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PREFACE.

This new edition has been carefully revised, and

in great part re-written
;

alterations having been

made in some places for the sake of brevity, in

others for the sake of greater clearness, in others

in order to bring the methods more closely up to

the present state of Greometrical Science. Several

new examples have been added; as well as a new

Chapter on the Applications of the Modern Algebra

to the Theory of Conic Sections. Greater pro-

minence has been given to the principle of duality;

and it has been attempted to show that without

the introduction of any new system of co-ordinates,

the reciprocity between theorems concerning lines,

and theorems concerning points, can be sufficiently

manifested. The change most likely to be objected

to is the alteration I have made in the mode of

writing the equation of the second degree, the letters

being now used not in alphabetical order, but in the

order suggested by the symmetry of the equation.

I believe that the advantage of having uniform
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notation through the volume, will be found to be

so great as to compensate for some temporary in-

convenience caused to those who are already familiar

with formulae in the older notation.

I have to acknowledge the courtesy of several

correspondents who sent me lists of the errata of

the former edition, which, if I had now been con-

tented with a simple reprint, would have enabled

me to make one nearly free from error. I shall be

thankful to any of my readers who may furnish

me with similar lists of the errors from which I fear

this edition is not exempt, notwithstanding that

most of the sheets have been looked over either by
Dr. Hart or Mr. Gray or Mr. James McDowell,

who have at various times kindly assisted me in

correcting the press. I beg to thank Mr. Burnside

for several notes of which I have in different places

made use; and I have derived considerable assist-

ance from the notes and additions in Dr. Fiedler's

German translation of this work.

TaiNiTY College, Dublin,

October^ 1863.
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ANALYTIC GEOMETRY,

CHAPTER I.

THE POINT.

1. The following method of determining the position of any

point on a plane was introduced by Des Cartes in his Geoinitrie^

1637
;
and has been generally used by succeeding geometers.

We are supposed to be given the position of two fixed

right lines, XX\ YY\ intersecting in the point 0. Now, if

through any point P we y
draw PM^ PN^ parallel to

YY' and XX', it is plain

that, if we knew the position

of the point P, we should

know the lengths of the pa-
rallels PM,PN] or, vice versa,

that if we knew the lengths

of Pi/, PN, we should know

the position of the point 0,

Suppose, for example, that

we were given PN= a,

PM— bj we need only measure OM— a and 0K= 5, and draw

the parallels PM, P^, which will intersect in the point required.

It is usual to denote PM parallel to OF by the letter y,

and PN parallel to OX by the letter x, and the point P is said

to be determined by the two equations x=^a,y = 'b.

2. The parallels PM, PN, are called the co-ordinates of the

point P. PM is often called the ordinate of the point P; while

PN, which is equal to OM the intercept cut off by the ordinate,

is called the abscissa.
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The fixed lines XX' and YY' are termed the axes of co-

ordinates^ and the point (9,
in which they intersect, is called the

origin. The axes are said to be rectangular or oblique, ac-

cording as the angle at which they intersect is a right angle
or oblique.

It will readily be seen that the co-ordinates of the point M
on the preceding figure are a? = «, ^ = ;

that those of the point
N are a; = 0, ^ = 5

;
and of the origin itself are x = 0^y

— 0.

3. In order that the equations x — a^ 3/
=

^> should only
be satisfied by one point, it is necessary to pay attention, not

only to the magnitudes^ but also to the signs of the co-

ordinates.

If we paid no attention to the signs of the co-ordinates, we

might measure 0M= a and 0N= 5, on either side of the origin,

and any of the four points

P, P„ P^, P3, would satisfy

the equations x — a^y='b.
It is possible, however, to

distinguish algebraically

between the lines OM^
OM' (which are equal in

magnitude, but opposite in

direction) by giving them

different signs. We lay
down a rule, that if lines

measured in one direction

be considered as positive,

lines measured in the oppo-
site direction must be con-

sidered as negative. It
is, of course, arbitrary in which

direction we measure positive lines, but it is customary to

consider OM (measured to the right hand) and ON (measured

wpwards) as positive, and 0M\ ON' (measured in the oppo-
site directions) as negative lines.

Introducing these conventions, the four points P^ P^^ P ^
P

are easily distinguished. Their co-ordinates are, respectively,

x = + a\ x = — a\ x=^ + a\ x = -a\
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These distinctions of sign can present no difficulty to the

learner, who is supposed to be already acquainted with tri-

gonometry.
N.B.—The points whose co-ordinates are a? = a, y — l-,

or

x=^x^ y — y\ are generally briefly designated as the point (a, 5),

or the point xy\
It appears from what has been said, that the points (+a, -|-Z»),

(— «,
—

&), lie on a right line passing through the origin ;
that

they are equidistant from the origin, and on opposite sides of it.

4. To express the distance between two points xy\ x"y\ the

axes of co-ordinates being supposed rectangular.

By Euclid I. 47,

PQ' = P8'' + SQ% but P8=PM- QM' =y'
-

y'\

and ^

QS=^ OM^ OM' = x'.- x"
;

hence ^^PQ'^^ (aj'
- xj + [y

-yj.
To express the distance of any point from the origija, we

must make ic." = 0, y" = 0, in the above, and we find

5. In the following pages we shall but seldom have occasion

Q S

O M' M

to make use of oblique co-

ordinates, since formulae are,

in general, much simplified

by the use of rectangular

axes; as, however, oblique

co-ordinates may sometimes

be employed with advantage,
we shall give the principal

formulae in their most gene-
ral form.

Suppose, in the last figure, the angle YOX oblique and

=
0), then

and Pg = P8! + QS' - 2PS. QS. cos^PJSQ,

or, PQ\== [y- y"f + {x
- x"f + 2{y'- y") [x

-
x") cos co.

Similarly, the square of the distance of a point, x'y', from

the origin
= x''' + y' + 2xy' cosw.

b2
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In applying these formulae, attention must be paid to the

signs of the co-ordinates. If the point Q, for example, were

111 the angle XO Y\ the sign of y" would be changed, and the

line FS would be the sum and not the difference of y' and y".

The learner will find no difficulty, if, having written the co-

ordinates with their proper signs, he is careful to take for P8
and Q8 the algehraic difference of the corresponding pair of

co-ordinates.

Ex. 1. To find the lengths of the sides of a triangle the co-ordinates

of whose vertices are x' = 2, y'
= 3j ;c" = 4, ?/"

= - 5
;

3^'.' = -
3, y"'

= -
6,

the axes being rectangujar. Ans. V^^j V50,_ V106-

Ex 2. Find the lengths of the sides of a triangle the co-ordinates of

whose vertices are the same as in the last example, the axes being inclined

at an angle of 60°. Ans. V52, V^^, V151.

Ex. 3. Express that the distance of the point xy from the point (2, 3)

is equal to 4. Ans. {x
- 2^ + (y

-
3)«

= 16.

Ex. 4. Express that the point xy is equidistant from the points (2, 3),

(4,5). Ans. (a:-2)' + (y-3)* =
(a:-4)« + (y-5)*; ora; + t/

= 7.

Ex. 5. Find the point equidistant from the points (2, 3), (4, 5), (6, 1),

Here we have two equations to determine the two unknown quantities x, y»

Ans, a: = -5- , y = - and the common distance is '^—-^
6 6 3

6. The distance between two points, being expressed in

the form of a square root, is necessarily susceptible of a double

sign. If the distance PQ^ measured from P to Q^ be con-

sidered positive, then the distance QP^ measured from Q to P,
is considered negative. If indeed we are only concerned

with the single distance between two points, it would be un-

meaning to affix any sign to it, since by prefixing a sign we
in fact direct that this distance shall be added to, or subtracted

from, some other distance. But suppose we are given three

points P, 0, E in a right line, and know the distances

PC, QR^ we may infer, PR = PQ+ QR. And with the ex-

planation now given, this equation remains true, even though
the point R lie between P and Q. For, in that case, PQ and

QR are measured in opposite directions, and PR which is their

arithmetical difference is still their algebraical sum. Except
in the case of lines parallel to one of the axes, no convention

has been established as to which shall be considered the positive

direction.
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7. To find the co-ordinates of the point cutting in a given
ratio m : w, the linejoining two given points x'y\ sc'y".

Let
ic, y be the co-ordinates of the point B which we seek

to determine, then

m : n :: FB : RQ :: MS : SN,
or / T> ^^-^y
mini: X —X : x — x • "^

or mx—mx—nx^nx
hence

mx -\-nxX— . / N S M
m-\-n

In like manner

my' ^ny'
^ m + n

If the line were to be cut externally in the given ratio, we
should have

m : n :: x — x : X — x\
, .

f.
mx' — nx' my" — ny'

and therefore x — , y = ^ ^
,m —n' *^ m —n

It will be observed that the formulae for external section

ar@ obtained from those for internal section by changing the

sign of the ratio ; that
is, by changing m : i-n into m :

— n.

In fact, in the case of internal section, FB and BQ are

measured in the same direction, and their ratio (Art. 6) is to

be counted as positive. But in the case of external section

FB and BQ are measured in opposite directions, and their

ratio is negative.

Ex. 1. To find the co-ordinates of the middle point of the line joining

the points x'y', x"y". _x' -^ x" _ r/ + y"
Ans. X ~ —

^
—

, y — .

Ex. 2. To find the co-ordinates of the middle points of the sides of the

triangle the co-ordinates of whose vertices are (2, 3), (4,
-

5), (- 3,
-

6).

-M^4')'(-^-|)-(^--)-
Ex. 3. The line joining the points (2, 3), (4,

-
5), is trisected; to find

the co-ordinates of the point of trisection nearest the former point.

Ans. a: = -
, ye-.
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Ex. 4. The co-ordinates of the vertices of a triangle being aiy\ icfy'\

af'y'", to find the co-ordinates of the point of trisection (remote from the

vertex) of the line joining any vertex to the middle point of the opposite

side. , x' + x" + x'" yf -f y" + y'"

^
—

' y =
3

•AUB,

Ex. 6. To find the co-ordinates of the intersection of the bisectors of

sides of the triangle, the co-ordinates of whose vertices are given in Ex. 2.

Ex. 0. Any side of a triangle is cut in the ratio m : n, and the line

joining this to the opposite vertex is cut in the ratio m + w : ^; to find the

co-ordinates of the point of section.

Ix' + mx" + nxf" ly' \ my" \ ny'"
Ans. X =

; , y
~

Z + wj + w / + m + w

TRANSFORMATION OF CO-ORDINATES.

8. When we know the co-ordinates of a point refeiTed to

one pair of axes, it is frequently necessary to find its co-

ordinates referred to another pair of axes. This operation is

called the transformation of co-ordinates.

We shall consider three cases separately: first, we shall

suppose the origin changed, but the new axes parallel to the

old
; secondly, we shall suppose the directions of the axes

changed, but the origin to remain unaltered; and thirdly, we
shall suppose both origin and directions of axes to be altered.

First. Let the new axes be parallel to the old.

Let Ox^ Oy^ be

the old axes, O'X,
O F, the new axes.

Let the co-ordinates

of the new origin

referred to the old be

x\ ?/,
or 0'S = Xj

0'E = y\ Let the

old co-ordinates be

Xj y^ the new X, F,

then we have

OM^OB + RM, and Pi/= PN+ NM,
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that IS.

a; = a;'H-X, and y = y' -{ F.

These formulae are, evidently, equally true, whether the axes
be oblique or rectangular.

9. Secondly, let the directions of the axes be changed, while
the origin is unaltered.

Let the original axes be Ox^ Oy^ so that we have OQ= Xj
PQ = y. Let the new axes

be OX, OYj so that we have

ON=X, PN=Y, Let OX,
OY make angles respectively

a, ^, with the old axis of
ic,

and angles a', jS' with the old

axis of y] and if the angle

xOy between the old axes be

ft),
we have obviously a+a'=ft),

since XOx + XOy = xOy', and in like manner /3 + /3'
= g).

The formulae of transformation are most easily obtained by

expressing the perpendiculars from P on the original axes, in

terms of the new co-ordinates and the old. Since

PM=PQ ^'mPQM we have PM=y sino).

But also PM=NR + PS= ON 8mN0E +PN BinPNS.

Hence ^ sinw =X sin a + Y sin/3.

In like manner

y/ /
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To transform from a sijstem of rectangular axes to a new rect-

angular system making an angle 6 with tlie old.

Here we have ,,^

a' = 90-6>, y9'
= -(9;

and the general formulae become

y =X sin ^ + F cos ^,

a; = Xcosl9- Fslnl^: o MR
the truth of which may also be seen directly, since y - PS+ NR,
x=0E-8N, while

FS^PNcosO, NB= ONsmO; 0R= ONcosO, 8N=FNsme.

There is only one other case of transformation which often

occurs in practice.

To transformfrom oblique co-ordinates to rectangular, retaining
tJie old axis of x.

We may use the general
formulae making

a=0, y5=90, a'=t«, y6'=ft)-90.

But it is more simple to in-

vestigate the formulse directly.

We have OQ and PQ for the ^ ' ^
old X and y, OM and PM for the new

;
and since PQM= «,

we have

Y=y smo), X=x-^ y coscd:

while from these equations we get the expressions for the old

co-ordinates in terms of the new

y smi = F, a? sin ft) =X sin o) — F cos ft).

10. Thirdly, by combining the transformations of the two

preceding articles, we can find the co-ordinates of a point re-

ferred to two new axes In any position whatever. We first find

the co-ordinates (by Art. 8) referred to a pair of axes through
the new origin parallel to the old axes, and then (by Art. 9)

we can find the co-ordinates referred to the required axes.

The general expressions are obviously obtained by adding x'

and y' to the values for x and y given in the last article.



POLAR CO-OEDINATES. 9

Ex. 1 . The co-ordinates of a point satisfy the relation

a:' + 2/*
- 4a: -

6?/ = 18 :

what will this become if the origin be transformed to the point (2, 3) ?

Ans. X'+Y' = Z],

Ex. 2. The co-ordinates of a point to one set of rectangular axes

satisfy the relation ?/*
- ar* = 6 : what will this become if transformed to axes

bisecting the angles between the given axes ? Ans. XY=3.
Ex. 3. Transform the equation 2x^ -

6xy + 2y' = 4 from axes inclined

to each other at an angle of 60°, to the right lines which bisect the angles
between the given axes. Ans. X^ -21Y^ ^ 12 = 0.

Ex. 4. Transform the same equation to rectangular axes, retaining the

old axis of a:. Atis. 3X' + lOF* - 7XFV3 = 6.

Ex. 5. It is evident that when we change from one set of rectangular
axes to another, x^ + y* must = X^ -f Y^, since both express the square of

the distance of a point from the origin. Verify this by squaring and adding
the expressions for X and Y in Art. 9.

Ex. 6. Verify in like manner in general that

x'^y^ ^ 2xy cosxOy = XH F* + 2XFcosXOK
If we write X sina + Y sin j3

= L, X cosa + Y cos(3
= M, the ex-

pressions in Art. 9 may be written y s'lntv = L, x sinvo = M sintv - L cosw;
M'hence

sin' u)
(ar* + j/* + 2xy cos w) = (Z' + M^) sin'w.

But i* + 3r = X'+Y'i- 2XYcos{u -
^); and a ~ ^ ^ XOY,

11. The degree of any equation hetween the co-ordinates is not

altered hy transformation of co-ordinates.

Transformation cannot increase the degree of the equation :

for if the highest terms in the given equation be
ic"", 3/"", &c.,

those in the transformed equation will be

{a;'sinft)-l-icsin(w
—

a) -f?/ sin (o)— /?)}'", (?/' sinto4-iCsina-f-?/sin/3)"*,

&c., which evidently cannot contain powers of a? or y above the

TTi^ degree. Neither can transformation diminish the degree of

an equation, since by transforming the transformed equation

back again to the old axes, we must fall back on the original

equation, and if the first transformation had diminished the

degree of the equation, the second should increase
it, contrary

to what has just been proved.

POLAR CO-ORDINATES.

12. Another method of expressing the position of a point

is often employed.
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If we were given a fixed point 0, and a fixed line through it

OB^ it is evident that we should p
know the position of any point

P, if we knew the length OP,
and also the angle FOB, The
line OP is called the radius

vector ; the fixed point is called

the pole ; and this method is called the method of polar co-

ordinates.

It is very easy, being given the x and
7/ co-ordinates of a

point, to find its polar ones, v
or vice versa.

First, let the fixed line

coincide with the axis of
a?,

then we have

OFiFM: : sinPJ/6> : sinPOil/:

denoting OP by /?,
POM by

e, and YOX by co
;
then

p sin 6PM or y smo) ;
and similarly, Oif= x = ^

smo)

o

For the more ordinary case of rectangular co-ordinates,
ft) = 90°, and we have simply

x=^p cos 6 and y = p sin 6.

Secondly. Let the fixed

line OB not coincide with the

axis of x^ but make with it an

angle =a, then

POB=e^ndiPOM=e-a,
and we have only to substitute ^ - a for ^ in the preceding
formulae.

For rectangular co-ordinates we have

x = p cos {6
—

a) and y = p sin (^
—

a).

Ex. 1. Change to polar co-ordinates the following equations in rect-

angular co-ordinates :

a:^ + 2/*
= 5mr. Ana.

/>
= 5m cosO.

x^ -
tf = a*. Atis. // cos 26^ = a*.
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Ex. 2. Change to rectangular co-ordinates the following equations in

polar co-ordinates ;

/3*
sin 20 = 2a' Ans. xy = a*.

fi"
= a' cos 20. Ans. («« + y^f = a" (««

-
/).

p cos i^ = ai Ans. x^ \ y^ = (2a
-

ar)'.

^^
/3^

= a*cosi^. ^ns. (2a;« + 2/-aa;)'' = a''(a:U «/').

13. To express the distance hetween two points^ in terms of
their polar co-ordinates.

Let P and Q be the two points, ^ Q

then O B

pg^= 0P'+ 0Q'-20P. OQ.co^POQ,
or ^' = p'^ + p'"'

-
2pp" cos (6>"

-
6'').

CHAPTER 11.

THE RIGHT LINE.

14. An7/ two equations hetween the co-ordinates represent

geometrically one or more points.

If the equations be both of the first degree (see Ex. 5, p. 4),

Aey denote a single point. For solving the equations for

^Sind y, we obtain a result of the form x = a^ 3/
=

^j which,
as was proved in the last chapter, represents a point.

If the equations be of higher degree, they represent more

points than one. For, eliminating y between the equations,

we obtain an equation containing x only; let its roots be aj,

ttg, Kg, &c. Now, if we substitute any of these values (aj for

X in the original equations, we get two equations in y^ which

must have a common root (since the result of elimination be-

tween the equations is rendered = by the supposition x
—

aj.

Let this common root be ^ = /3j.
Then the values a? = a^, y = ^„

at once satisfy both the given equations, and denote a point
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which IS represented by these equations. So, in like manner,
is the point whose co-ordinates are x = OL^^y

=
/S^,

&c.

Ex. 1. What point is denoted by the equations 3a; + 5y = 13, 4a; - y = 2 ?

Ans. X = 1, y = 2.

Ex. 2. What points are represented by the two equations a;* + y' = 5,

xy = 2? Eliminating y between the equations, we get x* - 5a;* + 4 = 0.

The roots of this equation are a;' = 1 and x' = 4, and, therefore, the four

values of x are

a; = + 1, a; = -
1, a; = + 2, a; = - 2.

Substituting these successively in the second equation, we obtain the

corresponding values of y,

y = 4 2, y = -2, y = + l, y = -l.

The two givan equations, therefore, represent the four points

(+ 1, + 2), (- 1,
-

2), (+ 2, + 1), (- 2,
-

1).

Ex. 3. What points are denoted by the equations

a; - y =
1, a:* + y*

= 25 ? A7is. (4, 3), (- 3,
-

4).

Ex. 4. What points are denoted by the equations

a;* - 5a; + y + 3 =
0, a;* + y*

- 5a; - 3y + 6 = ?

Ans. (1, 1), (2, 3), (3, 3), (4, 1).

15. A single equation between the co-ordinates denotes a

geometrical locus.

One equation evidently does not afford us conditions enough
to determine the two unknown quantities a?, i/j and an inde-

finite number of systems of values of x and
i/
can be found which

will satisfy the given equation. And yet the co-ordinates of

any point taken at random will not satisfy it. The assemblage
then of points, whose co-ordinates do satisfy the equation, forms

a locusj which is considered the geometrical signification of

the given equation.

Thus, for example, we saw (Ex. 3, p. 4), that the equation

(a^-2r-f(j/-3r = 16

expresses that the distance of the point xy from the point

(2, 3)
= 4. This equation then is satisfied by the co-ordinates of

any point on the circle whose centre is the point (2, 3), and

whose radius is 4
;
and by the co-ordinates of no other point.

This circle then is the locus which the equation is said to

represent.

We can illustrate by a still simpler example, that a single

equation between the co-ordinates signifies a locus. Let us
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recall the construction by which (p. 1) we determined the

position of a point from

the two equations x — a^

y^h. We took 0M= a
;

we drew MK parallel to

OF; and then, measuring

MF=h, we found P, the

point required. Had we
been given a different value

of y, a? = a, 2/
=

h\ we should

proceed as before, and we
should find a point P still situated on the line MK^ but at

a different distance from M. Lastly, if the value of y were

left wholly indeterminate, and we were merely given the

single equation x = a^ we should know that the point P
was situated somewhere on the line MK^ but its position in

that line would not be determined. Hence the line MK is

the locus of all the points represented by the equation a7 = «,

since, whatever point we take on the line MK, the x of that

point will always = c?.

16. In general, if we are given an equation of any degree
between the co-ordinates, let us assume for x any value we

please (a?
=

a), and the equation will enable us to determine

a finite number of values of y answering to this particular

value of X
;

and consequently, the equation will be satisfied for

each of the points (^, $', r, &c.), whose x is the assumed value,

and whose y is that found from the equation. Again, assume

for X any other value

(x = a'), and we find,

in like manner, ano-

ther series of points,

^', q'j /, whose co-

ordinates satisfy the

equation. So again,

if we assume x = a"

or a? = a" &c. Now,
if a? be supposed to

take successively all
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possible values, the assemblage of points found as above will

form a locus^ every point of which satisfies the conditions of the

equation, and which is, therefore, its geometrical signification.

We can find in the manner just explained as many points

of this locus as we please, until we have enough to represent

its figure to the eye.

Ex. 1. Represent in a figure* a series of points which satisfy the

equation y = 2a: + 3.

Ans. Giving x the values -
2,

-
1, 0, 1, 2, &c., we find for y,

-
1,

1, 3, 5, 7, &c., and the corresponding points will be seen all to lie on

a right line.

Ex. 2. Represent the locus denoted by the equation y = x^ - ^x - 2.

Ans. To the values for x,
-

1,
-

^, 0, l, 1, f, 2, f, 3, |, 4; cor-

respond for
2/, 2,

-
i,

-
2,

- \^ -
4,

-
\^,

-
4,

-
i/,

-
2,

-
J, 2. If

the points thus denoted be laid down on paper, they will sufficiently

exhibit the form of the curve, which may be continued indefinitely by

giving X greater positive or negative values.

Ex. 3. Represent the curve y = 3 ± ^(20 - x -
a;').

Here to each value of x correspond two values of y. No part of the

curve lies to the right of the line a; = 4, or to the left of the line ar = -
5,

since by giving greater positive or negative values to a:, the value of y
becomes imaginary.

17. The whole science of Analytic Geometry is founded

on the connexion which has been thus proved to exist between

an equation and a locus. If a curve be defined by any geo-
metrical property, it will be our business to deduce from that

property an equation which must be satisfied by the co-ordinates

of every point on the curve. Thus, if a circle be defined as

the locus of a point (ic, y\ whose distance from a fixed point

(«, V) is constant, and equal to r
;
then the equation of the circle

to rectangular co-ordinates, is (Art. 4),

{x-af-^{y-of^r\
On the other hand, it will be our business when an equation is

given, to find the figure of the curve represented, and to deduce

its geometrical properties. In order to do this systematically,
we make a classification of equations according to their degrees,
and beginning with the simplest, examine the form and pro-

perties of the locus represented by the equation. The degree

* The learner is recommended to use paper ruled into little squares,
which is sold under the name of logarithm paper.
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of an equation is estimated by the highest value of the sum
of the indices of x and y in any term. Thus the equation

ajy + 2ic + 3?^ = 4 is of the second degree, because it contains

the term xy. If this term were absent, it would be of the

first degree. A curve is said to be of the ti^ degree when
the equation which represents it is of that degree.

We commence with the equation of the first degree, and we
shall prove that this always represents a riylit line^ and, con-

versely, that the equation of a right line is always of the first

degree.

18. We have already (Art. 15) interpreted the simplest case

of an equation of the first degree, namely, the equation x — a.

In like manner, the equation y — h represents a line PA^ parallel

to the axis OX, and meeting the axis ^T at a distance from

the origin ON— h. If we suppose h to be equal to nothing,

we see that the equation j/
= denotes the axis OX] and in

like manner that x — denotes the axis Y,

Let us now proceed to the case next in order of simplicity,

and let us examine what relation subsists between the co-ordinates

of points situated on a right line passmg through the origin.

If we take any point P
on such a line we see that

hoth the co-ordinates Pif,

OM^ will vary in length,

but that the ratio PM:OM
will be constant, being =
to the ratio

sinPOif:sinJfPa

Hence we

equation

see, that the

_ sinPOif
y~^mMPO^'

will be satisfied for every

point of the line OP, and,

therefore, this equation is said to be the equation of the line OP.

Conversely, if we were asked what locus was represented

by the equation
y
—
mxj
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write the equation in the form — = m, and the question is,
*' to

find the locus of a point P, such that, if we draw Pi/, PN
parallel to two fixed lines, the ratio PM ', PAT'may be constant."

Now this locus evidently is a right line OP, passing through

0, the point of intersection of the two fixed lines, and dividing
the angle between them in such a manner that

miPOM^msmPON.
If the axes be rectangular, sinP6>_^^= cosPOif, therefore,

w = tanPOi¥, and the equation y — mx represents a right line

passing through the origin, and making an angle with the

axis of
a?,

whose tangent is m,

19. An equation of the form y = -\-mx will denote a line

OP, situated in the angles YOX^ Y'OX'. For it appears,
from the equation y = -\- mx^ that whenever x is positive y
will be positive, and whenever x is negative y will be negative.

Points, therefore, represented by this equation, must have their

co-ordinates either both positive or both negative, and such

points we saw (Art. 3) lie only in the angles FOX, Y'OX'.

On the contrary, in order to satisfy the equation y = — mxj
if cc be positive y must be negative, and if x be negative y
must be positive. Points, therefore, satisfying this equation,
will have their co-ordinates of different signs; and the line

represented by the equation, must, therefore (Art. 3), lie in the

angles Y'OX, YOX.

20. Let us now examine how to represent a right line PQ.
situated in any manner

with regard to the axes.

Draw OB through
the origin parallel to PQ,
and let the ordinate PM
meet OB in B. Now it

is plain (as in Art. 18),

that the ratio BM : OM
will be always constant

{BM always equal, sup-

pose, to w. OM) ;
but the ordinate PM differs from BM by
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the constant length PR= OQ, which we shall call h. Hence
we may write down the equation

Pir= RM + PE, or FM= m,OM+ PR,
that is, y — mx + h.

The equation, therefore, y = mx + Z>, being satisfied by every

point of the line PQ, is said to be the equation of that line.

It appears from the last Article, that m will be positive or

negative according as OR, parallel to the right line PQ, lies in

the angle YOX, or Y' OX. And, again, h will be positive

or negative according as the point Q, in which the line meets

OY, lies above or below the origin.

Conversely, the equation y = mx 4 b will always denote a

right line
;
for the equation can be put into the form

y — b
^ =7/1.
X

Now, since if we draw the line §T parallel to OM, TM will

be = b, and PT therefore =y — b, the question becomes :
" To

find the locus of a point, such that, if we draw PT parallel

to or to meet the fixed line QT, PT may be to QT in a

constant ratio ;" and this locus evidently is the right line PQ
passing through Q,

The most general equation of the first degree, Ax-\- By-\- (7=0,

can obviously be reduced to the form y = mx + b, since it is

equivalent to

_ A C

this equation therefore always represents a right line.

21. From the last Articles we are able to ascertain the

geometrical meaning of the constants in the equation of a

right line. If the right line represented by the equation

y = 7nx + b make an angle =a with the axis of x, and =^
with the axis of y, then (Art. 18)

sin a

smp'
and if the axes be rectangular, ?w = tana.

We saw (Art. 20) that b is the intercept which the line cuts

off on the axis of y.
c



18 THE RIGHT LINE.

If the equation be given in the general form Ax-\-ByA-C—Oy
we can reduce it,

a3 in the last Article, to the form y = mx + hj

and we find that

A _ sina

(J
or if the axes be rectangular =tana; and that — ^ is the

length of the intercept made by the line on the axis of y.

Cor. The lines y = mx + h^ y=^m'x-\-h' will be parallel

to each other if m = m\ since then they will both make the

same angle with the axis. Similarly the lines Ax + By + C=Oj
A'x + B'y 4- 0' = 0, will be parallel if

A_A
B~B"

Beside the forms Ax-]- By+ (7=0 and y — mx + h^ there are

two other forms in which the equation of a right line is frequently

used
;
these we next proceed to lay before the reader.

22. To express the equation of a line MN in terms of the

intercepts 0M= a^ 0N= h which it cuts off on the axes.

We can derive this from the form already considered

A B
Ax-{-By-\- 0=0, or

~x-\--^y + \ 0.

This equation must be satisfied by the co-ordinates of every

point on MN^ and there-

fore by those of
71/,

which

(see Art. 2) are x = a^

y = 0. Hence w« have

_a+l=0, ^
= --.

In like manner, since

the equation is satisfied

by the co-ordinates of

iV, (a;=0, 3/=5), we have

B_l
C~ h'

Substituting which values in the general form it becomes

5 + 1
= 1.

a b
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This equation holds whether the axes be oblique or rect-

angular.

It is plain that the position of the line will vary with the

signs of the quantities a and h. For example, the equation

- +T =1} which cuts off positive intercepts on both axes, re-

presents the line MN on the preceding figure ; h~^^ cutting

off a positive intercept on the axis of
a?,

and a negative in*

tercept on the axis of
?/, represents MN'.

Similarly, a b

and

1 represents NM' ;

f = 1 represents M'N\
X

a h

By dividing by the constant term, any equation of the first

degree can evidently be reduced to some one of these four forms:

Ex. 1. Examine the position of the following lines, and find the inter-

cepts they make on the axes.

2a;-3y = 7; 3a; + 4y + 9 = 0;

3a; + 2?/
= 6

; ^y - 6x = 20.

Ex. 2. The sides of a triangle being taken for axes, form the equation of

the line joining the points which cut off the m^^ part of each, and show, by
Art. 21, that it is parallel to the base, . a; v 1^ Ans. - + Y = — •

a o m

l/^S, To express the equation of a right line in terms of the

length of the perpendicular on it- from the origin^ and of the

angles which this perpendicular mahes with the axes.

Let the length of the perpendicular OP—p^ the angle POM
which it makes with the axis of a? = a,

P0N==l3y OM=a, ON=h,
We saw (Art. 22) that the equa-

tion of the right line MN was

x y

a

Multiply this equation by />,
and we

have

p , p
a '^ p.

But ^- = cosa : ^= cosyS : therefore the equation of the line Is
•

a ^

x cos a + 2/ cos/3=|?.
C2
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In rectangular co-ordinates, which we shall generally use, we
have p = 90° — a

;
and the equation becomes x cos a + y sina =j?.

This equation will include the four cases of Art. 22, if we

suppose that a may take any value from to 360°. Thus, for

the position NM\ a is between 90° and 180°, and the coefficient

of X is negative. For the position M'N\ a is between 180° and

270", and has both sine and cosine negative. For MN\ a is

between 270° and 360°, and has a negative sine and positive

cosine. In the last two cases, however, it is more convenient

to write the formula ic cosa + y sina = —^, and consider a to

denote the angle, ranging between and 180°, made with the

positive direction of the axis of
cc, by the perpendicular pro-

duced. In using then the formula a? cos a + 3/
sina =j9, we

suppose p to be capable of a double sign, and a to denote the

angle, not exceeding 180°, made with the axis of x either by
the perpendicular or its production.

The general form Ax-\-By+ (7=0, can easily be reduced

to the form x cosa + y sina=^; for, dividing it by ^[A^ '\-B^)^

we have
A B C

V(^*^ + B')
^

^J[A' + F')
^ ^

sl[A' + B')

But we may take

A . B .

cos a, and ,,
..^ ^^ =sma,

since the sum of squares of these two quantities
= 1.

A B
Hence we learn, that —,7-75

—t^ and ,, ...
—

^557 ^^^ ^e-

v(^' + B') VC4 + ^ )

spectively the cosine and sine of the angle which the per-

pendicular from the origin on the line {Ax + By+ (7=0) makes

with the axis of
a?,

and that
-jrj^
—

^jr
is the length of this

perpendicular.

*24. To reduce the equation Ax-\-Bi/-\- (7=0 [referred to

oblique co-ordinates) ^
to the form a? cosa + ?/ cos/3=^.

Let us suppose that the given equation when multiplied

by a certain factor B is reduced to the required form, then

jRyl = cosa, EB= cos l3. But it can easily be proved that, if a

and ^ be any two angles whose sum is w, we shall have

cos'^a 4- cos'^/3
- 2 cos a cos/3 cos© = sin^ w.



THE RIGHT LINE. 21

Hence E' [A' + B" - 2AB cos «) = sin' «,

and the equation reduced to the required form is

^ sin o) B sin ay

V(^' + ^' - ^AB cos o))

"^ "^

V(^' -^B"- 2AB cos a>)
^

Osino)
•

"^Vl-^' + ^'-^^-^coso))
And we learn that

=-0.

-4 sin ft) -S sin ft)

V(^' + ^' - 2J^^ cosa>)
'

^(A + B' - 2AB coso))
»

are respectively the cosines of the angles that the perpendicular

from the origin on the line Ax-}-Bi/-\- C=Oj makes with the

axes of X and y : and that ,, ...
—

^^^
—

Tr^rFi \
is the length•^ '

V(^ + -^ - ^^B cos
ft))

of this perpendicular. This length may be more easily cal-

culated by dividing the double area of the triangle NOM^
{ON.OMsmo)) by the length of MN, expressions for which

are easily found.

The square root in the denominators is,
of course, susceptible

of a double sign ;
since the equation may be reduced to either

of the forms

X cosa + 2/ cos/3 -p = 0, a: cos (a + 180") -f 1/ cos(^+ 180°)+^=0.

25. To find the angle hetiveen two lines whose equations with

regard to rectangular co-ordinates are given.

The angle between the lines is manifestly equal to the angle

between the perpendiculars on the lines from the origin; if

therefore these perpendiculars make with the axis of x the

angles a, a',
we have (Art. 23)

A . B
cosa = —rr-rr,

—
^^r^x ; sma

A , , B'
cosa = -77-772—i^TiT ; sma =

\l[A
 

Hence sin (a — a') =

sJ[A'+By
""

.J[A'+B")'

BA-AB'
sJ{A-\-B')sJ{A^'-¥B'')'

( '> _-
AA^BB'

cos (a
- a

)
-

^^^, ^ ^,^ ^^j,, ^ ^„^
,

, , , , „ BA-AB'
and thereiore tan (a

— a
j
=

a a'
,

r>w> •
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COE. 1. The two lines are parallel to each other when

BA''-AB'==0 (Art. 2]),

since then the angle between them vanishes.

Cor. 2. The two lines are perpendicular to each other when

AA + BB' = 0j since then the tangent of the angle between

them becomes infinite.

If the equations of the lines had been given in the form

y = mx + hj y — m'x -f ^'
;

since the angle between the lines is the difference of the angles

they make with the axis of
cc,

and since (Art. 21) the tangents
of these angles are m and m\ it follows that the tangent of the

required angle is
, ;

that the lines are parallel if m = m'
)

and perpendicular to each other if mm +1 = 0.

^2Q, To find the angle hetv)een two lines
j
the co-ordinates being

oblique.

We proceed as in the last article, using the expressions of

Art. 24,
A Bin CO

cos a

consequently,

Hence

cos a =

sma

,/{A' + B''-2ABcos(o)'

A' sino)

V(^"-l-^"-2^'i^'cosa>)'

B— A cos ft)

^(^2 + ^2_2^^cosft))'

B' — A' coso)
sma =

V(^"+^"-2^'J5'cosco)

_. {BA'-AB') sin ft)

sm(a a) -
^^j^^^zt^b coso)) ^{A"-\- B"-2A'B' cosft))

'

BB' + AA' - (AB' + A'B) cos ft)

cos (a a )
-
^^^, _^ ^, __ 2^^ ^^^^^ ^/^^,, ^ ^,,- _ 2^,^, ^^^^^

,

{BA'-AB') sin ft)

tan (a
- a

)
•-

^^, ^ ^^,_ ^j^b>_^j^2') cos ft)

*

Cor. 1. The lines are parallel if BA' = AB',

Cor. 2. The lines are perpendicular to each other if

AA' + BB' = {AB' + BA') cos ft).



THE RIGHT LINE. 23

t^ 27. A right line can he found to satisfy any two conditions.

Each of the forms that we have given of the general equa-
tion of a right line includes two constants. Thus the forms

y^^mx + h^ X co&a + y sina=^ involve the constants m and &,

p and a. The only form which appears to contain more con-

stants is Ax -\-By-\- C=0] but in this case we are concerned not

with the absolute magnitudes, but only with the mutual ratios of

the quantities A^ i?, G. For if we multiply or divide the

equation by any constant it will still represent the same line:

we may divide therefore by (7, when the equation will only
A B

contain the two constants
-^^ -p* Choosing then any of these

forms, such as y = mx-{-bj to represent a line in general, we

may consider m and b as two unknown quantities to be deter-

mined. And when any two conditions are given we are able

to find the values
.
of m and

Z>, corresponding, to the particular

line which satisfies these conditions. This is sufficiently illus-

trated by the examples in Arts. 28, 29, 32, 33.

[y^ 28. To find the equation of a right line parallel to a given

one^ and])assing through a given point x'y.

If the line y = mx + 5 be parallel to a given one, the con-

stant m is known (Cor., Art. 21). And if it pass through a

fixed point, the equation, being true for every point on the line,

is true for the point xy\ and therefore we have y —mx \-hj

which determines h. The required equation then is

y — mx-iy'-
— mx'^OYy — y=m[x — x).

If in this equation we consider m as indeterminate, we

have the general equation of a right line passing through the

point xy\

1/ 29. To find the equation of a right line passing through two

fixed points x'y\ x"y".

We found, in the last article, that the general equation of

a right line passing through x'y' is one which may be written

in the form

X —X ^

where m is indeterminate. But since the line must also pass
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through the point a?"?/", this equation must be satisfied when
the co-ordinates x\ y\ are substituted for x and y ;

hence

X —X

Substituting this value of m, the equation of the line becomes

y-y' ^ y"-y'^ ^x^x x" — X
'

In this form the equation can be easily remembered, but,

clearing it of fractions, we obtain it in a form which is some-

times more convenient,

iy'
-

y") x-[x'- x") y + xy"
-

y'x"
= 0.

The equation may also be written in the form

{x
-

x') {y-y") = {x-x"){y- y) .

For this is the equation of a right line, since the terms xy^

which appear on both sides, destroy each other; and it is

satisfied either by making x = x\ y = y' '-,

or ic = x\ y = y".

Expanding it,
we find the same result as before.

Cob. The equation|of the line joining the point xy' to the

origin is y'x = x'y,

Ex. 1. Form the equations of the sides of a triangle, the co-ordinates of

whose vertices are (2, 1), (3,
-

2), (- 4,-1).
Ans. a; + 7«/ + 11 =-- 0, 3y

- a; = 1, 3j; + ^ = 7.

Ex. 2. Form the equations of the sides of the triangle formed by

(2, 3), (4,
-

5), (- 3,
-

6). Ans. a: - 7?/ = 39, 9a; -
5y = 3, 4a; + y = 11.

Ex. 3. Form the equation of the line joining the points

, , , mxf 4 nx" mil' + nv"
X y' and ,

—- '—
.

m \ n n% { n

Atis. (y'
-
y") x~{x' -

x") y + x'y"
-
y'x"

= 0.

Ex. 4. Form the equation of the line joining

, , , ar" + X"' v" + v"'
a:y and-^— ,

—--.
Ans. {y" + y"'

-
2y') x -

{x" + x'" - 2x) y + xf'y'
-

yf'x! + x^"y'
-

y'"id
= 0.

Ex. 5. Form the equations of the bisectors of the sides of the triangle

described in Ex. 2. Ans. 17a; -
3]/

= 25
; 7a; + 9y + 17 =

;
5a; - 6y = 21.

Ex. 6, Form the equation of the line joining

Ix' - mxf' ly'
-

mi/' Ir' - nx'" ly'
-

ny'"

I - m I - m I - n I - n

Ans. x{l{m-n)y'+m{n-l)y" + n{l-m)y'"\
-
y[l{m-n)x'-^m[n

-
l)x"-\^n{l~ m)x"'}

= hn {y'x"
-
x'y") 4- mn {y"x"'

-
x"y'") + nl {y"'x

-
y'x'").
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l/oO. To find the condition that three points shall lie on one

right line.

We found (in Art. 29) the equation of the line joining two

of them, and we have only to see if the co-ordinates of the

third will satisfy this equation. The condition, therefore, is

(yi
-
y^ ^3

- K -
^^ y, + (^.2/.

-
^^yx)

=
^j

which can be put into the more symmetrical form,

y, K -
^3) + .^2 (^3

-
^1) + 3/3 (^1

-
^2)

= ^ *

^1. To find the co-ordinates of the point of intersection of two

right lines whose equations are given.

Each equation expresses a relation which must be satisfied by
the co-ordinates of the point required ;

we find its co-ordinates,

therefore, by solving for the two unknown quantities x and y,

from the two given equations.

We said (Art. 14) that the position of a point was deter-

mined, being given two equations between its co-ordinates. The

reader will now perceive that each equation represents a locus on

which the point must lie, and that the point is the intersection of

the two loci represented by the equations. Even the simplest

equations to represent a point, viz. x = a^ y — ^i ^^^ ^^ equa-

tions of two parallels to the axes of co-ordinates, the intersection

of which is the required point. When the equations are both

of the first degree they denote but one point ;
for each equation

represents a right line, and two right lines can only intersect in

one point. In the more general case, the loci represented by
the equations are curves of higher dimensions, which will inter-

sect each other in more points than one.

Ex. 1. To find the co-ordinates of the vertices of the triangle the equa-

tions of whose sides are a; + y = 2
;

a; - 3^/ = 4
;

3a; + 03/ + 7 = 0.

^'"•(-n'-ii)' (y'"t)' (2'-2)-

 In using this and other similar formulae, which we shall afterwards have

occasion to employ, the learner must be careful to take the co- z^^-'/
ordinates in a fixed order (see engraving). For instance, in the V \ 1

second member of the formula just given, y^ takes the place of
X^^yj^

t/i, a-, of
3^2,

and x^ of Xs. Then, in the third member, we ad- ^^ <i'^

vance from yz to y^, from x^ to a:,, and from Xi to x„ always proceeding in

the order just indicated.
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Ex. 2. To find the co-ordinates of the intersections of

3x + y -2 = 0; X ^2y = b) 2a; -
3?/ + 7 = 0.

^"^-G- t)' (-n- n)' H' t)-

Ex. 3. Find the co-ordinates of the intersections of

2a; + 3y = 13
;
5x -

2/
= 7

;
a; - 4y + 10 = 0.

Ans. They meet in the point (2, 3).

Ex. 4. Find the co-ordinates of the vertices, and the equations of the

diagonals, of the quadrilateral the equations of whose sides are

2y - 3a; = 10; 2y + a; = 6, 16a; -
\0y = 33, 12a; + 14?/ + 29 = 0.

Ans.{-\,^^, (3,?), Q,-|), (-3, l);6y-a;
= 6, 8a; + 22/ + l = 0.

Ex. 5. Find the intersections of opposite sides of the same quadrilateral

and the equation of the line joining them.

Ans.
(83, ^j ,

(- ^ ,

^^)
; 162y - 199a; = 4462.

Ex. 6. Find the diagonals of the parallelogram formed by

X = a, X =
a', y ~h, y = b'.

Ans. {b ~h') X -
{a

-
a') y = a'h - ah'

; (6
-

6') a; + (a
-

a') y = ab - a'b\

Ex. 7. The axes of co-ordinates being the base of a triangle and the

bisector of the base, form the equations of the two bisectors of sides, and find

the co-ordinates of their intersection. Let the co-ordinates of the vertex be

0, y', those of the base angles a;', ;
and -

x', 0.

Ans. '6x'y
-
y'x

-
x'y'

=
; 3a;V + y'x

-
x'y'

=
; f0, |j

.

Ex. 8. Two opposite sides of a quadiilateral are taken for axes, and

the other two are

X y ^ x V -

2a 2b
'

2a' 2b'
'

find the co-ordinates of the middle points of diagonals. Ans. {a, b'), (a', b).

Ex. 9. In the same case find the co-ordinates of the middle point of

the line joining the intersections of opposite sides.

. a'bA^ab'.a' a'b.b' - ab'.b , ,• ^ r ,, ,, ,Ans. ,,—VT
—

> 7, r,
—

' and the form of the result shows
ao — ao ab — ab

(Art. 7) that this point divides externally the line joining the former two

points, in the ratio a'b p ah'.

32. To find the equation to rectangular axes of a right line

passing through a given pointy and perj^endicular to a given line^

y = mx -f h.

The coDdition that two lines should be perpendicular, being
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mm ——I (Art. 25), we have at once for the equation of the

required perpendicular

It is easy, from the above, to see that the equation of the per-

pendicular from the point x'y' on the line Ax -f J5j/ + 0= is

that is to say, we interchange the coefficients of x and
j/,

and alter

the sign of one of them.

Ex. 1. To find the equations of the perpendiculars from each vertex on

the opposite side of the triangle (2, 1), (3,
-

2), (- 4,-1).
The equations of the sides are (Art. 29, Ex. 1)

a; + 7?/ + 11 = 0, 3y
- a; = 1

,
3j; + y = 7 ;

and the equations of the perpendiculars

7a; -
2/
= 13, 3j; + ?/

= 7, Zy
- x = l.

The triangle is consequently right-angled.

Ex. 2. To find the equations of the perpendiculars at the middle points of

the sides of the same triangle. The co-ordinates of the middle points being

H,-|).(-.o),(|,-i).
The perpendiculars are

7a;-2/ + 2 = 0, 3a; + y + 3 = 0, 32/-a: + 4 = 0, mtersectmg m\---,
- -

1 .

Ex. 3. Find the equations of the perpendiculars from the vertices of the

triangle (2, 3), (4,
-

5), (- 3,
-

6) (see Art. 29, Ex. 2).

, . . . /89 130\
Ans, 7a: + y = 17, 5x + 9?/ + 25 = 0, a; - 4i/ = 21

; mtersectmg m (
—

,
-—

j
.

Ex. 4. Find the equations of the perpendiculars at the middle points of

the sides of the same triangle.

Ans. 7a; + 2/ + 2 = 0, 5a; + 9?/ -1-16 = 0, a;-4y = 7; intersecting in f- —
,

-29)-

Ex. 5. To find in general the equations of the perpendiculars from the

vertices on the opposite sides of a triangle the co-ordinates of whose vertices

are given.

Ans. {x"
-
x") X + iy"

-
y'") y -h {x'x'" -f y'y'")

-
{x'x" + y'y")

= 0,

{x'"
-

x')x-{ {y"
- y')y^ {x"x' + ifij')

-
{x"x"' t- y"y"')

= 0,

{x
-

x") x + {y'
-

y") y + {x"'x" + y"'y")
-

i^'"^' + y"'y')
= ^•

Ex. 6. Find the equations of the perpendiculars at the middle points

of the sides. *

Ans. (x"
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Ex. 7. Taking for axes the base of a triangle and the perpendicular on it

from the vertex, find the equations of the other two perpendiculars, and the

co-ordinates of their intersection. The co-ordinates of the vertex are now

(0, y'), and of the base angles {^z", 0), (- x", 0).

/ x"x'"\
Ans. x'" {x -

x') + y'y = 0, x" {x + a!")
-
y'y = 0, (0,

—
j-J

.

Ex. 8. Using the same axes, find the equations of the perpendiculars at

the middle points of sides, and the co-ordinates of their intersection.

Ans. 2{x-x4y'y)=y''-x'"\ 2{x^'x-y'y)=x"'-y", 2x-x"-x'\ (^^ ,

^^\^^!^")'

Ex. 9. Form the equation of the perpendicular from x'y' on the line

a: cosa + y sina =^; and find the co-ordinates of the intersection of this

perpendicular with the given line.

Ans» {x' + cosa {p - xf cosa -
y' sin a), y' + sin a {p - x' cos a -

y' sin a)}.

Ex. 10. Find the distance between the latter point and x'y'.

Ans. ±{p - x' cosa -
y' sin a).

S3. To find the equation of a line passing through a given

point and maldng a given angle </),
with a given line y = mx -\- h

(the axes of co-ordinates being rectangular).

Let the equation of the required line be

y-y' = m'[x-x'\
and the formula of Art. 25,

tan(3b
=

enables us to determine

,
m — tancf)m = 7- S- .

1 + m tan <p

^ 34. To find the length of the perpendicular from any point

xy\ on the line whose equation is x cosa -|- ?/ cos/3 —p = 0.

We have already indicated (Ex. 9 and 10, Art. 32) one way
of solving this question, and

we wish now to show how the

same result may be obtained

geometrically. From the given

point Q draw QR parallel to

the given line, and QS perpen-

dicular. Then OK=x\ and

OT will be =ic' cosa. Again,
since SQK=l3^ and QK= y\

IlT=-QS=y' cos/3;

m — m
1 4 mm '
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hence x cos a + y' cos13= OE.
Subtract OPj the perpendicular from tLe origin, and

X cos a +y cosyS - ^9
= FB = the perpendicular Q V.

But if in the figure the point Q had been taken on the side

of the line next the origin, OB would have been less than OP,
and we should have obtained for the perpendicular the expression

p-x' cosoi- y cosyS ;
and we see that the perpendicular changes

sign as we pass from one side of the line to the other. If we
were only concerned with one perpendicular, we should only-

look to its absolute magnitude, and it would be unmeaning to

prefix any sign. But if we were comparing the perpendiculars
from two points, such as Q and

/S',
it is evident (Art. 6) that the

distances QV, SVj being measured in opposite directions must

be taken with opposite signs. We may then at pleasure choose

for the expression for the length of the perpendicular either

±{p — x' cosa —y cosyS). If we choose that form in which the

absolute term is positive, this is equivalent to saying that the

perpendiculars which fall on the side of the line next the origin

are to be regarded as positive, and those on the other side as

negative ;
and vice versa if we choose the other form.

If the equation of the line had been given in the form

Ax + Bt/-^ (7=0, we have only to reduce it to the form

X cosa -\-y cos/3 —p = 0,

and the length of the perpendicular from any point xt/',

__
Ax +By + C {Ax ^-By + G) sino)~
V(^' + B')

^
^^

^^{A' + B''- 2AB cos co)

'

according as the axes are rectangular or oblique. By comparing

the expression for the perpendicular from xy' with that for the

perpendicular from the origin, we see that xy' lies on the same

side of the line as the origin when Ax -{-By + C has the same

sign as C, and vice versa.

The condition that any point xy' should be on the right line

Ax + By+ (7=0, is,
of course, that the co-ordinates x'y' should

satisfy the given equation, or

Ax' + By'+C=0.
And the present Article shows that this condition is merely the

algebraical statement of the fact, that the perpendicular from

the point x'y' on the given line is = 0.
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Ex. 1. Find the length of the perpendicular from the origin on the line

Sx + 4^ + 20 = 0,
the axes being rectangular. Afis. 4.

Ex. 2. Find the length of the perpendicular from the point (2, 3) on

2a: + y - 4 = 0.

Q

Ans. -— : and the given point is on the side remote from the origin.

Ex. 3. Find the lengths of the perpendiculars from each vertex on the

opposite side of the triangle (2, 1), (3,
-

2), (- 4,
-

1).

A71S. 2y'(2), \/(10)> 2^/(10), and the origin is within the triangle.

Ex. 4. Find the length of the perpendicular from (3,
-
4) on 4a; + 2y

-
7,

the angle between the axes being 60^.

Q

Ans. -
: and the point is on the side next the origin.

Ex. 5. Find the length of the perpendicular from the origin on

a
(a;

-
a) -H J (y

-
5)

= 0. Ans. V(«* + &')•

35. To find the equation of a line hisecting the angle between

two linesj £c cosa + y sina — j9
=

0, x cos^ + 7/ sinjS —^' — 0.

We find the equation of this line most simply by expressing

algebraically the property that the perpendiculars let fall from

any point xi/ of the bisector on the two lines are equal. This

immediately gives us the equation

X cosoL + y sina- p = ± {x co^p + y sin/9—j?'),

since each side of this equation denotes the length of one of

those perpendiculars (Art. 34).

If the equations had been given in the form Ax+By+C—O^
A'x + B'y+ C' = 0, the equation of a bisector would be

Ax +By+C _ A'x + B'y +C
^{A' + B')

~-
^/{A" + B'')

'

It is evident from the double sign that there are two bisectors :

one such that the perpendicular on what we agree to consider

the positive side of one line is equal to the perpendicular on

the negative side of the other : the other such that the equal

perpendiculars are either both positive or both negative.

If we choose that sign which will make the two constant

terms of the same sign, it follows from Art. 34 that we shall

have the bisector of that angle in which the origin lies
;
and If

we give the constant terms opposite signs, we shall have the

equation of the bisector of the supplemental angle.
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Ex. 1. Reduce the equation of the bisectors of the angles between two
lines, to the form x cos a .\- y sin a = p.

Ans. X cos[i (a 4- ^) + 90°) + y sin[^ (a + yS) + 90°}
V-P

2sin|(a-^)'

X cos lioL^ S) \y sin Ha + /3) = '^tA
,t-J if .\ H)

2c0S|(a-y3)
Ex. 2. Find the equations of the bisectors of the angles between

3a: + 4^ - 9 = 0, 12a; + 5.?/
- 3 = 0.

A71S. 7a: -
9^ + 34 = 0, 9a: + 7y = 12.

36. To find the area of the triangle formed hy three points.
If we multiply the length of the line joining two of the

points, by the perpendicular on that line from the third point,
we shall have double the area. Now the length of the perpen-
dicular from x^y^ on the line joining x^y^^ x^y^^ the axes being

rectangular, is (Arts. 29, 34)

and the denominator of this fraction is the length of the line

]ommgx^y^^x^y^^,\iQn(iQ

y^ (^2
-

^3) + y^ (^3
-

^1) + J/s (^,
-

^2)

represents double the area formed by the three points.

If the axes be oblique, it will be found on repeating the in-

vestigation with the formulae for oblique axes, that the only

change that will occur is that the expression just given is to be

multiplied by sinw. Strictly speaking we ought to prefix to

these expressions the double sign implicitly involved in the

square root used in finding them. If we are concerned with

a single area we look only to its absolute magnitude without

regard to sign. But
if,

for example, we are comparing two

triangles whose vertices x^y^^ a?^^^,
are on opposite sides of the

line joining the base angles x^y^^ ^^y^i ^^ must give their areas

difierent signs ;
and the quadrilateral space included by the four

points is the sum instead of the difference of the two triangles.

Cor. 1. Double the area of the triangle formed by the lines

joining the points x^y^^ x^y^ to the origin, is y^x^—y^x^ as appears

by making x^
—
O^y^

—
0, in the preceding formula.

COE. 2. The condition that three points should be on one

right line, when interpreted geometrically, asserts that the area

of the triangle formed by the three points becomes = [Axi. 30).
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37. To express the area of a 'polygon in terms of the co^ordi-

nates of its angular points.

Take any point xy within the polygon, and connect it with all

the vertices x^y^^ x^y^,..x^y^\ then evidently the area of the

polygon is the sum of the areas of all the triangles into which

the figure is thus divided. But by the last Article double these

areas are respectively

^ (^2 -y^-y (^2
-

^3) + ^23/3
-

^33/2?

^ (^3 -y^-y (^3
-

^4) + ^33^4
-

^4^3?

^[yn--y.)-y K-t-^J+ ^n-^yn-^nyn-xi

^ [yn -y,)-yK -
^J + ^«3/i

-
^,yn^

When we add these together, the parts which multiply x and y
vanish, as they evidently ought to do, since the value of the total

area must be independent of the manner in which we divide it

into triangles ;
and we have for double the area

i^.y,
-

^2^1) + [^.y.
-

^32/2) + [^.y,
-

^.y^) +• • • (^«yi
-

^.yn)-

This may be otherwise written,

^1 (3/2-3/n) +^2 (3/3- 3/1) +^3 [y,-y^ +••• ^n {yx-ynJj
or else

yx i^n
-

^2) + 3^2 i^x
-

^3) + 3/3 (^2
-

^4) +• • • yn K-1 - ^x)-

Ex. 1. Find the area of the triangle (2, 1), (3,
-

2), (- 4,
-

1). Ans. 10.

Ex. 2. Find the area of the triangle (2, 3), (4,
-

5), (- 3,
-

6). Ans. 29.

Ex. 3. Find the area of the quadrilateral (1, 1), (2, 3), (3, 3), (4, 1). Ans. 4.

38. To find the condition that three right lines shall meet in

a point.

Let their equations be

u4a; + %+(7=0, A'x^- B'y -^ C =
0^ A"x + B"y+ C" ^0.

If they intersect, the co-ordinates of the intersection of two of

them must satisfy the third equation. But the co-ordinates of

the mtersection 01 the first two are —tft, ttf^i —r^, -.t^.AB'-AB^ AB'-AB
Substituting in the third, we get, for the required condition,

A" (BC'-B'C) +B"{CA'- CA) + C" (AB' ->A'B) = 0,
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which may be also written in either of the forms

A [B' C" -^ B" C') + B{ G'A" - C"A') + G [A'B"
-
A"B') = 0,

A {B' G" - B" G') + A' [B"G - BG") + A' {BG'-B'G)^0.

*39. To find the area of the triangle formed hy the three lines

Ax^-By+G^(), A'x-\B'y+G' = % A"x + B"y -\- G" = 0.

By solving for x and y from each pair of equations in turn

we obtain the co-ordinates of the vertices, and substituting

them in the formula of Art, 36, we obtain for the double area

the expression

BG'-B'G {
AG" -G'A" _ A'G'-G"A)

AB'-BA \B'A" - AB" B"A - A"b\
B'G"-B"G'

{
A'G- G"A

__
AG'- GA )

"^ AB"-B'A" \WA - A'B BA - AB']

B"G -BG" ( AG' - GA _ AG" -G'A")

^ A'B - B"A \BA - AB' B'A" - AB"]
'

But if we reduce to a common denominator, and observe that

the numerator of the fraction between the first brackets is.

{A" {BG'-B'G) + A[B'G"-B"G')+A'[B"G- G"B)}

multiplied by A"
;
and that the numerators of the fractions be-

tween the second and third brackets are the same quantity

multiplied respectively by A and A^ we get for the double area

the expression

{A {B' G" - B" G') +A [B"G- BG") + A" [BG'
- B' G)f

[AB' - BA) [AB" - B'A") [A'B - B"A)

If the three lines meet in a point, this expression for the

area vanishes (Art. 38) ;
if any two of them are parallel, it

becomes infinite (Art. 25).

//€o. Given the equations of two right lines, to find the equation

(!fa third through their point of intersection.

The method of solving this question, which will first occur

to the reader, is to obtain the co-ordinates of the point of inter-

section by Art. 31, and then to substitute these values for x'y' in

the equation of Art. 28, viz., y-y' = m[x- x'). The question,

however, admits of an easier solution by the help of the following

important principle : IfS=0,S' = 0, he the equations of any two

loci, then the locus represented hy the equation JS+JcS' =^0 [where
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Tc IS any constant) passes through every point common to the two

given loci. For it is plain that any co-ordinates which satisfy

the equation ;iS'=0, and also satisfy the equation >S" = 0, must

likewise satisfy the equation 8+ kS' = 0.

Thus, then, the equation

{Ax^By-\-C)+h[A'x + B'y^C')=%
which is obviously the equation of a right line, denotes one

passing through the intersection of the right lines

Ax + By-{- (7= 0, ^A'x + B'y + C?- = 0,

for if the co-ordinates of the point common foThem both be sub-

stituted in the equation {Ax-^-By^ G)-\-'k[A'x-{-B'y-{- O')=0,

they will satisfy it, since they make each member of the equa-
tion separately = 0.

Ex. 1. To find the equation of the line joining to the origin the inter-

section of Ax^By^C=0, A'x + By+C' = 0.

Multiply the first by C", the second by C, and subtract, and the equation
of the required line is {AC - A'C) x + {BC - CB) y =

;
for it passes

through the origin (Art. 18), and by the present article it passes through
the intersection of the given lines.

Ex. 2. To find the equation of the line drawn through the intersection of

the same lines, parallel to the axis of x, Ans. {BA' - AB') y + CA' -AC' = 0.

Ex. 3. To find the equation of the line joining the intersection of the

same lines to the point x'y. Writing down by this article the general equa-
tion of a line through the intersection of the given lines, we determine k

from the consideration that it must be satisfied by the co-ordinates x'y', and
fiind for the required equation

{Ax + By + C) {A'x' + B'y' ^ C') = {Ax' + By' + C) {A'x + By + C).

Ex. 4. Find the equation of the line joining the point (2, 3) to the inter-

section of 2a: + 3y + 1 = 0, 3a; - 4y = 5.

Ans. 11 {2x + 3y + 1) + 14 (3a;
-
4y -

5) = 0; or 64a: - 23y = 69.

41. The principle established in the last article gives us a

test for three lines intersecting in the same point, often more

convenient in practice than that given in Art. 38. Three right

lines will pass through the same point if their equations heing

multiplied each hy any constant quantity^ and added together^ the

sum is identically
— : that is to say, if the following relation

be true, no matter what x and y are—
l[Ax + By+C) + m{A'x-\-B'y+C')+'n[A'x^B'y-\-G") = 0.

For then those values of the co-ordinates which make the first

two members severally = must also make the third = 0.
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Ex. 1. The three bisectors of the sides of a triangle meet in a point.
Their equations are (Art. 29, Ex. 4)

{y" + y'" -2y')x- {x" + X'" -2x')y^ {xy -
y"x' ) + ^x"'y'

-
y"'x' )

= 0,

{y'" \y' -
2y" ) X -

{x'" \x' -l3^>)y \ {x'"y"
-
y"'x") + {x'y"

-
y'x" )

= 0,

iy' 4- y"
-

2y"') a: - (a/ + a;" -
2x"') y 4 {x'y"'

-
y'x'") + {x"y"'

-
y''x!")

= 0.

And since the three equations when added together vanish identically, the

lines represented by them meet in a point. Its co-ordinates are found by
solving between any two, to be I {x' + x" + «'")> 3(2/' + y" + 2/'")*

Ex. 2. Prove the same thing, taking for axes two sides of the triangle
whose lengths are a and b. . 2a; y . . a; 2y ^ . a: y ^

a ah ah
Ex. 3. The three perpendiculars of a triangle, and the three perpen-

diculars at middle points of sides respectively meet in a point. For the

equations of Ex. and 6, Art. 32, when added together vanish identically.

Ex. 4. The three bisectors of the angles of a triangle meet in a point.

For their equations are

(a;cosa + t/ sina - p )
-

{x cosy3 + 3/ sin/3 -j/) = 0,

{x cos/3 + y sin/3
-^ )

-
(a: COS7 + y sin7 -pf')

= 0,

{x C0S7 + y sin7 -p")
-

{x cosa + y sina -p )
=: ©.

*42. To find the co-ordinates of the interseetton of the line

Joining the points xy\ x"y'\ with the right line Ax + Bg+ (7=0.

We give this example in order to illustrate a method {which
we shall frequently have occasion to employ) of determining the

point in which the line joining two given points is met by a

given locus. We know (Art. 7) that the co-ordinates of any

point on the line joining the given points must be of the form

mx" + nx my" 4 ny'
X = , ^ = -^ ^

;

m-\-n
' ^

wi + w '

and we take as our unknown quantity
—

,
the ratio, namely, in

which the line joining the points is cut by the given locus
;
and

we determine this unknown quantity from the condition, that

the co-ordinates just written shall satisfy the equation of the

locus. Thus, in the present example we have

j^
mx"^-nx' myr+J^^^
m+n m+n

, m Ax'-\rBy'+C^
^'^'^

• n^^A;d'+By"+G^
D2
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and consequently the co*ordinate3 of the required point are

_ [Ax' + By'+C) x" - {Ax" 4 By" +G)x\^~
{Ax'-^By+C)-{Ax"-{-Bf-\-C)

'

with a similar expression for y. This value for the ratio m : n

might also have been deduced geometrically from the considera-

tion that the ratio in which the line joining xy\ x'y" is cut, is

equal to the ratio of the perpendiculars from these points upon
the given line

;
but (Art. 34) these perpendiculars are

Ax+By'-}-C Ax" -\- By" -{- G

^/{A' + B')
^^

^{A' + B')
'

The negative sign in the preceding value arises from the fact

that in the case of internal section to which the positive sign of

m : n corresponds (Art. 7), the perpendiculars fall on opposite

sides of the given line, and must, therefore, be understood as

having different signs (Art. 34).

If a right line cut the sides of a triangle BC, CA^ AB, in the

points LMN, then

BL.CM.AJSr

LC.MA,NB~
Let the co-ordinates of the vertides be xy\ x"y"^ ^"y"'i then

'

BL
LC'

CM
MA
AN
NB

Ax" +By"+G
Ax"+By"'+G

Ax"'+By"'-h G
Ax' -^By' + G

Ax +By' + G
Ax" -hBy" + G

and the truth of the theo-

rem is manifest.

*43. To find the ratio in which the line joining two points

^xVi) ^2^2)
*'^ ^^^ ^y ^^^ line joining two other points x^^^ x^^.

The equation of this latter line is (Art. 29)

(^3-2/4)^- (^3-^4)3^ + ^3^4- ^4^8
= 0-

Therefore, by the last article,

"1^^ (y.
- y^ ^i

-
(^3

-
^4) Vx + ^3^4

- ^^Z
n (3/3 -3/4) ^2 -(^3 -^4)^2 + ^3^4 -^4^3'

It is plain (by Art. 36) that this is the ratio of the two tri-
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angles whose vertices are x^y^, x^^^ x^^, and
jr^y^, x^y^, x^^, as

also is geometrically evident.

If the lines connecting any assumed point with the vertices of
a triangle meet the opposite sides BC\ CA^ ABj respectively^

in

D, E, F. then

BD.CE.AF
BC.EA.FB""^

'

Let the assumed point be x^^^ and the vertices x^y^^ x^^^

x^^^ then

So x^ (y^
-

y^) + 05, (3/3
-

y^) + a?3 (y^
-

y^)
'

^ = ^2 (^3
-

3/4)
+ ^3 (3/4

-
3/2) + ^

4 (3/2
-

3/3)

^^ ^1 (3/2-^4) + ^2 (2^4 -3/t) + ^4 (2^1-3^3)
'

^i^^ x^ [y^-y,) +a?, (3/3 -^t) + a^3 (^i -3/4)

^-^ ^2(^3- 2^4) + ^3 (3/4 -3/2) +^4(^2-^3)'

and the truth of the theorem is evident.

/x44. To find the polar equation ofa right line (see Art. 12).

Suppose we take, as our fixed axis, the perpendicular on

the given line, then let OR be

any radius vector drawn from

the pole to the given line

OR = p, EOP^e-,

but, plainly,

OB €08 0=: OP,

hence, the equation is

p C0&6 =p.
If the fixed axis make an angle a with the perpendicular,

the equation is
p cos(^

-
a) =p.

This equation may also be obtained by transforming the

equation with regard to rectangular co-ordinates,

a? cosa+y sina=^.

Eectangular co-ordinates are transformed to polar by writing

for X, p cos^, and for y^ p sin^ (see Art. 12); hence the equa-

tion becomes
p (cos ^ cos a + sin 6 sin a) =p ;

or, as we got before, p cos(^— a) =p.
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An equation of the form

p {A cose -^B sine) ^G
can be (as in Art. 23) reduced to the form p cos{0

-
a) —p, by

dividing by V(^* + B^) J
we shall then have

A . B C

Ex. 1. Reduce to rectangular co-ordinates the equation

/D
= 2a8ecf^ + ^V

Ex. 2. Find the polar co-ordinates of the intersection of the following

lines, and also the angle between them : p cos'. 6 -
^)

= 2a, p cosf^ - _
j

= a.

Ans. p = 2af =
-^, angle = - .

Ex. 3. Eind the polar equation of the line passing through the points

whose polar co*ordinates are
/>', 6"; p", 6".

Ans. p'p" sin(6K
-

&') + p"p sin(6i"
-
^) + pp' sin(^

- ^) = 0.

CHAPTER III.

EXAMPLES ON THE RIGHT LINE.

45. Having in the last chapter laid down principles by
which we are able to express algebraically the position of any

point or right line, we proceed to give some further examples
of the application of this method to the solution of geometrical

problems. The learner should diligently exercise himself in

working out such questions until he has acquired quickness

and readiness in the use of this method. In working such

examples our equations may generally be much simplified by a

judicious choice of axes of co-ordinates : since, by choosing for

axes two of the most remarkable lines on the figure, several of

our expressions will often be much shortened. On the other

hand, it will sometimes 'happen that by choosing axes uncon-

nected with the figure, the equations will gain in symmetry
more than an equivalent for what they lose in simplicity.
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The reader may compare the two solutions of the same question,

given Ex. 1 and 2, Art. 41, where, though the first solution

is the longest, it has the advantage that the equation of one

bisector being formed, those of the others can be written down

without further calculation.

Since expressions containing angles become more complicated

by the use of oblique co-ordinates, it will be generally advisable

to use rectangular axes in any question in which the considera-

tion of angles is involved.

46. LocL—Analytical geometry adapts itself with peculiar

readiness to the investigation of loci. We have only to find

what relation the conditions of the question assign between the

co-ordinates of the point whose locus we seek, and then the

statement of this relation in algebraical language gives us at

once the equation of the required locus.

Ex. 1. Given base and difference of squares of sides of a triangle, to

find the locus of vertex.

Let us take for axes the base and a perpendicular through its middle

point. Let the half base =
c, and let the co-

ordinates of the vertex be ar, y. Then

AC*-JBC* = 4ex,

and the equation of the locus is 4cx = tn*. The

locus is therefore a line perpendicular to the base M R B

4c

is easy to see that the difference of squares of segments of base = difference

of squares of sides.

Ex. 2. Find locus of vertex, given base and cot^ + ?« cot J5.

It is evident, from the figure, that

^ . AR c + x , ^ c-x
cotA = -—— =

;
coti/ =

;CR y y

•
Beginners often reason that since the line AR consists of the parts

AM= -
c, and 3fR = x, its length is - c + a:, and not c + x, and therefore

that AC =
y' + {x

-
cf. It is to be observed that the sign given to a line

depends not on the side of the origin on which it lies, but on the direction

in which it is measured. We go from A to R by proceeding in the positive

direction^iV/= c, and still further in the same direction MR = x, therefore

the length AR^c^xx but we may proceed from Rio Bhy first going in

the negative direction RM = -
ar, and then in the opposite direction MB = c,

hence the length RB i& c - x.
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and the required equation is c + x + m{c -
x) =pi/', the equation of a

right line.

Ex. 3. Given base and sum of sides of a triangle, if the perpendicular
be produced beyond the vertex until its whole length is equal to one of the

sides, to find the locus of the extremity of the perpendicular.
Take the same axes, and let us inquire what relation exists between the

co-ordinates of the point whose locus we are seeking. The x of this point

plainly is IfB, and the «/ is, by hypothesis, = AC; and if m be the given
sum of sides, £C=m-y.
Now (Euclid II. 13),

J5C' = AB' ^-AC- 2AB . AE ;

or, (m - yf = 4c' + «/'
- 4c (c + x).

Reducing this equation, we get

2my - 4c;c = m*,

the equation of a right line.

Ex. 4. Given two fixed lines, OA and OB, if any line AB be drawn to

intersect them parallel to a third fixed line OC, to find the locus of the point
P where AB is cut in a given ratio : viz. PA = nAB.

Let us take the lines OA, OC for axes, and let the equation of OB
be y = mx. Then since the point B lies on the

latter line, its ordinate is m times its abscissa
;
or

AB = mOA. Therefore PA = 7nnOA
;
but PA

and OA are the co-ordinates of the point P, whose

locus is therefore a right line through the origin

having for its equation

y = mux, O A
Ex. 5. PA drawn parallel to OC, as before, meets any number of fixed

lines in points B, B', B", &c., and P^'is taken proportional to the sum of

all the>rdinates BA, BA, &c., find the locus of P.

Ans. If the equations of the lines be

y = mx, y = m'x + w', y = 7n"x + n'\ &c.,

the equation of the locus is

hy = mx\ {m'x + n') + {m"x + n") + &c.

Ex. 6. Given bases and sum of areas of any number of triangles having

a common vertex, to find its locus.

Let the equations of the bases be

X cosa + y sina -p = 0, x cos^ 4 y sin/3
-

/?i
= 0, &c.,

and their lengths, a, b, c, &c.
;
and let the given sum = m*

; then, since

(Art. 34) a; cosa + 2/
sina - p denotes the perpendicular from the point xy

on the first line, o (x cosa + y sina -
p) will be double the area of the first

triangle, &c., and the equation of the locus will be

a{x cosa -h y sina -p) + h[x cos^ + y sin/3 -^0 + c[x COS7 + y sin7 -^2)+&c.=2m',

which, since it contains x and y only in the first degree, will represent a

right line.
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Ex. 7. Given vertical angle and sum of sides of a triangle, find the locus
of the point where the base is cut in a given Li

ratio.

The sides of the triangle are taken for

axes
; and the ratio PK : PL is given

= n : m. Then by similar triangles

^j^_ (m-\-n)x ^^ _ (m + n) y
m '

n '

and the locus is a right line whose equation is — + ^ =
n m + n

Ex. 8. Find the locus of P, if when perpendiculars PM, PN are
let fall on two fixed lines, 0M+ ON
is given.

Taking the fixed lines for axes,

it is evident that OM = x \ y cos w,

ON = y + X cos cOf and the locus is

a; + y = constant.

Ex. 9. Find the locus if MN be

parallel to a fixed line.

Ans. y + X cosiv = m(x + y cosw).

Ex. 10. If 3IN be bisected [or cut in a given ratio] by a given line

y = mx + n.

The co-ordinates of the middle point expressed in terms of the co-ordi-

nates of P are ^{x { y cos a;), f (y + a; cosoj) ;
and since these satisfy the

equation of the given line, the co-ordinates of P satisfy the equation

y + X cos w = tn (x -{• y cos vu) + 2n.

Ex. 11. P moves along a given line y = mx + n, find the locus of the

middle point of MN. If the co-ordinates of P be a, y3, and those of

the middle point x, y, it has just been proved that 2a; = a + ^ cos a;,

2y = ^ ^ a cosw. Whence solving for a, ^,

a sin'^o) -2x - 2y cosoj, /3 sin^w = 2y -2x cosw.

But a, ^ are connected by the relation y3
= ma + n, hence

2y
- 2x cosw = w {2x

-
2y cos w) + n sin* a;.

47. It Is customary to denote by x and y the co-ordinates of

a variable point which describes a locus, and the co-ordinates of

fixed points by accented letters. Accordingly in the preceding

examples we have from the first denoted by x and y the co-

ordinates of the point whose locus we seek. But frequently in

finding a locus it is necessary to form the equations of lines

connected with the figure; and there is danger of confusion

between the x and y, which are the running co-ordinates of a

point on one of these lines, and the x and y of the point whose

locus we seek. In such cases it is convenient at first to denote
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the co-ordinates of the latter point by other letters such as a, jS,

until we have succeeded in obtaining a relation connecting these

co-ordinates. Having thus found the equation of the locus, we

may if we please replace a, y3 by a; and y^ so as to write the equa-
tion in the ordinary form in which the letters x and y are used to

denote the co-ordinates of the point which describes the locus.

Ex. 1. Find the locus of the vertex of a triangle, given the base CD^
and the ratio AM: NB of the parts into which

the sides divide a fixed lineAB parallel to the

base. Take AB and a perpendicular to it

through A for axes, and it is necessary to ex-

press AM, NB in terms of the co-ordinates

of P. Let these co-ordinates be a^^ and let

the co-ordinates of C, D be xfy', x"y', the ^
of both being the same since CD is parallel

to AB, Then the equation oi PC joining
the points a^, x'y' is (Art. 29)

(/3 -y')x-{a- x') y =
l3x'- ay^.

This equation being satisfied by the x and y of every point on the line PC
is satisfied by the point 31, whose y = and whose x = AM. Making then

y = in this equation, we get ^^' _
ay'AJm. = —— '-—

•

In like manner
^-. ^x" -

ay'

and if^^ =
c, the relation AM= kBH giyea

^x'

V ft-y'l^-y \ ft

We have now expressed the conditions of the problem in terms of the co-

ordinates of the point P; and now that there is no further danger of con-

fusion, we may replace a, ^ by ar, y ; when the equation of the locus, cleared
of fractions, becomes

^^.
_

^^^
^ ^ ^^ ^^

_
^^^

_
^^^^

_
^^.^^^

Ex. 2. Two vertices of a triangle ABC move on fixed right lines LM,
LN, and the three sides pass through three fixed points O, P, Q which lie

on a right line
;
find the locus of the third vertex.

Take for axis of x the right line

OP, containing the three fixed points,

and for axis of y the line OL joining
the intersection of the two fixed lines

to the point O through which the

base passes. Let the co-ordinates of

C be a, /3, and let

OL =
h, OM=a, ON=a',
OP =

c, 0Q = </,
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Then obTiously the equations of XJf, LN are

5+1 = 1 and ^+1=1.ah a! h

The equation of CP through a^ and P (y = 0, a: = c) is

(a
-

c) y -
/3a: + y3c

= 0.

The co-ordinates of A, the intersection of this line with

r + I
= ^»

a

The co-ordinates of J5 are found by simply accentuating the letters in the

preceding: ^ a'dja
-

c') + a'c'/3 ^
b {a'

- &) jS^'"
b{a-c') + a'^

'

^^^h{a-c')^a'^'
Now the condition that two points, x^y^^ x^y^^ shall lie on a right line pass-

ing through the origin, is (Art. 30)
^ = ^ .

x^ Xi

Applying this condition we have

h{a-c)^ b(a'- c') ^
ah {a -

c) -^ acjB a'h (a
-

c') + a'c'/3

*

We have now derived from the conditions of the problem a relation which

must be satisfied by a/3 the co-ordinates of C: and if we replace a, ^ by a:, y
we have the equation of the locus written in its ordinary form. Clearing

of fractions, we have

(a
-

c) [a'h {x
-

c') + a'c'y"]
=

(a'
-

c') [ah {x
-

c) -^^ acy'\j

(ac' -
a'c) X y .

cc {a
- a) - aa {c

-
c) b

the equation of a right line through the point X.

Ex. 3. If in the last example the points P, Q lie on a right line passing

not through O but through L find the locus of vertex.

"We shall first solve the general problem in which the points P, Q have

any position. We take the fixed lines LM, LN for axes. Let the co-ordi-

nates of P, Q, O, Cbe respectively x'y\ x"y"f x"'y"', a/3; and the condition

which we want to express is that if we join CP, CQ and then join the points

A, S, in which these lines meet the axes, the line AB shall pass through O.

The equation of CP is (/3
-

t/')
a; - («

-
x') y - px'

-
ay'.

And the intercept which it makes on the axis of x is

IS-y'

In like manner the intercept which CQ makes on the axis of y is

a - X
The equation of -4P is

^
4.

y -1 n^ ^(^-y')
,

y(°-^'')-,i
Ia'^ZB' '

^x'-ay'
'^

ay" -fix''

'
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And the condition of the problem is that this equation shall be satisfied by
the co-ordinates x"'y"'. Id order then that the point C may fulfil the condi-

tions of the problem its co-ordinates a/3 must be connected by the relation

lix'-ay' ay"-^x"
When this equation is cleared of fractions, it in general involves the co-

ordinates a/3 in the second degree. But suppose that the points x'y', x"y"
lie on the same line passing through the origin y = mx, so that we have

y' = ma^f y" = mx", the equation may be written

x'{p
- am) x"{am -

/3)

'

Clearing of fractions and replacing a, y3 by a; and y, the locus is a right line,

viz., x"'xf' (y
-

y')
-
y"'x' {x - x")

= x'x" {mx -
y).

48. It is often convenient, instead of expressing the condi-

tions of the problem directly in terms of the co-ordinates of the

point whose locus we are seeking, to express them in the first

instance in terms of some other lines of the figure; we must
then obtain as many relations as are necessary in order to

eliminate the indeterminate quantities thus introduced, so as to

have remaining a relation between the co-ordinates of the point
whose locus is sought. The following Examples will sufficiently
illustrate this method.

Ex. 1. To find the locus of the middle points of rectangles inscribed in
a given triangle.

Let us take for axes CB and AB; let CIt

equations ofAC and £C are

- -
-,
= 1 and ^ + - = 1.

P 8' p S

Now if we draw any line FS parallel to the

base at a distance FK = k, we can find the

abscissa of the points F and S, in which the

line FS meets A C and £C, by substituting in

the equations of ^ C and BC the value, y = k.

Thus we get from the first equation

k X
,

^,

= 1 :. xov RK = -
P »

and from the second equation

p,RB^e, AR = 8'. The

AKR

(-1)'

p 8

Having the abscissse of F and S, we have (by Art. 7) the abscissa of the

middle point of FS, viz., x = i^ .

(l

-

-j
. This is evidently the abscissa
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of the middle point of the rectangle. But its ordinate is y = ^h. Now we
want to find a relation which will subsist between this ordinate and abscissa

whatever k be. We have only then to eliminate k between these equations,

by substituting in the first the value of k (= 2y), derived from the second,

when we have / 2?/

2x^{e-^)(l-fj.
2x 2y ^or + _^ = 1.

s - s p
This is the equation of the locus which we seek. It obviously represents a

right line, and if we examine the intercepts which it cuts off on the axes we
shall find it to be the line joining the middle point of the perpendicular CR
to the middle point of the base.

Ex. 2. A line is drawn parallel to the base of a triangle, and the points

where it meets the sides joined to any two fixed points on the base
;
to find

the locus of the point of intersection of the joining lines.

We shall preserve the same axes, &c., as in Ex. 1, and let the co-ordinates

of the fixed points, 2" and V, on the base, be for T{m, 0), and for V{n, 0).

The equation of FT will be found to be

and that of /ST to be

<s[l
—

]- n> y -kx •\- kn =0.

Now since the point whose locus we are seeking lies on both the lines FT,

SV, each of the equations just written expresses a relation which must be

satisfied by its co-ordinates. Still, since these equations involve kj they

express relations which are only true for that particular point of the locus

which corresponds to the case where the parallel FS is drawn at a height k

above the base. If, however, between the equations, we eliminate the inde-

terminate kf we shall obtain a relation involving only the co-ordinates and

known quantities, and which, since it must be satisfied whatever be the posi-

tion of the parallel FS, will be the required equation of the locus.

In order, then, to eliminate k between the equations, put them into the form

FT {s' \ m) y
- k (^ y - X ^ m\ = 0,

P

and 8V (s -n)y-ki-y-\^x- w
J

=
;

and, eliminating k, we get for the equation of the locus

(s
-
w) f

— y - a; + m)
=

(s' + m) (— y + a; - w
J

.

But -this is the equation of a right line, since x and y are only in the first

degree.

Ex. 3. A line is drawn parallel to the base of a triangle, and its extre-

mities joined transversely to those of the base
;
to find the locus of the point

of intersection of the joining lines.
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This is a particular case of the foregoing, but admits of a simple solution

by choosing for axes the sides of the triangle A C and CB» Let the lengths

of those lines be a, 6, and let the lengths of the proportional intercepts made

by the parallel be fxa^ pib. Then the equations of the transversals will be

a fib fia

Subtract one from tiie other j divide by the constant 1— , and we get for

the equation of the locus ^
^ y ^
a b

which we have elsewhere found (see p. 35) to be the equation of the bisectoi^

of the base of the triangle.

Ex. 4. Given two fixed points A and J?, one on each of the axes
;
if

A and B' be taken on the axes so that OA \0B = OA\OB\ find the

locus of the intersection ofAS, AB.
Let OA = a, OB =

6, OA = a ^h, then from the conditions of the pro-

blem OB' = h-k. The equations of AB', AB are respectively

-+5-^ = 1, r + ? = l»
a b - k a+k b

or hx + ay - ab -^ k{a- x) = 0,

bx + ay -ab + k(i/ -b) =0,

Subtracting, we eliminate k, and find for the equation of the locus

X + y ° a + b,

Ex. 6. If on the base of a triangle we take any portion AT, and on the

other side of the base another portion BS, in a fixed ratio to AT, and draw
JET and FS parallel to a fixed line CB, to find the locus of O, the point
of intersection of BB and FA,

Take AB and CB for axes ; let AT=k, BR =
8, AE^a', CB=p, let the

fixed ratio be m, then BS will = mk
; the q

co-ordinates of S will be («
- mk, 0), and of

T{-{8'-k),0}.
The ordinates of B and F will be found

by substituting these values of x in the equa-
tions of^C and B C, We get for

F, jc = -
(«'

-
k),

and for J*, a; = « - mk,

Now form the equations of the transverse lines, and the equation of FB is

and the equation of^J" is



EXAMPLES ON THE EiaHT LINE. 47

To eliminate h, subtract one equation from the other, and the result,

divided by h, will be

•which is the equation of a right line.

Ex. 6. PP' and QQ' are any two parallels to the sides of a parallelo-

gram; to find the locus of the intersection of the lines PQ and P'Q',

Let us take two of the sides for our axes, and let the lengths of the

sides be a and 6, and let AQ' = m, AP = ». q -r%

Then the equation of PQ, joining P(0, n)
to Q (m, h) is

{h
-
n) X - my + mn = 0,

and the equation of P'Q' joining P'{a,n) p/—f /P
to Q'(m, 0)is

nx - {a-m)y - mn = 0. A Q B
There being two indeterminates, m and w, we should at first suppose that

it would not be possible to eliminate them from two equations. However,
if we add the above equations, it will be found that both vanish together,

and we get for our locus

bx -
ay = 0,

the equation of the diagonal of the parallelogram.

Ex. 7. Given a point and two fixed lines : draw any two lines through
the fixed point, and join transversely the points where they meet the fixed

lines, to find the locus of intersection of the transverse lines.

Take the fixed lines for axes, and let the equations of the lines through
the fixed point be

— + ^ = 1, and -; + -,
= 1.m n m' n

The condition that these lines should pass through the fixed point sify' gives us

- 4 ~ = 1, and — + ^^
= 1

;m n m n
or, subtracting,

\m m I \n n/

Now the equations of the transverse lines clearly are

- + ^ = 1, and — + ^ = 1 .

m n m' n
or, subtracting,

\m m) \n n'j

Now from this and the equation just found we can eliminate

\m m} \n nj
and we have x'y + y'x

=
0,

the equation of a right line through the origin.
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Ex. 8. At any point of the base of a triangle is drawn a line of given

length, parallel to a given one, and so as to be cut in a given ratio by the

base : find the locus of the intersection of the lines joining its extremities to

those of the base.

49. The fundamental idea of Analytic Geometry is that

every geometrical condition to be fulfilled by a point leads to

an equation which must be satisfied by its co-ordinates. It

is important that the beginner should quickly make' himself

expert in applying this idea, so as to be able to express by an

equation any given geometrical condition. We add, therefore,

for his further exercise some examples of loci which lead to

equations of degrees higher than the first. The interpretation

of such equations will be the subject of future chapters, but

the method of arriving at the equations, which is all with which

we are here concerned, is precisely the same as when the locus

is a right line. In fact until the problem has been solved, we
do not know what will be the degree of the resulting equation.

The examples that follow are purposely chosen so as to admit

of treatment similar to that pursued in former examples, ac-

cording to the order of which they are arranged. In each of

the answers given it is supposed that the same axes are chosen,
and that the letters have the same meaning as in the corre-

sponding previous . example.

Ex. 1. Find the locus of vertex of a triangle, given base and sum of

squares of sides. Ans. x^ + y^ = ^ {m^ -
c*).

Ex. 2. Given base and m squares of one side + n squares of the other.

Ans. (m ± n) {x' + y') + 2 (m + n) ex + {m ± n) c* =p\
Ex. 3. Given base and ratio of sides.

Ex. 4. Given base and product of tangents of base angles.
In this and the Examples next following, the learner will use the values

of the tangents of the base angles given Ex. 2, Art. 46.

Ans. y* + mV = mV.
Ex. 6. Given base and vertical angle, or, in other words, base and sum

of base angles. Ans. a;* + y*
-

2c?/ cotC= c'.

Ex. 6. Given base and difference of base angles.

Ans. x*-y* + 2xy cot2) = c'.

Ex. 7. Given base, and that one base angle is double the other.

Ans. ^3? ~y* \ 2cx = c\

Ex. 8. Given base, and tanC=m tan :B. Ans. m {x' + y*
-

c*)
= 2c (c

-
ar).
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Ex. 9. PA is drawn parallel to OC, as in Ex.4, p. 40, meeting two fixed

lines in points £, B ;
and FA^ is taken = FB . PB, find the locus of P.

Ans. mx {m'x + n')
= y {mx + m'x + n').

Ex. 10. PA is taken the harmonic mean between AB and AB'.

Ans. 2mx {m'x + n) = y {mx + m'x + n'),

Ex. 11. Given vertical angle of a triangle, find the locus of the point
where the base is cut in a given ratio, if the area also is given.

Ans. xy = constant.

Ex.12. If the base is given. . x^ y* 2xy cosiv b*
Ans, —; ^—^.

— "

mn {m + nf
Ex. 13. If the base pass through a fixed point. . mx' ny'r o f Ans. — + —- = m + n,

X y
Ex. 14. Find the locus ofP [Ex. 8, p. 41] if MN is constant.

Ans. X* -\- y* + 2xy cosw = constant.

Ex. 15. If JfiV pass through a fixed point.

Am.
" ^-_yl_ = i.

ar + ycosw y -^ x cos to

Ex. 16. If MN pass through a fixed point, find the locus of the inter*

section of parallels to the axes through M and N, . ^jl^-I'

X y
Ex. 17. Find the locus of P [Ex. 1, p. 42] if the line CD be not

parallel to AB.

Ex. 18. Given base CD of a triangle, find the locus of vertex, if the^

intercept AB on a given line is constant.

.
Ans. {x'y

-
y'x) {y

-
y")

-
{x"y

-
y"x) {y -y') = c{y- y') {y

-
J/").

50. Problems where it is required to prove that a moveable

right Une^passes through a fixedpoint.
We have seen (Art. 40) that the line

Ax + By+G-\-k{A'x + B'y+C')^0)
or, what is the same thing,

{A + hA')x+{B-\-hB')y-\-C-\-hG'=-%

where h Is indeterminate, always passes through a fixed point,

namely, the Intersection of the lines,

^£c +%+O=0, and A'x^-B'y^- O' = 0.

Hence, if the equation of a right line contain an indeterminate

quantity in the first degree^ the right line will always pass through
afixed point, ,

Ex. 1. Given vertical angle of a ti'iangle and the sum of the reciprocal
of the sides

;
the base will always pass through a fixed point.

E
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Take the sides for axes
;
the equation of the base is - + f

=
1> ^^^ ^'^

are given the condition 111 111
-+r=— .

or -=
,

a m m a

therefore, equation of base is <» -. -,

-+—-" = 1.

a m a

where m is constant and a indeterminate, that is,

!(.-,), £.1
= 0,

where - is indeterminate. Hence the base must always pass through the

intersection of the two lines x - y = 0, and y = m,

Ex. 2. Given three fixed lines OA, OB, OC, meeting in a point, if the

three vertices of a triangle move one on each of these lines, and two sides

of the triangle pass through fixed points, to prove that the remaining side

passes through a fixed point.

Take for axes the fixed lines OA, OB, on which the base angles move,
then the line OC on which the vertex moves , ,

will have an equation of the form y = mx,
and let the fixed points be x'y', x"y". Now,
in any position of the vertex, let its co-or-

dinates be a: = a, and, consequently, y-ma\
then the equation of -4 C is

{pd
-

OL)y
-

{y'
- ma) x -{^ a{y'

-
mx') = 0.

Similarly, the equation of J?C is O
{x" -a)y- iy"

- ma) x + a [y"
-
mx") = 0.

Now, the length of the intercept OA is found by making a; = in equa-
tion AC, or _ ^ iy'

~
^^')

^ x'-a
'

Similarly, OB is found by making y = 0m BC, or

^_ a{i/'- mx")
^

y"
- ma

Hence, from these intercepts, equation of^5 is

y" -ma x' -a^ ~z ;;
- V ~. = a.

y - mx" ^
y - mx'

But since a is indeterminate, and only in the first degree, this line always
passes through a fixed point. The particular point is found by arranging
the equation in the form

V" J
^

_ ( mx y t\ Ck

y"-mx" 'y'-mx'^
"
\y"

- md'
~

y'
- mx'

"' ^

j

= "'

Hence the line passes through the intersection of the two lines

y' X'— —, X ; V = 0,
y" - mxf y'

- mx ^ '

y - mx' V - inx'
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Ex. 3. If in the last example the line on which the vertex C moves do
not pass through O, to determine whether in any case the base will pass

through a fixed point.

We retain the same axes and notation as before, with the only difference

that the equation of the line on which C moves will be y = mx + n, and the

co-ordinates of the vertex in any position will be a, and ma + n. Then the

equation of J^C is

{x
- a)y -

(y'
- ma - n)x + a{y'

-
mx')

- nx' = 0.

The equation of^Cis

(a;"
- a)y -

{%/'
- ma -

n) X \ a {y"
- mx") - nx" = 0,

OA- a jy'
-

f^^')
- nx q^ ^

^W -
i^^")

- nx!'
^

x' - a
'

y"
- ma - n

The equation of .45 is therefore

y" - ma - n x' - a .

X,— y. = 1.
a {y"

- mx") - nx" « (y'
-

*nx')
- nx'

Now when this is cleared of fractions, it will in general contain a in the

second degree, and therefore, the base will in general not pass through a

fixed point ; if, however, the points x'y, x"y", lie in a right line {y
= kx)

passing through 0, we may substitute in the denominators y" = kx", and

y'
= kx', and the equation becomes

y" - ma - n x' - a „ .

x,^- — y.__ = a(A;-m)-w,

which only contains a in thefirst degree, and, therefore, denotes a right line

passing through a fixed point.

Ex. 4. If a line be such that the sum of the perpendiculars let fall on it

from a number of fixed points, each multiplied by a constant, may = 0, it

will pass through a fixed point.

Let the equation of the line be

a: cosa + y sina -
jp

= 0,

then the perpendicular on it from x'y' is

x' cos« 4- y' sina -
^,

and the conditions of the problem give us

ml {x' cos a + y sin a - p) \ m" {x" cos a + y" sin a -
p)

+ m"'(x"' cosa + y'" sin a -p) { &c. = 0,

or, using the abbreviations 2
(mx') for the sum* of the mx, that is,

m'x' + m"x" + m"'x"' + &c.,

and in like manner 2 {my') for

m'y' + m'Y + m"'y'" + &c.,

and 2 (m) for the sum of the m's or

m' 4- m" + m'" + &c.

*
By sum we mean the algebraic sum, for any of the quantities m', m", &c.

may be negative.

£2
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We may write the preceding equation

2
(mar') cosa + 2

{mi/') sin a -
jjS (m) = 0.

Substituting in the original equation the value of p, hence obtained, we get

for the equation of the moveable line

a:2 (m) cos a + yS (m) sina - 2 (rnx') cosa - 2 (m?/') sin a = 0,

or ar2 (m)
- 2

(ma:') + (y2 (m)
- 2 (^ny')) tana = 0.

Now as this equation involves the indeterminate tan a in the first degree,

the line passes through the fixed point determined by the equations

a:2 (m) - 2 (mx') = 0, and t/2 (m) - 2 {mi/) = 0,

or, writing at full length,

m'x' + m"x" + m"'x"' + &c. my 4 m"y" + m"'y"' + &c.
^= -

^. . ^. .,.
—

' y =
m! + m" + m'" + «S:c. m' + m" + 7»"' + &c.

This point has sometimes been called the centre of mean position of the

given points.

51. If the equation of any line involve the co-ordinates of

a certain point in the first degree, thus,

[Ax' + By' + C)x^ [A'x' + B'y' + C')y+ {A"x' +By + C") = 0.

Then if the point xy move along a right line, the line whose

equation has just been written will always pass through a fixed

point. For, suppose the point always to lie on the line

Lx +My A-N^O^
then

if, by the help of this relation, we eliminate x' from the

given equation, the indeterminate y will remain in it of the first

degree, therefore the line will pass through a fixed point.

Or, again, if the coefficients in the equation Ax-V By +(7=0,
he connected hy the relation aA-\-bB+cC=0 [where a, 5, c are

constant and -4, Bj G may vary) the line represented hy this equa-

tion will always pass through a fixed point.

For by the help of the given relation we can eliminate G
and write the equation

[cx-a)A^[cy-h)B=^0^

a right line passing through the point (i«
= -

j 2/
= -

)
•

52. Polar co-ordinates.—It
is,

in general, convenient to use

this method, if the question be to find the locus of the extremities

of lines drawn through a fixed point according to any given law.

Ex. 1. A and B are two fixed points ;
draw through B any line, and let

fall on it a perpendicular from A, AP ; produce AP so that the rectangle

AP.AQ may be constant
;
to find the locus of the point Q.
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Take A for the pole, and AB for the fixed axis, then AQ is our radius

vector, designated by />,
and the angle QAB = 9, and

our object is to find the relation existing between

p and 6. Let us call the constant length AB =
Ct

and from the right-angled triangle APB we have

AP = c cos^, but ^P.^Q = const. = k\ therefore,

k*

pc cos^ = k*. or p cosO = —
;

"^ \ n
but we have seen (Art. 44) that this is the equation of a right line perpen-

k*
dicular to AB, and at a distance from A = —,

c ;

Ex. 2. Given the angles of a triangle ;
one vertex A is fixed, another B

moves along a fixed right line : to find the locus of the third.

Take the fixed vertex A for pole, and AP perpendicular to the fixed

line for axis, then AC =
p, CAP = 6. Now since

the angles of ABC are given, AB is in a fixed

ratio to AC {= mAC) and BAP = 0-a; but

AP = ABcoaBAP', therefore, if we call AP, a,

we have ^p cos(^
-

«) = a,

which (Art. 44) is the equation of a right line, making
an angle a with the given line, and at a distance from

Ex. 3. Given base and sum of sides of a triangle, if at either extremity
of the base B a perpendicular be erected to the conterminous side BC; to

find the locus of P the point where it meets the external bisector of vertical

angle CP.

Let us take the point B for our pole, then BP will be our radius vector

p ;
and let us take the base produced for our

fixed axis, then PBD = 0, and our object is to

express p in terms of 0. Let us designate the _Cy
sides and opposite angles of the triangle a, &, c,

A, B, C, then it is easy to see, that the angle
BCP = 90° - IC and from the triangle PCB,
that a =* p tan f C. Hence it is evident, that if

we could express a and tan | C in terms of 0, we could express p in terms

of 9. Now from the triangle ABC we have

6' = a* + c' - 2ac cosB,

but if the given sum of sides be m, we may substitute for 6, m - a
;
and cosB

plainly
= sin^

;
hence ^^ _ 2a?n ^- a" = a' + c* - 2ac sin^,

and a =
: .

2 (m - c sm^)
Thus we have expressed a in terms of and constants, and it only remains

to find an expression for tan I C.
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Now tanfc/=r— 7^.
6(1 + cosC)

But 6 sinC = c sin J? = c cos^
;
and b cosC= a - c cosB = a - c slnO.

Hence tan|C=- ;—7..m - c siny

We are now able to express />
in terms of 6, for, substitute in the equa-

tion a = p tan I C the values we have found for a and tan |C, and we get

m* - c^ _ pc cosO # n _ ^* ~ ^^

2 (m - c sin^)

~
(m - c sin^)

' ^ ~
2c

*

Hence the locus is a line perpendicular to the base of the triangle at

a distance from B = .

2c

The student may exercise himself with the corresponding locus, if CP had

been the internal bisector, and if the difference of sides had been given.

Ex. 4. Given n fixed right lines and a fixed point O ;
if through this point

any radius vector be drawn meeting the right lines in the points r^, r^, r^...rn,

and on this a point It be taken such that -^r^ = -pr- + -p— + -yr- +. ..-77- » to

find the locus of JJ.
^^ Or, Or, Or.. Or.,

Let the equations of the right lines be

pcos{0-a)=pi; />cos(6>-^)=^^, &c.

Then it is easy to see that the equation of the locus is

n cos(0 -
a) c,os(6 - B)- = —^^ -' + —^ ^ + &c.

P Pi P2

the equation of a right line (Art. 44). This theorem is only a particular
case of a general one which we shall prove afterwards.

We add, as in Art. 49, a few examples leading to equations of higher

degree.

Ex. 5. JBP is a fixed line whose equation is p cosO = m, and on each

radius vector is taken a constant length FQ, to find the locus of Q
[see fig., Ex. 1].

AP is by hypothesis =
; therefore AQ = p = -^ + d, which trans-

cos^ '^
cos^

formed to rectangular co-ordinates is {x
-
nif {x^ + y^)

= c?V.

Ex. 6. Find the locus of Q, if P describe any locus whose polar equa-
tion is given, /?

=
{6). We are by hypothesis given AP in terms of 0, but

AP is the p of the locus -
</; we have therefore only to substitute in the

given equation p
- d for p. Ans. p

- d =
(p (6>).

Ex. 7. li AQ be produced so that AQ may be double AP. Then AP
is half the p of the locus, and we must substitute half p for p in the given

equation.

Ex. 8. If the angle PAB were bisected and on the bisector a portion
AP' be taken so that AP* = mAP, find the locus of P', when P describes

the right line p cosO = m, PAB is now twice the of the locus, and there-
m

fore AP = ——
,
and the equation of the locus is p^ cos 2^ = m*.

cos 2^ ^ '
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* CHAPTER IV.

APPLICATION OF ABRIDGED NOTATION TO THE EQUATION
OF THE RIGHT LINE.

53. We have seen (Art. 40) that the line

{x cosoL + y sina—^) —k{x cos/3 + y sinyS—y) =

denotes a line passing through the intersection of the lines

a; cos a -f 3^
sina—^ = 0, x cos0-\-y amj^-^p =0.

We shall often find it convenient to use abbreviations for

these quantities. Let us call

X cosa + y sina— p, a; x cos/S-^t/ sin/3— ^', jS,

Then the theorem just stated may be more briefly expressed, the

equation a — ^/S = 0, denotes a line passing through the intersec-

tion of the two lines denoted by a = 0, ^ = 0. We shall for

brevity call these the lines a, /?,
and their point of intersection

the point aff. We shall, too, have occasion often to use abbre-

viations for the equations of lines in the form Ax + B7/-i- (7=0.

We shall in these cases make use of Eoman letters, reserving the

letters of the Greek alphabet to intimate that the equation is in

the form
a; cosa + 3/

sin a —^ = 0.

54. We proceed to examine the meaning of the coefficient k

in the equation a-7c^ — 0. We saw (Art. 34) ^
that the quantity a (that is,

a? cos a -fy sina—^)
denoted the length of the perpendicular FA let fall

from any point xy^ on the line OA (which we

suppose represented by a). Similarly, that y8 is the O B

length of the perpendicular PB from the point xt/^ on the line

OB^ represented by ^, Hence the equation a — ^/S = 0, asserts,

that if from any point of the locus represented by it, perpen-
diculars be let fall on the lines OA^ OB, the ratio of these per-

pendiculars, that is,
PA : PB will be constant, and = Jc. Hence

I
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the locus represented hy a-Jcfi=0 is a. right line through 0, and

j_PA _ sinPO^
PB'

^^ ~
sinFOB'

It follows from the conventions concerning signs (Art. 34) that

a + k^ = denotes a right line dividing externally the angle

AOB into parts such that -.—r=—-= = h. It is of course as-^ sm FOB
sumed in what we have said that the perpendiculars PA^ PB
are those which we agree to consider positive ;

those on the op-

posite sides of a, fi being regarded as negative.

Ex. 1. To express in this notation the proof that the three bisectors of

the angles of a triangle meet in a point.

The equations of three bisectors are obviously (see Arts. 35, 54) a -
/3
= 0,

^-fy = 0, 7-a = 0, which, added together, vanish identically.

Ex. 2. Any two of the external bisectors of the angles of a triangle meet

on the third internal bisector.

Attending to the convention about signs, it is easy to see that the equa-
tions of two external bisectors are « + y3

= 0, « + 7 = 0, and subtracting one

from the other we get y3
- 7 = 0, the equation of the third internal bisector.

Ex. 3. The three perpendiculars of a triangle meet in a point.

Let the angles opposite to the sides a, ^, 7, be A, B, C, respectively.
Then since the perpendicular divides any angle of the triangle into parts,

which are the complements of the remaining two angles, therefore (by
Art. 64) their equations are

o cos^ -/3 cosjB =
0, y3 cos^ - 7 cosC= 0, 7 cosC- a cob^ = 0,

which obviously meet in a point.

Ex. 4. The three bisectors of the sides of a triangle meet in a point.
The ratio of the perpendiculars on the sides from the point where the

bisector meets the base plainly is sin-4 : sin J?. Hence the equations- of the

three bisectors are

a sinA -
/3 sin^ = 0, /3 sin5 - 7 sinC= 0, 7 sinC- a sin-4 = 0.

Ex. 5. The lengths of the sides of a quadrilateral are a, h, c, «f, find the

equation of the line joining middle points of diagonals.
Arts, aa- b^ + c^

- dS = 0] for this line evidently passes through the

intersection of aa -
bjS, and c^

-
dS; but, by the last example, these are the

bisectors of the base of two triangles having one diagonal for their common
base. In like manner aa -

dd, bfi
-

07, intersect in the middle point of the

other diagonal.

Ex. 6. To form the equation of a perpendicular to the base of a triangle
at its extremity. Ans. a + 7 cosjB = 0.
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Ex. 7. If there be two triangles such that the perpendiculars from the

Tertices of one on the sides of the other meet in a point, then, vice versa,

the perpendiculars from the vertices of the second on the sides of the first

will meet in a point.

Let the sides be a, fi, 7, a, /S', 7', and let us denote by (a/3) the angle be-

tween a and /3. Then the equation of the perpendicular

from a/3 on 7' is a
cos(/37')

-
/3 cos(a7')

= 0,

from /37 on a is /3 cos(7a')
- 7 cos(/?a')

= 0,

from a7 on /3' is 7 cos(a/3')
- «

cos(7/3')
- 0.

The condition that these should meet in a point is found by eliminating /?

between the first two, and examining whether the resulting equation coin-

cides with the third. It is

COs(a^') COS(/37') C0s(7a') = C0S(a(3) COS(j8'7) C08(7'o).

But the symmetry of this equation shows that this is also the condition that

the perpendiculars from the vertices of the second triangle on the sides of

the first should meet in a point.

55. The lines a-Jcl3 = 0j and Tea — ^ — 0, are plainly such

that one makes the same angle with the line a which the other

makes with the line /8,
and are therefore equally inclined to the

bisector a •-
y3.

Ex. If through the vertices of a triangle there be drawn any three lines

meeting in a point, the three lines drawn through the same angles, equally
inclined to the bisectors of the angles, will also meet in a point.

Let the sides of the triangle be a, /3, 7, and let the equations of the first

three lines be
/« - w/3 = 0, mfi

-
nr^

= 0, n^ - la = 0,

which, by the principle of Art. 40, are the equations of three lines meeting
in a point, and which obviously pass through the points a/3, ^37, and 7a.

Now, from this Article, the equations of the second three lines will be

I m 9n n n I

which (by Art. 40) must also meet in a point.

5Q. The reader is probably already acquainted with the fol-

lowing fundamental geometrical theorem :—^^Ifa pencil offour

right lines meeting in a point he intersected hy any transverse

right liiie in the four points A^ P, P', P, then

. AP.FB .

the ratio . ^ ^-.^ is constant, no matter now
AF. PB '

the transversa line he drawn^ This ratio is

called the anharmonic ratio of the pencil. In q

fact, let the perpendicular from on the transverse line —p : then

p.AP= OA. OP.sin^ OP (both being double the area ofthe triangle
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AOF)] p.PB=^OF.OB^mFOB; p.AF^OA.OF sin^OP';

p.FB= OP.OB.smPOB', hence

p\AFFB=OA,OROF.OB.smAOFsmFOB;
f, AF,FB=OA. OF. OF OB. sinA OF. sinFOB

;

AF.FB _ BinA OF. sinF' OB
^

AF.FB
~
smAOF.BinFOB'

but the latter is a constant quantity, independent of the position

of the transverse line.

57. K a — k0 = Oj a — Jeff = 0, be the equations of two lines,

k .

then p will be the anharmomc ratio of the pencil formed by the

four lines a, /S, a - Jc/S, a —
Tc'ffj

for (Art. 54)

k =
sinA OF

k' =
sinA OF'

therefore

smFOB^ smFOB^
h _ smAOF.smF OB
k'~ smAOF.s'mFOB'

but this is the anharmonic ratio of the pencil.

. k
The pencil is a harmonic pencil when ^^ = — !> for then the

angle A OB is divided internally and externally into parts whose

sines are in the same ratio. Hence we have the important theo-

rem, two lines whose equations are OL
—

kff = 0, a + k/3 = 0, form
with aj ff a harmonic pencil.

58. In general the anharmonic ratio of four lines, a - kff^

a — Iff, a — mffj a — nff, is
l)[m-k) For let the pencil be

{n — m) {l
—

k)
'

cut by any parallel to ff in the four points K, Z, ilf,
N and the

. . NL.MK ^ .

ratio 18 ^r^r T T^ ' -out smce ffNM.LK ^

has the same value for each of

these four points, the pei'pen-

diculars from these points on a are

(by virtue of the equations of the C)
'

/3

lines) proportional to k, 7, w, n
;
and AK, AL^ AM, AN, are evi-

dently proportional to these perpendiculars ;
hence NL is propor-

and LK to l—k.tional to n — ?
;
MK to m k

;
NM \.o n — m
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59. The theorems of the last two articles are true of lines

represented in the form P—hP\ P— IP\ &c., where P, P' de-

note ax-\-h2/ + Cj ax -h h'y + c',
&c. For we can bring P to the

form X cosa + j/
sina—^ by dividing by a certain factor. The

equations therefore P— A;P' = 0, P— ZP' = 0, &c. are equivalent

to equations of the form a - Jcp^
=

0^ a — Ip^ = 0, &c., where p
is the ratio of the factors by which P and P' must be divided

in order to bring them to the forms a, yS. But the expressions

for anharmonic ratio are unaltered when we substitute for kj Z,

m^ n
; Jcp^ Ip^ mp^ np.

It is worthy of remark, that since the expressions for an-

harmonic ratio only involve the coefficients h^ Z, m, n^ it follows

that if we have a system of any number of lines passing through
a point, P— hP\ P— ZP', &c.

;
and a second system of lines

passing through another point, Q—lcQ\ Q- IQ\ &c., the line

P—hP' being said to correspond to the line Q — lcQ\ &c.
;
then

the anharmonic ratio of any four lines of the one system is

equal to that of the four corresponding lines of the other system.

We shall hereafter often have occasion to speak of such systems
 

of lines, which are called homogra^pMc systems.

60. Given three lines a, yS, ^y^ forming a triangle^ the equation

ofany right line^ ax + hg + c = Oj can be thrown into the form

loL + mP + W7 = 0.

Write at full length for a, /3, 7 the quantities which they

represent, and Iol + m^ + 717 becomes

(? cosa + m cos^ + n COS7) x-\-{l sina + m sinyS +' w sin 7) y
—

[lp-{-m^' '{np')
= 0.

This will be identical with the equation of the given line,

if we have

Z cosa + m cosyS + n C0S7 = a, I sina + m sinyS + n sin7 = h,

Ip -\- mjp + n]^"
= —

c,

and, we can evidently determine
?, w, w, so as to satisfy these

three equations.

* We say
"
forming a triangle," for if the lines «, /3, 7 meet in a point,

/a + m/3 f n7 must always denote a line passing through the same point,

since any values of the co-ordinates which make a, /?, 7 separately = 0,

must make ?« + m/3 + W7 = 0.
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The following examples will illustrate the principle that it is

possible to express the equations of all the lines of any figure

in terms of any three a = 0, /9 = 0, 7 = 0.

Ex. 1. To deduce analytically the harmonic properties of a complete

quadrilateral.

Let the equation of ^ C be a =
; of AB, 13

= 0; of JBD, 7 = 0; of ADj
/a-»n/3 = 0; andof ^C, m/3-n7 = 0. Then

yie are able to express in terms of these

quantities the equations of all the other

lines of the figure.

For instance, the equation of CD is

la - m/S + W7 = 0,

for it is the equation of a right line passing

through the intersection of h - m/5 and 7,

that is, the point D, and of a and w/3 -
W7,

'^ B
that is, the point C. Again, la - n^ = is the equation of OE, for it passes

through 07 or Ey and it also passes through the intersection ofAD and BCj
since it is = {la

-
wi/3) + {nifi

-
W7).

EF joins the point a<^ to the point {la
- mp + W7, ^), and its equation

will be found to be la + n^^
= 0,

From Art. 57 it appears, that the four lines EA, EO, EB, and EF^ form

a harmonic pencil, for their equations have been shown to be

a = 0, 7 = 0, and la ± n<y
= 0.

Again, the equation of FO, which joins the points (la + n^, P) and

{la
-

m/3, mfi -
n7) is

^„ _ 3^^ ^ n^j
= 0.

Hence (Art. 57) the four lines FE, FC, FO, and FB, are a harmonic

pencil, for their equations are

la -
7n/3 + n7 = 0, /3 = 0, and la - mP f M7 + m/3 = 0.

Again, OC, OE, OD, OF, are a harmonic pencil, for their equations are

la -
7W/3

= 0, m^-n<^ = 0, and la -
myS ± (m/3

-
W7) = 0.

Ex. 2. To discuss the properties of the system of lines formed by drawing
through the angles of a triangle three lines meeting in a point.

Let the- equation of AB be 7 = 0; of ^C, ^ = 0; of ^(7, « = Oj and let

the lines OA, OB, OC, meet-
jyi

ing in a point, be mft
-

n<y,

«7 -la, la - mp, (see Art. 55).

Now we can form the equa-
tions of all the other lines in

the figure.

For example, the equation
of EF is

»n/3 + n7 - Za ^
0, N A F % "B

since it passes through the points {^, ti'^
-

la) or E, and (7, m/3 -
la) or F.
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In like manner, the equation ofDF is

la - myS + wy = 0,

and ofDE la + m(3 - W7 = 0.

Now we can prove, that the three points X, M, If are all in one right

Hne, whose equation is
/« + mjS + W7 = 0,

for this line passes through the points {la + m/S - n^, 7) or iV; {la -ml3 + n<^, jB)

or M; and (m/3 + n7 -
la, a) or L.

The equation of CN is
/« + ^j/? = 0,

for this is evidently a line through («, /3) or C, and it also passes through iV,

since it = (Za + w^/S + ^7) -
M7.

Hence ^iVis cut harmonically, for the equations of the four lines C2V,

CA, CF, CB are,

= 0, i8
= 0, la-mfi = Oy la + ml3 = 0.

The equations of this example can be applied to many particular cases

of frequent occurrence. Thus (see Ex. 3, p. 56) the equation of the line joining
the feet of two perpendiculars of a triangle is a cosA + fi cosB -

(^ cosC= 0;

while a cos^ + j8 cosJ5 + 7 cosC passes through the intersections with the

opposite sides of the triangle of the lines joining the feet of the perpen-
diculars. In like manner a sin^ + /? sin J? - 7 sin C represents the line joining
the middle points of two sides, &c.

Ex. 3. Two triangles are said to be homologous, when the intersections

of the corresponding sides lie on the same right line called the axis of

homology : prove that the lines joining the corresponding vertices meet in a

point [called the centre of homology'].

Let the sides of the first triangle be o, /9, 7; and let the line on which

the corresponding sides meet be /« + m/3 -f W7 : then the equation of a line

through the intersection of this with o must be of the form Ha + m^^nr^^ 0,

and similarly those of the other two sides of the second triangle are

la + m'p f W7 = 0, la ^ mp-\- w'7 = 0.

But subtracting successively each of the last three equations from an-

other, we get for the equations of the lines joining corresponding vertices

(/ -I') ft- {m - m') /3, (m -
m') /9

=
(w

-
n') 7, {n

-
w') 7 =

(/
-

V) a,

which obviously meet in a point.

61. To find the condition that two lines la. 4- m^ -f- ny,

ToL + m'^ + n'y may be mutually perpendicular.
Write the equations at full length as in Art. 60, and apply

the criterion of Art. 25, Cor. 2, [AA + BB' = 0), when we find

W 4- mm! + nn -f {mn + m'n) cos(/3
—

7) + {nV + n'T) 005(7
—

a)

-f {Im' + I'm) cos (a
-
^) = 0.

Now since ^ and 7 are the angles made with the axis of x by
the perpendiculars on the lines ^, 7 ; /3

- 7 is the angle between
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tliose perpendiculars, which again is equal or supplemental to

the angle between the lines themselves. If we suppose the

origin to be within the triangle, and A^ B^ C to be the angles

of the triangle, ;8
- 7 is the supplement of A, The condition

for perpendicularity therefore is

U'+mm-\-nn-{mn-\-m'n) cos^-(wZ'+w7) cos5-(7m'+?'«2)cos(7=0.

As a particular case of the above, the condition that h-\-m^+ny

may be pei'pendicular to 7 is

n = m cosA + l cosB,

In like manner we find the length of the perpendicular from x'y'

on IoL+m^-\'ny. Write the equation at full length and apply the

formula of Art. 34, when, if we write x cosa +y sina—p = a',

&c., the result is

la -f m^' + ny

/V(^+
m^+ n^ - 2mn cosA - 2nl cosB- 2lm cos (7)

*

Ex. 1. To find the equation of a perpendicular to 7 through its ex-

tremity. The equation is of the form la + ny = 0. And the condition of

this article gives n = I cos B, as in Ex. 6, p. 56.

-^ Ex. 2. To find the equation of a perpendicular to 7 through its middle

point. The middle point being the intersection of 7 with a sinA -
(3 amB,

the equation of any line through it is of the form a sin-4 -
/3 sin J5 + W7 = 0,

and the condition of this article gives n = sin (-4
-

J3),

^ Ex. 3. The three perpendiculars at middle points of sides meet in a

point. For eliminating «, /3, 7 in turn between

o sin^ -
/3 %mB + 7 sin(-d[

-
J5)

= 0, /3 sin^ - 7 sinC+ a %m{B - C) = 0,

we get for the lines joining the intersection of two perpendiculars to the

three vertices, —- = =—^L- . and the symmetry of the equations
COS./i COS JL> COS o

proves that the third perpendicular passes through the same point. The

equations vanish when multiplied by sin*C, sin'^.^, sin*J?, and added together.

Ex. 4. Find, by Art. 25, expressions for the sine, cosine, and tangent of

the angle between la \ mft + «7, I'a + m'/3 + n'7.

Ex. 5. Prove that « cos-4 + /3 cosB + 7 cosC is perpendicular to

'"^asinA cosA 8in(J5- C)-\-ftsmB cosjB sin(C-^) + 7sinCcosCsin(-4-^).

62. We have seen that we can express the equation of any
right line in the form h + ml3 + 717

=
0, and so solve any problem

by a set of equations expressed in terms of a, /S, 7, without any
direct mention of x and y. This suggests a new way of looking
at the principle laid down in Art. 60. Instead of regarding a
as a mere abbreviation for the quantity x cosa + y sina—p, we
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may look upon it as simply denoting the length of the perpen-
dicular from a point on the line a. We may imagine a system
of trUmear co-ordinates in which the position of a point is de-

fined by its distances from three fixed lines, and in which the

position of any right line is defined by a homogeneous equation

between these distances of the form

loL + m^ + ^7 = 0.

The advantage of trilinear co-ordinates
is,

that whereas in

Cartesian (or x and y) co-ordinates the utmost simplification we
can introduce is by choosing two of the most remarkable lines in

the figure for axes of co-ordinates, we can in trilinear co-ordi-

nates obtain still more simple expressions by choosing three of

the most remarkable lines for the lines of reference a, /3, 7. The
reader will compare the brevity of the expressions in Art. 54

with those corresponding in Chap. Ti.

63. The perpendiculars from any point on a, yS, 7 are

connected by the relation aoL + hff + cy
—

if, where «, J, c are

the sides, and M double the area, of the triangle of reference.

For evidently aa, bjS^ cy are respectively double the areas of

the triangles OBCj OCA^ OAB, The reader may suppose
that this is only true if the point be taken toithin the triangle ;

but he is to remember that if the point were on the other

side of any of the lines of reference (a), we must give a negative

sign to that perpendicular, and the quantity aa + Z>y8 + cy would

then be double OGA+ OAB- OBC, that is still = double the

area of the triangle. Since sin J. is proportional to a, it is plain

that a smA + ff sinB -\-y sin (7 is also constant, a theorem which

may otherwise be proved by writing a, /5, 7 at full length as in

Art. 61, multiplying by sin(y8
—

7), sin(7
—

a), sin(a
—

/8),
re-

spectively, and adding, when the coefficients of x and y vanish,

and the sum is therefore constant.

The theorem of this article enables us always to use homo^

geneous equations 'in a, /S, 7, for if we are given such an equa-
tion as a = 3, we can throw it into the homogeneous form

ilfa = 3(aa + ^/3 + C7).

64. To express in trilinear co-ordinates tlie equation of the

'parallel to a given line la + m/3 + ny.
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In Cartesian co-ordinates two lines Ax+Bi/-\-Cj Ax^-By^-G\
are parallel if their equations differ only by a constant. It

follows then that

loL + mp + W7 -f ^ (a sin-4 + )8 sin-5+ 7 sin G) = 0,

denotes a line parallel to la. + m^ + wy, since the two equations

differ only by a quantity which has been just proved to be

constant.

In the same case Ax -\- By -{ C -\- [Ax -{ By -\- C) denotes a

line also parallel to the two given lines and half way between

them : hence if two equations P— 0, P' = are so connected

that P—P' = const., then P+ F denotes a parallel to P and P'

half way between them.

Ex. 1. To find the equation of a parallel to the base of a triangle drawn

through the vertex. Ans. a sinA + /3 sin^ = 0.

For this, obviously, is a line through a/9, and writing the equation in the

^orm
^ sin(7_ („ sjjj^ ^ ^ gjnJB + ry sin (7) = 0,

it appears that it differs only by a constant from 7 = 0.

We see, also, that the parallel a sinA + j8 sin^, and the bisector of the

base a sinA - ^ sinJ5 form a harmonic pencil with a, p (Art. 67).

Ex. 2. The line joining the middle points of sides of a triangle is parallel

to the base. Its equation (see Ex. 2, p. 61) is

o sin-4 + /3 sin^ - 7 sinC= 0, or 27 sinC= a sinA + /? sinJ5 + 7 sinCl

Ex. 3. The line aa -
6/3 + 07

- d8 (see Ex. 5, Art. 54) passes through the

middle point of the line joining 07, ^8. For {aa + 07) + (6/3 + dS) is constant

being half the area of the quadrilateral ; hence aa + 07, 6/3 + dB are parallel,

and {aa + 07)
-

(6/3 + d^) is also parallel and half-way between them. It

therefore bisects the line joining (07) which is a point on the first line, to

(/3^) which is a point on the second.

,^

^^, To write in the form la. + 7w/9 + 717
= the equation of the

linejoining two given points xy\ xy\
Let a', as before, denote the quantity a;' cosa + y' sina—^.

Then the condition that the co-ordinates xy' shall satisfy the

equation la. + m^ + ^7 = 0, may be written

la + wi/8' + W7' = 0.

Similarly we have Id' + my8"+ 717"
= 0.

Solving for -
,

—
,
from these two equations, and substituting

in the given form, we obtain for the equation of the line joining
the two points

a (^'7"
-

7'/3") + /9 (7'a"
-

7"a') + 7 (a'/3"
~

a''/^')
= 0.
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It is to be observed that the equations in trilinear co-ordi-

nates being homogeneous, we are not concerned with the actual

lengths of the perpendiculars from any point on the lines of

reference, but only with their mutual ratios. Thus the preceding

equation is not altered if we write
/oa', pyQ', py, for a, /3', y*

Accordingly if a point be given as the intersection of the lines

y = — = -
, we may take L m. n as the trilinear co-ordinates

of that point. For let p be the common value of these fractions,

and the actual lengths of the perpendiculars on a, yS, 7 are

Ip^ mp^ np where p is given by the equation aIp+bmp+cnp=Mj
but, as has been just proved, we do not need to determine p.

Thus, in applying the equation of this article, we may take ifor

the co-ordinates of intersection of bisectors of sides, sin5 sinC,

sinOsin^, sin^ sin^
;

of intersection of perpendiculars,
cos^ cos

(7,
cos (7 cos^, cos^ cos-B; of centre of inscribed circle

1, 1, 1
;
of centre of circumscribing circle cos-<4, cos^, cosO, &c.

Ex. I. Find the equation of the line joining intersections of perpen-

diculars, and of bisectors of sides.

Ans. a sinA cosA sm(^B-C)^j3 sinB cos^ 8in( C-^)+7 sinCcosCsin(^-5)=0.

Ex. 2. Find equation of line joining centres of inscribed and circum-

scribing circles.

Ans, a (cos5 -
cosC) + fi (cosC- cos^) + 7 (cos^

- eos5) = 0.

66. It is proved, as in Art. 7, that the length of the per-

pendicular on a from the point which divides in the ratio I : m,
the line joining two points whose perpendiculars are a', a" is

—J— . Consequently the co-ordinates of the point dividing

in the ratio I : m the line joining cn'^'y, a."^'y" are la 4- wa",
Zy3' + w^", Zy + ^y. It is otherwise evident that this point
lies on the line joining the given points, for if a'/SY, a"/3"7"

both satisfy the equation of a line Aol-\-B^-^ ^7 = 0, so will

also la' -f wa", &c. It follows hence without difficulty that

la — ma"
J
&c. is the fourth harmonic to la + wa", a', a" : that

the anharmonic ratio of a -
ka", a - la\ a' - md\ a - wa", is

(71-1) (m-k) 11, . /. .

7—^
—

\fJ_^^ ;
and also that given two systems 01 pomts on

two right lines, a'-A:a", a'-?a", &c., a'" - Jca"\ a" - ?a"", &c.,
these systems are homograpMc^ the anharmonic ratio of any four

F

-U
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points OD one line being equal to that of the four corresponding

points on the other. o c^

Ex. The intersection of perpendiculars, of bisectors of sides, and the

centre of circumscribing circle lie on a right line. For the co-ordinates of

these points are cos J? cosC, &c., sin^ sinC, &c., and cos^, &c. But the

last set of co-ordinates may be written sin^ sinC- cosJ5 cosC, &c.

The point whose co-ordinates are cos(B -
C), cos{C~ A), cos {A -

JB)

evidently lies on the same right line and is a fourth harmonic to the three

preceding. It will be found hereafter that this is the centre of the circle

through the middle points of the sides.

67. To examine what line is denoted hy the equation

a. %mA-\-P sin J?-}- 7 sinO=0.

This equation is included in the general form of an equation
of a right line, but we have seen (Art. 63) that the left-hand

member is constant, and never =0. Let us return, however,
to the general equation of the right line, Ax -\- By -\- (7=0. We

G G
saw that the intercepts cut off on the axes are ~ t j

~
"d j

consequently, the smallerA andB become, the greater will be the

intercepts on the axes, and, therefore, the more remote the line re-

presented. Let A and B be both = 0, then the intercepts become

infinite, and the line is altogether situated at an infinite distance

from the origin. Now it was proved (Art. 63) that the equation
under consideration is equivalent to Ox-{-Oy+ (7=0, and though
it cannot be satisfied by any finite values of the co-ordinates,
it may by infinite values, since the product of nothing by infinity

may be finite. It appears then that a smA + ^ sinB+y sin (7

denotes a right line situated altogether at an infinite distance from
the origin ; and that the equation of an infinitely distant right

line, in Cartesian co-ordinates, is O.aj-f- O.^z-f (7 = 0. We shall,

for shortness, commonly cite the latter equation in the less

accurate form (7=0.

68. We saw (Art. 64) that a line parallel to the line a =
has an equation of the form a-f (7=0. Now the last Article

shows that this is only an additional illustration of the principle
of Art. 40. For, a parallel to a may be considered as intersecting
it at an infinite distance, but (Art. 40) an equation of the form
a-t- (7=0 represents a line through the intersection of the lines
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a = 0, (7=0, or (Art. 67) through the intersection of the line a

with the line at infinity.

69. We have to add that Cartesian co-ordinates are only a

particular case of trilinear. There appears, at first sight, to be

an essential difference between them, since trilinear equations
are always homogeneous, while we are accustomed to speak of

Cartesian equations as containing an absolute term, terms of the

first degree, terms of the second degree, &c. A little reflection^

however, will show that this difference is only apparent, and

that Cartesian equations must be equally homogeneous in reality,

though not in form. The equation a? = 3, for example, must

mean that the line x is equal to three feet or three inches, or, in

short, to three times some linear unit
;
the equation xy — ^ must

mean that the rectangle xy is equal to nine square feet or square

inches, or to nine squares of some linear unit
;
and so on.

If we wish to have our equation homogeneous In form as well

as in reality, we may denote our linear unit by z^ and write the

equation of the right line

Ax + By+ Cz = 0.

Comparing this with the equation

^a + ^^+(77 = 0;
^

and remembering (Art. 67) that when a line is at an infinite dis-

tance its equation takes the form 2; = 0, we learn that equations

in Cartesian co-ordinates are only the particularform assumed hy
trilinear equations when two of the lines of reference are v^hat are

called the co-ordinate axes^ while the third is at an infinite distance*

70. We wish in conclusion to give a brief account of what is

meant by systems of tangential co-ordinates^ in which the position

of a right line is expressed by co-ordinates, and that of a point by
an equation. In this volume we limit ourselves to what is not

so much a new system of co-ordinates as a new way of speaking
of the equations already in use. If the equation (Cartesian or

trilinear) of any line be Xx -\- fiy + vz — 0, then evidently, if

\, //<,
V be known, the position of the line is known : and we

may call these three^ quantities (or rather their mutual ratios

with which only we are concerned) the co-ordinates of the right

line. If the line pass through a fixed point x'y'z'^ the relation

r2



68 EQUATIONS EEPEESEXTING RIGHT LINES.

must be fulfilled x\ + y'fi + 2;V =
;

if therefore we are given

any equation connecting the co-ordinates of a line, of the form

a\-}-hLL + cv = 0^ this denotes that the line passes through the

fixed point (a, 5, c), (see Art. 51), and the given equation may-

be called the equation of that point. Further, we may use

abbreviations for the equations of points, and may denote by

a, yS the quantities x'\-\-y'/ii + z'y^ x"\-\- y"fL-\- z"v\ then it is

evident that leu + mjB = is the equation of a point dividing in

a given ratio the line joining the points a, y3; that ?a = my3,

m^ = 717, ^7 = ^oc,
are the equations of three points which lie on

a right line
;
that a + ^/3, a - ^/3 denote two points harmonically

conjugate with regard to a, /3, &c. We content ourselves here

with indicating analogies which we shall hereafter develope
more fully ;

for we shall have occasion to show that theorems

concerning points are so connected with theorems concerning

lines, that when either is known the other can be inferred, and

often that the same equations differently interpreted will prove
either theorem. Theorems so connected are called reciprocal

theorems.

Ex. Interpret in tangential co-ordinates the equations used Art. 60. Ex. 2.

Let a, y3, 7 denote the points A, B,C; mp -
717, «7 -

/«, la - m^, the

points L, M, N; then m^ + W7 -
la, n<-^ + la - m^, la + m/3

- M7 denote

the vertices of the triangle formed by LA, 3IB, NC\ and la + m^ + W7
denotes a point O in which meet the lines joining the vertices of this new

triangle to the corresponding vertices of the original : m/5 + W7, W7 1 /a,

la + m^ denote Z>, E, F. It is easy hence to see the points in the figure

which are harmonically conjugate.

CHAPTER V.

EQUATIONS ABOVE THE FIRST DEGHEE REPRESENTING
RIGHT LINES.

71. Before proceeding to speak of the curves represented

by equations above the first degree, we shall examine some cases

where these equations represent right lines.

If we take any number of equations, X=0, Jlf=0, N=0, &c.
and multiply them together, the compound equation LMN^ &c. =
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will represent the aggregate of all the lines represented by its

factors
;
for it will be satisfied by the values of the co-ordinates

which make any of its factors = 0. Conversely, if an equation of

any degree can he resolved into others of lower degress^ it will repre-

sent the aggregate of all the loci represented hy its different factors.

If, then, an equation of the n^ degree can be resolved into n

factors of the first degree, it will represent n right lines.

72. A homogeneous equation^ of the n^ degree in x and y
denotes n right lines passing through the origin.

Let the equation be

X -px'-^y + q^x^'Y
- &c. . . .+ ^/ = 0.

Divide by y\ and we get

Let «, 5, c, &c. be the n roots of this equation, then it is re-

solvable into the factors

e--).(i-'){f-)*"=»;
and the original equation is therefore resolvable into the factors

{x — ay) [x
—

hy) (x — cy) &c. = 0.

It accordingly represents the n right lines x — ay = 0^ &c., all of

which pass through the origin. Thus, then, in particular, the

homogeneous equation

x^ —pxy + qy^
—

represents the two right lines x — ay — ^^x — hy — ^^ where a and

h are the two roots of the quadratic

It is proved, in like manner, that the equation

{x-aY-p{x-aY-\y-h)-^q[x-aY-'\y-h)\,.\t{^i-hY^^
denotes n right lines passing through the point (a, h),

Ex. 1. What locus is represented by the equation ari/
= ?

Ans. The two axes, since the equation is satisfied by either of the sup-

positions ic = 0, y = 0.

Ex. 2, What locus is represented by ar* -
y'

= ?

Ans. The bisectors of the angles between the axes, a; + ?/ =:0 (see Art. 35 j.
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Ex. 3. What locus is represented by x* - ^xy + 6y'
= ?

Ans. a; - 2y = 0, a: - 3y = 0.

Ex. 4. What locus is represented by x^ -
2xy sec0 + y*

= ?

Ans. x = y tan(45° ± \e),

Ex. 5. What lines are represented by a;* - 2xy ionO -
y*

= ?

Ex. 6. What lines are represented by x^ -
%x^y + Wxy^ -

6y^
= ?

73. Let us examine more minutely the three cases of the

solution of the equation a?" —^xy + qy'^
=»

0, according as its roots

are real and unequal, real and equal, or both imaginary.
The first case presents no difficulty : a and h are the tangents

of the angles which the lines make with the axis of y (the axes

being supposed rectangular), p is therefore the sum of those

tangents, and q their product.

In the second case, when a = hj it was once usual among
geometers to say that the equation represented but one right

line {x-ay = 0). We shall find, however, many advantages in

making the language of geometry correspond exactly to that of

algebra, and as we do not say that the equation above has onli/

one root, but that it has two equal roots, so we shall not say
that it represents onli/ one line, but that .it represents two coin-

cident right lines.

Thirdly, let the roots be both imaginary. In this case no real

co-ordinates can be found to satisfy the equation, except the co-

ordinates of the origin a? = 0, 3/
=

;
hence it was usual to say

that in this case the equation did not represent right lines, but

was the equation of the origin. Now this language appears to

us very objectionable, for we saw (Art. 14) that two equations
are required to determine any point, hence we are unwilling
to acknowledge any single equation as the equation of a point.

Moreover, we have been hitherto accustomed to find that two

different equations always had different geometrical significations,

but here we should have innumerable equations, all purporting to

be the equation of the same point ;
for it is obviously immaterial

what the values oip and q are, provided only that they give ima-

ginary values for the roots, that is to say, provided that
j^''

be less

than ^q. We think
it, therefore, much preferable to make our

language correspond exactly to the language of algebra; and
as we do not say that the equation above has no roots when p^
is less than

4<2',
but that it has two imaginary roots, so we shall
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not say that, in this case, it represents no right lines, but that

it represents two imaginary right lines. In short the equa-

tion 3c^ — jpxy + qy^
= being always reducible to the form

(x
—

ay) {x
—

by)
=

0, we shall always say that it represents two

right lines drawn through the origin ;
but when a and b are real,

we shall say that these lines are real
;
when a and b are equal,

that the lines coincide
;
and when a and b are imaginary, that the

lines are imaginary. It may seem to the student a matter of in-

difference which mode of speaking we adopt ;
we shall find, how-

ever, as we proceed, that we should lose sight of many important

analogies by refusing to adopt the language here recommended.

Similar remarks apply to the equation

Ax^ + Bxy-\- Cy^ = Oj

which can be reduced to the form x^ —pxy + qy^
=

0, by dividing

by the coefficient of x\ This equation will always represent

two right lines through the origin; these lines will be real if

B'^—^AG be positive, as at once appears from solving the equa-

tion
; they will coincide li B^ — 4:AC—0\ and they will be ima-

ginary if B"^ — 4cA C be negative. So, again, the same language
is used if we meet with equal or imaginary roots in the solution

of the general homogeneous equation of the n^ degree.

74. To find the angle contained by the lines rejpresented by the

equation x^ — fxy + qy^
— 0.

Let this equation be equivalent to [x — ay) {x — by)
=

0, then

the tangent of the angle between the lines is (Art. 25) -,
,

but the product of the roots of the given equation = q^ and their

difference = \/(i>^
-

^^j- Hence

^
1 + q

If the equation had been given in the form

Ax'-^Bxy+Cy^=^0,
it will be found that // T^a _aac)

Cor. The lines will cut at right angles, or tancjb will become

infinite, if ^
= - 1 in the first case, or if ^ + 0= in the second.
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Ex. Find the angle between the lines

a:* + a;y
- 6/ = 0. Ans. 45°.

X* - 2xy &ece + y*
= 0. Ans. 0.

*If the axes be oblique, we should find, in like manner,

tan<^= --j----?y
—o '^

A-{- C-B cosco

75. To find the equation which will represent the lines bisecting

the angles between the lines represented by the equation

Ax^-\-Bxy+Cy'^0.
Let these lines be x—ay=^O^x — by — 0\ let the equation of

the bisector be x —
iJLy

=
^^ and we seek to determine /*. Now

(Art. 18) /A is the tangent of the angle made by this bisector with

the axis of y, and it is plain that this angle is half the sum of the

angles made with this axis by the lines themselves. Equating,

therefore, tangent of twice this angle to tangent of sum, we get

2/A a-\-b
^

but, from the theory of equations,

therefore

a + b = -
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and the form of this equation shows that the bisectors cut each

other at right angles (Art. 74).

The student may also obtain this equation by forming (Art.

35) the equations of the Internal and external bisectors of the

angle between the lines x — ay = Oj x — by = Oj and multiplying

them together, when he will have

{x-ayY ^ {x-lyf

and then clearing of fractions, and substituting for a + &, and oh

their values In terms of -d, ^, (7,
the equation already found is

obtained.

76. We have seen that an equation of the second degree

may represent two right lines
;
but such an equation in general

cannot be resolved into the product of two factors of the first

degree, unless its coefficients fulfil a certain relation, which can

be most easily found as follows. Let the general equation of

the second degree be written

ax' + llixy -f hy' + "^Lgx -\-2fy -Vc = 0^'^

or ax' + 2 [hy -^g)x-\- hy' + 2/^ + c = 0.

Solving this equation for
ic,
we get

ax = - [hy +g)± sJ{[K'
-

ah) / + 2{hg- af) y ^ {/
-

ac)].

In order that this may be capable of being reduced to the

form x = my + n^ It is necessary that the quantity under the

radical should be a perfect square, and' the equation will then

denote two right lines according to the different signs we give

* It might seem more natural to write this equation

ax^ + hxy 4 cy* + dx + ey +/= 0,

but as it is desirable that the equation should be written with the same

letters all through the book, I have decided on using, from the first, the

form which will hereafter be found most convenient and symmetrical. It

will appear hereafter that this equation is intimately connected with the

homogeneous equation in three variables, which may be most symmetrically

written ^^s ^ j^2 ^ ^^2 ^ ^fyz + 2gzx + 2hxy = 0.

The form in the text is derived from this by making z = 1. The coefficient

2 is affixed to certain terms, because formulae connected with the equation

which we shall have occasion to use, thus become simpler and more easy to

be remembered.
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the radical. But the condition that the radical should be a

perfect square is

{K'-ab)[g'-ac) = {hg-af)\

Expanding, and dividing by «, we obtain the required condition,

viz- abc + 2fgh
- af - If - c¥ = 0.

Ex. 1. Verify that the following equation represents right lines, and find

the lines :

«« -
5ary + 4y« + a: + 2y - 2 = 0.

Ans. Solving for x as in the text, the lines are found to be

ar-«/-l=0, a;-4y + 2 = 0.

Ex. 2. Verify that the following equation represents right lines :

{ax + ySy
-

r*)*
=

(«* + y3«
-

r"") (a;* ^ y^
-

r').

Ex. 3. What lines are represented by the equation

x^ -
xy + y*

- X - y + 1 = 0?

Ans. The imaginary lines x + Oy ^ 0* =. 0, x { 6^y -\-
= 0, where is one

of the imaginary cube roots of 1 .

Ex. 4. Determine h, so that the following equation may represent right

lines:
xU2hxy^y'~5x-1y-\-6 = 0.

Ans. Substituting these values of the coefficients in the general condition,

"we get for h the quadratic, 12A* - 35h + 25 = 0, whose roots are f and f .

*77. The method used in the preceding Article, though the

most simple in the case of the equation of the second degree, is

not applicable to equations of higher degrees ;
we therefore give

another solution of the same problem. It is required to ascertain

whether the given equation of the second degree can be identical

with the product of the equations of two right lines

multiply out this product, and equate the coefficient of each

term to the corresponding coefficient in the general equation of

the second degree, having previously divided the latter by c,

so as to make the absolute term in each equation = 1 . We thus

obtain five equations : four of them enable us to determine the

four unknown quantities, a, a', /3, /3',
in terms of the coefficients

of the general equation ;
and then these values being substituted

in the fifth give the condition required. The five equations

actually are

c c c c c
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From the first four we can at once form two quadratic equa-
tions for determining a, a', /3, yS',

as indeed we might have other-

wise inferred from the consideration that these quantities are

the reciprocals of the intercepts made by the lines on the axes
;

and that the intercepts made by the locus on the axes are found

(by making alternately £C = 0, y = 0, in the general equation)

from the equations

ax' + 2gx-\-c
=

0^ Z*?/' 4 2^ + c = 0.

Now if the locus meet the axes in the points X, L'
; M^ M'

]
it

is plain that if it represent right lines at all, these must be either

the pair LM^ L'M\ or else LM\ L'M^ whose equations are

(aa; + /93^-l)(a'ir + y8y-l)=0, or (aa?+/3V-l) (a'a; 4-/33/-1)=0.

2h
Multiplying out, we see that — might not only have the value

c

given before ay8' + /8a', but also might be a/5 + a^'. The sum

of those quantities

= (a+a')(/S + /3')
= ^,

and their product

G C C C

hence - is given by the quadratic
c

^ _,fy
2A af + hg^-ahc

^2 '^
'

^ '

c c c c

which, cleared of fractions, is the condition already obtained.

Ex. To determine h so that a;* + 2hxy + y^
- 5x -

It/ + 6 = may repre-

sent right lines (see Ex. 4, last page).

The intercepts on the axes are given by the equations

a:* - 5a; 4 6 = 0, y^
- 1y + Q = 0,

whose roots are x = 2, x = 3
; y =

1, y = Q- Forming, then, the equation of

the lines joining the points so found, we see that if the equation represent

right lines, it must be of one or other of the forms

{x + 2y- 2) {2x + y-6) = 0, (x { dy
-

3) (3a: + y -
6) = 0,

whence, multiplying out, h is determined.

*78. To find how many conditions must he satisfied in order

that the general equation of the n^ degree may represent right lines.

We proceed as in the last Article
;
we compare the general
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equation, having first by division made the absolute term =
1,

with the product of the n right lines

[(xx + Py- 1) {ax + ^'y-\) [a!'x + P"y - 1) &c. = 0.

Let the number of terms in the general equation be N\ then

from a comparison of coefficients we obtain N— 1 equations

(the absolute term being already the same in both) ;
2n of these

equations are employed in determining the 2n unknown quan-
tities a, a', &c., whose values being substituted in the remaining

equations afford N-\—2n conditions. Now if we write the

general equation ^
+ Bx-\- Cy

+ Dx^ + Exy + Fy^

+ Gx^ + Hx'y 4 Kxy"" + Ly^

+ &c. = 0,

it is plain that the number of terms is the sum of the arithmetic

1 A7 -. n[n-\-Z) TVT ^ ^ nin~l)
hence iV-l=

, » ;
N- l~2n= \ \

CHAPTER VI.

THE CIRCLE.

79. Before proceeding to the discussion of the general equa-
tion of the second degree, it seems desirable that we should

show in the simple case of the circle, how all the properties of a

curve may be deduced from its equation, without assuming any

previous acquaintance with the geometrical theory.

The equation, to rectangular axes, of the circle whose centre

is the point (a/3) and radius is r, has already (Art. 17) been

found to be
(^
_ ^y ^ (^

_
j^y ^ ^^^

Two particular cases of this equation deserve attention, as
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occurring frequently In practice. Let the centre be the origin,

then a = 0, y8
=

0, and the equation is

o? + y'
= r^

Let the axis of a? be a diameter, and the axis of y a per-

pendicular at its extremity, then a = r, /3
=

0, and the equation
becomes x^+f = 2rx,

80. It will be observed that the equation of the circle, to

rectangular axes, does not contain the term xi/j and that the

coefficients of x'^ and y^ are equal. The general equation there-

^^^^ ax' + "^hxy + hf + 2gx + 2/?/ + c = 0,

cannot represent a circle, unless we have A = 0, and a — h. Any
equation of the second degree which fulfils these two conditions

may be reduced to the form [x
—

a)'' + [y
—

^)'^
= ^\ by a process

corresponding to that used in the solution of quadratic equations.

If the common coefficient of x'^ and y^ be not already unity, by
division make it so

;
then having put the terms containing x and

y on the left-hand side of the equation, and the constant term

on the right, complete the squares by adding to both sides the

sum of the squares of half the coefficients of x and y.

Ex. Reduce to the form {x
-

a)' + (y
- ^Y =

r*, the equations

x^ + y^ -2x-4t/ = 20; 3a;' + Si/^
- 5x -

1y + I = 0.

Ans. (x
- ly + (y

- 2y = 25
; (x

- ff + (y
-

|)»
= f| ;

and
^the co-ordi-

nates of the centre and the radius are (1, 2) and 5 m the first case
; (f , |)

and \ '\/{Q2) in the second.

If we treat in like manner the equation

a {x^-^y^) + 2ffx + 2/?/ 4 c = 0,

^eget (x^i^^^,+l)^9_J__,

and the co-ordinates of the centre are — ,
—

, and the radius

\i g^ -\-f^ is less than ac, the radius of the circle is imaginary,
and the equation being equivalent to {x

— ay+{y — ^f + r' — 0,

cannot be satisfied by any real values of x and y.

If g' +f^ = ac^ the radius is nothing, and the equation being

equivalent to {x
— of -\- {jj

-
/Sf

=
0, can be satisfied by no co-
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ordinates save those of the point (ayS).
In this case then the

equation used to be called the equation of that point, but for the

reason stated (Art. 73) we prefer to call it the equation of an

infinitely small circle having that point for centre.  We have

seen (Art. 73) that it may also be considered as the equation of

the two imaginary lines {x
—

cC) ±[y — ^) sj [

—
1) passing through

the point (ayS). So in like manner the equation x^-\-y'^
= may

be regarded as the equation of an infinitely small circle having
the origin for centre, or else of the two imaginary lines x±y \/(— !)•

81. The equation of the circle to oblique axes is not often

used. It is found by expressing (Art. 5), that the distance of

any point from the centre is equal to the radius
;
and is

(x- olY + 2 {x
-

a.){y
~
^) cosco + (y

-
j3f

= r\

If we compare this with the general equation, we see that

the latter cannot represent a circle unless a = J, and h = a coso).

When these conditions are fulfilled, we find by comparison of

coefficients that the co-ordinates of the centre and the radius are

given by the equations

a+/9cosa) = -"^, /Q-|-acosw=--^, a' -{- fi'' +2a8cos(o-r'' = -
.

a' a^ a

Since a, /3 are determined from the first two equations which

do not contain
c, we learn that two circles will be concentric if

their equations differ only in the constant term.

Again if c = 0, the origin is on the curve. For then the

equation is satisfied by the co-ordinates of the origin a? = 0, y = 0.

The same argument proves that if an equation ofany degree want

the absolute term^ the curve representedpasses through the origin,

82. To find the co-ordinates of the points in which a given

right line x cos a \-y sina =^, Tueets a given circle n^ -\-y^
— r^.

Equating to each other the values of y found from the two

equations, we get for determining a;,
the equation

p-x cosa ., 2 .»

sma ^ ^'

or, reducing x^ - 2px cosa -^-p^
— r^ sin'^a =

;

hence, x^p cosa ± sin a sjif^
—
"P^

and, in like manner,

y =p sina + cosa >\/[r^
—

i''^)-
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(The reader may satisfy himself, by substituting these values

in the given equations, that the — in the value of y corresponds
to the + in the value of x^ and vice versa.)

Since we obtained a quadratic to determine
a?,

and since every

quadratic has two roots, real or imaginary, we must, in order to

make our language conform to the language of algebra, assert

that every line meets a circle in two points, real or imaginary.

Thus, when p is greater than r, that is to say, when the distance

of the line from the centre is greater than the radius, the line,

geometrically considered, does not meet the circle
; yet we have

seen that analysis furnishes definite imaginary values for the

co-ordinates of intersection. Instead then of saying that the

line meets the circle in no points, we shall say that it meets it in

two imaginary points, just as we do not say that the corres-

ponding quadratic has no roots, but that it has two imaginary
roots. By an imaginary point we mean nothing more than a

point, one or both of whose co-ordinates are imaginary. It is a

purely analytical conception, which we do not attempt to repre-

sent geometrically; just as when we find imaginary values for

roots of an equation, we do not try to attach an arithmetical

meaning to our result. And attention to these imaginary

points is necessary to preserve generality in our reasonings, for

we shall presently meet with many cases in which the line

joining two imaginary points is real, and enjoys all the geome-
trical properties of the corresponding line in the case where the

points are real.

83. When i?
=

r, it is evident geometrically that the line

touches the circle, and our analysis points to the same conclu-

sion, since the two values of x in this case become equal^ as do

likewise the two values of y. Consequently the points answer-

ing to these two values, which are in general difierent, will in

this case coincide. We shall therefore, not say that the tangent

meets the circle in only one point, but rather that it meets it in

two coincident points ; just as we do not say that the corres-

ponding quadratic has only one root, but rather that it has two

equal roots. And in general we define the tangent to any curve

as the linejoining two indefinitely near points on that curve.

We can in like manner find a quadratic to determine the
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points where the line Ax-\- By-\-C meets a circle given by the

general equation. When this quadratic has equal roots, the line

is a tangent.

Ei. 1 . Find the co-ordinates of intersection of «* + y* = 65
;
3^ + y = 25.

Atis. (7, 4) and (8, 1).

Ex. 2. Find intersections of {x
- cf + (y

-
2c)* = 25c*; 4a; + 3t/ = 35c.

Atis. The line touches at the point (5c, oc).

Ex. 3. When will y
= mx + b touch a;* -f t/*

= r* ? Ans. When 6* = r*(l + m*).

Ex. 4. When will a line through the origin y = mx touch

a (x* + 2xy cos w -v y^) + 2^a; + 2fy + c ?

The points of meeting are given by the equation

a (1 + 2m cosw + m*) x* + 2 (^ +/m) a; + c = 0,

which will have equal roots when

[g ^ fnif = ac[\ + 2m cosw + m').

We have thus a quadratic for determining m.

Ex. 5. Find the tangents from the origin to a:* + 2/*
- 6a; -

2j/ + 8 = 0.

Ans. X -y = 0, x ^-1y = 0.

84. When seeking to determine the position of a circle re-

presented by a given equation, it is often as convenient to do so

by finding the intercepts which it makes on the axes, as by

finding its centre and radius. For a circle is known when
three points on it are known

;
the determination, therefore, of

the four points where the circle meets the axes serves com-

pletely to fix its position. By making alternately 2/
=

0, a; =
in the general equation of the circle, we find that the points in

which it meets the axes are determined by the quadratics

ax"" + 2gx + c = 0, af 4 2/?/ + c = 0.

The axis of x will be a tangent when the first quadratic has

equal roots, that is, wheng^ = acj and the axis of y wheny'^ = «c.

Conversely, if it be required to find the equation of a circle

making intercepts X, V on the axis of
ic,

we may take a = 1, and

we must have 2^ = -(X + V), c = \V. If it make intercepts

fjLj fi' on the axis of
3/,

we must have 2/= — (/^ + yLt'), c^fifi'.

Thus we see that we must have \X = f^fi' (Euc. iii. 36).

Ex. 1. Find the points where the axes are cut by a;* + y'
- 5a;- 7y + 6 = 0.

Ans. a; = 3, a; = 2; y = 6, y=l.
Ex. 2. What is the equation of the circle which touches the axes at dis-

tances from the origin
= a ? Ans. x* t y*

- 2ax - 2ay + a* = 0.
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Ex. 3. Find the equation of a circle, the axes being a tangent, and any
line through the point of contact. Here we have X, X, ^m-

all =
;
and it is

easy to see from the figure that /i'
= 2r sin w, the equation therefore is

x^ + 2xy cos w + y*
-
2ry sin u; = 0.

85. To find the equation of the tangent at the point x'y to a

given circle.

The tangent having been defined (Art. 83) as the line joining

. two indefinitely near points on the curve, its equation will be

found by first forming the equation of the line joining any two

points [x'y'^ ^"v") on the curve, and then making x = x" and

y'
= y" in that equation.

To apply this to the circle : first, let the centre be the origin,

and, therefore, the equation of the circle x'^ + y^ = r\

The equation of the line joining any two points {x'y') and

(x"y") is (Art. 29), ^^ _ y_^' . ^
x—x x' — x"^

now if we were to make in this equation y'
= y" and x' = x"j the

right-hand member would become indeterminate. The cause

of this
is,

that we have not yet introduced the condition, that

the two points (cc'^', x'y") are on the circle. By the help of this

condition we shall be able to write the equation in a form which

will not become indeterminate when the two points are made
to coincide. For, since

r' = x" + y" = x'" + y"\ we have aj'^ - a;'"' = y'""
-

y"\

and, therefore, —.—^, = -, -, .
' ' x-x' y-\-y

Hence the equation of the chord becomes

y — y X •\- X

x--J^~ y' + y"'

And if we now make x = x" and y =
y", we find for the equation

of the tangent, v — y x

x^x y'
'

or, reducing, and remembering that x^ + y'^^
= r\ we get finally

XX + yy — r^.

Otherwise thus :* The equation of the chord joining two points

on a circle may be written,

{x-oi){x- a;") + (y
-

y') {y -y")^^ +f - r\

* This method is due to Mr. Burnside.
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For this is the equation of a right line, since the terms

^ + y^ oil ®^ch side destroy each other
;
and if we make x =

a?',

y = y\ the left-hand side vanishes identically, and the right-hand

side vanishes since the point xy is on the circle. In like

manner the equation is satisfied by the co-ordinates xy\ This

then is the equation of a chord
;
and the equation of the tangent

got by making oc = x'\ y = y\ is

which reduced, gives, as before, xx -Vyy =r^.

If we were now to transform the equations to a new origin,

so that the co-ordinates of the centre should become a, y8,
we

must substitute (Art. 8) x — a^ x — a^ y - ^^ y
—

/3, for
a?, x\ y, y',

respectitely : the equation of the circle would become

and that of the tangent

a form easily remembered, from its similarity to the equation of

the circle.

Cor. The tangent is perpendicular to the radius, for the

equation of the radius, the centre being origin, is easily seen to be

xy-yx = ;
but this (Art. 32) is perpendicular to xx \-yy' — r^.

86. The method used in the last article may be applied to

the general equation*

ax' 4- ^hxy + 5/ -|- 2gx + 2/?/ + c = 0.

The equation of the chord joining two points on the curve may
be written

a{x^x){x-x") + 2h{x-x'){y-y") + h{y'-y'){y-y")

^ax'-h2hxy-\-by^-\- 2yx + 2fy-\-c,

For the equation represents a right line, the terms above the
first degree destroying each other

; and, as before, it is evidently

• Of course when this equation represents a circle we must have b = a,
h = acosu}; but since the process is the same, whether or not 6 or A have
these particular values, we prefer in this and one or two similar cases to
obtain at once formulae which will afterwards be required in our discussion
of the general equation of the second degree.
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satisfied by the two points on the curve xy\ x"y". Putting
a;" =

0?', y" = y\ we get the equation of the tangent

a {x-xj + 2h [x-x') {y-y')^h[y^yy
= ax^ -H 2hxy + hy' + 2gx ^-^fy + c]

or, expanding,

2ax'x + 2h [x'y + y'x) -j- 2hyy -f 2^a; + 2^ +c = ax' + 2Aic'?^' + %"*.

Add to both sides 2gx' + 2fy -f c, and remembering that x'y satis-

fies the equation of the curve, the equation of the tangent becomes

axx + h {x'y + y'x) + hy'y -{g[x-\- x) ^f{y + 1/') + c = 0.

This equation will be more easily remembered if we compare
it with the equation of the curve, when we see that it is derived

from it by writing x'x and y'y for x' and y\ xy-\-y'xiox 2xy^
and x' + Xj y' -^ y for 2x and 2y,

Ex. 1 . Find the equations of the tangents to the curves xy =
c', and

y* =px. Ans. x'y 4 y'x = 2c* and 2yy'
=

/? (a; + x').

Ex. 2. Find the tangent at the point (5, 4) to (x
-

2)« + (y
-

3)'
= 10.

Ans. 3.r + y = 19.

Ex. 3. What is the equation of the chord joining the points x'y', x"y" on

the circle x* -^ y*
= r*? Ans. {x' + x") ic +

(t/' + y") y = r* ] x'x" + y'y".

Ex. 4. Find the condition that Ax + JBy + C= should touch

(a:-«)« + (y-^)»=r*.

•^"*'
/? ^a pa> -^> ^^"^^ the perpendicular on the line from afi is equal to r.

Y(w4 + -o )

87. To c?ra2t' a tangent to the circle x^ + y^
=

r^^ from any

point x'y. Let the point of contact be x"y"^ then since, by hypo-

thesis, the co-ordinates x'y' satisfy the equation of the tangent at

x"y"y we have the condition x'x" + y'y"
= r\

And since x"y" is on the circle, we have also

x +y =r .

These two conditions are sufficient to determine the co-ordinates

£c", y". Solving the equations, we get

„_ r'x'±ry'^/{x" + y"-r') ,, _ rY + ra;V(a;'^ + /'
-Q

""

x"-\ry"
' ^ ~

oj'^ + y^

Hence, from every point may be drawn two tangents to a circle.

These tangents will be real when x'^ + y''^
is > r^, or the point

outside the circle
; they will be imaginary when x'^ + y'^ is <

r'*,

or the point inside the circle
;
and they will coincide when

x'^ 4- y'^^
=

r^^ or the point on the circle.

G2
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88. We have seen that the co-ordinates of the points of

contact are found by solving for x and y from the equations

XX + yy — r^
;

x^ -^ y"^
= r'^

Now the geometrical meaning of these equations evidently is,

that these points are the intersections of the circle cc*'* + ^ = r**

with the right line xx + yy — r\ This last then is the equation

of the right line joining the points of contact of tangents from

the point scy' ;
as may also be verified by forming the equation

of the line joining the two points whose co-ordinates were found

in the last article.*

We see, then, that whether the tangents from x'y be real or

imaginary, the line joining their points of contact will be the real

line XX -^-yy =r^^ which we shall call the ])olar of xy with

regard to the circle. This line is evidently perpendicular to the

line (a?y-y'ic= 0), which joins a?y to the centre; and its dis-

tance from the centre (Art. 23) is —tt-^ ^. Hence, the polar of

any point P is constructed geometrically by joining it to the

centre
(7, taking on the joining line a point if, such that

GM.CP=r\ and erecting a perpendicular to CF at M. We
see, also, that the equation of the polar is similar in form to that

of the tangent, only that in the former case the point xy is not

supposed to be necessarily on the circle :
if, however, xy be on

the circle, then its polar is the tangent at that point.

89. To find the equation of the polar of xy with regard to

the curve ^^« + ^hxy + hy' + 2gx + 2/?/ + c = 0.

* In general the equation of the tangent to any curve expresses a rela-

tion connecting the co-ordinates of any point on the tangent, with the co-

ordinates of the point of contact. If we are given a point on the tangent
and required to find the point of contact, we have only to accentuate the

co-ordinates of the point which is supposed to be known, and remove the

accents from those of the point of contact, when we have the equation of

a curve on which that point must lie, and whose intersection with the given
curve determines the point of contact. Thus if the equation of the tangent
to a curve at any point x'y' be xx'* -f yy'^

= r^ the points of contact of tan-

gents drawn from any point x'y' must lie on the curve x'x* -l- y'y*
= r^. It is

only in the case of curves of the second degree that the equation which

determines the points of contact is similar in form to the equation of the

tangent.
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We have seen (Art. 86) that the equation of the tangent is

axx + A [xy -f yx) + lyy -Vg{x-^ x) +f{y + 3/') + c = 0.

This expresses a relation between the co-ordinates xy of any

point on the tangent, and those of the point of contact x'y'.

We Indicate that the former co-ordinates are known and the

latter unknown, by accentuating the former, and removing the

accents from the latter co-ordinates. But the equation being

symmetrical with respect to the co-ordinates xy^ x'y' is un-

changed by this operation. The equation then written above,

(which when x'y' is a point on the curve, represents the tangent
at that point) ;

when x'y is not on the curve, represents a line

on which lie the points of contact of tangents real or imaginary
from x'y'. If we substitute x'y' for xy in the equation of the

polar, we get the same result as if we made the same substitution

in the equation of the curve. This result then vanishes when

x'y' is on the curve. Hence the polar of a point passes through
that point only when the point is on the curve, in which case

the polar Is the tangent.

CoE. The polar of the origin is gx +fy + c = 0.

Ex. 1. Find the polar of (4, 4) with regard to {x
- If + (y

-
2)«

= 13.

A71S. 3x + 2y = 20.

Ex. 2. Find the polar of (4, 5) with regard to a:* + / - 3^ -
4y r= 8.

Ans. 5x + 6_y
= 48.

Ex. 3. Find the pole of Ax + By i C = with regard to x^ -r y^ = r\

\ ( Ar" Br\ , . .
,

. . .^Ans. (
——-

,
——

J
,
as appears irom cohiparing the given equation with

xx' 4 yy' = r*.

Ex. 4. Find the pole of Zx + 4y = 7 with regard to a;* + 1/'
= 14. Ans. (6, 8).

Ex. 5. Find the pole of 2j; + 3t/ = 6 with regard to
(a;

- 1/ ^ (t/
- 2f = 12.

Ans. (- 11,
-

16).

90. To find the length of the tangent drawn from any point to

the circle [x
- af + [y- /3)'

- r' = 0.

The square of the distance of any point from the centre

and since this square exceeds the square of the tangent by the

square of the radius, the square of the tangent from any point is

found by substituting the co-ordinates of that point for x and y
in the first member of the equation of the circle

{x-ayj^{y-'PY-r^ = 0,
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Since the general equation to rectangular co-ordinates

a {x^ + f) + 2gx + 2/?/ + c = 0,

when divided by a, is (Art. 80)* equivalent to one of the form

we learn that the square of the tangent to a circle whose equa-
tion is given in its most general form is found by dividing by
the coefficient of

ic^,
and then substituting in the equation the

co-ordinates of the given point.

The square of the tangent from the origin is found by making
X and y = 0, and

is, therefore,
= the absolute term in the equa-

tion of the circle, divided by a.

The same reasoning is applicable if the axes be oblique.

*91. To find the ratio in which the line joining two given

points x'y\ oc'y\ is cut hy a given circle.

We proceed precisely as in Art. 42. The co-ordinates of any

point on the line must (Art. 7) be of the form

Ix" + mx ly" + my
l-^ m ^ l+m

'

Substituting these values in the equation of the circle

x^ + y'-r' = 0^

and arranging, we have, to determine the ratio I : m^ the quadratic

r [x'" + y'"
-

r') + 2lm {x'x" + y'y"
-

r') + m"" {x" + y''
-

r')
= 0.

The values oil\m being determined from this equation, we have

at once the co-ordinates of the points where the right line meets

the circle. The symmetry of the equation makes this method
sometimes more convenient than that used Art. 82.

If x"y" lie on the polar of xy\ we have x'x' 4- yy" — r'^=.0

(Art. 88), and the factors of the preceding equation must be of

the form l-\- fim^ I- fim ;
the line joining x'y'^ x"y" is therefore cut

internally and externally in the same ratio, and we deduce the

well-known theorem, any line drawn through a lyoint is cut har-

monically hy the j)oint^ the circle^ and the polar of the point,

*92. To find the equation of the tangents from a given point
to a given circle.

We have already (Art. 87) found the co-ordinates of the
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points of contact
; substituting, therefore, these values in the equa-

tion XX + yy"
— r^ = 0, we have for the equation of one tangent

r [xx 4 yy - x'^^ —
y''') + {xy'

- yx) \J[x' + y"^
-

r')
=

0,

and for that of the other,

r [xx + yy - x^ -
y'^')

-
[xy

-
yx) \J{x"^ + y"^

-
r^)
= 0.

These two equations multiplied together give the equation of the

pair of tangents in a form free from radicals. The preceding
article enables us, however, to obtain this equation in a still more

simple form. For the equation which determines I : m will have

equal roots if the line joining xy\ x"y" touch the given circle
;

if then x"y" be any point on either of the tangents through x'y\

its co-ordinates must satisfy the condition

(ic'^ + y''
-

r') {x' -I-f -
r')
=

[xx' + yy'
- rj.

This, therefore, is the equation of the pair of tangents through
the point xy. It is not difficult to prove that this equation is

identical with that obtained by the method first indicated.

The process used in this and the preceding article is equally

applicable to the general equation. We find in precisely the

same way that Z : w is determined from the quadratic

r [ax'" -f 2hx"y" + by'" + 2ffx" + 2fy" + c)

+ 2lm [axx -f h [xy" + xy) + ly'y" ^-g [x + x") +f[y +y") + c]

+ m' [ax"" -t- 2}ixy' + hy"' + 2gx' + 2fy' -|- c)
=

;

from which we infer, as before, that when x"y" lies on the polar

of x'y the line joining these points is cut harmonically ;
and also

that the equation of the pair of tangents from x'y is

[ax^+ 2hx'y'+ hy""+ 2gx'+ 2fy'^ c) [ax""+ 2]ixy+ by'+ 2gx^2fy+c)
=

[ax'x + h [x'y + xy') + byy' -f- g[x + x) +f[y + y') + c}^

93. To find the equation of a circle passing through three

given points.

We have only to write down the general equation

£c- + 1/' + 2gx + 2/?/ -f c = 0,

and then substituting in
it, successively, the co-ordinates of each

of the given points, we have three equations to determine the

three unknown quantities ^, /, c. We might also obtain the

equation by determining the co-ordinates of the centre and the

radius, as in Ex. 5, p. 4.



88 THE CIRCLE.

Ex. 1. Find the circle through (2, 3), (4, 5), (6, 1).

Ans. {X
- \^y + (y

- iY =
^J^ (see p. 4).

Ex. 2. Find the circle through the origin and through (2, 3) and (3, 4).

Here c = 0, and we have 13 + 4y-f 6/=0, 25 + 6^+8/=0, whence

2<7
= -23, 2/= 11.

Ex. 3. Taking the same axes as in Art. 48, Ex. 1, find the equation of

the circle through the origin and through the middle points of sides
;
and

show that it also passes through the middle point of base.

Alls. 2p (a;* + y') -p[s -
s') x -

{p^ { ss') y = 0.

*94. To express the equation of the circle through three points

x^^ xy\ x"y" in terms of the co-ordinates of those points.

We have to substitute in

x^-\-f-\-2gx-^2fy + c^0^

the values of g^f c derived from

[x" +y' )+2^^' +2/y +c=o,
{a:-4/^) + 2^a." + 2/y'+c = 0,

{x""+y"'') 4- 2^0^'"+ 2fy"' + c = 0.

The result of thus eliminating g^f c between these four equa-
tions will be found to be

(x' +f ){X- y'-y'")+x" (y"'-y')+x"'{y'
-
y" ]}

-
(«- + y- ) [x" iy"'-y ) + ^' {y -y"] + x {y" -f')\

+ {a;-+y-)(a!"'(2/ -y)^x [y -y'") + x' [y'"-y )}

-{^-+y"-)[x iy' -y") + x' {y'-y )+x"iy -/ )1=0,

as may be seen by multiplying each of the four equations by the

quantities which multiply [x^+y^)&c. in the last written equa-

tion, and adding them together, when g^ f c will be found to

vanish identically.

If it were required to find the condition that four points

should lie on a circle, we have only to write
a?^, y^ for x and y

in the last equation. It is easy to see that the following is the

geometrical interpretation of the resulting condition. If A, B,

(7,
I) be any four points on a circle, and any fifth point taken

arbitrarily, and if we denote by BCD the area of the triangle

BCD, &c., then

OA\BCD-v OC\ABD= OB\ACD+ OD\ABG.

95. We shall conclude this chapter by showing how to find

the polar equation of a circle.
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We may either obtain it by substituting for
a?, p cos^, and

fory, p mi 6 (Art. 12), in either of the equations of the circle

already given,

a(i»'-j-/) + 2^a3 + 2/y + c = 0, or [x-aj' + [y
- ^Y ^r\

or else we may find it independently, from the definition of the

circle, as follows :

Let be the pole, G the centre of the circle, and 00 the

fixed axis; let the distance 00=dj
and let OP be any radius vector, and,

therefore, =/?, and the angle POC=0y
then we have

PC'=0F'-{-0C'-20R0G cosPOC,
that

is, r^ =
p"^ -\- d^ - 2pd cos 6,

r p'-2dpcosd-{-cr-r' = 0.

This, therefore, is the polar equation of the circle.

If the fixed axis did not coincide with 00, but made with it

any angle a, the equation would be, as in Art. 44,

p^
-
2dp cos((9

-
a) + cf - r^ = 0.

If we suppose the pole on the circle, the equation will take a

simpler form, for then r = dj and the equation will be reduced to

p = 2r cos 6,

a result which we might have also obtained at once geometrically

from the property that the angle in a semicircle is right ;
or else

by substituting for x and y their polar values in the equation

(Art. 79) x' + y'
= 2rx.

CHAPTER VII.

THEOREMS AND EXAMPLES ON THE CIRCLE.

96. Having in the last chapter shown how to form the

equations of the circle, and of the most remarkable lines related

to
it,

we proceed in this chapter to illustrate these equations by

examples, and to apply them to the establishment of some of

the principal properties of the circle. We recommend the
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reader first to refer to the answers to the examples of Art. 49,

to examine in each case whether the equation represents a circle,

and if so to determine its position either (Art. 80) by finding

the co-ordinates of the centre and the radius, or (Art. 84) by-

finding the points where the circle meets the axes. We add a

few more examples of circular loci.

Ex. 1. Given base and vertical angle, find the locus of vertex, the axes

having any position.

Let the co-ordinates of the extremities of base be x!y\ x"y". Let the

equation of one side be
y-y' = m{x- x'),

then the equation of the other side, making with this the angle C, will be

(Art. 33)
(1 ^ „j tan C) {y

-
y")

= (m - tanC) {x
-

x").

Eliminating m, the equation of the locus is

tanC {{y
-
y') {y

-
y") + (x

-
x') {x

-
x")} ^x{y'- y") -y{x'

-
x") + x'y"

-
y'x" = 0.

If C be a right angle, the equations of the sides are

y ~y' = m {x -
x') ;

m {y
-
y") + (a;

-
x") = 0,

and that of the locus

{y
-

y') (y
-

y") + («
-

x') («
-

«")
= o,

Ex. 2. Given base and vertical angle, find the locus of the intersection

of perpendiculars of the triangle.

The equations of the perpendiculars to the sides are

wi {y
-
y") + (a;

-
x") = 0, (m - tan (7) {y -?/') + (1 + w tanC) {x

-
x')

= 0.

Eliminating m, the equation of the locus is

tanC {{y
-

y') {y
-
y") + (a:

-
x') {x

-
x")}

= x{y'- y")
- y {x'

-
x") + x'y"

-
y'x" ;

an equation which only diflfers from that of the last article by the sign of

tanC, and which is therefore the locus we should have found for the vertex

had we been given the same base and a vertical angle equal to the supple-

ment of the given one.

Ex. 3. Given any number of points, to find locus of a point such that

m times square of its distance from the first + m" times square of its dis-

tance from the second + &c. = a constant; or (adopting the notation used

in p. 61) such that 2 {mr^) may be constant.

The square of the distance of any point xy from x'y is {x
-
x'f + {y- y'f.

Multiply this by m', and add it to the corresponding terms found by express-

ing the distance of the point xy from the other points x"y", &c. If we adopt
the notation of p. 51 we may write, for the equation of the locus,

'

S (m) a:' + 2 (m) y*
- 22 (mar') a; - 22 {my') y + 2 (mar'*) + 2 {my") = C.

Hence the locus will be a circle, the co-ordinates of whose centre will be

_
2 (mx') _ 2(»?y)^~
2(m)

' ^"^1^ '

that is to say, the centre will be the point M'hich, in p. 52, was called the

centre of mean position of the given points.
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If we investigate the value of the radius of this circle, we shall find

i2«S (m) = 2 imr^)
- 2

(m/o*),

where 2 (wir)*
= C= sum of m times square of distance of each of the given

points from any point on the circle, and 2 {mp^) = sum of m times square of

distance of each point from the centre of mean position.

Ex. 4. Find the locus of a point O, such that if parallels be drawn

through it to the three sides of a triangle, meeting them in points B, C;

C, A'; A'\ B" \
the sum may be given of the three rectangles

BO.OC\C'O.OA \ A'O.OB",

Taking two sides for axes, the equation of the locus is

or a;* + 3/* + Ixy cosC - ax -
ly ->r m* = 0.

This represents a circle, which, as is easily seen, is concentric with the cir-

cumscribing circle ;
the co-ordinates of the centre in both cases being given

by the equations 2 (a f y3 cos (7)
=

«, 2 (^ + a cos (7)
= h. These equations

enable us to solve the problem to find the locus of the centre of circumscrib-

ing circle, when two sides of a triangle are given in position, and any relation

connecting their lengths is given.

Ex. 5. Find the locus of a point O, if the line joining it to a fixed point
makes the same intercept on the axis of x, as is made on the axis of y, by
a perpendicular through O to the joining line.

Ex. 6. Find the locus of a point, such that if it be joined to the vertices

of a triangle, and perpendiculars to the joining lines erected at the vertices,

these perpendiculars meet in a point.

97. We shall next give one or two examples involving the

problem of Art. 82, to find the co-ordinates of the points where

a given line meets a given circle.

Ex. 1. To find the locus of the middle points of chords of a given circle,

drawn parallel to a given line.

Let the equation of any of the parallel chords be

X cos« + y sin« -p = 0,

where « is, by hypothesis, given, and
j!?

is indeterminate
;
the abscissae of the

points where this line meets the circle are (Art. 82) found from the equation

a;* - 2px cos a + j^*
- r* sin*a = 0.

Now, if the roots of this equation be x' and x", the x of the middle point of

the chord will (Art. 7) be f [x' + x"), or, from the theory of equations, will

=ji? cosa. In like manner, the y of the middle point will equal /? sin«.

Hence the equation of the locus is y = x tan er, that is, a right line drawn

through the centre perpendicular to the system of parallel chords ;
since a is

the angle made with the axis of x by a perpendicular to any of the chords.

Ex. 2. To find the condition that the intercept made by the circle on

the Ime ^ cos « + y sin « = p
should subtend a right angle at the point x'y'.
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We found (Art. 96, Ex. 2) the condition that the lines joining the points

x"y", x"'y"' to xy should be at right angles to each other
;

viz.

{X
-
X") [x

-
x'") + {y- y") (y

-
y'")

= 0.

Let x"y", x"'y"' be the points where the line meets the circle, then, by

the last example,

x" + x'" = 2p cos a, xf'oc"'=f - r' sin*a, y" + y"'
= 2p sin «, y"y"' =p*

- r* cos^a.

Putting in these values, the required condition is

«'* + y'*
- ^^^ cos a -

2py' sin « + 2^*
- r* = 0.

Ex. 3. To find the locus of the middle point of a chord which subtends

a right angle at a given point.

If X and y be the co-ordinates of the middle point, we have, by Ex. 1,

p cos a = X, p sina =
y, p^ = x^ + y^,

and, substituting these values, the condition found in the last example becomes

{x
-
x'f ^{y- y'f + a;' + 2/'

= r\

Ex. 4. Given a line and a circle, to find a point such that if any chord

be drawn through it, and perpendiculars let fall from its extremities on the

given line, the rectangle under these perpendiculars may be constant.

Take the given line for axis of ar, and let the axis of y be the perpendicular

on it from the centre of the given circle, whose equation will then be

Let the co-ordinates of the sought point be x'y' ;
then the equation of any

line through it will be y -
?/'

= m (a;
-

x'). Eliminate x between these two

equations and we get a quadratic for ?/, the product of whose roots will be

found to be
(y^

- rnxj + yn' (/3^
-

r')

1 + «*'*

This will not be independent of m unless the numerator be divisible by 1 + m',

and it will be found that this cannot be the case, unless a;' = 0, y'*
=

y3*
- r*.

Ex. 5. To find the condition that the intercept made on x cos a + y sin a -p^

by the circle «* 4 y' + 2gx + 2/y + c =

may subtend a right angle at the origin. The equation of the pair of lines

joining the extremities of the chord to the origin may be written down
at once. For if we multiply the terms of the second degree in the equation
of the circle byja*, those of the first degree by /? (x cosa + y sin a), and the

absolute term by {x cosa -+ y sine)*, we get an equation homogeneous in x
and y, which therefore represents right lines drawn through the origin; and
it is satisfied by those points on the circle for which a; cos" + y sin a =

'p.

The equation expanded and arranged is

(;?' + 2^/7 cosa + c* cos*a) a;* + 2 (^ sina +/cosrt + c sina cos«) xy
+ (/ + yp sina + o' sin'' a) y^ = 0.

These two lines cut at right angles (Art. 74) if

2p* + 2p {g cosa +/sina) + c' = 0.

Ex. 6. To find the locus of the foot of the perpendicular from the origin
on a chord which subtends a right angle at the origin. The polar co-ordi-
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nates of the locus are p and « in the equation last found
;
and the equation

of the locus is therefore

2 {x" t y^) + 'Igx + 2/y + c« = 0.

It will be found on examination that this is the same circle as in Ex. 3.

Ex. 7. If an)' chord be drawn through a fixed point on a diameter of a

circle and its extremities joined to either end of the diameter, the joining

lines cut off on the tangent at the other end, portions whose rectangle is

constant.

Find, as in Ex. 5, the equation of the lines joining to the origin the

intersections of a;^ + y'
- 2rx with the chord y = m {x

-
x') which passes

through the fixed point {x', 0). The intercepts on the tangent are found by

putting a: = 2r in this equation and seeking the corresponding values of y.

The product of these values will be found to be independent of m, viz.

4r*. :— .

98. We shall next obtain from the equations (Art. 88) a few

of the properties of poles and polars.

If a pointA lie on the polar of B^ then B lies on the polar of A,

For the condition that x'y should lie on the polar of x"y" is

x'x" +yy" = r^) but this is also the condition that the point

x"y" should lie on the polar of x'y. It is equally true if we
use the general equation {Art. 89) that the result of substituting

the co-ordinates x'y" in the equation of the polar of x'y is the

same as that of substituting the co-ordinates x'y' in the polar

of x"y". This theorem then, and those which follow, are true

of all curves of the second degree. It may be otherwise stated

thus : if the polar ofBpass through a fixed point A^ the locus of
B is the polar of A, .

99. Given a circle and a triangle ABC^ if we take the polars

with respect to the circle, of A^ B^ G] we form a new triangle

A'B'C called the conjugate triangle. A' being the pole of BC^
B' of GA, and G' of AB. In the particular case where the polars

of ^, ^, G respectively, are BG, GA, AB, the second triangle

coincides with the first, and the triangle is called a self-conjugate

triangle.

The lines AA'^ BB'^ GG'^joining the corresponding vertices of

a triangle and of its conjugate^ meet in a point.

The equation of the line joining the point x'y to the inter-
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section of the two lines xx" -^-yy" -r' = and xx"' + yy"'-r'=0
is (Art. 40)

AA' ipcx" + y'y"
-

r') [xx + yy"
-

r')

-
{x'x" + y'y"

-
r') {xx'" + yy" - r")

= 0.

In like manner

BB' {xx + y'y"
-

r') {^x" + yy"
-

r')

- [xx" + y'y"
-

r^) {xx' + yy
-

r^)
=

;

and CC {x"x'" + y"y'"
-

r') {xx' + yy'
-

r')

-
[x'x" + y'y"

- /) [xx" + yy"
-

r')
=

;

and by Art. 40 these lines must pass through the same point.

The following is a particular case of the theorem just proved.

If a circle he inscribed in a triarigle^ and each vertex of the tri-

angle joined to the point of contact of the circle with the opposite

side
J
the three joining lines will meet in a point.

The proof just given applies equally if we use the general

equation. If we write for shortness P^
= for the equation of

the polar of x'y', {ax'x + &c. = 0) ;
and in like manner P^, P, for

the polars of x'y"^ x"y" ;
and if we write [1, 2] for the result of

substituting the co-ordinates xy" in the polar oixy'^ («a;V+&c.),
then the equations are easily seen to be

AA' [1,3]P,= [1,2]P3,

BB' [1,2]P,= [2,3]P.,

CC [2,3]P, = [1,3]P,,

which denote three lines meeting in a point. It follows (Art.

60, Ex. 3) that the intersections of corresponding sides of a

triangle and its conjugate lie in one right line.

100. Given any point 0, and any two lines through it ; join
both directly and transversely the points in which these lines meet

a circle ; then^ if the direct lines intersect each other in P and the

transverse in Q, the line PQ will he the polar of the 'point Oj with

regard to the circle.

Take the two fixed lines for axes, and let the intercepts made
on them by the circle be \ and X', fi and fi'. Then
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will be the equations of the direct lines
;
and
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and, for the same reason,

OB.AP= xx" + i/'f
- r\

„ OA OB
Hence

AP==BQ'
102. In working out questions on the circle it is often con-

venient, instead of denoting the position of a point on the curve

by its two co-ordinates a?y, to express both these in terms of a

single independent variable. Thus, let 6' be the angle which

the radius to x'y' makes with the axis of Xj then x =r cos^',

7/'
= rmn6\ and on substituting these values our formulae will

generally become simplified.

The equation of the tangent at the point x'y' will by this sub-

stitution become ^ ^os l9' + ?/ sin (9' = r
;

and the equation of the chord joining x't/'^ ^'y\ which (Art. 86) is

X [x + x) ^y[:ij -^ y")
= r' + x'x" + 3/y ',

will, by a similar substitution, become

x cosi{6' + d") +y sini(^' + 6")
= r cosi((9'

-
6"),

& and &' being the angles which radii drawn to the extremities

of the chord make with the axis of x.

This equation might also have been obtained directly from

the general equation of a right line (Art. 23) x cosoL-\-y sina=^,
for the angle which the perpendicular on the chord makes with

the axis is plainly half the sum of the angles made with the axis

by radii to its extremities
;
and the perpendicular on the chord

= r cos4(^'- 6").

Ex. 1. To find the co-ordinates of the intersection of tangents at two

given points on the circle. The tangents being
X cos <?' + 2/ sin 6' = r, x cos 6" + y sin 6" = r,

the co-ordinates of their intersection are

cos^{e'-0")'
^

^cos^C^-^')'
Ex. 2. To find the locus of the intersection of tangents at the extremities

of a chord whose length is constant.

Making the substitution of this article in

(x'
- x"y + (y'

- t/y = constant,

it reduces to cos {6'
-

0") = const., or ^ - 6" = const. If the given length of

the chord be 2r sin ^, then & - 6" = 2S. The co-ordinates therefore found in

the last example fulfil the condition

(x* + i/) cos' 5 = r*.
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Ex. 3, What is the locus of a point where a chord of a constant length
is cut in a given ratio ?

Writing down (Art. 7) the co-ordinates of the point where the chord is cut

In a given ratio, it will be found that they satisfy the condition a:' + y'
= const,

103. We have seen that the tangent to any circle o^ \-y^
— r^

has an equation of the form

ic cos^ H- ?/ sin ^ = r
;

and it would appeal;, in like manned, that the equation to thfe

tangent to {x - olY + [y
— ^f = ^^ niay be written

{x
—

a) cos^ + (y
—

/5) sin^ = r:

conversely, then, if the equation of any right line contain an in-

determinate 6 in the form

[x
—

a) cos 6 + [y
—
^) sin ^ = r,

that line will touch the circle (x
—

aL)^-\-[y
— ^Y — r^,

Ex. 1. If a chord of a constant length be inscribed in a circle, it will

always touch another circle. For, in the equation of the chord

X cos i (6>' -\-e') + y sin ^ {6' + 6") = r cos I {6'
-

6^')

by the last article, ^ - ^' is known, and & + &' indeterminate ; the chord,

therefore, always touches the circle

x* + 1/*
= 7'* cos* 5.

Ex. 2. Given any number of points, if a right ]in6 be such that m! times

the perpendicular on it from the first point, + rn" times the perpendicular
from the second, + &c., be constant, the line will always touch a circle.

This only differs from the question, p. 51, in that the sum, in place of

being =
0, is constant. Adopting then the notation of that Article, instead

of the equation there found,

{a:2 (m)
- S {mx')] cos a + [y^s. (m)

- 2 {my')] sin a = 0,

we have only to write

{x^m - 2 {mx')] cos a + {j/S (m)
- S {my')] sin a = const.

Hence this line must always touch the circle

f :^imx')Y f 2(mv')V

whose centre is the centre of mean position of the given points.

104. We shall conclude this Chapter with some examples of

the use of polar co-ordinates.

Ex. 1. If through a fixed point any chord of a circle be drawn, the rect-

angle under its segments will be constant (Euclid III. 35, 36).

Take the fixed point for the pole, and the polar equation is (Art. 95)

the roots of which are evidently OP, OF', the values of the radius vector

answering to any given value of or POC.
H
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Now, by the theory of equations, OP. OP', the product of these roots

"will = <f - r', a quantity independent of 0, and therefore constant, whatever

be the direction in which the line OP is drawn. If the point O be outside

the circle, it is plain that d^ - r* must be = the square of the tangent.

Ex. 2. If through a fixed point O any chord of a circle be drawn, and

OQ taken an arithmetic mean between the segments OP, OP'', to find the

locus of Q,

We have OP + OP", or the sum of the roots of the quadratic in the last

example, = 2d cose* ;
but OP + 0P' = 20Q,

therefore OQ = dcosO.

Hence the polar equation of the locus is

p = d cos^.

Now it appears from the final equation

Art. 95, that this is the equation of a circle

described on the line OCas diameter.

The question in this example might have been otherwise stated :
" To find

the locus of the middle points of chords which all pass through a fixed point."

Ex. 3. If the line OQ had been taken a harmonic mean between OP
and OP', to find the locus of Q.

9,0p OP'
Thatistosay,OQ--—^^^,butOP.OP'

= «Z'-r«,andOP+OP'=2(?cos6>,

therefore, the polar equation of the locus is

P =
:5 3 »

or p cos^ - .

d cosO ^ d

This is the equation of a right line (Art. 44) perpendicular to OC, and

at a distance from = d- —
, and, therefore, at a distance from C= — . Hence

d d

(Art. 88) the locus is the polar of the point O,

We can, in like manner, solve this and similar questions when the equa-
tion is given in the form

a {x^ + 2/') + 2gx 4- 2/?/ + c = 0,

for, transforming to polar co-ordinates, the equation becomes

P* + 2(^ cos6> +'- sin^^ p + - = 0,
\a a r a

and, proceeding precisely as in this example, we find, for the locus of

harmonic means, c
p = — .

g cos6 +J8in0
and, returning to rectangular co-ordinates, the equation of the locus is

9^ +/y + c = 0,

the same as the equation of the polar obtained already (Art. 89).

Ex. 4. Given a point and a right line
;

if OQ be taken inversely as OP,
the radius vector to the right line, find the locus of Q.

Ex. 5. Given vertex and vertical angle of a triangle and rectangle under
sides

;
if one base angle describe a right line or a circle, find locus described

by the other base angle.
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Take the vertex for pole ;
let the lengths of the sides be p and p', and the

angles they make with the axis 6 and 6', then we have pp'
= k^ and (^ -&=C.

The student must write down the polar equation of the locus which one

base angle is said to describe
;
this will give him a relation between p and 6

j

then, writing for p,
—

, and for 6, C \- 0', he will find a relation between
P'

p' and 0', which will be the polar equation of the locus described by the

other base angle.

This example might be solved in like manner, if the ratio of the sides,

instead of their rectangle, had been given.

Ex. 6. Through the intersection of two circles a right line is drawn ;
find

the locus of the middle point of the portion intercepted between the circles.

The equations of the circles will be of the form

p = 2r cos [0
-

a); p = 2r' cos(0
-

«') >

and the equation of the locus will be

/)
= r cos (^

-
a) + r' cos{6

-
a') j

which also represents a circle.

Ex. 7. If through any point O, on the circumference of a circle, ahy three

chords be drawn, and on each, as diameter, a circle be described, these three

circles (which, of course, all pass through O) will intersect ih three other

points, which lie in one right line. (See Camh. Math. Jour.^ vol. I., p. 169).

Take the fixed point O for pole, then if d be the diameter of the original

circle, its polar equation will be (Art. 95)

p = d cos^.

In like manner, if the diameter of one of the other circles make an angle
a with the fixed axis, its length will be = c? cosa, and the equation of this

circle will be p^dzo^a cos {e
-

a).

The equation of another circle will^ in like manner, be

p-d cos;3 co8(^
-

)8).

To find the polar co-ordinates of the point of intersection of these two,

we should seek what value of would render

cosa cos (^
-

a)
=

cos/3 cos (^
-

y3),

and it is easy to find that must = « +
y3, and the corresponding value of

p = d cosa cos/3.

Similarly, the polar co-ordinates of the intersection of the first and third

circles are ^ = a -f r^,
and

/a
= <^ cos« COS7.

Now, to find the polar equation of the line joining these two points, take

the general equation of a right line, p cos (A; -9) =p (Art. 44) and substitute

in it successively these values of 6 and p, and we shall get two equations to

determine p and k. We shall get

p = d cosa COS^ C0S{^
-

(a + /3)}
= «? cOSa COS7 C0S(^

-
(a + 7)}.

Hence ^ = a + ^ + 7, and ^ = <f cosa cos^ COS7.

The symmetry of these values shows that it is the same right line which

joins the intersections of the first and second, and of the second and third

circles, and, therefore, that the three points are in a right line.

H2



(
100

)

CHAPTER VIII.

PROPERTIES OF A SYSTEM OF TWO OR MORE CIRCLES.

105. To find the equation oi the chord of intersection of two

circles.

If ;Sf=0, /S" = 0, be the equations of two circles, then any

equation of the form S- hS' = will be the equation of a figure

passing through their points of intersection (Art. 40).

Let us write down the equations

>^' = (a:-ar + (y-/3r-r'^ = 0,

and it is evident that the equation 8-k8' = will in general

represent a circle^ since the coefficient of xy — O^ and that of

x^ — that of y\ There is one case, however, where it will repre-

sent a right line, namely, when lc = l. The terms of the second

degree then vanish, arid the equation becomes

This is, therefore, the equation of the right line passing through

the points of intersection of the two circles.

106. The points of intersection of the two circles are found

by seeking, as in Art. 82, the points in which the line 8— S'

meets either of the given circles. These points will be real, co-

incident, or imaginary, according to the nature of the roots of

the resulting equation ;
but it is remarkable that, whether the

circles meet in real or imaginary points, the equation of the

chord of intersection, 8 — 8' = 0, always represents a real line,

having important geometrical properties in relation to the two

circles. This is in conformity with our assertion (Art. 82), that

the line joining two points may preserve its existence and its

properties when those points have become imaginary.
In order to avoid the harshness of calling the line 8—8' the

chord of intersection in the case where the circles do not geo~

metrically appear to intersect, it has been called* the radical

axis of the two circles.

•
By M.Gaultier of Tours {Journal de I'UcolePolytechnique, Cahier xvi., 1813.)
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107. We saw (Art. 90) that if the co-ordinates of any point

xy be substituted in B^ it represents the square of the tangent
drawn to the circle B^ from the point xy. So also /S" is the

square of the tangent drawn to the circle /S"
;
hence the equation

S— 8' = asserts, that iffrom any point on the radical axis tan-*

gents he drawn to the two circles^ these tangents tvill he equal.

The line [S— 8') possesses this property whether the circles

meet in real points or not. When the circles do not meet in

real points, the position of the radical axis is determined geome-

trically by cutting the line joining their centres, so that the

difference of the squares of the parts may = the difference of the

squares of the radii, and erecting a perpendicular at this point ;

as is evident, since the tangents from this point must be equal
to each other.

If it were required to find the locus of a point whence tan-

gents to two circles have a given ratio^ it appears, from Art. 90,

that the equation of the locus will be 8— Jc^8' =0, which (Art. 105)

represents a circle passing through the real or imaginary points
of intersection of 8 and 8'. When the circles 8 and 8' do not

intersect in real points, we may express the relation which they
bear to the circle 8- ¥8' by saying that the three circles have

a common radical axis.

108. Given any three circles^ if we take the radical axis of
each pair of chxles^ these three lines will meet in a pointy which

is called the radical centre of the three circles.

For the equations of the three radical axes are

8-8' = 0, 8'-8" = 0, 8"-8=:0,

which, by Art. 40, meet in a point.

From this theorem we immediately derive the following :

If several circles pass through tico fixedpoints^ their chords of

intersection with a fixed circle will pass through a fixed point.

For, imagine one circle through ihe two given points to be

fixed, then its chord of intersection with the given circle will be

fixed; and its chord of intersection with any variable circle

drawn through the given points will plainly be the fixed linejoin-

ing the two given points. These two lines determine, by their

intersection, a fixed point through which the chord of intersection

of the variable circle with the first given circle must pass.
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Ex. 1. Find the radical axis of

«« + i/«
- 4a; -

5!/ + 7 =
;

a;* + y* + 6i: + 8?/
- 9 = 0.

Ans. lOar + 13y = 16.

Ex. 2. Find the radical centre of

(x-l)«+(y-2)« = 7; (a:
- ^)U 2/'

= 5
; (a; 4- 4f + (y + 1)«

= 9.

Ans. (- ,^,
-

fl).

*109. A system of circles having a common radical axis pos-

sesses many remarkable properties which are more easily inves-

tigated by taking the radical axis for the axis of
3/,

and the line

joining the centres for the axis of x. Then the equation of any
circle will be ^^ + y^

_ g/,^ + g^ ^ ^^

where ^^ is the same for all the circles of the system, and the

equations of the different circles are obtained by giving different

values to k. For it is evident (Art. 80) that the centre is on

the axis of
a?,

at the variable distance k
;
and if we make x =

in the equation, we see that no matter what the value of k may
be, the circle passes through the fixed points on the axis of y,

y^±B^= 0. These points are imaginary when we give B^ the

sign -f
,
and real when we give the sign

—
.

*110. Tlie polars of a given pointy with regard to a system of
circles having a common radical axis, always pass through a

fixed point.

The equation of the polar of xy with regard to

a;' + y'-2^ic + S' = 0,

is (Art. 89) xx -\-yy -k^x-^ x) + 8'' =
;

therefore, since this involves the indeterminate k in the first

degree, the line will always pass through the intersection of

XX \- yy + S'^ = 0, and x-\- x =0,

*111. There can always he found two points, however, such

that their polars, with regard to any of the circles, will not only

pass through a fixed point, hut will he altogether fixed.

This will happen when xx -\- yy' + 8'"^ = 0, and x-{-x =0, re-

present the same right line, for this right line will then be the

polar whatever the value of k. But that this should be the case

we must have
^'
^ q and x" = B\ or x' = ±B.

The two points whose co-ordinates have been just found have

many remarkable properties in the theory of these circles, and
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are such that the polar of either of them, with regard to any of

the'circles, is a line drawn through the other perpendicular to

the line of centres. These points are real when the circles of

the system have common two imaginary points, and imaginary
when they have real points common.

The equation of the circle may be written in the form

which evidently cannot represent a real circle If Jc^ be less than

8^'y
and if F =

3^, then the equation (Art. 80) will represent a

circle of infinitely small radius, the co-ordinates of whose centre

are
3/
=

0, ic = ± 8. Hence the points just found may themselves

be considered as circles of the system, and have, accordingly,

been termed by Poncelet* the limiting points of the system of

circles.

*112. If from any point on the radical axis we draw tan-

gents to all these circles, the locus of the points of contact must

be a circle, since we proved (Art. 107) that all these tangents

were equal. It is evident, also, that this circle cuts any of the

given system at right angles, since its radii are tangents to the

given system. The equation of this circle can be readily found.

The square of the tangent from any point (a?
=

0, y — ^) to the

circle a;' + y'
- 2hx + S' = 0,

being found by substituting these co-ordinates in this equation,

is K^ + 8^
;
and the circle whose centre is the point [x — O^y — A),

and whose radius squared = K^ + 3^, must have for its equation

x'^iy-hY^^h'^-^',

or x' + f-2hy=^h\

Hence, whatever be the point taken on the radical axis [i.e,

whatever the value of h may be), still this circle will always pass

through the fixed points (?/
=

0, a; = ± S) found in the last Article.

And we infer that all circles which cut the given system at right

angles pass through the limiting joints of the system,

Ex. 1. Find the circle cutting orthogonally the three circles, Art. 108,,

Ex 2
Ans. {X + i\)' + (y + ft)'

= VsY.

Traite des Projyrietes Projectives, p. 41.
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Ex. 2. If AB be a diameter of a circle, the polar of A with respect to

any circle which cuts the first orthogonally, will pass through B.

Ex. 3. Find the circle cutting three given circles orthogonally. This

is done as in Ex. 1, or else (Ex. 2), by seeking the locus of a point

whose polars with respect to the three circles meet in a point.

Ex. 4. The square of the tangent from any point of one circle to

another is in a constant ratio to the perpendicular from that point upon
their radical axis.

Ex. 5. To find the angle (a) at which two circles intersect.

Let the radii of the circles be JR, r, and let J) be the distance between

their centres, then Z)« = i2* + r* - 2J?r cos a.

Since the angle at which the circles intersect is equal to that between the

radii to the point of intersection.

Ex. 6. If a moveable circle cut two fixed circles at constant angles, it

will cut all circles having the same radical axis at constant angles.

Let the equations of the two fixed circles be >S' = 0, >S" = 0, and their

radii r, r'j then the co-ordinates of the centre of the moveable circle fulfil

the relations, ji» _ 2Itr cosa = S, B' - 2Br' cos/3
= S',

since i>*-r' = the square of the tangent to the first fixed circle = S (Art. 90).

Then, we have
tj. cos « 4 Ir' cos/3 kS + IS'^-^^—m— ^-JTT'

which is precisely the condition that the moveable circle should cut the circle

JcS T IS' at the constant angle 7 ;
where {k 4 I)

r" cos 7 = kr cos a + Ir' cos
(3,

r" being the radius of the circle kS + IS'.

Ex. 7. A circle which cuts two fixed circles at constant angles will also

touch two fixed circles.

For we can determine the ratio fc : /, so that 7 shall = 0, or cos 7 = 1. It

will easily be found that if D be the distance between the centres of S and S\
{k + lY r"^ -- [k + I) {kr' -f h-^)

- klD\

Substituting this value for r" in the equation of the la^st example, we get a

quadratic to determine k : /.

113. To draw a common tangent to two circles.

Let their equations be

and {x-a:Y-\-{y-^'y = r"
[8').

We saw (Art. 85) that the equation of a tangent to [S] was

(x - a) [x -a) + [y-fi) [y'
-

/3)
= r^

;

or, as in Art. 102, writing

=008^, ^—^ = sin^,
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(x — a) cos B-\-[y— fi) sin ^ = r.

In like manner, any tangent to [S') Is

[x
-

a!) cos & + [y- fi')
sin 6' = /.

Now, if we seek the conditions necessary that these two

equations should represent the same right line
; first, from com-

paring the ratio of the coeflScients of x and y, we get tan 6 = tan 6'^

whence 6' either = ^, or = 180° + 6, If either of these conditions

be fulfilled, we must equate the absolute terms, and we find, in

the first case,

[oL-a!) cos6+{^-^') smd + r-r=Oj
and in the second case,

(a-a) cos^ + (/3-yS') 8in^ + r4-r' = 0.

Either of these equations would give us a quadratic to deter-

mine 0. The two roots of the first equation would correspond

to the direct or exterior common tangents, Aa^ A'a
;
the roots

of the second equation would correspond to the transverse or in-

terior tangents, Bh^ B'h'.

If we wished to find the co-ordinates of the point of contact

of the common tangent with the circle (/S), we must substitute,

in the equation just found, for cos^, its value, ,
and for

sin 6. -—-
, and we find

(a-a')(a^'-a) + (/3-/3')fy-/3) + r(r-rO=0;
or else,

(a
-
a) [x'

-
a) + (y^-yS') [y'

-
^) + r (r + /)

= 0.

The first of these equations, combined with the equation [S)

of the circle, will give a quadratic, whose roots will be tlie co-

ordinates of the points A and A\ in which the direct common
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tangents touch the ch'cle
(>S') ;

and it will appear, as in Art. 88,

that
(a'-a)(x-a) + (^'-/3)(^-/3) = r(r-r')

is the equation of AA\ the chord of contact of direct common

tangents. So, likewise,

is the equation of the chord of contact of transverse common

tangents. If the origin be the centre of the circle {8)j then a and

/3 = ;
and we find, for the equation of the chord of contact,

OLX -f ^'y = r[r + r').

Ex. 1. Find the common tangents to the circles

a:* + 1/^
- 4a; -

2?/ + 4 = 0, a;* + ?/' + 4a: t 2y - 4 = 0.

The chords of contact of common tangents with the first circle are

2a: + y = 6, 2a: + y = 3.

The first chord meets the circle in the points (2, 2), (\^, f), the tangents at

which are
2/
= 2, 4a: -

3?/ = 10,

and the second chord meets the circle in the points (1, 1), (|, I), the tan-

gents at which are a: = 1, 3a; + 4ij
= 5.

114. The points and 0\ in which the direct or transverse

tangents intersect, are (for a reason explained in the next

Article) called the centres of similitude of the two circles.

Their co-ordinates are easily found, for is the pole, with

regard to circle (/S),
of the chord AA\ whose equation is

(a'-a)r. .
(/3'

-
/3) r ,

^. ,

^7i:7-(^-^)+ \._/ (y-^) = ^'

Comparing this equation with the equation of the polar of the

point xy\
(^'
_

a) (a;
-

a) + (j/ -p)[y-p)^ r%

, (a —a)r , aV — car

we e:et ic - a = ^ j— ,
or a? = —

?

,
_ (^'-^)r , /8V-^/

So, likewise, the co-ordinates of 0' are found to be

aV -\- cur T ySV + 8r'
X — —

1
and y = r— .

These values of the co-ordinates indicate (see Art. 7) that the

centfbs of similitude are the points where the line joining the

centres is cut externally and internally in the ratio of the radii.
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Ex. Find the common tangents to the circles

ic* + ?/^
- 62: - Sy = 0, a:' + 2/*

- 4a; - 6y = 3.

The equation of the pair of tangents through x'y' to

(^
-

«)' + (y
- ^f = r"

IS found (Art. 92) to be

Now, the co-ordinates of the exterior centre of similitude are found to be

(-2, -
1), and hence the pair of tangents through it is

25(a:« + 2/*-6a:-8t/)
=
(52; + 5y-10f ;

or a:y + a: + 2t/+ 2 = 0; or (ar + 2)(t, + l)
= 0.

As the given circles intersect in real points^ the other pair of common tan-

gents become imaginary; but their equation is found, by calculating the pair
of tangents through the other centre of similitude (^g^, ^9^-), to be

40a;« \xxj\ 40/ - 199a: - 278?/ + 722 = 0.

115. Every right line drawn through the intersection of com"

mon tangents is cut similarly hy the two circles.

It is evident that if on the radius vector to any point P there

be taken a point Q^ such that OP=m times OQ^ then the x and

y of the point P will be respectively m times the x and y of the

point Q ;
and that, therefore, if P describe any curve, the locus

of Q is found by substituting mx^ my for x and y in the equation
of the curve described by P.

Now, if the common tangents be taken for axes, and if we
denote Oa by a, OA by a', the equations of the two circles are

(Art. 84, Ex. 2)

x^ + J/^ + 2a??/ cos ft)
— 2ax —

2ay + d^ = 0,

x^ + y^ + ^xy cos CO - 2dx — 2a'y + a'^ = 0.

But the second equation is what we should have found if we
(inr CI 11

had substituted —^ , -y- ,
for

a?, ?/,
in the first equation ;

and It

therefore represents the locus formed by producing each radius

vector to the first circle in the ratio a, : a .

Cor. Since the rectangle Op . Op' is constant (see fig. next

page), and since we have proved OB to be in a constant ratio to

Op J
it follows that the rectangle OR. Op = OB' .Op is constant,

however the line be drawn through 0.

116. If through a centre of similitude we draw any two lines

meeting the first circle in the points j5, B'^ 8y /S",
and the second in

the points /o, /?', <r, o-',
th,en the chords BS^ p<T] B'S'^ per' ;

will he
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parallel^ and the cJi07'ds MSj pcr'\ R'S\ po-j will meet on the

radical axis of the two chicles.

Take OR^ OS for axes, then

we saw (Art. 115) that OR=m Op,
0S= m Oct

J
and that if the equa-

tion of the circle pap'a' be

a [x^ + ^xy cos w + y^)

-r 2gx + 2/?/ 4 =
0,

that of the other will be

a [x^ + 2xy cos w + y^)

+ 2m {gx -\-fy) -\- m^c = 0,

and, therefore, the equation of the S^

radical axis will be (Art. 105.)

2{gx-^fy) + [m^l)c = 0.

Now let the equations of pa and of pa be

x y- +
f-a

1.

X y- +
f,
= 1.

a o

then the equations of RS and R' S' must be

X

ma
It is evident, from the form of the equations, that RS is

parallel to pa ;
and RS and pa must intersect on the line

1__
mh

— + ^=1,
X y

ma mo
1.

1 1

x\- -{
-

ja a

1 1
1 +w,

or, as in Art. 100, on

2C9'^+/3/) + (m + l)c = 0,

the radical axis of the two circles.

A particular case of this theorem is,
that the tangents at R

and p are parallel, and that those at R and p meet on the radical

axis.

117. Given three circles S, S\ S" ; the line joining a centre

of simditude of S and S' to a centre of similitude of S and S"

will pass through a centre of similitude of S and S".

Form the equation of the line joining the points

/ra'-ar rfi'
-

l3r \ /ra
" - ar" rl3"- j3r"\

\ r — r * r — r /
'

\ r — r"
' r — r" /

'
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(Art. 114), and we get (see Ex. 6, p. 24),

{r(^'-r)+/(/3"-^) + r"(/3-/3')}a3

-
{r [a!

-
a") + r [a"

-
a) -\- r" (a

- a )} y

+ r (/3V'
-

^"a!) + r' (/3"a
-

/3a") + r" [^a!
-

fi'a)
= 0.

Now the symmetry of this equation sufficiently shows, that the

line it represents must pass through the third centre of similitude,

ra —r a
x = y^

rjS" - r'ff

This line is called an axis of similitude of the three circles.

Since for each pair of

circles there are two cen-

tres of similitude, there

will be in all six for the

three circles, and these

will be distributed along

four axes of similitude,

as represented in the

figure. The equations
of the other three will

be found by changing
the signs of either r, or

r, or r", in the equation

just given.
' '

Cor.' Ifa circle (s) touch two others {S and 8') the line join-

ing the points of contact willpass through a centre of similitude of
8 and 8'. For when two circles touch, one of their centres of

similitude will coincide with the point of contact.

If S touch >S' and 8\ either both externally or both internally,

the line joining the points of contact will pass through the exter^

nal centre of similitude of 8 and 8'. If S touch one externally

and the other internally, the line joining the points of contact

will pass through the internal centre of similitude.

*118. To find the locus of the centre of a circle cutting three

given circles at equal angles.

Let the equation of a circle be >S'= 0, or

then the square of the distance of any point from its centre is
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[x
—

ol)'^ -\- [y
-
P)\ or S+t\ If then a circle whose radius Is

R cut 8 at an angle a, the co-ordinates of its centre must fulfil

the condition (Art. 112, Ex. 5) S= E'-2Rr cosa. And in like

manner, if it cut two other circles at the same angle, we have the

conditions ^> ^ j^^ _ ^Br' cosa, S" = B^- 2Rr" cosa.

From these conditions we can at once eliminate R^ and

R cosa. Thus, by subtraction,

8- 8' = 2R {r
-

r) cosa, 8- 8" = 2R (/'
~

r) cosa,

whence [8
-

8') {r
-

r")
= (/9- 8") [r

-
/),

the equation of a line on which the centre must lie. It obviously

passes through the radical centre (Art. 108) ;
aad if we write for

8— 8
J 8—8'\ their values (Art. 105), the coefficient of ic in

the equation is found to be

- 2 {a {r'
-

r") + a' (r"
-

r) + a" {r
-

r')},

while that of y is

- 2
{/9 (/

-
r") + /3' {r"

-
r) + /S" (r

- r%
Now if we compare these values with the coefficients in the

equation of the axis of similitude (Art. 117), we infer (Art. 32),

that the locus is a perpendicular let fall from the radical centre

on an axis of similitude.

It is of course optional which of two supplemental angles we
consider to be the angle at which two circles intersect. The
formula (Art. 112) which we have used, assumes that the angle
at which two circles cut, is measured by the angle which the

distance between their centres subtends at the point of meeting :

and with this convention the locus under consideration is a per-

pendicular on the external axis of similitude. If this limitation

be removed, the formula we have used becomes 8=R'^±2Rr cosa
;

or, in other words, we may change the sign of either
7*, r',

or r"

in the preceding formulae, and therefore (Art. 117) the locus is a

perpendicular on any of the four axes of similitude.*

• In fact all circles cutting three circles at equal angles ha-ve one of the

axes of similitude for a common radical axis. Let 2, 2', 2" be three circles

cutting the given circles at angles «, /3, 7 respectively. Then the co-ordi-

nates of the centre of S must fulfil the conditions

2 = r' - 2rR cos a, 2' = r« - 2riE' cos /3, 2" = r' - 2rJR" cos 7 j

whence {E cos « - M" cos 7) (2
-

2')
= (i^ cos « - JB' cos/3) (2

-
2").
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When two circles touch internally, their angle of intersec-

tion vanishes, since the radii to the point of meeting coincide.

But if they touch externally, their angle of intersection accord-

ing to the preceding convention is 1 80°, one radius to the point

of meeting being a continuation of the other. It follows, from

what has been just proved, that the perpendicular on the external

axis of similitude, contains the centre of a circle touching three

given circles, either all externally or all internally. If we

change the sign of r, the equation of the locus which we found

denotes a perpendicular on one of the other axes of similitude

which will contain the centre of the circle touching 8 externally,

and the other two internally, or vice versa. Eight circles in all

can Be drawn to touch three given circles, and their centres lie,

a pair on each of the perpendiculars let fall from the radical

centre on the four axes of similitude.

*119. To describe a circle touching three given circles. We
have found one locus on which the centre must lie, and we could

find another by eliminating B between the two conditions

8=E'-2Rr, 8' = E'-2Br'.

The result however would not represent a circle, and the solu-

tion will therefore be more elementary, if instead of seeking

the co-ordinates of the centre of the touching circle, we look for

those of its point of contact with one of the given circles. We
have already one relation connecting these co-ordinates, since

the point lies on a given circle, therefore another relation be-

tween them will suffice completely to determine the point.*

Let us for simplicity take for origin the centre of the circle,

the point of contact with which we are seeking, that is to say,

let us take a = 0, y8 = 0, then if A and B be the co-ordinates of

the centre of S, the sought circle, we have seen that they fulfil

the relations

8-8' = 2B{r-r'), 8- 8" =^2B[r-r").

Now this which appears to be the equation of a right line is satisfied by the

co-ordinates of the centre of S, of >S", and of S", three points which are not

supposed to be on a right line. It denotes therefore an identical relation

of the form 2 = ^s' f Zs" shewing that the three circles have a common

radical axis.

* This solution is by M. Gergonne, Annales des Mathematiqiies, vol. VII.,

p. 289,
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But if X and y be the co-ordinates of the point of contact of 2

with
/S,

we have from similar triangles

7*
' r

'

Now if in the equation of any right line we substitute mx^ my for

X and y, the result will evidently be the same as if we multiply

the whole equation by m and subtract {m — 1) times the absolute

term. Hence, remembering that the absolute term in S— S' is

(Art. 105) ?*'^ — r^ - a'^ - l3"\ the result of making the above sub-

stitutions for A and B in [S- S')
= 2B{r- r) is

^±r (^_ S') + ^ [a!' + P" + r^ - r")
= 2R [r

- t\

or {E + r) [S -S') = E {{r
- rj - o!' - P"],

'

Similarly [R^r)[S- 8")
= B{{r- r'J

- a!" - P"%

Eliminating R^ the point of contact is determined as one of

the intersections of the circle 8 with the right line

8-8' _ 8-8"
a!' + /3'^ -{r- r'Y

~
ol'" -f fi'" -{r- rj

'

120. To complete the geometrical solution of the problem it

is necessary to show how to construct the line whose equation has

been just found. It obviously passes through the radical centre

of the circles; and a second point on it is found as follows. Write

at full length for 8—8' (Art. 105), and the equation is

2oi'x + 2l3'y-^r"-r'- a"-fi"' _ 2a!'x + 2ff> + r"'-r'- a
'

"-^'"'

a"-\-^"-(r-r'f
~

a"' + ^"' - {r
-
r"Y

Add 1 to both sides of the equation, and we have

a'x + ^'y +{r -r)r _ a"x + I3"y + (/' -r)r
a'^ + ^''-{r-r'f a'" -{ ^"' - {r

- r"f
'

showing that the above line passes through the intersection of

a'iC-f^'y+(/-r)r = 0, od'x-^ l3"y + {r"
-

r)r = 0.

But the first of these lines (Art. 113) is the chord of common

tangents of the circles 8 and 8'
; or, in other words (Art. 114), is

the polar with regard to 8 of the centre of similitude of these

circles. And in like manner the second line is the polar of the

centre of similitude of 8 and 8"] therefore (since the intersection
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of any two lines is the pole of the line joining their poles) the

intersection of the lines

a'a; + /3y4(r'-r)r = 0, a"a; + y(3"^ + (r"
-

r) r = 0,

is* the pole of the axis of similitude of the three circles, with

regard to the circle S,

Hence we obtain the following construction :

Drawing any of the four axes of similitude of the three

circles, take its pole with re-

spect to each circle, and join S_,

the points so found (P, P', F")
with the radical centre

; then,
if the joining lines meet the

circles in the points g'

(a, b
J a\ V ; a", J"),

the circle through «, a', a will S

be one of the touching circles,

and that through 5, h\ h" will

be another. Repeating this

process with the other three

axes of similitude, we can determine the other six touching
circles.

121. It is useful to show how the preceding results may be

derived without algebraical calculations.

(1) By Cor., Art. 117, the lines ah^ ah\ a"h" meet in a point,

viz., the centre of similitude of the circles aa'a"^ hh'h",

(2) In like manner aa\ h'h" intersect in S^ the centre of

similitude of C, C".

(3) Hence (Art. 116) the transverse lines a'b\ a"b" intersect

on the radical axis of C, C", So again a"b'\ ab intersect on

the radical axis of 0", (7. Therefore the point M (the centre of

similitude of aa'a\ bb'b") must be the radical centre of the

circles a, C\ G".

(4) In like manner, since ab\ a"b" pass through a centre of

similitude of aaa\ bb'b"
\
therefore (Art. 116) aa\ b'b" mQQt on

the radical axis of these two circles. So again the points >S' and

;8"' must lie on the same radical axis
; therefore SS'S'\ the axis of

similitude of the circles C, C\ C", is the radical axis of the circles

aa'a"^ bb'b".

I
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(5) Since a"h" passes through the centre of similitude of

aaa\ hh'b"^ therefore (Art. 116) the tangents to these circles

where it meets them intersect on the radical axis SS'S", But

this point of intersection must plainly be the pole of a"b" with

regard to the circle C". Now since the pole of a"b" lies on

S8'8", therefore (Art. 98) the pole of SS'S" with regard to 0"

lies on a"b". Hence a"b" is constructed by joining the radical

centre to the pole of SS'S" with regard to C",

(6) Since the centre of similitude of two circles is on the line

joining their centres, and the radical axis is perpendicular to that

line, we learn (as in Art. 118) that the line joining the centres of

aa'a'j hb'b" passes through B^ and is perpendicular to SS'S".

CHAPTER IX.

APPLICATION OF ABRIDGED NOTATION TO THE EQUATION
OF THE CIRCLE.

122. If we have an equation of the second degree expressed
in the abridged notation explained in Chap, iv., and if we desire

to know whether it represents a circle, we have only to transform

to X and y co-ordinates, by substituting for each abbreviation (a)

its equivalent (iccosa-hy sina-^j ;
and then to examine whether

the coefficient of xy in the transformed equation vanishes, and
whether the coefficients of x^ and of y^ are equal. This is suffi-

ciently illustrated in the examples which follow.

When will the locus of a point be a circle if the product of

perpendiculars from it on two opposite sides of a quadrilateral he

in a given ratio to the product of perpendiculars from it on the

other two sides f

Let a, yS, 7, S be the four sides of the quadrilateral, then the

equation of the locus is at once written down a7 = ^yS8, which

represents a curve of the second degree passing through the

angles of the quadrilateral; since it is satisfied by any of the four

suppositions,

a = 0, /9 = 0; a = 0, 8 = 0; /S = 0, 7 = 0; 7 = 0, 8 = 0.
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Now, in order to ascertain whether this equation represents a

circle, write it at full length

{x cosa +y sina —j)) [x COS74-3/ siny—y )

= ^
(a? cosyS 4-y sin/3 —p') {x cosS +y sinS —i?"')*

Multiplying out, equating the coefficient of x^ to that of y% and

putting that of xi/
=

0, we obtain the conditions

cos (a + 7)
= ^ cos (/3 + 5) ;

sin [a + y) =7c mi[l3 + 8).

Squaring these equations, and adding them, we find k=±l ;
and

if this condition be fulfilled, we must have

a + 7 = /3 + a, or else =180°-f yS + S;

whence a — /3 = 8 — 7, or 180 4-8 — 7.

KecoUecting (Art. 61) that a- yS is the supplement of that

angle between a and
/S, in which the origin lies, we see that this

condition will be fulfilled if the quadrilateral formed by a;S78 be

inscribable in a circle (Euc. ill. 22). And it will be seen on

examination that when the origin is within the quadrilateral we

are to take ^ = —1, and that the angle (in which the origin lies)

between a and ^ is supplemental to that between 7 and 8
;
but

that we are to take A; = + 1, when the origin is without the quad-

rilateral, and that the opposite angles are equal.

123. When will the locus of a point he a circle^ if the square

of its distance from the base of a triangle he in a constant ratio to

the ^'product of its distances from the sides ?

Let the sides of the triangle be a, /3, 7, and the equation of

the locus is a/3 = hyK If now we look for the points where the

line a meets this locus, by making in it a = 0, we obtain the

perfect square 7''^
= 0. Hence a meets the locus in two coincident

points, that is to say (Art. 83), it touches the locus at the point

ay. Similarly, y8 touches the locus at the point ^y. Hence a

and ^ are both tangents, and 7 their chord of contact. Now,
to ascertain whether the locus is a circle, writing at full length
as in the last article, and applying the tests of Art. 80, we obtain

the conditions

cos(a + yS) =^ COS27; sin (a + /3)
= ^ sin 27 ;

whence (as in the last article) we get k—l^ a - 7 = 7 - /3,
or the

triangle is isosceles. Hence we may infer that iffrom any point
12



116 THE CIRCLE—ABRIDGED NOTATION.

of a circle perpendiculars he let fall on any two tangents and on

their chord of contact^ the square of the last will he equal to the

rectangle under the other two,

Ex. When will the locus of a point be a circle if the sum of the squares

of the perpendiculars from it on the sides of any triangle be constant.

The locus is «' + y3* + 7* = c* : and the conditions that this should re-

present a circle are

co82a + cos2/3 + cos27 = 0; sin 2a + sin 2^ + sin 27 = 0.

cos2o = - 2 cos (^ + 7) cos (/3
-
7) ;

sin 2a = - 2 sin(/3 + 7) cos(^
-

7).

Squaring and adding, j ^ 4 g^g*^^
_
^^

. ^ _
,y
= 60°.

And so, in like manner, each of the other two angles of the triangle is

proved to be 60°, or the triangle must be equilateral.

124. To ohtain the equation of the circle circumscribing the

triangleformed hy the lines a = 0, yS = 0, 7 = 0.

Any equation of the form

l^'y + mf^OL + noL^ = 0,

denotes a curve of the second degree circumscribing the given

triangle, since it is satisfied by any of the suppositions

a = 0, i8
= 0; y8

=
0, 7 = 0; 7 = 0, a = 0.

The conditions that it should represent a circle are found, by the

same process as in Art. 122, to be

I cos(/S + 7) + ?w cos (7 + a) + w cos (a + iS)
=

0,

I sin (/3 + 7) + wi sin (7 + a) + w sin (a + /3)
= 0.

Now we have seen (Art. 65) that when we are given a pair
of equations of the form

l(x + m^' + 717
=

0, la + m^" + ny" = 0,

Z, 771,
n must be respectively proportional to ^'y"—0"yj 7'a"— yV,

a'/3"
—

a"/3'. In the present case then
?, wi, n must be pro-

portional to sin(/3~7), sin (7 -a), sin(a-/9), or (Art. 61) to

sin^, sin^, sinO. Hence the equation of the circle circum-

scribing a triangle is

^y sinA + 7a sinJ5+ ayS sin (7= 0.

125. The geometrical interpretation of the equation just

found deserves attention. If from any point we let fall per-

pendiculars OP, 0§, on the lines a, /5, then (Art. 54) a, /3 are
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the lengths of these perpendiculars; and since the angle be-

tween them is the supplement of
(7,

the

quantity a^ sin (7 is double the area of the

triangle OPQ. In like manner, 7a sin i?

and /37 sin^ are double the triangles

OPE^ OQR. Hence the quantity

y^Y sin^ 4 7a sin5 + a/3 sinO

is double the area of the triangle PQR,
and the equation found in the last article

asserts, that if the point be taken on the circumference 01

the circumscribing circle, the area PQR will vanish, that is

to say (Art. 36, Cor. 2), the three points P, Q, E will lie ou

one right line.

If it were required to find the locus of a point from which,
if we let fall perpendiculars on the sides of a triangle, and join
their feet, the triangle PQE so formed should have a constant

magnitude, the equation of the locus would be

0y sinA -f 7a sin^+ ay8 sinC= const.,

and, since this only differs from the equation of the circum-

scribing circle in the constant part, it is (Art. 81) the equation
of a circle concentric with the circumscribing circle.

126. The following inferences may be drawn from the equa-
tion Iffy -h mya + naff = 0, whether or not

Z, w, n have the values

sin^, sinP, sin (7; and therefore lead to theorems true not only
of the circle but of any curve of the second degree circum-

scribing the triangle. Write the equation in the form

7 [Iff + ma) + naff = ;

and we saw in Art. 124 that 7 meets the curve in the two points

where it meets the lines aff'^ since if we make 7 = in the

equation, it reduces to aff = 0. Now, for the same reason, the

two points in which Iff + ma meets the curve, are the two points

where it meets the lines a and ff. But these two points coin-

cide, since Iff + ma passes through the point aff. Hence the line

Iff + ma, which meets the curve in two coincident points, is

(Art. 83) the tangent at the point aff.

In the case of the circle the tangent is a sin^-|-;8 sin-4.

Now we saw (Art. 64) that a siuA -\-ff siuB denotes a parallel
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to the base 7 drawn through the vertex. Hence (Art. 55) the

tangent makes the same angle with one side that the base makes

with the other (Euc. iii. 32).

Writing the equations of the tangents at the three vertices

intheform
^ ^ a ^^
m 11

^ n I
^

I m
we see that the three points in which each intersects the opposite

side are in one right line, whose equation is

? + ^ + 5! = o.
I m n

Subtracting one from another, the equations of the three

tangents, we get the equations of the lines joining the vertices

of the original triangle to the corresponding vertices of the

triangle formed by the three tangents : viz.,

m n ^ n I
^

t m
three lines which meet in a point (Art. 40).*

127. If a'ySY, a"fi"y" be the co-ordinates of any two points

on the curve, the equation of the line joining them is

la mP ny
n—n + 'oTon "1

—
rT, = O

,aa pp 77
for if we substitute in this equation OL^'y for a/97, the equation

is satisfied, since a!'^"<y" satisfy the equation of the curve which

may be written I m n

a y8 7
In like manner the equation is satisfied by the co-ordinates

a'yS'V'* It follows that the equation of the tangent at any

point OL^'y may be written

^ a.^ 4. ^^ - n .

^,.
i-

^,2
-t-

y.-^J
and conversely, that if \a + /a/8 + V7 = is the equation of a tan-

gent, the co-ordinates of the point of contact ol'^'j\ are given by
the equations I m n

• The theorems of this article are by M. Bobillier {Annales de 3fathe-

matiqueSf Vol. xviil. p. 320). The first equation of the next article is by
M. Hermes.
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Solving for a', ^', 7' from these equations, and substituting in

the equation of the curve, which must be satisfied by the point

a'/3Y, we get
^(^jx) + ^/{mfi) + ^[nv)

= 0.

This is the condition that the line \a + /^/3 + vy may touch

I0y + mya + nciff ;
or it may be called (see Art. 70) the tayi-

gential equation of the curve. The tangential equation might
also be obtained by eliminating 7 between the equation of the

line and that of the curve
;
and forming the condition that the

resulting equation in a : y8 may have equal roots.

128. To find the condition that the general equation of the

second degree in
ol^ yS, 7,

aoi' + h^'' + cy^ 4 2/^7 + 29'7a + 2AayS = 0,

may represent a circle. [Dublin Exam. Papers, Jan. 1857.]

It is convenient to avail ourselves of the result of Art. 124.

Since the terms of the second degree, x^ 4 y\ are the same in

the equations of all circles, the equations of two circles can only
differ in the linear part ;

and if S represent a circle, an equation
of the form S-\-lx + my -\-n — may represent any circle what-

ever. In like manner, in trilinear co-ordinates, if we have found

one equation which represents a circle, we have only to add to

it terms la. + m^ + 727, (which in order that the equation may be

homogeneous we multiply by the constant asin^+/3sin5+7sin0)
and we shall have an equation which may represent any circle

whatever. Thus then (Art. 124) the equation of any circle may
be thrown into the form

{loL + mP -h 717) (a sin-4 + yS sin5+ 7 sin C)

+ h [Py sin^ + ya sin J5+ a/S sin C) = 0.

If now we compare the coefficients of a^, ^\ y^ in this form

with those in the general equation, we see that, if the latter re-

present a circle, it must be reducible to the form

(-A-ra+ ^-^/S + ^^7Vasin^ + /3sinJ5+7sin(7)\sm-4 sm^ sm(7 /

f h {I3y BinA + 7a sin^+ a/3 sin (7)
=

and a comparison of the remaining coefficients, gives

2/ sin J5 sin (7 = c sin''^jB + h sin^C+k BinA sinB sin
(7,

2g sin C BinA = a Bin^C-i c Bin'^A + h BinA BinB sin
(7,

2A sinA BinB=b sinM + a sin^B+ k BinA BinB sinGj
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whence eliminating /fc,
we have the required conditions, viz.

hsin^C-rc sin'' -6- 2/sin^ sinC=c am'A + asin''C -
2g sinC sinA

= a sin"* j5+ 5 sin''^ - 2h sinA sinJ5.

If we have the equations of two circles written in the form

(la + mfi + ny) (a sin-4 + yS sin^+ 7 sin C)

+ k {^y sinA + yoL sin J5+ a/3 sin (7)
=

0,

(la + m^ -f 7iy){a sinA + ^ sin-S+ 7 sin (7)

+ 7c {I3y sinA + 7a sin.B + ayS sin C) = 0,

it is evident that their radical axis is

Za + wy8 + W7 — (Z'a -f w'y3 + n'7),

and that la -f m^ + ny is the radical axis of the first with the

circumscribing circle.

Ex. 1. Verify that aj3
-

7* represents a circle if A = B (Art. 123).

The equation may be written

ay3 sinC f /37 sin^ -f 7a sin 5 - 7 (« sin^ + /3 sin J5 + 7 sinC).

Ex. 2. The three middle points of sides, and the three feet of perpen-

diculars lie on a circle. The equation

o*sin^ cos-4 + ^*sin^cos^t7*sinCcosC-(y3'^sin^+^asin^ r«/3sinC)=0,

represents a curve of the second degree passing through the points in ques-

tion. For if we make 7 = 0, we get

o* sin A co^A + ;3' sin B co&B -
a/3 (sin A cos J? + sin B cos A) = 0,

the factors of which are a &m A - ^ ^mB and a cos A - ^ cos B. Now
the curve is a circle, for it may be written

(o cos^ + /3 cos^ + 7 cosC) (a sin-^ + /3 sin B + 7 sinC)
- 2 (y37 sin^ + 7a sin ^ + a/3 sinC) = 0.

Thus the radical axis of the circumscribing circle and of the circle through
the middle points of sides is « cos^ + /3 cos J? + 7 cosC, that is, the axis

of homology of the given triangle with the triangle formed by joining the

feet of perpendiculars.

129. We shall next show how to form the equations of the

circles which touch the three sides of the triangle a, y8, 7. The

general equation of a curve of the second degree touching the

three sides, is

ra* + m^^' + n'V - 2mn^y - 2nlya - 2lma^ = 0.*

•
Strictly speaking, the double rectangles in this equation ought to be

written with the ambiguous sign +, and the argument in the text would

applj' equally.
T*" however we give all the rectangles positive signs ;

or if
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Thus 7 is a tangent, or meets the curve in two coincident

points, since if we make 7 = in the equation, we get the per-

fect square f^ + w'^yS^
- 'Uma^ = 0. This equation may also be

written in a convenient form

for if we clear this equation of radicals, we shall find it to be

identical with that just written.

Before determining the values of
?, w, w, for which the equa-

tion represents a circle, we shall draw from it some inferences

which apply to all curves of the second degree inscribed in the

triangle. Writing the equation in the form

W7 [ny
- 2?a - 2m/3) + (?a

- m^f = 0,

we see that the line (Za
—

wz^), which obviously passes through
the point a^S, passes also through the point where 7 meets the

curve. The three lines, then, which join the points of contact

of the sides with the opposite angles of the circumscribing

triangle are

Icf.
— m/S = 0, mjS - ^7 = 0, ny — Za = 0,

and these obviously meet in a point.

The very same proof which showed that 7 touches the curve

shows also that ny — 2la- 2m^ touches the curve, for when this

quantity is put = 0, we have the perfect square [la
—

m/SJ'^
—

;

hence this line meets the curve in two coincident points, that
is,

touches the curve, and la — mjS passes through the point of con-

tact. Hence, if the vertices of the triangle be joined to the

points of contact of opposite sides, and at the points where the

joining lines meet the circle again, tangents be drawn, their

equations are

2h + 2m^ - ny = Oj 2m/3 + 2^7 - ?a = 0, 2ny + 2la - mjS = 0.

Hence we infer that the three points, where each of these tan-

gents meets the opposite side, lie in one right line,

loL + mjS 4 ^7 = 0,

we give one of them a positive sign, and the other two negative, the equation

does not denote a proper curve of the second degree, but the square of some

one of the lines la ± w/3 ± W7. And the form in the text may be considered

to include the case where one of the rectangles is negative and the other

two positive, if we suppose that /, m, or n may denote a negative as well

as a positive quantity.
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for this line passes through the intersection of the first line with

7, of the second with a, and of the third with /3.

*130. The equation of the chord joining two points a'yS'7'j

a'yS'Y'j on the curve is

a VW W(fiW') + V(/3V)) +/3VW {V(7V') + V(7V)}
+ 7VW{V(a'/3") + V(a"/3')}

= 0*

For substitute a', /9', 7' for a, ^, 7, and it will be found that the

quantity on the left-hand side may be written

(VK^V) + V(/SVa") + V(7'a'-8")} (V(fe') + V('«/3') + V(«7'))
-

V(a'/3Y) (V(?a") + V(m;8") + V(«7")l,

which vanishes, since the points are on the curve. The equation
of the tangent is found by putting a", l3'\ y" = a', fi'j 7' in the

above. Dividing by 2 \/{a'/3'y')^ it becomes

V©-V(?)-V(?
Conversely, if Xa + fJ^/S + V7 is a tangent, the co-ordinates

of the point of contact are given by the equations

^/©-. ^/S)='•. 7(7)=-
Solving for a'^'7', and substituting in the equation of the curve,

we get I m n ^

which is the condition that \ol 4- yttyS + vy may be a tangent ;

that is to say, is the tangential equation of the curve.

The reciprocity of tangential and ordinary equations will be

better seen, if Ave solve the converse problem, viz. to find the

equation of the curve, the tangents to which fulfil the condition

I m n ^- + -+- = 0.

We follow the steps of Art. 127. Let \'a-h fi'/3 + v'y,

X'a + fji"^ 4- v"y be any two lines, such that
X'//,V', \"fi"v" satisfy

the above condition, and which therefore are tangents to the

curve whose equation we are seeking ;
then

l\ mu, 7iv

r-7TT, + -At, + -7^, = 0,A A fX IM VV

* This equation is Dr. Hart's.
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is the tangential equation of their point of intersection. For

(Art. 70) any equation of the form AX -h B/jl + Cv = 0, is the

condition that the line \a + fi/S + vy should pass through a

certain point, or, in other words, is the tangential equation of a

point ;
and the equation we have written being satisfied by the

tangential co-ordinates of the two lines is the equation of their

point of intersection. Making V, yu,',
y~ V, yit",

v" we learn that if

there be two consecutive tangents to the curve, the equation of

their point of intersection, or in other words, of their point of

contact, is

l\ ma nv

The co-ordinates then of the point of contact are

I m n

""^v^' ^^7'' ^^7^'

Solving for X', //<',
v from these equations, and substituting in the

relation, which by hypothesis XfMv satisfy, we get the required

equation of the curve

V(?a)+V>/S) + V(^7) = 0.

131. The conditions that the equation should represent a

circle are (Art. 128)

m' sin'(7+ n' sin'^+ 2mw sin5 sin(7= w'' sinM ^ r sin' (7

+ 2nl 9>mA sinO= I' &WB-\-m^ sinM + 2lm sin^ sin^,

or wsin(7+wsin^= +(nsin^ + /sin(7)=± (^sin^+ mmiA),

Four circles then may be described to touch the sides of the

given triangle, since by varying the sign, these equations may
be written in four different ways. If we choose in both cases

the + sign, the equations are

Z sinC- m sin (7-1- w (sin^
—

sin5) = ;

Z sin5 -1- 772 (sin^
— sin (7)

— 71 sin^= 0.

The solution of which gives (see Art. 124),

Z= sin^ (sin^-1- sin (7- sin ^), m = sin^(sinC+ sin J. - sin^),

n = sin(7 (sin^ + sin^— sin (7).

But since in a plane triangle

sin -B+ sin (7- sinJ = 4 cos ^A sin |B sin J (7,
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these values for
?, m^ n are respectively proportional to q,o^\A^

0,0^ \B^ 0,0^\G^ and the equation of the corresponding circle,

which is the inscribed circle, is

cosj^ sl{fx) + cosi^ V(/3) + cos^ Gsl[i) = 0,*
or

a' cos*4^ + /3' cos*^2?+ 7* cos'^ G - 2a/3 cos''-|-^ cos^^^J?

- 2^7 cos'-* |5 cos' I G - 27a cos' J (7 cos'4^ = 0.

We may verify that this equation represents a circle by

writing it in the form

/acos*^^ ^cos^B . 7C0s*iC\, • a , a - t> .
- n\

1
' A + . p

- + ^^—^— {oL
sm^ + /3 sm5+ 7 sm(7)

\ sm^ sm^ smC; y
^

C0s'i^C0s'4j5c0s'i(7 ,^ . , • r> . o • /^N A
!—A ' T, • r>, (/37sm^ + 7asm5+aySsmO) = 0.
sm^smi?smu ^ '^

In the same way, the equation of one of the exscribed circles is

found to be

a' cos'l^ +/3' sin*i5+ 7' sin*|(7- 2^57 sin'^5 sin'^C
+ 27a sin'i (7 cos'-|4 -f 2a/3 sin'^^ cos'^i^ = 0,

or cosi^ ^(
_

a) + sini^ V(/3) + sini (7 V(7) = 0.

The negative sign given to a is in accordance with the fact, that

this circle and the inscribed circle lie on opposite sides of the

line a.

Ex. Find the radical axis of the inscribed circle and the circle through
the middle points of sides.

The equation formed by the method of Art. 128, is

2 C06*i^ cos*i^ cos*J C{a cos^ + ;3 cos^ + 7 cosC)
• A ' -D • nl COS*^^ _C0S*^^ C0S*|<7\= sm A sin J5 sin C « —r-^— + Q =— + 7 —

1 .

\ Sin A sin B sin C J

Divide by 2 cosM cosfJ? cos^ C, and the coefficient of a in this equation is

cos|^ (2 cos'M sin^5 sin.\C- cos^ cos|^ cos^C},
or '

cos|^ sinK^ - B) dn\{A -
C).

* Dr. Hart derives this equation from that of the circumscribing circle

as follows: Let the equations of the sides of the triangle formed by joining
the points of contact of the inscribed circle be a' = 0, (3'

= 0, 7'
=

;
and

let its angles be A', B', C ;
then (Art. 124) the equation of the circle is

/3'7' sin A' + 7'a' sin B +
a'yS'

sin C" = 0.

But (Art. 123) for every point of the circle we have a" =
/3«y, /3'*

=
rya,

7" =
«/3, and it is easy to see that A' = dO - lA, &c. Substituting these

values, the equation of the circle becomes, as before,

cosi^ /(«) ^ coslB v/(/3) 1 008^0^(7) = 0.
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The equation of the radical axis then may be written

a coslA ^ coslB 7C0S|C _

m^(B"^~C)
"*"

8ini(C-^)
^
sini(^ - £)

~
'

and it appears from the condition of Art. 130, that this line touches the

inscribed circle, the co-ordinates of the point of contact being sin^^{B
-
C),

sm%{C-A), sin'K^ - B). These values shew (Art. 66) that the point of

contact lies on the line joining the two centres whose co-ordinates are

1, 1, 1, and cos(-B
-

C), cos(a- ^), cos(^ -
B).

132. If the equation of a circle in trilinear co-ordinates is

equivalent to an equation in rectangular co-ordinates, in which

the coefficient of x^ + y^ is w, then the result of substituting in

the equation the co-ordinates of any point is m times the square
of the tangent from that point. This constant m is easily de-

termined in practice if there be any point, the square of the

tangent from which is known by geometrical considerations;

and then the length of the tangent from any other point may be

inferred. Also, if we have determined this constant m for two

circles, and ifwe subtract, one from the other, the equations divided

respectively by m and w', the difference which must represent the

radical axis, will always be divisible by a sin^ 4 yS sinjB-|- 7 sin (7.

Ex. 1. Find the value of the constant m for the circle through the

middle points of the sides,

a* m\A cos^ + /3* sin^ cos5 + 7* sinCcosC- ft<^
sinA - 7a sinB -

a/3 sinC= 0.

Since the circle cuts any side 7 at points whose distances from the vertex A,
are |c and b cos A, the square of the tangent from A is ^be cos A. But

since for A we have /3
= 0, 7 = 0, the result of substituting in the equation

the co-ordinates of -4 is «'* sin -4 cos^, (where «' is the perpendicular from

A on the opposite side), or is be sinA sin B sinC cos A. It follows that the

constant m is 2 sin^ sin^ sinC.

Ex. 2. Find the constant m for the circle /37 sin^ + 7a sin^ + ay3 sin C.

If from the preceding equation we subtract the linear terms

(o cos^ + y3 cos J5 + 7 cosC) (« sin^ + /3
sin^ + 7 sinC),

the coefficient of a;' + y^ is unaltered. The constant therefore for ^^ sin Ay
&c. is - sin A sinB sin C,

Ex. 3. To find the distance between the centres of the inscribed and

circumscribing circle. We find D^ - B,\ the square of the tangent from

the centre of the inscribed to the circumscribing circle, by substituting

a = ^ = 7 = r, to be - >-'(sin^+sin^-fsin(7) ^ well-known formula,^ ' sin^ sm-B smC
= -2Rr. Hence Z)« - jR' - 2i2r.
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Ex. 4. Find the distance between the centres of the inscribed circle and

of that through the middle points of sides. If the radius of the latter be />,

inaking use of the formula,

sin^ cos^ + sin^ cosJ5 + sinCcosC= 2 sin^ sin JS sinC,

"we have D^ -
p*

= r^ - rR.

Assuming then that we otherwise know R =
2/5, we have D = r -

p, or

the circles touch.

Ex. 5. Find the constant m for the equation of the inscribed circle

given above. Ans. 4r* cos^^il cos^lB cos'|C.

CHAPTER X.

PROPERTIES COMMON TO ALL CURVES OF THE SECOND
DEGREE, DEDUCED FROM THE GENERAL EQUATION.

133. The most general form of the equation of the second

degree is

ax' + 2hxi/ + hf + 2gx + 2^ -f c = 0,

where a, &, c, /J g^ h are all constants.

It is our object in this chapter to classify the different curves

which can be represented by equations of the general form just

written, and to obtain some of the properties which are common
to them all.*

Five relations between the coefficients are sufficient to deter-

mine a curve of the second degree. For though the general

equation contains six constants, the nature of the curve depends
not on the absolute magnitude^ but on the mutual ratios of these

coefficients
; since, if we multiply or divide the equation by

any constant, it will still represent the same curve. We may,
therefore, divide the equation by c, so as to make the absolute

term =
1, and there will then remain but five constants to be

determined.

* We shall prove hereafter, that the section made by any plane in a

cone standing on a circular base is a curve of the second degree, and, con-

versely, that there is no curve of the second degree which may not be con-

sidered as a conic section. It was in this point of view that these curves

were first examined by geometers. We mention the property here, because

we shall often find it convenient to use the terms "conic section," or "conic,"

instead of the longer appellation,
" curve of the second degree."
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Thus, for example, a conic section can be described through

five ^points. Substituting in the equation (as in Art. 93) the

co-ordinates of each point {x'y) through which the curve must

pass, we obtain five relations between the coefficients, which will

enable us to determine the five quantities,
-

,
&c,

134. We shall in this chapter often have occasion to use the

method of transformation of co-ordinates
;
and it will be useful

to find what the general equation becomes when transformed to

parallel axes through a new origin ixy'). We form the new

equation by substituting x + x for
a?,

and y -\- y for y (Art. 8),

and we get

a{x^xy+2h [x+x){y-]-y')^h {y+y'y+2g (0^+07')+ 2/(y+y)+c=0.

Arranging this equation according to the powers of the vari-

ables, we find that the coefficients of
a?^, xy^ and y^^ will be, as

before, a, 2A, h
;
that

the new ^, g'
= ax' + hy' +g^

the new /, /'
= hx' -^-oy'+f;

the new c,
c = ax' + 2hxy' + hy"' + 2gx + 2fy' + c.

Hence, if the equation ofa curve of the second degree he trans-

formed to parallel axes through a new origin^ the coefficients of the

highest powers of the variahles will remain unchanged^ while the

new absolute term will he the result of substituting in the original

equation the co-ordinates of the new origin!^

135. Every right line meets a curve of the second degree in

two real^ coincident^ or imaginary points.

This is inferred, as in Art. 82, from the fact that we get a

quadratic equation to determine the points where any line

y — mx + n meets the curve. Thus, substituting this value of y
in the equation of the second degree, we get a quadratic to

determine the x of the points of intersection. In particular

(see Art. 84) the points where the curve meets the axes, are

determined by the quadratics

a£c^ + 2gx -f c = 0, hy^ + 2fy -\- c = 0.

* This is equally true for equations of any degree, as can be proved in

like manner.
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An apparent exception however may arise which does not

present itself in the case of the circle. The quadratic may re-

duce to a simple equation in consequence of the vanishing of the

coefficient which multiplies the square of the variable. Thus

£cy -f 2?/'^ + a: + 5?/ + 3 =

is an equation of the second degree ;
but if we make

3/
=^ 0, we

get only a simple equation to determine the points of meeting
of the axis of x with the locus represented. Suppose, however,
that in any quadratic Ax^ -f "iBx +(7 = 0, the coefficient G
vanishes, we do not say that the quadratic reduces to a simple

equation ;
but we regard it still as a quadratic, one of whose

roots is ic = 0, and the other x——
-j

. Now this quadratic

may be also written

and we see by parity of reasoning, that if A vanishes, we ought
to regard this still as a quadratic equation, one of whose roots

1 1 2^ G
is -= 0, or £C = CO ; and the other - =—7^, ora;= =s . The

a?
' ' X C ^ 2B

same thing follows from the general solution 'of the quadratic,
which may be written in either of the forms

_ ^B±^/{B'^AG) _ G
^~ A

-
^B-^sJ[B'-AGy

the latter being the form got by solving the equation for the

reciprocal of
a?,

and the equivalence of the two forms being

easily verified by multiplying across. Now the smaller A
is, the

more nearly does the radical become —±B'^ and therefore the

last form of the solution shows, that the smaller A
is, the larger

is one of the roots of the equation ;
and that when A vanishes

we are to regard one of the roots as infinite. When therefore

we apparently get a simple equation to determine the points in

which any line meets the curve, we are to regard it as the

limiting case of a quadratic of the form Q.x^ + 2Bx +(7=0, one

of whose roots is infinite
;
and we are to regard this as indi-

cating, that one of the points where the line meets the curve is

infinitely distant. Thus the equation, selected as an example,
which may be written (^ + 1) (ic + 2y + 3)

=
0, represents two
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right lines, one of which meets the axis of a? in a finite point,

and the other being parallel to it meets it in an infinitely-

distant point.

In like manner, if in the equation Ax^ -{-2Bx-\-C—0, both B
and C vanish, we say that it is a quadratic equation, both of whose

roots are a; =
;
so if both B and A vanish we are to say that

it is a quadratic equation, both of whose roots are a; = oo . With
the explanation here given, and taking account of infinitely

distant, as well as of imaginary, points, we can assert that every

right line meets a curve of the second degree in two points.

136. The equation of the second degree transformed to

polar co-ordinates* is

[a cos'^ + 2^ cos ^ sin ^ + J sin''^) p'+ 2 [g cos ^+/ sin ^) p + c =
;

and the roots of this quadratic are the two values of the length

of the radius vector corresponding to any assigned value of 0,

Now we have seen in the last article that one of these values

will be infinite, (that is to say, the radius vector will meet the

curve in an infinitely distant point,) when the coefficient of
pi^

vanishes. But this condition will be satisfied for two values

of ^, namely those given by the quadratic

Hence, there can he drawn through the origin two reat^ coin-

cidentj or imaginary lines^ which will meet the curve at an infinite

distance ; each of which lines also meets the curve in otie finite

point whose distance is given by the equation

2 {g cos^ -f/sin^) p + c = 0*

If we multiply by p^ the equation

a cos^O + 2h cos dsind + h s'm^d = 0,

and substitute for p cos^, p sin 6 their values x and ^, we obtain

for the equation of the two lines

ax' + 2hxy + hy^
= 0*

There are two directions in which lines can be dfawil through

• The following processes apply equally if the original equation had

been in oblique co-ordinates. We then substitute mp for x, and np for y,

^here m is ^ and n is ^'"^."^"^^ (Art. 12); and proceed as in the text,
sin to sin IV
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any point to meet the curve at infinity ;
for by transformation

of co-ordinates we can make that point the origin, and the

preceding proof applies. Now it was proved (Art. 134) that

a, A, h are unchanged by such a transformation
;
the directions

are therefore always determined by the same quadratic

a cos^^ + 2A cos^ sin^ + h sin^^ = 0.

Hence, if through any point two real lines can he drawn to meet

the curve at infinity^ parallel lines through any other point will

meet the curve at infinity.^

137. The most important question we can ask, concerning

Xh^form of the curve represented by any equation, is,
whether

it be limited in every direction, or whether it extend in any
direction to infinity. We have seen, in the case of the circle,

that an equation of the second degree may represent a limited

curve, while the case where it represents right lines shows us

that it may also represent loci extending to infinity. It- is

necessary, therefore, to find a test whereby we may distinguish

which class of locus is represented by any particular equation
of the second degree.

With such a test we are furnished by the last article. For

if the curve be limited in every direction, no radius vector drawn

from the origin to the curve can have an infinite value; but we
found in the last article, that when the radius vector becomes in-

finite, we have a + 27^ tan 6 -{-h tan''^ = 0.

(1) If now we suppose W — db to be negative, the roots of

this equation will be imaginary, and

no real value of Q can be found which

will render

a cos"6 + 2h 'cos 6 sin 6 + h sin^ ^ = 0.

In this case, therefore, no real line

can be drawn to meet the curve at

infinity, and the curve will he limited

in every direction. We shall show, in the next chapter, that

its form is that represented in the figure. A curve of this class

is called an Ellipse.

* This indeed is evident geometrically, since parallel lines may be con-

sidered as passing through the same point at infinity.
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I

(2) If W — ah be positi^^ the roots of the equation

« + 2A tan^-hZ> tan'^ =

will be real; consequently, there

are two real values of 6 which will

render infinite the radius vector to

the curve. Hence, two real lines

{ax^ + 2hxi/ -f hi/"^
=

0) can, in this

case, be drawn through the origin

to meet the curve at infinity. A
curve of this class is called an

Ih/perhola, and w^e shall show, in the next chapter, that its form

is that represented in the figure.

(3) If h^ — ah = 0, the roots of the equation

a + 2Atan^-+-?»tan'(9 =

will then be _equal, and, therefore,

the two directions in which a right
line can be drawn to meet the

curve at infinity will in this case

coincide. A curve of this class is

called a Parahola^ and we shall

(Chap. XIT.) show that its form is

that here represented. The condition here found may be other-

wise expressed, by saying that the curve is a parabola when
the first three terms of the equation form a perfect square.

138. We find it convenient to postpone the deducing the

figure of the curve from the equation, until we have first by
transformation of co-ordinates, reduced the equation to its

simplest form. The general truth however of the statements

in the preceding article may be seen if we attempt to construct

the figure represented by the equation, in the manner explained

(Art. 16). Solving for y in terms of
a?,

-we find (Art. 76)

hy^- [hx +/) ± V((^'^
-

ah) x' + 2 [hf^ hg) x + [f - he)].

Now, since by the theory of quadratic equations, any quantity

of the form £c'^ -f pa? + g-
is equivalent to the product of two real

or imaginary factors {x- a) {x
—

p)^ the quantity under the

radical may be written [h^
—

ah) [x
—
a){x-l3). If then h^ - ah

be negative, the quantity under the radical is negative, (and
K2
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therefore y Imagmary), when the factors a: — a, a; — /3 are either

both positive, or both negative. Real values for y are only

found when x is intennediate between a and /?, and therefore

the curve only exists in the space included between the lines

x — a^x — ^ (see Ex. 3, p. 14). The case is the reverse when

A' — aZ> is positive. Then we get real values of y for any values

of
cr,

which make the factors a; — a, a; — /8 either both positive

or both negative ;
but not so if one is positive and the other

negative. The curve then consists of two branches stretching

to infinity both in the positive and in the negative direction, but

separated by an interval included by the lines a? = a, a? = /9,
in

^hich no part of the curve is found. If K^ — ah vanishes, the

quantity under the radical is of the form either a; — a or a — a:.

In the one case we have real values of y^ provided only that x

is greater than a
;

in the other, provided only that it is less.

The curve therefore consists of a single branch stretching to in-

finity either on the right or the left-hand side of the line a? = a.

If the factors a and /8 be imaginary, the quantity under the

radical may be thrown into the form (A^
—

aZ>) ((a?
—

7)'^ + 5"*l.

If then }^ — oh is positive, the quantity under the radical is

always positive, and lines parallel to the axis of y always meet

the curve. Thus in the figure of the hyperbola, p. 131, lines

parallel to the axis of y always meet the curve, although lines

parallel to the axis of x may not. On the other hand, if 1^ — ah

is negative, the quantity under the radical is always negative,

and no real figure is represented by the equation.

Ex. 1. Construct, as in Art. 16, the figures of the following curves, and

determine their species :

3x" + Axy + y'
- 3a; -

2y + 21 = 0. Ans. Hyperbola.

ba^ + 4ary + y«
- 5a: - 2y - 19 = 0. Ans. Ellipse.

4*" + 4ary + y*
- 5a; -

2y
- 10 = 0. Ans. Parabola.

Ex. 2. The circle is a particular case of the ellipse. For in the most

general form of the equation of the circle, a =
6, A = a cosw (Art. 81); and

therefore h* - ah is negative being = - a' sin*a>.

Ex. 3. What is the species of the curve when A = ? Ans. An ellipse

when a and h have the same sign, and an hyperbola when they have opposite

signs.

Ex. 4. If either a or 6 =0, what is the species ? Ans. A parabola if

also A =
;
otherwise a hyperbola. When a = the axis of x meets the

curve at infinity ;
and when 6 = 0, the axis of y.
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Ex. 5. What is represented by

—1. + ^ ^ + 1=0?
a* ah h* a h

Ans. A parabola touching the axes at the points x = a, t/
= b.

139. If in a quadratic Ax' + 2Bx+ C=0, the coefficient B
vanishes, the roots are equal with opposite signs. This then

will be the case with the equation

(a cos'^ 4- 2k cos 6sm6-\-b sm'd) p^ + 2{g cos ^ +/ sin ^) p + c = 0,

if the radius vector be drawn in the direction determined by
the equation g cos ^ 4/ sin ^ = 0.

The points answering to the equal and opposite values of p
are equidistant from the origin, and on opposite sides of it;

therefore, the chord represented by the equation gx +fi/ = is

bisected at the origin.

Hence, through any given 'point can in general he drawn one

chord^ which will he hisected at that point,

140. There is one case, however, where more chords than one

can be drawn, so as to be bisected, through a given point.

If, in the general equation, we had g=-Oj y=0, then the

quantity g cos 6 -\-f sin d would be = 0, whatever were the value

of 6
;
and we see, as in the last article, that in this case every

chord drawn through the origin would be bisected. The origin

would then be called the centre of the curve. Now, we can in

general, by transforming the equation to a new origin, cause

the coefficients g and / to vanish. Thus equating to nothing
the values given (Art. 134) for the new g and /, we find that

the co-ordinates of the new origin must fulfil the conditions

ax -\-hy -\-g
=

0, hx -f hy +/= 0.

These two equations are sufficient to determine a?' and y\ and

being linear^ can be satisfied by only one value of a? and ^ ;

hence, conic sections have in general one and only one centre. Its

co-ordinates are found, by solving the above equations, to be

""-je-ah' ^'h'-ah'
In the ellipse and hyperbola h^—ah is always finite (Art, 137);

but in the parabola h^—ah—0, and the co-ordinates of the centre

become infinite. The ellipse and hyperbola are hence often

classed together as central curves, while the parabola is called
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a non-central curve. The student must be careful, however,

to remember that, strictly speaking, every curve of the second

degree has a centre, although in the case of the parabola this

centre is situated at an infinite distance.

141. To find the locus of the middle points of chords^ parallel

to a given line^ of a curve of the second degree.

We saw (Art. 139) that a chord through the origin is bi-

sected if g cos d -\-f sin ^ = 0. Now, transforming the origin to

any point, it appears, in like manner, that a parallel chord will

be bisected at the new origin if the new g multiplied by cos 6 +
the new/multiplied by sin^ = 0, or (Art. 134)

cos 6 [ax + hy +g)-\- sin 6 [hx + hy +f) = 0.

This, therefore, is a relation which must be satisfied by the co-

ordinates of the new origin, if ic be the middle point of a chord

making with the axis of x the angle 0. Hence the middle point
of any parallel chord must lie on the right line

cos 6 {ax \-hy-\- g) + sin [hx + hy +/) = 0,

which
is, therefore, the required locus.

Every right line bisecting a system of parallel chords is called

a diameter^ and the lines which it bisects are called its ordinates.

The form of the equation shows (Art. 40) that every diameter

must pass through the intersection of

the two lines

ax-\-hy+g=zO^ and hx^hy-^f=0\

but, these being the equations by
which we determined the co-ordinates

of the centre (Art. 140), we infer that

every diameter passes through the centre of the curve

It appears by making

alternately =0, and =90° in

the above equation, that

ax + hy \-g=:0

is the equation of the diameter

bisecting chords parallel to the

axis of
a*,

and that

hx + hy -f/= /
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is the equation of the diameter bisecting chords parallel to the

axis of y.*

In the parabola J^ = a5, or ^
=

{ ,
and hence the line

ax-\-hy-\-g is parallel to the line

hx + hy-\-f'^ consequently, all dia-

meters of a parabola are parallel
to each other. This, indeed, is

evident, since we have proved
that all diameters of any conic

section must pass through the

centre, which, in the case of the

parabola, is at an infinite distance;

and since parallel right lines may be considered as meeting in

a point at infinity.f

The familiar example of the circle will sufficiently illustrate to

the beginner the nature of the diameters of curves of the second

degree. He must observe, however, that diameters do not in

general, as in the case of the circle, cut their ordinates at right

angles. In the parabola, for instance, the direction of the dia-

meter being invariable, while that of the ordinates may be any

whatever, the angle between them may take any 'possible value.

142. The direction of the diameters of a parabola is the same

as that of the line through the origin which meets the curve at an

infinite distance.

For the lines through the origin which meet the curve at in-

finity are (Art. 136) ^^^ ^ ^hxy + by'
=

0,

* The equation (Art. 138) which is of the form hy = - {hx +/) + K is

most easily constructed by first laying down the line hx \hy \ j\ and then

taking on each ordinate MP of that line, portions FQ, PQ\ above and

below P and equal to E. Thus also it appears that each ordinate is bisected

by hx + hy +/.

t Hence, a portion of any conic section being drawn on paper, we can

find its centre and determine its species. For if we draw any two parallel

chords, and join their middle points, we have one diameter. In like manner

we can find another diameter. Then, if these two diameters be parallel, the

curve is a parabola, but if not, the point of intersection is the centre. It

will be on the concave side when the curve is an ellipse ;
and on the convex

when it is a hyperbola.
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or, writing for h its value ^{ah)^

But the diameters are parallel to ax-\-hy—0 (by the last article),

which, if we write for h the same value ^{ab)^ will also reduce to

V(a)a; + /v/(^)3/
= 0.

Hence every diameter of the parabola meets the curve once at

infinity, and, therefore, can only meet it in one finite point.

143. If two diameters of a conic section he such^ that one of
them bisects all chords parallel to the other^ then^ conversely^ the

second will bisect all chords parallel to the first.

The equation of the diameter which bisects chords making
an angle 6 with the axis of x is (Art. 141)

[ax + hy+g) + ihx + hy +/) tan^ = 0.

But (Art. 21) the angle which this line makes with the axis is 6'

where afAtan6l
tan^ =- T—^f-—7)9A + 6tan^'

whence b tan 6 tan 6' + h (tan 6 + tan ^') + a = 0.

And the symmetry of the equation shows that the chords making
an angle 6' are also bisected by a diameter making an angle 6,

Diameters so related, that each bisects every chord parallel

to the other, are called conjugate diameters/^

If in the general equation A = 0, the axes will be parallel to

a pair of conjugate diameters. For the diameter bisecting chords

parallel to the axis of x will, in this case, become aa? 4 ^ = 0,

and will, therefore, be parallel to the axis of y. In like manner,
the diameter bisecting chords parallel to the axis of y will, in

this case, be by-\-f=0^ and will, therefore, be parallel to the

axis of X.

144. If in the general equation c=0, the origin is on the curve

(Art. 81) ;
and accordingly one of the roots of the quadratic

(a cos''^ + 2A cos ^ sin ^ + & sin'^) p' 4- 2 (^ cos 6 +f sin 6)p =

is always p = 0. The second root will be also p = 0, or the

radius vector will meet the curve at the origin in two coincident

points, if g cos^+/ sin ^ = 0. Multiplying this equation by p,

* It is evident that none but central curves can have conjugate diameters,

since in the parabola the direction of all diameters is the same.
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we have the equation of the tangent at the origin, viz. ^a;-f^=0.*

The equation of the tangent at any other point on the curve,

may be found by first transforming the equation to that point

as origin, and when the equation of the tangent has been then

found, transforming it back to the original axes.

Ex. The point (1, 1 ) is on the curve

3a;* -
4:xi/ + 2i/' + 1x - 5y - Z =

;

transform the equation to parallel axes through that point, and find the

tangent at it.

Ans. 9x -
5i/

= referred to the new axes, or 9
(j?

-
1) = 5 (y

-
1) re-

ferred to the old.

If this method is applied to the general equation, we get for

the tangent at any point a?'?/',
the same equation as that found

by a different method (Art. 86), viz.

axx + h [xy + yx) + hy'y -\-g[x-\- x) -\-f[y + y)-^c — 0,

145. It was proved (Art. 89) that if it be required to draw

a tangent to the curve from any point xy not supposed to be

on the curve, the points of contact are the intersections with

the curve of a right line whose equation is identical in form

with that last written
;
and which is called the polar of xy\

Consequently, since every right line meets the curve in two

points, through any point xy there can he drawn two real^ coin-

cident^ or imaginary tangents to the curve. '\

It was also proved (Art. 89) that the polar of the origin is

gx -\-fy + c = 0. Now this line is evidently parallel to the chord

gx -\-fy^ which (Art. 139) is drawn through the origin so as to

be bisected. But this last is plainly an ordinate of the diameter

passing through the origin. Hence, the polar of any point is

parallel to the ordinates of the diameter passing through that 'point.

This includes as a particular case : The tangent at the extremity

of any diameter is parallel to the ordinates of that diameter. Or

again, in the case of central curves, since the ordinates of any

• The same argument proves that in an equation of any degree, when

the absolute term vanishes the origin is on the curve, and that the terms of

the first degree represent the tangent at the origin.

f A curve is said to be of the w*^ class, when through any point n tan-

gents can be drawn to the curve. A conic is therefore a curve of the second

degree and of the second class : but in higher curves the degree and class

of a curve are commonly not the same.
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diameter are parallel to the conjugate diameter, we infer that,

the polar of any point on a diameter of a central curve is parallel

to the conjugate diameter.

146. The principal properties of poles and polars have been

proved by anticipation in former chapters. Thus it was proved

(Art. 98) that if a point A lie on the polar of B^ then B lies on

the polar of A, This may be otherwise stated, If a point move

along a fixed line [the polar of B'] its polar passes through a

fixed point \B\ ; or conversely, If a line [the polar of A'\ pass

through a fixed poijit^ then the locus of its pole A is a fixed

right line. Or again, The intersection of any two lines is the

pole of the line joining their poles / and conversely, The line

joining any two points is the polar of the interscctio7is of the polars

of these points. For if we take any two points on the polar

of -4, the polars of these points intersect in A.

It was proved (Art. 100) that if two lines he drawn through

any pointy and the points joined where they meet the curve^ the

joining lines will intersect 07i the polar of that point. Let, the

two lines coincide, and we derive, as a particular case of this,

If through a point any line OR he drawn^ the tangents at R'

and R" meet on the polar of : Si property which might also be

inferred from the last paragraph. For since R'R'\ the polar of

P, passes through 0, P must lie on the polar of 0.

And it was also proved (Ex. 3, p. 98), that if on any radius

vector through the origin, OR be

taken a harmonic mean between OR'

and OR"
J
the locus of R is the polar

of the origin; and therefore that,

any line drawn through a point is

cut harmonically hy the pointy the

curve^ and the polar of the point ; as

was also proved otherwise (Art. 91).

Lastly, we infer that, if any line

OR be drawn through a point 0, and

P the pole of that line be joined to 0, then the lines (9P, OR
will form a harmonic pencil with the tangents from 0. For
since OR is the polar of P, PTRT is cut harmonically, and

therefore OP, OP, OP, OT form a harmonic pencil.
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Ex. 1. If a quadrilateral ABCD, be inscribed in a conic section, an]
of the points E, F, O, is the pole of the

line joining the other two.

Since EC, ED, are two lines drawn

through the point E, and CD, AB, one

pair of lines joining the points where they
meet the conic, these lines must intersect

on the polar of ^; so must also AD and

CB; therefore, the line OF is the polar
of E. In like manner it can be proved A 3>

that ^i^is the polar of O, and EO the polar of F,

Ex. 2. To draw a tangent to a given conic section from a point outside,

with the help of the ruler only.

Draw any two lines through the given point E, and complete the quad-
rilateral as in the figure, then the line OF will meet the conic in two points,

which, being joined to E, will give the two tangents required.

Ex. 3. If a quadrilateral be circumscribed about a conic section, any

diagonal is the polar of the intersection of the other two.

We shall prove this Example, as we might have proved Ex. 1, by means
of the harmonic properties of a quadrilateral. It was proved (p. 60) that

EA, EO, EB, EF, are a harmonic pencil. Hence, since EA, EB, are,

by hypothesis, two tangents to a conic section, and EF a line through their

point of intersection, by Art. 146, EO must pass through the pole of EF;
for the same reason, FO must pass through the pole of EF: this pole must

therefore be O.

147. We have proved (Art. 92) that the equation of the pair

of tangents to the curve from any point x'^\ is

(«a;" -f 2hxy'+ hy'^ 4- 2gx + 2fy' + c) {ax^+ 2hx7/+ hf+ 2gx+ 2fy+ c)

=
[ax'x + h {xy + yx) + hy'y + g [x -f x) +/ [y +y)-\- cf-

The equation of the pair of tangents through the origin may be

derived from this by making a;' =
?/'
=

;
or it may be got directly

by the same process as that used Ex. 4, p. 80. If a radius

vector through the origin touch the curve, the two values of p
must be equal, which are given by the equation

[a cos'^ + 2h COS0 sin^ + h sin'^) p' + 2{g cosd+fsmd) ^o -f c = 0.

Now this equation will have equal roots if 6 satisfy the equation,

(a cos^ d + 2h cos ^ sin ^ + & sin'' 0)c={g cos 6 +f sin Sf,

Multiplying by |0^,
we get the equation of the two tangents, viz.

{ac -f) x' + 2 {ch-gf) xy + {be -f) / = 0.
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This equation again will have equal roots
j
that is to say, the

two tangents will coincide if

{ac-g^)[hc-f)^{ch-fg)\

or, c [dbc + 2fgh -af -
hg^

-
ch^)

= 0.

This will be satisfied if c = 0, that
is,

if the origin be on the

curve. Hence, ani^ pomt on the curve may he considered as the

intersection of two coincident tangents^ just as any tangent may
be considered as the line joining two consecutive points.

The equation will have also equal roots, if

ahc + 2fgh
- af - hf - cW = 0.

Now we obtained this equation (p. 74) as the condition, that the

equation of the second degree should represent two right lines.

To explain why we should here meet with this equation again,

it must be remarked that by a tangent we mean in general a line

which meets the curve in two coincident points ;
if then the

curve reduce to two right lines, the only line which can meet

the locus in two coincident points is the line drawn to the point
of intersection of these right lines, and since two tangents can

always be drawn to a curve of the second degree, both tangents
must in this case coincide with the line to the point of inter-

section.

148. If through any point two chords he drawn^ meeting the

curve in the jpoints R\ R'\ S\ B'\then the ratio of the rectangles

-TTqi-YT^Tt
^**^^ ^6 constant

J
whatever he the position of the point 0,

provided that the directions of the lines OR^ 08 he constant.

For, from the equation given to determine p in Art. 136, it

appears that

OR',0R"=
""

a coB^O + 2h cos^ sin^ + h sin'^^
*

In like manner

OS\OS" =

hence

a cos^^' + 2h cos^' sin 6^' + h sm'O' '

OR' . OR" a cos' 6' -h 2/i cos 6' s\n6' + h sin' d'

OS '. 08" a cos' e-^2h cos sine-^h sin'' d
'

But this is a constant ratio: for a, /^, hj remain unaltered

when the axes are transformed to any new origin (Art. 134),
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and 6j 6' are evidently constant while the direction of the radii

vectores is constant.

The theorem of this Article may be otherwise stated thus :

If through two fixed points and 0' any two parallel lines OR

and O'p he drawn^ then the ratio of the rectangles ^,

'

^, „ will

he constant^ whatever he the direction of these lines.

For, these rectangles are

a cos*'^ + 2h cosO sind-{-h sm^6
' a cos'6 -\-2h cos^ sin^+ h sin'6 '

{c being the new absolute term when the equation is transferred

c
to 0' as origin) ;

the ratio of these rectangles
= -

,
and is, there-

c

fore, independent of 0.

This theorem is the generalization of Euclid ill. 35, 36.

149. The theorem of the last Article includes under it several

particular cases, which it is useful to notice separately.

I. Let 0' be the centre of the curve, then O'p = O'p" and

the quantity O'p . O'p" becomes the square of the semidiameter

parallel to OB'. Hence, The rectangles under the segments of two

chords which intersect are to each other as the squares of the dia-

meters parallel to those chords,

II. Let the line OB be a tangent, then OB' — 0B'\ and the

quantity OB' , OB" becomes the square of the tangent ; and,

since two tangents can be drawn through the point O, we may
extract the square root of the ratio found in the last paragraph,
and infer that Two tangents drawn through any 'point are to each

other as the diameters to lohich they are parallel.

III. Let the line 00' be a diameter, and OB^ O'p^ parallel to

its ordinates, then OB' = OB" and O'p
—

O'p", Let the diameter

tneet the curve in the points A, B. then . ^ ^-^ = -tt^t^tv^ •^ ' ' AO,OB AO.OB
Hence, The squares of the ordinates of any diameter are propor-
tional to the rectangles under the segments which they make on the

diameter.

150. There is one case in which the theorem of Article 148

becomes no longer applicable, namely, when the line 08 is pa-
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rallel to one of the lines which meet the curve at infinity ;
the

segment OS" is then infinite, and OS only meets the curve in

one finite point. We propose, in the present Article, to inquire
O 0"

whether, in this case, the ratio
-?yBr-?yn"

^^^^ ^^ constant.

Let us, for simplicity, take the line OS for our axis of
a?,

and

OR for the axis of y. Since the axis of x is parallel to one of

the lines which meet the curve at infinity, the coefficient a will =

(Art. 138, Ex. 4), and the equation of the curve will be of the form

'^hxy + hy' + 'igx + 2/?/ + c = 0.

Making y = 0, the intercept on the axis of x is found to be

c
"

OS' = — —
;
and making a? = 0, the rectangle under the inter-

if

cepts on the axis of ?/ is = y .

„ OS' h
^^"^^

oiroE'=-2:g'

Now, if we transform the axes to any parallel axes (Art. 134),

b will remain unaltered, and the new g = hy' +g.
Hence the new ratio will be

2(hy' + g)'

Now, if the curve be a parabola, A = 0, and this ratio is constant
;

hence, if a line parallel to a given one meet any diameter

(Art. 142) of a parabola^ the rectangle under its segments is in a

constant ratio to the intercept on the diameter.

If the curve be a hyperbola, the ratio will only be constant

while y' is constant
;
hence The intercepts made hy two parallel

chords of a hyperbola^ on a given line meeting the curve at infinity^

are proportional to the rectangles under the segments of the chords.

*151. To find the condition that the line Xx-^-jmy-}- v may
touch the conic represented by the general equation. Solving for y
from \x -\- fiy -\- V = 0, and substituting in the equation of the

conic; the abscissas of the intersections of the line and curve are

determined by the equation

{afjL^
-

2h\fi + bX') x^ + 2
{gfj!'

-
hfiv -f/uX + b\v) x

\-[c>Ji''^<2flJLV+bv'):=0,
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The line will touch when the quadratic has equal roots, or when

[afj:'
-

2h\fi + hX"") {cfjt:'
-

2ffiv + hv')
=

(^/i'
-

hiiv -f/x\ -f hXyf,

Multiplying out, the equation proves to be divisible by fi^ and

becomes

(he -f) X' + (m - /) ya'^ + (ah
-

h') v' + 2 [gh
-

af) fjiv

+ 2 {hf- Ig) j/\ + 2 [fg
-

cJi) Xfi = 0.

We shall afterwards give other methods of obtaining this

equation, which may be called the tangential equation of the

curve. We shall often use abbreviations for the coefficients, and

write the equation in the form

AX"" + BfjL^ + Cv^ + 2Ffjiv + 2 GvX + 2HXfi = 0.

The values of the coefficients will be more easily remembered by
the help of the following rule. Let A denote the discriminant

of the equation ;
that is to say, the function

abc + 2fgh-af-lg^-cK\
whose vanishing is the condition that the equation may represent

right lines. Then A is the derived function formed from A,

regarding a as the variable
;
and B^ (7, 2i^, 2 G^ 2H are the

derived functions taken respectively with regard to
Z>, c,/, g^ h.

Miscellaneous Examples.

Ex. 1 . Form the equation of the conic making intercepts \, \', fi, fi'

on the axes. Since if we make y = 0, or a: = in the equation, it must

reduce to

a:' - (\ + V) X ^W = 0, y^
-

{fi ^ y!) y 4-
/*ytt'

=
;

the equation is

fifi'ji^ + 2hxy -I- XX'y*
-

fifj^ (\ \-\')x
-W

{fi + fi') y + W'fifi'
= 0,

and h is undetermined, unless another condition be given. Thus two para-

bolas can be drawn through the four given points ;
for in this case

h = ± '^[W'/bifif).

Ex. 2. Given four points on a conic, the polar of any fixed point passes

through a fixed point. We may choose the axes so that the given points

may lie two on each axis, and the equation of the curve is that found in

Ex. 1. But the equation of the polar of any point x'y' (Art. 145) involves

the indeterminate h in the first degree, and therefore passes through a

fixed point.

Ex. 3. Find the locus of the centre of a conic passing through four fixed

points. The centre of the conic in Ex. 1 is given by the equations

2/i/ii'x + 2hy -
fifi' {\ + \')

= 0, 2X\fy + 2hx -W
(ytt

+ /*')
=

j
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whence eliminating the indeterminate h, the locus is

Ifi^'x^
- 2\\y -

fifi' (X + \')x +W (/i + /u.')y
= 0,

a conic passing through the intersections of each of the three pairs of lines

which can be drawn through the four points, and through the middle points

of these lines. The locus will be a hyperbola when X, V and
ju, fi'

have

either both like, or both unlike signs ;
and an ellipse in the contrary case.

Thus it will be an ellipse when the two points on one axis lie on the same

side of the origin, and on the other axis, on opposite sides. In other words,

when the quadrilateral formed by the four given points has a re-entrant

angle. This is also geometrically evident : for a quadrilateral with a re-en-

trant angle evidently cannot be inscribed in a figure of the shape of the ellipse

or parabola. The circumscribing conic must therefore always be a hyper-

bola, so that some vertices may lie in opposite branches. And since the

centre of a hyperbola is never at infinity, the locus of centres is in this

case an ellipse. In the other case, two positions of the centre will be at

infinity, corresponding to the two parabolas which can be described through
the given points.

CHAPTER XL

EQUATIONS OF THE SECOND DEGREE REFERRED TO THE
CENTRE AS ORIGIN.

152. In investigating the properties of the ellipse and hyper-

bola, we shall find our equations much simplified by choosing
the centre for the origin of co-ordinates. If we transform the

general equation of the second degree to the centre as origin, we
saw (Art. 140) that the coefficients of x and y will =0 in the

transformed equation, which will be of the form

ax' + 2hxy + hy^ -|- c' = 0.

It is sometimes useful to know the value of c in terms of the co-

efficients of the first given equation. We saw (Art. 134) that

d = ax' + 2hxy' -f hy'^' 4- 'igx' -f 2fy' -|- c,

where x\ y\ are the co-ordinates of the centre. The calculation

of this may be facilitated by putting c into the form

c' =
[a.x + tiy' +g) X f {hx + hy +f) y' + (jfx' +fy' + c.
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The first two sets of terms are rendered = by the co-ordi-

nates of the centre, and the last (Art. 140)

_ Jf-^g ,

A9-¥
,

ahc + 2fgh-af-hg'-ch^ *

153. If the numerator of this fraction were =
0, the trans-

formed equation would be reduced to the form

ax' + 2hxy + hy'
=

0,

and would, therefore (Art. 73), represent two real or imaginary

right lines, according as ah — h^ is negative or positive. Hence,
as we have already seen, p. 74, the condition that the general

equation of the second degree should represent two right lines, is

ahc+^fgh-af^hg^-c^^Q,
For it must plainly be fulfilled, in order that when we transfer

the origin to the point of intersection of the right lines, the abso-

lute term may vanish.

Ex. 1. Transform Zx^ + 4ar?/ + t/*
- 5a: - 6^

- 3 = to the centre f- ,
-
4)

.

Ans. Ua^ + \Qxy 4 V + 1 = 0.

Ex. 2. Transform ar* + 2a:y
-

«/« + 8ar + 4y - 8 = to the centre (- 3,-1).
Ans. X* 4- Ixy

-
y* ^ 22.

154. We have seen (Art. 136) that when 6 satisfies the

condition ^ cos' ^ + 2A cos ^ sin l9 + 5 sin' ^ = 0,

the radius vector nieets the curve at infinity ;
and also meets

the curve in one other point, whose distance from the origin is,

_ c

' g cosO+fsinO
*

But if the origin be the centre^ we have g = 0, /= 0, and this

distance will also become infinite. Hence two lines can be drawn

through the centre, which will meet the curve in two coincident

points at infinity, and which therefore may be considered as tan-

gents to the curve whose points of contact are at infinity. These

lines are called the asymptotes of the curve
; they are imaginary

* It is evident in like manner that the result of substituting x'y', the.

co-ordinates of the centre, in the equation of the polar of any point x"y"f viz.,

{ax' +V + g) X" + {Jixf ^hy' \f) y" + gxf -vfy' + e,

is the same as the result of substituting x'y' in the equation of the curve.

For the first two sets of terms vanish in both cases;

L
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in the case of the ellipse, but real in that of the hyperbola. We
shall show hereafter that though the asymptotes do not meet the

curve at any finite distance, yet the further they are produced
the more nearly they approach the curve.

Since the points of contact of the two real or imaginary tan-

gents drawn through the centre are at an infinite distance, the

line joining these points of contact is altogether at an infinite

distance. Hence, from our definition of poles and polars (Art. 89)

the centre may he considered as the pole of a line situated altogether

at an infinite distance. This inference may be confirmed from

the equation of the polar of the origin, ^a^-f^^ + c = 0, which,
if the centre be the origin, reduces to c = 0, an equation which

(Art. 67) represents a line at infinity.

155. We have seen that by taking the centre for origin the

coefficients g and / in the general equation can be made to

vanish
;
but the equation can be further simplified by taking a

pair of conjugate diameters for axes, since then (Art. 143) h will

vanish, and the equation be reduced to the form

ax^ + hy^ + c = 0.

It is evident, now, that any line parallel to either axis is bisected

by the other, for if we give to x any value, we obtain equal and

opposite values for y. Now the angle between conjugate diame-
ters is not in general right; but we shall show that there is

always one jpair of conjugate diameters which cut each other at

right angles. These diameters are called the axes of the curve,
and the points where they meet it are called its vertices.

We have seen (Art. 143) that the angles made with the axis

by two conjugate diameters are connected by the relation

I tan^ tan^' + A(tan0 + tan^') + a = O.

But if the diameters are at right angles, tan^' = ^
(Art. 25). Hence *^^^

Atan'^+(a-Z')tan(9-A = 0.

We have thus a quadratic equation to determine 0, Multiply-

ing by p", and writing a;, y^ for p cos^, p sin^, we get

hx^ —[a — h)xy- hy^ = 0.

This is the equation of two real lines at right angles to each other
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(Art. 74) ;
we perceive, therefore, that central curves have two,

and only two, conjugate diameters at right angles to each other.

On referring to Art. 75 it will be found, that the equation

which we have just obtained for the axes of the curve is the same

as that of the lines bisecting the internal and external angles be-

tween the real or imaginary lines represented by the equation

The axes of the curve, therefore, are the diameters which bisect

the angles between the asymptotes ;
and (note, p. 72) they will

be real whether the asymptotes be real or imaginary : that is to

say, whether the curve be an ellipse or a hyperbola.

156. We might have obtained the results of the last Article

by the method of transformation of co-ordinates, since we can

thus prove directly that it is always possible to transform the

equation to a pair of rectangular axes, such that the coefficient

of xy in the transformed equation may vanish. Let the original

axes be rectangular; then, if we turn them round through any

angle ^, we have (Art. 9) to substitute for
a?,

x cosd — y sin^,

and for y^ x sind + y cos^; the equation will therefore become

a{x cosd — y smOy^ {2h{x cos6 — y sin^) {x sinO-iy cos^)

+ h{x sinO + y cos^)'^ + c = 0;

or, arranging the terms, we shall have

the new a = a cos''^ + 2A cos ^ sin ^ + 2> sin*^
;

the new h = h sinO cos6 + h {cos^6
—

sin'''^)
— a sin ^ cos 6

;

the new h=a sin^^ — 2h cob 6 smd-i-h cos^^O.

Now, if we put the new y^ = 0, we get the very same equation,

as in Art. 155, to determine tan^. This equation gives us a

simple expression for the angle made with the given axes by
either axis of the curve, namely,

tan2^=-^.a—

157. When it is required to transform a given equation to

the form ax^ + hy^ + c = Oj and to calculate numerically the value

of the new coefficients, our work will be much facilitated by the

following theorem : If we transform an equation of the second

l2



148 CENTRAL EQUATIONS OF THE SECOND DEGREE.

degree from one set of rectangular axes to aitotJier^ the quantities

a-\-b, and ah — Ii\ will remain unaltered.

The first part is proved immediately by adding the values of

the new a and h (Art. 156), when we have

a +b' = a-\-h.

To prove the second part, write the values in the last article,

2a=a + b-{-2Ji sin2^ + (a
-

Z>) cos2^,

2b' ='a + h-2hsin26-{a-h) cos2d.

Hence Aab' = (a 4 by - {2h sin2^ {(a-b) cos2^}'.

But W^ = {2h cos 2(9 -{a-b) 8m2eY ;

therefore 4:{a'b'-h")
= {a+bf-4:h'-{a^bY=^4.[ab-h').

When, therefore, we want to form the equation transformed

to the axes
J
we have the new ^ = 0,

a +b' = a + bf a'b' = ab — W,

Having, therefore, the sum and the product of a and
Z>',

we can

form the quadratic which determines these quantities.

Ex. 1. Find the axes of the ellipse 14a;*-4a"y + \\y^ - 60, and transform

the equation to them.

The axes are (Art. 155) 4;r« + ^xy
- 4/ = 0, or (2ar -y){x\ 2y) = 0.

We have a' + 6' = 25
;
ah' = 150; o' = 10

;
6' = 15

;
and the transformed

equation is 2a:* + 3y' = 12.

Ex. 2. Transform the hyperbola 11a:' + Sixy -
24y' = 156 to the axes,

a' + 6' = -
13, a'b' = - 2028; a' = 39, b' = - 52.

Transformed equation is 3a:' - 4y'
= 12.

Ex. 3. Transform ax* f 2hxy + by*
= c to the axes.

Ans. (a + 6 - i2) a:* + (a + 6 + iJ) y' = 2c : where JR' = 4A' + (a
-

£)'.

*158. Having proved that the quantities a+b and ab—Ii^ re-

main unaltered when we transform from one rectangular system
to another, let us now inquire what these quantities become if

we transform to an oblique system. We may retain the old axis

of Xj and if we take an axis of y inclined to it at an angle «,
then (Art. 9) we are to substitute a; + ^ cosco for

a?,
and

i/
sinw

for y. We shall then have

a =aj h' — a cos o) + ^ sin
ft),

h' ~ a cos'' a)-\-2h cos (o sin (o + b sin'^G).

Hence, it easily follows

a' + b'- 2h! cos o) ^ a'b' - h"' , , ,
r-r =a-\rb, —

T-2 =ab — h\sm 0)
' sm ft)
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If^ tJien^ we transform the equation from one pair of axes to any

,7 , ... a + 5 — 2Acosa) ^db — K'^ . ?. 7
other, the quantities ;—s and -t—2

— remain unaltered,
sin (u sm CO

We may, by the help of this theorem, transform to the axes

an equation given in oblique co-ordinates, for we can still ex-

press the sum and product of the new a and b in terms of the

old coefficients.

Q
Ex. 1. If costu = - transform to the axes, IO2;* + 6xy + 5^/*

= 10.

^ 285 ^ 1025 , ^ 205

Ans. 16^« + 41^* = 32.

Ex. 2. Transform to the axes, x* - 3xy + ^ + 1 = 0, where w = 60°.

Ans. X* - 1 5y*
= 3.

Ex. 3. Transform ax* + 2hxt/ + by* = c to the axes.

Atis. {a + b - 2h CO8U) -
It) x' i {a -{^ b - 2h cos a; + i2) y*

= 2c sin^io, where

H' = {2h
-

(a + 6) co8w}« + (a
- by sin*w.

*159. We add the demonstration of the theorems of the last

two articles given by Professor Boole (Cambridge Math. Jour.^

III. I, 106, and New Series, VI. 87).

Let us suppose that we are transforming an equation from

axes inclined at an angle co, to any other axes inclined at an

angle 12
;
and that, on making the substitutions of Art. 9, the

quantity ax' + 2hxy + hy'' becomes a'X:' + 2JiXY-\- h' Y\ Now
we know that the effect of the same substitution will be to make

the quantity x^ + 2xy cos (o+y' become X^ + 2XF cosl2 + F"",

since either is the expression for the square of the distance of

any point from the origin. It follows, then, that

ax^ -\2hxy ^hy' ^-\[x? +2ic^cosa) \-y'')

= dx' + 2A'xr-h y Y' -f \ (x^ + 2xr cosii + r^).

And if we determine \ so that the first side of the equation may
be a perfect square, the second must be a perfect square also.

But the condition that the first side may be a perfect square is

(a + A.) (5 + X) = (^ + X cosft))'',

or \ must be one of the roots of the equation

V sin'ft) + (a + 2>
- 2^ cosa>) X + a5 - K' = 0.

We get a quadratic of like form to determine the value of \,

which will make the second side of the equation a perfect square ;
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but Since both sides become perfect squares for the same values

of \, these two quadratics must be identical. Equating, then,

the coefficients of the correpsonding terms, we have, as before,

rt + J — 2Acosci) a'+^'— 2A' cosfi ah — Ji^ ah' — li^

sm o) sin''^X2
'

sin'^G) sin^l2

Ex. 1. The sum of the squares of the reciprocals of two semi-diameters

at right angles to each other is constant.

Let their lengths be a and ^ ;
then making alternately a; = 0, y = 0, in the

equation of the curve, we have aa* =
c, 6/3*

=
c, and the theorem just stated

is only the geometrical interpretation of the fact that a -f & is constant.

Ex. 2. The area of the triangle formed by joining the extremities of two

conjugate semi-diameters is constant.

The equation referred to two conjugate diameters is — + ^ =
1» aJ^d

ah — h* P
since . - is constant, we have a'Q' sin w constant.

Bin'* a;
'^

Ex. 3. The sum of the squares of two conjugate semi-diameters is constant.

o. a + 6 - 2A cosw . , ^ 1/1 l\. ^ ^ i-
bmce T-o IS constant, -:—7- -7, + tz^]^^ constant; and since

S.UVW sm''w\a'* /3^7

o'/3' sino) is constant, so must a" + /3''.

THE EQUATION REFERRED TO THE AXES.

160. We saw that the equation referred to the axes was of

the form
Ax^-vBy^^C,

B being positive in the case of the ellipse, and negative in that

of the hyperbola (Art. 138, Ex. 3). We have replaced the

small letters by capitals because we are about to use the letters

a and h with a different meaning.
The equation of the ellipse may be written in the following

more convenient form :
—

Let the intercepts made by the ellipse on the axes be a; = a,

y= &, then making 3/
= and ic = a in the equation of the curve,

G Gwe have Ad' =
(7, and ^ = -^ . In like manner B^ =t,. Sub-

Btituting these values, the equation of the ellipse may be written

a^
^

V"
^•

Since we may choose whichever axis we please for the axis

of
a;,
we shall suppose that we have chosen the axes so that a

may be greater than h.
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The equation of the hyperbola, which, we saw, only diiFera

from that of the ellipse in the sign of the coefficient of y^^ may
be written in the corresponding form

a^ ¥
~

The intercept on the axis of x is evidently = ± a, but that on

the axis of ^, being found from the equation y^=.-y^ is imaginary;
the axis of y, therefore, does not meet the curve in real points.

Since we have chosen for our axis of x the axis which meets

the curve in real points, we are not in this case entitled to as-

sume that a is greater than 6.

161. To find the polar equation of the ellipse^ the centre "being

the pole.

Write p cos 6 for
a?,

and p sin 6 for y ,
in the preceding equa-

tion, and we get l_cos''^ sin'^

an equation which we may write in any of the equivalent forms,

a^h' _ a'h' _ a^h'

^ "
a^^m'd + V cos'(9

~
l)' + [d'^ h') sin^(9

~
d'-[d''¥) co^'O

'

It is customary to use the following abbreviations :

2 T2
2 72 2 ^ ^

2a —0 :=c : 5— =e :

a '

and the quantity e is called the eccentricity of the curve.

Dividing by a^ the numerator and denominator of the fraction

last found, we obtain the form most commonly used, viz.,

^ ~l-e'^cos'^6''

162. To investigate the figure of the ellipse.

The least value that W^-{a^ — l>^) sin'"^^,
the denominator in

the value of p^^ can have, is when ^ =
;
therefore the greatest

value of p is the intercept on the axis of
a?,

and is = a.

Again, the greatest value of h^ -^ {d^
—
F) m\'6^ is, when

ein^=l, or ^ = 90°; hence the least value of p is the intercept

on the axis of y, and is = h. The greatest line, therefore, that

can be drawn through the centre is the axis of
a?,

and the least

line, the axis of y. From this property these lines are called

the axis major and the axis minor of the curve.
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It is plain that the smaller 6
is,

the greater p will be
; hence,

the nearer any diameter is to the axis

major, the greater it will be. The
form of the curve will, therefore, be

that here represented.

We obtain the same value of p
whether we suppose 6 = a, or d=—a.

Hence, Two diameters which make

equal ojngles with the axis will he equal. And it is easy to show

that the converse of this theorem is also true.

This property enables us, being given the centre of a conic,

to determine its axes geometrically. For, describe any concen-

tric circle intersecting the conic, then the semidiameters drawn

to the points of intersection will be equal ;
and by the theorem

just proved, the axes of the conic will be the lines internally

and externally bisecting the angle between them.

163. The equation of the ellipse can be put into another

form, which will make the figure of the curve still more ap-

parent. If we solve for y we get

y=- ^^{d'-x^).a

Now, if we describe a concentric circle with the radius a, its

equation will be ^ = ^(^a'
-

x').

Hence we derive the following construction :

"
Describe a circle on the axis major, and take on each ordinate,

LQ a 'point P, such that LP may be to

LQ in the constant ratio b : a, then the

locus ofP will be the required ellipse.''''

Hence the circle described on the

axis major lies wholly without the curve.

We might, in like manner, construct the

ellipse, by describing a circle on the axis

minor, and increasing each ordinate in

the constant ratio a : b.

Hence the circle described on the axis minor lies wholly
within the curve.

The equation of the circle is the particular form which the

equation of the ellipse assumes when we suppose Z> = a.
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164. To find the polar equation of the hyperbola.

Transforming to polar co-ordinates, as in Art. 161, we get

, _ d'y" _ . a'b' a:'b'

^ ~
V' cos's - a' sm'd

"
h' - (a' + W) sm'O

~
\d' + W) coi'B- d'

'

Since formulsB concerning the ellipse are altered to the corre-

sponding formulae for the hyperbola by changing the sign of ¥,
we must, in this case, use the abbreviation c^ for a^ -f b'j and

e'*^ for—J— )
tli6 quantity e being called the eccentricity of the

a

hyperbola. Dividing then by d^ the numerator and denominator

of the last found fraction, we obtain the polar equation of the

hyperbola, which only differs from that of the ellipse in the sign

of
Z^'^, viz., ,_ b'

P "e''cos^6'-r

165. To investigate the figure of the hyperbola.

The terms axis major and axis minor not being applicable to

the hyperbola (Art. 160), we shall call the axis of x the trans-

verse axis, and the axis of y the conjugate axis.

Now ¥ — {d^-\- ¥) sm^dj the denominator in the value of p',

will plainly be greatest when ^ = 0, therefore, in the same case,

p will be least
;
or the transverse axis is the shortest line which

can he drawnfrom the centre to the curve.

As 6 increases, p continually increases, until

when the denominator of the value of p becomes = 0, and p be-

comes infinite. After this value of ^, p^ becomes negative, and

the diameters cease to meet the curve in real points until again

sin^= -77-2
—

Tax, (or tan^ = ),
V(a' + &

)

'

V ay
'

when p again becomes infinite. It then decreases regularly as

6 increases, until 6 becomes = 180°, when it again receives its

minimum value = a.

The form of the hyperbola, therefore, is that represented by
the dark curve on the figure, next page.

166. We found that the axis of y does not meet the hyper-
bola in real points, since we obtained the equation y'

— — b^ to
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determine its point of intersection with the curve. We shall, how-

ever, still mark off ,

on the axis of y por- ^^^s^^^^ ; -j:::^^
tions GB, CB'=±b, ^^^^^^^^^ k "j::^^^^^^^^^
and we shall find

---^^-.-TTl^r^^j^rrril™-^..--
that the length GB J^^!!^'-<^^^--^^
has an important vu^a^^^^^^^ j "~^^^^^^55;5^^

connexion with the ^"^^

curve, and may be conveniently called an axis of the curve.

In like manner, if we obtained an equation to determine the

length of any other diameter, of the form p^
= — E\ although

this ^diameter cannot meet the curve, yet if we measure on it

from the centre lengths
= + i^, these lines may be conveniently

spoken of as diameters of the hyperbola.

The locus of the extremities of these diameters which do not

meet the curve is, by changing the sign of p^ in the equation of

the curve, at once found to be

_1 _ sin'^^ cos'^^

or fr^ 2
= 1-

b a

This is the equation of a hyperbola having the axis of y for

the axis meeting it in real points, and the axis of x for the axis

meeting it in imaginary points. It is represented by the dotted

curve on the figure, and is called the hyperbola conjugate to the

given hyperbola.

167. We proved (Art. 165) that the diameters answering to

tan^ = ± - meet the curve at infinity; they are, therefore, the

same as the lines called, in Art. 154, the asymptotes of the curve.

They are the lines CK^ GL on the figure, and evidently separate

those diameters which meet the curve in real points from those

which meet it in imaginary points. It is evident also, that two

conjugate hyperbolae have the same asymptotes.

The expression tan^ = + - enables us, being given the axes

in magnitude and position, to find the asymptotes, for, if we form

a rectangle by drawing parallels to the axes through B and A^
then the asymptote GK must be the diagonal of this rectangle.
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Again, ^ a I

V(«+&) e

But, since the asymptotes make equal angles with the axis of
a?,

the angle which they make with each other must be =20,

Hence, being given the eccentricity of a hyperhola^ we are given
the angle between the asymptotes^ which is double the angle whose

secant is the eccentricity.

Ex. To find the eccentricity of a conic given by the general equation.

"We can (Art. 74) write down the tangent of the angle between the lines

denoted by ax* + 2hxy + hy^
= 0, and thence form the expression for the

secant of its half; or we may proceed by the help of Art. 157, Ex. 3.

Wehave _=__,_ =__,
where i2« = 4A« + (a

- bf = 4A« - 4a6 + (a + by.

Hence ^»
" i = —

»
—r- =

1
—5 •

CONJUGATE DIAMETERS.

168. We now proceed to investigate some of the properties

of the ellipse and hyperbola. We shall find it convenient to

consider both curves together, for, since their equations only
differ in the sign of 5", they have many properties in common
which can be proved at the same time, by considering the sign

of P as indeterminate. We shall, in the following Articles, use

the signs which apply to the ellipse. The reader may then

obtain the corresponding formulae for the hyperbola by changing
the sign of ¥. 2 2

We shall first apply to the particular form —2-1-^=1) some

of the results already obtained for the general equation. Thus

(Art. 86) the equation of the tangent at any point x'y' being

got by writing x'x and yy for x^ and y^^ is

d'
*"

y'
~ ^'

The proof given in general may be repeated for this particular

case. The equation of the chord joining any two points on

the curve is

{X^X'){X^X") {y^y')[y^y") ^x^.y^^.
a'

"^
b^ ~~d''^V' '

{^x^-ai')x {y' + y") y _ x'x ,yY,.,or
^^

-f.
_ _ „ ^.

^^
_,- 1

,
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which, when
£c', y =

ic", y'\ becomes the equation of the tangent

already written.

The argument here used applies whether the axes be rect-

angular or oblique. Now if the axes be a pair of conjugate

diameters, the coefficient of xy vanishes (Art. 143) ;
the coefficients

of X and y vanish, since the origin is the centre
;
and if a and V

be the lengths of the intercepts on the axes, it is proved exactly,

as in Art. 160, that the equation of the curve may be written

And it follows from this article, that in the same case the equa-

tion of the tangent is

a'^
-1-

y^
i»

169. The equation of the polar, or line joining the points

of contact of tangents, from any point xy\ is similar in form to

the equation of the tangent (Arts. 88, 89), and is therefore

XX yy' , XX yii

the axes of co-ordinates in the latter case being any pair of

conjugate diameters
;
in the former case, the axes of the curve.

XX
In particular, the polar of any point on the axis of cc is -75-

= 1.

Hence the polar of any point P is found by drawing a diameter

through the point, taking (7P.GF — to the square of the semi-

diameter, and then drawing through F a parallel to the con-

jugate diameter. This includes, as a particular case, the theorem

proved already (Art. 145), viz.. The tangent at the extremity of

any diameter is parallel to the conjugate diameter.

Ex. 1. To find the condition that \x + fi.y
= 1 may touch — + ^

= 1.

xx' w
Comparing t + ^ = 1> Xx + fiy

=
I, we find x' = Xa^ y'

= \b*, and

Ex. 2. To find the equation of the pair of tangents from x'y to the

curve (see Art. 92).

^-e^i:-)(^^->)=(^^f-j-
Ex. 3. To find the angle between the pair of tangents from x'y' to

the curve.
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"When an equation of the second degree represents two right lines, the

three highest terms being put = 0, denote two lines through the origin

parallel to the two former
; hence, the angle included by the first pair of

right lines depends solely on the three highest terms of the general equation.

Arranging, then, the equation found in the last Example, we find, by Art. 74,

Ex. 4. Find the locus of a point, the tangents through which intersect

at right angles.

Equating to the denominator in the value of tan0, we find a:*+ y*= a*+6*,

the equation of a circle concentric with the ellipse. The locus of the inter-

section of tangents which cut at a given angle is, in general, a curve of the

fourth degree.

170. To find the equation^ referred to the axes^ of the diameter

conjugate to that parsing through any point xy on the curve.

The line required passes through the origin, and (Art. 169) is

parallel to the tangent at ocy ;
its equation is therefore

a'
^

h'
~^'

Let 6^ 6' be the angles made with the axis of x by tbe original

y'
diameter and its conjugate; then plainly tan^= —

, ;
and from

^
,

h'^x
the equation of the conjugate we have (Art. 21) tan^' = —, .

Hence tan 6 tan 6'=—^ >
^.s might also be inferred from Art. 143.

The corresponding relation for the hyperbola (see Art. 168) is

^, ^'
tan 6 tan 6 = —,,

a

171. Since, in the ellipse, tan0 tan^' is negative, if one of

the angles ^, 6\ be acute (and, therefore, its tangent positive),

the other must be obtuse (and, therefore, its tangent negative).

Hence, conjugate diameters in the ellipse lie on different sides of
the axis minor (which answers to ^ = 90°).

In the hyperbola, on the contrary, tan ^ tan ^' is positive,

therefore, 6 and 6' must be either both acute or both obtuse.

Hence, in the hyperhola^ conjugate diameters lie on the same side

of the conjugate axis.
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In the hyperbola, if tan 6 be less, tan 6' must be greater than

-
,
but (Art. 167) the diameter answering to the angle whose

tangent is -
,
is the asymptote, which (by the same Article) sepa-

rates those diameters which meet the curve from those which do

not intersect it. Hence, if one of two conjugate diameters meet

a hyperbola in real points^ the other will not. Hence also it may
be seen that each asymptote is its own conjugate.

172. To find the co-ordinates x"y" of the extremity of the

diameter conjugate to that passing through x'y'.

These co-ordinates are obviously found by solving for x and

y between the equation of the conjHigate diameter, and that of

the curve, viz.,

d'
'^

h'
~

'
d'

"^
h'
~ •

Substituting in the second the values of x and y^ found from the

first equation, and remembering that x\ y' satisfy the equation
of the curve, we find without difficulty

X y y _^x
a b

^
b a

173. To express the lengths of a diameter (a'), and its confun

gate (Z>'),
in terms of the abscissa of the extremity of the diameter,

(1) We have
a"' = x"-\-y'\

But y.= ^^(«'^_^.).a

Hence a" = b' + "^^ x" = b' + e'x'\
a

(2) Again, we have

V'-x--Vy"^^^^y^+l,x'\

or ^[a'^x")-^^^,x"ia ^

hence ¥'^a^-e'x'\

From these values we have

a"-^rb"=^d' + V'',

or, The sum of the squares of any pair of conjugate diameters of
an ellipse is constant (see Ex. 3, Art. 159).
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174. In the hyperbola we must change the signs of h^ and

h'\ and we get ^'2 _ y^ ^ ^2 _ y.^

or, The difference of the squares of any pair of conjugate diameters

of a hyperbola is constant.

If in the hyperbola we have a = &, its equation becomes
2 n 2X -y =a,

and it is called an equilateral hyperbola.
The theorem just proved shows that every diameter of an

equilateral hyperbola is equal to its conjugate.

The asymptotes of the equilateral hyperbola being given by
the equation ^^^ -y^^Q
are at right angles to each other. Hence this hyperbola is often

called a rectangular hyperbola.
The condition that the general equation of the second degree

should represent an equilateral hyperbola is a=— 5
;
for (Art. 74)

this is the condition that the asymptotes (ao;^ + ^hxy + by^^

should be at right angles to each other
;
but if the hyperbola be

rectangular it must be equilateral.^ since (Art. 167) the tangent

of half the angle between the asymptotes = -
; therefore, if

this angle = 45°, we have J = «.

175. To find the length of the perpendicular from the, centre

on the tangent.

The length of the perpendicular from the origin on the line

x^ yy[ _.
d'

'^
b""

~

is (Art. 23) 1 ah

but we proved (Art. 173) that

'^ ~
^2 i" za 7

hence - V^-y
ab

176. To find the angle between any pair of conjugate dia-

meters.
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The angle between the diameters is equal to the angle be-

tween either, and the tangent parallel to
^, \^

the other. Now

Hence smS (or FCF) = -^, .^ ^ ^ ah

The equation ah' mi(f>
— ah proves, that the triangle formed

hy joining the extremities of conjugate diameters of an ellipse or

hyperhola has a constant area (see Art. 159, Ex. 2).

177. The sum of the squares of any two conjugate diameters

of an ellipse being constant, their rectangle is a maximum when

they are equal; and, therefore, in this case, sin<jb is a minimum;
hence the acute ^ngle between the two equal conjugate dia-

meters is less (and, consequently, the obtuse angle greater) than

the angle between any other pair of conjugate diameters.

The length of the equal conjugate diameters is found by
making a=h' m the equation a'^ -1- K^ = d^ + y\ whence d^ is half

the sum of a^ and V\ and in this case

. ^ 2ah

The angle which either of the equiconjugate diameters makes

with the axis of x is found from the equation

h""

tan 6 tan 6' = — —^.

by making tan ^ = — tan ^', for any two equal diameters make

equal angles with the axis of x on opposite sides of it (Art. 162).

Hence
7,

tan(9=-.
a

It follows, therefore, from Art. 167, that if an ellipse and hyper^

bola have the same axes in magnitude and position, then the

asymptotes of the hyperbola will coincide with the equiconjugate

diameters of the ellipse.

The general equation of an ellipse, referred to two conjugate

diameters (Art. 168), becomes x^ -\-y^
=

d^\ when d=^h'. We
see, therefore, that, by taking the equiconjugate diameters for

axes, the equation of any ellipse may be put into the same form
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as the equation of the circle, x^ +y^ = r^^ but that in the case of

the ellipse the angle between these axes will be ohlique,

178. To express the perpendicular from the centre on the tan-

gent in terms of the angles which it makes with the axes.

If we proceed to throw the equation of the tangent

(XX
vu \—+^ = 1

j
into the form a?cosa-f ^ sina = p (Art. 23),

we find immediately, by comparing these equations,

x' _ cos a y' sin a

Substituting in the equation of the curve the values of x\ y\
hence obtained, we find

y = c^ cos'''a + V^ sin' a.*

The equation of the tangent may, therefore, be written

X cosa -f y sin a - sj{a^ Q,oi^(j. + V^ sin'' a)
= 0.

Hence, by Art. 34, the perpendicular from any point (ajy') on

the tangent is

sliix^ cos'^a + y^ sin*'' a)
— x cosa — y' sin a,

where we have written the formula so that the perpendiculars
shall be positive when xy' is on the same side of the tangent
as the centre.

Ex. To find the locus of the intersection of tangents which cut at right

angles.

Let^, j9'
be the perpendiculars on those tangents, then

^' = a' cos*a + 6* sin*a, p'^
- a* sin* a + 6* cos*a, p^ + /)'*

= a* + &«.

But the square of the distance from the centre of the intersection of two

lines, which cut at right angles, is equal to the sum of the squares of its

distances from the lines themselves. The distance, therefore, is constant,

and the required locus is a circle (see p. 157, Ex. 4).

179. The chords which join the extremities of any diameter

to any point on the curve are called supplemental chords.

Diameters parallel to any pair of supplemental chords are

conjugate.

For if we consider the triangle formed by joining the extre-

mities of any diameter AB to any point on the curve D
; since,

* In like manner, p^ = a'* cos*a + 6'* cos*/3, a and y3 being the angles the

perpendicular makes with any pair of conjugate diameters.

M
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by elementary geometry, the line joining the middle points of

two sides must be parallel to the third, the diameter bisecting

AD will be parallel to BD^ and the diameter bisecting BD will

be parallel to AD. The same thing may be proved analytically,

by forming the equations of AD and BD^ and showing that the

product of the tangents of the angles made by these lines with

^x.
• ' ^'

the axis is = :, .

a

This property enables us to draw geometrically a pair of con-

jugate diameters making any angle with each other. For if we
describe on any diameter a segment of a circle containing the

given angle, and join th,e points where it meets the curve to the

extremities of the assumed diameter, we obtain a pair of supple-

mental chords inclined at the given angle, the diameters parallel

to which will be conjugate to each other.

Ex. 1. Tangents at the extremities of any diameter are parallel.

Their equations are ^^ yy>

This also follows from the first theorem of Art. 146, and from considering

that the centre is the pole of the line at infinity (Art. 154).

Ex. 2. If any variable tangent to a central conic section meet two fixed

parallel tangents, it will intercept portions on them, whose rectangle is con-

stant, and equal to the square of the semi-diameter parallel to them.

Let us take for axes the diameter parallel to the tangents and its conju-

gate, then the equations of the curve and of the variable tangent will be

a''
+

l'»
»

a'*
^

6'«

•

The intercepts on the fixed tangents are found by making x alternately
= ± o' in the latter equation, and we get

and, therefore, their product is

6'*

which, substituting for y'* from the equation of the curve, reduces to J".

Ex. 3. The same construction remaining, the rectangle under the

segments of the variable tangent is equal to the square of the semi-diameter

parallel to it.

For, the intercept on either of the parallel tangents is to the adjacent

segment of the variable tangent as the parallel semi-diameters (Art. 149) ;

therefore, the rectangle under the intercepts of the fixed tangents is to the

rectangle under the segments of the variable tangent as the squares of
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these semi- diameters; and, since the first rectangle is equal to the square
of the semi-diameter parallel to it, the second rectangle must be equal to

the square of the semi-diameter parallel to it.

Ex. 4. If any tangent meet any two conjugate diameters, the rectangle
under its segments is equal to the square of the parallel semi-diameter.

Take for axes the semi-diameter parallel to the tangent and its conjugate ;

then the equations of any two conjugate diameters being (Art. 170)

the intercepts made by them on the tangent are found, by making « = a', to be

y = ~a\ and y = - -
-, ,"^ X ''

a' y'

whose rectangle is evidently = V*,

We might, in like manner, have given a purely algebraical proof of Ex. 3.

Hence, also, if the centre be joined to the points where two parallel tan-

gents meet any tangent, the joining lines will be conjugate diameters.

Ex. 5. Given, in magnitude and position, two conjugate semi-diameters,

Oa, 0&, of a centml conic, to determine the axes.

The following construction is founded on the theorem proved in the last

Example :
—Through a, the extremity of either dia-

meter, draw a parallel to the other; it must of

course be a tangent to the curve. Now, on Oa take

a point P, such that the rectangle Oa.aP== Oh^ (on

the side remote from O for the ellipse, on the same

side for the hyperbola), and describe a circle through

O, P, having its centre on aC, then the lines OAj
OB, are the axes of the curve; for, since the rect-

angle Aa.aB = Oa.aP = Oh^, the lines OA, OB are conjugate diameters,

and since AB is a diameter of the circle, the angle AOB is right.

Ex. 6. Given any two semi-diameters, if from the extremity of each an

ordinate be drawn to the other, the triangles so formed will be equal in area.

Ex. 7. Or if tangents be drawn at the extremity of each, the triangles

so formed will be equal in area.

THE NORMAL.

180. A line drawn through any point of a curve perpen^

dicular to the tangent at that point is called the Normal,

Forming, by Art. 32, the equation of a line drawn through

{x'y) perpendicular to
[
^ +^ = 1

j ,
we find for the equation

of the normal to a conic

X . ,^ y ,

m2
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or —r T^c""^X y

c* being used, as in Art. 161, to denote a^ — I)\

Hence we can find the portion CN intercepted by the normal

on either axis
; for, making y = in the

equation just given, we find

a; = —
a ^a

We can thus draw a normal to

an ellipse from any point on the axis,

for given CN we can find x\ the abscissa of the point through

which the normal is drawn.

The circle may be considered as an ellipse whose eccentricity

=
0, since c^ — c^ — V^ = 0. The intercept (7i^, therefore, is con-

stantly
= in the case of the circle, or every normal to a circle

passes through its centre,

181. The portion MN intercepted on the axis between the

normal and ordinate is called the SuhnormaL Its length is, by
the last Article, ^2 y^

X ^~
o X -^

Ti X m

a^ a'

The normal, therefore, cuts the abscissa into parts which are in

a constant ratio.

If a tangent drawn at the point P cut the axis in T^ the in-

tercept MT is,
in like manner, called the Subtangent,

2

Since the whole length CT= —
, (Art. 169), the subtangentX

— X —
X X

The length of the normal can also be easily found. For

PN' = PM' + NM^' = y" 4- ~, a^' =
^[ (^ f' + ^ x"^

.

But if y be the semi-diameter conjugate to CP, the quantity
within the parentheses =h'^ (Art. 173). Hence the length of the

normal PN= — .

a
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If the normal be produced to meet the axis minor, It can be

proved, in like manner, that its length = -7- . Hence, the rect'

angle under the segments of the normal is equal to the square of
the conjugate semi-diameter.

Again, we found (Art. 175) that the perpendicular from the

centre on the tangent =
jy

. Hence, the rectangle under the

normal and the perpendicular from the centre on the tangent^ is

constant and equal to the square of the semi-axis minor.

Thus, too, we can express the normal in terms of the angles

it makes with the axis, for

PN-l-—^^—— rArt 178V - ^(^^^')
-^^^^

p~ ^|{a' cos'-'a + 6^ sin^a)
^ ^'

^ '
""

\/(l
- e' sin'a)

*

Ex. 1. To draw a normal to an ellipse or hyperbola passing through a

given point.

The equation of the normal, a^xy'
- &Vy = cVy', expresses a relation

between the co-ordinates x't/ of any point on the curve, and xt/ the co-

ordinates of any point on the normal at x'j/'. We express that the point
on the normal is known, and the point on the curve sought, by removing
the accents from the co-ordinates of the latter point, and accentuating those

of the former. Thus we find that the points on the curve, whose normals

will pass through {x'y') are the points of intersection of the given curve with

the hyperbola c'ary
= aVy - b^x.

Ex. 2. If through a given point on a conic any two lines at right angles

to each other be drawn to meet the curve, the line joining their extremities

will pass through a fixed point on the normal.

Let us take for axes the tangent and normal at the given point, then the

equation of the curve must be of the form

ax* + 2hxt/ + by* + 2fy =

(for c = 0, because the origin is on the curve, and ^ --
(Art. 144), because

the tangent is supposed to be the axis of x, whose equation ia y =
0.)

Now, let the equation of any two lines through the origin be

x^ + 2pxy + qy^
= 0.

Multiply this equation by a, and subtract it from that of the curve, and we

get 2 (A
- ap)xy + {b

-
aq)y* + 2fy = 0.

This (Art. 40) is the equation of a figure passing through the points of

intersection of the lines and conic
;
but it may evidently be resolved into

y = (the equation of the tangent at the given point), and

2{h-ap)x-\-iJ)- aq) y + 2/= 0,
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which must be the equation of the chord joining the extremities of the

given lines.

2/"The point where this chord meets the normal (the axis of
t/)

is y =
;

but if the lines are at right angles q = - 1 (Art. 74), and the intercept on

the normal has the constant length

a +0

If the curve be an equilateral hyperbola, a + 6 = 0, and the line in

question is constantly parallel to the normal. Thus then, if through any

point on an equilateral hyperbola be drawn two chords at right angles, the

perpendicular let fall on the line joining their extremities is the tangent to

the curve.

Ex. 3. To find the co-ordinates of the intersection of the tangents at

the points x'y', x"y".

The co-ordinates of the intersection of the lines

a a o

«*(«/' -2/") h^x'-x")

yx -y'x xy -yx

Ex. 4. To find the co-ordinates of the intersection of the normals at the

points x'y'j x"y".

{a^-h^)x'x'X {h^-a^)yYYAns. X -^ , y

where -X", Y are the co-ordinates of the intersection of tangents, found in

the last Example.

The values of X and Y may be written in other forms, since by com-

bining the equations

we get the results,

xy -
y'^x"*

= ¥ (a;"
-

x"*)
= -

a\y'*
-

y'").

Hence X^^^l^', yjy"^y'x"^
y" + y' x' \ xf'

We can also prove

• This theorem will be equally true if the lines be drawn so as to make
with the normal angles, the product of whose tangents is constant, for, in

If
this case, a is constant : and, therefore, the intercept —^—

;- is constant.*
aq ~o
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182. If on the axis major of an ellipse we take two points

equidistant from the centre, whose com- T'/

mon distance

= ±\/(a'-J'Oj or =±c,
these points are called the foci of the

curve.

The foci of a hyperbola are two points on the transverse

axis, at a distance from the centre still —±c^c being in the

hyperbola =V(«' + J').

To express the distance of any point on an ellipse from the

focus.

Since the co-ordinates of one focus are
(a;
= + c, y = 0), the

square of the distance of any point from it

=
[x'
-
cf + y" = x'^' + y" ^ 2cx' + c\

But (Art. 173)

aj'^ + y'^
= V' + e'x'\ and h' + c'^ = a\

Hence i^P' = a'-2ca;' + eV=';

and recollecting that c = ae, we have

FP^a-ex\

[We reject the value [ex'
—

a) obtained by giving the other

sign to the square root. For, since x is less than a, and e less

than ]
,
the quantity ex — a is constantly negative, and, there-

fore, does not concern us, as we are now considering, not the

direction, but the absolute magnitude of the radius vector FP,'\

We have, similarly, the distance from the other focus

since we have only to write — c for + c in the preceding formulas.

Hence FP-^F'P=2a^

or. The sum of the distances of any point on an ellipse from the

foci is constant*and equal to the axis major,

183. In applying the preceding proposition to the hyperbola,

we obtain the same value for FP'^] but in extracting the square

root we must change the sign in the value of FP^ for in the

hyperbola a?' is greater than a, and e is greater than 1.
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Hence, a — ex is constantly negative ;
the absolute magni-

tude, therefore, of the radius vector is

FF=ex'-a,

In like manner, F'F= ex' -f a.

Hence F'P-FP^2a.

Therefore, in the Jiyperhola^ the difference of the focal radii is

constant^ and equal to the transverse axis.

The rectangle under the focal radii =±(a^ — 6\c^), that is

(Art. 173)
= h'\

184. The reader may prove the converse of the above results

by seeking the locus of the vertex of a triangle, if the base and

either sum or difference of sides be given.

Taking the middle point of the base (-2c) for origin, the

equation is

^[f + (c + xY] ± ^{f + (c
-
xY] = 2a,

which, when cleared of radicals, becomes

a a - c

Now, if the sum of the sides be given, since the sum must

always be greater than the base, a is greater than
c, therefore

the coefficient of ?/^ is positive, and the locus an ellipse.

If the difference be given, a is less than
c,

the coefficient of y^

is negative, and the locus a hyperbola.

1 85. By the help of the preceding theorems, we can describe

an ellipse or hyperbola mechanically.
If the extremities of a thread be fastened at two fixed points

F and F, it is plain that a pencil moved about so as to keep the

thread always stretched will describe an ellipse whose foci are F
and Fj and whose axis major is equal to the length of the thread.

In order to describe a hyperbola, let a ruler be fastened at

one extremity (i^), and capable of moving
round it,

then if a thread, fastened to a

fixed point F\ and also to a fixed point on

the ruler (i^), be kept stretched by a ring

at P, as the ruler is moved round, the point
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P will describe a hyperbola ; for, since the sum of F'P and PR
is constant, the difference of FP and F'P will be constant.

186. The polar of either focus is called the directrix of the

conic section. The directrix must, therefore

(Art. 169), be a line perpendicular to the axis
2

major at a distance from the centre =± — .

Knowing the distance of the directrix from

the centre, we can find its distance from any

point on the curve. It must be equal to

a'
,

a . /N
1

/ n
ic, or =- (a — ea? ) =-(a — ea? ).

c c e
'

But the distance of any point on the curve from the focus

= « — ex. Hence we obtain the important property, that the

distance ofany point on the curve from the focus is in a constant

ratio to its distancefrom the directrix^ viz., as e to 1.

Conversely, a conic section may be defined as the locus of a

point whose distance from a fixed point (the focus) is in a con-

stant ratio to its distance from a fixed line (the directrix). On
this definition several writers have based the theory of conic

sections. Taking the fixed line for the axis of
ic,

the equation
of the locus is at once written down

{x-xr + {2l-y'f = eY,

which it is easy to see will represent an ellipse, hyperbola, or pa-

rabola, according as e is less, greater than, or equal to 1.

Ex. If a curve be such that the distance of any point of it from a fixed

point can be expressed as a rational function of the first degree of its co-

ordinates, then the curve must be a conic section, and the fixed point its

focus (see O'Brien's Co-ordinate Geometry, p. 85).

For, if the distance can be expressed

p = Ax + £i/ + C,

since Ax + Bi/ + C is proportional to the perpendicular let fall on the right
line whose equation is {Ax + Bi/ -\- C =

0), the equation signifies that the dis-

tance of any point of the curve from the fixed point is in a constant ratio to

its distance from this line.

187. To find the length of the perpendic^ular from the focus on

the tangent.



170 THE FOCI.

The length of the perpendicular from the focus (+ c, 0) on

the line (^ +^ =
l)

is, by Art. 34,

ex
1 2*a

but, Art. 175, y(-,
+y = -.

Hence FT^
| (a

-
e:^)

=
|,

i^P.

Likewise, F'T =
t. (« + ^^')

=
t, F'P.

Hence i^T.i^' T' = 5^ (since d' - eV =
J^^),

or, Tlie rectangle under the focal jperpendiculars on the tangent is

constant^ and equal to the square of the semi-axis minor.

This property applies equally to the ellipse and the hyperbola.

188. Thefocal radii make equal angles with the tangent.

For we had FT^
^ FP, or^ =

|,
;

but ^=sinZPr.
Hence the sine of the angle which the focal radius vector FP

makes with the tangent = t, , But we find, in like manner,

the same value for sinjP'PJ", the sine of the angle which the

other focal radius vector F'P makes with the tangent.
The theorem of this article is true both for the ellipse and

hyperbola, and, on looking at the

figures, it is evident that the tangent
to the ellipse is the external bisector

of the angle between the focal radii,

and the tangent to the hyperbola the

internal bisector.

Hence, if an ellipse and hyperbola,

having the same foci, pass through the same point, they will cut

each other at right angles, that is to say, the tangent to the ellipse
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at that point will be at right angles to the tangent to the

hyperbola.

Ex. 1. Prove analytically that confocal conies cut at right angles.
The co-ordinates of the intersection of the conies

satisfy the relation obtained by subtracting the equations one from the other,

a'a"
"^ W'

~

But if the conies be confocal, a^-a'^ = h^-h'^^ and this relation becomes

But this is the condition (Art. 32) that the two tangents

f^ 2^' _ , ^' , 2/2/' _ 1

a" h*~ '

a'^ b"
~

'

should be perpendicular to each other.

Ex. 2. Find the length of a line drawn through the centre parallel to

either focal radius vector, and terminated by the tangent.
This length is found by dividing the perpendicular from the centre on

the tangent f—j by (-J,
the sine of the angle between the radius vector

and tangent, and is therefore = a.

Ex. 3. Verify that the normal, which is a bisector of the angle be-

tween the focal radii, divides the distance between the foci into parts
•which are proportional to the focal radii (Euc. VI. 3). The distance of the

foot of the normal from the centre is (Art. 180) = cV. Hence its distances

from the foci are c + e^xf and c - cV, quantities which are evidently e times

a + ex' and a - ex',

Ex. 4. To draw a normal to the ellipse from any point on the axis minor.

Ans, The circle through the given point, and the two foci, will meet the

curve at the point whence the normal is to be drawn.

189. Another important consequence may be deduced from

the theorem (of Art. 187), that the rectangle under the focal per-

pendiculars on the tangent is constant.

For, if we take any two tangents, we have (see figure next

page)

FT.F-r^Ft.F,,o.q=f^,.,
rprp

but -^ is the ratio of the sines of the parts into which the line

TT'f'

FP divides the angle at P, and ^77^ is the ratio of the sines of
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the parts into which F'P divides the same angle ;
we have, there-

fore, the angle TPF= t'PF,

If we conceive a conic section to pass

through P, having F and F' for foci, it

was proved in Art. 188, that the tangent

to it must be equally inclined to the lines

FP^ F'P) it follows, therefore, from

the present Article, that it must be also

equally inclined to PT, Pt
;
hence we learn that if through any

point (P) of a conic section we draw tangents (PP, Pt) to a con-

focal conic section^ these tangents will he equally inclined to the

tangent at P.

190. To find the locus of the foot of the perpendicular letfall

from either focus on the tangent.

The perpendicular from the focus is expressed in terms of

the angles it makes with the axis by putting ic' = c, y —^ in the

formula of Art. 178, viz.,

p= »J{a^ cos'''a + h^ sin'' a)
— x cos a - y' sin a.

Hence the polar equation of the locus is

p = fj{a^ cos'^'a + h^ sin'"' a)
- c cos a,

or p^ + 2cp cos OL-\-c^ cos'''a = d^ cos''' a + h"^ sin^ a,

or p^-{-2cp cosa= J^

This (Art. 95) is the polar equation of a circle whose centre

is on the axis of
a?,

at a distance from the focus = — c
;
the circle

is, therefore, concentric with the curve. The radius of the circle

is, by the same Article,
= a.

Hence, Ifwe describe a circle havingfor diameter the transverse

axis of an ellipse or hyperbola^ the perpendicular from the focus
will meet the tangent on the circumference of this circle.

Or, conversely, iffrom any point F (see figure, p. 167) we

draw a radius vector FT to a given circle^ and draw TP perpen-
dicula.r to FT^ the line TP will always touch a conic section having
Ffor itsfocus ^

which will be an ellipse or hyperbola^ according as

F is within or without the circle.

It may be inferred from Art. 188, Ex. 2, that the line CT,
whose length = a, is parallel to the focal radius vector F'P,
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191. To find the angle subtended at the focus hy the tangent
drawn to a central conicfrom any point [xy).

Let the point of contact be [x'y)^ the centre being the origin,

then, if the focal radii to the points [xy)^ {^'y)t ^e /o, p\ and make

angles ^, 6\ with the axis, it is evident that

^ x + c * A y ^, x' + c ' Qf y'coa6= , sin^=-: cos^ =—;— , sin^=-, .

P P P P

Hence cos {6
-

6')
= (^ -^ c) [x' + c) ±yy

PP

but from the equation of the tangent we must have

^ ^_
a'

^
h'

~

Substituting this value of yy'^ we get

PP cos [6
—

6')
— XX +cx-^ ex +c^—5 ^^' + ^S

or = e^xx' + CX + ex +d^ = {a + ex) {a -{ ex') ;

or since p'
= a + ex' we have, (see O'Brien's " Co-ordinate Geo-

metry,^. Ib^), ^^^^
cob(6 -0) = .

P

Since this value depends solely on the co-ordinates xy, and does

not involve the co-ordinates of the point of contact, either tan-

gent drawn from xy subtends the same angle at the focus.

Hence, The angle subtended at the focus by any chord is bisected

by the linejoining thefocus to its pole,

192. The linejoining the focus to the pole of any chordpass-

ing through it is perpendicular to that chord.

This may be deduced as a particular case of the last Article,

the angle subtended at the focus being in this case 180°
;
or di-

rectly as follows :
—The equation of the perpendicular through

any point x'y to the polar of that point ( —5- +^ = 1
J is,

as in

Art. 180, a^ __ % _ ,

^' ^'~'*

But if xly' be anywhere on the directrix, we have a?' = —
,
and

c

it will then be found that both the equation of the polar and that
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of the perpendicular are satisfied by the co-ordinates of the focus

(a;
=

c,3/==0).

When in any curve we use polar co-cordinates, the portion

intercepted by the tangent on a perpendicular to the radius vector

drawn through the pole is called the polar subtangent. Hence

the theorem of this Article may be stated thus : Thefocus heing

the pole^ the locus of the extremity of the polar subtangent is the

directrix.

It will be proved (Chap, xii.) that the theorems of this and

the last Article are true also for the parabola.

Ex. 1. The angle is constant which is subtended at the focus, by the por-

tion intercepted on a variable tangent between two fixed tangents.

By Art. 191, it is half the angle subtended by the chord of contact of the

fixed tangents.

Ex. 2. If any chord PP' cut the

directrix in D, then FD is the ex-

ternal bisector of the angle PFP'.

For FT is the internal bisector (Art.

191) ;
butD is the pole of FT (since

it is the intersection oi'PP', the polar

of Tf with the directrix, the polar of

F) ; therefore, DFis perpendicular to

FT, and is therefore the external bisector.

[The following theorems (communicated to me by the Rev. W. D. Sadleir)

are founded on the analogy between the equations of the polar and the

tangent]
Ex. 3. If a point be taken anywhere on a fixed perpendicular to the axis,

the perpendicular from it on its polar will pass through a fixed point on the

axis. For the intercept made by the perpendicular will (as in Art. 180) be

e^x'y and will therefore be constant when x' is constant.

Ex. 4. Find the lengths of the perpendicular from the centre and from

the foci on the polar of zy.

Ex. 5. Prove CM. PN' = V. This is analogous to the theorem that the

rectangle under the normal and the central per- p
pendicular on tangent is constant.

PN'. NN' = -
(a^

-
e^x'^).Ex. 6. Prove

When P is on the curve this equation gives

us the known expression for the normal =—
(Art. 181).

"

Ex.7. Prove FG.F'G' = C3f.NN'.

theorem becomes FG . F'G' --= b*.

When P is on the curve this
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193. Tofind the polar equation of the ellipse or hyperbola^ the

focus heing the pole.

The length of the focal radius vector (Art. 182)
= a — eic'

;

but x' (being measured from the centre)
= p cos 6 -{-c.

Hence p =a-^ep cos 6 — 6c,

o, ^ a{l-e') ^h'^
1

1+6 COS 6 a'l + e cos d
'

The double ordinate at the focus is called the parameter ; its

half is found by making 6 = 90° in the equation just given, to be
72

= -=a(l — e^). The parameter is commonly denoted by the

letter p. Hence the equation is often written

^p 1
^ 2'1+ecos^*

The parameter is also called the Latus Rectum,

Ex. 1. The harmonic mean between the segments of a focal chord is

constant, and equal to the semi-parameter.

For, if the radius vector FP, when produced backwards through the

focus, meet the curve again in P', then FP being ^ . , ;: , FP', which
- 2 1 + e COS0

answers to (6> + 180°), will = ^ .
=

.

2 1 - c COS0

XT 114
Hence •—

=: + -z=—. = - .FP FP' p
Ex. 2. The rectangle under the segments of a focal chord is to the

whole chord in a constant ratio.

This is merely another way of stating the result of the last Example ;

but it may be proved directly by calculating the quantities FP.FP',
FP + FP", which are easily seen to be, respectively

b* 1 26" 1

a*l-e* cos*6>
'
^^

a 1 - e^ cos'<9
'

Ex. 3. Any focal chord is a third proportional to the transverse axis and

the parallel diameter.

For it will be remembered that the length of a semi-diameter making
an angle 6 with the transverse axis is (Art. 160)

l-c«cos'6l'

Hence the length of the chord FP + FP' found in the last Example = .

d

Ex. 4. The sum of two focal chords drawn parallel to two conjugate

diameters is constant.
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For the sum of the squares of two conjugate diameters is constant

(Art. 173).

Ex. 5. The sum of the reciprocals of two focal chords at right angles

to each other is constant.

194. The equation of the ellipse, referred to the vertex, is

a
+ ^=1

Hence, in the ellipse, the square of the ordinate is less than the

rectangle under the parameter and abscissa.

The equation of the hyperbola is found in like manner,

y =:^x +—,X,

Hence, in the hyperbola, the square of the ordinate exceeds the

rectangle under the parameter and abscissa.

We shall show, in the next chapter, that in the parabola
these quantities are equal.

It was from this property that the names ^ara5o?«, hyperhola^

and ellipse^ were first given (see Pappus, Math, Coll.j Book vil.).

THE ASYMPTOTES.

195. We have hitherto discussed properties common to the

ellipse and the hyperbola. There
is, however, one class of pro-

perties of the hyperbola which have none corresponding to them

in the ellipse, those, namely, depending on the asymptotes,

which in the ellipse are imaginary.
We saw that the equation of the asymptotes was always

obtained by putting the highest powers of the variables = 0, the

centre being the origin. Thus the equation of the curve, re-

ferred to any pair of conjugate diameters, being

a'-' h"
"

'

that of the asymptotes is

a h
^ a b ^ a b
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Hence the asymptotes are parallel to the diagonals of the paral-

lelogram, whose adjacent sides are any pair of conjugate semi-

diameters. For, the equation of

v 1)CT is - = — , and must, therefore,X a ^ ' '

coincide with one asymptote, while

the equation oiAB (— + f; = l)

is parallel to the other (seeArt. 167).

Hence, given any two conjugate diameters, we can find the

asymptotes ; or, given the asymptotes, we can find the diameter

conjugate to any given one
;
for if we draw A parallel to one

asymptote, to meet the other, and produce it till OB=AOj we
find Bj the extremity of the conjugate diameter.

196. The portion of any tangent intercepted hy the asymptotes

is bisected at the curve^ and is equal to the conjugate diameter.

This appears at once from the last Article, where we have

proved A T= h' = AT'
] or, directly, taking for axes the diameter

through the point and its conjugate, the equation of the asymp-
totes is ^2 2

Hence, if we take x =
a', we have y = ±h''^ but the tangent at

A being parallel to the conjugate diameter, this value of the

ordinate is the intercept on the tangent.

> 197. If any line cut a hyperbola^ the portions DE^ FG^ in-

tercepted between the curve and its asymptotes^ are equal.

For, if we take for axes a

diameter parallel to DG and

its conjugate, it appears from

the last Article, that the por-

tion BG m bisected by the

diameter
;
so is also the portion

EF', hence BE^FG,
The lengths of these lines can immediately be found, for,

from the equation of the asymptotes [-n
- ^ =

^)i
we have

y{=BM=MG) = ±Kx.
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Again, from the equation of tlie curve

we have y[^EM^ FM) = ± J'

J[^,
- 1\

Hence i>^(= i.(?)
= J'

{|
-^g -

1)}
,

198. From these equations it at once follows, that the rect-

angle DE.DF IS constant^ and — V^. Hence, the greater DF'i^^
the smaller will DE be. Now, the further from the centre we
draw DF the greater will it be, and it is evident from the value

given in the last article, that by taking x sufficiently large, we
can make DF greater than any assigned quantity. Hence,
thefurther from the centre we draw any linCj the less will he the

intercept between the curve and its asymptote, and hy increasing

the distance from the centre, we can make this intercept less than

any assigned quantity,

199. If the asymptotes be taken for axes, the coefficients g
and f of the general equation vanish, since the origin is the

centre
;
and the coefficients a and h vanish since the axes meet

the curve at infinity (Art. 138, Ex. 4) : hence the equation re-

duces to the form ^^ _ y^^

The geometrical meaning of this equation evidently is,
that

the area of the parallelogramformed hy the co-ordinates is constant.

The equation being given in the form xy — U\ the equation
of any chord is (Art. 86),

{x- x) [y
-
y") =xy ^1^,

or xy + y"x = ^' -h xy".

Making x' = a;" and y'
=

y'\ we find the equation of the tangent,

x'y-\-y'x
=

2T^^
or (writing x'y' for F)

X y ^
-7 + 4 = 2.
x y

From this form it appears that the intercepts made on the

asymptotes by any tangent =2x and 2y )
their rectangle is

therefore, 4^^. Hence, the triangle which any tangentforms with
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the asymptotes has a constant area^ and is equal to double the area

of the jparalJelogram formed hy the co-ordinates,

Ex. ]. If two fixed points {x'y', x"y") on a hyperbola be joined to any
variable point on the curve [x"'y"'), the portion which the joining lines

intercept on either asymptote is constant.

The equation of one of the joining lines being

x"'y f y'x
=

y'x'" + ^',

the intercept made by it from the origin on the axis of x is found, by making

3/
= 0, to be x"'-\- x. Similarly the intercept from the origin made by the

other joining line is «'"+ x'\ and the difference between these two {x - x")

is independent of the position of the point x"'y"'.

Ex. 2. Find the co-ordinates of the intersection of the tangents ata^y, x"y".

Solve for x and y from

x'y + y'x = 2^', x"y + y"x = 2k*
^

A 'fl A 2k'{x'-x")and we find x = —r^, —^
,

^xy -yxT

which, if we substitute for y', y",

k* k* , 2x'x"—
,
— becomesXX a: + X

Similarly y = -^-^—
.

y ^y

200. To express the quantity W in terms of the Ungths of the

axes of the curve.

Since the axis bisects the angle between the asymptotes, the

co-ordinates of its vertex are found, by putting x^y in the

equation xy
—

1^^ to be x = y = k.

Hence, if 6 be the angle between the axis and the asymptote,

a = 2^cos^

(since a is the base of an isosceles triangle whose sides = h and

base angle = ^), but (Art. 165)

a (^

hence h —
2

And the equation of the curve, referred to its asymptotes, is

'a'-i-h'
xy = —^.

201. The perpendicular from the focus on the asymptote is

equal to the conjugate semi-axis h,

n2
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For it IS CF sin 0^ but GF= s/{a^ + h^\ and sin^ =
h

This might also have been deduced as a particular case of the

property, that the product of the perpendiculars from the foci

on any tangent is constant, and = 1)\ For the asymptote may be

considered as a tangent, whose point of contact is at an infinite

distance (Art. 154), and the perpendiculars from the foci on it

are evidently equal to each other.

202. The distance of the focus from any point on the curve is

equal to the length of a line drawn through the point parallel to an

asymptote to meet the directrix.

For the distance from the focus is e times the distance from

the directrix (Art. 186), and the distance from the directrix is to

the length of the parallel line as cos^
(

= -
,
Art. 165

J

is to 1.

Hence has been derived a method of describing the hyperbola

by continued motion. A ruler ABR^ bent

at jB, slides along the fixed line DD'
;

a

thread of a length =RB is fastened at the

two points R and F^ while a ring atP keeps
the thread always stretched; then as the

ruler is moved along, the point P will de-

scribe an hyperbola, of which i^ is a focus,

DD' a directrix, and BR parallel to an

asymptote, since PF must always = PB,

CHAPTER XIL

THE PARABOLA.

REDUCTION OF THE EQUATION.

203. The equation of the second degree (Art 137) will re-

present a parabola, when the first three terms form a perfect

square, or when the equation is of the form

[ajx + ^yy + '2gx-^2fy-\-c=^0.
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We saw (Art. 140) that we could not transform this equation
so as to make the coefficients of x and y both to vanish. The
form of the equation however, points at once to another method

of simplifying it. We know (Art. 34) that the quantities

OJK + ^y^ 2gx + 2fy + c, are respectively proportional to the

lengths of perpendiculars let fall from the point {xy) on the

right lines, whose equations are

ax + fy = 0, 2gx +2fy-^ c = 0.

Hence, the equatioh of the parabola asserts that the square of

the perpendicular from any point of the curve on the first of

these lines, is in a constant ratio to the perpendicular from the

same point on the second line. Now if we transform our equa-

tion, making these two lines the new axes of co-ordinates, then

since the new x and y are proportional to the perpendiculars
from any point on the new axes, the transformed equation must

be of the form y^ =j)x.

The new origm is evidently a point on the curve
;
and since

for every value of x we have two equal and opposite values of y,

our new axis of x will be a diameter whose ordinates are parallel

to the new axis o£ y. But the ordinate drawn at the extremity

of any diameter touches the curve (Art. 145) ;
therefore the new

axis of
?/r

is a tangent at the origin. Hence the line ax + fy is

the diameter passing through the origin, and 2gx + 2fy + c is

the tangent at the point where this diameter meets the curve.

And the equation of the curve referred to a diameter and

tangent at its extremity, as axes, is of the form y'' =px,

204. The new axes to which we were led in the last article,

are in general not rectangular. We shall now show that it is

possible to transform the equation to the form
y"^ =i?^j the new

axes being rectangular. If we introduce the arbitrary constant

Jcj
it is easy to verify that the equation of the parabola may be

written in the form

(ax + ffy -^ ky + 2 {g
-

aJc) x-h 2 {f- ^k) y -{ c- F ^0.

Hence, as in the last article, ax + fy + k is a diameter,

2 (g
-

aJc) X {- 2 (/- ^k) y + c — W is the tangent at its ex-

tremity, and if we take these lines as axes, the transformed
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equation is of the form y^ —px. Now the condition that these

new axes should be perpendicular is (Art. 25)

whence k =~—-^ .

Since we get a simple equation for h^ we see that there is one

diameter whose ordinates cut it perpendicularly, and this dia-

meter is called the axis of the curve.

205. We might also have reduced the equation to the form

y^ =px by direct transformation of co-ordinates. In Chap. xi.

we reduced the general equation by first transforming to parallel

axes through a new origin, and then turning round the axes so

as to make the coefiicient of xy vanish. We might equally

well have performed this transformation in the opposite order;

and in the case of the parabola this is more convenient, since

we cannot by transformation to a new origin, make the coeffi-

cients of x and y both vanish.

We take for our new axes the line a.x-\-Py^ and the line

perpendicular to it (Sx — ay. Then since the new X and Y are

to denote the lengths of perpendiculars from any point on the

new axes, we have (Art. 34)

ax + ^y ^ Px-ay
^-^(a' +^y ^-V(a^ + /3^)-

If for shortness we write a^ -\- jS^
= y\ the formulae of trans-

formation become

ryY=ax 4^?/, yX=0x -ay]
whence yx =aY-\- ^X, yy = y3 F- aX.

Making these substitutions in the equation of the curve, it becomes

y'Y' + 2 [g^ -fa) X+ 2 (^a +//3) F }- 70 = 0.

Thus, by turning round the axes, we have reduced the equation

to the form jy ^ y^ ^ ^fy + c' = 0.

If we change now to parallel axes through any new origin x'y' ;

substituting x + x\ y ^-y^ for x and y^ the equation becomes

I'y' + 2(7'ic + 2 (&y +/') y + Vy^' + Igx + 2/y + c' = 0.

The coefficient of x is thus unaltered by transformation, and

therefore cannot in this way be made to vanish. But we can
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evidently determine x and y\ so that the coefficients of y and

the absolute term may vanish, and the equation thus be reduced

to y^ —jpx. The actual values of the co-ordinates of the new

origm are^ "^ ""
a^ >

^
o >h' ' ^^^P is evidently

-
-fr ^

or m

terms of the original coefficients

(a'^ + ^f
When the equation of a parabola is reduced to the form y^ =^ic,
the quantity^ is called the parameter of the diameter which is

the axis of x
;
and if the axes be rectangular, p is called the

principalparameter (see Art. 194).

Ex. 1 . Find the principal parameter of the parabola

9a;« 4 24:xy + 16y« V22x + 46y + 9 = 0.

First, if we proceed as in Art. 204, we determine A; = 5. The equation

may then be written
(3^ + 4y + 5)^ = 2 (4ar

-
3y + 8).

Now if the distances of any point from 3j; + 4y + 5, and 4;c - 3y + 8 be F"

and X, we have 5F= 3a: + 4^/ + 5, 5X = 4x -
3y + 8,

and the equation may be written Y* = \X.
The process of Art. 205 is first to transform to the lines 3j; + 4y, 4a; - 3y

as axes, when the equation becomes

25F« + 50r- 10X + 9 = 0,

or 25(F-f 1)«=10X+16,

which becomes Y*- \X when transformed to parallel axes through (- f,
-

1).

Ex. 2. Find the parameter of the parabola

«' ah V a I
^_^,^j.^f

This value may also be deduced directly by the help of the following

theorem, which will be proved afterwards:—"The focus of a parabola is

the foot of a perpendicular let fall from the intersection of two tangents
which cut at right angles on their chord of contact ;" and " The parameter
of a conic is found by dividing four times the rectangle under the segments
of a focal chord, by the length of that chord" (Art. 193, Ex. 1).

Ex. 3. If a and h be the lengths of two tangents to a parabola which

intersect at right angles, and m one quarter of the parameter, prove
&. SL

«" b' 1

6' a" m"
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206. If in the original equation g^ =/a, the coefficient of x
vanishes in the equation transformed as in the last article

;
and

that equation h'y^ + 2f'y + c' = 0, being equivalent to one of the

form
V(y-X)(j,-^)=0,

represents two real, coincident, or imaginary lines parallel to the

new axis of x.

We can verify that in this case the general condition that

the equation should represent right lines is fulfilled. For this

condition may be written

c[ab-K') = af^2hfg-^hg\
But if we substitute for a, h^ 5, respectively, a^, ay5, yS^,

the left-

hand side of the equation vanishes, and the right-hand side

becomes {foL
—
g^y. Writing the condition /a = (7yS

in either

of the formsfa^= gaffJ fa^ = g^'\ we see that the general equa-

tion of the second degree represents two parallel right lines

when Ji^ = ah
J
and also either af= hg^ orfh = bg.

*207. If the original axes were oblique, the equation is still

reduced, as in Art. 205, by taking for our new axes the line

OLX + py^ and the line perpendicular to
it,

whose equation is

(Art. 26) (/?
- a coso)) ;zj

-
(a
-

/3 coso)) j/
= 0.

And if we write rf = oi^ + yS^
—

2ay3 cosw, the formulae of trans-

formation become, by Art. 34,

7 F= [oLX + Py) sin w, ^X= {^^ol cos©) a? — (a
—

/3 cos
&>) y ;

whence yx sin co = (a
—

/3 cos
co) Y+ ySX sin co

;

ryy sin» =
(/3
— a cos

co)
Y — aX sin co.

Making these substitutions, the equation becomes

7*r'' + 2 aiii" (o{gl3 -fa) X +2 sino) [g{a-^ cosm)

+/(/3
— a cos

ft))) F+ yc 8m^co = 0.

And the transformation to parallel axes proceeds as in Art. 205.

The principal parameter is

^_ V_ 2{fa-gl3)sm'co
^'

(a^ + /3'^-2ay3cosa))^

Ex. Find the principal parameter of

_ - —^ + V; ^ + 1=0. Atis.
a* ab b* a b / a ra n i \f

(a* + 6^ 2ab cosiv)^
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FIGURE OF THE CURVE.

208. From the equation y^ =px we can at once perceive the

figure of the curve. It must be symmetrical on both sides of the

axis of
ic,

since every value for x gives two

equal and opposite for y. None of it can

lie on the negative side of the origin, since

if we make x negative, y will be imagi-

nary, and as we give increasing positive

values to
a?,
we obtain increasing values for

y. Hence the figure of the curve is that

here represented.

Although the parabola resembles the hyperbola in having in-

finite branches, yet there is an important difference between the

nature of the infinite branches of the two curves. Those of the

hyperbola, we saw, tend ultimately to coincide with two diverg-

ing right lines
;
but this is not true for the parabola, since, if we

seek the points where any right line [x
= hy •\- T)

meets the

parabola [y^ =P^)^ we obtain the quadratic

y^-j)ky-pl=0,

whose roots can never be infinite as long as Jc and I are finite.

There is no finite right line which meets the parabola in two

coincident points at infinity; for any diameter [y
= m) which

meets the curve once at infinity (Art. 142) meets it once also in

the point a; =—
;
and although this value increases as m in-

creases, yet it will never become infinite as long as m is finite.

209. The figure of the parabola may be more clearly con-

ceived from the following theorem : If we suppose one vertex

and focus of an ellipse given, while its axis major increases with-

out limit, the curve will ultimately become a parabola.

The equation of the el-

lipse, referred to its vertex, rp

is (Art. 194)

y^ = X
;;
X".

We wish to express b in terms of the distance VF (=w),
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which we suppose fixed. We have m = a — \/{a^
—

h^) (Art. 182),

whence b'^
— 2am — m\ and the equation becomes

., /, 2m\ (2m m\ ^

^
\ a J \a a J

Now, if we suppose a to become infinite, all but the first term of

the right-hand side of the equation will vanish, and the equation

becomes
^^
^

4,„^^^

the equation of a parabola.

A parabola may also be considered as an ellipse whose eccen-

tricity is equal to 1. For e'^=l -^.
Now we saw that —

,

which is the coefficient of x^ in the preceding equation, vanished

as we supposed a increased according to the prescribed condi-

tions; hence e^ becomes finally
= 1.

THE TANGENT.

210. The equation of the chord joining two points on the

curve is (Art. 86) ^y
_

^') [y-y") =/ -px,

or [y'-^y")y=i^^+yy"'

And if we make y' —y\ and for
?/''''

write its equal ^a:;',
we have

the equation of the tangent

2yy =p [x + x].

If in this equation we put 2/
=

0, we get x = — x: hence TM
(which is called the Subtangent) is bisected at the vertex.

These results hold equally if the axes of co-ordinates are

oblique ;
that is to say, if the axes are any diameter and the

tangent at its vertex, in which case we saw (Art. 203) that the

equation of the parabola is still of the form y^ =p'x.
This Article enables us, there-

fore, to draw a tangent at any

point on the parabola, since we
have only to take TV= VM and

join PJ'; or again, having found

this tangent, to draw an ordinate

from P to any other diameter,
since we have only to take F'l/'= T'V\ and join PM'.
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211. The equation of the polar of any point xy is similar in

form to that of the tangent (Art. 89), and
is, therefore,

Putting ?/
=

0, we find that^ the intercept made by this polar
on the axis of ic is — x . Hence tlie intercej^t which the polars of

any two points cut off on the axis is equal to the intercept between

perpendiculars from tJiose points on that axis ; each of these

quantities being equal to [x
-

x"),

DIAMETERS.

212. We have said, that if we take for axes any diameter

and the tangent at its extremity, the equation will be of the

form y =p'x.
We shall prove this again by actual transformation of the

equation referred to rectangular axes [y^=px)j because it is de-

sirable to express the new p' in terms of the old p.
If we transform the equation y^

= px to parallel axes through

any point {x'y') on the curve, writing x-\- x and y -\- y for x and

?/,
the equation becomes

y'^-'lyy^^px.

Now
if, preserving our axis of

a?,
we take a new axis of y,

inclined to x at an angle ^, we must substitute (Art. 9),

y sin^ for y, and a? + ?/ cos^ for x^ and our equation becomes

y sin^^ + '^yy sin Q —px ^-py cos Q.

In order that this should reduce to the form y^=px^ we must

have p
2y' sin 6 =p cos ^, or tan ^ =

j-,
.

«/

Now this is the very angle which the tangent makes with the

angle of
a?,

as we see from the equation

, 2yy=p[x-{-x').

This equation, therefore, referred to a diameter and tangent, will

take the form
. » ., ,

The quantity/ is called the parameter corresponding to the

diameter V'M\ and we see that the parameter ofany diameter is
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inversely proportional to the square of the sine of the angle which

its ordinates make with the axis, since p = . ^/i •
' ^ sm 6

We can express the parameter of any diameter in terms of the

co-ordinates of its vertex, from the equation tan 6 = -^,] hence,

hence p =p + 4a?.

THE NORMAL.

213. The equation of a line through {xy) perpendicular to

the tangent 2yy' =p [x + x) is p

If we seek the intercept on

the axis of
a?,

we have

x[=VN) = x'-\-\p',

and, since VM= x^ we must have

ifiV(the subnormal^ Art. 181)
=

|^.
Hence in the parabola the subnormal is constant^ and equal to

the semi-parameter. The normal itself

THE FOCUS.

214. A point situated on the axis of a parabola, at a distance

from the vertex equal to one-fourth of the principal parameter,
is called the/ocw5 of the curve. This is the point which, Art. 209,

has led us to expect to find analogous to the focus of an ellipse ;

and we shall show, in the present section, that a parabola may
in every respect be considered as an ellipse, having one of its

foci at this distance, and the other at infinity. To avoid frac-

tions we shall often, in the following Articles, use the abbrevia-

tion m — \p.
To find the distance of any point on the curvefrom the focus.

The co-ordinates of the focus being (w, 0), the square of its

distance from any point is

[x
- my + y^'

= x' -2mx + ni^ + 4:mx = {x + my.

Hence the distance of any point from the focus =x -\- m.
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This enables us to express more simply the result of Art. 212,
and to say that the parameter of any diameter is four times the

distance of its extremityfrom the focus,

215. The polar of the focus of a parabola is called the

directrix^ as in the ellipse and hyperbola.
Since the distance of the focus from the vertex = m^ its polar

is (Art. 211) a line perpendicular to the axis at the same dis-

tance on the other side of the vertex. The distance of any point
from the directrix must, therefore, =x -\-m.

Hence, by the last Article, the distance of any point on the

curvefrom the directrix is equal to its distancefrom the focus.

We saw (Art. 186) that in the ellipse and hyperbola, the

distance from the focus is to the distance from the directrix in

the constant ratio 6 to 1. We see, now, that this is true for the

parabola also, since in the parabola e—l (Art. 209).

The method given for mechanically describing an hyperbola,
Art. 202, can be adapted to the mechanical description of the

parabola, by simply making the angle ABR a right angle.

216. The foint where any tangent cuts the axis^ and its point

of contact^ are equally distantfrom thefocus.

For, the distance from the vertex of the point where the

tangent cuts the axis =x (Art, 210), its distance from the focus

is, therefore, x + m.

217. Any tangent makes equal angles with the axis and with

thefocal radius vector.

This is evident from inspection of the isosceles triangle,

which, in the last Article, we proved was formed by the axis,

the focal radius vector, and the tangent.
This is only an extension of the property of the ellipse

(Art. 188), that the angle TPF== T'PF'
; for, if we suppose the

focus F' to go off to infinity, the line PF' will become parallel to

the axis, and TPF=PTF. (See figure, foot of p. 185.)

Hence the tangent at the extremity of the focal ordinate cuts

the axis at an angle of 45°.

218. To find the length of the perpendicularfrom the focus on

the tangent.
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The perpendicular from the point (m, 0) on the tangent

\y'y
=1m

(tc + ic')}
is

1m ix 4 m) 2m (x -^-m) ..
, ,

..

V(«/ 4-4m^) \/ {4:7nx -\- Am')
^^ ^ ^^

Hence (see fig., p. 188) FB is a mean proportional between FV
and FF,

It appears, also, from this expression, and from Art. 213, that

FB is half the normal, as we might have inferred geometrically

from the fact that TF= FN,

219. To express the perpemlicular from the focus in terms of
the angles which it mokes with the axis.

We have

cosa = slni^ri?= (Art. 212) a/(~^^^)
*

Therefore (Art. 218),

FB =^ J\m (x + m)] = .^ ^' cosa

The equation of the tangent, the focus being the origin^ can,

therefore, be expressed
m

X cosa + y sma H = 0,^ cosa '

and hence we can express the perpendicular from any other

point in terms of the angle it makes.

220. The locus of the extremity of the perpendicular from the

focus on the tangent is a right line.

For, taking the focus for pole, we have at once the polar

equation ^
p= , pcosa = m;'^ cosa ' '

which obviously represents the tangent at the vertex.

Conversely, if from any point F we draw FB a radius vector

to a right line VB^ and draw FB perpendicular to
it, the line

PB will always touch a parabola having F for its focus.

We shall show hereafter how to solve generally questions of

this class, where one condition less than is sufficient to determine

a line given, and it is required to find its envelope^ that is to

say, the curve which it always touches.
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We leave, as a useful exercise to the reader, the investiga-

tion of the locus of the foot of the perpendicular by ordinary

rectangular co-ordinates.

221. To find the locus of the intersection of tangents which

cut at right angles to each other.

The equation of any tangent being (Art. 219)

X cos'^a -\- y sina cosa + wi =
;

the equation of a tangent perpendicular to this (that is,
whose

perpendicular makes an angle = 90° -f a with the axis) is found

by substituting cosa for sina, and —sina for cosa, or

X sin'^a — y sina cosa + ^ = 0.

a is eliminated by simply adding the equations, and we get

a? + 2m = 0,

the equation of the directrix^ since the distance of focus from

directrix = 2m,

222. The angle between any two tangents is half the angle

between thefocal radii vectores to their points of contact.

For, from the isosceles FFT, the angle FTF which the tan-

gent makes with the axis is half the angle FFN^ which the focal

radius makes with it. Now, the angle between any two tangents
is equal to the difference of the angles they make with the axis,

and the angle between two focal radii is equal to the difference

of the angles which they make with the axis.

The theorem of the last Article follows as a particular case

of the present theorem
;

for if two tangents make with each

other an angle of 90°, the focal radii must make with each other

an angle of 180°, therefore, the two tangents must be drawn at

the extremities of a chord through the focus, and, therefore,

from the definition of the directrix, must meet on the directrix.

223. The line Joining the focus to the intersection of two tan-

gents bisects the angle which their points of contact subtend at the

focus.

Subtracting one from the other, the equations of two tan-

gents, viz.,

X cos'^a + y sina cosa + m = 0, x coa^ff + y sin/5 cosyS + m = ;
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we find for the line joining their intersection to the focus,

X sin [cf.^ P)- y cos (a + /5)
= 0.

This is the equation of a line making the angle a 4 yS with the

axis of X, But since a and yS are the angles made with the axis

by the perpendiculars on the tangent, we have VFF=2(x and

VFF' = 2yQ ;
therefore the line making an angle with the axis

= a -I- y3 must bisect the angle FFF. This theorem may also be

proved by calculating, as in Art. 191, the angle [9- B') subtended

at the focus by the tangent to a parabola from the point xy] when
O" _L. /yyi

It will be found that cos(^
-

0')
=

,
a value which, being

independent of the co-ordinates of the point of contact, will

be the same for each of the two tangents which can be drawn

through XT/, (See O'Brien's Co-ordinate Geometry^ p. 156.)

Cor. 1. If we take the case where the angle PZP' = 180°,

then FF passes through the focus
;
the tangents JP, TF will

intersect on the directrix, and the angle TFF= 90°. (See Art.

192). This may also be proved directly by forming the equa-
tions of the polar of any point (— w, y') on the directrix, and

also the equation of the line joining that point to the focus.

These two equations are

y'y
= 2m[x — m)^ 2m{y — y')i-y'[x + m) = 0j

which obviously represent two right lines at right angles to

each other.

Cor. 2. If any chord FF'

cut the directrix in Z>, then FF
is the external bisector of the

angle FFF. This is proved as

at p. 174.

Cor. 3. If any variable tan-

gent to the parabola meet two fixed tangents, the angle sub-

tended at the focus by the portion of the variable tangent

intercepted between the fixed tangents, is the supplement of

the angle between the fixed tangents. For (see figure next

page) the angle QRT is half pFq (Art. 222), and, by the pre-
sent Article, FFQ is obviously also half jpFq^ therefore, FFQ
is = QBTj or is the supplement of FBQ.
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Cor. 4. The circle circumscribing the triangle formed hy any
three tangents to a

parabola will pass »

through the focus.

For the circle de-

scribed through
PR Q must pass

through F^ since

the angle contained

in the segment PFQ will be the supplement of that contained

in FBQ.

224. To find the polar equation of the parabola^ the focus

being the pole.

We proved (Art. 214) that the focal

radius

=a;'+w=FJf+w=jPJf+2w=/!j cos^+2wz.

Hence p = ~ ^ .^
1 - cos ^

This Is exactly what the equation of Art. 193 becomes, if we

suppose e = 1 (Art. 209). The properties proved in the Ex-

amples to Art. 193 are equally true of the parabola.
In this equation is supposed to be measured from the side

FM] if we suppose it measured from the side FV^ the equation
becomes •

2w

^"^TTcos^*

This equation may be written

p co^^^6 — m,

OY p^ cosJ^=(?w)*,

and
is, therefore, one of a class of equations,

p" cosn^ = a",

some of whose properties we shall mention hereafter.
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CHAPTER XIII.

EXAMPLES AND MISCELLANEOUS PROPERTIES ON CONIC
SECTIONS.

225. The method of applying algebra to problems relating

to conic sections is essentially the same as that employed in the

case of the right line and circle, and will present no difficulty to

any reader who has carefully worked out the Examples given in

Chapters Iii. and vii. We, therefore, only think it necessary to

select a few out of the great multitude of examples which lead to

loci of the second order, and we shall then add some properties

of conic sections, which it was not found convenient to insert in

the preceding chapters.

Ex. 1, Through a fixed point P is drawn a line LK (see fig., p. 41)

terminated by two given lines. Find the locus of a point Q taken on the

line, so that PL = QK.

Ex. 2. Two equal rulers, AB, BC, are con- B
nected by a pivot atB

;
the extremity A is fixed,

while the extremity C is made to traverse the

right line AC; find the locus described by any
fixed point P on BC. A C

Ex. 3. Given base and the product of the tangents of the halves of the

base angles of a triangle : find the locus of vertex.

Expressing the tangents of the half angles in terms of the sides, it will

be found that the sum of sides is given ; and, therefore, that the locus is an

ellipse, of which the extremities of the base are the foci.

Ex. 4. Given base and sum of sides of a triangle ;
find the locus of the

centre of the inscribed circle.

It may be immediately inferred, from the last example, and from Ex. 4,

p. 48, that the locus is an ellipse, whose vertices are the extremities of the

given base.

Ex. 5. Given base and sum of sides, find the locus of the intersection

of bisectors of sides.

Ex. 6. Find the locus of the centre of a cii'cle which makes given

intercepts on two given lines.

Ex. 7. Find the locus of the centre of a circle which touches two given
circles

;
or which touches a right line and a given circle.

Ex. 8. Find locus of centre of a circle which passes through a given

point and makes a given intercept on a given line.
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Ex. 9. Or which passes through a given point, and makes on a given
line an intercept subtending a given angle at that point.

Ex. 10. Two vertices of a given triangle move along fixed right lines;

find the locus of the third.

Ex. 11. A triangle ABC circumscribes a given circle; the angle at C
is given, and B moves along a fixed line

;
find the locus of A,

Let us use polar co-ordinates, the centre O being the pole, and the angles

being measured from the perpendicular on the fixed line
;
let the co-ordinates

of ^, B, he p,6', p', &. Then we have p' cos^ =p. But it is easy to see

that the angle A OB is given (= a). And since the perpendicular of the

triangle AOB is given, we have

V(/>* + p'^
- ^pp cosrt)

*

But ^ + ^' = a
; therefore the polar equation of the locus is

p^ cos* (a
-
0) +p^ -

2pp COS a COS(a
-
0)

which represents a conic.

Ex. 12. Find the locus of the pole with respect to one conic A of any

tangent to another conic B.

Let ajS be any point of the locus, and \x + fiy i- " its polar with respect

to the conic A, then (Art. 89) X, fx,
v are functions of the first degree in «, /3

But (Art. 151) the condition that \x + p,y + v should touch B is of the

second degree in X, p,, v. The locus is therefore a conic.

Ex. 13. Find the locus of the intersection of the perpendicular from a

focus on any tangent to a central conic, with the radius vector from centre

to the point of contact. Ans. The corresponding directrix.

Ex. 14. Find the locus of the intersection of the perpendicular from the

centre on any tangent with the radius vector from a focus to the point of

contact. Ans. A circle.

Ex. 15. Find the locus of the intersection of tangents at the extremities

of conjugate diameters. . ^ 4. ^' _ 2'

a* b*

This is obtained at once by squaring and adding the equations of the

two tangents, attending to the relations Art. 1 72.

Ex. 16. Trisect a given arc of a circle. The points of trisection are

found as the intersection of the circle with a hyperbola. See Ex. 7, p. 48.

Ex. 17. One of the two parallel sides of a trapezium is given in magni-
tude and position ; and the other in magnitude. The sum of the remaining

two sides is given ;
find the locus of the intersection of diagonals.

Ex. 18. One vertex of a parallelogram circumscribing an ellipse moves

along one directrix
; prove that the opposite vertex moves along the other,

and that the two remaining vertices are on th€ circle described on the axis

major as diameter.

2
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226. We give In this Article some examples on the focal

properties of conies.

Ex. 1. The distance of any point on a conic from the focus is equal to

the whole length of the ordinate at that point, produced to meet the tangent
at the extremity of the focal ordinate.

Ex. 2. If from the focus a line be drawn making a given angle with any

tangent, find the locus of the point where it meets it.

Ex. 3. To find the locus of the pole of a fixed line with regard to a

series of concentric and confocal conic sections.

We know that the pole of any line f — + - =
1],

with regard to the.

— +
|j

= 1
J

, is found from the equations mx - a* and ny = 6* (Art. 169).

Now, if the foci of the conic are given, a* -h^ = c* is given ; hence, the

locus of the pole of the fixed line is

mx - ny -
c',

the equation of a right line perpendicular to the given line.

If the given line touch one of the conies, its pole will be the point of

contact. Hence, given two confocal conies, if we draw any tangent to one

and tangents to the second where this line meets it, these tangents will

intersect on the normal to the first conic,

Ex. 4. Find the locus of the points of contact of tangents to a series of

confocal ellipses from a fixed point on the axis major. Ans. A circle*

Ex. 5. The lines joining each focus to the foot of the perpendicular

from the other focus on any tangent, intersect on the corresponding normal

and bisect it.

Ex. 6. Prove that the polar equation of the chord through points whose

angular co-ordinates ai-e a + /3,
a -

yS,
is

^ = c COS0 + sec/3 cos(^
-

a).

This expression is due to Mr. Frost [Camhridge and Duhlm Math,

Journal, I., 68, cited by Walton, Examples, p. 375). It follows easily from

Ex. 3, p. 38.

Ex. 7. The focus being the pole, prove that the polar equation of the

tangent, at the point whose angular co-ordinate is a, is ^ = e cos0 + cos(^
-

a).

This expression is due to Mr. Davies {Philosophical Magazine for 1842,

p. 192, cited by Walton, Examples, p. 368).

Ex. 8. If a chord PP' of a conic pass through a fixed point O, then

tan iPi^O. tan ^P'J'O is constant.

The reader will find an investigation of this theorem by the help of the

equation of Ex. 6 (Walton's Examples, p. 377). I insert here the geome-

trical proof given by Mt. MacCullagh, to whom, I believe, the theorem is

due. Imagine a point O taken anywhere on PP' (see figure, p. 192), and let
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the distance FO be e' times the distance of O from the directrix ;
then since

the distances of P and O from the directrix are proportional to PD and OD,
we have pp pQ ^ sinPDF BinODF e

PD ' OD i''
°^

sinPFI)
'

sinOFD ^'

Hence (Art. 192)
cos QJ^T ^

^ ^
cosPFT e''

or, since (Art. 191) PFT is half the sum, and OFT half the difference, of

PFO and P'FO, e - e'

tan^PFO.tanlPFO = —, .

c + e

It is obvious that the product of these tangents remains constant if O be not.

fixed, but be anywhere on a conic having the same focus and directrix as the

given conic.

Ex. 9. To express the condition that the chord joining two points ar'y',

x'y on the curve passes through a focus.

This condition may be expressed in several equivalent forms, two of the

most useful of which are got by expressing that 0" = 0' 4 180° where 0', &'

are the angles made with the axis by the lines joining the focus to the points.
The condition sin^' = - sin^ gives

—^,+ -^, = 0; a(t/' + /) = e(a:y + a:y).a- ex a - ex
^j 9 i \ 9 9 1

The condition cos^' = - cos^ gives

^"^
+-gllf, = 0; 2ea;'a:^ - (a + ce) (a:' + a:") + 2ac = 0.

a- ex a - ex ' ^

Ex. 10. If normals be drawn at the extremities of any focal chord, a

line drawn through their intersection parallel to the axis major will bisect

the chord.*

Since each normal bisects the angle between the focal radii, the inter-

section of normals at the extremities of a focal chord is the centre of the

circle inscribed in the triangle whose base is that chord, and sides the lines

joining its extremities to the other focus. Now if a, 5, c be the sides of a

triangle whose vertices are xfy\ x"y", x'"y"'i then, Ex. 6, p. 6, the co-ordi-

nates of the centre of the inscribed circle are

ax' + hx" + ex'" ay' + hy" + cy'"x=- ; , y =
i .

a + b {- c
^ a + b + c

In the present case the co-ordinates of the vertices are a/, y' j a/% y" ;

-
c, ; and the lengths of opposite sides are a + ex''^ a + ex'

^ la - ex' - ex".

We have therefore

(a + ex')v" + (rt + ex")y'
y= -^^ »

or, reducing by the first relation of the last Example, y = i (/ + y")» which

proves the theorem.

* In the last edition this Example was solved by means of the formulae

of Art. 181, Ex. 4. I now substitute, as more simple, the solution of

M. Larrose, lerquem, xix., 85.
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Id like manner we have

_ (g 4 ex"^x' 4 (g \ ex') x" -
{2a

- ex' - ex") c
"^ ^ '

which, reduced by the second relation, becomes

_{a-\-ec)(x' + x")- 2ac

We could find similarly expressions for the co-ordinates of the inter-

section of tangents at the extremities of a focal chord, since this point is the

centre of the circle exscribed to the base of the triangle just considered.

The line joining the intersection of tangents to the corresponding intersection

of normals evidently passes through a focus, being the bisector of the,

vertical angle of the same triangle.

Ex. 11. To find the locus of the intersection of normals at the ex-

tremities of a focal chord.

Let a, p be the co-ordinates of the middle point of the chord, and we

have, by the last Example,

If, then, we knew the equation of the locus described by ayS, we should

by making the above substitutions have the equation of the locus described

by xy. Now the polar equation of the locus of middle point, the focus

being origin, is (Art. 193)

\( , //\
~ *' ^ cos^

which transformed to rectangular axes, the centre being origin, becomes

The equation of the locus sought is, therefore,

a^&« {x + c)« + (a* + ejf = h^c (a* + c«) (ar + c).

Ex. 12. \i be the angle between the tangents to an ellipse from any

pointP ;
and if

/>, p' be the distances of that point

from the foci, prove that cos^ = -—^ T
^

•

Ipp
For (Art. 189)

But cosJTi^'- cos TFt = 2 sin TFF.%\xitTF\

and 2pp' cosFFF' = p* \ p"*
- 4c«.

Ex. 13. If from any point O two lines be drawn to the foci (or touching

any confocal conic) meeting the conic in H^ H'; S, S'; then

UM--M-^--US'- [Mr. M. Roberta.]

It appears from the quadratic, by which the radius vector is determined

(Art. 136), that the difference of the reciprocals of the roots will be the

same for two values of 0, which give the same value to

{ac
-

ff*) cos'^ i 2{ch-gf) cos6> sin 6 + (be -/*) sin*^.
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Now it is easy to see that A cos'0 + 211 cos 6 sin0 + B sin*^ has equal values
for any two values of 0, which correspond to the directions of lines equally
inclined to the two represented by Ax^ + 2Hxy + By' = 0. But the function

we are considering becomes = for the direction of the two tangents

through O: and tangents to any confocal are equally inclined to these

tangents (Art. 189).

227. We give in this Article some examples on the parabola.
The reader will have no difficulty in distinguishing those of the

examples of the last Article, the proofs of which apply equally
to the parabola.

Ex. 1. Find the co-ordinates of the intersection of the two tangents at

the points x't/', x"y'\ to the parabola y*=px. _]/ ^y" _ yV
2

'

p
'

Ex. 2. Find the locus of the intersection of the perpendicular from
focus on tangent with the radius vector from vertex to the point of contact.

Ex. 3. The three perpendiculars of the triangle formed by three tan-

gents intersect on the directrix (Steiner, Gergonne, Annaks, xix. 59,

Walton, p. 119).

The equation of one of those perpendiculars is (Art. 32)

y'y"'-y'y" [^ y"y"'\ ,
y"'-y" /.. y"^y"\ ..

which, after dividing by y'"
-

y", may be written

2/'(^i|)

y'y"y"'
j^py _ p{y'^y"^y"') ^ q^

p 2 4

The symmetry of the equation shows that the three perpendiculars intersect

on the directrix at a height

2y'y"y"' y ^ y" ^ y'"
^ f 2

•

Ex. 4. The area of the triangle formed by three tangents is half that

of the triangle formed by joining their points of contact (Gregory, Cambridge

Journal, II. 16, Walton, p. 137).

Substituting the co-ordinates of the vertices of the triangles in the ex-

pression of Art. 36, we find for the latter area,
—-

{y'
-

yf') {y"
-

y'") {y'"
-

y') ;

and for the former area half this quantity.

Ex. 5. Find an expression for the radius of the circle circumscribing a

triangle inscribed in a parabola.

The radius of the circle circumscribing a triangle, the lengths of whose

def
sides are d, e,f, and whose area = 2 is easily proved to be — . But if d

be the length of the chord joining the points x'y", x"'y"', and 6' the angle

which this chord makes with the axis, it is obvious that d sin^' = y"
-

y'".

Using, then, the expression for the area found in the last Example, we have
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jR = ^ . ^, . ^,, . _.,
. We might express the radius, also, in terms of the

2 8in^'sin0"sm^" ° ^ ' '

focal chords parallel to the sides of the triangle. For (Art. 193, Ex. 2)

the length of a chord making an angle 6 with the axis is c =
.

^
. Hence

xC — ~—— .

4p
It follows, from Art. 212, that c', c", d" are the parameters of the dia-

meters which bisect the sides of the triangle.

Ex. 6. Express the radius of the circle circumscribing the triangle formed

by three tangents to a parabola in terms of the angles which they make
with the axis.

^'"- -^'
8sinysL--sine'- '

"' ^^Hf • ""^''^ •?>"'?''" ^" '^^

parameters of the diameters through the points of contact of the tangents

(see Art. 212).

Ex. 7. Find the angle contained by the two tangents through the point

x'y' to the parabola y*
= 4mj;.

The equation of the pair of tangents is (as in Art. 92) found to be

{y'*
-
4mx'){y^

- 4mx) =
{yy'

- 2m
(a; 4 x')]*.

A parallel pair of lines through the origin is

^'y^
-
y'xy + mx^ = 0.

The angle contained by which is (Art. 74) tan0 = viy - ^^)
^

a:' + m
Ex. 8. Find the locus of tangents to a parabola which cut at a given angle.
Ans. The hyperbola y^-4mx={x + m)* tan*0, or y*+ (a;

- m)*= (a;
+ mf sec*0.

From the latter form of the equation it is evident (see Art. 186) that the

hyperbola has the same focus and directrix as the parabola, and that its

eccentricity
= sec0.

Ex. 9. Find the locus of the foot of the perpendicular from the focus

of a parabola on the normal.

The length of the perpendicular from (w, 0) on 2m {y-y')+y\x -x')=0 is

y'(x +m) /f ,/ / . ^)

Vt«/
'
+ 4m'')

^^ ^

But if be the angle made with the axis by the perpendicular (Art. 212)

Hence the polar equation of the locus is

m cos^ ,

Ex. 10. Find the co-ordinates of the intersection of the normals at the

points x^y, xy. ^^^ ^ ^ 2,,,, +
y" -" y^' ' p'" ._ pr(y'^r)

Am * ^ 8m*
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Or if a, /3, be the co-ordinates of the corresponding intersection of tan-

gents, then (Ex. 1) a^ a3
X = 2m + — -

a, y = - -t- ,m m
Ex. 1 1 . Find the co-ordinates of the points on the curve, the normals at

which pass through a given point aft/.

Solving between the equation of the normal and that of the curve, we find

and the three roots are connected by the relation y^^ y^ -^ 1/^
= 0. The

geometric meaning of this is, that the chord joining any two, and the line

joining the third to the vertex, make equal angles with the axis.

Ex. 12. Find the locus of the intersection of normals at the extremities

of chords which pass through a given point x'y'.

We have then the relation
/3?/'

= 2m {x' + a) ;
and on substituting in the '

results of Ex. 10 the value of a derived from this relation, we have

2mx + ^y' = 4m» + 2/3* + 2mx'', 2w*y = 2^mx'
- ySy ;

whence, eliminating y3, we find #
2 {2m [y

-
y') + y' [x

-
«')}»

= (4mx' -
y'') {y'y + 2x'x - 4mx' -

2x"),

the equation of a parabola whose axis is perpendicular to the polar of the

given point. If the chords be parallel to a fixed line, the locus reduces

to a right line, as is also evident from Ex. 11.

Ex. 13. Find the locus of the intersection of normals at right angles to

each other.

In this case a = - m, a; = 3m + — , y =
jS, y^

= m{x -
3m).

Ex. 14. If the lengths of two tangents be a, J, and the angle between

them w; find the parameter.
Draw the diameter bisecting the chord of contact

;
then the parameter of

^1 ^ T ^ . , v' 1 , . . , . V* sin**^ cr'v*
that diameter is ^ = —

,
and the principal parameter is p = = —^X X %x

(where w is the length of the perpendicular on the chord from the inter-

section of the tangents). But 2^y = ab sinoj, and

16a;' = a* 4 &* + 2ab costu
;
hence p =

^ (see p. 184).

{a' + b^ + 2abcosivf

Ex. 15. Show, from the equation of the circle circumscribing three tan-

gents to a parabola, that it passes through the focus.

The equation of the circle circumscribing a triangle being (Art. 124)

/37 sin^ + 7a sin^ + a^ sinC= 0, the absolute term in this equation is

found (by writing at full length for a, x cosa + y sina -
p, &.c.) to be

p'p" sin(y3
-
7) + p"p sin(7

-
«) + pp' sin (a

-
y3). But if the line « be a tan-

gent to a parabola, and the origin the focus, we have (Art. 219) p =
,

and the absolute term

m*
=

{sin(y3
-
7) cosa + sin (7

-
«) cos^ + sin(a

-
j3) COS7},COSa COS^ COS7

^ ^r- 1/ \i y I \ r-/ i>f

which vanishes identically.
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Ex. 16. Find the locus of the intersection of tangents to a parabola,

being given either (1) the product of sines, (2) the product of tangents,

(3) the sum or (4) difference of cotangents of the angles they make with the

axis. Ans. (1) a circle, (2) a right line, (3) a right line, (4) a parabola.

228. We add a few miscellaneous examples.

Ex. 1. If an equilateral hyperbola circumscribe a triangle, it will also

pass through the intersection of its perpendiculars (Brianchon & Poncelet ;

Gergonne, Annates, XI., 205; "Walton, p. 283),

The equation of a conic meeting the axes in given points is (Ex. 1, p. 143)

/Lifx'a^ + 2hxy + \Xy^ -
fifji! (X + V) a; - XV

(/* + /.i') y + X\'jul/x'
= 0.

And if the axes be rectangular, this will represent an equilateral hyper-
bola (Art. 174) if W = -

jn^'. If, therefore, the axes be any side of the

given triangle, and the perpendicular on it from the opposite vertex, the

portions \, X', fi,
are given, therefore, fi/ is also given ;

or the curve meets

the perpendicular in the fixed point y =
, which is (Ex. 7, p. 28) the

intersection of the perpendiculars of the triangle.

Ex. 2. What is the locus of the centres of equilateral hyperbolae through
three given points ?

Ans. The circle through the middle points of sides (see Ex. 3, p. 143).

Ex. 3. A conic being given by the general equation, find the condition

that the pole of the axis of x should lie on the axis of y, and vice versa.

Ans. he =fff.

Ex. 4. The circle circumscribing a triangle, self-conjugate with regard
to an equilateral hyperbola (see Art. 99), passes through the centre of the

curve. [This is a particular case of a theorem to be proved in the next

Chapter (Brianchon & Poncelet, Gergonne, xi. 210; Walton, p. 304).]

The condition of Ex. 3 being fulfilled, the equation of a circle passing

through the origin and through the pole of each axis is

h (x* + 2xy cos a; + «/') +/c + ^y = 0,

or X {hx -^iy -^f) -^ y {ax + hy + ^r)
-

(a + & - 2A cos w) xy,

an equation which will evidently be satisfied by the co-ordinates of the

centre, provided we have a A-h = 2h cosw, that is to say, provided the curve

be an equilateral hyperbola (Arts. 74, 174).

Ex. 5. A circle described through the centre of an equilateral hyperbola,
and through any two points, will also pass through the intersection of lines

drawn through each of these points parallel to the polar of the other.

Ex. 6. Find the locus of the intersection of tangents which intercept a

given length on a given fixed tangent.

The equation of the pair of tangents from a point x'y' to a conic given

by the general equation, is given Art. 92. Make y = Q, and we have a quad-
ratic whose roots are the intercepts on the axis of x.

Forming the difference of the roots of tiiis equation, and putting it equal
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to a constant, we obtain the equation of the locus required, which will be in

general of the fourth degree ;
but if ^ = ac, the axis of x will touch the

given conic, and the equation of the locus will become divisible by y*, and

will reduce to the second degree. We could, by the help of the same equa-

tion, find the locus of the intersection of tangents ;
if the sum, product, &c.,

of the intercepts on the axis be given.

THE ECCENTEIC ANGLE.*

229. It is always advantageous to express the position of a

point on a curve, if possible, by a single independent variable,

rather than by the two co-ordinates
x'l/'.

We shall, therefore,

find it useful, in discussing properties of the ellipse, to make a

substitution similar to that employed (Art. 102) in the case of

the circle
;
and shall write

x' = a co3<f)j y'
— h mi(f>^

a substitution, evidently, consistent with the equation

©•-©='•
The geometric meaning of the angle <f>

is easily explained.

If we describe a circle on the axis major as diameter, and

produce the ordinate atP to meet the circle at §, then the angle

QCL—<f>^ for CL=CQ cos^CX, or a;'=a cos^ ;
and PL=- QL

(Z

(Art. 163) ; or, since QL = a sine/), we have y'
= h sm(j),

230. If we draw through P a parallel FN to the radius CQ,
then pjf :CQ::FL: QL :; & : a, _D
but CQ = a, therefore FM== h

P^ parallel to GQ is, of course,
= a.

Hence, if from any point of an ellipse Al|

a line = a be inflected to the minor axis,

its intercept to the axis major = l. If

the ordinate FQ were produced to meet

the circle again in the point Q\ it could

 The use of this angle occurred to me some years ago, as a particular

case of the methods given in Chapter xiv. It has, however, been already

recommended by Mr. O'Brien in the Cambridge Mathematical Journal, Vol.

IV., p. 99, and has since been introduced by him, under the name here

adopted, into his treatise on Plane Co-ordinate Geometry, p. 111.
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be proved, in like manner, that a parallel through P to the

radius CQ is cut into parts of a constant length. Hence, con-

versely, if a line MN^ of a constant length, move about in the

legs of a right angle, and a point P be taken so that MP may
be constant, the locus of P is an ellipse, whose axes are equal

to MP and NP. (See Ex. 12, p. 49.)

On this principle has been constructed an instrument for de-

scribing an ellipse by continued motion, called the Elliptic Com-

passes, CAj GD\ are two fixed rulers, MN a third ruler of a

constant length, capable of sliding up and down between them,
then a pencil fixed at any point of MN will describe an ellipse.

If the pencil be fixed at the middle point ofMN it will de-

scribe a circle. (O'Brien's Co-ordinate Geometry^ p. 112.)

231. The consideration of the angle (/>
affords a simple me-

thod of constnicting geometrically the diameter conjugate to a

given one, for
^' 5

tan^= ^ = - tan 6.
X a ^

Hence the relation

tan <9 tan ^' = - -2 (Art. 170)

becomes tan <^ tan ^'
= — 1

,

or ^-^ = 90°.

Hence we obtain the following construction. Let the ordi-

nate at the given point P, when produced,
meet the semicircle on the axis major at

(), join (7§, and erect CQ perpendicular
to it

;
then the perpendicular let fall on

the axis from Q will pass through P', a

point on the conjugate diameter.

Hence, too, can easily be found the co-ordinates of P' given
in Art. 172, for, since

'

x' V
coa6' = sin<f>, we have — = ^ ,^' a o ^

y" x'
and since sin<f>' = — cosd), we have ^ = .^ ^' ha

From these values it appears that the areas of the triangles

POifjPCilf', are equal.
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Ex. 1. To express the lengths of two conjugate semi-diameters in terms

of the angle 0. Ans. a'* = a* cos''0 + i* sin*0; b'^ = a* sin*0 + &* cos*0.

Ex. 2. To express the equation of any chord of the ellipse in terms of

and 0- (see p. 96) ^^^
.
^^^,^^ ^ ^,^

u
^.„,^^ ^ ^^ ^ ^^^,^^ _

^,^_

Ex. 3. To express similarly the equation of the tangent.

Afis. - COS0 + 7 sin0 = 1.
a o

Ex. 4. To express the length of the chord joining two points «, /3,

jy= o*(cosa
-

cosyS)* + 6* (sina
-

siny3)*

2) = 2 sinH« -
y3j {a« sin«^ (« + y3) + 6« cos^ (a + y3))*.

Bttt (Ex. 1) the quantity between the parentheses is the semi-diameter con-

jugate to that to the point i(« +
/3) ;

and (Ex. 2, 3) the tangent at the point

•§^(a + )8) is parallel to the chord joining the points a, ^; hence, if h' denote

the length of the semi-diameter parallel to the given chord, D=2h' B\n\{a- p).

Ex. 5. To find the area of the triangle formed by three given points o, y3, 7.

By Art. 36 we have

22 = ah {sin («
-
^) + sin

(/3
-

.7) + sin (7
-

a)]

= ah{2 sin^(a-^) cosJ(a-/3)-2 sin|(a-;3) co^\ {a -^ p -
2^)}

= Aah 8in|(a -
/3) sin^ (^

-
7) sin ^(7 -

«)

,. 2 = 2a6 sin I (a
-

y3) sin-| (^
-

7) sini(7
-

o).

Ex. 6. If the bisectors of sides of an inscribed triangle meet in the centre,

its area is constant.

Ex. 7. To find the radius of the circle circumscribing the triangle

formed by three given points a, /3, 7.

If c?, e,/be the sides of the triangle formed by the three points,

J2 = ^=^'*"*'"
42 ab

'

"where 6', h", h'" are the semi-diameters parallel to the sides of the triangle.

c'c"(f"
If c', c", c'" be the parallel focal chords, then (see p. 200) R^= —-— . (These

expressions are due to Mr. MacCuUagh, DwiZm jE'j-«m. Papers, 1836, p. 22.)

Ex. 8. To find the equation of the circle circumscribing this triangle.

Ans. a;' + 3/'
—^^ —

cos|(a + /3) cosK/3 + 7) cos|(7 + «)

- ^^^'-""'^^
sinKa + ^) sinKyS + 7) sini(7 + a) = J (a« + I')

-
i («'

-
6') {cos (a + /3) + cos(^ + 7) + cos (7 + «)}.

From this equation the co-ordinates of the centre of this circle are at

once obtained.

Ex. 9. The area of the triangle formed by three tangents is, by Art. 39,

ab tan i («
-

/3) tan i (/3
-
7) tan i (7

-
«).



206 THE ECCENTRIC ANGLE.

Ex. 10. The area of the triangle formed by three normals is

^ tan |(«
-
/3) tan \(Q- 7) tan 1(7 -

«) (sin(i3 + 7) + sin(7 + a) + sin(a + /3)}«,

consequently three normals meet in a point if

sin (^ + 7) + sin (7 + «) + sin (a + /3)
= 0. [Mr. Burnside.]

Ex. 11. To find the locus of the intersection of the focal radius vector

FP with the radius of the circle CQ.
Let the central co-ordinates of P be x'y\ of O xy, then we have, from

the similar triangles, FON, FPM,

y _ y' _ ^ sin0

X -i- c

y ^
a;' + c a (e + cos 0)

Now, since is the angle made with the axis by
the radius vector to the point O, we at once obtain

the polar equation of the locus by writing p cos

for a:, /3
sin for y, and we find

c + /)
COS o (e + cos (p)

*

be
or

c + (a
-

J) cos

Hence (Art. 193) the locus is an ellipse, of which C is one focus, and it can

easily be proved that F is the other.

Ex. 12. The normal at P is produced to meet CQ; the locus of their

intersection is a circle concentric with the ellipse.

The equation of the normal is

ax by _ J

cos sin
'

but we may, as in the last example, write
/> cos0 and p sin0 for x and y,

and the equation becomes

(a
-

b) p =
c*, or p = a + b.

Ex. 13. Prove that tanhPFC=VG^) tan ^0.

Ex. 14. If from the vertex of an ellipse a radius vector be drawn to any

point on the curve, find the locus of the point where a parallel radius through
the centre meets the tangent at the point.

The tangent of the angle made with the axis by the radius vector to the

vertex = -~-
; therefore, the equation of the parallel radius through the

centre is
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and the locus of the intersection of this line with the tangent

t/ X
Y 8in0 + - cos0= 1

is, obviously,
- = 1, the tangent at the other extremity of the axis.

The same investigation will apply, if the first radius vector be drawn

through any point of the curve, by substituting a' and h' for a and h
j
the

locus will then be the tangent at the diametrically opposite point.

Ex. 15. The length of the chord of an ellipse which touches a confocal

ellipse, the squares of whose semiaxes are a*- A', 6'- A*, is—r— [Mr.Burnsidel.
ah

The condition that the chord joining two points «, y3 should touch the

confocal conic, is

?1^' cosH(« + /3) +^^ sinH(« + /3)
= cosH(« -

^),

or sin«|(a
-

/3)
=^ {&' cos'^K" + ^) + «' 8in«i(a + ^)}

=
^,

h\ (Ex. 4.)

But the length of the chord is

26'sinK«-^) =
^'.

By the help of this Example several theorems concerning chords through
a focus may be extended to chords touching confocal conies.

232. The methods of the preceding Articles do not apply to

the hyperbola. For the hyperbola, however, we may substitute

X =a sec<^, y —h tan 0,

e)"-(i)'
This angle may be represented geometrically by drawing

a tangent MQ from the foot of

the ordinate M to the circle de-

scribed on the transverse axis,

then the angle QCM= ^, since

CM=^CQsecQGM.
We have also QJf=atan<^, but FM=h tsucKf), Hence, if

from the foot of any ordinate of a hyperbola we draw a tangent
to the circle described on the transverse axis, this tangent is in

a constant ratio to the ordinate.

Ex. If any point on the conjugate hyperbola be expressed similarly

y"= b sec0', x" = a tan0', prove that the relation connecting the extremities

of conjugate diameters is = 0'. [Mr. Turner.]
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SIMILAR CONIC SECTIONS.

233. Any two figures are said to be similar and similarly

placed^ if radii vectores drawn to the first from a certain point
are in a constant ratio to parallel radii drawn to the second from

another point o. If it be possible to find any two such points
and 0, we can find an

infinity of others
; for, take

any point (7,
draw oc parallel

to 00^ and in the constant

ratio -^, then from the similar triangles OCP^ ocp^ cp is parallel

to CP and in the given ratio. In like manner, any other radius

vector through c can be proved to be proportional to the parallel

radius through G,

If two central conic sections be similar and similarly placed,

all diameters of the one are proportional to the parallel diameters

of the other, since the rectangles OP.OQ^ op.oq^ are propor-
tional to the squares of the parallel diameters (Art. 149).

234. To find the condition that' two conies, given by the

general equations, should be similar and similarly placed.

Transforming to the centre of the first as origin, we find

(Art. 152) that the square of any semi-diameter of the first is

equal to a constant divided by a cos*^ 6 -\-2h cos ^ sin ^ + J sin'^ 6^

and in like manner, that the square of a parallel semi-diameter

of the second is equal to another constant divided by
a cos'^ 6 + 2h' cos ^ sin ^ + h' sin" 6.

The ratio of the two cannot be independent of 6 unless

a _ A
__

J

a h' h'
'

Hence, two conic sections will be similar
j
and similarly placed^

if the coefficients of the highest powers of the variables are the

same in both^ or only differ by a constant multiplier,

235. It is evident that the directions of the axes of these

conies must be the same, since the greatest and least diameters

of one must be parallel to the greatest and least diameters of

the other. If the diameter of one become infinite, so must also
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the parallel diameter of the other, that is to say, the asymptotes

of similar and similarly placed hyperholas are parallel. The same

thing follows from the result of the last Article, since (Art. 154)
the directions of the asymptotes are wholly determined by the

highest terms of the equation.

Similar conies have the same eccentricity ;
for —

^
— must

2 '2 a 7 2 (X

, wra —mo o- m i • -i i i i
i>e = ^-^ . bimuar and similarly placed come sections

have hence sometimes been defined as those whose axes are

parallel, and which have the same eccentricity.

If two hyperbolas have parallel asymptotes they are similar,

for their axes must be parallel, since they bisect the angles be-

tween the asymptotes (Art. 155), and the eccentricity wholly

depends on the angle between the asymptotes (Art. 167).

236. Since the eccentricity of every parabola is = 1, we
should be led to infer that all parabolas are similar and similarly

placed, the direction of whose axes is the same. In fact, the

equation of one parabola, referred to its vertex, being y^=jpx^ or

_p) cos^

it is plain that a parallel radius vector through the vertex of the

other will be to this radius in the constant ratio p : p,

Ex. 1. If on any radius vector to a conic section through a fixed point

O, OQ be taken in a constant ratio to OP, find the locus of Q. We have

only to substitute mp for p in the polar equation, and the locus is found to

be a conic similar to the given conic, and similarly placed.

The point O may be called the centre of similitude of the two conies
;

and it is obviously (see also Art. 115) the point where common tangents to

the two conies intersect, since when the radii vectores OP, OP to the first

conic become equal, so must also OQ, OQ' the radii vectores to the other.

Ex. 2. If a pair of radii be drawn through a centre of similitude of two

similar conies, the chords joining their extremities will be either parallel, oj

will meet on the chord of intersection of the conies.

This is proved precisely as in Art. 116.

Ex. 3. Given three conies, similar and similarly placed, their six centres

of similitude will lie three by three on right lines (see figure, page 109).

Ex. 4. If any line cut two similar and concentric conies, its parts inter-

cepted between the conies will be equal.

P
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Any chord of the outer conic which touches the interior will be bisected

at the point of contact.

These are proved in the same manner as the theorems at page 177, which

are but particular cases of them
;
for the asymptotes of any hyperbola may

be considered as a conic section similar to it, since the highest terms in the

equation of the asymptotes are the same as in the equation of the curve.

Ex. 5. If a tangent drawn at V, the vertex of the inner of two con-

centric and similar ellipses, meet the outer in the points T and T, then any
chord of the inner drawn through V is half the algebraic sum of the

parallel chords of the outer through jTand J".

237. Two figures will be similar, although not similarly

placed, if the proportional radii make a constant angle with

each other, instead of being parallel ;
so that, if we could imagine

one of the figures turned round through the given angle, they
would be then both similar and similarly placed.

*

To find the condition that two conic sections^ given hy the

general equations^ should he similar^ even though not similarly

placed.

We have only to transform the first equation to axes making

any angle 6 with the given axes, and examine whether any
value can be assigned to 6 which will make the new a, ^, J, pro-

portional to a', h\ h\ Suppose that they become ma^ mh\ mV ,

Now, the axes being supposed rectangular, we have seen

(Art. 157) that the quantities a + 5, ah-K\ are unaltered by
transformation of co-ordinates

;
hence we have

a + h = m[a! + h')j

ab^h' = m'{a'b'-h'%

and the required condition is evidently

ah-h' _ a'h'-h"

{a + hf~ {a'-^h'f

If the axes be oblique it is seen in like manner (Art. 158) that

the condition for similarity is

ab-h;' ^ a'b'-h"

{a + b-2h coscof

~
[a -\-b'

- 2h' coso))^

*

It will be seen (Arts. 74, 154) that the condition found ex-

presses that the angle between the (real or imaginary) asymptotes
of the one curve is equal to that between those of the other.
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238. Two curves of the m^ and n^^ degrees respectively/^
inter-

sect in mn points.

For, if we eliminate either x ov y between the equations, the

resulting equation in the remaining variable, will in general
be of the mn^ degree [Higher Algebra^ p. 22; Todhunter's

Theory of Equations^ p. 169). If it should happen that the

resulting equation should appear to fall below the mrb^ degree,
in consequence of the coefficients of one or more of the highest

powers vanishing, the curves would still be considered to inter-

sect in mn points, one or more of these points being at infinity

(see Art. 135). If account be thus taken of infinitely distant

as well as of imaginary points, it may be asserted that the two

curves always intersect in mn points. In particular two conies

always intersect in four points. In the next Chapter some of

the cases will be noticed where points of intersection of two

conies are infinitely distant
;

at present we are about to consider

the cases where two or more of them coincide.

Since four points may be connected by six lines, viz. 12, 34
;

13, 24
j 14, 23

J
two conies have three pairs of chords of intersection ^

239. When two of the points of intersection coincidCj the

conies touch each other, and the line joining the coincident points

is the common tangent. The conies will in this case meet in two

real or imaginary points jL, M distinct from the point of contact.

This is called a contact of the first order. The contact is said to

be of the second order when three of the points of intersection

coincide, as for instance, if the pointM move up until it coincide

with T. Curves which have contact of an order higher than

the first are also said to osculate; and it appears that conies

which osculate, must intersect in one other point. Contact of

the third order is when two curves have four consecutive points

common; and since two conies cannot have more than four

P2
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points common, this Is the highest order of contact they can

have.

Thus, for example, the equations of two conies, both passing

through the origin, and having the line x for a common tangent

are, (Art. 144)

ax^ + "Ihxy + ly* + "Igx
=

;
aV + iTixy + Vy^ + 2^'a7

= 0.

And, as in Ex. 2, p. 165,

x [[ah'
-
ah) i» + 2 [M - h'h) 2^ + 2 [gh'-gh)]

=
0,

represents a figure passing through their four points of inter-

section. The first factor represents the tangent which passes

through the two coincident points of intersection, and the second

factor denotes the line LM passing through the other two points.

If now gh'
=

g'h^ LM passes through the origin, and the conies

have contact of the second order. If In addition hh' — h'h^ the

equation ofLM reduces to a?=0
;
LM coincides with the tangent,

and the conies have contact of the third order. In this last

case. If we make by multiplication, the coefficients of y^ the same

in both the equations, the coefficients of xy and x will also be

the same, and the equations of the two conies may be reduced

to the form

ax' + 2Jixy + hy' + 2gx = 0, a'x^ + 2hxy + hy' + ^gx = 0.

240. Two conies may have douhle coniactj if the points of

intersection 1, 2 coincide and also the points 3, 4. The condition

that the pair of conies, considered in the last article, should

touch at a second point, is found by expressing the condition

that the line Zilf, whose equation is there given, should touch

either conic. Or, more simply, as follows : Multiply the equa-
tions by g' and g respectively, and subtract, and we get

{ag'
-

a'g) a;^ + 2 [hg'
-

h'g) xy + [hg
-

h'g)f= 0,

which denotes the pair of lines joining the origin to the two

points In which LM meets the conies. And these lines will

coincide if
(«y

_
a'g) [hg

-
h'g)

=
[hg'

-
h'g)\

241. Since a conic can be found to satisfy any five conditions

(Art. 133), a conic can be found to touch a given conic at a

given point, and satisfy any three other conditions. If it have

contact of the second order at the given point, it can be made
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to satisfy two other conditions
;
and if it have contact of the

third order, it can be made to satisfy one other condition. Thus
we can determine a parabola having contact of the third order

at the origin with

aa?^ -f "llixy + hf + 'Igx
= 0.

Keferring to the last two equations (Art. 239), we see that

it is only necessary to write a instead of a, where a is deter-

mined by the equation ah = }i\

We cannot, in general, describe a cirde, to have contact of the

third order with a given conic, because two conditions must be

fulfilled in order that an equation should represent a circle
; or, in

other words, we cannot describe a circle through four consecutive

points on a conic, since three points are sufficient to determine

a circle. We can however easily find the equation of the circle

passing through three consecutive points on the curve. This

circle is called the osculating circle^ or the circle of curvature.

The equation of the conic to oblique or rectangular axes,

being, as before, ^^^ _j. g^^^ + jy + 2^^ = 0,

that of any circle touching it at the origin is (Art. 84, Ex. 3)

ic^ + 2iC3/ coso) + 2/^
— 2ra; sinoi) = 0.

Applying the condition gV=gh (Art. 239), we see that the

condition that the circle should osculate is

^ = — rJ sin
0),

or r = r-
^ *

smo)

The quantity r is called the radius of curvature of the conic

at the point T,

* In the Examples which follow we find the absolute magnitude of the

radius of curvature, without regard to sign. The sign, as usual, indicates

the direction in which the radius is measured. For it indicates whether the

given curve is osculated by a circle whose equation is of the form

X* + 2xy cosw -f y' + 2rx sin to = 0,

the upper sign signifying one whose centre is in the positive direction of

the axis of x
;
and the lower, one whose centre is in the negative direction.

The formula in the text then gives a positive radius of curvature when the

concavity of the curve is turned in the positive direction of the axis of x,

and a negative radius when it is turned in the opposite direction.
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242. To find the radius of curvature at any point on a central

conic.

In order to apply the formula of the last Article, the

tangent at the point must be made the axis of y. Now the

equation referred to a diameter through the point and its con-

jugate f -7^ -}- ^a
= 1

) )
is transferred to parallel axes through the

given point, by substituting x^d for
ic,

and becomes

x"- y' 2a; ^

Therefore, by the last Article, the radius of curvature is

Now a! sino) is the perpendicular from the centre on
a smo)

the tangent ;
therefore the radius of curvature

V
= -, or (Art. 175)=^.

243. Let N denote the length of the normal PA^, and let
-v^

denote the angle FFN between the normal ^.^
—

-^ -^
and focal radius vector

;
then the radius of

curvature is —n-- . For A'=— (Art. 181),
cos

i/r
a ^ ^'

and cos'\|r=— (Art. 188), whence the truth of the formula is

manifest.

Thus we have the following construction: Erect a perpen-

dicular to the normal at the point where it meets the axis, and

again at the point §, where this perpendicular meets the focal

radius, draw CQ perpendicular to
it,

then G will be the centre

of curvature, and CF the radius of curvature.

244. Another useful construction is founded on the principle

that if a circle intersect a conic^ its chords of intersection will

mahe equal angles with the axis. For, the rectangles under the

segments of the chords are equal (Euc. iii. 35), and therefore

the parallel diameters of the conic are equal (Art. 149), and,

therefore, make equal angles with the axis (Art. 162).

Now in the case of the circle of curvature, the tangent at T
(see figure, p. 211) is one chord of intersection, and the line TL
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the Other; we have, therefore, only to draw TL^ making the

same angle with the axis as the tangent, and we have the point

L] then the circle described through the points T, X, and,

touching the conic at T, is the circle of curvature.

This construction shows that the osculating circle at either

vertex has a contact of the third degree.

Ex. 1. Using the notation of the eccentric angle, find the condition that

four points a, /3, 7,
8 should lie on the same circle (Joachimsthal, Crelle,

XXXVI. 95).

The chord joining two of them must make the same angle with one

side of the axis as the chord joining the other two does with the other
;

and the chords being

-cos|(a + /3) +1 sin|(a + ;8)
= cos^(« -

I3)i

-
cosi(7 f ^) + f sini(7 + 5)

= 003^(7 -
5)j

Cl

we have tan |(a + /3) + tan 1(7 + <5)
=

;
« + /3 + 7 + ^ =

;
or = 2m7r.

Ex. 2. Find the co-ordinates of the point where the osculating circle

meets the conic again.

We have a =
/3
= 7; hence <S = - 3a

j
or -X" = —^ - 3x

;
Y= -~- -

Zy'.

Ex. 3. There are three points on a conic whose osculating circles pass

through a given point on*the curve
;
these lie on a circle passing through

the point, and form a triangle of which the centre of the curve is the inter-

section of bisectors of sides (Steiner, Crelle^ xxxii. 300; Joachimsthal,

Crelle, xxxvi. 95).

Here we are given ^, the point where the circle meets the curve again,

and from the last Example the point of contact is a = -
|5. But since the

sine and cosine of <5 would not alter if 5 were increased by 360°, we might
also have a = -\h \ 120°, or = -

\h + 240°, and from Ex. 1, these three

points lie on a circle passing through 5. If in the last Example we suppose

-X, Y given, since the cubics which determine a:' and y' want the second

terms, the sums of the three values of x' and of y' are respectively equal to

nothing; and therefore (Ex. 4, p. 6) the origin is the intersection of the bi-

sectors of sides of the triangle formed by the three points. It is easy to

see that when the bisectors of sides of an inscribed triangle intersect in

the centre, the normals at the vertices are the three perpendiculars of this

triangle, and therefore meet in a point.

245. To find the radius of curvature ofa parabola.

The equation referred to any diameter and tangent being

P'

y^^px^ the radius of curvature (Art. 241) is .

^ ,
where 6
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N
IS the angle between the axes. The expression

—
^"r j

^-nd the

construction depending on it,
hold for the parabola, since

N^Ip' sinl9 (Arts. 212, 213) and -^
= 90°-^ (Art. 217).

Ex. 1. In all the conic sections the radius of curvature is equal to the

cube of the normal divided by the square of the semi-parameter.

Ex. 2. Express the radius of curvature of an ellipse in terms of the angle
which the normal makes with the axis.

Ex, 3. Find the lengths of the chords of the circle of curvature which

pass through the centre or the focus of a central conic section.

2&" J 26"
Ans. — ,

and— .

a a

Ex. 4. The focal chord of curvature of any conic is equal to the focal

chord of the conic drawn parallel to the tangent at the point.

Ex. 6. In the parabola the focal chord of curvature is equal to the

parameter of the diameter passing through the point.

246. To find the co-ordinates of the centre of curvature ofa

central conic.

These are evidently found by subtracting from the co-ordi-

nates of the point on the conic the projections of the radius of

curvature upon each axis. Now it is plain that this radius is to

its projection on y as the normal to the ordinate y. We find the

projection, therefore, of the radius of curvature on the axis of

y by multiplying the radius — ^J lin^— -72 • The y of the

X2 _ rn 2

centre of curvature then is —^^
—

v'- ^^^ h'^ = V^ 4
jh y'^\ there-

12 2

fore the y of the centre of curvature is —.r.
—

y^. In like

manner its x is —-.
— x .

a

We should have got the same values by making a = y5= 7
in Ex. 8, p. 205.

Or again, the centre of the circle circumscribing a triangle is

the intersection of perpendiculars to the sides at their middle

points ;
and when the triangle is formed by three consecutive

points on a curve, two sides are consecutive tangents to the

curve, and the perpendiculars to them are the corresponding

normals, and the centre of curvature of any curve is the mtersec-
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tion of two consecutive normals. Now if we make x = x" = X,

y' =y" = Y-t
in Ex. 4, p. 166, we obtain again the same values as

those just determined.

247. To find the co-ordinates of the centre of curvature ofa

parabola.

The projection of the radius on the axis of y is found in like

manner by multiplying the radius of curvature

N y _ _y_

and subtracting this quantity from y\ we have

TV! ., .
, p , P -\- 4a;'

In like manner its xis x -\ ^^-^^ = x -{- .

2 sm^ 2

The same values may be found from Ex. 10, p. 200.

248. The evolute of a curve is the locus of the centres of

curvature of its different points. If it were required to find the

evolute of a central conic, we should solve for x'l/' in terms of the

X and y of the centre of curvature, and, substituting in the equa-
(f c^

tion of the curve, should have (writing
- =A, t = B),a o

In like manner the equation of the evolute of a parabola is found

to be
27^i/'

= 16(£C~Jp)',

which represents a curve called the semi-cubical parabola.
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CHAPTER XIV.

METHODS OF ABRIDGED NOTATION.

249. If 5=0, 8' = 0j be the equations of two conies, then

the equation of any conic passing through their four, real

or imaginary, points of intersection, can be expressed in the

form S=k8'. For the form of this equation shows (Art. 40),

that it denotes a conic passing through the four points common
to S and 8'

;
and we can evidently determine k so that 8=Jc8'

shall be satisfied by the co-ordinates of any fifth point. It must

then denote the conic determined by the five points.*

This will of course still be true, if either or both the quan-
tities 8, 8' be resolvable into factors. Thus 8=koi^j being

evidently satisfied by the co-ordinates of the points where the

right lines a, /3,
meet 8^ represents a conic passing through the

four points where 8 is met by this pair of lines
; or, in other

words, represents a conic having a and yS for a pair of chords of

intersection with 8. If either a or yS do not meet 8 in real

points,
it must still be considered as a chord of imaginary inter-

section, and will preserve many important properties in relation

to the two curves, as we have already seen in the case of the

circle (Art. 106). So again, olj
= Jc^8 denotes a conic circum-

scribing the quadrilateral a^yB^ as we have already seen (Art.

122).t It is obvious that in what is here stated, a need not

be restricted, as at p. 55, to denote a line whose equation has

* Since five conditions determine a conic, it is evident that the most

general equation of a conic satisfying four conditions must contain one in-

dependent constant, whose value remains undetermined until a fifth condi-

tion is given. In like manner, the most general equation of a conic

satisfying three conditions contains two independent constants, and so on.

Compare the equations of a conic passing through three points or touching
three lines (Arts. 124, 129.)

f If aft be one pair of chords joining four points on a conic S, and 7^

another pair of chords, it is immaterial whether the general equation of a

conic passing through the four points be expressed in any of the forms

S -
kaj3,

S -
kf^S, aft

-
k^/S, where k is indeterminate; because, in virtue of

the general principle, >S' is itself of the form aft
-

k<^^.
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been reduced to the form a? cos a + 3/
sin a =j[;; but that the

argument holds if a denote a line expressed by the general

equation.

250. There are three values of h^ for which S—kS' re-

presents a pair of right lines. For the condition that this shall

be the case, is found by substituting a — ha\ h — hh'^ '&c. for

«, 5, &c. in

abc + ^fgh
- af - Ig"

- cW = 0,

and the result evidently is of the third degree in ^, and is

therefore satisfied by three values of h. If the roots of this

cubic be lc',h'\lc'\ then 8-TcS\ S-h" 8\ S-k"'8\ denote

the three pairs of chords joining the four points of intersection

of )8'and 8' (Art. 238).

Ex. 1. What is the equation of a conic passing through the points

where a given conic S meets the axes ?

Here the axes a: = 0, y = 0, are the chords of intersection, and the equa-

tion must be of the form S= kxy, where k is indeterminate. See Ex. 1, p. 143.

Ex. 2. Form the equation of the conic passing through five given points ;

for example (1, 2), (3, 5), (-1, 4), (- 3,
-

1), (- 4, 3). Forming the equa-

tions of the sides of the quadrilateral formed by the first four points, we see

that the equation of the required conic must be of the form ,

(3ar
-

2i/ + 1) (5a;
- 2y + 13) = k\x- ^y + \l)liii\- 4y + 5).

Substituting in this, the co-ordinates of the fifth point (- 4, 3), we obtain

k = -
^iV« Substituting this value and reducing the equation, it becomes

79a;' - 320xy + 301^ + 1101a; - 1665?/ + 1586 = 0.

251. The conies 8, 8-ha^ will touch; or, in other words,

two of their points of intersection will coincide
;

if either a or ^
touch 8^ or again, if a and /3 intersect in a point on 8. Thus if

r= be the equation of the tangent to /S at a given point on it

xy\ then 8^ T[lx-\-my -\-n)^ is the most general equation of a

conic touching /S' at the point x'y '^

and if three additional con-

ditions are given, we can complete the determination of the

conic, by finding l^ m^n.
Three of the points of intersection will coincide \ilx-]r'my + n

pass through the point xy ;
and the most general equation of a

conic osculating 8 at the point xy\ \s8=T{lx + my- Ix - my').

If it be required to find the equation of the osculating circle^

we have only to express that the coefiicient xy vanishes in this
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equation, and that the coefficient of x^ = that of
y'' ;

when we
have two equations which determine I and m.

The conies will have four consecutive points common if

Ix + my + n coincide with
jT,

so that the equation of the second

conic is of the form 8=hT\ Compare Art. 239.

Ex. 1. If the axes of S be parallel to those of /S", so will also the axes

of /S'
- hS'. For if the axes of co-ordinates be parallel to the axes of S,

neither A^nor /S' will contain the term xy. If /S" be a circle, the axes of

S - kS' are parallel to the axes of S. If S - kS' represent a pair of right

lines, its axes become the internal and external bisectors of the angles he-

tween them
;
and we have the theorem of Art. 244.

Ex. 2. If the axes be parallel to the axes of S, and also to those of

S -
kafi, then a and /B are of the forms Ix + my + n, Ix - my ^ n\

Ex. 3. To find the equation of the circle osculating a central conic

The equation must be of the form

Expressing that the coefficient of xy vanishes, we reduce the equation to

t^efonn <^4'- »)-(?'
^ f -)(?" f'4' 4)-

And expressing that the coefficient of a:* = that of y*, we find

h'*
I = — -, and the equation becomes

"

^ ..2(.--f)x^._ 2(t'-«')y»y y.^^^^
a* b*

Ex. 4. To find the equation of the circle osculating a parabola.

Ana. {p* + Apx') (y*
-
px) =

{2yy'
- p {x + x')} {2yy' + px -

3px'}.

252. We have seen that S=ka^ represents a conic passing

through the four points /"^
-P, G ; i^,^, where a, ^ meet / \ p
S] and it is evident that

^>j- T^xC /-""^T'^v
—^

the closer to each other C r ^| / \ \ i J
the lines a, 13 are, the ^ yl'^ ^"^q^""'^
nearer the point F is to ^, V^
and Q to q. Suppose then that the lines a and /? coincide, then

the points P, p', Qj q coincide, and the second conic will touch

the first at the points P, Q. Thus, then, the equation 8= koi^

represents a conic having douhle contact with 8, a being the chord

of contact. Even if a do not meet 8, it is to be regarded as an

imaginary chord of contact of the conies 8 and 8—koL\ In
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like manner a.'y
= h^^ represents a conic to which a and 7 are

tangents and ^ the chord of contact, as we have already seen

(Art. 123). The equation of a conic having double contact

with >S' at two given points xy\ x"y" may be also written in the

form 8=hTT\ where T and T represent the tangents at these

points.

253. If the line a be parallel to an asymptote of the conic

S^ it will also be parallel to an asymptote of any conic repre-

sented by 8=koi^, which then denotes a system passing through

three finite, and one infinitely distant point. In like manner,
if in addition j3 were parallel to the other asymptote, the system

would pass through two finite and two infinitely distant points.

Other forms which denote conies having points of intersection

at infinity, will be recognized by bearing in mind the prin-

ciple (Art. 67) that the equation of an infinitely distant line is

0.£c + 0.2/ + (7=0; and hence (Art. 69) that an equation, appar-

ently not homogeneous, may be made homogeneous in form,i if in

any of the terms which seem to be below the proper degree of

the equation we replace one or more of the constant multipliers

by 0. a? + 0.^4 (7. Thus, the equation of a conic referred to its

asymptotes x7/
= ¥ (Art. 199), is a particular case of the form

tiy
=

yS'^ referred to two tangents and the chord of contact

(Arts. 123, 252). Writing the equation xy=^{0.x + 0.y-[-ky\

it is evident that the lines x and y are tangents, whose points of

contact are at infinity (Art. 154).

254. Again, the equation of a parabola 3/^ =px is also a par-

ticular case of a7=y8^. Writing the equation x {0.x-\- 0.y-\-p) =y* J

the form of the equation shows not only that the line x touches

the curve, its point of contact being the point where x meets y,.

but also that the line at infinity touches the curve, its point of

contact also being on the line y. The same inference may be^

drawn from the general equation of the parabola

{ax + fyy + {2gx + 2f7/ + c) [O.x + O.y -\- 1)
=

0,.

which shews that both 2gx + 2fy + c,
and the line at infinity are?

tangents, and that the diameter air + yS?/ joins the points of con-^

tact. Thus, then, every parabola has one tangent altogether at air-

infinite distance. In fact, the equation which determines the;
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direction of the points at infinity on a parabola is a perfect

square (Art. 137); the two points of the curve at infinity

therefore coincide; and therefore the line at infinity is to be

regarded as a tangent ('Art. 83).

Ex. The general equation

ax^ + 'Ihxy + hy^ + Igx + 2/y + c = 0,

may be regarded as a particular case of the form (Art. 122) a<y
= ^^5. For

the first three terms denote two lines «, 7 passing through the origin, and

the last three terms denote the line at infinity /3, together with the line 5,

^gx + Ify \ c. The form of the equation then shows that the lines «, 7
meet the curve at infinity, and also that ^ represents the line joining the

finite points in which 07 meet the curve.

255. In accordance with Art. 253, the equation >S'= h^ is to

be regarded as a particular case of /S'= a/9, and denotes a system
of conies passing through the two finite points where ^ meets S^

and also through the two infinitely distant points where 8 is

met by O.x + O.y -{-h. Now it is plain that the coefficients of

'x\ of xy^ and of y\ are the same in 8 and 'm. 8— k^, and there-

fore (Art. 234) that these equations denote conies similar and

similarly placed. We learn therefore that two conies similar

and similarly placed meet each other in two infinitely distant

points^ and consequently only in two finite points.

This is also geometrically evident when the curves are

hyperbolas: for the asymptotes of similar conies are parallel

(Art. 235), that is they intersect at in-

finity; but each asymptote intersects

its own curve at infinity ; consequently
the infinitely distant point of intersec-

tion of the two parallel asymptotes is

also a point common to the two curves.

Thus, on the figure, the infinitely distant

points of meeting of the lines OX, Ox^
and of the lines OY, Oy^ are common to the curves. One of

their finite points of intersection is shown on the figure, the

other is on the opposite branches of the hyperbolas.

If the curves be ellipses, the only difference is that the

asymptotes are imaginary instead of being real. The directions

of the points at infinity, on two similar ellipses, are determined

from the same equation {ax' -\- 2hxy + hy'
=

0) (Arts. 136,234).
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Now although the roots of this equation are imaginary, yet

they are, in both cases, the same imaginary roots, and therefore

the curves are to be considered as having two imaginary points

at infinity common. In fact, it was observed before, that even

when the line a does not meet >S^ in real points, it is to be re-

garded as a chord of imaginary intersection of S and S—Jca^^
and this remains true when the line a is infinitely distant.

If the curves be parabolas, they are both touched by the line

at infinity (Art. 254) : but the direction of the point of contact,

depending only on the first three terms of the equation, is the

same for both. Hence, two similar and similarly placed para-
tolas touch each other at infinity. In short the two infinitely

distant points common to two similar conies, are real, imaginary,
or coincident, according as the curves are hyperbolas, ellipseSy

or parabolas.

256. The equation 8=1^^ or /S'=^ (0.^7 + 0.3/+ l)'"*
is mani-

festly a particular case of S=Jcol\ and therefore (Art. 252) de-

notes a conic having double contact with 8, the chord of contact

being at infinity. Now 8-k difi'ers from 8 only in the constant

term. Not only then are the conies similar and similarly placed,

the first three terms being the same, but they are also con-

centric. For the co-ordinates of the centre (Art. 140) do not

involve c, and therefore two conies whose equations differ only
in the last term are concentric (see also Art. 81). Hence, two

similar and concentric conies are to he regarded as touching each

other at two infinitely distant points. In fact, the asymptotes of

two such conies are not only parallel but coincident
; they have

therefore not only two points at infinity common, but also the

tangents at those points ;
that is to say, the curves touch.

If the curves be parabolas, then, since the line at infinity

touches both curves, 8 and 8—h^ have with each other, by
Art. 251, a contact at infinity of the third order. Two para-

bolas whose equations differ only in the constant term will be

equal to each other
;

for the curves y^
= px^ y^ =p {x -\- n) are

obviously equal, and the equations transformed to any new axes

will continue to diff'er only in the constant term. We have

seen, too, (Art. 205) that the expression for the parameter of a

parabola does not involve the absolute term. The parabolas
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then, S and S-Jc\ are equal, and we learn that two equal and

similarly placed paraholas^mdy oe considered as having with each

other a contact of the third order at infinity.

257. All circles are similar curves, the terms of the second

degree being the same In all. It follows then, from the last

Articles, that all circles pass through the same two imaginary

points at infinity^ and on that account can never Intersect In more

than two finite points, and that concentric circles touch each other

in two imaginary points at infinity; and on that account can.

never Intersect In any finite point. It will appear hereafter

that a multitude of theorems concerning circles are but parti-

cular cases of theorems concerning conies which pass through
two fixed points.

258. It is important to notice the form TV + w^^''* = wV>
which denotes a conic with respect to which a, /9, 7 are the

sides of a self-^conjugate triangle (Art. 99). For the equation

may be written in any of the forms

The first form shews that n^ \ myS, ^7 — m^ (which Intersect

in /37) are tangents, and a their chord of contact. Consequently
the point ^^ is the pole of a. Similarly from the second form

7a is the pole of /9. It follows then, that a/8 Is the pole of 7 ;

and this also appears from the third form which shows that the

two Imaginary lines Za±m/3V(— 1) are tangents whose chord

of contact Is 7. Now these imaginary lines intersect In the

real point o.^ which is therefore the pole of 7 ; although being
within the conic, the tangents through it are Imaginary.

It appears, in like manner, that

aa' + 2Aa/S + 5y8' = C7'*

denotes a conic, such that <5cy8 is the pole of 7 ;
for the left-hand

side can be resolved Into the product of factors representing

lines which Intersect in o.^.

259. We proceed to notice some inferences which follow on

interpreting, by the help of Art. 34, the equations we have

already used. Thus (see Arts. 122, 123) the equation asi
— k^^

implies that the product of the perpendiculars from any point of
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a conic on two fixed tangents is in a constant ratio to the square

of the perpendicular on their chord of contact.

The equation wy — k^h^ similarly interpreted, leads to the

important theorem : The product of the perpendiculars let fall

from any point of a conic on two opposite sides of an inscribed

quadrilateral is in a constant ratio to the product of the perpen-
diculars letfall on the other two sides.

From this property we at once infer, that the anharmondc

ratio of a pencil^ whose sides pass through four fixed points of a

conic
J
and whose vertex is any variable point ofitj is constant.

For the perpendicular

OA.OB.smAOB OC.OD.s'mCOD .
a= AB ' "^^ CD '^'*

Now if we substitute these values ^ ~ZI^=4\
in the equation ay=^k^Bjthe con-

/^^^^^^-""^^
—^^ \\o

tinned product OA.OB.OG.OD ^/^^^ X5?v

will appear on both sides of the I ^\^^ /a V/
equation, and may therefore be \^ ^\^ /C-^^^^
suppressed, and there will remain ^^c^^

sin^Qg.sinOOi)^ AB.CD
8mB0G.BmA0I)~ BCAD'

but the right-hand member of this equation is constant, while

the left-hand member is the anharmonic ratio of the pencil OA^
OB, 00, on.

The consequences of this theorem are so numerous and im-

portant, that we shall devote a section of another chapter to

develope them more fully.

260. If /S=0 be the equation to a circle, then (Art. 90) 8 is

the square of the tangent from any point xy to the circle
;
hence

S—Jcaff—0 (the equation of a conic whose chords of intersection

with the circle are a and fi) expresses that the locus of a point,

such that the square of the tangent from it to a fixed circle is in a

constant ratio to the product of its distances from two fixed lines,

is a conic passing through the four points in which the fixed lines

intersect the circle.

This theorem is equally true whatever be the magnitude of

the circle, and whether the right lines meet the circle in real or

Q
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imaginary points ; thus, for example, if the circle be infinitely

small, the locus of a pointy the square of whose distance from a

fixedpoint is in a constant ratio to the product of its distancesfrom
two fixed lines^ is a conic section ; and the fixed lines may be

considered as chords of imaginary intersection of the conic with

an infinitely small circle whose centre is the fixed point.

261. Similar inferences can be drawn from the equation

S-'JcoL^ = 0, where S is a circle. We learn that the locus of a

pointy such that the tangentfrom it to a fixed circle is in a constant

ratio to its distance from a fixed line, is a conic touching the circle

at the two points where the fixed line meets it; or, conversely, that

if a circle have double contact with a conic^ the tangent drawn to

the circle from any point on the conic is in a constant ratio to the

perpendicularfrom the point on the chord of contact.

In the particular case where the circle is infinitely small, we
obtain the fundamental property of the focus and directrix, and

we infer that the focus of any conic may he considered as an in'

finitely small circle^ touching the conic in two imaginary points

situated on the directrix,

262. In general, if in the equation of any conic the co-ordi-

nates of any point he suhsfituted^ the result will he proportional to

the rectangle under the segments of a chord drawn through the

point parallel to a given line.'^

For (Art. 148) this rectangle

a cos'^^-27^ cos^ sin(9 + i sin^^'

where, by Art. 134, c' is the result of substituting in the equa-
tion the co-ordinates of the point ; if, therefore, the angle d be

constant, this rectangle will be proportional to c,

Ex. 1. If two conies have double contact, the square of the perpendicular
from any point of one upon the chord of contact, is in a constant ratio to the

rectangle under the segments of that perpendicular made by the other.

Ex. 2. If a line parallel to a given one meets two conies in the points

P, Q, p, q, and we take on it a point O, such that the rectangle OP.OQ
may be to Op .Oq m a. constant ratio, the locus of O is a conic through the

points of intersection of the given conies.

* This is equally true for curves of any degree.
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Ex. 3. The diameter of the circle circumscribing the triangle formed by

two tangents to a central conic and their chord of contact is —
;
where

P
6', h" are the semi-diameters parallel to the tangents, and ;p is the perpen-
dicular from the centre on the chord of contact. [Mr. Burnside].

It will be convenient to suppose the equation divided by such a constant,

that the result of substituting the co-ordinates of the centre shall be unity.

Let Hy if' be the lengths of the tangents, and let S' be the result of substi-

tuting the co-ordinates of their intersection
;
then

t^-.h"":'. S': 1, r»:6"«:: S' : 1.

But also if Of be the perpendicular on the chord of contact from the vertex

of the triangle, it is easy to see, attending to the remark. Note, p. 145,

Hence — =— .

w p
But the left-hand side of this equation, by Elementary Geometry, represents

the diameter of the circle circumscribing the triangle.

Ex. 4. The expression (Art. 242) for the radius of the osculating circle

may be deduced from the last example by supposing the two tangents to

coincide
;
or also from the following theorem due to Mr. Roberts : If n, n'

be the lengths of two intersecting normals
; p, p' the corresponding central

perpendiculars on tangents; h' the semi-diameter parallel to the chord join-

ing the two points on the curve, then np + n'p'
= 26". For if S' be the

result of substituting in the equation the co-ordinates of the middle point

of the chord, w, ©' the perpendiculars from that point on the tangents, and

2/3 the length of the chord, then it can be proved, as in the last example,

that /3*
=

b'*S'f « = pS', »'
=p'S', and it is very easy to see that nts -l- n'vs = 2/3*.

263. Iftvjo comes have eachdouhle contact yjtth a third^ tJieir

chords of contact with the third conic^ and a pair of their chords

of intersection with each other
^
will all pass through the same

pointy and willform a harmonic pencil.

Let the equation of the third conic be /S'=0, and those of

the other two conies,

Now, on subtracting these equations, we find L^ - j\P — 0,

which represents a pair of chords of intersection [L±M=0)
passing through the intersection of the chords of contact [L and

M)^ and forming a harmonic pencil with them (Art. 57).

Ex. 1. The chords of contact of two conies with their common tangents

pass through the intersection of a pair of their common chords. This is a par-

ticular case of the preceding, S being supposed to reduce to two right lines.

Q2

FV
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Ex. 2. The diagonals of any inscribed, and of the corresponding circum-

scribed quadrilateral, pass through the same point, and form a harmonic

pencil. This is also a particular case of the preceding, S being any conic,

and S ^ L*, S -\- 31* being supposed to reduce to right lines. The proof

may also be stated thus : Let
t^, ti, c^ ; ^3, t^, Cg be two pairs of tangents and

the corresponding chords of contact. In other words, Cj, c^ are diagonals of

the corresponding inscribed quadrilateral. Then the equation of S may be

written in either of the forms

t,f,
-

ci« = 0, t^h
- c/ = 0.

The second equation must therefore be identical with the first, or can only

differ from it by a constant multiplier. Hence t^ti
-

\t.J^ must be identical

with c* -
\c,*. Now c* - Xca* = represents a pair of right lines passing

through the intersection of Ci, Cj, and harmonically conjugate with them ;

and the equivalent form shows that these right lines join the points t^t^, t^^

and <i^4, ^2^3. For tyt^
- \Ut^ = must denote a locus passing through

these points.

Ex. 3. If 2a, 2y3, 27, 25 be the eccentric angles of four points on a

central conic, form the equation of the diagonals of the quadrilateral formed

by their tangents. Here we have

^1
= - cos2a + \ sin2a -

1, ^g
= - cos2j3 + \ sin2/3

-
1,ah ah

Ci = -
cos(a + y3) + ^ sin(a + /3)

-
cos(a

-
yS),

and we easily verify

<,^,-Ci* =
-sin'(a-/3)|^+|'-l|.

Hence reasoning, as in the last example, we find for the equations of the

diagonals Ci _ ^ Cg

sin (a
-

/3)

~
sin (7

-
<5)

*

264. If three comes have each double contact with a fourth^

six of their chords of intersection will j)ass three hy three through

the same points^ thus forming the sides and diagonals of a

quadrilateral.

Let the conies be

By the last Article the chords will be

L + M=0, l/+iV=0, N-L =
0',

As in the last Article, we may deduce hence many particular
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theorems, by supposing one or more of the conies to break up
into right lines. Thus, for example, if S break up into right

lines, it represents two common tangents to 8+M^^ S-^N^\
and if L denote any right line through the intersection of those

common tangents, then 8-\- U also breaks up into right lines,

and represents any two right lines passing through the intersec-

tion of the common tangents. Hence, if through the intersection

of the common tangents of two conies we draw any j>air of right

lines, the chords of each conic Joining the extremities of those lines

will rneet on one of the common chords of the conies. This is the

extension of Art. 116. Or, again, tangents at the extremities of
either of these right lines will meet on one of the common chords,

265. If S^L\ 8+M% S+N% all break up into pairs of

right lines, they will form a hexagon circumscribing Sj the

chords of intersection will be diagonals of that hexagon, and

we get Bria^Lchon's theorem :
^' The three opposite diagonals of

every hexagon circumscribing a conic intersect in a
point,'*'* By

the opposite diagonals we mean (if the sides of the hexagon be

numbered 1, 2, 3, 4, 5, 6) the lines joining (1, 2) to (4, 5), (2, 3)

to (5, 6), and (3, 4) to (6, 1) ;
and by changing the order in

which we take the sides, we may consider the same lines as

forming a number (sixty) of different hexagons, for each of

which the present theorem is true. The proof may also be stated

as in Ex. 2, Art. 263. If

V,-C>0, t,t^-c:^0, ^3^e-c/
=

0,

be equivalent forms of the equation of 8, then
c^
—

c^
=

c,
re-

presents three intersecting diagonals.*

266. If three conic sections have one chord common to ally their

three other common chords will pass through the same point.

Let the equation of one be 8=0, and of the common chord

X = 0, then the equations of the other two are of the form

S+LM=^0, 8+LN=^0,
* Mr. Todhunter has with justice objected to this proof, that since no

rule is given which of the diagonals of t^t^f^t^ is Ci = 4 Cz, all that is in strict-

ness proved is that the lines joining (1, 2) to (4, 5) and (2, 3) to (5, 6) inter-

sect either on the line joining (3, 4) to (6, 1), or on that joining (1, 3) to

(4, 6). I have not tried to remove this ambiguity, as several ather un-

ambiguous proofs of Brianchon's theorem will be given.
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which must have, for their intersection with each other,

hut M— iVis a line passing through the point {MN).

According to the remark in Art. 257, this is only an extension

of the theorem (Art. 108), that the radical axes of three circles

meet in a point. For three circles have one chord (the line at

infinity) common to all, and the radical axes are their other

common chords.

The theorem of Art. 264 may be considered as a still further

extension of the same theorem, and three conies which have

each double contact with a fourth may be considered as having
four radical centres, through each of which pass three of their

common chords.

The theorem of this Article may, as in Art. 108, be other-

wise enunciated : Givenfour points on a come section^ its chord of
intersection with a fixed conic passing through two of these points

will pass through a fixedpoint.
Ex. 1. If through one of the points of intersection of two conies we

draw any line meeting the conies in the points

P, p, and through any other point of intersection

B a line meeting the conies in the points Q, q,

then the lines PQ, jyq, will meet on CD, the

other chord of intersection. This is got by sup-

posing one of the conies to reduce to the pair of

lines OA, OB.

Ex. 2. If two right lines, drawn through the point of contact of two

conies, meet the curves in points P, p, Q, q, then the chords PQ, pq, will

meet on the chord of intersection of the conies.

This is also a particular case of a theorem given in Art. 264, since one

intersection of common tangents to two conies which touch, reduces to

the point of contact (Cor., Art. 117).

267. The equation of a conic circumscribing a quadrilateral

{cny
—

7c^B) furnishes us with a proof of " Pascal's theorem," that

the three intersections of the opposite sides of any hexagon inscribed

in a conic section are in one right line.

Let the vertices be abcdef and let a& = denote the equation
of the line joining the points a, h

; then, since the conic circum-

scribes the quadrilateral dbcd^ its equation must be capable of

being put into the form

ab.cd—hc.ad=^0.
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But since it also circumscribes the quadrilateral defa^ the same

equation must be capable of being expressed in the form

de.fa
— ef.ad=0.

From the identity of these expressions we have

ah.cd— de.fa
—

{bc-'ef)ad.

Hence we learn that the left-hand side of this equation (which

from its form represents a figure circumscribing the quadrilateral

formed by the lines ab^ de^ cd^ af) is resolvable into two factors,

which must therefore represent the diagonals of that quadri-

lateral. But ad is evidently the diagonal which joins the vertices

a and d^ therefore he — ef must be the other, and must join the

points [ah^ de)^ [ed, af) ;
and since from its form it denotes a line

through the point (/;c, e/*), it follows that these three points are

in one right line.

268. We may, as in the case of Brianchon's theorem, obtain

a number of different theorems concerning the same six points,

according to the different orders in which we take them. Thus

since the conic circumscribes the quadrilateral beef, its equation

can be expressed in the form

'be,cf—hc,ef=0,

isTow, from identifying this with the first form given in the last

Article, we have
ab.cd— le,cf— {ad—ef) hc\

whence, as before, we learn that the three points {ah, cf), [cd, he),

[ad, ef) lie in one right line, viz. ad— ef— 0.

In like manner, from identifying the second and third forms

of the equation of the conic, we learn that the three points

[de, cf), [fa, he), {ad, he) lie in one right line, viz. hc-ad^O,
But the three right lines

he ~ ef= 0, ef— ad =0, ad— he — 0,

meet in a point (Art. 40). Hence we have Steiner's theorem,

that " the three Pascal's lines which are obtained by taking the

vertices in the orders respectively, ahedef, adcfeh, afched, meet

in a point." For some further developments on this subject we

refer the reader to the note at the end of the volume.



232 METHODS OF ABRIDGED NOTATION.

Ex. 1. If a, h, c be three points on a right line; a', h', c' three points

on another line, then the Intersections {hc\ h'c), {ca, c'a), {ah', a'h) lie in a

right line. This is a particular case of Pascal's theorem. It remains true

if the second line be at infinity and the lines ba', ca' be parallel to a given

line, and similarly for ch\ ah'
; ac', he'.

Ex. 2. From four lines can be made four triangles, by leaving out in

turn one line. The four intersections of perpendiculars of these triangles

lie in a right line. Let a, h, c, d be the right lines
; a', b', c', d' lines perpen-

dicular to them
;
then the theorem follows by applying the last example to

the three points of intersection of a, h, c with d, and the three points at

infinity on a', h', c'.*

Ex. 3. Stein er's theorem, that the perpendiculars of the triangle formed

by three tangents to a parabola intersect on the directrix is a particular case

of Brianchon's theorem. For let the three tangents be a, h, c; let three

tangents perpendicular to them be a', h', c', and let the line at infinity,

which is also a tangent, (Art. 254) be oo . Then consider the six tangents

a, h, c, c', cc
,
a'

;
and the lines joining ah, c' oo

; he, a' oo-, cc', aa' meet in a

point. The first two are perpendiculars of the triangle ;
and the last is the

directrix on which intersect every pair of rectangular tangents (Art. 221).

This proof is by Mr. John C. Moore.

Ex. 4. Given five tangents to a conic, to find the point of contact of

any. Let ABCDE be the pentagon formed by the tangents ;
then li AC

and BE intersect in O, DO passes through the point of contact of AB.
This is derived from Brianchon's theorem by supposing two sides of the

hexagon to be indefinitely near, since any tangent is intersected by a con-

secutive tangent at its point of contact (p. 140).

269. Pascal's theorem enables us, given five points -4, B^ (7,

J9, E^ to construct a conic
;
for if we draw any line AP through

one of the given points we can find the point F in which that

line meets the conic again, and can so determine as many points

on the conic as we please. For, by Pascal's theorem, the points
of intersection [AB,DE\ [BO, EF), [CD, AF) are in one right

• This proof was given me independently by Prof. De Morgan and by
Mr. Burnside. The theorem itself follows at once from Steiner's theorem,

Ex. 3, p. 199. For the four intersections of perpendiculars must lie on the

directrix of the parabola, which has the four lines for tangents. It follows

in the same way from Cor. 4, p. 193, that the circles circumscribing the four

triangles pass through the same point, viz. the focus of the same parabola.

If we are given five lines M. Auguste Miquel has proved (see Catalan's

Theorhnes et Prohlemes de Geoinetrie Elementaire, p. 93) that the foci of

the five parabolas which have four of the given lines for tangents lie on

a circle.
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line. But the points {AB, BE), [CD^ AF) are by hypothesis
known. If then we join these points 0^ P, and join to E the

point Q in which OP meets BC^ the intersection of QE with AP
determines F. In other words, F is the vertex of a triangle

FPQ whose sides pass through the fixed points Aj Ej 0^ and whose

base angles P, Q move along the fixed lines CD, CB (see Ex. 3,

p. 43). The theorem was stated in this form by MacLaurin.

Ex. 1. Given five points on a conic, to find its centre. Draw AP
parallel to BC and determine the point F. Then AF and BC are two

parallel chords and the line joining their middle points is a diameter. In

like manner, by drawing QE parallel to CD we can find another diameter,

and thus the centre.

Ex. 2. Given five points on a conic, to draw the tangent at any one of

them. The point F must then coincide with A, and the line QF drawn

through E must therefore take the position qA. The tangent therefore

must be pA.

Ex. 3. Investigate by trilinear co-ordinates (Art. 62) MacLaurin^s

method of generating conies. In other words, find the locus of the vertex

of a triangle whose sides pass through fixed points and base angles move
on fixed lines. Let «, ^3, 7 be the sides of the triangle formed by the fixed

points, and let the fixed lines be la f m/3 + n7 = 0, I'a + m'/3 + w'7 = 0. Let

the base be a =
yM/3.

Then the line joining to ^87, the intersection of the

base with the first fixed line, is

{lix + ni) y3 + W7 = 0.

And the line joining to «7, the intersection of the base with the second line, is

(I'jji + m') a.
4. n'fi^

= 0.

Eliminating /n from the last two equations, the equation of the locus is

found to be
i^'a^ =

(„^y3 + „^) (_/'„ 4. „'^),

a conic passing through the points

^7, 7a, (a, la -j- mjB + «7), (/3, I'a + m'ft + w'7).
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EQUATION REFERRED TO TWO TANGENTS AND THEIR CHORD.

270. It much facilitates computation (Art. 229) when the

position of a point on a curve can be expressed by a single

variable : and this we are able to do in the case of two of the

principal forms of equations of conies already given. First let

X, M be any two tangents and R their chord of contact. Then

the equation of the conic (Art. 252) is LM—E^'^ and if /j,L
= B

be the equation of the line joining LB to any point on the

curve, (which we shall call the point //.),
then substituting in the

equation of the curve, we get M=jjlE and jm^L^M for the

equations of the lines joining the same point to MR and to LM,

Any two of these three equations therefore will determine a

point on the conic.

The equation of the chord joining two points on the curve

A*> /^')
is

^^'x. -{fjLJrii')R-{ M= 0.

For it is satisfied by either of the suppositions

{fiL ==R^fiR = if), (fju'L
= R, fi'R = M),

If
fjL
and fi coincide we get the equation of the tangent, viz.

fjL'L-2fjLR + M=0,

Conversely, if the equation of a right line {fi^L—2/jbR-\-M=0)
involve an indeterminate

fju
in the second degree, the line will

always touch the conic LM= R\

271. Tofind the equation of the jpolar ofany 'point.

Let the co-ordinates of the point substituted in the equation
of either tangent through it, give the result

Ai'Z'-2;t*i?' + ir' = 0.

Now at the point of contact yi^
=^

-j- ,
and /^= y (Art. 270).

Therefore the co-ordinates of the point of contact satisfy the

equation ;^iu __ ^;^;^ ^ j^i^' ^ q^

which is that of the polar required.

If the point had been given as the intersection of the lines

aL = RjbR = M, it is found by the same method that the equa-
tion of the polar is ^^^ _ 2aR + M^ 0.
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272. In applying these equations to examples it is useful to

take notice that, if we eliminate R between the equations of

two tangents

fi'L
- 2^R +M= 0, ;a"Z

-
2/a'jR+M= 0,

we get iifiL =M for the equation of the line joining LM to

the intersection of these tangents. Hence if we are given the

product of two /I's, fi^'
=

a, the intersection of the corresponding

tangents lies on the fixed line aL — M, In the same case, sub-

stituting a for
fifjb'

in the equation of the chord joining the points,

we see that that chord passes through the fixed point {aL -\-MjE),

Again, since the equation of the line joining any point fi to

LM is fi^L = Mj the points + fij
—

fi lie on a right line passing

through LM,

Lastly, if LM= JS", Xif= -B" be the equations of two conies

having Z, M for common tangents; then since the equation

/jb^L
=M does not involve B or E\ the line joining the point

+ yu-
on one conic to either of the points + /* on the other, passes

through LM the intersection of common tangents. We shall

say that the point + /a on the one conic corresponds directly to

the point + fi and inversely to the point
—

/z-
on the other. And

we shall say that the chord joining any two points on one conic

corresponds to the chord joining the corresponding points on

the other.

Ex. 1. Corresponding chords of two conies intersect on one of the chords

of intersection of the conies.

The conies iJf -
jR', LM - It* have iJ* - J2 "

for a pair of common

chords. But the chords

fifi'L
-
(^ + /t') J2 + M= 0, fxfji'L

-
(^ + fi') R' + Jf = 0,

evidently intersect on ^ - jK'. And if we change the signs of /*, fi'
in the

second equation, they intersect on iJ + i2'.

Ex. 2. A triangle is circumscribed to a given conic
;
two of its vertices

move on fixed right lines : to find the locus of the third.

Let us take for lines of reference the two tangents through the inter-

section of the fixed lines, and their chord of contact. Let the equations of

the fixed lines be aL - M=0, hL - M=0,
while that of the conic is LM - M' = 0.

Now we proved (Art. 272) that two tangents which meet on aL - M
must have the product of their fi's^^a-, hence, if one side of the triangle
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touch at the point jx, the others will touch at the points
-

,
-

,
and their

equations will be r r

^ i - 2 - J? + 3/= 0, ^' Z - 2 - i2 + 3/= 0.

fi can easily be eliminated from the last two equations, and the locus of the

vertex is found to be 4«j

(a + hf
'

the equation of a conic having double contact with the given one along
the line H.*

Ex. 3. To find the envelope of the base of a triangle, inscribed in a

conic, and whose two sides pass through fixed points.

Take the line joining the fixed points for R, let the equation of the conic

be LM - -K*, and those of the lines joining the fixed points to L3I be

aL^M=0, hL^M=0.
Now, it was proved (Art. 272) that the extremities of any chord passing

through {aL + M, R) must have the product of their fx^s
= a.

Hence, if the vertex be
/*,

the base angles must be — and -
, and the

equation of the base must be r r

abL -
(a 4 h) fxTt + /t*Jf

= 0.

The base must, therefore (Art. 270), always touch the conic

Aab

a conic having double contact with the given one along the line joining the

given points.

Ex. 4. To inscribe in a conic section a triangle whose sides pass through
three given points.

Two of the points being assumed, as in the last Example, we saw that

the equation of the base must be

abZ -
(a + 6) ^iJ! + /t'Jf

= 0.

Now, if this line pass through the point cL-R = 0, dR -M= 0, we must have

ab - {a \ b) /ac + fi*cd
= 0,

an equation sufficient to determine fi.

Now, at the point ^ we have fxL = R, ju*L
= 31; hence the co-ordinates

of this point must satisfy the equation

abL -{a + b) cR^- cd3I = 0.

The question, therefore, admits of two solutions, for either of the points in

which this line meets the curve may be taken for the vertex of the required

triangle.

* This reasoning holds even when the point L3£ is within the conic,

and therefore the tangents L, 31 imaginary. But it may also be proved
by the methods of the next section, that when the equation of the conic is

X* + JW« = R\ that of the locus is of the form V + 3P = k'R\
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It is not obvious what is the geometric meaning of the equation we have

found, but the following geometric considerations enable us to interpret it :

Let us suppose that we have drawn the two triangles 123, 456 which

can be drawn through the points A, £, C; then applying Pascal's theorem

to the hexagon 123456, we see that the line JBC passes through the inter-

section of 16, 34, But this latter point is the pole of AL (Ex. 1, p. 139).

Conversely, then AL passes through the pole of J3C, and since L is on the

polar of A (Ex. 1, E

p. 139), we have the

following construc-

tion :
" Form the tri- L

angle DJEF whose ^ /
sides are the polars

of the given points

A, B, C; let the

lines joining the cor-

responding vertices F M P

of the two triangles meet the opposite sides of the polar triangle in L,M,]V;
then the lines LM, MN, NL pass through the vertices of the required tri-

angles."

We can verify that the line ahL - (a 4 6) cS + cdM answers to the line

MN on the figure. The three given points are

{aL + M, R), [bL f M, JR), {cL -
JR, dR- Jf ),

and the three polars,

aL-M, hL~M, cdZ-2cRiMi
the three joining lines are

b{a-^ cd) Z-2c{a-^b) R^(a-\- cd)3f=0,
a (6 + cd) L-2c{a + b)R-^{b-]-cd)M=0,

cdL-M=0.
Now, the line abL -

{a -^ b) cR ^ cdM passes through the intersection of

the first of these lines with bL - M, and of the second with aL - 31.

Ex. 5. The base of a triangle touches a given conic, its extremities move
on two fixed tangents to the conic, and the other two sides of the triangle

pass through fixed points : find the locus of the vertex.

Let the fixed tangents be L, 31, and the equation of the conic L3I = R*^
Then the point of intersection of the line L with any tangent (/t'i

-
2/tjR + 31)

will have its co-ordinates L, R, 31 respectively proportional to 0, 1, 2/a.

And (by Art. 65) the equation of the line joining this point to any fixed

point lb:31' will be lm' - LM =
2fi (LR' - L'R).

Similarly, the equation of the line joining the fixed point L"R"3r' to the point

(2, fif 0), which is the intersection of the line M with the same tangent, is

2 {RM" - R"M) =
/i iL3r -

L"31).

Eliminating /jl,
the locus of the vertex is found to be

{LM' - L'M) {LM" - L"M) = 4 {LR - L'R) {RM' - R'M),
the equation of a, conic through the two given points.
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273. The chord joining the points fx tan<^, /^ cot(^ (where

^ is any constant angle) will always touch a conic having double

contact with the given one. For (Art. 270) the equation of the

chord is
^^L - fiB (tan<^ + cot<^) +M= 0,

which, since tan <^ + cot
</>
= 2 cosec2(^, is the equation of a tan-

gent to LM sm^2(f)
= W at the point yit

on that conic. It can be

proved, in like manner, that the locus of the intersection of tan-

gents at the points ^l tan<^, /a cot<^ is the conic LM—R^ sin'^2(^.

Ex. If in Ex. 5, Art. 272, the extremities of the base lie on any conic

having double contact with the given conic, and passing through the given

points, find the locus of the vertex.

Let the conies be

LM -li* = 0, LM sin«20
- i2' = 0,

then, if any line touch the latter at the point fi,
it will meet the former in

the points fi tan0 and
fi cot0j and if the fixed points are

/i', fx', the equa-

tions of the sides are

fifi tan^L -ifi' +
yu, tan0) JR + iltf = 0,

jtifi" cot0i -
(//' + /t cot0) a + M=0.

Eliminating fi,
the locus is found to be

{M-fji'R) {^'L -R) = tan»0 {M-fi"E) (fi'L
- R),

274. Givenfour joints of a conic^ the anharmomc ratio of the

penciljoining them to any fifth point is constant (Art. 259).

The lines joining four points /*', /x", /a'", //,"" to any fifth point

//-,
are

ti! {/jlL
-

i2) + {M- fiR)
=

0, yL6" [fiL -E) + (if- ixR) = 0,

ti'" {/jlL
- ^) + {M- fiR)

=
0, fju"" [fiL

-
i?) + (if- fiR)

=
0,

and their anharmonic ratio is (Art. 58)
ft ii\ r III iiii\

(fJ.'- fl"')(fM"- fM"")^

and is, therefore, independent of the position of the point fi.

We shall, for brevity, use the expression,
*' the anharmonic

ratio of four points of a conic," when we mean the anharmonic

ratio of a pencil joining those points to any fifth point on the

curve.

275. Four fixed tangents cut any fifth in points whose anhar-

monic ratio is constant.

Let the fixed tangents be those at the points fi\ ^", ^"', yu,"" ;
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and the variable tangent that at the point fi ;
then the anharmonic

ratio in question is the same as that of the pencil joining the four

points of intersection to the point LM. But (Art. 272) the

equations of the joining lines are

fi'fiL-M=:0, fjL"fiL-M=0, fju"'fjLL- 21=^0, fjL""fjLL-M=^0,

a system (Art. 59) homographic with that found in the last

Article, and whose anharmonic ratio is therefore the same.

Thus, then, the anharmonic ratio of four tangents is the same as

that of their points of contact.

276. The expression given (Art. 274) for the anharmonic

ratio of four points on a conic, /Lt', /x", //,'", //,"",
remains unchanged

if we alter the sign of each of these quantities ;
hence (Art. 272)

tf we draw four lines through any point LM^ the anharmonic

ratio offour of the jpoints (fjb\ fi"y /jl'"^ fu"") where these lines meet

the conic^ is equal to the anharmonic ratio of the other four points

(— fi\
—

/a",
—

/I,'",
—

/a"") where these lines meet the conic.

For the same reason, the anharmonic ratio offour points on one

conic is equal to that of the four corresponding points on another /

since corresponding points have the same
/u- (Art. 272). Again,

the expression (Art. 274) remains unaltered, if we multiply each

//-
either by tan or cot ^ ; hence we obtain a theorem of Mr.

Townsend's,
''

If two conies have double contact, the anharmonic

ratio offour of the points in which any four tangents to the one

meet the other is the same as that of the other four points in which

the four tangents meet the curve^ and also the same as that of the

four points of contact,^^

277. Conversely, given three fixed chords of a conic aa\

hb\ cc
;
a fourth chord dd', such that the anharmonic ratio of

abed is equal to that of db'c'd\ will always touch a certain conic

having double contact with the given one. For let a, J, c, a', h\ c'

denote the values of /a for the six given fixed points, and /t, /t'

those for the extremity of the variable chord, then the equation

(a-5)(c-^) ^ («'-y)(c--At')

{a-c)[b-H) (a'-c')(6'-/aV

when cleared of fractions, may, for brevity, be written

^/x/i' + £/x + C/i' + i* = 0,
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where A,By C^D are known constants. Solving for
//,'

from this

equation and substituting in the equation of the chord

it becomes

fi{Bfi-]-D)L + B{fi{Afi+C)-{Bfi + D)]-~M{AfjL-\-C)=^0,

or p:'{BL-^AB)+fi{nL-^{G-B)E-AM]-{DB-]-CM)=:0,

which (Art. 270) always touches

{DL + {G-B)B-AM]'-{-4.{BL-\-AB){C3f+I)E) = 0,

an equation which may be written in the form

4:{BC-AD){LM-E') + {I)L-^{B-^ C)E-\-AMY = 0,

showing that it has double contact with the given conic.

In the particular case when B= C the relation connecting

fi, fi' becomes ^^^' + J5
(/^ + /*')+ i)

=
0,

which (Art. 51) expresses that the chord /j>fM'L
—

[/n + /m') E +M
passes through a fixed point.

EQUATION REFERRED TO THE SIDES OF A SELF-CONJUGATE

/
'

TRIANGLE.

278. The equation referred to the sides of a self-conjugate

triangle Fa.^ + m'/3^ = wV (^^^t. 258) also allows the position of

any point to be expressed by a single indeterminate. For if

we write la^ny coscj)^ m^ = ny aiiKp^ then, as at pp. 96, 205,

the chord joining any two points is

la cos^-(</> + (f)')
+ m^ sin

J(<j& + <^')
= ny cos|(<^

—
0'),

and the tangent at any point is

la. cos
<f)
+ m^ sin = ny.

If for symmetry we write the equation of the conic

aa^ + llS^' + ci'^^O,

then it may be derived from the last equation, that the equation

of the tangent at any point a!^'y' is

aaa! + &/3/3' + cyy = 0,

and the equation of the polar of any point a'/Sy is necessarily

of the same form (Art. 89). Comparing the equation last

written with \a + fi^ -f vy = 0, we see that the co-ordinates of
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the pole of the last line are -
, -7 ,

-
; and, since the pole of

any tangent is on the curve, the condition that Xa -f fi^ + vy
X^ „2 y2

may touch the conic is 1- ^ ^— = 0. When this condition
a c

is fulfilled the conic is evidently touched by all the four lines

Xa + fijB ± vjj and the lines of reference are the diagonals of the

quadrilateral formed by these lines (see Ex. 3, p. 139). In like

manner, if the condition be fulfilled, aa''' + JyS''' + 07'^
=

0, the

conic passes through the four points a, ± ^6',
+ 7'.

r^ Ex. 1. Find the locus of the pole of a given line \a ^. ^^ 4. i,fy -^ith re-

gard to a conic which passes through four fixed points a', + yS', ± y.
\a'« uB'* vrj'* ^Ans. — +^ + -JL = 0.
«

/3 7
Ex. 2. Find the locus of the pole of a given line \a + fijS + 1/7, with

regard to a conio- which touches four fixed lines /« ± m^ ± W7.

Ans. — + —^ + —t = 0.
\

fX
V

These examples also give the locus of centre
;
since the centre is the

pole of the line at infinity a sin^ + y3 sin^ + 7 sinC.

279. The equation of this section is used with advantage in

investigating the properties of the foci. For, if a? = 0, ^ = be

any lines at right angles to each other through a focus, and 7
the corresponding directrix, the equation of the curve is

a particular form of the equation of this section. Its form

shows (Art. 258) that the focus [xy) is the pole of the directrix 7,

ftnd that the polar of any point on the directrix is perpendicular
to the line joining it to the focus (Art. 192) ;

for y^ the polar
of (0^7) is perpendicular to

cc,
but x may be any line drawn

through the focus.

The form of the equation shows that the two imaginary
lines x^ + y^ are tangents drawn through the focus. Now, since

these lines are the same whatever 7 be, it appears that all conies

which have the same focus have two imaginary common tangents

passing through this focus. All conies, therefore, which have ^0^^

foci common, have four imaginary common tangents, and may
be considered as conies in>scribed in the same quadrilateral. The

imaginary tangents through the focus {x^ + y'^
—

0) are the same
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as the lines drawn to the two imaginary points at infinity on any
circle (see Art. 257). Hence we obtain the following general

conception of foci :
'^

Through each of the two imaginary points

at infinity on any circle draw two tangents to the conic
;
these

tangents will form a quadrilateralj two of whose vertices will be

real and the foci of the curve, the other two may be considered

as imaginary foci of the curve."

280. The tangents through (7, x) to the curve are evidently

ey + x and ey
- x. If, therefore, the curve be a parabola, e = 1

;

and the tangents are the internal and external bisectors of the

angle [yx). Hence,
"
tangents to a parabola from any point on

the directrix are at right angles to each other."

In general, since x — ey cos<^, y — ey sin<^, we have

V
^
= tan^;

or
(j> expresses the angle which any radius vector makes with x.

Hence we can find the envelope of a chord which subtends a

constant angle at the focus, for the chord

x cosi(^-f (^')+y sinj(<^ + <^')
= e7 cos^(^ -</>'),

if
(^
-

(j)'
be constant, must, by the present section, always touch

a,^ +/ =
eVcos^i((/)-</)'),

a conic having the same focus and directrix as the given one.

281. The line joining the focus to the intersection of two

tangents is found by subtracting

a; cos<^ +y sin^
—
67 = 0,

X cos<^' + ^ sin^'- 67 = 0,

to be ic sin^(^ + 0')
-

2^ cosJ(^ + </)') =0,

the equation of a line making an angle \{<i>-\-(p') with the axis

of
a:,

and therefore hisectmg the angle hetvjeen the focal radii.

The line joining to the focus the point where the chord of

contact meets the directrix is

X cos^ ((/) + (/)') 4 y sin \ {<f) + cj)')
=

0,

a line evidently at right angles to the last.

To find the locus of the intersection of tangents atpoints which

suhtend a given angle 2h at the focus.
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By an elimination precisely the same as that in Ex. 2, p. 96,
the equation of the locus is found to be [x^+y') cos^g = eV>
which represents a conic having the same focus and directrix as

the given one, and whose eccentricity = —^ .
•^ coso

If the curve be a parabola, tbe angle between the tangents is

in this case given. For the tangent {x cos(^-f ?/ sine/)
—

7) bisects

the angle between £c cos -f 3/
sin ^ and 7. The angle between the

tangents is, therefore, half the angle between x cos<^+ ?/ sin(^ and
X cos

cf)' -I- y sinc^', or = ^ (^
—

</>'). Hence, the angle between two

tangents to a parabola is half the angle which the points of contact

subtend at the focus ; and again, the locus of the intersection of

tangents to a parabola^ which contain a given angle^ is a hyperbola
with the same focus and directrix^ and whose eccentricity is the

secant of the given angle^ or whose asymptotes contain double

the given angle (Art. 167).

282. Any two conies have a common selfconjugate triangle.

For (see Ex. 1, p. 139) if the conies intersect in the points

A^ B^ (7, Z>, the triangle formed by the points E^ F^ 0, in which

each pair of common chords intersect, is self-conjugate with re-

gard to either conic. And if the sides of this triangle be a, yS, 7,

the equations of the conies can be expressed in the form

aoi' + bff' + C7' = 0, a a' + b'fi' + c'7'
= 0.

We shall afterwards discuss the analytical problem of reducing
the equations of the conies to this form. If the conies intersect

in four imaginary points, the lines a, y8, 7 are still real. For It

is obvious that any equation with real coefficients which is

satisfied by the co-ordinates ic' + a?" V(— l)j 2/' +y V(— 1)? will

also be satisfied by x' — x" V(— l)j y' —y" V(— 1)? and that the

line joining these points is real. Hence the four imaginary

points common to two conies consist of two pairs x ±x" \/(- l)j

y' +f ^f_ 1) ; x"'±x"" V(- 1), /' + /" V(- 1). Two of the

common chords are real and four imaginary. But the equa-

tions of these imaginary chords are of the form L±M \J{—1)^

L' ± M' V(— 1)7 intersecting in two real points LM^ L'M', Con-

sequently the three points E^ F^ are all real.

If the conies intersect in two real and two imaginary points,

two of the common chords are real, viz. those joining the two

K2
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real and the two imaglnaiy points ;
and the other four common

chords are imaginary. And since each of the imaginary chords

passes through one of the two real points, it can have no other

real point on it. Therefore, in this case, one of the three points

E^ F^ is real and the other two imaginary; and one of the

sides of the self-conjugate triangle is real and the other two

imaginary.

Ex. 1. Find the locus of vertex of a triangle whose base angles move

along one conic, and whose sides touch another. [The following solution

is Mr. Burnside's.] Let the conic touched bj' the sides be x^ + y*
-

z*, and

the other ax* + by*
- ca*. Then, as at Ex. 1, p. 96, the co-ordinates of the

intersection of tangents at points a, 7, are cos|(a + 7), sin^- (a fry), cos^(a-7) ;

and the conditions of the problem give

a cos'^ (a + 7) + i sin'i (a + 7) = c cos^l («
-
7) ;

or (a + 6 -
c) 4- (a

- 6 -
c) cosa C0S7 } {b

- c -
a) sina sin7 = 0.

In like manner

(a }- 6 -
c) + (a

- 5 -
c) cos/3cos7 + (&

- c -
a)sin^ sin7 = 0,

whence (a + 5 -
c) cos l{a -\^) = (b i- c -

a) cos^ (a
-

y3) C0S7 ;

(a + b -
c) sin I (a + ^) = (« + c -

J) cos l(a -
^) sin 7,

and since the co-ordinates of the point whose locus we seek are cos|- (a + y3),

sin^ (a + /3), cos^ (a
-

(3), the equation of the locus is

x^ y^ _ z'

(6 + c - aj
""

{c-^a- bf
~
{a^b-cf

Ex. 2. A triangle is inscribed in the conic a;* + y' = z'; and two sides

touch the conic ax* + by*
= cz*

;
find the envelope of the third side.

Ans. {ca f a6 - bcf x* + {ab i be - caf y*
=

{be -i- ca -
ab)* z\

ENVELOPES.

283. If the equation of a right line involve an indeterminate

quantity in any degree, and if we give to that indeterminate a

series of different values, the equation represents a series of

different lines, all of which touch a certain curve which is called

the envelope of the system of lines. We shall illustrate the

general method of finding the equation of an envelope, by

proving, independently of Art. 270, that the line fM^L—2fj,R+Mj
where

fj,
is indeterminate, always touches the curve LM - B^.

The point of intersection of the lines answering to the values

fi and fi + kjia determined by the two equations

fjL^L
- 2fiR + M= 0, 2{fiL-B)+kL = 0:

the second equation being derived from the first by substituting

yw. + ^ for /z, erasing the terms which vanish in virtue of the first
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equation, and then dividing by h. The smaller h
is,

the more

nearly does the second line approach to coincidence with the

first
;
and if we make h = 0, we find that the point of meeting

of the first line with a consecutive line of the system is de-

termined by the equations

fM^L-2fiB-\-M=0j fiL-B = 0;

or, what comes to the same thing, by the equations

fiL-B = 0, /xB-M=0.
Now since any point on a curve may be considered as the inter-

section of two of its consecutive tangents (p. 140), the point

where any line meets its envelope is the same as that where

it meets a consecutive tangent to the envelope ;
and therefore

the two equations last written, determine the point on the

envelope which has the line fi^L
—

2/jlE + 31 for its tangent.

And by eliminating fju
between the equations we get the equa-

tion of the locus of all the points on the envelope, namely
LM=E\
A similar argument will prove, even if X, If, B do not re-

present right lines, that the curve represented by fM^L'—2fjLB+My

always touches the curve LM— B\ l^

The envelope of L cos(f) +M sincj)- B^ where <^ is indeter-

minate, may be either investigated directly in like manner
;
or

may be reduced to the preceding by assuming tan |^ = //.,
when

on substituting

and clearing of fractions, we get an equation in which fM only

enters in the second degree.

284. We might also proceed as follows : The line

fjL'L-2fjLB-\-2I

is obviously a tangent to a curve of the secorid class (see note,

p. 137) ;
for only two lines of the system can hb drawn through

a given point : namely, those answering to the values of /a de-

termined by the equation

fju^L'
-

2[iB' + M' = 0,

where L\ B\ Jf
'

are the results of substituting the co-ordinates
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of the given point in X, i?, if. Now these values of /x will

evidently coincide, or the point will be the intersection of two

consecutive tangents, if its co-ordinates satisfy the equation

LM=E\ And, generally, if the indeterminate fi enter alge-

braically and in the 7i^ degree, into the equation of a line, the

line will touch a curve of the n^ class, whose equation is found

by expressing the condition that the equation in
fju

shall have

equal roots.

Ex. 1. The vertices of a triangle move along the three fixed lines

a, ^, 7, and two of the sides pass through two fixed points «'/3'7', a"y3'V'>

find the envelope of the third side. Let a + ^^ be the line joining to aft the

vertex which moves along 7, then the equations of the sides through the

fixed points are

7' (« + f^^)
-

(«' + M/3') 7 = 0, Y' (« + /^/3)
-

("" + f^n 7=0.
And the equation of the base is

(«' -f t^ft') i'a 4- {a" + fxft") /,7'y3
-

(a' + f,ft'){a" + fift") 7 = 0,

for it can be easily verified, that this passes through the intersection of the

first line with «, and of the second line with ft. Arranging according to

the powers of
ft-, we find for the envelope

{aft'r^" + ftia"
-

^a'ft"
-
^ia"ftj

=Uft" {a^"
-
a"^){ft^'

-
ft'.f).

This example may also be solved by arranging according to the powers
of a, the equation in Ex. 3, p. 51.

Ex. 2. Find the envelope of a line such that the product of the j[)erpen-

diculars on it from two fixed points may be constant.

Take for axes the line joining the fixed points and a perpendicular through
its middle point, so that the co-ordinates of the fixed points may be y = 0,

x=±c', then if the variable line be y - mx + w =
0, we have by the conditions

of the question
^^ ^ ^^^^ (n

-
n,e)

= 6^ (1 + m'),

or w* = &» + hhn^ + chn\

but ri^ ^tf
- 2mxy + m^x*,

therefore »n' (^«
- 6* -

c')
- 2mxy + ?/*

- 5* =
;

and the envelope is a;*y*
=

{x*
- h^ - c^) (y*

-
V],

x" y* ,°^ u 2
+ f7=I-

Ex. 3. Find the envelope of a line such that the sum of the squares of

the perpendiculars on it from two fixed points may be constant.

Ex. 4. Find the envelope if the difi'erence of squares of perpendiculars
be given. Ans. A parabola.

Ex. 5. Through a fixed point any line OP is drawn to meet a fixed

line
;
to find the envelope of PQ drawn so as to make the angle OPQ constant.
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Let OP make the angle 6 with the perpendicular on the fixed line, and

its length is p^ecO-, but the perpendicular from O on PQ makes a fixed

angle ^ with OP, therefore its length is = p sec 6 cos/3 ;
and since this per-

pendicular makes an angle = 6 ^ (3 with the perpendicular on the fixed line,

if we assume the latter for the axis of x, the equation of PQ is

X cos (0 i ^) + y sin (^ + /3) =^ secO cos/3,

or X cos {20 + /3) + y sin {20 -I- /3)
= 2p cos/3

- x cos/3
-
y sin

/3,

an equation of the- form i cos0 + M sm(p = P,

whose envelope, therefore, is

a;» 4- ?/»
= (x cosy3 + y sin/3

-
2p cos/3)*,

the equation of a parabola having the point O for its focus.

Ex. 6. Find the envelope of the line — + - =
1, where the indeter-

minates are connected by the relation /i f /a'
= (7.

We may substitute for /, C -
m, and clear of fractions

;
the envelope is

thus found to be a^ + B' ^ C^ - 2AB -2AC-2BC=0,
an equation to which the following form will be found to be equivalent,

±'^A±'^B±^C=0.
Thus, for example,

—Given vertical angle and sum of sides of a triangle, to

find the envelope of base.

The equation of the base is x y _ ,

1 "^ r
~

'

a

where a -f 5 = c.

The envelope is, therefore,

a:' + 2/'
- 2xy - 2cx -

2cy + c» = 0,

a parabola touching the sides x and y.

In like manner,—Given in position two conjugate diameters of an ellipse,

and the sum of their squares, to find its envelope.

X* ?/*
If in the equation -75 + r-,

= 1>

we have a'* t 6" =
c', the envelope is

X ± y ± c = 0.

The ellipse, therefore, must always touch four fixed right lines.

285. If the coefficients in the equation of any right line

\0L + fi/S + vy be connected hy any relation of the second order

in X, /^j V,

AX' f Byi' + Gv" -[- 2i^//,j/ + 2 Gv\ -f 2ZrX/A = 0,

the envelope of the line is a conic section. Eliminating v between

the equation of the right line and the given relation, we have

(^7''
- 2 6^7a + Cd') X' + 2 {Hi'

-
F^/a.

- Gy^ + Cap) Xfi

+ (Z?7'^-2i^7/3+C/3'V^
=

0,
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and the envelope is

(^7^^- 2 6^7a 4- Cd')[Bi'- 2Fy^+C^')= [Hy'-Fya
- Gy^+ (7a/3)^

Expanding this equation, and dividing by r/\ we get

{BG-F')a' + {GA- G') /3^ + {AB- H') y'

+ 2{GH-AF)l3y-^2{HF-BG)ya-]-2{FG-Cir)a^=^0.
The result of this article may be stated thus : An^/ tangential

equation of the second order in X, /i-,
v repre»ents a conic^ whose

triUnear equation is found from the tangential hy exactly the

same process that the tangential isfoundfrom the triUnear,

For it is proved (as in Art. 151) that the condition that

Xa + /t/3 -f vy shall touch

«a' + hp'' + ci' + 2//37 + 2^7a + 2^a/3 = 0,

or, in other words, the tangential equation of that conic, is

{he -f) V -f [ca
- /) f^' + {ah

-
h') v"

+ 2{gh-af)fiv-{-2{hf-hg)v\ + 2{fg-'Ch)\fi=^0.

Conversely, the envelope of a line whose coefficients X, fi^
v

fulfil the condition last written, is the conic aa^ + &c. =
;
and

this may be verified by the equation of this article. For,

if we write for A^ Bj &c., hc-f% ca—g^ &c., the equation

{BG- F') a' + &c. = becomes

{ahc+ 2fgh
-af- Ig^- cW) (aa'-f h^""+ cy^+ 2f^y+ 2^7a+ 2Aa/3)

= 0.

Ex. We may deduce as particular cases of the above, the results of

Arts. 127, 130, namely, that the envelope of a line which fulfils the
XT r^ jT

condition — + — + — = Ois ^/{Fa) + ^{Gp) + V(-^7) = ^5 ^"^ o^ o^^ which

fulfils the condition ^{F\) + ^{Gh) -f AH'^) =
Ois:?+^+~

= 0.

286. It is proved, as at Art. 76, that if the condition be

fulfilled ABG-v 2FGH- AF'-BG -GE'= 0,

then the equation

AX^ + Bfi^ + Gv' + 2FfjLV + 2 Gv\ + 2ir\fi = 0,

may be resolved into two factors, and is equivalent to one of the

form
(a'X + /3> + 7V) (a"\ + /3"fi + 7'V)

= 0,

And since the equation is satisfied if either factor vanish, it

denotes (Art. 51) that the line Xa + fi^ + vy passes through one

or other of two fixed points.
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If, as in the last article, we write for A^ bc-f\ &c., it will

be found that the quantity ABC+2FGII+&C. is the square
of ahc + 2fgh + &c.

Ex. If a conic pass through two given points and have double contact

with a fixed conic, the chord of contact passes through one or other of two

fixed points. For let S be the fixed conic, and let the equation of the other

he S = (\a + /i^ f V7)*. Then substituting the co-ordinates of the two given

points, we have

S' = (Xa' + /x^' + vr^'f; S" = {\a" + /uy3" + 1^7")*;

whence (\a' + fxfi' + vry') v'C'S'")
= ± (Xa" + M^" + 1^7") VC'S"),

showing that Xa + /x/3 + ^7 passes through one or other of two fixed points,

since S', S" are known constants. «

287. To find the equation of a conic having double contact

with two given conies, S and S'. Let E and i^ be a pair of

their chords of intersection, so that S— S' — EFj then

represents a conic having double contact with 8 and 8'
;
for it

may be written

{fjLE+Fy = 4:fjL8, or {/iE-F)'' = 4:fi8'.

Since fjb
is of the second degree, we see that through any

point can be drawn two conies of this system ;
and there are

three such systems, since there are three pairs of chords Ej F,

If 8' break up into right lines, there are only two pairs of

chords distinct from 8\ and but two systems of touching conies.

And when both 8 and 8' break up into right lines there is but

one such system.

Ex. Find the equation of a conic touching four given lines.

Ans. fi'D' ^2fi{ACi BD) + JP* = 0,

•where A, B, C, D are the sides; B, i<^ the diagonals, and ^C-^Z>=^JP.
Or more symmetrically if i, M, iVbe the diagonals, L±3I± iV^the sides,

/x*i*
-

;u (i' + M^ - N') + 3r = 0.

For this always touches (i' + M' - N^f - 4Z*Jf*

= (Z + 3/+ N){M^ N- L){L + iV- M){M+ L - N),
1? M^

Or again, the equation may be written iV*= ——- + -,-^— (see Art. 278.).
cos'0 sm*0

288. The equation of a conic having double contact with

two circles assumes a simpler form, viz.
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The chords of contact of the conic with the circles are found

to be C-C' + fji
=

0, and G-C'-fi = 0,

which are, therefore, parallel to each other, and equidistant from

the radical axis of the circles. This equation may also be written

in the form ^C±^/C' = ^/fi.

Hence, the locus of a poi7it^ the sum or difference of whose tangents

to two given circles is constant^ is a conic having douhle contact

with the two circles. If we suppose both circles infinitely small,

we obtain the fundamental property of the foci of the conic.

If fi be taken equal to the square of the intercept between

the circles on one of their common tangents, the equation de-

notes a pair of common tangents to the circles.

Ex. 1. Solve by this method the Examples (pp. 106, 107) of finding

common tangents to circles.

Ans. Ex. 1. VC+VC" = 4or = 2. ^«s. Ex. 2. VC+VC" = 1 or=V-'?9.

Ex. 2. Given three circles
;
let L, L' be the common tangents to C'C",

M, M' to C% C; iV, N' to C, C ;
then if i, 31, JV meet in a point, so will

Z', M', N'.

Let the equations of the pairs of common tangents be

Then the condition that L, M, iV should meet in a point is ^ ± ^ =
t"-, and it

is obvious that when this condition is fulfilled, i', M', N' also meet in a point,

GENERAL EQUATION OF THE SECOND DEGREE.

289. There is no conic whose equation may not be written

in the form

aoi' + hfi^ + ci' + 2/^7 + 2^7a + S/^a^S = 0.

For this equation is obviously of the second degree ;
and since

it contains five independent constants, we can determine these

constants so that the curve which it represents may pass through
five given points, and therefore coincide with any given conic.

The trilinear equation just written includes the ordinary Car-

tesian equation, if we write x and y for a and
/9, and if we

suppose the line 7 at infinity, and therefore write 7 = 1, (see

Art. 69 and note, p. 73).

In like manner the equation of every curve of any degree

may be expressed as a homogeneous function of a, ^, 7. For
it can readily be proved that the number of terms in the complete
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equation of the n^ order between two variables is the same as

the number of terms in the Jiomogemeous equation of the n^

order between three variables. The two equations then, con-

taining the same number of constants are equally capable of

representing any particular curve.

290. Since the co-ordinates of any point on the line joining

two points a'ySy, a"/3"j" are (Art. 66) of the form la! + ma\
Z/3' + W2/3", ly' + 7ny"j we can find the points where this joining

line meets any curve by substituting these values for a, /3, 7,

and then determining the ratio I : m by means of the resulting

equation.* Thus (see Art. 92) the points where the line meets

a conic are determined by the quadratic

F [aa!' + h^" + cy" + 2fP'y' + 2^7'a' + 2Aa'/3')

^2lm{aa!a:' + 'b^'^" + cyy"

+A^V -f ^W) +9 (7'a" + 7"«') + h [a'fi" + a"/3')}

+ m' {aa,'" -+ hfi'" -f cy'" + 2f0"y" + 2gy"a" + 2M'^") = ;

or, as we may write
It,

for brevity, F'8' \-2lmP-^m^S" — 0,

When the point a^'y is on the curve, 8' vanishes, and the

quadratic reduces to a simple equation. Solving it for I :
?/^,

we see that the co-ordinates of the point where the conic is met

again by the line joining a'/S'V to a point on the conic OLjS'y^

are 8"a -
2Pa", 8"^' - 2P/3", 8"y'

-
2Py". These co-ordinates

reduce to a'/3'7' if the condition P= be fulfilled. Writing this

at full length, we see that if OL"fi"y" satisfy the equation

aaa! + h8l3'-\- cyy'+f{l3y'-\- /3'y) -\-g (7'a + 7a') + h {ol/S + a^')
=

0,

then the line joining a"l3"y" to ci'ff'y' meets the curve in two

points coincident with a'/S'y': in other words, a!'fi"y" lies on

the tangent at (x^'y. The equation just written is therefore

the equation of the tangent.

291. Arguing, as at Art. 89, from the symmetry between

Oi^y^ OLJS'y' of the equation just found, we infer that when a'^'y

is not supposed to be on the curve, the equation represents the

polar of that point. The same conclusion may be drawn from

observing, as at Art. 91, that P=0 expresses the condition that

* This method was introduced by Joachimsthal.
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the line joining a'ySV, o!'^"i' shall be cut harmonically by the

curve. The equation of the polar may be written

a' («a + hp + gy) + /S' [ha + J/3 -Vfy) + 7' [9^ +//3 + 07)
= 0.

But the quantities which multiply a', yS', 7' respectively, are half

the differential coefficients of the equation of the conic with

respect to a, y8, 7. We shall for shortness write S^^ S^^ S^ in-

stead of— , -T7i , 1- ; and we see that the equation of the polar is

da ^

djS
^

dy
^

aS, + /3'S^ + y'S,
= 0.

In particular, if
/9', 7' both vanish

;
the polar of the point 0y

is
>Sj,

or the equation of the polar of the intersection of two of the

lines of reference is the differential coefficient of the equation of

the conic considered as a function of the third. The equation of

the polar being unaltered by interchanging a^y^ odjS'y'^ may also

be written a>^; -f /3/S; + 7^3'
= <>•

292. When a conic breaks up into two right lines, the polar

of any point whatever passes through the intersection of the

right lines. Geometrically it is evident that the locus of har-

monic means of radii drawn through the point is the fourth

harmonic to the pair of lines, and the line joining their inter-

section to the given point. And we might also infer, from the

formula of the last article, that the polar of any point with

respect to the pair of lines a^ is yS'a + a'yS, the harmonic con-

jugate with respect to a, /S of jS'a
—

a/3, the line joining aj3 to

the given point. If then the general equation represent a pair

of lines, the polars of the three points ^87, 7a, a/3,

aa-\-h0+gy = O, Aa + 2^/3 -f/y = 0, ^a +//3 -1- C7 = 0,

are three lines meeting in a point. Expressing, as in Art.

38, the condition that this should be the case, by eliminating

a, /3, 7 between these equations, we get the condition, already

found by other methods, that the equation should represent

right lines; which we now see may be written in the form

of a determinant,

a, A, g

^ ^/

or, expanded, ale + 2fgh -af^
-

"bg^
- d^ = 0.
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The left-hand side of this equation is called the discriminant'^

of the equation of the conic. We shall denote it in what follows

by the letter A.

293. To find the co-ordinates of the pole of any line

Xa 4- /^^ + v^. Let a'/S'y be the sought co-ordinates, then we
must have

aa' + Ay8'+^7 =X, Tia! + 1^' +fy' = [jl^ go! ^f^' -^ ci = v.

Solving these equations for a, fi\ 7', we get

Aa = \ [he -f) -^H^i^fg- ch) + y{hf- hg\

^P' = ^[fg-ch) + ii [ca
-

g') + v {gh
-

af) ,

Ay = \ [hf -hg)+fJL [gh -af) -^y{ah- K') ;

or, if we use A^ By (7,t &c. in the same sense as in Art. 151,

we find the co-ordinates of the pole respectively proportional to

Since the pole of any tangent to a conic is a point on that

tangent, we can get the condition that \a -\- fjL^ + vy may touch

the conic, by expressing the condition that the co-ordinates just

found satisfy Xa -f fiff + v7 = 0. We find thus, as in Art. 285,

AX^ + Bfjl' + Cv" + 2Fiiv + 2 Gv\ + 2H\fi = 0.

If we write this equation S = 0, it will be observed that the

co-ordinates of the pole are 2,, S^, Sg, that is to say, the differ-

ential coefiicients of 2 with respect to X, /x, v. Just, then, as the

equation of the polar of any point is aS^ + p8^ + 7>S'3'
=

0, so

the condition that Xa + ^^ + vy may pass through the pole of

X'a + ^J^'IB + v'7, (or, in other words, the tangential equation of

this pole) is X2/ + //-S^' + vSg'
= 0. And again, the condition

that two lines Xa + yn/S + ^7, X'a + /u.'/3 + vy may be conjugate

* In general, if a homogeneous function of any number of variables be

differentiated successively with respect to all these variables, and the vari-

ables eliminated between the resulting equations, the result of elimination

is called the discriminant of the given function. Thus, in particular, the con-

dition that an algebraic equation should have equal roots is
the^discriminant

of that equation. For if the equation be made homogeneous by the intro-

duction of a variable y, the condition that the equation should have equal

roots, is obtained by eliminating x and y between —^ = 0,
— = 0.

t A, B, C, &c. are the minors of the determinant of the last article.
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with respect to the conic
;
that is to say, may be such that the

polar of either lies on the other, may obviously be written in

either of the equivalent forms

vs, + yti's, + v'23
=

0, xs/ + A62; + vs; = 0.

From the manner in which S was here formed, it appears that

S is the result of eliminating a, p\ 7', p between the equations

a<x + h^' 4- gi + /dX
=

0, M + 5/3' +//' + pyct
=

0,

goL +//3' 4 ci -f pv = 0, Xa' + iij^' + 1/7'
=

;

in other words, that S may be written as a determinant

«, h^ g^ X

I X, /^, V,

Ex. 1. To find the co-ordinates of the pole of \a + /x/3 + 1/7 with respect to

V(^«) + V(^^) + V('^7)* The tangential equation, in this case, (Art 130),

^^^"S: l^v + mv\ \ n\ix = 0,

the co-ordinates of the pole are

a! = mv -f «/i, /3' = wX i Zi/, ^ =
1^1 \ m\,

Ex. 2. To find the locu§ of the pole of \a -{
jxlB

+ 1/7 with respect to a

conic being given three tangents, and one other condition.*

Solving the preceding equations for I, m, n, we find I, m, n proportional to

X (/x/3' 4- V7'
-

\a'), n {v^' -I- Xa -
nP'),

v
(\a' + n^'

-
v^/).

Now V(^") + VC^/') + ^^(^^7) denotes a conic touching the three lines

«> i^^ 7 ;
and any fourth condition establishes a relation between I, m, n, in

which, if we substitute the values just found, we shall have the locus of the

pole of Xa + fift + j/7. If we write for X, fi, v the sides of the triangle of

reference a, J, c, we shall have the locus of the polar of the line at infinity

aa+ &^ + C7; that is, the locus of centre. Thus the condition that the conic

should touch Aa.\ B^ \ C^i, being
— 4 ^ + 7^

= 0, (Art. 130), we infer that

the locus of the pole of \a ^ n^ { v<^ with respect to a conic touching the

four lines «, /3, 7, ^a + ^/3 + Oy, is the right line

X {/up + ^7
- Xa) ^ (1/7 + Xa -

fxft)
V (Xa + /i/3

-
1^7)

A "^

^^
^ C

°*

Or again, since the condition that the conic should pass through a'/S'ry' is

V(^«') + V(*^/^) + V(^7') = ^j ^^^ locus of the pole of Xa + /t/3 4 vr^ with re-

• The method here used is taken from Hearn's Researches on Conic

Sections.
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spect to a conic which touches the three lines a, p, 7, and passes through a

point «'/3Yj is

V{Xa' (u/3 + 1/7
-
\a)} + ^/{///y (^7 + Xa -

/x/3)} + V{«'7' (Xa + M^ -
1/7)}

= 0,

which denotes a conic touching /mfi + 1^7
- Xa, 1/7 + Xa -

/t*/i*,
\a -\- juft

-
vy.

In the case where the locus of centre is sought, these three lines are the

lines joining the middle points of the sides of the triangle formed by a, /8, 7.

Ex. 3. To find the co-ordinates of the pole of Xa + yu/9 + v<y with respect

to //37 + m^a -f nafS. The tangential equation in this case being, Art. 127,

PX' + mY + wV* - 27nnf^u - 2nli^\ -
2hn\fi = 0,

the co-ordinates of the pole are

a = I {IX
-
m/i

-
nv), 13'

= m (m/JL
- nv -

IX), 7'
= n (nv

- l\ -
mfx),

whence m<^' + w/3' = - 2lmn\, na + ^7'
= -

2lmn/i, 1(3' + ma = - 2lmnv
;

and, as in the last example, we find /, m, n respectively proportional to

a (fjLp' + 1/7'
-

Xa'), fi' (1/7' + Xa' -
fi(3'), 7' (\a' + fif3'

-
v-/).

Thus, then since the condition that a conic circumscribing 0^7 should

pass through a fourth point a'^'7' is _+— + _ = 0, the locus of the pole of
a ^ 7

Xo -f /i)3 + 1/7, with regard to a conic passing through the four points, is

-, (/^/3 + J/7
-
Xa) -t

-
(1/7 + Xa -

/x/3) + 1^ (\a i f'lS
-

1/7)
= 0,a fi 7

which, when the locus of centre is sought, denotes a conic passing through
the middle points of the sides of the triangle. The condition that the conic

should touch Aa +BI3 i- C^, being a/{AI) + ^{Bm) + '^{Cn) = 0, the locus

of the pole of Xa + /"/8 + ^7, with regard to a conic passing through three

points and touching a fixed line, is

V{^« {f^^ + V7
-
Xa)} + V{^/3 ("7 + Xa -

fi^)} + VC7 (Xa + /i/3
-

t.7)
= 0,

which, in general, represents a curve of the fourth degree.

294. If a"y6"7" be any point on any of the tangents drawn

to a curve from a fixed point 0L/3'y\ the line joining a'/Sy, a'/S'V'

meets the curve in tw^o coincident points, and the equation in

I : m (Art. 290), w^hich determines the points where the joining

line meets the curve, will have equal roots.

To find, then, the equation of all the tangents which can be

drawn through a'/Sy, we must substitute Za + wa', IjS + m^^
ly + my in the equation of the curve, and form the condition

that the resulting equation in Z : m shall have equal roots.

Thus, (see Art. 92) the equation of the pair of tangents to a

conic is S8' — F^
;
where

;S'=aa^ + &c., /S" = aa'^ + &c., P=«aa' + &c.

This equation may also be written in another form
;
for since

any point on either tangent through a^'y evidently possesses



256 METHODS OF ABRIDGED NOTATION.

the property that the line joining it to a'/3V touches the curve,

we have only to express the condition that the line joining two

points (Art. 65)

a (/8'7"
-

/3'Y) f yS [ia!'
-

ry"a') + 7 (a'/3"
-

a"/3')
=

should touch the curve, and then consider a"l3"ry" variable, when

we shall have the equation of the pair of tangents. In other

words, we are to substitute /3y'
—

yS'7, 7a'
—

7'a, a/3'
—

a'/3 for

X, //,,
V in the condition of Art. 285,

AX"" -f Bfi:' + Cv^ + 2Ffiv + 2Gy\ + 2H\fi = 0.

Attending to the values given (Art. 285) for A^ B^ &c., it may
easily be verified that

[ad' + &c.) (aa'^ + &c.)
-

[aaa! + &c.)'^
=A (^7'

-
/^V)' 4 &c.

295. It follows, as a particular case of the last, that the

pairs of tangents from /37, 7a, a^ are

Brj' + C^' - 2Ffiy, Gd' 4 Arj'
- 2 Gyd, A^' + Bd' - 2Hap,

as indeed might be seen directly by throwing the equation of

the curve into the form

(aa + A/3 + gyj + ( (7/3^ + By^ - 2Ff3y)
= 0.

Now if the pair of tangents through ^^7 be —
^7, /3

—
h'y^ it

appears from these expressions that hh' = -^ ,
and that the corre-

. G A
sponding quantities for the other pairs of tangents are

-7 7 ^ >

and these three multiplied together are = 1. Hence, recollecting

the meaning of h (Art. 54), we learn that if ^, jF", B^ i>, (7,
E

be the angles of a circumscribing hexagon,

sin.£M.g.sini^.^J9.sini^.ga.sini>^(7.sini)a^.sin^a.^ _
8mEAG.s[nFAG.smFBA,smI)BA::smUCB:Si^GB

~

Hence also three pairs of lines will touch the same conic if

their equations can be thrown into the form

M'+N'-\-2f'3m=0, N'+L'-^2g'NL = 0, U-\-M^+2h'LM:=^0,

for the equations of the three pairs of tangents, already found,
can be thrown into this form by writing \/[AL) for a, &c.

296. If we wish to form the equations of the lines joining
to dp'y all the points of intersection of two curves, we have
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'

only to substitute la + wa', l^ + wyS', ?7 -f m^y' in both equations,
and eliminate I : m from the resulting equations. For any

point on any of the lines in question evidently possesses the

property that the line joining it to a^'y meets both curves in

the same point ;
therefore the equations ml-.m^ which determine

the points where one of these lines meets both curves, must

have a common root; and therefore the result of elimination

between them is satisfied. Thus, the equation of the pair of

lines joining to a'ySV the points where any right line L meets 8^
is L'^^S- 2LL'P+ US' = 0. If the point a'^Y be on the curve

the equation reduces to L'S— 2LP= 0.

Ex. A chord which subtends a right angle at a given point on the curve,

passes through a fixed point (Ex. 2, p. 165.). We use ordinary rectangular

co-ordinates, and, as above, form the equation of the lines joining the given

point to the intersection of the conic with \x + jny + v. These lines will be

at right angles if the sum of the squares of the coeflBcients of jf' and »/'

vanish, which gives the condition

{\x' + fiy' + v) (a + 6)
= 2 {aXx' + hfiy').

And since X, /*,
v enter in the first degree, the chord passes through a

fixed point, viz. a;', t/. If the point on the curve vary, this other

point will describe a conic. If the angle subtended at the given point be

not a right angle ; or, if the angle be a right angle, but the given point not

on the curve, the condition found in like manner will contain \, fi,
v in the

second degree ;
and the chord will envelope a conic.

297. Since the equation of the polar of a point involves the

coefficients of the equation in the first degree, if an indeterminate

enter in the first degree into the equation of a conic it will

enter in the first degree into the equation of the pole. Thus,
if P and P' be the polars of a point with regard to two conies

/S, /S"; then the polar of the same point with regard to S-\-7cS'

willbeP+Z;P'. For

{a + Tea) aa + &c. = actcx,' + &c. + k [aaa + &c.}.

Hence, given four points on a conic^ the polar of any given point

passes through a fixed point (Ex. 2, p. 143).

If Q and Q' be the polars of another point with regard to S
and S'j then the polar of this second point with regard to S+JeS'

is Q + 7cQ'. Thus, then, (see Art. 59) the polars of two points

with regard to a system of conies through four points, form two

homographic pencils of lines.
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Gwefi two JiomograpMc pencils of lines^ the locus of the inter^

section of the corresponding lines of the pencils is a conic through

the vertices of the pencils. For, if we eliminate h between

F-\-hP\ Q + kQ', we get FQ' = P'Q, In the particular case

under consideration, the intersection of F+kP-', Q + JcQ' is the

pole with respect to S+hS' of the line joining the two given

points. And we see that, given four points on a conic^ the locus

of the pole of a given line is a conic (Ex. 1, p. 241).

If an indeterminate enter in the second degree into the

equation of a conic, it must also enter in the second degree
into the equation of the polar of a given point, which will then

envelope a conic. Thus, if a conic have double contact with

two fixed conies, the polar of a fixed point will envelope one

of three fixed conies
;
for the equation of each system of conies

in Art. 287 contains
//,

in the second degree.
We shall in another chapter enter into fuller details re-

specting the general equation, and here add a few examples
illustrative of the principles already explained.

Ex. 1. A point moves along a fixed line
;
find the locus of the intersec-

tion of its polars with regard to two fixed conies. If the polars of any two

points a'^^/, a"^"r^" on the given line with respect to the two conies be

P',JP"; Q', Q" ',
then any other point on the line is \a' + fxa", X/3' + ^w^',

M' + /*7"5 and its polars XP' i- fiF", XQ' + jliQ", which intersect on the

conic F'Q" =^ P"Q'.

Ex. 2. The anharmonic ratio of four points on a right line is the samo

as that of their four polars.

For the anharmonic ratio of the four points

la' + ma\ Vol + Wl'tt", I"a + 7>i"a", 1!"a + Yt^"a\

is evidently the same as that of the four lines

IP' \ mP", I'P' + m'P", l"P' + m"P", l"P' + iyi!"P".

Ex. 3. To find the equation of the pair of tangents at the points where

a conic S is met by the line 7.

The equation of the polar of any point on 7 is (Art. 291) a'S^ j^(3'S^
= 0.

But the points where 7 meets the curve, are found, by making 7 = in the

general equation, from
^^,z ^ 2A«'/3' + 5/3'^ = 0.

Eliminating «', /3', between these equations, we get for the equation of

the pair of tangents ^s^ _
2j,s^s, + bS,' = 0.

Thus the equation of the asymptotes of a conic (given by the Cartesian

equation) is ,^^
^

^^ /dSx/dS\ ^ /dS\' ^
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for the asymptotes are the tangents at the points where the curve is met by
the line at infinity z.

Ex. 4. Given three points on a conic ; if one asymptote pass through a

fixed point, the other will envelope a conic touching the sides of the given

triangle. If f^, t^ be the asymptotes, and aa + S/S + c<y the line at infinity,

the equation of the conic is
t^t.^

= (aa + &/5 + 07)'. But since it passes through

^1> 7"> «A the equation must not contain the terms a*, 0^, 7*. If therefore

a^ h* c*

t^ be Xa + /tj8 + 1/7, t^
must be — a + — /? + — y; and if

^^ pass through a'fi'y'

then (Ex., p. 248) t^ touches a \/{aa') + h VC/S/S') + c V(r7') = 0. The same

argument proves, that if a conic pass through three fixed points, and if one

of its chords of intersection with a conic given by the general equation be

Xa + «;S + vy, the other will be-a+ -/3 + ~y.
X

fJi
V

Ex. 5. Given a self conjugate triangle with regard to a conic
;

if one

chord of intersection with a fixed conic (given by the general equation) pass

through a fixed point, the other will envelope a conic [Mr. Burnside]. The

terms a/3, ^y^ ya are now to disappear from the equation, whence if one

chord be Xa + ^/3 + vy, the other is found to be

Xa {fxg Avh- Xf) + fip {yh + X/- ^g) + vy (X/+ fig
-

vh).

Ex. 6. A and A' («ii8i7i, «2)3i72) are the points of contact of a common

tangent to two conies U, V', P and P' are variable points, one on each

conic
;
find the locus of C, the intersection of AP, A'P', if PP' pass through

a fixed point O on the common tangent [Mr. Williamson].

Let P and Q denote the polars of «i/3i7i, a2^272, with respect to U and V
respectively ;

then (Art. 290) if al3y be the co-ordinates of C, those of the

point P where ^C meets the conic again, are Ua^-2Pa, Z7/3i
-

2P/3,

Uy^
-
2P'y ;

and those of the point P' are, in like manner, Va^ - 2Qa, &c.

If the line joining these points pass through O, which we choose as the in-

tersection of «, $, we must have

lTa^-2Pa _ Va.,-2Qa
^

UPi-2Pfi~y^,-2Q^*
and when A, A', O are unrestricted in position, the locus is a curve of the

fourth order. If, however, these points be in a right line, we may choose

this for the line a, and making a^ and 03
= 0, the preceding equation be-

comes divisible by a, and reduces to the curve of the third order P F^2= ^ ^^i*

Further, if the given points are points of contact of a common tangent, P
and Q represent the same line

;
and another factor divides out of the

equation which reduces to one of the form U=kV, representing a conic

through the intersection of the given conies.

Ex. 7. To inscribe in a conic, given by the general equation, a triangle

whose sides pass through the three points /37, 7a, «/3.
We shall, as before,

write S^, S^, SJor the three quantities, «« 4 hp +^7, ha + 5^ 1/7, ga +//3 + C7.

Now we have seen, in general, that the line joining any point on the curve

ay87 to another point a'ySy meets the curve again in a point, whose co-

S2
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ordinates are S'a -
2P'a', S'^

-
2P'/3', S'r^

- 2P'i, Now if the point a'/3V

be the intersection of the lines
fi, 7, we may take «' = 1, ^ = 0, 7'

= 0, which

gives S! = a, P' =
S^, and the co-ordinates of the point where the line joining

a^r/ to /?7 meets the curve, are aa -
2S^, a/3, a^. In like manner, the line

joining 0^7 to 7rt, meets the curve again in ha^ J/3
-

2S^, 67. The line

joining these two points will pass through ay3, if

aa -
2Si _ ba

a/i J/3
- 2S^

'

or, expanding 2/^1 -S'a
= aaSt + b(3S^,

which is the condition to be fulfilled by the co-ordinates of the vertex.

Writing in this equation aa = S^
- hp -

gy, 1^ = 8^- ha -fy, it becomes

h{aS,^pS.^^y{fS,^gS,) = 0.

But since a/37 is on the curve, aSi -f pS^ -1 7*^3
= 0, and the equation last

written, reduces to
^ ^^^^ ^ ^^^

_
^^^) ^ q.

Now the factor 7 may be set aside as irrelevant to the geometric solution

of the problem; for although either of the points where 7 meets the curve

fulfils the condition which we have expressed analytically, namely, that if it

be joined to /37 and to 7a, the joining lines meet the curve again in points

which lie on a line with «^ ; yet, since these joining lines coincide, they
cannot be sides of a triangle. The vertex of the sought triangle is therefore

either of the points where the curve is met by fSi + gS^ -
hS^. It can be

verified immediately that fS^^
= gS^ =

hS-^ denote the lines joining the cor-

responding vertices of the triangles 0^7, S^S^S^. Consequently (see Ex. 2,

P' 60), /^i + gS^
-
hS^ is the line whose construction is given, p. 237.

Ex. 8. If two conies have double contact, any tangent to the one is cut

harmonically at its point of contact, the points where it meets the other,

and where it meets the 6hord of contact.

If in the equation ^+ i2^ = 0, we substitute la' + ma", Ifi' + nifi", ^7'+ ^7",
for a, fi, 7, (where the points «')3Y> «"i8'V' satisfy the equation S =

0), we get

{IR' + mR"y + 2lmP = 0.

Now, if the line joining a'jSy, a"fi"y", touch S + J?*, this equation must

be a perfect square : and it is evident that the only way this can happen is

if P = - 2R'P', when the equation becomes {IR'
- mR^'Y =

j whence the

truth of the theorem is manifest.

Ex. 9. Find the equation of the conic touching five lines, viz. a, {3, y,

Aa + Rfi-\- Cy, A'a + B'^ + C'y.

Ans. (/«)^+ {mfif + («7) ,
where l,m, n are determined by the conditions

I m n ^ I m n

Ex. 10. Find the equation of the conic touching the five lines, o, fi, 7,

a + iS + 7, 2a f y3
-

7.

We have I i m i n = 0, II -\ m - n =
-. hence the required equation is

2 (- af + (3^,i -t- (7)^
= 0.
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Ex. 11. Find the equation of the conic touching a, )8, -y,
at their middle

points. A71S. {aa)^ + {bfi)^ + (cy)^
= 0.

Ex. 12. Find the condition that (^o)^ + (mfi)^ + (ny)^
= should repre-

sent a parabola.

Ans, The curve touches the line at infinity when - t — + - = 0.
a c

Ex. 13. To find the locus of the focus of a parabola touching a, $, y.

Generally, if the co-ordinates of one focus of a conic inscribed in the

triangle afiy be a'fi'y, the lines joining it to the vertices of the triangle will be

a p p y y a

and since the lines to the other focus make equal angles with the sides of

the triangle (Art. 189), these lines will be (Art. 55)

a'a = 0fi, fi'fi
= Yy, 7*7

- a a
;

and the co-ordinates of the other focus may be taken —,—,_.
a fi y'

Hence, if we are given the equation of any locus described by one focus,

we can at once write down the equation of the locus described by the other ;

and ifthe second focus be at infinity, that is, if a" sinA + )8
'

sinB + y" sin C= 0,

the first must lie on the circle ^^—— + —-r- + —~ = 0. The co-ordinates
a' y

of the focus of a parabola at infinity are . , . . , , -^—--, since (re-^ "^

sin-^ sin'^ sin*C

membering the relation in Ex. 12) these values satisfy both the equations,

o sin^ + iS sin^ + 7 sinC = 0, V^« + V^P + V^T" = 0.

rr,, 1. 1 /. 1 n -^ /«
sin*A 6m*B sin*C

The co-ordinates, then, of the nnite locus are—z—
, ,

.

Ex. 14. To find the equation of the directrix of this parabola.

Forming, by Art. 291, the equation of the polar of the point whose co-

ordinates have just been given, we find

la (sin*J5+sin«C-sin«^)+ mjQ (sin'^Ctsin*^-sin«5) + ny (sm^Aisin^B- 8in'(7)-0,

or la s'mB sinCcos^ +W)8 sinCsin^ cosB + ny &mA sinB cosC-O.

Substituting for n from Ex. 12, the equation becomes

Zsin^ sinC(a cos^ - 7 cosC) + m sinCsin^(/3 cosB - ycosC) = 0;

hence the directrix always passes through the intersection of the perpendi-

culars of the triangle (see Ex. 3, p. 56).

Ex. 15. Given four tangents to a conic find the locus of the foci. Let

the four tangents be o, /3, 7, <5, then, since any line can be expressed in

terms of three others, these must be connected by an identical relation

aa + 6/3 + C7 + d5 = 0. This relation must be satisfied, not only by the co-

ordinates of one focus a'fi'y'S', but also by those of the other -
,

-
,
—

, -> .

a p y

The locus is therefore the curve of the third degree

a b e d ^

a fi y ^
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CHAPTER XV. .

THE PRINCIPLE OF DUALITY; AND THE METHOD OF
EECIPPvOCAL POLAES.

298. The methods of abridged notation, explained in the

last chapter, apply equally to tangential equations. Thus, if

the constants X, /^,
v in the equation of a line be connected by

the relation

(aX + bfb-\- cv)[a\ + h'lM + cV) = [a'^+h"fi-\-c"v)[a"\-\-h"'^-\-c"v)^

the line (Art. 285) touches a conic. Now it is evident that one

line which satisfies the given relation is that whose \, //<,
v are

determined by the equations

aX + 5/i + CV = 0, a'\ + h"fju -f c'v = 0.

That is to say, the line joining the points which these last

equations represent (Art. 70), touches the conic in question.

If then a, y8, 7, S represent equations of points, (that is to

say, functions of the first degree in X, /*, v) ay = ^/33 is

the tangential equation of a conic touched by the four lines

ayS, /57, 7S, ha. More generally, if S and S' in tangential co-

ordinates represent any two curves, S— JcS' represents a curve

touched by every tangent common to S and S'. For, whatever

values of X, /i, v make both >S'= and S' = 0, must also make

S—Jc8'=^0. Thus, then, if S represent a conic, S—haff re-

presents a conic having common with S the pairs of tangents
drawn from the points a, /3. Again, the equation 0iy

=
7cl3''^

represents a conic such that the two tangents which can be

drawn from the point a coincide with the line a/S', and those

which can be drawn from 7 coincide with the line 7/8. The

points a, 7 are therefore on this conic, and /3 is the pole of the

line joining them. In like manner, S—cn!^ represents a conic

having double contact with
>S',

and the tangents at the points

of contact meet in a
; or, in other words, a is the pole of the

chord of contact.

So again, the equation ay = 7c^^^ may be treated in the same

manner as at Art. 270, and any point on the curve may be



THE METHOD OF EECIPEOCAL POLARS. 263

represented by fjl'oL + 2ijJc^ -f 7, while the tangent at that point

joins the points fia -f ^/5, [ih^ + 7.*

299. Thus we see (as in Art. 70) that each of the equations
used in the last chapter is capable of a double interpretation,

according as it is considered as an equation in trilinear or in

tangential co-ordinates. And the equations used in the last

chapter, to establish any theorem, will, if interpreted as equations
in tangential co-ordinates, yield another theorem, the reciprocal

of the former. Thus (Art. 266) we proved that if three conies

[8^ S+LMj S+LN) have two points [S, L) common to all,

the chords in each case joining the remaining common points

(M^ iV, M—N)^ will meet in a point. Consider these as

tangential equations, and the pair of tangents drawn from L
is common to the three conies, while M^ Nj M- N denote in

each case the point of intersection of the other two common

tangents. We thus get the theorem, "If three conies have two

tangents common to all, the intersections in each case of the

remaining pair of common tangents, lie in a right line." Every
theorem ofposition (that is to say, one not involving the magni-
tudes of lines or angles) is thus twofold. From each theorem

another can be derived by suitably interchanging the words

"point" and "line"; and the same equations differently inter-

preted will establish either theorem. We shall in this chapter

give an account of the geometrical method by which the attention

of mathematicians was first called to this
"
principle of duality."!

* In other words, if in any system, x'y'z', x"y"z", be the co-ordinates of

any two points on a conic, and x"'y"'z"' those of the pole of the line joining

them, the co-ordinates of any point on the curve may be written

fx*x' + 2ixkx"' + x\ fiY + 2/t%"' + y", fi^z + Ifxhz" + s",

while the tangent at that point divides the two fixed tangents in the ratios

fi : Ti
, jjik

'. 1. When h = \, the curve is a parabola. Want of space pre-

vents us from giving illustrations of the great use of this principle in solving

examples. The reader may try the question :
—To find the locus of the point

where a tangent meeting two fixed tangents is cut in a given ratio.

t The method of reciprocal polars was introduced by M. Poncelet, whose

account of it will be found in Crelle's Journal, Vol. IV. M. Pliicker, in his

"System der Analytischen Geometric," 1835, presented the principle of

duality in the purely analytical point of view, from which the subject is treated

at the beginning of this chapter. But it was Mobius who, in his "Bary-
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300. Being given a fixed conic section (2) and any curve

(S)j we can generate another curve [s)
as follows : draw any

tangent to S^ and take its pole with regard to 2
;
the locus of

this pole will be a curve Sj which is called the polar curve of S
with regard to 2. The conic 2, with regard to which the pole

is taken, is called the auxiliary conic.

We have already met with a particular example of polar

curves (Ex. 12, p. 195), where we proved that the polar curve

of one conic section with regard to another is always a curve of

the second degree.

We shall for brevity say that a point corresponds to a line

when we mean that the point is the pole of that line with regard
to 2. Thus, since it appears from our definition that every point

of s is the pole with regard to 2 of some tangent to 8^ we shall

briefly express this relation by saying that every point of s cor-

responds to some tangent of 8,

301. The point of intersection of two tangents to 8 will corre-

spond to the linejoining the corresponding points of s.

This follows from the property of the conic 2, that the point

of intersection of any two lines is the pole of the line joining

the poles of these two lines (Art. 146).

Let us suppose that in this theorem the two tangents to 8
are indefinitely near, then the two corresponding points of s will

also be indefinitely near, and the line joining them will be a

tangent to s; and since any tangent to 8 intersects the con-

secutive tangent at its point of contact, the last theorem be-

comes for this case : If any tangent to 8 correspond to a point
on s, the point of contact of that tangent to 8 will correspond to

the tangent through the point on s.

Hence we see that the relation between the curves is reci-

procal^ that is to say, that the curve 8 might be generated from

s in precisely the same manner that s was generated from 8,

Hence the name "
reciprocal polars."

302. We are now able, being given any theorem of position

concerning any curve 8^ to deduce another concerning the curve s.

centrische Calcul," 1827, had made the important step of introducing a

system of co-ordinates in which the position of a right line was indicated

by co-ordinates and that of a point by an equation.
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Thus, for example, if we know that a number of points con-

nected with the figure S lie on one right line, we learn that the

corresponding lines connected with the figure .9 meet in a point

(Art. 146), and vice versa; if a number of points connected

with the figure 8 lie on a conic section, the corresponding lines

connected with s will touch the polar of that conic with regard
to 2

; or, in general, if the locus of any point connected with 8
be any curve 8\ the envelope of the corresponding line connected

with s is
s',

the reciprocal polar of 8'.

303. The degree of the polar reciprocal of any curve is equal
to the class of the curve (see note, p. 137), that is^ to the number

of tangents which can he drawnfrom any point to that curve.

For the degree of s is the same as the number of points in

which any line cuts s
;
and to a number of points on 5, lying on

a right line, correspond the saine number of tangents to 8 passing

through the point corresponding to that line. Thus, if /S be a

conic section, two, and only two, tangents, real or Imaginary,
can be drawn to it from any point (Art. 145) ; therefore, any
line meets s in two, and only two points, real or imaginary ;

we

may thus infer, independently of Ex. 12, p. 195, that the reci-

procal of any conic section is a curve of the second degree.

304. We shall exemplify, In the case where 8 and s are conic

sections, the mode of obtaining one theorem from another by
this method. We know (Art. 267) that "if a hexagon be in-

scribed in 8^ whose sides are A^B^ (7, D, E^ F^ then the points

of intersection, AD^ BE, CF^ are in one right liney Hence we

infer, that "
if a hexagon be C2Vcw??2scribed about 5, whose vertices

are a, Z», c, d^ e^f then the lines ad, &e, cf will meet in a poinV'*

(Art. 265). Thus we see that Pascal's theorem and Brianchon's

are reciprocal to each other, and it was thus, in fact, that the

latter was first obtained.

In order to give the student an opportunity of rendering him-

self expert in the application of this method, we shall write in

parallel columns some theorems, together with their reciprocals.

The beginner ought carefully to examine the force of the argu-

ment by which the one is inferred from the other, and he ought

to attempt to form for himself the reciprocal of each theorem

before looking at the reciprocal we have given. He will soon
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find that the operation of forming the reciprocal theorem will

reduce itself to a mere mechanical process of interchanging the

words "point" and "line," "inscribed" and "circumscribed,"

"locus" and "
envelope," &c.

If two vertices of a triangle move

along fixed right lines, while the sides

pass each through a fixed point, the

locus of the third vertex is a conic

section. (Art. 269.)

If, however, the points through
which the sides pass lie in one right

line, the locus will be a right line.

(p. 42.)

In what other case will the locus

be a right line ? (p. 43,)

If two sides of a triangle pass

through fixed points, while the ver-

tices move on fixed right lines, the

envelope of the third side is a conic

section.

If the lines on which the vertices

move meet in a point, the third side

will pass through a fixed point.

In what other case will the third

side pass through a fixed point?

(p. 51.)

If two conies touch, their reciprocals will also touch
;
for the

first pair have a point common, and also the tangent at that point

common, therefore the second pair will have a tangent common
and its point of contact also common. So likewise if two conies

have double contact their reciprocals will have double contact.

If a triangle be circumscribed to If a triangle be inscribed in a co-

a conic section, two of whose vertices

move on fixed lines, the locus of the

third vertex is a conic section, having
double contact with the given one.

(Ex. 2, p. 235.)

nic section, two of whose sides pass

through fixed points, the envelope of

the third side is a conic section, hav-

ing double contact with the given one.

(Ex. 3, p. 236.)

305. We proved (Art. 301, see figure, p. 268) if to two points

P, P', on Sj correspond the tangents pt^ p't'^ on s, that the tan-

gents at P and P will correspond to the points of contact ^, p'j

and therefore §, the intersection of these tangents, will corre-

spond to the chord of contact pp'. Hence we learn that to

any point Q^ and its polar PP'^ with respect to
/S', corres'pond a

linepp and its pole q with respect to s.

Given two points on a conic, and Given two tangents and two points

two of its tangents, the line joining
the points of contact of those tangents

passes through one or other of two

fixed points. (Ex., Art. 286.)

Given four points on a conic, the

polar of a fixed point passes through
a fixed point. (Ex. 2, p. 143.)

on a conic, the point of intersection

of the tangents at those points will

move along one or other of two fixed

right lines.

Given four tangents to a conic, the

locus of the pole of a fixed right line

is a right line.
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Given four points on a conic, the

locus of the pole of a fixed right line

is a conic section, (Ex. 1, p. 241.)

The lines joining the vertices of a

triangle to the opposite vertices of its

polar triangle with regard to a conic,

meet in a point. (Art. 99.)

Inscribe in a conic a triangle whose

sides pass through three given points.

(Ex. 4, p. 237.)

Given four tangents to a conic, the

envelope of the polar of a fixed point
is a conic section.

The points of intersection of each

side of any triangle, with the opposite

side of the polar triangle, lie in one

right line.

Circumscribe about a conic a tri-

angle whose vertices rest on three

given lines.

306. Given two conies, S and S\ and their two reciprocals,

s and s'
;
to the four points A^ B, G^ D common to 8 and ;S^'

correspond the four tangents a, h^ c, d common to 8 and s\ and

to the six chords of Intersection of S and S\ AB^ CD ;
A

(7,
BD

;

AD^ BG correspond the six intersections of common tangents
to s and s

; a5, cd
; «c, hd

; ad^ hcJ'

If three conies have two common If three conies have two points

tangents, or if they have each double common, or if they have each double

contact with a fourth, their six chords

of intersection will pass three by three

through the same points. (Art. 264.)

Or, in other words, three conies,

having each double contact with a

fourth, may be considered as having
four radical centres.

If through the point of contact of

two conies which touch, any chord be

drawn, tangents at its extremities

will meet on the common chord of

the two conies.

If, through an intersection of com-

mon tangents of two conies any two

chords be drawn, lines joining their

extremities will intersect on one or

other of the common chords of the

two conies. (Ex. 1, p. 235.)

contact with a fourth, the six points

of intersection ofcommon tangents lie

three by three on the same right lines.

Or, three conies, having each dou-

ble contact with a fourth, may be

considered as having four axes of si-

militude. (See Art. 117, of which

this theorem is an extension.)

If from any point on the tangent
at the point of contact of two conies

which touch, a tangent be drawn to

each, the line joining their points of

contact will pass through the inter-

section of common tangents to the

conies.

If, on a common chord of two co-

nies, any two points be taken, and

from these tangents be drawn to the

conies, the diagonals of the quadrila-

teral so formed will pass through one

or other of the intcrsectio; of com-

mon tanaents to the conies.

* A system of four points connected by six lines is accurately called

a quadrangle, as a system of four lines intersecting in six points is called

a quadrilateral.



268 THE METHOD OF KECTrnOCAL POLARS.

If A and JB be two conies having
each double contact with S, the

chords of contact of A and B with S^

and their chords of intersection with

each other, meet in a point, and form

a harmonic pencil. (Art. 263.)

If A, B, C, be three conies, having

each double contact with S, and if A
and B both touch C, the tangents at

the points of contact will intersect on

a common chord of A and B.

If A and B be two conies having
each double contact with S^ the inter-

sections of the tangents at their points

of contact with S, and the intersec-

tions of tangents common to A and

B, lie in one right line, which they
divide harmonically.

If A, B, C, be three conies, having
each double contact with S, and if A
and B both touch C, the line joining

the points of contact will pass through
an intersection of common tangents of

A and B.

307. We have hitherto supposed the auxiliary conic S to be

any conic whatever. It is most common, however, to suppose
this conic a circle

;
and hereafter, when we speak of polar curves,

we intend the reader to understand polars with regard to a circle^

unless we expressly state otherwise.

We know (Art. 88) that the polar of any point with regard
to a circle is perpendicular to the line joining this point to the

centre, and that the distances of the point and its polar are, when

multiplied together, equal to the square of the radius
;
hence the

relation between polar curves with regard to a circle is often

stated as follows: Being given

anyjpoint 0, iffrom it we letfall
a perj>endicular OT on any tan-

gent to a curve 8, and produce
it until the rectangle OT.Op is

equal to a constant 1^^ then the

locus of the pointp is a curve 5,

which is called the polar recipro-

cal of 8. For this is evidently

equivalent to saying that p is the pole of PT, with regard to a

circle whose centre is and radius h. We see, therefore (Art.

301), that the tangent pt will correspond to the point of con-

tact P, that is to say, that OP will be perpendicular to pt^ and

that OF.Ot^U\
It is easy to show that a change in the magnitude of h will

aifect only the size and not the shape of 5, which is all that in

most cases concerns us. In this manner of considering polars,
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all mention of the circle may be suppressed, and s may be called

the reciprocal of S with regard to the point 0. We shall call

this point the origin.

The advantage of using the circle for our auxiliary conic

chiefly arises from the two following theorems, which are at once

deduced from what has beeji said, and which enable us to trans-

form, by this method, not only theorems of position, but also

theorems involving the magnitude of lines and angles :

llie distance of any point Pfrom the origin is the reciprocal of
the distancefrom the origin of the corresponding line pt.

The angle TQT between any two lines TQ^ T' Q^ is equal to

tlie angle p Op subtended at the origin by the corresponding points

Pj P ; for Op is perpendicular to TQ,^ and Op to T Q.

We shall give some examples of the application of these

principles when we have first investigated the following

problem :

308. To find the polar reciprocal of one circle with regard to

another. That is to say, to find the locus of the pole p with re-

gard to the circle (0) of any tangent PT io the circle [C]. Let

MN be the polar of the point C
with regard to 0, then having
the points (7, />,

and their polars

MN^ PT^ we have by Art. 101,

qG_Op
CP" pN'

ratio is constant, since both OC
and CP are constant

;
hence the

distance of p from is to its distance from MN in the constant

ratio OC'. CP] its locus is therefore a conic, of which is a focus,

MN the corresponding directrix, and whose eccentricity is 0(7

divided by CP. Hence the eccentricity is greater, less than, or

= 1
, according as is without, within, or on the circle C.

Hence the polar reciprocal of a circle is a conic section^ of
which the origin is the focus^ the line corresponding to the centre

is the directrix^ and which is an ellipse^ hyperbola^ or parabola.^

according as the origin is within^ without^ or on the circle.

309. We shall now deduce some properties concerning angles,

by the help of the last theorem given in Art. 307.

the ratio but the first
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Any two tangents to a circle make The line drawn from the focus to

equal angles with their chord of con- the intersection of two tangents bisects

tact. the angle subtended at the focus by
their chord of contact. (Art. 191.)

For the angle between one tangent PQ (see fig., p. 268) and

the chord of contact PP' is equal to the angle subtended at the

focus by the corresponding points ^, q ;
and similarly, the angle

QP'P is equal to the angle subtended by ^', q ; therefore, since

QPP' = QP'P, pOq=p Oq,

Any tangent to a circle is perpen- Any point on a conic, and the point

dicular to the line joining its point of where its tangent meets the directrix,

contact to the centre. subtend a right angle at the focus.

This follows as before, recollecting that the directrix of the

conic answers to the centre of the circle.

Any point and the intersection of

its polar with the directrix subtend a

right angle at the focus.

If the point where any line meets

the directrix be joined to the focus,

the joining line will bisect the angle

between the focal radii to the points

where the given line meets the curve.

The envelope of a chord of a conic,

which subtends a given angle at the

focus, is a conic having the same

focus and the same directrix.

The locus of the intersection of tan-

gents, whose chord subtends a given

angle at the focus, is a conic having
the same focus and directrix.

If a fixed line intersect a series of

conies having the same focus and

same directrix, the envelope of the

tangents to the conies, at the points

where this line meets them, will be a

conic having the same focus, and

touching both the fixed line and the

common directrix.

In the latter theorem, if the fixed line be at infinity, we find

the envelope of the asymptotes of a series of hyperbolas having
the same focus and same directrix, to be a parabola having the

same focus and touching the common directrix.

Any line is perpendicular to the

line joining its pole to the centre of

the circle.

The line joining any point to the

centre of a circle makes equal angles

with the tangents through that point.

The locus of the intersection of

tangents to a circle, which cut at a

given angle, is a concentric circle.

The envelope of the chord of con-

tact of tangents which cut at a given

angle is a concentric circle.

If from a fixed point tangents be

drawn to a series of concentric circles,

the locus of the points of contact will

be a circle passing through the fixed

point, and through the common cen-

tre.



THE METHOD OP RECIPROCAL POLARS. 271

If two chords at right angles to each The locus of the intersection of

other be drawn through any point on tangents to a parabola which cut at

a circle, the line joining their extre- right angles is the directrix,

mitles passes through the centre.

We say a parabola, for, the point through which the chords

of the circle are drawn being taken for origin, the polar of the

circle is a parabola (Art. 308).

The envelope of a chord of a circle

which subtends a given angle at a

given point on the curve is a concen-

tric circle.

Given base and vertical angle of a

triangle, the locus of vertex is a circle

passing through the extremities of

the base.

The locus of the intersection of tan-

gents to an ellipse or hyperbola which

cut at right angles is a circle.

The locus of the intersection of tan-

gents to a parabola, which cut at a

given angle, is a conic having the

same focus and the same directrix.

Given in position two sides of a tri-

angle, and the angle subtended by the

base at a given point, the envelope
of the base is a conic, of which that

point is a focus, and to which the two

given sides will be tangents.

The envelope of any chord of a

conic which subtends a right angle

at any fixed point is a conic, of which

that point is a focus.

" If from any point on the circumference of a circle perpen-
diculars be let fall on the sides of any inscribed triangle, their

three feet will lie in one right line" (Art. 125).

If we take the fixed point for origin, to the triangle inscribed

in a circle will correspond a triangle circumscribed about a^ara-
hola ; again, to the foot of the perpendicular on any line corre-

sponds a line through the corresponding point perpendicular to

the radius vector from the origin. Hence,
" If we join the focus

to each vertex of a triangle circumscribed about a parabola, and

erect perpendiculars at the vertices to the joining lines, those

perpendiculars will pass through the same point." If, therefore,

a circle be described, having for diameter the radius vector from

the focus to this point, it will pass through the vertices of the

circumscribed triangle. Hence, Given three tangents to a para-

bola^ the locus of thefocus is the circumscribing circle (p. 193).

The locus of the foot of the per- If from any point a radius vector

pendicular (or of a line making a

constant angle with the tangent), from

the focus of an ellipse or hyperbola
on the tangent is a ch'cle.

be drawn to a circle, the envelope of

a perpendicular to it at its extremity

(or of a line making a constant angle

with it) is a conic having the fixed

point for its focus.
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310. Having sufficiently exemplified in the last Article the

method of transforming theorems involving angles, we proceed
to show that theorems involving the magnitude of lines passing

through the origin are easily transformed by the help of the first

theorem in Art. 307. For example, the sum (or, in some cases,

the difierence, if the origin be without the circle) of the perpen-

diculars let fall from the origin on any pair of parallel tangents

to a circle is constant, and equal to the diameter of the circle.

Now, to two parallel lines correspond two points on a line

passing through the origin. Hence,
'' the sum of the reciprocals

of the segments of any focal chord of an ellipse is constant."

We know (p. 175) that this sum is four times the reciprocal

of the parameter of the ellipse, and since we learn from the

present example that it only depends on the diameter, and not

on the position of the reciprocal circle, we infer that the reci-

procals of equal circles
^
with regard to any origin^ have the same

parameter.
The rectangle under the segments The rectangle under the perpen-

of any chord of a circle through the diculars let fall from the focus on two

origin is constant. parallel tangents is constant.

Hence, given the tangent from the origin to a circle, we are

given the conjugate axis of the reciprocal hyperbola.

Again, the theorem that the sum of the focal distances of

any point on an ellipse is constant, may be expressed thus :

The sum of the distances from the The sum of the reciprocals of per-

focus of the points of contact of pa- pendiculars let fall from any point

rallel tangents is constant. within a circle on two tangents whose

chord of contact passes through the

point, is constant.

311. Many relations involving the magnitude of lines not

passing through the origin may be transformed by the help of the

theorem of Art. 101. Thus we know, that if PA^ PB, PC, PD,
be the perpendiculars let fall from any point of a conic on the

sides of an inscribed quadrilateral, PA.PC=kPB.PD (Art. 259);
.

^,.
,

^.
PA PC . PB PD .

^now we may write this relation, T)p''T)p^^*'7yP'~0P''

if a, Z>, c, d, be the points corresponding to the lines A, B, (7, Z>,

and a'p
the perpendicular let fall from a on the line corresponding

to P, we have (Art. 101) -7yp~ n' ^^^^^^^'^7 ^^^ t^^ other
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sides
;
and Oa^ Oh^ Oc^ Od^ being constant, we infer that if a

fixed quadrilateral he circumscribed to a conic^ the product of the

j)e7'pendiculars let fall from two opposite vertices on any variable

tangent is in a constant ratio to the product of the perpendiculars
let fallfrom the other two vertices.

The product of the perpendiculars The product of the perpendiculars
from any point of a conic on two fixed from two fixed points of a conic on

tangents, is in a constant ratio to the any tangent, is in a constant ratio to

square of the perpendicular on their the square of the perpendicular on it,

chord of contact. (Art. 259.) from the intersection of tangents at

those points.

If, however, the origin be taken on the chord of contact, the

reciprocal theorem
is, "the intercepts, made by any variable

tangent on two parallel tangents, have a constant rectangle."

The product of the perpendiculars The square of the radius vector

on any tangent of a conic from two from a fixed point to any jDoint on

fixed points (the foci) is constant. a conic, is in a constant ratio to the

product of the perpendiculars let fall

from that point of the conic on two

fixed right lines.

312. Very many theorems concerning magnitude may be

reduced to theorems concerning lines cut harmonically or an-

harmonically, and are transformed by the following principle :

To any four points on a right line correspond four lines passing

through a pointy and the anharmonic ratio of this p^encil is the

same as that of thefour points.

This is evident, since each leg of the pencil drawn from the

origin to the given points is perpendicular to one of the corre-

sponding lines. We may thus derive the anharmonic properties

of conies in general from those of the circle.

The anharmonic ratio of the pencil The anharmonic ratio of the points

joining four points on a conic to a in which four fixed tangents to a conic

variable fifth is constant. cut any variable fifth is constant.

The first of these theorems is true for the circle, since all the

angles of the pencil are constant, therefore the second is true

for all conies. The second theorem is true for the circle, since

the angles which the four points subtend at the centre are

constant, therefore the first theorem is true for all conies.

By observing the angles which correspond in the reciprocal
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figure to the angles which are constant in the case of the circle,

the student will perceive that the angles which the four points

of the variable tangent subtend at either focus are constant,

and that the angles are constant which are subtended at the

focus by the four points in which any inscribed pencil meets

the directrix.

313. The anharmonic ratio of a line is not the only relation

concerning the magnitude of lines which can be expressed in

terms of the angles subtended by the lines at a fixed point.,

For, if there be any relation which, by substituting (as in Art. 5Q)

r u V AT>' 1 A •
'.

OA.OB.smAOB ,

for each hne AB mvolved in
it, 7)W~ '

^^^ ^^"

duced to a relation between the sines of angles subtended at a

given point 0, this relation will be equally true for any trans-

versal cutting the lines joining to the points A^ B^ &c.
;
and

by taking the given point for origin a reciprocal theorem can be

easily obtained. For example, the following theorem, due to

Carnot, is an immediate consequence of Art. 148 :
" If any

conic meet the side AB of any triangle in the points c^ c
',

BG
in a, a'

;
ACm h, h'

;
then the ratio

Ac.Ac.Ba. Ba'.Cb.Cb' _
Ab . Ab'. Bc.Bc'.Ca.Ca

~

Now, it will be seen that this ratio is such that we may
substitute for each line Ac the sine of the angle A Oc, which it

subtends at any fixed point ;
and if we take the reciprocal of

this theorem, we obtain the theorem given already at p. 256.

314. Having shown how to form the reciprocals of particular

theorems, we shall add some general considerations respecting

reciprocal conies.

We proved (Art. 308) that the reciprocal of a circle is an

ellipse, hyperbola, or parabola, according as the origin is within,

without, or on the curve
;
we shall now extend this conclusion to

all the conic sections. It is evident that, the nearer any line or

point is to the origin, the farther the correspondmg point or line

will be
;
that if any line passes through the origin, the corre-

sponding point must be at an infinite distance
;
and that the line

corresponding to the origin itself must be altogether at an infinite
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distance. To two tangents, therefore, through the origin on one

figure, will correspond two points at an infinite distance on the

other
; hence, if two real tangents can he drawn from the origin,

the reciprocal curve will have two real points at infinity, that is,

it will be a hyperbola ;
if the tangents drawn from the origin be

imaginary, the reciprocal curve will be an ellipse ;
if the origin

be on the curve, the tangents from it coincide, therefore the

points at infinity on the reciprocal curve coincide, that is,
the

reciprocal curve will be a parabola. Since the line at infinity

corresponds to the origin, we see that, if the origin be a point on

one curve, the line at infinity will be a tangent to the reciprocal

curve
;
and we are again led to the theorem (Art. 254) that

every parabola has one tangent situated at an infinite distance,

315. To the points of contact of two tangents through the

origin must correspond the tangents at the two points at infinity

on the reciprocal curve, that is to say, the asymptotes of the

reciprocal curve. The eccentricity of the reciprocal hyperbola

depending solely on the angle between its asymptotes, depends,

therefore, on the angle between the tangents drawn from the

origin to the original curve.

Again, the intersection of the asymptotes of the reciprocal

curve [i.e.
its centre) corresponds to the chord of contact of

tangents from the origin to the original curve. We met with

a particular case of this theorem when we proved that to the

centre of a circle corresponds the directrix of the reciprocal

conic, for the directrix is the polar of the origin which is the

focus of that conic.

Ex. 1. The reciprocal of a parabola with regard to a point on the

directrix is an equilateral hyperbola. (See Art. 221.)

Ex. 2. Prove that the following theorems are reciprocal :

The intersection of perpendiculars The intersection of perpendiculars

of a triangle circumscribing a para- ofa triangle inscribed in an equilateral

bola is a point on the directrix. hyperbola lies on the curve.

Ex. 3. Derive the last from Pascal's theorem
; (see Ex. 3, p. 232).

Ex. 4. The axes of the reciprocal curve are parallel to the tangent and

normal of a conic drawn through the origin confocal with the given one.

For the axes of the reciprocal curve must be parallel to the internal and

external bisectors of the angle between the tangents drawn from the origin

to the given curve. The theorem stated follows by Art, 189.

t2
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316. Given two circles, we can find an origin such that the

reciprocals of both shall be confocal conies. For, since the reci-

procals of all circles must have one focus (the origin) common
;

in order that the other focus should be common, it is only-

necessary that the two reciprocal curves should have the same

centre, that
is,

that the polar of the origin with regard to both

circles should be the same, or that the origin should be one of

the two points determined in Art. 111. Hence, given d^ system

of circles, a^ in Art. 109, their reciprocals with regard to one of

these limiting points will be a system of confocal conies.

The reciprocals of any two conies will, in like manner, be

concentric if taken with regard to any of the three points

(Art. 282) whose polars with regard to the curves are the same.

Confocal conies cut at right angles. The common tangent to two circles

(Art. 188.) subtends a right angle at either limit-

ing point.

The tangents from any point to two If any line intersect two circles,

confocal conies are equally inclined its two intercepts between the circles

to each other. (Art. 189.) subtend equal angles at either limit-

ing point.

The locus of the pole of a fixed line The polar of a fixed point, with

with regard to a series of confocal regard to a series of circles having
conies is a line perpendicular to the the same radical axis, passes through
fixed line. (p. 196.) a fixed point; and the two points

subtend a right angle at either limit-

ing point.

317. We may mention here that the method of reciprocal

polars affords a simple solution of the problem, "to describe a

circle touching three given circles." The locus of the centre

of a circle touching two of the given circles (1), (2), is evidently
a hyperbola, of which the centres of the given circles are the

foci, since the problem is at once reduced to—" Given base and

difference of sides of a triangle." Hence (Art. 308) the polar
of the centre with regard to either of the given circles (1) will

always touch a circle which can be easily constructed. In like

manner, the polar of the centre of any circle touching (1) and (3)

must also touch a given circle. Therefore, if we draw a common

tangent to the two circles thus determined, and take the pole
of this line with respect to (1), we have the centre of the circle

touching the three given circles.
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318. To find the equation of the reciprocal of a conic with

regard to its centre.

We found, in Art. 178, that the perpendicular on the tangent
could be expressed in terms of the angles it makes with the axes,

/ = a'cos'6' + &'sin'6'.

Hence the polar equation of the reciprocal curve is

—
,
= a^ cos'"^ 6 -f F sin'^ 6,

P

or I
— = 1

k"-
'

k'

a concentric conic, whose axes are the reciprocals of the axes

of the given conic.

319. To find the equation of the reciprocal of a conic with

regard to any point {x'y).

The length of the perpendicular from any point is (Art. 178)

7/2

^ = — = ^{a^ cos^^ + 1>^ sin^^)
— x cos6- y sin Q

;

9

therefore, the equation of the reciprocal curve is

{x7i + yy' + ¥)' = aV + %^

320. Given the reciprocal of a curve with regard to the origin

of co-ordinates^ to find the equation of its reciprocal with regard
to any point {x'y').

If the perpendicular from the origin on the tangent be P,
the perpendicular from any other point is (Art. 34)

P—x' C0&6 -y' sin^,

and, therefore, the polar equation of the locus is

— = ~f^~x cos —
1/ sm ^ ;

, k^ XX + VV + ^^ 1 -^ cos Q p cosd
hence -^

= ^-^ and —j,r~ = —
f; m^ 5

±c p k" XX -\- yy -\- k"
^

we must, therefore, substitute, in the equation of the given

reciprocal, —, -,

—
r^ for x. and —

-, —,
—

7^ for y.^ ^ XX -\-yy -{-k
' xx -\-yy -Vk

The eifect of this substitution may be very simply written
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as follows : Let the equation of the reciprocal with regard to

the origin be
^^ ^ ^^_^ ^ ^^_^^ &c. = 0,

where u^ denotes the terms of the n^ degree, &c., then the

reciprocal with regard to any point is

/xx + yy' + F\ /xx' + yy + 7c\^
.

„ ^

a curve of the same degree as the given reciprocal.

321. To find the reciprocal with respect to x^-\- y^
— 1c^ of the

conic given hy the general equation.

We find the locus of a point whose polar xx + yy
- W shall

touch the given conic by writing a;', y\
— k^ for X, /a,

v in the

tangential equation (Art. 151). The reciprocal is therefore

Ax^ -f 2Hxy + By'
- 2 G¥x - 2Fk'y + Ck' = 0.

Thus, if the curve be a parabola, G or ah — K^^O^ and the

reciprocal passes through the origin. We can, in like manner,

verify by this equation other properties proved already geo-

metrically. If we had, for symmetry, written k? = —
z'^ and

looked for the reciprocal with regard to the curve x'-\-y''-\-z'=^0^

the polar would have been xx + yy + zz\ and the equation of

the reciprocal would have been got by writing a?, y, z for \, /z, v

in the tangential equation. In like manner, the condition that

'kx-\- ^y + vz may touch any curve, may be considered as the

equation of its reciprocal with regard to x'^ -f y' + z'.

A tangential equation of the ri^ degree always represents
a curve of the n^ class

;
since if we suppose \x-V fiy + vz to

pass through a fixed point, and therefore have \x-\ tiy'-\- vz'=0'j

eliminating v between this equation and the given tangential

equation, we have an equation of the n^ degree to determine

\:
fju;

and therefore n tangents can be drawn through the given

point.

322. Before quitting the subject of reciprocal polars, we
wish to mention a class of theorems, for the transformation of

which M. Chasles has proposed to take as the auxiliary conic

a parabola instead of a circle. We proved (Art. 211) that the

intercept made on the axis of the parabola between any two

lines is equal to the intercept between perpendiculars let fall on
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the axis from the poles of these lines. This principle, then,
enables us readily to transform theorems which relate to the

magnitude of lines measured parallel to a fixed line. We shall

give one or two specimens of the use of this method, premising
that to two tangents parallel to the axis of the auxiliary parabola

correspond the two points at infinity on the reciprocal curve,
and that, consequently, the curve will be a hyperbola or ellipse,

according as these tangents are real or imaginary. The reci-

procal will be a parabola if the axis pass through a point at

infinity on the original curve.
"
Any variable tangent to a conic intercepts on two parallel

tangents, portions whose rectangle is constant."

To the two points of contact of parallel tangents answer the

asymptotes of the reciprocal hyperbola, and to the intersections

of those parallel tangents with any other tangent answer parallels

to the asymptotes through any point ;
and we obtain, in the first

instance, that the asymptotes and parallels to them through any

point on the curve intercept on any fixed line portions whose

rectangle is constant. But this is plainly equivalent to the

theorem :
" The rectangle under parallels drawn to the asymp-

totes from any point on the curve is constant."

Chords drawn from two fixed If any tangent to a parabola meet

points of a hyperbola to a variable two fixed tangents, perpendiculars

third point, intercept a constant from its extremities on the tangent

length on the asymptote (p. 179). at the vertex will intercept a constant

length on that line.

This method of parabolic polars is plainly very limited in

its application.
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CHAPTER XVI.

HARMONIC AND ANHARMONIC PROPERTIES OF CONICS.*

323. The harmonic and anharmonic properties of conic sec-

tions admit of so many applications in the theory of these curves,

that we think it not unprofitable to spend a little time in point-

ing out to the student the number of particular theorems either

directly included in the general enunciations of these properties,

or which may be inferred from them without much difficulty.

The cases which we shall most frequently consider are,

when one of the four points of the right line, whose anharmonic

ratio we are examining, is at an infinite distance. The an-

harmonic ratio of four points, A^ B^ (7, i>, being in general

(Art. 56)
=

-r^r^
-~

-yY77 reduces to the simple ratio —^7^ when

D is at an infinite distance, since then AD ultimately — — DC,
If the line be cut harmonically, its anharmonic ratio = — 1

;
and

if D be at an infinite distance AB— BG^ and AC iq bisected.

The reader is supposed to be acquainted with the geometric

investigation of these and the other fundamental theorems con-

niected with anharmonic section.

324. We commence with the theorem (Art. 146) :
" If any

line through a point meet a conic in the points B\ R'\ and

the polar of in R^ the line OR'RR" is cut harmonically."
First. Let R" be at an infinite distance

;
then the line OR

must be bisected at R'
;
that is, if through a fixed point a line he

drawn parallel to an asymptote of an hyperhola^ or to a diameter

of a pai'obola^ the ptortion of this line hetween the fixed point and

its polar will he hisected hy the curve (Art. 211).

* The fundamental property of anharmonic pencils was given by

Pappus, 3Iath. Coll. Vii., 129. The name "anharmonic" was given by
Chasles in his History of Geometry, from the notes to which the follow-

ing pages have been developed. Further details will be found in his

Traite de Geometrie Superieure. The anharmonic relation, however, had

been studied by Mobius in his Barycentric Calcidus, 1827, under the

name of '*

DoppelschnittsverhaltnisSi"
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Secondly. Let R be at an infinite distance, and R'R" must

be bisected at
;
that

is, if through any jpoint a chore' he drawn

parallel to the polar of that pointy it will he hisected at the point.

If the polar of be at infinity, every chord through that

point meets the polar at infinity, and is therefore bisected at 0.

Hence this point is the centre, or the centre may he considered a>s

a point lohose polar is at infinity (p. 146).

Thirdly. Let the fixed point itself be at an infinite distance,

then all the lines through it will be parallel, and will be bisected

on the polar of the fixed point. Hence every diameter of a conic

may he considered as the polar of the point at infinity in which its

ordinates are supposed to intersect.

This also follows from the equation of the polar of a point

(Art. 145)

{ax^hy+g) + {hx + hy^f) ^' + 3^^^±&±^ = 0.
X X

Kow, if x'y be a point at infinity on the line my = nx^ we must

make ^, = — ,
and x infinite, and the equation of the polarX nv

becomes m {ax + hy-{-g)+n {hx + hy +/) = 0,

a diameter conjugate to my = nx (Art. 141).

325. Again, it was proved (Art. 146) that the two tangents

through any point, any other line through the point, and the

line to the pole of this last line, form a harmonic pencil.

If now one of the lines through the point be a diameter, the

other will be parallel to its conjugate, and since the polar of

any point on a diameter is parallel to its conjugate, we learn that

the portion between the tangents of any line drawn parallel to

the polar of the point is bisected by the diameter through it.

Again, let the point be the centre, the two tangents will be

the asymptotes. Hence the asymptotes^ together with any pair of

conjugate diameters^ form a harmonic pencil^ and the portion of

any tangent intercepted between the asymptotes is bisected by
the curve (Art. 196).

326. The anharmonic property of the points of a conic (Art.

259) gives rise to a much greater variety of particular theorems.

For, the four points on the curve may be any whatever, and
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either one or two of them may be at an infinite distance
;
the

fifth point 0, to which the pencil is drawn, may be also either

at an infinite distance, or may coincide with one of the four

points, in which latter case one of the legs of the pencil will be

the tangent at that point ; then, again, we may measure the

anharmonic ratio of the pencil by the segments on any line

drawn across
it,

which we may, if we please, draw parallel to

one of the legs of the pencil, so as to reduce the anharmonic

ratio to a simple ratio.

The following examples being intended as a practical exercise

to the student in developing the consequences of this theorem,
we shall merely state the points whence the pencil is drawn, the

line on which the ratio is measured, and the resulting theorem,

recommending to the reader a closer examination of the manner
in which each theorem is inferred from the general principle.

We use the abbreviation [O.ABCD] to denote the anhar-

monic ratio of the pencil OA^ OBj OCj OD,
Ex. 1. {A. ABCD] = {B . ABCD}.
Let these ratios be estimated by the segments on the line CD

;
let the

tangents at A, B meet CD in the points T, T',

and let the chord AB meet CD in K^ then the

ratios are TK.DC KT'.DC
TD.KC' KD.T'G'

that is, if any chord CD meet two tangents in

jT, T', and their chord of contact in JT,

KC.KT',TD = KD.TK,T'C.

(The reader must be careful, in this and the

following examples, to take the points of the pencil
in the same order on both sides of the equation.

Thus, on the left-hand side of this equation we
took K second, because it answers to the leg OB 'K.

of the pencil j
on the right hand we take K first, because it answers to

the leg OA).

Ex. 2. Let T and T' coincide, then

KC,TD = -KD.TC,
or, any chord through the intersection of two tangents is cut harmonically

by the chord of contact.

Ex. 3. Let T' be at an infinite distance, or the secant CD drawn parallel
to PT\ and it will be found that the ratio will reduce to

TK* = TCTD.
Ex. 4. Let one of the points be at an infinite distance, then {O.ABCcc }

is constant. I^et this ratio be estimated on the line C <x> . Let the lines
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AO, JSd cnt C 00 in a, i; then the ratio of the pencil will reduce to -^ j

and we learn, that if two fixed points, A, B, on a hyperbola or parabola, be

joined to any variable point O, and the joining line meet a fixed parallel to

an asymptote (if the curve be a hyperbola), or a diameter (if the curve be

a parabola), in a, b, then the ratio Ca : Cb will be constant.

Ex. 5. If the same ratio be estimated on any other parallel line, lines

inflected from any three fixed points to a variable point cut a fixed parallel

to an asymptote or diameter, so that ab : ac is constant.

Ex. 6. It follows from Ex. 4, that if the lines joining A, B to any fourth

point Cy meet C oo in a', b', we must have

ab
^
aC

a'b'~ a'C
Now let us suppose the point C to be also at an infinite distance, the line

C 00 becomes an asymptote, the ratio ab : a'b' becomes one of equality, and

lineis joining two fixed points to any variable point on the hyperbola inter-

cept on either asymptote a constant portion (p. 179).

Ex. 7. {A. ABC oo} = {B.ABC oo}.

Let these ratios be estimated on C oo
;
then if the tangents at A, B, cut

C 00 in a, b, and the chord of contact AB in

K, we have Ca
^
CK

CK~ Cb

(observing the caution in Ex. 1). Or, if an^

parallel to an asymptote of a hyperbola, or

a diameter of a parabola, cut two tangents
and their chord of contact, the intercept from

the curve to the chord is a geometric mean between the intercepts from the

curve to the tangents. Or, conversely, if a line ab, parallel to a given one,

meet the sides of a triangle in the points a, b, K, and there be taken on it

a point C such that CK^ = Ca.Cb, the locus of C will be a parabola, if Cb

be parallel to the bisector of the base of the triangle (Art. 211), but other-

wise a hyperbola, to an asymptote of which ab is parallel.

Ex. 8. Let two of the fixed points be at infinity,

{
CO . AB 00 oo'}

=
{ oo'.AB 00 oo'} ;

the lines oo oo, oo' oo', are the two asymptotes, while oo oo' is altogether at

infinity. Let these ratios be estimated on the

diameter OA ;
let this line meet the parallels to

the asymptotes B cc, B oo', in a and a
; then the

OA Oa

~0a

asymptotes through any point on a hyperbola cut

any semi-diameter, so that it is a mean proportional

between the segments on it from the centre.

Hence, conversely, if through a fixed point O
a line be drawn cutting two fixed lines, Ba, Ba',

ratios become = -=— . Or, parallels to
DA

the
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and a point A taken on it so that OA is a mean between Oa, Oa', the

locus of ^ is a hyperbola, of which is the centre, and J3a, Ba', parallel

to the asymptotes.

Ex. 9. {
00 . AB 00 oo'}

=
{
«.'. AB oo oo'}.

Let the segments be measured on the asymptotes, and we have
Oa _ Oh'

Ob~ O^'

( being the centre), or the rectangle under parallels to the asymptotes

through any point on the curve is constant (we invert the second ratio for

the reason given in Ex. 1).

327. We next examine some particular cases of the anhar-

monic property of the tangents to a conic (Art. 275).

Ex. 1. This property assumes a very simple form, if tlie curve be a

parabola, for one tan-

gent to a parabola is ^ / ^^^^^=^5'

always at an infinite

distance (Art. 254).

Hence three fixed tan-

gents to a parabola
cut any fourth in the

points A, B, C, so that

AB : AC is always
constant. If the variable tangents coincide in turn with each of the given

tangents, we obtain the theorem,

pQ _ JRP _ Or

QR~ Pq~ rP'

Ex. 2. Let two of the four tangents to an ellipse or hyperbola be parallel

to each other, and let the variable tangent

coincide alternately with each of the parallel

tangents. In the first case the ratio is

Ab
Ac

Hence the rectangle Ab . Db' is constant.

It may be deduced from the anharmonic

property of the points of a conic, that if the lines joining any point on the

curve O to A, D, meet the parallel tangents in the points b, &', then the

rectangle Ab . Db' will be constant.

328. We now proceed to give some examples of problems

easily solved by the help of the anharmonic properties of conies.

Ex. 1. To prove MacLaurin's method of generating conic sections

(p. 233), viz.—To find the locus of the vertex F" of a triangle whose sides

pass through the points A, B, C, and whose base angles move on the fixed

lines Oa, Oh,

and in the second -=rr; .

Do
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is the conic section passing through

Let us suppose four such triangles drawn, then since the pencil

{C.aa'a"a'"} is the same pencil as

{aa'a"a"'\
=

{bb'b"b'"},

and, therefore,

{A.aa'a''a"'} r. {B M'b%"'}',

or, from the nature of the question,

{A . Vr V" V'"} = {B .VV V" V'"} ;

and therefore A,B,V, V, V", V" lie

on the same conic section. Now if

the first three triangles be fixed, it

is evident that the locus of V"

ABVV'V",
Or the reasoning may be stated thus: The systems of lines through A,

and through B, being both homographic with the system through C, are

homographic with each other
;
and therefore (Art. 297) the locus of the

intersection of corresponding lines is a conic through A and B. The

following examples are, in like manner, illustrations of the application of

this principle of Art. 297.

Ex. 2. M. Chasles has showed that the same demonstration will hold if

the side a6, instead of passing through the fixed point (7, touch any conic

which touches Oa^ Ob
;
for then any four positions of the base cut Oa, Ob,

so that
{aa'a'a"'\

=
{bb'b'h'"} (Art. 275),

and the rest of the proof proceeds the same as before.

Ex. 3. Newton's method of generating conic sections :
—Two angles of

constant magnitude move about fixed

points P, Q; the intersection of two A A A A
of their sides traverses the right line

AA'
;
then the locus of V, the inter-

section of their other two sides, will

be a conic passing through P, Q.

For, as before, take four positions

of the angles, then

{P.AA'A"A"']={Q.AA'A"A"']',

hvii{P.AA'A"A"'}={P.VV V" V"%
{Q.4^A'A'A!"]={Ct.VV'V"V"%

since the angles of the pencils are the same
;
therefore

{P. VV V" V") = {Q.VV' V" V"%

and, therefore, as before, the locus of V" is a conic through P, Q, F", V\ V".

Ex. 4. M. Chasles has extended this method of generating conic sections,

by supposing the point A, instead of moving on a right line, to move on any
conic passing through the points P, Q ;

for we shall still have

{P.AA'A'A"] = {Q,AA'A'A'%
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Ex. 5. The demonstration would be the same if, in place of the angles

APV, AQV hemg constant, ^PTand AQV cut off constant intercepts

each on one of two fixed lines, for we should then prove the pencil

{P.AA'A"A"'} = {P.VV'VV'"},
because both pencils cut off intercepts of the same length on a fixed line.

Thus, also, given base of a triangle and the intercept made by the sides

on any fixed line, we can prove that the locus of vertex is a conic section.

Ex. 6. We may also extend Ex. 1, by supposing the extremities of the

line ab to move on any conic section passing through the points AJB, for,

taking four positions of the triangle, we have, by Art. 276,

{aa'a'W"}
=

{bb'b"b"'}',

therefore, {A . aaa"a!"\ = {B . bb'b"b"%

and the rest of the proof proceeds as before.

Ex. 7. The base of a triangle passes through C, the intersection of com-

mon tangents to two conic sections
;
the extremities of the base ab lie one

on each of the conic sections, while the sides pass through fixed points A^ JP,

one on each of the conies : the locus of the vertex is a conic through A, B.

The proof proceeds exactly as before, depending now on the second

theorem proved, Art. 276. We may mention that this theorem of Art. 276

admits of a simple geometrical proof. Let the pencil {O . ABCD] be drawn

from points corresponding to [o . abed). Now, the lines OA, oa, intersect at

r on one of the common chords of the conies; in like manner, BO, bo,

intersect in ?•' on the same chord, &c.
;
hence {rr'r'r'"} measures the anhar-

monic ratio of both these pencils.

Ex. 8. In Ex. 6 the base, instead of passing through a fixed point C,

may be supposed to touch a conic having double contact with the given

conic (see Art. 276).

Ex. 9. If a polygon be inscribed in a conic, all whose sides but one pass

through fixed points, the envelope of that side will be a conic having double

contact with the given one.

For, take any four positions of the polygon, then, if a, b, c, &c. be the

vertices of the polygon, we have

{aa'a"a"'}
=

[bb'b"b"']
=

{cc'c"c"% &c.

The problem is, therefore, reduced to that of Art. 277,—" Given three pairs

of points, aa'a", dd'd", to find the envelope of a"'d"\ such that

{aa'a"a"'}
= {dd'd"d"y

Ex. 10. To inscribe a polygon in a conic section, all whose sides pass

through fixed points.

If we assume any point [a) at random on the conic for the vertex of the

polygon, and form a polygon whose sides pass through the given points, the

point z, where the last side meets the conic, will not, in general, coincide

with a. If we make four such attempts to inscribe the polygon, we must

have, as in the last example,

{aaa"a"']
=

(zzV'a'"}.
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Now, if the last attempt were successful, the point a'" would coincide with

z'", and the problem is reduced to,
—" Given three pairs of points, aa'd\

zz'z", to find a point K such that

{Kaa'a"} =
{Kzzlz']."

Now if we make a:^'a'za"z' the vertices of an inscribed hexagon (in the order

here given, taking an a and z alternately, and _JP——
so that az, a'z\ a"z", may be opposite ver- c,-^-""'//

tices), then either of the points in which the yi^ /
line joining the intersections of opposite sides

meets the conic may be taken for the point K, y

For, in the figure, the points A CE are aa'd', K(.

DFB are zzV
;
and if we take the sides in \

the order ABCDEF, L, 31, N are the in-

tersections of opposite sides. Now, since ^^^\\/ \\
{KPNL} measures both {B .KACE} and

^^^^^^"-^^
\a.XDFB}, we have ^—

{KA CE} = {KJDFB}. Q. E. d.*

It is easy to see, from the last example, that ^ is a point of contact of

a conic having double contact with the given conic, to which az, a'z', a'V' are

tangents, and that we have therefore just given the solution of the question,
" To describe a conic touching three given lines, and having double contact

with a given conic."

Ex. 11. The anharmonic property afibrds also a simple proof of Pascal's

theorem, alluded to in the last example.
We have {E . CEFJB} = {A . CDFB\. Now, if we examine the segments

made by the first pencil on BC, and by the second on DC, we have

{CItMB]=^{CDNS}.

Now, ifwe draw lines from the point L to each of these points, we form two

pencils which have the three legs, CL, DE, AB, common, therefore the fourth

legs, NL, LM, must form one right line. In like manner, Brianchon's

theorem is derived from the anharmonic property of the tangents.

Ex. 12. Given four points on a conic, ADFB, and two fixed lines through

any one of them, DC, DE, to find the envelope of the line CE joining the

points where those fixed lines again meet the curve.

The vertices of the triangle CEM moye on the fixed lines DC, DE, NL,
and two of its sides pass through the fixed points, B, F; therefore, the

third side envelopes a conic section touching DC, DE (by the reciprocal

of MacLaurin's mode of generation).

* This construction for inscribing a polygon in a conic is due U)

M. Poncelet {Traite des Proprietes Projectives, p. 351). The demonstration

here used is Mr. Townsend's. It shows that Poncelet's construction will

equally solve the problem,
*' To inscribe a polygon in a conic, each of whose

sides shall touch a conic having double contact with the given conic." The

conies touched by the sides may be all difi'erent.
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Ex. 13. Given four points on a conic ABDE, and two fixed lines,

AF, CD, passing each through a different one of the fixed points, the line

CF joining the points where the fixed lines again meet the curve will pass

through a fixed point.

For the triangle CFM has two sides passing through the fixed points

B, F, and the vertices move on the fixed lines AF, CD, NL, which fixed

lines meet in a point, therefore (p. 266) CjP passes through a fixed point.

The reader will find how the last two theorems are suggested by other

well-known theorems in the Chapter on Projection. (See Ex. 3 and 4, p. 307.)

Ex. 14. The anharmonic ratio of any four diameters of a conic is equal

to that of their four conjugates. This is a particular case of Ex. 2, p. 258

that the anharmonic ratio of four points on a line is the same as that of

their four polars. "We might also prove it directly, from the consideration

that the anharmonic ratio of four chords proceeding from any point of the

curve is equal to that of the supplemental chords (Art. 179).

Ex. 15. A conic circumscribes a given quadrangle, to find the locus of

its centre. (Ex. 3, p. 143.)

Draw diameters of the conic bisecting the sides of the quadrangle, their

anharmonic ratio is equal to that of their four conjugates, but this last ratio

is given, since the conjugates are parallel to the four given lines; hence the

locus is a conic passing through the middle points of the given sides. If

we take the cases where the conic breaks up into two right lines, we see

that the intersections of the diagonals, and also those of the opposite sides,

are points in the locus, and, therefore, that these points He on a conic pass-

ing through the middle points of the sides and of the diagonals.

329. We tliink it unnecessary to go through the theorems,
which are only the polar reciprocals of those investigated in

the last examples ;
but we recommend the student to form the

polar reciprocal of each of these theorems, and then to prove it

directly by the help of the anharmonic property of the tangents

of a conic. Almost all are embraced in the following theorem :

If there he any number ofpoints «, &, c, d^ dhc. on a right line,

and a homographic system a, &', c', d\ &c. on another line, the

lines Joining corresponding points will envelope a conic. For if

we construct the conic touched by the two given lines and by
three lines aa\ hV^ cc

^ then, by the anharmonic property of the

tangents of a conic, any other of the lines dd! must touch the

same conic* The theorem here proved is the reciprocal of

* In the same case if P, P' be two fixed points, it follows from the last

article that the locus of the intersection of Pd, P'd' is a conic through
P, P. "We saw (Art. 277) that if o, h, c, d, Sec, a, I', c', d' be two homo-
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that proved Art. 297, and may also be established by interpreting

tangentially the equations there used. Thus, if P, P'
; Q^ Q re-

present tangentially two pairs of corresponding points, P-\-\P\
Q + XQ' represent any other pair of corresponding points ;

and

the line joining them touches the curve represented by the

tangential equation of the second order, PQ' = P' Q.

Ex. Any transversal through a fixed point P meets two fixed lines OA,
0A\ in the points AA') and portions of given length Aa, A'a' are taken on

each of the given lines
;
to find the envelope of aa'. Here, if we give the

transversal four positions, it is evident that{^J5CZ)} = [A'SfC'iy], and that

{ABCD] =
{ahcd}, and {A!BfC'D'} =

[a'h'c'd'}.

330. Generally when the envelope of a moveable line is

found by this method to be a conic section, it is useful to take

notice whether in any particular position the moveable line can

be altogether at an infinite distance, for if it can, the envelope
is a parabola (Art. 254). Thus, in the last example the line aa

cannot be at an infinite distance, unless in some position AA'
can be at an infinite distance, that is, unless P is at an infinite

distance. Hence we see that in the last example if the trans-

versal, instead of passing through a fixed point, were parallel to

a given line, the envelope would be a parabola. In like manner,
the nature of the locus of a moveable point is often at once

perceived by observing particular positions of the moveable point,

as we have illustrated in the last example, Art. 328,

331. If we are given any system of points on a right line

we can form a homographic system on another line, and such

that three points taken arbitrarily a\ h\ c shall correspond to

three given points a, J, c of the first line. For let the distances

of the given points on the first line measured from any fixed

origin on the line be «, 5, c,
and let the distance of any vari-

graphic systems of points on a conic, that is to say, such that {ahcd} always
=

{a'b'c'd'}, the envelope of dd' is a eonic having double contact with the

given one. In the same case, if P, P be fixed points on the co?iic, the locus

of the intersection of Pd, P'd' is a conic through P, P'. Again, two conies

are cut by the tangents of any conic having double contact with both, in

homographic systems of points, or such that [ahcd]
=

[a'h'c'd'} (Art. 276);

but it is not true conversely, that if we have two homographic systems of

points on different conies, the lines joining corresponding points negessaiily

envelope a conic.

U



290 ANHARMONIC PROPERTIES OF CONICS.

able point on the line measured from the same origin be x.

Similarly let the distances of the points on the second line

from any origin on that line be «', 5', c, x\ then, as in Art. 277,

we have the equation

(a
—

h)[c
—

x) _ [a!
—

h') [c
—
x)

\a-c){h^x)
~
{a-c)[h'-x)

'

which expanded is of the form

Axx' + Bx-vCx^D=^0.^

This equation enables us to find a point x in the second line

corresponding to any assumed point x on the first line, and such

that [obex]
—

[ah'cx]. If this relation be fulfilled, the line

joining the points a?,
x' envelopes a conic touching the two given

lines
3
and this conic will be a parabola if -4 = 0, since then x

is infinite when x is infinite.

The result at which we have arrived may be stated, con-

versely, thus : Two systems of points^ connected hy any relation^

will he homographic^ if to one point of-either system always cor-

responds one
J
and hut one^ point of the other. For, evidently,

an equation of the form

Axx -^Bx+Gx +D=^0

is the most general relation between x and x that we can write

down, which gives a simple equation whether we seek to deter-

mine X in terms of x'^ or vice versa. And when this relation

is fulfilled, the anharmonic ratio of four points of the first

system is equal to that of the four corresponding points of the

second. For the anharmonic ratio ) ^tt { is unaltered
[x-z){ij-w)

* M. Chasles states the matter thus : The points ar, scf belong to homo-

graphic systems, if a, b, a', h' being fixed points, the ratios of the distances

ax : hx, a'x' : 6V, be connected by a linear relation, such as

. ax a'x' _

ox ox

Denoting, as above, the distances of the points from fixed origins, by a, J,ar j

a', 6', x\ this relation is

. a - X a' - x' -

which, expanded, gives a relation between x and x' of the form

Axa^ + -Ba; + Ca;' + D = 0.
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Bx + D
if instead of x we write —

-^ ^ ,
and make similar substitu-

tions for y, z^ w.

332. The distances from the origin of a _pair of j)oints A^ B
on the axis ofx being given hy the equation^ ax^ + 2hx + ^ = 0, and

those of another pair of points A'^ B' hy a'x^ -f 2h'x + 6' = 0, to

find the condition that the two pairs should be harmonically con-

jugate.

Let the distances from the origin of the first pair of points

be a, y^ ;
and of the second a', /8' ;

then the condition is

AB~ B'B'
^^
a'-^~ yS'-/3'

which expanded may be written

(a + yS)(a' + /3')
= 2a/3 + 2a'/3'.

But a + ^ = -?^, a/3 = -; (a' + ^')
= -^' , a'^' = -, .

a a a a

The required condition is therefore

aV + a'b - 2hh' = *

It is proved, similarly, that the same is the condition that the

pairs of lines ^^^ _^ ^ha.^ + b^\ dd' + 2^'a^ + y^\

should be harmonically conjugate.

333. If a pair of points ax^ + Ihx 4- &, be harmonically con-

jugate with a pair dj? \-1}ix-\-b\ and also with another pair

a'V'^ + 2A"cc + &", it will be harmonically conjugate with every

pair given by the equation
•

(aV + 2A'aj vV)-\-\ (aV + "iWx 4 V) = 0.

For evidently the condition

a [V + \b") + b{d-^ \a")
- 2A [h' + \h!')

=
0,

will be fulfilled if we have separately

ab' + bd - 2hh' = 0, ab" f ba" - 2hh" = 0.

334. To find the locus of a point such that the tangents from
it to two given conies mayform a harmonic pencil.

* It can be proved that the anharraonic ratio of the system of four points

will be given, if («&' + dh -
IlihJ be in a given ratio to [ab -

If) {a'b'
-

A'*).

U2
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For simplicity we refer the conies to their common self-con-

jugate triangle (Art. 282), and write their equations

ad' -}-W + C7' = 0, a'a' + V^' + c-f = 0.

Now the equation of a pair of tangents from any point to the

first conic being

(aa'^ + h^'^' + ci') [aa' + hjS' + cy')
=

{aaa' + h^^' + cyy')',

if in this we make 7 = 0, the points where the line 7 is met by
the pair of tangents, are determined from the equation

a [hfi" + cy") d' - 2aha'^'a^ + h {aa" + cy") jS'
= 0.

Fonning the condition that this shall form a harmonic system
with the corresponding pair of points for the second conic, we
find for the equation of the locus

ah' [h^' + cy') {a'd' + c'y') + ha' [h'^' + c'y')[aoL' + cy')
=

2aha'h'd'l3%

which expanded and reduced is

aa' {he + h'c) d" + hh' [ca + c'a) /3^ 4 cc {ah' + ah) 7''
=

;

a conic having important relations to the two conies, which will

be treated of further on. If the anharmonic ratio of the four

tangents be given, the locus is the curve of the fourth degree,

F'^ = JcSS'j where
/S', S', F, denote the two given conies, and

that now found.

335. To find the condition that the line \a -f //-/S + vy should

he cut harmonically hy the two conies. Eliminating 7 between

this equation and that of the first conic, the points of inter-

section are found to satisfy the equation

(av' + cV) a' - 2cX/>fca/3 + (Z^vH c/t') /S'
= 0.

Forming the condition that this should be harmonically con-

jugate with the corresponding equation for the second conic,

we obtain

{av^ -f cX') {h'v' + c>') + {a'v' + c'X-'O {hy' + cjj.')
=

2cd\'fi\

which reduced is

{he + h'c) X' + {ea + c'a) fi' + {ah' + ah) v' = 0. ^

The line consequently envelopes a conic*

* If substituting in the equations of two conies JJ^ V, for «, \a 4 jua, &c.

we obtain results
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INVOLUTION.

336. Two systems of points a, h, c, &c., a\ h\ c', &c., situ-

ated on the same right line, will be homographic (Art. 331) if

the distances measured from any origin, of two corresponding

points, be connected by a relation of the form

Now this equation not being symmetrical between x and
a?',

the

point which corresponds to any point of the line considered as

belonging to the first system, will in general not be the same

as that which corresponds to it considered as belonging to the

second system. Thus, to a point at a distance x considered as

belonging' to the first system, corresponds a point at the dis-

tance —
-j -F,5

^'^* considered as belonging to the second

, Cx +D
system, corresponds

-
-^ ^ •

\Fwo homographic systems situated on the same line are

said to form a system in involution, when to any point of the

line the same point corresponds whether it be considered as

belonging to the first or second
*

system. That this should be

the case it is evidently necessary and sufficient that we should

have B=C in the preceding equation, in order that the relation

connecting x and x may be symmetrical. We shall find it

convenient to write the relation connecting any two correspond-

ing points ^^^' + ^(^ + x')+B=^0~
and if the distances from the origin of a pair of corresponding

points be given by the equation

ax"" + 2hx + 5 = 0,

we must have Ab + Ba— 2Hh = 0.

then it is easy to see, as above, that UV + U'V-2PQ, represents the pair

of lines which can be drawn through «'/3'7'» so as to be cut harmonically by
the conies. In the same case (Art. 296), the equation of the system of four

lines joining a'^'ry' to the intersections of the conies, is

{UV'-\- U'V- 2PQY = 4 ( UU' - P') (
W -

Q').

JJU'- P* and W" Q* denote the pairs of tangents from a'^V to the

conies.
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337. It appears, from what has been said, that a system in

involution consists of a number of pairs of points on a line

a, a
; J, ^'

; &c., and such that the anharmonic ratio of any
four is equal to that of their four conjugates. The expression of

this equality gives a number of relations connecting the mutual

distances of the points. Thus, from \abcd\
=

{a'5'c'a},
we have

ab.ca ah'.c'a

ad, he da.h'c''

or oh . cd. h'c = — db'. c'a . he.

The development of such relations presents no difficulty.

338. The relation Axx -\- II{x + x) +B=
0, connects the

distances of two corresponding points from any origin chosen

arbitrarily ; but by a proper choice of origin this relation can

be simplified. Thus, if the distances be measured from a point

at the distance ic = a, the given relation becomes

A{x^a) {x -f a) + II(x + x -\-2a) + B=0]
or Axx + (^+ 4^) {x + x) + Ad' + 2Ha -\-B=0,

And if we determine^ a, so that H-\- Aa = 0, the relation reduces

to a?ic' = constant. The point thus determined is called the

centre of the system ;
and we learn that the product of the dis^

tancesfrom the centre of two corres'ponding 'points is constant.

339. Since, in general, the point corresponding to any point

'x is - -z—y-o^j when Ax-\-H='^^ the corresponding point is

infinitely distant: or the centre is the point whose conjugate is

infinitely distant. The same thing appears from the relation

{abcc']
=

[db'c'c], or
^^' ^ g^c^ b'c

ac .be dc.b'd'

Let c be infinitely distant, be ultimately = ac\ and dc =
b'c\

and this relation becomes ac.dc = bc.h'c'j or, in other words, the

product of the distances from c of two conjugate points is con-

stant. The relation connecting the distances from the centre

may be either ca.cd = -\-Jc' or ca.cd = — ¥. In the one case

two conjugate points lie on the same side of the centre
;
in the

other case they lie on opposite sides.
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340. A point which coincides with its conjugate is called a

focus of the system. There are plainly two iodvff equidistant
from the centre on either side of

it,
whose common distance

from the centre
c,

is given by the equation cf^=±lc^. Thus,
when F is taken with a positive sign, that

is, when two con-

jugate points always lie on the same side of the centre, the foci

are real. In the opposite case they are imaginary. By writing
x = x in the general relation connecting corresponding points,

we see that in general the distances from any origin of the

foci are given by the equation

341. We have seen (Art. 336) that if a pair of corresponding

points be given by the equation ax^ + 2hx + 5 = 0, we must have

Ab + Ba — 2Hh = 0. Now this equation signifies (see Art. 332)

that any two corresponding points are harmonically conjugate

with the two foci. The same inference may be drawn from

the relation [aff'a]
=

{a'ff'a]^ which gives

ofaf_^afaf_^ fa___^fa^.^
aa'.ff' aa.ff''

''''

fa fd'
or the distance between the foci ff' is divided internally and ex-

ternally at a and a into parts which are in the same ratio.

CoR. When one focus is at infinity, the other bisects the

distance between two conjugate points; and it follows hence

that in this case the distance ah between any two points of the

system is equal to a'
J',

the distance between their conjugates.

342. Two jpairs of points determine a system tJi involution.

We may take arbitrarily two pairs of points

ax' + 2hx + h, ax"" + 2h'x + h\

and we can then determine Aj H^ B from the equations

Ah + Ba-2Hh = 0, Ah'-\-Ba'-2Hh' = 0,

We see, as in Art. 333, that any other pair of points in in-

volution with the two given pairs may be represented by an

equation of the form

{ax^ -\-2hx-\-h)-^\ {ax"" + 2h'x + h')
=

0,
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since, when A^ H^ B are determined so as to satisfy the two

equations written above, they must also satisfy

A[h + \h') +B[a + \a) - 2H[}i + \h')
^ *

The actual values of ^4, B^ H^ found by solving these equations,

are 2[ah' —ah)^ 2[lil) —h'h)^ ab' —ah. Consequently the foci

of the system determined by the given pairs of points, are

given by the equation

[ah'
-
ah) x^ -f- [aV

-
ab) x + [hV

-
h'h)

= 0.

This may be otherwise written if we make the equations

homogeneous by introducing a new variable y, and write

U^ ax' + 2hxy + hy\ V = ax^ + 2h'xi/ + h'y^.

The equation which determines the foci Is then

dU dV _ dUdV^^
dx dy dy dx

The foci of a system given by two pairs of points a, a
; ^, V

may be also found as follows, from the consideration that

[afba] = [a'fb'a]^ or

af.ba df.Va^

a'f. ha af. h'a
'

whence af : af :: ab.ah' : dh.aV
\

or / is the point where ad is cut either internally or externally
in a certain given ratio.

343. The relation connecting six points in involution is of

the class noticed in Art. 313, and is such that the same relations

will subsist between the sines of the angles subtended by them

at any point as subsist between the segments of the lines them-

selves. Consequently, if a pencil he drawn from any 'point to

six points in involution^ any transversal cuts this pencil in six

points in involution. Again, the recip)rocal of six joints in in-

volution is a pencil in involution,

* It easily follows from this, that the condition that three pairs of points

ax^ + 2hx + h, a'n^ + 2A'a; + 6', a"x^ + IK'x + h" should belong to a system in

involution, is the vanishing of the determinant

a, 7i, h

a', h\ y

a'\ h", h"
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The greater part of the equations already found apply-

equally to lines drawn through a point. Thus, any pair of lines

a - fi^j a — fi'^ belong to a system in involution, if

and if we are given two pairs of lines

Z7= aa' -f- 2hoLl3 + b^\ V= a a' + 2A'a/3 + h'l3\

they determine a pencil in involution whose focal lines are

{ah'
-
ah) d' 4- [aV - ah) a/3 + {hh'

-
h'h) l3^

=
0,

dUdV_dUdV^^
da d^ d^ doL

344. A system of conies passing through four fixed points
meets any transversal in a system ofpoints in involution.

For, if 8^ S' be any two conies through the points, 8+\8'
will denote any other; and

if, taking the transversal for axis

of X and making y = in the equations, we get ax^ + '2gx + c,

and ax^ + 2g'x + c to determine the points in which the trans-

versal meets 8 and 8\ it will meet 8-\-\8' in

ax^ + 2gx + c + X [ax^ + 2gx + c'),

a pair (Art. 342) in involution with the two former pair.

This may also be proved

geometrically as follows :

By the anharmonic proper-
ties of conies,

{a.AdhA\=^{c,AdhA]\

but if we observe the points
in which these pencils meet

AA, we get \^AGBA] = [AB'G'A'] = [AG'B'A].

Consequently the points AA belong to the system in in-

volution determined by BB\ GG\ the pairs of points in which

the transversal meets the sides of the quadrilateral joining the

given points.

Reciprocating the theorem of this article wx learn that, the

pairs of tangents drawn from any point to a system of conies

touching four fixed lines^form a system in involution.

345. Since the diagonals «c, hd may be considered as a conic

through the four points, it follows, as a particular case of the last
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Article, that any transversal cuts the four sides, and the diagonals

of a quadrilateral in points BB'^ CC, DD\ which are in invo-

lution. This property enables us, being given two pairs of points

BB\ DU of a system in involution, to construct the point con-

jugate to any other G. For take any point at random, a
; join

«J5, aZ), a C
;
construct any triangle hcd^ whose vertices rest on

these three lines, and two of whose sides pass through B'D\ then

the remaining side will pass through C\ the point conjugate to C.

The point a may be taken at infinity, and the lines aB^ aD^ aC
will then be parallel to each other. If the point C be at infinity

the same method will give us the centre of the system. The

simplest construction for this case is,
—"

Through Bj -D, draw

any pair of parallel lines Bhj Dc ;
and through B\ D\ a different

pair of parallels D'h^ B'c
;
then he will pass through the centre

of the system."

Ex. 1. If three conies circumscribe the same quadrilateral, the common

tangent to any two is cut harmonically by the third. For the points of con-

tact of this tangent are the foci of the system in involution.

Ex. 2. If through the intersection of the common chords of two conies

we draw a tangent to one of them, this line will be cut harmonically by the

other. For in this case the points D and D' in the last figure coincide, and

will therefore be a focus.

Ex. 3. If two conies have double contact with each other, or if they have

a contact of the third order, any tangent to the one is cut harmonically at the

points where it meets the other, and where it meets the chord of contact.

For in this case the common chords coincide, and the point where any
transversal meets the chord of contact is a focus.

Ex. 4. To describe a conic through four points a, 6, c, d, to touch a given

right line. The point of contact must be one of the foci of the system BB', CC\
&c., and these points can be determined by Art. 342. This problem, there-

fore, admits of two solutions.

Ex. 5. If a parallel to an asymptote meet the curve in C, and any inscribed

quadrilateral in points ohcd\ Ca.Cc = Ch.Cd. For Cis the centre of the system.

Ex. 6. Solve the examples, p. 282, &c., as cases of involution.

In Ex. 1, JS" is a focus : in Ex. 2, Tis also a focus : in Ex. 3, Tis a centre, &c,

Ex. 7. The intercepts on any line between a hyperbola and its asymptotes

are equal. For in this case one focus of the system is at infinity (Cor. Art. 341 ).

346. If there he a system of comes having a common self-con"

jugate triangle^ any line passing through one of the vertices of
this triangle is cut hy the system in involution.
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For, if In ad^ + h^^ + ctf we write a = h^^ we get

a pair of points evidently always harmonically conjugate with

the two points where the line meets y8 and 7. Thus, then, in

particular, a system of conies touching the four sides of a fixed

quadrilateral cuts in involution any transversal which passes

through one of the intersections of diagonals of the quadrila-
teral (Ex. 3, p. 139). The points in which the transversal meets

diagonals are the foci of the system, and the points where It

meets opposite sides of the quadrilateral are conjugate points
of the system.

Ex. 1. If two conies TJ, V touch their common tangents A, B, C, D in the

points a, h, c, d; a, h', e', d'
;
a conic *S' through the points a, b, c, and touch-

ing D at d\ will have for its second chord of intersection with V, the line

joining the intersections of A with he, B with ca, C with ah.

Let Fmeet ah in «, /3, then, by this article, since ah passes through an

intersection of diagonals of ABCD (Ex. 2, p. 228), a,h; a, ^ belong to a

system in involution of which the points where ah meets C and D are con-

jugate points. But (Art. 345) the common chords of S and Fmeet ah in

points belonging to this same system in involution, determined by the points

a, h; a, y3, in which S and l^meet the line ah. If then one of the common
chords be D, the other must pass through the intersection of C with ah.

Ex. 2. If in a triangle there be inscribed an ellipse touching the sides at

their middle points a, b, c, and also a circle touching at the points a', b', c',

and if the fourth common tangentD to the ellipse and circle touch the circle

at d\ then the circle described through the middle points touches the in-

scribed circle at d'. By Ex. 1
, a conic described through a, h, c, will touch

the circle at d', if it also pass through the points where the circle is met by
the line joining the intersections oi A,hc; B, ca; C, ah. But this line is in

this case the line at infinity. The touching conic is therefore a circle. Sir

W. R. Hamilton has thus deduced Terquem's theorem (Ex. 4, p. 126) as a

particular case of Ex. 1.

The point d' and the line D can be constructed without drawing the

ellipse. For since the diagonals of an inscribed, and of the corresponding

circumscribing quadrilateral meet in a point, the lines ah, cd, ah', c'd', and

the lines joining AD, BC; AC, BD all intersect in the same point. If then

a, 13, 7 be the vertices of the triangle followed by the intersections of he, b'c'
;

ca, e'a'', ah, a'h'
',
the lines joining a'a, 6'y3, c'7 meet in d'. In other words,

the triangle a/37 i^ homologous with ahe, a'h'c', the centres of homology

being the points d, d'. In like manner, the triangle ay37 is also homologous

with ABC, the axis of homology being the line -D.
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CHAPTER XVIL

THE METHOD OF PROJECTION.*

347. We have already several times had occasion to point

out to the reader the advantage gained by taking notice of

the number of particular theorems often included under one

general enunciation, but we now propose to lay before him a

short sketch of a method which renders us a still more impor-
tant service, and which enables us to tell when from a particular

given theorem we can safely infer the general one under which

it is contained.

If all the points of any figure be joined to any fixed point

in space (0), the joining lines will form a cone^ of which the

point is called the vertex^ and the section of this cone, by any

plane, will form a figure which is called the projection of the

given figure. The plane by which the cone is cut is called the

j^lane of projection.
To any point of one figure will correspond a point in the other.

For, if any point A be joined to the vertex 0, the point «,

in which the joining line OA is cut by any plane, will be the

projection on that plane of the given point A,

A right line will always he projected into a right line.

For, if all the points of the right line be joined to the vertex,

the joining lines will form a plane, and this plane will be inter-

sected by any plane of projection in a right line.

Hence, if any number of points in one figure lie in a right

line, so will also the corresponding points on the projection ;
and

if any number of lines in one figure pass through a point, so

will also the corresponding lines on the projection.

* This method is the invention of M. Poncelet. See his Traite des Pro-

jmetes Projectives, published in the year 1822, a work which, I believe, may
be regarded as the foundation of the Modern Geometry. In it were taught

the principles, that theorems concerning infinitely distant points may be ex-

tended to finite points on a right line
;
that theorems concerning systems of

circles may be extended to conies having two points common; and that

theorems concerning imaginary points and lines may be extended to real

points and lines.
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348. Any plane curve will always he projected into another

curve of the same degree.

For it is plain that, if the given curve be cut by any right line

in any number of points, A^ B^ (7, i), &c. the projection will

be cut by the projection of that right line in the same numher of

corresponding points, a^ 5, c, J, &c.
;
but the degree of a curve is

estimated geometrically by the number of points in which it can

be cut by any right line. If AB meet the curve in some real and

some imaginary points, ah will meet the projection in the same

number of real and the same number of imaginary points.

In like manner, if any two curves intersect, their projections

will intersect in the same number of points, and any point
common to one pair, whether real or imaginary, must be con-

sidered as the projection of a corresponding real or imaginary

point common to the other pair.

Any tangent to one curve will he projected into a tangent to

the other.

For, any line AB on one curve must be projected into the

line ah joining the cori'esponding points of the projection. Now,
if the points A^ B^ coincide, the points a, 5, will also coincide,

and the line ah will be a tangent.

More generally, if any two curves touch each other in any
number of points, their projections will touch each other in the

same number of points.

349. If a plane through the vertex parallel to the plane of

projection meet the original plane in a line AB^ then any pencil

of lines diverging from a point on AB will be projected into a

system of parallel lines on the plane of projection. For, since

the line from the vertex to any point of AB meets the plane of

projection at an infinite distance, the intersection of any two lines

which meet on AB is projected to an infinite distance on the

plane of projection. Conversely, any system of parallel lines on

the original plane is projected into a system of lines meeting in a

point on the line DF^ where a plane through the vertex parallel to

the original plane is cut hy the plane of projection. The method

of projection then leads us naturally to the conclusion, that any

system of parallel lines may be considered as passing through a

point at an infinite distance, for their projections on any plane
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pass through a point in general at a finite distance
;
and again,

that all the points at infinity on any plane may be considered as

lying on a right line^ since we have showed, that the projection

of any point in which parallel lines intersect must lie somewhere

on the right line DF'm the plane of projection.

350. We see now, that if any property of a given curve does

not involve the magnitude of lines or angles, but merely relates

to the position of lines as drawn to certain points, or touchuig

certain curves, or to the position of points, &c., then this property

will be tnie for any curve into which the given curve can be pro-

jected. Thus, for instance,
"

if through any point in the plane

of a circle a chord be drawn, the tangents at its extremities will

meet on a fixed line." Now since we shall presently prove that

every curve of the second degree can be projected into a circle,

the method of projection shows at once that the properties of

poles and polars are true not only for the circle, but also for all

curves of the second degree. Again, Pascal's and Brianchon's

theorems are properties of the same class, which it is sufficient

to prove in the case of the circle, in order to know that they are

true for all conic sections.

351. Properties which, if true for any figure, are true for its

projection, are csilled p)rqjective properties. Besides the classes of

theorems mentioned in the last Article, there are many projective

theorems which do involve the magnitude of lines. For instance,

the anharmonic ratio of four points in a right line {ABCD}^ be-

ing measured by the ratio of the pencil {O.ABCB} drawn to the

vertex, must be the same as that of the four points {ahcd}^ where

this pencil is cut by any transversal. Again, if there be an

equation between the mutual distances of any number of points

in a right line, such as

AB.CD.EF+k,AG.BE.I)F+LAI),CE.BF-h&c. = 0,

where in each term of the equation the same points are men-

tioned, although in difi'erent orders, this property will be projec-

tive. For (see Art. 311) if for AB we substitute

OA.OB.sinAOB ^

OP ^&^-

each term of the equation will contain OA . OB,OC.OD. OF, OF
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in the numerator, and OP^ in the denominator. Dividing, then,

by these, there will remain merely a relation between the sines

of angles subtended at 0. It is evident that the points A, B^ (7,

Z>, E^ Fj need not be on the same right line
; or, in other words,

that the perpendicular OF need not be the same for
all, provided

the points be so taken that after the substitution, each term of

the equation may contain in the denominator the same product,
OF. OF. OF"

J
&c. Thus, for example,

" If lines meeting in a

point and drawn through the vertices of a triangleABC meet the

opposite sides in the points a, 5, c, then Ab.Bc.Ca^Ac.Ba.Cb.^^

This is a relation of the class just mentioned, and which it is

sufficient to prove for any projection of the triangle ABC. Let

us suppose the point C projected to an infinite distance, then

ACj BCy Cc are parallel, and the relation becomes

Ab.Bc = Ac.Baj

the truth of which is at once perceived on making the figure.

352. It appears from what has been said, that if we wish to

demonstrate any projective property of any figure, it is sufficient

to demonstrate it for the simplest figure into which the given

figure can be projected ; e.g. for one in which any line of the

given figure is at an infinite distance.

Thus, if it were required to investigate the harmonic pro-

perties of a complete quadrilateral ABCD^ whose opposite sides

intersect in E^ F^ and the intersection of whose diagonals is G^
we may join all the points of this figure to any point in space 0,
and cut the joining lines by any plane parallel to OEF^ then

EF is projected to infinity, and we have a new quadrilateral,"

whose sides ab^ cd intersect in e at infinity, that
is, are parallel ;

while ad^ be intersect in a pointy at infinity, or are also parallel.

We thus see that any quadrilateral may be projected into a

parallelogram. Now since the diagonals of a parallelogram

bisect each other, the diagonal ac is cut harmonically in the

points (7, <7, c, and the point where it meets the line at in-

finity ef. Hence AB i^ cut harmonically in the points A^ (7, (7,

and where it meets EF.

Ex. If two triangles ABC, A'B'C, be such that the points of intersec-

tion of ^-B, A'B') BC, B'C; CA, C'A' ;
lie in a right line, then the lines

AA', BB'f CC meet in a point.

th
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Project to infinity the line in which AB, A'B', &c., intersect; then the

theorem becomes :
" If two triangles ahc, a'h'c' have the sides of the one re-

spectively parallel to the sides of the other, then the lines aa', hh\ cc' meet

in a point." But the truth of this latter theorem is evident, since aa, hh

both cut cc' in the same ratio.

353. In order not to Interrupt the account of the applications

of the method of projection, we place in a separate section

the formal proof that every curve of the second degree

may be projected so as to become a circle. It will also be

proved that by choosing properly the vertex and plane of pro-

jection, we can, as in Art. 352, cause any given line EF on the

figure to be projected to infinity, at the same time that the

projected curve becomes a circle. This being for the present
taken for granted, these consequences follow :

Given any conic section and a point in its plane^ we can project

it into a circle^ of which the projection of that point is the centre^

for we have only to project it so that the projection of the polar
of the given point may pass to infinity (Art. 154).

Any two conic sections may he projected so as hoth to become

circles^ for we have only to project one of them into a circle,

and so that any of its chords of intersection with the other shall

pass to infinity, and then, by Art. 257, the projection of the

second conic passing through the same points at infinity as the

circle must be a circle also.

Any two conies which have double contact with each other may
he projected into concentric circles. For we have only to project
one of them into a circle so that its chord of contact with the

.other may pass to infinity (Art. 257).

354. We shall now give some examples of the method of

deriving properties of conies from those of the circle, or from

other more particular properties of conies.

Ex. 1. "A line through any point is cut harmonically by the curve and

the polar of that point." This property and its reciprocal are projective pro-

perties (Art. 351), and both being true for the circle, are true for every
conic. Hence all the properties of the circle depending on the theory of

poles and polars are true for all the conic sections.

Ex. 2. The anharmonic properties of the points and tangents of a conic

are projective properties, which, when proved for the circle, as in Art. 312, are

proved for all conies. Hence, every property of the circle which results

from either of its anharmonic properties is true also for all the conic sections.'
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Ex. 3. Carnot's theorem (Art. 313), that if a conic meet the sides of a

triangle, Ah.Ah' .Bc.Bc',Ca.Ca' = Ac.A(/.Ba.Ba\Cb.Cb',
is a projective property which need only be proved in the case of the circle,

in which case it is evidently true, since Ah. Ah' = Ac. Ac, &c.

The theorem is evidently true, and can be proved in like manner for any

polygon.

Ex. 4. From Carnot's theorem, thus proved, could be deduced the proper-
ties of Art. 148, by supposing the point Cat an infinite distance ;

we then have

Ah. Ah' _ Ba.Ba
Ac.Ac'~ Be. Be'*

where the line Ah is parallel to Ba.

Ex. 5. Given two concentric circles. Given two conies having double con-

any chord of one which touches the tact with each other, any chord of one

other is bisected at the point of con- which touches the other is cut harmo-

tact, nically at the point of contact, and

where it meets the chord of contact

of the conies. (Ex. 3, p. 298.)

For the line at infinity in the first case is projected into the chord of

contact of tvTo conies having double contact with each other. Ex. 4, p. 209,

is only a particular case of this theorem.

Ex.6. Given three concentric cir- Given three conies alltouching each

cles, any tangent to one is cut by the other in the same two points, any tan-

other two in four points whose anhar- gent to one is cut by the other two in

monic ratio is constant. four points whose anharmonic ratio

is constant.

The first theorem is obviously true, since the four lengths are constant

The second may be considered as an extension of the anharmonic property of

the tangents of a conic. In like manner, the theorem (in Art. 276) with re-

gard to anharmonic ratios in conies having double contact is immediately

proved by projecting the conies into concentric circles.

Ex. 7. "We mentioned already, that it was sufficient to prove Pascal's

theorem for the case of a circle, but, by the, help of Art. 349, we may still

further simplify our figure, for we may suppose the line joining the intersec-

tion ofAB, DE, to that of SC, EF, to pass ofi'to infinity ;
and it is only neces-

sary to prove that, if a hexagon be inscribed in a circle having the side AB
parallel to BE, and ^C to EF, then CB will be parallel to AF-, but the

truth of this can be shown from elementary considerations.

Ex. 8. A triangle is inscribed in any conic, two of whose sides pass through
fixed points, to find the envelope of the third (p. 236). Let the line joining

the fixed points be projected to infinity, and at the same time the conic into

a circle, and this property becomes,—" A triangle is inscribed in a circle, two

of whose sides are parallel to fixed lines, to find the envelope of the third."

But this envelope is a concentric circle, since the vertical angle of the triangle

is given ; hence, in the general case, the envelope is a conic touching the

given conic in two points on the line joining the two given points.

X
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Ex. 9. To investigate the projective properties of a quadrilateral inscribed

in a conic. Let the conic be projected into a circle, and the quadrilateral

into a parallelogram (Art. 352). Now the intersection of the diagonals of a

parallelogram inscribed in a circle is the centre of the circle; hence the in-

tersection of the diagonals of a quadrilateral inscribed in a conic is the pole

of the line joining the intersections of the opposite sides. Again, if tangents

to the circle be drawn at the vertices of this parallelogram, the diagonals of

the quadrilateral so formed will also pass through the centre, bisecting the

angles between the first diagonals ; hence,
" the diagonals of the inscribed

and corresponding circumscribing quadrilateral pass through a point, and

form a harmonic pencil."

Ex. 10. Given four points on a

conic, the locus of its centre is a conic

through the middle points of the

sides of the given quadrilateral.

Ex.11. The locus ofthe point where

parallel chords of a circle are cut in a

given ratio is an ellipse having double

contact with the circle. (Art. 163.)

Given four points on a conic, the

locus of the pole of any fixed line is a

conic passing through the fourth har-

monic to the point in which this line

meets each side of the given quadri-

lateral.

If through a fixed point O a line be

drawn meeting the conic in A, B, and

on it a point P be taken, such that

{OABP} may be constant, the locus

of P is a conic having double contact

with the given conic.

355. We may project several properties relating to foci by
the help of the definition of a focus given page 242, viz. that

if i^ be a focus, and A^ B the two imaginary points in which

any circle is met by the lines at infinity; then FA^ FB are

tangents to the conic.

If a conic be described through two

fixed points A, B, and touching two

given conies which also pass through
those points, the locus of the pole of

AB is a conic touching the four lines

CA, CB, C'A, C'B, where C, C, are

the poles of AB with regard to the

two given conies.

In this example we substitute for the word *

circle,'
" conic through two

fixed points A, ^," (Art. 257), and for the word *

centre,'
"
pole of the line

AB." (Art. 154.)

Ex. 2. Given the focus and two Given two tangents, and two points

points of a conic section, the intersec- on a conic, the locus of the intersec-

tion of tangents at those points will tion of tangents at those points is a

be on a fixed line. (Art. 191.) right line.

Ex. 1. The locus of the centre of a

circle touching two given circles is a

hyperbola, having the centres of the

given circles for foci.
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Ex. 3. Given a focus and two tan- Given two fixed points A, B\ two

gents to a conic, the locus of the other tangents i^^,i^^ passing onethrough
focus is a right line. (This follows each point, and two other tangents to

from Art. 189.) a conic
;
the locus of the intersection,

of the other tangents from J[, B, is a

right line.

Ex. 4. Given a triangle circumscrib- Given two triangles circumscrib-\

ing a parabola ;
the circle circumscrib- ing a conic, their six vertices lie on /

ing the triangle passes through the the same conic,

focus, p. 193.

For if the focus be F, and the two circular points at infinity A, B, the

triangle FAB is a second triangle whose three sides touch the parabola^

Ex.5. The locus of the centre of a Given one tangent, and three points

circle passing through a fixed point, on a conic, the locus of the intersec-

and touching a fixed line, is a parabola tion of tangents at any two of these

of which the fixed point is the focus, points is a conic inscribed in the

triangle formed by those points.

Ex. 6. Given four tangents to a Given four tangents to a conic, the

conic, the locus of the centre is the line locus of the pole of any line is the line

joining the middle points of the dia- joining the fourth harmonics of the

gonals of the quadrilateral. points where the given line meets the

diagonals of the quadrilateral.

It follov«^s from our definition of a focus, that if two conies have the same

focus, this point will be an intersection of common tangents to them, and will

possess the properties mentioned at the end of Art. 264. Also, that if two

conies have the same focus and directrix, they may be considered as two conies

having double contact with each other, and may be projected into concentric

circles.

356. Since angles which are constant in any figure will in

general not be constant in the projection of that figure, we pro-

ceed to show what property of a projected figure may be inferred

when any property relating to the magnitude of angles is given ;

and we commence with the case of the right angle.

Let the equations of two lines at right angles to each other

be ic = 0, 2/
=

0, then the equation which determines the direction

of the points at infinity on any circle is x^ + y^
=

0, or

x-\-y V— 1 = 0, x— y si— 1=0.

Hence (Art. 57) these four lines form a harmonic pencil.

Hence, given four points, A^B^ (7, Z>, of a line cut harmonically,

where -4, B may be real or imaginary, if these points be trans-

ferred by a real or imaginary projection, so that A^ B may
X2
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become the two imaginary points at infinity on any circle, then

any lines through (7,
D will be projected into lines at right

angles to each other. Conversely, any two lines at right angles

to each other will he projected into lines which cut harmonically

the line joining the two jixed points which are the projections of
the imaginary points at infinity on a circle,

Ex. 1. The tangent to a circle is at Any chord ofa conic is cutharmoni-

right angles to the radius. cally by any tangent, and by the line

joining the point of contact of that

tangent to the pole ofthe given chord.

(Art. 146.)

For the chord of the conic is supposed to be the projection of the line at

infinity on the plane of the circle
;
the points where the chord meets the conic

will be the projections ofthe imaginary points at infinity on the circle
;
and the

pole of the chord will be the projection of the centre of the circle.

Ex.2. Any right line drawn through Any right line through a point, the

the focus of a conic is at right angles line joining its pole to that point, and

to the linejoining its pole to the focus, the two tangents from the point, form

(Art. 192.) a harmonic pencil. (Art. 146.)

It is evident that the first of these properties is only a particular case of

the second, if we recollect that the tangents from the focus are the lines join-

ing the focus to the two imaginary points on any circle.

Ex. 3. Let us apply Ex. 6 of the last Article to determine the locus of

the pole of a given line with regard to a system of confocal conies. Being

given the two foci, we are given a quadrilateral circumscril)ing the conic

(Art. 279); one of the diagonals of this quadrilateral is the line joining the foci,

therefore (Ex. 6) one point on the locus is the fourth harmonic to the point
where the given line cuts the distance between the foci. Again, another

diagonal is the line at infinity, and since the extremities of this diagonal are

the points at infinity on a circle, therefore by the present Article, the locus

is perpendicular to the given line. The locus is, therefore, completely
determined.

Ex.4. Two confocal conies cut each If two conies be inscribed in the

other at right angles. same quadrilateral, the two tangents

at any of their points of intersection

cut any diagonal ofthe circumscribing

quadrilateral harmonically.

The last theorem is a case of the reciprocal of Ex. 1, p. 298.

Ex. 5. The locus of the intersection The locus of the intersection oftan-

of two tangents to a central conic, gents to a conic, which divide harmo-

which cut at right angles, is a circle, nically a given finite right line ABy
is a conic through A, B.
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The last theorem may, by Art. 146, be stated otherwise thus :
" The locus

of a point O, such that the line joining O to the pole oiAO may pass through
Bf is a conic through A, B;" and the truth of it is evident directly, by taking
four positions of the line, when we see, by Ex. 2, p. 258, that the anharmonic

ratio of four lines, AO, is equal to that of four corresponding lines, BO,

Ex. 6. The locus of the intersection If in the last exampleAB touch the

of tangents to a parabola, which cut given conic, the locus of O will be the

at right angles, is the directrix. line joining the points of contact of

tangents from A, B,

Ex. 7. The circle circumscribing a Given two triangles, both self-

triangle self-conjugate with regard conjugate with regard to a conic j

to an equilateral hyperbola, passes their six vertices lie on a conic,

through the centre of the curve,

(p. 202.>„.

The fact that the asymptotes of an equilateral hyperbola are at right angles,

may be stated, by this article, that the line at infinity cuts the curve in two

points which are harmonically conjugate with respect to A, B^ the imaginary
circular points at infinity. And since the centre C'is the pole of AB, the

triangle CAB is self-conjugate with regard to the equilateral hyperbola. It

follows by reciprocation, that the six sides of two self-conjugate triangles

^ touch the same conic.

Ex. 8. K from any point on a conic If a harmonic pencil be drawn

two lines at right angles to each other through any point on a conic, two legs

be drawn, the chord joining their ex- of which are fixed, the chord joining

tremities passes through a fixed point, the extremities of the other legs will

(p. 165.) pass through a fixed point.

In other words, given two points, a, c, on a conic, and {abed} a harmonic

ratio, hd will pass through a fixed point, namely, the intersection of tangents

at a, c. But the truth of this may be seen directly : for let the line ac meet

bd in K, then since {a.abcd} is a harmonic pencil, the tangent at a cuts bd in

the fourth harmonic to K: but so likewise must the tangent at c, therefore

these tangents meet bd in the same point. As a particular case of this theorem

we have the following :
"
Through a fixed point on a conic two lines are

drawn, making equal angles with a fixed line, the chord joining their extre-

mities will pass through a fixed point."

357. A system of jpairs of right lines drawn througJi a pointy

every two of which inake equal angles with a fixed line^ cuts the

line at infi7iity in a system of points in involution^ of which the

two points at infinity on any circle form one pair of conjugate

points. For they evidently cut any right line in a system of

points in involution, the foci of which are the points where the

line is met by the given internal and external bisector of every

pair of right lines. The two points at infinity just mentioned
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belong to the system, since tliey also are cut harmonically by
these bisectors.

The tangents from any point to a

system of confocal conies make equal

angles with two fixed lines. (Art.189.)

The tangents from any point to a

system of conies inscribed in the same

quadrilateral cut any diagonal of that

quadrilateral in a system of points in

involution of which the two extremi-

ties of that diagonal are a pair of con-

jugate points. (Art. 344.)

358. Two lines wMch contain a constant angle^ cut the line

joining the two points at infinity on a circle^ so that the anhar-

monic ratio of thefour points is constant.

For the equation of two lines containing an angle 6 being
a: = 0, y = 0, the direction of the points at infinity on any circle

is determined by the equation

x'+y' + 2xy cosl9 = 0;

and, separating this equation into factors, we see, by Art. 57, that

the anharmonic ratio of the four lines is constant if 6 be constant.

Ex. 1. " The angle contained in the same segment of a circle is constant."

We see, by the present Article, that this is the form assumed by the anhar-

monic property of four points on a circle when two of them are at an infinite

distance.

If tangents through any point O
meet the conic in T, T', and there be

taken on the conic two points A, B,
such i\idii{O.ATBT'} is constant, the

envelope ofAB is a conic touching the

given conic in the points 1\ T.

If a finite line ^J&,touchinga conic,

be cut by two tangents in a given an-

harmonic ratio, the locus of their in-

tersection is aconic touching the given

conic at the points of contact of tan-

gents from A, B.

If a variable tangent to a conic meet

two fixed tangents in T, T', and a fixed

line in 31, and there be taken on it a

point P, such that [PTMT'] maybe
constant, the locus ofP is a conic pass-

ing through the points where the fixed

tangents meet the fixed line.

Ex. 2. The envelope of a chord of a

conic which subtends a constant angle
at the focus is another conic having
the same focus and the same directrix.

Ex. 3. The locus of the intersection

of tangents to a parabola which cut at

a given angle is a hyperbola having
the same focus and the same directrix.

Ex. 4. Iffrom the focus ofa conic a

line be drawn making a given angle
with any tangent, the locus of the point
where it meets it is a circle.
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A particular case of this theorem is :
" The locus of the point where

the intercept of a variable tangent between two fixed tangents is cut in

a given ratio, is a hyperbola whose asymptotes are parallel to the fixed

tangents."

Ex. 5. If from a fixed point O, OP Given the anharmonic ratio of a

be drawn to a given circle, and the pencil,threeofwhose legs pass through

angle TPO be constant, the envelope fixed points, and whose vertex moves
of TP is a conic having O for its focus, along a given conic, passing through

two of the points ;
the envelope of the

fourth leg is a conic touching the lines

joining these two to the third fixed

point.

A particular case of this is :
" If two fixed points A, B, on a conic be

joined to a variable point P, and the intercept made by the joining chords

on a fixed line be cut in a given ratio at M, the envelope of PM is a conic

touching parallels through A and ^ to the fixed line."

Ex. 6. If from a fixed point O, OP Given the anharmonic ratio of a

be drawn to a given right line, and the pencil, three ofwhose legs pass through

angle TPO be constant, the envelope fixed points, and whose vertex moves

of TP is a parabola having O for its along a fixed line, the envelope of the

focus. fourth leg is a conic touching the three

sides of the triangle formed by the

given points.

359. We have now explained the geometric method by
which from the properties of one figure may be derived those

of another figure which corresponds to it, (not as in Chap. XV.

so that the points of one figure answer to the tangents of the

other, but) so that the points of one answer to the points of the

other, and the tangents of one to the tangents of the other.

All this might be placed on a purely analytical basis. If any
curve be represented by an equation in trilinear co-ordinates,

referred to a triangle whose sides are «, 5, c, and if we interpret

this equation with regard to a different triangle of reference

whose sides are a', h\ c',
we get a new curve of the same degree

as the first ;* and the same equations which establish any pro-

perty of the first curve will, when differently interpreted, establish

* It is easy to see, that the equation of the new curve referred to the old

triangle, is got by substituting in the given equation for «, ;3, 7 ;
/« + myS + W7,

I'a + m'/3 + w'7, l"a + m"^ + w"7 ;
w^here U + m/3 + W7 represents the line

which is to correspond to «, &c. For fuller information on this method of

transformation, see Higher Plane Curves, Chap. vi.
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a con-esponding property of the second. In this manner a

right line in one system always corresponds to a right line in

the other, except in the case of the equation «a + 5/3 -f cy = 0,

which in the one system represents an infinitely distant line,

in the other a finite line. And, in like manner, a'a + h'^ + cV?

which represents an infinitely distant line in the second system

represents a finite line in the first system. In working with

trilinear co-ordinates the reader can hardly have failed to take

notice, how the method itself teaches him to generalize all

theorems in which the line at infinity is concerned. Thus

(see p. 241) if it be required to find the locus of the centre

of a conic, when four points or four tangents are given, this

is done by finding the locus of the pole of the line at infinity

aa + h^-\- C7, and the very same process gives the locus under

the same conditions of the pole of any line Xa + ^^ + vy.

We saw (Art. 59) that the anharmonic ratio of a pencil

P— hP\ P— ir\ &c. depends only on the constants h^ Z,
and is

not changed if P and P' are supposed to represent different right

lines. We can infer then that in the method of transformation

which we are describing, to a pencil of four lines in the one

system answers in the other system a pencil having the same

anharmonic ratio
;
and that to four points on a line correspond

four points whose anharmonic ratio is the same.

An equation, /S'=0, which represents a circle in the one

system will, in general, not represent a circle in the other.

But since any other circle in the first system is represented

by an equation of the form

8-\- (aoL + h^ + cy) (\a + yLtyS + V7)
=

0,

all curves of the second system answering to circles in the

first will have common the two points common to S and

aa + 2>/3 + cy»

360. In this way we are led, on purely analytical grounds, to

the most important principles, on the discovery and application

of which the merit of Poncelet's great work consists. The

principle of continuity/ (in virtue of which properties of a figure
in which certain points and lines are real, are asserted to be

true even when some of these points and lines are imaginary,)



THE METHOD OF PROJECTION. 313

is more easily established on analytical than on purely geo-
metrical grounds. In fact, the processes of analysis take no

account of the distinction between real and imaginary, so im-

portant in pure geometry. The processes for example by which,
in Chap. xiv. we obtained the properties of systems of conies

represented by equations of forms S=Jca^ or 8=M^ are un-

affected, whether we suppose a and yS to meet S in real or

imaginary points. And though from any given property of a

system of circles, we can obtain, by a real projection, only a

property of a system of conies having two imaginary points

common, yet it is plainly impossible to prove such a property by

general equations without proving it at the same time for conies

having two real points common. The analytical method of

transformation, described in the last article, is equally applicable

if we wish real points in one figure to correspond to imaginary

points on the other. Thus, for example, df' + /S'*
= 7^ denotes a

curve met by 7 in Imaginary points ;
but if we substitute for

a, y8; P± Q \/(— l)j and for 7, R^ where P, Q^ R denote right

lines, we get a curve met in real points by R the line corre-

sponding to 7.

The chief difference in the application of the method of

projections, considered geometrically and considered algebrai-

cally, is that the geometric method would lead us to prove a

theorem, first for the circle or some other simple state of the

figure, and then infer a general theorem by projection. The

algebraic method finds it as easy to prove the general theorem

as the simpler one, and would lead us to prove the general

theorem
first,

and afterwards infer the other as a particular

case.

THEORY OF THE SECTIONS OF A CONE.

361. The sections of a cone hy parallel planes are similar.

Let the line joining the vertex to any fixed point A in one

plane, meet the other in the point a
;
and let radii vectores be

drawn from ^, a, to any other two corresponding points B^ h.

Then, from the similar triangles OAB^ Oab^ AB is to ah in the

constant ratio OA : Oa\ and since every radius vector of the

one curve is in a constant ratio to the corresponding radius

vector of the other, the two curves are similar (Art. 233).
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Cor. If a cone standing on a circular base be cut by any-

plane parallel to the base, the section will be a circle. This

is evident as before : we may, if we please, suppose the points

A
J a, the centres of the curves.

362. The secttotis of a cone^ standing on a circular hase^ may
he either an ellipse^ hyperhola^ or parabola.
A cone of the second degree is said to be right if the line

joining the vertex to the centre of the circle which is taken for

base be perpendicular to the plane of that circle
;
in which case

this line is called the axis of the cone. If this line be not per-

pendicular to the plane of the base, the cone is said to be oblique.

The investigation of the sections of an oblique cone is exactly the

same as that of the sections of a right cone, but we shall treat

them separately, because the figure in the latter case being more

simple will be more easily understood by the learner, who may at

first find some difficulty in the conception of figures in space.

Let a plane ( OAB) be drawn through the axis of the cone

C perpendicular to the plane of the

section, so that both the section if/Ss-^

and the base ASB are supposed to

be perpendicular to the plane of the

paper: the line BSj in which the

section meets the base, is, therefore,

also supposed perpendicular to the

plane of the paper. Let us first

suppose the line MN^ in which the ivi ^

section cuts the plane OAB to meet /

both the sides OA^ OB^ as in the figure, on the same side of

the vertex.

Now let a plane parallel to the base be drawn at any other

point s of the section. Then we have (Euc. iii. 35) the square

oi BSj the ordinate of the circlej
= AB.BB^ and in like manner

rs^ — ar.rb. But from a comparison of the similar triangles

AEMj arM'j BRN^ brN^ it can at once be proved that

AR.BB: MR.RN'.: ar.rb : Mr.rK

Therefore RS' : rs' :: MR .RN : Mr . rN.

Hence the section MSsN is such that the square of any ordinate
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rs IS to the rectangle under the parts in which it cuts the line

MN in the constant ratio B8^^:ME,BN.
Hence it can immediately be inferred

(Art. 149) that the section is an ellipse,

of which MN is the axis major, while

the square of the axis minor is to IIN^

in the given ratio

BS'iME.EK

Secondly. Let MN meet one of the

sides OA produced. The proof proceeds

exactly as before, only that now we prove
the square of the ordinate rs in a constant

ratio to the rectangle Mr.rN under the

parts into which it cuts the line MN pro-
duced. The learner will have no difficulty

in proving that the locus will in this

case be a hyperhola., consisting evidently of the two opposite

branches NsB, Ms'S'.

Thirdly. Let the line MN be parallel

to one of the sides. In this case, since

AR = ar, and BB : rh : : BN: rN, we have

the square of the ordinate rs {=ar.7'h) to

the abscissa rN in the constant ratio

BS'{=AB.BB) :BN
The section is therefore a parabola."^

/

/k w
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363. It is evident that the projections of the tangents at the

points Aj B o£ the circle are the tangents at the points If, N of

the conic section (Art. 348) ;
now in the case of the parabola the

point M and the tangent at it go off to infinity ;
we are therefore

again led to the conclusion that everi/ parabola has one tangent

altogether at an infinite distance,

364. Let the cone now be supposed oblique. The plane of

the paper is a plane drawn through the line
(7, perpendicular to

the plane of the circle AQSB. Now let
^^

the section meet the base in any line QS,
draw a diameter LK bisecting QSj and A
let the section meet the plane OLK in the ///
line MNj then the proof proceeds exactly /f //jj

as before
;
we have the square of the ordi- ^/0/L^'

nate R8 equal to the rectangle LR.RK] /v&^^^^^^
if we conceive a plane, as before, drawn /

m/.--'' /

parallel to the base (which, however, is left /
-J- L,

out of the figure in order to avoid render- ( /

ing it too complicated), we have the square
*

''-^-  

'

of any other ordinate, rs^ equal to the corresponding rectangle

Ir.rh] and we then prove by the similar triangles KRM^ krM]

LRN^ IrN^ in the plane OLK^ exactly as in the case of the right

cone, that RS^^ : rs\ as the rectangle under the parts into which

each ordinate divides MN^ and that therefore the section is a

conic of which MN is the diameter bisecting QS^ and which is an

ellipse when MN meets both the lines OX, OK on the same side

of the vertex, a hyperbola when it meets them on diiferent sides

of the vertex, and a parabola when it is parallel to either.

In the proof just given Q8 is supposed to intersect the circle

in real points ;
if it did not, we have only to take, instead of the

circle AB^ any other parallel circle ah^ which does meet the sec-

tion in real points, and the proof will proceed as before.

365. We give formal proofs of the two following theorems

though they are evident by the principle of continuity.

\. If a circular section he cut hy any plane in a line QS,
the diameters conjugate to QS in that plane^ and in the pldne of
the circle^ meet QS in the same point. When qs meets the circle
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in real points, tlie diameter conjugate to it in every plane must

evidently pass through its middle

point r. We have therefore only
to examine the case where QB does

not meet in real points. It was

proved (Art 361) that the diameter

df which bisects chords, parallel to

qs^ of any circular section, will be

projected into a diameter BF bi-

secting the parallel chords of any

parallel section. The locus there-

fore of the middle points of all chords of the cone parallel to qs

is the plane Odf. The diameter therefore, conjugate to QS in

any section is the intersection of the plane O^with the plane of

that section, and must pass through the point R in which QB
meets the plane Odf,

II. In the same case^ if the diameters conjugate to QS in the

circle^ and in the other section^ he cut into segments RD^ RF; Rg^
Rk ; the rectangle DR.RF is to gR.Rh as the square of the dia^

meter of the section parallel to QS is to the square of the conjugate

diameter. This is evident when qs meets the circle in real

points ;
since rs^ = dr.rf In general, we have just proved that

the lines gk, df DF, lie in one plane passing through the vertex.

The points i>, d are therefore projections of g ;
that is to say,

they lie in one right line passing through the vertex. We have

therefore, by similar triangles, as in Art. 364,

dr.rf: DR,RF ',: gr,rh : gR,Rh;
and since dr.rfh to gr,rh as the squares of the parallel semi-

diameters, JDR.RF is to gR.Rk in the same ratio.

If the section gsJcq and the line QS be given, this theorem

enables us to find DR.RF^ that is to say, the square of the

tangent from R to the circular section whose plane passes

through QS,

366. Given any conic gskq and a line TL in its plane not

cutting it^ we can project it so that the conic may become a circle^

and the line may he projected to infinity.

To do this, it is evidently necessary to find the vertex of
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a cone standing on the given conic, and such that its sections

parallel to the plane OTL shall be circles. For then any of

these parallel sections would be a projection fulfilling the con-

ditions of the problem. Now it follows, from the theorem last

proved, that the distance OL is given: for, since the plane OTL
is to meet the cone in an infinitely small circle, OU is to gL.Lk
in the ratio of the squares of two known diameters of the section.

OL must also lie in the plane perpendicular to JLL, since it is

parallel to the diameter of a circle perpendicular to TL. And
there is nothing else to limit the position of the point 0, which

may lie anywhere in a known circle in the plane perpendicular
to TL,

367. If a sphere he inscribed in a right cone touching the

plane of any section^ the point of contact will he a focus of that

section^ and the corresjponding directrix will he the intersection of
the jplane of the section with the plane of contact of the cone with

the sphere.

Let a sphere be both inscribed and exscribed between the

cone and the plane of the section. Now, if

any point P of the section be joined to the

vertex, and the joining line meet the planes
of contact in Dd^ then we have PD = PF^
since they are tangents to the same sphere, and,

similarly, Pd= PF, therefore PF+ PF' = Dd,
which is constant. The point {B) where FF'
meets AB produced, is a point on the direc-

trix, for by the property of the circle, NFMB
is cut harmonically, therefore i^ is a point on the polar of F.

It is not difficult to prove that the parameter of the section

MPN is constant, if the distance of the plane from the vertex

be constant.

Cor. The locus of the vertices of all right cones, out of

which a given ellipse can be cut, is a hyperbola passing through
the foci of the ellipse. For the difference of MO and NO i^

constant, being equal to the difference between MF' and iVZ'.*

*
By the help of this principle, Mr. Mulcahy showed how to derive pro-

perties of angles subtended at the focus of a conic from properties of small
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ORTHOGONAL PROJECTION.

368. If from all the points of any figure perpendiculars be

let fall on any plane, their feet will trace out a figure which is

called the orthogonal projection of the given figure. The ortho-

gonal projection of any figure is, therefore, a right section of a

cylinder passing through the given figure.

All parallel lines are in a constant ratio to their orthogonal

projections on any plane.
For (see fig. p. 3) MM' represents the orthogonal projection

of the line PQ^ and it is evidently
= PQ multiplied by the cosine

of the angle which PQ makes with MM',
All lines parallel to the intersection of the plane of the figure

with the plane on which it is projected^ are equal to their orthogonal

projections.

For, since the intersection of the planes is itself not altered

by projection, neither can any line parallel to it.

The area of any figure in a given plane is in a constant ratio

to its orthogonal projection on another given plane.

For, if we suppose ordinates of the figure and of its pro*

jection to be drawn perpendicular to the intersection of the

planes, every ordinate of the projection is to the correspond-

ing ordinate of the original figure in the constant ratio of

the cosine of the angle between the planes to unity ;
and it

will be proved, in Chap, xix., that if two figures be such that

the ordinate of one is in a constant ratio to the corresponding
ordinate of the other, the areas of the figures are in the

same ratio.

circles of a sphere. For example, it is known that if through any point P,
on the surface of a sphere, a great circle be drawn, cutting a small circle in

the points A, B, then tan^AP tan ^BP is constant. Now, let us take a cone

whose base is the small circle, and whose vertex is the centre of the sphere,

and let us cut this cone by any plane, and we learn that "
if through a point

p, in the plane of any conic, a line be drawn cutting the conic in the points

a, b, then the product of the tangents of the halves of the angles which ap,

hp subtend at the vertex of the cone will be constant." This property will be

true of the vertex of any right cone, out of which the section can be cut, and,

therefore, since the focus is a point in the locus of such vertices, it must ba

true that tan lafp tan Ihfp is constant (see p. 197.)
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Any ellipse can he orthogonally projected into a circle.

For, if we take the intersection of the plane of projection with

the plane of the given ellipse parallel to the axis minor of that

ellipse, and if we take the cosine of the angle between the planes

= -
,
then every line parallel to the axis minor will be unaltered

by projection, but every line parallel to the axis major will

be shortened in the ratio 5 : «
;
the projection will, therefore

(Art. 163), be a circle, whose radius is h,

369. We shall apply the principles laid down in the last

Article to investigate the expression for the radius of a circle

circumscribing a triangle inscribed in a conic, givea Ex. 6,

p. 205.*

Let the sides of the triangle be a, /3, 7, and its area A, then,

by elementary geometry,
a^7^ =
4J.

Now let the ellipse be projected into a circle whose radius is J,

then, since this is the circle circumscribing the projected triangle,

we have
a'/3'7'

But, since parallel lines are in a constant ratio to their projec-

tions, we have a' : a:: & : h\

^':l3::b:h",

ry':y::b:b"'',

and, since (Art. 368) A' is to A as the area of the circle (x= irh^)

to the area of the ellipse (= irab), (see chap, xix.) we have

A':A::b:a.

Hence ^1^:^^ y, ab^ :bVb"\

and, theretore, M =—7
—

.

* This proof of Mr, MacCuIlagh's theorem is due to Dr. Graves.
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CHAPTER XVIII.

INVARIANTS AND COVARIANTS OF SYSTEMS OF CONICS.

370. It was proved (Art. 250) that if 8 and >S" represent

two conies, there are three values of k for which 7cS + S' re-

presents a pair of right lines. Let

S = ax' + hf + c^^ + 2/7/2! + 2gzx + 2Jix^^

S' = aV + b'f + cz^ + 2fyz + 2g'zx + 2h'xi/.

We also write

A= ahc -^ 2fgh
—

af'
-

Ig'
—
cW^

A' = dVd + 2/'^'A'
-dp ^

h'g"'
- ch'\

Then the values of h in question are got by substituting ha + a',

hh + h\ &c. for a, 5, &c. in A = 0. We shall write the resulting

cu^ic AZ;' + 9^' + Q'h + A' = 0.

The value of e, found by actual calculation, is

[he -f) a'+ (ca-/) y + [ah
-

h') c'

+ 2 (^A
- af)f + 2 [hf- lg)g' + 2 [fg

-
c^) ^'

;

or, using the notation of Art. 151,

Aa! ^ Bh' + Cc' + 2Ff ^2Gg' + 2Hh:
*,

or, again,

*^

as IS also evident from Taylor's theorem. The value of e' is

got from 9 by interchanging accented and unaccented letters,

and may be written

9' = A'a + B'h + C'c + 2F'f-{ 2 G'g + 2H'L

If we eliminate h between h^^S' — 0, and the cubic which

determines h^ the result

A;8"^ - q8"S-\ q'S'8' - A'8' = 0,

(an equation evidently of the sixth degree,) denotes the three

pairs of lines which join the four points of intersection of the

two conies (Art. 238).

y
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Ex. To find the locus of the intersection of normals to a conic, at the

extremities of a chord which passes through a given point «y3. Let the

curve be 'S'= — + ^-1; then the points whose normals pass through a

given point x't/' are determined (p. 165), as the intersections of S with the

hyperbola S' = 2 {(?xy \ h^y'x
-

a^x'y). We can then, by this article, form the

equation of the six chords which join the feet of normals through xy, and

expressing that this equation is satisfied for the point a/3, we have the locus

required.

We have ^ = --45» ^ = 0, ©' = - W^'^ + 2'V"
-

c*),
^' = -

^aWc'x'y'.

The equation of the locus is then

.^, {a'^x
- Way -

d'a^i + 2 (aV + hSf -
c') {a'^x -Vay -

c'a^)(~+^- 1V

which represents a curve of the third degree. If the given point be on

either axis, the locus reduces to a conic, as may be seen by making « = in

the preceding equation. It is also geometrically evident, that in this case

the axis is part of the locus. The locus also reduces to a conic if the point

be infinitely distant : that is to say, when the problem is to find the locus

of the intersection of normals at the extremities of a chord parallel to a

given line.

371. If on transforming to any new set of co-ordinates,

Cartesian or trilinear, S_Sind^' become 8 and S'j it is manifest

that k8+ S' becomes kS-]- S', and that the coefficient k is not

affected. It follows that the values of k, for which k8-{-8'

represents right lines, must be the same, no matter in what

system of co-ordinates 8 and >S" are expressed. Hence, then,

the ratio between any two coefficients in the cubic for kj found

in the last Article, remains unaltered when we transform from

any one set of co-ordinates to another.* The quantities A, 0,

G', a' are on this account called invariants of the system of

conies. If then, in the case of any two given conies, having

by transformation brought 8 and 8' to their simplest form, and

* It may be proved by actual transformation that if in S and S' we sub-

stitute for X, y,Z', Ix + my + nz, I'x + tn'y + n'z, I'x + m"y + n"z, the quan-

tities A, G, 6', A' for the transformed system, are equal to those for the old,

respectively multiplied by the square of the determinant

I,
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having calculated A, G, e', A', we find any homogeneous rela-

tion existing between them, we can predict that the same relation

will exist between these quantities no matter to what axes the

equations are referred. It will be found possible to express in

terms of the same four quantities the condition that the conies

should be connected by any relation, independent of the position

of the axes, as is illustrated in the next Article.

The following exercises in calculating the invariants A, 0,

9', A', include some of the cases of most frequent occurrence.

Ex. 1. Calculate the invariants when the conies are referred to their

common self-conjugate triangle. We may take

S=ax^+ hf + cz\ S' = a'x^ + b'l/ + c'z*
;

and we may further simplify the equations by writing x, y, z, instead of

^ V(«')» 2/ V(^')» 2 '^{c^), so as to bring S' to the form ic* + / + z\ We have

^^^^ A = ahc, e = he -^^ ca + ab, 6' = a + 6 + c, A' = 1.

And S + JcS' will represent right lines, if

k^ -i- k^ {a -i- b + c) + k{bc -{ ca + ab) + abc = 0.

And it is otherwise evident that the three values for which S 4- kS' re-*

presents right lines, are - a,
-

&,
- c.

Ex. 2. Let S' as before be ic' + ?/* + ?', and let S represent the general

equation.

Ans. e =
(bc^-f) + {ca

-
g"") + {ab

-
It")
^A + B+C; Q' = a ^- b + c.

Ex. 3. Let S and S' represent two circles a;' +^ -
r', (x

- af i(y- pf - r'\

Ans. A = - r^ e= a» + y3*
- 2r^ - /^ O' = a** + p*

- r" - 2r'^ A'=-r'\ So

that if Z) be the distance between the centres of the circles, *S + A;>S' will

represent right lines, if

r^ + (2/ + 7'' -I)')ki (r« + 2r" -
D') ¥ + r^'W = 0.

Now since we know, that S - S' represents two right lines (one finite, the

other infinitely distant), it is evident that - 1 must be a root of this equation.

And it is in fact divisible by ^ + 1, the quotient being

,.« + (,.2 + r'^ -
J)')k + r'^k"- = 0.

a:* t/'

Ex. 4. Let /S represent
—

g + n ~
^> while >S" is the circle [x- «)*+(?/ -y3)'-r'.

e' =
i:H.|'-i-..(-.

+ ^J,A'^•64)
Ex. 5. Let S represent the parabola y*

- 4mx, and 3' the circle as before.

Ans. A = -
4:1)1% e = - 4m (« + m), 6' =

/3^
- 4ma - r^ A' = - r^

372. To find the condition that two comes S and S' should

touch each other. When two points, -4, B^ of the four inter-

Y2
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sections of two conies coincide, it is plain that the pair of lines

ACj BD is identical with the pair AD^ BC, In this case, then,

the cubic, ^^3 ^ 0^. _j_ Q.^ + A' = 0,

must have two equal roots. But it can readily be proved that

the condition that this should be the case is

(ee'
- 9A A')'

= 4 (e^
- 3Ae') (e"'

- 3 A'e),

or e'e"^ + 18AA'ee' - 27 a'a" - 4Ae" - 4A'e' = o,

which is the required condition that the conies should touch.

It is proved, in works on the theory of equations, that the

left-hand member of the equation last written is proportional

to the product of the squares of the differences of the roots of

the equation in Ic
;
and that when it is positive the roots of the

equation in k are all real, but that when it is negative two of

these roots are imaginary. In the latter case (see Art. 282),

;S' and 8' intersect in two real and two imaginary points: in

the former case, they intersect either in four real or four

imaginary points. These last two cases have not been distin-

guished by any simple criterion.

Ex. 1. To find by this method the condition that two circles should

touch. Forming the condition that the reduced equation (Ex. 3, Art. 371),

•* + (r* + r'^-D^) h + r'^K^ = 0, should have equal roots, we get r* 4 r^ - Z)*=± 2rr';

Z) = »• + r' as is geometrically evident.

Ex. 2. Find the locus of the centre of a circle of constant radius touch-

ing a given conic. We have only to write for A, a', e, 9' in the equation
of this article, the values Ex. 4 and 5, Art. 371

;
and to consider a, ft as the

running co-ordinates. The locus is in general a curve of the 8th degree,
but reduces to the sixth in the case of the parabola. This curve is the

same which we should find by measuring from the curve on each normal, a

constant length, equal to r. It is sometimes called the curve parallel to the

given conic. Its evolute is the same as that of the conic.

Ex. 3. To find the equation of the evolute of an ellipse. Since two of

the normals coincide which can be drawn through every point on the evolute,

we have only to express the condition that the curves S and >S" touch (Ex.
Art. 370). Now when the term k' is absent from an equation, the condition

that Ak^ + 6'^ + A' should have equal roots, reduces to 27aa'* + 46'^ = 0.

The equation of the evolute is therefore (aV + bh/ -
c*f + 21aWc*z'i/ = 0.

(See Art. 248.)

Ex. 4. To find the equation of the evolute of a parabola. We have here

S =if - 4mx, S' = 2x1/ + 2 (2wi
-

x') y -
Amy',

A = - Am^, 9 = 0, 9' = - 4m (2m -
x), A' = Amy,
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and the equation of the evolute is 21my^ = 4
(a:

- 2mf. It is to be observed,

that the intersections of 8 and S' include not only the feet of the three nor-

mals which can be drawn through any point, but also the point at infinity

on y. And the six chords of intersection of S and aS", consist of three chords

joining the feet of the normals, and three parallels to the axis through these

feet. Consequently the method used (Ex. Art. 370) is not the simplest for

solving the corresponding problem in the case of the parabola. We get
thus the equation found (Ex. 12, p. 201), but multiplied by the factor

Am {2my + y'x
-
2my')

-
y'^.

373. If S' break up into two right lines we Lave A' = 0,

and we proceed to examine the meaning in this case of 9 and G'.

Let us suppose the two right lines to be x and z/ ; and, by the

principles already laid down, any property of the invariants,

true when the lines of reference are so chosen, will be true in

general. The discriminant of S+Jcxy is got by writing ?t + k

for h in A, and is A + 2^- (/^
--

cJi)
— cJc^, Now the coefficient

of Jc^ vanishes when c = 0, that is, when the point xi/ lies on

the curve >S'. The coefficient of Jc vanishes when fg = ch] that

is (see Ex. 3, p. 202), when the lines x and y are conjugate with

respect to S. Thus, then, when S' represents two right lines^ A'

vanishes ; G' = represents the condition that the intersection of
the two lines should lie on 8 ; and Q = is the condition that the

two lilies should he conjugate with respect to S.

The condition that A 4 G/v + G'F should be a perfect square

is 6^ = 4Ae', which, according to the last Article, is the condition

that either of the two lines represented by S' should touch S.

This Is easily verified in the example chosen, where G'^ — 4AG'

is found to be equal to {he -/^) (ca— ,9^'"^).

374. To find the equation of the pair of tangents at the points

where S is cut hy any line \x + /Jiy + vz. The equation of any
conic having double contact with 8, at the points where it meets

this line, being k8+ {\x + fiy -^ vzY = ;
it is required to deter-

mine k so that this shall represent two right lines. Now it will

be easily verified that in this case not only A' vanishes but G'

also. And if we denote by 2 the quantity

AX^ + ^//,' + Cv' -f 2FfMV + 2 (7vX 4 2n\fjL ;

the equation to determine k has two roots = 0, the third root

being given by the equation A;A + 2 = 0. The equation of the

pair of tangents is therefore ^8= A{\x + fJLy + vzy. It is plain

^-
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that when \x + fii/-^ vz touches /S,
the pair of tangents coincides

with \x + fiy-{-vz itself; and the condition that this should be

the case is plainly 2 = 0; as is otherwise proved (Art. 151).

Under the problem of this Article is included that of finding

the equation of the asymptotes of a conic given by the general
trilinear equation.

375. We now examine the geometrical meaning, in general,

of the equation e— 0. Let us choose for triangle of reference

any self-conjugate triangle with respect to 8^ which must then

reduce to the form ax^ + h7f + cz^ (Art. 258). We have there-

fore/= 0, ^ = 0, A = 0. The value then of e (Art. 370) reduces

to hca \- cah' -{• abc\ and will evidently vanish if we have also

o! = 0, V — 0, c = 0, that is to say, if
>S",

referred to the same

triangle, be of the form /'t/z + g'zx + h'xi/. Hence, 9 vanishes

whenever any triangle inscribed in 8' is self-conjugate with regard
to 8, If we choose for triangle of reference any triangle self-

conjugate with regard to
>S^',

we have /' = 0, g =0, h' = 0, and

e becomes
(
j^ ^y^) ^' ^ ^^^

__
^2^ j. _^ ^^^

_
^.^ ^,

.

and will vanish if we have he =f'\ ca—g\ ah = K\ Now he —f^
is the condition that the line x should touch 8] hence, 8 also

vanishes if any triangle circumscribing 8 is self-conjugate with

regard to 8'. In the same manner it is proved that, G' = is the

conditio7i either that it should he possible to inscribe in 8 a tri-

angle self-conjugate with regard to 8\ or to circwnscribe about 8'

a triangle self-conjugate with regard to 8. When one of these

things is possible, the other is so too.

A pair of conies connected by the relation =
0, possesses

another property. Let the point in which meet the lines joining
the corresponding vertices of any triangle and of its polar tri-

angle with respect to a conic, be called the pole of either

triangle with respect to that conic
;
and let the line joining the

intersections of corresponding sides be called their axis. Then
if 9 = 0, the pole with respect to 8 of any triangle inscribed in

8' will lie on 8'
;
and the axis with respect to 8' of any tri-

angle circumscribing 8 will touch 8. For eliminating x, y, z

in turn between each pair of the equations

ax^hy^gz = 0^ hx-\-hy \-fz=^^^ gx-\-fy ^cz = 0^

we get [gh -af)x^ [hf-^ hg) y^{fg- ch) z,
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for the equations of the lines joining the vertices of the triangle

xyz to the corresponding vertices of its polar triangle with

respect to B, These equations may be written Fx— Gy — Hz^

and the co-ordinates of the pole of the triangle are
-^ , -^ , jy.

Substituting these values in S\ in which it is supposed that the

coefficients
a', h\ c vanish, we get 2Ff ^2Gg' + 2Hh' — 0^ or

= 0. The second part of the theorem is proved in like

manner.

Ex. 1. If two triangles be self-conjugate with regard to any conic >S^',

a conic can be described passing through their six vertices; and another

can be described touching their six sides (see Ex. 7, p. 309). Let a conic

be described through the three vertices of one triangle and through two of

the other, which we take for x, y, z. Then because it circumscribes the

first triangle 9' = 0, or a + & -[- c = (Ex. 2, Art. 371), and because it goes

through two vertices of xyz, we have a = 0, 6 = 0, therefore c =
0, or the

conic goes through the remaining vertex. The second part of the theorem

is j^roved in like manner.

Ex. 2. The square of the tangent drawn from the centre of a conic to

the circle circumscribing any self-conjugate triangle is constant, and = a' + 6'

[M. Faure]. This is merely the geometrical interpretation of the condition

« = found (Ex. 4, Art. 371), or «* + yS"
- r« = a* + h\ The theorem may

be otherwise stated thus :
"
Every circle which circumscribes a self-conjugate

triangle, cuts orthogonally the circle which is the locus of the intersection

of tangents mutually at right angles." For the square of the radius of the

latter circle is a^ + h^.

Ex. 3. The centre of the circle inscribed in every self-conjugate triangle

with respect to an equilateral hyperbola, lies on the curve. This appears

by making h' = - a^ in the condition 6' = (Art. 371, Ex. 4.)

Ex. 4. If the rectangle under the segments of one of the perpendiculars

of the triangle formed by three tangents to a conic be constant and

equal to M, the locus of the intersection of perpendiculars is the circle

a:" + ?/'
= a' + 6' + M. For e = (Ex. 4, Art. 371), is the condition that a

triangle self-conjugate with regard to the circle can be circumscribed about

S: But when a triangle is self-conjugate with regard to a circle, it is easy

to see that the centre of the circle is the intersection of perpendiculars of

the triangle, the square of the radius being the rectangle under the segments

of any of the perpendiculars, (taken with a positive sign when the triangle

is obtuse-angled, and with a negative sign when it is acute-angled). The

locus of the intersection of rectangular tangents is got from this example,

by making If = 0.

Ex. 5. If the rectangle under the segments of one of the perpendiculars

of a triangle inscribed in S be constant, and = M, the locus of intersection
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of perpendiculars is the conic concentric and similar with S, S = My -g + t, 1

[Dr. Hart.] This follows in the same way from 9' = 0.

Ex. 6. Find the locus of the intersection of perpendiculars of a triangle

inscribed in one conic and circumscribed about another [Mr. Burnside].

Take for origin the centre of the latter conic, and equate the values ofM
found from Ex. 4 and 5

;
then if a', b' be the axes of the conic S in which

the triangle is inscribed, the equation of the locus is a:' + y*
- a* - 6* =

-;^
—

rr^
^«

The locus is therefore a conic, whose axes are parallel to those of S, and

which is a circle when ^S is a circle.

Ex. 7. The centre of the circle circumscribing every triangle, self-con-

jugate with regard to a parabola, lies on the directrix. This and the next

example follow from =
0, (Ex. 5, Art. 371).

Ex. 8. The intersection of perpendiculars of any triangle circumscribing

a parabola, lies on the directrix.

Ex. 9. Given the radius of the circle inscribed in a self-conjugate tri-

angle, the locus of centre is a parabola of equal parameter with the given one.

376. If two conies be taken arbitrarily it is in general not

possible to inscribe a triangle in one which shall be circum-

scribed about tbe other; but an infinity of such triangles can

be drawn if the coefficients of the conies be connected by a

certain relation which we proceed to determine. Let us suppose

that such a triangle can be described; and let us take it for

triangle of reference; then the equations of the two conies

must be reducible to the form

8' = 2fi/z + 2gzx + 2'hxy
— 0. (cxa co- ^-

Forming then the invariants, we have

A = _4, = 4(/+^+A), e' = -(/+.9 + Af, i^ = 2fgh;

values which are evidently connected by the relation 9^=4AG'.*

* This condition was first given by Mr. Cayley [Philosophical Magazine^
Vol. VI., p. 99) who derived it from the theory of elliptic functions. He
also proved, in the same way, that if the square root of k^A + k^B + ko' + a',

when expanded in powers of ^, be ^ + Bk + Ck^ + &c., then the conditions

that it should be possible to have a polygon of n sides inscribed in U and

circumscribing V, are for n = 3, 5, 7, &c. respectively

C=0,

\d, e\--o, d, e, f
0, &c.,

C, D
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This is an equation of the kind (Art. 371) which is unafFected

by any change of axes
; therefore, no matter what the form in

which the equations of the conies have been originally given,

this relation between their coefficients must exist, if they are

capable of being transformed to the forms here given. Con-

versely, it is easy to show, as in Ex% 1, Art. 375, that when the

relation holds 6* = 4A6', then if we take any triangle circum-

scribing 8j and two of whose vertices rest on
/S",

the third must

do so likewise.

Ex. 1. Find the condition that two circles may be such that a tri-

angle can be inscribed in one and circumscribed about the other. Let

i>* - r* - r'* = G; then the condition is (see Ex. 3, Art 371)

{G - ry + 4r* {G -
r") = 0, or {G + r»)«

= 4rV*;

whence D' = r'* ± 2n*', Euler's well known expression for the distance be-

tween the centre of the circumscribing circle and that of one of the circles

which touch the three sides.

Ex. 2. Find tlie locus of the centre of a circle of given radius, circum-

scribing a triangle circumscribing a conic, or inscribed in an inscribed

triangle. The loci are curves of the fourth degree except that of the centre

of the circumscribing circle in the case of the parabola, which is a circle

whose centre is the focus, as is otherwise evident.

Ex. 3. Find the condition that a conic may be inscribed in S' whose

sides touch respectively S + IS', S + 7nS', S + nS'. Let

S = x^-^y* + z'-2{l4-lf)yz-2{l +mg)zx-2{l-\- nh) xy,

S' ^ 2fyz ^ 2gzx ^ 2hxy;

then it is evident that S + IS' is touched by a?, &c. We have then

A = -(2+//'+w^+ nhf -
2lmnfgh,

e = 2 (/+ ^ + 7i) (2 + lf+7ny + nh) + 2fgh {mn -^.nl + /m),

e' = -{f+g-\-hf-2{lim-\-n)fyh, A' = 2/5A.

Whence obviously

{9
- A' (mn + «Z + lm)Y = 4 (A + ImnA') (6' + a' (/ + m + n)},

which is the required condition.

377. To find the condition that tJie line \x-\- iJLy-\-
vz should

pass through one of the four points common to S and 8', This

is,
in other words, to find the tangential equation of these four

points. Now we get the tangential equation of any conic of

and for n = 4, 6, 8, &c. are

Z> = 0,

F, F =0, F, F, G
0, &c.

I),F



330 INVAKIANTS AND COVAKIANTS

the system S+k8' by writing a-\-ka\ &c. for a, &c. in the

tangential equation of S, or

2 = [he -f) X' + (ca-f) fj:' -}- [ah
-

h') v'

+ 2 [gli
-

of) fiv + 2 [hf- hg) v\ -F 2 [fg
-

cli) Xfi
= 0.

We get thus 2 + 7^4> -f FS' f= 0, where

<I> =
(fie' -f Z>'c - 2/') V + (ca + c'a - 2gg') ^
+ [aV + a'Z> - 2A^') v' + 2 (^7/ + gh - of - af) [xv

H- 2 (A/" + 7if- hg
-

h'g) vX + 2 [fg +fg - cli - c'h) Xfi.

The tangential equation of the envelope of this system is there-

fore (Art. 298) a>' = 42S'. But since 8-\-kS\ and the corre-

sponding tangential equation, belong to a system of conies

passing through four fixed points, the envelope of the system is

nothing but these four points, and the equation <l>^ = 422' is the

required condition that the line Xx-i-fjug+yz should pass through
one of the four points. The matter may be also stated thus :

Through four points there can in general be described two

conies to touch a given line (Art. 345, Ex. 4) ;
but if the given

line pass through one of the four points, both conies coincide

in one whose point of contact is that point. ISTow fp'' = 422' is

the condition that the two conies of the system S-\-7iS\ which

can be drawn to touch Xx-{ fiy -{- vz^ shall coincide.

378. To find the equation of the four common tangents to two

comes. This is t^ reciprocal of the probleni of the last Article,

and is treated
ii^fcj^same way. Let S and 2' be the tangential

equations of t\^HBics, then (Art. 298) § -}- h'l.' represents tan-

gcntially a conic tmiched by the four tangents common to the

two given conies. Forming then, by Art. 285, the trilinear

equation corresponding to 2 + h^' = 0, we get

AS+ kF-tJc^A'S'=^0,
where

F-={BC' + B'C-2FF')x' + {GA'+C'A-2aG')y'
+ {AB' + A'B-2Hir)z'

-\-2{GII'+ G'II-AF'-A'F)7/z-h2{HF'+E'F- 2BG'-2B'G)zx

{-2{FG' + F'G--2CII'-2G'II)xg,

the letters A^ J5, &c. having the same meaning as in Art. 151.
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But AS-\-h'E + Jc^A'8' denotes a system of conies whose en-

velope is F'^ = 4.AA'S8'
'^

and the envelope of the system evi-

dently is the four common tangents.
The equation "F^ = 4:AA'SS', by its form denotes a locus

touching S and S\ the curve F passing through the points of

contact. Hence, fJie eight points of contact of two conies with

their common tangents^ lie on another conic F. Keciprocally, the

eight tangents at the j^oinfs of intersection of two conies envelope
another conic <I>.

Ex. Find the equation of the four common tangents to the pair of conies

aa:* + hy^ + cz^ = 0, a'x^ + h'y^ + c's* = 0.

Here A = bc, B = ca, C= ah, whence

F = aa' (he -t b'c) x^ t hh' {ca' 4 c'a) if \ cc' [ah' + a'h) s',

and the required equation is

[aa' {h'c T h'c) x^ + W {ca' -i c'a) f + cc' {aV -f a'h) s'}'

= iabca'b'c' {ax- + bf + cs') {a'x* -i h'y* + c'z*).

379. The former part of this Chapter has sufficiently shown

what is pieant by invariants, and the last Article will serve

to illustrate the meaning of the word covariant. Invariants

and covariants agree in this, that the geometric meaning of

both is independent of the axes to which the equations are

referred; but invariants are functions of the coefficients only,

while covariants contain the variables as well. If we are given
a curve, or system of curves, and have learned to derive from

their general equations the equation of some locus, Z7= 0,

whose relation to the given curves is ind^Adent of the axes

to which the equations are referred, U is ^^Kf^ be a covariant

of the given system. Now if we desire tf^ave the equation

of this locus referred to any new axes, we shall evidently arrive

at the same result, whether we transform to the new axes the

equation Z7= 0, or whether we transform to the new axes the

equations of the given curves themselves, and from the trans-

formed equations derive the equation of the locus by the same

rule that U was originally formed. Thus, if we transform the

equations of two conies to a new triangle of reference, by

writing instead of
a?, y, ^j

Ix + my + nz^ Tx + m'y -f 7iz^ T'x + 7ii"y + n"z
;

and if we make the same substitution in the equation "F^^iAA'SS'^
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we can foresee that the result of this last substitution can only

differ by a constant multiplier from the equation F'''= 4AA'/S/S",

formed with the new coefficients of S and ;S". For either form

represents the four common tangents. On this property is

founded the analytical definition of covariants. "A derived

function formed by any rule from one or more given functions

is said to be a covariant, if when the variables in all are trans-

formed by the same linear substitutions, the result obtained by

transforming the derived differs only by a constant multiplier

from that obtained by transforming the original equations and

then forming the corresponding derived."

380. There is another case in which it is possible to predict

the result of a transformation by linear substitution. If we have

learned how to form the condition that the line \x -[- fiT/ -\- vz

should touch a curve, or more generally that it should hold to

a curve, or system of curves, any relation independent of the

axes to which the equations are referred, then it is evident that

when the equations are transformed to any new co-ordinates,

the corresponding condition can be formed by the same rule

from the transformed equations. But it might also have been

obtained by direct transformation from the condition first ob-

tained. Suppose that by transformation Xx -\- fjuy -\- vz becomes

X [Ix + my -\-nz)-\- fx {I'x + my + nz) + v {l"x + m"y + n"z)j

and that we write this X'x + jju'y + v'z^ we have

X' = ?\ 4- I'fjL + Z'V. fi'
= mX + m'fjb -f- m'V, v' = nX + n'fi + n'v.

Solving these eqt^^ns, we get equations of the form

\=iv+zy+x'v, /*=jfv+iify+i/'V', v=N-x:+N'fi'^-N"v\

If then we put these values into the condition as first obtained

in terms of X, /i, v, we get the condition in terms of V, yu-', v',

which can only difier by a constant multiplier from the condition

as obtained by the other method. Functions of the class here

considered are called contravariants. Contravariants are like

covariants in this : that any contravariant equation, as for

example, the tangential equation of a conic, {hc—f^) X^'-f &c.=0

can be transformed by linear substitution into the equation of

like form (JV —/'*'*)
X'-^ + &c. = 0, formed with the coefficients

of the transformed trilinear equation of the conic. But they
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differ in that \, //,,
v are not transformed by the same rule as

a?, 3^,
5?

;
that

is, by writing for X, l\ + mfi + nv, &c., but by the

different rule explained above.

The condition found Art. 377 is evidently a contravariant of

the system of conies 8, 8'.

381. The condition * = expresses that the line \x + fiy-\- vz

is cut harmonically hy the system of conies 8, 8', We have

only to repeat with the general equation the process used Art.

335. The points of intersection of the line with 8 satisfy the

equation

{av^
-
2g\v -+ cX') x^ + 2 [hv" -f\v -gfiv + cX/x) xy

+ {hv''-2ffj.v + cfi'')y^
= 0.

Forming, by Art. 332, the condition that this should be har-

monically conjugate with the corresponding equation for the

second conic, we obtain

{av' -2y\v -}- cV) (Z>V'
- 2/>v + c'fi^)

+ {aV - 2/Xv + cV) {hv'
-

2ffjLV + Cf^')

= 2 {hv' -/\v - g/iv + cXfi) Qiv" -f\v -
g'fiv + c'V),

which expanded and reduced is

{he -f Vc - 2/') V + (ca + c'a - 2gg') yi' + {oh' + ah - 2h1i) v"

4- 2 {g'h + g}^
- af - df) fiv-\-2 {Kf^ hf - hg

-
h'g) v\

+ 2{/g'+fg-ch'-c'h)\fjL = 0.

In like manner it is proved that F = is the equation of the

locus of points, whence tangents drawn to 8 and 8' form a

harmonic pencil.

It will be found that the equation of any conic covariant

with 8 and 8' can be expressed in terms of
/S', 8', and F ;

while

its tangential equation can be expressed in terms of S, S', ^.

Ex. 1. To express in terms of S, S% F the equation of the polar conic

of S with respect to S'. From the nature of covariants and invariants, any
relation found connecting these quantities, when the equations are referred

to any axes, must remain true when the equations are transformed. We
may therefore refer aS' and S' to their common self-conjugate triangle

and write S = ax^ -{ by' + cz^, S' = x^ + 2/^ + s^ It will be found then that

F = « (& -f c) a;' + 5 (c + a) «/* + c (a + 6) «*. Now since the condition that

a line should touch 8 is hc\^ + cajub^ + dbv^ = 0, the locus of the poles with

respect to S' of the tangents to S is hcx^ + cay* +• dbz^ = 0. But this may
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be written [he + ca + al) {x^ + «/''•' ^^)
= F- The locus is therefore (Ex. 1,

Art. 371) QS' = F. In like manner the polar conic of S' with regard to

8 is Q'S = F.

Ex. 2. To express in terms of S, S', F the conic enveloped by a line cut

harmonically by S and S'. The tangential equation of this conic * = is

(6 + c) \' + ic^a) ix^ + (a + 6)
i'^ = 0.

Hence its trilinear equation is

(c + a) (a + 6) a;' + (a + h) (b + c) ?/' 4- (c + a) {b + c) z* = 0,

or {he + ca 4- ab) {z* ^ y^ + s*) -\- (a + b -\r c) (ax^ + bf + cz^)
- F = 0,

or e^S" + G'>S' - F = 0.

Ex. 3. To find the condition that F should break up into two right

lines. It is

ahc (b + c) (c + a) (a + 5)
= 0, or abc {(a + 5 + c) (be 4- ca + ab)

-
abc] = 0,

or aa' (09'
- aaO = 0,

which is the required formula. G9' = AA' is also the condition that <E» should

break up into factors. This condition will be found to be satisfied in the

case of two circles which cut at right angles, in which case any line through
either centre is cut harmonically by the circles, and the locus of points

whence tangents form a harmonic pencil also reduces to two right lines.

The locus and envelope will reduce similarly if Z)^ = 2 (r* + r'^).

Ex. 4. To reduce the equations of two conies to the forms

ar' + 2/' 4 s' = 0, ax^ 4- %' 4- cz^ = 0.

The constants a, b, c are determined at once (Ex. 1, Art. 371) as the roots of

a;*-^ - ek^ -j- Q'h - A' = 0.

And if we then solve the equations

x'-\-y'+z^ = S, axUby'' + cz^=S', a(b^ c)x^ + b(c + a)y^ + c(a+l>)z^=F,
we find x^, y', z' in terms of the known functions S, S', F- Strictly speak-

ing, we ought to commence by dividing the two given equations by the cube

root of A, since we want to reduce them to a form in which the discriminant

of >S^ shall be 1. But it will be seen that it will come to the same thing if

leaving S and /S" unchanged, we divide by A, F as calculated from the

coefficients of the given equations.

Ex. 5. Reduce to the above form

3a;' - exy + %^ -2x + 4y = 0, 5x^ - Uxy 4- 8y'
- 6a: - 2 = 0.

It is convenient to begin by forming the coefiicients of the tangential

equation, A, B, &c. These are -
4,

-
1, 18

;
-

3, 3,
- 2 :

-
16, -19,-9;

21, 24,
- 14. We have then

A = -9, e = -54, G' = -99, A' = -54,
whence a, b, c are Ij 2, 3. We next calculate F which is

- 9 (23a;«
- 50xy + 44/ - 18a; 4- \2y

-
4).

Writing then

X'
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We get from 6>S'+>S'-i^, X' ^ (3^ + 1)',

from F ~SS - 28', Y' = i2x -
y)\

from 2S^-'dS'-F, Z^ = -{x\y\Vf.
Ex. 6. To find the envelope of the base of a triangle inscribed in 8 and

two of whose sides touch aS".

Take the sides of the triangle in any position for lines of reference, and let

'S^ = 2 {fyz + gzx + hxy\

/S" = a:« + 2/' + 2' - 2yz
- 2zx -

2xy ~
2hhxy,

where x and y are the lines touched by S'. Then it is obvious that

kS + S' will be touched by the third side s, and we shall show by the

invariants that this is 2i fixed conic. We have

A =
2fgh, Q = -{f^g\hf-2fghk, e' = 2(/+^4 A)(2 + M), A' = -(2 + M)»,

whence G" - 4eA = ^AA'k, and the equation kS -^^ S' = may be written

in the form
^q'i

_ 49^) ^ ^ 4aa'>S" = 0,

which therefore denotes a fixed conic touched by the third side of the tri-

angle. It is obvious that when 9'^ = 40a the third side will always touch S'\

Ex. 7. To find the locus of the vertex of a triangle whose three sides

touch a conic U and two of whose vertices move on another conic V. We
have slightly altered the notation, for the convenience of being able to

denote by V and V the results of substituting in U and V the co-

ordinates of the vertex x'y's!. The method we pursue is to form the equa-
tion of the pair of tangents to XT through xfy'z! ;

then to form the equation
of the lines joining the points where this pair of lines meets F"; and, lastly,

to form the condition that one of these lines (which must be the base of

the triangle in question) touches V. Now if P be the polar of x'y'^, the

pair of tangents is UU' - P^. In order to find the chords of intersection

with V of the pair of tangents, we form the condition that TJU' - P^ ^^W
may represent a pair of lines. This discriminant will be found to give us

the following quadratic for determining X,, Va' + XF + A C/"' F' = 0. In

order to find the condition that one of these chords should touch U, we must,

by Art. 372, form the discriminant of
ytt

C/" f
(
UU' -P^ + X V), and then form

the condition that this considered as a function of ja should have equal roots.

The discriminant is

fi'A + ytt (2 U'A + X0) + { U'-A + \ (e Z7+ A F) + Ve'},

and the condition for equal roots gives

X(4Ae'-G') + 4A'r=0.

Substituting this value for \ in X'a' {- XF + AU'V =
0, we get the equation

of the required locus

IGa'A'V- 4A (4Zi0' -Q')F+U (4Ae'
- 07 = 0,

which, as it ought to do, reduces to F'when 4AG' = 0^

Ex. 8. Find the locus of the vertex of a triangle, two of whose sides

touch U, and the third side aU+bV, while the two base angles move on V.
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It is found by the same method as the last, that the locus is one or other

of the conies, touching the four common tangents of U and F",

where \\ fi'm given by the quadratic

a {ah
-
^a) V + a (4A« + 2e&) \fi

~ by = 0,

where « = 4AA', /3
= e« - 4Ae'.

Ex. 9. To find the locus of the free vertex of a polygon, all whose sides

touch U, and all whose vertices but one move on V. This is reduced to the

last; for the line joining two vertices of the polygon adjacent to that whose

locus is sought, touches a conic of the form all ^ hV, It will be found if

X', fji' ; V, fi" ; \"', fji'"
be the values for polygons of n -

1, w, and w + 1 sides

respectively, that \'" = /i-y, ii'"
= A'X'X" {afi'

-
a'/3X"). In the case of the

triangle we have V = «, fi'
=

A'/3 ;
in the case of the quadrilateral V =

/3*,

fi"
= o (4Aa + 2/3e) ;

and from these we can find, step by step, the values for

«very other polygon.

382. The theory of covariants and invariants enables us

readily to recognize the equivalents in trilinear co-ordinates of

certain well-known formulae in Cartesian. Since the general

expression for a line passing through one of the imaginary

circular points at infinity m x±y \l[— 1) + c, the condition that

Xx-Yiiy+v should pass through one of these points is X^4a«'^=0.

In other words, this is the tangential equation of these points.

If then S = be the tangential equation of a conic, we may
form the discriminant of 2 + ^ (V + ^i^).

Now it follows from

Arts. 285, 286, that the discriminant in general of S + ^2' is

A' + Me'-f ^'A'e + A^'A'^

But the discriminant of 2 + A;
(X*^ + /a'^)

is easily found to be

If, then, in any system of co-ordinates we form the invariants

of any conic and the pair of circular points, 0' = 0, is the con-

dition that the curve should be an equilateral hyperbola, and

e = 0, that it should be a parabola. The condition

must be satisfied if the conic pass through either circular point ;

and it cannot be satisfied by real values except the conic pass

through hoth^ when a = h^h — 0.

Now the condition X^ + /^''
= 0* implies (Art. 34) that the

* This condition also implies (Art. 25) that every line drawn through

one of these two points is perpendicular to itself. This accounts for some
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length of the perpendicular let fall from any point on any line

passing through one of the circular points is always infinite.

The equivalent condition in trilinear co-ordinates is therefore

got by equating to nothing the denominator in the expression
for the length of a perpendicular (Art. 61). The general tan-

gential equation of the circular points is therefore

X^ + /u,^ + »/''
-

2yC6v cos^ - 2vX cosi?- 2Xfjb cos (7= 0.

Forming then the G and 9' of the system found by combining
this with any conic, we find that the condition for an equilateral

hyperbola, 0' = 0, is

a + l^-c-^fco^A-^g cosB-2h cos(7=0;

while the condition for a parabola, =
0, is

A sin'A +B sm'B+ C sin*-^ G-h2F sinB sinC

+ 2 (7 sin(7 sin^ + 2^sin j; sin5= 0.

The condition that the curve should pass through either circular

point is 0"^ = 40, which can in various ways be resolved into a

sum of squares.

383. If we are given a conic and a pair of points, the

covariant F of the system denotes the locus of a point such

that the pair of tangents through it to the conic are harmoni-

cally conjugate with the lines to the given pair of points.

When the pair of points is the pair of circular points at in-

finity, F denotes the locus of the intersection of tangents at

right angles. Now, referring to the value of F, given Art. 378,

it is easy to see that when the second conic reduces to X^ 4- fj^^ ;

that
is,

when A' = B' =1^ and all the other coefiicients of the

tangential of the second conic vanish, F is

C{x^-hy')-2Gx-2F7/ + A + B=:^0,

which is therefore the general Cartesian equation of the locus

of intersection of rectangular tangents.

When the curve is a parabola C'=0, and the equation of the

directrix is therefore 2
(
Gx + Ft/)

= A+B.

apparently irrelevant factors which appear in the equations of certain loci.

Thus if we look for the equation of the foot of the perpendicular on any-

tangent from a focus a/3, {x
- af + (y

-
/Sf will appear as a factor in the

locus. For the perpendicular from the focus on either tangent through it

coincides with the tangent itself. This tangent therefore is part of the locus.

Z
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The coiTCsponding trilinear equation found in the same way is

+ 2 {A gobA-F- G co&C-ircosB)yz

+ 2{B cosB -G-IIcobA- Fcos C) zx

+ 2(CcosC-II-FcoBB-Gco»A)xy = 0.

It may be shown, as in Art. 128, that this represents a circle,

by throwing it into the form

, . . . „ . ^,fB-\-C-\-2FcosA C+A-\-2Gco8B
lxBmA-\-y8mB+zsmO]{ .

—
-. x-\- ;

—
^^ v

^ ^
^\ BinA smB ^

A+B-\-2IIcobC \ Q
, ' A • -o ' ^\+  ^—T7 ^ = -—

^ • r, ' ^ (yzsinA+zxBmn-\-xy8mU)i

where is the condition (Art. 382) that the curve should be a

parabola. When G =
0, this equation gives the equation of the

directrix.

384. In general, 2 + 7cl,' denotes a conic touching the four

tangents common to 2 and 2'
;
and when k is determined so

that 2 + ^2' represents a pair of points, those points are two

opposite vertices of the quadrilateral formed by the common

tangents. In the case where 2' denotes the circular points at

infinity, when 2 + k2' represents a pair of points, these points

are the foci (Art. 279). If then it be required to find the foci

of a conic, given by a numerical equation in Cartesian co-ordi-

nates, we first determine k from the quadratic

{ah-h') k' + A{a i-h)k-]- A' = 0,

Then, substituting either value of k in 2 + ^(X''^ + //<'''),
it breaks

up into factors {Xx + jiy' + vz) {\x" + jui/" + vz") ;
and the foci

t t It tiX 11 X IJ

are -
, ^ ;

—
, ^ . One value of h gives the two real foci,z z z z

and the other two imaginary foci. The same process is appli-

cable to trilinear co-ordinates.

In general, 2 + h {\^ + fi^) represents tangentially a conic

confocal with the given one. Forming, by Art. 285, the corre-

sponding Cartesian equation, we find that the general equation
of a conic confocal with the given one is

/:^8-\-h[C{x'-\-f)-2Gx-2Fy-^A + B]+¥=^0.
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From this we can deduce that the equation of the common

tangents is

By resolving this into a pair of factors

{(«-ar + {2/-/Sf]{(a;-a7+(2/-^7),

we can also get a, /3 ; a', /3' the co-ordinates of the foci.

Ex. 1. Find the foci of 2ic« - 2xy + 2/ - 2:i; - 8y + 11. The quadratic

here is Zh^ + 4A;A + A^ = 0, whose roots are A; = - A, A; = - ^A, But A = - 9.

Using the value 3,

6X' + 21/1* + Si'* + l^iiv + \2v\ + 30X/t + 3 (V + /t')
= 3 (\ + 2/i + i/) (3X + /* + j'),

showing that the foci are 1, 2j 3, 1, The value 9 gives the imaginary foci

2±V(-1), 3 + V(-l).

Ex. 2. Find the co-ordinates of the focus of a parabola given by a

Cartesian equation. The quadratic here reduces to a simple equation, and

we find that

(a + I) [AX'' + BiJ* -t- 2Ffiv + 2 Gv\ ^^ITKfi}
- A (X* + yu,*)

is resolvable into factors. But these evidently must be

/ ^^ /o ^A A XT N J (a + 6) ^ - A .
. (a + 5) ^ - A

(« + i) (2GX + 2JW and L^-^- X +
\^^^[^^p

/. + '.

The first factor gives the infinitely distant focus, and shows that the axis of

the curve is parallel to Fx -
Oy. The second factor shows that the co-

ordinates of the focus are the coefficients of X and /t
in that factor.

Ex. 3. Find the co-ordinates of the focus of a parabola given by the

trilinear equation. The equation which represents the pair of foci is

e'2 = A (X* + /«,*
+ 1/*

-
2/41/ cos ,4 - 2i;X cos^ -

2X/i cosC).

But the co-ordinates of the infinitely distant focus are known, from Art. 293,

since it is the pole of the line at infinity. Hence those of the finite focus are

Q'A - A e'J3 - A

A sinA + H &in JB + G sinC' J/sin^ + jB sinJ5 + i^sinC'

e'(7-A

G sinA + F sin J? + C sin C

385. The condition (Art. 61) that two lines should be

mutually perpendicular

XX' + fijjb' + vv — (/iv + A^V) cos^ - (vV + v'X) cos^

-
(XyLt' 4- X'yLt) COS (7= 0,

is easily seen to be the same as the condition (Art. 293) that

the lines should be conjugate with respect to

X"* + /a' + v' - 2fiv COBA - 2vX cosjS- 2X/4 cos (7= 0.

Z2
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The relation then between two mutually perpendicular lines is

a particular case of the relation between two lines conjugate

with regard to a fixed conic. Thus, the theorem that the three

perpendiculars of a triangle meet in a point, is a particular

case of the theorem that the lines meet in a point which join

the corresponding vertices of two triangles conjugate with re-

spect to a fixed conic, &c. It is proved {Geometry of Three

Dimensions^ Chap, ix.) that, in spherical geometry, the two

imaginary circular points at infinity are replaced by a fixed

imaginary conic : that all circles on a sphere are to be considered

as conies having double contact with a fixed conic, the centre

of the circle being the pole of the chord of contact
;
that two

lines are perpendicular if each pass through the pole of the

other with respect to that conic, &c. The theorems then, which

in the Chapter on Projection, were extended by substituting,

for the two imaginary points at infinity, two points situated

anywhere, may be still further extended by substituting for

these two points a conic section. Only these extensions are

theorems suggested, not proved. Thus the theorem that the

intersection of perpendiculars of a triangle inscribed in an

equilateral hyperbola is on the curve, suggested the property
of conies connected by the relation =

0, proved at the end

of Art. 375.

It has been proved (p. 267), that to several theorems concerning

systems of circles, correspond theorems concerning systems of

conies having double contact with a fixed conic. We give now
some analytical investigations concerning the latter class of

systems.

386. To form the condition that the line \x-\- ^y-\- vz may
touch 8 + {\'x + fji'y + vzy. We are to substitute in 2, a + X'\
h + //.'^,

&c. for a, &, &c. The result may be written

2 + {a(/^v'-/^V)' + &c.}
=

0,

where the quantity within the brackets is intended to denote

the result of substituting in 8 /juv
-

//,V, v\' — v\ Xjbu'
—

X/j, for

a?, yj z. This result may be otherwise written. For it was

proved (Art. 294), that

[ax- + &c.) ia^'' + &c.)
-

[axx •+ &c.)' = A [yz --y'zY + &c.
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And it follows, by parity of reasoning, and can be proved in

like manner, that

{A\^ + &c.) {Ax" + &c.)
- [AW -}- &c.)'= A {a [fiv

-
fi'vf+ &c.},

where AW + &c. is the condition that the lines Xx -{- /jl2/ + vZj

X'x 4- /jl't/ 4- v'z may be conjugate ;
or

AXX'+ Bfifi' -\- Cvv'+ F{/jLv + fi'v) + G (vV + v'X) + H{XfM' + X'fi).

If then we denote AX'^^ + &c. by 2', and AXX' -f &c. by IT
;

and if we substitute for a {fiv'
—
fxvY + &c. the value just found,

the condition previously obtained may be written

(A4-2')2-n' = 0.

If we recollect (Art. 321) that X, /a,
v may be considered as

the co-ordinates of a point on the reciprocal conic, the latter

form may be regarded as an analytical proof of the theorem

that the reciprocal of two conies which have double contact, is

a pair of conies also having double contact. This condition may
also be put into a form more convenient for some applications,

if instead of defining the line Xx -\- ^y + vz by the coefficients

X, /A, V, we do so by the co-ordinates of its pole with respect to 8^

and if we form the condition that the line P' may touch 8+F"''^^

where P' is the polar of xy'z or axx + &c. Now the polar of

x'y'z will evidently touch S when xt/'z' is on the curve
;
and

in fact if in 2 we substitute for X, /tt,
v

; /S'^, S^, 8^ the coefficients

of Xj 2/j
^ in the equation of the polar, we get A 8'. And again

two lines will be conjugate with respect to 8^ when their poles

are conjugate ;
and in fact if we substitute as before for X, fi,

v

in n we get AR, where E denotes the result of substituting the

co-ordinates of either of the points xyz\ x"y"z'\ in the equation

of the polar of the other. The condition that P' should touch

8+ P"^ then becomes (1 + 8") 8' = R\

387. Tofind the condition that the two conies

8+ [X'x + fi'y + vz)\ 8+ {X"x 4- fi"y + v"z)\

should touch each other. They will evidently touch if one of

the common chords, (X'a? + ya'j/ + v'^) + (Va? + /^"j/ + v"^), touch

either conic. Substituting then in the condition of the last

Article X' ± X" for X, &c., we get

{A 4- 2') (2' ± 2n 4- 2") = (2' ± n)^
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which reduced may be written in the more symmetrical form

(A + S')(A + 2")
= (A±^)^

The condition that 8+F^ and S-\-F"^ may touch is found

from this as in the last Article, and is

{i + s'){i + s") = {i±By.

Ex, 1. To draw a conic having double contact with S and touching

three given conies S + P'*, S + P"*, S + P'"^ also having double contact

with S. Let xyz be the co-ordinates of the pole of the chord of contact

with S of the sought conic S + P^ then we have

(1 + ^)(1 + >S")
= (1 + P')'; (1 + >S')(1+aS">(1 + P'T; (1 + >S')(1 + >S"")

=
(1 + P'T;

where the reader will observe that >S", *S"', S'" are known constants, but

S, P', &c. involve the co-ordinates of the sought point xyz. If then we

write I -i- S = k\ &c., we get

M'=l+ P', kk" = 1 + P", kk'" = 1 + P"'.

It is to be observed that P', P", P"' might each have been written with a

double sign, and in taking the square roots a double sign may, of course, be

given to k', k", k'". It will be found that these varieties of sign indicate

that the problem admits of thirty-two solutions. The equations last written

give ^ (Aj'
-

k") = r-F"; k {k"
-

k!")
= P" - P'

j

whence eliminating ^, we get

P' ik" - k'") + P" ik'"
-

k') + P"' {kf
-
k") = 0,

the equation of a line on which must lie the pole with regard to aS' of the

chord of contact of the sought conic. This equation is evidently satisfied

by the point P' = P" = P", But this point is evidently one of the radical

centres (see p. 267) of the conies S + P'^ S + P"^, S + P"'\

p/ j)/f jp'ii

The equation is also satisfied by the point tt = tt =
t;;; • -'^ order to

see the geometric interpretation of this we remark that it may be deduced

from Art. 386 that the tangential equations oi S\ P'*, 8 + P"* are respectively

(1 + ^') 2 = A (Aa:' + ^Jiy' + i'z')'» (1 + ^") ^^ = A i^x" + ^ly" + v^J,

Hence ^ + ^
represent points of intersection of common tangents to /S' + P", 8\ P'\ that

JJf' x"
is to say, the co-ordinates of these points are

^7 ±
—

, &c., and the polars of
rC K

p> p>' pi pii pu
these points, with respect to »S, are — ± -:;— . It follows that -—=-- = -—

K k' k' k k'"

denote the pole, with respect to >S', of an axis of similitude (p. 267) of the

three given conies. And the theorem we have obtained is,
—the pole of the

sought chord of contact lies on one of the linesjoining one of thefour radical

centres to the pole, with regard to S, of otie of the four axes of siinilitude.

This is the extension of the theorem at the end of Art. 118.
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To complete the solution, we seek for the co-ordinates of the point of
contact of 6' + F' with S + P'\ Now the co-ordinates of the point of con-

tact, which is a centre of similitude of the two conies, beine --- &c we

must substitute ^ + p «' for x, &c. in the equations M' = 1 + P', &c., and
we get

where H, R' are the results of substituting x"y"zl\ z'"y"z"' respectively in

the polar of x'y'z\ We have then

k {k'
-

k") = P' _ P' + I ^S'
-

iJ) ;
k ik' -

¥') = P' - P'" + I (6f
' -

B!),

whence eliminating k, we have

-{--f-(--f^^'{--f-(-|)}

the equation of a line on which the sought point of contact must He; and
which evidently joins a radical centre to the point where P', P", F" are re-

Ctf JD Til

spectively proportional to ^' - -rr , ^"
-
v; ,

k'" - -^7 ,
or to 1

,
k'k" - R, k'k'" - M',

But if we form the equations of the polars, with respect to S { P', of the

three centres of similitude as above, we get

{k'k"
- P) P = P", {kk'" -Iif)r = P", &c.,

showing that the line we want to construct is got by joining one of the four

radical centres to the pole, with respect to >S + P'^ of one of the four axes

of similitude. This may also be derived geometrically as in Art. 121, from

the theorems proved, p. 267. The sixteen lines which can be so drawn,
meet S + P"^ in the thirty-two points of contact of the different conies which

can be drawn to fulfil the conditions of the problem.*

Ex. 2. The four conies having double contact with a given one S, which

can be drawn through three fixed points, are all touched by another conic

also having double contact with JS.-f Let

S = x^ + y^ + z^ - 2yz cosA - 2zx cos B - 2xy cosC,

then the four conies are S = (x±y ± zf, which are all touched by

S=^{x cos(j5
- C) + y cos(C- ^) + z cos(^ - B)f.

388. We give next some parts of the theory of the invariants

of a system of three conies which can be understood without a

* The solution here given is the same in substance (though somewhat

simplified in the details) as that given by Mr. Cayley, Crelle, Vol. xxxix.

t This is an extension of Terquem's theorem (Ex. 4, p. 126) and itself

admits of further extension. See Quarterly Journal of Mathematics,

Vol. VI., p. 67.
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knowledge of the properties of curves of the third degree, re-

ferring for further details to Lessons on Higher Algebra^ p. 119.

Given three conies U^ F, TF, the locus of a point whose polars
with respect to the three meet in a point is a curve of the third

degree ; which we call the Jacohian of the three conies. For we
have to eliminate

a?, y, z between the equations of the three polars

and we obtain the determinant

It is evident that when the polars of any point with respect to

Uj F, TF meet in a point, the polar with respect to \U-\- jx F+ vW
will pass through the same point. The Jacobian is also the

locus of the intersection of each pair of lines which can be re-

presented by XU+ fjLV+ V W.

Ex. 1. Through four points to draw a conic to touch a given conic W,
Let the four points be the intersection of two conies U, V; and it is evident

that the problem admits of six solutions. For if we substitute a 4- Jca', &c.

for a in the condition (Art. 372) that U and W should touch each other, Ic,

as is easily seen, enters into the result in the sixth degree. The Jacobian

of U, V, TF" intersects TFin the six points of contact sought. For the polar
of the point of contact with regard to TF being also its polar with regard
to a conic of the form \ 27+ fiV passes through the intersection of the polars

with regard to ?7 and V.

Ex. 2. If three conies have a common self-conjugate triangle, their

Jacobian is three right lines. For it is verified at once that the Jacobian

of ax^ + hy^ + cz^, oV + I'y^ + c'z^, a"x^ + h"y'^ + c"z^ is xyz = 0. We can hence

find at once the equation of the sides of the common self-conjugate triangle
of two conies, by forming the Jacobian oi S, S' and the covariant F; since

this triangle is also self-conjugate with respect to F (Art. 381, Ex. 1).

Comparing this with the result obtained by Art. 381, Ex. 4, we get the

identical equation

j»=rY'- F« ieS' + e'^) + F (a'GaS'* + Ae'.s^^') + (ee'
-
3aa') tSS'

- A«A^^ - AA''S'^ + A' (2A0'
-

e') S'S' + A (2A'e
-

G'*) SS'*,

Ex. 3. If three conies have two points common, their Jacobian consists

of a line and a conic through the two points. It is evident geometrically
that any point on the line joining the two points fulfils the conditions of the

problem, and the theorem can easily be verified analytically. In particular

the Jacobian of a system of three circles is the circle cutting the three at

right angles.

Ex. 4. The Jacobian also breaks up into a line and conic if one of the

quantities aS* be a perfect square L^. For then i is a factor in the locus.

Hence we can describe four conies touching a given conic S at two given

points {Sf L) and also touching S"\ the intersection of the locus with

S" determining the points of contact.
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389. If we form the discriminant of \ Z7+ jll F+ v TF, the co-

efficients of the several powers of X, yu,,
v will be invariants of

the system of conies. All these belong to the class of invariants

already considered, except the coefficient of X/^v, in which each

term ahc of the discriminant of Vis replaced by
ah'c" + ah"G + ab"c + ahc" + a'hG + a'b'cj &c.

Some of the properties of a system of three conies can be

studied with advantage by expressing each in terms of four

lines Xj y^ z^w: thus

S=: ax' + hy" + cz" + dw\ S' = ax' + h'f + c'z' 4- d'w%

S" = a"x' -f by + c"z'' + dw\
It is always possible, in an infinity of ways, to choose

a?, y^ z^ w
so that the equations can be brought to the above form: for

each of the equations just written contains explicitly three in-

dependent constants : and each of the lines
a?, y^ z^ w contains

implicitly two independent constants. The form, therefore, just

written puts seventeen constants at our disposal, while
/S', S\ 8"

contain only three times five, or fifteen, independent constants.

The equations of four lines are always connected by a relation

of the form w — 'Xx + fiy + vz^ and we may suppose that the

constants X, &c. have been included in
a?, &c., so that this rela-

tion may be written in the symmetrical form x-\- y-{- z -\-w = 0.

Let it be required now to find the condition that S, 8'j 8"

may have a common point. Solving for
a?^, y'^ z^^ w' between

the equations /S'=0, >S" = 0, /S"' = 0, and denoting by A^ i?, (7,
D

the four determinants (bcd")^ {dc'a"), {dab")j {ba'c")^ we get

x^y y^y z\ w' proportional to A^ B^ ^) ^ J
^^^ substituting in

x-\-y-\-z-^w
=

Oj we obtain the required condition

V(^) + V(^) + V(0) + V(i>)
=

o,

or

{A%B^+G'+I)'-2BG-2GA-2AI)-2BD-2CDY=UABCD.
Now the right-hand side of this equation ABCD is an invariant

of the fourth degree in the coefficients of each conic, whose

vanishing expresses the condition that it may be possible to

determine X, /^, v so that \8-^[i8'+ v8" shall be a perfect square.

A^-\-B'' + &c. is an invariant, first noticed by Mr. Sylvester, of

only the second degree in the coefficients of each conic. Eules for

forming both these invariants are given, Higher Algebra^ p. 120.
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I add some notes which occur to me on correcting the proofs

of the foregoing Chapter.

p. 324, Ex. 2. It may be convenient for reference to give at full length

the equations of the parallel curves, which may also be regarded as equa-

tions giving the length of the normal distances from any point to the curve.

The parallel to the parabola is

,.6 _ {Sf + a;« + 8mx -
Snt") r* + {3y* + y"" (2x^

- 2mx + 20m')

+ Smx"" + 8mV - 32nfx + 16m*] r' -
(y'

- ^rnxf {?/' + (a;
-
m)*} = 0.

The parallel to the -ellipse is

cV8 - 2cV« {c* (a* + &«) + (a'^
- 2W) x" + (2a«

-
S«) y^}

+ r^ {c* (a* + ^a^U" + J*)
- 2c^ (a*

- a^b^ + 36*) x"" + 2c« (3a*
- a«6' + 5*) y*

+ (a*
- 6a*6« + 66*) a:* + (6a*

- 6a'6' + 6*) y* + (6a*
- 10a«6« + 66*) a:y}

+ r* {- 2a«6V* (a« + 6«) + ^c'x' (3a*
- a^6' + 6*)

- 26^' (a*
- a'V + 36*)

- 6V (6a*
- 10a*6' + 66*)

- aY (6a*
- 10a*6« + 66*) + x^ (4a''

- 6a*6* - 6a'6* + 46")

+ 26^ (a^
-
26-) x'-2 (a*

- a'6« + 36*) xy - 2 (3a*
- a^6^ + 6*) xY + 2a^ (6^

-
2a') y'}

+ (6V + ay - a'by {{X
- cf + y^} {{x + cf \- y'}

= 0.

Thus the locus of a point is a conic, if the sum of squares of its normal

distances to the curve be given. If we form the condition that the equa-
tion in r* should have equal roots, we get the squares of the axes multiplied

by the cube of the evolute. If we make r = 0, we find the foci appearing
as points whose normal distance to the curve vanishes. This is to be

accounted for by remembering that the distance from the origin vanishes

of any point on either of the lines x^ + y*
= 0.

p. 335, Ex. 7. The reader will find {Quarterly Journal of 3IatJiemaf{cs,

Vol. I., p. 344) a discussion by Mr. Cayley of the problem to find the locus

of vertex of a triangle circumscribing a conic >S^, and whose base angles

move on given curves. When the curves are both conies, the locus is of

the eighth degree, and touches S at the points where it is met by the polars

with regard to S of the intersections of the two conies.

It ought to have been stated (p. 260) that the problem
" to inscribe a

triangle in a conic whose sides pass through fixed points" becomes indeter-

minate when the fixed points form a self-conjugate triangle.

p. 336, Ex. 10. Find the criterion whether a given point be inside or

outside a conic; that is to say, whether the tangents from it are real or

imaginary [Mr. Sylvester].

Ans. The point is inside when A and *S" have the same sign.

p. 336, Ex. 11. The triangle formed by the polars of middle points of

sides of a given triangle with regard to any inscribed conic has a constant

area [M. Faure].

p. 344, Ex. 4. When the three conies are a conic, a circle, and the

square of the line at infinity, the Jacobian passes through the feet of the

normals which can be drawn to the conic through the centre of the circle.
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CHAPTER XIX.

THE METHOD OF INFINITESIMALS.

390. Eefereing the reader to other works where It is

shown how the differential calculus enables us readily to draw

tangents to curves, and to determine the magnitude of their

areas and arcs, we wish here to give him some idea of the

manner in which these problems were investigated by geometers
before the invention of that method. The geometric methods

are not merely interesting in a historical point of view; they
afford solutions of some questions more concise and simple than

those furnished by analysis, and they have even recently led to

a beautiful theorem (Art. 400) which had not been anticipMed

by those who have applied the integral calculus to the recti-

fication of conic sections.

If a polygon be inscribed in any curve, it is evident that the

more the number of the sides of the polygon is increased, the

more nearly will the area and perimeter of the polygon approach
to equality with the area and perimeter of the curve, and the more

nearly will any side of the polygon approach to coincidence with

the tangent at the point where it meets the curve. Now, if the

sides of the polygon be multiplied ad infinitum^ the polygon will

coincide with the curve, and the tangent at any point will coincide

with the line joining two indefinitely near points on the curve.

In like manner, we see that the more the number of the sides of

a circumscribing polygon is increased, the more nearly will its

area and perimeter approach to equality with the area and peri-

meter of the curve, and the more nearly will the intersection of

two of its adjacent sides approach to the point of contact of either.

Hence, in investigating the area or perimeter of any curve, we

may substitute for the curve an inscribed or circumscribing

polygon of an indefinite number of sides
;
we may consider any

tangent of the curve as the line joining two indefinitely near

points on the curve, and any point on the curve as the inter-

section of two indefinitely near tangents.
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391. Ex. I. To find the direction of the tangent at any point

ofa circle.

In any isosceles triangle A OB, either base angle OBA is less

than a right angle by half the vertical angle ;
but as the points

A and B approach to coincidence, the

vertical angle may be supposed less

than any assignable angle, therefore

the angle OBA which the tangent
makes with the radius is ultimately

equal to a right angle. We shall

frequently have occasion to use the

principle here proved, viz., that two

indefinitely near lines of equal length

are at right angles to the line joining their extremities.

Ex. 2. The circumferences of two circles are to each other as

their radii.

If polygons of the same number of sides be inscribed in the

circles, it is evident, by similar triangles, that the bases ah, AB^
are to each other as the radii of the circles, and, therefore, that

the whole perimeters of the polygons are to each other in the

same ratio; and since this will be true, no matter how the

number of sides of the polygon be increased, the circumferences

are to each other in the same ratio.

Ex. 3. The area of a circle is equal to the radius multiplied

hy the semi-circumference.

For the area of any triangle OAB is equal to half Its base

multiplied by the perpendicular on it from the centre
;
hence the

area of any inscribed regular polygon is equal to half the sum of

its sides multiplied by the perpendicular on any side from the

centre
;
but the more the number of sides is increased, the more

nearly will the perimeter of the polygon approach to equality
with that of the circle, and the more nearly will the perpen-
dicular on any side approach to equality with the radius, and the

difference between them can be made less than any assignable

quantity ;
hence ultimately the area of the circle is equal to the

radius multiplied by the semi-circumference
;
or = irr^,

392. Ex. 1. To determine the direction of the tangent at any

point on an ellipse.
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Let P and P' be two indefinitely near points on the curve,
then ZP+ PF' = FP' + P'F'

; or, "^^^
taking FB = FP, FB!= FP\ we ^ ^

have P'J? = Pi^'; but in the tri-

angles PBP\ PB'P\ we have also

the base PP' common, and (by
Ex. 1, Art. 391) the angles PBF,
PB'P' right ;

hence the angle
PFB = FPB'. Now TPF is ultimately equal to PFF, since

their difference FFP' may be supposed less than any given

angle ;
hence TPF=FPF\ or the focal radii make equal angles

with the tangent.

Ex. 2. To determine the direction of the tangent at any j)oint

on a hyperbola.

We have

FF-FP=^FF-FP,
or, as before,

P'P = P'P'.

Hence the angle

PFB = PFB\
or, the tangent is the internal bisector of the angle FPF.

Ex. 3. To determine the direction of the tangent at any fjoint

of a parabola.

We have FP=PN, and FP' = FN'', hence P'B = FS, or

the angle NF'P=FP'P. The tangent, there-

fore, bisects the angle FPN,

393. Ex. 1 . To find the area of the jpara-

holic sector FVP.
Since PS==PB, and PN=FP, we have the

triangle FPB half the parallelogram P8NN',

Now if we take a number of points P'F", &c.

between V and P, it is evident that the closer

we take them, the more nearly will the sum of

all the parallelograms PSNN\ &c., approach
to equality with the area P FPzY, and the sum of all the tri-

angles PFBj &c., to the sector VFP', hence ultimately the sector

PFV is half the area DVPN, and therefore one-third of the

quadrilateral DFPK
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Ex. 2. To find the area of the segment of a parabola, cut off

hy any right line.

Draw the diameter bisecting it,
then the parallelogram PR'

is equal to PJf, since they are the com-

plements of parallelograms about the dia-

gonal; but since TM is bisected at V\
the parallelogram PN' is half PR'

; if,

therefore, we take a number of points

P, P\ P", &c., it follows that the sum of

all the parallelograms PM' is double the

sum of all the parallelograms PN\ and

therefore ultimately that the space V'PM
is double VPN] hence the area of the

parabolic segment V'PM is to that of the parallelogram V'NPM
in the ratio 2:3.

394. Ex. 1. The area of an ellipse is equal to the area of a

chicle whose radius is a geometric mean between the semi-axes of
the ellipse.

For if the ellipse and the circle on the transverse axis be

divided by any number of lines

parallel to the axis minor, then

since mb : md : ; mb' : m'd' iibia^
the quadrilateral mbb'm' is to

mddlm in the same ratio, and the

sum of all the one set of quad-

rilaterals, that
is, the polygon

Bbb'U'A inscribed in the ellipse

is to the corresponding polygon
Ddd'd'A inscribed in the circle,

in the same ratio. Now this will

be true whatever be the number of the sides of the polygon : if

we suppose them, therefore, increased indefinitely, we learn that

the area of the ellipse is to the area of the circle as & to a
;
but

the area of the circle being = ira^ the area of the ellipse
= Trah.

Cor. It can be proved, in like manner, that if any two figures

be such that the ordinate of one is in a constant ratio to the

corresponding ordinate of the other, the areas of the figures are

in the same ratio.
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Ex. 2. Every diameter of a conic bisects the curve.

For if we suppose a number of ordinates drawn to this dia-

meter, since the diameter bisects them all, it also bisects the

trapezium formed by joining the extremities of any two adjacent

ordinates, and by supposing the number of these trapezia in-

creased without limit, we see that the diameter bisects the curve.

395. Ex. 1. The area of the sector of a hyperbola made hy

joiniiig any two points of it to the centre^ is equal to the area of the

segment made hy drawing 'parallelsfrom them to the asymptotes.

For since the triangle PKC=^ QLG, the area FQG=PQKL,
Ex. 2. Any two segments PQKL^ ESMN^ are equal^ if

PK: QL::BM:SK
For

PK: QL:: CL : CK,
but (Art. 197)

CL^MT\ CK^NT:,
we have, therefore,

BM : SN:: MT' : NT, cTiT" M t' N t
and therefore QR is parallel to PT. We can now easily prove

that the sectors PGQ, PCS are equal, since the diameter bisect-

ing P/S, QB will bisect both the hyperbolic area PQBS, and

also the triangles PC/S', QCB.
If we suppose the points §, B to coincide, we see that we

can bisect any area PKNS by drawing an ordinate QLj a geo-

metric mean between the ordinates at its extremities.

Again, if a number of ordinates be taken, forming a continued

geometric progression, the area between any two is constant.

396. The tangent to the interior of two similar, similarly

placed, and concentric conies cuts off a constant area from the

exterior conic.

For we proved (p. 210) that this tangent is always bisected

at the point of contact
;
now if we draw any two tangents, the

angle AQA will be equal to BQB',
and the nearer we suppose the point Q
to P, the more nearly will the sides

AQ,A!Q approach to equality with the

sides BQ,B'Q] if, therefore, the two
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tangents be taken indefinitely near, the triangle A QA' will be

equal to BQB\ and the space AVB will be equal to A'VB']

since, therefore, this space remains constant as we pass from any-

tangent to the consecutive tangent, it will be constant whatever

tangent we draw.

Cor. It can be proved, in like mariner, that if a tangent

to one curve always cuts off a constant area from another, it will

be bisected at the point of contact
; and, conversely, that if it be

always bisected it cuts off a constant area.

Hence we can draw through a given point a line to cut off

from a given conic the inimmum area. If it were required to cut

off a given area it would be only necessary to draw a tangent

through the point to some similar and concentric conic, and the

greater the given area, the greater will be the distance between

the two conies. The area will therefore evidently be least when
this last conic passes through the given point ;

and since the tan-

gent at the point must be bisected, the line through a given point

which cuts off the minimum area is bisected at that point.

In like manner, the chord drawn through a given point

which cuts off the minimum or maximum area from any curve

is bisected at that point. In like manner can be proved the

following two theorems, due to the late Professor MacCullagh.
Ex. 1. If a tangent AB to one curve cut offa constant arcfrom

another^ it is divided at the j^oint of contact^ so tliat AP : PB in-

versely as the tangents to the outer curve at A and B.

Ex. 2. If the tangent AB he of a constant lengthy and if the

perpendicular let fall on AB from the intersection of the tangents

at A and B meet AB in 3/, then AP will = MB.

397. To find the radius of curvature at any jpoint on an ellipse.

The centre of the circle circumscribing any triangle is the

intersection of perpendiculars erected at the middle points of the

sides of that triangle ;
it follows, therefore, that the centre of the

circle passing through three consecutive points on the curve is

the intersection of two consecutive normals to the curve.

Now, given any two triangles FPF\ FFF\ and PN^ P'N^
the two bisectors of their vertical angles, it is easily proved, by

elementary geometry, that twice the angle PNP'=PFP-\-PF'P'.

(See the first figure, p. 349).
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Now, since the arc of any circle is proportional to the angle
it subtends at the centre (Euc. vi. 33), and also to the radius,

(Art. 391), if we consider PF as the arc of a circle, whose centre

PF
is iV, the angle PNF is measured by PN'

PR

In like manner,

taking FB = FP, PFF is measured by j^,
and we have

2PP' PR FF
FP "^ FF 'PN

but PR =FF =PF sinPFF',

therefore, denoting this angle by ^, PN by R, FP, FP, by /?, p\
we have 2 _ 1

1^

-B sin ^ p p

Hence it may be inferred that thefocal chord of curvature is double

the harmonic mean between the focal radii. Substituting j-,
for

sin 6, 2a for p + /?',
and b'^ for pp', we obtain the known value,

ab
'

The radius of curvature of the hyperbola or parabola can be

investigated by an exactly similar process. In the case of the

parabola we have p infinite, and the formula becomes

2 _ 1

J? sin ^ p'

1 owe to Mr. Townsend the following investigation, by a

different method, of the length of the focal chord of curvature :

Draw ant/ parallel QR to the tangent at P, and describe a

Rncircle through PQR meeting the focal

chord PL of the conic at C. Then, by
the circle PS.SG :^ QS.SR, and by Q^
the conic (Ex. 2, p. 175)

PS.SL : QS.SR :: PL : MN',

therefore, whatever be the circle,

SC: SL::MN:PL',
but for the circle of curvature the

points >S' and P coincide, therefore PC ; PL :: 3IN : PL
; or, the

A A
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focal chord of curvature is equal to the focal chord of the conic

drawn parallel to the tangent at the point (p. 216, Ex. 4).

398. The radius of curvature of a central conic may other-

wise be found thus :

Let Q be an indefinitely near point on the curve, QR a

parallel
to the tangent, meeting the

normal in
^S'; now, if a circle be de-

scribed passing through P, ^, and

touching PT at P, since Q/S' is a per-

pendicular let fall from Q on the

diameter of this circle, we have.

FQ^=PS multiplied by the diameter;

or the radius of curvature =
^-p^« Now, since QP is always

drawn parallel to the tangent, and since PQ must ultimately

coincide with the tangent, we have PQ ultimately equal to

QB ; but, by the property of the ellipse (if we denote CP and

its conjugate by a\ J'),

b" : a" :: QB' : PB.BF (= 2a'. PB),

2F\ PB
therefore QB' =—'-—

.

a

b" PB
Hence the radius of curvature =— . -^^ . Now, no matter how

a PS '

small PB^ P8 are taken, we have, by similar triangles, their

. PB GP a! ^ ,. , ^
b"

ratio -jT7y
=

-y^j^
— —

. Hence radms or curvature =— .

±^b Ol p p
It is not difficult to prove that at the intersection of two con-

focal conies the centre of curvature of either is the pole with respect

to the other of the tangent to theformer at the intersection,

399. If two tangents be drawji to an ellipse from any point of
a confocal ellipse^ the excess of the sum of these two tangents over

the arc intercepted between them is constant.'^

For, take an indefinitely near point T, and let fall the per-

pendiculars TB^ TSj then (Art. 348)

PT=PB = PP' + P'B

* This beautiful theorem was discovered by Dr. Graves. See his Trans-

lation of Chasles's Memoirs on Cones and Spherical Conies^ p. 77.
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(for FR may be considered as the continuation of the line PF) ;

in like manner, ^^ tjp'

Again, since, by Art, 194,the angle
TrB= T'T8, we have T8=^ T'Ry
and therefore

Hence {PT+ TQ)- [FT + TQ) =PF -QQ^PQ-F Q.

Cor. The same theorem will be true of any two curves which

possess the property that two tangents, TP, TQ^ to the inner one,

always make equal angles with the tangent TT to the outer.

400. If two tangents he drawn to an ellipse from any point

of a confocal hyperhola^ the difference of the arcs PK^ QK is eqv/il

to the difference of the tangents TP^ TQJ^
For it appears, precisely as before, that the excess of

TF'-FK over TP-PK= TR,
and that the excess of T'Q—Q'K
over TQ^ QK is TS, which is

equal to T'R^ since (Art. 189) TT
bisects the angleRT S. The dif-

ference, therefore, between the

excess of TP over PK^ and that

of TQ over QK^ is constant
;
but

in the particular case where T
coincides with K^ both these ex-

cesses, and consequently their dif-

ference, vanish; in every case, therefore, TP—PK— TQ— QK,

Cor. Fagnani^s theorem^
" That an elliptic quadrant can^be

so divided, that the difference of its parts may be equal to the

difference of the semi-axes," follows immediately from this

Article, since we have only to draw tangents at the extremities

of the axes, and through their intersection to draw a hyperbola

* This extension of the preceding theorem was discovered by Mr.

MacCullagh. BuUin Exam. Papers, 1841, p. 41; 1842, pp. 68, 83.

M. Chasles afterwards independently noticed the same extension of Dr.

Graves's theorem. Comptes Rendus, October, 1843, torn. XYII., p. 838.
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confocal with the given ellipse. The co-ordinates of the points

where it meets the ellipse are found to be

a + 6' ^ a-\-V

401. If a polygon circumscribe a comcj and if all the vertices

hut one move on confocal conies^ the locus of the remaining vertex

will he a confocal conic.

In the first place, we assert that if the vertex T of an angle

PTQ circumscribing a conic, move on a confocal conic (see fig.,

Art. 399) ;
and if we denote by a, 5, the diameters parallel to

rP, TQ; and by a, jS, the angles TFT\ TQ'T\ made by each of

the sides of the angle with its consecutive position, then aa—h^.
For (Art. 399) 2!K= TB\ but TR= TP.a.\ T'S= T'Q\^, and

(Art. 149) TF and TQ are proportional to the diameters to

which they are parallel.

Conversely, if aa. =
Z>/?,

T moves on a confocal conic. For

by reversing the steps of the proof we prove that TB== T'S;
hence that TT' makes equal angles with J!P, TQ^ and therefore

coincides with the tangent to the confocal conic through T; and

therefore that T' lies on that conic.

If then the diameters parallel to the sides of the polygon be

a, hy c, &c., that parallel to the last side being c?,
we have aa=h^j

because the first vertex moves on a confocal conic; in like

manner h/S = 07, and so on until we find aa = c?S, which shows

that the last vertex moves on a confocal conic*

* This proof is taken from a paper by Dr. Hart ; Cambridge and Dublin

Math. Jour., Vol. iv. 193.

V ^ B A r:



NOTES,

Pascal's Theorem, Page 231.

M. Steiner was the first who (in Gergonne^s Annates) directed the

attention of geometers to the complete figure obtained by joining in

every possible way six points on a conic. M. Steiner's theorems were

corrected and extended by M. PlUcker ( CrelWs Journal, Vol. v., p. 274),

and the subject has been more recently investigated by Messrs. Cayley
and Kirkman, the latter of whom, in particular, has added several new
theorems to those already known. We shall in this note give a slight

sketch of the more important of these, and of the methods of obtaining
them. The greater part are derived by joining the simplest principles

of the theory of combinations with the following elementary theorems and

their reciprocals: "If two triangles be such that the lines joining corre-

sponding vertices meet in a point {the centre of Jiomology of the two triangles),

the intersections of corresponding sides will lie in one right line (their

axis)." "If the intersections of opposite sides of three triangles be for

each pair the same three points in a right line, the centres of homology
of the first and second, second and third, third and first, will lie in a

right line."

Now let the six points on a conic be a, 5, c, d, e, f, which we shall

call the points P. These may be connected hy Jifteen right lines, ab, aCj

&c., which we shall call the lines C, Each of the lines C (for example ah)

is intersected by the fourteen others; by four of them in the point a,

by four in the point h, and consequently by six in points distinct from

the points P (for example the points ah, cd, &c.) These we shall call

the points p. There are forty-five such points ;
for there are six on each of

the lines C, To find then the number of points p, we must multiply the

number of lines C by 6, and divide by 2, since two lines C pass through

every point j9.

If we take the sides of the hexagon in the order ahcdef, Pascal's

theorem is, that the three p points, {ah, de), {cd,fa), {be, ef), lie in one

right line, which we may call either the Pascal ahcdef, or else we may

denote as the Pascal /^^•^^•^[^ a form which we sometimes prefer,

ide.fa.hc^

as showing more readily the three points through which the Pascal passes.



358 NOTES,

Through each point p four Pascals can be drawn. Thus through {ab, de)

can be drawn abcdef, abfdec, abcedf, abfedc. We then find the total number

of Pascals by multiplying the number of points p by 4, and dividing by 3,

since there are three points p on each Pascal. We thus obtain the number

of Pascal's lines = 60. We might have derived the same directly by con-

sidering the number of diflFerent ways of arranging the letters ahcdef.

Consider now the three triangles whose sides are

ah, cd, ef, (l)

de, fa, be, (2)

cf, be, ad. (3)

The intersections of corresponding sides of 1 and 2 lie on the same Pascal,

therefore the lines joining corresponding vertices meet in a point, but

these are the three Pascals,

ah.de.cf\ ( cd.fa.be \ (ef. beady
cd.fa.be) ief.bc.adj \ab.de.cf)

This is Steiner's theorem (p. 231) ;
we shall call this the g point,

{

ab.de. cf
"j

cd .fa .be > •

ef .be .ad J

The notation shows plainly that on each Pascal's line there is only one g

point; for given the Pascal
j

.\,
'

{ i
^^^

ff point on it is found by

writing under each term the two letters not already found in that vertical

line. Since then three Pascals intersect in every point g, the number of

points g= 20. If we take the triangles 2, 3; and 1, 3j the lines joining

corresponding vertices are the same in all cases : therefore, by the reciprocal
of the second preliminary theorem, the three axes of the three triangles

{'ah.cd.ef \

meet in a point. This, however, is plainly only the g point < de .fa . &c ! »

\ cf.be. ad)
and therefore leads us to no new theorem.

Let us now consider the triangles,

ab cd ef (1)

ab.ce.df\ cd.bf.ae) ef.bd.ac)
de .bf.acJ af.ce.bd)' bc.ae.df)

(4)

ab.ce.df) cd.hf.ae) ef.bd.ac) ...

cf.bd.ae ) be.ac. df]
'

ad.ce .bfJ

N'ow the intersections of corresponding sides of 1 and 4 are three points
which lie on the same Pascal

; therefore the lines joining corresponding
vertices meet in a point. But these are the three Pascals,

ab.ce.df) cd.hf.ae ) ef.ac.bd

cd.hf.ae)' ef,ac.bd^' ab.df.ce
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ah.ce.df
We may denote the point of meeting as the h point, cd . hf. ae

ef .ac .hd

The notation differs from that of the g points in that only one of the

vertical columns contains the six letters without omission or repetition.
On every Pascal there are three h points, viz., there are on

ah.cd.€f\^
^.cJ.e/1 ah.Vd.eA

ah.cd.'^y
de.af.hcl' de.af.hc\, d^.a/.bcK de.af.bcY^

cf .bd . ae] ac .be . dfj bf . ce . ad)

where the bar denotes the complete vertical column. We obtain then

Mr. Kirkman's extension of Stein er's theorem :—The Pascals intersect

three by three, not only in Steiner's twenty points g, but also in sixty other

points h. The demonstration of Art. 268 applies alike to Mr. Kirkman's

and to Steiner's theorem.

In like manner if we consider the triangles 1 and 5, the lines joining

corresponding vertices are the same as for 1 and 4
; therefore the corre-

sponding sides intersect on a right line, as they manifestly do on a Pascal.

In the same manner the corresponding sides of 4 and 5 must intersect on a

right line, but these intersections are the three h points,

ab.ce.df^ ae.cd.bf) ac.bd.efj
de . bf. nc>f bd . nf. ce > , df. ae .he

^

'

cf. ae .bd) ac .be . df) ce .bf . ad J

Moreover, the axis of 4 and 5 must pass through the intersection of the

ab .cd .ef

axes of 1, 4, and 1, o, namely, through the g point, de .af . he

cf .be .ad

In this notation the g point is found by combining the complete vertical

columns of the three h points. Hence we have the theorem,
" There are

twenty lines a?, each of which passes through one g and three h points."

The existence of these lines was observed independently by Mr. Cayley and

myself. The proof here given is Mr. Cayley's.

It can be proved similarly that " The twenty lines x pass four byfour

throughfifteen points y." The four lines x whose g points in the preceding

notation have a common vertical column will pass through the same point.

Again, let us take three Pascals meeting in a point h. For instance,

ab.ce.df\ de.bf.ac\ cf.ae.bd)

de.bf.ac]' cf.ae.bd]' ah.df.ce]

We may, by taking on each of these a point p, form a triangle whose

vertices are {df ac), {bf ae), {bd, ce), and whose sides are, therefore,

ac .bf.de \ bf . ce .ad) bd.ac.ef

df.ae.ch)' ae.hd.cf]' ca.df.ab
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Again, we may take on each a point h, by writing under each of the

above Pascals af.cd. he, and so form a triangle whose sides are

ac .hf.de) cf. ae .hd\ df. ah .ce\

he.cd.af)
'

he. cd.af ) he.cd . af)

But the intersections of corresponding sides of these triangles, which must

therefore be on a right line, are the three g points,

he.cd.qf \ he » cd.af \ he .cd.af \ he .cd.af \

ac.hf .de\ , cf .ae.hdS , df.ah.cel, cf . ah . de { »

df.ae.hc) ad.hf .ce ) ac . ef. hd) ad.ef .he)

I have added a fourth g point, which the symmetry of the notation

shows must lie on the same right line
;
these being all the g points into

the notation of which he. cd.af can enter. Now there can be formed, as

may readily be seen, fifteen difi'erent products of the form he.cd .af', we

have then Steiner's theorem. The g points lie four hy four on fifteen right

lines I. The reader is referred for further details to Mr. Kirkman's paper,

Cambridge and JDuhlin Mathematical Journal, Vol. v., p. 185.

On the Problem to describe a Conic under certain Conditions.

We saw (p. 1 26) that five conditions determine a conic
;
we can, there-

fore, in general describe a conic being given m points and n tangents where

m + w = 5. We shall not think it worth while to treat separately the cases

w^here any of these are at an infinite distance, for which the constructions

for the general case only require to be suitably modified. Thus to be given

a parallel to an asymptote is equivalent to one condition, for we are then

given a point of the curve, namely, the point at infinity on the given

parallel. If, for example, we were required to describe a conic, given four

points and a parallel to an asymptote, the only change to be made in the

construction (p. 232) is to suppose the point E at infinity, and the lines

DE, QE therefore drawn parallel to a given line.

To be given an asymjjtote is equivalent to two conditions, for we are

then given a tangent and its point of contact, namely, the point at infinity

on the given asymptote. To be given that the curve is a parahola is equi-

valent to one condition, for we are then given a tangent, namely, the line

at infinity. To be given that the curve is a circle is equivalent to two con-

ditions, for we are then given two points of the carve at infinity. To be

given a focus is equivalent to two conditions, for we are then given two

tangents to the curve (p. 242), or we may see otherwise that the focus and

any three conditions will determine the curve
;
for by taking the focus as

origin, and reciprocating, the problem becomes, to describe a circle, three

conditions being given; and the solution of this, obtained by elementary

geometry, may be again reciprocated for the conic. The reader is recom-

mended to construct by this method the directrix of one of the four conies

which can be described when the focus and three points are given. Again,
to be

Iji.yen
the pole, with regard to the conic, of any given right line, is
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equivalent to two conditions; for three more will determine the curve.

For (see figure, p. 138) if we know that P is the polar of Il'R'\ and that

T is a point on the curve, T', the fourth harmonic, must also be a point

on the curve; or if OT be a tangent, OT' must also be a tangent; if then,

in addition to a line and its pole, we are given three points or tangents,

we can find three more, and thus determine the curve. Hence, to be given
the centre (the pole of the line at infinity) is equivalent to two conditions.

It may be seen likewise that to be given a point on the polar of a given

point is equivalent to one condition. For example, when we are given
that the curve is an equilateral hyperbola, this is the same as saying that

the two points at infinity on any circle lie each on the polar of the other

with respect to the curve. To be given a self-conjugate triangle is equi-

valent to three conditions ;
and when a self-conjugate triangle with regard

to a parabola is given three tangents are given.

GivenJive points.
—We have shown, p. 233, how by the ruler alone we

may determine as many other points of the curve as we please. We may
also find the polar of any given point with regard to the curve

;
for by

the help of the same Example we can perform the construction of Ex. 2,

p. 139. Hence too we can find the pole of any line, and therefore also

the centre.

Five tangents.
—"We may either reciprocate the constructions of p. 233,

or reduce this question to the last by Ex. 4, p. 232.

Four points and a tangent
—"We have already given one method of

solving this question, p. 298. As the problem admits of two solutions, of

course we cannot expect a construction by the ruler only. We may therefore

apply Carnot's theorem (Art. 313),

Ac.Ac'.Ba. Ba'. Cb.Cb' = Ab. Ah'.Be . Be'. Ca . Ca'.

Let the four points a, a', b, b' be given, and let AB be a tangent, the points

c, c will coincide, and the equation just given determines the ratio Ao^: Bc^

everything else in the equation being known. This question may also be

reduced, if we please, to those which follow ;
for given four points, there

are (Art. 282) three points whose polars are given; having also then a

tangent, we can find three other tangents immediately, and thus have four

points and four tangents.

Four tangents and a point.
—This is either reduced to the last by reci-

procation, or by the method just described
; for given four tangents, there

are three points whose polars are given (p. 139).

Three points and two tangents.
—It is a particular case of Art. 344, that

the two points where any line meets a conic, and where it meets two of its

tangents, belong to a system in involution of which the point where the

line meets the chord of contact is one of the foci. If, therefore, the line

joining two of the fixed points a, b, be cut by the two tangents in the

points Af B, the chord of contact of those tangents passes through one or

other of the fixed points F, F', the foci of the system {a, b, A, B), (see

Ex., Art. 286). In like manner the chord of contact must pass through

one or other of two fixed points G, G' on the line joining the given

BB
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points «, c. The chord must therefore be one or other of the four lines,

FG, FG\ F'G, F'G'
]
the problem, therefore, has four solutions. "'

Ttoo points and three tangents,
—The triangle formed by the three chords

of contact has its vertices resting one on each of the three given tangents ;'

and by the last case the sides pass each through a fixed point on the line

joining the two given points; therefore this triangle can be constructed.

To be given two points or two tangents to a conic is a particular case

of being given that the conic has double contact with a given conic. For

the problem to describe a conic having double contact with a given one,

and touching three lines, or else passing through three points, see pp. 287,

343. Having double contact with two, and passing through a given point,

or touching a given line, see p. 249. Having double contact with a given

one, and touching three other such conies, see p. 342.

Malfatti's Problem.

Having omitted elsewhere to make mention of Malfatti's Problem,

viz.,
" To inscribe in a triangle three circles which touch each other and

each of which touches two sides of the triangle," I give here the enuncia-

tion of Stein er's solution. A geometrical proof of it by Dr. Hart will be

found Quarterly Journal of Mathematics, Vol. I., p. 219. "Inscribe circles

in the triangles formed by each side of the given triangle and the two

adjacent bisectors of angles : these circles having three common tangents

meeting in a point, will have three other common tangents meeting in a

point (Ex. 2, p. 250), and these are common tangents to the circles re-

quired." We may extend the problem by substituting for the word
"
circles,"

" conies having double contact with a given one." The Lemma,

corresponding to Ex. 2, p. 250, is the reciprocal of the following : Three

conies S - L^, S- M\ S - N' are met by three common chords forming
a triangle, i + iltf, iHf + iV, iV + X in six points which lie in a conic.

Consequently, if three of these points lie in a right line, so do the other

three. The proof is evident on inspection of the equation

S -1- MN+ NL + LM= {S-Z') + (X + il[f)(X + N),

^ e R A /^V^
OK TJOE X

XJNIVEBSITY ]

THE END.

W. Metcalfe, Printer, Green Street, Cambridge.
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EHRATA.

Page 26, Ex. 9, Ans. For a'b.b read a'b.a ;

and for ratio a'b=ab' read a'b :ab\

Page 224, Line 2, after 'parabolas* add 'whose axes are coincident.
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