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ALGEBRAICAL GEOMETRY.

PART I.

APPLICATION OF ALGEBRA TO PLANE GEOMETRY.

CHAPTER I.

INTRODUCTION.

1. THE object of the present Treatise is the Investigation of Geometrical
Theorems and Problems by means of Algebra.

Soon after the introduction of algebra into Europe, many problems in

plane geometry were solved by putting letters for straight lines, and
then working the questions algebraically ;

this process, although of use,
did not much extend the boundaries of geometry, for each problem, as

heretofore, required its own peculiar \nethod of solution, and therefore

could give but little aid towards the investigation of other questions.
It is to Descartes that we owe the first general application of algebra to

geometry, and, in consequence, the first real progress in modern mathe-

matical knowledge; in the discussion of a problem of considerable anti-

quity, and which admitted of an infinite number of solutions, he employed
two variable quantities x and y for certain unknown lines, and then

showed that the resulting equation, involving both these quantities, be-

longed to a series of points of which these variable quantities were the

co-ordinates, that is, belonged to a curve, the assemblage of all the solu-

tions, and hence called ^ the Locus of the Equation."
It is riot necessary to enter into further details here, much less to point

out the immense advantages of the system thus founded. However, in the

course of this work we shall have many opportunities of explaining the

method of Descartes
;
and we hope that the following pages will, in some

degree, exhibit the advantages of his system.
2. In applying algebra to geometry, it is obvious that we must under-

stand the sense in which algebraical symbols are used.

In speaking of a yard or a foot, we have only an idea of these lengths

by comparing them with some known length ;
this known or standard

length is called a unit. The unit may be any length whatever: thus, if

it is an inch, a foot is considered as the sum of twelve of these units,

and may therefore be represented by the number 12 ;
if the unit is a

yard, a mile may be represented by the number 1760.

But any straight line A B fig. (1) may be taken to represent the unit

of length, and ifanother straight line C D contains the line A B an exact

number (a) of times, C D is equal to () linear units, and omitting the

words "
linear units," C D is equal to ().

B
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In fig. (1) C D = 3 times A B, or CD 3.

i

A.-Ji

n c

If C D does not contain A B an exact number of times, they may have

a common measure E, fig
1

. (2) ; let, then, C D = m times E = m E, and
A B = n E, then C D has to A B the same ratio that m E has to n E, or

that m has to n, or that has to unity ; hence C D = times A B
n ' n

= =6.
n

In fig. (2) C D =4- of A B =
3 3

If the lines A B and C D have no common measure, we must recur to

considerations analogous to those upon which the theory of incommen-
surable quantities in arithmetic is founded.
We cannot express a number like J 2 by integers or fractions consist-

ing of commensurable quantities, but we have a distinct idea of the magni-
tude expressed by J 2, since we can at once tell whether it be greater or

less than any proposed magnitude expressed by common quantities ; and
we can use the symbol *J 2 in calculation, by means of reasoning founded
on its being a limit to which we can approach, as nearly as we please, by
common quantities.
Now suppose E to be a line contained an exact number of times in

A B, fig. (2), but not an exact number of times in C D, and take m a

whole number, such that m E is less than C D, and (ra -f 1) E greater
than C D. Then the smaller E is, the nearer m E and (m -f 1) E will

be to C D; because the former falls short of, and the latter exceeds, C D,
by a quantity less than E. Also E may be made as small as we please ;

for if any line measure A B, its half, its quarter, and so on, ad wfinitwn,
will measure A B. Hence we may consider CD as a quantity which,

though not expressible precisely by means of any unit which is a measure
of A B, may be approached as nearly as we please by such expressions.
Hence C D is a limit between quantities commensurable with E, exactly
as J 2 is a limit between quantities commensurable with unity.
We conclude, then, that any line C D may be represented by some one

of the letters a, b, c, &c., these letters themselves being the representatives
of numbers either integral, fractional, or incommensurable.

3. If upon the linear unit we describe a square, that figure is called the

square unit.

Let C D F E, fig. (1), be a rectangle, having the side C D containing
(a) linear units C M, M N, &c., and the side C E containing (6) linear

units C O, O P, &c., divide the rectangle into square units by drawing
lines parallel to C E through the points M, N, &c, and to CD through
the points O, P, &c. Then in the upper row COQD there are (o)
square units, in the second row OPRQ the same, and there are as

many rows as there are units in C E, therefore altogether there are (6 Xfl)

square units in the figure, that is, CF contains (a 6) square units, or
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is equal in magnitude to (a 6) square units ; suppressing the words
"

square units," the rectangle C F is equal to a b.

If C D = 5 feet and C E = 3 feet, the area C F contains 1 5 square
feet.

1VJ N
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Algebraic expressions may be classed most simolv under the form of

homogeneous equations, as follows :

x = a

x* + ax =r be

x' + ax9 + box = def

x4
f ax* -f hex* + defjc

= ghkl

x'" -f axm
~ l + bcx'*~* + &c = pqrs ... to m terms.

In the first place, each equation may be understood as referring to

linear units ; thus, if L be put instead of the words * the linear units,' the

equations may be written

x times L = a times L,

x9 times L + ax times L, or
(.r*-f- ax) times L = be times L,

(x* + ax* + box* + defx) times L = ghkl times L, and so on. The
solution of each equation gives x times L in terms of (0, 6, c, . . . ) times

L; and thus the letters a, 6, c, . . . x are merely numbers, having
reference to lines, but not to figures.

This will be equally true it' L is not expressed, but understood; and
it is in this sense that we shall interpret all equations beyond those of the

third order.

The same reasoning would equally apply if we assumed L to represent
the square or cubic unit, only it would lead to confusion in the algebraic

representation of a line.

6. Again, these equations may, to a certain extent, have an additional

interpretation.
For if we consider the letters in each term to be the representatives of

lines drawn perpendicular to each other, the second equation refers to

areas, and then signifies that the sum of two particular rectangles is equal
to a third rectangle ; the third equation refers to solid figures, and sig-

nifies, that the sum of three parallelepipeds is equal to a fourth solid.

Moreover we can pass from an equation referring to areas to another

referring to lines, without any violation of principle; for, considering the

second equation as referring to areas, the rectangles can be exhibited in

the form of squares ;
and if the squares upon two lines be equal, the lines

themselves are equal, or the equation is true for linear units.

7. It follows as a consequence of the additional interpretation, that

every equation of the second and third order will refer to some geome-
trical theorem, respecting plane or solid figures; for example, the second

equation, when in the form j;
2 = a (a x) is the representation of the

well-known problem of the division of a line into extreme and mean
ratio.

By omitting the second and third terms of the third equation, and giving
the values of 2, a, and a to d, e and/) respectively, we obtain the alge-
braic representation of the ancient problem of the duplication of the

cube.

8. The solution of equations leads to various values of the unknown

quantity, and there are then two methods of exhibiting these values
;

first, by giving to a, 6, c, &c., their numerical values, and then performing
any operation indicated by the algebraic symbols.
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Thus, if a = 4, b 5, and c = 9,

we may have x = a + c 6 = 8 times the linear unit.

ab 20 2
x = = - :r 2 of the linear unit,

c 9 9

,r = \/#c v36 = 6 times the linear unit.

We can then draw the line corresponding to the particular value of x.

This is the most practical method.

Again, we may obtain the required line from the algebraical result, by
means of geometrical theorems; this method is called * the Construction
of Quantities' ;

it is often elegant, and is, moreover, useful to those who
wish to obtain a complete knowledge of Algebraical Geometry.

THE CONSTRUCTION OF QUANTITIES.
9. Let x = a + b.

In the straight line A X, let A
be the point from whence the

value of x is to be measured ;

take A B = , and B C = 6,

then A C = A B + B C = a + 6 is the value of x.

Let j?=r a b, in B A take B D = 6, then AD = AB BD = a-b.

ab
Let x =

, then x la .*: b : c,
c

and x is a fourth proportional to the

three given quantities c, 6, and a ; hence

the line whose length is expressed by x,

is a fourth proportional to three lines,

whose respective lengths are c, 6,

and a. From A draw two lines A C D,

ABE, forming any angle at A
; take

A B = c, B E = a, and A C = 6, join B C, and draw D E parallel t

B C ; then, A B : A C : : B E : C D, or c : b : : a : C D /.CD is the

required value of x.

abc be ay
Let x r=

; construct, y = , and then x = j

/> c

de

abedabc ab* i~

similarly for j? = r- , or =r-, or , or _ .

d* d* cP efg

abc + def abc def
Let x = =

1 $-, construct each term separately, and
g/i gh gh

then the sum of the terms.

10. Let x = Jab
Since x*= ab, a? is a mean proportional

between a and 6. In the straight line

A B take A C =
,
and C B = 6 ; upon

A B describe a semicircle, from C
draw C E perpendicular to A B, and

meeting the circle in E ; then C E is a

mean proportional to A C and C B, (Eu-
clid, vi. 13, or Geometry, ii. 51,) and
therefore C E is the required value of x.
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The same property of right-angled triangles may be advantageously em-

ployed in the construction of the equation x = ; for, take AC = 6, and

draw C E perpendicular to AC and equal to a, join A E and draw E B per-

pendicular to A E ; then C B = .

Let x = V/> + cd, x9 = ab + cd = a (b J
= ay by substi-

tution
;
construct y, and then x = \ay.

Again, x is a line, the square upon which is equal to the sum of the

rectangles ab, cd. This sum may be reduced to a single rectangle, and

the rectangle converted into a square, the base of which is the required
value of x. Euclid, i. 45, and ii. 14; or Geometry, i. 57, 58.

Let x= 2 + b* ; take a straight line

A B = a, frcm B draw B C (
= 6) per-

pendicular to A B ; AC is the value

of x.

Let x = v fl2 + 6
2 + c

2
, from C draw

C D ( = c) perpendicular to AC, A D is

the required value of x.

Let x Ja*-b* =

x is a mean proportional between a + b and a b ; or by taking (in the

last figure but one) A B = a, and A E = ft, we have B E = v 2
b*.

a8
-f ft

2 - c2 d8
},

find y
8 = 2 + 6

8 and z
9 = c' + dLet x =

and then ,r.

*=\/ find y
9 = "8 + -r >

and 22 = 68 - c aml
^r o cr (i

ay
then x = a- .

2

11. Of course the preceding methods will equally apply, when instead

of the letters we have the original numbers, the linear unit being under-

stood as usual.

Thus.r= Vl2 = \/3.4 is a mean proportional between 3 and 4;
hence (see last figure but one) take A C equal four times the unit, and C B

equal three times the unit, C E is the value of x ;
or since V 12 =

Vl6 4 = V48 22
, by constructing a right-angled triangle of which

the hypothenuse is four times the linear unit, and one side twice that unit :

the remaining side zz

Similarly x= VT=: \/4~+ 4 - 1 =
the form Vaf + 68 - c

2
.

+ 22 - I
8

, which is of
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Let x = T \/2 -f- 1. In the last figure let A B, B 0, and C D

each be equal to the linear unit, then AD v 3

Let x = V-J3 = - I
2 P.

then x is the hypothenuse of a right-angled triangle, each of whose sides is

half the unit.

Let x = t /-'> thi s may De constructed as the last.V 4

Let x =. A/ = A /
;
and so on for all numbers, since any finite^ 3 v 9

number can be decomposed into a series of numbers representing the

squares upon lines.

If the letter a be prefixed to any of the above quantities, it must be in-

troduced under the root.

12. In constructing compound quantities, it is best to unite the several

parts of the construction in one figure.

Thus if x = a V 2 -
fr',

in the line A X take A B = a,

from B draw B C (= 6) perpen-
dicular to A B

;
with centre C and

radius a describe a circle cutting
A X in D and D' ; AD apd A D'
are the values required :

for A D =
- a - Va2 - 6

2
.

This construction fails when 6 is greater than a, for then the circle never

cuts the line A X
;

this is inferred also from the impossibility of the roots

13. Since theorems in geometry relate either to lines, areas, or solids,

the corresponding equations must in each case be homogeneous, and will

remain so through all the algebraic operations. If, however, one of the

lines in a figure be taken as the linear unit and be therefore represented

by unity, we shall find resulting expressions, such as x =
,
x = V a

x = v 2 + 6,&c., in which, prior to construction, the numerical unit

must be expressed; thus these quantities must be written X 1,

\a x 1 5 X 1, and then constructed as above.
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CHAPTER II.

DETERMINATE PROBLEMS.

14. GEOMETRICAL Problems may be divided into two classes, Determi-

nate and Indeterminate, according as they admit of a finite or an infinite

number of solutions.

If A B be the diameter of the semi-

circle A E B, and it be required to find

a point C in A B such, that draw

ing C E perpendicular to A B to meet
the circumference in E, CE shall be

equal to half the radius of the circle,

this is a determinate problem, because

there are only two such points in A B,
each at an equal distance from the centre. Again, if it be required to

find a point E out of the line AB such, that joining EA, E B, the in-

cluded angle A E B shall be a right angle, this is an indeterminate

problem, for there are an infinite number of such points, all lying in the

circumference A E B.

The determinate class is by no means so important as the indeterminate,
but the investigation of a few of the former will lead us to the easier com-

prehension of the latter ;
and therefore we proceed to the discussion of

determinate problems.
15. In the consideration of a problem, the following rules are useful.

1. Draw a figure representing the conditions of the question.
2. Draw other lines, if necessary, generally parallel or perpendicular to

those of the figure.

3. Call the known lines by the letters a, 6, c, &c., and some of the

unknown lines by the letters x, y, 2, &c.

4. Consider all the lines in the figure as equally known, and from the

geometrical properties of figures deduce one, two, or more equations,
each containing unknown and given quantities.

5. From these equations find the value of the unknown quantities.
6. Construct these values, and endeatour to unite the construction to

the original figure.

16. To describe a square in a given triangle ABC.
Let D E F G be the required squar
C H K the altitude of the triangle.

The question is resolved into finding
the point H, because then the position of

D E, and therefore of the square, is de-

termined.

Let C K = a, A B = b, C H = x ;

then by the question, D E = H K,
andDE : AB :: CH : CK,
or D E : 6 : : x : a,

bx
:. D E = , and H K = a x

a
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bx
.'. = a x

a

Thus # is a third proportional to the quantities (# -f- 6) and a.

In C A take C L = a, produce C A to M so that L M = 6, join M K,
and draw L H parallel to M K ; C H is the required value of x.

17. In a right-angled triangle the lines drawn from the acute angles to

the points of bisection of the opposite sides are given, to find the

triangle.

Let C E = a, BD=6, AD = CD =
lr, A E = E B == y.

Then the square upon C E = square upon C A + square upon A E,
or a2 = 4#2 + 2/

2

similarly 62 = x* + 4i/
2

whence y ss db Make any right angle A, and OLI one of

the sides take A F ==
, with centre F and radii b and 2 a, describe

circles cutting the other side produced in G and H, respectively ;
draw

G I parallel to F H ; then 2 A I is the required value of y. Hence A D,
and therefore A C and A B are found, and the triangle is determined.

18. To divide a straight line, so that the rectangle contained by the

two parts may be equal to the square upon a given line 6.

Let A B = a
AP = x

Then the rectangle A P, P B = 6*

or x (a x) 62

.*. a?
2 ax = b

a
i /~a?* =-=- V-f - 6'
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Upon A B describe a semicircle, draw B C ( = 6) perpendicular to

A B, through C draw C DE parallel to A B, from D and E draw D P,

E P', perpendicular to A B
;
P and P' are the required points.

It' 6 is greater than , the value of x is irrational, and therefore the

problem is impossible ; but then a point Q may be found in A B produced,

siu-h that, the rectangle A Q, Q B = 6s
.

Let A Q = x,

.-. x (x
- a) = 6

2

From the centre O draw the line O C cutting the circle in R, from 11

draw R Q perpendicular to O R, then Q is the required point ;
for

O Q = O C = \J( + 6
2\ and therefore A Q =

-|-
+ ^/ _+&*.

--
^/ . + ^ whiLet us examine the other root --
^/ . + ^ which js negative

and may be written in the form I\A -- -f 62
\ ; the magnitude

of this quantity, independent of the negative sign, or its absolute magni-

tude, is evidently B Q or A Q'.

Now if the problem had been "
to find a point Q in either A B pro-

duced, or B A produced, such, that the rectangle AQ, Q B = 62 ", we

might have commenced the solution by assuming the point Q to be in B A

produced as at Q' ;
thus letting A Q' = #, we should have x (a -f x) = b\

and x = ---- it A/ JL
_|_ ,, of which two roots the first or -

+ V -J-
+ b

* = -
||-

-
V/-J-

+ 6
I

is the Absolute value of

the negative root in the last question ;
hence the negative root of the last

question is a real solution of the problem expressed in a more general

form, the negative sign merely pointing out the position of the second

point Q'. Both roots may be exhibited in a positive form by measuring
x not from A, but from a point F, A F being greater than b ; for letting
FA = c, and F Q or F Q' = x, we find

The celebrated problem of dividing a given straight line in extreme and
mean ratio, is solved in the same manner ; letting A P x we have the

rectangle A B, B P = the square upon A P, or a (ji, x) = x9
, whence

~j- i
here the negative root, which gives a
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point to the left of A, is a solution of the problem enunciated more ge-

nerally *.

19. Through a point M equidistant from two straight lines A A' and
B B' at right angles to each other, to draw a straight line P M Q, so
that the part PQ intersected by A A' and B 15' may be of a given
length 6.

From M draw the perpendicular lines M C, M D.

Let M D - a, D Q = x> C P = y t

then P Q = P M + M Q,

or 6 - V 2 + f+ <Ja* + a-
2
,

and = from the similar triangles P C M, M D Q.
a y

whe i a* = 0.

A R sy D a a'

We might solve this recurring equation, and then construct the four

roots, as in the last problems ; but since the roots of an equation of four

dimensions are not easily obtained, we must, in general, endeavour
to avoid such an equation, and rather retrace our steps than attempt its

solution. Let us consider the problem again, and examine what kind of a
result we may expect.

* Lucas de Borgo, who wrote a book on the application of this problem to architecture

and polygonal figures, was so delighted with this division of a line, that he called it the
Divine Proportion.
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Since, in general, four lines P M Q, F M Q', R S M, R' S' M, may
be drawn fulfilling the conditions of the question, the two former, in all

cases, though not always the two latter, we may conclude that there will

be four solutions ; but since the point M is similarly situated with respect
to the two lines A A', B B', we may also expect that the resulting lines

will be similarly situated with regard to A A' and B B'. Thus, if there be

one line P M Q, there will be another P'MQ' such that O Q' = OP, and
O P' = O Q.

Again O S will be equal to O S', and O R to O R'. Hence, if we take

the perpendicular from O upon the line S R for the unknown quantity

(?/), we can have only two different values of this line, one referring to

the lines S R and S' R', the other to PQ and P' Q'; hence the resulting

equation will be of two dimensions only. In this case the equation is

6a2 = 0.

Again, since M R M R' we may take M H, H being the point of bi-

section of the line S R, for the unknown quantity, and then also we may
expect an equation, either itself of two dimensions, or else reducible to

one of that order.

#; .-.MR= ,r+ , M S = x -
^-,

and M R : M D :: R S S : O = -

06

+ T
MS : O D :: RS : RO =

but the square upon R S = square upon R O + square upon S O,

.-. * =

an expression of easy construction ; the negative value of x is useless of
the remaining two values that with the positive sign is always real, and
refers to the lines M S R, MS'R'; the other, when real, gives the
lines P M Q, P' M Q' ; it is imaginary if 6* is less than 8 2

, that is,

joining OM and drawing PM Q perpendicular to O M, if 6 is less than

This question is taken from Newton's Universal Arithmetic, and is

given by him to show how much the judicious selection of the unknown
quantity facilitates the solution of problems. The principal point to be
attended to in such questions is, to choose that line for the unknown
quantity which must be liable to the least number of variations.

20. Through the point M in the last figure to draw P M Q so that the
sum of the squares upon P M and MQ shall be equal to the square upon
a -iven line 6.
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Making the same substitutions as in the former part of the last article,
we shall obtain the equations

-

.'. a?
9 +

a - xy = a,

+ 2xy = 6
2

,
and x + y = 6,

or x + = i 6, whence x = dt it \ / _

To construct these four values describe a circle with centre M and radius

-
, cutting A A' in two points L, L/

; with centres L, L' and radius

describe two other circles cutting A A' again in four points: these are the

required points.
21. To find a triangle ABC such that its sides A C, C B, B A, and

perpendicular B D, are in continued geometrical progression.

Take any line A B := a for one side, let B C = j?,

AC:CB :: CB:BA :: BA:BD;
hence the triangles A C B, A D B, are equiangular, (Eucl. vi. 7, or

Geometry, ii. 33,) and the angle ABC is a right angle ; also A C =
, then

a
the square upon A C = the square upon B C + the square upon A B ;

.'. -= #* + a2
, or x* a*jt* a4 == 0,

a

whence x =

of these roots t\vo are impossible, since

2 \/5 is greater than a'2 ;
and of the

remaining two the negative one is

useless.

B

In A B produced take B E = a V 5 (11), and E F = ; uponAF

describe a semicircle, and draw the perpendicular E G ; then E G =

|-0
+ a

V5)|= </-
+ g ^

is the required value of a?

CHAPTER 1J1.

THE POINT AND STRAIGHT LINE.

22. DETERMINATE problems, although sometimes curious, yet, as they
lead to nothing important, are unworthy of much attention. It was, how-

ever, to this branch of geometry that algebra was solely applied for some
time alter its introduction into Europe. Descartes, a celebrated French
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philosopher, who lived in the early part of the seventeenth century, was
the first to extend the connexion. He applied algebra to the consideration

of curved lines, and thus, as it were, invented a new science.

Perhaps the best way of explaining his method will be by taking a sim-

ple example. Suppose that it is required to find a point P without a given
line AB, so that the sum of the squares on AP and P 13 shall be equal
to the square upon A B.

Let P be the required point, and let fall the perpendicular P M on A B.

Let AM = x, M P =: y, and A B =: a ; then by the question, we

have

The square on A B = the square on A P + the square on P B.

= the squares on AM, M P -f- the squares on P M, MB,
or 8

(x* -f y*) -f y
2 + (a ct)

2

= 2 ?/
e + 2 j* 2ax + a*

.'. 7/
=^ a x j;

2
.

Now this equation admits of an in-

finite number of solutions, fur giving to

T or A M any value, such as -
, ,

2 3

, &c., we may, from the equation,

find corresponding values of y or M P, each of them determining a sepa-
rate point P which satisfies the condition of the problem.

Let C, D, E, F, &c., be the points thus determined. The number of
the values of y may be increased by taking values of x between those

above-mentioned and this to an infikite extent, thus we shall have an in-

finite number of points C, D, E, F, &c., indefinitely near to each other,
so that these points ultimately form a line which geometrically represents
the assemblage of all the solutions of the equation. This line A C D E F,
whether curved or straight, is called the locus of the equation.

In this manner all indeterminate problems resolve themselves into in-

vestigations of loci ; and it is this branch of the subject which is by far the

most important, and which leads to a boundless field for research*.

23. For the better investigation of loci, equations have been divided into

two classes, algebraical and transcendental.

An algebraical equation between two variables x and y is one which
can be reduced to a finite number of terms involving only integral powers
of r, y, and constant quantities: and it is called complete when it contains

all the possible combinations of the variables together with a constant

term, the sum of the indices of these variables in no term exceeding the

degree of the equation ; thus of the equations

ay + bx + c = o

2/
8 + bxy + ex* -f- dy + ex +/- o

the first is a complete equation of the first order, and the next is a com-

plete equation of the second order, and so on.

Those equations which cannot be put into a finite and lational alge-
braical form with respect to the variables are called transcendental, lor

* For the definition and examples of Loci, see Geometry, iii.
;
and the Index,

article Locus.
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they can only be expanded into an infinite series of terms in which the

power of the variable increases without limit, and thus the order of the

equation is infinitely great, or transcends all finite orders.

y = sin. x, and y a", are transcendental equations.

24. The loci of equations are named after their equations, thus the locus

of an equation of the first order is a line of the first order; the locus of

an equation of the second order is a line of the second order
;
the locus

of a transcendental equation is a transcendental line or curve.

Algebraical equations have not corresponding loci in all cases, for the

equation may be such as not to admit of any real values of both x and y;
the equation y

s + x2 + a2 =0 is an example of this kind, where, what-

ever real value we give to j?, we cannot have a real value of y : there is

therefore no locus whatever corresponding to such an equation.

THE POSITION OF A POINT IN A PLANE.

25. The position of a point in a plane is determined by finding its situ-

ation relatively to some fixed objects in that plane ; for this purpose sup-

pose the plane of the paper to be the given plane, and let us consider as

known the intersection A of two lines x X and y Y of unlimited length, and

also the angle between them ;
from any point P, in this plane, draw P M

parallel to AY, and PN parallel to AX, then the position of the point P
is evidently known if A M and A N are known. For it may be easily

shown, ex absurdo^ that there is hut one point within the angle Y A X
such that its distance from the line*, A Y and AX is P N and P M re-

spectively.
A M is called the abscissa of the point P; AN, or its equal M P, is

called the ordinate ;
A M and M P

are together the co-ordinates of P
;

X a? is called the axis of abscissas,

Y y the axis of ordinates. The

point A where the axes meet is

termed the origin.
The axes are called oblique or

rectangular, according as Y A X is

an oblique or a right angle. In

this treatise rectangular axes as the

most simple will generally be em-

ployed. Ql P'

Let the abscissa A M = tf, and

the ordinate M P = y, then if on

measuring these lengths A M and

M P we find the first equal to a

and the second equal to 6, we have,

to determine the position of this point P, the two equations
x = , y = b

and as they are sufficient for this object, we call them, when taken together,

the equations to this point.
The same point may also be defined by the equation

for this equation can only be satisfied by the values x a and y == b.

M
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And in general any equation which can only be satisfied by a single real

value of each variable quantity x and yt refers to a point whose situation

is determined by the co-ordinates corresponding to these values.

26. In this manner the position of any point in the angle Y A X can be

determined, but in order to express the positions of points in the angle
Y A x, some further considerations are necessary.

In the solution of the problem, article (18), we observed that negative

quantities may be geometrically represented by lines drawn in a certain

direction. An extension of this idea leads to the following reasoning.
When we affix a negative sign to any quantity, we do not signify any

cluinge in its magnitude, but merely the way in which the quantity is to

be used, or the operation to be performed on it. Thus the absolute mag-
nitude of 5 is just as great as that of -f- 5 but 5 means that 5 is to

be subtracted, and + 5 that it is to be added. As the sign + is applied
to quantities variously estimated, the sign will have in each of these

various cases a corresponding meaning, necessarily following from that of

the sign + Whatever + means, we must always have a + a = 0.

Hence we may define a to be a quantity estimated in such a manner
that the altering it by the operation indicated by + a reduces the result

to nothing. This is properly the meaning of the sign ; it depends
entirely on that of the sign -j- in every case.

The symbol of positive quantity is used in a variety of ways; but in

every instance the above principle shows in what way the negative quan-

tity must, as a necessary consequence of the meaning of the positive

quantity, be used.

Thus, if we placed a mark on a pole stuck vertically into the ground, at

some point in the pole which was baie at low water and covered at high
water, and scored upwards the inches from that mark, we might express
the height of the surface by the number of inches above the mark, posi-

tively, when the surface was above the mark; but at low water when the

surface is below the mark, 11 inches for instance, we should call the

height 11 ; because when 11 inches were added to the height, (that is,

when the surface of the water was advanced 11 inches upwards, which is

the direction in which the positive quantities are supposed to be reckoned,)
the surface would be just at the mark, and would be no inches in height

reckoning from the mark.

Suppose a man to advance directly from a given point p miles in the

first 6 hours of a day, and to go back in the next 6 hours
<y
miles ; at

the end of the 12 hours his advance from the given point v^uld be

(p q) miles. Thus, suppose p = 10, and q = 6, he will advance

(10 6) or 4 miles. But suppose he recedes 10 miles, then his advance

will in the 12 hours be (10 10) or 0: he will be jjst where he was at

first. Suppose he recedes 15 miles, at the end of the 12 hours he will be

5 miles behind the original point. Here we say behind^ because the move-
ment in the direction of the original advance was considered to be forward.
And it is clear that in this case, from an advance of 10 miles, and a recess

of 15, the advance is 5
;
that is, it requires a further advance of 5

miles to make the man exactly as forward as he was at starting.

Now let us consider a fixed point A, and a line measured from it by

positive quantities in the direction A X. Suppose the line to be described

by the motion of a point from A along
A X; and after the point has been

^ g v
carried forward (that is, towards X)
m linear units, as to B, let it be carried
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B X

back n linear units, as to C ; then altogether the advance of the point or

the length of A G will be (m n) linear units.

Again, suppose n to become == m
;

that is, let the point be carried back

exactly to A ; then the advance of the

point along AX will still be measured

by (m 11) =z m m- 0.

Once more, let n exceed m
; that is, let B C exceed A B

;
the advance

of the point will be expressed by
(m n) still ; but this will now C

,

be a negative number, showing by A B X
how many linear units the point
must be advanced in order to bring it forward to the original starting point
A. Now any line A C may be considered to be determined by the motion
of a point either simply along A C, or along first A B and then B C.
We see, therefore, if we begin by reckoning distances from A in the direc-

tion A X as po-itive quantities, we are compelled to consider distances from)

A in the opposite direction as negative quantities.

Conversely again, having designated positive quantities by lines in one
direction from a given point, suppose the calculation produces a negative

result, what meaning are we to assign to it ? The negative result shows
how much positive quantity is required to bring the whole result to

nothing. Now positive quantity, by the hypothesis, is distance measured
in the original direction

;
therefore the negative quantity shows how much

distance measured in the original direction is required to bring the result

to nothing. But if there be a distance from A, such that a linear units in

the original direction must be subjoined to bring the result to nothing,

(that is, to reduce to nothing the distance from A,) it is clear that this dis-

tance must be that of a linear units measured in a direction from A opposite
to the original direction. That is, the negative quantity must be repre-

sented by lines drawn in the direction opposite to that in which the lines

representing the positive quantities are drawn.

It is immaterial in which direction the line is drawn which we consider

positive : but when chosen, negative quantities of th same kind must be

taken in the opposite direction.

27. We are now able to express the position of points in the remaining

angles formed by the axes, by con-

sidering all lines in the direction

A X to be positive and those in A x

to be negative : and similarly all

those drawn in the direction AY
will be considered positive, and

therefore those in A y will be nega-
tive.

We have then the following table

of co-ordinates.

P in the angle X A Y, + x
t +

Q in the angle Y A x, - x, +
Q' in the angle x A y,

-
x,

F in the angle X A y, + *,
-

01
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Hence the equations to a given point P are x = a, y = 6

............... Q . . j? = - a, y = 6

.............. Q'..j?= a, y=r &

P' . * = a, = -

28. If, the abscissa AM remaining the same, the ordinate MP diminishes,

the point P approaches to the axis A X
;
and when M P is nothing, P is

situated on that axis ;
in this case the equations to the point P are

x == a, y = : or y
2 + (x )

fl = 0.

Similarly when the point P is situated on the axis AY, its equations are

x = 0, y = b : or (y
-

b)
z + xz = 0.

If both A M and M P vanish, we have the equations to the origin A,

x = 0, y = : or y* -f x% = 0.

Ex. 1. The point whose equations are x = 4, y = 2, is situated in

the angle X Ay, at a distance AM = 4 times the linear unit from the

axis of y, and M P' = twice that unit from the axis of x.

Ex. 2. The point whose equation is (y + 3)
8 + (a? + 2)* = is situ-

ated in the angle xAy, at distances AL = 2, LQ' = 3, from the axes.

Ex. 3. The point whose equations are x = 0, y = 3 is in the line

A y, at a distance = 3 times the linear unit.

Ex. 4. The point whose equation is y
z + (x + a)

2 = 0, is in A #, at a

distance a from the origin.

The preceding articles are true if the co-ordinate axes be oblique.

29. To find an expression for the distance D between two points P
and Q.

Let the axes be rectangular and

let the equations to

P be x = a. y = b

Q f = a', v = b'
;

or in other words, Kt the co-ordi-

nates of Pbe A M = a, M P = 6,

and those of Q be A N r: a',

N Q = 6', draw Q S parallel to AX.
Then the square upon Q P

the square upon Q S + the square

upon P S ;

and Q S = N M -

also PS=PM-QN = 6 - b'

:. D2 = (a - ')* + (b
~ 6 ')

8

If Q be in the angle Y A x we have A N = - a',

/. D2 = (a + a'Y -f (6
-

&'>

If Q be at the origin we have a' = and // =

/. D2 = a8 + b\ or D = Vaa+68
'

30. If the angle between the axes be oblique and = o>, draw PM and

Q N parallel to A Y, and Q S parallel to A X ;
also let P R be drawn

perpendicular to Q S
; then the square upon Q P = the square on Q S +

the square on P S + twice the rectangle Q S, S R ;
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and, Q S = a -
a',

P S - 6 - V,

SR = PS cos. PSR
= PScos. YAX
= (b 6') cos. w

;

/. D2 = (a
- a'Y + (b

- b'Y + 2 (
-

') (6
-

6') cos. w
;

and when the point Q is at the origin, and therefore a' = 0, and b' = 0,

D2 = a* + 6
2 + 2 a 6 cos. &,.

THE LOCUS OF AN EQUATION OF THE FIRST
DEGREE.

31. To find the locus of an equation of the first degree between two
unknown quantities.
The most general form of such an equation is,BC B

Ay + Bo? + C = 0, ory =: - x ---, ory~ c*x + 6 if - -r-=:<xA A A
Q

and = b ; we will in the first place consider the equation in its mostA
simple form y = otx.

Let AX, A Y be the rectangular axes, then a point in the locus will be
determined by giving to x a particular value as 1,2, 3, &c. ; let A M, M P
and A N, N Q be the respective co-ordinates of two points P and Q thus
determined

;

since y = ocx, we have

andNQ = .AN
/. M P : AM : : N Q : A N ;

therefore the triangles A M P, A N Q are similar, and the angles MAP,
N A Q, equal to one another : hence the two lines A P, A Q coincide. If
a third point R be taken in the

locus, then, as before, A R will

coincide with A P and A Q.

Consequently all the lines drawn
from A to the several points of

the locus coincide
;
that is, all the

points P, Q, R, &c., are in the

same straight line A R, and by

giving negative values to x we
can determine the point S, &c.,

to be in the same straight line

R A produced. Hence the

straight line R A S produced
both ways indefinitely, being the

assemblage of all the points de-

termined by the equation y ~ a a?,

is the locus of that equation.
C 2
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In considering the equation y = ax + 6, we observe that the new ordi-

Aate y always exceeds the former by the quantity b
; hence taking AE in

the axis AY equal to 6, and drawing the line H E F parallel to S R,
the line H E F is the locus required.

Hence the equation of the first order belongs to the straight line.

32. To explain the nature of the equation more clearly, we will take the

converse problem. To find the equation to a straight line H F, that is, 1<>

find the relation which exists between the co-ordinates, xand y, of each of

its points.
Let A be the origin of co-ordinates, A X, A Y the axes ; from A draw

A R parallel to H F, and from any point P' in the given line draw P' P M
perpendicular to A X and cutting A R in P.

Let A M = *, M P' = y, and A E = 6 ;

then M P' = P M -f P P'

= AMtan. PAM + AE
= x tan. F G X + 6 ;

or y = a x + 6, if tan. F G X = .

If A G = a, we have A E = A G. tan. E G A, or 6 = a
,
and there-

fore the equation to the straight line may be written under the form

y = y jr + oc a.

33. In general, therefore, the equation to the straight line contains two

constant quantities 6 and ;
the former is the distance A E or is the

ordinate of the point in which the line cuts the axis of y, the latter is the

tangent of the angle which the line makes with the axis of x, for the angle
FGA = (he angle PAM: hence

y 6
tan. F G A = tan. P A M = * = .

x

It is to be particularly observed that, in calling the tangent of the

angle which the line makes with the axis of x, we understand the angle
F G X and not F G x.

34. In the equation y r= x + b, the quantities and b may be either

both positive, or both negative, or one positive and the other negative ; let

us then examine the course of the line to which the equation belongs in each

case. Now it is clear that the knowledge of two points in a straight line

is sufficient to determine the position of that line; hence we shall only find

the points where it cuts the axes since they are the most easily obtained.

1 . and b positive ; .*. y=ra,r-f6;
Let x = ; /. y - b ; in A Y take A D = I

;

y = ; .*. i = ; in A x take AB =
;

a a

join B D
;
B D produced is the required locus.

2. positive and b negative; /. y = a x b ;

Let x =
; /. y = b, in A y take A C = 6

;

y = 0; /. x = . h, A X take A E =
Oi CX

join OE ;
C E produced is the required locus.



EQUATION TO THE STRAIGHT LINE. fll

3. or negative and b positive; .'. y = ax -\- 6;

Let x = ; .*. y = b
;
in A Y take AD = 6 ;

7/ = 0; .'. a? - ;inAXtakeAE= ;a a

join DE ;
D E produced is the required locus.

4. or negative and b negative ; .". y = ax 6 ;

Let x
; .'. y = 6 ; in A y take A C = 6 ;

6 6
y = ; .'. x =.

;
in A ,r take AB= ;

a a

join B C
;
B C produced is the required locus.

35. The quantities a and 6 may also change in absolute value.

Let 6 = 0; .*. y ;t a #; and the loci are two straight lines passing
through the origin and drawn at angles with the axis of x whose respec-
tive tangents are i or.

Let =
j .'. y Ox b ; .'. y IT 6 and x =

;
the former of

these results shows that every point in the locus is equidistant from the

axis of x, and the latter (or x = 0) that every value of x satisfies the

original equation ; hence the loci are two straight lines drawn through D
and C both parallel to the axis of x.

It has been stated (28), that the system of equations y = 6, x =

refers to a point ; we here see that the system y = 6, x = refers to a

straight line
; hence, although the equation x = is generally omitted,

yet it must be considered as essential to the locus.

Let a =
; referring to article 32. the equation to the straight line

nj

may be written y = ax aa or =,r+a, which when or =

becomes y = x
\ hence, as before, the system x = a, y = ,
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or more simply the equation x= it a denotes two straight lines parallel to
the axis of y and at a distance

.
a from that axis.

Again let both a = 0, and 6
; and .'. the equation y = ax + b

becomes y = x + ;
and hence, y =r 0, x = , and the locus is

the axis of x.

If or rr
, and 6=0, the equation becomes Oy = -r + ; .*. x =:

and y . Hence the equation j? = denotes the axis of y.

36. By the above methods the line to which any equation of the first

order belongs may be drawn.

In the following examples reference is made to parts of the last figure.

Ex. 1. 3 y - 5 x 1 =
;

let x =r 0, .'. y = ;
on the axis A Y

3
take A D one-third of the linear unit, then the line passes through D :

again let y = 0, .*. x ==
; on the axis A x take A B =r of the unit,

o 5

then the line passes through B ; hence the line joining the points B and D
is the locus required.

Ex. 2. 10 y 21 x + G =
;
a line situated like C E.

Ex. 3. y x = ; let x c .*. y rr 0, and the line passes through
the origin ; also or the tangent of the angle which the line makes with the

axis of x = 1, therefore that angle = 45; hence the straight line drawn

through the origin and bisecting the angle Y A X is the required locus.

Ex. 4. 5 y 2 x = 0. The line passes through the origin as in the

last example, but to find another point through which the line passes, let

x = 5
; .*. y = 2 : hence take A E = 5, and from E draw E P (= 2)

perpendicular to AX; then the line joining the points A, P is the locus

required.

Ex. 5. ay + bx ; a line drawn through A, and parallel to B C.

Ex. 6. y* 3 j?
2 =

; two straight lines making angles of 60 with

the axis of x.

4
Ex. 7. 3y 4 = 0; take AD = of the unit, a line through D

3
drawn parallel to A X is the locus.

Ex. 8. & + x 2 = ; take A E = 1, and A B =r 2, the lines drawn

through E and B parallel to A Y are the required loci.

Ex. 9. y + *2x = 4. The equation to a straight line may be put

under the convenient form-~H = 1, and since when y = 0, x = ,

o a
and when x = 0, y = b, the quantities b and a are respectively the dis-

tances of the origin from the intersection of the Hue with the axes ofy and x.

Thus Ex. 9. in this form is
^-

+
|-
= 1, take A D rr 4, and AE = 2,

join D E, this line produced is the required locus.

37. If the equation involve the second root of a negative quantity its

locus will not be a straight line, but either a point or altogether imaginary :
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thus the locus of the equation y + 2 x ^ 1 # = is a point whose

co-ordinates are sc = and y = a, for no other real value of x can give a

real value to y ; but the locus of the equation y }- x + a */ 1=0 is

imaginary, for there are no corresponding real values of a? and y. (24)

38. We have thus seen that the equation to a straight line is of the

form y == a x + b, and that its position depends entirely upon a and b.

By a given line we understand one whose position is given, that is, that

a and b are given quantities ;
when we seek a line we require its position,

so that assuming y =: oe x + 6 to be its equation, oc and 6 are the two inde-

terminate quantities to be found by the conditions of the question : if only

one can be found the conditions are insufficient to fix the position of the

line.

By a given point we understand one whose co-ordinates are given ;
we

shall generally use the letters x
l
and yt

for the co-ordinates of a given point,

and to avoid useless repetition, the point whose co-ordinates are x, and y l

will be called " the point a?,, y^." Similarly the line whose equation is

y = a x + 6 will be called
" the line y = ce x + b."

If in the same problem we use the equations to two straight lines as

y == a x + b andy = a' x + 6', it must be carefully remembered that x
and y are not the same quantities in both equations ;

we might have used

the equations y = oe x + b, and Y = a'X + b', X arid~Y being the

variable coordinates of the second line, but the former notation is found

to be the more convenient.

39. We regret much that in the following problems on straight lines we

cannot employ an homogeneous equation as -7- + = 1. In algebraical

geometry the formulas most in use are very simple, much more so indeed

than they would be if homogeneous : moreover the advantage of a uniform

system of symbols and formulas is so great to mathematicians that it

should not be violated without very strong reasons. To remedy in some

degree this want of regularity, the student should repeatedly consider the

meaning of the constants at his first introduction to the subject of straight

lines.

PROBLEMS ON STRAIGHT LINES.

40. To find the equation to a straight line passing through a given

point.
The point being given its co-ordinates are known ; let them be xl y,, and

let the equation to the straight line be y = a x + b ;
we signify that this

line passes through the point xl ylt by saying that when the variable ab-

scissa x becomes xit then y will become y l
: hence the equation to the line

becomes

y l
= a xl + 6

/. 6 =
2/1
- a *i

substituting this value for 6 in the first equation, we have

y zz ccx + iji
a Xi

or y - y v
(x (x

- XL)
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The shortest method of eliminating- 6 is by subtracting the second equa-
tion from the first, and this is the method generally adopted.

Since a, which fixes the direction of the line, is not determined, there may
be an infinite number of straight lines drawn through a given point ;

this

is also geometrically apparent.

If the given point be on the axis of j?, y l
= 0, and .*. y = a (x j^);

and if it be on the axis of y, x^ = .*. y y l
=2 a x.

If either or both of the co-ordinates of the given point be negative, the

proper substitutions must be made : thus if the point be on the axis of x
and in the negative direction from A, its co-ordinates will be x

l
and ;

therefore the equation to the line passing through that point will be

y = a (x + xj.

41. To find the equation to a straight line passing through two given

points #!, 3/1
and #2, 2/2 .

Let the required equation be y = a x + b (1)
then since the line passes through the given points, we have the equations

2/i
=

J?i + b (2)

2/2
= x, + 6 (3)

Subtracting (2) from (1)

y - y, =: (x
-

*,) (4)

Subtracting (3) from (2)

2A 2/2
=

Substituting this value of a in (4), we have finally

The two conditions have sufficed to determine a and 6, and by their

elimination the position of the line is fixed, as it ought to be, since only
one straight line can be drawn through the same two points.

This equation will assume different forms according to the particular
situation of the given points.
Thus if the point r2, ys be on the axis of T, we have y% = ;

y -2/1=

if it be on the axis of y, 0^=: ; .*. y y^^ ---
(x j?^;

*^i

and if it be at the origin both 3/2 and o?2=:0 ;

This last equation is also thus obtained; the line passing through the

origin, its equation must be of the form y=or.r(31) where is the tangent
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of the angle which the line makes with the axis of x, and this line passing

through the point x^ y^ a must be equal to .*. y= x.

If a straight line pass through three given points, the following relation

must exist between the co-ordinates of those points:

(yi **
-

*i y.)
-

(2/1
*3
-

*i 2/a) + (2/2
*3
- *2 ys) = o.

42. To find the equation to a straight line passing through a given

point ^3 , y3 , arid bisecting a finite portion of a given straight line.

Let the portion of the straight line be limited by the points ^ y l
and

xt y2>
and therefore the co-ordinates of the bisecting point are ,

-
-; hence the required equation is

43. To find the equation to a straight line parallel to a given straight
line.

Let y = a x + b (1) be the given line

y = a'j? + b' (2) required line

then since the lines are parallel they must make equal angles with the axis

of x or a'~ or /. the required equation is

y^ccx + b' (3)

Of course b' could not be determined by the single condition of the

parallelism of the lines, since an infinite number of lines may be drawn

parallel to the given line ; but if another condition is added, b' will be
then determined : thus if the required line passes also through a given

point Xi jh, equation (2) is

y 2/1
= '

(? *0
.'. (3) becomes y y l

ss a (x x^

44. To find the intersection of two given straight lines C B, E D.
This consists in finding the co-ordinates of the point O of intersection.

Now it is evident that at this point they have the same abscissa and ordi-

nate; hence if in the equations to two lines we regard x as representing the

same abscissa and y the same ordinate, it is in fact saying that they are the

co-ordinates X, Y of the point of intersection O.
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Let y a x -\- b be the equation to C B

&ndya'x + b' ED
then at O we have Y = a X + b = a' X + 6'

,.x =^
a b' ab a 6' a' b

and Y = X -f 6 =
-. \- b r= .

a a a a

Ex. 1. To find the intersection of the lines whose equations are

y = 3x + 1 and y - 2x - 4 = 0. X = 3 and Y = 10.

Ex. 2. To find the intersection of the lines whose equations are

y - x and 3y - 2x = 1. X = 1 and Y = 1.

If a third line, whose equation is y = a" x + b", passes through the

point of intersection, the relation between the coefficients is

(a 6' -a' 6)
- (a b" - a" b) + (a

1 b" - a"V) = 0.

45. To find the tangent, sine and cosine of the angle betwen two given

.straight lines.

Let y = a. x + b be the equation to C B

y = a.' x + 6' ED
and & the angles which they make respectively with the axis of x ; then

tan. D O B = tan. E O C = tan. (0
- 00 =

also cos. D O B =

,
l + tan.0tan.0' 1 + ecu'

I I I + '

sec. DOB Vl + (tan. D OB)2 V(1+O (1+a'
2
)

and sine D O B = tan. D O B x cos. D O B =

46. To find the equation to a straight line making a given angle with

another straight line.

Let y = a x + b be the given line C B,

y = oc'x + bf
required line E D,

ft
= tangent of the given angle DOB.

Then ' = tan. DEC = tan. (B C X BOD)
tan. B C X - tan. BOD -

ft~
1 + tan. B C X . tan. BOD "

I + /3

'

Substituting this value for
'

in the second equation,

If the required line passes also through a given point j?lt y,, the equa-
tion is

r~rrpW*
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If D be considered the given point & y^ then not only the line DOE
but another (the dotted line in the figure) might be drawn, making a
given angle with B C, and its equation is found, as above, to be

so that both lines are included in the equation

For example, the two straight lines which pass through the point D
and cut B C at an angle of 45 are given by the equations

- 1

Also the equation to the straight line passing through D and cutting
the axis of x at an angle of 135 is

y ~ y l
=

ft (or
-

*t) = tan. 135 (x
-

ar,)
= -

(*
- ^),

ory+ * = y l + a\.

47. If the required line is to be perpendicular to the given line, /3 is

-1-

infinitely great ;
therefore the fraction

a ~~ ^ = J-- == -
1 + of3 1 a

or

ce
f =

;
hence the equation to a straight line perpendicular to a

oc

given line y = ocx + 6, is y = x + b'.

This may be also directly proved, for drawing O E perpendicular to

B C, as in the next figure, we have ' = tan. O E X = tan. O E C =
cot. O C X ~ : hence in the equations to two straight lines

a

which are perpendicular to one another we have a a' + 1 = ^ and, con-

versely, if in the equations to two straight lines, we find oc a' + 1 = 0,

these lines are perpendicular to one another.

If the perpendicular line pass also through a given point x
v y^ its

equation is

y -
2/1 0? *i) ;

and, of course, this equation will assume various forms, agreeing with the

position of the point x^ y\ ; thus, for example, the line drawn through the

origin perpendicular to the line y = a x + 6, is one whose equation is

I

y = -- cr, for here both xl
and y l

= 0.
a

48. To find the length of a perpendicular from a given point D (^ 3/1)

on a given straight line C B.
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Let y = or x -j- b (1) be the equation to C B,

then y y^ r= - -
(x x^ (2) is the equation to the per-

pendicular line D O E,

Let p = D O ; then if X and Y be the co-ordinates of O determined

from (1) and (2) we have p* = (X - xj* + (Y - ytf ; (29)

from (2) Y =r y,
- (X - xj = X -f 6 from (1)

... (a _| ) (X -
Xl) y,

- a xl
-

6,
a

! ax l 6), also Y y, = (X -
a^

.-. f = (X - *,)' + (Y - i/0
2

= (X - *,y + - (x -

=

The superior sign is to be taken when the given point is above the

given straight line, and the inferior in the contrary case.

If the given line pass through the origin 6=0; :. p= -.

If the origin be the given point, #1 = and y^ = ; .'. p =
6

V 1

There is another way of obtaining the expression for p.
Since the equation y = a x + 6 applies to all points in C O B, it must

to Q, where M D or y, cuts COB; /. M Q = a ^ + 6.

Now D O = D Q sin. D Q O,
but DQ = D M M Q = y l

a x
l 6,

and sin. DQO = sin. CQM = cos. Q C M =
sec. Q C M
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+ (tan. QCM)2

y l
a x

v
b a r. =, if D was below the.*. D O or p = yi

- -=
t
or

VI +
line.

49. If the line D E had been drawn making a given angle whose tan-

gent was ft with the given line C O, the distance DO might be found
;

for instead of equation (2) we shall have

(46):

hence, following the same steps as above, we shall find

This expression is also very easily obtained trigonometrically.

Let y n sine of the given angle, then

sin. D O
a -T! 6

\/l + a2 7
'

50. The equation to the straight line may be used with advantage in the

demonstration of the following theorem :

If from the angles of a plane

triangle perpendiculars be let fall

on the opposite sides, these per-

pendiculars will meet in one point.

In the triangle ABC, let A E,
B D, C F be perpendiculars from

A, B and C on the opposite sides ;

let O be the point where A E and
B D meet, then the theorem will

be established by showing that

the abscissa to the point O is A F.

Let A be the origin of co-ordinates,

A B the axis of a?,

and A Y, perpendicular to A B, the axis of y.

Let the co-ordinates of C be x^ y^
B x9 ,

we have then the following equations,

to AC y~ x (41)

to B D, y = a (x
- ay) = (x- *8) (47)

to B C, y - y, = (x
-

*,) (-11)

or y =
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X, tfo

.'. to A E, y = a x =

for the intersection O ofB D and A E we have, by equating the values of y,

Xi
f

. Xi X$

.*. x
l
x j?t *a =: x^x iT8 x\ .". x^x = Xi X3 and x j^,

that is, the abscissa of the point O is found to be that of C.

In the same manner it may be proved that if perpendiculars be drawn
from the bisections of the sides, they will meet in one point.

Similarly we may prove that the three straight lines F C, KB, and A L,
in the 47th preposition of Euclid, meet in one point within the triangle
ABC.

51. We have hitherto considered the axes as rectangular, but if they be

oblique, the coefficient of x, in the equation to a straight line, is not the

tangent of the angle which the line makes with the axis of x.

Let a) = the angle between the axes,
= the angle which the line makes with the axis of x

;

y b sin.
then = y- -- (33);x sin. (<i> 0)

b remains, as before, the distance of the origin from the intersection of the

line with the axis ofy: hence the equation to a straight line referred to

oblique axes is

sin.

Since this equation is of the form y = a x + b all the results in the

preceding articles which do riot affect the ratio of ----- will be
sin. (u>

-
6)

equally true when the axes are oblique.

Thus, articles 40, 41, 42, 43, and 44, require no modification.

To find the tangent (/3) of the angle between two given straight lines.

Le'

sin. a sin. w
from a= --- we have tan. 6 = --

; and, similarly,
sin. (w 0) 1-f- a cos. w

<x
f

sin. a> (ex a') sin. w
tan. 6'= --

,

--
; hence ft = tan. (0-0')=

1 -f-
'
cos. At l+aa'-j-(or-f- a') cos. w

To find the equation to a straight line passing through a given point
Xi y l$ and making a given angle with a given straight line.

Let /3 be the tangent of the given angle,

y = a. x + 6, the given line,

y y l
z: a' (# #,), the required line.

From the last formula we have

f
a sin. o> /3 (!-{- cos. w)

sin. W-1-/3 (a-|-cos. w)
and the required equation is

a sin. ti> (3 (l+a cos. w)
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If the lines be perpendicular to each other (3
==

;

31

, _ 1-fof COS. fa>

and the required equation is

a+ cos. o>

1+ct cos. o>

or +cos. o>

To find the length of the perpendicular from a given point upon a given
straight line.

Instead of equation (2), in article 48, we must use the equation just
found, and then proceeding as usual we shall find

g sn,
,

~

It will be concluded from an observation of these formulas, that oblique
axes are to be avoided as much as possible ; they may be used with ad-

vantage where points and lines, but not angles, are the subjects of discus-
sion. As an instance, we shall take the following theorem.

52. If, upon the sides of a triangle as diagonals, parallelograms be de-

scribed, having their sides parallel to two given lines, the other diagonals
of the parallelograms will intersect each other in the same point.

Let A B C be the triangle, A X, A Y the given lines, E B D C, C FA G,

H A I B the parallelograms,
the opposite diagonals D E, F G, and H I

will meet in one point
O.

Let A be the origin, A X, A Y the oblique axes

jcl y l
the co-ordinates of B

To find the equation to D E ;

let it be y a x + &

y2 = a x l + 6 at D
.*- y -

y* <* O -
*i)

2/i V*
= Oa-^i) at E

... y -yt
= ^Ll-(a-*l) (1)



,12 TRANSFORMATION OF CO-ORDINATES.

To find the equation to F G;

y = a x + b

y^ = + 6 at F
*

y -
y* = *

-
3/2
= a*2 at G

a?,

To find the equation to H I ;

y = a j; + 6

y,= + 6 at 11

?/! a jr
t
at I

Equating the values of y in (1) and (2) we find X= -
;

also equating the values ofy in (2) and (3) we find the same value for X ;

hence the abscissa for intersection being the same for any two of the lines,

they must all three intersect in the same point.

Similarly we may prove that if from the angles of a plane triangle

straight lines be drawn to the bisections of the opposite sides, they will

meet in one point.

CHAPTER IV.

THE TRANSFORMATION OF CO-ORDINATES.

53. Before we proceed to the discussion of equations of higher orders,

it is necessary to investigate a method for changing the position of the co-

ordinate axes.

The object is to place the axes in such a manner that the equation to a

given curve may appear in its most simple form, and conversely by the

introduction of indeterminate constants into an equation to reduce the

number of terms, so that the form and properties of the corresponding
locus may be most easily detected.

An alteration of this nature cannot in the least change the form of the curve,
but only the algebraical manner of representing it; thus the general equa-
tion to the straight line y = a x -\- b becomes y ax when the origin is on
the line itself. Also on examining articles 46 and 51 we see that the sim-

plicity of an equation depends very much on the angle between the axes.
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Hence in many cases not only the position of the origin but also the direc-

tion of the axes may be altered with advantage. The method of perform-

ing these operations is called the transformation of co-ordinates.

54. To transform an equation referred to an origin A, to an equation
referred to another origin A', the axes in the latter case being parallel to

those in the former.

Let A x, A y be the original axes -

A'X, A'Y the new axes

-j p
~ x

\ original co-ordinates of P

T>J p IT Yi new co~ordinates of P

n A / H A[
tne co-ordinates of the new origin A',

then MP = MN + NP, that is, y == b + Y,

AM=:AC+CM, ..... # = tf + X ;

substituting these values for y and x in the equation to the curve, we have

the transformed equation between Y and X referred to the origin A'

55. To transform the equation referred to oblique axes, to an equauon
referred to other oblique axes having the same origin.

Let A x, A y be the original axes,

AX, AY be the new axes,

jjLp 2 [ original -jo-ordinates of P.

A TVT -*-* "V ^

^ p T V^> new co-ordinates of P
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Let the angle # A y w, j? A X = 9, x A Y = 0' ;

Draw N R parallel to P M, and N Q parallel to A M,
theny = MP = MQ + QP = Nil + QP

sin.ANR sin NPQ
sin. A R N H

sin. N Q P

_ sin. (w 0) sin. (a; 0')

sin. {<> sin. w

X sin. + Y sin. 0'

sin. d)

X sin.
(o>

-
0) -f Y sin. (QJ

- /

)

sin. w

56. Let the original axes be oblique, and the new rectangular, or

& = 90.
X sin. -f Y cos.

.' y = -

sin. w

X sin. (q>
-

0) Y cos, (a;
-

0)

sin. (-)

57. Let the original axes be rectangular, or w = 90.
/. y = X sin. -f Y sin. 0',

x X cos. e + Y cos. 0'

58. Let both systems be rectangular, or w = 90 and Q' = 90

/. y = X sin." + Y cos. 0,

x = X cos. Y sin.

59. These forms have been deduced from the first, but each of them may
be found by a separate process. The first and last pairs are the most
useful. Perhaps they may be best remembered if expressed in the follow-

ing manner.
Both systems oblique, the formulas (55) become

y - {X sin. X A* + Y sin. Y \x\ - i-
J sm. xAy

x= {Xsin. XAy + Y sin. YAy} - ^rJ
sin. x \y

Both systems rectangular, the formulas (58) become

y X cos. X A y -f Y cos. Y A y
x = X cos. X A x -f Y cos. Y A a?.

If the situation of the origin be changed as well as the direction of the

axes, we have only to add the quantities a and 6 to the values of x and y
respectively ; however, in such a case, it is most convenient to perform
each transformation separately.

If the new axis of X falls below the original axis of x, the an^le must
be considered as negative, therefore its sine will be negative and its cosine

positive. Hence the formulas of transformation will require a slight al-

teration before applied to this particular case.
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Since the values of x and y are in all cases expressed by equations of the

first order, the degree of an equation is never changed by the transforma-

tion of co-ordinates.

60. Hitherto we have determined the situation of a point in a plane by
its distance from two axes, but there is also another method of much use.

Let S be a fixed point, and S B a fixed straight line
; then the point P is also

evidently determined if we know the length S P and the angle P S B.

If S P =. r and P S B = 0, r and 9 are called the polar co-ordinates of

P. S is called the pole, and SP the radius vector, because a curve may
be supposed to be described by the extremity of the line S P revolving
round S, the length of S P being variable. The fixed straight line S B is

also called the axis.

To transform an equation between co-ordinates x and y into another

between polar co-ordinates r and 0,

Draw S D parallel to A X, arid let the angle B S D = 0, and the angle
Y A X = 10.

Let A M = M P =

then y- M P = MQ + QP= b +r
sin, + 0)

x- AM = AC +SQ -a+r

C S = 6,

(0

Let S B coincide with S D, or =
;

sin.

y=b

x = a +

sin. w
sin. (w

-
0)

sin. a)

61. Let the original axes be also

7T

rectangular, or w = ;

.-.

y=6+rsin.0J (3)x = a+ rcos. 0J

and if the origin A be the pole, we have a = and 6=0.
v = r sin.

x = r cos.

Of these formulas (3) and (4) are the most useful.

62. Conversely, to find r and in terms of a? and y:
from (1) we have

x a sin.jw (0+0)1 L ,n
,-. -

ta . JV = sm - wcot - (e
sin. (9 + 0)

(y I) sin. 01

-
y - b

L^
0)-cos. u;

:. tan. (0 -f 0) =

+ 0= tan.' 1

x a + (y 6) cos. w

(y 6) sin. w

a -f (y 6) cos.
wj

where the symbol tan." 1 a is equivalent to the words "a circular arc

whose radius is unity, and tangent a."

also r2 = (x a)
2 + (y by* -f 2 (x - a) (y 6) cos. w. . . (30)

D 2
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63. If the axes are rectangular, or w = , the pole at. the origin, and

therefore a = and 6 = 0, and also = 0, we have = tan. 0, and

therefore y
6 = tan.

- 1

x

and r' = x* + y
3

. . . . (29)

and these are the formulas generally used.

y _!_ _ 1

From tan. 0= - we have cos. =
^Y+^^i T VTT~F

=

and sin. = cos. x tan. = / . ; hence the value of
tf

may also be exj)ressed hy the equations

or = cos.

CHAPTER V.

ON THE CIRCLE.

64. FOLLOWING the order of this treatise, our next subject of discussion

would be the loci of the general equation of the second degree ;
but there

is one curve among these loci, remarkable for the facility of its description
and the simplicity of its equation : this curve, we need scarcely say, is the

circle; and as the discussion of the circle is admirably fitted to prepare the

reader for other investigations, we proceed to examine its analytical cha-

racter.

The common definition of the circle states, that the distance of any

point on the circumference of the figure from the centre is equal to a given
line called the radius.

If a and 6 be the co-ordinates of the centre, x and y those of any point
on the circumference, and r the radius, the distance between those points
is V { (y bY + (* )* } (29 ) : hence the equation to the circle is

XJ / N J

65. To obtain this equation directly from the figure,

let A be the origin,
A X, A Y the rectangular axes,

KT>X~~ 'Hthe co-ordinates of the centre,
IN U = 6J
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M p^ v [
those of any point P on the circumference ;

B O Q C a line parallel
to the axis of x.

Then the square upon O P the

square upon P Q + the square upon
OQ,

also OQ=AM-AN=* a;

or (y- 6)2+ a)
2= r2 (1)

If the axis ofx or that of y passes

through the centre, the equation (1)
becomes respectively

If the origin be at any point of the circumference as E, we have then
the equation of condition 2 + 62 =: r2

; expanding (1) and reducing it by
means of this condition, we have

If the origin is at B, B O being the axis of a:, we have b =0 and ar
'

y
2
H~ x* 2rx =

or y
z = 2rx - x* (4).

Again, placing the origin at the centre O, we have 6=0 and a ;

... y*+ X* = r* (5 ).

The above equations are all useful, but those most required are (1), (4),
and (5).

66. Equation (1), if expanded, is

2/
2 + r2 - 2 6 y 2 a x + a2 + 62 - r2 = 0.

This differs from the complete equation of the second order ('23) in

having the coefficients of a? and y
z

unity, and by having no term containing
the product x y.

Any equation of this form being given, we can, by comparing it with the

above equation, determine the situation of its locus, that is, find the posi-
tion of the centre, and the magnitude of the corresponding circle.

Ex. 1. y
1 + j;

2 + 4 y 8 x - 5 = 0.

here b = -
2, a = 4, and <z

8

-+ 6
s - r2 = - 5 ;

/. 7* = a9 + 6* + 5 ^ 25.
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Let A be the origin of co-ordinates, AX, A Y the axes.

In AX take AN= 4 times the linear unit, from N draw NO perpendicular
to A X, but downwards, and equal to 2 ; then O is the centre of the circle.

With centre O and radius 5 describe a circle; this is the locus required.
The points where it cuts the axis of x are determined by putting y = ;

.-.*- 8* - 5 = 0;

.'. x = 4 N/1T;

hence A B = 4 -j- V 2 1 and A C = 4 \/~2L

Similarly putting x = 0, we find A D = 1 and A E = 5.

67. The shortest way of describing the locus is to put the equation
into the form (y

-
6)

2 + (x )
2 = 7'

9
.

For example, the equation

y
3 + x- + cy + dx + e 0,

c2 d8

becomes, by the addition and subtraction of and ,

c8 d* o8 d*

where we observe directly that -- and -- are the co-ordinates of the
2 &

centre, and that ] { j
---

e} is the radius of the required locus.

Ex. 2.
3/

8 + *8 + 4i/
- 4#-8 =

add and subtract 8, and the equation becomes

2/ 4.4 2/ + 4+ JF2_4 T ^4_16 =
or (y + 2)

2 + (x - 2)
2 = 16

hence the co-ordinates of the centre are a = 2 and 6 = 2, and the

radius is 4.

Ex.3. 2 2/ + 2^-4 2/-4 lr-fl=:0- a = 1, ft = 1, r = N/J-
4. 3/* + *fi 6y + 4,r 3 = 0; a=-2, 6 = 3, r = 4.

5. 63/
2 +6T2 -21

3/-8 lr + 14 = 0; = - --, 6 = -, ^ = T'
o 4 1*

6. y
2 + ^ + 43/

- 3^=0; a =
-|,

6= -2, r =
|--

7. 2/M-^2 4y+2j: = 0; rr-l, 6 = 2, r= \/"57

In these last two examples there is no occasion to calculate the length of

the radius, for the circumference of the circle passes through the origin of

co-ordinates, as do the loci of all equations which want the last or con-

stant term.

8. if + a?
8 - 4 y = 0; a = 0, b ~ 2, r = 2.

9. y
8 + x2 + 6 x = ; a = - 3, b 0, r = 3.

10. y
a
4- * - 6* + 8 = 0; a- 3, 6 = 0, r= 1.

In th last three examples the centre of the circle is on the axes.
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68. We have seen that the equation to the circle referred to rectangular
axes does not contain the product xy, and also that the coefficients of y*
and xz

are each unity ; we have, moreover, seen that generally an equation
of the second degree of this form has a circle for its locus, but there are

some exceptions to this last rule.

For example, the equation y
8 + <r

2
Sy 12 x 4- 52 = is

apparently of the circular form ; its locus, however, is not a circle,

but a point whose co ordinates are x 6 and y = 4, for it may be put
under the form (y 4)

2

-f- (x 6)
2 =: 0, the only real solution of which

is x = 6 and y = 4
;
and this will always be the case when r2 = 0, hence

a point may be considered as a circle whose radius is indefinitely small.

Again, the equation y
z + x* 4y -f 2# + 9 = 0, may be put under

the form (y 2)
2 + {x -j- I)

8 = 4 ; but there are no possible values of

x and y that can satisfy this equation, therefore the locus is imaginary. (24).

69. To find the equation to the tangent to a circle.

Let the origin of co-ordinates be at the centre, and x', y' any point on
the circumference.

Then the equation to the straight line through */, y' is

y -
y' = a (x

-
x') ;

y>
the equation to the radius through x', y' is y -

f
x

;

x

but the tangent being perpendicular to the radius, we have ex ---
(47.)

' - y'*~ - xx' +

= r2.

The equation yy
1 + x x' =r?

, thus found, may be easily remembered,
from the similarity of its form to that of the equation to the circle, it

being obtained at once from y* + x* = r2 by changing i/
2 or yy into y y' ,

and x* or x x into x x'.

If we take the general equation to the circle, (y 6)
8

-f- (x a)* =: r8
,

the equation to the radius is

il'-b .

a = --;
--

, and the equation to the tangent is

y^ ^

The equation (y'b)* + (#' a)
2 = r

8 enables us finally to reduce the

equation to the tangent to the form

70. To find the equation to the tangent of a circle parallel to a given
straight line.

Let y = j? + b be the given line,

and yy' + xx'=rz the required tangent, in which #', y
f are unknown.
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Since these lines are parallel,
---

y

"' y = :

x r
Hence by substitution in the equation y = * H-- , we have

y y

y = ocx r Vl + *;

consequently two tangents can be drawn parallel to the given line.

71. To find the intersection of a straight line and circle :

Let the centre of the circle be the common origin, and let the equations
be y = a.r+ 6, and y

2+ lr
2 r2

; at the point of intersection, y and x must
be the same for both. r2 x* = ( x + &),

-6V{r8 (l+ 2)-62

} .

whence .r =
1 + a-

there being two values of x, we have two intersections ; these values may
be constructed, and the points of intersection found.

If r
2
(l-f-a

2

) = 62 the two VE'ICS of x are equal, and the line will

touch the elicit If r 1 a8
) is less than 6* the line will not meet the

circle.

Ex 1. $
f J ** =r 25, y + * 1

,
x = 4 and -3, y = - 3 and 4

Ex. 2. y -f- x* = 2t>, ?/ + ar = 5
; j?

- 5 and 0, y = and 5

Ex. 3. y
2

-f a?
8 = 25 4y -f So, =- 25 : The line touches the circle.

We may observe that the coirbh ation of an equation of the first order

with any equation of two dimensions will, as above, give an equation of

the second order for solution ;
and hence there can be only two intersec-

tions of their loci.

72. If the axes be oblique and inclined to each other at an angle o>, the

equation to the circle is

(y _ 6) 4. (^ __ ay + 2 (y
-

6) (x a) cos. u> = r
2
, (30)

and
j/

2 + x* + '2xy cos. w = r, if the origin be at the centre ;

hence the equation y
2 + cxy + a? + dy + # + f 0, belongs to the

circle in the particular case where the co-ordinate angle is one whose
c

cosine = -.

Comparing it with the general equation to the circle, we find

2 cos. w = c, 2 6 2 o cos. w = rf,

2 a 2 6 cos. w r=
<?,

o8 + 6* + 2a 6 cos. w - r2 = /;
2e erf 2 d ce.

whence, by elimination, we obtain a = ---
, o = -

^
-

,

ce.d -e* d
and ^ :

^ _ 4

nee the co-ordinates of the centre and the radius being known, the

s can be drawn.

Ex. 1. y + xy -f- * + y + x - 1 =-.
;

2 cos. u = 1 ; .-. w = 60; hence this equation will give a circle if



THE CIRCLE. 4,

the axes be inclined at an angle of 60; the co-ordinates of the centre are11 2
a =:

,
6 = -- ;

and the radius = -

The equation to this circle, when referred to the centre as origin, and
4

to rectangular axes, is obviously y
8 + x* = r* = .

o

Ex. 2. 2/
8 + \/T.*2/ + ,z

2 -9 = 0.

This will give a circle if the axes be inclined at an angle of 45, the

centre is at the origin of co-ordinates, and the radius = 3.

Of course c must never be equal to, or greater than, i 2, for cos. w
must be less than unity.

If the circle be referred to oblique co-ordinates, the equation to the

y'-b
radius is y

- b =
f

- O a) ____ (41)
x a

and the equation to the tangent is

,.
(

.

(y' b) + (x' a) cos. w

and reducing as in article 69 we have the equation to the tangent

(y
-

b} (y'
-

&) + (x
-

a) (x
/

a) -f (x a) (y 6) cos. w + (y/

(y
-

6) cos. w = r\

73. To find the polar equation to

the circle.

Let the pole be at the origin S, and
the angle P S M (= 0) be measured
from the axis of x.

Let
^P =

X

}
be octangular co-ordinates of P

and S N = a 1 oN0= 6 j

Let S P u, SO = c, and angle O S X = a ; then by the formulas

(61) or by the figure y=u sin. 0, x u cos.0, a=c cos.a, and 6=c sin. a.

Substituting these values of x and y in the equation to the circle,

y
* + tf _ 2by - 2 ax + a* + 6

2 - r
2 = 0,

we have

?/
8
(sin. 0)

a
-|- w

2
(cos. 0)

8 - 2 cu sin. sin. 2cu cos. cos. -f

c2 (cos. )
2 + c

2
(sin. )

2 ~ r* = 0,

or z/* 2cw
{

sin. sin. + cos cos. } + c
2 r

8 = 0,

or uz -2cu cos. (0
- *) + o

2 - r* = 0.

74. If a and 6 are not expressed in terms of the polar co-ordinates

c and . the polar equation is then of the form

u* - 2 { 6 sin. -f a cos. } u -f a2 + 6
a - r2 = 0.
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If the origin be on the circumference we have a8 + 6* = r2
,
and there-

fore the equation to the circle becomes

u =: 2 (b sin. + a cos. 0)

If the axis of x passes through the centre, 6 = 0, and the equation is

u* - 2 a u cos. + a2 - r
8 = 0.

Whence u = a cos. db Vr2 *
(sin.0)

2
;

which equation may also be directly obtained from the triangle S P O.

CHAPTER VI.

DISCUSSION OF THE GENERAL EQUATION OF THE
SECOND ORDER.

75. THE most general form in which this equation appears is

ay+ bxy + c .r
2 + dy + ex +/= ;

where a, 6, c, &c., are constant coefficients.

Let the equation be solved with respect to y and x separately, then

y = "~~
J; = _^|fJ-7{(6

8

_4ac) 3/
8 +2(6 <'-2crf)+ - 4 c /} (2).

On account of the double sign of the root in (1), there are, in general,
two values of y; hence there are two ordinates corresponding to the same
abscissa: these ordinates maybe constructed whenever the values of x
render the radical quantity real

;
but if these values render it nothing, there

is only one ordinate, and if they make it imaginary, no corresponding or-

dinate can be drawn, and therefore there is no point of the curve corre-

sponding to such a value of x. Hence, to know the extent ;md limits of

the curve, we must examine when the quantity under the root is real,

nothing, or imaginary.

This will depend on the algebraical sign of the quantity

(b* 4a c) a;
8 + 2 (6 d - 2 a e) x + d2 - 4 af

In an expression of this form, a value may be given to ar, so large that

the sign of the whole quantity depends only upon that of its first term, or

upon that of its coefficient b* 4 ac, since x* is always positive for any
real value of x.

For, writing the expression in the form m (x* + x + )leto be the
w, m

absolute value of the greater ofthe two quantities and
; then sub-

tn m
stitutinp r = (q + 1) for or, the expression becomes
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1 m m m >

which, whatever be the values of and , is positive, and the same ism m ... .

true for any magnitude greater than i r
; hence the sign of the ex-

pression depends upon that of m.
When tf 4c is negative, real values may be given to x, either

positive or negative, greater than rt r, which will render y imaginary.
The curve will then be limited in both the positive and negative direc-

tions of or.

When &a 4 a c is positive, all values of x not less than i r will

render y real, and therefore the curve is of infinite extent in both direc-

tions of x.

Lastly, when 6
2 4 a c is nothing, the quantity under the root

becomes
2 (bd-2ae) x + d3 - 4af.

If b d 2 a e be positive, real positive values may be given to #,

which shall render y real ; but if a negative value be given to x greater

than .

, y is imaginary ;
therefore the curve will be of in-

rW ( CL "
"

Ct 6 )

definite extent in the direction of x positive and limited in the opposite
direction.

But if bd 2ae be negative, exactly opposite results will follow,

that is, the curve will be of indefinite extent in the direction of x negative
and limited in the opposite direction,

Taking equation (2) we should find similar results.

The curves corresponding to the equation of the second degree, may
therefore be divided into three distinct classes.

1. b* 4 a c negative, curves limited in every direction.

2. b* 4ac positive, curves unlimited in every direction.

3. b
z

4 a c nothing, curves limited in one direction, but unli-

mited in the opposite direction.

76. First class 6
2 4 a c negative.

b d _ b2 4 a c

and let jc
l
and xz be the roots of the equation

(&*
_ 4 a C) x* + 2 (b d - 2 a e) x + d* - 4 af= 0.

Then equation (1) or

b*+d_ + >{

b'- 4ac
(x

* + 2
bd-2ae

x+
*

2 a ~~
I 4 2 6

2 4 a c b*

becomes by substitution
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Let A be the origin of co-ordinates, AX, AY the oblique axes.

Let H H' be the line represented by the equation y = a x -f I, MO
one of its ordinates corresponding to any value of x between x

l
and ora .

Along the line M O take O P and O P' each equal to V { /* (* *i)

(j?
o*8)}, then P and P' are tvvo points in the curve, for

MP = MO + OP = a ,r + / + VJ-fi (*-.TI) (*-*>) }

MP'=MO - OP'=ax + l- </{-p (a?-*,) O-*2)}

If we repeat this construction for all the real values of x which render

the root real we obtain the different points of the curve.

The line H H' is called a diameter of the curve, for it bisects all the

chords P P' which are parallel to the axis ofy.

The reality oi'y depends on the reality of the radical quantity, which last

depends on the form of the factors (x x^ and (x jr2), that is, on the

roots *i and xz. Now these may enter the equation in three forms real

and unequal real and equal or both imaginary.

Case 1. Let x
t
and x

y
be real and unequal, take A B = xit

A B' = j?a,

then if x = xl or x* the quantity yii (x x^ (xx^ vanishes, and the or-

dinate to the curve coincides with the crdinate to the diameter, therefore

drawing through B and B' two lines B R and B' 11' parallel to AY the

curve cuts the diameter in R and R'.

For all values of x between x
l
and xa there are two real values of y, for

x x
l

is positive and x xs is negative, and therefore p. (x xj
(x J?2) is positive.

For all values of x > xz or < j^, p (j?-^) (x x
s)

is negative, the

root being impossible cannot be constructed, hence there is no real value of

y corresponding to such values of x, and therefore the curve is entirely con-

fined between the two lines B R and B' R'.

Similarly by taking equation (2) in (75), we shall find that a straight
line Q Q' is a diameter ; that the curve cuts it in two points Q, Q' : that

drawing lines parallel to A X through Q and Q' the curve is confined

between those parallels.

We have thus determined that the curve exists and only exists between

certain parallel lines its form is not yet asceitained. We might by giving
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a variety of values to x between x
l
and ,ra determine a variety of points

P, Q, &c., and thus arrive at a tolerably exact idea of its course, but inde-

pendently of this method, its form cannot much differ from that in the

figure, for supposing- it to be such as in fig. (2) a straight line could be
drawn cutting it in more points than two which is impossible (71).

This oval curve is called the Ellipse.

If we require the points where the curve cuts A X, put y = 0, then the

roots of the equation co?2 -f ex +f are the abscissas of the points of

intersection, and the curve will cut the axis in two points, touch it in one,
or never meet it, according as these roots are real and unequal, real and

equal, or imaginary. Similarly putting x = we find the points, if any,
where the curve meets the axis of y.

Case 2. Let the roots x
l
and xa be real and equal,

.*. y a x -f- / + (x
- x^ ^ - IJL

which is imaginary except when x = x^ therefore the locus is the poin

-2ae-bd Zed-be
whose co-ordinates are Xi and ocx

l + t, or and .

b '- 4 a c b* 4 a c

Case 3. Let x
l
and xt be impossible, then no real value can be given to

x to make (x x^) (x x^) negative, for the roots are of the form

p + <i
V- 1 and p q *J 1 /. (# #0 (x-xj) = xz 2px +

p* -\- (j-
= (x db/?)

2 + <f which quantity is always positive for a real value

of x. Hence in this case the radical quantity being impossible there is no
locus.

We have not examined the equation of # in terms of y at length, for the

results of the latter are dependent on those of the former. By comparing
equations (1) and (2) in (75), we soe that c stands in one equation where
a stands in the other, and therefore that the radical quantities are con-

temporaneously possible, equal, or impossible, provided that a and c have
the same sign, which is the case when b* 4ac is negative.

In discussing a particular example reduce it to the forms

y= a x + / V {
~

P- fa *i) C*- l7 s) }

x - afy + v V {
-
fjf(y-yd (y-jfi)}

there are then three cases.

Case 1. #! and xz real and unequal. The locus is called an ellipse, its

boundaries are determined from x^ xz, y^ and y2 , its diameters are drawn
from y = ax + / and x a'y + V, and its intersections with the axes

found by putting x and y successively == in the original equation.

Case 2. j^ and xt real and equal : the locus is a point.

Case 3. x
l
and xz impossible: the locus is imaginary.

Ex. 1. y
2 - 2 xy + 2 x* 2 y

- 4 x + 9 = 0. Case 1. Fig 1.

A B = 2, A B'= 4, A C = 4 - s/T, AC'=4-f-Vr^AH=rl
Ex. 2. y* + xy 4- x* + y + x - 5 = 0. Case ].

The curve cuts the diameters when A B = 2, A B' = - 3, A C = 2,
A C'= 3, and it cuts the axes at distances 1 '7 and 2 '7 nearly;

These six points are sufficient to determine its course.
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Ex. 3. y
8 + 2 x y + 3 .r

8 - 4 j? =r 0. Case 1.

Ex. 4. y*
- 2jr2/+2tf

2
2?y +2;r=0. Case 1.

Ex. 5. y*+2x* 10*+ 12 ~ 0. Case 1.

Ex. 6. y
2 - 2 xy + 3 *2 - 2 y - 10 JT + 19 = 0. Case 2. The in-

tersection of the diatneters in Ex. 1.

Ex. 7.
j/

2 - 4 T y -f- 5 ,r
2 + 2

?/
4 j? + 2 = 0. Case 3.

It is to be observed that no accurate form of the curve is here found,

that will be hereafter ascertained, all that we can at present do, is to obtain

an idea of the situation of the locus.

77. Second class, b* 4 a c positive.

Arranging and substituting as in (76) the equation becomes

Let H H' be the diameter whose equation is y =. a x + I.

Then as before there are three forms of the roots x^ and xa .

Case 1. Let jrt and tr2 be real and unequal, let A B =: a^and A B' jra,

draw B R, B'R;

parallel to AY, the curve meets the diameter in R and

1.

/ B B'

R'. The radical quantity is imaginary for all values of x between xl
and

T2 but real beyond these limits, hence no part of the curve is between the

pnrallels B R, B' R', but it extends to infinity beyond them.
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Taking the equation for x in terms of y, we may draw the diameter
QQ' and determine the lines C Q, C' Q' parallel to A X between which
no part of the curve is found, and beyond which x is always possible.
From this examination it results that the form of the locus must be some-

thing like that in
fig-. I, consisting of two opposite arcs with branches pro-

ceeding to infinity.

This curve is called the Hyperbola.
We must observe that the second diameter does not necessarily meet

the curve, for the contemporaneous possibility or impossibility of the radical

quantities depends on the signs of a and c, and these may be different in

the hyperbola ; so that one radical quantity may have possible and the

other impossible roots.

Case 2. x^ and xt real and equal.

y = a x -f I (x #,) Vju

this is the equation to two straight lines.

Case 3. x
l
and xz imaginary ; whatever real values be given to x the

radical quantity is real, and therefore there must be four infi'nite branches.

Also since p (x xj (x xs~)
can never vanish, (76, Case 3.) the diameter

H H' never meets the curve, but we may draw the other diameter as in

the first case.

If neither diameter meets the curve, yet they will at least determine
where the curve does not pass, we must then find the intersections with

the axes. If these will not give a number of points sufficient to deter-

mine the locality of the curve we must have recourse to other methods
to be explained hereafter.

In discussing a particular example reduce it to the forms

y ax + I ^ {/* (x JY) (j?
J2)}

x-a'y + l' V {^(y-yj (7/-y2)}

there are then three cases.

Case 1. x
l and xz real and unequal. The locus is an hyperbola, its

boundaries determined from xv #2 , y t
and ?/2 ,

tne diameters are drawn from

y = ax + / and x =z a! y + V, and its intersections with the axes found

by putting x and y separately equal nothing.
Case 2. ^ and <r2 , real and equal. The locus consists of two straight

lines which intersect each other.

Case 3. x\ and xa impossible. The locus is an hyperbola, draw the

diameters, and find the intersection, if any, of the curve with either dia-

meter and with the axes.

Ex. 1. y
2 - 3xy + xz + 1 = 0. Case 1. Fig. 1. The origin being

at the intersection of the dotted lines.

The equations to the diameters are y = and y = ,
A B'= *

v 592 2
AB = AC'= ~-= AC = -

V 5 V 5' V 5

Ex. 2. y* 2 xy x* + 2 0. Case 1. The two diameters pass

through the origin and make an angle of 45 with the axes, the second

Q Q' never meets the curve, A B' = 1 and A B = 1
;
the curve inter-

sects the axis of x at distances V 2.
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Ex.3. 4y
8- txy -3x* + %y + 4 r + 16 = 0. Case 1.

Ex.4. y- 4xy - 5j?8 - 2y + 40* - 26= 0. Case 1.

Ex.5. y
e - Qxy + 8a-2 + 2,r 1 = 0. Case 2. The equations
to the two straight lines are y 4 j? + 1 = 0, and

y 2 -r - 1=0.
Ex. 6. 2/2 + 3 jry + 2 i 8 + 2 y -f 3 or -f 1 = 0. Case 2.

Ex.7. y~
- 4 jy <r

9
-f 10* - 10 = 0. Case 3. Fig. 2.

Ex.8.
2/

8 + 3xy +i + y + x = 0. Case 3. Fig. 3.

Here neither diameter meets the curve ; but the curve passes through
the origin and cuts the axis of a? at a distance 1, and that of y also at

a distance 1.

Ex. 9. y* x* - 2 y + 5 x - 3 = 0. Case 3.

The diameters are parallel to the axes, but the curve never meets that

diameter whose equation is x = .

Ex. 10. y - a* - y = 0. Case 3.

78. Third Class, b* - 4 a c = 0.

In this case the general equation becomes

6 d . r>d 2ae
Let _ a,

_ ._
2a 2a 2 a2

And let a:
1
be the root of the equation

2 (6 d 2 a e) x + d* - 4 af=z 0.

Substituting equation (1) becomes

The locus of y = ax \- I is a diameter H H' as before.

Let v be positive, then if x=x
l /v

the root vanishes ; or if A B rr x
l

and B R be drawn parallel to

A Y, the curve cuts the diameter

in R. As x increases from xl to

GO, y increases to OD, hence there

are two arcs R Q, R Q' extending
to infinity. If x be less than xlt y is

impossible, or no part of the curve

extends to the negative side of B.
__^

Let v be negative, then the A x
results are contrary, and the curve only extends on the negative side

of B ;
this case is represented by the dotted curve.

This curve is called the Parabola.

and the locus consists of two parallel straight lines ; and, according as

d* 4 a/is positive, nothing, or negative, these lines are both real, or

unite into one, or are both imaginary.
In discussing a particular example, reduce it to the form

y = a x + I J{v (-T-J?,)}
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Case 1. v positive or negative. The locus is called a parabola; draw
the diameter and find the points where the curve cuts the axes and dia-

meter.

Case 2. v = 0. The locus consists of two parallel straight lines, or

one straight line, or is imaginary.

Ex.1. y*-2xy + x*-2y - \
-

0. Case 1.

Ex.2.
2/2 2xy + ,r

2 - 2y - 2,r= 0. Case 1.

Ex.3. y* + 2xy + x* + 2y + x + 3 = 0. Case 1.

Ex. 4. y
z

2xy + x* - 1 = 0. Case 2. Two parallel straight lines.

Ex. 5. y*
~ 2x y + x* + 2 y - 2 x+ 1=0. Case 2. One straight line.

Ex. 6. y* + 2xy + x* + 1 = 0. Case 2. Imaginary locus.

79. Before we leave this subject, it may be useful to recapitulate the

results obtained from the investigation of the general equation

ay* + bxy + ex* + dy -4- ex + /=:
If b* 4ac be negative, the locus is an ellipse admitting of the fol-

lowing varieties :

1. c = o, and = cosine of the angle between the axes, locus a

circle. (72.)

2. (b d 2 a e)- = (6
s - 4 a c) (d

a 4 a/). Locus a point.

3. (bd 2ffp)
2 less than (&* 4c) (d

3 4 a/). Locus ima-

ginary.

If& 2 4 a c be positive, the locus is an hyperbola admitting of one

variety.

1. (bd - 2e)8 = (62
_ 4 ac) (d

a - 4 a/). Locus two straight
lines.

Lastly, if b% 4 a c = 0, the locus is a parabola admitting of the

following varieties,

1. bd 2 ae z= 0. Locus two parallel straignt lines.

2. bd 2oe= 0, and dz 4 o/= 0. Locus one straight line.

3. b d 2 ae = 0, and d2
less than 4 a/. Locus imaginary.

Apparently another relation between the coefficients would be obtained

in each variety, by taking the equation of x in terms of y; but on exa-

mination, it will be found that in each case the last relation is involved in

the former.
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CHAPTER VII

REDUCTION OF THE GENERAL EQUATION OF THE
SECOND ORDER

80. IN order to investigate the properties of lines of the second order

more conveniently, we proceed to reduce the general equation to a more

simple form, which will be effected by the transformation of co-ordinates.

Taking the formulas in (54.)

y =. y' + n, and x = tf + m
and substituting in the general equation, we have

a(y' + n) + 6 (*>+ m) (y' -f- ) + c(,r' + m)
1 + d (y' + M) + e

(*' + m) +/=0;
or arranging

ay'* + b x' y'+ c x'* + (2 a n + b m + d) y' + (2 c m + ft n + e)

of + a 7i
8 + bmn + cm* + dn + emf=Q.

As we have introduced two indeterminate quantities, m and ??, we are

at liberty to make two hypotheses respecting the new co-efficients in the

last equation ; let, therefore, the co-efficients of x' and y' each = 0.

/. 2 a n + 6 m -f d = 0, and 2c7/i+6;t + e=0;
2<ze - b d 2cd-be

whence we find by elimination, m ---
, and n =- .

62 -4ac' 62 4 c

The value of the constant term, or /', may be obtained from the equa-
tion,

or, since 2 a n + ft m -f- d = 0, and 2cm + 6n-f-e = 0,

Multiply the first of these two equations by n t and the second by m;
and, adding the results, we have

dn + em =0;
d n -f em

. . a 7i
8 + 6 m 71 -j- c m8 = ;

d n -f- em dn + em
hence /' = ^ -r-dn -fern +/= J +/, which,

< <&

by the substitution of the values of m and n, becomes

_ * + c d* - b d e

J
b* - 4 ac J '

The reduced equation is now of the form

ay" + 6 x' y' + c a* + /' = 0.
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81. The point A, which is the new origin of co-ordinates, is called

the centre of the curve, because

every chord passing through it is

bisected in that point. For the

last equation remains the same
when x and y are substi-

tuted for + x and -f y : hence,
for every point P in the curve,
whose co-ordinates are x and y,
there, is another point P', whose
co-ordinates are x and y, or

A M' and M' P'
; hence, by com-

paring the right angled triangles,

AMP, AM' P', we see that the

vertical angles at A are equal, and

therefore, the line P A P' is a straight line bisected in A.

Whenever, therefore, the equation remains the same on the substitution

of x and y for + x and -f- y respectively, it belongs to a locus

referred to its centre.

If the equation be of an even order, this condition will be satisfied if

the sum of the exponents of the variables in every term be even ; thus, in

the general equation of the second order, a y
2 + 6 xy + c j2 + d y +

e x -\- f 0, the sum of the exponents in each of the three first terms
is 2, and in the two next terms is 1 ; changing the signs of x and y, the

equation does not remain the same ; or for one point P, there is not
another point P' opposite and similarly situated with respect to the origin ;

hence that origin is not the centre of the curve. But the equation ay*
+ b x y + c x* +f 0, refers just as much to the point P' as to P,
and thus the origin is here the centre of the curve.

If the equation be of an odd order, the sum of the exponents in each

term must be odd, and the constant term also must vanish; for if both

these conditions are not fulfilled, the equation would be totally altered by
putting x and y for + x and + y respectively. Therefore a locus

may be referred to a centre if it be expressed by an equation which, by
transformation, can be brought under either of the two following condi-

tions :

(1) Where the sum of the indices of every term is even, whether there

be a constant or not, as a y
2

-f- b x y + c x* + / = 0.

(2) Where the sum of the indices in every term is odd, and there is no

constant term, as a y
3 + b x y* + c x* y -f- d x3

-j- e y +fx = 0.

Now it has been stated (59) that no equation can be so transformed

that the new equation shall be of a lower or higher degree than the ori-

ginal one. Hence, if the original equation be of an even degree, the

transformed equation will be so too, and the locus can be transferred to a

centre only where the equation can be brought under the first condition ;

but if the original equation be of an odd degree, the transformed equation
also will be of an odd degree, and the locus can only be transferred to a

centre when the equation can be brought under the second condition.

Hence we have a test, whether a locus with a given equation can be

referred to a centre or not. If the axes can be transferred so that (1) The

original equation being of an even degree, the co-efficients of all the terms,
the sum of whose exponents is odd, vanish. (2) The original equation

being of an odd degree, the co-efficients of all the terms, the sum of whose
E2
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exponents is even, and also the constant term, vanish, then the locus may
be referred to a centre, and not otherwise.

Now in the transformation which we effect by making y y' + w, and
x = x' -\- m, we can destroy only two terms; we cannot therefore bring,

by any substitution, an equation of higher dimensions than the second
under the necessary conditions, unless from some accidental relation of

the original co-efficients of that equation. But in the case of equations of

the second degree, we can always bring them under the first condition,
unless the values of the indeterminate quantities, m and n, are found to

be impossible or infinite.

In curves of the second order, we see that the values of m and n are

real and finite, unless 62 4 a c =
; consequently the ellipse and hy-

perbola have a centre and the parabola has not
; hence arises the division

of these curves into two classes, central and non-central.

In the case where 68 4 a c = 0, and at the same time 2 a e b d
or2cd be vanish, the equation becomes that to a straight line, as

nppears on inspecting the equations (1) and (2) in (75).
If by the transformation the term f should vanish, the equation be-

comes of the form ay* + 6 x y + c^2 = 0; whence

y = { 6
/v/6

a 4#c
}- ; and the curve is reduced to two straight

lines which pass through the centre ; or if 6
2 4 ac is negative, the locus

is the centre itself (25).
82. The central class may have their general equation still further re-

duced by causing the term containing the product of the variables to

vanish, which is done by another transformation of co-ordinates. Taking
the formulas in (58) let

Let y' = x" sin. 6 + y" cos. 0,

x' == jf'' cos. d y" sin. 0,

substituting in the equation a y'* + b x' y' + ex'* +f = 0, we have

a(ar''sin.4+y 'cos 6}*+ b(x"in 4+y"cos.4)(V'cos t-y"s\n.6)-{ c(x"co*.6 -y'^m.^+f-Q

:. y"* {a (cos. 0) 6 sin. e cos. + c (sin 0)
8
} + x"* {a (sin. 0)

8 +
b sin. 6 cos. + c (cos. 0)

8
}

+ x'
1

y" (2 a sin. cos. 0+6 (cos. 0)* b (sin. 0)
s 2 csin. 0cos. 0}

Let the co-efficient of of' y" == 0,

.'. 2 a sin. cos. 9 f 6 (cos. 0)
8 b (sin. 0)* 2 c sin. cos. = 0,

or (a - c) 2 sin. 9 cos. + 6 {(cos. 0)
s -

(sin. 0)
8
}
=r 0,

.*. (a - c) sin. 20+6 cos. 20 = 0:

and dividing by cos. 20, we have

tan. 20= ~-
.

a, c

Here is the angle which the new axis of x makes with the original
one (58) ; hence, if the original rectangular axes be transferred through

an angle 0, such that tan. 2 Q =: , the transformed equation will
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have no term containing the product x" y", that is, the equation, when
referred to its new rectangular axes, will be reduced to the simple form

a' y"* + c'*" 8

+/' = ().

83. As a tangent is capable of expressing ah values from to CD
, posi-

tive or negative, it follows that the angle Q has always a real value, what-
ever be the values of #, 6, and c, and thus it is always possible to destroy
the term containing xy.
The values of sin. 2 Q and cos. 2 are thus obtained from that of

tan. 2 ;

l

V 1 + (tan. 2 0) ^ ,
i

And sin. 2 = cos. 2 0. tan. 20 =
V (a - c)

2 + 6*

Since must be less than 90, xand therefore sin. 2 positive, the sign
of the radical quantity must be taken positive or negative, according as

b is itself negative or positive.
84. To express the co-efficients a' and c' of the transformed equation

in terms of the co-efficients in the original equation.

Taking the expressions for the co-efficients in article (82) we have

a' = a (cos, 0)
s b sin. cos. -f c (sin. 0)

2

c' a (sin. 0)
2 + b sin. Q cos. + c (cos. 0)

2
,

.'. a'-c'=a{(cos.0)
2
-(sin.9)

2

}-26sin.0cos.0+c{(sin.0)
2

(cos 0)
2
}= a cos. 20 6 sin. 2 c cos. 2

= (a c) cos. 206 sin. 2
;

a c 6
but cos. 20= , and sin. 20 =

V(a-c)8 + 6 V(a-
hence substituting, we have

(a - c? b*
_

V (a - c)
s + 6

s V (a -

(a
-

c)
2 + &8

or a - c/ = V (a
-

c)
2 + ft

8

Also a' + c' = a -j- c,

/. a' = l
{a + c V(a-c)2 + 68 .}

c' = ^ {a + c

Hence the final equation is

The upper or lower sign to be taken all through this article, according
as the sign of 6 in the original equation is negative or positive
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85. Hitherto in this chapter we have been making a number of altera-

tions in the/orm of the original equation: the following figures will show
the corresponding alterations which have been made in the position of

the curve. The ellipse is used in the figure, in preference to the hyper-
bola solely on account of its easier description.

(,-!

Fig. 1. We have here the original position of the curve referred to rect-

angular axes A X and A Y, and the corresponding equation is

Fig. 2. The origin is here transferred from A to the centre of the curve

., . r ...
A', the co-ordinates of which are m = 2cd-be

, and n = -
,4ac 6s

The new axes A' X' and A' Y' are parallel to the former axes, and the

equation to the curve is

ay'* + bx'y' + cx'*+f = 0.

Fig. 3. The origin remains at A', but the curve is referred to the new
rectangular axes A' X" and A' Y", instead of the former ones A' X'
and A' Y'. The axis A' X' has been transferred through an angle X' A' X"
into the position A' X'', the angle X' A'X", or 0, being determined by the

equation tan. 26=: , and the equation to the curve is now
a c

a'y"*+
86. In the ellipse and hyperbola the word " axis" is used in a limited

sense to signify that portion of the central rectangular axis which is

bounded by the curve.

To find the lengths of the axes, put x" and y" successively = 0, we
then obtain the points where the curve cuts the axes, or, in other words,
we have the lengths of the semi-axes.

In the equation

a'y* + cf x* +/' = 0,

-/'
a'

Let y" = 0, /. c' x"* + f = 0, and *'' =

Let #" = 0, .'. a' y"* +f = 0, a-.I y" =

In
fig. 3, the semi-axes are Ar C and A' B, so that A' C = ^/ , ,

and A' B = 7 ; putting for a', </, and/', their values in terms
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of the original co-efficients (80, 84) we have the squares upon the semi-

axes both comprehended in the formula,

2__ __ fa <* + c d* b d e

(a
-

c) + 62 \ 62 4 a ca + c

Let the equation a' y"* + cf x'
1* + /' = 0, be written in the form

Then, if the curve is an ellipse, we must have 6
2 4ac negative,

or, since 6 r= in the present case, we must have 4 f
/v ) ( 7/)

negative, and therefore
^
and

-^-
both positive ;

thus both axes meet
J J

a' d
the curve, (the case where both and are negative, would give

J J
an imaginary locus). If the curve is an hyperbola, 6

2 4 a c is positive,

and therefore 4 ( ^-J ("-77) must be positive, or one of the

values, (
J

positive, and the other
( 77 ) negative ; hence,

one of the axes in the hyperbola has an impossible value, and therefore

does not meet the curve.

The relative lengths of the axes will depend entirely on the magnitude o.

a' d

87. Hitherto the original co-ordinates have been rectangular, but if they
were oblique, considerable alterations must be made in some of the

formulas.

Articles 80 and 81 are applicable in all cases, but 82, 83, and 84, must
be entirely changed ; the method pursued will be nearly the same as in

the more simple case ; but on account of the great length of some of the

operations, we cannot do more than indicate a few steps, and give the

results *.

To destroy the co-efficient of the term containing the product of the

variables, take the formulas in (55)

, __ x" sin. + f sin. 6'

sin. co

, __
x" sin. (w-0) + y" sin. (w 0')

sin. i*>.

Substituting in the equation ay
1* + 6 x' y

f + cx'z
-f /' = 0, we have

y
m

{
a (sin. 0')

2 + 6 sin. 0' sin. w - 0' + c (sin. w -
0')

8
> !

J (sin. w)

( ] I

+ x"*
{
a (sin. 0)

a + 6 sin. sin. w -f c (sin. w 0)
2

>

(__ J (sin. faQ*

* This article, and the following ones marked with an asterisk, had better be omitted
at the first reading of the subject.
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"
1
2 a sin. 0. sin.+ -r" y" {2 a sin. 0. sin. 0* 4- 6 sin. 0' sin. w-0 + b sin. sin. w-0t

4-

1 4- f = 0.
2 c sin. w - 0. sin. w 0' > -

J (sin. <i>)

Let the co-efficient of x" y" = 0; expanding sin. w 0, sin. w 0' and

dividing by cos. 0. cos 0' we shall obtain the equation

!a
b cos. w 4- c (cos. w)

2
} 2 tan. #. tan. & 4- { b 2 c cos. w

} sin. w.

tan. 4- tan. 0'} + 2 c (sin. w)
a = 0.

Whence for any given value of a value of d' and consequently of

(0'
-

0) may be found, so that there are an infinite number of pairs of

axes to which if the curve be referred, its equation may assume the form

Let us now examine these pairs of axes, to find what systems can be

rectangular :

For this purpose we must have 0' = and therefore tan. 0' =

By substituting this value of tan. 0' in the equation containing tan. and
tan. 0', we have 2 {a 6 cos. tu 4. c (cos. w)

2

} 4- { 2 c cos. no 6
}

2
sin. w. 1- 2 c (sin. wY = 0.

tan. 20
c sin. 2 w 6 sin. w

tan.
a b cos. w 4- c cos. 2 o>

There are two angles which have got the same tan. 2 u separated from

each other by 180, therefore there are two angles 0, which would satisfy
the above equation ; however, as they are separated by an angle of 90,
the second value only applies to the new axis of y".

Hence there is only one system of rectangular axes, and their position
is fully determined by the last formula.

*88. To find the co-efficients a' and c' in terms of the co-efficients of the

original equation, the new axes being supposed rectangular. Taking the

co-efficients in the general transformed equation given above, putting

0' = -
4. 0, and multiplying by (sin. u>)

8
, we have,

a! (sin. w)
8 = a (cos. 0)* 6 cos. cos. w 4- c (cos. w 0)*

c' (sin. w)
8 = a (sin. 0)

8 + 6 sin. sin. w 4- c (sin. w - 0)*

:. (' -
c') (sin. w)

8 = a {(cos. 0)
8-

(sin. 0)
8

}
- b

{
cos. cos. w - -4>

sin. 0sin. w 0'} + c{(cos. w -
0)

8

(sin. w -
0)

2

}

= a cos. 20 - 6 cos. (w 2 0) 4- c cos. (2 w - 2 0)

= [a 6 cos. o> 4- ccos. 2w} cos. 204- (csin. 2w 6 sin. u) sin. 20.

Also, following the method in (83) we find from tan. 2 that

a b cos. w 4- c cos. 2 w c sin. 2 w b sin. w
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Where M = V {
2 + b -f c?

-2 6 (a + c) cos. &> + 2 ac cos. 2u>}

or = ^ { (a 4- c - 6 cos. a>)
8
-f (6

2 - 4 a c) (sin. t>;)

2

> .

Hence (a'-c') (sin. <u)
2 = M

and (a' + c') (sin. w)
2 =: a 6 cos. w + c

.*. a' =
{
a 6 cos. w + c M }

and c' ==. { a b cos. w + c 4- M

2 (sin. w

1

2 (sin. w)
2

Hence the final equation is

^ Jb*-4ac
And the i sign is to be used according as c sin. 2 w 6 sin. w is positive
or negative, since 2 is assumed to be positive.

These analytical transformations may be geometrically represented as in

(85). In figures (1), (2), and (3) we must suppose the axes AX, AY,
and also the axes A/X' and A' Y', to contain the angle w.

The article (86) will equally apply when the original axes are oblique ;

the value of the square on the semi-axis is,

- 2 (sin, to)
2 /a e* + c d b d t

a b cos. w + c M '

V 61 4ac~~

89, We shall conclude the discussion of the central class by the appli-
cation of the results already obtained to a few examples.

The original axes rectangular.

ay
1 + bxy + ex* + dy + ex + f= (I)

y
'

formulas to be used.
X = X TO

2 ae b d , * 2 cd- b e

dn + em ae* + cd* - bde

2
^J-

68 -4r
cj/ -t-/'=0 (5)

' = x" sin. 4- V'cos. 6\ r ,

| = y cos. 0-^sin. e}
formuias to be used-

tan. 26= _- (6)
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(7) cf =
-!{

a + c ip M} (8)

M = it *J (a e)
2+ 62

, it according as 6 is -f

- *"'=' '

(2) and (3) determine the situation of the centre, and together with (4)
reduce the equation to the form (5) ; (6) determines the position of the

rectangular axes passing through the centre, (7) and (8) enable us to

reduce the equation to its most simple form (9) : and the co-efficients of

y"* and x"* inverted are respectively the squares upon the semi-axes
measured along the axes of y" and x".

Ex. 1. 3/

a

xy + x
9- + y + x-\^Q; locus an ellipse.

m= -l;n= -!;/'= -2;
y'*-x'y'+ x'*-2 = Q

tan. 2 = :.20 = 90 and0= 45; 6 is negative, and /. M = + 1

3 1
a' = and c' = y

or y* + *"= 1

The squares on the semi-axes are and 4 ; hence the semi-axes tnem-
3

selves are - -

and,/2, and therefore the lengths of the axes are 4 and -7=
V3 V3'

Q
Ex. 2. 3y

a

4xy + 3x*+y x - = 0; locus an ellipse.

The reduced equation is by"* + xm = 1. The axes are 2 and

Ex. 3. 2#
2 + lry + lr

2 -2y 4j?-}-3r=0; locus an ellipse.
Q _ /2 Q I / g

The reduced equation is - --
p. y''

2
-{
-- -^ a/'* = 1.

Ex. 4. 5y
8

4- 6,ry + 5,r8 - 22y - 2 6* + 2 9 = 0; locus an ellipse.

rf n + m += -8

, . 5 y
f* + 6 x'y' + 5 *'2 - 8 =

tan. 20 :=: GO .

*
. Q =r 45; hence the formulas of transformation are

x" + v" x" y"
y

' == +J(_ and y = 1 ^-5
V2 V2
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r y/a _ ..//a P*

. - I (*" + 3/")
2 + 6 --g-L + - (*" -

y")
8 -8 =

or 4 y
m + xm = 4

Ex. 5. 5 1/

2 + 2 x y + 5 j?
2 - 12 y 12 .r =

; locus an ellipse.

Ex.6. 22/
2+ #2-My-2 x 6=0; locus an ellipse.

Let y y'+7i and a? = j?'+m, hence the transformed equation is

M ) + (jc>+ m)
2 + 4 (y'+ n) - 2 (a/+ m) - 6 =

4 n-2m-6= 0.

Let w+l = and m-l = /. 7^=1 and TZ=: 1 and /'= 9;
hence the transformed equation is

2y/2+#' 2 = 9

and no further transformation is requisite. The axes are 6 and

Ex.7, y
8 10 xy+ x*+ y+x+l=Q; locus an hyperbola.

6y'
f * - 4r//2 +

-^-
= 0.

Ex.8. 4z/
a --8 -ry-4 j?

2

4i/+ 28^ 15= 0; locus an hyperbola.

_

Here the axes are each = \] 2
, that which is measured along the new

axis of x" alone meeting the curve.

Ex. 9. y
2 2 x y x* 2 =

; locus an hyperbola.

The origin is already at the centre, and thus only one transformation is

necessary.

tan. 20=1 .'.20=45; M=/^ '=V^ c'=-j~2, y'*~x>*=J~Z.
*90. The axes oblique.
The values of m, n, and f remain as for rectangular axes.

c sin. 2 u} b sin. w
tan. 20=-r---5a 6 cos. w + c cos. 2 w

1= { a 6 cos. w + c M } 2 (sin w)
2

</ = {- 6 cos. a,-f c^M} -^A-^.
M = ^ (a

2
-f 62 + c2 2 6 (a + c) cos. ia + 2 a c cos. 2 }.

as c sin. 2 w b sin w is .

Ex. 1. y*
-- x y + x* -{ y + x =

;
the angle between the

axes being 45.

,n= --^, = --; tan 20=1 .'.2 =45; M= + (l
-

o o
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The reduced equation is

3 (2
- J* > y"' + ('2 + V2) *"* = 1.

The curve is an ellipse, and the squares upon the semi-axes are

Ex. 2. 7 y
2 + 16 x y + 16 .r

2

-f 3-2 y + 64 ,r + 28 = 0. The angle

= 60.

The form of the equation is now

7 y'
2 + 16 x' y' + 16 x'

2 - 36 = ;

since tan. 200, the reduction to rectangular axes is effected by merely

transferring the axis ofy' through 30; hence, putting 0=0. and w= 60,

the formulas (56) of transformation become

y
, = *, and . = , _ f

V 3 \/3

Substituting these values in the last equation, it becomes

4y"*+ }6x"* - 36r=0;

Hence the axes of the ellij-se are 3 and 6.

Ex. 3. y
2 3 xy + -r

2 + 1 =0 ;
the angle w = 60.

m =0, ?t = 0, tan. 20 = ^/3, . . = 30; M = -r 4.

' = 5, c' rr --,f
f =^ 1, and the reduced equation is

3

57/0 --^*"'=
- I-

2

The curve is an hyperbola, of which the axes are 2 V 3 and , 5 tne

first of these, which is the greatest, is measured along the new axis of a;''

The second axis never meets the curve.

91. It was observed, at the end of art. 81, that the curves correspond-

ing to the general equation of the second order were divided into two

classes, one class having a centre or point such that every chord passing

through it is bisected in that point, and another class having no such

peculiar point. This fact was ascertained from the inspection of the

values of the two indeterminate quantities m and n introduced into the

equation by means of the transformation of co-ordinates, and for the

purpose of destroying certain terms in the general equation. The values

of m and n were found to be infinite, that is, there was no centre when
the relation among the three first terms of the co-efficients of the general

equation was such that b* 4 a c = 0.

This relation 68 4 a c = being characteristic of the parabola, it

follows that the general equation of the second order belonging to a

parabola is not capable of the reduction performed in art. (80) ; that is,

we cannot destroy the co-efficients of both x and y, or reduce the equation
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to the form a y* + b x y + c x* + / = 0, or, finally, to tht form a y* +
c x* + / = 0.

Although, however, we cannot thus reduce the parabolic equation, we
are yet able to reduce it to a very simple form, in fact to a much more
simple form than that of either of the above equations. This will be
effected by a process similar to that already used for the general equation,
only in a different order. We shall commence by transferring- the axes

through an angle 0, and thus destroy two terms in the equation, so
that it will be reduced to the form ay

2 + dy + ex+f=0; we shall
then transfer the axes parallel to themselves, and by that means destroy
two other terms, so that the final equation will be of the form

a y* ~f~ e x o

92. Taking the formulas in (58), let

y =: x' sin. 9 + y' cos. 9
x = x' cos. e -

y' sin. Q

substituting these values in the general equation

ay* + 6 x y -f ex2 + dy + e. x + /= 0,

nd arranging, we obtain the equation

a (cos.
6 sin.

+ c (sin.

y'
z + 2 a sin. 6 cos. 6 x' y'-\-a (sin. 4)

2

j

.r'
2

-j- rfcos. 4 |#'+ rfsiu. 6

+ b sin. I cos.

c (cos. *

+ b (cos. 4)
a

2 c sin. t cos. 6

Let the co-efficient of x' y' =
V 2

(
-

r>) sin cos. + 6 {(cos. 0)*
-

(sin. 0)
2

}
= 0,

or ( c) sin. 20 + 6 cos. 20=0,

and tan. 20= , as in (82.)
a c

Hence, if the axes be transfered through an angle such that tan. 2 =2

the transformed equation will have no term containing the product

of the variables ;
that is, it will be of the form

a' y'* -f c' *'
2

-f d' y' -f e
f
x' + / = 0.

But, since this last equation belongs to a parabola, the relation among
the co-efficients of the three first terms must be such that the general con-

dition 62 4 a c = holds good. In this case, since 6' = 0, we must

have - 4 a' c' = ;
hence either a' or c' must = , that is, the trans-

formation which has enabled us to destroy the co-efficient of the term

containing x 1

y
f
will of necessity destroy the co-efficient of either x'* or y'*.

And this will soon be observed upon examining the values of the co-

efficients of x'* and y
f

*.

93. Let the co-efficient b in the original equation be negative, that is,

let 6 = - 2 V^T.
1 1

From tan. 2 we have cos. 2 r=
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a c

since sin. 2 9 must be positive, and b is itself negative ;

. / 1 -f cos. 2 6 . / . ( a c\ / a
hence cos. 6 = \/ -3

=
\/j(l

+_) = ^-i-,
I cos. 2 9

Substituting these values of sin. d and cos. 6 in the general transformed

equation, we have

, __
a a b J a c c c ^a

a + 2oc-j-c
a

a -j- c a-f-ca+c o-j-c

a c b V a c c a ^ a c 2 a c -\- a c
~~

a + c a + c a + c" a-f-c

,

a + c

And the transformed equation is now

(a
va+c

And it is manifest that if 6 had been positive all the way through this

article, the reduced equation would have been

{a + e) ^ +. y' + ,' +/= 0.

v a + c v a -f c

94. In order to reduce the equation still lower, let us transfer the axes

parallel to themselves by means of the formulas y' = y
n + n and x' =

r" + m (54.)

then the equation a! y'* + d' y' -f e' x' -\- f= becomes
'

(y" -f ")
2

-f- ^' (y" + ) + e
' (" -f w) H-/= o,

or 0'^+ (2a'n + d') y" + e' or" + a' n8 + d' n + e'm+/=0.
And since we have two independent quantities, ra and n, we can make

two hypotheses respecting them ; let, therefore, their values be such that

the co-efficient of y' and the constant term in the equation eac h =
that is, let

2a'n + d' = 0, and a' n* + d' n + c' m + f = ;

- d' d'
2 - 4 a' f

whence n r= 7 and m = ---
r-. ,

2 a 4 a e

and the reduced equation is now of the form

of y
" + e

'

x" = ;
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and it is manifest that if 6 had been positive, the equation c' a/
2
-f d' \? -f-

e' x* -f f =. would have been reduced to the form

c'*"2 + dV =
>

where the values of m and n would be found from the equations

c' e
2 - 4 c'fam i __ o ti r\ ^i ' r

95. The following- figures will exhibit the changes which have taken

place in regard to the position of the locus corresponding to each analy-
tical change in iheform of the equation :

X

X

Y
Y

Y'
U

In fig. 1, the curve is referred to rectangular axes A X and A Y, and
the equation is

ay* + b x y + c x* + dy + e x + f= 0.

In fig. 2, the axes are transferred into the position A X', A Y', the

angle X A X' or being- determined by the equation tan. 26'==.
,

a c

the corresponding equation is, for 6 negative,

a'y'* + d'y' + e' x f +/= 0.

If 6 is positive, the curve would originally have been situated at right

angles to its present position, and the reduced equation would be

c' at* + d' y' -f ef x1 + f = 0.

In fig. 3, the position of the origin is changed from A to A', the co-

ordinates of A' being measured along A X' and A Y', and their values

determined by the equations
- d' d'*-4a'f

for b negative, n = -^r and m ~
^ ^ &l

."

- e' e'* - 4 c' f
for 6 positive, m == - and n :

,

-
.

The reduced equation is

for 6 negative, a' y"* -f- e' x" = 0.

for 6 positive, c' a/'
2

-f d' y" s= 0.

96*. If the original axes are oblique, the transformation of the general

equation must be effected by means of the formulas in (55). The values

of a, b', and c' will be exactly the same as in (87).
We may then let 6' = 0, and also find tan. 2 6 when the axes are rect-

* See Note, Art. 87.
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angular, whence, as in (87), we shall find that there is but one such

system of axes.

The same value of 9 which destroys the term in x'
y' will, as in (93),

also destroy the term in x'* or y'
2

;
hence the reduced equation will be

for csin. 2 w b sin. w positive, a'
y'* -f- d' y' + t' x' +/ = 0.

for c sin. 2 <a b sin. o negative, c' x'* -f d' y' + e' xf + / r= 0.

97. To find the values of a', c', d', and e'.

The values of a' and c
1

are best deduced from those in art. (88),
Since 6

8 4 a c = 0, we have for c sin. 2 w 6 sin. w positive

M = a b cos. w + c

a' = {a b cos. w + c}J

cos. 2 9 r=

(sin. a>)
8

a b cos. w + c cos. 2 a>----
;

a - b cos. a> + c

siri. d) J c /a 6 cos. w +c (cos. ta)
__ , and cos. 6

/= \/V a b cos. ia
-^

c

d cos. - e cos. (w 0)
Also a =--- from the transformed equation

sin ta

__ (d e cos. w) J{a bcos.w + c (cos. w)
2

}
e >^c (sin. w)

a

sin. o> tj {a 6 cos. w + c }

d sin. + e sin. (w 0)
and e' =--

:

-
sin. a)

(d e. cos. w) A/C + e J {a b cos. w + c (cos. w)
2

}

fj [a b cos. w + c }

and the reduced equation is now of the form

a'2/'
2 + d'y' + e' x' +/=0;

For c sin. 2 w 6 sin. w negative, the corresponding values of a', c', M,
d', and e' are

M = (a & cos. w + c)

a'=

</ == (a 6 cos. w + c) :
--

(sin. w)
8

sin. and cos. merely change values,

(d ecos. w) J c e J { ab cos. w-f-c (cos. w)
2
}

hence d' = -

J { a b cos. w + c}

__ (d ecos. w) ^ {a 6 cos. w + c(cos. w)
8

}+e ^/c(sin. a>)
8

cincl c ^"" - - ......
.

L
"

>-
^

^
" ~ "

- '----
.
-..,..

sin. w V 1
~ b cos. w -f- c}

and the reduced equation is now of the form

(tv"* d'y' + e'x> +/=0.
The transformation required to reduce the equations still lower is per-

formed exactly as in (94) ; and, by making the angle between the original
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axes oblique, the figures in (95) will exhibit the changes in the pasziion of
the curve.

98. We shall conclude the discussion of this class of curves by the

application of the results already obtained to a few examples.

Ex. 1.
3/

8 -
Qjry + 9 x* + 10 y + 1 = 0; locus a parabola.

A o

tan. 29 =r -- = -- '

;
hence may be found by the tables.

ci c 4

b is negative ;

.'. by (93) a' = a -f c = 10, c' = 0, d' = JlO and e' r= 3 \/To,

/. 10 z/'

2 + VIO y' 4- 3 VIo a:' -f 1 =

Also by (94) n =r- -
, and m = -

;

2 2>/10 VlO
and the final equation is

io

Ex. 2. i/ 1 ^:0; locus a parabola.

0.

Ex.3. \/2/+ *J x = Vd- This equation may be put under the

form y -f- x d = 2 *J x y ;
or

y
2 - 2 xy + a?

8 - 2 d y 2 c? ,r + d2 =
;

and the locus is a parabola because it satisfies the condition

52 _ 4 a c = 0.

By tracing the curve as in (78) we shall find its position to be that of

P B C Q in the figure ; and y = x d

are the equations to the diameters

BE and C F.

A .r', A i/', are the new axes, or x A x

being 45.

' = 2, d' = 0, c' = 2 d J 2 , n = o, m = --= ;

2^2
the last two quantities are to be measured along the new axes, therefore

take A A'= -
,
and A' is the new origin.

2 VI
The final equation is

- d x V 2 .

Ex. 4 y = d + c x -f- /".r
2

. The locus is a parabola, since 6* 4 c

or - 4.0./= 0.

P
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Let y = ;/' + n, and x = x' + m ;
'

... y> +
- d + c Or' + m) + / (*' + m)- ;

.'. /*" + (2 m /-f c) a' - y' + /m8 + e m + d - n =0.

Let 2 m / + e = 0, and /m'-j-era+d 71 =
- 4 d / - e

2

... m== ai,dn=
4/

. ,

and the equation is reduced at once to the form

/ & -
y'
= 0.

99. The axes oblique.

y
9

Sjry+jc
2 6 # = ; the angle between the axes being 60.

Here, c sin. 2 w b sin. o> is positive.

M = 3, a' = 4, c' = 0, d' s= 6, c' = - 2 V~3~, m = -

3

. . 4 v
2 - 2

CHAPTER VIII

THE ELLIPSE.

100. IN the discussion of the general equation of the second order, we
have seen that, supposing the origin of co-ordinates in the centre, there is

but one system of rectangular axes to which, if the corresponding ellipse
be referred, its equation is of the simple form

or, Py8 + Qjr
8 = 1

where the coefficients P and Q are both positive. (86, 87.)

We now proceed to deduce from this equation the various properties of

the ellipse.

To exhibit the coefficients in a better form ; let C be the centre of the

curve ; X JT, Y y, the rectangular axes meeting in C
; CM= x, M P =: y.

Then at the points where the curve cuts the axes, we have

y = 0, Qj*=:l, .'. x= l

= 0, Py= 1, /. y= -
VP '
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In the axis of x take C A' = :mand C A =

also in the axis of y take C B =
, and C B' = -- ,

VP VF
then the curve cuts the axes at the points A, A', B, and B'.

Also if C A = a and C B = 6, and a be greater than 6, we have Q

= - and P =
,
therefore the equation to the curve becomes

*

b*

a2

101. We have already seen (76) that the curve is limited in every direc-

tion.

The points A, A', B, and B' determine those limits. From the last

equation we have

(1), and x = y
from (1) if x is greater than i #, y is impossible, and from (2) if y is

greater than i 6, x is also impossible ; hence straight lines drawn through
the points A, A', B and B' parallel to the axes, completely enclose the

curve.

A.gain from (1) for every value of x less than a we have two real and

equal values of y, that is, for any abscissa C M less than C A' we have
two equal ordinates MP, M P', the i sign determining their opposite
directions.

Also as x increases from to + a these values of y decrease from b

to 0, hence we have two equal arcs B P A', B' P' A' exactly similar and

opposite to one another.

[f 00 be negative, and decrease from to , z* is positive, and the

same values of y must recur, hence there are two equal and opposite
F2
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arcs B A, B'A. Therefore the whole curve is divided into two equal

parts by the axis of x.

From (2) the curve appears in the same way to be divided into two

equal parts by the axis of y : hence it is said to be symmetrical with

respect to those axes.

Its concavity must also be turned towards the centre, otherwise it might
be cut by a straight line in more points than two, which is impossible

102. From the equation y z = (a
9

a:
8

) we have

hence C P is greatest when x is greatest, that is, when x =
,

in which
case C P becomes also equal to a, hence C A or C A' is the greatest line

that can be drawn from the centre to the curve. Again C P is least when
x 0, in which case C P becomes equal to b, hence C B is the least line

that can be drawn from C to the curve. The axes A A' and B B' are thus

shown to be the greatest and least lines that can be drawn through the

centre. The greater A A' is called the axis major, or greater axis, or

transverse axis, and B B' the axis minor or lesser axis.

103. The points A, B, A' and B' are called the vertices or summits of

the curve. Any of these points may be taken for the origin, thus let A
be the origin, A C the axis of r, and let the axis of y be parallel to C B,
and A M = x'.

Then # = C M = AM - A C = ^ a

or suppressing the accents, ij*
= (2 a x j?

)
= x (2 a -

x).

This last equation is geometrically expressed by the following proportion.
The square upon M P : the rectangle A M, M A' : : the square upon B C

: the square upon A C.

Hence the square upon the ordinate varies as the rectangle contained

by the segments of the axis major.

If the origin be at C, C A' the axis of y and C B the axis of x, we have,

putting x for y and yfor x, the equation y
1 =

-r^ (&
2

,r
2
), and if the origin

g

be at B, y
? =

^(Zbx-x*).

104. If the axes major and minor were equal to one another, the equa-
tion to the ellipse would become y

8 = a* .r
8
, which is that to a circle

whose diameter is 2 a, hence we see as in (79) that the circle is a species
of ellipse. Ao we advance we shall have frequent occasion to remark the

analogy existing between these two curves.

Let A D Q A' be the circle described upon A A' as diameter, and M Q
or Y be an ordinate corresponding to the abscissa C M or #, let M P (?/)
be the corresponding ordinate to the ellipse, then we have
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3,'
=

:. y : Y :: b:a

thus the ordinate to the ellipse has to the corresponding- ordinate of the

circle the constant ratio of the axis minor to the axis major.

Since b is less than a the circle is wholly without the ellipse, except at

A and A' where they meet. Similarly if a circle be described on the axis

minor, it is wholly within the ellipse except at B and B'. Thus the elliptic
curve lies between the two circumferences.

THE FOCUS.

105. THE equation y* = (2 ax #*) may be put under the form

I 2 62

7/
2 = I x - xz

, in which case the quantity / = is called the
2 a a

principal Parameter or Latus Rectum.

Since I = = - the Latus Rectum is a third proportional to the
a 2a

axis major and minor.

106. To find from what point in the axis major a double ordinate and

be drawn equal to the Latus Rectum.

Here 4 y* = I
s
or i^ (a*

-
x*) = i^

... _*- b*

or x9 = a* b9

and x = i <Ja* b* .

With centre B and radius a describe

a circle cutting the axis major in the

points S and H, then we have C H c=

+ j at - b* and C S = - V 8 -6a
,

thus S and H are the points through either of which if an ordinate at

L S L' be drawn, it is equal to the Latus Rectum ; henceforward then we
shall consider this line as the Latus Rectum or principal parameter of the

ellipse.

The two points S and H thus determined are called the Foci, for a

reason to be hereafter explained.

107. The fraction which represents the ratio of C S to C A
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is called the excentricity, because the deviation of this curve from the

circular form, that is, its ex-centric course, depends upon the magnitude of

this ratio.

If the excentricity, which is evidently less than un'ty, be represented by

the letter e, we have
a

= 1 - e
8 and the equation to the ellipse may be put under the form

y
9

z=(l-e2

) (-*).
108. The line S C is sometimes called the ellipticity ; its value, as above,

is a e ; but it is also expressed by the letter c. Also since a2 62 = a2
e

we have 6s= a2 a2 e* =. (a ae) (a -f a e) ; hence

The rectangle A S, S A? = The square upon B C.

109. To find the distance from the focus to any point P in the curve.

Let S P = r, H P r= r',

.-. r2 = (y
-

y'Y + (a -a')
1

- . .(29)

also y', x' being the co-ordinates of S, we have y' = and #' = a <?,

/. r2 = 3/2 + (x + a e)
8

=r (1
- e

2

) (a
8 - *9

) + (x + tf e)
8

= a2 - ^ - e
2 a2 + e8 ^2 + x9 + 2 a ex + a* e*

.*. S P a + e,r ; similarly H P = a ej?.

In all questions referring to the absolute magnitude of S P or HP we
must give to x its proper sign ;

thus if P is between B and A, the absolute

magnitude of S P is a e,r, because x is itself negative.

By the addition of S P and H P, we have SP+ HP = 2<z = AA/
;

that is, the sum of the distances of any point on the curve from the foci

is equal to the axis major

This property is analogous to that of the circle, where the distance of

any point from the centre is constant.

110. This property of the ellipse is so useful, that we shall prove the

converse. To find the locus of a point P, the sum of whose distances

from two fixed points S and H is constant or equal 2 a.

Let S H = 2c, bisect S H in C, which point assume to be the origin of

rectangular axes C A', C B ; let C M == x, and M P =r

then S P =

= 2a, orSP=:2a-HP

) + 3/

8 =4o*- 4 a V (c
- x

hence, transposing and dividing by 4, we have

a (c
- x)* + = 8

- ex
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s= a4 - a* c
2 + c

2
y? a8

a?
8

= O2 - c
2

) (a
8 - *)

and y* = --
(a

8 - x8
)

Hence the locus is an ellipse whose axes are 2 a and 2
whose foci are S and H.

c*, and

THE TANGENT.

111. To find the equation to the tangent to the ellipse at any point.
Let at y' be the point P
... x" y" be any other point Q

the equation to the line P Q throijgh these two points is

y -
y' = y ~

y
'

t . (x - #0, (41)

Now this cutting line or secant PQ will come to the position TPT'
or just touch the curve when Q comes to P, and the equation PQ will

become the equation to the tangent PT when af' = x' and y" = y1
.

yl y'l
In this case the term

f f
becomes -, but its value may yet be found,

for since the points xf
y

f

, x" y" are on the curve, we have

a*y'* +b*xlz = 2
6
2

/. a (y'
2

y"
2
) + 62

(*"
- *"8

) = ;

or a8
(y'

- y"} (y' + y"} + 6* (*'
-

x") (x' + x"} = 0,

. y'
- y"" ~

x' - x" a2
y' + "

b* x'
:= when = ^ and 'r =

.*. The equation to the tangent is

By multiplication cfyy
1

a*y" = 6'j?^' +

= a2
6
2
.
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In the figure C M is yf and M P is y', and x and y are the co-ordinates

of any point in T PT'.
The equation to the tangent is easily recollected, since it may be obtained

from that to the curve s

y
s + 62 x8 = 2

6
2

by putting yy' for y* and xx'
for .T

8
.

112. That PT is a tangent is evident, since a straight line cannot cut

the curve in more points than two, and here those two have gradually
coalesced ; it may, however, be satisfactory to show that every point in

P T except P is without the curve.

Let xl and y l
be the co-ordinates of any point R ; then ifa"y* + b* x*

is greater than #2 6
8
,

the point R is without the curve. For, join the

point R with the centre of the ellipse by a line cutting the curve in Q,
and let x and y be the co-ordinates of Q, then if a*y*-\- 6

2 x* is greater
than a2

6
8

,
or than a2

y* -f 6
2
^, we have 6

2
(x? - j?

2
) greater than a2

(y
2

s/i
2
) ; but 6 is less than a, therefore x* x* must be greater than

y
2

yf, or xf + y* greater than x* + y
z
, and therefore C R greater than

C Q (29), or R is without the curve.

In the present case we have the two equations.

/. az

y
iz - 2a*yy' + &V2 - 2b*xx' = - a2

6*

or a8 (y'
-

y)
2 + 6

2

(>'
- xY = V + 6

2
x* -a* 6

2

/. a2 / + 6
2

,r
2 = a2

6
2 + a2

(y'
-

y)
2 + b

2

(x
f -

a-)
8

which is greater than a2
6
2

.

But y and x are the co-ordinates of any point in the tangent ; therefore

generally any point on the tangent is without the curve
;

in the particular
case where y y', and x = x', that is at P, we have the equation
a8
y

2 + 6
2 x3 := a2 62

,
therefore at that point the tangent coincides with the

curve.

113. If the vertex A be the origin, the equation to the curve is

62

y
2 = (2 a x - xz

} or az
y* -f 62 x* - 2 a b*x == 0,

and the equation to the tangent, found exactly as above, is

a*yy' + tfxx1 - ab* (x + a/) = ;

If the equation to the ellipse be y* = m x nx*y the equation

to the tangent is y y' = (x + #') nxx'.

Generally, if the equation to the curve be

0,

the equation to the tangent is

2 ex' + by
r + e-~ - -

or (2 ay' -f bx' + d) y + (2 c,r' + 6y' + * + rf
3/ 4 e ^+ 2/= 0.



THE TANGENT. 73

Again let y =: a x + d be the equation to a tangent to the ellipse ;

then, comparing this with the equation a?y y' -f b* xx' = a2
6
s

,
and elimi-

nating x' and y' by means of the equation
2

y'
2 + b*x12 8

62
,
we have

2 a2 + 6
2 = d\

and this is the necessary relation among the co-efficients of the equation
y r oe x + d when it is a tangent to the curve.

114. To find the point where the tangent cuts the axes.

In the equation a? y y' + b* x x' = 8 62
put y = ,'.bz xx f := a2 6

e
,

a2
68

and a? = ~ C T
; similarly y = C T' = hence we have

x y'

The rectangle C T, C M = The square upon A C,

and The rectangle CT', MP = The square upon B C

Since CT( f )
does not involve y', it is the same for all ellipses

\ x J
which have the same axis major, and same abscissa for the point of

contact ; and, as the circle on the axis major may be considered as one
of these ellipses, the distance C T is the same for an ellipse and its cir-

cumscribing circle.

a2

Again, since CT = is independent of the sign of y
f

, the tangents,

at the two extremities of an ordinate, meet in the same point on the axis.

The equation to the lower tangent is found by putting y' for y' in the

general equation to the tangent (111).
115. The distance MT from the foot of the ordinate to the point

where the tangent meets the axis of r, is called the subtangent.

Intheellipse,MT=:CT- CM = - *' = T^
Hence, The rectangle C M, M T = The rectangle A M, M A'.

116. The equation to the tangent being az

yy' + 6
2 x xf = 2

6
8
, let

of = a ; and .'. y' 0, .". 62 a x = a2
6
2 and x a ; hence the tangent, at

the extremity of the axis major, is perpendicular to that axis. At B, the

equation to the tangent is y = 6 ; hence the tangent at B is perpendicular
to the axis minor.

The equation to the tangent being a2 y y' + &
2 x y? = 2

6
s

, or

If P C be produced to meet the curve again in P', the signs of the

co-ordinates of P' are both contrary to those of P ; hence the co-efficient

62 x'--- remains the same for the tangent at P', or the tangents at P and
ay

F are parallel (43).

117. To find the equation to the tangent at the extremity of the Latus

Rectum.
The equation to the tangent is generally
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At L, x1 = ae and y' ,

a

6*
.*. a2 v -- 6

s x a e =r a8
68

a

y =: a + e JF.

If the ordinate yt or M Q,
cut the ellipse in P, we have

/. M Q = S P.

118. lo f.nd the point where this particular tangent cuts the axis, let

From T draw T R perpendicular to A C, and from P draw P R parallel
to A C ; then, taking the absolute values of C M and C T, we have

Consequently, the distances of any point P from S, and from the line

T R, are in the constant ratio of e : 1.

This line TR is called the directrix; for, knowing the position of this

line and of the focus, an ellipse of any excentricity may be described, as

will hereafter be shown.

If x = 0, we have y = a. Thus the tangent, at the extremity of the

Latus Rectum, cuts the axis of y where that axis meets the circumscribing
circle.

By producing Q M to meet the ellipse again in P', it maybe proved that

The rectangle Q P, Q P' = The square on S M.
119. To find the length of the perpendicular from the focus on the

tangent.

Let S y, H 2, be the perpendiculars on the tangent PT.
Taking the expression in (48.) we hare

Where y, =r and x
v
= ae are co-ordinates of the point S, and

y r= a x + d is the equation to the line P T. But the equation to P T
is also
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And

Let S P or a + ed = r, and H P or a - e a? = 2 - r = r',

2a-r

r

Similarly, if H z = p', we have p'
8 = 6

2 -
.

By multiplication we have pp' s= 6
2

; Hence,

The rectangle S y, H 2 = The square upon B C.

120. To find the locus of y or z in the last article.

The equation to the curve at P is
2

y
n + 62

a/
2 a* 62

(1)

The equation to the tangent at P is a?yy'+b*xx'=i a2
62

(2).

The equation to the perpendicular S y (the co-ordinatss of S being
-

c, 0) is y = a (x + c) and this line being perpendicular to the tangent

(2), we have a
, ;

and therefore the equation to S y is

If we eliminate y' and x' from (1) (2) and (3), we shall have an equation

involving x and y ; but this elimination supposes x and y to be the same
for both (2) and (3), and therefore can only refer to their intersection.

Hence, the resulting equation is the locus of their intersection.

y' bz
y b* 62 x

From (3)
- = = -. from (2) ;'
x' a* x + c a/ y a* y

and y' = - = -
;

r-.
2
(x + c) y

2 + x (x -f- c)
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Substituting these values of x' and y', in (1), we have

a*b* y
8 + 6! a4

(,r + e)
8 = a? b* {y

8
-f a? (* + c) }*

.-. 6* y
2

-f (* + c)
8 r= {y

2 + x & + c)}* ;

Or, a'
2

y
8 - cs y

2 + 2
Cr

2
-|-c)

9 = y
4 + 2 x (x + c) y

8
-f a:

8

(x + c) ;

' 2 {/+ C* + 0'} =
2/

4 + 2/

8

{2.r O+ c) + c
8

} + *>(* + c)
2

= y
4 + 2/

2 *2 + 2/

2
(* + c)

9
-f ^8

(ar -|-c)
2

This is the equation to a circle whose radius is a. Hence, the locus of

y is the circle described on the axis major as diameter.

From the equation to S y, combined with that to C P f y = x \ we

may prove that C P and S y meet in the directrix.

121. To find the angle which the focal distance SP makes with the

tangent P T.

62 x' b*
The equation to the tangent is y =--- ,

x -\ -.

The equation to S P passing through S ( c, 0) and P (,i
r

, y
1

} is

And tan. SPT = tan. (P S C - PTC) = X'+C a*

y
'

*
y'"

a'-f-c

68

To pass from tan. S PT to tan. H PT we must put c for c in the

preceding investigation ; this would evidently lead us to the equation
b*

tan. HPT = --
;

; hence, tan. HPz = tan. (180
- HPT) = -

tan. HPT =
;,

or the two angles SPT, HPz are equal; thus the

tangent makes equal angles with the focal distances.

It is a property of light that, if a ray proceeding from H in the direction

II P be reflected by the line z P y, the angle S Py of the reflected ray will

equal the angle HPz. Now, in the ellipse, these angles are equal;
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hence, if a light be placed at H, all rays which are reflected by the ellipse
will proceed to S. Hence, these points, S and H, are called foci.

This very important property is also thus proved from article 119,

Sy =p = b
^y ;

and H z = p' = b

:. Sy : Hz :: r : rf
:: SP : HP;

hence the triangles S Py arid H P 2 are similar, and the angle S P y equal
to the angle HP 2.*

122. To find the length of the perpendicular C u, from the centre, on
the tangent :

x
here y l

= 0, x
l
^ 0, = ---

, and d =.
;*

y y'

68

___ __

n /Ji ,64 ^ 2
) a2

62

C W _
X/ jl-f ^ /2

|

- -

j(a
>
yl% Jrb.^ }

-

a b ab

e a.') (a ex')

* The following geometrical method of drawing
a tangent to the ellipse, and proving that the locus

of the perpendicular from the focus on the tangent
is the circumscribing circle, will be found useful.

Let A P A' be the ellipse, P any point on it.

Join S P and H P, and produce H P to K, making
P K = P S ; bisect the angle K P S by the line

y P z, and join SK, cutting Py in y.

1. Py is a tangent to the ellipse; for if R be

any other point in the line P y, we have S It +
R H = K R + R H, greater than K H, greater
than 2 a

; hence, R and every other point in z P y
except P is without the ellipse.

2. The locus of y is the circumscribing circle. Draw H % parallel to S y, and join Cy ;

then, because the triangles S P y, K P y are equal, we ha.ye the angle S y P a right

angle, or S y and H z are perpendicular to the tangent. Also, since S y = K y, and

S C C H, we have C y parallel to K H, and Cy = 4 K H = (S P + P H) = C A.

3. The rectangle S y, H z =. the square on B C. Let Z H meet the circle again in

O and join C O ; then, because the angle y z O is a right angle, and that the points y
and O are in the circumference of the circle, the line y C O must be a straight line,

and a diameter. Hence, the triangles C S y, OHO are equal ; and the rectangle
S y, H z = the rectangle Z H, H O = the rectangle A H, H A' = the square on

B C (108).

4. Let SP=r, HP=2a -SP= 2a- r, Sy=^,andH,8 = p', then p* =

For by similar triangles, Sy : S P : : H z : II P .*. p p' ; and, as above,

5 ...
= ^-
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123. To find the locus of u :

a2

y'
2 + 6

8 y = a2
6
8

(1).

tt
*
y y

/ + 6
8 x x' = a* // (2).

a8 V
y = ^

JF . . . (3), the equation to C ?/.

Proceeding*, as in (120.), to eliminate x' and y', we arrive at tie final

equation b* y* -{- a
2

jp
2 = (y

2 + #8
)

8
j

the locus is an oval meeting the

ellipse at the extremities of the axes, and bulging out beyond the curve,

something like the lowest of figures 2 in page 44. We shall have occasion

to trace this curve hereafter.

124. To find the angle which the distance C P makes with the tangent,
we have the equation

yl fa* yl /,

to C P, y = Zj x; and to P T, y = -
;

x + ;

hence tan. CPT is found = -r -
.,

125. From C u C y sin. C y uy we have

- =r a sin. C y u .'. sin. C y u =
V r r' Jr r'

/
4 /V

Also from H 2 = H P sin. H P z , we have

rj b

= / sin. H P 2 .'. sin. H P x
,
=

/ -7
i

.*. angle C y u = angle H P 2, and C y is parallel to H P.

Hence, if C E be drawn parallel to the tangent P T, and meeting H P
in E, we have PE = Cy = AC.

THE NORMAL.

126. The normal to any point of a curve is a straight line drawn

through that point, and perpendicular to the tangent at that point.

To find the equation to the normal P G.

The equation to a straight line through the point P (x
1

y
1

) is

y -
y' = a (x x')

This line must be perpendicular to the tangent whose equation is

6
8
af tf

. _ a*y'

and the equation to the normal is

127. To find the points where the normal cuts the axes :
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Let y .'.

= e
2 xf = C G.

Hence SG-SC - C G = ae - e* xf = e (a
- e *')

= e . S P.

The distance M G, from the foot of the ordinate to the foot of the nor-

mal, is called the subnormal :

Its value is x x1 = x'.
a?

128. From the above values of M G, C G and C G' we

b ( 62 x'* \ b f a2 - 62
1= Vi a* - * + -

(
= Vl a* - T - **

fa ^
I a2

J v
I

2

and similarly P G' = -
,^77^ consequently,

The rectangle, P G, P G' =: r rf = the rectangle S P, HP.
The greatest value of the normal is when x' = ; hence, at the extremity

of the axis minor, we have the greatest value ofthe normal =s 6. Similarly,
the least value of the normal is at the extremity of the axis major, the

value being then =
, or half the Latus Rectum (105.).

Also, S G' = ~ V77', and G G' = ^- V7? .-. G G' = e. S G'.
b b

If a perpendicular G L be drawn from G upon S P or HP, the tri-

angles P G L, S P i/, and H P 2, are similar
; hence

PL PG.^-, or=PG ^-r i the Latus Rectum.
r r1 a

129. Since the tangent makes equal angles with the focal distances, the

normal, which is perpendicular to the tangent, also makes equal angles
with the focal distances. This theorem may be directly proved from the

above value ofCG;forSG I HG :: SC CG: HC + CG
; I ae - e* 3? \ a e + e

2
x' '. \ a - ex' : a+ e x' : : S P : HP;

hence, the angle S P H is bisected by the line P G. Euclid, VI. 3, or

Geometry, ii. 50 *.

THE DIAMETERS.

130, A diameter was defined in (76.) to be a line bisecting a system of

parallel chords. We shall now prove that all the diameters of the ellipse

* The absolute values of S P and H P are here taken. See 109.
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are straight lines, and that they pass through the centre, which last cir-

cumstance is evident, since no line could bisect every one of a system of

parallel chords without itself passing through the centre.

Let y = a * 4- c be the equation to any chord
;

a9
y* + b* x* = * 6 8

,
the equation to the curve.

Transfer the origin to the bisecting point x' y' of the chord, by

putting y + y' for y and x -j- x1
for ,r, then the equation to the chord

becomes y -f y'
= a (x + x9

) + c or y t= a #, since i/
= a J/ -f- c

; also

the equation to the curve becomes 2
(y + 2/')

2 + b* (x + .r')
2 = a2

6*.

To find where the chord intersects the curve, put a x for y in the se-

cond equation :

/. a8
(a * + I/')

2 + 6
2 O + or')

2 = a2
6
2

;

or, (a
2 a2 + 6

2
) *

2 + 2 (
2 a y

7 + 6
2

a/) j? + a2
y'* + />

2
j/

2 = a8
6
8

.

But since the origin is at the bisection of the chord, the two values of

x must be equal to one another, and have opposite signs, or the second

term of the last equation must = 0.

.a8
ay' + & 2

x' = 0.

This equation gives the relation between x' and y' ; and, since it is in-

dependent of c, it will be the same for any chord parallel to y = a x + c ;

hence, considering x' and y' as variable, it is the equation to the assem-

blage of all the middle points, or to their locus.

This equation is evidently that to a straight line passing through the

centre. Conversely, any straight line passing through the centre is a dia-

meter.

131. A pair of diameters are called conjugate when each bisects all the

chords parallel to the other.

Hence, the axes major and minor are conjugate diameters, and the

equation a2
^

8 + 6
2
x* = a* b\ which we have generally employed, is that

to the ellipse referred to its centre and rectangular conjugate diameters.

If the curve be referred to oblique co-ordinates, and its equation remains

of the same form, that is, containing only j^, y*, and constant quantities,

the new axes will also be conjugate diameters
;
for each value of one co-

ordinate will give two equal and opposite values to the other. We shall,

therefore, pass from the above equation to another referred to oblique con-

jugate diameters, by determining, through the transformation of co-ordi-

nates, all the systems of axes, for which the equation to the ellipse pre-
serves this same form.

Let the equation be o2
y* + 62

<r
a = a* b*

;
the formulas for transform-

ation are (57),

y = x' sin. Q + y' sin. 6',

x = x/
cos. 6 + y' cos. Bf

t

:. rt
2
O' sin. + y

1
sin. 0')* + b*

0' COR - e + y' cos. 0') = /A

or {a
8
(sin. Q7

)
8 + 6

s
(cos. 0')*} y'

9
-f- {a

8
(sin. 0)

8
-f 6

8

(cos. 0)
8

}
,r'

8

+ 2 {a* sin 6 sin. 0' + 6
8
cos. cos. 0'} x' y' = a8

b*.

In order that this equation may be of the conjugate form, it must not

contain the term a/ y' ; but since we have introduced two indeterminate

quantities, and 0', we are enabled to put the co-efficient of X* ff
'~

;

hence we have the condition

a* sin. sin
/

-f- 6
8 cos cos. 0' =

,



1HE DIAMETERS. 81

or dividing by a2
cos. cos. 0',

tan. 0. tan. Q f = -.

oa

Now this condition will not determine both the angles 6 and &f
, but for

any value of the one angle it gives a real value for the other ; and hence
there is an infinite number of pairs of axes to which, if the curve be re

ferred, its equation is of the required conjugate form.

If, in the next figure, we draw CP making any angle 9 with C A', and

CD making an angle Of

(whose tangent is cot. 0) with C A', then C P

and C D are conjugate diameters. Also since the product of the tangents
is negative, if C P be drawn in the angle A' C B, C D must be drawn in

the ang-le B C A.

132. There is no occasion to examine the above equation of condition

in the case where 6 or Q' = G, for then we hare the original axes
;
but

let us examine whether there are any other systems of rectangular axes.

Let 8' = 90 + e, :. sin. 6' = cos. 0, and cos. 0' = sin. 0,

hence the equation of condition becomes

(a*
_

&*) sin. cos. = 0,

and since, by the nature of the ellipse, a2 cannot == 6s
, we must have

6 = 0, or G = 90, both which values give the original axes again ; hence

the only system of rectangular diameters is that of the axes. This re-

mark agrees with article 87.

We may observe in the above transformation that, although we have

introduced two indeterminate quantities and 0', it does not follow that

we can destroy two terms in the transformed equation, unless the values

of these quantities are real: for example, if we attempt to destroy any

other term as the second, we find tan. = V 1> a value to which
a

there is no corresponding angle 0; hence, in putting the co-efficient of

x'y'
= 0, we adopted the only possible hypothesis.

133. The equation to the curve is now

{a
2
(sin. 0')

2 + b* (cos. 0')
a}y 2 + { a

8
(sin. 0)

8 + 6
8

(cos. 0)
2

} a?'
8 = 8

b*.

If we successively make y'
= 0, and x' = 0, we have the distances from

the origin to the points in which the curve cuts the new axes; let these dis-

tances be represented by a^ and b lt the former being measured along the

axis of a?', arid the latter along the axis of y' ;
then we have

y'
= 0, /. { a* (sin. 0)

2 + 6s (cos. 0)
8
} af = a2 b\

x' = 0, /. {a
2

(sin. 0')
2 + 6

3

(cos. 0')
2

} 6 t

8 = a2
6
a

.

And the transformed equation becomes

bf

or, a* y'
9 + 6^ y 8 = a? V,

Where the lengths of the new conjugate diameters are 2 a and 2 64.

G
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134. From the transformation we obtain the three following equations:

a,* {a* (sin. 0) -f 6
2

(cos. 0)
8
}
= a2

6 8

(I),

V {a
2
(sin. 0')'+ 68 (cos. 0')

8

}
= a8 6 (2),

a* sin. sin. 0' -f 6
2
cos. cos. 0' s= 0, 1

or, tan. tan. / = ---

j

(
3'

Putting 1 (sin. 0)
8
for (cos. 0)* in (1), we have

a,
2
(a

2 - 6s) (sin. 0)
8 = a8

6
8 - a^ 6,

and tf
,

2

(a
2 -

6*) (cos. 0)
2 = CT

* a2 - a2
6
2
,

/. (tan. 0)* = ~
a^ 6*

Putting 6j for o, in this expression, we have the value of (tan. 0')
8
, as

found from (2)

hence by multiplication,

(tan.0)* (tan.eO-

.'. (a
2 -

fll

or, a4 - - o
t

8 a2

- 6,) = (a,
8 - 6) (^

2 - 6
s
),

a? V = a,
2
6^ of 62 - 62 6

t -f 6* ;

.-. a4 - 6
4 = a8V + t

8 a2 -

= (a
8 - 62

)

- 68 fe,
8
,

t

8
-f- V),

that is, the sum of the squares upon the conjugate diameters is equal to

the sum of the squares upon the axes.

135. Again, multiplying (1) and (2) together, and (3) by itself, and
then subtracting the results, we have

a,
2
6j

8
{
a4

(sin. 0)
8
(sin.

/

) + b
4
(cos. 0)

2

(cos. 0')
2 + a9

6* (sin. 0')
8
(cos. 0)

e

-f a*68
(sin. 0)

2
(cos. tf)*}

= a4 6
4
,

a4
(sin 0)

8
(sin.

;

)
2 + b4 (cos. 0)

8
(cos. 0')

8 + 2 a8 6* sin. sin. 0" cos.

cos. 0' = ;
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a2 6s
{ (sin. 0')* (cos. 0)

2 2 sin. sin. 9' cos. 6 cos. d7

+ (sin. 0)
2
(cos. 0')

2
}
= a4

6
4
,

or, a,
2
&! { sin. tf' cos, sin. cos. 0'

}
* = a* 68

or, a,
2
6

t

2
{ sin. (0' 6) }

2 = a8
68 ;

/. a
l
b

v
sin. (Q' 9 )

= a b.

Now 0' is the angle PCD, between the conjugate diameters C P
and CD; hence drawing straight lines at the extremities of the conju-
gate diameters, parallel to those diameters, we have, from the above equa-
tion, the parallelogram P CDT = the rectangle A C B E, and therefore

the whole parallelogram thus circumscribing the ellipse is equal to the

rectangle contained by the axes *.

If the extremities of the conjugate diameters be joined, it is readily
seen that the inscribed figure is a parallelogram, and that its area is equal
to half that of the above circumscribed parallelogram.
We may remark, in passing, that the circumscribed parallelogram, having

its sides parallel to a pair of conjugate diameters, is the least of all paral-

lelograms circumscribing the ellipse ; arid that the inscribed parallelogram,

having conjugate lines for its diameters, is the greatest of all inscribed

parallelograms.
136. Returning to article (133.), the equation to the curve, suppressing

the accents on a/ and y', as no longer necessary, is

In the figure, C P = a lf C D = ^ C V = x t and V Q y ,

mr Q, rp

* The theorems in articles 134 and 135 may be proved also in the following manner :

Referring the curve to its rectangular axes, as in article (138.), let the co-ordinates

of P be x' and y''; then the equation to C D is a*yy' -j- b2 x x' 0, and eliminating
of and y between this equation and that to the curve (a

2
y
z + bz x* = a2 *2

), we have
the co-ordinates C N and D N, fig. 135, of the intersection of C D with the curve, C N

- and D N = y = ; hence we have

a2 6s a2

Mso the triangle P C D = the trapezium P M N D the triangles PCM and DON

l
= T therefore the parallelogram P C D T= a b.

Zao Z

No notice has been taken of the positional value of the abscissa C N, since this is

entirely a question of absolute values.

G2
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Putting the equation into the form

we have the square upon the ordinate Q V : the rectangle PV, VP':i
the square upon C D : the square upon C P.

137. The equation to the tangent at any point Q (x y') found exactly
as in (111.) is a,

8

y y' + b^ x x' = a? bf.

The points T and T', where it cuts the new axes, are determined as in

(114.) ; whence CT = ^, CT' = ^; and the tangents drawn at the

two extremities of a chord meet in the diameter to that chord (114.).

138. Let the ellipse be now referred to its rectangular axes, and let the

co-ordinates of P be x' y', then the equation to C P is y = ~~
j?, and the

equation to C D is

6 b* d
u = x tan. &' --- cot. 6 = --- r =r,

a8 a8
y'

or, a*yy' + b* x x' = 0.

But the equation to the tangent at P is

a*yy' + 68 x x' = 2 62 ;

hence CD or the diameter conjugate to C P is parallel to the tangent at P.
From this circumstance the conjugate to any diameter is often defined

to be the line drawn through the centre, and parallel to the tangent at the

extremity of the diameter.

The equation to the conjugate diameter is readily remembered, since it

is the same as that to the tangent without the last term, and therefore

may be deduced from the equation to the curve, as at the end of article

111. The three equations are

a* y* 4. 6* x2 = a8
6s

,
to the curve,

*
y y' + b* x d =r a* 68

, to the tangent,

os

y y' + 6
2 x x' = 0, to the conjugate.

The equation to the tangent D T passing through the point D, whose

bo? a i/
co-ordinates are and ---^-

(note 135), and parallel to C P, is

or reducing

y x' x y' = a b.

And the equation to C P is

y yf - xtf = 0.

These equations to the tangents and conjugate diameters, combined
with the equation to the curve, will be found useful in the solution of

problems relating to tangents.
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139. Let j/ and y' be rectangular co-ordinates of P
; then, from the

equation a,
2 + &i

2 = a8 + &
2
,
we have 6

t

2 = a2 + b* - a? r= a2 + 6
2 -

*" - y'
2 = 2 + &

2 - a;'
2 - 6

2 + x 1* ~ a* -
" ~

2

6'

a:'
2 = a2 - eV*

a3 a
= (a -

e#') (a + ex') = r r'.

That is, the square upon the conjugate diameter C D = the rectangle
under the focal distances S P and H P.

140. Draw PF perpendicular upon the conjugate diameter C D, then

by (135.) the rectangle PF, C D = ab,

ab ab *

It was shown in (128.) that P G = - Vrr7, and P G'
=-|-

hence, The rectangle P G, P F = The square on B C,

and The rectangle P G', P F = The square on A C,

and The rectangle P G, P G' = The square on C D

SUPPLEMENTAL CHORDS.

141. Two straight lines drawn from a point on the curve to the extre-

mities of a diameter are called supplemental chords. They are called

principal supplemental chords if that diameter be the axis major.

Referring the ellipse to its axes, let P P' be a diameter, Q P, Q P' two

supplemental chords ; then, if x' y' be the co-ordinates of P, #', y
1

are those of P'
; hence, the equation to Q P is y y' = a (x x'},

and the equation to Q P' is y + y'
= a' (x + x'}.

At the point of intersection, y and x are the same for both equation ,

being the co-ordinates of Q ; hence., y* y'* =.- act' (x
3

a?'
2

) ;

but a?y* -j- 62
o?

2 = a2
6
2
at Q,

and a2
y'* + &

2 x1 * = a2
bz at P ;

that is, The product of the tangents of the angles, which a pair of sup-

plemental chords makes with the axis major, is constant.

* If the distance C P= u, and p the perpendicular from the centre on the tan-

gent at P, this equation is
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If the curve was referred to any conjugate diameters, 2 o
t and 2 6,, we

should find exactly in the same manner that the product of the tangents
of the angles, which a pair of supplemental chords makes with any axis

1 8

2 a,, is constant, and equal to -^ .

a
\

The equation to a chord Q P being y y' = a (j? x1

), the equation

to its supplemental chord Q P' is y + y'
---

(# -f- #')

In the circle b = a .' . '= 1, which proves that in the circle the

supplemental chords are at right angles to each other, a well-known pro-

perty of that figure.
The converse of the proposition is thus proved.

Let A C A' be any diameter, C the origin, and a a' =
-^,then the

equation to A R is y = a (x + a^ (1), and the equation to A' R is y =
b9

a' (x - ff
t )
= -- (x

- aO (2). To find the intersection of the lines A R

and A'R, let y and x be the same for (1) and (2), and eliminate a by
multiplication ; hence,

y* = --l-
(x* !*) ;

or a? y
4 + b^ ,r

2 = a* b*, and the locus ofR is

an ellipse whose axes are 2 a
l
and 2 b^

142. The equation a a' == --- is remarkable, as showing thai a a'

is the same, not only for different pairs of chords drawn to the extremities

of the same diameter, but also for pairs of chords drawn to the extremities

of any diameter ; hence, if from the extremity of the axis major we can
draw one chord A R parallel to Q P', the supplemental chord R A' will

be parallel to Q P : this is possible in all cases, except when one chord is

parallel or perpendicular to the axis.

143. To find the angle between two supplemental chords.

Let x, y be the co-ordinates of Q, and x' y' those of P,

y -y' y+y'

Then tan. P Q P' =
a x x

8

26* x'y y'x
or - ~

a* -ft8

y. - y'f
'

For the principal supplemental chords, we have x' = a, y' = ;

.. tan . A RA, = __. f.
a8 6s

y

This value of the tangent being negative, the angle A R A' is alwayt
obtuse, which is also evident, since all the points on the ellipse are within

the circumscribing: circle.
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As y increases, the numerical value of the tangent decreases, or the

angle increases (since the greater the obtuse angle, the less is its tangent) ;

hence, the angle is a maximum when y is, that is, when y = b. This
shows that the angle ABA' is the greatest angle contained by the prin-

cipal supplemental chords, and therefore by any supplemental chords.

Also, its supplement B A B r
is the least angle contained by any supple-

mental chords. The angle between the chords being thus limited by the

angles A'BA, BAB', of which the former is greater, and the latter

less, than a right angle, chords may be drawn containing any angle be-

tween these limits. This is done by describing a segment of a circle,

containing the given angle, upon any diameter, except the axis, and join-

ing the extremities of the diameter with the points of intersection of the

ellipse and circle. Also, from the value of tan. P Q P', it appears that,

if the angle be a right angle, the two chords are perpendicular to the

axes.

144. It was shown in (131.) that if Q and Q' were the angles which

conjugate diameters make with the axis major, tan. Q. tan. Q' =
,

a*

but a, a being tangents of the angles which two supplemental chords

make with the same axis, we have a a' rr -
; /. tan. Q . tan. 0' =

a

a a! ; hence, if tan. = a, we have tan. Q' = a'
; or if one diameter be

parallel to any chord, the conjugate diameter is parallel to the supple-
mental chord.

145. Since supplemental chords can be drawn containing any angle
within certain limits, conjugate diameters parallel to these chords may be
drawn containing any given angle within the same limits.

Also, since the angle between the principal supplemental chords is

always obtuse, the angle PCD between the conjugate diameters is also

obtuse, and is the greatest when they are parallel to A B and A B'. In
this case, being symmetrically situated with respect to the axes, they are

equal to one another.

The magnitude of the equal conjugate diameters is found from the

equation 0^+ bf a8 + 68
, .*. a^ = .

The equation to the ellipse referred to its equal conjugate diameters is

y
9 + #8

#i
2

; however, this must not be confounded with the equation
to the circle, which only assumes this form when referred to rectatigular

THE POLAR EQUATION.

146. Instead of an equation between rectangular co-ordinates x and y,
we may obtain one between polar co-ordinates u and 9.

Let the curve be referred to the centre C, and to rectangular axes, and
!et the co-ordinates of the pole O be x' and y', the angle which the

radius vector O P, or u t
makes with a line O x parallel to the axis of x\

then, by (61.), or by inspection of the figure, we have

y = y' -f u sin.

x =. x' + u cos. 6
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also a*?/* + &**8 = a8
*>
2

5

.*. by substitution, a* (y
1 + u sin. 0)*

u cos. 0)
8 = a2 6 2

;

Whence M may be found in terms of

Q and constant quantities.

147. Let the centre be the pole :

/. af = and y'
= 0,

a2 u* (sin. 0)
8 + 6 s w8

(cos. 0)
8 = a8 6* ;

a2 6 2 a8
6
f

a2
(sin. 0)

2+ 6 2
(cos. 0)

2 2

(sin. 0)
2 + (a

2 - a2
e
8
) (cos. 0)

8

a2 - a2
e
8

(cos. 0)
2

1 - e
8
(cos. 0)

8
'

148. Let the focus S be the pole :

.*. y
f

0, x' = a e = c, and M becomes r
;

hence the transformed equation (146.) becomes

a2
(r sin. 0)

8

-f 6
2
( c + r cos. 0)

2 = a2
6s

;

.'.
2 r2 (sin. 0)

2 + 62 r2 (cos. 0)*
- 2 62 r c cos. + 62 c2 = 8 62

;

or,
8
r
8

(sin. 0)
8 + a8 r

8
(cos. 0)

2
c
8
r
8
(cos. 0)

2 - 2 6
8 r c cos. =s

a8
6
8

62 c
8 = b* since a - 68 = c.

or, a2 r2 == c
2
r2 (cos. 0)

8 + 2 6
s
r c cos. + b*

= (c r cos. + 6
2

)
8

;

.
*

. a r = c r cos. + 62

6
s a2

(l
- e2 ) a (1- e

8
)

a c cos. a ae. cos. 1 e cos.

149. Let any point on the curve be the pole:

Expanding the terms of the polar equation in (146.), and reducing by
means of the equation a* y

r* + 6
8
.r" = a* 6f

,
we have

a2
y

f
sin. & -\- b* d cos.

"

a* (sin. 0)
2 + 6

2
(cos. 0)

8
'

If the pole is at A, we have y' = 0, and a/ = - a,

_ 2 fr
g a cos. _ 2 a (1 e

5

) cos.
=
a(sin.0)M- 62

(cos.0)
2
""

1 - e2 (cos. 0)
8

'

150. When the focus is the pole, the equation is often obtained directly
from some known property of the curve.

Let S P = r, C M = x, and A S P = 0,

then SP = a +ez (109.)

= a + e (S M - S C)
= a + e ( r cos. 6 ae)

-'. r + e r cos. = a a & and r = .

1 -f c cos. 6
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This is the equation generally used in astronomy, the focus S being the

place of the sun, and the ellipse the approximate path of the planet.

Let a (1 e
2
) = = p, where p is the parameter. (105.)

Then the last equation may be written under the following; forms :

. P.
l

e cos.
,l-e +2e{ cos.

If 6 be measured, not from S A, but from a line passing through S,
and making an angle a with S A, the polar equation is

-f~ e cos- ( a)

151. If P S meet the curve again P, let S F = r',

then r = .
--

2 1 + e cos.

" '

2
'

1 + e cos. (TT
-

0) 2 1 e cos.

I ea (cos. 6}*

or the rectangle S P, S P' r= i of the rectangle under the principal

parameter and focal chord.

152. Let CD, or 6,, be the semi-diameter parallel to SP, then (147.)

0-e8

-) _ a p . ./
6 . -~

1 - fi
2
(co?. 6))* 2 1 - e2 (cos. 6)

a 2

that is, a focal chord at any point P, is a third proportional to the axis

major and diameter to that chord.
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CHAPTER IX.

THE HYPERBOLA.

153. IN the discussion of the general equation of the second order, we
observed that, referring the curve to the centre and rectangular axes, the

equation to the hyperbola assumed the form

where the co-efficients have different signs, 85. 86.

Let ( -r
f J

be negative, then the equation becomes

/
8 +

or P
2/

2 - Q x l = - 1.

We now proceed to investigate this equation, and to deduce from it all

the properties of the hyperbola.
154. Let the curve be referred to its centre C, and rectangular axes

X x, Y y, meeting in C ; C M = x, and M P = y ; then, at the point
where the curve cuts the axes, we have

y = 0, Q

* = 0, f = -
1, .'. y =

In the axis of x take C A = , and CA' = --= , end the curve

cuts the axis X x in A and A: Since the value of y is impossible,
the other axis never meets the curve ;

nevertheless we mark off two

points, B and B', in that axis, whose distances from C are C B zz
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Also if C A s=
, and C B = 6, we have Q =

,
P = -

; there-
ar 6*

fore the equation to the curve becomes

-*--i.
62 a2

=

or a2
i/

8 - 6
2
x* = - a8 6

f
;

oiy = ^(* -a)

155. From the last equation we have

From (1) if<rbe less than + a, y is impossible; if, therefore, lines be
drawn through A and A', parallel to C Y, no part of the curve is found
between these lines.

Again, for every value of x, greater than a, we have two real and

equal values of y ;
that is, for any abscissa C M, greater than C A, we

have two equal and opposite ordinates, M P, M P'.

Also as x increases from a to CD, these values of y increase from
to ;t CD

; hence, we have two arcs A P, A P', exactly equal and oppo-
site to each other, and extending themselves indefinitely.

If x be negative, xz
being positive, the same values of y must recur

;

hence, there are again two equal and opposite arcs which form another

branch extending from A' to OD
; thus the whole curve is divided into two

equal parts by the axis of x.

From (2) it appears to be divided into two equal parts by the axis of

y ; hence it is symmetrical with respect to the axes; and its concavity is

turned towards the axis of ,r, otherwise it might be cut by a straight line

in more points than two, (71.)
156. If P be any point on the curve, we have

c p =
a" a'

hence C P is least when x is least, that is, when x =:
,

in which case

C P beco-mes also equal to a ;
hence C A, or C A', is the least line that

can be drawn from the centre to the curve : thus, the axis A A' is the

least line that can be drawn through the centre to meet the curve. The
other axis, B B', never meets the curve.

In the equation Py2 Q x* =r 1, the imaginary axis may be greater
or less than the real one, according as Q is greater or l"ess than P ; hence
the appellation of axis major cannot be generally applied to the real axis

of the curve. In this treatise we shall call A A' the transverse axis, and
B B' the conjugate axis.

157. The points A, A' are called the vertices, or summits of the curve*

either of these points may be taken for the origin by making proper sub-

stitutions.

Let A be the origin, A M =r x' ;

Then j^CM^CA + AM = a + x'
-,
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... y
. = ^ (,,

_ fl ) = ^ { (a + *>)
_

*}
-

{2 a *> + or-},

or, suppressing accents, y* = 5 (2 a x + ,r
2

) ==
^
x (2 a + ^).

This last equation is geometrically expressed by the following propor-
tion :

The square upon M P : rectangle A M, M A'
*

\ the square upon B C
I the square upon A C.

If the origin be at A', the equation is if = -

9 (cr
2 2 a .T).

158. If a =: 6, the equation to the hyperbola becomes y* x* = a* ;

this curve is called the equilateral hyperbola, and has, to the common

hyperbola, the same relation that the circle has to the ellipse.

159. The analogy between the ellipse and hyperbola will be found to

be very remarkable ;
the equations to the two curves differ only in the

sign of 6* ;
for if, in the equation to the ellipse a* y* + 6s x = a8 6s

,
we put

6
2
for 6

1
,
we have the equation to the hyperbola : hence we might

conclude that many of the algebraical results found in the one curve will

be true for the other, upon changing 6* into 6
s
in those results ;

and in

fact this is the case, the same theorems are. generally true for both, and

may be proved in the same manner : for this reason we shall not enter at

length into the demonstration of all the properties of the hyperbola, but

merely put down the enunciations and results, with a reference at the end

of each article to the corresponding one in the ellipse, except in those

cases where there may be any modification required in the working. To

prevent any doubt about the form of the figure, we shall insert figures in

those places where they may be wanted ; and, with this assistance, we
trust that the present plan will offer no difficulty.

THE FOCUS.

160. The equation y*
= - (2 a x + *f

) may be put under the form

I 26*
y* = I x + - x8

, in which case the quantity I = - is called the

principal parameter, or the Latus Rectum

26* 4 6
Since I = - =-

, the Latus Rectum is a third proportional to
a 2 a

the transverse and conjugate axes.

161. To find from what point in the transverse axis a double ordinate

can be drawn equal to the Latus Rectum,

4 f>
8 4 64

Here 4 y = *, or (*' -)=;



Join A B, then A B = V a8
-j- 6s

; with centre C and radius A B de
a circle cutting the transverse axis in the points S and H, we have

then C S = V a2
-|- 62

, and C H = - V o2
-f 6*

; thus S and H are the

points through either of which, if an ordinate as L S L' be drawn, it is

equal to the Latus Rectum.

The two points S and H, thus determined, are called the foci.

162. The fraction
, which represents the ratio of C S to C A,

is called the eccentricity: if this quantity, which is evidently greater than

unity, be represented by the letter e, we have Va2 + 62 = a e, whence

= 1 ; .'. = e2 1, and the equation to the hy-

perbola may be put under the form

2/
2 = (*

2 -
1) (**

~ 2

)-

163. Since a2 + 68 = ft
2

e\ we have 62 = 2
e
2 - a? = (a e - a)

(a e + )_;

Or the rectangle A S, S A' = the square upon B C.

164. To find the distance from the focus to any point P in the curve,

proceeding exactly as in (109.) we find

S P ex -
o, HP=ea? + a;

Hence HP-SP = 2 = AA', that is the difference of the distances

of any point in the curve from the foci is equal to the transverse axis.

165. Conversely, To find the locus of a point, the difference of whose
distances from two fixed points S and H is constant or equal 2 a.

If S H = 2 c, the locus is an hyperbola, whose axes arc 2 a and

2 V 8 + e*, and whose foci are S and H. (110.)

THE TANGENT.

166. To find the equation to the tangent at any point P (#'

The required equation obtained as in (111.) is

a ^ - a8 68
.
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This form is easily recollected, since it may be obtained from the equa-
tion to the curve a9

y
9 62 x* = a2

6
?
, by putting y y

f
for y*, and x x-

for r9
.

167. To find the points where the tangent cuts the axes ;

Let y = 0, .'. x =
-^-
= C T

; similarly y = C T' = ; hence
x y

we have
The rectangle C T, C M = the square upon A C ;

and The rectangle C T', M P = the square upon B C.

( a*\
Since C T ( = -

J

is always less than C A, the tangent to any point of

the branch P A cuts the transverse axis between C and A.

The subtangent M T = x' - -- = "*

(115.)

The tangent at the extremity A of the transverse axis is perpendicular
to that axis (116.).

If P C be produced to meet the curve again in P ;
,

the tangents at P
and F will be found to be parallel (116.).

168. To find the equation to the tangent at the extremity of the Latus

Rectum,
Generally the equation to the tangent is

y v' 6a x x'

at L,

'. a* y 69 x a c r= a9
6*.
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Let theordinate y, or M Q, cut the curve in P, then we have SP
= e x a (164.).

.-.MQ = SP-

Also C T =
, hence from T draw T R perpendicular to A C, and

from P draw P R parallel to A C, then we have

Consequently, the distances of any point P from S, and from the line T R,
are in the constant ratio of e l 1*

*

The line T R is called the directrix.

If x = 0, we have y = a
; hence the tangent at the extremity of

the Latus Rectum cuts the axis of y at the point where the circle on the
transverse axis cuts the axis of y.

169. To find the length of the perpendicular from the focus on the

tangent.
Let S y, H z be the perpendiculars on the tangent P T.

Taking the expression in (48.) we have

- d

v 1 + a2

here y l
r= and x^ = a e are co-ordinates of the point S, and y = x

+ d is the equation to P y ; but the equation to P y (166.) is also

=
-Jf- *-f " = S? and <*=-

6s of b*
ae ^

a b* (e x' a)

6s (e j?' o) / e- j?' a
~

a b V {
fi2 <*'

2 ~ 2

}

"

e a:' +
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LetSP= r,andHP = 2a + r =r'.-. = b */^-,or =6v / 2a+r

Similarly if H z = p', we have p" = 6
2

.

By multiplication we have p p
r = b*

; : hence

The rectangle S y, H z r: the square upon B C.

170. To find the locus of y or z in the last article.

The equation to the curve at P is a* y'* b* x 1 *
=. - a* 6

s

The equation to the tangent at P is a* y y' 6
a x x' = a8

6*.

a? y'
The equation to S y is y =-.

j- (x c)

By eliminating x1 and y', exactly as in (120.), we arrive at the equa-
tion

Hence the locus of y is a circle described on the transverse axis as dia

meter.

171. To find the angle which the focal distance S P makes with the

tangent P T.

6* s! 6
2

The equation to the tangent is y =. - x ---
, and the equation

to S P is, y -
y' = -2

(x - x'),x c

hence tan. S PT = tan. (P S X - PTX)
y' b**'

x' - c

"
a2

y' a? y'* 62
x'* + 6' c x1

6* x' y'
'

a* y' x' a* c y~+ b* x' y'~
h

a*y' *'-c

_ 6' (c yf - a*) _ 68

~
y' c(cx' a2

)

"
c y'

'

6
s

Similarly tan. H PT = :,
/. the angles SPT, HPT are equal ;

thus the tangent makes equal angles with the focal distances.

Produce S P to S', then it is a property of light, that if a ray pro-

ceeding from H be reflected by the line TPT', the angle S' PT' of the

reflected ray will equal the angle HPT. Now, in the hyperbola, the.se

angles are equal ; hence if a light be placed at H, all rays which are inci-

dent on the curve will be reflected as if diverging from S ; or if a body
of rays proceeding to S be incident on the curve, they will converge to H.
Hence these points S and H are called foci.

This important property of the curve is also thus proved from article

(169.),

Sy =p- !>V, and H * =// = 6 V ~;
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J);

. . Sy : H,r :: r r' :: SP : H P;

.*. angle S P y = H P z, and the tangent makes

equal angles with the focal distances *.

172. To find the length of the perpendicular C u from the centre on the

tangent.

b* x' b* a b
here y, = ,

x
{
=

,
=

,,
and d == r, .-. C u =

173. To find the locus of u.

(p yt
The equation to C u is y = t x, eliminating x' y' from this

equation, and the equation to the tangent, we find as in (123.), the re-

sulting equation to be a2
x* b* y* = (x

3
-f- y

9
)
9
, which cannot be dis-

cussed at present.
174. From the equation to the tangent, and that to C P, we find, as

in (124.),

c x' y'

* The following geometrical method of drawing a tangent to the hyperbola, and

proving that the locus of the perpendicular fram the focus on the tangent is the circle

on the transverse axis, will be found useful.

Let A P be the hyperbola, P any
point on it ; join S P and H P, and in

H P take P K = PS; bisect the

angle S P K by the line P y z, and

join S K, cutting P y in y.
1 . P y is a tangent to the hyper-

bola; for if R be any other point in

the line P y, we have H R - S R
II R - K R is less than H K ^Geom.
i. 10) less than 2 a, hence R, and every
other point in Py, is without the curve.

2. The locus of y is the circle on
the transverse axis : draw H z parallel
to S y, and join Cy; then, because
the triangles S P y, K P y are equal,
we have the angle S yP a right angle,
or S y and H z are perpendicular to the tangent. Also since S y K y, and S C

C H, we have C y parallel to H K, and C y = II K = i- (H P - S P) =r C A.

3. The rectangle S y, H z =. the square on B C. Let z H meet the circle again in

O, and join C O ; then the line O C y is a straight line and a diameter, hence the

triangles C S y, C H O are equal, and the rectangle S y, H z r= the rectangle II O,
H z =. the rectangle H A', H A the square upon B C.

4. Let SP r, HPr=2 =
jo And H * = p', then p* ; for by

similar triangles, S y I S P .' I H * : II P, .'. p = - - - p\ and, as above, p p' =

i*
,

. . j>*
rrr

2 4- r

i!
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From C w = C y sin. C y w, we have

a = a sin. C y u .' . sin. C y u = -.

V r r' V r r'

Also from H z = H P sin. H P 2, we have

b J -- = / sin. H P *, /. sin. H P* = 4= ,

r Vr r>

.'. angle C y u = angle H P 2 and C y is parallel to H P.

And if C E be drawn parallel to the tangent PT, and meeting H P
in E, we have PE = Cy = AC.

THE NORMAL.

175. The equation to the line passing through the point P (x
1

y')> anc^

/ b* tf b* \ .

perpendicular to the tangent I y = -
7-
x ---

1 is

\ ** y y /

cf 11'

y - y
' = -

1F7 <
-

0.

To find where the normal P G cuts the axes.

Also the subnormal M G = x x' = -- ; and S G = e. S P.
a8

176. From the above values of C G, C G', and M G', we may demon

trate that P G = -s/TPT PG' = J r r1, and consequently that
a b

The rectangle P G, P G' r= r r' = the rectangle S P, H P.

Also S G' = ~
' G G' = -- v', and .-. G G'= e.SG'.

o 6

177. Since the tangent makes equal angles with the focal distances,

the normal, which is perpendicular to the tangent, also makes equal

angles with the focal distances, one of them being first produced as to H'.

This theorem may be directly proved from the above value of C G ;
for

SG : HG :: & x' ae : e
8
x' + a e :: ex' a : e a/ + a :: SP :

H P, hence the angle S P H' is bisected by the line P G.

THE DIAMETERS.

178. It may be proved as for the ellipse (130.), that all the diameters

of the hyperbola pass through the centre, and that any line through the
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centre is a diameter. If y = x + c be the equation to any chord,
a? ot y 68 x = is the equation to the diameter bisecting all chorda

parallel to y = x + c.

179. In the ellipse all the diameters must necessarily meet the curve;
but this is not the case in the hyperbola, as will appear by rinding the co-

ordinates of intersection of the diameter and the curve.

Let y = ft x be the equation to a diameter C P, and substitute this

value of y in the equation to the curve.

These values are impossible, if a 8
/3

2
is greater than 6 s

, that is, if /3 is

greater than ; andif/3 = , the diameter meets the curve only at
a a

an infinite distance. The limits of the intersecting diameters are thus

determined; through A, B and B' draw lines parallel to the axes meeting

in E and E', then tan. E C A = , and tan. E' C A .
=

, henceCE
a a

and C E' produced are the lines required. Hence, in order that a dia-

meter meet the curve, it must be drawn within the angle E C E'; thus the

line C D never meets the curve.

The curve is symmetrical with respect to these lines C E, C E', since

the axis bisects the angle E C E'.

180. The hyperbola has an infinite number of pairs of conjugate dia-

meters. This is proved by referring the equation to other axes by means
of the formulas of transformation (57.)

y = x' sin. 6 + y' sin. 0',

x = y/ cos. 6 + y cos. 0' j

hence the equation a9
y

2 62 x* = a2 62 becomes

{a
9
(sin. 0')

2 - 6
s
(cos. 0')

2

} y'
2 + {a* (sin. 0)

2 - 69

(cos. 0)*} jc
n

+ 2 (a
2
sin. sin. 0' - 62 cos. cos. 0'} x' y' = - a* b*.

I'l '2
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In order that this equation be of the conjugate form, let the co-efficient

of i)

1

*' = 0,

.% a2 sin. 6 sin. Of 68 cos. Q cos. 0' = 0,

or, tan. 6 tan. 6' -
.

a2

Hence for any value of 0, we have a real value of 0', that is, there is an

infinite number of pairs of axes to which, if the curve be referred, its

equation is of the required conjugate form.

If tan. 6 be less than , tan. 0' must be greater than , that is, if
a a

one diameter C P, in the last figure, meets the curve, the conjugate dia-

meter C D does not; therefore in each system of conjugate diameters one
is imaginary. Also, since the product of the tangents is positive, both

angles are acute, or both obtuse ;
in the figure they are both acute, but

for the opposite branch they must be both obtuse.

181. As in article (132.), it appears that there can be only one system
of rectangular conjugate diameters.

182. The equation to the curve is now

{a (sin. 0')
2 62 (cos. 0')

8

} y'
2 + {a

2
(sin. 0)

8 - 6s (cos. 0)
2

}
-r'

8 = - a? b*.

If we successively make y' = 0, and j/ = 0, we have the distances

from the origin to the points in which the curve cuts the new axes; but
as we already know (180.) that one of these new axes never meets the

curve, we must represent one of these distances by an imaginary quantity.
Let the axis of x' meet the curve at a distance a

v from the centre, and
let the length of the other semi-axis be bi connected with the symbol

V -
1, that is, let the new conjugate diameters be 2 a^ and 2 6 t V If

then we have

y = /. {a
2

(sin. 0)
2 - 62

(cos. 0)
2

} a? - a* b\

x = /. {a
2
(sin. 0')

8 - 62
(cos. 0')

2

} (
-

6,
2

)
= - a2

6%

And the transformed equation becomes

or, ,

2
y'*
- b? .r'

2 =z
,

2 6 t

2
.

183. From the transformation we obtain the three- following equations:

!{' (sin. 0)
8 - 6 2

(cos. 0)
8

}
= ~ 8

6
8

(1),

6,
2

{a
2
(sin. 6>')

2 - P (cos. 00'} = + 2 &2
(2),

2
sin. sin 0' 6

2
cos. cos. 0' = 0,

or, tan. tan.
'

. 0' =
f*

Following the steps exactly as in article (134.), or, which amounts to

the same thing, putting 6
s

for 6
8
, and 6j

2
for bf all through that

article, we arrive at the result
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or, the difference of the squares upon the conjugate diameters is equal to

the difference of the squares upon the axes.

184. Again, multiplying (1) and (2) together, and (3) by itself, then

subtracting the results, and reducing, as in the article (135.), we have

at 6 l sin. (0' 0)
= a b.

Now Q' - is the angle PCD between the conjugate diameters C P
and C D

; hence, drawing straight lines at the extremities of the conjugate
diameters, parallel to those diameterSj we have, from the above equation,
the parallelogram P C D T = the rectangle A' C B E, and hence the whole

parallelogram thus inscribed in the figure is equal to the rectangle con-
tained by the axes*.

185. Returning to article (182."), the equation to the curve, suppressing
the accents on a/ and y', as no longer necessary, is

* The theorems in articles 183 and 184 may be proved also in the following man-
ner :

Referring the curve to its rectangular axes, as in art. (187-)> let tne co-ordinates of
P bear' and y '; then the equation to CD is os y y' bz x x' = 0, and eliminating x
and y between this equation and that to the curve (a

2
y
2 A2 xz =. a2 62) we have

the co-ordinates C N and D N, independent of the sign *J 1, with which they are

both affected,

/ /
*

CN = x = -JL, and D N = y = -
;

b a

Hence we have

Also the triangle P C D = the trapezium P M N D + the triangle D CN the

triangle PCM
-/w-^y + y'-L *y-*V_~*'y -

y'*.-

2ab
therefore the parallelogram P C D T c= a 6.
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In the last figure, C P = a,, C D r= 6,, C V = x and Q V = y
Putting the equation into the form

2/5
= ^8 (*

f - O = ;(*- "0 (* + i>

we have the square upon Q V : the rectangle P V, V P' : : the square upon
C D : the square upon C P.

186. The equation to the tangent at any point Q (x
1

y
1

) is

a* yy'-b*xx' = -if
V.

187. Let the curve be referred to its axes C A, C B, and let the co-

ordinates of P be x' y
r

, then the equation to C P being y = ~-
x, the

equation to C D is y = x tan. 9 = x cot. 6 =
g

w
, a-, or,

a*yy' - b* x x' = 0.

But the equation to the tangent at P is

#8
y y' b9 x x' = a8

1>* ;

hence C D, or the diameter conjugate to C P, is parallel to the tangent
at P.

The equation to the conjugate diameter is the same as that to the tan-

gent, omitting the last term a? b*.

188. Let x' and y
f be the rectangular co-ordinates of P; then from the

equation af 6
t

8 = a8 62
, we have

s= a' 2 - a = e a?'
8 - a8 = (e *' -

) (p x' + )
= r r' ;

a*

That is, the square upon the conjugate diameter C D = the rectangle
under the focal distances S P and H P.

189. If P F be drawn perpendicular from P upon the conjugate C D,

(see the last figure but one,) we have the rectangle P F, C D = a 6,

(184-).

.-. P F = -fLJL = -. ab = -^-i*
i V fll a8 + 6s v rr

Also P G = VTT; and P G' = 4- >i~^a b

Hence the rectangle P G, P F = the square on B C ;

And the rectangle P G', P F = the square on A C ;

And the rectangle P G, P G' = the square OB C D.

* If the distance C P r= u, and p = the perpendicular from the centre on the tan-

gnt, this equation is
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SUPPLEMENTAL CHORDS.

190. Two straight lines drawn from a point on the curve to the extre-
mities of a diameter are called supplemental chords

; they are called

principal supplemental chords if that diameter be the transverse axis.

The equations to a pair of chords are

y y
f = (* -

<*')

y + y' = *' (x + #') ;

Whence a a' = as in (141.); hence the product of the tangents of

the angles which a pair of supplemental chords makes with the transverse

axis is constant; the converse is proved as in 141.

191. The angle between two supplemental chords is found from the ex-

pression

And, if A R, A' R be principal supplemental chords drawn to any point
R on the curve,

tan. A R A' = -r-^f! .

(a
8 + 62

) y

The angle A R A' is always acute, and diminishes from a right angle
to ; the supplemental angle A A' R' increases at the same time from a

right angle to 180; hence, the angle between the supplemental chords

may be any angle between and 180.
Chords may be drawn containing any angle between these limits, by

describing on any diameter, except the axes, a segment of a circle con-

taining the given angle, an'l then joining the extremities of the diameter
with the point where the circle intersects the hyperbola. And therefore

principal supplemental chords parallel to these may be drawn.
192. Conjugate diameters are parallel to supplemental chords (144.) ;

and therefore they may be drawn containing any angle between and 90.
193. There are no equal conjugate diameters in the hyperbola, but in

that particular curve where b = a, we have the equation

a? - bf = a? - b3 = ;

hence the conjugate diameters c
t
and 6 t are always equal to each other.

The equation to this curve, called the equilateral hyperbola, is

- a:
2 = - o.

THE ASYMPTOTES.

194. We have now shown that most of the properties of the ellipse

apply to the hyperbola with a very slight variation : there is, however, a

whole class of theorems quite peculiar to the latter curve, and these arise

from the curious form of the branches extending to an infinite distance ;

it appears from the equation tan. . tan 6' = - in (180.), that as tan.
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approaches to , tan. 6' approaches also to , and thus, as a point P
il Or

recedes along the curve from the origin, the conjugate diameters for that

point approach towards a certain line C E, fig. (179.), and finally at an

infinite distance come indefinitely near to that line.

We now proceed to show that the curve itself continually approaches to

the same line C E, without ever actually coinciding with it. But as this

species of line is not confined to the hyperbola, we shall state the theory

generally.
195. Let CPP' be a curve whose equation has been reduced to the

form

And let T B S be the line whose equation is

y = a x + b.

For any value of x we can find from this last equation a corresponding

ordinate M Q, and by adding to M Q, we determine a point P in the

curve : similarly we can determine any number of corresponding points

(P', Q', &c.) in the curve and straight line.

Since decreases as x increases, the line P' Q' will be less than P Q,
JB

and the greater x becomes, the smaller does the corresponding P' Q' be-

come ;
so that when x is infinitely great, P' Q' is infinitely small, or the

curve approaches indefinitely near to the line TBS, but yet never actually
meets it : hence TBS is called an asymptote to the curve, from three

Greek words signifying
" never coinciding."

The equation to the asymptote T B S is y = a x + 6, or is the equa-
tion to the curve, with the exception of the term involving the inverse

power of a:.

196. The reasoning would have been as conclusive if there had been

more inverse powers of x ; and in general if the equation to a curve can
be put into the form

y = &c. +mjf+nx*+aj!+b+ -f
-

-f &c
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Then the equation to the curvilinear asymptote is

y = &c. + m x3 + n -x* + a x -f 6

Also the equation y = &c. + m 3? + n x* + a x + b -\
--

gives a curve

much more asymptotic than the preceding equation, and hence arises a
series of curves, each " more nearly coinciding" with the original curve.

197. Let us apply this method to lines of the second order, whose

general equation is (75.)

y = - - 4 2 (b d -

{ m x* + n x + P } >
by substitution,

- 4 a/}

2a

6 x -r- d constant terms

2 a \

' * m J powers of x

Hence the equation to the asymptote is

bx + d

ay - -

2a

V{* +
i^}

{<

bx + d V68 - 4ac f 6rf 2oc)
2a - 4ac

Now 6
s 4 a c is negative in the ellipse, and therefore there is no locus

to the above equation in this case ; also if 62 4 a c = 0, the equation

to the asymptote, found as above, will contain the term V#, and there-

fore will belong to a curvilinear asymptote ; hence the hyperbola is the

only one of the three curves which admits of a rectilinear asymptote.
It appears from the sign, that there are two asymptotes, and that

bx +d
the diameter y =

2a
bisects them. Also these asymptotes

pass through the centre ;
for giving to x the value --, we have

y =
b x + d 2 c d be

2a b* - 4 a c

and these values of x and y are the co-ordinates of the centre (80.).
198. I the equation want either of the terms #* or y*, a slight opera-

tion will enable us to express the equation in a series of inverse powers of

or x ; thus if the equation be

6 x n -f ex* 4- dy + x + f= 0,
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CJ + ex+f c a* + t x + f
we have y -,

: =

r + e x + /
bx

c x e f \f i

d

b b b x J\ b x

Hence the equation to the asymptote, found by multiplying and neg-

lecting inverse powers of *, is

cd

The other asymptote is determined by the consideration that if, for any
finite value of J?, we obtain a real infinite value of y, that value of x de-

termines the position of an asymptote.
Here when bx + d = 0, we have y = oo ; hence a line drawn pa-

rallel to the axis of y, and through the point x =
, is the required

o

asymptote.

If the equation be

ay* + bxy+dy + ex+/= 0,

the equations to the asymptotes are

a y -j- b x = , and by -f e = ;

6

and the second asymptote is parallel to the axis of y.

If the equation be

bxy + dy + ex +/=0,
the equations to the asymptotes are

6 x 4- d = 0, and b y + e = ;

the former asymptote being parallel to the axis of y, and the latter pa-
rallel to that of x.

199. Lastly, if the equation be

b x y + / = 0,

the asymptotes are then the axes themselves, and the curve is referred to

its centre and asymptotes as axes.

The position of the curve in this case is directly obtained from the

equation y = ~- ~
, by substitution.

b x x

Let C X and C Y be the axes, then for x = 0, y = oo ; as a: increases

y decreases, and when x = cc, y == 0; hence we have the branch Y X.
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For x negative, y is negative; and as x increases from toco, y de-

creases from QD to
;
hence another branch y tf, equal and similar lo the

former.

200. To find the equation to the asymptotes from the equation to the

hyperbola referred to its centre and axes,

Hence the equation to the asymptotes is

b

y = ~x.

To draw these lines, complete the parallelogram on the principal axes

(see the figure, art. 179.) ; the diagonals of this parallelogram are the loci

of the last equation, and therefore are the asymptotes required : thus C E
and C E', when produced, are the asymptotes.
The equation to the asymptotes, referred to the centre and rectangular

axes, is readily remembered, since it is the same as the equation to the

curve without the last term ; the two equations are

as
7/
2 b* x3 = a8 62, to the curve,

a* y* 6
2

a?
8 rr , to the asymptotes.

If the curve be referred to conjugate axes, the equations are

a* 2/
2

&!
2 xs -.

!

2
b*, to the curve,

a* y'
-

&,
2 #2 =

, to the asymptotes.

201. If & = #, the equation to the hyperbola referred to its centre and

rectangular axes is y
2

x* = a2
, therefore the equation to the asym-

ptotes is 7/
2

x* = 0, or y = i x ; hence these asymptotes cut the

axes at an angle of 45, or the angle between them is 90; hence the

equilateral hyperbola is also called the rectangular hyperbola.
202. If the curve be referred to its vertex A and rectangular axes, the

equation to the curve is

y = - = -i + ->
and, expanding and neglecting inverse powers of x, the equation to the

asymptotes is
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203. If we take the equation to any line ( y
~ x + c

J
parallel to

the asymptote, and eliminate y between this equation and the equation to

the curve, we find only one value of x ; and thus a straight line parallel

to the asymptote cuts the hyperbola only in one point.

204. In article (77.) it was stated that, in some cases, the form of the

curve could not be readily ascertained : thus, when the curve cuts neither

diameter, there might be some difficulty in ascertaining its correct position:

the asymptotes will, however, be found very useful in this respect: for

example, if the equation is x y = x9 + 6 x + c
1
, or y = x + b -i ,

we have for x = 0, y = GO
;
and when x becomes very great, y approxi-

mates to x + 6 ; hence the lines A Y and TBS, in figure (194), will

represent the asymptotes of the curve ; and since the curve never cuts the

axes, its course is entirely confined within the angle YB S and the

opposite angle T B A ; hence the position of the cwrre is at once deter-

mined, as in figure (194).

Ex. 2. y (x
- 2) = (*

- 1) (x - 3), or y =r <HlP (* ~ 3)

x <&

In the first place we ascertain that the curve is an hyperbola by the test

5
s _ 4 a c being positive ; then draw the rectangular axes A X, A Y : tt

find the points where the curve cuts the axes,

Let x = 0, .'. y = -
f = A B,

Let y = 0, /. x = 1 = A C,

also x = 3 = A D,

thus the curve passes through the points B, C, and D.

Again, to find the asymptotes, we have y = co for x = 2 ; hence, if

A E = 2, the line PEG, drawn perpendicular to A X, is one asymptote.
To find the other, we have

-3) (*-!)(*- 3) O-DOr-SV 2\~

-*;x - 2

.(,-4
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a? _ 4 x -f !

+ _ +, &c .
I - x - 4 + 2 + +, &c. ;

hence the equation to the asymptote is y = x 2, and therefore this line

must be drawn through the point E, making an angle of 45 with A X.
We can now trace the course of the curve completely ;

for all values of
x less than I, y is negative, hence the branch B C ; for x greater than

1, but less than 2, y is positive and increases from to CD, hence the

branch C F ; for x greater than 2, but less than 3, y is negative, hence
the branch G D ; and for x greater than 3, y is positive and approx-
imating to x 2, hence the branch from D extending to the second

asymptote.
For negative values of x, y is negative, and increases from

|-
to co,

approximating also to the value x 2
; hence the curve extends

downwards from B towards the asymptote.
Ex. 3. y (x a) = x (x 2 a). Here x = a and y = x a, are

the equations to the asymptotes. The figure is like the last, supposing
that A and C coincide.

Ex. 4 y* = a x~ * + x*. The axis of y is one asymptote, since

x = gives y = co : Also

/ a \8 2

y -
x( 1 + =,r + 2a + ;

\ x J x

hence y = x -{- 2 a gives the other asymptote.
205. In order to discuss an equation of the second order completely, we

have given, in Chapter VII., a general method of reducing that equation
to its more simple forms.

In that chapter we showed that the equation, when belonging to an

hyperbola, could be reduced to the form a y* + c x* + f 0. (84.)
Now the same equation can be reduced also to the form xy = A;

2
; and

as this form is of use in all discussions about asymptotes, we shall pro-
ceed to its investigation.

206. Let the general equation be referred to rectangular axes, and let

it be

Let x = x' -f m, and y = y' + n, and then, as in article (80.), put
the co-efficients of x' and y' each = ; by this means the curve is re-

ferred to its centre, and its equation is reduced to the form

ay'* + bx'y' + ex'* +/'=0.
Again, to destroy the co-efficients of x' z and y'

z
, take the formulas of

transformation from rectangular to oblique co ordinates (57.).

y
f =r x" sin. 6 -f y" sin. 0',

'x' = x" cos.e + /'cos. 0';

then, by substituting and arranging, the central equation becomes

y"
z

{a (sin. 6')
2 + b sin. Q' cos.0' + c (cos. 6>',

8
}

J- .r" 2
{a (sin. 0)

2
-f b sin. cos. Q 4 c (cos. 0)

8
}
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+ x" y" {2 a sin. 0'sin. -\-6 (sin. cos. 0' + sin. 0'cos. 0) + 2 c cos. 0'

cos. } + /' = 0.

There are two new indeterminate quantities 0and tf introduced ;
there-

fore we may make two suppositions respecting the co-efficients in the

transformed equation ; hence, letting the co-efficients of x"* and y"
z

0,

we have

a (sin. 0)
8 + 6 sin. cos. + c (cos. 0)

8 = (1),

a (sin. 0')
2 + 6 (sin. Bf

) (cos. 0') + c (cos. 0')
8 =

(2).

Dividing the first of these two equations by (cos. 0)
8
, we have

a (tan. 0)
2 + 6 tan. + c = 0;

hence - _
2 a

From the similarity of the equation (1) and (2), it is evident that we
shall arrive at the same value for tan.

/

; hence, letting one of the above

values refer to 0, the other will refer to
;
or both the new axes are de

termined in position from the above values of tan. 0.

The equation is now reduced to the form

6' off y" + /' = 0.

207. To find the value of b', we have

>':= 2 a sin. 0' sin + 6 (sin. cos. 0' + sin. 0'cos. 0) + 2 c cos 0'cos. 0,

= cos. 0' cos. {2 a tan. 0' tan. + 6 (tan.
/ + tan. 0) + 2 c

} .

From the eauation involving tan. 0, we have

tan. . tan. 0' =
, tan. + tan. 0' =

,

a a

and therefore cos. cos. 0' = -
;

!>

8 - 4ac_ a
J o 1 -

V ( c)* + 62

( J V (a -

Hence the final equation is

208. If the original axes are oblique we must take the formulas io (56.),

and then, following the above process, we find

_ V 6* 4 G c 6 + 2 c cos. oi

2 (a + c (cos. w)
8 6 cos. a;)

y =
-

(ft
8 - 4 a c)___

V {(* + c - 6 cos. w)
8 + (6

s - 4 ac) (sin. a)
2

}*

209. The following examples relate to the reduction of the general
equation referred to rectangular axes, to another equation referred to the

asymptotes.



THE ASYMPTOTES. Ml

Ex 1. i/'
- 10 x y + a* + y + * + 1 =*0,

m = -!-, = ./' =|-; tan. fl= 5

Ex. 2. 4 y
8 - 8 x y 4 a;

2 4 y + 28 x \ 5 = 0,

b'= - 8V2T/'=: 2,

/. - 8 *J~Tx" y" + 2 = 0,

or,

Ex. 3. --
1

-- = 1, or xyz=

4V2

The axes are here parallel to the asymptotes (198.) : in order to transfer

the origin to the centre, let y = y
f + n and x = x' + m, hence we have

m = o, ?i = 6, and the reduced equation is

of y'
= a 6.

210. If 6 and 6f be the angles which the asymptotes make with the

original rectangular axes, we have from the equation (206.),

a (tan. 0)
8 + b tan. -f- c = 0,

c
.'. tan. 0. tan. 0' =

a

Now when c = a, this equation becomes tan. B. tan. fl
7 = 1, or,

tan. 0. tan. 0' + 1 = 0; hence by (47.), the angle between the asym-
ptotes is in this case = 90

; and thus whenever, in the general hyperbolic

equation, we have c = a, the cnrve is a rectangular hyperbola.
Ex. 4. 2/

2 - x* = V 2.

The curve is a rectangular hyperbola, and is referred to its centre and

rectangular axes
;

also taking the two values of tan. in (206.), we have
tan. 0=1, and tan. 6' = - 1 ; hence = 45 and 0' = - 45, and
the formulas of transformation become

= J 2,

and

In this example the curve is placed as in the next figure, and at first

was referred to the axes C X and C Y, but now is referred to the asym-
ptotes C x and C y, supposing C y and C a: to change places, and the

angle x C y = 90.
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211. Conversely given the equation xy = A-
9
, to find the equation re-

ferred to the rectangular axes, and thence to deduce the lengths of the axes

For this purpose we use the formulas of transformation from oblique to

rectangular axes (56.).

x' sin. + y' cos.

y = : ,

sin. <i>

x' sin. (ia
-

0) y' cos, (cj 0)

sin. it)

substituting these values in the equation x y &*, we have

a?" sin. sin (w 0) y'
2 cos. cos. (w -

0)

-4- x' y' {cos. sin. (w 0) sin. cos. (w 0)} =r &2

(sin. u))
2

.

Let the co-efficient of x' y' = 0,

.*. cos. sin. (w 0) sin. cos. (w 0), or sin. (u> 2 0) = ;

.'. o> = 2 0, and = ~
;

hence the new rectangular axis of >r, determined by the angle 0, bisects

the angle w between the asymptotes ; this agrees with the remark at the

end of (179.).
60

The transformed equation, putting =
, is

;.

j

= ^2
(sin. (i)

2
,

or, putting 2 sin. - cos. - for sin w, and dividing

r ' 2

-; = - 1 ;

,

Comparing this with the equation = 1, we have
O (t

a = 2 k cos. -
, and b = 2 k sin.~

;

hence the lengths of the semi-axes are determined.

If the equation had been xy + ax + l>y+cz=:Q, first refer the curve
to its centre, and then proceed as above.

212, To deduce the equation x y = 2 from the equation to the curve
referred to the centre and rectangular axes.

Let C X, C Y be the rectangular axes,

C r, C y the asymptotes, or the new axes,

_ 1 the original co-ordinates of P,

v P ,[
lne IICW co-ordinates of P.



THE ASYMPTOTES 113

VJ

Then taking the formulas of transformation from rectangular to oblique
axes (57),

y x' sin. + y' sin. 6',

x = x? cos. + y' cos. 0',

and substituting in the equation a2

y
9 b* x9 a2 62

, we have

a2

(x
f
sin. + / sin. 0')

2 &2

(-*' cos. + y' cos. 0')
2 = - a2

6*,

or, {a
2
(sin. 0')

8 - &
2

(cos. 0')*} 2/'

2 + {a
2
(sin.0)

2- 62

(cos. 0)
2

} *'
2
,

f 2 { a2 sin sin. & - 6
2 cos. cos.

/

} a/ y' = - a2 62.

In order that this equation may be of the required form, it must not

contain the terms in a/ 2 and y'
2

; but since we have introduced two inde-

terminate quantities, we can make the two suppositions that the co-effi-

cients of these terms shall =
;

.'.
8
(sin. 0')

2 62 (cos. 0')
8 = 0,

a2
(sin.0)

2 - 6s (cos. 6)
2 r= 0,

From the last of these equations we have tan. = ,
and as we

obtain from the other equation the same value of tan. 0', it follows that the

values of and &' are both contained in the equation tan. =
, that

. I ^
)

V /
refers to the axis of*, then tan. 0(

== H )
refersis, if tan

to the axis of y, (we have chosen tan. = for the axis of
jr, in order

a

to agree with the figure).
The equation to the curve referred to its. asymptotes is now

2 {a
2
sin. sin. 0' 6s

cos. cos. 0'} x' y' = - a2 6?
,

or, 2 cos. cos. 0' {a
2 tan. tan. 0' - 62

}
<r' y = - a* 6* ;

but since tan. =
, we have

a
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===== = -====- = COB. *;

If 6 = ,
or the curve be the rectangular hyperbola, the equation rc

a2

ferred to the asymptotes is x y .

213. The angle between the asymptotes is 2 0; if therefore PR be

drawn parallel to CN, the area PN C R =r x sin. 2 6 zr xy . 2 sin.

as + j}
*

b^ a ab
4

'

VoM- p
'

V a2
-f 62

"
2

Thus all the parallelograms constructed upon co-ordinates parallel

to the asymptotes are equal to each other, and to half the rectangle in the

semi-axes.

214. Let CS, C S' be the asymptotes to the curve referred to con-

jugate diameters C P, C D (a t 60, then if P T be parallel to C D, it is a

tangent at P (1S7.) ; TPT' is also a double ordinate to the asymptote,

for the equation to C S is y = it #, and when x == alty= 6.. Hence

PT= PTr

, or the parts of the tangent contained between the point of

contact and the asymptotes are equal to each other, and to the semi-con-

jugate diameter.

215. Join D T, then D P is a
j arallelogram ; also because C D is equal

and parallel to PT', we have the line DP parallel to the asymptote
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C S'. Hence, if the conjugate diameters be given, the asymptotes may
always be found by completing the parallelogram upon the conjugate

diameters, and then drawing the diagonals. Also, if the asymptotes be

given, a conjugate diameter to C P may be found by drawing P R parallel
to C S' and taking P D double of P R.

If the asymptotes be given, a tangent maybe drawn by taking CT
double of C R, and joining P T.

If the position of the focus is known, the length of the conjugate
axis is equal to the perpendicular, from the focus on the asymptote.

216. To find the equation to the tangent P T, when referred to the

asymptotes as axes,

Let .r', y
r be the co-ordinates of P, and J^f y'' co-ordinates of another

point on the curve.

fc
?

A:
2

"

y
' =

~7'
and y

" -
IP

y'-y" _

y y' ^7 (x ~ x') i t e equation to a secant.

When x" xr we have the equation to the tangent

This equation to the tangent is readily obtained from the equation to

the curve (xy = k* or xy + xy =: 2&2
) by putting x'y and xy' successively

for xy, and then adding the results.

Let y /. C T' = 2 a/ = 2 N
;
and C T =r 2 y' = 2 N P ;

The triangle CTT' . 2J. 2 y' sin. TCT =2#Vsin. 2 = a 6,
2

(213.)
217. The two parts S Q, S'Q' of any secant S Q Q' S comprised

between the curve and its asymptote are equal ; for if the diameter C P V
and its conjugate C D be drawn, we have VQ = V Q' from the equation

to the curve ( y = it - J x* - af \ and from the equation to the asym-

ptotes (y = x, ^]
we have VS = VS /. SQ=S'Q'.

\ ai /

218. If Y and y are the ordinates VS, VQ respectively, -we have

Thus the rectangle S Q, Q S' = the square upon C D.

12
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219. Let the curve be referred to the centre C, and to rectangular axes

C A, C B, and let the co-ordinates of the pole O be x1 and y', O being
situated anywhere in the plane of the curve and P any point on the curve,
as in (146.), the angle which the radius vector O P or u makes with a

line parallel to the axis of jr. Then we have by (61.)

y = y
f + u sin. &

X = Xf

-f- U COS.

also, o2
j/

8 62
o;
2 =r a2

b*

. . a2
(T/ -f u sin. 0)

8 62

(x
f + u cos. 0)

2 = - 8
6*

220. Let the centre be the pole, .*. x1 = 0, and y' = 0,

- *68

_ a8
(e

2 - 1)

a2

(sin. 0)
2 - 6* (cos. 0)

2
~~

e
2
(cos. 0)

2 - 1.

221. Let the focus S be the pole,

. . y' = 0, x
f = a fi and u becomes r,

Substituting these values, and following the steps in (148.), we find

_ b2
a(e* -

1)
~~

a c cos.
~~

1 e cos

If the angle A S P = 0, we have

^ a(e'-l)
1 + e cos.

This is the equation generally used. It may easily be obtained from

the equation r = er a, fig. (161):= e (a e r cos. 0) a,

1 -f- e cos.

222. If -^-
= a (e* 1) we have r = -

.
- = S P, and if

2 21 + ecos,0

P S meet the curve again in P', we have the rectangle S P, S P7 =
-j-

(PS-f-SP') = -j
PP''

The length of the chord through the focus = 2^ where b
t
is the dia-

meter to that chord.

THE CONJUGATE HYPERBOLA.

223. There is another equation to the hyperbola, not yet investigated.

If f TJT J
be negative in article 153, the equation is Pys - Q jc* = 1
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or a2
y
9 b* x2 = a'' 6

2
if P = -, and Q = . If we examine the

course of this curve, we shall find that B B' = 2 b is the real or trans-

verse axis, and A A', or 2 a, is the conjugate axis, and that the curve

extends indefinitely from B to B', so that it is, in form, like the hyperbola

already investigated, but only placed in a different manner.

Both curves are represented in the next figure ; the real axis of the

one being the conjugate or imaginary axis of the other.

It is evident from the form of the equations that both curves have got
common asymptotes E C E', FC F'.

224. Let C P and C D be two conjugate diameters to the original hy-

perbola APE, it is required to find the locus of D.

Let C M = aft M P = y',
C N = *, N D = y ,

then a? bf = a2 - 62
;

.'. x'* + y'* =c r
2 + y* + a2

but the equation to C D is

"

a4 (x* + 2/
2 + a2 - 6),

Substituting these values in the equation a2
y'* 6* x'* = a2 68

, and

reducing, we have a* y~ 6s x* = a2 6
2

, hence the locus of D is the con-

jugate hyperbola, and hence arises its name.

By changing the sign of the constant term in the equation to any
hyperbola, referred to its centre, we directly obtain the equation to its

conjugate, referred to the s '.me axes of x and y. Both curves are com-

prised in the form
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CHAPTER X.

THE PARABOLA.

225. THE equation to the parabola referred to rectangular axes, has

been reduced to the form a'y* + e' x = (94.).

From this equation we proceed now to deduce all the important proper-

tics of the parabola.

Let -
p, :. y* = V .

Let A be the origin ;
A X, A Y the

a xes ; then for x we have y = 0, and
the curve passes through the origin A.

For each positive value of x there are two equal and opposite values of

y, which increase from to co, according as x increases from to CD ;

hence there are two equal arcs, A P and A P', proceeding from A, without

any limit. This curve is symmetrical with respect to its axis AX, and
its concavity is turned towards that axis, otherwise it could be cut by a

straight line in more points than one.

For every negative value of x, y is imaginary.
226. The point A is called the vertex of the parabola; A X, A Y the

principal axes; but, generally speaking, AX alone is called the Axis of

the parabola. Thus the equation to the curve referred to its axis and
vertex is y* ^.px.

-

From this equation we have The square upon the ordinate = The rect-

angle under the abscissa and a constant quantity ; or the square upon the

ordinate varies as the abscissa.

227. The last property of this curve points out the difference between

the figures of the hyperbola and parabola; both have branches extending
to infinity, but of a very different nature ; for the equation to the hyper-

is y* = 5 (a
8

a*) =
5 x*

(
1

),
and therefore, for large

a or \ x )
values of x, the values of y

2 increase nearly as the corresponding values of

x8 or y varies nearly as x ; hence the hyperbolic branch rises much more

rapidly than that of the parabola, whose ordinate varies only as J x.

When x is very great, the former takes nearly the course of the line

y = ,r, but in the parabola, y is not much increased by an increase of

a?, and therefore the curve tends rather towards parallelism with the axis

of*.

228. The equation to the parabola may be derived from that of the

ellipse by considering the axis major of the ellipse to be infinite.

bola
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Let C be the centre, and S the focus of an ellipse whose equation is

Let m = A S . A C S C = a -
*J a* - b*, (fig. 106.)

.*. 6
2 = 2 a in m8

;

/ 2m2

:. y* = 4 m --
Now if a be considered to vary, this will be the equation to a series of

ellipses, in which the distance A S, or m, is the same for all, but (he axis

major different for each
;
thus giving to a any particular value, we have a

corresponding ellipse. Let now a be infinite, then, since all the other

terms vanish, the equation becomes y
z = 4 m x

; hence the ellipse has gra-

dually approached to the parabolic form, as its axes enlarged, and finally

coincided with it when the axis major was infinite *.

In the same manner the equation to the parabola may be derived from

that to the hyperbola.

THE FOCUS.

229. The quantity p, which is the co-efficient of x in the equation to the

parabola, is called the principal parameter, or Latus Rectum of the pa-
rabola.

y*
Since p = , the principal parameter is a third proportional to any

abscissa and its corresponding ordinate.

In article (228.) we have used the equation y* = 4 m x for the parabola,

merely to avoid fractions with numerical denominators
; it appears that

many of the operations in this chapter are similarly shortened, without

losing any generality, by merely putting 4 m for p ; hence we shall use

the equation y* = 4 m x in most of the following articles, recollecting
that all the results can be expressed in terms of the principal parameter, by

putting for m wherever m occurs.

230. To find the position of the double ordinate which is equal to the

Latus Rectum.
Let 2 y = 4 m, .'. 4 y* = 16 m2

, or 16 m x = 16 m2
, and x = m.

In A X take A S = m, then the ordinate L S L' drawn through S,

is the Latus Rectum.

The point S is called the focus.

The situation of the focus S may be also thus determined :

Let A M = x
t
M P = y, join A P, and draw P O perpendicular to A P,

ThenAM : M,P :: M P : M O = -^- = 4m, /. AS = m = ^MO

* If # is very small when compared with a, the equation to the ellipse is very nearly
that to a parabola; and this is the reason that the path of a comet near its perihelion

appears to be a portion of a parabola.
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231. To find the distance of any point P in the curve from the focws :

J^et S P = r, A M = *, M P = y ; also at *, y
f = 0, and x' = m,

.'. r = (y
- y'Y + (*

- *T = ^ + (* - "O
a = 4 m a + (*

- m)
= Cr + m)

a
;

.*. r = SP = x + m.

THE TANGENT.

232. To find the equation to the tangent at any point P (a/, y') of the

parabola.
The equation to a secant through two points on the curve (a/, y')

A S M G

Also y'
2 = 4 m cr', and y"

2 = 4 m jc" ;

.' 2/'
2 -

2/'
/2 = 4 m (,r

r -
")i

, y'
-

y" __
4m

Thus the equation to the secant becomes

4 m
-*0;

but when the two points coincide y" = y', and the secant becomes a

tangent.

or y y'
-

y
1* = 2 77* (#

-
a/),

\ y y' = y'
8 + 2 m (x - x ) = 4 m x 1 + 2 ?/i (j: a7

/. y y' = 2 m (a- + J^).

This equation is immediately deduced from that to the curve

(y* r= 4 m x =r 2 m (r + x) )

by writing y y' for y
8
, and x + of for ,r -f x.

233. To find the points where the tangent cuts the axes.

Let y = 0, .*. ,r -t- x' = 0, .*. * =r j:', or A T = A M ;

Hence the absolute value of the sub-tangent M T is 2 A M.
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Let x = 0, .'. y = 2 m -
-,

=
j f

=
-|-

, A A y = M P.

234. The equation to the tangent being y y
f = 2 m (x + <r'), we have

at the vertex A, j/ and ?/' each = 0, therefore the equation to the tangent
becomes 2 m x = 0, or x =.

;

But x = is the equation to the axis A Y;
Hence the tangent at the vertex of the parabola coincides with the

axis of y.
235. To find the equation to the tangent at the extremity of the princi-

pal parameter.

yyf =2m(x + x')
9>

At L we have x' = m, and jf = 2 m,

/. 2 my ~ 2m {x + m),

E22L,A S M 1C

If the ordinate y or M Q cut the parabola in P, we have S P =r x + m
(231.), /. MQ = S P.

236. To find the point where this particular tangent cuts the axis of x.

Let y=0, /. j?=AT = m = AS.
From T draw T R perpendicular to A X, and from P draw P R pa-

rallel to A X, then taking the absolute value of A T, we have

Consequently the distances of any point P from S, and from the line T R,
are equal to one another.

This line, T R, is called the directrix ; for knowing the position of this

line and of the focus, a parabola may be described.

This tangent cuts the axis at an angle of 45. (35. Ex. 3:)
237. To find the length of the perpendicular S y from the focus on the

tangent.

Taking the expression in (48.) we have

But from the figure 232, we have y l
= 0, and x^ = m for the co-

ordinates of the point S, and y = a x -f- 6 is the equation to the line

P T ; also the equation to P T is

2m 2mxr

:. a =
y-,

and b = y-,

2m 2 m xf

"*

S
2 m (m

= v m (m + x') = V m **, if S P r= r ;
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Hence the square on S y = the rectangle S P, S A ;

or, S P : S y : : S y l S A.

238. To find the locus of y in the last article.

2 m
The equation to the tangent PT, fig. 232, is y = j- (x + x') ;

Hence the equation to S y passing through the point (m, 0), and per-

pendicular to P T, is

y = -
2m (of

- m).

To find where this line cuts the axis of y, put x = 0, /. y = J-, but

this is the point where the tangent at P cuts the same axis (233.) ; hence
the tangent and the perpendicular on it from the focus meet in the axis

AY, or the locus of y is the axis AY.
239. Again, to find where ihe perpendicular S y cuts the directrix, put

.==_, :. s = -jL<,-m)=-jLt- m - m
-)
=

if,

but this is the ordinate M P
;
hence a tangent being drawn at any point

P, the perpendicular on it from the focus cuts the directrix in the point
where the perpendicular from P on the directrix meets that directrix.

240. To find the angle which the tangent makes with the focal distance

The equation to the tangent PT is y = j- (j; + x').

The equation to the focal distance S P through the points S (= 0, m)
and P <= x' t y') is

And tan. S P T = tan. (P S X - P T X)

y' _ 2m
a/ m y

1

x' m y

A s M G x.

- 2 in (x' - m) _ 4 m x' - 2 m x' + 2 ?n 2 _ 2 m (of + m)
(*' m) + 2 m/

_ 2_
m _ jf_

m)

-H^L

But M P = M T tan. P T M, /. tan. P T M = -f-j, /. tan. S P T
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rr tan. S T P = tan. T' P Q, if P Q be drawn parallel to the axis of x.

Thus the tangent at P makes equal angles with the focal distance, and
with a parallel to the axis through P.

This important theorem may also be deduced from the property in

article 233. It is there proved that the absolute value of AT is AM,
hence we have ST = S A + AT = m + x = S P, and therefore the

angle S P T = angle S T P = angle Q P T'.

If a ray of light, proceeding in the direction Q P, be incident on the

parabola at P, it will be reflected to S, on account of the equal angles
QP'I', SPT: similarly ail rays coming in a direction parallel to the axis,

and incident on the curve, would converge to S; and if a portion of the

curve revolve round its axis, so as to form a hollow concave mirror, all

rays from a distant luminous point in the direction of the axis would be

concentrated in S. Thus, if a parabolic mirror be held with its axis point-

ing to the sun, a very powerful heat will be found at the locus.

Again, if a brilliant light be placed in the focus of such a mirror, all the

rays, instead of being lost in every direction, will proceed in a mass parallel

to the axis, and thus illuminate a very distant point in the direction of that

axis. This property of the curve has led to the adoption of parabolic
mirrors in many light-houses.

THE NORMAL.

241. To find the equation to the normal P G, at a point P
The equation to a straight line, through P, is y y

1 = or (j? jc
r

), and
.is this line must be perpendicular to the tangent whose equation \sy =

j- (JT + j/), we have a =.
,
hence the equation to the nor-

y' 2m
mal is y -

y' = -^ (r
-

*').

242. To find the point where the normal cuts the axis of #.

Let y = .*. x - J = m, or the subnormal M G is constant and equal
to half the principal parameter.

Hence S G = S M -f M G = x' m + 2 m = x' + m = S P

And P G =
-v/2/'

2 + 4m* = V 4mj/+ 4 m* = \/4 m (x' + ni) = \/4 m r.

Hence the normal PG is a mean proportional between the principal

parameter and the distance S P.

THE DIAMETERS.

243. It was shown in article 81, that the parabola has no centre.

Since for every positive value of x there are two equal and opposite
values of y the axis of x is a diameter, but that of y is not; hence the

axes cannot be called conjugate axes. The parabola has an infinite num-
ber of diameters, all parallel to the axis

;
to prove this,

Let y =. ax + b be the equation to any chord,

2/
2 = p x the equation to the curve.

Transfer the origin to the bisecting point x! y
1 of the chord, then the equa

tions become y = a r, and (y + y')* = p (x + r')
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To find where the chord intersects the curve, put a x for y in the second

equation.

or a2 *2 + (2a/-p)r-rV2
-/>tf'=0

But since the origin is at the bisection of the chord, the two values of x

must be equal to one another, and have opposite signs ; hence the second

term of the last equation must = 0, .". 2 ay' p = 0.

This equation gives the value of y', and since it is independent of b, it will

be the same for any chord parallel to y = a x + 6 ;
hence y = ~- is the

equation to the locus of all the middle points of a system of parallel chords,
and this equation is evidently that to a straight line parallel to the axis ;

and conversely.
244. To transform the equation into another referred to a new origin

and to new axes, and so that it shall preserve the same form,

Let x = a -f- x' cos. 6 + y
r
cos. 6f

,

and y = b -j- x' sin. 6 -j- y' sin. 0', (57.)

Substituting these values in the equation y
2 = px and arranging, we

have

+ y' (2 6 sin. 6'- p cos. 0)
+ of (2 6 sin. e p cos. 0) -j- bz

ap = 0.

And as this equation must be of the form y
2 = p x, we must have

(sin.0)
2 zrO . . . (1),

2 sin. 0. sin. 6' = . . (2),

2 6 sin. 6' - p cos. 0' = (3),

b*-ap = . . . (4).

Jlence the equation becomes

3/'
2
(sin. 6'y -j- (2 b sin. p cos. 0) #'=

;

or since e r=: 0, j/'

2
(sin. 0')

2 px
f = 0.

245. On the examination of the equations (1) (2) (3) and (4), it

appears from (1) that the new axis of x' is parallel to the original axis of

x
;
and being from (1), of course (2) is destroyed, and thus the

equations of condition are reduced to three : but there are four unknown

quantities, hence there are an infinite number of points to which, if the

origin be transferred, the equation may be reduced to the same simple
f<;rm.

We may take the remaining three quantities a, b and 0', in any order,

and arrive at the same results. Suppose a is known, then from (4), b*

= p a, this equation shows that a must be taken in a positive direction

from A, and also that the new origin must be taken on the curve itself, or

the new origin is at some point P on the curve, as in the next figure
nr\

fo

From (3) we have tan. =
-^j-

=
;

but this is exactly the value of the tangent of the angle which a tangent
P T to the curve makes with the Axis (240.) : hence the new axis of y is a

tangent to the curve at the new origin P.
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The results are therefore these, the new origin is at any point P on
the curve (see the next figure). The axes are one (P X') parallel to the

axis A X, and the other (P Y') is a tangent at the new origin P. Lastly,
from the form of the equation, the new axis of or is a diameter.

246. The equation is /8 = ^ 2
of = p'x where p' = P

Ql

= p (cosec. 0')
2 = p (1 + cot.0')

2 = p( 1 +
TT-Jr]

= p + 4 a

= 4 S P (231.)

Hence the new parameter at P is four times the focal distance S P.

247. The equation to the parabola, when we know the position and
direction of the new axes, is readily obtained from the original equation
referred to rectangular co-ordinates.

Let the point P be the new origin, P X', P Y' the new axes, angle
Y' P X' = e .

Also, let A N = x, N Q = y be the rectangular co-ordinates of Q.

And AM = a, M P = 6 .; ., . .
,

f,t
-

r P.

P V = x' ,
V Q = y' be the new co-ordinates of Q.

Then y = Q N r= sin.

cos. 6.

Substituting these values in the equation y
2 = p x

,

we have (6 + y' sin. 6>)
2 = p (a + x 1 + y

1

cos 0) ;

.'. 2/
/s

(sin. 0)
2 + (26 sin. p cos. 0) y

f + 62 = p a -f- p 9 ;

6 6 p
but 62 = p a, and tan. = tan. P T M = -^ = = -^ ,

2

.*. 2 6 sin. - p cos. 0=0,

and the equation is reduced to the form

y'
2
(sin. 0)

2 == p x'.

6* 4 a8

Also from (tan. )
a = we have (cos. 0)

2 =
4 ga + &a

and (sin. 0)
2 E=
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P
.". y

' 2 = p 2

y'
2 rr (4 a + P) *' = 4 f a 4- 4-

J
*' = P' ^ where // = 4 S P.

Hence the square upon the ordinate = the rectangle under the

abscissa and parameter.

248. To find the length of the ordinate which passes through the

focus:

Here, x = PV=ST=SP=:r /. y = p,r:=4r.r=4r
.-. y = 2r

Hence, QQ' = 4 S P.

Thus the ordinate through the focus is equal to four times the focal

distance S P, is equal to the parameter at the point P.

Hence, generally, if the origin of co-ordinates be at any point P on the

parabola, and if the axes be a diameter and a tangent at P, the

parameter to the point P is that chord which passes through the focus.

249. The equation to a tangent at any point Q (#' y'), referred to the

new axes P X', P Y', is

Let y = .*. x x\ hence the sub-tangent = twice the abscissa.

<// x
1

y
r

Let x . . y = -^
=

|-
= the ordinate.

For y put y, then we have the equation to the tangent at the other

extremity Q' of the ordinate Q V Q' ; hence it may be proved that tangents
at the two extremities of a chord meet in a diameter to that chord.

250. If the chord Q V Q' pass through the focus, as in the figure, the

co-ordinates of Q are y' = 2 S P = 2 r, and lr' = PV = SP = r, also

p' = 4 r
;
hence the equation to the tangent at Q, or y y' (x + #')

becomes y = x + r, and similarly the equation to the tangent at Q' is

- y = x + r, and these lines meet the axis P X' at a distance r from

P, that is, tangents at the extremity of any parameter meet in the di-

rectrix.

Also, the angle between these tangents is determined from the equation

(a a') sin. to

=
' '

(1 + 1 ) sin. ai= ----
(since a = 1 and a = 1;

= l
- = tan. 90.

Hence, pairs of tangents drawn at the extremities of any parameter
meet in the directrix at right-angles.
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THE POLAR EQUATION

251. To find the polar equation to the curve.

Let the co-ordinates of any point O be J/ and y', and let 9 be measured
from a line O x, which is parallel to the axis of the curve :

Then by (61.), or by inspection of

the figure, we have

y = y
f + u sin.

x = xf

-f- n cos.

Substituting these values of x and y in the equation y* =r p x, we have

(y
r + u sin. 0)

* = p (x' + u cos. 0)

252. Let the pole be at any point on the curve,

.
'

. y"
2 + 2 u y' sin. + u* (sin. 0)

2 = p x' + p u cos. ;

or, u (sin. 0)
8 = p cos. 2

?/'
sin. 0, since

y'*
= p a/ ;

^? cos. 9 2 y' sin.

(sin. 0")
1 '

And if the vertex be the pole, we have y'
=

;

p cos.
=

(sin.0)
2

'

P
253. Let the focus S be the pole, . '. y

1 = 0, x' = - and w becomes r;

hence the general equation (y
1 + u sin. 0)

2 = p (#' + w cos. 0) becomes

r2 (sin. 6)
2

1- pr cos. 0,
4

p
2

or r2 (sin. 0)
2

f- >'
2
(cos. 0)

8 =
j-

+ /?
r cos. + r2 (cos. 0)

/. r
a =

( -^
+ r cos. (

r = ^- + r cos. 0; or r = 2-
.-

. . .

2 2 1 cos.

The polar equation in this case is also easily deduced from article (231).

Let angle A S P = 0,

thenr =:SP = AM-i-AS = 2AS4-SMr= - r cos. 0;

r __ __ __
"21 + cos. / 9 V

(CO, T
i
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254. If P S meet the curve again in P', we have S P

P 1 _P 1

21 cos.
(TT
-

0)

~~
2 1 + cos. 9 '

hence the rectangle

p s, s p' = -P = L. (s P + s P ) = --, P P'.
4 1 (cos. 0)* 4 4

'

CHAPTER XI

THE SECTIONS OF A CONE.

255. IT is well known that the three curves, the ellipse, the hyperbola,
and parabola, were originally obtained from the section of a cone, and that

hence they were called the conic sections. We shall now show the

manner in which a cone must be cut by a plane, in order that the section

may be one of these curves.

A right cone is the solid generated by the revolution of a right-angled

triangle about one of its perpendicular sides.

The fixed side, O H, about which the triangle revoive^, is called the axis
;

and the point O, where the hypothenuse of the triangle meets the axis, is

called the vertex of the cone. If the revolving hypothenuse be produced
above the vertex, it will describe another cone, having the same axis and
vertex. Any point in the hypothenuse of the triangle describes a circle;

hence, the base of the triangle describes a circular area called the base of

the cone.

Section made by planes which pass through the vertex and along the

axis are called vertical sections
;
these are, evidently, triangles.
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If a plane pass through the cone in any direction, the intersection of it

with the surface of the cone is called a conic section. The nature of the

ine thus traced will be found to be different, according to the various

positions of the cutting plane. It is our purpose to show, generally, to

what class of curves a section must necessarily belong ; and, afterwards,
to point out the particular species of curve due to a given position of the

cutting plane.
256. Let O B Q C be a right cone, O the vertex, O H the axis,

B C Q the circular base, P A the line in which the cutting plane meets
the surface of the cone; A being the point in the curve nearest to the

yertex O. Let O B H C A be a vertical plane passing through the axis

O H and perpendicular to the cutting plane P A M.
AM, the intersection of these planes, is a straight line, and is called the

axis of the conic section, the curve being symmetrically placed with

regard to it.

Let F P D be a section parallel to the base, it is therefore a circle, and
F M D, its intersection with the vertical plane OB H C A, is a diameter.

Since both this last plane FP D and the cutting plane P A M are per-

pendicular to the vertical plane O B H C, M P the intersection of the two
former is perpendicular to the vertical plane, (Euc. xi. 19, or Geometry
iv. 18,) and, therefore, to all lines meeting it in that plane. Hence
M P is perpendicular to F D and to A M.

Let the angle O A M, which is the inclination of the cutting plane to

the side of the cone, = a, and let the Z A O B = /5, draw A E parallel
to B H and M L parallel to O B.

Let A M = xt M P = y, and A O = a.

Then by the property of the circle

The square on M P = the rectangle F M, M D ;

M A sin. MAD sin. <x

and M D =
sin. M D A ft

'

cos.

A O sin. A O E AM sin. A M L
Also, FM=EA-AL- : : ;

sm. O E A sin. A L M

But angle O E A =90 -
, angle A L M = 90 -f , and if we pro-

duce M L to meet O A, we shall find that the angle A M L = 180

( + 0) ;

sin ft sin. (a + />)
hence F M = a- = x

cos .
_ cos. y

sin. ft sin. (a + ft)

cos. ^- j cos. cos.

sin. a , . _ .

or y' = 7 TTT. i sin - P 'r sin - (a T
/

cos.

|J^
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which equation being of the second degree, it follows that the sections of

the cone are curves of the second degree.

Comparing this with the equation y
2 =: p x -f q .z

2
,
which represents

an ellipse, a parabola, or an hyperbola, according as q is negative, nothing,

or positive ; we observe that the section is an ellipse, a parabola, or an

hyperbola, according as sin. (a + /3) is positive, nothing, or negative. To

investigate these various cases, we shall suppose the cutting plane to move

about A, so that a may take all values from to 180

257. Let a = 0, .'. y
2 = 0, and y = ; this is the equation to the

straight line which is the axis of x.

And this appears, also, from the figure ; for when a = 0, the cutting
plane just touches the cone, and hence the line of intersection A M is in

the position A O.

258. Let a + ft be less than 180. The curve is an ellipse. In the

figure the angles A O E and O A M being together less than 180, the

lines O E and A M meet in A', or the sectional plane cuts both sides of the

cone.

259. Let M be the centre of the ellipse, then FM = AEandMD

.*. The square on the axis minor = The rectangle A E, A' G.

Also by drawing perpendiculars from A and E upon A' G, it may be

proved that

The square on the axis major = The square on A G + The rectangle
AE, A'G.

And .*. The distance between the foci r= AG.
If the straight line A K be drawa making the angle E A K = the

angle E A A',\hen A K is the latus rectum of the section.

And if a circle be inscribed in the triangle A' A O, it will touch the line

A A' in the focus of the section. (Geometry, Appendix, prop. 21.)
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260. Let a = 90 - -, then ~ gsin
-Jg +/j) __ ^

and the equation is that to a circle, the cutting plane being
1

parallel to

the base.

261. Let a -j- /3 180, /. sin. ( a -f- ft)
= 0, and the curve is a

parabola. The plane, continuing to turn, has now come into the position
A N Q, the axis A N being parallel to O F, or the cutting plane parallel
to a side of the cone.

The equation to the parabola is y* = 4 a
(
sin. -

)
x

If A K be drawn making the angle E AK = the angle A O K, then
A K is the latus rectum of the section, and the circle which touches A O,
A N and O F, will touch A N in the focus of the parabola.

262. Let at + ft be greater than 180 .*. sin. (a + /3) is negative,
and the curve is an hyperbola; The cutting plane is now in the position
A L R; in this case the lines A L, E O must meet if produced backwards,
or the plane cuts both cones, and the curve consists of two branches,
one on the surface of each cone.

As in the ellipse, it may be proved that the square on the conjugate axis
= the rectangle A E, A" G' ; that A G' is the distance between the foci,

that A K is the latus rectum, and that the circle touching A' O, O A and
A L touches A L at the focus.

263. We may also suppose a to have different values, or the cutting

plane to meet the cone in some other point than A, for example :

sin. or sin. ( a + (3} .

Let a = .*. y
1 = -

Since sin. a and
(

cos.
)

are positive, the rationality of this equation

will depend upon sin. (a + /3).

If a + ft is less than 180 the radical quantity is impossible, and the

only solution of the equation is x = and y =: 0, or the section is a point ;

this is the case when the cutting plane passes through the vertex O, and is

parallel to any elliptic section A PA'.
If a + /3 is greater than 180 we have two straight lines which cut

each other at the origin. In this case the cutting plane is drawn through
O, parallel to A L R, and the intersection with the cone is two straight
lines meeting in O.

264. We may conclude from this discussion, that the conic sections

are seven : a point, a straight line, two straight lines which intersect, a

circle, an ellipse, an hyperbola, and a parabola or all the curves of the

second degree and their varieties, with the exception of two parallel lines,

which is a variety of the parabola.
The three latter sections, the ellipse, hyperbola, and parabola, are those

which are usually termed "conic sections," and which have been the

study and delight of mathematicians since the time of Plato. In his

school they were first discovered; and his disciples, excited, no doubt, by
the many beautiful properties of these curves, examined them with such

K2
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industry, that in a very short time several complete treatises on the

conic sections were published. Of these, the best still extant is that of

Apollonius of Perga. It is in eight books, four of which are elementary ;

and four on the abstruser properties of these curves. The whole work is

well worth attention, as showing- how much could be done by the ancient

analysis, and as giving a very high opinion of the geometrical genius of

the age.

Apollonius gave the names of ellipse and hyperbola to those curves

Hyperbola, because the square on the ordinate is equal to a figure

"exceeding" (" virtppocXXov ") the rectangle under the abscissa and latus

rectum by another rectangle. B. i. p. 13.

Ellipse, because the square on the ordinate is
" defective" (" eXXeiTroi/")

with regard to the same rectangle. p. 14.

It is not known who gave the name of parabola to that curve probably
Archimedes, because the square of the ordinate is equal (" leapafiaXXov ")
to the rectangle of the abscissa and latus rectum.

Thus, the ancients viewed these curves geometrically, in the same
manner as we are accustomed to express them by the equations :

y* - p *

j/
2 = p x.

2 a

DESCRIPTION OF THE CONIC SECTIONS BY
CONTINUED MOTION.

265. The conic sections being curves of great importance, not only
from their mathematical properties, but also from their usefulness in the

arts and sciences, it becomes necessary that we should be able to

describe these curves with accuracy. Now, a curve may be drawn in two

ways, either by "mechanical description" or by "points." As an
instance of the first method we may mention the circle, described by the

compasses, or by means of a string fastened at one end to the centre, and
the other carried round by the hand, the hand tracing the curve. This
mechanical method, or, as it is sometimes culled,

"
that by continued

motion," is not always practicable: no curve is so simple, in this respect,
as the circle; hence we are often obliged to have recourse to the second

method, or that by points: this is done by taking the equation to the

curve and from some property expressed geometrically, finding a number
of points, all of which belong to the curve, and then neatly joining these

points with a pen or other instrument. We shall commence with the

mechanical description of these curves.

266. To trace an ellipse of which the axes are given :

Let A A', B B' be the axes : with

centre B and radius A C describe a

circle cutting A A' in S and H, these

points are the foci. Place pegs at S

and H. Let one extremity of a

string be held at A, and pass the

string round H back again to A,
and ther.e join its two ends by a
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Knot, so that its length shall be just double of A H ; place a pen or other

pointed instrument within this string;, and move it round the points S
and H, so that the string- be always stretched ;

the pen will trace out the

required ellipse. For ifP be one of its positions, we have

/. SP + PH = A A'.

267. Another method is by means of an instrument called the elliptic

compasses, or the trammel.

Let X x and Yy be two rulers with

grooves in them, and fastened at right

angles to each other. Let B P be a

third ruler, on which take B P equal
to the semi-axis major, and PA the

semi-axis minor. At B a peg is so

fixed that the point B with the peg
can move along Yy ;

a similar peg is

fixed at A. By turning the ruler B P
round, a pen placed at P will trace

be the point where the

out the curve. Suppose C to

axes meet, CM = x and M P = y, the rectan-

gular co-ordinates of P, and suppose that B N is drawn parallel to C M

and meeting P M in N, then A M == B N, and

The square on A P = the square on P M + the square on A M ,

or I9 = 2
-\
-- #2

,

268. The following is also a very simple method of describing the ellipse.

X x is a ruler of any length, C F, F G are two rulers, each equal to half

the sum of the semi-axes. These rulers are fastened together by a

moveable joint at F, and FC turns round a pivot at C
; F P is taken

equal to half the difference of the semi-axes. Let the point G slide

along the line X x, then the point P will trace out the curve. Draw
F D and P M perpendicular to C X, and let C M = x, and M P =
y, then

The square on F G = the square on FD + the square on D G
;

or
a + b

2 a

ti
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For a description of the Elliptograph, and other instruments for describ-

ing ellipses, we must refer our readers to the treatise on Practical Geo~

metry, where an extremely good account is given of all the instruments,
and also the advantages and disadvantages of each are well exhibited

269. To trace the hyperbola by
continued motion, let A A' be the

transverse axis, S H the distance

between the foci, H P K a ruler

movable about H. A string, whose

length is less than H K by A A' is

fastened to K and S ; when the ruler

is moved round H, keep the string X
stretched, and in part attached to the ruler by a pencil as at P ; then, since

the difference of H P and P S is constantly the same, the point P will trace

out the curve.

If the length of the string be H K, a straight line perpendicular to H S
will be traced out; and if the string be greater than H K, the opposite
branch, or that round H, will be described.

270. To trace the parabola by
continued motion. Let S be the

focus, and BC the directrix. Apply
a carpenter's square O C D to the

ruler BC, fasten one end of a thread

whose length is C O to O, and the

other end to the focus S ;
slide

the square D C O along B C, keep-

ing the thread tight by means of a

pencil P, and in part attached to

the square. Then since S P = P C, the point P will describe a parabola.

Description of the Conic Sections by Points.

271. Given the axes of an ellipse to de- -V...

scribe the curve. Let A A' be the axis 'V. 1
'

major, S and H the foci. With centre S.

and any radius AM less than A A', describe

a circle, and with centre H and radius

A' M describe a second circle, cutting the

former in two points Panel P' ;
then since

S P + P H = A M + M A' = A A', P is

a point in the required curve ;
and thus any

number of points may be found, and the curve described.

272. Given a pair of conjugate
diameters to describe the curve.

Let A A', BB', be the conjugate
diameters. Through B draw B D
parallel to A C, and through A draw
A D parallel to B C. Divide A D
and A C into the same number of

equal parts as three. From B draw
lines to the dividing points in AD,
and from B' draw lines to the dividing points in AC; the intersections

P, Q, of these lines are points in the ellipse.

A S

1)
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For let C be the origin ;
C A = al5 C B = 6n

Then the equation to B P is y bi = x ;

3 (t-i

and the equation to B 7 P is y + b^ = x.

Hence the product of the tangents of the angles which these lines B P,

B'P make with the axis of x = = and is constant;
3 t t af

therefore P is a point in the curve (141).

Innumerable points may be thus found in the four quadrants of the

figure.

273. The following is perhaps the best method of tracing the ellipse by
points :

Let A A' be a diameter

and A B equal and parallel
to the conjugate diameter.

Through B draw BC pa-
rallel to A A' and equal to

any multiple of A A'. In

BA produced, take A D the

same multiple of A B. Di-

vide B C into any number of c 4. a 2 i B
equal parts, and A D into the same number of equal parts. Through
A draw lines to the points of division in B C, and through A' draw lines

to the points of division in AD
;
the intersections of corresponding lines

will give points in an ellipse whose conjugate diameters are A A' and
A B. The proof is the same as in the last case.

274. Given the axes of an hyperbola to trace the curve.

Let A A' be the transverse axis, S and H the foci, which are given

points; with centre S and any radius AM greater than A A', describe a

circle, and with centre H and radius A' M describe a second circle, cutting
the former in two points P and P, these are points in the required curve.

The proof is much the same as that for the ellipse (271.)

Again, if, in article 273, B C was taken to the right of B instead of the

left, as in the figure, the intersections of the corresponding lines will give
an hyperbola.

275. To describe the rectangular hyperbola by points.

Let C A, C B be the equal semi-axes

with any centre O in C B produced and

with radius O A, describe a circle ; draw

OP perpendicular to C O meeting the

circle in P, then P is a point in the curve ;

Let C M #, MP = y; then the square
on C O = the square on O A the

square on C A ;

or y* = x* a*.
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276. Given tne asymptotes C X, C Y of an hyperbola, and one point P
in the curve, to describe the curve by points.

-I?

Tnrough P draw any line S P S' ter-

minated by the asymptotes ;
in it take

S'Q = SP; then Q is a point in the

curve (217), and similarly any number
of points may be found.

Together with the asymptotes, another condition must always be given
to enable us to trace the curve, for the position of the asymptotes only gives
us the ratio of the axes, and not the axes themselves.

277. To describe the parabola by points, when the principal parameter

take AB = p\ with any
D

p s gven.
Let AX, AY be the rectangular axes; in

centre C in AX and radius C B describe a circle B D M, cutting A Y in

and A X in M, draw D P and M P
perpendicular to A Y and AX re-

spectively ; then P is a point in the

curve.

Let A M c= a?, M P = y\ then

the square on A D = the rectangle

BA, AM,
or y* = p x.

278. Given the angle between the axes and any parameter p' to describe

the curve.

Let A X, YA y be the axes,

A B the parameter. Through
B draw CB parallel to AX.
Through A draw any line

FAG, meeting B C in F; in

A Y take A D = B F, and
draw DP parallel to AX,
cutting A G iu P, then P is a

point in the curve.

Draw MP parallel to AY,
and let

A M =
JT, and M P = y,

thenMP: MA :: AB :FB,
or y ! at : : p' : y ; :. y

2 = p
f
x.

279. Given the position of the directrix T R and the focus S, to trace any
of the conic sections by points.
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R
Draw S T perpenJicular to T R, then

T S produced will be the axis of the curve.

Let e I 1 be the r atioof the distance of

any point P in the curve from the focus

and from the directrix ; hence if A S :

A T :: e : 1 ; A is a point in the curve.

Take any point M in AX, and with centre

S and radius equal to e times T M, describe a circle ; draw M P perpendi-
cular to A X, and meeting the circle in P, then P is a point in the curve.

Let A be the origin of rectangular co-ordinates, AM = #, M P == y,

AS=m, and AT =r ;

then SPrre.TM^e.PR

J

or y* + x* - 2 m x + m* = e* x* + 2 e m x + m2
;

:. y* + (I -e2)*
2 - 2m* (1 + e) = ;

which is the equation to the curves of the second order.

Let e be less than unity, /. y* = (1 e2) \
x x*

[.
v J.

~ C

Comparing this equation with that to the ellipse y
z =: (2 ax r9),

we have

2 a =

hence the curve is an ellipse whose axes are and 2 m
1 6

Let e be greater than unity, .'. i/
8 = (e

8
1)

| J
& +

and the curve is an hyperbola, whose axes are - - and 2 m \ / - --
.

Let e be equal to unity, .'. y* = 4 m x ;

the curve is a parabola, whose principal parameter is 4 m.

280. The general equation to all the conic sections being

y
z + (i

__ e ) a? _ 2 m x (1 + e) = 0,

it follows that if we find any property of the ellipse from this equation'
it will be true for the hyperbola and parabola, making the necessary

changes in the value of e:

Thus the equation to the tangent is

y y
' + (i

_ e ) xx
f - m (1 + e} (x + jf)

= 0, for the ellipse,

yyf _ (e
s _

i) a j;' _ m (\ + e) (j7 + a/) i= 0, for the hyperbola,

and yy' 2 m (x + a: ) = 0, for the parabola.
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Also most of the results found in Chapter VIII. <ir the ellipse will be

true for the hyperbola, by putting 62 for 68 ; and will be true for the

parabola by transferring the origin to the vertex of the ellipse, by then

putting- for a, and m* - for 6s
;
and then making e = 1. Thus

the equation to the tangent at the extremity of the Latus Rectum in the

ellipse, when the origin is at the vertex, is

y - a + e (x - a) (117),

or, y = a(l -
e) -j- ex,

for a put -, and then let e = 1
;

1 - e

/. y = m -\- #, as in (235).

281. If S P = r, and A S P r= 0, the polar equation to the curve thus

traced is easily found :

SP =: e. PR = e(TS -f S M),

or r = e (m r cos. 0) ;

m (1 -f e)
t i

e cos.

Or since m (1 + e) = for the ellipse and hyperbola, and = 2 m for the

parabola, we have (putting p for the principal parameter) the genera

polar equation to the three curves,

V 1

282. To draw a tangent at a given point P on the ellipse.
Draw the ordinate M P, and produce it to meet the circumscribing

circle in Q, from Q draw a tangent to the circle meeting the axis major
produced in T, join PT; this line is a tangent to the ellipse (114).

Again, taking the figure in the note appended to Art. 121, join S P,
HP, and produce HP to K, so that PK = PH; join SK; the line

Py bisecting S K is a tangent.
283. To draw a tangent to the ellipse from a point T without the curve.

(2)
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Draw the line T P C P' through the centre, fig. 1. ; draw a conjugate
diameter to CP : then the question is reduced to finding a point V in CP,
through which a chord Q V Q' is to be drawn, so that TQ and T Q' may
be tangents.
Take C V a third proportional to C T and C P, then V is the required

point (136).

Again, with centre T and radii TP', T C describe circles CO, P'R, draw

any line T O R, cutting these circles in O and R ; join P O, and draw R V
parallel to P O : then it may be proved by similar triangles that C V is a

third proportional to C T and C P, and therefore V is the required point.
284. If the axes, and not the ellipse, are given, take S and H the foci,

fig. 2, with centre S and radius A A' describe a circle, and with centre T and
radius TH describe another circle, cutting the former in the points K and

K'; join S K and SK', H K and H K' ; from T draw the lines T Q and TQ
perpendicular to H K and H K', these lines meet S K and SK' in the

required points Q and Q'. The proof will readily appear upon joining H Q
and H Q', and referring to the note, page 77.

285. To draw a tangent to the hyperbola at a given point P on the

curve.

Join SP and H P, note, page 97; in H P take PK = S P, and join SK;
the line PY bisecting SK is the required tangent.

286. To draw a tangent from a given point T without the curve.

The two methods given (283) for the ellipse will apply, with the

necessary alteration of figure, to the hyperbola.
287. To draw a tangent to the parabola at a given point P on the curve.

Draw an ordinate P M to the axis, fig. 232, and in the axis produced
take A T = A M, join P T ;

this line is a tangent (233) j
or take S T =

S P, and join P T.

288. To draw a tangent to a parabola from a given point T without the

curve.

Draw a diameter T P V parallel to the axis, and cutting the curve in

P, take PVrr PT, and draw an ordinate Q V Q' to the abscissa P V,

then TQ and TQ' are the required tangents (249).

If the directrix and focus be given, but not the curve; with centre T
and radius T S describe a circle, cutting the directrix in the points R and

R', join R S and R' S ; draw R Q and R' Q' parallel to the axis, and then

TQ and T Q' perpendicular to R S and R' S (239).

289. An arc Q P Q' of a conic section, being traced on a plane to find

to which of the curves it belongs ;
and also the axes and focus of the

section.

Draw a line L through the middle of two parallel chords, and another line

L' through the middle of other two parallel chords, if the lines L, L are

parallel, the curve is a parabola, if they meet on the concave side of the

curve it is an ellipse, if on the convex side it is an hyperbola. (130. 243.)

290. Let the curve be an ellipse, the

point where the lines L I/ meet is the

centre C ; let P P' be a diameter, its con-

jugate CD is thus found ; describe a

circle on P P' as diameter, and draw V R,
C B perpendicular to PP'; join R Q, and

draw B D parallel to R Q, meeting a line

parallel to Q V, passing through C ; then

C D is the conjugate diameter (136).
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To find the length and position of the axes ; draw P F perpendicular on
C D, and produce it to E, making P E = C D, join C E, and bisect

C E in H ; join P H ; then from the triangle C P E we have the side

C E in terms of C P and C D = ,J{a? -j- bf 2 a
t ^ sin. (0' 0)} =

J {a
8 + 6* 2 ab} s= a 6 .*. ; C H = -

; also from the same

triangle we have P H = a+ b
hence P H + H E is the small-axis

major, and P H H E is the semi-axis minor.

In H P take H K = H E, then C K is the direction of the axis-major.
291. If the arc Q P Q' be an hyperbola, the conjugate diameter may

be found by a process somewhat similar to that for the ellipse ; the asymp-
totes may then be drawn by Art. 215. The direction of the axes bisects

the angle of the asymptote, and their length is determined by drawing
a tangent PT, and perpendicular P M, to the axis, and taking CA a

mean proportional between CM and CT (167).

292. If the arc be a portion of a parabola,
draw T P T' parallel to Q V, and then draw P S,

making the angle SPT= the angle T'PV; re-

peat this construction for another point P', then

the junction of PS and P'S determines the focus

(240); the axis is parallel to PV, and the

vertex is found by drawing a perpendicular
on the axis, and then bisecting T M (233).

293. We shall conclude the subject of conic sections with the following
theorem.

If through any point within or without a conic section two straight lines

making a given angle with each other, be drawn to meet the curve, the

rectangle contained by the segments of the one will be in a constant ratio

to the rectangle contained by the segments of the other.

Case 1. The ellipse and hyperbola.
Let CD, CE be two semi-diameters parallel to the chords POP',

Q O Q' ; then, wherever chords parallel to these be drawn, we shall always
have the following proportion :

The rectangle PO, OP': the rectangle Q O, O Q :: the square on

C D : the square on C E.

Let O be the origin of oblique axes OX, O Y : then the equation to

the curve will be of the form
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Let x = ; .*. a y* + dy +/= 0, and the product of the roots being

-, we have

The rectangle Q O, O Q' = i-
;

Similarly the rectangle P O, O P' =
;

c

f f
:. the rectangle Q O, O Q f

: the rectangle P O, O P' ::::: c : a
a c

Now, let the origin be transferred to the centre without changing the

direction of the axes, then the form of the equation is

ay* + bxy + c x2 + /' = (81).

f
Let x

; .*. the square on C E = =?-
; and the square on C D =

; .'. the square on C E : the square on C D ; : : c : a ;

C

.'. the rectangle Q O, O Q' ! the rectangle PO, OP' II the square on

C E : the square on C D.

In the hyperbola fig. (2), C E and C D do not meet the curve ;
but in

order to show that these lines are semi-diameters, let the axis of y be ca-r-

ried round till it becomes conjugate to C D, then the formulas for trans-

formation in (55) become for 9=0,
. sin. & . sin. (w

-
0')

y y' ,
x x' + y' 7

-
y

.

sin. w sin. w

If these values of x and y be substituted in the general central equation
above, and it be reduced to the conjugate form by putting b' = 0, the

transformed equation is of the form a' y
z

-\- c xz
-\- f = 0, where

c and/
7 are not changed, and is the square on the semi-diameter

along the axis of x (86) ; hence the theorem is true for the hyperbola.
Case '2. The Parabola fig. (3.)
As before, we have the rectangle P O, OP : the rectangle Q O,

OQ' :: c : .

Let P and Q be the parameters to the chords POP' and Q O Q' ;

transfer the origin to the focus, the axes remaining parallel to PO,
and Q O, by which transformation c and a are not altered.

Now in this case, the chords passing through the focus, we have the

-ectangle PS, S P' : the rectangle Q S, S Q'; ::
-|P

: ^Q (254)

and also as c : a ; hence the rectangle P 0, O P' : the rectangle Q O,

OQ' :: c : :: P : Q.
"294. If the point O be without the curves, and the points P P' coincide

as well as Q and Q', or the lines become tangents, we have for the ellipse

and hyperbola,
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The square on O P : the square on OQ :: the square on CD : the

square on C E ;

or OP: OQ :: CD : CE.

For the parabola ;

The square on O P : the square on O Q : : S P ; S Q ;

hence it may be proved that, if a polygon circumscribe an ellipse, the

algebraical product of its alternate segments are equal. And the same
theorem will apply to tangents about an hyperbola; the tangents com-

mencing from any point in the asymptotes.

CHAPTER XIJ.

ON CURVES OF THE HIGHER ORDERS.

295. HAVING completed the discussion of lines of the second order, we
should naturally proceed to the investigation of the higher orders ; but the

bare mention of the number of those in the next or third order (for they
amount to eighty) is quite sufficient to show that their complete investigation

would far exceed the limits of an elementary treatise like the present. Nor
is it requisite: we have examined the sections of the cone at great length,

because, from their connexion with the system of the world, every pro-

perty of these curves may be useful; but it is not so with the higher
orders ; generally speaking they possess but few important qualities, and

may be considered more as objects of mathematical curiosity than of prac-
tical utility.

The third order is chiefly remarkable from its investigation having been

first undertaken by Newton. Of the eighty species now known, seventy-
two were examined

by
him ; eight others, which escaped his searching

eye, have since been discovered.

Those who wish to study these curves, may refer to Newton's " Enu-
meratio Linearum tertii Ordinis ;

"
or to the work of Stirling upon the

same subject.
Of the fourth order there are above five thousand species, and the number

in the higher orders is so enormous as to preclude the possibility of their

general investigation in the present state of analysis.

A systematic examination of curves being thus impossible, all that we
can do is to give a selection, taking care that amongst them shall be

found all the algebraical or transcendental curves which are most remark-

able either for their utility or history.
We shall generally introduce them as examples of indeterminate pro-

blems, that is, of problems leading to final equations, containing two

variables. We shall then trace the loci of those equations, and explain,
when necessary, anything relating to the construction or properties of

the curves.

It would be useless to give any general rules for the working of these

questions ; those given for determinate problems will here serve equally
well ; but, in both cases, experience is the only sure guide. In the solution

of these problems we shall not always follow the same, nor even the easiest,
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method; but we shall endeavour to vary the manner, so that an attentive
observer may learn how to act in any particular case.

We commence with problems leading- to loci of the second order.
296. Given the straight line A B (= a) to find the point P without

AB, so that AP : PB :: m : 1.

Let A be the origin of rectangular co-ordinates, A X and A Y the axes,AM = x, MP = y, and .*- M B = a x,

then A P : PB :: m : 1

2/
2

: V (a-x) 2 + ^ :: m : i
;

/. x* + y* = m2

(a
- *)

2 + m 2

y* ,

or (1
- m2

) y
2 + (1 m2

) x* + 2 m2 a x m2 2 r= (),

Y

or y* +
(I

- ?>i
2
)
2

This equation shows that there are an infinite number of points satis-

fying- the conditions of the problem, all situated on the circumference of a

circle (66).

To draw this circle ; in A x take A C = , and with centre. C
1 m2

and radius
m a

- describe a circle ; this is the required locus.

If m = 1, reverting
1 to the original equation we have x = -

, which is

the equation to a straight line drawn through the bisection of A B, and

parallel to A Y.
297. If perpendiculars be drawn to two lines given in position from a

point P, and the distance between the feet of the perpendiculars be a con-

stant quantity a, required the locus of P.

Let the intersection of the given lines be the origin of rectangular axes,

take one of the lines for the axis of x, and let y = a x be the equation to

the other; then the equation to the line passing through P (x y
1

}, and

perpendicular to the line y = a j?, is y y' = (x a;') ;
then

05

from these two equations the co-ordinates of the point where their loci

meet, that is, the co-ordinates of the foot of the perpendicular are readily
obtained

;
and then the final equation found, by art. 29, is y''

2 + xf* =
a* , which belongs to a circle whose centre is at the intersection

of the lines.

298. A given straight line B C moves between two straight lines, A B,
A C, so that its extremities B C are constantly on those lines

;
to find the

curve traced out by any given point P in B C.
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Let the lines A B, A C be the axes of y and <r,

A M = x, B P = a, Y
M P = y, P C = 6,

and let B A C be a right angle ;

then AM:BP::MC:PC,

or a2
j/

2 + 62 x- = a* b\ A. M c x
which is the equation to an ellipse whose centre is A and axes 2 a, 2 b.

If a ladder be,, placed against a wall, and its foot drawn along the ground
at right angles to the wall, any step will trace out a quarter of an ellipse,
and the middle step will trace out a quadrant of a circle.

If the co-ordinate axes be inclined at an angle 0, we have

, >

Whence a? y* + b* x* 2 a b cos. 6 . x y a2 62 = 0,

which is the equation to an ellipse (76).
It is easy to see that from this problem arises a very simple mechanical

method of describing the ellipse.

If a straight line B C of variable length move between two straight lines

A B, A C, so that the triangle A B C is constant, the curve traced out by
a point P which divides B C in a given ratio is an hyperbola.

299. Given the line A B (= c) to find a point P without A B, such

that drawing PA and P B, the angle P B A may be double of P A B.

Let A be the origin ;
A X, A Y the rectangular axes :

The equation to A P is y = a. x, (1)

and that to B P is y = a! (x c) ;

but / = tan. PBX = - tan. PBA= - tan. 2 P A B = -
.

2 a
;

- 2 a

1 - a2 (*
~

') (2)

Eliminating a between the equations (1) and (2), we have y* = 3 x*

2 c ar, hence the locus of P is an hyperbola ; comparing its equation
it 2 c

with the equation y
2 r= (a?

8 - 2 a x), we find the axes to be and
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, and the centre at C where A C = .

V3 3

By this hyperbola, a circular arc may be trisected
;

for if A P B be
the arc to be trisected, describe the hyperbola DP as above, and let

the curves intersect in P; then if be the centre of the circle, the ano-le
AOP = 2ABP = 4PAB=2POB, or the arc P B is one-third

&
of

BPA.
This problem may also be thus solved :

Let A M =
oc, M P = y, and angle P A B = ;

Then tan. 6 = --, and tan. 20 = y 2 tan ' 6
but tan 2 =- x 1 _ (tan. 0)

8 '

c x 1
or ?/

2 = 3 xs 2 c x.

On examination it will be seen that the above two methods of solution
are identical.

300. The following problems give loci of the second order.

1. From the given points A and B, (fig. 1,) two straight lines given in

position are drawn, M R Q is a common ordinate to these lines, and M P
is taken in M RQ a mean proportional to M Q and M R; required the

locus of P.

(2)

M

2. A common carpenter's square C B P, (fig. 2,) moves in the right angle
X A Y, so that the point C is always in A Y, and the right angle B in the

line A X ; required the locus of P.

3. If the base and difference of the angles at the base of a triangle be

given, the locus of the vertex is an equilateral hyperbola
4. To find a point P, from which, drawing perpendiculars on two gives

straight lines, the enclosed quadrilateral shall be equal to a given square.

301. Let A Q A' be an ellipse, A A' the axis major, Q Q' any ordin&te,

join A Q and A' Q' ; required the locus of their intersection P.

Let C be the origin of rectangular co-ordinates.

C M = x, M P = y, C N = x', and N Q = y'.

Then the equation to A Q is y = a x + c

which at A is = aa + c;

/. y = a (x + a),
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At Q it becomes y a (r
f + a) .'. a =

Hence the equation to A Q is y = (* + ), (U

(*-), (2)

(3)

And similarly that to A'Q' is y = ,

y
(x /,)

Also a2
y'

2 + 62 *' 2 = o2 62
;

Eliminating x' and y' between (1) and (2), we have

y = - and y' = 1
J? a?

Substituting in (3) we obtain the final equation

x* x*

or a2
y

2 - 62 c8 = 2 68 ,

which is the equation to an hyperbola, whose centre is C, and transverse

axis 2 a.

The method of elimination used in this problem is of great use ; the

principle admits of a clear explanation. We have the equations to A Q
and A'Q'; putting x and y the same for both equations intimates that

x and y are the co-ordinates C M and M P in one particular case of inter-

section ;
but the elimination of x' and y

r
intimates that x and y are also

always the co-ordinates of intersection, and therefore that the resulting

equation belongs to the locus of their intersection.

302. To find the locus of the centres of all the circles drawn tangential

to a given line AX, and whose circumferences pass through a given point

Q (a 6).

Let S Q M be one of these circles, referred to rectangular axes Atf, Ay.

x, y the co-ordinates of its centre P,

x\ y' any point on its circumference.

Then the equation to S Q M is

but passing through Q, it becomes

-*)9^; (65)

(6
_

<v)
t

_|_ (a _
*)

-

and, being tangential to A X, we hare r = y,
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or x* 2 a x 2 b y + oM 62 = 0.

This is the equation to a parabola (78).

It may be put in the form (x of r= 2 b ( y _ V Hence if we

transfer the origin to the point E ( , \ we have the equation xz rr 2 b y,

and the curve is referred to its vertex E, which is the centre of the least

circle.

If, instead of the circle passing through a given point, it touch a given
circle, a parabola is again the locus of P.

303. Let A B, B C, C D, and D A (fig. 1, p. 148) be four straight lines

given in position, to find the locus of a point P, such, that drawing the

lines P E, P F, P G, and P H making given angles with A B, B C, *C D,
and D A, we may have the rectangle P E, P F = the rectangle P G, P H.

Let O be the origin of rectangular axes O X, O Y ; x and y the co-

ordinates of P ; /3, /3', ft" and /3
m the cosecants of the angles which the

lines P E, P F, &c., make with A B, B C, &c. Then the equation

y
~ * *

~^10 JTL D ut

toB C .

to DC .

to AD .
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conic section, the particular species of which depends on the situation of

the given lines.

This problem may be expressed much more generally. Suppose
3, 4, 5 or a greater number of lines to be given in position, required a

point from which, drawing lines to the given lines, each making a given

angle with them, the rectangle of two lines thus drawn from the given

point may have a given ratio to the square on the third, if there are three ;

or to the rectangle of the two others, if there are four: or again, if there

are five lines, that the parallelopiped composed of three lines may have a

given ratio to the parallelopiped of the two remaining lines, together with a

third given line, or to the parallelopiped composed of the three others, if

there are six : or again, if there are seven, that the algebraical product of

four may have a given ratio to the algebraical product of the three others

and a given line, or to the four others, if there are eight, and so on.

This was a problem which very much perplexed the ancient geometri-
cians. Pappus says, that neither Euclid nor Apollonius could give a

solution. He himself knew that when there are only three or four lines

the locus was a conic section, but he could not describe it, much less

could he tell what the curve would be when the number of lines were more
than four. When the number of lines were seven or eight, the ancients

could scarcely enunciate the problem, for there are no figures beyond
solids, and without the aid of algebra, it is impossible to conceive what

the product of four lines can mean.

It was this problem which Descartes successfully attacked, and which,

most probably, led him to apply algebra generally to geometry. The

following solution is that given by Descartes, with a few abbreviations:

A B, A D, E Fand G H (fig. 2) are the given lines, C the required

point from which are drawn the lines C B, C D, C F and C H making
given angles C B A, C D A, C FE, and C H G. A B (= tf) and B C

(= y) are the principal lines to which all the others will be referred.

Suppose the given lines to meet C B in the points R, S, T, and A B in

the points A, E and G. Let A E = c and A G = d.

Then since all the angles of the triangle A B R are known, we have

BR = a.AB=*; /. C R = a x + y and C D = ft (a x + y) ;

also B S = a'.B E = a' (c + x ); .'. C S = y + a' (c + x) and

C F =
13' {y + a' (c + x) } ; also B T = ". B G = a" (d x):

:. C T = y + a" (d - x) and C H = 0" { y + "
(d -

x) } ; then
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since the rectangle C B, C F r= the rectangle CD, C H, we have the

equation

This equation Descartes showed to belong to a conic section which he
described. He also gave the following numerical example :

LetEA = 3,AG=5,AB=rBR, B S = B E , G B = B T
,

CD = J-CR, CF = 2CS, CH = |- C T, the angle A B R = 60,'
(j

and the rectangle C B, C F = the rectangle C I), C H. By the above
method he found the equation to be

which he showed belonged to a circle. Taking the expressions in

Q
1

art. (72) we have the co-ordinates of the centre and -- , and
3 3

the radius rr
Vl9

304. Let A Q B be a semi-circle of which A B is the diameter, B R an
indefinite straight line perpendicular to A B, A Q ix a straight line

meeting the circle in Q and B R in R; take A P = Q R; required the

locus of P.

Let A be the origin of rectangular axes, and A B the axis of x.

A B = 2 a, AM = Jf, M P = y, and draw QN parallel to M P
;

(2)

then since A P = Q R, we have A M == B N,

and AM : MP::AN : NQ;
that is, a? : y :: (2 a x) : a _ #) x .

(65)

2 a
and y =

2 a
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The following table gives the corresponding values of x and y :



THE CISSOID.

Substitute these value? in the equation y
9 =

r3 (cos. 0)
3

.'. r2 (sin. 0)
s = -

2a r cos.0
whence r

2 a oc

2 a sin. Q . tan 6 .

Ex. If a perpendicular be drawn from the vertex of a parabola to a tan-

gent, the locus of their intersection is the cissoid.

305. If C be a point in the diameter A B of the circle A Q B, and M Q
any ordinate, join B Q, and draw C P parallel to B Q, meeting M Q in P
required the locus of P.

Lei A M =
a?,

MP =r
y,

A B = a,

A C = 6;

thenB M : MQ :: C M : M P,

or (a x) : V a x x* : : (6 x) : y,

.-. y = (6
-

x)

Hence the following table of values :
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Ex. A point Q is taken in the ordinate M P of the parabola, always

equidistant from P, and from the vertex of the parabola; required the

locus of Q.

306. M Q is an ordinate to the semicircle A Q B, and M Q is produced
lo P, so that M P : M Q *. : A B : A M to find the locus of P.

Let A B X and AY be the rectangular
axes.

AM = x,

A B = 20;

Then M P : M Q :: A]B : A M ,

or y :: <J 2 a x x* :: 2 a:

= 2 a J 2 a x <r
8
,

2a - x
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Let or = or = 2 , /. y = ; hence the curve passes through
A and B ; for x < 2 a, y is positive ; but when x is > 2 a, y increases

negatively to infinity, since the third root of a negative quantity is nega-
tive and possible. Again, y is positive for all negative values of #, and
increases to oo

; also for each value of #, there is only one real value
of y, the other two roots of an equation y

3
db 1 = 0, being always im-

possible.

Expanding the equation we have

y

3

/l-2_a_ r 1 2 a 4a

2a
.*. the equation to the asymptote is y = x + -

(195).
3

In A Y take A C = , and in A X take A E = ?A join C E, this
3 o

line produced is an asymptote to the curve.

Ex. Find the locus of the equation, y* + #3 = 8
; and of the equation

y
3 = a* x a?

3
.

308. To trace the curve whose equation is a y* r <r
3 + m #a + n x + p.

Case (1). Suppose the roots of this equation to be real and unequal,
and to be represented by the letters , b, and c, of which a is less than b

and 6 less than c, then the equation is of th*1 form

y =
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Let A be the origin, AX, AY, the

axes ; A B := a, A C = 6, and A D
= c;
From (2) (5) and (7) the curve

passes through B, C, and D
; from (3)

and (6) no part of the curve is found
between A and B, or C and D ; from

(4) there are two branches between B
and C

;
from (8) and (9) the curve proceeds from D to oo , and from (10)

no part of the curve is on the left of A.
If the roots had been negative, the curve would have the same form,

but would be rather differently situated with regard to the origin.

Case (2). If two roots be equal, the equation isy = (#-

or y = (x
/ x c-

) V 5 in the former case the figure is nearly

the same as above, when the points C and D coincide ; in the latter, sup-

posing the points B and C to coincide, or the oval to become a conjugate

point.

Case (3). If two of the roots be impossible, we have only the bell-

shaped part of the curve from D.

Case (4). If the three roots be equal, the equation is a y
9 = (j a)

8
.

The figure now consists of two branches proceeding
from B with their convexity towards the axis. This

curve is called the semi-cubical parabola ; its equa-
tion is the most simple when the origin is at the vertex

B ;
that is, putting x instead of x a, when a y

z =
B

This curve is remarkable as being the first curve

which was rectified, that is, the length of any portion

of it was shown to be equal to a number of the com-

mon rectilinear unit.

309. The equation o8

y = x9 + m Xs + n x + ;;, can be traced exactly
as in the last article : the accompanying figure applies to the case when
the three roots are positive, real, and unequal. If two of them be equal,
one of the semi- ovals disappears; if three are equal, both disappear: in

this case the equation is of the form a2
y = (x a)

3
, or a8

y = .r
8
, if

the origin be transferred to B ; the curve is then called the cubical

parabola.

Y

310. If the equation be a x y =: x8 + m x9 -f- n r + p, the axis of y
is an asymptote, and there is a branch in the angle YA<r; the rest
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of the curve is like that in the last figure, supposing the lower branch

from B to come to A y as the asymptote, the form will vary as the roots

a;
3-a8

vary. We shall take the case where y =
ax
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/2+ a *y = n x + p,

- 2

y
- 4 7i

2 X

If the denominator of this expression had been constant, the equation
would have belonged to an ellipse, hyperbola, or parabola, according as n
was negative, positive or nothing; hence if such constant quantity be

replaced by the variable quantity 2 #, the conic section becomes "
hyper-

bolized" by having an infinite branch proceeding to the axis of y as an

asymptote.
For the nine figures corresponding to the values of p, see Newton,

Enum. Lin. Tert. Ord.

From the last article it appears that all curves of the third order have
infinite branches

;
and this must necessarily be the case, for every equation

of an odd degree has at least one real root, so that there is always one
real value of y corresponding to any real value of x.

312. The conchoid of Nicomedes.

Let X x (fig. 1) be an indefinite straight line, A a given point, from
which draw the straight line A C B perpendicular to X x, and also any
number of straight lines AE P, A E P' , &c. ; take E P always equal to

C B, then the locus of P is the conchoid.

If in E A we take E P' = E P the locus of ~& is called the inferior

conchoid ; both conchoids form but one curve, that is, both are expressed
by the same equation.

C B is called the modulus, and X x the base or rule ;

C M =s x,

M P = y,

then E P t P M : : A P : A N,

or b : y : :

:. y* x* + y8

(a -f-

( + 3/)
8

:

= 6* (a +

a + y,

y?,

.'. x ==
a +

We have three cases according as b is > a, = a, or < a.



Case 1. 6 > a.

THE CONCHOID. 57
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Unless the curve could be described by continued motion, the solution

would be incomplete. Nicomedes therefore invented the following simple

machine for describing it. Let x X be a straight ruler with a groove cut

in it; C D is another ruler fixed at right angles to x X ;
at A there is a

fixed pin, which is inserted in the groove of a third ruler A E P ; in A P
is a fixed pin at E, which is inserted into the groove of x X ; P E is

any given length ; then, by the constrained motion of the ruler PEA,
a pencil at P will trace out a conchoid, and another pencil fixed in E A
would trace out the inferior curve.

n

This curve was formerly used by architects ; the contour of the shaft of
a column being the portion B P P" of a conchoid.

The polar equation to the conchoid is thus found :

Let A (fig. 1, page 156) be the pole, A P = r, P A B =
;

.*. y + a =? r cos. 6, and x = r sin. 9.

Substituting these values in the equation, and reducing, we arrive at the

polar equation r = a sec. Q + b.

The polar equation may, however, be much more easily obtained from

the definition of the curve. We have

r = AP = AE + EP = AC sec. CAE + C B = a sec. + 6.

313. The following method of obtaining the equation to the conchoid
will be found applicable to many similar problems.

Let any number of lines, AEP, fig. 1, be drawn cutting C X in dif-

ferent points E, &c. ; from each of these points E as centre, and with

radius 6 describe a circle cutting the line A EP in P and P/

; the locus

of the point P is the conchoid.

Let A be the origin of the rectangular co-ordinates.

A B the axis of y, and AX parallel to C X in the figure.
Let the general equation to the line A E P be y = a x, where a is in

determinate :
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Then y' == a, and x' = are the equations to the point E ;

The equation to the circle which has the point E for its centre and
radius 6, is

or (y
-

a]

And eliminating a between this equation, and that to the line A E P, we
have the final equation to the curve,

*/.'/ ax
(y -

In general if the line C X be a curve whose equation is y == / (#), the
co-ordinates of the point E are found by eliminating x and y from the

equations y = a x, and y f (x) ; hence we find x = /' (a), and

y = a;/' (a), and the equation to the circle is

{y -//()}.+ {*-/'()} = 6,

And the general equation to the curve is

314. A perpendicular is drawn from the centre of an hyperbola upon a

tangent, find the locus of their intersection.

The equation to the tangent is

a*yy'-b*xx'=- a* 62
. (1)

The equation to the perpendicular on it from the centre is

In order to get the equation to their intersection, we must eliminate

a/ and y
r from these two equations and that to the hyperbola; from (1)

and (2) we find

_ a** , _ - 6'y-
' * " -

Substituting in the equation a2
y'

z 6 x'* = a? b*, we have

O2 + 7/
s

)
8 + 6

2

y-
- a2 *2 = 0,

which is an equation of the fourth degree.
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We shall only investigate the figure in the case when 6 = a, that is

when the hyperbola is equilateral, in which case the equation is (,r
8 + V*)*

= a2
(.t

2 -
2/

a

).

/. y
4 + (2 tr

s + a2

) y
2

-f J 4 - a2
J?

2 = 0,

and y = ^ {
- ^ +^ a \/2 x* +

-|^|.

If the sign of the interior root be negative, y is impossible; hence we
shall only examine the equation

here y is impossible, if j;
8

-j
-- is > o

if x4 + a* *8
-f is > 2 a* ^ -f-

-

4 4

if-r4 is > a8 * 2
,

if a; is > + a;

hence we have the following table :
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The equation a2
(y

-
)* (x a)

2

(2 a x *2
) belongs to the same

curve referred to a different origin.

Ex. Trace the locus of the equation y2 = x* .

316. AM, fig. 1, is a tangent to a circle AC Q, M Q an ordinate to the

abscissa AM; M P is taken a mean proportional between A M and M Q ;

required the locus of P.

Let A M =r x, and M P = y, be the rectangular co-ordinates of P, and

let the radius of the circle = 6,

then the square on M P = the rectangle AM, M Q.

To find M Q, we have the equation to the circle

(y
- yj + (* - *')

a - r\

or y* 2 6 y + x* = 0, since x' = 0, and y' = r = 6,

,'. M Q ^= 6 V 6
s - x\

.'. M P or y = 7 {& j? * V62 - #2

}.

Since 6
2 - x8

is< 6*, there are four values of y to each positive value

of x < 6, and no value of y to x negative ; hence if A B = 6, fig. 1, the

straight line C B C' perpendicular to A B is a limit to the curve, and when
x = 6, the ordinate to the curve is equal to the extreme ordinate of the

circle, that is, to the tangent B C.

Between x = 0, and x = 6, we have four values of y, which give the

two dotted ovals of fig. (1).
To make the question more general we shall suppose the line A B to be

a chord of the circle, figs. (2) (3) (4).
Then if 6 and a are the co-ordinates to the centre of the circle, and A

the origin, the equation to the curve will be

j J f / j / L% O
"~L

"~o
)

and we have four cases depending on the values of 6 and a ; hence we
have four curves of different forms, yet partaking of the same character

and generation.

Case (1). a = 0, fig. (1) already discussed,

Case (2). a and 6 positive, fig. (2). A E = a + V 8 + 6'.

Case (3). 6 = 0, fig. (3).

Case (4). b negative, fig. (4), the equation is

M
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There are two values of y for x positive, and < 2 c; but four values

for x negative, and < V 8
4- &8 -

,
that is, < A E.

The gradual transition of one curve to another is apparent, hut that the

same problem should produce such very different curves as (2) and (4)

requires some explanation.
In fig. (1) P and P' are determined by mean proportionals between

A M and M Q, and also between A M and M Q'. Moreover P may be in

QM produced as well as in M Q, thus we have the double oval, fig. (1.) On
the left of A the abscissas A M will be negative, and the ordinates M Q
positive ; hence no possible mean proportional can exist, or no part of the

curve can be on the left of A.

In fig. (2) A M and M Q determine the points P and P'; but A M and
M Q' give only an imaginary locus.

Fig. (3) requires no comment.
In fig. (4) the reasoning on fig. (2) will explain the positive side of A

;

on the left of A the abscissa and both ordinates are negative ; therefore

two mean proportionals can be found, or four points in the curve for each

abscissa.

Such curves may be invented at pleasure, by taking the parabola or

other curves for the base instead of the circle.

Ex. To find the locus of the equation y* + 2 a x y
2 a x8 = 0.

317. To find a point P', such that drawing straight lines to two given

points S and H, we may have the rectangle S P, H P constant.

Join the points S and H, and bisect S H in C ; let C be the origin of

rectangular axes, S H i= 2 a, C M. = x, M P ~ y and let the rectangle
S P, U P, = a b.

Then since S M = a + <r, and H M= a x, we have

{y
2 + (a + xY } {y

8
-f (a

-
x)*} = a2

6*,

2 a x) (y
8 + x9 + a2 -2 a .r)=a

2
>\

r2 + a8

}

2 - 4 d> x* =: a8
6* ;

{
- (* 4- x9

) + a V^8 + 4?].
/. x = V a (a 6)

or (/ -f *8

-f a2 +
or, {y

8 +
hence y = J

Let y = 0, (1).

Let x = 0,

1. Let a be less than 6.

Then from (I) we have the points A and A', and from (2) we have the

points li and B'.
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Also by comparing the values ofy in the original equation and in equation

(2) we shall find that M P is greater than C B as long as x is greater than

*J 2 a (2 a 6) ; thus the form of the curve must be like that of the

figure APBA'B'A.
As b increases, the oval becomes flatter at the top, and takes the form of

the outer curves.

2. Let a = 6, then we have the dotted curve passing through C ; also

since the equation becomes (j?
2 + 3/

2
)
2= 2 a2 (or

2
j

2

) the locus is in this

case the lemniscata of Bernouilli.

3. Let a be greater than 6.

Then from (1) we have two values of #, and from (2) an impossible
value ofy ; hence the curve must consist of the two small oval figures
round S and H.

As 6 decreases, the little ovals decrease ; and when 6 = 0, we have the

points S and H themselves for the locus.

These curves are called the ovals of Cassini, that celebrated astronomer

having imagined that the path of a planet was a curve like the exterior

one in the above figure.

The equation (y* + .r
8
)
2 = i2 ^

2 + a* x*, found in art. (123), gives a

figure like that in case 1.

318. There are some cases in which it is useful to introduce a third

variable; for example, if the equation be y* + x* y* + 2 y
3 + x3

: 0,

it requires the solution of an equation of three or four dimensions, in

order to find corresponding values of x and y ; to avoid this difficulty,

assume x ?/ y,

/. y
4 + w2

y* f 2 y
3 u* y* = 0,

or, y + w2
y + 2 - u3 = 0,

., 2 n* - 2
, . . ,

and x = u. ;

i/.* + 1 w -j- 1

from these equations we can find a series of corresponding values for

x and y.

3 y = - 2 TV , x ~ 8 A
2 = - 2 4

1 = - 1 4 1 *

= - 2 =0

: 2 = 1 | = 2 i

= 3 = 2 = 7i
: 4 3ff = H -H

&c. &c. &c.

M 2
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Y

r

Also when y = 0, x = 0, hence the curve passes through A. Let

A X, A Y be the axes
; along the axis of y take values equal to those in

the table for y ; and from the points thus determined draw lines equal to

the corresponding values in the table for x (these are the dotted lines in

the figure) ; by this method we obtain a number of points in the curve

sufficient to determine its course.

This example is taken from the "
Analyse des Lignes Courbes, by

G. Cramer. Geneva. 1750," a work which will be found extremely use-

ful in the study of algebraical curves.

319. To trace the curve whose equation is y
5

5 a a?y* + x5 = 0.

Let x be very small .*. x6
being exceedingly small may be omitted,

and the equation becomes y
6 = 5 a x* y

2
, or y

8 = 5 a x*, which is the

equation to a semi-cubical parabola PAP' fig. (1.) ; and if y be very

small, we have x9 = 5 ay
9
, which gives the parabola Q A Q' ; hence

near the origin the curve assumes the forms of the two parabolic branches.

Again when x is infinitely great, x* may be neglected in comparison with

x* and the equation becomes ^ = or
5

, .*. y = x ;
hence for x posi-

tive, we have an infinite branch in the angle X A y, and for x negative an
infinite branch in the angle Y A x.

To find the asymptote :

y rr xb + 5 a x* y,

**-
I

1 -'?-.*'?--}
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ft
2

= <r + a + 2 . -f, &c. when y = x :

x

Therefore the equation to the asymptote is y + x == a
; this being drawn

and the branches A P', A Q' produced towards it, we have nearly a cor-

rect idea of the curve.

If the equation be y* 5 a2
a;

2

y + #5 = 0, the curve will be traced

in the same manner, fig. (2).
If the equation be y

6 - a* x* y* + & 0, we have fig. (3) ;

Arid the equation y
6

a* a;
2

y* xe = will give fig. (4).
Ex. Find the locus of the equation y* 4 a2 x y x* =0.
For the above method of tracing curves of this species, see a treatise

on the Differential Calculus, by Professor Miller. Cambridge, 1832.

320. B C is a straight line of given length (2 6), having its extremities

always in the circumferences of two equal circles, to find the locus of the

middle point P of the line B C.

Let the line joining the centres O,O' of the circles be the axis of x, and
let the origin of rectangular axes be at A, the bisecting point of O O'.

Let x y be the co-ordinates of B.

c.

'*.../'

A O = A O' - a,

O B = O' C = c,

the equation to B is y* -f (x of = ca

to C is y
'* + (X + a2

)
2 = c

2

also (y
-

y')
2 + (x - *')

2 = 4 b*

2 Y - y + y'
2 X = x + x'

From these five equations we must eliminate the four quantities y> x
t

\f and xf

;
from (1) and (-2)

y*
_

y
' + x* - x'* - 2 a (x + x') 0,

or (y
_ y') Y + (a - a?') X - 2 a X = (6),

from (4) and (5) y* + f + ^ + xfz + 2 y y
f + 2 x x'- 4 Y2 + 4 X

from (3) i/
2 + y" + *8 + ^/

2 - 2 y y' 2 a? x' 4 6
2
,

from (1) and (2) 2 y + 2 2/'

2 + 2 *8 + 2 x'* - 4 a (#-/)= 4 c
2 - 4 a8

,

/. by substitution 4 a (* - A') =r. 4 (Y
2 i Xa

4 6s + aa - c8),
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or (x
-

*') =

and from (6)

ALGEBRAIC CURVES.

Y2 + X2 + m* .

y -
y' = {2 a -

(x
-

x')} =

,
if m* = a2

-r- 6' - c,

Y 2 + X + m
2 a

Substituting these values of x -- x' and y y' in (3), we have

{
2 a - + X * + m

T ĝ
+ f

Y* + X8 + m8
j

2 _ 4 6
) Y 2

\ a j

or 4 a2 X* - 4 (Y + Xs + m8

)
X2 + fH^

\ **

'X2 + Y 2 +
~2a~~

= 0.

This equation, being of the sixth dimension, and the highest terms

being both positive, the curve must be limited in every direction : when X
is very small, there are four values of Y ;

also when X = 0, we have
Y = 0; hence the curve is a species of double oval, or lemniscata.

If the circles be unequal, and P be any point in the line B C, the curvt

will be of the same nature, but the investigation is much longer.

(2)

The very beautiful contrivance of Walt to reduce a circular to a recti-

linear motion is well known to every one. Suppose the point B to be the

extremity of an engine-beam, moveable about its centre O, this beam is

required to moved a piston-rod always in the same vertical position ;
it is

plain that this motion cannot be obtained by fixing the piston-rod to B, or

to any point in O B. Suppose now, a beam O'C, called the radius-rod,

to move about a centre O', and join the extremities B, C, by a bar B C ;

the extremity of the piston-rod is fixed to the middle of the beam B C, and
its motion, according to the above demonstration, is in a portion of the

curve, such as the dark part of the lemniscate in the first figure, and

consequently the rod itself continues much more in the same vertical line

than if attached to B. The comparative lengths of the rods neces-

sary to render the motion as nearly vertical as possible are stated in most
works on the steam-engine, and in the Mechanics' Magazine. For a

more complete but very different method of finding the equation to the

above curve, see 4<

Prony, Hydraulique.'
321. We have no space for the disc ission of any higher algebraic

curves, if it were necessary ;
but in fuct we have not '.he meafis : it mu?t
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have been already seen that many of the preceding- curves have not been
drawn with mathematical exactness ; for unless we took the trouble of

tracing them by points, we could not easily determine their curvature
; we

shall therefore pass to the consideration of the general equation of the

nth dimension, and then proceed to the intersection of algebraic curves*.

322. The general equation of the rath degree, with all its terms com-

plete, is

y
n + (ax + b)y

n~ l + (ex* + dx + e) y
n~* + . . . +f xn + gx- 1

it contains all the possible combinations of x and y, so that the sum of

the exponents in no one term exceeds n.

The number of terms is 1+2 + 3+.. ..+(n + 1), or is the

sum of an arithmetic progression, whose first term and common difference

is unity, and the number of terms is n + 1
; therefore the sum of this

. (n + 2) (n + 1)
series is -- ^---.

The number of independent constants is (dividing by the co efficient of

y" if necessary) one less than the number of terms in the equation, that is,

(n+2) (*+l) n (n+3)
2 2

323. An algebraic curve of the n th degree may pass through as many
/

i^
o\

given points as it has arbitrary constants, that is, through
^

points,

for giving to x and y their values at each one of the given points, we have

- different equations, by which the values of the constants may

be determined. For example,

* We must refer our readers to our treatise on the Differential Calculus for information
on the curvature of lines. It must not, however, be imagined that algebraic geometry is

incapable of exhibiting the form of curves
;
the following method of determining the

curvature is an instance to the contrary.
Let yi, y%, and ya be three consecutive ordinates, at equal distances from each other

;

then drawing a corresponding figure, it will be seen that the curve is concave or convex

to the axis, according as y2 is > or <
"^

;
as an example, take the cubical para-

bola, whose equation is a2 y x3
,
then the curve is convex, if 2 x3 is < (x 1)3

+ (x -{- I)
3 is >2 x3 + 6#, which it is, and therefore the curve is convex. The

distances at which the ordinates are drawn from each other must depend on the con-
stants in the equation.

Again, to determine the angle at which a curve cuts the axis of x, transfer the

origin to that point ; then the tangent to the curve at that point and the curve itself

make the same angle with the axis ; but the value of the tangent of the angle which

y o
the tangent to the curve makes with the axis is then := -, which may be any

value whatever : for example, let a2 y x .-. = = when v = 0, therefore

the curve coincides with the axis at the origin. Again, take the example in art. 307

a3 r= T8 (2 a x} ; at A we have = = -
, and at B we have

xd x 2 a <r

*:* 4 a2=
_-jj
=

tp
; hence the curve cuts the axis of x in both cases at an angle of 90.
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The general equation to the conic sections, dividing by the co-efficient

!/

8
-f bry + c a* + dy + !+/= 0,

in which there are five co-efficients, and therefore a conic section may pass

through five given points ; substituting the co-ordinates of the given points

separately for x and y we obtain five equations from which the constants

can be determined, and thence we have the particular curve required ;
it

will be an ellipse, hyperbola, or parabola, according as 68 4c is negative,

positive, or nothing. (79.)
324. The elimination is long, but the trouble may be much lessened by

assuming one of the given points for the origin, and two lines drawn from

the origin to other two given points for the axes.

For example, if it be required to pass a conic section through four

given points B C D E, join B C and D E, and let them meet in A
;

let

A B be the axis of y and A D the axis of x,

Y

Let AC = y t ,
AB = yz ,

A D = a?! , A E = ya ;

Assume the equation to be

A IT777 - E X

=. 0;

we have for r
, y,

2

-j- d y l -j-/
and y.' + dy.-f/sO;

/. d -
(y, -f y2), and/= y, y.,.

Similarly for y = 0, e = c (.r, + i>2), and/= CJT, j-g ;

equating the values of/, we have c =r ^i-2-
.

TI J?8

Substituting and dividing by y l ya , we have

an equation involving only one unknown co-efficient 6.

There are some restrictions depending on the situation of the given
points ; thus no more than two can be in the same straight line, or else
the conic section degenerates into two straight lines.

The five given points are the same as five conditions expressed analy-
tically ; four are sufficient if the curve is to be a parabola ; for b* 4 c
= 0, is equivalent to one. If the curve has a centre, whose position is

given, three other conditions suffice, because we may assume the equation
to be y

2 + bxy + c j:
8 +/= 0. If the position of two conjugate

diameters be given, only two more conditions are requisite.
Newton, in his Universal Arithmetic, gives excellent methods for de-

scribing, by continued motion, a conic section passing through five given
points.
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325. If it be required to pass a curve, whose species is not given,

through a number of given points, we may with advantage assume the

equation to be of the form

y = a + b x + c x* + d x3 +, &c.

The elimination of the constants is more regular, and therefore easier

in this equation than in any other: such curves are called parabolic (the
three first terms giving the common parabola) and consist of a series of

sinuosities, such as in (309), which are easily traced. For the elimina-

tion of the constants, see Lagrange, or Lardner's Algebraic Geometry,
art. 617.

326. We saw in article (79) that the general equation of the second

order sometimes gave straight lines for the loci; such will be the case when-

ever any equation is reducible into rational factors of the first degree ;

so that we must not always conclude that an equation of the 7iih

order has a curve of the n th order for its locus. If the equation be re-

ducible into factors of lower degrees, there will be a series of lines corre-

sponding to those factors ; thus if an equation of the 4th degree be com-

posed of one factor of two degrees, and two factors of the 1st degree,
the loci are a conic section and two straight lines ; and hence a general

equation of any order embraces under it all curves of inferior orders : if

any of the factors be impossible, their loci are either points, or imaginary.
If the sum of the indices of x and y be the same in every term, the loci

are either straight lines or points ; for an equation of this species will have

the form

y
n + ay

n ~ l x + by"-*x* . . . . + l* n = 0,

let the roots of this equation be a, /3, y, &c., then the equation will be

. = 0,

each factor of which being = 0, its corresponding locus is evidently a

straight line ; if the roots of the equation be impossible, the correspond-

ing loci are points.

Ex. y* 2xy sec. + xz
0. The locus consists of two straight

lines whose equations are y =. x-' = x tan.
(
45 -f- )

and
cos. a \ 2 J

therefore the lines pass through the origin, and are inclined to the axis of

x at angles of 45 .

327. Since the general equation includes all equations below it, the

properties of the curve of n dimensions will generally be true for the lower

orders, and also for certain combinations of the lower orders ; thus, a

property of a line of the third degree will be generally true for a conic-

section, or for a figure consisting of a conic section and a straight line,

or for three straight lines. Moreover the lower orders of curves have

generally some analogy to the higher curves, and hence the properties of

inferior orders often lead to the discovery of those of the superior.

328. From the application of the theory of equations to curves, an
immense number of curious theorems arise, which may be seen in the
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works of Waring and Maclaurin : we have only room for two or three of
the most important.

If two straight lines, AX, AY
cut a curve of n dimensions, in the

points PQR,&c., STU, &c., so

that A P, A Q, A R, &c. =r y^ #,
yy &c. respectively, and A S, A T,
A U, &c. = xlt oc #3, &c. respec-

tively, then if A X and A Y move

parallel to themselves, we shall

always have y^.y^. y3 . &c. : x
l

. o-8

. j?3 . &c., in a constant ratio.

Let the equation to the curve be referred to the origin A, and to axes

AX, AY, by means of the transformation of co-ordinates, and suppose
the equation to be

n ~ l + . . . c x n + d

cx n + d x n ~ l + . .

y
n + (ax +

Lety =
x = y

n + b y
n~ l +

~ l + . . . kx + I = 0.

kx + I = 0. (1)

fey + I = 0. (2)

The roots of (1) are A S, A T, A U, &c. ;

The roots of (2) are A P, A Q, A R, &c.
;

v
. ,r2 . xz . &c. = .

c

y l &c. = I

&c..' y-y* . 3/3, c.
\
x

l . x*

Now the transformation of the axes, parallel to themselves, never alters

the co-efficients of y
n and x n

; hence the above ratio is constant for any
parallel position of A X and A Y.

Article 293 is an example of this theorem.

329. A diameter was defined in (76) to be a straight line, bisecting a

system of parallel chords; more generally it is a line, such that if any
one of its parallel chords be drawn, meeting the curve in various points,
the sum of the ordinates on one side shall equal the sum on the other

;

thus, in the figure, if P Q + P' Q + &c. = R Q -f R/ Q = &c., and the

same be true for all lines parallel to P R, then B Q is a diameter.

To find the equation to the diameter B Q let the equation to the curve,
referred to A X and a parallel to P Q, &c.

dx + e) y--f.,&c. = 0.

Let M Q = w, and PQ =
y',

by substitution we have

y'* + (a x + 6 + n y) y
f "~ l+

y = y' -f u,

n - 1 u .ax + ft

=o
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By the definition the sum of the values of y' must equal nothing, and that

sum is the co-efficient of the second term in the last equation with its

sign changed,
.*. a x + 6 + n u = 0,

ax + b
or u = ,

and this is the equation to the diameter B Q.

Agaii.. uy the same reasoning, the equation

n 1
c x2 + d x + e -f- n \u.ax + b + n. u* r=

is that to a conic section drawn so that the sum of the products of the

values of y, taken two and two together, shall equal nothing.
We might proceed on with the co-efficient of the fourth term.

These curves are sometimes called curvilinear diameters.

330. The method of finding the centre, if any, of a curve, is given in

(81) ;
the operation is too long to apply it to a general equation of high

dimensions, and therefore we shall take an example among the lines of the

third order as fully illustrating the subject.
Let the equation be x y

z + e y = a x3 + b x3 + c x + rf, under which
form are comprehended most of the curves of the third order.

Let x === x + m, y = y + n
;
the transformed equation is

x
z/

2 + '2 n x y -f- m y* + (2 nm + e) y a x3

(3 a m + 6) x*

-j- (n
s 3am2 26m c) # -|- m ra

2 + en am3 6m2

cm d =
;

in order that the curve may have a centre, the 2nd, 3rd, 6th, and last

or constant term must each =
; .'. n = 0, m = 0, 6=0, d = 0,

so that the corresponding curve has a centre, which is the origin, only
when the co-efficients 6 and d are wanting.

CHAPTER XIII.

ON THE INTERSECTION OF ALGEBRAIC CURVES.

331. THE intersection of a straight line with a line of the nih order is

found by eliminating y from the two equations ;
hence the resulting equa-

tion in terms of x will be of the nth order, and therefore may have

n real roots
;

thus there may be n intersections : there may be less,

since some of the roots of the resulting equation may be equal to one

another, or some impossible.

Generally speaking, a curve of n dimensions may be cut by a straight
line drawn in some direction in n points ;

but the curve, in its most general

form, must be taken
; otherwise certain points as conjugate and multiple
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points, must be considered as evanescent ovals or evanescent branches of
the curve, and thus a line passing through such points is equivalent to

two or more intersections.

332. The intersections of two lines of the mth and nth orders are

found also by eliminating y from both
;
hence the resulting equation may

be of the m/ith order, or there may be m n intersections ; there are often

less, for not all the real roots of the equation X zz will give points of

intersection: for example, if we eliminate y from the equations

y
2 = 2 a x x* and #

2 = 2 a (x 6) we find x = *] 2 a b ;

hence, apparently, there is always an intersection corresponding to the

abscissa V 2 a b ; but this is not the case ; for then y* = 2 a ( */2ab 6),

and therefore y is impossible, if b is > 2 a, which is evident on drawing
the two curves ;

hence after the abscissa is found, we must examine the

corresponding ordinates in each curve ;
if they are not real, there can be

no intersection corresponding to such abscissa.

If we have the two equations y
% + 2 n = 0, y

2
-f- 4 ,r

2 10 x - 16 = 0,

the elimination y gives the abscissas of intersection x = 4 and x = 1,

the second of which alone determines a, point of intersection.

333. In finding the intersections of lines, we often fall upon a final

equation of an order higher than the second, or arrive at an equation
whose roots are of a form not readily constructed ;

to avoid this difficulty

a method is often used which consists in drawing a line which shall pass

through all the required points of intersection, and thus determine their

situation.

Let y =/ (x)
*

(1), and y = (,r) (2), be the equations to two lines,

then at the point of intersection they have the same ordinates and abscissas ;

or calling X and Y the co-ordinates of the point of intersection, we have

simultaneously Y =/(X) and Y = (X) ; hence/(X) = (X), from

which equation X and Y might be obtained, and their values constructed

But since Y = / (X) (3)

and Y = 0(X) .... (4)

we have by addition 2 Y = /(X) + (X) . . . . (5)

or by multiplication Y2 = / (X) . (X) .... (6)

or generally Y = F {/(X), 0(X)} (7)

F implying any function arising from the addition, subtraction, multipli-

cation, &c. of (3) and (4).

Now any one of these equations gives a true relation between the co-

ordinates X and Y of the point of intersection of (1) and (2); but by

supposing X and Y to vary, it will give a relation between a series of

points, of which the required point of intersection is certainly one ; that is,

drawing the locus of (5) or (6) or (7), it must pass through the required

point of intersection of (1) and (2).

It is manifest that if one of the equations (5), (6), or (7), be a circle

* The symbols F (.r), f (T), <p (a-), serve to denote different functions of x, that

is, indicate expressions into which the same quantity or enters, but combined in dif-

ferent ways with given quantities. But /" (#), /* (y), indicate similar formulae for both
x and y ; thus, if /(*) = 2 a x - x*t then/(y) = 2 a y /

2
,
or 2 b y ;/

y
.
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or straight line, it will be much easier to draw this circle or straight line
than to find the intersection by means of elimination.

Also we may often find the intersection of (1) and (2), when one of
them is a given curve, by drawing the locus of the other, and this method
is the simplest when that other is a straight line.

We shall give a few examples to illustrate the subject.
334. From a given point Q without an ellipse, to draw a tangent

to it.

Let the co-ordinates of Q be

ra and ?i, and let X and Y be the

co-ordinates of the point P, where
the required tangent meets the

curve.

Then by (111) the equation to

the tangent through P is

a*2/Y + b*x X = az
b\

and since this passes through Q we
have

a2 n Y -f 6 m X = a8
f,
9

(1)

and a2 Y8 + 6* X* = a2 b\ (2)

From (1) and (2) we might, by elimination, find X and Y, and their con-
structed values would be the co-ordinates CM, M P of the required

point.
Now (1) is not the equation to any straight line, but only gives the

relation between C M and M P ; but if we suppose X and Y to vary, it

will give the relation between a series of points, of which P is certainly
one ; and therefore, if the line whose equation is (1) be drawn, it must

pass through P, and consequently, with the ellipse (2), will completely fix

the situation of P.

To draw the line (1),

Let X = ; .'. Y = ;
Let Y =

;
/. X = ;m

b* a?
in C y take C B = ,

and in C x take C A =
; join B A

; B A pro-
7L llfc

duced is the locus of (1), and it cuts the ellipse in two points P and P ;

hence if Q P and Q P7 be joined, they are the tangents required.
The same method may be employed in drawing tangents to the para

bola and hyperbola.
To take the more general case, let a y* + c x* -f d y + e x = (1)

be the equation to the curves of the second order referred to axes parallel
to conjugate diameters.

Then the equation to a tangent at a point x' y' is

ayy* (y 2/0 + ~
(*
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or (2ay> + d) y -f (2 c x' + e)x + dy' + ex' = (2).

Let this tangent pass through a point m w, then (2) becomes

(2 a y' -f d) n -f (2 c a/ -f- e) m + dy' -f e x' = (3),

or, (2 an + d) y' + (2 c m + e)/ + dn +em=rO (4).
Now let xf and y'in (4) be considered variable, and construct the straight
line, which is the locus of (4); this with the curve itself, determines the

position of the secant line which joins the two points on the curve, whence

tangents are drawn to the point rn n.

335. Again, suppose the secant line (4) to pass through a given point
m' ?i'; Then the equation (4) becomes

(2 a n + d) n* + (2 cm + e) m' -f d n + e m =r (5),
and of course the point m n, whence tangents were originally drawn,
must have a particular position corresponding to each secant line passing

through m' ri
-,

if therefore we make m and n variable in (5) we shall

have the equation to the locus of the point m n

(2 a n' + d) n + (2 c m' + e) m + d n'+ e m' =
where m and n are the variable co-ordinates.

Hence we have the following theorem : if from any point secants be

drawn to a line of the second order, and from the two points where each

of these secants intersect the curve, tangents be drawn meeting each other,

the locus of all such points of concourse is a straight line.

336. To draw a normal to a parabola from a point Q (0, 6,) not on

the curve.

Let y
8 = 4 m x, be the equation to the curve, and let X and Y be the

co-ordinates of the required point, then the equation to the tangent at the

point X Y, is by (232)

Y y = 2 m (X + ,r),

and therefore that to the normal at X Y is

and since it passes through (a 6) we have
'jj

Y

or, X Y -
(a 2m) Y - 2m b = 0,

also, Y2 =r4mX .

(I)

(2)

The elimination of X gives Y8 - 4 m (a 2 m) Y 8 m" o = (3), an

equation whose roots would give the three required ordinates.

To avoid this equation we shall construct the locus of (1), which is the

equation to an equilateral hyperbola. The axis of x is one asymptote

(198), and the other is parallel to the axis of y, and at a distance A C =
2m from A

; the equation to the hyperbola referred to its centre C and

asymptotes is X Y = 2mb ; moreover the hyperbola cuts the axis of y in

the point D, where A D = -
; hence this hyperbola (the dotted

curve in the figure) may be constructed.
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We have drawn the figure, so that there shall be only one intersection

of the curves, and hence only one normal is drawn from Q. If the curves

touched, as at E, there would be two normals ;
and if the hyperbola cut

the parabola in the lower branch, there would be three normals drawn
from Q. These cases correspond respectively to the equation (3), having
one real root ; three real roots of which two are equal ; and, lastly, three

real and unequal roots.

337. We must particularly observe that, in the construction of loci, those

are to be selected which admit of the easiest description, and of all curves
the circle is to be preferred ; hence, in the present case, we must look

carefully to see if it is possible, by any combination of (1) and (2), to

^btain the equation to the circle ;
for by 333 this will pass through the

required normal points.

Multiply (1) by Y, then

XY2 - (a 2m) Y -2m6Y = 0,

or, X . 4 m X - (a - 2 m) 4 m X 2 m b Y = ;

... X2 - (a - 2 m) X- A Y - 0,

and Y 2 - 4 m X = 0, from (2)

/. by addition Y 2 + X2 - (a + 2m) X -
-|~

Y =

which is the equation to a circle, the co-ordinates of whose centre are

a b lf a \*b*i
r- m and, and whose radius is J J ( + m

j
+ -.-r> Although

this circle passes through the vertex of the parabola, yet that point is not

one of the required intersections, but merely arises from the multiplication

of(l)by Y.
If the parabola and circle be drawn, the latter in various situations

according to the position of Q, we shall see, as before, that there will be

one, two or three intersections : such practice will be found very useful.

The problem of drawing a normal to an ellipse is of the same nature,

only in this case there may be four intersections.

338. The intersection of curves has been employed in the last articles

to avoid the resolution of equations resulting from elimination, but t,he

principle may be extended, so as to render curves generally subservient to

the solution of equations ;
for as two equations combined produce one

whose roots give the intersection of their loci, so that one may in its turn

be separated into two, whose loci can be drawn, and their intersection will

dv.termine the roots of the one.

This method, known by the name of " the construction of equations,"

<vas much used by mathematicians before the present methods of approxi-

mation were invented ;
it is even now useful to a certain extent, and

therefore we proceed to explain it.

Let there be two equations : y -\- x = a (1), y^ + a* = 6
2

(2), by
elimination we find

^-a.+ flzJ^O (3).
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We already know that the roots of (3) are the abscissas to the points of

intersection of the loci (1) (2); but, conversely, it is manifest that the

roots of (3) can be determined by drawing the loci of (1) and (2), and

measuring the abscissas of intersection.

Hence if it be required to exhibit geometrically the roots of (3), let

it be decomposed into the two equations (1) and (2), and let C P Q B
be the locus of (1), and the circle EPQ of

(2), having the same origin and axes : draw the

ordinates M P, NQ, then A M and A N are

the roots of (3).

The method consists in parting any given

equation into two others, and then drawing the

loci of those two ;
and as it is obvious that

there are a great many equations which, when
combined together, may produce the given

equation, so we may construct a great many loci, whose intersections will

give the required roots : thus, in the above case, the equation (3) may be

resolved into the two x* = a y, and ay a x + ^-^ = o, and the

corresponding parabola and straight line being drawn, their intersections
will give the roots of (3).

In general the roots of an equation can be found by the intersection of
any two species of curves whose indices, multiplied together, are equal to
the index of the equation: thus, a straight line and a curve of the third
order will give the solution of an equation of the third order

; and any
two conic sections, except two circles, will give the roots of an equation of
the fourth order.

339. As equations of the third and fourth order are of frequent recur-
rence in mathematical researches, we proceed to the solution of the com-
plete equation of the fourth order,

ry = 0.

Here the circle and parabola, as curves of easy description, ought to be
chosen, and assuming the equation to the parabola a slight artifice will

give us that to the circle.

Lety + |-y = * (1);
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but y
4 + pi/

3 + qy* + ry + s = 0,

/
/?

2 \
.*. by subtraction q )y

2 + ^-frw + s^2

V 47

or from (1) '

('
~
T) (*

" -- y + a* + + * = ;

and from (1), y* + - x = 0,

= (2).

The locus of (1) is the parabola A E Q, the origin being at E ( BE = - Y

and the co-ordinates rectangular. The locus of (2) is the circle Q P 11; the

co-ordinates E D, D C of the centre, and the radius are readily deter-

mined from (2). The roots of the equation are drawn as if two, PM,
Q N were positive, and other two R S, TU were negative. If the circle

touch the parabola, two roots are equal ; the cases of three or four equal
roots can only be discussed by the principles of osculation, but as two roots

are sufficient to depress the equation to one of the second order, we need

not here consider those cases. If there be only two intersections, two
roots are impossible ;

and if there be no intersection, all four roots are

impossible.
340. In practice the operation is shortened by first taking away the second

term of the equation ; for example, to construct the roots of the equation

s* + Qo? + 23^+ 32*+ 16 = 0. (1).

Let x s= y 2, and the reduced equation is

2/

4

-2/
2

+43/ -4 = 0. (2).

Let y
8 = x (3) ;

.'. by substitution #2 x + by 4 = 0,

by addition y
2
-f lr2 + 4y 2 j? 4 = 0,

or, (y + 2)
2 + (x

-
I)

2 = 9 (4).

Let P A Q be the parabola (3), whose parameter is unity, the co-ordi-

nates of the centre C of the circle (4) are A B = 1, and B C = 2, the
radius = 3. Describing this circle, the ordinates B P and Q N are
the possible roots of (2) ; measuring these values we shall find P B = 1,

and Q N = 2
; hence the possible roots of (2) are 1 and 2, and

therefore those of (1) are 1 and 4.

341. The construction of equations ^f 'he third order is involved in that

N
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of the fourth order. Take away the second term, if necessary, multiply the

resulting- equation Y = by y, and then proceed precisely as in the last

article. The circle will always pass through the vertex of the parabola, bu
this intersection gives the root y = 0, introduced by multiplication, and
has therefore nothing to do with the roots of the given equation. This

circumstance of the circle passing through the vertex of the parabola, is

singularly convenient, as it entirely saves the trouble of calculating the

radius to decimal places, which is often necessary in the preceding cases.

Ex.1. ^ 6j?2 - x + 6 = 0. Let .r = y + 2
;

/. y*
- 13 y - 12 = 0,

or, y* 13 y
8 12 y 0.

Let y
2 - x = -

(1)

.'. x*- 13-r- 12y = 0,

':. y
9 12 y + x2 - 12 x = 0,

or, (y
-

6)t + (x
-

6)* = 72 (-2).

The three roots of y, as given by the figure, are 4, 1 and 3;
hence the values of x are 6, 1 and 1.

Ex. 2. 4
j/

8 + 6y 5 = 0. There is one possible root nearly = ^
V 2

Ex. 3. 4 y
6 3 y + 1

-
0.

There never can be any difficulty in constructing the loci of these equa
lions ; having once drawn a parabola, whose parameter is unity, with
tolerable exactness, it will serve for the construction of any number of
such equations.
As another example, we take the following question.
342. To find two mean proportionals between two given lines a and 6,

Let y and x be the required lines ;

then a : yily : x, .'. y
9 =>a x (1),

y : x::x: 6, /. x* = by (2),

/. y
4 = a2 x9 =. a?b y, or y* a8 6 = ;

but by addition of (1) and (2), y
2 6 y + x* a x = 0,

Let PAQ be the parabola (1), then the intersection of the circle (3)
will give M P and A M, the two mean proportionals required.
The other roots of the equation y

9 a* b
~ are impossible.
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This problem was one of those so much celebrated by the ancient ma-
thematicians. Menechrne, of the school of Plato, was the first who gave
a solution of it : his method being- particularly ingenious, as well as being
the first instance known of the application of geometrical loci to plain
problems, is well worth insertion.

With a parameter a, draw the parabola PAQ (fig. 2), and on A Y
perpendicular to A X describe the parabola PAR with parameter b.

Then the rectangle #, A M or #, N P is equal to the square on M P;

/.
,
M P and N P are in continued proportion.

Again, the rectangle 6, AN or 6, M P is equal to the square on N P ;

.*. M P, N P, and b, are in continued proportion ;

hence we have at the same time the two proportions

a : MP ::MP :NPand MP :NP::NP : 6;

.". a, M P, N P, and 6, are in continued proportion.

Menechme also gave a second solution depending on the intersection of

a parabola and hyperbola.
343. To find a cube which shall be double of a given cube.

Let a be a side of the given cube, then the equation to be solved is

y* = 2 a3
,

or ?/

4 2 a* y = 0,

Let 3/
8 = ax (1), /.

2 x* ~ 2 a9

y = 0, or, z2 2 ay = ;

.*. by addition, y
2 2 a y -f- x

z a x = (2) ;

The loci of (1) and (2) being flrawn, the ordinate P M of their intersection

is the side of the required cube.

This problem, like the former, occupied the attention of the early geo-
metricians ; they soon discovered that its solution is involved in the pre-

ceding one ; for if 6 = 2 a, the resulting equations are the same.
In this manner a cube may be found which shall be m times greater

than a given cube.

344. We may thus find any number of mean proportionals between
two given quantities a and 6.

For if y be the first of the mean proportionals, they will form the fol-

lowing progression :

Let there be four mean proportionals, then the sixth term of the pro-

gression being 6 we have -^ = b, or y
6 a4

b = 0.

Describe the parabola whose equation is y
z = a x

t and then draw the

locus of the equation y x* a? b =0. The last curve consists of an

hyperbolic branch in each of the angles Y A X, Y A .r, and therefore the

ordinate corresponding to the real root is readily found.

345. Newton constructed equations by means of the conchoid of Nico-

medes : he justly observes that those curves are to be preferred whose

mechanical description is the easiest ;
and he adds, that of all curves,

the conchoid next to the circle is, in this respect, the most simple. See
the instrument in (31 2). The following- is one of the many examples
given in the Universal Arithmetic.

N2
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13.)
Let the equation be x* + q x + r = 0, draw a

straight line K A, of any length n. In K A take

KB, and bisect B A in G ;
with centre k

n
and radius K C describe a circle, in which inscribe

the straight line C X =
-^ ; join A X, and be-

tween the lines C X and A X produced, inscribe

EY equal to C A, so that, when produced, it passes through the

point K.

A geometrical proof follows to show that, from this construction, the

equation for the length of X Y is x* + q x + r 0, so that X Y is a

root of the equation.
The conchoid is employed to insert the line E Y between C X and C A.

Let K be the pole, AXE the base, and CA the modulus; then the

common description of the curve determines the point Y on the line C X Y,

suchthatEY = CA.
346. With regard to the higher equations, there is not much advantage

in constructions, since it is extremely difficult to draw the curves with

sufficient exactness. The method, however, is so far useful as enabling

us to detect the number of impossible roots in any equation, as we can

generally trace the curves with sufficient accuracy to determine the num-

ber of intersections, though not the exact points of intersection.

Ex. y
5 - 3y +1 = 0.

Let y
8= x ..... (1),

... y j*_ 3 y + 1 = 0, (2)

the locus of (1) is a parabola PA Q, that of (2) is a curve of the third

order, and there are three intersections ; and, therefore, three possible

roots, two positive, and one negative.
347. There is some uncertainty in the employment of curves in finding

roots ; we stated in (332), that real roots may correspond to imaginary

intersections; so, on the contrary, imaginary intersections, or what is the

same, the absence of intersections, does not always prove the absence of

real roots; for example, if to prove the equation x* + 15,r + 14 =
we assume y

2 = x8
(1), and therefore x f + \b x + 14 = (2), the

loci of (1) and (2) will not intersect, but yet two roots are possible. The
error was in choosing a curve (l), which proceeds only in the positive

direction, when from the form of the equation it is apparent that there

are negative roots. Taking the circle and common parabola for the loci,

as in (340), we shall find the roots to be - 1 and 2. Hence, in

general, to ascertain real roots it will be advisable to try more than two

curves.
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CHAPTER XIV.

TRANSCENDENTAL CURVES.

348. IT was stated in art. (23), that those equations which cannot be

put into a finite and rational algebraical form with respect to the vari-

ables, are called Transcendental ;
of this nature are the equations y sin. x

andy =r a". In Chapter XII. we have obtained the equations to curves,

generally from some distinct Geometrical property of those curves ; but

there are many curves whose equations thus obtained cannot be expressed
in the ordinary language of algebra ;

that is, the equation resulting from
the description or generation of the curve is dependent upon Trigonome-
trical or Logarithrnical quantities ; these curves, from the nature of their

equations, are called Transcendental.

We shall here investigate the equations and the forms of the most
celebrated of these curves, and mention a few of the remarkable pro-

perties belonging to them, although they can be only fully investigated by
the higher calculus.

349. In this class will be found some curves, as the Cardioide, whose

equations may be expressed in finite algebraic terms ; but these examples
are only particular cases of a species of curves decidedly Transcendental,
and which cannot be separated from the rest without injury to the general

arrangement.
Some of the Transcendental class have been called Mechanical curves,

because they can be described by the continued motion of a point ; but

this name as a distinction is erroneous, for it is very probable that all

curves may be thus described by a proper adjustment of machinery.

THE LOGARITHMIC CURVE.

350. The curve Q B P, of which the abscissa A M is the logarithm
of the corresponding ordinate M P, is called the Logarithmic curve.

A T M

Let A M = x, M P = y, then x = log. y t that is, if a be the base of
the system of logarithms, y = a*.

To examine the course of the curve we find when # = 0, yr=#*=l;
as r increases from to cc, y increases from 1 to CD

;
as x increases

to oo, y decreases from 1 to 0. In AY take A B = the linear unit, then
the curve proceeding from B to the right of A B, recedes from the axis
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of x, and on the left continually approaches that axis, which is therefore

an asymptote.
This curve was invented by James Gregory ; Huyghens discovered that

if P T be a tangent meeting A X in T, M T is constant and equal to the

modulus ( :
)
of the system of logarithms. Also that the whole area

\\og.aj
M P Q x extending infinitely towards x is finite, and equal to twice the

triangle P M T, and that the solid described by the revolution of the

same area about X x is equal to \\ times the cone, by the revolution of

P T M about X x.

That such areas and solids are finite is curious, but not unintelligible
to those who are accustomed to the summation of decreasing infinite

series.

If the equation be y = a~ m
, the curve is the same, but placed in the

opposite direction with regard to the axis of y.
351. The equation to the curve called the Catenary, formed by suspend-

ing a chain, or string, between two points B and C, is

y = *(e
x + e-*)

where A M = x, M P = y,

and A D = 1.

This equation cannot be obtained by the ordinary algebraical analysis ;

but it is evident that the curve may be traced from this equation, by add-

ing together the ordinates of two logarithmic curves corresponding to the

equations y =. t? and y =r e~".
i

352. Trace the locus of the equation y a'. (Fig. 1.)

S,

353. To trace the curve whose equation is y = of. Let x
. y = I ; let x = 1 .*. y = 1 ; and between x = and x := 1, we have
less than 1; also x increases from 1 to co, y increases to infinity
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hence if A B 1 (fig. 2,) and A C = 1, we have the branch B P Q
corresponding to posit-ive values of x.

Let x be negative .". y ( x)
~*

; now if we take for x

three consecutive values as 2, 2^, 3, it is evident that y will be positive,

impossible, or negative ;
hence the curve must consist of a series of iso-

lated points above and below the axis A x.

For further information on this subject see a very interesting memoir

by M. Vincent, in the fifteenth volume of the " Annales des Math." M.
Vincent calls such discontinuous branches by the name " Branches Ponc-
tuees ;" and he also shows, that in the common logarithmic curve there

must be a similar branch below the axis of x, corresponding to fractional

values of x with even denominators.

THE CURVE OF SINES.

354. The curve A P E C, of which the ordinates M P, B E are the

sines of the corresponding abscissas A M, A B, is called the Curve of
Sines.

\

Let A M =
j?, M P =r y, then the equation, is y = sin. ar,

v =r r sin. .

r
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This curve may be supposed to arise from the development of circular

arcs into a straight line X x, ordinates being drawn corresponding to the

sines of these circular arcs.

In a similar manner the curve of cosines, of versed sines, of tan-

gents, &c., may readily be investigated.
If the ordinates of the curve of sines be increased or diminished in a

given ratio, the resulting curve (y
~ m sin. x) is the curve formed by the

simple vibration of a musical chord: hence this curve is called the Har-
monic Curve.

355. The accompanying figure belongs
to the curve whose equation is y
xta.n. x. Such curves are useful in finding
the roots of an equation as x tan. x = a ;

tor, supposing the curve to be described, in -^
A Y take A B cr, and from B draw a ^x
line parallel to A X ; then the ordinates

corresponding to the points of intersection

of this straight line with the curve are the

values of y, that is, of x tan. x.

THE QUADRATRIX.

356. Let C be the centre of a circle A Q B D
; let the ordinate M 11

move uniformly from A to B C, and in the same time let the radius C Q,

turning round C, move from C A to C B ; then the intersection P of C Q
and R M traces out a curve called the Quadratrix.

Let A be the origin, AM = x, M P = y, A C = r, angle A C Q = 6,

Then AM:AC::AQ;AB,
r :: re

2 2r

But M P = M C tan. 0,

7T X
:. y = (r

-
x) tan. , which is the equation to the curve.

2r

When x = 0, y = ; .*. the curve passes through A ;
as x increases

from to r, y increases, because the tangent increases faster than the
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angle ; when x = r = A C, y =-^-
the real value of which found by

2 r 2 r
the Differential Calculus is

; hence if C E = , the curve passes
7T

through E ;
as x increases beyond r the tangent diminishes but is nega-

tive, and so is r x
; .*. y is positive and diminishes until it finally

becomes 0, when a? = 2r = A D ; when x is greater than 2 r the tan-

gent is positive, therefore y is negative and increases ; when x = 3 r, the

tangent = CD ; .*. y = oo
;

this gives an asymptote through F. As x
increases beyond 3 r the tangent decreases but is negative ; hence y is

positive; when x 4 r, y = 0, when a1 = 5 r, y := oo, and between
x =. 4 r and 5 r, y is negative : therefore we have the branch between
the asymptotes at F and H, and proceeding onwards we should find a

series of branches like the last. The part of the curve to the left ofA is

the same as that to the right of D.
This curve was invented most probably by a Greek mathematician of

the name of Hippias, a cotemporary of Socrates ; his object was to tri-

sect an angle, or generally to divide an angle into any number of equal

parts, and this would be done if the curve could be accurately drawn ;

thus to trisect an angle A C Q, draw the quadratrix and the ordinate

M P, trisect the line A M in the points N and O, draw the ordinates

N S, O T to the quadratrix. Then from the equation =
, we

shall see that C S and C T trisect the angle A C Q.

This curve was afterwards employed by Dinostratus to find the area

or quadrature of the circle, and hence its name : supposing the point
E to be determined by mechanical description we have the value of TT

2 r

given by the equation C E =
,
and therefore the ratio of the cir-

cumference to the diameter of the circle would be known.

There is another quadratrix, that of Tschirnhausen, which is generated

by drawing two lines through Q and M parallel respectively to A C and
B C, and finding the locus of their intersection

;
its equation will be

y s= r cos. f
J
= r sin. = 7T X

r sin. .

2-r

THE CYCLOID

357. If a circle E P F be made to roll in a given plane upon a straight

.ine BCD, the point in the circumference which was in contact with B at

the commencement of the motion, will, in a revolution of the circle, describe

a curve B P A D, which is called the cycloid.

This is the curve which a nail in the rim of a carriage-wheel describes

in the air during the motion of the carriage on a level road
;
hence the

generating circle E P F is called the wheel. The curve derives its name

from two Greek words signifying
"

circle formed."

The line B D which the circle passes over in one revolution is called

the base of the cycloid ;
if A Q C be the position of the generating circle in



186 THE CYCLOID.

the middle of its course, A is called the vertex and A C the axis of the

curve. The description of the curve shows that the line B D is equal to

the circumference of the circle, and that B C is equal to half that circum-

ference. Hence also if EPF be the position of the generating circle,

and P the generating point, then every point in the circular arc PF
having coincided with B F, we have the line B F = the arc P F, and

FC = the arc E P or AQ;

li li F

Draw P N Q M parallel to the base B D.

Let A be the origin of rectangular axes,

A C the axis of ,r, and O the centre of the circle A Q C.

Let A M = x, A O = a,

M P = y, angle A O Q =r
;

then by the similarity of position of the two circles, we have

P N = Q M, and P Q = N M
;

that is, y =r aQ + a sin. 9 = a (6 + sin. 6) (1)

x = a a cos. & = a vers. Q (2)

The equation between y and x is found by eliminating between (1)
and (2)

cos. e = a x J2 a x x*
.'. sin. 6 =r 2

and y = a }- a sin. d

= a cos. - x'

But we can obtain an equation between x and y from (1) alone ; that is,

from the equation, M P = arc A Q + Q M.

For arc A Q = a circular arc whose radius is a and versed sine x

= a 1 a circular arc whose radius is unity and vers. sin. f
a '

'. y r= o vers. -f J 2 a x x*
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If the origin is at B, B R = x and R P = y, the equations are

x = a 6 a sin. 6

y = a a cos. 6.

We shall not stop to discuss these equations, as the mechanical descrip
tion of the curve sufficiently indicates its form.

The cycloid, if not first imagined by Galileo, was first examined by
him

; and it is remarkable for having occupied the attention of the most
eminent mathematicians of the seventeenth century.
Of the many properties of this curve the most curious are that the

whole area is three times that of the generating circle, that the arc A P is

double of the chord of A Q, and that the tangent at P is parallel to the

same chord. Also that if the figure be inverted, a body will fall from any
point P on the curve to the lowest point A in the same time ; and if a

body falls from one point to another point, not in the same vertical line, its

path of quickest descent is not the straight line joining the two points,
but the arc of a cycloid, the concavity or hollow side being placed

upwards.

358. Given the base of a cycloid to trace the curve.

Let the base B D be divided into twenty-two equal parts, and let them
be numbered from B and D towards the middle point C ;

from C draw the

perpendicular line C A equal to 7 of these parts ;
and on A C describe

a circle A Q C. Along the circumference mark off the same number of

equal parts, either by measurement or by applying the line B C to the

circle C A. In the figure the point Q is supposed to coincide with the

end of the fifth division from the top.
Then the arc C Q being equal to the length C 5 measured on the

base, if P Q be drawn parallel to the base, and equal to the remainder of

the base, that is, to B 5 or A Q, it is evident that P is a point in the

cycloid, and thus any number of points may be found.

The ratio of the circumference to the diameter of a circle is generally
taken as in this case to be as 22 to 7.

359. Instead of the point P being on the circumference of the circle,

it may be anywhere in the plane of that circle, either within or without

the circumference. In the former case the curve is called the prolate

cycloid or trochoid, (fig. 1,) in the latter case the curtate or shortened

cycloid, (fig. 2.)
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CD

(2)

B D is the base on which the generating
1

circle ARC rolls, O the centre

of the generating circle, P the describing point when that circle is at F.

Draw P N Q M parallel to the base.

Let A be the origin of rectangular axes,

A M = j?, M P := y, A O = a, K O = m a, angle A O R = 0, then

M P == M N + PN == MN + Q M = F C + Q M = arc A R + Q M
and A M = A O 4- M ;

.'. y = a 9 + m a sin.

and x = a vers. 6.

These are the equations to the prolate, curtate, or common cycloid,

according as m is less than, greater than, or equal to, unity.
If the vertex K of the curve be the origin of co-ordinates in figs. (1)

and (2,) we have K O = a, and A O = ma : also MP=FC + QM
= arc A R + Q M

.*. y = m a 6 + a sin. 6

= in vers.
X

a
a x - x*

The curve whose equations are y = a 0, and x = a vers. 6 is called the

companion to the cycloid.

360. The class of cycloids may be much extended by supposing the
base on which the circle rolls to be no longer a straight line, but itself

a curve : thus let the base be a circle, and let another circle roll on the

zircti inference of the former; then a point either within or without the
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circumference of the rolling circle will describe a curve called the epitro-
choid ; but if the describing point is on the circumference, it is called the

epicycloid.
If the revolving circle roll on the inner or concave side of the base, the

curve described by a point within or without the revolving circle is called

the hypotrochoid ; and when the point is on the circumference it is called

the hypocycloid.
To find the equation to the epitrochoid.
Let C be the centre of its base E D, and B the centre of the revolving

circle D F in one of its positions :.CA M the straight line passing through
the centres of both circles at the commencement of the motion ; that is,

when the generating point P is nearest to C or at A.

E ASM X
Let C A be the axis of #,

C M = *, M P = y,

C D = a, D B = 6,

B P = m b, angle A C B = 6

Draw BN parallel to M P, and PQ parallel to EM. Then, since

every point in D F has coincided with the base A D, we have D F = a 0, and

angle D B F = ~ : also angle F B Q = angle F B D angle Q B D

Now CM =
b 2

= C B cos. B C N + P B sin. P B Q

(a
+ b TT \

b~
6

i~ )

AndMP == BN - BQ = (a + 6) sin.0 - mb cosY~-6 - y

or JP =r (a + 6) cos. 6 mb cos.
a + b

a + 6
and y ~ (a + &) sin. m 6 sin. r

(1)
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The equations to the epicycloid are found by putting 6 for m b in (1.)

a + b
.; x ( +6) cos. 6 cos. -

a + 6
and y = (a + 6) sin. 06 sin. -

The equations to the hypotrochoid may be obtained in the same manner

ns the system (1), or more simply by putting 6 for 6 in the equations (1.)

.*. x = (a 6) cos. + m b cos.

-'1
and y = (a 6) sin. mb sin. -

The equations to the hypoeycloid are found by putting 6 for both b

and m b in system (1.)

.*. x = (a 6) cos. 0+6 cos.

1

a - b I

and y =. (a 6) sin. b sin. -
I

We have comprehended all the systems in (1), but each of them might
be obtained from their respective figures.

361. The elimination of the trigonometrical quantities is possible, and

gives finite algebraic equations whenever a and 6 are in the proportion

of two integral numbers. For then cos. 0, cos. ^~-
0, sin. 0, &c., can

be expressed by trigonometrical formulas, in terms of cos.
<j>
and sin.

<j>,

where is a common submultiple of and -
; and then cos. and

sin. may be expressed in terms ot x and y. Also since the resulting

equation in xy is finite, the curve does not make an infinite series ot

convolutions, but the wheel or revolving circle, after a certain number of

revolutions, is found, having the generating point exactly in the same

position as at first, and thence describing the same curve line over again.
For example, let a = 6, the equations to the epicycloid become

x = a (2 cos. - cos. 2 0)

y = a (2 sin. sin. 2 0)

.'. x = a (2 cos. 2 (cos. 0)
s + 1)

and y = 2 a sin. 0(1 cos. 0).

From the first of these equations we find cos. 0, and then from the

second we have sin. 0, adding the values of (cos. 0)
8 and (sin. 0)

2

together
and reducing, we have

/ o ^N- 3 a)* = 4 a4
( 3

J

or {** + / - a8

}
8 - 4 a8

{ (x - a)
s + y

8
}
= 0.

This curve, from its heart-like shape, is called the cardioide.

Let A be the origin ; that is, for x put x + o in the last algebraical
equation, and then by transformation into polar co- ordinates, the equation
to the cardioide becomes
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r == 2 a (1 cos. 0).

362. If b =r the equations (4) to the hypocycloid become

a r= a cos.

and y = ;

and the hypocycloid has degenerated into the diameter of the circle A. C E.
In the same case the equations to the hypotrochoid become

x = (1 -j- wi) cos.

y = (1
- m) sin. 0;

which by the elimination of 6 give the equation to an ellipse, whose axes
are a (1 + in) and a (1 m).

363. If a thread coinciding with a circular axis be unwound from the

circle, the extremity of the thread will trace out a curve called the involute

of the circle.

Thus suppose a thread fixed round the circle AB C D; then if it be

unwound from A, the extremity in the hand will trace out the curve

A P Q R S ; the lines B P, DQ, C R, A S, which are particular positions
of the thread, are also tangents to the circle, and each of them is equal to

the length of the corresponding circular arc measured from A.

The curve makes an infinite number of revolutions, the successive

branches being separated by a distance equal to the circumference of the

circle.

To find the equation to the involute.

Let C A = a, C P r= r, and angle A C P = ; then from the triangle

B C P, we have B C = P C cos. P C B, or angle P C B = cos.
- l -

;

BP = BA = a'
r

or J (r* a*) = a I cos.

cos. '
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The involute of the circle is usefully employed in toothed wheels
; for

there is less waste of power in passing from one tooth to another when

they are of this form than in any other case.

In the figures (2) and (3) we have examples of two equal wheels

which have each two teeth ;
and by turning one wheel the other wheel

will be kept in motion by means of the continual contact of the teeth.

The dotted line of contact is, by the property of the

involute, a common tangent to the two wheels ; this

dotted line is the constant line of contact, and the

force is the same in every part of a revolution.

Fig. (3) is another example ; and by making the

teeth smaller and more numerous we shall have
toothed wheels always in contact, and therefore giving
no jar or shake to the machinery.

Again, in raising a piston or hammer, the involute

of the circle is the best form for the teeth of the

turning-wheel, as the force acts on the piston entirely
in a vertical direction.
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ON SPIRALS.

364. There is one class of transcendental curves which are called

spirals, from their peculiar twisting form. They were invented by the

ancient geometricians, and were much used in architectural ornaments.

Of these curves, the most important as well as the most simple, is the

spiral invented by the celebrated Archimedes.

This spiral is thus generated : Let a straight line S P of indefinite

length move uniformly round a fixed point S, and from a fixed line S X,
and let a point P move uniformly also along the line S P, starting from S, at

the same time that the line S P commences its motion from S X, then the

point will evidently trace out a curve line S PQ RA, commencing at S,
and gradually extending further from S. When the line S P has made
one revolution, P will have got to a certain point A, and S P still con-

tinuing to turn as before, we shall have the curve proceeding on regularly

through a series of turnings, and extending further from S.

To examine the form and properties of this curve, we must express this

method of generation by means of an equation between polar co-ordinates.

Let S P = r, S A = 6, A S P = 9

then since the increase of r and 6 is uniform, we have

S P : S A : : angle ASP: four right angles : : 6 : '2 v

be b

From this equation it appears that when S P has made two revolutions

or 6 = 47r, we have r = 2 6, or the curve cuts the axis S X again at a
distance 2 S A ;

and similarly after 3, 4, n revolutions it meets the aXis

S X at distances 3
; 4, n times S A. Archimedes discovered that the

area S P Q R A is equal to one-third of the area of the circle described with
centre S and radius S A.

365. The spiral of Archimedes is sometimes used for the volutes of the

capitals of columns, and in that case the following descriotion by points
is useful.

O
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Let a circle A B C D, fig
1

. (2), be described on the diameter C S A,
and draw the diameter B D at right angles to C A

; divide the radius

S A into four equal parts, and in S B take S P =
-j-

SA, in SC take

1 3
S Q = S A, and in S D take S R = S A ; then from the equation

to the curve these points belong to the spiral ; by subdividing the radius

S A and the angles in each quadrant we may obtain other points as in

the figure. In order to comple-te the raised part in the volute, another

spiral commences from S B.

366. The spiral of Archimedes is one of a class of spirals comprehended
in the general equation r = a 0". Of this class we shall consider the

cases where n =. 1, and n =

Q' X

Let n = - 1 /. r = aQ~ l

Let S be the pole, S X the axis from which the angle 6 is measured,
SP = r.

When 9 = 0, r = oo
; as increases, r decreases very rapidly at first

and more uniformly afterwards; as 6 may go on increasing ad infinitum

r also may go on diminishing ad infinitum without ever actually becoming

nothing : hence we have an infinite series of convolutions round S :

Describe a circular arc PQ with centre S and radius S P, then P Q = rd
= a ; and since this value of a is the same for all positions of P,

we must have P Q = P' Q' = the straight line S C at an infinite dis-

tance, and therefore the curve must approach to an asymptote drawn

through C parallel to S X.
This curve is called the reciprocal spiral from the form of its equation,

since the variables are inversely as each other, or the hyperbolic spiral,

from the similarity of the equation to that of the hyperbola referred to its

asymptotes (j? y =: Ar
2
).

367. Let n =
; :.r = aO

~

or r = a. This curve, called

the lituus or trumpet, is described as in the figure ; proceeding from the

asymptote S X, it makes an infinite series of convolutions round S.
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368. If in the equation rd = a, we always deduct the constant quan-
tity, 6, we have the equation (r 6) 6 = a; this curve commences its

course like the reciprocal spiral ; but as 6 increases we have r 6 ap-

proximating to nothing, or r approximating to 6 ; hence the spiral, after

an infinite number of convolutions, approaches to an asymptotic circle,

whose centre is S, and radius 6.

369. Trace the spiral whose equation is 6 J ar r* = 6; this curve
has an infinite number of small revolutions round the pole, and gra-

dually extends outwards to meet an asymptotic circle whose radius is a.

370. The spiral whose equation is (r a)
2 = 6

2 9 commences its

course from a point in the circumference of the circle whose radius is a,

and extends outwards round S in an infinite series of convolutions. This
curve is formed by twisting the axis of the common parabola round the

circumference of a circle, the curve line of the parabola forming the

spiral.

371. The curve whose equation is r = a9
is called the logarithmic

spiral, for the logarithm of the radius vector is proportional to the angle V.

Examining all the values of from to CD we find that there are an
infinite series of convolutions round the pole S. This curve is also called,

the equiangular spiral, for it is found by the principles of the higher

analysis that this curve cuts the radius vector in a constant angle.

Descartes, who first imagined this curve, found also that the whole

length of the curve from any point P to the pole was proportional to the

radius vector at P.

372. It will often happen that the algebraical equation of a curve is

much more complicated than the polar equation ; the conchoid art. 31 2
is an example. In these cases it is advisable to transform the equation
from algebraical to polar co-ordinates, and then traca the curve from the

polar equation. A
For example, if the equation be (x? + i/

2
)
2 = 2 a xy, there would be

much difficulty in ascertaining the form of the curve from this equation ;

but let x = r cos. 6 and y = r sin. 6 (61)

/. r
3 = 2 a r

8
cos. 6 sin. 0,

or r rr a sin. 2 Q,

Let A be the origin of polar co-ordinates ; A X the axis whence 6 is

measured
;
with centre A and radius a describe a circle BCD. Then

(or Q ~ we have r = 0, as Q increases from to 45, r increases from
C) 2
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to a ; hence the hranch A PB. Again, as increases from 45 (o 90,
sin. 26 diminishes from 1 to ; .*. r diminishes, and we trace the branch
B Q A. As 6 increases from 90 to 180, sin. '2 9 increases and decreases

as before ; hence the similar oval in the second quadrant. By following:
from 180 to 360, we shall have the ovals in the third and fourth quadrant :

and since the sine of an arc advances similarly in each quadrant of the

circle, we have the four ovals similar and equal.
In this case we have paid no regard to the algebraical sign of r

;
we

have considered to vary fr>m to 360, which method we prefer to that

of giving 6 all values from to 180, and then making the sign of r to vary.
If the equation had been (x* -f- y

8
)
2 = 2a*j:y, we should have found

two equal and similar ovals in the first and third quadrant.
The locus of the equation r = a (cos. 6 sin. 0) is the same kind of

figure differently situated with respect to the lines AX and A C.

The equation to the lemniscata r
9 = a2

cos. 2 6 art. (314), may be

similarly traced.

373. In many indeterminate problems we shall find that polar co-ordi-

nates may he very usefully employed. For example,
Let the corner of the page of a book be turned

over into the position B C P, and in such a man-
ner that the triangle B C P be constant, to find

the locus of P.

Let A P = r, angle P A C =r 0, and let the

area ABC = a2
;
then since the triangles ABE,

P B E are equal, we have A E =
,

AE
and the

angle A E B a right angle /. A E = A C cos. 0,

and A E = A B cos f
|

6
J
= A B sin. .'.

r * a2= - sin. 0cos. 0,
4 2

or ?-
2 == a2

sin. 2 0. Hence the locus is an oval A P B Q as in the last

figure.
If a point be taken in the radius vector S P of a parabola so that its

distance from the focus is equal to the perpendicular from the focus on the
s\

tangent, the locus of the point is the curve whose equation is r = a sec,
*
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PART II.

APPLICATION OF ALGEBRA TO SOLID GEOMETRY.

CHAPTER I.

INTRODUCTION.

374. IN the preceding part of this Treatise lines and points have always
been considered as situated in one plane, and have been referred to two
lines called axes situated in that plane. Now we may readily imagine a

curve line, the parts of which are not situated in one plane ; also, if we
consider a surface, as that of a sphere, for example, we observe imme-

diately that all the points in such a surface cannot be in the same plane ;

hence the method of considering figures which has been hitherto adopted
cannot be applied to such cases, and therefore we must have recourse to

some more general method for investigating the properties of figures.
375. We begin by showing how the position of a point in space may

be determined

Let three planes ZAX, Z A Y, and X A Y, be drawn perpendicular
to each other, and let the three straight lines AX, AY, AZ be the inter-

sections of these planes, and A the common point of concourse.

From any point P in space draw the lines PQ, PR, and PS respec-

tively perpendicular to the planes X A Y, Z A X, and Z A Y ;
then the

position of the point P is completely determined when these three per-

pendicular lines are known.

Complete the rectangular parallelepiped A P, then P Q, P R, and P S

are respectively equal to A O, A N, and A M.
These three lines A M, A N, and A O, or more commonly their equals

A M, M Q, and Q P, are called the co-ordinates of P, and are denoted by
the letters x, y, and z respectively.
The point A is called the origin.
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The line A X is called the axis of x, the line A Y is called the axis of

y, and the line A Z is called the axis of 2.

The plane X A Y is called the plane of xy, the plane Z A X is called the

plane of 2 <r, and the plane Z A Y is called the plane of zy*.
From P we have drawn three perpendicular lines, PQ, P R, and PS,

on the three co-ordinate planes. The three points, Q, R, and S are called

the projections of the point P on the planes of xy, xz, and zy respec-

tively.

The method of projections is so useful in the investigation and descrip-
tion of surfaces, that we proceed to give a few of the principal theorems
on the subject so far as may be required in this work.

PROJECTIONS.

376. If several points be situated in a straight line, their projections on

any one of the co-ordinate planes are also in a straight line.

For they are all comprised in the plane passing through the given
straight line, and drawn perpendicular to the co-ordinate plane ;

and as

the intersection of any two planes is a straight line, the projections of the

points must be all in one straight line.

This plane, which contains all the perpendiculars drawn from different

points of the straight line, is called the projecting plane; and its intersec-

tion with the co-ordinate plane is called the projection of the straight
line.

377. To find the length of the projection of a straight line upon a

plane.

Let. A B be the line to be projected on the plane P Q R
; produce

A B to meet this plane in P ; draw A A' and B B' perpendicular to the

plane, and meeting it in A' and B'. Join A' B' ; then A' B' is the pro-
jection of A B.

* This system of co-ordinate planes may be

represented by the sides and floor of a room,
the corner being the origin of the axes, the

plane X Y is then represented by the floor of

the room, and the two remaining planes by the

two adjacent sides of the room.
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Since A B and A' B' are in the same plane, they will meet in P. Let
the angle B P B or the angle of the inclination of A B to the plane = 6,

and in the projecting plane A B' draw AE parallel to A' B r

,
then

A' B' = A E = A B cos. B A E = A B cos.

The same proof will apply to the projection of a straight line upon
another straight line, both being in the same plane.

378. To find the length of the projection of a straight line upon another

straight line not in the same plane.

JV
D

a

Let A B be the line to be projected ;
C D the line upon which it is to be

projected. From A and B draw lines A A' and B B' perpendicular to

C D, then A' B' is the projection of A B.

Through A and B draw planes M N and P Q perpendicular to C D.
These planes contain the perpendicular lines A A' and B B'.

From A draw A E perpendicular to the plane PQ, and therefore equal
and parallel to A' B' ; join B E ; then the triangle ABE having a right

angle at E, we have A' B' = A E = A B cos. B A E, and angle B A E
is equal to the angle of inclination between A B and C D ; hence

A' B' = A B cos. 0.

Also any line equal and parallel to A B has an equal projection A' B'

on C D, and the projection of A B on any line parallel to C D is of the same

length as A' B'.

379. The projection of the diagonal of a parallelogram on any straight
line is equal to the sum of the projections of the two sides upon the same

straight line.

Let A B C D be a parallelogram, A Z any straight line through A
iiiciiu^d to the plane of the parallelogram. From C and B draw perpen-
diculcus C E and B F upon A Z, then A E is the projection of A C upon
AZ or A E = A C cos. C A Z

;
and A F is the projection of A B upon
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A Z or A F = A B cos. B A Z. Also F E is the projection of B C or

A D upon AZ or F E = B C cos. D A Z
and AE = AF + FE;

hence the projection of A C = the sum of projections of A B and B C.

380. To find the projection of the area of any plane figure on a given
plane E D G H.

Let A B C be a triangle inclined to the given plane E D G H at an angle
0; draw A E, CD, perpendicular to the intersection E D of these planes ;

then the triangle ABC and its projection G K H have equal bases A B,
G H, but unequal altitudes C F, K M ;

/. area ABC:GKH :: CF:KM::DF:DM:: 1 I cos. 6

or area G K H = A B C cos.
;

and this being true for any triangle, is true for any polygon, and therefore

ultimately for any plane area.

CHAPTER II.

THE POINT AND STRAIGHT LINE.

381. WE have already explained how the position of a point in space
is determined by drawing perpendicular lines from it upon three fixed

planes called the co-ordinate planes. If, then, on measuring the lengths
of these three perpendicular lines or co-ordinates of P we find A M=ra5,
A N=6, and A O=c, we have the

position of a point P completely de-

termined by the three equations x=:a,

y=6 and 2=0 ; and as these are suf-

ficient for that object, they are called

the equations to the point P.
This point may also be defined as

in Art. (25) by the equation

(?-)
8+ (y-&) + (*-c)

2
=0,

since the only values that render this r

expression real are <r=a, y=b, and
z=c.
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382. The algebraical signs of the co-ordinates a?, y, and z, are deter-

mined as in Plane Geometry, by the directions of the co-ordinate lines :

thus A O is positive or negative according as it is drawn from A along A Z
or A z, that is, according as it is above or below the plane of xy: and so

on for the other lines : hence we have the following values of co-ordinates
for a point in each of the eight compartments into which space is divided

by the co-ordinate planes.

-f x + y + z a point P situated in the angle X A Y Z
+ x-y + z . . . XA7/Z

x y -f z . . . , x A y Z
- x + y + z ',. ,'

'

V
'

. x A Y Z

+ x +yz J .
.'

'"

^ XAY*
+ x y z , .... , . '. . . X A y z

x - y z . . . x Ky z

383. A point also may be situated in one of the co-ordinate planes, in

which case the co-ordinate perpendicular to that plane must =
; thus,

if the point be in the plane of xy, its distance z from this plane must = 0:

hence the equations to the point in the plane of xy are

x = a,y b, z =
or

(js
- a)

2 + (y
-

&)* + z2 = 0.

If the point be in the plane of x z, the equations are

x = a, y = Q, z ~ c

And if the point be in the plane of y z

Also, if the point be on the axis ofj?, its distance from the planes a; y and

y z = 0, therefore the equations to such a point are

,r = , y = 0, z = ;

and so on for points situated on the other axes.

384. The points Q, R, and S, in the last figure, are the projections of the

point P on the co-ordinate planes ;
on referring each of these points to the

axes in its own plane, we have

The equations to Q on x y are x == a, y = b

R on x z are x = a, z = c

S on y z are y = 6, z = c

Hence we see that the projections of the point P on two of the co-ordi-

nate planes being known, the projection on the third plane is necessarily

given : thus, if S and R are given, draw S N and RM parallel to A Z,
also N Q and M Q respectively parallel to AX and AY, and the position
of Q is known.

385. To find the distance A P of a point from the origin of co-ordi-

nates A.

Let AX, AY, and A Z be the rectangular axes ; A M = a?, M Q = y,
and P Q = z, the co-ordinates of P.
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7/Y
M

The square on A P = the square on A Q + the square on P Q
= the squares on A M, M Q + the square on P Q

or d8 = ar* + y* + z*.

386. Let a, /3, y, be the angles which A P makes with the axis of or, y,
and z, respectively;

then # = AM = AP cos P A M =: d cos

y = MQ = AN = AP cos. PAN = dcos.0

z =PQ r= APsin. PAQ = dcos. y

.-. d2 = #8
-f y

8
-j- z2 = d2

(cos. a)
2 + d* (cos. j3)

2 + d2
(cos. y)

2

/. (cos. a)
8 + (cos. /3)

2
-f (cos. y)

2 = 1.

387. Again d2 r= .r
2

-I- y* -f- z
2 = x d cos. a -f y d cos. /3 -f- z d cos. y

.*. d = a? cos. a + y cos. /3 + z cos. y.

388. To find the distance between two

points, let the co-ordinates of the points P
and Q be respectively x y z and Xi y l z t ;

then the distance between these points is

the diagonal of a parallelepiped, the three

contiguous sides of which are the differ-

ences of the parallel co-ordinates ; hence,

by the last article we have

i ,

If d
l
and rf2 be the distances of the points xl y l

z v
and j?a y2 ^a respectively

from the origin, the above expression may be put in the form

d8 = d? + d* - 2 (x, T2 + y, ya + z, z,).

THE STRAIGHT LINE.
389. A straight line may be considered as the intersection of two planes,

and therefore its position will be known if the situation of these planes is

known ; hence it may be determined by the projecting planes, and the

situation of these last is fixed by their intersections with the co-ordinate

planes, that is, by the projections of the line upon the co-ordinate planes ;

hence, the position of a straight line is geometrically fixed by knowing its

projections ; and it is also algebraically determined by the equations to

those projections taken conjointly. Taking the axis of z as the axis of
abscissas the equation to the projection on the plane x z is of the form
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x = a z + ct (31), and the equation to the projection on the plane of yz

As these two equations fix the position of the straight line in space,

they are, taken together, called the equations to a straight line.

390. To illustrate this subject we shall let PQ be a portion of the

straight line, R S its projection on x z, T U its projection on y z, V W its

projection on x y ;

And let x = a z + a, be the equation to R S, and y == ft z +& be the

equation to T U :

then any point Q in the projecting plane P Q R S has the same values of

z and x that its projection S has, that is, the co-ordinates A M and M S

are the same as N W and W Q ; hence there is the same relation between

them in each case ; and therefore, the equation x = z + a expresses not

only the relation between the x and z of all the points in R S, but also of

all the points in the plane P Q R S.

Similarly the equation y = /3 z -f- 6 not only relates toTU, but also to

all the points in the plane T U Q P.

Therefore, the system of the two equations exists for all the powits

in the straight line P Q, the intersection of the two projecting planes, artd

for this line only ; hence, the equations to the straight line PQ are

x az + a

The elimination of 2 between these two equations gives

and this is the relation between the co-ordinates AM and M W of the

projection W of any point Q in the line P Q ;
and therefore, this last equa-

tion is that to the projection V W on the plane xy.
391. In the equations .r r= a z -f- a and y =/3 z -\- bt a is the distance
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of the origin from the intersection of R S with A. X, or a A K : similarly
6 = AL.

Let * = /. z - - = A O /. A K = - a A O, but A K = A O
a

tan. A O K = A O tan. Z O R /. is tangent of the angle which R S
makes with A Z, and similarly (3 is tangent of the angle which UT makes
wilh A Z.

392. The straight line will assume various positions according to the

algebraical signs of tf, 6, and /3 : however, it would be of very little use

to go through all the cases arising from these changes of sign, especially
as they offer nothing of consequence, and no one case presents any diffi-

culty. We shall only consider the cases where the absolute value of a, 6, a
and j3 is changed.
Let a =. and 6 = 0, then x= a z and y =. j3 z, and the two projections

pass through the origin, and therefore the line itself passes through the

origin ; the equation to the third projection is y x.

Let a =: then x = a z and y = (3 z + 6, the projection on x z passing

through the origin, the line itself must pass through the axis A Y perpen-
dicular to cc z : similarly, if 6 = 0, the equations x = a z + a, y = (3 z

belong to a line passing through the axis of <r, and if the equations are

y a x, y = (3 z }- by the straight line passes through the axis of z : this

last case may be represented by supposing (in the last figure) VV V to

pass through A, then the equation to V W is of the form y = atf, and
the equation toOTUisy = /3z +6; now, if two planes be drawn, one

through T U perpendicular to y z, and the other through V W perpendicular
to xy, both planes pass through the point O, and therefore the line itself

must pass through O.

393. Let/3 = /. x = a z + a, y = 6, the line is in a plane parallel
to a: z and distant from it by the quantity b. If the last figure be adapted
to this case we should have UT perpendicular to A Y, and therefore P Q
equal and parallel to R S situated in the plane W N U Q perpendicular
to xy.

Let or = /. x r= a, y = /3 z + 6, the line is in a plane parallel to

to y z.

Similarly z = c, y = <x'x + a! belong to a line in a plane parallel to xy.
394. A straight line may also be situated in one of the co-ordinate

planes as in the plane of y z ; for example, the equations to such a line arc

y = (3 z + b, x = 0. If the line be in the plane of xz the equations are

x = az-}-a^y = 0; and if the line be in the plane of xy the equations
become y =r a' x + a' z = 0.

395. If the straight line be perpendicular to one of the co-ordinate

planes, as x y for example ; a and (3 must each equal 0, and therefore the

equations to this line are

x =z a, y = b, z = .

Similarly the equations to a line perpendicular to x z are

* ~ a* y --
, z = c
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and the equations to a line perpendicular to y z are

396. To find the point where a straight line meets the co-ordinate

planes :

Let x = a. z + a and y = (3 z -f- b be the equations to the line ; when it

meets the plane of xy we have z = .*. x := a, y = 6 are the equations
to the required point.

Similarly z ==
-^-,

j? r= ---r 6 + # are the equations to the point

where the line meets the plane of x z, and z =
, y
~ -- a -f- b

a
*

a

are the equations to the point where the line pierces the plane of 2 y.
397. There are four constant quantities in the general equations to a

straight line, and if they are all given, the position of the line is completely
determined ; for we have only to give to one of the variables as z a value

z', and we have

or, x' and y' are also necessarily determined
; hence, taking A M xr

,

(see the last figure,) and drawing M W (= y') parallel to A Y, and lastly,

drawing from W a perpendicular W Q ==
', the point Q thus determined

belongs to the line
;
and similarly, any number of points in the line are

determined, or the position of the line is completely ascertained. Again,
the straight line may be subject to certain conditions, as passing through
a given point, or being parallel to a given line; or, in other words, condi-

tions may be given which will enable us to determine the quantities oc, (3,

a and 6, supposing them first to be unknown
;

in this manner arises a

series of Problems on straight lines similar to those already worked for

straight Hues situated in one plane (40, 50).

PROBLEMS ON STRAIGHT LINES.

398. To find the equations to a straight line passing through a given

point :

Let the co-ordinates of the given point be xlt y l and z 1( and let the

equations to the straight line bexz=.ccz + a t yc=f3z-l-b.
Now since this line passes through the given point, the projections of

the line must also pass through the projections of the point; hence the

projection x <x z + a passing through a\ and z^ , we have jr
l
= a z

l + ,

.*. x x
l

a (z z
t)

and similarly y y\.
= ft (2 2,)

hence these are the equations required : a and (3 being indeterminate,
there may be an infinite number of straight lines passing through the

given point.
If the given point be in the plane of x y, we have z^

~
0,

.'. x TJ = oc
z\

y-fts0f)
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If the given point be on the axis of #, we have Zj =. and y l
^=

x TI = a z

And the equation would assume various other forms according to the

position of the given point.

399. To find the equations to a straight line passing through two given

points, Xi y l
z

t
and xt y2 z2 .

Since the line passes through the point x\ y l z l its equations are

x x
l
= a (z z,)

y y l
= P( Z - 2l).

And since the line also passes through xy yz z2 the last equations
become

hence the equations to the required line are

These equations will assume many various forms dependent on the

position of the given point, for example : If the first point be in the plane
of y 2, and the second in the axis of j?, we have x^ = ; y2 = 0, z8

- =J- c.-.,:

y
-

yi
= -

(2
-

8l).
2 i

If the second point be the origin, we have xt y* za each = 0,

Xi , X
l

.'. x - Xl = (2 -Z,) = - jr
1

hc-jce the equations to a point passing through the origin are

*i Vi
x = z, and y =r z.

-1
'

i

And these equations may be also obtained by considering that the pro-

jections pass through the origin, and therefore their equations are of the

form x ss a z, y 5= /3 ^, and the first passing through a?
t
z

t
we have

cr =
, and similarly /3 = .

2* Z,

400. To find the equation to a straight line parallel to a given straight
line.
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Since the lines are parallel their projecting planes on any one of the co-

ordinate planes are also parallel, and therefore the projections themselves

parallel ; hence, if the equations to the given line are

a?nz + flr, yr=/3z + 6,

the equations to the required line are

x = a z + ', y = z + b' .

If the straight line pass also through a given point x
l y l z^ its equations

are

x a?! = (2
- zO , y -

y, = /5 (2 zO .

401. To find the intersection of two given straight lines,

Two straight lines situated in one plane must meet in general, but this

is not necessarily the case if the Vines be situated anywhere in space ,

hence there must be a particular relation among the constant quantities in

the equation in order that the lines may meet : to find this relation, let

the equations to the lines be

x = a z + a) x = a' z + a'}

For the point of intersection the projected values of x, y and z must be

the same in all the equations ; hence

a' a
<xz-\-a=az-\-a and z j

Of (X

b' b
and /8z +6:=/3'z-j-&' and z =

b' - b

or, (a 1 -
a) (ft

f -
/3)
= (6'

-
6) (' - ).

And this is the relation which must exist amongst the constants in order

that the two lines may meet.

Having thus determined the necessary relation among the constants, the

co-ordinates of intersection are given by the equations

a' - a b' - b
Z =

^-r-7
r = J$

b'- b 3&'-3'6

a' a a a' af a
x == az + a = oc

--
7 + a =----

.

a a a a

402. To find the angles which a straight line (J) makes with the co-or

dinate axes ; and thence with the co-ordinate planes :

Let the equations to the given line be

x = a z -j- a

y = /3 2 -f6
t

;

the equations to the parallel line through the origin are

x = * *, y = /3 ;

also let r be the distance of any point (<r, y, *) in this last line from the

origin :
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But /, /y, and /* being the angles which either line makes with the axes

of a1

, y and * respectively, we have from the second line

Also (cos. /#)
2 + (cos. lyf + (cos. Izf = 1 ;

arid this is the equation connecting the three angles which any straight
line makes with the rectangular axes.

Since the system is rectangular, the angle which a line makes with any
axis is the complement of the angle which it makes with the plane per-

pendicular to that axis : hence the angles which a line makes with the co-

ordinate planes are given.

403. To find the cosine, sine, and tangent of the angle between two

given straight lines.

Let the equations to the two straight lines be

x = a z + a\ x = a' z + a'

y=(3z + 6( y = p z +
These two lines may meet, or they rqay not meet ; but in either case

their mutual inclination is the same as that of two straight lines parallel
to them and passing through the origin ; hence the problem is reduced to

find the angle between the lines represented by the equations

Let r = the distance of a point x y z in (1) from the origin,

r, = ...... *i yi *i i (2) ....
d the distance between these points,

= the angle between the given lines,

then d*= r2 + r^ -2rrl cos. 6

= (x - *!> + (y
- y^ + (z

-
2l)

8
(388)

= x* + y
2 + 28 + ^ + y,

2 + 2l
2 - 2 (xxl +yyl + z z,)

= r2 + /V - 2 Or *, + yyi + zz,)

.*. r r
l cos. = x^ + y yl -j- z z,

Now tfj^ + yy, + 22l = Z' 2l + j3z /3', + z 2, =(' + /3/3' + J ) ss,

And r r, =
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g' 33' - 1

~V(' + 0* +
' - '

(a

_ , -*'Pr + Q-') 2 + Q8 -/?)- =

The value of the cosine of the angle between two straight lines may
also be expressed in terms of the angles which the two straight lines

/ and /! make with the co-ordinate axes.

For x = r cos. I z, y ~ r cos. ly, z r= r cos. /z,

and ,TI r^cos. ^ x, y v
r

t
cos. ^ y, z

l
= r

t cos. /i z,

cos. / cos - l\y + cos - ^ * cos. /! 2.

404. If the lines are parallel, we must have sin. 9 =. 0.

... ( p _ a '

/3) -{-(_ o^ -f (/3
-

/3')^
= 0,

an equation which cannot be satisfied unless by supposing a = a', /3
=

/3',

and or/3' = a'/3, the first two of these conditions are the same as those

already shown to determine the parallelism of two lines (400), and the

third condition is only a necessary consequence of the other two, and
therefore implies nothing further.

405. If the lines are perpendicular to each other, we must have cos. = 0.

.'. aa' + /3/3'-f 1 = 0.

or, cos. I x cos. /! x -f- cos. / y cos. /j y -\- cos. / z cos. ^ x = ;

Now, one line in space is considered as perpendicular to a second straight

line, whenever it is in a plane perpendicular to this second line
;
hence

an infinite number of lines can be drawn perpendicular to a given line;
and this appears from the above equation, for there are four constants

involved in the equation to the perpendicular line, and only one equation
between them.

406. If the lines also meet, we have then the additional equation,

(>'
-

a) ft'
- /3= (&'

-
6) (a'

-
a) (401),

However, even yet an infinite number of straight lines can be drawn, meet-

ing the given line at right angles, for an infinite number of planes can be
drawn perpendicular to the given line, and in each plane an infinite number
of straight lines can be drawn- passing through the given line.

407. To find the equation to a straight line passing through a given

point x
l y l z l ^

and meeting a given line (1) at right angles.
Let the equations to the lines be,

x = az + a x - x, a' (3?
-

hence the two equations of condition are,

a' + /80' + l = (3)

(' - ) (0 - ')
-

(&'
-

6) (a
-

a') =
or since a' = x

l
a' z and b

f =. yl (3
f

2,

0?i
- '

Zi -a) 03 (?)
-

(y,
-

ft' z,
-

6) (a - a') ==
(4).
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The elimination of ' and /3' from (3) and (4) give the equations

"
-a) + Zl }/3

-
(y.

-
6) (1 +

i
-

6) /3 + 0, - )
-

(
2 +

, {(yi
-

6) ff + 81}
~

(*i - a) (1

(y,
- 6)0 + (^ - a) -

(<*

These values of a' and /3
;
substituted in (2) give the final equation to the

straight line, passing through a given point, and meeting a given straight
line at right angles.

In particular cases other methods may be adopted, for example, to find

the equations to a straight line passing through the axis of y at right

angles to that axis :

here x
l
= O

l
and z

t
= 0, therefore the equations to the line are

iT = a z

yyi = fc
but because the line is perpendicular to the axis of y we have ft

= 0,

hence the required equations are x =: a 2, y y^. By assuming the axes

of co-ordinates to be conveniently situated, this and many other problems
may be worked in a shorter manner. This will be shown hereafter.

CHAPTER III.

THE PLANE.

408. A PLANE may be supposed to be generated by the motion of a

straight line about another straight line perpendicular to it.

Let A be the origin, A X, A Y, A Z the axe, B C D a portion of a plane,
A O the perpendicular from the origin upon this plane, P any point in

this plane ; then, according to the above definition, we suppose the plane
to be formed by the revolution of a line like P round AO, the angle
A O P being a right angle.

To find the equation to the plane.
Let a?, y, 2, be the co-ordinates of P, and # y^ z

{ , those of O,
and let the fixed distance AO = d.
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Then the square on A P the square on A O } the square on OP;

or <r a?! + y ?/! -{- z *! =
409. Let ~ = TW,

Jj-
= n, and

l
- =p, then the above equation becomes

And it is under this form that we shall generally consider the equation to

the plane.
d* d* d2

Let a, = 6, and = c, then the equation to the plane is
x

\. y\ z
i

X 11 Z
+ 4 + = i-

a b c

And this is perhaps the most intelligible form in which the equation to

the plane can be put, the constants
,
b and c being equal to A B, AC

and A D the respective distances of the origin from the intersection of the

plane with the co-ordinate axes
;
this is found by putting y and z both = 0,

hence 1, or A B = a, and similarly for the other lines.

410. Let the word "
plane" be represented by the letter P, and let

the angles which AO or d makes with the co-ordinate axes be repre-
sented by d x

;
d y ; d z

;
and let the angles which the plane makes with

the same axes be denoted by P,r; Py; Pz; then, since AOB is a

right angle, and ABO is the angle which the plane makes with A X,
we have

d = a cos. d x = a sin. P x

d b cos. dy b sin. P y
d = c cos. d z = c sin. P z ;

therefore the last equation to the plane may be put in either of the forms

x cos. d x + y cos. d y -f- z cos. d z = d

or x sin. P x + y sin. Py + z sin. P z = d.

411. LetP,yz represent the angle which the plane makes with the

co-ordinate plane y z, then since angle O A B. is equal to the angle of

inclination of the plane to y ^, we have cos. d x = cos. P, y z, hence the

equation of the plane becomes

x cos. P, y z + y cos. P, x z -4- z cos. P, ,xy = d.

4 1 2. Since by (386) (cos. d J,)
2
-f- (cos. d y)

2

-f (cos. d 2 )
2 = I

we have (cos. P, yz/+ (cos. P xz)* ~|-(cos. ~P xy}z== 1 *.

* If A be the area of a plane P, the projections of this area on the co-ordinate planes are

represented by A cos. P, x y ;
A cos. P, x z

;
A cos. P,yz', hence (A cos. P, x y)

2+ (A cos.

P, xz? + (A cos. P, yz)
2 = A2

{(cos. P, xy)* + (cos. P, xz? + (cos. P, yz)*}
= A8

by

(412). This theorem, referring to the numerical values of the projected areas, is of use

in finding the area of a plane between the three co-ordinate planes. Thus, if the equation

to a plane be_f-+ -^- + ~=l, we have by the last figure the area A B C = ?-
; area

a b c &

AD C= , and area A B D=
^-;

hence the area B C D = Vl (* b* 4"
* * + 6*^

l>v the above theorem. The volume of the pyramid A C D B = ;-=-.9 Z

P 2
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413. To find the angles which a plane makes with the co-ordinate

planes in terms of the co-efficients of the equation to the plane.
Let the equation to the plane be

mx -f ny + pz = 1.

Now the equation to a plane expressed in terms of the angles which it

makes with the co-ordinate planes is given by (411.)
x cos. P, y z + y cos. P, x z + z cos. P, xy = d,

hence equating co-efficients, we have

cos. P, y z cos. P, x z cos. P, xvm =

and cos. P, y 2 = wi d =

Cos. P, oc z n d =
;

Cos. P. = wd = --
V/n2 + 7i

2 +
414. The equation to the plane will assume various forms according

to the various positions of the plane.

Let the plane pass through the origin, then d = ; therefore, putting
d = in the equation, art. (408), we have the equation to the plane pass-

ing through the origin ; but as the equation to the plane has been

obtained on the supposition of d being finite, it becomes necessary to give
an independent proof for this particular case.

Let A O (= d) be the length of a perpendicular from the plane to a

given point O; whose co-ordinates are x^ y i} ^ ; x, y, z, as before, the

co-ordinates of any point P in the plane, then

the square on O P = the square on A O -j- the square on A P
;

or -
cr,)

2 + (y
- y t) + (

-
*i) = d8 + x* -f 2/

2 +*2
.

/. - 2 (x x, + y y, + z *) -f d* = d\

or x Xi 4- y yi + z *i = 0.

X

So that the equation to the plane in this case is the same as the original

equation without the constant term.

415. Let the plane be parallel to any of the co-ordinate planes, as x y

for example, then a = GO and 6 = oo
;
therefore the equation +

~j-

'

y
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= 1 becomes x + y H-- = 1 ;

' = c, x =. ~ and y = -;

of these three equations the first signifies that every point in the plane is

equidistant from the plane x y, and the other two signify that for this

single value of z, every possible value of x and y will give points in the

plane. The two latter equations are generally omitted ; and we say that

ibr a plane parallel to x y the equation is z = c
; similarly for the plane

parallel to x x it is x = #, and for a plane parallel to y z the equation is

y = b.

The equations to a co-ordinate plane, as x y for example, are z = 0,

cc =..
; y = ; or, more simply, x = 0.

416. The lines B C, B D, and D C, where the plane intersects the

co-ordinate planes, are called the traces of the plane. The equations to

these traces are found, from the equation to the plane, by giving to .r, yt

or z the particular values which they have when the plane intersects the

co-ordinate planes.
Let the equation to the plane be rn x + ny+pz~\\ then for

the intersection B C we have the equations

* = 0, m x + ny =z\.

Similarly the equations to the traces B D and C D are respectively

y~0,mx + pz=l
x =: 0, n y + p z = 1.

PROBLEMS ON THE PLANE.

417. To find the equation to a plane parallel to a given plane.

Let the given plane be m x + n y -f- p z =1,
and the required plane be m' x -f- n' y + p' z = I.

Then the planes being parallel, their traces on the co-ordinate planes must
be parallel ; now their traces on x z are

m x + p z = l,m' x -\- p' z = 1;

m m' m ,..,,, n
. . = j-, or m =: ; similarly n = n .

p p" p
P

p
1

Hence the required equation becomes

ormx+ny + pz -^

In this case the resulting equation contains one indeterminate constant

p
f
f and therefore shows that an infinite number of planes can be drawn

parallel to a given plane, which is also geometrically evident. Three con-

ditions are apparently given, since the three traces of one plane are paral-
lel to the three traces of the other plane ; but if the traces on two of the

co-ordinate planes be parallel, the traces on the third co-ordinate plane

,.,
m m n n' m

ire necessarily parallel ; for if =
; % and = . we have =

P P" P !>'
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, or m x + n y = 1 parallel to m' x -j- n
1

y = 1. Thus, in reality,

only two conditions are given to determine the three constants.

418. To find the equation to a plane parallel to a given plane, and

passing through a given point xlt yit * t .

Let m' x + n' y -j- p
r
z = 1 be the required plane,

then since the plane passes through T
t yl

z v we have

mf

Xi + n' 3/1 + p' *i = 1

/. m' (x - *,) + n' (y
- yj -f p' (z

-
*,) = 0.

m' m
, n' n

Also r = , and 7 = ;

p' p p
r

p

:. P'(X- *0 + p
9

(y
- yO + p' (*

- *) = 0;
p p
or m (x

- xj + n (y yj + p (z
- * t)

= 0.

419. To find the intersection of a straight line and plane.

Let mx + ny + pz= Ibe the equation to the plane,

X ~
%

Z
t ?1 the equations to the line ;

y = fiz + 6j

then, since the co-ordinates of the point of intersection are common, we
have

m(2-fa)+7i(/3*-r-&)-}-pz= 1,

1 ma nb
~~ m a + 71 /3 + p'

a nb a + n Q a +p a
and J? = * + a =---=-m <x + n p -f- p

/3 mafi+mab+pb
y = /3 , + 6= _____

Thus the required point of intersection is found.

420. To find the conditions that the straight line and plane be parallel

or coincide.

If they are parallel, the values of a?, y, and z must be infinite

/. m oc -f- n /3 + p = 0.

If they coincide, the values of a?, y, and z must be indeterminate, or

each = T
.'. m a -|- w H- P = and 1 ma 7t6=0;

and these are the two conditions for coincidence, the numerators of x and

y being both given = by combining the last two equations.

Hence, to find the equation to a plane coinciding with a given straight

line, we have the two conditions

m a + n b =1,
m + n/3+/> = 0;

whence, by elimination, we have

/3 + P b oc + p am =:
,

' ^
and n = -

, ;a ft
- b ex a p - b *
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therefore the equation to the plane is

(fi + pb) x (a + p a) y + p (a Q 6)* = a/3 &*,
where p remains indeterminate.

421. To find the equation to a plane coinciding with two given lines.

x == a z + a\ r = a'z + a'\= (lz + bj y=P'z+b'S
the plane coinciding with the given lines, we have

m a + n b = 1 (1) m + 7i/3 + ?r=0 (3)

m a' + n b' = 1 (2) m ' + n ft' + p = (4)

From (1) and (2) we have m and n, and these values being substituted

in (3) and (4), give two values of p, hence we have the equation of con-

dition

(' - /3) (a -
a') + (<*'

- a) (6 -&') = 0.

This equation is verified either if the lines are parallel (in which case

ot
f = oc and /3'

= /3), or if they meet ; hence in either of these cases a

plane may be drawn coinciding with the two lines ; the equation to this

plane is found, from the values of m, n, and p, to be

(# _ 6) x _ (a!
- a)y + { (a

1 - a) (3
-

(b'
-

6) a } z = a 6' - of b.

422. If it be required to find the equation to a plane which coincides

with one given straight line, and is parallel to another given straight line,

we have the three equations

m . + n ft + p = 1}
for coincidence with ne line >

m' + 7i/3'+j!?:=0 for parallelism with the other ;

and from these three equations we may determine m, n, and p, and then

substitute these values in the general equation to the plane.
423. To find the intersection of two given planes.
Let the equations to the two planes be

n'y + p'z~ 1.

By the elimination of z we obtain an equation between x and y, which

belongs to the projection of the intersection of the planes on x y,

hence (m p' m' p) x + (n p
1 n' p) y = p' p

is the projection on x y of the required intersection.

Similarly

(m n' m' n) x + (p n' p' n) z =: n' n

is the equation to the projection on x z.

But the equations to the projections of a line on two co-ordinate planes
are called the equations to the line itself; hence the above two equations
are the required equations to the intersection.

The third projection is given by the other two, or it may be found sepa-

rately

(;i m' n' in) y + (p m' m p
1

) z =: m' - m.

424. To find the intersection of three planes.
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Let the intersection of the first and second, found as in the last article,
be expressed by the equations

x = ot z + a

y = /5 * + 6,

and let the intersection of the first and third planes be denoted by the

equations
x = '

z + a'

y = /3' 2 + 6'.

Then, finding the intersection of these two lines from their four equations,
\ve have the values of j?, y, and z, corresponding to the point of intersec-

tion of the two lines, and therefore to the point of intersection of the three

planes.
In this manner we may find the relation among the co-efficients of any

number of planes meeting in one point.

425. To find the relation among the coefficients of the equations to four

planes so that they may meet in the same straight line.

Let the equations be

mx+ny+pz=l
mix + ?i

v y + p^ = 1

m* x + ??2 y + p2 * = 1

m x + w y + ps ^ = 1

Then the first and second plane intersect in a line whose equations are

x = oc z + a

y = ft x + b

The first and third intersect in the line

x =r
i
z + ,

y = ft z + 6,

And the first and fourth in the line

Now, in order that these intersections all coincide, we must have

And the ralues of a, fa a and 6 are given in terms of m, n, p, &c., by
article (423), hence the relation among the co-efficients is found.

The same relation exists among the co-efficients of any number o

planes meeting in one point.
426. To find the relation among the co-efficients of a straight line and

plane, so that they may be perpendicular to one another.

Let (j?! y t 2^ be the point in which the plane and line meet, then the

equation to the plane is

m (x - x^+ n (y-y^ + p (z-2i) = (1)

And the equations to the line are

j? = a z + a]

Also let the equations to a line perpendicular to (2) and passing through
the point (a, y

~
L) in (2) be
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X - X
l
= '(2 - Z,)) ,.

C)

217

But since these two lines are perpendicular to one another, we have the

cosine of the angle between them r= 0,

.'. a ' + j3 /3' + 1 = (402)

Now, this equation combined with that to the last line (3), will give the

relation among the co-ordinates of .r, y, and z, so that the point to which

they refer is always in a locus perpendicular to the first given line ; hence

substituting for ol and (3
f

,
we have the equation to the plane which is the

locus of all the lines perpendicular to (2), this equation is

x -
Xi ~ y 2/i ., na h P + 1=0

z - z
l

'

z z l

or a (j? -#0 + (y
- y,)+ z *i = (4)

and as this equation (4) must coincide with (1) we have, by equating the

co-efficients,

m . n n
:= and p = ,

P P
and these are the conditions required.

427. Hence, if the line be given, the equation to the plane perpendi-
cular to it is

1

Or if the plane be given, the equations to the straight line perpendicular to

it are

m

From the form of these equations to the plane and perpendicular

straight line, it appears that the trace of the plane is perpendicular to the

projection of the line upon the same co-ordinate plane.

428. If the plane pass through a given point x
l y l z^ and be perpendi-

cular to a given straight line, (x = a z + , y =:
j3 z -f 6) its equation is

a O #0 + p (y y^ + z z^ = 0.

429. If the straight line pass through a given point, and be perpendi-
cular to a given plane (mx + ny + pz = 1) its equations are

m
X "~

JCl ~ ~ ~~

430. To find the length of a perpendicular from a given point on a given

plane.
Let cEj yl Zi be the co-ordinates of the given point,

m^ + ny + pz 1 the equation to the given plane.
It was shown in Art. 413, that if d be the perpendicular distance of the

origin from a plane, whose equation is
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mx + ny-tpz = 1

1

we have d =
V m2 + n* + p*.

Now, the equation to the plane, parallel to the given plane, and passing

through the given point, is

m Or
- xj + n (y

- y t) + p (*-*,) = (418).

or
mx
m*i

Hence the distance d
l
of the origin from this plane is

.

V m2 + w2 + j9
f

But the distance of the given point from the given plane is evidently the

distance between the two planes, that is,
=

rfj d

_ mx
l -f n y l + p z l I

V m l + ri -f p*.

431. To find the distance of a point from a straight line.

Let the equations to the given line be ae = <xz + , y ftz + 6, then the

equation to the plane passing through the given point xl y l z^ and perpen-
dicular to the given line, is

C*
-

*i) + ft (y
-

ft) + z z
l
=. 0.

Eliminating ,r, y, and z by means of the above equations to the straight
line, we find

or, if this fraction = , we have

M M - M
,

2 =
N> *=N- + . y = ^N +6'

These are the co-ordinates of the intersection of the given line, with the per-

pendicular plane passing through the given point ; and the required perpen-
dicular line (P) is the distance of the given point from this intersection.

Hence P8 = fo -
<r)

2 + (y,
-

y)
8 + (z,

-
z)*

which, after expansion and reduction, becomes

= (r1 -a)2 -
r-(yi -6)2 + z

1

2

-^
2

.

432. If the given point be the origin, we have x
l y^ z ly each equal =

433. To find the angle between two given planes.
Let the equations to the planes be

mx + ny + pz=i I (1)

+ n
v y -f /?, z = 1 (2).
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Then, if from the origin we draw perpendiculars on each of these planes,
the angle between these perpendiculars is equal to the angle between the

planes : let the equations to the two lines be

In order that (3) may be perpendicular to (1), we must have

a =
, ft = (426), and similarly a' = -^L, ff = J^L.

Then the angle between the two lines is found from the expression
a a1 + /3 /3' + 1

(403) -

+ 7i
2 + p2

^m^+ T*!
2 + ft.

434. This value of cos. 6 may also be expressed in another form by
means of Art. (413.)

cos. = cos. P, x cos. P', x + cos. P, y cos. P', y -f cos. P, z cos. P', z.

or cos. 0=cos. P, yz cos. P^yz+ cos.P, a?2 cos. P', -rz+ cos. P, .ry cos. P;

, xy.
435. If the planes be perpendicular to each other, we have cos. 0=0.

.*. mnii + raw, -f ppt = 0.

Hence, if the equation to any plane be mx + ny + p z = 1, the equa-
tion to the plane perpendicular to it is

m m. + n n.--l
---l

-z=:l,

where two constants remain indeterminate.

436. If the planes be parallel, we have cos. 0=1; and putting there-

fore the expression for cos. & equal to unity, we shall arrive at the results,

771 nil i Wl W"t
=:- and L

;

n 7*1 p = p l

the same as already obtained when two planes are parallel.

437. To find the angle between a straight line and a plane.
This angle is the angle which the line makes with its projection on the

plane ;
and therefore, drawing a perpendicular from any point in the line

to the plane, is the complement of the angle which this perpendicular
makes with the given line.

Let the equations to the plane and the line be

mx + ny + pz = 1

J7 = a2 +a,y = /3s + 6,

then the equations to the perpendicular from any point ^ y t Zi in the line

to the plane are x (z - zj, y (z Zi). (429)

/. cos. (IT 0) = sin. =-

m a -f n p + p
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CHAPTER IV.

THE POINT, STRAIGHT LINE, AND PLANE REFERRED TO
OBLIQUE AXES.

438. IF the co-ordinate axes are not rectangular but inclined to each

Other at any given angles, they are then called ohlique axes. The equa-
tions to the point, Art. (381.) remain exactly the same as before, but the

quantities a, 6, and c, are no longer the representatives of lines drawn

perpendicular to the co-ordinate planes, but of lines respectively parallel
to the oblique axes.

439. To find the distance of a point from the origin referred to oblique
axes.

Let A X, A Y, A Z, be the oblique axes ; and let x, y, z, be the co-

ordinates of P, draw P N perpendicular on A Q produced,

then the sq. on AP=the sqs. on AQ and PQ+ twice the rectangle AQ,QN.

Now, Q N =. P Q cos. P Q N = z cos. Z A Q
and A Q cos. Z A Q = A M cos. M A Z -j- M Q cos. Y A Z (379)

= * cos. XAZ 4-3/cos. YAZ
.'. the rectangle A Q, Q N = * (j? cos. X Z -f- y cos. Y Z)

also the square on A Q = ,r
2
-f y

9 + 2 xy cos. Y X,

/. d* = cF
2 + 3/

2 + zz + 2 xy cos. XY + 2 x z cos. X Z + 2 y z cos. Y Z.

440. To find the distance between two points when the axes are oblique
Let x y z be the co-ordinates of one point,
and x^ yi z

l -^ '

. the other point,
then the distance between these points is the diagonal of a parallelepiped, of

which the sides are the differences of parallel co-ordinates (388) ; hence,

d* = (x
- xtf + (y

- yj* + (z
-

*,)
e + 2 (x

-
*,) (y

-
7/0 cos. X Y

-f 2 (x
- rj (z

- 2 t) cos. X Z + 2 (y 2/0 (2
-

,) cos. Y Z.

441. To find the equation to a straight line referred to oblique co-ordi-

nates. The straight line must be considered to be the intersection of two

planes formed by drawing straight lines through the several points of the

given straight line parallel respectively to the planes of x z, y z
;
the traces

of these planes on the co-ordinate planes are of the same form as for reel-
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angular axes ; that is, the equation to the traces, and therefore to the line

itself are of the form
xaz-^a
y = /3*-r- b

but the values of and /3 are not the tangents of any angles, but the ratio

of the sines of the angles which each trace makes with the axes in i(s

plane (51).

The quantities a and 6 remain the same as when the straight line is

referred to rectangular co-ordinates, and since the equations are of the

same form as before, those problems which do not affect the inclination of

lines will remain the same as before.

442. To find the angle between two straight lines referred to oblique
co-ordinates we shall follow the plan adopted in Art. 402.

Let the equations to the parallel lines through the origin be

And let rbe the distance of a point xy z in (1) from the origin, and r
l
the

distance of a point jcl y l
2

t in (2) from the origin.

Then if d be the distance between these points, we have

d*= r2 + r-!

2 2 r r' cos.

= (x - .r,)
2 + (y

-
3/0

2 + (s -*0
2 + 2 (* - *i) (y

~
Sfi) cos. X Y

-h 2O - #0 (z
- z

t) cos. X Z + 2 (y
- yO (z

-
z,) cos. Y Z,

2{(jrl y -j-xyJcos.XY+faz+xzJcos. XZ+ (y^z+ y zO cos. YZ}
. = xx^ +2/3/1 -J- z^

+ yz^cos.'Y Z}

, e =

443. To find the equation to a plane referred to oblique axes.

We consider a plane as the locus of all the straight lines which can be

drawn perpendicular to a given straight line, and passing through a given

point in that given straight line.

Let the equations to the given line be

x = z -f- a

3/
= /3z + b

Also the equations to the straight line passing through a point x^ y^ *M
in the above line, are

jt - ^ = ol (z *0
y - yi = /3' (2

-
*i)

But these two last lines being perpendicular to each other, we have the

angle between them 90, or cos. 0=0; hence by the last article :

and eliminating
' and
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CO, X
*! * *!

1^--1 + aT)
cos. XZ + f^Lll + /3 ")

cos. Y Z =
*i / \ * -

*i /

orj (a _j_ /3 Cos. X Y + cos. X Z) O - xO + (ft + a cos. X Y + cos.

YZ) (T/
- y t) + (1 + cos.XZ +0 cos. Y Z) (*

-
Zl) =

aud this equation, which is the locus of all the straight lines meeting the

given straight line at a given point and at right angles, is called the equa-
tion to the plane.

444. To find the conditions that a straight line be perpendicular to a

given plane ;

The method is the same as that in article 426.

The equation to a plane passing through a point Xi y^ z
l
in the given

line is

77i (r
- xj -f n (y

- y t) + p (2
- z

t ) = 0.

But Oie equations to the given line being
j? = * + a, y = y8*-f 6

the equation to the plane perpendicular to it is given at the end of the

last article ; hence, equating co-efficients we have

m = + ft cos. X Y + cos. X Z,

n = ft + a cos. X Y -f cos. Y Z,

p = 1 + a cos. X Z + /3 cos. Y Z.

From these equations we have the values of m, n> p ;
or the values of

and ft in terms of m, n, p.

445. To find the angle between a plane and straight line.

Let the given equations be

mx-}- ny + pz =. I (1)

And let the equations to a straight line perpendicular to the given plane
be

x= a' s. + a 1

y = ft' z + 6<

where ' and ft' have the values of and ft in the last article.

Also the angle between the lines (2) and (3) is given in article

(442. ) y
and the angle between the plane and the line (1) being the com-

plement of the angle between the two lines (2) and (3) may be obtained.

446. To find the angle between two planes.
The equations to the lines perpendicular to the given planes, and pass-

ing through the origin are given by Article (444.) ;
and the angle between

these lines, which is the angle between the given planes, is given by
Article (442.)
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CHAPTER V.

THE TRANSFORMATION OF CO-ORDINATES.

447. To transform an equation referred to an origin A to an equation
referred to another origin A', the axes in the latter case being parallel to

those in the former.

The co-ordinates of the new origin being a, b, and c, it is evident that

if a point be referred to this new origin and to the new axes, that each

original ordinate is equivalent to the new ordinate together with the cor-

responding ordinate to the new origin ; hence if or, y, z be the original co-

ordinate of a point P, and X, Y, Z the new co-ordinates, we have

x = a + X,

y = 6 + Y,

z = c + Z;

Substituting these values for x, y and z in the equation to the surface,

we have the transformed equation between X, Y, and Z referred to the

origin A'.

448. To transform the equation referred to rectangular axes to an

equation referred to oblique axes having the same origin.

Xiet A -r, A y, A z be the original axes,

A X, A Y, A Z the new axes,

A M = * 1 AM'^X
M Q = y }

M' Q' = Y
QP = z I Q'P = Z

Through the points M', Q', P draw planes parallel to yz, or, which is

the same thing, perpendicular to A a? and meeting A x in S, T and M
(these planes are represented by the dotted lines in the figure). Then

A S, S T and T M are the respective projections of A M', M' Q' and Q' P
on A T, also
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= AM' cos. X A* + M'Q'cos. YA* + Q'Pcos. Z A,r (376)

/. x = Xcos. X x + Y cos. Y x + Z cos. Z x

y X cos. X y + Y cos. Yy + Z cos. Z
z=\ cos. X 2 + Y cos. Y * + Z cos. Z

,r = m X -f W2
t Y + m2 Z

Or, y = ?i X + 77! Y +

x \

y \

2
J

m2 Z
]

// 2 Z I

^Z J

wheie ?/i is put for cos. X <r, &c.

We have also, by art. 402, (he following" equation between the angles
which one straight line, as A X, makes with the axes of *, y, 2.

(cos. X *)
8 + (cos. X y)

2 + (cos. X *) = 1,

Hence the following system,

i + i

f + Pi
1 = 1 > 2.

449. If the new system be rectangular, we have also the equations in

urt. (405), which signify that the new axes are perpendicular to each

other ;
hence the system

mm
v + n n

l + pp l
=i

m ms + n na + ppz r= > 3.

Hence we observe that of the nine cosines involved in the system (I)
three are determined by the system (2), and other three by the system (3) ;

and therefore that there are only three arbitrary angles remaining.
450. In the place of these three systems the following three may also

be used:

X = m,r + ny + p z]
Y0i%4r+%y+jV> 4.

Z = m2 x + ?*2 y + P& }

m* f m? + 7n2
2= 1"! m n + mp + np =0|

7i
2

4. n *
4. 7?2

2
1 1 5. TOI ni 4. Wl j

E,
l 4. 7/l p L

V 6.
t I ~, 2 I _ 8 I I I -v > J^ v, rtl
p ~r Pi "T PZ -= *J "^2 ^2 ~r "^2 Pa T "2/2 :~"

J

For, multiplying the values of r, y and 2 in (1) by T?J, ?i and p respec-

tively ; then adding the results together, and reducing by means of (2)
and (3), we have X~mjc + ny-}-pz', and repeating this operation
with the other multipliers m l

v
l p l

and ina ?i% pit we have the system (4).

Also, since the distance of P from the origin is the same for both systems,
we have a?

1 + y* +
2 = X 2 + Y 2 + Z 2

; putting here, for X, Y and Z,
their values in (4), and then equating co efficients on both sides, we have
the two systems (5) and (6).

Whenever we see the systems (2) and (3), we may replace them

by (5) and (6) ; this may be proved independently of any transforma-

tion of co-ordinates, by assuming the quantities mnp, &Q. to be connected
as in (1).

451. The transformation from oblique axes to others oblique, is

effected by drawing a perpendicular from M in the last figure upon the
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plane of y *, and by projecting x, X, Y, and Z on this perpendicular, we
shall have

x sin. #, y z = X sin. X, y 2 + Y sin, Y, y * + Z sin. Z, y * ;

and similarly for the other two, x and y,

y sin. y, a? 2 = X sin. X, j; + Y sin. Y, x z + Z sin. Z, j?
2-,

z sin. 2, #y = Xsin. X,a?y + Y sin. Y, ,ry + Z sin. Z,xy.

452. Another useful method of transformation from rectangular axes to

others also rectangular, is the following:

Let the equations to the axes of X,Yand Z be respectively

x

y

and let

1 I 1m = --
, 77?!

=
,

777 a = -
Vl + ! + P Vl -f af + A8 Vl + ? + /V

then by art. (402.) we have

cos. X x = m a, eos. X y =. m(3, cos. X x == m
; &c.

Hence by substitution, the first formulas for transformation in art.

(448.) become

x = m a X + m l i Y + mz a2 Z

~ a z 1 x = a?! z 1

= /3*f 9-e*fr*t

And the nine angles in (1) are replaced by the six unknown terms

,*&&,&.
Instead of these systems, we may obtain a system involving only five

arbitrary constants by supposing the solid trihedral angle formed by the

original co-ordinate planes to turn about the origin into a new po-
sition : such a system has been ably discussed by M. Gergonne in the

''Annales de Maths.," tome vii. p. 56.

453. It appears throughout these articles that only three arbitrary

quantities are absolutely necessary and therefore it might be supposed
that formulas for transformation would be obtained involving only three

angles : such formulas have been discovered by Euler, and as they are

generally useful in various branches of analysis, we proceed to their in-

vestigation.

Let A C be the intersection of the original plane of xy with the new

plane of XY, and suppose the plane CXY A to lie above the plane
C xy A, which las.t we may assume to be the plane of the paper.

Let a sphere be described with centre A and radius unity, cutting all

the axes in the points indicated by their respective letters.

Q
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Let C x = 0, C X = i//,
and let the angle X C x between the planes xy

and X Y be called 0.

Then the object is to substitute in formula (1) art. (448.) the values of

the cosines in terms of the new variables 0, i//,
and 0.

This is effected by means of the elementary theorem in spherical trigo-

nometry for finding one side of a triangle in terms of the other two and
the included angle. In the triangles C X x and C Y ,r, we have

cos. X x = cos. 6 sin ^ sin. + cos. ^ cos.

cos. Y x = cos. 6 sin. (90 + ^/) sin. + cos. (90 + t//) cos.

= cos. Q cos. -^
sin. sin.

//
cos. .

Similarly cos. X y and cos. Y y may be found.

Also, supposing Z x and Z C to be joined by arcs of the sphere, we
have from the triangle ZCx

cos. Z x = cos. Z C # sin. Z C sin. G r + cos. Z C cos. C x

= cos. (90 + 0) sin. 90 sin. + cos. 90 cos

r= sin. 0sin. 0.

Similarly cos. Z y, cos. X *, and cos. Y % may be determined.

And cos. Z * = cos.
;
hence the system (1) becomes

x = X (cos. sin. ^/ sin. + cos. ^ cos. 0)

+ Y (cos. 6 cos. ^ sin. sin. ^ cos. 0)

Z sin. sin.

y =: X (cos. sin.
i//

cos. cos. ^ sin. 0)

-f- Y (cos, 6 cos.
;//

cos. + sin.
;//

sin. 0)

Z sin. cos.

* ~ X sin. 6 sin. ^ + Y sin. cos.
;// + Z cos. 0.

These are the formulas investigated, but in a different manner, by
Laplace,

"
Me'c. Cel." i. p. 58. They will be found in most works on

this subject, but often with some slight alteration in the algebraic signs of
the terms, arising from the various positions of A C.
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THE INTERSECTION OF A SURFACE BY A PLANE.

454. The last system may be advantageously employed in finding the

nature of the intersection of curve surfaces made by planes. If we propose
to cut a surface, as a cone for example, by a plane, we should eliminate %

from the equations to the surface and plane ; but this gives us the equa-
tion to the projection of their intersection on xy, not the equation to the

intersection itself; and as the projection will not always suffice to deter-

mine the nature of a curve, it is requisite to find the equation to that curve

traced on the cutting plane.

This may be done by a transformation of co-ordinates.

Let the cutting plane be that of X Y, and the trace A C the axis of X,
the surface will then be referred to new axes X, Y, Z, of which X and Y
are in the cutting plane. By putting Z = in the equation thus trans-

formed, we shall have the intersection of the surface with the plane X Y,
which is the intersection required.

Now, as the present object is only to obtain the curve of intersection,
we may at first put Z = 0, and then transform the equation.

Let therefore Z = 0, and the angle C A X or
i//
= 0, then the last

formulas become

x = X cos. + Y sin. cos. 6

y = X sin. + Y cos. cos. 6

z= Y sin. B.

These formulas may be separately investigated, with great ease, without

deduction from the general case. See "
Francceur," vol. ii. art. 369, or

"Puissant, Geometrie," art. 134.

455. In applying these formulas to a particular case, a little considera-

tion will greatly alleviate the labour of transformation : thus, in many
cases, we may suppose the cutting plane lo be perpendicular to j? z,

without at all diminishing the generality of the result, but only add-

ing much to its simplicity ; for in this case the trace A C either

coincides with Ay or y A produced, and therefore = 90; hence the

ast formulas become

x = + Y cos. 6

y=-X
z Y sin. 0.

These formulas may be readily investigated by drawing a figure like the

last, but letting A C, A X and y A produced coincide, = 90 and C Y =
90, and then taking the original formulas (1) in art. 448.

456. If in the above cases the origin is also changed, we must iritro

duce the quantities a, 6, c into the left side of the above equations.

Q2
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CHAPTER VI.

THE SPHERE AND SURFACES OF REVOLUTION.

457. A CURVE surface as a sphere being given for discussion, we proceed
as in plane geometry to find its equation from some known property of
the surface ; and generally we arrive at a relation between three un-
known quantities x, ?/, and z, which relation is expressed by the symbol
/(r, y, r) = 0, or z =f(x, y). This equation is called the equation
to the surface, and it corresponds to all points of the surface, and to it

alone.

458. Conversely, an equation of the form/(r, y, z) = ,
where ,r, y,

and z represent the co-ordinates of a point, refers to some surface. That
it cannot belong to all the points in a solid may be thus shown.

Let there be two equations /(r, y, 2) =r 0, and /' O, y, z) = 0;
giving to .r, y, and z the same values in both these equations, and then

eliminating z, we have the equation to the intersection of the above loci

projected on the plane of cry: this equation is of the form (x y) = 0,

and therefore it belongs to a line. Similarly the projections of the inter-

section on the other co-ordinate planes are lines ; but if the projections of

a locus on three different planes are lines, the locus itself must be a line,

that is, it cannot be a surface. Hence the intersection of the two loci of

f(x, y, z) = , and/' (j?, y, z) = being a line, each of these equations
must belong to a surface.

459. Surfaces as well as lines are divided into orders, and for the same

object, to avoid the confusion of ideas and to allow us to unite the im-

portant properties of generality and simplicity in our investigations as far

as possible. Hence a plane which is the locus of a simple equation
between three unknown quantities is called a surface of the first order ;

the locus of an equation of two dimensions between three unknown quan-
tities is called a surface of the second order, and so on. The length,
rather than the difficulty of the mathematical operations, renders this part
of the subject tedious. Hence we shall omit many of the investigations
which merely require manual labour, and rather dwell upon what we con-

sider the important steps.

A much more serious difficulty arises from the state of the figures : we
cannot give complete graphical illustrations of this part of geometry, and

a mind unaccustomed to the conception of solid figures cannot always

comprehend the meaning of the corresponding analytical results. We
have endeavoured to obviate this difficulty as much as possihle by descrip-
tions of what the figures intend to represent, and to these descriptions we

beg the particular attention of our renders, for we are convinced that this

part of geometry is by no means difficult, if attention be paid to the

form of the body but without this care it is quite unintelligible.

We commence with the discussion of the Sphere.
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THE SPHERE.

460. To find the equation to the surface of a sphere.
Let the surface be referred to rectangular axes, and let x, y, 7. be the

co-ordinates of any point on the surface, and a, 6, c the corresponding
co-ordinates of the centre. Then since the surface is such that the dis-

tance of any point in it from the centre of the sphere is constant or equal
to a line r, called the radius, we have by art. (388.)

(*-a) 2 + (y -&) 2 + (*-c) 2 =r 2
.

461. This equation will assume various forms corresponding to the

position of the centre.

Let the centre be in the plane of xy .*. c = 0,

/. O-) 2 + (y
-

6)
2 + z z = r*.

Let the centre be on the axis of 2 .*. a =
,
and b =

,

/. x* +2/ 8 + O -c) 2 = r 2
.

462. Let the centre be the origin .*. a =. b = c = 0, and the equa-
tion is

And this is the equation to the surface of the sphere most generally used.

463. The general equation upon expansion becomes

#2 + y
s
4. z a _ 2 # - 2 by - 2bz +^a~ + 6

2 + c 2 - r 2 = 0.

And hence the sphere corresponding to any equation of this form may be
described as for the circle, art. 67.

464. The sections of a surface made by the co-ordinate planes are

called the principal sections of the surface, and the boundaries of the

principal sections are called the traces of the surface on the co-ordinate

planes.
The equation to a trace is determined by putting the ordinate perpen-

dicular to the plane of the trace = in the general equation. Thus,
to find the curve in which the sphere cuts the plane of x y, put 2 = 0, and
then we have the equation to the points where the plane and sphere meet,
which in this case is

Hence the section on x y is a circle as long as x and y have real valuer

And, similarly, the other traces are circles.

The theorem that the intersection of any plane with a sphere is a circle.

is best proved geometrically, as in Geometry, 6. v. 19.

465. To find the equation to the tangent plane to a sphere.
Let x

l y l Zi be the co-ordinates of the point on the surface through
which the tangent plane passes, and let the equation to the spherical sur-

face be

(x
- a)* + (2/-&)

8 + (2 -
c)

2 = r s
;

then the equation to the plane passing through the point x
v y %l

is

(*
- *0 + n (y

- yO + p (z -
2,) = 0.

Also, the equations to the radius passing through the points (a b c

(x, fa 20 are
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i
~

(z
- 20 , y

-
y, =

z
\

c *i

And since every line in the tangent plane, and therefore the plane itself,

is perpendicular to the radius at the point of tangence, we have from the

equations to the plane and line

p Z l
- C p *!

- C

Hence the equation to the tangent plane becomes

or, fo -
a) O - xj + (yi

-
6) (y

-
2/J + (^ -

c) (2
-

2l) =
This equation may be modified by means of the condition

(#!) s + (?/!- 6)
8 + (2 t c)

2 = r 2
,

or, (#! a) (ji a) + (^ 6) (yt 6) + (2 t c) (2! c) = r*.

Adding this equation, term by term, to the above one for the tangent
plane, we have

(*! -)(*-) + (y,
-

6) (y
-

6) + (*i
-

c) (2
-

c) = r8 .

466. If the origin is in the centre of the sphere, the equation to the

tangent plane is

x x' -f. y y
1 + z Z

1 = r 2
,

which equation is at once obtained from that to the sphere xz + y
2 + 22 = r8,

or, ,r>r + yy+22=:r2
, by putting x x1

, y y\ and z z' for j? x, y y, and
22 respectively.
The line in which the tangent plane cuts any co-ordinate plane is

found by putting the ordinate perpendicular to that plane = ; and the

point in which the tangent plane cuts any axis is found by putting the

two variables measured along the other axes each 0.

467. The equation to the spherical surface referred to oblique co-

ordinates by (440.) is

(j?
- a)

2 + (y
-

6)
2 + (2

-
c)

a + 2 (x
-

a) (y 6) cos. X Y +
'2 (.r ) (2

-
c) cos.X Z + 2 (y

-
6) (2

-
c) cos. YZ =r.

ON COMMON SURFACES OF REVOLUTION.

468. A right cone is formed by the revolution of the hypothenuse of a

right-angled triangle about one of its sides.

Let A C be the side which revolves about A B as an axis, so that any
section Q P perpendicular to the axis is a circle.

Let A X, A Y, A Z be the rectangular axes to which the cone is re-

ferred, having the origin at the vertex of the cone, and the axis of Z
-coincident with the axis of the cone.

Let A N =
the co-ordinates of any point on the surface.

A N= 2
)N M = x
} be

MP=yJ
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Then the squares on N M and M P ss the square on N P

21

andNP - NQ= AN tan. CAB,

therefore the equation to the surface is

231

where e =: tangent of the semiangle of the cone.

469. Let the line A C be a curve, as a parabola, for example, in which
case the surface is called the common paraboloid.

Let the equation to the generating- parabola A Q C be N Q = */p z

Then the squares on N M, M P =the square on N P = the square on N Q,

.'. a* + y
8 = p z.

470. Let A C be an ellipse, centre and origin at B.

Let B N = z, N M = a?, and M P = y, C B = b and B A = a.

Then the squares on N M and M P = the square on N Q ;
and N Q

being an ordinate to the ellipse A Q C, whose semiaxes are a and 6, we
have

N Q = Ja?-z\
a ^

and therefore the equation to the surface is

or, of + y
2 + z* = 69

Let a and 6 change places in the equation, we have then for the surface

of revolution round the axis minor the equation

The former surface is called the prolate spheroid, the latter the oblate

spheroid.
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471. The equation to the hyperboloid round the transverse axis is

And putting a for b and 6 for a, we have the surface by revolution round
the conjugate axis.

472. In general the equation to all these surfaces may be compre-
hended under the form x* -f- y

2
=/(z) if A Z be the axis of revolution ;

or, z* -f- y
2 = f (.r) if A X be the axis of revolution.

To fluid the curve of intersection of a plane and a surface of revolution.

473. Let the section be made by a plane perpendicular to x z, and as

the nature of the curve is the same in whatever part of the cutting plane
we place the origin, we shall let the origin be in the plane x z.

Then the formulas for transformation are

x = a -f- y cos. d

y= -*
z = c -f- y sin. 0.

Hence by substitution in the equation to a surface, we shall have the

required curve of intersection.

474. Let the surface be a paraboloid

:. (a -j- y cos. Q)*-\-x*=p(c-\-y sin. 0)

or, y
2
(cos. 6)

2
-|- x* -f- (2 a cos. p sin. 0) y = , since a8 = p c

;

hence the curve of intersection is a line of the second order.

It is an ellipse generally (76) ; a circle if =
; and a parabola similar

to the generating one, if 6 = 90.
475. Let the surface be the spheroid formed by the revolution of an

ellipse round its axis major

*2 +y2 +
l^-

62
'

by substitution this equation becomes

y
8
{ (cos. 6>)

2 + -^(sin. 0)
8

} +*2 + 2y { c -^- sin. - lCos.0}= 0.

This is the equation to an ellipse generally, and to a circle when 0=0.
476. Let the surface be the hyperboloid, whose equation is

the sections will be found to depend on the value of tan. : if tan. is

less than , the curve is an ellipse ; if it is equal to , the curve is a

parabola; and if tan 6 is greater than , it is an hyperbola ; and lastly,

a circle if =
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CHAPTER VII.

SURFACES OF THE SECOND ORDER.

477. THE general equation to surfaces of the second order is

ax* + by* + cz*+2dxy + 2exz + 2fy + 2 g x -f 2 h y + 2i z

+ k = Q

the number 2 being prefixed to some of the terms merely for convenience.

In order to discuss this equation, that is, to examine the nature and posi-
tion of the surfaces which it represents, we shall render it more simple by
means of the transformation of co-ordinates.

Let the origin be transferred by putting

x = x' + m, yy' + n, z = zf + p,

substituting these values in the general equation, and then putting the

terms containing the first powers of the variables each ~ 0, we have the

equation

ax'* + &2/
/2

-f cz'* + 2dx'y' + 2ex'z' + 2fy'z' + ^=0.

This equation remains the same if we change x', y
f
, z', into x', y

f

, z'

respectively ; thence we conclude that any straight line drawn through the

origin, and intercepted by the surface, will be divided into two equal parts
at the origin ;

this new origin therefore will be the centre of the surface,

attributing to this expression the same signification as we did in treating
of curves of the second order (81.)

478. The values of m, 7?, and p, are to be determined from the three

equations

am + dn+ep + g=Q, co-efficient of a?',

bn -f dm +fp ~h ft = 0, . y',

cp + em +fn + i = 0, . . . z'.

Eliminate^ from the first and second of these equations, and also from

the first and third, then from the two resulting equations eliminate n, and
we shall arrive at an equation of the first order involving m, whence we
have the value of m, and therefore of n and p.

The denominator of the values of m, n and p is

ab c + 2def af* - bez c d?

hence, if this quantity = 0, the values of m and p are infinite, or the sur-

face has no centre when there is this relation among the co-efficients of the

original equation. This circumstance corresponds to the case of the para-
bola in lines of the second order (81.)

479. To destroy the co-efficients of the terms involving xf

y\ x' s/, and

3/V, we must have recourse to another transformation of co-ordinates.



234 SURFACES OF THE SECOND ORDER.

Taking the formulas in (452) we have

x' =- m a x" + mi a
l y" + rn2 or2 z"

y = mftx" + m
l fa y" + m* fa z"

z
r =. mx" + m^y" + 7n2 z"

Substituting in the general equation, and then putting the co-efficients of

x" y", x" z", and y" z
n

, each = 0, we have the three equations

(aa + d/$ + e) Wl + (da + 6 +/) A + e + fft + c = ..... arV'

c = 0. . .y"z"

Our object is now to ascertain if this transformation can always be

effected, that is, to determine the possibility of the values of the six un-

known quantities in the last three equations.
480. The equations to the new axis of y" are x = oe

l z, y = fa z (452.);

hence, by substitution, the first of the above three equations becomes

(a + <*+ e)x+ (<Ja4-M+/)y + (eot+ffi + c) z = 0,

which is the equation to a plane passing through the origin.

Now the co-ordinates of every point in this plane satisfy the condition

that the co-efficient of x" y" = 0, that is, give the necessary relation

between a
v and fa ; hence, if (he new axis of y

1' be drawn in this plane the

condition is still satisfied. Thus, the direction of the axis of x" being

quite arbitrary, that of y'
1 is determined to be in the particular plane given

above ; and the term x" y" is gone.

Again, by a similar elimination of or2 and /32 from the co-efficient ofj/'",
and from the equations of z" (x = aa z, y = fa 2), we have, from the

similarity of the equations, the same plane as before ; hence, if the axis of

z" be also drawn in this plane, the term x" z" will disappear.

Also, 2 and fa being thus obtained, the relation between t and /8, may
be found from the co-efficient of y" z" = 0.

Thus, fixing upon any position of the axis of x"^ that is, giving any
values to a and fa we have determined a plane passing through the origin,

in which plane any two straight lines whatever drawn from the origin may
be the axes of y'' and z", and one of them as z" being so drawn, or2 and/82

are given, and then the relation between a
l and & is determined from the

co-efficient of x
1'

y" = 0.

But since the relation between these quantities a l and fa, and not the

quantities themselves, is given by the last equation, it appears that there

are an infinite number of systems to which, if the axes be transferred, the

products of the variables may be destroyed.
481. Let the new axes be rectangular.
In this case the axis of x" must be perpendicular to the plane of y" x",

or the line whose equations are x = z, y = ft z is perpendicular to the

plane

/. aa-fd/3-f e= (e -f//3 -{- c) (426)

Substituting in the first of these equations the value of or obtained from

the second, we have the following equation for /3 :
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+ { (a
-

6) (c
-

6) e + (2 <f -/2 - e
2
) e + (2 c- a - 6)/d } /3

2

+ { (c
-

a) (c
-

6) d + (2 c2 /
8 - e*

2
) rf + (2 6 - a - c) /e }

This equation of the third degree has at least one real value for /3, and
hence a real value of or; thus the position of the axis of x" is found, and
also the position of the perpendicular plane in which y" and z

n
are situ-

ated.

Again, we might find a plane x" z" perpendicular to y'
1

, and such that

the terms in x" y", y" z" should disappear, and the necessary conditions

will, as appears from the similarity of the equations, lead to the same

equation of the third degree in (3^ and the same is true for the axis of z".

Hence the three roots of the above equation of the third degree are the
three real values of /3, fi v and /32 .

These three quantities give the three corresponding values of , t

and 2 , and since there are only one value of each quantity, it appears
that there is only one system of rectangular axes to which the curve sur-

face can be referred so as not to contain the products of the variables.

For further information on this subject, see " Annales Math.'' ii. p. 144.

482. By the last transformation, the equation when the locus has a
centre is reduced to the form

a^'t + biyV' + c^'t+k^O
or, LcC2

-f-My
2
-f-N2

2 =:l

by substitution and the suppression of accents, which are no longer neces-

sary.
The order of transformation might have been inverted, by first de-

stroying the products of the variables exactly in every respect as in the

last article, and then the resulting equation must be deprived of three

terms by a simple change of the origin; the result, after both transforma-

tions, is

L <r
2 + M y

8 + N z9 + P x = 0.

483. The central equation involves three distinct cases, which depend
on the signs of the quantities L, M, and N.

(1) They may be all positive.

(2) Two may be positive, and the third negative.

(3) One may be positive, and the other two negative.

They cannot be all negative.

Substituting for L, M and N, the constants -
respectively,

where a is > 6 and b > c, the three cases are

__ _
a2

6
s

c
2

"

The readiest way of obtaining the form of these surfaces is by sections

either in planes parallel to the co-ordinate planes, or on the co-ordinate

planes. We remark again, that in the latter case they are called the prin-

cipal sections or traces.
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THE ELLIPSOID.

484.

For the trace on x y, z = 0, /. -f-
2 r= 1

X 2, V = 0, .'. -I = 1
a* c3

Therefore the principal sections are ellipses.

xz
y* m*

Let 2 = m .*. the section parallel to x y is -f- = 1
a o c2

v=n. . x z is -
-] = I -

x =. p

The first of these equations is an ellipse from m, or z = to

z = c ; when 2 c the curve becomes a point, and when z is greater than c

the ellipse is imaginary, therefore the surface is limited in the direction of z.

Similarly it may be proved, that the other sections are ellipses, and the

surface is limited in the directions of x and y. From the circumstance of

this surface being thus limited in every direction, and also from the above

sections being all ellipses, Ihis surface is called the ellipsoid.

The diameters 2 a, 26, 2 c of the principal sections are called the dia-

meters of the ellipsoid, and their extremities are the vertices of the surface.

xz
y

2
2
2

If 6 = a, the equation becomes -f- \ -\ 2
=

1, which is the equa-

tion to a spheroid by revolution round the axis of z.

If any other two co-efficients are equal, we have spheroids round the

other axes
;
and if a = 6 = c, the surface becomes a sphere.

485. To render the conception of this surface clear we subjoin a figure

representing the eighth part of an ellipsoid.

7.

Q

* This equation belongs to the projection on x y, hut since the plane of x j>
is parallel

to that of z = m,tbe projection is exactly the same in form as the curve of section itself.
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A B is part of the ellipse on x y

AD x z

B D yz,

and the section Q P R parallel to x y is also an ellipse.

The surface may be conceived to be generated by a variable ellipse
C A B moving upwards parallel to itself with its centre in C Z. Let
N Q R be one position of this variable ellipse; and let

C N = 2, C A = a, N R = j?
l ;

N M = x, C B = b, N Q =^ y,

M P = y, C D = c,

Then from the ellipse Q P R we have

Also from the ellipses D R A and D Q B we have

~~i~ H ^ 1 aild TT H j- == 1
a c b c

x 2
ti

2
j?

2

Therefore -i- i-
; and multiplying the first equation by

~ or its

equal J-, we have p- ^r = -^- =1 r-.
6 b a* c

THE HYPERBOLOID.

486. Case 2.

The principal sections are

on

^+fr = 1

^-^= J (2>

(1) is the equation to an ellipse whose axes are 2 a and 2 b
; (2) and

(3) are hyperbolas with the same imaginary conjugate axis 2c ^ _ i
.

it\r is less than ,
or

3;
less than 6, z is imaginary.

Giving to 2, 7/, and j? the values m, ??, and
jy, respectively, we have the

section parallel to x y an ellipse, to y z and x z hyperbolas.
487. The accompanying figure represents a portion of the eighth part

of this surface. A B is the ellipse on x y, A R the hyperbola on x x, and

B Q is the other hyperbola on y z. This surface may also be conceived
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to be generated by a variable ellipse CAB moving parallel to itself with it

centre in C Z. Let N Q R be one position of this variable ellipse ; and le

C N = Z, C A = 0, N R r= ^ ;

NM = *, CB = 6, N Q = y, ;

M P rr y, C D = C,

Then from the ellipse P Q R, we have

Also from the hyperbolas A R and B Q we have

~5 * 1 anc* IF T" 1
1

a2
c
2 6

2
c
2

<r
2

i/
8 x 2

therefore
j-
=

-^- ; and multiplying the first equation by j-
or its equal

2/i*
^ , we have

a2
6
2 a

This surface is called the hyperboloid of one sheet because it forms one

continuous surface or sheet.

If a = b the surface becomes the common hyperboloid of revolution

round the conjugate axis.

488. Through the origin draw a line, whose equations are #=az,y=/3z,
X* if Z*

and substituting in the equation- -f-
-^-

-- =: 1, we have

hence this line meets the surface as long as the denominator of the frac-

tion is real and finite; let fc* c2 8 + ac8 /3= O8 6, then the line only
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meets the surface at an infinite distance, or is an asymptote to the surface.

The last equation gives the relation between and /3, when the corre-

sponding line is an asymptote ;
and if for and (3 we substitute their gene-

ral values and ,
we obtain an equation between x, y, z, whose locus

will consist of all the asymptotes to the surface, because the co-ordinates of

any point in it have the required relation above.

The equation to this surface is

6
8 c

2
a* + a2

c
8
y* = a2

b* z*

or,
e2

We shall hereafter show (art. 514.) that this is the equation to a cone
whose vertex is the origin, and whose base, or section parallel to the axis,
is an ellipse.

489. Case 3.

The principal sections are

on xz
9

on

a"

y
1

1

(i)

(2)

(3).

(1) is an hyperbola whose axes are 2 a and 2 6 V 1 00 is an hyper-

bola whose axes are 2 a and 2 c
/v/_j . (3) is imaginary, therefore the

plane of y z never meets the surface.

Of the sections parallel to the co-ordinate planes, those parallel to xy
and x z are hyperbolas, and that parallel to y z is an ellipse, whose equa-
tion is

2^1 + i - _ 1 .

6* c2
"'

a2

hence this ellipse is imaginary, ifp or x is less than db a; therefore, iftwo

planes are drawn parallel to y z, and at distances i a from the centre, no

part of the surface can be between these planes.
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In the fig-tire EAF represents the hyperbolic section on xy, and
Q A R that on x z

;
E Q F R is an elliptic section parallel to y z. There

is an equal and opposite sheet with its vertex at A' ; hence the surface is

called the hyperboloid of two sheets.

490. The equation to the surface is deduced from the figure; let AMiz
x, M N = y, N P = * ; Q M =r %19 M F = y, ;

Then from the elliptic section Q P F R we have

Also from the hyperbolas EAF and Q A R we have

77 ~ T "~ U and -\ r 1
62 o2

c8 a2

therefore -- =
-J-;

and multiplying the first equation by -y-
or its equal ~,

we have

- + =^ :=
S--

1

'*'

"a2 ~"tf
~

"?
= L

a.
2 y2

2s
491.

-j-
= 0, is the equation to the conical asymptote;

hence both in case (2) and (3) we have the conical asymptote by omitting
the constant term in the equations.

ON SURFACES WHICH HAVE NO CENTRE.
492. In this case the general equation can be deprived of the products

of the variables, as in (479) ;
it will then be of the form

In order to deprive this equation of three more terms, let

x = m + ,r', y n -f y', z p + zf
,

'

Let the co-efficients of or', y' and z' = ;

or, h

But since this class has no centre, the values of some, or all the quan-
tities m, 11, p, must be infinite ; therefore, either one, two, or three of Ihe

co-efficients a, 6, c, must rr: 0. Thus the original transformation which

deprived the equation of the terms xy, xz, and 3/2, has of itself destroyed
one or two of the co efficients of JT, y\ or 29 ; this corresponds to the case

in art. 92. Now, all three co-efficients cannot = 0, for then we fall upon
the equation to a plane : hence we have only two cases left, when a

vanishes, or when a arid b both vanish.

493. Let a = 0, then, as we have three quantities, m. n and p to deter-

mine, we may let k' =r as well as the co-efficients of y' and z' ; hence
the equation is reduced to the form
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This equation has two varieties depending upon the signs of the quau

tities - and .

494. Case 1. Let the signs of/2 and *'* be both alike and positive, (if

they were negative we should change the sign of x' to reduce the equation

to the same form) substituting for , and
-j-

for , and sup-

pressing the accents on <r, y and z as no longer necessary, the equation is

of the form

a

For the principal sections we have

on xy, y* = Ix . (1)

onxz, z* ^lx' . (2)
on y*,/y + /*:= (3)

(1) and (2) are parabolas extending on

the side of x positive ; (3) is a point,
which is the origin itself

For the sections parallel to

V* p2

=
/>,

.'. ^zx--
n*

(1)

(2)

yz, put x = m, (3)

(1) and (2) are parabolas, equal to those of the principal sections respec-

tively, (the equation differing by a constant term, implies that the origin
is differently situated with regard to the curve) : (3) is an ellipse.

495. In the figure AQ and AR are parts of the parabolas on x y
and x y, and the surface is described by the motion of the parabola A Q,
parallel to itself, its vertex moving along the parabola A R. Let P R N
be one position of the generating parabola, and let A M = X, M N =y,
NP = z, and draw R O parallel to A Y or M N ; then from the parabola
R P we have

* = /' R N = V (AM - A O) =

This surface is called the elliptic paraboloid, and is composed of one
^ntire sheet, like the paraboloid of revolution.

496 Case 2. Let the signs of y'
2 and z'* be different.

R
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' ~ ~

For the principal sections we have

on xy, y
z = Ix (I)

on xz, z* = - I'x (2)

on2/z,/y-/*2 = (3)

(1) and (2) are parabolas, the first cor-

responding to x positive, and the second
to x negative ; (3) belongs to two straight
lines through the origin.

The sections in planes parallel to xy and xz are parabolas, and those

parallel to y z are hyperbolas.
497. AQ is the parabola on x z, and A R is that on xy\ and the sur-

face is described by the motion of the parabola A Q parallel to itself, its

vertex moving along the parabola A R. Let R P N be one position of

the generating parabola, and let A M = xy MN = y, and N P = z, and
draw R parallel to M N ; then from the parabola R Q we have

= /' RN = (A O - A M ) = V - -

This surface is called the hyperbolic paraboloid.
498. The equations to the elliptic and hyperbolic paraboloids may be

deduced from those of the ellipsoid and hyperboloid of one sheet, as the

equation to the parabola was deduced from that to the ellipse (228) by
supposing the centre to be infinitely distant.

Let the origin be transferred to a vertex of the surface, by putting x a
for x, then the equation to the ellipsoid and hyperboloid is

Let m and m' be the distances of the vertex from the foci or the sections

on x y and x z ;

/. b* s= a2 - (a ra) = 2 a m - m2

and c8 = 2 am' m"* ;

therefore, by substitution, the equation

=

= 0,

or rfc -
. 2 x = 0, when a is infinite.

2 m 2 m'

And hence results obtained for the ellipsoid and hyperboloid will be

iue for the paraboloids, after making the above substitutions.
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499. We stated in article 492, that both a and b might vanish ; in this

case the equation will be

cz*+'2gx-{- 2hy + 2iz + k = 0.

And by the transformation in art. 492, we cannot destroy the co-efficients

of x and y, but we may destroy that of 2, and also the constant term k ;

hence the transformed equation is reduced to the form

= Ix

2gx + 2hy = 0;

if~ = /,and-

500. There are two cases depending on the signs of I and /', which

may be both positive, or one positive and the other negative.
Case I. / and V both positive.

The section on xy is Ix + I' y =-- o (1)
on xz is

2 = Ix (2)
on y z is

2 = Vy (3)

(1) is a straight line A B ; (2) is a para-
bola A Q ; (3) is also a parabola, not in

the figure ; the sections on the planes

parallel to the above are similar in each

case. The surface is formed by the motion

of the parabola A Q parallel to itself, its

vertex describing the straight line A R
;

letRPNbe one position ofthe generating

parabola ; let A M=,r, M N=y, NP = z,

= / (
^-y

+ se\ = Vy + Ix.

Since this surface is a cylinder with a parabolic base, it is not usually
classed among the surfaces of the second order.

Case 2. If the signs of / and /' be different, the surface will be th

same, but situated in a different manner.

CHAPTER VIII.

CYLINDRICAL AND CONICAL SURFACES.

501. Our notion of surfaces will be very much enlarged, if we tak

into consideration the general character of classes of surfaces, defining
them by their peculiar method of generation, and then expressing that

definition in a general algebraical form. For example, we have been
accustomed, in common geometry, to consider a cylinder as a surface

generated by a straight line, which is carried round the circumference of a

given circle, and always parallel to a given straight line. (Geom. b w
R 2
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def. 1.) But it is evident that if the base be not a circle, but any other

curve, as a parabola, for instance, we shall have a surface partaking of

(he essential cylindrical character, and which, with others of the same

kind, come under a more extended definition ; and similarly for conical and

many other surfaces.

Having seized upon this general character, method of generation, or law

by which the lines are compelled to move, the next step is to express
this fact in algebraical language; that is, to obtain an equation between

co-ordinates x, y, and z, of any point on the surface, which equation shall

belong to the class of surfaces in the first instance, and then can be adapted
to any particular surface in that class.

THE PLANE.

502. In order to prepare the reader for this subject, we shall take a

simple case: to find the surface generated by the motion of a straight

line, parallel to itself, and constrained to pass through a given straight

line.

Let A X, A Y, A Z be rectangular axes, and let the equations to the

given straight line B C (supposed for the sake of simplicity to be in the

plane of y *) be

n Y + p Z = 1\
X = Of

Also, let the equations to the generating line P Q, in any one of its posi-

tions, be

a = a z + a\
y = /3* + bf

Now, a and /3 are the tangents of the angles which the projections of P Q
make with the axes A X and A Y respectively ; and in the motion of P Q,

parallel to itself, the projections also remain parallel to themselves respec-

tively ;
and hence and are always constant, and therefore are known

or given quantities. But a and 6 being the co-ordinates of the point
where the line P Q meets the plane of a: y, they change with every change
of position of P Q; and therefore, being variable, must not appear in the

final equation to the surface. Now, these variable quantities, a and 6, can
be expressed in terms of the other variable quantities x,y, z; and hence

we can thus estimate them from the two given systems above.
At the point P, where P Q meets B C, we have, by comparison of (1)

ind (2),
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X =x =

But the system (1) is true for any values of X, Y, Z; therefore, by sub-

stitution in (1), we have

and this is the equation connecting a and b together, or expressing the

relation which the variable quantities a and 6 have to each other, or the

relation which any quantities equal to a and 6 have to each other ; that is,

substituting for a and 6 the quantities x z, and y (3 z from (2), we
shall have the relation between the quantities x, y, and 2, which is called

the equation to a surface.

x - j = 1;

which is the equation to a plane ; and this is the most general method of

determining the equation to a plane ; for it can be thus found for any
system of co-ordinate axes, and it is determined from the most obvious

character of the plane.
We now proceed to the discussion of surfaces formed by the motion of a

straight line constrained to move after some given law or condition.

ON CYLINDRICAL SURFACES.

503. Definition. A cylindrical surface is generated by a straight line,

which moves parallel to itself in space, and describes, with its extremity, a

given curve.

The straight line which moves is called the Generatrix ; and the given
curve is called the Directrix.

To find the equation to the surface,
Let the equation to the generatrix, in any one of its positions, be

x = or z + a

y=j3z + b

Now, the generatrix, in its movement, always moving parallel to itself;

the quantities and [3 remain the same for every position of the genera-
trix ; but the quantities a and 6, which are the co-ordinates of the point
where the generatrix meets the plane of x y, are constant for the same

position of the generatrix, but vary when the generatrix passes from one

position to another. Thus, when any point on the surface changes its

position without quitting the generatrix, a and 6 are both constant ; and
when the point moves from one position of the generatrix to another,
a and 6 are both variable ; hence these two quantities, being constant

together, and variable together, must be dependent on each other in some

way or another; which general dependence is expressed by saying that one
of them is a function of the other
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/. 6 =
<J) (a) ;

or, putting for b and a their values as above, we have

y /3 * = (x - oc ),

which is the general equation to cylindrical surfaces.

504. The form of the function will depend upon the nature of the

directrix in any particular case.

Let the equations to the directrix be

F (X, Y, Z,) =,) = 01

,) = 0/
Then as the generatrix must in all its positions meet the directrix, the

equations to this curve and to the generatrix must exist simultaneously
for the points of intersection ; thus having four equations we may elimi-

nate a,*, y, 2, and arrive at an equation between er, 6, and constant quanti-
ties, which will determine the form of the function

<j>.

Substituting in this equation for a and b their values x a z, y flz, we
have the actual equation to the particular cylinder required.

505. Ex. 1. Let the directrix be the circle B Q C, in the plane of x y,
and let xl and y l

be the co-ordinates

of its centre
; then the equations to

the directrix are

Z =
r2 l

f
Let B D, Q R, C E, be various

positions of the generatrix whose

general equation is

YZftttfa
to express that the generatrix meets

the circle as at Q, the equations (1) and (2) must exist together

.'. Z = z =
X = x = a

X

substituting these values in (1), we have

(a - xtf + (b - y,Y = r2 (3)

hence the form of the function
^>

is determined.

Substituting in (3) the values of a and b from (2), we have

(x - *z- xtf + (y - ft z - y,)
2 = r*

This is the equation to an oblique cylinder, with circular base, situated in

the plane of x y.
506. Let the centre of the circle be at the origin,

.*. x
l
:= and y t

=
/. (,r

- a z? + (y
-

ft z? = rs

And if the origin be at the extremity of a diameter parallel to the axis of x,

(x - a *)' + (y
-

ft z)
8 = 2 r (x

- <* *)

507. Let the axis of the cylinder be parallel to the axis of * ; then a and ft
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each -

0, since they are the tangents of the angles which the projection

of the generatrix on x z and y z make with A Z ;

/. Cr-j^'+Cy-yi)
1 ^?

and if the axis coincide with A Z, x* H~ y'
2 = r

2
,
z ;

in these cases the cylinder is called a right cylinder, and its equation is the

same as that of the directrix.

If the directrix be a circle on x z, the equation to the right cylinder will be

tf + * = r\

508. Let the directrix be a parabola on a- y t
vertex at the origin, and

ajds coincident with the axis of x.

Then the equations to the directrix arid generatrix are

Y = pXl , x = az + fll p.
Z =0 f

1

y =/3* + 6/
-

therefore at the points of junction we have

Z = z =
X = a? = a

Y=2/ = 6;

then by substituting in (I) we have

b* = pa
.-. (y

-
|3 *) = p (,r

- a *)
which is the equation to an oblique parabolic cylinder, whose base is on xy.

509. Let the directrix be a parabola on x z, axis A X, and vertex at A ;

and let the generatrix be parallel to the plane x y.
The equations are

Z* = p X) n + *x =
Y^O/ 1 z-b

Then the equation to the surface is

#. See article (499).

ON CONICAL SURFACES.

510. Definition. A conical surface is generated by the movement of a

straight line, which passes constantly through a given point, and also
describes a given curve.

The given point is called the centre of the surface, the straight line which
moves is called the generatrix, and the given curve is called the directrix.

Let
, &, c, be the co-ordinates of the centre ; then the equations to the

generatrix are

x a = a ( c)

y - 6 = /3 (z
-

c).

Now when a point on the surface changes its position without quitting
the generatrix, the quantities a, /3 are constant, but when the point passes
from one generatrix to another, they are both variable

; hence being con-
stant together, and variable together, they are functions of one another ;

/. j3 = (a), or substituting their equals,

y b f x a\= 1 ) which is the general equation
jr c z ~ c /

to conical surfaces
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511. The form of the function $ will depend upon the nature of the
directrix in any particular case.

By combining the equations to the generatrix and directrix we may, as
for cylindrical surfaces, eliminate <*, y, z, in a particular case, and thus
arrive at an equation between a and /3, which will determine the form of
the function

^>.

~
Substituting in this equation for a and /3 their values

x ~ a
an(j

z c z c

we obtain the actual equation to the particular conical surface.

512. Ex. Let the directrix be a circle B Q C in the plane of x y.
The equations to this directrix are

(X - xtf + (Y -
y,)

2 =

And the equations to the generatrix B E, or Q E passing through the

point E (0, 6, c), are

x a = a (2 c) ,~v

y
- b = 13 (z

- cj
W

To express that the generatrix meets the

circle, the equations (1) and (2) must
coexist.

/. Z = z -
X = ,r = a a c

hence by substitution in (1) we have

(a - a c - jc^ + (6
- c - yj* = H (3)

Putting for a and ft their values from (2) and reducing

This is the equation to an oblique cone with a circular base situated in the

plane of x y.

Lei the centre of the circle be at the origin .*. xl
= o and y l

= o ;

/. (a z - c X? + (6 z - cyY = r2
(z

-
c)

2

513. Let the axis of the cone be parallel to the axis of z .'. a = x l and

6 = 3h, and the general equation becomes

>-*\
z -c J

Iii this case the cone is called a right cone.

Also, if in this case the origin be at the centre of the circle, we have

c = o and 6 = 0,

5 1 4. Directrix an ellipse on x y, whose centre is the origin, and the centre

of the cone in the axis of*; then the equation to the cone is

*
, y> (,-
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or putting z, for z c that is, measuring from the centre of the cone

In this simple case, the equation to the surface is easily found by the
method in article (468). Taking the figure in that article, and supposing
every section, like P Q, to be an ellipse, whose axes #! and yt are always
proportional to the axes a and b of an ellipse whose centre is in A Z, and
at a distance c from A, we have the equation to P Q

.*+-- 1^ +
yS

~

b a
but y, = - #!, and ^ zs z

a e

.
*

a a n
6
2
~~

c8
'

515. Let the directrix be a parabola parallel to x y, and vertex in the
axis of z. The equations to the directrix and generatrix are

. *- = (*- c)l

y
- & = fi (z

-
e)fZ = d

at the points of junction we have

Z = z= d
X = o?~a-f-cr(c/ c)

Y = 2/=& + 0(d-c)
hence the final equation is

516. Let the vertex or centre ofthe cone be at the origin .'. a = 6 = c = o,

and the equation to a cone whose directrix is { y* = p xt z = d } and
whose vertex is at the origin, is

d y* = p x z.

517. The following method of finding the equation to a right cone whose
vertex is at the origin, is sometimes useful.

Let the length of the axis of the cone be k, and suppose this axis to

pass through the origin, and be perpendicular to a given plane or base

whose equation therefore will be of the form

where a, /6, y are the co-sines of the angles which k makes with the axis

of,r, y, andz (410).
Also suppose xt y, and z to be the co-ordinates of a point on the circum-

ference of this base, and let Q be the angle which the generatrix of the

cone makes with its axis, then by the property of the right-angle triangle
we have the equation

k = ^ G*
2 + f + **) cos.

Hence by equating the values of k we have the equation,

(a X + ft y + y z? = (* + f -f z2
) (cos. 0)

8
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And this is the equation to any point in the surface, since a, /3, y remain
the same for a plane parallel to the base and passing through any point
(JT y 2) of the surface.

If the axis of the cone coincides with the axis of z, we have a = ft = o

and y=l; z~ = (x* + y
2 + z*) (cos. 0)

8

518. To find the curve of intersection of a plane and an oblique cone,
we may suppose the cutting plane to pass through the origin of co-ordi-

nates without detracting from the generality of the result. Substituting
for x, y, z, in the equation, their values in 455, we readily find that the

sections are lines of the second order and their varieties.

ON CONOIDAL SURFACES.

519. Definition. A conoidal surface is generated by the movement of a

straight line constantly parallel to a plane, one extremity of the line

moving along a given straight line, the other describing a given curve.

We shall commence with a simple case. Let the axis of z be one

directrix, and let the generatrix be parallel to the plane of x y: then the

equations to the generatrix in any one position are

a x \
b }

Now it is evident that when a point moves on the surface without quitting
the generatrix, a and 6 are both constant, but when it passes from one

position of the generatrix to another a and 6 are both variable ; hence these

quantities, being constant together and variable together, are functions of

one another.

.*.6 = (a) or substituting their values.

which is the general equation to all conoidal surfaces.

520. The form of the function ^ will depend upon the nature of the

second directrix.

By combining the equations to the generatrix and this directrix, we

may, as before, eliminate x, y, z, and arrive at an equation between b and
,

we must then substitute the values of b and a, their general values z and

--, and we shall obtain the equation to the particular conoidal surface.

521. Let the second directrix be a circle parallel to y *, and the centre

in the axis of X, therefore the equations to this directrix are

Z* + Y* == /
I mX =
(

(1)

Then where this directrix meets the

generatrix we have

Z = * = 6

X = x = a ^MKSI '

' X
Y =: y = a a
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Hence the required equation is

* + a8
/05 r8.

251

This surface partaking of the form and generation of both the cone and
the wedge, was called the cono-cuneus by Wallis, who investigated many
of its properties,

If the axis of ,rbe one directrix, and the other be a circle parallel to x z,

and the generatrix be parallel to y z, the equation is

522. Let the axis of z be one directrix, any straight line the other, and
let the generatrix move parallel to x y.

Then the equations to the second directrix are

X = pZ + m
Y s= v Z + n

Also the equations to the generatrix being y = a x, z = b, we have at

the points of junction
Z = z = 6

Y = y= v b + n

=
p.

b -f- m

.'. (v z + n) - =
fJ-

z + in

or v z x pzy-{-nx my o.

523. Let the axis of z be one directrix, and let the second directrix

be the thread of a screw whose axis is coincident with the axis of z.

The thread of a screw, or the curve called the helix, is formed by a
thread wrapped round the surface of a right cylinder, so as always to make
the same angle with the axis; or if the base of a right-angled triangle
coincide with the base of the cylinder, and the triangle be wrapped round
the cylinder, the hypothenuse will form the helix A P.

To find the equations to the helix,

Let the centre of the cylindrical base be the origin of rectangular axes.

C M = #, M Q y, PQ = z and the radius of the cylinder = a.

Then P Q bears a constant ratio

to A Q ; namely, that of the altitude

to the base of the describing triangle
:. P Q = e A Q

and A Q is a circular arc whose sine

is y and radius a :

~ l

V
.'. z ==. e a sin. ,

a
-1 x

or z = e a cos. ;

also j?
2 +

a
= aa
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And these are the equations to the projections of the helix.

To return to the problem, which is to find the surface described by a
line subject to the conditions that it be parallel to the base of the cylinder,
that it passes through the axis, and that it follows the course of the helix.

The equations to the directrix (if c be the interval between two threads)
are

i y
z = e a sin. + c

a

And the equations to the generatrix being y = oc x, z = b ; we have

a a

^
= v* -

y" '. y =

hence the equation to the surface is

y
,

z ea sin. -f- c

This surface is the under side of many spiral staircases.

524. A straight line passes through two straight lines whose equations
are x = #, y = b

; and x = alt z = 61 ; and also through a given
curve z = /(y) in the plane of z y ;

to find the equation to the surface

traced out by the straight line.

The three directrices are

Y = 6 J

J Z = 6j' X = o

And let the equations to the generatrix be

x = a x + m
y = ft z + n
Q ft

and consequently y = x + p, ifp = n m;

Then since this line meets the three given lines, we have the following

equations
Q m -, m ^

b = -Z-a+p, ,
= , + , __=/(-_ /J+)

We must now eliminate a, 6, m, n from these equations, and that to the

generatrix.

By subtraction we have

y 6 = (x a) ; x at n a (z 6,) .". a =

m/3_ or (y--y8z)-j6 (x-z) _ <xy px __ ft x_ bx- ay.

,
x q t z __

/ 6 x ay
* - at

~ f
\ x - a

n a-

a a a a or a

Hence the final equation is

6, x ai z __ j(b x ay\



ON CONOIDAL SURFACES. 253

525. The following problem is easily solved in the same manner.
To find the equation to a surface formed by a straight line moving
parallel to the plane of x 2, and having its extremities in two given curves

z = / (y) on z y, and x = ^ (y) on x y.

The equation is TT^
/(</)

526. In questions of this kind some care is requisite in selecting the

position of the axes and co-ordinate planes, so that the equations, both

those given and those to be found, may present themselves in the sim-

plest form. For example, to find the surface formed by the motion of

a straight line constantly passing through three other given straight lines;

Take three lines parallel to the given lines for the axes of co-ordinates ;

then the equations to the three directrices are

X = a.)

Z= 0J Z 8*.

and the equations to the generating line in any position are

x z= xz + a, y = fi z + b,
a Q

and consequently y = x + c, where c = 6 -- a ;

a a
Then since this line meets each of three given lines, we have the following

equations :

&! = ! + c ; at = a c
s + a ; 68 = (3 c3 -f b.

We must now eliminate a, 6, a, /3 from these three equations and that to

the generatrix ; by subtraction we have
a

y -
6j = (x oO ; x - a% = a (z

- c8) ; y 63 = (2
- ca)

hence, eliminating a and /6, we have the required equation

(j?
-

,) (y
- 68) (3

- cs) = (x
-

,) (y
-

6) (z
-

c.)

which is of the second order, since the term x y z disappears. See

Hymers's Anal. Geom. p. 23, Cambridge, 1830.

CHAPTER IX.

ON CURVES OF DOUBLE CURVATURE.

527. Definition. A curve of double curvature is one whose generating

point is perpetually changing not only the direction of its motion, as in

plane curves, but also the plane in which it moves.

If a circle be described on a flat sheet of paper, it is a plane curve ;

let the sheet of paper be rolled into a cylindrical form, then the circle has

two curvatures, that which it originally had, and that which it has acquired

by the flexion of the paper, hence in this situation it is called a curve of

double curvature.

528. Curves of double curvature arise from the intersection of two

surfaces ; for example, place one foot of a pair of compasses on a cylin-

drical surface, let the other in revolving constantly touch the surface, it will

describe a curve of double curvature, which, though not a circle, has yet all
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its points at equal distances from the fixed foot of the compasses. The
curve is then part of a spherical surface, whose radius is equal to the distance

between the feet of the compasses, and consequently is the inter-section of

this sphere with the cylinder.
529. The equations to the two surfaces taken together are the equations

fro their intersection, and consequently are the equations to the curve of

double curvature.

By the separate elimination of the variables in the two equations, we
obtain the respective projections of the curve upon the co-ordinate planes.
Two of these are sufficient to define the curve of double curvature ; for we

may pass two cylinders through two projections of the curve, at right

angles to each other, and to the co ordinate planes, the intersection ofthese

cylinders is the required curve. This is analogous to the consideration of

a straight line, being the intersection of two planes.
We proceed to examine curves of double curvature arising from the

intersections of surfaces.

530. Let the curve arise from the intersection of a sphere and right

cylinder; the origin of co-ordinates being at the centre of the sphere, the

axis of the cylinder in the plane x z and parallel to the axis of z.

Let the distance between the centres of the sphere and cylinder = r,

then the equation to the sphere is X1 4-
jy -f z8 s= a8

,
and the equation

to the cylinder is (JP e)
8 + if = &*, (507.)
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eliminating yt z* as
-{- c2 62 2 c x (1),

eliminating ,r, zz = a8 62 c2 q: 2 c ^ 62 7/
2

(2).

Fiom (1) the projection of the curve on ,r 2 is a portion of a parabola B C
#2 _|.. C2 _ 8

whose vertex is C, where A C = . and A B =r ^az
^_ c 59

From (2) the projection on y z consists of two ovals, whose positions are

determined by the two extreme values of z,

A D ~
Jo?

-
(b
-

c)
8

A E = + ^/a
2

(6 + c)
2

.

As c increases, that is, as the cylinder A
moves further from A, A E decreases, and

the ovals approach nearer to each other, as '

in fig. (1) ;
when c = a 6, that is, when r\

the sphere but just encloses the cylinder ^
A E == 0, and the ovals meet, fig. (2). As c increases, we obtain fig. (3),
which gradually approaches fig. (4) ; and

lastly, when c = a vanishes

entirely.

Different values, as c, , &c., may be given to b, and we may then
2

trace the projections : they offer no difficulty, but we recommend their

investigation, as the complete examination of one example greatly facili-

tates the comprehension of all others.

531. Ex. 2. A right cone and a paraboloid of revolution have their

vertices coincident, the axis of the cone being perpendicular to the axis of

the paraboloid.

The equation to the cone is x9 + y
8= c

2
2*, (468) and that to the para-

boloid, y
2 + *2 = p x (469) ; hence the projection on x z is x* + p x =

P
(1 + ee) *2

, which is an hyperbola, whose axe? are p and -r
V c

8

(157).
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Again, ** + y* - <?
(

hence the projection on x
x
is

A (1 + e8) ^ = *p*- *;
an ellipse, whose vertex is A and axes

and -~ (103).

The equation to the projection on y z is (y
2 + **)

8

-f-p
2
y2 = e

s

p
2
*
8

;

this is the equation to a Lemniscata, and becomes the Lemniscata ot Ber-

nouiili, when e 1, that is, when the cone is right-angled (314).

532. To find the curve of intersection of two surfaces, we have elimi-

nated the variables separately, and thus obtained the equations to the

projections on the co-ordinate planes ; conversely, by combining these last

equations either by addition or multiplication, &c., so as to have an equa-
tion between the three variables, we may obtain the surface on which the

curve of double curvature may be described. This surface does not at all

define the curve of double curvature ;
since an infinite number of curves

may be traced on this individual surface, to all of which the general equa-

tion to the surface belongs.
The results of the above combination are often interesting. For ex-

ample : Let the curve be the intersection of a parabolic cylinder on x y,

with a circular cylinder on x z, the origin being the vertex of the parabola,

and the centre of the circle being in the axis of the parabola, which is also

the axis of x.

Let y
8 = 2 p x be the equation to the

parabola A P on x y,

(.r
- a)

2 + z9 r2 circle on xz,

Combining these equations by addition,

(x _ a)
_ 2 p x + y

2 + z* = r*,

or (x a p)
2

-f- y* + 8 = r
2 +

p
a + 2 ap.

Which is the equation to a sphere whose centre is at a distance A G= a +p,
measured from A along A X. Now, p is the subnormal C G to the point
P of the parabola, P C being the ordinate at C (242) ; hence all the points
of the curve of double curvature are on the surface of a sphere whose
centre is at the extremity of the subnormal of a point in the parabola,
the ordinate of which point passes through the centre of the given circle.

533. The intersections of surfaces are not always curves of double cur-

vature, but often they are plane curves. We proceed, then, to show how

plane curves may be detected, and their equations determined.

Whenever we obtain a straight line for a projection, the curve cannot be

one of double curvature.

Ex. Let the curve be the intersection of two parabolic cylinders, whose

equations are

x* = a z

by=x*.

Eliminating x, we have by = ax, hence the projection on y z is a straight

line ; and as no projection of a cun r e of doublo curvature can be a straight

line, it follows that the curve of intersection is a plane curve.

534. Aa;ain, If we can so combine the equations to the projections as to

produce the general equation to a plane, the curve, which is necessarily

traced on that plane, is itself a plane curve. For example: let the curve
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arise from the intersection of two parabolic cylinders, whose equations are

xz a z

b y = j?
2 + c x.

In the second equation, substituting a z for r2
, we obtain

b y = a z + c x;

which equation belonging to a plane, the curve is a plane curve.

535. There is another and more general method of detecting plane curves.

From the two equations to the surfaces eliminate one ot' the variables,

as z, for example, we obtain an equation F (x, y) = 0.

Now, if the curve be plane, it may arise from the intersection of either

of the surfaces with a plane whose equation is z = m x -f- n y -\- p ;

eliminate z between this equation to the plane and that to one of the sur-

faces, the result is/* (cT,t/)
=r 0, which must be identical with F {x, y) = ;

therefore, comparing F (x, y) = 0, with /(#, y} = 0, we may obtain

various equations to determine m, ft, and jo; which values of m, 71, and /?

must satisfy all the equations in which these quantities appear; if not, the

curve is one of double curvature.

For example ; take the intersection of a sphere and cylinder, art. 530.

The equation to the Sphere is x2
-f- y

2 + z* = 2
(1)

Cylinder (r
-

c)
2
-f y

2 = 62
(2)

Plane z = m x -f- n y + p (3)

Eliminating z between (1) and (3), we have/(,c, y) =
(7n

a
+l) a* + (n

2
4-l) y*+2 m n r y + 2 m p x + 2 npy + p*-a* = (4)

Comparing (2) and (4), we have m = 0, n = from the co-efficients of

x2 and y'
2

; but the condition of ra destroys the coefficient of a? in (4) ;

and thereby shows that (4) cannot be made identical with (2). The curve

is therefore a curve of double curvature.

But let the equation to the cylinder be .r
2

-f- y
z =r 68 , then m ==

and n = render (4) and (2) identical ; therefore the curve is a plane

curve, situated in a plane, whose equation is z J a? 69
;
this is clear,

also, from geometrical considerations.

536. To find the curve represented by the equations

x z y z
.

These equations, taken separately, belong to two right hyperbolic cy-
linders ;

one with the base in x z, and the other in y z. (209, Ex. 3.)

R S is the hyperbola on x z, its

centre being at A ; T U is the hyper-
bola on y z, its centre being at B.

a b b
Also, =

, or y = x.
x y a

Hence the projection of the intersec-

tion of the above cylinders on x y is a

straight line O Q, and therefore the

curve is a plane curve, situated in

the plane Z O Q, perpendicular to x y
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537. As we cannot have a very clear notion of the curve itself, merely from
the idea of the two hyperbolic cylinders, we shall find the equation to the

curve in the plane Z O Q ; that is, in its own plane.
Let P be any point in the curve

;
O M = #, M Q = y, P Q z.

Then, in order to find the relation between O Q (= u) and Q P (=. z),

we shall express O M and O N in terms ofO Q, and substitute in the given
equations.

The equation toOQis y =r x = x tan. (if
= tan. 0),

/. O M = O Q cos. 0, and O N = O Q sin. 0.

Hence the equation 1
= 1 becomes

X Z U COS.

and the equation --
j

-- =
z

becomes- -\
-- = 1.

u sin. z

Since b = a tan. 0, or b cos. 6 = a sin. 0, these two equations are the

game, and either of them belongs to the required curve ; hence the

curve is an hyperbola, whose equation referred to its centre is

=.-. (209)
cos. sin. 9

538. To describe a curve of double curvature by points

Let/<>, y) = 0, and< (x *) = 0,

be two of its projections.

Upon x y trace the curve A P Q R,
whose equation is j (<r, y) = 0.

Y,

For any value of x, as A M, we obtain a corresponding value M Pofy ;

from
(<r, z) = 0, we can also obtain a corresponding value of z. From P

draw P S perpendicular to x y, and equal to this value of z ; then S is a

point in the curve. By repeating this process we may obtain any number
of points S T U, &c., in the curve.

It is evident, that if any value given to x or y renders z imaginary, no

part of the curve can be constructed corresponding to such values of* or y.

Also, that if z be negative, P S must be drawn below the plane x y.

539. Ex. 1. Let the curve arise from the intersection of a parabolic

cylinder on x y, and a circular cylinder on y z, the axes perpendicular to

each other ;
and the vertex of the parabola together with the centre of the

circle at the origin of co-ordinates.
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Let y
2 = a x be the equation to the parabola D A D',

y
2
-f z* = circle E B,

.*. z2 + a x ~ a2
is a parabola on x %.

Let A B ~ a, A C = a, and let the ordinate C D r= a.

To trace the curve, we have the three equations on the co-ordinate planes,

* =

*=

y =
If j? r= 0, y = 0, and 2 = cc, .*. the curve passes through B ; as x in-

creases, y increases, and z diminishes ;

When x =
, y == a, and 2 = 0, therefore the curve decreases in altitude

from B down to meet the parabola in D. This gives the dotted branch BD.

If x is greater than a, z is imaginary ;
therefore the curve does not extend

beyond D.

But since z = it \/ a (a x) there is another ordinate corresponding
to every value of x between o and a

;
hence there is another branch, equal

and opposite to B D, but below the plane x y. This is represented by
D B'.

Again, since when y is negative, the values of z do not change, there is

another arc, B D' B', represented by the double dotted line, which is

exactly similar to B D B'.

Therefore, the curve is composed of four parts, B D, D B', B Dr

, and
D' B', equal to one another, and described upon the surface of the para-
bolic cylinder, whose base is D A D'. These branches form altogether a

figure something like that of an ellipse, of which the plane is bent to coin-

cide with the cylinder.

540. Ex. 2. Let the circle, whose equation is x* -f- y* = a2
,
be the

projection of the curve of double curvature on x y ;
and the curve, ofwhich

the equation is a2
i/
2 ^= a2

z* z/
8 *2

, be the projection on y zt
to trace

the cu-rve.

S 2
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I,

Let B C B' C' be the circle on * y whose equation is .r
2 + y* = a8

;
then

the equation on y 2 being a2
y

2 = a2 2

y
2
2
2
,
the equation on a: * is

= a4 - a2
a*.

z =

and y =
If or = 0, y = a, z infinity, therefore the vertical line C L through C

is an asymptote to the curve. Asx increases, y decreases, and z decreases,

therefore the curve approaches the plane of x y. Ifx = a, y = o, * = o,

therefore the curve passes through B. If x is greater than a, y and 2 are

each impossible, therefore no part of the curve is beyond B : for any value

of y there are two of 2, therefore for the values ofy in the quadrant A C B,
there are two equal and opposite branches, L B, B L'.

Similarly there are two other equal branches, K B, B K/, for the quadrant
B A C'; and as the same values of y and z recur for x negative, there are

four other branches equal and opposite to those already drawn, which

correspond to the semicircle C B' C', and which proceed from B'.

These two examples are taken from Clairaut's Treatise on Curves of

Double Curvature ;
a work containing numerous examples and many

excellent remarks on this subject.
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ERRATA.

Page 7, line 1, read Let x = \Ts = V 2 + 1. In the last figure let A B, B C, and

C D each be equal to the linear unit, then A D =

40 2, read . . y' = ,

*

Vl +
r* r*

40 3, for read.
y y'

40.... 17, for 24 read 25.

48 12, for y
3
ready

8
.

110.... 24, for e read c.

Ill ... .17, for tan. 6 . tan. = -, read tan. 6 .tan. /= -.
a a

1 12.... 20, for
V

read
V

.

o o

114. . . .18, for conjugate read semi-conjugate.

123. . . .30, for a/ + m S = P, read a/ + m = S P.

153, in the table, column 7, insert c.

190, line 5 from bottom, for 3 a, read 3 a2 .

209, line 10, read cos. Ix cos. l\x + cos. /y cos. l\ y.

2 17, line 13, for (2) read (1).

221, line 27, read cos. 6 = -

224, line 10, for 397 read 402.

247, line 3, . . (x - *0 + (y
-

yi)
2 = r

;

and if the axis coincide with A Z, x* + y* = r, * = 0;

249, line 1. for r c read *, and for c read c.



ERRATA IN THE FIGURES.

Art. 352. y= a

Art. 353 y = x . See the figure in the same page just above the Art. 353
; the

letter B should be at the point where the upper curve meets A Y.

Art. 355 y ~x

Art. 363. The involute of the circle
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