

CARMICHARL.

TIST OE WOMKA Hy Contrabujors to the Emingurg ar niview.

 क 7 в**

VK.mon min

 1-20ra

 $+$

Presented to the library of the UNIVERSITY OF TORONTO from
the estate of
VERNON R. DAVIES

CALCULUS OF OPERATIONS.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

0
 a TREATISE

ON

THE CALCULUS OF OPERATIONS:

designed to facilitate the processes

OF THE
dIFFERENTIAL AND INTEGRAL CALCULUS

AND THE
CALCULUS OF FINITE DIFFERENCES.
by the
REV. ROBERT CARMICHAEL, A. M.,
FELLOW OF TRINITY COLLEGE, DUBLIN ; MEMBER OF THE ROYAL IRISH ACADEMY; AND SOMETME EXAMINER IN MATHEMATICS IN THE QUEEN'S UNIVERSITY IN IRELAND.

LONDON:
LONGMAN, BROWN, GREEN, AND LONGMANS.
1855

DUBLIN :
Frinter at the dinioerstil 羽ress,
BY M. H. GILL.

THE BOARD OF TRINITY COLLEGE, DUBLIN, BY WHOSE KIND LIBERALITY

THE EXPENSES OF PUBLICATION HAVE BEEN MAINLY DEFRAYED, さbis axork

IS GRATEFULLY DEDICATED BY

THE AUTHOR.
-

PREFACE.

The want of a text-book on the Calculus of Operations has long been felt by mathematicians. The extensive practical bearings of the Differential and Integral Calculus, and the theoretic interest which is associated with the Calculus of Finite Differences, render it desirable that the processes required in these branches of analysis should be reduced and simplified as far as possible. To the student, the Calculus of Operations proposes to facilitate and abbreviate his labours, while, to the advanced mathematician, it offers a method which will enable him not only to arrive at known results with ease, and express them with elegance, but also to extend his investigations with certainty and rapidity.

To illustrate, however inadequately, the power of this Calculus, is the object of the following Treatise. In its preparation all prolixity of detail has been stu-
diously avoided, as alike unnecessary and wearisome. It has been sought also to exclude, as far as possible, metaphysical subtleties, which might perhaps lend an air of learned mystery, but which serve only to embarrass the reader and weaken his confidence in the results at which he may have arrived.

With a view to the partial indication of the nature of the subjects discussed in the Fellowship Lectures of this University, and more particularly in so far as the development of this branch of analysis is concerned, I have been requested to append notes to the various articles derived from this source. For greater facility of reference, and as a contribution towards the history of this department of science, I have been induced to adopt the same course with regard to assistance derived from other sources. Wherever the subject of any article has been originated by another, and the investigation or method of treatment is, so far as I am at present aware, my own, the reference is appended immediately after the statement of the subject of the article. Wherever the subject and method of treatment are both due to another, the reference is given at the end of the article. It is not, of course, necessary, nor would it, indeed, be possible, to extend this system of reference to the case of those articles which will be at once recognised as common property.

Where any of the results contained in the following pages have been already published by myself, either in the "Cambridge and Dublin Mathematical Journal," or in the "Philosophical Magazine," I have in such cases simply stated the name of the periodical in which such results may have appeared. With the exceptions stated, the remainder of the book is, I believe, new.

My first and largest acknowledgments are due to the Rev. John Hewitt Jellett, Professor of Natural Philosophy in this University, whose Treatise on the "Calculus of Variations" first led me to independent and original investigation. My next acknowledgments are due to the Rev. Charles Graves, Professor of Mathematics in this University, whose investigations in this branch of analysis have largely contributed to illustrate its elegance and power, as the following pages will abundantly testify, and to whom I am indebted for acquaintance with many valuable sources of information. The amount of assistance which I have derived from the valuable collection of Examples illustrative of the processes of the Differential and Integral Calculus by the late Mr. Gregory, Fellow of Trinity College, Cambridge, is very considerable, and much of the importance now attributed to the Calculus of Operations is due to the vindication and illustration of its claims by that distinguished mathematician. My
acknowledgments are also due to Sir John Herschel, whose Supplement to the translation of "Lacroix's Differential and Integral Calculus," so remarkable for the subtlety of its reasonings and the breadth of its conceptions, I have studied with much advantage.

I would offer my best thanks to Mr. Arthur Curtis, to whom I am indebted for many valuable suggestions and much kind assistance in the revision of the sheets of this work during its progress through the press.

In dedicating my book to the Board of Trinity College, I have endeavoured to show my appreciation and respect for the enlightened liberality with which they invariably support every genuine effort for the advancement of learning.

Trinity College, Dublin, March, 1855.

CONTENTS.

CHAPTER I.

Page.
Introduction, 1
CHAPTER II.
Elementary Principles, 8
CHAPTER III.
Application to the Integration of Linear Total Differential Equations-
Section I.-Preliminary Theorems, 14
Section IL-Application of preceding Theorems, 21
CHAPTER IV.
Application to the Integration of Linear Partial Differential Equattons-
Section I.-Prelomivary Theorems, 29
Section II.-Application of preceding Theorems, 34
CHAPTER V.
Integration of various additional Classes of Differential Equations, Total and Partial, 49
CHAPTER VI.
Section I.-Integration of Systems of Simultaneous Differential Equations, 67
Section II.-Evaluation and Extension of Definite Integrals, 88
xii CONTENTS.
CHAPTER VII.
Page.
Interpretation of Symbols of Operation, 92
CHAPTER VIII.
Application to Analytic Geometry, 103
CHAPTER IX.
Miscellaneous Applications in the Differential and Integral Calculus, 125
CHAPTER X.
Application to the Calculus of Finite Differences, 137
APPENDIX A.
On the Calculus of Variations, 153
APPENDIX B.
On the Quadrature of Surfaces, and the Rectification of Curves, 161
APPENDIX C.
Additional Applications to Integration, 168

CALCULUS OF OPERATIONS.

CHAPTER I.

INTRODUCTION.

1. The Calculus of Operations, in the greatest extension of the phrase, may be regarded as that science which treats of the combinations of symbols of operation, conformably to certain given laws, and of the relations by which these symbols are connected with the subjects on which they operate.

As the principal object of the present work is to reduce and simplify the labours of the student, and as the great practical utility of the Calculus of Operations, at present, arises from its bearing upon the Differential and Integral Calculus, and the Calculus of Finite Differences, the symbols of operation employed in illustration, and the laws by which they are governed, are those belonging to the branches of analysis named, and are consequently familiar to the reader.

The differential equations proposed as examples are classified according to the methods by which it appears that their solutions are most easily derived. After each class of ordinary differential equations, where there is but a single independent variable x, will be found, either in the same Chapter or in that immediately consecutive, the class of corresponding partial differential equations in two independent variables x and
y; and it will be evident that the method employed is wholly irrespective of the number of such independent variables. It seems probable that, by this arrangement, the generality and symmetry of the Calculus of Operations will be best exhibited, and the facility with which it can be employed most completely illustrated.
2. Two circumstances appear to have contributed to the retardation of the progress of the Calculus of Operations, as well in its theory as in its practical application. The first circumstance is, that it has been generally held by mathematicians, whether directly or by implication, that inverse symbols of operation (whether distributive or not), and consequently all inverse functions of such symbols, are in their nature indeterminate. I believe this to be a fundamental misconception, and that any indetermination which may exist is due to a different source, namely, the indetermination of the subject of the direct operation, or, in practice, the dependent variable.

Thus, Φ being any distributive symbol of operation, if we have a linear equation with constant coefficients,

$$
A \Phi^{a} \cdot u+B \Phi^{\beta} \cdot u+\ldots+T \cdot u=\Omega
$$

or,

$$
F(\Phi) \cdot u=\Omega,
$$

we know that, in general, u is indeterminate.
Moreover, in general, the solution of this equation is given by the evaluation of the symbolic form,

$$
u=\frac{1}{F(\Phi)} \cdot \Omega+\frac{1}{F(\Phi)} \cdot 0
$$

and it will be seen that the value of the first term in this solution is, in all cases, strictly determinate. The indeterminate or arbitrary portion of the solution is given by the second term, and it will be seen that here the indetermination is due
to a source quite independent of the character of the functional operator.

For confirmation of this view the reader is referred to the Chapter of this work upon the application of the Calculus of Operations to the integration of Differential Equations, Total and Partial, and to the Chapter upon the application of the same Calculus to the subject of Finite Differences.

The second circumstance which seems to have limited the practical employment of the Calculus of Operations is that, although mathematicians were familiar with the distributive character of certain symbols of operation in constant occurrence, as well as with the distributive character of any direct function of those symbols, they do not appear to have been aware that not only are the corresponding inverse symbols distributive, but that any inverse function of those symbols is equally distributive.

The former of these two points, namely, that if any symbol be distributive, its inverse is also distributive, is due to Mr. Murphy.* The second point, namely, that not only the simple inverse symbol is distributive, but that also any inverse function of the symbol is distributive, is intimately connected with the cause of the retardation of the Calculus of Operations first specified, and its establishment and practical application forms a distinctive feature of the present treatise.
3. With regard to the subject of integration, many of the methods in ordinary use appear to labour under three capital defects. The first defect in the methods, to which allusion is made, is their extremely artificial character, which occasions much embarrassment to the student at first, and considerable difficulty in his effort to retain them. The second great defect in these methods is, that they seem wholly unsusceptible of useful generalization. The third defect is less common, and

[^0]consists in this, that some of the processes employed are circuitous, terms being introduced which subsequent operations cause to disappear. The methods here put forward appear to be free from these defects, and, in so far as they are calculated to reduce and simplify the labours of the student, may prove, it is hoped, a practical good.
4. In the Chapter on the application of the Calculus of Operations to the solution of Partial Differential Equations, most of the illustrations are borrowed from " Gregory's Examples of the Processes of the Differential and Integral Calculus," Walton's edition, 1846. The general merits of this manual are very considerable, and I am myself largely indebted to it. There are, however, some deficiencies in it, which I have endeavoured to supply.

By a comparison of certain solutions as given there, in the Chapter on the integration of Partial Differential Equations, with the solutions of the same equations as exhibited in the following pages, it will be seen that many of the former are, in point of symmetry, incomplete. During the last few years our conceptions of the Calculus of Operations and its uses have been corrected, widened, and deepened. The errors particularized appear to have been the necessary result of the methods employed, and the methods employed to have been the only ones recognised in the then existing condition of this branch of analysis. It is \grave{a} priori evident that when the equations to be integrated have a symmetrical character, not only should the solutions be symmetrical, but symmetrical methods should be employed for their deduction. Now in the cases to which reference is made, the methods employed are unsymmetrical, and we might consequently have anticipated that the results would be, as they are, incomplete.

A remark to the same effect as that just made, although in connexion with a different subject, is the following :-
"In algebraical analysis it is frequently useful to observe
whether the algebraical expressions under consideration are homogeneous or not; that is, whether the dimensions of every term be the same or not; for, if this homogeneity be found at first, no legitimate operation can destroy it; or, if it be not found at first, it cannot be introduced ; and thus an easy test is afforded, to a certain extent, of the accuracy of each succeeding step in the analysis.
" For example, if the equation

$$
a x^{2}+b^{2} x+c^{3}=0
$$

be proposed for solution, in which every term is of three dimensions, that is, which is homogeneous, every step of the solution will present an homogeneous equation, if it be correct.
" As a simple case, it may be well to observe that, if the proposed equation be homogeneous, the final result must be so. A proper attention to this observation will frequently detect an error in the process of solution."*
5. It has been remarked to me by Professor Boole, that the great difficulty in the study of the Calculus of Operations, as connected with the Integral Calculus, consists in the interpretation of the symbolic results at which we may have arrived. The farther the relation between these two subjects is prosecuted, whether in the solution of Differential Equations, the extension of Definite Integrals, or the reduction of equations in Finite Differences, the more imperative becomes the demand for such interpretation. In all these cases, so long as the solutions are symbolic and not completely evaluated, they are unsatisfactory to the advanced mathematician, and perhaps calculated to lead the younger student to undervalue the utility of prosecuting these branches of analysis in conjunction. A large portion of the present work is dedicated to this sub-

[^1]ject, and a special Chapter is devoted to the interpretation of certain symbols of operation, which appear to possess peculiar significance. In the Chapter upon the application of the Calculus of Operations to the Theory of Curves and Surfaces will be found also some interesting and elegant interpretations of symbols of Operation in connexion with Geometry, for which I am indebted to the Rev. Professor Graves.
6. In the chapter upon the integration of Partial Differential Equations it will be observed that I have not employed the usual notation for the partial differential coefficients of a function of two independent variables, namely, p, q, r, s, t, \&c. I have been induced to abandon this notation mainly from the conviction that, by its employment, the symmetry of many partial differential equations has been disguised, and the likelihood of the discovery of operational methods of solution proportionably diminished. An additional and weighty reason for the rejection of the old notation is the consideration, that it is calculated practically to prevent us from extending our view to the case of functions of three or more independent variables, and even in the case of two independent variables, to preclude the entertainment of partial differential equations of an order higher than the second.
7. Some interesting results will be found in the Chapter upon the application of the Calculus of Operations to the integration of systems of Simultaneous Differential Equations, Total and Partial. The illustrations of this employment of the Calculus of Operations hitherto put forward seem, from their tentative character, and the meagre results which have attended them, perhaps calculated to weaken the confidence of the student in the generality and efficiency of this Calculus.

In this same Chapter will be found also some illustrations of the application of the Calculus of Operations to the extension of Definite Integrals.
8. The advanced student, who is desirous of extending his knowledge of the Calculus of Operations beyond the limits which have, of necessity, been observed in an elementary treatise like the present, is referred to the elaborate Papers published in the "Philosophical Transactions," by Professor Boole, Dr. Hargreave, and Rev Mr. Bronwin; in the "Proceedings of the Royal Irish Academy," by the Rev. Professor Graves; in the "Cambridge and Dublin Mathematical Journal," by Professor Boole, Rev. Mr. Bronwin, Mr. Sylvester, Professor Donkin, and Mr. Spottiswoode; in the "Philosophical Magazine," by Dí. Hargreave and Mr. Sylvester ; besides the Papers of various other mathematicians, whose labours in this field of research have contributed to its development.

CHAPTER II.

ELEMENTARY PRINCIPLES.

1. Two symbols Φ and Ψ are said to be commutative when, u being the subject on which they operate,

$$
\Phi \Psi \cdot u=\Psi \Phi \cdot u
$$

A symbol Φ is said to be distributive when, u and v being two distinct subjects,

$$
\Phi(u+v)=\Phi \cdot u+\Phi \cdot v .
$$

A symbol Φ is said to be iterative, or to follow the law of indices, when

$$
\Phi^{m} \cdot \Phi^{n} \cdot u=\Phi^{n+n} \cdot u=\Phi^{n} \cdot \Phi^{m} \cdot u
$$

It is to be observed that this third formula is not to be regarded as a law of symbolic combination in the same sense as the first, nor as a law of symbolic operation in the same sense as the second. In fact, $\Phi^{m} . u$ is rather to be regarded as a mere abbreviated notation for the result of the operation Φ performed m times successively upon u,

$$
\Phi . \Phi . \Phi \ldots .
$$

than as equivalent to the result of any operation raised to the power m, performed on u.

The laws stated being the principal ones which occur in the practical employment of the Calculus of Operations, we shall for the present confine our attention to them. They may be called, respectively,
i. the law of commutation ;
ii. the law of distribution ;
iII. the law of indices.
2. We may at once observe, that whatever theorem is true for any one symbol which satisfies these laws is true for every symbol which satisfies them.

Now the symbols of numbers satisfy them; indeed all algebraical equations may be considered as having the same subject, unity, and the constants, as denoting sums of operations performed on unity. Again, the symbols of differentiation satisfy those laws; for if u be a function of the two independent variables x and y, it is known that

$$
D_{x} D_{y} . u=D_{y} D_{x} \cdot u ;
$$

that, if u be a function of x only,

$$
D_{x}(u+v)=D_{x} u+D_{x} v ;
$$

and that

$$
D_{x}^{m} \cdot D_{x}^{n} \cdot u=D_{x}^{m+n} \cdot u .
$$

Hence we deduce the important consequence, that every theorem in Algebra, which depends on those laws, has an analogue in the Differential Calculus.

In illustration, if we have a linear equation, with constant coefficients, of the form

$$
\Phi^{n} \cdot u+A_{1} \Phi^{n-1} \cdot u+A_{2} \Phi^{n-2} \cdot u+\ldots+A_{n} u=X,
$$

where Φ operates solely on u, and is therefore commutative with $A_{1}, A_{2}, \ldots A_{n}$, then the symbolical solution is

$$
u=\left\{\begin{array}{c}
\left(\Phi^{n}+A_{1} \Phi^{n-1}+A_{2} \Phi^{n-2}+\ldots+A_{n}\right)^{-1} \cdot X \\
+ \\
\left(\Phi^{n}+A_{1} \Phi^{n-1}+A_{2} \Phi^{n-2}+\ldots+A_{n}\right)^{-1} \cdot 0,
\end{array}\right.
$$

or

$$
u=\left\{\begin{array}{c}
N_{1}\left(\Phi-a_{1}\right)^{-1} \cdot X+N_{2}\left(\Phi-a_{2}\right)^{-1} \cdot X+\ldots+N_{n}\left(\Phi-a_{n}\right)^{-1} \cdot X \\
+ \\
N_{1}\left(\Phi-a_{1}\right)^{-1} \cdot 0+N_{2}\left(\Phi-a_{2}\right)^{-1} \cdot 0+\ldots+N_{n}\left(\Phi-a_{n}\right)^{-1} \cdot 0 .
\end{array}\right.
$$

$N_{1}, N_{2}, \& c ., a_{1}, a_{2}$, \&c., having the same values as in the resolution of the rational fraction,

$$
\frac{1}{\xi^{n}+A_{1} \xi^{n-1}+A_{2} \xi^{n-2}+\ldots+A_{n}}
$$

supposed resolvable into a similar series of terms. The evaluation of the symbolical solution, of course, depends on the particular form of Φ.

It will be seen that the first group of terms in the solution is in all cases strictly determinate, and that the arbitrary portion of the solution is given by the second group. It will also be seen that there are many cases in which the evaluation of the first member can be obtained without the resolution into factors of the symbolical operator.
3. If a symbol Φ be distributive, any power of the symbol, positive or negative, will be also distributive.

In the case of positive powers, we have

$$
\Phi \cdot(u+v)=\Phi \cdot u+\Phi \cdot v,
$$

the sign (\cdot) being employed to distinguish Φ as an operational symbol from its usual acceptation as functional of the quantities contained under it. As the student becomes familiar with the use of operational symbols, this sign will be occasionally omitted, as unnecessary.

Operating with Φ a second time, we get

$$
\Phi^{2} \cdot(u+v)=\Phi \cdot(\Phi \cdot u+\Phi \cdot v)=\Phi^{2} \cdot u+\Phi^{2} \cdot v ;
$$

and, by successive operation,

$$
\Phi^{n} \cdot(u+v)=\Phi^{n} \cdot u+\Phi^{n} \cdot v .
$$

In the case of negative indices, assuming as a definition that

$$
\Phi^{-1} \cdot \Phi=\Phi \cdot \Phi^{-1},
$$

and that the result of the operation of either side of this equivalence upon the same subject is the same as if the subject had not been operated upon at all; if we operate upon either side of the fundamental equation

$$
\Phi \cdot(u+v)=\Phi \cdot u+\Phi \cdot v
$$

with Φ^{-1}, we see that

$$
u+v=\Phi^{-1} \cdot(\Phi \cdot u+\Phi \cdot v)
$$

But the left-hand member may be written in the form

$$
\Phi^{-1} \cdot \Phi \cdot u+\Phi^{-1} \cdot \Phi \cdot v
$$

and consequently the equation itself, in the form
or

$$
\Psi^{-1} \cdot \Phi \cdot u+\Phi^{-1} \cdot \Phi \cdot v=\Phi^{-1} \cdot(\Phi \cdot u+\Phi \cdot v)
$$

$$
\Phi^{-1} \cdot U+\Phi^{-1} \cdot V=\Phi^{-1} \cdot(U+V)
$$

and from hence, by sucessive operation, it appears that the theorem is true for negative powers in general.
4. It may here be observed, that if we operate on both sides of the equation

$$
\Phi \cdot(u+v)=\Phi \cdot u+\Phi \cdot v
$$

with Φ^{-1}, it might be supposed that, inverse symbols being regarded as in their nature indeterminate, the result should be written

$$
u+v=\Phi^{-1}\{\Phi \cdot u+\Phi \cdot v\}+\Phi^{-1} \cdot 0,
$$

and not

$$
u+v=\Phi^{-1}\{\Phi \cdot u+\Phi \cdot v\},
$$

simply.
But it is plain that if the left-hand member of any equation be determinate, as the left-hand member in the above equation is supposed to be, the right-hand member of the same equation ought to be equally determinate, and consequently no such term as $\Phi^{-1} .0$ should be introduced. There is an obvious difference between this case and that of the solution of differential equations and equations in finite differences, in which the dependent variable, which corresponds with the left-hand member above, is indefinite and indeterminate.
5. Any algebraic function of a distributive symbol Φ is itself also distributive.

For since

$$
\begin{gathered}
\Phi \cdot(u+v)=\Phi \cdot u+\Phi \cdot v \\
\Phi^{2} \cdot(u+v)=\Phi^{2} \cdot u+\Phi^{2} \cdot v \\
\Phi^{3} \cdot(u+v)=\Phi^{3} \cdot u+\Phi^{3} \cdot v \\
\quad \& \mathrm{c} \\
\Phi^{n} \cdot(u+v)=\Phi^{n} \cdot u+\Phi^{n} \cdot v
\end{gathered}
$$

if we multiply the first equation by A_{1}, the second by A_{2}, the third by A_{3}, \&c., and add, we get
$\left(A_{0}+A_{1} \Phi+A_{2} \Phi^{2}+\ldots+A_{n} \Phi^{n}\right)(u+v)=\left\{\begin{array}{c}\left(A_{0}+A_{1} \Phi+A_{2} \Phi^{2}+\ldots\right) u \\ + \\ \left(A_{0}+A_{1} \Phi+A_{2} \Phi^{2}+\ldots\right) v\end{array}\right.$
or generally, if F be any algebraic function,

$$
\begin{aligned}
& \mathrm{F}(\Phi) \cdot(u+v)=\mathrm{F}(\Phi) \cdot u+\mathrm{F}(\Phi) \cdot v \\
& \text { MURPHY, Phil. Trans., } 1837 .
\end{aligned}
$$

We have here only established the principle for positive indices, but it is obvious that the same demonstration will hold for the case in which the indices are negative, and consequently for any indirect function, or that

$$
\frac{1}{\mathrm{~F}(\Phi)} \cdot(u+v)=\frac{1}{\mathrm{~F}(\Phi)} \cdot u+\frac{1}{\mathrm{~F}(\Phi)} \cdot v
$$

6. Any two functions of the same distributive symbol are commutative, and if any quantity be operated on successively by two functions of the same symbol, the result is the same as if the quantity had been operated on originally by the product of those functions.

This principle may be established by à priori considerations, but the student will most readily and immediately satisfy himself of its truth by actual trial. For example, he will see that the result of the operation

$$
\left(D_{x}+a\right) \cdot\left(D_{x}+b\right) \cdot F(x)
$$

is the same as the result of the operation

$$
\left(D_{x}+b\right) \cdot\left(D_{x}+a\right) \cdot F(x)
$$

and each is the same as the result of the operation

$$
\left(D_{x}^{2}+\overline{a+b} D_{x}+a b\right) \cdot F(x) .
$$

7. To legitimate the equivalence

$$
e^{\phi+\Psi} \cdot u=e^{\phi} \cdot e^{\psi} \cdot u
$$

it is necessary and sufficient that Φ and Ψ should be commutative.

For, expand both sides, and in order that
$\left(1+\left(\frac{\Phi+\Psi}{1}\right)+\left(\frac{\Phi+\Psi}{1.2}\right)^{2}+..\right\} u=\left(1+\frac{\Phi}{1}+\frac{\Phi^{2}}{1.2}+..\right)\left(1+\frac{\Psi}{1}+\frac{\Psi^{2}}{1.2}+..\right) u$ we should have

$$
(\Phi+\Psi)^{2}=\Phi^{2}+2 \Phi \Psi+\Psi^{2} .
$$

But the value of the left-hand member is, in general,

$$
\Phi^{2}+\Phi \Psi+\Psi \Phi+\Psi^{2} ;
$$

and consequently, the equation just stated cannot hold unless

$$
\Phi \Psi=\Psi \Phi ;
$$

that is, unless the symbols Φ and Ψ be commutative. Moreover, when these symbols are commutative, it is immediately obvious that the general equivalence does hold.

As an application, the symbols

$$
x D_{y}-y D_{x}, \quad a D_{x}+b D_{y},
$$

are not commutative, consequently we cannot assert the equivalence

$$
e^{x D_{y}-y D_{x}+a D_{x}+b D_{y}} \cdot F(x, y)=e^{x D y-y D_{x}} \cdot e^{a D_{x}+b D_{y}} \cdot F(x, y),
$$

nor consequently the equivalence

$$
e^{x D_{y}-y D_{x}} \cdot e^{a D_{x}+b D_{y}} \cdot F(x, y)=e^{a D_{x}+b D_{y}} \cdot e^{x D_{y-y} D_{x}} \cdot F(x, y) .
$$

An important application of this example will be found in a subsequent Chapter.

CHAPTER III.

APPLICATION TO THE INTEGRATION OF LINEAR TOTAL DIFFERENTIAL EQUATIONS.

Section I.-Preliminary Theorems.

1. If we operate with the symbol $x D_{x}$ upon x^{m}, we find that

$$
x D_{x} \cdot x^{m}=m \cdot x^{m} .
$$

Operating with the same symbol upon both sides of this equation,

$$
\left(x D_{x}\right)^{2} \cdot x^{m}=m^{2} \cdot x^{m},
$$

and, by successive operation,

$$
\left(x D_{x}\right)^{p} \cdot x^{m}=m^{p} \cdot x^{m} .
$$

Hence the theorem that, if F be any algebraic function,

$$
F\left(x D_{x}\right) \cdot x^{m}=F(m) \cdot x^{m} .
$$

Boole, Phil. Trans., 1844.
For the purpose of future application, and of more ready identification with a theorem to be given in a subsequent Chapter, I prefer stating this theorem in the slightly different form

$$
F\left(x D_{x}\right) \cdot A_{m} x^{m}=F(m) \cdot A_{m} x^{m},
$$

where A_{m} is any constant.
The theorem has been only demonstrated for direct powers and any direct function, but it is obvious that the same proof will apply to inverse powers and any inverse function. It is also to be remembered that inverse functions are as well distributive as direct functions.
2. Now, if U be any algebraic function of x, it can, in general, be put under the form

$$
U=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\ldots+A_{n} x^{n}
$$

where $A_{0}, A_{1}, A_{2}, \& c$., are constants.
Hence, since $F\left(x D_{x}\right)$ is distributive, we obtain the more general theorem

$$
F\left(x D_{x}\right) U=\boldsymbol{F}(0) A_{0}+F(1) A_{1} x+F(2) A_{2} x^{2}+\ldots+F(n) A_{n} x^{n}
$$

with the corresponding theorem for inverse functions $\frac{1}{F\left(x D_{x}\right)} U=\frac{1}{F(0)} A_{0}+\frac{1}{F(1)} A_{1} x+\frac{1}{F(2)} A_{2} x^{2}+\ldots+\frac{1}{F(n)} A_{n} x^{n}$.

Examples.

(1.) Let the results of the operations of $a^{x D_{x}}$ and $\frac{1}{a^{x D_{x}}}$ respectively, upon U, be investigated.

They are, respectively,

$$
\begin{aligned}
& A_{0}+a A_{1} x+a^{2} A_{2} x^{2}+\ldots+a^{n} A_{n} x^{n} \\
& \text { Graves, Fellowship Lectures, } 1851 .
\end{aligned}
$$

and

$$
A_{0}+\frac{1}{a_{1}} A x+\frac{1}{a^{2}} A_{2} x^{2}+\ldots+\frac{1}{a^{n}} A_{n} x^{n}
$$

(2.) Let the results of the operations of $F\left(x D_{x}\right)$ and $\frac{1}{F^{\prime}\left(x D_{x}\right)}$, respectively, upon $e^{A_{n} x^{n}}$, be investigated.

The subject being expanded, the results required are, respectively,

$$
F(0) 1+F(n) \frac{A_{n} x^{n}}{1}+F(2 n) \frac{\left(A_{n} x^{n}\right)^{2}}{1.2}+F(3 n) \frac{\left(A_{n} x^{n}\right)^{3}}{1.2 .3}+\& c
$$

and

$$
\frac{1}{F(0)} 1+\frac{1}{F(n)} \frac{A_{n} x^{n}}{1}+\frac{1}{F^{\prime}(2 n)} \frac{\left(A_{n} x^{n}\right)^{2}}{1.2}+\frac{1}{F^{\prime}(3 n)} \frac{\left(A_{n} x^{n}\right)^{3}}{1.2 .3}+\& \mathrm{c}
$$

3. It is easily demonstrable that, whatever be the subject of operation, u,

$$
\begin{gathered}
x D_{x}\left(x D_{x}-1\right) \cdot u=x^{2} D_{x}^{2} \cdot u \\
x D_{x}\left(x D_{x}-1\right)\left(x D_{x}-2\right) \cdot u=x^{3} D_{x}^{3} \cdot u, \\
\text { \&c. }
\end{gathered}
$$

and, generally, that

$$
\begin{array}{r}
x D_{x}\left(x D_{x}-1\right)\left(x D_{x}-2\right) \cdots\left(x D_{x}-n+1\right) \cdot u=x^{n} D_{x}^{n} \cdot u . \\
\text { Boole, Phil. Trans., } 1844 .
\end{array}
$$

Hence it appears that
$x D_{x}\left(x D_{x}-1\right) \cdot .\left(x D_{x}-n+1\right) \cdot x^{m}=m(m-1) \cdot .(m-n+1) \cdot x^{m}$, and consequently that

$$
x D_{x}\left(x D_{x}-1\right) \cdot\left(x D_{x}-n+1\right) \cdot x^{n}=1 \cdot 2 \cdot 3 \ldots n \cdot x^{n}
$$

results which might have been deduced at once from the theorem

$$
F\left(x D_{x}\right) \cdot x^{m}=F(m) \cdot x^{m} .
$$

4. If we operate with the symbol $x D_{x}$ upon $x^{m} v$, we find that

$$
x D_{x} \cdot x^{m} v=x^{m} \cdot\left(x D_{x}+m\right) v
$$

Operating with the same symbol upon both sides of this equation,

$$
\left(x D_{x}\right)^{2} \cdot x^{m} v=x^{m} \cdot\left(x D_{x}+m\right)^{2} v,
$$

and by successive operation,

$$
\left(x D_{x}\right)^{p} \cdot x^{m} v=x^{m} \cdot\left(x D_{x}+m\right)^{p} v
$$

Hence the theorem that, if F be any algebraic function,

$$
\begin{array}{r}
F\left(x D_{x}\right) \cdot x^{m} v=x^{m} F\left(x D_{x}+m\right) v . \\
\text { BooLe, Phil. Trans., } 1844 .
\end{array}
$$

This theorem again holds as well for inverse functions as for direct.
5. By the substitution $x=e^{\theta}$, we obtain a very useful form of the theorem

$$
F\left(x D_{x}\right) \cdot A_{m} x^{m}=F(m) \cdot A_{m} x^{m}
$$

namely,

$$
F\left(D_{\theta}\right) \cdot A_{m} e^{m \theta}=F(m) \cdot A_{m} e^{m \theta} .
$$

This latter form is perhaps more simple, and thus naturally would appear to claim precedence of that given first. The first form, however, is more susceptible of generalization, and lends itself equally to practical application.

And here it may be observed, that the student will derive considerable benefit from the habit of employing transformations similar to that above exhibited. The same theorem is thus regarded from so many distinct points of view, and the chances of its susceptibility of generalization, or useful practical application, proportionably multiplied.

By the same substitution the theorem

$$
F\left(x D_{x}\right) \cdot x^{m} v=x^{m} \cdot F\left(x D_{x}+m\right) v
$$

assumes the form

$$
F\left(D_{\theta}\right) \cdot e^{m \theta} v=e^{m \theta} \cdot F\left(D_{\theta}+m\right) v ;
$$

the following modifications of which are occasionally useful, namely,

$$
e^{-m \theta} F\left(D_{\theta}\right) e^{m \theta} v=F\left(D_{\theta}+m\right) v
$$

and

$$
e^{m \theta} F\left(D_{\theta}\right) e^{-m \theta} v=F\left(D_{\theta}-m\right) v
$$

6. It is known that, if u, v be any functions of θ,

$$
\dot{D_{\theta}} \cdot u v=u \cdot D_{\theta} v+D_{\theta} u \cdot v ;
$$

or, omitting the suffix for the present,

$$
D \cdot u v=u \cdot D v+D u \cdot v,
$$

in connexion with which the student will observe that wherever the symbol (.) immediately follows a symbol of operation,
it is to be understood that such symbol operates on the entire term to its right; whereas, if the same sign immediately follows a subject of operation, it is to be understood that any operation indicated is there terminated.

Operating with D a second time, we get

$$
D^{2} \cdot u v^{\prime}=u \cdot D^{2} v+2 D u \cdot D v+D^{2} u \cdot v ;
$$

and operating a third time with the same symbol,

$$
D^{3} \cdot u v=u \cdot D^{3} v+3 D u \cdot D^{2} v+3 D^{2} u \cdot D v+D^{3} u \cdot v
$$

It is evident that, in the same manner, if n be any integer,
$D^{n} \cdot u v=u . D^{n} v+n D u . D^{n-1} v+\frac{n \cdot n-1}{1.2} D^{2} u \cdot D^{n-2} v+\ldots+D^{n} u \cdot v$.
Arranging these results, now, in a tabular form, we have

$$
\begin{gathered}
u v=u v \\
D \cdot u v=u \cdot D v+D u \cdot v \\
D^{2} \cdot u v=u \cdot D^{2} v+2 D u \cdot D v+D^{2} u \cdot v \\
D^{3} \cdot u v=u \cdot D^{3} v+3 D u \cdot D^{2} v+3 D^{2} u \cdot D v+D^{3} u \cdot v
\end{gathered}
$$

$D^{n} \cdot u v=u \cdot D^{n} v+n D u \cdot D^{n-1} v+\frac{n \cdot n-1}{1.2} D^{2} u \cdot D^{n-2} v+\ldots+D^{n} u \cdot v$.
Multiply the first equation by A_{0}, the second by A_{1}, the third by A_{2}, and so on, and add. Then

$$
\begin{gathered}
\left(A_{0}+A_{1} D+A_{2} D^{2}+A_{3} D^{3}+\ldots+A_{n} D^{n}\right) \cdot u v \\
= \\
u \cdot\left(A_{0}+A_{1} D+A_{2} D^{2}+A_{3} D^{3}+\ldots+A_{n} D^{n}\right) \cdot v \\
\\
+ \\
D u \cdot\left(A_{1}+2 A_{2} D+3 A_{3} D^{2}+4 A_{4} D^{3}+\ldots+n A_{n} D^{n-1}\right) \cdot v \\
\\
+ \\
\frac{D^{2} u}{1.2} \cdot\left(2 A_{2}+3 \cdot 2 \cdot A_{3} D+4 \cdot 3 \cdot A_{4} D^{2}+\ldots+n \cdot n-1 \cdot A_{n} D^{n-2}\right) \cdot v \\
+\& c .
\end{gathered}
$$

But it will be observed that

$$
A_{1}+2 A_{2} D+3 A_{3} D^{2}+4 A_{4} D^{3}+\ldots+n A_{n} D^{n-1}
$$

bears the same relation, in point of character, to

$$
A_{0}+A_{1} D+A_{2} D^{2}+A_{3} D^{3}+A_{4} D^{4}+\ldots+A_{n} D^{n}
$$

as

$$
A_{1}+2 A_{2} x+3 A_{3} x^{2}+4 A_{4} x^{3}+\ldots+n A_{n} x^{n-1}
$$

bears to

$$
A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+A_{4} x^{4}+\ldots+A_{n} x^{n} .
$$

Now, if

$$
A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\ldots+A_{n} x^{n}=F(x),
$$

we write

$$
A_{1}+2 A_{2} x+3 A_{3} x^{2}+\ldots+n A_{n} x^{n-1}=F^{v}(x) ;
$$

and so if

$$
A_{0}+A_{1} D+A_{3} D^{2}+\ldots+A_{n} D^{n}=F(D)
$$

we may write

$$
A_{1}+2 A_{2} D+3 A_{3} D^{2}+\ldots+n A_{n} D^{n-1}=F^{\prime}(D) ;
$$

where all that is meant is, that $F^{\prime \prime}(D)$ bears the same relation in point of character to $F(D)$, as $F^{\prime}(x)$ bears to $F(x)$.

It is obvious that

$$
2 A_{2}+3.2 \cdot A_{3} D+4.3 \cdot A_{4} D^{2}+\ldots+n \cdot n-1 \cdot A_{n} D^{n-2}
$$

bears a similar relation to

$$
A_{1}+2 A_{2} D+3 A_{3} D^{2}+\ldots+n A_{n} D^{n-1},
$$

and may be written

$$
F^{\prime \prime}(D) \text {; }
$$

and so on for the remaining terms.
Hence we derive the important theorem that, if F be any algebraic function,
$F(D) \cdot u v=u \cdot F(D) v+\frac{D u}{1} \cdot F^{\prime}(D) v+\frac{D^{2} u}{1.2} \cdot F^{\prime \prime}(D) v+\mathbb{E} c$.

$$
\text { Hargreave, Phil. Trans., } 1848 .
$$

By the substitution $e^{\theta}=x$, before employed, we obtain a form of this theorem, namely,

$$
\begin{gathered}
F\left(x D_{x}\right) \cdot u v=u \cdot F\left(x D_{x}\right) v+\frac{x D_{x} u}{1} \cdot F^{\prime}\left(x D_{x}\right) v+\frac{\left(x D_{x}\right)^{2} u}{1.2} \cdot F^{\prime \prime}\left(x D_{x}\right) v \\
+\& c .
\end{gathered}
$$

which is equally susceptible of application with that previously given, and at the same time suggests an elegant generalization, which will be exhibited in the following Chapter.
7. It is known that

$$
u \cdot D v=D \cdot u v-D u \cdot v
$$

If for v in this equation we write $D v$, we get

$$
u \cdot D^{2} v=D \cdot u D v-D u \cdot D v
$$

or, by the previous formula,

$$
u \cdot D^{2} v=D(D \cdot u v-D u \cdot v)-D \cdot D u \cdot v+D^{2} u \cdot v
$$

or

$$
u \cdot D^{2} v=D^{2} \cdot u v-2 D \cdot D u \cdot v+D^{2} u \cdot v .
$$

Substituting again in this equation $D v$ for v, and employing both the previous formulx, we get

$$
u \cdot D^{3} v=D^{3} \cdot u v-3 D^{2} \cdot D u \cdot v+3 D \cdot D^{2} u \cdot v-D^{3} u \cdot v
$$

and generally

$$
u \cdot D^{n} v=D^{n} \cdot u v-n D^{n-1} \cdot D u \cdot v+\frac{n \cdot n-1}{1.2} D^{n-2} \cdot D^{2} u \cdot v-\& c .
$$

Hence, in a manner precisely similar to that employed in the last article, we get the corresponding theorem
$u \cdot F(D) v=F(D) \cdot u v-F^{v}(D) \cdot D u \cdot v+F^{\prime \prime}(D) \cdot \frac{D^{2} u}{1 \cdot 2} \cdot v-\& \mathrm{c}$.
Hargreave, Phil. Trans., 1848.

By the substitution $e^{\theta}=x$, as before, we obtain the corresponding form of this theorem,

$$
\begin{gathered}
u \cdot F\left(x D_{x}\right) v=F\left(x D_{x}\right) \cdot u v-F^{\prime}\left(x D_{x}\right) \cdot x D_{x} u \cdot v+F^{\prime \prime}\left(x D_{x}\right) \cdot \frac{\left(x D_{x}\right)^{2} u}{1.2} \cdot v \\
-\& \mathrm{c} .
\end{gathered}
$$

8. It is already known that, if Φ be any algebraic function,

$$
\Phi\left(D_{r}\right) \cdot e^{r x}=\Phi(x) \cdot e^{r x} ;
$$

and, similarly, that, if Ψ be any other algebraic function,

$$
\Psi\left(D_{x}\right) \cdot e^{r x}=\Psi(r) \cdot e^{r x} .
$$

But it is known also that

$$
\Psi\left(D_{x}\right) \cdot \Phi\left(D_{r}\right)=\Phi\left(D_{r}\right) \cdot \Psi\left(D_{x}\right) .
$$

Hence we infer that

$$
\begin{equation*}
\Psi\left(D_{x}\right) \cdot \Phi(x) \cdot e^{r x}=\Phi\left(D_{r}\right) \cdot \Psi(r) \cdot e^{r x} \tag{a}
\end{equation*}
$$

This theorem being written in the slightly different form,

$$
\Psi\left(D_{x}\right) \cdot e^{r x} \Phi(x)=\Phi\left(D_{r}\right) \cdot e^{r x} \Psi(r),
$$

if we multiply both sides by $e^{-r x}$, we obtain the singular result

$$
\Psi\left(D_{x}+r\right) \cdot \Phi(x)=\Phi\left(D_{r}+x\right) \cdot \Psi(r) .
$$

Bronwin, Camb. and Dub. Math. Journal, 1848.

Section II.-Application of preceding Theorems.
9. All differential equations represented by

$$
A x^{\alpha} D_{x}^{\alpha} \cdot y+B x^{\beta} D_{x}^{\beta} \cdot y+\& c .=X
$$

where A, B, \&c. are constants, and X is any algebraic function of the independent variable x only, may obviously be
transformed, by the third article of the previous section, into the shape

$$
\left.\begin{array}{c}
A x D_{x}\left(x D_{x}-1\right) \\
\ldots\left(x D_{x}-a+1\right) \\
+ \\
B x D_{x}\left(x D_{x}-1\right) \\
+\& c\left(x D_{x}-\beta+1\right) \\
+\& c
\end{array}\right\} \cdot y=X
$$

Consequently, the solutions of all such equations are given by the evaluation of the symbolic form

$$
y=\frac{1}{F\left(x D_{x}\right)} \cdot X+\frac{1}{F\left(x D_{x}\right)} \cdot 0
$$

where

$$
F\left(x D_{x}\right)=\left\{\begin{array}{c}
A x D_{x}\left(x D_{x}-1\right) \cdots\left(x D_{x}-a+1\right) \\
+ \\
B x D_{x}\left(x D_{x}-1\right) \\
\ldots\left(x D_{x}-\beta+1\right) \\
+\& c
\end{array}\right.
$$

Now, with regard to the symbolic form of the solution, if we suppose that

$$
X=L+M x+N x^{2}+\ldots+T x^{n}
$$

the value of the first term in the solution is perfectly definite, and, by the second article of the preceding section, is, instantly,

$$
\frac{L}{F(0)}+\frac{M x}{F(1)}+\frac{N x^{2}}{F(2)}+\ldots+\frac{T x^{n}}{F(n)} ;
$$

while the evaluation of the second term gives the arbitrary portion of the solution.

When the roots of the equation

$$
\begin{aligned}
x D_{x}\left(x D_{x}-1\right) \ldots\left(x D_{x}-\alpha\right. & +1)+\frac{B}{A} x D_{x}\left(x D_{x}-1\right) \ldots\left(x D_{x-1} \beta+1\right) \\
& + \text { \&c. }=0
\end{aligned}
$$

are all real and unequal, the arbitrary portion of the solution is given by

$$
\frac{1}{\left(x D_{x}-a\right)\left(x D_{x}-b\right) \ldots+\left(x D_{x}-i\right)} \cdot 0
$$

$a, b, \& c ., i$, being the values of the roots.
Now if A_{m} be any constant, we know that

$$
\left(x D_{x}-m\right) \cdot A_{m} x^{m}=0 .
$$

Consequently the general value of

$$
\frac{N}{x D_{x}-a} \cdot 0=\frac{1}{x D_{x}-a} \cdot 0=C_{a} x^{a}
$$

where C_{a} is any arbitrary constant.
Hence, the general expression above being decomposed into a system of rational fractions, the arbitrary portion of the solution is, in the case of real and unequal roots, given by

$$
C_{a} x^{a}+C_{b} x^{b}+C_{c} x^{c}+\& c .+C_{i} x^{i}
$$

where $C_{a}, C_{b}, C_{c}, \& c ., C_{i}$, are arbitrary constants.
It can be readily seen that

$$
\begin{gathered}
\left(x D_{x}-m\right)^{2} \cdot A_{m} x^{m} \cdot \log x=0, \\
\left(x D_{x}-m\right)^{3} \cdot A_{m} x^{m}(\log x)^{2}=0, \\
\& c .
\end{gathered}
$$

and generally that

$$
\left(x D_{x}-m\right)^{p} \cdot A_{m} x^{m}(\log x)^{p-1}=0
$$

Consequently, if the equation above contain p equal roots, whose common value is a, the arbitrary portion of the solution is given by

$$
C_{a} x^{a} \cdot(\log x)^{p-1}+C_{a}^{\prime} x^{a} \cdot(\log x)^{p-2}+\ldots+C_{i} x^{i}
$$

where $C_{a}, C_{a}^{\prime}, \& c ., C_{i}$, are distinct arbitrary constants.

Finally, when this equation contains pairs of imaginary roots, the form of the arbitrary portion of the solution is

$$
C_{a+b r_{-1}} x^{a+b b-1}+C_{a-b b_{1}} x^{a-b / 1}+\ldots+C_{i} \dot{x}^{i} .
$$

Camb. and Dub. Math. Journal, 1851.
10. Adopting the transformation before employed, $x=e^{\theta}$, we see that, without the first reduction, the same method of solution as that just exhibited will apply to the class of equations represented by

$$
A D_{\theta}^{a} \cdot y+B D_{\theta}^{b} \cdot y+\ldots+T \cdot y=f\left(e^{\theta}, \sin \theta, \cos \theta\right),
$$

and thus, this class can be integrated by a process simple and uniform, equally susceptible of employment in equations of the higher orders as in those of the lower, and, as will be presently seen, directly indicative, in either case, of a corresponding class of partial differential equations with the appropriate form of solution.

In fact, the right-hand member being reduced to the form, now abbreviated,

$$
\Sigma A_{m} e^{m \theta},
$$

where m may be positive or negative, fractional or integer, real or imaginary, the equation becomes

$$
F\left(D_{\theta}\right) \cdot y=\Sigma A_{m} \cdot e^{m \theta},
$$

and consequently the solution required is

$$
y=\Sigma A_{m} \cdot \frac{e^{m \theta}}{F^{\prime}(m)}+\frac{1}{F\left(D_{\theta}\right)} \cdot 0,
$$

and when m is imaginary we may restore the circular function.
As regards the various forms which the arbitrary portion of the solution may assume, according as the roots of

$$
F\left(D_{\theta}\right)=0
$$

are all real and unequal, some equal, or some imaginary, they are given, respectively, by

$$
\begin{align*}
& C_{a} e^{a \theta}+C_{b} e^{i \theta}+\ldots+C_{i} e^{i \theta}, \tag{I.}\\
& C_{a} e^{a \theta} \cdot \theta^{p-1}+C_{a}^{\prime} e^{a \theta} \cdot \theta^{p-2}+\ldots+C_{i} e^{i \theta}, \tag{II.}\\
& C_{a+b-1-1} e^{(a+b b-l-1) \theta}+C_{a-b /-1} e^{(a-b b-1) \theta}+\ldots+C_{i} e^{i \theta}, \tag{III.}
\end{align*}
$$

The germ of this method is to be found in the Chapter of Gregory's Examples which is devoted to the integration of linear differential equations with constant coefficients. That it was never matured seems to have been due to the circumstance that the distributive character of inverse functions was not then recognised, and consequently the method was only applied to the case in which the right-hand member consists of but a single term, $A_{m} e^{m \theta}$.
11. By a single very obvious reduction the solution of the class of differential equations represented by

$$
A(m+\lambda x)^{a} D_{x}^{a} \cdot y+B(m+\lambda x)^{\beta} D_{x}^{\beta} \cdot y+\& c .=X
$$

may now be obtained.
In fact, assume

$$
m+\lambda x=\lambda x^{\prime},
$$

and the differential equation becomes

$$
A \lambda^{a} \cdot x^{\prime a} D_{x^{\prime}}^{a} \cdot y+B \lambda^{\beta} \cdot x^{\prime \beta} D_{x^{\prime}}^{\beta} \cdot y+\& c .=X,
$$

or

$$
F\left(x^{\prime} D_{x}\right) \cdot y=X ;
$$

the solution of which is had, at once and without any further transformation, in terms of x^{\prime}, and therefore the solution of the given equation by the substitution for x^{\prime} of

$$
\frac{m+\lambda x}{\lambda}
$$

Examples.-First Type.

$$
\begin{equation*}
x^{2} D_{x}^{2} y=a x^{m}+b x^{n} \tag{1.}
\end{equation*}
$$

This is equivalent to

$$
x D_{x}\left(x D_{x}-1\right) y=a x^{m}+b x^{n} .
$$

Consequently the symbolic solution is

$$
y=\frac{1}{x D_{x}\left(x D_{x}-1\right)}\left(a x^{m}+b x^{n}\right)+\frac{1}{x D_{x}\left(x D_{x}-1\right)} 0,
$$

and the evaluated solution is

$$
\begin{gather*}
y=\frac{a x^{m}}{m(m-1)}+\frac{b x^{n}}{n(n-1)}+C_{0}+C_{1} x . \\
x^{3} D_{x}^{3} y=a x^{m}+b x^{n} . \tag{2.}
\end{gather*}
$$

This again is equivalent to

$$
x D_{x}\left(x D_{x}-1\right)\left(x D_{x}-2\right) y=a x^{m}+b x^{n}
$$

Consequently the symbolic solution is, omitting the suffix,
$y=\frac{1}{x D(x D-1)(x D-2)}\left(a x^{m}+b x^{n}\right)+\frac{1}{x D(x D-1)(x D-2)} 0$,
and the evaluated solution
$y=\frac{a x^{m}}{m(m-1)(m-2)}+\frac{b x^{n}}{n(n-1)(n-2)}+C_{0}+C_{1} x+C_{2} x^{2}$.

$$
\begin{equation*}
x^{2} D_{x}^{2} y-n x D_{x} y+n y=a x^{m} . \tag{3.}
\end{equation*}
$$

This is equivalent to

$$
\left(x D_{x}-1\right)\left(x D_{x}-n\right) y=a x^{m} ;
$$

whence

$$
\begin{gather*}
y=\frac{a x^{m}}{(m-1)(m-n)}+C_{1} x+C_{2} x^{n} . \\
x^{2} D_{x}^{2} y+3 x D_{x} y+y=\frac{1}{(1-x)^{2}} . \tag{4.}
\end{gather*}
$$

Expanding the right-hand member, this becomes

$$
\left(x D_{x}+1\right)^{2} \cdot y=1+2 x+3 x^{2}+\& c .
$$

Therefore

$$
y=\left(1+\frac{x}{2}+\frac{x^{2}}{3}+\& c .\right)+\frac{C_{1}}{x} \cdot \log x+\frac{C_{2}}{x}
$$

or

$$
y=\log \left(\frac{1}{1-x}\right)^{\frac{1}{x}}+\frac{C_{1}}{x} \log x+\frac{C_{2}}{x}
$$

Examples.-Second Type.

$$
\begin{align*}
& D_{\theta} y+a y=e^{m \theta} \tag{1.}\\
& y=\frac{e^{m \theta}}{m+a}+C e^{-a \theta}
\end{align*}
$$

$$
\begin{equation*}
D_{\theta} y-a y=e^{m \theta} \cos r \theta \tag{2.}
\end{equation*}
$$

Reduced to the shape prescribed, this becomes

$$
\left(D_{\theta}-a\right) \cdot y=\frac{1}{2}\left\{e^{(m+r v-1) \theta}+e^{(m-r \psi-1) \theta}\right\}
$$

and the solution is

$$
y=\frac{1}{2}\left\{\frac{e^{(m+r-1) \theta}}{m+r \sqrt{ }(-1)-a}+\frac{e^{(m-r-1) \theta}}{m-r \sqrt{ }(-1)-a}\right\}+C e^{a \theta}
$$

or, restoring the circular function,

$$
y=e^{m \theta} \cdot \frac{(m-a) \cos r \theta+r \sin r \theta}{(m-a)^{2}+r^{2}}+C e^{a \theta}
$$

$$
\begin{equation*}
D_{\theta}^{2} y+a^{2} y=\cos m \theta \tag{3.}
\end{equation*}
$$

Reduced to the shape prescribed, this becomes

$$
\left(D_{\theta}+a \sqrt{ }-1\right) \cdot\left(D_{\theta}-a \sqrt{ }-1\right) \cdot y=\frac{1}{2}\left(e^{m \theta \gamma-1}+e^{-m \theta /-1}\right)
$$

and the solution is

$$
y=\frac{1}{2}\left(\frac{e^{m \theta_{V}-1}}{a^{2}-m^{2}}+\frac{e^{-m \theta_{V}-1}}{a^{2}-m^{2}}\right)+C_{1} e^{-a \theta_{V}-1}+C_{2} e^{a \theta_{V}-1}
$$

or, restoring the circular function, and substituting for C_{1}, C_{2} suitable equivalents,

$$
y=\frac{\cos m \theta}{a^{2}-m^{2}}+C_{1}^{\prime} \cos a \theta+C_{2}^{\prime} \sin a \theta
$$

$$
\begin{equation*}
D_{\theta}^{4} y+5 D_{\theta}^{2} y+6 y=\sin m \theta \tag{4}
\end{equation*}
$$

This is equivalent to

$$
\left(D_{\theta}^{2}+2\right)\left(D_{\theta}^{2}+3\right) \cdot y=\sin m \theta
$$

which gives

$$
y=\frac{\sin m \theta}{m^{4}-5 m^{2}+6}+C_{1}^{\prime} \cos \left(2^{\frac{1}{2}} x+\alpha\right)+C_{2}^{\prime} \cos \left(3^{\frac{1}{2}} x+\beta\right)
$$

$$
\begin{equation*}
D_{\theta}^{2} y-2 a D_{\theta} y+a^{2} y=\sin m \theta \tag{5.}
\end{equation*}
$$

Reduced to a symbolic shape, this becomes

$$
\left(D_{\theta}-a\right)^{2} \cdot y=\frac{1}{2 \sqrt{ }-1}\left(e^{m \theta_{\sqrt{ } 1}}-e^{-m \theta_{\gamma}-1}\right)
$$

and consequently the solution is, at once, $y=\frac{1}{2 \sqrt{ }-1}\left(\frac{e^{m \theta_{V}-1}}{\{m \sqrt{ }(-1)-a\}^{2}}-\frac{e^{-m \theta_{V}-1}}{\left.\{m \sqrt{ }(-1)+a)^{2}\right\}}\right)+e^{a \theta}\left(C_{1} \theta+C_{2}\right)$
or, the circular function being restored,

$$
y=\frac{\left(a^{2}-m^{2}\right) \sin m \theta+2 a m \cos m \theta}{\left(a^{2}+m^{2}\right)^{2}}+e^{a \theta}\left(C_{1} \theta+C_{2}\right)
$$

CHAPTER IV.

APPLICATION TO THE INTEGRATION OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS.

Section I.-Preliminary Theorems.

It is the principal object of the present Chapter to show that, by a generalization of the principles contained in the previous Chapter, and a suitable development of the consequences of the higher principles, we can obtain similar general methods of solution of corresponding classes of partial differential equations. The solutions of such partial differential equations will be found to be unaffected by the number of independent variables which the equations may contain; but more especial reference is made to those in most common occurrence, containing but two independent variables, x and y.

In the course of the investigation, extensions of many familiar and elementary theorems are furnished, which seem to possess practical utility.

1. It is known that if

$$
u_{m}=f(x, y, z, \& c .)
$$

be a homogeneous function of the $m^{\text {th }}$ degree in the independent variables $x, y, z, \& c$.,

$$
\begin{array}{r}
x D_{x} u_{m}+y D_{y} u_{m}+z D_{z} u_{m}+\& c .=m \cdot u_{m} . \\
\text { EULER, Calc. Diff., p. } 188 .
\end{array}
$$

For conciseness, putting the operating symbol,

$$
x D_{x}+y D_{y}+z D_{z}+\& c \cdot=\nabla
$$

we have then

$$
\nabla \cdot u_{m}=m \cdot u_{m} .
$$

Operating with ∇ upon both sides of this equation,

$$
\nabla^{2} \cdot u_{m}=m^{2} \cdot u_{m}
$$

and, by successive operation,

$$
\nabla^{p} \cdot u_{m}=m^{p} \cdot u_{m} .
$$

Hence the theorem that, if F be any algebraie function,

$$
F(\nabla) \cdot u_{m}=F(m) \cdot u_{m} .
$$

It is obvious that this theorem holds as well for inverse functions as for direct, and that if we suppose the number of independent variables reduced to one, we obtain the fundamental theorem of the Third Chapter, namely,

$$
F\left(x D_{x}\right) \cdot A_{m} x^{m}=F(m) \cdot A_{m} x^{m}
$$

By the substitutions
and

$$
x=e^{\phi}, \quad y=e^{\psi}, \& c .
$$

$$
D_{\varphi}+D_{\psi}+\& c .=\square,
$$

we obtain the form of this theorem,

$$
F(\square) \cdot \Theta_{m}\left(e^{\phi}, e^{\psi}, \& c .\right)=F(m) \cdot \Theta_{m}\left(e^{\phi}, e^{\psi}, \& c .\right)
$$

corresponding to

$$
F\left(D_{\theta}\right) \cdot A_{m} e^{m \theta}=F(m) \cdot A_{m} e^{m \theta} .
$$

Camb. and Dub. Math. Journal, 1851.
2. Now if U be any algebraic function of x, y, z, \&c., it can be broken up into sets of homogeneous terms, and put under the form

$$
U=u_{0}+u_{1}+u_{2}+\ldots+u_{n} .
$$

Hence, since $F(\nabla)$ is distributive, we obtain the theorem

$$
F(\nabla) \cdot U=F(0) \cdot u_{0}+F(1) \cdot u_{1}+F(2) \cdot u_{2}+\ldots+F(n) \cdot u_{n}
$$

with the corresponding theorem for inverse functions,

$$
\frac{1}{F(\nabla)} \cdot U=\frac{1}{F(0)} \cdot u_{0}+\frac{1}{F(1)} \cdot u_{1}+\frac{1}{F(2)} \cdot u_{2}+\ldots+\frac{1}{F(n)} \cdot u_{n} .
$$

Examples.
(1.) Let the results of the operations of a^{∇} and $\frac{1}{a^{\nabla}}$, respectively, upon U, be investigated.

They are, respectively,

$$
u_{0}+a \cdot u_{1}+a^{2} \cdot u_{2}+\ldots+a^{n} \cdot u_{n}
$$

and

$$
u_{0}+\frac{1}{a} \cdot u_{1}+\frac{1}{a^{2}} \cdot u_{2}+\ldots+\frac{1}{a^{n}} \cdot u_{n} .
$$

(2.) Let the results of the operations of $F(\nabla)$ and $\frac{1}{F(\nabla)}$, respectively, upon $e^{u_{n}}$, be investigated.

The subject being expanded, the results required are, respectively,

$$
F(0) \cdot 1+F(n) \cdot \frac{u_{n}}{1}+F(2 n) \cdot \frac{u_{n}^{2}}{1.2}+F(3 n) \cdot \frac{u_{n}^{3}}{1.2 .3}+\& c .
$$

and

$$
\frac{1}{F(0)} \cdot 1+\frac{1}{F(n)} \cdot \frac{u_{n}}{1}+\frac{1}{F(2 n)} \cdot \frac{u_{n}^{2}}{1.2}+\frac{1}{F(3 n)} \cdot \frac{u_{n}^{3}}{1.2 .3}+\& c .
$$

3. Since y, z, \&c. are constant relative to x, and therefore D_{x}, D_{y}, \&c., commutative, writing

$$
\begin{gathered}
\nabla_{2}=x^{2} D_{x}^{2}+y^{2} D_{y}^{2}+\ldots+2 x y D_{x} D_{y}+\ldots \\
\nabla_{3}=x^{3} D_{x}^{3}+y^{3} D_{y}^{3}+\ldots+3 x^{2} y D_{x}^{2} D_{y}+3 x y^{2} D_{x} D_{y}^{2}+\ldots \\
\quad \text { \&c. }
\end{gathered}
$$

we have

$$
\begin{gathered}
\nabla(\nabla-1)=\nabla_{2}, \\
\nabla(\nabla-1)(\nabla-2)=\nabla_{3}, \\
\& c .
\end{gathered}
$$

and generally

$$
\nabla(\nabla-1)(\nabla-2) \ldots(\nabla-n+1)=\nabla_{n} .
$$

It appears at once from the fundamental theorem- of this Chapter that

$$
\nabla(\nabla-1)(\nabla-2) \ldots(\nabla-n+1) \cdot u_{n}=1 \cdot 2 \cdot 3 \ldots n \cdot u_{n}
$$

4. It may be well here to investigate a general proof of a theorem first given by Euler (Calc. Diff., p. 188), namely,

$$
\frac{n(n-1) \ldots(n-m+1)}{\bar{m}} \cdot u_{n}=\Sigma \frac{x^{\alpha} D_{x}^{\alpha} \cdot y^{\beta} D_{y}^{\beta} \cdot z^{\gamma} D_{z}^{\gamma} \ldots}{\bar{\alpha} \cdot \bar{\beta} \cdot \bar{\gamma} \ldots} \cdot u_{n} .
$$

where

$$
a+\beta+\gamma+\ldots=m
$$

Now as

$$
(1+a)^{\nabla} U=(1+a)^{x D_{x}} \cdot(1+a)^{y D_{y}} \cdot(1+a)_{-}^{z D_{z}} \ldots U ;
$$

expanding and equating the coefficients of a^{m} on both sides, and then condensing by the formula above,

$$
\frac{\nabla(\nabla-1) \ldots(\nabla-m+1)}{\bar{m}} \cdot \dot{ }=\Sigma \frac{x^{\alpha} D_{x}^{\alpha} \cdot y^{\beta} D_{y}^{\beta} \cdot z^{\gamma} D_{z}^{\gamma} \cdots}{\bar{\alpha} \cdot \bar{\beta} \cdot \bar{\gamma}} \cdot U,
$$

and when $U=u_{n}$, we get Euler's theorem.
Philosophical Magazine, 1852.
5. By a process precisely similar to that employed in the fourth article of the Third Chapter, we obtain the theorem

$$
F(\nabla) \cdot u_{m} V=u_{m} \cdot F(\nabla+m) V,
$$

with its transformed shape,

$$
F(\square) \cdot \Theta_{m}\left(e^{\phi}, e^{\psi}, \& c \cdot\right) V=\Theta_{m}\left(e^{\phi}, e^{\psi}, \& c \cdot\right) \cdot F(\square+m) V
$$

analogous, respectively to

$$
F\left(x D_{x}\right) \cdot x^{m} v=x^{m} \cdot F\left(x D_{x}+m\right) v,
$$

with its transformed shape

$$
F\left(D_{\theta}\right) \cdot e^{m \theta} v=e^{m \theta} \cdot F\left(D_{\theta}+m\right) v
$$

Philosophical Magazine, 1852.
6. It is easily seen that if U, V be any functions of $\phi, \psi, \& c$.

$$
\square \cdot U V=U \cdot \square V+\square U . V .
$$

Operating with \square a second time, we get

$$
\square^{2} \cdot U V=U \cdot \square^{2} V+2 \square U \cdot \square V+\square^{2} U \cdot V ;
$$

and operating a third time with the same symbol,

$$
\square^{3} \cdot U V=U \cdot \square^{3} V+3 \square V \cdot \square^{2} V+3 \square^{2} U \cdot \square V+\square^{3} U . V .
$$

It is evident that, in the same manner, if n be any integer,
$\square^{n} \cdot U V=U \cdot \square^{n} V+n \square U \cdot \square^{n-1} V+\frac{n \cdot n-1}{1.2} \square^{2} U . \square^{n-2} V+\& \mathrm{c} \cdot+\square^{n} U . V$.
Arranging these results as in the sixth article of the previous Chapter, and employing a process identical with that there exhibited, we obtain the theorem
$F(\square) \cdot U V=U \cdot F(\square) V+\frac{\square U}{1} \cdot F^{\prime \prime}(\square) V+\frac{\square^{2} U}{1.2} \cdot F^{\prime \prime}(\square) V+\& c \cdot$,
with its transformation
$F(\nabla) \cdot U V=U \cdot F(\nabla) V+\frac{\nabla U}{1} \cdot F^{\prime}(\nabla) V+\frac{\nabla^{2} U}{1.2} \cdot F^{\prime \prime}(\nabla) V+\& \mathrm{c}$.
where U and V are now functions of the variables x, y, z, \&c. and ∇ is the symbol before employed.
7. Again, by a process identical with that employed in the seventh article of the preceding Chapter, we obtain the theorem, that if U, V be any functions of $\phi, \psi, \& c$.,

$$
U \cdot F(\square) V=F(\square) \cdot U V-F^{\prime}(\square) \cdot \square U \cdot V+F^{\prime \prime}(\square) \cdot \frac{\square^{2} U}{1.2} \cdot V-\& c .
$$

with its transformation
$U \cdot F(\nabla) V=F(\nabla) \cdot U V-F^{\prime \prime}(\nabla) \cdot \nabla U \cdot V+F^{\prime \prime}(\nabla) \cdot \frac{\nabla^{2} U}{1.2} \cdot V-\& c$.
Philosophical Magazine, 1852.
8. It has been observed that, as

$$
D_{\theta}^{2} \cdot \cos m \theta=-m^{2} \cdot \cos m \theta
$$

and

$$
D_{\theta}^{2} \cdot \sin m \theta=-m^{2} \cdot \sin m \theta
$$

so

$$
f\left(D_{\theta}^{2}\right) \cdot \cos m \theta=f\left(-m^{2}\right) \cdot \cos m \theta
$$

and

$$
f\left(D_{\theta}^{2}\right) \cdot \sin m \theta=f\left(-m^{2}\right) \cdot \sin m \theta
$$

Gregory, Examples.
More generally, it is plain that

$$
F\left(\nabla^{2}\right) \cdot\left\{u_{m /-1}+u_{-m v-1}\right\}=F\left(-m^{2}\right) \cdot\left\{u_{m v-1}+u_{-m v-1}\right\} \cdot
$$

Section II.-Application of preceding Theorems.

9. All partial differential equations represented by

$$
A_{\nabla_{a}} z+B_{\nabla_{\beta}} z+\ldots=\Omega,
$$

or, in the expanded form, by

$$
\left.\begin{array}{rl}
A\left(x^{\alpha} D_{x}^{\alpha} z+\alpha x^{\alpha-1} y D_{x}^{\alpha-1} D_{y} z\right. & \left.+\frac{\alpha(\alpha-1)}{1.2} x^{\alpha-2} y^{2} D_{x}^{\alpha-2} D_{y}^{2} z+. .\right) \\
& + \\
B\left(x^{\beta} D_{x}^{\beta} z+\beta x^{\beta-1} y D_{x}^{\beta-1} D_{y} z\right. & \left.+\frac{\beta(\beta-1)}{1.2} x^{\beta-2} y^{2} D_{x}^{\beta-2} D_{y}^{2} z+. .\right) \\
+ & \& c .
\end{array}\right\}=\Omega,
$$

where A, B, \&c. are constants, and Ω is any algebraic function of the independent variables x and y, may obviously be transformed, by the third article of the previous section, into the shape

$$
\left.\begin{array}{c}
A \nabla(\nabla-1) \\
+ \\
+ \\
B \nabla(\nabla-a+1) \\
\\
+\& c(\nabla-\beta+1) \\
+\& c .
\end{array}\right\} \cdot z=\Omega .
$$

Consequently, the solutions of all such equations are given by the evaluation of the symbolic form

$$
z=\frac{1}{F(\nabla)} \cdot \Omega+\frac{1}{F(\nabla)} \cdot 0
$$

where

$$
F(\nabla)=A_{\nabla}(\nabla-1) \cdots(\nabla-\alpha+1)+B_{\nabla}(\nabla-1) \ldots(\nabla-\beta+1) .
$$

Now the value of the first term in the solution is perfectly definite, and can be had at once by the second article of this Chapter. It will appear, moreover, that the number and character of the arbitrary functions in a solution, which are due solely to the second term, are unaffected by the number of independent variables which the equation may contain, and are dependent solely on its order.

In fact, when the roots of the equation
$\nabla(\nabla-1) \cdots(\nabla-\alpha+1)+\frac{B}{A} \nabla(\nabla-1) \cdots(\nabla-\beta+1)+\& c .=0$.
are all real and unequal, the arbitrary portion of the solution is of the form

$$
u_{a}+u_{b}+u_{c}+\ldots+u_{i}
$$

$a, b, c, \ldots i$ being the values of the roots, and u_{a}, u_{b}, u_{c}, \&c. being homogeneous functions in $x, y, \& c$. of the given degrees $a, b, c, \& c$. , respectively, but whose forms are arbitrary.*

[^2]When it contains p equal roots, whose common value is a, the form of the arbitrary portion of the solution is

$$
u_{a} \cdot(\log x+\log y)^{p-1}+v_{a} \cdot(\log x+\log y)^{p-2}+\& \in c \cdot+u_{b}+u_{c}+\& c .
$$

where u_{a}, v_{a}, \&c. are different arbitrary homogeneous functions of the same degree.

Finally, when this equation contains pairs of imaginary roots, the form of the arbitrary portion of the solution is

$$
u_{a+b v-1}+u_{a-b v-1}+u_{c}+\ldots+u_{i}
$$

Camb. und Dub. Math. Journal, 1851.
10. Thus it appears that the solution of an ordinary linear differential equation of the class represented by

$$
A x^{\alpha} D_{x}^{\alpha} y+B x^{\beta} D_{x}^{\beta} y+\mathbb{d c} .=M x^{m}+N x^{n}+\& c .
$$

being given, we can at once write down the solution of a partial differential equation of the class represented by

$$
\left.\begin{array}{c}
A\left(x^{a} D_{x}^{a} \cdot z+\alpha x^{\alpha-1} y D_{x}^{\alpha-1} D_{y} \cdot z+\& \mathrm{c} .\right)^{\circ} \\
B\left(x^{\beta} D_{x}^{\beta} \cdot z+\beta x^{\beta-1} y D_{x}^{\beta-1} D_{y} \cdot z+\& \mathrm{c} .\right) \\
+\& \mathrm{c} .
\end{array}\right\}=\Theta_{m}+\Theta_{n}+\& \mathrm{cc} .
$$

by substituting for $M x^{m}, N x^{n}, \& c$. the corresponding known homogeneous functions $\Theta_{m}, \Theta_{n}, \& c$., and by introducing for each term in the solution of the ordinary linear differential equation in which an arbitrary constant enters, such as $C_{m} x^{m}$, a homogeneous function of the same degree, but of arbitrary form in x and y.
11. It is obvious that the same method of solution as that just exhibited will apply to the class of partial differential equations represented by

$$
A \square^{a} z+B \square^{b} z+\ldots+T z=f\left(e^{\phi}, e^{\psi}, \sin \phi, \cos \phi, \sin \psi, \cos \psi\right),
$$

where, as before,

$$
\square=I_{\phi}+D_{\psi} .
$$

In fact, this equation being thrown into the symbolic shape,

$$
F(\square) z=\Sigma A_{m, n} e^{m \phi+n \psi} \text {, }
$$

where m, n may be positive or negative, fractional or integer, real or imaginary, the solution is

$$
z=\mathbf{\Sigma} A_{m, n} \frac{e^{m \phi+n \psi}}{F(m+n)}+\frac{1}{F(\square)} \cdot 0,
$$

and where m or n is imaginary, we may restore the circular functions.

As regards the various forms which the arbitrary portion of the solution may assume, according as the roots of

$$
F(\square)=0
$$

are all real and unequal, some equal, or some imaginary, they are given, respectively, by

$$
\begin{align*}
& u_{a}\left(e^{\phi}, e^{\psi}\right)+u_{b}\left(e^{\phi}, e^{\psi}\right)+\& \mathrm{c} .+u_{i}\left(e^{\phi}, e^{\psi}\right), \tag{1.}\\
& u_{a}\left(e^{\phi}, e^{\psi}\right) \cdot(\phi+\psi)^{p-1}+v_{a}\left(e^{\phi}, e^{\psi}\right) \cdot(\phi+\psi)^{p-2}+\& \mathrm{c} .+u_{i}\left(e^{\phi}, e^{\psi}\right), \text { (II.) } \\
& u_{a+b-b-1}\left(e^{\phi}, e^{\psi}\right)+u_{a-b-1}\left(e^{\phi}, e^{\psi}\right)+\& c .+u_{i}\left(e^{\phi}, e^{\psi}\right) . \tag{III.}
\end{align*}
$$

Camb. and Dub. Math. Journal, 1853.
12. By a similar reduction to that employed in the eleventh article of the Third Chapter, we can obtain at once the solution of the class of partial differential equations represented by

$$
\left.\begin{array}{c}
A\left\{(m+\lambda x)^{\alpha} D_{x}^{\alpha} \cdot z+a(m+\lambda x)^{\alpha-1}(n+\lambda y) D_{x}^{\alpha-1} D_{y} \cdot z\right. \\
\left.+\frac{\alpha(\alpha-1}{1.2}(m+\lambda x)^{a-2}(n+\lambda y)^{2} D_{x}^{\alpha-2} D_{y}^{2} \cdot z+\& c \cdot\right\} \\
+ \\
B\left\{(m+\lambda x)^{\beta} D_{x}^{\beta} \cdot z+\beta(m+\lambda x)^{\beta-1}(n+\lambda y) D_{x}^{\beta-1} D_{y} \cdot z\right. \\
\left.+\frac{\beta(\beta-1)}{1.2}(m+\lambda x)^{\beta-2}(n+\lambda y)^{2} D_{x}^{\beta-2} D_{y}^{2} \cdot z+\& c \cdot\right\} \\
+\& c .
\end{array}\right\}=\Omega .
$$

In fact, assume

$$
m+\lambda x=\lambda x^{\prime}, n+\lambda y=\lambda y^{\prime},
$$

and the equation becomes of the form

$$
F\left(\nabla^{\prime}\right) \cdot z=\Omega
$$

and, without any further transformation, we get the solution in terms of x^{\prime} and y^{\prime}, for which the proper values being substituted from the assumptions stated, the solution required is had.

Philosophical Magazine, 1852.

Examples.-First Type.

$$
\begin{equation*}
x^{2} D_{x}^{2} \cdot z+2 x y D_{x} D_{y} \cdot z+y^{2} D_{y}^{2} \cdot z=\Theta_{m}+\Theta_{n} \tag{1}
\end{equation*}
$$

where Θ_{m}, Θ_{n}, are given homogeneous functions in x and y of the $m^{\text {th }}$ and $n^{\text {th }}$ degrees respectively.

The symbolic solution is

$$
z=\frac{1}{\nabla(\nabla-1)}\left(\Theta_{m}+\Theta_{n}\right)+\frac{1}{\nabla(\nabla-1)} 0,
$$

and the evaluated solution

$$
\left.\begin{array}{c}
z=\frac{\Theta_{m}}{m(m-1)}+\frac{\Theta_{n}}{n(n-1)}+u_{0}+u_{1} . \\
x^{3} D_{x}^{3} \cdot u+y^{3} D_{y}^{2} \cdot u+z^{3} D_{x}^{3} \cdot u \tag{2}\\
+ \\
3\left(x^{2} y D_{x}^{2} D_{y} u+x^{2} z D_{z}^{2} D_{z} u+x y^{2} D_{x} D_{y}^{2} u+\& c .\right)
\end{array}\right\}=\Phi_{m}+\Phi_{n},
$$

where, as before, Φ_{m}, Φ_{n} are given homogeneous functions in x, y, z.

The evaluated solution is

$$
u=\frac{\Phi_{m}}{m(m-1)(m-2)}+\frac{\Phi_{n}}{n(n-1)(n-2)}+u_{o}+u_{1}+u_{2} .
$$

$$
\begin{equation*}
x^{2} D_{x}^{2} z+2 x y D_{x} D_{y} z+y^{2} D_{y}^{2} z-n\left(x D_{x} z+y D_{y} z\right)+n z=\Theta_{m} . \tag{3}
\end{equation*}
$$

This is equivalent to

$$
(\nabla-1)(\nabla-n) \cdot z=\Theta_{m} .
$$

Consequently,

$$
z=\frac{\Theta_{m}}{(m-1)(m-n)}+u_{1}+u_{n} \cdot *
$$

$$
\begin{gather*}
x^{2} D_{x}^{2} \cdot z+2 x y D_{x} D_{y} \cdot z+y^{2} D_{y}^{2} \cdot z+3\left(x D_{x} \cdot z+y D_{y} \cdot z\right) \tag{4}\\
+z=\frac{1}{\left(1-\theta_{1}\right)^{2}},
\end{gather*}
$$

where Θ_{1} is a given homogeneous function of the first degree in x and y.

Then

$$
(\nabla+1)^{2} \cdot z=1+2 \Theta_{1}+3 \Theta_{1}^{2}+\& c .
$$

and consequently

$$
z=\left(1+\frac{\Theta_{1}}{2}+\frac{\theta_{1}^{2}}{3}+\& \mathrm{c} \cdot\right)+u_{-1} \cdot(\log x+\log y)+v_{-1},
$$

or

$$
z=\log \left(\frac{1}{1-\theta_{1}}\right)^{\frac{1}{\theta^{1}}}+u_{-1} \cdot(\log x+\log y)+v_{-1}
$$

where u_{-1}, v_{-1} are different arbitrary homogeneous functions in x, y of the degree $-\mathbf{1}$.

* The solution, then, of

$$
x^{2} D_{x}^{2} z+2 x y D_{x} D_{y} z+y^{2} D_{y}^{2} z-n\left(x D_{x} z+y D_{y} z\right)+n z=0
$$

is, simply,

$$
z=u_{n}+u_{1}
$$

If $n=-\frac{3}{m-1}$, it is shown by the Rev. Professor Jellett, in his masterly Treatise on the Calculus of Variations (Dublin, 1850, p. 253), that this value of z renders the integral

$$
\iint(p x+q y-z)^{m} d x d y ;
$$

or, as I would prefer writing it, the integral

$$
\iint\left(x D_{x} z+y D_{y} z-z\right)^{m} d x d y:
$$

a maximum or a minimum, within certain assigned limits. The investigation of the relation between the form of the differential solution as above given, and the form of its integral, together with the accidental discovery of the fundamental theorem of the Third Chapter, furnished the germs of the present Treatise. See Appendix A, On the Calculus of Variations.
(5) $x^{2} D_{x}^{2} \cdot z+2 x y D_{x} D_{y} \cdot z+y^{2} D_{y}^{2} \cdot z-m(m-1) z=\Theta_{x}$.

Then

$$
z=\frac{\Theta_{n}}{n(n-1)-m(m-1)}+u_{a}+u_{\beta},
$$

where α and β are the roots of the equation

$$
\begin{gather*}
w^{2}-w-m(m-1)=0 . \\
x D_{x} \cdot w+y D_{y} \cdot w+z D_{z} \cdot w-a w=\frac{x y}{z} . \tag{6.}
\end{gather*}
$$

Gregory, Examples.

Thrown into the symbolic shape, this equation becomes

$$
(\nabla-a) w=\frac{x y}{z}
$$

and therefore the solution is

$$
w=\frac{1}{1-a} \cdot \frac{x y}{z}+u_{a},
$$

where u_{a} is an arbitrary homogeneous function in x, y, z of the degree a.

More generally, the solution of

$$
x D_{x} \cdot w+y D_{y} \cdot w+z D_{z} \cdot w-a w=\frac{\Theta_{m}}{\Theta_{n}}
$$

is

$$
w=\frac{1}{(m-n)-a} \cdot \frac{\Theta_{m}}{\Theta_{n}}+u_{a} .
$$

(7) $x^{n} D_{x}^{n} . z+n x^{n-1} y D_{x}^{n-1} D_{y} . z+\frac{n \cdot n-1}{1.2} x^{n-2} y^{2} D_{x}^{n-2} D_{y}^{2} \cdot z+\& \mathrm{c} .=0$.

> Gregory, Examples.

The symbolic shape of this equation is, by the third article of this Chapter,

$$
\nabla(\nabla-1)(\nabla-2) \cdots(\nabla-n+1) \cdot z=0 .
$$

Consequently its solution is, at once,

$$
z=u_{0}+u_{1}+u_{2}+\ldots+u_{n-1}
$$

More generally, the solution of
$x^{n} D_{x}^{n} z+n x^{n-1} y D_{x}^{n-1} D_{y} z+\frac{n(n-1)}{1.2} x^{n-2} y^{2} D_{x}^{n-2} D_{y}^{2} z+\ldots=\Theta_{a}+\Theta_{b}$ is
$z=\frac{\theta_{a}}{a(a-1) \cdot .(a-n+1)}+\frac{\theta_{b}}{b(b-1) \cdot .(b-n+1)}+u_{o}+u_{1}+. .+u_{n-1}$.
The simplicity of the method exhibited in this last example, when compared with the artificial and laborious processes which have been employed for its solution, seems to illustrate, in a remarkable degree, the power of the Calculus of Operations as an instrument of integration, and the facility with which it admits of manipulation.

$$
\begin{equation*}
x D_{x} z+y D_{y} z=2 x y \sqrt{ }\left(a^{2}-z^{2}\right) \tag{8.}
\end{equation*}
$$

Gregory, Examples.
This assumes the symbolic shape

$$
\nabla \cdot \sin ^{-1} \frac{z}{a}=2 x y
$$

and its solution is therefore

$$
\frac{z}{a}=\sin \left(x y+u_{0}\right) .
$$

More generally, the solution of

$$
x D_{x} w+y D_{y} w+z D_{z} w=m \Theta_{m} \cdot \sqrt{ }\left(a^{2}-w^{2}\right)
$$

is

$$
\frac{w}{a}=\sin \left(\Theta_{m}+u_{0}\right)
$$

$$
\begin{equation*}
a x D_{x} w+b y D_{y} w+c z D_{z} w-n w=0 . \tag{9.}
\end{equation*}
$$

This equation is reducible to

$$
x^{\frac{1}{a}} D_{x_{a}^{\frac{1}{a}}} \cdot w+y^{\frac{1}{b}} \cdot D_{y_{b}}{ }^{1} \cdot w+z^{\frac{1}{c}} D_{z^{\frac{1}{2}}} \cdot w-n w=0,
$$

whence

$$
w=u_{n}\left(x^{\frac{1}{a}}, y^{\frac{1}{b}}, z^{\frac{1}{c}}\right)
$$

And, generally, since
$F\left(x D_{x}, y D_{y}, z D_{z}, \& c.\right) . A x^{m} y^{n} z^{p} \ldots=F(m, n, p, \& c.) . A x^{m} y^{n} z^{p} .$. it appears that the solution of all partial differential equations of the type
$\left(a x D_{x}+b y D_{y}+\& c .-\alpha\right)\left(a^{\prime} x D_{x}+b^{\prime} y D_{y}+\& c .-\beta\right) \ldots u=V$,
where

$$
V=\Sigma A x^{m} y^{n} \ldots
$$

is given by

$$
u=\left\{\begin{array}{c}
\Sigma \frac{A x^{m} y^{n} \ldots}{(a m+b n+\& c .-\alpha)\left(a^{\prime} m+b^{\prime} n+\& c .-\beta\right) \cdots} \\
+u_{a}\left(x^{\frac{1}{a}}, y^{\frac{1}{b}}, \& c .\right)+u_{\beta}\left(x^{\frac{1}{a}}, y^{\frac{1}{b}}, \& c .\right)
\end{array}\right.
$$

Curtis, Camb. and Dub. Math. Journal, 1854.
More generally, the solution of all partial differential equations of the type

$$
F\left(x D_{x}, y D_{y}, z D_{z}, \&<c .\right) \cdot u=\Sigma A x^{m} y^{n} z^{p} \ldots
$$

is given by

$$
u=\mathbf{\Sigma} \frac{A x^{m} y^{n} z^{p} \ldots}{F(m, n, p, \& c .)}+\frac{1}{F\left(x D_{x}, y D_{y}, z D_{z}, \& c .\right)} \mathbf{0} .
$$

(10.) $x^{2} D_{x}^{2} z-2 x y D_{x} D_{y} z+y^{2} D_{y}^{2} z+x D_{x} z+y D_{y} z-n z=0$.

This equation is reducible to

$$
\left(x D_{x}-y D_{y}\right)^{2} z-n z=0
$$

whence

$$
z=u_{v n}\left(x, \frac{1}{y}\right)+u_{-v n}\left(x, \frac{1}{y}\right)
$$

$$
\begin{equation*}
x^{2} D_{x}^{2} z-y^{2} D_{y}^{2} z+x D_{x} z-y D_{y} z=0 \tag{11.}
\end{equation*}
$$

Gregory, Examples.
This equation is easily reducible to

$$
\left(x D_{x}+y D_{y}\right) \cdot\left(x D_{x}-y D_{y}\right) \cdot z=0
$$

whence

$$
z=u_{0}(x, y)+v_{0}\left(x, \frac{1}{y}\right)
$$

$$
\begin{align*}
& D_{x}^{2} z-a^{2} D_{y}^{2} z+2 a b D_{x} z+2 a^{2} b D_{y} z=0 \tag{12.}\\
& \text { GREGORY, Examples. }
\end{align*}
$$

This equation may be obviously thrown into the form

$$
\left(D_{x}-D_{\frac{y}{a}}+2 a b\right)\left(D_{x}+D_{\frac{y}{a}}\right) \cdot z=0,
$$

and the solution is

$$
\begin{align*}
& z=u_{-2 a b}\left(e^{x}, e^{-\frac{y}{a}}\right)+u_{0}\left(e^{x}, e^{\frac{y}{a}}\right) \\
& D_{x}^{2} z-2 a D_{x} D_{y} z+a^{2} D_{y}^{2} z=0 \tag{13.}
\end{align*}
$$

Gregory, Examples.
This equation is equivalent to

$$
\left(D_{x}-a D_{y}\right)^{2} \cdot z=0,
$$

and consequently the solution is

$$
z=\left(x-\frac{y}{a}\right) \cdot u_{0}\left(e^{x}, e^{-\frac{y}{a}}\right)+v_{0}\left(e^{x}, e^{-\frac{y}{a}}\right) ;
$$

or, as it may be written,

$$
z=\left(x-\frac{y}{a}\right) \cdot \phi\left(x+\frac{y}{a}\right)+\psi\left(x+\frac{y}{a}\right)
$$

$$
\begin{equation*}
D_{t_{t}^{2}}^{2} z=\frac{d^{2} z}{d t^{2}}=a^{2} D_{x}^{2} z, \tag{14.}
\end{equation*}
$$

the equation which represents the motion of vibrating chords, and of the pulses produced by a disturbance in a fine cylindrical column of air.

This equation is equivalent to

$$
\left(D_{t}-a D_{x}\right)\left(D_{t}+a D_{x}\right) \cdot z=0,
$$

and its solution is, at once,

$$
z=u_{0}\left(e^{t}, e^{-\frac{x}{a}}\right)+v_{0}\left(e^{t}, e^{+\frac{x}{a}}\right)
$$

the ordinary form of which is

$$
z=\Phi(x+a t)+\Psi(x-a t)
$$

(15.) $D_{t}^{2} z=\frac{d^{2} z}{d t^{2}}=a^{2}\left(D_{x}^{2} z+2 D_{x} D_{y} z+D_{y}^{2} z\right)$.

This equation is equivalent to

$$
\left\{D_{t}-a\left(D_{x}+D_{y}\right)\right\} \cdot\left\{D_{t}+a\left(D_{x}+D_{y}\right)\right\} \cdot z=0
$$

the solution of which is

$$
z=u_{0}\left(e^{t}, e^{-\frac{x}{a}}, e^{-\frac{y}{a}}\right)+v_{0}\left(e^{t}, e^{+\frac{x}{a}}, e^{+\frac{y}{a}}\right)
$$

the more ordinary form of which would be

$$
z=\Phi(x+a t, y+a t)+\Psi(x-a t, y-a t)
$$

In the investigation of the physical interpretation of the differential equation, it must be observed that, although, in plane geometry,

$$
\dot{D}_{x}^{2}+D_{y}^{2}
$$

and, in geometry of three dimensions,

$$
D_{x}^{2}+D_{y}^{2}+D_{z}^{2}
$$

are unaffected by transformation of coordinates; or are, in fact, reproduced; this does not hold in the case of

$$
\left(D_{x}+D_{y}\right)^{2}, \quad \text { and } \quad\left(D_{x}+D_{y}+D_{z}\right)^{2}
$$

Examples.-Second Type.

$$
\begin{align*}
& D_{\phi} z+D_{\psi} z+a z=e^{n \cdot \phi+n \psi}, \tag{1.}\\
& \quad z=\frac{e^{m \phi \cdot n \psi}}{m+n+a}+u_{-a}\left(e^{\phi}, e^{\psi}\right) .
\end{align*}
$$

$$
\begin{equation*}
D_{\phi} z+D_{\psi} z-a z=e^{m \phi+n \psi} \cos (r \phi+s \psi) \tag{2.}
\end{equation*}
$$

Reduced to the shape prescribed, this becomes

$$
(\square-a) \cdot z=\frac{1}{2}\left\{e^{(m+r \psi-1) \phi+(n+8 v-1) \psi}+e^{(m-r v-1) \phi+(n-s \gamma-1) \psi}\right\}
$$

and the solution is

$$
z=\frac{1}{2}\left\{\frac{e^{(m+r v-1) \phi+(n+s v-1) \psi}}{m+n-a+(r+s) \sqrt{ }-1}+\frac{e^{(m-r-1) \phi+(n-s-1) \psi}}{m+n-a-(r+s) \sqrt{ }-1}\right\}+u_{a}\left(e^{\phi}, e^{\psi}\right)
$$

or, restoring the circular function,

$$
z=\epsilon^{m \phi+n \psi} \cdot \frac{(m+n-a) \cos (r \phi+s \psi)+(r+s) \sin (r \phi+s \psi)}{(m+n-a)^{2}+(r+s)^{2}}+u_{a}\left(e^{\phi}, e^{\psi}\right)
$$

(3.) $D_{\phi}^{2} z+2 D_{\phi} D_{\psi} z+D_{\psi}^{2} z+a^{2} z=\cos (m \phi+n \psi)$.

Reduced to the shape prescribed, this becomes

$$
(\square+a \sqrt{ }-1) \cdot(\square-a \sqrt{ }-1) \cdot z=\frac{1}{2}\left\{e^{(m \phi+n \psi) /-1}+e^{-(m \phi+n \psi) /-1}\right\}
$$

and the solution is

$$
z=\frac{1}{2}\left\{\frac{e^{(m \phi+n \psi) \gamma-1}}{a^{2}-(m+n)^{2}}+\frac{e^{-(m \phi+n \psi) \gamma-1}}{a^{2}-(m+n)^{2}}\right\}+u_{-a v-1}\left(e^{\phi}, e^{\psi}\right)+u_{a v-1}\left(e^{\phi}, e^{\psi}\right)
$$

or, restoring the circular function,

$$
z=\frac{\cos (m \phi+n \psi)}{a^{2}-(m+n)^{2}}+u_{-a v-1}\left(e^{\phi}, e^{\psi}\right)+u_{a v-1}\left(e^{\phi}, e^{\psi}\right)
$$

It may be observed that pairs of conjugate arbitrary functions, such as those just exhibited, are imaginary only in appearance, being equivalent to

$$
\cos \frac{1}{2} a(\phi+\psi) \cdot \Phi(\phi-\psi)+\sin \frac{1}{2} a(\phi+\psi) \cdot \Psi(\phi-\psi)
$$

(4.) $D_{\phi}^{2} z+2 D_{\phi} D_{\psi} z+D_{\psi}^{2} z-2 a\left(D_{\phi} z+D_{\psi} z\right)+a^{2} z=\sin (m \phi+n \psi)$.

Reduced to the symbolic shape, this becomes

$$
(\square-a)^{2} \cdot z=\frac{1}{2 \sqrt{ }-1}\left\{e^{(m \phi+n \psi) \gamma-1}-e^{-(m \phi+n \psi) \gamma-1}\right\} ;
$$

and consequently the solution is, at once,

$$
z=\left\{\begin{array}{c}
\frac{1}{2 \sqrt{ }-1}\left\{\frac{e^{(m \phi+n \psi) /-1}}{\{(m+n) \sqrt{ }-1-a\}^{2}}-\frac{e^{-(m \phi+n \psi) /-1}}{\{(m+n) \sqrt{ }-1+a\}^{2}}\right\} \\
+u_{a}\left(e^{\phi}, e^{\psi}\right) \cdot(\phi+\psi)+v_{a}^{*}\left(e^{\phi}, e^{\psi}\right) ;
\end{array}\right.
$$

or, restoring the circular functions,

$$
z=\left\{\begin{array}{c}
\frac{\left\{a^{2}-(m+n)^{2}\right\} \sin (m \phi+n \psi)+2 a(m+n) \cos (m \phi+n \psi)}{\left\{a^{2}+(m+n)^{2}\right\}^{2}} \\
+u_{a}\left(e^{\phi}, e^{\psi}\right) \cdot(\phi+\psi)+v_{a}\left(e^{\phi}, e^{\psi}\right) .
\end{array}\right.
$$

13. It is indispensable that we should discuss an exceptional case, which will sometimes occur in the employment of the present, as of any other, method of integration.

This arises from the circumstance that the inverse process may generate an infinite coefficient, and can be illustrated by the partial differential equation

$$
x D_{x} z+y D_{y} z-a z=\Theta_{m} .
$$

The solution of this equation, as given by our method, is

$$
z=\frac{\Theta_{m}}{m-a}+u_{a}
$$

in which, when $a=m$, the first term becomes infinite.
To clear away this difficulty, assume in the general solution

$$
u_{a}=v_{a}-\frac{\Theta_{a}}{m-a},
$$

which gives

$$
z=\frac{\Theta_{m}-\Theta_{a}}{m-a}+v_{a}
$$

This becomes indeterminate when $a=m$; therefore, differentiating with respect to a both numerator and denominator, and remembering that

$$
\Theta_{a}=x^{a} f\left(\frac{y}{x}\right)=y^{a} F\left(\frac{x}{y}\right),
$$

and, therefore,

$$
\Theta_{a}=\frac{x^{a} f\left(\frac{y}{x}\right)+y^{a} F\left(\frac{x}{y}\right)}{2}
$$

we find for the solution, in the exceptional case,

$$
z=\Theta_{m} \frac{\log x+\log y}{2}+v_{m}
$$

By an obvious extension it appears that the solution of
is

$$
x D_{x} w+y D_{y} w+z D_{z} w-m w=\Theta_{m}
$$

$$
w=\Theta_{m} \frac{\log x+\log y+\log z}{3}+v_{m}
$$

which of course can be generalized for n independent variables.

Examples.

$$
\begin{equation*}
x D_{x} z+y D_{y} z=c \tag{1.}
\end{equation*}
$$

The solution is

$$
z=c \frac{\log x+\log y}{2}+u_{0}
$$

$$
\begin{equation*}
a D_{\phi} z+b D_{\downarrow} z=c \tag{2.}
\end{equation*}
$$

The solution is

$$
z=\frac{c}{2}\left(\frac{\phi}{a}+\frac{\psi}{b}\right)+u_{0}\left(e^{\frac{\phi}{\bar{a}}}, e^{\frac{\psi}{b}}\right)
$$

$$
\begin{equation*}
x^{2} D_{x}^{2} z-y^{2} D_{y}^{2} z=x y \tag{3.}
\end{equation*}
$$

> Gregory, Examples.

This equation is reducible to

$$
\left(x D_{x}+y D_{y}-1\right)\left(x D_{x}-y D_{y}\right) \cdot z=x y
$$

whence

$$
z=\frac{1}{x D_{x}-y D_{y}} \cdot x y+u_{1}(x, y)+u_{0}\left(x, \frac{1}{y}\right)
$$

or
$z=x y \frac{l x+l \frac{1}{y}}{2}+u_{1}(x, y)+u_{0}\left(x, \frac{1}{y}\right)=x y \log \left(\frac{x}{y}\right)^{\frac{1}{2}}+u_{1}(x, y)+u_{0}\left(x, \frac{1}{y}\right)$.

$$
\begin{equation*}
D_{\theta} y-m y=M e^{m \theta} \tag{4.}
\end{equation*}
$$

The solution is

$$
y=M e^{m \theta} \cdot \theta+C e^{m \theta}
$$

$$
\begin{equation*}
D_{\theta}^{2} y+m^{2} y=\cos m \theta \tag{5.}
\end{equation*}
$$

The general solution of this equation is, in its primary form,

$$
y=\frac{1}{2}\left(\frac{e^{m \theta /-1}}{2 m \sqrt{ }-1} \cdot \theta-\frac{e^{-m \theta /-1}}{2 m \sqrt{ }-1} \cdot \theta\right)+C_{1} e^{m \theta /-1}+C_{1}^{\prime} e^{-m \theta /-1} ;
$$

and, restoring the circular function in the first term, the solution is

$$
y=\frac{\theta}{2 m} \cdot \sin m \theta+C_{2} \cos m \theta+C_{2}^{\prime} \sin m \theta .
$$

Equations of the type exhibited in this example frequently occur in the application of analysis to Physics: as, for instance, in the Lunar Theory, and in that of the perturbed motion of pendulums. In these cases, the independent variable is the time, and it is known that the value of y is then not simply periodic, but increases indefinitely with the time.

$$
\text { (6.) } D_{\phi}^{2} \cdot z+2 D_{\phi} D_{\psi} \cdot z+D_{\psi}^{2} \cdot z+(m+n)^{2} z=\cos (m \phi+n \psi) \text {. }
$$

The solution is

$$
z=\frac{\phi+\psi}{4(m+n)} \cdot \sin (m \phi+n \psi)+u_{(m+n)^{-1}}\left(e^{\phi}, e^{\psi}\right)+u_{-(m+n)^{\gamma-1}}\left(e^{\phi}, e^{\psi}\right) .
$$

CHAPTER V.

integration of various additional classes of differential equations, total and partial.

1. There is an extensive class of differential equations, for the solution of which various methods have been proposed, but all more or less embarrassing to the student. Amongst these methods the most usual is that of Integration by Series, in which an expression is assumed for the dependent variable in terms of the independent variable with indeterminate coefficients and indices, and these are subsequently determined by substitution, in the given equation, of the expression so assumed. This method is, from its indirect and tentative character, unsatisfactory to the student, in actual practice unpleasantly tedious, and, as a process, unsusceptible of generalization.

Let the following examples be proposed for solution:-

$$
\begin{equation*}
D^{2} y+a x^{n} y=0 \tag{I.}
\end{equation*}
$$

Gregory, Examples, p. 340.

$$
\begin{equation*}
x D^{2} y+D y+y=0 \tag{II.}
\end{equation*}
$$

Gregory, Examples, p. 343.

$$
\begin{equation*}
D^{2} y+\frac{2}{x} D y+\left(n^{2}-\frac{2}{x^{2}}\right) y=0 . \tag{III.}
\end{equation*}
$$

Gregory, Examples, p. 313.
If we multiply the first equation by x^{2}, the second by x, and the third by x^{2}, they become, respectively,

$$
\begin{align*}
& x D(x D-1) \cdot y+a x^{n+2} y=0 \\
& (x D)^{2} \cdot y+x y=0 \\
& (x D-1)(x D+2) \cdot y+n^{2} x^{2} y=0 \tag{III'.}
\end{align*}
$$

2. Now the common type of these equations is

$$
F(x D) y+M x^{m} y=0
$$

or, more generally,

$$
F(x D) y+M x^{m} y=X
$$

Let us suppose that

$$
X=\Sigma A_{a} x^{a}
$$

and proceed to solve the more general type.
Operating on both sides with the inverse of $F(x D)$, we get

$$
y+\frac{1}{F(x D)} M x^{m} \cdot y=\frac{1}{F(x D)} X+\frac{1}{F(x D)} 0
$$

or

$$
y+\frac{1}{F(x D)} M x^{m} \cdot y=\Sigma \frac{A_{a} x^{a}}{F(a)}+\Sigma C_{a} x^{a},
$$

where the last term is the ordinary complementary function, upon the supposition that all the roots of

$$
F(u)=0
$$

are real and unequal, and in which, if any modification should arise from the existence of equal or imaginary roots, the generality of the method is not affected.

Now, dissecting the operator in the left-hand member from its subject, and operating with the expansion of its inverse upon the right-hand member, we get
$y=\left\{\begin{array}{rl}\left\{1-\frac{1}{F(x D)} M x^{m}+\frac{1}{F(x D)} M x^{m} \frac{1}{F(x D)} M x^{m}-\& c \cdot\right\} \Sigma \frac{A_{a} x^{a}}{F(a)} \\ & + \\ \left\{1-\frac{1}{F(x D)} M x^{m}+\frac{1}{F(x D)} M x^{m} \frac{1}{F(x D)} M x^{m}-\& c .\right\} \Sigma C_{a} x^{a},\end{array}\right.$.
or the required solution is at once

$$
y=\left\{\begin{array}{l}
\mathbf{\Sigma} \frac{A_{a} x^{a}}{F(a)}\left\{1-\frac{M x^{m}}{F(a+m)}+\frac{\left(M x^{m}\right)^{2}}{F(a+2 m) F(a+m)}-\& c .\right\} \\
\Sigma C_{a} x^{a}\left\{1-\frac{M x^{m}}{F(\alpha+m)}+\frac{\left(M x^{m}\right)^{2}}{F(\alpha+2 m) F(\alpha+m)}-\& c .\right\}
\end{array}\right.
$$

the coefficients within brackets in the first and second great terms differing merely in the substitution of α for a. When $M=0$, it is evident that we fall back upon a class of equations already discussed in the Third Chapter.

That the method admits of easy generalization can be readily now shown. For let the partial differential equation to be solved be represented by the type

$$
F(\nabla) z+\Theta_{m} z=\Omega,
$$

where Θ_{m} is an homogeneous function in x and y of the $m^{\text {th }}$ degree, Ω a mixed function of x, y, and ∇ the symbol

Operate with

$$
x D_{x}+y D_{y} .
$$

$$
\frac{1}{F(\nabla)},
$$

having broken up Ω into sets of homogeneous functions; there results

$$
\left\{1+\frac{1}{F(\nabla)} \Theta_{m}\right\} z=\Sigma \frac{\Theta_{a}}{F(a)}+\Sigma u_{a},
$$

where u_{a} is a homogeneous function of the given degree α, but arbitrary in form; and operating on both sides with the inverse of

$$
\left\{1+\frac{1}{F(\nabla)} \Theta_{m}\right\}
$$

we get at once, as before,

$$
z=\left\{\begin{array}{c}
\Sigma \frac{\Theta_{a}}{F(a)}\left\{1-\frac{\Theta_{m}}{F(a+m)}+\frac{\Theta_{m}^{2}}{F(a+2 m) F(a+m)}-\& c .\right\} \\
+ \\
\Sigma u_{a}\left\{1-\frac{\Theta_{m}}{F(\alpha+m)}+\frac{\Theta_{m}^{2}}{F(\alpha+2 m) F(\alpha+m)}-\& c .\right\}
\end{array}\right.
$$

3. Let us now apply this method to the first example proposed, in its modified form, namely,

$$
x D(x D-1) y+a x^{n+2} y=0 .
$$

Operating on both sides of this equation with

$$
\frac{1}{x D(x D-1)},
$$

we get

$$
y+\frac{1}{x D(x D-1)} a x^{n+2} y=C_{1} x+C_{2}
$$

whence, putting for conciseness $n+2=m$,

$$
y=\left\{1-\frac{1}{x D(x D-1)} a x^{m}+\frac{1}{x D(x D-1)} a x^{m} \frac{1}{x D(x D-1)} a x^{m}-\& C .\right\}\left(C_{1} x+C_{2}\right),
$$

or

$$
y=\left\{\begin{array}{l}
C_{1} x\left\{1-\frac{a x^{m}}{(m+1) m}+\frac{\left(a x^{m}\right)^{2}}{(2 m+1) 2 m(m+1) m}-\& c .\right\} \\
C_{0}\left\{1-\frac{a x^{m}}{m(m-1)}+\frac{+\left(a x^{m}\right)^{2}}{2 m(2 m-1) m(m-1)}-\& c .\right\}
\end{array}\right.
$$

and the solution of the given equation is had by replacing for m its value $n+2$.

When $n=-2$, these series fail, but the solution is seen, by the Third Chapter, to be, in this case,

$$
y=A x^{a}+B x^{\beta},
$$

where a and β are the roots of the quadratic

$$
p(p-1)+a=0 .
$$

In any other conceivable cases of failure of the above series, the solution can be had with equal facility.
4. If it be proposed to integrate the partial differential equation

$$
x^{2} D_{x}^{2} z+2 x y D_{x} D_{y} z+y^{2} D_{y}^{2} z+\Theta_{m} \cdot z=0,
$$

which we know to be reducible to the shape

$$
\nabla(\nabla-1) z+\theta_{m} z=0
$$

we proceed to operate on both sides of this form with
which gives

$$
\frac{1}{\nabla(\nabla-1)},
$$

$$
z+\frac{1}{\nabla(\nabla-1)} \Theta_{m} z=u_{1}+u_{0}
$$

from which we derive, as above,

$$
z=\left\{\begin{array}{l}
u_{1}\left\{1-\frac{\Theta_{m}}{(m+1) m}+\frac{\Theta_{m}^{2}}{(2 m+1) 2 m(m+1) m}-\& c .\right\} \\
u_{0}\left\{1-\frac{\Theta_{m}}{m(m-1)}+\frac{+\Theta_{m}^{2}}{2 m(2 m-1) m(m-1)}-\& c .\right\}
\end{array}\right.
$$

5. Let us now apply the method to the second example proposed, in its modified form, namely,

$$
(x D)^{2} \cdot y+x y=0
$$

premising that its susceptibility of some such method of integration was suggested in the year 1847 by the Rev. Professor Graves.

Operating on both sides of this equation with $\frac{1}{(x D)^{2}}$, we get

$$
y+\frac{1}{(x D)^{2}} x y=C_{1} \log x+C_{2} ;
$$

whence

$$
\begin{aligned}
& y=\left\{1-\frac{1}{(x D)^{2}} x+\frac{1}{(x D)^{2}} x \frac{1}{(x D)^{2}} x-\& c \cdot\right\}\left(C_{1} \log x+C_{2}\right), \\
& \text { or } \\
& y=\left\{\begin{array}{l}
C_{1}\left\{1-x \frac{1}{(1+x D)^{2}}+x^{2} \frac{1}{(2+x D)^{2}(1+x D)^{2}}-\& c .\right\} \log x, \\
\\
C_{2}\left\{1-\frac{x}{1^{2}}+\frac{x^{2}}{1^{2} \cdot 2^{2}}-\frac{x^{3}}{1^{2} \cdot 2^{2} \cdot 3^{2}}+\frac{x^{4}}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 4^{2}}-\& c \cdot\right\} .
\end{array}\right.
\end{aligned}
$$

But

$$
\begin{aligned}
& \frac{1}{(1+x D)^{2}} \log x=\frac{1}{1^{2}}\left(1-\frac{2}{1} x D\right) \log x=\frac{1}{1^{2}}(\log x-2), \\
& \frac{1}{(2+x D)^{2}(1+x D)^{2}} \log x=\frac{1}{1^{2} \cdot 2^{2}}\left\{1-2\left(\frac{1}{1}+\frac{1}{2}\right) x D\right\} \log x \\
&=\frac{1}{1^{2} \cdot 2^{2}}\left\{\log x-2\left(\frac{1}{1}+\frac{1}{2}\right)\right\}, \& c .
\end{aligned}
$$

Hence, finally,
$y=\left\{\begin{array}{l}\left(C_{1} \log x+C_{2}\right)\left(1-\frac{x}{1^{2}}+\frac{x^{2}}{1^{2} \cdot 2^{2}}-\frac{x^{3}}{1^{2} \cdot 2^{2} \cdot 3^{2}}+\& \mathrm{c} \cdot\right\} \\ + \\ \left.2 C_{1}\left\{\frac{1}{1^{2}} x-\frac{1}{1^{2} \cdot 2^{2}}\left(\frac{1}{1}+\frac{1}{2}\right)\right) x^{2}+\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2}}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right) x^{3}-\& c \cdot\right\}\end{array}\right.$
6. If the equation to be integrated had been

$$
x D^{2} y+D y+M x^{m-1} y=0,
$$

its solution is obviously had by the same general method, and is
$y=\left\{\begin{array}{l}C_{1}\left\{1-M x^{m} \frac{1}{(m+x D)^{2}}+\left(M x^{m}\right)^{2} \frac{1}{(2 m+x D)^{2}(m+x D)^{2}}-\& c \cdot\right\} \log x \\ +\left(M x^{m}\right)^{3} \\ C_{2}\left\{1-\frac{M x^{m}}{m^{2}}+\frac{\left(M x^{m}\right)^{2}}{m^{2} \cdot(2 m)^{2}}-\frac{(d c \cdot\} ;}{m^{2} \cdot(2 m)^{2} \cdot(3 m)^{2}}+\right.\end{array}\right.$
or
$y=\left\{\begin{array}{c}\left(C_{1} \log x+C_{2}\right)\left\{1-\frac{M x^{m}}{m^{2}}+\frac{\left(M x^{m}\right)^{2}}{m^{2} \cdot(2 m)^{2}}-\frac{\left(M x^{m}\right)^{3}}{m^{2} \cdot(2 m)^{2} \cdot(3 m)^{2}}+\& c .\right\} \\ + \\ 2 C_{1}\left\{\frac{M x^{m}}{m^{3}}-\frac{m(2+1)\left(M x^{m}\right)^{2}}{m^{3}(2 m)^{3}}+\frac{m^{2}(6+3+2)\left(M x^{m}\right)^{3}}{m^{3}(2 m)^{3}(3 m)^{3}}-\& c .\right\}\end{array}\right.$
7. Similarly, if it be proposed to integrate the partial difrential equation

$$
\nabla_{2} \cdot z+\nabla \cdot z+\theta_{m} \cdot z=0
$$

where

$$
\nabla_{2}=x^{2} D_{x}^{2}+2 x y D_{x} D_{y}+y^{2} D_{y}^{2}
$$

a corresponding reduction gives

$$
z+\frac{1}{\nabla^{2}} \theta_{m} \cdot z=u_{0} \frac{\log x+\log y}{2}+v_{0}
$$

and the symbolic solution is

$$
z=\left(1-\frac{1}{\nabla^{2}} \Theta_{m}+\frac{1}{\nabla^{2}} \Theta_{m} \frac{1}{\nabla^{2}} \Theta_{m}-\& c .\right)\left(u_{0} \frac{\log x+\log y}{2}+v_{0}\right)
$$

Hence
$\boldsymbol{z}=\left\{\begin{array}{c}u_{0}\left\{1-\Theta_{m} \frac{1}{(m+\nabla)^{2}}+\Theta_{m}^{2} \frac{1}{(m+\nabla)^{2}(2 m+\nabla)^{2}}-\& \mathrm{c} .\right\} \frac{\log x+\log y}{2}, \\ + \\ v_{0}\left\{1-\frac{\Theta_{m}}{m^{2}}+\frac{\Theta_{m}^{2}}{m^{2} \cdot(2 m)^{2}}-\frac{\Theta_{m}^{3}}{m^{2} \cdot(2 m)^{2}(3 m)^{2}}+\& \mathrm{c} .\right\} ;\end{array}\right.$
and finally,
$z=\left\{\begin{array}{c}\left(u_{0} \frac{\log x+\log y}{2}+v_{0}\right)\left\{1-\frac{\Theta_{m}}{m^{2}}+\frac{\Theta_{m}^{2}}{m^{2} \cdot(2 m)^{2}}-\frac{\Theta_{m}^{3}}{m^{2} \cdot(2 m)^{2} \cdot(3 m)^{2}}+\& \mathrm{c} .\right\} \\ + \\ 2 u_{0}\left\{\frac{1}{m^{3}} \Theta_{m}-\frac{m(2+1)}{m^{3} \cdot(2 m)^{3}} \Theta_{m}^{2}+\frac{m^{2}(6+3+2)}{m^{3} \cdot(2 m)^{3} \cdot(3 m)^{3}} \Theta_{m}^{3}-\& \mathrm{c} .\right\} .\end{array}\right.$
8. Proceeding now to apply the same method to the modified form of the third example,

$$
(x D-1)(x D+2) y+n^{2} x^{2} \cdot y=0
$$

we get

$$
y+\frac{1}{(x D-1)(x D+2)} n^{2} x^{2} \cdot y=C_{1} x+\frac{C_{2}}{x^{2}}
$$

Consequently the solution is given by

$$
\begin{aligned}
& y=\left\{1-\frac{1}{(x D-1)(x D+2)} n^{2} x^{2}\right. \\
& \left.+\frac{1}{(x D-1)(x D+2)} n^{2} x^{2} \frac{1}{(x D-1)(x D+2)} n^{2} x^{2}-\& c .\right\}\left(C_{1} x+\frac{C_{2}}{x^{2}}\right)
\end{aligned}
$$

or

$$
y=\left\{\begin{array}{l}
C_{1} x\left\{1-\frac{(n x)^{2}}{2.5}+\frac{(n x)^{4}}{2.4 .5 .7}-\& c .\right\} \\
+ \\
\frac{C_{2}}{x^{2}}\left\{1+\frac{(n x)^{2}}{1.2}-\frac{(n x)^{4}}{1.2 .4}+\& c .\right\}
\end{array}\right.
$$

For the condensation of such series as this, the following general method has been kindly suggested by Mr. Curtis :-

Convert each of the great terms in the right-hand member into the shape

$$
\Sigma f(m) u_{m}
$$

and since this is known to be equivalent to

$$
f(\nabla) \Sigma u_{m},
$$

the question is reduced to the condensation of

$$
\Sigma u_{m},
$$

which is, in general, practicable by known methods.
Thus, the right-hand member of the above serial form is reducible to

$$
\frac{C_{1}^{\prime}}{x^{2}}\left\{2 \frac{(n x)^{3}}{\overline{3}}-4 \frac{(n x)^{5}}{\overline{5}}+6 \frac{(n x)^{7}}{\overline{7}}-\& c .\right\}+\frac{C_{2}^{\prime}}{x^{2}}\left\{1+1 \frac{(n x)^{2}}{\overline{2}}-3 \frac{(n x)^{4}}{\overline{4}}+\& c .\right\}
$$

or

$$
\begin{aligned}
& -\frac{C_{1}^{\prime}}{x^{2}}(x D-1)\left\{n x-\frac{(n x)^{3}}{\overline{3}}+\frac{(n x)^{6}}{\overline{5}}-\frac{(n x)^{7}}{\overline{7}}+\& c \cdot\right\} \\
& -\frac{C_{2}^{\prime}}{x^{2}}(x D-1)\left\{1-\frac{(n x)^{2}}{\overline{2}}+\frac{(n x)^{4}}{\overline{4}}-\frac{(n x)^{6}}{\overline{6}}+\& c \cdot\right\}
\end{aligned}
$$

or
$-\frac{1}{x^{2}}(x D-1)\left\{C_{1}^{\prime} \sin n x+C_{9}^{\prime} \cos n x\right\}=-\frac{1}{x^{2}}(x D-1) A \cos (n x+B)$.
The solution of the equation consequently is

$$
y=\frac{A}{x^{2}} \cos (n x+B)+\frac{n A}{x} \sin (n x+B) .
$$

9. The student will find no difficulty in applying this method to the integration of the equations

$$
D^{2} y-\frac{c^{2}}{x^{4}} y=0
$$

Gregory, Examples, p. 344.

$$
D^{2} y+\frac{c^{2}}{x^{4}} y=0
$$

Gregory, Examples, p. 345.

$$
D^{2} y+c^{2} y=\frac{6 y}{x^{2}}
$$

Gregory, Examples, p. 347.
The primary forms of the solutions of these equations are, respectively,

$$
\begin{aligned}
& y=\left\{\begin{array}{l}
C_{0}\left\{1+\frac{1}{2.3}\left(\frac{c}{x}\right)^{2}+\frac{1}{2.3 .4 .5}\left(\frac{c}{x}\right)^{4}+\& c .\right\} \\
C_{1} x\left\{1+\frac{1}{1.2}\left(\frac{c}{x}\right)^{2}+\frac{1}{1.2 .3 .4}\left(\frac{c}{x}\right)^{4}+\& c .\right\}
\end{array}\right. \\
& y=\left\{\begin{array}{l}
C_{0}\left\{1-\frac{1}{2.3}\left(\frac{c}{x}\right)^{2}+\frac{1}{2.3 .4 .5}\left(\frac{c}{x}\right)^{4}-\& c .\right\} \\
C_{1} x\left\{1-\frac{1}{1.2}\left(\frac{c}{x}\right)^{2}+\frac{1}{1.2 .3 .4}\left(\frac{c}{x}\right)^{4}-\& c .\right\}
\end{array}\right. \\
& y=\left\{\begin{array}{l}
C_{1} x^{3}\left\{1-\frac{(c x)^{2}}{2.7}+\frac{(c x)^{4}}{2.4 .7 .9}-\& c .\right\} \\
C_{2} x^{-2}\left\{1+\frac{(c x)^{2}}{2.3}+\frac{(c x)^{4}}{1.2 .3 .4}-\& c .\right\}
\end{array}\right.
\end{aligned}
$$

These forms of solution are evidently susceptible of reduction, and, confining our attention for a moment to the first, it is evidently equivalent to

$$
y=\frac{C_{0} x}{2 c}\left(e^{\frac{e}{x}}-e^{-\frac{c}{x}}\right)+\frac{C_{1} \cdot x}{2}\left(e^{e}+e^{-\frac{e}{x}}\right),
$$

or

$$
y=x\left(A e^{\frac{e}{x}}+B e^{-\frac{e}{x}}\right) .
$$

Similarly the solution of the second equation is reducible to the form

$$
y=x\left(A^{\prime} \sin \frac{c}{x}+B^{\prime} \cos \frac{c}{x}\right)
$$

Employing the method proposed by Mr. Curtis, the solution of the third equation is obviously reducible to the form.

$$
\begin{gathered}
\frac{C_{1}^{\prime}}{(c x)^{\prime}}\left\{\frac{(c x)^{5}}{1.3 \cdot 5}-\frac{(c x)^{7}}{1 \cdot 2 \cdot 3 \cdot 5 \cdot 7}+\frac{(c x)^{9}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 7 \cdot 9}-\& c .\right\} \\
+ \\
\frac{C_{2}^{\prime}}{(c x)^{2}}\left\{3+\frac{(c x)^{2}}{1.2}+\frac{(c x)^{4}}{1 \cdot 2 \cdot 4}-\frac{(c x)^{6}}{1 \cdot 2 \cdot 4 \cdot 6}+\& c .\right\} .
\end{gathered}
$$

Now the general term in each of the above series is

$$
\pm \frac{(c x)^{m}}{1.2 \ldots(m-4)(m-2) m}= \pm(m-3)(m-1) \frac{(c x)^{m}}{\bar{m}},
$$

and the solution is

$$
y=\frac{1}{(c x)^{2}}(x D-3)(x D-1)\left(C_{1}^{\prime} \sin c x+C_{2}^{\prime} \cos c x\right),
$$

or

$$
y=A\left\{\left(1-\frac{3}{(c x)^{2}}\right) \sin (c x+B)+\frac{3}{c x} \cos (c x+B)\right\} .
$$

10. It must be allowed that although, in the method of integration here put forward, no mathematical artifice is employed, and although the result appears to be obtained in the most direct manner, yet the ultimate reduction of the solution to its most compact form often demands considerable analytical skill.

The following important remark has been made by Gregory (Examples, p. 314) in connexion with the integration of equations with variable coefficients, and more particularly
the second example of this Chapter :-"After all, however, when these equations are of the second or higher orders, the number of cases in which they are integrable is very limited, and there seems to be no great prospect of the number being much increased. A little consideration will point out the reason of this. When we speak of an equation being integrable, we mean that the dependent variable can be expressed in terms of the independent variable by means of a finite series of functions of that quantity, the forms of such functions being limited to those known as algebraical and transcendental. Now it has been seen that the simplest forms of differential equations involve the highest transcendents which we recognise as known functions, such as $e^{a x}$ or $\cos n x$; and it is to be expected, that when the equations become more complicated, their integrals must involve higher transcendents to which we have not affixed particular names, and which we do not look on as known forms. This, indeed, is found to be the case, as, for example, in the equation

$$
x D^{2} y+D y+y=0
$$

which in its integral involves the transcendent

$$
\psi(x)=1-\frac{x}{1^{2}}+\frac{x^{2}}{1^{2} \cdot 2^{2}}-\frac{x^{3}}{1^{2} \cdot 2^{2} \cdot 3^{2}}+\& c .
$$

" It would appear, then, that before we are able to make any further progress in the solution of differential equations, we must create new transcendents in the same way as the ordinary transcendents $e^{x}, \cos x, \log x, \& c$. have been created; we must study their properties, and endeavour to express the integrals of differential equations by means of them. The first part of this task has for some time past occupied the attention of mathematicians, and great progress has been made in it, though much still remains to be done. The second part has also been the object of study, though not to the same extent as the other; and several mathematicians have applied
themselves with success to the expression of the integrals of differential equations by means of definite integrals which are the representatives of new transcendents. Thus, for instance, in the case cited above, the transcendent

$$
1-\frac{x}{1^{2}}+\frac{x^{2}}{1^{2} \cdot 2^{2}}-\frac{x^{3}}{1^{2} \cdot 2^{2} \cdot 3^{3}}+\mathbb{d c} \cdot=\frac{1}{\pi} \int_{0}^{\pi} d \theta \cos \left(2 \sin \theta x^{1}\right) .
$$

Examples of such integrals will be found in Crelle's Journal, vol. x. p. 92 ; vol. xir. p. 144 ; vol. xvir. p. 363."

Now it appears to me that, until evaluated, the integral

$$
\frac{C_{2}}{\pi} \int_{0}^{\pi} d \theta \cos \left(2 \sin \theta x^{d}\right)
$$

must be considered to be quite as symbolic as the equivalent

$$
\left\{1+\frac{1}{(x D)^{2}} x\right\}^{-1}: C_{2} .
$$

Indeed, we may regard all symbolic condensations, as well as definite integrals, in the light of representatives of new transcendents.

For instance, if

$$
U=A_{0}+A_{1} x+A_{2} x^{2}+\& c
$$

where A_{0}, A_{1}, A_{2}, \&c. are constants, it has been seen in the Third Chapter that

$$
\begin{aligned}
& F(x D) . U=F(0) A_{0}+F(1) A_{1} x+F(2) A_{2} x^{2}+d c . \\
& \frac{1}{F(x D)} \cdot U=\frac{1}{F(0)} A_{0}+\frac{1}{F(1)} A_{1} x+\frac{1}{F(2)} A_{2} x^{2}+\& c .
\end{aligned}
$$

and it seems that the left-hand members may fairly be regarded as such representatives.
11. It has been shown that the solution of such an equation as

$$
x D_{x} \cdot z+y D_{y} \cdot z-a z=\Theta_{m}(x, y)+\Theta_{n}(x, y)+\& c \cdot
$$

where Θ_{m}, Θ_{n}, \&c. are homogeneous functions in x and y of the degrees m, n, \&c., is at once

$$
z=\frac{\Theta_{m}}{m-a}+\frac{\Theta_{n}}{n-a}+\& c .+u_{a}(x, y)
$$

where u_{a} is an homogeneous function in x, y of given degree, but arbitrary in form.

By the substitutions

$$
x=e^{\phi}, \quad y=e^{\psi},
$$

it, consequently, appeared that the solution of such an equation as

$$
D_{\varphi} \cdot z+D_{\psi} \cdot z-a z=\Theta_{m}\left(e^{\phi}, e^{\psi}\right)+\Theta_{n}\left(e^{\phi}, e^{\psi}\right)+\& c .
$$

is

$$
z=\frac{\Theta_{m}}{m-a}+\frac{\Theta_{n}}{n-a}+\& c .+u_{a}\left(e^{\phi}, e^{\psi}\right),
$$

the variables being (except in the case of equal roots in the operator on the left-hand member of the original equation, which case is provided for in the previous Chapter) grouped in the fixed portion of the solution as in the differential equation to be solved.

So far is the simplest deduction. If, however, we suppose the right-hand member of the latter form of the differential equation to be no longer a function of e^{ϕ}, e^{ψ}, but of ϕ, ψ, simply, our method is practically inapplicable, since ϕ and ψ are not exponible in a finite number of terms of e^{ϕ}, e^{ψ}.
12. From this difficulty we are released by the generalization of a method, which may be exhibited upon the ordinary differential equation

$$
D_{\theta} y-a y=\theta^{4} .
$$

The solution of this equation is given by

$$
y=\left(D_{\theta}-a\right)^{-1} \cdot \theta^{4}+C e^{a \theta} .
$$

Now we may write this in the form

$$
y=-\left(a-D_{\theta}\right)^{-1} \cdot \theta^{4}+C e^{a \theta},
$$

the arbitrary portion of the solution being in all cases independent of the character of the right-hand member of the equation to be solved.

Expanding the first term, and stopping at the fourth power of D_{θ}, further expansion being obviously needless, we get

$$
-\frac{1}{a}\left(1+\frac{1}{a} D_{\theta}+\frac{1}{a^{2}} D_{\theta}^{2}+\frac{1}{a^{3}} D_{\theta}^{3}+\frac{1}{a^{4}} D_{\theta}^{4}\right) \cdot \theta^{\dot{4}}
$$

and actually performing the operations indicated, we obtain for the solution

$$
y=-\left(\frac{\theta^{4}}{a}+\frac{4 \cdot \theta^{3}}{a^{2}}+\frac{4 \cdot 3 \cdot \theta^{2}}{a^{3}}+\frac{4 \cdot 3 \cdot 2 \cdot \theta}{a^{4}}+\frac{4 \cdot 3 \cdot 2 \cdot 1}{a^{5}}\right)+C e^{n \theta},
$$

and the integration of the equation proposed is due to a process of differentiation.

Similarly the solution of the partial differential equation

$$
D_{\phi} \cdot z+D_{\psi} \cdot z-a z=\theta_{4}(\phi, \psi)
$$

is given by

$$
z=-\frac{1}{a}\left(1+\frac{\square}{a}+\frac{\square^{2}}{a^{2}}+\frac{\square^{3}}{a^{3}}+\frac{\square^{4}}{a^{4}}\right) \cdot \theta_{4}+u_{a}\left(e^{\phi}, e^{\psi}\right),
$$

and the solution is had by actual performance of the operations indicated upon the particular form of θ_{4}. It is, of course, evident that in stopping the expansion at the fourth power of the symbol \square we suppose the homogeneous function Θ_{4} to contain no inverse powers of ϕ or ψ, for in such case the expansion should be continued ad infinitum.
13. As a second example of this method, let it be proposed to integrate the equation

$$
D_{\theta}^{2} y-4 D_{\theta} y+4 y=\theta^{2} .
$$

Being thrown into the form

$$
\left(D_{\theta}-2\right)^{2} \cdot y=\theta^{2},
$$

the solution is given by

$$
y=\left(2-D_{\theta}\right)^{-2} \cdot \theta^{2}+C e^{2 \theta} \cdot \theta+C^{\prime} e^{2 \theta} ;
$$

or, expanding the first term to the second order of D_{θ},

$$
y=\frac{1}{2^{2}}\left\{1+\frac{2}{2} D_{\theta}+\frac{3}{2^{2}} D_{\theta}^{2}\right\} \cdot \theta^{2}+C e^{2 \theta} \cdot \theta+C^{\prime} e^{2 \theta} ;
$$

or, actually performing the operations indicated,

$$
y=\frac{1}{2^{2}}\left\{\theta^{2}+\frac{2 \cdot 2 \cdot \theta}{2}+\frac{3 \cdot 2 \cdot 1}{2^{2}}\right\}+C e^{2 \theta} \cdot \theta+C^{\prime} e^{2 \theta} .
$$

In a manner precisely similar we can obtain the solution of the partial differential equation

$$
D_{\phi}^{2} z+2 D_{\phi} D_{\psi} z+D_{\psi}^{2} z-4\left(D_{\phi} z+D_{\psi} z\right)+4 z=\Theta_{2}(\phi, \psi) .
$$

It is, in fact, given by

$$
z=\frac{1}{2^{2}}\left\{1+\frac{2}{2} \square+\frac{3}{2^{2}} \square^{2}\right\} \cdot \Theta_{2}(\phi, \psi)+u_{2}\left(e^{\phi}, e^{\psi}\right) \cdot(\phi+\psi)+v_{2}\left(e^{\phi}, e^{\psi}\right),
$$

in which the operations indicated are to be actually performed upon the particular form of Θ_{2}, supposed, as before, to contain no inverse powers of the independent variables.

From the nature of the cases exhibited it is obvious that the value of this method of integration is ultimately attributable to the circumstance, that there is needed but a finite number of terms in the expansion of the symbolic operator. There are, indeed, other conceivable cases, in which this method could be employed with advantage; for instance, if the results of the operations indicated above were periodic, or if the different resultant terms, after the operations, conformed to some discoverable law.
14. It is obvious that we may generalize this method of integration still more completely. In fact, by a process in
every respect identical with that just exhibited, we may integrate the partial differential equation

$$
F_{1}(\phi, \psi) \cdot D_{\phi} z+F_{2}(\phi, \psi) \cdot D_{\psi} z-a z=\Omega(\phi, \psi),
$$

and the solution is given by

$$
z=\left\{\begin{array}{l}
-\left\{a-F_{1}(\phi, \psi) \cdot D_{\phi}-F_{2}(\phi, \psi) \cdot D_{\psi}\right\}^{-1} \cdot \Omega \\
+\left\{F_{1}(\phi, \psi) \cdot D_{\phi}+F_{2}(\phi, \psi) \cdot D_{\psi}-a\right\}^{-1} \cdot 0,
\end{array}\right.
$$

in which Ω may be broken upinto sets of homogeneous terms, the degree and character of which will regulate the extent to which the expansion of the operating symbol is to be carried.
15. Upon reference to the solution of the equation

$$
D_{\phi} z+D_{\psi} z-a z=\Theta_{4}(\phi, \psi)
$$

it will be seen that the method of integration there proposed fails when

$$
a=0,
$$

and we are obliged, in such cases, to have recourse to other means.

Thus, let it be proposed to integrate the partial differential equation

$$
D_{x} z+D_{y} z=x^{m} y^{n} .
$$

Now, since D_{y} is constant relative to D_{x}, we have, by the fifth article of the Third Chapter,

$$
\frac{1}{D_{x}+D_{y}}=e^{-x D_{y}} \cdot \frac{1}{D_{x}} \cdot e^{x D_{y}},
$$

therefore

$$
z=e^{-x D_{y}} \cdot \frac{1}{D_{x}} \cdot x^{m}(x+y)^{n}+u_{0}\left(e^{x}, e^{y}\right)
$$

or, one particular solution of the proposed equation is,
$z=\frac{x^{m+n+1}}{m+n+1}+n \frac{x^{m+n}}{m+n}(y-x)+\frac{n \cdot n-1}{1.2} \frac{x^{m+n-1}}{m+n-1}(y-x)^{2}+\& c .+u_{0}\left(e^{x}, e^{y}\right)$.
Combining this with the corresponding particular solution in y, the general solution is,
$z=\left\{\begin{array}{c}\frac{x^{m+n+1}+y^{m+n+1}}{2(m+n+1)}+\frac{n x^{m+n}-m y^{m+n}}{2(m+n)}(y-x)+ \\ \frac{\frac{n(n-1)}{1.2} x^{m+n-1}+\frac{m(m-1)}{1.2} y^{m+n-1}}{2(m+n-1)}(y-x)^{2}+\& c .+\phi(x-y) .\end{array}\right.$
16. As a second example of this method of integration, let it be proposed to investigate the solution of the partial differential equation

$$
a D_{x} w+b D_{y} w+c D_{z} w=x y z .
$$

This equation being transformed into the shape

$$
D_{\frac{x}{a}} w+D_{\frac{y}{\bar{b}}} w+D_{\frac{z}{c}} w=a b c \cdot \frac{x}{a} \frac{y}{b} \frac{z}{c},
$$

it is obvious that, after $a b c$ in the right-hand member, the solution ought to be symmetrical in $\frac{x}{a}, \frac{y}{b}, \frac{z}{c}$.

By a method similar to that in the last article, the integral is found to be

$$
\begin{gathered}
w=\frac{a b c}{3}\left[\frac{1}{12}\left(\frac{x^{4}}{a^{4}}+\frac{y^{4}}{b^{4}}+\frac{z^{4}}{c^{4}}\right)-\frac{1}{6}\left\{\frac{x^{3}}{a^{3}}\left(\frac{y}{b}+\frac{z}{c}\right)+\frac{y^{3}}{b^{3}}\left(\frac{z}{c}+\frac{x}{a}\right)+\frac{z^{3}}{c^{3}}\left(\frac{x}{a}+\frac{y}{b}\right)\right\}\right. \\
\left.+\frac{x}{a} \frac{y}{b} \frac{z}{c}\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)\right]+u_{0}\left(e^{\frac{x}{a}}, e^{\frac{y}{b}}, e^{\frac{z}{c}}\right)
\end{gathered}
$$

It may be observed that the solution of the equation resembling this in Gregory's Examples is unsymmetrical. Indeed, such a result might have been anticipated from the unsymmetrical method there employed. It cannot be too frequently observed that, where the equations to be solved are symmetrical, the solutions should be symmetrical ; and, not only so, but symmetrical methods should be employed for their deduction.

This latter consideration renders it highly desirable that we were in possession of some general and direct operational method for obtaining the solutions of such equations as have been just now discussed.
17. Let it be proposed to investigate the form of the solution of the general equation,

$$
D_{x}^{n} \cdot z+A_{1} D_{x}^{n-1} D_{y} \cdot z+A_{2} D_{x}^{n-2} D_{y}^{2} \cdot z+\ldots+A_{n} D_{y}^{n} \cdot z=V,
$$

in which the left-hand member is an homogeneous function of the $n^{\text {th }}$ order in the symbols D_{x}, D_{y}, the coefficients constants, and V a given function of x and y.

If $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be the roots of the equation

$$
u^{n}+A_{1} u^{n-1}+A_{2} u^{n-2}+\ldots+A_{n}=0
$$

the above equation can evidently be thrown into the form

$$
\left(D_{x}-a_{1} D_{y}\right)\left(D_{x}-a_{2} D_{y}\right) \cdots \cdot\left(D_{x}-a_{n} D_{y}\right) \cdot z=V
$$

the solution of which is

$$
z=\frac{1}{\left(D_{x}-a_{1} D_{y}\right) \ldots\left(D_{x}-a_{n} D_{y}\right)} \cdot V+u_{0}\left(e^{x}, e^{-\frac{y}{a_{1}}}\right)+v_{0}\left(e^{x}, e^{-\frac{y}{a_{2}}}\right)+\& c .
$$

The arbitrary portion might obviously be written in the form

$$
\Phi\left(x+\frac{y}{a_{1}}\right)+\Psi\left(x+\frac{y}{a_{2}}\right)+\& \mathrm{cc}
$$

If p of the quantities $a_{1}, a_{2}, a_{3}, \& c$. be equal, the arbitrary portion of the solution is, in general,
$\left(x-\frac{y}{a_{1}}\right)^{p-1} \cdot u_{0}\left(e^{x}, e^{-\frac{y}{a_{1}}}\right)+\left(x-\frac{y}{a_{1}}\right)^{p-2} \cdot v_{0}\left(e^{x}, e^{-\frac{y}{a_{1}}}\right)+.+w_{0}\left(e^{x}, e^{-\frac{y}{a_{n}}}\right)$.
And if the equation in u should contain pairs of imaginary roots, the arbitrary portion of the solution is of the form

$$
u_{0}\left(e^{x}, e^{-\frac{y}{\left(a_{1}+a_{2}^{x}-1\right)}}\right)+v_{0}\left(e^{x}, e^{\left.-\frac{y}{\left(a_{1}-a_{2}^{x}-1\right.}\right)}\right)+w_{0}\left(e^{x}, e^{-\frac{y}{a_{\mathrm{g}}}}\right)+\ldots
$$

CHAPTER VI.

Section I.-Integration of Systems of Simultaneous Differential Equations.

1. Let it be proposed to integrate the system of simultaneous differential equations of the first order, containing n dependent variables,

$$
\left.\begin{array}{c}
D_{t} x=a_{1} x+b_{1} y+c_{1} z+\ldots \\
D_{t} y=a_{2} x+b_{2} y+c_{2} z+\ldots \\
D_{t} z=a_{3} x+b_{3} y+c_{3} z+\ldots \\
\& c .
\end{array}\right\}
$$

Multiply the first equation by λ, the second by μ, the third by $v, \& c$. ; then, adding all together,

$$
\lambda D_{t} x+\mu D_{t} y+\nu D_{t} z+\ldots=\left\{\begin{array}{c}
\left(a_{1} \lambda+a_{2} \mu+a_{3} \nu+\ldots\right) x \\
+ \\
\left(b_{1} \lambda+b_{2} \mu+b_{3} \nu+\ldots\right) y \\
+ \\
\left(c_{1} \lambda+c_{2} \mu+c_{3} \nu+\ldots\right) z \\
+\& c .
\end{array}\right.
$$

Now, as we have introduced n arbitrary constants, we are at liberty to subject them to n conditions, which we may suppose to be

$$
\begin{aligned}
& a_{1} \lambda+a_{2} \mu+a_{3} \nu+\ldots=k \lambda, \\
& b_{1} \lambda+b_{2} \mu+b_{3} \nu+\ldots=k \mu, \\
& c_{1} \lambda+c_{2} \mu+c_{3} \nu+\ldots=k \nu,
\end{aligned}
$$

\&c.
k being a new constant.

The preceding equation is thus reduced to the form

$$
D_{t}(\lambda x+\mu y+\nu z+\ldots)=k(\lambda x+\mu y+\nu z+\ldots),
$$

the solution of which is

$$
\lambda x+\mu y+\nu z+\ldots=C e^{k t},
$$

where C is an arbitrary constant.
Now, with regard to the quantity k, it is to be observed that if $(n-1)$ of the quantities $\lambda, \mu, \nu, \& c$. be eliminated between the assumed equations of connexion, the $n^{\text {th }}$ quantity will disappear of itself, and we obtain an equation of the $n^{\text {th }}$ degree in k and the known quantities a_{1}, b_{1}, c_{1}, \&c. : consequently, in the above solution, k may be supposed to have any one of n known values.

Hence, writing down the series of solutions corresponding to the several roots $k_{1}, k_{2}, k_{3}, \& c$., it is obvious that the general solution of the given system of simultaneous differential equations is exponible in the form,

$$
\left.\begin{array}{l}
x=C_{1} e^{k_{1} t}+C_{2} e^{k_{2} t}+C_{3} e^{k_{3} t}+\ldots+C_{n} e^{k_{k_{n}} t} \\
y=D_{1} e^{k_{1} t}+D_{2} e^{k_{2} t}+D_{3} e^{k_{3} t}+\ldots+D_{n} e^{k_{n} t} \\
z=E_{1} e^{k_{1} t}+E_{2} e^{k_{2} t}+E_{3} e^{k_{3} t}+\ldots+E_{n} e^{k_{n} t} \\
\& c .
\end{array}\right\}
$$

where, of the constants $C_{1}, D_{1}, E_{1}, \& c ., n$ only are arbitrary.
When some of the roots k_{1}, k_{2}, k_{3}, \&c., are equal, or when there are pairs of imaginary roots, modifications sufficiently obvious must be introduced in the general form of solution. Thus, in the case of a single pair of imaginary roots, the general form of solution becomes

$$
\left.\begin{array}{l}
x=e^{k_{1} t} \cdot C_{1} \cos \left(k_{2} t+C_{2}\right)+C_{3} e^{k_{3} t}+\ldots+C_{n} e^{k_{n} t} \\
y=e^{k_{1} t} \cdot D_{1} \cos \left(k_{2} t+D_{2}\right)+D_{3} e^{k_{3} t}+\ldots+D_{n} e^{k_{n} t} \\
z=e^{k_{1} t} \cdot E_{1} \cos \left(k_{2} t+E_{2}\right)+E_{3} e^{k_{3} t}+\ldots+E_{n} e^{k_{n} t} \\
\text { \&c. }
\end{array}\right\}
$$

Examples.

(1.) Let it be proposed to integrate the system

$$
\left.\begin{array}{l}
D_{t} x=b y \\
D_{t} y=a x
\end{array}\right\}
$$

in which, for simplicity, the suffixes to the constants are omitted.

The solution is

$$
\left.\begin{array}{l}
x=C_{1} e^{k_{1} t}+C_{2} e^{k_{2} t} \\
y=D_{1} e^{k_{1} t}+D_{2} e^{k_{2} t}
\end{array}\right\}
$$

where k_{1}, k_{2} are the roots of the quadratic equation obtained by the elimination of λ, μ between the equations

$$
\left.\begin{array}{l}
a \mu=k \lambda \\
b \lambda=k \mu
\end{array}\right\}, \text { or }\left\{\begin{array}{l}
k_{1}=+\sqrt{ }(a b) \\
k_{2}=-\sqrt{ }(a b)
\end{array}\right.
$$

Thus the solution is

$$
\begin{aligned}
& x=C_{1} e^{+\gamma(a b) t}+C_{2} e^{-r(a b) t}, \\
& y=C_{1}\left(\frac{a}{b}\right)^{\frac{1}{3}} e^{+r(a b) t}-C_{2}\left(\frac{a}{b}\right)^{\frac{1}{2}} e^{-r(a b) t} .
\end{aligned}
$$

(2.) Let it be proposed to integrate the system

$$
\left.\begin{array}{l}
D_{t} x=a_{1} x+b_{1} y \\
D_{t} y=a_{2} x+b_{2} y
\end{array}\right\}
$$

The solution is

$$
\left.\begin{array}{l}
x=C_{1} e^{k_{1} t}+C_{2} e^{k_{2} t} \\
y=C_{1}\left(\frac{k_{1}-a_{1}}{b_{1}}\right) e^{k_{1} t}+C_{2}\left(\frac{k_{2}-a_{1}}{b_{1}}\right) e^{k_{2} t}
\end{array}\right\}
$$

where k_{1}, k_{2} are the roots of the quadratic equation

$$
\left(k-a_{1}\right)\left(k-b_{2}\right)=b_{1} a_{2} .
$$

(3.) Let it be proposed to integrate the system of three simultaneous equations,

$$
\left.\begin{array}{l}
D_{t} x=\frac{d x}{d t}=b_{1} y+c_{1} z \\
D_{t} y=\frac{d y}{d t}=a_{2} x+c_{2} z \\
D_{t} z=\frac{d z}{d t}=a_{3} x+b_{3} y
\end{array}\right\}
$$

The solution is

$$
\left.\begin{array}{l}
x=C_{1} e^{k_{1} t}+C_{2} e^{k_{2} t}+C_{3} e^{k_{3} t} \\
y=D_{1} e^{k_{1} t}+D_{2} e^{k_{2} t}+D_{3} e^{k_{3} t} \\
z=E_{1} e^{k_{1} t}+E_{2} e^{k_{2} t}+E_{3} e^{k_{3} t}
\end{array}\right\}
$$

where k_{1}, k_{2}, k_{3}, are the roots of the cubic equation obtained by the elimination of λ, μ, ν between the equations

$$
\left.\begin{array}{l}
a_{2} \mu+a_{3} \nu=k \lambda \\
b_{1} \lambda+b_{3} \nu=k \mu \\
c_{1} \lambda+c_{2} \mu=k_{\nu}
\end{array}\right\}
$$

or

$$
k^{3}-\left(b_{1} a_{2}+c_{1} a_{3}+c_{2} b_{3}\right) k-\left(c_{2} b_{1} a_{3}+c_{1} a_{2} b_{3}\right)=0 .
$$

It will be observed that the left-hand members, in the given system of simultaneous differential equations, represent the rectangular components of the velocity of a material point, the coordinates of whose initial position determine the three arbitrary quantities in the above solution.
2. It is plain that we may employ a similar method for the integration of the system of simultaneous differential equations of the $m^{\text {th }}$ order,

$$
\left.\begin{array}{c}
D_{t}^{m} x=a_{1} x+b_{1} y+c_{1} z+\ldots \\
D_{t}^{m} y=a_{2} x+b_{2} y+c_{2} z+\cdots \\
D_{t}^{m} z=a_{3} x+b_{3} y+c_{3} z+\cdots \\
\& c .
\end{array}\right\}
$$

The reduct equation is, in this case,

$$
D_{t}^{m}(\lambda x+\mu y+\nu z+\ldots)=k^{m}(\lambda x+\mu y+\nu z+\ldots),
$$

the equations of condition being

$$
\left.\begin{array}{c}
a_{1} \lambda+a_{2} \mu+a_{3} \nu+\ldots=k^{m} \lambda \\
b_{1} \lambda+b_{2} \mu+b_{3} \nu+\ldots=k^{m} \mu \\
c_{1} \lambda+c_{2} \mu+c_{3} \nu+\ldots=k^{m} \nu \\
\& c .
\end{array}\right\}
$$

and the solution of the reduct equation is, if $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \& c .$, be the m several roots of unity,

$$
\lambda x+\mu y+\nu z+\ldots=C e^{\alpha k t}+C^{\prime} e^{\alpha^{\prime k t}}+C^{\prime \prime} e^{\alpha^{\prime \prime} k t}+\ldots
$$

Example.
Let it be proposed to integrate the system

$$
\left.\begin{array}{l}
D_{t}^{2} x=\frac{d^{2} x}{d t^{2}}=b_{1} y+c_{1} z \\
D_{t}^{2} y=\frac{d^{2} y}{d t^{2}}=a_{2} x+c_{2} z \\
D_{t}^{2} z=\frac{d^{2} z}{d t^{2}}=a_{3} x+b_{3} y
\end{array}\right\}
$$

in which the left-hand members represent the rectangular components of the accelerating force operating at any instant upon a material point.

The equations of condition in this case are

$$
\left.\begin{array}{l}
a_{2} \mu+a_{3} v=k^{2} \lambda \\
b_{1} \lambda+b_{3} v=k^{2} \mu \\
c_{1} \lambda+c_{2} \mu=k^{2} v
\end{array}\right\}
$$

the reduct equation,

$$
D_{t}^{2}(\lambda x+\mu y+\nu z)=k^{2}(\lambda x+\mu y+\nu z) ;
$$

the solution of this equation

$$
\lambda x+\mu y+\nu z=C^{\prime} e^{k t}+C^{\prime} e^{-k t}
$$

while the equation to determine k is

$$
k^{6}-\left(b_{1} a_{2}+c_{1} a_{3}+c_{2} b_{3}\right) k^{2}-\left(c_{2} b_{1} a_{3}+c_{1} a_{2} b_{3}\right)=0 .
$$

As this equation is of the sixth degree, it might be supposed by the student that the complete solution of the problem should consist of six equations, each involving two arbitrary constants. It will be observed, however, that since the roots of the equation in k are of the form

$$
\pm k_{1}, \pm k_{2}, \pm k_{3}
$$

and λ, μ, ν, depend only on k^{2}, these six equations, each of which is of the form

$$
\lambda x+\mu y+\nu z=C e^{k t}+C^{\prime} e^{-k t},
$$

are reducible to three, and there are not virtually more than six arbitrary constants. These constants are, in general, determined by given initial co-ordinates and given initial constituent velocities. The student will find no difficulty in extending this observation to the general case as above stated.
3. If the system of simultaneous differential equations, proposed for integration, were given in the form

$$
\left.\begin{array}{c}
a_{1} D_{t}^{m} x+b_{1} D_{t}^{m} y+c_{1} D_{t}^{m} z+\ldots=x \\
a_{2} D_{t}^{m} x+b_{2} D_{t}^{m} y+c_{2} D_{t}^{m} z+\ldots=y \\
a_{3} D_{t}^{m} x+b_{3} D_{t}^{m} y+c_{3} D_{t}^{m} z+\ldots=z \\
\& c .
\end{array}\right\}
$$

a method somewhat similar may be employed.
The first equation being multiplied by λ, the second by μ, the third by ν, \&c., and, all being added together, subject to the conditions

$$
\left.\begin{array}{c}
\lambda a_{1}+\mu a_{2}+\nu a_{3}+\ldots=\frac{\lambda}{k^{m}} \\
\lambda b_{1}+\mu b_{2}+\nu b_{3}+\ldots=\frac{\mu}{k^{m}} \\
\lambda c_{1}+\mu c_{2}+\nu c_{3}+\ldots=\frac{v}{k^{m}} \\
\& c .
\end{array}\right\}
$$

the reduct equation is, as before,

$$
D_{t}^{m}(\lambda x+\mu y+\nu z+\ldots)=k^{m}(\lambda x+\mu y+\nu z+\ldots)
$$

and its solution

$$
\lambda x+\mu y+\nu z+\ldots=C e^{a k t}+C^{\prime} e^{a^{\prime} k t}+C^{\prime \prime} e^{a^{\prime \prime} k t}+\ldots
$$

It is, perhaps, unnecessary to observe, that the values of the constants, and of the several roots of the equation in k, are wholly different from those occurring in the previous article, in which a notation similar to the above was employed.
4. Let it be proposed to integrate the system of simultaneous differential equations,

$$
\left.\begin{array}{l}
\Phi(D) x+\Psi(D) y=F_{1}(t) \\
\Phi(D) y-\Psi(D) x=F_{2}(t)
\end{array}\right\}
$$

in which, for the sake of simplicity, we omit the suffix t to the symbol of differentiation.

Operating upon the first equation with $\Phi(D)$, and making substitution from the second equation, we get

$$
\Phi(D)^{2} \cdot x+\Psi(D) \cdot\left\{\Psi(D) x+F_{2}(t)\right\}=\Phi(D) \cdot F_{1}(t)
$$

The operations susceptible of execution being performed, this equation is obviously reducible to the form

$$
\left\{\Phi(D)^{2} \cdot+\Psi(D)^{2} \cdot\right\} x=F_{3}(t)
$$

in which now there is but a single dependent variable.
This last equation, in general, admits of solution, and the value of x being had, that of y is obtained by substitution in either of the given equations.

Example.

$$
\begin{aligned}
& \left(a_{0}+a_{2} D^{2}+a_{4} D^{4}\right) x+\left(a_{1} D+a_{3} D^{3}\right) y=m \sin n t \\
& \left(a_{0}+a_{2} D^{2}+a_{4} D^{4}\right) y-\left(a_{1} D+a_{3} D^{3}\right) x=m \cos n t .
\end{aligned}
$$

Then

$$
\begin{aligned}
& x=+\Sigma\left(A \cos \lambda^{\frac{1}{6}} t+B \sin \lambda^{\frac{1}{b}} t\right)+\frac{m \sin n t}{a_{0}-a_{1} n-a_{2} n^{2}+a_{3} n^{3}+a_{4} n^{4}}, \\
& y=-\Sigma\left(A \sin \lambda^{\frac{1}{3}} t-B \cos \lambda^{\frac{1}{3} t}\right)+\frac{m \cos n t}{a_{0}-a_{1} n-a_{2} n^{2}+a_{3} n^{3}+a_{4} n^{4}}
\end{aligned}
$$

where all values are to be assigned to λ, which satisfy the biquadratic equation

$$
\begin{aligned}
& \left(a_{0}-a_{2} \lambda+a_{4} \lambda^{2}\right)^{2}-\lambda\left(a_{1}-a_{3} \lambda\right)^{2}=0 \\
& \quad \text { GREGORY, Examples, p. } 390 .
\end{aligned}
$$

5. We may, in some cases, employ the Calculus of Operations to great advantage in the investigation of the solutions of systems of simultaneous partial differential equations, and the results will be found to exhibit themselves in a remarkably symmetrical form.

Thus, if we had the system

$$
\left.\begin{array}{rl}
D_{x}^{2} \cdot z & =r=f_{1}(x, y) \\
D_{x} D_{y} \cdot z & =s=f_{2}(x, y) \\
D_{y}^{2} \cdot z & =t=f_{3}(x, y)
\end{array}\right\}
$$

multiply the first equation by x^{2}, the second by $2 x y$, and the third by y^{2}, and adding, we get

$$
x^{2} D_{x}^{2} \cdot z+2 x y D_{x} D_{y} \cdot z+y^{2} D_{y}^{2} \cdot z=x^{2} f_{1}+2 x y f_{3}+y^{2} f_{3} .
$$

Break up the right-hand member, as before, into sets of homogeneous functions, and the whole assumes the symbolic shape

$$
\nabla(\nabla-1) z=\theta_{m}+\theta_{n}+\theta_{p}+\& \mathrm{cc} .
$$

and the required solution is

$$
z=\frac{\Theta_{m}}{m(m-1)}+\frac{\Theta_{n}}{n(n-1)}+\& c .+u_{0}+u_{1},
$$

where u_{0} and u_{1} are arbitrary homogeneous functions in x and y, of the degrees 0 and 1 , respectively.

The prima facie method of solving such a system would
be, to integrate the first equation twice with respect to x, supposing y constant, thereby introducing two arbitrary functions of y; to integrate the second equation successively with respect to x and y, thereby introducing two more arbitrary functions, the one of y, and the other of x; to integrate the third equation twice with respect to y, thereby introducing a further pair of arbitrary functions of x; and finally, by a comparison of the solutions thus obtained, to determine the characters of the resultant arbitrary functions as far as possible.

It is obvious that our method of solution will apply to the system

$$
\left.\begin{array}{rl}
D_{\phi}^{2} \cdot z & =f_{1}\left(e^{\phi}, e^{\psi}, \sin \phi, \sin \psi, \cos \phi, \cos \psi\right) \\
D_{\phi} D_{\psi} \cdot z & =f_{2}\left(e^{\phi}, e^{\psi}, \sin \phi, \sin \psi, \cos \phi, \cos \psi\right) \\
D_{\psi}^{2} \cdot z & =f_{3}\left(e^{\phi}, e^{\psi}, \sin \phi, \sin \psi, \cos \phi, \cos \psi\right)
\end{array}\right\}
$$

the functions f_{1}, f_{2}, f_{3} being severally reduced to the form

$$
\Sigma A_{m, n} e^{m \phi+n \psi}
$$

Many other similar applications will readily suggest themselves.

It is important to observe, that the conditions of the above questions render it necessary to introduce a limitation upon the forms of the arbitrary functions. It is, in fact, evident that these functions must include no inverse powers of the independent variables, otherwise, although the result of the aggregation of the partial differential equations might be correctly solved, yet such a solution would not satisfy the equations separately.

Camb. and Dub. Math. Journal, 1853.
6. If it be required to eliminate the arbitrary functions from the equation

$$
x F_{1}(z)+y F_{2}(z)=1,
$$

it is known that the result is obtained by differentiating the
equation twice with respect to x and y, respectively, the first differentiation giving

$$
\left.\begin{array}{l}
F_{1}(z)+\left\{x F_{1}^{\prime}(z)+y F_{2}^{\prime}(z)\right\} \cdot D_{x} z=0 \\
F_{2}(z)+\left\{x F_{1}^{\prime}(x)+y F_{2}^{\prime}(z)\right\} \cdot D_{y} z=0
\end{array}\right\}
$$

whence, by division,

$$
\frac{F_{1}^{\prime}(z)}{F_{2}^{\prime}(z)}=f(z)=\frac{p}{q}=\frac{D_{x} z}{D_{y} z},
$$

and the second differentiation giving

$$
q^{2} r-2 p q s+p^{2} t=0
$$

or

$$
\left(D_{y} z\right)^{2} \cdot D_{x}^{2} z-2 D_{x} z \cdot D_{y} z \cdot D_{x} D_{y} z+\left(D_{x} z\right)^{2} \cdot D_{y}^{2} z=0,
$$

the partial differential equation of the gauche surface generated by a right line, which, gliding upon two fixed directrices, remains constantly parallel to the plane of the axes x and y.

Similarly, it appears that the solution of the system of $\frac{p(p-1)}{1.2}$ simultaneous partial differential equations, containing p independent variables,

$$
\begin{gathered}
\left(D_{y} w\right)^{2} \cdot D_{x}^{2} w-2 D_{x} w \cdot D_{y} w \cdot D_{x} D_{y} w+\left(D_{x} w\right)^{2} \cdot D_{y}^{2} w=0 \\
\left(D_{x} w\right)^{2} \cdot D_{z}^{2} w-2 D_{z} w \cdot D_{x} w \cdot D_{z} D_{x} w+\left(D_{z} w\right)^{2} \cdot D_{x}^{2} w=0 \\
\left(D_{z} w\right)^{2} \cdot D_{y}^{2} w-2 D_{y} w \cdot D_{z} w \cdot D_{y} D_{z} w+\left(D_{y} w\right)^{2} \cdot D_{z}^{2} w=0 \\
\text { \&c. }
\end{gathered}
$$

is

$$
\left.\begin{array}{c}
x f_{1}(w, z, \& c .)+y f_{2}(w, z, \& \mathrm{cc} .)+\ldots=1 \\
z f_{1^{\prime}}(w, y, \& \mathrm{cc} .)+x f_{z^{\prime}}(w, y, \& \mathrm{cc} .)+\ldots=1 \\
y f_{1^{\prime \prime}}(w, x, \& \mathrm{cc} .)+z f_{z^{\prime}}(w, x, \& \mathrm{cc} .)+\ldots=1 \\
\& \mathrm{c} .
\end{array}\right\}
$$

by a comparison of which we get for the ultimate solution

$$
x F_{1}(w)+y F_{2}(w)+z F_{3}(w)+\& c .=1,
$$

exhibiting only p arbitrary functions.
7. Let it be proposed to integrate the system of equations which determine the small motions of homogeneous elastic gases, namely,

$$
\left.\begin{array}{l}
D_{t}^{2} u=\frac{d^{2} u}{d t^{2}}=a^{2} D_{x}\left(D_{x} u+D_{y} v+D_{z} w\right) \\
D_{t}^{2} v=\frac{d^{2} v}{d t^{2}}=a^{2} D_{y}\left(D_{x} u+D_{y} v+D_{z} v\right) \\
D_{t}^{2} w=\frac{d^{2} w}{d t^{2}}=a^{2} D_{z}\left(D_{x} u+D_{y} v+D_{z} w\right)
\end{array}\right\}
$$

Gregory, Examples, p. 392.
Let

$$
D_{x} u+D_{y} v+D_{z} w=V,
$$

and, differentiating the first equation with respect to x, the second with respect to y, the third with respect to z, and adding, we get

$$
D_{t}^{2} V=a^{2}\left(D_{x}^{2} V+D_{y}^{2} V+D_{z}^{2} V\right),
$$

the integral of which is

$$
V=e^{a t\left(D_{x}^{2}+D_{y}^{2}+D_{z}^{2}\right) \frac{1}{2}} \cdot \Phi(x, y, z)+e^{-a t\left(D_{x}^{2}+D_{y}^{2}+D_{z}^{2}\right) \frac{1}{1}} \cdot \Psi(x, y, z),
$$

which, by an elaborate process of transformation, has been given by Poisson (Mémoires de l'Institut, 1818), in the shape

$$
4 \pi V=
$$

$\int_{0}^{\pi} \int_{0}^{2 \pi} t \phi(x+a t \cos \theta, y+a t \sin \theta \cos \phi, z+a t \sin \theta \sin \phi) \sin \theta d \theta d \phi+$ $D_{t} \int_{0}^{\pi} \int_{0}^{\pi \pi} t \psi(x+a t \cos \theta, y+a t \sin \theta \cos \phi, z+a t \sin \theta \sin \phi) \sin \theta d \theta d \phi$. The value of V being thus found, u, v, w are to be obtained by its substitution in the given system of equations.
8. If the system to be integrated were that representing the small motions of homogeneous elastic solids and homogeneous incompressible liquids, namely,

$$
\left.\begin{array}{l}
D_{t}^{2} u=P D_{x}\left(D_{x} u+D_{y} v+D_{z} w\right)+Q\left(D_{x}^{2} u+D_{y}^{2} u+D_{z}^{2} u\right) \\
D_{t}^{2} v=P D_{y}\left(D_{x} u+D_{y} v+D_{z} w\right)+Q\left(D_{x}^{2} v+D_{y}^{2} v+D_{z}^{2} v\right) \\
D_{t}^{2} w=P D_{z}\left(D_{x} u+D_{y} v+D_{z} w\right)+Q\left(D_{x}^{2} w+D_{y}^{2} w+D_{z}^{2} w\right)
\end{array}\right\}
$$

where P and Q are constants, we may procced in a manner somewhat similar. The first equation being differentiated with respect to x, the second with respect to y, the third with respect to z, and all being then added together, we get

$$
D_{z}^{2} V=P\left(D_{x}^{2} V+D_{y}^{2} V+D_{z}^{2} V\right)+Q\left(D_{x}^{2} V+D_{y}^{2} V+D_{z}^{2} V\right)
$$

or

$$
D_{t}^{2} V=(P+Q)\left(D_{x}^{2} V+D_{y}^{2} V+D_{z}^{2} V\right),
$$

the solution of which has been just given.
9. Let the system to be integrated be

$$
\left.\begin{array}{l}
A D_{t} p+(C-B) q r=A \frac{d p}{d t}+(C-B) q r=0 \\
B D_{\imath} q+(A-C) r p=B \frac{d q}{d t}+(A-C) r p=0 \\
C D_{t} r+(B-A) p q=C \frac{d r}{d t}+(B-A) p q=0
\end{array}\right\}
$$

the well-known equations which serve to determine the relation between the angular velocity of instantaneous rotation and the time, in the case of a rigid body rotating about its centre of gravity, and not subject to the action of any forces, A, B, C being the three principal moments of inertia.

These equations being multiplied, respectively, by p, q, r, all then added together, and the result integrated, we get

$$
A p^{2}+B q^{2}+C r^{2}=V
$$

a constant, which is known to represent the vis viva of the body.

The original equations being again multiplied, respectively, by $A p, B q, C r$, all then added together, and the result integrated, we get

$$
A^{2} p^{2}+B^{2} q^{2}+C^{2} r^{2}=M^{2}
$$

M being another constant, which is known to represent the principal moment of the quantities of motion.

Now if ω be the angular velocity of instantaneous rotation, and we investigate the values of p^{2}, q^{2}, r^{2}, from the equations,

$$
\left.\begin{array}{rl}
A p^{2}+B q^{2}+C r^{2} & =V \\
A^{2} p^{2}+B^{2} q^{2}+C^{2} r^{2} & =M^{2} \\
p^{2}+\quad q^{2}+r^{2} & =\omega^{2}
\end{array}\right\}
$$

we obtain

$$
\left.\begin{array}{l}
\nu^{2}=\frac{M^{2}-(B+C) V+B C \omega^{2}}{(C-A)(B-A)} \\
q^{2}=\frac{M^{2}-(C+A) V+C A \omega^{2}}{(A-B)(C-B)} \\
r^{2}=\frac{M^{2}-(A+B) V+A B \omega^{2}}{(B-C)(A-C)}
\end{array}\right\}
$$

If we substitute these values in any one of the original equations, we obtain the following relation:
$d t=$
$\frac{A B C \cdot \omega d \omega}{\left\{(B+C) V-B C \omega^{2}-M^{2}\right\} \frac{1}{2} \cdot\left\{(C+A) V-C A \omega^{2}-M^{2}\right\}^{\frac{1}{2}} \cdot\left\{(A+B) V-A B \omega^{2}-M^{2}\right\}^{\frac{1}{2}}}$

Lagrange, Mec. Anal., Seconde Partie, p. 247.

10. Let the system to be integrated be

$$
\left.\begin{array}{c}
D_{t}^{2} u-D_{u} R=\frac{d^{2} u}{d t^{2}}-\frac{d R}{d u}=0 \\
D_{t}^{2} v-D_{v} R=\frac{d^{2} v}{d t^{2}}-\frac{d R}{d v}=0 \\
D_{t}^{2} w-D_{w} R=\frac{d^{2} w}{d t^{2}}-\frac{d R}{d w}=0 \\
\& c .,
\end{array}\right\}
$$

the number of variables $u, v, w, \& c$., being n, and R being a function of r, where

$$
r=\left(u^{2}+v^{2}+w^{2}+\ldots\right)^{\frac{1}{2}}
$$

The system may be obviously written in the shape,

$$
\begin{gathered}
D_{t}^{2} u-D_{r} R \cdot \frac{u}{r}=0 \\
D_{t}^{2} v-D_{r} R \cdot \frac{v}{r}=0 \\
D_{t}^{2} w-D_{r} R \cdot \frac{w}{r}=0 \\
\& c
\end{gathered}
$$

Eliminating $D_{r} R$ between these equations in pairs, and integrating the corresponding results, we obtain $\frac{n \cdot n-1}{2}$ first integrals, namely,

$$
\left.\begin{array}{c}
v D_{t} u-u D_{t} v=C_{1} \\
u D_{t} w-w D_{t} u=C_{2} \\
w D_{t} v-v D_{t} w=C_{3} \\
\& c .
\end{array}\right\}
$$

Multiplying the given equation by $2 D_{t} u, 2 D_{t} v, 2 D_{t} w$, \&c., adding them all together, and integrating the result, we get

$$
\left(D_{t} u\right)^{2}+\left(D_{t} v\right)^{2}+\left(D_{t} w\right)^{2}+\& c .=2(R+A),
$$

A being an arbitrary constant.
But the equations composing the previous system of integrals being severally squared, and all then added together, we obtain

$$
\left(u^{2}+v^{2}+\& c .\right)\left\{\left(D_{t} u\right)^{2}+\left(D_{t} v\right)^{2}+\& c .\right\}-\left(u D_{t} u+v D_{t} v+\& c .\right)^{2}=B^{2} .
$$

Hence there results

$$
\left(D_{t} r\right)^{2}=2(R+A)-\frac{B^{2}}{r^{2}}
$$

and consequently

$$
d t=\frac{r d r}{\left\{2 r^{2}(R+A)-B^{2}\right\}^{\frac{1}{2}}} .
$$

By means of this equation eliminating $D_{r} R$ from the first equation of the modified form of the given system, we have

$$
r D_{t}^{2} u-u D_{t}^{2} r+\frac{B^{2}}{r^{2}} \cdot \frac{u}{r}=0,
$$

or

$$
\left(\frac{r^{2}}{B} D_{t}\right)^{2} \cdot \frac{u}{r}+\frac{u}{r}=0
$$

Hence if ϕ be a quantity determined by the equation

$$
d \phi=\frac{B d t}{r^{2}}=\frac{B d r}{r\left\{2 r^{2}(R+A)-B^{2}\right\}^{\frac{1}{2}}}
$$

we obtain for the required system of second integrals

$$
\left.\begin{array}{rl}
u & =r\left(g_{1} \cos \phi+h_{1} \sin \phi\right) \\
v & =r\left(g_{2} \cos \phi+h_{2} \sin \phi\right) \\
w & =r\left(g_{3} \cos \phi+h_{3} \sin \phi\right) \\
\& \mathrm{c} . \\
\phi+\beta & =\int \frac{B d r}{r\left\{2 r^{2}(R+A)-B^{2}\right\}^{\frac{1}{2}}} \\
t+\alpha & =\int \frac{r d r}{\left\{2 r^{2}(R+A)-B^{2}\right\}^{\frac{1}{2}}}
\end{array}\right\}
$$

By means of these we obtain ϕ in terms of r, and r in terms of $t+\alpha$, and therefore ϕ in terms of $t+\alpha$. Thus we have u, v, $w, \& c \cdot$, expressed in terms of $t, \alpha, \beta, A, B, g_{1}, h_{1}, \& c$.

It would appear that the ultimate number of arbitrary constants is $2 n+4$; but since β only tends to alter $g_{1}, \cdot h_{1}$, \&ce., it may be neglected. And since upon squaring the first group of the resulting system, and adding, we get

$$
1=\cos ^{2} \phi \Sigma\left(g^{2}\right)+2 \sin \phi \cos \phi \Sigma(g h)+\sin ^{2} \phi \Sigma\left(l^{2}\right),
$$

which can only subsist for all values of ϕ by the fulfilment of the conditions

$$
\Sigma\left(g^{2}\right)=1, \quad \Sigma(g h)=0, \quad \Sigma\left(h^{2}\right)=1,
$$

it is plain that there are not virtually more than $2 n$ independent arbitrary constants.

The integrals for determining t and ψ are not independent, for if we assume a function

$$
S=\int \frac{d r}{r}\left\{2 r^{2}(R+A)-B^{2}\right\}^{2},
$$

it is readily seen that

$$
t+\alpha=\frac{d S}{d A}, \quad \phi+\beta=-\frac{d S}{d B} .
$$

Binet, as quoted by Gregory, Examples, p. 396.
11. Let it be proposed to integrate the system of equations

$$
\left.\begin{array}{l}
A D_{x} u+B D_{y} u+C D_{z} u=E \\
A^{\prime} D_{x} u+B^{\prime} D_{y} u+C^{\prime} D_{x} u=E^{\prime}
\end{array}\right\}
$$

$A, A^{\prime}, B, B^{\prime}, \& c$., being constants.

$$
\text { Jellett, Law's Mathematical Prize, } 1854 .
$$

These equations being integrated separately, we get

$$
\begin{aligned}
& u=\frac{E}{3}\left(\frac{x}{A}+\frac{y}{B}+\frac{x}{C}\right)+v_{0}\left(e^{\frac{x}{4}}, e^{\frac{y}{B}}, e^{\frac{x}{c}}\right), \\
& u=\frac{E^{\prime}}{3}\left(\frac{x}{A^{\prime}}+\frac{y}{B^{\prime}}+\frac{z}{C^{\prime}}\right)+w_{0}\left(e^{\frac{x}{\lambda^{\prime}}}, e^{\frac{y}{y^{\prime}}}, e^{\frac{x}{c^{\prime}}}\right),
\end{aligned}
$$

and the result required is obtained by the identification of these solutions.

Now, it is evident that they may be exhibited under the shape

$$
\begin{aligned}
& u=\frac{E}{3}\left(\frac{x}{A}+\frac{y}{B}+\frac{z}{C}\right)+\Phi\left\{\frac{y}{B}-\frac{z}{C}, \frac{z}{C}-\frac{x}{A}, \frac{x}{A}-\frac{y}{B}\right\}, \\
& u=\frac{E^{\prime}}{3}\left(\frac{x}{A^{\prime}}+\frac{y}{B^{\prime}}+\frac{z}{C^{\prime}}\right)+\Psi\left\{\frac{y}{B^{\prime}}-\frac{z}{C^{\prime}}, \frac{z}{C^{\prime \prime}}-\frac{x}{A^{\prime}}, \frac{x}{A^{\prime}}-\frac{y}{B^{\prime}}\right\} .
\end{aligned}
$$

By a comparison of these solutions it is obvious that the forms of Φ and Ψ must be linear ; in other words, that the equations just stated should be exponible in the shape
$u=\frac{E}{3}\left(\frac{x}{A}+\frac{y}{B}+\frac{z}{C}\right)+l\left(\frac{y}{B}-\frac{z}{C}\right)+m\left(\frac{z}{C}-\frac{x}{A}\right)+n\left(\frac{x}{A}-\frac{y}{B}\right)+a$,
$u=\frac{E^{\prime}}{3}\left(\frac{x}{A^{\prime}}+\frac{y}{B^{\prime}}+\frac{z}{C^{\prime}}\right)+l^{\prime}\left(\frac{y}{B^{\prime}}-\frac{z}{C^{\prime}}\right)+m^{\prime}\left(\frac{z}{C^{\prime}}-\frac{x}{A^{\prime}}\right)+n^{\prime}\left(\frac{x}{A^{\prime}}-\frac{y}{B}\right)+\beta$,
where $l, l^{\prime}, m, m^{\prime}, \& c$., are unknown constants. Either of these solutions is identified with the other by the suppositions

$$
\begin{aligned}
\frac{E}{A}+3 \frac{n-m}{A} & =\frac{E^{\prime}}{A^{\prime}}+3 \frac{n^{\prime}-m^{\prime}}{A^{\prime}} \\
\frac{E}{B}+3 \frac{l-n}{B} & =\frac{E^{\prime}}{B^{\prime \prime}}+3 \frac{l^{\prime}-n^{\prime}}{B^{\prime}} \\
\frac{E}{C}+3 \frac{m-l}{C} & =\frac{E^{\prime}}{C^{\prime}}+3 \frac{m^{\prime}-l^{\prime}}{C^{\prime}} \\
\alpha & =\beta .
\end{aligned}
$$

12. Let the system to be integrated be

$$
\begin{gathered}
D_{x}^{2} A+2 p D_{x} D_{z} A+p^{2} D_{z}^{2} A=0 \\
D_{x} D_{y} A+p D_{y} D_{z} A+q D_{x} D_{z} A+p q D_{z}^{2} A=0 \\
D_{y}^{2} A+2 q D_{y} D_{z} A+q^{2} D_{z}^{2} A=0 \\
\text { Jeluett, Calculus of Variations, p. } 345 .
\end{gathered}
$$

where A is some function of x, y, z, p, and q, the ordinary notation for the partial differential cofficients of z with respect to x and y being retained in this particular case for the sake of simplicity.

These equations may be thrown into the form

$$
\begin{gathered}
\left(D_{x}+p D_{z}\right)^{2} \cdot A=0 \\
\left(D_{x}+p D_{z}\right)\left(D_{y}+q D_{z}\right) \cdot A=0 \\
\left(D_{y}+q D_{z}\right)^{2} \quad A=0,
\end{gathered}
$$

under the condition that the quantities p and q are regarded as independent variables, and consequently not differentiated, unless with respect to themselves.

The integration of the equations severally gives

$$
\begin{gathered}
A=\left(x+\frac{z}{p}\right) \phi_{1}(z-p x, p, q, y)+\psi_{1}(z-p x, p, q, y) \\
A=\phi_{2}(z-p x, p, q, y)+\psi_{2}(z-q y, p, q, x) \\
A=\left(y+\frac{z}{q}\right) \phi_{9}(z-q y, p, q, x)+\psi_{3}(z-q y, p, q, x)
\end{gathered}
$$

and by identification of these results we ultimately obtain

$$
A=\left\{\begin{array}{c}
x \Phi(z-p x-q y, p, q)+y X(z-p x-q y, p, q) \\
+\Psi(z-p x-q y, p, q)
\end{array}\right.
$$

13. If the system to be integrated were

$$
\begin{gathered}
D_{x}^{2} A+2 p D_{x} D_{z} A+p D_{z}^{2} A=-\frac{1+p^{2}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}} \\
D_{x} D_{y} A+p D_{y} D_{z} A+q D_{x} D_{z} A+p q D_{z}^{2} A=-\frac{p q}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}} \\
D_{y}^{2} A+2 q D_{y} D_{z} A+q^{2} D_{z}^{2} A=-\frac{1+q^{2}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}, \\
\text { JELLETT, Calculus of Variations; p. } 374 .
\end{gathered}
$$

we assume

$$
\left(D_{x}+p D_{z}\right) A=\left(D_{x} A\right)=u, \quad\left(D_{y}+q D_{z}\right) A=\left(D_{y} A\right)=v
$$

and the first and last of the given equation are thus reduced, respectively, to the forms

$$
\begin{aligned}
& \left(D_{x}+p D_{z}\right) u=\left(D_{x} u\right)=-\frac{1+p^{2}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}} \\
& \left(D_{y}+q D_{z}\right) v=\left(D_{y} v\right)=-\frac{1+q^{2}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

The integration of these gives

$$
\begin{aligned}
& u=-\frac{\left(1+p^{2}\right) x}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}+\phi(z-p x, p, q, y) \\
& v=-\frac{\left(1+q^{2}\right) y}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}+\psi(z-q y, p, q, x) .
\end{aligned}
$$

Multiplying these respectively by $d x, d y$, integrating, and taking into account the second given equation, we get ultimately

$$
A=-\frac{1}{2} \frac{\left\{x^{2}+y^{2}+(p x+q y)^{2}\right\}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}+x \Phi+y X+\Psi
$$

where Φ, X, and Ψ are the functions of the last example.
14. Let the system to be integrated be that which determines the azimuthal motion of the plane of a freely-suspended pendulum, namely,

$$
\left.\begin{array}{l}
D_{t}^{2} x=\frac{d^{2} x}{d t^{2}}=-\frac{g x^{\prime}}{r+l}+N \frac{\left(x^{\prime}-x\right)}{l} \\
D_{t}^{2} y=\frac{d^{2} y}{d t^{2}}=-\frac{g y^{\prime}}{r+l}+N \frac{\left(y^{\prime}-y\right)}{l} \\
D_{t}^{2} z=\frac{d^{2} z}{d t^{2}}=-\frac{g z^{\prime}}{r+l}+N \frac{\left(z^{\prime}-z\right)}{l}
\end{array}\right\}
$$

where the origin is the centre of the earth, the positive axis of z the axis of rotation of the earth directed upwards, the positive axis of y directed towards the spectator, and the positive axis of x to the right hand; x, y, z denoting the coordinates of the centre of oscillation of the pendulum ; $x^{\prime}, y, z^{\prime}$ the co-ordinates of the point of suspension ; g the attraction of the earth; l the length of the pendulum; r the radius of the earth; and N the tension of the string.

If these equations be transformed to the point of suspension as origin, the positive axis of z being vertically downwards, the positive axes of x and y being in the horizon, and directed towards the east and north respectively, we shall obtain the following :

$$
\left.\begin{array}{l}
D_{t}^{2} x+\frac{N x}{l}=\quad+2 k \sin \lambda D_{t} y+2 k \cos \lambda D_{t} z+k^{2} x \\
D_{t}^{2} y+\frac{N y}{l}=-k^{2} r \cos \lambda \sin \lambda-2 k \sin \lambda D_{t} x+k^{2} \sin \lambda(y \sin \lambda+z \cos \lambda) \\
D_{t}^{2} z+\frac{N z}{l}=-k^{2} r \cos ^{2} \lambda+g-2 k \cos \lambda D_{t} x+k^{2} \cos \lambda(y \sin \lambda+z \cos \lambda)
\end{array}\right\}
$$

λ being the latitude of the place of observation; or, suppos-
ing the axes of co-ordinates transformed to the vertical and horizon of the actual spheroid,

$$
\left.\begin{array}{l}
D_{t}^{2} x+\frac{N x}{l}=+2 k \sin \lambda D_{t} y+2 k \cos \lambda D_{t} z+k^{2} x \\
D_{t}^{\imath} y+\frac{N y}{l}=-2 k \sin \lambda D_{t} x+k^{2} \sin \lambda(y \sin \lambda+z \cos \lambda) \\
D_{t}^{2} z+\frac{N z}{l}=g-2 k \cos \lambda D_{t} x+k^{2} \cos \lambda(y \sin \lambda+z \cos \lambda)
\end{array}\right\}
$$

If the terms depending on k^{2} be neglected in these equations, we obtain

$$
\left.\begin{array}{l}
D_{t}^{2} x+\frac{N x}{l}=+2 k \sin \lambda D_{t} y+2 k \cos \lambda D_{t} z \\
D_{t}^{2} y+\frac{N y}{l}=-2 k \sin \lambda D_{t} x \\
D_{t}^{2} z+\frac{N z}{l}=g-2 k \cos \lambda D_{t} x
\end{array}\right\}
$$

Eliminating N between the first two equations, we find

$$
\left(y D_{t}^{2} x-x D_{t}^{2} y\right)=2 k \sin \lambda\left(y D_{t} y+x D_{t} x\right)+2 k \cos \lambda y D_{t} z .
$$

Integrating this equation, we obtain

$$
y D_{t} x-x D_{t} y=k \sin \lambda\left(x^{2}+y^{2}\right)+2 k \cos \lambda \int y d z .
$$

Transforming this equation to polar co-ordinates by the formule

$$
\begin{aligned}
& x=l \sin \phi \sin \theta, \\
& y=l \cos \phi \sin \theta, \\
& z=l \cos \theta,
\end{aligned}
$$

in which ϕ denotes the azimuth measured from the north, and θ the deviation of the pendulum from the vertical, we find

$$
\begin{equation*}
D_{t} \phi=\frac{d \phi}{d t}=k \sin \lambda-\frac{2 k \cos \lambda}{\sin \theta} \int \cos \phi \sin ^{2} \theta d \theta . \tag{x}
\end{equation*}
$$

This equation proves that the azimuthal velocity consists of two parts: one uniform, and equal $k \sin \lambda$, directed from the
north to the east; the other periodic, and passing through all its changes in the time of an oscillation of the pendulum, and depending on the amplitude of the vibration. As the azimuth ϕ may be considered constant during the time of an oscillation, the second term in the last equation may be integrated. Hence we obtain

$$
D_{t} \phi=\frac{d \phi}{d t}=k \sin \lambda-\frac{2}{3} k \cos \lambda \cos \phi \cdot \theta,
$$

θ being a small arc, the powers of which above the second may be neglected, and vanishing twice during each oscillation.

From the equation just found it is easy to see that the plane of oscillation undergoes a periodic variation in azimuth; in consequence of which the projection of the centre of oscillation of the pendulum on the horizon will describe a curve resembling a figure of eight, in which, if the pendulum be in the meridian, the motion in the northern loop is retrograde; and in the southern loop progressive.

The variation in azimuth produced by the second term of equation (a) will be insensible, unless θ become nearly equal to π, in which case the change in azimuth will become indefinitely great; for, integrating this equation, we find the initial motion being in the meridian,

$$
D_{t} \phi=\frac{d \phi}{d t}=k \sin \lambda-k \cos \lambda \frac{\theta-\sin \theta \cos \theta}{\sin ^{2} \theta} .
$$

If, in this equation, θ be equal to π, the second term will be infinite and negative, denoting that the plane of vibration swings round suddenly to the west. This result is evident without analysis : for, if the pendulum be started in the meridian, so as to pass the lowest point with a velocity due to twice its length, it will reach the top of the circle without velocity, and fall suddenly to the west, in the prime vertical.

If the pendulum were to perform a complete revolution with a high velocity, the time of revolution in azimuth of the plane of its motion would tend to the limit $23^{h} 56^{m}$; but when
the motion is oscillatory, the theoretical time of revolution in azimuth will be $23^{h} 56^{m} \times \operatorname{cosec} \lambda$, as has been proved for small ares of vibration by M. Binet ("Comptes rendus de l'Acad. des Sciences," Feb. 17, 1851).

Galbraitir and Haugiton, Proc. of Royal Irish Academy, 1851.

Saction II. - Evaluation and Extension of Definite

Integrals.

15. The Calculus of Operations is obviously susceptible of application to the subject of single and multiple Definite Integrals, and an interesting field is thus opened for investigation to the student. It would be impossible here, and, so far as our present purpose is considered, unnecessary, to follow up such an investigation in its details; and a few general theorems, with examples illustrative of their application, must suffice.
16. It has been proved in the eighth article of the Third Chapter, that, if Φ and Ψ be any algebraic functions,

$$
\Psi\left(D_{x}\right) \cdot \Phi(x) \cdot e^{r x}=\Phi\left(D_{r}\right) \cdot \Psi(r) \cdot \epsilon^{r x} .
$$

If r be changed into $-r$, we get

$$
\Phi\left(-D_{r}\right) \cdot \Psi(-r) \cdot e^{-r x}=\Psi\left(D_{x}\right) \cdot \Phi(x) \cdot e^{-r x} .
$$

Now it is easily proved that

$$
\int_{0}^{\infty} d x \sin m x e^{-r x}=\frac{m}{m^{2}+r^{2}} .
$$

Hence operating on each side of this equation with

$$
\Phi\left(-D_{r}\right) \cdot \Psi(-r)
$$

we obtain the theorem

$$
\int_{-0}^{\infty} d x \sin m x \cdot \Psi\left(D_{x}\right) \cdot \Phi(x) e^{-r x}=\Phi\left(-I_{r}\right) \frac{m \Psi(-r)}{m^{3}+r^{2}},
$$

and, by a similar process, the theorem

$$
\int_{0}^{\infty} d x \cos m x \cdot \Psi\left(D_{x}\right) \cdot \Phi(x) e^{-r \cdot x}=\Phi\left(-D_{r}\right) \frac{r \Psi(-r)}{m^{2}+r^{2}} .
$$

17. If
$\int d x \int d y \int d z \ldots \Omega(x, y, z, \& c c \cdot) \cdot a^{\phi(x y z \& e \cdot)} \cdot b^{x(x y z z c \cdot)} \cdot c^{\psi\left(x y z z \varepsilon c_{0}\right)} . .=K$, the quantities $a, b, c, \& c$., being unconnected with the limits, then will
$\int d x \int d y \int d z . . \Omega(x, y, z, \& c) F.(\phi+\chi \pm \psi+\& c \cdot) \cdot a^{\phi} \cdot b^{x} . c^{\psi} . .=F(\nabla) \cdot K$, where,

$$
\nabla=a D_{a}+b D_{b}+c D_{c}+\& c .
$$

This is obvious, since, from the supposition made relative to a, b, c, \&c., we can operate with the symbol ∇ under the integral signs. It will be observed that the result bears a resemblance to Liouville's well-known extension of Dirichlet's integral.

Conversely, if it be required to investigate the value of the multiple definite integral

$$
\int d x \int d y \int d z \ldots \Omega(x, y, z, \& c) \cdot F(\phi+\chi+\psi+\& c \cdot) \cdot a^{\phi} \cdot b^{\chi} \cdot c^{\psi} \ldots
$$

in which the quantities $a, b, c, \& c$., are unconnected with the limits, the inquiry is reducible to the investigation of the value of the simpler multiple definite integral

$$
\int d x \int d y \int d z \ldots \Omega(x, y, z) . a^{\phi} \cdot b^{x} \cdot c^{\psi} \ldots
$$

and subsequent operation upon the result with the symbolic form $F(\nabla)$, where ∇ is the symbol above defined.

We seem to have here made a step towards the solution of that which has been long a difficulty in the treatment of multiple definite integrals, namely, the generalization of those in which the variables enter as complicated functions in the indices of known quantities. The most valuable extensions yet obtained are those in which the element of the primary multiple definite integral exhibits the variables under finite forms only.

Examples.

(1.) It can be easily proved that

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot a^{-x^{2}} \cdot b^{-y^{2}} \cdot c^{-z^{2}}=\frac{1}{8} \pi^{\frac{3}{2}} \frac{1}{\{\log a \cdot \log b \cdot \log c\}^{\frac{1}{2}}} ;
$$

hence

$$
\begin{aligned}
& \int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot \mathrm{~F}\left(x^{2}+y^{2}+z^{2}\right) a^{-x^{2}} \cdot b y^{-y^{2}} \cdot c^{-z^{2}} \\
& \quad=\frac{1}{8} \pi^{\frac{3}{2}} \cdot \mathrm{~F}(-\nabla) \frac{1}{\{\log a \cdot \log b \cdot \log c\}^{\frac{1}{2}}} .
\end{aligned}
$$

Conversely, the investigation of the value of

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot \mathrm{~F}\left(x^{2}+y^{2}+z^{2}\right) a^{-x^{2}} \cdot b^{-y^{2}} \cdot c^{-z^{2}}
$$

is reduced to the investigation of the value of

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot a^{x^{2}} \cdot b^{-y^{2}} \cdot c^{-z^{2}}
$$

which is known to be

$$
\frac{1}{8} \pi^{\frac{3}{2}} \frac{1}{\{\log a \cdot \log b \cdot \log c\}^{\frac{1}{2}}},
$$

and operation upon this quantity with $\mathrm{F}(-\nabla)$.
(2.) Again, we readily see that

$$
\begin{aligned}
& \int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot a^{-p x} \cdot b^{-q y} \cdot c^{-r z} \cdot x^{l-1} \cdot y^{m-1} \cdot z^{n-1} \\
& =\frac{\Gamma(l) \Gamma(m) \Gamma(n)}{p^{l} q^{m} r^{n}} \cdot \frac{1}{(\log a)^{l} \cdot(\log b)^{m} \cdot(\log c)^{n}} ;
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot \Phi(p x+q y+r z) a^{-p x} \cdot b^{-q y} \cdot c^{-r s} x^{l-1} \cdot y^{m-1} \cdot z^{n-1} \\
& \quad=\frac{\Gamma(l) \Gamma(m) \Gamma(n)}{p^{l} q^{m} r^{n}} \Phi(-\nabla) \frac{1}{(\log a)^{l} \cdot(\log b)^{m} \cdot(\log c)^{n} .}
\end{aligned}
$$

Conversely, the investigation of the value of the integral

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot \Phi(p x+q y+r z) a^{-p x} \cdot b^{-q y} \cdot c^{-r z} x^{l^{l-1}} y^{m-1} z^{n-1}
$$

is reduced to the investigation of the value of

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} d z \cdot a^{-p x} b^{-q y} c^{-r z} x^{l-1} y^{m-1} z^{n-1}
$$

which is known to be

$$
\frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\boldsymbol{p}^{l} q^{m} r^{n}} \cdot \frac{1}{(\log a)^{l} \cdot(\log b)^{m} \cdot(\log c)^{n}},
$$

and operation upon the result with $\mathrm{F}(-\nabla)$.
Philosophical Magazine, 1852.
18. More generally, since
$F\left(x D_{x}, y D_{y}, z D_{z}, \& c\right.$. $) \cdot x^{m} y^{n} z^{p} \ldots=F(m, n, p, \& c.) \cdot x^{m} y^{n} z^{p} \ldots$, we have

$$
\begin{aligned}
& F\left(a D_{a}, b D_{b}, c D_{c}, \& c .\right) \cdot a^{\phi\left(x, y, z, \delta c_{e}\right)} \cdot b^{x(x, y, z, \delta(c .)} \cdot c^{\psi(x, y, z, \delta c \cdot)} \cdots \\
& = \\
& F(\phi, \chi, \psi, \& c c) \cdot a^{\phi\left(x, y, z, \& c_{0}\right)} \cdot b^{\chi^{\left(x, y, z, \& c_{0}\right)} \cdot c^{\psi\left(x, y, z, \& c_{c}\right)} .}
\end{aligned}
$$

Hence, if
$\int d x \int d y \int d z \ldots \Omega(x, y, z, \& c c.) a^{\phi\left(x, y, z, 8 c_{c}\right)} \cdot b^{(x, y, y, z, \& c \cdot)} \cdot .^{\psi(x, y, z, \& c \cdot)} \ldots=K$, the quantities $a, b, c, \& c$., being unconnected with the limits, then will
$\int d x \int d y . . \Omega(x, y, \& c) F.(\phi, \chi, \& c.) a^{\phi} b^{x} \ldots=F\left(a D_{a}, b D_{b}, \& c.\right) . K$.
Conversely, if it be required to investigate the value of the multiple definite integral

$$
\int d x \int d y \int d z \ldots \Omega(x, y, z, \& c .) \cdot F\left(\phi, \chi, \psi, \& c_{.}\right) a^{\phi} b^{x} c^{\psi} \ldots
$$

in which the quantities $a, b, c, \& c$., are unconnected with the limits, the inquiry is reducible to the investigation of the value of the simpler multiple definite integral

$$
\int d x \int d y \int d z \ldots \Omega(x, y, z, \& c \cdot) \cdot a^{\phi} \cdot b^{\chi} \cdot c^{\psi}, \ldots
$$

and subsequent operation upon the result with the symbolic form

$$
F\left(a D_{a}, b D_{b}, c D_{c}, \& c .\right) .
$$

CHAPTER VII.

INTERPRETATION OF SYMBOLS OF OPERATION.

1. It appears from a theorem in the second article of the Third Chapter, that if

$$
U=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\ldots+A_{n} x^{n}
$$

where A_{0}, A_{1}, A_{2}, \&c., are constants, then

$$
a^{x D_{x}} \cdot U=A_{0}+a A_{1} x+a^{2} A_{2} x^{2}+a^{3} A_{3} x^{3}+\ldots+a^{n} A_{n} x^{n} .
$$

The interpretation of this result is readily seen to be, that the operation of $a^{x D_{x}}$ upon the mixed rational function U converts the variable x throughout it into $a x$.

Graves, Fellowship Lectures, 1851.
2. We saw, moreover, in the corresponding article of the Fourth Chapter, that if U contain any number of independent variables, and be expressed as a sum of a number of homogeneous functions, thus

$$
U=u_{0}+u_{1}+u_{2}+\ldots+u_{n},
$$

that

$$
a^{x D_{x}+y D_{y}+z D_{z}+\cdots} \cdot U
$$

or

$$
a^{\nabla} . U=u_{0}+a u_{1}+a^{2} u_{2}+\ldots+a^{n} u_{n} .
$$

The interpretation of this result is, again, seen to be, that the operation of a^{∇} upon U converts the variables x, y, z, \&c., throughout it, into $a x, a y, a z, \& c \cdot$., respectively.
3. Let it be proposed to investigate the value of the symbolic quantity

$$
e^{\phi(x) D_{x}+\psi(y) D_{y}+\chi(z) D_{z}+\delta c .} . U,
$$

where

$$
U=f(x, y, z, \& c .)
$$

Now, if we put

$$
\frac{d x}{\phi(x)}=d \xi, \quad \frac{d y}{\psi(y)}=d \eta, \quad \frac{d z}{\chi(z)}=d \zeta, \& c
$$

the given symbolic quantity becomes

$$
e^{D_{\xi^{+}} D_{n^{+}}+\zeta_{\zeta^{+}} \& \mathrm{cc}} . U ;
$$

and as U, from being a function of $x, y, z, \& c$., can be transformed into a function of $\xi, \eta, \zeta, \& c$., by the aid of the assumptions just made, the question is reduced to a shape which admits of obvious solution.

Thus, as

$$
U=f(x, y, z, \& c .)
$$

and

$$
\left.\begin{array}{c}
\xi+c=\int \frac{d x}{\phi(x)}=\Phi(x) \\
\eta+d=\int \frac{d y}{\psi(y)}=\Psi(y) \\
\zeta+e=\int \frac{d z}{\chi(z)}=X(z) \\
\& c .
\end{array}\right\}
$$

we get

$$
U=f\left\{\Phi^{-1}(\xi+c), \Psi^{-1}(\eta+d), \quad X^{-1}(\zeta+e), \quad \& c .\right\}
$$

and, therefore,

$$
e^{D_{\xi+} D_{\eta}+\& \mathrm{c} .} . U=f\left\{\Phi^{-1}(\xi+c+1), \Psi^{-1}(\eta+d+1), \& c .\right\}
$$

whence, finally,
$e^{\phi(x) D_{x}+\psi(y) D_{y}+\& \mathrm{cc} .} \cdot f(x, y, \& c)=.f\left(\Phi^{-1}(\Phi x+1), \Psi^{-1}(\Psi x+1), \& c.\right\}$, or, the result of the operation of the symbol

$$
e^{\phi(x) D_{x}+\psi(y) D_{y}+\& c .}
$$

upon any function of $x, y, \& c$., is to change x into $\Phi^{-1}(\Phi x+1)$, y into $\Psi^{-1}(\Psi y+1)$, \&c.

In the practical application of this theorem, the difficulties with which we have to contend are, the deduction of the integrals

$$
\int \frac{d x}{\phi(x)}, \int \frac{d y}{\psi(y)}, \& c .
$$

and the inversion of the functions Φ, Ψ, \&c.
This article is mainly a generalization of results obtained, for a single variable, by the Rev. Professor Graves, and communicated by him to the Royal Irish Academy, April, 1852.

Examples.

(1.) The simplest and most obvious illustration of the valuable theorem contained in the previous article is afforded by the suppositions

$$
\phi(x)=x, \quad \psi(y)=y, \quad \chi(z)=z, \quad \& c .
$$

In this case, in fact, the operative symbol

$$
\phi(x) D_{x}+\psi(y) D_{y}+\chi(z) \mathrm{D}_{z}+\& c
$$

becomes

$$
x D_{x}+y D_{y}+z D_{z}+\& c .=\nabla,
$$

and therefore

$$
e^{\nabla} \cdot f(x, y, \& c \cdot)=f\left\{\log ^{-1}(1+\log x), \log ^{-1}(1+\log y), \& c \cdot\right\}
$$

or

$$
e^{\nabla} \cdot f(x, y, z, \& c \cdot)=f(e x, e y, e z, \& c .)
$$

If we break up f into sets of homogeneous terms, it is evident that this result is identical with that given in the second article of the Fourth Chapter, already cited, namely

$$
e^{\nabla} U=u_{0}+e u_{1}+e^{2} u_{2}+\& c .+e^{n} u_{n} .
$$

(2.) More generally, let

$$
\phi(x)=x^{m}, \quad \psi(y)=y^{n}, \& \mathrm{c} .,
$$

and the result of the evaluation of

$$
e^{x^{m} D_{x}+y^{n} D_{y+} \& c_{0}} f(x, y, \& c .)
$$

is

$$
f\left\{\frac{x}{\left\{1-(m-1) x^{m-1}\right\}^{\frac{1}{m-1}}}, \frac{y}{\left\{1-(n-1) y^{n-1}\right\}^{\frac{1}{n-1}}}, \text { \&c. }\right\}
$$

It is not difficult to verify this formula for the particular cases

$$
\begin{aligned}
& m=n=\& c .=0 \\
& m=n=\& c .=1
\end{aligned}
$$

In that in which

$$
m=n=\& c .=2
$$

we get the result

$$
e^{x^{2} D_{x} \cdot y^{2} D_{y}+\& \mathrm{cc}} f(x, y, \& \mathrm{c})=f\left(\frac{x}{1-x}, \frac{y}{1-y}, \& \mathrm{c} .\right)
$$

and when

$$
m=n=\& c .=3
$$

we get

$$
e^{x^{3} D_{x}+y^{3} D_{y}+\& c \mathrm{c} .} . f(x, y, \& c .)=f\left\{\frac{x}{\left(1-2 x^{2}\right)^{\frac{1}{2}}}, \frac{y}{\left(1-2 y^{2}\right)^{\frac{1}{2}}}, \& c .\right\} .
$$

(3.) Let

$$
\phi(x)=\left(a^{2}-x^{2}\right)^{\frac{1}{2}}, \quad \psi(y)=\left(b^{2}-y^{2}\right)^{\frac{1}{2}}, \& c .
$$

and the result of the evaluation of

$$
e^{\left(a^{2}-x^{2}\right)^{\frac{1}{2}} D_{x}+\left(b^{2}-y^{2} \frac{1}{2} D_{y}+\& c .\right.} f(x, y, \& c .)
$$

is

$$
f\left\{a \sin \left(1+\sin ^{-1} \frac{x}{a}\right), b \sin \left(1+\sin ^{-1} \frac{y}{b}\right), \& \mathrm{c} .\right\} .
$$

(4.) Let

$$
\phi(x)=a^{2}+x^{2}, \quad \psi(y)=b^{2}+y^{2}, \& c
$$

and the result of the evaluation of

$$
e^{\left(a^{2}+x^{2}\right) D_{x^{+}}\left(b^{2}+y^{2}\right) D_{y^{+}} \& e_{e}}, f(x, y, \& c .)
$$

is
$f\left\{a \tan a\left(1+\frac{1}{a} \tan ^{-1} \frac{x}{a}\right), \quad b \tan b\left(1+\frac{1}{b} \tan ^{-1} \frac{y}{b}\right) \& d.\right\}$.
(5.) Let

$$
\phi(x)=x \log x, \quad \psi(y)=y \log y, \quad \& \mathrm{c} .,
$$

and the result of the evaluation of

$$
e^{x \log x D_{x}+y \log y D_{y}+\varepsilon c .}, f(x, y, \& c .)
$$

is

$$
f\left(x^{e}, y^{e}, \& c .\right) .
$$

Thus the result of the operation of the symbol

$$
e^{r \log x D_{x}+y \log y D_{y}+\varepsilon c e}
$$

upon any function of $x, y, \& c$., is the change of x into x^{e}, y into y^{e}, \&c.

This theorem may be deduced directly with great facility, from the case of a single variable, by putting $x=e^{\theta}$, since then

$$
e^{x \log x D_{x}} \cdot x^{m}=e^{\theta D_{\theta}}\left(1+m \theta+\frac{m^{2} \theta^{2}}{1.2}+\& \mathrm{cc} .\right)
$$

whence by the second article of the Third Chapter

$$
e^{x \log x D_{x}} \cdot x^{m}=1+e \cdot m \theta+e^{2} \cdot \frac{m^{2} \theta^{2}}{1 \cdot 2}+\& c \cdot=e^{e m \theta}=\left(x^{e}\right)^{m} .
$$

(6.) Selecting now a particular form for the function operated on, we shall suppose that it is linear in $x, y, d c c$. Then

$$
e^{(x)} D_{z^{+}} \downarrow(y) D_{y^{+}}+\varepsilon c .(a x+b y+\& \mathrm{c} .)=a \Phi^{-1}(\Phi x+1)+b \Psi^{-1}(\Psi y+1)+\& c .
$$

and we may introduce the values of $\phi(x), \psi(y), \& c c$, employed in the previous examples.
4. There are certain cases in which the evaluation of the quantity

$$
e^{\phi(x) D_{x}+\psi(y) D_{y^{+}}+\operatorname{cec}} U
$$

may be considerably facilitated. Thus, if U consist of the product of certain minor functions $u, v, w, \& c$., we may avail ourselves of the theorem given in the following article, namely, that

$$
e^{\psi} \cdot u v w \ldots=e^{\Psi} u \cdot e^{\Psi} v \cdot e^{\Psi} w \ldots
$$

if Ψ be such a symbol that

$$
\Psi . u v=u \Psi v+v \Psi u ;
$$

since it is obvious that

$$
\phi(x) D_{x}+\psi(y) D_{y}+\& c .
$$

satisfies the required condition.
5. Ψ being a distributive symbol, such that

$$
\Psi . u v=u \Psi v+v \Psi u,
$$

it can be readily proved that

$$
e^{\Psi} \cdot u v=e^{\Psi} u \cdot e^{\Psi} v .
$$

For

$$
e^{\Psi} \cdot u v=\left(1+\frac{\Psi}{1}+\frac{\Psi^{2}}{1.2}+\ldots\right) \cdot u v ;
$$

or, by the given condition,

$$
e^{\psi} . u v=u v+\frac{u \Psi v+v \Psi u}{1}+\frac{u \Psi^{2} v+2 \Psi u \cdot \Psi v+v \Psi^{2} u}{1.2}+\& \mathrm{c} \cdot,
$$

a result coincident with the expansion of

$$
e^{\Psi} u \cdot e^{\Psi} v
$$

Hence it follows that

$$
e^{\Psi} \cdot u v w \ldots=e^{\Psi} u \cdot e^{\Psi} v \cdot e^{\Psi} w \ldots
$$

and, consequently, that

$$
\begin{aligned}
e^{\psi} \cdot u^{n}= & \left(e^{\psi} \cdot u\right)^{n} . \\
& \text { Graves, Fellowship Lectures, } 1851 .
\end{aligned}
$$

Hence we derive the theorem that, if F denote any algebraic function,

$$
e^{\psi} \cdot F(u)=F\left(e^{\psi} u\right),
$$

or the deduction of the result of the operation of e^{ψ} upon any function of u is reduced to the deduction of the result of the operation of the same symbol upon u, simply.

Thus the distributive symbol

$$
x \dot{D_{x}}+y D_{y}+z D_{z}+\& \mathrm{c} .=\nabla
$$

satisfies the above law, and, therefore,

$$
e^{\theta \nabla} \cdot F(U)=F\left(e^{\theta \nabla} \cdot U\right),
$$

where Θ and U are any functions whatsoever of $x, y ; z$, \&cc.

Example.

Investigate the algebraic value of the symbolic quantity

$$
e^{\theta_{m} \nabla} \cdot F\left(\Theta_{n}\right),
$$

where Θ_{m}, Θ_{n} are known homogeneous functions of the degrees m, n, respectively, in x, y, z, \&c.

Now, by the fifth article of the Fourth Chapter,

$$
e^{\Theta_{m} \nabla} \cdot \Theta_{n}=\left\{1+n \Theta_{m}+\frac{n(n+m)}{1.2} \Theta_{m}^{2}+\& c \cdot\right\} \Theta_{n},
$$

or

$$
e^{\Theta_{m} \nabla} \cdot \Theta_{n}=\frac{\Theta_{n}}{\left(1-m \Theta_{m}\right)^{\frac{n}{m}}},
$$

and, therefore,

$$
e^{\Theta_{m} \nabla} \cdot F\left(\Theta_{n}\right)=F\left\{\frac{\Theta_{n}}{\left(1-m \Theta_{m}\right)_{m}^{\frac{n}{m}}}\right\} .
$$

Thus

$$
e^{(a x+b y+c z) \nabla} \cdot F\left(x^{2}+y^{2}+z^{2}\right)=F\left\{\frac{x^{2}+y^{2}+z^{2}}{\{1-(a x+b y+c z)\}^{2}}\right\} .
$$

Camb. and Dub. Math. Journal, 1853.
6. If it be proposed to investigate the value of the symbolic quantity

$$
e^{\phi\left(x, y, z, \delta c_{c}\right) D_{x}+\chi\left(x, y, z, \delta c_{c}\right) D_{y}+\psi(x, y, z, \& c \cdot) D_{z}+\& \mathrm{c}_{\mathrm{c}}} . U,
$$

where the coefficients of the symbols of differentiation are mixed functions of all the variables, and

$$
U=F(x, y, z, \& c .),
$$

a method completely different must be adopted, and the question seems to be, in general, insoluble.

If, however, we suppose that the result may be represented by

$$
F(\Phi(x, y, z, \& c .), X(x, y, z, \& c .), \Psi(x, y, z, \& c .), \& c .\}
$$ or that the effect of the operating symbol is, while the form of F remains the same, to convert x into $\Phi(x, y, z, \& \mathrm{c}$.), y into $X(x, y, z, \& c \cdot)$, and so on : the forms of these functions still unknown may be thus investigated.

Let
$\phi(x, y, z, \& c.) D_{x}+\chi(x, y, z, \& c.) D_{y}+\psi(x, y, z, \& c.) D_{z}+\& c .=\omega$.
Then

$$
\omega . x=\phi(x, y, z, \& \mathrm{c} .)
$$

and

$$
\omega \cdot e^{\omega} \cdot x=e^{\omega} \cdot \omega \cdot x=e^{\omega} \cdot \phi(x, y, z, \& c .)
$$

But, by hypothesis,

$$
e^{\varpi} \cdot x=\Phi(x, y, z, \& c \cdot)
$$

and
$e^{\omega} \cdot \phi(x, y, z, \& \mathrm{c})=.\phi\{\Phi(x, y, z, \& \mathrm{c}),. X(x, y, z, \& \mathrm{c}),. \Psi(x, y, z, \& \mathrm{c}),. \& \mathrm{c}$.
Hence the first equation of the following system, and, by processes precisely similar, the remainder:

$$
\begin{aligned}
& \left(\phi D_{x}+\chi D_{y}+\psi D_{z}+\& \mathrm{c} .\right) \cdot \Phi=\phi(\Phi, X, \Psi, \& \mathrm{c} .) \\
& \left(\phi D_{x}+\chi D_{y}+\psi D_{z}+\& \mathrm{c} .\right) \cdot X=\chi(\Phi, X, \Psi, \& \mathrm{c} .) \\
& \left(\phi D_{x}+\chi D_{y}+\psi D_{z}+\& \mathrm{c} .\right) \cdot \Psi=\psi(\Phi, X, \Psi, \& \mathrm{c} .)
\end{aligned}
$$

Thus, to find the forms of $\Phi, X, \Psi, \& c$., we have a number of simultaneous partial differential equations equal to the number of functions whose forms are to be found.

If the converse of this question had been proposed for investigation, that is, if the forms of Φ, X, Ψ, \&c. being given, we had been required to investigate the forms of $\phi, \chi, \psi, \& c$., we may regard the previous system as one of simultaneous functional equations, from which the forms of $\phi, \chi, \psi, \& c$. are to be determined.

Graves, Fellowship Lectures, 1852.
7. Let it be proposed to investigate the effect of the operation of the symbol $\sin \left(\frac{\pi}{2} x D\right)$ upon any rational and integer function of x, suppose

$$
A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\& c .=X
$$

Then

$$
\begin{gathered}
\sin \left(\frac{\pi}{2} x D\right) X=\sin \left(\frac{\pi}{2} \cdot 0\right) A_{0}+\sin \left(\frac{\pi}{2} \cdot 1\right) A_{1} x+\sin \left(\frac{\pi}{2} \cdot 2\right) A_{2} x^{2} \\
+\& c .,
\end{gathered}
$$

or

$$
\sin \left(\frac{\pi}{2} x D\right) X=A_{1} x-A_{3} x^{3}+A_{5} x^{5}-A_{7} x^{7}+\& c
$$

Thus the effect of the operation $\sin \left(\frac{\pi}{2} x D\right)$ upon any rational and integer function of x is, to cancel the terms whose indices are even numbers, and to change the signs alternately of those terms whose indices are odd.

Similarly,

$$
\cos \left(\frac{\pi}{2} x D\right) X=A_{0}-A_{2} x^{2}+A_{4} x^{4}-A_{6} x^{6}+\& c .
$$

and thus the effect of the operation $\cos \left(\frac{\pi}{2} x D\right)$ upon any rational and integer function of x is, to cancel those terms whose indices are odd numbers, and to change the signs alternately of those terms whose indices are even.

Graves, Law's Mathematical Prize, 1853.
8. In a manner precisely similar it may be proved that, if U be any rational and integer function of x, y, z, \&c., broken up into sets of homogeneous functions, thus

$$
U=u_{0}+u_{1}+u_{2}+u_{3}+\& c .,
$$

the effect of the operation $\sin \left(\frac{\pi}{2} \nabla\right)$ upon U is, to cancel the homogeneous functions whose order is even, and to change the signs alternately of the functions whose order is odd, or that

$$
\sin \left(\frac{\pi}{2} \nabla\right) \cdot U=u_{1}-u_{3}+u_{5}-u_{7}+\& c .
$$

Again it may be proved that

$$
\cos \left(\frac{\pi}{2} \nabla\right) \cdot U=u_{0}-u_{2}+u_{4}-u_{6}+\& c \cdot
$$

and the interpretation is obvious.
By combining the last two results we find that

$$
\left\{\sin \left(\frac{\pi}{2} \nabla\right)+\cos \left(\frac{\pi}{2} \nabla\right)\right\} \cdot U=u_{0}+u_{1}-u_{2}-u_{3}+u_{4}+u_{5}-u_{6}-u_{7}+\& c .
$$

the interpretation of which is, that the effect of the operation

$$
\sin \left(\frac{\pi}{2} \nabla\right)+\cos \left(\frac{\pi}{2} \Delta\right)
$$

upon U, is simply to change the sign of each alternate pair of homogeneous functions, the series being supposed to ascend regularly from the order zero.
9. From what has been just said it appears that the solution of the linear total differential equation

$$
\sin \left(\frac{\pi}{2} x D\right) \cdot y=0
$$

is

$$
y=C_{0}+C_{2} x^{2}+C_{4} x^{4}+\& c
$$

and that the solution of the equation

$$
\cos \left(\frac{\pi}{2} x D\right) \cdot y=0
$$

is

$$
y=C_{1} x+C_{3} x^{3}+C_{5} x^{5}+\& c .
$$

where $C_{0}, C_{1}, C_{2}, C_{3}$, \&c. are arbitrary constants.
10. In the same manner it appears that the solution of the partial differential equation

$$
\sin \left(\frac{\pi}{2} \nabla\right) \cdot z=0
$$

is

$$
z=u_{0}+u_{2}+u_{4}+\& \mathrm{c} .
$$

and that the solution of

$$
\cos \left(\frac{\pi}{2} \nabla\right) \cdot z=0
$$

is

$$
z=u_{1}+u_{3}+u_{5}+\& c .,
$$

where $u_{0}, u_{1}, u_{2}, u_{3}, \& c$. are arbitrary homogeneous functions of the orders $0,1,2,3, \& c$.

CHAPTER VIII.

APPLICATION TO ANALYTIC GEOMETRY.

1. If a plane curve, whose equation is

$$
F(x, y)=0,
$$

be subjected to a simple translation in its plane, its equation in general assumes the form

$$
F(x+a, y+b)=0 .
$$

Now the symbolic equation

$$
e^{a D_{z}+b D_{y}} \cdot F(x, y)=0
$$

is exactly equivalent to this, or the operation of the symbol

$$
e^{a D_{x}+b D_{y}}
$$

upon the equation of a plane curve, is equivalent to the simple translation of the curve in its plane to a position determined by the values of the quantities a and b. We may also, of course, regard it as equivalent to a translation, in the opposite direction, of the axes of co-ordinates, to an origin whose coordinates are a and b.

Graves, Fellowship Lectures, 1851.

2. With regard to this theorem it may be observed, that a slight consideration of its form leads to the development of an unexpected and interesting result.

Thus, if the symbolic expression

$$
e^{a D_{x^{+}}+b D_{y}} \cdot F(x, y)=0
$$

be expanded, there is found for the equation, in full, of the translated curve, which I would propose to call the transferée,

$$
\left\{1+\frac{\left(a D_{x}+b D_{y}\right)}{1}+\frac{\left(a D_{x}+b D_{y}\right)^{2}}{1.2}+\& c \cdot\right\} \cdot F(x, y)=0 ;
$$

and, consequently, the points of intersection of the transferée with the original curve, lie on the curve

$$
\left\{\frac{\left(a D_{x}+b D_{y}\right)}{1}+\frac{\left(a D_{x}+b D_{y}\right)^{2}}{1.2}+\& c \cdot\right\} \cdot F(x, y)=0 .
$$

If the equation of the original curve be given as a direct algebraic function of x and y, as it generally is, the equation just found is evidently terminable, and of one degree lower than that of the given curve.

Examples.

(1.) Let it be proposed to investigate the character of the points of intersection of a curve of the second degree with any transferée.

Then, the equation of the curve being given in the shape

$$
u_{2}+u_{1}+u_{0}=0,
$$

the points of intersection with the transferée, determined by the co-ordinates a, b, lie on the curve

$$
\frac{\left(a D_{x}+b D_{y}\right)}{1} \cdot\left(u_{2}+u_{1}\right)+\frac{\left(a D_{x}+b D_{y}\right)^{2}}{1.2} \cdot u_{2}=0,
$$

which is, of course, a right line.

- (2) Let it be proposed to investigate the character of the points of intersection of a curve of the third degree with any transferée.

The equation of the curve being given in the shape

$$
u_{3}+u_{2}+u_{1}+u_{0}=0,
$$

the points of intersection with the transferée, determined by the co-ordinates a, b, lie on the curve

$$
\begin{gathered}
\frac{\left(a D_{x}+b D_{y}\right)}{1}\left(u_{3}+u_{2}+u_{1}\right)+\frac{\left(a D_{x}+b D_{y}\right)^{2}}{1.2}\left(u_{3}+u_{2}\right) \\
+\frac{\left(a D_{x}+b D_{y}\right)^{3}}{1.2 \cdot 3} u_{3}=0
\end{gathered}
$$

which is plainly of the second degree.
3. In a manner precisely similar it appears that the operation of the symbol

$$
e^{a D_{x}+b D_{y}+c D_{z}}
$$

upon the equation of a surface

$$
F(x, y, z)=0
$$

is equivalent to a simple translation of the surface to a position determined by the values of the quantities a, b, c.
4. The student will observe also that the curves of intersection of any surface with a transferée determined by the quantities a, b, c, lie upon the surface

$$
\left\{\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)}{1}+\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)^{2}}{1.2}+\& c \cdot\right\} \cdot F(x, y, z)=0,
$$

which is, in general, of one degree lower than the given surface.

Thus, it appears that the curve of intersection of a surface of the second degree with any transfereé lies upon the plane

$$
\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)}{1}\left(u_{2}+u_{1}\right)+\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)^{2}}{1.2} u_{2}=0 ;
$$

and that the curves of intersection of a surface of the third degree with any transfereé lie upon the surface of the second degree,

$$
\begin{gathered}
\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)}{1}\left(u_{3}+u_{2}+u_{1}\right)+\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)^{2}}{1.2}\left(u_{3}+u_{2}\right) \\
+\frac{\left(a D_{x}+b D_{y}+c D_{z}\right)^{3}}{1.2 .3} u_{3}=0 .
\end{gathered}
$$

5. If the equation of a plane curve referred to polar coordinates be

$$
f(r, \theta)=0
$$

the equation of the same curve, after rotation in its plane through any angle ω round an axis passing through the origin and perpendicular to the plane, is, since any radius vector r is unaltered by the rotation,

$$
f(r, \theta+\omega)=0
$$

or

$$
e^{\omega D_{\theta}} \cdot f(r, \theta)=0 .
$$

But, expressing the equation of the curve in rectangular coordinates,

$$
f(r, \theta)=F(x, y)
$$

and

$$
D_{\theta}=D_{\theta} x . D_{x}+D_{\theta} y . D_{y}=x D_{y}-y D_{x} .
$$

Consequently the equation of the curve after the rotation is

$$
e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot \boldsymbol{F}(x, y)=0,
$$

or the operation of the symbol

$$
e^{\omega\left(x D_{y}-y D_{x}\right)}
$$

upon the equation of a plane curve

$$
F(x, y)=0
$$

is equivalent to the rotation of the curve in its plane through an angle ω round an axis passing through the origin and perpendicular to the plane.

Graves, Fellowship Lectures, 1851.
Moreover, we know from other sources that the equation of this new curve is

$$
F(x \cos \omega-y \sin \omega, x \sin \omega+y \cos \omega)=0 .
$$

Hence we derive the second inference, that the result of the evaluation of the symbolic quantity

$$
e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot F(x, y)
$$

is

$$
F(x \cos \omega-y \sin \omega, x \sin \omega+y \cos \omega)
$$

6. It has been remarked already in the second Chapter that, upon à priori grounds, we cannot write

$$
e^{\omega\left(x D_{y}-y D_{x}\right)+a D_{x}+b D_{y}} \cdot F(x, y)
$$

as equivalent to

$$
e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot e^{a D_{x}+b D_{y}} \cdot F(x, y) ;
$$

or, again, as equivalent to

$$
e^{a D_{x}+b D_{y}} \cdot e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot F(x, y)
$$

since, in fact, the symbols

$$
\omega\left(x D_{y}-y D_{x}\right), \quad a D_{x}+b D_{y},
$$

are not commutative.
In consistency with this result, it may be observed that, a posteriori, the equations
and

$$
e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot e^{a D_{x^{\prime}}+b D_{y}}, F(x, y)=0,
$$

$$
e^{a D_{x}+b D_{y}}, e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot F(x, y)=0,
$$

plainly represent distinctly posited curves, the axis of rotation in the one case being nearer to the curve than in the other ; and the angle through which the curve is rotated being the same in both cases.

This appears again from analytical considerations, the first equation being equivalent to

$$
F(x \cos \omega-y \sin \omega+a, x \sin \omega+y \cos \omega+b)=0
$$

and the second to

$$
F\{(x+a) \cos \omega-(y+b) \sin \omega,(x+a) \sin \omega+(y+b) \cos \omega\}=0 .
$$

7. If the angle ω be very small, we may neglect terms of the second order in the expansion of

$$
e^{\omega\left(x D_{y}-y D_{x}\right)} \cdot F(x, y)=0 ;
$$

or, we may consider the virtual expansion of this expression to be

$$
F(x, y)+\omega\left(x D_{y}-y D_{x}\right) \cdot F(x, y)=0 .
$$

Hence, if

$$
F(x, y)=0
$$

be the equation of a plane curve, and this curve receive a very small rotation in its plane round an axis passing through the origin and perpendicular to the plane, the points of intersection of the curve so rotated with the original curve, lie on the curve

$$
\left(x D_{y}-y D_{x}\right) \cdot F(x, y)=0
$$

which, of course, also passes through the origin.
Graves, Fellowship Lectures, 1851.
The student will observe that, in this case, the points of intersection of the two curves lie on a third curve of the same degree.

Example.

Let the first curve be a conic section, or let

$$
F(x, y)=A x^{2}+A^{\prime} y^{2}+2 B x y+2\left(C x+C^{\prime} y\right)+D=0 .
$$

The equation

$$
\left(x D_{y}-y D_{x}\right) \cdot F(x, y)=0
$$

in this case, is

$$
x\left(A^{\prime} y+B x+C^{\prime}\right)-y(A x+B y+C)=0
$$

or

$$
B\left(x^{2}-y^{2}\right)+\left(A^{\prime}-A\right) x y+C^{\prime} x-C y=0 ;
$$

and, consequently, if a conic section receive a very small rotation in its plane round an axis passing through the origin, and perpendicular to the plane, the points of intersection of the rotated conic, with the original, lie on an equilateral hyperbola passing through the origin.

If the conic section be a circle, the points of intersection of the rotated circle, with the original, lie on a right line passing through the origin, as from à priori considerations they should.

Graves, Fellowship Lectures, 1851.

8. It is possible that F may be of such a form that the equation

$$
\left(x D_{y}-y D_{x}\right) \cdot F(x, y)=0
$$

is satisfied identically, and in that case the original curve coincides with the rotated. This form is had by the solution of the equation

$$
\left(x D_{y}-y D_{x}\right) \cdot u=0
$$

which is

$$
u=\phi_{0}\left(e^{-x^{2}}, e^{y^{2}}\right)=\Psi\left(x^{2}+y^{2}\right) ;
$$

and as the solution of

$$
\Psi\left(x^{2}+y^{2}\right)=0
$$

is

$$
x^{2}+y^{2}=C,
$$

it follows that the circle is the only curve which coincides with itself rotated through a small angle, and that only when the axis of rotation passes through its centre perpendicularly to its plane. It is plain, too, that this coincidence, once established, holds even when the rotation is supposed finite.
9. Let it be proposed to investigate a symbol, which, ope-
rating on a function of x and y, will interchange x and y, or transform $F(x, y)$, into $F(y, x)$.

This result will evidently be obtained if, the equation being transformed from rectangular into polar co-ordinates, a symbol be found, which, operating on the function of r and θ, changes θ into $\frac{1}{2} \pi-\theta, r$ being left unaltered.

Now, we know that

$$
e^{-\frac{1}{2} \pi D} \cdot f(r, \theta)=f\left(r, \theta-\frac{1}{2} \pi\right),
$$

and that the sign of $\theta-\frac{1}{2} \pi$ is altered throughout (see the second article of the Third Chapter) by operating with

$$
(-1)^{\left(\theta-\frac{1}{2} \pi\right) D_{D}\left(\theta-\frac{1}{\mathrm{~h}} \pi\right)}=(-1)^{\left(\theta-\frac{1}{2} \pi\right) D_{\theta}} \text {; }
$$

or that

$$
(-1)^{\left(\theta-\frac{1}{2} \pi\right) D_{\theta}: f\left(r, \theta-\frac{1}{2} \pi\right)=f\left(r, \frac{1}{2} \pi-\theta\right) . . . ~}
$$

Hence it appears, by substituting for (-1) its exponential form, and transforming back to rectangular co-ordinates, that

$$
e \pm^{\pi \mu_{-1}\left(\tan ^{-1} \frac{y}{x}-\frac{1 \pi)}{}\right)\left(x D_{y}-y D_{x}\right)} \cdot F(x, y)=F(y, x) .
$$

Graves, Fellowship Lectures, 1853.
10. If the equation of a surface referred to polar co-ordinates be

$$
f(r, \theta, \phi)=0,
$$

the equation of the same surface, after rotation through any angle ψ round the axis from which θ is reckoned, is

$$
f(r, \theta, \phi+\psi)=0,
$$

or

$$
e^{\psi D} . f(r, \theta, \phi)=0 .
$$

But if m be any point of the originalsurface, $A O$ the axis of revolution, and $d s$ an element perpendicular to the plane of $\overline{o m, O A}$ at m, since

$$
d s=p d \phi
$$

p being the perpendicular from
 m upon the axis $O A$, we have,

$$
D_{\phi}=p D_{s}=p\left(D_{s} x . D_{x}+D_{s} y \cdot D_{y}+D_{s} z \cdot D_{z}\right) .
$$

Hence if l, m, n be the angles made by the axis of rotation $O A$ with the axes of co-ordinates,
$D_{\varphi}=(y \cos n-z \cos m) D_{x}+(z \cos l-x \cos n) D_{y}+(x \cos m-y \cos l) D_{z}$ or

$$
D_{\phi}=\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right) .
$$

Consequently, the equation of the surface after the rotation is

$$
e^{\psi\left[\cos \left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x^{-}}-x D_{y}\right)\right]} \cdot F(x, y, z)=0,
$$

or the operation of the symbol

$$
e^{\psi\left[\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right)\right]}
$$

upon the equation of the surface

$$
F(x, y, z)=0
$$

is equivalent to the rotation of the surface through an angle ψ round an axis passing through the origin, the angles made by which with the axes of co-ordinates are l, m, n.

Graves, Fellowship Lectures, 1851.
11. Again, from the illegitimacy of writing

$$
e^{\downarrow\left[\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right)\right]} \cdot F(x, y, z)
$$

as equivalent to

$$
e^{\downarrow \cos \ell\left(z D_{y}-y D_{z}\right)} \cdot e^{\psi \cos m\left(x D_{z}-z D_{x}\right)} \cdot e^{\psi \cos n\left(y D_{x}-x D_{y}\right)} \cdot F(x, y, z)
$$

we conclude that, in general, the principle of composition of rotations does not hold. When the angle of rotation ψ is infinitely small, second powers may be neglected in the expansion of the symbol of operation, the equivalence before illegitimate in this case becomes just, and we know independently that, in this case, the principle of composition of rotations does hold.
12. If the angle ψ be very small, we may, as before, neglect terms of the second order in the expansion of

$$
e^{\psi\left[\cos \left(z z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x_{z}-x}-x D_{y}\right)\right]} . F(x, y, z)=0 .
$$

Hence if

$$
F(x, y, z)=0
$$

be the equation of a surface, and this surface receive a very small rotation round an axis, the angles made by which with the axes of co-ordinates are l, m, n, the equation

$$
\left\{\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right)\right\} \cdot F(x, y, z)=0
$$

represents a third surface passing through the intersection of the first two, and, of course, through the origin.

Example.

If the given surface be of the second order, and its equation of the form
$A x^{2}+A^{\prime} y^{2}+A^{\prime \prime} z^{2}+2\left(B y z+B^{\prime} z x+B^{\prime \prime} x y\right)+2\left(C x+C^{\prime} y+C^{\prime \prime} z\right)+D=0$,
it can be easily deduced that the curves of intersection of this surface, with itself rotated through a very small angle, round an axis, the angles made by which with the axes of co-ordinates are l, m, n, lie upon a third surface of the second order whose equation is

$$
\begin{gathered}
\left(B^{\prime} \cos m-B^{\prime \prime} \cos n\right) x^{2}+\left(B^{\prime \prime} \cos n-B \cos l\right) y^{2}+\left(B \cos l-B^{\prime} \cos m\right) z^{2} \\
+\& c .=0,
\end{gathered}
$$

and which passes through the origin. The reader will observe that the sum of the coefficients of x^{2}, y^{2}, and z^{2}, is equal to zero, in which circumstance consists the analogy with the corresponding theorem in plane geometry, before stated.
13. It is obvious, both geometrically and analytically, that if any surface coincide with itself rotated through a very small angle round any axis, the coincidence will hold when the angle through which the rotation takes place becomes finite; in other words, the surface must be one of revolution.

Hence it appears that the general differential equation of a surface of revolution described round an axis passing through the origin, and making with the axes of co-ordinates the angles l, m, n, is

$$
\left\{\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right)\right\} \cdot u=0,
$$

or
$\left\{(y \cos n-z \cos m) D_{x}+(z \cos l-x \cos n) D_{y}+(x \cos m-y \cos l) D_{z}\right\} \cdot u=0$,
a form somewhat more symmetrical than those given by Monge and Leroy, and whose geometric interpretation is that a perpendicular to the plane of the radius vector and the axes of rotation is at right angles with the normal to the surface.

The student will observe that the equation is satisfied by

$$
\left.\begin{array}{c}
(y \cos n-z \cos m)^{2}+(z \cos l-x \cos n)^{2}+(x \cos m-y \cos l)^{2} \\
-\Phi(x \cos l+y \cos m+z \cos n)
\end{array}\right\}=0
$$

the geometrical interpretation of which is obvious.
14. The theorem of the last article, together with the corresponding one in plane geometry, may be derived with, perhaps, greater facility from the consideration of the forms of their respective equations in polar co-ordinates.

Thus, it appears that the only plane curve which coincides with itself rotated through any very small angle round an axis passing through the origin, and perpendicular to the plane of the curve, is given generally by

$$
D_{\theta} \cdot f(r, \theta)=0 \text {; }
$$

or, the polar equation of the curve should be independent of θ, or be of the simple form

$$
f(r)=0,
$$

which gives

$$
r=\text { const., }
$$

the general equation of a circle.
Similarly it appears that the only surface which coincides with itself rotated through a very small angle round the axis of polar co-ordinates, is generally given by

$$
D_{\phi} \cdot f(r, \theta, \phi)=0 ;
$$

or, the polar equation* of the surface should be independent of ϕ, or be of the simple form

$$
f(r, \theta)=0
$$

Thus, the general equation of a surface of revolution in rectangular co-ordinates would be

$$
f\left\{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}, \cos ^{-1} \frac{x \cos l+y \cos m+z \cos n}{\left(x^{2}+y^{2}+z^{2}\right)^{4}}\right\}=0
$$

which gives

$$
x \cos l+y \cos m+z \cos n=\Phi\left(x^{2}+y^{2}+z^{2}\right)
$$

15. It can be easily proved directly that the symbols

$$
x D_{x}+y D_{y}, \quad x D_{y}-y D_{x}
$$

[^3]and, consequently, any functions of those symbols, are commutative ; a result which can also be easily derived geometrically from the considerations that
$$
x D_{x}+y D_{y}=r D_{r}, \quad x D_{y}-y D_{x}=D_{\theta} .
$$

More generally it appears geometrically that the symbols
and

$$
x D_{x}+y D_{y}+z D_{z}
$$

$$
\cos l\left(z D_{y}-y D_{z}\right)+\cos m\left(x D_{z}-z D_{x}\right)+\cos n\left(y D_{x}-x D_{y}\right),
$$

and, consequently, any functions of those symbols, are commutative.

Hence it follows that the surface

$$
a^{x D_{x}+y D_{y}+z D_{z}} \cdot e^{\psi\left[\cos \left\langle\left(z D_{y}-y D_{z}\right)+\& \delta c .\right]\right.} \cdot F(x, y, z)=0,
$$

is identical with the surface

$$
e^{\psi\left[\cos l\left(z D_{y}-y D_{z}\right]+8 \mathrm{ce}\right]} \cdot a^{x D_{x}+y D_{y}+z D_{z}} \cdot F(x, y, z)=0 .
$$

This result, interpreted, shows that if any surface

$$
F(x, y, z)=0
$$

be rotated through any angle round an axis passing through the origin, and a surface be taken similar to this, and similarly placed, the origin being the common centre of similitude, and a the ratio of their linear magnitudes, the resulting surface is the same as that which would be obtained if the steps of this process were inverted.

Graves, Fellowship Lectures, 1854.
16. If the equation to any plane curve be

$$
U=F(x, y)=0
$$

it is known that the general differential equation of the tangent line at any point (x, y) is

$$
a D_{x} U+\beta D_{y} U=x D_{x} U+y D_{y} U,
$$

a, β being the current co-ordinates of the line.

But, if U be broken up into sets of homogeneous functions, thus,

$$
U=u_{n}+u_{n-1}+\ldots+u_{2}+u_{1}+u_{0},
$$

we know that

$$
\left(x D_{x}+y D_{y}\right) \cdot U=n u_{n}+(n-1) u_{n-1}+\ldots+2 u_{2}+u_{1}
$$

and, by the nature of the given curve,

$$
u_{n}+u_{n-1}+\ldots+u_{2}+u_{1}+u_{0}=0 ;
$$

therefore

$$
\left(x D_{x}+y D_{y}\right) \cdot U=-\left(u_{n-1}+2 u_{n-2}+\ldots+n u_{0}\right) .
$$

Hence the above form of the equation of the tangent line to the plane curve $U=0$ is, in general, susceptible of reduction to the shape

$$
a D_{x} U+\beta D_{y} U+u_{n-1}+2 u_{n-2}+\ldots+n u_{0}=0
$$

in which a, β are the current co-ordinates of the line.*
17. It is known that, if P be the perpendicular from the origin upon the tangent at the point (x, y) of the plane curve

$$
U=0,
$$

then is

$$
P=\frac{x D_{x} U+y D_{y} U}{\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}^{*}} .
$$

From the previous article it appears that this expression is, in general, reducible to the shape

$$
P=-\frac{u_{n-1}+2 u_{n-2}+\ldots+n u_{0}}{\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}^{t}} .
$$

[^4]From this expression we may derive the following theorem-
Given a plane curve of the $n^{\text {th }}$ degree, the points thereon for which perpendiculars from the origin upon the corresponding tangents have the same constant value k, are determined by the intersection with the given curve, of one whose degree is $2(n-1)$, and whose equation is

$$
k^{2}\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}=\left(u_{n-1}+2 u_{n-2}+\ldots+n u_{0}\right)^{2} .
$$

18. If a, β be taken as the fixed co-ordinates of a point not on the plane curve, the equation

$$
a D_{x} U+\beta D_{y} U+u_{n-1}+2 u_{n-2}+\ldots+n u_{0}=0
$$

expresses the polar curve of the fixed point (α, β) with respect to the given curve

$$
U=0 .
$$

Hence it appears that the polar curve to the origin with respect to the curve

$$
u_{n}+u_{n-1}+\ldots+u_{2}+u_{1}+u_{o}=0
$$

is represented, in general, by the equation

$$
u_{n-1}+2 u_{n-2}+3 u_{n-3}+\ldots+n u_{0}=0 .
$$

Examples.
(1.) Let

$$
U=u_{2}+u_{1}+u_{0}=0,
$$

or let the curve selected be of the second order.
Then, the general expression for the tangent at any point is

$$
a D_{x} U+\beta D_{y} U+u_{1}+2 u_{0}=0,
$$

a, β being the current co-ordinates of the line.
The general expression for the perpendicular from the origin upon the tangent at any point is

$$
P=-\frac{u_{1}+2 u_{0}}{\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}^{2}} .
$$

The points on the given curve of the second order, for which perpendiculars from the origin upon the corresponding tangents have the same constant value k, are determined by the intersection with the given curve of another of the second order, whose equation is

$$
k^{2}\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U^{2}\right\}=\left(u_{1}+2 u_{0}\right)^{2} .\right.
$$

The general expression for the polar curve of a fixed point (a, β), with respect to the given curve, is

$$
a D_{x} U+\beta D_{y} U+u_{1}+2 u_{0}=0
$$

which represents, of course, a right line, as it ought.
Finally, the general expression for the polar of the origin with respect to the given curve is

$$
u_{1}+2 u_{0}=0 .
$$

(2.) Let

$$
U=u_{3}+u_{2}+u_{1}+u_{0}=0,
$$

or the curve selected be of the third order.
Then, the general expression for the tangent at any point is

$$
\alpha D_{x} U+\beta D_{y} U+u_{2}+2 u_{1}+3 u_{0}=0,
$$

a, β being the current co-ordinates of the line.
The general expression for the perpendicular from the origin upon the tangent at any point is

$$
P=-\frac{u_{2}+2 u_{1}+3 u_{0}}{\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}^{i}} .
$$

The points on the given curve of the third order, for which the perpendiculars from the origin upon the corresponding tangents have the same constant value k, are determined by the intersection with the given curve of another of the fourth order, whose equation is

$$
k^{2}\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}\right\}=\left(u_{2}+2 u_{1}+3 u_{0}\right)^{2} .
$$

The polar curve of any point (a, β), with respect to the given curve of the third order, is a curve of the second order, whose equation is

$$
a D_{x} U+\beta D_{y} U+u_{2}+2 u_{1}+3 u_{0}=0 .
$$

Finally, the general expression for the polar of the origin, with respect to the given curve of the third order, is the curve of the second order,

$$
u_{2}+2 u_{1}+3 u_{0}=0 .
$$

19. There is no difficulty in extending the results of the preceding articles to the case of geometry of three dimensions.

Thus the general differential equation of the tangent plane to any surface
where

$$
U=F(x, y, z)=0,
$$

$$
U=u_{n}+u_{n-1}+\ldots+u_{2}+u_{1}+u_{0},
$$

is reducible to the shape

$$
a D_{x} U+\beta D_{y} U+\gamma D_{z} U+u_{n-1}+2 u_{n-2}+\ldots+n u_{0}=0
$$

where a, β, γ are the current co-ordinates of the plane.
Again, the general expression for the perpendicular from the origin upon the tangent plane at any point of the surface

$$
U=0
$$

is

$$
P=-\frac{u_{n-1}+2 u_{n-2}+\cdots+n u_{0}}{\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}+\left(D_{z} U\right)^{2}\right\}^{\frac{1}{2}}} .
$$

Hence, again, the theorem-
Given a surface of the $n^{\text {th }}$ degree, the points thereon for which perpendiculars from the origin upon the corresponding tangent planes have the same constant value k, are determined by the intersection with the given surface of another surface, whose degree is $2(n-1)$, and whose equation is

$$
k^{2}\left\{\left(D_{x} U\right)^{2}+\left(D_{y} U\right)^{2}+\left(D_{z} U\right)^{2}\right\}=\left(u_{n-1}+2 u_{n-2}+\ldots+n u_{0}\right)^{2} .
$$

Again, if a, β, γ be taken as the fixed co-ordinates of a point not on the surface, the equation

$$
a D_{x} U+\beta D_{y} U+\gamma D_{s} U+u_{n-1}+2 u_{n-2}+\ldots+n u_{0}=0
$$

expresses the polar surface of the fixed point with respect to the given surface.

Hence, again, it appears that the polar surface to the origin with respect to the given surface is represented in general by the equation

$$
u_{n-1}+2 u_{n-2}+3 u_{n-s}+\ldots+n u_{0}=0 .
$$

The student may for himself apply these results to the cases of surfaces of the second and third orders, and also to the case of the surface whose equation is represented by

$$
u_{n}=c .
$$

20. If the point (a, β, γ) be supposed capable of motion on the surface of the $m^{t h}$ degree,

$$
V=v_{m}+v_{m-1}+\ldots+v_{1}+v_{0}=0,
$$

let it assume various consecutive positions on this surface. The corresponding successive polars, taken with respect to $U=0$, will by their intersections generate a third surface, whose relation to $V=0$ is commonly expressed by the distinctive appellation of Reciprocal Polar, for the case in which $U=0$ is of the second order.

To find the equation of this third surface, differentiating $V=0$ and the general equation of the polar surface with respect to a, β, γ, we get

$$
\begin{aligned}
& D_{a} V \cdot d a+D_{\beta} V \cdot d \beta+D_{\gamma} V \cdot d \gamma=0 \\
& D_{x} U \cdot d a+D_{y} U \cdot d y+d_{z} U \cdot d z=0 .
\end{aligned}
$$

Multiplying the latter equation by the indeterminate quantity λ, adding, and putting the coefficients of $d a, d \beta, d \gamma$, respectively, equal to zero, there results the system

$$
\left.\begin{array}{l}
D_{a} V+\lambda D_{x} U=0 \\
D_{\beta} V+\lambda D_{y} U=0 \\
D_{\gamma} V+\lambda D_{z} U=0
\end{array}\right\}
$$

and between this system, the equation of the polar surface, and $V=0$, we have to eliminate a, β, γ, and λ.

To accomplish this, we multiply the three equations of the last system by a, β, γ, respectively, and remembering that

$$
\begin{aligned}
& a D_{a} V+\beta D_{\beta} V+\gamma D_{\gamma} V=-\left\{v_{m-1}+2 v_{m-2}+\ldots+m v_{0}\right\}, \\
& a D_{x} U+\beta D_{y} U+\gamma D_{z} U=-\left\{u_{n-1}+2 u_{n-2}+\ldots+n u_{0}\right\},
\end{aligned}
$$

we find that

$$
\lambda=-\frac{v_{m-1}+2 v_{m-2}+\ldots+m v_{0}}{u_{n-1}+2 u_{n-2}+\ldots+n u_{0}}=-\frac{(V)}{(U)} .
$$

Thus it remains for us to eliminate a, β, γ between the four equations,

$$
V=0,
$$

and

$$
\left.\begin{array}{l}
\frac{1}{(V)} \cdot D_{a} V=\frac{1}{(U)} \cdot D_{x} U \\
\frac{1}{(V)} \cdot D_{\beta} V=\frac{1}{(U)} \cdot D_{y} U \\
\frac{1}{(V)} \cdot D_{\gamma} V=\frac{1}{(U)} \cdot D_{z} U
\end{array}\right\}
$$

where the left-hand members contain only a, β, and γ; and the right-hand only x, y, and z.

Such an elimination, in the present state of analysis, is, I believe, impossible, and the general question therefore insoluble. Thus the only general representation of the envelope of the successive polar surfaces is the system of four equations last mentioned.
21. Upon communicating the above result to Mr. Spottiswoode, it was observed by him that the three last equations
may be written in a new form, possibly leading to interesting consequences, and I am indebted to the Rev. Richard Townsend, Fellow of Trinity College, Dublin, for a valuable modification of his suggestions.

If we remember that the point (a, β, γ) lies on the surface $V=0$, it is obvious that, P being the perpendicular from the origin on the tangent plane at this point, and l, m, n the angles made by it with the co-ordinate axes, we may write those three last equations in the form

$$
\left.\begin{array}{l}
-\frac{\cos l}{P}=\frac{1}{(U)} \cdot D_{x} U \\
-\frac{\cos m}{P}=\frac{1}{(U)} \cdot D_{y} U \\
-\frac{\cos n}{P}=\frac{1}{(U)} \cdot D_{z} U
\end{array}\right\}
$$

It is evident that the right-hand members of the system do not admit of a modification similar to that which we have employed on the left hand, since the point (x, y, z) is not necessarily on the surface $U=0$.
22. In one case, the general question of the envelope of the successive polars not only admits of solution, but the resultant equation of the envelope appears to possess both elegance and utility. It is that in which $V=0$ assumes the symmetrical form

$$
\frac{\alpha^{m}}{a^{m}}+\frac{\beta^{m}}{b^{m}}+\frac{\gamma^{m}}{c^{m}}=1,
$$

while $U=0$ still retains all its generality.*
The three last equations of the third article, in this case, become

[^5]\[

$$
\begin{aligned}
& \frac{\alpha^{m-1}}{a^{m}}+\frac{1}{(U)} \cdot D_{x} U=0, \\
& \frac{\beta^{m-1}}{b^{m}}+\frac{1}{(U)} \cdot D_{y} U=0, \\
& \frac{\gamma^{m-1}}{c^{m}}+\frac{1}{(U)} \cdot D_{z} U=0,
\end{aligned}
$$
\]

and eliminating α, β, γ between these equations and $V=0$, we get the equation of the envelope required, in the symmetrical form

$$
\left(a D_{x} U\right)^{\frac{m}{m-1}}+\left(b D_{y} U\right)^{\frac{m}{m-1}}+\left(c D_{z} U\right)^{\frac{m}{m-1}}=[-(U)]^{\frac{m}{m-1}},
$$

where

$$
(U)=u_{n-1}+2 u_{n-2}+3 u_{n-3}+\ldots+n u_{0} .
$$

The discussion of some particular cases will be found to lead to interesting results.
(1) When $m=2$, or when the pole is confined to a central surface of the second degree, then will the degree of the envelope of the successive polars with respect to a surface of the $n^{\text {th }}$ degree be, in general,

$$
2(n-1) .
$$

(2) When, moreover, the surface, with respect to which the polar is taken, is also of the second degree and central, the envelope, or now Reciprocal Polar, to

$$
\frac{\alpha^{2}}{a^{2}}+\frac{\beta^{2}}{b^{2}}+\frac{\gamma^{2}}{c^{2}}=1
$$

will be a third surface of the second degree, and its equation takes the symmetrical form

$$
a^{2}\left(D_{x} U\right)^{2}+b^{2}\left(D_{y} U\right)^{2}+c^{2}\left(D_{z} U\right)^{2}=\left(u_{1}+u_{0}\right)^{2} .
$$

(3) When the pole is confined to a central curve of the second degree, and the polar taken with respect to any curve
of the third, the envelope of the successive polars is a curve of the fourth degree, which is symmetrically represented by the equation

$$
a^{2}\left(D_{x} U\right)^{2}+b^{2}\left(D_{y} U\right)^{2}=\left(u_{2}+2 u_{1}+3 u_{0}\right)^{2},
$$

a result which seems susceptible of elegant application to the theory of curves of the third degree.
23. For additional information with regard to the application of the Calculus of Operations to Geometry, the reader is referred to the valued treatise on the Higher Plane Curves, by the Rev. George Salmon ; and to the elaborate papers on the Calculus of Forms, published in the Cambridge and Dublin Mathematical Journal, by Professor Boole and Mr. Sylvester.

(125)

CHAPTER IX.

MISCELLANEOUS APPLICATIONS IN THE DIFFERENTIAL AND

 INTEGRAL CALCULUS.1. IF $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be any given functions of x, then will

$$
a_{1} D \cdot a_{2} D \cdot a_{3} D \ldots D \cdot a_{n}+(-)^{n} a_{n} D \ldots a_{3} D . a_{2} D . a_{1},
$$

the suffix to the symbol of differentiation being omitted for simplicity, be a perfect differential.

This theorem is readily established by induction. Thus, in the case of two functions, we have
therefore

$$
a_{1} D \cdot a_{2}=D \cdot a_{1} a_{2}-a_{2} D \cdot a_{1},
$$

$$
a_{1} D \cdot a_{2}+(-)^{2} a_{2} D \cdot a_{1}=D \cdot a_{1} a_{2},
$$

a perfect differential.
Again

$$
a_{1} D a_{2} D a_{3}=D . a_{1} a_{2} D a_{3}-D a_{1} . a_{2} D a_{3},
$$

or

$$
a_{1} D a_{2} D a_{3}=D . a_{1} a_{2} D a_{3}-D . a_{2} a_{3} D a_{1}+a_{3} D a_{2} D a_{1},
$$

whence

$$
a_{1} D a_{2} D a_{3}+(-)^{3} a_{3} D a_{2} D a_{1}=D . a_{1} a_{2} D a_{3}-D \cdot a_{2} a_{3} D a_{1},
$$

the right-hand member of which is evidently a perfect differential. The same conclusion may be established for the higher cases in a manner precisely similar.

From this theorem we infer that the condition necessary in order that, in general,

$$
a_{1} D a_{2} D a_{3} \ldots D a_{n}
$$

be a perfect differential, is

$$
a_{n} D a_{n-1} D \ldots D a_{2} D a_{1}=0 .
$$

2. If, n being odd, the series of functions $a_{1}, a_{2}, a_{3}, \& c$., after the middle function, recur, but in an inverted order, the theorem admits of an elegant modification, and it is easy to show, by the method just employed, that

$$
a_{1} D a_{2} D \ldots a_{n} \ldots D a_{2} D a_{1}+(-)^{n} a_{n}\left(D a_{n-1} D a_{n-2} \ldots D a_{2} D a_{1}\right)^{2}
$$

is a perfect differential.
Graves, Fellowship Lectures, 1850.
3. If the expansion of the operating symbol

$$
\frac{1}{a_{1} a_{2} a_{3} \ldots a_{n}} \cdot D a_{1} D a_{2} \ldots D a_{n}
$$

be represented by

$$
C_{n} D^{n}+C_{n-1} D^{n-1}+\ldots+C_{1} D+C_{0}
$$

then will

$$
e^{\int_{n-1} c_{1} x}=a_{1} \cdot a_{2}^{2} \cdot a_{3}^{3}, \ldots \ldots a_{n}^{n} .
$$

If the coefficient of D^{n-1} in the expansion of the given operating symbol be directly investigated, the truth of this theorem will readily appear. This coefficient is easily found to be the aggregate

$$
\frac{D a_{1}}{a_{1}}+\frac{2 D a_{2}}{a_{2}}+\frac{3 D a_{3}}{a_{3}}+\ldots+\frac{n D a_{n}}{a_{n}}=C_{n-1} .
$$

Hence

$$
\int C_{n-1} d x=\log a_{1}+2 \log a_{2}+3 \log a_{3}+\ldots+n \log a_{n},
$$

and, therefore,

$$
e^{\int_{n-1}^{C_{n-1}}=}=a_{1} \cdot a_{2}^{2} \cdot a_{3}^{3} \ldots \ldots a_{n}^{n} .
$$

Graves, Fellowship Lectures, 1850.
4. The expansion of the symbolic operator

$$
u_{n+1} D u_{n} D \ldots \ldots D u_{2} D u_{1}
$$

upon any given subject v, being given in the form

$$
P_{0}+P_{1} D+P_{2} D^{2}+\ldots+P_{n} D^{n},
$$

it may be required to investigate the character of the coefficients $P_{0}, P_{1}, P_{2}, \& c$., and the laws by which they are derived.

The reader will find no difficulty in seeing that

$$
\begin{gathered}
P_{0}=u_{n+1} D u_{n} D \ldots D D u_{2} D u_{1}, \\
P_{1}=u_{n+1} D u_{n} D \ldots D u_{2} u_{1}+u_{n+1} D \ldots D D u_{3} u_{2} D u_{1} . \\
+u_{n+1} D \ldots D u_{4} u_{3} D u_{2} D u_{1} \bullet+\& c . \\
P_{2}=u_{n+1} D u_{n} D \ldots D u_{3} u_{2} u_{1}+u_{n+1} D \ldots D u_{4} u_{3} u_{2} D u_{1} \cdot+\& c .
\end{gathered}
$$

$$
P_{n}=u_{n+1} u_{n} \ldots \ldots u_{3} u_{2} u_{1}
$$

and he will observe that, while P_{0} is simply the result of the operation of the given symbolic form on unity, P_{1} is formed from P_{0} by taking the sum of all the terms which may be obtained by a single omission of the letter D in P_{0}; similarly that P_{2} is formed from P_{1} by taking the sum of all the different terms which may be obtained by a single omission of the letter D in P_{1}, and so on.

Graves, Fellowship-Lectures, 1850.
5. The expansion of the symbolic operator

$$
u_{1} D u_{2} D \ldots . D u_{n} D u_{n+1}
$$

upon any given subject v, being given in the form

$$
Q_{0}+D Q_{1}+D^{2} Q_{2}+\ldots+D^{n} Q_{n},
$$

let it be required to investigate the character of the coefficients Q_{0}, Q_{1}, Q_{2}, \&c., and to trace the relations, if any, between these coefficients and those in the previous article P_{0}, P_{1}, $P_{2}, \& c$.

It is evident, from preceding investigations, that

$$
\begin{gathered}
Q_{n}=+P_{n} \\
Q_{n-1}=-P_{n-1} \\
Q_{n-2}= \\
+P_{n-2} \\
\cdot \\
\vdots \\
Q_{0}=(-)^{n} P_{0}
\end{gathered}
$$

Graves, Fellowship Lectures, 1850.
6. Hence it appears that, if R be any given function of x, the symmetrical symbolic operator

$$
u_{1} D u_{2} D \ldots D u_{n} D u_{n+1} R u_{n+1} D u_{n} D \ldots D u_{2} D u_{1}
$$

may be written in the form
$(-)^{n}\left\{P_{0}-D P_{1}+D^{2} P_{2}-\ldots+(-)^{n} D^{n} P_{n}\right\} R\left\{P_{0}+P_{1} D+P_{2} D_{2}+\ldots+P_{n} D^{n}\right\}$ which is easily seen to be reducible to the form

$$
A_{0}+D A_{1} D+D^{2} A_{2} D^{2}+\ldots+D^{n} A_{n} D^{n} .
$$

Graves, Fellowship Lectures, 1850.
7. The integration of the differential equation of the $n^{\text {th }}$ order,

$$
\begin{equation*}
D^{n} y+A_{1} D^{n-1} y+A_{2} D^{n-2} y+\ldots+A_{n-1} D y+A_{n} y=X \tag{1}
\end{equation*}
$$

in which the coefficients $A_{1}, A_{2}, A_{3}, \& c$., are given functions of the independent variable, can always be reduced to the integration of the same equation, without the right-hand member,

$$
\begin{equation*}
D^{n} y+A_{1} D^{n-2} u+A_{2} D^{n-1} u+\ldots+A_{n-1} D u+A_{n} u=0 . \tag{2}
\end{equation*}
$$

Let

$$
y=u_{1} \int v_{1} d x,
$$

where u_{1} satisfies the second equation, supposed integrated. Then, by substitution in the first equation, we get

$$
\left.\begin{array}{rl}
\left\{D^{n} u_{1} \cdot \int v_{1} d x+n D^{n-1} u_{1} \cdot v_{1}+\right. & \ldots+n D u_{1} \cdot D^{n-2} v_{1}+ \\
+ & \left.+u_{1} \cdot D^{n-1} v_{1}\right\} \\
A_{1}\left\{D^{n-1} u_{1} \cdot \int v_{1} d x+(n-1) D^{n-2} u_{1} \cdot v_{1}\right. & \left.+\cdots+(n-1) D u_{1} \cdot D^{n-3} v_{1}+u_{1} \cdot D^{n-2} v_{1}\right\} \\
+ & +\& c^{2}
\end{array}\right\}=X
$$

or, observing that the aggregate of the terms in the first vertical row disappears, reversing the order of the rows, and dividing by u_{1},

$$
D^{n-1} v_{1}+B_{2} D^{n-2} v_{1}+B_{3} D^{n-3} v_{1}+\ldots=\frac{X}{u_{1}}
$$

where

$$
\begin{aligned}
& u_{1} B_{2}=n D u_{1}+A u_{1} \\
& u_{1} B_{3}=\frac{n \cdot n-1}{1.2} D^{2} u_{1}+A_{1}(n-1) D u_{1}+A_{2} u_{2}
\end{aligned}
$$

\&c.
Thus the integration of the equation of the $n^{\text {th }}$ order is reduced to the integration of an equation of the same form, but of the order ($n-1$).

Again, supposing that

$$
v_{1}=u_{2} \int v_{2} d x
$$

when u_{2} is a particular solution of the equation at which we have just arrived, wanting its second member, we have the question reduced to the integration of the equation of the order ($n-2$)

$$
D^{n-2} v_{2}+C_{3} D^{n-3} v_{2}+C_{4} D^{n-4} v_{2}+\ldots=\frac{X}{u_{1} u_{2}},
$$

and finally to the integration of the equation

$$
D w+P w=\frac{X}{u_{1} u_{2} \ldots u_{n-1}} .
$$

Here, supposing that

$$
w=u_{n} \int v_{n} d x
$$

we get, by substitution,

$$
\left(D u_{n}+P u_{n}\right) \cdot \int v_{n} d x+u_{n} v_{n}=\frac{X}{u_{1} u_{2} \ldots u_{n-1}} ;
$$

and, since u_{n} is supposed to give

$$
D u_{n}+P u_{n}=0
$$

we have

$$
v_{n}=\frac{X}{u_{1} u_{2} u_{3} \ldots u_{n-1} u_{n}} ;
$$

and, therefore, the integral required is

$$
y=u_{1} \int u_{2} \int u_{3} \int \ldots \int \frac{X}{u_{1} u_{2} u_{3} \ldots u_{n}} d x .
$$

Libri, Crelle's Journal, vol. x.
8. The general integral of the equation with the righthand member (1) may be expressed in terms of the n particular integrals of the equation without the right-hand member (2).

Let $U_{1}, U_{2}, U_{3}, \ldots U_{n}$ be the n particular integrals of the latter equation, then

$$
u=C_{1} U_{1}+C_{2} U_{2}+C_{3} U_{3}+\ldots+C_{n} U_{n} .
$$

Divide both sides of the equation by U_{1} and differentiating, we eliminate C_{1},

$$
D \frac{u}{U_{1}}=C_{2} D \frac{U_{2}}{U_{1}}+C_{3} D \frac{U_{3}}{U_{1}}+\ldots+C_{n} D \frac{U_{n}}{U_{1}} .
$$

Dividing both sides again by the coefficient of C_{2} and differentiating, we eliminate C_{2}; and by continuing this process we finally arrive at

$$
D \frac{1}{V_{n}} D \frac{1}{V_{n-1}} D \frac{1}{V_{n-2}} \ldots D \frac{1}{V_{2}} D \frac{1}{U_{1}} \cdot u=0
$$

where

$$
\begin{aligned}
& V_{2}=D \frac{U_{2}}{U_{1}} \\
& V_{3}=D \frac{D \frac{U_{3}}{U_{1}}}{D \frac{U_{2}}{U_{1}}}
\end{aligned}
$$

$\& c$.
Now the coefficient of $D^{n} u$ derived from this is evidently

$$
\frac{1}{V_{n} V_{n-1} V_{n-2} \ldots U_{1}}
$$

and dividing by this, in order to make the coefficient of $D^{n} u$ unity, we have

$$
V_{n} V_{n-1} V_{n-2} \ldots U_{1} D \frac{1}{V_{n}} D \frac{1}{V_{n-1}} D \frac{1}{V_{n-2}} \ldots D \frac{1}{U_{1}} . u
$$

which must be equivalent to the left-hand member of equation (2), or the result of the operator upon y must be equal to X, or

$$
y=U_{1} \int D \frac{U_{2}}{U_{1}} \int D \frac{D \frac{U_{3}}{U_{1}}}{D \frac{U_{2}}{U_{1}}} \int \ldots \int \frac{X d x}{U_{1} D \frac{U_{2}}{U_{1}} \ldots}
$$

9. By a comparison of the last two articles, it is evident that the solutions of the successive reduct equations in the first article are susceptible of expression in terms of the n particular solutions of the equation (2); in fact, that

$$
\begin{gathered}
u_{2}=D \frac{U_{2}}{U_{1}}, \\
u_{3}=D \frac{D \frac{U_{3}}{U_{1}}}{D \frac{U_{2}}{U_{1}}}, \& c .
\end{gathered}
$$

[^6]Again, it is obvious that

$$
u_{n} u_{n-1} \ldots u_{2} u_{1} D \frac{1}{u_{n}} D \frac{1}{u_{n-1}} \ldots D \frac{1}{u_{2}} D \frac{1}{u_{1}} \cdot y=X ;
$$

or that, as in Algebra, any linear differential equation

$$
\Phi(D) y=X
$$

can be written as a monomial if we can find the particular solutions of

$$
\Phi(D) y=0 .
$$

The extreme difficulty of applying M. Libri's speculations to practice precludes the introduction of examples; indeed, none have been proposed, so far as I am aware, which are not susceptible of solution by easier means.
10. Let it be proposed to investigate the result of the operation of the symbolic form

$$
A_{n} D^{n}+A_{n-1} D^{n-1}+\ldots+A_{1} D+A_{0}=\Phi
$$

when $A_{n}, A_{n-1}, \ldots A_{0}$, are given functions of the independent variable, and when the subject of the operation is the product of two functions u and v.

It has been shown in the Third Chapter that, if $F(D)$ be any pure algebraic function of D, such as

$$
A_{n} D^{n}+A_{n-1} D^{n-1}+\ldots+A_{1} D+A_{0}
$$

where $A_{n}, A_{n-1}, \ldots A_{0}$ are constants, that

$$
F(D) \cdot u v=u \cdot F(D) v+\frac{D u}{1} \cdot F^{\prime}(D) v+\frac{D^{2} u}{1.2} \cdot F^{\prime \prime \prime}(D) v+\& c .
$$

or, writing this result in an obviously equivalent form, that

$$
\begin{gathered}
F(D) u v=F(D) v \cdot u+\frac{1}{1} D_{D} F(D) v \cdot D u+\frac{1}{1.2} D_{D}^{2} F(D) v \cdot D^{2} u \\
+\& c .
\end{gathered}
$$

Upon reference to the process by which this theorem was
established, it will readily be seen by the reader that when the quantities $A_{n}, A_{n-1}, \ldots A_{0}$ are no longer supposed constant, but given functions of the independent variable,

$$
\Phi \cdot u v=\Phi v \cdot u+\frac{1}{1} D_{D} \Phi v \cdot D u+\frac{1}{1.2} D_{D}^{2} \Phi v \cdot D^{2} u+\& c .
$$

Similarly,

$$
u \Psi \cdot v=\Psi \cdot u v-\frac{1}{1} D_{D} \Psi \cdot D u \cdot v+\frac{1}{1.2} D_{D}^{2} \Psi \cdot D^{2} u \cdot v-\& c .
$$

where

$$
\Psi=D^{n} A_{n}+D^{n-1} A_{n-1}+\ldots+D A_{1}+A_{0}
$$

Graves, Fellowship Lectures, 1850.
11. If $\pi, \rho, \rho_{1}, \rho_{2}, \ldots \rho_{n}$ be symbols of operation, such that, u being any subject,

$$
\begin{aligned}
(\pi \rho-\rho \pi) \cdot u & =\rho_{1} \cdot u \\
\left(\pi \rho_{1}-\rho_{1} \pi\right) \cdot u & =\rho_{2} \cdot u \\
\left(\pi \rho_{2}-\rho_{2} \pi\right) \cdot u & =\rho_{3} \cdot u \\
\cdot & \cdot \\
\cdot & \cdot \\
\left(\pi \rho_{n-1}-\rho_{n-1} \pi\right) \cdot u & =\rho_{n} \cdot u ;
\end{aligned}
$$

then will

$$
\begin{aligned}
& f(\pi) \rho \cdot u=\rho f(\pi) \cdot u+\frac{\rho_{1}}{1} \cdot f^{\prime}(\pi) \cdot u+\frac{\rho_{2}}{1.2} f^{\prime \prime}(\pi) \cdot u+\ldots \\
& \rho f(\pi) \cdot u=f(\pi) \rho \cdot u-f^{\prime}(\pi) \frac{\rho_{1}}{1} \cdot u+f^{\prime \prime}(\pi) \frac{\rho_{2}}{1 \cdot 2} \cdot u-\ldots \\
& f\left(\pi+\frac{1}{\rho} \rho_{1}\right) \cdot u=f(\pi) \cdot u+\frac{1}{\rho} \frac{\rho_{1}}{1} f^{\prime}(\pi) u+\frac{1}{\rho} \frac{\rho_{2}}{1.2} f^{\prime \prime}(\pi) \cdot u+\ldots \text { (III.) } \\
& f\left(\pi-\rho_{1} \frac{1}{\rho}\right) \cdot u=f(\pi) \cdot u-f^{\prime}(\pi) \frac{\rho_{1}}{1} \cdot \frac{1}{\rho} \cdot u+f^{\prime \prime}(\pi) \frac{\rho_{2}}{1.2} \cdot \frac{1}{\rho} \cdot u-\ldots \text { (Iv.) }
\end{aligned}
$$

where, as before, f represents any rational and integer function of the quantity exhibited under it.

To prove these theorems, we shall write our data in the shape

$$
\begin{gathered}
\pi \rho-\rho \pi=\rho_{1} \\
\pi \rho_{1}-\rho_{1} \pi=\rho_{2} \\
\pi \rho_{2}-\rho_{2} \pi=\rho_{3} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\pi \rho_{n-1}-\rho_{n-1} \pi= \\
\cdot \rho_{n}
\end{gathered}
$$

dropping the subject u; and operating on the first equation with π, we get

$$
\pi^{2} \rho=\pi \rho_{1}+\left(\rho_{1}+\rho \pi\right) \pi,
$$

or

$$
\pi^{2} \rho=\rho \pi^{2}+2 \rho_{1} \pi+\rho_{2} .
$$

Similarly, we get

$$
\pi^{3} \rho=\rho \pi^{3}+3 \rho_{1} \pi^{2}+3 \rho_{2} \pi+\rho_{3},
$$

and, generally,

$$
\pi^{n} \rho=\rho \pi^{n}+n \rho_{1} \pi^{n-1}+\frac{n . n-1}{1.2} \rho_{2} \pi^{n-2}+\ldots
$$

whence

$$
f(\pi) \rho=\rho f(\pi)+\frac{\rho_{1}}{1} f^{\prime}(\pi)+\frac{\rho_{2}}{1.2} f^{\prime \prime}(\pi)+\ldots
$$

which, the subject u being written in its place, is the first theorem.

To deduce the second, we have

$$
\rho \pi=\pi \rho-\rho_{1} ;
$$

and operating with each side of this equation upon π, we have

$$
\rho \pi^{2}=\pi^{2} \rho-2 \pi \rho_{1}+\rho_{2},
$$

and, generally,

$$
\rho \pi^{n}=\pi^{n} \rho-n \pi^{n-1} \rho_{1}+\frac{n \cdot n-1}{1.2} \pi^{n-2} \rho_{2}-\ldots,
$$

whence

$$
\rho f(\pi)=f(\pi) \rho-f^{\prime}(\pi) \frac{\rho_{1}}{1}+f^{\prime \prime}(\pi) \frac{\rho_{2}}{1.2}-\ldots,
$$

which, the subject being introduced, is the theorem required.
In deducing the third theorem, we observe that

$$
\pi+\frac{1}{\rho} \rho_{1}=\frac{1}{\rho} \pi \rho
$$

and hence we only require to prove that

$$
f\left(\frac{1}{\rho} \pi \rho\right)=f(\pi)+\frac{1}{\rho} \frac{\rho_{1}}{1} f^{\prime}(\pi)+\frac{1}{\rho} \frac{\rho_{2}}{1.2} f^{\prime \prime}(\pi)+\ldots
$$

or that

$$
f\left(\frac{1}{\rho} \pi \rho\right)=\frac{1}{\rho}\left\{\rho f(\pi)+\frac{\rho_{1}}{1} f^{\prime}(\pi)+\frac{\rho_{2}}{1.2} f^{\prime \prime}(\pi)+\ldots\right\}
$$

Now this we can easily do, for

$$
\begin{aligned}
& \left(\frac{1}{\rho} \pi \rho\right)^{2}=\left(\frac{1}{\rho} \pi \rho\right) \cdot\left(\frac{1}{\rho} \pi \rho\right)=\frac{1}{\rho} \pi^{2} \rho \\
& \left(\frac{1}{\rho} \pi \rho\right)^{3}=\ldots \ldots \ldots=\frac{1}{\rho} \pi^{3} \rho
\end{aligned}
$$

and, in general,

$$
f\left(\frac{1}{\rho} \pi \rho\right)=\frac{1}{\rho} f(\pi) \rho
$$

and, inserting from the first theorem its value for

$$
f(\pi) \rho
$$

we get the theorem required.
The fourth theorem admits of deduction with equal simplicity.

Examples.

(1.) Let

$$
\pi=D, \quad \rho=X
$$

Then

$$
\begin{gathered}
D X-X D=X^{\prime}=\rho_{1}, \\
D X^{\prime}-X^{\prime} D=X^{\prime \prime}=\rho_{2}, \\
\& c .,
\end{gathered}
$$

and therefore
$f(D) X \cdot u=X f(D) \cdot u+\frac{X^{\prime}}{1} \cdot f^{\prime}(D) \cdot u+\frac{X^{\prime \prime}}{1 \cdot 2} \cdot f^{\prime}(D) \cdot u+\& c .$,
$f\left(D+\frac{X^{\prime}}{X}\right) \cdot u=f(D) \cdot u+\frac{1}{1} \frac{X^{\prime}}{X} \cdot f^{\prime}(D) \cdot u+\frac{1}{1 \cdot 2} \frac{X^{\prime \prime}}{X} \cdot f^{\prime \prime}(D) \cdot u+\& c$.
(2.) Again, let
and since

$$
\pi=x, \quad \rho=\phi(D) ;
$$

$$
\begin{gathered}
x \phi(D)-\phi(D) x=-\phi^{\prime}(D)=\rho_{1}, \\
-x \phi^{\prime}(D)+\phi^{\prime}(D) x=+\phi^{\prime \prime}(D)=\rho_{2}, \\
\& c .
\end{gathered}
$$

we get
$f\left(x-\frac{\phi^{\prime}(D)}{\phi(D)}\right) \cdot u=\frac{1}{\phi(D)}\left\{\phi(D) f(x)-\phi^{\prime}(D) \frac{f^{\prime}(x)}{1}+\phi^{\prime \prime}(D) \frac{f^{\prime \prime}(x)}{1.2}\right.$

$$
-\& c .\} . u .
$$

Donkiv, Camb. and Dub. Math. Journal, 1850.

CHAPTER X.

APPLICATION TO THE CALCULUS OF FINITE DIFFERENCES.

1. Ir may easily be seen, as the result of equivalent expansions, that $f(x+h)$ may be represented by the symbolic quantity

$$
e^{h D} \cdot f(x),
$$

omitting for the present, for the greater facility in writing, the suffix to the symbol D.

Hence it follows that

$$
e^{D} \cdot f(x)=f(x+1)
$$

and consequently that

$$
e^{D} \cdot f(x)-f(x)=\boldsymbol{f}(x+1)-\boldsymbol{f}(x) ;
$$

or, Δ being the symbol of the Calculus of Finite Differences, that

$$
\left(e^{D}-1\right) \cdot f(x)=\Delta \cdot f(x)
$$

2. By successive operation we find that

$$
\left(e^{D}-1\right)^{n} \cdot f(x)=\Delta^{n} \cdot f(x),
$$

whence at once the expression for the $n^{\text {th }}$ difference of a function in terms of the function and its n successive values, namely,

$$
\Delta^{n} \cdot u_{x}=u_{x+n}-\frac{n}{1} \cdot u_{x+n-1}+\frac{n \cdot n-1}{1.2} \cdot u_{x+n-2}-\& c
$$

From the equivalence immediately previous to this we may obviously deduce the general theorem,

$$
\dot{F}(\Delta) \cdot u_{x}=F\left(e^{D}-1\right) \cdot u_{x},
$$

F being any algebraic function.
3. With regard to the equivalence

$$
e^{D}-1=\Delta
$$

we may observe that, since two functions of the same symbol are commutative, and since Δ is exhibited in a function of D, Δ and D are commutative.

From this equivalence, or directly, we derive

$$
e^{D}=\Delta+1
$$

whence

$$
e^{n D} \cdot u_{x}=(1+\Delta)^{n} \cdot u_{x}
$$

and again we obtain the theorem, converse to the previous, by which the $n^{\text {th }}$ successive function is represented in terms of its primitive and its n successive differences, namely,

$$
u_{x+n}=u_{x}+\frac{n}{1} \cdot \Delta u_{x}+\frac{n \cdot n-1}{1 \cdot 2} \cdot \Delta^{2} u_{x}+\& c
$$

It is again obvious that from the equivalence immediately previous to this we may deduce the general theorem

$$
F\left(e^{D}\right) \cdot u_{x}=F(1+\Delta) \cdot u_{x}
$$

4. From the equivalence
$\Delta^{n} \cdot f(x)=f(x+n)-\frac{n}{1} \cdot f(x+n-1)+\frac{n \cdot n-1}{1 \cdot 2} \cdot f(x+n-2)-\& c .$,
we derive, by supposing $x=0$, the singular theorem

$$
\Delta^{n} \cdot f(0)=f(n)-\frac{n}{1} \cdot f(n-1)+\frac{n \cdot n-1}{1 \cdot 2} \cdot f(n-2)-\& c \cdot
$$

and, as a particular case,

$$
\Delta^{n} \cdot 0^{m} \cdot=n^{m}-\frac{n}{1} \cdot(n-1)^{m}+\frac{n \cdot n-1}{1 \cdot 2} \cdot(n-2)^{m}-\& c .
$$

and as long as m is $<n$, the left-hand member is equal to zero.
Similarly from the equivalence

$$
f(x+n)=f(x)+\frac{n}{1} \cdot \Delta f(x)+\frac{n \cdot n-1}{1 \cdot 2} \cdot \Delta^{2} f(x)+\& c
$$

we derive the theorem

$$
f(n)=f(0)+\frac{n}{1} \cdot \Delta f(0)+\frac{n \cdot n-1}{1 \cdot 2} \cdot \Delta^{2} f(0)+\& c .
$$

and as a particular case,

$$
n^{m}=\frac{n \cdot n-1 \ldots n-m+1}{1 \cdot 2 \ldots m} \cdot \Delta^{m} 0^{m}+\& c .
$$

the previous terms disappearing.
With regard to the expression

$$
\Delta^{n} \cdot 0^{m}
$$

it may be observed that it is merely a conventional notation implying that, after the operation signified by Δ^{n} has been performed upon x^{m}, we put $x=0$, and take the result. In general

$$
\Delta^{n} \cdot f(0)=\left\{\Delta^{n} f(x)\right\}_{x=0}
$$

5. As Δ is expressed in terms of D by the equivalence

$$
\Delta=e^{D}-1
$$

so D is expressed in terms of Δ by the equivalence

$$
D=\log (1+\Delta)
$$

whence

$$
D^{n} \cdot u_{x}=\log ^{n}(1+\Delta) \cdot u_{x}
$$

or, more generally, F being any algebraic function,

$$
F(D) \cdot u_{x}=F\{\log (1+\Delta)\} \cdot u_{x}
$$

It may be observed that all the above theorems hold good for negative powers, since Δ^{-1} is distributive, and D and Δ are commutative.
6. To develope the $n^{\text {th }}$ difference of a function in direct powers of the differential coefficients of the function.

We know that

$$
\Delta^{n}=\left(e^{D}-1\right)^{n}
$$

and consequently we may evidently write

$$
\Delta^{n}=\left\{A_{0}+A_{1} D+A_{2} D^{2}+A_{3} D^{3}+\ldots\right\},
$$

where $A_{0}, A_{1}, \& \mathrm{Ec}$. are to be determined.
Now it is plain that, as the values of these constants are independent of the particular subject operated on, we may select such subjects as may serve for their determination. But if we suppose each side to operate on x^{m}, and put $x=0$ in the result, both sides will vanish as long as m is less than n, and when m is equal or greater than n,

$$
A_{m}=\frac{\Delta^{n} \cdot 0^{m}}{\bar{m}} .
$$

Consequently

$$
\Delta^{n} \cdot u_{x}=\left\{\frac{\Delta^{n} \cdot 0^{n}}{\bar{n}} D^{n}+\frac{\Delta^{n} \cdot 0^{n+1}}{\overline{n+1}} D^{n+1}+\ldots\right\} \cdot u_{x} .
$$

7. Mr. Curtis has successfully investigated the theorems in the Calculus of Finite Differences corresponding to those in the Differential Calculus discovered by Mr. Hargreave, and given in the Third Chapter of this work, namely,
$F(D) \cdot u v=u \cdot F(D) v+\frac{D u}{1} \cdot F^{\prime}(D) v+\frac{D^{2} u}{1 \cdot 2} \cdot F^{\prime \prime}(D) v+\& c .$,
and
$u \cdot F(D) v=F(D) \cdot u v-F^{\prime}(D) \cdot \frac{D u}{1} \cdot v+F^{\prime \prime}(D) \cdot \frac{D^{2} u}{1.2} \cdot v-\& c$.
The analogues are, respectively,
$F^{\prime}(\Delta) \cdot u_{x} v_{x}=u_{x} \cdot F(\Delta) v_{x}+\frac{\Delta u_{x}}{1} \cdot F^{\prime \prime}(\Delta) v_{x+1}+\frac{\Delta^{2} u_{x}}{1.2} \cdot F^{\prime \prime}(\Delta) v_{x+2}+\&<c$, and
$u_{x} \cdot F(\Delta) v_{x}=F(\Delta) \cdot u_{x} v_{x}-F^{\prime}(\Delta) \cdot \frac{\Delta u_{x}}{1} \cdot v_{x+1}+F^{\prime \prime}(\Delta) \cdot \frac{\Delta^{2} u_{x}}{1.2} \cdot v_{x+2}-\& c$.
8. It is obvious that

$$
\Delta \cdot a^{x}=(a-1) \cdot a^{x} .
$$

Operate with Δ a second time, and

$$
\Delta^{2} \cdot a^{x}=(a-1)^{2} \cdot a^{x},
$$

and, by successive operation,

$$
\Delta^{p} \cdot a^{x}=(a-1)^{p} \cdot a^{x} .
$$

Hence, if F be any algebraic function, we derive the theorem

$$
F(\Delta) \cdot a^{x}=F(a-1) \cdot a^{x} ;
$$

or more generally, if C be any constant,

$$
F(\Delta) \cdot C a^{x}=F(a-1) \cdot C a^{x} .
$$

9. As this theorem holds as well for inverse functions as for direct, it is plain that we may at once employ it for the solution of the class of equations in Finite Differences, with constant coefficients, represented by
$\Delta^{n} u_{x}+P \Delta^{n-1} \cdot u_{x}+Q \Delta^{n-2} \cdot u_{x}+\ldots+T u_{x}=f\left(e^{x}, \sin x, \cos x\right)$, where $P, Q, \& c$. are constants; or, the right-hand member being reduced to the form of a sum represented by

$$
F(\Delta) \cdot u_{x}=\Sigma M e^{m x}
$$

where m may be positive or negative, fractional or integer, real or imaginary.

The solution, then, is given by the symbolic form

$$
u_{x}=\Sigma M \frac{e^{m x}}{F\left(e^{m}-1\right)}+\frac{1}{F(\Delta)} \cdot 0
$$

and the complete evaluation of this form depends on the nature of the roots of

$$
F(\Delta)=0 .
$$

If the roots be all real and unequal, the arbitrary portion of the solution is

$$
C_{1}(\alpha+1)^{x}+C_{2}(\beta+1)^{x}+C_{3}(\gamma+1)^{x}+\& c .
$$

If there be p roots whose common value is a, the arbitrary portion of the solution is

$$
C_{1}^{\prime}(\alpha+1)^{x} \cdot x^{p-1}+C_{1}^{\prime}(\alpha+1)^{x} \cdot x^{p-2}+\ldots+C_{2}(\beta+1)^{x}+\& c .
$$

Finally, if there be pairs of imaginary roots, the form of the arbitrary portion of the solution is

$$
C_{1}\{\alpha+\beta \sqrt{ }(-)+1\}^{x}+C_{2}\{\alpha-\beta \sqrt{ }(-)+1\}^{x}+C_{3}(\gamma+1)^{x}+\& c .
$$

Examples.

$$
\begin{equation*}
\Delta^{2} \cdot u_{x}+a^{2} \cdot u_{x}=\cos m x . \tag{1}
\end{equation*}
$$

This is, of course, equivalent to

$$
\Delta^{2} \cdot u_{x}+a^{2} \cdot u_{x}=\frac{1}{2}\left\{e^{m x x-1}+e^{-m x N-1}\right\} ;
$$

and consequently the solution is, at once,
$u_{x}=\frac{1}{2}\left\{\frac{e^{m x /-1}}{\left(e^{m /-1}-1\right)^{2}+a^{2}}+\frac{e^{-m x /-1}}{\left(e^{-m /-1}-1\right)+a^{2}}\right\}+C_{1}(1+a \sqrt{ }-)^{x}+C_{2}(1-a \sqrt{ }-)^{x}$.

$$
\begin{equation*}
\Delta^{2} \cdot u_{x}-2 a \Delta \cdot u_{x}+a^{2} u_{x}=\sin m x . \tag{2}
\end{equation*}
$$

This, again, is equivalent to

$$
(\Delta-a)^{2} \cdot u_{x}=\frac{1}{2 \sqrt{ }-1}\left\{e^{m \times N-1}-e^{-m_{x} N /-1}\right\},
$$

and the solution is
$u_{x}=\frac{1}{2 \sqrt{ }-1}\left\{\frac{e^{m x \gamma-1}}{\left(e^{m /-1}-1-a\right)^{2}}-\frac{e^{-m x \gamma-1}}{\left(e^{-m V-1}-1-a\right)^{2}}\right\}+C_{1}(a+1)^{x} \cdot x+C_{2}(a+1)^{x}$.
10. It will naturally occur to the reader that some corresponding general method of solution should exist for equations represented by

$$
u_{x+n}+P u_{x+n-1}+Q u_{x+n-2}+\ldots+T u_{x}=f\left(e^{x}, \sin x, \cos x\right) .
$$

Such an equation may obviously be reduced to the symbolic form

$$
e^{n D} \cdot u_{x}+P e^{(n-1) D} \cdot u_{x}+Q e^{(n-2) D} \cdot u_{x}+\ldots+T u_{x}=\Sigma M e^{m x}
$$

or

$$
F\left(e^{D}\right) \cdot u_{x}=\Sigma M e^{m x}
$$

where m is positive or negative, fractional or integer, real or imaginary.

Now it can be readily proved, as in the previous article, that

$$
F\left(\epsilon^{D}\right) \cdot C \alpha^{x}=F(\alpha) \cdot C \alpha^{x}
$$

and, consequently, the symbolic solution of the equation in Finite Differences is

$$
u_{x}=\Sigma M \frac{e^{m x}}{F\left(e^{m}\right)}+\frac{1}{F\left(e^{D}\right)} \cdot 0
$$

the evaluation of which, as before, depends upon the nature of the roots of

$$
F\left(e^{D}\right)=0
$$

It will be sufficient to discuss the case in which all the roots are real and unequal, as the remaining cases can then at once be written down by the aid of the last article. In this case, the form of the arbitrary portion of the solution is

$$
C_{1} \alpha^{x}+C_{2} \beta^{x}+C_{\mathrm{s}} \gamma^{x}+\ldots
$$

The relation between this article and the preceding is readily seen from the consideration, that the general equation of the present article may be written down in the form

$$
(\Delta+1)^{n} \cdot u_{x}+P(\Delta+1)^{n-1} \cdot u_{x}+\ldots+T u_{x}=f\left(e^{x}, \sin x, \cos x\right)
$$

or

$$
F(\Delta+1) \cdot u_{x}=\Sigma M e^{m x}
$$

Examples.

$$
\begin{equation*}
u_{x+2}+a^{2} \cdot u_{x}=\cos m x \tag{1.}
\end{equation*}
$$

This is equivalent to

$$
e^{2 D} \cdot u_{x}+a^{2} \cdot u_{x}=\frac{1}{2}\left\{e^{m x / v-1}+e^{-m x v-1}\right\},
$$

and the solution is

$$
u_{x}=\frac{1}{2}\left\{\frac{e^{m x V-1}}{e^{2 m V-1}+a^{2}}+\frac{e^{-m x V-1}}{e^{-2 m \sqrt{2}}+a^{2}}\right\}+C_{1}(a \sqrt{ }-1)^{x}+C_{2}(-a \sqrt{ }-1)^{x}
$$

$$
\begin{equation*}
u_{x+2}-2 a u_{x+1}+a^{2} u_{x}=\sin m x . \tag{2.}
\end{equation*}
$$

This is equivalent to

$$
\left(e^{D}-a\right)^{2} \cdot u_{x}=\frac{1}{2 \sqrt{ }-1}\left\{e^{m x v-1}-e^{-m x \gamma-1}\right\}
$$

and the solution is

$$
u_{x}=\frac{1}{2 \sqrt{ }-1}\left\{\frac{e^{m x \gamma-1}}{\left(e^{m W-1}-a\right)^{2}}-\frac{e^{-m x \gamma-1}}{\left(e^{-n_{N /-1}}-a\right)^{2}}\right\}+C_{1} a^{x} \cdot x+C_{2} a^{x}
$$

11. If we operate on both sides of the theorem, given in the third article of the Sixth Chapter, with

$$
e^{\phi x D_{x}+\downarrow y D_{y}+\delta c .}
$$

we easily find that
$e^{2\left(\phi x D_{x}+\psi y D_{y}+\& c .\right)} f(x, y, \& c)=.f\left(\Phi^{-1}(\Phi x+2), \Psi^{-1}(\Psi y+2), \& c.\right\} ;$
and hence, in general, that
$e^{m\left(\phi x D_{x}+\psi y D_{y}+\& c .\right)} f(x, y, \& c)=.f\left\{\Phi^{-1}(\Phi x+m), \Psi^{-1}(\Psi y+m), \& c.\right\}$
Thus, the form of f being supposed unknown, and those of Φ and Ψ given, the solution of the equation of Finite Differences, with constant coefficients,

$$
\left.\begin{array}{c}
A f\left\{\Phi^{-1}(\Phi x+a), \Psi^{-1}(\Psi y+a)\right\} \\
+ \\
B f\left\{\Phi^{-1}(\Phi x+b), \Psi^{-1}(\Psi y+b)\right\} \\
+\& c
\end{array}\right\}=0
$$

is reduced to the solution of the symbolic partial differential equation

$$
A e^{a\left(\phi x D_{x}+\downarrow y D_{y}\right)} z+B e^{b\left(\phi x D_{x}+\downarrow y D_{y}\right)} z+\& c_{.}=0
$$

which may be written, for brevity,

$$
F\left(e^{\phi z D_{z}+\Downarrow y D_{v}}\right) z=0 ;
$$

or, by the previous transformation, given in the chapter cited,

$$
F\left(e^{D_{\xi}+D_{\eta}}\right) z=0 .
$$

Now, if the roots of

$$
F(p)=0
$$

be all real and unequal, the symbolic solution of this equation is

$$
z=\left(e^{D_{\xi}+D_{n}}-m\right)^{-1} \cdot 0+\left(e^{D_{\xi}+D_{n}}-n\right)^{-1} \cdot 0+\& c .
$$

where $m, n, \& c$. are the values of the roots.
But by a previous theorem, given in the first article of the Third Chapter,

$$
\chi\left(D_{\xi}+D_{\eta}\right) \cdot \boldsymbol{f}_{m}\left(e^{\xi}, e^{\eta}\right)=\chi(m) \cdot f_{m}\left(e^{\xi}, e^{\eta}\right),
$$

f_{m} being a homogeneous function of the $m^{\text {th }}$ degree.
Hence the solution of the symbolic equation, and therefore the solution of the equation of finite differences, is, substituting for $m, \log m$,

$$
z=u_{\log m}\left(e^{\xi}, e^{\eta}\right)+u_{\log n}\left(e^{\xi}, e^{\eta}\right)+\& c .
$$

where the forms of $u_{\log m}, u_{\log n}$, \&c. are arbitrary, but their degrees given by the suffixes.

Finally, introducing the arbitrary constants $c, d, \& c$. ., as is evidently legitimate, and then substituting their values for $\xi+c, \eta+d, \& c$. , we get the solution in the form

$$
z=u_{\log m}\left(e^{\Phi x}, e^{\Psi y}\right)+u_{\log n}\left(e^{\Phi x}, e^{\Psi y}\right)+\& c .
$$

If

$$
F(p)=0
$$

contain pairs of imaginary roots, the solution assumes the form

$$
z=u_{\log _{(m+n-1)}\left(e^{\Phi x}\right.}\left(e^{\varangle y}\right)+u_{\log _{(m-w-1)}}\left(e^{\phi x}, e^{\psi y}\right)+\& c .+u_{\log p}+\& c .
$$

Finally, if the same equation contain α equal roots, whose common value is m, the form of the solution is

$$
\begin{gathered}
z=u_{\log m}\left(e^{\Phi x}, e^{\Psi y}\right) \cdot(\Phi x+\Psi y)^{a-1}+v_{\log m}\left(e^{\Phi x}, e^{\Psi y}\right) \cdot(\Phi x+\Psi y)^{a-2}+\& c . \\
+u_{\log n}\left(e^{\Phi x}, e^{\Psi y}\right)+\& \mathrm{c} . \\
\mathbf{U}
\end{gathered}
$$

where $u_{\log m}, v_{\log m}$ are different arbitrary homogeneous functions of the same degree.
12. It is now at once obvious that we are prepared to solve such an equation in finite differences as

$$
A \phi(x+a, y+a, \& c \cdot)+B \phi(x+b, y+b, \& c \cdot)+\& c .=0
$$

either as an illustration of the previous article, or independently. Adopting the latter course, it is easy to see that we can solve the still higher equation

$$
\Sigma A \phi(x+a, y+a, \& c .)=\boldsymbol{f}\left(e^{x}, \sin x, e^{y}, \sin y, \& c .\right),
$$

where we can reduce the right-hand member to the form

$$
\Sigma A_{p, q_{,} \& c .} e^{p x+q y+\& \mathrm{ce}},
$$

$p, q, \& c$. being positive or negative, integral or fractional, real or imaginary.

For, throwing the equation into the form

$$
F\left(e^{D_{x}+D_{y}}\right) \phi(x, y, \& c .)=\Sigma A_{p, q, \varepsilon c \cdot} e^{p x+q y+\& c},
$$

we have the solution in the form

$$
\phi=\Sigma A_{p, q, \& c \cdot} \frac{e^{p x+q y+\& c_{c}}}{F\left(e^{p+q+8 c_{c}}\right)}+u_{\log m}\left(e^{x}, e^{y}, \& c .\right)+\& c .
$$

the roots of $F(p)=0$ being supposed, the simplest case, all real and unequal.

It is evident that the solution of the equation in finite differences, in which there is but a single variable, is but a particular case of the form now stated.

Camb. and Dub. Math. Journal, 1853.
13. If the equation to be solved be reducible to the type

$$
F\left(e^{D}\right) \cdot u_{x}+A_{x} u_{x}=B_{x}
$$

where A_{x}, B_{x} are given functions of x, we may proceed by a method analogous to that exhibited in the opening articles of the Fifth Chapter.

Thus, operating on both sides of the representative equation with

$$
\frac{1}{F\left(e^{D}\right)}
$$

we get

$$
u_{x}+\frac{1}{F\left(e^{D}\right)} A_{x} u_{x}=\frac{1}{F\left(e^{D}\right)} B_{x}+\frac{1}{F\left(e^{D}\right)} 0
$$

or

$$
1+\frac{1}{F\left(e^{D}\right)} A_{x} u_{x}=\frac{1}{F\left(e^{D}\right)} B_{x}+\Sigma C_{a} a^{x},
$$

where the last term is the ordinary complementary function upon the supposition that all the roots of

$$
F(u)=0
$$

are real and unequal, and in which, if any modification should arise from the existence of equal or imaginary roots, the generality of the method is not affected.

Now, dissecting the operator in the left-hand member from its subject, and operating with the expansion of its inverse upon the right-hand member, we get

$$
y=\left\{\begin{array}{c}
\left\{1-\frac{1}{F\left(e^{D}\right)} A_{x}+\frac{1}{F\left(e^{D}\right)} A_{x} \frac{1}{F\left(e^{D}\right)} A_{x}-\& c \cdot\right\} \frac{1}{F\left(e^{D}\right)} B_{x} \\
+ \\
\left\{1-\frac{1}{F\left(e^{D}\right)} A_{\dot{x}}+\frac{1}{F\left(e^{D}\right)} A_{x} \frac{1}{F\left(e^{D}\right)} A_{x}-\& c \cdot\right\} \Sigma C_{a} a^{x} .
\end{array}\right.
$$

the further reduction of which depends upon the particular forms of the given functions A_{x}, B_{x}.
14. As an illustration of this method, let it be proposed to solve the well-known linear equation of the first order,

$$
u_{x+1}-A_{x} u_{x}=B_{x} .
$$

Reduced to the symbolic form, this equation becomes

$$
e^{D} u_{x}-A_{x} u_{x}=B_{x},
$$

whence

$$
u_{x}-\frac{1}{e^{D}} A_{x} u_{x}=B_{x-1}+0
$$

which gives

$$
u_{x}=\left\{\begin{array}{l}
\left\{1+\frac{1}{e^{D}} A_{x}+\frac{1}{e^{D}} A_{x} \frac{1}{e^{D}} A_{x}+\& c .\right\} B_{x-1} \\
+\left(\text { solution of } v_{x+1}-A_{x} v_{x}=0\right)
\end{array}\right.
$$

or

$$
u_{x}=\left\{\begin{array}{c}
\left\{B_{x-1}+A_{x-1} B_{x-2}+A_{x-1} A_{x-2} B_{x-3}+\& c .\right\} \\
+C A_{x-1} A_{x-2} \ldots A_{2} A_{1}
\end{array}\right.
$$

where C_{1} is an arbitrary constant, or, in the conventional notation of this calculus,

$$
u_{x}=P A_{x-1}\left\{\Sigma \frac{B_{x}}{P A_{x}}+C\right\}
$$

Example.

$$
u_{x+1}-u u_{x}=x^{m}
$$

Then

$$
u_{x}=\left\{(x-1)^{m}+a(x-2)^{m}+a^{2}(x-3)^{m}+\& c .\right\}+C a^{x}
$$

The solution of this equation may also be given by

$$
u_{x}=-\frac{1}{a}\left\{x^{m}+\frac{(x+1)^{m}}{a}+\frac{(x+2)^{m}}{a^{2}}+\& c .\right\}+C a^{x}
$$

since we may write the symbolic solution in the form

$$
u_{x}=-\frac{1}{a-e^{D}} x^{m}+\frac{1}{e^{D}-a} 0
$$

Hence we conclude the equivalence of the two series,

$$
+\frac{1}{a}\left\{a(x-1)^{m}+a^{2}(x-2)^{m}+a^{3}(x-3)^{m}+\& c .\right\}
$$

and

$$
-\frac{1}{a}\left\{x^{m}+\frac{(x+1)^{m}}{a}+\frac{(x+2)^{m}}{a^{2}}+\& c \cdot\right\}
$$

15. If

$$
(x)_{m}=x(x+1)(x+2) \ldots(x+m-1)
$$

then will

$$
(x+1)_{m}=(x+1)(x+2)(x+3) \ldots(x+m),
$$

and consequently

$$
\Delta(x)_{m}=m(x+1)(x+2) \cdots(x+m-1) .
$$

Therefore

$$
x \Delta \cdot(x)_{m}=m \cdot(x)_{m},
$$

and by successive operation,

$$
(x \Delta)^{p} \cdot\left(x_{m}\right)=(m)^{p} \cdot(x)_{m} .
$$

Hence the theorem, analogous to that demonstrated in the Third Chapter,

$$
F\left(x D_{x}\right) \cdot A_{m} x^{m}=F(m) \cdot A_{m} x^{m}
$$

that

$$
F(x \Delta) \cdot A_{m}(x)_{m}=F(m) \cdot A_{m}(x)_{m},
$$

where F is any algebraic function, and A_{m} is any constant.
This theorem is virtually given by Professor Boole in the Memoir before quoted ("Philosophical Transactions," 1844), but, for the very elementary demonstration above given I am indebted to the Rev. Professor Graves.

Example.

$$
\begin{aligned}
x \Delta(x \Delta-1)(x \Delta-2) \ldots(x \Delta-n+1) \cdot(x)_{m}= & m(m-1)(m-2) \\
& \ldots(m-n+1) \cdot(x)_{m},
\end{aligned}
$$

and, as a particular case of this,
$x \Delta(x \Delta-1)(x \Delta-2) \ldots(x \Delta-n+1) \cdot(x)_{n}=1.2 .3 \ldots n \cdot(x)_{n}$,
the analogues of which may be found in the same Chapter to which reference has just been made.
16. The theorem obtained in the preceding article may be applied with advantage to the investigation of the solution of such equations in Finite Differences as are represented by

$$
A(x \Delta)^{a} \cdot u_{x}+B(x \Delta)^{\beta} \cdot u_{x}+\ldots+\text { T. } u_{x}=0,
$$

and in fact such solutions are given by the symbolic form

$$
u_{x}=\frac{1}{F(x \Delta)} \cdot 0
$$

When the roots of the equation

$$
F(x \Delta)=0
$$

are all real and unequal, the evaluated solution required is

$$
u_{x}=C_{a}(x)_{a}+C_{b}(x)_{b}+\ldots+C_{i}(x)_{i},
$$

$a, b, \ldots i$ being the values of the roots, supposed integers, and $C_{a}, C_{b}, \& \mathrm{c}$. arbitrary constants.

Example.

$$
\begin{gathered}
(x \Delta)^{2} \cdot u_{x}-3(x \Delta) \cdot u_{x}+2 \cdot u_{x}=0 \\
u_{x}=C_{2}(x)_{2}+C_{1}(x)_{1} .
\end{gathered}
$$

17. It is easily demonstrable that

$$
\begin{aligned}
x \Delta(x \Delta-1) & =x(x+1) \Delta^{2}=(x)_{2} \Delta^{2}, \\
x \Delta(x \Delta-1)(x \Delta-2) & =x(x+1)(x+2) \Delta^{3}=(x)_{3} \Delta^{3}, \\
& \& c .,
\end{aligned}
$$

and generally that

$$
x \Delta(x \Delta-1) \ldots(x \Delta-n+1)=(x)_{n} \Delta^{n} .
$$

18. By the employment of this law we are enabled to solve, with great ease, all equations in Finite Differences represented by

$$
A(x)_{a} \Delta^{a} \cdot u_{x}+B(x)_{\beta} \Delta^{\beta} \cdot u_{x}+\& c .+T \cdot u_{x}=0 .
$$

In fact, such equations are at once reducible to the form

$$
A^{\prime}(x \Delta)^{a^{\prime}} \cdot u_{x}+B^{\prime}(x \Delta)^{\beta^{\prime}} \cdot u_{x}+\& c .+T^{\prime} \cdot u_{x}=0,
$$

and their solutions consequently given by the preceding article of this Chapter.
19. Let it be proposed to solve the equation

$$
u_{x+1, y}-D_{y} \cdot u_{x, y}=\mathbf{0} .
$$

This equation is plainly equivalent to

$$
\left(e^{D_{x}}-D_{y}\right) \cdot u_{x, y}=0,
$$

whence

$$
u_{x, y}=\left(D_{y}\right)^{x} \cdot \phi(y),
$$

where ϕ is an arbitrary function.
Similarly, the integral of

$$
u_{x+1, y}-a D_{y}^{n} \cdot u_{x, y}=0
$$

is

$$
u_{x, y}=a^{x}\left(D_{y}\right)^{n x} \cdot \phi(y)
$$

More generally, let it be proposed to integrate the equation

$$
u_{x+n, y}+a D_{y} \cdot u_{x+n-1, y}+b D_{y}^{2} \cdot u_{x+n-2, y}+\cdots+k D_{y}^{n} \cdot u_{x, y}=0 .
$$

This equation is exponible in the shape

$$
\left(e^{n D_{x}}+a D_{y} \cdot e^{(n-1) D_{x}}+\ldots+k D_{y}^{n}\right) \cdot u_{x, y}=0 ;
$$

consequently the symbolic solution is of the form

$$
u_{x, y}=\left(e^{D_{x}}-a D_{y}\right)^{-1} \cdot\left(e^{D_{x}}-\beta D_{y}\right)^{-1} \cdots\left(e^{D_{x}}-\kappa D_{y}\right)^{-1} \cdot 0,
$$

or

$$
u_{x, y}=a^{x}\left(D_{y}\right)^{x} \cdot \phi_{a}(y)+\beta^{x}\left(D_{y}\right)^{x} \cdot \phi_{\beta}(y)+\& c .,
$$

where $\phi_{a}, \phi_{\beta}, \& c$. are arbitrary functions.
Now it is important to observe, that this process of integration is independent of the nature of the operation D_{y}, and the same form of integral belongs to

$$
u_{x+n, y}+a \Delta_{y} \cdot u_{x+n-1, y}+b \Delta_{y}^{2} \cdot u_{x+n-2, y}+\ldots=0
$$

or to any form of the equation in which the operator on the second term is of a distinct kind from $e^{D_{x}}$.

Herschel, Supplement to Translation of Lacroix.

APPENDIX A.

(Page 39.)
On the Calculus of Variations.
I.

It is shown (Jellett's Calculus of Variations, p. 253), that the value of z which, for certain assigned limits, renders the double integral

$$
\iint\left(x D_{x} z+y D_{y} z-z\right)^{m} d x d y
$$

a maximum or a minimum, is given by the partial differential equation,

$$
x^{2} D_{x}^{2} z+y^{2} D_{y}^{2} z+2 x y D_{x} D_{y} z+\frac{3}{m-1}\left(x D_{x} z+y D_{y} z-z\right)=0
$$

the solution of which, if we put

$$
n=-\frac{3}{m-1}
$$

is given by

$$
z=u_{n}+u_{1},
$$

where u_{n} and u_{1} are homogeneous functions of the independent variables of the given degrees n and unity, but whose forms are arbitrary.

By a method precisely similar, it may be proved that the form of the function w which, for certain assigned limits, renders the symmetrical multiple integral, containing p independent variables,

$$
\iiint \ldots\left(x D_{x} w+y D_{y} w+z D_{z} w+\ldots-w\right)^{m} d x d y d z \ldots
$$

a maximum or a minimum, is given by the partial differential equation

$$
\left.\begin{array}{c}
x^{2} D_{x}^{2} w+y^{\imath} D_{y}^{2} w+z^{2} D_{z}^{2} w+\ldots+2 x y D_{x} D_{y} w+\ldots \\
+ \\
\frac{p+1}{m-1}\left(x D_{x} w+y D_{y} w+z D_{z} w+\ldots-w\right)
\end{array}\right\}=0
$$

the solution of which is, if, as before, we put

$$
n=-\frac{p+1}{m-1}
$$

given by

$$
w=u_{n}+u_{1}
$$

where the arbitrary functions merely differ from the previous in the number of the independent variables (p) included under them.
II.

It is shown (Calculus of Variations, p. 262) that the value of z which, for certain assigned limits, renders the double integral

$$
\iint \sqrt{\left(D_{x} z\right)^{2}+\left(D_{y} z\right)^{2}} d x d y=\iint Z d x d y
$$

a maximum or a minimum, is given by the partial differential equation

$$
D_{x}\left(\frac{D_{x} z}{Z}\right)+D_{y}\left(\frac{D_{y} z}{Z}\right)=0
$$

Similarly it may be proved that the form of the function w which, for certain assigned limits, renders the symmetrical multiple integral

$$
\iiint \ldots \sqrt{\left(D_{x} w\right)^{2}+\left(D_{y} w\right)^{2}+\left(D_{z} w\right)^{2}+\ldots} d x d y d z \ldots
$$

or

$$
\iiint \ldots W d x d y d z \ldots
$$

a maximum or a minimum, is given by the partial differential equation

$$
D_{x}\left(\frac{D_{x} w}{W}\right)+D_{y}\left(\frac{D_{y} w}{W}\right)+D_{z}\left(\frac{D_{z} w}{W}\right)+\ldots=0
$$

If there be but three independent variables x, y, z, the advanced student will find no difficulty in verifying the following theorem:-

If S be a closed surface enclosing a continuous mass, the density at each point of which is constant, and F the resultant attraction of an external system M^{\prime} at any element $d m$ within S, then in order that the value of the triple integral

$$
\iiint \boldsymbol{F} d m
$$

taken throughout the space included within S, should be a maximum or a minimum, the distribution of M should be such that

$$
D_{x} A+D_{y} B+D_{z} C=0
$$

A, B, C being the direction cosines of the resultant attraction F.
It may be easily seen also that, if the surfaces of equilibrium belonging to the system M^{\prime} were constructed, the portions of those surfaces which lie within S are the surfaces of minimum superficies amongst all those which can be described through the closed curves in which, respectively, they intersect S.

III.

It is shown (Calculus of Variations, p. 240) that in order that the double integral

$$
\iint f\left(x, y, z, D_{x} z, D_{y} z\right) d x d y
$$

should be reducible to a single integral, it is necessary and sufficient that f should be of the form

$$
F_{1}(x, y, z) D_{x} w+F_{2}(x, y, z) D_{y} w-F_{3}(x, y, z)
$$

the functions F_{1}, F_{2}, F_{3} being connected by the condition

$$
D_{x} F_{1}+D_{y} F_{2}+D_{z} F_{3}=0
$$

As an example of this theorem it is proved that the double integral

$$
\iint \mu\left(x D_{x} z+y D_{y} z-z\right) d x d y
$$

is reducible to a single integral, when μ is an homogeneous function in x, y, z, of the order -3 .

In the same manner it may be proved that, in order that the symmetrical multiple integral, containing p independent variables

$$
\iiint \ldots f\left(x, y, z, \ldots w, D_{x} w, D_{y} w, D_{z} w, \ldots\right) d x d y d z \ldots
$$

should be reducible one degree, it is necessary and sufficient that f should be of the form
$\boldsymbol{F}_{1}(x, y, z, \ldots w) D_{x} w+\boldsymbol{F}_{2}(x, y, z, \ldots w) D_{y} w+\& c .-F_{p+1}(x, y, z \ldots w)$
the functions $F_{1}, F_{2}, \ldots, F_{p+1}$ being connected by the condition

$$
D_{x} F_{1}+D_{y} F_{2}+D_{z} F_{3}+\ldots+D_{w} F_{p+1}=0
$$

Again, as an example of this theorem, it may be proved that the multiple integral

$$
\iiint \ldots \mu\left(x D_{x} w+y D_{y} w+z D_{z} w+\ldots-w\right) d x d y d z \ldots
$$

is instantly reducible one degree, when μ is an homogeneous function in $x, y, z, \ldots w$ of the order $-(p+1)$.
iv.

As illustrations of the employment of the opening theorem of the last article, the reader will accept the following applications to the theory of Attractions, which were communicated to the Dublin University Philosophical Society, December, 1850, and have been since published in the Transactions of that Society.

It has been shown by Gauss, in his celebrated memoir on Attractions, that
(1.) For all closed surfaces lying wholly outside, and including a given system of masses M any way distributed,

$$
\int P d \sigma=\text { const. }=4 \pi M
$$

\boldsymbol{P} being the component of the resultant attraction at each point of the surface, in the direction of the normal, and $d \sigma$ the element of the surface.
(2.) For all closed surfaces lying wholly outside and excluding the same system of masses,

$$
\int P d \sigma=\text { const. }=0
$$

Though these theorems, when taken in combination with others given by Gauss, have proved in his hands most fertile, yet in themselves they appear isolated and distinct, unattended by any immediate result, and unconnected by any general law.

They obviously come within the province of the Calculus of Variations, and it becomes an interesting matter of inquiry how they may be reduced to it.

Now, a, β, γ being the normal angles,
or

$$
\begin{aligned}
& \int P d \sigma=\int(X \cos a+Y \cos \beta+Z \cos \gamma) d \sigma \\
& \int P d \sigma=-\iint\left(X D_{x} z+Y D_{y} z-Z\right) d x d y
\end{aligned}
$$

which evidently fulfils the condition required in order that it may be reducible to a single integral, for

$$
D_{x} X+D_{y} Y+D Z_{z}=D_{x}^{2} V+D_{y}^{2} V+D_{z}^{2} V=0
$$

Hence generally, if M be a system of masses, any way distributed, and C a closed curve lying wholly outside this system, for all surfaces described through C, and which do not intersect M,

$$
\int P d \sigma=\text { const. }
$$

this constant having either of two values, according as the series of surfaces lies at one side or the other of M.

To establish this latter point, let us conceive a series of surfaces described through the closed curve C, and progressively approaching the system of masses, but not so as to intersect it. Then the only legitimate conclusion which we can draw from the results furnished by the Calculus of Variations is, according to the principles of this Calculus, that

$$
\int P d \sigma
$$

is the same for all these. Once the series intersects M, our conclusions cease to be valid, and we cannot apply to the class of surfaces, which arises from the extension of the series beyond M, any results at which we may have arrived relative to the series on the side from which the development has commenced, for the sequence of the one series upon the other is attended by an abrupt change.

The values of the constants in the theorems given by Gauss are easily deducible.

In the latter case, let us suppose the series of closed surfaces to degenerate into a point, which is evidently legitimate, and it follows that the constant value of the integral in this case is zero. In the former, we may choose for the particular closed surface a sphere
with its centre at the centre of gravity of the masses, and its radius so large that the masses, so far as they affect the surface of this sphere, may be supposed to be condensed into their centre of gravity, and the constant value of the integral in this case is

$$
4 \pi M
$$

The application of the general principle to a particular case will be found to furnish an interesting result.

If the curve C be plane, and its plane do not intersect the system M, then for all surfaces described through this curve, and which neither intersect nor include M, the constant value of the integral will be

П. Σ

where $\boldsymbol{\Sigma}$ is the area enclosed within the plane curve, and Π is the sum of the normal components of the attractions exercised at each point of Σ, and applied at its centre of gravity.

It appears, then, that for all plane curves enclosing the same area, the value of the integral for different systems of masses will vary as Π, and that for the same value of Π, perpendicular at a given point to a given plane, the constant value of the integral will vary as the area of each curve described in the plane with its centre of gravity at the given point.

> v.

As a second illustration, it may be observed that the condition

$$
D_{x} F_{1}+D_{y} F_{2}+D_{z} F_{3}=0
$$

is evidently satisfied, if F_{1} be independent of x, F_{2} of y, and F_{3} of z. Hence we derive the following general theorem, in which it is supposed that a, β, γ denote the normal angles at any point of a surface, a, b, c the radial, and r the radius vector.

For all surfaces passing through the same closed curve the symmetrical double integral
$\iint r^{m}\left\{\cos \alpha \cdot F_{1}(\cos b, \cos c)+\cos \beta \cdot F_{2}(\cos c, \cos a)+\cos \gamma \cdot F_{3}(\cos a, \cos b)\right\} d \sigma$ taken throughout the extent bounded on each surface by the limiting curve, will be constant, F_{1}, F_{2}, F_{3} being homogeneous functions of the $m^{\text {lh }}$ degree, where m may be positive or negative, fractional or integral.

And hence again,
The value of this double integral is the same for all closed surfaces.
In the particular case

$$
\iint r^{2}\left\{\cos a \cdot \sin ^{2} a+\cos \beta \cdot \sin ^{2} b+\cos \gamma \cdot \sin ^{2} c\right\} d \sigma
$$

this constant value for all closed surfaces will be found to be zero, its value being investigated for the sphere; and in general, if m be a positive integer, the value of

$$
\iint r^{m}\left\{\cos \alpha \cdot \sin ^{m} a+\cos \beta \cdot \sin ^{m} b+\cos \gamma \cdot \sin ^{m} c\right\} d \sigma
$$

for all closed surfaces, is zero.

vi.

Let S be a closed surface enclosing a continuous stratified mass M, and F the force of attraction exercised at any element $d m$ within S by an external system M^{\prime}. It is required to investigate the character of the distribution of M, which will render

$$
\int F^{2} d m
$$

taken throughout the space included within S, a maximum or a minimum. Then

$$
\iiint\left\{\left(D_{x} V\right)^{2}+\left(D_{y} V\right)^{2}+\left(D_{x} V\right)^{2}\right\} \rho d x d y d z=\text { max. or min. }
$$

and V is given by the equation

$$
D_{x}\left(\rho D_{x} V\right)+D_{y}\left(\rho D_{y} V\right)+D_{z}\left(\rho D_{z} V\right)=0 ;
$$

or, since M^{\prime} is wholly external to S, by

$$
D_{x} V \cdot D_{x} \rho+D_{y} V \cdot D_{y} \rho+D_{z} V \cdot D_{z} \rho=0 ;
$$

or, if S be a line in the direction of the force,

$$
F D_{s} \rho=0
$$

But in general F is not zero, therefore

$$
D_{s} \rho=0 ;
$$

or, the direction of the force F must be tangential to the surface

$$
\rho=\text { const. }
$$

It is an obvious consequence that surfaces of constant density described in S,

$$
\rho=\text { const. }
$$

are the loci of the trajectories to the surfaces of equilibrium belonging to M^{\prime},

$$
V=\text { const. }
$$

which intersect S.

APPENDIX B.

(Page 114.)
On the Quadrature of Surfaces and the Rectification of Curves.

1. IT is well known that there are many plane curves whose equations are more easily expressed in polar than in rectangular coordinates, and for whose rectification we employ the formula

$$
S=\int_{\theta_{1}}^{\theta_{2}} \sqrt{ }\left\{r^{2}+\left(D_{\theta} r\right)^{2}\right\} d \theta
$$

Of this class are, the Spiral of Archimedes,

$$
r=a \theta \text {; }
$$

the Lituus,

$$
r^{2}=\left(\frac{a}{\theta}\right)^{2}
$$

the Lemniscate,

$$
r^{2}=a^{2} \cos 2 \theta
$$

the Logarithmic Spiral,

$$
r=c e^{\frac{\theta}{a}} ;
$$

and the Cardioid,

$$
r=a(1-\cos \theta) .
$$

2. I am not aware that any mathematician has attempted to trace the surfaces analogous to these; but, for the quadrature of such surfaces, when discovered, it is absolutely necessary that we should have a general expression in polar co-ordinates for the element of any surface. Such an expression is not found in the ordinary works upon the Differential and Integral Calculus. In the elaborate treatise upon this subject by M. L'Abbé Moigno (Paris, 1844, tom. ii. p. 235), the expression is investigated by the usual analytical method, transformation of co-ordinates, from the well-known expression in rectangular co-ordinates,

$$
d \sigma=\sqrt{ }\left(1+p^{2}+q^{2}\right) d x d y
$$

and is given in the following shape,

$$
d \sigma=\sqrt{ }\left\{r^{2} \sin ^{2} \theta+\sin ^{2} \theta\left(D_{\theta} r\right)^{2}+\left(D_{\phi} r\right)^{2}\right\} r d \theta d \phi
$$

A short geometrical deduction of this expression may not be unacceptable to the student.

Let P be any point on the surface. Through the axis $O A$ and $O P$ describe a plane, and round the axis describe, with the same line, a cone. The surface may then be supposed to be divided into its elements by planes and cones consecutive to these respectively (the planes all passing
 through the axis and the cones round it), half of one such element being represented by $\boldsymbol{P} \iota^{\prime}$. Then, remembering that the planes cut the cones orthogonally, we have

$$
d \sigma=P \iota \cdot P \iota^{\prime} \cdot \sin \iota P \iota^{\prime}=P \iota \cdot P \iota^{\prime} \cdot \sqrt{ }\left(1-\cos ^{2} \iota P \iota^{\prime}\right)
$$

whence

$$
d \sigma=P \iota \cdot P \iota^{\prime} \cdot \sqrt{ }\left(1-\sin ^{2} \iota P o \cdot \sin ^{2} \iota^{\prime} P o^{\prime}\right)=\sqrt{ }\left(P t^{2} \cdot P \iota^{\prime 2}-o \iota^{2} \cdot o^{\prime} \iota^{\prime 2}\right)
$$

o and o^{\prime} being the points where the sphere described round the origin with radius $O P$ intersects the consecutive radii vectores to the points ι, ι^{\prime}; or
$d \sigma=V\left[\left\{r^{2} \sin ^{2} \theta d \phi^{2}+\left(D_{\phi} r\right)^{2} d \phi^{2}\right\} \cdot\left\{r^{2} d \theta^{2}+\left(D_{\theta} r\right)^{2} d \theta^{2}\right\}-\left(D_{\theta} r\right)^{2} d \theta^{2} \cdot\left(D_{\phi} r\right)^{2} d \phi^{2}\right]$, or, finally,

$$
d \sigma \nLeftarrow \sqrt{ }\left\{r^{2} \sin ^{2} \theta+\sin ^{2} \theta\left(D_{\theta} r\right)^{2}+\left(D_{\phi} r\right)^{2}\right\} r d \theta d \phi
$$

3. From this expression we may readily derive that for the perpendicular from the origin upon the tangent plane, in polar co-ordinates. In rectangular co-ordinates it is known to be

$$
P=\frac{z-p x-q y}{\sqrt{ }\left(1+p^{2}+q^{2}\right)}
$$

but the transformation of this to polar co-ordinates would be trou-
blesome and tedious. We may easily derive the required expression from the volume of the elementary cone, for

$$
\boldsymbol{P} d \sigma=\boldsymbol{r}^{3} \sin \theta d \theta d \phi
$$

and, therefore,

$$
P=\frac{r^{2} \sin \theta}{\sqrt{ }\left\{r^{2} \sin ^{2} \theta+\sin ^{2} \theta\left(D_{\theta} r\right)^{2}+\left(D_{\phi} r\right)^{2}\right\}^{\prime}}
$$

4. As an example of the application of the formula for the quadrature of surfaces, let us suppose that it is required to investigate the quadrature, between given limits, of the surface

$$
r=m e^{-\phi} \cos \theta .
$$

Then

$$
D_{\theta} r=-m e^{-\phi} \sin \theta, D_{\phi} r=-m e^{-\phi} \cos \theta ;
$$

therefore,

$$
d \sigma=\sqrt{ }\left(m^{2} e^{-2 \phi} \cos ^{2} \theta \sin ^{2} \theta+m^{2} e^{-2 \phi} \sin ^{4} \theta+m^{2} e^{-2 \phi} \cos ^{2} \theta\right) r d \theta d \phi
$$

or

$$
d \sigma=m^{2} e^{-2 \phi} \cos \theta d \theta d \phi
$$

whence

$$
\boldsymbol{\Sigma}=m^{2} \int e^{-2 \phi}\left(\sin \theta_{2}-\sin \theta_{1}\right) d \phi
$$

Let us suppose the limits to be given by the intersections, with the given surface, of the cones

$$
\theta_{2}=a \phi, \theta_{1}=b \phi,
$$

and

$$
\mathbf{\Sigma}=m^{2} \int_{\phi_{1}}^{\phi_{2}} e^{-2 \phi}(\sin a \phi-\sin b \phi) d \phi
$$

an integral which is susceptible of easy reduction, since we know that

$$
\int e^{-m \phi} \sin a \phi d \phi=-e^{-m \phi} \frac{m \sin a \phi+a \cos a \phi}{m^{2}+a^{2}} .
$$

5. As a second example, let it be proposed to investigate the quadrature, within given limits, of the surface

$$
r=m \cos \phi \sin \theta
$$

Here

$$
D_{\theta} r=m \cos \phi \cos \theta, D_{\varphi} r=-m \sin \phi \sin \theta
$$

and

$$
d \sigma=m^{2} \cos \phi \sin ^{2} \theta d \theta d \phi
$$

whence

$$
\boldsymbol{\Sigma}=m^{2} \int_{\theta_{1}}^{\theta_{2}}\left(\sin \phi_{2}-\sin \phi_{1}\right) \sin ^{2} \theta d \theta ;
$$

and, if the limits be given as before, there is no difficulty in determining the quadrature completely.
6. In the treatise upon the "Calculus of Variations," by the Rev. Professor Jellett, before quoted, it is shown that the surface which, within given limits, renders the double integral,

$$
\iint \sqrt{ }\left(p^{2}+q^{2}\right) d x d y
$$

or, γ being the angle made by the radius vector with the axis of z,

$$
\iint \sin \gamma \cdot d \sigma
$$

a minimum, is given by the partial differential equation

$$
q^{2} r-2 p q s+p^{2} t=0
$$

whose integral is known to be

$$
x F_{1}(z)+y F_{2}(z)=1
$$

representing the gauche surface generated by a right line, which, gliding upon two fixed directrices, remains constantly parallel to the plane of the axes of x and y; as indeed might be anticipated from a consideration of the question in its second form.

In the same manner it might be shown that the surface which, within given limits, renders the double integral

$$
\iint \sqrt{ }\left\{\left(D_{\theta} r\right)^{2}+\left(D_{\phi} r\right)^{2}\right\} d \theta d \phi
$$

a minimum, is given by the equation

$$
\phi F_{1}(r)+\theta F_{2}(r)=1
$$

If it be proposed to investigate the property of this surface corresponding to the character of the generation of the analogous surface in rectangular co-ordinates, as the latter character is exhibited by the supposition $z=$ const., so the former property may be investigated by the supposition $r=$ const. Let then the surface be sup-
posed to intersect a sphere described round the origin, and let the nature of the curve of intersection be examined. If we resolve any element into its rectangular components, one such component is $r d \theta$, and the other $r \sin \theta d \phi$. Let i be the inclination of the element to the meridional plane described through its extremity and the fixed axis, and it is evident that

$$
\tan i=\frac{r \sin \theta d \phi}{r d \theta}=-\frac{F_{2}(c)}{F_{1}(c)} \sin \theta,
$$

c being the radius of the sphere; or, the tangent of the angle of inclination of the curve to the meridional plane is proportional to the sine of the angle made by the radius vector with the axis.
7. It may be well here to indicate certain desiderata, the knowledge of which might lead to the discovery of some interesting properties of surfaces.

The measure of curvature at any point of a surface is expressed in rectangular co-ordinates by the formula

$$
\frac{1}{R_{1} R_{2}}=\frac{r t-s^{2}}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}:
$$

we have no corresponding expression in polar co-ordinates. Such might be discovered by the investigation of the analogue of the known formula for plane curves,

$$
\rho=r \frac{d r}{d p} .
$$

Again, the sum of the curvatures at any point of a surface is expressed by the formula, in rectangular co-ordinates,

$$
\frac{1}{R_{1}}+\frac{1}{R_{2}}=-\frac{\left(1+q^{2}\right) r-2 p q s+\left(1+p^{2}\right) t}{\left(1+p^{2}+q^{2}\right)^{\frac{3}{2}}}:
$$

we have no corresponding expression in polar co-ordinates. Other desiderata will readily suggest themselves.
8. With regard to the rectification of curves, it may be useful to make a few observations upon a subject which has recently attracted much attention among French mathematicians. In the

Notes by M. Liouville to his valuable edition of the Application de l'Analyse à la Geometrie of the illustrious Monge, will be found (p. 558) the following remarks :-
" M. Serret a fait usage de certaines variables qu' il avait déjà employées au tome xir. du Journal de Mathématiques, pour resoudre le problème suivant : x, y, z, s, étant quatre fonctions d'une variable indépendente θ assujetties a verifier l'équation

$$
d x^{2}+d y^{2}+d z^{2}=d s^{2},
$$

exprimer sans forme finie et sans aucun signe d'intégration, les valeurs générales de ces fonctions. La solution de ce problème conduit, par exemple, a trouver des courbes à double courbure qui soient à la fois algébriques et rectifiables algébriquement, ou dont l'arc dépende d'une transcendante donnée. Le problème analogue pour les courbes planes dépend de l'equation plus simple

$$
d x^{2}+d y^{2}=d s^{2},
$$

et se resout, comme on sait, par les formules

$$
\begin{aligned}
& x=\psi^{\prime}(\theta) \sin \theta+\psi^{\prime \prime}(\theta) \cos \theta, \\
& y=\psi^{\prime}(\theta) \cos \theta-\psi^{\prime \prime}(\theta) \sin \theta, \\
& s=\psi^{\prime}(\theta)+\psi^{\prime \prime}(\theta),
\end{aligned}
$$

ou la fonction ψ est arbitraire. Les formules de M. Serret pour l'équation

$$
d x^{2}+d y^{2}+d z^{2}=d s^{2}
$$

sont beaucoup plus compliquées, et, partant, beaucoup moins utiles."

It appears to me that the integration of these equations may be effected directly, and with great simplicity, by employing the Calculus of Quaternions.

Thus, in the notation of this Calculus, the first equation

$$
d x^{2}+d y^{2}=d s^{2}
$$

is equivalent to

$$
-(i d x+j d y)^{2}=-(d \rho)^{2},
$$

or

$$
i d x+j d y=d \rho
$$

whence

$$
i x+j y=\rho+\alpha,
$$

α being an arbitrary vector; or, between given limits,

$$
i\left(x_{2}-x_{1}\right)+j\left(y_{2}-y_{1}\right)=\rho_{2}-\rho_{1},
$$

an identity, as it ought to be.
Similarly, the second equation

$$
d x^{2}+d y^{2}+d z^{2}=d s^{2}
$$

is equivalent to

$$
-(i d x+j d y+k d z)^{2}=-(d \rho)^{2}
$$

or

$$
i d x+j d y+k d z=d \rho ;
$$

whence

$$
i x+j y+k z=\rho+\alpha
$$

α being an arbitrary vector; or, between, given limits,

$$
i\left(x_{2}-x_{1}\right)+j\left(y_{2}-y_{1}\right)+k\left(z_{2}-z_{1}\right)=\rho_{2}-\rho_{1},
$$

an identity, as it ought to be.

APPENDIX C.

Additional Applications to Integration.

1. Let it be proposed to integrate the equation

$$
x y D_{x} D_{y} z+b x D_{x} z+a y D_{y} z+a b z=V
$$

where V is a function of x and y.
Gregory, Examples, p. 366.
This equation being thrown into the form

$$
\left(x D_{x}+a\right)\left(y D_{y}+b\right) z=V
$$

its solution is, at once

$$
z=\frac{1}{\left(x D_{x}+a\right)\left(y D_{y}+b\right)} V+x^{-a} \Phi(y)+y^{-b} \Psi(x) ;
$$

and if V be supposed to be of the shape

$$
\mathbf{\Sigma} A_{m, n} x^{m} y^{n}
$$

the full evaluated solution is (page 42),

$$
z=\mathbf{\Sigma} \frac{A_{m, n} x^{m} y^{n}}{(m+a)(n+b)}+x^{-a} \Phi(y)+y^{-b} \Psi(x)
$$

More generally, the solution of the equation

$$
\left(x D_{x}+a\right)\left(y D_{y}+b\right)\left(z D_{z}+c\right) \ldots w=\boldsymbol{\Sigma} A_{m, n, p, \& c .} x^{m} y^{n} z^{p} \ldots
$$

is
$\boldsymbol{w}=\boldsymbol{\Sigma} \frac{A_{m, n, p, \& c .} x^{m} y^{n} z^{p} \ldots}{(m+a)(n+b)(p+c) \ldots}+x^{-a} \Phi(y, z, \& \mathrm{c})+.y^{b} \Psi(z, x, \& \mathrm{cc})+.\& \mathrm{cc}$.
2. Let the equation to be integrated be

$$
D_{x}^{2} z+\frac{2}{x} D_{x} z=a^{2} D_{y}^{2} z
$$

Gregory, Examples, p. 367.

Multiplying by x^{2} and reducing, we get
or

$$
x D_{x}\left(x D_{x}+1\right) z=a^{2} x^{2} D_{y}^{2} z,
$$

whence

$$
D_{x}^{2}(x z)=a^{2} D_{y}^{2}(x z)
$$

$$
z=\frac{1}{x}\{\Phi(y+a x)+\Psi(y-a x)\} .
$$

3. Let the equation to be integrated be

$$
D_{y}^{2} z=a^{2}\left\{D_{x}^{2} z+\frac{2}{x} D_{x} z-\frac{2}{x^{2}} z\right\}
$$

Gregory, Examples, p. 367.
Upon reference to page 55 it will be evident that, this equation being thrown into the shape

$$
\left(x D_{x}-1\right)\left(x D_{x}+2\right) z-\left(\frac{x}{a} D_{y}\right)^{2} z=0
$$

its solution is

$$
z=\frac{1}{x^{2}}\left(x D_{x}-1\right)\{\Phi(x+a y)+\Psi(x-a y)\} ;
$$

or, in full,

$$
z=\frac{1}{x}\left\{\Phi^{\prime}(x+a y)+\Psi^{\prime}(x-a y)\right\}-\frac{1}{x^{2}}\{\Phi(x+a y)+\Psi(x-a y)\} .
$$

4. Although the system of equations representing the small motions of homogeneous elastic gases (page 77),

$$
\left.\begin{array}{l}
D_{t}^{2} u=a^{2} D_{x}\left(D_{x} u+D_{y} v+D_{z} w\right) \\
D_{t}^{2} v=a^{2} D_{y}\left(D_{x} u+D_{y} v+D_{z} w\right) \\
D_{t}^{2} w=a^{2} D_{z}\left(D_{x} u+D_{y} v+D_{z} w\right)
\end{array}\right\}
$$

cannot be integrated generally, particular integrals have been proposed corresponding to particular cases.

Thus, in the case of spherical waves going to and from the centre whose co-ordinates are α, β, γ, these equations are satisfied by

$$
\begin{aligned}
& u=\frac{x-\alpha}{r^{2}}\left\{\Phi^{\prime}(a t-r)+\Psi^{\prime}(a t+r)\right\}+\frac{x-a}{r^{3}}\{\Phi(a t-r)-\Psi(a t+r)\} \\
& v=\frac{y-\beta}{r^{2}}\left\{\Phi^{\prime}(a t-r)+\Psi^{\prime}(a t+r)\right\}+\frac{y-\beta}{r^{3}}\{\Phi(a t-r)-\Psi(a t+r)\} \\
& w=\frac{z-\gamma}{r^{2}}\left\{\Phi^{\prime}(a t-r)+\Psi^{\prime}(a t+r)\right\}+\frac{z-\gamma}{r^{3}}\{\Phi(a t-r)-\Psi(a t+r)\}
\end{aligned}
$$

Again, for plane waves moving in the direction of a line which makes with the axes of co-ordinates angles λ, μ, ν, these equations are evidently satisfied by

$$
\begin{aligned}
& u=\cos \lambda \cdot \Phi(x \cos \lambda+y \cos \mu+z \cos \nu-a t) \\
& v=\cos \mu \cdot \Phi(x \cos \lambda+y \cos \mu+z \cos \nu-a t) \\
& w=\cos \nu \cdot \Phi(x \cos \lambda+y \cos \mu+z \cos \nu-a t)
\end{aligned}
$$

Airy, Tracts, p. 267.

THE END.

ERRATA.

Page 3, line 24, for forms read form.
" $9,, 11$, for if u be a function read if u and v be functions.
, $13, \quad, \quad 8$, for $\left\{1+\left(\frac{\Phi+\Psi}{1}\right)+\left(\frac{\Phi+\Psi}{1.2}\right)^{2}+\& c.\right\} . u$ $\operatorname{read}\left\{1+\frac{(\Phi+\Psi)}{1}+\frac{(\Phi+\Psi)^{2}}{1.2}+\& c.\right\} . u$.

A CATALOGUE
 of
 NEW WORKS IN GENERAL LITERATURE,
 FUBLISHED BY
 LONGMAN, BROWN, GREEN, and LONGMANS,

39, PATERNOSTER ROW, LONDON.

CLASSIFIED INDEX.

Agriculture and Rural

 Affairs. PagesBayldon On valuing Rents, \&c Pages. Caird's I.etters on Agriculture Cecil's Stud Farm
Loudon's A griculture
Self-lnstruction
Low's Elements of Agriculture
Domesticated Animals
Arts, Manufactures, and Architecture.
Arnott on Ventilation
Bourne Un the Ncrew Propeller Brande's Dictionary of Science, \&c. Chevreul on Colour - Chevreul on Colour
Cresy's Civil Engineering
Fastlake On Oil Painting
Gwilt's Encyclo. of Architecture
Jameson' Sacred \& Legendary Art 10, 11 Commonplace. Borrk
König's Picto'ial Life of Luther - 8 J.oudon's Rural Architecture Moseley's Engineering
Piesse's Art of Perfumery
Richardson's trt of Horsemanship
Scrivenor on the Iron Trade Scrivenor on the Iron Trade Stark's Printing
Steam Engine, by the Artisan Club Tate on Strength of Materiais Ure's Dictionary of Arts, \&e.

Biography.

Arago's Autobiography - 23 Rodenstedt and Wagner's Schamyl 23 Buchingham's (J.S.)
Bunsen's Hippolytus ${ }^{\text {Clinton's (Fynes) A utnbiography }}$ Clinton's (Pynes) Auturenne Cennistoun's Strange \& Lumisden Forster's De Foe and Churchill Forster's De Foe and Churchil Haydon's Autobiography, by Selwn
Hayward's I hesterfield and Selwn Aayward's hestors
Holland's (Lord) Memoirs
Holland's (Lord) Memoirs Lardner's Cabinet Cyclopædia Memoir of the Duke of Wellington Memoir of the Duk Montgomery Memoirs of James Montgomer Merivale's Memoirs of Cicero Russell's Memi irs of Moore -
Southey's Life of Wesley

> Life snd Correspondence . Select Correspondence -
Stephen's E.celesiastical Biography
Sydney Smith's Memoirs
Taylor's Loyola
Townsend's Eminent Judges
Waterton's A pohiogranhy \& Essays 22 Wheeler's Life of Herodotus

Books of General Utility.

Acton's Cookery - $\begin{aligned} & \text { - } \\ & \text { Black's Treatise on } \\ & \text { - }\end{aligned}$ Cabinet Gazetteer -
Cust's Invalid's Own Book Gilbart's Logic for the Million Hints on Etiquette
How to Nurse sick Children Hudson's Executor's Guide " On Making Wills Kesteven's Domestic Medicine Lardner's Cabinet Cyclopædia Maunder's Treasury of Knowledge
" Biographical Treasury Scientific Treasury Treasury of History Natural History
Piesse's Art of Perfumery P'iscator's Cookery of Pocket and the Stud Pycroft's Fagelish Reading Reece's Medical Guide ('omp. to I Tatin nictionary

Pages.
Richardson's Art of Horsemanship 18
Riddle's Latin Dictionaries - 18 \& 19
Roget's English Thesaurus -
Rowton's Debater -$-\quad 19$
$-\quad 10$
Sliort Whist
Thomson's Interest Tables
Webster's Domestic Economy
West on Children's Diseases -
Willich's Popular Tables
Wilmot's Blackstone

Botany and Gardening.

Conversations on Botany
Hooker's British Flora Gardens Guide to Kew Gardens -
"
Lindley's Introduction to Botany Theory of Horticulture
Loudon's Hortus Britannicus

* Amateur Gardener
" Trees and Shrubs Gardening
ereira's Materia Medica
Pereira's Materia Medica Rivera's Rose Amateur's Guide
Wilson's British Mosses

Chronology.

Blair's Chronological Tables Brewer's Hlistorical Atlas Bunsen's Ancient Egypt Haydn's Beatson's Index Jsquemet's Chronology
Jolins \& Nicolas' Calendar of Victory, 11 Nicolas's Chronology of listory -

Commerce and Mercantile

 AffairsFrancis On Life Assurance
Francis's Stock Exchange
Lorimer's Young Master Märiner
Mac Leod's Banking h -
M‘Culloch'sCommerce \& Navization 14
Scrivenor on Iron Trade
Thomson's interest Tables
Tooke's History of Pices - - 2 ;
Criticism, History, and Memoirs.
Austin's Germany
Blair's Chron, and Histor. Tables
Brewer's Historical Atlas
Bunsen's Ancient Egypt
Hippolytus
Burton's History of Scotland
Conybeare and Howson's St. Paul
Eastlake's History of Uil Painting
Erskine's History of India
Francis's Annals of Life Assurance

\section*{8}

Rogers' Essays from Edinb. Revies Roget's English Thesaurus
Russell's (Lady Rachel) Letters Life of Lord W. Russell
St. Jolin's Indian Archipelago Schmitz's History of Greece Smith's Sacred Annals Southey's Doctor
Stephen's Ecclesisatical Bios . aphs 21
Lectures on French \mathbb{H} story
Sydney Smith's Works
Select Works
" Lectures
Taylor's Eoyold
Wesley
Thirlwall's History of Greece
Townsend's State Trials
Turkey and Christendon
Turner's Anglo-Saxon
Sacred Hist. of the World
Whitelocke's Swerlish Embassy Woods' Crimean Campaign
Young's Christ of History

Geography and Atlases.

Arrowsmith's Geogr. Dict. of Bible Brewer's Historical Atlas Brewer's Historical Atlas
Butler's Geography and Atlases
Cabinet Gazetteer
Cornwall, its Mines, \&cc.
Durrieu's Moroceo
Hughes's A ustralian Colonies
Jolnston's General Gazetteer
Lewis's English Rivers -
" Rusbia and Turkey
Milner's Baltic Sea Crimea
Murray's Encyclo. of Geography
Wharp's British Gazetteer -
Wheeler's Geography of Herodotus 24

Juvenile Books.

Amy Herbert -
Cleve Hall
Eiarl's Daughter ('The)
Experience of Life
Gertrude
Gilbart's Logic for the Young
Howitt's Boy's Country Book
" (Mary)Children's Iear
Katharine Ashton
laneton Parsonage
Mrs. Marcet's Conversations
Margalet Percival
Pyeroft's English Reading
Medicine and Surgery.

20 20

Gleig's Leipsic Campaign
Hamilton's Essays from the Edin
Hamilton's Essays from the Edin-
burgh Review
Haydon's Autobiography, by Taylor
Holland's (Lord) Whig Party
Jeffrey's (Lord) Contributions
Johns and Nicholas's Calendar of
Johns and Nicholas's Calendar of
Victory
Kemble's Anglo-Saxons
Lardner's Cabinet Cyclopædia
Macdulay's Crit. and Hist. Essays
History of England
Speeches
Mackintosh's Miscellaneous Work
History of England
M'Culloch'sGeographicalDictionary
Martineau's Church History -
Maunder's Treasury of Wellingto
Merivale's History of Rome.
, Roman Republic -
Dliner's Church History
Moore's (Thomas) Memoirs, \&c.
Mure's Greek Literature
Ruikes's Journal Ranke's Ferdinand \& Maximilian
Rich's Comp. to Latin Dictionary 18
Rich's Comp. Lutin Dictionaries 18 \& 19
Brodie's Psychological lnquiries
Bull's Hints to Mothers -
Management of Children
Copland's Dictionary of Medicine ust's Invslid's Own Book
Holland's Mental Physiology
How to Nurse Sick Children -
Kesteven's Domestic Medicine
Latham Un Diseases of the Heart -
Pereira Un Food and Diet
Pereira's Materia Medica
Reece's Medical Guide
West on Diseases of Infsncy -
Miscellaneous and General

Literature.

Austin's Sketches of German Life
Carlisle's Lectures and Addresses
Defence of Eclipse of Faith
Eclipse of Faith
Greg's Essuys on Political and Soctal Sciesce
Havdn's Book of Dignities
Hollsnd's Mental Physiology
Houker's Kew Guides 23 Inda's Lutin Dictionaries

Howitt's Rural Life of England Pagez. 10 6 Visits to RemarkablePlaces 10 Jameson's Commonplace-Book Jelfrey's (Lord) Contributions Last of the Old Squires Macuulay's Crit. and Hist. Essays Mackintosh's Niscellanenus Works Memoirs of a Maitre d'Armes Mastland's Churchin the Catacombs Martinean's Miscellanies
Pascal's Works, by Pearce
Printing: lts Origin, \&ic.
Pyeroft's English Reading
Rich's Comp. to Latin Dictionsry Riddle's Latin Dictionaries - 18 \& 19 Rowton's Debater
Seaward's Narrative of his Shlpwreck 19 Sir Roger de Coverley
Smith's (Rev. Sydney) Works Sonthey's Common -place Books The Doctor \&c.
Souvestre's Attic Philosopher "Confessions of a Working Man
Spencer's Psychology
stephen's Essays
Stow's Training System Tagart on Locke's Writings Thomson's Laws of Thought Townsend's State Trials Willich's Popular Tables Yonge's Enylish-Greek Lexicon H Latin Gradus Zampt's Latin Grammar

NaturalHistoryingeneral. Catlow's Popular Conchology
Ephemera and Young On the Salmon 7 Gosse's Nat. Hist. of Jamaica
Kemp's Naturallist, of Creation 23 Kirby and Spence's Entomulogs Lee's Elements of Natnral History Mann on Repioduction
Maunder's Natural History
Turton's Shells ofthe BritishIslands
Waterton's Essays on Natural Hist.
Yonatt's The Dog -

1-Volume Encyclopædias

 and Dictionaries.Arrowsmith's Geogr. Dict. of Bible 3 Blaine's Rural Sports
Brande's Science, Literature, NArt Coplanil's Dictionary of Medicine -
Cresy's Civil Engineeriug
Ghns Archikecture
Johnston's Geographical Dictionary
Loudon's Agriculture
Rural Architecture
Gardening
Prees
Trees and Shu ubs
M'Culloch's GeographicalDictionar 13
" Dictionury of Commerce 14
Murray's Encycio. of Gengraphy : 17
Sharp's British Gazetteer
Lre's Dictionary of Arta, Nc.-
Webster's Domestic Economy

Religious \& Moral Works.

Amy Herbert
Arrowemith's Gengr. Dict. of Bible
Bloomfield's Greek Testament Annotations on do.
Bode's Bampton Lectures
Calvert's Wife's Manual
Cleve Hall
Cony beare's Enays
Conybeare and Howson's St. Paul
Dale's Domestic Litnrgy
Defence of Eclipse of Faith
Desprez On the A pocalypse
Discipline
Earl's Danghter (The)
Fclipse of Faith
Englishman's Greek Concordance
Englishman'sHeb. \&Chald. Concord.
Fixperience of Life (The)
Gertrude
Harrison's Light of the Forge
Hook's Lectures on Passion Week
Horne's Introduction to Scriptures
" Abridgment of ditto Communieant's Companion 9
Jameson's Kacred Legends : Leqends of the Madonna Sinters of Charity
Jerem : Taylor's Works
Kalisch's Commentaiy on Exodus
Katharine Ashton
Kippis's Hymns
Konig's Pictorial Life of Luther

Laneton Parsonage
Pages.
Long's Inquiry concerning Religion, 13
Lyra Germanica - -
Margaret Percival
Matineau's Christian Life Cliurch History
Milner's Church of Christ
Montgomery's Original Hymns
Moore On the Use of the Body
"6 "6 Soul and Body
Mormonism
Neale's Closing Scene
" Resting Places of the Just
"Riches that Bring no Sorrow " Risen from the Ranks
Newman's (J. II.) Discourses
Ranke's Ferdinand \& Maximilian Readings for Lent

Confirmation
$-\quad 20$
$-\quad 20$
Robins against the Roman Church,
Robinson's Lexicon to the Greek Testament -
Saints our Example
Self Denial
Sermon in the Mount
Sinclair's Journey of Life - $\quad 19$
Smith's (Sydney) Moral Philosophy
G.) Sacred Annals - - 20

Southey's Life of Wesley - Biography
Stephen's Ecclesisstical Biography 21
Tayler's (J. J.) Discourses - 21
Tayler's (J. J.) Discourses
Tayblor's Loyola
Theologia Germanica
Thomson on the Atonement Thumb Bible (The)
Turner's Sacred History -
Twining's Bible Types - -

Poetry and the Drama.

Arnold's Poems
Aikin's (Dr.) British Poets
Baillie's (Joanna) Poctical Worls Bode's Ballads from Herodotus Calvert's Wife's M +nual
Flowers and their Kindred Thoughts 11 Goldsmith's Poems, illustrated Kippis's Hymns
L. E. L.'s Poetical Worls - - 13

Iinwood's Anthoiogia (xonie.ısis Lyra Germanica
Macaulay's Lays of Ancient Rome
Mac Donald's Within and Without
Montgomery's Poetical Works Original Hymns
Moore's Poetical Works
Lalla Rookh
" Irish Meludies.
" Songs and Ballsds
Shakspeare, by Bowdler
Sentiments \& Similes
Southey's Poetical Works
British Poets -
Thomson's Seasons, lliustrated

Political Economy and

Statistics.

Caird's Letters on Agriculture
Census of 1851
Francis ()n Life Assurance
Greg's Essays on Political and bocial Ncienee
Laing's Notes of a 'Traveller - 11 \& 23 M'Cuilloch's Geog.Statist. \&c. Dict. 14 " Dictionary of Commerce 14
" Etondon ©
Marcet's Political Economy - - 15
Rickards On Population \& Capital is Tegoborski's Russian Statistics - 21 Willich's Popular 'Tables

The Sciences in General

 and Mathematics.Arago's Meteorological Essays
Bourne On the Screw Propelier
Brande's Dictionary of Science, \&cc.
a Lectures on Organic Chemistry
Creas's Civil Engineering
Dela Beche'sGeulogy of Cornwall, \&c. 7 Geolonicai Observer -
De la Rive's Eiectricity
Faraday's Non Metallic Eiements Herschel's Outlines of Astronomy Holland's Mentai Phyniology
Humboldt's Aspects of Nature
Innt On Cosmo
Kemp's Phasis of Matter
Lardner's Cabinet C'yclopardia

Mann on Reprodnction
Marcet's (Mrs.) Conversations
Moseley'sEngineering\&Architecture 17
Owen's Lectures on Comp. Anatoniy
Our Coal Fields and our Coal Pits
Pereira on Polarised Light
Peschel's Elements of Pliysics
Phillips's Fossils of Cornwall, \&cc. Mineralogy
Portlock's Gieology of Londonderry
Powell's Cnity of Worlds
Smee's Electro-Metaliurgy
Steam Engine (The)
Tate On Strength of Materials
Wilson's Electric Telegraph -

Rural Sports.

Baker's Rifie and Hound in Ceylon
Berkeley's Reminiscences
Blaine's Dictionary of Sports
Cecil's Stable Practice
Records of the Chase -
The Crick Farm
Dary's Piscatorial Colloquies-
Ephemera Un Angling
Hawker's Book of the Salmon
Hawker's Young Sportsman -
Idle's Hints on Slion
Pocket and the Stud
Practical Horsemanship
Practical Horsemanship
St John's Sporting Rambles Stable Talk and Tabie 'Talk Stonehenge On the Greyliound
The Stud, for Practical Purposes
Veterinary Medicine, \&c.
Cecil's Stable Practice
Stud Farm
Hnnting Field (The)
Miles's Horse-Shueing
Pocket and the Stud
Practical Horsemanshlp
Ricliandson's Horsemanship
Stable Talk and Table Talk
Stind (The)
Youatt's The Dog -
Voyages and Travels.
Allen's Dead Sea
Baines's Vaudois of Piedmont Baker's Wanderiugs in Ceylun Barrow's Continental Tour Burton's Medina and Mecca Carlisle's Turkey and Greece De Custine's Russia
Duberly's Journal of the War Eothen
Ferguson's Swiss Travels
Forester's Rambles in Norway
Gironière's Philippines
Gregorovius's Corsica
Hill's 'Travals in Siberia
Hope's Brittany and thie Bible
Howitt's Art.Student in
" (W.) Victoria - unich
Huc's Chinese Empire
lluc and Gabet's Tartary \& Thibet
Hughes's A ustralian Colonies
Humboldt's Aspects of Nature
Jameson's Canada -
Kennard's Eastern Tour
Jerrmann's St. Detersburg
Laing's Norway
Marryat's California
Mason's Zulus of Natal
Mayne's Arctic Discoveries
Miles's Ranıbles in feeland
()sborn's North West l'assage

1'feifier's Voyage round the World
Rlchardson's Arctic Boat Voyage Seaward's Narrative
St. John's (H.) Indian Archipelago (Hon. F.) Hambles
Sutherland's Arctic Voynge
Weld's United States and Vanada -
Werne's A frican Wanderinga
Wheeler's Travels of 11 erndotus
Young's Christ of History
$\begin{array}{r}3 \\ 23 \\ 3 \\ 23 \\ 5 \\ 5 \\ 23 \\ 7 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 9 \\ 23 \\ 23 \\ 9 \\ 10 \\ 10 \\ 23 \\ 23 \\ 10 \\ 23 \\ 11 \\ 23 \\ 23 \\ 23 \\ 15 \\ 23 \\ 23 \\ 23 \\ 17 \\ 23 \\ 18 \\ 18 \\ 19 \\ 19 \\ 19 \\ 21 \\ 24 \\ 23 \\ 94 \\ 21 \\ \hline\end{array}$

Works of Fiction.

Arnold's Oakfield
Lady Willoughiby's Diary
Macdonald's Villa Verocchio
Sir Roger de Coverley
Snuthey's The Doctor \&c.
Trollope's Warden

May Wiloughiy's Diary
Sir Roger de Coverley
Trollope's Warden

ALPHABETICAL CATALOGUE

NEIV WORKS AND NEW EDITIONS
 PUBLISHED BY

Messrs. Longman, Brown, Green, and Longmans,

PATERNOSTER ROW, LONDON.

Modern Cookery, for Private Families, reduced to a System of Easy Practice in a Series of carefully-tested Receipts, in which the Principles of Baron Liebig and other eminent Writers have been as much as possible applied and explained. By Eliza acton. Newly revised and much enlarged Edition; with 8 Plates, comprising 27 Figures, and 150 Woodeuts. Fcp. 8vo. price 7s. 6d.
Allen.-The Dead Sea a New Route to India: With other Fragments and Gleanings in the East. By Captain W. Allen, R.N., F.R.S., \&c., Author of The Narrative of the Niger Expedition. With Maps, Wood Engravings, and Illustrations in tinted lithography. 2 vols. post 8 vo .25 s .
Arago (F.)-Meteorological Essays. By F'rancis Arago. With an Introduction by Baron Humboldt. Translated under the superintendence of Lieut.-Colonel E. Sabine, R.A., Treasurer and V.P.R.S. 8vo. 18s.

Arago's Popular Astronomy. Translated by Rear-Admiral W.H. Smyth, For. Sec. R.S.; assisted by Robert Grant, M.A., F.R.A.S. In Two Volumes. Vol. I. 8vo.
Arago's Lives of Distinguished Scientific Men. 'translated by the Rev. Baden Powele, M.A. ; Rear-Admiral W. H. SMYti ; and R. Grant, M.A. 8vo. [In the press.

Aikin. - Select Works of the British Poets, from Ben Jonson to Beattie. With Biographical and Critical Prefaces by Dr. Aikin. New Edition, with Supplement ky Lucy Aikin ; consisting of additional Seler. tions from more recent Poets. 8vo. price 18s.
Arnold.-Poems. By Matthew Arnold. Second Edition of the First Series. Fcp. 8vo. price 5s. 6d.
Arnold.-Poems. By Matthew Arnold. Second Series, about one-third new; the rest finally selected from the Volumes of 1849 and 1852, now withdrawn. Fcp. 8vo. price 5s.

Arnold.-Oakfield ; or, Fellowship in the East. By W. D. Arnold, Lieutenant 58th Regiment, Bengal Native Infantry. Second Edition. 2 vols. post 8vo. price 21s.
Arnott.-On the Smokeless Fire-place, Chimney-valves, and other means, old and new, of obtaining Healthful Warmth and Ventilation. By Nell Arnott, M.D. F.R.S. F.G.S., \&c., of the Royal College of Physicians; Physician-Extraordinary to the Queen ; Author of The Elements of Physics, \&c. 8 vo .6 s .
Arrowsmith. - A Geographical Dictionary of the Holy Scriptures: Including also Notices of the Chief Places and People mentioned in the APOCRYPHA. By the Rev. A. Arrowsuith, M.A., late Curate of Whitchurch, Salop. 8vo. price 15 s .
Austin.-Germany from 1760 to 1814; Or, Sketches of German Life from the Decay of the Empire to the Expulsion of the French. By Mrs. Austin. Post 8vo. price 12 s .
Joanna Baillie's Dramatic and Poetical Works, complete in One Volume: Comprising the Plays of the Passions, Miscellaneous Dramas, Metrical Legends, Fugitive Pieces, and Ahalya Baee. Second Edition, including a new Life of Joanna Baillie; with Portrait and Vignette. Square crown 8 vo . 21s. cloth; or 42 s . morocco by Hayday.
Baker.-Eight Years' Wanderings in Ceylon. By S. W. Baker, Esq. With 6 coloured Plates. 8vo. price 15s.
"Mr. Baker revels in the independence of a wild life; and he penetrated into every unvisited nook and corner of the beautiful island of Ceylon. These visits have been full of profit, resulting in a book more informing, earnest, and hearty, than any we have in a book more with: Certainly we know of none which communirecently met so much respecting Ceylun-its sports, its people, Its natural cates so much respectimg erce.........Mr. Bdker liunted elephants
resources, and its commen resources, and biars, stags, elks, and leopards; he tracked to their retreats the wildest cenizens of the forest and the creatures of the lake; he describes an attack on bathers hy a shark; and he is at home in the humbler pursuits of the angler."
Baker.-The Riffe and the Hound in Ceylon, By S. W. Baker, Esq. With coloured Plates and Woodcuts. 8vo. price 14s.

Bayldon's Art of Traluing Rents and Tillages, and Tenant's Right of Entering and Quitting Farms, explained by several Specimens of Valuations; with Remarks on the Cultivation pursued on Soils in different Situations. Adapted to the Use of Landlords, Land-Agents, Appraisers, Farmers, and Tenants. New Edition ; corrected and revised by John Donaldson. 8vo. 10s. 6d.

Berkeley. - Reminiscences of a Huntsman. By the Honourablc Grantley F. Berkelfy. With Four Etchings by John Leech. 8vo. price 14s.

Black's Practical Treatise on Brewing, Based on Chemical and Economical Principles: With Formulæ for Public Brewers, and Instructions for Private Families. New Edition, with Additions. 8vo. 10s. 6d,

Blaine's Encyclopædia of Rural Sports; Or, a complete Account, Historical, Practical, and Descriptive, of Hunting, Shooting, Fishing, Racing, and othor Field Sports and Athletic Amusements of the present day. New Edition: The Hunting, Racing, and all relative to Horses and Horsemanship, revised by Harry Hieoter; Shooting and Fishing by Ephemera; and Coursing hy Mr. A. Graham. With upwards of 600 Woodcuts. 8vo. price 50 s. half-bound.

Blair's Chronological and Historical Tables, from the Creation to the present time: With Additions and Corrections from the most authentic Writers; including the Computation of St. Paul, as connecting the Period from the Exode to the Temple. Under the revision of Sir Henry Ellis, K.H. Imperinl 8vo. 31s. 6d. half-morocco.

Bloomfield. - The Greek Testament, With copious English Notes, Critical, Philological, and Explanatory. Especially adapted to the use of Theological Students and Ministers. By the Rev. S. T. Bloompirld, D.D., F.S.A. Ninth Edition, revised throughout; with Dr. Bloomfield's Supplementary Annotations incorporated. 2 vols. 8vo. with Map, price £2. 8s.

Bloomfield.-College and School Greek Testament: With brief English Notes, chiefly Philological and Explanatory, especially formed for use in Colleges and the Public Schools. By the Rev. S. T. Bloompield, D.D., F.S.A. Seventh and cheaper Edition, improved; with Map and Index. Fcp. 8vo. price 7s. 6d.

Dr. Bloomfield's College and School Lexicon to the Greek Testament. Hep. 8vo. price 10 s . 6 d .

Bode.-The Absence of Precision in the Formularies of the Church of England Scriptural and Suitable to a State of Probation: Being the Bampton Lectures for 1855. By the Rev. J. E. Bode, M.A, Rector of Westwell, and late Student of Christ Chureh, Oxford. 8ro. 8s.

Bode.-Ballads from Herodotus: With an Introductory Poem. By the Rev. J. E. Bode, M.A., late Student of Christ Chureh. Second Edition, with four additional Pieces. 16 mo . price 7 s .
Bourne.-A Treatise on the Steam Engine, in its Application to Mines, Mills, Steam Navigation, and Railways. By the Artisan Club. Edited by John Bourne, C.E. New Edition; with 33 Steel Plates and 349 Wood Engravings. 4to. price 27 s .
Bourne.-A Treatise on the Screw Propeller: With various Suggestions of Inprovement. By John Boulene, C.E. New Edition, thoroughly revised and corrected. With 20 large Plates and numerous Woodcuts. 4to. price 38 s.
Brande.-A Dictionary of Science, Literature, and Art: Comprising the History, Description, and Scientific Principles of every Branch of Human Knowledge; with the Derivation and Definition of all the Terms in General Usc. Edited by W. T. Brande, F.R.S.L. and E.; assisted by Dr. J. Cautin. The Second Edition, revised and corrected; including a Supplement, and numerous Woodcuts. 8ro. 60s.

Professor Brande's Lectures on Organic Chemistry, as applicd to Manufactures, including Dyeing, Bleaching, Calico-Printing, sugur-Manufacture, the Preservation of Wood, Tanning, \&e. delivered before the Menbers of the Royal Institution. Arranged by permission from the Lecturer's Notes by J. Scoffern, M.B. Fcp. 8vo. with Woodcuts, price 7s. 6 d .
Brewer.-An Atlas of History and Geography, from the Commencement of the Christian Era to the Present Time: Comprising a Serics of Sisteen coloured Maps, arranged in Chronological Order, with Illustrative Memoirs. By the Rev.J. S. Brewer, M.A., Professor of English History and Literature, and late Leeturer in Modern History in King's College, London. The Maps compiled and engraved by E. Weller, F.R.G.S. Royal 8vo. 12s. 6d, half-bound.

Brodie. - Psychological Inquiries, in a Series of Ensays intended to illustrate the Intluence of the Physical Organisation on the Mental Faculties: By Sir Benjamin C. Brodie, Bait. Sesund Edition. Fcp.8vo. 5t.

Buckingham.-Autobiography of James Silk Buckingham : Including his Voyages, Travels, Adventures, Speculations, Successes, and Failures, frankly and faithfully narrated; with Characteristic Sketches of Public Men with whom he has had personal intercourse during a period of more than Fifty Years. Vols. I. and II. post 8vo. 21s.

Bull. - The Maternal Management of Children in Health and Disease. By T. Bull, M.D., Member of the Royal College of Physicians ; formerly PhysicianAccoucheur to the Finsbury Midwifery Institution. New Edition. Fcp. 8vo. 5s.
Dr. T. Bull's Hints to Mothers on the Managemeut of their Health during the Period of Preguancy and in the Lying-in Room : With an Exposure of Popular Errors in connexion with those subjects, \&c.; and Hints upon Nursing. New Edition. Fcp. 8vo. 5s.

Bunsen. - Christianity and Mankind, their Beginnings and Prospects. By Christian Charles Jostas Bunsen, D.D., D.C.L., D.Ph. Being a New Edition, corrected, remodelled, and extended, of Hip. polytus and his Age. 7 vols. 8vo. £5. 5s.

* This Second Edition of the Hippolytus is composed of three distinct works, which may be had separately, as follows :-

1. Hippolytus and his Age ; or, the Beginnings and Prospects of Chistianity. 2 vols. 8 vo . price £1. 10s.
2. Outline of the Philosophy of Universal History applied to Language and Religion: Containing an Account of the Alphabetical Conferences. 2vols. 8vo. price £l. 13s.
3. Analecta Ante-Nicaena. 3 vols. 8 vo. price £2. 2 s .

Bunsen. - Egypt's Place in Universal History: An Historical Investigation, in Five Books. By C. C. J. Bunsen, D.D. D.C.L., D.Ph. Translated from the German, by C. H. Cottrell, Esq. M.A. With many Illustrations. Vol. I. 8vo. 28s.; Vol. II. 8vo. 30s.

Bunsen.-Lyra Germanica: Hymns for the Sundays and chief Festivals of the Christian Year. Translated from the German by Catherine Winkworth. Fcp. 8vo. 5 s.

* This selection of German Hymns has been made from a collection published in Germany by the Chevalier Bunsen; and forms a companion volume to
Theologia Germanica: Which setteth forth many fair lineaments of Divine Truth, and saith very lofty and lovely things touching a Perfect Life. Translated by Susanna Winkworth. With a Preface by the Rev. Charles Kingsley; and a Letter by Chevalier Bunsen. Second Edition. Fcp. 8vo. 5s.
Burton.-The History of Scotland, from the Revolution to the Extinction of the last Jacobite Insurrection (1689-1748). By John Hill Burton. 2 vels. 8vo. 26s.

Burton (R. F.)-Personal Narrative of a Pilgrimage to El-Medinah and Meccah. By Richard F. Burton, Lieutenant, Bombay Army. In Three Volumes. Vols. I. and II. EL-MISR and EL-MEDINAH; with Map and Illustrations. Vols. I. and II. 8vo. 28s.
*** Vol. III. MECCAH, is in the press.
Bishop Butler's General Atlas of Modern and Ancient Geography ; comprising Fiftytwo full-coloured Maps; with complete Indices. New Edition, nearly all re-engraved, enlarged, and greatly improved; with Corrections from the most authentic sources in both the Ancient and Modern Maps, many of which are entirely new. Edited by the Author's Son. Royal 4to. 24s. half-bound.

Separately: $\left\{\begin{array}{c}\text { The Modern A tlas of } 28 \text { full-coloured Maps. } \\ \text { Royal 8vo. price } 12 \mathrm{~s} \text {. } \\ \text { The Ancient Atlis of } 24 \text { full-coloured Maps. } \\ \text { Royal 8vo. price } 128 .\end{array}\right.$
Bishop Butler's Sketch of Modern and Ancient Geography. New Edition, thoroughly revised, with such Alterations introduced as continually progressive Discoveries and the latest Information have rendered necessary. Post 8vo. price 7s. 6d.

The Cabinet Gazetteer: A Popular Exposition of all the Countries of the World; their Government, Population, Revenues, Commerce, and Industries; Agricultural, Manufactured, and Mineral Products; Religion, Laws, Manners, and Social State: With brief Notices of their History and Antiquities. From the latest Authorities. By the Author of The Catinet Lawyer. Fcp. 8vo. price 10 s .6 d . cloth ; or 13 s . calf lettered.

The Cabinet Lawyer: A Popular Digest of the Laws of England, Cvil and Criminal ; with a Dictionary of Law Terms, Maxims, Statutcs, and Judicial Antiquities ; Correct Tables of Assessed Taxes, Stamp Duties, Excise Licenses, and Post-Horse Duties; Post-Office Regulations, and Prison I)iscipline. 16th Edition, comprising the Public Acts of the Session 1854. Fcp. 8vo. 10s. 6d.

Caird.-English Agriculture in 1850 and 1851; Its Condition and Prospects. By James Caird, Esq., of Baldoon, Agricultural Commissioner of The Times. The Second Edition. 8vo. price 14 s .

Calvert. - The Wife's Manual ; or, Prayers, Thoughts, and Songs on Several Occasions of a Matron's Life. By the Rev. William Calyert, Minor Canon of St. Paul's. Ornamented from Designs by the Author in the style of Queen Elizabeth's Prayer Book. Crown 8ro. price 10s. 6d.

Carlisle (Lord).-A Diary in Turkish and

 Greek Waters. By the Right Hon. the Earl of Calrlisle. Fifth Edition. Post 8ro. price 10s. 6 d .Catlow.-Popular Conchology ; or, the Shell Cabinet arranged according to the Modern System : With a detailed Account of the Aninals ; and a complete Descriptive List of the Families and Genera of Recent and Fossil Shells. By Agnes Catlow. Second Edition, much improved; with 405 Woodcut Illustrations. Post 8vo. price 14s.

Cecil. - The Stud Farm ; or, Hints on Breeding Horses for the Turf, the Chase, and the Road. Addressed to Breeders of Race Horses and Hunters, Landed Proprietors, and especially to Teuant Farmers. By Cecil. Fcp. 8vo. with Frontispiece, 5 s.

Cecil's Records of the Chase, and Memoirs of Celebrated Sportsmen; Illustrating some of the Usages of Olden Times and comparing them with prevailing Customs: Together with an Introduction to most of the Fashionable Hunting Countries; and Comments. With Two Platcs by B. Herring. Fcp. 8vo. price 7 s .6 d . half-bound.

Cecil's Stable Practice; or, Hints on Training for the Turf, the Chase, and the Road; with Observations on Racing and Hunting, Wasting, Race Riding, and Handicapping: Addressed to Owners of Racers, Hunters, and other Horses, and to all who are concerned in Racing, Steeple Chasing, and Fox Hunting. Fcp. 8vo. with Plate, price 5s. half-bound.

The Census of Great Britain in 1851: Comprising an Account of the Numbers and Distribution of the People; their Ages, Conjugal Condition, Occupations, and Birthplace: With Returns of the Blind, the Deaf-and-Dumb, and the Inmates of Public Institutions ; and an Analytical Index. Reprinted, in a condensed form, from the Official Reports and Tables. Royal 8vo. 5s.

Chevreul On the Harmony and Contrast of Colours, and their Applications to the Arts: Including Painting, Interior Decoration, Tapestries, Carpets, Mosaics, Coloured Glazing, Paper Staining, Calico Printing, Letterpress Printing, Map Colouring, Di ess, Landscape and Flower Gardening, \&ce. Translated from the French by Ciarles Martrl. Second Edition; with 4 Plates. Crown 8vo. 10s. 6d.

Clinton.-Literary Remains of Henry Fyncs Clinton, M.A., Author of the Fasti Iellenici, the Fasti Romani, \&e. : Comprising an Autobiography and Literary Journal, and bricf Essays on Theological Subjects. Edited by the Rev. C. J. Fynes Clinton, M.A. Post 8vo. 9s. 6d.

Conversations on Botany. New Edition, improved ; with 22 Platcs. Fep. 8vo. price 7 s .6 d . ; or with the Plates coloured, 12 s .

Conybeare.-Essays, Ecclesiastical and Social : Reprinted, with Additions, from the Edinburgh Reviex. By the Rev. W. J. Conybeare, M.A., late Fellow of Trinity Collegc, Cambridge. 8ro. 12s.

Conybeare and Howson.-The Life and Epistles of Saint Paul: Comprising a complete Biography of the Apostle, and a Translation of his Epistles inserted in Chronological Order. By the Rev. W. J. Conybeare, M.A., late Fellow of Trinity College, Cambridge; and the Rcr. J. S. Howson, M.A., Principal of the Collegiate Institution, Liverpool. With 40 Engravings on Stecl and 100 Woodcuts. 2 rols. 4to. price £2. 8s.

Copland. - A Dictionary of Practical Medieine: Comprising Gencral Pathology, the Nature and Treatment of Diseases, Morbid Structures, and the Disorders especially incidental to Climates, to Sex, and to the different Epochs of Life; with numerous approved Formulx of the Medicines recommended. By James Copland, M.D., Consulting Physician to Queen Charlotte's Lying-in Hospital, \&c. Vols. I. and II. 8vo. price £3; and Parts X. to XVI.4s.6d. cach.

Cresy.-An Encyclopædia of Civil Enginecring, Historical, Theoretical, and Praetical. By Edward Cresy, F.S.A., C.E. Illustrated by upwards of 3,000 Woodcuts, explanatory of the Principles, Machinery, and Constructions which come under the direction of the Civil Engineer. 8ro. price £3. 13e. 6d.

The Cricket-Field; or, the Science and History of the Game of Cricket. By the Author of Principles of Scientific Batting. Second Edition, greatly improved; with Plates and Woodeuts. Fcp. 8vo. price 5s. half-bound.

Lady Cust's Invalid's Book. - The Invalid's Own Book: A Collection of Recipes from various Books and various Countrics. By the Honourable Lady Cuet. Fip. 8ro. price 38. 6d.

Dale.-The Domestic Liturgy and Family Chaplain, in Two Parts: The First Part being Church Services adapted for Domestic Use, with Prayers for every day of the week, selected exclusively from the Book of Common Prayer ; Part II. comprising an appropriate Sermon for every Sunday in the year. By the Rev. Thomas Dale, M.A., Canon Residentiary of St. Paul's. Second Edition. Post 4to. price 21s. cloth; 31s. 6d. calf; or $£ 2.10 \mathrm{~s}$, morocco.
Separately $\left\{\begin{array}{l}\text { The Family Chaplain, 12s. } \\ \text { The Domestic Liturgy, 10s.6d. }\end{array}\right.$
Davy (Dr. J.) - The Angler and his Friend; or, Piscatory Colloquies and Fishing Excursions. By John Davy, M.D., F.R.S., \&e. Fcp. 8ru. price 6s.

Delabeche. - The Geological Observer. By Sir Henry T. Delabeche, F.R.S., late Director-General of the Geological Survey of the United Kingdom. New Edition; with numerous Woodcuts. 8vo. price 18s.
Delabeche.-Report on the Geology of Cornwall, Devon, and West Somerset. By Sir Henry T. Delabeche, F.R.S., late Director-General of the Geological Survey. With Maps, Woodcuts, and 12 Plates. 8vo. price 14s.

De la Rive.-A Treatise on Electricity, in Theory and Practice. By A. De la Rive, Professor in the Academy of Geneva. With numerous Wood Engravings. Vol. I. 8vo. price 18s.
*** The Second Volume is nearly ready.
Dennistoun. - Memoirs of Sir Robert Strange, Knight, Engraver, Member of several Foreign Academies of Design ; and of his Brother-in-law, Andrew Lumisden, Private Secretary to the Stuart Princes, and Author of The Antiquities of Rome. By James Dennistoun, of Dennistoun. 2 vols. post 8 vo . with Illustrations, 21s.

Desprez.-The Apocalypse Fulfilled in thic Consummation of the Mosaic Economy and the Coming of the Son of Man: An Answer to the Apocalyptic Skelches and The End, by Dr. Cumming. By the Rev. P. S. Desprez, B.D. Second Edition, enlarged. 8 ro . price 12 s .
Discipline. By the Author of "Letters to my Unknown Friends," \&cc. Second Edition, enlarged. 18mo. price 2s. 6d.
Duberly.-A Journal kept during the Russian War, from the Departure of the Army from England in April 1854. By Mrs. Henry Duberly. Post 8vo. [Just ready.

Eastlake.-Materials for a History of Oil Painting. By Sir Charles Loce Eastlake, F.R.S., F.S.A., President of the Royal Academy. 8vo. price 163.

The Eclipse of Faith; or, a Visit to a Religious Sceptic. 7th Edition. Fcp. 8vo. 5s.
A Defence of The Eclipse of Faith, by its Author: Being a Rejoinder to Professor Newman's Reply: Including a full Examination of that Writer's Criticism on the Character of Christ; and a Chapter on the Aspects and Pretensions of Modern Deism. Second Editicn, revised. Post 8vo.5s.6d.

The Englishman's Greek Concordance of the New Testament: Being an Attempt at a Verbal Connexion between the Greek and the English Texts ; including a Concordance to the Proper Names, with Indexes, GreekEnglish and English-Greek. New Edition, with a new Index. Royal 8vo. price 42s.
The Englishman's Hebrew and Chaldee Concordance of the Old Testament: Being an Attempt at a Verbal Connection between the Original and the English Translations; with Indexes, a List of the Proper Names and their Occurrences, \&c. 2 vols. royal 8vo. £3. 13s. 6d. ; large paper, £4. 14s. 6d.

Ephemera. - A Handbook of Angling; Teaching Fly-fishing, Trolling, Bottomfishing, Salmon-fishing; with the Natural History of River Fish, and the best modes of Catching them. By Ephemera. Third and cheaper Edition, corrected and improved; with Woodcuts. Fcp. 8ro. 5s.

Ephemera. - The Book of the Salmon: Comprising the Theory, Principles, and Practice of Fly-fishing for Salmon; Lists of good Salmon Flies for every good River in the Empire ; the Natural History of the Salmon, all its known Habits described, and the best way of artificially Brecding it explained. With numerous coloured Engravings. By Ephemera; assisted by Andrew Young. Fcp. 8vo. with coloured Plates, price 14s.
W. Erskine, Esq. - History of India under Báber and Humáyun, the First Two Sovereigns of the House of Taimur. By William Erskine, Esq. 2 vols. 8vo. 32 s.

Faraday (Professor). - The SubjectMatter of Six Lectures on the Non-Metallic Elements, delivered before the Members of the Royal Institution, by Professor Faraday, D.C.L., F.R S., \&c. Arranged by permission from the Lecturer's Notes by J. Scoffern, M.B. Fep. 8ro. price 5s. 6d.

Francis. - Annals, Anecdotes, and Legends: A Chronicle of Life Assurance. By Join Francis. Post 8ro. 8s. 6d.
Francis. - Chronicles and Characters of the Stock Exchange. By Joun Francis. New Edition, revised. 8ro. 10s. 6d.

Gilbart. - Logic for the Million: a Familiar Exposition of the Art of Reasoning. By J. W. Gilbart, F.R.S. 4th Edition; with Portrait of the Author. 12 mo .3 s .6 d .

Gilbart.-Logic for the Young: consisting of Twenty-five Lessons in the Art of Reasoning. Selected from the Logic of Dr. Isaac Watts. By J. W. Gilbart, F.R.S. 12 mo . 1s.

The Poetical Works of Oliver Goldsmith. Edited by Bolton Corney, Esq. Illustrated by Wood Engravings, from Designs by Members of the Etching Club. Square crown 8 ro. cloth, 21 s . ; morocco, £1. 16 s .

Gosse. - A Naturalist's Sojourn in Jamaica. By P. H. Gosse, Esq. With Plates. Post 8ro. price 14 s .

Mr. W. R. Greg's Contributions to The Edinburgh Review. - Essays on Political and Social Science. Contributed chiefly to the Edinburgh Review. By William R. Greg. 2 vols, 8 vo . price 24 s.

Gurney.-Historical Sketches ; illustrating some Memorable Events and Epochs, from A.D. 1,400 to A.D. 1,546. By the Rev. J. Hampden Gurney, M.A. Fcp. 8vo. price 7s. 6d.

Gurney. - St. Louis and Henry IV.: Being a Second Series of Historical Sketches. By the Rev. J. Hampden Gurnex, M.A. Fep. 8vo. 6s.

Gwilt.-AnEncyclopædia ofArchitecture, Historical, Theoretical, and Practical. By Josepir Gwilt. With more than 1,000 Wood Engravings, from Designs by J. S. Gwilt. Third Edition. 8ro. 42 s .

Hamilton. - Discussions in Philosophy and Literature, Education and University Reform. Chiefly from the Edinburgh Review; corrected, vindicated, enlarged, in Notes and Appendices. By Sir William Hamilton, Bart. Second Edition. 8ro. price 21s.

Hare (Archdeacon).-The Life of Luther, in Forty-eight Historical Engravings. By Gestar König. With Explamations by Archdeacon Habe and Subanna Winkwonth. Fep. 4to. price 23s. cloth, gilt to ${ }_{j}$.

Harrison.-The Light of the Forge ; or, Counsels drawn from the Sick-Bed of E. M. By the Rev. W. Harrison, M.A., Domestic Chaplain to H.R.II. the Duchess of Cambridge. Fcp. Svo. price 5 s.

Harry Hieover. - Stable Talk and Table Talk; or, Spectacles for Young Sportsmen. By Harly Hieover. New Edition, 2 vols. 8 ro. with Portrait, price 24s.

Harry Hieover--The Hunting-Field. By Harry Hieover. With Two Plates. Fip. 8vo. 5 s. half-bound.

Harry Hieover.-Practical Horsemanship. By Harry Hieover. With 2 Plates. Fcp. 8vo. price 5s. half-bound.

Harry Hieover.-The Stud, for Practical Purposes and Practical Men: being a Guide to the Choice of a Horse for use more than for show. By Harri* Hieover. With 2 Plates. Fep. 8vo. price 5s. half-bound.

Harry Hieover.-The Pocket and the Stud; or, Practical Hints on the Management of the Stable. By Harry Hieover. Second Edition; with Portrait of the Author. Fep. 8ro. price 5s. half-bound.

Hassall (Dr.)-Food and its Adulterations: Comprising the Reports of the Analytical Sanitary Commission of The Lancet for the Years 1851 to 1854 inclusive, revised and extended. By Arthor Hill Hassall, M.D., \&c., Chicf Analyst of the Commission; Author of The Microscopical Anatomy of the Human Body. 8ro. with 159 Woodeuts, price 28s.

Col. Hawker's Instructions to Young Sportsmen in all that relates to Guns and Shooting. 10th Edition, revised and brought down to the Present Time, by the Author's Son, Major P. W. L. Hawker. With a New Portrait of the Author, from a Bust by W. Belnes, Esq. ; and numerous explanatory Plates and Woodeuts. 8vo. 21s.

Haydon.-The Life of Benjamin Robert Haydon, Historical Painter, from his Autobiography and Journals. Edited and compiled by Tom Taylor, M.A., of the Inner Temple, Esq. ; late Fellow of T'rinity College, Cambridge; and late Professor of the English Language and Literature in University College, London. 3 vols. post 8vo. 318. 6d.

Haydn's Book of Dignities: Containing Rolls of the Official Personages of the British Empire, Civil, Ecclesiastical, Judicial, Military, Naval, and Municipal, from the Earliest Periods to the Present Time; Compiled chiefly from the Records of the Public Offices. Together with the Sovercigns of Europe, from the foundation of their respective States; the Peerage and Nobility of Great Britain, and numerous other Lists. Deing a New Edition, improved and continued, of Beatson's Political Index. By Joseph Haydn. 8vo. price 25s. half-bound.

Sir John Herschel-Outlines of Astronomy. By Sir John F. W. Herschel, Bart. \&e. New Edition; with Plates and Wood Engravings. 8vo. price 18s.

Hill. - Travels in Siberia. By S. S. Hill, Esq., Author of Travels on the Shores of the Baltic. With a large coloured Map of European and Asiatic Russia. 2 vols. post 8 vo . price 24 s .

Hints on Etiquette and the Usages of Society: With a Glance at Bad Habits. New Edition, revised (with Additions) by a Lady of Rank. Fcp. 8vo. price Half-a-Crown.

Lord Holland's Memoirs.-Memoirs of the Whig Party during my Time. By Henry Richard Lord Holland. Edited by his Son, Henry Ediward Lord Holland. Vols. I. and II. post 8 vo . price 9 s s. 6d. each.

Holland.-Medical Notes and Reflections. By Sir Menry Holland, Bart., M.D., F.R.S., \&c., Fellow of the Royal College of Physicians, Physician in Ordinary to Her Majesty the Queen and to His Royal Highness Prince Albert. Third Edition, with Alterations and Additions. 8vo. 18s.
Holland.-Chapters on Mental Physiology. By Sir Henry Holland, Bapt., F.R.S., \&c. Founded chiefly on Chapters contained in the First and Second Editions of Medical Notes and Reflections by the same Author. 8 vo . price 10 s . 6 d .

Hook. - The Last Days of Our Lord's Ministry: A Course of Lectures on the principal Events of Passion Week. By the Rev. W. F. Hook, D.D. New Edition. Fcp. 8vo. price 6s.
Hooker.-Kew Gardens; or, a Popular Guide to the Royal Botanic Gardens of Kew. By Sir William Jackson Hooker, K.H., D.C.L., F.R.A., and L.S., \&c. \&c. Director. New Edition; with numerous Wood Engravings. 16mo. price Sixpence.

Hooker.-Museum of Economic Botany ; or a Popular Guide to the Useful and Remarkable Vegetable Products of the Museum in the Royal Gardens of Kew. By Sir W. J. Hooker, K.H., D.C.L. Oxon, F.R.A. and L.S. \&c., Director. With 29 Woodcuts. 16 mo . price 1s.

Hooker and Arnott. - The British Flora; Comprising the Phænogamous or Flowering Plants, and the Ferns. Seventh Edition, with Additions and Corrections ; and numerous Figures illustrative of the Umbelliferous Plants, the Composite Plants, the Grasses, and the Ferns. By Sir W. J. Hooker, F.R.A. and L.S., \&c., and G. A. Walker-Aknott, LL.D., F.L.S. 12 mo . with 12 Plates, price 14s.; with the Plates coloured, price 21 s.

Horne's Introduction to the Critical Study and Knowledge of the Holy Scriptures. A New Edition, revised, corrected, and brought down to the present time, by T. Hartwell Horne, B.D. (the Author); the Rev. Samuel Davidson, D.D., of the University of Halle, and LL.D.; and S. Pbideaux Tregelles, LL.D. 4 vols. 8 vo.
[In the press.
Horne. - A Compendious Introduction to the Study of the Bible. By the Rev. T. Hartwell Horne, B.D. Being an Analysis of his Introduction to the Critical Study and Knowledge of the Holy Scriptures. New Edition, with Maps and other Engravings. 12 mo .9 s .

Horne. - The Communicant's Companion: Comprising an Historical Essay on the Lord's Supper ; Meditations and Prayers for the use of Communicants; and the Order of the Administration of the Lord's Supper or Holy Communion. By the Rev. T. Hartwell Horne, B.D. Royal 32mo. 2s. 6d.; morocco, 4s. 6d.

How to Nurse Sick Children: Intended especially as a Hclp to the Nurses in the Hospital for Sick Children; but containing Directions of service to all who have the charge of the Young. Fcp. 8vo. 1s. 6d.

Howitt (A. M.) - An Art-Student in Munich. By Anna Mary Howity. 2 vols. post 8vo. price 14s.

Howitt. - The Children's Year. By Mary Howirt. With Four Illustrations, from Designs by Anna Mary Howity. Square 16 mo . 5 s .

Howitt. - Land, Labour, and Gold; or, Two Years in Vietoria: With Visit to Syduey and Van Diemen's Land. By William Howitt. 2 vols. post 8 vo. price 21 s .

Howitt.-Visit to Remarkable Places; Old Halls, Battle-Fields, and Scenes illustrative of Striking Passages in English History and Poctry. By Whluian Howitr. With numerous Wood lingravings. First and Second Series. Medium 8vo. 21s. each.

William Howitt's Boy's Country Book; being the Real Life of a Country Boy, written by himself; exhibiting all the Amusements, Pleasures, and Pursuits of Children in the Country. New Edition; with 40 Woodcuts. Fcp. 8ro. price 6s.

Howitt. - The Rural Life of England. By William Howitc. New Edition, corrected and revised; with Woodcuts by Bewick and Williams. Medium 8vo. 21s.

Huc. -The Chinese Empire: A Sequel to Huc and Gabet's Journey through Tartary and Thibet. By the Abbé Huc, formerly Missionary Apostolic in China. Copyright Translation, with the Author's sanction. Second Edition; with coloured Map and Index. . 2 vols. 8 vo . 24 s .

Hudson.-Plain Directions for Making Wills in Conformity with the Law: with a clear Exposition of the Law relating to the distribution of Personal Estate in the case of Intestacy, two Forms of Wills, and mueh useful information. By J. C. Hudson, Esq. New and enlarged Edition; including the provisions of the Wills Act Amendment Act of 1852 . Fcp. 8 ro. price 2 s .6 d .

Hudson. - The Executor's Guide. By J. C. Hudson, Esq. New and enlarged Edition; with the Addition of Directions for paying Succession Duties on Real Property under Wills and Intestacies, and a Table for finding the Values of Annuitics and the Amount of Legacy and Succession Duty thereon. Fep. 8ro. price 6 s.

Humboldt's Cosmos. Translated, with the Author's authority, by Mrs. Sabine. Vols. I. and II. 16mo. Half-a-Crown each, sewed; 3s. 6 d . each, cloth : or in post 8 vo . 12s. 6d. each, cloth. Vol. III. post 8 ro. 12s. 6d. cloth: or in 16 mo . Part I. 2s. 6 d . sewed, 3s. Gd. eloth; and Part II. 3s. sewed, 4s. cloth.

Humboldt's Aspects of Nature. Translated, with the Author's authority, by Mrs. Sabinf. New Edition. 16mo. priee 6s.: or in 2 vols. 3 s .6 d . each, cloth; 2 s . 6 d . each, sewed.

Humphreys.-Sentiments and Similes of Shakspeare: A Classified Selection of Similes, Definitions, Descriptions, and other remarkable Passages in Shakspeare's Plays and Poems. With an elaborately illuminated border in the oiaracteristic style of the Elizabethan Period, massive carved covers, and other Embellishments, designed and executed by H. N. Hemphreys. Square post 8 vo . price 21s.

Hunt. - Researches on Light in its Chemical Relations; embracing a Consideration of all the Photograplic Processes. By Robert Hunt, F.R.S., Professor of Physics in the Metropolitan Sehool of Science. Second Edition, thoroughly revised; with extensive Additions, a Plate, and Woodcuts. 8vo. price 10s. 6d.

Idle.-Hints on Shooting, Fishing, \&c. both on Sea and Land, and in the Freslwater Lochs of Seotland: Being the Experiences of Cluristopher Idle, Esq. Fep. 8 vo . 5 s .

Jameson. - A Commonplace Book of Thoughts, Memories, and Fancies, Original and Sclected. Part I. Ethics and Character; Part 1I. Literature and Art. By Mrs. Jameson. With Etchings and Wood Engravings. Square crown 8 ro. price 18 s .

Mrs. Jameson's Legends of the Saints and Martyrs. Forming the First Series of Sacred and Legendary Art. Second Edition; with numerous Woodeuts, and 16 Etchings by the Author. Square crown $8 v o$. price 28 s.

Mrs. Jameson's Legends of the Monastic Orders, as represented in the Fine Arts. Forming the Second Series of Sacred and Legendary At. Sccond Edition, corrected and enlarged; with 11 Etchings by the Author, and 88 Woodents. Square crown 8 vo . price 28 s .

Mrs. Jameson's Legends nf the Madonna, as represented in the Fine Arts. Forming the Third Series of Saered and Legendary Ait. With 55 Drawings by the Author, and 152 Wood Engravings. Square crown 8vo. price 28s.

Mrs. Jameson. - Sisters of Charity, Catholic and Protestant, Abroad and at Home. By Mrs. Jameson, Author of Sacred and Legendary Art. Second Edition, with a new Preface. Fcp. 8vo. 4s.

Jaquemet.-A Compendium of Chronology : Containing the most important Dates of General History, Political, Ecclesiastical, and Literary, from the Creation of the World to the end of the year 1854. By F. H. Jaquemet. Edited by the Rev. John Alcorn, M.A. Post 8vo. 7s. 6d.

Lord Jeffrey's Contributions to The Edinburgh Review. A New Edition, complete in One Volume, with a Portrait engraved by Henry Robinson, and a Vignette. Square crown 8 vo . 21s. cloth ; or 30 s . calf : Or in 3 vols. 8vo. price 42s.

Bishop Jeremy Taylor's Entire Works: With Life by Bishop Heber. Reviscd and corrected by the Rev. Charles Page Eden, Fellow of Oriel College, Oxford. Now complete in 10 vols. 8 vo. 10s.6d. each.

Johns and Nicolas.-The Calendar of Victory: Being a Record of British Valuur and Conquest by Sea and Land, on Every Day in the Year, from the Earliest Period to the Battle of Inkermann. Projected and commenced by the late Major Johns, R.M.; continued and completed by Lieutenant P. H. Nicolas, R.M. Fcp. 8vo. 12s. 6d.

Johnston.-A Dictionary of Geography, Descriptive, Physical, Statistical, and Historical: Forming a complete General Gazetteer of the World. By A. Keith Johnston, F.R.S.E., F.R.G.S., F.G.S., Geographer at Edinburgh in Ordinary to Her Majesty, Second Edition, brought down to May 1855; in 1 vol. of 1,360 pages, comprising about 50,000 Names of Places. 8 ro. priee 36 , cloth; or half-bound in russia, 41s.

Jones (0wen).-Flowers and their Kindred Thoughts: A Series of Stanzas. By Mary anne Bacon. With beautiful Illustrations of Flowers, designed and executed in illuminated printing by Owen Jones. Reprinted. Imperial 8vo. price 31s. 6d. calf.

Kalisch.-Historical and Critical Commentary on the Old Testament. By Dr. M. Kalisch, M.A. First Portion-Exodus : in Hebrew and English, with copious Notes, Critical, Philological, and Explanatory. 8 vo . 15 s .
** An Edition of the Exolus, as above (for the use of English readers), comprising the English Translation, and an abridged Commentary. bvo. price 128.

Kemble.-The Saxons in England: A History of the English Commonwealth till the period of the Norman Conquest. By John Mitchell Kemble, M.A., F.C.P.S., \&c. 2 vols. 8 vo . price 28s.

Kemp.-The Phasis of Matter: Being an Outline of the Discoveries and Applications of Modern Chemistry. By T. Lindley Kemp, M.D., Author of The Natural History of Creation, "Indications of Instinct," \&c. With 148 Woodeuts. 2 rols. crown 8vo. 21s.

Kennard. - Eastern Experiences collected during a Winter Tour in Egypt and the Holy Land. By Adam Steinametz Kennard. Post 8vo. 10s. 6d.

Kesteven.-A Manual of Domestic Prac-

 tice of Medicine, \&c. By W. B. Kesteyen, F.R.C.S. Square post 8vo. [In the press.Kippis's Collection of Hymns and Psalms for Public and Private Worship. New Edition; including a New Supplement by the Rev. Edmund Kell, M.A. 18 mo. price 43. cloth ; or 4s. 6d. roan.

Kirby and Spence's Introduction to Entomology ; or, Elements of the Natural History of Insects: Comprising an account of noxious and useful Insects, of their Metamorphoses, Food, Stratagems, Habitations, Societies, Motions, Noises, Hybernation, Instinct, \&c. New Edition. 2 vols. 8vo. with Plates, price 31s. 6d.

Laing's (S.) Observations on the Social and Political State of Denmark and the Duchies of Sleswick and Holstein in 1851: Being the Third Series of Notes of a Traveller. 8 vo . price 12 s .
Laing's (S.) Observations on the Social and Political State of the European People in 1848 and 1849: Being the Second Series of Notes of a Traveller. 8vo. price 14s.
*** The First Series, in 16mo. price 2s. 6 d .
Dr. Latham on Diseases of the Heart. Lectures on Subjects connected with Clinical Medicine: Diseases of the Heart. By P. M, Latham, M.D., Physician Extraordinary to the Queen. New Edition. 2 vols. 12ma, price 16s.
Mrs, R. Lee's Elements of Natural History; or, First Principles of Zoology : Comprising the Principles of Classification, interspersed with amusing and instructive Ac. counts of the most remarkable Animals. New Edition, enlarged, with numerous additional Woodcuts. Fcp. 8ve. price 7s. 6d,

LARDNER'S CABINET CYCLOPEDIA

Of History, Biography, Literature, the Arts and Sciences, Natural History, and Manufactures; A. Series of Original Works by

Sir John Herschel,	Thomas Keightley,	Bishop Thirlwall,
Sir James Mackintosh,	Juhn Forster,	Tierev. G. R. Gleig,
Robert Southey,	Sir Walter Scott,	J. C. L. De Sismondi,
Sir David Brewster,	Thomas Moore	John Phillips, F.R.S. G.S.

And other Eminent Writers.

Coinplete in 132 vols. fcp. 8vo. with Vignette Titles, price, in cloth, Nineteen Guineas.
The Works separutely, in Sets or Series, price Three Shillings and Sixpence each Volune.

A List of the Works composing the Cabinet Cyclopedia:-

1. Bell's History of Russia \qquad .3 vols. 10s. 6 d .
Bell's Lives of British Poets. . 2 vols. 7s.
2. Brewster's Optics \qquad 1 vol. 3s. 6d.
3. Cooley's Maritime and Inland

Discovery 3 vols. 108. 6 d
5. Crowe's History of France.... 3 vols. 10 s. 6 d .
6. De Morgan on Probabilities .. 1 vol. 3s. 6 d.
7. De Sismondi's History of the

Italian Republics............ 1 vol. 38. 6 d .
8. De Sismondi's Fall of the

Roman Empire. \qquad
9. Donovan's Chemistry 1 vol. . 6d.
10. Donovan's Domestic Economy, 2 vols. 78.
11. Dunbam's Spain and Portugal, 5 vols. $178.6 d$.
12. Dunhain's Historyof Denmark,

Sweden, and Norway 3 vols. 10 s .6 d.
13. Dunham's History of Poland. . 1 vol. 3s. 6 d .
14. Dunham's Germanic Empire. . 3 vols. 10 s. 6 d.
15. Dunham's Europe during the

Middle Ages.
...................
4 vols. 148.
16. Dunham's British Dramatists, 2 vols. 7 s.
17. Dunham's Lives of Early

Writers of Great Britain .. 1 vol. 3s. 6d.
18. Fergus's History of the United

States \qquad 2 vols. 7 s.
19. Fosbruke's Grecian and Roman Antiquities
.2 vols. 78.
20. Forster's Lives of the States-
men of the Commonwealth, 5 vols. 178.6 d.
21. Gleig's Lives of British Mili-
tary Commanders. 3 vols. 10s. 6d.
22. Grattan's History of the

Netherlands 1 vol. 3s. 6d.
23. Henslow's Botany.............. . 1 vol. 3s. 6 d .
24. Herschel's Astronoiny.......... 1 vol. 3s. 6d.
25. Herschel's Discourse on Natural Philosophy 1 vol. 3s. 6d.
26. History of Rome. 2 vols. 78.
27. History of Switzerland 1 vol. 38.6 d .
28. Holland's Manufactures in Metal 3 vols. 10s. 6 d.
29. James's Lives of Foreign States-
men 5 vols. 178.6 d.
30. Kater and Lardner's Mechanics, 1 vol. 3s. 6d.
31. Keightley'sOutlines of History, 1 vol. 3s. 6d.
82. Iardner's A rithmetic 1 vol. 38. 6d.
33. Lardner's Geometry .
.1 vol. 38. 6d.
34. Lardner on Heat 1 vol. 3s. 6 d .
35. Lardner's Hydrostatics and Pneumatics 1 vol. 3s. 6 d.
36. Lardner and Walker's Electricity and Magnetism 2 vols. 78.
37. Mackintosh, Forster, and Courtenay's Lives of British Statesmen 7
Mackintosh, Wallace,and Bell's History of England 10 vols. 35 s.
39. Montgomery and Shelley's eminent Italian, Spanish, and Portuguese Authors . 3 vols. 10s. 6d.
40. Moore's History of Ireland .. 4 vols. 14 s.
41. Nicolas's Chronology of Hist. 1 vol. 3s. 6d.
42. Phillips's Treatise on Geology, 2 vols. 78.
43. Powell's History of Natural Plilosophy

1 vol. 38. 6d.
44. Porter's 'Treatise on the Mannnufacture of Silk . 1 vol. 38. 6d.
45. Porter's Manufactures of Porcelain and Glass \qquad
46. Roscoe's British Lawyers 1 vol. 3s. 6d.
47. Scott's History of Scotland 2 vols. 78.
48. Shelley's Lives of eminent French Authors. \qquad 2 vols. 7 s.
49. Shuckard and Swainson's Iusects, 1 vol. 38. 6d.
50. Southey's Lives of British Admirals \qquad .5 vols. 17 s .6 d.
51. Stebling's Clurch History.... 2 vols. 7s.
52. Stebbing's History of the Reformation 2 vols. 78.
53. Swainson's Discourse on Natural History 1 vol. is 6 d .
54. Swainson's Natural History \& Classification of Animals . . 1 vol. 38. 6d.
55. Swainson's Habits \& Instincts of Animals

1 vol. 3s. 6 d.
56. Swainson's Birds 2 vols. 7 s.
57. Swainson's Fish, Reptiles, \&ic. 2 vols. 78.
58. Swainson's Quadrupeds 1 vol. 38. 6 d .
59. Swainson's Shells and Shell-fislı, 1 vol. 3s. 6d.
60. Swainson's Animals in Menageries 1 vol. 38. 6 d .
61. Swainson's Taxidermy and Biography of Zoologists.... 1 vol. 3s. 6 d .
62. Thirlwall's History of Greece. 8 vols. 28 s .

Lewis's Book of English Rivers. An

 Account of the Rivers of England and Wales, particularising their respective Courses, their most striking Scenery, and the chief Places of Interest on their Banks. By Samuel Lewis, Jun. Fcp. 8vo. 8s. 6d.
L. E. L.-The Poetical Works of Letitia

 Elizabeth Landon; comprising the Improvisatrice, the Venetian Bracelet, the Golden Violet, the Troubadour, and Poetical Remains. New Edition; with 2 Vignettes by R. Doyle. 2 vols. 16 mo .10 s . cloth; morocco, 21 s .Lindley.-The Theory and Practice of Horticulture ; or, an Attempt to explain the Principal Operations of Gardening upon Physiological Grounds: Being the Second Edition of the Theory of Horticulture, much enlarged; with 98 Woodeuts. By Joнn Lindiey, Ph.D. F.R.S. 8vo. price 21s.

Dr. John Lindley's Introduction to Botany. New Edition, with Corrections and copious Additions. 2 vols. 8vo. with Six Plates and numerous Woodcuts, price 24 s .

Linwood.-Anthologia Oxoniensis, sive Florilegium e lusibus poeticis diversorum Oxoniensium Greecis et Latinis decerptum. Curante Gulielmo Linwood, M.A. Edis Christi Alummo. 8vo. price 14 s .
uong. - An Inquiry concerning Religion. By George Long, Author of The Moral Nature of Man, "The Conduct of Life," \&e. 8 ro.

Lorimer's (C.) Letters to a Young Master

 Mariner on some Subjects connected with his Calling. New Edition. Fcp. 8vo. 5s. 6d.Loudon's Encyclopædia of Gardening; comprising the Theory and Practice of Horticulture, Floriculture, Arboriculture, and Landscape Gardening: Including all the latest improvements ; a General Mistory of Gardening in all Countries; a Statistical View of its Present State; and Suggestions for its Future Progress in the British Isles. With many hundred Woodcuts. New Edition, corrected and improved by Mrs. Loudon. 8vo. price 50 B .

Loudon's Encyclopædia of Trees and Shrubs; or, the Arboretum et Fruticetum Brilannicum abridged : Containing the Hardy Trees and Shrubs of Great Britain, Native and Foreign, Scientifically and Popularly Described; with their Propagation, Culture, and Uses in the Arts ; and with Engravings of nearly all the Species. Adapted for the use of Nurserymen, Gardeners, and Foresters. With about 2,000 Woodcuts. $8 v o$. price 50 s.

Loudon's Encyclopædia of Agriculture; comprising the Theory and Practice of the Valuation, Transfer, Laying-out, Improvement, and Management of Landed Property, and of the Cultivation and Economy of the Animal and Vegetable Productions of Agriculture; Including all the latest Improvements, a general History of Agriculture in all Countries, a Statistical View of its present State, and Suggestions for its future progress in the British Isles. New Edition; with $\mathrm{l}, 100$ Woodcuts. 8 vo . price 50 s .

Loudon's Encyclopædia of Plants: Comprising the Specific Character, Description, Culture, History, Application in the Arts, and every other desirable Particular respecting all the Plants indigenous to, cultivated in, or introduced into Great Britain. New Edition, corrected to the Present Time by Mrs. Loudon ; assisted by Grorge Don, F.L.S. and David Wooster, late Curator of the Ipswich Museum. With upwards of 12,000 Woodcuts (more than 2,000 new). 8 vo . price £3 13s. 6 d .

Second Additional Supplement to Loudon's Encyclopædia of Plants: Comprising all Plants originated in or iutroduced into Britain between March 1840 and March 1855. With above 2,000 Woodcuts. 8vo. price 21s.

Loudon's Encyclopædia of Cottage, Farm, and Villa Architecture and Furniture: containing numerous Designs, from the Villa to the Cottage and the Farm, including Farm Houses, Farmeries, and other Agricultural Buildings; Country Inns, Public Houses, and Parochial Schools; with the requisite Fittings-up, Fixtures, and Furniture, and appropriate Offices, Gardens, and Garden Scenery. New Edition, edited by Mrs. LOUDON ; with more than 2,000 Woodcuts. 8 vo . price 63s.

Loudon's Hortus Britannicus ; or, Catalogue of all the Plants indigenous to, cultivated in, or introduced into Britain. An entirely New Edition, corrected throughout; With a Supplement, including all the New Plauts, and a New General Index to the whole Work. Edited by Mrs. Loudon; assisted by W. H. Baxter and David Wooster. 8vo. price 31s. 6d.- Hhe Supplement separately, price 14s.

Mrs. Loudon's Amateur Gardener's Calendar: Being a Monthly Guide as to what should be avoided as well as what should be done, in a Garden in each Month; with plain Rules hoos to do what is requisite. 16 mo . with Woodeuts, price 7s, 6d.

Low.-A Treatise on the Domesticated Animals of the British 1slands: Comprehend ing the Natural and Economical History of Species and Varieties; the Description of the Properties of external Form ; and Observations on the Principles and Practice of Breeding. By D. Low, Esq., F.R.S.E. With Wood Engravings. 8vo. price 25s.

Low.-Elements of Practical Agriculture; comprehending the Cultivation of Plants, the Husbandry of the Domestic Animals, and the Economy of the Farm. By D. Low, Esq. F.R.S.E. New Edition ; with 200 Woodcuts. 8vo. price 21 s .

Macaulay.-Speeches of the Right Hon. T. B. Macaulay, M.P. Corrected by HimSELF. 8vo. price 12s.

Macaulay. - The History of England from the Accession of James II. By Thomas Babington Macaulay. New Edition. Vols. I. and II. 8vo. price 32s.; Vols III. and IV. price 36s.

Mr. Macaulay's Critical and Historical Essays contributed to The Edinburgh
Review. Four Editions, as follows :-

1. A Library Edition (the Eigheh), in 3 vols. 8vo. price 36s.
2. Complete in One Voleme, with Portrait and Vignette. Square orown 8 vo . price 21 s . cloth; or 30 s . calf.
3. Another New Edition, in 3 vols. fcp. 8ro. price 21s.
4. The Peorle's Edition, in 2 , vols. crown 8 vo. price 8 s. cloth.

Macaulay.-Lays of Ancient Rome, with Ivry and the Armada. By Thomas Babington Macaulay. New Edition. 16 mo . price 4 s .6 d . cloth; or 10 s .6 d . bound in morocco.

Mr. Macaulay's Lays of Ancient Rome. With numerous Illustrations, Original and from the Antique, drawn on Wood by George Scarf, Jun., and engraved by Samuel Williams. New Edition. Fep. 4to. price 21s. Бoards ; or 42s. bound in moroceo.

Mac Donald.-Within and Without: A Dramatic Poem. By Georae Mac Donapu. Crown 8vo. 7s. 6d.

Macdonald. - Villa Verocchio; or, the Youth of Leonardo da Vinci: A Tale. By the late Diana Louisa Macdonald. Fcp. 8vo. price 6 s.

Sir James Mackintosh's History of England from the Earliest Times to the final Establishment of the Reformation. Library Edition, revised by the Author's Son. 2 vols. 8vo. price 21s.

Sir James Mackintosh's Miscellaneous Works: Including his Contributions to The Edinburgh Review. Complete in Ono Volume ; with Portrait and Vignette. Square crown 8 vo . price 21 s . cloth ; or 30 s . bound in calf: Or in 3 vols, fep. 8 ro. price 21s.

Macleod.-The Theory and Practice of Banking: With the Elementary Principles of Currency, Prices, Credit, and Exchanges. By Henry Dunning Macreod, of the Inner Temple, Esq., Barrister-Law ; Fellow of the Cambridge Philosophical Society. In Two Volumes. Volume the First, comprising the Theory of Banking. Vol. I. royal 8vo. 14 s .

> ** Vol. II. comprising the History ol Banking in Enyland, and the Practice of Banking, is in the press.

M'Culloch. - A Dictionary, Practical, Theoretical, and Historical, of Commerce and Commercial Navigation. Illustrated with Maps and Plans. By J. R. M'Culloch, Esq. New Edition; and embracing a large mass of new and important Information in regard to the Trade, Commercial Law, and Navigation of this and other Countries. 8 vo . price 50 s . cloth ; half-russia, 55 s .
$\mathrm{M}^{\prime} \mathrm{Culloch}$ - A Dictionary, Geographical, Statistical, and Historical, of the various Countries, Places, and principal Natural Objects in the World. By J. R.M‘Cullocir, Esq. Illustrated with Six large Maps. New Edition, revised; withaSupplement. 2 vols. 8 vo . price 63s.

M'Culloch. - An Account, Descriptive and Statistical, of the British Empire ; Exhibiting its Extent, Physical Capacitios, Population, Industry, and Civil and Religious Institutions. By J. R. M'Culloch, Esq. Fourth Edition, revised; with an Appendir. of Tables. 2 vols. 8 vo . price 428.
Maitland.- The Church in the Catacombs: A Description of the Prinitive Chureh of Rome. Illustrated by its Sepulchral Remains. By the Rev. Charles Maitland. New Edition; with many Woodcuts. 8vo. price 14s.
Mann.-The Philosophy of Reproduction. By Robert James Mann, M.D. F.R.A.S. Fcp. 8vo. with Woodcuts, price 4s. Gd.

Mrs. Marcet's Conversations on Chemis-

try, in which the Elements of that Science are familiarly explained. and illustrated by Experiments. New Edition, enlarged and improved. 2 vols. fcp. 8vo. price 14 s .

Mrs. Marcet's Conversations on Natural

Philosophy, in which the Elements of that Science are familiarly explained. New Edition, enlarged and corrected; with 23 Plates. Fcp. 8vo. price 10s. 6d.

Mrs. Marcet's Conversations on Political

Economy, in which the Elements of that Science are familiarly explained. New Edition. Fcp. 8vo. price 78. 6d.
Mrs. Marcet's Conversations on Vegetable Physiology ; comprehending the Elements of Botany, with their Application to Agriculture. New Edition; with 4 Plates. Fcp. 8vo. price 9s.
Mrs. Marcet's Conversations on Land and Water. New Edition, revised and corrected; with a coloured Map, shewing the comparative Altitude of Mountains. Fep. 8vo. price 5s. 6d.

Marryat. - Mountains and Molehills; or, Recollections of a Burnt Journal. By Frank Marryat, Author of Borneo and the Eastern Archipelago. With many Illustrations on Wood andin Colours from Drawings by the Author. Svo. 21s.
Martineau.-Endeavours after the Christian Life: Discourses. By James Martineau. 2 vols. post 8 ro. 7 s . 6 d . each.
Martineau.-Miscellanies. Comprising Essays on Dr. Priestley, Arnold's Life and Correspondence, Church and State, Theodore Parker's Discourse of Religion, "Phases of Faith," the Church of England, and the Battle of the Churches. By James Martinead. Post 8vo. 9s.
Martineau.-Church History in England: Being a Sketch of the History of the Church of England from the Earliest. Times to the Period of the Reformation. By the Rev. Arthur Martinead, M.A. 12mo. 6s.

Maunder's Biographical Treasury ; consisting of Memoirs, Sketches, and brief Notices of above 12,000 Eminent Persons of All Ages and Nations, from the Earliest Period of History; forming a new and complete Dictionary of Universal Biography. The Ninth Edition, revised throughout, and brought down to the close of the year 1854. Fcp. 8ro. 10s. cloth; bound in roan, 12 s . ; calf lettered, 12s. 6 d .

Maunder's Historical Treasury ; comprising a General Introductory Outline of Universal Fistory, Ancient and Modern, and a Series of separate Histories of every principal Nation that exists; their Rise, Progress, and Present Condition, the Moral and Social Character of their respective inhabitants, their Religion, Manners and Customs, \&c. \&c. New Edition; revised throughout, with a new Index. Fcp. 8vo. 10s. cloth; roan, 12s.; calf 2 12s. 6 d .

Maunder's Scientific and Literary Treasury : A. new and popular Encyclopædia of Seience and the Belles-Lettres ; including all Branches of Science, and every subject connected with Literature and Art. New Edition. Fcp. 8vo. price 10s. cloth; bound in roan, 12s.; calf lettered, 12s. 6 d .

Maunder's Treasury of Natural History ;
Or, a Popular Dictionary of Animated Nature : In which the Zoological Characteristics that distinguish the different Classes, Genera, and Species, are combined with a variety of interesting Information illustrative of the Habits, Instincts; and General Economy of the Animal Kingdom. With 900 Woodcuts. New Edition. Fcp. 8vo. price 10 s . cloth ; roan, 12 s . ; calf, 12 s . 6 d .

Maunder's Treasury of Knowledge, and Library of Reference. Comprising an English Dictionary and Grammar, an Universal Gazetteer, a Classical Dictionary, a Chronology, a Law Dictionary, a Synopsis of the Peerage, numerous useful Tables, \&c. The Twentieth Edition, carefully revised and corrected throughout: With some Additions. Fcp. 8vo. price 10s. cloth; bound in roan, 12 s . ; calf lettered, 12 s .6 d .

Merivale. - A History of the Romans under the Empirec. By the Rev. Charles Merivale, B.D.; late Fellow of St. John's College, Cambridge. Vols. I. to III. 8vo. price \mathfrak{f}^{2}. 2 s .
*** Vols. IV. and V., comprising Augustus and the Claudian Cesars, are in the press.

Merivale. - The Fall of the Roman Republic: A Short History of the Last Century of the Commonwealth. By the Rev. Charles Merivale, B.D. New Edition. 12 mo . price 7s. 6d.

Merivale.-An Account of the Life and Letters of Cicero. Translated from the German of Abeken; and edited by the Rev. Charlifs Merivale, B.D. 12 mo . 9s. 6 d .

Miles.-A Plain Treatise on HorseShoeing. By William Miles, Eeq., Author of The Horse's Foot, and how to kiepp it Sound. With Plates and Woodcuts. Small 4.to. 5s.

Milner.-Russia, its Rise and Revolutions, Tragedies and Progress. By the Rev. T. Milner, M.A., F.R.G.S. Post 8vo.

Milner.-The Crimea, its Ancient and Modern History : The Khans, the Sultans, and the Czars: With Sketches of its Scenery and Population. By the Rev. T. Milner, M.A. Post 8vo. with 3 Maps, price 10s. 6d.

Milner.-The Baltic; Its Gates, Shores, and Cities: With a Notice of the White Sea. By the Rev. T. Mimer, M.A., F.R G.S. Post 8vo. with Map, price 10s. 6 d .

Milner's History of the Church of Christ. With Additions by the late Rev. Isaac Milner, D.D., F.R.S. A New Edition, revised, with additional Notes by the Rev. T. Grantham, B.D. 4 vols. 8vo. price 52 s .

Montgomery.-Memoirs of the Life and Writings of James Montgomery : Including Selections from his Correspondence, Remains in Prose and Verse, and Conversations. By John Holland and James Everett. With Portraits and Vignettes. Vols. I. to IV. post 8 vo. price 10 s . 6 d . each.

James Montgomery's Poetical Works: Collective Edition; with the Author's Autobiographical Prefaces, complete in One Volume ; with Portrait and Vignette. Square crown 8 vo. price 10 s . 6d. cloth; morocco, 21s.-Or, in 4 vols. fcp. 8vo. with Portrait, and 7 other Plates price 14 s .

James Montgomery's Original Hymns for Public, Social, and Private Devotion. 18mo. price 5s. 6 d .

Moore.-The Power of the Soul over the Body, considered in relation to Health and Morals. By George Moore, M.D., Member of the Royal College of Physicians. Fifth and chcaper Edition. Fep. 8vo. price 6s.

Moore-Man and his Motives. By George Moore, M.D., Member of the Royal College of Physicians. Third and cheaper Edition. Fcp. 8vo. price 68.

Moore. - The Use of the Body in relation to the Mind. By Grorge Moore, M.D. Member of the Royal Coll.ge of Physicians. Third and cheaper Edition. Fcp. 8vo. 6s.

Thomas Moore's Poetical Works: Comprising the Author's recent Introductions and Notes. Complete in One Volume, printed in Ruby Type; with Portrait engraved by W. Holl, from a Picture by T. Phillips, R.A. Crown 8vo. 12s. 6d. cloth ; morocco by Hayday, 21s.-Also an Edition complete in 1 vol. medium 8vo. with Portrait and Vignette, 21s. cloth; morocco by Hayday, 42 s . - Another, in 10 vols. fcp. 8 vo . with Portrait, and 19 Plates, price 35 s.

Moore's Irish Melodies Illustrated. A New Edition of Moore's Irish Melodies, illustrated with Thirteen Steel Plates, engraved from Original Designs by
C. W. Cope, R.A.; D. Maclise, R.A.;
T. Creswick, R.A.; J.E.Miliais, A.R.A.; A. L. Ege, A.R.A.; W.Mulready,R.A.; W. P. Frith, R.A.; J. Sant;
W. E. Frost, A R.A.; F.Stone, A.R.A.; and J. C. Horsley ; E. M. Ward, R.A. Uniform with the Illustrated Edition of Moore's Lalla Rookh. Square crown 8vo. price 21s. cloth; or 31s. 6d. handsomely bound in morocco.

Moore's Irish Melodies. Illustrated by D. Maclise, R.A. New Edition; with 161 Designs, and the whole of the Letterpress engraved on Steel, by F. P. Becker. Superroral 8 vo . 31 s . 6d. boards ; £2. 12s. 6d. murocco, by Hayday.

Moore's Irish Melodies. New Edition, printed in Diamond Type; with the Preface and Notes from the collcetive edition of Moore's Poetical Works, the Advertisements originally prefixed to the Melodies, and a Portrait of the Author. 32mo. 2s. 6d.-An Edition in 16 mo . with Vignette, 5 s. ; or 12 s .6 d . morocco by Hayday.

Moore's Lalla Rookh: An Oriental Romance. With 13 highly-finished Stecl Plates from Designs by Corbould, Meadows, and Stephanoff, engraved under the superintendence of the late Charles Heath. New Edition. Square crown 8vo. price 15 s. cloth ; moroceco, 28 s .

Moore's Lalla Rookh. New Edition, printed in Diamond Type; with the Preface and Notes from the collective edition of Moore's Poetical Works, and a Frontispicce from a Design by Kenny Meadows. 32 mo . 2s. 6 d . -An Edition in 16mo. with Vignette, 5s.; or 12s. 6d. morocco by Hayday.

Moore. - Songs, Ballads, and Sacred Songs. By Thomas Moore, Author of Lalla Rookh, \&c. First collected Edition, with Vignette by R. Doyle. 16 mo . price 5s. cloth; 12s. 6d. bound in moroceo.

Moore-Memoirs, Journal, and Correspondence of Thomas Moore. Edited by the Right Hon. Lord John Russell, M.P. With Portraits and Vignette Illustrations. 8 vols. post 8 vo . price 10 s .6 d . each.

Moseley. - The Mechanical Principles of Engineering and Architecture. By H. Moseley, M.A., F.R.S., Canon of Bristol; Corresponding Member of the Institute of France. Second Edition, enlarged; with numerous Corrections and Woodcuts. 8vo. price 24s.

Mure.-A Critical History of the Language and Literature of Ancient Greece. By William Mure, M.P. of Caldwell. Second Edition. Vols. I. to III. 8vo. price 36 s . ; Vol. IV. price 15 s .

Murray's Encyclopædia of Geography ; Comprising a complete Description of the Earth: Exhibiting its Relation to the Heavenly Bodies, its Physical Structure, the Natural History of each Country, and the Industry, Commerce, Political Institutions, and Civil and Social State of All Nations. Second Edition; with 82 Maps, and upwards of 1,000 other Woodcuts. 8 vo . price 60 s .

Neale.-The Riches that bring noSorrow. By the Rev. Erskine Neale, M.A., Kector of Kirton, Suffolk. Fcp. 8vo. price 6s.

Neale.-" Risen from the Ranks ;" or, Conduct versus Caste. By the Rev. Erskine Neale, M.A. Fep. 8vo. price 6s.

Neale.-The Earthly Resting Places of the Just. By the Rev. Erskine Neale, M.A. Fcp. 8vo. with Woodcuts, price 7s.

Neale.-The Closing Scene ; or, Christianity and Infidelity contrasted in the Last Hours of Remarkable Persons. By the Rev. Erskine Neale, M.A., Rector of Kirton, Suffolk. New Editions of the First and Sccond Series. 2 vols. fcp. 8vo. price 12s. ; or separately, 6s. each.

Newman. - Discourses addressed to Mixed Congregations. By John Henry Newman, Priest of the Oratory of St. Philip Neri. Second Edition. 8vo. price 12s.

Oldacre.-The Last of the Old Squires. A Sketch. By Cedric Oldacre, Esq., of Sax-Normanbury, sometime of Christ Church, Oxon. Crown 8vo. price 9s. 6d.

Osborn.-A Narrative of the Discovery of the North-West Passage. By H.M.S. Investigator, Capt. R. M'Clure. Edited by Captain Sherard Osborn, R.N. from the Logs, Journals, and Private Letters of Capt. R. M'Clure; and illustrated from Sketches taken by Commander S. Gurney Cresswell. 8vo.
[In the press.
Owen. - Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, delivered at the Royal College of Surgeons. By Richard Owen, F.R.S., Hunterian Professor to the College. Second Edition, greatly enlarged; with 235 Woodcuts. 8vo. 21s.

Professor Owen's Lectures on the Comparative Anatomy and Physiology of the Vertebrate Animals, delivered at the Royal College of Surgeons in 1844 and 1846. With numerous Woodcuts. Vol. I. 8vo. price 14s.

The Complete Works of Blaise Pascal. Translated from the French, with Memoir, Introductions to the various Works, Editorial Notes, and Appendices, by Georga Pearce, Esq. 3 vols. post 8vo. with Portrait, 25s. 6d.

VOL. 1. PASCAL'S PROVINCIAK, LETters: with M. Villemain's Essay on Pascal prefixed, and a new Memoir. Post 8vo. Portrait,8s. 6u.

VOL. 2. RASCAL'S THOUCHISON REligion and Evidences of Christianity, with Additions, from Original MSS. : from M. Faugère's Edition. Post 8vo.8s. 6d

VOL. B. PASCAL'S MISCELLANEOUS Writings, Correspondence, Detached Thoughts, \&c. : from M Faugère's Edition. Post 今́vo. 8s. 6d.

Dr. Pereira's Elements of Materia Medica and Therapeutics. Third Edition, enlarged and improved from the Author's Materials, by A. S. Taycor, M.D. and G. O. Rees, M.D. : With numerous Woodcuts. Vol.I. 8vo. 28s.; Vol. II. Part I. 21s.; Vol. II. Part II. 248.

Dr. Pereira's Treatise on Food and Diet: With Observations on the Dietetical Regimen suited for Disordered States of the Digestive Organs ; and an Account of the Dietaries of some of the principal Metropolitan and other Establishments for Paupers, Lunatics, Criminals, Children, the Sick, \&c. 8vo. 16s.

Dr. Pereira's Lectures on Polarised Light, together with a Lecture on the Microscope, delivered before the Plarmaceutical Society of Great Britain, and at the Medical School of the London Hospital. 2d Edition, enlarged from Materials left by the Author, by the Rev. B. Poweli, M.A, \&c. Fcp. 8vo. withWoodcuts, 7s.

Peschel's Elements of Physics. Translated from the German, with Notes, by E. West. With Diagrams and Woodcuts. 3 vols. fep. 8vo. 21s.

Pfeiffer.-A Second Journey Round the World. By Madame Ida Preiffer. 2 vols. post 8 ro .
[Just ready.
Phillips.-A Guide to Geology. By John Phillips, M.A. F.R.S. F.G.S., Deputy Reader n Geology in the University of Oxford; Honorary Member of the Imperial Academy of Sciences of Moscow, \&c. Fourth Edition, corrected to the Present Time; with 4 Plates. Fcp. 8ro. price 5 s.

Phillips. - Figures and Descriptions of the Palrozoic Fossils of Cornwall, Devon, and West Somerset ; observed in the course of the Ordnance Geological Survey of that District. By John Phillips, F.R.S. F.G.S. \&c. 8vo. with 60 Plates, price 9s.

Phillips's Elementary Introduction to Mineralogy. A New Edition, with extensive Alterations and Additions, by II. J. Brooke, F.R.S., F.G.S. ; and W. H. Miller, M.A., F.G.S., Professor of Mineralogy in the University of Cambridge. With numerous Wood Engravings. Post 8vo. price 18s.
Piesse's Art of Perfumery, and Methods of Obtaining the Odours of Plants : With Instructions for the Manufacture of Perfumes for the Handkerchief, Scented Powders, Odorous Vinegars, Dentifrices, Pomatums, Cosmétiques, Perfumed Soap, \&c.; and an Appendix ou the Colours of Flowers, Artificial Fruit Essences, \&c. With 30 Woodeuts. Crown 8vo. 7s. 6d.

Piscator.-The Choice and Cookery of Fish: A Practical Treatise. Fep. 8vo. 5s. 6d.

Captain Portlock's Report on the Geology of the County of Londonderry, and of Parts of Tyrone and Fermanagh, examined and described under the Authority of the MasterGencral and Board of Ordnance. 8vo. with 48 Plates, price 24s.

Powell.-Essays on the Spirit of the Inductive Philosophy, the Unity of Worlds, and the Philosophy of Creation. By the Rev. Baden Powell, M.A. F.R.S. F.R.A.S. F.G.S., Savilian Professor of Geometry in the University of Oxford. Crown 8vo. 12s. 6d.

Pycroft's Course of English Reading, adapted to every Taste and Capacity: With Literary Ancedotes. New and cheaper Edation. Fep. 8ro. price 5 s.

Raikes.-A Portion of the Journal kept by Thomas Raikes, Esq. from 1831 to 1847: Comprising Reminiscences of Social and Political Life in London and Paris during that period. Vols. I. and II. post 8vo.
[Just ready.
Dr. Reece's Medical Guide ; for the Use of the Clergy, Heads of Families, Schools, and Junior Medical Practitioners: Comprising a complete Modern Dispensatory, and a Practical Treatise on the distinguishing Symptoms, Causes, Prevention, Cure and Palliation of the Diseases incident to the Human Frame. With the latest Discoveries in the different departments of the Healing Art, Materia Medica, \&c. Seventeenth Edition, corrected and enlarged by the Anthor's Son, Dr. H. Reece, M.R.C.S. \&c. 8vo. price 12s.
Rich's Illustrated Companion to the Latin Dictionaryand Greek Lexicon : Forming a Glossary of all the Words representing Visible Objects connected with the Arts, Manufactures, and Every-day Life of the Ancients. With Woodeut Representations of nearly 2,000 Objects from the Antique. Post 8vo. price 21s.
Sir J. Richardson's Journal of a Boat Voyage through Rupert's Land and the Arctic Sea, in Scarch of the Discovery Ships under Command of Sir John Franklin. With an Appendix on the Physical Geograpliy of North America; a Map, Plates, and Woodcuts. 2 vols. 8 vo. price 31s. 6 d .

Richardson (Captain).-Horsemanship ; or, the Art of Riding and Managing a Horse, adapted to the Guidance of Ladies and Gentlemen on the Road and in the Ficld: With InstructionsforBreaking-in Colts and Young Horses. By Captain Richardson, late of the 4th Light Dragoons. Witl 5 Line Engravings. Square crown 8 vo. price 14s.

Rickards. - Population and Capital : Being a Course of Lecturcs delivered before the University of Oxford in 1853 and 1854. By George K. Rickards, M.A., Professor of Political Economy. Post 8ro. 6s.

Riddle's Complete Latin-English and English-Latin Dictionary, for the use of Colleges and Schools. New and cheaper Edition, revised and corrected. 8 vo .21 s .
Separatcly
\{The English-Latin Dictionary, 7s. The Latin-English Dictionary,15s.

Riddle's Diamond Latin-English Dictionary: A Guide to the Meaning, Quality, and right Accentuation of Latin Classical Words. Royal 32 mo . price 48.

Riddle's Copious and Critical LatinEnglish Lexicon, founded on the GermanLatin Dictionaries of Dr. William Freund. New and cheaper Edition. Post 4to. 31s. 6d.

Rivers's Rose-Amateur's Guide ; containing ample Descriptions of all the fine leading varieties of Roses, regularly classed in their respective Families; their History and mode of Culture. Fifth Edition, corrected and improved; including a full Account of the Author's experience in the Culture of Roses in Pots. Fcp. 8vo. price 3s. 6d.

Robins.-The Whole Evidence against the Claims of the Roman Church. By the Rev. Sanderson Robins, M.A., Rector of St. James's, Dover. 8vo. price 10s. 6d.

Dr. E. Robinson's Greek and English Lexicon to the Greek Testament. A New Edition, revised and in great part re-written. 8 vo . price 18 s .

Mr. Henry Rogers's Essays selected from Contributions to the Edinburgh Reviero. Second and cheaper Edition, with Additions. 3 vols. fcp. 8vo. 21s.

Mr. Henry Rogers's Additional Essays from the Edinburgh Reviev, printed uniformly with the First Edition, and forming a Third Volume. 8vo. 10s. 6 d .

Dr. Roget's Thesaurus of English Words and Phrases Classified and arranged so as to facilitate the Expression of Ideas and assist in Literary Composition. Third Edition, revised and improved; and printed in a more convenient form. Crown 8vo. 10s. 6d.

Rowton's Debater: A Series of complete Debates, Outlines of Debates, and Questions for Discussion; with ample References to the best Sources of Information on each particular Topic. New Edition. Fcp. 8 ro . price 6s.

Letters of Rachel Lady Russell. A New Edition, including several unpublished Letters, together with those edited by Miss Berry. With Portraits, Vignettes, and Facsimile. 2 vols. post 8 vo . price 15 s .

The Life of William Lord Russell. By the Right Hon. Lord John Russell, M.P. The Fourth Edition, complete in One Volume ; with a Portrait engraved on Steel by S. Bellin, from the original by Sir Peter Lely at Woburn Abbey. Post 8vo. 10s. 6d.

St. John (the Hon. F.) - Rambles in Search of Sport, in Germany, France, Italy, and Russia. By the Honourable Ferdinand S? John. With Four coloured Plates Post 8vo. price 9s. 6 d .

St. John (H.)-The Indian Archipelago ; Its History and Present State. By Horace S? Joнn, Author of The British Conquests in India, \&c. 2 vols. post 8 vo . price 21 s.

The Saints our Example. By the Author of Letters to My Unknown Friends, \&c. Fcp. 8 vo . price 7s.

Schmitz.-History of Greece, from the Earliest Times to the Taking of Corinth by the Romans, b.c. 146, mainly based upon Bishop Thirlwall's History of Greece. By Dr. Leonhard Schmitz, F.R.S.E., Rector of the High School of Edinburgh. New Edition. 12 mo . price 7s. 6d.

Scrivenor.-History of the Iron Trade, from the Earliest Records to the Present Period. By Harry Scrivenor, Author of The Railways of the United Kingdom. New Edition, revised and corrected. 8vo. 10s. 6d

Sir Edward Seaward's Narrative of his Shipwreek, and consequent Discovery of certain Islands in the Caribbean Sea. Third Edition. 2 vos. post 8vo. 21s.-An Abridgment, in 16 mo . price 2s.6d.

Self-Denial the Preparation for Easter
By the Author of Letters to my Unknown Friends, \&c. Fcp. 8vo. price 2s. 6d.

The Sermon in the Mount. Printed by C. Whittingham, uniformly with the Thumb Bible; bound and clasped. 64mo. price Eighteenpence.

Sharp's New British Gazetteer, or Topographical Dictionary of the British Islands and Narrow Seas : Comprising concise Descriptions of about Sixty Thousand Places Seats, Natural Features, and Objects of Note founded on the best Authorities ; full Particulars of the Boundaries, Registered Electors, \&c. of the Parliamentary Boroughs; with a reference under every name to the Sheet of the Ordnance Survey, as far as completed; and an Appendix, containing a General View of the Resources of the United Kingdom, a Short Chronology and an Abstract of Certain Results of the last Census. 2 vols. 8 vo. price $£ 2.163$.

Sewell. - Amy Herbert. By a Lady. Edited by the Rev. William Sewell, B.D. Fellow and Tutor of Excter College, Oxford. New Edition. Fcp. 8vo. price 6s.

Sewell. - The Earl's Daughter. By the Author of Amy Herbert. Edited by the Rev. W. Sewell, B.D. 2 vols. fcp. 8vo. 9s.

Sewell. - Gertrude: A Tale. By the Author of Amy Herbert. Edited by the Rev. W. Sewell, B.D. New Edition. Fcp. 8vo. price 6s.

Sewell.-Laneton Parsonage : A Tale for Children, on the Practical Use of a portion of the Church Catechism. By the Author of Amy Herbert. Edited by the Rev. W. Sewell, B.D. New Edition. 3 vols. fcp. 8vo. price 16s.

Sewell. - Margaret Percival. By the Author of Amy Herbert. Edited by the Rev. W. Sewell, B.D. New Edition. 2 vols. fcp. 8vo. price 12s.

By the same Author,

Cleve Hall. 2 vols. fcp. 8 vo . price 12 s .
Katharine Ashton. New Edition. 2 vols. fcp. 8vo. price 12 s .
The Experience of Life. New Edition. Fcp. 8vo. price 7s. 6d.
Readings for a Month preparatory to Confirmation: Compiled from the Works of Writers of the Early and of the English Church. Frp. 8vo. price 5s. 6d.

Readings for Every Day in Lent: Compiled from the Writings of Bishop Jeremy Taylob. Fep. 8ro. price 5s.

Bowdler's Family Shakspeare: In which nothing is added to the Original Text; but those words and expressions are omitled which cannot with propriety be read aloud. New Edition, in Pocket Volumes; with 56 Woodcuts, from Designs by Smirke, Howard, and other Artists. 6 vols. fcp. 8vo. 30s.
*** A Library Edition, with the same lustrations, in 1 vol. medium 8 vo . price 21s.

Short Whist; Its Rise, Progress, and Laws: With Obscrvations to make any one a Whist Player. Containing also the Laws of Piquet, Cassino, İcarté, Cribbage, Backgammon. By Major A. New Edition; to which are added, Precepts for Tyros, by Mrs. B. Fcp. 8ro. 3s.

Sinclair. - The Journey of Life. By Catherine Sinclair, Author of The Business of Life. New Edition, corrected and eularged. Fcp. 8vo. 5s.

Sir Roger De Coverley. From The Spectator. With Notes and Illustrations, by W. Henti Wills; and 12 Wood Engravings from Designs by F. Tayler. Second and cheaper Edition. Crown 8ro. 10s. 6d.; or 21s. in morocco by Hayday.-An Edition without Woodcuts, in 16 mo . price 1 s.

Smee's Elements of Electro-Metallurgy. Third Edition, revised, corrected, and considerably enlarged; with Electrotypes and numerous Woodcuts. Post 8 vo. price 10 s .6 d .

Smith',(G.) Sacred Annals; or, Researches into the History and Religion of Mankind. By George Smith, F.A.S. \&e. 3 vols. crown 8 vo . price £1. 14s.; or separately as fullows :-
Vol. I.-The patriarchal age, from the Creation to the Death of Issac. Crown 8vo. price 10s.

Vol. II-THE HEBREW PEOPLE, from the Origin of the Israelite Nation to the Time of Christ. Crown 8vo. in 2 Parts, price 12 s.

Vol. III.-THE GENTILE NATIONS - Egyptians, Assyrians, Babylonians, Medes, Perstans, Greeks, and Romans Crown 8vo. in 2 Parts, price 12s.

A Memoir of the Rev. Sydney Smith. By his Daughter, Lady Holland. With a Selection from lis Letters, Edited by Mrs. Austin. Third Edition, 2 vols. 8vo. price 28s.
The Rev. Sydney Smith's Miscellaneous Works : Including his Contributions to The Edinburgh Review. Three Editions:-

1. A Library Edition (the Fourth), in 3 vols. 8ro. with Portrait, 36s.
2. Complete in One Volume, with Portrait and Vignette. Square crown 8 vo. price 21 s . cloth; or 30 s . calf.
3. Another New Edition, in 3 vols. fep. 8 vo. price 21 s .

The Rev. Sydney Smith's Elementary Sketches of Moral Philosophy, delivered at the Royal Institution in the Years 1804, 1805, and 1806. Third and cheaper Edition. Fcp. 8ro. 7 s .

Robert Southey's Complete Poetical Works ; containing all the Author's last Introductions and Notes. Complete in One Volume, with Portraitand Vignctte. Mediun 8 vo . price 21s. cloth ; 42s. bound in morocco. Or in 10 vols. fcp. 8vo. with Portrait and 19 Plates, price 35s.

Select Works of the British Poets ; from Chaucer to Lovelace inclusive. With Biographical Sketches by the late Robert Southey. Medium 8vo. price 30s.

Southey's Letters.-A Selection from the Correspondence of Robert Southey. Edited by his Son-in-Law, the Rev. Joun Wood Warter, B.D., Vicar of West Tarring, Sussex. Post 8vo. [In the press.

The Life and Correspondence of the late Robert Southey. Edited by his Son, the Rev. C. C. Southey, M.A., Vicar of Ardleigh. With Portraits, and Landscape Illustrations. 6 vols. post 8vo. price 63s.

Southey's The Doctor \&c. Complete in One Volume. Edited by the Rev. J. W. Warter, B.D. With Portrait, Vignette, Bust, and coloured Plate. New Edition. Square crown 8vo. price 21s.

Southey's Commonplace Books. Comprising1. Choice Passages: With Collections for the History of Manners and Literature in England; 2. Special Collections on various Historical and Theological Subjects ; 3.Analytical Readings in various branches of Literature ; and 4. Original Memoranda, Literary and Miscellaneous. Edited by the Rev. J. W. Warter, B.D. 4 vols. square crown 8 vo . price £3. 18s.

Each Commonplace Book, complete nitself, may be had separately as follows :-

Fiast SERIEs-CHOICE PASSAGES, \&c. 18s.
SECOND SEEIES-SPECIAL COLLECTIONS. I8s.
Third Series-anaLYTicaL READINGS. 21 s.
Fourth SErirs-ORIGINAL MEMORANDA, \&c. 21s.
Southey's Life of Wesley ; and Rise and Progress of Methodism. New Edition, with Notes and Additions. Edited by the Rev. C. C. Southey, M.A. 2 vols. 8 vo. with 2 Portraits, price 28 s .

Spencer.-The Principles of Psychology. By Herbert Spencer, Author of Social Statics. 8vo. 16s.

Stephen.-Lectures on the History of France. By the Right Hon. Sir James STEPHEN, K.C.B.LL.D. Professor of Modern History in the University of Cambridge. Second Edition. 2 vols. 8vo. price 24s.

Stephen.-Essays in Ecclesiastical Biography; from The Edinburgh Review. By the Right Hon. Sir James Stephen, E.C.B. LL.D. Third Edition. 2 rols. 8 ro. 24s.

Stonehenge.-The Greyhound: Being a Treatise on the Art of Breeding, Rearing, and Training Greyhounds for Public Running; their Diseases and Treatment: Containing also, Rules for the Management of Coursing Meetings, and for the Decision of Courses. By Stonehenge. With numerous Portraits of Greyhounds, \&c. engraved on Wood, and a Frontispiece engraved on Steel. Square crown 8 vo . price 21 s .

Stow.-The Training System, the Moral Training School, and the Normal Seminary for preparing School-Trainers and Governesses. By David Stow, Esq., Honorary Secretary to the Glasgow Normal Free Seminary. Tenth Edition; with Plates and Woodcuts. Post 8vo. price 6s.

Dr. Sutherland's Journal of a Voyage in Baffin's Bay and Barrow's Straits, in the Years 1850 and 1851, performed by H.M. Ships Lady Franklin and Sophia, under the command of Mr. W. Penny, in search of the Crews of H.M. Ships Erebus and Terror, With Charts and Illustrations. 2 vols. post 8vo. price 278.

Tagart.-Locke's Writings and Philosophy Historically considered, and vindicated from the charge of contributing to the scepticism of Hume. By Edward Tagart, F.S.A., F.L.S. 8 vo . 12s.6d.

Tate.-On the Strength of Materials ; Containing various original and useful Formulx, speciaily applied to Tubular Bridges, Wrought Iron and Cast Iron Beams, \&c. By'Thomas Tate,F.R.A.S. 8vo. price 53. 6d.

Tayler.-Christian Aspects of Faith and Duty: Twenty Discourses. By Joun James Tayler, B.A. Second Edition. Post 8vo. 7s. 6d.

Taylor.-Loyola: And Jesuitism in its Rudiments. By Isaac Taylor. Post 8vo. with Medallion, price 10s. 6d.

Taylor.-Wesley and Methodism. By Isamc Taylor. Post 8ro. with a Portrait, price 10s. 6d.

Tegoborski.-Commentaries on the Productive Forces of Russia. By L. De Tegoborski, Privy-Councillor and Member of the Imperial Council of Russia. Vol. I. 8 ro . 14s.

Thirlwall.- The History of Greece. By the Right Rev. the Lord Bishop of St. David's (the Rev. Connop Thirlwall). An improved Library Edition; with Maps. 8 vols. 8vo. price £́3.
*** Also, an Edition in 8 vols. fcp. 8vo. with Vignette Titles, price 28s.

Thomson (the Rev. W.)-The Atoning Work of Christ, reviewed in relation to some current Theories ; in Eight Bampton Lectures, with numerous Notes. By the Rev. W. Thomson, M.A., Fellow and Tutor of Queen's College, Oxford. 8vo. 8s.

Thomson (the Rev. W.) - An Outline of the Laws of Thought: Being a Treatise on Pure and Applied Logic. By the Rev. W. Thomson, M.A. Third Edition, enlarged. Fcp. 8vo. price 7s. 6 d .

Thomson's Tables of Interest, at Three, Four, Four-and-a-Half, and Five per Cent., from One Pound to Ten Thousand, and from 1 to 365 Days, in a regular progression of single Days; with Interest at all the above Rates, from One to Twelve Months, and from One to Ten Years. Also, numerous other Tables of Exchanges, Time, and Discounts. New Edition. 12mo. price 8s.

Thomson's Seasons. Edited by Bolton Corney, Esq. Illustrated with 77 fine Wood Engravings from Designs by Members of the Etching Club. Square crown 8vo. 21 s . cloth; or, 36 s . bound in morocco.

The Thumb Bible; or, Verbum Sempiternum. By J. Taylor. Being an Epitome of the Old and New 'Testaments in English Verse. Reprinted from the Edition of 1693 ; bound and clasped. 64 mo .1 s .6 d .

Tooke-History of Prices and of the State of the Circulation, from 1847 to the close of 1854. By Thomas Tooke, F.R.S. With Contributions by William Newmarch. Being the Fifth and concluding Volume of Tooke's IIistory of Prices, with an Index to the whole work. 8ro.

Townsend.-The Lives of Twelve Eminent Judges of the Last and of the Present Century. By W.C.Townsend, Esq., M.A., Q.C. 2 vols. 8 vo. price 28 s .

Townsend.-Modern State Trials revised and illustrated with Essays and Notes. By W. C. Townsend, Esq. M.A. Q.C. 2 vole. 8vo. price 30s.

Trollope.-The Warden. By Anthony Trollope. Post 8vo. 10s. 6d.

Sharon Turner's Sacred History of the World, attempted to be Philosophically considered, in a Series of Letters to a Son. New Edition, edited by the Author's Son, the Rev. S. Turner. 3 vols. post $8 v o$. price 31s. 6 d .

Sharon Turner's History of England during the Middle Ages: Comprising the Reigns from the Norman Conquest to the Accession of Henry VIII. Fifth Edition, revised by the Rev. S. Turner. 4 vols. 8ro. price 50 s .

Sharon Turner's History of the AngloSaxons, from the Earliest Period to the Norman Conquest. The Seventh Edition, revised by the Retे. S. Turner. 3 vols. 8vo. price 36 s.

Dr. Turton's Manual of the Land and Fresh-water Shells of the British Islands. A New Edition, with considerable Additions by John Edward Gray: With Woodcuts, and 12 coloured Plates. Post 8 vo . price 15 s .

Twining.-Types and Figures of the Bible, Illustrated by the Art of the Early and Middle Ages. By Miss Louisa Twining. With 54 Plates, comprising 207 Figures. Post 4to. 21s.

Dr. Ure's Dictionary of Arts, Manufacturcs, and Mines: Containing a clear Exposition of their Principles and Practice. Fourth Edition, much enlarged; with all the Information comprised in the Supplement of Recent Improvements brought down to the Present Time and incorporated: Most of the Articles being entirely re-written, and many new Articles now first added. With nearly 1,600 Woodcuts. 2 vols. 8 vo. price 60s.

Waterton.-Essays on Natural History, chiefly Ornithology. By C. Waterton, Esq. With an Autobiography of the Author, and Views of Walton Hall. New and cheaper Edition. 2 vols. fcp. 8 vo . price 10s.

Separately : Vol. I. (First Series), 5s. 6d. Vol. II. (Second Series), 4s. 6d.

Webster and Parkes's Encyclopædia of Domestic Economy; Comprising such subjects as are most immediately connected with Housekeeping: As, The Construction of Domestic Edifices, with the modes of Warming, Ventilating, and Lighting them-A description of the various articles of Furniture, with the nature of their Materials-Duties of Servants, \&c. New Edition; with nearly 1,000 Woodcuts. 8vo. price 50s.

THE TRAVELLER'S LIBRARY.

in course of publication in Parts at One Shilling and in VOLUMES PRICE HALF-A-CROWN EACH :

Comprising books of valuable information and acknowledged merit, in a form adapted for reading while Travelling, and also of a character that will render them worthy of preservation.

List of 43 Volumes already published.

Vol. 1. Mr. MACAULAY's ESSAYS on WARREN HASTINGS and LORD CLIVE

2. ESSAYS on PITT and CHATHAM, RANKE and GLADSTONE
 2/6

3. LAING's RESIDENCE in NURWAY 2/6
4. IDA PFEIFFEI's LADY's VOYAGE ROUND the WORLD 2/6
5. EÖTHEN, or TRACES of TRAVEL from the EAST 2/6
6. HUC's TRAVELS in TARTARY, THIBET, and CHINA 2/6
7. THOMAS HOLCROFT's MEMOIRS 2/6
8. WERNE's AFRICAN WANDERINGS 2/6
9. MRS. JAMESON's SKETCHES in CANADA 2/6
10. Mr. MACAULAY's ESSAYS on ADDISON, WALPOLE, and LORD BACON 2/6
11. JERRMANN's PICTURES from ST. PETERSBURG 2/6
12. THE REV. G. R. GLEIG's LEIPSIC CAMPAIGN 2/6
13. HUGHES's AUSTRALIAN COLONIES 2/6
14. SIR EDWARD SEAWARD's SHIPWRECK 2/6
15. ALEXANDRE DUMAS' MEMOIRS of a MAITRE D'ARMES 2/6
16. OUR COAL FIELDS and OUR COAL PITS 2/6
17. M'CULLOCH's LONDON ; and GIRONIERE's PHILIPPINES 2/6
18. SIR ROGER DE COVERLEY; a and SOUTHEY's LOVE STORY 2/6
LORD CARLISLE's LECTURES and ADDRESSES; and 2/6
JEFFREY's ESSAYS on SWIFT and RICHARDSON
JEFFREY's ESSAYS on SWIFT and RICHARDSON 2/6
19. THE ELECTRIC TELEGRAPH; and NATURAL HISTORY of CREATION 2/6
20. MEMOIR of the DUKE of WELLINGTON ; LIFE of MARSHAL TURENNE. 2/6
21. TURKEY and CHRISTENDOM; \& RANKE's FERDINAND and MAXIMILIAN(BARROW's CONTINENTAL TOUR; and24. $\{$ FERGUSON's SWISS MEN and SWISS MOUNTAINS $\}$2/6
22. SOUVESTRE's ATTIC PHILOSOPHER in PARIS, and 2/6 WORKING MAN'S CONFESSIONS ..
Mr. MACAULAY's ESSAYS on LORD BYRON and the COMIC DRAMATISTS; and his SPEECHES on PARLIAMENTARY REFORM (1831-32) $2 / 6$
SHIRLEY BROOKS's RUSSIANS of the SOUTH; and
2/6
2/6
23. DR. KEMP's INDICATIONS of INSTINCT
24. DR. KEMP's INDICATIONS of INSTINCT 2/6
25. RUSSIA. By the MARQUIS DE CUSTINE 3/6
26. SELECTIONS from the Rev. SYDNEY SMITH'S WRITINGS, Vol. I. 2/6
BODENSTEDT and WAGNER'S SCHAMYL; ;and 2/6
27. LAING'S NOTES of a TRAVELLER, First Series 2/6
28. DURRIEU'S MOROCCO; and an ESSAY on MORMONISM 2/6
29. RAMBLES in ICELAND, by PLINY MILES 2/6
30. SELECTIONS from the Rev. SYDNEY SMITH'S WRITINGS, Vol. II 2/6
31. $\{$ HAYWARD's ESSAYS on CHESTERFIELD and SELWYN; and 2/6
32. CORNWALL: its MINES, MINERS, and SCENERY. 2/6
33. DE FOE and CHURCHILL. By JOHN FORSTER, Esq. 2/6
34. GREGOROVIUS'S CORSICA, translated by RUSSELL MaRTINEAU, M.A. 3/6
35. FRANCIS ARAGO'S AUTOBIOGRAPHY, translated by the Rev. B. POWELL $\}$ 2/6
36. MASON'S LIFE with the ZULUS of NATAL, SOUTH AFRICA 2/6
37. FORESTER'S RAMBLES IN NORWAY 2/6
38. SPENCER'S RAILWAY MORALS and RAILWAY POLICY 2/6

Weld.-A Vacation Tour in the United States and Canada. By C. R. Weld, Barrister-at-Law. Post 8vo. with Route Map, 10s. 6d.

West. - Lectures on the Diseases of Infaney and Childhood. By Charles West, M.D., Physician to the Hospital for Siek Children; Physician-Aceoueheur to, and Lecturer on Midwifery at, St. Bartholomew's Hospital. Third Edition, revised and enlarged. 8ro. 14s.
Wheeler (H. M.)-A Popular Harmony of the Bible, Historically and Chronologically arranged. By Henry M. Wheeler, Author of Hebrew for Adults, \&c. Fep. 8vo. 5s.

Wheeler (J.T.)-The Life and Travels of Herodotus in the Fifth Century before Christ: An imaginary Biography illustrative of the History, Manners, Religion, Literature; Arts, and Social Condition of the Greeks, Persians, Babylonians, Egyptians, Hebrews, Sey thians, and other Ancient Nations, in the Days of Pcricles and Nehemiah. By J. Tacboys Wheeler, F.R.G.S. 2 vols. post 8 vo . price 21s.

Wheeler.-The Geography of Herodotus Developed, Explained, and Illustrated from Modern Researches and Diseoveries. By J. Talboys Whbeler, F.R.G.S. With Maps and Plans. 8vo. price 18 s .

Whitelocke's Journal of the English Embassy to the Court of Sweden in the Years 1653 and 1654. A New Edition, revised by Henry Reete, Esq., F.S.A. 2 vols. 8vo. 24s.
Willich's Popular Tables for ascertaining the Value of Lifehold, Leasehold, and Chureh Property, Renewal Fines, \&c. Third Edition, with additional Tables of Natural or Hyperbolic Logarithms, Trigonometry, Astronomy, Geography, \&c. Post 8vo. price 9s.

Lady Willoughby's Diary (1635 to 1663). Printed, ornamented, and bound in the style of the period to which The Diary refers. New Edition; in Two Parts. Square fep. 8vo. price 8s, each, boards; or, bound in morocco, 18s. each.

Wilmot's Abridgment of Blackstone's Commentaries on the Laws of England, intended for the use of Young Persons, and comprised in a series of Letters from a Father to his Daughter. A New Edition, correeted and brought down to the Present Day, by Sir John E. Eardley Wilmot, Bart. 12 mo . price 6s. 6 d .

Wilson. - Bryologia Britannica: Containing the Mosses of Great Britain and Ireland systematically arrangedand deseribed aecording to the Method of Bruch and Schimper; with 61 illustrative Plates, including 25 new ones engraved for the present work. Being a new Edition, with many Additions and Alterations, of the Muscologia Britannica of Messrs. Hooker and Taylor. By William Wilson, President of the Warrington Natural History Society. 8vo. 42 s . ; or, with the Plates coloured, $£ 4.4 \mathrm{~s}$.

Woods.-The Fast Campaign : A Sketch

 of the War in the East, from the Departure of Lord Raglan to the Time of the Kerteh Expedition; with a brief Appendix, detailing the Events to the Capture of Sebastopol. By N. A. Woods, late Special Correspondent to the Morning Herald at the Seat of War. 2 vols. post 8 vo.**This work is compiled partly on the incidents of the letters which appeared in the MorningIIerald, and partly on private notes, taken on the spot by the author, with original documents since forwarded to him,-comprising the Journals of Captain Butler describing the defence of Silistria, and the correspondence of Captain Christie reiative to the disastrous gale in the Black Sea, Nov. 14, 1854.

Yonge.-A New English-Greek Lexicon: Containing all the Greek Words used by Writers of good authority. By C. D. Yonge, B.A. Post 4to. 21s.

Yonge's New Latin Gradus: Containing every Word used by the Poets of good authority. By Authority and for the Use of Eton, Westminster, Winchester, Harrow, Charterhouse, and Rugby Schools; King's College, London ; and Marlborough College. Third Edition. Post 8vo. 9s.

Youatt.-The Horse. By William Youatt. With a Treatise of Draught. New Edition, with numerous Wood Engravings, from Designs by William Harvey. (Messrs. Longman and Co.'s Edition should bo ordered.) 8vo. price 10s.

Youatt.-The Dog. By William Youatt. A New Edition; with numerous Engravings, from Designs by W. Harvey. 8vo. 6s.

Young.-The Christ of History : An Argument grounded in the Facts of His Life on Earth. By the Rev. John Young, M.A., formerly of Albion Chapel, Moorfields. Post 8ro. 78. 6d.

Zumpt's Grammar of the Latin Language. Translated and adapted for the use of English Students by Dr. L. Schmitz, F.R.S.E. : With numerous Additions and Correetions by the Author and Translator. 4th Edition, thoroughly revised. 8vo. 14s.

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

QA
431
C37
1855
$\stackrel{C}{\text { PAS }}{ }^{1}$

Mrs JAMESONS WORTS

A OONMONELACE BOOS：

KEORMD日 \＆f the MADCLNA

 k．＇1．

BACTEE－NPNDARY ARD

zhe Aupere cont Atrlatnelin
thetrantiolty

T－e Dinelly al bhe om not

Tbe Patcou Silmoty
Ther Miturey－9！
Tbe refle Bithoges． The Harmils，
Thotwrifors stecter abrie cindiom
 ham．Ghemf plailguat
steqxat of e日a

$$
\begin{aligned}
& \text { 日合ETPBES in CANADAH }
\end{aligned}
$$

[^0]: * "Philosophical Transactions," 1837.

[^1]: * "Wood's Algebra," Eleventh Edition, by Lund; Appendix II., p. xlix.

[^2]: * In connexion with the appearance of arbitrary functions in the solutions of partial differential equations, it is observed in Gregory's Examples (Int. Cal., Chapter VI.), that, "as in the solution of ordinary differential equations we continually meet with expressions of the form $C e^{a x}\left(=e^{a x} C\right.$), so in partial differential equations we shall find expressions of the form

 $$
 e^{a D_{y} \cdot x} \phi(y),
 $$

 in which the arbitrary function takes the place of the arbitrary constant."
 I cannot regard this view as at all satisfactory, but rather as an inversion of the real state of the case. In fact, as it appears to me, the terms including arbitrary constants are only particular cases of arbitrary functions, in which the variables are reduced to one.

[^3]: - For illustrations of the employment of polar co-ordinates in the investigation of the properties of surfaces, see Appendix B, On the Quadrature of Surfaces, and the Rectification of Curves.

[^4]: * It may be well to state, that the principle of the method here employed, with its results, as exhibited in the remainder of this Chapter, first suggested themselves in the month of December, 1851, and were communicated to the Dublin University Philosophical Society in the month of April, 1852.

[^5]: * The ordinary reciprocal of this last equation was given many years ago by the Rev. George Salmon, Fellow of Trinity College, and Donegal Lecturer on Mathematics in the University of Dublin.

[^6]: * I am indebted for this proof to the "Treatise on Differential Equations and the Calculus of Finite Differences," by the Rev. J. Hymers. Cambridge : 1839.

