10

1 -f r= 1.0285 ; and r= .0285 = 2J$ per cent.

10. At the same rate, what will be the population in

1850?

Here p = 17 068 000; r=.0285, and <= 10.

A[=p{l-\-ry~] = 17 068 000 (1.0285) } °.

log A= log 17 068 000+10 log 1.0285.

Ans. A = 22 654 000.

11. In how many years will the population amount to

50 000 000 ? Ans. In 38.24 years from 1830.

12. If the number of slaves in the United States in

1830 was 2 009 000, and in 1840, 2 487 000, what was the

yearly rate of increase? Ans. 2% per cent.

13. At the same rate, what will be the number in 1850 ?

in 1860 ? Ans. 3 078 700, in 1850
;
3 811 000, in 1860.

14. The population of Virginia in 1830 was 1211 400.

and in 1840, 1 239 700 ; that of New York in 1830 was

1 918 600, and in 1840, 2 428 900. What was the yearly

rate of increase in each state ?

Ans. In Virginia, .0023, or less than \ of 1 per cent;

in New York, .0238, or more than 2^ per cent.



CHAPTER XVI.

THEORY OF EQUATIONS.

§ 346. We shall confine ourselves here to the considera-

tion of equations containing but one unknown quantity.

1. If the exponents of the unknown quantity in such an

equation be all integral, or if their differences be all inte-

gral, the degree of the equation is correctly expressed by the

difference beticeen the greatest and the least of those expon-
ents (§§40. a;51.b).

2. But, if the difference between any two of the expon-
ents be fractional, this difference between the greatest and

least, obviously, may not express the degree of the equa-

tion. Thus, evidently,
x

x'2 -J- ax -\- bx^ -\- c—
is not of the second degree.

Reducing, however, the exponents to a common denom-

inator, we have
e 3 i

x^ -\- ax
3
-f- foe

3
~f- c = 0,

which may be said to be of the § degree. In. fact, if we
make 3*/x— y, we shall have

y
6+ «y

3+ 5y+ c =
j

an equation of the sixth degree in respect to y (i. e. in res-
i

pect to x3
).

Hence, when the difference between any two of the ex-

ALG. 23
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juts is fractional, the degree of the equation is the dif-

ference between the greatest and least exponents, expressed
in terms of the least common denominator of all the expon-
mts. Thus,

1- 3 2

.>
-
-\- ax'

J
-\- b (=: x G

-\- ax
5

-\- b)
= is of the § degree.

i i i
x3

-f- ax
1

-4- bx° -J- c= is of the f% degree.

347. It is evident that equations of this kind can be

expressed in integral degrees, by reducing their exponents

to a common denominator, m, and substituting a new un-

known quantity for the mth root of x
(i. e. by putting

y=. y ).

Hence, we shall need to consider equations of integral

legrees only, and shall suppose them reduced to the fol-

lowing form, viz.

xn+A 1
xn-3l^-A zx

n~ s
. . . -fA^^+Al—O. (1)

We shall also assume, that every equation has at least

>ne root.

Note. A single symbol, as X, or f{x), is sometimes put for the

il member of an equation. Thus, X=0, or/(a:) =0.

DIVISIBILITY.—ROOTS.

18. Let a be a root (§ 39) of equation (1). Then,

J-i^/'-'+ioa"-
2

• • • .+A n. 1 a-\-A n— 0.

.-. A,r
=~an— A

l
an- 1 —A 2a

n- 2 .... —A n. x
a.

Substituting this value of A n in (1), we have

.--— an
)-\-A l (x

,'~ l— an~ l

)
. . . +A H- 1 (x

—
a) = 0.

Now this expression is divisible by x—a (§§ 81, 9G).

Hence (compare § 213. 5),

If a be a root of the equation,

rJ-i/" 1 i-A^ vc + A n
= 0,

Hie first member of the equation is divisible by x—a.
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a.) This principle may be demonstrated otherwise ;
thus.

If v»
T
e actually divide the first member of (1) by x—a. we

shall have, representing the quotient by Q, and the re-

mainder by i?,

f(x) = x" -f-A x
x"~ i

. . . +A , = (x
—

a><?+#= 0. :

Now, if « is a root of the equation, the supposition.

,r
— a (i. e. x—a =s 0),

reduces the first member of (1) to zero (§§ 39, 211).

H= 0, and £/ze division is perfect (§ 82. </ .

Thus, 4, 5 and — 1 are roots of the equation,

a;3—^ 8*2^11*4- 20= 0.

See if the first member is divisible by x— 4, x— 5, and

b.) If « is not a root of the equation, the substitution of

a. for x will not reduce the first member of (1) to zero. In

that case, we shall have, from (2),

/(a) = an+ J
1
a"-i . . . -^An^ 1a-\-4 n=^ That is.

If a polynomial, a/miction of x, of theform,
xn -JrA l

x"~ l
-{-A 2x

,1- :i +.4 n,

he divided by x—a, the remainder will be the same fund >

of a, that the given polynomial is of x ; i. e. it will be what

the given polynomial becomes, when a is substituted for x.

See §211. 1.

Notes. (1.) The remainder is independent of or. For, if it con-

tained x, the division might be continued farther. R, therefore,

since it does not contain x, will have the same relation to a, whatever

value is given to x. (2.) It is evident also from this principle, that.

if a is a root of the equation, the remainder will be zero, and the di-

vision perfect.

1. Divide x 3
-}-^4 1

x 2
-|- A 2x-]-A 3 by x— a.

Bern. a$
-j-
A

xa} -f-Aaq+A9 >

2, Divide x? — 8x 2 + 1 Ix+ 20 by x— a.

Rem. a3_^8a 2
-f-llrt-f-2M,
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§ 349. c.) Conversely, if the first member of (I) be di-

visible by x—a, then

7?= a"+ ^
1
an-i + J 2a

n~ 2 +J n= 0;

i. e. the substitution of a for x satisfies the equation (§ 39) ;

and, therefore, a is a root of the equation.

d.) Hence, to determine whether a is a root of the equa-

tion, x"+ A
x
xn-i

-\-A n =:(),

we have only to divide the first member by x—a. And,

(1.) If the division is perfect (§ 82. g), a is a root; (2.)

if it is not perfect, the remainder is the value of the first

member, with a substituted for x (§ 348. b).

§ 350. 1. Find whether 3 is a root of the equation.

a;» -a;* — 25a; 3
-4- 85a: 2 — 96a; + 36=0,

Divide by x— 3 ; thus (§ 86),

1 _ i __ 25 + 85 — 96 + 36

+ 3 + 6— 57 + 84— 36

1

+ 3

1 + 2 — 19 + 28 — 12, 0, the remainder,

Hence, the remainder being zero, 3 is a root.

2. Find whether 4 is a root of the same equation.

In performing these divisions, the first coefficient, being

1, need not be written. Thus,

1 — 1 — 25 + 85— 96 + 36 4

+ 4+ 12 — 52 + 132 + 144

1 + 3 — 13 + 33+ 36, + 180, the remainder.

Consequently, 4 is not a root ; and the substitution of 4

for x reduces the first member to 180.

3, What does the first member of the equation,

x *_ 7^3 _ 20a: 2 + 30a; — 48 r= 0,

become, when 7 is substituted for x ? Ans. — 818.

This may, of course, be determined by the actual substitution of 7

for x. But we arrive at the same result much more conveniently bj

dividing by x— 7 S as in the preceding examples.
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4. What does the first member of the equation,

a* — 20x-T-96 = 0,

become, when 7 and 9 are successively substituted for .< r

Ans. 5, and — 3.

NUMBER OF ROOTS.

§ 351. Let a
x
be a root of the equation,

X= x*+ A x
xn~ 1 + &c. = 0. 1

Then if we divide by x — av we shall have, evidently,

an equation which will be satisfied, if either of its factors

be equal to zero. Making
x"~ l + B1

xn~ 3 + Sep.
= 0,

and supposing a 2 to be one of its roots, the primitive equa-

tion will take the form (§ 348),

X— (x
— a

x)(x
— a 2)(x"~

2
-{- C^~- . . «. + C„_ 2 )

= <*.

AVe may, obviously, proceed in this way, diminishing the

degree of the polynomial by unity at each division, till w
have taken out n factors of the form x— a.

X=xn+ A
1
xn-* .... -\-A.n_ lX -\-A u =

(x
— al)(x

— a2)(x
— a3) (x

— an)==0. (2)

Now this equation will be satisfied, if any one of its n

factors be equal to zero ; i. e. if x be equal to any one of

the n quantities, «
x ,

a 2 . . aa . Therefore,

1. Every equation of the form,

X=xn+ A
1
x''~i +A = 0,

can be resolved into n binomialfactors, of the form, x—
(2.) Every equation has as many roots as there are mite

in its degree. See § 213. 1, 2.

Thus (§ 348. a), the equation,

£3 _8x 2
-|- 1 \x +20 = (x

—
i)(x

—
5) (x+ 1)

-
0,

has the three roots, 4, 5,
—1.

*23
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§ 352. Suppose b, a quantity different from any of the

roots a
1 ,

a 2 ,
a
3 , &c, to be a root of equation (2). Then

we have

(5.— ai )(b
— a 2)(b

— a 3 ) . . (b
— an )

= 0,

an evident absurdity ; because, by hypothesis, b being not

equal to any of the quantities, a
x ,

a 2 , &c., no one of the

factors, b—av b—a 2 , &c. can be equal to zero. Hence,

The number of roots of an equation cannot be greater

than the number of units in its degree.

Hence (§§ 351, 352)

§ 053. The number of roots of an equation is al-

ways equal to the number of units in Us degree.

a.) These roots may be all real ; or part or all of them

may be imaginary (§ 216).

b.) Again, they are not always different from one anoth-

er. Any part, or all of them may be equal (§ 205).

An equation will, of course, contain equal roots, when it-:

first member contains equalfactors.

Thus, the equation,

x 3 — 3x 2 + 3x— 1 = {x
—

l)(x
—

l)(x
—

1) = 0,

has three roots, each equal to 1.

c.) If we know a part of the roots of an equation, wc

may find, by dividing by the corresponding factors, the

equation of a lower degree, which contains the remaining

roots (§351).

1. One root of the equation,

x*— 9x 3
-f 19x 2 + 9x — 20 = 0,

is 1. Find the equation which contains the remaining

roots. Ans. x 3 — 8x2 _j_ \\x+ 20 = 0.
* *

$
2. Another root of the same equation is 4. Find the

equation containing the other two roots.

Ans. x 2 — 4x— 5 = 0.

3. Find the remaining two roots by § 207 or 208.
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4. One root of the equation,

x 3 — 1 = 0, i. e. x 3 = l,

is, obviously, 1. What are the other roots (§ 207) ?

Arts. i(- 1 + (— 3)*), and \(- 1 - (- 3) *).

d.) Either of the roots of the last equation, being cubed,

will produce 1. Thus, every number has three cube roots ;

one, real; and two, imaginary.

In like manner, every number has four fourth roots ;

and, in general, n nth roots.

§ 054. e.) The principle of § 353 may be applied to

equations of fractional degrees (§ 346. 2).

Thus, the number of the roots of the equation,

x'1 — 7ic
Tj

"

-j- 6 = 0, may be said to be
_,

.

For we find »* = 1, 2, or -3 ;

and, consequently, x = 1, 4, or 9.

Now these three values of x correspond to six values of

x'2
, only three of which satisfy the equation ; as will be

seen, if we take x=— 1, —2, or +3. The values of x,

therefore, i. e. the roots, may properly be said to be half

roots (§12).
i i

So, the equation, x 5— 2 = 0, i. e. Xs= 2,

obviously gives x~=. 8, or x— 8 = 0.

But x- 8 = (J- 2)(*M- 1 -V-3)(a£+- 1 -fV-0),

only one of which partial or component factors (§ 12), with

the corresponding partial root, is found in the given equa-

tion. The equation may, therefore, be said to contain only

one third of a root. See § 221. 2, 3.

COEFFICIENTS.

§ 355. Let av a2 . . . • a* be the roots of an equation.

Then we shall have
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a?-\- A-^x"-
1

. . -\- A n= (x— a
x )(x

— a 2 )
. . (x

—
a„)= 0.

Multiplying (§283), v*+\>A x
&~i . . . . +An

—

xn — a
x

— a 2

— a.

— a,

xn~-— a,a a,
j. ^ o

— a
x
a 2 a^

a 2a 3a4

&c.

+ o.2 a n

&c.

Hence (§ 277),

A
±
= —

0>\
— « 2

— a 3
•

^4 2
— a

l
a
2 -\-a 1

a 3 . . -}-«!«„

xn~ 3
. ,±a

1
a 2 . . a„

—
ct„

+ « 2 « rt+ &(-''

J 3
==—a

x
a 2

a 2
— a

1
«
2
«
4

— a
x
a daa Sec.

^ 4
= a

1
« 2 a 3 a 4 -(~ a i

a
2
a3

a
5 "T~&c '

A r.
± o

1
a 2a aa4« 5

. . . o a . That is.

(1.) The coefficient of the second term is equal to the sum

of the roots loith their signs changed (§ 213. 3).

(2.) The coefficient of the third term is equal to the sum

of the products of the roots taken two and two (§ 213. 4);

(3.) that of the fourth term, to the sum of their products

taken three and three ; and so on, the signs of the roots be-

ing changed in every case.

(4.) The absolute term (i. e. the coefficient of x° [§ 208])

is the product of the roots taken cdl together, with their

signs changed.

a.) It is evident, that, in the third, fifth, seventh, &e.

terms, the number of factors being,even, the result will be

the same, whether the signs of the roots be changed or not

(§213.4).

b.) The last term will be positive or negative, according

as the number of positive roots is even or odd (§215. 1, 2).

c.) If the roots be all negative, the factors will be of the
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form x-\-a 1 , x-\-a 2 , &c, and the terms will, evidently, all

be positive (§ 215. 1, 3) ; if the roots be all positive, the

terms will be alternately positive and negative (§ 215. 1, 3).

d>) If the coefficient of the second term be zero, the sum

of the positive roots is numerically equal to the sum of the

negative roots (§ 214. 1).

e.) Every root of the equation is a divisor of the last

term; and, hence, if the last term be zero, one of the roots

must be zero (§ 214. 2); or rather, in this case, the equa-

tion becomes of the (n
—

l)th degree (§ 203).

1. Form the equation, whose roots are 2, 3, and — 4,

Ans. (x—2)(x— 3)(x4-4:)
= x^—x n

—lix-\-2i=zO.

2. Form the equation, whose roots are 1, 1, 2, and 3.

Ans. x* — 7x 3 + 17x 2 — 17 -f- 6 = 0.

3. Given the roots, 2,-1 +y— 3,-1 —./— 3 ;
to

find the equation. Ans. x 3 — 8 = 0.

FORM OF THE ROOTS.

§356. Let the equation, st*-\- A^x"-
1

. . -\-An= 0, have

its coefficients all integral (the coefficient of the first term

being unity) ; it is required to determine whether it can

haye a fractional root.

If possible, let -r, a fraction in its lowest term?, be a root

of the equation. Then we shall have

an an~ 1

Multiplying by b"~i, and transposing,

^=z-,A 1
an-^—A 2a

n~^b . . — AJT~*.

Now all the terms of the second member of this equation,

are whole numbers, while the first member is an irreduci-

ble fraction. That is, we have an irreducible fraction

equal to a whole number; which, evidently, is impossible.

Ilence,
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If the coefficient of the first term he unity, and the other

orfficients all integral,the equation cannot have a fraction-
al root.

a.) It is not, therefore, to be inferred, that all the root?

are integral. They may be either integral, irrational

(§§ 153, 175), or imaginary (§ 23./. 2).

§ 357. Let the coefficients of the equation, X= 0, be all

real ; and let a -\- bj
1— 1 be a root of the equation.

The quantity bj—1 can have resulted only from the

extraction of an even root, which must have given, at the

same time,
— bj—1 (§ 23./. 1). Consequently, a— bj—l

must be a root of the equation.

Otherwise ; the sum and product of the roots (§ 355. 1,

4) must both be real. Therefore, if one root be a+ fl«/— 1,

another must be a— bj— 1, so that their product (§ 186)
and sum may both be free from imaginary expressions.

Hence,

If the coefficients of an equation be all real, the number

of its imaginary roots must be even (§ 217. I.).

0.) Thus, there may either be no (§ 63. N.) imaginary

roots, or there may be two, four, &c. Hence,

b.) Cor. r. Every equation of an odd degree has at least

one real root, with a sign (see c. below,) differentfrom that

of the last term
(i. e. of the coefficient of x°),

c.) We have [§§186, 162]

(a + 6y— l)(a— bj— 1) z=a 2
-i-& ,

.i positive quantity (§ 11. N.). Hence,

Ccr. ii. If all the roots of an equation are imaginary,
the last term must be positive (§ 216). Hence,

Cor. in. Every equation of an even degree, whose last

term is negative, has at least tivo real roots ;
one positive,

and the other negative (§§ 68. a; 215. 2).

1. Giver, the roots, 5, 3 -\-*/
—

4, 3 —«/— 4 ; to form

the equation. Ans. a:
3 — 1 lx 2 + 13.x*— 65 —. 0.



§ 358, 359.] signs of the roots. 275

2. Form the equation, whose roots are — 6 -{- 5«/
—

1,

— C— 5y— 1, 1 -fV— 4, and 1 —y— 4.

Ans. x* + 10x 3 — 42a: 2 — 62a:+ 305 = 0.

3. Form the equation, whose roots are 2, —2, 1-fV—37

and 1—y—3. .4ws. a:
4 — 2x 3

-j- 8a:— 16 = 0.

§ 358. d.) Again (§ 218. h),

(x-a-5y-l)(x-fl-fiy-l) = (a:
—

a)
2 -H 2

;

a result necessarily positive for every real value of x. Con-

sequently,

Cor. iv. (1.) The product of all the imaginary factors is

positive for every real value of x. Hence,

(2.) The sign of the j£rs£ member, for any ?-caZ value of

x, depends on the real factors. And,

(3.) If all the roots are imaginary, the first member will

be positive for every real value of x.

e.) The product,

(a;
_ a—y— 5) (a:

— a -+V—b)
— x- — 2ax -f a- + 6 2

,

of the factors corresponding to each pair of imaginary

roots, or conjugate? roots, as they are sometimes called, is

real. Hence,

Cor. v. Every equation may be resolved into real fac-

tors ; of the first degree, corresponding to the real roots ;

and of the second degree, corresponding to each pair of

imaginary roots.

SIGNS OF THE ROOTS.

§ 359. Let a be a root of the equation,

x'
l+ A

1
xn- lJrA 2x

n~ 2
. . . . -f A n^ 1x-\-A n= 6. [{I)

Changing the signs of the alternate terms, we have

xn— A jK"-
1Jr A 2x

n-z— A^xn- 3
-\- &c.

—
; (2)

or (§ 44. a), changing all the signs of (2),

— xn+A 1
xn- 1—A 2x

n
---\-A 3

x'*- 3—&c.= 0. (3)

(e) Lat. conjugo, to join together.
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The equations (2) and (3) are, obviously, the same; as

will be seen by transposing, in each, all the negative terms

to the other side.

Now, if -[-a be substituted for x in (1), and — a, in (2)

when n is an even number, or in (3) when n is odd, the re-

sults will be precisely alike. But the substitution of -f- a

in (1) reduces the first member to 0. Consequently, the

substitution of — a in (2) or (3) reduces the first member
to 0, and therefore — a is a root of the equations (2) and

(3). Hence,

If the signs of the alternate terms in an equation be

changed, the signs of all the roots will be changed.

Form the equations, whose roots are 1, 2, and 3 ; and
—

1,
—

2, and —3.

§ 3G0. A permanence* o£ signs occurs when two succes-

sive terms are affected each by the same sign ; a variation,

when their signs are different. Thus, x -f- a = -exhibits

a permanence, and x— a= 0, a variation ; the first corres-

ponding to a negative, and the second, to a positive root.

I. Let the signs of the terms in their order, in any com-

plete equation be -\- -| ( ,
and let a new factor,

x — a =. 0, corresponding to a new positive root, be intro-

duced. The signs will be as follows, viz,

+ +— - + -
+ ~
++ + ~

Now, in this result, it is manifest, that each permanence
is changed into an ambiguity ; and that, whether there be

one, or any greater number, of double signs, the single

signs immediately preceding and following are always un-

like. Hence the number of permanences may be dimin-

ished, but cannot be increased.
«

Hence, the number of signs being one greater than be-

(/) Lat. permaneo, to continue.
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fore, the number of variations also must be at least one

greater.

Now the equation, x—a= 0, containing one positive root,

has one variation. Consequently, as every additional pos-

itive root introduces, at least, one additional variation,

The member of variations can never be less than the

number of positive roots.

II. (1.) By like reasoning it can be shown, that the in-

troduction of a negative root
(i.

e. of the factor x-\-a) will

introduce at least one permanence ; and that, therefore,

The number of permanences cannot be less than the

number of negative roots.

(2.) Or, if we change the signs of the alternate terms, the

variations will evidently become permanences, and the per-

manences, variations ; and the negative roots will, at the

same time, become positive (§ 359).
But the number of variations in this equation cannot be

less than the number of its positive roots. Therefore, the

number of permanences in the primitive equation cannot

be less than the number of its negative roots.

Hence, universally, in a complete equation,

§ 361. The number of positive roots cannot be greater
than the number of variations of sign ; nor the number

of negative roots, greater than-the number of perman-
ences.

Note. A complete equation of the rath degree,

*n+ A*"- 1 +A n_ 1
x+ A n =zQ,

must, obviously, contain n4-l consecutive powers of x; and, of

course, n + 1 terms (§§195, 196).

1. How many permanences and variations in the equa-
tion, whose roots are 2, 2, and — 5 ?

Ans. The equation is

(x
—

2)(x
—

2)(x-\-5)=:x3-\-x
2 — l6x+ 20 = 0;

showing one permanence, and two variations, as we have
seen there must be.

alg. -

21
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2. IIow many permanences and variations in the equa-
on, whose roots are 1, 2, 4, and — 4 ?

a.) The whole number of variations and permanences
must, evidently, be equal to the degree of the equation

e equation being complete, or, if not complete, being
rendered so by the introduction of cyphers, as in § 362).

Therefore,

Cor. i. If the roots of an equation be all real, the num-
ber ofpositive roots must be equal to the number of varia-

tions ; and the number of negative roots, to the number of

permanences. See § 218. 1, 2, 3.

§ 362. b.) If any term of the equation be wanting, a cy-

pher may be put in its place; and, obviously, either sign

may be given to it without affecting the I'oots of the equa-
tion.

Thus, the equation,

x 2
-f 25 = 0,

may be written x 2 ± -f- 25 = 0.

Now, in this equation, if the upper sign be taken with

;ie middle term, there will be no variations ; and, of

< ourse, the equation has no positive root. But, if the low-

er sign be taken, there will be no permanences ; and, there-

fore, the equation has no negative root. Consequently, the

roots of the equation are imaginary (§ 353).

So, in the equation,

x 3 ±0+ 4^+ 7 = 0,

be upper sign be taken with the second term, there will

be no variation, and no positive root ; and, if the lower

si<ni be taken, there will be but one permanence, and, of

course, not more than one negative root. The other two

roots are, therefore, imaginary.

The equations, x- ± — 25 = 0,

and ^±0-4x4-7 = 0,

exhibit the same number of permanences and variations,

whether wc take the upper or lower sign before the mis-
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sing Jterm ; and, consequently, it cannot be inferred that-

the roots are not all real.

Hence,

§363. Cor. ii. If the introduction of+ in place oi

missing term gives a different number of permanences and

variationsfrom that given by the introduction of — 0, the

equation contains imaginary roots.

c.)
This will, obviously, happen, if the terms immediate-

ly preceding andfollowing the deficient term have like sign-.

d.) Also, if tico or more successive terms be wanting,

then, supplying the terms, the first of the supplied term-;

may always have the same 3ign as the term following all

the deficient terms. Consequently, the equation must have

imaginary roots.

Thus, in the equation,

x3 — 0±0—1 = 0,

if we take the upper sign before the third term, we have

three variations, to which negative roots cannot correspond :

if we take the lower sign, we have two permanences, to

which positive roots cannot correspond. Two of the root.-,

then, can be neither positive nor negative ; and must, of

course, be imaginary.

§ 364. e.) It is evident also, that, the greater the num-

ber of deficient terms, the greater difference can be made
between the numbers of variations and of permanences,

respectively; and, therefore, the greater will be the num-
ber of imaginary roots of which we shall be assured. Thus,
it is easily seen, that,

(I.) If an odd number (2m-f-l) of consecutive terms be

wanting, the number of imaginary roots must be at least

2m -{- 2, if the signs of the terms immediately preceding
and following the deficient terms be like; and at least 2m.
if they be unlike.

a.) Thus, in the equation,

xA ± ± ± + 1 = 0,
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we find, if we take the upper 6igns throughout, no varia-

tions ; and, if we take, alternately, the lower and upper
signs, no permanences. Hence, there must be 4(= 2m-\-2)

imaginary roots.

b.) In the equation,

x±— — 0±0 — 1=0,
we may have one permanence and three variations, or one

variation and three permanences. Hence, we may have

one positive and one negative root ; and must have 2(= 2m)
imaginary roots.

(2.) Also, the deficiency of an even number (2m) of con-

secutive terms indicates at least 2m imaginary roots.

c.) Examine the permanences and variations of the equa-

tion,
1

x* — 0±0— 1 = 0.

Notes. (1.) Giving to the first cypher in the last example, and

to the first two in the last but one, the sign of the term following them

nil, we have an odd number (2»i
— 1) of terms wanting, preceded

and followed by terms of like signs. Wherefore, by 1, above, there

must be at least 2m{—2m— 1+1) imaginary roots.

(2.) It should be remembered, that there may be more imaginary

roots than are thus indicated ; and that there are frequently imagi-

nary roots when no terms are wanting (§§ 216; 218. 4).

TRANSFORMATION.

§ 365. Let it be required to transform the equation

X=xn
^-A 1x"-i-{-A 2x

n-2
. . + A H- 1

x+ A n =0, (1)

into another whose roots shall be less than those of the

given equation by x' .

The roots of the new equation will, of course, be equal

to x— xf
. Let y= x— x'. Then y -\~ x! == x ; and, if we

substitute y -\- x' for x, we shall have a polynomial of the

same value as before, but expressed in terms of y(=x—x'}

instead of a*. Thus,

X=(y+tf)*+A 1(y+tfy-i-t-A^+s')-* ,

+ A n_ 2(y+x<y + A^^y+ x') + A n
= 0,
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TRANSFORMATION. 281

y
n
-\- nx? y

n-i
-\-rix"

1- 1

Jr {n
— l)A l

x/n~ 2

rJn

-\-A^
n~-

=f 2

[-2A n_ 2x> +A n^xJ '

+ An )

Or, putting B 1 , B.2 , &c., for the coefficients of y
i_1

,

y
n~ 2

,
&c.

X^yn-t-BsjO-i + B^-s ...+Bn_ ly+ Bn = U.(:;

Or, again,

X— (x—x
/

)
n
-\-B l (x—x'y-

1
..+Bn- , (x—x

J
)-\-Bn= ; (4

where x—x1

may be regarded as the unknown quantity.

Now, obviously, the roots of (2), (3) and (4) are the val-

ues of y(— x— x/); and are, therefore, less by x' than the

roots of the given equation (i.
e. the values of x).

Hence, the transformation required is effected by the

substitution of y-\-x' (i. e. of \_x
—

x'~\-\-x') for x in the

given equation. Thus,

Find an equation, whose roots shall be less by 2 than

those of the equation,

x 2 — 9cc+ 20z=0.

Substitute y-\-2 for x.

Then (y+ 2)
=-%+ 2) + 20 = 0,

or #
2+ 4

— 9 5y+6 = 0,

y+ 2-

— 9X2^=0, ovy'

+ 20

is the equation required, whose roots will be found to be

less by 2 than those of the given equation.

§ 366. a.) The labor of effecting this substitution may
be greatly abridged, especially in the higher equations.

*24
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For Bn,
i. e. the coefficient of y° in the transformed

equation (2), is simply what the first member of the given
equation becomes, when x/

is substituted for x. That is,

Bn =f(x').
Bn_ 1

is formed by multiplying each term ofBn by the ex-

ponent of x1 in that term, and diminishing the exponent by

unity.

Bn^ 2 is formed by multiplying each term of Bn_ x by its

exponent of xf

, diminishing the exponent by unity, and di-

viding by 2 ; and so on.

b.) In other words, each term of Bn^ x is the first de-

rived function (§ 292. N. 3) of the corresponding term of

Bn ;
i. e. of/(a/).

Each term of Bn_ 2 is half the first derivative of the cor-

responding term of BH^ 1 ;
i. e. half the second (§ 292. N. 4)

derivative of the corresponding term of Bn .

So, each term of -S„_ 3 is one third of the first derivative

of the corresponding term of Bn- 2 ; i. e. one sixth of the

third (§ 292. N. 4) derivative of the term of Bn .

c.) Hence, Bn^ 1
is called the first derived polynomial of

Bn ,
or of the given equation ; and may be expressed by

-S},orby/'«>.
I?n_3 is half the second derived polynomial of the equa-

B" f'ip^)
tion, and may be expressed by —-, or by'

—-—
.

bo, 2*„_ 3
—

2-3
—

~273
» ^«-4 — 2.3.4 2.3.4'

^-^-2.3.4.5-2.3.4.5'
^C '

1. Diminish by 2 the roots of the equation,

x i
_}_ 5X -j- 6 = 0.

The transformed equation will be of the form.,
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And we shall have

B
2 =f(xf

)
=zxf2 + 5x,+ 6 = 2 2 -\-5x2 + G = 20;

B
1
= B 2'=f'(x

f

)
= 2x'+ 5 = 2X2 + 5 — 9;

B = *B
2
" = 1X2 = 1 {B denoting the coefficient of

,y
2

).

#
2
~\~ 9y-f"20 = is the equation required.

§ 367. d.) A still more convenient method of finding

these coefficients results from the form of equation (4).

For, comparing (4) and (1), we have

(x—x'y-\-Bf(x— x'y-i- +Bn_^(x
—

x') + BK

-xn
-\-A x

xn-^
-\-An- xx-\-At. (5)

Now every term of the first memher of this equation is

divisible by x— x', except the last term, Bn ; which will be

the remainder.

In like manner, every term of the quotient which results

from this division is, evidently, divisible by x— x', except

the last, Bn_ x ,
which will be the remainder; and so on.

But the second member being absolutely (§ 37. d) equal

to the first, its successive divisions by a:— x1 must result in

the same quotients and remainders as the division of the

first member.

Hence,

If we divide the given equation by x—xJ
,
the remainder

will be J?,', the coefficient of y° in the transformed equation.

If we divide the resulting quotient by x— a/, the re-

mainder will be B'n_ v the coefficient of y
1

; and so on, each

of the coefficients being formed by the successive division

of the several quotients by a;— xf.

e.) It is evident also from § 348. b, that the first remain-

der will be Bn [=f(x')~] ;
i. e. what X becomes, when x'

is substituted for x (§ 350. 2, 3, 4).

1. Transform the equation, x- -j- 9a:+ 20 = 0, into

another whose roots shall be less by 5 than those of thf>

given equation.
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:e' + 9.r+ 20
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6. Diminish by 2.8 the roots of the equation,

x* — 12a; 2 + 12a;— 3 = 0.

We may here either diminish the roots of the equation

by 2, and then the roots of that equation by .8, or we may
diminish the roots of the given equation at once by 2.8.

The former method is generally the more convenient,

Thus,
1+0— 12 + 12 — 3 (2

2+ 4— 16 — 8

2— 8— 4,-

2+ 8
*
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§ 368. If the coefficient of any power of y in equation (2)

of §365 reduce to zero, that term will be wanting in the

new equation. Thus the second term will disappear from

the equation, if nx!+ A z=
;

i. e. if x'— . Hence.
n

To make the second term disappear, we must make x/ =:

; i. e. we must diminish the roots by ; or, which
n n

is the same thing, increase them by -\ .

lb

a.) This will be evident otherwise ; thus,

The sum of the n roots of the primitive equation is —A
A

(<$ 355. 1). Now if each of the roots be increased by — ,v y n
their sum will be increased by A ; and will, of course, be

equal to— A+A = 0.

1. Remove the second term from the equation,

Xi_ 4X3 _ 19X 2
_|_ 106a;— 120.

Here we have n= 4, and i=— 4.

.*. x, —— — — x;
n 4

and we must diminish the roots of the equation by 1.

1—4— 19 + 106 — 120 (1

1— 3 — 22 +84
_ 3 — 22 + SlT-

17!^ = 54 .

1 — 2 — 24

— 2— 247+ 60 = #
3

.

1—1
— 1,-25 = J5 2 .

1_

y*
—

25y
- + GQy

— 36 = is the equation required.

Transform the following equations in like manner.

2. x* — 3x2 — 4X+ 12 = 0.

Ans. x 3 — 7x + 6 = 0.
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3. a^-f. 14x4 + 12a; 3 — 20x 2 + 14x— 25 = 0.

Am. y*
—

78*/
3 + 412?/

2 —
757y-f-401 = 0.

4. x 2
-{-2^+ 5

2 = 0. Am. y*-\-(q*—p*) = 0.

6.) The last result leads to the common solution of the

equation. For, by transposition,

if- = p
n~ —

q
2

; and.%y=±Q>2— q2)k
But ^

—
a?-|-^.

i

x+p = ±(j>*.- q*)\

x =—^> ± (jp
2—

y*)

c.) If we would remove any other term from the equa-

tion, we must make the coefficient of that term in (2) of

§ 365 equal to zero, and find the corresponding values of

x1

. By the substitution of a value so found for x1

, that

term will, of course, vanish.

It is obvious, that, to remove the third term, we must

solve an equation of the second degree ; for the fourth, one

of the third degree, and so on.

To remove the last term, we must solve an equation of

the wth degree ; in fact, the given equation itself, with x1

substituted for x. The values of x' found from this equa-
tion will, therefore, evidently be the roots of the given

equation.

§ 369. If, in the general equation,

xn
-\-A 1

xn- l + A
2
xn- 2 .... +A n_ lx-{-A n =0,

we put y= rax (i. e. substitute — for x), we shall havem

£+^S£ + A-^+ A"=°--

or (§ 46) y
n
-\-A lmy

n- x
. . -\-A n- l

mn- x
y -\-A nmn—

;

an equation whose roots are in times those of the primitive

equation. Hence,

An equation will be transformed into another, whose

roots shall be equal to the roots of the first multiplied by any
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number, as m, if we multiply the second term of the given

equation by m, the third by ?n 2
,
and so on. Hence,

Cor. i. An equation having fractional coefficients may
be changed into another with integral coefficients, by trans-

forming it so that its roots shall be those of the given equa-
tion multiplied by a common multiple of the denominators.

Cor. II. If the coefficients of the second, third, &c. terms

of an equation be respectively divisible by m, m 2
, &c, then

the roots of the equation are of- the form mx, and conse-

quently m is a common measure of them.

1. Transform the equation,

3x3-f4x
2 — 5x+6 — 0,

into another whose roots shall be three times those of the

given equation.

Here m= 3. .*. y= Sx, and x= iy.

Am. 3y3 + I2y
2 —

45y+ 162 =
;

or, y
3 + 4y

3 —
15y+ 54 = 0.

2. Transform the equation,

into an equation with integral coefficients.

Am. x^ -f 8x
2 + 108*— 4320 = 0.

§ 370. If in the general equation,

*
l+A la+-i+Aax*-* .... +A n_ 1

x+ A n =0,

we substitute - for x, we shall have
y

^+A~+^^ +A n_ 1

1-+ A n =0;

or, clearing of fractions, and reversing the order of the

terms,

A^+A^^-i +^ 2y»+.4 1y+ l=0;
an equation, whose roots are the reciprocals of the roots of

the given equation. Hence,
To transform an equation into another, whose roots shall
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be the reciprocals of the roots of the first, we have only to

reverse the order of the coefficients.

a.) Cor. We may also, evidently, transform an equation

into another, whose roots shall be greater or less than the

reciprocals of the roots of the given equation, or multiples

of those reciprocals, by applying the processes of §$ 367,

369 to the coefficients taken in a reverse order.

b.) It may happen, that the coefficients, when taken in

the reverse order, shall be the same as when taken direct-

ly. In such a case, the transformed will obviously be

identical with the given equation ;
and will have the same

roots. Consequently, as the roots of the transformed are

the reciprocals of those of the given equation, and, at the

same time, are identical with them, one half of the roots of

the given equation must be the reciprocals of the other half.

Thus the roots will be a. -
; b, T '•>

&c -

a b

c.) If the coefficients of corresponding terms are numer-

ically equal, but have unlike signs, the same is true of the

roots, in every equation of an odd degree ; and, in every

one of an even degree, whose middle term is wanting. For,

in both these cases, if all the signs of the transformed equa-

tion be changed, (which will not affect the iralue of the

roots,) the transformed will be identical with the primitive

equation.

§ 371. d.) Such equations (§ 370. b, c), which remain

the same, when - is substituted for x, are called recurring
9

x
or reciprocal equations.

e.) The general form of a recurring equation is, obvious-

iy,

'

xn
-\-A 1

xn~ l +A 2x
n- 2 + A^-^A^x -+-1 = 0.

Eecurring equations have certain peculiar properties,

which will be considered hereafter.

(g) Lat. recurro, to run back.

ALG. 25



290 THEORY OF EQUATIONS. [§ 372, 873.

LIMITS OF THE ROOTS.

72. In the equation,

(x
— «

x )(^
—

Q>$)(x
— « 3 ) ... = 0,

let a
1 ,

a 2 ,
a 3 ,

&c. be the real roots, taken in the order of

{heir magnitude; i..e. a
1
>a 2 ,

a 2>a3 ,
&c.

If now b
lt > av be substituted for x, we have

(b 1
~a

l )(b 1
—a.2 )(b l

—a 3 ) . . . (b l
—an), positive;

all the real factors being positive (§§ 68. a; 358. 1, 2).

If b.2 , < a
x
and > a

2 ,
be substituted for x, we have

(h — «i)(5 2
— « 2 )(* 2

— «
3 )

• • • (
& 2
—

«»)» negative-

one of the real factors being negative (§ 68. a).

So, if we substitute b 3 , <a 2 and > a 3 ,
the product will

be positive ; two of the real factors being negative, and the

rest, positive.

In like manner, the substitution of 5
4 , <a 3 and >« 4 ,

will give a negative ; of &
5 , <a4 and >« 5 ,

a positive re-

sult ; and so on. Hence,

(1.) If a quantity, greater tlian the greatest real root of an

equation, be substituted for x, the result will be positive :

and,

(2.) If quantities intermediate between the roots, begin-

ning with the greatest, be successively substituted for x,

the results will be alternately negative and positive.

The roots of the equation,

X 3 _ 5X 2
_|_ 2x + 8 = 0,

are 4, 2, and —1. Substitute 5, 3, 1, 0, and —2 fur x,

and observe the signs of the results.

§ 373. a.) Hence,

Cor. i. When two quantities are successively substituted

for x, if the results have like signs, there is an even ; if un-

like signs, an odd number of real roots between those quan-

tities.

Note. The even number may be (§63. N.).
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b.) From 1, and Cor. i., it is evident, that,

Cor. ii. IF a number less than the least real root be sub-

stituted for x, the result will be positive or negative, aecord-

iug as the number of real roots is even or odd.

c.) If the degree of the equation be odd, the substitution

of
-j- oo for x will render the first member positive ; and of

— oo, negative. Hence (§ 373. a),

Cor. in. (1.) Every equation of an odd degree must have

at least one real root (§ 357. b) ; and (2.) the whole number

of its real roots must be odd.

d.) If the degree be even, and the last term negative, the

substitution either of -\- oo or of — oo will render the first

member positive ; and the substitution of will render it

negative. Hence,

Cor. iv. (1.) Every equation of an even degree has an

even (§373. JST.) number of real roots; and (2.) every equa-
tion of an even degree, whose last term is negative, has at

least two real roots, one positive and the other negative

;§ 357. Cor. in.).

§374. e.) If the substitution of p, and of every number

greater than p, renders the result positive, then p is great-
er than the greatest real root ; and is called a superior li?n-

it of ^the roots.

f.) So, if, the signs of the alternate terms being changed

(§359), the substitution of q, and of every number greater
than q, renders the result positive, then — q is less than the

least real root
(i. e. it is an inferior limit).

§375. Let Ah be the first, and A m , numerically the

greatest, negative coefficient of any complete (§3G1. a)

equation,

xn+ i/-i . .
— A hx

n~h
. . —A mx"-

m
. . -f A n=

Now, if all the coefficients after Ah be negative, the sum
of those terms will be numerically equal to the sum of the

preceding, positive terms.
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Consequently, any value of x, which renders the sum of

the preceding positive terms numerically greater than the

sum of the negative terms, is a superior limit of the roots.

And, with still greater reason, any value of x, which
renders xn

numerically greater than the sum of the nega-
tive terms, is a superior limit.

The most unfavorable case possible is, evidently, when
all the coefficients after Ah are negative, and each of them
is equal to A m , the greatest.

Any value of x, then, which makes

x»>J m (x'
l-»+ xn-h-i

. . . + *+ l), (1)

or (§261) *>^«C^7
1

).
<
2

)

is a superior limit.

Now (2) will certainly be ti-ue, if we have

x'i-M-i x~<"- 1
}

x" > A m ; or 1 > A,
x_l ~"

x _i >

or x
-'<-i(.r _i) > J m. (3)

But x— 1 <x, and (x
—

l)*-
1 <s*-i.

Therefore (3) will be true, if we have

{x
_ 1y- l(x

_
1)^ (x

_
1)^ =zAm .

(4J

and, with still greater reason, if (x
—

l)
h > A m . (5)

Also, (4) and (5) give x— 1 =
,
or > (^„,)*;

or x=z ,or>(J w)*+ l. (6)

That is, in a complete equation,

§ 376. 7f we increase by unity that root of the greatest

negative coefficient, ivhose number is equal to the number of

terms preceding the Jirst negative term, the result will be a

superior limit of the roots.

Find superior limits of the roots of the following equa-

tions.

1. x* — ox 3 + 37x2 — 3x -f 39 = 0.
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Here A m= 5, and h— 1.

1 i

(A m)
h+ 1 = 5T+ 1 = 6, the limit required.

a.) If the second coefficient be negative, the limit found

will be the greatest negative coefficient increased by unity.

2. aj«-f-7:K±--12a;
3—

49fc*-f-52se
— 13 = 0.

Ans. (49)^+ 1 = 8.

3. a^-fll* 2 — 25* — 67 = 0.

.4/w. (67)^+1 = 6.

6.) If the signs of the alternate terms be changed (§ 359),

and a superior limit be found, that limit with its sign chang-

ed will be an inferior limit ; or, as it is sometimes called, a

superior limit of the negative roots.

c.) A number, which is numerically less than the least

positive or negative root is sometimes called an inferior

limit of the positive, or of the negative roots.

Let the equation be found, whose roots are the recipro-

cals of the roots of the given equation ; and let the superi-

or limits of the positive and negative roots of this new

equation be found.

Now those roots of the new equation, which are numer-

ically the greatest, are the reciprocals of those of the given

equation, which are numerically the least.

Therefore, the reciprocals of the superior limits of the

positive and negative roots of the new equation will be the

inferior limits of the positive and negative roots of the

given equation.

LIMITING, OR SEPARATING EQUATION.

§ 377. Let a
l , a„, a3 ,

&c. be the real roots, taken in the

order of their magnitude, of the equation,

3*+-4 1ic
B-i

. . . + A n„ 1
x+ J n =0. (1)

Diminishing the roots of this equation by a/, we have

(§365)
*25



m
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9*+Ma*r*+B#— + BB_ 1y-^BH =0; (2)

in which ($§ 365 ; 366. c)

J?n_ 1 -fix') = na"-i +(«- 1)4^-2 . .
J- J„_ 1 .(3)

Also, -5,,-!, is the sum of the products of the roots, with

their signs changed, of equation (2) (i. e. of the products of

x'— av x1— a 2 ,
. . x1—

a„), taken n— 1 at a time (§ 355).

That is,

B„_ 1
= (x'— a 2 ){x

J— a 3){x>— a4 ) . . . (x'—an) +
(x'—a 1 )(x'—a 3 )(x'—a 4 ) . . . (x'—an)-\-

(x'—a l )(x
!—a

2)(x'—ai )
. . . (x

1—
o„) +

j
• • •

(^ «i)(*'' a 2)(X
' a3) • • • (^ an-l)jJ

each term consisting of n— 1 factors ; and, of course, each

factor being found in every term but one.

If now, in this value of Bn^^ we make x*
'= av a 2 ,

a 3 ,

&c, successively, we shall have (§ 68. a)

Bn. r
— (a l

—a 2)(a 1
—a3 )(a l

—a 4 )
. . — +.+•+ . .=+ ;

Bn. 1
= (a 2

—a
1 )(a 2—a 3 )(a 2

—a4 ) . .=— .+ ."+..=— ;

#«-, = (« 3
—«

x )(« 3
—

«2)(«3
—a4> • —— •

— + ••= + ?

&c.

That is, if we substitute a
1 ,
a 2 ,

a
3 ,

&c. for x! in Ai-p
the results are alternately positive and negative.

Hence (§ 372), the real roots of Bn_ l
=. lie between

a p a 2 ,
a 3 ,

&c. ; and therefore, putting x m place of x1

,
we

have the equation, B
ll
^

1
ss

na;"-! + (n—1)^a*-
2 + (n—2)A 2x

n~ 3
. . +A„^ 1

=
;

whose real roots severally lie between those of the given equa-

tion ; and which is thence called the separating or limiting

equation.

a.) Bn-V we have seen (§ 366), is the first derived poly-

nomial of the given equation. That is,

f(x) = 0,or X'=
is the limiting equation of

f{x) — 0, or A' — 0.
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Hence, the separating or limiting equation is properly

called the derived equation.

b.) It is obvious, that iff(x) — have real roots (as as-

sumed in the investigation), the greatest and least are res-

pectively greater and less than the greatest and least real

roots of/' (a?)
=: 0.

EQUAL ROOTS.

§ 378. c.) If the given equation have two roots equal, an

a<L=-av the factor x— a
Y will, evidently, be found in each

of the terms of B
lt
-

l [§ 377. (4)] ; and, consequently, when

x— av we shall have B^^ [—/'(a?)] — ;
i. e. a

L will

be a root of/' (a;)
= 0.

So, if a
3
= a

2
= a v the factor (x

— aj
2 will be found

in each of the terms of BH^ X , i. e. of f'(x); and the

equation, f'(x) = 0, will have two roots equal to a
l ; and

so on.

d.) On the other hand also, it is evident, that no factor

can exist in all the terms of 2?„_i [=/'(#)], unless it enter

more than once in f(x), i. e. in the given equation ; and,

that, if a factor appear any number of times in /'(#). it

must be contained once oftener in /(a;).

e.) Hence, to find whether an equation has equal roots,

Form the derived or limiting equation, /'(a
-

)
= 0; and

find the greatest common divisor (§ 104), D, of the polyno-

mials,/^) and f'(x).

Make Z)= 0, and find its l'oots. Each of these roots

will be contained once oftener in the primitive equation,

f(x) — 0, than in D— 0.

/.) If
'

f{x) and/'(x) have no common divisor, the given

equation, f(x) =z 0, has, of course, no equal roots.

1. Given f(x) =z x 3 — 4a; 2 -f 5x — 2 = 0, to find

whether it has equal roots.

The derived equation is

f'(x)=3x
!i — 8x + 5 =0;
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and the greatest common divisor off(x) and f'(x) is

a:— 1.

Hence, there are two roots equal to 1.

Dividing/(x) by (*-l)
2
(§8G),

1

+ 2

— 1

1 — 4-J-5 — 2

•+2 — 4

-1 + 2

1-2,
we find, for the remaining factor, x— 2 = 0.

Therefore, the roots off(x) = are 1, 1, and 2.

2. Given x± — 6x 3 + 13a; 2 — 12a; + 4 = 0, to find the

equal roots, if there be any. Ans. 1, 1, 2, and 2.

3. Given x 3 + 5x 2 + 3x— 9 = 0, to find the equal

roots. Ans. — 3, and — 3.

Note. Between two equal roots of an equation, there can evi-

dently be no intermediate root, unless it be equal to each of them.

Thus, the derivative of the equation,

x 2 + 2px+ q
2 = 0, is 2x+ 2p = 0, or x +p = ;

and the root of this derived equation is —p, which lies between the

two roots of the given equation,

—P+o/(P 2 —q% and -p-j^- q «~).

Now, if q becomes nearly equal to p, the quantity under the rad-

ical becomes small, and the two roots become nearly equal. Also,

if q becomes equal to jo,the radical disappears; and the roots become

equal, taking the form x =—p ± 0.

Thus, the separating root is always intermediate between tho un-

equal roots; and is the limit to which they approach, as they become

equal.

sturm's theoresi.

§ 379. Sturm's Theorem is a method, discovered by
M. Sturm in 1829, of finding the exact number, and, near-

ly, the situation, of the real roots of an equation.

The number of the real roots being known, the number

of imaginary roots is known of course (§ 353, a).
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Let X=x"+ A
l
xn~ 1 .... -\-A n. xx-{-A n —0

be an equation which contains no equal roots ;
and let X'

represent its first derived polynomial (§§ 366. c
;
292. N. 3).

Let also the process of finding the greatest common di-

visor (§ 104) be applied to the polynomials, X and X'. as

follows ;
viz.

Divide Xhy X', till a remainder is obtained of a degree

lower than X'.

Change all the signs of this remainder, and represert

the resulting quantity by X2 .

Divide X' by X2 , change the signs of the remainder,

and designate the result by X3
.

Continue this process, always changing the signs of (he

remainders, till a remainder is obtained independent of x.

Notes. (1.) This last remainder will not be zero ; because, by

hypothesis, the equation does not contain equal roots; and, therefore,

the polynomials .XT and X' have no common measure (§§ 104; 378.

/)•

(2.) In performing these divisions, any positive factor not found

in one of the polynomials may be introduced or rejected, in the other

(§ 100. a).

(8.) The numbers, 2 , 3 , &c, are used to distinguish the func-

tions, Xo, X3, &c., from simple derived functions, which would be

more appropriately denoted by X", X"', &c (§ 292. N. 4).

§ 380. The result of the above operations, representing

the successive quotients by Q x , (? 2 , &c, may be expressed

as follows ; viz.

X=X'Q 1
-X2 ;

]

X' = X2 Q 2-X5 ;

X2 =X3 Q3 -X^, (U....
1

X H- 2
— -A „_ j v„_ j

A „ ; J

Xn representing the final remainder, which is indepeji-

dent of a:, and, as we have seen, not equal to zero.

§ 381. I. Now, obviously, any one of these functiur.?

may become equal to zero for particular values of x. We
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must inquire, whether two consecutive functions can become

zero at the same time ; i. e. for the same value of x.

Suppose that X2 and X3 become, at the same time, equal

to zero. Then, making, in the third of equations (1),

X2= 0, and X3
— 0, we find X4

= 0.

So, from X3 = 0, and X4
= 0, Ave find X5

=
; and so

on, till, from the last equation, we find Xn =. 0, which is

contrary to the hypothesis.

Or, proceeding in like manner in the other direction, if

X
2 and X3 ,

or any other two consecutive functions become

zero simultaneously, there must also result at the same

time, X=z and X' =. 0. This, again, is impossible, be-

cause the roots of X' =. are intermediate between those

of 1=0 (§ 377. a) ; and moreover, there are no equal

roots (§ 378. c).

Hence,

No two consecutive functions of the series, X, X',X2 ,&c,

can become zero at the same time ; i. e. for the same value

of x.

§ 382. II. Again, let any one of the functions, as X3

become zero for a particular value of x.

Making X3
= in the equation,

we have X
2
=—X4 . Hence,

If a particular value of x reduces one of the functions to

zero, the adjacent functions must have unlike signs for that

value of x.

§ 383. Let now different values, as p, q, &c, be substi-

tuted for x in the functions, X, X', X2 ,
X3 ,

&c. ; and let

the resulting signs of the several functions be written in

order, and the number of their variations be noted.

And, in the first place, the signs of the functions will re-

main unchanged, and the number of their variations, of

course, unaffected, so long as q is less than the least (§ 373.

b) real root of the equations}
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X= 0, X'= 0, X2
= 0, X3 = 0, &c.

But, if q becomes equal to a root of one of the equations,

the corresponding function will become zero ; and, as q in-

creases still more, the function will appear with its sign

changed (§ 373. a).

We must inquire, what will be the effect of this change

of sign on the order of the signs, and on the number of

their variations.

§ 384. 1. First, let q be the smallest of all the roots of

the equations (1), and let it be a root of one of the auxiliary

equations, as X3
= 0.

Then we shall have X3
= 0, and X2

=—X4 . That is,

X2 and X
4

will have unlike signs (§ 382), Moreover,

neither of them can become zero at the same time with X3

(§381).

We know also, that neither X2 nor X4 can have chang-

ed' its sign ;
because we have not passed any of the roots of

X„ r= 0, or X4
= 0, q being the least of all the roots.

Therefore, whatever may have been the sign of X3 , be-

fore it became zero, the signs of X2 and X4 having been

unlike, the three signs- must have exhibited one variation

and one permanence. Thus, they must have been either

-\- ± — ,
or— ± +.

If now we substitute for x a quantity greater than the

least root of X3
= 0, and less than the least root of X.2 =

and X4
— 0, the signs of X2 and X4 will remain as they

were ; while the sign of X 3 will be changed (§ 373. a).

The signs will then stand thus, viz.

+ :f
—

,
or— q: -f;

still showing one valuation and one permanence, as before.

The same reasoning, obviously, applies to any function

intermediate between X and X„. Hence,

The substitution of a root of an intermediate equation, or

a change of sign of one of the intermediate functions does

not affect the number of variations of sign in the series.
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§ 385. 2. "We need, therefore, to consider the case only,

in which X changes its sign in consequence of passing a

root of the primitive equation, X=0.
In examining this case, we must remember, that, if X=0

have real roots, the least of them is less than the least real

root of X'= ("S 377. b) ; also, that X being one degree

higher than X', one of the equations, XrrrO and X'-=z().

must have an odd, and the other, an even number of real

roots ($ 373. c, d).

Consequently, when we substitute for x a quantity less

than the least real root ofX= 0, X and X' must have un-

like signs (§ 373. b).

But X changes its sign in passing the least real root of

X= 0. If, therefore, we substitute for x a quantity greater

than that least root of Xm. 0, and less than the least root

of X' =z 0, X and X' will have like signs.

That is, these signs, which before exhibited a variation.

willjiow exhibit a permanence. «

Therefore, as the number of variations in the other func-

tions has undergone no change (§ 384),

The whole number of variations is diminished by one,

in passing a real root of X= 0.

a.) The same reasoning will apply to the next real root

ofX= ;
and so on.

For suppose, that we have passed any equal number of

the real roots of X= and X' = 0.

Now, if we substitute for x a quantity less than the next

greater root of X=0, the signs of X and X' will be un-

like (§ 373. b), and will constitute a variation. *

But, if we substitute lor x a quantity greater than that

next root of X=0, and less than the succeeding root of

X'— 0, X will change its sign ;
and the signs of X and X'.

becoming like, will constitute a permanence.

b.) In fact, after we pass the least root of X= 0, A' and

X' have like signs, till we pass the least root of X'=
;

when they become unlike, without however producing an
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additional variation (§ 384). Then, in passing the next

root of X=0, the change of sign in X introduces a per-

manence instead of a variation (§ 385).

Hence,

§ 386. If two quantities, p and q be successively substi-

tuted for x in the functions, X, X', Xa , &c.,

The difference between the number of variations, pro-

duced in the signs of these functions, by the substitution of

p and of q, is always equal to the number of real roots of

the equation JzrO, included between those quantities; i. *-.

between p and q.

a.) When X'— 0,X and X2 have unlike signs (§ 382).

But when X'= 0, X is alternately positive and negative.

Therefore X2 is alternately negative and positive.

This principle, which, of course, supposes, that X= has

real roots, will enable us better to understand, how the

ries of signs loses a variation in passing each real root of

X=0.

b.) (1.) We may find simply the whole number of real

roots, by substituting
— o> and -|- o> for x in the several

functions. In this case, each function will have the sigi

of its first term.

(2.) Moreover, if we substitute for x, the number of

variations lost from — oo to will give the number of neg-

ative roots.; from to -f- oo, the number ofpositive root.-.

It is obvious also, that the substitution of for x will re-

duce each function to its last term, which is independent.

of x.

§ 387. The theorem has been demonstrated on the hy-

pothesis, that the equation contains no equal roots (§ 379).

If, however, we have an equation containing equal roots,

we shall find a common divisor of Xand X'
; and a remain-

der, of course, equal to zero.

If now we divide the functions, X, X', &c, by this great-
alg. § 26
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est common divisor, we shall obtain a new series of func-

tions, T, T', r2 , &c. Now, it is evident, (1.) that Y=
will contain no equal roots; and (2.) that the variations of

sign in the series of new functions will be the same as in

the primitive series.

For, if the common divisor be positive, the signs will not

be affected by the division (§§ 62. a; 80. b); and, if it be

negative, all the signs will be changed.

Hence, the theorem is applicable to equations having

equal roots.

§ 388. 1. How many real roots has the equation,

X= a;
3 — 7*4-6 = 0?

Here X' = 3x s — 1
;

v — 7^ o

•r X -4-

X X' x
2
x

3

x = — oc gives
—

r -f"
—

~f*> ^ variations.

xz=zO "
-\-
— —

-f~j 2 variations.

x — -\- go " + + + +< variation.

Hence, there are three real roots ; one negative, and 'two

positive.

We shall find, more nearly, the values of the roots by

substituting different numbers for x. Thus,

x =— 4 gives
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values of x which reduce X to zero). We find also that a

variation is lost in passing each of the roots.

2. Find the number and situation of the real roots of

the equation, X=z x 2
-]-x

— L = 0.

Here X'= 2x+ 1 ;

X
2 =z+5.

x — — co gives -f-
—

-f" ,
2 variations ;

x = " — 4~+j 1 variation ;

a; =+ co " +~h+5 variation.

There are, therefore, two real roots ; one positive, and

the other negative. Moreover,

x =— 2 gives -J-
—

-|- ,
2 variations ;

x =z—1" — —
-f~ >

1 variation ;

x =.
-f- 1

" + + +> variation.

There is, then, one root between — 2 and — 1 ; and one

between and 1.

The first figure of the negative root is— 1 ; and, by sub-

stituting .1, .2, .3, .4, .5, .6, and .7, we find the first figure
of the positive root to be .6.

3. How many real roots has the equation,

X= x3 + llx 2 — 102x+ 181 = ?

Here X'= 3x 2
-\- 22x— 102;

X2
= 122* — 393;

Hence, Ave find three real roots ; one negative, and two

positive situated between 3 and 4.

Now, diminishing the roots (§ 367) of the equations,
X= 0, X'= 0, &c, by 3, we find

T' = 3y
2 + 40?/

— 9 ;

r
2 z=122y-27;
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These functions show that the two positive roots of
Y= lie between .2 and .3. Consequently, the two pos-
itive roots of X= are between 3.2 and 3.3.

Again, diminishing the roots of Y= 0, T' = 0, &c. by
.2, we find

Z— Z 3 + 20.6s 2 — .88z+ .008 ;

Z'= 3z* + 41.22 — .88;

Z2
= 122s— 2.6;

Hence, the initial figures of the two positive roots of

Z~ are .01 and .02. Consequently, the first three fig-

ures of the positive roots of X= are 3.21 and 3.22.

Also, the sum of the roots (§ 355. 1) is — 11.

— 11 — 3.21 — 3.22 = — 17.4, the negative root.

4. How many real roots has the equation,

Xz=x 5
-\- 2x± + 3x 3

-f- 4x2 _j_ §x_ 20 — ?

Here X' = 5x* + 8x3 + 9x 2 + 8x+ 5
;

X
2
=— 7x3 — 21z 2— 42a; •+- 255 >

X
3
=— 13x + U;

x =— co gives
—

-f- -f- -f-
—

,
2 variations.

aj=+ oo " + + — — —
?

1 variation.

Hence the equation has one real, and four imaginary
roots. The real root is, of course, positive (§ 357. b) ; and

is found to be between 1 and 2.

a.) "When we arrive at a function, as Xm ,
such that the

roots of Xm= are all imaginary, we need not continue

the divisions.

For this function having the same sign for all values of

x (§ 358. 1), can never conform to the signs of those be-

yond it; and no changes of sign in those functions can af-

fect the number of variations in the series (§ 384).

The coefficients of an equation of the second degree,

show at once, whether its roots are imaginary (§ 216).
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In respect to equations of higher degrees, the question

is not so easy of solution. It can, however, be determined

by applying Sturm's theorem, as to an independent equa-

tion.

The roots of X' = 0, in the last example, are all imagi-

nary ; and X and X' give the same result as the whole se-

ries of functions.

Note. X' =0 is a recurring equation (§371), and can be easi-

ly solved by a process which will be explained hereafter.

5. How many real roots has the equation,

X= x 3
-\-px -\-q z=: 0?

Here X' = 3x 2 +p;
X2

zz:— 2px
—

3q ;

X
3
——

4p
3 —

27q'
2

.

b.) First, let p be positive.

Then — 2p will be negative; and X2 will be positive
for x =— oo ; negative, for x = -f- oo.

Also, — 4p
3 will be negative; and, as — 27q

2
is neces-

sarily negative, X3 will be negative. Thus,

x = — co gives
— + + —

>
too variations ;

x = -|- co " + + — —
,

one variation.

Hence, if p be positive, the equation has one real, and
two imaginary roots.

c.) Again, let p be negative.

Then — 2p will be positive ; and X
2 will be negative

for x =— co
; positive, for x = -J- oo.

Also,
—

4p
3 will be positive; and when

—
4p

3
>27y*, i. e. when — 4p

3 —
27q

2 >0,
or (§ 146. d) 4p

3 + 27«7
2< 0, X, will be positive.

If these conditions be fulfilled, we shall have,

for x =. co,
—

-j-
—

-f- } three variations ;

x =:
-J- co,

—
I

— —
|

— —
J

— —
f

—
^ no variation.

^

Hence, if both p, and 4p
3 + 27q

2 be negative, the equa-
tion has three real roots.

*26
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d.) Again, suppose X3 to be positive ; i. e.

4p3 + 27?
2<0.

Then 4p3 <— 27?
2

. § 144 N .

•-.(§147) ^<-^or(|)
3

<-(|)
2

<0 . ,. P< 0.

For —
f|j

is negative. Consequently, f||)
is nega-

tive ; which cannot be unless p is negative.

Hence, if 4p
3
-j- 27g

2< 0, the roots are all real.

6. How many real roots has the equation,

X=x^-\-px+ q
— 0?

Here .X'=2a:+^;

X^^-4?. .

First, if JF2 be positive,

x =— co gives -f-
—

-f- , two variations ;

x = -\-cx>
"

-L._L.4-, no variation ;

showing two leal roots.

Again, if X2 be negative,

x =— co gives + — —
>

one variation ;

a; __.
-|- co "

4~ + —
j one variation ;

showing no real root.

Consequently, the roots are real, or imaginary, accord-

ing as p
2 — 4^ is positive or negative.

Moreover, when X2 is negative (i.
e. p"*

— 4^<0), we

have p*<fy; or lp 2 <q; or QfpY <q;
which can happen, only when q is positive.

Hence, the roots are real, unless q> (hp)
2 >0 (§ 216).

NUMERICAL EQUATIONS.—I. INTEGRAL ROOTS.

§ 389. Let a be an integral root of the equation,

X=zxn+ A
1
xn- 1+A 2

xn- 2
. . +^ M_ 1

a + ^ B = 0, (1)

the coefficients being all integral.

Then an

-\-A x
a"-i . . -\-A n. 2a^+AJl

.
1 a-\-A n = 0. (2)
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Transposing, and dividing by a, we have

£«= _„-! _^ ia
»- 2 -A n_ 2a-A^ 1} (3)

a whole number.

Hence, A n -±- a is a whole number; and a is an integral

factor, or divisor (§ 80. d) of A „.

Consequently, all the integral roots of an equation will

be found among the divisors of the last term. They will

also, of course, be contained between the superior and in-

ferior limits (§ 374) of the roots.

Therefore, we shall find all the integral roots of an equa-

tion, by the method of §§ 349. d, 350., if we substitute for

a, successively, the several factors of the last term, which

are included between the limits of the roots.

1. Find the integral roots of the equation,

Here, the limits, found by § 374, are 18 and — 5. It is

evident, however, that there can be no integral root great-

er than 6.

Hence, the only numbers to be tried are 6, 3, 2, 1,
—

1,

—
2, and — 3.

1 — 7 + 17 — 17 + 6 (1

+ 1— 6 + 11 — 6

1 — 6 + 11 — 6
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Therefore, arranging the coefficients according to the as-

cending powers of x (§ 33), and dividing by 3—x, we have

15 — 17 + 1 + 1 3

_|_ 5_4_i _|_i
— 12

5 — 4 — 1

+ 5 + 1

5 +
+

1

1

5

1

— 1.

Hence, the roots are 3, 1, and — 5.

a.) In this process, the root, evidently, must divide the

first term of each remainder ;
i. e. the sum of each term of

the quotient and the succeeding coefficient.

b.) In fact, transposing A n^ l
in (3), representing

—"

+ A „_ 1 by B, and dividing again by a, we have
a

B
a

an-2— A
x
an~"

-™-n—3 a -^n— 2>

a whole number.

In like manner, continuing to transpose the coefficient of

a
,
and divide by a, each quotient will be a whole number ;

and the last quotient will be the coefficient of xn with its

sign changed.

3. Find the integral roots of the equation,

x4 — 21x- + 14k+ 120 = 0.

Here +7 and —7 are limits. Moreover, only two of the roots can

be negative, and two, positive (§361). Hence, having found two

positive roots, we need try no more positive divisors.

6

+ 1

120 + 14 — 27

+ 20

+ 34.

+ 1

34-^-6 not being a whole number, 6 is not a root.

The roots are 4, 3,
—

2, and — 5.
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c.) If the equation is not in the common form (i. e. with

integral coefficients, the first being unity), it should be re-

duced (§ 369), and the method applied to the reduced equa-

ion.

4. Find the roots of the equation,

3x3 — x 2 — 3x + 9 = 0.

Having found the values of y from the transformed

equation, we shall have x = \y.

II. INCOMMENSURABLE ROOTS.

§ 390. Find the roots of the equation,

X=x- + 5x— 5 = 0.

Applying Sturm's theorem, we find

X= x 2 + 5x — 5 ;

X' = 2x + 5 ;

x
2
= +.

Hence there is a positive root between .8 and .9, and a

negative root, between — 5 and — 6.

If, now, we diminish (§ 367) the roots of X — by .8,

one root of the transformed equation,

Z=y 2 + 6% -.36 = 0,

will be between and .1.

Applying Sturm's theorem again, we find

Y=y 2
+G.6y — .36 = 0;

r' =
^/+ 3.3;

r2 = + .

Hence, there is a root between .05 and .06 ; and, conse-

quently, the root of1= is between .85 and .86.

Again, diminishing the roots of T= by .05, one root

of the transformed equation,

Z— z 2 + Q.7z— .0275 = 0,

will be between and .01 ; and will be found by the the-

orem to be between .001 and .005,
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Hence, the root of X= is between .854 and .855.

Note. We might, in the same way, find any number of figures
of the root. But the process would be tedious. The nature of the

roots, however, of the equations, F=0 and Z-0, will suggest a

more convenient method of determining the successive figures, as ap-

pears in the following sections.

§ 391. We know that the root of the equation,

?
2+ 6%-.36 = 0, (1)

is less than .1
;

i. e. we have y< .1, and, of course, y
2< .01.

Hence it is evident, that the equation,

6%+ .36r=0, (2)

will furnish a near approximation to the true value of y.
or?

\ In fact, we have, from (1), y=
y+6.6'

in which the first significant figure will be the same, wheth-

er we take y := 0, or .09, as will be seen by dividing .36,

successively, by G.6, and by 6.69.

The same reasoning will apply, with still greater force,

to the first figure of the root of Z= 0.

Hence, we may find, in each instance, approximately,
the next figure of the root by dividing the coefficient of y°
and z° by the coefficient of y

1 and z 1
.

The operation, then, will stand thus ;

1
_}- 5.8 —5 (.8541

.8 -f 4.64

— .36

-f .3325

— .0275

+ .026816

— .000684

+ .00067081

6.7082 — .00001319

§ 392. To explain this method of solution in a more

general form, let a root of the equation,

6.65



§393.1 INCOMMENSURABLE KOOTS. ii

X^^+ A^'-i + Asx"--* .... + A^ vc-{-A n ^0,
be x = x'-\-y; x1

being the part of the root already found,

and y representing the remaining figures, and y being, of

course, very small compared with x' (§ 174. N. 1).

Then diminishing the roots of X —3 by x1

,
we have

frr^+^f- 1 .... +Bn_ y* + Bn_ ly+ £n =n.

But, y being very small, its powers above the first may,

for the moment, be neglected ; and we shall have, nearly,

Bn- xy+Ba =.0i

or, also approximately, y — — ~
"

.

The correctness of the result will be verified by intro-

ducing into the transformed equation the figure so found.

Representing the figure so found by y', we shall have

y = y~|- z ; and finding an equation, whose roots are less

than those of Y= by y
r

,
we shall, in like manner, find

another figure of the root ;
and so on.

Hence, for finding a root of an equation of any degree

whatever, we have the following

RULE.

§ 393. 1. Find by Sturm's theorem, or by trial, the

first figure, or the integral part, of the root.

2. Transform the equation into another, whose roots

shall be less than those of the given equation by the

part of the root alreadyfound.

3. With the last coefficient of the transformed equa-

tion for a dividend, and the last but one for a trial

divisor, find the nextfigure of the root ; and verify it

by substitution in the transformed equation (§ 350).

4. Diminish the roots of the transformed equation

by thefigure just found, divide as beforefor the next

figure ; and so on, asfar as is necessary.
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a.) The method is applicable to both positive and nega-
tive roots ; each figure of a negative root being treated, in

multiplying, as a negative quantity.

h.) A negative root is, however, more conveniently found

by changing the signs of the alternate terms, and finding

the corresponding positive root (§359).

394. 1. Find the roots of the equation.

X = x* + 10x° + ox — 260 = 0.

Here, X' = 3x 2
-f 20a: + 5

;

X2
= 17*+ 239;

x c=— oo gives two variations ; x=--\- ao, one. Hence,

there is but one real root ; positive, of course (§ 357. b).

We find, moreover, that the first figure of the positive

root is 4.

+ 10
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The coefficients of the successive transformed equations

are marked with commas, the first coefficient in each being

the same as in the primitive equation. Thus, we shall

have
r= y

z + 22y
2 + 133y — 16 = 0;

Z= z" + 22.3^2 4- 137.432 — 2.479 = ; and so on.

Note. It will be observed, that the .1 added to 22, does not term

a part of the coefficient of
?/
2

, but was added to that coefficient in

forming the next. A similar remark applies, of course, to the subse-

quent coefficients; and to the example of § 391, where .8 is most con-

veniently added to 5, by being written after it.

a.) The coefficients of the two last terms (Bn_ l , and Bn,

[§ 392]) in each of the transformed equations have unlike

signs. This is as it should be, in finding a positive root.

For, suppose that the least real root of X= is posi-

tive ; and represent the part already found by x1
.

Then Bn and -S„_ r are what Xand X become, when a/

is substituted for x. Therefore, x
1

being less than the least

real root, Bn and Bn_ x (i. e. /(«') and /'{x
1

)) must have

unlike signs (§§373. b; 385).

b.) Similar reasoning will apply to any other positive

root, provided xf differs from that root less than the next

inferior root of X'= does (§ 385. a). See g, h, below.

c.) In approximating to a negative root (§394. a), xf is

greater than the root ; and, of course, if it is less than the

next greater root of X'= 0, Bn and Bn_ x (i. e. /{xf) and

/'(a/)), must have like signs.

d.) If, having found the root, 4.1179, we divide X by
x — 4.1179, we shall have an equation of the second degree,

from which we may find the remaining roots (§ 353. c).

e.) Otherwise ; we know that the coefficients of x2 and

x° in the given equation are respectively the sum, and pro-

duct of the three roots with their signs changed. Also, the

coefficients of x l and x° in the depressed equation will be

the sum and product of the two remaining roots with their

signs changed (§ 355. 1, 4).

alg. 27
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Hence, if we diminish the coefficient of x 2
,
and divide

the coefficient of x°, in the given equation, by the root

found taken with a contrary sign, we shall have the coeffic*

ients of a;
1 and x° in the depressed equation. Thus,

or x 2 + 14.1179 x+ 63.1365 = 0,

will give the remaining roots of the equation, which, are,

evidently, imaginary (§ 388. 6).

f.) "When the roots are all real, it is frequently quite as

convenient to find a second root from the given equation,

in the same manner as the first
;
and then find the third by

adding the two roots found to the coefficient of x~, and

changing the sign of the result (§§ 355. 1
; 388. 3).

3. Find the roots of the equation,

X= x 3 — 7x+ 7 = 0.

Here X' = 3x* — 7;

X
2
= 2x — 3 ;

Hence, there are three real roots ; one between — 3 and

—
4, and two between 1 and 2. Also, the first two figures

of the roots are — 3. 0, 1.3, and 1.6.

To find the greatest root, proceed thus.

x
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Consequently, the substitution of 1 for x renders X pos-

itive and X' negative (§ 372) ; giving

Bn=f<P) = l, andBn. 1 =f(x') = -A.

Again, 1.6 being greater than the greatest root of X' = 0,

and less than that of X= 0, renders X negative and X1

positive (§ 372) ; giving

Bn= f(x>) =-.104, and BH_ l
= f(x') =+ .68.

If we had substituted 1.5, Bn_ 1
would have remained

negative; because 1.5 is less than the greatest root of

X'= 0.

Hence, if the sign of Bn changes, that of Bn^ 1
should

change also. See a, above.

h.) It may, however, not change at the same figure of

the root, for that figure may be common to the next great-

er root ofX= and of X'= 0. This occurs in the great-

est root of the following equation. See
4,

below.

i.) To find the negative root, we change the signs of the

alternate terms (§ 393. b).1—0 —7 —7 (3.048917

3

3

o
O

2

18

,20

_6
,— 1

.814464

.3616

,9.04

4

9.08

4

20.3616

.3632

,20.7248

.0730

,9.
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k) "We should evidently have obtained the same result,

as far as we have carried the approximation, and with

mnch less labor, if we had neglected all the figures on the

right of the vertical lines in the several columns.

4. Find the roots of the equation,

X= x 3 + 1 1x2 _. i02x + 180 = (§ 388. 3).

The roots are 3.229 52, 3.213 127 7, and — 17.442 648 96.

The greatest root of X' = is 3.2213. Consequently, 3.22 substi-

tuted for x, will render both X and X' negative. But 3.229 will

render X negative, and X positive. See h above.

5. Find the roots of the equation,

8x3 — fry — 1 = 0.

It is not necessary for the application of Sturm's theo-

rem, or of this method of approximation, to reduce the

equation as in § 389. c.

We shall find, that there are three real roots ; one posi-

tive, and two negative ; and that their initial figures are

.9,
—

.1, and — .7.

The equation may be put under this form,

x&_ |aj— £= x3 — .75a: — .125 = 0.

To find the negative root, proceed as follows.

1 0.7 —.75 +.125 (.76 &c.

.7 _^49
—.182

IX =^26 ,— .057

.7 .98 .050976

,2T6 ,+ 772 - .006024

.1296

.8490

The roots are — .760 04, —.1737, and .9397.

6. Find the real root of the equation a:
3 — 2 = ; i. e.

find the cube root of 2. Ans. 1-259 921.

7. Find the roots of the equation a; 2 — 2 = ;
i. e.

find the square root of 2. Ans. ±1.414 213 6.

Note. It will be observed, that the solution of the third and

fourth examples i3 equivalent to the processes of §§ 174, 179. The
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method is, obviously, equally applicable to the extraction of roots of

large numbers. The trial divisor, however, approximates, of course,

most closely to the complete divisor, when the part of the root not

yet found is very small.

8. What is the cube root of 3 442 951 ?

Ans. 151.

9. Find the roots of the equation,

x* — 12x*-\-12x
— 3 = 0.
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RECURRING, OR RECIPROCAL EQUATIONS.

§ 395. The general form of a recurring, or reciprocal

(§ 371) equation of an odd degree, is, obviously,

x2»+i+^ 1
a;
2n+ A 2

x 2n~i
. . ± A 2

x 2± A
x
x ± 1 =

; (1)

in which the like coefficients belong, one to an even, and

the other to an odd power of x throughout.

Now, if the corresponding coefficients have like signs,

the substitution of — 1, and, if they have unlike signs, the

substitution of -f- 1, for x, will render the corresponding

terms numerically equal with contrary signs ; and will,

therefore, reduce the first member to 0. Hence,

One of the roots of a recurring equation of an odd de-

gree is — 1, or -f- 1, according as the corresponding coeffi-

cients have like or unlike signs.

a.) Again, the equation may be written thus,

(x*"+i±l)-\-Alz(x*»-
1±l)+A<ix*(x

2n
-z±l) . . = 0;(2)

in which x = — 1, if we take the upper signs, and x =z

-L-l, if we take the lower signs, will render each of the

quantities enclosed in parenthesis equal to zero.

b.) Let 2n -\- 1 = 5. Then the equation becomes

xsJr A l
x* + A 2xZ±A 2

x2±A 1
x±l = 0; (3)

or (x&±l) + A 1x(x?&l)±A zx*(x±l) = 0. (4)

Now, if we divide either the first member of (3) or each

term of (4) by x ± 1 (§§ 98, 96), taking always the upper

signs together, and the lower signs together, we shall have

x4
q: 1 x 2

qp 1

-Mi
£-1-1=0; (5)x3 + 1

+ 4i
evidently an equation of an even degree (the 2«tn), whose

coefficients at equal distances from the extremes are equal

(i. e. are numerically equal and have like signs). It is,

therefore, a recurring equation (§ 370. b).

The same reasoning will, obviously, apply to any similar

equation as well as to that of the fifth degree.
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§ 396. The general form of a recurring or reciprocal

equation of an even degree, in which the like coefficients

have unlike signs and the middle term is wanting (§ 370.

c), is, obviously,

x2n+2_|_^ i;c
2.H-i # . -\-0x

n—
. . —A

x
x—l — 0. (6)

Arranging (§ 34. c) according to the coefficients, we have

(x
5"+-—1)+J 1x(x

2n—l)+A 2 zi(x«-
n- 2

—l) . . =
; (7)

each term of which is, evidently, divisible by x 2—1 (§ 96),

i. e. by (x+l)(x—l) [§ 93]. Hence,

A recurring equation of an even degree, in which the

middle term is wanting and the corresponding coefficients

have unlike signs, has its first member divisible by x 2—1 ;

and, of course, has the two roots,
— 1 and -f- 1.

a.) Let 2n-\-2 = 6. Then the equation becomes

x*-{-A 1
x 5

-\-A 2x'
i — A 2x

2 — A 1x— l = 0; (8)

or
f

(a;°- 1) + A
xx{x±

— l)+A 2x°-(x*
—

1) = 0. (9)

Now if we divide either the first member of (8) or each

term of (9) by x 2—
1, we shall have

x* + A xx^-\-A 2 x 2 +A l
x+ 1=0; (10)

+ 1

a recurring equation of an even degree, whose like coeffi-

cients have like signs, as in § 395. b.

b.) Otherwise ; the roots of the depressed equations, (5)

and (10), are the remaining roots of the primitive equations

(3) and (8) ; and one half of them are, therefore, the re-

ciprocals of the other half.

§ 397. The general form of a recurring equation of an

even degree, in which the like coefficients have like signs, is

x 2n
-\-A x

x 2n~^
. . +A nx

n
. . + .4

1
a;+ l=:0. (11)

Dividing by xn
, we have

x -\- A.^x
~

. . . -\-A. n^]X -\- A. n -J- ^l u_ 1
—

. . .

x

+^i=i+=--^ (12> or
i -vt— A 2*t
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*«+^+A(xn
-1+^) ' • +A

»-i(
x+

l)
+A »= ' (13)

Now put x-\-
- = z. (a)
JO

Then, squaring and transposing,

x*+±; = z*-2. (b)
JO

Multiplying (b) by x -\-
- = z,

x 34-^--\-x-\-- — z^—2z ; orx3+-!- = zS—Sz. (c)
X 3 X xd

Or, in general, since

we have, by transposing,

^'+^T=(^+p)(-+i)-(--'+-if)- (4

Thus, making to = 3,

from (a), (3), and (c),

x*+i = (z^_ 3*)s
- (*»- 2) = z*- 4*2+ 2. (/)

Substituting these values of x-\-x~
1

,
x 2

-\-x~
2

, &c. in

(13), we shall have an equation of the nth degree in z; i.

e. of half the degree of the primitive equation, (11). Hence,

§ 398. A recurring equation of an even degree, in which

the like coefficients have like signs, can always be reduced

to an equation of half that degree.

a.) Hence (^§ 395, 396),

Cor. A recurring equation of an odd degree (2» -f- 1),

or one of an even degree (2n-\-2) whose middle term is

wanting and whose like coefficients have unlike signs, can

always be reduced to an equation of the «th degree.

b.) The solution of the equation of the nth. degree gives
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the values of *; and the values of a? may be found from

the equation,

x-J-- = z; i. e. a?
2— zx =—1.

x

1. Find the roots of the equation.

X5_ na;4_|_ I7a?3+I7a?
2— \\x + 1 = 0.

One root is —1 (§ 395). Therefore, dividing by *+ 1

(§ 348, 350), we have

x*— 12a? 3
-|-29a?

2— 12a?+1 = 0.

Dividing by a?
2

, (*
2

+^)- 12
(^+ ^)+

29 = °-

Substituting,

z2_ 2 — 12c+ 29 = ; or s*—12* _|_ 27 = 0.

z = a? 4-- = 9, or 3.
a?

3f2=»j a?
2— 9a? = — 1, and x = i(9±y77) ;

if 2 = 3, a?3— 3a? = — 1, and a? = £( Si^/5).

Therefore, the five roots are

9 +y77 9—y77 3 +y5 3 —y5
-1,

g
,

g
'
—

2"—'
and —Y ;

or, rendering the numerators of the third and fifth roots ra-

tional (§ 187),

9-K/77 2 3+^5 aQd _2__._1
'

2
'

9+^77' 2
'
ana

3+V5'
the third root being the reciprocal of the second, and the

fifth, of the fourth (§ 120. d).

2. Find the roots of the equation,

4a?6— 24a?5-f 57a?4— 73a?3+ 57a? 2— 24a? -f 4 = 0.

The reduced equation is

4z3— 24z 2+ 45s— 25 = 0,

whose roots are 1, § and f.

Hence, the roots of the given equation are

2, h 2, 1,

1~i^, ™* l=^F1-
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3. Solve the equation,

5**4- 8z 3+ 9^2+ 8x+ 5 = (§ 388. N.).
lAns. 5z 2

-f8z — 1 =0.
x — .05825 ±^/(—.9966),
x = —.85825 ±y(— 2634).

4. Solve the equation,

a;«— 6|x
5
-f-llfx4— llfa;

2
+6|a;5— 1 (§398. a).

The roots are 1,
—

1, 2, £, 4, and J.

BINOMIAL EQUATIONS.

§ 399. Equations of the form,

y»±A=zQ, (1)

containing but two terms, are called binomial equations.

Suppose An =. a, i. e. A = a".

Then we have y
n±.an= 0.

Putting y = aa;, anx"± a"=
;

or xn± 1 = 0. (2)

§ 400. I. Let n be an odd number, 2m-\-\.

Then x 2m+i±l = 0, (3)

being a recurring equation of an odd degree (§ 395), has

one reed root equal to — 1, or -j- 1, according as the last

term is positive or negative.

1. Let the equation be ar
2"»+i — 1 = 0. (4)

Then -j-1 is a root ; and dividing by x
—

1, we have (§ 96)

a; 2m_^ a,2m-l_|_ x
2m-2

. . .
-L. X * _L. a; -f- 1 = 0, (5)

which can be reduced to an equation of the with degree

(§ 398).

Moreover, (4) has ?io o^er rea? root. For, if x be neg-

ative, x*™+ 1 will be negative (§ 151. c) ; and, if a; be pos-

itive and different from ljX
2"^ 1

evidently cannot be equal

to 1.
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Consequently, all the roots of (5) are imaginary,

a.) This is evident, also, from the number (2m) of con-

secutive terms wanting in (4). See § 364. 2.

2. The equation, x 2ni+ l + 1 = 0, (6)

has (§ 395) one real root equal to — 1 ; and, reasoning as

above, it is evident, that it can have no other real root.

If we divide by x-\-l (§ 98), we shall have the equation

containing the remaining roots, which can be reduced by
§397.

b.) Also, the roots of x- mJ
r l

-f- 1 = are the same as

those of x2m+ l
]

— 1 = 0, taken with contrary signs (§ 359).

§ 401. II. Again, let n be an even number, 2m.

1. Then x 2m— 1 = (8)

has two real roots, -j- 1 and — 1 (§396).

It has also no other real roots. For, if we divide by
x3 —

1, we have

a.2
m-2_J_ a.2m-4 _J_ X

<1

_|_ 1 _ Q .

(0)

in which the powers of x being all even (§ 151. c), any real

value of x, whether positive or negative, will render the

first member positive (§ 358. 3), i. e. > 0.

This equation can be reduced also to one of the (m—l)th

degree (§ 398).

a.) Moreover, we have

x"m— 1 =(xm— l)(x
m
-f-l = 0.

xm — 1 = 0, and xm+ 1 = 0.

2. All the roots of the equation,

x"m -\-l = 0, (10)

i. e. x 2 "' r= — 1, are imaginary (§ 22. 2).

This equation can be reduced to one of the mth degree

(§398).

b.) In each of the equations, (8) and (10), there is a de-

ficiency of an odd number (2m— 1) of consecutive terms-
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Consequently (10) must contain at least 2m imaginary

roots; and (8), at least 2m— 2 (§ 364. 1).

§ 402. Let the real roots be suppressed from the equa-

tion, x"^ 1 = 0; and let the equation in z, Z:= 0, be found

(§397).

Let also one of the imaginary values of x be a-\-by— 1.

Then we shall have

But (§§187, 162)
1 a— by—1 a— by— 1

a + by— 1 (a + by— 1) («
— by— 1) a 2+6 a

Moreover, if a-\-by— 1 be a root of the equation,

xn
q: 1 = 0, a — by— 1 must be a root also (§ 357).

Hence we shall have

(a -{-by—l)
n = ±l, and (a

— by—l) n — ±1.

.-. [(a+ by-l){a — by-l)Y = (a*-+b
2
)
n z=l.

And since a 2
-\-b- is a positive quantity, we have

—
-r-j--
—

; —a— b\y— 1 ;

a-\-by— 1

and z = a -f- b y— l-\-a
— b y— 1 = 2a.

Hence, all the roots of the equation, Z— 0, are real.

§ 403. Let a be one of the imaginary roots of the equa-

tion, xn— 1 = 0.

Then we have an= 1 ; a
n- n= 1 ; a3n= 1

; &c.

also «-"= 1
; a~ 2n= 1 ; ar*n= 1 ; &c. Hence,

If « be an imaginary root of the equation xn— 1 =0,
then will any integral power of a be a root also.

a.) As the equation can have but n roots, many of these

powers of a must be equal to one another.

Thus, the imaginary roots of a;
4— 1 — are + */— *

and —y— 1. Now we have ($ 162)
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-(v/-l)
2 = -l; (V-iy = -V-l; (v>-l)*= l;

(y_l)5 =y_1; (y_i) 6=_1; (y_l)7 =_y_1;

6.) It must be understood, however, that these are only
different ways of expressing the same roots. The equa-

tion, x
n
^:l = 0,-has no equal roots ; since its derived equa-

tion nxn~ x — has no common measure with it (§ 378./).

§ 404. Let a be an imaginary root of the equation,

afrf-1 = 0.

Then we have

ott=— 1; (a
B
)
3
==(a

s
)
B—— 1; (a")

5 = (a
5
)"
=— 1;

also (a")-
3 = («-

3
)'

,=— 1; (a
2 "1

-^)"=— 1. Hence,

If a be an imaginary root of the equation, xn
-f- 1 == 0,

then will any odd integral power of a be a root also.

Thus, the imaginary roots of x~-\- 1 = are -\-»/
— 1

and — «/— 1
; and all the odd integral powers of either of

these roots are also roots (§ 403. a).

§ 405. Find the roots of the following equations ;

1. £3—1 — 0.

Ans. 1,
-

,
and .

2. x*— 1 = 0. Ans. 1,
—

1, y— 1, and —y— 1.

3. *6_i — 0; i. e . (x3—l)(x 3
-\-l) = 0.

. i±y— 3 _ liy— 3
Ans. 1,

—
1, ,

and
2

'

2

Note. The roots of the equations, a; 2— l = 0, a: 3— 1 =0, &c,
are sometimes called the roots of unity. It is evident (§§151. a;
152. a), that the roots of any other number, of any degree, may ba
found by multiplying one of them, most conveniently, the arithmeti-

cal root, by the several roots of unity of the same degree.

ALG. 28



CHAPTER XVII.

CONTINUED FRACTIONS.

§ 406. A continued fraction is one whose nu-

merator is a whole number, and whose denominator

is a whole number plus a fraction, which also has a

ivhole number for its numerator, ana for its denom-

inator a whole number plus a fraction; and so on.

We shall consider only those, in which each of the nu-

merators is unity, and the partial denominators (a, below)
are all positive. Thus,

1 (1) 1 (2)

1'
a

i

1

4+ &c.
J '

« 3 +&c.
are continued fractions.

a.) The integral parts of the denominators are some-

times called partial denominators, or partial quotients;

and the fractions, \, -^, &c, —,

—
, &c, are called partial.

or integral fractions.

§ 407. If, in (1) above, we neglect all but the first par-

tial fraction, the denominator 2 will be less than the true

denominator; and, of course, |is greater than the true val-

ue of the continued fraction.

Again, suppose we neglect all but two partial fractions.

Then, the partial denominator, 3, being too small, the par-
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tial fraction, £, is too great ; and, consequently, 2^ being

greater than the true denominator, the fraction,

1 _1_3

will be less than the true value of the continued fraction.

Similar reasoning will, evidently, hold in respect to any

number of terms ;
and will apply equally to the general

form (2), as to the particular example we have considered.

Hence,

If we include in the reduction an odd number ofpartial

fractions, the result will be too great ; if an even number,

the result will be too small.11 1 .

a.) The fractions,
—

, -, -. &c,

2 a -4- —-

are approximate values of the given fraction ; and are

sometimes called approximating or converging fractions,

or simply, convergents.

b.) It is evident, that the true value of the continued

fraction, lying between two successive approximate values,

differs from either of them less than they differ from each

other.

§ 408. We have — = —
,

1st approx. value.
a

x
a

x

1
'

fl^aa + l'
«i + —

2d «

«2

a * + aZ

a 2 +—

0203 + 1
3d

(.
a

l
a
9 + 1 )

a3+ a
l
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We shall, evidently, find the fourth approximate value,

or convergent, by substituting, in the third, a
3 -\ for a3 .

«4
Thus,

flu«_ -4- 1 \a . A- ci-

VS, the fourth conver-
(a 2a3 -|-l)a4 -[-«2

gent.

We find, obviously, the numerator and denominator of
the third convergent, by multiplying those of the second by
the third partial denominator, and adding those of the first

convergent.

We find, in like manner, the fourth convergent from the

terms of the second and third.

To show the generality of this law, let it be admitted to

hold good as far as the rath convergent (i. e. the conver-

gent corresponding to an).
'

L M N , P . ^
Let also

jy, —-, -^,
and — be the convergents cor-

responding to ot„_ 2 , a„-u #«i and an+ x
.

Then, since the nth convergent is formed according to

the above law, we shall have -=-. = , /r .

"

, -j-.. (3\
N' M'an-\-L'

v /

N 1
If now we substitute in — ,

an -\ for an ,
we shall,

JS' «
;i-f x

P
obviously, find

-^. Thus,

p_ _
M

(""
+
~^r)

+L
(jfc„+z) g„+1 +ii/

P Nan+, + M
or, from (3), y,

=^—j-y (4)

Consequently, if the law holds good for n convergents, it

will for n -f- 1.

Hence, to find the numerator and denominator of any
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convergent after the second, as the (n -f- l)th, we have the

following

RULE.

§ 409. Multiply the numerator and denominator of the

nth convergent by the (n-\-\)th partial denominator, and

add to the products, respectively, the numerator and denom-

inator of the (n— l)th convergent.

a.) The numerator and denominator of any convergent

must be respectively greater than those of the preceding ;

each numerator and each denominator being at least equal

to the sum of the two next preceding.

b.) Moreover, each convergent is found by substituting,

in the preceding, for the last partial denominator, an ex-

pression known to approach more nearly to the true de-

nominator.

Hence, evidently, each convergent approximates more

closely than the preceding to the true value of the con-

tinued fraction. See § 410. a, b.

1. Find the successive convergents of the continued

fraction, 1

2 +
1

l+Wr
Ans. \, £, §, t*t, and §|£.

c.)
The first four convergents are approximate values of

the continued fraction ; the last, %%^, is the true value.

d.) A continued fraction is sometimes mixed (§112)?
i. e. made up of a whole number and a fraction. Thus,

3 +1— («)

2 + r

5 + &c.

*28
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In such cases, the integral part may be reserved and ad-

ded to the convergents ; or it may be taken, with 1 as a

denominator, for the first convergent.

Thus, in the above example, Ave shall have the conver-

gents, 8fe 3|, 3if ; or f, |, V, lg$.

1 (6)
e.) This form, a -f-

«i+ a 2 -j-«fec,

is sometimes assumed as the general form of a continued

fraction ; the place of the integral part, when it is wanting,

being filled with 0.

In that case, the jz>st convergent is, evidently, too small ;

the second, too great ; and so on, those of an odd order be-

ing too small, and those of an even order, too great. See

§407.
Note. If the integral part be zero, the first convergent will of

course be o

§ 410. If the second convergent of §408 be subtracted

from the first, the remainder is unity divided by the product
of the denominators. If the third be subtracted from the

second, the remainder is minus unity divided by the product

of the denominators.

Suppose it has been proved, that this law extends to

n — 1 convergents ;
i. e. that

L. -— LM'—L'M _ ±1
Z7 M'~

z
17M<~ ~T7W'

M _N M Man+ L
M' N'

~
M> M'an+ L '

_ L'M—LM' _ LM'—L'M

the numerator of which is the same as that of (7), with a

contrary sign. Hence, the principle proved in regard to

the first three convergents, applies equally to the whole

series. That is,

If each convergent be subtracted from that ivhich next
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precedes, the numerator of the difference will be ± 1 ; and
the denominator will be the product of the denominators of
the two convergents.

a.) Again, the true value of the continued fraction lie?

between any two successive convergents, and differs from

either of them less than they differ from each other (§ 407}.

M
That is, the convergent

—
f ,

differs from the true value

of the continued fraction by less than
M'N<

But (§ 409. a) M> < N> ; and .-. M'~ < M'N'.

WW' < M™' That is
'

Cor. i. The error, in taking any convergent whatever for

the true value of the continued fraction, is numerically less

than unity divided by the square of the denominator of that

convergent.

b.) The denominator of each convergent is greater than

the next preceding by some whole number (§ 409. a).

Hence, if the fraction be infinite, we may find a conver-

gent whose denominator shall be greater than any given

quantity ; and, consequently,

Cor. ir. "We may find a convergent, which shall differ

from the true value of the continued fraction by less than

any given quantity.

c.) Suppose that M and M' have a common divisor, D.

Then D will, of course, divide L'M and LM', multiples

ofM and M1
; and, consequently (§ 102. Note c), the differ-

ence of those multiples, LM'— L'M= ± 1.

Therefore D must divide ± 1, which has no integral di-

visor but unity.

D = \. That is,

Cor. in. Every convergent is in its lowest terms.

§ 411. One of the most obvious uses of continued frac-

tions is, to express approximately, in small numbers, frac-

tions whose terms are large. Thus,
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§ 413.] REDUCING TO A CONTINUED FRACTION. ooo

it by a ; and denote the fractional excess of x above a by

1 1 1 ^ ,—
. Then x— a-\ . .•.:*:.,

= > 1.

x
1

x
x

x— a

2. Find the greatest integer contained in x lt and denote

it by a
x

: -and denote the fractional excess of x
x
above a

x

by
—

. Then x
x
= a

x -{-
—

.

3. Apply the same process to x 2 ,
and so on.

Thus,

x=za+— = a-\ =a-\ —-
«x+— a

x -]
1

2 a
2 -)

. &.c.

a.) If x < 1, we shall have a = 0.

h.) We shall always have x
x , Xc,, &c. > 1.

For if x
x
=

,
or < 1, we have — = or > 1 ; and a is

x
x

not the greatest integer contained in x.

c.) Whenever we find a denominator, xn , equal to a

whole number, we shall have xn =. an ;
and the continued

fraction will terminate.

This will happen, if the cpiantity, x, can be exactly ex-

pressed by a common fraction.

d.) If the quantity is not equal to a common fraction

(i.
e. if it is incommensurable), the continued fraction Avill

extend to infinity.

§ 413. 1. Given n= 3.14159 (§ 247. N. q), employing

only five decimal places. Reduce n to a continued frac-

tion, and find approximate values.

„ ,

1
Ans. it=3-\

15+
*

Convergents (§ 400. e), 3, £, fff, Hlb &c -
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Note. The second approximate value, 22 was found by Ar-

chimedes; the fouith, 54^, by Adrian Metius.

2. The common, or tropical year consists of 365.242 241

mean solar days. Find approximate values for this time.

Ans. 365i, 365^, 3653
8
3 ,

365TW, &c.

Note. The third approximation shows an excess of the solar

year above 365 days, of JL of a day. To preserve the coincidence

between the solar and civil year, therefore, eight years in thirty-three

must contain 366 days each. That is, a day must be added to every

fourth year seven times in succession, and, the eighth time, to the

fifth year.

3. The sidereal month (i. e. the time of the moon's side-

real revolution) consists of 27.321 661 days; or, the moon

revolves 1 000 000 times in 27 321 661 days. Find approx-

imate values of this ratio. Ans. 27,
8
/,

7^, 3
T\°3', &c.

Note. These ratios show that the moon revolves about 3 times

in 82 days; 28 times in 765 days; or, more exactly, 143 times in

3907 days.

§ 414. Continued fractions are also employed in finding

the roots of equations, and in extracting the roots of num-

bers.

1. Extract the square root of 3 ; i. e. find a root of the

equation, x 2 — 3 = 0. (1)

Here x = 1 -I .

x
x

Diminishing the roots of (1) by 1 (§ 367), we have

y* + 2y-2 = 0, (2)

an equation, whose roots are equal to — .

Transforming (2) by § 370, we find

2x? — 2x r
— 1 = 0. (3)

This gives x
Y
= 1 -|

.

•Ms n

Transforming (3) in the same manner as (1), we have

1

x„ 2— 2x 2
— 2 = 0; (4) and x

2
= 2 -\

.

X 3
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We find, in like manner,

2aJ3
2— 2x z

— 1 =0, (oi

which being the same as (3), will have the same roots, and

will give rise to transformed equations like (4) and (5).

Hence, we shall have a repetition of the equations (3)

and (4), and of their roots of which 1 and 2 are the inte-

gral parts, in endless succession.

x — 1 +- - = 1.732 &c.

1 +
2 + -

l + i&c.

The convergents are & f, f, f, \\, ff, ||, ||.

a.) A continued fraction of this kind, in which any num-

ber of the partial denominators are continually repeated in

the same order, is called periodic.

b.) It will be found, that every incommensurable root of

an equation of the second degree may be expressed by a

periodic continued fraction.

Of course, when the first period is found, such a fraction

may be developed to any extent, by simply repeating the

period.

2. Extract the square root of 2.

Convergents, \, §, £, \l, §$, f§, &c.



ERRATA. \

Page 14, first line, for " 16 " read " 11."
"

60, line 27, for " + b'," read "— ft/."
"

62, line 19, for "
58," read " 28."

"
69, last line, for " + b

" read " +ab."
"

83, first line, for " + 63" read "_&3."
"

91, line 15, for " a =6" read "6 = a;" and
for "a"— 6"" read "a"—a'1."

"
92,

"
20, for «+ab " read "—ab."

"
93,

"
27, after " them "

insert " taken as a divisor.
, '

>

"
96,

"
26, for "5aZ>3" read " 5«36."

"
99,

"
30, and page 100, line 26, for " 12 " read " 11."

"
106,

"
17, for "

dividing
"

read "
multiplying.""

119,
"

5, for " 13_y read "
23^."

"
128,

"
25, for "(2.32)" read "(2.32):?."

"
148, "

11, for " a—b " read " a^—b."
"163, "

4, for "^(^2^2)" read "y(p2_?2 ) -

»

"192, "
3, for "10" read "11."

"198, "
3, for "(1)" read "(3)."

" 292,
"

14, after "
have," insert "(x being > 1)."

"
310,

"
11, for "+" read "-."
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