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PREFACE TO THE SECOND EDITION.

In this work will be found all the Propositions which

usually appear in treatises on Theoretical Statics. To the

different chapters Examples are appended, which have been

principally selected from the University and College Exami-

nation Papers ; these will furnish ample exercise in the ap-

plication of the principles of the subject.

Some of the Examples in the earlier chapters assume

results which are obtained at a later part of the book
; the

student who has no previous acquaintance with the subject

may therefore, on his first perusal of the book, omit the

more difficult Examples of the first six chapters.

In the first three chapters and in the ninth chapter I

have made considerable use of Mr Pratt's Treatise on Me-

chanical Philosophy, which was placed at my disposal by the

Publishers.

In the second edition the work has been thoroughly re-

vised and has received large additions
;
these additions have

been made with the view of rendering the subject more

readily intelligible by explaining and illustrating those parts

which were found by the experience of teachers to be difficult

for beginners.

I. TODHUNTER.
St John's College,

Aug. 28, 1858.
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STATICS.

CHAPTER I.

INTRODUCTION.

1. A body is a portion of matter limited in every direction,
and is consequently of a determinate form and volume. A
material particle is a body indefinitely small in every direc-

tion
;
we shall speak of it for shortness as a particle.

2. A body is in motion when the body or its parts occupy
successively different positions in space. But we cannot

judge of the state of rest or motion of a body without com-

paring it with other bodies, and for this reason all motions

which come under our observation are necessarily relative

motions.

3. Force is that which produces or tends to produce motion
in a body.

4. When several forces act simultaneously on a body, it

may happen that they neutralise each other; when a body
remains at rest though acted on by forces, it is said to be in

equilibrium ; or, in other words, the forces are said to main-
tain equilibrium.

5. Mechanics is the science which treats of the laws of

rest and motion of bodies. Statics treats of the laws of the

equilibrium of bodies, and Dynamics of the laws of motion of

bodies.

6. There are three things to consider in a force acting

upon a particle : the position of the particle : the direction

L^ T. S. 1



2 INTRODUCTION.

of the force, that is, the direction in which it tends to make
the particle start; and the intensity of the force. As the

dimensions of a particle are indefinitely small its position

may be determined in the same manner as that of a point
in geometry, and the direction of the force may be deter-

mined in the same manner as that of a line in geometry.
We proceed then to consider the magnitude or intensity of

a force.

7. Forces can be measured by taking some force as the

unit, and expressing by numbers the ratios which other forces

bear to this unit. Two forces are equal when being applied
in opposite directions to a particle they maintain equilibrium.
If we take two equal forces and apply them to a particle in the

same direction we obtain a force double of either
;

if we unite

three equal forces we obtain a triple force
;
and so on.

When we say then that a force applied to a particle is a

certain multiple of another force, we mean that the first may
be supposed to be composed of a certain number of forces

equal to the second and all acting in the same direction. In

this way forces become measurable quantities, which can be

expressed by numbers, like all other quantities, by referring
them to a unit of their own kind. They may also be repre-
sented by straight lines proportional in length to these num-

bers, drawn from the point at which they act and in the

directions in which they act.

8. Experience teaches us that if a body be let free from

the hand, it will fall downwards in a certain direction
; how-

ever frequently the experiment be made, the result is the

same, the body strikes the same spot on the ground in each

trial, provided the place from which it is dropped remain the

same. The cause of this undeviating effect is assumed to be
an affinity which all bodies have for the earth, and is termed
the force of attraction. If the body be prevented from falling

by the interposition of a table or of the hand, the body exerts

a pressure on the table or hand. Weight is the name given to

the pressure which the attraction of the earth causes a body to

exert on another with which it is in contact.
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9. A solid body is conceived to be an aggregation of

material particles which are held together by their mutual
affinities. This appears to be a safe hypothesis, since experi-
ments shew that any body is divisible into successively smaller

and smaller portions without limit, if sufficient force be exerted

to overcome the mutual action of the parts of the body.

10. A rigid body is one in which the particles retain in-

variable positions with respect to each other. No body in

nature is perfectly rigid ; every body yields more or less to

the forces which act on it. If, then, in any case this com-

pressibility is of a sensible magnitude, we shall suppose that

the body has assumed its figure of equilibrium, and then con-

sider the points of application of the forces as a system of in-

variable form. By body, hereafter, we mean rigid body.

11. When a force acts upon a body its effect will be un-

changed at whatever point of its direction we suppose it

applied, provided this point be either one of the points of the

body or be invariably connected with it. This principle is

known by the name of the transmissibility of a force to any
point in its line of action ; it is assumed as an axiom or as an

experimental fact. We may shew the amount of assumption
involved in the axiom, by the following process.

Suppose a body to be kept in equilibrium by a

of forces, one of which is the force P applied at

the point A. Take any point B which lies on
the direction of this force, and suppose B so

connected with A that the distance AB is un-

changeable. Then, if at B we introduce two

forces, P and P\ equal in magnitude and acting
in opposite directions along the line AB, it seems

evident that no change is made in the effect of

the force P at A. Let us now assume that P
at A and P at B will neutralise each other, and

may therefore be removed without disturbing the

equilibrium of the body ; then there remains the

force P at B producing the same effect as when
it acted at A.

12



4 INTRODUCTION.

12. We shall have occasion hereafter to assume what may
be called the converse of the principle of the transmissibility of

force, namely, that if a force can be transferred from its point
of application to a second point without altering its effect,

then the second point must be in the direction of the force.

See Art. 17.

13. When we find it useful to change the point of applica-
tion of a force, we shall for shortness not always state that the

new point is invariably connected with the old point, but this

may be always understood.
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CHAPTER II.

THE COMPOSITION AND EQUILIBRIUM OF FORCES ACTING

UPON A PARTICLE.

14. When a particle is acted on by forces which do not

maintain equilibrium it will begin to move in some deter-

minate direction. It is clear then that a single force may
be found of such a magnitude, that if it acted in the direction

opposite to that in which the motion would take place this

force would prevent the motion, and consequently would be
in equilibrium with the other forces which act upon the par-
ticle. If then we were to remove the original forces and

replace them by a single force, equal in magnitude to that

described above, but acting in the opposite direction, the par-
ticle would still remain at rest. This force, which is equiva-
lent in its effect to the combined effect of the original forces, is

called their resultant, and the original forces are called the

components of the resultant.

It will be necessary then to begin by deducing rules for

the composition of forces; that is, for finding their resultant

force. After we have determined these, it will be easy to

deduce the analytical relations which forces must satisfy when
in equilibrium.

15. To find the resultant of a given number offorces acting

upon a particle in the same straight line; and to find the con-

dition which they must satisfy that they may be in equilibrium.

When two or more forces act on a particle in the same
direction it is evident that the resultant force is equal to their

sum and acts in the same direction.
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When two forces act in different directions, but in the same

straight line, on a particle, it is equally clear that their re-

sultant is equal to their difference and acts in the direction of

the greater component.

When several forces act in different directions, but in the

same straight line, on a particle, the resultant of the forces

acting in one direction is equal to the sum of these forces,

and acts in the same direction
;
and so of the forces acting in

the opposite direction. The resultant, therefore, of all the

forces is equal to the difference of these sums, and acts in the

direction of the greater.

If the forces acting in one direction are reckoned positive,
and those in the opposite direction negative, then their re-

sultant is equal to their algebraical sum ;
its sign determines

the direction in which it acts.

In order that the forces may be in equilibrium, their

resultant, and therefore their algebraical sum, must equal
zero.

16. There is another case in which we can easily deter-

mine the magnitude and direction of the resultant.

Let AB, AG, AD be the directions of three equal forces

acting on the particle A; suppose these forces all in the

same plane and the three angles BAG, GAD, DAB each

equal to 120
;
the particle will remain at rest, for there is

no reason why it should move in one direction rather than

another. Each of the forces is therefore equal and opposite
to the resultant of the other two.

But if we take on the directions

of two of them, AB, A G, two equal
lines AG, AH to represent the

forces, and complete the parallelo-

gram GAHE, the diagonal AE
will lie in the same straight line

with AD. Also the triangle AGE
will be equilateral, and therefore

AE=AG. Hence, the diagonal
AE of the parallelogram con-

structed on AG, AH represents
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the resultant of the two forces which A G and AE respec-

tively represent.

This proposition is a particular case of one to which we
now proceed.

1 7. To find the resultant of two forces acting upon a par-
ticle not in the same straight line.

I. To find the direction of the resultant.

When the forces are equal it is clear that the direction

of the resultant will bisect the angle between the directions

of the forces; or, if we represent the forces in magnitude
and direction by two lines drawn from the point where they
act, and describe a parallelogram on these lines, that diagonal
of the parallelogram which passes through the point will be
the direction of the resultant.

Let us assume that this is true for forces p and m inclined

at any angle, and also for forces p and n inclined at the same

angle ;
we can prove that it must then be true for two forces

p and m + n also inclined at the same angle.

Let A be the point on which the forces p and m act
;

AB, AG their directions and pro-

portional to them in magnitude :

complete the parallelogram BG, and
draw the diagonal AD\ then, by
hypothesis, the resultant ofp and m
acts along AD.

Again, take CE in the same ratio

to AG that n bears to m. By Art. 11 r
we may suppose the force n which acts in the direction AE
to be applied at A or C; and therefore the forces^?, m, and n,
in the lines AB, A G, and CE, are the same as p and m + n
in the lines AB and AE.

Now replace p and m by their resultant and transfer its

point of application from A to D; then resolve this force

at D into two parallel to AB and AG respectively: these

resolved parts must evidently be p and m, the former acting
in the direction DF, and the latter in the direction DG.
Then transfer p to G and m to G.
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But, by the hypothesis, p and n acting at C have a re-

sultant in the direction CG; therefore p and n may be

replaced by their resultant and its point of application trans-

ferred to G. And m has also been transferred to G. Hence

by this process we have removed the forces which acted

at A to the point G without altering their effect. We may
infer then (see Art. 12) that G is a point in the line of action

of the resultant of p and m -f n at A
;
that is, the resultant

of p and m + n acts in the direction of the diagonal A G,

provided the hypothesis is correct. But the hypothesis is

correct for equal forces, as p, p, and therefore it is true for

forces p, 2p; consequently for p, 3p, and so on; hence it is

true for p, r.p.

Hence it is true for p, r.p, and p, r.p, and consequently
for 2p, r.p, and so on; and it is finally true for s.p and r.p,
where r and s are positive integers.

We have still to shew that the Proposition is true for

incommensurable forces.

This may be inferred from the fact that when two mag-
nitudes are incommensurable, so that the ratio of one to the

other cannot be expressed exactly by a fraction, we can still

find a fraction which differs from the true ratio by a fraction

less than any assigned fraction. Or it may be established

indirectly thus.

Let AB, AG represent two such forces. Complete the

parallelogram BC. Then if their

resultant do not act along AD sup-

pose it to act along AE; draw EF
parallel to BD. Divide A G into a

number of equal portions, each less

than BE\ mark off from CD por-
tions equal to these, and let K be

the last division
;

this evidently
falls between D and E; draw GK parallel to AG. Then
two forces represented by AG, AG have a resultant in the

direction AK, because they are commensurable
;
therefore the

forces AC and AB are equivalent to AK together with a

force equal to GB applied at A along AB. And we may
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assume as obvious that the resultant of these forces must lie

between AK and AB
;
but by supposition the resultant is AE

which is not between AK and AB. This is absurd.

In the same manner we may shew that every direction

besides AD leads to an absurdity, and therefore the resultant

must act along AD, whether the forces be commensurable or

incommensurable.

II. To find the magnitude of the resultant.

Let AB, AG be the directions of the given forces, AD
that of their resultant

;
take AE opposite to

AD, and of such a length as to represent the

magnitude of the resultant. Then the forces

represented by AB, AC, AE, balance each

other. Complete the parallelogram BE; then

the diagonal AE is the direction of the re-

sultant of AE and AB.
Hence AG is in the same straight line

with AF; hence ED is a parallelogram ;
and

therefore AE = EB = AD. Hence the re-

sultant is represented in magnitude as well

as in direction by the diagonal of the paral-

lelogram. This proposition is called \hzparallelogram offorces.

18. Hence if P and Q represent two component forces

acting at an angle a on a particle, the resultant R is given

by the equation
i^ = P2 +Q2 + 2P(3cosa.

19. When three forces acting on a particle are in equi-
librium they are respectively in the same proportion as the

sines of the angles included by the directions of the other

two.

For if we refer to the third figure of Art. 17 we have

P : Q : B :: AB : AG (or BD) : AD
:: sinADB : sin BAD : smABD
:: sin GAE : sinBAE : sin BA G.

20. Any force acting on a particle may be replaced by
two others, if the sides of a triangle drawn parallel to the
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directions of the forces have the same relative proportion
that the forces have. For by the parallelogram of forces

the resultant of the latter two forces is equal to the given
force.

This is called the resolution of a force.

21. Since the resultant of two forces acting on a particle
is represented in magnitude and direction by the diagonal
of the parallelogram constructed upon the lines which re-

present these forces in magnitude and direction, it follows

that, in order to obtain the resultant of the forces Pv P2 ,
P

3 ,...

which act on a particle A, and are represented by the lines

AP
t ,
AP

2 ,
AP

3 ,
... we may proceed as follows.

Find the resultant of P
x
and P

2 , compound this resultant

with P
3 ,

this new resultant with P
4 ,

and so on. It follows

from this, that if we construct a polygon APJBCD, of which
the sides are respectively equal and parallel to the lines AP

X ,

Pt

-^

..

*-s

AP
2 , &c, and join A with the last vertex P, the line AD

will represent in magnitude and direction the resultant of all

the forces.

We may conclude that the necessary and sufficient con-

dition for the equilibrium of a number of forces acting on
a particle is, that the point D should coincide with A ;

that is, that the figure APX
B ... D should be a complete
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polygon. The forces in the figure are not necessarily all in

one plane.

The direction and magnitude of the resultant may also be

determined analytically, as in the following Articles.

22. Any number offorces act on a particle in one plane;
required to find the magnitude and direction of their resultant.

Let P
x ,
P

2 ,
P3) ... be the forces, and a

x ,
a
2 ,

a
3 ,... the angles

their directions make with a fixed line drawn through the

proposed point. Take this fixed line for the axis of x, and
one perpendicular to it for that of y. Then, by Art. 20, Px

may be resolved into P
x
cos a

x
and P

x
sin a

x acting along the

axes of x and y respectively. The other forces may be simi-

larly
resolved. By algebraical addition of the forces which

act in the same line, we have

P
x
cos a

x + P2
cos a

2 + P3
cos a

3 + ... along the axis of x,

P
x
sin a

x + P2
sin a

2 + P3
sin a

3 + . . . along the axis of y.

We shall express the former by 2Pcos a and the latter by
2P sin a, where the symbol 2 denotes that we take the sum
of all the quantities of which the quantity before which it is

placed is the type.

If we put PjCOS ax
X

x
and P

x
sin a

x
= Y

x ,
and use a similar

notation for the other components, we have two forces replacing
the whole system, namely 2X along the axis of x and 2Y
along that of y. If R denote the resultant of these forces and
a the angle at which it is inclined to the axis of x, we have,

by Art 17,

P2 = (2X)
2

+(2F)
2

,

tY
tan a &^ .

IX . XY
Also cos a = -Q- ;

sina = -^- .
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23. To find the conditions of equilibrium when any number

offorces act upon a particle in one plane.

When the forces are in equilibrium we must have B =
;

therefore

(2X)
2

+(2F)
2 = 0;

therefore SX= ; 2 Y= ;

and these are the conditions among the forces that they may
be in equilibrium.

24. Three forces act upon a particle in directions making
right angles with each other ; required to find the magnitude
and direction of their resultant.

Let AB, A C, AD represent the three forces X, Y, Z in

magnitude and direction. Complete the parallelogram BC,
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therefore Ri =X2 +Y2 + Z2
.

Also cos a
AB X AC Y
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, XX . tY tZ
and cos a = -=-

,
cos o ^ ,

cos c = -~- .a M M

27. Jb ^ra? tfAe conditions of equilibrium when any number

offorces act upon a material particle.

When the forces are in equilibrium, we must have R
;

therefore

(2X)
2 + (2r)

2

+(2^)
2

=o,

therefore SX=0; tY=0; tZ=0;

and these are the conditions among the forces that they may
be in equilibrium.

28. The expression for the magnitude of the resultant in

Art. 26 may be rendered independent of the position of the

axes. For, from Art. 26,

^2

=(P1
cosa

1
+ P2

cosa
2 +...)

2 + (P1
cos

/
e

i
+ P2 cos/32 + ...)'

2

+ (P1
cos 7l + P2 cos72 +...)

2
.

When the expressions on the right-hand side are developed,
we shall find that the coefficient of P

x
is

cos
2
a
x + cos

2

/3X + cos
2

yx ,

and that the coefficient of P
X
P

2
is

2 (cos a
x
cos a

2 + cos /3X cos yS2 + cos 7l cos 72).

Now we know from analytical geometry of three dimensions

that

cos
2
a

x + cos
2

/3X + cos
2

yx
= 1

;

and that

cos a
x
cos ol^+ cos f3x

cos p% + cos 7X
cos y2

is equal to the cosine of the angle between the directions of

the forces P
x
and P

2 ,
which we may denote by cos (Px ,

P
2).



FORCES ON A PARTICLE. 15

Similar values will be found for the coefficients of the other

terms
;
and the result may be expressed thus

R2 = $P+ 22PP' cos (P, P)
where by P, P we mean any two of the forces.

29. The equation R cos a = SP cos a, in Art. 26, shews
that the resolved part of the resultant in any direction is equal
to the sum of the resolved parts of the components in the same
direction ; for since the axes were taken arbitrarily, that of x

might have been made to coincide with any assigned direc-

tion. Or we may establish the proposition thus. Suppose
a line drawn through the point of application of the forces,

and inclined to the axes at angles a', 0', 7'. Take the three

equations of Art. 26,

Pcosa = P
1
cosoc

1 +P2
cosa

2 +
Pcos =P

1
cos

1 +P2
cos

2 +
R cos c = 2* cos 7X +P2

cos%+

Multiply the first by cos a, the second by cos /3', and the third

by cos 7', and add. Then, if 6
X ,
#
2 ,

... denote the angles which
P

x ,
P

2 ,...
make with the arbitrarily drawn line, and 6 the

angle which the resultant R makes with it, we have, by the

formula quoted in Art. 28 for the cosine of the angle between
two lines

R cos = P
x
cos

l + P2
cos

2 +

30. From Art. 20 it is obvious that a given force may
be resolved into two others in an infinite number of ways.
When we speak of the resolved part of a force in a given
direction, as in the preceding article, we shall always suppose,
unless the contrary is expressed, that the given force is re-

solved into two forces, one in the given direction and the

other in a direction perpendicular to the given direction. The
former component we shall call the resolved force in the given
direction.

When forces act on a particle it will be in equilibrium,

provided the sums of the forces resolved along any three

directions not lying in one plane are zero. For if the forces

do not balance, they must have a single resultant; and as

a line cannot be at right angles to three lines which meet in
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a point and are not in the same plane, the resolved part of the

resultant, and therefore the sum of the resolved parts of the

given forces, along these three lines, could not vanish, which
is contrary to the hypothesis.

31. In Art. 26 we resolved each force of a system into

three others along three rectangular axes. In the same way
we may, if we please, resolve each force along three lines

forming a system of oblique axes. For whether the figure in

Art. 24 represent an oblique or rectangular parallelopiped, the

force AF may be resolved into AD and AE, and the latter

again resolved into AB and A C. Hence the resultant of a

system of forces may be represented by the diagonal of an

oblique parallelopiped, and for equilibrium it will be necessary
that this diagonal should vanish, and therefore that the edges
of the parallelopiped should vanish.

The following three articles are particular cases of the

equilibrium of a particle.

32. To determine the condition of equilibrium of a particle
acted on by any forces and constrained to remain on a given
smooth curve.

By a smooth curve we understand a curve that can only
exert force on the particle in a direction normal to the curve

at the point of contact.

Let X, Y, Z denote the forces acting on the particle in

directions parallel to three rectangular axes, exclusive of the

action of the curve. Let x, y, z denote the co-ordinates of

the particle, and s the length of the arc measured from some
fixed point up to the point (x, y, z). Then by analytical

geometry of three dimensions the cosines of the angles which
the tangent to the curve at the point (x, y, z) makes with the

axes are -T- ,
-j- , -y- , respectively. The forces acting on

the particle being resolved along the tangent to the curve,

their sum is

X + Y^ + Z



PARTICLE ON A SURFACE. 17

Unless this vanishes, there will be nothing to prevent the

particle from moving; for equilibrium then we must have

as as as

Conversely if this relation holds the particle will remain at

rest, for there is no force to make it move along the curve,
which is the only motion of which it is capable.

We have supposed the particle to be placed inside a tube

which has the form of the curve. If, however, the particle be

merely placed in contact with a curve, it will be further neces-

sary for equilibrium that the resultant of the forces should

press the particle against the curve and not move it frmn
the curve.

33. To determine the conditions of equilibrium of a particle
acted on by any forces and constrained to remain on a given
smooth surface.

A smooth surface is one which can exert no force on the

particle except in a direction normal to the surface.

Let X, Y, Z denote the forces acting on the particle in

directions parallel to three rectangular axes, exclusive of. the

action of the surface. The resultant of X, Y, Z must act in

a direction normal to the surface at the point where the

particle is situated; for if it did not, we might decompose
it into two forces, one in the normal and one perpendicular
to the normal, of which the latter would set the particle in

motion. The cosines of the angles which the resultant of

X, Y, Z makes with the axes are proportional to X, Y, Z
respectively ;

and if F (x, y, z)
= be the equation to the

surface, the cosines of the angles which the normal to the

surface at the point (x, y, z) makes with the axes, are by
sJff

analytical geometry of three dimensions proportional to -r-
,

rlTP rlW

-g-
and -7- respectively. Hence for equilibrium we must

have

dF dF~dF'
dx dy dz

T. s. 2
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If these relations are satisfied, the resultant force is directed

along the normal
; hence, if we suppose the particle incapable

of leaving the surface, the above conditions will be sufficient

to ensure its equilibrium ;
but if it be merely placed on a

surface, it will be further necessary that X, Y, Z should act

so that their resultant may press the particle against the

surface. For example, if the particle be placed on the outside

of a sphere, the resultant of X, Y, and Z must act towards the

centre of the sphere.

34. Suppose it required to determine the action which the

curve or the surface exerts on the particle in the preceding
cases. Denote it by B, and let a, /3, 7 be the angles its direc-

tion makes with the axes. Since B and the forces X, Y, Z
maintain the particle in equilibrium, we have by Art. 27,

i2cosa + X=0, jScos/3+F=0, Rco$y + Z=0 (1).

Also when the particle rests on a curve surface whose equation
is F (x, y, z)

= 0, cos a, cos /3, and cos 7 are known in terms
of the co-ordinates of the particle, since they are proportional

to -7- , -7- , -j- respectively. Hence the equations (1) and

that to the surface will determine x, y, z, and B, if X, Y, Z
be given.

If the particle rest on a curve line, then, since the direction

of B is perpendicular to that of the tangent to the curve, we
have the following equation from analytical geometry of three

dimensions

dx n dv dz , .

cos a -7- + cos j3
-j?-

+ cos 7 -7-
=

(2).

Since -7- , and -7- can be expressed, theoretically at

least, in terms of x, y, and z, the equation (2) gives a relation

between cos a, cos
, and cos 7, and x, y, and z. Thus (1) and

(2) together with the two equations to the curve and the

equation

cos
2
a + cos

2

/3 + cos
2

7 = 1,
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are sufficient to determine the seven quantities B, x, y, z,

cos a, cos /3, and cos 7.

We may observe that, from (1)

B? =X2 +Y2+ Z*.

35. Duchayla's proof of the parallelogram of forces which
we have given in Art. 17, rests on the principle of the trans-

missibility offorce; see Art. 11. We shall give another proof
which does not involve this principle ;

this proof is Poisson's

with a slight modification. We assume that if two equal
forces act on a particle, the direction of the resultant bisects

the angle between the directions of the components. Also, if

P denote the magnitude of each of two equal forces, 2x the

angle between their directions, and R the magnitude of the

resultant
;
then R must be some function of P and x

; suppose

R=f{P,x).

In this equation, if we change our unit of force, the numerical

values of P and R will change ;
but as the above equation

must be true, whatever unit of force we adopt, it follows that the

function f(P, x) must be of the form Pep (x). Hence we have

R =
Pcj>(x).

Let M represent the position of the particle ; MA, MB
the directions of the equal forces

acting on it; MD the direction of

the resultant. Draw the four lines

MG, MG, ME, ME, making the an-

gles CMA, GMA, HMB, EMB all

equal, and let z denote the magnitude
of each angle. Suppose the force P
acting along MA to be resolved into

two equal forces acting along MC
and MG respectively; denote each

of these components by Q; then

p= m*)-

Resolve P acting along MB in like manner into two

forces each equal to Q, acting along ME and MH respec-22
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tively. Thus the two forces P are replaced by the four

forces Q ;
and consequently the resultant of these four forces

must coincide in magnitude and direction with the resultant B
of the two forces P.

Let Q denote the resultant of the two forces Q, acting alongMG and MH\ since GMD = HMD = x - z, we have

Q'=Q^{x-z),

and MD is the direction of Q'.

Similarly, the resultant Q" of the other forces Q will act

along MD ;
and since CMD = EMD = x + z, we have

Q"=Q<i>{x + z).

Since Q and Q" both act along the line MD, their resultant,

which is also the resultant of the four forces Q, must be equal
to their sum

;
hence

R=Q'+Q".

But we have E =
P(p (x)

=
Q<f> (z) <j> (x).

Hence <j>(x) <j>{z) =<f>(x + z) +(j>(x z) (1).

This equation admits of more than one solution ;
for exam-

ple, if (f>(x)
= 2 cos ex, or if

<j> (x)
= e

cx + e~
cx

,
where c is any

constant, the equation is satisfied
;
we shall however shew that

the only solution admissible in the present question is the

following

$ (a?)
= 2 cos x (2).

We may observe that we need not consider any value of x
IT

greater than -
,
for the directions of two forces acting at a

point will always include an angle less than ir
;
we may then

assume it as obvious that
<j> (x) must be a positive quantity.

We shall first shew that if
(j> (x)

= 2 cos x when x has any

value a, then <> {x) must = 2 cos x when x has the value -
. In



PARALLELOGRAM OF FORCES. 21

(1) put x and z each equal to -, so that <j>(x + z) becomes

equal to 2 cos a
;
thus

*)*) = <M)+ 2cosa (3).

But the resultant of two equal forces acting in the same

straight line is equal to twice either of the component forces
;

thus 0(0)
= 2

;
therefore by (3)

Hence
(-]

= 2 cos -
; but by supposition

- is less than

-, and
</>(-)

must be a positive quantity; thus

*(8-
2 *f

Similarly if
</> (a?)

= 2 cos x when x = -
,
then <j>(x) 2 cos x

when x -
;
and so on. Thus we conclude that if

<f>(x)
= 2 cos a?

when x = a, then
<f>{x)

= 2 cos a? when a? = -^ ,
where w is any

positive integer.

We shall next shew that if
<j> (x)

= 2 cos a; when x = ft, and
when a; = 7, and when x = ft y, then (f>(x)

=2 cos a? when
x = ft + y. From (1)

*(0 + 7)=*O8)*(7)-*(0-7)
a? 4 cos /3 cos 7 2 cos (/3 7)

= 2cos(/3 + 7).

Thus if (2) holds when x= ft, it will hold when x = 2/3 ;
this

we obtain by supposing 7 = ft. Then if (2) holds when x ft

and when x = 2& it also holds when x = 3/3 ;
and so on ; that

is, if (2) holds when x = ft it will hold when x = mft. Thus
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we conclude that if (2) holds when x = a it will hold when

x = -
,
where m and n are any integers.A

But since the numbers m and w may be as great as we

please, we can take them such that the expression ^ may

differ as little as we please from any assigned value of a?.

We may therefore consider (2) as completely demonstrated

if it holds for any value of x different from zero. But by
Art. 16, it does hold when x=^ir, for then

</> (x) =1 =2 cos J7r;

hence it holds always. Hence

B=2P cos x.

If then the forces P be represented by lines drawn from

their point of application, the resultant R will be represented

by that diagonal of the parallelogram described on these lines

which passes through the point of application.

Next, let two unequal forces P and Q act on the particle M
along the lines MA and MB; re- S m

.9

present their intensities by the lines / >^/\MG and MH taken on their direc- /^^ / \ /

tions, and complete the parallelo- 3^\- i -^j
1

gram MGKH. <f \ s' \
First suppose AMB a right an- \l^

gle. Draw the two diagonals MK /
IC

and GHj which meet in L
; through G and H draw GN and

HO parallel to ML, meeting in N and the parallel to GH
drawn through M. Then

GL =LH=LM.
Hence NL and OL are equilateral parallelograms, and there-

fore, by what has been already proved, the force MG may be

regarded as the resultant of MN and ML, and the force MH
as the resultant of MO and ML. Hence we may substitute
for MG and Jfffthe forces MN, MO, and the two forces ML

;MN and MO, since they are equal and opposite, destroy each

other, and we have remaining the two forces ML, which
together give a force represented in magnitude and direction

byifiT.
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Secondly, suppose the angle AMB
not a right angle. Through G and H
draw GE and HF perpendicular to the

diagonal MK, and GN and HO parallel
to this line. Through M draw NMO
perpendicular to MK. Then we have
GE= HF. As we have already shewn,
the force MG ma}7- be replaced by MN
and ME, and the force MH by MO and
MF. Since MN and MO are equal and

opposite, they will destroyeach other, and
MF and ME remain

;
since MF = KE,

we have MK as the resultant in mag-
nitude and direction ofMG and MH.
Hence the parallelogram offorces is completely proved.

36. A proof of the parallelogram of forces has been

given by Laplace {Mecanique Celeste, Liv. I. Chap. 1). In this

proof the component forces are at first supposed to be at right

angles ;
the magnitude of their resultant is then determined

and afterwards its direction. The first part of the proof is so

simple, that it may be conveniently introduced here; it is

substantially as follows. Let x and y denote two forces which
are inclined at a right angle, and let z denote their resultant

;

we propose to find the value of z. It is obvious that if the

components instead of being x and y were 2x and 2y respec-

tively, the resultant would be 2z and would have the same
direction as before

;
so if the components were 3a? and Sy

respectively, the resultant would be 3z and would have the

same direction as before
;
and so on. We may therefore

assume conversely, that if the inclination of the resultant to

each component remains unchanged, the ratio of each com-

ponent to the resultant will also remain unchanged. Now
consider the force x as the resultant of two forces x and x", of

which x is in the direction of z, and x" is perpendicular to

that direction. Then by the principle just assumed, we have

_2.

so that

X Z
* X *

,
x2

, xy
x

,
and x =
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v
2

Similarly y may be resolved into along the direction of z

and 2
perpendicular to that direction. Thus the forces

x and y are equivalent to four forces, two in the direction of z

and the other two perpendicular to that direction ;
the latter

two are equal in magnitude and opposite in direction, so that

they counteract each other
;
hence the resultant of the former

two must be equal to z. Thus

therefore z
2 = x2 + y

2
.

EXAMPLES.

1. Two forces P and Q have a resultant R which makes
an angle a with P; if Pbe increased by R while Q remains

unchanged, shew that the new resultant makes an angle

| with P.

2. Two forces in the ratio of 2 to V(3) 1, are inclined to

each other at an angle of 60; what must be the direction and

magnitude of a third force which produces equilibrium ?

Result. The required force must be to the first of the given
forces as \/6 to 2

;
and its direction produced makes an angle

of 15 with that force.

3. The resultant of two forces Pand Q is equal to Q\/(3),
and makes an angle of 30 with P; find Pin terms of Q.

Result. Either P Q or P=2Q; in the former case the

angle between P and Q is 60, in the latter 120.

4. If P, E, F be the middle points of the sides of the

triangle ABC and any other point, shew that the system
of forces represented by OD, OE, OF is equivalent to that

represented by OA, OB, 00.

\
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5. The resultant of two forces is 10 lbs., one of them is

equal to 8 lbs., and the direction of the other is inclined to

the resultant at an angle of 36. Find the angle between the

two forces.

Result. Sin"
1 ~

(10
-

2*J5)K
lb

6. The resultant of two forces P, Q, acting at an angle 0,

is equal to (2w + 1) *J(P
2 + Q*) ;

when they act at an angle

\ir
-

0, it is equal to (2m
-

1) *J(P
2 + Q

2

) ;
shew that

n m 1
tan 6 = .m + 1

7. Two forces F and F' acting in the diagonals of a

parallelogram keep it at rest in such a position that one of its

edges is horizontal, shew that

F sec a = F' sec a' = W cosec (a + a),

where W is the weight of the parallelogram, a and a! the

angles between its diagonals and the horizontal side.

8. If a particle be placed on a sphere, and be acted on ^

by three forces represented in magnitude and direction by
three chords mutually at right angles drawn through the

particle, it will remain at rest.

9. Three forces P, Q, B acting upon a point and keeping ^

it at rest are represented by lines drawn from that point.
If P be given in magnitude and direction, and Q in magnitude

only, find the locus of the extremity of the line which repre-
sents the third force R.

Result. A sphere.

10. A circle whose plane is vertical has a centre of con- /

stant repulsive force equal to gravity at one extremity of the

horizontal diameter; find the position of equilibrium of a

particle within the circle.

Result. The line joining the particle with the centre of the

circle makes an angle of 60 with the horizon.
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11. A particle is placed on a smooth square table whose
side is a at distances c

1?
c
2 ,

c
3 ,

c
4
from the corners, and to it are

attached strings passing over smooth pulleys at the corners

and supporting weights P19 P2 ,
P

3 ,
P

4 ;
shew that if there is

equilibrium,

\Ci c
2

c
3 cj a \c2 cj \c3 cj

Shew also that

\cx
c
2

c
3

c
4 / a \c3 cj

12. Two small rings slide on the arc of a smooth vertical

circle
;
a string passes .through both rings, and has three equal

weights attached to it, one at each end and one between the

rings ;
find the position of the rings when they are in equi-

librium. The rings are supposed without weight.

Result. Each of the rings must be 30 distant from the

highest point of the circle.

13. The extremities of a string without weight are fastened

to two equal heavy rings which slide on smooth fixed rods in

the same vertical plane and equally inclined to the vertical
;

and to the middle point of the string a weight is fastened

equal to twice the weight of each ring ;
find the position of

equilibrium and the tension of the string.

If the point to which the weight is fastened be not the

middle point of the string, shew that in the position of equi-
librium the tensions of its two portions will be equal.

14. A light cord with one end attached to a fixed point

passes over a pulley in the same horizontal line with the fixed

point and supports a weight hanging freely at its other end.

A heavy ring being fastened to the cord in different places
between the fixed point and the pulley, it is required to find

the locus of i^ positions of equilibrium. If the weight of the

ring be small compared with the other weight, the locus will

be approximately a parabola.
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15. If two forces acting along chords of a circle are in-

versely proportional to the length of the chords, their resultant

will pass through one or other of the points of intersection of

lines drawn through the extremities of the chords.

16. A particle rests on an ellipse acted on by forces Aaf,

fiy
n

, parallel to the axes of x and y respectively; find its

position of equilibrium. Explain the case in which n = 1.

17. A particle is placed on the outer surface of a smooth
fixed sphere and is acted on by a fixed centre of force lying

vertically above the centre of the sphere, at a distance c from it

and attracting directly as the distance. Shew that the particle
will rest on any part of the sphere if the weight of the

particle equals the attraction on it by the fixed centre of force

when at a distance c from it.

18. A particle is placed on the surface of an ellipsoid in

the centre of which is resident an attractive force, determine

the direction in which the particle will begin to move.

xs
y
3

z
3

19. Find the point on the surface +T3 + -= 1, where

a particle attracted to the origin by a force varying as the

distance will rest in equilibrium.
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CHAPTER III.

RESULTANT OF TWO PARALLEL FORCES. COUPLES.

37. To find the magnitude and direction of the resultant

of two parallelforces acting in the same plane on a rigid body.

Let P and Q be the forces
;
A and B their points of ap-

plication: let P and Q act in the same direction, making
angles a with AB. The effect of the forces will not be
altered if we apply two forces equal in magnitude and acting
in opposite directions along the line AB. Let 8 denote each
of these forces, and suppose one to act at A and the other

at B.

Then P and 8 acting at A are equivalent to some force P'

acting in some direction AF inclined to AP (Art. 17) ;
and

Q and 8 acting at B are equivalent to some force Q' acting in

>some direction BQ inclined to BQ.
Produce PA, Q'B to cut each other in C, and draw CD

parallel to AP, meeting AB in D
; suppose C rigidly con-

nected with AB.

Transfer P'-and Q' to C (Art. 11), and resolve them along
CD and a line parallel to AB

;
the latter parts will each be

equal to 8 but act in opposite directions, and the sum of the
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former is P-f Q. Hence R the resultant of P and Q = P+ Q
and acts parallel to P and Q in the line CD. We shall now
determine the point where this line cuts AB.
The sides of the triangle A CD are parallel to the directions

of the forces P, S, P'
;
therefore by Art. 19

P CD , . . 8 DB
3=^3 >

and similarly q
=W ;

therefore -^ = tt^t = 5
if AB= a and .47) = x

;

2?.4 x '

therefore
* e
a P+Q'

this determines the point D through which the direction of

the resultant passes. It will be observed that AB is divided

in D into segments which are inversely as the forces at A and
B respectively.

If the force P act in a direction opposite to that of Q,

a similar process will lead us to

P=(?-P, and- = Q
a Q-P'

which may be derived from the formulae of the preceding
article by changing P into P.
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It will be observed that AB produced is divided in B into

segments which are inversely as the forces at A and B re-

spectively.

38. The point B possesses this remarkable property : that

however P and Q are turned about their points of application
A and B their directions remaining parallel, B determined as

above remains fixed. This point is in consequence called

the centre of the parallel forces P and Q.

39. If P= Q in the second case of Art. 37, then B =
and x = co

,
a result perfectly nugatory. It shews us that the

method fails by which we have attempted to compound two

equal and opposite parallel forces. In fact the addition of the

two forces 8 still gives, in this case, two equal forces parallel
and opposite in their directions.

Such a system of forces is called a Couple,

We shall investigate the laws of the composition and
resolution of couples, since to these we shall reduce the com-

position and resolution of forces of every description acting

upon a rigid body.

40. From Art. 39 we might conjecture that two equal
forces acting in parallel and opposite directions do not admit

ofa single resultant, which may be shewn as follows.

Suppose, if possible, that the single force R will maintain

equilibrium with two forces, each denoted by P, acting in

parallel and opposite directions.

Draw a line meeting in A and B the directions of the

forces P, and that of R in E. Make AB = BE, and apply
at B two forces T and S each = R and parallel to R but
in opposite directions

;
this will not disturb the equilibrium.

Hence the five forces P, P, P, S, T are in equilibrium. But
since P, P and R form a system in equilibrium so by sym-
metry do P, P and T. Hence if we remove the last three

we shall not disturb the equilibrium, and we accordingly have
R and S left maintaining equilibrium. But this is obviously

impossible, since they act in the same direction. Hence the
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two parallel forces P cannot be balanced by a single force,

and therefore do not admit of a single resultant.

.2 m parallel41. A couple consists of two equal forces acting
and opposite directions.

The arm of a couple is the perpendicular distance between
the directions of its forces.

The moment of a couple is the product of either of its forces

into the perpendicular distance between them.

The axis of a couple is a straight line perpendicular to the

plane of the couple and proportional in length to the moment.

Two couples in the same plane may differ with respect to

direction. For suppose the middle point of the arm of a

couple to be fixed, and the arm to move in the direction in

which the two forces of the couple tend to urge it
;
there are

two different directions in which the arm may rotate. Sup-
pose a perpendicular drawn to the plane of the couple through
the middle point of its arm, so that when an observer is

placed along this line with his feet against the plane, the

rotation which the forces give to the arm appears to take

place from
left to right; the perpendicular so drawn we shall

take for the axis of the couple.

42. The effect of a couple is not altered if its arm be turned

through any angle about one extremity in the plane of the

couple.
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Let the plane of the paper be the plane of the couple, AB
the arm, and AB' its new position ;

the forces Pv P2
are equal

and act on the arm AB. At B' and A let the equal and

opposite forces P
3
P

5 ,
P

4
P

6 ,
each equal to P

x
or P

2
be applied,

acting perpendicularly to AB'
;
this will not affect the action

of P
x
and Pr

Let BP
2 ,
B'P

S
meet in C; join AC; A G manifestly bisects

the angle BAB'.
Now P

i2
and P

3
are equivalent to some force in the direction

CA, andP
x
andP

4
are equivalent to the same force in the direc-

tion AG. Therefore P
x ,
P

2 ,
P

3 ,
P

4
are in equilibrium with

each other; therefore the remaining forces P
5 ,
P

6 acting at

B', A respectively produce the same effect as P
2 ,
P

x acting at

B, A respectively. Hence the proposition is true.

We may now turn the arm of the couple through any angle
about B'

;
and by proceeding in this way may transfer the

couple to any position in its own plane.

43. The effect of a couple is not altered if we transfer the

couple to any plane parallel to its own, the arm remaining
parallel to

itself.

Let AB be the arm, A'B' its new position parallel to AB.

A
p*

tc

r^B'
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Join AB\ AB bisecting each other in G. At A\ B' apply
two equal and opposite forces each =P

x
or P

2
and parallel to

them; and let these forces beP
3 , P^, P5 ,

P
6 ;

this will not alter

the effect of the couple.

But P
x
and P

4
are equivalent to 2P

X acting at G in direc-

tion Ga parallel to the direction of P
x ,

and P
2
and P

3
are

equivalent to 2P
X acting at G in the opposite direction Gb.

Hence P
x ,
P

2 ,
P

3 ,
P

4
are in equilibrium with each other;

therefore the remaining forces P
5
and P6 acting at A' and R

respectively produce the same effect as P
x
and P

2 acting at A
and B respectively. Hence the proposition is true.

44. The effect of a couple will not be altered if we replace it

by another ofwhich the moment is the same; the plane remain-

ing the same and the arms being in the same line and having a

common extremity.

Let AB be the arm; let P, |P=Q4-R
P be the forces, and suppose
P= Q + R ;

letAB= a, and let

the new arm AG=b; at C
apply two opposite forces each
= Q and parallel to P; this

will not alter the effect of the P=a+n

couple.

Now B at A and Q at G will balance Q + R at B,

iAB:BC:: Q : B, (Art. 37),

or if AB: AC:: Q: Q + R,

that is, if Q. b = P.a;

we have then remaining the couple Q, Q acting on the arm
A C. Hence the couple P, P acting on AB may be replaced

by the couple Q, Q acting on AC, if Q.bP.a, that is, if

their moments are the same.

45. From the last three articles it appears that, without

altering the effect of a couple, we may change it into another

T.s. 3

t;
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of equal moment, and transfer it to any position, either in

its own plane or in a plane parallel to its own. The couple
must remain unchanged so far as concerns the direction of

the rotation which its forces would tend to give the arm, sup-

posing its middle point fixed as in Art. 41. In other words,
the line which we have called the axis, measured as indicated

in that article, must always remain on the same side of the

plane of the couple.

46. We may infer from Art. 44 that couples may be mea-
sured by their moments. Let there be two couples, one in

which each force = P, and one in which each force = Q, the

arms of the couples being equal; these couples w^ll be in the

ratio of P to Q. For suppose, for example, that P is to Q as

3 to 5
;
then each of the forces P may be divided into 3 equal

forces and Q into 5 such equal forces. Then the couple of

which each force is P may be considered as the sum of 3 equal

couples of the same kind, and the couple of which each force

is Q as the sum of 5 such equal couples. The effects of the

couples will therefore be as 3 to 5. Next, suppose the arms
of the couples unequal, and denote them by^> and q respec-

tively. The couple which has each of its forces = Q and its

arm = q is equivalent to a couple having each of its forces

and its arm = p, by Art. 44. The couples are therefore

by the first case in the ratio of P to
,
that is of Pp to Qq.

47. With respect to the effect of a couple, we may observe

that it is shewn in works on rigid dynamics that if a couple
act on a free rigid body it will set the body in rotation about
an axis passing through a certain point in the body called

its centre of gravity, but not necessarily perpendicular to the

plane of the couple.

48. To find the resultant of any number of couples acting

upon a body, the planes of the couples being parallel to each

. other.

First, suppose all the couples transferred to the same plane
(Art. 43); next, let them be all transferred so as to have
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their arms in the same straight line, and one extremity com-
mon (Art. 42) ;

and lastly, let them be replaced by others

having the same arm (Art. 44) .

Thus if P, Q, B, be the forces, and

a, b, c, be their arms,

we shall have them replaced by the following forces (supposing
a the common arm),

P.-, (?.-, B.-, acting on the arm a.
a a a

Hence their resultant will be a couple of which each force

equals

p* + Q.l + B .l + ,

a a a

and arm = a,

or of which the moment equals

P.a + Q.b + B.c +

Hence the moment of the resultant couple is equal to the sum
of the moments of the original couples.

If one of the couples, as Q, Q, act in a direction opposite to

the couple P, P, then the force at each extremity of the arm
of the resultant couple will be

p.-Q.l + R + ,

a a a

and the moment of the resultant couple will be

P.a-Q.b + B.c+ ,

or the algebraical sum of the moments of the original couples;
the moments of those couples which tend in the direction

opposite to the couple P, P being reckoned negative.32
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49. To find the resultant of two couples not acting in the

same plane.

Let the planes of the couples intersect in the line AB,

which is perpendicular to the plane of the paper, and let the

couples be referred to the common arm AB, and let their forces

thus altered be P and Q.

In the plane of the paper draw Aa, Ab perpendicular to

the planes of the couples P, P and Q, Q ;
and equal in length

to their axes.

Let R be the resultant of the forces P and Q at A, acting
in the direction AB

;
and of P and Q at B, in the direc-

tion BR.

Since AP, AQ are parallel to BP, BQ respectively, there-

fore AR is parallel to BR.

Hence the two couples are equivalent to the single couple
R, R acting on the arm AB.

Draw Ac perpendicular to the plane of R, R, and in the

same proportion to Aa, Ab that the moment of the couple
R, R is to those of P, P and Q, Q respectively. Then Ac
is the axis of R, R. Now the three lines Aa, Ac, Ab make
the same angles with each other that AP, AR, A Q make
with each other; also they are in the same proportion in

which AB.P, AB.R, AB. Q are
;
that is in which P, R, Q are.

But R is the resultant of P and Q ;
therefore Ac is the

diagonal of the parallelogram on Aa, Ab (see Art. 17).

Hence if two straight lines, having a common extremity,

represent the axes of two couples, that diagonal of the

parallelogram described on these lines which passes through
their common extremity is equal in magnitude and direction

to the axis of the resultant couple.
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50. To find the magnitude and, position of the couple which
is the resultant of three couples which act in planes at right

angles to each other.

Let AB, AG, AD be the axes of the given couples (see

fig. to Art. 24). Complete the parallelogram CB, and draw
AE the diagonal. Then AE is the axis of the couple which
is the resultant of the two couples of which the axes are

AB, A G. Complete the parallelogram BE, and draw AF
the diagonal. Then AF is the axis of the couple which is

the resultant of the couples of which the axes are AE, AD,
or of those of which the axes are AB, A G, AD.

Now AF2 = AE2 + AIT = AB2 +AC 2 + AD2
.

Let G be the moment of the resultant couple; L, M, N
those of the given couples ;

therefore G 2 = L2 +M2 +N2

;

and if X. /x, v be the angles the axis of the resultant makes
with those of the components,

^ AB L M N
e AF

=
~G

;
C0S f

J/=
Q>

cosv =
~q'

51. Hence conversely any couple may be replaced by
three couples acting in planes at right angles to each other

;

their moments being G cos \, G cos
\i>,
G cos v

;
where G is

the moment of the given couple, and \, fi, v the angles its

axis makes with the axes of the three couples.

Thus couples follow, as to their composition and resolution,
laws similar to those which apply to forces, the axis of the

couple corresponding to the direction of the force and the

moment of the couple to the intensity of the force. Hence
for example, by Art. 29, the resolved part of a resultant

couple in any direction is equal to the sum of the resolved

parts of the component couples in the same direction.
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CHAPTER IV.

RESULTANT OF FORCES IN ONE PLANE. CONDITIONS OF

EQUILIBRIUM. MOMENTS.

52. To find the resultant of any number ofparallel forces

acting on a rigid body in one plane.

Let P15
P

2 ,
P

3
denote the forces. Take any point in

the plane of the forces as origin and draw rectangular axes

Ox, Oy, the latter parallel to the forces. Let A
x
be the point

where Ox meets the direction of P
x ,
and let OA

x
= x

x
.

Apply at two forces each equal and parallel to P
t ,

in

opposite directions. Thus the force P
x

is replaced by Px

at along Oy ,
and a couple of which the moment is P

t
. OA

x ,

that is P
1
.x

1
. Transform the other forces in a similar manner,
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using a similar notation, and the whole system will be reduced

to a force

P
1+P2+P3+ or 2P along Oy,

and a couple

P
1
x

1 + P2
x

2 + P3
x

5 + or P*

in the plane of the forces and tending to turn the body from

the axis of x to the axis of y,

53. To find the conditions of equilibrium of a system of

parallelforces acting on a rigid body in one plane.

A system of parallel forces can be reduced to a single
force and a couple. If neither of these vanish equilibrium
is impossible, because a single force cannot neutralize a couple

(Art. 40). If the single force alone vanish equilibrium is

impossible, because there remains an unbalanced couple. If

the couple alone vanish equilibrium is impossible, because

there remains an unbalanced force. Hence, for equilibrium
it is necessary that both the force and the couple should

vanish
;
that is

2P=0andSP = 0.

54. The product of a force into the perpendicular drawn

upon it from any point, is called the moment of the force

with respect to that point. Hence the conditions of equili-
brium which have just been obtained for a system of parallel
forces acting in one plane may be thus enunciated.

(1) The sum of the forces must vanish.

(2) The sum of the moments of the forces with respect
to any point in the plane of the forces must vanish.

The word sum must be understood algebraically ; forces

which act in one direction being considered positive, those

in the opposite direction must be considered negative. Also

a moment being considered positive when the force tends to

urge the point at which it is applied from right to left when
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IP li*P

the eye is placed at the origin and looks along the perpen-
dicular on the force, a force tending to urge the point of

application from left to right will have a negative moment.

55. When the sum of the forces vanishes in Art. 52,

the forces reduce to a couple.
When %P is not zero, the

forces can be reduced to

a single resultant. For if

XPx =
0, then 2P acting

at is the single, resultant.

If XPx be not = 0, let the

couple be transformed to one
in which each of the forces

is equal to 2P, and conse-

quently, by Art. 44, the arm

is Yp . Let 2P acting at A

and 2P acting along Oy form this couple. The latter force

is destroyed by the force 2P along Oy. Hence the single

resultant is 2P acting at A, that is, at a point the distance

of which from is -^p .

56. To find the resultant ofany number offorces which act

upon a rigid body in one plane.
Let the system be referred to any rectangular axes Ox, Oy

in the plane of the forces.

y

'ip
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Let Pj, P2 ,
P

3 ,
...... denote the forces; a

x ,
a
2 ,

a
3 ,

the angles which their directions make with the axis ox;
let xv yx

be the co-ordinates of the point of application of P
x ;

let a?
8 , y2

be those of the point of application of P
2 ,
and so on.

Let A
x
be the point of application of P

x
. At suppose

two forces applied in opposite directions each equal and

parallel to P
x
. Draw Opx perpendicular to P

%
A

t
.

Hence P
x acting at A

x
is equivalent to P

x acting at

and a couple of which Opx
is the arm and each force is P

x ,

which tends to turn the body from the axis of x to that of

y. Now

Opx
= x

x
sin a

x yx
cos a

x
.

Hence the moment of the couple is

P.fosinoj-^cos a,).

The other forces may be similarly replaced. Hence the

system is equivalent to the forces

PV P ?v acting at 0,

in directions parallel to those of the original forces; and the

couples of which the moments are

P
x (x1 8ma1-yx

cosa
x),

P
2 (#2 sina2-y2

cosa
2),

P
3 (#3 sina3- ty3

cosa
8),

acting in the plane of the forces. It will be found that any
one of the above expressions for the moments of the couples
is positive or negative, according as that couple tends to turn

the body from the axis of x towards that of y, or in the

contrary direction.

Let R be the resultant of the forces acting at 0, let a be
the angle which R makes with the axis of x, and G the

moment of the resultant couple; then (by Art. 22)

R cos a = SPcos a
;
R sin a = 2P sin a

;
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and (by Art. 48)

G SP (x sin a y cos a).

If P
x
cos ol

1
=X

1
and P

x
sin %.m Y

x ,
and a similar notation

be used for the other forces, the above equations may be
written

i^=(2X)
2

+(2F)
2

;
tana =

|^;

and G = Z(Yx-Xy).

57. To find the conditions for the equilibrium of a system

offorces acting on a rigid body in one plane.

Any system of forces acting in one plane may be reduced

to a single force R, and a couple whose moment is G. If

neither R nor G vanish equilibrium is impossible, since a

single force cannot balance a couple. If R alone vanish equi-
librium is impossible, because there remains an unbalanced

couple (r; if 67 alone vanish equilibrium is impossible, be-

cause there remains an unbalanced force. Hence, for equi-
librium we must have R = and G = Q. Also R = requires
that tX=0 and S7=0.

Since G is equal to the sum of the moments of the forces

with respect to 0, if a system of forces acting in one plane

upon a body is in equilibrium, the sum of the resolved parts

of the forces parallel to any two rectangular axes in the plane
must vanish, and the sum of the moments of the forces with

respect to any origin in the plane must vanish.

58. If three forces acting in one plane maintain a rigid

body in equilibrium their directions either all meet in a point or

are allparallel.

For suppose two of the directions to meet in a point, and
take this point for the origin ;

then the moment of each of

these two forces vanishes, and the equation G = requires
that the moment of the third force should vanish, that is, the

third force must also pass through the origin. Hence, if any
two of the forces meet, the third must pass through their point
of intersection, which proves the proposition. This pro-
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position may also be established without referring to Art. 57.

For if two of the forces meet in a point, they may be supposed
both to act at that point and may be replaced by their re-

sultant acting at the same point ;
this resultant and the third

force must keep the body on which they act in equilibrium,
and must therefore be equal and opposite ; that is, the third

force must pass through the point of intersection of the

first two.

59. If R = in Art. 56, the forces reduce to a couple ;
if

R be not = 0, the forces can be reduced to a single resultant.

For if G = 0, the resultant force is R acting at the origin.

If the couple G be not =
0, let it be transformed into

one having each of its forces = R and its arm consequently

=
-fi (Art. 44). Let this couple be turned in its own plane,

until one of its forces acts at the origin exactly opposite to

the force R, which by hypothesis acts at the origin. Hence
these forces destroy each other and we have left R acting
at the extremity of the arm OA, in a direction inclined to

the axis of x at an angle a, found by the equation tan a = y^,

(Art. 56). If this direction meet the axis of x in B, we have

OB = OA cosec a =
-^

. y~Y~ TjT*
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and the equation to the line of action of the single resultant is

, %Y/ , G
y ~tx\

x SK

or, x'tY- y'XX= $(Yx-Xy),

x', y being the variable co-ordinates.

60. The result of the last article may also be obtained

thus. Suppose that the given forces have a single resultant

acting at the point (x, y) ,
and equivalent to the components

X' and Y' parallel to the co-ordinate axes. It follows that the

given forces will, with X
,

Y' acting at the point (x' 9 y),
form a system in equilibrium. Hence, by Art. 57,

2X-X =
0, $Y-Y' =

Q, G-Y'x' + Xy' = 0.

Of these three equations the first determines X, the second

Y\ and the third assigns a relation between x and y ',
which

is in fact the equation to the line in which the single re-

sultant acts and at any point of which it may be supposed
to act. If 2X and 2Y both vanish, it is impossible to find

values of x and y that satisfy the last equation of the three,
so long as G does not vanish

;
this shews that if the forces

reduce to a couple, it is impossible to find a single force equi-
valent to them.

61. In Art. 56, we have for the moment of the force P
t

about the origin the expression

P^sin^-^cosaJ,
and this we may express by

Since X
t
and Y

x
are the rectangular components of P

t ,
we

see by comparing the two expressions that the moment of

a force about any origin is equal to the algebraical sum of

the moments of its rectangular components about the same

origin. (See Art. 54.) There are many such theorems con-

nected with moments, and the demonstration of some of them
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is facilitated by observing that according to the definition of

a moment, it may be geometrically represented by twice the

area of the triangle having for its base the line which repre-
sents the force and for its vertex the point about which moments
are taken. For example, we may prove the theorem which we
have already deduced.

62. The algebraical sum of the moments of two component

forces with respect to any point in the plane containing the two

forces is equal to the moment of the resultant of the two forces.

Let AB, A G represent two component forces
; complete the

parallelogram and draw the

diagonalAD representing the /'nX
resultant force. /'' \ \ N^

(1) Let 0, the point about

which the moments are to be

taken, fall without the angle
BA G and that which is ver-

tically opposite to it. Join

OA, OB, OC, OB.

The triangle OAG having for its base AG and for its

height the perpendicular from on A G is equivalent to a

triangle having A C for its base and for its height the perpen-
dicular from B on AG, together with a triangle having BD
for its base and for its height the perpendicular from on BD.
This is obvious sinceBD is equal and parallel to A G, and the

perpendicular from on AG is equal to the perpendicular
from onBD together with the perpendicular from B on AC.
Hence we have

AAOC = ABOD + AAGD.

Hence, adding the triangle A OB, we have

AAOG+AA OB= ABOD + AABD+AAOB = AA OD
;

that is, the moment of AG + the moment of AB = the mo-
ment of AD.
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(2) Let fall within the angle BAG or its vertically

opposite angle.

AAOC=AABD-ABOD
= AAOB+AAOD.

Therefore

AAOD = AAOC-AAOB;
that is, the moment of AD = the moment of A G the

moment of AB. As the moments of AC and AB about

are now of opposite characters, the moment of the resultant

is still equal to the algebraical sum of the moments of the

components.

The proposition may also be readily shewn in the case

where the two component forces are parallel; see Art. 37.

63. Forces are represented in magnitude and position by
the sides of a plane polygon taken in order ; required the re-

sultant.

Let the sides of the figure ABCDEF represent the forces

in magnitude and position ;
the first force being supposed to

act in the line AB from A towards B, the second in the line

BG from B towards G, and so on.

As in Art. 56, the forces may be replaced by a resultant

force at an arbitrary origin and a couple. The former is

composed of all the forces AB, BG, moved each parallel
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to itself up to 0\ the resultant consequently vanishes by-
Art. 21.

The moment of the resultant couple is the sum of the

moments of the component couples, and is therefore repre-
sented by twice the triangle AOB + twice the triangle BOG
+ &c....: that is, by twice the area of the polygon. Hence
the forces reduce to a resultant couple measured by twice the

area of the polygon.

We may observe that the algebraical sum of the moments
of the two forces which form a couple is the same about

whatever point it be taken ;
it is in fact equal to the moment

of the couple.

64. If the sum of the moments of the forces P
1 ,
P

2 ,
P

3 ,
...

be required about a point whose co-ordinates are h, k instead

of about the origin, we must in the expression for G, in

Art. 56, put x
x h, x

2 h,... for x
l9
x

2 ,
... respectively, and

yt k, y2 k,... for yt , y2 ,
... respectively. Hence, denoting

the result by G
t ,
we have

G^XiYix-ty-Xty-k)},
= ktX- h$Y+$(Yx- Xy),

= k%X-h$Y+G.

Hence the value of G
x depends in general upon the situation

of the point about which we take moments. If, however,

k%X hXY= a constant,

that is, if the point (h, k) move along any line parallel to

the direction of the resultant force B, then G
1
remains un-

changed.

If three different points exist with respect to which the sum
of the moments vanishes, we have three equations

k^X-h^Y+G^O,
k

t
SX-h

2ZY+G =
Q,

k
3XX-h32Y+G = 0.
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Hence we deduce

(k,-ka)tX=(h2
-h

a)XY.

Unless the point (JL, k
t),

the point (h2 ,
k

2),
and the point

(h3 ,
k

s)
lie in a straight line, it is impossible that

^1
~

^2 _ ^2
~ ^

3 .

we must therefore have

2X=0, 2F=0, = 0.

Hence if the sum of the moments of a system offorces in one

plane vanish with respect to three points in the plane not in a

straight line, that system is in equilibrium.

When a system of forces in one plane can be reduced to a

single resultant, we have found in Art. 59 that the equation
to the direction of the resultant is

x'tY-y'tX=t{Yx-Xy).

This may be written

t{Y{x
,

-x)-X(y
l

-y)} = 0.

The equation to the direction of the resultant thus in fact

determines the locus of the points for which the algebraical
sum of the moments of the forces is zero.

65. Hitherto we have supposed our axes rectangular. If

they are oblique and inclined at an angle co, we may shew,
as in Art. 56, that a system of forces in one plane may be

reduced to %X along the axis of x, 2 Y along the axis of y,
and a couple the moment of which is sin aol% (

Yx Xy). The
latter part will be easily obtained, since the moment of the

force P
x
is equivalent to the algebraical sum of the moments

of its components X1
and K

;
and the perpendicular on the

former from the origin is yx
sin g>, and on the latter x

x
sin co.
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The conditions for equilibrium are, as before,

SX=0, 2F=0, t(Yx-Xy)=0.

The following Examples may be solved by means of the

principles given in the preceding articles. When different

rigid bodies occur in a question, the equations of Art. 57

must hold with respect to each, in order that there may be

equilibrium. In cases where only three forces act on a body,
it is often convenient to use the proposition of Art. 58. Since

by Art. 57 the moments of the forces with respect to any
origin must vanish, we may, if we please, take different origins
and form the corresponding equation for each. See Art. 64.

In some of the examples we anticipate the results of the

subsequent chapters so far as to assume that the weight of

any body acts through a definite and known point, which is

the centre of gravity of the body. When two bodies are in

contact it is assumed that whatever force one exerts on the

other the latter exerts an equal and opposite force on the

former
;
if the bodies are smooth this force acts in the direction

of the common normal to the surfaces at the point of contact.

We restrict ourselves to the supposition of smooth bodies
until Chapter X.

In attempting to solve the problems the student will find

it advisable when the system involves more than one body
to confine his attention to one at a time of those bodies which
are capable of motion, and to be careful to take into con-

sideration all the forces which act on that body. When
bodies are in contact some letter should be used to denote
the mutual force between them, and the magnitude of this

force must be found from the equations of equilibrium of the

body or bodies which are capable of motion. And when
two of the bodies are connected by a string a letter should

be used to denote the tension of the string, and the magnitude
of the tension must be found from the conditions of equi-
librium of the body or bodies which are capable of motion.

Beginners often fall into error by assuming incorrect values

for the tensions of strings and the mutual forces between
bodies in contact, instead of determining the correct values

from the equations of equilibrium.
T. s. 4
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EXAMPLES.

1. ABCD is a quadrilateral and is acted on by forces

which are represented in magnitude and direction by AB,
AD, CB, CD

;
shew that the resultant coincides in direction

with the line which joins the middle points of the diagonals
A C

f BD, and is represented in magnitude by four times

this line.
'

2. Forces whose intensities are proportional to the sides

of an isosceles triangle act along the sides of the triangle,
those acting along the equal sides tending from the vertex

;

find the magnitude and position of their resultant.

Result. The required resultant is represented by a line

which passes through the middle point of the base of the

triangle, is parallel to one of the sides, and double that side

in length.

3. The upper end of a uniform heavy rod rests against
a smooth vertical wall

;
one end of a string is fastened to the

lower end of the rod and the other end of the string is fastened

to the wall
;
the position of the rod being given, find the point

of the wall to which the string must be fastened.

4. A uniform heavy rod is placed across a smooth hori-

zontal rail, and rests with one end against a smooth vertical

wall, the distance of which from the rail is ^th of the length

of the rod
;
find the position of equilibrium.

Result. The rod makes an angle of 60 with the horizon.

5. Forces act on a triangle at the middle points of its

sides; they are perpendicular to the sides and proportional to

them in magnitude ;
if they all act inwards or all act out-

wards they will keep the triangle in equilibrium.

^

6. Forces act on any polygon at the middle points of its

sides
; they are perpendicular to the sides and proportional to

them in magnitude ;
if they all act inwards or all act out-

wards they will keep the polygon in equilibrium.



OF FORCES IN ONE PLANE. 51

7. An elliptic lamina is acted on at the extremities of pairs
of conjugate diameters by forces in its own plane tending
outwards, and normal to its edge ;

there will be equilibrium
if the force at the end of every diameter be proportional to

the conjugate.

8. A heavy sphere hangs from a peg by a string whose

length is equal to the radius, and it rests against another

peg vertically below the former, the distance between the

two being equal to the diameter. Find the tension of the

string and the pressure on the lower peg.

Results. The tension is equal to the weight of the sphere
and the pressure to half the weight of the sphere.

9. Two equal rods without weight are connected at their

middle points by a pin which allows free motion in a vertical

plane ; they stand upon a horizontal plane, and their upper
extremities are connected by a thread which carries a weight.
Shew that the weight will rest half way between the pin and
the horizontal line joining the upper ends of the rods.

10. Two equal circular discs with smooth edges, placed on
their flat sides in the corner between two smooth vertical

planes inclined at a given angle, touch each other in the

line bisecting the angle. Find the radius of the least disc

which may be pressed between them without causing them
to separate.

11. A flat semicircular board with its plane vertical and
curved edge upwards rests on a smooth horizontal plane, and
is pressed at two given points of its circumference by two
beams which slide in smooth vertical tubes; find the ratio

of the weights of the beams that the board may be in equi-
librium.

12. Two smooth cylinders of equal radii just fit in between
two parallel vertical walls, and rest on a smooth horizontal

plane without pressing against the walls
;

if a third be placed
on the top of them, find the resulting pressure against either

wall.

13. A smooth circular ring rests on two pegs not in the

same horizontal plane ;
find the pressure on each peg.42

1/
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14. Two spheres are supported by strings attached to a

given point, and rest against one another
;
find the tensions

of the strings.

15. Two equal smooth spheres, connected by a string, are-

laid upon the surface of a cylinder, the string being so short

as not to touch the cylinder ; determine the position of rest

and the tension of the string.

16. A heavy regular polygon is attached to a smooth
vertical wall by a string which is fastened to the middle

point of one of its sides
;
the plane of the polygon is vertical

and perpendicular to the wall, and one of the extremities of

the side to which the string is attached rests against the wall
;

shew that whatever be the length of the string when the

polygon is in equilibrium, the tension of the string and the

pressure on the wall are constant.

17. A straight rod without weight is placed between two

pegs and forces P and Q act at its extremities in parallel
directions inclined to the rod

; required the conditions under
which the rod will be at rest and the pressures on the pegs.

18. Forces P, Q, B, S act along the sides of a rectangle :

find the direction of the resultant force.

19. Two weights P, P are attached to the ends of two

strings which pass over the same smooth peg and have their

other extremities attached to the ends of a beam AB, the

weight of which is W; shew that the inclination of the beam

to the horizon = tan
-1

I , tan a
)

; a, b being the distances

of the centre of gravity of the beam from its ends, and
W

sma=2p.

20. A square is placed with its plane vertical between
two small pegs which are in the same horizontal line

;
shew

that it will be in equilibrium when the inclination of one

a% &
of its edges to the horizon = \ sin

*

^ ,
2a being the

c

length of a side of the square, and c the distance between
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the pegs. Shew that the equilibrium will not be affected by
the application of any force which bisects the line joining the

pegs and passes through the lowest point of the square.

21. One end of a string is fixed to the extremity of a

smooth uniform rod, and the other to a ring without weight
which passes over the rod, and the string is hung over a

smooth peg. Determine the least length of the string for

which equilibrium is possible, and shew that the inclination of

the rod to the vertical cannot be less than 45.

22. A string 9 feet long has one end attached to the

extremity of a smooth uniform heavy rod two feet in length,
and at the other end carries a ring without weight which slides

upon the rod. The rod is suspended by means of the string
from a smooth peg ; prove that if 6 be the angle which the

rod makes with the horizon, then

tan 6 = 3"* -3"*. ^&*
3
#i~?fe*

*~ <

23. A square rests with its plane perpendicular to a

smooth wall, one corner being attached to a point in the wall

by a string whose length is equal to a side of the square ;

shew that the distances of three of its angular points from the

wall are as 1, 3, and 4.

24. One end of a beam, whose weight is W, is placed
on a smooth horizontal plane ;

the other end, to which a string
is fastened, rests against another smooth plane inclined at an

angle a to the horizon
;
the string passing over a pulley at

the top of the inclined plane hangs vertically, supporting
a weight P. Shew that the beam will rest in all positions if

a certain relation hold between P, W, and a. /U~* fVsti* oL ~ 2- P

25. If a weight be suspended from one extremity of a rod

moveable about the other extremity A, which remains fixed, s

and a string of given length be attached to any point B in

the rod, and also to a fixed point G above A, and in the same
vertical line with it, then the tension of the string varies

inversely as the distance AB.

26. One end of a uniform beam is placed on the ground y
against a fixed obstacle, and to the other is attached a string
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which runs in a horizontal direction to a fixed point in the

same vertical line as the obstacle, and passing freely over it,

is kept in tension by a weight W suspended at its extremity,
the beam being thus held at rest at an inclination of 45 to

the horizon. Shew that if the string were attached to the

centre instead of to the end of the beam, and passed over the

same fixed point, a weight = V2W would keep the beam in

the same position.

27. Two equal beams AB, AC connected by a hinge at

A are placed in a vertical plane with their extremities B, G
resting on a horizontal plane; they are kept from falling by
strings connecting B and C with the middle points of the

opposite sides; shew that the ratio of the tension of each

string to the weight of each beam

= i\/(8cot
2 + cosec

2

0),

6 being the inclination of each beam to the horizon.

28. One end of a string is attached to a beam at the point
B, and the other end is fastened to the highest point A of a

fixed sphere of radius r. If the points of contact of the beam
and string trisect the quadrant AC, shew that the distance

between B and the centre of gravity of the beam must be

2r(2- v
/

3).

29. A heavy rod can turn freely about a fixed hinge at

one extremity, and it carries a heavy ring which is attached

to a fixed point in the same horizontal plane with the hinge

by means of a string of length equal to the distance between
the point and the hinge. Find the position in which the

beam will rest.'

30. Two equal heavy beams of sufficient length, and
connected by a hinge, are supported by two smooth pegs in

the same horizontal line; a sphere is placed between them,
determine the position of equilibrium.

31. Forces P, Q, R act along the sides BC, CA, AB of

a triangle and their resultant passes through the centres of the

inscribed and circumscribed circles
;
shew that

P : Q : R :: cos B cos C : cos C cos A : cos A cos B.
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32. Find the position of equilibrium of a uniform beam

resting in a vertical plane with one end pressing against a

vertical wall, and the other end supported by the convex arc

of a vertical parabola whose vertex is at the foot of the wall

and axis horizontal.

33. A uniform beam PQ of given weight and length rests

in contact with a fixed vertical circle whose vertical diameter
is AB, in such a manner that strings AP, BQ attached to the

rod and circle are tangents to the circle at the points A and B.
Find the tensions of the strings, and shew that the conditions

of the problem require that the inclination of the beam to the

vertical must be less than sin
-1 ^ .

a

34. Shew that no uniform rod can rest partly within and

partly without a fixed smooth hemispherical bowl at an incli-

nation to the horizon greater than sin"
1

r- .

35. The sides of a rigid plane polygon are acted on by
forces perpendicular to the sides and proportional to them in

magnitude, all the forces acting in the plane of the polygon,
and being inwards

;
also the sides taken in the same order

are severally divided by the points of application in a con-

stant ratio of p to q ; prove that the system of forces is equi-
valent to a couple whose moment is

where /jua represents the force applied to any side a of the
nnlv-ovvn
polygon
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CHAPTEE V.

FORCES IN DIFFERENT PLANES.

66. To find the magnitude and direction of the resultant of
any number ofparallel forces acting upon a rigid body, and to

determine the centre ofparallelforces.

Let the points of application of the forces be referred to a

system of rectangular co-ordinate axes. Let m1}
w

2 ,...
be the

points of application; let x
t , ylf e

l9
be the co-ordinates of

the first point, x
2 , y2 ,

z
2
those of the second, and so on; let

P
x ,
P

2 ,...
be the forces acting at these points, those being

reckoned positive which act in the direction of P
x ,
and those

negative which act in the opposite direction.

Join m
x
m

2 ;
and take the point m on m

1
m

2 such that

m
>
m=

p^pa

-
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then the resultant of P
x
and P

2
is P

x + P2 ,
and it acts through

m parallel to P
x

. (Art. 37) .

Draw m
xa, raS, ra

2
c perpendicular to the plane of (x, y),

meeting that plane in a, b, c
;
draw m

x
de parallel to abc meet-

ing mb in d and m
2
c in e. Then, by similar triangles,

m
x
m md mb z

x

P
therefore mb z

t
=
p

2

p [zt z
x) ;

therefore w& = ~ ^
.

This gives the ordinate parallel to the axis of z of the point of

application of the resultant of P
x
and P

2
.

Then supposing Px
and P

2
to be replaced by Px + P2 acting

at m, the resultant of P
x + P2

and P
3
is P

x + P2 + P3 ,
and the

ordinate of its point of application

_ (Px + P2)
mb + P3

s
3 = PA + PA +P3

z
3 m

P
x +P2 +P3 i^ + P. + P,

'

and this process may be extended to any number of parallel
forces. Let R denote the resultant force and z the ordinate of

its point of application ;
then

Similarly, if x, y be the other co-ordinates of the point of

application of the resultant,

-_tPx -_tPyx ~
ZP ; y ~ XP'

The values of x, y, z are independent of the angles which

the directions of -the forces make with the axes. Hence if

these directions be turned about the points of application of

the forces, their parallelism being preserved, the point of
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application of the resultant will not move. For this reason

this point is called the centre of the parallelforces.

67. The moment of a force with respect to a plane is the

product of the force into the perpendicular distance of its point
of application from the plane.

In consequence of this definition, the equations for deter-

mining the position of the centre of parallel forces shew that

the sum of the moments of any number of parallel forces with

respect to any plane is equal to the moment of their resultant.

68. If the parallel forces all act in the same direction the

expression P cannot vanish
;
hence the values of the co-

ordinates of the centre ofparallelforces found in Art. 66 cannot

become infinite or indeterminate, and we are certain that the

centre exists. But if some of the forces are positive and some

negative, 2P may vanish, and the results of Art. 66 become

nugatory. In this case, since the sum of the positive forces is

equal to the sum of the negative forces, the resultant of the

former will be equal to the resultant of the latter. Hence the

resultant of the whole system of forces is a couple, unless the

resultant of the positive forces should happen to lie in the

same straight line as the resultant of the negative forces.

We shall give another method of reducing a system of

parallel forces.

69. To find the resultant of a system of parallel forces

acting upon a rigid body.

Let P
x ,
P

2 ,.--
denote the forces. Take the axis of z

parallel to the forces. Let the plane of (x, y) meet the

direction of P
x
in M

x ,
and suppose x

x , yx
the co-ordinates of

this point.

Draw M
X
N

X perpendicular to the axis of x meeting it in N
x

.

At the origin 0, and also at N
x , apply two forces each equal

and parallel to P
x
and in opposite directions. Hence the force

P
x
at M

x
is equivalent to the following system,

(1) P
x atO;

(2) a couple formed ofP
x
at M

x
and P

x
at N

x ;

(3) a couple formed of P
x
at N

x
and P

x
at 0.
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The moment of the first couple is P
xy^ and this couple,

without altering its effect, may be transferred to the plane of

(y y z), which is parallel to its original plane. The moment
of the second couple is P

x
x

x ,
and it is in the plane (x, z).

If we effect a similar transformation of all the forces, we
have, as the resultant of the system the following system,

(1) a force 2P acting at
;

'

(2) a couple %Py in the plane of (y, z) ;

(3) a couple %Px in the plane of (x, z).

The first couple tends to turn the body from the axis of y to

that of z, and the second from the axis of x to that of z. We
may therefore take Ox as the axis of the first couple according
to the definition in Art. 41. For the second couple, however,
we must either take Oy as the axis, or consider it as a couple

turning from z to x, of which the moment is SPx and the

axis Oy. Adopting the latter method, we may replace the

two couples by a single couple of which the moment is G,
where

and the axis is inclined to the axis of x at an angle a given

by the equations

tPy . -tPx
7F>

slD =-^-cos a =



60 EQUILIBRIUM OF PARALLEL FORCES.

70. To find the conditions of equilibrium of a system of

parallelforces acting upon a rigid body.

A system of parallel forces can always be reduced to a

single force and a couple. Since these cannot balance, and

neither of them singly can maintain equilibrium, they must
both vanish. That is,

2P=0, and G = 0;

the latter requires that

SPx = andSPy = 0.

Hence the sum of the forces must vanish, and also the sum of
the moments must vanish with respect to any two planes at right

angles to each other and parallel to the forces.

71* When 2P= 0, the forces reduce to a couple of which
the moment is G. When Pis not =0, the forces can always
be reduced to a single force

;
this has already appeared in

Art. 66, and may also be shewn thus. The forces will reduce

to a resultant B, acting at the point (x, y'), parallel to the

original forces, provided a force R acting at such point will

with the given forces maintain equilibrium. The necessary
and sufficient conditions for this are, by Art. 70,

2P-P =
0, 2Pc-ifo' = 0, %Py-By' = Q.

Hence R = tP, x=-^, y=-^rp*

These results agree with those of Art. 66.

72. To find the resultants of any number of forces acting

upon a rigid body in any directions.

Let the forces be referred to three rectangular axes Ox, Oy,
Oz; and suppose Px ,

P
2 ,
P

3 ,.--
the forces; let x

1 ,y1 ,
z

x
be the

co-ordinates of the point of application of P
x ;

let x
2 , y2 , z.z

be the co-ordinates of the point of application of P
2 ;

and
so on.

Let A
x
be the point of application of P

x ;
resolve P

x
into

components Xx ,
Y

lf
Z

l9 parallel to the co-ordinate axes. Let
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By a similar resolution of all the forces we shall have them

replaced by the forces

SX, ZY, ZZ,

acting at along the axes, and the couples

Z(Zy Yz) = L suppose, in the plane of (y, z),

Z{Xz-Zx)=M , (z,x),

Z(Yx-Xy)=N , (x,y).

Let It be the resultant of the forces which act at
; a, b, c

the angles its direction makes with the axes
; then, by Art. 24,

B*=($xy + {tYy+(Zzy,

zx . zy zz
cos a = COS = yt ,

cos C = -jp .

jx H H

Let G be the moment of the couple which is the resultant

of the three couples L, M, N; \, /jl,
v the angles its axis

makes with the co-ordinate axes
; then, by Art. 50,

N L M N
COS A, = -~

,
COS

fJL
= -~, COS V =

-p
.

The convention adopted in the present article for distin-

guishing the signs of couples agrees with that in Art. 41 when
the axes of x, y, and z are drawn as in the present figure, but
the conventions will not necessarily coincide if the figure be
modified

;
for example, if the axes of y and z be retained as in

the figure, but the positive part of the axis of x directed to the

left instead of the right, they will not coincide. The conven-
tion of the present article is that which we shall hereafter

always retain.

73. To find the conditions of equilibrium ofany number of
forces acting upon a rigid body in any directions.

A system of forces acting upon a rigid body can always
be reduced to a single force and a couple. Since these can-
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not balance each other and cannot separately maintain equi-
librium they must both vanish. Hence R = 0, and G =

;

therefore (2X)
2 + (2 Yf + (XZf = 0,

and L2 + M* +N2 = 0.

These lead to the six conditions

2X= 0, 2F=0, 2^=0,

2(%-Fs) =
0, S{Xz-Zx)=0, t{Yx-Xy)=Q.

74. A verbal enunciation may be given of the last three

equations by means of a new definition. For the sake of

convenience, we repeat two definitions already given in

Arts. 54 and 67.

Moment of a force with respect to a point. The moment
of a force with respect to a point is the product of the force

into the perpendicular from the point on the direction of the

force.

Moment of a force with respect to a plane. The moment
of a force with respect to a plane is the product of the force

into the distance of its point of application from the plane.

Moment of a force with respect to a line. Resolve the force

into two components respectively parallel and perpendicular
to the line; the product of the component perpendicular to

the line into the shortest distance between the line and the

direction of this component is called the moment of the force

with respect to the line.

Hence the moment of a force with respect to a line is equal
to the moment of the component of the force perpendicular to

the line with respect to the point in which a plane drawn

through this component perpendicular to the line meets the

line. Hence, by Art. 62, the moment of the force may be

found by taking the sum of the moments of any two forces

into which the perpendicular component may be resolved.

If the force is parallel to the given line, its moment about

the line is zero. If the force is perpendicular to the given line,

its moment about the line is the product of the force into the

shortest distance between it and the given line.
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75. Suppose we require the moment of the force P
x
about

the axis of z
;
we resolve P

x
into the forces Z

x parallel to the

axis ofz and Qx perpendicular to the axis of z, where Qx
is itself

the resultant of X
x
and Y

x
. The moment of Qx

with respect
to the axis of z is equal to the algebraical sum of the moments
of its components Xx

and Y
x ;

that is, to Y
x
x

x
X

xyx
. Hence

iVin Art. 72 denotes the sum of the moments of the forces round
the axis ofz, and similar meanings arise for L and M.

Hence, for the equilibrium of the forces acting on a rigid

body, the sums of the resolved parts of the forces parallel to any
three lines at right angles to each other must vanish, and the

sums of the moments of the forces with respect to these lines must
also vanish.

76. In order to interpret the meaning of G we observe

that if we keep to the same origin, the moment of this couple
and the direction of its axis must be independent of the

directions of the co-ordinate axes. For B, being the resultant

of all the given forces, supposing them applied at a point, is of

course independent of the directions of the axes. If by a new
choice of axes we obtain G' as the resultant couple, then R
and G must be equivalent to B and G', and therefore

B, G, B, G' must form a system in equilibrium. But
this is impossible unless G= G' and the axes of G and G' are

coincident or parallel.

Since the direction of the co-ordinate axes is arbitrary, sup-
pose the axis of x to coincide with the axis of G

;
then M= 0,

N= 0, and L and G are identical.

Hence G is equal to the sum of the moments of the given
forces with respect to the line which is the axis of G.

77. Suppose a force P acting at the point (x, y, z), and let

X, Y, Z be its components parallel to the axes. Then, by
Art. 72, P at the point (x, y, z) is equivalent to P at the

origin, together with the couples Zy Yz, Xz Zx, Yx Xy
round the axes of x, y, z respectively. Let If be the resultant

couple, r the distance of the point (x, y, z) from the origin,
and a the angle between r and P; then



MEANING OF G. -65

iT= (Zy
-

Yz)
2 + (Xz-Zx)

2

+{Yx - Xyf
=

(x
2 +f + s

2

) (X
2 + F2 + Z2

)
- (xX+ yY+ zZf

= r
2P2 -r2P2 F^+*4+^x |7 ^y

r P + r P + rPJ
= r

2P2

(l-cos
2

a),

.*. H=rP sin a.

Thus, as we might have anticipated, ^T is the moment of the

couple formed by P at the point (x, y, z) ,
and a force at the

origin equal to P and acting in a parallel and opposite direc-

tion. Hence G is the couple formed by compounding the

couples similar to H arising from all the forces of the system.

78. As an example of Art. 73 we may take the case in

which all the forces are parallel. Let a, j3, 7 be the angles
which the direction of the forces P

x ,
P

2 ,
makes with the

axes. Then the equations of equilibrium reduce to

2P=0,

2P (y cos 7 z cos /3)
=

0,

2P(zcosa a? cos 7) =0,

SP {x cos/3 y cos a)
= 0.

Hence we can deduce the conditions that a system of parallel
forces may maintain a body in equilibrium, however they may
be turned about their points of application. For the preceding

equations must then hold whatever a, /3, 7 may be. Thus we
must have

2P=0, $Px=0, $Py=0, %Pz = 0.

79. In Art. 72 we have reduced the forces acting on a body
to a force R and a couple G. If G vanish there remains a

single force ; and if R vanish, a single couple. If neither R
nor G vanish the forces may reduce to a single force ; we pro-
ceed to shew when this is possible.

To find the condition among the forces that they may have a

single resultant,

T. S. 5
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Any system of forces can be reduced to a single force R and

a couple G; if then the forces can be reduced to a single
resultant 8, it follows that G, R, and S are in equilibrium.
If R and 8 do not form a couple, they can be reduced to a

couple G' and a force R!
; therefore R' must balance the couple

compounded of G and G'. This is impossible by Art. 40.

Hence R and 8 must form a couple, and this couple must
have its plane coincident with that of G, or parallel to that

of G, in order that it may balance G. Therefore that the

forces may have a single resultant, the direction of R must be

parallel to the plane of G, or coincident with it
;
that is, must

be at right angles to the axis of G. Hence, using the notation

of Art. 72,

cos a cos X + cos h cos
/j, + cos c cos v 0,

therefore LtX+M$Y+ NtZ= 0.

80. Conversely, if LtX+M$ Y+ NtZ= 0, and 2X, 2 Y,
%Z do not all vanish, the forces can be reduced to a single force.

For the plane of the couple G may be made to contain the

force R, and the couple may be supposed to have each of its

forces =R and its arm consequently = -^ ;
the couple may

then be turned round in its own plane until the force at one

end of its arm balances the resultant force R, and there re-

mains R at the other end of the arm.

81. When the forces are reducible to a single resultant, to

find the equations to the line in which it acts.

Let L, M, N denote the moments of the forces round the

co-ordinate axes
; L', M', N' the moments of the forces round

axes parallel to the co-ordinate axes drawn through the point

(x', y, z). Then L' is found by writing y^ y for y1 , y2 y'
for y ,

z z for z
,
z z for z

,
in the expression

${Zy-Yz). Therefore
'

L'=S{Z(y-y')-Y(z-z')} = L-y'tZ + z'$Y.

Similarly

M'=t{X(z-z')-Z(x-x)}=M-z'tX+xtZ,
N'=t{Y{x-a!')-X(y^y')} = N-x'tY+y'XX.
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If x, y ',
z can be so taken as to make L', M\ and N'

vanish, the forces reduce to a single resultant passing through
the point (x, y, z). The three equations

L-?jSZ + z'%Y=0 (1),

M-z'ZX+ x'tZ = (2),

N-x'SY+y'2X=Q (3),

are equivalent to two independent equations ;
for if we elimi-

nate z from (1) and (2), we have

L$X+MSY+ ZZ(xtY- y'tX) = 0.

But L$X+ MX Y+ NtZ =
0, by Art 79,

therefore N- x'XY+y'XX= 0.

Thus (3) is a necessary consequence of (1) and (2). Hence

(1) and (2) will determine a line at every point of which the

resultant couple vanishes ;
that is, the line in which the single

resultant force acts.

82. By the following method we may determine at once

the condition for the existence of a single resultant and the

equations to its direction.

Suppose that the forces can be reduced to a single force

acting at the point (x, y', z). Let the single force be resolved

into components X', Y\ Z' parallel to the co-ordinate axes
;

then if we add to the given system X', Y
',
and Z',

acting at the point (x, y', z) parallel to the axes respectively,
there will be equilibrium. Hence, by Art. 73,

2X-X =
0, $Y-Y' = 0, $Z-Z' =

(1),

L-Z'y'+ Y'z'= 0, M-X'z'+Z'x'=Q, N-Y'x'+X'y'=0...(2).

Equations (1) determine X\ Y\ Z'. It might at first appear
that equations (2) would determine x\ y\ z

;
but if we pro-

ceed to solve them, we find that they cannot he simultaneously
true unless

LtX+MXY+ NXZ= ;

and if this condition be satisfied, and %X, XY, %Z do not all

vanish, then any one of the equations may be derived from

the other two, so that there are only two independent equations.52
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Hence that the forces may have a single resultant the above
condition must be satisfied, and then any two of equations (2)

will determine the locus of points at which this single result-

ant may be supposed to act. From the form of equations (2)

it is obvious that this locus is a straight line, and that its

direction cosines are proportional to X', Y', Z\ as might
have been anticipated.

In order that the force which replaces the system may pass

through the origin, we must have

L = 0, M=
0, N= 0.

83. Although a system of forces cannot always be reduced

to a single resultant, it can always be reduced to two forces.

For we have shewn that the system may be replaced by a

force B at the origin, and a couple G lying in a plane through
the origin ;

one of the forces of G may be supposed to act at

the origin, and may be compounded with R so that this

resultant and the other force of G are equivalent to the whole

system. Since the origin is arbitrary, we see that when a

system of forces is not reducible to a single force it can be re-

duced to two forces, one of which can be made to pass through

any assigned point.

84. When three forces maintain a body in equilibrium,

they must lie in the same plane.

Draw any line intersecting the directions of two of the

forces and not parallel to the third force, and take this line

for the axis of x. Then the first two forces have no moment
round the axis of x ;

therefore the equation L = requires
that the third force should have no moment round the axis

of x; that is, the direction of the third force must pass

through the axis of x. Since then any line, which meets
the directions of two of the forces, and is not parallel to the

direction of the third, meets that direction, the three forces

must lie in one plane.

Combining this proposition with that in Art. 58, we see

that if three forces keep a body in equilibrium, they must all

lie in the same plane and must meet in a point or be parallel.

85. If the axes of co-ordinates be oblique, suppose I, m, n
to denote the sines of the angles between the axes of y and
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z, z and x, x and y, respectively; then we may shew, as in

Art. 72, that any system of forces can be reduced to XX, %Y,
^Z, acting at the origin along the axes of x, y, z respectively,
and three couples in the three co-ordinate planes, having their

moments equal to IL, mM, nN respectively, where, as before,
jL=] (Zy Yz), &c. Also for equilibrium, we must have,
as before,

2X=0, 2F=0, tZ=0;
Z =

0, i=0, N=Q.

That the forces may admit of a single resultant we must have,
as before,

L%X +MSY+NSZ=0,
and % X, 2 Y, %Z not all vanishing.

EXAMPLES.

1. Four parallel forces act at the angles of a plane quad-
rilateral and are inversely proportional to the segments of its

diagonals nearest to them
;
shew that the point of application

of their resultant lies at the intersection of the diagonals.

2. Parallel forces act at the angles A, B, C of a triangle
and are respectively proportional to a, b, c; shew that their

resultant acts at the centre of the inscribed circle.

3. A cone whose vertical angle is 30, and whose weight
is W is placed with its vertex on a smooth horizontal plane ;

shew that it may be kept with its slant side in a vertical

position by a couple whose arm is equal to the length of the

SW
slant side of the cone, and each force -

.

lb

4. Six equal forces act along the edges of a cube which
do not meet a given diagonal, taken in order

;
find their re-

sultant.

Result. A couple, the moment of which is 2Pa \/3, where
P denotes each force and a the edge of the cube.

5. A cube is acted on by four forces; one force is in a

diagonal, and the others in edges no two of which are in the
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same plane and which do not meet the diagonal; find the

condition that the forces may have a single resultant.

Result. (17+ YZ 4- ZX) V3 + P (X+ Y+ Z)= ;
where

X, Y, ^denote the forces along the edges, and P the force

along the diagonal.

6. If a triangle is suspended from a fixed point by strings
attached to the angles, the tension of each string is propor-
tional to its length.

7. A uniform heavy triangle is supported in a horizontal

position by three parallel strings attached to the three sides

respectively; shew that there is an infinite number of ways
in which the strings may be relatively disposed so that their

tensions may be equal, but that the situation of one being

given, that of each of the other two is determinate.

8. A sphere of given weight rests upon three planes
whose equations are Ix + my + nz = 0, l

x
x + m

ty + n
x
z = 0,

l
2
x + ra

22/ + w
2
z = 0, the axis of z being vertical; find the

pressure upon each plane.

9. A heavy triangle ABC is suspended from a point by
three strings, mutually at right angles, attached to the angular

points of the triangle; if 6 be the inclination of the triangle
to the horizon in its position of equilibrium, then

o

cos Q
V(l 4- sec A sec B sec G

)

10. An equilateral triangle without weight has three un-

equal particles placed at its angular points; the system is

suspended from a fixed point by three equal strings at right

angles to each other fastened to the corners of the triangle ;

find the inclination of the plane of the triangle to the horizon.

Result. The cosine of the angle is

W.+ W.+ Ws
V[3(f;"

2 + w;+ w3

2

)}

where W
x ,

TT
2 ,
W

3 represent the weights of the particles.

11. Four smooth equal spheres are placed in a hemisphe-
rical bowl. The centres of three of them are in the same
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horizontal plane, and that of the other is above it. If the
radius of each sphere be one-third that of the bowl, shew
that the mutual pressures of the spheres are all equal ; and
find the pressure of each of the lower spheres on the bowl.

Results. Let W be the weight of each of the spheres ;

then each of the mutual pressures between the spheres is

W
-j-;

the pressure of each of the lower spheres on the bowl

12. Three equal spheres hang in contact from a fixed

point by three equal strings ;
find the heaviest sphere of given

radius that may be placed upon them without causing them
to separate.

Result. Let "FT be the weight of each of the equal spheres,
6 the angle which each string makes with the vertical, <j>

the

angle which the line joining the centre of one of the three

equal spheres with the centre of the upper sphere makes with

the vertical; then the weight of the upper sphere must not

, 3TFtan0
exceed -

3
-

5 .

tan
<p

tan V

13. Four forces act on a tetrahedron perpendicular to

the faces and proportional to their areas, the points of appli-
cation of the forces being the centres of the circles circum-

scribing the faces
;
the forces act all inwards or all outwards ;

shew that the tetrahedron will be in equilibrium.

14. Extend the proposition in the preceding example to

the case of any polyhedron bounded by triangular faces.
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CHAPTER VI.

EQUILIBRIUM OF A CONSTRAINED BODY.

86. To find the conditions of equilibrium of forces acting

upon a rigid body when one point is fixed.

Let the fixed point be taken as the origin of co-ordinates.

The action of the forces on the body will produce a pressure
on the fixed point; let X, Y', Z' be the resolved parts of

this pressure parallel to the axes. Then the fixed point will

exert forces X', Y\ Z\ against the body; and if we
take these forces in connexion with the given forces, we may
suppose the body to be free, and the equations of equilibrium
are

$X-X' = 0, 2F-r =
o, %Z-Z' = 0,

L = 0, if=0, N=0.

The first three equations give the resolved parts of the

pressure on the fixed point ;
and the last three are the only

conditions to be satisfied by the given forces.

From the equations X' = %X, Y' = $Y,Z' = %Z, it follows

that the pressure on the fixed point is equal to the resultant

of all the given forces of the system moved parallel to them-
selves up to the fixed point.

If all the forces are parallel, we may take the axis of z

passing through the fixed point parallel to the forces. Then
all the forces included in 2<X vanish, and so do all the forces

included in 2 Y; thus N vanishes, M reduces to %Zx, and
L reduces to %Zy. Hence X' and Y' vanish and the equa-
tions of equilibrium reduce to

2Z-Z'= 0, 2^ =
0, tZx=0;
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the first determines the pressure on the fixed point, and the

other two are conditions which must be satisfied by the given
forces.

If all the forces act in one plane passing through the fixed

point, and we take this plane for that of [x, y), all the forces

included in %Z vanish
;
also the ordinate parallel to the axis

of z of the point of application of each force is zero. Thus
L and M vanish ; also Z' vanishes, and the equations of equi-
librium reduce to

tX-X' = 0, 2F-r =
0, $(Yx-Xy)=0;

the first two determine the pressure on the fixed point, and the

third is the only condition which the forces must satisfy.

87. To find the conditions of equilibrium ofa body which

has two points in it fixed.

Let the axis of z pass through the two fixed points ;
and

let the distances of the points from the origin be z and z".

Also let X', Y', Z' be the resolved parts of the pressures
on one point, and X", Y", Z" those on the other point.

Then, as in Art. 86, the equations of equilibrium will be

%X-X-X" =
0, SY-Y-Y" =

0, ZZ-Z'-Z' = 0,

L + Y'z' + Y"z" = 0, M- XV - X"z"= 0,

The first, second, fourth, and fifth of these equations will

determine X, X", Y', Y"
; the third equation gives Z' + Z\

shewing that the pressures on the fixed points in the direction

of the line joining them are indeterminate, being connected

by one equation only. The last is the only condition of

equilibrium, namely N= 0.

88. The indeterminateness which occurs as to the values

of Z' and Z" might have been expected ;
for if two forces,

Z' and Z", act upon a rigid body in the same straight

line, their effect will be the same at whatever point in their

line of action we suppose them applied, and consequently
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they may be supposed both to act at the same point, or one
of them to be increased provided the other be equally di-

minished. If it be objected that in any experimental case

there really would be some definite pressure at each fixed

point, we must reply, that no body on which we can ex-

periment fulfils the condition of perfect rigidity, on which
our conclusions depend. See Poisson, Art. 270

; Poinsot, Arts.

128132.
The case which we have been considering is that of a body

which is capable of turning round a fixed axis; for an axis

will be fixed if two of its points are fixed.

89. If the body, instead of having two fixed points, can
turn round an axis and also slide along it, then in addition to

the condition N= 0, we must have %Z= 0, supposing the axis

of z directed along the line on which the body can turn and
slide. For the axis will not be able, as in the last case, to

furnish any forces Z' and Z" to counteract %Z, and there-

fore %Z must = 0.

90. To find the conditions of equilibrium of a rigid body

resting on a smooth plane.

Let this plane be the plane of (x, y) ;
and let x, y be the

co-ordinates of one of the points of contact, B' the pressure
which the body exerts against the plane at that point. Then
the force B, and similar forces for the other points of

contact, taken in connexion with the given forces, ought to

satisfy the equations of equilibrium ;
hence

2X=0, 27=0, $Z-B'-B"-... = Q,

L-.B'y'-B"y"-...=0, M+B'x' + B"x"+ ... = 0, N=0.

If only one point be in contact with the plane, then the

third equation gives the pressure, and we have five equations
of condition,

2X=0, 2r=0, L-y'ZZ=0, M+x'2Z=0, N=0.

If two points be in contact, then the equations

B'y' + B"y" = L, B'x + B"x" = -M,
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jy Lx"+My" jy,
Lx' + My

yx xy y x xy

and the equations of condition are

2X0, XF=0, %Z- L{x''- X
l
+M^-^ =o, andi^O.

jn -xy
If three points are in contact, then the pressures are

determined from the equations

R' + R" + R'" = 2Z,

R'y + E'y" + R'"y" = L,

R'x' + R"x" + R'"x" = -M,
and the conditions of equilibrium are

2X =
0, 2F=0, JV=0.

If more than three points are in contact, then the pressures
are indeterminate, since they. are connected by only three

equations ;
but the conditions of equilibrium are still

2X=0, 2F=0, iV"=0.

91. The equations at the commencement of the preceding
article shew that if a body rests in equilibrium against a

plane, the forces which press it against the plane must reduce

to a single force acting perpendicular to the plane, for the

condition

LZX+MtY+NSZ=0
is satisfied, since XX, 2 Y, and N vanish. Hence the forces

reduce to a single force
;
and since XX and XY vanish, this

force must be perpendicular to the fixed plane.

Also, this single force must counterbalance the forces

R',R"..., which are all parallel and all act in the same
direction. Hence, from considering the construction given
in Art. 66 for determining the centre of a system of

parallel forces, it follows that the point where this resultant

cuts the plane must be within a polygon, formed by so joining
the points of contact as to include them all and to have

no re-entering angle.
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MISCELLANEOUS EXAMPLES.

1. The lid ABGD of a cubical box, moveable about

binges at A and B, is held at a given angle to the horizon

by a horizontal string connecting C with a point vertically
over A : find the pressure on each hinge.

2. Two equal forces act on a cube whose centre is fixed,

along diagonals which do not meet of two adjacent faces:

find the couple which will keep the cube at rest.

Result. Let P denote each force, a the edge of the cube
;

the moment of the required couple is either - or ac-
A A

cording to the directions of the two given forces.

3. Three equal heavy rods in the position of the three

edges of an inverted triangular pyramid are in equilibrium
under the following circumstances. Their upper extremities

are connected by strings of equal lengths, and their lower

extremities are attached to a hinge about which the rods

may move freely in all directions. Find the tension of the

4. A given number of uniform heavy rods, all of the

same weight, have their extremities jointed together at a

common hinge, about which they can turn freely ;
and being

introduced through a circular hole in a horizontal plane
with their hinge end downwards, are spread out symmetri-

cally along the circumference of the hole like the ribs of

a conical basket. If a heavy sphere be now placed in the

interior of the system of rods, so as to be supported by them,
determine the position of rest.

5. A cylinder rests with its base on a smooth inclined

plane; a string attached to its highest point, passing over

a pully at the top of the inclined plane, hangs vertically
and supports a weight ;

the portion of the string between the

cylinder and the pully is horizontal. Determine the con-

ditions of equilibrium.
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Results. Let W be the weight of the cylinder, W the

weight attached to the string, a the inclination of the plane
to the horizon; then W = IF tan a, and tana must not ex-

ceed the ratio of the diameter of the base of the cylinder to

the height of the cylinder.

6. A cone of given weight W is placed with its base

on an inclined plane, and supported by a weight W which

hang3 by a string fastened to the vertex of the cone and

passing over a pully in the inclined plane at the same

height as the vertex. Determine the conditions of equilibrium.

Results. Let a be the inclination of the plane to the

horizon, 6 the semi-vertical angle of the cone ; then

3
W' IFtan a, and tan 6 must not be less than - sin 2a.

o

7. A cylinder with its base resting against a smooth
vertical plane is held up by a string fastened to it at a point
of its curved surface whose distance from the vertical plane
is h. Shew that h must be greater than b 2a tan 6 and less

than b, where 2b is the altitude of the cylinder, a the radius

of the base, and the angle which the string makes with the

vertical.

8. A smooth hemispherical shell whose base- is closed

includes two equal spheres whose radii are one third of that

of the shell. The shell is fixed with its base vertical
;
find

the mutual pressures at all the points of contact.

Results. Let R
x
be the pressure between the upper sphere

and the shell, R2
that between the two spheres, R3

that be-

tween the lower sphere and the base of the shell, i?
4
that

between the lower sphere and the curved part of the shell;

then

W
J? _2W j,_*W t>_W_

'

M'~
V3

' 2
"

V3
' 3

~
V3 !

4
"

V3
#

9. A rectangular table is supported in a horizontal posi-

tion by four legs at it3 four angles : a given weight W being

placed upon a given point of it, shew that the pressure on

each leg is indeterminate, and find the greatest and least value

it can have for a given position of the weight.
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CHAPTER VII.

GENERAL THEOREMS ON A SYSTEM OF FORCES.

92. In Art. 72 it is proved that the forces acting on a

rigid body may be reduced to a force R and a couple G, and
that G2 = L2 + J\P +N2

,
where L, M, N are the moments of

the forces round three rectangular axes arbitrarily chosen.

It is obvious that neither L, M, nor N can be greater than G
;

hence, for a given origin, the resultant moment G is greater
than the moment of the forces about any other axis. For this

reason G is called the principal moment of the forces.

From the equations in Art. 72, which determine the direc-

tion of the axis of G, it follows that G cos < is the moment
of the forces about an axis which passes through the given

origin, and makes an angle < with the axis of principal
moment.

93. The value of R in Art. 72 is independent of the

position of the origin of co-ordinates; R is in fact the re-

sultant of the given forces, supposing each of them moved

parallel to itself until they are all brought to act at the same

point. The value of G, however, depends on the origin we
assume. If we take a point whose co-ordinates are x, y', z\
and denote by L', M\ N' the moments of the forces round
lines through this point parallel to the co-ordinate axes, and

by G the principal moment of the forces with respect to this

point, we have, by Art. 81,

L' = L-y'%Z + z'tY,

M'^M-z'tX + xtZ,

N'=N-x'ZY+y'SX,
j

G'
2 = L,2 + M'2 + N'\

(1)
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We proceed to apply these equations to find the least

value of G\

To find the locus of the origins which give the least principal
moments, the magnitude of those moments, and the position of
their axes.

Multiply the first of equations (1) by %X9
the second by

% Y, and the third by %Z, and add
;
thus

L'$X+M'ZY+N'SZ=LZX+ MZY+N5Z... (2).

Also

R*G'2 = {(ZX)
2 + (2 Yf + ($Z)

2

} [L
2 + M'2 + N'2

}

= {N'tY- M'tZ)
2 + {L'tZ- N'XX)

2

+ (M'tX- L't Y)
2 + (L'tX+M%Y+ N'tZ)

2
... (3).

Of these four terms the last is constant for all values of

x, y\ z by (2) ;
hence we obtain the least value of G' by

making the three preceding terms vanish, which gives

L _M' _ N'

2X~XY~XZ l

that is,

L - y'$Z+ zt Y M-z'tX+x'tZ_ N-x't Y+tf&X
2X XY

~
%Z W"

Hence the required locus is a straight line.

From (4) it appears that L', M', N' are proportional to

*ZX, %Y, SZ respectively, which shews that the axis of the

principal moment at any point on the line (5) is parallel to

the direction of the resultant R. By (3) the value of the

least principal moment is

LZX+MtY+NtZ
R

Each of the fractions in (5) is, by a known theorem,

equal to

LZX+MSY+NSZ
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. . LtX+MZY+NtZ
that is, to

The equations (5) may by suitable transformations be

reduced to the ordinary symmetrical equations to a straight

line. We have

L - y'tZ+ g'S Y_ L%X+MtY+ N$Z
X~ & ''

therefore

L{{$Y)
2 + (tZf} 4- (z'tY-y'ZZ) R*={MZY+NtZ) %X;

therefore

(z'R
2 - MZX+ Lt Y) 2 Y= {y'R

- LZZ+ NtX)tZ;
therefore

I'.-/
, LZZ-NSX\_ 1 /

, MtX-LtY
ZY\y R2 )~2Z[

Z
7?

Hence we conclude that the equations (5) may be written

ix(
x'-

NtY-MZZ\_ 1 /
, LZZ- N$X\R ) 2YV

" R J

-if-
MtX-LtY

R
from which we see that the straight line determined by (5) is

parallel to the direction of R. Hence this straight line has
the following properties : at every point of it the value of the

principal moment is the same, and is less than it is for any
point not in the line; also for every 'point in the line the position
of the axis ofprincipal moment is the same, being the line itself
This line is called the central axis.

94. The equation (2) of Art. 93 may be written

****-**
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This shews that if we resolve L', M', N' along a line

parallel to the direction of R, and add the resolved parts,
we obtain the same result whatever origin he chosen. Thus
the resolved part ofany principal moment in the direction ofR
is constant. By the resolved part of the principal moment in

the direction ofR we mean that part of the moment which has
its axis in the direction of R.

95. From equations (1) of Art. 93 it appears that L' = L,
M' = M, and N' = N, provided

x y z

that is, if the point (x, y\ z) be on a line through the origin

parallel to the direction of R. Since the origin is arbitrary,
we may therefore assert that the principal moment remains

unchanged, when the point to which it relates moves along any
straight line parallel to the direction of R.

96. The equation to the plane through the origin perpendi-
cular to the direction of R is

x%X + y'$Y+z'ZZ=Q (1).

If we combine this equation with equations (5) of Art. 93,

we obtain the co-ordinates of the point of intersection of this

plane with the central axis.

We thus find for these co-ordinates

NtY-MtZ LtZ-NtX MtX-LZY
Rz ' R2 ' R*

which we will denote by h, 7c, I respectively.

If x', y\ z' satisfy (1), then N'$Y-M'tZ

or {N- x't Y+y'$X) 2 Y- (M - ztX+x"ZZ)tZ

=Nt Y-MtZ- x'R? = R?(h-x')^

Similarly L'$Z-N'ZX = R2

ih-y'),

M'tX-LXY=R{l-z).
T. S. (5
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Therefore from equation (3) of Art. 93

G i =2Z,

{(A-a;)
,,+ (&-y)

2

+(Z-*)
2

} +
^ s J

(2).

Hence Cr' remains constant for all points in the plane (1)

for which (h x')* + (k y')
2 + '(I z'Y is constant; that is,

for all points in (1) which are at a constant distance from the

central axis. From this and Art. 93 it follows, that if a right

cylinder be described round the central axis, the principal
moment has the same value for any point on the surface of this

cylinder.

97. Of the two expressions which compose G' in equation

(2) of Art. 96, the latter, by Art. 94, is the resolved part of

G' parallel to the direction of R
;
hence the former part is the

resolved part of G' perpendicular to the direction of R. Call

the former part Q, and
cf>

the angle which the direction of the

axis of G' makes with that of R
;
then sin < = --, ,

and this

is constant so long as G' is, that is, for every point on the

surface of the cylinder in the preceding article.

98. The propositions already given in this chapter admit
of other modes of proof, which we proceed to indicate.

To shew that any system of forces can always he reduced

to a force and a couple, the axis of the latter being 'parallel
to the direction of the former.

The forces can be always reduced to a force R and a couple
G, and the angle <\>

between the former and the axis of the

latter is given by the equation

^ LZX+MtY+NSZ
cos</>

= ^ .

Eesolve the couple G into two others
; one having its axis

parallel to the direction ofR and its moment equal to G cos <,
the other having its axis perpendicular to the direction of R
and its moment equal to 6rsin<. The forces of the latter

couple are therefore in a plane parallel to R; and by pro-
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perly placing this couple in its own plane, and making each
of its forces equal to B, one of its forces may be made to

balance the force B. We shall then have remaining the

couple G cos
<j>

and a force B, the direction of which is

parallel to the axis of the couple, and which is moved to

a distance ^~^ from its original position. The system is

,

"

, ,
,
LtX+MtY+NtZ

thus reduced to a force R and a couple . =
-,

the axis of the latter being parallel to B, and therefore its

plane perpendicular to B.

Since the resultant couple must be independent of the direc-

tion of the axes of co-ordinates we conclude that

L2X+MtY+N2,Z
B

must be constant whatever be the direction of the axes
;
and

as B is constant it follows that LlX+M^Y+N%Z must be
constant whatever be the direction of the axes. The expres-
sion also remains the same whatever origin be chosen, as ap-

pears from equation (2) of Art. 93.

99. Prop. When a system of forces is reduced to a force
and a couple in a plane perpendicular to the force, the position
and magnitude of the force are always the same.

The magnitude of the force is always the same, for it is the

resultant of the given forces supposing each of them moved

parallel to itself until they are all brought to act at the same

point. We shall now shew that there is a definite straight
line along which the resultant force must act.

LetV, y, z be the co-ordinates of an origin such that the

axis of the resultant couple coincides with the direction of

the resultant force. Then with the notation of Art. 93

we have

L' M IP

XX~2Y~%Z'
for the direction cosines of the axis of the couple are propor-
tional to L\ M\ and N\ and those of the direction of the

62
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force are proportional to 2X, XY, ^Z. Hence the locus of

the origins is the straight line determined by equations (5)

of Art. 93.

100. It appears from the last article that there is only
one position of the resultant force in which it is perpendicular
to the plane of the resultant couple. If we wish to transfer

the resultant force to any other point, we can do it by
introducing two forces, R and R, at that point ;

the latter

with the original force R will form a couple ;
and if this couple

be compounded with the original couple we have a new

couple, the moment of which is V(K
2 + R2

p
2

) ,
K being the

original moment and p the distance to which R has been

moved. This moment is greater than K; and hence the

line in which R acts when perpendicular to the plane of

the resultant couple is the axis of least principal moment.
It is therefore the central axis.

K is shewn m Art. 98 to be = ^

101. The principal moment will be the same for every

point of the central axis, since when we have reduced the

forces to a single force and a couple in a plane perpendicular
to the force, the force may be supposed to act at any point
in its line of application, and the plane of the couple may be
moved parallel to itself into any new position. See also Art. 95.

Hence if we draw any plane perpendicular to the central axis,

and describe a circle in the plane with radius p, and having its

centre at the intersection of the central axis, then, by the

last article, the principal moment for any point in this circle

will be *J(K* + ft
2

p
2

), and the angle </
at which the direction

of its axis is inclined to the direction of R is given by the

equation tan
<f>
=
-^ .

102. When a system offorces acting upon a rigid body is

reduced to two forces, and these are represented by two straight
lines which do not meet and are not parallel, the volume of the

tetrahedron of which the two straight lines are opposite edges
is constant.
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Let the lines AB and AB' represent the two forces,
AA' being a line perpendicular to A

both. Suppose two parallel lines

Ax, Ax drawn, each perpendicular ,/''

to AA, and Ay, Ay, respectively 4''

perpendicular to Ax, Ax, and also

perpendicular to AA. Let BAx
=

(f>,
BA'x' =

<t>',
and let J7

and T
denote the intensities of the forces jfr
in AB andAB respectively. Then
T may be resolved into T cos

<f>
and T sin

</> acting at A along
Ax and Ay respectively, and T' into T cos

<j>',
T sin <' act-

ing at A along Ax and Ay respectively. Let a be the

inclination of AB and AB', so that <' =
<f>
+ a. Now deter-

mine by the equation

T cos
<j> + T cos

<j>'
=

(1),

that is T cos < + T cos (^ + a)
= 0.

Then by (1) the forces T cos
<f>
and 2*' cos (' will form a couple

in the plane xAAx; and Tsin^) and T' sm<j>' will have a

single resultant perpendicular to the plane of this couple,
for they cannot form a couple since then the whole system of

forces would reduce to a single couple which is contrary to

supposition. Let P denote the intensity of this single force

so that

P= Tsmf+T's'mfi (2).

The moment of the couple is AA x Tcos
</>. Hence, by

the latter part of Art. 98, AA x P x T cos
<f>

is constant

whatever be the position and magnitude of the forces T and

T, so long as they are equivalent to a given system of

forces. Now the volume of the tetrahedron of which AB and
AB are opposite edges is JAB.AB'.AA .sin a.

(See Hymers's Geometry of Three Dimensions, p. 213.)

But from (1) and (2) we have T sin a = P cos
<f>.

Hence the

volume of the tetrahedron becomes \AA. T.P cos
<j>,

which
we have just seen to be constant.

103. When a system of parallel forces acting on a rigid

body has a single resultant, that resultant always passes



86 CENTRE OF FORCES.

through a fixed point in the body whatever may be the

position of the body. When any system of forces acts on
a rigid body we might investigate the consequences of turn-

ing the body from one position into another while the forces

retain their original directions, or of turning the forces in

such a manner as to leave their relative directions unchanged
while the body remains fixed. We shall here give some

examples of the general theorems that have been demon-
strated on this subject. The forces are supposed to act at

fixed points in the body.

104. Let PA and QA be the directions of two forces

lying in one plane, acting at the

points P and Q respectively; TA
the direction of their resultant.

Suppose the forces in PA, QA to

be turned round the points P and Q
respectively through the same an-

gle a towards the same direction;

since PA and QA will include the

same angle as before, their point
of intersection will move on a circle

passing through P and Q. And
as the magnitudes of the forces are supposed unchanged, the

magnitude of the resultant and the angles which it makes
with the components remain unchanged. Hence if T be the

intersection of the resultant and the circle originally, it will

always be so, since the arcs PT and QT &xq proportional to

the angles PAT and QAT; the resultant will therefore have

turned through the angle a round the point T.

The same result holds if instead of supposing the body
to be fixed and the forces to revolve, we suppose each force

to remain parallel to itself and the body to be turned through

any angle round a perpendicular to the plane of the forces.

The point T through which the resultant always passes

may be called the centre of the forces which act at P and Q.
It is evident, in like manner, that if a third force pass

through a fixed point 8 and meet the line TA, we may
find the centre

' of the forces at T and S, that is, the centre

of the forces at P, Q, and S; and generally we may infer
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that every system offorces in one plane which is reducible to

a single resultant has a centre; or, in other words, if there

be a system of forces acting in a plane and having a single

resultant, and we know the magnitude of each force, the

angles the directions of the forces make with each other,
and one point in the direction of each, then we can deter-

mine the magnitude of the resultant, the angle its direction

makes with those of the component forces, and one point in

its direction.

105. If a system of forces maintain a body in equilibrium,
and equilibrium also subsist after the body has been turned

through any given angle which is not a multiple of two right

angles, about any axis, then equilibrium will still subsist

when the body is turned about the same axis through any
angle whatever, the forces being supposed to act with the

same intensity and in parallel directions throughout.

Take the axis of z to coincide with the line about which
the body is turned. Since there is equilibrium in its first

position, we have

Sx=o, 2r=o, $z=o (i),

$(Zy-Yz) = 0, ${Xz-Zx) = 0, X(Yx-Xy) = 0...(2).

If equilibrium subsist when the body is turned through an

angle 0, the equations (1) and (2) must hold when we put
x cos y sin for x, and x sin + y cos for y. Hence (2)

become

&m 0$(Zx) + cos 0t(Zy)-$(Yz)=Q (3),
.

t{Xz)
- cos0S{Zx) + sin t{Zy) = (4),

cos0$(Yx-Xy)-sm0t{Xx + Yy)=O (5).

By means of (2), equations (3) and (4) become

sin ${Xz) - (1
- cos 0) $(Yz)= 0,

(1
- cos 0) S(Xz) + sin 2( Yz) = 0. ,

As these equations hold for some value of sin different from

zero, we must have

2(X*)=0, and 2(F*)=0 (6).
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Then, by (2), we infer

2(Zc) = 0, and 2(%) = (7).

And from (2) and (5),

2(Faj-Xy)=0, and X{Xx + Yy) = (8).

And when (6), (7), and (8) are true, (3), (4), and (5) are true

for all values of 6.

106. It appears from the preceding article that when
forces act in one plane on a rigid body and maintain equi-

librium, the necessary and sufficient additional condition in

order that equilibrium may subsist after the body has been

turned round an axis perpendicular to the plane while the

forces remain parallel to their original directions, is

2(Xx + Yy)=0.

107. We have remarked in Art. 9 that the property
of the divisibility of matter leads us to the supposition that

every body consists of an assemblage of material particles or

molecules which are held together by their mutual attraction.

Now we are totally unacquainted with the nature of these

molecular forces
; if, however, we assume the two hypotheses

that the action of any two molecules on each other is the

same, and also that its direction is the line joining them,
then we shall be able to deduce the conditions of equilibrium
of a rigid body from those of a single particle.

To find the conditions of equilibrium of a rigid body from
those ofa single molecule.

Let the body be referred to three rectangular axes; and
let x

x ,yx ,
z

x
be the co-ordinates of one of its constituent par-

ticles; Xlf
Y

lt
Z

x
the resolved parts, parallel to the axes, of

the forces which act upon this particle exclusive of the mole-
cular forces; Plt

P
2 ,
P

3 , the molecular forces acting on
this particle; j, p%t %j a

2 , #2 , 72 ; the angles their re-

spective directions make with the three axes of co-ordinates.
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Then, since this particle is held in equilibrium by the above

forces, we have, by Art. 27,

X
l
+ Pl

coa o^ + P, cos a
2 + =0 (1),

F
1
+ P1

cos
1 + P2 cos/32 + =0 (2),

1̂ + P1
cos 7l + P2 cos72 + =0 (3).

We shall have a similar system of equations for each particle
in the body ;

if there be n particles there will be S?i equations.
These Sn equations will be connected one with another, since

any molecular force which enters into one system of equations
must enter into a second system ;

this is in consequence of

the mutual action of the particles.

There are two conditions which will enable us to de-

duce from these 3w equations six equations of condition,

independent of the molecular forces. These will be the

equations which the other forces must satisfy, in order that

equilibrium may be maintained.

The first condition is this, that the molecular actions are

mutual ; and that, consequently, if P
t
cos

at, represent the

resolved part parallel to the axis of x of any one of the

molecular forces involved in the 3n equations, we shall like-

wise meet with the term P
x
cos a

t
in another of those equa-

tions which have reference to the axis of x. Consequently,
if we add all those equations together which have reference

to the same axis, we have the three following equations of

condition independent of the molecular forces,

2X=0, SF=0, 2^*0.

The second consideration is this : that the straight lines

joining the different particles are the directions in which the

molecular forces act.

Thus, let Pt
be the molecular action between the particles

whose co-ordinates are
(a?,, ylt

z
x)
and

(a?g , y2 ,
z
2),

PjCOS^, PjCOSft, PjCOS^,

*. P
x
cos a

t ,

- P
x cos/Sj ,

- P
1
cos yx ,



9CT EQUILIBRIUM OF A RIGID BODY

the corresponding resolved parts of P
x

for the two particles.
Then

cos a
x
= 1

,
cosA = ^

,
cos 7,

= -* l
,*

7 7" f

where r = Vffe -xtf + (fc
-

y,)
2 + (z2

- z
x)

2

}-

These enable ns to obtain three more equations free from
molecular forces

;
for if we multiply (1) and (2) by yx

and x
x

respectively, and then subtract, we have

Y
x
x

x
-X

xyx + ... + PX [xx
cos /3x -yx

cos a
x] + ... = 0... (4).

By the same process we obtain from the system of equations
which refer to the particle {x2 ,yiy z^ y

y
2
^

2
-^

2y2 +...-P1 {a?2 cos^1 -?/2
cosa

1 } + ...= 0...(5).

But the values of cos a
x
and cos ft given above lead to the

condition

(x,2
- x

x)
cos ft

-
(y2

- yx)
cos a

x
= 0.

Wherefore the equation

YA-Xiy1 + + Y^-X^+ =

will not involve P
x ,

the molecular action between the particles
whose co-ordinates are x

x,yx ,
z

x
and x

2 ,y2 ,
z
2 respectively.

It follows readily from what we have shewn, that if we form
all the equations similar to (4) and (5), and add them together,
we shall have a final equation

X(Yx-Xy)^0,

independent of the molecidar forces.

In like manner we should obtain

S{Zy-Yz) =
} $(Xz-Zx)=Q.

Moreover we can shew that these six equations are the only

equations free from the molecular forces, supposing the body
to be rigid, and consequently the molecules to retain their

mutual distances invariable. For if a body consist of three

molecules, there must evidently be three independent mole-

.
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cular forces to keep them invariable
;

if to these a fourth be

added, we must introduce three new forces to hold it to the

others
;

if we add a fifth, we must introduce three forces to

hold this invariably to any three of those which are already

rigidly connected ;
and so on

;
from which we see that there

must be at least 3 + 3 (n 3) or 3n 6 forces. Hence the 3/i

equations resembling (1), (2), and (3) contain at least 3rc 6

independent quantities to be eliminated
;
and therefore there

cannot be more than six equations of condition connecting
the external forces and the co-ordinates of their points of

application.
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CHAPTER VIII.

CENTRE OF GRAVITY.

108. Weight is measured like other quantities by means
of an arbitrary unit. If a certain upward force be necessary
to prevent a body from falling, then another body which

requires an equal force to sustain it is said to have a weight

equal to that of the first. When two weights have been

recognised to be equal, a body which requires to sustain it

a force equal to the sum of the two equal forces which would
sustain the two equal weights, is said to have a weight double

that of either of the two equal weights ;
and so on.

It appears from experiment that the weight of a given body
is invariable so long as the body remains at the same place on
the earth's surface, but changes when the body is taken to a

different place. We shall suppose therefore when we speak of

the weight of a body that the body remains at one place.
When a body is such that the weight of any portion of it is

proportional to the volume of that portion it is said to be of

uniform density; the density of such a body is measured by
the ratio which the weight of any volume of it bears to the

weight of an equal volume of some arbitrarily chosen body of

uniform density.

The product of the density of a body into its volume is

called its mass.

When a body is not of uniform density its density at any
point is measured thus: find the ratio of the weight of a

volume of the body taken so as to include that point to the

weight of an equal volume of the standard body ;
the limit of

this ratio, when the volume is indefinitely diminished, is the

density of the body at the assumed point.
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109. It was shewn in Art. 66 that there is a point in every
body such that, if the particles of the body be acted on by
parallel forces and this point be fixed, the body will rest in

whatever position it be placed.

Now the weight of a body may be considered as the resultant

of the weights of the different elementary portions of the body,

acting in parallel and vertical lines. In this case the point
above described as the centre of parallel forces is called the

centre of gravity of the body. We may define the centre of

gravity of any system of heavy particles as a point such that

if it be supported and the particles rigidly connected with it,

the system will rest in any position.

In the present chapter we shall determine the position of

the centre of gravity in bodies of various forms. We shall

first give a few elementary examples.

(1) Given the centres ofgravity of two parts which compose
a body, to find the centre ofgravity of the whole body.

Let G
x
denote the centre of gravity of one part, and G

2
the

centre of gravity of the other part ;
let m

x
denote the mass of

the first part and m
2
the mass of the second part. Join G

x
G

2

and divide it in G so that -=-=* =
,

then G is the centreGG
2
m

x

of gravity of the whole body (Art. 37).

(2) Given the centre ofgravity of a body and also the centre

ofgravity of a part of the body, to find the centre ofgravity of
the remainder.

Let G denote the centre of gravity of the body, and G
x
the

centre of gravity of a part of the body ;
let m denote the mass

of the body, and m
x
the mass of the part. Join G

x
G and pro-

duce it through G to G9 ,
so that -^-^ = *

,
then G2

is the
2 GG

X
m m

x

centre of gravity of the remainder.

(3) To find the centre of gravity of a triangular figure of

uniform thickness and density.
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Let ABC be one surface of the triangular figure ;
bisect BC

in E; join AE; draw ceb parallel to a.

GEB cutting AE in e. Then, by
similar triangles,

ce : CE :: Ae : AE,
and be : BE :: Ae : AE,

.\ ce : CE :: 56 : ##;
but CE=BE, /. ce = fo.

Hence AE bisects every line parallel to BC. Therefore each

of the strips similar to ceb, into which we may suppose the

triangle to be divided, will balance on AE, and therefore the

centre of gravity must be in the line AE.

Bisect AC in F and join BF ;
let this cut AE in G.

Then, as before, the centre of gravity must be in BF; but

it must be in AE; and therefore G is the centre of gravity.

Join EF. Then, because CE = BE and CF=AF, there-

fore EF is parallel to AB and AB=2FE; and by similar

triangles,

EG : EF:: AG : AB, .-. EG = \AG.

Hence to find the centre of gravity of a triangle, bisect any
side, join the point of bisection with the opposite angle, and

the centre of gravity lies a third of the way up this line.

The centre of gravity of any plane polygon may be found

by dividing it into triangles, determining the centre of gravity
of each triangle, and then by Art. 66 deducing the centre of

gravity of the whole figure.

We may observe that the centre of gravity of a triangle
coincides with the centre of gravity of three equal particles

placed at the angular points of the triangle. For to find the

centre of gravity of three equal particles placed at A, B, C
respectively, we join CB and bisect it in E; then E is the

centre of gravity of the particles at C and B
; suppose these

particles collected at E; then join AE and divide AE in G
so that EG may be to A G as the mass of the one particle at

A to that of the two at E, that is, as 1 to 2
;
then G is the centre

of gravity of the three equal particles. From the construction
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G is obviously also the centre of gravity of the triangle
ABG.

Let the co-ordinates of A referred to any axes be &x% yv n
x \

those of B, x
2 , y2 ,

z
2 ;

and those of G, x
3 , y3 ,

z
3 ; then, by

Art. 66, the co-ordinates x, y, ~z of the centre of gravity of

three equal particles placed at A, B, G respectively, are

By what we have just proved, these are also the co-ordinates

of the centre of gravity of the triangle ABC.
It may be remarked that in Art. 66 the co-ordinates may

be rectangular or oblique.

(4) To find the centre of gravity of a pyramid on a tri-

angular base.

Let ABC be the base,

D the vertex
;
bisect A G

in E; join BE, BE;
take EF=\EB, then F
is the centre of gravity
oiABG. Join FD; draw

ah, be, ca parallel to AB,
BC, GA respectively, and
let DF meet the plane
abc in/"; join &/and pro-
duce it to meet BE in e.
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BH; but it is in DF; hence G, the point of intersection of

these lines, is the centre of gravity.

Join FH; then FH is parallel to DB. Also because

EF= EB, therefore FH= %DB, and

Jg=
M

;
but FH=\DB, .-. FG = \DG = \DF

Hence the centre of gravity is one-fourth of the way up the

line joining the centre of gravity of the base with the vertex.

(5) To find the centre of gravity of any pyramid having a

Divide the base into triangles ;
if any part of the base is

curvilinear then suppose the curve to be divided into an in-

definitely great number of indefinitely short straight lines.

Join the vertex of the pyramid with the centres of gravity of

all the triangles, and also with all their angles. Draw a

plane parallel to the base at a distance from the base equal to

one-fourth of the distance of the vertex from the base
; then

this plane cuts every line drawn from the vertex to the base

in parts having the same ratio of 3 to 1
;
and therefore the

triangular pyramids have their centres of gravity in this

plane, and therefore the whole pyramid has its centre of

gravity in this plane.

Again, join the vertex with the centre of gravity of the

base
;
then every section parallel to the base will be similar

to the base, and if we suppose the pyramid divided into an

indefinitely large number of indefinitely thin slices by planes

parallel to the base, the centre of gravity of each slice will lie

on the line joining the vertex with the centre of gravity of

the base. Hence the whole pyramid has its centre of gravity
in this line.

Therefore the centre of gravity is one-fourth of the way up
the line joining the centre of gravity of the base with the

vertex.

(6) To find the centre ofgravity of thefrustum of a pyra-
midformed by parallel planes.
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Let ABCabc be the frustum ; G, g the centres of gravity

of the pyramids BABC, Babe;
it is clear that the centre of

gravity of the frustum must be

in gG produced ; suppose it at G\

Let Ff= c,

AB=a,

ab = b.

Since the whole pyramid DABC
is made up of the frustum and
the small pyramid, therefore,

GG' _ weight of small pyramid

weight of frustum

vol. of small pyr.

%
vol. of large pyr. vol. of small pyr. a3

b
3 '

since similar solids are as the cubes of their homologous
edges ;

and Gg =DG-Dg = % (BF- Df) = fc ;

Also GF= IDF= \(BF- Df) --^ by similar figures,

fa-b'

FG' =FG-G'G = a 3b*
}

{a-b az-bY
c a2 +2ab + Zb*

4 d2 + ab + b*
'

This is true of a frustum of a pyramid on any base, a and b

being homologous sides of the two ends.

We proceed now to the analytical calculations.

t. s. 7
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110. In all the cases in which the Integral Calculus is

employed to ascertain the centre of gravity of a body the

principle is the same
;
the body is divided into an indefinitely

large number of indefinitely small elements; the volume of

an element is estimated, and this being multiplied by the

density gives the mass of the element. The mass is multi-

plied by the abscissa of the element, and we find the sum
of the values of this product for all the elements

; the result

corresponds to the %Px of Art. 66. Also we find the sum
of the masses of all the elements and thus obtain a result

corresponding to the XP of the same article. Divide the

former result by the latter and we have the value of x;

similarly y and i can be found. In the following examples
the student must not allow the details of the Integral Cal-

culus to obscure his recognition of the fundamental formula
of Art. 66

;
he must consider in every case what corresponds

to the P, x, y, z of that article, that is, he must carefully as-

certain into what elements the body is decomposed.

Plane Area,

111. Let CBEH be an area bounded by the ordinates

BG and EH, the curve

BE, and the portion CH
of the axis of x

;
it is re-

quired to find the centre

of gravity of the area. Or
instead of the area we
may ask for the centre of

gravity of a solid bounded

by two planes parallel to

the^ plane
of the paper and equidistant from it, and by a line

which moves round the boundary CBEH remaining always
perpendicular to the plane of the paper. Divide CH into n
portions, and suppose ordinates drawn at the points of divi-
sion. Let LP and MQ represent two consecutive ordinates,
and draw PN parallel to LM.

LetOL = x, LP=y, LM=Ax, OC=c
y OH=h.
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The area of the rectangle PM is yAx ; suppose u to denote

the area of PQN, and let x be the abscissa of the centre of

gravity of the area PQML. Then if h denote the thickness

of the solid and p its densityL&p {yAx + u) is the mass of the

element PQML. Hence, if x be the abscissa of the centre of

gravity of the whole figure CBEff, by Art. 66,

_ %Jcpx (yAx + u) _ %x {yAx + u)

Xkp (yAx + u)

"
2 {yAx + u)

'

supposing the thickness and density uniform. The summa-
tion is to include all the figures like PQML, which are com-

prised in CBEH.
Now suppose n to increase without limit, and each of the

portions LM to diminish without limit
;
then the term 2w in

the denominator of x vanishes ;
for it expresses the sum of

all the figures like PQN, and is therefore less than a rectangle

having for its breadth Ax and for its height the greatest
ordinate comprised between CB and HE. Also the term ^x'u
in the numerator of x vanishes, for it is less than the product

h%u, and as we have just shewn, this ultimately vanishes.

Hence the expression for x becomes, when the number of

divisions is indefinitely increased and each term indefinitely

diminished,

^x'yAx

%yAx

Moreover, x must lie between x and x + Ax : suppose it

equal to x+ v, where v is less than Ax
;
then the numerator

of x may be written

XxyAx + %vyAx ;

and as the latter term cannot be so great as AxSyAx, it

ultimately vanishes. Hence we have

_ _ SxyAxX =
SyAx

'

that is, the above formula will give the correct value of x
when we increase the number of divisions indefinitely and

diminish each term indefinitely, and extend the summation over

72
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the space GBEH. This will be expressed according to tlie

ordinary notation of the Integral Calculus thus,

xJ-^p (1).
jc

h

ydx
K J

In the same manner we may shew that

where y is the limiting value of the ordinate of the centre

of gravity of the element PQML when its breadth is indefi-

nitely diminished
; y is therefore = \y ;

hence

-
y
Wfdx

y ~
JSydx

{2) -

We have now only to substitute in (1) and (2) for y its

value in terms of x, and then to effect the integration by the

ordinary methods.

112. It will not be necessary for the student in solving
an example to repeat the whole of the preceding process.
When he understands how the necessary exactness may be

given, if required, he may proceed shortly thus. The figure

PQML = yKx ultimately, and the co-ordinates of its centre

of gravity are x and \y ultimately. Hence

-Jxydx anA
- Jjyydx

fydx
u

fydx
'

the integrations being taken between proper limits.

Unless the contrary be specified, we shall hereafter sup-

pose the bodies we consider to be of uniform density, and
shall therefore not introduce any factor to represent the

density, because, as in the preceding article, the factor will

disappear.

113. Ex. 1. Let the curve be a parabola whose equation is

y = 2s/(ax).
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_ Jfyxdx _ f*2>J(ax)xdx _ jc
hx^dx

Here x-^ -
*V()"/Vfo

"|(*-c)'

If c = 0, x = %h, which determines the abscissa of the

centre of gravity of a portion of a parabolic area beginning
at the vertex. Also

- - HcYdx _ ggjftgjg _ */afc
hxdx _ j>Ja(h

2

-c')
y ~

tfydx
"

2>Jafc

hx*dx~ fc
hx*dx |(^-cf

)

Whenc = 0, y = l*J{ah).

Ex. 2. Let the curve be an ellipse whose equation is

Here x =_ ^yxdxj c 2 sl^ X*

)dx
fc*x*J(a>-x>)dx

Mdx n x vw-md*
Je

Now Jx*J(a*-x
2

)
dx = - J (a

2 "*2

)
1

;

therefore />vV - au

) * - J ("
- c

2

)
1 -

J (a
2 - A

2

)*.

And JV(V - *2

)
<fo =

x^- a?
) +

"

sin
-i * .

therefore

/#W(<r~an dx = Z-i

^
2Li L + _ (gin

- - sin -
J.

Hence x is known.
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Also y-
"j^as /cvk-*v*

^-c)-^-]2a
~

h*J(c?-tf)-c*J(d
2

-c*) a2

/ . IA . lev^ ^ 3 - + - sin
* - - sin

* -
)2 2 \ a a)

If we require the centre of gravity of the quadrant of the

ellipse, we must put c = and % a. Hence

_ 4a _ 46

Ex. 3. Let the curve be a cycloid whose equation is

^ = \J{2ax x2

) + a vers"
1 -

;

and suppose we require the centre of gravity of half the area

of the curve ;
then

x
-ir$' y -

j?ydx

Now jyxdx= yf-j^dx

Also, when a? = 0, # = 0, and when a; = 2a, y = ira',

therefore J^yaxfc = J {vra (2a)
2

}
- \j

2ax >J{2ax - x*) o
7
^ :

and as f
2ax *J(2ax x2

)
dx will be found = ^7ra

3

,
we have

f^yxdx = 27ra
3
-. Jwa

8 = Jwa
8
.

Again, Jyefo;
=

ya; Ix dx

=
ya? / V(2aa? as

2

)
ax ;
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therefore j
2a

ydx = 2tto
2 -

j
2a

*J(2ax
- x2

)
dx

= 27ra
2 -

\ira
2

\ ira
2

;

therefore x = \ s = la.
%7ra

2 6

Also

fy
2dx = y

2x 2 I yx - dx

= y
2x 2fy \J(2ax x2

)
dx

= y
2x-2 J(2ax

- x2

)
dx - 2a U{2ax - x2

) vers
-1 - dx

J a

y
2x 2ax2 +-2a \\/(2ax x2

)
vers"

1 - dx
;

o J a

n 3 rZa

.'. j
2a

y
2dx = 2ttV -^ - 2a >J(2ax - x2

)
vers"

1 - dx.
o J a

x
By assuming vers

-1 - =
0, we may shew that

f
2a

_ x ir
2a2

I >J[2ax x2

)
vers ' - dx = .

J o
a 4

Hence /c/Y^ = fwV -K J

therefore y- *

^"
S) ,

ĝ (jtt
2 -

|).

114. If a curve have a branch below the axis of x sym-
metrical with one above the axis, and we require the centre

of gravity of the area bounded by the two branches and or-

dinates drawn at the distances c and h from the origin, we
have

_ 2 fc
h

yxdx _ ffyxdx

and y = 0.
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115. We have hitherto supposed the axes rectangular;
if they are oblique and inclined at an angle o>, then the figure

PQML (see fig. to Art. Ill) will = sin <ayAx ultimately.
Hence the formulae (1) and (2) of Art. Ill remain true, for

sin (w occurs as a factor in the numerator and denominator,
and may therefore he cancelled.

116. It is sometimes convenient to use polar formulas.

Let DE be the arc of a curve
;
and suppose we require

the centre of gravity
of the area comprised
between the arc DE
and the radii OD, OE
drawn from the pole
0.

Divide the angle
DOE into a number
of angles, of which
POQ represents one ;

let OP=r, POx = 0, POQ = A0. The area POQ =^A0
ultimately (Dtff. Calc., Art. 313). Also the centre of gravity
of the figure PO Q will be ultimately, like that of a triangle,
on a line drawn from bisecting the chord PQ, and at a

distance of two-thirds of this line from 0. Hence the ab-

scissa and ordinate of the centre of gravity of POQ will be

ultimately

\r cos 0, and Jr sin respectively.

Hence x _ f fr cos O^dd _ %fr
3
cos 0d0

fir*d0 Jr
2d6

-_f$r sin B\r*dd _ ^/r
3
sin 6d9

y JirW fr'W

In these formulae we must put for r its value in terms of

given by the equation to the curve
;
we must then integrate

from a to =
/3, supposing a and fi the angles which OD

and OE respectively make with the fixed line Ox.
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117. Ex. Let be the focus of a parabola, and the

fixed line Ox pass through the vertex
;
then

r =
cos

2i0 '

where 4<z is the latus rectum of the parabola.

Hence
- H.cc

cos JQ

p dt)

JCOS4
i'$6

Now p ^/~3!^a! -rfiMp
Jcos

6^ J cos*0 2

= / (1
-
tan*0) (1 + tan2

0) sec
2

i&$

= / (1
- tan

4

\d) sec
2 &Z0= 2 (tan \6 - f tan

5

0) ;

.-. ^ ^0 = 2 (tan J/3
- tan \o)

-
{ (tan

5

/9
- tan

5

icc).
J a COS 2

"

Also f-^=/(l +tan
2

J(9) sec
2i^0 = 2 tan^ + f tan

3

0;
j COS o V

/. f-^s = 2 (tan iff
- tan a) + f (tan

3

i/3
- tan

3

a) ;

J a COS 2 **

- _2, tan
Jfl

~ tan \<x i (tan
5

\fi tan
5

Ja)
' X ~~ za '

tan \$ - tan a + \ (tan
3

JJ8
- tan

3

|aj
'

. . fsinfl 7/1 ^ fsin0 7/1 1

Again, ^^0= 2 TVa d =
ru*',& '

JCOS
6

2-0 JCOS0 COS
4

^0

8

i0ri?p^ =sec4^- sec44a;

_ , sec
4

Jft sec^a
'* y ~ 3 '

tanp - tan a + J (tan
3

J/3
- tan

3

Jo)
#
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Plane Area. Douhle Integration.

118. There is another method of dividing a plane area

into elements, to which we now proceed.

y
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119. Suppose, for example, that the area is bounded "by
the two ordinates BbC, EeH, and the two curves BPQE,
bpqe. Let y=<f>(x) be the equation to the upper curve, and

y = ^{x) the equation to the lower curve; let OG c,

OH h. The sum of the product xAx Ay for all the rect-

angles similar to st, which are contained in the strip PQqp, is

equal to xAx multiplied by the sum of the values of Ay, for

xAx has the same value for each of these rectangles. Since

the sum of the values of Ay is Pp or
<j> (x) yfr (x), we have

xAx . {$ (x) ty {x)} as the result obtained by considering all

the rectangles in the strip PQqp. We have then to sum up
the values of xAx

{< (x) yfr(x)} for all the strips similar to

PQqp comprised between Bb and Ee ; that is, we must deter-

mine the value of f?x {<f> (x) ^fr(x)} dx. Considerations of a

similar kind apply to the denominator of x, and we obtain

fc
h

x{<j>(x)-+(x)}dx

/;()-*()}*
In the numerator of y we observe that yAy Ax represents

that portion of it which arises from the element st
;
hence we

shall find the result obtained from all the elements in the

strip PQqp, if we determine the sum of all the values of yAy,
and multiply the result by Ax. Now the sum of the values of

'4>(x)

ydy, or J[{ {x)f- {f (a?))

2

]. If we multiply by
\}/(x)

Ax, and find the sum of the values of the product for all the

strips between Bb and Ee, we obtain the numerator ofy. Hence

-
*;.*[{ (*)}'- {( )}*]*>

y
/.{*(*) -+()}*

The value of y may be written thus

- J.
h

j{4> (*)+*(*)} {< (*)-*(*)} dx
V

Sc
h

{<l>(x)-f(x)}dx

The meaning of the factors in the numerator is now ap-

parent; for 16 (x) a|t (x)} Ax ultimately represents the area

of the strip PQqp, and JJ <j> (x) + yjr (x)}, which is the ordinate

of the middle point of Pp, will ultimately be the ordinate

yAy is
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Hence the above equation

y =

of the centre of gravity of PQqp.
agrees with that given in Art. 66,

%Py

The process and the figure in the preceding two articles

would have been unnecessary if our only object had been to

establish the formulae for x and y, since these formulae can be

obtained more simply as we have just shewn. But we shall

require hereafter other formulae involving double integration,
and have therefore directed the reader's attention to these

in order to accustom him to the subject.

120. Ex. Let OPE be a parabola having for its equation

?/
= ax, and OE a straight line having for its equation y=Jcx;

rind the centre of gravity of the area OPE between the curve

and the straight line.

x/

Here $ (x)
= 2*J(ax), >>jr(x)=Jcx, c = 0; h is to be found

from the equation 2^/ (ah) hh
;

therefore

Thus

h = Aa

x = f
h

x{2*J(ax)-kx}dx

f
h

{2j(ax)-kx}dx

iVa-pv^ f-1sjatf-\kh*

2k_ 8a

5 ~5k2
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Similarly, y =
]!\^ {ax)

_
kx]dx

j (2ah
2- 7c

2
h
3

) JjjJi (2a
- jk

2

h)

yah*- ikh
2

'

$*Ja-%k*Jh

121. Sometimes it will be more convenient to integrate
the formulae in Art. 118, first with respect to x and then with

respect to y. For example, if the given area is comprised be-

tween the lines y = c, and y = h\ and the curves x-yjr(y),
and x = <j)(y),

we obtain

- hSf[[<f>{y)f-Wiy)f\dy

//{*(y) -+(*)}#
'

y
//{*()-+ (y)}<&

'

If we apply these to the example given in Art. 120, we have

yp
t

[y)
=

*f-, <t>(y) i.>
c'~

>
an<^ h' is to ^e found from the

equation t- = t~- ;
therefore h! =

-j-
.

Hence x = ?WW'
JXI-S*

The results will of course be the same as before.

For fuller explanations and illustrations of double integra-
tions the student is referred to treatises on the Integral Calcu-

lus. (See especially Integral Calculus, Art. 141 and Art. 152.)
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122. We will now give polar formulae involving double

integration.
Let a series of lines be drawn from a pole 0, also a series of

circles be described from as a centre. Let st be one of the

elements formed by this mode of dividing a plane area ; let r

and be the polar co-ordinates of s, r + Ar and 6 + A0 the

co-ordinates of t
;
then the area of the element st will be ulti-

mately rA0 Ar, and the abscissa and ordinate of its centre of

gravity will be r cos and r sin respectively. Hence we
obtain

_ _ fjr cos 0rd0 dr _ ffr
2
cos d0 dr

Similarly y

fjrd0dr Jfrd0dr

ffr* sin 0d0dr

fjrd0dr
'

Suppose the area bounded by the curves BPQE, hpqe, and
the radii ObB, OeE. Let r = <j>(0) be the equation to the

first curve, r =
yfr (0) that to the second

;
and let a and yS be

the angles which OB and OE make respectively with Ox.

The sum of the values of r
2
cos Ar A0 for all the elements

comprised in the strip PQqp, will be found by multiplying
the sum of the values of r*Ar by cos 0A0

; the former sum
is ultimately

/.

r'dr or * [ft (0)}- {+(*)}*].
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Hence the numerator of the value of x is

and the denominator, in like manner, is

111

therefore x
$m iM-{wmao

bimilarly, y -
jj^^ _

{^^ jg
.

123. Ex. 1. Find the centre of gravity of the area com-

prised between two semicircles Opb and OPB.

Let Ob = c, OB=h; <
(0)

= 7* cos 0, ^ (0)
= c cos 6

; a = 0,

0= \ 7r ; thus

_^ f(A
3- c

3

)/
ff

cos
4m

X
(h* -<?)f** cos* 6d0

2 3 (A
3 -c3

)

3 4 K-&

2 + c
*

(See Integ. Cole. Art. 35).

-_ (A
3 -c3

)ffrsinflcosWfl
V W ~<?)h

u cos
2Odd

_ l(^~c
8

)j 2(A
2 + ^c + c

2

)

(A
2 -C2

)i7T~ 3(/* + c)7T

Also
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Ex. 2. The sector of a circle.

Let BOEhe the sector, sub-

tending an angle /3, OB = a.

In this example we may
with equal facility integrate
first with respect to 6 and then

with respect to r, or first with

respect to r and then with re-

spect to 0.

x /7V cos OdrdO

SSSZrdrdO

sinff/V
2

aV_2asm/3

- tfjtysmOdrde
y~

'ffflrdrde

(1 cos/3)/Wr
Ptfrdr

3/3

2a (I- cos /3)

3

It will be instructive for the student also to notice the

solution of this example when rectangular formulae are used.

The equation to the straight line OE is y = x tan ft.

The equation to the circle EB is x2 + y*
= a2

.

If we integrate with respect to x first we must integrate
from x y cot /3 to x = V(

2

#
2

) ; since when we integrate
with respect to x we have to collect all the elements in a strip
which is parallel to the axis of x, and is bounded by OE at

one end and by EB at the other. These strips extend from
the axis of x up to E, and the ordinate ofE is a sin ft. Hence
we integrate with respect to y from y = to y = a sin /3.

Therefore

xdydx I I ydydxm - _ JjaJjW
[h'Mly)

I if rh' rj(y)
'

I I dydx \ \ dy dx
Jo J My) J J +(y)

where '^(y)
z=y cot /3, < (#)

=
*/(a? #

2

) ,
h' = a sin /?.

The integrations may be easily effected.

If we wish to integrate with respect to y first, we shall

have to divide the figure into two parts by a straight line

drawn from E perpendicular to OB. For the part to the
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left of the dividing line the limits of y are and x tan /3, and
those of x are and a cos ft. For the part to the right of the

dividing line the limits of y are and V(
2 #2

), and those

of x are a cos ft and a. Hence

rocos/3 /*xtan/3 Ca

I xdxdy + \ I

.' Jq J acosBJ (

V(a2 -*2)

a cos /3
J o

rr c&c dy

racosp rxtan/3 ra f-vV(
2 -a=2)

dxdy

Similarly ^ may be expressed.

We have treated this example as an illustration of integra-
tion rather than for the purpose of obtaining the result in the

simplest form. We might proceed thus
;
the centre of gravity

must lie on the line which bisects the angle EOB. Hence

taking this line for the initial line and using polar co-ordi-

nates, we have y = 0, and

I

J

r
2
cos (9 drdO

x 4/3

J J -IP
drdO

4a sin ^/3

3/3

'

Solid of Revolution.

124. Let a solid be generated by the revolution of the

curve BPQE round the

axis of x, and suppose y
we require the centre of

gravity of a portion of it

intercepted between planes

perpendicular to the axis

of revolution.

Let the co-ordinates of

a point P in the curve be
x and y, and x + Ax the abscissa of an adjacent point Q.
As the curve revolves round the axis of x, the area PQML
will generate a volume which is ultimately equal to Try*Ax.

T. s. 8
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Also the abscissa of its centre of gravity will be x ultimately.
Hence

- _ ftry
2xdx _ Jy

2xdx"
Jirfdx

~
Jy

2dx
'

The centre of gravity of the solid is obviously in the line

Ox, so that we only require the value of x in order to deter-

mine its position.

125. Ex. 1. Let it be required to find the centre of

gravity of a portion of a paraboloid. Suppose y
2 = iax

the equation to the generating parabola, and that the solid

is bounded by planes distant c and h respectively from the

vertex; then

_ L
h ax2dx 2 h3 -c3

x = J
-h-
j^axdx 3* Kl -61 '

If we put c= we find for the centre of gravity of a seg-
ment of a paraboloid commencing at the vertex

_ 2h
x = .

3

Ex. 2. Eequired the centre of gravity of a portion of a

sphere intercepted between two parallel planes.

Let y
2 = a2 x2 be the equation to the generating circle

;

_ _ j;(
_

a,*) xdx _ \a
2

{h
2 -c2

)-j (h*
- c

4

)X ~
fc\a

2-x2

)dx
~

a2

{h-c)-{h
5 -c3

)

'

If we put c = and h = a, we find for the centre of gravity
of a hemisphere

x ^a.

Ex. 3. Find the centre of gravity of the solid generated
x

by the revolution of the cycloid y *J(2ax x2

) + a vers
-1 -

round the axis of x.

Here x= Jo
f 2f 2 , .

So yd*
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x ( _ x\ 2

Now y*
= 2ax x2 + 2a ^(2ax

- x2

)
vers

x - + a2
( vers

-1 -
J

.

Thus the numerator of x consists of three integrals of which
we will give the values ;

these values may be obtained with-

out difficulty by transforming the integrals where vers"* -

x
occurs by the assumption vers"

1 - =
0, so that x = a (1 cos 6),

and then integrating by parts. We shall find

(2ax x2

)
xdx =

,
^) xdx = -

3

2a x >J(2ax x2

) vers - dx = 2a i
-

-\ ,

Jo * V 9 4 /'

a
2 Cx fvers"

1

!)

2

dx =
(^f

-
4)

a\

Hence the numerator of x is f

J
a*.

Also the denominator of x consists of three integrals which
have the following values,

/2a

\a V(2<
'

(2ax x2

)dx = - 7

x , . 7r*a
2

\ax x2

) vers"
1 dx = 2a -

' a 4

a2

j
7vers"

1 ?Y <& = (tt
2 -

4) a3
.

(q__2

o\

t: )
a

3
.

2 3/

/7tt
2

16\

Therefore iC =

(-!)
_ (63?r

2

-64)g=

6(9^-16)
'

82
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126. If a solid of revolution be formed by revolving a

curve round the axis of y, we find for the position of the

centre of gravity
_ _ jirx

2

ydy _ fx
2

ydy
y ~~

jirx
2

dy
~

fx'dy
"

For example, suppose the cycloid

x
y = *J(2ax x2

)+a vers
-1

,a

to revolve round the axis of y, and that we require the centre

of gravity of the volume generated by that half of the curve

for which y is positive. Here

Now Jx
2

ydy Jx
2

y -^-
dx

;
thus in the present case,

ra
r
2a

dy

Similarly x2

dy = x2

-j-
dx.

*

2a

I x2

y I
J
dx *

Thus y = ifl-
V x J

[
2a

% (2a-x\t
i

* bH dx

_ S*
a

yxsJ(2ax-x
2

) dx

J^x^(2ax-x
2

)dx'

The numerator of y consists of two integrals which have
the following values,

/

A 4

x (2ax - x2

)
dx =

3

af\ *J(2ax
-

x*) vers"
1

5^-0^+^
The value of the denominator of y is a3

.
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4a4 4a4
7T

2
o

Therefore y =
*" 3

/16
tt_

2
\ 2a

"V9 47 7T

127. We may also find it convenient in some cases to use

formula) involving double integration.

Suppose the figure in Art. 118 to revolve round the axis

of x
;

let x, y be the co-ordinates of s
;
and x + Ax, y + Ay

those of t. The area st generates by revolution an elementary
ring, the volume of which is

7r(y + Ay)
2Ax iry*Ax ;

this may be put ultimately equal to 2iryAyAx. The centre

of gravity of this ring is on the axis of x, and its abscissa

is ultimately x. Hence by proceeding as before we shall

have ultimately

SOxdxd*

ydxdy
. Mx)c J tyix)

where y = -^r(x) is the equation to the lower bounding curve

and y = ty{x) to the upper, and c and h are the abscissae of

the planes which bound the solid of revolution perpendicu-

larly to its axis.

Similarly, if the solid is formed by revolving the area in-

cluded between two curves round the axis of y, we shall

have

n<Hv)xydydxW
xdydx

tfri

Or we may use polar formulae. Suppose the figure in Art.

122 to revolve round the axis of x let r, 6 be the polar co-

ordinates of s
;
and r + Ar, 6 + Ad those of t. The volume
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of the ring generated by the revolution of the area st is ulti-

mately 277T sin r ArAO
;
and the abscissa of the centre of

gravity of the ring is ultimately r cos 6. Hence

x = fjr* sin 6 cos 6 d6 dr

Jfr
2 smOdddr

'

Similarly, if the figure revolve round the axis of y

- _ /J7
*3 cos sm dO dr

lJ
~

j'fr' cos ddddr
'

Any Solid.

128. To find the centre of gravity of a solid we divide it

into elements as follows : draw a series of planes perpen-

2.*'

dicular to the axis of x, then two consecutive planes will

include between them a slice such as LplmqM in the figure ;

draw a second series of planes perpendicular to the axis of y,
then each slice is divided into strips such as Ppq Q in the

figure ; lastly, draw planes perpendicular to the axis of z,
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then each strip is divided into parallelopipeds such as st in

the figure. Let x, y, z be the co-ordinates of s and x + Ax,

y + Ay, z + Az those of t
; then AxAyAz is the volume of st,

and as the co-ordinates of its centre of gravity are ultimately

x, y, and z, we have

- _ fffad&dydz~
fjfdxdydz

'

ffjydxdydz
y ~

ffjdxdydz
'

- _fffzdxdydz~
jjjdxdydz

'

129. In applying the above formulae to examples, great
care is necessary in assigning proper limits to the integra-
tions

;
this we shall illustrate by Examples.

Ex. 1. Find the centre of gravity of the eighth part of

an ellipsoid cut off by three principal planes.

Let the equation to the surface be

2 i 7 2 ' I
x *

a o c

Then the equation to the curve in which the surface meets

the plane of (x, y) is

a o

Integrate first with respect to z, and take for the limits z

and z c^/il 5 fs) ;
we tnus include all the elements

like st which form the strip Ppq Q. Next integrate with re-

spect to y, and take for the limits y = and y = b * / f 1 2
J

;

we thus include all the strips like Ppq Q which form the slice

LplmqM. Lastly integrate with respect to x, and take for
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the limits x = and x = a
;
we thus include all the slices

LplmqM which form the solid we are considering. Hence

x _ fWJ z

>xdxdydz

therefore x

LV^dxdydz
'

where we put z
x
for c . / 1 1

2 ?2
)

>

and^for&y^l-^J.

Now j^*-^W^^-^J);

And/oY(l-J-f:)^
or lfc&T^$\

_ fxy'dx f(l-g)^ 3a
therefore * =

-7-

=
-p- ^r

=
.

\y*
dx

\\
l
-j)

dx

bimilarly ^ = y,
2; = .

We may in this example effect the integrations with equal

simplicity in any order we please ;
if we integrate first for x,

then for y, and lastly for 2, we shall have

I xdzdy dx

rcrv x
rx

1
,

I dzdydx
J QJ *
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where x
x
stands for a .1 ( 1 $ ^ J

,

and yx
stands for b , /

( -?
This will be easily seen by drawing a figure so as to make
the planes bounding the slice parallel to that of (x, y), and

the edges of the strip parallel to the axis of x.

Ex. 2. Let it be required to find the centre of gravity of

the solid bounded by the planes z = fix, z = <yx, and the cylin-
der y

2 = 2ax x2
. We shall have

r2arv
t ryx

I I I xdxdydz- Jq J-vt Jpx
r2arvx r yx

'

I / / dxdy dz
J J -yx J /3x

where yx
is put for *J{2ax x2

).

ryx
Now I dz = (y fi) x,

* J px

C
2a

f Vi

I I x2 dx dy
therefore x = "*'

.

/ / xdxdy

Also (
:

dy = 2*J(2ax-x
2

);

/2a

x2J(2ax-x2

)dx r- J. 5<
/ o

* /2o

I x\/(2ax x2

)
dx

Jo

See Integral Calculus, Ex. 5 to Chap. III.

Similarly we may find

therefore

- - 5a( + Y)
y=0, 3=

^g
^
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130. It is often convenient to divide a solid into polar
elements.

Let a series of planes be drawn through the axis of z
; the

solid is thus divided into wedge-shaped slices such as COML.
Let a series of right cones be described round the axis of z

having their vertices at 0; thus each slice is divided into

pyramidal solids like OPQS. Lastly, let a series of concentric

i

spheres be described round as centre ;
thus each pyramid is

divided into elements similar to pqst.

Let xOL =
<j>,

COP= 0, Op = r,

LOM=&cj>, POQ = A0, pt=Ar.
Then pq is the arc of a circle of which the radius is r and

the angle A0 ;
therefore pq = rA0.

Also ps is the arc of a circle of which the radius is r sin 6

and the angle A<f> ;
therefore ps = r sin 0A<.

Hence, since the element pqst is ultimately a parallelo-

piped, its volume is r
2
sin 6A6A(f>Ar.

Also the co-ordinates of its centre of gravity are ultimately
r cos

<j)
sin 6, r sin

(j>
sin 6, and r cos 0. Hence supposing its

density to be p, we have
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_ flip7,3 sm*0 cos ^> d& &*

fffpr
2

sinddcf>dddr
'

- _ ////
r3 s^r2^ sm j j jjj

<^r
y ~

Jffpr* sinO dcf>
dddr '

2 = ////>r
3
sin cos oty <#? Jr

fffpr*smdd<l>dddr

131. Ex. 1. Apply the preceding foramlge to find the

centre of gravity of a hemisphere whose density varies as the

nth
power of the distance from the centre.

Take the axis of z perpendicular to the plane base of the

hemisphere. Let a be the radius of the hemisphere, and

p = fir
11

,
where p, is a constant. First integrate with respect to

r from to a
;
we thus include all the elements like pqst com-

prised in the pyramid OPQS. Next integrate with respect to

6 from to ^7r, we thus include all the pyramids in the slice

GOML. Finally, integrate from
<f>
= to

<j>
= 2ir

;
we thus

include all the slices. Thus

_tH-3 f^f
* sin 6 cos 0d<f>dd

~~n +
a

f^J^ sin 6d(j>dd

x and # each = 0.

w + 3 a

"ra + 4/2

Ex. 2. A right cone has its vertex on the surface of a

sphere and its axis coincident with a diameter of the sphere,
find the centre of gravity of the solid included between the

cone and sphere. Take the axis of z coincident with that

of the cone
; suppose a the radius of the sphere, (3 the semi-

vertical angle of the cone. The polar equation to the sphere
is r = 2a cos 6, and to the cone 6 = /3. Hence we have

in f/3 /*2acos0

r
3
cos 6 sin 6

dcj>
d6 drrftrrpp

J Q J ^

J * '

2a cos

r
2
sin

c?</>
<#? dr

x and ?/ each = 0.
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Curve.

132. Suppose a circle of variable radius to move so that

its centre describes a given curve and its plane is always

perpendicular to the tangent line of the curve, we may require
the centre of gravity of the solid generated. The simplest
case is that in which the radius is constant and the solid of

uniform density; the result depends solely on the nature of

the curve described by the centre of the circle, and for short-

ness the process is called finding the centre ofgravity of a curve.

Let BPQE be a plane curve; BP the length measured
from some fixed point B,
BP= s, PQ = As; x, y the

co-ordinates of P. Let k de-

note the area of a transverse

section
;
then the volume of

the element PQ is kAs, and
the co-ordinates of its centre

of gravity are ultimately x
and y. Hence

x Jkxds _ jxds

Jkds Jds
(1) if k be constant,

fkyds_fyds .

V ~
Jkda" Jds

'"
{ } '

a. ds
bince -y-dx-A^m we may also write

(3).

From the equation to the curve y and
Jj[

are known in
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terms of x
;
their values must be substituted in the preceding

expressions and the integrations then, effected.

If we use polar co-ordinates we have x r cos 0, y r sin 0,

Hence

"
VHS)? ""17R0F"

(*);

for r and -^ we must substitute their values in terms of
du

given by the equation to the curve.

133. Ex. 1. A straight rod of uniform thickness and

density.

Taking the origin on the line we have y /3x, where ft is

constant
; hence, by equations (3) of Art. 132, supposing the

origin to be at one end of the rod and h the abscissa of the

other end,

_f
h

xdx_h - _ /3f
hxdx _j3h'

j:dx~2> ?~ fdx
~

2

That is, the centre of gravity is the middle point of the rod.

Ex. 2. Suppose the transverse section of the rod to vary
as the nth

power of the distance from one end. Take the

origin at this end, and suppose the axis of x to coincide

with the axis of the rod; then y = 0, and in equation (1) of

Art. 132 we put fix
n

for k, where fi is constant. Hence, if h

be the length of the rod,

- fn
hxn+1

ds f
hxn+1dx n + 1 ,

X
j

hxn
ds

~
fQ

h3fdx n-j-2
'

x =
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Ex. 3. An arc of a circle.

Take the origin at
'

the centre of the circle,

and the axis of x bi-

secting the arc. Then

y = ;
and supposing

2a to be the angle sub-

tended at by the given
arc, and a the radius of

the circle, we have, by
Art. 132, equation (4),

x
a2

fla cos Odd a sin a

Ex. 4. The arc of a semicycloid.

Take the origin at the vertex, and the axis of y a tangent

there ; then
f-^-j

= a ~ x
. hence

/.v*" \ydx
*(*o

Now

2<2

t

o'V*
cZic

<-^-dx
= 2y*Jx hfx^

= 2^v
/

^-2/v
/

(2a-a?) <&= 2y V# + (2a-sc)*;

therefore
J -^-^c

= 27ra (2a)*- (2a)
f

;

J v^

A f
- 2<7ra(2a)*-(2a)

f

therefore # = p*
=

(it #)
a.

2 (2a)
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X _x
Ex. 5. The curve y = \c (e +e *j.

If s denote the length of an arc of the curve measured from
the point whose co-ordinates are 0, c, to the point (x, y'), we
have for the co-ordinates of its centre of gravity

V o

ds j {* ds 7x -j- ax I y -j-
ax

5 > y= f

Now 24<^-^
therefore 1 + g)

= I (/+ e
!

)

2

,

c - -- c - --
thus s = -

(e
c

e
c

), and s' = -(e
c

e
c

Also lx-j-dx
= - \x (e

c + e
c

)dx

= f ('-"' )-|/(' -"*)**

f (/-eh-\(? + *

C* rl<t or A r
2 - --

therefore
\
x
%dx

= C

-^-
{e

c - e
c

)
- C
-{e

c + e
c

)
+

m x's cy + c
2

,

, _
i c{y'-c)and a; = x -j .

s

Also f^^^ ==

l/(
e
' + e"') (^+ e? ) l&
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[* ds c
% - -- ex

therefore
J

V fa
dx

=-$ {
e ~ e

) + Y
ys ex

~2~
+T'

- y ex
and ?/

= ^- + -7 .

f 2 2s

134. If the curve be of double curvature, the formulae

(1) and (2) of Art. 132 still hold
;
in order to effect the inte-

grations we may use the formula

S^ntHI)};
UX

and from the two equations to the curve we must find
dz

and in terms of z. (See Integral Calculus, Art. 120.) For

example, in the helix

x = a cos nz, y a sin nz
;

ds
therefore -r- = V(l + wV),

_ _ JV (1+V) xdz _ [a cos wz dk
X ~

M(l + n*ct)dz

"'
]S

'

If we take for the limits z = and 2? = A, we have

_ a sin nh
x= ? .

o. ., ,
- a (\ cos nh) _ 17

Similarly # =
'

7 ,
* =V1 -



SUEFACE. 129

Surface of Revolution.

135. Let BPQE be a curve which by revolving round
the axis of x generates a surface. Suppose a shell of

which this surface is the

exterior boundary, and of *

which the interior boundary
is another surface of revolu-

tion round the axis of x in-

definitely near to the former.

Kequired the centre of gravity
of a portion of this shell cut

off by planes perpendicular to

the axis of x.

Let P, Q, be adjacent points in the exterior generating
curve

; suppose B a fixed point in the curve, let BP= s, and

PQ As
;
let x, y be the co-ordinates of P; 7c the thickness of

the shell at P. The volume of the element contained between
two planes perpendicular to the axis of x through P and Q
respectively is ultimately 27rykAs, and the abscissa of the

centre of gravity of this element is ultimately x
;
hence

- _ feiryhxds _ fyxds

j2irykds jyds
x =

if h be constant.

i>vm*
where c and h are the distances from the origin of the bound-

ing planes.

Since the centre of gravity required is on the axis of x, we
need only the value of x in order to determine its position.

T.S. 9
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Similarly, if the curve BPQE generates a surface by re-

volving round the axis of y, we have

/.VM3K
where c and h denote as "before the abscissas of the extremities

of the curve.

If we use polar co-ordinates, we have x=r cos 0, y=r sin 0,

and

ds

J6

thus if the curve revolves round the axis of x, we have

1

dd

jr
sin (9^Wis1

and if the curve revolves round the axis of y, we have

I r
2 cos0sin0 . /

-ifi>

The limits of the integrations are the values of 6 which

correspond to the extremities of the curve.

Ex. 1. A cylindrical surface.

Take the axis of the cylinder as the axis of x
;
then y = the

radius of the cylinder, and is constant
;
hence

X ~
Jc

hdx k-c
~

2
'

Ex. 2. A spherical surface.



Here
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, * P I 7 2tt (2a)* o f
2a

,/ v -,

therefore I yx*dx = s^""""J ^Vpa-sc) <&r;

and fx^(2a-x)dx=-?^f^ + %f(2a-x)tdx

2x (2a -x) _

15
(2a

-
xy,

therefore
j

x *J(2a
-

x) dx = (2a)
1

;

thus >^ =^M_J. (2a) t.

Also yx~~
%dx=2ira (2a)

* -
3 (2a)

f
, (see page 126),

*~M:-t*M
therefore x

45 (2a)>

27ra(2a)^-~(2a)
f

4tt_32 2a

3 45 3= a (- 15

- 7T

Ex. 5. Suppose the cycloid
x

y fj{2ax x2

) + a vers
-1 -
a

to revolve round the axis of y, and that we require the centre

of gravity of the surface generated by that half of the curve

for which y is positive.

Here V
\

2

}x\/O dx
f}

xhdx

The value of the numerator was found in the preceding

example ;
and

faAfe
=

|(2a)l,



Z7ra
/ft \% /ft \*

therefore y =

surface. 133

27T<2

*<*>

(*-$
Ex. 6. Find the centre of gravity of the surface formed

by revolving the curve r = a(l + cos 6) round the initial line.

Here

J = -asin0, r
2

+(JJ
= 2a2

(l + cos0),

therefore g =
^/jr

2 + g) }

= 2a cos
|

.

-/:
r
2
sin cos 2a cos - a

7
^

Thus x*i
sin 2a cos - d0

2

P
I rsi

/>
s1( ^--l^sin^

cos - sin - a^
2 2

Now I cos
6 -f2cos2 -

-ljsin-a
7
^ =

therefore I cos
6 - ( 2 cos

2 - - 1
J
sin - dO = - - -

Similarly cos
4 - sin - dO = -

,

. J 2 2

4_2\
9 7J

4 9 2 7-cos- + -cos-;

;. # - V9 77 50a
therefore x = = .

2 63

5

Any Surface.

136. Let there be a shell having any given surface for

one of its boundaries, and suppose its thickness indefinitely



134 CENTRE OF GRAVITY.

small. Let x, y, z be the co-ordinates of any point of the

given surface, k the thickness at that point, AS the area of

an element of the surface there, then kAS is ultimately the

volume of this element, and- a;, y, z the co-ordinates of its

centre of gravity ;
hence

-_ JkxdSX ~
fkdS

'

and similar expressions hold for y and z.

It may be shewn (see Integral Calculus, Art. 170) that if

we take AS such that its projection on the plane of (x, y) is

the rectangle Ax Ay,

Hence x

Ex. The surface of the eighth part of a sphere.

Here x2 + y*+z* = a*,

2
fdz

+vHI
CC xdxdy

Ik

V(a
2

-^-/)

dxdi

First integrate with respect to y from y = to y = V(a
2 x2

) ;

we thus include all the elements that form the strip of sur-

face of which LlmMis the projection on the plane of (x, y) ;

see fig. to Art. 128.

Now
/

*-">
dy

,, ~ - \\lTxdx fxdx
therefore x = ~ ^

J
. 7 .

j-^irax J ax

The limits of the integration for x are and a
;

therefore x \a.

Similarly y = \ a, z \a.
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137. In the preceding articles we have given the usual

formulae for finding the centres of gravity of bodies, but par-
ticular cases may occur which may be most conveniently
treated by special methods. We add some examples.

(1) A circle revolves round a tangent line through an

angle of 180
;
find the centre of gravity of the solid generated.

Let Oy be the tangent line about which the circle revolves.

and let the plane of the paper bisect the solid
;
the centre of

gravity will therefore lie in the axis of x. Let OM= x,

MP=y = sj{2ax - x2

), MN= Ax. The figure PQqp will by
its revolution generate a semi-cylindrical shell, whose volume
is ultimately 2yirxAx ;

the centre of gravity of this shell will

2x
be in the axis of a? at a distance from (see Art. 133,

7T
x

Ex. 3) ;

therefore
r

-

2a 2x 7 2
2yirxdx

It will be found that x
2tT

I yafdx
J

I 2yirxdx I yxdx
* o J

/2a

x2

*J(2ax x2

)
dx

2
1*

I x sj[2ax x2

)
dx

J

5a
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(2) The density of a right cone varies as the nth
power of

the distance from the axis
;
find the centre of gravity of the

cone.

Let OAB be the right-angled triangle which by revolving

jsrif

round Ox generates the cone. Let PS and QR be drawn

parallel to the axis of x at distances y and y + Ay respec-

tively. Let
OA h, angle BOA = a.

Then OM= y cot a, PS = h y cot a.

The volume of the cylindrical shell generated by the revolu-

tion of PQRS round Ox is ultimately

2iry Ay (h y cot a).

Its density is fiy
n

,
where fi is constant

; therefore, its mass is

2wfiy
n+1

Ay (h-y cot a).

The distance of its centre of gravity from is ultimately (see
Art. 135, Ex. 1)

i(OM+OA), that is % (h + y cot a) ;

*Atan<

therefore x

rAtana

I 27r/x?/
n+1

(h y cot a) J (h + y cot a) dy

r h tan a

27TfJLy

n+1

(h y cot a) dy

j fAtan.

^{V-feolfa)^
Atana

I f+1

(h -y cot a) dy
Jo

and the integrations can be easily performed.
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(3) A shell has for its outer and inner boundaries two
similar and similarly situated ellipsoids ; required the centre

of gravity of the eighth part of it included between three

principal planes. Let a, 5, c be the semiaxes of the exterior

ellipsoid, ra, rb, re those of the inner ellipsoid, r being a

quantity less than unity.

If a, b, c be the semiaxes of an ellipsoid ; the volume of the

eighth part is \irabc, and the co-ordinates of its centre of

gravity are fa, f b, and f c (see Art. 129). Hence

fa . ^irabc = fra . \irr
3
abc + x (\irabc \irr

z

abc) ;

A - - fa(l-r
4

) 3
l + r + r

2 + r
3

therefore x m ^^ = fa .

1 + r + ^

If we suppose the shell indefinitely thin, we must put r = 1,

and then x = \a. Similar results may be found for y and z.

(4) An ellipsoid is composed of an infinite number of in-

definitely thin shells
;
each shell has for its outer and inner

boundaries two similar and similarly situated ellipsoids ;
the

density of each shell is constant, but the density varies from
shell to shell according to a given law

;
determine the centre

of gravity of the eighth part of the ellipsoid included between
three principal planes.

Let x, y, z represent the three semi-axes of an ellipsoid ;

477"
then the volume of the ellipsoid is xyz. Suppose that

y = mx and z = nx, where m and n are constants, then the

volume becomes x3

,
and if there be a similar ellipsoid

o

having x -f Aa; for the semi-axis corresponding to the semi-

axis x of the first ellipsoid, the volume of the second ellipsoid
47T77271

will be -
(x 4- Aa?)

3
. Hence the volume of a shell bounded

o

by two similar and similarly situated ellipsoids may be de-

noted by - {(+ Ax)
3

a;
3

},
and therefore by Airmnx2Ax

o

when the thickness is indefinitely diminished. Let
<j> (x) de-

note the density of the shell, then its mass is 7rmn<f> (a?)
x2
Ax.
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Thus the mass of the eighth part of the shell is -
<f> (x) x*Ax.

2

And the abscissa of the centre of gravity of the shell measured
x

along the semi-axis x is -
, by the preceding example. Thus

A

for the abscissa x of the centre of gravity we have

r
irmn .

,
. x 2 7

<J) [X)
- x ax

2 T w 2

J -^4>{x)x
2dx

!/>#
da?

#)<&?

where a is the semi-axis of the external surface corresponding
to the semi-axis x. When <> (x) is given the integrations

may be completed ;
and when x is known, the other co-ordi-

nates of the centre of gravity may be inferred from symmetry.

(5) A chord of an ellipse cuts off a segment of constant

area; determine the locus of the centre of gravity of the

segment.
If a chord cuts off a segment of constant area from a circle,

it is evident from the symmetry of the figure that the locus of

the centre of gravity of the segment is a concentric circle.

Now if the circle be projected orthogonally upon a plane in-

clined to the plane of the circle the circle projects into an

ellipse ;
and the segments of the circle of constant area project

into segments of the ellipse of constant area; also the con-

centric circle projects into a second ellipse similar to the first

ellipse and similarly situated.

Thus the required locus is an ellipse similar to the given

ellipse and similarly situated.

This problem might have been solved without making use

of projections, in the manner shewn in the next example.

(6) A plane cuts off from an ellipsoid a segment of con-

stant volume
;
determine the locus of the centre of gravity of

the segment.
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Let the cutting plane have any position; and refer the

ellipsoid to conjugate semi-diameters as axes
;

let the plane of

(y, z) be parallel to the position of the cutting plane, and sup-

pose the equation to the ellipsoid to be

a? f z
2

%

a"
z ^b'2 c'

2

Now suppose the segment cut off by the plane to be divided

into an indefinitely large number of indefinitely thin slices by
planes parallel to the plane of (y, z). By the properties of

the ellipsoid these slices will be bounded by ellipses which
have their centres on the axis of x

;
and thus we see that the

centre of gravity of the segment cut off will be on the axis of

x. Consider one of the slices bounded by planes which have
for their abscissae x and x + Ax respectively ;

then it will be
found that the volume of the slice is ultimately

(-irb'c (1 75 1
sin co sin aAx

where co is the angle between the axes of y and z, and a is

the angle which the axis of x makes with the plane of (y, z).

Suppose V to denote the constant volume, and \a' the ab-

scissa of the plane cutting off the segment ;
then

V= irb'c sin sin a I (1 ^ )
dx

= irab'c sin co sin a {I X -
(1 Xs

)}.

Now by the properties of the ellipsoid

ira'b'c sin co sin a = irabc,

where a, b, c are the semi-axes of the ellipsoid ;
thus

V = 7rabc{l-\-l(l-\
5

)} (1)
o

And, if x be the abscissa of the centre of gravity of the seg-
ment cut off,
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irb'c sin co sin a I x(l 7^)dx

x

c sin oj sin a

irabc (1

|i(l-X
2

)-i(l-X*)}

i(l-\
2

)-i(l-V)Ja'
(2).

Now (1) gives a constant value for X, and then (2) shews
that x bears a constant ratio to a.

Thus the locus of the centre of gravity of segments of an

ellipsoid of constant volume is an ellipsoid similar to the

original ellipsoid and similarly situated.

(7) Find the centre of gravity of a portion of an ellipsoid

comprised between two cones whose common vertex is at the

centre of the ellipsoid and whose bases are parallel.

The volume between the two cones may be divided into an

indefinitely large number of shells which have the centre of

the ellipsoid as their common vertex, and their bases in planes

parallel to the bases of the two cones. We shall first shew
that if the planes which contain the bases of the shells are

equidistant the shells are all equal. Take conjugate semi-

diameters as axes, and let the plane of
(?/, z) be parallel to

the bases of the two cones. The volume of the cone which
has the centre of the ellipsoid as vertex, and for its base the

plane curve formed by the intersection of the ellipsoid with
the plane which has x for its abscissa, is

^irb'c sin ft) sin a
(
1 g )

x
f

where the notation is the same as in the preceding example.
The volume of the cone which has the centre of the ellipsoid
as vertex, and for its base the plane curve formed by the

intersection of the ellipsoid with the plane which has x + Ax
for its abscissa, is

i v *2i L (x + Ax)*} . A .

\irbc sin sma il -
^ -\ (x + Ax).
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The volume of the slice between the planes whose abscissae
are x and x + Ax respectively is ultimately

7r b'c sin co sin a ( 1 J Ax.(-s
Hence we obtain for the volume of one of the shells ulti-

mately the product of irVc sin a sin co by

this product is ultimately

2irb'c sin co sin aAx lirbc sin aAx
S '

r
3

The centre of gravity of each shell is on the axis of a? at a

distance from the vertex of the cone, which is equal to three

fourths of the abscissa of the plane in which the base of the

cone is situated (see Ex. (5) of Art. 109). Let x denote the

abscissa of the centre of gravity of the proposed solid
;
then if

h and k be the abscissas of the plane bases of the two cones,

7

k lirbc sin a ,

S xdx
._ 3(ff-*) _3

We shall conclude this chapter with a few general pro-

positions involving properties of the centre of gravity.

138. If the mass of each of a system of particles be mul-

tiplied into the square of its distance from a given point, the

sum of the products is least when the given point is the centre

ofgravity of the system.

Let the centre of gravity of the system be made the

origin ;
let a, (3, 7, be the co-ordinates of the given point ;

xv yx ,
z

x ,
the co-ordinates of the first particle; x

2 , y2 ,
z
2 ,

those of the second; and so on; m,, m2 ,
... the masses of the

particles; p1? p2 ,...the distances of the particles from their
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centre of gravity; r
t ,

r
2 ,

... the distances of the particles from
the fixed point ;

then

r *=a2 + f3
2 + <f-2(ax, + l3y2 + ryz2)+p

2

,

Multiply these equations byw1?
ra

2 ,
m

si
... respectively, and

add; then

tmr2=
(a

2 + /3
s + 7

'2

) 2m - 2 (oSwkb + /32m# + y$mz) + Smp
2
.

But, since the origin is the centre of gravity of the system,

Smx = 0, *%my 0, %mz = 0,

therefore 2rar
2 =

(a
2 + /3

2 + 7
2

) 2w + %mp\
Now 2w/>

2
is independent of the position of the given

point; hence the least value of %mr2
is that which it has

when a
2 + /3

2 + <y* vanishes, that is, when the given point is

at the centre of gravity of the system.

139. Let Oj, ft, 7t ,
be the angles which px

makes with the

axes; a
2 , ft, 72 ,

the angles p2
makes with the axes; and so

on ;
then we have, supposing the origin the centre of gravity

of the system,

%mp cos a = 0, Xmp cos yS
=

0, %mp cos 7 = 0.

Square each of these equations and add the results
;
then if

m, m represent any two masses, and (p, p) the angle between
the lines which join them with the centre of gravity,

Xm2

p
2 + 2%mm'pp cos (p, p) = 0.

But 2pp cos
(p, p) = p

2 + p
2 u2

,

where u denotes the distance of m and m. Hence

ZmY + tmm* (p
2 + p

2 - u2

)
= 0.

If we select the coefficient of p
2

,
we find it to be

m?+ ml (mi +ma + ...), ormm
7

and the other coefficients are similar. Hence the above

equation may be written

%rn%mp
2 = %mm'u2

.
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140. If a 'particle
be acted on by a number offorces each

passing through a fixed point and proportional to the distance

from that point, the resultant force will pass through a fixed

point and be proportional to the distancefrom that point.

Take any position of the particle as the origin; let

x
i > V\ > *v ^e tne co-ordinates of a fixed point ;

r
x
the distance

of this point from the origin ; fix
r
x
the force which acts on

the particle from this fixed point. Similarly let x
2 , y2 ,

z
2 ,

be the co-ordinates of a second fixed point ;
r
2

its distance

from the origin, and fi2
r
2

the corresponding force on the

particle, and so on. Let X, Y, Z denote the whole force

acting on the particle along the axes of x, y, z; then, by
Art. 26,

'l
7
2 'z

=
fi1
x

l
+ f*2

x
2 + p,3x3 +

Similarly

r~Wi-+#^+6+
^=/Vi +/V2 + /*A +

Let x, y, z be the co-ordinates of the centre of gravity
of a system of particles, whose masses are proportional to

/*1 , fi2 , /jl3 ,
... placed at the respective fixed points; then

therefore X=x2fi, Y=y%fi, Z=z2/jl.
'

These equations shew that the resultant force is equal to

rXfi, where r is the distance of the centre of gravity from

the origin, and that its direction passes through the centre of

gravity. Hence when the particle is situated at the centre of

gravity the resultant force vanishes and the particle is in

equilibrium.

141. A body is placed on a horizontal plane, to find when
it icill be supported.
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The only force acting on it besides the resistance of the

plane is its own weight, and this acts in a vertical direction

through the centre of gravity of the body. Hence, by
Art. 91, the body will not be in equilibrium unless the

vertical through the centre of gravity of the body falls

within a polygon formed by so joining the points of contact

of the body and the plane as to include them all and have

no re-entering angle.

142. When a body is suspended from a point round which

it can move freely, it will not rest unless its centre ofgravity be

in the vertical line passing through the point of suspension.
For the body is acted on by two forces, its own weight

which acts vertically through its centre of gravity and the

force arising from the fixed point ;
for equilibrium these forces

must act in the same straight line and in opposite directions
;

thus the centre of gravity must be in the vertical line passing

through the point of suspension.

Hence if a body be suspended successively from two points
the vertical lines drawn through the points of suspension will

both pass through the centre of gravity ;
therefore the point

in which they intersect is the centre of gravity.

Ifa body be capable of revolving round an axis it will not

rest unless the centre ofgravity be in the vertical plane passing

through the axis. For the body is acted on by its own

weight and the forces arising from the fixed points; by
Art. 87, the moment of the weight round the fixed axis must

vanish, this requires the centre of gravity to be in the vertical

plane through the fixed axis.

The student will readily perceive as an experimental fact

that there is an important difference between the position of

equilibrium in which the centre of gravity is vertically above

the fixed point or fixed axis, and that in which it is vertically
below it. In the former case, if the body be slightly disturbed

from its equilibrium position and then left to itself, it will

begin to recede from its original position. In the latter case,

if the body be slightly disturbed from its equilibrium position
and then left to itself, it will begin to return to its original

position. The former position ofequilibrium is called unstable,

and the latter stable. We shall return to this point in

Chap. xiv.
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143. The volume (V) of a portion of a cylinder inter-

cepted between two planes, one of which is perpendicular to

the axis of the cylinder, is given by the equation

V=ffzdxdy,

where the plane of (x, y) is supposed perpendicular to the

axis, and z is the ordinate of a point in the other plane.
The limits of the integrations depend on the curve in which
the plane of (x, y) cuts the surface. This follows from the

Integral Calculus.

Let
<f>

denote the angle between the two planes; the

area of an element of the other section of which AxAy is

the projection on the plane of (x, y) is Ax Ay sec
<f>.

Let A
denote the area of the section of the cylinder by the plane of

(x, y), and consequently A sec
(j>

the area of the other section;
let z denote the ordinate of the centre of gravity of the plane
area formed by the intersection of the cylinder by the second

plane ;
then

A sec
</>

. i = Jfz sec
cf> dxdy,

or Azjjzdxdy,

therefore V= Az.

The volume is therefore equal to the area of the base multi-

plied by the perpendicular upon it from the centre of gravity
of the other section.

The centres of gravity of the two plane sections are on
the same line parallel to the generating lines. For the co-

ordinates of the centre of gravity of the section by the plane
of (x, y) are

fjxdxdy , Jfydxdy__ and A ,

and those of the upper section are

ffx SQC<j>dxdy , JJy sec <j>dxdy
A sec

<f>
A sec <p

'

which agree with the former values.

T.S. 10
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Thus the centres of gravity of all plane sections of a

cylinder are situated on a line parallel to the generating lines

of the cylinder.

If a portion of a cylinder be cut off by two planes,
neither of which is perpendicular to the axis, we may sup-

pose it to be the difference of two portions which have for

their common base a section perpendicular to the axis. The
difference of the lines drawn from the centres of gravity of

the oblique sections perpendicular to the orthogonal section

will be the line joining those centres of gravity. Hence the

volume of a portion of a cylinder contained between any two

planes is equal to the product of the area of an orthogonal
section by the line joining the centres of gravity of the oblique
sections.

Guldinuss Properties.

144. If any plane figure revolve about an axis lying in its

plane, the content of the solid generated by this figure in re-

volving through any angle is equal to a prism, of which the

base is the revolving figure and height the length of the path
described by the centre of gravity of the area of the plane

figure.

The axis of revolution in this and the following proposition
is supposed not to cut the generating curve.

Let the axis of revolution be the axis of x, and the

plane of the revolving figure in its initial position the plane
of (x, y) ;

let ft be the angle through which the figure
revolves.

The elementary area AxAy of the plane figure in revolving
through an angle Ad generates the elementary solid whose
volume is yAOAxAy; therefore the whole solid

=
///</*# dx dv de = PSSy dx dy-

The limits of x and y depend upon the nature of the curve.

But if y be the ordinate to the centre of gravity of the plane
figure, then, by Art. 118,

ffydxdy
V

Jfdxdy
'

the limits being the same as before.
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Therefore the whole solid = fifty dx dy = yfiftdx dy = arc

described by centre of gravity multiplied by the area of the

figure.

If any figure revolve about an axis lying in its own plane,
the surface of the solid generated is equal in area to the rect-

angle, of which the sides are the length of the perimeter of the

generating figure and the length of the path of the centre of

gravity of the perimeter.

The surface generated by the arc As of the figure revolving

through an angle A0 is yAd As ; therefore the whole surface

fffydsM-fifyd:

natui

grav

Syds

The limits depend on the nature of the curve. But if y be
the ordinate to the centre of gravity of the perimeter,

the limits being the same as before.

Therefore the whole surface = yfijds
= arc described by

centre of gravity, multiplied by the length of the perimeter.

Ex. 1. To find the solid content and the surface of the ring

formed by the revolution of a circle round a line in its own plane
tohich it does not meet.

Let the distance of the centre of the circle from the axis of

revolution be a
;

let b be the radius of the circle
; then the

length of the path of the centre of gravity of the area of the

figure is 27ra, and the area of the figure is tto
2

;

therefore content of the solid = 27T
2
ab'\

Also the length of the path of the centre of gravity of the

perimeter is lira, and the length of the perimeter is 2irb
;

therefore surface of the solid = A7r
2
ab.

Ex. 2. To find the centre of gravity of the area and also of
the arc of a semicircle.

A semicircle by revolving about its diameter generates
4

a sphere ;
the content of the sphere is - 7ra

3

,
and the surface

o

102
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47ra
2

,
the radius being a; the area of the semicircle is ~ira

z

,

and the perimeter ira
; therefore, distance of centre of gravity

of area from the diameter

content of sphere _ 4a
t~

27T . area of semicircle 37T
'

distance of centre of gravity of arc from diameter

surface of sphere _ 2a~
2-7T . arc of semicircle tt

"

Ex. 3. To find the surface and the solid content of the solid

formed by the revolution of a cycloid round the tangent at its

vertex.

2a
In Art. 133 we have found for the distance of the centre

o

of gravity of the arc of a cycloid from its vertex
;
and the

whole length of the arc is 8a. Therefore the surface of the

solid generated is

2a , . 32 ,
2-7T x x 8a

;
that is 7ra .

o o

And in Art. 113 we have found that the distance of the centre

of gravity of the area included "between the cycloid and its

7
base from the vertex is -a; and the area so included is

6

37r
2a2

. Hence the area of the portion which in the present
case revolves round the tangent is 47ra

2
37ra

2

,
that is 7ra

2
.

And the centre of gravity of this area may be shewn to be at a

distance ^ from the vertex. (See Ex. (2) of Art. 109). There-

fore the solid content of the figure generated is 27r - 7ra
2

, that

EXAMPLES.

1. Find the centre of gravity of five equal heavy par-
ticles placed at five of the angular points of a regular

hexagon.
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2. Five pieces of a uniform chain are hung at equidistant

points along a rigid rod without weight, and their lower ends

are in a straight line passing through one end of the rod
;

find the centre of gravity of the system.

3. A plane quadrilateral ABCD is bisected by the dia-

gonal A G, and the other diagonal divides A G into two parts
in the ratio ofp to q ;

shew that the centre of gravity of the

quadrilateral lies in A G and divides it into two parts in the

ratio of 2p + q top + 2^.

4. From the fact that any system of heavy particles has

one centre of gravity and only one, deduce the property that

the lines joining the middle points of the opposite sides of

any quadrilateral figure bisect each other.

5. Given the co-ordinates of the angular points of a py-
ramid, determine the co-ordinates of its centre of gravity.

6. ABG is a triangle ; D, E, F are the middle points of

its sides
;
shew that the centre of gravity of the sides of ABG

coincides with the centre of the circle inscribed in DEF.

7. A piece of wire is formed into a triangle; find the

distance of the centre of gravity from each of the sides, and
shew that if x, y, z be the three distances, and r the radius

of the inscribed circle, then

Axyz r2

(x+y + z) r
3 = 0.

8. If the centre of gravity of a four-sided figure coincide

with one of its angular points, shew that the distances of

this point and the opposite angular point from the line joining
the other two angular points are as 1 to 2.

9. Shew that the common centre of gravity of a right-

angled isosceles triangle, and the squares described on the

two equal sides, is at a distance = -~- a from the point in
lo

which those sides meet, a being the length of one of them.

10. Prove the following construction for the centre of

gravity of any quadrilateral. Let E be the intersection of
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the diagonals, and Fthe, middle point of the line which joins
their middle points ;

draw the line EF and produce it to G,

making FG = \EF; then G shall be the centre of gravity

required.

11. A triangle ABC is successively suspended from the

angles A and B, and the two positions of any side are at

right angles to each other
;
shew that

5c
2 = a? + b

2
.

12. A right-angled triangular lamina ABC is suspended
from a point D in its hypothenuse AB; prove that in the

position of equilibrium AB will be horizontal if

AD : DB :: AB2 +AC2
: AB2 +BC2

.

13. A given isosceles triangle is inscribed in a circle
;
find

the centre of gravity of the remaining area of the circle.

14. If three uniform rods be rigidly united so as to form

half of a regular hexagon, prove that if suspended from one

of the angles, one of the rods will be horizontal.

'

15. IfABC be an isosceles triangle having a right angle
at C, and D, E be the middle points of A C, AB respectively,

prove that a perpendicular from E upon BD will pass through
the centre of gravity of the triangle BD C.

16. ABCD is any plane quadrilateral figure, and a, b, c, d
are respectively the centres of gravity of the triangles BCD,
CDA, DAB, ABC) shew that the quadrilateral abed is

similar to ABCD.

17. A, B, C, D, E, Fare six equal particles at the angles
of any plane hexagon, and a, b, c, d, e, f are the centres of

gravity respectively of ABC, BCD, CDE, DEF, EFA, and

FAB. Shew that the opposite sides and angles of the

hexagon abedefare equal, and that the lines joining opposite

angles pass through one point, which is the centre of gravity
of the particles A, B, C, D, E, F.
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18. A straight line ED cuts off -th part of the right-

angled triangle ABC of which A is the right angle. AB a,

AC = b. Shew that the centre of gravity of CEDB describes

the curve whose equation is

2* m
{3 (n

-
1) y

-
nb) (3 (n

-
1) x - na}.

it

19. The distance of the centre of gravity of any number
of sides AB, BC, CD KL of a regular polygon from the

centre of the inscribed circle

AL x radius

AB + BC+CD+ +KL'

20. A frustum is cut from a right cone by a plane bisect-

ing the axis and parallel to the base
;
shew that it will rest

with its slant side on a horizontal table if the height of the

cone bear to the diameter of its base a greater ratio than

V7 to V17.

21. If particles of unequal weights be placed at the an-

gular points of a triangular pyramid, and G
x
be their common

centre of gravity; 6r
2 ,
G

s ,
... their common centres of gravity

for every possible arrangement of the particles ;
shew that the

centre of gravity of equal particles placed at Gv G
2 ,

... is the

centre of gravity of the pyramid.

22. If a cone have its base united concentrically to the

base of a hemisphere of equal radius, find the height of the

cone that the solid may rest on a horizontal table on any
point of its spherical surface. Result. r*/3.

23. If any polygon circumscribe a circle, the centre of

gravity of the area of the polygon, the centre of gravity of

the perimeter of the polygon, and the centre of the circle, are

in the same straight line
;
also the distance of the first point

from the third is two-thirds of the distance of the second

point from the third.

24. If any polyhedron circumscribe a sphere, the centre

of gravity of the volume of the polyhedron, the centre of
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gravity of the surface of the polyhedron, and the centre of

the sphere, are in the same straight line; also the distance

of the first point from the third is three-fourths of the distance

of the second point from the third.

25. From a right cone the diameter of whose base is equal
to its altitude is cut a right cylinder the diameter of whose
base is equal to its altitude, their axes being in the same
line and the base of the cylinder lying in the base of the

cone
;
from the remaining cone a similar cylinder is cut, and

so on, indefinitely; shew that the distance of the centre of

gravity of the remaining portion from the base of the cone

is i& of the altitude of the cone.

26. A square is cut from an equilateral triangle, a side

of the square coinciding with a side of the triangle ;
from

the equilateral triangle which remains another square is cut,

and so on, ad infinitum : find the centre of gravity of the sum
of the squares.

27. Find the centre of gravity of the area contained be-

tween the curves y
2 ax and y*

= 2ax se
2

,
which is above

the axis of x. ^ 1
- \hir 44 _ a

Jttesults. x = a. : y = -
.

157T-40' u 3tt-8

28. Find the centre of gravity of the area enclosed by
the curve r = a (1 + cos 0). Result, x = fa.

29. Find the centre of gravity of the area included by a

loop of the curve r a cos 20. ^
. _ _ 128a V2

1057T

30. Find the centre of gravity of the area included by a

loop of the curve r = a cos 30. ~ , _ _ 81 j3a
6SU ' ^~

80tt
#

31. The locus of the centre of gravity of all equal seg-
ments cut off from a parabola is an equal parabola.

32. Find the centre of gravity of a segment of a circle.
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33. Find the centre of gravity of the area included by
the curves y

2 = ax and x* = by.
Result, x = sW^, y = vucfibK

34. Find the centre of gravity of a portion of an equi-
lateral hyperbola bounded by the curve, the transverse axis,
and a radius vector drawn from the centre.

Results. x =

y =

3 log (x + y') 3 log a
'

2 (x
-

a)

3log{x+y')-3loga'
where x, y are the co-ordinates of the point of intersection of

the curve and the bounding radius vector.

35. Two equal circles (radius a) are drawn, each passing

through the centre of the other, and a third circle touches

both, having one of their points of intersection for its centre
;

the distance of the centre of gravity of the smaller area in-

cluded between the outer and inner circles from the common
radius of the first two is

12-27I-V3

27T-3V3
a '

36. The density of a triangle varies as the nth
power of

the distance from the base
;
determine n when the centre of

gravity of the triangle divides the line joining the vertex with
the middle point of the base in the ratio of 3 to 1.

Result, n \.

37. Find the centre of gravity of the volume formed by
the revolution round the axis of x of the area of the curve

38. Find the centre of gravity of the volume generated by
the revolution of the area in Ex. 27 round the axis of y.

Result, y = 7 r .9 2 (157T
-

44)

39. Find the centre of gravity of a hemisphere when the

density varies as the square of the distance from the centre.

Result. x = .

1
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40. Find the centre of gravity of the solid generated by
a semiparabola bounded by the latus rectum revolving round
the latus rectum.

Result. Distance from focus = % of latus rectum.

41. The solid included between the surfaces of a con-

tinuous hyperboloid and its conical asymptote is cut by two

planes perpendicular to their common axis
;
find the position

of the centre of gravity of that portion which lies between
the planes.

Result. Midway between the planes.

42. A solid sector of a sphere hangs from a point in its

circular rim with its axis horizontal, find its vertical angle.

Result. The cosine of the semi-vertical angle is f .

43. Find the centre of gravity of the solid generated by
the revolution of a semicircle about a line perpendicular to

the diameter, and which does not meet the semicircle.

Result. Distance from the plane generated by the diameter

_il
~3tt'

44. A is a point in the generating line of a right cylinder
on a circular base, and B, G are two others in the generating
line diametrically opposite. The cylinder is bisected by a

plane ABC, and one of the semicylinders is cut by two planes
at right angles to ABC, passing through AB and AG. Shew
that if the solid ABG be placed with its convex side on a

horizontal plane, the plane ABG will be inclined to the hori-

zon at an angle tan"
1

(&7r), when there is equilibrium.

45. A solid cone is cut by two planes perpendicular to

the same principal section, one through its axis, and the

other parallel to a slant side
;
find the limiting value of the

vertical angle of the cone, that the piece cut out may rest on
its curved surface on a horizontal plane.

Result. The cosine of the vertical angle must not be

greater than #.

46. A quadrant of a circle revolves round one of its

extreme radii through an angle of 30; find the centre of

gravity of the solid traced out, the density being supposed
to vary as the distance from the centre.
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Results, x = -^; y= (2 V3); * = ~r The axis of a;

is supposed to coincide with the initial position of the revolv-

ing radius.

47. A solid i3 formed by the revolution of the area of the

curve

round the axis of x
;
shew that the distance of the centre of

gravity of any segment of this solid from the vertex bears to

the height of the segment the ratio of 1 to n. The segment
is supposed cut off by a plane perpendicular to the axis.

48. Find the centre of gravity of the surface of the solid

z
z + y

2 = 2ax, cut off by the plane x = c.

(3c -a)(a+ 2c)
f + a1

Result, x =
5 {(a + 2c)* -a*}

49. Apply Guldinus's theorem to find the volume of the

frustum of a right cone in terms of its altitude and the radii

of its ends. 1 hir .M ,
.

Result (i? + Rr + r
2

)
.

o

50. Find the surface and the volume of the solid formed

by the revolution of a cycloid round its base.

Result, -
; 57rV.

o

51. A segment of a circle revolves round its chord, which
subtends an angle of 90 at the centre

; find the surface and
volume of the solid generated.

7ra
2
(4-7r) a3

(10
-

3tt) tt
Results.

V2
'

6 V2

52. An ellipse whose excentricity is - revolves about

any tangent line. Prove that the volume generated by one

portion into which the ellipse is divided by its minor axis

varies inversely as the volume generated by the other portion.
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53. A plane area moves in such a manner as to be always
normal to the curve along which its centre of gravity moves

;

prove that the volume generated is equal to the given area

multiplied by the length of the path of the centre of gravity.

Hence find the volume of a cycloidal tube whose normal
section is of constant area.

54. Extend Guldinus's theorem for finding the volume of

a ring to the case in which the ring is formed by the revo-

lution of a plane area about a straight line parallel to its

plane.

A ring is formed by the revolution of the lemniscate

(whose equation is r
2 = a2

cos 26) about a straight line parallel
to its plane situated in a plane drawn through its double

point and perpendicular to its axis
; shew that the volume of

this ring is^
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CHAPTER IX.

MACHINES.

145. A Machine is an instrument, or a system of solid

bodies, for the purpose of transmitting force from one part to

another of the system.

It would be endless to describe all the machines that have
been invented; we shall consequently confine ourselves to

those of simple construction. The most simple machines are

denominated the Mechanical Powers. These we shall ex-

plain, and also a few combinations of them.

146. A Lever is an inflexible rod moveable only about a

fixed axis, which is called the fulcrum. The portions of the

lever into which the fulcrum divides it are called the arms of

the lever : when the arms are in the same straight line, it is

called a straight lever, and in other cases a hent lever.

Two forces act upon the lever about the fulcrum, called

the power and the weight : the power . is the force applied by
the hand (or other means) to sustain or overcome the other

force, or the weight. There are three species of levers : the

first has the fulcrum between the power and weight ;
in the

second the weight acts between the fulcrum and the power ;

and in the third the power acts between the fulcrum and the

weight.

147. To find the conditions of equilibrium of two forces

acting in the same plane on a lever.
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Let the plane of the paper be the plane in which the

forces act, and also be F
perpendicular to the axis,

of which C is the pro-

jection, and about which
the lever can move ; A, B /IB,
the points of application *>/

of the forces P, W; a, fi u/r
-Sv// \

the angles which the direc- ~\^'^/K^̂
re -^jQ^

tions of the forces make
with any line aCb drawn

through G on the paper, rp
Let R be the pressure

upon the fulcrum, and 6 the angle which it makes with the

line a Gb ;
then if we apply a force E in the direction GR,

we may suppose the fulcrum removed, and the body to be
held in equilibrium by the forces P, W, R.

We shall resolve these forces in directions parallel and

perpendicular to a Gb; and also take their moments about C
;

then by Art. 57 we have the following equations :

Pcosa-PFcos/3-.cos0 = O (1),

Psina + TFsiny3-Psin0 = O (2),

and P. GD - W. GE= (3),

GB and GE being drawn perpendicular to the directions of

PandTF".

These three equations determine the ratio ofP to W when
there is equilibrium ;

and the magnitude and direction of the

pressure on the fulcrum.

For equation (3) gives

P _ GE _ perpendicular on direction of W
W GD perpendicular on direction of P ^

'"

Also by transposing the last terms of (1) and (2), we have

R cos 6 = Pcos a - TTcos
,

R sin 6 = Psin a + TTsinyS.
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Add their squares ;
therefore

R 2 = P2 + W2 - 2PW cos (a + ) ,

which gives the magnitude of R.

From (1) and (2) by transposition and division

A P sin a 4- W sin 8
tan e = d iff o \i^cos a W cosp

which gives the direction of the pressure.

If we suppose B to be the fulcrum and take the moments
about B instead of C, we have instead of equation (4) the

following :

P _ perpendicular on direction of R . .

R perpendicular on direction of P'" "w*

This is not a new equation of condition; but is a con-

sequence of the three already given, (1), (2), (3). To shew

this, imagine AD and BE produced to meet CR : they will

meet this line in the same point, since the distances by these

two constructions are CD cosec (6 a) and CE cosec [6 + /3) ;

and these are made equal, by equations (1), (2), (3), if we
eliminate P, W. Suppose, then, F to be the point in which
these lines meet. By multiplying (1), (2), respectively by
sin /3 and cos /3, and adding, we have

P _ sin {d + ff) _ FB sin (0 + ff)

R,
~

sin (a + 0)

~
FB sin (a + )

_ perpendicular on direction of R
perpendicular on direction of P '

therefore this equation is a consequence of the equations (1),

(2), (3), as might have been anticipated.

It follows, then, that the condition of equilibrium in a lever

of any species is that the two forces must be inversely as the

perpendiculars drawn upon their directions from the fulcrum
and the forces must act so as to tend to turn the lever in opposite
directions round the fulcrum.

148. This property of the lever renders it a useful in-

strument in multiplying the efficacy of a force. For any two
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forces, however unequal in magnitude, may be made to balance

each other simply by fixing the fulcrum so that the ratio of its

distances from the directions of the forces shall be equal to the

inverse ratio of the forces. If the fulcrum be moved from this

position, then that force will preponderate from which the ful-

crum is moved and the equilibrium will be destroyed. We are

thus led to understand how mechanical advantage is gained

by using a crow-bar to move heavy bodies, as large blocks of

stone : a poker to raise the coals in a grate : scissors, shears,

nippers, and pincers ;
these last consisting of two levers of

the first kind. The Drake of a pump is a lever of the first

kind. In the Stanhope printing-press we have a remarkable

illustration of the mechanical advantage that can be gained

by levers. The frame-work in which the paper to be printed
is fixed, is acted upon by the shorter arm of a lever, the other

arm being connected with a second lever, the longer arm of

which is worked by the pressman. These levers are so ad-

justed that at the instant the paper comes in contact with the

types, the perpendiculars from the fulcra upon the directions

of the forces acting at the shorter arms are exceedingly short,

and consequently the levers multiply the force exerted by the

pressman to an enormous extent.

As examples of levers of the second kind, we may mention
a wheelbarrow, an oar, a chipping-knife, a pair of nutcrackers.

It must be observed, however, that as the lever moves
about the fulcrum the space through which the weight is

moved is, in the first and second species of lever, smaller

than the space passed through by the power : and therefore

what is gained in power is lost in despatch. For example
in the case of the crow-bar : to raise a block of stone through
a given space by applying the hand at the further extremity
of the lever, we must move the hand through a greater space
than that which the weight describes.

But in the third species of lever the reverse is the case.

The power is nearer the fulcrum than the weight, and is con-

sequently greater; but the motion of the weight is greater
than that of the power. In this kind of lever despatch is

gained at the expense of power. An excellent example is
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the treddle of a turning lathe. But the most striking ex-

ample of levers of the third kind is found in the animal frame,
in the construction of which it seems to be a prevailing prin-

ciple to sacrifice power to readiness and quickness of action.

The limbs of animals are generally levers of this description.
The condyle of the bone rests in its socket as the fulcrum

; a

strong muscle attached to the bone near the condyle is the

power, and the weight of the limb together with any re-

sistance opposed to its motion is the weight. A slight con-

traction of the muscle gives a considerable motion to the

limb.

149. The lever is applied to determine the weight of

substances. Under this character it is called a Balance. The
Common Balance has its two arms equal, with a scale sus-

pended from each extremity; the fulcrum being above the

centre of gravity of the beam and scales. The substance to be

weighed is placed in one scale, and weights placed in the

other till the beam remains in equilibrium in a perfectly hori-

zontal position ;
in which case the weight of the substance is

indicated by the weights by which it is balanced. If the

weights differ ever so slightly the horizontality of the beam
will be disturbed, and after oscillating for some time (in con-

'

sequence of the fulcrum being placed above the centre of

gravity of the beam and scales) it will, on attaining a state

of rest, form an angle with the horizon, the extent of which
is a measure of the sensibility of the balance.

When we take the weight in the other scale as a measure
of the weight of the substance we are weighing, we assume that

the arms of the lever are of equal length and that the beam
would be itself in equilibrium if the scales were empty. We
can ascertain if these conditions are satisfied by observing
whether equilibrium still subsists when the substance is trans-

ferred to the scale which the weight originally occupied and
the weight to that which the substance originally occupied.

150. In the construction of a balance the following re-

quisites should be attended to.

(1) When loaded with equal weights the beam should be

perfectly horizontal.

T. S. 11
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(2) When the weights differ, even by a slight quantity,
the sensibility should be such as to detect this difference.

(3) When the balance is disturbed it should readily return

to its state of rest, or it should have stability. We shall now
consider how these may be fulfilled.

Tofind how the requisites of a good balance may be satisfied.

Let P and Q be the weights in the scales
;
AB la :

C the fulcrum; h its distance from the line joining A, B:
W the weight of the beam and scales : k the distance of the

centre of gravity of these (t.
e. of the point of application of

W) from measured downwards; the angle the beam
makes with the horizon when there is equilibrium.

Let us take the moments of P, Q, W about C: their sum

equals zero since there is equilibrium (Art. 57). Then

the distance of P's direction from C= a cos h sin 6

Q
y

s = acosd + hsind

TF's =ksmd,

we have, therefore,

P(acos0-h sin 0)
- Q (a cos + h sin 0) -Wksin0=O ;

a (-P- Q)a
therefore tanfl=

(p+ Q) h +m .
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This determines the position of equilibrium. The first

requisite the horizontally when P and Q are equal is

satisfied by making the arms equal.

For the second we observe that for a given difference of P
and Q the sensibility is greater the greater tan 6 is

;
and for

a given value of tan 6 the sensibility is greater the smaller

the difference of P and Q is : hence -^
-~ is a correct measure

of the sensibility: and therefore the second requisite is ful-

h k
filled by making (P+ Q)

-
-f W- as small as possible.

The stability is greater the greater the moment of the

forces which tend to restore the equilibrium when it is de-

stroyed. Suppose P= Q, then Pand Q may be placed at the

mid-point between A and B : and the moment of the forces

tending to restore equilibrium equals

{{P+Q)h + Wk}sm0.

Hence to satisfy the third requisite, this must be made as

large as possible. This is, in part, at variance with the

second requisite. They may, however, both be satisfied by
making (P+ Q) h+Wk large, and a large also: that is, by
increasing the distances of the fulcrum from the beam and
from the centre of gravity of the beam and scales, and by
lengthening the arms.

It must be remarked that the sensibility of a balance is

of more importance than the stability, since the eye can judge
pretty accurately whether the index of the beam makes equal
oscillations on each side of the vertical line

;
that is, whether

the position of rest would be horizontal : if this be not the

case, then the weights must be altered till the oscillations are

nearly equal.

151. Another kind of balance is that in which the arms

are unequal, and the same weight is used to weigh different

substances by varying its point of support, and observing its

distance from the fulcrum by means of a graduated scale.

The common steelyard is of this description.
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152. To shew how to graduate the common steelyard.

Let AB be the beam of the steelyard. A the fixed point

from which the substance to be weighed is suspended, Q
being its weight ;

the fulcrum
;
W the weight of the beam

together with the hook or scale-pan suspended from A
;
G

the centre of gravity of these.

Suppose that P suspended at N balances Q suspended from

A
; then, taking the moments of P, Q, W about C, we have

Q.A C- W.CG - P. CN= ;

W
CN+^.CG

=
To

R

w
Take the point D, so that CD = -p CG ;

therefore

CN+CD
V- AC ^ pjsr

AC P.

Now let the arm DB be graduated by taking Dav Da
i9

Da
3 , equal respectively to AC, 2AC, SAC ;

let the

figures 1, 2, 3, 4, be placed over the points of gradua-
tion, and let subdivisions be made between these. Then by
observing the graduation at JN^we know the ratio of Q to P;
and this latter being a given weight we know the weight
of Q. In this way any substance may be weighed.

153. The second of the Mechanical Powers is the Wheel
and Axle. This machine consists of two cylinders fixed



WHEEL AND AXLE. 165

together with their axes in the same line : the larger is called

the wheel, and the smaller the axle. The cord by which the

weight is suspended is fastened to the axle, and then coiled

round it, while the power which supports the weight acts by
a cord coiled round the circumference of the wheel, by spokes
acted on by the hand, as in the capstan, or by the hand

acting on a handle, as in the windlass.

154. To find the ratio of the power and weight in the

Wheel and Axle when in equilibrium.

Let AD be the wheel and GC'B the axle
;
P the power,

represented by a weight suspended
from the circumference of the wheel
at A ; W the weight hanging from
the axle at B.

Then since the axis of the machine
is fixed, the condition of equilibrium
is that the sum of the moments of

the forces about this axis vanishes,

(Art. 87) ;
therefore

P x rad. of wheel =Wx rad. of axle ;

O O

therefore
W_ rad. of wheel

P rad. of axle

It will be seen that this machine is only a modification of

the lever. In short it is an assemblage of levers all having
the same axis: and as soon as one has been in action the

next comes into play ;
and in this way an endless leverage is

obtained. In this respect, then, the wheel and axle surpasses
the common lever in mechanical advantage. It is much used
in docks and in shipping.

155. The third Mechanical Power is the Toothed Wheel.
It is extensively applied in all machinery ;

in cranes, steam-

engines, and particularly in clock and watch work. If two
circular hoops of metal or wood having their outer circum-

ferences indented, or cut into equal teeth all the way round,
be so placed that their edges touch, one tooth of one circum-
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ference lying between two of the other (as represented in the

figure) ; then if one of them be turned round by any means,
the other will be turned round also. This is the simple con-
struction of a pair of toothed wheels.

156. To find the relation of the power and weight in

Toothed Wheels.

Let A and B be the fixed centres of the toothed wheels

Q

P
Q

on the circumferences of which the teeth are arranged ;
G the

point of contact of two teeth
; QGQ a normal to the surfaces

in contact at G. Suppose an axle is fixed on the wheel B,
and the weight W suspended from it at E by a cord

;
also

suppose the power P acts by an arm AD
;
draw Aa, Bb per-

pendicular to QGQ. Let the mutual pressure at G be Q.

Then, since the wheel A is in equilibrium about the fixed

axis A
j
the sum of the moments about A equals zero ;

there-

fore

PAD-Q.Aa = 0.

Also since the wheel B is in equilibrium about B, the sum of

the moments about B equals zero
;
therefore

Q.Bb-W.BE= 0.

Then by eliminating Q from these two equations,

P^_P Q__Aa BE
W Q' W AD'Bb'

moment of P Aa
or

moment of W Bb
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when the teeth are small this ratio very nearly

_ rad. of wheel A
~~

rad. of wheel B '

157. Wheels are in some cases turned by means of straps

passing over their circumferences. In such cases the minute

protuberances of the surfaces prevent the sliding of the straps,
and a mutual action takes place such as to render the calcu-

lation exactly analogous to that in the Proposition.
For the calculation of the best forms for the teeth, the

reader is referred to a Paper of Mr Airy's, in the Camb. Phil.

Trans. Vol. II. p. 277.

158. The fourth Mechanical Power is the Pully. There
are several species of pullies : we shall mention them in order.

The simple pully is a small wheel moveable about its axis :

a string passes over part of its circumference. If the axis is

fixed the effect of the pully is only to change the direction of

the string passing over it : if however the axis be moveable,

then, as will be presently seen, a mechanical advantage may
be gained.

It is sometimes assumed as axiomatic that if a perfectly
flexible string passes over a smooth surface the tension of the

string will be the same throughout ;
we shall see, however, in

the Chapter on Flexible Strings that this result admits of

demonstration. In the present chapter we shall only require
a part of the general proposition. We shall suppose the pul-
lies to be circular, and assume that the tensions of the two

portions of any string which are separated by a portion in

contact with a pully are equal. And this may be shewn to

be necessarily true if we merely admit that the string is

a tangent to the circle at the point where it ceases to be in

contact with the pully. For since the pully is smooth the

directions of all the forces which it exerts on the string must

pass through the centre of the pully ; hence if we take the

moments with respect to this point of the forces which act on

the string we see that the string cannot be in equilibrium
unless the tensions of the two portions are equal.
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159. To find the ratio of the power and weight in the

single moveable Fully.

I. Suppose the parts of the string divided by the pully
are parallel.

Let the string ABP have one extremity fixed at A, and
after passing under the pully at B suppose it held by the

hand exerting a force P. The weight W is suspended by a

string from the centre C of the pully.

Now the tension of the string ABP is the same throughout.
Hence the pully is acted on by three parallel forces, P, P,
and W; hence

W
2P-W=

;
therefore

-^
= 2.

II. Suppose the portions of the string are not parallel.
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Let a and a! be the angles which Aa and Pb make with
the vertical.

Now the pnlly is held in equilibrium by IF in CW, Pin
aA, P in bP. Hence, resolving the forces horizontally and

vertically,

Psina-Psina' = (1),

Pcosa+Pcosa'-JF=0 (2);

the equation of moments round C is an identical equation.

By (1),
sin a = sin a and a = a;

W
therefore, by (2), -p=2cosa,

which is the relation required.

160. To find the ratio of the power and weight in a system

of putties, in which each putty hangs from a fixed point by a

separate string, one end being fastened in the putty above it and
the other end on a fixed beam, and. all the strings being parallel.

Let n be the number of moveable pullies.

I. Let us neglect the weight of the

pullies themselves. Then

tension of b
t
W=W;

tension of afifi^
= iW;

tension of a
2
b
2
b
3
= -^W;

tension of ajb3
c -3 W;

and so on; and the tension of the string

passing under the nth
pully

= W, and

this = P; therefore

W
'9

n

A
T

<x>OS

W&*

^4/

O*
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II. Let us suppose the weights of the pullies to be con-

sidered; and let <ov o>
2 ,

a>
3 ,...&>n be these weights.

Then if pl9 p2 , p3 ,..-pn be the weights which they would
sustain at P, and P

t
the weight W would sustain at P, we

have

jPl~ > ^""on-X* Pn~ n J -*i

therefore

o 7 x-2 2 2
' _1 2

7

^P=A+A+ +JP.+ -P,.

or P=^{TF+a>1
+ 2a>

2 + 2
2
A>

3 + .+STVJ.

If Wl
=

2
= ft)

3
= &>,

161. To find the ratio of the power and weight when the

system is the same as in the last Proposition, but the strings
are not parallel.

We shall neglect the weights of the blocks. The pullies
will evidently so adjust themselves that the string at the

centre of any pully will bisect the angle between the strings

touching its circumference.

Let 2a
1? 2a

2 ,
2a

3 ,...2an be the angles included between

the strings touching the first, second, third, nth
pullies

respectively.
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Then, by Art. 159,

W
tension of aJoJb. =

2 cos a
x

'

W
tension of ajbjb

2* cos a
x
cos */

tension of aAc =
2
3
cos a

x
cos a

2
cos a

3

'

tension of trie last string =
2 cos aj cos a

2
cos a

3
. . . cos an

and this = P; therefore

W
-p

= 2
n
cos a

x
cos a

2
cos a

3
. . . cos an.

162. To find the relation of the power and weight in a

system of putties where the same string passes round all the

pullies.

This system consists of two blocks, each containing a

number of the pullies with their axes coincident. The weight
is suspended from the lower block, which is moveable, and
the power acts at the loose extremity of the string, which

passes round the respective pullies of the upper and lower

block alternately.

Since the same string passes round all the pullies, its

tension will be everywhere the same, and equal to the power
P. Let n be the number of portions of string at the lower

block; then n.Pwill be the sum of their tensions; therefore

W=n.P.

If we take into account the weight of the lower block, and
call it B, then

W+B=n.P.
If the strings at the lower block are not vertical, we must

take the sum of the parts resolved vertically, and
equate

it to

W. But in general this deviation from the vertical is so

slight that it is neglected.
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163. As the weight is rising or falling, it will be observed

that in general the pullies move with different angular mo-
tions. The degree of angular motion of each pully depends

upon the magnitude of its radius. Mr James White took

advantage of this, to choose the radii of the pullies in such a

manner as to give those in the same block the same angular
motion, and so to prevent the wear and resistance caused by
the friction of the pullies against each other. This being the

case, the pullies in each block might be fastened together, or,

instead of this, cut out of one mass.

It will be seen without much difficulty, that if the weightW be raised through a space a, each of the portions of string
between the two blocks will be shortened by the length a

;

and therefore, that the portions of string which move over

the pullies in the two blocks, taken alternately, will have
their lengths equal to a, 2a, 3a, 4a... Suppose the end of

the string fastened to the lower block
;
then if the radii of

the pullies of the upper block be proportional to the odd
numbers 1, 3, 5, these pullies will move with the same

angular velocity, and might be made all in one piece, as

mentioned above. And if the radii of the lower pullies be

proportional to the even integers 2, 4, 6, ... these also will

move with a common angular velocity, and might therefore

be cut out of one piece.

164. To find the ratio of the power to the weight when all

the strings are attached to the weight.

If we neglect the weights of the pullies, ^~
the tension of the string \ax

= P; the ten-

sion of a
2 2 =2P; and so on: if there be

n pullies, then the sum of the tensions of

the strings attached to the weight

= P+2P+22P+... + 2
n-1
P=(2*-l)P;

W
therefore -r>=2

n
1.

If we suppose the weights of the pullies are

o^, g>
2 ,

g>
3 ,... reckoning from the lowest, and

to', g>", '",... the portions of W which they
respectively support (since they evidently
assist P), and W' the portion of W sup-

ported by P; then
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IF'=(2
tt

-l)P,
ft)

' =
(2

ra
-1

-l)a)1?

co^= (2-1)^;
therefore W=W' + a>'+ ...... = (2

n-
1) P+ (2""

1 -
1) co

x ,

+ (2
w-2

-l)o>2 + + (2-1)0)^.
If ^ = ^ =

0)3
=

TF= (2
n -

1) P+ {2
n_1 + 2

n"2 + + 2 - (n
-

1)} ft)
1?

=
(2

n
-l)P+(2

n
-w-l)o)1

.

165. The fifth Mechanical Power is the Inclined Plane.

By an inclined plane we mean a plane inclined to the

horizon. A weight W may be supported on an inclined

plane by a power P less than W.

166. To find the ratio of the power and weight in the

inclined plane.

Let AB be the inclined plane ;

a the angle it makes with the

horizon. Let the power P act on

the weight in the direction CP,

making an angle e with the plane.
Now the weight at G is held at

rest by P in OP, W in the vertical

CW, and a pressure R in CB, at

right angles to the plane.

Hence, by Art. 27, if we resolve

these forces perpendicular and pa-
rallel to the plane, we have

P + Psine-

P cos e

Wcos a =

PTsina =

The second equation gives the required relation -
TTr
=

u If cose
and the first equation gives the magnitude of the pressure B.

If P act horizontally, e = - a, and P= TTtan a.
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If P act parallel to the plane, e 0, P=TFsin a.

If P act vertically, e = \ir a, P= W.

167. The sixth Mechanical Power is the Wedge. This

is a triangular prism, and is used to separate obstacles by
introducing its edge between them and then thrusting the

wedge forward. This is effected by the blow of a hammer or

other such means, which produces a violent pressure for a

short time, sufficient to overcome the greatest forces.

168. An isosceles wedge is kept in equilibrium by pressures
on its three foxes; to find the relation between them.

The above three figures represent the wedge and obstacles

together and separately.

Let 2P denote the force acting perpendicularly to the thick

end of the wedge ;
R and R' the forces which act on the other

faces of the wedge : these forces are perpendicular to the faces

since the wedge is supposed smooth.

Let 2a be the vertical angle of the wedge.

Resolve the forces which act on the wedge in directions

perpendicular and parallel to the thick end; then for the

equilibrium of the wedge we have

2P=(P + #)sina,

R cos a = R' cos a
;

therefore R = R\
P= Psina.
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We do not write down the equations of equilibrium of the

obstacle, because we do not know the forces exerted on it at

different points of its base by the ground on which it rests.

It is usual to resolve the force R which acts on the wedge
and obstacle into two components; one along the line in

which A, the point of the obstacle in contact with the wedge,
would move if the wedge were pushed further into the ob-

stacle, and the other perpendicular to this direction. Let
AB be the first direction, making an angle i with the direction

of R
;
then the resolved part of R in this direction is R cos t,

which we will call 8;

,, ~ P sin a
therefore -a= . .

JS cos i

As however nothing is known about the value of the angle i,

the result is of no practical value.

169. The last Mechanical Power is the Screw. This

machine in its simple construction

consists of a cylinder AB with a

uniform projecting thread abed...

traced round its surface, and making
a constant angle with lines parallel
to the axis of the cylinder. This

cylinder fits into a block D pierced
with an equal cylindrical aperture,
on the inner surface of which is cut

a groove the exact counterpart of

the projecting thread abed
It is easily seen from this de-

scription, that when the cylinder is introduced into the block,
the only manner in which it can move is backwards or for-

wards by revolving about its axis, the thread sliding in the

groove. Suppose W to be the weight acting on the cylinder

(including the weight of the cylinder itself), and P to be the

power acting at the end of an arm A G at right angles to the

axis of the cylinder; the block D is supposed to be firmly
fixed, and the axis of the cylinder to be vertical.

170. To find the ratio of the power and weight in the Screw

when they are in equilibrium.
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Let the distance of C from the axis of the cylinder = a
;

and the radius of the cylinder
= b.

Now the forces which hold the cylinder in equilibrium are

W, P, and the reactions of the pressures of the various por-
tions of the thread on the corresponding portions of the lower

surface of the groove in which the thread rests; these re-

actions are indeterminate in their number but they all act in

directions perpendicular to the surface of the groove, and
therefore their directions make a constant angle with the axis

of the cylinder. Let - a be the angle which the thread of

the screw makes with the axis of the cylinder, then a is the

angle which the direction of each reaction makes with the

axis of the cylinder. If, then, R be one of these reactions,
R cos a, R sin a are the resolved parts vertically and horizon-

tally ;
the horizontal portions of the reactions act each at

right angles to a radius of the cylinder. Hence, resolving
the forces vertically, and also taking the moments of the

forces in horizontal planes, we have

W-t.RcosoL=0 (1),

Pa-2.i$sina=0 (2):

we might write down the other four equations of equilibrium,
but they introduce unknown quantities with which we are

unconcerned in our question.

W a cos a2 . R , 7 n
Hence -^r = = -. ^ ^ ,

because b and a are constant,P b smalt .R

a cos a 2ira

b sin a 2irb tan a

circumference of circle of which the rad. is a

vertical dist. between two successive winds of the thread
'

The Screw is used to gain mechanical power in many ways.
In excavating the Thames Tunnel, the heavy iron frame-work

which supported the workmen was gradually advanced by
means of large screws.
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MISCELLANEOUS EXAMPLES.

1. If one arm of a common balance be longer than the

other, shew that the real weight of any body is the geometri-
cal mean between its apparent weights as weighed first in one

scale and then in the other.

2. The arms of a false balance are unequal, and one of

the scales is loaded; a body whose true weight is Plbs. ap-

pears to weigh IF lbs. when placed in one scale, and IF' lbs.

when placed in the other scale; find the ratio of the arms
and the weight with which the scale is loaded.

7
W'-P WW'-F2

liesultS. p_yy\ p_ jy

3. A triangular lamina ABC, whose weight is W, is sus-

pended by a string fastened at C; find the weight which
must be attached at B that the vertical through G may bisect

the angle A GB.

Result. P=?*^3 a

4. Two equal weights are suspended by a string passing

freely over three tacks, which form an isosceles triangle whose
base is horizontal

;
find the vertical angle when the pressure

on each tack is equal to one of the weights. Result. 120.

5. A uniform heavy rod, at a given point of which a

given weight is attached, is sustained at one end
;
determine

its length when the force which applied at the other end will

keep it horizontal is least.

6. ABGC, BEF are two horizontal levers without weight ;

B, F their fulcrum s: the end B of one lever rests upon the

end G of the other, HK is a rod without weight suspended by
two equal parallel strings from the points E, G. Prove that

a weight P at A will balance a weight W placed anywhere
on the rod HK, provided

EFBG P _BG
DF~ BC* W AB'

T. s. 12
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7. If the axis about which a wheel and axle turns coin-

cide with that of the axle, but not with the axis of the wheel,
find the greatest and least ratios of the power and weight

necessary for equilibrium, neglecting the weight of the ma-
chine.

8. In the system of pullies where each string is attached

to the weight, let one of the strings be nailed to the block

through which it passes, then shew that the power may be

increased up to a certain limit without producing motion.

If there be three pullies, and the action of the middle one

be checked in the manner described, find the tension of each

string for given values of P and W.

9. A weight w is supported on an inclined plane by two
id

forces, each equal to
,
one of which acts parallel to the

base. Shew that equilibrium may be possible when the in-

clination of the plane is not greater than 2 tan"
1

(

-
)

,
n being

a positive integer.

10. A weight is suspended from the two ends of a straight
lever without weight whose length is 5 feet, by strings whose

lengths are 3 and 4 feet. Find the position of the fulcrum
that the lever may rest in a horizontal position.

Besult. At a distance 3| feet from that end of the lever to

which the longer string is fastened.

11. A uniform steelyard AB, having a constant weight P,
and a scale-pan of weight JcP, suspended at B and A respec-

tively, is used as a balance by moving the rod backwards and
forwards upon the fulcrum (7, on which the whole rests.

Shew that the beam must be graduated by the formula

AC= *?}i^ .AB,n + k + k +1

the weight of the rod being Jc'P, and n being each of the

natural numbers 1, 2, 3, ... taken in succession.
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12. AB is a rod without weight capable of turning freely
about its extremity A> which is fixed; GB is another rod

equal to 2AB, and attached at its middle point to the ex-

tremity B of the former, so as to turn freely about this point ;

a given force acts at G in the direction GA, find the force

which must be applied at B in order to produce equilibrium.

13. A lever without weight in the form of the arc of a

circle, having two weights P and Q suspended from its ex-

tremities, rests with its convexity downwards upon a hori-

zontal plane ;
determine the position of equilibrium.

Result. Let a be the angle which the arc subtends at the

centre of the circle, the inclination to the vertical of the

radius at the extremity of which P is suspended ;
then

. a Q sin a
tan m ^ ^ .

B+ Q cos a

14. The sides of a rhombus ABCB are hinged together
at the angles; at A and G are two pulling forces (P, P)
acting in the diagonal AG) and at B and D there are two
other pulling forces

( Q, Q) acting in BD
;
shew that

P2 G2

cosBAD=
p2-^.

15. AB, BG are two equal and uniform beams connected

by a hinge at B
;
there is a fixed hinge at A

;
a string fast-

ened at G passes over a pully at B and is attached to a

weight P; AB is horizontal and equal to twice the length of

either beam
;
shew that if P be such as to keep BG horizontal

P=W . V|, and tan = 2 tan
(j>
= 2 V2

,
where and

<j>
are the

angles which AB, GB make with the horizon, and 2W the

weight of each beam.

16. A string ABGBEP is attached to the centre A of a

pully whose radius is r
;

it then passes over a fixed point B
and under the pully which it touches in the points G and B

;

it afterwards passes over a fixed point E and has a weight P
attached to its extremity ;

BE is horizontal and = fr, and
BE is vertical

;
shew that if the system be in equilibrium the

weight of the pully is |P, and find the distance AB.

Result AB=^.
122
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17. Three uniform rods rigidly connected in the form of a

triangle rest on a smooth sphere of radius r
;
shew that the

tangent of the inclination of the plane of the triangle to the

horizon is -rr* ^ > where a is the distance of the centres of

VV- p
2

)

the circles inscribed in the triangle itself and in the triangle

formed by joining the middle points of the rods, and p is the

radius of the circle inscribed in the triangle.

18. If a steelyard be constructed with a given rod whose

weight is inconsiderable compared with that of the sliding

weight, the sensibility varies inversely as the sum of the

sliding weight and the greatest weight which can be weighed.

\f 19. A heavy equilateral triangle hung up on a smooth

peg by a string, the ends of which are attached to two of its

angular points, rests with one of its sides vertical
;
shew that

the length of the string is double the height of the triangle.

20. Three equal heavy spheres lying in contact on a hori-

zontal plane are held together by a string. A cube, whose

weight is W, is placed with one of its diagonals vertical so

that its lower sides touch the spheres ;
shew that the tension

WJ2
of the string is not less than .

21. A roof of given span is to be constructed of two beams,
which are to be connected at the vertex by a single pin, and

the weight of the roof would increase in proportion to the

length of the beams
;
what will be the angle of inclination to

the horizon, when the whole pressure on the wall is the least

possible ?

Shew that the direction of the line of pressure will then

make the same angle with the vertical line which the beam
makes with the horizontal line.

22. An endless string supports a system of equal heavy
pullies, the highest of which is fixed, the string passing round

every pully and crossing itself between each. If a, /3, y, &c.

be the inclinations to the vertical of the successive portions of

string, prove that cos a, cos /3, cos 7, &c. are in arithmetical

progression.
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23. Three equal heavy cylinders, each of which touches

the other two, are bound together by a string and laid upon a

horizontal table so that their axes are horizontal
;
the tension

of the string being given, find the pressures between the

cylinders. W
Results. The horizontal pressure = T -

,
the other

W= T+ -jz ;
where T is the tension of the string and W the

weight of each cylinder.

24. A string of equal spherical beads is placed upon a

smooth cone having its axis vertical, the beads being just in

contact with each other, so that there is no mutual pressure
between them. Find the tension of the string ;

and deduce
the limiting value when the number of beads is indefinitely

great.

25. A smooth cylinder is supported on an inclined plane
with its axis horizontal, by means of a string which, passing
over the upper surface of the cylinder, has one end attached

to a fixed point and the other to a weight W which hangs
freely; if a be the inclination of the plane to the horizon,
and 6 the inclination to the vertical of that part of the string
which is fastened to the fixed point, the weight of the

cylinder is

.sin \d cos (a + ^0)2W-
sma

26. An inextensible string binds tightly together two *

smooth cylinders whose radii are given ;
find the ratio of the

pressure between the cylinders to the tension by which it is

produced.

Result. \A-E where r, and r are the given radii.

27. A ball of given weight and radius is hung by a string

of given length from a fixed point, to which is also attached

another given weight by a string so long that the weight

hangs below the ball; find the angle which the string to

which the ball is attached makes with the vertical.
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Result. Let Q be the weight of the "ball, P the weight
which hangs below the ball, a the radius of the ball, I the

length of the string ; then the inclination of the string to the

vertical is sin
-1

( ,
. ,

\P+ Q a+l.

28. A ring whose weight is P is moveable along a smootl

rod inclined to the horizon at an angle a ;
another ring of

weight P' is moveable along a rod in the same vertical plane
as the former and inclined at an angle a! to the horizon

;
a

string which connects these rings passes through a third ring
of weight 2 W; shew that the system cannot be in equilibrium
unless

Ptan a P tan a! + IF (tan a tan a) = 0.

29. A right cone whose axis is a and vertical angle

VI.
is placed with its base in contact with a smooth vertical wall,

and its curved surface on a smooth horizontal rod parallel to

the wall
;
shew that it will remain at rest if the distance of

the rod from the wall be not greater than a nor less than -
.

30. A paraboloid is placed with its vertex downwards and
axis vertical between two planes each inclined to the horizon

at an angle of 45
;
find the greatest ratio which the height of

the paraboloid may have to its latus rectum, so that, if it be

divided by a plane through its axis and the line of intersec-

tion of the inclined planes, the two parts may remain in

equilibrium.

Result. Let h be the height and 4a the latus rectum
;
then

the greatest ratio is determined by
32

h + tjiah)
= 3a.

107T

31. Three bars of given length are maintained in a hori-

zontal position, and tied together at their extremities so as to

form a horizontal triangle ;
and a smooth sphere of given

weight and size rests upon them. Find the pressure of the
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sphere on each bar, and the magnitude and direction of the
tension on each of the connecting bands.

32. One end of a string is fastened to a point in a smooth
vertical wall, the other to a point in the circumference of the

base of a cylinder ;
the cylinder is in equilibrium, having a

point of its upper end in contact with the wall; find the

distance of this point below the point in the wall to which
the string is fastened.

Result. Suppose x the required distance, I the length of

the string, h the height of the cylinder, b the diameter of

its base
;
then

33. The ends of a string are fastened to two fixed points,
and from knots at given points in the string given weights
are hung ;

shew that the horizontal component of the tension

is the same for all the portions into which the string is

divided by the knots. Shew also that if the weights are all

equal the tangents of the angles which the successive portions
of the string make with the horizon are in Arithmetical Pro-

gression. (Such a system is called a Funicular Polygon.)

34. Two uniform beams loosely jointed at one extremity
are placed upon the smooth arc of a parabola, whose axis is

vertical and vertex upwards. If I be the semi-latus rectum

of the parabola, and a, b, the lengths of the beams, shew that

they will rest in equilibrium at right angles to each other, if

l(a + b){a* + b*)$
= a4

b*;

and find the position of equilibrium.

35. A quadrilateral is formed by four rigid rods jointed at

the ends
;
shew that two of its sides must be parallel in order

that it may preserve its form when the middle points of either

pair of opposite sides are joined together by a string in a state

of tension.

36. Four rods, jointed at their extremities, form a quadri-
lateral, which may be inscribed in a circle

;
if they be kept

in equilibrium by two strings joining the opposite angular

points, shew that the tension of each string is inversely pro-

portional to its length.
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37. Four equal and uniform heavy rods being jointed by
hinges so as to form a square, two opposite angles are con-

nected by a string ;
this frame-work stands on a fixed point,

the string being horizontal
;
find the tension of the string.

Result. Twice the weight of a rod.

38. Four equal and uniform heavy rods are connected by
hinges ;

the system is suspended by a string attached to one

hinge, and the lowest hinge is in contact with a horizontal

plane ;
find the tension of the string and the pressure on the

plane.

Result. Each is twice the weight of a rod.

39. A regular hexagon, composed of six equal heavy rods

moveable about their angular points, is suspended from one

angle which is connected by threads with each of the opposite

angles. Shew that the tensions of the threads are as V3 : 2.

Find also the strain along each rod.

40. A regular hexagon is composed of six equal heavy
rods moveable about their angular points ;

one rod is fixed in

a horizontal position, and the ends of this rod are connected

by vertical strings with the ends of the lowest rod
;
find the

tension of each string.

Result. | W; where W is the weight of a rod.

41. Suppose that in the preceding example each end of

the fixed rod is connected with the more remote end of the
lowest rod, so that the strings instead of being parallel are in-

clined at an angle of 60
;
find the tension of each string.

Result. TFV3.

42. A regular hexagon is composed of six equal heavy
rods moveable about their angular points, and two opposite

angles are connected by a horizontal string ;
one rod is placed

on a horizontal plane, and a weight is placed at the middle

point of the highest rod
;
find the tension of the string.

Result. Let W be the weight of each rod, and W the

weight placed on the highest rod
; then the tension is

zw+w
V3
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CHAPTER X.

FEICTION.

171. In the investigations of the preceding chapter, we
have supposed that the surfaces of the bodies in contact are

perfectly smooth. By a smooth surface is meant a surface

which opposes no resistance whatever to the motion of a body
upon it. A surface which does oppose a resistance to the

motion of a body upon it is said to be rough. In practice it is

found that all bodies are more or less rough.

The friction of a body on a surface is measured by the

least force which will put the body in motion along the

surface.

172. Coulomb made a series of experiments upon the fric-

tion of bodies against each other and deduced the following
laws. Memoires des Savans Etrangers, Tom. x.

(1) The friction varies as the pressure when the materials of
the surfaces in contact remain the same. When the pressures
are very great indeed, it is found that the friction is somewhat
less than this law would give.

(2) The friction is independent of the extent of the surfaces
in contact so long as the pressure remains the same. When
the surfaces in contact are extremely small, as for instance

a cylinder resting on a surface, this law gives the friction

much too great.

These two laws are true when the body is on the point of

moving and also when it is actually in motion
;
but in the case

of motion the magnitude of the friction is much less than

when the body is in a state bordering on motion.

(3) The friction is independent of the velocity when the body
is in motion.
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It follows from these laws that if P be the normal pressure
between two surfaces, then the friction is //.P, where fi is a

constant quantity for the same materials and is called the co-

efficient offriction.
In the state bordering on motion and when the surfaces in

contact are of finite extent, we have the following results from

experiment ;

fi
=

J, surfaces wood, the grain being in the same direction
;

=
i, opposite....

=
J, metallic surfaces

;

= I ,
one surface wood and the other metal.

Oil and grease considerably diminish friction; fresh tallow

reduces it to half its value.

In the state bordering on motion and when the surfaces in

contact are single lines, then fi
= ~ for wood. When the sur-

face in contact is a physical point the statical friction is incon-

siderable.

For full particulars on this subject we refer the reader to

Coulomb's papers, and to the Memoirs published in the Me-
moires de I Institut. by M. Morin.

173. Angle of Friction. Suppose a body acted on only by
its weight to be placed upon a horizontal plane and the plane
to be turned round a horizontal line until the body begins to

slide. Let W be the weight of the body and a the angle the

plane makes with the horizon. The pressure of the body on

the plane will be equal to the resolved part of its weight

perpendicular to the plane, that is to Wcos a. The friction

is equal to the resolved part of the weight parallel to the

plane, that is to W sin a. If fi be the coefficient of friction,

we have
W&in a. = /m Wcos a ;

therefore tan a =
/jl.

This experiment will enable us to determine the value of the

coefficient of friction for different substances. The inclination

of the plane when the body is just about to slide is called

the angle offriction.

174. In Art. 32 we have found the condition of equilibrium
of a particle constrained to rest on a smooth curve ;

we proceed
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to the case of a particle on a rough curve. Suppose the curve
a plane curve

;
let X, Y be the forces which act on the par-

ticle parallel to the axes of x and y exclusive of the action

of the curve. The sum of the resolved parts of X and Y
along the tangent to the curve is

X + Y^-
ds ds'

The sum of the resolved parts along the normal is

If fi be the coefficient of friction the greatest friction capable
of being called into action is

*{*%-*
Hence, the condition of equilibrium will be that the numerical

dx dv
value of X^r + Y'-?- must be less than the numerical value

as as

offilX-^- Y-j-j, without regard to sign in either case.

This may be conveniently expressed thus,

(XJ+ rf)

2

must be less than M
'(zJ- F

J)'.

We may exhibit this condition in a different form, as will be

seen in the following article.

175. Next let the curve be of double curvature. Let P
denote the resultant force acting on the particle exclusive

of the action of the curve
; X, F, Z the components of P

parallel to the axes
; I, m, n the direction cosines of the tan-

gent to the curve at the point where the particle is placed ;

the angle between this tangent and the direction of P. The
resolved part of P along the tangent is P cos 0, and that per-

pendicular to the tangent is P sin 0. Hence, if ja be the co-

efficient of friction, we must have for equilibrium

Pcos0<//,Psin 0;
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therefore cos
2 < fj? (1 cos

2

0) ;

therefore cos
2 < ~^-

therefore

1+/**'

(
Xl+Ym + Zn\ 2

fi
2

[ P )
<
l+p?'

It is easy to shew that this result includes that of the former

dv dx
article by putting n = 0, m -j-,

l = .

176. A particle is constrained to remain on a rough sur-

face; determine the condition of equilibrium.

Let P be the resultant force on the particle exclusive of

the action of the surface
; <f>

the angle between the direction of

P and the normal to the surface at the point where the particle
is placed ;

u = the equation to the surface
; x, y, z the co-

ordinates of the particle. The resolved part of P along the

normal is P cos
<f>,

and that perpendicular to the normal is

P sin
(f>. Hence, for equilibrium we must have

Psin
<f>
< /aPcos (p;

therefore sin'
2

^>
< fi

2
cos

2

(f> ;

therefore cos
2

<f>
>

5 ;

1 + /m

therefore

(x4- F 4- Z^\
\ dx dy dz)

177. In the following articles of this chapter we shall

investigate certain equations which hold when the equilibrium
of different machines is on the point of being disturbed. The

equations in such cases will involve the forces acting on the

machine and
/j,

the coefficient of friction. When we have

found one of these limiting equations, we can draw the follow-

ing inferences :

(1) If in order to satisfy the equation for a given set of

forces it is necessary to ascribe to \l a value greater than its
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extreme value for the substances in question, which is known

by experiment, equilibrium is impossible.

(2) If the limiting equation can be satisfied by ascribing
to

fjb
values less than its extreme value, equilibrium may be

possible. We say may be possible, because the limiting equa-
tion may not be the only equation of equilibrium, and of

course for equilibrium it is necessary that all the appropriate

equations be satisfied.

Equilibrium of Machines with Friction.

178. Inclined Plane.

Let a be the inclination of the plane to the horizon,

pose a force P
1 acting at an in-

clination to the plane and the

body on the point of moving down
the plane. Let R be the normal
action of the plane, fiR the friction

which acts up the plane, W the

weight of the body. Resolve the

forces along and perpendicular to

the plane ; then, for equilibrium we have

P
1
cos0 + fiR- JFsina = (1),

R+P1
sm0- TTcosa = (2).

Substitute in (1) the value of R from (2) ; thus

p _ IF sin a
fjb
IT cos a

1 cos
fju

sin

Next, suppose P2
a force acting at an inclination to the plane,

such that the body is on the point of moving up the plane.

Friction now acts down the plane, and we shall find

p_ IFsina + ^ITcos a
2
~

cos + ft sin

This result may be deduced from the former by changing the

sign of
jjb.

There will be equilibrium if the body be acted on by a force

P, the magnitude of which lies between Px
and P

2
.
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Suppose e to "be the angle offriction, so that

tan e = fi,

W sin a tan eW cos a
then P,=

cos tan e sin 6

W sin (a e) #

cos(0 + e)
'

TF sin (a + e)

cos (0 e)

179. Lever with Friction.

Suppose a solid body pierced with a cylindrical hole through

Similarly, P
2
= ^^ f

which passes a solid fixed cylindrical axis. Let the outer

circle in the figure represent a section of the cylindrical hole

made by a plane perpendicular to its axis, and the inner circle

the corresponding section of the solid axis. In the plane of

this section, we suppose two forces P and Q to act on the

solid body at the points A and B. Also at the point of con-

tact C there is a normal force R and a tangential force F.

These four forces keep the body in equilibrium.

Since li andF have a resultant passing through C, it follows

that the resultant of P and Q must also pass through G (Art.

58). Let 7 be the angle between the directions of P and Q,
and S the resultant of P and Q ; then

S* =F2+Q2

+2PQ cosy.
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Let the direction of S be represented by the dotted line

making an angle 6 with B. Then since F, B }
and S are in

equilibrium,

B=Scosd
(1),

F=Sam0
(2).

For the limiting position of equilibrium F= fiB ; therefore

tan 6 = fi (3)

We may now find the relation between P and Q, by taking
moments round the centre of the exterior circle

;
let r be the

radius of this circle
;
a and b the distances of A and B from

its centre
;
a and ft the angles the directions of P and Q make

with these distances
;
then

Pa sin a + Fr= Qb sin /3 ;

or by (2) and (3),

Pasina+ ^
, (i+ Q?+2PQcosy)*=Qbsm/3 ...{).

(1 + /*)
3

If we suppose the friction to act in the opposite direction to

that in the figure, we shall obtain

Pasina ^-.-(P
2* Q

2

+2PQcosy) i= <#sin... (5).

(1+/*
2

)

2

Equilibrium will not subsist unless P, Q, a, b, a, /3, 7 are so

adjusted that (4) or (5) can be satisfied without giving to fi

a value greater than its limit known by experiment.

The following form may be given to the limiting equation.
Let s be the length of the perpendicular from the centre of the

outer circle on the dotted line. Since F, B, and 8 are in equi-

librium, we have by taking moments

Fr=Ss;

therefore r = s.



192 WEDGE WITH FRICTION.

180. Wedge with Friction. (See Art. 168.)

Suppose the wedge to be on the point of moving in the

direction in which 2P urges it, and
assume for simplicity that each face

is similarly acted on "by the obstacle.

The forces which maintain the wedge
in equilibrium are 2P perpendicular
to the thick end, R perpendicular to

each face, and fiR along each face

towards the thick end. Hence, re-

solving the forces parallel to the direc-

tion of 2P,

P=i2sina + ^i2cosa (1).

Forces equal and opposite to R and fiR act on the obstacle

at each point of contact. If R' be the resultant of R and pR,
we have

# = PV(1+/*
2

) (2).

Let 8 be the resolved part of R' along a direction making
an angle i with that of R and^' with that of R' (see Art. 168) ;

then

SR cos %

=R cos % + pR sin i (3).

(1), (2), and (3) will give the ratio of PtoR' and ofP to 8.

181. Screw with friction. (See Arts. 169, 170.)

If the surfaces of the screw are rough it is kept in equi-
librium by W, P, a system of forces perpendicular to the

surface of the groove, and a system of forces arising from
friction. Let R

t
denote one of the forces perpendicular to the

surface of the groove, /jlR, the corresponding friction
;
then R

t

makes an angle a with the axis of the cylinder on which the

screw is raised, and /nRt
an angle J77- a with the axis of the

cylinder. Suppose W about to prevail over P; then resolving
the forces parallel to the axis of the cylinder, and taking
moments round it, we have

W %R (cos a + fM sin a)
=

0,

Pa %R (sin a fi cos a) b = 0.

I
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Therefore
P i (sin

- g cos )

W a (cos a + p sin a)

_ b tan a
/j,

a 1 + /jl
tan a

-tan fa e),

if
//,
= tan e.

If we suppose P about to prevail over W, we shall find

similarly

-J^-tanta + e).

EXAMPLES.

1. A rectangular prism, whose breadth is 2.83 feet and
thickness less than 2 inches, is laid with its axis horizontal,
and with its smaller face on an inclined plane where the

coefficient of friction is ^ . Shew that if the inclination of

the plane is gradually increased, the prism will roll before it

will slide.

2. If the roughness of a plane which is inclined to the

horizon at a known angle be such that a body will just
rest supported on it, find the least force requisite to draw
the body up.

Results. Let a be the inclination of the plane, IF* the weight
of the body ;

then the least force is ITsin 2a, and it acts at an
inclination a to the plane.

3. Two rough bodies rest on an inclined plane, and are

connected by a string which is parallel to the plane ;
if the

coefficient of friction be not the same for both, find, the

greatest inclination of the plane which is consistent with equi-
librium.

Result, tanfl^ft^^' .

t.s. 13
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4. A rectangular table stands on a rough inclined plane,
and has two sides horizontal; if the coefficient of friction

of the lowest feet be fi and that of the others be
jjl',

find

the inclination of the plane when the table is on the point
of sliding.

5. Two unequal weights on a rough inclined plane are

connected by a string which passes through a fixed pully in

the plane ;
find the greatest inclination of the plane consistent

with the equilibrium of the weights.

Result. tan a = TTr
*

^r^-W- Wa

6. A heavy uniform rod whose length is 2a is supported

by resting on a rough peg, a string of length I being attached

to one end of the rod and fastened to a given point in the

same horizontal plane with the peg. If when the rod is on the

point of sliding the string is perpendicular to it the coefficient

of friction is - .

a

7. Two weights P, Q of similar material rest on a rough
double inclined plane, and are connected by a fine string

passing over the common vertex
; Q is on the point of motion

down the plane, shew that the weight which may be added to

P without producing motion is

Psin2<ftsin (a + ff)

sin (/3 <f>)
sin (a <j>)

'

a, ft being the angles of inclination of the planes and tan<

the coefficient of friction.

8. A weight P is attached to a point in the circumference

of a rough circular ring whose weight is W: shew that the

ring will hang on a horizontal rod in a plane perpendicular to

it with any point of the ring in contact with the rod, if the co-

efficient of friction be not less than

1 , W
where n =

9. Two equal heavy rings are moveable on a horizontal

rough rod
;
a string of given length which passes through
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them has both ends attached to a given weight; find the

greatest possible distance between the rings.

10. Three equal hemispheres, having their bases down-
wards, are placed in contact with each other upon a horizontal

table; if a smooth sphere of the same substance and equal
radius be placed upon them, shew that there will be equilibrium
or not, according as the coefficient of friction between the

hemispheres and the table is greater or less than JV&

11. A uniform rod rests wholly within a rough hemi-

spherical bowl in a vertical plane through its centre, prove
that the limiting position of equilibrium will be given by the

equation

, a_ sin 2e

~2cos(/3 + e)cos(/3-e)'

being the inclination of the rod to the horizon, 2/3 the

angle it subtends at the centre, and tan e the coefficient of

friction.

12. A thin rod rests in a horizontal position between two

rough planes equally inclined to the horizon, and whose
inclination to each other is 2a; if p be the coefficient of

friction, then the greatest possible inclination of the line of

intersection of the planes to the horizon is tan
-1
-^ .r sin a

13. A surface is formed by the revolution of an equi-
lateral hyperbola about one of its asymptotes which is ver-

tical; shew that a particle will rest upon it, supposing it

rough, anywhere beyond the intersection of the surface with
a certain circular cylinder.

14. A heavy particle under the action of gravity will rest

on a rough paraboloid 1- *L = 2z, if it be placed on the

surface at any point above the curve of intersection of the

surface with the cylinder 2 + ~ =$ ;
the axis of the para-

boloid being vertical, its vertex upwards, and
/*.

the coefficient

of friction.

132
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15. A rough elliptic pully (weight W) can turn freely
about one extremity of its major axis, and two weights, P, Q,

are suspended by a string which passes over the pully ;
when

in equilibrium its plane is vertical, and its axis inclined at

60 to the horizon, prove that the excentricity of the ellipse

is equal to

(G-P)V3

16. A heavy hemisphere rests with its convex surface on

a rough inclined plane. Find the greatest possible inclina-

tion of the plane.

17. One end A of a heavy rod ABC rests against a rough
vertical plane ;

and a point B of the rod is connected with a

point in the plane by a string, the length of which is equal
to AB

;
determine the position of equilibrium of the rod, and

shew how the direction in which the friction acts depends

upon the position of B.

18. Three equal balls, placed in contact on a horizontal

plane, support a fourth of the same size. Determine the

least values of the coefficients of friction of the balls with

each other and with the plane, that the equilibrium may be

possible.

Results. The coefficient of the friction between the balls

= V3 V2
;
the coefficient of the friction between the balls

and plane = J (\/3 V2
)*

19. Determine the curve on the rough surface of an

ellipsoid, at every point of which a particle acted on by three

equal forces whose directions are parallel to the axes of the

ellipsoid, will rest in a limiting position of equilibrium,

20. BCDE is a square board
;
a string is fixed to a point

A in a rough wall and to the corner B of the board. Shew
that the board will rest with its plane perpendicular to the

wall, and its side CD resting against it, if A C be not greater
than /jlBC.

21. A rectangular parallelopiped of given dimensions is

placed with one face in contact with a rough inclined plane ;
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determine the limits of its position in order that equilibrium

may exist.

22. A board, moveable about a horizontal line in its own

plane, is supported by resting on a rough sphere which lies

on a horizontal table
;
find the greatest inclination at which

the board can rest.

Result. Let 6 be the inclination of the board to the hori-

Q
zon

;
then tan - = fi, where

//,
is the coefficient of the friction

between the board and the sphere.

23. A string PGB passes over a smooth pully C, and
has a given weight P attached to one extremity, while the

other extremity B is attached to one end of a heavy uniform
beam AB at B. The other end A of the beam rests upon
a rough horizontal plane ; determine the position of the beam
when in equilibrium.

24. A hemisphere is supported by friction with its curved

surface in contact with a horizontal and vertical plane ;
find

the limiting position of equilibrium.

Result. If 6 be the inclination of the plane base to the

horizon sin V = - ^f .

3(1 + /*)

25. When a person tries to pull out a two-handled drawer

by pulling one of its handles in a direction perpendicular
to its front, find the condition under which the drawer will

stick fast.

26. Determine the condition under which a given weight
may be supported upon a rough vertical screw without the

action of any force
;
for example, if the coefficient of friction

be J, find the least number of turns which may be given to

a thread upon a cylinder 2 feet long and 6 inches in circum-

ference. Result. Eight.

27. Two uniform beams of the same length and material

placed in a vertical plane, are in a state of rest bordering
on motion under the following circumstances: their upper
ends are connected by a smooth hinge, about which they
can move freely ;

their other ends rest on a rough horizontal
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plane, and the beams are perpendicular to each other: find

the coefficient of friction between the beams and the hori-

zontal plane. Besult. fi
=

i.

28. A straight uniform beam is placed upon two rough

planes whose inclinations to the horizon are a and a', and
the coefficients of friction tanX and tanX'; shew that if 6 be
the limiting value of the angle of inclination of the beam to

the horizon at which it will rest, TFits weight, and B, R' the

pressures upon the planes

2 tan 6 = cot (a + V) - cot (a
-

X),

% R
_,

R W
cos X sin (a' + X') cos X' sin (a X) sin (a

- X + a' + X')

'

29. A heavy right cylinder is placed with its base on a

rough horizontal plane, and is capable of motion round its

axis
;
find the least couple in a horizontal plane which will

move it.

30. Two weights of different material are laid on an in-

clined plane connected by a string extended to its full length,
inclined at an angle 6 to the line of intersection of the inclined

plane with the horizon
;

if the lower weight be on the point
of motion find the magnitude and direction of the force of

friction on the upper weight.

31. A carnage stands upon four equal wheels; given the

coefficient of friction between the axles and the wheels find

the greatest slope on which it can remain at rest neglecting
the weights of the wheels.
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CHAPTER XI.

FLEXIBLE STRINGS. INEXTENSIBLE.

182. A STRING is said to be perfectly flexible when any
force, however small, which is applied otherwise than along
the direction of the string will change its form. For short-

ness, we use the word flexible as equivalent to perfectly

flexible. Sometimes the word chain is used as synonymous
with string.

If a flexible string be kept in equilibrium by two forces,

one at each end, we assume as self-evident that those forces

must be equal and act in opposite directions, so that the

string assumes the form of a straight line in the direction of

the forces. In this case the tension of the string is measured

by the force applied at one end.

Let ABG represent a string kept in equilibrium by a
force T at one end A and an equal force T .

at the other end G acting in opposite direc- B

tions along the line A G. Since any portion AB of the string
is in equilibrium it follows that a force T must act on AB
at B from B towards G in order to balance the force acting
at A

;
and similarly, T must act on BG from B towards A

in order that BG may be in equilibrium. This result is

expressed by saying that the tension of the string is the same

throughout.

Unless the contrary be expressed, a string is supposed
inextensible and the boundary of a transverse section of it is

supposed to be a curve, every chord of which is indefinitely
small.

183. When a flexible string is acted on by other forces

besides one at each end it may in equilibrium assume a

curvilinear form. If at any point of the curve we suppose
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a section made by a plane perpendicular to the tangent, the
mutual action of the

portions
on opposite sides of this plane

must be in the direction of the tangent, or else equilibrium
would not hold, since the string is perfectly flexible.

184. A heavy string of uniform density and thickness

is suspended from two given points; required to find the equa-
tion to the curve in which the string hangs when it is in equi-
librium.

Let A, B, be the fixed points

attached; the string will rest in a

vertical plane passing through A
and B, because there is no reason

why it should deviate to one side

rather than the other of this ver-

tical plane. Let AGB be the form

it assumes, G being the lowest

point; take this as the origin of

co-ordinates ;
let P be any point in

the curve; GM, which is vertical,
= y ; MP, which is horizontal, = x

;

The equilibrium of any portion GP will not be disturbed

if we suppose it to become rigid. Let c and t be the lengths
of portions of the string of which the weights equal the

tensions at G and P. Then GP is a rigid body acted on

by three forces which are proportional to c, s, and t, and act

respectively, horizontally, vertically, and along the tangent
at P. Draw PT the tangent at P meeting the axis of y
in T; then the forces holding GP in equilibrium have their

directions parallel to the sides of the triangle PMT, and
therefore bear the same proportion one to another that these

sides do (see Art. 19) ;
therefore

PM_ tension at lowest point dx c

MT weight of the portion GP
'

dy~ s
*

therefore -7- = - and -#=
dx c ds V(c

2 + s
z

)

'

therefore y + c = V(c
2 + s

2

) (1) ;
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the constant added being such that y = when s =
; there-

fore

s* = y*+2yc (2).

Ai dx _c _ c

therefore x = c logE^lM (3) ,
c

the constant being chosen so that x and y vanish together.
The last equation gives

ce
c

=y + c + V(^
2 + 2#c).

Transpose and square ; thus

8x x

c
2
e

c

-2(y + c)ce
7 + c

2 = 0;

- _?

therefore y + c = Jc (e
c + e

c

) (4).

Also s = V{(y + c)
2 -c2

}by (2)

~h>(*'-i*) (5).

Any one of these five equations may be taken as the equation
to the curve. If in equation (4) we write y for y + c, which
amounts to moving the origin to a point vertically below the

lowest point of the curve at a distance c from it, we have

When the string is uniform in density and thickness, as in

the present instance, the curve is called the common catenary.

185. To find the tension of the string at any point.

Let the tension at P be equal to the weight of a length t of

the string ; then, as shewn in the last article,

tension at P PT , t ds
therefore - = -=- .

weight of GP TM>
*""

8 dy
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But s
2 = y

1 + 2yc by equation (2) of Art. 184, therefore

t=y+c=y.
This shews that the tension at any point is the weight of

a portion of string whose length is the ordinate at that point,
the origin being at a distance c below the lowest point.

Hence, if a uniform string hang freely over any two points,
the extremities of the string will lie in the same horizontal

line when the string is in equilibrium.

186. To determine the constant c, the points of suspension
and the length of the string being given.

Let A and B be the fixed m aJl
extremities, Gthe lowest point
of the curve.

OC=c, OM=a f

ON=a\ MA =
b,

NB = b\ CA = l, CB=V.
Also let a + a

b-V
l+V

then h, 7c, \ are known quantities, since the length of the string
and the positions of its ends are given. From Art. 184

b' = ic{eKe~)

Z = Jc(e'-e'
c

~)

Z' = ic(e--<f)

(2).

Equations (1) and (2) are theoretically sufficient to enable
us to eliminate a, a, b, b\ ?, and V and to determine c. We
may deduce from them

a a a' a'

Jc = %c {e + e~ -ec -e~
) ;
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therefore \ + h = c (e
c

e

a'

a"

\ - k = c (e
c - e

c

) ;

therefore X2 - tf - c
2

(<T^+ e
_?v_-

2)

= c>c
~

+ e"-2);

therefore V(^
2 -&2

)
= c ie

Tc -e' Tc

) (3).

This is the equation from which c is to be found, but on
account of its transcendental form it can only be solved

by approximation. If the exponents of e are small, we may
expand by the exponential theorem and thus obtain the ap-

proximate value of c. In order that the exponents may be

small, c must be large compared with h ; since -4- rr-z =-& r ds V(c+s)
by Art. 184 it follows that when c is large, compared with

the length of the string, -f-
is small, and therefore the curve

does not deviate much from a straight line. Hence, when
the two points of support are nearly in a horizontal line and
the distance between them nearly equal to the given length

of the string, we may conclude that - will be small. In this
c

case, we have from (3)

^-^{H(l)4 ,+ Y
73

therefore V(^
2

ff)=h + ^-pj approximately.

187. To find the equations of equilibrium when a flexible

string is acted on by any forces.

Let x, y, z be the co-ordinates of a point P of the string ;

let s denote the length of the curve BP measured from some
fixed point B up to P, and 8s the length of the arc PQ
between P and an adjacent point Q. Let k be the area of a
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section of the string at P, and p the density at P; let The the

tension of the string at P: then P-y-, T-f-. and T~ are
as as as

the resolved parts of P parallel to the co-ordinate axes
;
and

the resolved parts of the tension at Q parallel to the axes will

be, by Taylor's Theorem,

4+s(4)*+

**+*{**>+
Let XptcSs, YpicSs, Zp/cSs be the external forces which act

on the element PQ parallel to the axes. The equilibrium
of the element will not be disturbed by supposing it to

become rigid; hence, by Art. 27, the sum of the forces

parallel to the axis of x must vanish
;
thus

or -j- ( T -=-
J

-f- XpK = ultimately.

The product Kp may be conveniently replaced by rn, so

that if m be constant ml represents the mass of a length I

of the string, and therefore m the mass of a unit of length
of the string. If m be not constant, then, if we conceive

a string having its length equal to the unit of length and

its section and density throughout the same as those of the
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given string at the point (x, y, 2), m will be the mass of

such supposed string.
The element 8s of the string, the equilibrium of which

we have considered, becomes more nearly a particle the more
we diminish 8s

;
hence it is sufficient to consider the three

equations of Art. 27 instead of the six equations of Art. 73.

The three equations which we have found are theoretically
sufficient for determining T, y, and z as functions of x, remem-

bering that -
y/jl

+
*

+
(J)};

and when we know

the values of y and z in terms of x, we know the equations
to the curve which the string forms.

188. The equations for the equilibrium of a flexible string

may be written thus ;

d*x dT dx
1 -r + -j- -j- + mX. =

as as as

#y &Tiy1 -33 + -j- -j- + m I = U N

as as as

TtPz dTdz _

(1).

Multiply these equations by -j- , -# ,
and -7- respectively and

add; then, since

^V , (dy\
%

, /^ 2

fife *)-'
, d# d*a? Jy d2

y dz d2
z _

cfo ds
2

ds ds
2

ds ds2
~

'

wehave f+*(xg + r| + *J)
=0 (2);

therefore T+j(^ + F
f^

+^) <&= constant ... (3).
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If the forces are such that m (Xdx + Ydy + Zdz) is the im-

mediate differential of some function of x, y, z, sls/(x, y, z),

then

T+f(x, y, z)
= constant.

If the forces are such that their resultant at every point
of the curve is perpendicular to the tangent at that point,
we have

as as as

therefore, by (3), T is constant.

In the equations (1) transpose the terms mX, mY, mZ to

the right-hand side, then square and add
; thus

Hence if p be the radius of absolute curvature of the curve

formed by the string, and FmBs the resultant external force

on the element 8s, so that F2 = X2 + Y2 + Z2

,

+=- >

dT . . 1
If T be constant -5- = ; hence in this case mF varies as -

.

as p

From the equations of equilibrium in Art. 187, we deduce by
integration,

T~ = -JmXds,

dz
T~=-fmZds.

Square and add
;
then

T2

{fmXds}* + {fm Yds}
2 + {jmZds}

2

(5).

The constants that enter when we integrate the differential

equations of equilibrium must be determined from the special
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circumstances of each particular problem. Thus the co-

ordinates of fixed points to which the ends of the string
are attached may be given, and the length of the string.

Or, besides the forces represented by mXSs, m YSs, and mZos

acting on each element, given forces F
x
and F

2 may act at

the extremities of the string ;
in this case if T

x
and T

%
denote

the values of T at the two extremities of the string, we must
have T

x equal in magnitude to W. and opposite to it in

direction, and similarly for T
2
and F

2
.

nrn

189. From equations (1) of Art. 188, eliminate I7
and -7;

US

then we have

Y td?y dz d2
z dy\ y (d*z

dx _ d?x_
dz\W 3f iEF-ffr/ W ds~~d? ds)

u7 (d?x dy___^y dx\_+
\ds

2
ds ds

2 ds)~
'

this shews that the resultant external force which acts on an
element 8s of the string lies in the osculating plane at the

point (x, y, z).

190. The general equations of equilibrium become, when
all the forces are in one plane, namely, that of (x, y),

tf^+na-o, (r$W-o (i).
d_(T dn\

SV ds)

Suppose X=
0, so that the external force is parallel to the

axis of y ; the first equation gives

T -7- = a constant, C say,

therefore T=T~ &'

Us

Hence the second equation becomes

w
dx* ds*3***r- (3).
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For example; required the form of the curve when its

weight is the only force acting on it and the area of the

section at any point is proportional to the tension at that

point. Here Y is constant and may be denoted by g, the

axis of y being vertically upwards. Let fi be the value of m
at the lowest point of the curve, and fiag the tension at that

point; then

T m . , T C ds
sa therefore m 7- .

fjbag fJb ag ag ax

Hence (3) gives gg)U =
o,

therefore

1 +

d 1

dy\*

~
am

\dx)

therefore tan"
1

-f- = - + constant.
ax a

The constant vanishes if we suppose the origin at the lowest

point of the curve
;
therefore

dy x
-f* = tan - ;

ax a

11 x
therefore - = losrcos- (4).

a a v '

Since in this case the area of the section at any point is pro-

portional to the tension at that point, the curve determined by
(4) is called the Catenary of equal strength,

191. The equations (1) of the preceding article may be
written

*$***i (
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flu doc

Multiply (1) by -# and (2) by -v-. and subtract ; thus

T (<Pxdy ^dx\ f dy Y\-01
\c ds

~
ds* ds)

+m
\
JL

d's
X
ds)

~ U
'

doc d x du d if

from which, since -y- -^ + -^- -^\ 0, we find

dx

doc dif

Again, multiply (1) by -j-
and (2) by -4- and add

;
then

dT
+{X% +T )-*

From (3) and (4) by eliminating T, we deduce

dx

ds"

which is the general equation to the curve when given forces

act in one plane.

192. In Art. 188 we have found the equations

"
+
-(
ii+i*+**H <

+=-
Let

<j>
be the angle which the resultant force mF8s makes

with the tangent at the point (a?, y, z) ;
then

,-, , -^dx -dy rydz

T. s. 14
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therefore, by (1),

CENTEAL FOECE.

= mr cos 9

and therefore, by (2),

(3),

(4).

If the force be such that its direction always passes through
a fixed point, the whole string will lie in a plane passing

through its ends and through the fixed point, for there is

no reason why it should lie on one side rather than the

other of this plane. Let r be the distance of the point

(x, if, z) of the curve from the fixed point, p the perpendicular
from the fixed point on the tangent at (x, y, z) ;

then (3) and

(4) may be written

ds ds

Hence

therefore

or

Also, from (5),

Therefore

T
P

dT_
Tds

=

mF
r̂

(5),

(6).

r dr _ 1 dp m

pp ds p ds*

log T constant log^?,

Tp=G.

T=-fmFdr.

= JmFdr.

Put <
(r) for - JmFdr ;

then

*<"-!-<'H'}'.
and from this differential equation the relation between r and
6 must be found.

The equation Tp= G may also be obtained simply thus
;

suppose a finite portion of the string to become rigid ;
this
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portion is acted on by the tensions at its two ends and by other

forces which all pass through a fixed point; take moments
round this fixed point ;

hence the product of the tension into

the perpendicular from the fixed point on the tangent must
have the same value at the two ends of the finite portion of

the string. Thus Tp = constant.

193. The results of the last article give us the form of a

string when acted on by any central force ; these results may
also be obtained directly in the following manner.

Let be the centre of force, P a point in the curve, Q an

adjacent point ; r, 6 the polar co-ordinates of P; let s be the

length of the curve measured from some fixed point up to P,
and PQ = Ss. Draw PL the tangent at P; and PN, QN nor-

mals atP and Q respectively, thenPN is ultimately the radius

of curvature at P. Let T denote the tension at P, T+ ST the

tension at Q, FmSs the force acting on the element PQ, which
will ultimately be in the direction OP produced.

Let PNQ ty, and
<f>

be the angle between PL and OP
produced. Resolve the forces acting on the element along PL
and PN; then

(T+ST)cos^ + FmSscos<l)-T=0,

(T+ ST) sin ^ - FmSs sin = 0.

Ss
Now sin^ =

ultimately, and cos
i/r
= 1 ,

142
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Hence the equations become

ST+Fm$s cos
<j>
=

0,

or
dT _, -. .

-7- +im cos 9 0,

and
T Pm sin < =

0,

and the solution may 'be continued as in the last article.

We have supposed the force repulsive, that is, tending

from 0; if it act towards the figure will be convex towards

and we shall have the results

dT T
-* mF cos 6 = 0, mFsin 6 = 0.
ds T

p
T

194. A string is stretched over a smooth plane curve; to

find the tension at any point and the pressure on the curve.

First suppose the weight of the string neglected.

Let APQB be the string, A and B being the points where

it leaves the curve. Let P, Q be adjacent points in the string;
let the normals to the curve at P and Q meet in

;
let 6 be

the angle which PO makes with some fixed line, and 6 + 80
the angle which Q makes with the same line. The element

PQ is acted on by a tension at P along the tangent at P, a
tension at Q along the tangent at Q, and the resistance of the
smooth curve which will be ultimately along PO.
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Let s be the length of the curve measured from some fixed

point up to P, and PQ = 8s
;

let RSs denote the resistance of

the curve on PQ, T the tension at P, T+ST the tension

at Q. Suppose the element PQ to become rigid, and resolve

the forces acting on it along the tangent and normal at P;
then

T-(T+8T) cos 80 = (1),

PSs-(P+SP) sin S0 = O (2)

Now cosd0 = l- V-7T + Vr--1.2 14

hence (1) gives by division by B0

therefore ultimately

dd Uj

therefore P= constant (3).

Also $s =pB6 ultimately, p being the radius of curvature at P,

therefore, from (2), we have

TR = l
P

w-

Since T is constant, the string will not be in equilibrium
unless the forces pulling at its two ends are equal ;

this is

usually assumed as self-evident in the theory of the pully.
The whole pressure on the curve will be jRds ;

therefore by
(4), the whole pressure

SP

=
j-ds

= fTd0.
P

Since Pis constant, JTdd = TO + constant ;

therefore the whole pressure = P(02 X), supposing Q
x
the

value of 6 at A, and d
2
at P.
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Next suppose the weight of the string taken into account.

Take the axis of y horizontal and that of x vertically
downwards. The element PQ is acted on by a tension at P
along the tangent at P, a tension at Q along the tangent at

Q, the weight of the element vertically downwards, and the

resistance of the smooth curve which will be ultimately along
the normal at P. Let 6 be the acute angle which the normal
PN makes with the axis of a?, 6 + 86 the angle which the

normal QN makes with the axis of x. Let s be the length
of the curve measured from some fixed point up to P, and

PQ=8s ;
let T be the tension at P, and T+8T the tension at

Q; let mg8s be the weight of the element, and B8s the re-

sistance of the smooth curve on the element. Suppose the

element PQ to become rigid, and resolve the forces acting on
it along the tangent and normal at P; then

T-{T+8T)cos86-mg8ssm0 = O (5).

B8s -(T+ BT) sin 8d-mc/8s cos =
(6).

From (5) we obtain ultimately

-

3-=-mgsm0 (7),
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and from (6)

T
B=z+mgcosO (8),

where p is the radius of cnrvature of the curve at P.

Since the curve is supposed to be a known curve, s and p

may be supposed known functions of 6
;
thus (7) and (8) will

enable us to find T and R in terms of 6. Or we may express
T and R in terms of the rectangular co-ordinates of the point

P; for if we denote these co-ordinates by x and y, we have

. a dx a dysm p = -r , cos V =
;

as as

thus (7) may be written

dT dx

IT" 1*! 5

therefore, if m be constant,

T= -
rngx + C,

where G is some constant
;
the value of this constant will be

known if the tension of the string be known at some given

point, for example at A or at B.

Also from (8)

.,-. Gmqx dy

and p and -- will be known in terms of x and y since the

curve is known.

195. In the above investigations we stated that the re-

sistance of the curve on the element PQ acts
ultimately^ along

the normal at P; and in forming the equations of equilibrium
of the element of the string we supposed the resistance to act

strictly along the normal at P. It is easy to shew that no
error is thus introduced. For the resistance at P is along
the normal at P, and at Q it is along the normal at Q, hence
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the resistance on the element PQ may he taken to he a force

which acts in some direction intermediate hetween the direc-

tions of these two normals
; suppose ^ the angle which its

direction makes with that of the normal at P. We should

then write BBs cos
i/r

instead of BBs in the equations (2) and

(6), where ^ is an angle less than 86; hence in the limit

cos
yjr

1 and equations (4) and (8) remain unchanged. Also
the term BBs sin\^ must be introduced into equations (1) and

(5) j
thus equation (1) becomes

T- (T+ST) cos S6 - BBs sin ^ =
;

:0:therefore *g- (T+ SIT)
jf

-
<*J-'

+ ..

j
+ R sinf

Bs
and ultimately k^

= p and sin
yjr
=

; hence as before

dd
u '

Similarly we may shew that equation (7) remains true aftei

the introduction of the term BBs sin^ into equation (5).

196. A string is stretched over a rough plane curve ; to find
the tension at any point and the pressure on the curve in the

limiting position of equilibrium.

First suppose the weight of the string neglected. See the

first figure of Article 194.

The element PQ is acted on by a tension at P along the

tangent at P, a tension at Q along the tangent at Q, the re-

sistance of the curve which will be ultimately along the nor-

mal at P, and the friction which will be ultimately along the

tangent at P and in the direction opposite to that in which
the element is about to move. Let T denote the tension at

P, T+BT that at Q, BBs the resistance, jjlBBs the friction;

suppose the string about to move from A towards B. Sup-
pose the element PQ to become rigid, and resolve the forces

acting on it along the tangent and normal at P; then

T+ fiBBs
- (T+8T) cosBO = (1),

BBs-{T+BT) sin 80 = (2).
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From (1) we have ultimately

r* <>

T
and from (2), =R (4);

A , p dT 1 dT
therefore tUs^^'

r
~T ~dd

=
/*'

therefore log T= fi0 + constant,

therefore T= Gf*.

Let T
x
be the force which acts on the string at the end A,

and therefore the value of T at this point ;
and let T

2
be the

force at B
;

let
J
and

2
be the corresponding values of

;

then T^Cd**, T
2
= Ce^;

therefore .S = e**-*>,

and T=^w-i> = T
2
e^B-^K

Also jWs
=

[
- ds -

j^tf
= ^ [

e*-*> d<9,

= _a ^w-i) + constant
;

therefore the whole pressure on the curve

Tp-rfi T T= l&H _ &*\) = i i

P A*

Next suppose the weight of the string taken into account.

Proceeding as in the second case of Art. 194, and supposing
the string about to move from A to B, we have

T-(T+8T)cosB0-mgBssm0+fiRBs = O (5).

BSs-(T+$T)smS0-mg$scos0=O (6)
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From (5) we obtain ultimately

and from (6)

therefore

therefore

that is

j- = pit mg sin 0,

TR = \-mg cos ;

-T- = - h w^ (a*
cos 6/ sm 0).

dT

dT
dd

fiT= mg (jjl
cos sin 6) p,

fiT=mg (fi cos 6 sin 6) p.

Thus we have a differential equation for finding T, and we

may proceed in the ordinary way to obtain the solution.

Multiply both sides of the last equation by e~^
Q

;
thus

therefore

jq ( Te~f)
=
mge-** (jicosO- sin 6) p

Te- 9 =
linge-*

9
(jj,

cos - sin 0) p d0.

Hence when p is known in terms of we shall only have
to integrate a known function of in order to obtain the value

of T in terms of 0.

197. To form the equations of equilibrium of a string
stretched over a smooth surface and acted on by any forces.

Let s be the length of the string measured from some fixed

point B to the point P; x, y, z the co-ordinates of P; $s the

length of the element of the string between P and an adjacent

point Q ;
mhs the mass of the element

;
BBs the resistance of

the surface on this element, the direction of which will be

ultimately the normal to the surface at P; let a, ft, 7 be the

angles which the normal at P makes with the axes
; Xm$s,

Ym$s, ZmSs the forces parallel to the axes acting on the

element, exclusive of the resistance RBs. Hence, in the equa-
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tions of Art. 187, for Xm we must put Xm + Rzosoi, and
make similar substitutions for Ym and Zm

; therefore

UT
^) +Xm+Rcos

^ (1) >

(4)++*^0 (2),

(7^ + Zm + BcoBy = (3).

Multiply (1) by ~, (2) by ^, and (3) by gj,
and add;

then, since

ec dy n dz
-T- cos a + -?- cos + -y cos 7 = 0,
cfe ds ds '

because a tangent to the surface at any point is perpendicular
to the normal at that point, we have, as in Art. 188,

dT
dsHxi+Ydi +zih

Again, multiply (1) by cos a, (2) by cos ft and (3) by cos 7,

and add : then

m \tfx #y -A
I

+ m (Xcos a + FcosyS + ZC0S7} +B =
0...(5).

Let i'ra&s be the resultant of Xmhs, YmZs, ZrnSs, and
sfr

the angle its direction makes with the normal to the surface

at the point (a?, y } z) ;
then

X cos a +F cos fi + Z cos 7 = i*
7
cos 1^.

Let p be the radius of absolute curvature of the curve formed

by the string at the point (x, y, z) ; a, /3', 7' the angles its
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direction makes with the axes
; <j>

the angle its direction makes
with the normal to the surface

;
then

d2x _ cos a! d 2

y _ cos ft' d2
z _ cos 7

ds
2
~

p
*

ds
2
~

p
'

ds
2
~

p

Hence (5) becomes

T
cos

(j> + Fm cos
yjr +B = Q (6).

Let u = 0, be the equation to the surface
;
then

cos a cos/3 __
cos 7 _ A7

du du du "
dx dy dz

Hence (1) may be written

_. d2x
, v ,

dT dx -rt-ndu _

and (2) and (3) may be similarly expressed.

dT
Eliminate --y- and BN, and we obtain

as

( rr,d
zx ^r \ fdy du dz du\

{
T
W> + Xm){lTz-TsTy)

, (Td
2

y Y \
(dz

du dx du\
+

{
I

ds
T+lm

) \dsdx~ ds~dz)

( rp
d2

z y \
(dx du dy du\ _

\ ds
2

J \ds dy ds dx)

If we put for T its value from (4), the resulting equation,

together with u = 0, will determine the curve formed by the

string.

It appears from Art. 189 that the resultant of FmZs and
Bhs must lie in the osculating plane of the curve at the point
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(x, y, z). If the direction of FmBs be always normal to the

surface u = 0, then, since that of BSs is also normal to the

surface, it follows that the normal to the surface lies in the os-

culating plane to the curve. This we know to be a property
of the lines of maximum or minimum length that can be
drawn on a surface between two given points. Hence, when
a string is stretched over a smooth surface and acted on only
by forces which are in the direction of normals to the surface

at their points of application, it forms the line of maximum or

minimum length that can be drawn on the surface between
the extreme points of its contact with the surface.

When Fmhs is always normal to the surface, it follows

from (4) that T is constant.

EXAMPLES.

1. In the common catenary shew that the weight of the

string between the lowest point and any other point is the

geometrical mean between the sum and difference of the

tensions at the two points.

2. If a and ft are the inclinations to the horizon of the

tangents at the extremities of a portion of a common catenary
and I the length of the portion, shew that the height of one

extremity above the other is

. a + P
sin -

9.

I

0L-/3'
cos -

the portion is supposed to be all on the same side of the lowest

point.

3. A uniform heavy chain 110 feet long is suspended from
two points in the same horizontal plane 108 feet asunder;
shew that the tension at the lowest point is 1.477 times the

weight of the chain nearly.

4. A uniform chain of length 2? is suspended from two
fixed points in the same horizontal plane ;

2a is the distance

between the fixed points and c the length of chain whose

weight is equal to the tension at the lowest point ;
shew that
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when I is such that the tension at the points of suspension is the

least possible that tension is equal to the weight of a length
c

of the chain, and I and c are determined by

Z = Jc(#-e""~), (^ + c
2

)c
2 = 2^

5. If a uniform chain be fixed at two points, and any
number of links A, B, C, ... be at liberty to move along
smooth horizontal lines in the same vertical plane, prove that

the loops AB, BC, CD, &c. will form themselves into curves

which will all be arcs of the same catenary.

6. Three links of a chain A, B, and C are moveable

freely along three rigid horizontal lines in the same vertical

plane. If when A and C are pulled as far apart as possible,
their horizontal distances from B are equal, shew that this

will always be the case when they are held in any other

position.

7. A chain hangs in equilibrium over two smooth points
which are in a horizontal line and at a given distance apart ;

find the least length of the chain that equilibrium may be

possible.
Result. The least length is ae, where 2a is the given dis-

tance.

8. Prove that the exertion necessary to hold a kite

diminishes as the kite rises higher, the force of the wind

being independent of the height, and the pressure of the

wind on the string being neglected.

9. A uniform heavy string rests on an arc of a smooth
curve whose plane is vertical, shew that the tension at any
point is proportional to its vertical height above the lowest

point of the string. If the string rests on a parabola whose
axis is vertical, determine the vertical distance of its ends

below the highest point so that the pressure at this point

may be equal to twice the weight of a unit of length of the

string.

Result. The vertical distance is equal to half the latus

rectum of the parabola.
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10. One end of a uniform heavy chain hangs freely over

the edge of a smooth table, and the other end passing over a

fixed pnlly reaches to the same distance below the table as

the pully is above it. Supposing half the chain to be on the

table in the position of equilibrium, compare its whole length
with the height of the pully.

Result. The length is to the height as 6 + 2\/3 to 1.

11. A uniform heavy chain is fastened at its extremities

to two rings of equal weights which slide on smooth rods

intersecting in a vertical plane and inclined at the same angle
a to the vertical

;
find the condition that the tension at the

lowest point may be equal to half the weight of the chain
;

and in that case shew that the vertical distance of the rings
from the point of intersection of the rods is

-cotalog(l+V2),

where I is the length of the chain.

12. The density at any point of a catenary of variable

density varies as the radius of curvature
;
determine the equa-

tion to the catenary.
Result. The curve in Art. 190.

13. A heavy cord with one end fixed to a point in the

surface of a smooth horizontal cylinder is passed below the

cylinder and carried round over the top, the other end being-
allowed to hang freely. Shew that unless the portion which

hangs vertically be longer than the diameter of the cylinder,
the cord will slip off, so as to hang down from the fixed point
without passing below the cylinder.

14. If a uniform string hang in the form of a parabola

by the action of normal forces only, the force at any point P
varies as (SP)~%, 8 being the focus.

15. If a string without weight touch a given cylinder in

J th part of its circumference and in a plane perpendicular to

its axis, what tension at one extremity will support a weight
of 100 lbs. suspended at the other, friction being supposed to

be ^th part of the pressure ? To what will this tension be
reduced if the string is wound round ljth circumferences?
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16. If
yLt
=

|, and a string without weight passes twice

round a post, prove, by taking approximate values of e and ir,

that any force will support another more than twenty times

as great.

17. If two scales, one containing a weight P and the

other a weight Q, be suspended by a string without weight
over a rough sphere, and if Q be on the point of descending,

Q P2

then the weight
-^

p put into the opposite scale will make

that scale be on the point of descending.

18. Two equal weights P, P1

are connected by a string
without weight which passes over a rough fixed horizontal

cylinder ; compare the forces required to raise P according as

P is pushed up or P pulled down.

19. A, B, C are three rough pegs in a vertical plane:
P, Q, R are the greatest weights which can be severally

supported by a weight W, when connected with it by strings
without weight passing over A, B, G, over A, B, and over

B, G respectively ;
shew that the coefficient of friction at B

. 1 . Q.R
ls
^

l0
Sp7T/-

20. A light thread, whose length is 7a, has its extremities

fastened to those of a uniform heavy rod whose length is

5a, and when the thread is passed over a thin round peg, it

is found that the rod will hang at rest, provided the point
of support be anywhere within a space a in the middle of

the thread ; determine the coefficient of friction between the

thread and the peg when the rod hangs in a position border-

ing upon motion, and find its inclination to the horizon and
the tensions of the different parts of the string.

Results. The coefficient of friction is determined by the

equation e^"" = f . The inclination of the rod to the horizon

_x 24
is cos -.

21. From a fixed point a heavy uniform chain hangs
down so that part of the chain rests on a rough horizontal
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plane ;
find the least length of chain that may be in contact

with the plane.

22. A heavy chain of weight W rests entirely in contact

with the arc of a rough vertical circle in a state bordering on
motion. If tan a be the coefficient of friction, shew that the

resultant normal pressure on the circle is equal to Wcos a,

and that its direction makes an angle a with the vertical.

23. A heavy chain of length I rests partly on a rough
horizontal table, and the remainder passing over the smooth

edge of the table, (which is rounded off into the form of a

semicylinder of radius a) hangs freely down ;
shew that if z

be the least length on the table consistent with equilibrium,

z (fi + 1)
= I \ira + a.

24. A heavy uniform chain is hung round the circum-

ference of a rough vertical circle of given radius. How much
lower must one end of the chain hang than the other when it

is on the point of motion ?

Result. Let a be the length of the longer piece which

hangs down, b the length of the shorter piece, r the radius of

the circle, tan /3 the coefficient of friction
;
then

a r sin 2/3
?rtanj3

b + r sin 28
'

25. A uniform beam of weight W is moveable about a

hinge at one extremity, and has the other attached to a string
without weight which, passing over a very small rough peg
placed vertically above the hinge, and at a distance from it

equal to the length of the beam, supports a weight P; shew
that if 6 be the inclination of the beam to the vertical when
it is just upon the point of falling, then

JFsin0 = Pe .

Find also the strain on the hinge.

26. One end of a heavy chain is attached to a fixed point
A, and the other end to a weight which is placed on a rough
horizontal plane passing through A, and the chain hangs
through a slit in the horizontal plane. Shew that if I be

T. s. 15
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the length of the chain, a the greatest distance of the weight
from A at which equilibrium is possible, fi the coefficient of

friction, and n twice the ratio of the given weight to the

weight of the chain,

Ik (1 + n) fi = 1 + V{1 + P* (1 + n)
2

}.

27. A uniform string acted on by a central force assumes

the form of an arc of a circle
;
determine the law of the force,

the centre of force being on the circumference of the circle.

Result, The force varies inversely as the cube of the

distance.

28. A smooth sphere rests upon a string without weight
fastened at its extremities to two fixed points ;

shew that if

the arc of contact of the string and sphere be not less than

2 tan"
1

1| ,
the sphere may be divided into two equal portions

by means of a vertical plane without disturbing the equi-
librium.

29. Shew that if a chain exactly surrounds a smooth ver-

tical circle, so as to be in contact at the lowest point without

pressing, the whole pressure on the circle is double the

weight of the chain, and the tension at the highest point is

three times that at the lowest.

30. Two strings without weight of the same length have

each of their ends fixed at each of two points in the same
horizontal plane. A smooth sphere of radius r and weightW is supported upon them at the same distance from each of

the given points. If the plane in which each string lies

make an angle a with the horizon, prove that the tension of

Wa
each is -= cosec a

;
a being the distance between the points.

31. A uniform heavy chain hangs over two smooth pegs at

a distance 2a apart in the same horizontal plane. When there

is equilibrium, 2s is the length of the chain between the pegs,
which hangs in the form of a catenary, c is the length of a

portion of the chain whose weight is equal to the tension at

the lowest point, and h the length of the end that hangs
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down vertically. If Bs and Sh be the small increments of

s and h corresponding to a small uniform expansion of the

chain, shew that Bs : Bh = s.c h.a : h.c s.a.

32. A uniform heavy chain is placed on a rough inclined

plane ;
what length of chain must hang over the top of the

plane, in order that the chain may be on the point of slipping

up the plane ?

33. A uniform rod of length h has its ends attached to

the ends of a flexible string without weight of length a
; this

string is passed over a very small cylindrical peg, and when
the rod hangs in its limiting position of equilibrium, the

parts of the string on opposite sides of the peg are inclined

to each other at an angle a. Shew that the coefficient of

friction between the string and peg is

1
1

g + Vfe' -(<*'-&') tan8

j- a}

7T - a g a - *J{t?
-

(a
2 -

V) tan
2

}

'

34. AB, AG are two equal and uniform rods moveable
about a fixed hinge at A, GB a uniform chain, equal in

length to AB ox AG and
(-J

of its weight, connects the

ends B and G; shew that in the position of equilibrium, the

angle 6 which either rod makes with the horizon is given

approximately by the equation

cos = i2
{n+iy

n being large compared with unity.

35. A heavy uniform beam has its extremities attached to

a string which passes round the arc of a rough vertical circle ;

if in the limiting position of equilibrium the beam be inclined

at an angle of 60 to the vertical, and the portion of string in

contact with the circle cover an arc of 270, shew that the

coefficient of friction is log 3.
3tt

36. A uniform string just circumscribes a given smooth

circle, and is attracted by a force varying as the distance to

152
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a point within the circle. Find the tension at any point, sup-

posing it to vanish at the point nearest to the centre of force,

and shew that the force at the greatest distance

_ whole pressure on circle

mass of the string

37.
7TA heavy string whose length is a rests on the cir-

cumference of a rough vertical circle of radius a
;
if the string

be in a position of limiting equilibrium, and if /3 be the

angular distance of its highest extremity from the vertex of

the circle, shew that

tan/3 = (i

fJ.1T

-2fi

f + 2fie *

and explain this result when (1 /*
2

)
e s

2fju is negative.

Also if fi be such that fi
=

0, shew that the whole pressure
on the curve is to the weight of the string as 2 to irfi.
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CHAPTER XII.

FLEXIBLE STRINGS. EXTENSIBLE.

198. In the preceding chapter we considered the equi-
librium of flexible inextensible strings ;

we now proceed to

some propositions relative to flexible extensible strings. Such

strings are also called elastic strings.

When a uniform extensible string is stretched by a force,

it is found by experiment that the extension varies as the

product of the original length and the stretching force. Thus
if T represent the force, V the original length, I the stretched

length,

TT

where \ is some constant depending on the nature of the string.

The fact expressed by this equation is called Hooke's law,
from the name of its discoverer.

The quantity \ is sometimes called the modulus ofelasticity .

VT
In the equation I V = if we put T = \ we obtain

I 2V) thus the modulus of elasticity for any uniform elastic

string is equal to the tension required to stretch that string

to double its natural length.

199. An elastic string has a weight attached to one end, it

is fastened at the other and hangs vertically; determine the ex-

tension of the string, taking its own weight into account.
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Let A'B' represent the natural length of the string; AB
the stretched length. Let A'P'=x, P'Q'=Bx.
Suppose A'P' stretched into AP, and P'Q' into

PQ ;
let AP = x

9 PQ = Bx. Let A'B' = a,
w=the weight of the string, and W be the attached

weight.

Let T be the tension at P, and T + ST the

tension at Q. Then the element PQ is acted on

by the forces Tand T+ BT at its ends, and by its

own weight; its weight is the same as that of

P'Q', that is rw;
a

GOT

therefore T+ ST-T+ w = 0,a

or T~>~ 7 ultimately (1) ;

therefore T r + constant.
a

The value of the constant must be found by observing that

when x' = a, T= W; therefore

W= w + constant ;

therefore T=W+w(l-^j. (2).

Also the element PQ may be considered ultimately uniform
and stretched by a tension T; hence, by the experimental
law,

Bx =&
'(
1+S i

therefore 3-7= 1 + T ,ax \

W . w

Integrate; thus

>-f*sfc-s*

X=X 1 H r
,

2\a'

No constant is required because x = when x' 0.
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Let a denote the stretched length of the string ;
then putting

x = a, we have

W+w\ wa ,( W+$wy

(l+H^
Thus the extension is the same as would be produced if an

elastic string of length a, the weight of which might be neg-
lected, were stretched by a weight W+^w at its end.

200. In the solution of the preceding problem we might
have arrived at equation (2) by observing that the tension at

any point must be equal to the weight of the string below

that point together with W; but the method we adopted is

more useful as a guide to the solution of similar problems.
It is perhaps not superfluous to notice an error into which
students often fall; since the element Bx is acted on by a

tension Tat one end, and T+&T or ultimately T at the

other end, 2 1
7
is considered the stretching force, and instead

of (3)

Sx = Sx'(l +^
is used. This would be of no consequence if uniformly

adopted, for it would only amount to using JX instead of X in

(3) ;
but mistakes arise from not adhering to one system or the

other. It should be observed that if a string without weight
be acted on by a force T at each end, it is in the same state of

tension as if it were fastened at one end and acted on by a force

T at the other.

201. The equations of Art. 187, and Art. 197 may be ap-

plied to an elastic string in equilibrium. They may also be

modified as follows, if we wish to introduce the unstretched

length of the string instead of the stretched length.

Let s and Bs represent the natural lengths which become
s and Bs by stretching ; let m'&s' be the mass of an element

before stretching, and m&s the mass of the same element after

stretching ;
then

m&s m&s',

8s = 8s
'('+!>
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therefore m
(i+D-w.

Hence the first equation of equilibrium of Art. 187 may be
written

d frpdx\ iX
ds\

T
Ts)

+ T=>
+
\

and the other two equations may be written similarly.

Equation (2) of Art. 188, or equation (4) of Art. 197 becomes

provided m be constant ;
that is, provided the string in its

unstretched state be uniform.

Since
[
1 +

)

=
I -7-, I ,

the last equation may be used to

connect 5 and s, and thus find the extension of the string.

202. We may apply the preceding article to the case in

which the weight of the string is the only force acting on it,

the string being supposed originally uniform, and fixed at two

points.

In this case X= 0, Y=g, Z= 0, as in Art. 190
; therefore

i(*i)-

t'+!)SH)-'-
dx

From (1) T -j-
= a constant = meg suppose ;

therefore T meg sec
yfr (3) 5

where ty is' the angle which the tangent to the curve at the

point (x, y) makes with the axis of x.
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Hence (2) gives

/ m'cq , Wtanijr 1 ,.

(*+ x
",+)-tr

r
*; (4)>

. / me? ,
\ df tan -\Jr d# 1

therefore
(
1 + -^ sec

+) -^^ = -
,

,
/ m'w

,
\ d tan ^ 1

thus cos
f[l+-jf

sec f
J -^-- ,

1 d>lr m'cq d tan y}r 1
that is r t-+ -^ >-

JL = "
J

cosy dx X dx c

therefore, by integration,

r -^<fo+^-tan<f = -;
J cosy rfic A ' c

and I r -^ dx = ^-r- = log p*- ;
thus

J cos
i/r

aa; J cos y cos y 4

, l + sin-^r m'cq , ,
x ,w.

lo

g-c^r +^ tant=
o

(0) -

No constant is required in the integration if we suppose the

axis of y to pass through the lowest point of the curve, for

there ty
= 0.

i /-. .
m '

C(f i Wtan-\|r 1 ,
.

From (4) we may deduce

dy

therefore, by integration,

+ +'*=?trf*-' (7).'
2a,

'
c

No constant is required in the integration if we suppose the

origin of co-ordinates to be at the distance c below the lowest

point of the curve.
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We cannot obtain an equation between x and y in a finite

form; but in a particular case we can obtain such an equation
which is approximately true. Let X m'gl) then (5) may
be written

1 + sin tlr --^-tan^= eG l
,

cos-^r

,, r COS tJt
_5 + .tan^

therefore r1 r=e c l
;

l + sinf

therefore by addition and reduction

2X C.
,

X c.
,

-tarn// ,
+ ^tani^-e f + e c l

,

COS
^jr

therefore tan
2

^r
= ('1*** _<fHtan

*)*.

Now suppose j is a very small quantity, put u for J (e

c
e

c

)

and v for J (e
c + e

c

) ;
then the last equation gives

,
cv , ,

c
2u o ,

c
3
v .. o

, ,

tan
i|r
= ^ - tan

ifr + ^ tan
2^ - -r tan

d

^r + . ..
;

from this we can find tan
yjr approximately, and then sec

i|r

will be known approximately, and by substituting in (7) we
shall obtain approximately y in terms of x.

Equation (2) may also be written

therefore -*-,
(meg -4-

j

= m'g ;

therefore, by integration,

dy = s_ m

dx c
'

here s denotes the natural length of that portion of the string
which is between the lowest point and the point (x, y).
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i

a

Hence for tan
yfr

in (5) and (7) we may put
-

,
and make

c

corresponding substitutions for sin
i|r

and cos
i/r.

Thus (7)

becomes

w+tsi&L, (
8 ).

As an example of these formulae suppose that a heavy uni-

form elastic string hangs in equilibrium over two smooth pegs
in a horizontal plane, and let it be required to find the depth
of the ends of the string below the vertex of the curved

portion.

From (3) the tension at any point of the curve is

m'g*J(c
2 + s

2

).

Let V be the natural length of the portion which hangs over

one of the pegs ;
then the weight of this portion is mgl'. Let

s denote the unstretched length of the portion between the

vertex and one peg ; then by equating the two expressions for

the tension, we have

mgl' = m'g V(c
2 + s'

2

),

therefore Z' =vV + (9).

Now by (8) c
2 + s'

2+^V(c2 +5 2

)
=^ + c

2

;J v ' * mg K '

mg
therefore

V(c
2 +O + -^- =\ V(cWy + X2 + Vkm'gy) (10).\ j mg mg \ a ijai \ J

Suppose I to be the length to which the string hanging ver-

tically, of which the natural length is l\ is stretched
;
then

by Art. 199

therefore T + r = 7- V(2?Xm'a + X2

) ;

mg mg
v *
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hence from this result combined with (9) and (10)

2lkm'g + X2 = cV2/ + X2 + 2\mgy ;

therefore l=y+ Ji

Thus the end of the string descends to the depth
-- be

low the axis of x, and therefore to the depth c
(
1 4-

-
)

below the vertex of the curve.

EXAMPLES.

1. Two equal heavy beams, AB, CD, are connected dia-

gonally by similar and equal elastic strings AD, BC; deter-

mine the position of equilibrium when AB is held horizontal
;

and shew that if the natural length of each string equals AB,
and the elasticity be such that the weight ofAB would stretch

the string to three times its natural length, then111
AB~BC + AC'

2. An elastic string will just reach round two pegs in

a horizontal plane; a ring whose weight would double the

length of the string hanging from a point is slung on it:

shew that if be the inclination of two portions of the string
to the horizon,

sin20 = 2(V2-l).

3. An elastic string has its ends attached to those of a

uniform beam of the same length as the unstretched string,
the weight of the beam being such as would stretch the

string to twice its natural length ; shew that when the system
is hung up by means of the string on a smooth peg, the

inclination 6 of the string to the vertical will be given by
the equation

tan 6 + 2 sin 6 - 2 = 0.
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4. Three equal circular discs are placed in contact in

a vertical plane with their centres in the same horizontal

line, and an endless elastic cord wound alternately above and

below them, so as to touch every point of their circumferences

without being stretched beyond its natural length. When
the support of the middle disc is removed, the centres of the

three form a right-angled triangle. Shew that the modulus
W 3-7T

of elasticity of the cord is .
,
W being the weight

of the disc.

5. A fine elastic string is tied round two equal cylinders
whose surfaces are in contact and axes parallel, the string
not being stretched beyond its natural length ;

one of the

cylinders is turned through two right angles, so that the

axes are again parallel : find the tension of the string, sup-

posing a weight of 1 lb. would stretch it to twice its natural

length.

Result. of a lb.
7T + 2

6. Two equal and similar elastic strings AG, BG, fixed

at two points A, B in the same horizontal line, support a

given weight at G. The extensibility and original lengths
of the strings being given, find an equation for determining
the angle at which each string is inclined to the horizon,
and deduce an approximate value of the angle when the

extensibility is very small.

7. Six equal rods are fastened together by hinges at each

end, and one of the rods being supported in a horizontal posi-
tion the opposite one is fastened to it by an elastic string join-

ing their middle points. Supposing the modulus of elasticity
is equal to the weight of each rod, find the original length of

the string in order that the hexagon may be equiangular in

its position of equilibrium.

Result. , where a is the length of a rod.

8. An unstretched elastic string without weight has n equal

weights attached to it at equal distances, and is then sus-

pended from one end. Prove that the increase of length is
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half what it would be if the same string were stretched by a

weight equal to n + 1 of the former hanging at one end.

9. Three equal cylindrical rods are placed symmetrically
round a fourth of the same radius, and the bundle is then

surrounded by two equal elastic bands at equal distances

from the two ends; if each band when unstretched would

just pass round one rod, and a weight of 1 lb. would just
stretch it to twice its natural length, shew that it would

require a force of 9 lbs. to extract the middle rod, the co-

efficient of friction being equal to ^ir.

10. Two elastic strings are just long enough to fit on a

sphere without stretching ; they are placed in two planes at

right angles to each other, and the sphere is suspended at

their point of intersection. If 20 be the angle subtended at

the centre by the arc which is unwrapped, shew that

being supposed small.

11. In the common catenary, if the string be slightly

extensible, shew that its whole extension will be proportional
to the product of its length and the height of its centre of

gravity above the directrix.

12. A uniform rough cylinder is supported with its axis

horizontal by an elastic string without weight ;
the string lies

in the plane which is perpendicular to the axis of the cylinder,
and passes through its centre of gravity; the ends of the

string are attached to points which are in the same horizontal

plane above the cylinder and at a distance equal to the dia-

meter of the cylinder. Find how much the string is stretched.

Result. Let 2W be the weight of the cylinder, a the

radius of the cylinder, V the natural length of each vertical

portion of the string ;
then the extension is

fin

2b'W 2a, \ + We*
+7 lo

S-xTir--

13. A heavy string very slightly elastic is suspended
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from two points in the same horizontal plane ; shew that if

c, I be the lengths of unstretched string whose weights are

respectively equal to the tension at the lowest point and the

modulus of elasticity, the equation to the catenary will be

very approximately

14. A weight P just supports another weight Q by means
of a fine elastic string passing over a rough cylinder whose
axis is horizontal. If X be the modulus of elasticity, fi the

coefficient of friction, and a the radius of the cylinder, shew
that the extension of that part of the string which is in con-

tact with the cylinder is

15. A sphere placed on a horizontal plane is divided by a

vertical plane into two equal parts, which are just held toge-
ther by an elastic string, which passes round the greatest
horizontal section

;
find the original length of the string.

-

7 ,
32\7ra

ttesult.
16X + 3JF'

16. Four equal heavy rods are fastened to one another by
hinges so as to form a square ABCD ;

A and C are connected

by an elastic string whose natural length is equal to the dia-

gonal A C, and the system is suspended from the point A ;

find the position of equilibrium.

Result. Let W be the weight of a rod, 6 the inclination

of each rod to the vertical ; then
*

cos 6 = - 1 + -r-
V2 V X

17. An elastic band, whose unstretched length is 2, is

placed round four rough pegs A, B, C, D, which constitute

the angular points of a square whose side is a
;

if it be taken
hold of at a point P, between A and B, and pulled in the
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direction AB, shew that it will begin to slip round A and B
at the same time if

AP=-
1 + e

2

18. An elastic string without weight of variable thickness

is extended by a given force ;
find the whole extension.

19. An elastic string whose density varies as the distance

from one end, is suspended by that end and stretched by its

own weight. If W be the weight of the string, V its un-

stretched length, I its stretched length, shew that

2W\
>*

20. A circular elastic string is placed on a smooth sphere
so that the whole string is in one horizontal plane ;

the string
subtends when unstretched an angle 2a at the centre, and an

angle 20 when in a position of equilibrium ;
shew that

sin 6 = sin a
(
1 4-

- sin a tan 6
J

,

where a = radius of sphere, and c depends on the nature of

the string.

21. A circular elastic string is placed over a smooth right
cone, and repelled by a force in the vertex varying inversely
as the distance. Shew that if I' be the unstretched length, I

the stretched length of the string, F the repulsive force on a
unit of string at a unit of distance, then

r=iK)
22. A heavy elastic string surrounds a smooth horizontal

cylinder, so that the surface of the cylinder is subject to no

pressure at the lowest point ; find the pressure at any point
of the cylinder, and the tension of the string ; its modulus
of elasticity being equal to the weight of a portion of string
the natural length of which is of the diameter of the cylinder.
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23. A uniform heavy elastic string, whose natural length
is a, is in equilibrium upon a rough inclined plane ;

find the

tension at any point, and shew that the direction of the

friction changes at a point of the string, the natural distance

of which from the upper end is

a f tan c^

2 I
+

m ec\

TV
where a is the inclination of the plane to the horizon.

24. A heavy elastic cord is passed through a number
of fixed smooth rings. Shew that in the position of equi-
librium its extremities will lie in the same horizontal plane.
The same will also be the case if the cord rest upon any
smooth surface.

25. An elastic string is laid on a cycloidal arc, the plane of

which is vertical and vertex upwards, and when stretched by
its own weight is in contact with the whole of the cycloid ;

the modulus of elasticity is the weight of a portion of the

string whose natural length is twice the diameter of the gene-

rating circle
;
find the natural length of the string.

Result. It is equal to the circumference of the generating
circle.

T. S. 16
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CHAPTER XIII.

ATTRACTIONS.

203. It appears from considerations which are detailed in

works on Physical Astronomy, that two particles of matter

placed at any sensible distance apart attract each other with

a force directly proportional to the product of their masses,
and inversely proportional to the square of their distance.

Suppose then a particle to be attracted by all the particles
of a body ;

if we resolve the attraction of each particle of the

body into components parallel to fixed rectangular axes, and
take the sum of the components which act in a given direc-

tion, we obtain the resolved attraction of the whole body on
the particle in that direction, and can thus ascertain the re-

sultant attraction of the body in magnitude and direction. We
shall give some particular examples, and then proceed to

general formulae.

204. To find the attraction of a uniform straight line on
an external 'point.

By a straight line we understand a cylinder such that the

section perpendicular to its axis is a curve, every chord of

which is indefinitely small.

Let AB be the line, P the attracted particle; take A for

the origin, and AB for y
the direction of the axis

of x. Draw PL perpen-
dicular to Ax; let AB=l,
AL = a, PL = b. Let
M and N be adjacent

points in the line, AM=x,
MN=hx. If p be the

density of the line, and k the area of a section perpendicular
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to its length, the mass of the element is picBx. Let m be the

mass of P; then the attraction of the element MN on P is

(Art. 203)

fim p/cBx

(PM)
% '

where fi is some constant quantity. Hence, the resolved part
of the attraction of the element parallel to the axis of x, is

fim picBx ML fimp/c (a x) Bx

PM* -PM
r

{ff + (_*)}*
*

Also the resolved part of the attraction of the element parallel
to the axis of y, is

/Mm picBx PL fim picb Bx

PIP 'PM"
{
y +(_,).}

Let X and Y be the resolved parts of the attraction of the

line, parallel to the axes of x and y respectively ;
then

^r f
l (a x) dxX = LLmpK\ s

5

r->W.;
bdx

Now [JS. x)dx 1

therefore f
(-)** 1

J {b*+{a-x)f J
8

{6'+(-a!)*}
J

'

dx a x

W;

therefore

f
l hdx _ 1 I" a a I

J
{b

2

+(a- x)f
"

b
L(6

2 + a*)*

"
{5

2 + (a
-

0"}*J
(2).

162
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Hence, putting /for fip/c, we have

X=>{i"A}
Y_fm{AL BL

PL [PA PB

LetAPL = a, BPL = /3, APB=y; then

X= ~j (cos/3 cos a),

Y= ~-
r (sin a sin j3) ;

therefore ^{X
2+ P)=^~ V'{(cos

- cos a)
2+ (sin a

- sin /3)

2

}

=^V/

(2-2cos7)=-^-smi7 ...(5).

This gives the magnitude of the resultant attraction. Also

X cos /3 cos a a + /3 ,
.

"xr= = ^ = tan -
(6J.Y sin a sin p 2
w

This shews that the direction of the resultant attraction bisects

the angle APB.

If L fall between A and B, it will be seen from (1) and (2)

that the expression for X in (3) remains unchanged, but that

for Y in (4) is changed to

fin_
(AL BL

PL [PA
+

PB,

This will not affect the result in (5), and the direction of the

resultant will still bisect the angle APB.

From the investigation it appears that X is the resolved

attraction parallel to the axis of x directed towards the axis of

y, and Y the resolved attraction parallel to the axis of y and
towards the axis of x.
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205. In the above investigation we have taken m to

denote the mass of the attracted particle ;
in future we shall

always suppose the mass of the attracted particle to be

denoted by unity. In order to form a precise idea of the

quantity //,,
we may suppose two particles each having its

mass equal to the unit of mass, then
//,

will be the whole
force which one of these exerts on the other when the dis-

tance between them is the unit of length. As, however, by
properly choosing the unit of mass we may make fi= 1, we
shall not in future introduce /jl.

206. To find the attraction of
a circular arc on a particle situated

at the centre of the circle.

Let AB be any circular arc;

through the centre of the circle

draw a line bisecting the angle
A OB, and take this line for the

axis of x. LetPOx = 6, QOP=W,
A OB= 2a, OB=r. The attrac-

tion of the element PQ resolved

parallel to the axes of x and y
respectively is, if p and k have the

same meaning as in Art. 204,

KprSO~
2
~ cos 6 and KprBO

sin#;

therefore X Kp
r'-/::

cos Odd 2/cp .

- sin a,

kP f
+*

.

si
r J _ a

sin 0dd = O.

By comparing these results with those in Art. 204, it ap-
pears that the attraction of a circular arc on a particle at the
centre is the same in magnitude and direction as that of any
straight line AB' which touches the arc AB and is terminated

by the lines OA and OB produced, the arc and line being sup-
posed to have the same density, and the areas of their trans-

verse sections equal.
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If OP and OQ be produced to meet the line A'B' in pointsP and Q' respectively, it may be shewn that the attraction

of the element PQ on a particle at is equal to that of PQ,
and in this manner we might prove what we have just shewn,
that the attractions of AB and A'B' on a particle at are

equal and coincident. This proposition is given in Earnshaw's

Dynamics, p. 326.

It easily follows, that if a particle be attracted by the three

sides of a triangle, it will be in equilibrium if it be placed at

the centre of the circle inscribed in the triangle.

207. To find the attraction of a uniform circular lamina
on a 'particle situated in a straight line drawn through the centre

of the lamina perpendicular to its plane.

Suppose G the centre of the circle DAB, the plane of the

paper coinciding with one face of

the lamina, and the attracted par-
ticle being in a straight line drawn

through G perpendicular to the

lamina and at a distance a from
G. Describe from the centre G I ^
two adjacent concentric circles, one

with radius GPr, and the other

with radius GQ = r + 8r. Let k
denote the thickness of the lamina,
which is supposed to be an in-

definitely small quantity, then the mass of the circular ring
contained between the adjacent circles is 2ttp/crSr. Every
particle in this circular ring is at a distance ^(a

2 + r
2

)
from the

attracted particle; also the resultant attraction of the ring
is in the line through G perpendicular to the lamina, and is

equal to

2irpKrhr a

a2 + r
2

V(
2 + rV

the factor -t ^ ^ being the multiplier necessary in order to

resolve the attraction of any element of the ring along the

normal to the lamina through (7.
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Hence, the resultant attraction of the whole lamina is

6 rdr
lirpica i-

o(a
2 + r

2

)

f
'

where b is the radius of the boundary of the lamina.

therefore -
J o(a

(a
2 + ry

rdr

\(a
2 +r2

)%
* j(a*+b*)

therefore the resultant attraction

=
27rpfca

[a V(a
2 + 6

2

)j

If we suppose b to become infinite, we obtain for the at-

traction of an infinite lamina on an external particle, the

expression 27rpK, which is independent of the distance of the

attracted particle from the lamina.

From the last result we can deduce the resultant attrac-

tion of a uniform plate of finite thickness, but of infinite

extent, on an external particle. For, suppose the plate
divided into an indefinitely large number of laminae, each

of the thickness k; then the attraction of each lamina acts

in a line through the attracted particle perpendicular to the

surfaces of the plate, and is equal to 2irpK. Hence, the

resultant attraction will be found by adding the attractions

of the laminae, and will be 2irph, if h be the thickness of the

plate.

If a particle be placed on the exterior surface of an infinite

plate, the result just found will express the attraction of the

plate on the particle. If it be placed in the interior of the

plate at a distance h from one of the bounding planes and
h! from the other, the resultant attraction will be 2irp {h! h)

towards the latter plane.

208. By means of the preceding article we can find

the resultant attraction of a uniform cylinder on a particle
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situated on its axis. Suppose the cylinder divided into an

indefinitely large number of laminse by planes perpendicular
to its axis

;
let x be the distance of a lamina from the at-

tracted particle, 8x the thickness of the lamina, b the radius

of the cylinder ;
then the attraction of the lamina is

^f-vR-f 4 8x,

Suppose the attracted particle outside the cylinder at a

distance c from it; let h be the height of the cylinder; then

the resultant attraction of the cylinder

-HTI 1

X

^(x
2 +b2

)

dx

m 27TP [h
-

V{(C + h)
2 + } + V(C

2 + b*)].

If we suppose c = so that the particle is on the surface of

the cylinder the resultant attraction is

27rp{h-,/(h
2 + b

2

)+b}.

209. To find the attraction of a uniform cone on a particle
at its vertex, we begin with the expression

2^{l- v
l

+ft
8

)J
'

for the attraction of a lamina of the cone,

semivertical angle of the cone, we have

x

Also, if a be the

cos a

hence, the resultant attraction

=
27T/3 (1 cos a) / dx = 2irp (1 cos a) h ;

where h is the height of the cone.

It is easily seen that the same expression holds for the

attraction of the frustum of a cone on a particle situated at

the vertex of the complete cone, h representing in this case

the height of the frustum.
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If the cone be an oblique cone the base of which is any plane

figure it is still true that the attraction of a frustum on a par-
ticle at the vertex varies as the thickness of the frustum.

Consider two indefinitely thin parallel laminae at different

distances from the vertex of such a cone, then the attractions

of these laminae on the particle at the vertex will be the same.

For take any indefinitely small element of area on the surface

of one of the laminae, and let a conical surface be formed by
lines which pass through the perimeter of this area and through
the attracted particle; this conical surface will intercept elements

in the two laminae which are bounded by similar plane figures.

Now, supposing the laminae of the same thickness, the masses
of the elements will vary as the squares of their distances from
the attracted particle, and thus they will exert equal attractions

on this particle. The same result holds for every correspond-

ing pair of elements in the two laminae, and thus the two
laminae exert on the particle at the vertex attractions which
are equal in amount and coincident in direction. From this

it follows that the attraction of a frustum varies as its

thickness.

210. We have hitherto considered the attracting body
to be of uniform density, but considerable variety may be
introduced into the questions by various suppositions as to

the law of density. Suppose, for instance, that in the case

of the circular lamina in Art. 207 the density at any point
of the lamina is

<j> (r), where r is the distance of that point
from the centre

; <j> (r) must then be put instead of p in Art.

207 and must be placed under the integral sign. Therefore
the attraction of the lamina will be

f
b
6(r)rdr

SiJo (a(a* + rj
a

If
(j> (r)

= -, where a is a constant, the result is

!
h dr Sir/cab

2iraKG I . or r .

h(a
2 + r

2

)% a(a* + b*)l

211. To find the resultant attraction of an assemblage of
particles constituting a homogeneous spherical shell of very
small thickness upon a particle outside the shell.
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Let C be the centre of the shell, M any particle of it, P the

attracted particle. Let CM=r, PM=y, CP=c, 0=the
angle PCM, </>

= the angle which the plane PCM makes with
the plane of the paper, Br = the thickness of the shell, and
let p denote the density of the shell.

The volume of the elementary solid at M is r
2
sin Br 80

B(f>

(see Art. 130). The attraction of the whole shell acts along
PC; the attraction of the element at If resolved along PC is

pr
2
sin Br 808$ c r cos

f y

We shall eliminate from this expression by means of the

equation

2rc cos
;

therefore

tf
= c

2 + r
2 -

sin 0-y-
dy cr

y
2 + c

2 -r2

2c
c r cos =

Therefore the attraction ofM on P along PC

8y8<j>.
_ p7-Br f c

2 r

2c'
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Hence the resultant attraction of the whole shell

_ irprhr . \ _ 47rpr
2
Sr _ mass of the shell

-.j-(2r +2r)-j
-
2 .

This result shews that the shell attracts the particle at P in

the same manner as if the mass of the shell were condensed

at its centre.

212. It follows from the preceding article, that a sphere
which is either homogeneous or consists of concentric spheri-
cal shells of uniform density, will attract the particle at JP in

the same manner as if the whole mass were collected at its

centre.

213. To find the attraction of a homogeneous spherical shell

ofsmall thickness on a particle placed within it.

We must proceed as in Art. 211
; but the limits of y are in

this case r c and r + c; hence the resultant attraction of the

shell

Therefore a particle within the shell is equally attracted in

every direction.

Suppose a particle inside a homogeneous sphere at the dis-

tance r from its centre
;
then by what has just been shewn all

that portion of the sphere which is at a greater distance from
the centre than the particle produces no effect on the particle.
Also by Art. 211, the remainder of the sphere attracts the par-
ticle in the same manner as if the mass of the remainder
were all collected at the centre of the sphere. Thus if p be
the density of the sphere the attraction on the particle is

that is
Airpr

~3~
Thus inside a homogeneous sphere the attraction varies as the

distance from the centre.
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214. The propositions respecting the attraction of a uni-

form spherical shell on an external or internal particle were

given by Newton
(Principia,

Lib. I. Prop. 70, 71). The
result with respect to the internal particle was afterwards ex-

tended by Newton to the case of a shell bounded by similar

and similarly situated spheroidal surfaces (Princijpia, Lib. I.

Prop. 91, Cor. 3). The proposition is also true when the shell

is bounded by similar and similarly situated ellipsoidal sur-

faces, which we proceed to demonstrate in the method given

by Newton for spheroidal surfaces.

215. If a shell of uniform density be bounded by two ellip-

soidal surfaces which are concentric, similar, and similarly

situated, the resultant attraction on an internal particle vanishes.

Let the attracted particle P be the vertex of an infinite

series of right cones. Let NMPM'N' and nmPmn be two

generating lines of one of these ^ ~*^

cones, and suppose the curves in

the figure to represent the inter-

section of the surfaces of the shell

by a plane containing these gene-

rating lines. The curves will be
similar and similarly situated el-

lipses, and by a property of such

ellipses, "jf"

MN= M'N' and mn = m'n.

By taking the angle of the cone small enough, each of the

two portions of the shell which it intercepts will be ultimately
a frustum of a cone, and being of equal altitude and having a

common vertical angle, they will exercise equal attractions on

P. (See Art. 209.) Similar considerations hold with respect
to each of the infinite series of cones of which P is the vertex,
and consequently the resultant attraction of the shell vanishes.

This result being true, whatever be the thickness of the

shell, is true when the shell becomes indefinitely thin.

216. In a somewhat similar way we may establish the

following proposition which is due to Poisson
;

the resultant

attraction of an indefinitely thin shell bounded by two ellip-
soidal surfaces which are concentric, similar, and similarly
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situated on an external particle is in the direction of the axis

of the enveloping cone which has its vertex at the given par-
ticle. (Crelles JournaI,Yo\. XII. p. 141.) Denote the external

particle by Q ;
and suppose P in the preceding figure to be

the point where the axis of the enveloping cone intersects the

plane of contact of the cone and the ellipsoidal shell. Draw-

any lines NMM'N' and nmm'n as in the preceding figure.
Let jx denote the mass of the element Mn and /// the mass
of the element M'ri.

The attraction of
fju

is equal to \L
2
and it acts along QM;

the attraction of fif is equal to *t,,2 and it acts along QM'.

Now J^ = -tL.

and it is known that QM and QM' make equal angles with

QP (see Conic Sections, Chap. XV., last example) ;
therefore

PM_ PM'

QM QM'
;

and therefore
^L-

=
^-.

Thus the elements p, and fi exert equal attractions on Q ;
and

since the directions of these attractions make equal angles
with QP, the resultant attraction of these two elements

acts along QP. A similar result holds for every pair of ele-

ments into which the ellipsoidal shell may be decomposed;
and thus the proposition follows. It appears from the course

of the demonstration that any plane through P divides the

shell into two parts which exercise equal attractions on Q.

We shall now give in the next two articles some proposi-
tions which will serve as exercises

;
the approximate results

which we shall obtain may be subsequently verified by an

exact investigation. (See Art. 226.)

217. To find the attraction of a homogeneous oblate spheroid

ofsmall excentricity on a particle at its pole.

Let c be the length of the minor axis and a that of the

major axis of the generating ellipse. The spheroid may be
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supposed made up of a concentric sphere, the radius of which
is c, and an exterior shell

;
we shall calculate the attractions

of these portions separately.

Let a section be made of the sphere and spheroid by a

plane perpendicular to the axis of revolution of the spheroid
at a distance x from the attracted particle. This plane cuts

the sphere and spheroid in concentric circles
;
the area of the

2 2

former being iry
2 and of the latter f- ,

where y
2 = 2cx x2

;
c

the difference of these areas is nr
(
-% 1

J y
2
. If a section be

made by a second plane, parallel to the former and at a

distance Bx from it, the volume of the portion of the shell

intercepted between the planes will be tt f

-y
1

j y
2
Ex. The

distance of every particle of the annulus thus formed from
the attracted particle is approximately *J(2cx), and, as the

resultant attraction of the annulus will act along the axis of

the spheroid, it will, approximately,

(dl \ x y
28x

77-/3 V?
"

/ V(2^) 2^V(2(

fa
2 A2ca a*

Therefore the resultant attraction of the shell

2f c* Jo 16c

If we suppose c = a (1 e), e being very small, we have

a2
c
2 = 2c

2
e approximately ;

therefore the resultant attraction of the shell

_ l^TTpec

Also the attraction of the sphere on the particle, by Art. 212,
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therefore the attraction of the spheroid on the particle

= f*7>(l + te
)
c .

218. Tofind the attraction ofa homogeneous oblate spheroid

of small excentricity on a particle at its equator.

Let c be the length of the minor axis, and a that of the

major axis of the generating ellipse. The spheroid may be

supposed to be the difference between a concentric sphere
of radius a and a shell, and the attractions of the sphere and
shell may be separately calculated. Let a section be made
of the sphere and spheroid by a plane perpendicular to the

line joining the attracted particle with the common centre of

the sphere and spheroid, and at a distance x from the at-

tracted particle ;
this plane will cut the sphere in a circle the

area of which is Try
2

,
where y

2 = 2ax x2

,
and it will cut the

spheroid in an ellipse of which the semiaxes are respectively

y and
,
and the area of which is therefore y

2
. The dif-v a ' a *

ference of the two areas is ir f 1 \y
2
. If a section be

made by a second plane parallel to the former, and at a
distance Bx from it, the volume of the portion of the shell

intercepted between the planes will be ir
(
1

] y
2
Bx. The

distance of every particle of the annulus thus formed from the

attracted particle is approximately \/(2ax) ;
and as the re-

sultant attraction of the annulus will act along the line join-

ing the attracted particle with the centre, it will approximately

/ c\ x y
2Bx~ Vp

V a) V(2oa?) 2^ "

= 7J

7>(
l--)

2a^~ J
Bx.

(2a)i

Therefore the resultant attraction of the shell

fc^-^-^j
*?, if .-.(!-.),
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Also the attraction of the sphere, by Art. 212,

therefore the attraction of the spheroid on the particle

=
irpa

- ^^ = f 7rp (1
- f e) a,

= |7rp(l + fe)c.

In the same manner it might be shewn that the attractions

of a homogeneous prolate spheroid of small excentricity on

particles at the pole and equator are respectively

fwp (1
- f e) c and f irp (1

- f e) c,

2c being the axis of revolution of the spheroid, and

a c (1 e).

219. One more example may be given. It is sometimes

useful to compare the attraction exerted by the Earth on a

particle at the top of a mountain with the attraction exerted

by the Earth on the same particle at the ordinary level of the

Earth's surface. The investigation is given by Poisson,

(Mecanique, Tom. I. pp. 492496). Let r denote the Earth's

radius, x the height of the mountain, g the attraction of the

Earth on a particle of a unit of mass at the ordinary level of

the Earth's surface. If there were no mountain the attraction

of the Earth on the particle at a distance x from its surface

r
2

would be g -, r^ : we have then to add to this expression

the attraction exerted by the mountain itself. Suppose the

mountain to be of uniform density p, and consider it to be

cylindrical in shape, and the particle to be at the centre of its

upper surface
;
then by Art. 208 the resultant attraction is

2>jrp{x-*J(x
2 + b

2

)+b},

where b is the radius of the cylinder. If b is so large in com-
x

parison with x that the square of - can be neglected, this
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expression reduces to 2irpx. Thus if g denote the attraction

at the top of the mountain

qr*

g'= ,
,

X2 + 27T/XE.^
(r + xy

Let <t denote the mean density of the Earth, so that the

mass of the earth is -
;
then

o

9 =
47TOT _ Arrrar

thus y =^{_^_ + |^i

Now the mean density of the Earth is known to be about

five and a half times that of water, and from what may be

conjectured of the density of matter at the Earth's surface, we

may suppose = -
. And

= (! + -)
=1 approximately ;

#

(r + x) \ r) r

thus ^ =^ 1 -_ + _j
=^1 __J.

How far the approximations made in this article are allow-

able might be difficult to estimate
;
from Article 207, it ap-

pears that in taking 27rpx to represent the attraction of the

mountain, we do in fact make the mountain to consist of a

uniform plate of finite thickness x, but of infinite extent.

We have hitherto confined ourselves to simple examples
of the ordinary law of attraction

;
we now proceed to consider

some other laws of attraction, and also some more complex
cases of the ordinary law.

220. If the particles of a body attract with a force varying
as the product of the mass into the distance, the resultant at-

traction of the body is the same as if the whole mass of the body
were collected at its centre ofgravity.

T. s. 17
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Take the centre of gravity of the attracting body as the

origin of co-ordinates, and let a, b, c be the co-ordinates of

the attracted particle. Divide the attracting body into inde-

finitely small elements
;

let x, y, z be the co-ordinates of an

element, m its mass, and r its distance from the attracted

particle. Then the attraction of this element is mr, and by
resolving it parallel to the co-ordinate axes, we obtain

a x b y c z
mr . , mr . , mr . ,

respectively. Hence, if X, Y, Z denote the resolved parts of

the whole attraction, we have

X=%m{a x), Y=%m(by), Z=%?n(c z).

But, since the origin is the centre of gravity of the attracting

body, we have

%mx = 0, *%my 0, %mz = ;

therefore XdZm, Y= b%m, Z=c$m.

But these, expressions are the resolved attractions of a mass

2m placed at the origin, which establishes the proposition.

221. To find the attraction of a homogeneous spherical shell

on a particle without it; the law of attraction being represented

by < (y), where y is the distance.

If we proceed as in Art. 211, we find the resultant attrac-

tion of the shell on P along PC

c J c-r

Suppose /<(#)<% = &(#)>

and fyhitffy^fiy)-

Then, integrating by parts, we have

/ (^ + cP - r
2

) <f>{y) dy = {f + c
2 - r

2

) fc(y)
- 2/#1(*/)^

= (y + c
2 -r2

)<k(y)-2t(y);



ATTRACTION. SPHERICAL SHELL. 259

therefore 2 I {y
2 + c

2
r
2

) <f>{y)dy
c J c-r

= 2w/w&-V~ &(c+ r)
- C--

<p, (c-r)- -5 ^(c+ )+ -2 f
(c-r)j

This last form is introduced merely as an analytical artifice to

simplify the expression.

222. To find the attraction of the shell on an internal par-
ticle.

The calculation is the same as in the last article, except
that the limits of y are r c and r + c. Hence, the attrac-

tion of the shell

=
27rprar|^^1 (r+c)+^</>1(r-c)--2 i|r(r+ c) + -2

A|r(r-c)|

223. The formulas of the preceding two articles will give
the attraction when the law of attraction is known.

Ex. 1 . Let
<j> (r)

=
-2 ; therefore fa (r)

= \-A,

^{r) = -r + \Ar> + B',

A and B being constants.

Therefore the attraction on an external particle

=2^ (-f +2^)=^, (Art. 211).

172
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The attraction on an internal particle

= 27rPrBr
i{-

Ac + A (r + c)*-A(r-c)
2c

=
2irprBr j{-% + 2-4r}

=
0, (Art. 213).

Ex.2. Let tf)(r)=r;

therefore & (r)
=

\r* + A, ^(r) = Jr
4 + %Ar

2+ B.

The attraction on an external particle

d {{c +rY - (c
-

r)
1 + A (c+rf - A (c-r)

2

27rPrSr
d~c{- 8c

d= 2irprSr j {cV + r* + 2Ar]

= Airp^cBr
= mass x c.

The attraction therefore is the same as if the shell were

collected at its centre. This property we discovered for the

law of the inverse square. We shall now ascertain whether

there are any other laws which give the same property.

224. To find what laws of attraction allow us to suppose a

spherical shell condensed into its centre when attracting an
external particle.

Let
(j>(r)

be the law of force
; then, if c be the distance of

the centre of the shell from the attracted particle, r the ra-

dius of the shell, and
TJr(r) =f{rjcj>{r) dr) dr, the attraction of

the shell

=
27rpr8,| {*(+')-*(-*)

But if the shell be condensed into its centre, the attraction

=
47rpr

2

Sr^>(c) ;

d (yfr (c + r) ^(c r)]
therefore

dc
=

2r<j>(c)
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Expand ty (c + r) and yjr{c r) in powers of r
;
then using

yp(c) for y , &c., we have

= 2^ +2
Jci4^"

(c)+ -}
;

whatever r may be
; therefore

But <f'(c)=c/<(c)dc;

therefore ^"(c) =/<
/
)
(
c
)
d + C(

(
c
) 5

therefore ^'"(c)
= 2<

(
c
) + c<j>'(c).

Therefore, by the first of the above equations of condition

for
i|r (

c),

^ + $'(c)
= a constant.

c

Put 3^1 for this constant
; multiply both sides of the equa-

tion by c
2 and integrate ;

thus

c
2

</>(c)
= Ac9 +B;

therefore
</> (c)

= Ac + -5 .

c

This value satisfies all the other equations of condition for

-\jr(c) ;
therefore the required laws of attraction are those of

the direct distance, the inverse square, and a law compounded
of these.

225. To find for what laws the shell attracts an internal

particle equally in every direction.
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When this is the case,

d
dc

f^fr + c)-^ (r-c) l =0 .

therefore ty'{r) + r^ ^'" (r) + . . .
= A,

11

whatever c is, A being a constant independent of c
;
therefore

V(r) = A, ^'=0, &c.

From the second condition, we have

<^(r)=B+B'r+B"r
2

,

where B, B', and B" are constants.

Hence f(r) or rf<f>(r) dr = B' + 2B"r
;

therefore J4>(r) dr =~ + 2B"
;

therefore <j>(r)
=

j>:

with this value of <(r) all the other equations of condition

are satisfied
;
hence the only law which satisfies the condition

is that of the inverse square.

226. To find the attraction ofa homogeneous oblate spheroid

upon a particle within its mass, the law of attraction being that

of the inverse square of the distance.

Let a and c be the semiaxes, a being greater than c
;
and

let the equation to the spheroid referred to its centre as origin
be

^-V2

=i a)

Let f g, h be the co-ordinates of the attracted particle ;
r

the distance from the attracted particle of any point of the

attracting mass
;
6 the angle which r makes with a line

parallel to the axis of z
; <f the angle which the plane con-
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taining r and a line through the point (f, g, h) parallel to the

axis of z makes with the plane of (x, z). The volume of an
element of the attracting mass

= r
2
sin 80

S(f> Sr,

as in Art. 130. Let p be the density of the spheroid ;
then

the attraction of this element on the attracted particle is

p sin 80
Scf)

8r
;
and the resolved parts of this parallel to the

axes of x, y, z, are

p sin
2

cos
(p
80 8$ Br, p sin

2
sin

cf>
80

8cf> 8r,

and p sin cos 80 Sep 8r,

respectively. Hence the attractions of the whole spheroid will

be found by integrating these expressions between proper
limits. We proceed to find these limits.

In equation (1) put

f+ r sin cos
<j)

for x,

g + r sin sin ^> for y,

h + r cos for z
;

then the equation to the spheroid becomes

(/+ r sin cos
</>)

2 + (g + r sin sin <)
2

(h + r cos 0f _
2 ' 2

==
*ia c

or r2
(sin

2
cos

2
0) (fsin cos

cj>-\-g sin sin
<f) hcos0\

= 1 ~'

-r. . sin
2

cos
2 _

Put __ +__.jr

/ sin cos j> +ff sin sin j>
A cos _

2 2 *
ta c

then K2
r
2 +2KFr +F2=H

(2),
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Equation (2) will give two values for r, one positive and the

other negative; these values we may denote by r
x
and r

2 ,

where

-F+t/H _ F+>JH
*t- K '

r>~ K '

Hence to find the whole attraction of the spheroid parallel to

the axis of x, we first integrate the expression

p sin
2

cos
<f>
86

8<j>
8r

with respect to r between the limits r = and r = r
x ,

and also

between the limits r = and r =rt,
and take the difference ;

we thus obtain

p sin
2

cos
<f> (r2 rj 86

8cj> ;

this must be integrated between and ir for <, and and it

for 6. If A denote the whole attraction parallel to the axis

of x, acting towards the origin, we have then

n nF
-^sin

2
cos < dQ

d<j>.

We may simplify this expression by omitting those terms

which vanish by the principles of the Integral Calculus
;
thus

~ fP
J oh c

2
sin

20+a2
cos

2

~WC
J o

c* sm2 + a2
cos

2

j. s[" (l-cos
2

6)sm6d6- 7r//?c
J o

c
2

+(a
2 -c2

)cos
2

tt/oc
2

[* ( a2
sin 6 . J JQ=

3??Jt V + K-c-)coB^
" Sm

I
^

a'-c8

[cV(a-c
2

)
c J

Let c
2 = a

2

(1 e
2

) ;
then the result may be written

a o * Ka-e2

)
. _, 1-e2

)
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In the same manner, if B denote the whole attraction parallel
to the axis of y,

B =
2irgp \

:L-^z - sm l
e

Let G denote the whole attraction parallel to the axis of z,

then

air
J?

-^sin
cos 6 d6 <fy

r
J J c' sm'0 + a cos

2

2ttW f f .

'

c
2 sin0 1 ,-=

^zVj i

Sm ^-
c
2

+(a
2-oVo4

^

_47rApa
2

r c
^ -i V(

2
c
2

) {

. , fl V(l-e
2

) . -J

If the spheroid be prolate a is less than c. It may be shewn
then that

c
2 -a2

I
c *>/(<? a*)

& a
J

'

c
2 -a2

[ cV(c a) a J

rY_ 47r^a
2

f
c c + A/(c

*- a
*) 1

"c2 -a2

|V(c
2 -a2

)

g a }

It may be noticed that in both cases

- H hf= 47rp.

227. From the expressions in the preceding article we see

that the attraction is independent of the magnitude of the

spheroid and depends solely upon the excentricity.
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Hence the attraction of the spheroid similar to the given
one and passing through the attracted particle, is the same
as that of any other similar and similarly situated concentric

spheroid comprising the attracted particle in its mass. Hence
a spheroidal shell the surfaces of which are similar, similarly

situated, and concentric, attracts a particle within it equally
in all directions. This has been already established; see

Art. 215.

If we put the ellipticity of the spheroid = e, and suppose
e very small so that we may neglect its square, we have for

the oblate spheroid since c = a (1 e),

c
2

e
2 = 1 2

= 1 (1 e)
2 = 2e approximately.

After expansion and reduction we shall obtain approximately

C=f7rp(l+fe)A;
For the prolate spheroid since a = c (1 e),

e
2 = l--[ = l-(l-e)

2 = 2.
c

K '

After expansion and reduction we shall obtain approximately

a=t^(i-f)*.
228. If instead of the spheroid we take an ellipsoid whose

semiaxes are a, b, c, it may be shewn that

r_ (^ cos
2 6 sin 6 dO-

lirhpabj^ ^2
cog

, Q + & gin2
6>)^2

cos
.2 + c

.2
gin2 ^

;

and the values of A and B may be found by symmetrical
changes in the letters a, b, c and j9 g, h.

If we change a, b, c into a (1 + w), Z> (1 + w), c (1 + w)

respectively, the expression for C remains unchanged ; and so

also the expressions for A and B remain unchanged. This
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shews that a shell of any thickness, the internal and external

boundaries of which are similar and similarly situated con-

centric ellipsoids, exerts no attraction on a particle within

the inner boundary. This has been already established ; see

Art. 215.

229. Suppose we require the attraction of a spheroid on
an external particle.

In the equation (2) of Art. 226, we shall now have F* H
a 'positive quantity, and the two roots of that quadratic equa-
tion will have the same sign. Hence we shall find

Am 2p /(^sin
2
6 cos

</> d<j>
dO.

The limits of the integration with respect to 6 will involve

<f),
for these limits will be found by putting H=0, and this

leads to the following quadratic equation for determining tan 6,

2Atan<9 /cos <f> + q sin
<fr

1 / /*+9*\_+
c
2 '

a2

'

c
2
V

2
'

/

Then the limits of
<f>

are to be determined from the condition

that the values of tan furnished by this quadratic equation
must be equal; this leads after some reduction to the following

equation for determining the limits of <,

(fCos4>+ ffSm<j>Y=f+f-a\
It is however unnecessary to proceed with these complicated

integrations, for we can obtain the result indirectly by means of

Ivory's theorem, which furnishes a relation between the attrac-

tions of ellipsoids on external and internal particles; this

theorem will be true for spheroids as they are included among
ellipsoids, and since the attraction of a spheroid on an internal

particle has been already found, the theorem will enable us to

determine the attraction of a spheroid on an external particle.

230. To enunciate and prove Ivory's Theorem,

2 ,2

Let
aa +^ +

?
=1

'
and

^ +| + ^=1:
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be the equations to the surfaces bounding two homogeneous
ellipsoids of the same density and having the same centre and

foci; then

c?-V.= o?-P, a*-c = fl?-y (1).

Let/, g, h and/', g\ ti be the co-ordinates of two particles
so situated on the surfaces of these ellipsoids that

f_a _b h_c .

/"a' g'-/S> h'-y

Also, since (/ g, ti)
and (/, g\ ti) are points in the surfaces

of the first and second ellipsoids respectively, we have

f g
2

h* f" 9* K*
,

Then the attraction of the first ellipsoid 'parallel to the axis of z

on the particle situated at the point (/', g', h!) on the surface of
the second is to the attraction of the second ellipsoid on the par-
ticle situated at the point (f g, h) on the surface of the first in

the same direction as ab to a/3, the law of attraction being any
function of the distance ; and similarly with respect to the axes

ofy and x. This is Ivory's Theorem.

We shall, for convenience, represent the law of attraction

by the function
r(j>(r

z

),
r being the distance.

The attraction of the first ellipsoid on the particle (/, g\ ti)

parallel to the axis of z

= pjJW-z)<j>{{f'-xr+(g'-yT + {K-zY}dxdydz;

the limits of z are

the limits of y are

-
&v/(l-3and^(l-g ;

the limits of x are a and a.
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Let
yjr (r)

= J/^(r) dr; then the attraction

= pfttW-*Y+ (9 -?/Y + & + *)*!

- + [(/
-

*)
2 +V - yf + (*'

-
*)*)} ***

between the specified limits
;

it must be remembered that in

this expression z=c ./ (\ -

2 ^ J
,
but we do not substitute

this value merely for preserving the functions under as simple
a form as possible. Now put x = ar, y = bs, z ct, then the

attraction

- pal fl {+ [(/'
- arf + (/- bs)

2 + (h' + ct)
2

]

- * [(/'
- arf + (9'

~
?>SY + (*'

-
cO

2

]} <&&,

the limits of s being *J(lr
2

)
and V(l f

2

)j and those of r

being 1 and 1
;
also t V(l r

2
s
2

).

Now (/'
-

ar)
2 + (g'

-
bs)

2 + (h' + ct)
2

=p +0* +^ - 2 (far + g'bs h'ct) + a2
r
2 + b

2
s
2 + c

2f
;

by substituting for h'
2 from (3), and putting 1 r

2
s
2

for f,

this becomes

r
i
1 -9 + *

(
x -

1)
+ ?2

- 2 (/w +^s h
'

ct)

eliminating /', g\ ti by (2), and making use of (1), this be-

comes

+ (a
2 - 7V+(/3

2 -
7V+72

-f + 9* + h2 -2 (far +g/3s hyt) + aV + /9V + 7V, by (3),

= (/-^)
2

+(^-/3,)
2

+(A + 7
2
.
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Hence the attraction of the first ellipsoid on (f, g\ ti) parallel

to z

=
pabJJ {f [(./- ar)

2
4- (g

- #)* + (h + *)*]

-1 [(/- ow)" + (
-

/&)
2 + (A

-
yt)

2

]} dr ds
;

the limits of 5 being V(l 0> V(l-?*
2

)>
an^ f r being 1, 1.

By symmetry, this expression

= ~ x attraction of second ellipsoid on (f, g, h) parallel to z

The same may be proved for the attractions parallel to the

other axes, and consequently the theorem, as enunciated, is

true.

We observe that one of these ellipsoids lies wholly within

the other
;

for if not, the points in which they cut each other

lie in the line of which the equations are

x2

y
2

z
2

, x2

y
2

z
2

_-
2 + p + -2-l, and -

2 + ^ + -2 -l;

the points of intersection must therefore satisfy the equation

and this by (1) becomes

an equation which can be satisfied solely by x=0, y=0, z=0;
but these do not satisfy the equations above, and therefore the

surfaces do not intersect in any point.

Hence to find the attraction of an ellipsoid of which the

semiaxes are a, b, c on an external particle of which the co-

ordinates are /', g\ h', we must first calculate the attraction of

an ellipsoid of which the semiaxes are a, /?, 7 parallel to the

axes, on an internal particle of which the co-ordinates are

f, g, h, these six quantities being determined by the equations

a
2

-/3
2 = a2 -b2

,
a
2 -

7
2 = a2 -c2

,
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>. af bq , cti

and then the attractions required will "be these three calculated

attractions multiplied respectively by

be ac ab '

0y' cry' aj8'

231. To prove that the resultant attraction of the particles

of a body of any figure upon a particle of which the distance

is very great in comparison with the greatest diameter of the

attracting body, is very nearly the same, as if the particles
were condensed into their centre of gravity and attracted ac-

cording to the same law, whatever that law be.

Let the origin of co-ordinates be taken at the centre of

gravity of the attracting body, the axis of x through the

attracted particle ;
let c be its abscissa, and x, y, z the co-

ordinates of any particle of the body, p the density of that

particle.

Then the distance between these two particles, or r,

= ^{(c-xY +f + z%

Let
r<j> (r

2

)
be the law of attraction

; then the whole attrac-

tion parallel to the axis of x

=
JJJp {c-x) <j> (c

2 - 2cx + x*4-y
2+ z

2

)
dx dy dz,

the limits being obtained from the equation to the surface
of the body. This attraction therefore

=
////> (-*) W> (<*)

- pcx-x'-f-z*) <j>' (c
2

) + ...} dxdydz

=
Mc<j> (c

2

) + c
3

f (c
2

)
jjjp

y
* +
^a

+^
dx dy dz + (A),
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M being the mass of the body, and Jjfpxdxdydz = 0, since x is

measured from the centre of gravity of the body.

Now suppose x, y, z to be exceedingly small in comparison
with c

;
then all the terms of (A) after the first are extremely

small in comparison with that term, it being observed that

c
s

(f)' (c
2

)
is of the same order as

c(j> (c
2

)
in terms of c. Hence

the Proposition is true.

232. From Art. 224, it appears that when the law of

attraction is that of the inverse square of the distance, a

sphere composed of shells, each of which is homogeneous,
attracts an external particle with a resultant force, which is

the same as if the sphere were condensed at its centre. It

may be shewn also that two such spheres attract each other

in the same manner as if each were condensed at its centre.

For consider any element of mass forming part of the first

sphere ;
the attraction of this on the second sphere will be

equal and opposite to the resultant attraction of the second

sphere upon it, and will therefore be the same as if the

second sphere were collected at its centre. Similarly, the

attraction of any other element of the first sphere on the

second will be the same as if the second were collected at

its centre. Proceeding thus, we find that the whole action of

the first sphere on the second is the same as if the second
were collected at its centre, and therefore the mutual attrac-

tion of the spheres is the same as if each were collected at its

centre.

If the law of attraction be that of the direct distance, then
two bodies of any shape attract each other with a resultant

force which is the same as if each were collected at its centre

of gravity.

We proceed to general formulae for the attraction of bodies

of any form.

233. Let there be a body of any form
;

let p represent the

density of an element, the volume of which is ax dy dz, x, y, z

being the co-ordinates of the element. Suppose the attraction

between the particles of masses m and m respectively, at a

distance r, to be mm Fir) ;
then the components X, Y, Z

parallel to the axes, and from the origin, of the attraction of
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the body on a particle whose mass is unity, and co-ordinates

a, b, c are found by the equations

X=
jjjp^F (r) dxdydz,

Y=
jjjp^F(r) dxdydz,

Z=jjjp
Z

-^F(r) dxdydz,
r

r being = {{x
-

a)* + {y
-

b)
2 + {z

-
c)

2

}

1
.

The integrations are to be taken so as to include all the ele-

ments of the attracting body.
Let

cj> (r) be such a function of r that F(r) is its differential

coefficient with respect to r, and let

U=ffjp(p{r) dxdydz,

the integrations being extended so as to include all the ele-

ments of the attracting body ;
then will

X-- Y--~ Z=-
da

'

db *

dc
'

Ym <miJ^ldr =F
{r)
dr_ F x-a

da dr da s da * ' r

therefore X= I \\ p _,
dxdydz

==

~da'JS}
p(f) ^ dxd̂ dz

_dU
da

'

Similarly, the equations Y-- -^ and Z-
-j- may be

established.

It may be observed that if in any case, for example that

of an infinite solid, the integral U becomes infinite, but the

T.s. 18
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differential coefficients -=-
, ~-j- , -y- are finite, the preceding

values of X, F, Z will still be correct.

For suppose we take a finite portion of the solid
;
the com-

ponents of its attraction will have for values the differential

coefficients of U. Suppose now that we extend without limit

the portion of the mass considered, the components of the

attraction will always be

__dU __dU _dU
da' db' dc'

whether U increase without limit or not. Hence, if these

three expressions tend to limits, those limits will be the com-

ponents of the attraction of the infinite solid. And if they
increase indefinitely, we may conclude that the attraction

increases without limit as the portion of the body considered

increases; this we express by saying that the attraction of

the solid is infinite.

234. If the law of attraction be that of the inverse square,
we have

F(r)=-- and <(r)=--.

Let V U, that is, let

'

pdxdydz
-i> (i)

then, as in the preceding article, we have for the attractions

parallel to the axes of x, y, z respectively, andfrom the origin,

x^d_V Y=z
dV z= dV

da' db ' dc'

The equation which gives V is equivalent to the following

operation : decompose the attracting mass into indefinitely
small elements, and divide the mass of each element by the

distance of that element from the attracted particle; the sum of
these quotients is V. Hence, the value of V will be quite

independent of the axes, rectangular or polar, which we may
find it convenient to employ. Suppose we use the ordinary
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polar formula?, and take the position of the attracted particle
for the origin; then the element of volume is (Art. 130)
r
2
sin 6

8<f>
86 Br

;
therefore

V^fffpr sm 0d<j>d0dr (2).

Suppose the attracted particle forms part of the attracting
mass

; then, since r vanishes for those particles of the attract-

ing mass which are in contact with the attracted particle,
from equation (1) it would be doubtful if V is finite in this

case
;
but from (2) we see that it really is finite.

235. To express by means of V the attraction resolved

along any line.

Let s be the length of the arc of any curve measured from
a fixed point up to P the attracted particle ; I, m, n the direc-

tion cosines of the tangent to this line at P; R the attraction

resolved along this tangent ;
then

B=lX+mY+nZ
7
dV dV dV
da do dc

Now, if we restrict ourselves to points lying on the line s,

V will become a function of s alone
;
for V is a function of

, b, and c, and each of these may be regarded as a function

of s
;
thus we shall have by the differential calculus,

dV^dVda dVdb dVdc^
ds da ds db ds dc ds

}

, . da 7 db dc
and since ~r h ~T m

"> ~T
~ n

->
we &et

236. To examine the meaning of the function V.

This function is of so much importance that it will be well

to dwell a little on its meaning.
In the first place it may be observed that the equation (1)

contains a physical definition of V, which has nothing to do
182
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with the system of co-ordinates, rectangular, polar, or any
other, which may be used to define algebraically the positions
of P and of the attracting particles. Thus V is to be con-

templated as a function of the position of P in space, if such

an expression may be allowed, rather than as a function of

the co-ordinates of P; although, in consequence of its de-

pending upon the position of P, V will be a function of the

co-ordinates of P, of whatever kind they may be.

Secondly, it may be remarked that although an attracted

particle has hitherto been conceived as situated at P, yet V
has a definite meaning depending upon the position of the

?oint
P, whether any attracted matter exist there or not.

'hus V is to be contemplated as having a definite value at

each point of space, irrespective of the attracted matter which

may exist at some places.

The function V is called the potential of the attracting
mass.

237. To calculate the value of V in the case of a spherical

shell, the density being a function of the distance from the

centre.

Take for the axis of x the line joining the centre of the

sphere with the attracted particle P, which is obviously the

direction of the resultant attraction
;

let a be the distance

of P from the centre
;
u the distance of any point in the

attracting shell from the centre; and
</>

the other polar
co-ordinates of this point; then the mass of the element at

this point is pu* sin Q8u$0$(j>, and

J U\ J ^0

pu* sin 6 dud6d<j>

where u
t
and u

2
are the internal and external radii of the

shell; hence,

r
;**[* pu

% *m6dud0
J u x

J

Now r2 w2 2au cos 6 + a*
;

therefore sin 6 -j-
=

,ar au
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and V 1 1 pududr.

We must now distinguish three cases.

I. When P is heyond the external surface, the limits of r

are a u and a + u
;
therefore

27T f"
2
[
a+U

V= I I pududra J iti J a

= I pu
2du (1).a J Ui

But ifM denote the mass of the spherical shell,

ru2

M= In I pu
2du

;

J Mi

therefore V=
M
a

Hence, X= -^- = 3, or the attraction is the same as
da a

if the mass of the shell were collected at its centre
;
this was

proved in Art. 212.

II. When P is within the internal surface, the limits of r

are u a and u + a; therefore

V= I I pududr& J Mi J ua

= 47T I pudu
J Mj

(2)-

Since this is independent of a, we have

-F=o

This is equivalent to the result found in Art. 213.
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III. By combining the results contained in equations (1)

and (2), we see that if P be between the bounding surfaces

of the shell,

4tj- ra ru2

V I pu*du-\-7rl pudu.
Q> j u\ J a

From this we may deduce a result involved in Arts. 212 and

213, namely, that the resultant attraction is the same as if all

the matter which is nearer to the centre than P were collected at

the centre, and the rest of the matter neglected.

238. At any point [a, b, c) external to the attracting mass,
the function V satisfies the partial differential equation

d*V d*V d*V_
da*

+
db*

+
dc*

"*

For since r = {{x
-

a)*+ (y
- of + (*

-
c)

2

]*,

d_n
da

x a d n
db \r,

-L A (I
dc \r

d* n\_ 3(x-a)
2

1

da1
[rj

m
r
5

r
3

db* \r.

Hv-W

d* /1\ 3 (z
-

c)* 1

dc
2
\r

therefore

Now

therefore

Y [[[pdxdydz \

da
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d2V d2V
and similar expressions hold for ttt and -ry ; therefore

d2V d2 V d2

V_
da'

+ W +
dc'

~

This result holds so long as the attracted particle is not in

contact with the attracting mass. If, however, the attracted

particle is in contact with the attracting mass, r can vanish,

and therefore - and its differential coefficients become infinite ;

the preceding demonstration does not hold in this case.

239. At an internal point (a, b, c) about which the density
is p, the function V satisfies the equation

d 2V d2V d2V

d2 V d2V d*V .

To determine the value of -73 + -j + -tt in this case,

suppose a sphere described in the body so that it shall include

the attracted particle, and let V V
t + V

2 , where V
2
refers to

the sphere and V
1
to the remainder of the attracting body;

then

d2V d2V d2

V_d
2 V

x
d2V

x
d2V

x

da*
+

db*
+

dc
2
~

da2 + db2 +
dc*

.d^.d
2^ d2^

"T da2 *
db2 "*"

dc
2

d2V d2 V
' *v

%~
da'

^
db'

*
dc*

'

by what has been already proved.

Now the centre of the sphere may be chosen as near the

attracted particle as we please, and the radius of the sphere

may be taken so small that its density may be considered

ultimately uniform, and equal to that at the point (a, , c).



280 EQUATION WHICH V SATISFIES.

Let a, /3, 7 be the co-ordinates of the centre of the sphere ;

then the attractions of the sphere on the particle parallel to

the axes are, by Art. 212,

therefore

-Trp{a-a), ^~-{o-
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attraction will act along the line which joins these two points,

and will be denoted by -j- .

The equation

will give

hence
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Hence the attraction always vanishes, and the particle is in

equilibrium whatever be its position within the unoccupied

part of the sphere.

Suppose next that the particle forms part of the mass of

the sphere ;
we have, by Art. 239,

d2V 2 dV
~dS+-r-cfr

= -
i7rp >

p being a given function of r.

Multiply by r
2

,
and integrate from the value r. of r

;
sine

dV
-7- = for all points in the interior, it is so at the limit r

x ;

dV f
r

thus r
2

-y- m 4,ir I pr
2
dr.

But I ^irr
2

pdr is the mass comprised within that surface of

the sphere which passes through the attracted particle. If we
call it M\ we have

dV_ _3
dr r

l

M'
The absolute value of the attraction will therefore be T ;

v

it is the same as if the mass M' acted alone and were collected

at its centre.

If the attracted particle is on the exterior surface having
its radius = r

2 ,
we have, ifM be the whole mass of the hollow

sphere,

dV__M
dr

"
rl

'

and the attraction exercised upon this particle will have for

its value

M
~ 2
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Lastly, consider a particle outside the sphere ;
that is, for

which r is greater than r
2 ;

we have, as in the first case,

dV^c
dr r

2#

But in consequence of the discontinuity arising from the

particles of the mass, the constant c is not restricted to

have the same value as for the interior points. To deter-

mine it we put r r
2 ; then, from the preceding case, we

ought to have

dr
"

r
2

2

therefore c = M;
and we shall have for external points,

dV M
dr

~
r
l '

The attraction will therefore have for its value

M
r
2 '

This agrees with Art. 212.

241. Application to an indefinite cylinder. Consider next
a hollow indefinite cylinder composed of homogeneous shells,

the density being a function of the distance from the axis of

the cylinder which we take for the axis of z. Its action upon
any particle will be directed towards the point where the axis

is cut by a perpendicular plane passing through the attracted

particle. Take this point of the axis for origin ;
let r be its

distance from the attracted particle ;
the attraction will depend

only on r, and its value will be

dV
dr

But for the points which are not part of the mass of the

cylinder, we have, by Art. 238, observing that V is inde-

pendent of c,

d2V d^V_
da'

+
db2

~
'
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whence -j-s -\ =- = 0.
ar r ar

Multiplying by r, we have

d^f dV
dr \ dr-)

= 0;

therefore f=
C
-,dr r

c being some constant.

We observe, as in the case of a hollow sphere, that the

points exterior to the cylindrical shell and those in the interior

being separated by those of the shell, for which the circum-

stances are different, there is a discontinuity in passing from

values of r greater than the radius of the external surface, to

those of r less than the radius of the internal surface.

For points of the interior of the shell c is invariable
;
but it

is obviously
= when r =

;
therefore for all points in the

interior

dr

Hence we conclude, that an indefinite hollow cylinder composed

of homogeneous shells exercises no attraction upon a point situ-

ated within the interior of its internal surface.

Let us now find the value of
-j-

for points belonging to the

mass of the cylinder ;
for these points we have, by Art. 239,

d*V IdV
-aV+rdr-^-^

and we find by integration, calling r
x
the radius of the internal

surface,

dV
r 7- = 47r I prar.
dr

I prd'i

dV
No constant is necessary, because -j- m when r**r

ti
since it
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is so for all the points of the interior of the surface of which
the radius is r

x
. Put r = r

2 ,
then

- =
--j^rdr.

For external points we ought to have

dV= C
dr r

Make r r
2 , then, by reason of the preceding equation,

4-7T I prdr

The constant being thus determined, we have for all values of

r greater than r
2 ,

dV= G
dr r

'

and the attraction of the cylinder will be

C
r

'

We shall close this chapter with some propositions extracted

from an article by Professor Stokes, in the fourth volume of

the Cambridge and Dublin Mathematical Journal, to which we
have been already indebted in Art. 236.

242. A surface of equilibrium is one upon which a particle
would rest in equilibrium if acted upon by the forces of the

system, the surface being supposed fixed.

If V be the potential of an attracting body on a particle,
then V= constant, is the equation to a surface of equilibrium
with respect to the attraction of the body. For we have

dV
shewn in Art. 235, that -7- is equal to the attraction resolved

along the tangent to a curve drawn through the attracted

particle, but if this curve be on the surface V= constant,
7

j-r-

then = 0; that is, there is no force acting on P in the

direction of any tangent to the surface F= constant. Hence,
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if P be placed on the surface, it will remain in equilibrium.

(Art. 33.)

Lines of force are curves traced so that the tangent at

any point is the direction of the resultant force at that point.
Hence the lines of force are perpendicular to the surfaces of
equilibrium.

243. If 8 he any closed surface to which all the attracting
mass is external, dS an element of S, dn an element of the nor-

mal drawn outwards at dS, then

dV
I dn

the integral being taken throughout the whole surface S.

Let m be the mass of any attracting particle which i3

situated at the point P', P being by hypothesis external to 8.

Through P draw any right line L cutting 8, and produce it

indefinitely in one direction from P. The line L will in

general cut 8 in two points ;
but if the surface 8 be re-entrant

(that is, a closed surface which may be cut by a tangent plane),
it may cut it in four, six, or any even number of points.
Denote the points of section, taken in order, byP1?

P
2 ,
P

3) &c,
P

x being that which lies nearest to P'. With P' for vertex,
describe about the line L a conical surface containing an in-

finitely small solid angle a, and denote by.^,^,... the areas

which it cuts out from 8 about the points Px ,
P

2 ,
Let

B y
6L be the angles which the normals drawn outwards at

P
x ,
P

2 ,
make with the line L, taken in the direction from

P
x
to P'; Nl9

iV
2 ,

the attractions of m at P
1?
P

2 ,

resolved along the normals; r
x ,

r
2 ,

the distances of

P
1?
P

2 ,
from P'. It is evident that the angles t , 2 ,

will be alternately acute and obtuse. Then we have

N
t
=^ cos

l9
iV

2
= - ^ cos (tt

-
2),

&c.

We have also in the limit,

A
t
= axI sec V A% ar

8

*
sec {tt0^ &c.

; .

and therefore

N
x
A

x
= cm\ N

2
A

% am\ N
s
A

z om, &c.
;
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and therefore, since the number of points P%1
P

2 ,
... is even,

N
t
A

t
+N2

A
2 +Na

A
3 +Ni

A
A
... = am am + am am' ... = 0.

Now the whole solid angle contained within a conical

surface described with P' for vertex, so as to circumscribe S,

may be divided into an infinite number of elementary solid

angles, to each of which the preceding reasoning will apply ;

and it is evident that the whole surface S will thus be ex-

hausted. We have, therefore,

limit of %NA = ;

or, by the definition of an integral,

JNdS=0.

The same will be true of each attracting particle m; and there-

fore, if JV" refer to the attraction of the whole attracting mass,

we shall still have JNdS=0. But, by Art. 235, N= j- ,
which

proves the proposition.

244. If Vbe the potential ofany mass M
x ,
and ifMQ

be the

portion ofMx
contained within a closed surface S,

dV
s 4B-t.ll..

dn and dS having the same meaning as in Art. 243, and the

integration being extended to the whole surface S.

Let m be the mass of an attracting particle situated at the

point P' inside S. Through P draw a right line X, and pro-
duce it indefinitely in one direction. This line will in general
cut S in one point ;

but if S be a re-entrant surface, it may be
cut by L in three, five, or any odd number of points. About
L describe a conical surface containing an infinitely small solid

angle a, and having its vertex at P\ and let the rest of the

notation be as in Art. 243. In this case, the angles 1 , 2 ,....

will be alternately obtuse and acute, and we shall have

iv;
= ~ -* cos

(tt
-
0J = -^ cos

X ,

A
x
= ar

x

2
sec (w

-
0J = - ar* sec 6V
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and therefore -^iA = ~~ 0Lm '

Should there be more than one point of section, the terms

N
2
A

2 ,
N

3
A

3 ,
&c. will destroy each other two and two, as in

Art. 243. Now all angular space round F may be divided

into an infinite number of solid angles such as a, and it is

evident that the whole surface S will thus be exhausted.

We get, therefore,

limit of XNA = Sara' = ra'Sa ;

or, since 2a = 4-7T, fNdS= \nrm.

The same formula will apply to any other internal par-

ticle, and it has been shewn in Art. 243, that for an external

particle JNdS=0. Hence, adding together all the results,

and taking N now to refer to the attraction of all the par-

ticles, both internal and external, we get fNdS= 7rM .

dV
But N= -j- ,

which proves the proposition.

245. For the researches of M. Chasles on the attraction

of ellipsoids, we refer to Duhamel's Cours de Mecanique, or to

the original memoirs in the Journal de V Ecole Polytechnique,
torn. XV., and the Memoires des Savans Etrangers, torn. IX.

In the original memoirs will be found copious references to

preceding writers on the subject.

On the general theory of attractions, the student may con-

sult a memoir by Gauss, translated in Taylor's Scientific

Memoirs, vol. III., and in Liouville's Journal de Mathematiques,
torn, vii.; and also a memoir by M. Chasles in the Con-
naissance des Temps pour Vannee 1845.

Some further references will be seen in the article by Pro-
fessor Stokes already cited.

For the application to the theory of electricity, we refer to

a series of articles by Professor Thomson in different volumes
of the Cambridge and Dublin Mathematical Journal. See
vol. I. p. 94, and vol. in. p. 140.
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EXAMPLES.

In the following Examples the ordinary law of attraction is

to be assumed, unless the contrary be stated.

1. A solid is generated by the revolution of a sector of a

circle about one of its bounding radii
;
find the attraction on a

particle at the centre. Result, trap sin
2

/?.

2. The rim of a hemispherical bowl consists of matter

repelling with a force varying directly as the distance
;
shew

that a particle will rest when placed anywhere on the concave

surface.

3. A tube in the form of a parabola is placed with its axis

vertical and vertex downwards
;
a heavy particle is placed in

the tube, and a repulsive force acts along the ordinate upon
the particle : find the law of force that it may sustain the par-
ticle in any position.

4. A portion of a cylinder of uniform density is bounded

by a spherical surface, the radius of which is greater than that

of the cylinder, and the centre coincides with the middle point
of the base

;
find the attraction on a particle at this point.

2

Result. 2irpa ^ ;
where a is the radius of the cylinder

and b the radius of the sphere.

5. Find the resultant attraction of a spherical segment on
a particle at its vertex.

Result.
^{l-i^g)},

where a is the radius of the sphere and h the height of the

segment.

6. Find the resultant attraction of a spherical segment on
a particle at the centre of its base.

Result f^fy 2 {3a
2 - Soft + h2 -

(2a
-
*)fi] .

O \Qi ilj

T. s. 19
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7. Find the locus of a point such that its resultant attrac-

tion on a fixed line may always pass through a fixed point in

the line. Result. A sphere.

8. Find the attraction of a segment of a paraboloid of revo-

lution bounded by a plane perpendicular to its axis on a par-
ticle at the focus.

9. Round the circumference of a circle n equal centres of

force are ranged symmetrically ;
each force is repulsive and

varies inversely as the mth
power of the distance. A particle

is placed in the plane of the circle very near its centre
;

shew that the resultant force on it tends to the centre of the

circle and varies approximately as the distance of the particle
from the centre, except when m = 1.

10. Eight centres of force, resident in the corners of a

cube, attract, according to the same law and with the same
absolute intensity, a particle placed very near the centre of

the cube
;
shew that their resultant attraction passes through

the centre of the cube, unless the law of force be that of the

inverse square of the distance.

11. If the law of force in the preceding example be that

of the inverse square of the distance find the approximate
value of the attraction on a particle placed very near the

centre.

Result. Take the centre of the cube as origin and the axes

parallel to the edges of the cube
;
then if x, y, z be the co-or-

dinates of the particle the attraction parallel to the axis of x is

approximately

towards the origin ;
2a being the length of an edge.

12. The attraction of a uniform rod of indefinite length on

an external particle varies as (distance)
-1

of the point from the

rod. Prove this, and supposing the asymptotes of an hyper-
bola to consist of such material, shew that a particle will be in

equilibrium at any point of the hyperbola, and that the pressure
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on the curve at any point is proportional to the length of the

tangent intercepted by the asymptotes.

13. An elliptic lamina attracts an internal particle (x, y)
with a force varying inversely as the distance

; shew that if

X, Y be the whole attractions parallel to the axes,

X Y
1

= constant.
x y

14. If A, B, C be the attractions of an ellipsoid in direc-

tions parallel to its axes on an internal particle situated at the

point (f, g* h), shew that

A B C
a

7 +_ + _ = 47r/,

(See Arts. 228 and 239.)

15. The resultant attraction of a particle which attracts

according to the inverse cube of the distance upon a plane
lamina is the same as upon that part of the spherical shell

described about the particle as centre and touching the plane
of the lamina, which is cut off by straight lines from the

centre to the edge of the lamina.

16. A particle attracted by two centres of force at A and
B is placed in a fixed groove. Shew that the particle re-

mains at rest at whatever point it is placed, provided that

the form of the groove be such that

{AP-c){BP-c')=cc\
where c, c are constants dependent upon the absolute forces.

17. If a portion of a thin spherical shell, whose projections

upon the three co-ordinate planes through the centre are

A
y B, C, attract a particle at the centre with a force varying

as any function of the distance, shew that the particle will

begin to move in the direction of a straight line whose equa-
tions are

x _ y _ z

A~B~C'
192
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18. The particles of a thin hemispherical shell attract with

a force =/a (distance), and those of a right conical shell repel
with a force =

fju (distance). The rims of their bases coincide,

and their vertices are turned in opposite directions, shew that

a particle will rest in the common axis produced at a distance

from the vertex of the sphere
= length of the axis of the cone,

the vertical angle of the cone being 2 tan"
1

|r.

19. Shew that if the attraction vary inversely as the dis-

tance an indefinitely thin plane ring exerts no force on a

particle in the plane of the ring within its inner circumference.

20. Shew that if the attraction vary inversely as the dis-

tance an indefinitely thin plane ring attracts a particle in the

plane of the ring beyond its outer circumference in the

same manner as if the mass of the ring were collected at

its centre.

21. If a straight line be the attracting body, shew that

the lines offorce are hyperbolas and the surfaces of equilibrium

spheroids. {Cambridge and Dublin Mathematical Journal,
Vol. ill. p. 94.)

22. From the proposition established in Art. 244, deduce

that established in Art. 239. {Cambridge and Dublin Mathe-

matical Journal, Vol. Y. p. 215.)
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CHAPTER XIV.

VIRTUAL VELOCITIES.

246. We proceed to establish a general theorem respecting
the equilibrium of a body or system of bodies, called the Prin-

ciple of Virtual Velocities.

When a system of particles is in equilibrium, and we

suppose each of them placed in a position indefinitely near
that which it really occupies, without disturbing the connexion
of the parts of the system with each other, the line which

joins the first position of a particle with the second is called

the virtual velocity of that particle.

The term velocity is used because we may conceive all the

displacements to be made in the same indefinitely small time,
and then the spaces described are proportional to the velocities.

The word virtual is used to intimate that the displacements
are not really made, but only supposed. We retain the

established phraseology, but it is evident from these explana-
tions that the words virtual velocity might be conveniently

replaced by hypothetical displacement.

By the words, without disturbing the connexion of the parts

of the system with each other; we mean, that any rigid body
which exists in the system is supposed to remain of invariable

form, and that any rods or strings which connect different

parts of the system are to remain unbroken. This, at least,

will serve for a preliminary statement to assist the reader,

and we shall recur to the subject again; see Art. 257.

Hence, by reason of this limitation the virtual velocities of

the different parts of a system are frequently so connected

that when those of a definite number of points are assumed,
those of all the rest necessarily follow.

247. The virtual velocity of a particle estimated in a

given direction is the projection of the virtual velocity on

this direction; it is considered positive when the direction
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of the motion of the particle, in passing from its first position
to- its second, makes an acnte angle with that along which
we are estimating the velocity. Thus the virtual velocity
of a particle estimated along any given line is found both
in magnitude and sign, by multiplying the absolute virtual

velocity by the cosine of the angle which its direction makes
with the given line.

The virtual moment of a force is the product of its inten-

sity by the virtual velocity of its point of application esti-

mated in the direction of the force.

We can now enunciate the principle of virtual velocities.

If any system of particles is in equilibrium, and we con-

ceive a displacement of all the particles which is consistent

with the conditions to which they are subject, the sum of the

virtual moments of all the forces is zero, whatever be the dis-

placement. And conversely, if this relation hold for all the

virtual displacements, the system is in equilibrium.

248. The student will derive from the demonstrations

which follow a better notion of the meaning of the principle
than from the mere enunciation of it

;
it is, in fact, necessary

to obtain a general view of the whole subject before at-

tempting fully to comprehend the preliminary definitions and
statements. One remark may be made for the purpose of

anticipating a difficulty ; each virtual moment is by definition

an indefinitely small quantity, that is, ultimately vanishes,
so that the principle seems to amount only to this, take each

force of the system and multiply it by a quantity which ulti-

mately vanishes, then the sum of these products vanishes. The

principle, however, implies more than this statement, as we
shall see.

The convenient term virtual moment is given by Duhamel
;

it may, however, be useful to enunciate the principle of virtual

velocities without introducing a new definition, and we there-

fore give the following.

Suppose a material system held in equilibrium by any
forces, and suppose the points of application of the forces

moved through very small spaces in a manner consistent

with the connexion of the parts of the system with each
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other. Let perpendiculars be drawn from the new positions
of the points upon the directions of the forces acting at the

points in their positions of equilibrium. The distance of any
perpendicular from the original point of application of the

corresponding force, is called the virtual velocity of the

point with respect to that force, and is estimated positive
or negative, according as the perpendicular falls on the side

of the point towards which the force acts or on the opposite
side. Then the principle is this, the algebraical sum of the

product of each force of the system and the corresponding
virtual velocity vanishes. And conversely, if the sum vanishes

for every displacement the system is in equilibrium.

Before we proceed to a general demonstration, we will

consider two simple cases, that of a particle, and that of

a rigid rod acted on by forces at its ends.

249. Suppose that forces act on a single particle and
maintain it in equilibrium. Let P

1?
P

2 ,
... denote the forces;

a
1?

a
2 ,

...the angles which their directions respectively make
with any fixed line arbitrarily chosen

; then, by Art. 29,

2Pcosa = 0.

If every term of this equation be multiplied by the arbi-

trary quantity r, we have %Pr cos a = 0. But r cos ol
x

is the

projection of the length r, measured along the fixed line, on
the direction of the force P

1 ;
a similar meaning may be

assigned to r cos a
2 ,

r cos
3 ,

... Also r may be considered as

the distance of the first position of the particle from a second

position arbitrarily chosen, and therefore, when r is indefinitely

diminished, r cos a
x ,

r cos a
2 ,

. . . become the virtual velocities

of the particle with respect to P
lt
P

2 ,
.... Hence, the principle

holds in this case.

Conversely, if %Pr cos a = for all directions of displace-
ment

; then, %P cos a = for all directions, and the particle is

in equilibrium under the action of the given forces.

In this case, we observe that the hypothetical displacement
of the particle may be of any magnitude we please, and that

the sum of the products of each force into the projection of

the displacement upon its direction is not only idtimately, but

always zero.
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250. Since when a system of forces acting on a particle
is in equilibrium, eacli force is equal and opposite to the re-

sultant of all the other forces, and, as we have just seen, the

sum of the products of each force into its virtual velocity is

zero, it follows, that the product of any force into its virtual

velocity is numerically equal to the sum of such products for

any system of forces which it balances, but is of the opposite

sign. Hence, the product of any force into its virtual velocity
is equal to the sum of such products for any system of forces

acting at one point of which it is the resultant.

251. Next, suppose a rigid rod acted on by a force at each

end. Let x, y, z be the co-ordinates of one end, and x, y', z

those of the other ;
I the length of the rod

;
then

(
x -xy+{y- yy+{z-zy=r (i).

Suppose the rod displaced; let Bx, By, Bz be the changes
made in the co-ordinates of one end

; Bx, By', Bz' those made
in the co-ordinates of the other end

; then

(x+ Bx-x'-Bx')
2

+(y+By-y'-By')
2

+(z+ Bz-z'-Bz')
2= l\ . .. (2).

From (1) and (2),

2 (x
- x) {Bx

-
Bx) + 2(y- y') (By

-
By') + 2(z- z) (Bz

-
Bz')

+ (Bx-Bx')
2

+(By-By')
2

+(Bz-Bz')
2=0 (3).

Let a, /3, 7 be the angles which the original direction of the

rod makes with the axes
;
then

xx lcosa, y' y = Zeos/3, z z = l cos 7 .... (4).

If then, in (3), we neglect the terms (Bx Bx)
2

, (By By')
2

,

(Bz Bz')
2
in comparison with those we retain, we have

(x
- x) (Bx

-
Bx') + (y- y') (By

-
By') + (z- z) (Bz

-
Bz) = 0,

or, by means of (4),

Bx cos a+By cosfi+Bz cos y=Bx cos cc+By' cosfi+Bz cos 7 ... (5).

Suppose P the resultant of the forces acting at one end of

the rod, and P the resultant of those acting at the other end
;

then, in order that there may be equilibrium, these forces
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must be equal in magnitude and must act along the rod in

opposite directions. This is obvious, or may be easily shewn

by Art. 73. Since then P= P, we have by (5)

P (Bx cos a + By cos /3 + Bz cos 7)

+P (Bx cos a + By' cos /3 + Bz cos 7) =0 (6).

Since P acts along the rod, the first term is the product of

P into the resolved virtual velocity of its point of application,
and the second term is a similar product for P

; hence, the

principle of virtual velocities holds in this case.

The converse of this theorem is true in this case, but we
shall not give a separate demonstration of it

;
it is of course

included in the general demonstration of Art. 252.

If (5) were absolutely true, then in the case of a rod, as in

that of a single particle, the sum of the products of each force

into the projection of the displacement of its point of applica-
tion on the direction of the force would be zero, whether the

displacement were finite or infinitesimal. But (5) instead of

being absolutely true is obtained from (3) by neglecting

squares andproducts of the resolved displacements Bx, Bx, By,...

252. "We proceed to establish the truth of the principle in

the case of a rigid body. We shall assume that any possible

displacement of a rigid body may be produced, by first making
the body rotate about some axis, and then moving all the

particles of the body through equal spaces in parallel direc-

tions. (For this assumption we may refer to De Morgan's

Differential and Integral Calculus, page 489
;
or to the Philo-

sophical Magazine for March 1851, page 187.) Suppose, for

simplicity, that the axis of z is made to coincide with the axis

about which the body is turned
;

let be the angle through
which the body is turned, then the co-ordinates of a particle
which were originally x and y will become, if we neglect the

square and higher powers of 6,

xyd and y -f x6 respectively ;

the co-ordinate z of the particle remains unchanged.

Let the body be now further displaced, so that each particle
moves through a space of which a, b, c are the projections on
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the co-ordinate axes
; then, if Bx, By, Bz denote the whole

changes made in the co-ordinates x, y, z of a particle, we have

Bx = a yd, By = b + x6, Bz = c.

Since the forces which act on the rigid body are supposed
to keep it in equilibrium, we have by Art. 73,

2x=o, 2r=o, 2z=o,

$(Zy-Yz)=0, t(Xz-Zx)=0, $(Yx-Xy)=0.

Multiply the first of these equations by a, the second by b,

the third by c, and the sixth by 6, and add ;
we then find

$ [X(a-y6) +Y (b +x0) +Zc] =0,

or S(X8x + Y8y + Z8z) = 0.

Let P
t
denote the force of which X

x ,
Y

lf
Z

t
are the com-

ponents, and P
2 ,
P

3 ,
have similar meanings; and let

Bpt , S^2 ,
be the resolved virtual velocities correspond-

ing to these forces
; then, by Art. 250, the above equation

may be written

tPSp=0.

.This proves the principle in the case of a rigid body.

Conversely, if the sum of the products of the forces and the

resolved virtual velocities vanishes for every possible displace-
ment of a rigid body, the forces keep the body in equilibrium.

For suppose, in the first place, the body is so displaced
that every point of it moves parallel to the axis of x over a

space a
;
then we have, by hypothesis,

tXa = 0;

therefore %X= 0.

Similarly, by suitable displacements, we may prove that

2F=0, and 2^=0.

Next, suppose the body turned round the axis of z through
a small angle 6

; then, by hypothesis,

${XBx + YSy)=0,
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and Bx = y9, By = x0;

therefore 02 {Xy -Yx) = 0;

therefore 2 {
Yx - Xy) = 0.

Similarly, by suitable displacements, we may prove

2 (Zy
-

Yz) = 0, 2 {Xz
-

Zx) = 0.

Hence, the six equations of equilibrium hold.

253. If there be a system of two or more rigid bodies,

then, since the principle of virtual velocities holds for any
possible displacement of any one of the bodies, it holds for

any possible displacement of the system.

254. In Art. 252 we have simplified the proof of the first

part of the principle of virtual velocities, by supposing the

axis of z to coincide with that about which the body was
made to undergo an angular displacement. The following
will be the process, if we suppose the displacement made
about a line passing through the origin, and inclined to the

axes at angles whose direction cosines are I, m, n.

Let r be the distance of any point {x, y, z) from the origin ;

<f>
the angle this distance makes with the given line; p the

perpendicular from {x, y, z) on the given line
;
then

cos
,

Ix mil nz
i n /* /y

therefore p
2
or r

2
sin

2

<j>
= a;

2
4- y

2 + z
2

(lx+my + nz)
2
.

Suppose the body turned through a small angle 6 round
the given line

;
let x + $x, y + 8y, z-\- 8z, be the co-ordinates

of that point of the body which was originally at (x, y, z).

Since r and p are unchanged by the displacement, we have,

by neglecting (Bx)
2

, {By)
2

, (Bz)
2
in comparison with Bx, By, Bz,

= xBx + yBy + zBz,

= IBx + mBy + nBz
;

therefore = -= ^ = -
7
= \ suppose (1) .

yn zm zl xn xm yt
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And since {(Bx)
2 + (By)

2 + (Bz)
2

}*
=

2p sin 0,

\{{yn- zm)
2 + (zl

-
xn)

2 + (xm - yl)
2

}^
= 2p sin \6,

or X [x
2 + y

2 +z2 -
(Ix + my + nz)

2

}

* = 2p sin \Q ;

therefore X = 6 , (2),

neglecting
3 and higher powers of 6.

Suppose the body to be further displaced, so that each

particle moves over spaces a, b, c parallel to the co-ordinate

axes
;

if Bx, By, Bz denote now the whole displacement of the

particle whose original co-ordinates were x, y, z, we have

Bx =
(yn zm) -\- a,

By = (zlxn) 6 + b,

Bz = (xm yl) 6 + c.

Multiply the six equations in Art. 73 by a, b, c, W, m9,
n6, respectively, and add, then

2 (XBx + YBy + ZBz) = 0.

255. We shall illustrate the principle of virtual velocities

in the solution of the following problem.
A beam in a vertical plane rests on a post B and against a

wall at A-, required the circumstances of equilibrium.
Let the distance of B from the wall = b

;
let G be the centre

of gravity of the beam
;
A G = a

;
and the inclination of the

beam to the wall = 6. The reaction (P) of the post at B is

"^ >*
2?-

perpendicular to the surfaces in contact, and therefore to the

beam
;
the reaction (R) of the wall is perpendicular to the

wall for the same reason
;

let W be the weight of the beam.
We may consider the beam in equilibrium under the action

of P, B, Wt
and suppose the post and wall removed.
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Now the object of the problem might be, solely to deter-

mine the position of equilibrium, or also to determine P and
not R, or R and not P, or to determine both P and R and also

the position of equilibrium. We shall solve the problem by
the principle of virtual velocities under these four suppositions,
in order to explain the method of proceeding so as to avoid

as much trouble as possible according to the nature of the

question.

(1) Suppose the position of equilibrium only required.
We must then give the beam a small arbitrary geometric
motion such that the unknown pressures P and R shall not
occur in the equation of virtual velocities

; the beam must
therefore remain in contact with the wall and the post, as

in the figure.

Let 86 be the increase of owing to the displacement.
Then the height of 67 above the horizontal line through B}

(or z), before displacement

= GB cos = (a b cosec 0) cos 6 = a cos b cot
;

the height after displacement is found by changing into

+ 80 in this expression ; therefore, the vertical space described

by 67 or 8z

= acos (0 + 80) -bcot(0 + 80)
-

(a cos - b cot 0)

b
a sin

)
80 :

sin' J
'

and, by the principle of virtual velocities, W8z =
; therefore

'b
b a sin

3 =
0, sin =

and this determines the position of equilibrium.

(2) But suppose we wish to find the pressure P as well

as the position of equilibrium.

We must in this case move the beam off the post, in order

that the virtual velocity of B with respect to P may not

vanish, and consequently P not disappear as in the first case.

Let AA' = c, and let, as before, 80 be the change of 0.
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We have to find the displacement of B estimated along

the line of action of P. Now conceive the beam brought
into its second position by two steps; first let it be moved

parallel to itself till the lower end comes to A', and next let

it revolve round A' through a small angle B6. By the first

step B moves through a space parallel and equal to AA'
; by

the second step B describes a small arc of a circle the length
of which is AB . B0, that is b cosec 80. Thus the displace-
ment of B estimated along the line of action of P is ultimately
c sin b cosec 080.

Similarly by the first step G moves through a space equal
and parallel to AA', and by the second step G describes a
small arc of a circle the length of which is aB0. Thus the

displacement of G resolved vertically downwards is ultimately
a80sin0 c.

Therefore, by the principle of virtual velocities,

W{a sin 080 - c)+P(csm0-b cosec 080) = ;

therefore, 80
(
Wa sin - Pb cosec 0)

- c
(
W- P sin 0)

=
;

and, since c and B0 may be any independent small quantities,

Wa sin - Pb cosec =
0, W- P sin =

;

therefore sin =
{J-

,
and

-^
=^ .

(3) Suppose we wish to know R and the position of

equilibrium, and not P.

Then we should displace the beam so as to give to A a
virtual velocity with respect to R, but not one to B with

respect to P.

The beam must therefore still remain in contact with the

peg. Let AA'= c, and let a be the angle which AA' makes
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with the vertical. Now conceive the beam brought into its

second position by two steps ;
first let it be moved parallel

to itself till the lower end comes to A', and next let it revolve

round A' through an angle 80 so as to bring the beam again
into contact with the peg. The displacement of A estimated

along the line of action of B is c sin a. The displacement of

G estimated vertically downwards is a80 sin 6 c cos a.

Moreover there is a relation between 80, c, and a, arising from
the fact that the whole displacement of the beam is such as

to keep the beam still in contact with the peg. From the

triangle ABA', we have

sin 80 AA'

sm{d-a)~A''

hence,

Therefore by the principle of virtual velocities

W \
-j-

sin
2

sin (0 a) c cos
a\ + Re sin a = ;

&d = c sin (g-,) sing
ultimately _

that is,

w a sin' e

-] c cos a + IB
Wa

sin
2 6 cos 0) csina = 0;

b' J
'

\ b

and c cos a and c sin a are independent ; therefore

sin
3

.. . Wa
. 1=0, B-

therefore

b

sin 9

sin
2

cos =

, B Va3 -
and w= r

b)
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(4) Lastly, suppose we wish to determine P and B and
the position of equilibrium.

Then we must give the beam the most general displace-
ment possible in the plane of the forces ;

let AA' = c, and

0L + -

let a be the angle which AA' makes with the vertical.
'

Now
conceive the beam brought into its second position by two

steps ;
first let it be moved parallel to itself till the lower end

comes to A', and next let it revolve round A' through an

angle 80. The displacement of A estimated along the line

of action of B is c sin a. The displacement of G estimated

vertically downwards is

a80 sin c cos a.

The displacement ofB along the line of action of P is

b cosec 080,

that is, c sin (6 a) b cosec 080.

Therefore by the principle of virtual velocities

W(a80 sin 6 c cos a) + Be sin a

4-P [c sin (0-a)-b cosec 086}
=

;

that is,

{Wa sin - Pb cosec 0) 80 + (Psin - W) c cos a

+ {B - Pcos 0) c sin a = 0,

and 80, c cos a, and c sin a are independent ; therefore

Wa sin - Pb cosec =
0, Psin - W= 0, B -Pcos = 0.
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These three equations are the equations which we should

have obtained by the principles of Art. 57; they give by
elimination

P fa\i B ^(a^-hi)
sin O =

' W \bj
' W hk

We have thus illustrated the method of application of this

principle ;
and we observe, in general, that when the object

of the problem does not require certain unknown forces, we
must give the body the most arbitrary geometrical motion

possible without giving the points of application of these

forces any motion in their directions.

256. In applying the principle of virtual velocities to de-

duce the conditions of equilibrium of any system, it is often

convenient to give the body such a displacement as to make
the virtual moments of some of the forces separately vanish.

This has been exemplified in the preceding article, and we
will now enumerate some cases in which the virtual moment
of a force vanishes.

(1) In the hypothetical displacement, if any particles of

the system have remained in their original places, the virtual

moment of forces acting at such points is obviously zero. If

a body, for example, have one point fixed, then the virtual

velocity of this point is zero for any hypothetical displacement
of the body, which does not break the condition of this point

being fixed.

(2) Suppose a body compelled to remain with one point
in contact with a smooth fixed plane, so that the plane exerts

a force on the body at the point of contact in a direction

perpendicular to the plane. Let the body be displaced so as

to have the same point still in contact with the fixed plane,
then the perpendicular drawn from the new position of the

point of contact on the old direction of the action of the fixed

plane meets that direction at the old position of the point of

contact
;
that is, the virtual velocity of the point of contact

relative to the force exerted by the plane is zero.

Similarly, if the body have more than one point in con-

tact with the plane, and be so displaced that the same points
of the body remain in contact with the fixed plane, the

T. s. 20
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virtual moment of each force which the plane exerts on the

body vanishes.

(3) Let two smooth bodies be in contact
;
then each exerts

a force on the other along their common normal. Suppose
one of them so displaced, that the point in it which was

originally in contact with the other body still remains in con-

tact with it
;
the case is similar to that of a body in contact

with a fixed plane ;
the virtual velocity of the point of contact

relative to the normal force is not zero, but is indefinitely
small compared with the absolute virtual velocity.

Let BA G be a section of one body made by a plane which

'o'

contains the common normal to the surfaces, and DAE the

section of the other made by the same plane ;
A the point of

contact. Suppose the body BA C displaced into the position

B'A'C, so that the point A is moved to A'. Draw A'M per-

pendicular to the common normal to the surfaces. Then AM
represents the virtual velocity of the point of contact with

respect to the normal force, while the line joining A and A'
is the absolute virtual velocity. Since MAA' is ultimately
a right angle, AM vanishes compared with AA'.

(4) Suppose two bodies in contact at a single point, and
let them be both displaced so that they still remain with the

same point of each body in contact. Let P denote the force

in the normal on one body, and therefore P that on the

other
; then, if PBp denote the virtual moment of the normal
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force with respect to the first body, PBp will be the virtual

moment with respect to the second body. Hence, by taking
the sum of the virtual moments for the two bodies, the mutual
action P disappears.

A similar result holds if the bodies be in contact at more

points than one.

(5) Suppose a body in contact with a smooth fixed plane
at a single point, and let the body be displaced by rolling it

on the fixed plane.

Let BA G be a section of the body made by a plane through
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into two, one along AN and the other perpendicular to AN.
The virtual moment of the former force vanishes, as we have
shewn in the preceding case

;
and since the direction of the

line joining A and a ultimately coincides with AN and is

therefore perpendicular to the second force, the virtual moment
of the second force vanishes in the same manner as in the

third case.

(7) Suppose an inextensible string to have one end at-

tached to a fixed point, and the other end to a particle either

isolated or forming part of a rigid body ;
one of the forces of

the system is then the tension of this string which acts along
its length. Let the particle be so displaced as to keep the

string stretched, then it may pass from its first to its second

position by moving over an arc of a circle, and in the same
manner as in the third case, we see that the virtual velocity
of the particle with respect to the tension which the string

exerts, is indefinitely small compared with the absolute virtual

velocity of the particle. Hence, the tension of the string dis-

appears from the equation of virtual velocities.

(8) Suppose an inextensible string connecting two parti-
cles of the system, and let the particles be displaced along the

direction of the string, the string being kept stretched. Then,
if one particle be displaced through a space Sp, and P denote

the tension of the string, and therefore the force exerted by
the string on this particle, PBp is the virtual moment of the

force which the string exerts on this particle ;
also Php will

be the virtual moment of the force which the string exerts on
the second particle. Hence, by taking the sum of the virtual

moments for the two particles, the tension of the string dis-

appears from the equation of virtual velocities.

(9) If we suppose a further displacement of the system in

the preceding case, by keeping one particle fixed and making
the other describe an arc of a circle, then, by the seventh case,

the tension of the string disappears from the equation of vir-

tual velocities.

By a combination of the displacements considered in the

seventh and eighth cases, we can produce any displacement
that the two particles can undergo, so long as the string is
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kept stretched. Hence, the tension of a string connecting two

particles disappears from the equation of virtual velocities.

We have supposed the string to pass in a straight line from
one particle to the other, but the same result would hold if

the string were deflected by passing through one or more
smooth fixed rings, supposing it always kept stretched. The
demonstration would not hold for an extensible string.

257. We can now understand more distinctly the meaning
of the words, without disturbing the connexion of the parts of
the system with each other, which are introduced into the enun-

ciation of the theorem. The theorem is shewn in Art 249 to

be true for a particle ;
if then we consider a rigid body to be

a collection of particles held together by molecular forces, the

theorem will hold for every displacement of the particles of

the rigid body, provided we include the molecular forces and
estimate their several virtual moments. But from the demon-
stration in Art. 252 it appears that we need not consider the

molecular forces, provided we give to the different particles
such displacements only as are consistent with the unbroken

rigidity of the body. So with respect to such forces as are

enunciated in the preceding article, we may, if we take them
into consideration, give to the system any displacements we

please; but if we do not take them into consideration, we
must give such displacements only as we can prove will not

introduce the virtual moments of these forces. Hence, the

words which we are explaining amount to a direction to be
careful to include every force of the system, except such as we
know have their virtual moments zero for the particular dis-

placement we are considering.

258. The following example will shew how the principle
of virtual velocities may assist in the solution of problems.
Six equal rods are fastened together by hinges at each end, and
one of the rods being supported in a horizontal position the

opposite one is fastened to it by an elastic string joining their

middle points ; determine the tension of this string.

Let W denote the weight of each rod, T the tension of the

string. Suppose the system displaced slightly so that the

lowest rod descends vertically through a space x. Then it

will be easily seen that the centre of gravity of each of the
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two rods which are adjacent to the highest rod descends
x

through a space
-

;
and the centre of gravity of each of the

two rods which are adjacent to the lowest rod descends

Sx
through a space

-
;
the point of application of the tension on

the lowest rod descends through a space x. Therefore by the

principle of virtual velocities

2W^ + 2W^ + Wx-Tx =
Q>,4 4

therefore T=SW.

The mutual actions at the hinges disappear from the equation
furnished by the principle of virtual velocities, and thus the

required result is readily obtained.

259. The following is the process by which we may de-

duce the equations of equilibrium of any system from the

principle of virtual velocities.

Let Pj, P2 ,
P

3 ,... denote the forces which act on a system ;

PJ>pv P
25p2 ,." their respective virtual moments for any dis-

placement ; then, by the principle,

PM +PM+PM + - = o (!)

This equation we proceed to develope.

Let a
x , /3X , 7X

be the angles which the direction of P
x
makes

with the co-ordinate axes; x
x , yxi

z
x
the co-ordinates of the

point of application of P
l ;

then

8px
cos a

1
hx

1 + cos ^1^>y1 + cosy^ (2) ;

this is rigorously true, and similar equations hold for 8p2i

Now, in consequence of the connexion of the system, for

example, the rigidity of some parts of it, or the junction of

parts by rods or strings, relations will hold between the co-

ordinates x
l9 yx , x ,

x
2 , y2 ,

z
2 ,... in virtue of which all of

them may be expressed in terms of a certain number of them
;

or all of them may be expressed in terms of certain other

independent co-ordinates and angles.
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Suppose , 2 , ,,...&, <
2 ,

<
3v to denote these inde-

pendent co-ordinates and angles. Then, if we neglect the

squares and products, and higher powers of Bx
1 , Bgv ... S^,

Sf2 ,... 8(
l5

8<
2,...,

we shall obtain equations of the form

hx,
=B&t

+ B&t + ... + bfa +W, + ...
,

where -4
1?

-4
2 ,...

2?
1?

i?
2 ,...

a
l5

a
2 ,... b

ti
$ are functions of

the variables, but do not contain the increments Sf1? Sf2J ...

Let the values of Bxv && * be substituted in the equations
of which (2) is the type, and then let the values of Bplt Sp2 ,...

be substituted in (1) ;
this equation will take the form

#,+ QM, + ... + M+ ?M+ - = o (3).

The conditions for the equilibrium of the system are

ft=0, ft
=

0,... ^ = 0, 22
= 0, (4).

For since 8^ , 3f2 ,
. . . 8^ , $(f>2 ,

. . . are by supposition inde-

pendent, we might have given the body such a displacement
as to leave f2 , f3 ,.... <j>lt

<
2 ,.--- unchanged; and then (3)

would reduce to

<?$?!
= 0; therefore ft

= 0.

Similarly, we may shew that the other equations of (4) hold.

260. We will give a simple example in illustration of the

method of the preceding article. A string of given length has
one end fixed at a point in the line of intersection of two ver-

tical planes at right angles to each other, and at the other end
carries a heavy particle which is repelled from these planes by
forces of which one is constant and the other varies as the

distance from the plane ;
find the positions of equilibrium.

Take the vertical plane from which the particle is repelled

by a constant force as the plane of (as, z), and the other ver-

tical plane as the plane of (y, z) ;
take the point to which the

end of the string is fixed as the origin, and let the axis of z

be vertically downwards. Let x, y, z denote the co-ordinates

of the particle in a position of equilibrium, and I the length
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of the string. Let TV be the weight of the particle, F the

constant repulsive force, fix the force which varies as the dis-

tance of the particle from the plane of (y, z). Conceive the

particle displaced into an adjacent position, the co-ordinates of

which are x + Bx, y + By, z + Bz. Then by the principle of

virtual velocities

fixBx + FBy + WBz = (1);

the tension of the string has no virtual moment by Art. 256.

Also x2

+y
2 + z

2 =l2

(2);

therefore xBx + yBy + zBz (3).

By (3) we can express Bz in terms of Bx and By ;
thus (1)

becomes

x-^yx+ (F-^yy =*.

Therefore fix =
0, and F ^ = 0.

s z

W
From the first of these equations we obtain either z =

,
or

F
else x = 0. If we take the former solution we obtain y=,

J
1
.

and then x is known from (2) ;
thus one position of equili-

brium is determined. If we take the solution x = 0, then y
and z must be found from the equations

Fz-Wy =
9 y'+z

2 ^!2

;

thus another position of equilibrium is determined.

261. The principle of virtual velocities is useful in Statics

in the solution of such problems as that in Art. 255, where
forces occur which have their virtual moments zero for certain

displacements. The following is an important general pro-

position to which the principle leads.

A system of rigid bodies under the action of no forces but

their weights, mutual pressures, and pressures upon smooth

immoveable surfaces, will be in equilibrium, ifplaced so that the

centre of gravity is in the lowest or highest position it can
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possibly attain by moving the system consistently with the con-

nexion of its parts with one another.

Let L, ,,...
denote the distances below a fixed horizontal

plane of the different particles of the system; w
1 ,
w

2 ,... the

weights of these particles. That the system may be in equi-

librium, we must have

w$zx + w2
$z

2 + w3
Sz

3 + ... = (1);

for by Art. 256 the virtual moments of all the other forces

which act on the system vanish. Let z denote the depth of

the centre of gravity of the system below the fixed horizontal

plane; then

w
1 + w2 + w3 + ...

'

therefore (w1 + w2 + w3 + ...) Bz = w
1
Bz

1
+ w2

Sz
2 + w3

Sz
3 -f . . . (2) .

Now when z has a maximum or minimum value,

8i = (3),

(see Biff. Calc. Arts. 232, 238).

Hence, when the centre of gravity is at a maximum or

minimum distance from the fixed horizontal plane, (1) is

satisfied and the system is in equilibrium.

The equation (3) is a necessary but not a sufficient con-

dition for ~z having a maximum or minimum value; hence,
we cannot assert conversely, that when the system is in

equilibrium, the centre of gravity must be at a maximum or

minimum depth.

262. If the system of rigid bodies be such that the centre

of gravity is always in the same horizontal plane, every posi-
tion is a position of equilibrium. For in this case I is a con-

stant, and therefore Bz always = 0.

263. Suppose a system in equilibrium, and that an in-

definitely small displacement is given to it
;

if it then tend

to return to its original position, that position is said to be
one of stable equilibrium ; if the system tend to move further

from its original position, that position is said to be one of

unstable equilibrium.

To determine in any case whether the equilibrium of a

system is stable or unstable, is a question of dynamics on
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which we do not enter. The reader may refer to Poisson,
Art. 570, or Duhamel, Tom. II. Art. 69

;
the best investi-

gation of the question, however, will be found in the Cours

ComvUmentaire cTAnalyse et de Mecanique Marionette, par
J. Vieille, Paris, 1851.

The following general theorem is demonstrated. Suppose
the forces which act upon a system such that

t(Xdx + Ydy + Zdz)

is the immediate differential of some function of the co-ordi-

nates, <j>; then, for every position of equilibrium, </> is, in

general, a maximum or minimum; in the former case the

equilibrium is stable and in the latter unstable.

An important particular case is that of the system in

Art. 261, in which the equilibrium is stable when the centre

of gravity has its lowest position, and unstable when it has

its highest position.

The following is a simple example of distinguishing the

nature of equilibrium.

264. A heavy body rests on a fixed body, to determine

the nature of the equilibrium; the surfaces being supposed
rough.

Let BAC be a vertical section of the upper body made

by a plane through its centre of gravity G, and DAE the

section of the lower body made by the same plane. We
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suppose these sections both circular; let r be the radius of

the upper section and R that of the lower. Let the upper

body be displaced into the position BAG', and suppose a

that point in the upper body which was originally at A
;

at A the new point of contact draw the common normal

OAN, meeting in the radius A of the lower surface, and
in N the radius aN of the upper surface. Draw a vertical

line through A' meeting aN in M
;

let g be the new position
of the centre of gravity of the upper body. If we suppose
the surfaces rough enough to prevent all sliding, the upper

body will turn round A', and the equilibrium will be unstable

if g falls further from a than M, and stable if g be between

M and a.

Let AOA' = 0, aNA' =
<j>.

Since we suppose the upper body displaced by rolling on the

lower, we have
arc AA' = arc aA'

;

therefore RO =
r<f).

MN _ sin 6 sin 9
Also NA ~

sin {0 + $"" . /
'

E\TJ sm ( 1 -J-

ultimately ;

J

therefore MN=

1

1+3
r

and aM r

r + B'
2 Rr

+ R R + r

Hence, the equilibrium is stable or unstable according as

ag, or AG, is less or greater than ^ .

If the lower surface be concave instead of convex, it may
be shewn in the same way that the equilibrium is stable or

i.
Rr

unstable according as A G is less or greater than a_ r
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The results of this article will hold when the sections BA C
and DAE are not circles

;
r and R will then stand for the

radii of curvature of the upper and lower sections at the

point A. If the lower surface is plane, R is infinite, and for

stable equilibrium AG must be less than r.

265. HAG Rr
in the first case, or =

Rr
in theE + r

' R-r
second case, the equilibrium has been called neutral. In this

case, a further investigation will have to be made to deter-

mine whether the equilibrium is stable or unstable. Suppose,
for example, that a portion of a paraboloid rests in neutral

equilibrium with its vertex in contact with a horizontal plane,
it is required to determine whether the equilibrium is stable

or unstable.

Since the equilibrium is neutral, the centre of gravity G
must coincide with the centre

of curvature of the generating
parabola at the vertex

; now, if

different points be taken in a

parabola, the further the assumed

point is from the vertex, the

further is the point of intersec-

tion of the normal and the axis

from the vertex. Hence, the

normal A'N in the figure meets
the axis of the parabola further from a than G is, and the

equilibrium is stable.

It is easy to shew generally, that if a portion of a solid

of revolution rest in neutral equilibrium with its vertex on
a horizontal plane, the equilibrium is really stable or unstable,

according as the radius of curvature of the generating curve

has a minimum or maximum value at the vertex.

266. The results of Art. 264, when the sections BA C and
DAE are circles, may also be obtained by using the theorem
which we have quoted in Art. 263.

Let z denote the height of the centre of gravity g above
the horizontal line through 0, and let Ng = c

;
then
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Z (B + r) COS 6 C COS (6 + <j>)

= (B + r)cos6-c cos (l + -)
6.

Expand the cosines in powers of the angles ; thus

2=jB+r _ c+
|
c
(
1+^

2

_
(jB+r)J|

Suppose the coefficient of 6
2
not to be zero

;
then when 6

is indefinitely small z is greater or less than R + r c, ac-

cording as the coefficient of 0* is positive or negative ;
in the

former case B + r c is a minimum value of z, and in the

latter case it is a maximum value. Therefore the equilibrium
r2

is stable if c be greater than -=
,
and unstable if c be lessK -\-r

r
2

than = .B + r

r*

Suppose however that c
-p ,

then the coefficient of 62

is zero; in this case the equilibrium is said to be neutral.

We must now examine the coefficient of 6* in the value of z
;

this coefficient is

-M l+fj-{B + r)

that is, _^p+!l
3

_
(
iJ + ?

.)J,

thatiS)
_B {

B + r) {
R + 2r)

r [4

since this is a negative quantity it follows that B + r c is a

maximum value of a and the equilibrium is really unstable.

267. The following problem will furnish an instructive

example. A frame formed of four uniform rods of the length
a connected by smooth hinges, is hung over two smooth pegs
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in the same horizontal line at a distance
-j- ,

the two pegs

being in contact with different rods
;
shew that the frame is

in equilibrium when each angle is 90, and determine whether
the equilibrium is stable or unstable.

Denote the pegs by A and B
; suppose the beam in con-

tact with A to make an angle 6 with the horizon, and the

beam in contact with B to make an angle <f>
with the horizon

;

let u denote the depth of the centre of gravity of the system
below AB. Then it may be shewn that

a . . n .
, x c sin 6 sin <f>

u--(gmg + Bm)-
gin(g +^ >

where
a

V2

Thus u is a function of the two independent variables 6
and

(f>,
and in order that u may have a maximum or minimum

du
value 6 and

<j>
must be taken so as to satisfy -^

= and

-y-r
= 0. It will be found on trial that = and <f> = are

a<p 4 r 4

suitable values. But it will be found that with these values

for 6 and < we get

d2u _ c d*u d >2u _ c

W~~2' dMj>~~
C

'

dfi~~2'

+1 ,
/ d\ y d\ d*u . \. , .

so tnat I ,.,, I

-jqz -Tj-i is positive and w is neither a

IT IT
maximum nor a minimum when 6 = and <> = . All the

4 r 4

foregoing is a simple example of the Differential Calculus;
we proceed to apply it to the Mechanical Problem in question.

Let 8u denote the change in u consequent upon changing

the value of 6 from to + S0, and the value of <f> from
4 4 r
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to + 8<f> ;
then it follows from the preceding investiga-

tions that

Bu - -
c-
{{sey + 4S<98< + (S$

2

) + &*,

where under the &c. are included terms in 86 and
8(j>

of a

higher order than the second. Now although u is neither

a maximum nor a minimum when 6 and
<j>

are each
, yet

there is equilibrium then because 8u is then zero so far as

terms of the first order in 86 and
8(f>. (See Art. 261.) But

as u is neither a maximum nor a minimum the equilibrium
cannot be stated to be either stable or unstable universally ;

it is in fact stable with respect to some displacements and
unstable with respect to other displacements. If, for example,
we consider only such displacements as make 86 =

8(j>,
then

8u is certainly negative when 86 and 8(p are taken small

enough ;
thus the centre of gravity is raised by the displace-

ment and so the equilibrium is stable. If, again, we consider

only such displacements as make 86 = 8(p, then 8u is cer-

tainly positive when 86 and
8<f)

are taken small enough ;
thus

the centre of gravity is depressed by the displacement and so

the equilibrium is unstable.

268. Of all curves of a given length drawn between two

fixed points in a horizontal line, the common catenary is that

which has its centre of gravity furthest from the line joining
the points.

This proposition belongs to the Calculus of Variations, but

an imperfect proof of it may be obtained from some of the

preceding principles. Since the string which hangs in a com-
mon catenary is in equilibrium we conclude that the depth of

its centre of gravity from the horizontal line is a maximum
or minimum. (See however Art. 261.) And we may infer

that the depth is a maximum and not a minimum from the

experimental fact that if the string be slightly displaced it

will return to its position of equilibrium so that its equili-
brium is stable. (See Art. 263.) Hence in any other position
of the string than that of equilibrium the centre of gravity
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will be nearer to the given horizontal line. And as the string
which hangs in the common catenary is of uniform density
and thickness its centre of gravity coincides with that of the

curve. Thus the proposition is established.

269. Lagrange has given a demonstration of the principle
of virtual velocities, which does not assume a knowledge of

the conditions of equilibrium of any system of forces
;
this

demonstration is difficult and has not been universally re-

ceived. We shall place it here and refer the reader to

Poisson, Art. 337, and to the article 'Virtual Velocities' in

the Penny Cyclopcedia, for further information.

We have first to shew how any system of forces may be

replaced by a string in a state of tension passing round a

combination of pullies.

Let forces P, Q, E, acting at the points A, B, C,

maintain a system in equilibrium ;
let pullies be fixed to the

system at the points A, B, (7,... and let the pullies a, b, c, ...

be attached to fixed blocks, so that Aa may be the direction

of the force P, Bb that of Q, and so on. Let a string have a

weight ^attached to one end, and be passed round the pullyN and then round the pullies a and A a sufficient number of

times to render the sum of the tensions equal to P. Let the

same string then pass on to the pully b, and be passed round b
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and B a sufficient number of times, until the sum of the ten-

sions is equal to Q. The string is then passed on to c, and
round cC, and so on; the end of the string is fastened to a

fixed point M. Thus the system of forces P, Q, R,... may
be replaced by a single string, the tension of which is W. We
here assume that the forces P, Q, B, ...are commensurable.

We proceed now to the proof, in which we follow La-

grange's words very closely.

It is evident, in order that the system may remain in equi-

librium, that the weight TTmust be incapable of descending
when any indefinitely small displacement whatever is given to

the points of the system ;
for since the weight always tends to

descend, if there were any displacement of the system which
would allow it to descend, it would necessarily descend and

produce this displacement in the system.

Let a, p, 7,... denote the indefinitely small spaces, which

any displacement would cause the points of the system to

describe in the direction of the forces, which respectively act

at them, and let p, q, r, ...denote the number of parallel

strings which are attached to the pullies A, B, (7, . . . It is

obvious that the spaces a, /3, 7, ...are those by which the

pullies A, B, C, ...will approach a, b, c,...and that the string

joining these pullies will thus be diminished by pa, q/3, ry,...

Thus, in consequence of the inextensibility of the string, the

weight W would descend through the space pa + q/3 + 7-7+...

Hence, in order that the system of forces P, Q,B,... may be in

equilibrium, we must have

pa + qj3 +ry+ ... =0;

and therefore, since P p W, Q = qW,...

Pa+#/3 + P7+...=0.

This equation is the analytical expression of the principle of

virtual velocities.

If the quantity Pa + Qft 4- P7 + . . .
,
instead of being zero,

were negative, it might appear that this condition would be
sufficient to ensure equilibrium, since it is impossible that the

weight could of itself ascend. But we must remember, that

whatever may be the connexion of the parts of the system,
T.s. 21
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the relations which consequently hold between the indefinitely
small quantities a, /3, 7, . . . can only be expressed by differen-

tial equations, and which are therefore linear as to these

quantities ; so that there will be necessarily one or more of

them which remain indeterminate and may be taken with a

positive or negative sign ;
thus the values of these quantities

will be always such that they can simultaneously change their

sign. Hence, it follows that if for a certain displacement
of the system, the quantity Pa + Q/3 + By + ... is negative, it

would become positive by changing the signs of a, /3, 7, . . .
;

thus the opposite displacement is equally possible, and this

would make the weight descend and destroy the equilibrium.

Conversely, if the equation

Pa+Q/3 + Ey+... =

holds for every possible indefinitely small displacement of

the system, it will remain in equilibrium. For, the weight
remaining unmoved during these displacements, the forces

which act upon the system remain in the same condition, and
there is no reason why they should produce one, rather than

the other, of the two displacements, for which a, /3, 7, . . . have
different signs. This is the case of a balance which remains in

equilibrium, because there is no reason why it should incline

to one side rather than the other.

The principle of virtual velocities being thus proved for

commensurable forces, will also hold when the forces are in-

commensurable
;
for we know that any proposition which can

be proved for commensurable quantities may be extended by a

reductio ad absurdum to incommensurable quantities.
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EXAMPLES.

1. A cone whose semi-vertical angle is tan
-1

is enclosed

in the circumscribing spherical surface
;
shew that it will rest

in any position.

2. A heavy uniform rod of length a moves in a vertical

plane about a hinge at one extremity. A string fastened

to the other, passes over a pully in a vertical line above the

hinge, and is attached to a weight equal to half that of the

rod, which rests on a curve. The length of the string and
the height of the pully above the hinge are each equal to the

length of the rod, and the system is in equilibrium in all

positions. Shew that the equation to the curve is

r = 4asin2

|#,

the pully being the origin and the prime radius being vertical.

3. Two rods each of length 2a have their ends united at

an angle a, and are placed in a vertical plane on a sphere of

radius r. Prove that the equilibrium is stable or unstable

according as

2r
sin a is > or < .

a

4. A prolate spheroid rests with its smaller end on a hori-

zontal table. Is the equilibrium stable or unstable ?

5. A cylinder rests with the centre of its base in contact

with the highest point of a fixed sphere, and four times the

altitude of the cylinder is equal to a great circle of the

sphere ; supposing the surfaces in contact to be rough enough
to prevent sliding, shew that the cylinder may be made to

rock through an angle of 90, but not more, without falling
off the sphere.

6. A very small bar of matter is moveable about one

extremity which is fixed halfway between two centres of

force attracting inversely as the square of the distance; if

I be the length of the bar, and 2a the distance between the
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centres of force, prove that there will be two positions of

equilibrium for the bar, or four, according as the ratio of the

absolute intensity of the more powerful force to that of the less

powerful, is, or is not, greater than - and distinguish

between the stable and unstable positions.

7. Two particles connected by a string support each other

on the arc of a vertical circle
;
shew that the centre of gravity

is in the vertical through the centre of the circle. What is

the nature of the equilibrium ?

8. A sphere of radius a, loaded so that the centre of

gravity may be at a given distance b from the centre of

figure, is placed on a rough plane inclined at an angle a to

the horizon. Shew that there will be two positions of equi-

librium, one stable and the other unstable, in which the

distances of the point of contact from the centre of gravity
are respectively,

a cos a V(
2 a* sm*

a)>

and a cos a + *J(b
2 a2

sin
2
a).

Hence, find the greatest inclination of the plane which will

allow the sphere to rest. Is the equilibrium stable or unstable

in this limiting case ?

9. A sphere of radius r rests on a concave sphere of

radius R ;
if the sphere be loaded so that the height of its

centre of gravity from the point of contact be
-|r,

find R so

that the equilibrium may be neutral. Result. R = 3r.

10. A heavy cone rests with the centre of its base on
the vertex of a fixed paraboloid of revolution

;
shew that the

equilibrium will be neutral if the height of the cone be equal
to twice the latus rectum of the generating parabola. Shew
that the equilibrium is really stable.

11. A heavy particle attached to one extremity of an elastic

string is placed upon a smooth curve, the string lying upon the
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curve and its other extremity being fixed to a point in the

curve
;
find the curve when the particle rests in all positions.

Result. A cycloid.

12. A uniform square board is capable of motion in a

vertical plane about a hinge at one of its angular points ;

a string attached to one of the nearest angular points, and

passing over a pully vertically above the hinge at a distance

from it equal to the side of the square, supports a weight
whose ratio to the weight of the board is 1 to */2. Find the

positions of equilibrium and determine whether they are re-

spectively stable or unstable.

13. Two small smooth rings of equal weight slide on a

fixed elliptical wire of which the major axis is vertical, and
are connected by a string passing over a smooth peg at the

upper focus
; prove that the rings will rest in whatever posi-

tion they may be placed.

14. A small heavy ring slides on a smooth wire in the

form of a curve whose plane is vertical, and is connected by
a string passing over a fixed pully in the plane of the curve

with another weight which hangs freely ;
find the form of the

curve that the ring may be in equilibrium in any position.

Result. A conic section having its focus at the pully.

15. If an elliptic board be placed, so that its plane is

vertical, on two pegs which are in the same horizontal plane,
there will be equilibrium if these pegs be at the extremities

of a pair of conjugate diameters. What are the limits which
the distance between the pegs must not exceed or fall short

of, in order that this position of equilibrium may be possible ?

Shew that the equilibrium is unstable.

16. A solid of revolution, whose centre of gravity coincides

with the centre of curvature at the vertex, rests on a rough
horizontal plane. Shew that the equilibrium is stable or un-

stable according as the value of 3
(-r^J -tt; when x and y

vanish, is positive or negative, x and y being co-ordinates of
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the generating curve, measured along the tangent and normal
at the vertex.

17. If a plane pass through one extremity A of the base
of a cylinder and be inclined at an angle of 45 to the axis,
the piece so cut off will rest in neutral equilibrium, if placed
with its circular end on the vertex of a paraboloid whose latus

rectum is five-eighths of the diameter of the base, the point of

contact being also at this same distance from A.

18. A piece of string is fastened at its extremities to two
fixed points ;

determine from mechanical considerations the

form which must be assumed by the string in order that the

surface generated by its revolution about the line joining the

fixed points may be the greatest possible.

MISCELLANEOUS EXAMPLES.

1. A uniform wire is bent into the form of three sides

AB, BG, CD of an equilateral polygon; and its centre oi

gravity is at the intersection oiAG and BD. Shew that the

polygon must be a regular hexagon.

2. Three forces act along three lines which may be con-

sidered as generating lines in the same system of a hyperboloid
of one sheet; shew that if the forces admit of a single

resultant, it must act along another generating line of the

same system.

3. A gate moves freely about a vertical axis, along which
it also slides

;
while a point in the plane of the gate, and

rigidly connected with it, rests on a given rough inclined

plane ;
find the limiting position of equilibrium.

4. Suppose lines to be drawn from one of the centres of

the four circles that touch the sides or the sides produced of

a given triangle to the other three centres, and let these lines

represent three forces in magnitude and direction; then the

line joining the first centre with the centre of the circle cir-

cumscribing the triangle will represent in magnitude and
direction one-fourth of the resultant.
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5. A particle rests in equilibrium in a fine groove in the
form of a helix, the axis of which is inclined to the horizon
at a given angle a. Find the distance of the particle from
a vertical plane passing through the axis. Also find the

greatest value of a for a given helix in order that there may
be a position of equilibrium of the particle.

6. A quadrilateral figure possesses the following property ;

any point being taken and four triangles formed by joining
this point with the angular points of the figure, the centres of

gravity of these triangles lie in the circumference of a circle
;

prove that the diagonals of the quadrilateral are at right

angles to each other.

7. A square board is supported in a horizontal position

by three vertical strings ;
if one of them be attached to a

corner, where must the others be attached in order that the

weight which can be placed on any part of the board without

overturning it may be the greatest possible ?

8. A triangular plate hangs by three parallel threads

attached at the corners, and supports a heavy particle. Prove
that if the threads are of equal strength, a heavier particle

may be supported at the centre of gravity than at any other

point of the disk.

9. If through the centre of gravity of each of the faces

of any polyhedron there act a force in the direction perpen-
dicular to the face and in magnitude proportional to its area,

the system will be in equilibrium, supposing all the forces to

act inwards or all to act outwards.

10. A right cone is cut obliquely and then placed with its

section on a horizontal plane ; prove that when the angle of

the cone is less than sin
-1

J, there will be two sections for

which the equilibrium is neutral, and for intermediate sections

the cone will fall over.

11. A right cylinder on an elliptic base (the semiaxes of

which are a and b) rests with its axis horizontal between two

smooth inclined planes inclined at right angles to each other
;
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determine the positions of equilibrium, (1) when the inclination

of one of the planes is greater than tan
-1

-=-
, (2) when the

inclination of both planes is less than tan"
1

-7 .

12. A pack of cards is laid on a table
;
each projects in

the direction of the length of the pack beyond the one below

it
;

if each projects as far as possible, prove that the distances

between the extremities of the successive cards will form an

harmonic progression.

13. Find the least excentricity of an ellipse in order that

it may be capable of resting in equilibrium upon a perfectly

rough inclined plane. , 2 _ 2 sin a

1 + sin a
'

14. Two mutually repelling particles are placed in a para-
bolic groove, and connected by a thread which passes through
a small ring at the focus

;
shew that if the particles be at rest,

either their abscissae are equal, or the line AS is a mean pro-

portional between them.

15. Each element of a parabolic arc bounded by the vertex

and the latus rectum is acted on by a force in the normal

proportional to the distance of the element from the axis

of the parabola. Shew that the equation to the line in which
the resultant acts, is

Iby + \0x = 26a.

16. Each element of the arc of an elliptic quadrant is

acted on by a force in the normal proportional to the ordinate

of that point. Shew that the equation to the line in which the

resultant acts is

6by
- Sttox + 4a2 - 4

2 = 0.

17. A smooth body in the form of a sphere is divided into

hemispheres and placed with the plane of division vertical

upon a smooth horizontal plane; a string loaded at its ex-

tremities with two equal weights hangs upon the sphere,

passing over its highest point and cutting the plane of division
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at right angles ;
find the least weight which will preserve the

equilibrium.

18. The locus of the centre of gravity of segments of

equal area A in an ellipse is a similar concentric ellipse whose
minor axis is

3^-sin
3

|,
where .4= ~ (<-sin<).

19. The foci of a rough prolate spheroid attract directly
as the distance

;
if a particle without weight be placed on

the spheroid, find within what limits it must be placed so as

to be in equilibrium. Shew that if the coefficient of friction

e
be greater than .

^ >
where e is the excentricity, the

particle will rest anywhere on the surface.

20. A circular disc of mass m and radius c rests in contact

with two equal uniform straight rods AB, AC, which are

joined at A by a smooth hinge, and which attract each other

and the disc with a force varying as the distance; also the disc

attracts the rods similarly. Shew that there is equilibrium if

m'c (2c cos a a sin a)
= ma2

sin
4
a cos a,

where m is the mass of each rod, a the length of each rod,
and 2a their inclination to each other.

21. A square picture hangs in a vertical plane by a string,
which passing over a smooth nail has its ends fastened to two

points symmetrically situated in one side of the frame. Deter-

mine the positions of equilibrium, and whether they are stable

or unstable.

Results. Let I be the length of the string, c the distance of

the two points to which the ends of the string are fastened,
h the length of a side of the square ;

then if Ih be greater
than c V(c

2 + h2

)
there is only one position of equilibrium,

namely, the ordinary position, and the equilibrium is stable;
if Ih be less than c \f(c

2 + h2

)
there are two oblique positions

of stable equilibrium, besides the ordinary position of equi-
t. s. 22
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librium, which is stable with respect to some displacements
and unstable with respect to other displacements.

22. A flexible thread is placed in a tnbe of any form and
is acted on by any forces. The diameter of the tube is equal
to that of the thread and is infinitesimal. Determine the

position of the equilibrium.

23. Two equal particles are connected by two given
strings without weight, which are placed like a necklace on a

smooth cone with its axis vertical and vertex upwards ;
find

the tensions of the strings.

24. A triangle of area A revolves through an angle <p about
an axis in its own plane taken parallel to one side

;
shew that

the least amount of surface generated is

A (a + b + c)
2 -2a2

2(b + c)a

where a is the greatest side.
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PREFACE.

The present work is constructed on the same plan as my
treatise on Plane Trigonometry, to which it is intended as a

sequel; it contains all the propositions usually included under

the head of Spherical Trigonometry, together with a large

collection of examples for exercise. In the course of the work

reference is made to preceding writers from whom assistance

has been obtained; besides these writers I have consulted the

treatises on Trigonometry by Lardner, Lefebure de Fourcy,

and Snowball, and the treatise on Geometry published in the

Library of Useful Knowledge. The examples have been

chiefly selected from the University and College Examination

Papers.

In the account of Napier's Kules of Circular Parts an

explanation has been given of a method of proof devised by !

Napier, which seems to have been overlooked by most modern

writers on the subject. I have had the advantage of access to

an unprinted Memoir on this point by the late It. L. Ellis o

Trinity College; Mr Ellis had in fact rediscovered for himsel

Napier's own method. For the use of this Memoir and fo

some valuable references on the subject I am indebted to th<

Dean of Ely.

Considerable labour has been bestowed on the text

order to render it comprehensive and accurate, and the exam-

ples have all been carefully verified; and thus I venture to

hope that the work will be found useful by Students anc

Teachers.

I. TODHUNTEK.
St John's College,

August 15, 1859.
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With Maps.

Vol. II. History of the Reformation of the Church.

Each volume may be had separately. Price 10s. Gd.

** These Volumes form part of the Series of Theological Manuals.

HARDWICK. Twenty Sermons for Town Congregations.
Crown 8vo. cloth, Gs. Gd.

HAYNES.- Outlines of Equity. By FREEMAN OLIVER
HAYNES, Barrister-at-Law, late Fellow of Caius College, Cambridge.
Crown Svo. cloth, 10s.

HEDDERWICK Lays of Middle Age, and other Poems.
By JAMES HEDDERWICK. Fcp. Svo. 5s.

HEMMING. An Elementary Treatise on the Differential
and Integral Calculus. By G. W. HEMMING, M.A. Fellow of St. John's

College, Cambridge. Second Edition. Svo. cloth, 9s.

HERVEY. The Genealogies of our Lord and Saviour Jesus
Christ, as contained in the Gospels of St. Matthew and St. Luke, reconciled

with each other and with the Genealogy of the House of David, from Adam to

the close of the Canon of the Old Testament, and shown to be in harmony with
the true Chronology of the Times. By Lord ARTHUR HERVEY, M.A.
Rector of Ickworth. Svo. cloth, 10s. Gd.

HERVEY.-The Inspiration of Holy Scripture.
Five Sermons preached before the University of Cambridge. 8vo. cloth, 3s. Gd-

HOWARD. The Pentateuch; or, the Pive Books of Moses.
Translated into English from the Version of the LXX. With Notes on its

Omissions and Insertions, and also on the Passages in which it differs from
the Authorised Version. By the Hon. HENRY HOWARD, D.D. Dean f

Lichfield. Crown Svo. cloth. Genesis, 1 vol. 8s. Gd.
;
Exodus and Levi-

ticus, J vol. 10s. Gd.) Numbers and Deuteronomy, 1 vol. 10s. Gd.

HUMPHRY The Human Skeleton (including the Joints).

By GEORGE MURRAY HUMPHRY, M.D. F.R.S., Surgeon to

Addenbrooke's Hospital, Lecturer on Surgery and Anatomy in the Cambridge
University Medical School. With Two Hundred and Sixty Illustrations

drawn from Nature. Medium 8vo. cloth, 1/. Ss.

HUMPHRY On the Coagulation of the Blood in the Venous
System during Life. Svo. 2s. Gd.

INGLEBY.-Gutlines of Theoretical Logic.
Founded on the New Analytic of Sir William Hamilton. Designed for

Text-book in Schools and Colleges. By C. MANSFIELD INGLEBY, M.A.,
of Trinity College, Cambridge. In fcap. Svo. cloth, 3s. Gd.
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JAMESON. Analogy between the Miracles and Doctrines
. of Scripture. By F. J. JAMESON, M.A., Fellow of St. Catharine's College,
Cambridge. Fcap. 8vo. cloth, 2s.

JAMESON. Brotherly Counsels to Students. Four Sermons
preached in the Chapel of St. Catharine's College, Cambridge. By F. J.

JAMESON, M.A. Fcap. 8vo. limp cloth, red edges, Is. 6d.

JUVENAL Juvenal, for Schools.
With English Notes. By J. E. B. MAYOR, M.A. Fellow and Assistant
Tutor of St. John's College, Cambridge. Crown 8vo. cloth, 10s. 6d.

KINGSLEY.-Two Years Ago.
By CHARLES KINGSLEY, F.S.A. Rector of Eversley, and Chaplain in Ordi-

nary to the Queen. Second Edition. 3 vols, crown 8vo. cloth, 1/. lis. 6d.

KINGSLEY.-" Westward Ho !" or, the Voyages and Adven-
tures of Sir Amyas Leigh, Knight of Burrough, in the County of Devon, in

the Reign of Her Most Glorious Majesty Queen Elizabeth. New and
Cheaper Edition. Crown Svo. cloth, 6s.

KINGSLEY Glaucus
; or, the Wonders of the Shore.

New and Illustrated Edition, corrected and enlarged. Containing

beautifully Coloured Illustrations of the Objects mentioned in the Work.

Elegantly bound in cloth, with gilt leaves. 7s. 6d.

KINGSLEY.-The Heroes: or, Greek Fairy Tales for my
Children. With Eight Illustrations, Engraved by Whymper. New
Edition, printed on toned paper, and elegantly bound in cloth, with gilt

leaves, Imp. lGmo. 5s.

KINGSLEY. Alexandria and Her Schools: being Four Lec-
tures delivered at the Philosophical Institution, Edinburgh. With a Preface

Crown 8vo. cloth, 5s.

KINGSLEY Phaethon; or Loose Thoughts for Loose
Thinkers. Third Edition. Crown 8vo. boards, 2s.

KINGSLEY The Recollections of Geoffry Hamlyn.
By HENRY KINGSLEY, sq. 3 Vols. II. lis. 6d.

LATHAM The Construction of Wrought -Iron Bridges,
embracing the Practical Application of the Principles of Mechanics to

Wrought-Iron Girder Work. By J. H. LATHAM, Esq. Civil Engineer. 8vo.

cloth. With numerous detail Plates. 15s.

LECTURES TO LADIES ON PRACTICAL SUBJECTS.
Third Edition, revised. Crown 8vo. cloth, 7s. 6rf. By Reverends F. D.

MAURICE, CHARLES KINGSLEY, J. Ll. DAVIES, ARCHDEACON
ALLEN, DEAN TRENCH, PROFESSOR BREWER, DR. GEORGE
JOHNSON, DR. SIEVEKING, DR. CHAMBERS, F. J. STEPHEN, Esq.,
and TOM TAYLOR, Esq.
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LITTLE ESTELLA, and other TALES FOR THE
YOUNG. "With Frontispiece. Royal 16mo. extra cloth, gilt leaves, 5*.

LUDLOW. British India; its Races, and its History,
down to 1857. By JOHN MALCOLM LUDLOW, Barrister-at-Law. 2 vols,

fcap. 8vo. cloth, 9s.

LUSHINGTON La Nation Boutiquiere : and other Poems,
chiefly Political. With a Preface. By the late HENRY LUSHINGTON,
Chief Secretary to the Government of Malta. Points of War, By
FRANKLIN LUSHINGTON, Judge in the Supreme Courts of the Ionian

Isles. In 1 vol. fcap, Svo. cloth, 3s.

LUSHINGTON.-The Italian War 1848-9, and the Last
Italian Poet. By the late HENRY LUSHINGTON, Chief Secretary to the

Government of Malta. With a Biographical Preface by G. S. Venables.
Crown 8vo. cloth, 6s. 6d.

MACKENZIE The Christian Clergy of the first Ten Cen-
turies, and their Influence on European Civilization. By HENRY
MACKENZIE, B.A. Scholar of Trinity College, Cambridge. Crown 8vo.

cloth, 6s. 6d.

MANSFIELD. Paraguay, Brazil, and the Plate.
With a Map, and numerous Woodcuts. By CHARLES MANSFIELD, M.A.
of Clare College, Cambridge. With a Sketch of his Life. By the Rev.
CHARLES KINGSLEY. Crown 8vo. cloth, 12s. 6d.

M'COY Contributions to British Palaeontology; or, First De-
scriptions of several hundred Fossil Radiata, Articulata, Mollusca, and Pisces,

from the Tertiary, Cretaceous, Oolitic, and Palaeozoic Strata of Great Britain.

With numerous Woodcuts. By Frederick McCoy, F.G.S., Professor of

Natural History in the University of Melbourne. 8vo. cloth, 9s.

MASSON Essays, Biographical and Critical
; chiefly on the

English PoetS. By DAVID MASSON, M.A. Professor of English
Literature in University College, London. 8vo. cloth, 12s. 6d.

MASSON British Novelists and their Styles ; being a
Critical Sketch of the History of British Prose Fiction. By DAVID MASSON,
M.A. Crown 8vo. cloth, 7s. 6d.

MASSON Life of John Milton, narrated in Connexion
with the Political, Ecclesiastical, and Literary History of his Time. Vol. I.

with Portraits. 18s.

MAURICE Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln's Inn.

I. The Patriarchs and Lawgivers of the Old Testament.
Second Edition. Crown 8vo. cloth, 6s.

This volume contains Discourses on the Pentateuch, Joshua, Judges,
and the beginning of the First Book of Samuel.
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MAURICE Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln's Inn.

II. The Prophets and Kings of the Old Testament.
Second Edition. Crown Svo. cloth, 10*. Gd.

This volume contains Discourses on Samuel I. and II., Kings I. and II. y

Amos, Joel, Hosea, Isaiah, Micah, Nahum, Hahakkuk, Jeremiah,
and Ezekiel.

III. The Gospel of St. John; a Series of Discourses.
Second Edition. Crown Svo. cloth, 10s. 6d.

IV. The Epistles of St. John
;
a Series of Lectures on

Christian Ethics. Crown 8vo. cloth, 7s. 6d.

MAURICE. Expository Works on the Prayer-Book.

I. The Ordinary Services.

Second Edition. Fcap. 8vo. cloth, 5s. 6d.

II. The Church a Family. Twelve Sermons on the
Occasional Services. Fcap. 8vo. cloth, 4s. 6d.

MAURICE. What is Revelation ? A Series of Sermons
on the Epiphany ; to which are added Letters to a Theological Student on the

Bampton Lectures of Mr. Mansel. Crown 8vo. cloth, 10*. 6d.

MAURICE Sequel to the Inquiry, "What is Revelation?"
Letters in Reply to Mr. Mansel's Examination of "

Strictures on the

Bampton Lectures." Crown 8vo. cloth, 6s.

MAURICE. Lectures on Ecclesiastical History.
8vo. cloth, 10*. 6d.

MAURICE Theological Essays.
Second Edition, with a new Preface and other additions. Crown 8vo..

cloth, 10*. 6d.

MAURICE The Doctrine of Sacrifice deduced from the
Scriptures. With a Dedicatory Letter to the Young Men's Christian Associa-

tion. Crown 8vo. cloth, 7*. 6d.

MAURICE The Religions of the World, and their Relations
to Christianity. Third Edition. Fcap. 8vo. cloth, 5*.

MAURICE On the Lord's Prayer.
Third Edition. Fcap. 8vo. cloth, 2*. 6d.

MAURICE On the Sabbath Day: the Character of the
Warrior; and on the Interpretation of History. Fcap. 8vo. cloth, 2*. 6d.

MAURICE. Learning and Working. Six Lectures on the
Foundation of Colleges for Working Men, delivered in Willis's Rooms,^

London, in June and July, 1854. Crown Svo. cloth, 5*.
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MAURICE The Indian Crisis. Five Sermons.
Crown 8vo. cloth, 2s. Gd.

MAURICE Law's Remarks on the Fable of the Bees.
Edited, with an Introduction of Eighty Pages, by FREDERICK DENISON
MAURICE, M.A. Chaplain of Lincoln's Inn. Fcp. Svo. cloth, As. Gd.

MAURICE Miscellaneous Pamphlets :

I. Eternal Life and Eternal Death.
Crown 8vo. sewed, Is. Gd.

II. Death and Life. A Sermon. 3 faemoiiam . s. ia.

8vo. sewed, Is.

Ill Plan of a Female College for the Help of the Rich
and of the Poor. 8vo. Gd.

IV. Administrative Reform.
Crown Svo. 3c?.

V The Word "Eternal," and the Punishment of the
Wicked. Fifth Thousand. 8vo. Is.

VI. The Name "Protestant:" and the English Bishopric
at Jerusalem. Second Edition. Svo. Zs.

VII Thoughts on the Oxford Election of 1847.
Svo. Is.

VIII. The Case of Queen's College, London.
8vo. Is. Gd.

IX The Worship of the Church a Witness for the
Redemption of the World. 8vo. sewed, Is.

MAYOR. Cambridge in the Seventeenth Century.
2 vols. fcap. Svo. cloth, 13s.

Vol. I. Lives of Nicholas Ferrar.

Vol. II. Autobiography of Matthew Robinson.

By JOHN E. B. MAYOR, M.A. Fellow and Assistant Tutor of St. John's

College, Cambridge.

*** The Autobiography of Matthew Robinson may be had separately, price 5s. Gd.

MAYOR. Early Statutes of St. John's College, Cambridge.
Now first edited with Notes. Royal 8vo. 18s.

*** The First Part is now ready for delivery.

MAXWELL The Stability of the Motion of Saturn's Rings.
By J. C. MAXWELL, M.A. Professor of Natural Philosophy in the Uni-

versity of Aberdeen. 4to. sewed, 6s.

MOORE A New Proof of the Method of Algebra commonly
called "Greatest Common Measure." By B. T. MOORE, B. A., Fellow of

Pembroke College, Cambridge. Crown Svo. 6c?.
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MORGAN. A Collection of Mathematical Problems and
Examples. Arranged in the Different Subjects progressively, -with Answers
to all the Questions. By H. A.MORGAN, M.A., Fellow of Jesus Col-

lege. Crown 8vo. cloth, 6s. 6d.

MORSE. Working for God, and other Practical Sermons.
By FRANCIS MORSE, M.A. Incumbent of St. John's, Ladywood, Bir-

mingham. Second Edition. Fcap. 8vo. cloth, 5s.

NAPIER Lord Bacon and Sir Walter Raleigh.
Critical and Biographical Essays. By MACVEY NAPIER, late Editor

of the Edinburgh Review and of the Encyclopedia Briiannica. Post 8vo.

cloth, Is. 6d.

NORWAY AND SWEDEN.-A Long Vacation Ramble in
1856. By X and Y. Crown 8vo. cloth, 6s. 6d.

OCCASIONAL PAPERS on UNIVERSITY and SCHOOL
MATTERS ; containing an Account of all recent University Subjects and

Changes. Three Parts are now ready, price Is. each.

PARKINSON A Treatise on Elementary Mechanics.
For the Use of the Junior Classes at the University, and the Higher Classes i

Schools. With a Collection of Examples. By S. PARKINSON, B.D. Fellow

and AssistantTutor of St. John's College, Cambridge. Crown Svo. cloth, 9s. 6d.

PARKINSON- A Treatise on Optics.
Crown 8vo. cloth, 10*. 6d.

PARMINTER Materials for a Grammar of the Modern
English Language. Designed as a Text-book of Classical Grammar for the

use of Training Colleges, and the Higher Classes of English Schools. By
GEORGE HENRY PARMINTER, of Trinity College, Cambridge; Rector
ofthe United Parishes of SS. John and George, Exeter. Fcap. 8vo.cloth,3s. 6d.

PEROWNE.-" Al-Adjrumiieh."
An Elementary Arabic Grammar. By J. J. S. PEROWNE, B.D. Lecturer
in Divinity in King's College, London, and Examining Chaplain to the

Lord Bishop of Norwich. 8vo. cloth, 5s.

PHEAR Elementary Hydrostatics.
By J. B. Phear, M.A. Fellow of Clare College, Cambridge. Second
Edition. Accompanied by numerous Examples, with the Solutions.

Crown 8vo. cloth, 5*. 6d.

PHILOLOGY The Journal of Sacred and Classical Philology.
Vols. I to IV. 8vo. cloth, 12s. 6d. each.

PLAIN RULES ON REGISTRATION OF BIRTHS AND
DEATHS. Crown 8vo. sewed, \d. ;

9d. per dozen ;
5s. per 100.

PLATO.-The Republic of Plato.
Translated into English, with Notes. By Two Fellows of Trinity College,

Cambridge, (J. LI. Davies M.A., and D. J. Vaughan, M.A.) Second
Edition. Svo. cloth, 10s. 6d.
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PRAYERS FOR WORKING MEN OF ALL RANKS;
Earnestly designed for Family Devotion and Private Meditation and Prayer

Fcap. 8vo. cloth, red leaves, 2s. 6d. Common Edition, Is. 9d.

PRINCIPLES of ETHICS according to the NEW TESTA-
MENT. Crown 8vo. sewed, 2s.

PROCTER A History of the Book of Common Prayer: with
a Rationale of its Offices. By FRANCIS PROCTER, M.A., Vicar of Witton,

Norfolk, and late Fellow of St. Catherine's College. Fourth Edition,
revised and enlarged. Crown 8vo. cloth, 10s. 6d.

*** This forms part of the Series of Theological Manuals.

PUCKLE. An Elementary Treatise on Conic Sections and
Algebraic Geometry. With a numerous collection of Easy Examples pro-

gressively arranged, especially designed for the use of Schools and Beginners.

By G. HALE PUCKLE, M. A., Principal of Windermere College. Second
Edition, enlarged and improved. Crown Svo. cloth, 7*. 6d.

RAMSAY. The Catechiser's Manual; or, the Church Cate-
chism illustrated and explained, for the use of Clergymen, Schoolmasters,
and Teachers. By ARTHUR RAMSAY, M.A. of Trinity College,

Cambridge. lSmo. cloth, 3s. 6d.

REICHEL The Lord's Prayer and other Sermons.
By C. P. REICHEL, B.D., Professor of Latin in the Queen's University;

Chaplain to his Excellency the Lord-Lieutenant of Ireland; and late Don-
nellan Lecturer in the University of Dublin. Crown Svo. cloth, 7s. 6d.

ROBINSON. Missions urged upon the State, on Grounds
both of Duty and Policy. By C. K. ROBINSON, M.A. Fellow and Assistant

Tutor of St. Catherine's College. Fcap. Svo. cloth, 3*.

ROWSELL.-THE ENGLISH UNIVERSITIES AND THE
ENGLISH POOR. Sermons Preached before the University of Cambridge.

By T. J. ROWSELL, M.A. Incumbent of St Peter's, Stepney. Fcap. 8vo.

cloth limp, red leaves, 2s.

RUTH AND HER FRIENDS. A Story for Girls.

With a Frontispiece. Third Edition. Royal 16mo. extra cloth, giltleaves, os.

SALLUST.-Sallust for Schools.
With English Notes. Second Edition. By CHARLES MERIVALE,
B.D.; late Fellow and Tutor of St. John's College, Cambridge, &c, Author
of the "History of Rome," &c. Fcap. 8vo. cloth, 4*. 6d.

" The Jugurtha" and " TheCatilina" say be had separately, price 2s. 6d.

EACH IN CLOTH.

SANDARS.-BY THE SEA, AND OTHER POEMS.
By EDMUND SANDARS, of Trinity Hall, Cambridge. Fcap. 8vo.

cloth, 4s. 6d.

SCOURING OF THE WHITE HORSE; or, The Long
Vacation Ramble of a London Clerk. By the Author of " Tom Brown's
School Days." Illustrated by Doyle. Eighth Thousand. Imp. 16m.
cloth, elegant, 8s. Gd.
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SELWYN. The Work of Christ in the World.
Sermons preached before the University of Cambridge. By the Right Rev.
GEORGE AUGUSTUS SELWYN, D.D. Bishop of New Zealand, formerly
Fellow of St. John's College. Third Edition. Crown Svo. 2s.

SELWYN.-A Verbal Analysis of the Holy Bible.
Intended to facilitate the translation of the Holy Scriptures into Foreign

Languages. Compiled for the use of the Melanesian Mission. Small folio,

cloth, 14*.

SIMPSON An Epitome of the History of the Christian
Church during the first Three Centuries and during the Reformation. With
Examination Papers. By WILLIAM SIMPSON, M.A. Third Edition.
Fcp. 8vo. cloth, 5s.

SMITH.-City Poems.
By ALEXANDER SMITH, Author of "A Life Drama," and other Poems
Fcap. Svo. cloth. 5s.

SMITH. Arithmetic and Algebra, in their Principles and
Application: with numerous systematically arranged Examples, taken from
the Cambridge Examination Papers. By BARNARD SMITH, M.A., Fellow
of St. Peter's College, Cambridge. Seventh Edition. Crown 8vo.

cloth, 10s. 6d.

SMITH Arithmetic for the use of Schools.
New Edition. Crown 8vo. cloth, 4s. 6d.

SMITH. A Key to the Arithmetic for Schools.
Crown 8vo. cloth, 8s. 6d.

SNOWBALL The Elements of Plane and Spherical
Trigonometry. By J. C. SNOWBALL, M.A. Fellow of St. John's College,

Cambridge. Ninth Edition. Crown 8vo. cloth, 7s. 6d.

SNOWBALL Introduction to the Elements of Plane Trigo-
nometry for the use of schools. Second Edition. Svo. sewed, 5s.

SNOWBALL. The Cambridge Course of Elementary
Mechanics and Hydrostatics. Adapted for the use of Colleges and Schools.

With numerous Examples and Problems. Fourth Edition. Crown Svo.

cloth, 5s.

SWAINSON A Handbook to Butler's Analogy.
By C. A. SWAINSON, M.A. Principal of the Theological College, and

Prebendary of Chichester. Crown 8vo. sewed, 2s.

SWAINSON The Creeds of the Church in their Relations
to Holy Scripture and the Conscience of the Christian. 8vo. cloth, 9s.

SWAINSON.-THE AUTHORITY OF THE NEW TESTA-
MENT; The Conviction of Righteousness, and other Lectures, delivered

before the University of Cambridge. 8vo. cloth, 12*.

TAIT and STEELE A Treatise on Dynamics, with nume-
rous Examples. By P. G. TAIT, Fellow of St. Peter's College, Cambridge,
and Professorof Mathematics in Queen's College, Belfast, and W.J.STEELE,
late Fellow of St. Peter's College. Crown 8vo. cloth, 10s. 6d.

TAYLOR The Restoration of Belief.

By ISAAC TAYLOR, Esq., Author of "The Natural History of Enthu-
siasm." Crown 8vo. cloth, 8*. 6d.
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THEOLOGICAL Manuals.
CHURCH HISTORY : DURING THE MIDDLE AGES AND THE
REFORMATION (a.d. 5901600). By ARCHDEACON HARDWICK.
With Four Maps, 2 vols. Crown 8vo. cloth, price 10s. Gd. each.

THE COMMON PRAYER: ITS HISTORY AND RATIONALE. By
FRANCIS PROCTER. Fourth Edition. Crown 8vo. cloth, 10s. Gd.

HISTORY OF THE CANON OF THE NEW TESTAMENT. By
B. F. WESTCOTT. Crown 8vo. cloth, 12s. Gd.

*** Others are in progress, and will be announced in due time.

THRING. A Construing Book.
Compiled by the Rev. EDWARD THRING, M.A. Head Master of Up-,

pingham Grammar School, late Fellow of King's College, Cambridge. Fcap.
8vo. cloth, 2s. 6d.

THRING The Elements of Grammar taught in English.
Third Edition. 18mo. bound in cloth, 2s.

THRING The Child's Grammar.
Being the substance of the above, with Examples for Practice. Adapted for

Junior Classes. A New Edition. 18mo. limp cloth, Is.

THRING Sermons delivered at Uppingham School.
Crown 8vo. cloth, 5s.

THRING- School Songs.
A Collection of Songs for Schools. With the Music arranged for four Voices.
Edited by EDWARD THRING, M.A., Head Master of Uppingham School,
and H. RICCIUS. Small folio, 7s. Gd.

THRUPP. Antient Jerusalem : a New Investigation into the
History, Topography, and Plan of the City, Environs, and Temple. Designed
principally to illustrate the records and prophecies of Scripture. With Map
and Plans. By JOSEPH FRANCIS THRUPP, M.A. Vicar of Barrington,
Cambridge, late Fellow of Trinity College. 8vo. cloth, 15s.

THUCYDIDES, BOOK VI. With English Notes, and a Map.
By PERCIVAL FROST, Jun. M.A. late Fellow of St. John's College,

Cambridge. Svo. 7s. 6d.

TODHUNTER A Treatise on the Differential Calculus.
With numerous Examples. By I. TODHUNTER, M.A., Fellow and
Assistant Tutor of St. John's College, Cambridge. Third Edition.
Crown 8vo. cloth, 10s. Gd.

TODHUNTER A Treatise on the Integral Calculus.
With numerous Examples. Crown 8vo. cloth, 10s. Gd.

TODHUNTER. A Treatise on Analytical Statics, with
numerous Examples. Second Edition. Crown Svo. cloth, 10s. Gd.

TODHUNTER.-A Treatise on Conic Sections, with
numerous Examples. Second Edition. Crown Svo. cloth, 10s. Gd.

TODHUNTER Algebra for the use of Oblleges and Schools.
Crown Svo. cloth, 7s. Gd. Second Edition.

TODHUNTER. Plane Trigonometry for Colleges and
Schools. Crown 8vo. cloth, 5s.

TODHUNTER.-A Treatise on Spherical Trigonometry for
the Use of Colleges and Schools. Crown Svo. cloth, 4s. Gd.
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TODHUNTER Examples of Analytical Geometry of Three
Dimensions. Crown Svo. cloth, 4*.

TOM BROWN'S SCHOOL DAYS.
By AN OLD BOY. Seventh Edition. Fcap. 8vo. cloth, 5*.

TRENCH Synonyms of the New Testament.
By The Very Rev. RICHARD CHENEVIX TRENCH, D.D. Dean of West-
minster. Fourth Edition. Fcap. Svo. cloth, 5s.

TRENCH Hulsean Lectures for 184546.
Contents. 1. The Fitness of Holy Scripture for unfolding the Spiritual Life

of Man. 2. Christ the Desire of all Nations; or the Unconscious Pro-

phecies of Heathendom. Fourth Edition. Foolscap 8 vo. cloth, 5*.

TRENCH. Sermons Preached before the University of Cam-
bridge. Fcap. 8vo. cloth, 2s. Gd.

VAUGHAN. Notes for Lectures on Confirmation. With
suitable Prayers. By C. J. VAUGHAN, D.D., Head Master of Harrow
School. Third Edition. Limp cloth, red edges, 1*. Gd.

VAUGHAN St. Paul's Epistle to the Romans.
The Greek Text, with English Notes. By C. J. VAUGHAN, D.D. Svo.

cloth, 7s. Gd.

VAUGHAN.-MEMORIALS OF HARROW SUNDAYS.
A Selection of Sermons preached in Harrow School Chapel. By C. J.

VAUGHAN, D.D. With a View of the Interior of the Chapel. Crown 8vo.

cloth, red leaves, 10s. Gd.

VAUGHAN. Sermons preached in St. John's Church,
Leicester, during the years 1855 and 1856. By DAVID J. VAUGHAN, M.A.
Fellow of Trinity College, Cambridge, and Incumbent of St. Mark's, White-

chapel. Crown 8vo. cloth, 5s. Gd.

VAUGHAN Three Sermons on The Atonement. With a
Preface. By D. J. Vaughan, M.A. Limp cloth, red edges, Is. Gd.

WAGNER Memoir of the Rev. George Wagner, late of St.

Stephen's, Brighton. By J. N. SI.MPKINSON, M.A. Rector of Brington,

Northampton. Second Edition. Crown Svo. cloth, 9s.

VMTSON AND ROUTH.-CAMBRIDGE SENATE HOUSE
PROBLEMS AND RIDERS. For the Year 1860. With Solutions by H.
W. WATSON, M.A. and E. J. ROUTH, M.A. Crown Svo. cloth, 7s. 6d.

WESTCOTT. History of the Canon of the New Testament
during the First Four Centuries. By BROOKE FOSS WESTCOTT, M.A.,
Assistant Master of Harrow School

;
late Fellow of Trinity College, Cam-

bridge. Crown Svo. cloth, 12s. 6d.

*** This forms part of the Series of Theorbgical Manuals.

WESTCOTT. Characteristics of the Gospel Miracles.
Sermons preached before the University of Cambridge. With Notes. By
B. F. WESTCOTT, M.A., Author of "History of the New Testament
Canon." Crown 8vo. cloth, 4s. Gd.

WHEWELL.-THE PLATONIC DIALOGUES FOR
ENGLISH READERS. By W. WHEWELL, D D. Vol. I. Fcap. 8vo.

cloth, 7s. Gd.
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WHITMORE Gilbert Marlowe and Other Poems.
With a Preface by the Author of "Torn Brown's Schooldays." Fcap. 8vo.

cloth, 3*. 6d.

WILSON The Five Gateways of Knowledge.
By GEORGE WILSON, M.D., F.R.S.E., Regius Professor of Technology in

the University of Edinburgh. Second Edition. Fcap. 8vo. cloth, Is. 6rf.

or in Paper Covers, 1*.

WILSON The Progress of the Telegraph.
Fcap. 8vo. Is.

WILSON. A Treatise on Dynamics.
By W. P. WILSON, M.A., Fellow of St. John's, Cambridge, and Professor of

Mathematics in the University of Melbourne. 8vo. bds. 9s. 6d.

WOLFE.-ONE HUNDRED AND FIFTY ORIGINAL
PSALM AND HYMN TUNES. For Four Voices. By ARTHUR
WOLFE, M.A., Fellow and Tutor of Clare College, Cambridge. Oblong
royal 8vo. extra cloth, gilt leaves, 10s. Gd.

WORSHIP OF GOD AND FELLOWSHIP AMONG MEN.
A Series of Sermons on Public Worship. Fcap. 8vo. cloth, 3s. 6d.

By F. D. Maurice, M.A. T. J. Rowsell, M.A. J. Ll. Davies, M.A.
and D. J. Vaughan, M.A.

WRIGHT.-The Iliad of Homer.
Translated into English Verse by J. C. WRIGHT, M.A. Translator of Dante.
Crown 8vo. Books I. VI. 5s.

WRIGHT Hellenica
; or, a History of Greece in Greek,

as related by Diodorus and Thucydides, being a First Greek Reading
Book, with Explanatory Notes, Critical and Historical. By J. WRIGHT,
M.A., of Trinity College, Cambridge, and Head-Master of Sutton Coldfield

Grammar School. Second Edition, with a Vocabulary. 12mo.

cloth, 3s. Gd.

WRIGHT David, King of Israel.
Readings for the Young. With Six Illustrations after SCHNORR. Royal
]6mo. extra cloth, gilt leaves, 5s.

WRIGHT.-A Help to Latin Grammar;
or, the Form and Use of Words in Latin. With Progressive Exercises.

Crown 8vo. cloth, 4s. 6d.

WRIGHT.-The Seven Kings of Rome:
An easy Narrative, abridged from the First Book of Livy by the omission of

difficult passages, being a First Latin Reading Book, with Grammatical

Notes. Fcap. 8vo. cloth, 3s.

WRIGHT A Vocabulary and Exercises on the
"
Seven

Kings of Rome." Fcap. 8vo. cloth, 2s. 6d.

*** The Vocabulary and Exercises may also be had bound up with "The Seven

Kings of Rome." Price 5s. cloth.

ONE SHILLING, MONTHLY.

MAC MILLAN'S MAGAZINE.
EDITED BY DAVID MASSON.

Volume I. is now ready, handsomely bound in cloth, price 7s. Gd.

R. CLAY, TRINTER, BREAD STREET HILL.
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