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PEEFAOE.

In writing this treatise on algebra, the authors have had two

rules for their guidance.

As to matter :
' 'Assume no previous knowledge of algebra,

but lay down the primary definitions and axioms, and, building

on these, develop the elementary principles in logical order;

add such simple illustrations as shall make familiar these prin-

ciples and their uses."

As to form :
"' Make clear and precise definition of every word

and symbol used in a technical sense
;
make formal statement

of every general principle, and, if not an axiom, prove it rigor-

ously ;
make formal statement of every general problem, and

give a rule for its solution, with reasons, examples, and checks
;

add such notes as shall indicate motives, point out best arrange-

ments, make clear special cases, and suggest extensions and

new uses."

In working out the plan here outlined, wide departures have

been made from the standard text-books. Many new things

have been introduced, not, indeed, because they were new, but

necessarily, either as definitions in giving larger meanings to old

words, or as axioms and theorems in stating and proving the

elementary principles, or as problems and notes in showing new
uses of principles already proved : e.g.^ many fundamental prin-

ciples were found to be omitted by elementary writers because

too difficult for a beginner, and by subsequent writers as already

known. A typical case is that of logarithms : that "the product
of two powers of any same base is a power of that base whose

exponent is the sum of the exponents of the factors
"

is gener-

ally proved for commensurable powers, but assumed, without

proof, for incommensurable powers ;
and the whole theory of

logarithms, so important, and their use, so common, are thus left

to rest on faith. In a few cases new words and new symbols

183981



IT PREFACE.

have been introduced : notably the signs •", ~, ±, and the copulas

> , <, 3:. It is believed that the need will justify the innovation.

Moreover, the tendency of modern work is to change the tra-

ditional boundaries of algebra so as to utilize graphic represen-

tation, the elements of infinitesimal analysis, and the calculus

of operations, and onl}- thus can the subject be presented most

naturall}' and philosophically. A good example is that of the

so-called "
imaginaries," which, rightly presented, are as real

as -any other numbers.

The authors set out to write a text-book for the use of their

own classes in the University, i.e., for young men who had

already studied the elements of algebra and geometry, and who
had had some scholarly training ; and, though an elementary book,

at no time have they thought of it as a book for beginners. The
wants of their classes have ever been before them

;
but the work

has grown upon their hands until it embraces many topics that,

from their nature or their treatment, are quite beyond the range
of ordinary college instruction. As a text-book, therefore, for

use in ordinary classes it must be abridged ; yet its wide range
makes it all the more valuable to teachers, as a book of refer-

ence, and to those bright scholars who wish either to place their

knowledge of algebra on a sure foundation, or to make that

knowledge a stepping-stone to the higher analysis.

Many thanks are due to Mr. James' McMahon and Mr. A. S.

Hathaway, instructors in mathematics in the University, for their

very valuable assistance in the preparation of the text, and to

Mr. Albert Jonas and Mr. E. C. Murphy, for useful suggestions,
and for help in verification of the text and in proof-reading.
Another edition will contain chapters on : theory of equations,

integer analysis, symbolic methods, determinants and groups,

probabilities, and insurance
;
with a full alphabetical index.
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I. PRIMARY DEFINITIONS AND SIGNS.

Algebra is that branch of Mathematics which treats of the

relations of numbers. It is distinguished from Arithmetic, as

having wider generalizations, as using signs and letters more

freely, and as recognizing negatives and iraaginaries. The ap-

plications of many words common in Arithmetic are greatly

extended in Algebra, and their definitions are correspondingly

enlarged.

The S3^mbols explained below constitute a symbolic language,

a species of short-hand writing, wherein numbers and their

relations are more conveniently expressed than in the ordinary

language of words. In this language the signs stand for words

and phrases, and generally haw 11 le same grammatical relations

as the words and phrases themselves. The words may be

restored at any time. The reader should constantl}^ practice

translating from one form to the other till both are familiar.

This symbolic language is one of the characteristic features

of Algebra ;
and among its man}' advantages are these : clear-

ness, brevity, and generality of statement ;
the ability to mass

directl}' under the eye, and thus to bring before the mind as a

whole, all the steps in a long and intricate investigation ;
and

the facility of tracing a number through all the changes it may

undergo. Some other sciences, for example Chemistry and

Logic, have a symbolic language of their own.



2 PEIMARY DEFINITIONS AND SIGNS. [I-

§ 1. NUMBER.

'iKineasuping'anj'tbing, some unit of the same kind is first

assu«»6dv tiiid the delation the thing measured bears to this unit,

i.e-., the operation' that if performed upon the unit will produce

the given thing, is expressed by a number. The unit, being

acted upon, is the operand^ the number is the operator^ and the

thing produced is the result.

Such numbers are also called abstract numbers^ because all

their properties and relations are independent of the particular

units used ; and the units and the measured things are concrete

numbers. Abstract and concrete numbers are also called quan-
tities.

Abstract numbers likewise arise from the combination of

other abstract numbers : and in this way, their relations form

the chief subject-matter of Algebra.
Two abstract numbers are equal if, operating upon the same

unit in the same way, they produce the same result.

An abstract number is an integer if the thing measured be

made up of entire units
;
a simple fraction, if the thing be one

or more of the equal parts that the unit may be divided into.

Integers, simple fractions, and such other numbers as can be

reduced to integers or simple fractions, are commensurable num-

bers: those which cannot be so reduced are either incommensu-

rables or imaginaries.

§ 2. REPRESENTATION OF NUMBERS.

Numbers are represented b}' Arabic numerals, or by letters.

Among the more common forms are these :

0, 1, 2, 3, . . . , 10, read : naught, one, two, three, . ..,ten;

a, (3, y, 8, €, 0, TT, <^, A, 1,, read : alpha, beta, gamma, delta,

epsilon, theta, pi, phi, large delta, large sigma;
A- X TT

-, -, -, read: four sevenths, x over y, half pi.
^ y ^

a', b", &^, f^"*^, read : a prime, b second, c fourth, d m'*;

Poi P\^ 2^x1 read : p sub zero, p sub one, p sub x.

ctO



§ 3.] POSITIVE AXD NEGATIVE NUMBERS. 3

The accents, numerals, and letters, attached to other numerals

and letters, are indices. An index attached below its letter is a

suffix or subscript^ and is read siib. The index of a power [§10]
is an exponent. The letter or numeral to which the index is

attached is the stem. Sometimes the indices are written without

the stem
;
this form of writing is called the umhral notation.

E.g., instead of ai, 2 ; «3, 4 ;
• • • «i, s, write 1,2; 3, 4 ;.../, 7i.

The accent and subscript notation has two chief advantages :

It gives a very great number of distinct symbols.
It permits numbers analogously related to the problem

in hand to be represented by the same letters.

Eg-y P\ P"^ P'"^ or Pi, 2^2, ih, may stand for the princi-

pals of three promissor}- notes
;

then t\ t'\ t'", or ^„ t^, ^3, will naturally stand for the

three times for which these three notes are respec-

tively given,

and r\ r", r'", or ?'i, rs, rg, for the three rates.

The value of a letter or other S3'mbol is the number for which

it stands. Ordinarily the same letter stands for but one number

during an}' one investigation, but for different numbers in differ-

ent investigations ;
and different letters, or the same letter with

different indices, for different numbers in the same investigation.

§ 3. POSITIVE AND NEGATIVE NUMBERS.

When the measuring unit is taken in the same sense as the

quantity measured, the number is positive; when in the opposite

sense, the number is negative. In which sense the unit shall be

taken, is a matter of custom or convenience.

Manifestly, if two quantities, opposite in sense, are measured

by the same unit, one number is positive and the other negative :

E.g., if distances to the north or east from a given point are

positive, distances to the south or west are negative : 2. e., if

the measuring unit is a northerly or easterly unit, then southerly

or westerly distances are expressed by negative numbers, and

vice versa.
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So, if the revolutions of a wheel forward are positive, revo-

lutions backward are negative ;

if assets are positive, liabilities are negative ;

if dates a.d. are positive, dates B.C. are negative;

if the readings of a thermometer above zero are positive,

the readings below zero are negative.

Tlie primary notion of a negative number is that of one which,

when taken with a ix>sitive number of the same kind, goes to

diminish it, to cancel it altogether, or to reverse it.

E.g.^ liabilities neutralize (negative) so much of assets,

thereb}' diminishing the net assets or leaving a net liabilit}'.

If two numbers of the same kind, whin taken together, exactly
cancel each other, the}' are opposites^ one of the other.

Manifestl}', of two opposites, one is positive and the other is

negative.

So, if numbers are used as indices of two algebraic operations

which when performed successive!}' tend to neutralize each other,

a positive number is commonl}' used for one index and a nega-
tive number for the other

;
and sometimes, as with exponents

of powers [§ 10], custom has permanently determined which

index shall be ix)sitive and which negative.

When denoted b}' Arabic numerals, positive numbers are writ-

ten with the sign + or with no sign, and negative numbers with

the sign
—

,
and it is evident at sight whether the number is

positive or negative.

E.g.^ if the measuring unit be $1 of assets, then + 100, or

simply 100 without the sign, expresses the net value of an estate

whose assets exceed its liabilities b}- $100 ; and —100, that of

an estate whose liabilities exceed its assets by $100.

But, if a number be denoted by a letter, it is not evident upon
its face, and often it is not necessar}' to know, whether that let-

ter denotes a positive or a negative number.

E.g.^ in the above example, n may stand either for -f 100 or

for — 100, at the pleasure of the writer. If, however, n stands

for 4-100, then — n stands for — 100
;
and if n stands for —100,

then — N stands for -f 100. In either case -f- n and — n ai'c

opposites.
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In this use of the signs -j- and —
, the}' are called signs of

quality, since the}' indicate the qualit}', in an important particu-

lar, of the quantities measured, and of the numbers before which

they stand.

These signs are also used to indicate the operations of addition

and subtraction [§§ 6, 7], and are then called sigyis of operation ;

but, as the reader will see wlien he comes to the study of these

operations, the two uses are always in accord, and the signs may
often be understood in either wa}- at pleasure. Sometimes signs

performing both offices occur before the same number [§§ 6, 7].

The sign
•" before a number denotes either the number itself,

or its opposite, whichever of them is positive ; the sign
"
denotes

whichever of them is negative ; i.e., a number preceded b}'
"•"

is

essentially positive, and a number i)receded b}'
~

is essentially

negative.

E.g., if N stands either for 100 or for —100, +x, read n taken

positive, stands for -f-100 ;
and ~n, read n taken negative, stands

for - 100.

So, +100 may always be written for + 100, and "100 for — 100
;

but not '"N for n or +n, nor "n for — n, unless the value of n
be positive.

Manifestly,
+ N and ~n are opposites ; and so are +100 and "100.

N'oTE.— The reader should observe that some things admit

of negatives and some do not.

E.g., time may be counted backwards as well as forwards

from any given date ; so may distance from any given point ;

so may heat and cold from an arbitrary zero
;
so may money of

account, as above
;
but with real dollars, say five of them, he

will find, when he tries to count past none, — five, four, three,

two, one, none,— that he is attempting to do what is impossible.

So, when he comes to the study of the so-called imaginaries,

he will find that for some things they have a real existence, but

for other things they have not.

So, for some things, fractions have no existence.

E.g., ^ ot a man, or J of an atom, or 1^ events or facts,

would be unmeaning.
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§ 4. SPECIAL SIGNS.

The sign of continuation is . . .
,
read and so on.

E.g., 1, -2, +3, ..., +9
means 1, —2, +3, —4, +5, —

G, +7, —8, +9.

The signs of inference are •.-, read since or because^

and .-., read therefore.

E.g., '.' 80 cts.<$l, .-. 400cts.<$5;
or 400ets.<S5, •.• 80cte.<$l.

The signs of grouping are (),[], j J, ,
|

. The}' show

that all within the brackets^ under the horizontal bar^ or before

the vertical bar, is taken together as one number, and subject to

the same operation; viz., that which is indicated b}' the sign

preceding or following it, or by the index attached to it.

When two or more numbers joined b}- the signs -f- and —

[§§ 6, 7] are grouped together b}' a bar or brackets, the}- form

an aggregate.

E.g., (l+2-i-3)x5— 2 is the product of two aggregates [§ 8].

When two statements are identical, except only for a few

characteristic words or signs, then, as a matter of convenience,

the two statements ma}' be written together as a double state-

ment, b}' placing the pairs of corresponding words or signs one

above the other.

E.g., ••• the battle of Salamis was fought 480 b.c. and that of

AYaterloo 1815 a.d.,

^ Salamis _„„ ^^„„V4. ooorc ,.„ i before Waterloo.
• •

Waterloo
^''^ ^""8^' ^^95 yrs. { ^^^, ^^^^^^.^

So, it^
^"^

30° ^
°''^'^<='"

.Vf
tei-day ^^

, to-day
'is ' warmer to-da}'

'

yesterday.

In such double statements, all the words and signs in the

upper line, together with the common parts, go to make up the

first statement
;
and all the words and signs in the lower line,

together with the common parts, the second statement. In the

same waj', three or more statements may be written together.

^\"lien, of a double statement, onl}- one part can be true, but

which that is, is unknown, such statement is ambiguous.
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§ 5. COPULAS AND STATEMENTS.

Two numbers are equal when, 'in every combination which

contains either of them, the other may take its place without

chanojinor the result.

When one number is equal to another, the two are joined by
the sign =, read equals^ or is equal to, and the whole is an

equation; or b}' the sign =, read is identical ivith, and the whole

is an identity.

E.g., 100 cents = 1 dollar
;
100 cents = 100 cents

;
x = a;.

An identit}' is an equation wherein the two numbers remain

equal, however the values of an}' of the letters may change.

Ever}' identity is an equation, but not ever}- equation is an

identit}'. Hence = ma}' always take the place of =
,
but = not

always of = .

The sign
= is also used for " stands for" and "represents."

A E.fj., p = principal, t = time, r = rate, i = interest.

/ When one number is not equal to another, the}' are joined by

V the signs ^.^ ^, <, >, <, >, read : not equal to, not identical

y7 tvith, less than, greater than, smaller than, larger than.

^
E.g., 80cts.^$l, lOOcts.^^l, 80cts.<$l, 120cts.>$l,

C^ 80cts.<$l, 120cts. >S1.
:>^r So, <, >, 1^, ^, mean not less than, not greater than, etc.

The words "greater" and " less" are here used in a technical

sense, and may be expressed by higher and loiaer in speaking of

,, temperatures and elevations, by north of or east of and south of

or ivest of in Surveying and Geography, by later and earlier in

comparing two dates, and so on
;
but "

larger" and " smaller"

take account of the size of the two numbers only.

E.g., 30 ft. up > 50 ft. down, and 30 ft. down > 50 ft. down ;

i.e., +30>-50, and -30 > -50.

But + 30 < -50, and "30 < "50.

If two numbers be equally large, the sign is :e:
;

if not equally

large, ^.

^.^., +1600:^-1600; +1600:^-1700.
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In general, an}' positive number, however small, is greater

than any negative number, however large ; and, of two negative

numbers, the smaller is greater than the larger.

Manifestly, the greater a number the less is its opposite ;
but

a number and its opposite are equally large.

The signs =, =, -, 4-, ^, ^, <, >, <, >, <, >, ^, ^
are signs of assertion or copulas.

Equations, identities, and inequalities are statements^ and when

of general truths, the}' are formulae. The first member is all that

precedes the copula, and the second member^ all that follows it.

A continued statement is one having more than two members
;

it is equivalent to as man}' simple statements as there are copu-

las, and each copula, unless preceded by a comma, connects the

two members immediately adjacent to it.

E.g., l<3<5<-7^9
is equivalent to the group of independent statements

1<3, 3<5, 5<-7, -7^9.
So,-.*a<6 .-. 2a<26<36

is equivalent to the chain of connected statements

•.• a<6 .-. 2a<26, and 26<36, and .-. 2a<36.
But-.* a<& .*. o, <2a, <26

is equivalent to the chain of connected statements

•.•a<6 .-. a (which <2a) < 2 6,

and is read: Since a is smaller than 6, therefore a, which is

smaller than 2 a, is smaller than 26.

This is, in effect, a brief form for a logical chain of statements.

The office of the commas is to parenthesize what is between

them, and compare directly what precedes the first comma and

what follows the last comma
; the basis of comparison being

found in what the commas enclose. The first comma is read which.

So, a^ — a^ =6,
is equivalent to the two independent statements

a^ — a and a = b;

and here, too, the office of the comma is to carry forward the

first member, a, and compare it with b which follows the comma.
The comma is read a7id.



§ 6.] ADDITION. 9

§ 6. ADDITION.

The sum of two or more concrete numbers of the same kind

is a new concrete number got by joining together the several

things measured, and then measuring the aggregate by the same

unit that measured the original numbers.

The sum of two or more abstract numbers is a new abstract

number which, if used as an operator upon any unit, will give

the same result as if the original numbers were first used as

operators upon the unit and their results were then added.

Addition is the process of finding the sum of two or more

numbers. If the numbers added be commensurable, then, at

bottom, addition is but counting either by entire units or by the

aliquot .parts of a unit : on (forward) if positive numbers be

added ;
off (backward) if negative numbers be added.

The sign of addition is + ;
read phis, or the sum of ... and ...

E.g., oOcts. + GOcts. + 90cts. =$2; 50 + 60 + 90 = 200.

In Algebra the word "addition" is used in a broader sense than

in Arithmetic, and covers negative as well as positive numbers.

E.g., he who has $10,000 cash and $4,000 debts is worth

but $6,000;

i.e., $10,000 cash + $4,000 debts = $6,000 net assets
;

+10,000+-4,000 = +G,000.

So, a train which has run east 10 miles, then west 20 miles

over the same track, is 10 miles west of the start-

ing-point ;

i.e., 10 east-miles + 20 west-miles = 10 west-miles ;

+10 +-20 =-10.

But a train which has run west 10 miles, then west 20 miles

more, is 30 miles west of the starting-point ;

i.e., 10 west-miles + 20 west-miles = 30 west-miles ;

-10 +-20 =-30.

Though the numbers to be added must always be of the same

kind, they are often expressed by letters whose values are not

known, or in units whose values are different, and which there-,

fore cannot be reduced to one sum.

E.g., 5^33'°30'' + 12H7'"30« = 18^21'".
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Manifesth', the sum of two opposites is 0.

E.g.^ 90 ft. up is the opposite of 90 ft. down
;

i.e. , + 90 is the opposite of — 90
;
and the sum of the two is 0.

So, -fa and —a, "ct and +a, 26 — 3 c and 3 c— 26.

§7. SUBTRACTION.

Subtraction is the inverse of addition, and consists in find-

ing what number must be added to one number, the subtra-

hend^ to give another number, the minuend. The result is the

remainder., and the sign is —
,
read minus or the excess of ...

over ... One or both of the numbers may be negative, and the

minuend may be less than the subtrahend.

E.g., S50-$40= 610, S40- S50=-$10.
-$50 --840 ="6 10, -$40 - -$50 =+$ 10.

So, if of two men A has $10,000 cash and no debts, and

B has $5,000 debts but no assets,

then A is $ 15,000 better off than B, ,

i.e., +10,000 --5,000 =-»-15,000 ;

and B is $ 15,000 worse off than A,

i.e., -5,000 -+10,000 =-15,000.

So, *.* the battle of Salamis was fought 480 b.c, and that of

Waterloo 1815 a.d.,

.*. Waterloo was fought 2295 ^ears after Salamis,

i.e., +1815 --480 =+2295
;

and Salamis was fought 2295 years before Waterloo,

i.e., -480 -+1815 =-2295.

So, if to-da}^ a thermometer read 10° below zero, and yes-

terday it read 20° below zero,

then it is 10° warmer to-day than yesterday,

i.e., -10 --20 =+10;
and it was 10° colder yesterday than to-day,

i.e., -20 --10 =-10.

The difference between two numbers is the remainder found

by subtracting the less from the greater ;
the sign is ~ .

E.g., 16 — 12 = 12-- 16 = 4; "16 '-+12 =+16 ---12 = 28.
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§ 8. MULTIPLICATION.

The product of a concrete number, the multiplicand ^ by an

abstract number, the multiplier, is a concrete number of the

same kind as the multiplicand, and bearing to the multiplicand

the same relation as the multiplier bears to unity.

Tlie product of two or more abstract numbers is a new

abstract number such that, if a unit be multiplied by it, the

product is the same as the final product obtained by multiplying

the unit by the first of the numbers, the product so found by
the second of thfem, and so on.

Multiplication is the process of finding the product of two or

more numbers
;
the numbers are the factors of the product.

Multiplication by a
-{

^
. integer is but a repeated

. addition
^^ ^^^^ multiplicand ^

*^
0, and multiplication

' subtraction ' from

by a J P°^'«7'' fraction is fte repeated J
^'1'^"'°° '"

'

negative
' subtraction from

of the equal parts into which the multiplicand is divided.

In the last analysis, multiplication is but a counting, on or

off, according as the multiplier is positive or negative ;
but it is

a counting by groups, each equal to the multiplicand, if the

multiplier be an integer, and by aliquot parts of such groups if

it be a fraction, instead of by single units as in addition.

E.g., five, ten, fifteen, twenty, twenty-five, thirty, gives the

product of five by six, or of "five by "six.

So, "five, "ten, "fifteen, gives the product of "five by three,

or of five by "three.

So, one half of five, two halves of five, three halves of five,

gives the product of five by f ,
or of "five by "f .

So, i of f , I of f ,
-3- of \, gives the product of

-f- b}' f ,
or

of-fby-|.
So, f , f , f gives tlie product of | by 3 or of "f by "3.
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The signs of miiltiplicatiou are x ,
read hy^ and •

, read into.

E.g., 50 cts. X 8 = $4; 8-50 cts. = 84.

So, placing the factors one after the other, with no sign be-

tween them, means multiplication of the first into the second, or

of the second b}' the first.

E.g., ah is the product of a into 6, or of h hy a,

and ab = a'b = b X a.

When the product of two numbers is multiplied b^' a third

number, such multiplication is the continued multiplication of the

tlu'ee numbers
;
so for four numbers, for five numbers, and so

on
;
and the product of such multiplication is the continued

product of the several factors.

E.g., 5xGx 7 = 210, and 5- 6- 7 = 210.

The continued product of the natural numbers 1 • 2 • 3 ... is

indicated by the sign ! placed after the last factor, or by the

sign |_ placed before and under the last factor.

E.g. ,
5 ! or

[5^,
read factorial 5, =l-2-3'4'5, =120;

n ! or
[n,

read factorial n,
= 1 ' 2 • S -

. . . n.

Some peculiar properties of negatives appear in multiplication.

E.g., if a train, now at a, is running east 20 miles an hour,

then five hours hence it will be 100 miles east of a,

i.e., +20 x+5=+100;
but five hours ago it was 100 miles west of a,

i.e., +20 x -5 =-100.

So, if the train is backing, i.e. running west,

then five hours hence it will be 100 miles west of a,

i.e., -20 X +5 =-100;
but five hours ago it was 100 miles east of a,

i.e., -20 x-5=+100.

Two numbers whose product is 1 are reciprocals of each other.

E.g., 4 is the reciprocal of J ;

— 3 of — i
; J of f .

Manifestly, the larger a number, the smaller its reciprocal.

The product of a number by an integer is a multiple of that

number: the double, triple, quadruple, •••, when the multiplier

is 2, 3, 4, ....
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§ 9. DIVISION.

Division is the inverse of multiplication, and consists in find-

ing either factor, when the product and the other factor are

given. The product is now called the dividend, the given factor

is the divisor^ and the result is the quotient.

E.g., '.' the product of 5 b}* 10 is 50,

.-. the quotient of 50 hy { jj^^*
So, ••• the product of a into h is ah,

.'. the quotient of ah by ^
J^ [^ ^•

"^^^^^ dhlsoi"
'

^^"^o *^^^ mnltii^lier, is an abstract number

[§ 8] ; and the {
^^^^^^^^^^

^^^^ (lividena arc alike in kind. When

both factors are abstract, the two definitions of division agree,
as will appear later.

E.g., •.' the product of $5 b}' 4 is $20,

.-. the quotient of S20 by^ \\^\\'
The signs of division are :

, read the ratio of ... to ..., and -t-,

read divided by, or the quotient of ...by

E.g., $20:85 = 4; S20-f-4 = $5; 20:5 = 4; 20-^4 = 5.

So, writing the dividend over the divisor with a horizontal line

between them means division. The dividend is then called the

numerator, the divisor the denominator, and the whole expression
a fraction. Hence a fraction is the expression for the quotient
in a division as 3'et unperformed.

Note. This definition of a fraction differs from that hereto-

fore given [§ 1], but later it will appear that the two definitions

are in full accord.

If the dividend be a multiple of the divisor, then the quotient
is an integer and the division is complete ;

but if the dividend

be not a multiple of the divisor, its excess over the greatest

multiple that is contained in it is the remainder.

E.g., 27 : 5 = 5, quotient with 2 remainder.
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§10. INVOLUTION.

A ^ i^^^"^y^ inteqral power of a number is the continued
» negative

-^ ^

^ ^"^^ti" n\
^^ "°^^^ ^^ ^^^ ^^^^" number.

Tho number whose power is sought is the base.

The symbol that shows how many times the base is used as

^
multipner .^ ^^^ exponent; it is written at the right and above

theZ! and is ^^^ for a ^^^ power.

E.g.^ lxaxaxa = a^, read

third x)ower of a, a third power ^ or a cwfee.

1 X a X a = a^, read

secondpower of a.^ o. second power ^
or a square.

1 X a = a^ read

first power of a, a first power, or simply a.

1 = a°, read

zeroth power o/ a, a zeroth power.

1 -J- a = a~\ read

mimis Jirst 2)ower of a, or a minus first power.

1 -T- a -T- a = a~^, read

minus second power of a, or a minus second power.

1 -f-a-^a-=- a= a~^, read

minus third power of a, or a minus third power.

A ?'ooi of a number is one of the equal factors into which it

may be resolved. The number whose root is sought is the

base
;
the symbol that shows into how many equal factors the

base is resolved is the root-index. The radical sign, -yf,
is writ-

ten before the base, and the root-index is at the left and above

it
;
or else the reciprocal of the root-index is attached to the

base as an exponent. The root-index 2 need not be written.

E.g., -^4, or simply V^ =^ = -2
; -^243 = 243* = 7.

A fractional p>ower of a number is either a root of the number

or some integral power of such root. The exponent is then a

simple fraction whose denominator shows into how many equal
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factors the base is resolved, and whose numerator shows how

many times one of these factors is used as -^ t •
•^ ' divisor.

E.g.^ 64"* =1x4x4 = 16, read 64, I power, equals 16.

64~^= 1 -^ 4 -i- 4 = Jg, read 64, —^^ power, equals Jg-.

So, a" = Va» c^ = {^c)\ a;? = (V^)^ 'k~l=:{^'k)-K

The words "
integral,"

"
fractional,"

''
positive," and

"
nega-

tive
"
apply to the exponents only, and not at all to the results

of the operations indicated; i.e., a positive integral power is

one whose exponent is a positive integer, and so on.

Integral and fractional powers are commensurable powers.
Those powers whose exponents are incommensurable are called

incommensurable powers ; they are defined in [VIII. § 4].

Involution is the process of finding the powers of numbers ;

its sign is the position of the exponent.
Note.— The reader may compare what is here said of posi-

tive and negative exponents, as indices of repeated multiplica-

tion and division of a unit by the base, or by one of the equal
factors of the base, with what is said in § 3 of operations which

tend to neutralize each other. He will then see the peculiar

propriety of expressing repeated multiplication by a positive

exponent, and repeated division, the inverse of multiplication,

by a negative exponent.

§ 11. EVOLUTION.

Evolution is the inverse of involution, and consists in finding
a base that, when raised to the power denoted by the index,

produces the given number. The result is the root.

The logarithm of a number is the exponent of that power to

which a base must be raised to give the number. The finding

of logarithms is another inverse of involution.

E.g., '.' 10- = 100, .-. 2 is the logarithm of 100 taken to the

base 10
;

it is written logio 100 = 2, and read log,

base 10, o/lOO equals 2.

So, logiol000 = 3, logiolO = l, logiol = 0, logio.l=-l.
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§ 12. EXPRESSIONS.

An Algebraic Expression is a number or combination of

numbers written in algebraic form. It is called an "expression"
or a "

number," according as the thought is of the S3'mbol or of

the value which the S3'mbol represents.

Unless a single letter or numeral, an expression is made up of

simpler expressions affected or combined by signs of operation ;

and the order of these operations is as follows :

1. Everj^ letter or numeral, with its indices, if an}', denotes

a number b}' itself; and so does ever}' expression united by a

bar or parenthesis. These numbers, in turn, may be affected

b}' exponents, etc.
;
but each exponent affects onl}' the single

numeral, letter, or parenthesis it is written to
;
and if a power

of a power is to be denoted, the new base must be parenthesized.

E.g., 2^^^a^b\x-y){x + yy is the product of 2^ 3^, a^ h*,

(x-y), and {x-hyY;
but \_{2^syaY is the cube of the product of a by the square

of 233.

So, {a^y is the cth power of a*; but a^" is the b'th power of a.

So, a** is the b" th power of a.

2. When a product is denoted by writing the factors together

without the sign X or •
,
or when a quotient is denoted by a

fraction, the product or quotient is affected, as a single number,

by the adjacent sign V? ^^Si >^'> '•> ^ ^5 +? — ? "^i or ~.

E.g., ^2 ab -a^y^-.S* denotes that positive the square root of

2ab is multiplied into ay^y^, and the product di-

vided by 3*
;

but ^2 ab ' our if : 3* is any square root of 2 ab -x^y^: 3'*.

So, logfy^ is the logarithm of ^y^ ;

but log f • ^ is the product of log J into ?/^.

3. In this book, when successive numbers are separated, some

by the sign X , •, :, or -^, and some by + or —
,
the multiplica-

tions and divisions are first performed, and then the products and

quotients are added or subtracted
;
and if several of these signs of
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multiplication and division occur in succession, or several signs
of addition and subtraction, the left-hand operation is first per-

formed. But the usage among algebraists is not uniform.

E.g., 3:2.6-6^3x2 + 1 denotes that from f • 6 is sub-

tracted |X2, and to the remainder, 5, is added 1.

Those parts of an expression which are joined by the signs -f-

or - are terms, and terms are^ '^"'^f
^'

which ^ ^^"^^7 , .
'

simple
' do not contam

the sign + or — except in an index.

An expression of one term onl}' is a monomial, of two terms

a binomial, of three terms a trinomial, of four terms a quadri-

nomial; of two or more terms a polynomial.

. • •
»
numerical i -, i ,An expression is<[ 7-. i when the numbers are expressed

I wholly by numerals ; ,
-finite , ., i /.

-!

wholly or in part by letters
; ^ivfintte

'"''"'" "''^ ""'"'^''' °^

operations implied is { "^! ^.' ,^ ^ ' unlunited.

A finite expression is<| f,?^^^^^^ when there is implied

\ other operation than addition, subtraction, multiplication,

division, and involution to commensurable powers.

An algebraic expression is ^
' '^ ^^^^

when it i
^^^

be freed
' surd ' cannot

*^ ^. .entire or integral , .free from divisors and roots.
from roots ;<^ ,. ,

'^ when< , « - ,. •
'

^jractional 'not free from divisors.

E.g.fBbc, A, A^'^^iX""^^ [r being a positive integer] are entire

simple rational monomials.

So, -^—
,

*
•

, ,
(a + a;"-') are complex fractional

a a-\-l a—1
monomials.

a + a;"^ is a fractional binomial with simple terms.

(a-\-b)-\ is a binomial with complex terms.
m + n

o7 ,
- r- 1 2a;

, 3v
3bc-}-;jXT/—7mn and h

a a-\-l
trinomials : the first is entire, the second fractional.
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So, y/a±lopl — V<^ ^^^ ^PQ — ^PQ + PQ —iPQ are

quadrinomials, but reducible to monomials; viz., to

and 2}rpq\

The above examples are literal
;
the following are numerical :

V^ ^-V'^* 2 +3% 1 +V— 1 are binomial surds.

1 + -^2
—

-{/— 3 is a trinomial surd.

1.1 X 1.01 X 1.001 X ••• is an infinitel}^ continued product.

is an infinite continued fraction, but one
2 4-1~

whose value is V^ — 1
, an irrational~

finite number, as will appear later.

An expression may be entire, rational, etc., as to some of its

letters onl}-.

E.g.,
^'^y ^

is rational as to a, m and n,
m-f-n

and it is entu*e as to a
;

but it is irrational as to & and c,

and it is fractional as to m and n.

"When the terms of an expression are so related to each other

that each successive term is derivable by some fixed law from

the previous terms, the expression is a series.

E.g., l-f-a;-f-»^-fic^H \-^ is a finite series if r is any

given integer ;

but l + a;-fic^4-a^-}--" + afH is an infinite series.

. In this series of is called the general term, because by giving to

r in turn the values 0, 1, 2, 3, . . .
,
or any of them, all the terms

of the series, or any of them, are found.

When the values of the several letters in a literal expression

ire known, then the value of the expression may be found by

substituting these values in place of the letters, and performing
the operations indicated.

E.g., if a = 2, 5 = 3, c = 4,

then a6c = 24, a + 6 — c=l, a : (6 -f c)
=

|^.

So, if a; == a + & and y = a — h,

then x-{-y—2a, x — y = 2b, xy = a^ — h^.
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A literal expression ma}^ be entire, fractional, rational, etc.,

but its numerical value not so
;
or the reverse.

E.g.^ a; is entire, o;"^ fractional, -y^o? irrational, ?/^ rational;

but, if aj = ^ and y — -^2,

then the value of x is fractional, that of x~^ is entire, that

of -^/x is rational, and that of 'if is irrational.

Manifestly, if all the letters stand for integers and the expres-

sion is entire, its value is an integer.

E.g.^ if a and h are integers, (a
—

6) {2o? -\- 36^) is integral.

As to an}' of its letters, an expression is symmetric when its

value remains unchanged however those letters exchange places.

E.g.^ xyz and x-{-y + z are symmetric as to a;, y, and 2;, or as

to any two of them.

So, w-\-x — y — ziQ s^-mmetric as to w and a;, and as to y
and z

;
but not as to w and 2/, to w and 2;, to x and

2/, nor to x and z.

An expression is converted or transformed^ when changed in

form but not in value
; developed or expanded^ when transformed

into a series.

§ 13. FUNCTIONS.

If a number is so related to other numbers that its value

depends upon 'their values, it is a function of those numbers :

an
{ '.''P^'f.^ function, Tvhen { •^^f^^^^l ,

in terms of those
> implicit

' ' not expressed
numbers. The numbers are the arguments of the function.

E.g., m u = Sxy, u is an explicit function of the arguments
X and y ;

but X is an implicit function of the arguments u and y,

and y is an implicit function of the arguments u and x.

So, in y^ = u:3x, y is an implicit function of u and x
;

but in y =^{u:Sx), y is an explicit function.

An explicit function of one or more numbers is known (given

or determined) in terms of those numbers. It is symmetric,

algebraic, transcendental, rational, etc., according as the expres-

sion which gives its value is symmetric, algebraic, etc.
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If one number (function) depends upon its arguments in the

same way as another number depends upon its own arguments,

i.e., if the expressions involved are of the same form, then the

first number is the same function of its arguments, as the second

number is of its arguments.

E.g.^ if x^-{-x= a and y'-\-y = b^

then ^
"

is the same^ f^^^\\^'}_ function of ^

''^

as |
^

is of ^ f' X '

imphcit 'a '

?/ '6.

So, the expression x-\-2y is the same function of x and y

as a -f 2 6 is of a and &, and the same as ?/ + 2 a; is

of y and x.

A function may ])e denoted by the letters/, f, <^, ...
,
with or

without indices, and followed by the arguments, either enclosed

in a parenthesis or not.

rvr. /j««^+« J t^e same ^„„„<.. „ j the same letterTo denote { ^ ^.^^^^^^
function ^ ^ ^.^^^^^^ ^^^^^^ ^^ .^^^^

is

used.

E.g.,iff(x) = x^ — ax,

then /(?/) =7f — ay during the same investigation ;

but f{y) cannot stand for a^ — ay^ nor for ay — if.

So, if F(a;, a) =a^ — ax,
then F{y^ b) =y^ — by, F(a,x)~a^—xa, ....

But if F'(a;, a)
= ar' — a^x, or any other form,

then f'(6, y) = b^ — y^b, the same form.

If F(a;,2/) J F(^,a;),

then either is ^
^ symmetric function of a; and 2^.• an uns^Tnmetric

^

E.g., iff(», y) =/(x) -/(i/) ,
or =f(x^j) ,

then F denotes a S3'mmetric function
;

but not if F(ic, y) =f{x) -/'{y) , or ~f{x : y) .

So, ^{x,y)-\-<fi{y,x), butnot </)(a;,2/)
—

<^(?/, a;), is sjtu-

metric.

So, if F(a;,2/,2), F(x,z,y), Y{y,z,x), F(y,x,z), F(z,x,y),
all

and f(z, y, x) be^ ^^^ ^^^
identical,

4., .,, .
,
a symmetric ^ ^' ^then either is -^

-^
, . function of x.y.z.

' an unsymmetric
' ^ '
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§ 14. COEFFICIENTS.— LIKE AND UNLIKE TERMS.

When a number is the product of several factors,- they are its

co-factors; and anj- one of them, or the product of am' two or

more of them, is a coefficient of the product of the remaining
co-factors. A coefficient is numerical^ literal, or mixed^ accord-

ing as it is a numeral, a letter or letters, or a numeral and let-

ters combined.

E.g.^ in 7a6c, 7 is the coefficient of a&c, 7a of 6c, lab of c,

76 of ac, 7 c of a6, 76c of a,

Usuall}' the numeral alone, together with the sign of the num-

ber, -f- or —
,
is counted as the coefficient.

Terms which differ only in their coefficients are like (similar)

terms
;
other terms are unlike.

E.g.^ 5 ax and lax are like, but 6 ax and 76?^ are unlike.

So, 5 ax and 7 bx are like if 5 a and 7 6 are counted as the

coefficients of a;
;
but unlike if 5 and 7 be coefficients

of ax and bx.

So, 3V(«'+&'), 5a^{a^+b'), {7b + dc)^{a'-hb') are

like surds.

But 3 V(«'+ ^') ,
5 a ^(a2 + 62) , (7 5 + 9 c) ^(a^ + c') are

all unlike surds.

§ 15. DEGREE.

The sum of the exponents in a simple term is its degree. The

degree of a polynomial is that of the term whose degree is high-

est of all. A polynomial made up of simple terms all of the

same degree is homogeneous. Expressions having the same de-

gree are homogeneous with each other.

E.g. ,
a^ H- 3 a^6 + 3 a6^ + 6^ is homogeneous, of the 3d degree.

So, a", a"-^6, a«-26S ..., a^'-^'b^ ..., a6^-S 6" are homo-

geneous with each other and of the nth degree.

and ax^, b^xy, (?]f' are of the 2d degree and homogeneous
with each other as to x and y ;

but of the 3d, 4th, and 5th degrees respectively, and not

homogeneous, as to all the letters.
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So, the trinomial a~^ + b~^ + c~^ is of the —1st degree, and

not homogeneous ;

and a^ + 6^ + c^ is of the 3d degree and not homogeneous ;

and ma?h~''ar + vra^b'^xy -{-]fa^h~^'if is homogeneous and

of the 2d degree as to x and y^ and homogeneous
and of the — 3d degree as to a, 6, a;, and y ;

but it is not homogeneous if m, w, and p be also counted,

for then the first term is of the —2d degree, the

second term is of the —1st degree, and the last

term is of the 0th degree.

So, the binomials^- M' and ^a"- fs -^b'-i (^ b
b 5a^ \ \^J

are

homogeneous and respectively of the 1st and the
-f

degree.

The degree of a product is the sum of the degrees of the fac-

tors. The degree of an}- power of an expression is the product

of the degree of the expression b}' the exponent of the power.
The degree of a quotient is the excess of the degree of the

dividend above the degree of the divisor. A power or product
or quotient of homogeneous expressions is homogeneous, and a

sum of homogeneous expressions of any same degree is homo-

geneous and of that degree.

E.g., {a--^b')^'(ay^-hy^)^: (ab + xy)^ is of the 1st degree
and homogeneous as to all the letters,

but it is of the 0th degree and not homogeneous as to a and

b only, or as to x and y only.
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§ 16. EXAMPLES.

1. In the sentence (cc+ a)^— (ic— a)^= 4aa;, point out the

verb, nouns, conjunctions, and phrases, and state their

grammatical relations.

§2.
2. Translate and read in words the following symbols :

3. Write in symbols :

p sub naught, q second, x prime sub r prime, large x

fourth sub a prime, large /sub i third and sub k.

§3.
4. If a = 2 and 6 = — 3, which of the following numbers are

positive, and which negative ?

a, 6, —a, —6, 2a, 5&, —8a, — 11&.

§5.
5. Connect each of the following pairs of numbers by the

appropriate sign > or < ;
also by the sign > or < :

0,1; 0,-1; -1,0; 2,1; 1,-2; -2,-1; -1,-2;
~x^~2x; '^x,~2x; ~a-\-~b,~a — ~b.

6. Read in words the statements :

If a < 6 ^ 0, then a ^ 6 ;

If a > 6, ^ 0, then a ^ 6
;

and explain the meaning of the copulas used therein.

7. Correct the following continued statements by introducing
or suppressing commas :

3<— 4,<1>1; '.'x^a, .-. 3a7> 3a, > 2a.

§§ 6, 7.

8. Read in words the following formulae :

-a+-6 = -(+a4-'^&) ; +a--5>0; -a-+&<0.
9. Correct the following statements by introducing the proper

brackets :

5-3 + 1 = 1; 5-3-1 = 3; -5+4-l=-8.
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10. Read in words the statements :

(a + 6)+(a-6) = 2a; (a + b)-{a-b) = 2b
-,

and, considering a and b to stand for any two numbers

whatever, read these two statements as general truths.

§§ 8, 9.

11. Separate the portions of the following continued statements

where necessary to avoid false equations or inequalities :

2x3 = 6 + 4=10-f-5 = 2;

12. Read and verify the statements :

1 !
. 2 !

. 3 !
. 4^ = 1*. 2^. 3-. 4^ 3 ! !,= (3 !) !,= (3 !)-• 4 • 5.

13. Correct the following statements by introducing the proper

brackets :

30-!-3xo= 2; 30-^10-^5= 15; 5a;-4a;x l+2= 3a;.

§ 10.

14. Translate into words : ,

a^-\-ab

+ bc

-\-ca

X + abc ;

[(a + 6).c-(a;-2/)T-S[(«-^)-«]'-(^-2/)"S~'-
15. Interpret the following expressions and statements :

2^; J; (2a;)-3; (G?/)"' ;
8^= 4; 2<*= 3« = 4«= ....

16. Introduce brackets so that 2^ shall equal 64
;
256.

17. Whatpowerof ojis [(a^)2]2? (a^)^? (a^'y? a;(3V? of"?

§ 11.

18. Find the value of :

log28, logai, log22, logsl, log22^2, log^8,

logii, log82, logsj, log^2, log^i, log4l6.

19. Of what number ia 4 the logarithm to base 2 ? to base 4 ? to

base ^? to base
-I-?

20. To the base 10, of what number is 3 the logarithm? 2 ? 1 ?

0? -1? -2? f? I? -i? -f?
21. To what base is 2 the logarithm of 9 ? of 27 ? of i?

22. To what base is i the logarithm of 5? of yo? of i?
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§ 12.

23. If a=l, & = -3, c = 5, find the value of :

a2&2^1 i-aV 26'-4ac a^4-2a5-jr&^

24. If a = 25, 6 = 9, c = — 4, d = — 1, find the values of :

Va'-2-^6^ + 3-^c^-4^^d^;

V- &c + 3 VacfZ
- 4V- &'^ + V-c^<^-

25. If a = 0, 6 = — 2, c = 4, d = — 6, find the value of :

26. If a = 2, a;=16, find the values of :

log„a;, log^V^' log«i»^, log„(log„a;), log«[log41og„«)],

log,a, log,Va. log.a'» log,(log,a), log,[-log,(log,a)].
27. In Ex. 23-26 show which expressions are algebraic, which

transcendental, which entire, which fractional, which ra-

tional, which irrational: first in form, second in value.

Show what portions of them are symmetric, and as to

which letters.

§ 13.

28. If
<jf)(a;)

= a:^ + 3 a; + 6, write the expressions for :

<f>{a), cf>{2a), cf>{-y), </)(a; + 2/)» <l>(^-y),
and find the values of «^ (0) , <^ (1) , </> (

—
2) .

29. If cfi{x, y,z,t) = a^-\-Syz-{- f, write the expressions for :

<^(a2,w,7i,Z), <^(0,l,-2, cc), </>(a;,a;,ic,cc), <f>(t,x,y,z).

30. As to what letters, if any, is each of the following func-

tions symmetric?

<f>{x+7j)', F{xy,x-\ry); f{x,y,z)-\-f{y,z,x)+f(z,x,y) ;

<f,(x)+cf>(y) -{-(}>' (z) ; F{x,yz)-\-F(y,zx)-\-F(z,xy).

§ 14.

31. Show what factors must be taken as coeflScients in order

that the following sets of terms shall be like :

3a6, 36c; 5axr, 2axy; Imn^^Am^n;
2a6c, 36ccZ, Acdx'^ i^V^i iV^Vi^'^y^)-

§ 15.

32. In Ex. 23-25 state the degree of each one of the expres-

sions, and show which of them are homogeneous.

OF THE "^
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II. PRIMARY OPERATIONS.

§ 1. LOGICAL TERMS.

A DEFmrriON is a statement of the sense in which a word or

S3Tnbol is used.

A theorem is a general truth: if self-evident, it is an axiom;
if auxiliarj- to a following theorem, it is a lemma; if an obvious

consequence of a previous theorem, it is a corollary.

A theorem consists of two parts, the hypothesis or data, and

the conclusion which, if not self-evident, is to be established by
a demonstration.

A converse of a theorem is another theorem that has for data

the conclusion, or the conclusion and an}- of the data, of the first

theorem, and for conclusion some datum of the first theorem.

E.g., the theorem " If from equal numbers equals be subtracted,

the remainders are equal," is an axiom, wherein the clause before

the comma is the h3'pothesis, and the clause after the comma is

the conclusion. It needs no demonstration. Its converses are :

"' K the remainders be equal, the numbers from which equals are

subtracted are equal," and ''If the remainders be equal, the

numbers subtracted from equals are equal."

Of demonstrations three kinds are found in Algebra :

(a) Direct proof, wherein the conclusion follows as a direct

and necessary consequence of certain axioms and definitions,

and of other theorems already proved.

(b) Proof by exclusion, also called reductio ad absurdum, or

indirect proof wherein are first enumerated all possible conclu-

sions from the given data, and then the ti*uth of one of them is

established bj' the exclusion as absurd of all the rest.

(c) Proof by induction, which consists of three steps :

1 . Proof, either direct or indirect, that the theorem is true

when applied to one or more cases at the beginning of a series

of particular cases of the general theorem.
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2. Proof that, if the theorem be true up to any one case in-

clusive, then it must also be true for the next higher case in the

series.

3 . Proofby progressive steps that, since, beginning with the

cases actually proved (1), it is true for the next, and the next,

and the next, indefinitely (2) ,
therefore it is universally true.

A problem is anj^thing to be done
; usually, in Algebra, it is to

find numbers or expressions that will satisfy given conditions.

These numbers or expressions, together with the process of find-

ing them, constitute the solution of the problem.

A solution is -(

^
, . , when it gives •{

'

of the numbers,
'

particular
° ' some *

or expressions, or sets of numbers or expressions, that satisfy

the given conditions. Usually the general solution is sought, with

a demonstration showing, by previous theorems and problems,

that the solution satisfies the given conditions and is general.

A cheeky or test^ is a comparison of results designed to detect

any accidental errors in the work.

A postulate assumes as self-evident that the solution of a

problem is possible.

The letters^
«-^-"- at the end of a^

demonstration
^ ^^^ ^

' Q.E.F. ' solution

^ , ,1 demonstrandum , . , + i, j proved.
quod erat \

^^,,.,^^^^
- which was to be { {^^^^^

§ 2. COMBINATORY PROPERTIES OF OPERATIONS.

An Algebraic Operation is an act by which two or more

numbers, the elements^ are combined together to produce one

number, the result.

Manifestly, the result is a function of the elements.

An operation is ^ ^^^^^f when {
^^^^'

, , two elements are
^ '

complex
' more than

combined. If a complex operation consist of two or more simple

operations, and if they be all of the same kind, it is a continued

operation.

E.g.^ the continued addition of three numbers consists of first

adding two of them, and then adding the third number to this sum.
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Of the two elements of a simple operation, one, the operand,

is conceived of as acted upon by the other, the operator, in a

way shown by the sign of operation.

E.g., m 6 + 2 = 8, 6-2 = 4, 6x2 = 12, 6:2 = 3,

the operand is 6
;
the operator is 2

;
the results are 8, 4, 12, 3 ;

the operations are addition, subtraction, multiplication, division
;

and the signs of operation are +, — , X ,
: .

So, in 16^ = 256, -^16 or V16 = ± 4, log2l6 = 4,

the operand is 16
;
the operator is 2

; the results are 256, ±4, 4;

the operations are involution, evolution, the finding of a loga-

rithm ;
and the signs of operation are, the position of the expo-

nent, -y/,
the word ''log."

I

uni-determinate,
An operation is < multi'determinate, when, from given elements,

'

indeterminate,

I
only one result,

it gives < several different results, but none intermediate.
' an infinite number of results in a continuous series.

The rational operations (addition, subtraction, multiplication,

division, and involution to integral powers) and the finding of

logarithms are generally unideterminate
;
but evolution is gener-

all}' multideterminate ;
and operations with special elements are

often indeterminate.

E.g., 6+2, =8; 6 - 2, = 4
;

6 X 2, = 12
;

6 : 2, = 3
;

3^,= 9
; log 3 9, = 2

;
are unideterminate

;

but -y/9,
= either + 3 or — 3, is multideterminate

;

and : 0, 0^ logoO, logjl, are indeterminate.

men the result and the^ °P-^,^ are given, the^ "P-^^^

may be found by an operation called the
{
"^

-. inverse of the

original or direct operation,

wherein the operand, operator, and result

-the ^-5 :Pi^M:^:S-P-«vely,ofthe
direct operation. Hence an inverse operation is the undoing of

what was done by the direct operation, and it ends where the

direct operation began.
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An inverse operation may be defined as an operation "the

efiect of which the direct operation simply annuls
"

It consists

not in any new procedure,
" but in a series of guesses suggested

b}' prior general knowledge of the results of the direct operation,

and tested by the direct operation itself."— Boole,

E.g., 6-2= 4 •.• 4 + 2 = 6;

6 : 2= 3 •.• 3 X2 = 6;

V9 =±3 ••• (+3)2 = 9 and (-3)2 = 9;

log39= 2 ••• 32 =9;
An inverse operation is, therefore, described b}" the two words

"guess" and "test." The error of one guess helps the next one.

E.g., To divide 756 by 27 :

Guess 30
;
that is too large, for the product, 27 x 30,

is 810, which is larger than 756.

Guess 20
;
that is too small, for the product, 27 X 20,

is 540, and the remainder, 216, is larger than 27.

Guess 8 as the quotient of the remainder 216 ; 27
;

this guess is right, for the product, 27x8, is 216;
and Uie whole quotient is 28, the sum of 20 and 8.

An inverse operation may or may not be multideterminate

when the direct operation is unideterminate
; and the two in-

verses may or may not be of the same kind.

E.g., Direct Operations. First Inverses. Second Inverses.

6 + 2= 8, 8-2= 6, 8-6 = 2;

6x2 = 12, 12 ; 2= 6, 12 : 6 = 2
;

62 =36, V36 =±6, log636 = 2;

wherein the two inverses of addition are both subtraction and

unideterminate
;

and of multiplication, they are both division and unideterminate ;

but of involution, the first is evolution and multideterminate, and

the second is the finding of a logarithm and unideterminate.

A direct simple operation is sometimes the repetition of more

elementary operations.

E.g., addition of a
^
^

^ . ^ integer, ± m, is counting a

unit { Q^ fn> times
;
and addition of a-j ^eo-ath^e ^^^^^i^^' ^ ^'
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is counting m times
-{ ^ such a number as, if counted on n times,

would add a unit.

So, multiplication bya^
P^^^J'^^Mnteger,

± m, is
-J ^tLin^

the multiplicand m times
-{ ^. ;

and multiplication by a

{
positive f ;

m
j^ adding

; _,
to

^^
negative

' n' »

subtractmg
' from

a number as, if added n times to 0, would give the multiplicand.

So, involution by a
-{

^
^ . .

^ integral exponent, ± m, is

•{ ^". |P ^^°^ 1 by the base m times
;

and involution b}^ a

< Stive
fractional exponent, ± f ,

is ^ Svidin^^ ^^ ^ ^^^^^'

by such a number as, if multiplied n times into 1, would give

the base.

Thus the operations of addition, multiplication, and involution

all come from the more elementary operation of counting.

So, often, when the operator is a-[ ^p^!,Ji^^g integer, as ± m,

then the more elementary-} .
^ operation is performed m

times in succession upon the operand ;
and when the operator is

a-{
P

^^ !^f fraction, as ± — ,
then some operation is performed

m times which, if performed n times, would be equivalent to

the more elementary -j
. operation.•^ ' inverse ^

The modulus of a simple operation is that operator, if any,

which always makes the result equal to the operand.

E.g.^ •.' x-\-0 = x and a; — =
a;, [x any number

a; X 1 = « and x : 1 = a;,

and 3^ =x and -y/x =a;;
.'. the" modulus of addition and subtraction is 0,

the modulus of multiplication and division is 1,

and the modulus of involution and evolution is 1.
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. .... commutative a ^^ ^ j. \ canAn operation is < _^^, ^^__„ +^. v.^ when the elements <^ » non-commutative » cannot

exchange places without changing the result ; i.e., when the result

. I a symmetric 4^ i.- -^ ^i, i *.
is <

-^
. . function of the elements.

' an uns3'mmetric

E.g.^ Commutative Operations. Non-commutative Operations.

2 + 3 = 3 + 2, , 2-3=?b3-2,
2x3 = 3x2. 2:3:?t3:2,

23 ^Z\
-^2 =?b-^3,

I0g32:?t:l0g23.

associativeA continued operation is
\ „o„.„,,o,j-„j,-„,

when, as long as tlie

elements do not exchange places, they-{
^^^^

. be grouped at

will without changing the result.

E.g.^ Associative Operations. Non-associative Operations.

(12+4) + 2 = 12 + (4+ 2), (12-4)- 2:^ 12 -(4-2),
(12x4) X 2 = 12 X (4x2), (12 : 4) : 2 :^ 12 : (4 : 2),

(12*)2 =5^12(4').

A second operation is^ nZdMhutwe ^' ^^ ^ ^'"^ operation

when the final result
•{ |^

, the same, whether the second opera-

tor act upon the result of the first operation, or upon the separate

elements of the first operation, and then these results are com-

bined by the first operation. An operation distributive as to

addition is also called simply distributive, or linear.

E.g., Distributive Operations. Non-distributive Operations.

Multiplication as to addition. Addition as to multiplication.

12+ 6 X 3 = 12x3+Gx3 ; 12x6+3 =7^ 12+3 X 6"+3.

Involution as to multiplication. Involution as to addition.

12X6 =12^x6^; 12+6 =7^122+6^;

Evolution as to multiplication. Evolution as to addition.

-v/27x8 =^27x-^8; a/27±8 =^-^27±^8;
Finding of logarithms as to addition.

log6(216 + 36) =^ log6216 + log636

Finding of logarithms as to multiplication.

log6(216 X 36) =^ log6216 X log636.
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§ 3. AXIOMS.

1 . Numbers equal to the same number are equal to each other.

2. Kto equal numbers equals be added, the sums are equal.

3. K from equal numbers equals be subtracted, the remain-

ders are equal.

4. If equal numbers be multiplied by equals, the products

are equal.

5. If equal numbers be divided by equals, the quotients are

equal.

G. K equal numbers be raised to like integral powers, the

POWERS are equal.

7. K of two equal numbers like roots be taken, ever}^ root

of the first number is equal to some root of the other.

8. If of three numbers the first be-j ? than the second,

and the second be equal to or
-{
W^ than the third, then is

the first { ^^^^^ than the third.

9. If one number be
-{
F^ than another, and if to each of

them be added the same number or equal numbers, then is the

first sum^ \qss^^^
^^^^ ^^® ^*^^^-

10. If one number be
<[
¥^^^

^^
than another, and if from each

of them be subtracted the same number or equal numbers, then

is the first remainder
-{ y^

^^
than the other.

11. If one number be-{ P*^^
^
than another, and if each of

them be subtracted from the same number or from equal num-

bers, then is the first remainder { . than the other.

12. If one set of numbers be
-J ¥^^^

^^
than another set of as

many more, each than each, then is the sum of the first set
-J ^

than the sum of the others.
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13. If one number be-{ F[f^
^^

than another, and if each of

them be multiplied or divided by the same or equal positive num-

bers, then is the first product or quotient -{ ^
than the other.

14. If one number be-{ P than another, and if each of

them be multiplied or divided b}' the same or equal negative
less

numbers, then is the first product or quotient-; , than the

other.

15. If of three numbers the first be { ^^^^^
than the second,

and the second be equal to or
-{

^-.^ than the third, then is

the firsts ^^^l^^^
than the thu-d.

16. If one number be { *=,,
.
than another, and if each of

them be multiplied by or into the same number or equal num-

bers, then is the first product^ smaller
*^^^ *^® other.

17. If one number be
-{

^.. than another, and if each of

them be divided by the same number or by equal numbers, then

is the first quotient ^
aiger tj^an u^g Q^jigP^

18. Kone number be-j ^^»^-^
than another, and if the same

number or equal numbers be divided b}^ each of them, then is

the first quotient^ Wer^ *^^^ *^® ^*^^^-

19. If one set of numbers be
-{ ^^^^^

than another set of as

many more, each than each, then is the product of the first set

-J gjvj^iig,.
than the product of the others.

20. If one number be
-{ ^^^^^

than another, and if like posi-

tive powers or roots of them be taken, then is the first power or
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21. If one number be
-J ^|,

than another, and if like nega-

tive powers or roots of them be taken, then is the fii'st power

or root
-{

, ^ than the other.

22. If two numbers be opposites, one of them is positive

and the other is negative ; they are equall}- large ; and their sum
is naught.

23. If all the letters of an entire expression stand for integers,

the value of the expression is an integer.

Note 1. For convenience, and because quite evident, all the

propositions above given are called axioms, although, in strict-

ness, some of them are deducible from others.

E.g.^ Ax. 1 is deducible from Ax. 8.

For let A, B, c be three numbers such that a = c and b = c
;

then either a = b, orA>B, orA<B; and of these three,

the onl}' possible conclusions from the data, one

must be true, and the others false.

Suppose A > B
;

then •.•A>B and b = c, Di3T'
.*. A>c, [ax. 8

a consequence from the supposition a > b, which is contrar}^ to

the hypothesis of the theorem, and therefore absurd.

.*. the supposition a > b, which led to this absurd conse-

quence, is itself absurd
;
and a > b.

So it ma}' be proved that a < b
;

and •.•a>b and a<b,
.•. it is onh' left that a = b. q. e. d.

Note 2. The reader will observe that the form of statement

'.s different in Ax. 7 from that in any of the others. It will

appear later that in general a number has two square roots not

equal to each other, three cube roots not equal, and so on.

\^ The theorems that follow in this chapter, though uni-

versally true, are here proved for commensurable numbers only :

for incommensurables see VII. § 7, and for imaginaries, see

X. §§ 2, 3.
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§ 4. ADDITION COMMUTATIVE AND ASSOCIATIVE.

Theor. 1. The sum of two or more numbers is the same, in

whatever order the numbers are added, and however they are

grouped.
Let •"«,*&,... be any positive integers, ~m, "w, ... any nega-

tive integers, (- j, (-),... any simple fractions
;
then will:

= • • • whatever the order or grouping of the terms.

For •.* +a= l + l + l + .--a times counted on (forward),
+6= i_j_i_j_i_j ^ times counted on, and so on,

and *.• ~m= — 1 — 1 — 1 m times counted off (backward),
"w= — 1 — 1 — 1 n times counted off, and so on,

+/r\ 111
and •.• -—. H 1 j j

r times counted on,
\XJ XXX
{-) = "• s times counted off, and so on,
\yj y y y

.*. the whole collection of units and parts of units, being
the same, counts the same, on and off, whichever

unit or group of units, part or group of parts, is

counted first, whichever second, and so on
;

and that, whether the units, or parts of units, be of the

same value, or of different values. Q. e. d.

SUM OF OPPOSITES.

Cor. 1. The sum of the opposites of two or more numbers is

the opposite of their sum.

For let "^A, +B, . . . be any positive numbers, integral or frac-

tional
;
and ~m, . . . any negative numbers

;

then •.• -a4-"bH \-+m-] \-+a-{-+b-] h"MH
= -a++a+-b4-^bH h'^M + 'MH = 0, [th.

A4--BH \--^M-] and +a+'*"bH I-"mH

are opposites. Q. e. d. [I. § 6 df.
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THEORY OF SUBTRACTION.

Cor. 2. If to the minuend the opposite of the subtrahend he

added, the sum is the remainder.

For let M, s, and r = minuend, subtrahend, and remainder
;

then ••• M = s+R, [I. §7 df.

.-. M + (-s) = R + s4-(-s) [ax. 2

= R + (s
—

s) [th.

==R-fO =R. Q. E. D.

Cor. 3. If there he a series of additions and suhtractions, the

final result is the same, in whatever order they are performed,

and however the elements are grouped; hut, whenever any group
is made to follow the sign of suhtraction, the sign of each element

of the group is reversed.

§ 5. SIGN OF PEODUCT.

Theor. 2. If the multiplier he positive, the product is of the

same sense as the multiplicand; if negative, of the opposite sense.

For *.* multiplication b}' a-{
^

o- t'
- Diultiplier is a repeated

^ subtraction
^^ *^^ multiplicand, or of one of the

equal parts of it, { ^,
the modulus 0, [I. § 8 df.

and •.• subtraction of any number from gives the opposite of

that number
; [th. 1 cr. 3

.-.the sense of the ^ remainder (P^<^^^^^) ^ is

"^^

changed

thereb}'. q. e. d.

even
Cor. 1. If the numher of negative factors he-{ , ,

' the prod-

uct is ^ P^^^^''^^'
»

negative.

Note. In this corollary is counted an even number.

Cor. 2. In division, if the divisor 6e-{ ^^„,- j the quotient is

of the -l

^^^^
.,

sense i f^ the dividend.
-' '

opposite
' to

Note. Th. 2 and Cor. 2 are summarized in the familiar rule

for sign of product or quotient :

" Like signs give -f ; unlike,
— ."
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§ 6. MULTIPLICATION COMMUTATIVE AND ASSOCIATIVE.

Theor. 3. The product of two or more numbers is the same,

in whatever order the factors are multiplied, and however they

are grouped,

(a) Two positive integers, a, b ;
then will a X b = b x a.

For let * * ••• **•••
**•••*
be a collection of stars, trees, or any other units, con-

sisting of a horizontal lines, and h vertical columns ;

then *.* if a, the number of stars in one column, be multiplied

by h, the number of columns, the product, a X b,

gives the whole number in the collection
;

and *.* if 6, the number of stars in one line, be multiplied by

a, the number of lines, the product, b X a, gives

the whole number in the collection
;

r. a xb = b X a. q.e.d. [ax. 1

(6) TJiree positive integers, a, b, c
;
then will

axbxc=bxaxc=cxaxb=cxbxa
axcxb = cxaxbz=bxaxc = bxcxa

= b xcx a= cxb xa = ax bxc — axcxb.
For let a a a ... a

a a a ... a

a a a ... a

be a collection of groups of a units each, in b hori-

zontal lines and c vertical columns ;

and '.' a xb is the number of units in one column,

.'. axb X c is the number of units in all the c columns,

i.e., in the whole collection
;

then '.-axe is the number of units in one line,

ax cxb is the number of units in all the b lines,

i.e., in the whole collection
;

ax6xc = axcx6. q.e.d. [ax. 1
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So let 6 6 h ... h

b b b ... b

b b b ... b

be a collection of groups of b units each, in a lines

and c columns
;

then *.• each of the c columns has & x a units,

and *.* each of the a lines contains 6 x c units,

.*. 6 X a X c = b xcxa. q.e. d.

But*.* a X 6 = 6 X a, ax c = cxa, bxc — cxb^
and axbxc = c X axb^ axcxb = b xaxc,

b xcxa=axb xci [(a)

axbxc=bxaxc=cxaxb=cxbxa
= axcxb = cxaxb=:ibxaxc = bxcxa
= b X cxa = cxb xa=ax b x c = ax c x b. q.e.d.

Note. In this proof the reader wiU observe that the bar can

be placed over a group of factors, or removed, at pleasure, when
that group stands at the left end of the series, but not otherwise.

E.g., axbx c = a X 6 X c;

for in either case, the product of a by & is first found and

then that product is multiplied bj^ c.

But a X 6 X c is a ver}^ different matter
;

for. in this case, the product of b by c is first found, and a

is then multipUed by this product.

(c) Any number of positive integers.

1. The theorem is true for three factors. [(a, b)

2. If it be true up to n factors inclusive, it is true also for

n + 1 factors.

For let the n 4- 1 factors, a, b, c, ... i, J, 7j, be grouped and

multiplied together in any desired way, and let the

product be p
;

then *.• p is got by multiplying the product, say q, of some of

these factors, by the remaining factor, or by the

product, say k, of the remaining factors,

.'. p = Q X R.
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Let R be that one of these products which has the factor A;,

and let s be the product of the other factors of r
;

then ••• neither Q, R, s nor the product Q X s has more than n

factors,

.*. in each of them the several factors may take any desired

order, [ti3T- above

.'. p, = Q X R, = Q X s X A;

= Q X s X k [(6)
= « X 6 X • • • X j X k

= axbX'"Xj Xlc.

3. But the theorem is true for three factors, [(a, 6)

.-. it is true for four factors
; [2, above

So for five factors, for six factors, .... q. e. d.

Note. This proof is an example of proof by induction. [§ 1

(d) Any number of integers, '•"a, "b, ''"c, . . ., "'"1, "m, ~n, whereof
k factors are negative.

For in whatever order the factors are multiplied,

p, their product, = ±'*'a X "'"6 X • • • X """m x """w, [(c)

_, positive ^ ^ ^. .^
even. Q e d.

'

negative
' odd. [th. 2 cr. 1

(e) Any number offactors, a, b, c, ...-,-, ..., whereof some,XV
or all, are simple fractions.

-^

For-.- in the product (XX&XCX---X^X-X •••,
2/ y

= ±+ax+5 X+cX ••• X - X - X---,
\^/ \yJ

each unit of the product a x 6 X c x • • • is divided

into X equal parts and r of them are taken,

and then each of these axb x ex -•' Xr parts is divided into

y equal parts, and s of them are taken, and so on,

i.e., the unit is divided into xxyx •••
equal parts, and

ax&XcX---Xrxsx---of them are taken
;

^
,

,
r s axbxcx ••• X rxs---

.'. axbxcx--'X-X-X"' =
X y xxyx
s r

K -Xb X-XCX'-' each of t

y ^
is divided into y parts, and s of them are taken,

s r
So in the product ax -Xb x-Xcx--- each of the a units

y X
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and then each of these ax s parts is taken b times,

and then each of these ax sx b parts is divided into x equal

parts, and r of them are taken,

and then each of these ax s xb xr parts is taken c times, and

so on;

i.e., the unit is divided into yxxx--- equal parts,

and axsxbxrxcx •••of them are taken.

y X yxxX'"
But-.- 2/Xa;x ••• = XX2/X •••, [(d)

and axsxbxrxcx '" = axbxcX"'Xrxs',
.*. in each of these two products, the unit is divided into

the same number of equal parts, and the same
number of these parts are taken.

So for all other possible products of these factors
;

.-. the products are all equal. q.e.d.

(/) Any number of factors^ whereof some or all are neither

integers nor simple fractions, but which are all commensurable.

For, let A, B, c, , -, ... be the values of such factors when
X Y

reduced, wherein the letters all stand for integers ; [I. § 1 df.

then -.- the value of the product axbXCX--^X — X-X •••

X Y
is the same, whatever the order or grouping of the

factors, [(d, e)

.-. the product of the given factors is the same, etc. q. e. d.

THEORY OF FRACTIONS.

Cor. 1 . TJie prodtLct of two or more fractions is a fraction

J , numerator . ., j * ^ *? » numerators ^ ,,
""^"'^

-! denominator
'' *^' P'"^"^ "f *^ ^ denominators "^ *^

given fractions.

n n n
Let -? —:? —r, . . . be any fractions,

d d' d"

., •n ^ V, ^' V, n X n' X •••

then will- X - X • = -—
-.

d d' dxd' X •"

(a) n, d, ... all integers.

This case was proved in the demonstration of Th. 3 (e) .
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(b) The fractions and their numerators and denominators any
commensurahles whatever,

n n
For, let /, /', ... be the values of -, — ,

... respectivel}' ;

a a
then '.' n=fxd, n'=/' x c?', ...

, [I. § 9 df.

.-. nxn' X"'={fXd)x{f'xd')X"' [ax. 4

= (/X/'X---)x((^ XcZ'x---), [th.3

"
dxd'X"-~~^''\''

= '^'x^X*--- Q-^-^- [I-§9df.d d'

Cor. 2. The reciprocal of any fraction is the same fraction in-

. , . ^ ,• T I numerator . ,, ,
denominator

verted; i.e., a fraction whose { , . . is the<' ' -^ ' denominator ' 7iumerator

of the given fraction.

For, let n and d be any commensurable numbers
;

then •.• ^x^ = ^-^ = l,
71 d nxd
d n

.'. - is the reciprocal of — q. e.d. fl. §8 df.
n d

CoR. 3. The quotient of one number by another is the product

of the first by the reciprocal of the other.

(a) The divisor and dividend both simple fractions.

For, let - and — be any two fractions,

then • . /'^ y A y ^^_^ y f(^' y '^'\ _ '^ y d'xn' _n.*^'^ •

[d''n')''d-d''[n'''d')-d''^;j^-r
n n' n d' ft c a i^.

•••

rw=a''^- ^•'=-''- ^^^'^'-

Note. Cors. 1, 2, 3 lead to the reduction of complex prod-
ucts and quotients of commensurahles to simple fractions, either

directly or by progressive steps. By Cor. 2, the reciprocal of

any commensurable is a commensurable
; hence, by Cor. 3, if

both numerator and denominator be commensurahles, so is the

fraction
; by Cors. 1,3, any product or quotient of such frac-

tions is got as a simple fraction, and so on. Compare Th. 5,

Cor. 8.
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(6) Tlie dividend and divisor any commensurahles whatever.

For, let N, D be any two eommensurables
;

then •.* D is commensurable,

.'. -is likewise commensurable; [(a) nt.

.-.
(n

X -
]

X D = N X
[-

X D
J

= N ; '\th. 3

.-. Nxi = N:D. Q.E. D. [I. §9clf.
D

Cor. 4. The product of the reciprocals of two or more numbers

is the reciprocal of their product.
r 9

For, let a, 6, ...-,-,... be any numbers,
X y

r sx-x-x
X y

-X-)X •••

then •.• (_x-rX •••X-X- X •••
)
X f

a X & X ••<

\a r s J \

=
I

- X a
)
X f r X 6

)
X • • • X

(
- X -

J
X

\a J \b J \r x) \s y
= 1;

11 X 'u , , r s
.-. -x-X-'-X-X-X--- and ax6x ••• X -X-X •••

a h r s ^ y
are reciprocals. q. e. d.

Cor. 5. If the numerator of a fraction he multiplied by any

number^ the fraction is multiplied by that number.

For, let - be any fraction, and k any multiplier ;

a

then ^?L^=(nxA;)x- = fnxiV^' = 3X^- ^'^''^'
d

'
d \ dj d

Note. In this corollary and the two corollai:ies that follow,

«'
multiplied by" includes " divided by," since to divide by k is

but to multipl}' by its reciprocal.

CoR. 6. If the denominator of a fraction be multiplied by any

number^ the fraction is divided by that number.

For, let - be any fraction, and k any multiplier ;

then _!L. „x-J- = »x('ixi)
=
f«xl')xi

=
^:fc.dxk dxk \d kj \ dj k d
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Cor. 7. If both terms of a fraction he multiplied by the same

number, the value of the fraction is not changed.
n

For, let - be any fraction, and k any multiplier ;

a
,, n xk n k n p^then -^l- = -x- = -. Q.E.D. [or. 1

dxk d k d -

Cor. 8. If there be a series of multiplications and divisions,

the final result is the same, in whatever order they are performed,
and however the elements are grouped; but whenever any group
is made to follow the sign of division, the sign of operation of
each element of the group is reversed.

Note. The reader will observe the analogy between this cor-

ollary and Th. 1, Cor. 3. He will see that, if three or more

numbers are joined b}^ the signs X and ;, he may introduce or

remove brackets just as if they were joined by the signs -f and — .

QUOTIENT OF A PRODUCT BY ITS FACTORS.

CoR. 9. If the product of several factors be divided by one of

them, or by the product of two or more of them, the quotient is the

product of the rernaining factors.

For *.• the product of the remaining factors by the divisor is

the product of all the factors, [th. 3

.*. the product of the remaining factors is the quotient of

the product of all the factors b}^ the divisor, q. e. d.

PRODUCT OF INTEGRAL POWERS.

Cor. 10. TJie product of two or more integral powers of any
same number is a power of that number whose exponent is the

sum of the exponents in the factors.

For, let A be any number, and I, m,n ... any positive integers,
then *.• A* = lXAXAXAX---? times,

A'"=lXAXAXAX '" m times,

and A-"=l : A : A : A : •••n times, and so on. [I. §10df.
.•* a' X A*" X A-" X •••

=
(1 X A X A X • • • ? times) x(lXAXAX---m times)
X (1 : A : A :

• • • w times) X • • •

= lXAXAX---(Z + mH ) times

: a: a: •••{n-\ ) times

= 1 XAXAX"-(Z-|-mTJ n ) times [cr. 9

s= A* ''""'*"•. Q.E.D.
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Cor. 11. An integral power of any integral power of a base^

is that power of the base tuhose exponent is the product of the

two given exponents.

Let Abe an}' number,m and n any integers, then will (a")'"= a*"**.

(a) m positive.

For (a*)"^'",
= 1 X a" X a- X ••• m times, [I. § 10 df.

_^n+ n+...m timet
[CF. 10

= A*"". Q. E. D.

(6) m negative.

For (a**)""*,
= 1 : a" : a" :

... +m times, [I. § 10 df.

_ 1 . ^n+ n+...+m time.
[cr. 10

= 1 : a"^*"*

= a""*", or = A"*** if the sign of quality be erased.

, Q-E.D.

Cob. 12. The {
^^^ "^

. of like integral powers of two or more

numbers is the same power of the \ ^I^^^r^* of those numbers.

Let A, B, c, ... be any numbers, n any integer, positive or

negative, then will a" X b" : c" • • • = a X b : c ••• .

(a) n positive.

For *.• A"=lXAXAX...n times,

B"=lXBXBX.--n times,

c*=lxcxcx-.-n times, and so on
;

.*. A* X B" : C** •••

= (lXAXAX...w times) x(lXBXBX-..n times)

: (1 X c X c X • • • w times)
• • •

= 1 X AX B : c •«. X AX B : c ••• X • • • w times

= A X B : c •••
. Q.E.D.

(6) n negative.

For •.* a"" =1 : A : A :
• • • +n times,

b"** = 1 : b : b :
• . • *'n times,

c~"= 1 : c : : . • • +71 times, and so on ;

.*. A~"X B~" : c""-"

= (1 : A : A :
• • • +71 times)x (1 : b : b :

• . • +7i times)

: (1 : c : C :
• • • "^n times)

• • •

= 1 : AX B :
.••

: A X b : c ••• : • • •+w times [cr. 8

= (aXB : C •«.)"'".
/% X. ^
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§ 7. MULTIPLICATION DISTEIBUTIVE AS TO ADDITION.

Theor. 4. The sum of two or more like numbers is the product

of the common factor by the sum of the coefficients,

~r
Let "*"m -a, ^w • a, "p • a, — a, ... be any like numbers,^

±
whereof a is the common factor, and "''m, +n, ~p, — ,

... are the

coefficients ;

-r
then will ""m«a++n-a + "p-a + -7--aH

= (+m ++71 +"i) +— H )
• a.

For *.• -^m'a= a-{-a-\-a-\ counted on +m times,

+n-a= a + a + aH counted on +?i times,

-p,a = — a — a — a counted off '+p times,

— a = the icth part of a counted, on or off, r times,

. . "*'m • a -h+n • a -^~p 'a-] a -\-
-•-

= a-\-a-\-a-\ counted (+m ++W -f"jp
• •

•) times

± the -th part of a H ;

.•. the whole sum is("*"m+''"n+"p+—-H )
- a. q.e.d.

Cor. The sum of two or more fractions having a common

denominator is a fraxition whose numerator is the sum of their

numerators^ and whose denominator is the common denominator.

For, let-, ±— ,
... be any fractions having a common de-

nominator.
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Theor. 5. The product of two or more polynomials is the sum

of the several products of each term of the first factor by each

term of the second factor by each term of the third factor, and

so on.

(a) Two factors, a + b H f-
- +'-'and a'+b'H f-- + • • •

,

X x'

wherein a, b, ... , a', b', ... are any integers, positive or negative,

and -1
r r'

X X'
are any simple fractions.

For (a + & + --- + - + ---) X (a' + 6' + ...+^ + ---)X a;'

= (a-|-6H 1 1 ) counted "^a' times, on or off,

4-(a + 5H 1 1 ) counted """fe' times, on or off,
X

+

+ the -^th pai'tof (a-\-b-\ !-- + •••)» on or off,
a;' X

+
= a counted a' times + b counted a' times H +

counted a' times -\

+ a counted 6' times + b counted 6' times -\ +
counted 6' times H

+ the -th part of a + the l-th part of 6 +
aj' a'

+ the -,th part of - + ..-

a;' X

= axa^ + 6xa' +

+ ax6'+6x6' +
+

r' r'

x' x'

+

+ T^xa^ +

+ -X^^ +

,
r r

,+ - X - +
X x'

Q.E.J).

Note. Manifestl}', if a term in either factor is negative, the

corresponding partial product is negative or positive according

as the co-factor of this term is positive or negative.
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(6) Three or more factors.

For *.• the product of two factors is the sum of the partial

products of each term of one factor by each term

of the other, [ (a)

and '.* the product of this product by a third factor is the sum

of the partial products of each term of this product

b}^ each terra of the third factor
; [ (a)

.*. the product of three factors is, etc. q.e.d.

So, for any number of factors. q. e. d.

FORM OF PRODUCT.

CoR. 1. The form of a product is independent of the values

of the letters that enter into it; i.e., the same numerals, letters,

exponents, coefficients, and signs, occur and combine in the same

order, whatever the numbers for which the letters stand.

Cor. 2. If each factor be symmetric as to two or more letters.

the product is also symmetric as to the same letters.

CoR. 3. If any values be given to the letters, or if any definite

relations be assumed between their values, the value of the prod-
uct equals the product of the values of the factors.

CoR. 4. The sum of the coefficients of a product is the con-

tinued product of the sum of the coefficients' of the first factor, by

the sum of the coefficients of the second factor, and so on.

CoR. 5. The degree of the-{ j ,f

term of a product, as to

any letter or letters, is the sum of the degrees of the { .
^

. terms

of the factors, as to the same letter or letters. In particular, the

degree of the product is the sum of the degrees of the several

. factors.

CoR. 6. If each factor be homogeneous as to any letter or let-

ters, then the product is homogeneous as to the same letter or letters.

CoR. 7. The ivhole number of terms in any product, before

reduction, is the continued product of the number of terms in the

several factors ; and the product of two or more polynomials can

never be reduced to iess than two terms; viz. : the term of highest

degree and the term of lowest degree as to any letter or letters.
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Cor. 8. The value of evenj rational expression whose elements

are commensurable numbers is a commensurable number.

For •.•in such an expression the elements enter only as ele-

ments of sums, ditferences, products, quotients,

and integral powers,

and •.* these results enter only as elements of new sums, etc.,

and so on,

and *.' the sums, etc., of commensurables are commensur-

ables ; [th. 3 cr . 3 nt. , th. 4 cr.

.'. the sums, etc., of the elements are commensurables,

.*. the sums, etc., of these results and the original elements

are commensurables, and so on
;

.*. the final result is commensurable. q. e. d.

§ 8. PROPORTION.

Four numbers are propoHional (in proportion) when the first

is such multiple, part, or parts, of the second, as the third is

of the fourth
; i.e., when the quotient of the first by the second

equals the quotient of the third by the fourth.

E.g.^ if a : 6 = c : d, then a, 6, c, d are proportionals, taken in

the order given.
Q' CA proportion is also written in the forms a:b:: c: d and t = -;i

and it is read : a is to h as c is to d, or the ratio of a. to h equals

the ratio ofctod, or, more briefly, a ^o b equals c to d.

These quotients are now called ratios; the dividends, ante-

cedents; the divisors, consequents; the first and fourth tenns,

extremes; the second and third tenns, means; the fourth term,

a. fourth proportional to the other three.

Three numbers are proportional when the quotient of the first

by the second equals the quotient of the second by the third. It is

a case of four proportionals wherein the two means are the same

number. The second number is a mean proportional between

the first and third, and the third is a third proportional to the

first and second.

E.g., a:b = b:c, wherein 6 is a mean proportional between a

and c, and c is a third proportional to a and 6.
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Six or more numbers are in continued proportion when the first

is to the second as the third is to the foiuth, as the fifth is to the

sixth, and so on. E.g.^ a:h — c:d = e :/= •••.

By aid of Th. 7 (6) this proportion ma}^ be written in the form

a : c : e : ••• = 6 : d :/: •••, wherein a, c, e, ... are the antecedents,

and 6, d, /, ... the consequents. This notation must not be con-

founded with that used on p. 43 and elsewhere.

Theor. 6. Iffour numbers he proportional^ the product of the

extremes equals the product of the means; and, conversely, if the

product of two numbers equal the product of two others, the four
numbers form a proportion, ivherein the factors of one product
are the extremes and the factors of the other product are the means.

(a) Let a : b = c : d, then will ad = be.

For •.
•

(a:b)xbd = {c:d)x bd, [ax. 4

.-. ad = bc. Q. E. D. [th. 3cr. 9

(6) Let ad = be, then will a:b = c:d.

For •.• ad:bd — bc: bd, [ax. 5

.*. a:b = c:d. Q. e. d. [th. 3 cr. 7, cr. 5 nt.

y~« extrcTne
Cor. 1. If four numbers be proportional, either { is

the quotient of the product of the ^ *^^,^^^ by the other -l

^^^^'^^'
^ ^ ^ -f \ extremes ^ » mean.

For, let a : 6 = c : d,

then •.• ad = bc, [th.

.-. a =bc:d, b = ad:c, c = ad:b, d = bc:a. [ax. 5

CoR. 2. If three numbers be proportional, either extreme equals

the quotient of the square of the mean by the other extreme, and

the mean equals the square root of the product of the extremes.

For, let a : b = b : c,

then *.• ac — W, [th.

.-. a =b^:c, b=-y/ac, c = b^:a. Q. e. d. [ax. 5,7

Note. The equation ad = be may be resolved into eight dif-

ferent proportions, four of them with a and d for extremes and

b and c for means, and four of them with b and c for extremes

and a and d for means. The reader may write them out
;
he will

find two of them given in Th. 7 (a, b) .



50 PBIMABY OPERATIONS. [II. th.

Theob. 7. Iffour numbers he proportional^ they are propor-

tional :

(a) Inversely: the second to the first as the fourth to the third.

Let a:h = c:d^ then will b:a = d:c.

For •.' ad =bc, [th. 6

.-. b:a = d:c. Q. e.d. [th. 6 cv.

(b) Alternately: the first to the third as the second to the

fourth.

Let a'.b = c:d^ then will a:c=b:d.
For '.-ad =bc, [th. 6

.*. a:c = b:d. q.e.d. [th. 6 cv.

(c) By addition or subtraction (composition or division) :

the'{

^^
. , of the first ^ ^'^^

the second, to the first or second,

^ ^^^ < remainder ""^ *^^ ^^''^ ^ Zt ^^'^ •^^^'*^^' ^^ ^^'^ ^^''"^^ ""'

fourth.

Let a : b = c : d, then will

a±b:a = c±d:c, and a±b :b = c±d: d.

For •.• ad=bc, [th. 6

.-. ac ±bc =:ac±ad and ad±bd = bc± bd, [ax. 2, 3

i.e., (a±b)c =a{c±d) and {a ±b)d =b(c± d),

.*. a±b:a = c±d:c and a±b:b=c±d:d. q.e.d.

(d) ^2/ oddition and subtraction (composition and division) :

the sum of the first and second to their remainder as the sum of

the third and fourth to their remainder.

Let a:b = c:d, then will a-\-b:a — b = c-\-d:c — d.

For '.' a-\-b:a = c-{-d:c and a — 6:a = c — d:c, [(c)

.'. a-^b:c-{-d = a:c and a — b:c-'d= a:c, [(6)

.-. a-{-b:c-\-d = a — b:c— d, [ax. 1

.'. a + b:a—b = c-\-d:c — d. q.e.d. [(6)

CoR. Conversely, if four numbers be proportional, (a) in-

versely, (b) alternately, (c) 62/ addition or subtraction, or (d) 6?/

addition and subtraction; then is the first to the second as the

third to the fourth.

The reader may prove, hj retracing the steps, from conclusion

to data, in each of the above demonstrations.
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Theor. 8. If there he two or more sets of proportionals, the

products of their corresponding terms are proportional.

Leta:6 = c:d, a' : 6' = c' : d', a" : 6"= c" : d", ••.,

then will aa^a^^ • • •
: 66'6" • • • = cdd' • • •

: dd'd^' • •
-.

For •.• ad==^hc, a'd' = b'&, a"d" = b"c",--', [th. 6

.-. ad'a'd''a"d"---- = be • b'c' - b"c" --
-, [ax. 4

.-. aa'a"---'dd'd"--- =bb'b'--" cc'c"---, [th.3

.-. aa'a"--':bb'b"'-- = cc'c"--- : dd'd".--. q.e.d. [th. 6 cv.

Cor. 1. If there be two sets of proportionals, the quotients of
their corresponding terms are proportional.

For, let a : 6 = c : d and a' : b' = c' : d',

then *.• ad =bc and a'd' =b'c', [th. 6

.
ad be . ^ a d be r k 4.-U o iM' =W' *•'•'«'• d= -ft'- ^'

^^-S.tb-Scr.l

Q.E.D. [th. 6 CV.
a'' b'~c''' d''

CoR. 2. If four numbers be proportional, their like integral

powers are proportional.

The reader may write in formula, and prove.

Theor. 9. If six or more numbers be in continued proportion,
the sum of the antecedents is to the sum of the consequents as any
antecedent is to its consequent.

Let a:b = c: d = e:f= '", then will

aH-c-|-e + ... :6 + d+/+.-.=a;6 = c:d5=....

For •.' ad = bc, af=be, ••., [th.6
.*. ab-{-ad-\-af-\ = ba -{- be -\- be -\ , [ax. 2

... a(6 + d-f/+...>=Z>(a + c + e+...), [th.4

.*. a + c + eH :b+d-\-f-\-"'=a:b. q.e.d. [th.6cv.

CoR. 1. i/" a : b = c : d = e ; f= •..,

then ha + ko + leH :hb + kd + lfH = a:b,
wherein h, k, 1,

••• are any numbers.

The reader may state in words, and prove.

CoR. 2. i/"a:b = c:d = e:f=...,
then ha° + kc*^ -f le° + ...

: hb" + kd° + 1P+ ... = a° : b°,

vjherein h, k, 1,
••• are any numbers and n any integer.

The reader may state in words, and prove.
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§ 9. PROCESS OF ADDITION.

PrOB. 1. To ADD TWO OR MORE NUMBERS.

(a) The numbers like :

To the common factor prefix the sum of the coejfficieyits. [th. 4

E.g., 10 ft. down + 20 ft. up + CO ft. up = 70 ft. up,

10 ft. up + 20 ft. down + 60 ft. down = 70 ft. down.

So, 10a;-15a;+20a;-25a;-h30a;=60a;-40a;=20a;, [th. 2

10ay-^20by— B0cy = {10a + 20b — 30c)y.

(6) The numbers unlike :

Write tJie numbers together, vMh their proper signs, in any
convenient order. [th. 1

E.g., 19 xyz — 29 mn 4- 39 a — 49 is irreducible.

So, 10a2/-f-206?/
—

30c2/ is usually not reduced, but may
be written (lOa-f 206 - 30c)2/.

(c) Some numbers like and some unlike :

Unite into one sum each set of like numbers, and write these

partial sums, together with the remaining terms, in any order.

E.g., (a3+3a25 + 3a62-|.68) + (a3-3a2c + 3ac2-c3)
= 2a3 + 3a2(6-c) + 3a(&2 4-02)4- (63 _c3).

So, 3xy-\-7xy+^l^xy^lox^+^x^+y+^a^-^fn

^ o-1564-2c^
J

llm4-10^
^y ^

^~^^
/.

§ 10. PROCESS OF SUBTRACTION.

PrOB. 2. To SUBTRACT ONE NUMBER FROM ANOTHER.

To the minuend add the opposite of the subtrahend, [th. X cr. 2

E.g., 90 ft. up-60 ft. up = 90 ft. up 4- 60 ft. down = 30 ft. up,

60ft.up-90ft.up = 60ft. up+90 ft. down= 30ft. down,
90ft. up-60ft. down = 90ft. up+60 ft. up = 150ft. up;

i.e., +90 -+60 = +30, +60 - +90 = "30, +90--60 = +150.

So, [2a« 4- 3a2 (6
-

c) + 3a (62 4- c2) 4- (6^
-

c^)]

-[a«-3a2c4-3ac2-(^] = a34-3a26 4-3a624-6^
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Note 1 . The opposite of the subtrahend need not be written ;

but the sign may be changed and the addition made, mentally.

Note 2. The definition of subtraction leads to a more direct

operation :

E.g., +8- +3= +5, •.• +8> +3 by +5,

+8> -3 by +11,

-8< +3by+ll,i.e.,-8> +3by-ll,
-8< -3 by +5,t.e.,-8> "3 by "5.

+8<+10by +2,i.e.,+8>+10by "2,

+8 > -10 by +18,

-8<+10by+18,*.e.,-8>+10by-18,
-8 > -10 by +2.

+8-
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Note 1. Checks : The work is tested b}' division, [pr. 4

and sometimes b}' the principles laid down in [th. 5 cr. 2-7] .

Note 2. Arrangement : The work is shortened In- arrang-

ing the terms of both factors, and of the product, according to

the powers of someone letter (called the letter of arrangement) ^

and b}" grouping together like partial products.

E.g., {a^ + ^a^h-Jt^ah'-\-h^)x{a''+2ab + h'') [a, let. of ar.

is written a» -f 3 a^ 5 + 3 aft- + ft^

a^-{-2ab +h-

a« + 3
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Note 4. Detached Coefficients : When both multiplicand

and multiplier are arranged by some one letter, i.e., are such

that, after their coefficients are detached, the remaining factors

of successive terms will stand in one constant ratio, the work is

shortened by the use of these detached coefficients, thus :

Take the terms of both multiplicand and multiplier in such order

that, when the coefficients are detached, the remaining factors (let-

ters of arrangement) of successive terms shall have a constant ratio.

Write the coefficients, suppressing the letters of arrangement,
with for the coefficient of any term wanting in either series.

Multiply the coefficients, and add those partial products that

pertain to like terms of the final product.

In the final product restore the suppressed factors: in the first

term by actual multiplication, and in the other terms by means

of the constant ratio.

E.g., (a^4-3a26-f 3a62-(-6^)x(a2 4-2a6 + Z>'),

wherein the constant ratio of the literal parts is 6 : a in both fac-

tors, gives 1 + 3 + 3 + 1

1+2+ 1

1+3+ 3+ 1

+ 2+ 6+ 6+2
+ 1+ 3+ 3 + 1

1 + 5+10+10+5 + 1;

and the product, when the letters of arrangement are restored,

is a* + 5a*6 + lOd'b'' + \Oa-b^ + bab^ + b'.

Check: 1+3+3 + 1 = 8, 1+2 + 1 = 4,

8x4 = 32 and 1+5 + 10 + 10 + 5 + 1 = 32.

So, 16(a:« + 2a^ + 4) X (a;
-

1) + 4(a^
- 2a; + 3) X (x"- 3)

gives 12 4 1-2 3

1-1 10-3
1
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So, (ax- Sa^x' +aPar) X (b -{-Sa^bx^-\-a*bx), [ratio,a2a;^

gives 1 "3 1

13 1 Checks: Let ci^a;- = ±l; then,

1 -3 i l:f3-fl.l±3+l=-5
3-9 3 =1-7+ 1.

1 -3 1

10-701, =abx-7a^bx^-^a^ba^. q.e.d.

This method is a familiar one in Ai'ithmetic.

E.g., 1089x237 = 258,093, or lth + 0h + 8t + 9u
237 2h + 3t + 7u

7623 7th + Gh + 2t + 3u
3267 3tth + 2th + Gh-h7t
2178 2hth + ltth + 7th + 8h

258093 2hth + 5 tth 4- 8th + Oh + 9 1 + 3 u

The first form is simply a case of detached coefficients, wherein

the denominations and the relations of the several numerals are

shown In' their positions with reference to each other
; as, in the

last form, the}' are shown by words and signs.

Note 5. Type-forms : The work is often shortened by the

use of certain simple t3'pe-forms, which the reader ma}" prove b}'

actual multiplication and then memorize. He may translate

them into words and read them as theorems. They are :

1] {x-\-a)-{x-{-b) = x^-\- {a + b)x + ab,

2] (a -\- b)
'

(a -b) = d'-b^,

3] {a-hby = a^-h2ab-h^,

4] {a-by = a^-2ab + b^

5] (a-f 6 + C + .

..)'
= «' + 6' + c2 + .. .

+ 2(o6 + acH h2>c + ...),

i.e., (2a)2 =2a- + S2a6,
wherein 2a = the sum of all the terms of the base,

2a- = the sum of all the possible squares,

and '^2ab = the sum of all the possible double products ;

6] (a
-

5)
. (a"-i+ a^-'^b -\- a^-^b^-\ f- a5"-2+ b^-'^)

= a** — 6'*, when n is any integer,

7] (a + b)
.

(a'^-i- a^-^ + a^-^b^ + ab^-^- b^-')
= a" — 6", when n is any even integer,

8] (a + 6)
. (a"-i- a^-^ft + a^'-^b^ aZ>"-2+ 6''-i)

= a** + 6**, when n is any odd integer.
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E.g. , [(0.-^ + f) -h2^aff]-l{a^-\-f)- 2^x^f]

= x'^ + 2 x^f + y^- 4:aPf [3
= x^-2aPf + y^

= {^-fY. [4

wherein (a^+ 2/^+ 2-y'a^2/^)-(a^+ ff— 2^a^y^) is the same func-

tion of (aj^+ y^) and 2->/a^2/^ as (a + 6)
• (a

—
6) ,

in the type-form,

is of a and b; and later, {oc^ + y^Y and {pi?
—

'ifY are the same

functions of or' and y^ as (a + 2>)^ and (a— 6)^ are of a and 6.

The advantage of working by type-forms is that most of the

details of multiplication are avoided, and the result is reached

directly.

Note 6. Substitution: The work is often shortened by the

substitution, during its progress, of a single letter for a less

simple expression.

E.g., to multiply 4.a^o? -f 96*2/2 -f- 5 - Q>a?h^xy
- 2a^x^6

— Sb'y^o by 2a^x + Sb'^y + ^5.
Let A = 2a^x, 3 = 36^2/? c = V^,

then (a^ -f- b^ -f c^ — ab — AC — bc) X (a 4- b + c)

= A^ -f B^ -|- C^ — 3 ABC

= 8a^a^ -{- 27 b^f -^5^0- ISa^b^xy ^6.

Note 7. Sysimetry : The work is often shortened by noting

the sj'mmetry of the factors.

E.g., to develop the product

(2a-f 6-f c).(a + 26 + c).(a-i-6 4-2c),

write the factors in three lines,

2a+ b+ c

a-\-2b+ c

a-\- b-\-2c

then *.• the product has the terms 2a* a * a, = 2 a^, [th.5

2a. a • b +2a-2b' a -\-b • a - a,= la^b,

2a-2b'2c-\- b - c • a -i-c - a • b

+ 2a- c • b -\- b • a .2c+c .26- a, =16a&c;

and •
.

•

every term of the product, being entire and of the third

degree, is of like form to one of these as to a,b,c;

and •
.

• the product is a symmetric function of a, &, c
; [th. 5 cr.2
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.*. it has likewise the following terms, and no others :

26^ 2 c^ as well as 2a^
and Ih^c^ Ic^a, 7a6^ 7b(f, 7ca^ as well as 7a^b;

.-. (2a + b-\-c)-{a + 2b-\-c)'\^a-\-b + 2c)
= 2a«+26» + 2c3-}-7a26H-76-c + 7c2a

+ 7a62-f- 7bc^ + 7ca^ + lQabc
= 2Sa3 + 72a-6 + 16a&c;

wherein Sa^ = the sum of all the possible cubes,

and 2a^6= the sum of all the possible products got bj^ tak-

ing one letter twice and another letter once.

Check: The sum of the coefficients in each factor is 4,

and in the product it is 64, =4x4x4. [th. 5 cr. 4

So •.• of (2a + 6 — c).(— a + 26+c).(a-6 + 2c),

the terms in a^, b^, c^ have the same coefficient,
—

2,

those in a^b, b'c^ (?a have the same coefficient, 5,

those in a6^, 6c^, cc^ have the same coefficient,
— 1

,

and that in abc has the coefficient 2
;

.•.-2(a»+&8+c')+ 5(a26+&'c+c2a)-(a624-5c2+ca2)-f2a6c,
= —22a3 + oSa^ft — %ab^ + 2a5c, is the product.

Check : The sum of the coefficients, when the brackets are

removed, is 8, = (2 + 1 - 1)^ [th. 5 or. 4

So, to develop the sum

(a + 6 - 2 c)
2 + (6 + c - 2 a)2 + (c + a - 2 &) 2,

get by multiplication , or from the type-form for (a+ 6 H— ) 2, [5

(a _|- 5 _ 2c)2 = a2 + 52 _j. 4^ _f. 2a& - 4ca - 4&C,

write, by symmetry,

(6 + c-2a)2 = 62 4.c2 4.4a2+26c-4a&-4ca,
(c4-a-26)2 = c2+a'4-462-f-2ca-46c-4a&,

and add
;
the result is

6(a2 + 62 + c2_&c-ca-a&), =^{^a^ -^ab).
Check : As Sa^, Sa&, each have three terms, their coefficients

in the sum of the three products are the sum of coefficients of

a^, •••, and of a5, •••, in the product first got ; i.e., 6 and — 6.

In such sj'mmetric expressions, where three letters are in-

volved, the}^ may be kept advancing in the same order,

abc^ bca, cab or acb, bac, cab ab, be, ca or ac, ba, c&,
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as if they were points on a circle following one another round

and round in the same rotary direction.

So, {a+b+c)'(x+y+z) + {a+b-c)'{x+ij-z)
+ (a-b+c)'{x-y+z) + (-a+b+c)-{-x+y+z)

= -{- ax -^ ay -\- az -\- bx -[- by + bz -{- ex -{• cy -{- cz

+ + - + + --- +
+ -+- + - + - +
+ --- + +- + +

= 4aaj +45y +4:cz
= 4 S ax, a symmetric expression as to ax, by, and cz.

Note 8. Contraction : When only the first few terms of a

product are wanted, the work may be shortened by omitting all

partial products that do not enter into the required terms.

E.g., to develop (1— 3a;H-5a:^ )^as far as the term in a^:

l_3a;-f 5ar^ or 1-3+ 5

1-30;+ 5a^ i_34, 5

l^Sx-h 5x^ 1-3+ 5

-3a;+ dx^ —3+ 9

+ 5a^ + 5

l-6a; + 19a^ 1_6+19
So, to find the product, omitting x* and higher powers, of

(l^x-{-x'-^...)'{l-2x+Sx' ).(l+4a5+9.T2+--.),

write 1 1

-2
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This method of contracted multiplication may be used, with

great profit, with decimal fractions.

E.g.,, to find the product 37.8562 x 14.9716, correct to two

places, and .2819 x .3781 x .2148 to three places.

37.8562 ar
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(c) Any number by a polynomial :

Arrange the terms of both dividend and divisor according to

the poivers of some one letter, (preferably the letter whose powers
are most numerous, aucl the highest powers first).

Divide the first term of the dividend by the first term of the

divisor, called the trial divisor.

Midtiply the ivhole divisor by this partial quotient, and subtract

the product frmii the dividend.

Repeat the work upon the remainder as a new dividend, and

so on, till the whole dividend is exhausted, or till the requirements

of the icork are satisfied.

Add the partial quotients : their sum is the quotient, the part

of the dividend left undivided is the remainder, and the sum of

the quotient and the fraction—:^^—^ is the complete quotient.
divisor

E.g. ,
to divide a^ + 6^ by a + 6.

a^+b^
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partial remainders are written on one horizontal line simply as a

matter of convenience. The complete quotient is

QC--\-a x + ab
I , a^b-ab^-\-2i

+ 2b'r x-\-a-b

Note 1 . Checks : The work is tested by multiplying together

the divisor and quotient, and adding in the remainder. In this

process the order of multiplication, quotient X divisor, is prefer-

able, as least like the order of the work of division.

K the division be exact, principles laid down in [th. 5 crs. 2-7]
are also useful.

Another test is to reproduce the divisor b}^ subtracting the

remainder from the dividend and dividing by the quotient.

Note 2. Different forms of Quotient. Unless the division

is excwt, i.e., leaves no remainder, the quotient and remainder

are commonly different for every different choice of trial divisor

that may be made.

E.g.., (a^+ 1) : (» + 1) gives for quotient and remainder :

a; — 1, 2 when x is trial divisor,

1 — a;, 2a^ when 1 is trial divisor.

So (ic^+ 2/^4-2^) : (ic+y+z) gives for quotient and remainder:

x —y — Zy 2(y--^yz -{- z^) when x is trial divisor,

y —z —x^ 2(z^-^zx -^x^) when y is trial divisor,

z — x — y^ 2{x^-\-xy -{-y^) when z is trial divisor.

The quotient and remainder depend also upon the extent to

which the division is carried.

E.g., (a^+ 1) : (x + l) gives for quotient and remainder :



4. § 12.] PEOCESS OF DIVISION. 63

Note 3. Detached Coefficients : When both dividend and

divisor are arranged by some one letter^ i.e., are such that, after

the coefBcients are detached, the remaining factors of snecessive

terms will stand in one constant ratio, the work is shortened by
the use of these detached coefficients, thus :

Take the terms of both dividend and divisor in such order that,

when the coefficients are detached, the remaining factors of suc-

cessive terms shall have a constant ratio.

Write the coefficients, sujipressing the letters of arrangement,
with for the coefficient of any term wanting in either series.

Divide, treating the set of coefficients in the dividend, and that

in the divisor, as polynomials.

In the quotient restore the suppressed factors: in the first term,

by actual division, and in the successive terms, by means of the

constant ratio.

E.g. , (a^ -h W) : (a -h 6) and (a^
-

b^) : (a + &)

give 1 1 1 and 10 0-1

1 -1 1 -1, 1,-2

1 1

1 -1 1

-1

-1

1 1

and the quotients and remainder are

a^ — ab-{- W and ci? — ab 4- 6^, 2hK

So

gives 1-2 6-9
-2 3

1 0-3
1-2 3

3

and the exact quotient is

a^ — 2a; + 3.

Note 4. Synthetic Division : When the first coefficient of

the divisor is 1, the work by detached coefficients is further

shortened, thus :

Suppress the first coefficient of the divisor, and replace the other

coefficients by their opposites, so that the partial products may be

added; write the skeleton divisor thus changed preferably at the

left in a vertical column running dowii, the partial products under
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the dividend^ and the quotient under these partial products; add

the partial products as needed.

E.g., (a;^ + 3ar»4-3ic2+2): (ar'-2a;-f-3)

gives
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So (a^y + xy--\-2fz-\- yz^+ z^x + zx^+^ xyz) : (x-\-y + z),

a quotient of symmetric fmictions of ic, y^ and 2;,

gives xy for one term of the quotient ;

.'. yz and zx are also probable terms of the quotient ;

and •
.

• the product {x-\-y+z) {xy-{-yz-\-zx) is the given dividend,

.*. the division is complete, and xy-\-yz-\-zx is the quo-
tient sought.

Had the last term of the dividend been 4:Xyz^ or any other

number except 3 xyz^ there would have been a remainder. The
reader must therefore use great caution if he employs

"
sym-

metry'" in division. He may safely use it as suggestive of the

true answer, but hardly ever as conclusive.

Note 8. Contraction : When only the first few terms of a

quotient are wanted, the work is shortened by omitting all par-

tial products that do not affect the required terms.

E.g., (l+aj + a^ + a.-^-f-...) : (i
_ 2a; + 3a^-4a^-f-...)

to four terms

gives
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PrOB. 6. To REDUCE A FRACTION TO A GIVEN NEW DENOMINA-

TOR OR NUMERATOR.

Divide the new denominator or numerator by the old, and

multiply both terms of the fraction by the quotient.

[th. 3 cr. 7, cr. 5 nt.

E.g., to reduce —^ to an equivalent fraction whose denom-

inator is a^bc:

•r a^bc : 2a^b = iac,

Ss^y _ ^ac3?y
2a^b (^) a^bc

2a^2
So to reduce —— to an equivalent fraction whose numer-

Sa^c
ator is Ga^yz:

-,' Gs?yz : 2a^z = Sy,

2^z _ G^yz
3a-c (3y) ^d^cy

Note. B}^ this rule any entire or mixed number is reduced to

a simple fraction.

fP n r. I ^„_ x-^2a _ dx-\-2ad

1 a

So x-\-2a-\—=—
X X

PrOB. 7. To REDUCE TWO OR MORE FRACTIONS TO A COMMON

DENOMINATOR.

Over the continued prodicct of the denominators, write the prod-

uct of each numerator into all the denominators except its own.

[th. 3 cr. 7, cr. 5 nt.

pj 5xy Sbc 3(a— 6) _ SoaFy 4:2abc 6 ax (a
—

b)

2a' a;

'

7 14aa;' 14aa;' 14 aa;

Note. The fractions may be reduced by Pr. 6 to any common

denominator whatever
;
but this usually leads to complex frac-

tions, which the rule of Pr. 7 avoids when the given fractions

are simple.

For reduction to lowest common denominator, see III. § 6.
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PrOB. 8. To ADD FRACTIONS.

Reduce the several fractions to a common denominator^ and

write the sum of the new numerators over the common deihomi-

nator.

^ Sbc^ 3(a-6) ^ 216c^ + 6aa;(a-6)
2 ax i \4:ax

Note. Subtraction is but a case of addition
;
add the opposite

^
of the subtrahend.

^ 3bc^ B(a^b) ^ 21b(^-6ax(a-b)
'^''

2 ax 7 14 aa;

Prob. 9. To multiply fractions.

Write the product of the numerators over the product of the

denominators. [th. 3 cr. 1
,
3

'^*'
2aa; 7 Uax

Note. Division is but a case of multiplication ; multiply by

the reciprocal of the divisor.

'^''
2ax

'

7 2ax 3{a-b) 2ax{a-b)

§ 14. EXAMPLES.

§§ 9, 10. PROBS. 1, 2.

1-8. Free from brackets and reduce to simplest form :

(a) removing first the inner brackets, and proceeding outwards
;

{b) removing first the outer brackets, and proceeding inwards ;

(c) freeing together all terms of a kind, from all the brackets.

1. a-[6-(c-d)].
2. a-\a + b-[a-\-b-c-(a-b-\-c)~\\,
3. _^(l + 2a; + 9a^)+[(3 + 2a;-.'c2)

-
(2 + 5a; + 7a.-2) + (- 3 + 3a; - 2a^)] ^.

4. |[|(a;-a) + (2/-6)] + |[2(x-a)4-i(a-a^) + 2(2/-&)].

5. -iJ[(5a-464-3c)-(-3a + 46-c)]
-[(6a-8c)-(a-6 + 9c)]5.

6 . ^{ax'-\-bx + c)-\l {ax^ -bx-{-c) + ^{^ao? + bx-\c)
+ i(-aa;2 + 2Z>a; + c)].
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7. mx^-f)-{7?+2xy+f)-]-\_{2xy-;^-f)-\{a?+f)-].
8. 1. 25 [1.12a;-. 24 (ic-. 5)]

-^[.21(a; + l)-.lo(l-.lGa;)-.12(a;-l-.25a;)].

9. Add (a-2i))a;3 + (g-6)iB2-f (3c-2r)a; + (3i)-a)aj»

-{2Q?-x)-{c-l)x-{h + q)a?-{p-a)x?
-iB» + 3 6ar^-(c-2r)a;,

and arrange the sum to ascending powers of x.

10. Arrange a^^ 6^4- 0^+ 3 0^6 + 3 6-c + 3 c^^ _^ 3 ^2)- + 3 60^

+ 3ca2+6a6c

(a) to ascending powers of a, using vertical bars,

(6) to ascending powers of 6, using horizontal bars,

(c) to ascending powers of c, using brackets.

11. XMx'^-\-^xf-x:^^7?y + Q^z + Za?y'^-it^x'z--\-Zxy^z
— 3 xyz^— Gxryz — if^2/ + 2/*

~~ 2/^— 3 xry-— 3 a;?/^2J

— 3 a/- 3 02/22- 3 2/3^+ 3 2/2;22_ g 3.^2^
_ ^2 ^ 3 2^ 2;

+ ;2* + 3 iB22,2_3 a:2^2^3 a^^ _|. 3.23_ 3 2,2^2 _^ 2/;z3 ^ 3 a^^2^

and arrange the sum to descending powers of jc, and the

coefficients to descending powers of y.

12. From a'^—4 a^b^— S a^ir^— 17 ab*— 12 b'^, subtract successively

a»_2a*6-3a352, 2a*b-4:a^b''-6a^b\

Sa^b^-Qa^b^-dab*, and 4.a'b^-8ab*- 12b''.

13. Jf s = {a-{-b+c)x-{-{a+b-j-c)y, v ={b-\-c)x-{-(2b-c)y,

v=(c + a)a; + (2c
—

a)2/, and w={a-\-b)x-\-(2a—b)y;
find the values of (s

—
u) + (v

— w) , (s— v) + (w— u) , and

(s
—w) + (u— v) , and the sum of these three sums.

14. Express b}^ brackets, each preceded b}' + ; each, by — ";

each beginning with a -f term
; taking the terms

(a) two together, in their order,

(6) three together, with an inner bracket embracing the last

two of each triplet :

— 3c + 4d — 2e+3/+ 2a — 5&;
— 2e4-3/+ 2a-56 — 3c-4d;
2a-56-3c-4d!-2e+3/;

a + b-{-c — a — b-\-c + a — b — c^a-{-b — c;

abc — abd + abe — acd + ace — bed + bee — bde 4- ade.
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IS-

IS.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

79. Multiply and divide as shown by the signs; use the

methods given in the problems and notes specified :

§ 11. PROB. 3, and ?jote 3.

(a;3_ 2a^_ 3a; + 1)
. (2a^- 3ic + 4) .

(a.-s-f ax - b^)
.

{x^-\- bx
-

a")
•

{x
- IT^b) .

[(a-l)a^+(a-l)V+(a-iyaj].[(a+l)a; + (a+l)2

^{a-i-iyx-'^.
Use vertical bars to join coefficients of like powers of x in

the product.

(a'«4-36~-2c^).(a-"'— 3&-"+2c--p).

x^-{-a x + ab ' aj^+c x-\-cd
-b

x-\-ab • a^+c x-\-cd.

ar+a
+ b

x-^ab - ocF—a

-b
x-\-ab', x'^—a\x-\-ab ' ay^—c

-b\ -d
x-\-cd.

(x -\- a)
'

(x -{- b)
'

(x -\- c)
•

{x -\- d) ,
at one operation.

§ 11. PROB. 3, NOTE 4.

(3^
-

Sa^y^ + 3xy* - y^)'{x^
- Ax^y^ -{- Qx^y^

-
4:xy^ + f) .

(^a^-2x^-\-l)-{2x^-Sx + 4:)'{x + l).

(a^
— mx 4- w^) •

{a^ + mx -\- m?)
•

(a;* + m^x^ -{- m*) .

Show that a; .

(a; + 1)
•

(a; + 2)
•

(a; + 3) + 1 =
(a;^ + 3 a; + 1)2.

Showthat(2/-l).2/.(2/ + l).(2/ + 2) + l = (/ + 2/-l)'.

What function must a; be of 2/ so that Exs. 26 and 27 shall

be precisely the same equation ?

(a/ 4- &?/V — cy'^z^)
•

{ay^z^
— bif^ + cy^) .

(2a; + 3).(3aj-4); (3^/- 5).(22/+ 7).

(a^ + 3a; + 2).(a;2_3a; + 2); (2 -4/).(H-22/2).

(a^ + 3a;2
2/ + 3a;/ + 2/3) .(a;2 + 2a;2/ + 2/") ;

(2a;8
- 3aj2

2/ + 22/3)
.

(2a;3 _^ 3a.2^2 ^ 22^).

(2a; -5)2; (7/ -1-22/2 + 32/3)2; (2
- 3;<;- 3^2 + 2;s3)2.

13 X 15
;
35 X 79

;
234 X 432

;
135.7 X 12.34.

182; 372; ^gg^
; 1632; 7252; 18812; 70.232.
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36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

51.

52.

53.

54.

55.

56.

57.

58.

59.

§ 11. PROB. 3, NOTE 5.

x-\-2y{x+3); (x+2y{x-Sy, (x-2y{x+3)', (a;-2).(a;-3).

y+a)'{y+b); {y^ay{y-h); (y-.a).{y+by,(y-{-a)iy-b).

x-\-a + b)'(x-{-c-^d); {x
— a+l)) -{x

— c-^d).

3a2iB3 + 56V).(3aV + 5 6V).
ax' + f)'(ax'-f); {2a^ + 3f'z)'{2a^ -3y^z).
m'zi - n'yi)

• {mH^ + n'y^) ; (2 + V^) •

(2
- V^) •

x-'a)'{x + a)', (x^-a^).(oi^+a^); ...
; (a;"-a'*).(a;'»+a").

I_a;).(l+ic.).(l+a^).(l+a;^).(l4-fl^)...(l4-a;2«).

x-\-3yy; (x-Si/Y; (^^ ± 3)^ (2a^±3/)2.
a + 6ir3)2; (a-F+c)2; (F+6±c"=^)^
x-\-y-hzy; {2x-h3y^Azy; (xy + yz-{-zxy.

a + 6 + c)-(
— a + & + c) •(«-& + c). (a 4-& — C).

a4-26 — 3c — d).(a-26 + 3c-d).
a-{-mx— ns?) '{a

— mx-\- ns?) .

50. fx+-^_^vri--+—Y
V 2a 4aV V 2a 4aV
a? -\- ax -^ a?)

' {a — x) X (a^
— ax + x^) -{a-^-x).

af~^ — x''-^y-\-x'*-^y^ ± ic^''"" T 2/""^)
•

(^ + 2/)
•

p -\-pr + p-r^ -\-pr^ -^ \-pf^) -

{r
—

1) .

§ 11. PROB. 3, NOTE 6.

u + v + x -Fir)- + (?^ -h V - « + 2/)^-

w — v + a; — yY — {u
— v — x — yy.

a + b \-3a-{-b'm + 71 -\-m +n) '

{a -{-b —3a -\-b'm-\-n

+ W14-71 )

a^r6 + 3ar+^.m + n^ + m + 7i).(a+3-3a+6^.m^^
4- m -h w) .

V2 + V3 + V5)-(- V2 + V3 +V5)-(V2 -V3 +V5)
.(V2+V3-V5).
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§ 11. PROB. 3, NOTE 7.

60. (ah + cdy + (be + ady+ {ca + bdy=: ta^b^-}- 6 abed,

61. {ax
—

byy-i-(bx
— cyy+{cx — ayy

= {ay
—

bxy-\- {by
— cxf + {cy

— axy.

62. {-x + y + z){x-y-{-z){x + y-z) = :^a^y-^a^,

63. {a + b)-{c + d) + {a-{-b)'{c-d)-{-{a-b)-{c + d)

+ (a-6).(c-d).
64. (ax + by)

•

(5a; + ay) -\- {ax
—

by)
•

{bx
—

o?/) .

65. (a; + 2/'f^)'-(aJ^ +/ + 2')
=

3(a; + 2/)-(2/ + ^)-(2! + a;).

66. {a-\-b + cy = ^a^ + 3%an-{'6abc.

67. If 2a = a + 6 4-c + ---,

'

'

then (2a)3 = Sa^ + 2a'b-{-6 %abc,

2a.2a&=2a26 + 32a&c.

68. {-a + b->rC-\-d)'{a
— b + c-\-d)'{a-\-b

—
c-\-d)'{a-{-b

+ c - d) = — 2a^ + 2 2a2 62 + 8 a6cc?.

69. (aa; + by -\- cz)
•

(6a; + c?/ + az)
•

(ca; + a?/ + bz)

— abc {x^ + y^ \-z^) + {a^ + b^ + c^) a;?/2; + 3 a&c • xyz

+ (a62 _|. 5c2 + ca^) (a;?/^ + yz" + i^a;^)

+ (a26 + 6-c + c2ci) (ai2?/4-/;2 + ;s2 3,>)^

Test the result severally by [th. 5 crs. 2-7].

§ 11. PROB. 3, NOTE 8.

70. (l-|a;4-iaJ^-fa;2 4-...)2 to four terms.

71. (1 + . 167a; +.014 a;2_|_ 001 a;3)2

X (1
- .333a; + .056a;2 _ .0063;^+ •.•)•

Carry nothing beyond the third decimal place, and retain

nothing beyond the term in ^.

§ 12. PROB. 4.

72. 3a26:a6; -3aa;:-a;2; ^^-^r-m^n; -T^st-'^ilr-^^f^

73. (ar2 + 2aa; + 6):a;; (Ja;'-|a;2/-' + fr') ^
- 3a^r'-

74.
(2/2 + 52/+ 6): (2/ + 2); (15a;«+a;2^-i_j_4y-3)

.

(3^_j 22/-i>

76. (a"*+
" — a"^ 6" + a" 5"* — 6"'+ ") : (a"

—
6**) .
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76. x* + a
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88-101. Divide as shown by the signs; follow the processes

given in the notes exemplified :

§ 12. PROB. 4, NOTE 5.

88. (aj*_2/^): (ar^_2/2); (4.x' -dif) : (2a^ -{-3f) ;

(a^»
— /«) : (a;" ± y"") .

89. (a^--^^-): (a + &); (a^^
+ i + ^sn + i) : (« 4.5),

90. (a« + a«6-' + ct^^>' + a'b' + b') :(a*-^a'b + a'b' + ab' + 6^) .

91. [(a^ + a3).(ar^_a3^-|. [ (ar^ + aa; + a')
•

(a?'
- aa; + a^) ] .

92. (f7T^'-c2) : (a + 6
"

c); (a2_5_(.^). («_5_^c)
93. {x-\-f-\-z'): (x + y-\-z);

94.
(a;""*

-
1) : {x""

-
1) ; (a;""*

(a^-y-z) : (x-y-{-z).

-1) : (a;"-l).

.K-V

§ 12. PROB. 4, NOTE 6.

55. 9/gr;(3/-\gr^± 2^2^2)2. a+6 : (a+6 ± 3 -aj+^z)'; by mak-

ing snitable substitutions in Ex. 77. Get the quotients
as far as the cubes of u^v^ and x-\-y, then write the

complete quotients.

m.
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102. If N be an}' dividend; Di, Dg,
••• any divisors; Qi, % the

quotient and remainder got b}^ dividing n b}' d^ ; Q2, R2

the quotient and remainder got b}- dividing Qi by D2, •••,

show that N, = Qi . Di + Ri,

= (Q2D2 + R2)
• Di + Ri = Qo • D2D1 + R2 • Di + Ri,

=
(Q3l>3 + R3)

•
I>2l>l + R2 • Dl + Rl

= QaDgDgDi + Rg
• D2 Dj 4- R2

• Di -f Ri, and so on,
= Qn I>n I>n-1

* * *

I>3l>2 1>1 + R^ '

I>«-1
* * * DgDi H

+ R2.DiH-Ri;

and if Di = Dg = Dg = •••
, then that

N = Q„Di" + RnDi"-^ + R„_iDi«-- + ...

4-R3i>i' + R2i>i + Ri.

103. By the method of Ex. 102 deye\o\yai^-\-8a^-\-24:af-\-32x-\-16

to powers of a; +1 ;
of a; —1

;
of a; + 3

; of af -j- a; +1 ;

also in the form Aa; -f Ba;
(a; + 1) + ca; (a; + 1) (a; + 2)

+ Da; (a; + 1) (a; + 2) (a; + 3) , wherein a, b, c, d are

free from x.

-.A. -c^ 3a;^ — 16a;2 + 24a; — 1 „^ ..

104. Express ;
-— as a sum of fractions

(a; -2)*
whose numerators are free from x.

First solution : Develop the numerator to powers of a; — 2

[Ex.102], viz., 3(a;-2)3 + 2(a;-2)2-4(a;-2)+7;
then,

3a;3-16a;2_^24a;-l_3(a;-2)3 2(a?-2)^ 4(a;-2) 7

(a;-2)* {x-2y
^

{x-2y {x-2y
'

(a;-2)^3.2 4,7^^
x-2 {x-2y {x-2y {x-2f

Second solution : Divide both numerator and denominator

b}' a; — 2 three times in succession
; then,

3a;^-16ar^+24a;-1^ 3a^-10a; + 4 7

(aj-2)^ (a; -2)3 "*"(a;-2)*

3a;-4 4 7

(a; -2)2 (a; -2)3 (a; -2)*3.2 4 .

x-2 {x-2y (a; -2)3 (a? -2)*
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105. Express —^— ^,,^ as a sum of fractions whose

numerators are free from x.

a^ 4- cc^ 4- cc 4- 1
106. Express ———

^.,
as a sum of entire terms,

(a;-3)-
and of fractions whose numerators are free from x.

X* 4 a^ -I- 1
107. Express —

, ,
—- as a sum of entire terms

x{x-{-l){x + 2)

and of fractions whose numerators are free from x, and

whose denominators are ic, x{x+l), x{x-\-l){x-{-2);

either by first developing the numerator as to a; +2,
(a; -h 1) (a; 4- 2) ,

a;
(a; + 1) (a; + 2) ,

or by dividing both

numerator and denominator successively by aj + 2,

a;4- 1, x.

108. Express — as a sum of entire terms^
a;(a;-l)(a;-2)

and of fractions whose numerators are free from a;, and

whose denominators are a?, aj(a;— 1), a;(a;— l)(a;— 2).

§ 13. PROB. 5.

109-112. Reduce to lower terms the fractions :

^-f-3^-f2. a^— 3a;4-2 .
a^— 2a?— 15

. acx^-^(a4-bc)x—bd
a^4-4a;4-3' a;2-4a;+3' a^4-2a;-35' d'xF'-b''

a2_62 d'-b^ 4x^-9

109

110
a*-b^' a^±2ab-hb^' 4a^±12a;4-9

111 4a^-(3y-4;g)^ (4 a^ 4-3 a; 4- 2)^- (2 a^ 4- 3 a; 4- 4)^
*

{2x + 3yy-16z'' (^3x'-\-x-iy-(x'-x-3y

112 'TlSZHl. P* — ^ .
'^ — ^

.
a^" - y^" o?n^y-2n

§ 13. PROB. 6.

113. Reduce to equivalent fractions, with the common numerator

a* — 6*, the fractions :

a-&
. a+b , a^-b\ a''-^b\ o?-\-a'b+ab''+b\ o?-o?b+ab''-W

a4-6' a-&' a'+b''' a?-W' a^-o?b+ab^-W' o?+oj'b+ab''+b''
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114. Reduce to equivalent fractions with the common' denomi-

nator Qi:^-\-a
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§ 13. PROB. 9.

122-124. Multiply and divide, as shown by the signs, the fol-

lowing fractions. Take care to keep every fraction in

its lowest terms, and to cancel where possible :

122. ^^\^.^; fi +lV f._lV fi_lYx — y a — o X — y \ xj \ xj \ xl

x*-h* 3^4- 6a; a^^Tfs? x"" -2hx^-\-V'x'

x'-2hx-\-h^ x-b a^-\-b^ x^-bx + b^

a^ — a?
^
a? — a?

^
a — x

^
a? — ax-\-x^ a^-\-2ax

a^+ a^ o?-\-a? a-\-x a^-\-ax-\-x^ o?— 2 ax -\- x^'

125. Show that a-.b: c=^a'.b: c = a-.b xc, [th. 3 cr. 8

126. Show that a:b:cid — a:b:c: d

= a:b:cxd = a:bxcxd.

127. Show that ^.^S^ = ^'^'^^" = ^-^''^'

d d' d" d'd'-.d" d.d'-n"

= n : nTTd^ : d : WT^= n: d:n' : d' :dFT

1 28. Remove the bars and reduce 2a: Sa^- 4 a^ : 6 a* • a^ : a^ • a.

129. Remove the brackets and reduce to lowest terms :

130. Reduce the following complex fractions to simple fractions,

(a) by performing the operations indicated,

(6) by multiplying both numerator and denominator by a

suitable multiplier :

x — y a^— b^ m^-\-mn-\-n^ p^ -{-q^

l-\-xy a'-hb^ m^ + n^ p^-\-(f^

.. x{x — y)
' a +6 ' m^ — n^

'

p^
—

(f

m-{-n . m — n

1 +xy a — b m^— mn 4- n

m-{-n
m — n

'

m-\-n

m — n m + 71

m-^n m — n
1-1'
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131-136. As an exercise on fractions, prove the theorems of

proportion [ths. G-9] and their corollaries.

131. If - = -, thenwmad = 6c; if - = -, then wiU ac = ft^.

h d he
132. If ad = be, then wiU - = -

;
if ac = b\ then will - = -.

b d be
133. K 2 = £, then will ?^ = ^,

»= ^, £±^ = £t^,
b d a c c d a c

a±b _ c±d a+_6_c-M.
b d

^

a — b c — cZ'

iQi T^ a c a' c' a" c"
lo4. li— = -, — = —

,
— =—

, ...,
b d b' d'' b" d"

then will ^<^'<^"'"^
cc'e"^:

oT^^e^^
bb'b"'" dd'd"'" 6« d«

135. K^ = £ and ^='' then will
^: ^ = ^4,.b d b' d' b b' d d'

136. K^ = ^ = ^=..., then will
^ + " + " + -=^ = £ =

b d f 6 + CZ+/+... b d

ha-\-7ce-\-le-\-'" ^a ha^ + kc"" + le"" -\-
• - • ^ a''

hb+kd + lf+'" 6' /i6- -f-A-d'* + ;/'•+...

~
6«*

and conversely.

§§ 1-3.

137. State the converses of Axs. 1-7, and show that Ax. 1 is its

own converse.

138. Show that of an}' simple operation, the first inverse of the

first inverse is the original operation ;
and the second

inverse of the second inverse of the second inverse is

the original operation.

139. Show that if a simple operation be commutative, its first

and second inverse are alike in kind.

140. Exemplify Exs. 138, 139 when a; = operand, A; = operator,
u = result,

and u=x-{-k] u=x—k; u=2x-\-Sk; u=kx:{k+x); u=x^.

Find the modulus when ^ = ^^-±1; when u- ^^^

x+k 2+k
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in. MEASURES, MULTIPLES, AND FACTORS.

Many of the properties of integers are shared bj^ entire literal

expressions, and the two are here treated together as entire

numbers.

§ 1. DEFINITIONS.

When the complete quotient of two numbers is entire, the

I divisor . measure
^

., i dividend.
' dividend '

multiple
' divisor.

E.g., 0, 3, G, 9 are multiples of 3
; 0, 3^, "7, ^lOJ, of -3J ;

and 3 is a measure of 0, 3, 6, 9
; "3^, of 0, 3^, "7, H^,

So a; — a is a measure of or— a^, oc^—a^, b{x
—

a), but not

of x-\-a',

and ar — a^, a^ — a^,b{x—a), but not x-^a, are multiples

of a; — a.

The measures and multiples of a numeral depend upon its

value
;
of a literal expression, upon its form

;
and one expression

may measure another, but its value not measure the value of that

other, or the reverse.

. E.g., if a; = i and a==^,
then the value of a; — a, = ^, is not a measure of the value

of ay^ — (J?,
=

|- ;
but is a measure of the value of

a; + a, = f .

When the complete quotient is entire as to the numerals, or as

. I , . y .. -1 ^1, I divisor .
,
measure „ ,,

to any letter or letters, then the { ^^^-^^^^^
is a \

j^j^i^ipi^
of the

\ A- ' as to the numerals, or as to the same letter or letters.
' divisor '

E.g. ,
8 (ic

—
a) (2/

—
&) is a measure of 2 m(a;^

—
a^) {y + 6)

as to a, m, and x,

and a multiple of it as to the numerals
;

but neither measure nor multiple as to ?/, nor as to b.

So \u~^ is a measure of f -y"^ as to the numerals and w,

and a multiple as to v.
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Note. The words "multiple" and "measure," as here used,
are an extension of "multiple" and "part," as used in I. §8.
When the quotient is an integer the two uses are identical, but

the}' are not necessarily identical when the quotient is an entire

number
; for, though an integer is alwaj's an entire number, an

entire number ma}' or may not be an integer.

^«—
^ :X[: °f ^- - -- numbers is a ^

---
of each of them; and the ^ '"'^''^f

<"""'"''™
"^'"fY^ is that

' lowest common multiple

-{ jnultinle
^^^^^ gi^'^s, for quotient, the smallest possible nu-

meral, or the literal expression of lowest possible degree and
with smallest possible coefficient.

E.g., 3 is the h. c. msr. of 6, 9, and 12, but not of 6 and 12,

and 18 is the 1. c. mlt. of 3, 6, and 9, but not of 3 and 9.

So a; — a is the h. c. msr. of x^— a^, a^— a^, and b(x
—

a),
and b{x^-a^) is the 1. c. mlt. of a^+a^, a^—a^, and 6(a;—a).

Note. Strictly speaking, two or more numbers have two
h. c. msrs. and two 1. c. mlts., opposites of each other, either of

which may be used.

E.g., 3 and — 3, 18 and — 18, x — a and a — x, 6(a;^
—

a"),

and 6(a^
—

a;^), in the above examples.

An entire number is { ^f'' when {
^ multUJle ^f 2.

' odd ' not a multiple

E.g.,
—

6, 0, 2, 10 ab, are even
; ± 1, 3, oa:^, are odd.

-A-
-i i _ V number is an entire number that has {

^^
•

composite
' some

entire measure besides ± itself and ± 1 .

The prime factors of a composite number are the primes which,

multiplied together, produce it ; and to factor a composite num-
ber is to find all its prime factors.

E.g., GOOa'x" - 600a'x'= 2^-3'5'- -a^'x'-ia + x)'{a
-

x),

twelve prime factors.

Entire numbers are prime to each other when they have no

enth-e common measure except ±1.

E.g., 9, 10, a^, x^, 7?/, a^ — y^, are all composite, but prime
to each other.
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§ 2. AXIOMS.

1 . Every number is both a measure and a multiple of itself,

and of its opposite.

2. ± 1 is a common measure of all entire numbers, and a com-

mon multiple of their reciprocals.

3. is a common multiple of all other numbers.

Ay . I
measure of a numeral not 0, . , , , . small

^^^y '

multiple, not 0, of a numeral,
'

large
as that numeral.

5. Every multiple, not 0, of a number contains all the letters

of that number, and to at least as high a degree as the number

itself.

6. All prime numbers are prime to each other
;
but not all

numbers prime to each other are primes.

7. ± 1 is a prime, and is prime to all entire numbers.

8. An entire function of entire numbers is an entire number.

§ 3. MEASURES AND MULTIPLES.

rj^ t A \
Tneasure -

t,
•

; measure j,

Theok. 1. Any \
^^^^^^.^^^

of a number isa-{
^^^^^.^^

of any
. multiple

^^ ^j^^^ ,^^^j^^_
» measure -'

-r ^ , n -, I Mamsr. « .t •
i Mamsr. ofN.

Let A beiiny number, and ^ ^ ^ ^^^
of a, then is ^ ^ ^^ ^^^ ^^^^

For *.• the quotients a : m and n : a are entire, [hyp.

.-. A : M X N : A, = N : M, is entire. q.e.d. [ax, 8

Note. Th. 1 may also be stated thus :

, . I measui
finer is a< ,..

A I measure of a measure ^« „ , ^„ . „ i measure «

^°y^
multiple of a multiple

°^ " ""'"'"^'^ '^ ''^
multipk

""^

that number.

r^ ^ A \ tneasure -
t,

•
;
measure ^r. .,„

Cor. 1. Any{
^^^^^^^

of a number zs a {
^^j^^^j^

of Us

opposite.

CoR. 2. An even number cannot measure an odd number;

,
measure -

,
odd _r^^ -^ i odd.

I.Q., any < ,,. , of an < number is < ^^.^^' -^ ' multiTole
-^ » even ' even.
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Theor. 2. A common measure of two or more numbers is

a measure of their sum.

Let A, B, ••• be any numbers and m a common measure o^

them, then is m a measure of a + b -^ .

For •
.* A = a • M, B= 6 . M, • • •

, wherein a, &,
• • • are entire, [hj^p.

.*. a + bH =a-M4-6.MH [II.ax.2
= (a4-& + --)-M; [II.th.4

and ••• a + 6 + ••• is entire, [ax.8

.•.(a + b + ...):m, =a.f6 + ..., [I. §9df.
is an entu*e number. q. e. d.

Cor. 1 . A common measure of two numbers is a measure of
their difference.

Cor. 2. If a number measure the sum of two or more num-

bers^ and measure all but one of them, it measures that one also.

Cor. 3. A common measure of two or more numbers is a

measure of the sum of any multiples of them.

Cor. 4. A common measure of two numbers is a measure of
the difference of any multiples of them.

Theor. 3. If a simple monomial measure a polyjiomial in its

simplest foron, the monomial is a common measure of all its terms.

Let a + bH be a polj'nomial whose terms are simple and

unlike, and let m, a monomial, be a measure of it
;
then is m a

common measure of the separate terms a, b, •••.

For *.* A, B, ••• are unlike, [byp.
.*. the quotients a : m, b : m, ••• are unlike,

and their sum cannot be reduced
;

.'.if either of them were fractional,

then their sum, the quotient (a + b H ) : m, would be frac-

tional
;

^ut *.- (a + B H ) : M is entire and not fractional, [hyp.
.*. A : M, B : M, ••• are not fractional, but all entire. Q. e. d.

Note. Ths. 1, 2, 3, and their corollaries, may be extended by
... I "measure , , , , , ^, „ ,

, "measure
'^^''S ! u

multiple
as to any letter or letters," and ^

^^^^^^^^i^

as to the same letter or letters," instead of simply { ii^^^f."^*^',,
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§4. PRIME AND COMPOSITE NUMBEES. -FACTORS.

Theor. 4. If a prime number measure the product of two or

more entire numbers^ it measures at least one of them.

Let A, B, •••be any entire numbers, and let p, a prime, measure

their product ;
then will p measure either a, or b, or some other

one of them.

(a) A and b two numerals, p a numeral.

For, if not, divide a and b by p, and let Q, q' = the quotients,

and R, r' = the remainders, all integers ;

then ••• A =PQ-f-R and b = pq' + r', [I. § 9 df.

.-. ab = p^qq' + pqr' + pq'r + rr', [II. ax. 4

i.e., ab = a multiple of p, + rr', [th. 2

.-. p, a measure of ab, also measures rr'. [th. 2 or. 2

Divide p by r, and let Qi, Ri
=

quotient and remainder, both

integers ;

divide p by Rj, and let Qo, R2 = quotient and remainder, both

integers, and so on
;

then *.• R, Ri, R2,
••• are all integers, and successively smaller

and smaller,

.*. one of them, say r^, is
;

and •.* p, a prime, when divided by R;^.!, the next preceding

remainder, gives r^, = 0, for remainder,

.-. R*.i = l.

But-.* Ri =p — QiR, R2 = p — Q2R1, •••
5 [above

.-. Rir' = pr' — QiRr', R2r' = pr' — Q2RiR'j •••
; [11. ax. 4

and *.• p measures rr', [above
.*. p measures Rjr', = pr' — QiRr', [th. 2 cr. 4

.'. p measures RgR', = pr' — Q2RiR'j and so on
;

.*. p measures r^.ir', = r'
; [above

i.e., p measures a numeral < itself, which is absurd, [ax. 4

.*. the supposition that p measures neither a nor b fails,

and it is only left that p measures one of them. Q. e. d.

(6) A and b two numerals, p a literal expression.

This case cannot occur, since the numerical product a • b can-

not be measured by an entire literal expression. [ax. 5
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(c) A, or B, or both ofthem^ literal expressions, p a numeral.

For, let a;, y,
••• be the letters involved in a, or in b, so that

A, or B, or both of them, are functions of a;, ?/,
•••

;

then if p does not measure a nor b, p does not measure all

the terms of a, nor of b. [th. 2

Of those terms of
^ ^ which are not measured by p, let

-{
? be

the numerical coefficient of that one whose degree
as to X is highest,

or if there be two or more such terms, then of that one of

them whose degree as to y also is highest, and

so on
;

then •.* a • 6 is the coefficient of a term, t, of a • b, which has a

higher degree as to its own letters x, ?/,
••• than

the degi-ee of an}^ other term as to those letters,

and is like no other term
;

.'. T combines with no other term, and remains unchanged
when the polj'nomial is in its simplest form.

But *.• p measures neither a nor 6, [bjp.

.*. p does not measure their product a* 6, [(a)

.*. not the term t of a • b,

.-. not A-B, [th.3

which is contrary to the hypothesis of the theorem
;

.*. the supposition that p measures neither a nor b fails,

and it is only left that p measures one of them. q. e. d.

(d) A, or B, or both of them, literal, p literal.

For, if not, let a; be a letter found in p
;

then X is found also in the product a • b, [ax. 5

and .*. in either a, or b, or both of them.

Arrange a, b, and p, by descending powers of a;, divide a and

b by p, and let q, q' = the quotients, and r, r' = the remainders,

all entire as to a;
;

then -.-.A =PQ + R and b = pq' + r', [I. §9,df.

.-. AB = P^QQ' + PQR'-f-PQ'R + RR', [II. ax. 4

i.e., ab = a multiple of p as to x, + hr'? [th. 2, th. 3 nt.

.*. p, a measure of ab, also measures rr' as to x. [th. 2 cr. 2
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Divide p b}" r, and let Qi, Ri = quotient and remainder, both

entire as to ic
;

divide p by Ri, and let Qs, R2 = quotient and remainder, both

entire as to a;, and so on
;

then ••• p, being prime, has not x in every term, [th. 2

and ••• R, Rj, Ro,
••• are entire as to x, and of successively lower

and lower degree,

.*. one of them, say Rj_i, is free from x.

But*.- Rj =p — QiR, R2 =P —
Q2R11 •••? [above

.-. Rir'= pr' — QiRr', R2r' = pr' — Q2R1R', •••, [II. ax. 4

and *.• p measures rr' as to x, [above
p measures Rjr', = pr' — QiRr', as to x

.'. p measures R2R', = pr' — Q2RiR\ as to x, and so on
;

.'. p measures r^-iR', as to a; ;

i.e., p measures an expression of lower degree as to x than

p itself, which is absurd
; [ax. 5

.*. the supposition that p measures neither a nor b fails,

and it is only left that p measures one of them. q. e. d.

(e) Three or more factors, a, b, c,
••• l.

For, if p measures the product a • b • c •••
l,

then p measures either a or the product B'C ••• l, [above
if p measures the product b • c ••• l,

then p measures either b or the product c • • •
l, [above

and so on
;

.-. p measures either a, or b, or c, or •••
,
or l

;

i.e., p measures one of them. q. e. d.

Cor. 1 . If a prime measure the product of two numbers, and

he prime to one of them, it measures the other.

Cor. 2. If there he two or more entire numhers, and if p, a

prime, measure neither ofthem, it does not measure their product ;

and if not their product, then neither of them. In particular, a

prime cannot measure a product of other primes.

n o A -j*^^«^* J
some even . . even.

Cor. 3. A product of entire factors { ,. -,-, is ^ ^^^

Cor. 4. If a prime measure a positive integral power of an

entire numher, it measures that number; and if the number, then

the power.
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Theor. 5. A composite number can be resolved into one, and

but one, set ofprime factors.

(a) Into one set.

For, let N be any composite number, m an entire measure of

N, and Q the quotient,

then ••• N = M.Q, [I. §9df.

.-. if M and Q be primes, N is resolved as required.

But if either, or both of them, be composite,

then they also may be resolved, and so on.

Finally, when all the prime factors, a, b, •••, are found, if a

occur a times, b b times, •••,

then N = A*'-B*--'. Q.E.D.

(6) Into but one set.

For, if possible, let n = a*-b'-", also =G^-n*---, wherein

A, B, ••• are unequal primes, and so are g, h, •••
,
and g*, h*, •••

are not wholly the same as a", b',
•••

;

then *.• some prime p occurs p times in one set, and not p times

in the other set,

. •. of the equal quotients a" • b* • • • : ?*» and g*' • n'* • • •
: p^ one

is entire and the other fractional, which is absurd ;

.*. the supposition fails that n can be resolved into two

different sets of prime factors. q. e. d.

ENTIRE NUMBERS PREME TO EACH OTHER.

CoR. 1. If tico entire numbers have no common prime factor^

they are prime to each other.

Cor. 2. If there be two sets of entire numbers, such that each

number of the first set is prime to each number of the second set,

then is the product of the first set prime to the product of the second

set; and conversely.

CoR. 3. If two entire numbers be prime to each other, so are

any positive integral powers of them ; and conversely.

CoR. 4. If there be two entire numbers prime to each other,

any common multiple of them is a multiple of their product.

For, let the products a" • b* • • •
,
g'' • h* • • •

,
be any numbers prime

to each other, and let m be a common multiple of them
;
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then ••• among the prime factors of m, a occurs a tunes, b b

times, •••, G g times, h h times, •••,

and ••• the primes a, b, •••, g, h, ••• are all different, [hyp.

.-. M=Q X A^-B*--- X G^-H*---,

wherein q is some entire number, perhaps 1. q.e.d. [II. th. 3

So if there be three or more entire numbers prime to each other.

COMMON MEASURES AND MULTIPLES.

h c Ttisr
Cor. 5. TJie ^ ,

' *

^
'

of two or more entire numbers is the
'

I. c. mlt. ''

product of their different prime factors^ each factor having the

-l ^f
^

. . exponent which it has in any of the numbers,
greazesz

Cor. 6. If there be two or more sets of entire numbers^ the

h c msr
of all the given numbers. In particular^ the { i' 'j.

'

of three

or more numbers is the { .'
'

]*

'

of any one of them and the

,
h.c.msr. /..t ^i

-s 7 7* of the others.
' I. c. mlt. -'

Cor. 7. If each of two or more entire numbers be multiplied
h c Tnsr

{or divided) by any same number, their
-j

,

* '

j.

'

is multiplied

(or divided) by that number.

CoR. 8. TJie h. c. msr. of two entire numbers is not changed

when either of them is ^ ^"[^f^'"^ b>/ an entire
J, "^^^^^^ prime

to the other.

For •.• the prime {

"""^'='^ multiplied into
^ ; ^ f^^.^ ' measure stricken out of

tor of the other,

.-. it
-{

^^

°?| t b
^ factor of their h. c. msr. Q. e. d.

Cor. 9. TJie product of two entire numbers equals the prod-

uct of their h. c. msr. and I. c. mlt.

For, let N, =A«.B^..-, and n', =a'''.b^' •••, be any two

numbers, wherein a, b, •••, are primes, and the exponents a,b. •••,

a', 6',
• • •

,
are integers,
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then ••• of the exponents a, a', the {
^^^

. is the exponent of

» ^r. fi.« J ^' c. msr. greater
A in the <

1 ,,
'

1. c. mlt.

.*. a + a' is the exponent of the factor a in the product of

the h. c. msr, by the 1. c. mlt. [II. th. 3 cr. 10

So 6 + 6' is the exponent of b in that product, and so on
;

.*. the product h. c. msr. X 1. c. mlt. = a"+*'«b* + ^'
•••.

But-.- n-n' = a»+«'.b' + ''-.., [II. th.3

.-. N • n' = h. c. msr. X 1. c. mlt. q.e.d. [II. ax. 1

Cor. 10. Every common
\

,.. , of two or more numbers

t measure ^ ., .
,
h.c. msr.

'"^^
multiple

"-f "'''"- <l.c.r>ilt.

APPLICATION TO FRACTIONS.

CoR. 11. If the terms of a simple fraction be prime to each

other ^ the fraction cannot be reduced to an equivalent simple frac-

tion in lower terms.

A* • B* • • •

For, let be a fraction, wherein a, b, •••, g, h, ••• ai*e
G^-II*--- p

all different primes, and let - be any equivalent simple fraction
;

Si

then -.- — =-, [hyp.

.-. a".b'--- X q = g^-h* •.. X P, [II. ax.4

whose two members, being the same number, can be

factored in only one wa}' ; [th.

.*. among the factors of
-j

are ^ »' »'
'

.-.
^^

is a multiple of
^^;;^I;;:^

P A* • B^ • • •

and - is not in lower terms than q.e.d.
Q G^-H*.--

CoR. 12. Ifa fraction be in its lowest terms^ so is every integral

power of it; and conversely.

CoR. 13. A fraction can be resolved into but one set offactors
and divisors, a", b^, •••, wherein a, b, ••• are primes, all different,

and a, b, ••• are integers, some of them negative.

Note. By aid of Cor. 13, Cors. 5-10 are extended and applied

to fractions as well as entire numbers.



5. §4.] PEtNIE AND COMPOSITE NUI^IBERS.—FACTORS. 89

Cor. 14. The { j\\ u' of two fractions is a fraction wJiose

numerator is the
•{

-.

'

'..
'

of their numerators, and whose de-

nominator is the ^ t'

'

'of their denominators.
» h. c. msr. -'

For, let -, = a"-b^««',
—

,
= a^'-b^' •••, be an}' two fractions,

D d'

wherein a, b, ••• are primes, and the exponents a, 6, •••, a\ 6', ••,

are integers, some of them negative or zero
;

and let \
^^'

^''

"'
be the { ^^ ^ ^ exponents

in the pairs of

exponents a,a\ 6,6', •••
;

.X. Au )
h. c. msr. , ^i i.

• •
i both

then •.• the \ , ,. has every measure that is m
\

. ,

of the fractions, and has no others, [§ 1 dfs.

,, 1 h. c. msr. ^ n n' . ., , .
,
a"i«b''i •••,•• ^^^

-i
1. c. mlt.

°f
5' D-'

'" ^^^ P™'^"''* ^ A'^.B'. ...;

wherein those factors which have negative exponents make up

the denominator of the \ ^•^•"^^'^- sought, q.e.d.

So for three or more fractions.

PRIME AND COMPOSITE MEASURES.

Cor. 15. The entire number a"-b* ••• has (a+ l)-(b + 1)
•••

different entire measures, prime and composite {and their oppo-

sites), ivhose sum is [(a«+^-1) : (a-1)] • [(b^+^-I) : (b
—

1)] ....

For •••A" has (a+l) measures, a*, a''-\ A"-^ ..., a^ a^ 1,

and •.• B^ has (6+1) measures, and so on,

and *.- the several products got b}- multipljing the (a + 1)

measures in turn by the (6+1) measures, and so

on, are all different one from another,

and *.• there are (a + l).(6 +1) .•• of these products, all told,

.*. there are (a+l).(6+l) .•• different measures, q.e.d.

And •.* the sum of the measures is the sum of all the different

products of the measures a", a""^ .«., a\ 1, b}^ the

measures b*, B^~^ •.«, b\ 1, bj- ••.,

.-. the sum = (a" H f-l)-(B*H h 1)
••• [IL th.5

= [(A-+^-l):(A-l)].[(B^+^-l):(B-l)].... [II. 6
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§ 5. PROCESS OF FINDING THE HIGHEST COMMON MEASURE.

PrOB. 1. To FIND THE HIGHEST COMMON MEASURE OF TWO

OR MORE NUMBERS.

(a) The prime factors of all the numbers known :

Multiply together all the differentprimefactors^ each with the least

exponent it has in any one of the numbers, [th. 5 cr. 5, cr. 13 nt.

E.g.., of 9a^6*c, Sabred, and 15 a6^c^— 12 aV, the common

prime factors are 3, a, 6-; the h. c. msr. is 3 • a • b^.

So ofixy~^, ^^y-, '^^y~' {x + y) theh. c. msr. is Ja;?/"".

{b) The prime factors not known; two entire numbers:

Divide the higher number (the larger if a numeral, and that of

higher degree if literal) by the lower ; the divisor by the remainder^

if any ; that divisor by the second remainder, and so on^ till noth-

ing remains.

At 'nlPo.^re ^ suppress from any divisor, ^^^.g^.^y. factor thatAt pleasure, ^ ^^^^^^^^^^ ^-^^^ any dividend,^""'^
^""^'^ ^^"^^^^ ^"^^

. ., I dividend ,.
IS prime to the { ^i^^^q^ corresponding.

At pleasure^ suppress from any divisor and the corresponding

dividend, any common measure of them; but reserve it as a factor

of the final residt.

The last divisor, as above, multiplied by the reserved factors,

if any, is the h. c. msr. sought.

Let A and b be an}^ two numbers, a the higher, Q the quotient

of A b}' B
; Ri, R2, Rg, •••, R„_i, ««? the successive remainders,

whereof r„ is a measure of r«_i ;
then is r« the h. c. msr. sought.

1. If no factors be introduced or suppressed.

For ••• Ri = A-QB, [I. §9df.

.*. whatever common measures a and b have, the same

measures has Ri ; [th. 2 cr. 4

but •.• A = Ri + QB,

.'. whatever common measures b and Ri have, the same

measures has a, [th. 2 cr. 3

.*. whatever common measures b and Ri have, the same

common measures, and no others, have a and b :
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SO whatever common measures % and R2 have, the same
and no others have b and %,

.-. the same and no others have a and b, and so on
;

so whatever common measures r„_i and r„ have, the same
and no others have r„_2 and r„_i, the same and no

others have R^.g and r„_2, and so on,

the same and no others have a and b
;

but ••• R„ is the h. c. msr. of r„_i and r„, [h^'P-

. R„ is the h. c. msr. of a and b. q. e. d.

Iffactors not common he introduced or suppressed.

For •
.

• the h. c. msr. of the given polynomials is that of any two

successive remainders of the series, [1

and •.* the h. c. msr. of these remainders is not changed when
either of them is modified by the introduction or

suppression of a factor prime to the other
; [th. 5 cr. 8

.-. the h. c. msr. of these two modified remainders is the

h. c.msr. sought.

So for an}^ two remainders subsequent thereto.

So for the modified r„_i and r„. q. e. d.

3. If a common factor he suppressed and reserved.

For •
.

• the h . c. msr. of the given poljmomials is that of any two

successive remainders of the series, [1

and •

.
• when both of these remainders are modified b}' the sup-

pression of a factor common to them, their h. c. msr.

is divided by the same factor
; [th. 5 cr. 7

.
•

. the product of the h. c. msr. of these two modified remain-

ders by the suppressed factor is the h. c. msr. sought.

So for an}' two remainders subsequent thereto.

So for the modified r„_i and r„.
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So to find the h. c. msr. of 4 aa? + 4 arc — 48 a and
4aa^ — 40«a; + 84a:

*.• 4a is a common factor,

and *.• of the remaining factors, cr'-fa;— 12 and a^— 10 a; + 21,

the h. c. msr. is a — 3, [above
••• 4 a (a;— 3), =4aa;— 12 a, is the h. c. msr. sought, q.e.f.

(c) The primefactors not known ; three or more entire numbers :

Find the h. c. msr. of any two of them (preferably the two

lowest), then the h. c. msr. of this measure and the next number,
and so on till all are used; the h. c. msr. last found is the

h. c. msr. sought. [th. 5 cr. 6

E.g., to find the h. c.msr. of 0^+ a; — 12, a^ — 10a; + 21, and

iBS-_6ar^-19a; + 84:

•.• of a;^+a;— 12 and ar'— 10a; + 21 the h. c.msr. is a;— 3,

and •.• a; — 3 measures a;'^ — 6a;^— 19a; + 84,

.•. a; — 3 is the h. c.msr. sought. q.e.f.

(d) Some or all of the numbers fractions :

Divide the h. c. msr. of the entire numbers and the numerators

by the I. c. vrdt. of the denominators. [th. 5 cr. 14, pr. 2

E.g. , to find the h. c. msr. of —— and ——
:

x — 6 x + 5

'.• the h. c.msr. of the numerators is a; — 3, [above
and •.* the 1. emit, of the denominators is a;^— 25, [inspection

Q. 3
.*. — is the h. c.msr. sought. q.e.f.

ar — 25

Note 1. In the process of case (b) each of the remainders

Ri, R2,
••• is the sum of a multiple of the first number and a

multiple of the second number.

Note 2. The arrangement of terms ma}' be as to the ascending

powers of some letter, or as to the descending powers, at pleasure.

E.g., 2a^+lla^+20a; +21 and a^-x-S,
or 21 +20a; +lla;2^2a;3 and 6 +a; — a;^.

That arrangement is commonl}' best which makes the trial

divisor smallest
;
and at an}^ step of the work the highest or lowest

term of the divisor may be used as trial divisor at pleasure.
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The work is often shortened by using detached coefficients,

and sometimes b}^ synthetic division. It is also shortened by

arrangement in columns and b}' not writing down quotients and

products, but onl}- remainders.

E.g.^ to find the h.c.msr. of 2aj^+a;^—4a;— 3 and 2x^—^x-\-b:

and

So

or

So

and

4)

1

5
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So to find the h. c.msr. of 'the numerals 679, 301 :

679
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§ 6. PROCESS OF FINDING THE LOWEST COMMON MULTIPLE.

PrOB. 2. To FIND THE LOWEST COMMON MULTIPLE OP TWO OR

MORE NUMBERS.

(a) The prime factors of all the numbers known:

Multiply together all the differentprimefactors, each with the great-

est exponent it has in any one of the numbers, [th. 5 cr. 5, cr. 13 nt.

E.g., of daWc-\ 12a^b^d\ and 15a* + 21a^bd, the different

prime factors, to their highest powers, are

22, 3\ a-, 6^ c\ d\ 5a^-{-7bd,

.-. thel.c.mlt. is3G-a^'b^'d*'{Da"-\-7bd),
= 180a'b''d*-h2o'2a''bH'. q.e.p.

So to find the 1. c. mlt. of a^ — b^, a^ — &^, and a'^ — b^:
•

..• a'-b'' = {a-b)'{a + b),

a3 _ Z;3 = (a
-

6). (a2 + a6 4- &'),

and a* - 6^ = (a
-

b)
-

(a + b)
•

{a" + b'') ;

.*. the I.e. mlt. sought is

(a-6).(a + 6).(a2 + a6 + 6=^).(a2 + &2). q.e.f.

{h) The prime factors not known; two entire numbers:

Divide the product of the two numbers by their h. c. msr. ; the

quotient is the I. c. mlt. sought. [th. 5 cr. 9

Or, divide either number by their h.c.msr. and multiply the

quotient by the other number.

E.g., to find the I.e. mlt. of aj2 4- a; -12 and iB2_i0a; + 21:

•.• their h. c. msr. is aj — 3, [pr. 1 (b) ex.

... {x' + x-12)'(a^-lOx-\-21): (x-S),
= {x'-^x-12).(x-7), =a^-6x^-ldx-\-8i,
is the 1. c. mlt. sought. q.e.f.

(c) The primefactors not known ; three or more entire numbers :

Find the I. c. mlt. of any two of the numbers (preferabl}^ the two

highest) ;
then the I. c. mlt. of this multiple and the next number,

and so on, till all the numbers are used; the I.e. mlt. last found
is the I. c. mlt. sought.

'

[th. 5 cr. 6

E.g., to find the 1. c. mlt. of 289, 323, 361 :

The I.e. mlt. of 289 and 323 is 5491, \_{a)

and the l.c.mlt. of 5491 and 361 is 104329. q.e.f. [(a)
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Note. The solutions of Pr. 1 (a) and Pi'. 2 (a) extend to the

h. c. rasr. and I.e. mlt. of an}- numbers that are resolved into

factors prime to one another, whether into prime factors or not.

E.g.,'-- ^a'-lOa + S, G5- + 76-20, m^ + 7^^ are all prime
to one another, [inspection

.-. of (3a2-10a + 3)3.(G62 + 76-20)2.(7?i3-(-w'*)

and(3a2-10a + 3)2.(662+76-20)3.(m3-f«^)"^
the h. c.msr. is

and the 1. c. mlt. is

(3a2-10a + 3)3.(662H-76-.20)3.(m'^ + w3).

§ 7. PROCESS OF FACTORING.

PrOB. 3. To FACTOR AN ENTIRE NUMBER.

IN GENERAL.

Take out all monomial factors by inspection; by inspection also,

or by tried, find an entire measure of the remaining factor; then

of this measure, and of its co-factor; and so on, till no composite

factor remains. Write the prime factors in order, and mark each

one of them with that exponent which shows hoio many times it

has been used.
ES' PARTICULAR.

(a) Tlie number an integer :

Divide the number, and the successive quotients in order, by

the pnmes 2, 3, 5, •••, using each divisor as many times as it

measures the successive dividends. The successful divisors, and

the last undivided dividend, are the prime factors sought.

Note. No divisor larger than the square root of the dividend

need be tried.

For *.* dividend = divisor X quotient, [I. § 9 df.

.'. if divisor > -^/dividend, then quotient < y'dividend ;

[II. ax. 18

i.e., . if there be a factor larger than ^dividend, there is also

a factor smaller than Y/dividend,

which is impossible, since all factors smaller than -^/dividend

have already been tried, and have failed.
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Hence every composite number has some factor not larger than

its own square root ;
and if a number have no such factor then

it is known to be prime.

E.g.^ of 11908 710, 2 is a successful divisor once, 3 twice,

5 once, 11 once, 23 once, and the square root of

the quotient, 523, is smaller than 23
;

.-. the prime factors are 2, 3, 3, 5, 11, 23, 523,

and 11 908 710 = 2 • 32 . 5 . 11 . 23 . 523.

(6) The number a polynomial that can be reduced to some

type-form whose factors are known :

Reduce the number to the type-form^ and write its factors di-

rectly^ in the form of the factors of the type.

E.g., x'-\-2ax-{-a^-2om^n\ ^{x + aY - (5mny,
=

(a; + a + 5 mn) •

(a; + a -— 5 mn) . [II. 3, 2

(c) The number a polynomial with one letter of arrangement :

Find the h.c.msr. of the coefficients, and divide by it.

By tnal find a polynomial factor of degree not higher than

half the degree of the polynomial.

Try no factor unless its first and last coefficients measure the

first and last coefficients of the number, respectively.

Ti^ no factor unless its value measures that of the polynomial
when the letters have convenient integral values given to them.

If all the coefficients in the polynomial be positive, try no faxitor

whose first and last coefficients are not both positive.

For no integer or simple literal monomial can measure a poly-

nomial unless it measures ever}' term of it. Q; e. d.

And if there be a factor whose degree is higher than half the

degree of the polynomial,
then its co-factor is of degree lower than half the degree of

the polynomial, [II. th. 5 cr. 5

i.e., lower than the degree of the factor tried,

and the lower factor, not the Mgher, is best sought, q.e.d.

And •.• the ^ ^^^^
term of the dividend is the { ^^^l

term of the

first
divisor multiplied by the

-{ |
. term of the quotient,
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.'. every entire measure of the dividend has its
•{ -i^^

term

a measure of the
-{

, , term of the dividend, q. e. d.

And*.* if there be an entire measure of the polynomial, the

co-factor is then entire, [ax. 8

.*. whenever the letters have integral values

then the value of the co-factor is an integer, [II. ax. 23

i.e., the value of the factor then measures the value of the

polynomial. q. e. d.

The last clause of the rule is based on principles stated later.

E.g. ,
to factor 40 aa:i^ + 130 axy -f- 75 ay^ :

*.* a is a common factor, and 5 the h. c. msr. of 40, 130,

and 75,

.*. the expression is resolved into the three factors

5, a, 8x^-\-26xy + 15f,
wherein 1, 2, 4, 8 are the measures of 8, and 1, 3, 5, 15, of 15 ;

and *.* all the coefficients are positive,

.*. the possible measures of 8a;^+ 26icy-\-15y^, on its face,

are:

jB+ y, 2a; + 2/» 4a; + 2/^ Sx-{-y,

x + 3y, 2x + 3y, Ax + Sy, 8x-\-2y,

x + oy, 2x-\-6y, 4:X-\-6y, 8x-\-5y,

x-{-loy, 2ic + 15?/, 4a; + 152/, Sx-^-lby,

In 8 xr+ 26 xy+16y^ and in these sixteen possible measures

put ic =? 1 and y = 1
;

then 8of-\-26xy-{-lDy^= 49, whose measures are 1, 7, and 49,.

and only Ax + Sy, =7, and 2cc + 5^/, =7, pass this test
;

and Ax + Sy and 2x-{-5y are found by actual multipli-

cation or division to be the factors sought.

So to factor p,
= 7a^- 30aj2+ 62a; - 45 :

The onl3' possible linear factors, on its face, are

x±l, x±3, a; ±5, x±d, a; ± 15, a; ± 45,

7a; ±1, 7a; ±3, 7a; ±5, 7a; ± 9, 7a; ±15, 7a; ±45.

In 7a;^— 30a.'2+62a;— 45, and in these twenty-four possible

factors, put a; = 1
;
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then p = — 6, and the onl}' possible factors of it are

a;+l,=2; a; — 3, = — 2; re + 5, =6;
7ic-l,=6; 7a; — 5, =2; 7a;-9,=-2.

So put x=2 ;

then p=15, and out of the six possible factors above the

only ones still possible are

a; + l,=3; a; — 3,=-l; 7a; — 9, =5;
then •.* of these three possible factors 7a; — 9 succeeds, and

gives a;^— 3 a; 4- 5 for quotient, and the others fail,

.*. a^— 3a; + 5 is prime ;

and 7a; — 9, a;^ — 3a;4-5 are the factors sought.

Note. For further discussion of this case see XI. th. 4.

(d) 77ie number a polynomial ; several letters of arrangement :

Arrange the number as to the powers of any one of the letters

(preferably that one whose powers are most numerous), and

unite all terms having any same power of this letter iiito a com-

plex term. Find the h.c. msr. of the coefficients of the different

powers of the letter of arrangement^ and take it out as a factor

of the polynomial ; then the co-factor has no prime measures free

from this letter.

Arrange the polynomial, or the co-factor just found, as to any
other letter, and proceed as before, and so on for all the letters;

of the co-factor left, the prime factors, if any, will each contain

all the letters, and can only be found by trial; but:

Try no factor of more than half the degree of this co-factor as

to any letter or letters;

Try no factor that will not measure this co-factor if any one or

more of its letters be made zero.

If the polynomial be symmetric as to any of its letters, try no

factor that is not either symmetric as to those letters, or one of a

set ofpossible factors that together are symmetric.

So, if the polynomial be partially symmetric as to any letters,

(i.e., if for some interchanges among those letters its value would

be unchanged,) try only those factors which, singly or in groups,

are likewise either symmetric or partially symmetric.
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E.g., to factor 2a?-\- Ga^y -f 4a;/- 3x-z + xyz + 2y-z -8xz^
— yz^— 3 s^ :

'.• 2, the coefficieut ofa^, is prime to 6^—82;, the coefficient

of a^, [inspection

.*. there is no entire measure free from x.

So *.• the coefficient of 2:^ is prime to that of 2;^, [inspection
.-. there is no entire measure free from z.

But*.* the coefficients of y-, y, y^ have a h. c. msr. 2a; + 2;,

.*. 2 a; 4- 2; is a factor of the poknomial,
and the co-factor is a;^-}- 3 a;^/ + 2 ?/^— 2 a;2; —

2/2;
— 3 2;^,

whereof everj^ factor has all the letters, but reduces to

a factor of 2y^— yz—3z-, = 2/-f^- 2y—Sz, when a; = 0,

a factor of a;^— 2 a;2;— 32;-, = a;-|-2;-a;
—

32;, when2/ = 0,

a factor of a:r-\-Sxy-{- 2 y-,
= x-\-y

•

x-\-'2y, when 2; =
;

and *.* the trinomials a; -}- y -h 2;, a; + 2?/
—

82;, and no others,

fulfil these conditions, and are found by trial to

succeed,

.*. the factors of the given polynomial are 2a;+2;, x-\-y-\-z,

x-{-2y — Sz. Q.E.F.

So, to factor a^—2xy-^ y^— 2xz — 2yz-\-z^:

; *.* —2y — 2z and if
—

2yz-i-z', the coefficients of x and

of a;'', are prime to each other,

.*. there is no entire measure free from x
;

so there is no entire measure free from y,

and none free from z
;

.*. every factor has all the letters, but reduces to

a factor of y^— 2 yz -\- 2;^, i.e. to ± (y—z) ,
when a;= 0,

a factor of x^—2xz + ^-, i.e. to ± (a;— 2;) ,
when y==0,

a factor of x^—2xy-^ ?/^ i.e. to ± (x—y) , when 2; = 0;

and *.* no trinomial fulfils all three conditions,

.*. the given poh'nomial is a prime.

Or, '.' the given polj-nomial is symmetric as to a?, y, z,

.*. the factors, if an}^, must be symmetric as to a;, y, 2;,

either as a set, or singly ;

but -.* such a set would consist of at least three factors,
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and ••• this polynomial, being of the second degree, can have

but two factors,

'. the factors are not sj^mmetric as a set.

And •.• there can be no single symmetric factor except x-\-y-\-z,

and •.• a:r-2xy-^y"'-2xz-2yz + z'^(x + y + zy,
. there are no factors sj'mmetric singly,

. the pol3'nomial is a prime.

Note 1. The proofs for the rule in case (cZ) are substantially

the same as those given in case (c) .

Note 2. The work is often aided by introducing new letters

of arrangement, as to which the pol^'nomial is more simple, or is

homogeneous.

E.g., to factor p,
= Gx^^if— 20x^y*z^ + 25 xhfz -Sx'^y-z^

-Sx'yz^-^GzK
' ' "

' ''

Let u=.x^y, v = 2-
,

and seek the factors of

P, = 6 w* - 20 w^-v -f- 25 u^v^ - 8 wv^ — 8 wv* + 6 V: '

Try no factors except of the form ku + bv, or cw^+ Tmv-\- E'y^,

wherein a, b, c, e are measures of 6, and the value of the pro-

p§)sed factor is a measure of p when for u and v are put any
convenient integers.

When w, 'i; = l,l, then p = 1, and a + b and c + d + e,

measures of p, each = 1.

When w, v = 1, 2, then p = 223, a prime, and a + 2b and

c -}- 2d + 4e, measures of p, each of them = 223,

which is manifestly larger than the other con-

ditions permit, or else = 1.

When w, 'U = 2, 1, then p = 30, and 2a+b and 4c+2d+e,
measures of p, are measures of 30.

But *.* no integers a, b, measures of 6, satisfy all these con-

ditions,

.*. there is no measure of the form xu + bv.

And *.* the onl}^ integers c, d, e that satisfy them are 2, —4, 3,

and •
.

• 2 1*^ — 4 ^tv H- 3 v^ is found on trial to measure p, and

the quotient is 3 w^ — 4 w^v + 2 -v^
;

.-. V = {2u^
- 4.UV + ^v^)'{^u^

- ^y?v -\-2v^)

=z{23^y''-4.Q?yz^ +^z)'{^3^y^-4.3?yz^-\'2z^).
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So to factor p,
= a — bo; + cx^ — bx^ -\ ,

wherein a, b, •••

are positive :

Let —y = x, then p becomes a -\- By -{- cy^ -\- By^ H , whose

factors are often more easil}' found.

So to factor p,
= 36a;* — 25a.'2 + 4 :

Let w = ic^, v = 1
, then p becomes 36 w^— 25 wv + 4 v^, whose

factors are 4w — i;, 9w — 4v;

i.e., 4x^-1, 9x2-4, =(2ic4-l)-(2a;-l), (3a;+2)-(3a;-2).
.-. p = (2a;H-l).(2a;-l).(3a; + 2).(3x-2).

Note 3. A polynomial may often be resolved into surd or

imaginary factors.

E.g., x-y =(a;^+2/5).(a;^-2/*).

So ,2x-3y={^2x-\-^Sy)'(^2x--^S7j)
= (V2a;+V32/)-«/2a;+</32/).(</2a;-^32/)

So ir + l =(a;+V-l)-(a^-V-l)-

§ 8. EXAMPLES.

§§ 5, 6. PROBS. 1,2.

• •• 12. Find the h. c. msr. and 1. c. mlt. of:

1. X"l,x^-l;x-2,a^-4:; S(a^-a^x),4:(x^+ax), 5(x*-a*).

2. l-ar^, {l+ xY; l-2x, l-Ax", l-8a^, l-lGxS 1-32x5.

3. X24.2X-3, x^-7x2+6x; x«+aj^+a^+a^+a;+l, x2_a.+l.

4. 4 + 5x + x2, 8-2x-x2^ 12 + 7x4-a;2, 20+a; — x^^

5. 529(x2 + x-6), 782(2x2 + 7x + 3), 935(2x2- 3x- 2).

6. 713? -\-^n7?y ^2nxy^—2nif, Ama? -{-mo^y—2mxy^—^m'if.

7. X*—px^+(g— l)x2+px — g, x'*— gx-^4-(p— l)x2+gx— jp.

8. x3+(4a + 6)x2+(3a2+4a6)x + 3a26,

x3+(2a-5)x2-(3a2+2a6)x4-3a2&.
9. aV^ + e^^-a-^-l, (a- 2 + a-i).(e*- 2 + 6"'').

10. x2+ 2/-+;^2+2(x2/ + 2/^ + 2a;), (Jx+ i^/ + 2:)'-(ia; + J2/)'.

11. x-« + fx-2 + fx-i + l, ix-2-i; ^^-3/^
E!±^.

x^- 2x?/ + 2/ cc — 2/
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12. a^+ a\x
— ab

-b\
x^-\- a\ x — ac
— c

ar+2a
-35
+4c

XT— (yab

H- Sac
-12 be

X— 24: abc x^—2a
-3b
+ 4c

xr-{- (jab
— Sac
-12bc

X -{-24: abc

13.

14.

15.

16.

17.

18.

19.

20.

15. Reduce to lowest terms b}^ means of the h. c.msrs. of

their numerators and denominators :

a^-Gx^5 l+3 a?-4a;^-12a^. l-{-a^ + 25x''

8a^7ar — 12 a; -4-5

r^Sa _^ a;2a ^ ^a ^ 1

4a;2-2a;-fl' l+ 3a;-15a;2-25i»^

x^ — a^ a^+x^
1 ao(^ ,^' »^«+a^"

a;-^ + lla;-^ + 30
. xy^^ + 2 -\- x-'^ y . ^_±j^^

-2 I /v,-2,9a;-3 + 53a;-2-9a;-i— 18' xy-^ + x-'^y
'

a;^ + 2/"^

20. Reduce to lowest common denominator, by means of the

1. c. mlts. of the given denominators, and add :

1 3 5' 7 9

2{a + xy A{a-xy Q{a'-^a^)' Sia^-x")' 10{a+ax+x^)
m? -\-y^ ^— y^ x^ -\- xy -\- y'^

a? — xy -\-y^ ^ — y ^-\-y

a? -^-y^
'

a? -y"^
^

x-\-y x — y

1 1 1

01? — if a?-\-y^

1

^x\x-^yy 2x\x'-\-y^)' 4x^{x-yy 2x\x^-y^)

a±b a-b a^-hb^ a^-b^
a-b' a + b' a^ -V^ a-'H-^^

— c \x — cd

Vd\
XT -\-a X
-b

ab

y? — a x — ad

ar — b \ x — bc

sc^-\-b \x-\-bd
+ d

I

x^ -\-a \x-\-ac

+ c
I

op^ — a \x-\- ac
— c

I

x^ — b
\
x-\-bd

a^ + b^ g' - W
_

a^-b^' o? + b^'

x^ -\-b x—bc
— c

x^ -\-a

-d
x — ad

a? — a

-\-b
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Note. The work is aided b}^ arranging the odd numbers 1, 3,

5, 7, 9, •••, 399 upon paper ruled in squares, and marking off as

composite every 3d, beginning with 3-, every 5th, beginning with

5", etc. The mnlti[)les of any prime, p, thus marked off, have a

common difference, 2 p, and often lie in convenient diagonal lines.

All the multiples of p thus got from one another ma}^ be tested

b}' merel}' testing the highest of them b}^ division. Why are the

small primes most frequent?

23. Use the above table to factor 9991, or to prove it prime.

24. Tabulate the prime factors of the numerals 1, 2, 3, •••, 100.

• •• 46. Factor, or prove to be prime :

25. iTl^ + aT3.^+l+3a; ccr+'2xy -\-if -]-5x-\-0 7j + Q.

26. x^-^y^ + !r — 2xy±'2xz^:2yz; 7? -\-'if
— z- ±2xy.

27. '2an--ir2a^c' + '2h-(r-a^-h^-'C\ =^a-h''-{a-+h''-cy.

28. a2 + 46--|-9(r + ...
-f- 4a& 4-6ac + ••• -f 126c + ... + ...

29. 4a26-* + \2ah-'-(?d-^ + ^(^d?- lem^^Ti"^

If 40?7i*7i-Vg"^ - 25p"g-i«.

30. e^'-e--'; e''±2 + e-'-'.

31. {a-a-')^-{b-b-'y; a^-2DGb-^; (a + »)«-(a-aj)«.

32. aV-3a3a; + 2a^ a^-a^x- Gax"
; 12a*+a^x^-x\

33. a^ +^ 4- 3 a;?/ (a; + 2/) 5
m^ — n^ ^m(m^ — 7r)-\-n{m~7i)^.

34. a^-ab- 2{ab - b') + 3(a2
-

b')
- 4(a

-
by,

35. a^-b^-Sab{a-b); b (x^ -y') + 3{x + tjy,

36. S{a^-f)-5{x-yy; (x + yy + 2{x' + xy)-S(x^ -f).
37. 2{a^-\-a'b-\-ab')-(a^-b^); a*-b*+{a^-by.
38. 2a^y-\-oxry^-{-2x7/; ey*-Sxf-9aPf; Q> x"^ -\- x"y-\2 y\

39. a'^x'-^-a^x-a?', Gb''x--7bxr-Sx*; 6ar^+ H a^+9a;-35.

40. ear''— liar -j- 9 a; + 35; 6ar^— 11 a^+ 9 a; + 34.

41. x^-{-{a
— b -{- G — d)x^-\- (— ab -\- ac — ad — bc + bd — cd)x^

+ (
— abc + abd — acd + bcd)x + abed.

42. 3a;^-17ar^ + 38ar-23a; + 9; 5a;^-18a;3^ i7^,2_5^.p^ 5 .

15x*-}-8a^y — S2 xy^ —15y*. [two trinomial factors

43. abx'+a^x + b'^x-^ab; a^a^-\-bY-\-(^^; a^x^-b'f + c^^.
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44. 39(a^+a36«)a;^2/'+78(a«+2a363+6«)a^/4-156(a363+5<5)a;2y.

45. 3 a-+ 6 ahz — 4 ac2; — 8 hcz^
;

3 a?— 6 ahz + 4 aca; — 8 6cs^.

46. aV4-2a2 6a;2_^2a62a;4.63. a^x^+a'^ly'x''+h\

47. Factor 45a^+83ar> -100x2/2-492/3^

Note. Only measures of the form a.x + b?/ need be tried, and

here a, b, being measures of 45, 49, are odd integers ;

but •." A + B, the value of the proposed measure when ic, y
each = 1, is an even integer and cannot measure

the corresponding value of the polynomial, the odd

integer 45 + 83 — 100 — 49
;

.*. the pol3'nomial is a prime.

48. Show in like manner which are primes of:

l7?-\0x^-\-^x + b, 7ar^-25a^+lla; + 3,

5ar^+17a; + 3, ar±ah + h\ o?±orh + ah''±h^',

and generalize for an}' trinomial or quadrinomial whose

first and last coefficients and one other are odd.

49. Resolve into three symmetric factors :

— 2 ar'— 2 ?/^— 2 z^ -\-b x^y -\-b y-z+6 z^x—xif—yz^—zo? -\-2 xyz.

50. If ¥{x) be an}' entire function of a;, prove that F(aj)—F(a)
is measured b}' x — a^ and hence that

If F(a) = 0, then v{x) is measured by x—a. Hence factor :

(a^+2a; + 3).(a3+a)-(a3+2a4-3)(«3+a;).
51. Prove that yfl y" -\- y'^

z"" \- z'^ x^— x"" y"^ —y"" z'^—z^ xP^ is measured

by {x — y)'{y
—

z)'{z
—

x) if q and r be any positive

integers. Hence factor :

Qi?y + y^z 4- z^x — xy^
—

yz^
— zx^

;•

^y -\-y^^ -{-z^x — xi/ —y^ —zx^'j

3?y'^-\- y^z^ + ^y^— o^y^— y^^— z^a?,

52. Prove that the { i

^'
™,!^' of two or more numbers is the re-

• 1. c. mit.

ciprocal of the -( Z
^* ™ '

of their reciprocals.^ ' n. c. msr.

53 . Prove that the A """^^i'^^^^ ofa simple fraction in its lowest
' denominator ^

terms is the l.c.mlt. of ^ J^^ redprTcal fraction
^^^ ^'
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IV. PERMUTATIONS AND COMBINATIONS.

§ 1. DEFINITIONS.

The different orders in which several things or elements can

be put, are theu' permutations or arrangements; the different

groups that can be made of them, without regard to order, are

their combinations. Two permutations are different when either

the things themselves are different or their order of arrangement
is different; but two combinations are different only when at

least one of the things contained in one of them is not found in

the other.

E.g., ah, ha, ac, ca, he, ch are the six permutations of

a, h, c, taken two at a time
;

but ah and ha are the same combination, ac and ca are the

same, and be and ch are the same,

and, in all, there are but three distinct combinations.

So dbc, bac, acb, cab, bca, cba are the six permutations of

(4, 6, c, taken all together ;

but there is onl^- one combination, in whatever order the

three things are taken.

So of four things, a, 6, c, d, there are four combinations,

taken three at a time : abc^ abd, acd, bed,

and of each of them can be made six permutations, as above
—

twenty-four in all.

§ 2. PEEMUTATIONS.

PrOB. 1. To FORM THE SEVERAL PERMUTATIONS OF U THINGS,

ALL DIFFERENT, TAKEN 1, 2, 3, ••• AT A TIME.

To each of the n things in turn, annex each of the (n
—

1) things

remaining ; the results are the couplets.

To each of the coiiplets in turn, annex each of the (n— 2) things

remaining ; the results are the triplets.

To each of the triplets in turn, annex each of the (n
—

3) things

remaining ; the results are the fours; and so on.
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E.g.^ of the four things a, &, c, d the permutations are :

sino;le thinsfs :

a,

couplets :

a6, ac, ad,

triplets :

ahc^ abd,
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and there are no possible couplets omitted, since eveiy letter

in turn is joined, both as first letter and as second

letter, with ever}' other letter
;

.*. of the 71 things, taken two at a time, there are w •

(n
—

1)

permutations, and no more
;

i.e., Pan = 71- (71
—

1). Q.E.D.

(c) Tliree at a time.

For to each of the 7i-(7i— 1) couplets in turn, annex each

one of the (n
—

2) things remaining ;

then ••• ahc^ abd, abe, ••• abl form n — '2 triplets with ab first,

acb, acd, ace, "•act form 7i — 2 triplets with ac first,

and Ika, Ikb, Ike, -"Ikh form w — 2 triplets with Ik first,

whereof no two are alike, since each one of them has either the

leading couplet, or the letter that follows it, or

both, different from every other,

and there are no possible triplets omitted, since every pos-

sible couplet, in turn, is followed by every letter

not alread}' in it
;

.*. of the n things, taken three at a time, there are

7i'(7i
—

l)'(7i
—

2) permutations, and no more ;

i.e., P37l = W«(7l
—

l)-(7l
—

2). Q.E.D.

So P47l = 7l.(7l
—

l)-(7l
—

2)-(7l
—

3),

P5n = 71.(71
—

l).(7i
—

2).(7i
—

3)-(n
—

4),

*"?
and p^/i = 7i-(7i

—
l)'(7i

—
2)---(7i

—
7- + 1)^ for any value

of r not greater than n. q. e. d.

Note 1. This proof is by induction, but it is of so simple a

character that it need not be put in the formal order given in II.

§ 1(c), II. th, 3(c), •••. The reader may, however, as an exercise,

make the statement formal.

Note 2. The expressions

n, 7i.(w— 1), 7i-(7i— l).(7i— 2),
... w.(7i— l).(n— 2)...(7i—r+1)

may be severally written in the equivalent forms :

n ! n ! n ! 7^ ! nl

(w-l)!' (n-2)!' (71-3)!' (7i-4)!'

*"

(n-r)l'
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Cor. 1. Of n things^ all different^ taken all together^ there are

n ! permutations.

For •.
• w — r -f- 1 = 1 when r = n,

.-. p„n = 7i.(n
— l)-(?i-2)...3.2.1

= 1.2-3...n

= n\ Q.E.D.

Note 1. The expression n !, hitherto defined as the continued

product of the natural numbers 1 • 2 • 3 • • • ?i [I. § 8] , may have a

useful extension.

For •.• n! = 1.2.3...n, and (n
-

1) !
= 1 .2-3 ••• (71- 1),

.*. n! =(71
—

1) ! -n,

.*. {n
—

\)\ = n\ : n.

So (n-2)!=(7i-l)! : («-l),

(n— 3)! = (n-2)! : (n-2), and so on.

Conceive this relation to hold true for all integers, whether

positive, zero, or negative ;

then 1! = 2!:2 = 1, 0! = 1!:1 = 1.

With this explanation the form n ! :
(?i
—

r) ! becomes intel-

ligible when r = n, as in Cor. 1, for then

n\ : (71
—

?•)!= n ! : ! = ?i ! : 1 = n !
,

and the result, the value of p^t?, is the same through which-

ever form it is reached.

Note 2. Another and independent proofof Cor. 1 is as follows :

Let a, 6, c,
••• be n things, all different

;

then •
.
• of the one thing a, there is one permutation, and but one,

. *. Pi 1 = 1
, which, for conformity with what follows, may

be written 1 ! q.e.d.

Place 6 in each of the only two possible positions with respect

to a, i.e. after a and before a, giving ah and ha ;

then •.* of two things a, 6, there are two permutations, and but

two,

.*. P2 2= 2, which may be written 2 ! q.e. d.

Place c in each of the only three possible positions with respect

to a and h in these two couplets a6, 6a, giving

ahc. acb, cab, hoc, bca, cba ;
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then ••• of three thmgs a, 6, c, there are 2-3, = 6, permuta-

tions, and but 6,

.-. P33 = 2!.3 = 3! Q.E.D.

Place d in each of the onlj- four possible positions with respect
to a, b, c in these 3 ! triplets ;

then •.• of four things a, 6, c, d, there are 3 !
• 4 permutations,

.-. P44 = 3!.4 = 4! Q.E.D.

So P55 = 4!.5 = 5!

Pg 6 = 5 !
• 6 = 6 !, and so on.

.-. T^n= {n— 1) !
. 71 = 71 !, n any positive integer, q. e. d.

This note embodies a rule for forming the permutations of n

things 1,1 km all together. The reader may state it, and illus-

trate it by the permutations of a, 6, c and of a, 6, c, d.

Cor. 2. Pr(n +l) = Prn-f r.p,_in.

For •.• pXw+1) = (7i+1). 71.(71-1).. .(?!-?'-}- 2),

and •.* v^n-\-r'Vr.in = n'{n — \)"'{n — r + 2)'{n
—

r-\-l)

+ n- {n —1) ...
(?i
—

7' + 2).r
= 71.(71— l)...(7i

—
?- + 2).(?i+ l),

.*. P^(?l-f 1) =P^7l+r.P^_l7l. Q.E.D.

XoTK. Another and independent proof of Cor. 2 is as follows :

Let «, 6, c,
... A' be an}^ n things, all different, and I another

;

then •.* p^7i
= the number of permutations of the n things,

a-'-k^ taken r at a time,

and *.* p^_i?i = the number of permutations of the n things,

a"'k, taken 7' — 1 at a time,

and •.* no permutations of the 7i +1 things, a '"I, taken r at

a time, can be formed except those of the n things,

a ...
Z:, taken r at a time, and those of the n things,

a '"
k, taken r— 1 at a time, with the new thing I

placed in each of the r possible positions therein,

.-. P^(7l+l) = P^7i + r.P^_l7l.

This note embodies a new rule for forming the permutations
of n things taken r at a time. The reader ma}^ state it. It also

sers^es to interpret the formula, i.e., to show what property of

the arrangements the formula expresses.



2. §2.] PERMUTATIONS. Ill

Many algebraic results derive their chief interest from thus

admitting proofs of two kinds, b}' interpretation, and by more

formal methods
;
and the two lines of proof often curiously cor-

respond. The reader should therefore accustom himself to look-

ing for such interpretations. He will find many of them connected

with the subject of permutations and combinations : e.g.^ [th. 3

cr. 1 nt., cr. 2 nt.].

Theor. 2. If n things, whereof p things are alike, q things
n'

alike, r things alike,
••• 6e taken all together, there are —- -^—

;

—
different permutations of them. i'

• h •

E.g., if there be two 5's, three 6's, and four 7's, then of these

9 '

nine dibits '-

,
= 1260, different nine-fig-

2 !.3 !-4!

ured numbers can be formed.

For take the n things in the several positions they hold in

any one of their permutations, and let p things

alone change places, while the 7i — p things re-

maining stand fast
;

then if the p things be all different, p ! permutations are got ;

but if the p things be all alike, only one permutation is got.

So for every set of positions in which the p things stand.

.-. there are p\ times more permutations of the n things

when any p of them are all different than when

those p things are alike ;

i.e., P„W all different
=P •

* P«^ p alike-

So r„n all different
=P !

' ^ !
* ^ !

• • • • P„W ^ alike, q alike, r aUke, ... »

But-.- P„nyidifferent = '«'J

n! ^ ^ ^
••• Pn ^p alike, 7 alike, r alike,...—

^ J
.
^y

I . ^ J
...

* Q- E. D.

In particular :

^n'^n alike
^^ ^

?

- Pn^n-lalike=W5
n\

I*n^ 2 alike, n-2 alike

2!.(n-2)!

Pn'* r alike, n-r alike
—

^ ] , ^^
_ ^y'
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§ 3. COMBINATIONS.

PROB. 2. To FIND THE SEVERAL COMBINATIONS OF 71 THINGS,
TAKEN 1, 2, 3,

••• AT A TIME.

To each of the n things, in turn, annex each of the things that

follow it; the results are the couplets.

To each of the couplets, in turn, annex each of the things that

follow all its elements; the results are the triplets; and so on.

E.g., of the four things a, b, c, d the combinations are :

single things :

a, 6,

couplets :

ab, ac, ad, be, bd,

triplets :

abc, abd, a^d, bed.
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wherein c^?i
= the number of combinations of « things taken r

at a time.

But •.• P^n = -- -,
(ti
—

r) !

n\
••• CrW = -r-7 -.' Q.E.D.

Note 1. A useful way of writing the formulae is :

n n(n — Vi=
Y7'

^2^ =
2!

'

3 ! r !

Ai. 71 ?i7i — 1 n — 1
or this : Ci?i = -i Con = -'

, =Cin« ,112 2

71 71 — In — 2 ^ 71 — 2
Co 71 = - • . = Co 71

'*•-! 2 3
""''-

3
'

c,™ = !? . ?L^ . !ill2...«-r + l^ n-r +
l^

1 2 3 r r

wherein the successive terms of the series are got by multiplying

the preceding terms by fractions of the form
~

,^ ° ^
fc+1

whose numerators decrease, and denominators in-

crease, by one, at every step.

COR. 1. C^n = C„._rn = V^HraUke, n-taliU'

n ^

For *.* each of them = ^
,

r\ (n
—

r) !

.'. they are equal to each other. [II. ax. 1

In particular :

CqTI = C„7l = 1
,
= P„7i „aiike-

CiTl = C„_i7l = 71,
= P„7l„.,^ike-

n !

C^n = C„_2 71 = —— ——
,
= P„7l 2alike, n-2alike«

2 !
(71
—

2) !

_ _ '^*J _
CgTl — C„_37l — —— ——

,
— Pn'^ 3 alike, n-3 alike*

Note. Anotlier and independent proof of Cor. 1 comes from

its interpretation, and is as follows :

•.• for every set of r things taken out of n things there is

left one set of ti — r things, and but one.
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.*. the number of combinations of an}- n things, when taken

r at a time, and when taken n — ?• at a time, is the

same. q.e. d.

So if an}' same n tilings, whereof r are alike and n — r

alike, be permuted in any same n places,

then *.• when any two of the permutations are
-J oKi^g

' ^^^

r things occupy •{ , ,

^ ^^ ^

combination of places,® ^-^ • the same ^

.*. the number of permutations, ?«^r alike, n-r alike

equals the number of combinations, c^n. q.e. d.

Cor. 2. c,(n + l) = Crn + Cr_in.

For •.• c^wH- l) = i—I—£ 5^ i—1 !—
i,

r !

and •.• c^n -|-c^_iW

_7i.(?i
—

l)...(?i
— r-f 1) 7i.(n

—
l)...(n

—r+2)
r!

'

{r-l)l

__n-'(n— r+2).(n--r+l) 71 •••
(?i
— r+ 2).r

""
Ti

"^
r]

n.(?i-l)--.(7i-r + 2).(n + l)= H '

.-. C^(wH-l) = C^n + €(,._ 1)71. Q.E.D.

Note. Another and independent proof of Cor. 2 is as follows :

Let a, 6, c,
••• A; be an}- n things all different, and I another ;

then •
.

•

c^ 71 = the number of combinations of the 7i things a-^-k,

taken r at a time,

and •.• c,._i7i=the number of combinations of the 7i things

a •••
A:, taken r — 1 at a time,

and •.• no combinations of the 7i -f-1 things a«" Z, taken r at a

time, can be formed except those of the 7i things

a-'-Jc, taken r at a time, and those of the n things

a-"k, taken r — 1 at a time and followed by the

new thing Z,

.'. c^(n + l) = c^7i + c^_in.

This note embodies a new rule for forming the combinations

of 71 things taken ?• at a time. The reader may state it. It also

serves to interpret the formula, and show what property of the

combinations the formula expresses.
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Theor. 4. If there he n tilings, all different, P? q? i*?
••• he any

nuinhers such that p+q+rH— = n, then there are ^
p !

• q !
• r !

• • .

ways in ivhich these n things can be made up into sets, whereof
the first set contains p things, the second set q things, the third set

r things, and so on.

E.g., ten soldiers ma}^ be formed into three guards, of 2, 3,

and 5 men respectively, in — '——, — 2520, different ways.

For let the first p things constitute the first set, the next q

things the second set, and so on, and let the n things change

places in every wa}' possible, forming, in all, n ! permutations ;

then •."' within each set of p things there are p ! permutations,
within each set of q things q ! permutations, and

so on,

and •.* each of the p ! permutations combines with each of the

q ! permutations, so that each of the double sets

gives p\-q\ permutations, and so on
;

.
•

. for every wa}' in which the sets are made up there are

p\-q\'r\"' permutations,

i.e., Pn^i=pl-g!-^'l---c^,5,r,...'^;

••• ^p,<i,r,..n=— -—' Q.E.D.
p\.q\ >r\'-'

Note. Expressed in the notation of this theorem,

Cor. 1. If the number of sets be given, the greatest possible

value o/ Cp, q ,.,...
n is when no two of the numbers p, q, r,

•••
differ

by more than a unit, one from the other.

Yov,\f p>q + l,

then '.' p\'q\=p'{p—\)\'q\
and (i)-l)!.(g-M)! = (g+ l).(^-l)!.^!,

.'.p\.q\>{p-l)\.{q + l)\

n\ n\

p\'q\-r\-"
^

(|)_l)!.(^-f.l)t.r
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and c^.ff.r,...^
is not the greatest possible if p exceeds q hy

more than a unit.

So of an}' other pair of them.

.
•

.
c,, ,, r, ...

'^ is greatest when etc. Q. e. d.

In particular : If n be an ^ -, -, number,

then c^ n is greatest when r = ^ I
( 71± 1V

Cor. 2. Tliere are ————/\\„ , ,,. ways of making up
a!.b!.--(p!)*-(q!)''---

n things, all different, into a collection of a sets of p things each,

b sets of q things each, and so on; wherein ap + bq H = n.

E.g., a boat-club of 10 men can be divided into three pair-

oars and a four in
3 , . ^ ,

.(2 !)«. (4 !)

^
^ ^^^^' ^'^'

ferent ways.

For ••• there are —
; :

'-

;

—-—
wa3'S of

p\'p\"'a tnnes-g!-g!-«-6 times •••

making up n things into sets, whereof the first a

sets contain p things each, the next 6 sets contain

q things each, •••, [th.

and •.• of these wa3-s, by reason of the permutation of the a

sets among themselves, the b sets among them-

selves, •••, there are al-bl-" for ever}- way in

which the collection of a + 6 H sets is made up,

.'. — = a !
• 6 !

••• times the number of ways
(i> !)•(?!)'•••

in which the collection can be made up ;

n '

.-. that number is —--r- ;
— '

„ , ..,
— q.e.d.

al-bl-" (piy-iqiy—
Theor. 5. If there be n sets of things, containing p, q, r,

•••

things respectively, and if combinations of n things be made up

by taking one thing from each set, then the number of such com-

binations is p • q • r • • • .

For, let the n sets be aj, ag, ag,
• • •

a^, b^, b^, &3,
• • •

b^, Ci, Cg, C3,
• • •

c^,

•
••, and write the first combination ai^iCi--- ;

then while the biC-^--- stand fast, substitute a2, a^,
-•-

a^ in

turn for cti, thus forming p combinations.
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So in each of these, in turn, substitute h^^ 63,
•••

h^ for 6,,

thus forming q combinations from one of them, and

p - q combinations from all of them.

So in each of these, in turn, substitute Cg, C3,
•••

c^, for Ci,

thus forming r combinations from one of them, and

p-q-r combinations from all of them.

So •••, thus forming p-q-r--- combinations, q. e.d.

Cor. 1. If there be a set of p things, a set of q things, a set

of T things, •••, there can be made up Cip-Cjq-Ckr
••• combina-

tions by taking i things from the first set, j things from the second

set, k things from the third set, and so on.

Cor. 2. With the data of Cor. 1 the number of permutations

is (i-f-j+k + ...)!-CiP-Cjq-Ckr.-..

Theor. 6. If there be n numbers, all different, and if all pos-

sible homogeneous products of the rth degree (combinations with

repetition) be made of them, including their rth poivers and the

products of their 1st, 2d, 3d, --- (r
—

l)th powers combined in all

possible ways, so that there shall be r factors in each product, and

no more, then the number of such products is

c n -c rn+r-n Mn+D-jn+v-l)

For, let a, b, c,
--- be n numbers, all different, and in each of

these c^, ^^h repetitions
^ products let the letters be put in alphabeti-

cal order, e.g., aaa---, bdde---; and then, while the first letter

in each product stands fast, let the second letter be replaced by
the letter next after it in the alphabet ;

the third letter, by the

letter next but one after it in the alphabet ;
• • • the rth letter,

by the letter that is r — 1 steps be3'ond it in the alphabet, e.g.,

aaaa--- by abed---, bdde--- by befh--- ;

then •.• each of the c^^^ith repetitions^ products is thus changed into

a combination wherein no two elements are alike,

and no element is beyond the (n + r — l)th letter

of the alphabet,

.-. each product is changed into some one of the cXn+r—1)
combinations of r letters, without repetitions, of

(n + r— 1) letters
;
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and ••• all the combinations so formed are unlike, either in theii

first letters or in their second letters or •••, in the

same way as are the products from which they
were got,

.'. to each of the products there corresponds a different one

of the combinations of n-\-r—l things taken r at

a time without repetitions ;

•*•
C^, with repetitions

W > C^Ol-f-r
—

1).

Again, let the elements of each of the c^(n + r — 1) combina-

tions be put in alphabetical order, and then, while the first ele-

ment in each combination stands fast, let the second element be

replaced by the letter next before it in the alphabet ;
the third

element, by the letter two places before it in the alphabet, and

so on;

then *.• each of the Cr(n-|-7*
—

1) combinations thus gives a

product wherein no element is be3'ond the ?ith

letter of the alphabet, and no two letters stand in

inverse alphabetical order, though some may be

repeated,

.*. each combination gives one of the
c^, with repetitions

^ prod-
ucts

;

and ••• all the combinations so formed are unliie,

.-. C,(n+r-l) > C,, with repetitions^-

.-.
C^, with repetitions

^= C,(7l -f- r - 1) . Q. E. D.

§ 4. EXAMPLES.

§2.

1. Find the number of permutations of 10 things, all different,

taken 3 at a time
;
5 at a time

;
7 at a time

;
all together.

2. Find the number of permutations of 10 things, taken all

together, when 3 are alike and 7 alike
; when 2 are alike,

3 alike, and 5 alike.

3. In how many different waj^s can the letters of the continued

product a^ 6^ be written? ofa"6V? of ab^c^d^e'^?

4. How man}' permutations can be formed from the word

Cornell ? Washington ? Constantinople ?
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5. In how mail}' wa3^s can 8 men stand in a row ? 12 men ?

16 men ? n men ?

6. In how man}^ wa3's can 8 men sit at a round table ? 12

men ? 1 6 men ? w men ?

7. Of how many things, all different, are there 720 permuta-
tions ? of how many, all different and taken 3 at a time,

are there 210 permutations?

8. How many different permutations, taken three at a time,

can be formed from the word science 1 from the word con-

stitution 9

9. Write out the several permutations and combinations of the

4 digits 1, 2, 3, 4, taken 1 at a time, 2 at a time, 3 at a

time, 4 at a time.

10. Find all the factors, prime and composite, of 6
;
of 30

;

of 240; of 2310; of 30030; ofa6; of a6c
;
of a^^c^; of

abed ; of a"* — x*.

§3.

11. Find the number of combinations of 10 things, all different,

taken 3 at a time ; 5 at a time
;
7 at a time. Show from

the example why the number of sets, taken 3 at a time,

is the same as the number taken 7 at a time, and why
the number taken 5 at a time is largest of all.

12. How many triangles can be formed by joining 3 vertices

of a polygon of n sides? how many quadrilaterals by

joining 4 vertices? how many pentagons by joining 5

vertices ?

13. If a line be cut at 4 points, how many segments are

formed ? at 6 points ? at 9 points ? at n points ?

14. If there be 4 straight lines in a plane, whereof no two are

parallel, and no three meet in a common point, how

many triangles are formed? if 5 lines? if 8 lines? if n

lines?

15. In how many ways can 10 things be made up into a set of

2, a set of 3, and a set of 5 ?

16. How many different sums of money can be formed from

1 cent, 1 half-dime, 1 dime, 3 quarter-dollars, 5 dollars?
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17. From a part}' of 6 ladies and 7 gentlemen, how many
companies of 4 ladies and 4 gentlemen can be formed?

how man}* sets of 4 couples for a dance ?

18. If the number of combinations of n things, taken 4 at a

time, be twice the number of permutations, taken 3 at

a time, what is the number 7i?

19. Of the combinations of 8 letters, "a, 6, c, •••, taken 4 at a

time, how many contain both a and b? a and not b ?

neither a nor b ?

• •• 25. Show that:

20. p,(7i-f l) = Pr»^4-r-P,_i(n-l)+r.(r-l).p,_2(?i-2)+...

+ r!-Po(>i
— r + 1)

= p^7i + Pir-p^_i(/i —\)-}-P2r'Pr-2{n
—

2) + '"

-f-p^r.Po(w- r-f-l).

21. Pr(m -h 7l)
= P^??l4-Pl^-Pr-l^" Pl^ + Pi'^

•

Pr-2^'^
* P2^ + *••

22. c,(n+l)=c,_in+ c,_i(7i-l)4-c,_i(7i-2)+-
+ c,.i(r-l).

23. c^(?7i4-n)
= c^m+ c^_im«Cin4-c^_2m-C2W + •••

-f C'l ??l •

C^_i 71 + c^ w.

24. c^(m+7i+jpH— )
= c^m-|-c^_im-CinH-c^_im-CipH

+ c^_2Wi-C2n + c^_2m.C2pH

+ c^_2^^-Ci?i-CipH

wherein r, s, ^,
••• are an}^ numbers such that

r -^ s -^ t -\-
'" — m-\-n + p-j- '".

25. Of n things, all different, taken r at a time, repetitions

allowed, there are n*" permutations.

26. Discuss the general case P^^pauke, g alike,...'

27. Discuss the general case c^w, alike, « alike,...*
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V. POWERS AND ROOTS OF POLYNOMIALS.

§1. PRODUCT OF BliS^OMIAL FACTORS.

Lemma. If there he n binomial factors (x+a), (x + b),
•••

(x+1), their product is x°-f-2i(a--.l)-x"-^H- 5o(a...l)-x"-2H

+ 2r(a-..l).x"-'H |-2n(a...l), wherein 2i(a...l), 2o(a.^. 1),

• • • = the sums of the products of the combinations of the terms

a--- 1, taken one at a time^ taken two at a time^ etc. [IV. pr. 2 nt.

For •
.

• the product {x + a)
•

{x + 6)
• • •

(a; + Z) is the sum of the

partial products of each term of the binomial factor

{x-\-a) by each term of the binomial factor {x-\-h)

by..., [ILth.5
.*. that product = a;", the single product of the first terms

of all the n binomials,

+ 2i(a
...

Z)
.

aj'*"^, the sum of the

n partial products formed, each of them, b^^ taking

the second term of one binomial, and multipl3'ing

by the first terms of all the other n— 1 binomials,

-}- So (a
. • .

/)
.

a;"-2, the sum of the

CgW partial products formed b}' taking all possible com-

binations, two at a time, of the second terms of the

several binomials, multiplying these two terms

together, and multipl3'ing each such product by
the first terms of all the other n— 2 binomials,

+ ,

+ :Sr («
• • • •

^''"''5 t^® s"^ ^^ *^®

C^n partial products formed by taking all possible com-

binations, r at a time, of the second terms of the

several binomials, multiplying these terms together,

and multipljing each such product by the first terms

of all the other n— r binomials,

+ ,

4- a . 6 ...
?, the single product

of the last terms of all the n binomials. Q. e. d.
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§2. THE BINOMIAL THEOREM.

Theor. 1. If a binomial he raised to any positive integral

power ^
that power consists of the sum ofasenes, whose successive

tei-ms are the products of three factors:

1. The powers of the first term of the binomial, beginning with

that power whose exponent is the exponent of the binomial, and

decreasing by a unit for each term to the 0th power.
2. The powers of the second term of the binomial, beginning

with the Ofh power, and increasing by a unit for each term.

3. The number of combinations of a number of things equal to

ike number of units in the exponent, taken 0, 1, 2, 3, ••• ai a time.

Let x-\-a be an}' binomial, and n an}' positive integer, then will

1] {x-^ay=x--^-na^-'-h ^K^-l) ^2^n-2^
^0^-l) (»-2) ^8^n-8

+ ...-!_
n{n-l)(n-2)-.-{n-r+l) ^,^,_,

r\

For, in the equation

(x-{-a)-{x + b)'"{x + l)

=a;"+2i(a...0-a;""^4-22(a...Z).a5"-2-f... [lemma
put a for each of the numbers b, c,

"•
I;

then •.• (x-{-a)'{x-\-b)"-(x + l)
= {x-\-a)'{x-^a)"'nfsLCtoYS

=
(a; + a)^

and •.• 2i(a---Z) =a +a +a ••• n terms =Cin.a,

22(a • • •

Z)
= a^ -\-a^-\-a^ '"

C2?i terms = C2^ • a^

2^(a
"•

I)
= a*" 4- a** + a*" • • •

c^ri terms = c^n •

a*",

2„_i(a-" 0=<^'*"^+«""^ H c„_in terms = c,i_in-a"-\

2»(« • • • = a" once = c„n • a"
;

.*. (a;+a)*=Co?i • a" • x^'+Cin - a • ic^-^+CsW • a^ • x""-^

H hc,n.a'-.a;^-'-H hc^^in-a^-'^-x+c^n-a'^'aP,

(n-l)
i.e., (a;+ a)

" = a;" + nax""-^ + -^^^—tl a^ a;n-2 _|.
. . .

7* !

Q.E.D.
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Note 1 . The theorem is also proved bj- aid of [IV. th. 2] .

For (x + ay = (x -^ a)
'

{x -\- a)
•

{x + a) "• n factors

X'X'X'"X-{-X'X'X

-\-X'X'a"'X
-\-X'a'X-"X
-\-a'X'X'"X

H \-a-a'a'-\-X'X'X"-a'a
+
-}-x-X'a"'X'a
^x-a-X'-'X-a
+
-\-a»a-X"-x-x

= P«Wnalike-a5" + P«^«-lalike-«-a;""^ + P„W«_2alike,2alike-0^^-aj''"^

-\ f- P„W „_r alike, r alike
' «*"a;~-'' -\ f- Pn^nalike ' »"

= x*" +y^«a;""^ _^
n{n — 1) ^2^n-2 ^ . . . ^ ^n^ q.e.d.

Note 2. The theorem is also proved by induction.

1 . TJie law is true for the second power.

For •.* (a; + a)^ = a^ + 2aa; + a^ [multiplication

.*.
(a; + a)"=a;''+ waic*'~^H f-a"? whenw=2.

2. If the law he true for the "kth power, it is also true for

the {k + l)th.

For, write (x + a)*= »* + kax^-^ + Tc{k-1) ^2^-2^ ...

A:(fe-l).-.(fe-7t+l)
A!

Multiply both members by a; + a
;

.ot»/c*"*H |-ct*- [h}l).

then {x + ay+^=a^+^-\-k
+ 1

^
2!

a2a^-i+...

A;(A;-l)...(fc-A4-l)
^!

A;(A;-l)...(fe-7^4-2)

(7.-1)1

a*a^ -A+ l+ ...+a'*+i

2!

For

So

7i!

77^6 7aw is true^ whatever the exponent k.

it is true for 7i; = 2,

it is true for k=S.
for Zu = 4, for A; = 5,

• • • for A; = n.

[1

[2

Q.E.D.
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Cor. 1. If s. and a he any numbers and n a7\y positive integer^

2] (x-a)°=x°-nax°-^+
"^^ ~ ^\a^x°-^ q:nax°-i±a°.

Cor. 2. The series is finite.

For •.• the series is a continued product of finite polynomials,
.'. it is itself finite q.e.d.

Note. Another and independent proof of Cor. 2 is as follows :

For ••• the several coefficients form a series

- n n n— 1 n n—1 n—2
'

T' 1

*

2
'

1

*

2
'

3
' *"'

wherein each term is formed by multiplying the preceding one by

a fraction of the form
~

; [IV. th.3 nt.
Aj -p 1

and •.• the numerator of this fraction grows less by a unit at

each step, and the denominator greater,

.*. some term of the series, and all after it, is 0, and the

series terminates.

Cob. 3. The coefficients of any two terms equally distant from
the extremities of the development are identical.

CoR. 4. The sum of the coefficients of (x + a)° is 2°.

For, let a;= 1, a= 1
;

then •.•
(a; + a)" = (14-1)" = 2",

and •.• (l + l)'*=l»+7i-l.r-^+ ^^^^~'^^ -l'-l""'+ ••+!"

= l+ . + !fci)4.... + l,

... 2» =l+
n+^^(!^=i)+...

+ l. Q.E.D.

CoR. 5. The sum of the coefficients of (x
—

a)'^ is 0.

CoR. 6. In the development of (x + a)° the sum of 1st, Bd,

5th, •••
coefficients, and the sum of the 2d, Uh, 6th,

•••
coefficients,

are equal; and each sum is 2^~^.

For •.• the sum of aU of them is 2", [cr.4

and •.• sum(lst+3d+-..) — sum(2d+4th+..-)= 0, [cr. 5

.-. sum (lst+3d-f ...)
= sum (2d4-4th+...)= 2*» : 2= 2""^
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Note. Cors. 4, 5, 6 may be written in formula, thus :

3] c„n -f c„_i7i -f c„_2W H h 02^ + CiTi = 2'»,

4] c„?i
—

c,,_in -\- c„_2/i :f C2?i ± Cin = 0,

5] c„7i + c„_2n + c„.47i +...= c„_i7i+c„_3n4-o„_5?i=2"-i.

§3. THE POLYNOMIAL THEOEEM.

Theor. 2. 7/* a, b, c,
••• 1 6e a?i?/ m numbers; n a positive

integer; p, q, r,
••• z any positive integers (including 0), such that

p + q + rH |-z = n, ^/ien;

6] {a + h + c + -"+lY
n\

n!.0!.0!

n\

(71-1)!. 1!.0!

4- 7 ^.?\. ^. :Sa"-2-62.c°...Z«
(w-2)!.2!.0!...

n\

(7i
—

2) ! . 1 ! . 1 ! . !

:Sa"-2.6i.c^.d*'...?'

'^^
.^a^'-^-J/'C^'-'l^

(7i-3)!.3!.0!...

H — ^a^'-^'h^-G^'dP'-'l^
(7i-3)!.2!.l!.0!...

+7 rr-;
—^-; iSa^'^ • ft^ • c^ . d^ . e« .•• ?>

(n-3)!.l!.l!.l !.0!..-

+
n '

H—; ;

—'- %a^'¥'C''"'l' [the general term
p\'q\'r\-"Z\

+
This theorem is but the generalization of the binomial theorem,

and is proved in the same wa}^
The reader ma}^ review here what is said of sj^mmetry in

multiplication [II. pr. 3
,
nt. 7] . He may also compare [IV. th. 5] .

He will observe that he is actually forming the homogeneous

products there spoken of. They are, however, of the wth degree

here, instead of the A;th degree as there, and there are m numbers

instead of n.
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Cor. 1. Let a-f-bx-f cx'+dx^H he a senes arranged to

ascending powers ofx; then will

7] (a + bx + cx^ + dx3 +...)"

n!»a° n!.a°"^b

n! "^(n-l)!!!
x-f-

n!-a" 'b^

(n-2)!2

(n-l)!l

xH n!.a°-^b^

(n-3)! 3!

n !
. a^ be

(n-2)!l!l!
n!.a°-M

(n-1)! 1!

x«+-

= a°+na°-^bx-f^(^Y^^
^°"'^'

H-na'
n-l.

.2 . n(n-l)(n
3!

-''a"-«l x^+

4-n(ii-l)a"-2bc

+ na°-M

and, if p be any positive integer, and r, s, t ••• be any other

positive integers, such that • r + 1 • s + 2 • t + ••• = p, the co-

efficient ofsJ^in the development is % nl
,

. . ,
.a'.b'.c*....

r!.s!-t!-..

Cor. 2. If all the m numbers a, b, c,
••• 1 6e positive, the

sum of the coefficients of the development o/ (a + b + c + •••1)'^

is m^
; if one of them he negative, the sum is (m — 2)° ; if two of

them be negative, the sum is (m — 4)°,
•••

;
and so on.

Cor. 3. The development has as many sums of symmetric terms

of the form given above as there are ways in which m positive in-

tegers p, q, r,
••• z can be chosen, so that their sum shall be n.

E.g., if m = 4, and n = 6, the four integers p, q, r, s may
be either of the following

6, 0, 0,

4,1,1,0
3, 1,1,1

5, 1, 0,

3, 3, 0,

2, 2, 2,

4, 2, 0,

3,2,1,0
2, 2, 1, 1

and there are nine terms in the development.

Cor, 4. The development has (n + m-l)I
separate terms.

n!.(m-l)!
For this is the greatest number of terms possible in any integral

pol3'nomial of the nth. degree homogeneous and having m letters.

E.g., (a+6a;+ca^)^has , =15, separate terms. [IV. th.6
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§ 4. BOOTS OF POLYNOMIALS.

PrOB. 1. To FIND THE nth ROOT OF A POLYNOMIAL.

Arrange the terms of the polynomial in the order of the powers

of some one letter, a perfect power first.

If the first term be not a perfect power, divide the polynomial

by such a monomial as will make it a perfect power, and reserve

the root of this monomial as a factor of the result.

Take the nth root of the first term.

Raise this root to the
{\\
—

\)th power and multiply by n.

Divide the second term of the polynomial by this product (the

trial divisor) and add the quotient to the root first found.
Raise the whole root to the nth power and subtract it from the

polynomial.

Divide the first term of the remainder by the trial divisor; add

the quotient to the root found; raise the whole root to the nth

power; subtract from the polynomial ; and so on.

Let p = the given polynomial, and a H d + e H = its nth

root, both arranged bv
-{ ^^,^^^y^^^ powers of some letter x;

and let a H d = the terms already found
;

then •.• p — aH d" = (aH d + eH )"
— aH d"

lower= WA""^ • E -|- terms with
-{
,., powers

of X,
"°

.
•

. E = first term of quotient, (p
— a H d**)

: tia**"^,

and p — A H d 4-e ,

„_i _ , ^ __,,,. , lower= 71A' F + terms with ^ u-q-i, powers of x,

highest
has not the

^i
i
^

1 power of a; in p — a -|-
••• d .

So the successive terras of p are exhausted, as new terms

of the root are found. q. e. d.

Note 1 . The work is an effort to retrace the steps taken in

getting the power whose root is now sought. It is a process of

trial, by progressive steps, like division and other inverse opera-

tions, and its success is established by raising the root to the

required power and comparing it with the given polynomial.

[II. § 2, p. 29
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Note 2. Complete Divisor : In square root and cube root

certain modifications may be introduced into the rule which

shorten the work :

In square root the trial divisor is double the first term of the

root ; and a complete divisor is got by doubling the root already

found and adding the new term of the root, \yhen the complete
divisor is multiplied b}" this new term of the root, and the prod-
uct is subtracted from the last remainder, the whole root found

is thereby squared and subtracted Irom the polj'uomial.

E.g., a^ + 2ab -hb^' -^2ac -\- 2bc -i- c^ \a-\-b + c
a >

2a-j-b\__2ab_±J/
2a4-2b4-c I

2ac + 2&c + c^

In cube root the trial divisor is three times the square of the

first term of the root, and the complete divisor is the sum of

three times the square of the root already found, three times the

product of this root b}' the new term of the root, and the square

of the new term
; and when the complete divisor is multiplied by

the new term and subtracted from the last remainder, the whole

root found is thereby cubed and subtracted from the polynomial.

E.g., |q + fc + c

cr*+ 3 a'-* 6 + 3 a6H &H 3 a' c + 6 a6c + 3 ac2+ 3 ft'-'c + 3 6c'-*+ 0^

o^
3a^+3ab + b^

\
Sa'b + Sab''-^b^

3a^+6«& + 36H3ac4-36c + c'-'
|
3a'^c + 6a6c + 3acH3 6'-^c+36c^+c*

The reader may deduce like rules for getting the 4th, 5th, •••

roots, by means of the complete divisor, from the formula

A«+ (71A"-1+ '-ii^^V-2B+
... + B'^-l)

. B = (A+B)^ [1

Note 3. Roots of Roots : For a root whose index is composite,

it is generally bettor to factor the index and take in succession

the roots indicated b}- such factors. [II. th. 3 cr. 9, nt.

E.g., the 4th root is the square root of the square root
;

the 6th root is the cube root of the square root
;

the 8th root is the square root of the square root of the

square root
;

and so on.

Note 4. Roots of Fractions : To find the root of a fraction,

write the root of the numerator over that of the denominator.
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§5. ABSOLUTE AND RELATIVE ERROR.

When a number is given approximate!}^ only, the absolute

error is the excess of the assumed value above the true value ;

and it is -(

P
, . if the assumed value be -i f than the true

'

negative
' less

value. The relative error is the ratio, absolute error : true value.

The possible error
^ whether absolute or relative, is the smallest

number than which the actual error is known not to be larger.o

E.g.^ if of a long decimal a few figures only be given, the last

figure written is usually increased by 1 when the first figure

dropped is 5 or more ; and the possible error is then only half

a unit of the last place written.

correctA number is {
approximate

^^ ^fi^^'^'^^ ^^^^ i*s absolute error

is not larger than { ^ unit in its nth place towards the right.

E.g., if ic— .2037 > .0005, then .204 is approximate to three

figures, and .20 is correct to two figures.

So, for 100a;, 20.4 is approximate to three figures.

The copula = , read approaches, joins numbers which diflfer by
a number ver^' small as to either of them. It is, therefore, used

to join an assumed value to the true value of a number when the

relative error becomes very small.

E.g., if a be the true value of a number, x the assumed value,

and a the absolute error, then x = a -^^ a^ and a? = a when a

becomes very small.

3 3
So, 3a-fa2 = 3a, —1-1=-, when a becomes very small.

In numerical work the degree of approximation depends on
the relative error.

E.g., an inch in the earth's diameter, and a million miles in a

star's distance, are alike inappreciable ;
but a thousandth of an

inch in a microscopic measurement is enormous.

In pure mathematics the degree of approximation depends

solely upon the time and patience of the computer ;
but of num-

bers based on measurement the positive relative error is seldom

smaller than a millionth.
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Theor. ^. If a number he approximate to n significant figures
and no more, the possible relative error > 1 : 10^'and ^ 1 : lO'^""^

For ••• an}^ number < 10" units of its own nth place,

and ^ 10""^ such units,

and *.• poss. abs. err. :=: 1 such unit, [liyp-

and ••• poss. rel. err. = poss. abs. err. : true number, [df.

.-. poss. rel. err. > 1 : 10" and ^ 1 : 10""^ q.e.d. [ILax.18

CoK. A number wJtose relative error is not larger than 1 : 10°

IS approximate to at least n sigyiificant figures.

For *.• the number < 10** units of the nth place,

and •.* its rel. err. ^ 1 : 10", [iiyp*

.-. its abs. err., = number x rel. err.,

< 1 unit of the 7ith place ;

I.e., the number is approximate to n figures. q.e.d.

Theoe.4.
Tke^fj^l^^^err.rofthei';;^^^^^oftwoormore

numbers
-J

««""'«
,

the mm of their { "^f"'"" errors.
'

approaches
•' ' relative

For, let a, 6,
••• = the true values of two or more numbers,

«, y,
• • . = their assumed values, a, /?,

• • • = their absolute errors
;

then:

(a) •.• a; + 2/+... = (a + a) + (6+^)+--
= (a + 6 + ...) + (a4-^+..-),

.'. the abs. err. of sum, x + y -\ ,
=a + y8 H ,

i.e., = sum of abs. errs. q.e.d.

(b) '.' a;.2/...=(a + a)-(6+y8)...
= a'b'-' + terms which contain either a and

not a, or (3 and not &, or •••, as a factor, + terms

with two or more of the abs. errs, a, /3,
••• as factors,

.'. abs. err. prod, a;-
2/ •••, ^x-y a-b---,

= the sum of terms all having
one or more of the abs. errs, a, ;8,

... for factors
;

.*. rel. err. prod, x-y "• =- + ^-| 1 7 -j
•

a a-

i.e.
,

rel. err. prod. a;.2/...=-+^-f-...
= sum of rel. errs.

/ Q.E.D.
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Cor. 1. If the abs. errs, a, y8,
••• 6e eacJi not larger tJianc, and

(f m, n, ••• 6e any finite numbers^ then

abs. err. (mx + nyH )
= ma -f- n/3 -j ^ (+ni+ "'-nH ).e.

In 2)cirticular : abs. err. {x
—

y) = a —
l3, ^ 2 e.

Cor. 2. Bel. err. mx = rel. err. x, ifm have no error.

Cor. 3. The relative error of Or quotient approaches the differ-

ence of the relative errors of the elements.

For •.• divd. = divr. x quot.,

.-. rel. err. divd. = rel. err. divr. + I'el. err. quot. ; [th.

.
•

. rel. err. quot. == rel. err. divd.— rel. err. divr. Q. e. d.

In particular : the relative error of the reciprocal of a numbei

approaches the opposite of the relative error of the number itself.

Theor. 5. The relative error of a positive integral power of a

number approaches the product of the relative error of the number

by the exponent of the power; and that of a root approaches the

quotient of the relative error of the number by the root-index.

Let X be any approximate number, and n any positive integer ;

then will rel. err. a;** == n • rel. err. x. and rel. err. -^x-^ - • rel. err. x.^ n

.*. rel. err. a;",
=

,
= ti • +—^^ ^

a" ^ 2 !

= 7i . - = 7i . rel. err. x.
a

(b) '.' x = {^xy,
and •.• rel. err. x,

= rel. err. (-v/a;)",
= n-rel. err. -y/x ; [(a)

.*. rel. err. -?/a; = - • rel. err. a;. q.e.d.^ n

Note. Ths. 3-5 enable the computer: (a) to see how far

his results can be depended upon as approximate ; (b) to carry

each part of his work so far that the final result shall be as

approximate as he desires, or as the data, if themselves only

approximate, permit, wasting no labor upon needless or unreli-

able figures. Results correct to the last figure, e.g. for standard

tables, are only got by computing with several extra decimals.

\aj
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§6. EOOTS OF NUMERALS.

PrOB. 2. To FIND THE TITH ROOT OF A NUMERAL.

Separate the numeral into periods of n figures each, both to the

left and to the right of the decimal point.

Take the nth root of the largest perfect nth power contained in

the left-hand penod.
Subtract this power from the period^ and to the remainder

annex the next period to form the first dividend.

Raise the rootfigure to the {n
—

\)th power, and multiply byn.
Divide the first dividend by this product (the trial divisor) ,

and

annex the quotient-figure to the root firstfound.

Raise the whole root to the nth power, subtract from the first

two periods, and to the remainder annex the next period for the

second dividend.

Raise the root found to the {n—l)th power, and multiply by n

for a new tnal divisor; and so on.

Note 1. Numerals are pol3^nomials, but pol3'nomials in which

the terms overlie and hide each other
;
and virtually the rule is

the same for finding the roots of both.

The separation into periods is a matter of convenience only.

It comes from this : that the figures of the root of different orders

are best got separatel}', and that, since the nth power of even

tens has n O's, therefore the first n figures, counting from the

decimal point to the left, are of no avail in getting the tens of

the root, and are set aside and reserved till wanted in getting

the units' figure. So the nth. power of even hundreds has 2n O's,

and the first 2 n figures, two periods, are set aside and reserved

till wanted in getting the tens
;
and so on.

So, in getting roots of decimal fractions, the nth power of

tenths has n decimal figures, and the first n figures, one period,

are used in getting the tenths' figure of the root
;
the ntli power

of hundredths has 2n decimal figures, and so on. The same

thing appears from this : that the root is easiest got if the denom-

inator be a perfect ?ith power ;
and this it is only when it consists

of 1 with n O's, or 2n O's, or 3?i O's, and so on ; that is, when the

number of decimal figures used is n, or 2n, or 3 n, and so on.
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Note 2. Approximation : The root of a numeral may be got

to Siuy degree of approximation by reducing it to a fraction whose

denominator equals or exceeds the ?ith power of the denominator

sought, and then extracting the root.

6912 T 3/G912 19 +
^ ' ^ ''

1728 \l7i28 12

Note 3. Square Root by Contraction : When the first n

figures of the root of a numeral have been got bj' the rule above,

then 71—1 more figures may be got by dividing the remainder by
double this root.

For •.• trial-divisor, = 2xfirst 7i figs, root ^ 2x 10**"^ differs

from complete divisor by subsequent root-figs.,

i.e., by < 1 in nth. place of root,

i.e., by <1 : (2x 10"^) of the whole divisor,

.-. rel. err. quotient <1 : (2 X lO'*-^) ; [th. 4 cr. 3

and *.* the quotient < 10"^^ units of its own n —1th place,

.*. abs. err. quotient, in units of its own ?i — 1th place,

^lO'^-iCl: (2x10-0] =i;
and •

this, with the further poss. err. of ±^ unit in w— 1th

quotient-place due to writing quotient no further [p.

129, 1st e.g."], gives total poss. err. < 1 in that place ;

i.e., the quotient is approximate to n — 1 figures,

and the root is approximate to 2w — 1 figures, q.e.d.

Note 4. Cube Root by Contraction : When the first n fig-

ures of a root have been got by the rule above, then n — 2 more

figures may be got by dividing the remainder by three times the

square of this root.

For •.• trial-divisor, = 3 •

(first n figs, root)^ differs from

complete divisor by only 3 -(first n figs. rt.)-(rest

of rt.) + (restof rt.)2,

i.e., by <4 . first n figs, rt., [rest of rt. <1 of nth. place

.'. rel. err. divisor < | : first n figs. rt. < | : 10"~S

.-. rel. err. quotient <|: W-\ [th.4cr.3

and abs. err. quot., in units of its own n —2th place, <^u< t'^

.*. even with the further possible error of ±^ in n— 2th

quotient-place due to writing no more figures,

quot. is approx. to at least n—2 places, q.e.d.
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§ 7. EXAMPLES.

§ 2. THEOR. 1.

1. Expand (l+a;)«, (a4-&)^ {^a-2a^y, (a + bx -{-cx'y.

Note. To expand a tiinomial, bracket two terms and apply
the formula both to the whole expression and to the powers of

the bracket, thus {a + bx -{-cary.

2. In {x + yy*, show that the sum of the coeflScients of the odd

terms equals the sum of the coefficients of the even terms.

3. Write down that term of the expansion of lx-j--\ which

does not contain x when n is even. ^ ^

4. Write down the 8th term, and the largest term, of
(

1+ -
]

•

Note. To determine the largest term, observe the factors by
which the successive terms are multiplied to get the next terms

in order. These multipliers constantl}^ grow smaller
;
and when

first one of them falls below a unit, then the term last before it

is the largest, and those which follow are successively smaller

and smaller. Sometimes two successive terms, equally large,

are larger than any of the others.

5. By means of the binomial theorem show that the number of

all possible combinations of 8 things is 255.

6. Show that the coefficient of the 9th term in the expansion
of (1 4-^)^ is equal to the sum of the coefficients of the

8th and the 9th term of the expansion of (1 + xy^.

7. In Ex. 6 write n in place of 11 and r in place of 8, and make
the proof general.

8. Show that the middle term of the expansion of (1 + a;)^" is

l-3.5...(2n-l).2'».a;»:?i!

9. Kthe coefficients of the (r+l)th and the (r-|-3)th terms of

the expansion of (1-f- «)** be equal, find r.

10. If N = the ?ith term of the expansion of {l
— x^^ then the

series, after the first n tei-ms, is

.,.(,_=±i)„.^.(,_-±.).(,-=±i)
+ •• •.
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§ 3. THEOR. 2.

1 1 . Write seven terms of the expansion of (a-^bx-{- cx^-\— )*.

12. Write the expansion of (l
—

5x-\-Sx^y.

13 . Write eight terms of the expansion , (
1 — cc— a^+r^+ a;^ y.

14. Write the expansion of (a4- Ba;^+ co;^ + •••)^ as far as x^^.

15. Expand (a -\-b -{-c-\- dy, (a + 6 + c + d + e)^ in sums of

S3'mmetric terms. •

How many unlike terms in each of these sums ?

How man}' partial products in each sum?

Check the work by showing that the number of unlike terms

in all the sums is as in [IV. th. 6] ,
and that the number

of partial products in all the sums is as in [II. th. 5 cr. 7].

§ 4. PROB. 1.

16. Extract the square roots of:

IQsc^- 4.0xy + 25^2
.

i _^2x-{-7x' -{-Gx^ + dx*
;

dx'-n0ax-3a'x+2oa'+5a'+^; -^+t^-+i-l.
4 y- or y X 4:

1 4- a^, a;^ + 1
,

xr — a^, and a^ — x^, each to 4 terms.

17. Extract the cube roots of:

l+6a;+12a;2_^g3,3. a«- 9 a^ft'^c + 27 a^^^c-- 276V.
1 - 6a; -I- 21 a^ - 44 a:^ + 63a;* - o4x^ + 27a;«

;

^-Qx^-^-Ux'f-Sy^; ^4-1+
2 +_^;

f
^ ^ '

8 2 3a;« 27a;«

{a-\-iy''af-6ca%a+iy''x^+12(fa^p(a+iy''x-8<^a^',

18. Extract the 4th root of

x*-\- 4ar^7/-|- 6ar?/2+ 4xf-\- y^+4:X^z + 12x^yz + Uxy^z
+ 4fz + 6ar^22 ^ Uxyz" J^Qy'-z'-\-4.xz^ + ^V^ -^A

i.e., of •^x*-{-%4ii(^y + ^ea^y^ + ^V2xFyz.

19. Extract the 5th root of

x^^-^x^y+^x^y^-^a^f-\-^x'y'--^f.
2 -^^2 4 16 32"^

20. Extract the 6th root of [at one operation, or at two

a^-2a'b + -a'b'-—a'b'-[-~a'b'-^ab'-{-^b\.
3 27 27 81 729
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§ G. PROB. 2.

21. Extract the square root, each to three decimal places, of

144, 14.4, 1.44, .144, .0144, .00144, .000144.

22. Extract the cube root, each to three decimal places, of

1728, 172.8, 17.28, 1.728, .1728, .01728, .001728.

23. Find the values, each correct to within ^, of

.._ 117. (17 117 181
|81 /81 181

^''"\9' W W \12' W \63' A|324*

24. Find the values, each correct to within
|^,

of

3/xo 3/53 8|53 8p3 J53 J53 J 53 7/53
^^^'

\12' \T' \27' \T \36' \^6 \729*

25. Find the values, each to five decimal places, of [contraction

V185, V912, -^625, ^587, </729, -^1008, ^1728.

26. Jfx'*^ = X'{x-\-d)'{x-^2d)--'(x-^n—l'd) [71 a pos. integer

show that af'®= xT, a;^'** = a;, a/^-'* = 1 .

27. If p = an}' homogeneous polynomial of the nth degree as to

a;, 2/, •••, and if q, R = whatp, (x-\-y-\ )-p become

when for ar^, a^,
••• y^ ••• are put a^'**, x^''^^

•••
?/^''', •••,

show that every term aaf''^y'''^
••• of q gives in the product

{n-\-x-j-y-\--'-)'Q the terms ax""^^^^ y'^^ •••, aaf''^y'+^^^ .••,

etc.
;
and hence, that (n-{-x-\-y -\ )

. q = r.

28. Use the result of Ex. 27 to show that :

(a;+2/)"'''
= ^"''* + n • x^'^^'' y + ^^^~^^

• x'^-'^" -

/•'*

n\ \d

plqlrl'-'
[p-\-q + r+
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VI. CONTINUED FRACTIONS.

§ 1. FORM OF CONTINUED FRACTIONS.— CONVERGENTS.

In place of fractions with large terms, or of incommensurables,
it is often convenient to use fractions with small terms, whose

values are nearly equal to the true values of the given numbers.

Such approximate fractions, when arranged in a series approach-

ing more and more closel}^ to the true value of a number, are

called its convergents. The excess of a convergent over the

true value is its error. Convergents are found in various waj^s ;

among others, by aid of continued fractions.

A continued fraction is an expression of the form

"i + -,
—

: n.
7l2

d^+ "3

c?3 4--.
, n^

I.e., a complex fraction whose numerator is an entire number,
and whose denominator is an entire number plus a fraction whose

numerator is an entire number and whose denominator is an

entire number plus, and so on.

The fractions ^, -S % ••• -* are the 1st, 2d, 3d, ... A:th

di d^ d^ djf

partial fractions, and { ,^' ,^' ^^'

"*
,* are the 1st, 2d, 3d, •••

«!, a2, a3,
••. «j

A:th partial -{
. . .

'

These partial numerators and de-

nominators are here assumed to be entire numbers, and they

may be either positive or negative.

The expressions

Til . ^1 n^d^ , ni _ .

a, ch+- d,d, + n, ^1 + ^.^ ^^

are called the 1st, 2d, ... kth. convergents, because, usually,

they are true convergents ;
but sometimes they do not converge

toward the true value, but diverge from it.
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A continued fraction is
-j "^^l .. when the number of partial

fractions, and therefore of convergents, is ^ ,. ./ ,

An infinite continued fraction -{ ^^.^'^^^5'^^ when its conver-
'

diverges

gents, if carried far enough, -{
^L , differ from the true value

by less than any assigned number, however small.

§ 2. CONVERSION OF COMMON FRACTIONS.

PrOB. 1. To CONVERT A COMMON FRACTION INTO A CONTINUED

FRACTION.

(a) Numerical, ni, ng,
• • • each = 1 :

If an improper fraction, reduce to a mixed number; then di-

vide both teims of the fractional part by its numerator, both terms

of the fractional part of the new denominator by its numerator,

and so on.

'^''
248 3H 3H-i— 3 + ^1 3 + i-i

and its convergents are :

2
-Tg?

1.1_ ^1_. h. =^.1_ ^ 79

3' 3 + -' 22' 3+— l' 113' 3+— i
'

248'

whereof the last is the original fraction.

Note. The reader may find the h. c. msr. of 79 and 248. He
will observe that the divisions made above in converting the

common fraction into a continued fraction are precisely the same

as those made in getting the h. c. msr. of the numerator and de-

nominator, and that the several quotients are the partial denomi-

nators of the continued fraction. He will find this statement to

contain a convenient working rule for converting common frac-

tions into continued fractions.
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So the value of tt, the ratio of the ch-cumference of a circle to

its diameter, is 3.14159 26535 •••. If in place of this endless

decimal 3.1416 he used, then

- =3Am = 3 +i-^= 3+l- 1 =3 + i-i

and its convergents are : 11

3; 3 + i, = 3^,=^; S+l-_j_,=S^, =^; ....

16

Note. The real value of tt is incommensurable
;
but if the

decimal be taken to 20 places, then the partial denominators are

7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, ..., the

continued fraction is

3+i- 1

292 + ...,

and Its convergents are :

3, 3f, 3^^, 3JA, 3^^, ....

(6) Numerical or literal, ni, n2,
••• any entire numbers:

Reduce to a proper fraction or mixed number; divide as above

(a) , except that factors may be stricJien out of the numerators

(divisors) or introduced into the denominators (dividends) and

reserved as partial numerators of the continued fraction.

T^ ,, I striking out « « . i from a divisor .

^°' ^''-i introduction
°^ ^ ^^"^'^ Into a dividend

^^ ^l""'^"

lent to dividing both terms of the fractional part by the ratio of

its numerator to this factor.

^ '

101 710. 7— 7-2 1J.U1 < j3 /
t^3 '9-1

wherein the factor 2, stricken out from the first two divisors,

26 and 10, and introduced into the third dividend

5, becomes the numerator of the first three partial

fractions
;

or, both tei-ms of y^^'V ^^^ divided by 13, those of f| by 5,

and those of f by f .
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o 630 2 2 2

wherein the divisors are 315, 47, 7, the reserved factors are all 2,

and the quotients are so taken that the remainders are

negative.

24+6a; 2H 2H x
^12+a; 3+p4

wherein, at each division, the factor x has been stricken out of

the divisor and reserved as the numerator of a partial

fraction ;

and the convergents are :

^

X _2x X _ 6a; + a^
'''

r+?'"2T^' FT— a;'"6T4^'
"*'

2 ^+i
In this example, if a? be small, the successive convergents rap-

idly approach the true value of the fraction.

aa:^+ ac I x

-\-ad\ <^T.9T.j<^; ^
So

x'-\-b

-he

bx^-{-bd=—,b =—
,
&

x'-^-bd x-\--j-
—

p- x-\— ex ^-\ :c ,

X

wherein, at the successive divisions, the factors a, b, c, d have

been stricken out of the divisors and reserved as the

numerators of the partial fractions ;

and its convergents are :

a ax ay?-\- dc

X ar^+6' a;^H-6|a;'

In this example, if a; be large, the successive convergents rap-

idly approach the true value of the fraction.

Note. The continued fractions presented in this problem are

all finite, and the original fraction is the last convergent ;
those

which follow are infinite.
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§3. CONVERSION OF SURDS.

PrOB. 2. To CONVERT A SURD OF THE FORM •^(a?±h) INTO A
CONTINUED FRACTION.

Let X = the value of ^{o?±h) ;

then •.* a^ = a^±6, whence a^—a^= ±6 and x — a= ^ ^
,

a-\-x

1] .-. a; =a±—^ = a±5 5 =a±-A— 5a + x a + a±- 2a±-
T a-{-x a + x

2a±-^—
2a±...,

and its convergents, if the entire number a be included, are :

a; a±A,=2a^; « ± -^ 5, = '"^^'^^ ....

2a 2a 2a±~' 4a2±6
'

2a

^.^., V2=V(1+1) = H-^1
24- —

and the convergents are : 2 H

1' H^ If? 1-A-' •••? =1'
2' 5' 12'

'"'

whose squares are :

1, 1, 49,
289

. _ +1 _1 J_ _
4 25 144' 4 25 144'

So y'3 = V(4-l) = 2-i— 1

*-4^1_
and the convergents are : 4 __

...^

9 7 26 97
'

4' 15' 56'
*"'

whose squares are :

^
49 676 9409

'

16' 225' 3136'
'"'

= ^ + ^'^ + ^'^+2l5.'^+3^'"--
So V7 = V(4 + 3) = 2 + f-. 3

and the convergents are : 4+ • • •
,

2, 2f, 2«, 2«,..., =2, 11,
|, ^,...,
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whose squares are :

. 121 2500 54289 707,9- 27 „
,

81

16' 361' 7744'
' '

16' 361' 7744'

Or V7 = V(9-2)=3-?-2 ^ =3-i-i

and the convergents are : 6— ••, 3 — •••

o 16 90 508 _q 8 45 127
' T 34' 192''"'

"^'
3' 17' Is"'"*'

whose squares are :

9' 289' 2304'
' ' '

'9 289 2304'
'

Note 1. The rule is given in formula ; the reader may trans-

late it into words. In general, he will find any such formula

translatable both as a theorem and as a rule. The first is a

statement of facts and is put in the indicative mood ; the other is

a direction, an order, and is put in the imperative mood.

Note 2. If — be small, the errors of the squares of the suc-
ar

cessive convergents, and therefore of the convergents themselves,

diminish rapidl}'.

For (a)^ = a^-(a2±6) = 6.

^
[-2^}^ i^

= "^' +
4^^'

^0? Aa^

So
/4a»±3a5Y'4a8±3a5Y _ 16a«± 24a^6 + 9a'6«

16a^±8a26 + 62

= a'±b^: ^
16a^±8a26 +

('''^^)=
16a^±L.+5^=^-(^^J'C^-^-)-
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So in the above numerical examples, the smaller — is. the
(J?

'

more rapidly does the series converge.

E.g., the series got by taking V7 = V(^- 2), wherein-= ?,
a- 9

converges much more rapidly than that got bj^ tak-

ing V7= V (4 +3), wherein ^= -.

or 4

So V3 = VC"^""!) gives —=-5 and the square of the

fourth convergent differs from 3 by only rr^ ;

whereas V^ = V( 1 + 1 ) gives
- = -, and the square of the fourth(XX <

convergent differs from 2 by
144

Note 3. Another conversion may be made thus :

••• x^—a^=±b, whence x-\-a =

on b ^
a — x

a-{-a± a—x
b b

a — x 2a±f,
wherein the convergents are the opposites, each of each, of those

found b}^ the first conversion
;

i.e., bj' the first process the convergents of the positive root

were found, and by the second, those of the nega-

tive root, equally large but of contrary sense.

E.g., V3 = V(4-l) = -2+i-i_
and the convergents are 4--"«,

;. 7 26 97
~'' "T ~15' "56'""

^P* For other uses of continued fractions see the computation
of logarithms [IX. § 3] ,

and the solution of quadratic equations

[XI. § 13].
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§ 4. COMPUTATION OF CONVERGENTS.

PrOB. 3. To FIND THE CONVERGENTS OF A CONTINUED FRACTION.

First Method. For the first convergent reject all after the

first partial fraction^ for the second convergent reject all after the

second partial fraction^ and so on; reduce to simple fractions

the complex fractions that remain.

The examples given above have all been solved by this method.

Second Method. Form two series, -l
^^' ^-' ^^'

*** ^'"
'

Di, Dg, Dg,
... Dk,

Wherein i"^^^^- ''^^S^^^
=Ni-d.,

'Di = di, D2
=

did2 + n2 = Di.d2 + n2,

. N3
= nid2d3-}-nin3 =N2.d3 4-Ni.n3, ••.

'

D3
= did2d3 + n2cl3+ din3 = D2-d3 + Di.n3, .••

31 J Nk = Nk_i • dk+ Ni,_2
• Hk .

J ^ Dk = Dk_i • dk4-Dk_2 • nk
'

then are ^, ^, ^, ••. ^, = ^^-i'^^ +
^t-2'n^^

Di D2 Dg Dk r>k-l
•
tlfc + I>k-2

• Hk

the Ist^ 2d, 3d, .•• k^^, convergents.

The reader may translate this formula into words.

1 . The law is true for the third convergent.

For the first three convergents, hy the first method, are

^1 ^'^^- and n^d^-d^ + nyn^

di d^d^-^- n2 di c?2
•

c?3 + n2 -

d^-^- di' n^

^N2.d3 + yi-n3^ as above. q.e.d.
D2 •

C?3 + Di •

7l3

2, If the laio he true for the 'kth convergent, it is true also

for the (k + l)i/i convergent,

p_ . . Nj _ Til _ N,.i.(^;,+ N,_2.n;,
p,F^^ •

D,'
=^^ ^;

=
D,.,.d,+ D,.2.n;

Lhyp.

^2 + ...+-

an identity, whatever expression or value dj, may stand

for, and therefore an identity when dj, is replaced

byc?,+^.
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^2+- +
d,+ ^k+i

du +

\ (^k 4 1/

(»*-!
• f^*+ I>*-2 -7**)

•

(^i+1 + I>*-1
•
W;fc+ 1

Q. E.D.

3. !Z%e Zaz/; is true whatever the index k.

For ••• it is true for A; = 3,

.*. it is true for k = 4.

So for /c = 5
;
for ^' = 6

;
for A; = 7

;
and so on. q. e. d

E.g., of the fraction —
t,x+— c

the convergents are : x-\ ,

^k-di+i-\-Bu-i"nu+i

[1

[2

ax aX'X-{-a'C aa^-i-ac

+ c

ax^ + ac

(ax^ + ac) ' X -\- ax ' d -j- ad

fa^ + b\x\^a^ + b\x\ ,
/ o

, ,, , a;*4-&

+ c«

x'-i-bd

So of the fraction — x

the convergents are : c+ •••,

» bx x^ -\-bcx (b -\-d)x^-\-bcdx . ^
a x-\-ab {a+c)x-\-abG x^-\-{ab+ad-\-cd)x+abcd
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In particular, when ni, ng,
••• n^, eacJi = 1, then the formula

becomes :

The reader ma}' translate this formula into words. He may
also demonstrate it anew, putting 1 for Wj, W2,

•••
n^, nj^+i, in the

general demonstration.

JE.g., of the fraction — 1

the convergents are : c -f • • •
>

1 b 6.c-fl bc+1
a* aft + l' (a6-fl)-cH-a a&c + a + c'

Compare the result of the previous example, when x = l.

Note. Formulae [3, 4] may be made to include convergents

of the mixed number Uq+^^ ^o
di-\
—^—

(^2+ •••? ^3 follows :

Let ^^^Zn' !!"-?'» D_i=0, Do=l,
wherein Uq = any number, perhaps ;

then wiU^
"''
=

"»•'!'
+ "-'"" ''2

= N,-d2 + N„-»,

and

Di = Do •
cZi + D_i •

?li, D2 = Di •
cZg 4- Do •

7l2,

Ni _ No • di+ N_i •
Til N2 _ Ni •

C?2+ No • W2

Di^Do-di+D.i-rii' D2"~Di-cZ24-Do-W2

as the reader may verify ;

but it is convenient to speak of — ,
= Wo+ 37

= -^-^ -> ^
Di «! "1

the 1st convergent, even when Wq has a value not
;

and
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§ 5. GENERAL PEOPERTIES.

In this section, let Vi, Vg, Vg,
••• be the true values to which

_ _ N;i _ Til

are convergents ; whence

Til Tlj

Theor. 1 . i/" <^6 partial numerators and denominators be all

positive, the convergents Ci^i, Ci,2>
••• are alternately greater and

less than the true value Vi.

Let Tij, W2,
•••

c?i, c?2,
••• be all positive ; then will

Ci>Yi, C2<Vi, C8>Vi,...C,^>Yi,^^^^^;^

For !Li>^^, [11. ax. 18
di c^i + V2

i.e., Ci > Vj. Q.E.D.

I.e., C2 < Vi- Q.E.D.

C^3 ^3 + ^4 "2+3- (^2-+
d^

'
d3 + Y4

• • -^, W2 >^ ^2
oi + ;,—L **3 ^1 + ;rx !^3

C?3 C«3 4- V4

I.e., C3 > Vi. Q.E.D.

[ UN
or THE A

'NIVERSITY 1
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Theor. 2. If any convergent^ c^, he subtracted from the next

following convergent^ Ck+i, then will the remainder^

^-1 Nk+i Nk ni-no'-Hk + i

I>k+1 I>k
^ '

I>k-I>k+]

N
Since —- = —

•> it IS to prove that

I>**N* + i
— N4.D4+ I

=
(
—

!)*. 711-712 •••n^fc^.i.

1. The law is true for k = 1 .

For •
.

•

Ni = Til, Di = C^i, N2 = Ui c?2, D2 = cZi c?2 + W2,

.•. Di'N2— Ni-D2= c?i«nidJ2
—

Tli-('^1<^2 + ^2)

= — 7li«?l2 = (
—

l)^*'^l'^2- Q.E.D.

2. 7/" ©k-l • Nk— Nj,_i
• Dk = (— 1)^"^

• Di •

112
•••

Ilk, ih^l^ f^itt

l>k-Nk+i-Nk-Dk+i = (
—

l)^-ni-n2---nk+i.

For J)k'^k+i-^k''Dk+i='Dk'('ifk'd,+i-h^k-i-nk+i)

-N,.(D;fc.d;fc + l+ D,_l.Wjfc+ l) [3

= (N*_i
•
D;fc
—

D^fc.l
.

Njfc)
.
7I4 + 1

= - (d,_i
. N*
-

N,_i •

Di)
• W, + i

= -(-l)*-i.?ii.W2
—

n;,.n,+i [h^-p.

==(
—

l)*-ni-n2---n44.i. q.e.d.

3. The law is true whatever the index k.

For *.• it is true for A; = 1, [1, above

.*. it is frue for A; = 2. [2, above

So forA; = 3, forA: = 4, forfc = 5, •••. q.e.d.

In particular: If Wi, ng,
••• each = 1, then will

(-1)*
7] c,^i--

^ ^

Dt'D* + l

Cor. 1. TJie error of any convergent,
—

, of j~4_l

when di, d2,
••• are all positive,

*^2+ *••»

IS less than
,
and much more is it less than —-.

i>k-i>k+i i>k

For ••• the true value lies between — and
, [th. 1

i>* i>*+i
"

and •.* these differ by only , <—5,

i>*'i>*+i ^k
.'. etc. Q.E.D,
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111 Hi • no 111
.

1^2
• ns

Cor. 2. c,=
^^ ^^.^+ „^.^^

•
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Cor. 4. The successive convergents approach to each other,

and therefore to the true value which lies between them, rapidly
when the ratios di • d2 : ng, dg •

dg : Dg,
••• are large.

For ^^^^* ,
= 1 + J^t:£^±L, [above

= 1 +

JF-gr., the convergents to V(a^ + 6), =a-f
2a +

7,
2a + ...,

approach the trae value rapidly when — is small. [§ 2
a

CoR. 5. jy ni, nj,
••• eac^ = 1, and dj, dg,

••• 6e all entire, all

the convergents are simple fractions in their lowest terms, and
T numerators
their consecutive \ ^^..^^i^^^^^^

are prime to each other.

For ••• every common measure of n^, d^ is a measure of

^k''Dt + i-^-D„-N^+i, = 1. [III. th.2 cr.4

.*. the h. c. msr. of n^, d^ is 1. q. e. d.

So of Ni, Nj+i, and of D;^, d^+i.

Cor. 6. Ifui, Ug,
••• each = 1, and di, dg,

••• be positive, then

between two consecutive convergents there lies no fraction whose

denominator is smaller than the largest of their denominators.

For, let -
, 4^—, ~ any simple fraction wherein d < d. . .

;

then
N Nfc N • Dj '^ D •

Nju— r^ =
,

whose numerator, being entire and not 0, [11. ax. 23, hyp.
either :=: or > 1,

and whose denominator < d^ •

d^+j, [hjT).

... ^_^>_i ; [n. ax. 17, 18

i.e., - differs more from ^ than ^^i±l does,

and cannot lie between them. q. e. d.
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Theor. 3. The difference ^^-^^ (-l)^n,... n,^,.d,^,^
I>k + 2 I>k r)k -01^+ 2

I>A + 2 I>*~" ^k'^k+ 2

whose numerator = ^k' (^k+i' <^k+2 + ^k' n^+2)

= {-iy>ni"'ni, + i'd, 2, [th.2

• •• etc. Q.E.D.

Cor. 1. i/" ni, Dg,
••• and di, dg,

••• 6e all positive,

then Ci > Cg > Cfi > •-.,

aijc? C2 < C4 < Ce < •••.

Cor. 2. y, = n, +^ + "-i^i^ + ^i:::^ + ...

I.D2 D2-D4 D4-D6

Ni 7li7l2^3 Wi«-« 7146^5

Di Di • Dg Dg • D5

Theor. 4. Jn an2/ continued fraction

I)k-(l>k + l+I>k-Vk + 2)

For
Til _ nj

.'. Vi is what C;fc+i becomes when for c^^^+i is put f^ft+i+v*+2»

and ••c>,.-c,= (-^);-"--"'-'

i>*
•

(i>*- ^A + 1+ i>t-i
• ^A+ 1)

'

(-l)*.ni...?2;,+ l
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Cor. 1. If Ui^ ng,
••• each = 1, and d^+s^ d^+g,

••• each < 1,

then Vi '^
Cfe ?ies between and

i>k-Dk+i i>k-(Dk+i+i>k)

For •.• Vi4.2,
=

J''^^ » then lies between and 1,

.•• D4«(D;fc^.i4- D;k«Vj+2)> the denominator of Vi~C;fc, lies

between d* • d^+ 1 and d* •

(D;^ + 1 + D;^) ;

.-. etc. Q.E.D.

Note. So, if of ni, Wg,
••• any are negative but all ih 1, and

if c?i, (Z2,
••• < 2, then Y^-i-i lies between — 1 and -{- 1 inclusive,

and Vi '~
Cfc between and

CoR. 2. 7/* ni, ng,
••• eac7i = 1, a7id di, dj,

••• eac/i < 1, every

convergent differs less than the previous one from the true value.

For
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§ 6. SECONDARY CONVERGENTS.

If Ml, no, ••• each = 1, and dj, do,
••• be all positive integers,

then the series Cq, Cj, C2, Cg,
••• may be resolved into two series :

Gqi C2, C4,
• • •

,
all too sriiall, and Cj, Cg, C5,

• • •

,
all too large,

d d
wherein Cg

—
Co =——^ 04

— 09 =——-> "•> [th. 3
Do • D2 D2 • D4

, —ds —dsand 03-Ci = i, €5-03 = ^, •••.

Di-Dg D3.D5

Put 1, 2, 3, ... cZa-l ,
in turn, for cZg in ^I'^^ +

^o, = Cg,
'

Di .

(^2 4- i>o

and 1, 2, 3, ••• c?4— 1, in turn, for d^ in O4, and so on
;

then a series of secondary convergents is formed, Ijing be-

tween the primary convergents Oq, C2, C4,
...

;

and the whole series, whose' terms are all too small, is :

^
Ni + Nq 2.^1+ Nq 3.Ni + yo (d2-l)-Ni+No

^^*"

Di + Do' 2.D1+D0' 3.D1+ D0'*" (C?2— l)-Di+Do'
'

N3 + N2 2 . N3 + N2 3 .

N3 + N2 ((^4-l).N3+J^2
^ .

D3+ D2' 2.D3+D2' 3.D3+D2'*** (d4-l).D3+D2'
'^

or Co? Co|i, Co
I
2?

•*•
^0\d^-li C2, C211, C212?

•••
G2\d^-l^> C4, ••'.

So, put 1, 2, 3, ••• c?3— 1, in turn, for d^ in O3,

and 1, 2, 3,
... d^—l, in turn, for d^ in O5, and so on

;

then a second series is formed, whose terms are all too large :

Ns + Ni 2.N24-N1 N4+N3 2.N4+y3
D2 + D1 2.D2 + D1 U4+D3 2.D4+D3

-5?or Ci, Ci|i, Ci|2,
•••

Ci|^^_i, C3, C311, C312,
•••

Cg\a^_i, C5

Theor. 5. The terms of the first series Oq, Co|i, Co|2?
••• grow

greater and greater; of the second series Oj, Ci|i, Ci|2,
••• less and

less ; and the differences of successive terms, smaller and smaller.

For Oo„-0o ^;^o_No^
1

^^j^2°"
Dl + Do Do Do.(Di + Do)

Co|2
—

Co|i
=

;; ;

r—
;

r, and SO On.

(Di 4- Do) '(201 + Do)

C^ ^ r. N2 + N1 Ni -1
bo Ci 1 1

—
Ci =

;

=
7 ;

r '"'
D2 + D1 Di Di-(D2 + I>i)

Ci|2-Ci|i = ; ; ^-- ;

r, and SO OH.

(D2 + Di).(2D2 4-Di)
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Theor. 6. Ck
I
r
'^ Ck+ 1

=
,
wherein Dk

|
,.

= r • Dk+i+ Dk-

For, reduce c^i^'^ C;t^.i to the common denominator -Dj^.^-Tf^;

then the numerator, (r«Nj+i+N;fc)«D4+i~(?'-D;t+i+i>it)*N4^i,
= ^k''^k + l^^k'^k+l^ =1- Q.E.D.

Cor. 1 . Ck
I
r «s in its loivest terms.

For •.• ever}' common measure of
N;^!^, d^,^ is a measure

of Niir-i>t+i~i>*ir-N* + i. =1. [III. th.2cr.4,th.

.*. the h. c. msr. of Njn ^, Dt I ^
is 1 . q.e.d.

Cor. 2. Between Ck|r (md Vi there lies no simple fraction with

terms so small as those o/ Ck
|
,-

For ••• c,,,'-c,+i = - -—.,

.*. between c^i^ and Cj^+i there lies no simple fraction with

denominator so small as D;^
|
^ ; [compare th. 2 cr. 5

and *.* Vi lies between C;t
I
^ and Ci+i,

.*. between c^i^ and Vj there lies no simple fraction with

terms so small as those of c^ | ^. q.e.d.

Theor. 7. Ck|r'^Ck|B =
^k

I
r

' ^k
I
8

For, reduce c^t
,
^
~ c^

|
, to the common denominator d^

,
^

•

d^^
,
, ;

then the numerator,

(Njfc+i
• r+ N;,)

.

(d,.^.i
. S+ D,) ~ (D;t+i

. r+ D,)
.

(n,+i
. .S+ N,),

= K.D,+i'-D,.x,+i)-(r~s)=r~s. Q.E.D. [th. 2

Theor. 8. When r > •|-dk+2? t^^i^ Ck|r differs less from Vi than

does any simple fraction with terms as small as those of Ck
|
r-

Di+K + 1 4- •••)•»* + !'

For '•'y.= ::iy7^'T::i[y\ ^c,,., [^<cz.^.+i

and •.• Ci,^~C;fc|, = < 7 ;
r [r>^s'"^ *"

D,,,.D„. (r.D, + i + D,).D„.
L ^12-

1

Cjfci^
is nearer than 0^4.1 to Vi. q. e. d.
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§ 7. EXAMPLES.

§§ 2, 4. PROBS. 1, 3.

1. Convert the following fractions into continued fractions,

and get five convergents for each of them, if there be so

many:

47_ 293 839 995 1051 2371

223' 631' 739' 293' 237l' 4049*

2. Find the limits of error of the fourth convergent of

.1357, 2.7182818, .43429448, 180:57.2957795.

3. The true length of the equinoctial year is 365^ 5^ 48'" 46' :

reduce the ratio, 5*^ 48™ 46' : 24'\ to a continued frac-

tion, find five convergents, and thence show how often

leap-3'ear should come. Find the limits of error for the

fifth convergent.

4. The earth makes one sidereal revolution about the sun in

365.2564 days, and Venus in 224.7008 daj's ;
how often

will the two planets be in conjunction (in line with the

sun) ? Get four convergents, and the limits of error for

the fourth.

§§ 3, 4. PROBS. 2, 3.

5. Convert the following surds into continued fractions, and

get five convergents. Find the limits of error.

V(a'-l), V(«'+«)' V(«'-^)' V(«'+a+l).

6. Express y'c,
= V(^^ + c — m^) ,

as a continued fraction,

and show that whatever the numbers m, m',

m+- -c-m'' =±m'± c-m"
2mH 2m'+2m + ." 2m'+----

7. Develop into series the sixth,convergents of [th.2 cr.2

3.U159265,
|1|, V145, ^| ; V(«'+«'). V(«=-»)-
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8. Show that:

1 rii Ui

a2 H tta : 7?i + -5
: Jhdo 'in

c?^+-
'

-(^2+
^3+

d"-%-- ^d"+
''

d'" -d"'-{-"-.

355
9. Write all the primarj' and secondary convergents of in

113

order ; and find the fraction that differs least from it of

all those whose denominators ^100. [§ 6, th. 6 cr. 2

10. Find all the fractions - such that d ^ 50, -^— <
^

D D 113 50. D

1 1 . Prove that ^ ^*
=

{n, + d,.,' d,) { I'-' + n,., • d, { l^'^'

12. The continued fraction - 1 ^
occurs in botanj^, zoology, and

1

1...

How does this fraction differ from

astronom}'
1

4
Find twelve convergents, and prove that :

^

Ni= 2 .Nt_2 +1 .N*_3=...

= N^ •
Ni_^^.2— N^_2

• ^k-r
-^= i(Nr

•
N;,_^ + 3+ N,-3 •

^k-r) ,
Whcrciu ^ = —

that .*. N^ measures Ng^, Ng^,
•••

;

and that N^ •

n,+,
—

nv+, •

n, = (
—

1)'n^_,
• n, if r > t.

13 . Convert the series ao+ «o «i^+ «o <^i <^2 a^^H— ± ao • • • a„ a?" into

the continued fraction, and find its first four convergents,

1 TT— ^2^
ChiC+1 = -— „ „^ ^

a,.x-\-\-.._ «na? , r§2
a„a;4-l

"^
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VII. INCOMMENSURABLES, LIMITS, INFINITESI-

MALS, AND DERIVATIVES.

§1. VARIABLES AND CONSTANTS.— CONTINUITY.

When the conditions of an investigation are such that one

number takes a series of different values, that number is a vari-

able; but a number that keeps its one value unchanged, is a

constant; and the particular values that ma}^ be given to vari-

ables are constants. The remainder got by subtracting one value

from the next is the increment of the value first named.

When one variable is a function of another, the first is a

dependent variable, and the other is an independent variable.

From the fixed values of the constants and the values that may
be given to the independent variables, the corresponding values

of the dependent variables, or functions, may be computed.

E.g.^ while a sum of money remains at interest, the principal

and rate are constants, but the time and accrued interest are

variables, of which either may be taken as the independent

variable, and the other is dependent upon it
;
for when the prin-

cipal, rate, and-J !^"f^ , are given, the^
interest

.^ ^i^^^^^^ ^jg.
^ ' ' ' uitorest =" '

' time

termined
;
and to different values given to

-{ ;.-.fgj.ggf
different

1 r, f
interest ,

values oi ^ , . correspond.

So, the radius, circumference, and area of a circle are all func-

tions of each other, and all grow together if the circle increases ;

but the ratio of the circumference to the radius is constant, and

so is the ratio of the area to the square of either of them.

When the variable, in passing from one value to another,

passes through every intermediate value in order, then'the vari-

able is CO nt 1 1 1, 1tons ; otherwise it is discontinuous.

E.g., time is a continuous quantity, ever increasing by a steady

growtli, and the time of day, expressed in hours and parts of

an hour, is a continuous number ;
but if entire hours only be

counted and the fractions rejected, the number is discontinuous.
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If a function of a continuous variable remain real and finite

as long as the variable is real and finite, if it can take but one

value, or a limited number of values, for any one value of the

variable, and if, in passing from one value to another, it passes

through every intermediate value— such a function is a con-

tinuous function; otherwise it is discontinuous. It is implied
that for any small increment of the variable the increment of

the function is also small, and that to the variable an increment

can always be given so small that the increment of the function

shall be smaller than any assigned number.

E.g., interest is earned continuously, and may be computed for

a 3'ear, a day, a minute, a second, a millionth part of a second, or

any other fraction of a second, however small
; interest is, there-

fore, a continuous function of the time. But in ordinar3' busi-

ness fractions of a day are neglected, and interest, having definite

sensible increments, is a discontinuous function of the time.

So, with a falling bod}', the force of gravit}' is constant, but

the time, velocity acquired, and distance fallen are variables
;
and

the velocity and distance are continuous functions, of the time.

So, the area of a regular pol3'gon inscribed in a given circle is

a function of the number of sides, and varies with the number

of sides
;
but neither the number of sides nor the area is a con-

tinuous number. For while there may be regular poh gons with

3, 4, 0, ••• or an}' integral number of sides, it is absurd to speak
of such a pol3'gon of 3J sides, 4f sides, and so on.

So, the approximate value of the fraction ^, expressed b}' the

decimals .3, .33, .333, ••• is a function of the number of 3's

emplo3'ed, but that number is discontinous and so is the value.

So, the convergents of a continued fraction are functions of

the partial numerators and denominators, but not continuous.

So, in the equation 4a^ — 9/ = 36, 2/
= ± i^{Aa^- 36) ,

and

for all values of a; < "3 and >'^3, y is a continuous function,

but for all values of x from ~3 to +3, 2/ is discontinuous.

So, if 2/
= 1 : ic, y is a. continuous function for all values of x

except x = 0, where y leaps from a ver}- large negative to a very

large positive value.
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§ 2. INCOMMENSURABLES.

If, in any operation upon numbers, the result cannot be

expressed as a commensurable number, either an integer or

a fraction, but commensurable numbers can be found both

greater and less than the true result that approach indefinitely

near to it and to each other, such result is an incommensurable

number.

E.g.^ the square root of 2 is an incommensurable.

(a) It is not an integer.

For (0)2 = 0, (±1)^=1, (±2)2 = 4,

and (±3)2, (±4)2,... each > 2.

(b) It is not a simple fraction.

tn
For if possible, let ^2 = —

, a simple fraction in its lowest

terms
;

then 2 =— a simple fraction in its lowest terms, [III. th.5, cr.3
n^

I.e., an integer is equal to an irreducible fraction,

which is absurd
;

.-. ^2 is not a simple fraction. q.e.d.

(c) Commensurables^ both greater and less than ^2, can be

founds that shall differ from it by less than any assigned number^

however small.

For •.• (±1)2=1, and (±2)2 = 4,

.-. ±1 <V2. and ±2 > -^2,

and each of them ~ ^2 < 1 .

So ••• (±1.4)2=1.96, and (±1.5)2=2.25,
.-. ± 1.4 < ^2, and ± 1.5 > V^'

and each of them ~ ^2 < . 1 .

So •.• (±1.41)2=1.9881, and (± 1.42)2 = 2.0164,

.. ± 1.41 < y/2, and ± 1.42 > -^2,

and each of them ^ yJ2 < .01.

So indefinitely, however small the difference assigned.
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So the square roots of 4, 9, 16, 25, 36, 49, 64, and 81 are

commensurables ;
but of all other integers, and of

most fractions, lying between 1 and 100 they are

incommensurables ; and so of other roots.

So the logarithms, to the base 10, of 10, 100, and 1000

are commensurable ; but of all other integers be-

tween 1 and 10000 they are incommensurables.

Incommensurable numbers often represent the attempt to ex-

press the numerical measure of a quantity in terms of a unit

that has no common measure with it. If expressed in terms of

some other unit, the number might be commensurable.

E.g.^ the diagonal of a square is incommensurable with its

side
;
but in terms of the half diagonal, or any other exact part

of itself, say /^ths, ffds, ffths, •••, it is commensurable.

So, time may be expressed in days, in lunar months, or in

years ; but it is very unlikely that a given length of time, exactly

expressed in any one of these units, would be commensurable in

either of the others.

So, if two distances, a b and c d, be taken at random,

the chances are few that ab is a measure of cd, or that they
even have a common measure. If they seem to have one, it is

probably because most measurements are inexact, and only rough

approximations are used instead of the true numbers, which are

commonl}- incommensurable.

The words addition, subtraction, multiplication, division, and

involution to commensurable powers, were defined in I. §§ 6-11
;

and those definitions were made so broad as to cover all kinds

of numbers. The axioms laid down in II. § 3 also apply to all

numbers.

Incommensurable powers and logarithms are defined in VIII.

§4, IX.§1.
The combinatory properties of commensurable numbers were

proved in II. §§ 4, 6, 7
;
the same properties are proved for in-

commensurables in VII. § 7.
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§ 3. LIMITS.

When a variable takes successive values that approach nearer

and nearer to a given constant, so that the difference between

the variable and the constant is ver}^ small, and ma}' become and

remain smaller than an}- number named or conceived of, then the

constant is the limit of the variable
;
and this definition applies

whether the variable be always greater, or alwa3's less, or some-

times greater and sometimes less, than the constant.

E.g., 1, 1.4, 1.41, 1.414, 1.4142, ...

are successive approximations to the true value of y2,
and if the series be extended, a succession of terms may be

found whose differences from y'2 are smaller than

any assigned nmnbci'. juid steadily grow smaller

and smaller as the series goes on, but which terms

are each less than -^2,

So 2, 1.5, 1.42, 1.415, 1.4143, ...

are each greater than -y^2, but approach it nearer and

nearer without end
;

.*. while -y/2 can never be exactl}" expressed in decimals,

it is the limit to which both the series approach.

So as shown under continued fractions, ^2 = 1 +;
—

1

and the successive convergents, 2 -!-•••

3 7 17 41 99 239

2' 5' 12' 29' 70' 169'
**'

are alternately greater and less than -y/2, the true

value, but approach it nearer and nearer as a limit.

7i ± 1
So 1 is the limit when n increases without bounds.

ri

For •.•
^^^ = 1 ± \ and 1, =1±1~1, =0 when n=oo,
n n n n

wherein " = " = grows smaller and smaller and approaches

as its limit,

and " = go" = grows larger and larger without bounds ;

.'. lim = 1, when n = go. q.e. d.
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So i is the limit of tho series .3, .33, .333, .3333, •••.

So if from the series ^ {i)\ HY, {¥)\ - (-^)" a new

series of sums be formed b}' taking

then the limit of this series, when 7i = oo, is 1 .

For 8i~l=i,.S2^1=i = (|)S .93^1 =i = (^)^...,

and <?„
~ 1 = (4^)"

== 0, when n = oo. q. e. d.

So, if a regular polygon be inscribed in a circle, and another

be circumscribed about it, and if the number of their sides be

doubled again and again, the area of the circle is the limit of the

areas of both the polygons, and the circumference of the circle

is the limit of their perimeters. The two areas approach nearer

and nearer to the area of the circle and to each other
;
but one

is always a little greater and the other a little less than the

circle ;
and so of the perimeters.

So, the surface and volume of a cone are the limits respectively

of the surface and volume of an inscribed, and of a circumscribed,

P3Tamid ;
the surface and volume of a c^'linder are the limits of

the surface and volume of an inscribed, and a circumscribed,

prism, and so on.

In these examples, as in all others, the constants -^2, 1, -J,
•••

are limits, not simply- because the successive values of the vari-

ables approach nearer and nearer to them, for they approach
nearer and nearer to man}' other numbers not their limits.

E.g.^ the series 1, 1.4, 1.41, 1.414, 1.4142, ••• approaches
nearer and nearer to 10000, which is not its limit at all.

So, the area of the inscribed poh'gon approaches nearer and

nearer to the area of the circumscribed square, not its limit.

The constants are limits because, as the series is extended,

some one of its terms, and all the terms that follow it, will differ

from the constant by a number smaller than any assigned num-

ber, be that number never so small
; and further, because, how-

ever far the series is extended, there is no point bej'ond which

its successive terms are each of them equal to the limit.
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§ 4. INFINITESIMALS AND INFINITES.

A VARIABLE is infinitesimal if it can take values smaller than

any assignable magnitude, infinite if it can take values larger

than any assignable magnitude, finite if neither infinite nor

infinitesimal. All constants except are finite. Strictly, the

word " infinitesimal" applies only to that part of the series of

values of the variable which are smaller than any number that can

be named or conceived of, and
" infinite" to that part of the series

of values which are larger than can be named or conceived of.

Manifestly, the difference between a variable and its limit is

an infinitesimal.

The reader must carefully note the distinction between an

infinitesimal and absolute nothing. The latter comes from sub-

tracting any number from itself
;
the former from dividing any

number into small parts and then continually subdividing one of

these parts. An infinitesimal always has some magnitude, but

absolute nothing means the total absence of anything to measure.

So, between the infinites of mathematics and the absolute

infinity of space and duration, there is the same impassable gulf.

Absolute infinity means that boundlessness to which nothing can

be added, and from which nothing can be taken away, and there

are no means by which it can be measured
;
but a mathematical

infinite is simply
" a number larger than can be named or con-

ceived of," and one such infinite may be larger than another, or

any number of times another.

The essential properties of infinitesimals and infinites, upon
which the mathematician rests, are : that, while following the law

by which successive values are determined, the one may be made

smaller and smaller, and the other larger and larger, at pleasure.

T •
4. I infinitesimals ^ ,,

In comparing two or more {
. n .,

^ any one of them

may be assumed at pleasure as the base; and if the limiting ratio

(limit of ratio) of any other of them to the base be finite, then

that other number is of the same order as the base. If this

limiting ratio be^
' then that other number is^ \n^nite

^^'^
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as to the assumed base. If the limitino: ratio of aii<! |"fi"|tesimal^ ' lulmite
to the ?ith power of the base (whatever n) be a finite number,

then the ^ j^fl^^g

^^^
is of the nth orde)- as to the base, and

.
,
infinitesimals „ ., 1-^^.11 ^ •.two < . r. .. are 01 the same order 11 they have nmte

' iniinites "^

limiting ratios to tlie same power of the base.

E.g., if upon any Ntiaiuht line ab

a semicircle be doscriluMl. niul from

c, an}' point of the eiicu inference,

CD be drawn perpendicular to ab,

and AC and cb be joined,

then ABC and cbd are similar

right triangles,

and ab : bc = bc : db.

Let c move towards b,

then AB is consiMut Mlid bc and db are variables.

Let c approach indefinitely near to b,

then BC is an infinitesimal of the first order,

and DB of the second order, as to bc.

For •.• AB • DB = BC^,

.-. lim (bg- : db) = ab a finite length.

So, if in the triangle abc,

right-angled at c, perpendicu-
lars be let fall from c on ab at

D, from D on bc at e, from e

on db at F, from f on be at g,

and so on ;

then the triangles ABC, cbd,

dbe, ebf, fbg, •••

are all similar,

and BC : AB = DB : BC = BE : DB = FB : BE = BG : FB = • • •
.

Conceive the point c to move towards b, and to approach

indefinitely near to it, then the ratios grow smaller and smaller,

and finally become infinitesimals, and the lengths db, be, fb,

BG, ••• are infinitesimals of the 1st, 2d, 3d, 4th, ••• orders as to

the constant length ab.

[above

Q.E.D. [df.
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§ 5. DERIVATIVES.

If to a variable a small increment be given, and if the corres-

ponding increment of a function of the variable be determined,

then the limit of the ratio of the increment of the function to

the increment of the variable, when the increment of the vari-

able is taken indefinitel}' small, is the derivative of the function

as to the variable.

E.g., let a square p3'ramid be cut b}' planes parallel to the

base
;

the sections are squares, and they grow larger as the

cutting planes recede from the vertex.

Take the sides of two squares 6 inches and 7 inches
;

then (72
-

62) : (7
-

G) = 13 : 1 = 13.

Take the sides of two square 6 inches and 6.1 inches

then (6.12-62) : (6.1
-

6) = 1.21 : .1 = 12.1.

Take the sides of two squares 6 inches and 6.01 inches,

then (6.012—62) : (6.01-6) = .1201 : .01 = 12.01.

Take the sides of two squares 6 inches and 6.001 inches,

then (6.0012
_

(52)
.

(^c,.001
-

6) = .012001 : .001 = 12.001
;

It thus appears that as the difference of sides grows smaller,

1, .1, .01, .001, ...towards 0,

so also the difference of areas grows smaller indefinitely,

13, 1.21, .1201, .012001, ... towards 0,

but that the ratio of these differences, though growing smaller,

has 12 and not for its limit.

13, 12.1, 12.01, 12.001, ... towards 12
;

i.e., just as the side of the square reaches and passes 6 inches in

its growth, at that instant the area is growing 12 times as fast

as the side
;
as it reaches and passes 7 inches, 14 times as fast ;

as it reaches and passes 8 inches, 16 times as fast, and so on
; and,

in general, as it reaches and passes x inches, 2x times as fast.

When two variables grow smaller and smaller together, their

ratio does not necessaril}', nor generally, become infinitesimal.

E.g., if a be any number, however small, and mb, nb be

smaller than a,

then mb :nb = m:n, whatever m and n may be.
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So
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§6. FIRST PRINCIPLES.

Theor. I. If two variables^ the one increasing and the other

decreasing^ approach each other so that their difference becomes

infinitesimal, they have a common limit that lies between them.

1. Each of them has some Hmit.

For, if either had no Hmit, they would pass each other.

2. The}^ have the same limit.

For, if they had different Kmits they could come no nearer

together than their limits. [§ 3 df. lim.

3. This common limit lies between the two variables.

For it is greater than the less, and less than the greater of them.

Cor. If two constants always lie between tiuo such variables,

they are equal to the common limit and to each other.

For, if possible, let one of them be greater than the limit
;

then the greater variable can get no nearer the limit than

this constant, which is absurd. [§ 3 df. lim.

So, neither of the constants can be less than the limit.

.*. they are equal to the limit, and to each other. q.e.d.

Theor. 2. The product of a finite number into an infinitesimal

is an infinitesimal, and of the same order.

Let n be any finite number, and a an infinitesimal
;

then will n-a be an infinitesimal, and of the same order as a.

1 . ?i • a is an infinitesimal.

For, take y8 any finite number however small, and a < /3 : n
;

then 72 • a < /?, and is inf 1. q.e.d. [§ 4 df . infl. II. ax. 16

2. n- a is an infinitesimal of the same order as a.

For 71 • a : a, = n, is finite. q.e.d. [df . infl. of same ord.

Cor. 1 . The sum of a finite number, n, of infinitesimals is inf^l.

For their sum < n times the largest of them, [II. ax. 12

and •.• that product is infinitesimal, [th.

.*. the sum is infinitesimal. q.e.d.

Cor. 2. If there be any finite number of commensurable vari-

ables, x', y', z', •••, and as many more, x", y", z", ••, such that

i'^x" = 0, y'~y" = 0, z'~z"i:0,...;

then will x' -f y' -fz' -h -.• ~ x"+y" + z"H = 0,

and x' •

y'
• z' • ••• ~ x" • y" • z" + .-. = .
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§ 7. PRIMAEY OPElSriONS ON INCOMMENSURABLES.

Theor. 3. The addition of incommensurahles is commutative

and associative.

For, let a, 6, c,
••• be any incommensurables,

I

x\ x" , x' <a < x'\

and IPt J y'^ y" ^^ commensurable \y' <b< y'\ p. ^ /if^^^ ^^M z', z" variables such that
]

z' < c < z",
LS ^ «*.

and such that a is the limit of «' and »", 6 of y' and 2/'\

c of z' and z", •••
;

then •.• cc'-hy'+z' +...<« 4-& + c + -"< a;"+2/"H-z"+...,

[II. ax. 12

and z' -f ?/' -h .^•' + ••• < c + 6 + a + ... < z"+ y"+ x"+ ..-,

and •.• a;' -f?/' +z' + ..-,
= z' -{- y' -{- x' + •••, [Il.th.l

= a;"-h!/"4-z"+..., =z"H-2/"+a;" + ..-, [tli.2cr.2

.*. the constant sums a + 6+ c H ,
c + ft+a H , l3'ing

between these two variable sums, are equal, [th. 1

So for any other order or grouping of the elements in the

sum of a, 6, c, •". q.e.d.

Theor. 4. The multiplication of incommensurahles is commu-

tative and associative.

For, let a, &, c,
••• be an}' incommensurables,

I
a', x"

I

a?' < a < x",

and let y',' K ^^
?0";'"«"«"/-<lWe \

y'<^<
v"; [§ 2 df.

I

z', z" variables such that
|

z' '^ c ^ z",
"-^

*"> *" **
***?

and such that a is the limit of x' and a;", b of ?/' and ?/"?

c of z' and z", .••
;

then ••• x' -y'
- z' -" ^a-b-c-" < a;".?/'', z"--., [II. ax. 19

and z' -y' -x' -" ^cb-a-" < z" 'y"'x"'",
and •.• a:' .?/'

.
z'..., = z' .

?/'
. a;' ..., [II.th.3

= a;"..v".z"..., = z".2/".a;"..., [th. 2 cr. 2

.
•
. the constant products a'b'C"-, c-b-a"-, l3'ing between

these two variable products, are equal, [th. 1 cr. 1

So for an}- other order or grouping of the elements in the

product of a, 6, c, •«•. q. e. d.
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Theor. 5. The multiplication of incommensurables is distribu-

tive as to addition.

The proof is identical with that of [II. th.4.].

§ 8. GENEEAL PROPERTIES OF LIMITS.

Theor. 6. If two variables be ahvays equal, and if one of
them approach a limit, the other approaches the same limit.

For, let X, y be two variables, always equal, and a the limit ofx\

then •.' xr^a^O, [§ 3 df.

and •
.

•

y = x alwaj^s, [hyp.
.-. 2/~« = 0; [I.§5df.

I.e., a is the limit of y. q. e. d.

Cor. If while approaching their limits, two variables be

always equal, their limits are equal.

Note. Another and independent demonstration of this corol-

lary is as follows :

Let X, y be two variables, always equal, and a, b their limits,

then will a = b.

For if not, let a~ 6 = S,

then *.• a,b are both constantsi,

.-. 8 is a constant, however small it may be.

Take x, y such that X'^a <i8, and y^^bK^S, [df.

then ••• a; =;?/ always, [hyp.

.-. a^J)<8, [11. ax. 12

which is contrary to the supposition that a '^ 6 = 8
;

.*. that supposition fails,

and it is only left that a = b. q.e.d.

Theor. 7. If there be any finite number of variables having

limits, the sum of their limits is the limit of their sum.

Let X, y, z,'" be any finite number of variables, and a, &, c,
•••

their limits
;
then is the sum a-\-b-\-c-\ the limit of the sum

x->ry-{-z+ '".

For •.' x = a-{-a, y = b-\-p, 2; = c + y, •••,

wherein a, (3, y,
-" may be positive or negative, but each of

them = 0,
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... x-hy+z+ -"=(a-^a)-{-(b-{-l3)-{-(c-\-y)-\.-' [II.ax.2
= («+^+c+-) + («+/?+y+-); [tii.3

and •.• a+^+7+ ---=0, [th.2

.-. x-\-y+z-\ = a+b-\-c-\ asitslimit. q.e.d. [§ 2df.

Note. When the number of terms is infinite this tlieorem

does not alwaj's appl}'.

E.g., if a, a finite number, be divided into x parts,

then limf -H--H-5h— toa;terms )isawhena;= ooand- =0.
\x ^ ^

) ^

Theor. 8. If there he any finite number of variables having

limits, the limit of their product is the ^woduct of their limits.

Let a;, y, z,
••• be any variables, a, 6, c,

••• their limits
; then is

the product a-b'C'" the limit of the product x-y-z "'.

For •.• a; = aH-a, y = b-\-p, z = c-\-y, ...,

wherein a, )8, y,
••• may be positive or negative, but each of

them = 0,

.-. x-y-z •"=(a + a)'{b+li)'{c-hy) '"
[II.ax.4

= a'b'C—f-, a finite number of terms, each

of which has one or more of the factors

a, )S, y, •••, and is therefore an infini-

tesimal
; [ths. 5, 3

and •
.* the sum of finite multiples of a, y8, y,

••• = 0, [th. 2

.*. a;'?/-2-«' ==a-6«c ••• as its limit. q.e.d. [df.

CoR. 1. If there be two variables^ the quotient of their limits

is the limit of their quotient.

Let a;, y be an}- two variables, and a, b their limits
;
then is

the quotient a : 6 the limit of the quotient x : y.

For let x^y-q, wherein q is the quotient of x by y,

then *.• a = 6-lim^, [th.

.-. a: 6 = limg, q.e.d.

Cob. 2. Any finite integral power of the limit of a variable is

the limit of the like j^oiuer of the variable.

Let X be anj^ variable, a its limit, n an}^ integer, then a"= lima;",

(a) n positive : a case of multiplication.

(6) n negative : a case of division.



§ 8.] GENERAL PEOPEP.TIES OF LII^nTS. 171

Note. When the exponent is infinite, this corollary does not

always apply.

E.g., (l-f--Y
whena; = oo, is not 1 but 2.718H , [

CoR. 3. If there be two variables x, y and two others x', y',

such that lim (x : x')
= 1 and lim (y : y')

= 1,

then lim (x : y) = lim (x' : y') .

Theor. 9. If there be two variables x, y whose limiting ratio

is a finite number^ not 0, and if there be added to them any
numbers a, /8, infinitesimal as to x, y, then is the limiting ratio

of X, y not changed.

For • • ^il^ = ^. ^+(^-^)
,

2/ + )8 y l+((3:y)

... lini£±^=lim^ . lim^ + ("^^)^lim^ . l = lim^.
?/ + /3 y l+ {/3:y) y 1 y

Q.E.D.

CoR. If the difference, S, of two variables x, y be inflriitesimal

as to either, their limiting ratio is 1
, and conversely.

Theor. 10. If x, 3', z, be three variables of the same sense,

such thai x < 3' < z, and such that x : z == 1, then will x : y = 1,

and 3"
: z = 1.

For •.• x^y^z, [hyp.

.*. X : z<^x : y<^y : y, i.e., < 1, [II. ax. 18

and X : z -^ y : z '^ z : z, i.e., -^1, [II. ax. 17

But •
.

• X : z = 1, [tiyP-

.
•

. X : y, ^ X : z but < 1
,
= 1

,

and y
'

z, ^ X : z but ^ 1, == 1. q.e.d.

Theor. 11. Ifx,ybe two infinitesimals, m, n their orders as

to any base /8, and if m > n, then is (x : y) an infinitesimal of

the (m — n)^/i order as to the base.

For •
.

• lim
(a;

: ^'")
= h and lim {y : /3")

=
A;,

wherein h and k are finite numbers, [^yP*

lim (x : y) lim (x : B"^) /i /? .. u
.

•

. ,.
^

^
'^^

,
= -—

) ^, = -, a finite number
hm^"'-" \im(y :

(S"") k

.
•

, (x : y) isan infinitesimal of the (m --?i) th order, q. e. d.
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Cor. 1. The product X'j is an infinitesimal of the (m -j- \'\)tli

order.

Cor. 2. 3'
: x is an infinite of the (m — i\)th order.

Cor. 3. If x, y he infinites of the mth and nth orders, and if

m > n, then :

X : 3'
is an infinite of the (m — n)th order,

X • y is an infinite of the (m + xi)th order,

y : X is an infinitesimal of the (m — n)th order.

If there be two or more numbers not all equal, then any num-

ber which is greater than the least of them and less the greatest

is a mean. The average of two or more numbers is the quotient

of their sum by their number.

Theor. 12. If x', x", x'", ••• be a set of variables, and

y\ y"? }"'"•>
'"CIS many more, all positive or all negative, and

Inch that lim (x' : y')
= 1

,
lim (x" : y ")

= 1
,
lim (x'" : y'") = 1

,
• • •

;

and if.the number of variables in each set increase without bounds,

then the limits of the sums of the two sets, unless infinite, are equal.

For •.• lim(a;':y)=l, lim(a;": 2/")
= l, lim(aj"' : 2/'")

= l, ...,

2/' + 2/" + 2/'"+-
'

. lim(x^+a;^^+a?^^^+-) ^l
lim(2/'4-2/"+2/"'+"-)

.-. lim (a;'+ «"+«"'+. ..)
= lim(2/'+ 2/"4-2/"^+---)-Q-E.D.

CoR. i/'lim(x' : y') = m, lim(x" : y") = m, •.., andifx.', x", ...

y'j y"?
••• ^e all positive or all negative, then

lim[(x'+x"+...):(y'+y"+-)] = ni.

Note. This theorem is of great service in geometry in com-

puting areas, volumes, etc., bounded by curved lines or surfaces.

Divide into narrow bands whose limits are rectangles, or thin

plates whose limits are prisms, and then get the limit of the

sum of such rectangles or prisms ; these limits are the areas ot

volumes sought. This operation is called integration.



1. § 9.] GENERAL PROPEETIES OF DERIVATIVES. 173

§ 9. GENERAL PEOPERTIES OF DERIVATIVES.

PrOB. 1. To FIND THE DERIVATIVE, AS TO ANY VARIABLE, OF

A FUNCTION OF THAT VARIABLE.

In the function give the variable an increment; from the re-

sulting expression subtract the function; divide the remainder by

the increment of the variable^ and get the limit of the quotient as

tfiat increment approaches zero.

E.g. , to find the derivative of x^ :

Let X = ar^
; substitute x-{'h for oj, and let x' =

(a; + hy ;

then ••• x'-x ={x + hy-x' = 2xh + h\

x'— X = 2x + h,

x'— X
.'. lim = 2x when7i = 0,

h

i.e., i>x(^) =2x. Q.E.F.

So to find the derivative of a^ :

Let X = ic'
;
substitute a; + ^ for x, and let x'= (a; + hy ;

then •.• x'-x ={x-hhy-a:^ = Sx'h-{-Sxh^+JiK

.-. ^—^ =3ar»4-3a;;i + A2,
h

... lim^^:^=:3ar^ when/i = 0,
h

i.e., i>x(^^) =3ar^.

So to find the derivative of x~^ :

Let X = a;-^
;
substitute a; + ^ for x, and let x'= (a; + hy^ ;

then *.• x'— X =(a; + 7i)~^— a;'^

^_1 1 ^ -h
x-\-h x x(x-\-h)

x'-x -1
h x{x-{-hy

... iim^!-^ =—i when^ = 0,
h ar

i.e., I>^ =-i. Q.E.F.



174 INCOMMEXSURABLES, LIMITS, ETC. [VH. th.

Theor. 13. The derivative^ as to any variable, of the sum

of two or more functions of that variable, is the sum of their

derivatives.

Let u, V-" be any functions of a variable x, and x their sum ;

then will d^x = d,u -f d^v H

For let X take any infinitesimal increment /i, and let x' stand

for the new value of a?, x' for the corresponding value

of X, u' for that of u, v' for that of v, •••, so that

x'=x-^h, x'=x + incx, Tj'=u + incu, v'=v + incv,

then ••• X =u+vH always, [^^yP*

.-. x' =u'+v'+— ,

.-. x'— X =u'— u+v'-v+--, [II.ax.3

i.e., incx =incu +incv -\ ,

mqx _incu . mcv
h h h

+ ..., [n. ax.5

... hmlH^ = lim'-5£H + iimiH£I+... when/i = 0, [th. 7
h h h

i.e., D^x, =D,(u + v4----)»

= D,U+D,VH . Q.E.D.

Theor. 14. TJie derivative, as to any variable, of the product

of two or more functions of that variable, is the sum of the prod-

nets of the derivatives of the several factors each multiplied by all

the other factors.

Let u, V, w, ••• be any functions of a variable x, and x their

product;

then will Da,x = v-w-"D,u4-u«W"-d,v + u-v-"D,w + *"'

For let X take any infinitesimal increment h, and a;' be the

new value of x, so that x^=.x-\-h, x' = x + incx, •••,

then •.• X =u-v«w ••• always, [hyp-

.*. x' =zu'-v'- w'-",

i.e., x+incx = (u + incu)-(v + incv)-(w+incw) •••

= U'V«w f-'v^-W'-'incu+U'W-'-incvH—
+ terms with two or more infin'l factors,
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.*. incx = v-w-"incu + u-w---incv4-u.v---iiicw+ •••

+ terms with two or more infin'l factors,

h h h h

+ terms with one or more infin'l factors,

.-. D,x, =D,(u.v.w-..),

+ terms that vanish. q.e.d. [th. 7

Cob. In particular^ the derivative^ as to any variable, of the

product of two functions of that variable, is the sum of the prod-
ucts of the derivatives of the two functions each multiplied by the

other function.

I.e., D,(u-v) = u-D^v4-v.D^u.

Note. Theorem 14 may be written in the form :

D^(U.V.W--.)__D,U D£V- D^W
,

U-V-W»" U V w
Theor. 15. TJie derivative, as to any variable, of a fraction

whose terms are functions of that variable, is a fraction whose

numerator is the product of the denominator into the derivative

of the numerator less the product of the numerator into the deriv-

ative of the denominator, and whose denominator is the square

of the given denominator.

Let u, V be any functions of a variable x, and x their quotient ;

thenwUlD.x^ ^-^-^"-^-^-^
.

v^

For let X take any infinitesimal increment h, and x' be the

new value of x, so that x' = x -\- h, x' = x + inc x,

u' = u + incu, v' = v-|-incv,

then •.* x = -
always.

v-f-incv
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u + incu U
incx
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Theor. 17. The derivative, as to any variable, of a com-

mensurable power of that variable, is the product of the given

exponent into a power of the variable whose exponent is a unit

less than the given exponent.

Let x be any variable, and n any commensurable number;

then will d^x^ = nic""^.

(a) n a positive integer :

For •••a;'* = the product a;- a; -a;-. •, w-times repeated,

.-. D^ a;" = a;"~^«D^a;+a;**"^«D^a;4-.«.,w-times repeated [th.l4

= ?ia;""^-D^a;.

But •.* v^x = 1,

.*. D^a;'* = ?ia;**~\

(6) n a positive fraction, E
; p, q both positive integers:

q
p

For let X =
»«',

.*•
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§ 10. INDETEEMINATE FORMS.

If there be an expression that, by the definitions of the sj^m-

bols used, may take an infinite number of different values lying

in a continuous series, such an expression is indeterminate.

[See II. §2, p. 28.

E.g.^ the expressions 0:0, oo : qo, oo— oo, are indeterminate.

For the quotient : may be any quotient that, multiplied by
or into the divisor 0, gives the dividend as product ;

and any finite quotient may do this. '-
' ^ * ^^*

And the quotient qo : oo may be any quotient that, multiplied by
or into the divisor oo, gives the dividend oo as product ;

and an}' quotient, not 0, may do this.

And the remainder oo— oo may be an}^ remainder that, added

to the subtrahend oo, gives the minuend oo as sum
;

and any remainder may do this.

So the quotient xiyis indeterminate if of x, y it be known

only that both = 0, or that both = oo.

And the remainder x — y\Q indeterminate if of cc, y it be

known only that both = oo.

For any number may be such a quotient or remainder.

If for a particular value of an^^ variable of which its terms

are functions a fraction take the form 0:0, it ma}' be regarded
as approaching this form by gradual change of the variable, and

its true value is strictly the limit of the ratio of two infinitesimals.

This value is finite when the terms of the fraction are infini-

tesimals of the same order [§§4, 5], and it is indeterminate

only so long as the law is unknown subject to which they = 0.

E.g.^ when ic= 1, a?—l : a^— 1 becomes : 0,

but when a; = 1+ ^, this fraction becomes

(1+ ^)2-1' 7i2-f27i 7i-t-2
'

= 3:2 when h = 0, ^.e., when a; = 1,

and its true value, when a; = 1, is 3 : 2.
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The reader will see that this process is equivalent to reducing
the given fraction to its lowest terms, then substituting 1 for x.

In general, fractions take the form : because of some com-

mon factor of their terms that vanishes for a particular value of

the variable. If this factor can be found and divided out, and

the particular value be substituted for the variable, the result is

the true value of the given fraction
; and this method is particu-

lar
1}^

useful for fractions whose terms are entire.

In the above example the vanishing factor is a; — 1
,
and the

x^ -\-x-\- 1 3
fraction, when this factor is divided out, becomes ———-^—- = —

a?+ l 2

Theorem 18 will show another method of evaluation.

Expressions that approach the forms go : oo, oo — x, may be

reduced to equivalent expressions that approach the form : 0.

E.g., let X, x' be functions of any same variable x, such that

when x = a, then also x, x' both = oo.

Put X, x' under the forms u : v, u' : v',

wherein u, u', v, y' are all functions of x such that, when ic = a,

V is an infinitesimal of any order, and u is finite or an

infinitesimal of a lower order than v, [th.ll, cr. 2

and v' is an infinitesimal of any order, and u' is finite or an

infinitesimal of a lower order than v',

.1
f . u u' u«v'— u'«v .

then X — x', =oo— oo,
=

,

=
;

—
,
= —

V v' V'V'

E.g., if u, V, u', y' = a; + 2, x-1, a^-1, a^—2oe^-{-x,

then •.* u is finite, v, u' are infinitesimals of the first order, and

y' is an infinitesimal of the second order, when a; = 1,

.'. X — X', =00 — 00,

= (x^'a^-2x^-\-x-x^l'X'-l):x(x-lf,
:^0:0,
= {ij(P—x

—
l) :x — l, =00, when x = l.

[div. out van. fac. (x—iy.

It has been shown above that the forms called indeterminate

belong to that class of limiting expressions wherein the variables

cease to have finite values. They differ from other limiting ex-
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pressions of the same class in this, that their limits cannot be

determined without more knowledge of the relations of the vari-

ables than appears upon the face of the expressions themselves.

E.g., when ic, y both = 0, the quotient (S—x) : (4
—

?/) ,
not

an indeterminate form, = 2, no matter how a;, y

may be related ;

but the quotient x:y^ = ; 0, ma}' have any limit whatever,

depending on the relations of the variables x, y.

From this point of view the form oo • may be added to the

list of indeterminate forms
;
for although it does not, like the

other three forms, take an infinite number of different values by
the mere definition of the symbols taken absolutely, vet, like

them, it may take any value whatever, considered as a limiting

expression, i.e. as the limit of the product of an}^ two variables,

one of which = oo and the other = 0.

An expression that approaches the form co • may be reduced

to an equivalent expression that approaches the form : 0.

Theor. 18. If for a particular value of a variable two func-^

tions of that variable both vanish, the true value of their quotient

is the quotient of the values of their derivatives for that value of
the variable.

Let x, x' be two functions of a variable x such that x^,, x '«,

their values when a is put for x, both vanish
;

then will x„ : x „= d^x^ : d^x'^.

For, in x, x', put a + h for x
;

then
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In general, these points all lie in some line, straight or

curved, called their locus; and the relation between the variable

coordinates may be expressed by a single equation between two

variables, called the equation of ihe locus. In this equation

either variable is a function of the other. The equation is satis-

fied by the coordinates of every point of the locus, and by those

of no other point. Such equations are generally written in the

form y=fx, wherein a;, the abscissa, may be regarded as an

independent variable, and ?/, the ordinate, as a function of x
;

and the shape of the locus of the extremities of the ordinates

shows the manner in which fx varies with x.

E.g.-, the locus of points whose coordinates satisfy the rela-

tion expressed by the equation y = mx is a straight

line through the origin.

V Let ox be the axis, o the origin, ^
p, p' any two points whose co-

ordinates OA, AP, oa', A.'p' are

so related that ap = m • oa, and

a'p' = m. oa', i.e., so that y = mx for each of them
;

then is pp' a straight line through o.

For •.• ap:oa = a'p':oa', [hyp.

and •.• AP is parallel to a'p', [constr.

.'. the straight line op passes through p', and is the locus

sought. [geom.

So, the locus of the equation y = mx-\-b is a straight line

that cuts the axis of y at a distance b above the

origin.

As above, construct the straight

line that represents the

equation y^^ mx ;
draw

any two ordinates ap, a'p',

and extend them to q, q',

so that AQ = AP + 6, a'q' = a'p'+ &, wherein h is any

constant ;

then is qq' a straight line parallel to opp', and the locus sought.
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So, the locus of the equation a^+?/-=r^,

•wherein r is constant, is a circle

whose centre is the origin and

whose radius is r.

The reader may see this from the prin-

ciple of geometry that " in a right triangle

the square of the hypotenuse equals the

sum of the squares of the other two sides."

So, the locus of the equation 'if^px is a parabola whose

axis is the axis of a;, whose vertex is at the origin,

and whose parameter is p ;

and the locus of the equation Q^-=.py is a parabola whose axis

is the axis of y.

The reader will y

recognize these

equations as the

algebraic expres-

sion of the geo-

metric property

of the parabola,

that "the square

of a perpendicu-
lar from any point
of the curve to its axis equals the product of its parameter into

that part of the axis intercepted

between the vertex and the foot of

the perpendicular."

So, the locus of the equation

xy = (? is the rectangular

hyperbola, taken with ref-

erence to its asymptotes
as axes of coordinates.

These figures also represent graph-

ically the functions mx^ mx -f- 6,

x"

p^
—

,
and show how they vary with x,

X
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§ 12. INTEGRATION.

Theor. 19. If there he a variable x, and if fx he a function of
X whose derivative as to x is fx and is continuous; and if the

variable begin loith the value Xq, = a, and take n more successive

values Xi, Xs, •••Xn, =b; and if while a and b stand fast.

n = 00 and Xi
—

Xq, Xg — Xj, ••• each =
;

then the sum of the

series ofproducts {xi-^Xo)f'xo, (xj-xOf'xi, •••(x^-x^_i)f'x„_i,

approaches fb — fa as its limit.

ILLUSTBATITB EXAMPLES.

That the reader may clearly understand the meaning of the

theorem and its proof, and that he may see how this method of

summation was first suggested, and follow the historical order

of investigation, special applications of it to the finding of areas

and volumes are given before the formal proof :

To find the area of the figure included between two given

ordinates, the axis of abscissas, and the parabolic
curve whose equation is a?=pyi

Let the two given ordinates corre- y

spond to the abscissas 0Q,=a,
and OR, = h

; divide qr into n

parts ; let the abscissas of the

n -\-l successive points (in-

cluding Q and r) be Xq^x^^X2^
•
••a;„; and the corresponding
ordinates ^0. 2/1, 2/2,

•••
2/n» and

let n rectangles be formed as in the figure ;

then ••• s, the area sought, is the limit of the sum of 5i, Sg?

^3? **! ^n, the areas of the n rectangles, when n = cx>

and Xi
— Xq,X2 — Xi,-" each = 0, [th. 12, nt.

and ••• Si = 2/o-(»i— iCo) [geom.

=^'^^<^i-^o), [hyp.

,and •.• 3xq^, ^BxqXq^,

x^^
— x^= lim— when Xi— Xq= 0, [§ 5, df . deriv.

•*a
—

•*'0



19. §12.] INTEGRATION. 185

wherein q is some variable that = when ajj— iCo
= 0,

and Si =— Ix,^—Xq^+(Xi-Xo)€i].
op

So ^2 = —
[ojg^
—

Xi^+ (X2
—

aJi) €2] ,

«3 =^ W- ^2^+ (a^S- a'2) €3] ,

and s„ =—
[a;„»- xi.i-\- («„- a;„_i)€„],

3p
wherein ci, eg,

••• each = when n = 00 and ajj— a^o?
*•• ==

;

But •.• 2(a?i— a?o)ci^(a?n— a;o)€^,

wherein c^ is the largest of the €*s,

.*. 2(a;i— aJo)ei==0 when 2s = s,

=— (6^— a^). Q.E.F.

So to find the volume of the solid generated by the same figure

revolving about ox, the tangent at the vertex :

then •.* V, the volume sought, is the limit of the sum of v^^ Vg,

%^ "•
"^ni the volumes of the n cylinders of revolu-

tion generated by the n rectangles when n = cc and

a^i
—

a^o, a^2— a?!, •••each = 0, [th. 12

and '.• Vi = Trt/o^aa— aJo) [geom.

=
5^'^^o'(^i-a;o)

[hyp.

=
57»(S + '')^^-^> [§5,df.deriv.
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and ••• V. =-!L-[(a;/-a'/)+(a;o-a;i)€2],

op-

op

and V —-^^{y^—a^), q.e.f. [as above
5p'

PKOOP OF THE THEOREM.

For •.
• ——^ =f'xo, when iCi— iCo

= 0, [§ 5, df . deriv.
•*'i
—

**i)

wherein cj is some variable that = when x^
— Xq^^ 0,

•••A-/^o =(a^i-aro)-(/a\, + €i).

So fX2-fXi =(Xo-Xi)'(fXi-\-€2),

fXs-fX2 ={Xs-X2)'{f'X2+€s),
...

...^

and /a;„ -/a;„_i = («„- a;„.i) (/'a;„_i + €„) ;

wherein cj, cg,
••• each = 0, when w = oo and a^i— Xq,

••• =0,
••• f^n-fxo ={Xi-Xo)fxo-\ l-K-a;n-i)/a;«-i

H-(jCi- a'o)ciH hK- aJn-i)en. [li- ax. 2

But •.• '$(Xi-'Xo)€i^(x^—Xo)€^,

wherein e^ is the largest of the c's,

and *.• e^
= 0, when n = oc and a^i

—
rt'o,

••• each = 0, [above

.. fb-fa=l\ml(xi-Xo)fxo+'"+{x„-x^_-i)f'x^_{\.Q.^.D.

Note. The theorem may be written in the form :

\\m'tlf'x'mGX=fb—fa, wheninca; = 0,

wherein ^If'x- inc x=f'xQ'{ncxQ-\ f-/' ^n-i • inc a!„_i,

and Xo
=

a, aj„= &, inca;^
=

a;^+i— a;^.
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EXAMPLES OF THE DIRECT APPLICATION OF THE THEOREM.

To find V, the volume of a segment of a sphere of radius r,

whose bounding planes are

distant a, 6 from the centre.

Let CDY be a semicircle of radius r
;

take CD for the axis of x
;

let

AF, BE be two ordinates distant

a, h from the centre o
;
and let

the whole revolve about cd ;

then the area of abef is the limit of the sum of the areas of a

large number of rectangles ;

and V, the volume of the solid generated by abef, is the

limit of the sum of the volumes of the corresponding

cylinders of revolution.

Take Tryp^{Xp+i—Xp), ='^(^— V) (^p+i— ^p)? ^s the type-

term of this series
;

then '.' fx=Tr{r^—x^)^
.'. fx =7r{r^x — ia^),

i.e., V =^[(,^b-ib')-ir'a-ia')^ [v=/6-/a
= 7r{b-a)[r'-i{a^+ab-\-b')2

= i-7rc(n2+r224-4r/),

wherein c is the thickness of the segment, rj, rg, r^ the radii of

its bases and middle section. q.e.f.

So the volume of the hemisphere generated by the quadrant ody
= 7r(/r-/0)=7r(r«-ir^) =f Trr^

And the whole volume of the sphere
=

|-7r?'^- Q.E.F.

Note. If in ^7rc(?*i^-f-r2^-h4r3^), the general expression for

the volume of a spherical segment, r be put for ri, for 7\,

•J-rVS for rg, r for c, the result is the volume of the hemisphere ;

and if be put for ri, for rg, r for rg, 2 r for c, the result is the

volume of the sphere. The results thus found are identical with

those given above.
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So to find II, the height fallen through in a given time by a

body starting from rest, on the assumption that, within

any distance required in practice, the velocity of a fall-

ing body increases uniformly, and hence that the

velocity acquired at any instant is proportional to the

time of falling from rest
; [laws of motion

then V — gt, wherein g is some constant
;
v is the velocity at

the end of t seconds from starting, i.e., the number

of feet the body would fall through in the next

second if its rate did not change during that second.

Let the entire time, t, be divided into n intervals, ending

respectively at <i, ^2?"*^n seconds from starting, and

let ^0
= 0, and ?„ = t

; assume that the velocity during
each intenal of time remains constant at what, under

the laws of motion, it should be at the beginning of

the interval, and let ^i, 7^2,
••• ^n stand for the distances

fallen through in the 1st, 2d, ••• nth intervals,

then ••• hi = Vo(ti—to) =gto(ti—to),

h = Vi(t2- h) = gt^it.- h) ,

.*. H = g'-lim2o^-inc^ wheninci=0 [th. 19,nt.

= g.i{T^-0') [f't==t,ft = if
= ^gT^. Q.E.F.

So to find the ultimate average (i.e. the limit of the quotient

of the sum of a series of terms by their number when

that number becomes infinite) of the successive values

taken hyfx as x increases from the value a to the value b :

Let X take n successive values a, a-\-h, a-j-2h, •••6, i.e., let

a; increase by n— 1 equal increments h from a to 6,

and let fx take the corresponding values fa, f{a + h) ,

/(a + 2 70, '"fh,

then •.• the average of these values is {fa -\ f-/&) : ^,

i.e., Qi'fa-\ Vh-fh) '.{h — a-\-h), \n—l=={h — a) : 7i

.. theirultimateaverage,when7i=0,islim2^^'/flj:(6— a).

[th.l9
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§13. EXAMPLES.

§ 9. PROB. 1.

• ••2. Apply the increment h to x in the following functions
;

find the corresponding increments of the functions,

and thence their derivatives :

1. 0?] x"^'^ x-^\ x-^\ ax + h\ ax^—ho?\ ax-\-hx-^\ ax-^-\-hx^,

—
5
—

>
—

o » o
—

> 5 7) j -.

—
r-5
— •

a x XT Of X XT {x — iy
THEOR. 13.

• ••5. Expand, where necessary, and find the derivatives of:

3. 2ar+3a;4-5; (jk+ I) (a; + 2) ; o?+^ax^+^orx-\-a\

4. x-\-x'^\ {x + x-^+ iy-, {l-x-\-x'Y-{l+ x-x')\

5. A+^Y; «+A+ «
;
A_l_ tY_A + l_J,

\a hj X Of a? \ X mrj \ x xr

6. Of what are the following expressions derivatives as to a; ?

Za?\ a;+2ar^+3a^; ax + h\ x~^
\ ax'—bx^; ax~^—bx~^,

THEOR. 14.

..•9. Find the derivatives of:

7. a;(a;+l); -dx{ax-^b); (2a;4-l) (3aJ + 2) ; (3a; + l)2.

8. fl;(a;+l)(a;+2); (a; + l)2(a; + 2) ; x\x+l); x\x'^d).

9. x{a — 2x){2a + Sx)', (x + ay (x + by ; (x^ay.
10. Of what are the following expressions derivatives as to a; ?

2a;(a;+l)4-ic^; 3(2a;+l) + 2(3a; + 2) ; 3(0.-2+3) + 6 a;^
;

(a;+a)(a; + 6) + (a; + 6)(a; + c) + (a; + c)(a; + a).

THEOR. 15.

• •• 12. Find the derivatives of:

-^ 1. _«_, a;+l, X
,

a; — 1. x-\-a ^
a — a?

,
a;^— aa;+5

x^ x^
^

X
'

aj+l' a;+l' x-\-b\a-\-x x — a

12
^^-^

. ^-px-hq .
x-2 (x-j-2y^ix-iy

a^
'

x^-^px + q' x'^^x + e' lx-2y^{x+iy
13. Of what are the following expressions derivatives as to x?

— 1
.

a; — (a;+l) .
b (c -h dx) — d (a -\- bx) ,

be — ad

ar^
'

x'
'

{c + dxy
'

{c + dx/
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THEORS. 16, 17.

..• 17. Find the derivatives of :

15. (l + ar^)-; {a^-x-^)'i; ^{ax'+2bx-^c) ; f{x^+px-}-q).

• •• 20. By finding the derivative, d^, of the first derivative d\
then the derivative, d^, of d^, and so on, show that :

18. D/(a^) = 6; D,^(iB*)
= 24; D,''(a;")

= w !
; Dj(af) = 3Q0x'.

19. D,"»(x'')
= ri(n—l)(n—2)...(n-m+l)aJ—'*. Find d/ (»-«).

2 //^ . "N «^ nl-a; 2(-l)".n!
20. D,V(^ + ^0= i; D« 7T~= /I , \n+i

'

{a^-{-a')^
l+ a; (l+ xy^'

21. Of what are the following expressions derivatives as to a;?

4:{a-}-ba^y'3bj^; 12 6ar (a + 6a7^) 3; -10a;(l-a^)^.

22. Show that x^-d^x is the derivative of ;
thence find

n-\-l

the expressions whose derivatives, as to x, are :

2x{a^-j-x^y; x^{a^+x^); (ax + b) ^{ax^+2bx-hc);

Dj,x. or— 2a; + 2 x x^

X"' (a^-3ar^+6a;-iy' {a^^ ^)^' {x'^ x')^''

ax-^-b .
a'3? -\-2bx-\-c

§ 10. THEOK. 18.

23. By means of h. c. msrs. find the true value, when a; = 2, of :

(a;2_5a.^(5)
.

(aj2_6a; + 8); {y?-%x-\-2) : (a^-4).

24. So, when a; = 1
, of :

(a;3_3^.2_33._|_3)
.

(^^_^^^_rc_iy^ (x -1) : (x^-1).

25. So, when x = l, of:

(4^2-1) : (32af-l); {6x'+a^-x) : (40:^- 6a^-4a;+3).
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2G. So, when a; = c, of :

(ax--2acx-{-ac^) : {bx^-2bcx+br) ; (a^-(^)^ : (x^-c^) .

27. By means of derivatives find the true value, when a; =1, of ;

^of^^x'-2) :(a^-f 2a^-2a;-l);

(^x'-Saf+2a^+x-l) : {x'-x^-2x-{-2).

28. So, when a; = — 1, of :

(ar^+1) : {x'-\-xr-\-x-\-l) ; (a^+1) : (a;5+4a; + 5).

29. So, when a? = ^, of :

(3a^-13a^4-23a;-21) : (6a;«+a^- 44a; + 21).

30. So, when a; = 2 a, of:

(.^4_ ^^'i_ ^2^2_ ^33. _ 2a^) : (3a;3_ 7ax^-{-Sa^x -2a^).
31. So, when a; = 0, of :

[i-V(i-^0] : [V(H-^)-V(i + ^)]-
32. So, when a; = 1, of :

[(3a;3_2a;cyl_^!-|
.

[-i_a;f] ; [x^^ij^(x-l)^y[x'-l'\^.
33. So, when a; = a, of :

[(a2_a^)^ + (a-a;)*] : [(a3-a^)^ + (a -a^)^] ;

[V(«4- a;)-V(2a;)] : [V(a + 3a^)- 2 V^^] ;

[x- —a- + (a;
—

a) -] : [a^— a-j ; [/a;—/a] : [<^a;— </>«] ;

34. Put a + 7i for », a + 7c for?/, expand and reduce, then let

7i, A; become infinitesimal, and thereby find the true

value, when x = y = a, of :

[(a;-2/)a"+ {y-a)x''-\- {a-x)y^} : [(x-y) (y-a) (a-x)'].

§11.

35. Draw the lines whose equations are :

a; = 3; y = 6; x=0; y—x\ y—2x\ y — 2x-\-'^.

36. Plat the equations :

(a; + 3)2 + 2/2=:l6; a^ + 92/' = 9; 4aj2-/=16.
37. Trace the curve whose equation is a;?/

= 16
;
and show that

it has four infinite branches that continually approach

the axes.
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38. In the equation y=a^—6x^+2x-\-Q give x the values —3,
—

2, —1, 0, 1, 2, 3, 4, 5, in succession; thence find

the corresponding values of y, and plat the equation.

39. Represent graphicall}^ the functions :

3a;-f5; ar^+l; a:2 + 3a; + 2; x'-{-Sx + 2i; a.'2+3a;+3.

40. Plat the functions: 5 ±[9-(x+ 2)2]^; 5 ±[9+ (a?+2)2]^.

41. If Po,(a;o^yo)» i*i»(^»yi) be points on the curve 2/ =/(a;),
show by the properties of similar triangles that the

equation of the chord PqPi is

(y-yo)' (a;-aJo) = (!/i-yo) : i^i-^o)-
Let Pi approach Pq so that a^ = Xq^ t/i

=
2/o? and show that

the equation of the line tangent to the curve at Pq is

y — yo =/'(^) •

(a?
—

a\)) > ^'9"> that the equation of the

tangent, at the point whose abscissa is 2, to the curve

y = 2a? — 3a^ + 3a; — 7 is y — 3 = 15(a;
-

2).

Plat this curve and the tangent.

42. Show that when f'xQ = the tangent at a^o, yo is parallel to

the a;-axis, i.e., that the point Xq, yo is an elboio of the

curve ; and that when the plat off'x crosses the a>axis

the plat of fx has an elbow.

43. Plat the function a;''
— 4a^4-a^4-7a; — 3 and its three de-

rived functions.

§ 12. THEOR. 19.

44. Find the area of the figure bounded by the axis of

abscissas, the curve y = a^-\-x-{-l^ and the ordinates

corresponding to the abscissas 2 and 3
;

find also the

volume of the solid generated by the revolution of this

figure about the axis of x.

45. So for ?/
= (a;H-l)(a; + 2), between the abscissas 1, 3.

46. So for y = x^-\-4:a^-\-2aP-{-S, between the abscissas 1, 2.

47. So for x^-\- ax^-j- a-x^-\- b^y = 0, between the abscissas a, 0.

48. Find the area enclosed by the axis of y^ the lines y=l,
2/
= 0, and the curve x"^ {y^ -\- 5?/ + 4) = (2?/ -+- 5)^.
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49. Find the area of the figure enclosed by the two axes and the111
curve X' -\-y^ z=a^ : and find the volume of the solid

generated by its revolution about either axis.

50. Find the area of the figure enclosed by the curve
^ 5 3

xy^ = y'^ + 2 y'^ + 6 and the lines x = 0, y = 0, y—1.
51. Find the area of the figure cut oflf from the curve

y = (x-\-l){x-\-2) by the axis of x.

52. If the figure enclosed by the curve x^+y^ = a^' and the

axes revolve about either axis, find the volume of the

solid generated.

53. Find the area of the figure cut from the curve ay^= a^ by
the line x = a; and find the volumes of the solids

generated by its revolution about that line
; about the

axis of X
; and about the axis of y.

54. Find the volume of the ring generated by the circle

a^-{-y^=26 revolving about the line x=7.
55. The curve xy = (? revolves about the axis of y. Show that

the volume generated by the infinite branch beginning
at the vertex (c, c) is equal to the volume of the

cj'linder generated by the ordinate of the vertex.

56. Find the ultimate average value of the function 3ic^+5a?— 7

as X varies continuously from 1 to 4.

57. So for the function x^— 3 o:^ 4- 2 £c— 1 between a; = and 3.

58. If the function named in Ex. 57 be platted, show that the

result of that example gives the ultimate average

length of equidistant ordinates between a; = and

x=?>.

59. Find the average ordinate lying between the given ordinates

in Examples 44-47
;
and show that for any figure

with a rectilinear base the product of the average
ordinate by the base is the area.
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Ylll. POWERS AND ROOTS.

§1. FRACTIONAL POWERS.

The words j^oiver^ root, base, exponent, and root-index are

defined in I. § 10. A root-index is always assumed to be a

positive integer ; but an exponent may be any number whatever.

The value of a fractional power is commonl}' ambiguous.

E.g., 100^ = ±10; 9"^ = ±3^.
So, as appears later, ever}- base except has three distinct

cube roots, four distinct fourth roots, and so on. Some of

these roots, however, are neither purely positive nor purely

negative ; they are called imaginaries, or, better, complexes, and

discussed in chap. X.

Different powers of a base are in the same series when they
are integral powers of the same root. An integral power of a

base belongs to all series alike.

E.g., d-\ 9-^ 9«, 9^ 9\ d\ 9^ ...

are the— 2d, —1st, 0th, 1st, 2d, 3d, 4th, ... powers of V^,

i.e., of ~3 and of '^3 : they form the two series

i, -|, 1, -3, 9, -27, 81, ..., powers of "V^,
and i, J, 1, 3, 9, 27,81, •.., powers of ^V^ ;

but the integral powers ^, 1, 9, 81, belong to both series.

When several powers of the same base occur together, they
are assumed to be all taken in the same series.

E.g. , the value of 4~ ^ — 3 • 4^ H- 4^ is either

^_3.+2+(+2)3,
= 21, or-L-3.-2+(-2)^ =-2i

according as 4"^, 4-, 4^ are taken as powers of "•'2 or of ~2
;

butnot :^-3.-2+(+2)3, =:14^,nor-^-3.+2+ (+2)3,
=

1}.

So, -yyda^--^'4:a^=±Sa^:2a = ±a,
butnot 3a-\-2a, nor —3 a — 2 a.

Powers of different bases are like powers if they have the same

exponent.

^'9; V«' V^' V«^; «^ ^^ «^^ 2", 3", 6".
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§2. COMBINATIONS OF COMMENSURABLE POWERS.

1^^ That every commensurable power of a real positive base

has at least one real value is shown from independent consider-

ations in th. 5, which may therefore be read here if preferred.

Theor. 1. Any commensurable poicer of a base Jias the same

value or values whether the exponent be in its lowest terms or not.

Let A;, p\ q be any positive integers ; j9,
= ±p', any integer,

positive or negative ; a, any base
;

kp p

then will every value of a** be a value of a*, and conversely.

For ••• *^A = one of any kq equal factors into which a can be

resolved, [I. §10df.root

and *.• the product of any k of these factors is equal to that

of any other k of them,

.'. all the q partial products so formed are equal, and

each is a value of -^a,

and every single value of *^a is a value of -^(-^a).

So ••• l^{V^)T=L</(-V^)l -[a/CVa)] •••A:g factors

= [^(V^)]*-[^(Va)]*- g factors

=
(Va) •

(V^) •

(-y^)
••• g factors

= A,

.*. every value of -s/{-^a) is a value of ^a. [df. root

i.e., every value of either member is a value of the other.

So •.• a*' = [^(-^a)]^p [I. §10df. fract. pwr.

= ^^L</(-V^)l "^[^(Va)] >f-"kp' times

= ^^LV(^^)Y'^l</(-\/^)Y^"' P' times

= 1^(-</a) ^(Va) ^••. i^'times
p' p

= A * =A%
.'. every value ofeither member is avalue of the other, q.e.d.

Note 1. In general, when either member of an equation

admits more than one value, the sign of equahty asserts that

every value of either member is a value of the other.
p

Note 2. In what follows +A* = the positive value of -^a^.
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PRODUCT OF LIKE TOWERS.

Theor. 2. Every value of the product of like commensiirable

powers of two or more bases is a value of the like power of their

product.

Let A, B, c, ••• be any bases, and a", b", c",
••• like commen-

surable powers of them
;

then will every value of a^-b^'C" ••• be a value of a -b •€•••".

(a) n an integer^ positive or negative. [II. th. 3 cr.l2

(b) n a simple fraction.

For let 71=^, wherein </
is a positive integer, p an integer

either positive or negative ;pi pi pi
then ••• a»=(a«)'', b« = (b9)p, c? = (c5)^,

•••
[df . fract. pwr.

p p p 111
.-. A»-B«-c^--- = (x^y • {B^y • (c^y • "

111
= (a«.b^-c«---)^. [(a)

But •.• (A«.B«.c^-..)'=(A«)'-(Be)«.(c^")*... [(a)
= A'B'C---,111 1

.-. every value of a«'B^- €«••• is a value of (a-b •

c---)? ;

[df . root
p p p 111

.*. every value of A? • B» • c? •••
,
= (a«-b?«c*'«-)^, [above

p
is a value of (a 'B •€•••)«. q.e.d.

Note 1. In the demonstration of case (6) nothing need be
p p

said of the series to which the powers a*?, b?,
•••

belong ;
for the

demonstration holds, and the theorem is true, whichever values

of the roots of a, b, ••• be taken.

E.g., of 42-, 9^ 36^ the values are "8, -27, "216,

whereof the product +8 • +27, or -8- "27, is +216,

and the product -8. +27, or +8- "27, is -216.

Note 2. When the exponent is fractional and some of the

bases are alike or so related that their powers must be in the

same series, the product of the powers may admit fewer values

than the power of the product. [comp. X. th. 7 nt.

E.g., V«- V«- V^'V4^^=+2a&2only,
but V^a^ft^ =±2a62.
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Cor. Every value of the quotient of like commensurable pow-
ers of two bases is a value of the like power of their quotient.

E.g., ^a:^'b = ±^{a:b)', ^a: ^4.a = + l :^4 = %.

PRODUCT OF POWERS OF SAME BASE.

Theor. 3. The product of two or more commensurable poicers

of any same base, in any same series, is that power of the base

whose exponent is the sum of the exponents of the factors.

Let A"*, A**,
••• be any commensurable powers of a base a, in

the same series
;

then will a'^-a"--- = a'" + " + -.

(a) m, n, •••, all integers, icJiether positive or negative.

[II. th.3cr.10

(b) m, n, •••, some or all of them simple fractions.

For let m =^, ?i = -, •••, wherein »,g, r,s, ••• are all integers,
q s

and the denominators g, s,
••• are all positive ;

Y) ct r h
and let k be the I.e. mlt. of g, s, •••, so that - = -, - = -,•••;

q k s k

then •.• a?=a* = (a*)^, a» = a* = (a*)*..-, [th.l,df.fract.pwr.
1

wherein a* preserves throughout the same value, [same series

p r 11
.-. A?.A«--- =(a*)^-(a*)*...

= (Jcy+^+"' [(a)

= A * [df . fract. pwr.

= A* *
,

i.e., a'^-A"-. = A"'
+ " +

"*. Q.E.D.

Cor. 1 . TJie quotient of tivo commensurable powers of any same

base, in any same series, is thatpower of the base whose exponent is

the excess of the exponent of the dividend over that of the divisor.

Cor. 2. Of two or more commensurable powers of any same

base, in any same series, the product or quotient is in the same

series.
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POWER OF A POWER.

Theor. 4. A commensurable power of a commensurable power

of any base equals, or includes among its values, that power of
the base whose exponent is the product of the given exponents.

Let A be any base, and m, n any commensurable numbers ;

then will (a"*)" have every value of a""*.

(a) n a positive integer.

For (a'")'*
= 1- a'"-a'*---, 71 times

. (m + m+ •••, n times)

a"***

(6) n a negative integer.

For ••• — n is then a positive integer,

.*. (a'")'*= 1 : a"*: A"*: • n times

= 1 : (a™ "A*" n times)
= 1 : A'"(-">

= 1 : A"""*

[I. § 10 df . int. pwi'.

[th.3

Q.E.D.

[df. int. pwr.

[II.th.3cr.8

[th.3

Q.E.D. [df . commens. pwr.

(c) n a fraction
-

; p, q integers, q positive,
tn A

For (Af)' [(«)

[df . root

[(«,6)

.-. every value of a* is a value of -^(a"*),
p m m

.'. every value of A*" ?, =a2"^, =(a«)p,
is a value of [VC^*")?*

p

i.e.
,

it is a value of (a"*) *, [df . fract. pwr.

.-. every value of a'"'* is a value of (a'")''. q.e.d.

Cor. 1. If m, nbe commensurable numbers, (a'")° and (a°)™

have at least one value in common, viz., a"°.

CoR. 2. In particular, if b = a~^, then b p has the value a
whether or not it have other values also.

Cou. 3. The reciprocal of any poicer of a base is the like

power of the reciprocal of the base;

[II.th.3cr.8i.e., 1 :A~« = l^A^>i; A«>ic •••i^ times,

= (1:a)-^" or (a-I')-i
= (.-^fi.
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Note. If n be a fraction ^, and q be not prime to m, or to

its numerator if m be a fraction, then (a"*)" may have values

not included among those of a""*.

E.g., (102)2 has not alone the value 103=+1000
;

but also (10^)^= (100)
^ = (100^)3 = (-10)3 = -1000.

So, (^-yjxY^ x^ = +a;2 only ;

but y/x^
=

(a.**)
' =±x^. [comp. X. th. 9 nt.

§3. CONTINUITY OF COMMENSURABLE POWERS.

Theor. 5. If there he a positive base A-j ^'^^J^J
than unity,

then :

1. For every positive commensurable exponent n the power a°

has one positive value +a°<J "'^f? than unity;

2. For every negative commensurable exponent n the power a°

has one positive value +a°^ '^^^ f^ than unity;

3. In either case, a° has but one such value,

1. n positive.

(a) n a positive integer.

For •.• A" = 1 -A'A*-, ?i times,

and •
.

• each of the factors a is positive and ^ ^ 1
?

.-. the product a" is positive and^ ^1. q.e.d. [II.§3ax.l9

(5) n the reciprocal of a x^ositive integer q.

For let ic, a variable, { ,

'

continuously from the value

1 to the value a
;

then •
.

• inc iB« : inc a; = deriv. a;^,
=

qxf^-^, as inc a; =
, [VII. th. 1 7

.'. when inca; is infinitesimal, so is incaj'; [VII.th.2cr.l

i.e., as X passes continuously through all values from 1 to a,

xf^ takes every value between 1 and a^
;

but ••• a', = 1 • A' A"-, g times, ^ ^AwhenA^ ^1,
.*. A is a value between 1 and a^

;

.'. x'^ passes through the value a,

and jJ has the value x, a positive number^ 1. q.e.d.
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(c) n any positive fraction L.

4

For •.• A? has a positive value ^ ^1, [(/>>)

.-. A«, = (a«)', has a positive value ^ ^1. [q.e.d. [(a)

Note. a« is not necessarily commensurable, even when a is

commensurable.

2. n negative.

Let n, the exponent, = — m, wherein m is positive ;

then •.• A™ has a positive value "^a*", ^ ^1^ [(1)

.-. A**,
= 1 : A"*, has a positive value "^a", ^ ^ 1- Q-e.d.

3. But one positive value.
1

For if possible let the root a» have two positive values un-

equally large ;

then the product A, =1.a«-a«--- q' times, has two values

unequally large, [II. §3, ax. 19

which is contrary to the hypothesis ;

1

.*. A« has but one positive value,

.'. the product a*', =1.a*-a«--- p times, has but one

positive value.
p p

So with a"«, = 1 : a?.

Cor. If the- base and exponent be both finite, so is the x>ositive

value of the power.

(a) The exponent an integer, either positive or negative.

For ••• the power is the continuous^
^

,. ,of 1 by a finite

number of finite { ^"l^oP^f
''

[df • int. pwr.

.-. the power is finite. q.e.d. [VII.th.llcr.3

(6) The exponent a fraction.

Let the base a
<( ^ 1

,
and let the exponent n lie between the

integers i and i + 1
;

then •.• n — i and t + 1 — n are positive and commensurable,

.-. A" S A^+^-% both^ ^1; [th.5
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and ••• a'^ = a^^-'.aS a*+i = a* + i-". a% [th.3

. . A ^ ^A,
A ^ ^A ,

i.e., '^A'' lies between a* and a*+^, which are both finite and

positive. [(a)
.•. +A" is finite. q.e.d.

Theor. 6. Of a commensurable {-^ . power of a variable

positive base ivith given exponent,thepositive value is ^ ,
,

.
^

continuous function of the base.

Let A be the variable base, and n, = ± -, the given -j^ ^ J
exponent ;

then :

(a) The larger the base a, the'{ ^,, the power,
1 1

For *.• A = 1- A?-A?-"
5' times,

1

.*. the larger a? is, the larger is a
; [II. § 3 ax. 19

i.e., the larger a is, the larger is a^;
p 1 1

and •
.

•
A!? = 1 • A« • A^ • • •

I? times,
1 p

.*. the larger ai is, the larger is a*
;

p
.*. the larger a is, the larger is a^

;

p p
and the smaller is a"*, = 1 : +a'

;

,p _p

i.e., when A increases, A * increases, but a ^decreases, q.e.d.

(6) Whe7i A passes through every value from to "'"go in order,

"^A° passes through every value from \ j^
. a ^^ order.

For, let B be any positive number
;

then

and

the power B" has a positive value +b», [th. 5
1 1

if A = +B^, +a", = +(+b«)", takes the value b, [th.4

every number b from to "*'go becomes in turn a value

of +A''
;

the larger the base, the ^
arger ^he power, [(a)

when A passtis through every value from to +co in

order, "^a" passes through every value from { + ,

q

in order, i.e., it is continuous. q.e.d.
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Cor. 1. If the base and exponent be both finite^ every injini-

tesimal change in the base gives an infinitesimal change hi the

positive value of the power ^ and conversely.

Cor. 2. If the base approach a limit Aq, the positive value of
the power approaches a limit +Ao°, and conversely.

Theor. 7. Of a variable commensurable power of a constant

positive base larger than unity :

1 . The positive value is an increasing fMiction of the exponent ;

2. Tlie exponent can be so taken that the power shall lie be-

tween any two positive numbers^ however close together.

Let A, >1, be the base ;
and let n\ n" be any two values of

the exponent ?i, such that n'< n"
;
then :

1. "'"A" is a7i increasing function of n.

For •.• +A'''' = +A"'-+A""-''' [th.3
= •"A"' • a positive power of a

= ^A"' • a number greater than 1
, [th. 5 (

1 )

.-. +A''">+A"';

I.e., ^A" increases with w. q.e.d.

2. n can be so taken that +a" shall lie between any positive

numbers b, c, whereof b < c.

1 c
Take a', q any positive integers so great that a'>a, -<— 1;

1 Q B

and let h = —— ;

a'q
1 ^'**

*

1
then •.• (1+-) =1+ a'q f- other positive terms [bin.th.

Q Q
>1+a'

>A,

.-.A* <1 + 1
[th. 6(a)

Q

<'
.'. of the series •..+a-3% +a-2% +a-*, +A^ +a\ -^a'\ +a^\

• •• each term is less than the -th part of the term
B

next before it.
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But this series has terms >b ;

for, if mh be any integer >—"—^

then A'"% =(1H-A=T)'"% >l+m7i(A-l) >b. [bin. th.

And the series has terms < b
;

for, if A"*'* be any term >-.

B

then A"'"''^,
= 1 : a"*'*, is a term < b.

Let A^* be the greatest term of the series less than b
;

then the next term, a^^+^)*, <--b or c, [above
B

i.e., A^^+^^*, a commensurable power of a, lies between b

and c. Q.E.D.

CoR. 1. Of a variable commensurable poiver of a constant

positive base smaller than unity ^
the positive value is a de-

creasing function of the exponent, and can be made to lie between

any two positive numbers.

Let the base be a, =1 : a, wherein a >1 ;
and let 6,= 1 : b,

and c, = 1 : c, be any two positive numbers
;

then *.* +A" increases with the exponent, and takes values be-

tween the positive numbers b, c, [th. 7

and •.• +a" is the reciprocal of +a", [th.4cr.3

.*. +a" decreases as the exponent increases, [II. ax. 18

and takes values between b and c. q.e.d.

Cor. 2. When the base differs sensibly from 0, 1, and oo, and

the exponent is not oo, then every infinitesimal change in the ex-

ponent gives an infinitesimal charige in the positive value of the

power, and conversely.

CoR. 3. Wlien the base differs sensibly from 0, 1, and oo, and

the exponent approaches a limit no, the positive value of the

power approaches a limit +a°o
;
and conversely.
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Note. The principles established in theors. 5, 6, 7 are sum-

marized as follows :

Every commensurable power of a positive base has one and

, . , ... 7 rxi KT i
ot** increasinq

out one real positive value [th. 5] ; -j ^ ,
.

^ continuous

function of the base if the base vary and the exponent be constant

if the exponent vary and the base be constant and
-{ jj ,

than

unity [th. 7, th. 7 cr.l].

WJiether the base or the exponent varies, the commensurable

power takes values [indeed, an infinite number of them] between

any two positive numbers liowever close together [above, th. 7, cr.l] .

When both base and exponent are finite, and the base ^ 1, any

infinitesimal change in either gives an infinitesimal change in the

positive value of the power, and conversely [th. 6 cr.l, th.7 cr. 2] ;

and if either the base or the exponent approach a limit while the

other is constant, so does the positive value of the power, and

conversely [th. 6 cr. 2, th. 7 cr. 3] .

The positive value of the power is finite when the base and the

exponent are finite [th.5 cr.]. This value is
{

^
J.

,
than unity if

the exponent be positive, and { .
.

than unity if the exponent

be negative, when the base is-{ ^,, than unity [th.5].

It appears later [th. 12] that the powers of a constant base

take a continuous series of values when the exponent takes a

continuous series. But when the varying exponent or base is

restricted to commensurable values, then between any two

values taken by the power there lie an infinite number of values

not so taken.
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§4. INCOMMENSURABLE POWERS.

Hitherto no meaning has been given to the symbol a" when
n is incommensurable

;
and any meaning that may now be given

to it should fulfil, if possible, the following conditions :

1 . It should give a single definite positive value to the symbol
A" when A has a given positive value and n is incommensurable.

2. It should not conflict with any use that the symbol a" has

when n is commensurable.

3. It should preserve all the fundamental properties that

the symbol a** has when n is commensurable : in particular,

theorems 2, 3, 4 should be true for all real exponents whatever.

The following theorem lays a foundation for the definition :

Theor. 8. If there be a constant positive base not 7ior 1

nor oc, and two variable commensurable exponents, one increas-

ing and the other decreasing toward a common incommensurable

limit not go, then :

1 . The positive values ofthe two variable commensurable powers
have a common limit, which lies between them and is not nor qo .

2. This common limit depends upo7i the value of the base, and

of the cow.mon limit of the exponents, but not upon the law by

which either exponent approaches its limit.

3. This common limit is not a commensurable power of the base.

Let A be any constant positive base not nor 1 nor qo
;

let

X, y be any variable commensurable exponents, x increasing and

y decreasing toward a common incommensurable limit n not

infinite ;
and let x\ y' stand respectively for a particular series

of values of x, y that approach n as their common limit, and so

with x", y'\ with a;'", ?/'", •••, then:

1. +A^', ^A^' have a common limit that lies between them and

is not nor co.

For •.* the exponents x', y' each = n, their common limit, [hyp.

.'. x', y' come to differ from each other by less than any

assigned number,

.*. +A*',+A^' come to differ from each other by less than

any assigned number
; [th. 7 cr. 2
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and •.• x'<y' always, and x' increases while y' decreases,

.-. ^A"^ <-A>' always, and ^a" ^ ™;;^ while ^a-'

, decreases, ^ , >j [th.7(l), th.Tcr.l
'

increases,
' < •- ^ ^'

.'. +A'', "'"A''' approach a common limit that lies between

them, and therefore is not nor oo. q.e.d. [Vll.th.l

2. The variable powers +a*', ^a^', +a''", '^a^",
••• have the same

common limit.

For the variable powers "'"a''", ^a"' have a common limit, the

same as the limit of '•"a"',

i.e., the same as the common limit of '•'a''', "^a"'.

So the variable powers '•'a''", ^a"
"

have a common limit, the

same as the limit of +a*", +a^'
;
and so on.

3. This common limit of "'"a'', +a^ is not a commensurable

power of A.

For, if possible, let this limit be some commensurable power,"*"a*";

then is the commensurable exponent m the common limit of the

variable commensurable exponents cc, y, [th.7 cr.3 cnv.

which is contrary to the hypothesis ;

.*. this supposition fails, and it is only left that the com-

mon limit of "'"A'', "^a", •••be not a commensurable

power of A. Q.E.D.
DEFINITION.

If there be two variable commensurable powers of a given

base, the one increasing and the other decreasing, and such that

their variable exponents have a common incommensurable limit

that lies between them, then the symbol formed by writing the

base with this limit for exponent stands for the common limit of

the positive values of the variable powers and is an incommen'

surable j)ower pf the base.

That this definition satisfies the first two of the conditions

stated above is evident from theor. 7
;
and that it satisfies the

third condition appears from the theorems that follow.

Note. It appears later that a** may have all the limiting

values of a*, a", i.e., every value of a* = some value of a**
;
but

only the positive limiting values are considered here.
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§5. COMBINATIONS OF POWERS IN GENERAL.

PRODUCT OF LIKE POWERS.

Theor. 9. Every value of the product of like powers of two

or more bases is a value of the like power of their product.

Let n be any number and a, b, c,
••• be any bases

;

then is every value of a'* • b" • c" • • • a value of a-E'C'"".

(a, b) n commensurable. [th. 2

(c) n incommensurable.

For let a; be a commensurable variable whose limit is n
;

then •.• A* = A'', b*=b", c'= = c", •••, [df. incom. pwr.

and

A^^.B^-C"..
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[VIU.

POWER OF A POWER.

Theor. 11. A power of a power of any base equals^ or in-

cludes among its values, that power of the base whose exponent is

the product of the given exponents.

Let ?n, n be any numbers, and a any base ;

then will (a™)" have every value of a"****.

(a, 6, c) m^ n commensurables. [th.4

{d) m, or n, or both, incommensurables.

For let X, y be commensurable variables whose limits are m, n :

then a*=a'*, [df . incom. pVr.
i.e. , every value of a' = some value of a*", [nt. to df . inc. pwr.

.-. (a')* = (a'")'' as x = m\
but (a'")>'=(a'")" as 2^

=
7J, [df.

.*. (a')''
=

(a'")*' as x = m and y = n;

and ••• A" =A."*", [xy = mn,
and ••• (a')" equals, or includes among its values, a*^,

.'. (a*")" equals, or includes among its values, a"*", q.e.d.

So, when only one exponent,m or n, is incommensurable, q.e.d.

Cor. Wliatever the values of the exponents m, n, the powers

(a")° and (a°)" have at least one value in comynon, viz., a'"".

Note. Most of §§2, 5, with some obvious results, may be

summarized thus :

Tlie values of any commensurable power a"' depend upon a
and the value, not the form, ofn' ;

so with any incommensurable

power A°, = lim a°' as n = n'.

Any product or quotient of like powers, whether in one series or

not, is the likepower of the product or quotient of the bases; except
that if the bases be not independent, the power of the product may,
though rarely, have more values than the product of the powers.

Any product or quotient ofpowers of one base, in one series, is

that power whose exponent is the sum or difference of the given

exp>onents, and is in the same series.

Any power of a power is that power of the ba^e whose exponent
m p

is the product of the given exponents; except that (a^)^ may,
mp

though rarely, have more values than a^, ifq be not prime to m.
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§6. CONTINUITY OF POWERS IN GENERAL.

Lemma. The positive value ofany-l _^ ^- power of a post-

tive base:

1. Is'{ ^^"^j
than unity if the base be larger than unity.

2. Is-{ .
,

than unity if the base be smaller than unity,

I. Let A, > 1, be an}' positive base, and n any^
posi lye

laro-er negative

exponent; then is the positive value of a"^ *,,
,
than I.

(a) n commensurable. [th. 5

(6) n incommensurable.

Let ?i', w"be an}' two commensurable variables, both {
^^^^

^7^'
negative,

approaching n as their common limit in such wise that

always n'<»i<n" :

then •.• A >1 and n\ n" are both { ^^^^^^ [hyp.

.*. of A"', A"", the positive values both ^ ^I ; [(a)

and •.• the positive value of A" lies between them, [th. 8,df.

.' the positive value of a" ^ ^ 1 . q.e.d.

2. LetA<l,
andlet»be^j;°^^«[4=^

then •.• ->1,A

.-. ofA% =(i)'",

the positive value ^ ^ 1 for -n^ negative, rj.^ ' > '

positive,
-

n I positive.
I.e., for n< ^

.. q.e.d.' '

negative.
^

CoR. If A''=l, then either a = 1 or n = 0.

For if neither a = I nor n = 0,

then is a** larger or smaller than unity,

which is contrary to the hypothesis ;

.. either a = I or n = 0. q.e.d.
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Theor. 12. If tliere he a variable positive base a, and a

constant -{^ .. exponent n, then:

1 . To each value of the base there corresponds one and but one

positive value of the power; -{ ^^J^^^^^^^^^^^^ function of the base.

2. To each positive value of the power there con-esponds one

and but one positive value of the base; -l ^^^^^^^^^^"9' function^ '' ^ ' a decreasing
^

of the x)ov:er.

3. TJie positive values of the power and of the base are con-

tinuous functions of each other,

1. (a) n commensurable. [th.5,6

(6) n incommensurable.

For let A** be the limit of a series of commensurable powers of a
;

then *.• eachof these powers has one and but one positive value,

.*. a" has one and but one positive value. q.e.d.

So, let a', a" be any two values of a, whereof a'< a" :

then ••• a": a'>1,

.•.(a":a')"^ ^1; [lem.

.-. a"% =(a":a')'^-a'«, { ^a'",

e.e., the larger the base, the ^ 1-|- ^
the { "^^^ power.

Q.E.D.
2. Conversely :

••• a = (a'')",

.'. to each positive value of a" there corresponds one and
1 , ... ^ e (

an increasina; /?but one positive value of a
; ^ -,

.
® func-^ ' ' a decreasing

tion of A". Q.E.D. [1

3. Let A, always increasing, pass in order through every

positive value from to +co :

v. „
,
an increasing # +• « n

then •.* A", s 1
•

=* function of A, \1' ' a decreasing
' L

takes in order every value

fromO% =^ 0,tooo% =
^ ^, [2

.*. A" is a continuous function of a. q.e.d. [df.

So A, =(a")", is a continuous function of a'', q.e.d.



§6.] CONTINUITY OF POWERS IN GENERAL. 211

Theor. 13. If there he a constant positive base a<{
^^9

J"

than unity ^
and a variable exponent n

;
theii :

1. To each value of the exponent there corresponds one and

but one positive value of the power ; {
^^(^ecreasiv/^^*^^^^^*^^^

^^

the exponent.

2. To each positive value of the power there corresponds one

and but one value of the exponent; ^ „ ^ .^^
• function of

the power,

3. The exponent and the positive value of the power are con-

tinuous functions of each other.

1. For, when the base and exponent are given, there is one and

but one positive value of the power, q.e.d. [th.l2. 1

And this value is ^ , .

j* function of the exponent ;

for let Til, 912 be any values of n whereof Wg > % 5

then •.• A"2 = A"2-«i.A"i, [th. 10

and •.* of a"2-"i the positive value
<( ^ 1, [lemma; ng—ni>0

.-.of a"! the positive value \ ^ that of aPu q.e.d. [II. ax.16

2. (a) To each positive value b of a" there corresponds one

value of n.

For let b', b" be any positive variables such that always

b'^ ^b^ ^b", and approaching b as their common

limit
;
and let variable commensurable exponents

9i', n" be so taken that always the positive value of

A"' shall lie between b' and b, and the positive value

of A""shall lie between b and b" : [th. 7(2), cr.l

then ••• of the variable commensurable powers a"', a**" one in-

creases and the other decreases toward b as their

common limit, [t^JP*

and the exponents n', ?i" have a common limit n that lies

between them, [th.7 cr. 3 cnv.

.'. the value of this common limit is a value of the expo-
nent n corresponding to the value b of the power a**.

Q.E.D. [df. incom. pwr.
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(b) To each positive value b of a° there corresponds hut one

value of n.

For if A"*, A" each = B,

then •.* A"*~'' = A"*: a" = b: B = 1, [th.lOcr.

,.. m — 71 = 0. [cr. tolem. th. 12

.. m =n. Q.E.D.

(c) The exponent is ^
^""^g^rea^^^^^

function of the positive

value of the power.

For this is equivalent to the statement, already proved, that

^. .^. , - ., .
,
an increasing

the positive value of the power is^ ^ decreasing

function of the exponent. [1

3. For to every vahie of the exponent there corresponds

one and but one positive vahie of the power, and

conversely; [1,2

and *.* as the exponent increases the positive value of the

, alwavs increases, . . no
P^^^^-i

always decreases,
'"''^ ^o-^versely ; [1,2

.*. as the exponent passes in order through all values

from ~oo to +00, the positive value of the power

passes in order through all values from { ^ to
'

and conversel}', as the power passes from
<| ^ ,

^'
the

exponent passes through all values from ~oo to +go
;

and ••• the power is the limit of a corresponding commensura-

ble power that changes infinitesimally when the ex-

ponent changes infinitesimally, and conversely,

.. every infinitesimal change in either the exponent or the

power gives an infinitesimal change in the other,

.*. both exponent and power are continuous functions of

each other. q.e.d. [df. contin. func.
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§7. DERIVATIVES OF POWERS.

DERIVATIVE OF A POWER OF A VARIABLE BASE.

Theor. 14. The derivative as to any variable base of a power

of that base is the product of the given exponent into a power of
the base whose exponent is a unit less than the given exponent.

Let X be any variable and n any number
;

then will d^x" = n • a;""^

(a, 6, c) n commensurable. [VII. th. 17

(d) n incommensurable.

For let ?i' be a commensurable variable independent of x and

such that n' = n, and let x take any increment h
;

then •.• af', a?" take the increments {x-{-h)'''
—

x"', (a^+7i)"— x"",

and *.• a;**' = a;'*, (a;-|-7i)'*'
= (aj+Zi)", as ?^'= n, [df. incom.pwr.

.*. (« + /i)"'
— .T"' =

(aj + Zi)**
— a;"* as n' = n, whatever h

maybe, [VII. th. 7

i.e., inca;"' = inca;"

, inca;'*' . incaj'* / • i n •

and =
,

as ?i' = ?i, however small mc a;,

inc X inc x

... lim^^^ = lira^-?^^ as n'^n and inca; = 0,
inc a; inc a;

i.e., D^x""' =D^a5". [df.deriv.

But •.• D,V =n''X^'-\ [VII. th. 17

and •.* w'-aj'*'-^ = ?i-a;"-^ as n' = n, [VII. th. 8

.-. D^«" =n-a;"-^ q.e.d. [VII. th.Gcr.

DERIVATIVE OF A VARIABLE POWER.

Theor. 15. The derivative as to any variable of that poiver

of a base whose exponent is the variable, is the quotient of the

given power by a constant whose value depends upon the base

alone.

Let A be any base, m^ a certain function of that base, x any
variable ;

then will d^ a'^ = a'' : m^.

For let X take any increment h
;

then •.• a^+'*-a^=a^.(a'^-1), [th.lO
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A*+*-A' , A*-l

.'. D,A* =A''-lim—
;
— when7i = 0.
h

But lim^^^= ^*^^*~^^ when/i = 0, [VIL th. 18
h Dji

= DjA* when 7i = 0,

an expression free from x and a function of a only ;

and •.' a* has a single value for any one value of 7i, [th.l3(l)
A*— 1

,*. has a single value,
h

and lim
, when^=0, has a single value, dependent

h
on A alone.

Put — = lim—^^—
,
when h = 0,

Ma h

then D,A'= A* : m^. q.e.d.

Cor. Ifebe such a number that Me = 1, then Tt^e^ = e^.

Note. The function m^ is called the modulus of that system
of logarithms whose base is a

;
its value is found by methods

in [XII. pr. 11]. The base e is the base of the Napierian system
of logarithms.

DERIVATIVE OF A LOGARITHM.

Theor. 16. TJie derivative as to any variable of a logarithm

of that variable is the quotient of the modulus of the system by

the variable.

Let X be any variable, a the base, and m^ the modulus of the

system ;

then will D^log^cc = m^ : x.

For put y = logAa;;

then '.' X =A% [I. §11 df. log

.-. Dy.T
=

Dj,A''
= A": Ma. [th. 15

But *.* D^2/= 1 • ^y^
= Ma : A%

.*. Djloga; = M^: a;. q.e.d.

Cor. DxZo^eX= 1 : x.
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§8. RADICALS.

A radical is an indicated root of a number. There may be a

coefficient ;
and then the whole expression is called a radical,

and the indicated root is the radical factor.

A radical is
<|

.
,

. , if the root ^
^^^

, be found and
' irrational ' cannot

exactly expressed in commensurable real numbers [I. §1], or

in rational literal expressions [I. § 12"|. Its value is <( ^.^^ .^ •- -^ '

imaginary
.- .,

,
do not involve .. . ^

if it ^
.

J
the even root of a negative.

E.g., -(/256, ^8, ^-8, ^a^ ^ (a^ ^ 2 ab -\- b"")
are radi-

cals that have the rational values

-2, 2, -2, a, ±(a + &),

besides certain irrational values discussed later.

But ^x, Va^ -^a*, ^a-a''^, f(a^ + 6^)^ are irrational,

and V-1' V-«'' </-2a^ |a.(-a)^ |(a + &^-l)t
are iraaginaries ;

the first two of them commensu-

rable, and the others not.

An expression that contains a radical is a radical expression.

A radical expression that cannot be freed from roots is an

irrational expression, or surd [I. § 12].

An equation that contains surds is rationalized when it is re-

placed by an equivalent equation free from surds.

E.g., the equation x=z ^2, i.e., x= ^2 or ^2,
when rationalized, becomes a^ = 2.

Roots of rational bases, and integral powers of such roots,

with rational coefficients, if any, are simple radicals
;
and a radi-

cal is in its simplest form when its coefficient is real and entire,

its exponent positive and less than unity, its root-index the

smallest possible, and its base a real and entire expression con-

taining no factor to a power whose degree equals or exceeds

the root-index.

If a simple radical be surd, it is a simple surd.

The degree of a simple radical is the value of its root-index.
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A simple radical is quadratic^ cubic, quartic or biquadratic, •••

when the root-index is 2, 3, 4, •••.

E.g., |(a2-f^>2)i, 3a62.^(a2-6c^), a^.a^, </-3,
are simple quadratic, cubic, and quartic surds in

their simplest forms.

But ^V«'^ </«'» VS. V-8, f(a2c2 + 62^2)^^ ^_5,
are simple radicals not in their simplest forms

;
for

they may be severally reduced to :

"^a^a, a^a, 2^2, 2V~2, ^c- {a" -^W)^,

li-^245, = 11.2451

And V[2-v/(3+</4)], (a^+^^')% {a^-b^-iy,
are complex radicals or surds.

Two radicals are like, or similar, if they have the same radical

factor \ { ^ J.7 if they •{ .be made like by'
'

non-conformable
^ ' cannot ^

transformation.

E.g., 3a^ -b^a-, 2x' {a" -^W)^, -4?/ .

(a^ + ft^)^,

8 (a
—

?/)
• {a? + &-) ^, are like radicals,

and V^S' V^2» V^S' ^^® conformable.

The sum of two non-conformable simple surds, or of a rational

expression and a simple surd, is a binomial surd; the sum of

three non-conformable simple surds, or of two such surds and a

rational expression, is a trinomial surd; and so on.

Two quadratic binomial surds are conjugate if they differ only

in the sign of one teim.

E.g., a +V^ a-V^; 10^ + 3, 10^-3;

V-'^' + V(2/ + ^)5 V^-V(y + 2;).

Two surds are complementary if their product be rational.

E.g., a*, a*; ffl, 5"^ V(«' + 6'), ^/{a' + b')',

a+V^' a— V^5 (^-\-b-y/—\, a — b-y/—l.

So, any two conjugate binomial surds are complementary.

E.g., a-\-^b,a-^b', 2 + 3V1, 2-3V1-
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Theor. 17. If two simple surds in their simplest form he

equals their coefficients are equal and their radical parts are equal.

Let a ^A, h y\^ be equal simple surds in their simplest form ;

then will a = &, a = 3, m^n.

For let m =fp^ n =fq,

wherein /is the h.c.msr. o/m, n, and j5 is prime to q ;

then •.• a.^A =b'^B, [hyp.

.-. a^^.A =6/^.(^b)^ [II.ax.6

= b^^'( -^bY ; [df , fract. pwr. ,
th. 1

.-. a^^A:6^^ = (^B)^
a true equation, but true only when (-^bY is rational,

i.e., when p = q and m = n; q.e.d.

.-. a:6= V(R: a), [th.2 cr. 1

a true equation, but true only when ^(b : a) is rational,

i.e., when a = b and a = b. q.e.d.

Cor. 1. Two non-conformable surds cannot be equal.

CoR. 2. The product or quotient of two \ ^ t 7^ ^ ./ J

non-conformable
,

-,
.. 1 •

)
rational.

simple quadratic surds is
-{

-.

E.g., ^C) is conformable with -y^f but not with -^5,

and V(^'t)' V(^ • J)' V(f • ^) ^^® *^® rationals

±2, ±3, ±i,

but y'(6-5), ^^(6:5), -y/ (5 ; J), etc., are surds.

Cor. 3. If the continued product or quotient of two or more

simple quadratic surds be-{ .
'

theri the continued product

or quotient of any of them, and the continued product or quotient

of the rest of them, are {
^

^
*

,,
-' J > \

non-conformable.

E.g., V2-V3-V6 = 6; V^ • V^ * V^ = V^O,
and V(2-3), V^ 5 V(2 - 3), V^ 5

-• ^^'^ conformable ;

but -^(2 '3), -y/5 ; -y/(2 : 3),-y/5 ;
••• are non-conformable.
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Theor. 18. Tlie sum of a finite number of simple non-con-

formable surds cannot be rational.

Let Oi^Ai, a2^A2, ••• CThV^' =
</'»!' ^^2, ••• V^n, ^G any

simple non-conformable «urds
;
and let c, as well as

«i) A-i, Bi,
•••

a^,. A„, B„, be rational:

then the relation -^Bi + V^2 H- ••• + V^» == c is impossible.

(a) One swrd, c ^ ;
or two surds, c =

;

i.e., -^Bi
= c is impossible, q.e.d. [df. surd

and -^Bi -f ^B2 = is impossible. q.e.d. [th.l7 cr.l

(b) Two quadratic surds.

If possible, let V^i + V^-' = ^>

then Bi H- 2^Bi 62 + 62 = c^

.-. 2 Vbi62=c- — Bi
—

B2,

i.e., a surd equals a rational number, [th.l7cr.2

which is impossible ; [df. surd

.-. ^Bi-\-^B2=^C. Q.E.D.

(c) TJiree quadratic surds.

If possible, let -y/^i + VB2 + V^s = ^ 5

then •.• Vb2 + Vi^3
= c— V^i' l^yV-

.-. B2 + 2VB2B3+B3 = C- — 2cVBi + Bi,

.-. 2cVbi + 2V32B3 = C^ -f Bi
—

B2
—

B3.

So, 2cVb2 + 2Vb3Bi = c2 + B2
—

B3
—

Bi;

2 cVB3 + 2VB1B2 = c^+ B3
—

Bi
—

B2 ;

i.e., the sum of two non-conformable surds is rational,

which is impossible ; [(6)

or else -^Bi is conformable to VB2B3, V^a to VB3B1, VB^to VB1B2?

and c^+Bj— Bo— B3 = C-+ B2—B3— Bi = 0^+63— Bi— B2 = 0,

whence Bi = B2 = B3,

and Vbi ± a/bi ± Vbi = c,

which is also impossible ; [(a)

.-. VBi+V^2+ V^ST^C- Q.E.D.
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(d) Any number n of quadratic surds, c = 0.

1. The assumed surd equations

Vbi+ v^2+Vb3= 0, Vi5i+ Vi^2+V%+ V^4= 0, ...,

VBi+VI52+VB3H h V»n=
may be reduced to the equivalent surd equations

Kg =83^^2153, R4 = S4V^3B4? --"J Rn=SnVl^n-lBn5
and to the rational equations

T3=0, T4 = 0, ..., T„ = 0,

wherein R3, S3, T3 ai^e rational functions of Bi, B2, Bg ;

R4, S4,T4, 0/ Bi, .•.,B4; ...
; ^,8n^T^, of Bi,"'B^.

For if Vbi + \/^2 + V^3 = 0,

theu •.• V^^i = — V^2 — V^3»

.-. Bi
—

B2
— B3=2 VB2B3J

i.e., K3= S3-y/B2B3j q.e.d.

and (bi
—

B2
—

B3)^
— 4B2B3 = 0,

i.e., T3 = 0. Q.E.D.

So, in the last two equations replace -y/B^ by y'Bg + y'B4 ;

then •.• [bi
—

B2
— (VB3+ Vb4)^^ — 4b2(Vb3 + Vb4)^ = 0,

.-. 2Bi2_22BiB2 + 8B3B4 = 4(Bi + B2-B3-B4)VB3B4,

i.e., R4 = S4V^3^45 Q.E.D.

and R4^
—

84^6364 = 0,

i.e., T4=0. Q.E.D.

So, if the law holds true for 7c surds, it holds true for A;+ 1 surds.

Fot in the equation T;fc= replace ^B;^ by ^b„ + Vb*+h

i.e., replace B;^ by b, + b,+i + 2 Vb^^b.+i ;

then •.• T;^
= becomes R;t+i

=
S;t+i ^B^B;t^.i, q.e.d.

.*• ^"k+l
— S t^iB^Bj^l = (J,

i.e., T;i.^.i
= 0. Q.E.D.

But •.• the law holds true for 3 surds and for 4 surds,

.'.it holds true for 5 surds, for 6 surds, ... for w surds.

Q.E.D.
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2. The assumed surd equations

Rg = S3 VB2 B3, R4 = S4 V^3 B4^
• • • Rn = Sn V^n-l Bq

are a?Z impossible.

For *.* V^i? V^a? V^s? *•• V^n are non-confonnable surds,

.-. VB2B3, V^sB**
••• VBn-iB« are surds

; [th.l7 cr. 2

.-. in each of these assumed equations a rational number

stands equal to a surd, which is impossible, [df. surd

or else r„, r„', Rn", •••, s«, s„', sj', .••, all = 0,

wherein r„', •••are what r^,s„become when Bi,--- B„are permuted;

e.g. , S4, 84', S4" are Bi + Bg
—

B3
—

B4, b^ 4- B3
—

B2
—

B4,

Bj + B4 B2 63!

and if R^, R„', Rn", •••» s„, s„', s„",
••• all = 0,

then Bi = B2= ••• = B„,

and Vbi»
• * •

"v/Bn are conformable, which is impossible, [hyp.

.*. VBi+ VB2+VB3t^0, VBi+VB24-VB3+VB4=^0,-.-,

VBi+ VBgH h VBn=^0. Q.E.D.

(e) Any number of quadratic surds^ c =?t: 0.

Take V^n+i a simple surd, andDi= Bi-d„+i : c^ • • • d„=b„-d„+i : c^;

then •.• Vi>i + --- + Vi>«=?^ V»«+i» [W
.-. VbiH f-VBn=?^c. Q.E.D. [mult, by (c : V»n+i)

(/) Any number n, of surds not all quadratic, c = 0.

1. TJie assumed surd equations

^Bi + VB2 + VB3 = 0, VBi+ VB2+ VB3+ ^B4 = 0,

VBi + ^B2 + VB3+ - H- >/Bn = 0,

wherein each simple surd is in its lowest terms, may be reduced

respectively to the equivalent surd equations

R3=S3«V3, R4=S4'V4, •••, Rq = Sq
• Vq,

and to the equivalent rational equations

Ts=0, T4=0, ..., Tn=0,
wherein R3, 83,73 ai^e rational functions of Bi, B2, B3 ;

•••
;

R45 S4, T4, 0/ Bj, •••, B4 ; •••, Rn) Sq, Tq, 0/ Bj, •••, Bq.
1 1

and V3
= the surd B2

"^ •
Bg', = ^b^'^'^z^' ,

1 1

V4
= the surd Bg

'^
• 84% =

-Vbs""
"

64'"",
• • •

,

and h =l.c. mlt. 0/ q, r
; q', r' = the integers h : r, h : q ;

k =l.c. mlt. 0/ r, s
; r", s"= the integers k : s, k : r; ....
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For in the assumed surd equation -^Bj + ^Bg = 0, and in the

equivalent rational equation b^' = ± Bg^, replace Bj

then Bi' = ±B/(l+V3)^S
•

.-. B/= ± B/[l+ i)gY3+
^^'^^^

~
^^

V3^ + ...]' [bin.th.

But this equation can contain not more than h—1 surds
;

for if Vg*, V3*+\ V3*+^, •••be present they are conformable

to V3°, Ys\ VsS •••;

.*. the equation, reversed, reduces to the form

V3'-' + AiV3*-2 + A2V3*-«+...+A;,_2-V3 + A;,_l = 0,

wherein Aj, Ag, A3,
••• Aa_i are rational.

Letx = V3*-iH f-Aft+i; w = V3*-B2-'"'b3'', = 0. [df.Va

Divide w by x : the remainder y has no power of Vg above y/'^.

So, divide x by y : the rem'der z has no pwr. of V3 above Vs*"^;
• • •

;

and •.* -y''b2~'"b3'' is a simple surd in its simplest form,

.-. V3*— Bg^'^'Bg'', or w, has no rational factor, [df. sim. form

.*. w, X have no rational common factor
;

.'. the divisions go on till a remainder is reached having

only the first power of V3 ;
and then, one free from V3.

Let R3— S3 V3, T3= these remainders,wherein Kg, S3, Tgare rational;

then *.• w = 0, x = 0, .•. each successive remainder is 0,

i.e., R3— S3V3=0, T3 = 0. Q.E.D.

So, in the assumed surd equation V^i + -^^Ba + {/B3 = ,
and

the equivalent rational equation T3 = 0, replace B3 by

(Vb3+Vb4)% =B3(14-V4)^

then the surd equation -^Bi+ -^Bg+ ^^3+ VB4= is equiva-

lent to an equation x'= with no surds but V4,
• • • v/"^.

Let w' = v/ — Bg"*"^ B/" ;
and divide w' by x', x' by y',

•••
;

then the final remainders give R4— S4V4= 0, t^= 0. q.e.d.

So for any number of surds. q.e.d.

2. The equations R3= SgVg, R4 = S4V4,
••• are all impossible.

For Kg, R4,
••• are rational, and S3V3, S4V4,

••• are surds.
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{g) Any number of surds not all quadratic^ c ^^ 0.

For, if possible, let ^Bj -f -^Bo -\ \- ^b„ = c
;
and multiply

by "x/b^^i, any surd non-conformable to the others
;

then ^B„+i .

-^Bi + — + ^/B„+i . S/B„
-

^B„+i . c =
,

wherein each term may reduce to a simple surd.

But this last equation is impossible ; [(/)
.*. the given equation is impossible.

Note. From principles developed in X., XIII., it would

appear that t„, with perhaps a numerical coefficient, is the con-

tinued product of some or all of the pqr • • • v different values

of the polynomial ^Bi -\ h V^» g^* ^y combining each of the

p values of ^Bj with each of the q values of -^Bg, •••.

E.g. , if V^i + V^2 + V^3—^ ^^ assumed true,

then T3
=

(V Bi + V^z + V^s) •

( V^i + V^a + V^s)

•(VBl+VB2+VB3)-(VBl+VB2+VB3)=0.[(d)
CoR. 1. If two irreducible polynomial surds be equal, each

simple surd in one j)olynomial equals a simple surd in the other

polynomial; and the rational terms, if any, are equal.

CoR. 2. A simple surd cannot be the sum of a rational number

and a simple surd, nor of two simple surds. [(6, d)

CoR. 3. If A, B, a, b, a', b',
••• be rational; ^c a quadratic

surd ; m, n integers; and f any rational function with no irra-

tional coefficients, then :

(a) TTTien A-f bVc= (a+bVc)
^ ^(a'+b'Vc),

then A — b-y/c= (a
— b^c) i X (^'~^'•^/<^)•

(&) WJien A -\-By/c = F (sL-\-h^c, a'-f b'Vc» '"),

then A — B-y/c = F(a — b-^c, a'— b'^c, •••).

m

(c) TTTie?! A-f-B-^c= (a4-bVc)°j
m

then A — By'c= (a
—
b^c)°.

The reader may prove (a) by performing the indicated opera-

tions ; (6) by means of (a) ;
and (c) by the binomial theorem,

first raising each member to the nth power.
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§ 9. OPERATIONS ON EADICALS.

PrOB. 1. To REDUCE A RADICAL TO ITS SIMPLEST FORM.

Resolte the number whose root is sought into two factors,

whereof one is the highest possible perfect p)ower of the same

degree as the radical^ and the other is an entire number ; ivrite

the root of the first-named factor as a coefficient before the indi-

cated root of the other. [ths. 2, 9; 3, 10; 4, 11

E.g., -^48a3&4=^(8a36-^66)-.. = 2a5^6 6.

So, -;y(a"6'"
—

a'*c^)= -;;/[a'*.(6'"
—

c^)] = a-;y(&'"
—

c^).

Prob. 2. Inversely, to free a radical from coefficients.

Raise the coefficient to a power whose exponent is the root-

index of the radical; multiply this power by the expression under

the radical sign, and put the same radical sign over the product.

E.g., 2a6^66=^(8a-^63.66)=^48a^6^

So, a-yC^"*
— c^)= V[^*"*(^"*

—
c'')]= y{oI'h"'

—
or'G'')'

Prob. 3. To reduce radicals to the same degree.

Write the radicals as fractional powers; reduce the fractional

eocponents to equivalent fractions having a common denominator,

restore the radical signs using the common denominator as the

common root-index and the new numerators as exponents, [th. 1

E.g., ax,-^by,^{b-\-c)==ax, (by)^, (b + c)^

= (ax)^^, (by)^\ (b + c)
^^

= ^(ax)"", ^{byy\ "^{b+ cy.

Prob. 4. To add (or subtract) radicals.

Reduce the radicals to their simplest form ; add {or subtract)

like radicals by prefixing the sum {or difference) of their coeffi-

cients to the common radical factor; write unlike radicals in any
convenient order. [II. prs. 1

,
2

E.g., 3V8 + 5V2-10V32 = 6V2 + 5V2-40V2
= -29V2.

So, a^b + a'-^b^
- a^ ^b' = a^b -\-d'b-^b-a^b'' -^b

= {a-\-a'b-a^b')^b.
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PROB. 5. To MULTIPLY (OR DIVIDE) RADICALS.

Reduce the radicals to the same degree; to the product {or

quotient) of the coefficients annex the product {or quotient) of the

radicals. [ths.2*,9 ; 3, 10

E.g., 3V8-5V2--10V32 = -3.5.10.V(S-2-32)
= - 150 . V512 = - 2400 . V2.

So, ab^-a^b^ : a^b~^ = a^+2-3 . ftH I + 1 ^ 54^

PrOB. 6. To GET A POWER (OR ROOT) OF A RADICAL.

Multiply the exponent of the given radical by the exponent of
the power sought. [th. 4,11

E.g., (3.8^)3 =27.8' =432.2^ = 432V2.
So, ^(3.VS)=^/(V'2)=-^72;

(a«
.

v^')' = «" • V^"" = «'' • ^" • V^ ;

{a^'b^)^ =a^6TV.

PrOB. 7. To REDDCE A FRACTION WITH A SURD DENOMINATOR
TO AN EQUIVALENT FRACTION WITH A RATIONAL DENOMINATOR.

(a) Tlie denominator a monomial : Multiply both terms of the

fraxAion by some complement of the denominator. [§ 8, df. comp.

(6) Tlie denominator a simple binomial quadratic surd: Mul-

tiply both terms of the fraction by the conjugate of the denomi-

nator. [§8,df. conjg.

(c) Tlie denominator a binomial quadratic surd containing a

complex radical : Multiply both terms of the fraction by a group

of conjugate radicals that, taken together, are complementary to

the denominator.

En ^ = ^ • ^^
.

g ^ ot-(V& + Vc) .

5f b
'

V^-Vc h-c
a ^ «-V(&+ Vc) ^ a-(6-Vc).V(6+ Vc) .

a ^ <^-[^+V(c + V^)l
&-V(c + V^) b'^-c-^d

{b^-cY-d
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(d) TJie denominator any Mnomial surd: Multiply the two

fractional exponents of the denominator by the l.c.mlt. of their de-

nominators^ and attach the products as exponents to the two bases;

divide the sum (or differeyice) of the powers so found by the de-

nominator^ and multiply both terms of the fraction by the quotient.

E.g.^ to rationalize the fraction
;

23- H- 3^

then •.• 12 is the 1. emit, of 3,4, and 12.(|, f) = 8, 9.

and •.• (2«-3^): (2^+ 3')

= 2^-2^.3^ + 2^.3^-... + 2^.3^-3^,
6^ _6^ 2^-2^. 3^ + ... + 2^. 3^-3^.

2^ + 3^ 2«-3«

PrOB. 8. To FIND A SQUARE ROOT OF A BINOMIAL QUADRATIC
SURD.

Let a + ^b be a binomial surd, and x -j- -y/y
=

y/{a-\- -yjb) ,

wherein a, -^y are to be found.

Square both members of this equation ;

then •.* x^-\-y -\-2x^y = a-\- ^b^ (1)

.-. :x?-{-y = a, 2x^y=^b. [th.l8cr.l

Subtract the second of these equations from the first
;

then a^ -{-y
— 2x^y = a — ^b. (2)

Add equations (1, 2) together, and multiply them together;

then x^-\-yz=a, and x^ — y = -y/(a^
—

b).

Add these two equations, divide by 2, and take the square root ;

then

So

2

2
'v^=V-

la+V(a'-6)
^ |a-V(a^-d)

and x — ^y, =y/{a — ^V),

= >+V(«'-5) _Ja-V(a'-6)
_ ^^^_



226 POWERS AND ROOTS. [VIII. pr. 9

Note. Sometimes a square root of a surd of the form

a + ^h -\- y'c + V<^ iii^y ^G found.

Write V^ + V^+V2^=V(«+V^ + Vc + V^)»
then x+y-\-z-\-2-yJxy+2^xz-\-2y/yz=a-\--yJh+ y/c+^d.

Write x-{-y+z=a, 2^xy = ^b, 2^xz=^c, 2^yz = -sjd,

and find vahies for x^ y^ z that satisfy these equations.

E.g., to find a square root of 9 + 2yS + 2-yJh + 2^\h.
Write a; + 2/ + 2 = 9, 2Va;?/

= 2V3, 2^xz = 2y/b,

2yjyz = 2V15.
then a;=l, 2/

= 3i 2 = 5, and the root sought is

1+V3+V5.
PrOB. 9. To FIND A CUBE ROOT OF A BINOMIAL SURD.

3/
Let a+ V^ ^® ^ binomial surd, and x-\--yJy

= Va -j- -y/b,

wherein x, ^y are to be found.

Cube both members of this equation ;

then •.• a^ + 3a;y + (3ar^ + 2/) Vy = ^ + V^»
.-. ic»+ 3a^=a, (3a^ + 2/)V2/ = V^; [th.l8,cr.l

and o?-\-^xy
—
{^x^-{-y)^y = a—^h.,

i.e., (x-^yy= a-^b ,

.-. x — ^y =-Va — ^b.
But x-\-^y = -^a + -yjb. [ hyp.

Multiply these last two equations together ;

then ••• ocr — y=-\/a^ — b = m, say,

.-. y =a^ — m.

Replace y hy x^ — m in the equation ar^ + 3 a;?/
= a

;

then a? -\-^x{x^
— m) =a,

i.e., 4a^ — 3??ia; = a.

From this point on there is no general solution, but particular

examples may be solved by finding a value of x by inspection
from the equation 4a;^ — 3 mx — a.

E.g., to find the cube root of 10 + 6 -^3 ;

then a =10, 6=108, m= ^(100 -108) = - 2
;

.-. 4a^+6a;=10,

.-. a;=l, 2/
= 3, and 1 + ^^ is the root sought.
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§ 10. EXAMPLES.

§1.

1 . Replace the radical signs by fractional exponents in :

V«^ </^'^ ^^; -</{^'^f)-, </{b' + ^-hy').

2. Replace the fractional exponents by radical signs in :

§ 2, THEORS. 2, 3, 4.

• ••11. Multiply or divide as indicated :

3. (21a)^:(26)*; (x+S)^. (a;- 3)^ ; {20 ab)^ -

(5 ac)^ .

4. (2abc)^-(Sacd)^-{6bd)^; 2(abc)^ '-S(a'c)^ : -4.{b^c)K
1 1 1 1 11

5. (a + 6)^.(a + 6)".(a-6)-.(a-6)».(a2 + 62)n.+n^

6. ah a;"^
;
a^ • a~^ • a~^ : a"^

;
a^-a'^i (a^^ • a^ • a" *^) .

(-3a-'-\-2a-''b-')'{-2a-^-Sa-'b).

9. (a^
- a^ + 1 - a"^ 4- a"^) •

(a* + 1 + a~^) .

(a*
—

a"^)
• a^.

10. (a;-2/):(aj-'-2/~^); {x'
- y') : (x^

- y~h -

11. (2a^2/"^-5a^?/-2+7a^2/-i-5£c2-|-2a;?/):(a^2/-3-a^2/~^4-iC2/-^).

12. Simplify the fraction :

a^ — ax~^ + a^a;~^ — x~^

a^ — a^a;~ ^
_|_ a^a?"^ — ax" ^

_j- a-* cc~^ — a;~ ^

13. Get the square of :

(a^-fts)*. Sah-^x^; x-{ay)^\ ^a^x'^ -2a~^x^.

14. Get the cube of :

2(3a)*; 3 a* 6" ^
a;?/"' ; (a^- &*)^ ; a;+ V2/; a"^-a;i

15. Express in simplest form :

f21a\-l r/a-2m\_2-|2„ r2/;3^^\r
4

2/

1*



228 POWEES AND ROOTS. [VIII.

16. Get the product of:

17. Get the square of :

2g^x4-3gx*-2g2x~^-3g^a;-^ d'^b-\-a-^b''a~'''h\

¥ (f)'+©*H5)'
«_2(^^Y+3-2/^^V^+ (^^^''-

^^'^^ ' ^^^ ' ^^'^^

18. Get the cube of :

2jy-l^sx-^y^; ja-f_4x-^gh ia~h~''^ -\- 5a^bK

19. Find the square root of :

a;-2_ 6x-'y-^ + 92/"' ;
g"^- 4g-^ - 2g-'*4- 12g-3+ 9g-2

;

4g-i-12g~^6^ + 96^4.i6a~^ci-246^c*4-16c^;

20. Find the cube root of :

ig«-fg26^+6a6-86^ ; ^x-^^\x^y^-h^x^y'+-,i-,yK

^a-i- 27x-^a' - {x^a)''^ + {Sx-^a^y.

21. Find the fourth root of :

^a^ - Ax^y-^^^x^y~^ - 2b0x'^y~^^' + 625y~^'.

§ 5, THEORS. 9, 10, 11.

... 25. Multiply or divide aa indicated :

22..' a;^'./':^^'; (24g)^3: (66)^3
.

^^^sy-(x-3)\

23. a.^^^a.^^^:.^^^ J-^.J-^:J; {a''-b^')-(a^' + b^').

24. 10^-^i°2- . lO--^^-, = 20 . 500 ;' lO^-^^- : lO^-^'"'^-, z=500 : 20.

25. (/^-/^):(a.v^i-2/V^^); [a^V2(g5)^^H-6^'] :(g^*+6^^).

• ••28. Get the powers and roots as indicated :

26. (lO^-^i^-)', =20^;
^(10-^103)1^ ^^2; (lO"'')'^'; (lO")".

27. {2a/"^x-j-Sax'^^y; (4a^Vl2a^*a.'^^-f-9/')^; (x^'^y^yK

28. {ix^k^^yrty. (g^'-3g2v^H^*+3g^352^*-6^')i
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§ 7, THEORS. 14, 15, 16.

In the following examples e is assumed to be such a number

that Me = 1
,
and a is any constant.

• ••32. Find the derivatives as to x of the variable powers :11 1
„i. _l _i

29. e''; a''; of; e"*
; a~*; a;-*; e'; a^; af; e"*; a"*; oT^.

30. e^''; e«
;

a^''
; a«*; e^''; a^'^; a;«*; a;«*

;
aJ«'^

31. e^(l— a^; e(«+^)'
; e-«'^; av^C^'--^-)

;
a-v^(«'-^').

• •• 35. Find the derivatives as to x of the logarithms :

33. log,e^; log„a"; log^af; log.e-'"; log^cr^; log^a;-^

34. log, (a + bx») ; log, [log,(a + &aj")] ; log, (e==
-

e'^).

§ 9i PROB. 1.

• • . 39 . Reduce to simplest form :

36. 125^; 567^; 392^; 1008^; 216*; 72*; 162*; 48^; 160*.

37. (llJ-f)* (6|i)*; (101)^; (eff)-!; 2500^; ^296352.
38. ^Ulx-^yz"; ^56a'b'c^; ^112a-^6-V; Sy64:a'b-^G\

39. V(72a'6-726+18a-26); ^[x'y-'^-xy^ -3af(x-y)^.

§ 9, PROB. 2.

• ••43. Free from coefficients :

40. 6V5; 2V^; 2a;V2; ^a^5b; 4-^6; 5a^2/; IV^J-

41. iV2&; 5Vic; 27a'; ^VCI)*; *(f)^^ t^r^'d 2/^-^)*^

42. 3a2^2a2d2; i^4a^.y; 5a-^j\ay', iabc-^Sa'b.

§ 9, PROB. 3.

• ••45. Reduce to the same degree :

44. a^ a*; a*, 6^; 3*, 4^; ^ab, -*/ac, ^bc, -^(b + c),

45. a*, 6^ ; a^, b^, c^
; a;*, a;^, a;^, x^, x^

; (3 a;)*, 2?/^, 4A
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46. Which is the greater : (i)^or(|)^? ^2 or -^3?

-^9or</18? m^ or (m+ 1)^ whenm>3?

§ 9, PROB. 4,

• ••51. Add of subtract as indicated :

47. V18-V8; V12S-2V50 + 7V72; 6Vf-3VI-
48. 9V80-2V125-5V245+V320; 3VI + 4VtV-

49. 625* -7. 135^ + 8. 320*; 8.(|)* + ^ • 12* - |.27^.

50. 6(8a«6)*+4a(aS6*)^-125(a«60*; a^b^ -\-2ab^ -{-bK

51. 2^i+3^^; |(|H)*-V(HI)^; f«2>*-l(2> = 0*.

§ 9, PROB. 5.

• ••59. Multiply or divide as indicated :

52. 3V2-2V3; 8V6:2V2; 5V7-2V7; 3^^2*.

53. 3V6-2V3-4V5:12V10; 4 V3-3 V5-5-^2 ;
2*^3*.4^.

54. A-(l)*^(f)-(il)^; 5^.4^.3^60^ (f)^:(f)^^

55^ (A)-(t)^:A(f)-*; VK-2>0:V(«-2>):-^(«-«>).

56. |a^62.|5^^3.|(j-i5-i. (5 + 2V2)-(5-2V2)^
57. (2 + V3)'; (8V2 + 2V3)-(2V2 + V3').

58. (4+ V2)-(l-V3)-(4-V2)-(5-V3)-(l+ V3)(5+ V3).

59. (a + b)^-{a-hby^'{a-b)^'{a-b)n.{a^-^b^)^n;

^-a-^-b'-^-a-^-b'-^-a'-^-b'^-a'^-b.

§ 9, PROB. 6.

• ••64. Find the required powers or roots :

60. (3V3)^ (2^5)«; (V2-V3)^ W^O-^oY; (3*-3-*)2.

61. (Vl-Vf)'; (2*-2-t)3; (3*-3-*)^ (4*+4-*)^

62. (Vl^-|2/)'; [a'&(a'5c)^]*; (2x^y^z^y', l{5x^y-^)^Y^,

63. ^-2-a'"6"'c2"»; ^{27a^x)^', (a^x-'^ + cC^xy.

64. [(a + 6)*-(a-6)*]2; (a*+&*- c*)^ (a*H+a~'



66.

67.

68.

69.
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§ 9, PROB. 7.

• ••69. Reduce to equivalent fractions with rational denominators ;

'''

V3' V^' 2V3' 2V2' 3^^' 5t' Sy^' W '

\n)
'

2
. V2-1 . V3-V2 .

21 1 +V5
V3+ 1' V2+ 1' V3+ V2' VIO-V^' 3V5-2V3*

15
. (a4-6)^ + (a-6)^

V10+ V20-f V^O-V^-V^^' (a + &)^-(a-6)i*

(3 + V3)-(3 + V5)-(V5-2) .
1

(5-V5)-(l + V3)
'

a+V[^+V(c + V^)]

V2.(V3 4-l)-(2-V3) V2^(V2-3)
(V2-l)-(3V3-5).(2+V2)' (V2+ 8).(V3-V5)'

• ••71. Reduce to simplest form :

r-Q
1 1

. x+(a^-l)^ . a;-(a^-i)^

a-(a'-a^)i a+ia'-x')^' x-{x'-l)^' x-\-{x'-l)^

^^ (a^+l)i4-(fl^-l)^
^

(x^ + l)i-.(a^-l)i ^ x-(x'-\-l)i

(a,^+l)^_(a;2_i)i (a,^+i)*+ (a^_l)r a;+(a;2-f.l)^

72. In the equation

(a^_ 2/6)
:

(^x
—

?/)
= ar'^H- x^y + ar^?/^ + a^?/-^ + xy^-\-f

put a; = a^ and 2/
= 6^

;
thence find (a'^

—
Ir) : (a-

—
6^) ,

and apply this and similar results to reduce to equivalent

fractions with rational denominators :

1 10 3^-2^
. -^•5--^4 .

1 2a+b^

a*_6*' 2-^6' 3i+2^' ^5+ ^4' ^3_^i
'

g^-^i*

73. Show that

form a complementary group ;
and thence reduce to

equivalent fractions with rational denominators :

1 14-V2 . i-yg ,

-v/a+V^+V^-' 1 + V2+V3' i-V«-V^'
V2 - V3 .

a

1 + V2 - V3
'

V(^ + Vc) + V(f^ + V^)'
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74. Find the value of:

a5+(l+»2)^ x-{l^x')^ 2|_V6y \aj J

a^ H i^^—-> when x = W3.

75. Show that
2/
= i(e*-e-*) if e=' = 2/ + V(l +2/")-

§ 9, PEOB. 8.

• ••78. Find the square root of:

76. 7 + 2V10; 7 + 4V3; 2 - V3 ; 16-6V7; V^S-V^^^
77. 8V3-6V5; 75-12V21; V27 + V15; -9 + 6V3^

78. aft + c^+VCa'-c^X^'-O; 2[H-(l-0^];
a;^-2a;(a;2/-ic2)*; l-2aV(l-a').

79. Find the fourth root of :

28-16V3; 49+20V6; a^+b^-^6ab-4.{ah^+ah^).
80. If V^*+V2/ + V^ = V(«+2V2> + 2Vc + 2V(«),

show that X, y, 2 must satisfy the four conditions

a; 4- ?/ 4- z = a, xy = b, xz = c, yz^d,
and hence show that the square root of

6 +2 V2 + 2 ^3 + 2 V6 may be found.

81. Find the square root of:

10 + 2V6 + 2 VIO + 2V15 ;
8 + 2V2+2V5 + 2ylO ;

15-2V10-2V21 + 2V35; 11+ 2V6+4V3+6V2.
82. Show that the square root of 10 +2V6 + 2^U + 2 V21

cannot be expressed in the form -^/a -\- ^h + V^*

83. Find the square root of :

15 - 2 V3 - 2 V15 + 6 V2 - 2 V6 + 2 V^ - 2 V30.

§ 9, PROB. 9.

84. Find the cube root of :

7 + 5V2; 16 + 8V5; 22 + lOV'; 38+17V5;
21 V6 - 23 V5 ;

3a - 2a^ + (1 4- 2a2) V(l - «')•



ths. 1-3, § 1.] GENERAL rROPEKTIES. 233

IX. LOGARITHMS.

§1. GENERAL PROPERTIES.

The logarithm of a number is the exponent of that power
to which another number, the 6ase, must be raised to give the

number first named. [I. § 1 1

E.g.^ in the equation a"" = n, a is the base, n the number
;
and

X tlie exponent of the power of a and the logarithm

to base a of the number n.

The equation x = log^N expresses the relation last named.

The equation n = log^~^aj means that N is the number, a*,

whose logarithm to base a is a;
;

it is read, n is the anti-loga-

rithm of X to base a.

E.g.^ 0=logAl and A = log"^0, whatever a may be.

So, l = log22, 2= log39, 3=log464, 4=log5625,.-.,

and 2=log2-M, 9=log3-^2, 64=log4-^3, 625= log5-H, ....

So, -l=log2j, -2= log3i, -3=log4^ij, -4= log5^,...,

and -l= log,2, -2=log,9, -3=
log^^64, -4=logL625 -..

If the base be well known it may be suppressed, and these

two equations may then be written x = logN, n = log"^a;.

If while A is constant n take in succession all possible values

from to 00, the corresponding vahies of x when taken together

constitute a system of logarithms to base a.

Operations upon or with logarithms are therefore operations

upon or with the exponents of the powers of any same base
;

and the principles established for such powers apply directly to

logarithms, with but the change of name noted above.

Theor. 1. The logarithm of unity to any base is zero. [df. pwr,

Theor. 2. The logarithm of any number to itself as base is

unity. [df . pwr.

Theor. 3. To any positive base
-j

^,, than unity, every

positive number has one and but one real logarithm :

'^ TdecreZin^^ f^^^^^^^ ^/^'^^ '^^'^^^r. [VIII. th. 13
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Note. If either the base or the number be negative, tliere

may or may not be one real logarithm.

E.g., +100 has the logarithm 2 to base +10 or "10,

and both +10 and "10 have the logarithm ^ to base +100
;

but "100 has no real logarithms to base +10 or ~10,

nor has +10 or ~10 a real logarithm to base ~100.

So, *1000 has the logarithm 3 to base =^10,

and *10 has the logarithm ^ to base ~1000
;

but '''1000 has no real logarithm to base *10,

and '^'lO has no real logarithm to base '''1000.

In this chapter, and in general where logarithms to the base 10

are used as aids in numerical computations, the number as well as

the base is assumed to be positive unless the contrary be stated.

Theor. 4. If the base he positive and\
^

-.. than unity, the

logarithms of all numbers greater than unity are {^
'

, . \ ofall

numbers positive and less than unity, \
^

. .

'

[VIII. lem. th. 1 2

Theob. 5. If the base be positive and^
^

,. than unity, and

if the number be a positive variable that approaches zero, then

Us logarithm approw^Us { pZal^^'l^ff^' [VIII. th. 13

Theor. 6. The logarithm of a •{

^
. .of two numbers is the

J sum of the logarithms of the factors. rVITT tl q ^ 9
' excess of log. div'd over log. divW. - • •

'

^'9' » log^ (b
. c : d) = log^B + log^c

-
log^D.

Theor. 7. Tlie logarithm of a-{\ ^^^^ of a number is the

^ fuotett
""^^^'^ logarithm of the number by the{ ^ZThxlex.

[VIII.ths.4, 10

E.g., log^(B2.^c) = 21og^B+Jlog^c.

CoR. The logarithm of the square root of the product of two

numbers is the half sum of their logarithms to the same base. [th. 6

E.g., log^VC^-c) =i(}og^B-\-\ogj,c).
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Theor. 8. If the logarithm of any same number he taken to

two different bases, the first logarithm equals the product of the

second logarithm into the logarithm of the second.base taken to the

first base, and vice versa.

Let N be any number, a, b two bases
;

then will log^n = logsn •

log^b ,
and logsn

logBN

log^N-logBA.

[df.logFor let y

then ••• N =6",

and log^N = y •

log^B, [th. 7

.-. log^N = logBN.log^B. Q.E.D.

So, l0gBN = l0g^N.l0gBA. Q.E.D.

Cor. 1 . log^b •

log^ c •

log^d = log^d .

logj,B'log^C'logoT)
•••

log^i.
=

log^j..

Cor. 2. The logarithms of two numbers, each taken to the

other number as base, are reciprocals.

For let N = A
;

then log^B •

logjj a = log^a = 1 .

CoR. 3. logj^B
'

log^C' log^^A = 1
;

log^B'log^C'log^-D
... log^A = l.

Note. The reader will observe that th« bases

and numbers run in cyclic order :

Cor. 4. Tlie modulus of any system of logarithms is the loga-

rithm, in that system, of the Napierian base e. [VIII. th. 15 nt.

Let A be the base of any system of logarithms, and m^ the

modulus
;

then •.• logAa; = logAe.log^a;, [th. 8

wherein log^e is a constant, independent of a;,

.-. D,log^a; = log^e.Djogea;,

I.e., —^ 1

logA^--.X

.'. M^ =logj,e.

E.g., M,o = logioe
= logio2.71828
= .4342944....

[VII.th.16

Q.E.D.
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§ 2. SPECIAL PROPERTIES, BASE 10.

The logarithm of an exact power of 10 is an integer, [df.log

E.g., of..-, 1000, 100, 10, 1, .1, .01, .001,..-

the logarithms to base 10 are

..., +3, +2, +1, 0, -1, -2, -3, ....

But of any other number the logarithm is fractional or incom-

mensurable, and consists of a whole number, the characteristic.!

and an endless decimal, the mantissa. [VIII. § 4 df. incom. pwr.

As a matter of convenience the mantissa is always taken posi-

tive ;
and the characteristic is the exponent, positive or negative,

of the integral power of 10 next below the given number.

A negative characteristic is indicated by the sign
— above it.

E.g.^ of the numbers

2000, 20, .2, .002,

the logarithms to base 10 are

3.30103..., 1.30103..., 1.30103..., 3.30103.-.,

whose characteristics are 3, 1, 1, 3,

and whose common mantissa is +.30103 ....

Theor. 9. If a number be multiplied (or divided) by any

integral power o/ 10, the logarithm of the product (or quotient)

and the logarithm of the number have the same mantissa.

For •.• the logarithm of a product is the sum of the logarithms

of its factors. [th. 6

and •.• the logarithm of the multiplier is integral, [hyp.

.-. the mantissa of the sum is identical with the mantissa

of the logarithm of the multiplicand. q.e.d.

So, if a number be divided by an integral power of 10.

CoR. For all numbers that consist of the same significant fig-

ures in the same order, the mantissa of the logarithm is constant,

but the characteristic changes with the position of the decimal point

in the number.

E.g., of the numbers

79500, 795, 7.95, .0795, .000795,

the logarithms to base 10 are

4.9004, 2.9004, 0.9004, 2.9004, 4.9004.
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§ 3. COMPUTATION OF LOGAEITHMS.

PrOB. 1. To COMPUTE THE LOGARITHM OF A NUMBER TO A
GIVEN BASE.

FIRST METHOD, BY CONTINUED FKACTIONS.

Form the eopponential equation^ a^ = n, wherein n is the

number^ a the base, and x the logarithm sought. [df . log

By trial find two consecutive integers, x' and x' + 1
,
between

which X lies, and lorite x = x' -f y~^, wherein x' is known and

y~^ is some positive number less than unity.

In the equation a'' = n, replace :s. by x'+ j'^ , giving A'''+y"^=N,

and divide both members by a^', giving aj= n : a^',
=

n', say.

Raise both members of the equation aj = n' to the yth power,

giving a = n'^.

By trial find two consecutive integers, y' and y' + 1, between

which y lies, write y = y' -f- z~^, and so on, as above.

Then x = x'+ i = x'+^ 1 =x'-f— i

y y'_f_± y'4-—
and the convergents, which approach x as their limit, are :

, x'y'+ \ x'y'z'-{-z'-\-x.'
'

y'

'

^y'z' + l
'"•*

E.g., given 10* = 5, to find x, i.e. to find logio5.

Put X =0-f2/~S

then •.• IQy =5, 5'' = 10, 2/= 1 + -
z

5'"^^ =10, 5'= 2, 2'=5, z = 2 + -

2-J =5, 2-J =
|, (|J

= 2, . = 3 + i

\ij \ij 125' Vl25^ 4' ^t
and so on.

1+ -
1+^1_1 1+^1 1 +^1z 2+- 2+—- 1 2-j-— 1

and the convergents are ^ 9+

J
2

_7_
65

'

3' 10' 93'
"**
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These convergents are alternately too large and too small
;

but their errors are respectively less than

1. __1_^J^. 1 ^1. 1

3' 3-10 30' 10-93 930' 93 • next denominator'

which denominator is not less than 93+ 10, =103
; [VI.ths.1,2

65
.*. — ,

=. 69892 •••, is too small, and differs from the
93 1

tiue value by less than^
9579

The true logarithm of five to seven decimal places, as shown

by the tables, is .6989700, so that — actually differs from it by
93

less than half of one ten-thousandth.

So, logio2 =logiolO
-

logio5 = 1 - .69897 = .30103.

So, log4 =2.1og2= .60206 ;log8=3.1og2 = .90309;

log625=4.1og5= 2.79588 ; Iog4=log4-log5= 1.90309.

SECOND METHOD, BY SUCCESSIVE SQDAKB ROOTS OF PRODUCTS.

Take two numbers wJiose logarithms are known
^
the one greater

and the other less than the given number.

Find the square root of their product and the logarithm of this

root^ the halfsum of their logarithms. [th. 10

Multiply this root by whichever of the two numbers lies at the

other side ofthe given number^ and find the square root of the prod-

uct, and the half sum of the logarithms of the factors ; and so on.

E.g., to find the logarithm of 5 to the base 10 :

Take 10 whose logarithm is 1, and 1 whose logarithm is ;

Number.

then V{10X1) =3.16227766;

V(10X 3.16227766) =5.62341325;

V(3.16228 X 5.62341)
= 4.21696535

;

V(5.62341 X 4.21697)
= 4.86967671

;

V{5.62341 X 4.86968)
= 5.23299218

;

V(4.86968 X 5.23299)
= 5.04806762 ;

V(4.86968 X 5.04807)
= 4.95807276 ; |(.6875 + .703125)

= .69531

V(4.95807 X 5.04807)
= 5.00028680 ; |(.69531 + .70312)

= .69921

V(4.95807 X 6.00029)
= 4.97709632

; I (.69921 + .69531)
= .69726

|(.69921 + .69726)
= .69823
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§ 4. TABLES OF LOGARITHMS.

If for successive equidistant values of a variable the corre-

sponding values of a function of this variable be arranged in

order, the function is tabulated; the variable is the argument of

the table [I. § 13] and the successive values of the function are

the tabular numbers. The values of the argument are commonly

placed in the margin of the table.

If the logarithms, to any one base, of the successive integers

from 1 to a given number, say 1000, or 10000, be arranged for

ready reference, they form a table of logarithms. Such tables

are in use to three places of decimals, to four, five, six, seven,

and even ten, twenty, or more places.

In general, the greater the number of decimal places, the

greater the accuracy, and the greater the labor of using the

tables. For the ordinary use of the engineer, navigator, chem-

ist, or actuary, four- or five-place tables are sufficient
;
but most

refined computations in Astronomy or Geodesy require at least

seven-place tables.

Most logarithmic tables are arranged on the same general

plan as the four-place table given on pp. 248, 249. This table

gives the mantissa only ;
the computer can readily supply the

characteristic. To save space, the first two figures of each

argument are printed at the left of the page, and the third figure

at the top of the page over the corresponding logarithm.

To save time, labor, and injury to the eyes, the computer
should use a well-arranged table, and then train himself to cer-

tain hal)its. The best tables have the numbers grouped by

spaces, or by light and heavy lines, into blocks of three or five

lines, and three or five columns, corresponding to the right-hand

figures of the arguments of the table. The usual patterns are

|0|1 2 3|4 5 6|7 8 9|0| 1 2 3| ...for three-line blocks,

and |0 1 2 3 4|5 6 7 8 9|0 1 2 3 4|
... for five-line blocks,

as in the table on pp. 248, 249. Instead of tracing single lines

of figures across the page and down the column, the computer
should learn to guide himself by correspondences of position in

the blocks.
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§5. OPERATIONS WITH COMMON LOGARITHMS.

PrOB. 2. To TAKE OUT THE LOGARITHM OF A GIVEN NUMBER.

(a) One, two, or three significant fixtures.

If the number have one significant figure, annex two zeros;

if two significant figures, annex one zero; for the mantissa

write the four figures that lie opposite the first two figures and
under the third figure, and for the characteristic write the exponent

of the power o/ 10 next below the given number.

E.g., log 567 = 2.7530; log 5.6 = 0.7482
; log .05 = 2.6990;

If a number have more than three significant figures, the

mantissa of its logarithm is not found in the table, but lies

between two tabular mantissas whose arguments are two three-

figure numbers next larger and next smaller than the given
number. [th. 3

E.g., mantissa log 500.6 lies between .6990, .6998,

i.e., between mantissa logs 500, 501.

(6) Four or more significant figures.

Find the mantissa of the logarithm of the first three figures as

above; subtract this mantissa from the next larger tabular man-

tissa, and take such part of the difference as the remaining figures
are of a unit having the rank of the third figure; add this 2')rod-

uct, as a correction, to the mantissa of the first three figures.

E.g., to find log 500.6;

then •.• log 500 = 2.6990, log 501 = 2.6998, [tables

and log 501 -log 500 =.0008, 500.6 -500 = .6,

.-. log 500. 6 = 2.6990 + .6 of .0008=2.6995.

Note 1 . If the given number lie nearer the larger of the two

arguments, its mantissa is easiest found by subtracting from

the larger of the two tabular mantissas such part of their dif-

ference as the excess of the larger argument over the given
number is of a unit having the rank of the third figure.

E.g., to find mantissa log 500.6
;

then •.• mantissa logs 500, 501 = .6990, .6998, [tables
and ••• log 501— log 500 = .0008, 501 —500.6 = .4,

.-. mantissa log 500.6 = .6998 — .4 of .0008 = .6995.
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or

Note 2. The rule for interpolating or applying the correction

rests upon a property which logarithms have in common with

most other functions, and which the reader may observe for

himself if he will examine the table carefully, viz. : that the

differences of logaritlims are very nearly proportional to the dif-

ferences of their numbers when these differences are small. They
are not exactly proportional, but the error is so small as to be

inappreciable when using a four-place table. The seven-place

tables give the logarithms of all five-figure numbers, and the

errors for the sixth, seventh, and eighth figures, as far as due to

this cause, are inappreciable. So the rule above given "for ap-

plying the correction
"

is universal.

Note 3. The computer should train himself to find the correc-

tion and add it to the tabular mantissa (or subtract it) mentally,
and to write down only the

j^q jg
final result.

To aid in this mental

computation, small tables of

proportional parts are often

printed at the side of the

principal table. Two forms of

such tablets are here shown :

the first most accurate, and

the other of easiest use.

E.g.^ to find mantissa log 22674 ;

then •.• log 227 -log 226 = .3560 -.3541 = .0019,

.*. the correction to be added to .3541 is

.7 of .0019 + .04 of .0019
;
and is found thus :

opposite 7 find 13.3 or 13 .3541

opposite 4 find ^ __1 +14
Add

;
the correction is 14 14 giving .3555

Or •.• 22700-22674 = 26,

.'. the correction to be subtracted from .3560 is

.2 of .0019 + .06 of .0019
;
and is found thus :

opposite 2 find 3.8 or 4 .3560

opposite 6 find 1.1 1 —5
Add ; tlie correction is 5 5 .3555

1.9
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PrOB. 3. To FIND A NUMBER FROM ITS LOGARITHM.

(a) The mantissa found in the table.

Write down the two figures opposite to the given mantissa in

the lefi-hand column^ and following them the figure at the top of
the column in which the mantissa is found.

Place the decimcUpoint so that the number shall he next above

that power 0/ 10 ichose exponent is the given characteristic.

JE;.gr.,log-i2. 7536=567 ;log-^0.7482= 5.6; log"^ 2.G990= .05.

(6) The mantissa not found in the table.

Take out the first three figures for the tabular mantissa next

less, as above; from the given mantissa subtract this tabular

mantissa, and divide the difference by the difference between the

tabular mantissa next less and thai next greater.

Annex the quotient to tlie three figures first found.

Place the decimal point as above.

E.g., to find log"^ 2.6995.

then •.• log-i 2.6990 = 500, log-^ 2.6998 = 501, [tables

and •.• 2.6995— 2.6990 = .0005, 2.6998 — 2.6990 = .0008
;

.-. the number sought is 500 + (.0005 : .0008) ,
= 500.6.

Note 1. The process is but the inverse of that for taking
out logarithms, and the reason of the rule is the same for both.

This four-place table allows only one-figure corrections, and

so gives only four- figure numbers. In general, an n-place table

gives 7i-figure numbers ; but sometimes, when the mantissa is

large, the ?ith figure may be two or three units in error, and

then the number is approximate only for n—1 figures [V. §5].

Note 2. If the given mantissa lie nearer the larger of the two

tabular mantissas, the correction may be applied to the larger

argument by subtraction.

E.g., to find log"^ .3555 ;

then •.• the next tabular mantissas .3541, .3560 differ by .0019,

and correspond to 226, 227, as arguments,

and •.• .3555 -.3541 = .0014, .3560 — .3555 = .0005,

.-. the number sought is 226 -f \^, or 227 — 3%' = 22G74.
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If the tablets of proportional parts be used, the work, writteu

out, appears as follows :

14 226 or 5 227

13.3 +.7 3^ -.2

.7 + 4 1.2 - 6

.8 226.74 1.1 226.74

PrOB. 4. To FIND, BY ONE OPERATION, THE ALGEBRAIC SUM

OF SEVERAL LOGARITHMS.

Arrange the logarithms vertically, and take the algebraic sum

of ea/ih column of digits, beginning at the right and carrying as

in ordinary addition; if this sum for any column be negative,

make it positive by adding one or more tens to it and subtract as

many units from the next column.

E.g., to find the algebraic sum in the margin, 3.1037

adding upward, the computer says :
— 0.6986

9, 7, 16, 10, 17, +2.2409

1, 3,-6,-14,-11, 9, 2 off, -2.5892

-2, 3,-5, -1,-10, 0, 1 off, +1.2529

-1, 1,-4, -2, -8,-7, 3, 1 off, =1.3097

-1,-2, 0, -2, 1,

and, adding downward, for a check, he says :

7, 1, 10, 8, 17,

1, 4,-4,-13,-11, 9, 2 off, and so on.

PrOB. 5. To DIVIDE A LOGARITHM WHOSE CHARACTERISTIC IS

NEGATIVE.

Write down the number of times the divisor goes into that mul-

tiple of itself which is equal to, or next less than, the negative

characteristic ; carry on the positive remainder to the mantissa,

and divide.

E.g., 4.1234 : 3 = ("6 + 2.1234) : 3 = 2.7078.

So, 3.4770. I
= 8.4310:2 =4.2155.
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PrOB. 6. To AVOID NEGATIVE CHARACTERISTICS.

Modify the logarithms by adding 10 to their characteristics when

negative; use the sums, differences, or exa^ multiples of the

modified logarithms where the subject-matter is such that the com-

puter cannot mistake the general magnitude of the results.

To divide a modified logarithm, add such a multiple of 10 as

will make the modified logarithm exceed the true logarithm by 10

times the divisor; then divide.

E.g., if loga = 2.3010, log6=1.4771, to find log (a^ 6~^) ,

= i(2\oga-3logb).
BY TRTTE LOOABITHMS.

2.3010.2 = 4.6020

1.4771.3 = 2.4313

BY MODIFIED LOGARITHMS.

8.3010-2 = 6.6020

9.4771.3 = 8.4313

5)2.1707 5)8.1707

T.6341 9.6341

At each step of the work with modified logarithms, any tens

in the characteristics are rejected, or tens, if necessary, are

added, so as to keep the characteristics between and 9 inclu-

sive. Before dividing by 5, in the example just above, 4 tens

were added, making the dividend 48.1707.

Note. The arithmetical complement of the logarithm of a

number is the modified logarithm of the reciprocal of the num-

ber. It is got by subtracting the given logarithm, modified, if

necessary, from 10
; it may be read from the table by subtract-

ing each figure from 9, beginning with the characteristic and

ending with the last significant figure but one, subtracting the

last significant figure from 10, and annexing as many zeros as

the given logarithm ends with. The arithmetical complement
of the arithmetical complement is the original logarithm.

E.g., ar-com 3.4908000 = 6.5092000, and conversely.

In any algebraic sum, a subtractive logarithm can be replaced

by its arithmetical complement taken additively. In most cases,

however, the method of prob. 4 appears preferable.

E.g., in the example under prob. 4, the terms —0.6986.

-2.5892 might be replaced by 9.3014, 1.4108.
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PROB. 7. To COafPUTE BY LOGARITHMS THE PRODUCTS, QUO-

TIENTS, POWERS, AND ROOTS OF NUMBERS.

1 . For a product : add the logarithms of the factors^ and take

out the antilogarithm of the sum.

2. For a quotient: from the logarithm of the dividend subtract

that of the divisor^ and take out the antilogarithm.

3. For a power : multiply the logarithm of the base by the ex-

ponent of the power sought^ and take out the antilogarithm,

4. For a root: divide the logarithm of the base by the root-

index^ and take out the antilogarithm.

E.g., to find the value of (.01519.6.318:7.254)':

KVMBEBS. LOGABITHMS.

.01519 2.1815

X 6.318 -f0.8006

H- 7.254 -0.8605

2.1216x1
and the number sought is 0.001522. 3.1824

Note. Not only simple operations, as in the above example,
but complex operations, can be performed by logarithms. Some-

times the expression whose value is sought must first be prepared

by factoring.

E.g., to find the value of ^{h^—b^), wherein 7i, 6 are any

given numbers and may represent the lengths of the

hypothenuse and base of a right triangle :

then V(^'- ^') = log-H(log/i + 6 + logh - b).

Prob. 8. To SOLVE the exponential equation a* = b.

Divide the logarithm of b by the logarithm of the base a of the

exponential: the quotient is x, the exponent sought.

For •.• A=' = B,

.*. CCl0gA = l0gB,

.-. a; = logB : logA. q.e.d.
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FrOB. 9. To ESTIMATE THE AMOUNT OF POSSIBLE ERROR IN A

LOGARITHM OR ANTILOGARITHM GOT FROM THE TABLE, AND IN

THE SOLUTIONS OF PROBS. 7, 8 :

Let p he the number of decimal places in the table used;

a', b',
••• x', (a" b'' •••)', the number of units of their last decimal

places contained m a, b, • • • x, a" b° • • •
; a, ^,

• •

•, ^^e possible rela-

tive errors, all taken positive, o/a, b, •••
: then

(a) Poss. err. log x = 10~p + .43 poss. rel. err. x.

{b) Poss. rel. err. x = 1 : 2x'H- 2.3 -poss. err. log x.

(c) Poss. rel. err. a"" b"* • • •

\_in pr. 7]

= 1:2 (a'^b".-.)' -f- 2.3 (+m -{-+n + •.•)
• IQ-p

H-(+ma ++0^8 + ...).

{d) Poss. rel. err. x [in pr. 8]

^ 1 10-P+.43a 10-P+.43;3
2x' log A. logB

For *.* DjlogioX = Mio -7 [Vni. th. 15, A = 10
X

.
•

. Mio = X • Dj logioX ==— i— = .43
, [table logs

incx
inc log X^ .43

incx
~

X

I.e., inclogx=.43 ,

- inc X . inc log x ^ _ . ,and = -P— = 2.3 inc. log x:x .4d

(a) •.* logx, as got from x by p-place logarithm-tables, has a

. possible error composed of :

two possible half-units in pth decimal place, from the

omitted decimals of the printed logarithm and of the

correction for interpolation,

, . ^ . .„ inc. or err. of X ^ .

and an increment or error, = .43
; [above

poss. err. logx = (^ + ^)10-'' + .43

X
err. X
X

= 10~^-f .43-poss.rel.err.x. q.e.d.

(6) •.• X, as got from logx by the same table, has a possible

error composed of :
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a possible half-unit in last decimal place, for the

omitted decimals,

and an increment or error, = 2.3 • x • inc. log x,

.
•

. poss. eiT. X = |- in last decimal place of x-f 2.3 • x • poss.
err. logx,

.-. poss. rel. err. X = 1 : 2x' 4-2.3' poss. err. logx. q.e.d.

(c) •.• poss. err. log A = 10~^-f .43a, [(a)
.

•
. poss. err. log a"* = m (lO"* + .43 a

So, poss.err. logB" =n(10-^-f .43/5), .-•,

.*. poss. err. log (a'"b'*"-)

=
(+??i -h+w +...) 10-^ + .43(+ma ++np + •••)'

.*. poss. rel. err. (a'"b**---)

= 1 : 2x'4-2.3[(+m++n+ -.-)10-^-f.43(+ma-f ..•)],

wherein x = a"* b" • • •
;

.*. poss. rel. err. (a'"b"-")
= 1 :2x'-f-2.3(+m4-+w -}-•••) lO^^'+C"^ '"*« + •••) •

Q.E.D.

(d) •.' x = logB:logA,
.'. poss. rel. err. x= poss. rel. err. fromomitted decimals ofx

-fposs. rel. err. log a+ poss. rel. err. logB [V. th. 5 cr. 3

2X'^ log A
^

lOgB.
^ ^^ ^

Note. If in (d) the divisions log b : log a be performed by

logarithms,

then •
.

•

log X = log log b
—

log log a,

.*. poss. err. logx=poss. err. log-log A-f-poss. err. log-log b

= 10~^ + .43 poss. rel. err. log a

-f 10^ + .43 poss. rel. err. logB [(a)

= 2 . 10- + .43 ri5Z±i43a _^ 10-+,43^\
V log A logB J

+ 2.3 poss. err. logx

10-^ + .43 a
,
10-^ +.43^

poss. rel. err. x, =—
^
+ 2.3 poss. err. logx [(6)

ji X

= -^+4.6-10-^ .

2 X' loo^ A log B

which differs from the former result only by the term 4.6-10"''

arising from the omitted decimals of the table used

in performing the division, and obtainable also from

(c) by making m = n = l, a = ^ = 0.
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[IX. §G.

§ 6. EXAMPLES.

1. What is the logarithm of 144 :

to base 2 V3? to base 2^12? to base (2^12) -i?

2. What is the characteristic of :

logoT? log72? log321? logoiS? log^21? log,21-i?

3. Find log53125 ; log7343-M log 1 81; log, 343; log,343-\

§ 3, PEOB. 1.

4. By continued fractions derive the logarithms, to, base 10, of

3 and 7 to four decimal places.

Thence find the logarithms of :

9, 2.7, .81, 70, 4.9, 343, 21, 63, .441, .7-S 18.9'^

§ 5, TROB. 2.

5. From the table take out the logarithms of :

12, 120, 123, 124, 123.4, 1.234, 12350, .001235.

§ 6, PROB. 3.

6. From the table find the antilogarithms of :

1.0792, 2.0792, 2.0899, 2.0934, 2.0913, 0.0913, 4.0917.

§ 5, PROBS. 4-8.

7. By logarithms find the values of :

2^5^85^ V(97^-9^) V12^65 -«/83.64 x 39.56^

3273
'

81.^572
'

y5--^.i8' .081452x</1.968'

8. From the logarithm of 2 find the number of digits in :

2^ 2^, 51™, 208, iQQio^ 2525, 6.25«^ 25-S 50 «>.

9. By logarithms multiply 575.25 by l.OG^O; by 1.03^"; by 1.015«'.

10. By logarithms find ^1000, -^.00010098, ^.0000000037591.

11. Whatpower is 2of 1.05? 3 of 1.04? 4 of 1.03? 5 of 1.02?

12. If the number of births per year be 1 in 45, and of deaths

1 in 60, in how many years will the population double,

taking no account of other sources of increase or

decrease ?

§ 5, PROB, 9.

13. Find the possible error in each of the examples inNos. 7-12.
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X. IMAGINARIES.

Before taking up this chapter, the reader may refer to

what is said of numbers in I. § 1 and of negatives in I. § 3
;

and particularly the note at the end of I. § 3. He will observe

that, for some kinds of quantity, negatives as well as fractions

are impossible. He may not be surprised, therefore, to learn

that, even if the operation denoted by imaginary numbers can

be conveniently performed upon only one kind of magnitude,

they have most of the properties of real numbers and play an

important part in algebra. These operations can, however, be

performed, though less simply, upon all kinds of magnitude,
as appears in chapter XV.

§ 1. DEFINITIONS AND GRAPHIC REPRESENTATION.

In measuring any thing some unit of like kind is first assumed,

and the relation the thing measured bears to this unit, both as

to magnitude and as to sense or quality, is expressed by a num-

ber [I. § 1]. Conversely, this number expresses that operation

which must be performed upon the unit to produce the thing :

the unit being then the operand, the number the operator, and

the thing the result of the* operation.

POSITIVE AND NEGATIVE NUMBERS.

In the method of graphic representation of numbers here de-

scribed, a finite straight line pointing in an assumed direction

is chosen as the concrete unit
; and the relation that any straight

line pointing in the
{

.. direction has to this unit is ex-

pressed by a ^
P ^

)7^ number.^ "^ '

negative
If the reader so place himself before the unit that to him it

becomes horizontal and points to the right, > ,
then any

horizontal line pointing to the right,
• >, has its

length and direction in terms of the unit line expressed by a

positive number. If the line be taken up and reversed, so that

it is still horizontal but points to the left, -^ ,
then
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the relation of its length and direction to the unit is expressed

by a negative number. The length remains as before
;
but the

quality, or direction, is reversed.

VECTORS.

A vector, or directed right line, is any line whose length and

direction are considered, but not its location. Its two extremi-

ties are distinguished from each other as its initial point and its

temiinal point. Its direction is the direction of the terminal

point from the initial point, and would be reversed if these

poihts were interchanged.
As the name implies, a vector may be regarded as the repre-

sentative of the operation of carrying a particle from its initial

point to its terminal point.

The direction of a vector may be designated by the order in

which its two extremities are named, or by an arrow-head.

Onno^'tp
'^^^^^^ ^^® those having the same length and

. the same direction.
'

opposite directions.

E.g., the vectors ab, cd, e are equal to each

other, but are opposite to the vectors ba, dc,/.

A vector quantity is any concrete quantity
whose magnitude and direction only are con-

sidered, and which is naturally represented by
a measured and directed right line or vector.

E.g., the direction and velocit}' or force of the wind, or of an

electric current, is a vector quantity, and may be represented

by an arrow.
COMPLETE REVERSALS.

When the operand is a vector, the operation of multiplying it

by ~1 consists in reversing its quality or direction, and is ex-

hibited thus :

multiplier

(operator)

1
^

product multiplicaud A
(remit) (operand)

A
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So, even if the operand be not a vector, yet if it have a re-

versible quality, the vector oa may still be taken as the repre-

sentatice of the operand ; and, since to multiply the operand by
""1 is simply to change its quality into the opposite quality, this

multiplication is graphically represented by the reversal aob,
while the result is represented by the vector ob. Hence, in

what follows, the vectors used may be either the actual operands
and results, or merely their representatives.

If now there be a continuous rotary motion, as with a spoke
of a wheel, the direction or quality of the vector oa is alter-

nately reversed and restored :

E.g.^ a half revolution, one reversal, is multiplication by ~1,

So, a whole revolution, two reversals, is multiplication by ~1

twice, z.e., multiplication by (~l)^ =+1.

So, a revolution and a half, three reversals, is multiplication

by ~1 three times, i.e., multiplication by (~l)^ =~1.

<—'-4-
—t^—> > < > <

""-—y no rev'l. 1 rev'l. 2 rev'l. 3 rev'l.

So, multiplying a vector by ~2 doubles the vector and reverses

it
; multiplying by (~2)^ doubles it twice and reverses it twice ;*

and so on
;
and the like is true whether the operand be a vector

or not.

>

By such multiplication two distinct effects are produced : the

one quantitative, the ordinary multiplication of arithmetic, which

consists in stretching the line multiplied ;
the other qualitative,

which consists in reversing the direction of the line.

Every such multipUer or number may be regarded as itself

the product of two factors : its tensor^ the quantitative or stretch-

ing factor
;
and its versor, the qualitative or turning factor.

If the tensor ^ ^ 1
,
its effect is to { g^^f^en^

the multiplicand.

E.g., the number ~3 is the product of tensor 3 andversor~l.

So, the number
"""f

is the product of tensor | and versor '''1.
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PARTIAL REVERSALS.— IMAGIXARIES.

But during its rotation the line has filled various intermediate

positions wherein the numbers expressing its relation to the unit

were neither purely positive nor purely negative numbers :

E.g., in the positions

•^2,

'^V>

<:^::^

its relations or ratios to a unit . > are :

•2, intermediate, ~2, intermediate,

and are represented thus :

These intermediate numbers are imagU
naries, or imaginary numbers, and may be

defined as numbers, not 0, that are neither

purely positive nor purely negative.

B}* way of distinction, positive and neg-

ative numbers, the ordinary numbers of

arithmetic and algebra, are real numbers.

It appears later [XIII.] that every imaginary number of

ordinary algebra involves an even root of a negative, and

arises from an attempt to violate a condition of maximum or

minimum : as in seeking the base of a right triangle whose

height shall exceed the hypothenuse.
The square root of a negative real number is a pure imagi-

nary; all other imaginaries are complexes.

E.g., the value of -^~4 is not +2, whose square is "^4, nor ~2,

whose square is also ''4
;

it is something different from either,

and intermediate between them in character.

So, most roots, whether odd or even, and whether of positive

or negative bases, have imaginary values, as appears later.

THE SYMBOL -y/'l.

The symbol -y/~l denotes a number whose square is ~1 : i.e., it is

a number such that unit X -y/'l X V~l =u°it x ~1. [I. § lOdf . root

Hence, whatever meaning is given to multiplication by '1, a
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consequent meaning must be given to multiplication by ^~1
such that two successive multiplications by -^"1 shall produce
the same result as one multiplication by ~1.

If the unit be a horizontal line pointing to the right, then the

product, unit X V"!' ^^ ^ vertical line of unit length pointing

either upward or downward
;
for if the horizontal unit-line be

first revolved to a perpendicular either way, then the same

amount of further rotation will bring it to the opposite hori-

zontal position. Here multiplication by -y/^l consists in revolv-

ing the multiplicand-line through a right angle, either miti-

dockwise or clockwise.

So, when the unit or operand is any vector whatever, ~1 has

two distinct square roots, say i and i', whose effects as multi-

pliers are to revolve the line through a right angle anti-clock-

wise and clockwise respectively. Hence the effect of i' as a

multiplier is the same as if the multiplicand-line were first

multiplied by i and then reversed, ^.e., were multiplied by — i
;

hence i' = — i, since both numbers give the same result when

multiplying any same unit [I. § 1].

Since division is the inverse of multiplication, and consists in

finding one factor when the product and the other factor are

given [I. § 9], to divide a given vector by i is to fincj another

vector that, if multiplied by i, would produce the given vector.

The quotient is the vector got by revolving the dividend-vector

through a right angle clockwise
;

for manifestly, when this

quotient-vector is revolved through a right angle anti-clockwise,

i.e., is multiplied by *',
the original direction is restored. Hence,

to divide any vector by i is the same thing as to multiply it by
— i

; and, in like manner, to divide any vector by —i is to revolve

it through a right angle anti-clockwise, i.e., to multiply it by i.

E.g., the unit > gives the products and quotients :

unit X 1 unit X i unit X "1 unit X 1 unit X —i unit X ~1

unit : 1 unit :—i unit : ~1 unit : 1 unit : i unit ; "1

Y
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So, the unit Nv gives the products and quotients :

unitxl unitX i unit X "1 unit X 1 unitx — t unitX'l

unit : 1 unit :-/ unit : "1 unit : 1 unit : i unit : "1

THB SYMBOLS -y/ 1, -\/ •^' ^^^*

The operation of multiplying by ~1 consists in reversing the

quality of the multiplicand, and is represented by one reversal

uf the line that represents tlie multiplicand ;
and the operation

of multiplying by -y/'l is one which if twice performed reverses

the quality of the multiplicand, and is represented by a half re-

versal of the line that represents the multiplicand.

So, multiplying by -^~1 is an operation which three times per-

formed reverses the multiplicand, and it is represented by one-

third of one reversal of the line.

So, multiplying by ^~1 is an operation which four times per-

formed reverses the multiplicand, and it is represented by one-

fourth of one reversal of the line
;
and so on.

The representatives of -^'1, ^{/-l, .^"1,
... are the rotations

shown in the following figures, wherein lines of the same length

as the unit make with that unit angles of Jtt, ^ir, ^ir, •••.

MULTIPLE ROOTS.

But-.- (-i)^=-i, (-i)^=-i, (-ir=-i, (-iy=-i, -,

i.e., •.* 1, 3, 5, 7,
•. (any odd number) reversals has the same

effect as one reversal,

.-. ^-1 may be represented by one-half of 1, 3, 5, 7, .••

reversals :
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and -.* oue-half of 5, 9, 13, ••• reversals are 2^, 4|-, 6J,
••• re-

versals, and have the same effect as a half reversal,

and one-half of 7, 11, 15, ••• reversals are 3^, 5|^, 7|,
•••

reversals, and have the same effect as IJ reversals,

.*. ~1 has only two distinct square roots in this system.

So, -^/"l may be represented by -J^, |, f , -I,
••• reversals :

and •
.

•

-J, ^, ^, • • • reversals = 2 1^, 4|^, 6J,
• • • rev'ls =

-J rev'l,

and |, ^, -^^-,
••• reversals = 3, 5, 7,

••• rev'ls = | rev'l,

and
-1^, J^-,

••• reversals = 3J, 5f , 7|-,
••• rev'ls =

-J
revls

;

.-. ~1 has three cube roots represented b}" the curved

arrow-lines of the figures, and but three.

iTT

So, -^ 1 may be represented by J, J, |, J, reversals,

and ~1 has four fourthjroots represented by the arrow-lines

of the figures, and but four
;
and so on.

POSITIVE AND NEGATIVE ROTATION.

Anti-clockwise rotation indicated by the figures is positive

rotation, or rotation through a positive angle; and clockwise

rotation is negative rotation, or rotation through a negative angle.

E.g., in the third figure above the two arrows indicate posi-

tive and negative rotation respectively : rotation through the

positive angle f tt and through the negative angle
—

^tt.

The roots of ~1 represented by negative rotation are therefore

identical with those represented by positive rotation when taken

in reverse order. "^

£.£/., (-i)-i=(-i)l, (-i)-i = (-i)*, (n)-f = (±i)i

The reader may draw diagrams to illustrate.
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MODULUS, ARGUMENT, TERSI-TENSOR.

Every number considered in algebra, whether real or imagi-

nary, ma}' be expressed in the form r* (~1)**, wherein r is the

tensor or quantitative factor of the number, and (~1)** is the

versor or qualitative factor. When the number r(~l)" operates

upon any vector, the result is a vector of like kind, such that

r is the ratio of their leugths or magnitudes and n is tlii> ratio

6 : IT, which their difference of direction, ^, has to two right angles.

If n be an even number, r(~l)" is positive ;
if odd, negative ;

if fractional, some or all of the values are imaginary.
The tensor r is also called the modulus of the number;

0,=zmr, is its argument or versorial angle; and the number

r'( 1)" is a versi-tensor.

Every abstract number, whether real or imaginary, may be

regarded as a versi-ten^or.

E.g.^ +4, ~3, 2 1,
— i are versi-tensors whose tensors are +4,

+
3, +2, +1, and versorial angles 0, tt, ^tt, | tt.

The reader should clearly distinguish between a vector and a

tensor or versi-tensor. Vectors are lines, i.e., quantities or

concrete numbers, and may represent any concrete numbers,

operands, or results, that admit of the same progressive change
of quality as vectors undergo ; but tensors and versi-tensors

are abstract numbers, i.e., ratios or operators, and are here

represented by the relations of lines as to length and direction.

The product of any vector by a versi-tensor is a vector of

like kind
; tliat of two versi-tensors is a versi-tensor [§ 3].

The properties of versi-tensors are here explained and de-

monstrated by aid of the appropriate lines
;
but they would be

as true, though perhaps not as evident, if standing alone in

their symbolic form. It appears presenth' that versi-tensors

are susceptible of all the ordinary operations of numbers when
those operations are properly defined, and that the ordinary
numbers of arithmetic and algebra are but special cases of these

more general numbers. The same rules govern all sorts of

numbers, and under these rules all sorts of numbers may be

associated, and operated upon together without confusion or error.
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§ 2. ADDITION AND SUBTRACTION.

In adding two or more numbers, two different results ma}- be

sought: (1) the arithmetic sum, or sum total, wherein no re-

gard is paid to signs of quality ; (2) the algebraic or net sum,

wherein the quality and relations of the numbers are considered.

E.g.^ if a railway-train has run sixty miles east, and then

forty miles west over the same track, the total mileage is one

hundred miles
;
but the distance it now stands east of the

starting point is but twenty miles.

So, if a sportsman walk ten miles east, then ten north and

ten west, he walks thirty miles, but is only ten miles distant,

and due north, from camp.

So, if several forces not all parallel to each other be applied

to a body at the same point, the effective thrust, their resultant,

is a single force acting along a line that may be parallel to

none of them and is less than their arithmetic sum.

Two or more vectors are added by placing the initial point of

the second upon the terminal point of the first, the initial point

of the third upon the terminal point of the second, and so on,

without changing their lengths or directions
;
and the vector sum

is that line which joins the first initial to the last terminal point.

E.g.^ of the three lines ob, bc, cd, below, the vector sum is

the line od, whatever their length and direction
;
and this group

of three lines, so far as the effect is concerned, in carrying the

point from o to d, maj' be replaced by the single straight line od.
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in particular, the vector sum or difference of the two perpen-
diculars of a right triangle is the hypotenuse ;

and the vector

sum of two adjacent sides of a rectangle is a diagonal.

E.g., in the figures below, ox -j- xp = op and ox + oy = op.

P P

O A X X O i

Converselv, a line may be replaced b}' an}- group of two or

more lines that form a broken line and have the same initial

and terminal points as the given line ; and the diagonal of a

parallelogram ma}' be replaced by two adjacent sides.

E.g., in the figures above od may be replaced b}' oB-fbc+cd,
and op by ox + xp, or ox -f- oy.

The lines added are vectors (carriers), and their sum is a vec-

tor that reaches from the first initial to the last terminal point.

So, when abstract numbers, operators, are added together,

viz., tensors, versors, and versi-tensors, their sum is a single

operator that, acting upon a unit operand, produces the same

result as if the several operators had acted separately upon the

unit, and the results had then been added together. The sum
of the several numbers is the same whatever vector be used as

operand : for the vector sums got by using different operands,

being obtained by like constructions, and so being homologous
lines of similar figures, as also are the operands, bear like rela^

tions to the respective operands.
The components of a vector are any two perpendicular vectors

of which it is the sum. A vertical vector has no horizontal

component, and a horizontal vector has no vertical component.
An operator that produces a vector perpendicular to the operand,

or, more generally, that half reverses the quality of anything,

is a pure imaginary; and an operator that produces an oblique

vector is a complex imaginary.

E.g. ,
in the right triangle oxp, let oa be the unit of length,

and let ox, xp be respectively parallel and perpen-

dicular to OA, and contain oa, in length, a, h times
;
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then the symbols a, 6t, a + bl, stand for numbers that act-

ing as operators on the unit give the lines ox, xp, op.

If the unit be horizontal, if r be the length of any vector,

and be its inclination to the unit, then rcos^ is the length of

its horizontal component, and ?*sin^ of its vertical component.
The horizontal component is produced by an operator whose

tensor is rcos^ and whose versor is 1
;
the vertical component

is produced by an operator whose tensor is rsin^ and whose

versor is i. Hence the oblique vector is produced by the opera-
tor r (cos^ + isin^) ;

and the operator 7* (
—

1)" [n = ^ :
tt] is

equivalent to the operator r(cos^ + isin^). The first gives
the number in its versi-tensorial form, as the product of a tensor

and a versor
;
the second in its complex form, as the sum of its

two elements ; i.e., of a real number and a pure imaginary.

If ic, yi be the elements of any number, and r, the modulus

and argument,

then a;=rcos^, ?/=rsin^, r=^(a;"+?/-), ^= tan~^(?/ : a;).

Anv number ricosO -\-i^m6) is^
'^^ ^

.1 than another num-^ ' ^ smaller

ber, when its modulus or tensor, r, is ^

'

"^.^
,
than the modu-

lus of the other : it is { ?^^^
^^

than the other number when its

real element^ rcosO, is-J ?
'

than the real element of the

other. The relations expressed by the signs > , < are inde-

pendent of qualit}' or direction, and they depend only upon the

lengths of the vectors produced, while the relations expressed

by the signs >, < depend only upon the horizontal projections.

A number is ivJinitesimaU finite^ or infinite when its modulus

is infinitesimal, finite, or infinite
;
and the arguments of and

00 are generally indeterminate.

E.g., -l±di^l±i, -l±3i<l±i, 0.i = 0, ±00-1 = 00.

If the modulus r and argument ^ of a variable versi-tensor

approach as limits the modulus ri and argument ^1 of a finite

constant versi-tensor, then cos (9 = cos 6)1, sin ^ = sin 6*1, and the

elements ?'cos(9, rising of the variable = the elements riCos,9i,

rjisin^i of the constant. Conversely, if the elements rcos(?,
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Y —

ri sin d = riCOS 01, riisin^i, then the quotient r(isia^) : rcos^,
= /tan^, =itan^i, and 6^0i, and r = ri. The constant

rj (cos 6i+ i sin 6i) is then the limit of the vanable r (cos ^+ 1 sin ^) .

Theor. 1 . Addition is commutative and associative.

(a) Two numbers, •

__--—^'^p

Let «, y be any two numbers
;

then will x-{-y = y -\-x. vi

For, let OA be any line, and let ox, /^^^1__—
-—jf x

OT be the results of operating
O A

upon this line by the numbers a;, y ; complete the par-

allelogram xoY-p
;

then •.• ox = YP, oy = xp, both in magnitude and in direction,

[geom. ,
df. eq. lines

.-. ox + OY = ox + xp = op; [df. add. lines

and OY 4- ox = OY H- YP = op,

.-. ox4-OY= OY + ox, [Il.ax.l

I.e., a«OA-|-y-OA = 2/'OAH-a;»OA,
.-. x-\-y = y + x, Q.E.D. [df. add. operators

(6) Three numbers.

Let a;, y, z be any three numbers
;

then will x-\-y -{-z = x-\- y + z — 'z-\-y + x — z-\-y + x=.'"
For let OA be any line, and let

ox, OY, oz be the results

of operating upon this

line by the numbers

a;, y, z; complete the

parallelograms xoy-p

XOZ-Q, YOZ-R, PXQ-S ;

then •
.

• OX = YP = ZQ = KS,

OY = XP = ZR = QS,

oz = XQ = YR = PS
;

,^-'-p1\

and

I.e..

OXH- OY + PS = OS, ox + OY+PS
ox + OY -f- PS = ox -4-OY + PS = •••

x + y'0^-\-z-OK = X'OK+y-\-Z' oa,

x-\-y-\-z = x + y-\-z=z ... Q.E.D.
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(c) Four or more numbers.

1. The theorem is true for two numbers, and for three, [(a, h)

2. If it be true up to n numbers inclusive, it is true also for

71 + 1 numbers.

For let the n-\-l numbers x^y, z -"U^vhe grouped and added

together in any desired way, and let the sum be s
;

then •.• s is obtained by adding the sum, say Q, of some of

these numbers to the remaining number, or to the

sum, say k, of the remaining numbers,
.-. s = Q-f-R.

Let R be that one of these sums which contains the number v,

and let t be the sum of the other numbers that make up r ;

then ••• neither Q,R,T nor Q-j-T contains more than 71 numbers,

.'. in each of them the several numbers may take any
desired order and grouping ; [hyp-

.-. S, = Q + R, = Q+T +^
=
qj-T+^ [(6)

= x-\-y-\-z-\ \-u-{-v

z= X -{- y -}- Z -\ -\-U-\-V. Q.E.D.

3. But the theorem is true for three numbers ; [(5)

.-. it is true for four numbers, / [2

.*. for five numbers, for six numbers, and/o on. q.e.d.

Cor. 1. The sum of two or more numbers is the

sum of their elements. I

E.g..) if the first root of each system be taken ;

then ^-1 + ^-1 + -^-1
= ^' +a + i*V^) + (iV^ + iO

= (1+V3)^-1. ^
'" ''

A
CoR. 2. The modulus of the sum of two or more numbers

is not greater than the sum of their moduli; and, if the imagina-
ries be unlike, it is less.

CoR. 3. If to the minuend the opposite of the subtrahend he

added, the sum is the remainder sought.
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§ 3. MULTIPLICATION AND DIVISION.

To multiply a concrete quantity by a versi-tensor is to multi-

ply the quantity by the tensor of the multiplier, and to make

such reversal or partial reversal of the quality of the result as

is shown by the versor of the multiplier.

E.g.., let ox:OA be the multiplier, oy the

multiplicand, oz the product;

then as to magnitude, oz : oy = ox : oa,

and as to quality, Zyoz = Zaox.

The product of two or more abstract num-

bers, versi-tensors, is a single number that

operating as multiplier upon any unit produces

at one operation the same result as if the

several versi-tensors operated as multipliers

in succession— the first upon the unit, the

second upon the first product, taken as a new unit, and so on

till all were used. The product of the several numbers is the

same whatever vector be used as operand : for the vectors that

result from using different operands are obtained from these

operands by like constructions, and so bear like relations to the

respective operands.

The quotient of one versi-tensor by another is that number

which multiplied by the divisor gives the dividend as product.

The dividend is likewise produced when the divisor is multiplied

by the quotient: for, as appears presently [th. 3], the product

is independent of the order of the factors.

Since, by definition [I. §8], the product of two reciprocals

is 1, it follows that the effect of their successive operation as

multipliers upon any quantity is to leave the operand unchanged ;

"ami that to divide by a versi-tensor is to multiply by its recip-

rocal.

E.g.., of the two square roots of ~1, viz., * and —
?, the

product is unity, and they are reciprocals : for [§ 1] their suc-

cessive operation upon any vector leaves it unchanged, and to

multiply by either is to divide by the other.
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Theor. 2. If two or more numbers he multiplied together^
the modulus of their product is the product of their moduli^ and
the argument of their product is the sum of their arguments.

Let X, y, z,
••• be any numbers severally equal to

r.(-l)^ r'.(-l)"', r". (-!)«", ...,

whose moduli are r, r', r", •••, and whose arguments are

^, 0\ 0'\ •••, equal to wtt, nV, ti'V, •••
;

then will x-y -z- "• = r - r' - 7'" "• .(-!)»»+«'+«"+•••.

For let OA be the vector unit, and let a;, ?/, 2;, •••, operating
on the unit, produce the vectors ox, oy, oz, •••,

and let oa, ox, ••• =the lengths of the vectors oa, ox, •••
;

then *.• ox =r(-l)'*.oA, op = r'(-l)"'-6x, p

.-. OP =r'(-l)**'-r(-l)".0A;

but *.* ox =z=r'0A, and op==r''OX,

and ••• Zaox= ^, and Zxop = ^',

.*. OP =r7''-0A, and Zaop = ^ + ^',

.'.OP may be produced by acting on oa

with the single operator whose ten-

sor is rr\ and whose versorial angle
is ^ + 6', or whose versor is (~1 )'*"•'"'.

.-. r'(-iy • r{-lf ' OA = rr'(~l)"+"'
• ol,

.-. r'{-iy'
.

r(-l)« = rr'{-iy+^'. q.e.d. [df. product

So, if OQ be produced when the operator whose tensor is

r", = oz : OA, and whose versorial angle is 0", =aoz,
acts upon op

;

then ••• OQ is also got when a single operator, with a tensor

rrV", = oq:oa, and an angle ^ + ^'+^", = aoq,
acts on OA,

.-. r"{-iy" '

r'(-l)"'
. r{-lY - oI = rrV" (-1)"+"'+""

• oI,

.-. r"(-l)"".r'(-l)'*'.r(-l)^=:r?V(-l)«+"'+"". q.e.d.

Cor. If one number be divided by another^ the modulus of
the quotient is the quotient of the moduli^ and the argument of the

quotient is the argument of the dividend less that of the divisor.

In particular^ of a 7iumber and its reciprocal, the moduli are

reciprocals and the arguments are opposites.
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Theor. 3. Multiplication is commutative and associative.

Let a, 2/, 2 ••• be any numbers, severally equal to

then

and

and

and

and

r.(-l)% r'. (-!)«', r".(-l)"''

the product x-y-z- '..=zvr''r"-

the product «• 2/* z ••••=?• 'F^^'

,n+ni+n"+...
•(-1)'

?H=?i'4-n"+ -.. = n+n'-{-n"-{-"' ;

so for any other order or grouping, [II. ths. 1,3

.*. the product a; •
2/

• ^— is the same whatever the order

and grouping of the factors. q.e.d.

Theor. 4. Multiplication is distributive as to addition,

(a) The product of the sum of two numbers by a third:

Let a, y^ z be any three numbers ;

then will z • x + y = Z'X-\-Z'y. ""^''7^

LetOA be any vector unit, and

let a;, y^ z, operating

on the unit, produce

ox, OY, 6z^ and let

>s

Q-"

r, r', r"
; 6, e\ 0" be

the moduli and argu-

ments of X, y, z.

Complete the parallelogram
xoY-p

;

then OP = ox + oY.

Turn ox, OY by the angle 0'\ and stretch them in the ratio r",

making oq = 2 • ox, or = 2; • oy.

Complete the parallelogram qor-s ;

then •
.

•

OQ : ox = OR : OT, and Z xoQ = Z yor, [constr.

.-. OxOYP is similar to Oqors,

.-. Zpos = ^" and os = 0-op;

and •
.

• OS = oQ + oF,

.-. 2;-op = 2-ox + z-oy; i.e., z-ox + 0?= 2;-ox + z«oy,

.'. z 'X-\-y' OA = Z'X-OA-\-Z'y'OA = Z'X-^Z'y'OA,

-.-. the product z-x + y = the product z-x-^z-y. q.e.d.
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(6) The product of the sum of three or more numbers "by

another :

Let x^y^z^ ••• be three or more numbers, and v another
;

then will v-a^ + iZ + zH —v-x-^-v-y \-V'Z-\ .

For V'X-\-y-\-z-\
—

V'X-\-v.y-\-z-\ [(a)

•=V'X-\-V'y -{-V'Z^,

= '\)'X-{-V'y-\-V'Z-\''d'~

^V'X-^V-y -\-V'Z-\ . Q.E.D.

(c) Tlie product of two or more polynomials :

Let ic + y + « + ..., a;'+y'+2!'H ,
be two polynomials ;

then x-\-y-{-z-\ •

ic'-f-2/'+2'H

+ y -a?' + 2/^ + g^ + -
+ 2. a;'4-2/'+z'+ ••• + •••

= a;-a;'4-a;-2/'4-a;.z'-}-
•••

4-2-a;'+0-2/'+2-3'H + •••. q.e.d.

So, if this product be multiplied by a third polynomial

x"-\-y^'-\-z"-\ ,
a fourth, and so on.

Cor. The product of two or more complexes is the product of
the sums of their elements used as polynomials.

Let X, y be any complexes such that x=p + qi, y=:p'-\- qH ;

then will x • y z=p-^qi 'p'-^q'i=pp'— qq^-\- i (pq'-hp'q) •

So for three or more factors.

Note. If x, yhe put in the trigonometric form

r- (cos^ + isin^), r'- (cos^'+isin^'),

then X'y = rr'' [(cos^cos^'— sin^sin^')

+ i (sin e cos 0'+ cos sin 0')']

= rr'' [coa{$-te') +isin(^ + ^')]. [trig.

So for three or more factors.
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§4. POWERS AND ROOTS.

A
•{ negative ^'"^^^^^^ power ^ [''(~l)*']'*"*j of any versi-tensor

r{-l)«, is the continued \ ^^^^^^^^

1 ><: r(-l)'* ^ r(-l)*».-.m times,

= 1 >< ?•-
>^ [("l)"]*" [11. th.3

= 1 X r±"» X [(-1)"]^'* ; [df. int. pwr.

I.e., it is a single versi-tensor that multiplying any vector

quantity would at one operation stretch and turn it

in the same way as if r(~l)'* had
{

,. .^} it m
times in succession ;

or, as if the tensor r** had stretched it,

and as if the versor [("I)"]'*''* had turned it m times as

far as would the versor ("I)**, and in the ^
^^™®

,. .

V / » 1
opposite

direction.

E,g.^ let OA be a unit, and let the ratio ox:oa be any

imaginary x\

make Z aox = Z xoy = Z toz = •••,

and ox : OA = OY : ox = oz : OY = • • •
;

then the ratios oa:oa, ox : oa, oy:oa, •••,

are the numbers o?. a^, a^, •••,

and OA, ox, oy, •••, the results of using x as

a multiplier 0, 1, 2, ••• times upon oa.

So, the ratios op : oa, oq : oa, or : oa, •••,

are the numbers x~^, x~^, x~^, •••,

and op, oq, or, •••, are the results of using cc as a divisor

1, 2, 3, ••• times.
pA fractional poiver, [r(~l)'*]?, is the pih power of any versi-

tensor whose gth power is r(~l)'»: i.e., its effect when multi-

plying any vector quantity is to stretch the multiplicand in the
p p p

ratio r?, and to turn it as would the versor [("l)"]*, or - times

as far as would the versor (~1)".
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An incommervsurahle power [r(~l)'*]"' [m incommensurable] ,

is the limit of [?'("1)*']'"', wherein m' is a commensurable vari-

able whose limit is m: i.e., [?'(~1)**]"* denotes the versi-tensor

whose { °'<"S"1"% is the limit of the ^
°>o<iulu3

^^(-i).n„.>

argument
'

argument
*- ^ /J

as m' = m.

A ^ . . power is any powerwhose exponent is
<(

.

•

imaginary^
-^ ^ ^ '

imaginary.
The effect of an imaginary exponent is considered later.

Theor. 5. The modulus of any real power is the like power

of the modulus of the base, and the argument of the power is the

product of the argument of the base by the exponent of the power.

Let ^(~1)" be any number whose modulus is r and argument

6, = wtt
; and let m be any real exponent ;

then will [r(-l)"]"*
=

9''"(-l)'"%

wherein r* is the modulus of the product, and m6, = mn-rr, is

its argument.

(a) m a positive integer;

then [^("1)'*]'"
= Ix r("l)''X r(-l)«... m times

[df. pos. int. pwr.
= r'r'-'m times •

("1 )
"+'*"• "" "'"«'

[th. 2

=
r'"(~l)""*. Q.E.D.

(b) m a negative integer, say — p ;

then •.• [r(-l)~]-^=l: [r(-l)"]^ [df . neg. int. pwr.

= l:r^(-l)"^ [(a)

= r-^(-l)-"^ [§3 th. 2 cr.

•*• [.r(-iyy =?''"(-l)'"\ Q.E.D.

(c) m a positive or negative fraction - ; p, q integers;

then •.• [r?(-l)?]* =r(-l)% [(a)

... r^-(-l)?
= [r(-l)"]s

... rf(-l)f- =[r(-l)'^]l;

I.e., [r(-l)"]"» =r'"(-l)'"". q.e.d.
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(d) m an incommensurable;

Let m' be a commensurable exponent whose limit is m
;

then *.• ?•"'= lim tensor r^'

and ••• (~l)'**
= lim versor (~1)"*', [df . incom. pwr.

.-. r^(-l)«'" = lim versi-tensor r^X"!)"*' [§ 2

= lim [r(-l)'']"»' [a, 6

= [r(~l)"]'*. Q.E.D. [df. incom. pwr.

Theor. 6. Every finite number has k distinct ktJi roots, and no

more, whose moduli are all equal and whose arguments are eqici-

different.

Let r(~l)'* be any finite number, a the one real positive value

of ^r, m any integer; [VIII. th. 13
n+2m

then •.• [a(-l)"*-]* = r(-l)"+2« = ^(-l)«^ [th.5

.•. the several roots sought are :

n--4 w-2 n n+2 w4-4

..., a(-l) *
, a(-l) »

, a(-l)S a(-l) *
, a(-l) *

,

n-f2m
•
••, all of the form a(~l) *

,

wherein a is the modulus of all the roots alike,

, (?i
—

4)77 (n— 2)7r TlTT (n-f-2)7r (n-f-4)7r

A/ fC K fC hi

are the arguments ;

which differ from each other by a A;th part of 2 tt.

But only k of these arguments have distinct effects, viz. :

7l7r (n+ 2)7r (n+4)7r ^^^ (n+2 » fe-l)7r .

for ••• the other arguments differ from those here named by
entire revolutions,

.*. the corresponding roots are the products of these roots

b}' even powers of ~1, and are identical with them.

And no number with modulus not a, or argument not embraced

in the list above, can be a root.

For the kth power of any positive number not a is not r,

and the product of an}- other argument by k is not (7i-}-2wi)n-.
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Note 1 . Of a positive real number the kth root taxes the form
2rn l+2m

a(~l) *
;
of a negative real number, the form a(~l) * .

Note 2. In the trigonometric form the theorem is written

k/ /-i\n r (n-\-2m)7r ,
. . (n -{- 2 m) 7r~\

-^r{ !)'*=« cos i—— i_+^sm-^^—— ^L

CoR. 1. Every finite number has +k distinct -th powers and

no more, their moduli all equal, and their arguments equidifferent.

[/i,
k any integers prime to each other.

For •
.

•

any -th power is the 7ith power of a A:th root,

[df. frac. pwr.
and ••• there are k such A:th roots, whose common modulus

is a, [above

and whose arguments all differ by multiples of ~, less

than 27r,

27r
say any two of them by ^—-

; [^ any integer < k
k

.*. the corresponding arguments of the -th power differ by

h times a • —^, =^ • 2 tt,-^ k' k

and *.* k does not measure gh, being > g and prime to h,

.*. this difference of arguments is not a multiple of 27r,

.*. all A; of the -th powers are distinct in value
;

k

and •
.

• their k arguments all differ by multiples of —5
A/

.*. when taken in order,after rejecting all entire multiples

of 2 TT, each differs from the next by — ;

A/

i.e., the arguments of the powers are equidifferent. q.e.d.

Cor. 2. (a) If a commensurable exponent m' approach some

limit m, whether commensurable or incommensurable, then every

value of the power [r(~l)°]'^' approaches some value of [r(~l)°]™
as a limit.
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(b) If m be incommensurable^ the argument of the power

[r(~l)°]'° may be indeterminate.

For •.* (a) the common modulus +r^' of all values of [r(~l )"]**'

approaches as a limit the modulus ^r*" of [r(~l )"]'*,

and •.* the argument ??i' (n + 2A;)7r of any particular value

of [>•("!)"]"*' approaches as a limit the argument

m(7i + 2k) TT of that corresponding value of [r(~l )'*]'"

which is in the same series,

.*. every value of the power [?*(~1 )**]'"'

approaches some value of [?*("!) "J"* as a limit, q.e.d.

And -.* (6) as the commensurable m' approaches the incom-

mensurable limit m, the successive convergents have

larger and larger denominators, [continued fractions

.'. the number of distinct values of the m'th power in-

creases without limit as m^=m\
and •.* for any value of m' these numerous values of the

power have their arguments equidififerent,

. . as m'= m the arguments of consecutive values of

the power approach one another more and more

closel}',

and in the limiting case, when the exponent is the incom-

mensurable m, the argument of the power may be

regarded as quite indeterminate, i.e., as continuous.

Q.E.D.

Note. By convention, however, the values of an incom-

mensurable real power of a real positive base are often re-

stricted to the single real positive value.

So, by convention, every power of the Napierian base e

[XII. th. 28, ap. 4, cr.] is restricted to its real positive value,

though the powers of the equivalent number 2.71828 ••• are not

so restricted ;

i.e., -^e=l-UST2"' only; but V2-71828..-= ±1.64872....
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Theor. 7. The product of like powers of tivo or more bases

is the same power of the product of the bases.

9'

Let the bases be r{^l)^^ r'(~l)^ •••, whose moduli are r,rV*-?
and whose arguments are ^, ^',

•••
;

and let m be

any real exponent :

then •.• of the powers [r(-l)if]"', [r'(-l)F]"', ...,

the moduli are r", r'"*, •••,

and the arguments are m9, m$\ •••
;

.'. of the product of powers [r(-l)'r]"'. [r'(-l)i"]"»...

the modulus is 7'™ • r''"•••
,
=

(rr'- ••)"',

and the argument is m^4- w^'-f- •••, = m (^ + ^'H- •••) ;

and •.* the product of the given bases has modulus rr'*-*

and argument 6.-\-0^-\ ,

.'. its mth power has modulus (rr'"-)'"

and argument m(^ + 6'+ •••) ;

t.e., the product of mth powers of the bases, and the mth

power of the product of the bases, have the same

modulus and argument, and are equal, q.e.d.

Cor. Tlie quotient of like powers of two bases is the same

power of the quotient of the bases.

Note. When the exponent ??i is commensurable, and the

arguments ^, ^',
••• of the given bases are so related that the

values of their sum 0-\-0' -\-
-" cannot differ from one another

except by certain of the multiples of 2 tt, it may happen that

the power of the product or quotient has more distinct values

than the product or quotient of the powers. [comp.VIII. th. 2 nt. 2

E.g. J
let two given bases, and their products, be 1 + 1, 2i,

— 2 + 2 /, whose moduli and arguments are :

V2, i7r + 2^7r; 2, ^7r'+27c7r; y8,^7r-{-2l7r,
wherein /i, Zj, 1 = any integers, positive, negative, or zero

;

then, in general, (1 + i)"*
•

(2i)'"
= ("2 + 2i)'» ;

I.e., every value of either member is a value of the other

member,
for the modulus of either member is +82,

and the argument of either member is m •

(Itt + Z«27r),

wherein I, =h-}-k, is any integer whatev.er.
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But if m =
1^,

and if it happen that in the investigation

from which the bases 1 -f-z, 2i, ~2 + 2i arise, the

2 1 is got as the square of the 1 + z, while the ~2+2t

presents itself independently,
then •.' k=2h^ while I remains unrestricted,

.*. the argument of (1 +*)'"• (2 4')"*
is

iU7r4-(/i + 2/i)27r], =i7r + 7i.27r,

while the argument of (~2 -\-2i)"' is

i(f7r-fZ.2,r), =}7r+?.|7r;
i.e., the product of the powers has only one value,

while the power of the product has three distinct values.

Theor. 8. TJie product of two powers of any same base, in

any same series^ is that power of the base whose exponent is the

su7n of their exponents, and is in the same series.

Note. Different powers of a base are in the same series,

when they arise from attributing to the base the same argument
and not arguments differing by one or more entire revolutions ;

i.e., when their bases are identical and not merely equivalent.

[comp.VIII.§l, VIII. th. 10
e

Let the base be a, =r(~l)'!-, whose modulus and argument
are r and 6 ;

and letp, q,
••• be an\' real exponents ;

then '.- A^, A', ••• A^+«+- have the moduli ?-^, r',
••• r^+2+"

and the arguments p6, qO,
••• {p + q-\ )6, [th. 5

and ••• r^.r'.-- = r^+«+-, [Vlll.th. 10

and p^-f-g^+...= (p-t-g-f....)^,

.*. the product of the moduli of aP, a', ••• is the modulus
of A^+«+-,

and the sum of the arguments of a^, a'',
••• is the argument

of A^+'+-;

i.e.
,

the product a^ • a' • • • = a^«+- ; q.e.d. [th. 2

and ••• the argument of this product is {p-\-q-\ )6,

and not (p + g H h 2k7r)0,

,'. the product is in the same series as the factors, q.e.d.

Cor. The quotient of two powers of any same base, in any
same series, is a power of the base whose exponent is the differ-

ence of the given exponents; and it is in the same series.
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Theor. 9. A power of a power of any base is that power of
the base whose exponent is the product of the given exponents.

e

Let the base be a, = r(~l)'r ; and let m, n be any exponents ;

then •.•a'" has the modulus r"* and the argument mO,
.-. (a"*)** has the modulus (r"*)** and the argument n{mB) ;

i.e., (a"*)" has the modulus ?-'"" and the argument mnO ;

but A"*" has the same modulus r™" and argument mnO ;

.-. (a"*)"
= a""*. q.e.d.

Note. If a base b be not identical with a*" but only equivalent

(th. 8 nt.), and if n have a denominator q\ then b"* may have

values not included among those of a"*"
;
and Theor. 9 may be

stated as follows :

Of any number known merely to be equivalent to a given

power of a given base, any given power includes among its

values all values of that power of the given base whose exponent
is the product of the given exponents. [comp. VIII. th. 4 nt.

E.g.^ if ^, the argument of a, be a + 27i7r,

and if B, = A"* but ^ a*", have argument mO + 2A;7r,

wherein h^ k may take in succession all integral values,

then •.• A*"l has the argument !!?^ • a +^ • 2 tt,

q q

and •.• B? has the argument !!^ . a + ^^^^^ "^ ^^
•
27r,

p p p
.'. B? takes every value of a"*?, but it may be that b« takes

other values besides.

PrOB. 1. To FIND THE Wth ROOT OF ANY REAL NUMBER, itt":

Put X for the roots sought; then:
2

To find the nth root of a°, write x =a ("1)^, a(~l)s,

a(-l)n, ... a(-l/"^; [th. 5

i.e., write x = B,(cosO -\-\ sin 0), alcos his*^—-j'
**••

1 8

To find the nth root of — a", write x = a (~1)'», a(~l)°, .

5 2n-l
.

a(~l)n,
... a(-l) n 5

/ TT
.

. . 7r\ / Stt
,

. . 37r\
I.e., write KzzzQ.l cos- -\-\si7i-]. afcos \-\sin— N ••••

V n nj' \ n nj
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1. To find the square root of a? :

then •.• «= a(cosO + isinO), a(cos|7r + isin|7r),

and '.* cosO = l, siuO = 0; cos7r = --l, sm7r=0, [trig.

.*. x = a, —a.

2. To find the square root of —a^:

then ••• a; = a(cosj7r-|-isiniJ^7r), a(cos|7r+ ismf tt),

and ••• 003^77 = 0, sin |7r= 1 ; cosf7r= 0, sinj7r=
—

1, [trig.

.'. x= ai, —ai.

3. To find the cube root of a^ :

then ••• a:= a(cosO + isinO), a(cosf 7r + esinj7r),

a(cosj7r + tsin|7r),
and ••• cosO = l, sinO = 0; cos|7r = — |^,

sin j tt= ^-y^S ;

cos|7r=-i, sin|7r = -|V3, [trig.

.-. x= a, ja(-H-iV3), ^a{- 1 - i-y/3).

4. To find the cube root of — a^ :

then ,.*. a; = a(cos^7rH-isin^7r), a(co8f 7r + tsinf tt),

a (cos ^ TT + * sin ^tt) ,

and *.• cosj7r=J, 8ini7r=^V3; cos7r = — 1, sin7r = 0;

cos|7r= i, sin|7r= --J-V3, [trig.

.', x=ia{l + i^B), —a, ia(l-iV3).

5. To find the fourth root of a* :

then *.• a;= a(cos0 4-*sin0), a(cos}7r + tsin|7r),
- a(cos^Tr-f- isin|7r), a(cosf 7r-}-isin|7r),

and •.• cosO = l, sinO=0; cosj7r=0, sin^7r=l;
cos7r=— 1, siuTT =

; cos|7r=0, sinf TT = —1 ;[trig.

.*. x = a, ai,
—

a,
— ai.

6. To find the fourth root of — a* :

then ••• a;=a(cos:|^7r + isinj7r), a(cosf 7r + isinf tt),

a(cosj7r-f-isinj7r), a (cosJ-;r + isin Jtt),

and •.* cosj7r = y'i-5 sinj7r = ^|-; cosf7r= — ^|-,

sinf7r = Vi; cosj7r= — Vii sinJ7r = — Vi;
cosj7r = V^) sin|-7r

= — Vi; [trig.

.-. a;=ia(V2 + *V2), ha(-^2+i^2),
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7. To find the fifth root of a^ :

then ••• a;=a(cosO + ismO), a(cosf 7r + ism|7r), ••.,

and ••• cosO=l, sinO = 0; cos|7r = ^ (V^ ~ l)?

sin|,r= iV(10 + 2V5) ; •••» [trig.

i^[-(V5 + i)+*V(io-2V5)],
ia[-(V5 + l)-iV(10-V5)],
ia[(V5-l)-iV(10 + 2V5)].

8. To find the fifth root of - a^ :

then •.• x=a(cos^Tr-\-i8m\Tr), a(cosf7r + isinfTr), •••,

and .-. cos^7r = ^(-^5 + 1), sin|7r=JV(10— 2^5); ...
[trig.

... £c = ia[(V5 + l)+^V(10-2V5)],
ia[-(V5-l)+iV(10 + 2V5)], -a,

ia[-(V5-l-iV10 + 2V5)],

ia [(V5 + 1)
- t V(10 - 2V5)].

And so for other roots.

PkOB. 2. To FIND THE Wth ROOT OF AN IMAGINARY a-^M:
write r =V (a- + b^) ,

= tan'^ (b : a) ;

then a + bi = r (~1)'^, =r{cos9 -\-\sin6)\

and (a+ bi)n = rn(~l)n'r, rii(~l)
htt

, ri(~l) n/r
, ...,

= Tn{ COS - + 1 sin- L rs cos h i sm ,
•••

V n ny' \ n n J

E.g., to find the fourth root of 1—^~B:
then •.• a=l, b = -^S, r=2, ^ = |7r, |7r, -I^tt, ^O-tt;

... l-V-3 = 2(-l)f, 2(-l)l, 2(-l)¥, 2(-l)¥,
=

2(cos-|7r 4-i sin
-|7r),

2 (cos |7r +i sin|7r) ,

2(cos^+ isin-y-Tr), 2(cos-2/7r+isiny7r),

.-. (l-V-3)i=2^(-l)*, 2i(-l)^ 2i(-l)i 2i(-l)^
=

2^(cos|-7r + isin|-7r), 2^cosf7r+isin|-7r),

2^ (cos Jtt + * sin Itt) , 2 1

(cos J/^r + i sin ^^-tt) ,

= 1.0299 + .59451, - .5945 + 1.0299i,

- 1.0299 - .59451, .5945 - 1.0299i.
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§ 5. ABRIDGED REPRESENTATION.

In man}' important applications of the theory of imaginaries

their representation is abridged as follows :

A fixed point or origin o is chosen, and a unit-line oa point-

ing to the right is taken as the common operand of all the

imaginaries to be represented ; then, of any imaginar}- op : oa, op

is the representative vector^ and p is the representative point; for,

since the operand ol is the same for all the imaginaries, the

resulting vectors or even their terminal points are sufficient to

distinguish one operator from another.

In this abridged representation, the thing chiefly present to

the mind is the point p
;
and every number, real or imaginary,

is conceived to be written at its representative point, in the plane

GAP.

E.g.^ if p, Q be the representative points of any numbers p, g,

then p is further than Q^ f^o^^'ull^^'i^i^
when p ^ >5; the

middle point of pq is the representative point of h {p + q) ;
and

PQ is the representative vector of {q
—

i?).

So, if A, B, c, D be the representative points of a, 6, c, d

respectively, and if a -\- c — h -\- d^ then abcd is a parallelogram

whose equal sides ab, dc are representative vectors of the equal

numbers (6
—

a) , (c
—

cZ) ,
and whose centre is the representa-

tive point of J (a -H 6 H- c -f- cZ) .

If a variable pass from one value to another by continuous

change, then its representative point moves along some locus,

the path of the variable.

E.g.^ the path of a real variable lies in the line oa
;
the path

of a variable pure imaginar}- lies in the line through o perpen-

dicular to OA
;
the path of a variable whose versorial angle is

constant is a straight line through o
;
the path of a variable

whose tensor is constant is the circumference of a circle whose

centre is o.
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§ 6. EXAMPLES.

§ 1-

1 . Assume any convenient linear unit, and plat the numbers :

0(-l)«; 1(-1)S -l(-l)-'; 2(-l)^ -2(-l)-^

3(-l)',-3(-l)-^ 4{-iy,-i{'l)-*; o(-l)»,-5(-l)-».

2. So, the two values of -^4 and of ^^"4 ;
the three values of

^27, and of -^-27 ;
the four values of ^256, and of

^-256 ;
the five values of -^3125,' and of -^-3125 ; the

six values of -J/216, and of ^"216 ; the eight values of

^a« and of -^'a^ ;
the ten values of ^a^ and of ^^'a}'' ;

the twelve values of ^a^ and of ^~a}^, wherein a is any
positive real number.

§2.

3. Find the moduli and arguments of the following numbers,

given by their elements :

i+iV"3, i-iV"3 ; 1+*, 1-M 2V3+2Z, 2V3-2i;

Vo + 1 ± ^V(10 - 2 V5) ,
-V^ -1 ± V(10 - 2 V5) ,

wherein i(V5+ l)
= ^os36°, ^^(10'-2^5) = sm3G°

;

V5-1±H/(10 + 2V5), -V5+1±^V(10 + 2V5),
wherein i(V5-l)=cos 72°, iVC^^+^V^) = sin72°.

4. If a, h be any two real numbers, show that the modulus of

the complex imaginary a±hi is V(<^^+^0> ^^^ ^^^ argu-

ment, tan ~\ ± 6 : a) .

5. Assume any convenient linear unit, and plat the following

numbers
;
add them, compute the moduli and arguments

of the several sums, and plat those sums.

2i^,2i^; 2i2,2i^2r^; 3^^3^^3^2; 3i-2,3r^3r'^\

6. Draw an equilateral triangle abc, assume the base ab as the

linear unit, then show what numbers will produce the sides

AB, BC, CA, and find their elements.

Add these numbers and show that their sum is 0.

7. So, for the square, the regular pentagon, the regular hexa-

gon, the regular octagon, the regular decagon, the reg-

ular dodecagon, assuming an}^ side as unit.
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§3.

8. Find the products, and show graphically that they are real, of

2 + 3i, 2-3i; a-\-bi, a — bi; ^3-h^^y6, -^S -i^5;

9. Find the products of the sets of numbers in Exs. 5, 6.

10. Multiply a-\-bi by c-j-di, and show that the product takes

the form p + gi, wherein p = ac — 6d, q = 6c + ac?
; and

that r = V(«'+ b') (0^+ (f-), and 6 = tan"^ bc±ad^
ac — bd

11. Divide a.-\-bi by c + c^i, and show that the quotient takes

the form p + Qh wherein p = ^^P^j, q = ^^=^f ;
and

that r =^1^, and ^ = tan"^ ?^^^1^.
\c2 + cP ac-f6c2

12 Divide
^ "^^^' • 9lIiM- ^ + 6i

.
a — bi

^
a — bl

, CT-f-6i

a — bi a + 6i
'

c -f di c — di
'

c 4- cii

*

c — d^

13. Multiply

2l*+2^'by2^*4-2^^;3^^+3^^+3i«by3^-2+3^~^^-3^•~''A
Plat the products ; find their elements, moduli, and arguments.

14. Express two or more versi-tensors as complexes, and using
them in that form, show that the multiplication of such

complexes is both commutative and associative.

§4.

15. Resolve the numbers given in Ex. 2 into their elements.

16. Find the product of the two values of ^4, and of -^^"4 ;

of the three values of -^27, and of .^"27 ;

of the four values of -^256, and of ^"256 ;

of the five values of ^3125, and of ^/-3125.
Write the several factors in the three forms r(~l)'*, r-i^*,

and a -f- bi
;
and show that the products so found are the

same whichever form be used.

17. Find the powers and roots as indicated :

[2 + i(V^ + l) + iV(10-2V5)]^ (3i-f3i2)i
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XI. EQUATIONS.

^P* For definition of the words equation^ identity^ inequality^

statement^ memhei'^ and copula^ see I. § 5.

§ 1. STATEMENTS.

One statement is a^ ^.
^ condition ot another when, if

the first be
-{

.

'
' the other is also ^ .

'

true,
' true.

Two statements are equivalent if one be both a necessary and

a sufficient condition of the other, i.e., if they be false together

and trne together.

Two or more statements are { .' ..,, when, if some of
'

incompatible
'

them be true, the others must be ^ ^
, \ independent when,

whichever of them be true or false, the rest may, just as well.

be true, or be false.

rr,, I necessary conditions , associated
There are n < . .y.. amonff m < . ..-,,

' contradictions ^ '

incompatible
statements when some m— n of these statements are independent,

and if these be true, the remaining statements are
-{ ^

,, . ,

*

E.g.^ the equation x — S is equivalent to the equation 2x — 6,

and it is a sufficient, but not a necessary condition, of the in-

equality aj<4.
The three statements are associated and have two necessary

conditions among them, since, if the first be true, so are both

the others.

The last two are necessar}' conditions of the first
;
the third

is not, but the second is, a sufficient condition of the first.

So, the inequalities a;<?/, y<z, z<,x are incompatible, in-

volving one contradiction ; for, though any two of the state-

ments may be true or false, or one be true and the other false,

yet if two of them be true, the third must be false.

So, the equations x-\-y = 2, x-^2y — S. x + oy—^^ are

. associates,
v,

*

o- J "^cessary condition
oj^^j.^. them

'

incompatibles,
^^^^° ^^^

'^ contradiction ^
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§2. SOLUTION OF EQUATIONS.— UNKNOWNS.

The letter or letters for which particular values are sought
that shall make true the statements contained in the equations

are the mikfwicn., as distinguished from the other elements,

that are given and now called known elements
;
and the solu-

tion of an equation, or system of equations, consists in making
such transformations therein, as, while the equality of the mem-
bers is preserved, and the relations between the elements are

unchanged, shall result in giving the values of the unknown

elements in terms of the known elements. The values so found

are the roots of the equation or system of equations ;
and the

test to be applied to them is to replace the unknown elements

by these values, and see if they make the equations identities.

E.g.^ of the equation 2a;= 4
[a; unknown] 2 is a root,

••• 2-2 = 4, a numerical identity. [df . root

So, of the equation ar—bx-{-G= [a; unknown] 2, 3 are roots,

•.• 22-5.2 + 6 = 0, 32-5.3 + = 0.

So, of the equation a^ = a^
[_x unknown] ,

a, ia(— 1+ i-y^3), ia(— 1-1^3) are roots,

•.• a^=a\ [ia(-^l+iv3)]' = a3, [ha(-l-i^3)Y=a\

Equations that involve the same unknown elements, and are

satisfied by the same values of them, are simultaneous equations ;

and those values are simultaneous values.

E.g., it the equations 2a; + 5?/ =19, 6x — Sy = S [a;, ?/ un-

known] be simultaneous, 2, 3 is a pair of roots,

•.• 2.2 + 5.3 = 19, and 6.2-3.3 = 3.

So, of the simultaneous equations x — y = 5, x^-\-y^=lS

2,-3 ; 3,-2 are pairs of roots ; but not 2,-2 ; 3,-3.

So, if two plane curves be expressed b}* two equations involv-

ing two variables, for the points of meeting both curves have the

same coordinates, and for these points, but for no others, the

two equations are simultaneous.

The roots of an equation are sometimes called its solution.
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§3. DEGEEE OF EQUATION.

If, without extracting roots, an equation involving one un-

known element be so transformed that both members are entire

as to that element, the degree of the equation is the degree of

that term wherein the degree of the unknown element is highest.

If the equation contain QYQvy power of the unknown element,

from the highest to the zero power inclusive, it is a complete

equation ;
if not, it is incomplete.

E.g. , the equation dbx = cd-^ef \_x unknown] is of the first

degree, a simple equation.

So, the equation y^+3y = 4d
[2/ unknown] is of the

second degree ;
it is a complete quadratic equation;

but the equation y^ = 49 is an incomplete quadratic ;

and the equation if -\-Oy
— Ad is a complete quadratic.

So, the equation ?-^ + 5r^4-5r = 426
[?- unknown] is of

the third degree ;
it is a complete cubic equation.

So, the equation k*-{-12 Jc^ + 60 k- + 95 k =1230 [k un-

known] is of the fourth degree ;
it is a complete

biquadratic equation.

So, the equation s = a(r'*— 1) : (r
—

1) is of the 71th de-

gree if r be the unknown element
;

of the first degree, if s or a be the unknown element
;

an exponential equation if n be the unknown element.

An equation may contain one unknown element or more.

E.g.^ the equations above have each one unknown element;

but the equation ax--\-'2 lixy -^by"" -\-2gx-\- 2fy -f cZ = is

a complete quadratic with two unknown elements
;

and aa? + by^ -f- cz^ -\- 2fyz + 2 gzx + 2 hxy + 2lx-i-2my

-\-2nz-{-d=:0 [_x, y, z unknown] is a complete quad-

ratic involving three unknown elements.

If an entire equation involve two or more unknown elements,
the degree of the equation is the sum of the exponents of the

elements in that term in which their sum is greatest.

E.g.^ the equation Sxy^-^2x^-\-y^-i-x-{-y-^27 = is a cubic,

but not complete.



284 EQUATIONS. [XI. ths.

§4. GENERAL PROPERTIES.

Theor. 1 . If to both members of an equation the same num-

ber be added, the roots of the equation are not changed thereby.

Let p = Q be any equation, and n any number
;

then are the roots of equations p= q, p4-n = q+n, identical.

For •.* p + N = Q-hN when p = Q, and then only,

.-. every root or set of roots of the equation p = Q, sat-

isfies the equation p -f- n= q + n, and conversely ;

I.e., every root of either equation is a root of the other.

Q.E.D.

CoK. 1. If any term be transposed from one side of an equa-

tion to the other and its sign reversed the roots of the equation

are not changed thereby.

E.g.., the roots of the equations

aar' + 6a; + c = 0, ax^+ 6aj= — c, are identical.

Cor. 2. If the signs of all the terms of an equation be changed
the roots of the equation are not changed thereby.

Theor. 2. If both members of an equation be multiplied by

any same number, not a function of the unknown elements and

not nor oo, the roots of the equation are not changed thereby.

Let the equation p = q be any equation, and n any number not

a function of the unknown elements, and not nor oo
;

then are the roots of the equations p = q, n-p = n-q identical.

For, write the equations in the form p — q = 0, n(p — q) = ;

then •.• N is not a function of the unknown elements, and not

0, nor 00,

.. n(p — q) vanishes when p — Q vanishes, and then only,

and conversely ;

.*. every root of either equation is a root of the other.

Q.E.D.

Note 1. If n be 0, n(p — q) vanishes for any values of the

unknown elements that make p — Q finite.

If N be X, n(p — q) may not vanish when p — Q vanishes.
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If N be a function of the unknown elements, n may vanish

for other values of those elements than those values that make
p — Q vanish, and may thus cause n(p — q) to vanish.

If N be a function of the unknown elements, n may become

infinite for some of the values that make p — Q vanish, and

n(p — q) may not vanish.

In each of these four cases the equations p— q= 0, n(p—q)=0
may not have all their roots identical.

E.g., let X be any entire function of x, and a any constant
;

then ••• whatever factors x has, the product (x—a)'iL has

another factor, x — a.

.', whatever roots the equation x = has, the equation

(a;
—

a) • X = has also the root a.

So, of the equation a^ — 5x -{-6 —0, the roots are 2,3;
but of the equation x^ — 5a^-\- 6x = 0, the roots are 0, 2, 3,

I.e., by multiplying the equation by a; a new root, 0, is

introduced which does not satisfy the original equa-
tion ar — 5»-|-6 = 0, and is not a root of it.

So, of the equation x^ — oxr -}- 6x^=0 the roots are 0,2,3;
but of the equation ar— 5a; + 6 = the roots are 2, 3, only,

i.e., by dividing the equation b}' x, one root, 0, is lost.

So, of the equation 3 — a? = 15 — 2 a;, the single root is 12
;

but if this equation be multiplied by a; — 1, the resulting

equation a^— 13a; + 12 = 0, has two roots, 12,1.

So, of the equation a^ — l=ax — a the roots are 1
,
a — 1

;

and if both members be multiplied by a; :
(a;
— 1

) ,
the re-

sulting equation, a;(a;-f- 1) = aa;, still has the root

a; = a — 1, for which the multiplier becomes neither

00 nor 0,

but it has
-{

• a o
^^^ which the multiplier becomes ^ ^

*

Note 2. If the function x be not entire, but contain a term

of the form a : (x—a) ;
then x may become infinite, when x= a,

and (x
—

a) -x may take the form • oo, which may or may not

vanish
;
and multiplying the equation x = by a; — a may or

may not introduce a new root into the equation.
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E.g. , multiplicatiou by the factors a;, a; -f 1 generally intro-

duces the roots 0,~1 ;

1 3
but if the equation 2 = --fa; — 1-| — be multiplied

by a;-(a;-f 1), 0,"1 are not introduced as new roots.

For ••• X contains a term which is infinite when x = — 1 ,

a;-f-l

and •.* this infinite term, when multiplied by the zero, ic + l,

is the finite number 3,

.*. (x-f 1)'X does not vanish when x = ~\\ and ~1 is not

a root of the new equation.

So, X • X does not vanish when a; =
; and is not a root.

But if the equation 1 = — 6 be multiplied by
aj"""! x— x

a; — 1
,
the resulting equation is a:^ — 7a; -f- G = 0,

whose roots ai-e 6, 1,

whereof 6 satisfies the original equation and is a root of it
;

but *.* 1 does not satisfy it, and is not a root of it,

.'. by the use of the factor a; — 1 a new root (a stranger)

has been introduced into the equation.

The reason is manifest : the factor x— 1 is not needed to clear

the equation of fractions
;
for if the terms of the origi-

nal equation be all transposed to one side and reduced
1 —a?

to lowest terms, the equation becomes 7 = 0,\—x
i.e., 7— (l-ha;)=0, whence x=6 ;

and there is no other root
;

i.e., the numerator and denominator vanish together when
a;= 1

, and the value of the fraction : is 2.

So, the equation 1 -\ x-j- — = mav be cleared of
6 ar — 1

frattions by multiplying by Q{x—l)(x-^l), and be-

comes 7a^ + 6a;— 13 = 0, whose roots are 1,
—

-V-;

but •.• —-^ satisfies the original equation, and 1 does not,

.
•

. the factor a; — 1 introduces a new root 1
, but a; 4- 1

does not introduce a new root.
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The reader may search out the reason for this difference.

So, if the equation 1
= be multi-

X — a x-{- a x' — a"

plied by all its denominators, the resulting equation is

(2a;
—

1) {xr
—

a-) = 0, whose roots are ^, + a,
— a

;

but if it be multiplied by the least common denominator,

the resulting equation, 2 a;— 1 =0, has a single root, J.

Of these three roots only J satisfies the original equation.

Theor. 3. If the two members of an equation he raised to the

same integral power ^
the results are equal; hut it is possible that

the new equation may have some roots not found in the old one.

For if p = Q, wherein p or q or both of them are functions

of some unknown element, say cc,

then p- =Q^ p^ = Q^ ..., p" = Q**, [II. ax. 6

p2_Q2 = o, p3-Q3=0, ..., P--Q" = 0,

i.e., (p_Q)(p-f-Q) = 0, (p_Q)(p2-|-PQ+Q2) = 0, ...,

(P
-

Q)(p"-^ + P"^2q ...
_f_ QU-l) ^ Q^

But these equations are satisfied either if such values be

given the unknown that p — q=0,
or that p+Q = 0, p2+pq4-q2= 0, •..p''-i-fp'»-2Q... + Q'^-i= 0;

and in general the roots of the equation p — q = are not

the same as the roots of the equations p + q = 0,

p' + pQ + q' = 0, •••, p'^-i + p'*"2q _!-... +Q«-i=0.

E.g., it a; = 5, then a;^=25, and a; = +5,~5;

but only "^5 satisfies the original equation and is its root.

So, if 1;/{0—x) = x—d, then a;^— 17a;+72 = 0, and a; = 8, 9;

but 9,. not 8, satisfies the original equation, and is its root.

AYere that equation -^{d—x) = a; — 9, the root were 8, not 9.

Note. Unless the reader be sure that every step he has taken

.g
. va I

, ^^ ^^^^ ^^^j^ successive transformed equation
'

reversible^

is true^
whenever

^^^^ previous ones are true, his results can
'

only when ^

serve merely to suggest values of the roots for trial. If any

step has been^ jr^ev^sible
^^^ P^'oblem may have^ ^^^^^

solu-
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tions than he has fouud. In particular, he must have multiplied

by uo more factors containing the unknown than were necessary

to clear of fractions, and must have w
^

no solutions in

takino; like ^
^

- of both members
;
or else he must test his^ ' roots '

results by substituting in the original equation or equations, and

say ; if the}' satisfy the equation they are among its true roots ;

if not, they are strangers introduced in course of the work. The
results are to be trusted only after they are tested.

Theor. 4. If all the terms of a rational integral equation

involving one unknoiun element be transposed to one side, then :

1 . The polynomial so formed has for a factor the excess of the

unlcnoivn element over any root of the equation;

2. Conversely, if this iwlynomial have for a factor the excess

of the unknown element over any given number, that number is a

root of the equation.

1. Let the equation x = be any equation wherein x stands

for some rational integral function of an unknown ele-

ment X, say Aa;"+ Baf*"^4-caf*~^H [--rxt-^ sx-f-T,

and let a be a root of the equation x = 0,

then is x measured by x— a.

For, divide x by x—a, and put q,r for quotient and remainder
;

then *.
• x = Q •

(a;
—

a) + R, for every value of x,

wherein r is independent of x and constant ;

and •.• x=0 and x — a=0 when a;= a, [%P-
.-. R = 0;

and •
.

• the division of x by a; — a is effected without remainder,

.. x — a is a measure of x. q.e.d.

2. Let X be any rational integral function of x, and let a; — a

be a measure of x
;

then is a a root of the equation x = 0.

For •
.

• X = Q •

(a;
—

a) ,
for every value of x, and there is no

remainder, [pJP'

and *
.

• X — a = when x = a,

. *. X = Q • = 0, when x is replaced by a,

i.e., a satisfies the equation x= 0, and is a root of it. q.e.d.
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CoE. 1. Every factor of x that is itself a function of x may
be put equal to 0, and the roots of the equations so formed are

roots of the equation x = 0.

Cor. 2. No rationalintegral equation x = has more roots

than the function x has linear factors [factors of the form x—a']\
and if the equation he of the nth degree, it has not more than n roots.

CoR. 3. If there he two rational functions of the same variable
,

neither of which is higher than the nth degree, and if these two

functions be equal for more than n finite values of the variable;

then are the two functions identical.

Let AX" -\- Bx''-'^ H h so; -h T = a'x"" + B'a;"-^ -\ f- s'aj + t'

be a true equation for more than 7i finite values of x ;

then will A = a', b = b',
••• s = s', t = t',

and Aa;" + bx''~^-\ 1- sx + t = A';t'"+ b'x''-'^-\ h s'ic+ t.

For, if not, the equation

(a— A')a:'* -h (b
-

b') x''-'^-\ f- (s
—

s')a; + (t-t') =
has not more than n roots

; [cr. 2

which is contrary to hypothesis ;

.-. A = a', B = b', •••. Q.E.D.

Note. The roots may not be all different.

For if the function x have the same factor used two or more

times, then the equation x = is said to have two

or more equal roots.

In general, if x =
(a;
—

a)^- {x
— hy-",

wherein p, g,
••• are positive integers such that p+gH— = w;

then ot is a p-fold root, b a q-fold root, and so on.

E.g., ^ — 2>a3i?-{-^a^x — a^ = {x
— ay,

and the three roots of the equation

a?— 3 03I? -\- 3 a^x — a^ = are a, a, a.

So, the equation (a; + a)-(a;
—

6)^ =
has —a, —a, h, b for its four roots.

It appears later that a set of equal roots are the limits of a set

of unequal roots, and that if the equation x = be of the nWx

degree, it has n roots, equal or unequal, real or imaginary.
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Theor. 5. i/", of the rational integral equation x=0, the

absolute term = 0, some root »' of the equation = 0.

Let equation x = be written t = — s a; — r ar^ a a;'*,

and let s, r, ••• a stand fast, while a;, t vary, and t =
;

then will some root a;' = 0.

For •.• D„T, =-s-2Ra;' , [VII. ths. 13,17

= —
s, a finite number

; [a;'
=

.•.the ratio incT : inc a' is finite
;
and the two infinitesi-

mals are of the same order.

But •.* T = when a;'=0,

.*. if T ~ be small, so is a;' '^
;

2.6., a;' = when t = 0. q.e.d.

CoE. 1. If tJie absolute term be 0, then is a root ofthe equation.

For, if be put for x, the equation x = is satisfied, q.e.d.

Cor. 2. 7/* a, the coefficient of the highest power of the unknown

element in x, = 0, then a root of the equation = oo.

For, if X be replaced by y~^ in the equation x = 0,

that equation takes the form

yn yn
1

yn
2

y^ y

whence Ty"" -\- st/**"^+ iiy''~^-\ h c?/^ + b?/ -f- a= ; [mult, by ?/"

and if the absolute term a = 0,

then some root 2/'= 0, and some root a;', = 1 : 2/'== Qc. Q.e.d.

Note. If the last two, three, ••• of the coefficients •••, r, s, t

be zero, or approach zero, so do as many of the roots
;
and if

the first two, three, •••of the coefficients .a, b, c, ••• approach

zero, as many of the roots approach infinit}*.

E.g.^ if A, B, c, R, s be infinitesimals of the first order, t be

zero, and d, q be finite,

then three of the roots are infinites, each of the order ^, two

are infinitesimals, each of the order ^, and one is zero.
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§ 5. SIMPLE EQUATIONS INVOLVING ONE UNKNOWN.

PrOB. 1. To SOLVE A SIMPLE EQUATION INVOLVING ONE
UNKNOWN ELEMENT.

Multiply both members of the equation by the I. c. mlt. of the

denominator's, if any. [th. 2

Transpose to one member all terms that involve the unknown

element^ arid to the other member all other terms. [th. 1

Reduce both members to their simplest form, exhibiting or can-

celling any common factors.

Divide both members by the coefficient of the unknown ele-

ment. [II. ax. 5

To test the work, replace the unknown element by the result so

found, in the original equation.

E.g., if J
(a; +12) = ^(G-f 3a;)- !«, [a; unk.

then •.• 7a; + 84 = 36 + 18a; -7a;, [mult, by42

and (7
- 18 + 7) a; = 36 - 84, [trans. 84, 18a;,

— 7a;

i.e., —4a; =—48, and a; =12; [div. by — 4

and •.• 1(12 + 12)
=

1(6 + 36) -2, [repl.a;byl2

.-. 12 is the root sought.

So, if(2^i±i^\. +_^^ = 3c. + ^a;-^,
a{a-^bY {a^bf a a + &

then •.• (2a+ 6)62(a + 6)a; + a362

= 3 ac (a + 6)2 a; + 6 (a ^bfx- Sa^bc (a + 6)^

.-. a^b--\-Sarbc{a-^by
= (3 ac + 6) (a + b^x - (2a + b) b\a + b)x,

i.e., a'b [a6 + 3 c(a + 5)^]
= a {a + 6) [a& + 3 c(a + bf] x,

X = a" b lab -\- 3 c (a + by] ^ ah~
a{a + b) [ab + 3 c{a + 6)-]

~
a + 6

This value satisfies the given equation, and is the root sought.

Note 1. A simple equation can have but one root.

For any such equation may take the form ax — b — 0, one

linear factor. [th. 4 cr. 2
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Note 2. Equations not simple sometimes reduce to simple

equations, and may be solved like them.

E.g., if v^- V[«-V(i-^')]=i;
then ••• ^[x — ^{l — x)~\

— -^x
—

\^ [trans. ^^o;, change signs

a; — -^/(l
—

x) = X —2y/'X -\- 1, [sqr. both mem.

^(1 — x) = 2^x—\, [cancel .T, change signs

1 — a; = 4a; — 4-y/x+ 1, [sqr. both mem.

. 4:^x = ox, [trans.

. 16a; =25ar^, [sqr. both mem.

a;(16
—

25a;) = 0, [trans., factor

it- = or = ||.

Both of these results satisfy the given equation, and are roots.

For Vif-V[M-V(l~i>f)]=l if the second radical

be negative, and the other two positive ;

and V0-V[0-V(l-0)] = 1 if the last two radicals

take their negative values.

But if the signs of the radicals be restricted, the equation ma}^

have no solution.

Eg-, V«-V[»-V(i-^)]=i.
VaJ-V[«-V(l-^)]=l-

Note 3. General Discussion: Every simple equation in-

volving one unknown may be reduced to the form

ax-\-b = a'x-{-b\ whose general solution gives

x = (b'
—

b): (a
—

a') ;
and there are three cases :

(a) a=^a' ;
then x has a single value, positive, negative,

or zero, that satisfies the equation.

(6) a = a\ b=^b'; then x = cc.

This result may be interpreted in the language of limits by

saying that if a, a' be variables, or either of them, and if

a=^a' but a = a', then x grows larger and larger without bounds.

E.g., if A, a' travel along the same road in the same direc-

tion at a, a' miles an hour, and if a' be {b'—b) miles ahead of a.
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then the quotieDt {b'
—

b) : (a
—

a') is the time before they will

be together.

If the hour!
3' gain, a — a', be small, that time is long ;

if

there be no gain, i.e., if a=:a\ they will never be together,

and there is no value of x that satisfies the equation.

(c) a — a', b — b'-, then x = 0: 0, and the equation is satisfied

by any number whatever.

In the example above (6) , a, a' are now together and they
will always be together.

§ 6. ELIMINATION.

Theor. 6. If there he two or more unTcnown elements and a

system of two or more independent simultaneous equations that

involve them, then the roots are not changed thereby if any one of
these equations be replaced by the sum of this equation and any
other or others of them.

Let the equations p = Q, p'= q', p" = q", ... be any system
of simultaneous equations, and for the equation p = Q

put the equation p -j- p' = q + q',

or p-f p' + p" = q4-q' + q", or-..; [II. ax. 2

then will the roots of the system of equations,

p + p' + ---=Q + Q'+---, p' = q', p" = q", -,
be identical with the roots of the system first given.

For *.* when p = Q, p' = q', p" = q", .••, then also

p + p'+p"+--- = q + q'+q"4--";

.*. whatever set of values satisfy the equations

p = Q, p'=q', p"=q", ..., the same values satisfy

the equation p4-p'4-p"H =Q + q' + Q"H ;

and conversely. q.e.d.

Cor. In such a system of equations the roots are not changed

if before the addition one or more of the equations be multiplied

by any factor not afunction of the unknotvn elements, and not 0.
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Theor. 7. If one equation of a system be solved for any one un-

known element^ in terms of the other unJcnown elements that enter

into it, then the mots of the system are not changed thereby, if in

the other equations this element be replaced by the value so found.

For, let p = Q, p' = q', p" = (;>",
••• be a sj'stem of equations

involving x, y^z, ••• in any way; solve the equation
p = Q for X, giving x=f{y, z, •••), and substitute this

expression for x in the other equations, giving them

the new forms r' = s', r" = s", •••
;

then ••• X ancl/(y, 2, •••) have the same values,

.-. whatever values of x, y, z,
••• make identities of the

equations p=q, p'=q', p"=q", ...,the same values

make identities of the equations r'= s', r"=s", •••,

and, conversely, whatever values of y, z, »-• make identities of

the equations r'=s', r"=s", •••, the same values of

y, 2,
••• make identities of the equations

p = Q, p' = q', p" = q", •..,

I.e., both systems have the same roots. q.e.d.

Note. By aid of Theors. 1, 2, 3, 6 a system of n independent
simultaneous equations containing n unknown elements ma}' be

reduced to a new system of w — 1 equations, containing n — l

unknown elements, whose roots are identical with the roots of

the original system, and these n—l equations to ?i~2 equa-

tions, •
••, to two equations, to one equation.

The process by which, one after another, the several un-

knowns are removed from the system of equations is a case of

elimination. In general when from two or more (say n) given

equations a new equation is got that is free from at least n — l

of their elements, those elements are eliminated between the given

equations; and the new equation, or its first member when the

second member is zero, is the resultant of the given equations.

The elimination is reversible when, whichever ti — 1 of the

given equations, together with the resultant, were known to be

true, the remaining equation would necessarily be likewise true ;

otherwise, the elimination is irreversible.
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PrOB. 2. To ELIMINATE AX UNKNOWN ELEMENT FROM A PAIR

OF EQUATIONS INVOLVING THE SAME TWO UNKNOWN ELEMENTS.

(a) Simple equations.

FIRST METHOD, ADDITION AND SUBTRACTION.

Find the least common multiple of the coefficients of that element

which is to be eliminated; divide it, in turn, by these coefficients,

and multiply the two equations through by their quotients.

Subtract one equation from the other, member from member.

E.g., to elimioate x from the pair of equations

6x-{-7y = 85, 2x+Sy = SS'.

then ••• the l.c.mlt. of the coefficients 2, 6 is 6,

... 6a;4-7?/ = 85, 6a;-f9?/ = 99, [mult.byl,3

2?/= 14. [subtract

So, to eliminate x from the pair of equations

Laj + M = 0, l'cc4-m'=0,

wherein l, m, l', m', are any expressions that do not contain x,

but which may contain other unknown elements :

then •
.

•
LL'ic + l'm = 0, ll'cc -f lm' = 0, [mult, by l', l

.-. lm'— l'm =0. [subtract

Note. The work is often best arranged as follows :

Wonte the given equations under each other, and at the right,

their respective multipliers ivith such signs that the new equation

may be the algebraic sum of the products of the given equations

by their midtipliers. If there be two columns of multipliers, one

to eliminate each unknoivn, write first the column to be first used.

When small, the partial products can be obtained and added

mentally, and only the sums written down. Detached coeffi-

cients can be used in part of the work.

E.g., the first of the above examples becomes :

6a; + 72/ = 85
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SECOND 3IETHOD, COMPARISON.

Solve both equations for that element wJiich is to be eliminated.

Put the two values thus found equal to each other.

E.g., to eliminate x from the pair of equations

6a; + 72/
= 85, 2a; + 3?/ = 33:

then a; = |(85— 72/)
= i(33

—
32/), [sol. both eq. for a?

THIRD METHOD, SUBSTITUTION.

Solve either equation for that element which is to be eliminated.

In the other equation replace this element by the value so found.

E.g., to eliminate x from the pair of equations

6a;-f-72/ = 85, 2a; + 32/ = 33:

then •.• a; = ^(33
—

32/), [sol. 2d eq. for a;

.-. 99 — 9?/4-7y = 85. [repl. a;in Isteq.

(6) Equations of degree higher than the first.

Of the three methods of elimination shown above (a) some-

times one, and sometimes another is most available.

In the pair of equations I = a?-** \ s =^ [to elim. n
r — 1

the method of substitution is best : multiply the first

equation by r, and replace ar"" b}' Ir in the other
;

i.v Ir— «
then s —

r — 1

In the same pair of equations [to elim. a

the method of comparison is best: solve both equa-

tions for a, and put the values equal ;

then -l. = s(r-l)
_

In the pair of equations x^-\-y = ll, y^-\-x
— l [to elim. a;

the first method is less easy ; but the other two are available.

2. •.• ar=ll-2/, 3;^ = (7-2/^)2 = 49 - 14 2/2 + 2/S

.-. 11— 2/
= 49 — 142/^-f 2/^ [comparison

3. •.• X ={l-f~),

.'. x'-\-y = ll gives 4,9 —14: y--\-y^-\-y = 11. [substitution
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FOURTH METHOD, DIVISION.

Reduce the equations to the form p = 0, Q = 0, ivherein p, q
a?'e functions of x, y.

Divide f by q, q by the remainder^ and so on, as in finding the

h. c. msr. of two entire numbers, until some remainder is found
that is free from the element to be eliminated, or that has a com-

mon measure ivith p, q, and the successive remainders.

If this remainder do not contain such a common measure,

equate it to for the resultant sought.

If a common measure ofp, q be found, divide each of them, or

any two successive remainders, by this measure, and with the quo-

tients proceed as before to find a resultant.

If the solution of the given equations be sought, then :

Solve the resultant for the unknown element involved in it; re-

place this element in the next previous remainder by the values thus

found; equate to 0, and solve for the other unknown element.

Equate to the common measure, if any, o/ p, q ; if the new

equation thus found involve but one unknown element, solve it

therefor; but if it involve both unknown elements, give to either

of them any value whatever, and solve for the other.

E.g., to eliminate y from equations p = 0, Q= 0, wherein

TisX'y*—2x-\-l -y^—x^—x^—x—l •y^-\-a?—x^—x-\-l-y-{-2,

and Q \sX''f-\-s(?
— 2a;— 1 -

y"^
— x^ -\- x — I -y

— 2'X^—x—l :

Divide p by q ;
the remainder, •R,

= x-y^ — 2x-\-l'y-\-2;

so, divide q by r
;

the remainder, s, = oi^ —l-y — 2
',

then ••• R, s have the h. c. msr. y — 2,

and the quotients are xy—1, a^—l,

.'. the resultant is a;^— 1 = 0, whose roots are '''1,

and equations p=0, Q=0 are satisfied when, and only when,

either a; = +1, +1-2/— 1= 0; or fl;=-l, "1 -2/— 1= ;

or a? = any value, y = 2.

So, to apply the fourth method to the pair of equations,

3a^-4xy-{-5y^-Gx-^7y=120, 2i^-Sxy+5y'=10S:
Write p, Q in the form lx^H- mx + n, j.'x^-\- m'x + n',

wherein l, m, n, l', m', n', may contain y but not x.
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§7. SIMPLE EQUATIONS, TWO OR MORE UNKNOWNS.

PrOB. 3. To SOLVE A PAIR OF SIMPLE EQUATIONS, WHEREOF
ONE HAS TWO UNKNOWN ELEMENTS, AND THE OTHER BUT ONE.

Solve that equation which has hut one unknown element, [pr.l

Replace this element by its value in the second equation, and

solve for the other unknown element. [th. 4 cr. 2

E.g., to find x, y from the pair of equations

6a;+7y = 85, 4a; = 24:

then x=Q>, 36 + 7?/ = 85, y=l.

PrOB. 4. To SOLVE A PAIR OF SIMPLE EQUATIONS, WHEREOF
BOTH HAVE THE SAME TWO UNKNOWN ELEMENTS.

Combine the two equations so as to eliminate one unknown ele-

ment, and form an equation involving the other unknown element.

Solve this equation for its unknown element, replace this element

by its value in either of the given equations, and solve the equation

so found for the other unknown element.

For a check, replace the two unknown elements by their values

in either of the original equations.

E.g., to find x, y from the pair of equations

Qx-\-ly = m, 2a; + 32/ = 33;

then •.• f(85-6a;) = J(33-2a;), [elim.2/

.-. 255 -18a; =231 — 14a;,

.-. — 4a;=— 24, a; = 6;

.-. 36+ 72/ = 85, y^l.

So, to find X, y from the pair of equations

ax -\-by = c, a'x+ b'y = c' :

then '.' o:b'x-^bb'y = cb',- ba'x -\-bb'y= be', [II. ax. 4

.-. {ab'-a'b)x={cb'-c'b), a;=
^^'~^'^

,

ab' — a'b

cft^-c^ft ac'-g'c.
ab'-a'b

•' ' ^
ab'-a'b
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Note 1. The values of the two unknown elements may be

got independently of each other, by separate eliminations
;
or

else, having found one of them, the other may be written by

symmetry.

E.g. ,
if ax -^ by = c, a^x + Vy = c', [above

then *.• these equations are not altered by interchanging
a with 6, a' with h\ and x with ?/,

.*. a; is the same function of a, 6, a', 6' as is?/ of 5,a,&',a';

.*. the value of either x ovy \q found from that of the other

by interchanging a with h and a' with h\

So, if a; + 2/
= a, x — y—hi

then { ^
is the half ^ ^Xrence ^^ ^' ^'

Note 2. Incompatible equations : If two given equations

be incompatible, no solution is possible.

J57.gr. ,
the equations 2a; + 32/=13, 2a; + 3?/=15

are incompatible ;

for their resultant, = 2, is absurd.

Note 3. Dependent equations : If one equation be depen-
dent on the other, and derivable from it, there is no single solu-

tion, but an infinite number of solutions.

E.g.^ the equations 2aj + 32/ = 13, 6ic-f-92/ = 39 are but

one equation in two forms, and any value may be

given to either of the unknown elements, and the

corresponding value of the other computed.

Note 4. General formula: The two equations ax-^by=c,
a'x -\-b'y = c' are the type-forms of every pair of two-unknown

first-degree equations ;
their solution gives :

x=(cb'-c'b):(ab'-a'b), y = (aG' -a'c) : (ab'- a'b).

The solution of this pair of equations embraces the solution <^^
of all such pairs of equations : the reader may translate the ^^'"'^^

formulae into a practical rule for such solutions without the

intermediate steps.
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Note 5. General discussion : There are three general cases,

(a) ah'=^a'b]

then a, y have single values, positive, negative, or zero, that

satisfy both the equations.

(6) ab' = a'b, cb'^c'b;

then
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In the above example (h) the two lines, under the special

conditions given in (c) ,
are coincident, and every point is a

common point. In general any value may be assumed at ran-

dom for one co-ordinate, and the other may then be computed.

If ab' = a'b, there also appear the following special cases :

(d) a' = 0, 6' = 0, c'=5fcO;

then ic = — 6c' : 0, y = ac' : 0, which values are infinite.

(e) a' = 0, 6' = 0, c' = 0;

then a; = 0:0, 2/
= 0:0, which values are indeterminate.

(/) 6 = 0, 6' = 0, OAi'^a'c,

then a;= : 0, y
—

(ac'
—

a'c) : 0, of which values one is in-

determinate and the other infinite.

(g) 6 = 0, 6' = 0, ac'=a'c;
then the equations are equivalent,

and a; = : = c : a = c' : a',

and 2/
= : 0, and is indeterminate.

(h) a = 0, 6 = 0, 6'=0, a'r^O, c:?i=0;

then a;= : 0, ?/
= — a'c : 0, of which values one is indeter-

minate and the other infinite.

(i) a = 0, 6 = 0, 6' = 0, c=0;
then x = c':a\ y = : 0, of which values one is determinate

and the other indeterminate.

(j) a = 0, a' = 0, 6 = 0, 6' = 0;

then a;= : 0, ?/
= : 0, which values are indeterminate ;

but not both are finite unless c = 0, c' = 0.

The reader may interpret these results, and illustrate them

by the meeting, when possible, of two straight lines.

Two important special cases appear when c, c' both vanish.

(k) ah'=^a'b, c = 0, c'=0;
then a; = 0, y — 0.

(l) ab' = a'b, c=0, c' = 0;

then a; = : 0, 2/
= : 0, which values are indeterminate.

The reader may interpret these results, and illustrate them by
the meeting of two straight lines : he will observe that in both

cases the two lines pass through the origin ;
in the first they

meet there
;
in the second they coincide throughout.
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PrOB. 5. To SOLVE A SYSTEM OF 71 INDEPENDENT SIMPLE

EQUATIONS THAT INVOLVE THE SAME U UNKNOWN ELEMENTS.

Combine the n equations, two and two, in n — 1 tvays, so that

each equation is used at least once, and so as to eliminate the

same unknown element at each operation; thereby form n— 1

equations involving the same n — 1 unknown elements.

So, combine these d — 1 equations, and thereby form n — 2

equations involving the same n — 2 unknown elements; and so on

till there results one equation involving but one unknown element.

Solve this equation, and replace the unknown element by its

valu£ in one of the two equations involving tivo unknown elements.

Solve this equation for the second unknown element, and replace

these two elements by their values in one of the three equations

involving three unknown elements; and so on.

E.g.^ to find x, y, z from the system of equations

a;-f-22/+32=14, 3a;+2?/+z=10, 6x-f9?/+13«=63 :

then 2a;—22=— 4, 15a;—17z= — 36,[elim.2/fr.eqs.l,2;2,3

.*. 4a; =4, [elim. 2

.-. a;=l, y—2, 2 = 3. \yQ^\.x,y

So, to find X, y, z, from the system of equations

ax+by+cz=d, a'x-\-b'y-\-c'z=:d', a"x-\-b"y+c"z=d":

d — by — czd' — b'y — c'z d" — b"y — c"z
then •.• x= ^ = ^ =

f- ,

a a' a"

.'. a'd^a'by — a'cz = ad' — ab'y
— ac'z

and a"d' - a"b'y
- a"c'z = a'd" - a'b"y

-
a'c"z, [elim. x

. ^ ad'-a'd-\- (a'c-ac')z_a'd"-a"d'-^ (a"c'-a'c") z
' ' ^

ab'- a'b a'b" - a"b'

.-. (a'b"
- a%') {ad'

-
a'd) -f (a'b"

-
a"b') {a'c

-
ac')z

= (ab'-a'b) {a'd"-a"d') + (ab'-a'b) (a"c'-a'c")z,

^^ jab' -a'b) (a'd"-a"d') - (a'b"-a"b') (ad' -a'd)

(ab'-a'b) (a'c"
-

a"c')
-

(a'b"-a"b') (ac'
-

a'c)

^ ab'd" + a'b"d + a"bd' - a"b'd - a'bd" - ab"d'~
ab'c" + a'b"c + a"bc' - a"b'c - a'bc" - ab"c'

'

The reader may write the values of x, y by symmetry.
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Note 1. The equations must be so combined that no m of

the n — 1 equations got by the elimination of one unknown ele-

ment shall represent less than m -f-l of the original n equations ;

and that no m of the n — 2 equations got by the elimination of

two unknown elements shall represent less than m 4- 1 of those

n — 1 equations ;
and so on. Otherwise the m — 1 equations,

or the m — 2 equations, •••, will not be independent, and no

determinate solution will finally be got.

Note 2. All the unknown elements not involved in every

EQUATION. An unknown element that does not appear in sluj

equation may be considered as already eliminated from it, and

the work is shortened by so much. Those unknown elements

that appear in the fewest equations may be eliminated first.

E.g., to find 07, y, z, t, u from the system of equations

^x—2z-\- w = 41, (1)

7y-5z- t =12, (2)

Ay — ^x-{-2u= 5, (3)

3?/
— 4i<4-3f = 7, (4)

7z-5u=n: (5)

Of these equations, x appears in two, y in three, z in three,

u in four, t in two.

Equations 1, 3 may be combined to eliminate x, and equa-

tions 2, 4 to eliminate t, and there result two new

equations involving y, z, u.

These two equations may be combined to eliminate y., and

there resalts one equation involving 2;, u.

This last equation may be combined with equation 5 to elimi-

nate either 2; or w at pleasure.

Note 3. Particular artifices : The equations may have a

symmetry, as to the unknown elements or functions of them,

that permits shorter processes than those of the general rule.

Sometimes the sum of the unknown elements, or of the func-

tions of them, may be got first.
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E.g.^ to find a;, y, 2, ^ v from the system of equations

y + z-\- t->rv = a, (1)

z +^ +'?^ + a; = 6, (2)

t Jtv + x + y = c, (3)

^+a; + 2/ + 2;=cZ, (4)

«+ 2/+2 + ^=e; (5)

then ••• 4a;+ 42/^-4z4-4i + 4^; = a4-5 + c + d + e, [add

and ic= i(— 3a4-6 4-c + <^ +e)» [sub.eq.l

2/
=

:|^(a
— 364-c + cZH-e), and so on.

So, to find a?, y, 2 from the system of equations

1
, 1_ 4 1

, 1_11 1 1_1.
xy 10 yz 60 zx4:

then •.• ?H-? + -= ^,
i + i + l = ^, [add,div.by2

*'*

a;~20 60 6' y 20 4 lO' ^z 20 15 12'

.-. a;=6, 2/=10, z =12.

Note 4. The nubiber of equations greater than that op

UNKNOWN elements. So many equations as there are unknown

elements may be taken at random, and solved. If the roots,

so found satisfj' the remaining equationSj the system is possible ;

but, if not, the system is impossible.

E.g., to find x, y from the sj'stem of three two-unknown

equations Zx+ly = ll, 6x—2y=l, 8x+y = 10:

Take the first two equations and solve
;

then *.* a; = l, y = 2 in these two equations,

and •.* these roots satisfy the third equation,

.
•
. this system of equations is possible, and the roots are 1, 2.

But not possible is the system of equations

3x-\-7y=17, 6x — 2y = l, 8x + y=12.
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In general, if there be m-\-n compatible equations, and only m
unknown elements, there are n equations of condition; and the

constants must have such relations that these equations of con-

dition are all satisfied.

E.g., given the system of three two-unknown equations

ax-\-by = c, a'x -f- b'y = c', a"x + b"y = c"
;

^, cb' — c'b ac' — a'c r* ^ ^ a.

then '.' x =^ p-, y =—; -, [from first two eq.
ab'—a'b ab'—a'b

.'. that a"x + b"y = c' be a true equation,

-}- b" •

^'-^'^ = c" must hold true ;

r

ab'—a'b ab'—a'b

i.e., ab'c"- ab"c'+ a'b"c - a'bc"-{- a"bc'-a"b'c =
is the required equation of condition, and establishes

the necessary relation between the given constants.

By this process all the unknown elements are eliminated from

the given equations. So, in general, from n equations n — 1

unknown elements may be eliminated.

Note 5. The number of unknown elements greater than

THAT OP EQUATIONS. If there be m + n unknown elements and

only m equations, all compatible, to some n of these elements arbi-

trary values may be given, and the roots of the m equations will

contain these arbitrary values, or some of them, and be them-

selves arbitrary, and the equations are indeterminate.

E.g., to find x, y from the single two-unknown simple equation

2a; + 3y=12:
Put 2/=- -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5,...,

then a; = ...13i-, 12, 10|, 9, 7i, 6, 4|-, 3, H, O,"!!,.

or put a;= -.. "5, "4, "3, "2, "1, 0, +1, +2, +3, +4, +5,-

then
2/
=

...+7i,+6f , +6,+5J,+4|,+4,+3i,+2f , +2,+H, +J,.

So, a series of values are given to x increasing by 1, and there

result a series of valuers for y decreasing by f . This maj^ be

illustrated geometrically, by taking x, y as the running co-

ordinates of a point on a straight line whose equation is

2a;-f 3i/=12.
Such series are called arithmetic progressions. [XII. § 1
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If the results be limited b}^ the condition that they shall all

be integers, or all positive integers, it may liappen that there

are very few such roots, and certain modifications may be made
in the method of solution.

E.g., to find all possible pairs of positive integral roots that

satisfy the single equation 2a;-}-o?/=12;

then x=G—y — ^y.

Put iy = z;

then y=2z, x=6 — Sz.

Put z = ..., -3, -2, -1, 0, n, +2, +3, ...
;

then y= ...,-6, -4, -2, 0, +2, +4, +6, ..-,

and a;= ..., 15, 12, 9,6, 3, 0,-3,.-.,

wherein 6, ; 3,2; 0, 4 are the only pairs of roots admissible.

The progressions are here noticeable again ; that for y in-

creases by 2, and that for x decreases by 3, and they both go on

either way forever.

So, to find sets of positive integral values for ic, y, z that

satisfy the pair of equations

a; + 2?/ + 32=22, Sx-6y + 2z = -2:
then -.* II3/ + 72 = 08, [elim. x

... z = d-2y-\-}(5-{-Sy). [solve for ;3

Put t=l{o-^By);
then y = 2t-2-{-^(t + l).

Put ti=l(t + l);

then t =3u — l.

.-. y=2{Bu — l)
— 2 + u =7w — 4,

2=9-2(7w-4)+3w-l =16-llw,
and a; = 22-2(7w-4) -B (U-Uu) =19u-18.
Put «=..., -3, -2, -1, 0, 1, 2, 3,.-.; [dif. +1

then x= ..-, -75, -56, "37, "18, 1, 20, 39, ..-, [dif. +19

2/=..., -25, -18, -11, -4,3,10, 15,..., [dif. +7

z = ..., 49, 38, 27, 16, 5,-6,-17,..., [dif. "11

and the only set of positive integral roots is 1, 3, 5.

But of sets, whereof two are positive and one negative,

or vice versa, there are an infinite number
;

and of sets whereof all three are ne«:ative there are none.
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§8. GRAPHIC REPRESENTATION OF SIMPLE EQUATIONS
INVOLVING TWO UNKNOWNS.

Every simple equation involving two unknown elements may
be reduced to the type-form, y = mx + h. [VII. § 11

jE.c/., the equation Aa; + B?/ = c becomes y = 3?+-,

wherein = ??i,
- = 6.

B ' B

Every such equation may therefore be represented by a straight

line
;
and conversely, every straight line has its equation.

E.g.^ the equation 6 a; -}- T^/
= 85 reduces to y— —

fa; + 12-^,

wherein —
|-
= m, 12^

=
6, of the type-form.

This equation is represented by the line cd below.

This figure serves also to illustrate the solution of indeterminate

equations [§7, nt. 5], wherein a; is a .

variable and ?/ a function of x. \
If there be two simple equations in- ^V.

volving the same two variables, and if it ! \\^
be required to find roots that satisfy both |

\ ^\^
of them, then the two loci, platted with -—i-—a \d ^^v
reference to the same origin, reference- ^

line, and scale, will meet in a point whose co-ordinates are the

roots sought.

E.g.,i£ Qx-\-7y = 12, 2x-\-Sy = 4: be a pair of simultaneous

equations whose loci are cd, ef,

and if these loci meet at p
;

then the lengths of the co-ordinates ob, bp are the common
roots of the two equations.

But if the coefl3cients of the variables in one equation be nearly

equal to those in the other, then the loci are nearly parallel, and

the point of intersection may recede to a great distance
;

if they
be identical with those in the other, or equimultiples of them,

then the two loci are { ^arallef

^^^
^^ *^® absolute term of the
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be
first

-{
V .the like multiple of that of the other

;
and there

,
an infinite number of -

are < common roots.
• no

If one of a pair of equations involving the same two variables

be y = 0, the locus of this equation is the line ox, and the solu-

tion of the pair of equations y = 0^ y = mx + b reduces to the

solution of the single simple equation involving one unknown

element, mx-\-b=0, wherein the locus of a;, y is the point where

the pair of lines cross, and whose co-ordinates are
, 0.

m

§9. BEZOUT'S METHOD, UNKNOWN MULTIPLIERS.

Let aiX + biy + CiZ-\-"-=hi,

a2X + b2y + C2Z+ ... =7i2,

««« + &„2/ + c„z + ... = K,
be a system of n simple equations involving any same n un-

known elements.

Multiply the first equation by A^i, the second by A:,, •••, the ?ith

by ^n? wherein ki = 0, and k^,
'" k^ are unknown

;

then 'r aiX-{-biy-{-CiZ-\- '" =7ii,

kzCh^ -f k^hzy -\-k2C2Z-\ = kz^h,
... ... ...

...^

Ka„x + k^b^y-{-k^c„z+ ... =k^h„,

.'. (ai + ArgaaH [-k„a^)x

+ {h + k2b2-\-"'+k,b:)y

-f (Ci+A-aC^ H f-A:„c„)z-f---

=
7ii +fc2^2H l-fc„^„.

Put all the coefficients except that of x equal to 0,

i.6.,put 6i+A;2&2H hA:„6,»=0, Ci+AjgCaH f- A;„c„=0, ..-,

and thus form a system of ?i — 1 equations involving the same

n — 1 unknown elements, k^-)
•••

A;„.

Whichever of A^i, A:2,
... k^ be taken as 1, and the others as un-

known, the ratios k^ikz^'-'k^ come out the same
;
but if A^a or

A^ or ... be oo when A^i
= 1, then k^ or k^ or ••. should be taken as

1, and A*i,
••• as unknown, whence \ = 0.
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So, by aid of the multipliers Zj
•••

^„_i, reduce this system to

a system of n — 2 equations involving the same 71 — 2 unknown

elements, say I2'" ?„_i, and so on
;
and finally to two equations

involving two unknown elements, say ^2, rg, and to one equa-
tion involving one unknown element, say t.

Solve this equation for ^, then solve for i^-, r^, then for •••,

then for Zg
•••

L-i-) then for ^'2
*•• K^ then for x,y,z, •••.

E.g., to find x, y from the pair of equations

ax-{-by = c, a'x + b'y = c' :

then {a + ka')x + {b-\-W)y = c + kc'.

Put b-{-kb' = 0;

. , 7 & J c + Tec' cb' — c'6
then k = and x = -—^ =

b' a-\- ka' ab' — a'b

So, put (a + ka') = ;

,, 7 ct J c — kc' ac' — a'c
then k — and y = .

= — -•
a'

^
b-kb' ab'-a'b

So, to find X, y, z from the system of equations

ax-\-by+cz = d, a'x-\-b'y-}-c'z = d\ a"x+b"y+c"z = d":

then (a+k'a'-hk"a")x+ (b-^k'b'+k"b")y + (c-\-k'c' +k"c")z
= d+k'd'+k"d".

Put b-{-k'b' + k"b" = 0, c + k'c' + k"c" = 0', [k',k" unk.

then b + hc-^ {b' + 7ic')k' + (6" + 7ic")A;"
= 0.

Put b" + hc" = 0]

then k =.-^1 and^^' = -^ + ^--^"^-^^"

So, A;"
6c' - 6'c

6'c" - 6"c

But ... 0. =d±mL^l^

^l,'c"-b"c' ^b'c"-b"c'

"^ ,
6'^c-&c^^ ,, .

6c'-6V~^'^ "T rr-;^ 777-.
' ^ "t

2,'c"-6"c' 6'c"-6"c'

The reader may reduce this fraction to a simple fraction, and

write the values of y, z by symmetry.
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§ 10. SPECIAL PROBLEMS OF THE FIRST DEGREE.

In a special problem certain elements are given and certain

other elements have given relations to those first named, and

are to be found. These relations are the same whether ex-

pressed in ordinary language or in symbolic language. If in

symbolic language, their expression gives an equation or a

system of equations ;
and the elements whose values are to be

found are the unknown elements of these equations.

The solution of a problem embraces three distinct parts :

(1) putting it into equation ; (2) solving the equation or system
of equations ; (3) discussing the results under special conditions.

A problem is of the first degree if its solution depend on the

solution of an equation or system of equations of the first

degree only.

PrOB. 6. To PUT A SPECIAL PROBLEM INTO EQUATION.

By careful study of the enunciation of tJie problem, ascertain

wldcii of the elements named in it are Jcnown, and which are

unknown; represent both the known and the unkiioiun elements

by symbols; and express in symbolic language all the relations

that subsist betiveen them.

TJiese symbolic expressions are the equations sought.

Note 1 . It may be convenient to express all the unknown
elements by aid of a single symbol.

E.g., to divide $6341 among a,b, c, so that b shall have $420

more than a, and c $560 more than b :

Put X for a's share, x + 420 for b's, a; + 420 + 560 for c's
;

then x + x-\- 4:20 -\-x + 4:20 -{- 560 = 6321
,
a single one-un-

known simple equation.

So, to divide the number 144 into four parts, such that the

first part increased by 5, the second decreased by 5,

the third multiplied by 5, and the fourth divided by 5,

shall all equal the same number :

Put x for the number to which the several results are equal ;

then x — o-\-x-\-5 + x: 5+2^-5 = 144.
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Note 2. It may be conveDient to express different unknown
elements by different symbols ;

and to form a system of simul-

taneous equations involving two or more unknown elements.

E.g.^ a vintner at one time sells 20 dozen of port wine, and

30 dozen of sherry, and for the whole receives $600 ;

and at another time he sells 30 dozen of port and 25

dozen of sherry, at the same price as before, and for

the whole receives $700.

Put X for the price of a dozen of port, and y for that of a

dozen of sherry ;

then 20 a; + 30?/ = 600, 30a; + 25?/= 700, a pair of two-

unknown simple equations.

So, if a certain rectangular bowling-green were 5 yards longer
and 4 yards broader, it would contain 113 yards more ;

but if it w^ere 4 yards longer and 5 yards broader, it

would contain 116 yards more.

Put X, y for the length and breadth
;

then (a; + 5).(7/ + 4) = a;^+113, {x+4.)'{y +b)=xy +UQ,

So, if A, B, c, D engage to do a certain piece of work
;

if

A, B together can do it in 12 days ; a, d in 15 days ;

c, D in 18 days ;
and if b, c begin the work, after 3

days A joins them, after 4 days more d joins them, and

all working together they finish it in 2 days, in what

time can each man do it working alone ?

Put a;, 2/5 2^, u for the number of days needed by a, b, c, d
;

., 1,1 1 1,1 1 1,1 1 9,9,6,2 ,then _+-= _+_= __}__= __^__f__4-_ = i^
X y 12 X u \o z u IS y z x u

a system of four simple four-unknown equations.

Note 3. Discussion of the Solution: To discuss the solu-

tion of a problem whose answer is numerical, is to try whether

all the conditions of the problem are satisfied by all or any of

the numbers that are found to satisfy the equations into which

the problem was translated
; and, if not, to observe what other

conditions the unknown elements must satisfy besides those

taken account of in putting the problem into equation.
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To discuss the solution of a problem whose answer is literal is

to observe between what limiting numerical values of the known
elements the problem is possible ;

and whether any singulari-

ties or remarkable circumstances occur within these limits.

E.g., in a certain two-digit number the first digit is half the

other, and if 27 be added to the number, the order of

the digits is reversed
;
what is the number ?

Put X for first digit, y for second digit ;

then •.• 2a; = ?/, 10a; + 2/-f-27 = 10y+ a?,

.-. a; = 3, 2/
= 6, the number is 36

;
and36 + 27 = 63.

"Were this the statement : in a certain two-digit number, the

first digit is half the other, and if 24 be added to the number,
the order of the digits is reversed

;

then ••• 2x = ?/, 10a; + 2/+ 24 = lOy + a;,

.-. x = 2J, y = 5J, and the number is impossible.

The statement of the problem puts a limitation upon the values

of a;, y not expressed by the equation : they must be integers.

Were this the statement : of two numbers the first is half

the second, and if to ten times the first the second and 24 be

added, the sum is the sum of ten times the second added to the

first
;
then the same equations as before would express the rela-

tions, and the values 2J, 5^ would satisfy all the conditions.

For 2.2f
= 5i, 10.2|-t-5^ + 24 = 10.5^ + 2J.

And were this the statement : in a certain two-digit number

the first digit is half the other, and if a be added to the num-

ber, the order of the digits is reversed
;

then 2x = y^ lOx + y -\- a=\Qy -\-x^ a;=i.a, 2/
= |«;

the special condition is imposed that a shall be a multiple of 9

not greater than 36 nor less than — 36
;

i.e., a is 36, 27, 18, 9, 0, "9, "18, "27, -36,

and the number is 48, 36, 24, 12, 0, "12, "24, "36, "48.
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§11. QUADRATIC EQUATIONS INVOLVING ONE UNKNOWN.

PrOB. 7. To SOLVE AN INCOMPLETE QUADRATIC EQUATION.

Reduce the equation to the type-form x^= q, and take the

square root of both members; then x = ± ^q.

E.g.^ to find x from the equation

j(a;2_io) + Jg {Qa?- 100) = 3ar^- 65 :

then •.• lOa^ - 100 + 18aj2_ 300 = 90a^- 1950, [mult, by 30

.-. -62a2= -1550,

.-. ar^=25 and aj=±5.

Note. There are two square roots, opposites of each other
;

they are both real if the q of the type-form be positive, and

both imaginary if the q be negative.

PrOB. 8. To SOLVE A COMPLETE QUADRATIC EQUATION.

Reduce the equation to the type-form x^ + px = q.

Add -^p^ to both members of the equation; take the square root;

and solve the equations thus found.
The result is of the form x = — Jp±i-y^(p^+4q).

E.g. ,
to find X from the equation 3a5^ + 9a;=120:

then •.• ic2 + 8a;= 40, [div.byS

.'. x^+Sx -{-2^
= 421, . [add(f)S=2J

.*. a; + 1^= ± 6^, [extr. sqr. rts. of both mem.

.-. a; = — 11 ± 6i = 5 or — 8
;
and 5, 8 are both roots.

So, to find X from the equation ax^ -\-bx-\-c = 0:

then ^ +h + ^^= ^^zA^,a 4a^ 4 a^

and X = —— V V—H—9^ - and both values are roots.
2a

Note 1. Double Signs : Since either x-\-p or —(x-\-p) is

a square root of a^-|-jpic + Jp^, the given quadratic is satisfied

as well when
-

(ic+jp) = -1^(2)24- 4 g) as when x-{-p=i^(p^-^ 4:q);

but this gives only the two values for x written above.
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Note 2. Discussion of the equation x^-\-px = q^ four

SPECIAL CASES. The roots are :

(a) p positive, q negative.

Two real roots, both negative, if p--|-4^ be positive.

Two real roots, both negative, equal to — ^p, if j9^+ 4g = 0.

Two imaginary roots, conjugates, if^-4-4g be negative.

(6) p, q both negative.

. Two real roots, both positive, if |)^-|-4g be positive.

Two real roots, both positive, equal to — ^p, if p^-f-4Q' = 0.

Two imaginary roots, conjugates, if p^ -f- 4 (? be negative.

(c) p, q both positive.

Two real roots, the smaller positive, the larger negative.

(d) p negative, q positive.

Two real roots, the smaller negative, the larger positive.

Note 3. Sums and products of roots. The sum of the

two roots is —p, and their product is —q.
The reader may prove.

Note 4. The absolute term, 0. If g = 0, then of the

equation x^ -\-px = the two roots are and — p, both real.

Note 5. Solution by factoring. Write the equation
x^ -^-px

— q=0 in the form

x'+px-\-ip'-i(p'-{-4q) = 0,

I.e., in the form (x + ^pY — i(p-+ 4 g) = ;

then •.• [x-\-^p-.i^{f-^4.q)-].[x-hip-\-^^(p'+4:q)'] = 0,

and *.• this product vanishes when, and only when, one of its

factors vanishes,

.-. the roots of the equations

^ + ^P-iV(P' + 4g) =
and a; + ii) + |-V(i>' + 4g) = [th.4cr.l

are the roots of the given equation.

... a;=-ip + iV(P'+ 4g),
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In practice the factoring is often made at sight.

E.g. ,
to find x from the equation a;^ — 5a;-f-6 = 0:

then '.'Qi?—6x + Q—{x — 2){x — 2>), [factoring

.. the roots are 2 and 3.

Note 6. General rule. The rule for solving incomplete

quadratic equations may be stated in a more general form :

Reduce the equation to the type-form ax^ -f bx 4- c = 0.

Multiply {or divide) both members of the equation by a, or by

any factor or multiple of a that shall make the coefficient of the

first term a perfect square.

Add to both tnembers of the equation whatever is necessary to

make the first member a perfect square^ and take the square root.

Solve the simple equations thus found.

The rule in this form often avoids fractions. Both rules rest

on that for finding the square root, and are the same in principle.

The solution of the equation gives x= — "^—— •

The reader may translate this formula into a working rule for

finding the value of x without writing the intermediate steps.

E.g., to find x from the equation 3a;^ + 9 a;= 120 :

[mult, by 3

[sq. rt. of 1st mem.

then •



316 EQUATIONS. [XI. tlis.

Note 7. Discussion of the equation aa^-}-6a?+ c =
;

THREE SPECIAL CASES : C = 0, 6 = 0, tt = 0.

(a) If c^ the absolute term^ be ;

then the equation ax^-\-bx = gives x=0 and x=—b:a,
two real roots, whereof one is 0.

(6) i/*b, the coefficient of the first power ofx, be
;

then the equation aar^-|-c = gives x=±^{—c: a), two

real roots, opposites, if a, c be of contrary signs ;
two

imaginary roots, conjugates, if a, c be of the same sign.

(c) If a, the coefficient of the second power ofx^ be
;

then •.• ^^-& + V(;-^-4ac)^ _6_^^(6^_4ac)
^

2a 2a
.-. a;= (-5-hV^'):0, (-6-VZ>'):0; [a =

I.e., a; = -0:0, 26:0 if V^' ^^ + 6
;

and a; = -26:0, 0:0 if V62 be - 6.

In either case there is an infinite and an indeterminate root.

But this indeterminate root may be determined.

For ••• a = 0,

.*. when aj^fcoc, the equatiop aa:^ + 6a; + c = becomes

6x -f c = 0, whose single root is — c : 6.

It may also be determined by multiplying both terms of the

fraction
-^^ V(^'-^^^) by _6 t V(2^'-4ac) ;

then X-
'

b'-(b'-4a^) ^ 2c

2a[-6q:V(^'-4«c)] -b :f ^{b' -4.ac)
z=z — c'.b or — c:0 when a = 0.

This case is especially important as showing the value of the

limits of the roots of the equation when a ==
;
and it is to be

noted that as a = one of the roots = oo, and the other = — c : 6.

This is also evident if the equation be written in the form

a;~\6 + cx~'^)
= — a. [div. eq. 6a; + c = — aa^ by a;^

For, if a = 0,

then either a;~^ = 0, and a; = cx),

or 6 + ca;~^ =0, and a; = — c:6;

i.e., both 00 and — c : 6 satisfy the equation and are roots.



8, §11.] QUADRATIC EQUATIONS, ONE UNKNOWN. 317

To determine whether the root = +oo or ~oo, observe that

••• the sum aocr-^bx, =— c, remains finite when ax^ and

bx each = co, i.e., when ic= oo,

.*. aa^, bx have opposite signs.

Divide aa;^, bx by ax
;

then *.* X and b:a have opposite signs,

• « y^ X, I
the same . ,, . . i ~oo

.-. If a, 6 have ^
^p^^^j^^

signs, the root = ^ +^
when a = 0.

The reader may further discuss the equation aoiy^-\-bx.-\-c = 0,

after the manner of Note 2, and show that the two roots are

real and unequal I 62>4ac.'
real and equal when -{6^

= 4ac.

imaginary |

6^ < 4 ac.

Of the real and unequal roots he may show which is the

larger ; and of all real roots he may show the conditions that

make them positive or negative. He may also show that in

every case the sum of the two roots is —b:a, and their product
c : a, and that if x', x" stand for the two roots,

then ax^ -\- bx -^ c = a {x
—

x') (x
—

x") .

Note 8. Equations solved as quadratics : Every equation

of either of the following forms, or reducible thereto, is solved

by aid of quadratics :

(a) ax2«4-5a?"-|-c = 0,

(6) (aa^™ + bx'' + c)^'" -|-p(aaj2n _j_ j^n _|_ (.)»«-}- g = 0,

(c) (aa^« + &a;«-f c)2'»±(ea;'»+/)2'" = 0,

{d) (aa^'* + 6a;'» + c)2"'±((ii»2»»4-ea;'^)2"'=:0,

wherein a, 6, c, d, e,/, p, q are independent of ic, and may be

real or imaginar}'.

Whether a given equation p = 0, whose degree is eve'h, be of

form (a), appears at once. If it be not, then to see whether it

reduces either to form {b) or to form (c) ,
find r, the entire part

of the square root of p : if the remainder p — r^ be of the form

pR + g, the equation reduces to R = i[— i:>+ V(P^~ ^^)]' ^^^

if also R or some root of r bo of the form a^"" -^bx"" -\-c, the

equation reduces further to (b) ;
or if p — r^ be ± a perfect
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square, S", the equation reduces to r = s ^'''1? ^^^ perhaps to (c).

Or, arrange p to ascending powers of x, and find r', so much
of -y/F that r'^ has the degree of p as to a;

;
then if p ^ r'^ be

± a perfect square, s'^, the given equation reduces to R=s'-y/'^l,

and perhaps to (d) .

E.g., irdx*-52a^ + 64:= 0;

then ••• 81a;*-468a^4-C76 = 100, [mult, by 9, add 100

.-. 9ic2^26±10,

.. ar^ =4 or -y,

.'. X = ± 2 or ±^: four real roots.

So, if (9a;^-o2a:2_|_go)24.9(9a;4_52a;2_^g0)
_ 400 = ;

then •.• 4(9a;*-52ar4-80)2+3G(9a;4-52a^4-80)+81 = 1681,

.-. 2(9a;^-52ar+80) = -9±41
= 32 or -50,

.-. 9a;*-52ar + 80 =16 or -25,

.'. x=±2, ±|, ± iV(26±V- 209) ; eight roots.

§12. GRAPHIC REPRESENTATION OF QUADRATIC
FUNCTIONS.

Let ax^ + bx-{-c be an^' quadratic function of a?, and put y

equal to it
;
then different values may be given to a?, the cor-

responding values of y computed, and the function platted. The

plat is a parabola whose axis is vertical.

E.g.^ in the equation y=za^-\-2x— 3.

Put a;=..., -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5,...;

then y="',12, 5, 0,-3,-4,-3, 0, 5,12,21,32,...,

and the plat of the function is as shown in the figure, p. 319.

If there be a pair of equations involving x,y y = x^ -{-2x—3,

y = 0, their solution is reduced to the solution of a single quad-
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ratic equation involving one unknown element, x^-^2x—S =
and the roots of this equation are the

abscissas of the points where the curve

whose equation is y=x^-\~2x—S cuts

the axis of abscissas whose equation

is y = 0.

The ordinates of the points of inter-

section are manifestly 0.

If the curve that represents the equa-

tion y = x^-\-2x — S remain fixed on

the paper while the horizontal line that

represents the equation y = moves

downwards, taking in succession the

positions o'x', o"x", •••, each ordinate of the curve is increased

by the same length, and the value of y in the given equation

is increased by the same number
; and, by the simple change of

the absolute term, the two roots of a quadratic equation may ap-

proach each other, then become equal, then imaginary.

E.g., of a^-^2x=S the two roots are —3, 1,

of x^-\- 2a; = the two roots are —2, 0,

of fl^-f-2a; = — 1 the two roots are —1, —1,

of a^+2a; = — 2 the two roots are

-1 + V-i, -1-V-i-
In all such cases it is said that a straight line cuts the

curve in two points, real and separate, real and coincident,

or imaginary, just as it is said that every quadratic equation

has two roots, reUl and unequal, real and equal, or imaginary- ;

and though it may seem strange to the beginner to say that one

line cuts another in two points when it only touches it, or to say

that it cuts it in two points when it does not cut it at all, yet

the language and the demonstrations of Algebra gain greatly

by this generality ;
and the pairs of roots so described have most

of the algebraic properties of other pairs of roots : in particular,

they each satisfy the given equation, and their sum is the —
j9

and their product the — g of the type-form. [



320 EQUATIONS. [XI. pr.

PrOB. 9. To PLAT THE EQUATION QX^ + bxy -\- Cy^=: d, USING

NO IIIRATIONAL FUNCTIONS OF X^ y : a, 6, C, d, iC, y, ALL llEAL.

(a) When6^>4oc, and cd{^ 0.

Compute M, = ^ ——-—
;
and n,

= ^ -

\b2— 4ac \ c

To V, aw auxiliary variable^ give any convenient series of val-

ues; and for each value o/v find a pair of simultaneous values

ofx, y to satisfy the given equation :

2v *^

2v 2v c

Plat each of the points x, y ;
and join them by a curve.

(6) When 4ac>b^: then always cd>0. [cc, ?/ real

Compute m', = J*"
—

; and n',
= J"—

\4ac — b^ \c
To the auxiliary variable v give any convenient series of values;

and for each of them find values of x,j to satisfy the equation:

2v
,-, ,

1-v^
,

2v bM'
VIZ.. x = -^'2:m'. y = --n'

l+v^
' -^

l+v2 1+v' c

Plat each of the points x, y ;
and join them by a curve.

(c) When 6^ = 4ac: then always c(Z<0. [ic, 2/ real

Compute n',
=

^1- ;
i/ie pZa^ is iwo parallel straight lines

y = N' X, y = — n' X.^
2c

-^

2c

(a)'.' {2cy-{-bxy—(b^ — 4:ac)'X^ = 4:cd, [glv. eq.

.-. l2cy-\-bx-{-x^(b^-4ac)}[2cy-\-bx-x^{b^-4:ac)']
= 4cd

;

.*. whatever value be given to v,

when 2cy -{-bx + x^(b"—4:ac)= 2^{±cd)'V,
then 2cy-{-bx

— x^{b-—4:ac) = ±2^{±cd):v,

.'. x =——— ^ — =—=i—- .m; Q.E.D.[elim.?/, solve
V \¥ — 4:ac V

V" i 1
and ••• 4:cy-^2bx = 2 ^{±cd), [add eqs. above
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V^ ±1 t'^ IP 1 5 M r 1 1 *
.'. y = N — — Q.E.D. |_repi. it', sol. for

2/
2 1' 2v c

(b) '.' {2cy -\-bxy=4:cd — {4:ac
—

b-)'X^ [giv. eq.

= [2 Vc(^ + a; V(4ac - 6^)] [2 y'cc^
-

a;y'(4aG-62)];

.'. whatever value be given to v,

when 2 ^cd + x-W{4:ac-b^) =i^ (2cy + bx),
1 — v

then 2^cd-x^{4ac-b') = ^^^ {2cy + bx),

... 2Vcd+a.V(4ac-6^) ^ /l+
^V, [divide

... x^-^^J '^
, =^.2m'; Q.E.D. [soLfora:

and '.
• 4 y'cd = —^^^-—-

(2 cy + 6a;) , [add eqs. above
1—v

.-. 2/=^^=^'-n'-^^,-— • Q.E.D. [repl.a;,sol.for2/
1 + ^'2 1 + 2;^ c

And •.• 4cd is the sum of the positive quantities

{2cy-^bx)\ {4:ac-b^)'X',

.-. Cd<0. Q.E.D.

(c) •.• when (2c2/ + 6a;)^
= 4c(i

then (2c2/ + 6a;— 2 -^cd) {2cy+ bx + 2 -^cd)
= 0,

.,, Id 6a; Id 6a;
...either 2/

=
^---

or
y^-^--^^,

and conversely. q.e.d.

E.g., to plat the equation 3a^ + 5a;?/ + 7/= 425. [fig.,p.322

Here a, 6, c, d = 3, 5, 7, 425
; 4ac-6-=+59,

and the case is (6) ;

m'= V(7 • 425 : 59) = 7.101, n'= V(^25 : 7) = 7.792,

6 m' = 5.072;

and the coefficients of 2 m', n',
— ^in the values of x, y are :
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When V =0 li ^ ^ ^ =^1 ^ ^2 ^3 ^5 00 ...,
5 3 2 3 2

then -1:^ = !5 15 ^ ^2 .,
l+ir^ 13 5 5 13 13 5 5 13

, 1--?/^
,

12 4 3 5 ^ -5 -3 -4-12_,and - = 1 — - - — — — 1 ...,

1+172 13 5 5 13 13 5 5 13

and 2/
=
(l,j|,-,^,-l)x7.792-(0,^,...,^,0)x5.072,

I.e., a= =^5.46 -8.52 ^11.36 *13.11 ^14.20...,

.r.A .. - -Q I
0.24 . 3.19 .0.62 .-1.68 t. n-and y= /./9 \ g j^ \ 9 28 ^ 8.73 < 7.68

^'^^ -'

=^1 -1 =^1 H
for v= J: _i J. _f ±1 ...,

5 3 2 3

,,_---o ,-9.14 .-9.28 .-8.73 ."7.68
y- t'^-f

i-5.24 1-3.19 '»-0.63 ^ 1.68

i.O

and

for V = 00 =^5 *3
2

Give the same coefficients (except in order and sign) an}- values

Vi,V2 of 27 such that ^2= —v^, or = ± 1 : ^i, or = ± {l—v-^ : (1 +"^1),

or = ± (1+ Vi) ; (1
—

Vj) . Such values are 0, 00 , ^1 ;

and ±i,
±|,

±2, ±3; and
±|,

±
|

±
|,

±5.

So, to plat the equation

3 o^ 4. 5 a;?/ 4- 7 2/2
- 14 a; - 51 2/

= 330 :

here 3 (a;+ 1)^ + 5(a; + 1) (2/
-

4) + 7(2/
-

4)^= 425,

and the plat is as in the above example, except that the origin

or datum-point to which the curve is referred will now be a unit

to the right of, and 4 units below, the origin of the former plat.

Note. When cZ = 0, no auxiliary v is needed : plat (a) re-

duces to a pair of lines y — \\_—h + ^{lr—A:ac)~\c~'^x and

2/
= ^[— 6 — V(6"— 4«c)]c-^'«; plat (6) to a point a;=0, y=0\

plat (c) to two coincident lines y = — \hc~^x.
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§13. SOLUTION OF QUADRATIC EQUATIONS BY AID OF
CONTINUED FRACTIONS.

PrOB. 10. To SOLVE A QUADRATIC EQUATION BY AID OF CON-

TINUED FRACTIONS.

First root : Write the equation in the form x{p-\-x) = q\

and the convergents are :
^~

q pq p-q + q^ fq-\-2pq^ _
p p^ + q p^ + 2jpg p^+^p-q + q^

Second root: Write the equation in the form x^^—px+q.
q q q

then a' = -i>4-- = -p-^^2 = -p-^p7 ^g=-,
and the convergents are :

_ _2^_±q p^-\-2pq p^-^3p'q-\-q^ ^^'
p

'

p' + q' p' + 2pq

Of these two sets of convergents, when taken two and two in

order, the products are — g, and the sums approach —p.

E.g., to find x from the equation ic^ + 5ic = 2
;

2
then the two roots are — 2 and — 5 — -—

2

and the convergents are : o -j
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§ 14. -MAXIMA AND MINIMA.

If a; be a variable, and y he a. function of x, and if as x in-

creases, y increase for a time and then decrease, the greatest

value that y thus attains is a maximum
;
but if as x increases, y

decrease for a time and then increase, the least value that y thus

attains is a minimum. So for any two variables.

The normal { ™t^^^°^^ of any function u of one or more in-
' mmima -^

dependent variables x^y, .., are such values of u that, if u were

a little
-j p^^^^^' some of x, y, ... would become imaginary:

they depend upon a;, y, ... being restricted to real values. Ab-

normal maxima and minima arise from other restrictions : as in

the example below, where a certain rectangle is restricted to

have its corners at or between the vertices of a certain triangle.

If, by solving a quadratic or otherwise, the relation of u to

a, y, ... be expressed in the form p + Q V^ = ^' wherein p, Q are

rational functions of a;, ?/, ... and u a function of u
;
then is w a

normal i ^^^}^^^ whenever its value is such that u vanishes
^

i^]f^^f^ . . .
, ,

.

, a decreasingand is not itself a maxunum or minimum, but is
•{ ^^ increasing

function of w
;

for a slight fm'ther \ ^a^I^^^'^q
'^^ the value of u

makes -^u imaginary, while its equal
—p : Q, a rational function

of x^y^ . . .
,
remains real.

Theor. 8. Maximum and minimum values of a continuous

function occur alternately.

For *.* just after passing through the first maximum value the

function is decreasing,

and just before passing through the second maximum value

the function is increasing ; [df. max., min.

and *.* in passing from a decreasing state to an increasing state

the function must pass through a minimum value ; [df .

.*. between two maximum values lies at least one minimum

value. Q.E.D.

So between two minimum values lies at least one maximum
value. Q.E.D.
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PrOB. 11. To DETERMINE MAXIMA AND MINIMA BY SOLVING

QUADRATIC EQUATIONS.

By an equation express the relation between x, a variable^ and

u, a function of x to he maximized or minimized.

Solve for x
;
and if the value ofx thus found involve an even

root of a function o/u, equate that function to and solve for u.

See whether the values of u so found he maxima or minima.

E.g., in a triangle to inscribe a rectangle of maximum area :

1. There is such a rectangle.

For let ABC be any triangle, an its

altitude, bc its base, defg

any rectangle inscribed in it.

then •.• DEFG approaches aminimum

value, zero, as gf approaches

value, zero, as gf approaches bc,

for some intermediate position of gf there is a maxi-

mum value of DEFG. [th. 8

2. Let w = area DEFG, aj = DE, y = T>G, & = bc, ^ = an;

then '.' xy = u, x:h — y = b: h,

... u =hy{h-y):h, y = ^h ±^^[{bh' ^4:hu):h],

.*. the maximum value of u is \hh, and gf lies half-way

between the vertex and base.

So, about a sphere to circumscribe a cone of minimum volume :

1. There is such a cone.

For let DEF be any circle and abc

an isosceles triangle cir-

cumscribed about it and

tangent to it at d, e, f
;
let

ad be the axis of the tri-

angle, and let the whole

figure revolve about ad
;

then •.* as the point a recedes

from the circle, the lines

ab, AC approach parallelism, and the triangle abc

grows larger and larger without bounds,

.*. the cone abc grows-larger and larger without bounds.
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And •.* as the point a approaches the ch'cle the lines ab, ac

approach parallelism with bc, and the triangle abc

again grows larger and larger without bounds,

.'. the cone abc grows larger and larger without bounds
;

.-. for some intermediate position of a there is a minimum
value of the volume of the cone. [th. 8

2. Let V = volume of cone abc, y = ad, its altitude,

X = BD, radius of base, r = radius of sphere ;

then v =^7ra^y;

and •.• ab-af = ad-ao, ab^ = ad- + bd-, af^= ao^ — of',

and

and

i.e..

AG = AD — CD, [geom.

{f-\-^)-{y-r—r^) = y-'{y-r)\

a^y=zj^f: {y-2r),
v ^i^r^y':(y-2r),

y =[3v±V(9^'-247rr3v)] :27rr2;

that 2/ be real, 9v-<247r7^v,

the minimum value of v is f ttt^,

the corresponding values of y, x are 4r, r-^2^

the minimum circumscribed cone has its altitude double

the diameter of the sphere, the area of its base two

great circles, its volume double the volume of the

sphere, and its whole surface double that of the

sphere : as the reader may prove.
2a; + 21

So, to ascertain if the fraction
x"

have any limi-

Let

then •

i.e.,

6a;-14
tations on its value, for real values of x :

w = ——
;

x=l + 2.y± 3V[(2/- 2)(2/ + V-)]. [sol. for x

that X be real, the factors y — 2 and y + V" i^ust

have the same sign,

y may not lie between 2 and — ^, but may have any
other value,

2 is a minimum and —^ a maximum value of x.
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The reader may plat this function [a hyper'bola], and the

meaning of these statements will then be clearer to him.*

So, to find tlie limitations on the value of the quadratic func-

tion aa? -\-'bx-{-c for real values of x :

Let y = ao? -\-hx-\-c\

then •.• x = \_-h±^{W-4.ac+ 4.ay)'\'.2a,

.'. for real values of «, 6^— 4 ac4-4 a?/ cannot be negative,

I.e.,
,
6^—4ac ,1

, negative , .
, positive,

y -\ cannot be < ^... when a is ^ t'^^^y^i^y^,
4 a positive

>

negative,

> 4a 4a
. .. . minimum ,

is its < . value.
' maximum

The plat of the function is a parabola whose axis is vertical

aud vertex^ t^l^d""^
^l"*" « is

"I

^egaUVe
'

'"''^ *'''" parabola

< til
"""'

<=»* tl^« a^is of X when b'-4ac is^ ""S^}:'!^-' does '

positive.

The four cases are represented by the four cuts below,

o

c 'f ax^ + bx-\-c
bo, if v = ' '—

;

then -(b-b'y)

2{a-a'y)

t- -y/l{b'^-4:a'c')y^-2 (bb'-2ac'-2a'c)y+b''-'4:ac']

2{a-a'y)
.*. that X be real,

(6'2
_

4ct'c')/
-

2(bb'
- 2 ac'- 2 a'c)y + 6' - 4ac < 0.

Write this quadratic function of y in the form

(6'2-4a'c')(2/-a)(2/-/?),

wherein a, (3 are the roots of the equation got by putting this

function equal to
;

then three special cases are to be noted :
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(a) b ' ^ — 4 a 'c
'

positive .

If a, /S be real and a<)8, then, that x may be real, y must not

lie between a, /5 ; i.e., y has a for a maximum and ^
for a minimum value.

If a, fi be real and equal, or imaginary, the product

(y
—

(^){y
—

a) is always positive, and there is no

limitation on the value of y.

(6) b'* — 4 a'c' negative.

If a, ft be real and a < /?, then, that x may be real, y must lie

only between a, ft ; i.e., y has a for a minimum and ft

for a maximum value.

If a, )8 be real and equal, or imaginary, then the product

(b'^
—

4a'c'){y
—

a){y
—

ft) is negative, and no real

value of X is possible except for the particular values

y=a=ft.

(c) b'*— 4a'c' zero.

Then the quadratic function in y reduces to the form py-{-q;

and that x be real this function may not be negative ;

and if p be ^ P*'"'*!:"^ 'y + ^- cannot be ^ "-^S^"^'^
'

^ '

negative,
^ ^

p '

positive ;

I < Q A -4. I maximum , . Q
• *• V-iZ^ , audits^ . . value IS

•^ ' > p'
' minimum p

Note. It is sometimes better not to solve for the independent

variable, but to express in terms of it the function to be maximized

or minimized: noting that if a be a positive constant, m, n odd posi-

tive integers, <f>
an increasing function, and

\}/
a decreasing func-

.. ., V . I maximum, ,
- ,/ \

tion, then when ?< IS a -(
. .

' so are u±a. au, w», cf)(u)',' ' minimum,
> t\ /^

, , ,

--
, / \ J

minima,
but ±a — u, a:u, u »*, \^(u) ares' ' ' rv / 1 maxima.

E.g., to divide a real number 2a into two real parts whose

product is a maximum :

Let a — 2; and a + 2; be the two parts ;

then •.* {a
—

z)'{a-\-z) = a^ — z^,

and •.• the product a^ — z^ is greatest when 2 = 0,

.-. the parts are a and a. q.e.d.
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There is no minimum
;

for, as z grows larger, o? — z^ grows less without bounds.

Let a — z = x\

then a-\-z = 2a — x^ and the product a?—z^ = x{2a — x).

To plat the locus of the equation ?/-
= cc {2a— x) :

Take ox = 2 a, and on ox as a

diameter describe a semi- ^^
circle

;
take b any point on /

ox, and draw bp perpen- /

dicular to ox
;

/

then *.• Bp2=OB-Bx, [geom. o a c B x

and ?/
= BP, a; = OB, 2 a — a;=Bx,

.-. tlie semicircle is the locus sought,

and 'if is greatest when b is at the centre,

?'.e., when ob, bx, bp, each = a.

So, to resolve a real number o? into two real positive factors

whose sum is a minimum :

Let ic, y be the two parts ;

^

then ••• {x-\-yy = {x
— yY + A:xy = (x — yy-\-^a'^^

.'.
(a; + 2/) is least when 0? —

2/
= 0, i.e., when x = y — a.

There is no maximum
;

for, as ic~?/ grows larger without bounds, so does x-{-y.

From these two examples it appears that of all rectangles

with the same perimeter the square has the greatest area, and

that of all rectangles with the same area the square has the least

perimeter. So, often the same conditions that make a variable u

a maximum or minimum when some other variable v is constant,

also make v a maximum or a minimum when u is constant.

Other maxima and minima may be found by aid of the above.

E.g.^ to make —-^— a maximum : [a, h positive

Make the reciprocal, ax-\-h:x, a minimum
;

then •.• the product of ax and 6 : a? is the constant a6,

.*. their sum is a minimum at 2^ab ;

I.e., the given function is a maximum at Ja~^6~^.
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§ 15. SIMULTANEOUS EQUATIONS.

PrOB. 12. To SOLVE TWO EQUATIONS INVOLVING THE SAME TWO
UNKNOWN ELEMENTS WHEN ONE OF THE EQUATIONS IS SIMPLE.

Eliminate one of tlie unknown elements. [pr. 2

Solve the resultant for the other unknown element and replace

this element by its value in the simple equation.

Solve this equation for the first unknown element.

E.g., to find the values of a;, y from the pair of equations

Sx + 2y=20, -3 a^ -\- 5xy+ 7y^ = 425 :

then ••• x = i{'20
— 2y), [sol. first eq. for a;

.-. i(20-22/)2+|2/(20-27/)+ 7/=425,[repl.a;inscc.eq.

.*. 157f-\-20y =875, and t/= 7 or —8J, [sol.quad, for?/

.*. 3a; +2-7 =20, and a;=2, [repl. ?/ in first eq.

or 3a;-2.8J=20, and a;=12f,

and the two pairs of roots are : 2, 7 ; 12f, —8^.
That both pairs of roots satisf}^ the two equations appears by

direct substitution, and that there ought to be two pairs of roots

is evident from the plat.

\ Let «= 0, 2, 4, C, 8, 10;

^v,.^
then in the equation 3x-\-2y = 20

]^>V y= 10,- 7, 4, 1, -2, -5,

. 1 Ivi ibi^ik
^^^ in the eq'n ^of -\-bxy -\-ly^ — ^26

'

! i\l l\ 2/=+7.8, +7,+6.2,+4.9,+3.5,+1.5,

I

1 \\\J or 2/
= "7.8,-8.2,-8.9, -9.2, -9.3, -8.6,

^~~"^—'—'— \ NoteI. The two pairs of roots ma}' coincide.

E.g., to find x, y from the pair of equations

7a;24.6a;?/4-8/+12a;+16?/-88 = 0, 23a;+222/ = 68 :

then the resultant is /— 22/+l = 0, and cc, ?/=2,l; 2,1.

The geometric interpretation of the equality of the roots is

that the loci represented intersect in coincident points; i.e.,

that they are tangent. A slight change in either equation so

changes the locus that the points separate or disappear. Then

the two roots are real and separate, or imaginary.
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Note 2. Special expedients may be useful.

E.g.^ to find x^ y from the pair of equations

x + y=l, xy=12:
then •.• (x

— yy=(x-\-yy — 4:xy=:l,

,'. x-y=± 1
;

and •.• 2x={x + y)-\-{x-y), 2y = (x + y)
- {x^y),

.. a; = 4 or 3, 2/= 3 or 4;

and the two pairs of roots are : 4,3; 3,4.

So, to find oj, y from the pair of equations

a^-^y^=125j x-y==6:
then •.• {x^7jy-{-{x-yy==2{x'-\-y'),

.'. (x-{-yy = 225 and x-{-y=±16,

.'. a;=10 or— 5, y=6 or — 10,

and the two pairs of roots are : 10, 5
;

—
5,
— 10.

PrOB. 13. To SOLVE TWO EQUATIONS INVOLVING THE SAME

TWO UNKNOWN ELEMENTS WHEN BOTH EQUATIONS ARE QUADRATIC.

Eliminate one of the unknown elements by division; solve the

resultant hiquach'atlc equation for the other.

Replace this element by each of the four roots so founds in the

equation formed by equating to zero any remainder or divisor that

contains the other unknown element in the first degree^ and solve

for that element.

E.g., to find the four values of x, y from the pair of equations

2a;?/ + 5/— 195 = 0, 3a^ — 4ic?/
— 7 = : then.

2?/.a;4-(5y^- 195)1 ^x^-^y-x-l |3a;- (23/ - 582)

H
Qy'X^

— Sy-'X—\4:y
6y. 0^4-3 (5/ -195) a;

-(23/ -585) a? -142/

^
-22/(23?/--585)a;-28/

-22/(23?/^-585)a;-(5/-195) (23^-585 )

(5/-195)(23/-585) - 28/
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Equate this last remainder to zero
;

then •.• 115^- 7438/+ 114075 = 0,

2 ofc 4563
.-. V =25 or ,^

115

.-. y =±5 or ± ^^'

V345'

and X =±1 ov TJ^- [repl. y

This process consists in replacing the two given equations

by two new equations got from the last two remainders, the one

free from a;, and the other having x only in the first degree.

So, to find ic, ?/ from the pair of quadratic equations

x^-^2y-='^xy^ l(jx—\2y = bxy\
then *.' the resultant of these two equations is

5?/*
—

14^^* -\-Sy^= 0, whose linear factors are

y^y^ (52/ -4) (2/ -2),
.-.

2/
= 0, 0,1, 2,

and a;=0, 6, i, 4.

The locus of the equation 0^4-2?/^ — 3a;2/
= 0, i.e., of the

equation (x
—

22/) (aj
—

2/)=^0, consists of the two straight

lines whose equations are x — 22/=0, x — y = 0.

The four values of y give the ordinates of the four points

where the hyperbola whose equation is 16a;— 12?/ = 5ic?/ cuts

these two straight lines, and two of these four intersections

coincide at the origin ;
hence the double solution, a; = 0, ?/= 0.

Note 1. If both the equations be of the form

ax" + hxy + cy^-\-f= 0, a^x" + h'xy + c^y'' +/' = 0,

the following method may be adopted : subtract / times the

second equation from /' times the first, and divide the resulting

equation by y^ ;
solve for {x : y) ; .replace a; by a function of y,

and solve for y.

More generally : if the two equations consist of two ?ith degree

homogeneous functions equated to constants : eliminate these

constants and thus obtain a homogeneous nth degree function

equated to zero. Divide this equation by 2/'*, and solve the

nth degree equation involving the ratio x : y.
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More generally still : if one fnuction be of the mtli degree,
and the other of the ?ith degree, divide the 1. c. mlt. ofm, 7i by each

of them, raise the two functions to the powers shown by the

quotients, and put them equal to like powers of the constants,
thus making both equations of the same degree. Solve as above.

Note 2. The two equations may be written

Po + PiH hP;«= 0, Qo + QiH f-Qu = 0;

wherein Pq, Qq are free from a?, y ; p^, Qj are homogeneous and

of the first degree ;
••• p„, Q„ are homogeneous and of the de-

grees w, n.

If the given equations be so incomplete that only a few of the

expressions Pq,
••• p«, •••

Qo,
••• Qn l^e present, it is often best to

put vx for y in both equations, eliminate x, and get the values of

V, and then of x, y. [Or else put vy for x and eliminate
y.']

By thus putting vx for ?/, the equations become

Po+Ui-xH hu^-ic"'=0, Qo+Vi-fliH |-v„-aj"=0,

wherein Ui,
••• u^, Vi'",

••• v„, are known quantities or functions

of V whose degrees > 1, 2, ••• m, 1, 2,
••• n.

This method is similar in principle to that of Note 1.

E.g. ^
In the example of Note 1, Po + P2 = 0, Qq

—
Q2 = 0?

wherein Pq, Qo, Pa, Q2=/, /', ax" + hxy + cy"^, a' x^+h' xy + c'
y"^ \

Us, Vs = a + &v + cv^i o! -f- Vv + c' v^
;
and v is found from the

quadratic {cf-c'f)v' + {bf -b'f)v + af- a'f= 0.

Note 3. Sometimes the solution of a pair of equations may
be simplified by changing the unknown elements : notably

bj' making use of the following relations, connecting the sum

of two numbers, their difference, their product, the difference of

their squares, the sum of their squares :

half sum + half difference = greater number.

half sum — half difference = less number.

product sum x difference = difference of squares.

sum of squares -f- twice product = square of sum.

sum of squares — twice product = square of difference,

(half sum)
2 + (half difference)^ = half sum of squares,

(half sum)- —
(half difference)^ = product.
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When each equation is symmetric as to x,?/, it is commonly
best to take symmetric functions of a;, y for the new unknown

elements.

When one equation is symmetric as to ic, 3/, and the other as

to a*,
—

?/, it is often best to take a-f-y, x — y for the new

unknown elements.

Sometimes equations not originally thus symmetric may be

made so by transformation.

E.g.^ the resultant of the pair of equations

3in/ — 4ic-42/ = 0, ar^ + ^/^+ a-f?/ - 26 = is

92/^
- 15?/^

-
2422/2 _,_ 624?/ - 416 = 0,

which is not easily reduced to a quadratic.

But put {x-^yy^2xy for m? -+- t/^, and write the equations :

2^xy-4.{x + y)=0, {x+yy-\-{x-iry)-^xy-2Q,=^0,

then x + y=Q>, xy = 8 or x-^y = --^^, xy = -^;
and the four values of a;, y ai*e found from these two pairs

of equations, each consisting of a simple equation

and a quadratic.

So, to find X, y from the pair of equations

x^y= lxy, a? + y^ = ^xy',

square the first equation and subtract from the second

to find values of xy ; join each of these equations

with the first equation to find values of aj, y.

So, in the equations a; + 2/
= 4, x* + 2/^

= 82,

put u-\-v^x^ u — v = y]

then {u-i-v)-{-(u
—

v) = A, w=2;
and {u-{-vy-{-{u-vy = 82, u'^ + 6u^v^-\-v^=:U,

... v'-\-24:V--2o = 0,

.'. v'=l or —25, v= ±1 or ±6i.

.'. X =3, 1, 2-\-oi, 2—5i;

2/=l, 3, 2 — 01, 2-\-bi.

So, to find the five values of x, y from the pair of equations

a; + 2/
= 4, a^ + 2/^

= 244;
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then •.• {u-i-v)-\-{u
—

v) = 4, (u + vy -j-(u -vy = 2U,

.-. the five values of V are qo,+1,~1, -\-i^S, —i^S<,

the five values of a; are +go, +3,+l, 2+i^3, 2—i^3,
and the five values of 2/ are "oc, +1,''"3, 2—^V3, 2+1^3.

Note 4. The meaning of these infinite solutions may be

interpreted as follows :

Consider the equation a; + 2/
= 4 as the limiting form of an

equation aj + 6?/=4, whose coefficient b gradually approaches

unity as a limit : one of the pairs of values of x, y grow larger

and larger without bounds, and the solution is either cc=+oo,

y=-cc, or a; = ~oo, ?/=+oo, according as 6 is a little less than"

unity or a little greater.

Note 5. Sometimes the roots of higher equations may be

found by the method of division.

E.g., of the pair of equations

y{x^ ^-r) = 4(ic + 2/)^ xy = 4:{x+ y),

the resultant is y*
—

8y^ = 0;

and •.* this function of y is divisible by y^,

.'. the equation has three roots
;

it has also one root 8.

But *.• the general resultant of a cubic and a quadratic equa-

tion is of the sixth degree,

.'. this resultant has lost its two highest terms, and the

equation has two roots oo
;

.-. the values of y are oo, go, 0, 0, 0, 8,

and the six corresponding values of x, found from the

equation x = 4:y:(y
—

4) are 4,4,0,0,0,8.

The geometrical interpretation of these roots is, that of the

six points of intersection of the loci that represent the two equa-

tions two are at an infinite distance and lie on the line a; = 4,

three are at the origin, and one is at the point whose co-ordi-

nates are 8,8; or, in the language of limits, if one of the curves
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change its form slightly, by the gradual change (say) of a sin-

gle coefficient, and thus approach its present form, tlieu two of

the points of intersection recede to an infinite distance, three of

them not coincident approach the origin, and one approaches
the point 8, 8.

So, of the pair of equations

a^+y(xy-l) = 0, f-x{xy-\-l) = 0,

the resultant, found from the last remainder, is

4y^-.4:f-y=0,
and the second last remainder gives

{2y'-{-l)x-2f==0,
.-. 2/

= or 2^ = i(l±V2);
i.e., y may have the value or any one of the eight values

•

of </*(! ±v2), =</a±vi).
and ic, =22/^:(22^-}-l), may have the value or any one of

the eight values of ^1 : (2 ± 2 V2),= -^(-i-± Vi)-
Note 6. Special methods of solution : Many sets of simul-

taneous equations may be solved by special devices. The ex-

amples given below are meant merely as suggestions to the reader.

He is advised to tr}- his own ingenuity upon each example before

studying the solution here shown
;
and afterward, to see how

far the principle of each solution applies to other examples.

1. To find the values of x, y from the pair of equations

a^ + a;-y + 2/4 =133, (1) x'-xy -\-y-=l : (2)

then
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Put u = 0? -\- if ^
V = X- y"^ \ (1 )

then •.• w^-u- 2^=84, ?^ + v=49; (2)

.-. U- + u = 182
; [add (1) and twice (2)

.-. u = n or -14.

(1) Puta^ + 2/'=13;

then ••• x-if = ZQ, cc^ 4.363,-2^13.

.-. oir= 9 or 4, i/=z 4 or 9;

.-. X = ±3 or ±2, ij =±2 or ±3;

i.e.,a;,2/=-^3,+2;+3,-2;-3,+2;-3,-2;+2,+3;+2,-3;-2+3;-2,-3;

eight pairs of roots.

(2) Futsc^-{-y^ =-U;
then a^f- = G3, x' -{-6Sx-^=:-U',

.-. x' = — 7±i^U, 2/^=
— 7q:iV14;

.-. X =±V(-7±*V14), y =±v(-7:fiV14);
eight pairs of roots.

The plats of these two equations intersect in only eight real

points ; the other eight points of intersection are imaginary.

3. If V(^+2/)4-v/(^-^) = V«. V(^'+2/')+V(^-2/')=^ =

then 2a;+2V(aJ^-/)=a, 2a^+2^{itl^-y^)=b'', [sqr.

and oif — y- = ia^ — ax-\-a:^, x^ — y^
—

\h^ — h^a?-\-Qi^^

[div. by 2, transp., sqr.

I.e., y'^
= ax — ^a?^ y^z= ly^y? — \h^ ;

.. 'b^x^-\y'=^{ax-\ay\

I.e., (a2-Z>2)^_ia3.^4.(_i^^44.j54)^0;

.-. a; = [a-^±6(a2-262)]:4,(a2-62),

2/2= {ax - \a-) = ah •

\_ah ± (a- -'26^)] : 4(a2
-

ft^) ;

2/
= ± V[a6 .

(a6 ± a^ ip 26^) : A{a^-h'~)^.

4. If a;(a;+^+2;)=18, 2/(a^+2/+2;)= 12, z{x+y^z) = Q'.

then (i»-i-?/ + 2;)(aJ + 2/ + 2;)
= 36, [add

.-. x + y^z =±6,
.-. fl7=±3, 2/

= ±2, z=±l, [div.



338 EQUATIONS. [XI. pr.

5. If xyz = a-{y -\-z)
=

h-{z + x) = c-{x+ ?/) :

\zx xy) \xy yzj \yz^zxj
then

T^^ 111
Put u, V, w =—,

—
,
—

;

yz zx xy

then ••• l = a\v-j-to) = b\iv-\-u) = c^(u + v),

1/1,1 i\

.-. x^,=— :f Y =ic:(2v.v)
yz \zx xyj

So for 2/^, 2^

6. If yz-^zx + xy = 26, (1)

yz(y-{-z)-\-zx{z-\-x)-}'Xy{x + y)=162, (2)

yz {f +22) + zxiz-" ^x')-\-xy (^2+ /) = 538 : (3)

Write (2) in the form

yz{x+y-\-z)+zx{x^y-\-z)-Jrxy{x^y+z)—^xyz=lQ>2,

then {yz-\-zx-^xy){x + y -{-z)
— ^ xyz =10,2,

and 26
(a;+ ?/+ 2) -3 3^2/2

= 162. (4) [(1)

So write (3) in the form

{yz+zx+xy){x^-\-y'^+z') —xyz{x-\-y+z) =538;

then 2^\_{x-\-y-\-zY-2{yz-\-zx + xy)']

-xyz{x-\-y + z) = 538. (5)

Put w, V =x + y -\-z^ xyz ;

then 26it-3v=lG2, 26^^- wv= 1890, [sub.in(4,5)

.-. w = 9 or - 12^\, ^ = 24 or -159,

i.e., x-^y + z^d or —12-^, xyz =24: or —159;
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but •.• x{y+z)-^yz=:2Q>, , [(1)

.•. cc (9
—

x) + 24fl;~^ = 26, [use first vals. for w, v

i.e.
,

a^ - 9 a^ + 26 a; - 24 = 0,

or (if- 2) (a;- 3) (x -4) = 0; "[factor

.-. a;=2, 3, 4; [th.2cr.l

and 2/=2, 3, 4, 2; = 2, 3, 4. [symmetry

These roots may be grouped in six different ways :

a; = 2, 2, 3, 3, 4, 4;

2/ =3, 4, 4, 2, 2, 3;

2=4, 3, 2, 4, 3, 2.

So, for the sets of values from the other values of w, v.

7. If 2/2+ 2/2+^2^7, (1)

s2+2a; + aj-=13, (2)

a^ + a^2/+2/' = 3: (3)

then (a;-?/) (a; + 2/ + 2) = 6, (2 -2/) (a: + 2/ +2;)= 10,

[sub.(l, 3)fr. (2)
.*. x — y: z — y= 3 : 5,

i.e., bx — by — 2>z — 2>y and 2?/ + 32; = 5a;; (4)

but ••• 22 + a;(2! + aj)
= 13, [(2)

... 22_pj(22/+ 3;z).-J-(22/4-8;2)=13, [sub. for a; fr. (4)

I.e., 42/2 + 222/2; + 492;2 = 325, (5)

••• 2/=±2, ±-1-; 2 = if3, ±^; a^= + l, ±
^

8. If a;2_2/2 = a (1), y--zx = h (2), 2--aJ2/ = c (3) :

From the square of one subtract the product of the other two ;

then a?
(ar^ + 2/^ + ^r^ — 3 xyz) = a^ — &c = a,

y (ar^ + 7/ -\-z^
—

2) xyz) = b^ — cc( = b,

and z {x^ -\- y^ -{- z"^ — S xyz) = c^ — a6 = c.

.
•

. A2/
= Bx, Az = ca;

;

.-. (a^
—

Bc)o(y^
= aA^', [sub. for 2/, 2; in (1)

_ yg • A g^ — &c
*'* ^~

-^{a^-bc)~ ^{d'-\-b^-\-c'-3abc)'

c W — ca & — ah

V(a'+^'+c'-3g6c)' V(«'+^'+c''-3a6c)



340 EQUATIONS. [XI. pr.

§16. SPECIAL PROBLEMS INVOLVING QUADRATICS.

For definition of special problems and for the method of

putting such problems into equation and of discusbing the solu-

tions, see § 10. These methods are best shown by examples.

1. Two farmers at a fair each spent SHOO, a bought 50 sheep
and 12 cows

;
b bought 50 more sheep than cows

;
and

the sum spent by the two together in the purchase of

sheep was half the joint expenditure. What was the

price of cows and what the price of sheep, and how

many sheep and how many cows did b buy ?

Let tt, v, x, y = the price of the sheep, the price of cows, the

number of sheep, and the number of cows bought by b
;

then •.• 50^-1-121;= 1100, (1) xu+yv= 1100, (2)

50w + a;w=1100, (3) a; = ?/ + 50; (4)

.-. (a;— 50)w + (y-12)i; = 0, xu — 12v = 0,

[sub.(l)fr.(2) andfr.(3)
.'. yu-{-{y-12)v = 0, {y -\-50)u-12v = 0,

[sub. fora;fr.(4)

.-. [122/4-(2/ + 50)(7/-12)]<^ = 0. [elim.^

Put 12?/+ (2/ + 50) (2/- 12) = 0; [th. 2 cr. 1

then ^=10 or -60.

Reject the root — 60 as absurd
;

then 2/=10; ic, =.vH-50, = 60
;

.-. 50?i + 12^=1100, 60w + 10'U=1100,

[sub. for a;, ^/in (1, 2)
.-. u=10, -^ = 50;

i.e., b bought 60 sheep at $10, and 10 cows at $50.

2. The fore-wheel of a carriage makes 6 revolutions more than

the hind-wheel in going 120 yards ;
but if the circumfer-

ence of each wheel be increased one yard, the fore-wheel

will make only 4 revolutions more than the hind-wheel

in the same space ;
find the circumference of each wheel.

Let ic, ?/
= circumferences of fore-wheel and hind-wheel

;

,, 120 . 120 120 . 120 , , .
then 6 =

,
4 =

;
and 07 = 4, y = o.

X y x + 1
2/ + 1
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§17. BINOMIAL EQUATIONS.

PrOB. 14. To SOLVE AN EQUATION OF THE FORM X'^ = a".

Transpose a", giving x° — a" =
; factor x"— a", and pvt tJie

factors severally equal to
;
solve the equations thus formed.

The roots of these new equations are the roots sought. [ih.AcY.1

1 . To solve the equation x- = a^:

then •
.' x^ — a^ = {x

—
a)

'

(x + a) ,

.'. x — a = 0, or a; + a = 0,

.. x = a, or —a.

2. To solve the equation x^= — a^:

then •.* x^ -{-a^ = (x
— a-^—l)-{x-^a^—l),

[VIII.th.2,df.imag.
.-. x = a-y/—l^ or —a^— 1,

I.e., x = ai, or —ai.

3. To solve the equation (ii^ = a^:

then •.• x^ — a^ = {x
—

a)'{x^ -^ax -^-a^),

.-. a; — a = 0, or a^ + Ga;+ a^ = 0,

.'. x = a, or |^a(
— l±iV3). [sol. quad.

4. To solve the equation a^ = — a^:

then *.• the equation £c^ = — a^ gives a^=a^ if —a; replace a;,

.-. x = — a, or -^a(l ± i-y/S).

5. To solve the equation x'^ = a'^:

then •.• X* - a^ = {3^
-

a')'(x' + a^),

.'. x = a, —a, m, —a,i. [1,2

6. To solve the equation x* = — a* :

then '.' x' + 2a'x--\-a*=^2a'a^, . [add 2a2a^

r.e., (a;2 + a2)2-2a^a;2 = 0;

... (a;2 ^ ^^2 _ ^^^ ^2) .

(a^ + a2 + aaj V^) = 0,

.-. a; = |a(-V2±^V2), }a(V2±*V2)- [sol. quad.
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7. To solve the equation a.*^ = a* :

then *.• ic* — a* =
(a;
—

a)
•

(a;* + if^a + ar^a^ -I- ica^ + a*) ,

.'. x = a,

and a;*4-a^a4-ar^a" + a;a^+ a* =
;

.*. ay^ -\-ax-\-a'-\-a^x~^ |-a*a;~- = 0, [div. by ar*

.-. (a^ + a'a;-')+ a(a; + a^a;-^) + a'= 0,

.-. {x + a-x-Y+ a{x-}- a-x-') -2a^-{-a^ = 0,

.'. a;+ a2a;-i = Ja(-l±V5),

.-, x = a, ^a[(V5-l)±iV(10 + 2V5)],

-ia[(V5 + l)±iV(10-2V5)]. [sol. quad.

8. To solve the equation T'= — a^:

then *.• the equation v? = — c^ gives ^ = o^ if —a; replace a;,

.-. x^-a, -Ja[(V5-l)±*V(10 + 2V5)],

9. To solve the equation a^ = a^:

then ••• a^-a« = (af'-a-^).(ar^H-a^),

,', x = a, |a(-l±tV3)' -»' Ja(l±iV3). [3,4

10. To solve the equation x^ = — a^:

then *.* the equation oif = — a^ gives x^=:a^ if ?a; replace a;,

.-. x = ai, ^a{—i± ^3), —ai^ ia(i± ^3).
And so on for other roots.

Note. Another method of soltition is shown in X. Prob. 1, in

finding the nth roots of a** and of — a".

§18. LOGARITHMIC AND EXPONENTIAL EQUATIONS.

The methods of solving such equations are set forth in IX.

Probs. 3, 8.

J57.gr., to find a; from the equation 15^* + 6 • 15* = 51975 :

then •.• 15^=225 or -231, [sol.quad.

.-. a; = log 225 : log 15 = 2.3522 : 1.1761 = 2
;

but of the equation 15"'= — 231 no solution is possible.
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§ 19. EXAMPLES.

§1.

1. From the following statements pick out the sufficient condi-

tions, the necessary conditions, the equivalent statements,

the associated statements, the incompatible statements,

the independent statements :

ic<6, a;=3, x<D,x>4:, 2x=6, fl^ = 9, x = 3, Xi^S.

2. Give examples in which one statement is a ^ ^ .

'

^'
but

not a ^
sufficient,

(.(j^^iiti^^n ^f another.
'

necessary,

3. Show that if one statement
-{

,

^
, a

<j g,j«^^-^%^
condition

of another, then the latter -J
. . a

<(
condition' ' IS not '

necessary
of the former ; give examples of these four cases.

§ 5, PROB. 1.

• •• 24. Solve the equations :

4. 12 — 5a; = 13-a;; l-ox=7x+3; 6a;-5(3a;-7) -21 =0.

5. a — 2x = x — b', 7n — nx=px-\-q; ax — b{x — l)
— c = 0.

6. {x+l){x-l) = x(x-2); (x-\-4){x-2) = (x-d){x-S),
7. (x-\-a)(x—b) = (x—c){x-{-d); {x--m)(x-\-n)=x(x—q).

8. ax — m — 2\bx
— n — S [^cx —p — 4:(dx

—
q)']\

= 0.

9 Q, 4 — a; _ll. lx-\-A:. 5 — a; _22 x_ ^ — lx

S^S'O a~3 2 ~^
10. l(x-\)-^{x-2) = ~', l(oa;-6)--(a;-l) = a;-2.

a b b m n

11. l(a;-t-l0)-|(3a^-4) + i(3aj-2)(2a;-3) = a^--|.o o lo

12 1_A4_A=:A. -1—4 ^ ^

13.

14.

X 2x 7x 28 x-\-l x-{-2 x + 3

2a; — 3 _ 6x + 5 x — a _ 3x — c

3a;+ 4~~9a; — 10' 2x — b'~6x-d

_[. 1_ __1 1_ .
x—1 x—2 _ x—Z a;-4

x — Z x — 4: x — b x — Q^ x—2 x—3 x—4: x—5
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2\ 3j S\ 4y 4V 5y x-a x-b x-c
16. {x-ay-^{x-by-\-{x-cy=S{x-a){x-b)(x-c).
17. {x'-'Sx + 4.)^==x-S; [2(l-a;)(3-2a;)]-^ = 2a?H-l.

18. (8~4x)^+ (13-4a;)*=5; 2x+^l4.x'-\-^(l-4rX)}= l,

19. 18: V(2a; + 3) = V(2aJ-3)4-V(2a; + 3).

20. 3V(aJ-|) + 7V(^ + A) = 10V{aJ + T*ir)-

21. v(3a;H-l)-V[2-a; + 2V(l-a;)] = l.

22. -^/(V3+a;v7)+^(V3-a;V7)=-^12.

23 l+x-V(2a; + ar^) ^^ V(2 + a;)-Var

24. V(« + a;)H-V(a-a5) = &[V(a+ »)-V(«-^)]-

§§ 6, 7, PROBS. 2, 3, 4.

• ••28. From the following pairs of equations eliminate one of the

variables by the first method, and solve the equations :

25. 8x + Sy=U, 5^=10; 3a;-8y=7, 3^x= 5,

26. 15x + 22/=17, 9x — 4y=5.
27. 210x + 42y + 93 = 0, 22a; + 14y + 7'= 0.

28. |2/-ia^ + 24 = 0, ^2/ + ia;-f- 11 = 0.

• ••31. So, by the second method :

29. x+ y = 9, a;-2^=l; 5x-{-Sy = 8, 7x-Sy = 4:.

30. 3a; + 2/=16, 32/4-a;=8; Sy = 5x, 16y = 27x-l.

y)'
3V4 5 6; 4^

^^'
2V4 5 3; 4^

^

• •35. So, by the third method :

32. l\x-3y = 0, x-y = -U', x = iy, x-^y = ^,

33. x-y = i, x+i=i(y + x).

34 _£±^=3 a;-3.v 5y-a; ^l'

a;-22/
'

6 9 2

35. ^(804-3a;) = 18i-i(4^ + 32/-8),

102/ + i(6^
—

35) = 55 + 10a;.
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• ••39. Eliminate x by the fourth method from :

36. 4a;-7?/ = 9, IGo^^- 49/= 207.

37. if^ + £c?/=7, ic4-?/ = 4; a;^ + 3a7?/ = 10, 2/^ + 2ic?/ = 5.

38. Q^-\-xy^f = h, 2a^ + 3a;?/ + 42/-
= ll.

39. a;^ + a^2/ + a^?/2 + »/ + 2/4
= 1, oj^-f- 2/^

= 2.

§ 7, PKOB. 5.

• •• 48. Solve the systems of equations :

40. 3a; — 4?/ + 52; =4, ^x — y — z = ^^ 7x — 5y—Sz = —l.

41. a;+ 2/ + 2 = 6, a; — 2/ + 2f=2, x + y — z = 0.

42. a;— 2?/— 52;=20, 3a;— 5?/—32=22, — 8a;+ll2/+92= — 57.

43. 2(a;+l)-3(?/-l) + 2-2 = 2,

2(a;-l) + 4(2/+l)-5(2-l) = 3,

3(2aj+ 2)-2(2/-l)4-3(2+l)=29.

X y z 6^ X y 3z 18 x y 7z 21

45. 3Ja;+5|2/-lTT2'=51, 2/^ + 22 = 2 a^+^ajS^ c?/ + 62 = a,

2ia;+3i2/-lj2; =23f, z'' -haP=2b^ -j-^y^ az+cx = b,

lia;+2i2/4- f^^ =31|H; a;2+2/' = 20^ +|-2;2; 6a;+a2/= c.

46. a; + 22/+32! + 4w =20, x-^2y -\-Sz-4:U =12,
x-^2y — Sz-t4u =8, a;- 2?/H-32 + 4z« = 8.

47. 3a;— 4?/ + 32; + 3v-6w=ll,
Sx — 5y + 2z — 4:11=11, lOy -3z -{-Su — 2v = 2,

5z+Au-[-2v-2x= 3, 6w- 3v + 4a;- 2?/= 6.

48. 5a;-2(2/ + 2; + 'u)
= -l, -

122/ + 3 (2 4-v + a;)
= 3,

42 — 3 (v + a; + 2/)
= 2, 8^ —

(a; +2/ + ^) = — 2.

Denote x + y-i-z-j-vhys; from these equations respectively
express a?, 2/, 2, v in terms of s

;
substitute these values in any

one of the equations ;
solve for s

;
and thence find x, y, z, v.

§8.

• •• 52. Plat the lines that represent the equations :

49. a; = 0, y= 0, a; = 4, a;=— 4, 2/
= 4, 2/=— 4, x=±a,

y= ±b, [a, 6, lines of any known length

50. y = x, y= —X, y = 2x, y= — Sx, 2y = Sx, 3y=—2x,
ly = mx, ly=— mx, [Z, m any two given numbers
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51. y = x-}-2, y=-x-{-2, y = x-2, y=-x-2,
y z= mx -\- c, [_m an}' given number, c any given line

52. 2a; + 3 2/ + 5 = 0, 3 a; — 2?/ — 5 = 0, Ix -^-my -{-c = 0,

[Z, m any given numbers, c any given line

53. Find the lengths of the intercepts upon the axes of the

lines whose equations are given in Exs. 52-55.

54. Find the co-ordinates of the points of intersection of the

lines whose equations are

y = x, y=—x; y= x-\-2, y = x — 2;

2x4- 3y + 5 = 0, 3a; — 2?/
— 5 = 0; y = mx+c^

y= — wia; + c, [m an}' given number, c any given line

55. Find the co-ordinates of the vertices of the triangles

bounded by the lines that represent the equations :

2a;-J- 37/ + 5 = 0, 3a; — 2?/
— 5 = 0, a; = 5;

ax-^by + c=0, a'x + b'y+c' = 0, a"x-{-b"y -\-c" = 0.

56. Find the co-ordinates of the vertices of the parallelograms

bounded by the lines that represent the equations :

2a;-f 32/-f5 = 0, 2a;-f 3?^- 5 = 0,

3a; — 2?/ + 5 = 0, Sx-2y-5 = 0,

57. By aid of Bezout's method solve examples 42-51.

§ 10, PROB. 6.

58. Find two numbers, such that their sum is 27
;
and that,

if four times the first be added to three times the second,
the sum is 93.

59. Find two numbers, such that twice the first and three

times the second together make 18
;
and if double the

second be taken from five times the first, 7 remains.

60. A flagstaff is sunk in the ground one-sixth part of its

height, the flag occupies 6 feet, and the remainder of

the staff is three-quarters of its whole length ; what is

the height of the flagstaff?

61. The diameter of a five-franc piece is 37 millimeters, and

of a two-franc piece is 27 millimeters ; thirty pieces laid

in contact in a straight line measure one meter; how

many of each kind are there ?
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62. Find three numbers such that the sum of the first and

second is 15
;
of the fii'st and third, 16

;
and of the second

and third, 17.

63. The sum of the three digits of which a number consists

is 9
;
the first digit is one-eighth of the number consist-

ing of the last two, and the last digit is likewise one-

eighth of the number consisting of the first two.

64. At an examination there were 17 candidates, of whom
some were passed, some conditioned, and the rest re-

jected; if one less had been rejected, and one less

conditioned, the number of those passed would have

been twice those rejected, and five times those condi-

tioned
;
how many of each class were there ?

65. There are three candidates at an election, at which it is

necessary that at least one more than half the entire

number of electors should vote for the successful can-

didate
;
A fails to obtain an absolute majority, although

he has 20 votes more than b
;
but supposing that c, whose

votes are only three-tenths of b's, had withdrawn, and

that one-fourth of his supporters voted for a, then a

would have been barely successful
; how many voted for

each candidate ?

66. A gentleman left a sum of money to be divided among
four servants

;
the first was to have half as much as the

other three together, the second one-third as much as the

other three, and the third one-fourth as much as the

other three
;
the first, moreover, was to have $ 70 more

than the last
; how much should each get ?

67. A father divides his estate among his children as follows :

to the first a dollars and the nth. part of the remainder ;

to the second, 2 a dollars and the nth part of the remain-

der
;
to the third, 3 a dollars and the ?ith part of the

remainder
;
and so on. It results that in the entire

division of the estate each child receives the same

amount. Find the value of the estate, the number of

children, and the amount each one receives.
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68. In a company of a persons each man gave m dollars to the

poor, and each woman n dollars ; the whole amount

collected was ka dollars ; how many men were there, and
how many women ?

Show that, if m>n, then m>k>n.
Show that the example is possible only when (m— k)a,{k—n)a

are multiples of m — ?i and have the same sign as m— ?i.

69. Upon a horizontal straight line let o be a fixed point, let a

lie a units to the left of o, and b, 5 units to the right of

o ; fmd on this line a third point x such that if m be the

middle of bx, then ao is one-third of am.

Show that if 4 a > 6, x lies to the left of o ;
if 4 a = 6, x

coincides with o ;
if 4 a< &, x lies to the right of o.

70. A reservoir holding v gallons is filled in h hours by p pipes,

all of the same size, and by the rain falling uniformly on

a roof of 8 square yards. Another reservoir holding v'

gallons is filled in h' hours by p' pipes of the same size

as the others, and the rain falling uniformly and with the

same intensity as before upon a roof of s' square yards.

Find X, the inflow per hour of each pipe, and y, the rain-

fall per hour on each square yard of roof.

Explain the meaning of the jjroblem if for particular values

of the constants either x or y or both of them be negative.

71 . Two circles of radii r, r' lie in the same plane and have

their centres d units apart ; find the point where the exte-

rior common tangents cut the line that joins the centers.

Show by the formula that if the smaller circle grows while

the larger stands fast, the point recedes farther and far-

ther away ;
that when the growing circle is of the same

size as the other, that point has gone to infinity (does

not exist) ;
and that when the growing circle passes the

other, the point reappears upon the other side at infinity,

and creeps back toward the circles.

72. Find the four terms of a proportion that exceed by the

same number the four numbers a, 6, c, d.

Discuss the solution when (1) ad = bc, (2) a-\-d = b + c.
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73. Given the series a + 5, aj)-\-bq^ ap^-\-bq^^ ajy^-j-bq^,

ap^ 4- bq^f •••, to find two numbers x, y, such that each term

of this series after the second can be got by multiplying
the one before it by a;, and the one before that by ?/, and

adding the products.

74. Given the series a -f- 5 -j- c, ap-\-bq-{- cr, ap^ -j- bq^ -j- cr^,
• • •

,

to find three numbers x, y, z^ such that each terra of this

series after the third may be found b}^ multiplying the

one before it by x^ the one before that by ?/, and the one

before that by 2, and adding the products.

75. A laborer receives a dollars a day when he works, and

forfeits b dollars a day when idle. At the end of m days
he receives h dollars

;
how many days does he work, and

how many is he idle?

What relation exists between the given elements if his

forfeits just cancel his earnings? if his forfeits exceed

his earnings?
Give numerical illustrations.

76. A father is now a times as old as his son ;
h 3ears hence he

will be b times as old
;
what are their ages now ?

Give numerical values to a, &, A:, and interpret the results.

Show that : 7v > if a > 5
;

^' = if a = 6
; h<0\i a<b.

77. The sum of two numbers is a, and the difference of their

squares is k'^
;
what are the numbers ?

Interprettheresultsif (1) k->a-\ (2) k^ = a^; (3) k^<aK
78. The difference of two numbers is a, and the difference of

their squares is k^
;
what are the numbers ?

Interpret the results if (1) k^> a^
; (2) k' = a'

; (3) k' < al

79. If to the numerator of a certain simple fraction a be added,

the result is -
,
and if to the denominator a' be added, the

result is —
; what is the original fraction ?

Show what relations must exist between the constants so that

c c
-,
— shall be simple fractions and in their lowest terms.

d cV

Give numerical illustrations.
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80. In a certain two-digit number the second digit is a times

the first, and if h be added to the number, the digits are

reversed.

Show that a may not exceed 9, nor be negative; and show
when a may be fractional.

Show that 6 is a multiple of 9
; and show what bounds h lies

between for different values of a.

81. A yacht steams up a river m miles and down the river n

miles, in h hours
; again she steams up the river ??i' miles

and down the river n' miles, in h' hours
;
what is the rate

of the yacht in still water, and what the current of the

river, the speed of the yacht and the current of the

river being uniform?

Give numerical illustrations and discuss all possible cases.

82. A dealer has three kinds of tea, worth 25 cents, 50 cents,

and one dollar, a pound ; how shall he mix them by
even pounds so that 50 pounds of the mixed tea shall

be worth 630?

83. Two vases a, b hold v, v' gallons, and are each filled with

a mixture of wine and water, a in the proportion m : ti,

B in the proportion m' : n'. Two other vases c, d are of

equal size and hold less than a or b
;
c is filled from a,

and D from b at the same time
; c is emptied into b, and

D into A
; and then the proportion of wine to water is the

same in a, b
;
of what size are the vases c, d?

84. Of two ingots the first has a parts gold, 6 parts silver, the

second has a' parts gold, b' parts silver
;
in what propor-

tion shall they be combined so that the product shall

have c parts gold, d parts silver?

Between what bounds do c, d lie ?

85. If A can do a units of work in a' days, b, b units in 6'

days, c, c units in c' days ;
in how many days can they

do a + 6 -f c units, all working together?
What is the value of c' if the whole work be finished in h

days ?

Give numerical illustrations.
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86. To do a certain work a needs m times as long as b and c,

B n times as long as c and a, c p times as long as a and

B
;

find the relation between m, ti, p.

87. Two right triangles have their right angles coincident, and

the sides about that angle extend along a horizontal line

a, a' yards, and along a vertical line &, 6' yards ;
find

how far the point of meeting of the two hypothenuses
lies to the right and above the vertex of the right angle.

Discuss all the possible cases.

88. The points a, b, c, ••• lie on a straight line, at distances a,

6, c ••• from a fixed point o upon the line
;
find a point

X on this line such that its distance from any point m
on the line shall be the average of the distances of a, b,

c ••• from M.

Show that the result is independent of m.

89. A reservoir is filled by pipes a, b in c hours, by pipes b, c

in a hours, by pipes c, A in 6 hours
;
in what time is it

filled by each pipe running alone ? and by all three running

together ?

Give numerical illustrations and discuss all possible cases.

Show what relations must exist between a, 6, c so that no

water flows through either a, or b, or c, or any two of

them
;
and what relations must exist so that one or two

of the pipes shall give an outflow.

90. A reservoir holding 7)i gallons is filled by two pipes, a, b,

running a, h gallons an hour, and emptied by two pipes,

c, D, running c, d gallons an hour. What is the rela-

tion between ci, 6, c, d, so that, with all the pipes run-

ning, the reservoir shall be filled in Ti hours? that it

shall be emptied in k hours ?

So with one pipe running in and two out ? or two in and

one out?

Make a general formula to involve all the pipes, counting
the outflow as negative inflow.

Give numerical values to the letters, and interpret the

results in special cases.
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91. A hound pursues a fox, aud makes a leaps while the fox

makes b leaps ;
but c hound-leaps equal d fox-leaps.

The fox has a start of 7c leaps ;
when will the hound over-

take^the fox?

Give numerical values to the letters, and interpret the

results.

What is the relation between a, 6, c, d, so that the hound

shall never catch the fox ? what the relation so that the

fox is running away from the hound? what the relation

so that the hound will catch the fox ?

92. Two couriers, a, b, are at m, n, d miles apart, and going
forward at a, b miles an hour

;
when are they together?

Consider the following cases : (a) when they move

towards each other ; (b) when away from each other
;

(c) when in the same direction, a behind b, and going

(1) faster than b, (2) slower, (3) at the same rate.

Interpret the several results, and illustrate by giving

numerical values to a, 6, d.

93. Three couriers, a, b, c, are all upon the same straight road,

and going at a, 6, c miles an hour. They are now at the

points M, N, p, distant m to n, h miles, n to p, A: miles.

Find when a will be midway between b, c ;
b midway be-

tween c, A
; c midway between a, b.

Show what special relations must exist between a, 6, c, so

that they may be all together.

Take distances to the right, and time forward, positive ;

distances to the left, and time past, negative. Find the

general formulae
;
and interpret the several results when

differeut numerical values are given to the letters.

94. If the hour and minute hands of a clock be together at

12 noon, at what other times between noon and mid-

night will they be together? at what times will they be

opposite to each other? at what times will they be at

right angles to each other?

Apply the fact that the minute hand gains 55 minute spaces

in GO minutes.
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95. If the hour, minute, and second bands of a clock all turn

on the same pivot, and if they be together at 12 noon,

when will they next be together? at what times will the

second hand be midway between the other two ? at what

times will the minute hand be midway between the other

two ? at what times will the hour hand be midwa}' between

the other two? at what times will they divide the clock

face into three equal spaces ? at what times will they form

a T with either hand as the body, and the other two as

the head of the T?
96. If three planets, a, b, c, circle about the sun in the same

direction, and with orbits in the same plane, in a, 6, c

years, and if they be now in conjunction (on the same

side of the sun, and all in a straight line with it), when

will they be again in conjunction? when will a, b be in

conjunction, and c in opposition? when will b, c be in

conjunction, and a in opposition? when will c, a be in

conjunction, and b in opposition? when will they so

stand that the arc ab subtends an angle 6 at the sun,

the arc bc an angle 0\ the arc ca an angle ^" ?

97. Three boys, a, b, c, starting together, run round a circu-

lar m-yard track, at a, 6, c yards a second
;
find general

formulae for the times of : their conjunction, the con-

junction of two of them and opposition of the third,

the division of the track into arcs d, e, /, such that

d-^e +/= m ;
first when all run in the same direction,

second when two run in the same direction and one in

the opposite direction.

Show that the last formulae are identical with the first if

the speed of the one be called negative.

Show what relations must exist between a, &, c, that the

runners may never again be all together.

§ 11, PEOB. 7.

• ••101. Find the values of x from the equations :

98. (x2+l)(a^+2) = (a^ + 6)(a^-l).

99. i(a^
-

la^-)
-

\{x'
-

\a?) + \(x^
-

j\a') = 0.
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100. iiSx"- 7) H- J
(25

-
4a;2)

=
J (oa;^

-
14) .

101. 2(2ar^-5)-i + (ar-3)-i=G(3ic2-l)-\

§ 11. PEOB. 8.

••• 117. Solve both by completing the square and by factoring :

102. ic2_8a;-f 15 = 0, x^ -\- 10x = -24t, a^-5a;4-4 = 0.

103. 6a^-19a;+10= 0, 7ar-3a; = 160, 110ar^-21a;+l=0.

104. (5a;-3)--7=44a;H-5, (3a;-5) (2a;-5) = (a;+3)(a;-l).

105. ^a^+ix-\-^^^ = 0, (a;-2)-i-2(a; + 2)-i = |.

1^^ 3a; — 2 2a; — 5 8 a;+ 3
,

a; — 3 2a; — 3
10b. =-, — = •

2x-6 3a;-2 3 a; + 2 a;-2 a;-l

107
^+ «

.
x + b _a b a; + a a; + 6 ^+ ^

=^3
x—a x—b b a x—a x—b x—c

108. ar-(5+30a;H-i(ll + 130=0, ar^_(44-3i)a;+(7+5i)=0.

109. 3a;4-2V-K-l=0, ar*- 13 a?r«=: 14.

110. a;*-14a;2_^4o = 0, a;* + f a;~* = 3], V2aJ-7a;= - 52.

111. a; + 5— V(^ + 5) = 6, ^x-\-^x-^ = 2\.

112. V(2aJ+7) + V(3aJ-18) = V(7a;+l).
113. a; + V^ + V(^ + 2) + V(a^+2a;) = a.

114. a;2+3=2V(^-2a;+2)+2a;, ^{a?-2x-{-'d)-\x'=Z-x.
115. 3ar+15.'c-2V(a^ + 5a;+l) = 2.

116. a;2-2V(3a;'-2aa; + 4) = -|a(a; + ia + l).

117. nQ? + x-\-n + l = 0, x^ -\-a?
— Ax — 4: = Q.

118. Form the quadratic equations whose pairs of roots are :

2,3; 1,-4; 3±2i; -l±i; ±3+2i; 4+5^, 1+ 21.

119. Form equations by putting equal the quadratic functions :

2o?-\-x-(j; 6a;2_j9^^i5. r^^_2mx + iiv-n^
\

a?— (m + 7i) a; + (m -\-p) {n —p) ; (a;
— o)^— 6^

;

a;2— 5(1 + i)x + 13 1, ar^ + (7 + 50^; 4- 6 +17i.

Solve, and b}' aid of the roots factor the functions.

120. If a and jB be the roots of the equation x^—px + g = 0,

find the value of ap-^ -\- (Ba-^ and of a? + ^^
121 . What value of c gives the equation 5a;^ + 3a;+ c =

equal roots ?
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122. Eliminate x from the two equations
*

aQcF-\-bx-^c = 0, a'x-+6'aj + c'= 0.

123. Show that the quadratic function ax^-j-bx-{-c may be writ-

ten in the forms —
{ (2 ax + bY— (5^— 4 ac) ]

and -^{2ax+b+ ^{b--4ac) l\2ax -\- b- -^ (b'-
- A ac) } ;

hence derive the condition for real and unequal, for equal,

and for imaginary factors. By this method factor the

function 3 a^H- 5ic + 2, and find for what values of x the

function vanishes.

§ 12, PROB. 9.

124. Plat the quadratic functions
;
hence find the real values of

X, if any, that make these functions vanish :

oy^^Ax + S, a^ — 4aj + 3i, ic^ — 4a; + 4, a.-^
— 4aj+ 4i,

x- + x + (j, -X--X — G, -3ar^-10a;+13.

§ 13, PROB. 10.

125. Find five couvergents to the roots of the equations :

x^-\-x-6=0, x^-Sx + 2 = 0, a;2-Ga;+ 9 = 0,

3a;- + 4«=7, 4ar — 3a;=10, oa;-— 10a;= 20.

§ 14, PROB. 11.

126. Find the maximum or minimum values of the functions

ar^_4a; + 3, 10 + 4a;-a^, a^-6x + 9, -aj'^ + 6a;-9;
and the correspondnig values of x.

127. From the plat of the functions in the examples of § 12,

state which of them have maximum values and which

minimum, and find these values.

Show that each of these functions has a
-^

.\ value if
' mmimum

the vertex of the corresponding parabola be
-{ ^^^^

\

i.e., if the coefficient of x- be^
positive.

'
'

negative.

128. Show that -— ^-— has no value between 1 and 5.
a; — 3

129. Find the maximum value of (x + a) (x
—

b) : a^.

130. Show that a(a-\-x) : (a
—

x) can have any value.
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131. Find the maximum or minimum values of

ar-^ 2x-\- 11
.

ar — x-\-l , a-\-x ,
a — x

ar 4- 4ic-|- 10
'

ar-j-a;
— l' a — x a-^x'

To the last apply the principle that if the product of two
variables be constant, their sum is a minimum when they
are equal.

132. Prove that the quotient (x -{- a) :
(x"^ -^ bx -\- c^) always lies

between two fixed finite bounds if o?+ cr>ab and 6^<4c- ;

that tliere are two bounds between which it cannot lie if

a^-\-€^>ab and b^>4:Cr; and that it may take all values

if a--\-(^<ab.

133. Find what value of x will make a maximum the product :

(ar^ + 2a;+l).(7~ar^-2a;) ; (a^^
-

25) : (25
-

a^) .

Apply the principle that if the sum of two variables be con-

stant, their product is a maximum when they are equal.

134. Find the sides of the maximum rectangle that can be

inscribed in a given circle.

§ 15, PBOB. 12.

• •• 168. Find the values of x, y from the pairs of equations :

135. x-\-y=l, a^-f2r = 34; x-y=l2, x- + y''
= 74:.

136. x-\-y = a, xy = b'^\ x — y = a, xy = b".

137. Zx — by=2, ary=l; a; + ?/
= 100, a;?/ =2400.

138. x-\-y = a, x^-\-f = W\ a;^ + ?/~2 = 4, x-y-^=^.
139. a; + 2/

= 4, x-^+y-^=l', 2x + ^y = d>l, x-^-\-y-^=\^.
140. x + y = 2, ix?—2xy — y- = l', x + y = \%, a? ^f^AQll.
141. a;+ 2/=72, ^a; + ^2/=6; x'y-'+ fx-'= ^

, x-^+y-^=.%.

§ 15, PBOB. 13.

142. 4a;2_|_ 72,2 ^143^ 3a^-/=ll; x-\-y = a?, ^y-x=y\
143. a^+/=fa!2/, x — y = \xy', x^-\-xy = Q, a^^y = 5.

NOTE 1.

144. ar + a;?/ + 2?/- =74, 2x^ + 2xy -^-y- = 73.

145. a:F-{-y^ = a^, xy = b-; a^ —
2/^
= a^ xy = b^.

146. x^-\-Sxy = o4:, xy -{- Ay^ = 115
; a^-^f = 9, xy = 2.

147. x'+xy-{-4:y^=6, 3xF+ 8f-=U', x'-{-f-=l, a^+2/«=l.
XOTE 2.

148. x^-3xy-{-2y^=0,x^+y-=x'^-f; a^-y^=8,x^-f=26.
149. x^-^xy-6y^=0, 2x-{-Sy + x^-}-3xy ^2y^=19.
150. 8a;3 4-3ar^2/-fa;/=18, 2a^+5aj22/+3a;/ = 24.
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XOTE 3.

151. a;+?/ = 5, a^ + 2/^
= 97; a; — 2/

= 3, af —
2/^
= 3093.

152. x^+ y^=:Uocry'-, x-{-y=:9; x^ + y^ = l, a^ + y = 17.

153. x^ -\-y^ = 7 -{- xy, x^-\-y^= Qxy -—1,

NOTE 5.

154. a*— a;2^2/^_2/2 = 84, a;2^ 3j22^2_^^2^ 49^

155. xy{x-\-y)=SO, a^ + 7/^
= 35.

NOTE G.

156. 4.{x-{-y) = Sxy, x + y + x^ -i-y^ = 26.

157. a^(a; + ?/)
= 80, aj2^2a;- 3?/) = 80.

158. a;^ + a.'2?/2 + 7/4
= 133, a;^ - a;?/ -f ^/^

= 7.

159. »2 + / — (a; + 2/)=a, x* -\-i/-]-x-\-y
—

2{a^ + f) = b.

IGO. a;4-2/-fV^y=14, a;^ + ?/- + a-?/
= 84.

161. x^-{-y = 4:X, y--{-x = 4:y; af-{-xy^=10, f + x^y = 5.

162. a;3_^2r + 3aj + 32/ = 378, a^ + 2/'- 3a;- 3.?/
= 324

;

ar= ax' + 6?/, ?/-= ay-}-bx; bx + ay = ab, bx-{-ay = Axy.
163. 10a^+15a;?/ = 3a6-2a^ 107/2 + 15a;?/ = 3a6- 2&^
164. 6a;2-3a;-42/=25, a;2_^2a;-3?/=18;
165. xy-i-6x-{-7y==50, Sxy + 2x+5y=72.
166. a; + 2/ =10, V^^r' + V2/^~' = l ;

167. V(^'+ 2/')+V(^'-/)=22/, a;*-2/4 = a^

168. 8a;*-?/-^ = 14, a;t2/'
=

22/2.

• ••172. Find the values of a;, ?/, z from the sets of equations :

169. yz = bc, bx-\-ay = ab, cx+ az — ac.

170. a; + 2/ + 2; = 37-^ + 2/"^ + 0-1 = J, x?jz=:l',

171.
a;2/
=

a(a; + 2/)5 a;2; = 6 (a; + 5;) , yz=:c(y + z).

172. a; + 2/ + 2; = 6, 4a; + ?/
= 22;, x^ + y' -\-z'=U.

§10.

173. A boat-crew rows 3i miles down a river and back again
in an hour and 40 minutes

;
if the river have a current of

two miles an hour, at what rate does the crew row ?

174. A number is composed of two digits ;
the first exceeds the

second by unity, but the number itself falls short of the

sum of the squares of its digits by 26
; what is the number?

175. A number is composed of two digits; the first exceeds

the second by 2
;
the sum of the squares of the given

number and of the number got by reversing the digits is

4034
;
what is the number ?
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17G. Find the lengths of the segments of a line a, if m times

the square of one be equal to n times the rectangle under

the whole line and the other.

177. The drivinsr-wheels of a locomotive are 2 feet lonojer in

diameter than the running-wheels ;
the running-wheels

make 140 turns more than the driving-wheels in a mile
;

what are the diameters? [ratio circum. : diam.= 22 : 7

178. A set off from London to York, and b at the same time

from York to London, and they traveled uniformly ;
a

reached York 4 hours, and b reached London 9 hours,

after they met ;
in what time did each make the journey?

179. A broker bought a number of hundred-dollar railway shares

at a certain rate discount for S 7500, and afterwards, at

the same rate premium, he sold them all but GO for 85000 ;

how many did he buy, and what did he give a share?

180. Divide a line 3 feet long into two parts such that the

circle standing on one segment as diameter shall be equal

to the square standing on the other.

181. The number 5G3 in the decimal scale is less than the

same number in a higher scale by 232
;
what is the

radix of the higher scale ?

182. What is the price of eggs when two more in a shilling's

worth lowers the price one penny a dozen ?

183. There are two numbers whose product is the difference of

their squares, and the sum of whose squares is the differ-

ence of their cubes
;
what are the numbers ?

184. The sum of the squares of the numerator and denominator

of a fraction is 389, and the difference of the fraction

and its reciprocal is \^^ ;
find the fraction.

185. Find two numbers such that their sum, their product, and

the sum 'of their squares shall be equal to each other.

18G. Find two numbers whose product is p^ and the difference

of whose cubes is m times the cube of their difference.

187. Find a fraction the product of whose numerator and

denominator is 180, and such that if its numerator and

denominator be each increased by 10, its value is doubled.
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188. A rectangular space, whose length and breadth are 42

and 78 feet, is surrounded by a ditch 5 feet deep, and

capable of holding 220 tons of water
;
what is the breadth

of the ditch, counting 6 tons of water for a cubic fathom?

189. There is a fraction such that if the numerator be increased

and the denominator diminished by 2, the reciprocal of

the fraction is the result
;
but if the numerator be dimin-

ished and the denominator increased by 2, the result is

less than the reciprocal by 1^^ ;
what is the fraction?

Solve the same problem in general terms, replacing 2 and

190. Two boys set off from the right angle of a right-triangular

field, running in opposite directions, with speeds in the

ratio of 13 : 11
; they first meet at the middle point of the

hj'pothenuse, and again at a point 30 yards distant from

the starting-point ;
find the lengths of the three sides.

191. Two cubical vessels together hold 407 cubic inches
;
when

one vessel is placed on the other, the total height is 11

inches
;
find the contents of each.

192. A number consists of two digits, the difference of whose

squares is 40, and if it be multiplied by the number con-

sisting of the same digits taken in reverse order, the

product is 2701
;
find the number.

193. A vessel can be filled with water by two pipes; by one

of these pipes alone the vessel would be filled 2 hours

sooner than by the other
;
and the vessel can be filled by

both pipes together in 1 J hours
;
find the time that each

pipe alone would take to fill the vessel.

194. A vessel is to be filled with water by two pipes ;
the

first pipe is kept open during three-fifths of the time

which the second would take to fill the vessel
;
then the

first pipe is closed and the second is opened ;
had both

pipes been kept open, the vessel would have been filled 6

hours sooner, and the first pipe would have brought in

two-thirds of the water which the second pipe did bring ;

how long would each pipe alone take to fill the vessel ?
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195. A number consists of three digits ;
the first is to the

second as the second is to the third
;
the number itself

is to the sum of its digits as 124 to 7; and if 594 be

added to it, the digits are reversed ;
what is the number?

196. The diagonal of a box is 125 inches, the area of the lid is

4500 square inches, and the sum of three conterminous

edges is 215 inches
;
find the lengths of these edges.

197. One side of a room is 5 feet longer than the other side,

and 1000 square feet of paper is needed to cover its

walls
;

if it were 3 feet higher, the same paper would be

needed for 3 only of its walls, the bare wall being one of

its longer sides ;
what are the dimensions of the room ?

§ 17. PROB. 14.

198. Solve the binominal equations : ic^ — 1 =» 0, a;^ -f 1 = 0,

3^ = -S, a^ = lG, x^«+l=0, a;^2^1 = 0, ic^-l=0.

199. Find the square root to three decimal places of :

5 + 12i, 12+5i, 161-240t, 13 + 7 i, 7 + 13^.

200. Prove that the n roots of the equation a"* = a + bi, are

all given by the expression

yr ••[
cos—^ h I sm—i—
\ n n

wherein r is the tensor and 6 the versorial angle of the

number a-f-6t', and k has any ?i consecutive values in

the series of natural numbers between ~oo and +oo .

§ 18.

201. Find the value of x from the exponential equations :

x+2 x+1

2''=8, 2'+« = 8^-3, 3i^2= 27i^i, 9'= 3, 8^^1 = 2.

202. By aid of the table of logarithms find x from the equations :

10^ = 3, 4^ = 10, .3== =.8, 32^+3^100* ^ 15^^+^ = 27^^-^

203. Solve the equations : 3^^-7.3^=18, 2*^*- 5.2^^ + 6 == 0,

2^+1 + 4'= = 80, 4.32'+i- 5.3^+2 ^12.

204. If ak'^^"^ 4- 2 6Z:"=+~ + c = 0, prove that

X = [logj
- &fc" ± ^ih-k''^

-
ack"^) I -log(aA;"')] : r log k.
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XII. SERIES.

For definition of series, see I. § 12. The first and last

terms of a series are its extremes; the other terms are its means.

§ 1. ARITHMETIC PROGRESSION.

An Arithmetic Progression is a series such that each term

after the first is formed by adding a constant to the next pre-

ceding term. The constant added is the common difference.

The abbreviations are : a for first term, I for last term, d for

common difference, n for number of terms, s for sum of all

the terms.

E.g., 1, 3, 5, 7, 9, is an ascending series,

wherein cZ = ''"2, a=l, Z = 9, n = 5, s=25.

So, 9, 7, 5, 3, 1, ~1, ~3, is a descending progression,

wherein d = -2, a =9, Z=-3, n=7, s=21.

Theor. 1. In an arithmetic progression

1] l = a-\-{n-l)d.

For •.• a-\-d, a+ 2d, a + 3c?, "•, a-{-{k
— l)d

are the 2d, 3d, 4th, ••• A:th terms, [df.

.*. a + (w
—

l)d = Z, the last of a series of n terms, q.e.d.

Cor. In an arithmetic progression

2] a=l-{n-l)d,

3] d = l^,n— 1

4] w = —
;

f-1.
d

The reader may prove, solving formula 1 in turn for a, c?, n.
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[Xll.th. 2,

Theor. 2. In an arithmetic progression

5] s = \n{a + l).

For •.• s = a-h(a4-d)4-(a+2d)H \-{l
—

d)-\-l, n terms,

and s= Z + (Z
—

d)+ (Z
— 2d)H \-{a-\-d)-\-a^ n terms,

.-. 2s= (a + Z)4-(a+ Z) + (^ + 0H l-(a+0' n times,

= 71 • (a -h Z) .

s = \n{a-\-l). Q.E.D.

Cor. 1 . In an arithmetic progression

6] a = ^-',

7] «=^-a,

8] n =^.
The reader may prove, solving formula 5 in turn for a, L n.

Cor. 2. In an anthmetic progression

9-1 ^ ^ 2s4-y^(n — l)d
2n

10] d = 2M=:fl,n(w— 1)

111 ^^_ cZ+2Z±vr(2Z+ c^)^-8<fe]
^ 2d

'

12] s=iw[2Z-(w-l)d],

13] ^^ 2s - 71(71 -1)(^
^

271

14] ^^ 2(.-an)
-^

71(71-1)

15-] ^^ d-2a±vr(2a-cZ)^ + 8^g]
^

16] s=i7i[2a + (n-l)cZ],

17] a==ild±^l{2l-\-dy-8ds']\,

18] Z =iJ-cZ±V[(2a-cZ)' + 8(Zs]^,

ion , _ (Z 4- g) (Z
-

ct)
^^J ^-

2.-(Z + a)
'

20]
{l + a)(l

— a-hd)
2d



pr. 1, § 1.] ARITHMETIC PROGRESSION. 3f>^

The reader may prove formulae 9-12, combining 1, 5 so as to

eliminate a, then solving in turn for ?, d, n, s; formulae 13-16,

by eliminating Z, then solving for a, d, n, s; formulae 17-20,

by eliminating ?i, then solving for a, I, (?, s.

Note 1. The formulae involving a may be got from those

involving Z, and vice versa, by symmetry, writing a in place of Z,

I in place of a, and — d in place of -{-d; and thus seven of the

fourteen formulae 1, 2, 6, 7, 9-18 may be written directly from

the other seven
;
for if any arithmetic progression be reversed,

then a becomes I, I becomes a, and d becomes — d.

Note 2. Formulae 11, 15 give two values for n. If either

of these values be negative or fractional, it may be rejected as

inconsistent with the conditions of the problem. [XI. pr. 6 nt. 3

PrOB. 1. To INSERT m ARITHMETIC MEANS BETWEEN «, I.

Divide the remainder, 1 — a, 6?/ m 4- 1 for the common differ-

ence; and to a add one, two, three, ••• times this difference.

E.g., to insert 5 means between 12 and 48 :

then •.• (48
—

12) : (5 + 1) = 6, the common difference,

.-. the series sought is 12, 18, 24, 30, 36, 42, 48.

Note. By aid of this problem, from every arithmetic pro-

gression a new arithmetic progression may be formed by insert-

ing the same number of arithmetic means between ever^- two

consecutive terms
;
and the common difference of this new pro-

gression is the quotient of the common difference of the other

divided by one more than the number of terms so inserted.

So from any arithmetic progression a new progression may
be formed by taking equidistant terms

;

E.g., if two means be inserted between two consecutive terms :

then 6, 12, 18, 24, 30,...

becomes 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, .••

and if of this new progression the first, fifth, ninth, .•• terms

be taken, a third progression is formed,

6, 14, 22, 30, ...

whose common difference is 4 . 2, = 8.
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§2. GEOMETRIC PROGRESSION.

A Geometric Progression is a series such that each term

after the first is formed bj^ multiplying the next preceding term

by a constant multiplier. The multiplier is the common ratio.

The abbreviations are : a for first term, I for last term, r for com-

mon ratio, n for number of terms, s for sum of all the terms.

Ti-, I > 1 4.U • .
I an ascendinqWhen r ^ ^ 1, the series is ^ ^ ^^^^^,^^.,^^

progression.

E.g.^ 1, 2, 4, 8, 16, is an ascending series,

wherein r=''"2, rt=l, ? = 16, 7i = 5, s=31.

So 1, ~2, 4, ~8, 16, is an ascending series,

wherein 7-=~2, a=l, ?=16, ?i = 5, s=ll.

But 16, 8, 4, 2, 1, 1^, :^, is a descending series,

wherein r=^, a =16, Z = J, n=7, s = 31f.

Theor. 3. In a geometric progression

21] l = a7^-^.

For •
.

•

ar^ ar^^ ar^,
• • • ar*~^ are the 2d, 3d, 4th, • • • A;th terms, [df .

.*. ar^~^ = l, the last of a series of n terms. q.e.d.

Cor. In a geometric progression

22] a = l:r^-\

23] r==*-^{l:a),

«JT 1 .
loffZ — loga

24] n = 1 H—^- ^- •

logr

The reader may prove, solving formula 21 in turn for a, r, w.

Theor. 4. In a geometric progression

4- ar^'^ 4- ar"?

Q.E.D.
r — 1 1 — r

25]
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Cor. 1 . In a geometric progression

26] a = fc=ii^,

27] a?'* — sr = a — s^

28] n = logO'g-^ + a)-loga
logr

The reader may prove, solving formula 25 in turn for a, r, n.

He will observe that formula 27 [r unknown] is of the Tith

degree, for which there is no general solution. In numerical

equations the solution is always possible.

Cor. 2. In an infinite decreasing geometric progression^ the

limit ofv^ is
;
and the value of 8 is the quotient a : (1

—
r).

CoR. 3. In a geometric progression

29] I ={r-l)s.r--^^

30] r» !_r"-i + -L. = o,
s — I s — I

31] ^^log^-logpr-(r-l)3]_^^^
logr

32] 8= ^^"^^ ,

33] a(s-ay-^ = l{s-iy-\

34] I (s
-

ly-"- =a{s- ay-\

J

log(s-a)-log(s-0
^ '

37] a = lr-s(r-l),

s(r— l) + a

r

a

36]

37]

38] Z

39] r =

40] s = Ir — a

r-i'
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The reader may prove formulae 29-32, combining formulae

21, 25 so as to eliminate a, tlien solving in turn for l^ r,n,s;
formulae 33-36 by eliminating r, then solving for a, I, n, s

;

formulae 37-40 b}' eliminating w, then solving for a, I, r, s.

He will observe that formuhe 30, 33, 34 have no general solu-

tions. In numerical equations their solution is always possible.

Note. The formulae involving a may be got from those

involving I, and vice versa, by symmetry, writing a in place of I,

I in place of a, and r~^ in place of r"*"^
;
and thus seven of the

fourteen formulae 21, 22, 25-34, 37, 38 may be written directly

from the other seven ; for if any geometric progression be re-

versed, then a becomes I, I becomes a, and r"'"^ becomes r~^.

PrOB. 2? To INSERT m GEOMETRIC MEANS BETWEEN a, I.

Take the (m -f l)th root of the quotient 1 : a foi' the common

ratio; and multiply a by the first, second -"powers of this ratio.

E.g., To insert three means between 3 and 48 :

then *.• -v/(48 : 3) = 2, the common ratio,

.-. the series sought is 3, 6, 12, 24, 48.

Note. By aid of this problem, from every geometric progres-

sion a new geometric progression may be formed by inserting

the same number of geometric means between every two con-

secutive terms
;
and the common ratio of this new progression

is that root of the common ratio of the other whose index is

one more than the number of means so inserted.

So, from any geometric progression a new progression may
be formed by taking equidistant terms.

E.g., if two means be inserted between two consecutive terms,

then 3, 6, 12, 24, •••

becomes 3, 3^2, 3^4, 6, 6^2, 6^4, 12, 12-^2, 12^4, 24,.-.,

and if of this new progression the first, fifth, ninth, •••

terms be taken a third progression is formed

3, 6^2, 12^4, -
whose common ratio is the fourth power of either of the three

values of -^'2.
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§ 3. HAKMONIC PROGRESSION.

A Harmonic Progression is a series such that any three

consecutive terms being taken, the ratio of the first to the third

equals the ratio of the excess of the first over the second to the

excess of the second over the third.

E.g.,, if p, q, r, be any three consecutive terms of a harmonic

progression, then p: r=p — q : q — r.

Theor. 5. If a series of numbers be in harmonic progression

their reciprocals are in arithmetic progression; and conversely.

Let p, q, r be any three consecutive terms of a harmonic

progression ;

then will r~^ — q~^ = q~^
—

i>~^«

For '.' p:r=p — q: q — r, [df.

.'.pq—pr—pr — qr, [II. th. 6

. r 1 ^-1 ^-1
q~^ = q~^—p~^i Q.E.D. [div.bypgr

So for the converse.

PrOB. 3. To INSERT m HARMONIC MEANS BETWEEN TWO EX-

TREMES, a, I.

Find m arithmetic means between a~^ and 1~-^, and take their

reciprocals.

E.g., to insert two harmonic means between 12 and 48
;

then •.• j\-^\=:^-g, and ^\:S=^\,
.*. the arithmetic progression is yV? iV? yV' ts' [P^-1

and the harmonic progression is 12, 16, 24, 48, [th. 5

wherein 12:24=12-16:16-24, 16:48=16-24:24-48.
Note. The analogies and relations of the three progressions

appear below : If p, q, r be three numbers

I

arithmetic Ip'-P't
in < geometric progression, then p — q\q — r— \p'.q\

I

harmonic
|
p : r

;

I

arithmetic I \{p-\-r').
and the \ geometric mean of p, r \s, \ -yjpr.

I

harmonic
|
2pr : (p + r) .

So, the geometric mean of jvf"is the geometric mean of the

arithmetic and harmonic means of p, r.



368 SERIES. [XII. ths.

Theor. G. If four numbers, p, q, r, s, be so related that

p — q, p — r, p — s form a harmojiic progression, then :

(a) q — r, q — s, q— p likewise form a harmonic progression ;

and so do r — s, r — p, r — q ;
and s — p, s — q, s — r.

(6) Tlie relations between p, q, r, s shown in (a) hold true also:

1. Among any four numbers, n+p, n+q, n+r, n-f-s, ichose

differences equal the differences of p, q, r, s
;

2. Among any equimultiples of p, q, r, s
;
or o/ their reciprocals;

3. Among ^-^. ^. ?^, ^,
cp -f d cq -f- d cr H- d cs -f- d

wherein a, b, c, d are any numbers.

(a) '.' the condition that —^^
1

— = -^ [th. 5
% p—qp—s p—r

is that (p + r)
•

{q-\-s) = 2pr -\-2qs; [free fr. fracts., red.112
and •.* the condition that h

q — r q—p q — s

is that {q + s)'{r+p) = 2qs -{-2rp, Ich. p,q,r,s to q,r,s,p

I.e., that {p-\-r)'{q-\-s) = 2pr-\-2qs, as above,

.-. when p—q, p—r, p—s form a harmonic progression,

so do q — r, q — s, q—p. q.e.d.

Sodor — s, r—p, r— q; and s—p, s — q, s — r.

(b) ••• relation (a) involves p, q, r, s only by their differences,

.-. it holds for any numbers n-\-p,n-\-q,n-j-r,n-\-s.q.i:.'D.

2. •
.

•

equation (p + r)
•

(g + s)
= 2pr + 2qs is not changed

when for p, ••• s are put np, ••• ns; or n:p"- n: s',

.'. the equation is true for these, if forJ),-
•• s. q.e.d. [above

3. ... cip±b^a_^bc-ad^ m±l =
...^ ..., [division

cp + d c c-p + cd cq-\-d

and *.- when relation (a ) holds forp,-"Sithold8 forc^j9,-"C^s,[2

i.e., for (^p-\-cd, ••• (?s-\-cd, [1

- be — ad be — ad
r^

(rp-\- cdi! &s-\-cd

^ a
,

be — ad a
,

be — ad ri
I.e., for -4--^

——
-, ..._+__-—; [1

c erp-\-cd c c-s-\-cd

.-. it holds for ^^^±^, ...^^i±^, if fori),
... s. Q.E.D.

cp-^d cs-\-d
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§4. CONVERGENCE AND DIVERGENCE.

^^ In this section all series are understood to be infinite,

and to be made up of real, positive terms only.

The sum of a series is the limit of the sum of its first n terms

when n becomes indefinitely great.

The excess of the sum of a series over the sum of its first

n terms is its remainder after n terms.

The abbreviations are : s for the sum of the series, t„ for the

nth. term, s„, for T^ + TaH hTft, the sum of the first n terms,

and R„ for T„.f i -f- T„-f.2 + •••, the remainder after n terms.

An infinite series is
-J

,.
. ,

^
, if

s«-J

~
a finite limit;

i.e., if K^-{

~
0, when n = oo. »

The terms of an infinite convergent series grow smaller and

smaller, since r„, = Tft+i+ t„+2H j
=

;
but that this condition

is not sufllcient appears from an example :

In the harmonic series 1 H 1
1 the terms grow smaller ;^2 3

but the series is not convergent; for if it be grouped thus ;

then ••• the sum of no group is less than ^,

and •.
• the series consists of an infinite number of such groups,

.*. s,j ^ a finite limit when n r= oo. q.e.d.

Theor. 7. Tlie sum of a convergent series of positive terms is

the same in ivliatever way the terms are arranged or grouped.

Let s = Ti4-T2+T3H , any convergent series
;
let the same

series be arranged or grouped in any other way, say

(t2 + Ti) + (t4 + T3) + ...;

and let s„' be the sum of the first n groups ;

then will s,/= s when 71 = oo .

For *.* in s are found all the terms of s^' and more
;

.-. s„' < s, and lim s„' > s. [df. limit

So s„ < lim s„', and s, = lim s„, > lim s„' ;

.-. limS ' = S. Q.E.D.
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Theor. 8. If the terms of a convergent series he multiplied by

any same Jinite number, the new series thus formed is convergent.

Let Ti + T2 -f- Tg H f-T,» H be any convergent series, and
k a constant

;

then is the series JcTi -\-lcT2 + kTs-\ h An^» H convergent.

For •.• R„, =T„+i 4-T„+2 -f--, =0 when n = CO, [hyp.

.' ' JCR^',
= ^n+l -\- ^n+2 -\ J

= Whcn W = 00. Q.E.D.

Cor. If tJie terms of a convergent series be multiplied by any

finite numbers not larger than a given finite number, the new
series thus formed is convergent.

Theor. 9. If, after a given term, the terms of a series form
a decreasing geometric progression, the series is convergent.

Let Ti + To -f T3 H 1- Tjfc + r •

Ti 4- 7^ •

T;fe H be a series such

that the terms after a given term t^ form a geometric

progression with r smaller than 1
;

then is this series convergent.

For *.* TiH \-Tj, is a finite constant number, s^^,

and '.• T»+i+...=Tt+i.(l+rH-r2+...)
=

Ti+i : 1— r, when w = 00
, [th. 4 cr. 2

.*. s = StH—^±^, a finite number. q.e.d.
1 — r

Theor. 10. If one series be convergent, and if the terms of
another series be not larger than the corresponding terms of the

first series, the second series is convergent.

Let ^Ti-h+Ta+'^Tg-j }-"^T„H be a convergent series,

and let Ti'+ Tg'+ T3' + • • •+ t„' H be another series such that

Ti'S^Ti, Ta'^Ts, T3'^T3, •.•, T„' ^ T„, .••;

then is the second series convergent.

For •.• T„'+i5^T„+i, T„V2^T„+2, —
,

•*• Rn ^ K„?

and •.• R„ =0, , [hyp.
.*. R„' = 0. Q.E.D.

CoR. 1. If one series be divergent, and if the terms of another

series be not smaller than the corresponding terms of the first

series, the second series is divergent.
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Cor. 2. If one series he convergent^ and if in a second series the

ratio of each term to the term before it he not larger than the cor-

responding ratio in the first series^ the second series is convergent.

Theor. 11. If after a given term, the ratio of each term of
a series to the term hefore it he smaller than some fixed number

that is itself smaller than unity, the series is convergent.

Let Ti + Ts-l-TgH |-Ti+"« be a series such that after a

given term t^^ the ratios t^^i : t^,
••• each < ^ < 1

;

then is the series convergent.

For form a new series

Ti + T2 + T3 + ...-|-T;, + t{+iH hT„'...

identical with first series for the first k terms, and

thereafter a geometric progression whose ratio is h
;

then •.• this second series is convergent, [th. 9

and •
.

• the terms of the first series are not larger than the cor-

responding terms of the second series, V^yV'

.*. the first series is convergent. q.e.d. [th. 10

Note 1. It is not sufficient that the ratios Tj^^i :t^,"' be simply
less than a unit.

E.g. ,
the harmonic series 1 -\ 1 j 1

. [above
Z O 4:

Note 2. Application of the theorem: To apply this

theorem, find the law of the ratio t„+i : t„, which in general is

some function of n
;
then determine whether this ratio r, as 7i

increases, finally becomes and remains smaller than some fixed

number 7i, that is itself smaller than a unit.

If smaller than h, the series is convergent.
If smaller than a unit simply, there is doubt.

If a unit or larger than a unit, the series is divergent.

E.g., ffiven i +— +— + h--H :
if ' s 1^2! 3! n\

then •.• the ratio t„: T„_i = - =0 whenw = oo,n
.'. the series is convergent.

So, given l+±+L + ...+± +
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then •.• the ratio T,:T,_i=i^iqJ^' = (l-l)2=lwhen?i= x,w n
.'. there is doubt.

But, if the series be grouped thus :

i.e., in groups wherein the denominator of the first term of

each group is an integral power of 2
;

then •.• the several groups are less than -, -, -, ...,

and *.• the series l-f-- + - + --j is convergent, [th. 9
2 4 8

.*. the first series is convergent. q.e.d. [th. 10

So, given l + i+i + ...:

then : s^l+(l + r\ +a + l + L + l.)

\8P

<14.2 . 1 8

a geometric series whose ratio is 2^"*.

.*. 8 is convergent when p>l. [th. 10

So, the series 1 H

1 +

2 (log 2)^ ^3 (log 3)^^
'

1
. 1

2 log 2 (log log 2y 3 log 3 (log log 3)^

+ •••, and so on,

I convergent i > -, r ^^^^ ^
divergent

"^^^^"^ ^ >^' ^^^"^"^ ^^ ^^^^®

Note 3. General test of convergence. The series

are each of them { /i^^J,^^^^
when i? ^ 1. [ex. above

These series, when compared with most other series, furnish a

test of their convergence. [th.lO, th. 8
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It is to be noted that in the divergent series 1 -\ 1 !-•••,

I
°

2 3
'

the nth term, -, is an infinitesimal when 71 = 00. Let this

infinitesimal be counted the base [VII. § 4, df . order of infls.] ;

then —
, the nth term of the convergent series 1-1 1

—
H ) [P>1] is an infinitesimal of an order higher than the

first order by a finite number p — 1. And, conversely, a series

whose terms are infinitesimals of an order, p^ finitely higher
than the first order, is convergent. But if p>l, and p = l

when n = 00, there is doubt, and the series may then be tested

by the series 1 -\ -I 1 , and so on,^ ^
2 (log 2)''

'^

3 (log 8)"^

i.e., from the series -, , , •••, a base
71 ?i •

looj 71 n • los: n •
I02: I02: n

may generally be chosen for which, when n = 00, the order of

the term t„ of the series to be tested is
<j

!
^
higher than the

first order, and fhe series is ^ convergent^
'

divergent

Note 4. Bounds of error : In the summation of most

series, only a finite number of terms is used, and only ap-

proximations to the true value are found
;
and it is then

important to know between what bounds the error lies. That

approximation is s„ and the error is — R„. [V. § 5 df.,n finite.

E.g., in the first example of Note 2,

and ••• the terms of this series are not greater than those of

1 ^,^^.^+ l^.^^L^,+..,
(n+1)! (n+ 1)! n + l (w+1)! (^ + 1)^

(n + 1) ! \ n + ly 71 -nl

i.e., the error lies between and
7i'n !

In particular, Sq<^s< =
; Sio

~ s <
6 '6 I 4320 10.10!
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Note 5. Series arranged to powers of a variable : If

a series be arranged to the powers of some variable a;, thus

Ao + Aiaj + Agif^H hA„cc" + "-,

then the ratio t„+i : t„ =a;(A„ : a„_i) = x : (a„_i : a„) ,

I
convergent I <

and the series is \ in doubt \t x< ^ a„_i : a„, when w = oo.

I divergent |
>

E.g, ,
the series 1-\-x-\-2\q? -\-^\3^ -\ is divergent,

however small x may be ;

for the ratio a^_i : a„ = 1 : n = 0, when n = qo.

So, the series 1+-+— +— H is convergent,

however large x ma}' be.

So thP aeriea ? -i-^'j- ^J- ... is ^ convergent :f ^ i <1 ;

bo, the series - +
^
+

^
+ ... is ^

divergent
'^ ^^ <1 ;

for the ratio a^_i : a^ = 1 when n = oo
;

and this series is divergent if a; = 1 .

So, the series x+ 2.^ + 3^'+... is { ZeTgInT*
'^ =^

"! f^.

That value of x which leaves the series in doubt,

viz., '*'lim(A„_i : a„) when n = oo,

is the radius of convergence of the series.

E.g., if r = radius of convergence, then in the first of the ex-

amples above r = 0; in the second, r=cc; in the

third and fourth, r= 1.

If some of the powers of x be wanting, the general method of

Note 2 must be applied.

E.g.,the series 1 + ^ +^+ ... +i!^!^ is^
convergent

^ '

3 7 2*"— 1 divergent

for the ratio t„+i : t„ = a2(2"-l) : (2*h-1- l)

= a:^ : 2 when n = oo
;

and the radius of convergence is >/2.
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§5. INDETEEMIiiATE SEEIES.

An infinite series that has different sums when its terms are

arranged or grouped in different ways is indeterminate.

E.g.^ the sum of the series +1, ~1, +1, ~1, +1, ... ma}- be

either (1-1) + (1_1) + (1_1) + ..., =0,
or 14.(-1+ 1)H_(-1+ 1) + ..., =1.

Indeterminate series, although not always divergent, are here

classed with non-convergent series.

Theor. 12. An infinite series that Jias positive and negative

terms that separately form divergent series is indeterminate.

For take any positive term or group of positive terms for +Ti,

leaving positive terms whose sum +Ri is infinite,

and from the negative terms, whose sum is infinite, tai?:e

enough terms so that their sum ~To is larger than

*"Ti, leaving negative terms whose sum ^Ro is infinite
;

and from "^Rj form +T3 larger than "Xg, leaving +R3 infinite ;

and from "Kg form ~T4 larger than +T3, leaving ~R4 infinite
;

and so on
;

then •.• the new series +Ti, "Tg, +T3, ~T4, ...

gives ("^Ti4-~T2) + (''"T3+~T4)H
—

,
= some negative number,

and +Ti+ ( ^T2+"^T3)+ ( T4-f+T5) -j
—

,
= some positive number,

.*. the series is indeterminate. q.e.d.

Note 1. This result appears also from this, that the sum of the

given series reduces to the difference of the sums of two divergent

series and is of the form 00 — 00, an indeterminate expression.

Cor. 1 . A series s is non-convergent if the series got by making
all the terms of s positive be divergent.

For, if the series be divergent when all the terms are made

positive, it is either of the form 00— oo, a— 00, 00— a,

when part of the terms are made negative ;

I.e., it is either indeterminate or divergent. q.e.d.

Note 2. Manifestly a given series may be reduced to the form

+Ti, 'Tg, +T3, ~T4,
••• in an infinite number of ways, giving an

infinite number of such double values.
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Note 3. An indeterminate series may sometimes be arranged
so as to have terms alternately positive and negative and growing
smaller and smaller ; and if the terms approach 0, the sum
for such arrangement has a single finite value, but for different

arranjjeiiients different values. If, for a particular arrangement,
a series have a single finite value, however grouped, the series

is convergent for that arrangement.

E.g., if s = --? + --- + --- + ••• towards "^1;-^

1 2 3 4 5 6

then the two values of s both lie between and 2
;

and s»~s„^i = l when7i = oo.

So, if s = 1 - i H-i - i + i - i + ... towards 0,
2 3 4 5 G

'

then s<l, *.• Ri is negative,

>1 ,
•.• Rs is positive,

<!—- + -, •.• Eg is negative,
Z o

and so on
;

and Rn===0 when n = oo;

I.e. Y' *^"6'

But, if this series be arranged thus :

then s<l + i, >l+ --i, <l+ i_i + l + l, ...
;

3 3 2 3 2 5 7

I.e., s<li, >|, <....

The reader may group the positive terms by threes, or by

fours, or ..., and the negative terms singl}', by twos, or by
threes, or ..., at his pleasure, taking care that the terms of his

new series be always in descending order of magnitude.
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Theor. 13. A series s is convergent if the series got by making
all the terms of s positive he convergent.

For let "''s' = the series of positive terms in s,

and "8"= the series of negative terms in s
;

then •.• +s'-h+s" is finite, [^JP*

.-. +8', *^s" are botli finite,

.'. +s', "^s" is the same however its terms are arranged
or grouped. [th.7

Let the terras of 8 be arranged and grouped in any way,

and let s„ = sum of the first n groups of that arrangement,

and "^8^/
= sum of the n' positive terms of s contained in s„,

and ~8l«= sum of the n" negative terms of 8 contained in s„ ;

then ••• s„ = 8^— +8^'«,

.-. lim 8„ = lim 8^,
— lim +8^',

= s'— +8".

But ••• +8', "^s" are finite constant numbers, [above

.-. 8, =+8'— '"s", is a finite constant number, q.e.d. .

Cor. 1. If a series b he {
^ 9 i

^j^q series qot hv^ '

non-convergent^
^ ^

making all the terms of s positive is-{
,.

^ t

'

Cor. 2. If an indeterminate series he convergent for a particu-

lar arrangement "•"Tj, ~T2, +T3, ... ^t^^ '''1^+1, ..., the ratio Tk+i : t^

hecomes and remains smaller than unity ^ hut approaches unity as

its limit. [th . 1 1 n t. 2

For if the ratio t^^j : T;^ approach a limit h smaller than unity,

the series is convergent and not indeterminate. [th.l3, th.ll nt.2

Note. If indeterminate series be classed with divergent
series as above, then, in the light of theors. 12, 13, it appears
that theors. 7-11, with their notes and corollaries, apply to series

with negative terms, and that those theorems are general for

all series of real terms.

Indeterminate series are unsafe
; and, by reason of their slow

convergence, they are worthless.
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§ 6. IMAGINARY SERIES.

A SERIES whose terms are part or all imaginary is an imagi-

nary series. If each term of the series Ti, Tj, ... be resolved

into its two components Pi, Qii; P2, Qa*; ..., the two series

s', =Pi+P2H— , and s"i, =Qii+Q2iH , are the components
of 8, and s = s'+s"i.

The moduli of the several terms taken in order form the series

of moduli^ a series of real positive numbers, =^(Pi- + Qi^)"*.

Theor. 14. If for any imaginary series the series of moduli

be convergent, the imaginary series is convergent.

For *.* the series s', s" have their terms when made positive

not greater than the corresponding terms of the con-

vergent series of moduli, [+p > V(^+ Q^) j
•••

.?. s', s" are convergent, [ths. 10,13

,. s, =s'-|-s"?', is convergent. q.e.d.

Theor. 15. If for any imaginary series the series of moduli

be divergent, the imaginary series is non-convergent.

For *.* +s'4-'*'s", the sum of the component series s', s"j, with

all their terms made real and positive, is not less than

the divergent series of moduli, [+p+'^Q< VC^^+Q^)

.*. one or both of the series +s', +s" are divergent,

.*. one or both of the series s', s" are non-convergent,

[th.l2cr.l
.. s, =s'4-s"i, is non-convergent. q.e.d.

Cor. If she {
^^'^'^^^9^'^^^ so is its series of moduli.

-^ >

non-convergent,
-'

Note. Theors. 14, 15, when applied to series of real numbers,

become theor. 13 and its converse, since the modulus of a real

number is that number taken positive.

In the light of theors. 14, 15, it appears that theors. 7-11,

with their notes and corollaries, apply to series with imaginary

terms, and that those theorems are general for all series. Theor.

16 shows that every series to rising powers of a variable has a

radius of converoence.
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Theor. 16 (Abel's theorem). If a series, Aq+AiZ+ AsZ^-I— ,

arranged to risingpowers ofa variable z, be ^ - - .when

modz = a constant r, it is-l
^ ^

,. ivhenever mod z ^ ^ *

' '

non-convergt
' <r.

c^ 1 I 2 1
•

I convergent ,

For •.* Ao+Ai-2;4-A9-2;^H is< ^ .wheno-r 1 -T- . T- -)

non-convergent
mod 2 = r, [hyp

.*. mod Ao 4- mod Ai • mod z + mod A2 • mod z" -\ is

mod Ao + mod Ai • mod z + mod Ag • mod z^ -\ is

z^
>*'•

converscent

, convergent , !)>»'•
< T °

. whenever mod z< Z^
'

divergent
' < r.

.-. s, -A0 + A12 i-Aoz' + "-, is^
non-convergent

"^ r
whenever mod ^ ^

*

q.e.d. [ths. 14,15

Cor. If in a series arranged to rising powers of z, mod z

I
convergent \

<
increase from to co, the series is < in doubt ivhen modz-{ =r.

I divergent \

>
[r a constant, called the radius of convergence of the series.

In most series r is lim ratio mod a„ : mod a„+i. [th. 11 nt.

Note. Graphic representation : Denote by z the represen-
tative point of any number z

; i.e., the extremity of that vector

from the origin whose ratio to the unit-line is z
;
and so for other

numbers. Let Aq, AiZ, A2Z-, ... be any series arranged to rising

powers of z; and from o as centre, with radius equal to the

radius of convergence of the series, draw a circle
;
this circle,

called the ciixle of convergence, embraces the region

I

within
I
convergent.

< upon which z lies when the series is \ in doubt.

I

without
I divergent.

If a series be arranged to rising powers of
(2;
—

a) ,
then the

circle of convergence has a for centre and r for radius, and the

I convergent I within

series is
-{

in doubt when z lies < upon this circle ;

I divergent |

without

<r
for mod {z

—
a) ^

= r.

>r.
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Theok. 17. In a series arranged to rising powers of a variable

z, if modz be less than the radius of convergence of the series,

an increment can be given to z so small that the increment of the

series shall be less than any assigned number.

For let s = Aq-\- AiZ -\- \oZ' -\ , take modz less than r, the

radius of convergence, and to z give an increment h

so small that mod {z -}- h) < r
;

then ••• sands + incs, = \q+ Xi{z '\- h) -\- ^^{z + hy -\ ,

are both convergent series, [hyP-

(z -X- h^' — Z'
,'. incs, =7t(Ai4-Ao

^ '
1 ), is convergent ;

.*. inc s : /i is a convergent series when h is finite
; [th. 8

and *.• h may approach so that \^{z -\- hY— z^~\
: h is larger

than but approaches wz""', [bin. th.

.*. inc s : 7i = a finite limit when /i =
; [th. 10

.*. incs, = /i« a finite number, = when ^=0. q.e.d.

Cor. 1. D^s, =Ai4-2a2Z +3A3Z-H , i>z^s, d/s, •••, ai^e all

senes whose common radius of convergence is r.

CoR. 2. For all values of mod z\ . than v, the series-

^ ^. , ,
o

,
. , a finite continuous one-value

function A<, + A.z + A,z- + - ts
J, ^^ .^^^.^^ or indeterminate

function of z.

If s be a series to rising powers of a variable z, and z be a

finite function of z that is equal to s for continuous values of z

from to r, but unequal for a value of z larger than r, then s

and z are discontinuous when z -^ r [theory of functions], and

r is the radius of convergence of s and the smallest value of z

for which z is discontinuous.

In the graphic representation of imaginaries, if i\iQ points of

discontinuity, a, &, c,
••• of the function {a~zy{b—zy{c — zY

'"
(P? ^h '"'

••• ^"y fractions or negative integers) be platted,

and the function be equal to a series to rising powers of z — Tc,

then, with k as the centre of convergence, the radius of con-

vergence of the series is the distance from k to the nearest

point of discontinuity.
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§7. EXPANSION OF FUNCTIONS IN INFINITE SERIES.

If z = Ti -f-TsH- T3 H [z, Ti, T2, Tg
••• functions of

2;]
for all

values of z that make the second member a convergent series,

the series is an expansion of z in functions of z.

An ordinary function of a variable cannot, in general, be equal
to any one infinite series for all values of that variable.

E.g.^ if 2; be a variable that increases from to 00, then the

-
I

finite and positive
|
< 1

fraction is
-j

infinite when z\ =1
^ — ^

I

finite and negative |
> 1

but *.* the series is infinite when 2; > 1,

.
•

. the series 1 -\-z-\-z^-\
—

, which equals the fraction for all

values of z from to 1, ceases to equal it when 2; > 1.

So, the series —z — z^—'^-"^ wherein z = \ : a;, is an expansion

oi{l-x)-\=-z{l-z)-^',
and the two are equal when 2? < 1

,

i.e, when a; > 1
;

but the series is divergent, and the two are unequal when 2; >1.

I

real
I

< ^
'

So, the radical V(^~ ^) ^^
1

^^^^ when z \
= 1

;

I imaginary I
> 1

I

and it is shown later that an expansion of y'(l
—

2;) is

1-i^-K-lV^--; [bin.th.

but this equality is impossible when 2; > 1
;

for the series-function remains real for all real values of 2!,

and the radical becomes imaginary when 2; > 1.

o •* u I negative integer, ., , fraction , .^
So, If n be any { ^J^^.^^^

'the ^ ^^^j^^, (a-.)*

may be expanded into the series

a«_7ia«-i2; + '^{^^-^) a--'-z^ , [bin. th.
2!

whose radius of convergence is a
; [th. 11, nt. 5

then the ^ ,. , is not equal to the series when z>a.

So, if p, g, r be any fractions or negative integers, and if

z = (a
— zy{b — z)^{c

— zy-", then z cannot equal a

series to rising powers of z when z is larger than the

smallest of the numbers a, b, c, •••.
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Theor. 18. The sum of an infinite series Ao+AiX+AgX-^--",
icJiose radius of convergence is greater than 0, approaches the

limit Ao iL'hen x = 0.

For '.• Ai+Ao.r-+-A3.^H— has the same radius of convergence
as the given series,

.*. it is convergent for small values of x,

.*. the product x{xi-{- a^x -\- a^oi? -\ )
= 0, when ic= 0,

.•. Ao + Ajic -f AgOz-^H =Aowhena;=0. q.e.d.

Cor. In the infinite series a© + Aix + As x^ H f- a^ x** H ,

X may be made so
-{

. that a^x*" shall he any number of times

larger than the sum of all the terms o/-{ j

^ ''

! degree.

Theor. 19. If two series, arranged to Hsing powers of any
same variable, be equal for all values of the variable that make
them both convergent, the coefficients of like powers of the vari-

able are equal.

Let Ao + Ai^cH-Aga^H = Aq'+a/o; +A2' ar^H , when a;<?',

wherein if the series have different radii of convergence, r is

the least of the two
;

then will Aq = Ao', Aj = Aj', Aj = Ag', •••.

For •.• the two series are equal when a; < r, [^JP*

.*. they approach equal limits when x =
;

i.e., Aq = Aq'. [th.l8
.-. Aiif + Agic^H—= Ai'a;+A2VH— when a;<r.

.*. Ai 4-AoX H—= Ai' -^Az'x-i— whena;<?'. [div.by ic

.*. Ai = Aj'. [as above

So Ao = A2', and so on. q.e.d.

Cor. No function x has more than one expansion to ascend-

ing powers of a given variable x.

For if possible let there be two separate expansions ;

then •.
• each expansion is equal to x when it is convergent, [df .

.*. the two expansions are equal to each other when both

are convergent,

.*. their coefficients are equal, and the two are identical.

Q.E.D. [th.



pr.4, §8.] UNKNOWN COEFFICIENTS. 883

§8. METHOD OF UNKNOWN COEFFICIENTS.

The method of unknown coefficients is used for the purpose of

changing a function from one form to another. It consists in

equating the given function to a function of the required form

with unknown coefficients, and then finding such values of

these coefficients, if possible, as shall make the two members

laenticai. expansion of fractions.

PrOB. 4. To EXPAND A FRACTION INTO A SERIES.

Put the fraction equal to a serie& arranged to the rising pow-
ers of some letter in the denominator of the fractiori, and ivith

unknown coefficients.

Free the equation from fractions.

Equate the coefficients of the like powers of the letter of

arrangement in the two members, each to each, and solve the

equations thus found for the unknown coefficients. [th. 19

E.g., put
-"^

. ^ ,
= A+Ba; + ca;- + Da;^+---;1— 3a; + 5a;-

then ••• l + 2a; = A-j- b ic + c\x- -\- d x^ -\ ,

-3a
x-\- c
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PrOB. 5. To FIND THE SCALE AND SUM OF A RECURRING SERIES.

(a) Scale of two terms, m, u.

Write Tg = mTg -f ^iTj, T4 = niTg -f nxg, T5 = mT^ + nxg.

Solve the first two equations for m, n, and test the values thus

found by the third equation.

Write s = T,(l-in) + T,
,

1 — m — n

For ••• S =Ti4-T2+T3 + T4-|

= Ti + To + (mT2+ ?lTi) + (mTg + riTs) H
= Ti -f- To H- m(T2 + T3 + T4 +•••) + ^(Ti+ T2+T3+ ...)

= Tj + T2 + m(s — Ti) + ^s,

.^ ^^Tjl-m)±T,^ Q.E.D. [sol.fors
1 — m — 71

jEJ-gr., to find the scale and sum of the recurring series

1 + Dx -\- lOar + 5x^ — Sox* '".

Write 10ar' = m-5a; + n-l and 5 a^ = m- lOar^ + w -Sec; solve

for 771, n ;
and test by equation — 35a?*= ?«, • 5a^ -f- ?i • lOa^

;

then m = Sx, n = — ox^;

and 3^1-3a: + 5a:^ l + 2a?
,

l_3a; + 5ar^ l-3a;+5a^

(b) Scale of three terms, m, n, p.

Write T4= mTg + UTo + PTi, T5 = mT4-|-nT3+ pTo,

Te=mT5 + nT4 + pT3, t^ = niTg + nTs -FpT^.

Solve the first three equations for m, n, p, and test by the fourth.

Write s = T.(l-m-n) + T,(l-m) + T3.

1 — m — n — p
For ••• S =Ti + T2+ T3+ T4H

= Ti 4- T2 + Tg + (mTg + nT2 +i)Ti)

+ (mT4 4-?^Tg+|)T2)H
= Ti + T2 + Tg + m(T3 + T4 + T5H )

+ ?i(T2 + Tg + T4 + •••) +P(Ti + To + Tg + ...)

= Ti + T2 + Tg + m (s
—

Ti
—

T2) + n (s
—

Ti) +i)S,

.
g ^ Ti(l— m — ?i) + T2(l— m) +Tg

\—m — n—x) Q.E.D.

(c) So, for scale of four or more terms.
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EXPANSION OF SURDS.

PrOB. 6. To EXPAND A SURD INTO A SERIES :

Put the surd equal to a series arranged to the rising powers

of some letter in the surd, and with unknown coefficients.

Free the equation from radicals.

Equate the coefficients of the like powers of the letter of

arrangement, each to each, and solve the equations thus found

for the unknown coefficients. [th.l9

E.g., to expand -^{a--\-hx) :

Pat ^{a^-\-bx)
= A-{-BX-[-cx'^-\-T>x^-{-BX*-{-¥X^-\ ;

then a2 _j_ 5a: = A^ + 2 ABa; 4- 2 AC a^+2AD
2bc

0^3+ 2 AE
2bd

r.2

«;*+.

l2_

A = a.

2ab = 6, 2ac + b2 = 0, 2ad + 2bc=0, ...

b
IT""'
2 a

and
^ a

-Ir

8a3'

8a«'

d = b^

b^a?

Ua'

j5&^ ,

16 a^ 128 a''

5
So,V5=V(4+ l)=2+ l-l^ + ^-^^^^^ +

So, put -^{a^-\-bx)=^A-\-BX-\-CX^-\-'D3l?-\-'E.X^-\

then •.• a''4-^a;=A^+3A^B iC+ SAB^

+3a2c

a, B
3 a'

c=

,-. -^{a^-\-bx) = a + bx

3a2

9a^'

6V

H-3a2d
+ 6ABC

.i^+ 3A2E

+3ac=^

+3b2c
+ 6abd

a;*+..

81 a^^

56V 106%*

106^

243 a^

So,^/9 = -^(84-l)-2 + -^-

9a^

1

81 a^

5

243 a^i

12 288 20736

Note. This method of expanding {l-{-x)^ shows that a

series A + Ba; + ca^H exists whose qi\\ power is identically

(1 -\-xy ;
and so this series, when convergent, is a ^th root of

(1 -\-xy. There are q such series corresponding to the q, qih.

roots of unity. , [X. th. ??
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BE80LUTI0N OF FRACTIONS.

PrOB. 7. To RESOLVE INTO A SUM OF PARTIAL FRiVCTIONS A
FRACTION WHOSE TERMS ARE ENTIRE FUNCTIONS OF ANY ELEMENT :

Ifthe degree of the numerator be not lower than that of the

denominator^ reduce the fraction to a mixed number.

Resolve the denominator of the fraction into its prime factors.

Equate the fraction to a set of fractio7is foi-med as follows:

For every prime factor not repeated write a fraction tchose

denovmiator is that prime factor; and for any pxime factor

repeated k times write k fractions whose denominators are the

firsts second, third, • • • kth powers of the factor.

For the numerator of any fraction ivrite an entire function of
the given element with unknown coefficients, and of degree lower

by unity than the prime fictor that enters into its denominator.

Free this equation from fractions.

Equate the coefficients of the several powers of the letter of

aiTangement, each to each, and solve the equations thus found for
tJie unknown coefficients of the numerators.

E.g., to resolve —^ : [a;3-l= (a;-l) (ar^+aj+l)
2/ — 1

^^ .
. 1 Aa; + B

,
c

Write =— '

;

x^-l x'-^x + l x-1
then *.- l = (A + c)a:^-f-(— A-|-B + c)a;

— B + c [free fr. frac.

.-. A + C = 0,
— A + B + C = 0,

— B + C=l
.-. A = -^, B = -|, C = i,

1 x-\-2 ,
1

and
x^-l 3{x^ + x-\-l) 3{x-l)

So, write — ^ =
\-

(^x-l){x-2)(x-3)
then ••• 2a^—10x + U

= A{a^- 5 X 4- C) + B(a^- 4x + 3) -\-c(x^-Sx-{- 2),

.'. a+b4-c = 2, 5a+4b4-3c=10, 6a4-3b+ 2c =14,

.'. A = 3, B=~2, C= 1,

and 2a^-10a;+14 ^_3 2_+_L-.
(x-l){x — 2)(x-3) x—1 a!-2 a!-3
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Since, as appears from Note 1 below, the identity

=a(x-2){x-S) + b{x-1){x-S)-{'C{x-1){x-2)
holds true for every value of x, it is more readily solved as follows :

Put x=l] then 2 -10 -|- 14 = a-"! ."2, and a= 3.

Put x=2; then b=-2.

Put x = S: then c = l.

So, write —— ^^ =

and

{x-{-iy (x+i) {x-\-iy {x+iy'
then A =2, b=~3, c = 4,

2a^ + a;+3 ^ 2 3 4

{x+iy x-j-1 (x + iy {x-{-iy

This fraction may also be resolved as follows :

'-' ^i~- /^^ix2 + .- ... ^ [div.bya;+l
{x + iy {x+iy (a; + l)^

2a;-l _ 2
3^

{x + iy~x + i {x + iy
a^d '-' ^~^2^Z±T-7:rtTV.^ [div.bya;+l

2ic^-[-x-\-S 2 3,4 ,

"

.'. —~ TT— = ;;H ^1 as before.

{x+iy x-i-1 (x+iy {x+iy

So, write
^x'+^^-^'-^x-l ^ _^_^bx±c_ d^ + e

(cc+l)(a^ + aj + l)2 x+l a^+x-hl {x^-hx+lf

then 4a^4-3a^-a^-4aj-l

= A{xF-\-x-\-iy-i- (bx+c • a^+x+l 4-Da;4-E) (aJ+1) •

Put a; = — 1
;

then a = 3.

And •. {bx -{- c) {x^ + X + 1) -{- Dx + -E [repl. A,div. bya; + 1

=
[4a;^ + 3a^-a^-4a;-l-3(a^+a;+l)T : (»+l)

= a^ — 4a^ — 6aj — 4,

.-. Ba;+c=ic— 5, Da; + E = — 2ic+ l, [div.bya^+a;4-l

and
4a;^ + 3a;«-a^-4a;-l

_^
3 a?-5 2a;-l

(aj+l)(a^+a; + l)2 a;+l a^+aj+l (i«'+a;+l/

The division without remainder by (x-\-l) is a useful check.
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Note 1. When unknown coeflScients are got by giving

special values to a variable a;, the work does not of itself show
whether any development of the proposed form be possible,

but only shows what the coefficients must be if the development
be possible. That every fraction is resolvable into partial

fractions as here proposed appears, however, as follows.

Let the given fraction be —-, wherein u, r, w are entire
vw

and prime to one another
; let x^ be any value of a;,

for which v =
; let Uj, Wj be the constants that u,

w become when the variable x is replaced by the par-
ticular value «! ;

then -l,=_E!-+!lLlE:i£llZ, = i + _EL,vw Wi • V Wi • wv V v'w

wherem a = —
,

u' = -^
; (x—oci) ,

v'= v ; (x—Xj) ;

Wi Wi
V 1/5 V i/>

for •.• the entire expressions WiU — UiW, v, = when x = Xi,

.*. each of them is divisible by a; — Xi. [XI. th. 4.

^ U' B U" r Ug' ,, W2-U'— Ua'-W , .

v'w v' v"w
|_

w w \ ^/

wherein X2 is an}' value of x^ for which v'= 0, u'= Ug', w= Wg ;
• • •

(
Q

,
R ^=-+— ; lQ

= A-^B'X— Xi-{-C'X—Xi-X— X2-\

and the given fraction is resolved as proposed.
If the denominator vw have three or more factors, then one

of them, say v, can be factored again, and so on.

If V be a power v"", then - is resolvable by division into

± + ^^ + ... + L
^

E.g., above, where v= {x-\- ly.
Note 2. One of the uses of Prob. 7 is in the integration

of rational fractions :

J (x-l){x-2){x-3) J \x-l x-2 x-Sj
= 3 log (a;— 1) —2 log (a;— 2) -|-log(a;— 3) + a constant.
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REVERSION OF SERIES.

PrOB. 8. If A VARIABLE BE EQUAL TO A SERIES OF POWERS OF

ANOTHER VARIABLE, TO FIND THE VALUE OF THE SECOND VARIABLE

IN TERMS OF THE FIRST :

Put the letter of arrangement of tJie given series equal to a

new series arranged to powers of the required letter of arrange-
ment with unknown coefficients^ and in the neiv series replace

the new letter of arrangement by the given series.

Equate the coefficients of the like poiuers of the old letter of

arrangement^ each to each, arid solve the equations thus found
for the unknown coefficients.

E.g., to revert the series y — ax + bx^ }- co:^ -] :

Put x = Ay-\-By^-^cy^-\ ,
and replace y, y^, y^,

-" by

{ax-{-ba^-{-cx^-\ ), {ax-\-boif-{-cx^-\ y, •••
;

then
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§9. BINOMIAL THEOREM.

The OR. 20. Ifa.-\-hbe any binomial, and n any real number,

then (a -fb)"=a° + na"-^b + 5i5_Zll)a»-2b2 _!_...

r !

For, put x = b'.a',

then (a4-&)" = «"(!+ bTaY= a"(l + xy,

(a) n commensurable.

(l4-a;)''=l+Ba;H-ca;^+Da^H
—

; [B,c,D,»'»unkn.,pr.6nt.

n(l+a;)—^=B-f2ca;+3Dar^+..., [Vll.th. 17,cr.l;

Put

then

and ri(l+ aj)" =B + 2c
4- B + 2c

a^ + [mult, b}^ 1+ a;

But n(l +3^)" = n + riBo;+ wca^ 4- woaJ*+ [above

B-f-2c
+ B

a;-f-3D

4-2c
a^_j

= 7^^-?^Ba;^-nca:^^-7^Da^+

and

and

B = 7l, 2C + B = 71B, 3 D H- 2 C = ?IC,

B w(n-l) n(?i-l)(n-2)

-
, , ri(?i

— 1) 9
, n(n — 1) (n — 2) o

,= I + y^a; + ^ ^ ar + -^^

-^
^af+...,

(a+ 6)«= a" + Tia^-^d + ^^^^^^a^-^ft^ 4. .... q.e.d.

(6) n incommensurable, a case of limits.

Note. Although the form of the series does not depend on

the ratio b : a, yet the series is worthless unless convergent.

E.g., V5 = V(4 + l) = 4^ + i-4-^-4-4-^ + iV-4-^--'
and the convergents are 2, 2\, 2|^{, 24|i,

•••
;

but V'^=V(l+4) = l+i-4-i-4' + TV-^'-' •••»

and the convergents are 1, 3, I, 5, •••, which are useless.

So, V3=V(4-1) = 2, If, m, IIM, ...;

but y—3=V(1—4)= 1, -1, -3, -7, •••, which is absurd.
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Theor. 2 1 . The series 1 + n + ^ ^"
~

"^^
H

p(n-l).--(ii-r + l)
,

n(n-l)-..(n-r+l)(n-r)
r!

"^
(r + l)!

is convergent if n he ^oositive.

1. r may he made so large that t^^o
'

(r + 1)°"'"^< t^+i
• r"+^.

For [T.,,
.

(r+ 1 )»«] : (t,^,
• ,-+' )

=
(^-±^Y

'

(fTt)

and - may be taken so small that A<1. q.e.d. [th. 18, cr.
r

2. TJie series is convergent.

For ••• after r becomes larger than some fixed finite value r\

each product t,^i
• r**"^^ is smaller than the product

before it, [1

and ••• Ty/+i-r''*+^ is some finite number, say A;,

.*. the series is convergent. q.e.d. [th. 11, nt. 3

Cor. Tlie expansion of (a + a)° is{
'°Z7onv!Tgent

'^ ° *'

<^^i; anatnatofi.±,Yisi ZrjZr,.nt if^<>
Note. The expansion of (a-\-aY is indeterminate if n He

between and~l; for then the successive terms of the series do

not grow larger, and are alternately positive and negative.

But if the negative terms be made positive, the series is the

expansion of (a
— ay, whose value, a negative power of 0, is

infinite.

The expansion of (a-^-d)"* is divergent if w < — 1
;
for then

the successive terms of the series grow larger and larger.
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PrOB. 9. To EXPAND A POWER OF A BINOMIAL :

Reduce the given expression to the type-form (a + b)° and

apply the binomial formula. [tli.
20

E.g., {x-yy=^+i^{-y)+^o?{-yy

= rc* — 4 a^y + 6 a^2/^— 4 ic^ + 2/^.

So, (2a-36)-*= (2a)-''+-4.(2a)-'^.(-36)

. -4.-5

2!

-4.-5.-6...-(r+3)

(2a)-«.(-36)2

+ ... + ^ ^ ^ y-^^f .2a-'<'^'^ . (_ 36)'- -f ..

(2a)* {2ay 2!.(2a)« 3!.(2a)^

4.5.6...-(r+3)(36y

So, (0^ + 2^)^
= 05^ +i.a;-^2/ + |-~|~a.-V

,1 -1 -3 1 -5 o
,

2 2 2 3!

1-1 -3 -5 3-2r 1 -?r_Li
^ ,

= a;^+ ia;"*2/
- -«~V + — ic"V- -^a;"V

2 ^8 ^16 128
^

, 1.3.5.7...(2r-3) -H^izI
^+ ... ± ^ Lx 2 yr^:..,.

Note. If n be a positive integer, the series ends with the

(n+l)th term, since the coeflScients of the following terms

become
;
but if n be a negative integer, or a fraction, positive

or negative, the series does not end, and is infinite.
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§10. FINITE DIFFEKENCES.

If there be any series of numbers, and if a second series be

formed by subtracting each term' of the first series from that

which follows it, in order
;
a third series, by subtracting each

term of the second series from that which follows it, and so on
;

then the terms of the second series are called the differences of
the first order, or fij'st differences; the terms of the third series

are tJie differences of the second order, or second differences;

and so on.

E.g.,ifl,
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So, bi^a^-t-ao, c = 64-6i, d = c + Ci,

.-. c,= b-hbi,

= a4-2ai + a2. q.e.d. [n=:2

So, Ci = ai + 2^2+ 03,

.-. d,= c +Ci,

= a -f Sai + Sas + ag. q.e.d. [n = 3

2. If the laio he true when n = k, it is true when n = k + l«

For, let g, r be the (^*-f l)th and (A;4-2)th terms of the

principal series,

then *.• q = a-\-Cik'ai-\-Q2lC'a<i-\ f-c^-a^H f-a;k, [hyp.

and yi=«i + Ci^*-aoH hc^-i^*-«rH V^i^'O^k + cLk+ii

= a + Ci(A:+ 1)
•

ai+ c^ik-^-l)
• 03 H he, (fc+l) • a^

H l-Ci(A;-f l).a;k4-a*fi. Q.e.d. [IV. th.3,cr.2

3. T^e law is true universally.

For *.* it is true when n = 3, [1

.*. it is true when n = 3 + 1 = 4, [2

.'. it is trae when w = 4 -f 1 = 5,

.*. it is true when n = 6, 7, 8, •••. q.e.d.

Note 1. The reader may compare this proof with the third

proof of the binomial theorem. [V. th. 1, nt. 2

Note 2. This theorem is of special value when the auxiliary

series is short, ending in zeros.

E.g., of the series 1, 8, 27, 64, 125, •••, the auxiliary series

is 1, 7, 12, 6, 0, 0, ..•;

and Tio = 1 + 9 . 7 +— . 12 + ^-^^^ - 6 = 1000.
2 6

So, of the series 7, 16, 27, 40, 55, •••, the auxiliary series

is 7, 9, 2, 0, 0, ...
;

and Tio=7 + 9. 9 + ^-2 = 160,

T„ =7 + (71-1)9 +1(71-1) (72 -2)2 = n(n + 6).
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Theor. 23. If the terms of a series be like entire functions

of their number in the series^ the auxiliary series ends with that

term whose number is one greater than the degree of the function.

Let the general term of the series be

T„, = A + BTi -f cn^ -\ 4- Kn"* : [ma pos. integer

then the general term t^' of the series of first differences

«i5 ^^ Ci, ••., is

T„+i-T„, = B + c(n-|-l — n2)-f ...-f k(71 + 1 -
n"')

= B+c(27i-f 1)H hK(m.?i"'-i-+--")?

which contains no higher power of n than n"*~^

So, the general term t^" of the series of second differences

a2, bz, Co, ••', is T„^i'
—

T„', and contains no higher

power of n than n*""^; •••. .

So, the general term of the series a^_i, 6„_i, c„_i, •••,

contains only the first power of m.

So, the general term of the series a«, 6^, c„, •••, is free

from m, i.e., is constant,

and all the subsequent series, a^+i, b^^i, •••, ••, consist

of zeros. q.e.d.

Theor. 24. If the terms of a series be like entire functions of
their number in the series, the form of these functions is identical

with that found by aid of the auxiliary series.

For •.* A + B7i-f CTi^H hKn"*

,
, ,, , (n-l)(n-2)= a + {n-l)ai-{-^

^^
^-a^-^'--

^
(n-.l)(n-2)...(n-m)

^^m !

for all integral values of w, [ths. 22, 23

.*. these two functions, each an entire function of n of

the mth degree, are equal for more than 7n values

of the variable w,

.*. they are identical. q.e.d. [XI. th. 4, cr. 3
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TiiEOR. 25. 7/" a, b, c ••• 1 he d terms of any series, and

a, Ri, Oo, ag
••• t^s auxiliary series, then

I u I I II I n(n— 1) , n(n— 1) (n--2) ,

2 1 o I

For, from the given series form a new series,

0, a, a + 6, a-h^ + c, •••, a-^b-\-c-^ f-^

wherein the (n -|- 1 ) th term is the sum of the first n terms of the

given series ;

then *.• the nrst differences of the new series are the terms of

the given series,

the second differences of the new series are the first

differences of the given series
;

and so on ;

.*. the auxiliary series of the new series is 0, a, ai, a^, Oa, •••,

and its (w + l)th term is

Q.E.D. [th.22

§11. INTERPOLATION.

If for a series of values of a variable (the arguments) there

be a corresponding series of values of some function of that

variable, the insertion of intermediate values of the function cor-

responding to intermediate values of the variable is interpolation.

PrOB. 10, To INTERPOLATE VALUES BETWEEN THE TERMS OP

A GIVEN SERIES.

(a) The form of the function known: Apply the law offorma-

tion, as shown by the form of the function of n.

E.g., of the series 1, 4, 9, 16, ••-, the (2|^)th term is

(2o^ = 6J.

So, of the series 1, 4, 7, 10, 13, ••.. the (3J)th term is

7+i-3, = 8.

So, of the series 1, 1, 16, 84, ••., the (3J)th term is

1 . 4% = 32.
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(6) The arguments equidifferent^ and the form of the function

unknown :

From the given series form the auxiliary series, and find the

nth term of the given series by aid of the formida of theor. 22.

Assume the law of formation to he that shown in the form of
the nth term^ and get intermediate terms by the application of
this law^ as in case (a) .

E.g.^ of the series 1, 3, 6, 10, 15, 21, ••, the auxiliary

series is 1, 2, 1, ;

the Tith term is

H-2 (72- 1) + i (n
-

1) (n
-

2), = in (71 + 1) ;

and the (2^)th term is ^^^' ^, = 4f .

So, of the series 1, 1.414, 1.732, 2, 2.236, 2.450, the

values of the square roots of 1, 2, 3, 4, 5, 6, correct

to three decimal places, the auxiliary series is

1, .414, -.096, .046, -.028, .02,'...;

and the approximate value of V^i ^^

1 -f f .414 - f .096 - tV .046 - -^ .028 = 1 .581.

Note 1. This rule assumes that the law of formation of the

series is that found by aid of the auxiliary series and the

formula of theor. 22, The right to make this assumption

appears as follows : if the auxiliary series terminates, the for-

mula gives a law of formation by which the integral terms may
be found, viz.^ that the function be a rational integral function

of the argument; and, since the function so found is a con-

tinuous function, by its aid intermediate terms may be got.

Whether the original series was got by this law does not

appear; but as this is the simplest law made known by the

data, and as this law does give the integral terms, it is as-

sumed as the law of formation of intermediate terms.

If the given series consist of two terms «, 6, then the

auxiliary series is a, aj, and the formula of interpolation for

Tn+i is a-{-7iai, the ordinary formula of proportional parts
in common use with arithmetical tables.

E.g., log 500 =2.6990, log 501 = 2.6998,

and log 500.6 = 2.6990 + .6 X .0008 = 2.6995.
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If the given series consist of three terms, «, 6, c, then the

auxiliary series is a, Oj, (Tg, and the formula of interpolation

for T„+i is

, ,
?i (71— 1)a + nai-f-—

^^-^
-^«2.

E.g., log 150 = 2.1 761, log 160 = 2.2041, log 170 = 2.2304 ;

then the auxiliary series is 2.1761, .0280, —
.0017,

and log 163 = 2.1761 + 1.3 X .0280 - h^-A x .0017,

= 2.2122.

So, if the given series have but four terms, five terms, and

so on.

If the given series be infinite, the formula of interpolation

is also infinite, and it is available when convergent, i.e., when
no term of the auxiliary series a, ai, a^^

••• exceeds a given finite

limit ; for since the series of coefficients 1 + ?i + ^^^^
~—'-

-j

is convergent when n is positive [th. 21], so is the formula of

interpolation a -f- na^ + ^n{n — 1)02-^ '" convergent, [th. 8, cr.

When available, this formula is better adapted to computation
than is the more general formula of -case (c) .

(c) The argument's not equidifferent :

Let Xi, Xo, X3,
•••

x,^i be any arguments not equidistant^ and

yii y2i Jsi
••* Jm t^^ corresponding values of the function, to in-

terpolate a value of the function y, corresponding to a given

argument x ; compute y hy the formula

y ^ (a?
-

x^) {x-x^) — {x- a?^^i)

^

{x-x^){x-x^) — {x-x^^^)
y^

{x^—x^) {x^-x^) ...
{x^-x^-^)

{X
—

X^) (X
— X2)'"{X — X^)

ifm+V
{^m+i-^i) (a^«.+i-a?2)

...
(a;„+i-a;J
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For, assume y to be an entire function of x of the mth degree,
and write

2/
= A + bo; -f- ca;2 H f- mx"*,

then is this function identical with that written above.

For ••• they are equal when x=Xi^ when x=X2^ when x—x^j^^^

i.e., for m H- 1 values of a;,

.-. they are identical. [XI. th.4, cr.

E.g., if aji, x^, x^=zlbO, 160, 180,

and 2/1^2/2,2/3
= 2.1761, 2.2041, 2.2553,

to interpolate a value of y corresponding to .7;= 163 :

then y = -^lllL 2.1761 + 15llll2.2041 + iM_2.2553
-10.-30 10.-20 30-20

= 2.2122.

Note 2. When iCi, X2, •.., have a constant difference 1, the

formula of case (c) is equivalent to that of case (6) .

For *.* each of these formulae makes y an entire function of

X of the mth degree*,

and ••• both formulae give the same value to y for rnore than

m values of x,

.*. the two functions are identical. [XI. th.4, cr.

Note 3. The principle of interpolation's illustrated graphi-

cally in the platting of curves by means of points. The

abscissas of the points represent arguments ;
the corresponding

ordinates represent the known values of the function
;
and any

intermediate ordinate represents an intermediate value of the

function. Graphically the interpolation is effected hy joining

the given points by the simplest smooth curve that can be

drawn through them, and measuring the ordinate that corre-

sponds to any given argument. The most reliable part of this

curve is commonly that which is not too near either end.
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§ 12. Taylor's theobem.

Lemma. If f{x-\-y) be any finite continuous function of the

sum X -h y for all values of that sum between a and b, then for

all such values D^f (x -|- y) = D^f (x + y) .

For if X be increased by h while y stands fast,

then Dj{x -\-y)
= lhn-^(^ •*" -^ "^ ^'^ ~-^^^ + ^^

,' [df . deriv.

and if y be increased by h while x stands fast,

then V(x + 3,)
= lim^a£+l+lbl.^i£+ll.

.-. JyJ{x-\-y)=Dj{x-\-y). [II. ax. 1

Theor. 26. If t{x-\-y) be a continuous function of the sum

(x -f- y) thai does not become infinite when y = 0, its expansion

in powers ofy can contain no negative powers ofy.

For if possible let the expansion contain a term cy'*^,

wherein c is independent of y ;

then *.• c^~'* = oo when y=0,
.-. /(aJ + 2/)

= oo,

which is contrary to the hypothesis,

.*. this expansion can contain no negative powers of y,

Theor. 27. Ift(K-\-y) and its successive derivatives be finite

and continuous functions of the sum {x-\-y), the expansion of
f(x + y) can contain no fractional power of y.

For if possible let the expansion contain a term cy'^^q,

wherein c is free from ?/, w is a positive integer, and ^ is a

proper fraction
;

^

then the (w + l)th derivative of this term as to
2/

is c y?"^,

wherein c' is free from y, and -— 1 is negative,

and •.* c'yq~'^ = 'x> when 2/==0,

.-. /('*+i)(a; + y) = oo,

which is contrary to the hypothesis ;

.-. this expansion can contain no fractional powers of y.
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Note. It is shown in the theory of functions that if a func-

tion of y and its ^/-derivatives be finite, continuous, and one-

valued for all values of y smaller than a constant r, the function

may be expanded to a series of rising integral powers of y that

is convergent when y is smaller than r. This is equivalent to

sajing that f{x + y) may be expanded to rising integral powers
of y when f{x-\-y)^ /'(^ + 2/)?

••• are finite, continuous, and

one-valued functions oi x-{-y from 2/
= to 2/

= ?'•

Theor. 28. (Taylor's Theorem.) If t{x-{-y) be continuous,

and if it be possible to expand this function in a series to positive

integral powers of y, then

f(x + y) = fx + 2fx+2!f"x +
|^f"'x+...4-^f'^)x-f...,

wherein fx, f'x, f "x, f '"x ... f^°^x ... are what f(x-f-y) and its

successive derivatives become ichen y = 0.

For, put/(aj + 2/) = A + B?/ + C2/^ + D?/3H j-K?/°4----,

wherein a, b, c, d, ... k, ... are finite and continuous functions

of ic, but free from y, and whose first derivatives as

to X are all finite
; [t^J'P*

then A =fx ;

and •.• D,/(a; + ?/)
= D,A + D,B.2/ + D,c.?/2 + ----fi>xK2/'*+--,

and D,/(a; + 2/)
= + B + 2c2/+3D2/2 + ...+7iK2/-i+--,

and •.• T)J{x + y) = 'Dyf{x-{-y), [lem.

.-. d^a + d^b-2/ + i>xC-2/^+--- = b + 2c.?/+3d2/^+---
for all finite values of y, [th.l8, cr.l

.-. B = D,A=/'a;,

2c = D,B=/"aj, .-. c = i/"a;;

3d=d^c =|^/"'a;, .-. d =—f'x...-, and so on.
o !

.-. f(x-{-y)=fx + ^f'x + ff"x + ^f"'x + -''. Q.E.D.
1 Ji I o I
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APPLICATIONS OF TAYLOR's THEOREM. ,

B}' the usre of Taylor's formula aew methods, often simple, are

found for the expansion of many expressions in series.

1. Tlie binomial formula.

l.Qtf{x + y) = {x + yY;
then ••• fx = x'\ /'x = na;'*~^, /"a; = n(n— l)a;'*~^, ...,

[Vlll.ths. 16, 14

.-.
(^x + yY = x^ + n:^-^'y-\- ''^'\~^'> ^-Y^-"-,

a convergent series when x^y. rth. 10, ut. 2

2. Tlie logarithmic series.

Let f{x -{-y) = log^(a; + y) ;

then •.• fx — \ogj,x^ fx = M^a;~^ f'x = — M^a;~^, /'"a; = 2 M^a;"^,

.•.log.(x + ,) = log.x +
M.(|-jJ

+
^-5+...).

CoR. 7/x=l,iAenlog^(H-y) = MYy-|' + |'-^+-^;
a convergent series when 2/ < 1

;

2 3 4

So, wheuy <1, log.,(l_2/) = M^(-?/-'^"-|--.^ ).
2 o 4

3. Maclaurin's formula.

Let fy, /O, /'O, /"O, ... be what f{x+ y), fx.fx, f'% -.

become when a; is
;

then
/^=/0+/'0.2/+-^-2/^+-^-2/^+-...

4. The exponential seHes.
'

Let /2/
= A"

;

then .•./0 = A«=1, /'0 = a«:m^=:miS /"O = a« : m^^ ^ mjS

... ..= l + M-.2/ +^ +^V-,
wherein m^S mj^, ..., =:logeA, (log.A)^, ....

CoR. 1. ey=l+v + ^H-^+.--;
2 ! 3 !

a convergent series for all finite values of y^ [th. 11, nt. 2

and e = ei= 1 + 1 +— +— + ••• = 2.7182818-..

2! 3!
[IX. th.
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§ 13. COMPUTATION OF LOGARITHMS.

Theor. 29. Ifjube ayiy number greater than 1, a any positive

base^ and m^ the modulus of the system; then

l0g^N = l0g^,(N-l)

2n-1 3(2n-1)^ 5(2n-1)'

For take y = ,
whence -^ =

;^ 2n-1 1-2/ N-1

then •.• log,(l+2/) = M,(2/--J
+ -f-^ + -)-

and log.(l-2/) = M,(-^-|-^-^...). [th.28ap.2

... log,i±^ = 2M.(2/+^ +^ + 1 + ...). [IX.th.6
i—y o a 7

and •.• log^N
-

log,,(N
-

1) = log^—^ = log^-^ ;

^
N — 1 i —

2/

.
.-. l0g^N = l0g,(N-l) + 2M,(2/ +^ +^ + ^ + -)

==log.(.-l) + 2M.(^+^^^3H-..)
This series is convergent if n >1. [th. 11 nt.4

Cor. 1. If ^ —1 be any 2^osUive fraction, however small,

then %.(N -1) = %.N - 2m.(^^
+
^^^^_^y

+
•••)•

Cor. 2. If a = e, the Napierian base, then m^ = 1,

^2n-1 3(2n-1)^
and Zc>(/eN

= %e(N — 1) + 2( ^/ . + ^^,^J ^xa+ '")'
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PrOB. 11. To COMPUTE A TABLE OF NAPIERIAN LOGARITHMS:

Beginning with 2, compute the loganthm of every prime num-
ber in order. [th. 29 cr. 2

For the logarithms of composite numbers^ add together the log-

arithms of their factors. [IX. th. 6

^.9'olog.2=log,l+2Q3 3.33 5.3^ 7-3'

logl =0
.G66G6007 : 1 = .GGGG66Q7
7407407:3 = 24(;i)13G

823045:5 = 104009
91449: 7 = 13004
10101 :9 = 1129
1129:11= 103
125:13= 10
14:15= 1

= .693147

So, log,3 = log,2+ 2A + -l:-3 + J:^^+...')
= 1.098612.

So, log, 4 = 2. log, 2 =1.386294.

So, log,5 = log.4 +
2g

+^ +^ +...)
= 1.609438.

So, log, 10 = log, 2+ log, 5 = 2.302585.

PrOB. 12. To COMPUTE A TABLE OF COMMON LOGARITHMS:

For prime numbers, multiply the Napierian logarithms, found
as above, by .43429448.

For composite numbers, add the logarithms of their factors.

For, logio N = log, N : log, 10, [IX. th. 8

= log,N: 2.302585

= log,N X .43429448,

wherein Mjo, = .43429448, is the reciprocal of 2.302585.

E.g., Iogio2 = .693147 X .43429448 = .301030. [pr. 9

So, logio3 = 1.098612 x .43429448 = .477121.

Note. The work is further shortened bj' interpolation.
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§ 14. EXAMPLES.

§1-
• •• 4. Find the last term and the sum of 5 terms, 20 terms, 35

terms, 50 terms, 2n terms, 2n + 1 terms, of the series:

1. The natural numbers
;
the odd numbers

;
the even numbers^

2. The numbers of the form r -^-hx wherein r, k are constant

integers and x a variable integer.

3. The distances passed over in successive seconds by a falling

body, starting from rest (16.1, 48.3, 80.5, ••• feet, or

4.9, 14.7, 24.5, ••• meters).

4. 1, -2, +3, -4, ...
; 1, -3, +5, "7, +9, ...

; 3, 2f, 24, ....

5. One hundred stones are placed in a line on the ground a

meter apart, and a basket is placed a meter from the first

stone
;
how many kilometers must a man run, who, start-

ing from the basket, picks up all the stones, one by one,

and returns to the basket each time he picks up a stone ?

... 8. Find the five elements of the arithmetic progressions :

6. 1, 3, 5, ... 99; 1, 3, 5, ... 2 A: -1
;
4 + 5 + 6 + ... = 5350.

7. 5. ..7 means... 75
;
3... 11 means 11

; 2^...3 means ... 20.

8. ... 5 terms ... 19 ... 7 means ... 67
; 1, a;,

...
4a;, 19

;

1^_... 4-50 = 204;

9. Fill out the arithmetic progressions :

04 ^-3..._|-4=: 10, = 18, =2(4A;-f 1). [A; any integer

10. Find the distances passed over by a body falling from rest

in successive quarter seconds ;
and in successive periods

of 5 seconds. [ex. 3

11. A stone thrown into the air took 5 seconds to rise and fall

to the same level
;
how high was it thrown? [ex. 3

12. Find the condition that a, 6, c may be the pth, gth, rth

terms of an arithmetic progression ;
if this condition be

satisfied, and if a, 6, c be positive integers, show that

p, g, r may be the ath, 5th, cth terms of an arithmetic

progression, and that the product of the common differ-

ences of the two progressions is unity.
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13. Divide unity into 4 parts in arithmetic progression, such

that the sum of their cubes shall be ^^.

14. The interior angles of a rectilinear figure are in arithmetic

progression ;
the least angle is 120° and the common

difference 5°
;
find the number of sides.

15. A three-digit number is 26 times the sum of its digits ;

the digits are in arithmetic progression ;
if 396 be added

to the number, the digits are reversed : find the number.

16. At 4 P.M., A, riding 4 miles an hour, is 11 miles ahead of b
;

B increases his speed regularh^ :|^
of a mile every hour,

and has ridden since starting at 11 p.m. the day before,

72^^ miles ; when did a pass b, and when will b pass a?

§2.

... 19. Find the last term, and the sum, of 10 terms, n terms,

oc terms, of the series :

17. The integral powers of ±2; ±3; ±k; ±i; ±i; ±i. [k^l

19. l+() + ()-| + ...; .672672...;
|
+|+A + A + ....

20. A man invests $100 half-yearly in stocks that pay 3 per

cent half-yearly dividends, and invests the dividends as

they are received ; how much will he have invested at

the end of 10, 20, 30 years?

21. A man at 20 insures his life for $2000, paying therefor a

premium of $20 half-yearly ;
what is the gain or loss to

the insurance company if he die at 30, 40, 50, 60, 70,

estimating that it costs the compan^^ 10 per cent of its

premiums to collect and care for them, and that money
is worth 5 per cent per annum ?

22. Show that V-444... = . 666-..; -^2.370370... = 1.333....

23. Find four geometric means between 1 and 32
;
two between

.1 and 100 ; three between ^ and 9
;
three between 2 and J.
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24. The sum of three numbers in geometric progression is 13,

and the product of the mean and the sum of the extremes

is 30
; what are the numbers ?

25. Show that, if n geometric means lie between a and c, their
n

product is {acy.

26. If the common ratio of a geometric progression be less than

^, prove that every term is greater than the sum of all

the terms that follow it.

27. What is the condition that a,, b, c may be the pth, gth, rih

terms of a geometric progression ? If this condition be

satisfied, and log^a, log^6, log^c be positive whole num-

bers a', b\ c', show that a^,'a«, a*" are the a'th, b'th, c'th

terms of a geometric progression.

28. If there be an infinite number of infinite decreasing geo-
metric progressions, wherein the ratio is common, and

the first term of each is the nth. term of that just before

it, show that their sum is a : (1
—

r) (1
—

r''"^)
.

29. There are two infinite decreasing geometric progressions,

each beginning with 1, whose sums are s, s' : prove that

the sum of the series formed by multiplying their corre-

sponding terms is ss' : (s 4- s'— 1).

§3.

30. Continue in both directions the harmonic progressions :

2,3,6; 3, 4, 6 ; 1, 1^, If ;
to five terms, to n terms.

31. The difference of two numbers is 8 and their harmonic mean
is 1| ;

what are the numbers?

32. What is the condition that a, &, c be the pth, gth, ?'th terms

of a harmonic progression ?

33. If a, 6, c, ... be in geometric progression, and a^ = b^ = c''

= ..., thenp, g, r. ... are in harmonic progression.

34. Prove that the arithmetic, geometric, and harmonic means

of two numbers greater than unity are in descending order

of magnitude.
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§4.

• ••63. Determine which of the series are convergent :

35.
2 + 5 + 1 + ...; 1+3^3^ + ...;

_L + A+A+....1^2^3^ ' ^2^22^ '

100^100^100^

36 1 ,

^-t-p .3 m + 2p 3^ m^-Sp 3^
1 *5 2 '5- 3 '53

37 i + ?.l + 5.i_ + i J_+ .
ct + /^ 1 a + 2^ J_

1*2 2* 2^ "^3*23
'

b-^k'r b-h'2k' r't'"'

38. -l.+ J_+J. + ...; __L_+_L_+__L_+....
1-2 2.3 3.4^ V(l-2) V(2-3) V(3-4)

39. J_ + J_+J- + ...; i+? + i:_5 + ?^^7
.

1.3 2.4 3^5
'

2 2.3 2. 3^4

40. H -\ +.-.
a(a + 6) (a + 6) (a + 2 6) (a + 2 6) (a + 3 6)

41. _^+_«_ + _^+...; X +^+A. + ....

1^2.3 2.3.4 3.4-5 2.3 3.4 4.5

43. 1+1 + 1:1 + 1:1:5 + ...;
Jl + g!:f+ 2^-^^-6^ + ....

2 2.4 2.4.6 4! 6! 8!

44. Find S5, and its bounds of error, in each of the above series.

45. "Write the above series to powers of x so that x"" shall have

for coefficient the 7ith term of the series, and determine

the radius of convergence in each case.

§5.

46. i_2 + 3-4 + ...; 1-1+1-1+....
47. a — h-{-c-^a^b — c — a-\-b-\-c-\-a — b-\-c-\-"'.

48. 2-5 + 1-5 + -; 1-1 + 1-1 + ...;23 4 2^0 4

49 i_l4.1_l+..,. 2+ 1 2^+1 23+1

'

,,357 2 22 ^2^
g-l 2(2a-l) 3(3a-l)

•

P 22
^

32

51 J L + J • J L +J'

1-2 2.3 3.4
'

1.3 2.4 3.5
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52 _2 _J_ + JL 5_ 1
1

I

1-3 1-3.5

3-5 5-7 7-9 9-11
'

2 2-4 2-4.6
'

53. l-i. + ll±-i!l^+....
2^ 22.42 22.42.62

§6.

54. Write the series in § § 4, 5 to rising powers of o^, a; — 1
,

a; + 1,

oj— 2, a;+ 2, ic— 1+^\ a?— 2 + **?
so that aj", (a?— 1)", •••,

shall have for coefficient the wth term of the series, and

construct the circles of convergence of the resulting

series. o
^

55. Determine in advance from the character of the functions

in Exs. 56-8, G6, 67, 69-71, what will be the radius of

convergence of their expansions to rising powers of x.

56.

57.

58.

58. Expand into series to rising powers of x, the fractions :

1 3aj — 2 5 — 10a; . 1

3-2a;' (a;-l)(a;-2)(a;-3)
'

2-a;-3a2 l-x-^oc^
X

.
1-a^ 1 1

(l-a;)(l-aa;)
'

2-2a;-a;2' (lH-a;)2' (l+aj)^*11 1 a—x a?—Q(?

• ••65. Find the scale and sum of the recurring series :

59. 4 + 9a; + 21x2 + 51ar^+...; 1 + 3 a;+ 2x2-aj3 .

60. l+3a; + lla;2 + 43ar^+...; 1 + 2a; + 3a;2 + 4a;34- •-.

61. l+3a;4-6a^ + 10a^+15a;^ + 21a;^ + ...;

\-x^x''-x'-\-o?-:i^-\-'".

62. l + 3a;+5a^+7a^+..-; l+a; + 2a^+2a:3H-3a;4+3a;5+-

63. l+ l + ? + i +A + ...;
l + A^+i9.^2+ _6L^+....-r ^4^2 16 6 36 216 1296

(a+l)-a (a+l)^-a% ,

(a + l)^-o^^2 , ...
*

a(a + l)
^

a2(a+l)2
"^

d\a-\-\Y

65. l+2a: + 5a^4-|«^ + f|a^^ + j^'+-; 4 +3+|+^+-2 2 16 4 o y

• •• 67. Expand into series to rising powers of a;, the surds :
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67
1

.
1

.
1

.
1

68. Find the values correct to four decimal places of:

V3 ; V^ ; ^9 ; ^31 ; </17 ; ^80 ; ^33 ; -^240 ; -^'720.

• •• 71. Resolve into sums of partial fractions, the fractions :

gg
3a;— 2

.
5 + 6a;

.
1 -\-4x-\-a^

{x-l){x-2){x-3)' (l-3a;)2' (l-x)*

70
^^

' {(i
— b)x . s^

1 — 2a;-|-ar'' x^ — {a -\- b)x -\- ab
^

{x
—

a){x — b){x — c)'

7j
a^

.
ar^-a;-3

. 2ar^-7a;H-l
'

a^-A3^-\-5x-2' a;(ar^-4)
'

a^+l
••• 75. Resolve each term into its partial fractions, and by aid

of the series so formed find the sum of the series :

72. ^ + JL+...-^l^;A+A4- '

1.2 2.3 71(71 + 1)
'

1.4 2.5 w(7i + 3)'

73. JL-|-J_4,J_ + ...;
4 5 6

1.3 3.5 5.7 1.2.3 2.3.4 3.4.5

74.
1

+ '
+..., __L_ +_A_ + .

1.2.3.4 2.3.4.5 1.3.5.7 3.5.7.9

yK
X o^ a-x

(1 + a;) (1 + ax) (l+tia;) (l -f d'x) (1 + a^x) (1 + a^a;)

+ ...+ ?^
(l+a«-^a;)(l+a«a;)

76. Resolve into partial fractions the fraction :

—
;
—

; , and show that when p<n,
{x-a^){x-a2)-"{x-a^)

qr!:
_^ al^

(tti— a2)(ai— a3)...(ai— a„) (^2—«i)(a2—a3)--(«2— ««)

-\ 1

^ =0.
(«n-ai)(a«-a2)"-(an-a„-i)

•••81. Revert the series :

77. y = x^-{-x; y = Ax — x^', y=lSx — 6a^.

78. y = 6x'^-\-x; y = Sx — xr', y=x^ — 15x.

79. y=20x-\-10x^ — x*; y = x-^af+ x^ -\-x* -j- -".

80. yz=ax + bx^; y = ox-\-ho? -{-ex? ; y=aa^-\-bx!^-\-ca^-\-da^.

81.
2/
= (a

—
aj)~M y = x{a — xy^(b — xy^', y^ = a — x^.
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82. Show that, ity= ax"" + bx^'+p + cx''+^p + • • •
,

then X = A2/^ + B?/^+^ + C2/^+2^ + • • •

,

wherein n = 1 : n, p = Np, a = a~^, b = — na"+^+^6
;

show that n,p, a, ••• are the same functions of N, p, a, •••

as N, p, A, ••• are of ti, j), a, •••.

§ 9-

• ••87. Expand to six terms, and write the general term of :

83. ^{1-x); -^{l-x)', -^(1-af)', -^(l+x)-, i/(l-px).

84. {l-xyi; (l-x)-^', (l + a;)"*; {l-x)-'-, (l-x)-K

85. (1+0^)-^ (1-ary^; (a'-x^y^; (i + a; + a^+ •••)"•

^^- ^^ '

(l_3ar)^' in^-' ^'+^^ '

(1+^-y
87. (H-3a; + 5ar^+...)^; (1 + 2a; + 3 a.-2 + 4a^+ •••)"•

88. Find the radius of convergence of the series in Exs. 56-87.

89. By aid of the binomial theorem compute the values, correct

to 5 decimal places, of the surds in Ex. 68.

§10.
• •• 92. Find the sum of tlie first 5 terms, 20 terms, 7i terms of :

90. 1+2+3 + -, P+22+32+..., 13+23+3^+....

91. 1+3 + 5 + ..., 12+32_|.52_|_...^ I3_|_33^53_f_...,

92. a + a + d + a + 2d + ..., o^+a + d^ + a + 2c? + •••,

i3

93. Find the series of values that x^— 5a^+ 4:X^— 3ic — 8 takes

when x= 1, 2, 3, •••, and plat the function.

Find the sum of 5 terms, 20 terms, n terms of this series.

94. Find an entire function of x that shall take the respective

values 4, 6, 10, when x=l, 2, 3.

95. Find the 5th term, 20th term, nth term of the series of

figurate numbers : 1, 1,
•••

; 1, 2, 3,
•••

; 1, 3, 6, 10, •••
;

1, 4, 10, 20, 35, •••
; 1, 5, 15, 35, 70, 126, •••.

96. If shot be piled in a triangular pyramid, find how many
shot there are in the 5th, 20th, nth courses, counting
down from the top ;

and how many shot altogether in

the 5 upper courses, 20 courses, n courses.

97. So, if piled in a square pyramid.
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98. So, if piled in rectangular form, with p shot more in the

length than in the breadth of any course.

99. So, if the piles be incomplete, with 2 courses, 12 courses,

m courses gone from the top.

100. Show that the sura of the cubes of the first n natural

numbers is the square of the sum of the numbers.

§n.

101. From the tables take out the logarithms of 500, 510, 520,

530, and interpolate the logarithms of 503, 509, 521.

Test the work by comparing the results with the tables.

102. Given V3 = 1-732, V5 = 2.236, V7 = 2.646, V9 = 3,

Vll= 3.317; interpolate -^2, V^^ V^' V^» V^^-

103. Given the squares of 1,3, 5, 7, 9, 11; interpolate the

squares of 2, 4, 6, 8, 10.

104. Given the amount of one dollar at compound interest:

for 1 3'ear, 1.06; for 2 years, 1.1236; for 3 years,

1.19102; for 4 years, 1.26248; for 5 years, 1.33823;

interpolate the amounts for ^, IJ, 2|-, 3^, 4^ years.

§12.
105. Prove the equation :

logea;
= i[log« (a;+ l) + log,(a;- 1)]

+ (2x2-l)-i + i(2a;^-l)-^+ i(2:c2-l)-^ + ....

106. Assuming the expansion of log^(l \-x) and of e*, show that

{\ -\- n~^xY= e"" {1 — ^n~^ 7? ) ,
when n = co.

1 07. Find the coeflScieut of a;" in the expansion of -———— .

108. Expand to rising powers of x
; also, to falling powers :

log(a+ &aJ+ ca^), \og\_{a? -\-px + q) : {a^ -\-p'x-\-q')'].

109. Expand to five terms by Maclaurin's theorem :

a;(e*_i)-i, {a + bx+ c^y.

§13.

110. Compute a table of Napierian and of common logarithms,

each correct to four places, of the numbers from 1 to 20.
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