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ANALYTIC   GEOMETRY, 

CHAPTER  I. 

THE  POINT. 

1.  THE  following  method  of  determining  the  position  of  any 

point  on  a  plane  was  introduced  by  Des  Cartes  in  his  Geometric, 
1637,  and  has  been  generally  used  by  succeeding  geometers. 

We  are  supposed  to  be  given  the  position  of  two  fixed 

right  lines  XX',  YY1  intersecting  in  the  point  0.  Now,  if 
through  any  point  P  we 
draw  PM,  PN  parallel  to 

YY'  and  XX,  it  is  plain  N that,  if  we  knew  the  position 

of  the  point  P,  we  should 

know  the  lengths  of  the  pa- 

rallels PM,  PN',  or,  vice  versa.  ̂  

that  if  we  knew    the    lengths  /°          M 
of  PM,  PN,  we  should  know 

the  position  of  the  point  P. 

Suppose,  for  example,  that 

we  are  given  PN=  a,  PM  =  b, 

we  need  only   measure    OM  =  a   and    ON=b,    and    draw  the 
parallels  PM,  PN,  which  will  intersect  in  the  point  required. 

It  is  usual  to  denote  PM  parallel  to  OY  by  the  letter  y, 
and  PN  parallel  to  OX  by  the  letter  x,  and  the  point  P  is  said 
to  be  determined  by  the  two  equations  x  —  a,y  =  b. 

2.  The  parallels  PM,  PN  are  called  the  coordinates  of  the 

point  P.     PM  is  often  called  the  ordinate  of  the  point  P;  while 

PN,  which  is  equal  to  OM  the  intercept  cut  off  by  the  ordinate, 
is  called  the  abscissa. 

B 



2 THE   POINT. 

The  fixed  lines  XX'  and  YY'  are  termed  the  axes  of  co- 
ordinates, and  the  point  0,  in  which  they  intersect,  is  called  the 

origin.  The  axes  are  said  to  be  rectangular  or  oblique, 

according  as  the  angle  at  which  they  intersect  is  a  right  angle 
or  oblique. 

It  will  readily  be  seen  that  the  coordinates  of  the  point  M 

on  the  preceding  figure  are  x  =  a,  y  =  0 ;  that  those  of  the  point 

N  are  x  =  0,  y  =  b ;  and  of  the  origin  itself  are  x  =  0,  y  —  0. 

3.  In  order  that  the  equations  x  —  a,  y  =  b  should  only 
be  satisfied  by  one  point,  it  is  necessary  to  pay  attention,  not 

only  to  the  magnitudes,  but  also  to  the  signs  of  the  co- 
ordinates. 

If  we  paid  no  attention  to  the  signs  of  the  coordinates,  we 

might  measure  OM=  a  and  ON=  b,  on  either  side  of  the  origin, 
and  any  of  the  four  points 

P,  P,,  Pa,  P8  would  satisfy 
the  equations  x  =  a,  y  —  b. 
It  is  possible,  however,  to 

distinguish  algebraically 

between  the  lines  OM, 

OM'  (which  are  equal  in 
magnitude,  but  opposite  in 
direction)  by  giving  them 

different  signs.  We  lay 
down  a  rule  that,  if  lines 
measured  in  one  direction 

be  considered  as  positive, 

lines  measured  in  the  oppo- 
site direction  must  be  con- 

sidered as  negative.  It  is,  of  course,  arbitrary  in  which 
direction  we  measure  positive  lines,  but  it  is  customary  to 
consider  OM  (measured  to  the  right  hand)  and  ON  (measured 

upwards)  as  positive,  and  OM',  ON'  (measured  in  the  opposite 
directions)  as  negative  lines. 

Introducing  these  conventions,  the  four  points  P,  P,,  P2,  P8 
are  easily  distinguished.     Their  co-ordinates  are,  respectively, 



THE   POINT. 

These  distinctions  of  sign  can  present  no  difficulty  to  the 

learner,  who  is  supposed  to  be  already  acquainted  with 

trigonometry. 

N.B. — The  points  whose  coordinates  are  oj  =  a,  y  =  6,  or 

x  =  x,  y  =  y,  are  generally  brieflj  designated  as  the  point  (a,  6), 

or  the  point  x'y. 
It  appears  from  what  has  been  said,  that  the  points  (-f  a,  -f  &), 

(_  a?  _  £)  He  on  a  right  line  passing  through  the  origin ;  that 
they  are  equidistant  from  the  origin,  and  on  opposite  sides  of  it. 

4.  To  express  the  distance  between  two  points  x'y\  x'y")  the 
axes  of  coordinates  being  supposed  rectangular. 

By  Euclid  I.  47, 

PQl  =  P8*  +  SQ*,  but  PS=  PM-  QM'  =  y-  y", 

and  QS=OM-  OM'  =  x'-  x" ; 
hence  p 

Q 
To  express  the  distance  of 

any  point  from  the  origin,  we 

must  make  x"  —  0,  y"  =  0  in 
the  above,  and  we  find 

5.  In  the  following  pages 
we  shall  but  seldom  have  occa- 

sion to  make  use  of  oblique  coordinates,  since  formulae  are,  in 

general,  much  simplified  by  the  use  of  rectangular  axes;  as 

however,  oblique  coordinates  may  sometimes  be  employed  with 
advantage,  we  shall  give  the  principal  formulae  in  their  most 
general  form. 

Suppose,  in  the  last  figure,   the    angle    YOX  oblique   and 
=  o>,  then 

and  PQ*  =  PS*  +  Q8*  -  2PS.  QS.  cos  PSQ, 

or,     P(f  =  (y1  -  y'J  +  (x*  -  x")*  -f  2  (y'  -  y")  (x1  -  x"}  cos  to. 

Similarly,  the  square  of  the  distance  of  a  point,  xy\  from 

the  origin  =  x'*  +  yn  +  2x'y'  cos  o>. 



4  THE   POINT. 

In  applying  these  formulae,  attention  must  be  paid  to  the 
signs  of  the  coordinates.  If  the  point  §,  for  example,  were 

in  the  angle  XOY',  the  sign  of  y"  would  be  changed,  and  the 

line  PS  would  be  the  sum  and  not  the  difference  of  y  and  y". 
The  learner  will  find  no  difficulty,  if,  having  written  the 

coordinates  with  their  proper  signs,  he  is  careful  to  take  for  PS 

and  QS  the  algebraic  difference  of  the  corresponding  pair  of 
coordinates. 

Ex.  1.  Find  the  lengths  of  the  sides  of  a  triangle,  the  coordinates  of  whose 

vertices  are  x'  =  2,  y'  =  3 ;  x"  =  4,  y"  =  -  5 ;  x'"  =  -  3,  y'"  =  -G,  the  ares  being 
rectangular.  Ans.  J68,  J50,  J106. 

Ex.  2.  Find  the  lengths  of  the  sides  of  a  triangle,  the  coordinates  of  whose 

vertices  are  the  same  as  in  the  last  example,  the  axes  being  inclined  at  an  angle 

of  60°.  Ans.  J52,  J57,  J161. 

Ex.  3.  Express  that  the  distance  of  the  point  xy  from  the  point  (2,  3)  is  equal 

to  4.  Ans.  (x  -  2)2  +  (y  -  3)2  =  16 

Ex.  4.  Express  that  the  point  xy  is  equidistant  from  the  points  (2,  3),  (4,  5). 

Ans.  (x  -  2)2  +  (y  -  3)»  =  (*  -  4)2  +  (y  -  5)2 ;  or  x  +  y  =  7. 

Ex.  5.  Find  the  point  equidistant  from  the  points  (2,  3),  (4,  5),  (6,  1).  Ilere  we 
have  two  equations  to  determine  the  two  unknown  quantities  x,  y. 

|/CA\    , 

Ans.  x—  VS  y  —  ib  and  the  common  distance  is   v  -- P 

6.  The  distance  between  two  points,  being  expressed  in 

the  form  of  a  square  root,  is  necessarily  susceptible  of  a  double 

sign.  If  the  distance  PQ,  measured  from  P  to  §,  be  considered 

positive,  then  the  distance  QP,  measured  from  Q  to  P, 

is  considered  negative.  If  indeed  we  are  only  concerned 
with  the  single  distance  between  two  points,  it  would  be 

unmeaning  to  affix  any  sign  to  it,  since  by  prefixing  a  sign  we 
in  fact  direct  that  this  distance  shall  be  added  to,  or  subtracted 

from,  some  other  distance.  But  suppose  we  are  given  three 

points  P,  Q,  R  in  a  right  line,  and  know  the  distances  PQ, 

QR,  we  may  infer  PR  =  PQ  +  QR.  And  with  tho  explanation 
now  given,  this  equation  remains  true,  even  though  the 

point  R  lie  between  P  and  Q.  For,  in  that  case,  PQ  and 

QR  are  measured  in  opposite  directions,  and  P/?,  which  is  their 

arithmetical  difference,  is  still  their  algebraical  sum.  Except 
in  the  case  of  lines  parallel  to  one  of  the  axes,  no  convention 

has  been  established  as  to  which  shall  be  considered  the  positive 
direction. 



THE  POINT. 

7.    To  find  the   coordinates  of  the  point  cutting  in  a  given 

ratio  m  :  ra,  the  line  joining  two  given  points  xy,  x"y". 
Let  o?,  y  be  the  coordinates  of  the  point  R  which  we  seek 

to  determine,  then 

m:n::PR:RQ  ::  MS :  SN9 

m  in  ::  x  —  x  :  x-x"> 

or  rax  —  mx"=nx  — 
hence 

x  =  W^JL^  .  /VB    ~~M m  +  n 
In  like  manner 

my"+ny' 

If  the  line  were  to  be  cut   externally  in   the   given  ratio  we 
should  have 

m  :  n  :  :  x  —  x  :  x  —  x 

•,    ,       r  mx"  —  nx  my"  —  ny 
and  therefore         x  =  -  ,  y  =    y        y  . m-n  m—n 

It  will  be  observed  that  the  formulas  for  external  section 

are  obtained  from  those  for  internal  section  by  changing  the 

sign  of  the  ratio  ;  that  is,  by  changing  m  :  +  n  into  m  :  -  n. 
In  fact,  in  the  case  of  internal  section,  PR  and  RQ  are 

measured  in  the  same  direction,  and  their  ratio  (Art.  6)  is  to 
be  counted  as  positive.  But  in  the  case  of  external  section 

PR  and  RQ  are  measured  in  opposite  directions,  and  their 
ratio  is  negative. 

Ex.  1.  To  find  the  coordinates  of  the  middle  point  of  the  line  joining  the  points 

Ex.  2.  To  find  the  coordinates  of  the  middle  points  of  the  sides  of  the  triangle, 

the  coordinates  of  whose  vertices  are  (2,  3),  (4,  —  5),  (-  3,  —  6). 

Atu.'(l,-  V),  (-*,-*).  (3,~1). 
Ex.  3.  The  line  joining  the  points  (2,  3),  (4,  -  5)  is  trisected  ;  to  find  the  co- 

ordinates of  the  point  of  trisection  nearest  the  former  point.  Ans.  x  =  §,  y  =  $. 

Ex.  4.  The  coordinates  of  the  vertices  of  a  triangle  being  x'y',  x"y",  x'"y'",  to 
find  the  coordinates  of  the  point  of  trisection  (remote  from  the  vertex)  of  the  line 

joining  any  vertex  to  the  middle  point  of  the  opposite  side. 
Ans.  x  = 
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Ex.  5.  To  find  the  coordinates  of  the  intersection  of  the  bisectors  of  sides  of  the 

triangle,  the  coordinates  of  whose  vertices  are  given  in  Ex.  2.  Ans.  x=\,  y  =  -  §. 

Ex.  6.  Any  side  of  a  triangle  is  cut  in  the  ratio  m  :  n,  and  the  line  joining  this  to 

the  opposite  vertex  is  cut  in  the  ratio  m  +  n  :  I;  to  find  the  coordinates  of  the  point 

ofBection.  _  kf  +  mx"  +  naf"  _  ty  +  my"  +  ny'" "~  ~'  y~       l+m  +  n    -' 

TRANSFORMATION   OF  COORDINATES.* 

8.  When  we  know  the  coordinates  of  a  point  referred  to 

one   pair  of  axes,   it    is   frequently   necessary   to   find    its   co- 
ordinates referred  to  another  pair  of  axes.     This  operation   is 

called  the  transformation  of  coordinates. 

We  shall  consider  three  cases  separately;  first,  we  shall 

suppose  the  origin  changed,  but  the  new  axes  parallel  to  the 
old;  secondly,  we  shall  suppose  the  directions  of  the  axes 

changed,  but  the  origin  to  remain  unaltered ;  and  thirdly,  we 

shall  suppose  both  origin  and  directions  of  axes  to  be  altered. 

First.   Let  the  new  axes  be  parallel  to  the  old. 

Let   Ox,    Oy  be 

the  old   axes,    O'X^  •'  i 
0'  Y  the  new  axes.  /         /  /  p 
Let  the  coordinates 

of  the  new  origin 
referred  to  the  old  be 

*',>,  or  0'S=x', 
0'R  =  y'.  Let  the 
old  coordinates  be 

cc,  y,  the  new  X,  Y, 
then  we  have 

OM=OR  + 

that  is  x  =  x'  4-  X,   and  y  -y'  -f  Y. 
These  formulae  are,  evidently,  equally  true,  whether  the  axes 

be  oblique  or  rectangular. 

9.  Secondly,  let  the  directions  of  the  axes  be  changed,  while 
the  origin  is  unaltered. 

*  The  beginner  may  postpone  the  rest  of  this  chapter  till  he  has  read  to  the  end 
of  Art.  41. 
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Let  the  original  axes  be  O.r,  Oy,  so  that  we  have  OQ  = 

PQ  =  y.  Let  the  new  axes 
be  OX,  OY,  so  that  we  have 

ON=X,  PN=Y.  Let  OX, 
OY  make  angles  respectively 

a,  /3,  with  the  old  axis  of  an 

and  angles  a',  /3'  with  the  old 
axis  of  y;  and  if  the  angle 

xOy  between  the  old  axes  be 

&),  we  have  obviously  a  +  a'  =  a>, 
since  JfOa?  +  -3T%  =  xOy;  and  in  like  manner 

n.  a 

The  formulae  of  transformation  are  most  easily  obtained  by 

expressing  the  perpendiculars  from  P  on  the  original  axes,  in 
terms  of  the  new  coordinates  and  the  old.  Since 

PM=PQ  smPQM,  we  have  PM=y  sino>. 

But  also    PM=NE  +  PS  =  ON  smNOB  +  PN  sin  PN8. 

Hence       y  sin  &>  =  X  sin  a  +  Y  sin  /3. 
In  like  manner 

x  sin  <w  =  X  sina'  +  y  sin/3'  ; 

or  x  smta  =  X  sin  (a>  —  a)  -H  1^  sin  (ft)  —  $). 
In  the  figure  the  angles  a,  /8,  &>  are  all  measured  on  the 

same  side  of  Ox\  and  a',  /3',  &>  all  on  the  same  side  of  Oy. 
If  any  of  these  angles  lie  on  the  opposite  side  it  must  be  given 

a  negative  sign.  Thus,  if  OY  lie  to  the  left  of  Oy,  the  angle 

/3  is  greater  than  &>,  and  ft'  (=  u>  —  yS)  is  negative,  and  therefore 
the  coefficient  of  Y  in  the  expression  for  x  sin  to  is  negative. 

This  occurs  in  the  following  special  case,  to  which,  as  the 

one  which  most  frequently  occurs  in  practice,  we  give  a  separate 
figure. 

To  transform  from  a  system  of  rectangular  axes  to  a  new 

rectangular  system  making  an  angle  0  with  the  old. 
Here  we  have 

and  the  general  formulae  become 

y  —  X  sin  0  +  Y  cos  0, 
x*=  XcosO-  Fsin0; MR 
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the  truth  of  which  may  also  be  seen  directly,  since  y 

x=OR-SN,vf\u\e 

There  is  only  one  other  case  of  transformation  which  often 

occurs  in  practice. 

To  transform  from  oblique  coordinates  to  rectangular,  retaining 
the  old  axis  of  x. 

We  may   use  the  general  for- 
mulae making 

But  it  is  more  simple  to  inves- 
tigate  the   formulae   directly.     We 

have  OQ  and  PQ  for  the  old  x  and       <> 

y,  OM  and  PM  for  the  new ;  and,  since  PQM=  o>,  we  have 

Y=y  sin  o>,    X.  =  x  +  y  coseoi 

while  from  these  equations  we  get  the  expressions  for  the  old 
coordinates  in  terms  of  the  new 

ysinw=F,   x  sinco  =  X  sin&>  —  Y  cosa>. 

10.  Thirdly,  by  combining  the  transformations  of  the  two 

preceding  articles,  we  can  find  the  coordinates  of  a  point  re- 
ferred to  two  new  axes  in  any  position  whatever.  We  first  find 

the  coordinates  (by  Art.  8)  referred  to  a  pair  of  axes  through 

the  new  origin  parallel  to  the  old  axes,  and  then  (by  Art.  9) 

we  can  find  the  coordinates  referred  to  the  required  axes. 

The  general  expressions  are  obviously  obtained  by  adding  x 
and  ?/  to  the  values  for  x  and  y  given  in  the  last  article. 

Ex.  1.   The  coordinates  of  a  point  satisfy  the  relation 

a;2  +  y2  -  4x  -  Gy  -  18 ; 

what  will  this  become  if  the  origin  be  transformed  to  the  point  (2,  3)  ? 

Ex.  2.  The  coordinates  of  a  point  to  a  set  of  rectangular  axes  satisfy  the 

relation  y2  —  x2  =  6 ;  what  will  this  become  if  transformed  to  axes  bisecting  the 
angles  between  the  given  axes  ?  Arts.  XY  =  8. 

Ex.  3.  Transform  the  equation  2or2  —  bxy  +  2y2  =  4  from  axes  inclined  to  each 

other  at  an  angle  of  60°  to  the  right  lines  which  bisect  the  angles  between  the 
given  axes.  Ans.  A2  -  27T2  +  12  =  0. 

Ex  4.  Transform  the  same  equation  to  rectangular  axes,  retaining  the  old  axis 

o*  x.  Ana.  SA'2  +  10F2  -  7  AT  J3  =  6. 



POLAR  COORDINATES.  § 

Ex.  5.  It  is  evident  that  when  we  change  from  one  set  of  rectangular  axes  to 

another,  a;2  +  y-  must  —  Xz  +  F2,  since  both  express  the  square  of  the  distance  of 
a  point  from  the  origin.  Verify  this  by  squaring  and  adding  the  expressions  for 
Jfand  Fin  Art.  9. 

Ex.  6.  Verify  in  like  manner  in  general  that 

X2  +  yt  +  2Xy  cosxOy  =  X*  +  F2  +  2XY cosXOY. 

If  we  write  X  sin  o  4-  T  sin  /?  =  L,  X  cos  a  +  Y  cos  /3  =  M,  the  expressions  in  Art.  5 

may  be  written  y  sin  <a  =  L,  x  sin  to  =  M  sin  u>  —  L  cos  to  ;  whence 

sin2«  (a;2  +  y*  +  2xy  cos  w)  =  (L2  +  M 2)  sin«a>. 

But  £*  +  .3f 2  =  .X2  +  F2  +  2JTFcos(a  -  /3),   and  a  -  /3  =  3"0F. 

11.  TAe  degree  of  any  equation  between  the  coordinates  is  not 

altered  ly  transformation  of  coordinates. 
Transformation  cannot  increase  the  degree  of  the  equation ; 

for  if  the  highest  terms  in  the  given  equation  be  icw,  ym,  &c., 
those  in  the  transformed  equation  will  be 

[x  sin  w  +  x  sin  (a)-  a)  +y  sin  (a>  -£)}",  (y  sin  a>  +  07  sina+y  sin  ̂ )m, 
&c.,  which  evidently  cannot  contain  powers  of  x  or  y  above  the 

m*  degree.  Neither  can  transformation  diminish  the  degree  of 
an  equation,  since  by  transforming  the  transformed  equation 

back  again  to  the  old  axes,  we  must  fall  back  on  the  original 

equation,  and  if  the  first  transformation  had  diminished  the 

degree  of  the  equation,  the  second  should  increase  it,  contrary 
to  what  has  just  been  proved. 

POLAR  COORDINATES. 

12.  Another  method  of  expressing  the  position  of  a  point 

is  often  employed. 

If  we  were  given  a  fixed  point  0,  and  a  fixed  line  through  it 

OB,  it  is  evident  that  we  should  p 

know  the  position  of  any  point 

P,  if  we  knew  the  length  OP, 
and  also  the  angle  FOB.  The 
line    OP    is    called     the    radius    

vector ;  the  fixed  point  is  called  -*> 

the  pole ;  and  this  method  is  called  the  method  of  polar  co- 
ordinates. 

It  is  very  easy,  being  given  the  x  and  y  coordinates  of  a 

point,  to  find  its  polar  ones,  or  vice  versa. 
G 



to POLAR  COOftDl  NATES. 

First,  let  the  fixed  line 

coincide  with  the  axis  of  a1, 
then  we  have 

OPiPM::  smPMO :  sinPOJf ; 

denoting  OP  by  p,  POM  by 
0,  and  YOX  by  o>,  then s'mO 

.  ---- 

sinw M 

i     •     -i     i and  similarly. *    * _  p  sin  (o>  -  0) 

For  the    more    ordinary    case    of   rectangular    coordinates, 

<w  =  90°,   and   we   have    simply 
x  =  p  cos  6  and  #  =  p  sin  6. 
Secondly,      let     the     fixed 

line  OB  not  coincide  with  the  QU^"   I  x 
axis  of  #,  but  make  with  it  an  M 

angle  =  a,  then 

POB=6  and  POM  =6  — a, 

and  we  have  only  to  substitute  0  —  a  for  0  in  the  preceding 
formulae. 

For  rectangular  coordinates  we  have 

x  =  p  cos  (6  -  a)  and  y  =  p  sin  (6  -  a). 
Ex.  1.  Change  to  polar  coordinates  the  following  equations  in  rectangular  co- 

ordinates: *  +  j»  =  6Bte.  Ans.  ,  =  5mcos0. 

Ex.  2.   Change  to  rectangular  coordinates  the  following  equations  in  polar  co- 

ordinates:              ,,«  sin  20  =  2a».  Ans.   xy  =  a2. 
p*  =  o2  cos  20.  Ans.  (z2  +  y2)2  =  a2  (x2  —  y2). 

p*  cos  £0  =  <A  Ans.  a*  +  y2  =  (2a  -  x)2. 

13.    7b  express  the  distance  "between  two  points,  in  terms  of 
their  polar  coordinates.  .s   Q 

Let  P  and  Q  be  the  two  points, 

o 

then 

or 
P(f  =  OP*  +  0  Q*  -  2  OP.  0  Q  .  cos  PO  Q, 

8"  =  p»  +  p"2  -  2p'p"  cos  ((9"  -  ̂ ). 
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CHAPTER     II. 

THE  RIGHT  LINE. 

14.  Any  two  equations  between  the  coordinates  represent 

geometrically  one  or  more  points. 

If  the  equations  be  both  of  the  first  degree  (see  Ex.  5,  p.  4) 

they  denote  a  single  point.  For  solving  the  equations  for 

x  and  y,  we  obtain  a  result  of  the  form  x  =  a,  y  =  5,  which, 
as  was  proved  in  the  last  chapter,  represents  a  point. 

If  the  equations  be  of  higher  degree,  they  represent  more 

points  than  one.  For,  eliminating  y  between  the  equations, 

we  obtain  an  equation  containing  x  only;  let  its  roots  be  at, 

a2,  a8,  &c.  Now,  if  we  substitute  any  of  these  values  (a,)  for 
x  in  the  original  equations,  we  get  two  equations  in  ̂ ,  which 

must  have  a  common  root  (since  the  result  of  elimination  be- 

tween the  equations  is  rendered  =0  by  the  supposition  #  =  «,). 

Let  this  common  root  be  y  =  $t.  Then  the  values  x  =  a,,  y  =  $,, 
at  once  satisfy  both  the  given  equations,  and  denote  a  point 

which  is  represented  by  these  equations.  So,  in  like  manner, 

is  the  point  whose  coordinates  are  x  =  OL^y  =  /32,  &c. 

Ex.  1.   What  point  is  denoted  by  the  equations  Sx  +  Sy  =  13,  4a:  -  y  -  2  ? 
Ans.   x  =  1,  y  =  2 

Er.  2.  What  points  are  represented  by  the  two  equations  cc2  +  y2  =  5,  xy  —  2  ? 
Eliminating  y  between  the  equations,  we  get  x*  —  6x2  +  4  =  0.  The  roots  of  this 
equation  are  a?  —  1  and  a?  —  4,  and,  therefore,  the  four  values  of  x  are 

Substituting  these  successively  in  the  second  equation,  we  obtain  the  corresponding 
values  of  y, 

The  two  given  equations,  therefore,  represent  the  four  points 

(+1,  +2),  (-1,  -2),  (+2,  +1),  (-2,  -1). 

Ex.  3.  What  points  are  denoted  by  the  equations 

x  -  y  =  1,  a;2  +  y2  =  25  ?  Ans.  (4,  8),  (-  3,  -  4). 

Ex.  4.  What  points  are  denoted  by  the  equations 

a;2  -  5x  +  y  +  3  =  0,  x-  +  y*  -  5x  -  3y  +  6  =  0? 
Ans.  (1,  1),  (2,  3),  (3,  3),  (4,  1> 
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15.  A  single  equation  between  the  coordinates  denotes  a 

geometrical  locus. 

One  equation  evidently  does  not  afford  us  conditions  enough 

to  determine  the  two  unknown  quantities  x,  y;  and  an  inde- 
finite number  of  systems  of  values  of  x  and  y  can  be  found  which 

will  satisfy  the  given  equation.  And  yet  the  coordinates  of 

any  point  taken  at  random  will  not  satisfy  it.  The  assemblage 
then  of  points,  whose  coordinates  do  satisfy  the  equation,  forms 

a  locus,  which  is  considered  the  geometrical  signification  of 

the  given  equation. 

Thus,  for  example,  we  saw  (Ex.  3,  p.  4)  that  the  equation 

expresses  that  the  distance  of  the  point  xy  from  the  point 
(2,  3)  =4.  This  equation  then  is  satisfied  by  the  coordinates  of 

any  point  on  the  circle  whose  centre  is  the  point  (2,  3),  and 
whose  radius  is  4;  and  by  the  coordinates  of  no  other  point. 
This  circle  then  is  the  locus  which  the  equation  is  said  to 

represent. 
We  can  illustrate  by  a  still  simpler  example,  that  a  single 

equation  between  the  coordinates  signifies  a  locus.  Let  us 

recall  the  construction  by  which  (p.  1)  we  determined  the 

position  of  a  point  from 

the  two  equations  x  =  a, 

y  =  b.  We  took  OM=a; 
we  drew  MK  parallel  to 

OY;  and  then,  measuring 

MP=b,  we  found  P,  the 

point  required.  Had  we  -  ~PL  -  ~£r 
been  given  a  different  value 

of  y,  x  =  a,  y  =  V,  we  should 
proceed  as  before,  and  we 

should  find  a  point  P'  still  situated  on  the  line  MK,  but  at 
a  different  distance  from  M.  Lastly,  if  the  value  of  y  were 
left  wholly  indeterminate,  and  we  were  merely  given  the 

single  equation  x  =  a,  we  should  know  that  the  point  P 
was  situated  somewhere  on  the  line  MK,  but  its  position  in 
that  line  would  not  be  determined.  Hence  the  line  MK  is 

the  locus  of  all  the  points  represented  by  the  equation  rr  =  a, 
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since,  whatever  point  we  take  oil  the  line  MK,  the  x  of  that 

point  will  always  =  a. 

16.  In  general,  if  we  are  given  an  equation  of  any  degree 
between  the  coordinates,  let  us  assume  for  x  any  value  we 

please  (x  =  a),  and  the  equation  will  enable  us  to  determine 
a  finite  number  of  values  of  y  answering  to  this  particular 

value  of  a;;  and,  consequently,  the  equation  will  be  satisfied  for 

each  of  the  points  (p,  q,  r,  &c.),  whose  x  is  the  assumed  value, 

and  whose  y  is  that  found  from  the  equation.  Again,  assume 

for  x  any  other  value 

(#  =  «'),  and  we  find, 
in  like  manner,  ano- 

ther series  of  points, 

p,  q')  r'j  whose  co- 
ordinates satisfy  the 

equation.  So  again, 

if  we   assume   x  =  a"   

or  x  =  a"',  &c.     Now, 
if  x   be   supposed   to 

take    successively    all 

possible  values,  the  assemblage  of  points  found  as   above   will 
form  a  locus,  every  point  of  which  satisfies  the  conditions  of  the 

equation,  and  which  is,  therefore,  its  geometrical  signification. 

We  can  find  in  the  manner  just  explained  as  many  points 

of  this  locus  as  we  please,  until  we  have  enough  to  represent 
its  figure  to  the  eye. 

Ex.  1.  Represent  in  a  figure*  a  series  of  points  which  satisfy  the  equation 
y  -  2x  +  3. 

Ans.  Giving  x  the  values  -  2,  -  1,  0,  1,  2,  &c.,  we  find  for  y,  -  1,  1,3,  5,  7,  <fcc., 
and  the  corresponding  points  will  be  seen  all  to  lie  on  a  right  line. 

Ex.  2.  Represent  the  locus  denoted  by  the  equation  y  =  x2  —  3x  -  2. 
Ans.  To  the  values  for  x,  -  1,  -  £,  0,  £,  1,  f,  2,  f,  3,  J,  4;  correspond  for 

u}  2,  -  J,  -  2,  -  V,  -  4,  -  y,  -  4,  -  y,  -  2,  -  J,  2.  If  the  points  thus  denoted 
be  laid  down  on  paper,  they  will  sufficiently  exhibit  the  form  of  the  curve,  which  may 
be  continued  indefinitely  by  giving  x  greater  positive  or  negative  values. 

Ex.  3.   Represent  the  curve  y  =  3  +  J(20  -  x  -  x2). 
Here  to  each  value  of  x  correspond  two  values  of  y.  No  part  of  the  curve  lies  to 

the  right  of  the  line  x  =  4,  or  to  the  left  of  the  line  x  =  -  5,  since  by  giving  greater 
positive  or  negative  values  to  x,  the  value  of  y  becomes  imaginary. 

*  The  learner  is  recommended  to  use  paper  ruled  into  little  squares,  which  is  sold 
under  the  name  of  logarithm  paper. 
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17.  The  whole  science  of  Analytic  Geometry   is    founded 

on  the  connexion  which  has  been  thus  proved  to  exist  between 

an   equation    and   a   locus.      If  a    curve    be    defined    by   any 

geometrical  property,  it  will  be  our  business  to  deduce  from  that 

property  an  equation  which  must  be  satisfied  by  the  coordinates 

of  every  point  on  the  curve.     Thus,  if  a  circle  be  defined  as 

the  locus  of  a  point  (a;,  #),  whose  distance  from  a  fixed  point 
(<z,  b)  is  constant,  and  equal  to  r,  then  the  equation  of  the  circle 

in  rectangular  coordinates  is  (Art.  4), 

(«-«)'+ (y -&)•=* 

On  the  other  hand,  it  will  be  our  business  when  an  equation  is 

given,  to  find  the  figure  of  the  curve  represented,  and  to  deduce 

its  geometrical  properties.  In  order  to  do  this  systematically, 
we  make  a  classification  of  equations  according  to  their  degrees, 

and  beginning  with  the  simplest,  examine  the  form  and  pro- 
perties of  the  locus  represented  by  the  equation.  The  degree 

of  an  equation  is  estimated  by  the  highest  value  of  the  sum 

of  the  indices  of  x  and  y  in  any  term.  Thus  the  equation 

xy  -f  2x  +  3y  =  4  is  of  the  second  degree,  because  it  contains 
the  term  xy.  If  this  term  were  absent,  it  would  be  of  the 

first  degree.  A  curve  is  said  to  be  of  the  wth  degree  when  the 
equation  which  represents  it  is  of  that  degree. 

We  commence  with  the  equation  of  the  first  degree,  and  we 

shall  prove  that  this  always  represents  a  right  line,  and, 

conversely,  that  the  equation  of  a  right  line  is  always  of  the 
first  degree. 

18.  We  have  already  (Art.  15)  interpreted  the  simplest  case 

of  an  equation  of  the  first  degree,  namely,  the  equation  x  =  a. 

In  like  manner,  the  equation  y  =  b  represents  a  line  PN  parallel 
to  the  axis  OX,  and  meeting  the   axis  0  Y  at  a  distance  from 

the  origin    ON=b.     If  we  suppose  b  to  be  equal  to  nothing, 

we  see  that  the  equation  y  =  Q  denotes  the  axis   OX-,  and  in 
like  manner  that  x  =  0  denotes  the  axis  0  Y. 

Let  us  now  proceed  to  the  case  next  in  order  of  simplicity, 
and  let  us  examine  what  relation  subsists  between  the  co- 

ordinates of  points  situated  on  a  right  line  passing  through 
the  origin 
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If  we  take  any  point  P 

on  such  a  line,  we  see  that 
both  the  coordinates  PM, 

OM,  will  vary  in  length, 
but  that  the  ratio  PM:  OM 

will  be  constant,  being  = 
to  the  ratio 

smPOM :  smMPO. 

Hence    we     see    that   the 

equation 
sinPOM 

y X 
mnMPO 

will  be  satisfied  for  every 

point  of  the  line  OP,  and 

therefore  this  equation  is  said  to  be  the  equation  of  the  line  OP- 
Conversely,  if  we  were  asked  what  locus  was  represented 

by  the  equation 
y  =  ,nx, 

write  the  equation  in  the  form 
?72,  and  the  question  is:  "To 

find  the  locus  of  a  point  P,  such  that,  if  we  draw  PM,  PN 

parallel  to  two  fixed  lines,  the  ratio  PM:  PN  may  be  constant." 
Now  this  locus  evidently  is  a  right  line  (9P,  passing  through 
0,  the  point  of  intersection  of  the  two  fixed  lines,  and  dividing 

the  angle  between  them  in  such  a  manner  that 

If  the  axes  be  rectangular,  smPON=cosPOM'  therefore, 
wi  =  tan  POM,  and  the  equation  y  =  mx  represents  a  right  line 
passing  through  the  origin,  and  making  an  angle  with  the 
axis  of  x,  whose  tangent  is  m. 

19.  An  equation  of  the  form  y  =  -f  mx  will  denote  a  line 

OP,  situated  in  the  angles  YOX,  Y'OX'.  For  it  appears, 
from  the  equation  y  —  +  mx,  that  whenever  x  is  positive  y 
will  be  positive,  and  whenever  x  is  negative  y  will  be  negative. 

Points,  therefore,  represented  by  this  equation  must  have  their 

coordinates  either  both  positive  or  both  negative,  and  such 

points  we  saw  (Art.  3)  lie  only  in  the  angles  YOX,  Y'OX'. 
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On  the  contrary,  in  order  to  satisfy  the  equation  y  =  —  mx, 
if  x  be  positive  y  must  be  negative,  and  if  x  be  negative  y 

must  be  positive.  Points,  therefore,  satisfying  this  equation 
will  have  their  coordinates  of  different  signs;  and  the  line 

represented  by  the  equation,  must,  therefore  (Art.  3),  lie  in  lliu 

angles  Y'OX,  YOX'. 

20.    Let  us  now  examine  how  to  represent  a  right  line  PQ, 

situated   in    any    manner 

with  regard  to  the  axes. 
Draw  OM  through 

the  origin  parallel  to  PQ, 
and  let  the  ordinate  PM 

meet  OR  in  R.  Now  it 

is  plain  (as  in  Art.  18), 
that  the  ratio  EM  :  OM 

will  be  always  constant 

(RM  always  equal,  sup- 

pose, to  m.OM)-  but  the  ordinate  PM  differs  from  RM  by 
the  constant  length  PR  =  OQ,  which  we  shall  call  b.  Hence 
we  may  write  down  the  equation 

PM=RM+PR,  or  PM=m.OM+PB, 

that  is  y  =  mx  +  b. 

The  equation,  therefore,  y  —  mx  +  b,  being  satisfied  by  every 

point  of  the  line  PQ,  is  said  to  be  the  equation  of  that  line. 

It  appears  from  the  last  Article,  that  in  will  be  positive  or 

negative  according  as  OR,  parallel  to  the  right  line  PQ,  lies  in 

the  angle  YOX,  or  Y'OX.  And,  again,  b  will  be  positive 
or  negative  according  as  the  point  Q,  m  which  the  line  meets 
OY,  lies  above  or  below  the  origin. 

Conversely,  the  equation  y  —  mx  +  b  will  always  denote  a 

right  line ;  for  the  equation  can  be  put  into  the  form 
y-b_ 

—  m. 

x 

Now,  since  if  we  draw  the  line  QT  parallel  to  OM,  Tfa  will 

be  =/>,  and  PT  therefore  =  y  —  b,  the  question  becomes:  "To 
find  the  locus  of  a  point,  such  that,  if  we  draw  PT  parallel 
to  OF  to  meet  the  fixed  line  QT,  PT  may  be  to  QT  in  a 
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constant  ratio ;"  and  this  locus  evidently  is  the  right  line  PQ 
passing  through  Q. 

The  most  general  equation  of  the  first  degree,  Ax+By+C=Q, 

can  obviously  be  reduced  to  the  form  y  —  mx-\-~b,  since  it  is 
equivalent  to 

..  4 *_-°. 
this  equation  therefore  always  represents  a  right  line. 

21.  From  the  last  Articles  we  are  able  to  ascertain  the 

geometrical  meaning  of  the  constants  in  the  equation  of  a 

right  line.  If  the  right  line  represented  by  the  equation 

y  =  mx  4  b  make  an  angle  =  a  with  the  axis  of  ic,  and  =  ft 
with  the  axis  of  y,  then  (Art.  18) 

sin  a m=L  ~ — o> 

and  if  the  axes  be  rectangular,  m  =  tana. 
We  saw  (Art.  20)  that  b  is  the  intercept  which  the  line  cuts 

off  on  the  axis  of  y. 

If  the  equation  be  given  in  the  general  form  Ax+  By  4  C =0, 

we  can  reduce  it,  as  in  the  last  Article,  to  the  form  y  —  mx  4  &, 
and  we  find  that 

A      sin  a 

or  if  the  axes  be   rectangular  =tana;   and  that  —  •=   is  the 

length  of  the  intercept  made  by  the  line  on  the  axis  of  y. 

COR.  The  lines  y  =  mx+l),  y  =  m'x  4  V  will  be  parallel  to 
each  other  if  m  =  m,  since  then  they  will  both  make  the  same 

angle  with  the  axis.  Similarly  the  lines  Ax  +  By+C=Q, 

Ax  +  By  4  C'  =  0,  will  be  parallel  if 
-/x  jC\. 

~T)  Z?'  * J3  £) 

Beside  the  forms  Ax  4  By  4  C  =  0  and  y  =  mx  4  J,  there 
are  two  other  forms  in  which  the  equation  of  a  right  line 

is  frequently  used;  these  we  next  proceed  to  lay  before  the 
reader. 

D 
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22.    To  express  the  equation  of  a  line  MN  in  terms    of  the 

intercepts  OM=  a,  ON=  b  which  it  cuts  off  on  the  axes. 
We  can  derive  this  from  the  form  already  considered 

A          B 
Ax  +  By  +  G  =  0,  or  -~  .r  -f  -7,  y  -f 1  =  0. \j          \j 

This  equation  must  be  satisfied  by  the  coordinates  of  every 

point  on  MN,  and  there- 
fore by  those  of  M,  which 

(see   Art.  2)    are   x  =  a, 
v  =  0.      Hence  we  have 

A 1 

In  like  manner,  since 
the  equation  is  satisfied 
by  the  coordinates  of  N9 

(x  =  0,  y  =  i),  we  have 

B_  _  1 

O  ~  ~  I ' Substituting  which  values  in  the  general  form,  it  becomes x      y 

a+b=l' 
This  equation  holds  whether  the  axes  be  oblique  or  rect- 

angular. 
It  is  plain  that  the  position  of  the  line  will  vary  with  the 

signs  of  the  quantities  a  and  b  For  example,  the  equation 
or  11 

-  +  |r  =1,  which  cuts  off  positive  intercepts  on  both  axes,  re- 

presents the  line  MN  on  the  preceding  figure ;   |f  =  1,  cutting 

off  a  positive  intercept  on  the  axis  of  x,  and  a  negative  in- 

tercept on  the  axis  of  y,  represents  MN'. 
T  11 

Similarly,          h  ?  =  1  represents  NM1 ; 

and 

—  |  =  1  represents  M'N*. 
By  dividing  by  the  constant  term,  any  equation  of  the  first 

degree  can  evidently  be  reduced  to  some  one  of  these  four  forms. 
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Ex.  1.  Examine  the  position  of  the  following  lines,  and  find  the  intercepts  they 
make  on  the  axes  : 

2aj-8y  =  7;     3x  +  4y  +  9  =  0  ; 

Ex.  2.   The  sides  of  a  triangle  being  taken  for  axes,  form  the  equation  of  the  line 

joining  the  points  which  cut  off  the  mth  part  of  each,  and  shew,  by  Art.  21,  that  it 
is  parallel  to  the  base.  x     u      \ 

Ans.   -  +  \  -  -  . a     b     m 

23.  To  express  the  equation  of  a  right  line  in  terms  of  the 

length  of  the  perpendicular  on  it  from  the  origin,  and  of  the 

angles  which  this  perpendicular  makes  with  the  axes. 

Let  the  length  of  the  perpendicular  OP=p,  the  angle  POM 
which  it  makes  with  the  axis  of  x  =  a, 

PON=0,  OM=a,  ON=b.  \ 

We  saw  (Art.  22)  that  the  equa- 
tion of  the  right  line  MN  was 

-+2/  =  l 

a     \  TO  M\ Multiply  this  equation  by  p,  and  we 
have 

P         P 
d         b 

But  £-  =cosa,  ̂   =  cos/3;  therefore  the  equation  of  the  line  is 

X  COBOL  +  I/  COS/3  =p. 

In  rectangular  coordinates,  which  we  shall  generally  use,  we 

have  /3  =  90°  —  a ;  and  the  equation  becomes  x  cos  a  +  y  sin  a  =p. 
This  equation  will  include  the  four  cases  of  Art.  22,  if  we 

suppose  that  a  may  take  any  value  from  0  to  360°.  Thus,  for 

the  position  NM',  a  is  between  90°  and  180°,  and  the  coefficient 
of  x  is  negative.  For  the  position  M'N'^  a  is  between  180°  and 

270°,  and  has  both  sine  and  cosine  negative.  For  MN' ,  a.  is 

between  270°  and  360°,  and  has  a  negative  sine  and  positive 
cosine.  In  the  last  two  cases,  however,  it  is  more  convenient 

to  write  the  formula  x  cosa  +  #  sin  a  —  —  p,  and  consider  a  to 

denote  the  angle,  ranging  between  0  and  180°,  made  with  the 
positive  direction  of  the  axis  of  cc,  by  the  perpendicular  pro- 

duced. In  using,  then,  the  formula  x  cosa-f  y  sina=p,  we 
suppose^?  to  be  capable  of  a  double  sign,  and  a  to  denote  the 
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ungle,  not  exceeding  180°,  made  with  the  axis  of  x  either  by 
the  perpendicular  or  its  production. 

The  general  form  Ax+  Zfy-f<7=0,  can  easily  be  reduced 

to  the  form  x  cos  a  -f  y  sin  a  =p  ;  for,  dividing  it  by  *J(A*  +  B*), 
we  have 

A  B  C 

J(A*  +  £')  X  *  *j(A*  +  B*}  y  +  V(^*  +  ff)  ~ 
But  we  may  take 

5  =cosa'  and  !  =sina' 

since  the  sum  of  squares  of  these  two  quantities  =  1. 

Hence   we  learn   that  and  are  re- 

spectively  the  cosine   and    sine   of  the    angle  which  the   per- 
pendicular from  the  origin  on  the  line  (Ax  +  By+  (7=0)  makes 

with  the  axis  of  »,  and  that  -yr— ̂  — ™-,  is  the  length  of  this 
v  \     ~^~  -^  ) perpendicular. 

*24.  To  reduce  the  equation  Ax+By+  C=Q  (referred  to 
oblique  coordinates)  to  the  form  x  cosa-f  y  cos/8  =^>. 

Let  us  suppose  that  the  given  equation  when  multiplied 

by  a  certain  factor  E  is  reduced  to  the  required  form,  then 

RA  =  cos  a,  RB  =  cosj3.  But  it  can  easily  be  proved  that,  if  a 
and  y8  be  any  two  angles  whose  sum  is  o>,  we  shall  have 

cosaa  +  cos*/S  —  2  cos  a  cos/S  cosa>  =  sinaa>. 

Hence  E*  (A9  +  B*  -  2AB  cos  a>)  =  sin8  &>, 

and  the  equation  reduced  to  the  required  form  is 

A  sin  ft)  B  sin  o> 

cos  o> 

And  we  learn  that 

^4  sin  o>  B  sin  o> 

"  +  -B" -  2^5  cos&))  '    V(^2+  -B" -  2-4-B  coso>) » 

*   Articles  and  Chapters  marked  with  an  asterisk  may  be  omitted  on  a  first  reading. 
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are  respectively  the  cosines  of  the  angles  that  the  perpendicular 

from  the  origin  on  the  line  Ax  -t-  By  +  (7=0  makes   with  the 

axes  of  x  and  y ;  and  that         *        *T         Cosa>)  is  the  len£th 

of  this  perpendicular.  This  length  may  be  also  easily  cal- 
culated by  dividing  the  double  area  of  the  triangle  NOM, 

(ON.  OM  sin  a)  by  the  length  of  MN,  expressions  for  which 

are  easily  found. 

The  square  root  in  the  denominators  is,  of  course,  susceptible 

of  a  double  sign,  since  the  equation  may  be  reduced  to  either 
of  the  forms 

x  cos  a  +  y  cos  ft  -p  =  0,  x  cos  (a  +  180°)  f  y  cos  (ft  +  180°)  +  p  =  0. 

25.  To  find  the,  angle  between  two  lines  whose  equations  with 

regard  to  rectangular  axes  are  given. 

The  angle  between  the  lines  is  manifestly  equal  to  the  angle 

between  the  perpendiculars  on  the  lines  from  the  origin ;  if 

therefore  these  perpendiculars  make  with  the  axis  of  x  the 

angles  a,  a',  we  have  (Art.  23) 
A  B 

cos  a  =  -7,  ,«  .   ̂ -TT  ;  sin  a  = 

cos  a 

Hence  sin  (a  —  a 

cos  (a  —  a' 

v  \-CL ,       ,  BA'-AB and  therefore  tan  (a  —  a )  = 

COR.    1.   The  two  lines  are  parallel  to  each  other  when 

BA'-AB'  =  Q    (Art  21), 

since  then  the  angle  between  them  vanishes. 

COR.  2.  The  two  lines  are  perpendicular  to  each  other  when 

A  A'  +  BB'  =  0,  since  then  the  tangent  of  the  angle  between 
them  becomes  infinite. 
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If'  the  equations  of  the  lines  had  been  given  in  the  form 

y  =  mx  +  &,  y  =  m'x  +  b'  ; 
since  the  angle  between  the  lines  is  the  difference  of  the  angles 

they  make  with  the  axis  of  a?,  and  since  (Art.  21)  the  tangents 

of  these  angles  are  m  and  m,  it  follows  that  the  tangent  of  the 

required  angle  is  -       —  ,  :  that  the  lines  are  parallel  if  m  =  m  : 

1  +  mm  J and  perpendicular  to  each  other  if  mm  +1=0. 

*26.    To  find  the  angle  between  two  lines,  the  coordinates  being 
oblique. 

We  proceed  as  in  the  last  article,  using  the  expressions  of 
Art.  24, 

A  sin  o> 
= 

A  sin 
cos  a 

consequently, 

_  B  —  .4coso> = 

.     ,  B'  -A  cos  a) 

Hence 

_  _  (BA  -  AB')  sin  o>  _ 
a  ]  ~      ̂ a  +  -B2  -  2^4  B  cos  a>  ̂ Tff*  -  24'B*  cos  a> 

a  ̂  ~         2 

f         '\- 
a-]~ 

-         cos  w 
sn  m 

COR.  1.   The  lines  are  parallel  if  BA  =  AB. 

COR.  2.   The  lines  are  perpendicular  to  each  other  if 

AA  +  BB  =  (AB'  +  BA)  cos  o>. 

27.    ̂ 4.  r«///i£  foVie  can  be  found  to  satisfy  any  two  conditions. 

Each  of  the  forms  that  we  have  given  of  the  general  equa- 
tion of  a  right  line  includes  two  constants.  Thus  the  forms 

y=  mx  +  &,  x  cosa-H?/  sina=jp,  involve  the  constants  m  and  b, 

p  and  a.  The  only  form  which  appears  to  contain  more  con- 
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stants  is  Ax  4-  By  +(7=0;  but  in  this  case  we  are  concerned  not 
with  the  absolute  magnitudes,  but  only  with  the  mutual  ratios 

of  the  quantities  A,  B,  G.  For  if  we  multiply  or  divide  the 

equation  by  any  constant  it  will  still  represent  the  same  line  : 

we  may  divide  therefore  by  G,  when  the  equation  will  only 

contain  the  two  constants  -^  ,  -~  .     Choosing,  then,  any  of  these G      (j 

forms,  such  as  y  =  mx  +  b,  to  represent  a  line  in  general,  we 

may  consider  m  and  b  as  two  unknown  quantities  to  be  deter- 
mined. And  when  any  two  conditions  are  given  we  are  able 

to  find  the  values  of  m  and  b,  corresponding  to  the  particular 

line  which  satisfies  these  conditions.  This  is  sufficiently  illus- 
trated by  the  examples  in  Arts.  28,  29,  32,  33. 

28.  To  find  the  equation  of  a  right  line  parallel  to  a  given 

one,  and  passing  through  a  given  point  x'y. 
If  the  line  y  =  mx  +  b  be  parallel  to  a  given  one,  the  con- 

stant m  is  known  (Cor.,  Art.  21).  And  if  it  pass  through  a 

fixed  point,  the  equation,  being  true  for  every  point  on  the  line, 

is  true  for  the  point  x'y,  and  therefore  we  have  y'  —  mx  +  b, 
which  determines  b.  The  required  equation  then  is 

y  =  mx  +  y'  —  mx,  or  y  —  y'  =  m  (x  —  x'). 
If  in  this  equation  we  consider  m  as  indeterminate,  we 

have  the  general  equation  of  a  right  line  passing  through  the 

point  x'y. 

29.  To  find  the  equation  of  a  right  line  passing  through  two 

fixed  points  x'y',  x'y". 
We  found,  in  the  last  article,  that  the  general  equation  of 

a  right  line  passing  through  x'y'  is  one  which  may  be  written in  the  form 

x-  x 

where  m  is  indeterminate.  But  since  the  line  must  also  pass 

through  the  point  x'y",  this  equation  must  be  satisfied  when 

the  coordinates  x",  y",  are  substituted  for  x  and  y  ;  hence y"-y 
7—  —,  =  m. 

X    -  X 
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Substituting  this  value  of  wi,  the  equation  of  the  line  becomes 

y-y'  =  y"-y\ 
x  —  x       x"  —  x  ' 

In  this  form  the  equation  can  be  easily  remembered,  but, 

clearing  it  of  fractions,  we  obtain  it  in  a  form  which  is  some- 
times more  convenient, 

(y  ~  y")  *-(«'-  x")  y  +  x'y"  -  y'x"  =  0. 
The  equation  may  also  be  written  in  the  form 

(x  -  x)  (y  -  y")  =  (x-  x")  (y  -  y}. 
For  this  is  the  equation  of  a  right  line,  since  the  terms  ory, 

which  appear  on  both  sides,  destroy  each  other;  and  it  is 

satisfied  either  by  making  #  =  #',  y  =  y,  or  x—x'^  y  =  y"> 
Expanding  it,  we  find  the  same  result  as  before. 

CoR.  The  equation  of  the  line  joining  the  point  x'y  to  the 

origin  is  y'x  =  x'y. 
Ex.  1.  Form  the  equations  of  the  sides  of  a  triangle,  the  coordinates  of  whose 

vertices  are  (2,  1),  (3,  -  2),  (-  4,  -  1).    Ans.  x  +  ly  +  11  =  0,  3y  -  x  =  1,  Sx  +  y  =  7. 

Ex.  2.  Form  the  equations  of  the  sides  of  the  triangle  formed  by  (2,  3),  (4,  -  5), 

(-  3,  -  6).  Ans.  x-7y  =  39,  9*  -  by  =  3,  4*  +  y  =  11. 

Ex.  3.  Form  the  equation  of  the  line  joining  the  points 

m  +  n 

-  y")  x  -  (x'  -  x")  y  +  x'y"  -  y'x"  =  0. 

Ex.  4.  Form  the  equation  of  the  line  joining 

,  ,       , x'y'  and   —  -  ,  »—  - 

Ans.  (y"  +  y'"  -  2y')  x  -  (x"  +  x'"  -  2*')  y  +  *Y  -  y'V  +  x'"y'  -  y'"x'  =  0. 

Ex.  5.  Form  the  equations  of  the  bisectors  of  the  sides  of  the  triangle  described 

in  Ex.  2.  Ans.  I7x  -  3y  =  25,  7x  +  9y  +  17  =  0,  bx  -  6y  =  21. 

Ex.  6.  Form  the  equation  of  the  line  joining 

W  -  mx"     ly'-my"        lx'  -  nx'"    ly>  -  ny'" 

~l=m     '     l-m  ~T^n     '  ~T^~n~" 

Ans.  x\l(m  -n)y>+m(n-l)y"+n(l-m)y'"}-y{l(m-n)x'+m(n-  7) 

-  x'y")  +  mn  (y"x'"  -  x"y"')  +  *l  (y"'x'  -  y'x'"). 

30.  To  find  the  condition  that  three  points  shall  lie  on  one 

right  line. 

We  found  (in  Art.  29)  the  equation  of  the  line  joining  two 

of  them,  and  we  have  only  to  see  if  the  coordinates  of  the 

third  will  satisfy  this  equation.  The  condition,  therefore,  is 

(y^  -  y^  *.  -  (xi  -  *.)  & 
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which  can  be  put  into  the  more  symmetrical  form 

y,  (*,  -  *.)  +  yt  (*,  -  x,)  -f  y,  fo  -  a:,)  =  0  * 

31.  To  find  the  coordinates  of  the  point  of  intersection  of  two 

right  lines  whose  equations  are  given. 

Each  equation  expresses  a  relation  which  must  be  satisfied  by 

the  coordinates  of  the  point  required  ;  we  find  its  coordinates, 

therefore,  by  solving  for  the  two  unknown  quantities  x  and  #, 

from  the  two  given  equations. 

We  said  (Art.  14)  that  the  position  of  a  point  was  deter- 
mined, being  given  two  equations  between  its  coordinates.  The 

reader  will  now  perceive  that  each  equation  represents  a  locus  on 

which  the  point  must  lie,  and  that  the  point  is  the  intersection  of 

the  two  loci  represented  by  the  equations.  Even  the  simplest 

equations  to  represent  a  point,  viz.  x  =  a,  y  =  b,  are  the  equa- 
tions of  two  parallels  to  the  axes  of  coordinates,  the  intersection 

of  which  is  the  required  point.  When  the  equations  are  both 

of  the  first  degree  they  denote  but  one  point ;  for  each  equation 

represents  a  right  line,  and  two  right  lines  can  only  intersect  in 

one  point.  In  the  more  general  case,  the  loci  represented  by 

the  equations  are  curves  of  higher  dimensions,  which  will  inter- 
sect each  other  in  more  points  than  one. 

Ex.  1.  To  find  the  coordinates  of  the  vertices  of  the  triangle  the  equations  of 

whose  sides  are  x  +  y  —  2 ;  x  —  Sy  =  4 ;  3x  +  5y  +  7  =  0. 
Ans.   (-  A,  _  tf),  (y,  -  V),  (£,  -  f). 

Ex.  2.  To  find  the  coordinates  of  the  intersections  of 

3x  +  y  -  2  =  0 ;  x  -f  2y  =  5 ;  2x  -  %  +  7  =  0. 

Ex.  3.   Find  the  coordinates  of  the  intersections  of 

2*  +  3y  =  13 ;  5*  -  y  =  7 ;  x  -  4y  +  10=  0. 
Ans.  They  meet  in  the  point  (2,  3). 

Ex.  4.   Find  the  coordinates  of  the  vertices,  and  the  equations  of  the  diagonals, 
of  the  quadrilateral  the  equations  of  whose  sides  are 

2y  -  3x  =  10,  2y+  x  =  6,  16»  -  lOy  =  33,  12*  +  14y  +  29  =  0. 

Ans.   (-1,  j),  (3,  $),  (4, -$),  (-3,4);  By  -  x  =  6,  Sx  +  2y  +  1  =  0. 

*  In  using  this  and  other  similar  formulae,  which  we  shall  afterwards  have  occasion 
to  employ,   the  learner  must  be   careful  to  take  the   coordinates 

in  a  fixed  order  (see  engraving).    For  instance,  in  the  second  member  s~~~^$" 
of  the  formula  just  given,  »/2  takes  the  place  of  y,,  x3  of  a:2,  and  a?,  r'(             ] ) 
of  x3.    Then,  in  the  third  member,  we  advance  from  #2  to  ys,  from  A.          Jw 

x3  to  ar,,   and  from  xl  to  xv  always  proceeding  in  the  order  just  ̂ >>     <ffu indicated. 
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Ex.  6.  Find  the  intersections  of  opposite  sides  of  the  same  quadrilateral,  and  the 

equation  of  the  line  joining  them.        Ans.  (83,  *£*),  (-  V,  W)»  162#  -  199a  =  4462- 

Ex.  6.  Find  the  diagonals  of  the  parallelogram  formed  by 

x  =  a,  x  =  a',  y  =  b,  y  =  b'. 

Ans.  (b-br)x-(a-a')y  =  a'b  -  ab'  ;  (b  -  b')  x  +  (a  -  a')  y  =  ab  -  a'b'- 

Ex.  7.  The  axes  of  coordinates  being  the  base  of  a  triangle  and  the  bisector  of 
the  base,  form  the  equations  of  the  two  bisectors  of  sides,  and  find  the  coordinates 

of  their  intersection.  Let  the  coordinates  of  the  vertex  be  0,  y',  those  of  the  base 

angles  *',  0  }  and  -  x',  0.  _  _ 

Ex.  8.  Two  opposite  sides  of  a  quadrilateral  are  taken  for  axes,  and  the  other 
two  are 

2a  +  2b  =  lf  2^'  +  2b'  =  l  J 

find  the  coordinates  of  the  middle  points  of  diagonals.  Ans.  (a,  b'),  (a',  b}. 

Ex.  9.  In  the  same  case  find  the  coordinates  of  the  middle  point  of   the  line 

joining  the  intersections,  of  opposite  sides. 

Ans.  ̂ a-ab'a'    a'b.b'-ay.b     ^  ̂   fom  ̂   ̂   ̂ ^ o  i  —  oo  o  b  —  ab 

that  this  point  divides  externally,  in  the  ratio  a'b  :  ab',  the  line  joining  the  two  middle 

points  (a,  b'),  (a',  b). 

32.  To  find  the  equation  to  rectangular  axes  of  a  right  line 

passing  through  a  given  point^  and  perpendicular  to  a  given  line^ 

y  —  mx  +  b. 
The  condition  that  two  lines  should  be  perpendicular,  being 

mm  =  -  1  (Art.  25),  we  have  at  once  for  the  equation  of  the 

required  perpendicular 

y-y'  =  --(x-x'). 

It  is  easy,  from  the  above,  to  see  that  the  equation  of  the  per- 

pendicular from  the  point  xy  on  the  line  Ax  4  By  +  C=  0  is 

A(y-y')=B(x-x'), 
that  is  to  say,  we  interchange  the  coefficients  of  x  and  y,  and  alter 

the  sign  of  one  of  them. 
Ex.  1.  To  find  the  equations  of    the  perpendiculars  from  each  vertex  on  the 

opposite  side  of  the  triangle  (2,  1),  (3,  -  2),  (-  4,  -  1). 
The  equations  of  the  sides  are  (Art.  29,  Ex.  1) 

x  +  7y  +  11  =  0,  By  -  x  =  1,  8x  +  y  =  7  1 
and  the  equations  of  the  perpendiculars 

7*-y=13,  3x  +  y  =  7,  3y-x  =  l. 
The  triangle  is  consequently  right-angled. 

Ex.  2.  To  find  the  equations  of  the  perpendiculars  at  the  middle  points  of  the 
Side  of  the  same  triangle.    The  coordinates  of  the  middle  points  being 

(-  J,  ~  t),  (~  1,  0),  (*»  -  i). 
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The  perpendiculars  are 

7x-y  +  2  =  Q,  3x  +  y  +  3  =  Q,  3y  -  a?  +  4  =  0,  intersecting  in  (-  |,  -  $). 

Ex.  3.  Find  the  equations  of  the  perpendiculars  from  the  vertices  of  the  triangle 

(2,  3),  (4,  -  5),  (-  3,  -  6)  (see  Art.  29,  Ex.  2). 
Ans.  7x+y  =  l7,   5x  +  9y  +  25  =  Q,  x  -  4y  =  21  ;  intersecting  in   (*»,  -  \*j>). 

Ex.  4.  Find  the  equations  of  the  perpendiculars  at  the  middle  points  of  the  sides 
of  the  same  triangle. 

Ans.  7x  +  y  +  2  =  Q,  5x  +  9y  +  16  =  0,  x  -  4y  =  7  ;  intersecting  in  (-  &,  -  J  J). 

Ex.  5.  To  find  in  general  the  equations  of  the  perpendiculars  from  the  vertices  on 

the  opposite  sides  of  a  triangle,  the  coordinates  of  whose  vertices  are  given. 

Ans.  (x"  -  x'")  x  +  (y"  -  y'"}  y  +  (x'x'"  +  y'y"'  )  -  (*'*"   +  W  )  =  °> 

(*"'  -af)x+  (y'"  -y')y  +  (x"xf   +  y"y'  )  -  (x"x"'  +  y"y"')  =  0, 

(x'   -x")x+(y'   -y")y  +  (x'"x"  +  y'"y")  -  (x'"x'  +  y'"y'  )  =  0. 

Ex.  6.  Find  the  equations  of  the  perpendiculars  at  the  middle  points  of  the  sides. 

Ans.  (x"  -  x'"}  x  +  (y"  -  y'")  y  =  ±  (*'" 

(x'   -x")x+(y'  -y")y  =  iz(x'* 
Ex.  7.  Taking  for  axes  the  base  of  a  triangle  and  the  perpendicular  on  it  from 

the  vertex,  find  the  equations  of  the  other  two  perpendiculars,  and  the  coordinates 

of  their  intersection.  The  coordinates  of  the  vertex  are  now  (0,  y'),  and  of  the 

base  angles  (x",  0),  (-  x'",  0). 

( 

0> 

Ex.  8.  Using  the  same  axes,  find  the  equations  of  the  perpendiculars  at  the  middle 
points  of  sides,  and  the  coordinates  of  their  intersection. 

—  x"x' 

Ans. 

Ex.  9.  Form  the  equation  of  the  perpendicular  from  x'y'  on  the  line  x  cos  a  +  y  sin  a  =p  ; 
and  find  the  coordinates  of  the  intersection  of  this  perpendicular  with  the  given  line. 

Ans.  {x'  +  cos  a  (p  —  x'  cos  a  —  y'  sin  a),  y'  +  sin  a  (p  —  x'  cos  a  —  y'  sin  a)}. 

Ex.  10.  Find  the  distance  between  the  latter  point  and  x'y'. 
Ans.  ±(p  —  x'cosa  —  yt  sin  a). 

33.  To  find  the  equation  of  a  Une  passing  through  a  given 

point  and  making  a  given  angle  </>,  with  a  given  line  y  =  mx  +  b 
(the  axes  of  coordinates  being  rectangular). 

Let  the  equation  of  the  required  line  be 

y-y'  =  m'(x-x')9 
and  the  formula  of  Art.  25, 

m-m' 
1  +  mm 

enables  us  to  determine 

,       m  —  tan  $ m  =  ;          I 
I  -f  m  tan  a 
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34.  To  find  the  length  of  the  perpendicular  from  any  point 

x'y  on  the  line  whose  equation  is  x  cos  a  +  y  cosyS  —  p  =  0. 
We  have  already  indicated  (Ex.  9  and  10,  Art.  32)  one  way 

of  solving  this  question,  and  isN  ~ 
we  wish  now  to  shew  how  the 

same   result  may   be    obtained 

geometrically.    From  the  given 

point   Q  draw    QR  parallel  to 

the  given  line,  and  QS  perpen- 

dicular.     Then     OK=x,   and  ~~<T~  ~~K      M 
OT  will  be  =x  cos  a.     Again, 

since  SQK  =  0,  and  QK=y, 

RT  =  <2#  =  y  cos/3; 

hence  x  cosa  +  y'  cos/3  =  OR. 

Subtract  OP,  the  perpendicular  from  the  origin,  and 

x'  cos  a  +  y'  cos/3  —  p  =  PR  =  the  perpendicular  Q  V. 

But  if  in  the  figure  the  point  Q  had  been  taken  on  the  side 

of  the  line  next  the  origin,  OR  would  have  been  less  than  OP, 

and  we  should  have  obtained  for  the  perpendicular  the  expression 

p  —  x  cos  a  -  y  cos  /S ;  and  we  see  that  the  perpendicular  changes 
sign  as  we  pass  from  one  side  of  the  line  to  the  other.  If  we 

were  only  concerned  with  one  perpendicular,  we  should  only 

look  to  its  absolute  magnitude,  and  it  would  be  unmeaning  to 

prefix  any  sign.  But  if  we  were  comparing  the  perpendiculars 

from  two  points,  such  as  Q  and  £,  it  is  evident  (Art.  6)  that  the 

distances  QV,  8V,  being  measured  in  opposite  directions,  must 

be  taken  with  opposite  signs.  We  may  then  at  pleasure  choose 

for  the  expression  for  the  length  of  the  perpendicular  either 

±(p  —  x  cos  a-  y  cos/3).  If  we  choose  that  form  in  which  the 
absolute  term  is  positive,  this  is  equivalent  to  saying  that  the 

perpendiculars  which  fall  on  the  side  of  the  line  next  the  origin 

are  to  be  regarded  as  positive,  and  those  on  the  other  side  as 

negative ;  and  vice  versa  if  we  choose  the  other  form. 

If  the  equation  of  the  line  had  been  given  in  the  form 

Ax  +  By+  (7=0,  we  have  only  (Art.  24=)  to  reduce  it  to  the 
form 

x  cos  a  4-  y  cos  /3  —  p  =  0, 
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and  the  length  of  the  perpendicular  from  any  point  xy' 

Ax'  +  By'+C  (Ax1  +  By'  -t-  C)  sin  a> 

according  as  the  axes  are  rectangular  or  oblique.  By  comparing 

the  expression  for  the  perpendicular  from  x'y  with  that  for  the 

perpendicular  from  the  origin,  we  see  that  x'y  lies  on  the  same 
side  of  the  line  as  the  origin  when  Ax  +  By  +  C  has  the  same 

sign  as  (7,  and  vice  versa. 

The  condition  that  any  point  x'y'  should  be  on  the  right  line 

Ax  +  By+  (7=0,  is,  of  course,  that  the  coordinates  x'y  should 
satisfy  the  given  equation,  or 

Ax+By'  +  (7=0. 
And  the  present  Article  shows  that  this  condition  is  merely  the 

algebraical  statement  of  the  fact,  that  the  perpendicular  from 

the  point  x'y  on  the  given  line  is  =  0. 
Ex.  1.  Find  the  length  of  the  perpendicular  from  the  origin  on  the  line 

8x  +  4y  +  20  =  0, 

the  axes  being  rectangular.  Ans.  4. 

Ex.  2.  Find  the  length  of  the  perpendicular  from  the  point  (2,  3)  on  2a?  +  y  -  4  =  0. 
o 

Ans.  -jz  ,  and  the  given  point  is  on  the  side  remote  from  the  origin. 

40 

Ex.  3.  Find  the  lengths  of  the  perpendiculars  from  each  vertex  on  the  opposite 

side  of  the  triangle  (2,  1),  (3,  -  2),  (-4,  -  1). 
Ans.  2  4(2),  J(10),  2  J(10),  and  the  origin  is  within  the  triangle. 

Ex.  4.  Find  the  length  of  the  perpendicular  from  (3,  —  4)  on  4x  +  2y  =  7,  the 

angle  between  the  axes  being  60°. 
Ans.  -J  ,  and  the  point  is  on  the  side  next  the  origin. 

Ex.  5.  Find  the  length  of  the  perpendicular  from  the  origin  on 

a  (x  _  a)  +  b  (y  -  b]  =  0.  Ans.  J(a2  +  ft2). 

35.  To  find  the  equation  of  a  line  bisecting  the  angle  between 

two  lines,  x  cos  a  +  y  sin  a  —  p  =  0,  x  cos  $  +  y  sin  0  -p  =  0. 
We  find  the  equation  of  this  line  most  simply  by  expressing 

algebraically  the  property  that  the  perpendiculars  let  fall  from 

any  point  xy  of  the  bisector  on  the  two  lines  are  equal.  This 

immediately  gives  us  the  equation 

x  cos  a  +  y  sin  a  -p  =  ±  (x  cos/3  +  y  sin  &-p'}, 
since  each  side  of  this  equation  denotes   the  length  of  one  of 

those  perpendiculars  (Art.  34). 
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If  the  equations  had  been  given  in  the  form  Ax  +  By  +(7=0, 

Ax  +  By  +  0'  =  0,  the  equation  of  a  bisector  would  be 

Ax  +  Bv  • 

It  is  evident  from  the  double  sign  that  there  are  two  bisectors  : 

one  such  that  the  perpendicular  on  what  we  agree  to  consider 

the  positive  side  of  one  line  is  equal  to  the  perpendicular  on 

the  negative  side  of  the  other;  the  other  such  that  the  equal 

perpendiculars  are  either  both  positive  or  both  negative. 

If  we  choose  that  sign  which  will  make  the  two  constant 

terms  of  the  same  sign,  it  follows,  from  Art.  34,  that  we  shall 

have  the  bisector  of  that  angle  in  which  the  origin  lies  ;  and  if 

we  give  the  constant  terms  opposite  signs,  we  shall  have  the 
equation  of  the  bisector  of  the  supplemental  angle. 

Ex.  1.  Reduce  the  equations  of  the  bisectors  of  the  angles  between  two  lines  to 

the  form  z  cos  a  +  y  sin  a  =  p. 

Ans.  x  C03{i  (a  +  /3)  +  90°}  +y  sin{i  (a  +  /?)  +  90°}  = 

Ex.  2.  Find  the  equations  of  the  bisectors  of  the  angles  between 

3x  +  4y  -  9  =  0,   12x  +  5y  -  3  =  0. 

Ans.  7x  -  9y  +  34  =  0,  9a?  +  7y  =  12. 

36.    To  find  the  area  of  the  triangle  formed  by  three  points. 

If  we  multiply  the  length  of  the  line  joining  two  of  the 

points,  by  the  perpendicular  on  that  line  from  the  third  point, 

we  shall  have  double  the  area.  Now  the  length  of  the  perpen- 
dicular from  xgi/B  on  the  line  joining  a?,y,j  a^j  the  axes  being 

rectangular,  is  (Arts.  29,  34) 

(y^  -  y,)  x*  -  fa  -  ap  y, 

and  the  denominator  of  this  fraction  is  the  length  of  the  line 

joining  #,#„  x^  hence 

represents  double  the  area  formed  by  the  three  points. 

If  the  axes  be  oblique,  it  will  be  found,  on  repeating  the 

investigation  with  the  formulae  "for  oblique  axes,  that  the  only 
change  that  will  occur  is  that  the  expression  just  given  is  to  be 

multiplied  by  sin  CD.  Strictly  speaking,  we  ought  to  prefix  to 
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these  expressions  the  double  sign  implicitly  involved  in  the 

square  root  used  in  finding  them.  If  we  are  concerned  with 
a  single  area  we  look  only  to  its  absolute  magnitude  without 

regard  to  sign.  But  if,  for  example,  we  are  comparing  two 
triangles  whose  vertices  a?3ys,  xj/4,  are  on  opposite  sides  of  the 

line  joining  the  base  angles  x$^  x^y^  we  must  give  their  areas 
different  signs;  and  the  quadrilateral  space  included  by  the  four 

points  is  the  sum  instead  of  the  difference  of  the  two  triangles. 

COR.  1.  Double  the  area  of  the  triangle  formed  by  the  lines 

joining  the  points  x$^  xzyz  to  the  origin  is  #,#2  —  y2#l7  as  appears 

by  making  xa=  0,  y9  =  0,  in  the  preceding  formula. 

COR.  2.  The  condition  that  three  points  should  be  on  one 

right  line,  when  interpreted  geometrically,  asserts  that  the  area 

of  the  triangle  formed  by  the  three  points  becomes  =  0  (Art.  30). 

37.  To  express  the  area  of  a  polygon  in  terms  of  the  co- 
ordinates of  its  angular  points. 

Take  any  point  xy  within  the  polygon,  and  connect  it  with 

all  the  vertices  x^^  xt^/2...xnyn*  then  evidently  the  area  of  the 
polygon  is  the  sum  of  the  areas  of  all  the  triangles  into  which 
the  figure  is  thus  divided.  But  by  the  last  Article  double  these 

areas  are  respectively 

*  (y-,  -  yj  -  y  Ov,  -  XJ  +  <v,y.  -  xnyn.,, 
x(yn  -y^-y(xn  -x^xny^   -*,#„• 

When  we  add  these  together,  the  parts  which  multiply  x  and  y 
vanish,  as  they  evidently  ought  to  do,  since  the  value  of  the  total 
area  must  be  independent  of  the  manner  in  which  we  divide  it 

into  triangles  ;  and  we  have  for  double  the  area 

This  may  be  otherwise  written, 

*i  (y,-y.)  +  *«( 
or  else 
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Ex.  1.  Find  the  area  of  the  triangle  (2,  1),  (3,  -  2),  (-  4,  -  1).  Ans.  10 

Ex.  2.  Find  the  area  of  the  triangle  (2,  3),  (4,  -  5),  (  -  3,  -  6).  Ans.  29. 
Ex.  3.  Find  the  area  of  the  quadrilateral  (1,  1),  (2,  8),  (3,  3),  (4,  1).  Ans.    4. 

38.    To  find  the  condition  that  three  right  lines  shall  meet  in 

a  point. 
Let  their  equations  be 

Az  +  By+C=0,   Ax  +  B'y+C'  =  Q,   A"x  +  B"y  +  C"  =  0. 
If  they  intersect,  the  coordinates  of  the  intersection  of  two  of 
them  must  satisfy  the  third  equation.     But  the  coordinates  of 

-Ak     a  BC'-BG     GA'-C'A the  intersection  of  the  first  two  are   -r    - 

Substituting  in  the  third,  we  get,  for  the  required  condition, 

A"  (BC1  -B'C)  +  B"  (  GA  -  G'A)  +  C"  (AB1  -  AB)  =  0, 
which  may  be  also  written  in  either  of  the  forms 

A  (B  C"  -  B"  C')  +  B(  C'A"  -  G'A}  +  G  (AB"  -  A"B')  =  0, 
A  (BO"  -  B"G'}  +  A'  (B"G-  BC")  +  A"  (BC'  -B'C)  =  0. 

*89.  To  find  the  area  of  the  triangle  formed  by  the  three  lines 

Ax  +  By+  (7=0,  A'z  +  By  +  (7  =  0,  A"x  +  ff'y  +  G"  =  Q. 
By  solving  for  x  and  y  from  each  pair  of  equations  in  turn 

we  obtain  the  coordinates  of  the  vertices,  and  substituting 
them  in  the  formula  of  Art.  36  we  obtain  for  the  double  area 

the  expression 

BG'-B'G  (AC"  -G'A"  _  A"G-C"A\ 
AB1  -  BA  \B'A"  -  AB"      B"A  -  A"B\ 
BC"-B'C'  (A^G-LG"A  _  AC'  -  CA\ 

+  AB"  -  B'A"  (B'A  -  ATB      BA  -  AB'\ 

B'_C^BO"  (AG'-CA  _  A'G"-G'A"\ 
f  A"B  -  B'A  \BA  -  AB      BA"  -  AB'}  ' 

But  if  we  reduce  to  a  common  denominator,  and  observe  that 
the  numerator  of  the  fraction  between  the  first  brackets  is 

{A"  (BC'  -  B'C)+A(B'G"  -  B"G)  +  A  (B"C-  G"B)} 

multiplied  by  -4",  and  that  the  numerators  of  the  fractions 
between  the  second  and  third  brackets  are  the  same  quantity 

multiplied  respectively  by  A  and  A',  we  get  for  the  double  area 
the  expression 

[A  (B'C"  -  B'G')  +  A'  (B"C-  BC")  +  A"  (BG  -  BC)}* 
(AB  -  BA)  (AB"  -  B'A")  (A"B-B"A) 
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If  the  three  lines  meet  in  a  point,  this  expression  for  the 
area  vanishes  (Art.  38)  ;  if  any  two  of  them  are  parallel,  it 
becomes  infinite  (Art.  25). 

40.  Given  the  equations  of  two  right  lines,  to  find  the  equation 

of  a  third  through  their  point  of  intersection. 
The  method  of  solving  this  question,  which  will  first  occur 

to  the  reader,  is  to  obtain  the  coordinates  of  the  point  of  inter- 

section by  Art  31,  and  then  to  substitute  these  values  for  xy'  in 
the  equation  of  Art.  28,  viz.,  y  —y  —  m(x  —  x).  The  question, 
however,  admits  of  an  easier  solution  by  the  help  of  the  following 

important  principle  :  If  S  —  0,  S'  =  0,  be  the  equations  of  any  two 
loci,  then  the  locus  represented  by  the  equation  S  +  kS'=  0  (where 
k  is  any  constant)  passes  through  every  point  common  to  the  two 
given  loci.  For  it  is  plain  that  any  coordinates  which  satisfy 

the  equation  $=0,  and  also  satisfy  the  equation  $'  =  0,  must 
likewise  satisfy  the  equation  S+kS  =  0. 

Thus,  then,  the  equation 

which  is  obviously  the  equation  of  a  right  line,  denotes  one 
passing  through  the  intersection  of  the  right  lines 

for  if  the  coordinates  of  the  point  common  to  them  both  be  sub- 

stituted in  the  equation  (Ax  +  By  +  C)  +  k  (Ax  +  B'y  -f-  G')  =  0, 
they  will  satisfy  it,  since  they  make  each  member  of  tht 
equation  separately  =  0. 

Ex.  1.  To  find  the  equation  of  the  line  joining  to  the  origin  the  intersection  of 

Ax  +  By  +  C  =  0,  A'x  +  B'y  +  C"  =  0. 
Multiply  the  first  by  C',  the  second  by  C,  and  subtract,  and  the  equation  of  the 
required  line  is  (AC  -  A'C)  x  +  (BC'  -  CB')  y  =  0  ;  for  it  passes  through  the  origin 
(Art.  18),  and  by  the  present  article  it  passes  through  the  intersection  of  the  given  lines. 

Ex.  2.  To  find  the  equation  of  the  line  drawn  through  the  intersection  of  the  same 

lines,  parallel  to  the  axis  of  x.  Ans.  (BA!  -  AB')  y  +  CA'  -  AC'  =  0. 

Ex.  3.  To  find  the  equation  of  the  line  joining  the  intersection  of  the  same  lines 

to  the  point  x'y'.  Writing  down  by  this  article  the  general  equation  of  a  line  through 
the  intersection  of  the  given  lines,  we  determine  k  from  the  consideration  that  it  must 

be  satisfied  by  the  coordinates  x'y',  and  find  for  the  required  equation 

(Ax  +  By+C)  (A'x'  +  B'y'  +  (?)  =  (Ax'  +  Btf  +•  C)  (A'x  +  B'y  +  (7). 
Ex.  4.  Find  the  equation  of  the  line  joining  the  point  (2,  3)  to  the  intersection  of 

2x  +  By  +  1  =  0,  3x  -  ty  =  5. 
Ans.  11  (2a:  +  3y  +  1)  +  14  3x  -  4y  -  5)  =  0  ;  or  64*  -  23y  =  59. 
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41.  The  principle  established  in  the  last  article  gives  us  a 
test  for  three  lines  intersecting  in  the  same  point,  often  more 

convenient  in  practice  than  that  given  in  Art  38.  Three  right 

lines  will  pass  through  the  same  point  if  their  equations  being 

multiplied  each  by  any  constant  quantity,  and  added  together,  the 
sum  is  identically  =  0 ;  that  is  to  say,  if  the  following  relation 
be  true,  no  matter  what  x  and  y  are : 

l(Ax+By+G)+m(A'x+B'y  +  G')  +  n  (A"x  +  B"y  +  C")  =  0. 
For  then  those  values  of  the  coordinates  which  make  the  first 

two  members  severally  =  0  must  also  make  the  third  =  0. 

Ex.  1.  The  three  bisectors  of   the  aides  of  a  triangle  meet  in  a  point.     Their 
equations  are  (Art.  29,  Ex.  4) 

(y"  +  y»'-2/  )*-(*"  +*'"-2*'  )y  +  (*Y  -y"**  )  +  (*"V  -y"V)  =  0, 
(y"'  +  y*  _  2y" )  x  -  (x'"  +  X1  -2x")y  +  (x"'y"  -  y"  V)  +  (x'y"  -  y'x"  )  =  0, 
(y-  +  y"  -  2y"')  x  -  (x'  +  x"-  2*'")  y  +  (x'y"'  -  y'x'" )  4-  (*"«,' "  -  y'  V")  =  0. 

Arid  since  the  three  equations  when  added  together  vanish  identically,  the  lines 
represented  by  them  meet  in  a  point.    Its  coordinates  are  found,  by  solving  between 

any  two,  to  be  i  (x'  +  x"  +  J"),  J  (y*  +  y"  +  y'"). 
Ex.  2.  Prove  the  same  thing,  taking  for  axes  two  sides  of  the  triangle  whose 

length,  area  and*.  ^  2*  „  1  *  +  2y_  l  x  _y  =  Q a      0  a      o  a     0 

Ex.  3.  The  three  perpendiculars  of  a  triangle,  and  the  three  perpendiculars  at 
middle  points  of  sides  respectively  meet  in  a  point.  For  the  equations  of  Ex.  6 
md  6,  Art.  32,  when  added  together,  vanish  identically. 

Ex.  4.  The  three  bisectors  of  the  angles  of  a  triangle  meet  in  a  point.  For  their 

•quatioiis  are 
(a;  cosa  +  y  sin  o  —  p  )  —  (x  cos/3  +  y  sin/J  —  p')  =  0, 
(x  C08/3+  y  sin/3  -  p')  —  (x  cosy  +  y  siny  —  p")  =  0. 
(xcosy  +  y  siny-/>")—  (xoosa  +  y  sin  a  —p  )  =  0. 

*42.  To  find  the  coordinates  of  the  intersection  of  the  line 

joining  the  points  xy\  x'y")  with  the  right  line  Ax  +  By  +(7=0. 
We  give  this  example  in  order  to  illustrate  a  method  (which 

we  shall  frequently  have  occasion  to  employ)  of  determining  the 

point  in  which  the  line  joining  two  given  points  is  met  by  a 

given  locus.  We  know  (Art.  7)  that  the  coordinates  of  any 

point  on  the  line  joining  the  given  points  must  be  of  the  form 

mx"  -r  nx1  my"  +  ny' /M  __    y  —       J   J    • 

wi-f  n    '  y~      m  +  n 

and  we  take  as  our  unknown  quantity  —  ,  the  ratio,  namely,  in 
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which  the  line  joining  the  points  is  cut  by  the  given  locus;  and 

we  determine  this  unknown  quantity  from  the  condition,  that 

the  coordinates  just  written  shall  satisfy  the  equation  of  the 

locus.  Thus,  in  the  present  example,  we  have 

A  4  B  +  C=0; m  +  n  m+  n 

»* 

,  m         Ax'  +  By-\-  C hence  —  =  —  -j—  r,  —  T^T,  —  „  5 
n         Ax  -f  By  +  G  ' 

and  consequently  the  coordinates  of  the  required  point  are 

_  (Ax'  +  By'  +  C)  x"  -  (Ax"  +  By"  +  G)  x' 
(Ax  +  By  +  C)  -  (Ax"  +  By"  +  G)      7 

with  a  similar  expression  for  y.     This  value  for  the  ratio  m  :  n 

might  also  have  been  deduced  geometrically  from  the  considera- 

tion that  the  ratio  in  which  the  line  joining  xy\  x"y"  is  cut,  is 
equal  to  the  ratio  of  the  perpendiculars  from  these  points  upon 

the  given  line  ;  but  (Art.  34)  these  perpendiculars  are 

Ax  +  By'+G      ,  Ax"  4-  By"  +  0 *  2 

The  negative  sign  in  the  preceding  value  arises  from  the  fact 

that,  in  the  case  of  internal  section  to  which  the  positive  sign  of 

m  :  n  corresponds  (Art.  7),  the  perpendiculars  fall  on  opposite 

sides  of  the  given  line,  and  must,  therefore,  be  understood  as 

having  different  signs  (Art.  34). 

If  a  right  line  cut  the  sides  of  a  triangle  BC,   GA^  AB,  in 
the  points  LMN,  then 

BL.GM.AN  _ 

LC.MA.NB~ 
Let  the  coordinates  of  the  vertices  be  x'y',  x"y",  x"'yn\  then 

BL  _       Ax"  4-  By"  4-  G  ,  14 
LG          Ax"  4-  By" 4  G 

CM  _      Ax"'  4  By"' '  +  C  L 
MA~    '   Ax'  +  By  +  C  » 
AN  =       Ax'  +By'  +C 
NB       ~  Ax"  +  By"  +  C9 and  the  truth  of  the  theo- 
rem  is  manifest.  N  A        F  B 
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*43.    To  find  the  ratio  in  which  the  line  joining  two  points 

x\y\i  x^)^i  l's  cu*  ty  the  line  joining  two  other  points  x^ 
The  equation  of  this  latter  line  is  (Art.  29) 

Therefore,  by  the  last  article, 

?  =  _  fas  -  y4)  xt  -  fa  -  gj 

It  is  plain  (by  Art.  36)  that  this  is  the  ratio  of  the  two  triangles 

whose  vertices  are  x^  o-^,,  xy^  ana  x^,  xsy^  xjj^  as  is  also 
geometrically  evident. 

If  the  lines  connecting  any  assumed  point  with  the  vertices  of 

a  triangle  meet  the  opposite  sides  BC,  CA,  AB  respectively,  in 

Z>,  E,  F,  then 

BD.CE.AF 
DC.EA.FJS 

Let  the  assumed  point  be  xj/4,  and  the  vertices 
then 

*,  (y.-yj  •*-  a?.(y4-yi)+*4  (y.  -y.)  ' 
=  ̂  (y4  -  ya)  4  g4  (y,  -y.)  +  x,  (y,  -  y4) 

and  the  truth  of  the  theorem  is  evident. 

44.    To  find  the  polar  equation  of  a  right  line  (see  Art.  12). 

Suppose  we  take,  as  our  fixed  axis,  OP  the  perpendicular  on 
the  given  line,  then  let  OR  be 

any  radius  vector  drawn  from 

the  pole  to  the  given  line 

but,  plainly, 

OR  cos  0=  OP, 

hence  the  equation  is 

p 
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If  the  fixed  axis  be  OA  making  an  angle  a  with  the  perpen- 

dicular, then  HO  A  —  6,  and  the  equation  is 

p  cos  (6  -  a)  —p. 

This  equation  may  also   be  obtained  by  transforming  the 

equation  with  regard  to  rectangular  coordinates, 

x  COBOL  +y  sin  a  =  £?. 

Rectangular  coordinates  are  transformed  to  polar  by  writing 

for  a?,  p  cos#,  and  for  y^  p  sin#  (see  Art.  12)  ;  hence  the  equation 
becomes 

p  (cos  6  cos  a  4-  sin  6  sin  a)  =  p  ; 

or,  as  we  got  before,         p  cos(0  —  a)  =p. 

An  equation  of  the  form 

p(A  cos0  +  Bs\n6)  =  G 

can  be  (as  in  Art.  23)  reduced  to  the  form  p  cos(#  —  a)  =p,  by 

dividing  by  ̂(A*  4  J3*)  ;  we  shall  then  have 

Ez.  1.  Reduce  to  rectangular  coordinates  the  equation 

Ex.  2.  Find  the  polar  coordinates  of  the  intersection  of  the  following  lines,  and 

also  the  angle  between  them  :  p  cos  (  0  -  -J  =  2a,  />  cos  \Q  —  ̂ J  =  a. 

Am.  p  =  2a)e  =  'f  angle  =      . 

Ex.  3.  Find  the  polar  equation  of  the  line  passing  through  the  points  whose 

polar  coordinates  are  /,  &  ;  p'  ,  6". 
Ans.  P'p"  sin  (Q'  -  6")  +  p"?  sin  (Q"  -  6)  +  fp'  sin  (0  -  00  =  „ 



CHAPTER  III. 

EXAMPLES  ON  THE  RIGHT  LINE. 

45.  HAVING  in  the  last  chapter  laid  down  principles  by 

which  we  are  able  to  express  algebraically  the  position  of  any 

point  or  right  line,  we  proceed  to  give  some  further  examples 

of  the  application  of  this  method  to  the  solution  of  geometrical 

problems.      The  learner   should  diligently  exercise  himself  in 

working  out  such  questions   until  he  has   acquired   quickness 
and  readiness  in  the  use  of  this  method.      In   working  such 

examples  our  equations  may  generally  be  much  simplified  by  a 

judicious  choice  of  axes  of  coordinates;  since,  by  choosing  for 

axes  two  of  the  most  remarkable  lines  on  the  figure,  several  of 

our  expressions  will  often  be  much  shortened.     On  the  other 

hand,  it  will  sometimes  happen  that  by  choosing  axes  uncon- 
nected with  the  figure,   the  equations   will  gain  in  symmetry 

more   than    an   equivalent   for   what   they   lose   in    simplicity 

The  reader  may  compare  the  two  solutions  of  the  same  question, 

given  Ex.  1   and  2,  Art.  41,  where,  though  the  first  solution 

is  the  longest,  it  has  the  advantage  that  the  equation  of  one 

bisector  being  formed,  those  of  the  others  can  be  written  down 
without  further  calculation. 

Since  expressions  containing  angles  become  more  complicated 

by  the  use  of  oblique  coordinates,  it  will  be  generally  advisable 

to  use  rectangular  axes  in  any  question  in  which  the  considera- 
tion of  angles  is  involved. 

46.  Loci. — Analytical  geometry  adapts  itself  with  peculiar 
readiness  to  the  investigation  of  loci.     We  have  only  to  find 

what  relation  the  conditions  of  the  question  assign  between  the 

coordinates  of  the  point  whose  locus  we  seek,  and  then   the 

statement  of  this  relation  in  algebraical  language  gives  us  at 

once  the  equation  of  the  required  locus. 
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Ex.  1.  Given  base  and  difference  of  squares  of  sides  of  a  triangle,  to  find  the 
locus  of  vertex. 

Let  us  take  for  axes  the  base  and  a  perpendicular  through  its  middle  point.    Let 

the  half  base  =  c,  and  let  the  coordinates  of  the  vertex 

be  x,  y.    Then 

AC3  =  y'  +  (c  4-  x)2,*  BC*  =  y2  +  (c  -  a:)2, 
AC2  -  BC*  =  4ca, 

and  the  equation  of  the  locus  is  4&c  =  m2.    The  locus 

is  therefore  a  line  perpendicular  to  the  base  at  a  dia-  M     R     B 

tance  from  the  middle  point  x  =  ̂-  .    It  is  easy  to  see 

that  the  difference  of  squares  of  segments  of  base  =  difference  of  squares  of  sides. 

Ex.  2.  Find  locus  of  vertex,  given  base  and  cot  .4  +  m  cot  B. 

It  is  evident,  from  the  figure,  that 

AR _c  +  x  _  g  — g 

and  the  required  equation  is  c  +  x  +  m  (c  —  x)  =  py,   the  equation  of  a  right  line. 

Ex.  3.  Given  base  and  sum  of  sides  of  a  triangle,  if  the  perpendicular  be  pro- 
duced beyond  the  vertex  until  its  whole  length  is  equal  to  one  of  the  sides,  to  find 

the  locus  of  the  extremity  of  the  perpendicular. 

Take  the  same  axes,  and  let  us  inquire  what  relation  exists  between  the  coordi- 
nates of  the  point  whose  locus  we  are  seeking.  The  x  of  this  point  plainly  is  MR, 

and  the  y  is,  by  hypothesis,  =  AC;  and  if  m  be  the  given  sum  of  sides, 
BC=m-y. 

Now  (Euclid  n.  13)  BC2  =  AB2  +  AC2  -  2AB  .AR; 

or  (m  —  y)*  =  4c*  +  yz  —  40  (c  +  x). 

Reducing  this  equation  we  get 
2my  -4cx  =  m?, 

the  equation  of  a  right  line. 

Ex.  4.  Given  two  fixed  lines,  OA  and  OB,  if  any  line  AB  be  drawn  to  intersect 
them  parallel  to  a  third  fixed  line  00,  to  find  the  locus  of  the  point  P  where  A3 
is  cut  in  a  given  ratio ;  viz.  PA  =  nAB. 

Let  us  take  the  lines  OA,  OC  for  axes,  and  let  the 

equation  of  OB  be  y  =  mx.  Then  since  the  point  B  lies 
on  the  latter  line,  its  ordinate  is  m  times  its  abscissa  ;  or 

AB  =  mOA.    Therefore  PA  -  mnOA ;  but  PA  and  OA         /  ^^       fP 
are  the  coordinates  of  the  point  P,  whose  locus  is  there- 

fore a  right  line  through  the  origin,  having  for  its  equation 

y  =  mnx.  A. 

*  This  is  a  particular  case  of  Art.  4,  and  c  +  x  is  the  algebraic  difference  of  the 
absciss®  of  the  points  A  and  C  (see  remarks  at  top  of  p.  4).  Beginners  often  reason 

that  since  the  line  AR  consists  of  the  parts  AM  =  —  c,  and  MR  =  x,  its  length  is 

—  c  +  x,  and  not  c  +  x,  and  therefore  that  AC2  =  y2  +  (x  —  c)2.  It  is  to  be  observed 
that  the  sign  given  to  a  line  depends  not  on  the  side  of  the  origin  on  which  it  lies, 
but  on  the  direction  in  which  it  is  measured.  We  go  from  A  to  R  by  proceeding 

in  the  positive  direction  AM  —  c,  and  still  further  in  the  same  direction  MR  -  x, 

therefore  the  length  AR  —  c  +  x;  but  we  may  proceed  from  R  to  B  by  first  going 
in  the  negative  direction  RM  =  —  x,  and  then  in  the  opposite  direction  MB  =  c, 
hence  the  length  RB  is  c  -  x. 
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Ex.  5.  PA  drawn  parallel  to  OC,  as  before,  meets  any  number  of  fixed  lines  in 

points  B,  If,  B",  Ac.,  and  PA  is  taken  proportional  to  the  sum  of  all  the  ordinates 
BA,  B'A,  Ac.,  find  the  locus  of  P. 

AM.  If  the  equations  of  the  lines  be 

y  =  mx,  y  =  m'x  +  n',  y  =  m"x  +  »",  Ac., 

the  equation  of  the  locus  is 

ky  =  mx  +  (m'x  +  »*)  +  (m"x  +  n")  +  Ac.. 

Ex.  6.  Given  bases  and  sum  of  areas  of  any  number  of  triangles  having  a  common 

vertex,  to  find  its  locus. 
Let  the  equations  of  the  bases  be 

x  cosa  +  y  sina  -p  =  0,  x  cofl/9  +  y  sin/3  —  p,  =  0,  Ac., 

and  their  lengths,  a,  b,  c,  Ac. ;  and  let  the  given  sum  -  m? ;  then,  since  (Art.  34) 

x  cos  o  +  y  sin  a  —  p  denotes  the  perpendicular  from  the  point  xy  on  the  first  line, 
a  (zcoso  +  y  sin  a  -  p)  will  be  double  the  area  of  the  first  triangle,  Ac.,  and  the 
equation  of  the  locus  will  be 

which,  since  it  contains  x  and  y  only  in  the  first  degree,  will  represent  a  right  line. 

Ex.  7.  Given  vertical  angle  and  sum  of  sides  of  a  triangle,  find  the  locus  of  the 

point  where  the  base  is  cut  in  a  given  ratio. 

The  sides  of  the  triangle  are  taken   for   axes,  N/_\P 
and  the  ratio  PK  :  PL  is   given  =n  :m.      Then 

by  similar  triangles, 

M 

and  the  locus  is  a  right  line  whose  equation  is  —  +  -  —  — 

Ex.  8.  Find  the  locus  of  P,  if  when  perpendiculars  PM,  PN  are  let  fall  on  two 
fixed  lines,  OM  +  OX  is  given. 

Taking  the  fixed  lines  for  axes,  it  is  evident 

that  OM  =  x  +  ycosu»,  ON  =  y  +  x  cosw,  and 
the  locus  is  x  +  y  =  constant. 

Ex.  9.  Find  the  locus  if  MN  be  parallel  to 
a  fixed  line. 

Ans.  y  +  x  cos  u  =  m  (x  +  y  cos  «»). 

Ex.  10.  If  MN  be  bisected  [or  cut  in  a  given 

ratio]  by  a  given  line  y  =  mx  +  n. 
The  coordinates  of  the  middle  point  ex-        O  <-X>        M 

pressed  in  terms  of  the  coordinates  of  P  are  £  (x  +  y  cos  w),  }  (y  +  x  cos  w)  ;  and  since 
these  satisfy  the  equation  of  the  given  line,  the  coordinates  of  P  satisfy  the  equation 

y  +  *  cos  w  —  m  (x  +  y  cos  o>)  +  2n. 

Ex.  11.  P  moves  along  a  given  line  y  =  mx  +  n,  find  the  locus  of  the  middle  point 
of  MN.  If  the  coordinates  of  P  be  a,  /3,  and  those  of  the  middle  point  *,  y,  it  hat 

just  been  proved  that  2x  =  a  +  /3  cos  w,  2y  =  ft  +  a  cos  u>.  Whence  solving  for  a,  /3, 

a  sin2w  =  2z  -  2y  cos  w,  /3  sin2o»  =  2y  -  2x  cos  a». 

But  a,  /3  are  connected  by  the  relation  ft  =  ma  +  n,  hence 

2y  -  2x  co<"»  =  m  (2x  —  2y  coso>) 
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47.  It  is  customary  to  denote  by  x  and  y  the  coordinates  of 
a  variable  point  which  describes  a  locus,  and  the  coordinates  of 

fixed  points  by  accented  letters.  Accordingly  in  the  preceding 
examples  we  have  from  the  first  denoted  by  x  and  y  the 

coordinates  of  the  point  whose  locus  we  seek.  But  frequently  in 

finding  a  locus  it  is  necessary  to  form  the  equations  of  lines 

connected  with  the  figure;  and  there  is  danger  of  confusion 

between  the  x  and  y,  which  are  the  running  coordinates  of  a 

point  on  one  of  these  lines,  and  the  x  and  y  of  the  point  whose 
locus  we  seek.  In  such  cases  it  is  convenient  at  first  to  denote 

the  coordinates  of  the  latter  point  by  other  letters  such  as  a,  /3, 

until  we  have  succeeded  in  obtaining  a  relation  connecting  these 

coordinates.  Having  thus  found  the  equation  of  the  locus,  we 

may  if  we  please  replace  a,  jS  by  x  and  #,  so  as  to  write  the 
equation  in  the  ordinary  form  in  which  the  letters  x  and  y  are 

used  to  denote  the  coordinates  of  the  point  which  describes 
the  locus. 

Ex.  1.  Find  the  locus  of  the  vertex  of  a  triangle,  given  the  base  CD,  and  the 

ratio  AM-.NBot  the  parts  into  which  the  sidts 
divide  a  fixed  line  AB  parallel  to  the  base.  Take 
AB  and  a  perpendicular  to  it  through  A  for  axes, 
and  it  is  necessary  to  express  AM,  NB  in  terms 
of  the  coordinates  of  P.  Let  these  coordi- 

nates be  a/3,  and  let  the  coordinates  of  C,  D  be 

x'y',  x"y',  the  y'  of  both  being  the  same  since  CD 
is  parallel  to  AB.  Then  the  equation  of  PC  joining 

the  points  a/3,  x'y'  is  (Art.  29) 

03  -  y')  x  -  (a  -  x'}  y  =  fix'  -  ay*. 

This  equation  being  satisfied  by  the  x  and  y  of  every  point  on  the  line  PC  is  satisfied 
by  the  point  M,  whose  y  =  0  and  whose  x  =  AM.  Making  then  y  =  0  in  tuia equation  we  get 

In  like  manner, 

and  if  AB  -  c,  the  relation  AM  =  IcBN  gives 

We  have  now  expressed  the  conditions  of  the  problem  in  terms  of  the  coordinates  of 
the  point  P  j  and  now  that  there  is  no  further  danger  of  confusion,  we  may  replace 
a,  /3,  by  x,  y;  when  the  equation  of  the  locus,  cleared  of  fractions,  becomes 

yx'  -  xy'  =  k  [c(y  -  y'}  -  (yx"  -  xy% 

Ex.  2.  Two  vertices  of  a  triangle  ABC  move  on  fixed  right  lines  LM,  LN,  and 
the  three  sides  pass  through  three  fixed  points  0,  P,  Q  which  lie  on  a  right  line find  the  locus  of  the  third  vertex. 

G 
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Take  for  axis  of  x  the  right  line  OP,  containing  the  three  fixed  points,  and  for 

axis  of  y  the  line  OL  joining  the  inter-  ^ 
section  of  the  two  fixed  lines  to  the  point 

0  through  which  the  base  passes.    Let  the 
coordinates  of  C  be  o,  ft,  and  let 

OL  =  b,  OM  =  a,  ON=a',  OP  =  c,  00,  — d. 

Then  obviously  the  equations  of  LM,  LN    Q* are 

The   equation   of    CP   through   aft   and 

P  (y  =  0,  x  =  e)  is 

The  coordinates  of  A,  the  intersection  of  this  line  with 

_  ab  (a  —  e)  +  aeft  b  (a—  c)  ft 

*l  =    b  (a  -  c)  +  aft'  '  yi  ~  b(a-c)+aft ' 
The  coordinates  of  B  are  found  by  simply  accentuating  the  letters  in  the  preceding : 

a'b  (a  -  Q  +  a'cfft  b  (a'  -  c')  ft 

X*~    b(a-<f)  +  a'ft     '  y*  ~  b  (a  -  c')  +  a' ft ' 
Now  the  condition  that  two  points  x^,  x^/3  shall  lie  on  a  right  line  passing  through 

the  origin  is  (Art.  30)  |-f  =  -  . 
Applying  this  condition  we  have 

b  (a  —  c)  ft  b  (a'  —  <f)  ft 

ab  (a-c)  +  aeft  ~  a'b  (a  —  c')  +  a'cfft* 
We  have  now  derived  from  the  conditions  of  the  problem  a  relation  tVmch  must  be 

satisfied  by  a/3  the  coordinates  of  C;  and  if  we  replace  a,  ft  by  x,  y  we  have  the 
equation  of  the  locus  written  in  its  ordinary  form.    Clearing  of  fractions,  we  have 

(a  -  e)  [a'b  (x  -  c')  +  a'e'y]  =  (a'  -  e')  [ab  (x-c)+  aey], 
(ad  -  a'c)  x  y  _ 

etf  (a  -  a1}  -  aa'  (c  -  tf) b  ~ 
the  equation  of  a  right  line  through  the  point  L. 

Ex.  3.  If  in  the  last  example  the  points  P,  Q  lie  on  a  right  line  panning  not 
through  0  but  through  L,  find  the  locus  of  vertex. 

We  shall  first  solve  the  general  problem  in  which  the  points  P,  Q,  have  any 
position.  We  take  the  fixed  lines  LM,  LN  for  axes.  Let  the  coordinates  of 

P,  Q,  0,  C  be  respectively  x'y',  x"y",  x'"y'",  aft;  and  the  condition  which  we 
want  to  express  is  that  if  we  join  CP,  CQ,  and  then  join  the  points  A,  B,  in  which 
these  lines  meet  the  axes,  the  line  AB  shall  pass  HIM  ugh  0.  The  equation  of  CP 

And  the  intercept  which  it  makes  on  the  axis  of  x  is 

LA  =  %-"/' In  like  manner  the  intercept  which  CQ,  makes  on  the  axis  of  y  U 

LB  =  •
*'-!"'

 

The  equation  of  AB  is 

LA  +  LB  =  l>  °r  ftx'  -ay'  +  'a~y7r^ft^r  *  *' 
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And  the  condition  of  the  problem  is  that  this  equation  shall  be  satisfied  by  the 

coordinates  of  "if".  In  order  then  that  the  point  C  may  fulfil  the  conditions  of  the 
problem,  its  coordinates  a/3  must  be  connected  by  the  relation 

When  this  equation  is  cleared  of  fractions,  it  in  general  involves  the  coordinates 

a/3  in  the  second  degree.  But  suppose  that  the  points  x'y',  x"y"  lie  on  the  same 
line  passing  through  the  origin  y  =  mx,  BO  that  we  have  y'  =  mx',  y"  -  mx",  the 
equation  may  be  written 

x'  (/3  -  am)  +  x"~(am  -  /3)  =  L 
Clearing  of  fractions  and  replacing  a,  ]3  by  x  and  y,  the  locus  is  a  right  line,  viz. 

x'"x"  (y  -  yO  -  y'"x'  (x  -  x")  =  x'x"  (mx  -  y). 

48.  It  is  often  convenient,  instead  of  expressing  the  condi- 
tions of  the  problem  directly  in  terms  of  the  coordinates  of  the 

point  whose  locus  we  are  seeking,  to  express  them  in  the  first 
instance  in  terms  of  some  other  lines  of  the  figure;  we  must 

then  obtain  as  many  relations  as  are  necessary  in  order  to 

eliminate  the  indeterminate  quantities  thus  introduced,  so  as  to 

have  remaining  a  relation  between  the  coordinates  of  the  point 

whose  locus  is  sought.  The  following  Examples  will  sufficiently 
illustrate  this  method. 

Ex.  1.  To  find  the  locus  of  the  middle  points  of  rectangles  inscribed  in  a  given 
triangle. 

Let  us  take  for  axes  CR  and  AB ;  let  CR  -  p,  RB  =  *,  AR  -  s'.  The  equations 
of  AC&nd  BCare 

--,=  :=. 
p     *'  p     s 

Now  if  we  draw  any  line  FS  parallel  to  the  base 
at  a  distance  FK  =  k,  we  can  find  the  abscissae  of 
the  points  F  and  S,  in  which  the  line  FS  meets 

AC  and  BC,  by  substituting  in  the  equations  of 
AC  and  BC  the  value  y  =  k.  Thus  we  get  from 
the  first  equation 

and  rrom  the  second  equation 

Having  the  abscissae  of  F  and  S,  we  have  (by  Art.  7)  the  abaciasa  of  the  middle 

point  of  FS,  viz.  x  =  ̂   .  (l  -i)  .  This  is  evidently  the  abscissa  of  the  middle 
point  of  the  rectangle.  But  its  ordinate  is  y  =  ±k.  Now  we  want  to  find  a  relation 
which  will  subsist  between  this  ordinate  and  abscissa  whatever  k  be.  We  have 
only  then  to  eliminate  k  between  these  equations,  by  substituting  in  the  first  the 
value  of  k  (=  2y),  derived  from  the  second,  when  we  have 
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2*        2V 

—  ?*/  =  '• 
This  is  the  equation  of  the  locus  which  we  seek.  It  obviously  represents  a  right  line, 
and  if  we  examine  the  intercepts  which  it  cuts  off  on  the  axes,  we  shall  find  it  to  be  the 

line  joining  the  middle  point  of  the  perpendicular  OR  to  the  middle  point  of  the  base. 

Ex.  2.  A  line  is  drawn  parallel  to  the  base  of  a  triangle,  and  the  points  where  it 

meets  the  sides  joined  to  any  two  fixed  points  on  the  base  ;  to  find  the  locus  of  the 
point  of  intersection  of  the  joining  lines. 

We  shall  preserve  the  same  axes,  Ac.,  as  in  Ex.  1,  and  let  the  coordinates  of  the 
fixed  points  T  and  V,  on  the  base,  be  for  T  (TO,  0),  and  for  V  (n,  0). 

The  equation  of  FT  will  be  found  to  be 

and  that  of  S  V  to  be 

Now  since  the  point  whose  locus  we  are  seeking  lies  on  both  the  lines  FT,  SV,  each 

of  the  equations  just  written  expresses  a  relation  which  must  be  satisfied  by  its  co- 
ordinates. Still,  since  these  equations  involve  k,  they  express  relations  which  are  only 

true  for  that  particular  point  of  the  locus  which  corresponds  to  the  case  where  the 
parallel  FS  is  drawn  at  a  height  k  above  the  base.  If,  however,  between  the  equations 
we  eliminate  the  indeterminate  k,  we  shall  obtain  a  relation  involving  only  the 
coordinates  and  known  quantities,  and  which,  since  it  must  be  satisfied  whatever  be 
the  position  of  the  parallel  FS,  will  be  the  required  equation  of  the  locus. 

In  order,  then,  to  eliminate  k  between  the  equations,  put  them  into  the  form 

FT      (»'  +  m)  y  -  k  (^  y  -  x  +  m\  =  0, 

and  BV         (s-  n) y  -  k  (-y  +  x-  n\  =  Oj 

and  eliminating  k  we  get  for  the  equation  of  the  locus 

(*  -  »)  (^  y  -  a?  +  mj  =  (/  +  m)  Q  y  +  x  -  n  j  . 
But  this  is  the  equation  of  a  right  line,  since  x  and  y  are  only  in  the  first  degree. 

Ex.  3.  A  line  is  drawn  parallel  to  the  base  of  a  triangle,  and  its  extremities 
joined  transversely  to  those  of  the  base ;  to  find  the  locus  of  the  point  of  intersection 
of  the  joining  lines. 

This  is  a  particular  case  of  the  foregoing,  but  admits  of  a  simple  solution  by 

choosing  for  axes  the  sides  of  the  triangle  AC  and  CB.  Let  the  lengths  of  those 
lines  be  a,  b,  and  let  the  lengths  of  the  proportional  intercepts  made  by  the  parallel 
be  pa,  ftb.  Then  the  equations  of  the  transversals  will  be 

*  +  S  ~  1  and  ̂a  + 1  =  1§ 

Subtract   one  from  the  other,  divide  by  the  constant  1   ,  and  we  get  for  the 

equation  of  the  locus 

which  we  have  elsewhere  found  (see  p.  34)  to  be  the  equation  of  the  bisector  of  the 
base  of  the  triangle. 

Ex.  4.  Given  two  fixed  points  A  and  B,  one  on  each  of  the  axes,  if  A'  and  B'  be 
taken  on  the  axes  so  that  OA'  +  OB'  =  OA  +  OB :  find  the  locus  of  the  intersection 

of  A&,  A'B. 
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Let  OA  =  a,    OB  =  b,    OA'  =  a  +  k,  then,   from   the  conditions  of  the  j-roblem, 
OB'  -b-  k.    The  equations  of  AB1,  A'B  are  respectirely 

or  4*  +  «y  -  06  +  k  (a  -  x)  =  0, 

bx  +  ay  —  ab  +  k  (y  —  b)  =  0. 
Subtracting,  we  eliminate  k,  and  find  for  the  equation  of  the  IOCTU 

x  +  y  =  a  +  b. 

Ex.  5.  If  on  the  base  of  a  triangle  we  take  any  portion  AT,  and  on  the  other  side 
of  the  base  another  portion  BS,  in  a  fixed  ratio  to  AT&nd  draw  JET  and  FS  parallel 
to  a  fixed  line  CR;  to  find  the  locus  of  0,  the  point  of  intersection  of  EB  and  FA. 

Take  AB  and  CR  for  axes  ;  let  AT  =  k,  BR  =  *, 

AR  =  s',  CR  =  p,  let  the  fixed  ratio  be  m,  then 
BS  will  =  mk  ;  the  coordinates  of  S  will  be  (a  -  mk,  0)  , 

and  of  T  {-  («'  -  k),  0}. 
The  ordinatee  of  E  and  F  will  be  found  by  sub- 

stituting these  values  of  x  in  the  equations  of  AC 
and£tf.  We  get  for 

£,     *  =  -(«'- mole 

and  for  F,    x  -  »  -  mk,    y  =  •-—  . 

Now  form  the  equations  of  the  transverse  lines,  and  the  equation  of  EB  ii 

( 

and  the  equation  of  A  F  is 

To  eliminate  &,  subtract  one  equation  from  the  other,  and  the  result,  divided 

by  k,  will  be 

which  is  the  equation  of  a  right  line. 

Ex.  6.  PP'  and  QQ'  are  any  two  parallels  to  the  sides  of  a  parallelogram  ;  to 
find  the  locus  of  the  intersection  of  the  lines  PQ  and  P'Q. 

Let  us  take  two  of  the  sides  for  our  axes,  and  let  the  lengths  of  the  sides  be  a 

and  b,  and  let  AQ,'  =  m,  AP  -  ».    Then  the  equa- 
tion of  PQ,  joining  P  (0,  n)  to  Q,  (m,  b)  is 

(b  —  n)  x  —  my  +  mn  =  0, 

and  the  equation  of   P'Q'  joining  P'  (a,  n)  to 
Q'(ro,0)is 

nx  —  (a  —  m)  y  —  mn  =  0. 
There  being  two  indeterminates  m  and  n,  we 

should  at  first  suppose  that  it  would  not  be  pos-    A    Q  B 
sible  to  eliminate  them  from  two  equations.     However,  if  we  add  the  above  equations, 
it  will  be  found  that  both  vanish  together,  and  we  get  for  our  locus 

bx  —  ay  =  0, 

the  equation  of  the  diagonal  of  the  parallelogram. 

Ex.  7.  Given  a  point  and  two  fixed  lines  ;  draw  any  two  lines  through  the  fixed 
point,  and  join  transversely  the  points  where  they  meet  the  fixed  lines  ;  to  find  the 
locus  of  intersection  of  the  transverse  lines. 
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Take  the  fixed  lines  for  axes,  and  let  the  equations  of  tho  lines  through  the  fixed 

point  be 

The  conditions  that  these  lines  should  pass  through  the  fixed  point  x'y'  give  us 

s'+f.i,  «•£+£.!, 
or,  subtracting, 

*.(!_!,)  +  „.(_'_!,)=«. \ro     m'J      a  \n     n'J 
Now  the  equations  of  the  tranverse  lines  clearly  are 

£  +  £=!,  and^  +  ̂ M 

or,  subtracting, 

•(^)-'£-*)=«- Now  from  this  and  the  equation  just  found  we  can  eliminate 

(!_!,)  and(i_4), 
\m     m'J          \n      n'J' 

and  we  have  x'y  +  y'x  —  0, 
the  equation  of  a  right  line  through  the  origin. 

Ex.  8.  At  any  point  of  the  base  of  a  triangle  is  drawn  a  line  of  given  length, 

parallel  to  a  given  one,  and  ao  as  to  be  cut  in  a  given  ratio  by  the  base  ;  find  the 
locus  of  the  intersection  of  the  lines  joining  its  extremities  to  those  of  the  base. 

49.  The  fundamental  idea  of  Analytic  Geometry  is  that 

every  geometrical  condition  to  be  fulfilled  by  a  point  leads  to 

an  equation  which  must  be  satisfied  by  its  coordinates.  It 

is  important  that  the  beginner  should  quickly  make  himself 

expert  in  applying  this  idea,  so  as  to  be  able  to  express  by  an 

equation  any  given  geometrical  condition.  We  add,  therefore, 
for  his  further  exercise,  some  examples  of  loci  which  lead  to 

equations  of  degrees  higher  than  the  first.  The  interpretation 
of  such  equations  will  be  the  subject  of  future  chapters,  but 
the  method  of  arriving  at  the  equations,  which  is  all  with  which 

we  are  here  concerned,  is  precisely  the  same  as  when  the  locus 

is  a  right  line.  In  fact,  until  the  problem  has  been  solved,  we 
do  not  know  what  will  be  the  degree  of  the  resulting  equation. 

The  examples  that  follow  are  purposely  chosen  so  as  to  admit 

of  treatment  similar  to  that  pursued  in  former  examples, 

according  to  the  order  of  which  they  are  arranged.  In  each  of 

the  answers  given  it  is  supposed  that  the  same  axes  are  chosen, 
and  that  the  letters  have  the  same  meaning  as  in  the  corre- 

sponding previous  example. 
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Ex.  1.  Find  the  locus  of  vertex  of  a  triangle,  given  base  and  sum  of  squares 

of  sides.  Ant.  of  +  y-  =  Jn»2  -  c*. 

Ex.  2.  Given  base  and  m  squares  of  one  side  ±  n  squares  of  the  other. 

Ans.  (m  ±  n)  (*2  +  y*)  +  2  (m  T  n)  ex  +  (m  ±  n)  <*  =p*. 
Ex.  3.  Given  base  and  ratio  of  sides. 

Ex.  4.  Given  base  and  product  of  tangents  of  base  angles. 
In  this  and  the  Examples  next  following,  the  learner  will  use  the  values  of  the 

tangents  of  the  base  angles  given  Ex.  2,  Art.  46.  Ans.  y3  +  mtx2  =  rtfc*. 

Ex.  5.  Given  base  and  vertical  angle  or,  in  other  words,  base  and  sum  of  base 

angles.  Ans.  x*  +  y1  —  *2cy  cot(7  =  c2. 

Ex.  6.  Given  base  and  difference  of  base  angles.        .In*,  z*  —  y*  +  2xy  cot  2)  =  c«. 

Ex.  7.  Given  base,  and  that  one  base  angle  is  double  the  other. 

Ant.  8x»  -y*  +  2cx  =  c». 

Ex.  8.  Given  base,  and  tan  C  =  m  tan  B.  Ant.  m,  (x2  +  y*  -  c2)  =  2c  (c  -  ar). 

Ex.  9.  PA  is  drawn  parallel  to  OC,  as  in  Ex.  4,  p.  39,  meeting  two  fixed  lines  in 

points  B,  B'  ;  and  PA*  h  taken  =  PB.PB',  find  the  locus  of  P. 
Ant.  mx  (m'x  +  n'  )  =  y  (mx  +  m'x  +  n'). 

Ex.  10.  PA  is  taken  the  harmonic  mean  between  AB  and  AB1. 

Ant.  2mx  (m'x  +  n')  =  y  (mx  +  m'x  +  n'). 
Ex.  11.  Given  vertical  angle  of  a  triangle,  find  the  locus  of  the  point  where  the 

base  is  cut  in  a  given  ratio,  if  the  area  also  is  given.  Ans.  xy  =  constant. 

Ex.  12.  If  the  base  is  given.  jc2     y2      2xy  coso>  _       62 
W'  in2  +  n2          mn~  ~  (m  +  »)2  ' 

Ex.  13.  If  the  base  pass  through  a  fixed  point.  mx'  ,  ny' Ant.  --  1  --  =  m  +  n. 
x        y 

Ex.  14.  Find  the  locus  of  P  [Ex.  8,  p.  40]  if  MNte  constant. 

Ans.  x*  +  y*  +  2xy  cosw  =  constant. 

Ex.  15.  If  MN  pass  through  a  fixed  point.          ̂       _  x'  _  y'         _  ̂  
'  x  +  y  cos  o»      y  +  x  cos  u> 

Ex.  16.  If  MN  pass  through  a  fixed  point,  find  the  locus  of  the  intersection  of 

parallels  to  the  axes  through  M  and  N.  Ans.  —  +  -  =  1. 

Ex.  17.  Find  the  locus  of  P  [£x.  1,  p.  41]  if  the  line  CD  be  not  parallel  to  AB. 

Ex.  18.  Given  base  CD  of  a  triangle,  find  the  locus  of  vertex,  if  the  intercept  AB 
on  a  given  line  is  constant. 

Ant.    x'-'x(-"-(x"-y"x)(!,-!ft  =  c( 

50.   Problems  where  it  is  required  to  prove  that  a  moveabk 

right  line  passes  through  a  fixed  point. 

We  have  seen  (Art.  40)  that  the  line 

or,  what  is  the  same  thing, 

(A  +  kA)  x  +  (B+  kB'}  y  +  C  +  kC'  =  0, 
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where  k  is  indeterminate,  always  passes  through  a  fixed  point, 

namely,  the  interseetion  of  the  lines 

Ax  +  By+  (7=0,  and  A'x  -{•  By  +  0'  =  0. 
Hence,  if  the  equation  of  a  right  line  contain  an  indeterminate 

quantity  in  the  first  degree^  the  right  line  will  always  pass  through 

a  fixed  point. 

Ex.  1.  Given  vertical  angle  of  a  triangle  and  the  sum  of  the  reciprocals  of  the 
aides,  the  base  will  always  pass  through  a  fixed  point. -        = 

the  condition 
Take  the  sides  for  axes  ;  the  equation  of  the  base  is  -  +  ̂   =  1,  and  we  are  given 

1    1  _  1  or  1  _  ]_  _  1 
a     b~mj      b~m     a! 

therefore,  equation  of  base  is 

a     m     a  ~   ' where  m  is  constant  and  a  indeterminate,  that  is 

where  -  is  indeterminate.    Hence  the  base  must  always  pass  through  the  intersection 

of  the  two  lines  x  —  y  =  0,  and  y  =  TO. 

Ex.  2  Given  three  fixed  lines  OA,  OB,  OC,  meeting  in  a  point,  if  the  three  vertices 

of  a  triangle  move  one  on  each  of  these  lines,  and  two  sides  of  the  triangle  pass  through 
fixed  points,  to  prove  that  the  remaining  side  passes  through  a  fixed  point. 

Take  for  axes  the  fixed  lines  OA,  OB  on  which  the  base  angles  move,  then  the 
line  OC  on  which  the  vertex  moves  will  have  •> 

an  equation  of   the  form  y  —  mx,   and   let  the  A 

fixed  points  be  x'y',  x"y".  Now,  in  any  position 
of  the  vertex,  let  its  coordinates  be  x  =  o,  and 

consequently  y  =  ma ;  then  the  equation  of  AC  is 

(x'  -  a)  y  —  (y'  -  ma)  x  +  a  (y'  -  mx')  =  0. 
Similarly,  the  equation  of  BC  is 

(x"  -a)y-(y"-ma)x  +  a  (y"  -  mx")  -  0.        Q 
Now  the  length  of  the  intercept  OA  is  found  by  making  x  -  0  in  equation  AC,  or 

a  (,/  _  mx') 

Similarly,  OB  is  found  by  making  y  =  0  in  BC,  or 

_  a  (y"  -  mx") 

y"  -  ma  ~~ ' 

Hence,  from  these  intercepts,  equation  of  AB  is 
x'-a 

/'  -  mx'  ~  a' 
But  since  a  is  indeterminate,  and  only  in  the  first  degree,  this  line  always  passes  through 
a  fixed  point.    The  particular  point  is  found  by  arranging  the  equation  in  the  form 

y"  *'  (     mx  v  \ +  11  =  0. 
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Hence  the  line  passes  through  the  intersection  of  the  two  lines 

."/L^—jL-jsOb 

and  ^-ri--7-y—.  +  i  =  o. y"  -mx       y  —  mx 

Ex.  3.  If  in  the  last  example  the  line  on  which  the  vertex  C  moves  do  not  pass 
through  0,  to  determine  whether  in  any  case  the  base  will  pass  through  a  fixed  point. 

We  retain  the  same  axes  and  notation  as  before,  with  the  only  difference  that  the 

equation  of  the  line  on  which  C  moves  will  be  y  =  mx  +  n,  and  the  coordinates  of  the 
vertex  in  any  position  will  be  a,  and  ma  +  n.  Then  the  equation  of  A  C  is 

(af  —  a)y—(y'  —  ma  —  n)x  +  a(y'  —  mx')  -  nx'  =  0. 
The  equation  of  EC  is 

(x'r  —  a)y  —  (y"  —  ma  —  n)x  +  a(y"  —  mx")  —  nx"  =  0, 

OA  =  -a(y  -J1*]^^  ;  OB  =  a^r_m*^~~~- 
The  equation  of  AB  is  therefore 

y"  —  ma  —  n  of  —  a  __ 

a  (y"  —  mx")  —  nx"  a  (y'  —  mx')  —  nx'  ~ 
Now  when  this  is  cleared  of  fractions,  it  will  in  general  contain  a  in  the  second  degree, 
and  therefore  the  base  will  in  general  not  pass  through  a  fixed  point ;  if,  however, 

the  points  x'y',  x"y"  lie  in  a  right  line  (y  =  kx)  passing  through  0,  we  may  substitute 
in  the  denominators  y"  =  kx",  and  y'  =  kx',  and  the  equation  becomes 

which  contains  a  in  the  first  degree  only,  and  therefore  denotes  a  right  line  passing 
through  a  fixed  point. 

Ex.  4.  If  a  line  be  such  that  the  sum  of  the  perpendiculars  let  fall  on  it  from 

a  number  of  fixed  points,  each  multiplied  by  a  constant,  may  =  0,  it  will  pass  through 
a  fixed  point. 

Let  the  equation  of  the  line  be 

x  cos  a  +  y  sin  a  —  p  =  0, 

then  the  perpendicular  on  it  from  x'y'  is 
X*  COS  a  +  y'  sin  a  -  p, 

and  the  conditions  of  the  problem  give  us 

m'  (xr  cos  a  +  y'  sin  a  —  p)  +  m"  (x"  cos  a  +  y"  sin  a  —  p) 

+  m'"  (x"'  cos  a  +  y"'  sin  a  —p)  +  &c.  =  0. 

Or,  using  the  abbreviations  Z  (mx1)  for  the  sum*  of  the  mx,  that  is, 
m'x'  +  m"x"  +  m'"x'"  +  <fec., 

and  in  like  manner  2  (my')  for 

m'y'  +  m"y"  +  m'"y"'  +  &C, 

and  2  (m)  for  the  sum  of  the  m's  or 
m'  +  m"  +  m'"  +  (fee., 

*  By  sum  we  mean  the  algebraic  sum,  for  any  of  the  quantities  m',  m",  <fec.  maj 
be  negative. 

H 
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we  may  write  the  preceding  equation 

2  (mx')  cos  a  +  Z  (my')  sin  o  -  _p£  (m)  =  0. 

Substituting  in  the  original  equation  the  value  of  p  hence  obtained,  we-  get  for  the 
equation  of  the  moveable  line 

x£  (tn)  cos  a  +  »/S  (m)  sin  a  —  £  (mxr)  cos  a  —  £  (my')  sin  a  =  0, 

or  *£  (m)  -  £  (ma;')  +  {yZ.  (m)  -  £  (my')}  tan  o  =  0. 
Now  as  this  equation  involves  the  indeterminate  tan  a  in  the  firet  degree,  the  line 

passes  through  the  fixed  point  determined  by  the  equations 

x£  (m)  -  £  (mx')  -  0,  and  yZ  (m)  -  £  (m/)  =  0, 
or,  writing  at  full  length, 

_  m'x'  +  m"x"  +  m'"x'"  +  &c.        _  m'y' +  m"y"  +  m'"y"'  +  Ac. 
m'  +  m"  +  m"'  +  &c.  m'  +  m"  +  m'"  +  <fec. 

This  point  has  sometimes  been  called  the  centre  of  mean  position  of  the  given  points. 

51.    If  the  equation  of  any  line  involve  the  coordinates  of 

a  certain  point  x'y'  in  the  first  degree,  thus, 

(Ax'  +  By'+C)x  +  (Ax1  +  By'  -*C'}y  +  (A'x'  +  B'y'  +  G"}  =  0  ; 

then  if  the  point  x'y'  move  along  a  right  line,  the  line  whose 
equation  has  just  been  written  will  always  pass  through  a  fixed 

point.  For,  suppose  the  point  always  to  lie  on  the  line 

then  if,  by  the  help  of  this  relation,  we  eliminate  x'  from  the 
given  equation,  the  indeterminate  y  will  remain  in  it  of  the  first 

degree,  therefore  the  line  will  pass  through  a  fixed  point. 

Or,  again,  if  the  coefficients  in  the  equation  Ax  +  By  +  (7=0 
be  connected  by  the  relation  aA  +  bB  +  cC=*Q  (where  a,  J,  c  are 

constant  and  A,  J5,  0  may  vary),  the  line  represented  by  this  equa- 
tion will  always  pass  through  a  fixed  point. 

For  by  the  help  of  the  given  relation  we  can  eliminate  (7, 
and  write  the  equation 

a  right  line  passing  through  the  point  («  =  -,  y  =  -)  . V       c          c) 

52.  Polar  Coordinates.  —  It  is,  in  general,  convenient  to  use 
this  method,  if  the  question  be  to  find  the  locus  of  the  extremities 

of  lines  drawn  through  a  fixed  point  according  to  any  given  law. 

Ex.  1.   A  and  B  are  two  fixed  points  ;  draw  through  B  any  line,  and  let  fall  on 
a  perpendicular  from  A,  AP  ;  produce  AP  so  that  the  rectangle  AP  .AQ,   may  be 
constant  ;  to  find  the  locus  of  the  point  Q. 



EXAMPLES  ON  THE   RtftnT   LTNE.  51 

Take  A  for  the  pole,  aiid  AB  for  the  fixed  axis,  then  AQ  is  our  radius  vector, 

designated  by  p,  and  the  angle  QAB  =  0,  and  our  object
 

is  to  find  the  relation  existing  between  p  and  0.     Let  us 

call  the  constant  length  AB  =  c,  and  from  the  right-angled 

triangle  APB  we  have  A  P=c  cos  0,  but  AP .  A  Q  =  const.  =  £2 : 
therefore 

k 

pc  cos  0  =  &2,  or  p  cos  0  =  -  ; 

but  we  have  seen  (Art.  44)  that  this  is  the  equation  of  a  right 

line  perpendicular  to  AB,  and  at  a  distance  from  A  =  A. 
 B 

Ex.  2.  Given  the  angles  of  a  triangle  ;  one  vertex  A 

along  a  fixed  right  line  :  to  find  the  locus  of  the  third. 

Take  the  fixed  vertex  A  for  pole,  and  AP  perpendicular 

to  the  fixed  line  for  axis,  then  AC=p,  CAP-Q.  Now 

since  the  angles  of  ABC  are  given,  AB  is  in  a  fixed  ratio 

tc  A  C  (=  mA  (7)  and  BAP  =  6  -  a  ;  but  AP  =  AB  cos  BAP  ; 

therefore,  if  we  call  AP,  a,  we  have 

mp  cos  (0  —  a)  =  a, 

which  (Art.  44)  is  the  equation  of  a  right  line,  making 

an  angle  a  with  the  given  line,  and  at  a  distance  from 

l-s- 

la  fixed,  another  B  move 

Ex.  3.  Given  base  and  sum  of  sides  of  a  triangle,  if  at  either  extremity  of  the 

b;ise  B  a  perpendicular  be  erected  to  the  conterminous  side  BC;  to  find  che  locus 

of  P  the  point  where  it  meets  CP  the  external  bisector  of  vertical  angle. 

Let  us  take  the  point  B  for  our  pole,  then  BP  will  be  our  radius  vector  p  ;  and 

let  us  take  the  base  produced  for  our  fixed  axis,  then 

PBD  =  6,  and  our  object  is  to  express  p  in  terms  of  0. 

Let  us  designate  the  sides  and  opposite  angles  of  the 

triangle  a,  b,  c,  A,  B,  C,  then  it  is  easy  to  see  that 

the  angle  £CP  =  QQ°-^C,  and  from  the  triangle 
PCB  that  a  =  p  tan  £(7.  Hence  it  is  evident  that  if 

we  could  express  a  and  tan  £  C  in  terms  of  0,  we  cou*$>  ̂   jj 
express  p  in  terms  of  0.    Now  from  the  triangle  ABC  we  have 

but  if  tub  g.ven  sum  of  aides  be  m,  we  may  substitute  for  b,  m  —  a  ;  and  cos  B  plainly 
=  sin  0  ;  hence 

m»  —  1am  +  a?  =  o2  +  c2  —  2ac  sin  0, 

m2-c2 and 

2  (m  -  c  sin  0)  * 
Thus  we  have  expressed  a  in  terms  of  0  and  constants,  and  it  only  remains  to  find 
an  expression  for  tan  £  C. 

Now 

but  b  sin  C  -  c  sin  B  —  e  cos  0,   and  £  cos  (7  =  a  —  c  cos  .B  =  a  - 
c  cos  0 

~  m  —  c  sin  0  ' 
hence 
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We  are  now  able  to  express  p  in  terms  of  0,  for,  substitute  in  the  equation 

a  =  p  tan  JC",  the  values  we  have  found  for  a  and  tan  ̂ C,  and  we  get 

OT2-c2  pcco*6  e-m*  ~  c2 

2  (m  -  c  sin  0)  ~  (m  -  c  sin  0)  '   °r  ̂  °'  2c 
Hence  the  locus  is  a  line  perpendicular  to  the  base  of  the  triangle  at  a  distance 

The  student  may  exercise  himself  with  the  corresponding  locus,  if  CP  had  been 
the  internal  bisector,  and  if  the  difference  of  sides  had  been  given. 

Ex.  4.  Given  n  fixed  right  lines  and  a  fixed  point  0  ;  if  through  this  point  any 
radius  vector  be  drawn  meeting  the  right  lines  in  the  points  r,,  r2,  rs...r»,  and  on 

this  a  point  R  be  taken  such  that  -£-.  =  -^  -  +  -_     +  77-+—  77-9  to  find  the 
t/jt      I/PI      c/r2      G/7'j         c/rB locus  of  72. 

Let  the  equations  of  the  right  lines  be 

p  COS  (0  -  o)  =pl  ;  p  COS  (0  -  /3)  =  J92,  *0. 

Then  it  is  easy  to  see  that  the  equation  of  the  locus  is 

»     cos  (6  -  a)     cos  (0  —  13) 

?="7T~  +  ~"  ~  +&c' 
the  equation  of  a  right  line  (Art.  44).    This  theorem  is  only  a  particular  case  of 
a  general  one,  which  we  shall  prove  afterwards. 

We  add,  as  in  Art.  49,  a  few  examples  leading  to  equations  of  higher  degree. 

Ex.  5.  BP  is  a  fixed  line  whose  equation  is  p  cos  0  =  TO,  and  on  each  radius  vector 

is  taken  a  constant  length  PQ  ;  to  find  the  locus  of  Q,  [see  fig.,  Ex.  1], 
772-  Til 

AP  is  by  hypo  thesis  =  -  5;  therefore  AQ  =  p  =  —  Q  +  ̂ >  which,  transformed 

to  rectangular  coordinates,  is  (x  —  »»)2  (x2  +  y2)  =  cPx2. 

Ex.  6.  Find  the  locus  of  Q,  if  P  describe  any  locus  whose  polar  equation  is  given, 

p  =  (p  (0).  We  are  by  hypothesis  given  AP  in  terms  of  0,  but  AP  is  the  p  of  the 

locus  —  d;  we  have  therefore  only  to  substitute  in  the  given  equation  p  —  d  for  p. 
Ana.  p-d  =  <p  (0). 

Ex.  7.  H  AQ  be  produced  so  that  AQ  may  be  double  AP,  then  AP  is  half  the 
•  of  the  locus,  and  we  must  substitute  half  p  for  p  in  the  given  equation. 

Ex.  8.  If  the  angle  PAB  were  bisected,  and  on  the  bisector  a  portion  AP'  be 
taken  so  that  AP"1  -  mAP,  find  the  locus  of  P'  when  P  describes  the  right  line 

o  cos  0  =.  m.    PAB  is  now  twice  the  0  of  the  locus,  and  therefore  AP  =.  —  k>fl  ,  and 

COS  *v the  equation  of  the  locus  is  p*  cos  20  =  t»2. 



*CHAPTER     IV. 

APPLICATION  OF  ABRIDGED  NOTATION  TO  THE  EQUATION  OP 
THE  RIGHT  LINE. 

53.  WE  have  seen  (Art.  40)  that  the  line 

(x  cos  a  +  y  sin  a  —  p)  —  k  (x  cos  ft  +  y  sin  /3  —  p'}  =  0 
denotes  a  line  passing  through  the  intersection  of  the  lines 

x  cos  a  +  y  sin  a  -p  =  0,   x  cos  ft  +  #  sin  /3  -p'  =  0. 
We  shall  often  find  it  convenient  to   use  abbreviations  for 

these  quantities.     Let  us  call 

x  cos  a  +  y  sin  a  -  p,  a ;  x  cos /3  +  y  sin  f3—p',  j3. 
Then  the  theorem  just  stated  may  be  more  briefly  expressed ;  the 

equation  a  —  &/3  =  0  denotes  a  line  passing  through  the  intersec- 
tion of  the  two  lines  denoted  by  a  =  0,  /3  =  0.  We  shall  for 

brevity  call  these  the  lines  a,  /3,  and  their  point  of  intersection 

the  point  a/3.  We  shall,  too,  have  occasion  often  to  use  abbre- 
viations for  the  equations  of  lines  in  the  form  Ax  +  By  +  G—  0. 

We  shall  in  these  cases  make  use  of  Roman  letters,  reserving 

the  letters  of  the  Greek  alphabet  to  intimate  that  the  equation 
is  in  the  form 

x  cos  a  +  y  sin  a  -  p  =  0. 

54.  We  proceed  to  examine  the  meaning  of  the  coefficient  k 

in  the  equation  a  -  kj3  =  0.      We  saw  (Art.  34) 

that  the  quantity  a  (that  is,  x  cos  a  +  y  sin  a-  p) 
denotes  the  length  of  the  perpendicular  PA  let  fall 

from  any  point  xy  on  the  line  OA  (which  we 

suppose  represented  by  a).  Similarly,  that  /3  is  the  °  B 
length  of  the  perpendicular  PB  from  the  point  xy  on  the  line 

OB,  represented  by  /3.  Hence  the  equation  a-kft  =  Q  asserts 

that  if,  from  any  point  of  the  locus  represented  by  it,  perpen- 

diculars be  let  fall  on  the  lines  OA,  OB,  the  ratio  of  these  per- 
pendiculars (that  is,  PA  :  PB)  will  be  constant  and  =  k.  Hence 
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the  locus  represented  by  a  -  kft  =  0  is  a  right  line  through  0,  and 

T._PA         _B\nPOA 
~PB>  °   "smPOB' 

It  follows  from  the  conventions  concerning  signs  (Art.  34)  that 

a  -I-  k/3  =  0  denotes  a  right  line  dividing  externally  the  angle 

A  OB  into  parts  such  that  ̂     pou  =  ̂"     ̂   'lsi  °^  course»  assumed 
in  what  we  have  said  that  the  perpendiculars  PA,  PB  are  those 

which  we  agree  to  consider  positive ;  those  on  the  opposite 
sides  of  a,  /3  being  regarded  as  negative. 

Ex.  1.  To  express  in  this  notation  the  proof  that  the  three  bisectors  of  the  angles 
of  a  triangle  meet  in  a  point. 

The  equations  of  the  three  bisectors  are  obviously  (see  Arts.  35,  54)  «  -  ft  =  0, 
0  -  y  =  0,  y  -  a  =  0,  which,  added  together,  vanish  identically. 

Ex.  2.  Any  two  of  the  external  bisectors  of  the  angles  of  a  triangle  meet  on  the 
third  internal  bisector. 

Attending  to  the  convention  about  signs,  it  is  easy  to  see  that  the  equations  of 
two  external  bisectors  are  o  +  ft  =  0,  a  +  y  —  0,  and  subtracting  one  from  the  other 

we  get  ft  —  y  —  0,  the  equation  of  the  third  internal  bisector. 

Ex.  3.  The  three  perpendiculars  of  a  triangle  meet  in  a  point. 

Let  the  angles  opposite  to  the  sides  a,  /3,  y  be  A,  B,  C  respectively.  Then  since 
the  perpendicular  divides  any  angle  of  the  triangle  into  parts,  which  are  the  com- 

plements of  the  remaining  two  angles,  therefore  (by  Art.  64)  the  equations  of  the 

perpendiculars  are 

a  cos.4  —  (3  coaB  =  0,  ft  cos  I?-  y  coaC=  0,  y  cosC-  a  cos  A  =  0, 
which  obviously  meet  in  a  point. 

Ex.  4.  The  three  bisectors  of  the  sides  of  a  triangle  meet  in  a  point. 
The  ratio  of  the  perpendiculars  on  the  sides  from  the  point  where  the  bisector 

meets  the  base  plainly  is  sin  A  :  sin  B.    Hence  the  equations  of  the  three  bisectors  are 

a8in^-/3sin5  =  0,  ft  sinJ?-  y  sin  C=  0,  y  einC-  osin^  =  0. 

Ex.  5.  The  lengths  of  the  sides  of  a  quadrilateral  are  a,  b,  <?,  rf;  find  the  equation 
of  the  line  joining  middle  points  of  diagonals. 

Ans.  cut  -  bft  +  cy  —  dS  =  0  ;  for  this  line  evidently  passes  through  the  inter- 
section of  aa  —  bfr  and  cy-dt;  but,  by  the  last  example,  these  are  the  bisectors 

of  the  base  of  two  triangles  having  one  diagonal  for  their  common  base.  In  like 

manner  aa  -  dt,  6/3  -  cy  intersect  in  the  middle  point  of  the  other  diagonal. 

Ex.  6  To  form  the  equation  of  a  perpendicular  to  the  base  of  a  triangle  at  its 

extremity.  Ans.  a  +  y  cos  B  =  0. 

Ex.  7.  If  there  be  two  triangles  such  that  the  perpendiculars  from  the  vertices  of 
one  on  the  sides  of  the  other  meet  in  a  point,  then,  vice  versa,  the  perpendiculars  from 
the  vertices  of  the  second  on  the  sides  of  the  first  will  meet  in  a  point. 

Let  the  sides  be  a,  /3,  y,  a',  /3',  y',  and  let  us  denote  by  (a/3)  the  angle  between 
a  and  /3.  Then  the  equation  of  the  perpendicular 

from  a/3  on  y'  is  a  COS  (/3y')  -  ft  COS  (ay')  =  0, 

from  /3y  on  a'  is  /3  cos  (ya')  —  y  cos  (/3a')  =  0, 

from  ya  on  ft'  is  y  cos  (a/3')  -  c  cos  (y/3')  =  0 
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The  condition  that  these  should  meet  in  a  point  is  found  by  eliminating  /3  between 
the  first  two,  aud  examining  whether  the  resulting  equation  coincides  with  the 
third.  It  is 

COS  (a/3')  COS  (/?•/)  cos  (ya')  =  cos  (a'/3)  cos  (/3'y)  cos  (y'a). 
But  the  symmetry  of  this  equation  shews  that  this  is  also  the  condition  that  the 
perpendiculars  from  the  vertices  of  the  second  triangle  on  the  sides  of  the  first 
should  meet  in  a  point. 

55.  The  lines  a  —  k/3  =  0,  and  ka.  —  ft  =  0,    are  plainly  such 
that  one  makes  the  same  angle  with  the  line  a  which  the  other 

makes  with  the  line  $,  and  are  therefore  equally  inclined  to  the 

hisector  a  —  j3. 

Ex.  If  through  the  vertices  of  a  triangle  there  be  drawn  any  three  lines  meeting 

in  a  point,  the  three  lines  drawn  through  the  same  angles,  equally  inclined  to  the 
bisectors  of  the  angles,  will  also  meet  in  a  point. 

Let  the  sides  of  the  triangle  be  a,  /3,  y,  and  let  the  equations  of  the  first  three 
lines  be 

la-mp  =  0,  m/3  -  ny  =  0,  ny  -  la  =  0, 
which,  by  the  principle  of  Art.  41,  are  the  equations  of  three  lines  meeting  in  a 
point,  and  which  obviously  pass  through  the  points  a/3,  /3y,  and  ya.  Now,  from 
this  Article,  the  equations  of  the  second  three  lines  will  be 

«     £  =  0,  £-2  =  0,  and*-£  =  0, I      m        '  m     n  n     I 

which  (by  Art.  41)  must  also  meet  in  a  point. 

56.  The  reader  is  probably  already  acquainted  with  the  fol- 

lowing fundamental  geometrical  theorem: — li  If  a  pencil  of  four 
right  lines  meeting  in  a  point   0  be  intersected  by  any  transverse 

right  line  in  the  four  points  A,  P,  P ',  J5,  then AP.PB 

the  ratio        *  pp  is  constant,  no  matter  how        /  /        p 

the  transverse  line  be   drawn."     This  ratio  is 
called  the  anharmonic  ratio  of  the  pencil.     In 

fact,  let  the  perpendicular  from  0  on  the  transverse  line  =p ;  then 

p.AP=  OA.  OP.sin  A  OP(both  being  double  the  area  of  the  triangle 

AOP) ;  p.PB=  OP. OB  sinPOS;  p.AP  =  OA.OP  am  A  OF; 
p.PB=  OP.  OB.smPOB;  hence 

/.  AP.  PB  =  OA .  OP.  OP.  OB.  sin  A  OP.  sin  P  OB ; 

p\AP.PB  =  OA.OP.  OP.  OB.  sinAOP'.smPOB; 

AP.PB  _  smAOP.  smP'OB 
AP.PB  ~  smAOF.  sinPOg' 

but  the  latter  is  a  constant  quantity,  independent  of  the  position 
of  the  transverse  line. 
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57.  If  a  —  kft  =  0,  a  -  k'ft  =  0,  be  the  equations  of  two  lines, k 
then  j7  will  be  the  anharmonic  ratio  of  the  pencil  formed  by  the 

K 

four  lines  a,  £,  a  -  &£,  a  -  &'£,  for  (Art.  54) 
sin  A  OP     , ,  _  sin  .4  OP 

*  ~  sin  POB  '  *  ~  sin 
&       s 

therefore  j,  -  s 

but  this  is  the  anharmonic  ratio  of  the  pencil. 

The  pencil  is  a  harmonic  pencil  when  j-,  =  -  1,  for  then  the 

angle  AOB  is  divided  internally  and  externally  into  parts  whose 
sines  are  in  the  same  ratio.  Hence  we  have  the  important 

theorem,  two  lines  whose  equations  are  a.  —  kft  =  0,  a  +  left  =  0, 
form  with  a,  /3  a  harmonic  pencil. 

58.  In  general  the   anharmonic  ratio  of  four  lines   a  —  &/3, 

a  _  ft   a  _  m£,  a  -  n0  is  ̂— ̂  -^  ~  ®  .     For  let  the  pencil  be 
—  — 

cut  by  any  parallel  to  ft  in  the  four  points  K,  L,  M,  AT,  and  the 
.    .   NL.MK  .  ,    vft 

ratio  is  XT, ,  T  „.      But    since   p    \* NM.LK  \ 

has  the  same  value  for  each   of        \      K/  L/M/  N^^ 

these    four    points,    the    perpen- 
diculars from  these  points  on  a  are 

(by  virtue  of  the  equations  of  the  6 

lines)  proportional  to  k,  I,  m,  n]  and  AK,  AL,  AM,  AN  arc 

evidently  proportional  to  these  perpendiculars  ;  hence  NL  is  pro- 

portional to  n  —  I ;  MK to  m  —  k •  NMto  n-  m'  and  LKto  l-k. 

59.  The  theorems  of  the  last  two  articles  are  true  of  lines 

represented  in  the  form  P—  kP,  P—  IP,  &c.,  where  P,  P'  denote 

ax  +  by  +  c,  ax  -f-  Vy  +  c',  &c.  For  we  can  bring  P  to  the 
form  x  cos  a  +  y  sin  a  -p  by  dividing  by  a  certain  factor.  The 

equations  therefore  P—  kP  =  0,  P-  IP  =  0,  &c.,  are  equivalent 

to  equations  of  the  form  a  —  kpft  =  0,  a  —  Ipft  =  0,  &c.,  where  p 
is  the  ratio  of  the  factors  by  which  P  and  P  must  be  divided 

in  order  to  bring  them  to  the  forms  a?  ft.  But  the  expressions 
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for  anharmonic  ratio  are  unaltered  when  we  substitute  for  &,  Z, 

wi,  n  ;  kp,  lp,  mp,  np. 
It  is  worthy  of  remark,  th.it  since  the  expressions  for 

anharmonic  ratio  only  involve  the  coefficients  &,  ?,  w,  w,  it  follows 

that  if  we  have  a  system  of  any  number  of  lines  passing  through 

a  point,  P-JcP^  P-IP,  &c. ;  and  a  second  system  of  lines 

passing  through  another  point,  Q  —  kQ',  Q  —  lQ',&c.,  the  line 
P—  kP  being  said  to  correspond  to  the  line  Q  —  kQ',  &c. ;  then 
the  anharmonic  ratio  of  any  four  lines  of  the  one  system  is 

equal  to  that  of  the  four  corresponding  lines  of  the  other  system. 
We  shall  hereafter  often  have  occasion  to  speak  of  such  systems 

of  lines,  which  are  called  homographic  systems. 

60.  Given  three  lines  a,  /3,  7,  forming  a  triangle  ;*  the  equation 
of  any  right  line,  ax  -f  by  -f  c  =  0,  can  be  thrown  into  the  form 

Ia  +  ml3  +  ny  =  0. 

Write  at  full  length  for  a,  £,  7  the  quantities  which  they 

represent,  and  la,  -f  mft  +  nj  becomes 

(I  cosa  +  m  cos/3  +  n  cosy)  x  +  (I  sina  +  m  sin/3  4  n  sin 7)  y 

-  (Ip  +  mp'  +  np")  =  0. 
This  will  be  identical  with  the  equation  of  the  given  line, 

if  we  have 

I  cosa  +  wi  cos/3  +  7i  0037  =  a,   Zsina-f-  m  sin/3-f  n  sin7  =  &, 

Ip  +  mp'  +  np"  =  -  c, 
and  we  can  evidently  determine  Z,  m,  w,  so  as  to  satisfy  these 
three  equations, 

The  following  examples  will  illustrate  the  principle  that  it  is 
possible  to  express  the  equations  of  all  the  lines  of  any  figure 
in  terms  of  any  three,  a  =  0,  /S  =  0,  7  =  0. 

Ex.  1.  To  deduce  analytically  the  harmonic  properties  of  a  complete  quadrilateral. 
(See  figure,  next  page). 

Let  the  equation  of  AC  be  a  =  0 ;  of  AB,  ft  =  0 ;  of  BD,  7  =  0;  of  AD 
la-mp  =  Q;  and  of  EC,  mft  -  ny  =  0.  Then  we  are  able  to  express  in  terms  of 
these  quantities  the  equations  of  all  the  other  lines  of  the  figure. 

*  We  say  "forming  a  triangle,"  for  if  the  lines  a.  /3,  y  meet  in  a  point,  la  +  mp  +  »7 must  always  denote  a  line  passing  through  the  same  point,  since  any  values  of  the 
coordinates  which  make  a.  B,  +>  separately  =  0,  must  make  la  +  mp  +  ny  =  0. 

I 
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For  instance,  the  equation  of  CD  ia 

la  -  m/3  +  ny  =  0, 

for  it  is  the  equation  of  a  right  line  passing 

through  the  intersection  of  la  —  mft  and  y,  that 
is,  the  point  D,  and  of  a  and  m/3  -  ny,  that  is, 
the  point  C.  Again,  la  —  ny  =  0  is  the  equa- 

tion of  OE,  for  it  passes  through  ay  or  E,  and 
it  also  passes  through  the  intersection  of  AD 

and  BC,  since  it  is  =  (la  -  mp)  +  (mp  -  ny). 
EF    joins    the    point    ay    to     the    point 

(la  -  m/3  +  ny,  /3),  and  its  equation  will  bo  found  to  be  la  +  ny  =  0. 
From  Art.  57  it  appears  that  the  four  lines  EA,  EO,  EB,  and  EF  form  a 

harmonic  pencil,  for  their  equations  have  been  shown  to  be 

a  =  0,   y  =  0,   and  la  ±  ny  =  0. 

Again,  the  equation  of  FO,  which  joins  the  points  (la  +  ny,  /3)  and  (la-m,p,  m/3-  ny) 
ia 

Hence  (Art.  57)  the  four  lines  FE,  FC,  FO,  and  FB  are  a  harmonic  pencil,  for 
their  equations  are 

la  -  mp  +  ny  =  0,  /3  =  0,  and  la  -  m/3  +  ny  +  m/3  =  0. 

Again,  00,  OE,  OD,  OF  are  a  harmonic  pencil,  for  their  equations  are 

la-mp  =  0,   m/3  -  ny  =  0,    and  la  -  m/3  +  (m/3  -  ny)  =  0. 

Ex.  2.  To  discuss  the  properties  of  the  system  of  lines  formed  by  drawing  through 
the  angles  of  a  triangle  three  lines  meeting  in  a  point. 

Let  the  equation  of  AB  be  y  =  0 ;  of  AC,  /3  =  0  j  of  BC,  a  -  0 ;  and  let  the  lines 
OA,  OB,  OC,  meeting  in  a  point,  .. 

be  m/3  -  ny,  ny  —  la,  la  -  mft  (see 
Art.  55). 

Now    we  can  form    the  equa-  J, 
tioua  of  all  the  other  lines  in  the 

figure. 
For  example,  the  equation   of 

F 

m/3  4-  ny  —  la  =  0, 
since  it  passes  through  the  points 

(/3,  ny  -  la)  or  Et  and  (y,  m/3  -  la)     » 
orF. 

In  like  manner,  the  equation  of  DFia 

la  -  m/3  +  ny  =  0, 

and  of  DE  la  +  m/3  -  ny  =  0. 

Now  we  can  prove  that  the  three  points  L,  J\I,  AT  are  all  in  one  right  line,  whose 
equation  is 

la  +  m/9  -f  ny  =  0, 

for  this  line  passes  through  the  points  (la  +  m/3  -  »y,  y)  or  N;  (la  —  mft  +  ny,  /3) 
or  M  ;  and  (m/3  +  ny  -  la,  a)  or  L. 

The  equation  of  CN  is 
la  +  mft-  0, 

for  this  is  evidently  a  line  through  (a,  ft)  or  C,  and  it  also  passes  through  N,  sine* 

it  =  (la  +  mp  +  ny)  -  ny. 
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Hence  BN  is  cut  harmonically,  for  the  equations  of  the  four  lines  CN,  CA> 
CF,  CBare 

a  =  0,  ft  =  0,  fa  —  m/3  =  0,  la  +  mfi  =  0. 

The  equations  of  this  example  can  be  applied  to  many  particular  cases  of  frequent 
occurrence.  Thus  (see  Ex.  3,  p.  54)  the  equation  of  the  line  joining  the  feet 

of  two  perpendiculars  of  a  triangle  is  a  cos  ,4  +  /3  cos  5  —  y  cos  C—  0;  while 
a  cos  A  +  /8  cos  B  +  y  cos  C  passes  through  the  intersections  with  the  opposite  sides 
of  the  triangle,  of  the  lines  joining  the  feet  of  the  perpendiculars.  In  like  manner 

a  sinA  +  p  siuB  —  y  sinC  represents  the  line  joining  the  middle  points  of  two 
sides,  «fec. 

Ex.  3.  Two  triangles  are  said  to  be  homologous,  when  the  intersections  of  the 
corresponding  sides  lie  on  the  same  right  line  called  the  axis  ofhomoloyy;  prove 
that  the  lines  joining  the  corresponding  vertices  meet  in  a  point  [called  the  centre 

of  homology}. 

Let  the  sides  of  the  first  triangle  be  a,  /3,  y  ;  and  let  the  line  on  which  the  corre- 
sponding sides  meet  be  la  +  TO/?  +  ny ;  then  the  equation  of  a  line  through  the 

intersection  of  this  with  a  must  be  of  the  form  I'a  +  TO/3  +  ny  =  0,  and  similarly  those 
of  the  other  two  sides  of  the  second  triangle  are 

la  +  TO'/?  +  ny  =  0,  la  +  TO/3  +  n'y  =  0. 
But  subtracting  successively  each  of  the  last  three  equations  from  another,  we 

tcet  for  the  equations  of  the  lines  joining  corresponding  vertices 

(l-V)a  =  (m-m')p,   (m-mr)ft  =  (n-n    y,   (n  -  »')  y  =  (I-  V)  a, 
which  obviously  meet  in  a  point. 

61.  To  find  the  condition  that  two  lines  la.  +  m/3  +  ?iy, 

I'a  +  m'fi  +  ny  may  be  mutually  perpendicular. 
Write  the  equations  at  full  length  as  in  Art.  60,  and  apply 

the  criterion  of  Art.  25,  Cor.  2  (A A'  +  BB'  =  0),  when  we  find 

If  +  mm  +  nn  -+  (m,n  +  m'n)  cos  (ft  —  7)  +  (nl  +  nl)  cos  (7  —  a) 

+  (Im  +  I'm]  cos  (a  -  j3)  =  0. 
Now  since  (3  and  7  are  the  angles  made  with  the  axis  of  x  by 

the  perpendiculars  on  the  lines  /3,  7,  [3  —  7  is  the  angle  between 
those  perpendiculars,  which  again  is  equal  or  supplemental  to 

the  angle  between  the  lines  themselves.  If  we  suppose  the 

origin  to  be  within  the  triangle,  and  A,  J5,  G  to  be  the  angles 

of  the  triangle,  $  —  7  is  the  supplement  of  A.  The  condition 
for  perpendicularity  therefore  is 

ll'+mm'+nri-  (mn'+m'n)  cosA-(nl'+n'l)  co3B—(lm'+l'm)  cos 0=0. 
As  a  particular  case  of  the  above,  the  condition  that  la.  +  m/3  +  ny 
may  be  perpendicular  to  y  is 

n  =  m  cos  A  4  I  cos  B. 

In  like  manner  we  find  the  length  of  the  perpendicular  from  x'y 
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on  la.  +  m/3  +  ny.  Write  the  equation  at  full  length  and  apply  the 

formula  of  Art.  34,  when,  if  we  write  x  co&ai  +  y'  siua-^  =  a', 
&c.,  the  result  is 

  la'  +  mff  +  ny1   
V(f  +  m*  +  ri*  —  2mn  cos  J.  —  2nl  cos  B  —  %lm  cos  G) ' 

Ex.  1.  To  find  the  equation  of  a  perpendicular  to  y  through  its  extremity.  The 

equation  is  of  the  form  la  +  ny  =  0.  And  the  condition  of  this  article  gives 
n  =  I  cos  B,  as  in  Ex.  6,  p.  54. 

Ex.  2.  To  find  the  equation  of  a  perpendicular  to  y  through  its  middle  point. 

The  middle  point  being  the  intersection  of  y  with  a  sin  A  —  /3  sin  B,  the  equation 
of  any  line  through  it  is  of  the  form  a  sin  A  —  /3  sin  B  +  ny  —  0,  and  the  condition 
of  this  article  gives  n  =  sin  (A  —  £). 

Ex.  3.  The  three  perpendiculars  at  middle  points  of  sides  meet  in  a  point.  For 

eliminating  a,  /3,  y  in  turn  between 

a  sin.4  -  /3  sin  B  +  y  sin  (A  —  B)  =  0,  /3  sin  B  —  y  sin  C  +  a  sin  (B  -  G)  =  0, 

we  get  for  the  lines  joining  to  the  three  vertices  the  intersection  of  two  perpen- 
a  Q  y 

diculars    -  =  —  >,;  and  the  symmetry  of  the  equations  proves  that  the 

third  perpendicular  passes  through  the  same  point.  The  equations  of  the  perpen- 

diculars vanish  when  multiplied  by  sin'C1,  sin2.4,  sin2J5,  and  added  together. 

Ex.  4.  Find,  by  Art.  25,  expressions  for  the  sine,  cosine,  and  tangent  of  the  angle 

between  la  +  m/3  +  »y,  I' a  +  m'fi  +  n'y. 

Ex.  5.  Prove  that  a  cos .4  +  /3  cos  B  +  y  cos  C  is  perpendicular  to 

a  einA  cos^4  sin  (B  -  C)  +  ft  sin  B  cos  B  sin  (C-  A)  +  y  sin  C  cos  C  sin  (A  -  B). 

Ex.  6.  Find  the  equation  of  a  line  through  the  point  a'/3'y'  perpendicular  to  the 
line  y.  Ans.  a  (£'  +  y'  cos.4)  -  /3  (a'  +  y'  cosB)  +  y  (ft'  co*B  -  a'  cos  A). 

62.  We  have  seen  that  we  can  express  the  equation  of  any 

right  line  in  the  form  la  +  m/3  +  ny  =  0,  and  so  solve  any  problem 
by  a  set  of  equations  expressed  in  terms  of  a,  yS,  7,  without  any 

direct  mention  of  x  and  y.  This  suggests  a  new  way  of  looking 

at  the  principle  laid  down  in  Art.  60.  Instead  of  regarding  a 

as  a  mere  abbreviation  for  the  quantity  x  cos  a  +  y  sin  a  —  p,  we 

may  look  upon  it  as  simply  denoting  the  length  of  the  perpen- 
dicular from  a  point  on  the  line  a.  We  may  imagine  a  system 

of  trilinear  coordinates  in  which  the  position  of  a  point  is  defined 

by  its  distances  from  three  fixed  lines,  and  in  which  the 

position  of  any  right  line  is  defined  by  a  homogeneous  equation 
between  these  distances,  of  the  form 

Za  +  7H/3  +  ny  =  0. 

The  advantage   of  trilinear  coordinates  is,  that  whereas  in 
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Cartesian  (or  x  and  y)  coordinates  the  utmost  simplification  we 
can  introduce  is  by  choosing  two  of  the  most  remarkable  lines  in 

the  figure  for  axes  of  coordinates,  we  can  in  trilinear  coordi- 

nates obtain  still  more  simple  expressions  by  choosing  three  of 

the  most  remarkable  lines  for  the  lines  of  reference  a,  j3,  7.  The 

reader  will  compare  the  brevity  of  the  expressions  in  Art.  54 

with  those  corresponding  in  Chap.  II. 

63.  The  perpendiculars  from  any  point  0  on  a,  $,  7  are 

connected  by  the  relation  aa,  +  b/3  +  cy  =  M,  where  a,  Z>,  c,  are 
the  sides,  and  M  double  the  area,  of  the  triangle  of  reference. 

For  evidently  aa,  &/3,  cy  are  respectively  double  the  areas  of 

the  triangles  OBC,  OCA,  OAR  The  reader  may  suppose 

that  this  is  only  true  if  the  point  0  be  taken  within  the  triangle  ; 
but  he  is  to  remember  that  if  the  point  0  were  on  the  other 

side  of  any  of  the  lines  of  reference  (a),  we  must  give  a  negative 

sign  to  that  perpendicular,  and  the  quantity  aa  +  b@  +  cy  would 

then  be  double  OCA  +  OAB-  OBC,  that  is,  still  =  double  the 
area  of  the  triangle.  Since  sin  .4  is  proportional  to  a,  it  is  plain 

that  a  sin  .4  4  /3  smB  +  y  sin  G  is  also  constant,  a  theorem  which 

may  otherwise  be  proved  by  writing  a,  /8,  7  at  full  length,  as  in 

Art.  60,  multiplying  by  sin(/8  —  7),  sin  (7—  a),  sin(a  —  £), 
respectively,  and  adding,  when  the  coefficients  of  x  and  y  vanish, 
and  the  sum  is  therefore  constant. 

The  theorem  of  this  article  enables  us  always  to  use  homo- 

geneous equations  in  a,  f3,  7,  for  if  we  are  given  such  an  equation 

as  a  =  3,  we  can  throw  it  into  the  homogeneous  form 

Ma.  =  3  (aa  +  b@  +  cy). 

64.  To  express  in  trilinear  coordinates  the  equation  of  the 

parallel  to  a  given  line  la.  H-  m/3  +  717. 

In  Cartesian  coordinates  two  lines  Ax  +  By+  (7,  Ax  +  By  +  £7', 
are  parallel  if  their  equations  differ  only  by  a  constant.  It 
follows  then  that 

la  +  m@  +  ny  +  k  (a  sin  A  +  fi  sin  B+  y  sin  C)  =  0 

denotes  a  line  parallel  to  la.  -}-  mft  +  ny,  since  the  two  equations 
differ  only  by  a  quantity  which  has  been  just  proved  to  be 
constant. 
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In  the  same  case  Ax-}-  By  4  C+  (^4^+  By  +  C')  denotes  a 
line  also  parallel  to  the  two  given  lines  and  half-way  between 

them;  hence  if  two  equations  P  =  0,  P'  =  0  are  so  connected 
that  P—  P'  =  constant,  then  P-f  P'  denotes  a  parallel  to  P  and 

P'  half-way  between  them. 
Ex.  1.  To  find  the  equation  of  a  parallel  to  the  base  of  a  triangle  drawn  through 

the  vertex.  Ans.  a  sin  A  +  ft  sin  B  =  0. 
For  this,  obviously,  is  a  line  through  aft  j  and  writing  the  equation  in  the  form 

y  sin  C  -  (a  sin  A  +  ft  sin  B  +  y  sin  C)  =  0, 

it  appears  that  it  differs  only  by  a  constant  from  y  =  0. 
We  see,  also,  that  the  parallel  a  sin  A  +  ft  sin  B,  and  the  bisector  of  the  base 

a  sin  A  -  ft  sin  B,  form  a  harmonic  pencil  with  a,  ft,  (Art.  57). 

Ex.  2.  The  line  joining  the  middle  points  of  sides  of  a  triangle  is  parallel  to  the 
base.  Its  equation  (see  Ex.  2,  p.  58)  is 

a  sin  A  +  ft  sin  B  -  y  sin  C  =  0,  or  2y  sin  C  =  a  sin  A  +  ft  sin  B  +  y  sin  C. 

Ex.  3.  The  line  aa-bft  +  cy  —  dd  (see  Ex.  5,  Art.  54)  passes  through  the  middle 
point  of  the  line  joining  ay,  ftd.  For  (aa  +  cy)  +  (bft  +  dS)  is  constant,  being  twice  the 

area  of  the  quadrilateral ;  hence  aa  +  cy,  bft  +  di  are  parallel,  and  (aa  +  cy)  —  (bft  +  dS) 
is  also  parallel  and  half-way  between  them.  It  therefore  bisects  the  line  joining  (ay), 
which  is  a  point  on  the  first  line,  to  (ftS)  which  is  a  point  on  the  second. 

65.  To  write  in  the  form  la.  +  w/3  4  ny  =  0  the  equation  of  the 

line  joining  two  given  points  x'y ',  x"y". 
Let  a',  as  before,  denote  the  quantity  x  cos  a  +  y'  sin  a  —  p. 

Then  the  condition  that  the  coordinates  x'y'  shall  satisfy   the 
equation  la  +  m(3  4  717  =  0  may  be  written 

la!  +  m@'  -\-ny'  =  0. 

Similarly  we  have       la."  4  wz/3"  4  ny"  =  0. 

Solving  for  -  ,  —  ,  from  these  two  equations,  and  substituting 

in  the  given  form,  we  obtain  for  the  equation  of  the  line  joining 
the  two  points 

a  ({3>y»  _  y£")  +  ft  (ya"  _  yv)  4  7  («'£"  -  a"/3')  =  0. 
It  is  to  be  observed  that  the  equations  in  trilinear  coordi- 

nates being  homogeneous,  we  are  not  concerned  with  the  actual 

lengths  of  the  perpendiculars  from  any  point  on  the  lines  of 
reference,  but  only  with  their  mutual  ratios.  Thus  the  preceding 

equation  is  not  altered  if  we  write  pa',  pft',  py',  for  a',  #',  7'. 
Accordingly,  if  a  point  be  given  as  the  intersection  of  the  lines 

-=  =  —  =  -  .  we  may  take  L  m.  n  as  the  trilinear  coordinates 
I      m      n '  * 
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of  that  point.  For  let  p  be  the  common  value  of  these  fractions, 
and  the  actual  lengths  of  the  perpendiculars  on  a,  /8,  7  are 

lp,  mp,  np,  where  p  is  given  by  the  equation  alp  +  Imp  -+  cnp  =  M, 
but,  as  has  been  just  proved,  we  do  not  need  to  determine  p. 

Thus,  in  applying  the  equation  of  this  article,  we  may  take  for 
the  coordinates  of  intersection  of  bisectors  of  sides,  sin  B  sin  C, 

smCs'mA,  sin.4  sin 5;  of  intersection  of  perpendiculars, 
cos#  cos  G,  cos  C  cos  A,  cos^4  cos5;  of  centre  of  inscribed  circle 

1,  1,  1  ;  of  centre  of  circumscribing  circle  cos.4,  cos  I?,  cosO,  &c. 

Ex.  1.   Find  the  equation  of  the  line  joining  intersections  of  perpendiculars,  and 
of  bisectors  of  sides  (see  Art.  61,  Ex.  5). 

Ans.  a  sin  A  cos  A  sin  (B  -  C)  +p  sin  B  cos  B  sin  (C-A)  +  y  sin  C  cos  C  sin  (A  -  B)  =  0. 

Ex.  2,   Find  equation  of  line  joining  centres  of  inscribed  and  circumscribing  circles. 

Ans.  a  (cos  B  -  cos  C)  +  /3  (cos  C  -  cos  A)  +  y  (cos  A  -  cos  B)  =  0. 

66.  It  is  proved,  as  in  Art.  7,  that  the  length  of  the  per- 
pendicular on  a  from  the  point  which  divides  in  the  ratio  I :  m 

the  line  joining  two  points  whose  perpendiculars  are  a',  a"  is 

,        -  .     Consequently  the  coordinates  of  the  point  dividing 

in  the  ratio  I :  m  the  line  joining  affy,  a"ff'y"  are  la  H-  ma", 

iff  -f  mff',  ly  +  7717".  It  is  otherwise  evident  that  this  point 

lies  on  the  line  joining  the  given  points,  for  if  affy,  a"ff'y'f 
both  satisfy  the  equation  of  a  line  Aa  +  B(3  +  Cy  =  Q,  so  will 

also  la'  +  ma",  &c.  It  follows  hence,  without  difficulty,  that 

la —ma",  &c.,  is  the  fourth  harmonic  to  la  -f  ma",  a,  a";  that 
the  anharmonic  ratio  of  a1  -  lea",  a'  —  la",  a  -  ma",  a'  —  na"  is 
(n-l)(m-k) 
T   r— ; — ~ ;  and  also  that,  given  two  systems  of  points  on 
(n  —  m)  (I  -  k) '  J 

two  right  lines  a' -lea",  a'-fo",&c.,  a'"  - ka"",  a1" -  la"",  &c.j 
these  systems  are  JiomograpJiic,  the  anharmonic  ratio  of  any  foui 

points  on  one  line  being  equal  to  that  of  the  four  corresponding 
points  on  the  other. 

Ex.  The  intersection  of  perpendiculars,  of  bisectors  of  sides,  and  the  centre  of 
circumscribing  circle  lie  on  a  right  line.  For  the  coordinates  of  these  points  are 
cos  B  cos  C,  (fee.,  sin  B  sin  C,  &c.,  and  cos  A,  &c.  But  the  last  set  of  coordinates  mar 
be  written  sin  B  sin  C  -  cos  B  cos  C,  &c. 

The  point  whose  coordinates  are  cos  (B  -  (7),  cos(C—  A),  cos  (A  —  B)  evidently 
lies  on  the  same  right  line  and  is  a  fourth  harmonic  to  the  three  preceding.  It  wilJ 
be  found  hereafter  that  this  ia  the  centre  of  the  circle  through  the  middle  roiats 
of  the  sides. 
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67.  To  examine  what  line  is  denoted  by  the  equation 

a.  sin  A  -f  /3  sin  B  +  7  sin  (7=0. 

This  equation  is  included  in  the  general  form  of  an  equation 

of  a  right  line,  but  we  have  seen  (Art.  63)  that  the  left-hand 
member  is  constant,  and  never  =  0.  Let  us  return,  however, 

to  the  general  equation  of  the  right  line  Ax  +  By  -f-  (7=0.  We 
G        G 

saw  that  the   intercepts   cut  off  on  the  axes  are  — -^  ,  — ^ ; A.          Jj 

consequently,  the  smaller  A  and  B  become  the  greater  will  be 

the  intercepts  on  the  axes,  and  therefore  the  more  remote  the 

line  represented.  Let  A  and  B  be  both  =  0,  then  the  intercepts 
become  infinite,  and  the  line  is  altogether  situated  at  an  infinite 

distance  from  the  origin.  Now  it  was  proved  (Art.  63)  that  the 

equation  under  consideration  is  equivalent  to  Ox  +  Oy  +  (7=0,  and 

though  it  cannot  be  satisfied  by  any  finite  values  of  the  coordi- 
nates, it  may  by  infinite  values,  since  the  product  of  nothing  by 

infinity  may  be  finite.  It  appears  then  that  a  sin^44  (3  sin/3 + 7  sin  (7 

denotes  a  right  line  situated  altogether  at  an  infinite  distance  from 

the  origin;  and  that  the  equation  of  an  infinitely  distant  right 

line,  in  Cartesian  coordinates,  is  O.a?4  O.y 4-  (7=0.  We  shall, 
for  shortness,  commonly  cite  the  latter  equation  in  the  less 
accurate  form  (7=0. 

68.  We  saw  (Art.  64)  that  a  line  parallel  to  the  line  a  =  0 

has  an  equation  of  the  form  a+  (7=0.     Now  the  last  Article 
shows  that  this  is  only  an  additional  illustration  of  the  principle 

of  Art.  40.     For  a  parallel  to  a  may  be  considered  as  intersecting 

it  at  an  infinite  distance,  but  (Art.  40)  an  equation  of  the  form 

a  4-  (7=0  represents  a  line  through  the  intersection  of  the  lines 
a  =  0,  (7=0,  or  (Art.  67)  through  the  intersection  of  the  line  a 
with  the  line  at  infinity. 

69.  We  have  to  add  that  Cartesian  coordinates  are  only  a 

particular  case  of  trilinear.     There  appears,  at  first  sight,  to  be 
an  essential  difference  between  them,  since  trilinear  equations 

are  always  homogeneous,  while  we  are  accustomed  to  speak  of 

Cartesian  equations  as  containing  an  absolute  term,  terms  of  the 

first  degree,  terms  of  the  second  degree,  &c.     A  little  reflection, 

however,  will  show  that  this  difference  is  only  apparent,   and 
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that  Cartesian  equations  must  be  equally  homogeneous  in  reality, 

though  not  in  form.  The  equation  #  =  3,  for  example,  must 
mean  that  the  line  x  is  equal  to  three  feet  or  three  inches,  or,  in 

short,  to  three  times  some  linear  unit  ;  the  equation  xy  =  9  must 

mean  that  the  rectangle  xy  is  equal  to  nine  square  feet  or  square 
inches,  or  to  nine  squares  of  some  linear  unit  ;  and  so  on. 

If  we  wish  to  have  our  equations  homogeneous  in  form  as  well 

as  in  reality,  we  may  denote  our  linear  unit  by  2,  and  write  the 

equation  of  the  right  line 

Ax  +  B   +  (7,3  =  0. 

Comparing  this  with  the  equation 

Aa-rBj3+Cy  =  0, 

and  remembering  (Art  67)  that  when  a  line  is  at  an  infinite  dis- 

tance its  equation  takes  the  form  z  =  0,  we  learn  that  equations 
in  Cartesian  coordinates  are  only  the  particular  form  assumed 

by  trilinear  equations  when  two  of  the  lines  of  reference  are 
what  are  called  the  coordinate  axes,  while  the  third  is  at  an 

infinite  distance. 

70.  We  wish  in  conclusion  to  give  a  brief  account  of  what  is 

meant  by  systems  of  tangential  coordinates,  in  which  the  position 

of  a  right  line  is  expressed  by  coordinates,  and  that  of  a  point  by 

an  equation.  In  this  volume  we  limit  ourselves  to  what  is  not 

so  much  a  new  system  of  coordinates  as  a  new  way  of  speaking 

of  the  equations  already  in  use.  If  the  equation  (Cartesian  or 

trilinear)  of  any  line  be  \x  +  fiy  +  vz  =  0,  then  evidently,  if 
X,  ̂,  v  be  known,  the  position  of  the  line  is  known  ;  and  we 

may  call  these  three  quantities  (or  rather  their  mutual  ratios 

with  which  only  we  are  concerned)  the  coordinates  of  the  right 

line.  If  the  line  pass  through  a  fixed  point  x'y'z,  the  relation 

must  be  fulfilled  x'\  -f  y'p  +  z'v  =  0  ;  if  therefore  we  are  given 
any  equation  connecting  the  coordinates  of  a  line,  of  the  form 

a\  +  bfj,  H-  cv  =  0,  this  denotes  that  the  line  passes  through  the 
fixed  point  (a,  &,  c),  (see  Art.  51),  and  the  given  equation  may 
be  called  the  equation  of  that  point.  Further,  we  may  use 

abbreviations  for  the  equations  of  points,  and  may  denote  by 

a,  j3  the  quantities  x'\  -4-  y'/j,  +  z'v,  x"\  +  y"^  +  z"v  ;  then  it  is 
evident  that  la  +  m/3  =  0  is  the  equation  of  a  point  dividing  in 

it 
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a  given  ratio  the  line  joining  the  points  a,  $ ;  that  la.  =  mfi, 
mfi  =  717,  717  =  la  are  the  equations  of  three  points  which  lie  on 

a  right  line ;  that  a  +  kft,  a  -  k$  denote  two  points  harmonically 
conjugate  with  regard  to  a,  /3,  &c.  We  content  ourselves  here 

with  indicating  analogies  which  we  shall  hereafter  develope 

more  fully ;  for  we  shall  have  occasion  to  show  that  theorems 

concerning  points  are  so  connected  with  theorems  concerning 

lines,  that  when  either  is  known  the  other  can  be  inferred,  and 

often  that  the  same  equations  differently  interpreted  will  prove 
either  theorem.  Theorems  so  connected  are  called  reciprocal 
theorems. 

Ex.  Interpret  in  tangential  coordinates  the  equations  used  in  Art.  GO,  Ex.  2. 

Let  a,  ft,  y  denote  the  points  A,  B,  C;  m/3  —  ny,  ny  —  la,  la  -  mf3,  the  points 
L,  M,  N ;  then  m/3  +  ny  —  la,  ny  +  la  —  »»/3,  la  +  mfi  —  ny  denote  the  vertices  of  the 
triangle  formed  by  LA,  MB,  NC ;  and  la  +  m(3  +  ny  denotes  a  point  0  in  which 
meet  the  lines  joining  the  vertices  of  this  new  triangle  to  the  corresponding  vertices 
of  the  original  :  mp  +  ny,  ny  +  la.  la  +  mft  denote  D,  E,  F.  It  is  easy  hence  to  see 
the  points  in  the  figure,  which  are  harmonically  conjugate. 



CHAPTER  V. 

EQUATIONS  ABOVE  THE  FIRST  DEGREE  REPRESENTING 
RIGHT  LINES. 

71.  BEFORE  proceeding  to  speak  of  the  curves  represented 
by  equations  above  the  first  degree,  we  shall  examine  some  cases 
where  these  equations  represent  right  lines. 

If  we  take  any  number  of  equations  L  =  0,  M  =  0,  N—  0,  &c., 
and  multiply  them  together,  the  compound  equation  LMN&c.  =  0 

will  represent  the  aggregate  of  all  the  lines  represented  by  its 
factors ;  for  it  will  be  satisfied  by  the  values  of  the  coordinates 

which  make  any  of  its  factors  =  0.  Conversely,  if  an  equation  of 

any  degree  can  be  resolved  into  others  of  lower  degrees,  it  will  repre- 
sent the  aggregate  of  all  the  loci  represented  by  its  different  factors. 

If,  then,  an  equation  of  the  rcth  degree  can  be  resolved  into  n 
factors  of  the  first  degree,  it  will  represent  n  right  lines. 

72.  A    homogeneous   equation    of  the  7zth  degree  in  x  and  y 
denotes  n  right  lines  passing  through  the  origin. 

Let  the  equation  be 

x  —  pxn~ly  +  qx*~*y*  —  &c.  . .  .-f  tyn  =  0. 
Divide  by  y\  and  we  get 

©-  p  (-}      +  q  (-}      -  &c.  =  0. -    \yj          *  \yj 

Let  «,  J,  c,  &c.,  be  the  n  roots  of  this  equation,  then  it  is 
resolvable  into  the  factors 

and  the  original  equation  is  therefore  resolvable  into  the  factors 

(x  —  ay]  (x  —  by]  (x  —  cy]  &c.  =  0. 

It  accordingly  represents  the  n  right  lines  x-  a#  =  0,  &c.,  all  of 
which  pass  through  the  origin.  Thus,  then,  in  particular,  the 

homogeneous  equation 

x*  -  pxy  -I-  qy*  =  0 
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represents  the  two  right  lines  x  —  ay  =  0,  x  —  by  =  0,  where  a  and 
b  are  the  two  roots  of  the  quadratic 

fx\*        fx\ 
(-)  -p    -    +7  =  0. 
V      *  \yl 

It  is  proved,  in  like  manner,  that  the  equation 

(x-a)*-p(x-arl(y-b)  +  q(x-a)n-*(y-b)\..+  t(y-br  =  0 
denotes  n  right  lines  passing  through  the  point  (a,  b). 

Ex.  1.  What  locus  is  represented  by  the  equation  xy  =  0? 
Ans.  The  two  axes ;  since  the  equation  is  satisfied  by  either  of  the  suppositions 

x •  =  0,  y  -  0. 

Ex.  2.  What  locus  is  represented  by  x2  —  y1  -  0  ? 
Ans.  The  bisectors  of  the  angles  between  the  axes,  x  ±  y  =  0  (see  Art.  35). 

Ex.  3.   What  locus  is  represented  by  x2  -  6xy  +  6#2  =  0  ?    Ans.  x-2y=Q,  x-3y=0. 

Ex.  4.  What  locus  is  represented  by  z2  -  2xy  sec  0  +  y2  =  0  ? 
Ans.  x  =  y  tan(45°±i0). 

Ex.  5.  What  lines  are  represented  by  x2  -  2xy  tan  0  -  y2  =  0  ? 

Ex.  6.  What  lines  are  represented  by  x3  -  Qx*y  +  llxy"2  -  Gj1  =  0  ? 

73.  Let  us  examine  more  minutely  the  three  cases  of  the 

solution  of  the  equation  x*  —pxy  -+  qy*  =  0,  according  as  its  roots 
are  real  and  unequal,  real  and  equal,  or  both  imaginary. 

The  first  case  presents  no  difficulty  :  a  and  b  are  the  tangents 

of  the  angles  which  the  lines  make  with  the  axis  of  y  (the  axes 

being  supposed  rectangular),  p  is  therefore  the  sum  of  those 

tangents,  and  q  their  product. 

In  the  second  case,  when  a  =  5,  it  was  once  usual  among 

geometers  to  say  that  the  equation  represented  but  one  right 

line  (x  —  ay  =  0).  We  shall  find,  however,  many  advantages  in 
making  the  language  of  geometry  correspond  exactly  to  that  of 

algebra,  and  as  we  do  not  say  that  the  equation  above  has  only 

one  root,  but  that  it  has  two  equal  roots,  so  we  shall  not  say 

that  it  represents  only  one  line,  but  that  it  represents  two  coincident 

right  lines. 
Thirdly,  let  the  roots  be  both  imaginary.  In  this  case  no  real 

coordinates  can  be  found  to  satisfy  the  equation,  except  the 

coordinates  of  the  origin  x  =  0,  y  =  0 ;  hence  it  was  usual  to  say 
that  in  this  case  the  equation  did  not  represent  right  lines,  but 

was  the  equation  of  the  origin.  Now  this  language  appears  to 

us  very  objectionable,  for  we  saw  (Art.  14)  thnt  two  equations 
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are  required  to  determine  any  point,  hence  we  are  unwilling 

to  acknowledge  any  single  equation  as  the  equation  of  a  point. 
Moreover,  we  have  been  hitherto  accustomed  to  find  that  two 

different  equations  always  had  different  geometrical  significations, 
but  here  we  should  have  innumerable  equations,  all  purporting  to 

be  the  equation  of  the  same  point  ;  for  it  is  obviously  immaterial 

what  the  values  of  p  and  q  are,  provided  only  that  they  give 

imaginary  values  for  the  roots,  that  is  to  say,  provided  that  p2  be 
less  than  4<£.  We  think  it,  therefore,  much  preferable  to  make 

our  language  correspond  exactly  to  the  language  of  algebra  ;  and 

as  we  do  not  say  that  the  equation  above  has  no  roots  when  p2 
is  less  than  4^,  but  that  it  has  two  imaginary  roots,  so  we  shall 

not  say  that,  in  this  case,  it  represents  no  right  lines,  but  that 

it  represents  two  imaginary  right  lines.  In  short,  the  equation 

x  —  pxy  +  qy*  =  0  being  always  reducible  to  the  form 
(x  —  ay)  (x  -  by)  =  0,  we  shall  always  say  that  it  represents  two 
right  lines  drawn  through  the  origin  ;  but  when  a  and  b  are  real, 

we  shall  say  that  these  lines  are  real  ;  when  a  and  b  are  equal, 
that  the  lines  coincide  ;  and  when  a  and  b  are  imaginary,  that  the 

lines  are  imaginary.  It  may  seem  to  the  student  a  matter  of 

indifference  which  mode  of  speaking  we  adopt  ;  we  shall  find,  how- 
ever, as  we  proceed,  that  we  should  lose  sight  of  many  important 

analogies  by  refusing  to  adopt  the  language  here  recommended. 
Similar  remarks  apply  to  the  equation 

which  can  be  reduced  to  the  form  x*  —pxy  +  qy*  —  0,  by  dividing 

by  the  coefficient  of  x*.  This  equation  will  always  represent 
two  right  lines  through  the  origin  ;  these  lines  will  be  real  if 

B*  —  ±AC  be  positive,  as  at  once  appears  from  solving  the 

equation  ;  they  will  coincide  if  B*  -  ±A  (7=0  ;  and  they  will  be 

imaginary  if  B*  —  kAC  be  negative.  So,  again,  the  same 
language  is  used  if  we  meet  with  equal  or  imaginary  roots  in  the 

solution  of  the  general  homogeneous  equation  of  the  wth  degree. 

74.    To  find  the  angle  contained  by  the  lines  represented  by  the 

equation  x*  —pxy  -f  qy2  =  0. 
Let  this  equation  be  equivalent  to  (a:  —  ay)  (x  —  by)  =  0,  then 

the  tangent  of  the  angle  between  the  lines  is  (Art.  25)     --  , 
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but  the  product  of  the  roots  of  the  given  equation  =  j,  and  their 

difference  =  \/(^?'2  —  4j).     Hence 

If  the  equation  had  been  given  in  the  form 

Ax*  +  B 

it  would  have  been  found  that 

COR.    The  lines  will  cut  at  right  angles,  or  tan  $  will  become 

infinite,  if  q  =  —  I  in  the  first  case,  or  if  A  +  (7  =  0  in  the  second. 
Ex.   Find  the  angle  between  the  lines 

a?  +  xy  -  G^  =  0.  Am.  45° 
<j?  —  2xy  seed  +  y2  =  0.  Ant.  0. 

*If  the  axes  be  oblique  we  find,  in  like  manner, 

co*- tan  6  =  -     —^4  —  D—  — A+  G-  B  cos  CD 

75.    To  find  the,  equation  which  will  represent  the  lines  bisecting 

th:1  angles  between  the  lines  represented  by  the  equation 

Ax'  +  Bxy  +  Gf  =  0. 

Let  these  lines  be  x  —  ay  =  0,  x  —  by  =  0  ;  let  the  equation  «>f 
the  bisector  be  x  —  ̂ y  =  0,  and  we  seek  to  determine  p.  Now 
(Art.  18)  p  is  the  tangent  of  the  angle  made  by  this  bisector  with 
the  axis  of  y,  and  it  is  plain  that  this  angle  is  half  the  sum  of  the 

angles  made  with  this  axis  by  the  lines  themselves.  ^  Equating, 

therefore,  tangent  of  twice  this  angle  to  tangent  of  sum,  we  get 
2i  a  +  b 

but,  from  the  theory  of  equations, 

B       ,      G 
a+l=-2,    ab= 

therefore  =J 

or  M-2 
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This  gives  us  a  quadratic  to  determine  /A,  one  of  whose  roots 
will  be  the  tangent  of  the  angle  made  with  the  axis  of  y  by  the 
internal  bisector  of  the  angle  between  the  lines,  and  the  other 
the  tangent  of  the  angle  made  by  the  external  bisector.  We 
can  find  the  combined  equation  of  both  lines  by  substituting  in 

the  last  quadratic  for  /-<,  its  value  =  -  ,  and  we  get 

and  the  form  of  this  equation  shows  that  the  bisectors  cut  each 
other  at  right  angles  (Art.  74). 

The  student  may  also  obtain  this  equation  by  forming 
(Art.  35)  the  equations  of  the  internal  and  external  bisectors 

of  the  angle  between  the  lines  x  —  ay  —  0,  x  —  by  =  0,  and 
multiplying  them  together,  when  he  will  have 

_ 

l+a«         '-i  +  j"     ' 
and  then  clearing  of  fractions,  and  substituting  for  a  +  b,  and  ab 
their  values  in  terms  of  A,  B,  (7,  the  equation  already  found  is 
obtained. 

76.  We  have  seen  that  an  equation  of  the  second  degree 
may  represent  two  right  lines  ;  but  such  an  equation  in  general 
cannot  be  resolved  into  the  product  of  two  factors  of  the  first 
degree,  unless  its  coefficients  fulfil  a  certain  relation,  which  can 
be  most  easily  found  as  follows.  Let  the  general  equation  of 
the  second  degree  be  written 

ax*  +  Zhxy  -I-  ly*  4  tyz  +  2/y  +  c  =  0,f 

or  oa5*+  2 

*  It  is  remarkable  that  the  roots  of  this  last  equation  will  always  be  real,  even 

the  roots  jf  the  equation  Ax2  +  Bxy  +  Cy*  —  0  be  imaginary,   which   leads  to  the 
curious  result,  that  a  pair  of  imaginary  lines  has  a  pair  of  real  lines  bisecting 
the  angle  between  them.     It  is  the  existence  of  such  relations  between  real  and 

imaginary  lines  which  makes  the  consideration  of  the  latter  profitable. 
t  It  might  seem  more  natural  to  write  this  equation 

axz  +  bxy  +  cyz+dx  +  ey  +f=  0, 
but  as  it  is  desirable  that  the  equation  should  be  written  with  the  same  letters  all 
through  the  book,  1  have  decided  on  using,  from  the  first,  the  form  which  will 
hereafter  be  found  most  convenient  and  symmetrical.  It  will  appear  hereafter 
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Solving  this  equation  for  x  we  get 

ax=-  (Jnj  4  g)  ±  V{(/<2  -  ab)  y*  +  2  (Jig  -af]y  +  (f  -  ac}}. 
In  order  that  this  may  be  capable  of  being  reduced  to  the 

form  x  =  my  +  rz,  it  is  necessary  that  the  quantity  under  the 
radical  should  be  a  perfect  square,  in  which  case  the  equation 

would  denote  two  right  lines  according  to  the  different  signs 
we  give  the  radical.  But  the  condition  that  the  radical  should 

be  a  perfect  square  is 

(h*-<A)tf-ac)  =  (hff-afr. 
Expanding,  and  dividing  by  a,  we  obtain  the  required  condition, 

viz.  abc  +  2fyh  -  af  -  bg*  -  ch*  =  0.* 

1.  Verify  that  the  following  equation  represents  right  lines,  and  find  the  lines: 

x2  -  5xy  +  4y*  +  x  +  2y  -  2  =  0. 

Ans.  Solving  for  a;  as  in  the  text,  the  lines  are  found  to  be 

»-y-l  =  0,  a;  -  4#  +  2  =  0. 

Ex.  2.  Verify  that  the  following  equation  represents  right  lines  : 

(ax  +  py-  r2)2  =  (a2  +  /S2  -  r2)  (x2  +  if  -  r2). 

Ex.  3.  What  lines  are  represented  by  the  equation 

Ans.  The  imaginary  lines  x  +  Qy  +  02  =  0,  x  +  6*y  +  0  =  0,  where  0  is  one  of  the 
imaginary  cube  roots  of  1. 

Ex.  4.  Determine  h,  so  that  the  following  equation  may  represent  right  lines  : 

x2  +  Ihxy  +  y*  -  5x  -  7y  +  6  -  0. 

Ans.  Substituting  these  values  of  the  coefficients  in  the  general  condition,  we  get 

for  h  the  quadratic  12A2  —  35A  +  25  =  0,  whose  roots  are  £  and  $. 

*77.  The  method  used  in  the  preceding  Article,  though  the 
most  simple  in  the  case  of  the  equation  of  the  second  degree,  is 

not  applicable  to  equations  of  higher  degrees  ;  we  therefore  give 

another  solution  of  the  same  problem.  It  is  required  to  ascertain 

that  this  equation  is  intimately  connected  with  the  homogeneous  equation  in  three 

variables,  which  may  be  most  symmetrically  written 

aa?  +  byt  +  cz*  +  2fyz  +  2gzx  +  2/tary  =  0. 

The  form  in  the  text  is  derived  from  this  by  making  z—\.  The  coefficient  2  is  affixed 
to  certain  terms,  because  formulas  connected  with  the  equation,  which  we  shall  have 
occasion  to  use,  thus  become  simpler  and  more  easy  to  be  remembered. 

*  If  the  coefficients/,  g,  h  in  the  equation  had  been  written  without  numerical 
multipliers,  this  condition  would  have  been 

4oic  +  fah  —  a/2  —  bg*  -  ch*  =  0. 
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whether  the  given  equation  of  the  second  degree  can  be  identical 
with  the  product  of  the  equations  of  two  right  lines 

Multiply  out  this  product,  and  equate  the  coefficient  of  each 
terra  to  the  corresponding  coefficient  in  the  general  equation  of 
the  second  degree,  having  previously  divided  the  latter  by  c, 

so  as  to  make  the  absolute  term  in  each  equation  =  1.  We  thr* 
obtain  five  equations,  viz. 

-      ,   flff  -, 

from  which  eliminating  the  four  unknown  quantities  a,  a',  /?,  /3', 
we  obtain  the  required  condition.  The  first  four  of  the  equa- 

tions at  once  give  us  two  quadratics  for  determining  a,  a  ;  /:?,  ft'  ; 
which  indeed  might  have  been  also  obtained  from  the  considera- 

tion that  these  quantities  are  the  reciprocals  of  the  intercepts 
made  by  the  lines  on  the  axes  ;  and  that  the  intercepts  made  by 

the  locus  on  the  axes  are  found  (by  making  alternately  #  =  0, 
y  =  0,  in  the  general  equation)  from  the  equations 

ax*  +  Vgx  +  G  =  0,  by*  +  2fy  -f  c  =  0. 
We  can  now  complete  the  elimination  by  solving  the  quadratics, 
substituting  in  the  fifth  equation  and  clearing  of  radicals;  or 
we  may  proceed  more  simply  as  follows:  Since  nothing  shews 
whether  the  root  a  of  the  first  quadratic  is  to  be  combined  with 

the  root  ft  or  ft'  of  the   second,   it  is  plain  that  —  may  have c 

either  of  the  values  aft'  +  aft  or  aft  4-  aft'.  This  is  also  evident 
geometrically,  since  if  the  locus  meet  the  axes  in  the  points 

L,  L'  ;  Mj  M  :  it  is  plain  that  if  it  represent  right  lines  at  all, 
these  must  be  either  the  pair  LM,  L'M\  or  else  LM'  ,  L'Mj 
whose  equations  are 

(ax  +  fty-1)  (ax  +  ft'y-l)  =  0,  or  (ax  +  %  -  1)  (a'x+fty  -  1)  =  0. 

The  sum  then  of  the  two  quantities  aft'  4  a'/S,  aft  -f  a'  ft' 

and  their  product 

=  aa  (3°  +  /S")  +  /S/9-  («"  +  a")  =     ̂-- 

c         ca 
L 
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Hence  -  is  given  by  the  quadratic c 

1?     fg     2h      af*+lf-aX>e "     '"        ~  =  0 

which,  cleared  of  fractions,  is  the  condition  already  obtained. 

Ex.   To  determine  h  so  that  x2  +  Ihxy  +  y*  -  5x  -  7y  +  6  =  0  may  represent  right 
lines  (see  Ex  4,  p.  72). 

The  intercepts  on  the  axes  are  given  by  the  equations 

xz  -  5*  +  6  =  0,  y2  -  ly  +  6  =  0, 

whose  roots  are  x  =  2,  x  =  3  ;  y  —  1,  y  =  6.  Forming,  then,  the  equation  of  the  lines 
joining  the  points  so  found,  we  see  that  if  the  equation  represent  right  lines,  it  must 
be  of  one  or  other  of  the  forms 

-6)  =  0,  (x  +  3y  -  3)   (3x  +  y-6)=0, 

whence,  multiplying  out,  h  is  determined. 

*78.  To  fnd  how  many  conditions  must  be  satisfied  in  order 

that  the  general  equation  of  the  nth  degree  may  represent  right  lines. 
We  proceed  as  in  the  last  Article  ;  we  compare  the  general 

equation,  having  first  by  division  made  the  absolute  term  =  1, 
with  the  product  of  the  n  right  lines 

(ax  +  fry  -  \  )  (ax  +  /%  -  1)  (a!'x  +  ff'y  -  1)  &c.  =  0. 

Let  the  number  of  terms  in  the  general  equation  be  N'  then 
from  a  comparison  of  coefficients  we  obtain  N—  1  equations 
(the  absolute  term  being  already  the  same  in  both)  ;  2n  of  these 

equations  are  employed  in  determining  the  2n  unknown  quan- 

tities a,  a',  &c.,  whose  values  being  substituted  in  the  remaining 
equations  afford  N—  I  —%n  conditions.  Now  if  we  write  the 
general  equation 

A 

+  Bx+Cy 

+  Dx*  +  Exy+Fy* 

-I-  Ox*  +  Hx*y  +  Kxy*  +  Ly9 

it  is  plain  that  the  number  of  terms  is  the  sum  of  the  arithmetio 
series 

hence          N-  1  =  "if  ±?->  ;  N-  1  -  2«  =  i^r 



CHAPTER  VI. 

THE  CIRCLE. 

79.  BEFORE  proceeding  to  the  discussion  of  the  general  equa- 
tion of  the  second  degree,  it  seems  desirable  that  we  should 

shew,  in  the  simple  case  of  the  circle,  how  all  the  properties  of  a 

curve  may  be  deduced  from  its  equation,  without  assuming  any 

previous  acquaintance  with  the  geometrical  theory. 

The  equation,  to  rectangular  axes,  of  the  circle  whose  centre 

is  the  point  (a/3)  and  radius  is  r,  has  already  (Art.  17)  been 
found  to  be 

(x-a)*+(y-py  =  r*. 
Two  particular  cases  of  this  equation  deserve  attention,  as 

occurring  frequently  in  practice.  Let  the  centre  be  the  origin, 

then  a  =  0,  /3  =  0,  and  the  equation  is 

Let  the  axis  of  x  be  a  diameter,  and  the  axis  of  y  a  per- 

pendicular at  its  extremity,  then  a  =  r,  /3  =  0,  and  the  equation 
becomes 

a;2  +  f  =  2rx. 

80.  It  will  be  observed  that  the  equation  of  the  circle,  to 

rectangular  axes,  does  not  contain  the  term  xy,  and  that  the 

coefficients  of  or  and  y*  are  equal.  The  general  equation  therefore 

ax*  4  2hxy  +  by9  •+  %gx  +  Zfy  +  c  =  0 
cannot  represent  a  circle,  unless  we  have  h  =  0  and  a  =  b.  Any 
equation  of  the  second  degree  which  fulfils  these  two  conditions 

may  be  reduced  to  the  form  (x  —  a)2  +  (y  —  /3)8  =  r\  by  a  process 
corresponding  to  that  used  in  the  solution  of  quadratic  equations. 

If  the  common  coefficient  of  x2  and  y*  be  not  already  unity,  by 
division  make  it  so  ;  then  having  put  the  terms  containing  x  and 

y  on  the  left-hand  side  of  the  equation,  and  the  constant  term 
on  the  right,  complete  the  squares  by  adding  to  both  sides  the 

sum  of  the  squares  of  half  the  coefficients  of  x  and  y. 
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Ex.  Reduce  to  the  form  (a:  -  a)2  +  (//  -  /3)2  =  r2,  the  equations 

-  2x  -  4y  =  20  ;  3z2  +  3#2  -  5x  -  7y  +  1  =  0. 

^JM.  (»  -  I)2  +  (y  -  2)2  -  25  ;  (x  -  |)2  +  (y  -  £)'  =  fg  ;  and  the  coordinates  of  tte 
centre  and  the  radius  are  (1,  2),  and  5  in  the  first  case;  (£,  |)  and  £  J(G2)  in  the  second, 

If  we  treat  in  like  manner  the  equation 

we  get 

then  the  coordinates  of  the  centre  are  —  -  ,  -—  ,  and  the  ladius 

a   '    a  ' 

If  g*  +/*  -  ac  is  negative,  the  radius  of  the  circle  is  imaginary, 

and  the  equation  being  equivalent  to  (x  -  a)a  -f  (y  -  )3)2  4  7«8  =  0 
cannot  be  satisfied  by  any  real  values  of  x  and  y. 

If  #a4/2=  ac,  the  radius  is  nothing,  and  the  equation  being 

equivalent  to  (x  —  a)2  -I-  (y  —  /3)*  =  0,  can  be  satisfied  by  no 
coordinates  save  those  of  the  point  (a/8).  In  this  case  then  the 

equation  used  to  be  called  the  equation  of  that  point,  but  for  the 
reason  stated  (Art.  73)  we  prefer  to  call  it  the  equation  of  an 

infinitely  small  circle  having  that  point  for  centre.  We  have 
seen  (Art.  73)  that  it  may  also  be  considered  as  the  equation  of 

the  two  imaginary  lines  (x  —  a)  ±  (y  —  /3)  V(—  1)  passing  through 

the  point  (a/3).  So  in  like  manner  the  equation  a;8  4  y*  =  0  may 
be  regarded  as  the  equation  of  an  infinitely  small  circle  having 

the  origin  for  centre,  or  else  of  the  two  imaginary  \'mesz±y*J(—  1). 

81.  The  equation  of  the  circle  to  oblique  axes  is  not  often 

used.  It  is  found  by  expressing  (Art.  5)  that  the  distance  of 

any  point  from  the  centre  is  equal  to  the  radius,  and  is 

(x  —  aY  4  2  (x  —  a)  (y  —  &  cos  o>  4  (y  —  8)*  =  r*. ^«v     —.j         \       ~/  \y     p- ,  *  \&     ~i 

If  we  compare  this  with  the  general  equation,  we  see  that 

the  latter  cannot  represent  a  circle  unless  a  =  b  and  h  =  a  cos  o>. 
When  these  conditions  are  fulfilled  we  find  by  comparison  of 
coefficients  that  the  coordinates  of  the  centre  and  the  radius  are 

given  by  the  equations 

-  •-  ,  @  4  a  cosa>  =  — -.  a2  +  /3s  4  2a/3  cosa>-r*=-  . a  a  a 
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Since  a,  j3  are  determined  from  the  first  two  equations,  which 

do  not  contain  c,  we  learn  that  two  circles  will  be  concentric  if 
their  equations  differ  only  in  the  constant  term. 

Again,  if  c  =  0,  the  origin  is  on  the  curve.  For  then  the 

equation  is  satisfied  by  the  coordinates  of  the  origin  x  =  0,  y  =  0. 
The  same  argument  proves  that  if  an  equation  of  any  degree  want 

the  absolute  term,  the  curve  represented  passes  through  the  origin. 

82.  To  find  the  coordinates  of  the  points  in  which  a  given 

right  line  x  cos  a  +  y  sin  a  =p  meets  a  given  circle  x2  4-  y*  =  r*. 
Equating  to  each  other  the  values  of  y  found  from  the  two 

equations  we  get,  for  determining  a;,  the  equation 

p  —  x  cos  a *•  -  :  --  = sin  a 

or,  reducing       x*  —  2px  cos  a  +p*  —  r*  sin'2a  =  0  ; 

hence,  x  =p  cos  a  ±  sin  a  V  (r*  —  p'2)j 
and,  in  like  manner, 

y  —p  sin  a  T  cos  a  >/(r*  —  p*}. 
(The  reader  may  satisfy  himself,  by  substituting  these  values 

in  the  given  equations,  that  the  -  in  the  value  of  y  corresponds 
to  the  -f  in  the  value  of  a,  and  vice  versa}. 

Since  we  obtained  a  quadratic  to  determine  a?,  and  since  every 

quadratic  has  two  roots,  real  or  imaginary,  we  must,  in  order  to 

make  our  language  conform  to  the  language  of  algebra,  assert 

that  every  line  meets  a  circle  in  two  points,  real  or  imaginary. 

Thus,  when  p  is  greater  than  r,  that  is  to  say,  when  the  distance 
of  the  line  from  the  centre  is  greater  than  the  radius,  the  line, 

geometrically  considered,  does  not  meet  the  circle  ;  yet  we  have 
seen  that  analysis  furnishes  definite  imaginary  values  for  the 

coordinates  of  intersection.  Instead  then  of  saying  that  the 

line  meets  the  circle  in  no  points,  we  shall  say  that  it  meets  it  in 

two  imaginary  points,  just  as  we  do  not  say  that  the  corre- 
sponding quadratic  has  no  roots,  but  that  it  has  two  imaginary 

roots,  By  an  imaginary  point  we  mean  nothing  more  than  a 

point,  one  or  both  of  whose  coordinates  are  imaginary.  It  is  a 

purely  analytical  conception,  which  we  do  not  attempt  to  repre- 
sent geometrically  ;  just  as  when  we  find  imaginary  values  for 

roots  of  an  equation,  we  do  not  try  to  attach  an  arithmetical 
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meaning  to  our  result.  But  attention  to  these  imaginary 

points  is  necessary  to  preserve  generality  in  our  reasonings,  for 

we  shall  presently  meet  with  many  cases  in  which  the  line 

joining  two  imaginary  points  is  real,  and  enjoys  all  the  geome- 
trical properties  of  the  corresponding  line  in  the  case  where  the 

points  are  real. 

83.  When  p  —  r  it  is   evident,  geometrically,  that  the  line 
touches  the  circle,  and  our  analysis  points  to  the  same  conclu- 

sion, since  the  two  values  of  x  in  this  case  become  equal,  as  do 

likewise  the  two  values  of  y.     Consequently  the  points  answer- 
ing to  these  two  values,  which  are  in  general  different,  will  in 

this  case  coincide.     We  shall,  therefore,  not  say  that  the  tangent 
meets  the  circle  in  only  one  point,  but  rather  that  it  meets  it  in 

two  coincident  points;  just  as  we  do  not  say  that  the   corre- 

sponding quadratic  has  only  one  root,  but  rather  that  it  has  two 

equal  roots.     And  in  general  we  define  the  tangent  to  any  curve 

as  the  line  joining  two  indefinitely  near  points  on  that  curve. 

We  can  in  like  manner  find  a  quadratic  to  determine  the 

points  where  the  line  Ax  +  By  +  G  meets  a  circle  given  by  the 

general  equation.  When  this  quadratic  has  equal  roots  the  line 
is  a  tangent. 

Ex.  1.  Find  the  coordinates  of  the  intersections  of  a?  +  y-  =  65 ;  Sx  +  y  —  25. 
Ans.   (7,  4)  and  (8,  1) 

Ex.  2.   Find  intersections  of  (x  -  0)2  +  (y  -  2c)2  -  2502 ;  4x  +  3y  =  3oc. 
Ans.  The  line  touches  at  the  point  (5c,  5c). 

Ex.  3.   When  will  y  =  mx  +  b  touch  x1  +  y2  =  j«2  ?        Ans.  When  62  =  r2  (1  +  »i2). 

Ex.  4.   When  will  a  line  through  the  origin,  y  =  mx,  touch 

a  (x2  +  2zy  cos  a.  +  y2)  +  2gx  +  2fy  +  c  =  0  ? 

The  points  of  meeting  are  given  by  the  equation 

a  (1  +  2m  cos  w  +  n»2)  a:2  +  2  (g  +fm)  x  +  o  =  Q, 
which  will  have  equal  roots  when 

(g  +fm)2  =  ao  (I  +  2m  cos  M  +  m2). 
We  have  thus  a  quadratic  for  determining  m. 

Ex.  5.  Find  the  tangents  from  the  origin  to  x1  +  y-  -  6x  -  2y  +  8  =  0. 
Ans.  x  -  y  =  0,    x  +  7y  =  0. 

84.  When    seeking   to    determine  the   position    of  a  circle 

represented  by  a  given  equation,  it  is  often  as  convenient  to  do  so 

by  finding  the  intercepts  which  it  makes  on  the  axes,  as  by 
finding  its  centre  and  radius.      For  a   circle  is   known   when 
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three  points  on  it  are  known ;  the  determination,  therefore,  of 

the  four  points  where  the  circle  meets  the  axes  serves  completely 

to  fix  its  position.  By  making  alternately  y  =  0,  x  =  0  in  the 
general  equation  of  the  circle,  we  find  that  the  points  in  which 

it  meets  the  axes  are  determined  by  the  quadratics 

ax*  +  2gx  -f  c  =  0,   ajf  +  2/y  +  c  =  0. 
The  axis  of  x  will  be  a  tangent  when  the  first  quadratic  has 

equal  roots,  that  is,  when  <?2  =  ac,  and  the  axis  of  y  when  f  =  ac. 
Conversely,  if  it  be  required  to  find  the  equation  of  a  circle 

making  intercepts  X,  X'  on  the  axis  of  #,  we  may  take  a  —  1,  and 

we  must  have  2<7  =  -(X  +  X'),  c  =  XX'.  If  it  make  intercepts 

/A, /A'  on  the  axis  of?/,  we  must  have  2/=  —  (/A  +  /I/),  c  =  //•//. 

Thus  we  see  that  we  must  have  XX' = /A/A'  (Euc.  in.  36). 
Ex.  1.  Find  the  points  where  the  axes  are  cut  by  x2  +  y2  —  5x  —  7y  +  6  =  0. 

Ans.  x  =  3,  z  =  2;  y  =  6,  y  =  1. 

Ex.  2.  What  is  the  equation  of  the  circle  which  touches  the  axes  at  distances  from 

the  origin  =  a  ?  Ans.  x*  +  y-  -  2ax  -  2ay  +  a2  =  0. 

Ex.  3.  Find  the  equation  of  a  circle,  the  axes  being  a  tangent  and  any  line  through 

the  point  of  contact.  Here  we  have  \,  X',  /u  all  =  0 ;  and  it  is  easy  to  see  from  the 
figure  that  /x'  =  2r  sin  u>,  the  equation  therefore  is 

x2  +  2xy  cos  to  +  yz  —  2ry  sin  to  =  0. 

85.  To  find  the  equation  of  the  tangent  at  the  point  x'y'  to  a 
given  circle. 

The  tangent  having  been  defined  (Art.  83)  as  the  line  joining 

two  indefinitely  near  points  on  the  curve,  its  equation  will  be 

found  by  first  forming  the  equation  of  the  line  joining  any  two 

points  (xy,  &"y")  on  the  curve,  and  then  making  x=x"  and 

y  =y"  in  that  equation. 
To  apply  this  to  the  circle :  first,  let  the  centre  be  the  origin, 

and,  therefore,  the  equation  of  the  circle  2a  4- #a  =  r2. 

The  equation  of  the  line  joining  any  two  points  (x'y)  and 

(x"y")  is  (Art.  29) 

y-y  ^y'-y" . 
x  —  x       x  —  x" ' 

now  if  we  were  to  make  in  this  equation  y =y"  and  x'  =  ie",  the 
right-hand  member  would  become  indeterminate.  The  cause 
of  this  is,  that  we  have  not  yet  introduced  the  condition  that 

the  two  points  (xy,  x'y"}  are  on  the  circle.  By  the  help  of  this 
condition  we  shall  be  able  to  write  the  equation  in  a  form  which 
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will  not  become  indeterminate  when  the  two  points  are  made  to 
coincide.  For,  since 

r*  =  x'*  +  y'2  =  au"*  +  y a,  we  have  x'2  —  x"*  =  y"z  —  y"*, 

y'-y"         x'  +  x" and  therefore  —, — £_.=:——   w. 
x  -  x"         y  -f  y" 

Hence  the  equation  of  the  chord  becomes 

y  —  y          x  -\  x" 
x-x          y  +  y"  ' 

And  if  we  vow  make  x  =  x"  and  y  =  y" ,  we  find  for  the  equation 
of  the  taiifrtut 

y-y  =  _* 
x-x          y"> 

or,  reducing,  and  remembering  that  x* -f  y*  =  r2,  we  get  finally 

Otherwise  iluis,*  The    equation  of  the  chord  joining  two 
points  on  a  circle,  way  be  written 

For  this  ic  the  equation  of  a  right  line,  since  the  terms 

a;8  +  y*  on  each  side  destroy  each  other ;  and  if  we  make  x  =  a;', 

y  =  y'i  the  left-hand  aide  vanishes  identically,  and  the  right-hand 
side  vanishes,  since  tho  point  x'y  is  on  the  circle.  In  like 

manner  the  equation  is  satisfied  by  the  coordinates  x"y".  This 
then  is  the  equation  of  a  chord ;  and  the  equation  of  the  tangent 

got  by  making  £c'  =  ;r",  y=y",  is 

which  reduced,  gives,  us  before,  xx  4  yy'  =  r\ 
If  we  were  now  to  transform  the  equations  to  a  new  origin, 

so  that  the  coordinates  of  the  centre  should  become  a,  /S,  we 

must  substitute  (Art.  8)  x  —  a,  x  -  a,  y  —  /S,  y  —  /3,  for  #,  x\  y,  y, 
respectively  ;  the  equation  of  the  circle  would  become 

(x-a.}*+(y-P)*  =  r\ 
and  that  of  the  tangent 

a  form  easily  remembered  from  its  similarity  to  the  equation  of 
the  circle. 

*  This  method  is  due  to  Mr.  Burnsidc. 



THE   CHICLE.  81 

COR.  The  tangent  is  perpendicular  to  the  radius,  for  the 

equation  of  the  radius,  the  centre  being  origin,  is  easily  seen  to  be 

x'y  -  yx  =  0  ;  but  this  (Art.  32)  is  perpendicular  to  xx  -f  yy  =  r2. 

86.  The  method  used  in  the  last  article  may  be  applied  to 

the  general  equation* 

ax'  +  2hxy  -h  by*  +  2gx  +  2fy  +  c  =  0. 
The  equation  of  the  chord  joining  two  points  on  the  curve  may 
be  written 

a  (x  -  x')  (x  -  x")  +  2h  (x  -  x')  (y  -  y")  +  b(y-  y')  (y  -  y") 
=  ax2  -f  2hxy  +  by2  +  %gx  +  2fy  +  c. 

For  the  equation  represents  a  right  line,  the  terms  above  the 

first  degree  destroying  each  other;  and,  as  before,  it  is  evidently 

satisfied  by  the  two  points  on  the  curve  xy,  x"y".  Putting 

x"  =  a?',  y"  —  y  ,  we  get  the  equation  of  the  tangent 

or,  expanding, 

2axx  4  2h  (x'y  +  yx)  -f  2by'y  +  2gx  +  2fy  +  c  =  ax'*+  2hx'y'  +  by'*. 

Add  to  both  sides  2gx  +  2fy'  +  c,  and  the  right-hand  side  will 

vanish,  because  x'y  satisfies  the  equation  of  the  curve.  Thus  the 
equation  of  the  tangent  becomes 

ax'x  +  h  (x'y  +  yx}  +  by'y  +  g  (x  +  x')  +  /  (y  -f  y')  +  c  =  0. 
This  equation  will  be  more  easily  remembered  if  we  corn  pair 

it  with  the  equation  of  the  curve,  when  we  see  that  it  is  derived 

from  it  by  writing  xx  and  yy  for  x*  and  ̂ 2,  x'y  +  yx  for  2^, 

and  x  -f-  a;,  y'  +  y  for  2x  and  2y. 
Ex.  1.   Find  the  equations  of  the  tangents  to  the  curves  xy  =  c"1  and  y-  -  px. 

Ans.   x'y  +  y'x  =  2c2  and  2yy'  -p(x  +  xf). 

Ex.  2.   Find  the  tangent  at  the  point  (5,  4)  to  (x  -  2)2  +  (y  -  3)2  =  10. 
Ans.  Sx  +  y  =  19. 

Ex.  3.   What  is  the  equation  of  the  chord  joining  the  points  x'y',  x"y"  on  the 
circle  x2  +  y*  =  r*  ?  Ans.   (x'  +  x"}  x  +  &  +  y")  y  =  r*  +  x'x"  +  y'y". 

Ex.  4.  Find  the  condition  that  Ax  +  By  +  C  -  0  should  touch 

(x  -  a)2  +  (y  -  ft*  =  r*. 

Ans.     "wTm"  =  r  '  s^nce  the  perpen<^icular  on  the  line  from  a(3  is  equal  to  r. 

*  Of  course  when  this  equation  represents  a  circle  we  must  have  b  —  a,  A  =  a  cosw  , 
but  since  the  process  is  the  same,  whether  or  not  b  or  h  have  these  particular  values, 
we  prefer  in  this  and  one  or  two  similar  cases  to  obtain  at  once  formulae  which  will 

•Afterwards  be  required  in  our  discussion  of  the  general  equation  of  the  second  degree. 
M 
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87.  To  draw  a  tangent  to  the  circle  x*  +  y*  =  r*  from  any 

point  x'y.  Let  the  point  of  contact  be  x'y" ,  then  since,  by  hypo- 
thesis, the  coordinates  x'y  satisfy  the  equation  of  the  tangent  at 

x'y" ,  we  have  the  condition  xx"  -f  yy"  =  r\ 
And  since  x"y"  is  on  the  circle,  we  have  also 

These  two  conditions  arc  sufficient  to  determine  the  coordinates 

ic",  y".     Solving  the  equations  we  get 
_ 

V  +  y"  a^  +  y*1 
Hence,  from  every  point  may  be  drawn  two  tangents  to  a  circle, 

These  tangents  will  be  real  when  x*  4  #'2  is  >  r2,  or  the  point 
outside  the  circle;  they  will  be  imaginary  when  x*-\-y*  is  <ra, 
or  the  point  inside  the  circle;  and  they  will  coincide  when 

r*,  or  the  point  on  the  circle. 

88.  We  have  seen  that  the  coordinates  of  the  points  of 
contact  are  found  by  solving  for  x  and  y  from  the  equations 

xx  -f  yy'  =  r*  ;   x*  +  y*  =  r\ 
Now  the  geometrical  meaning  of  these  equations  evidently  is, 

that  these  points  are  the  intersections  of  the  circle  x*  +  y*=-r* 
with  the  right  line  xx  -f  yy  =  r8.  This,  last,  then  is  the  equation 
of  the  right  line  joining  the  points  of  contact  of  tangents  from 

the  point  x'y  ;  as  may  also  be  verified  by  forming  the  equation 
of  the  line  joining  the  two  points  whose  coordinates  were  found 
in  the  last  article.* 

We  see,  then,  that  whether  the  tangents  from  x'y'  be  real  or 
imaginary,  the  line  joining  their  points  of  contact  will  be  the  real 

line  xx  +  yy  =  r\  which  we  shall  call  the  polar  of  x'y  with 
regard  to  the  circle.  This  line  is  evidently  perpendicular  to  the 

*  In  general  the  equation  of  the  tangent  to  any  curve  expresses  a  relation  con- 
necting the  coordinates  of  any  point  on  the  tangent,  with  the  coordinates  of  the 

point  of  contact.  If  we  are  given  a  point  on  the  tangent  and  required  to  find  the 
point  of  contact,  we  have  only  to  accentuate  the  coordinates  of  the  point  which  is 
supposed  to  be  known,  and  remove  the  accents  from  those  of  the  point  of  contact, 
when  we  have  the  equation  of  a  curve  on  which  that  point  must  lie,  and  whose 
intersection  with  the  given  curve  determines  the  point  of  contact.  Thus,  if  the 

equation  of  the  tangent  to  a  curve  at  any  point  x'y'  be  xxn  +  yy'2  =  r3,  the  points 

of  contact  of  tangents  drawn  from  any  point  x'y'  must  lie  on  the  curve  x'x2  +  y'y2  =  rs. 
It  is  only  in  the  case  of  curves  of  the  second  degree  that  the  equation  which  deter- 

mines the  points  of  contact  is  similar  in  form  to  the  equation  of  the  tangent. 
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line  (afy-yce  =  0),  which  joins  xy    to  the  centre;   and  its  dis- 

ra
 

tance  from  the  centre  (Art.  23)  is  -rj-^  -  —  .    Hence,  the  polar  of i\/\x  +  y  ) 

any  point  P  is  constructed  geometrically  by  joining  it  to  the 

centre  (7,  taking  on  the  joining  line  a  point  M,  such  that 

CM.CP=r9,  and  erecting  a  perpendicular  to  OP  at  M.  We 
see,  also,  that  the  equation  of  the  polar  is  similar  in  form  to  that 

of  the  tangent,  only  that  in  the  former  case  the  point  xy  is  not 

supposed  to  be  necessarily  on  the  circle  ;  if,  however,  xy  be  on 

the  circle,  then  its  polar  is  the  tangent  at  that  point. 

89.    To  find  the  equation  of  the  polar  of  xy'  with  regard  to  the 
curve  ax9  +  Zhxy  +  by*  +  2gx  4  Zfy  4  c  =  0. 
We  have  seen  (Art.  86)  that  the  equation  of  the  tangent  is 

ax'x  +  k  (x'y  +  y'x]  +  lyy  +  ff(x  +  x')  +f(y+y'}  +  c  =  0. 
This  expresses  a  relation  between  the  coordinates  xy  of  any 

point  on  the  tangent,  and  those  of  the  point  of  contact  xy. 
We  indicate  that  the  former  coordinates  are  known  and  the 

latter  unknown,  by  accentuating  the  former,  and  removing  the 

accents  from  the  latter  coordinates.  But  the  equation,  being  sym- 

metrical with  respect  to  the  coordinates  xy,  x'y,  is  unchanged 
by  this  operation.  The  equation  then  written  above  (which 

when  xy  is  a  point  on  the  curve,  represents  the  tangent  at  that 

point),  when  x'y  is  not  on  the  curve,  represents  a  line  on  which 

lie  the  points  of  contact  of  tangents  real  or  imaginary  from  x'y'. 
If  we  substitute  x'y'  for  xy  in  the  equation  of  the  polar  we 

get  the  same  result  as  if  we  made  the  same  substitution  in  the 

equation  of  the  curve.  This  result  then  vanishes  when  xy'  is  on 
the  curve.  Hence  the  polar  of  a  point  passes  through  that  point 

only  when  the  point  is  on  the  curve,  in  which  case  the  polar  is 
the  tangent. 

COB.   The  polar  of  the  origin  is  gx  +fy  +  c  =  0. 
Ex.  1.  Find  the  polar  of  (4,  4)  with  regard  to  (o-t)*f  (^2)2=13.    Ans.  3;rf2y=20. 

Ex.  2.  Find  the  polar  of  (4,  5)  with  regard  to  a5»+y2-3a:-4y=8.    Ans.  5x+6y=48. 

Ex.  3.  Find  the  pole  of  Ax  +  By  +  C  =  0  with  regard  to  a?  +  y2  =  r». 

Ant.  (  —  TT  ,  —  TT  )  ,  as  appears  from  comparing  the  given  equation  with 

Ex.  4.   Find  the  pole  of  Bx  +  4y  =  7  with  regard  to  x2  +  #2  =  14.    Ans.   (6,  8). 

Ex.  5.  Find  the  pole  of  2x  +  3y  -  6  with  regard  to  (x  -  I)2  +  (y  -  2)1  =  12. 
Ans.   (-  11,  -  !6> 
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90.    Tojind  the  length  of  the  tangent  drawn  from  any  point  to 

the  circle  (x  -  a)*  +  (y  -  £)*  -  r*  =  0. 
The  square  of  the  distance  of  any  point  from  the  centre 

=  (x-«Y  +  (?/-/3f; 

and  since  this  square  exceeds  the  square  of  the  tangent  by  the 
square  of  the  radius,  the  square  of  the  tangent  from  any  point  is 
found  by  substituting  the  coordinates  of  that  point  for  x  and  y 
in  the  first  member  of  the  equation  of  the  circle 

Since  the  general  equation  to  rectangular  coordinates 

a(*2  +  y'0  +  2^+2/#-fc  =  0, 
when  divided  by  a,  is  (Art.  80)  equivalent  to  one  of  the  form 

(*-«)»+  (#-/3)2-r'  =  0, 
we  learn  that  the  square  of  the  tangent  to  a  circle  whose  equa- 

tion is  given  in  its  most  general  form  is  found  by  dividing  by 

the  coefficient  of  £2,  and  then  substituting  in  the  equation  the 
coordinates  of  the  given  point. 

The  square  of  the  tangent  from  the  origin  is  found  by 

making  x  and  y  =  0,  and  is,  therefore,  =  the  absolute  term  in  the 
equation  of  the  circle,  divided  by  a. 

The  same  reasoning  is  applicable  if  the  axes  be  oblique. 

*91.  To  find  the  ratio  in  which  the  line  joining  two  given 

points  xy  ',  x"y",  is  cut  by  a  given  circle. 
We  proceed  precisely  as  in  Art.  42.  The  coordinates  of  any 

point  on  the  line  must  (Art.  7)  be  of  the  form 

Ix"  +  mx      ly"  +  my' 
l  +  m     '      l  +  m 

Substituting  these  values  in  the  equation  of  the  circle 

and  arranging,  we  have,  to  determine  the  ratio  Z:  m,  the  quadratic 

?  y  +y«  _  f)  +  2?m  (x'x"  +  y'y"  -  rf)  +  ma  (X*  +  y*  -  r2)  -  0. 
The  values  of  l\m  being  determined  from  this  equation,  we  have 
at  once  the  coordinates  of  the  points  where  the  right  line  meets 
the  circle.     The  symmetry  of  the  equation  makes  this  method 
sometimes  more  convenient  than  that  used  (Art.  821. 
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If  x'y"  lie  on  the  polar  of  xy,  we  have  x 'x"  •}- y'y"  —  /-2  =  0 
(Art.  88),  and  the  factors  of  the  preceding  equation  must  be  of 

the  form  1 4  yu-m,  I-  /urn ;  the  line  joining  xy,  x'y"  is  therefore  cut 
internally  and  externally  in  the  same  ratio,  and  we  deduce  the 

well-known  theorem,  any  line  drawn  through  a  point  is  cut  har- 
monically by  the  point,  the  circle,  and  the  polar  of  the  point. 

*92.  To  find  the  equation  of  the  tangents  from  a  given  point 
to  a  given  circle. 

We  have  already  (Art.  87)  found  the  coordinates  of  the 

points  of  contact ;  substituting,  therefore,  these  values  in  the  equa- 

tion xx"  -f-  yy"  -  r*  =  0,  we  have  for  the  equation  of  one  tangent 

r  (xx'  4  yy'  -  x'*  -  if]  4-  (xy1  -  yx')  V(*"  +  y*  -  ra)  =  0, 
and  for  that  of  the  other 

rfa'  +  yy'-ar-y1*)  -  (xy'-yx)  V(^  +  y5t-r»)=0. 
These  two  equations  multiplied  together  give  the  equation  of  the 

pair  of  tangents  in  a  form  free  from  radicals.  The  preceding 

article  enables  us,  however,  to  obtain  this  equation  in  a  still  more 

simple  form.  For  the  equation  which  determines  I :  m  will  have 

equal  roots  if  the  line  joining  xy',  x'y"  touch  the  given  circle ; 

if  then  x'y"  be  any  point  on  either  of  the  tangents  through  x'y ', 
its  coordinates  must  satisfy  the  condition 

(„,«  +  y*  _  1*)  (a?  +  y«  _  r»)  =  (XX>  +  yy'  -  f)\ 

This,  therefore,  is  the  equation  of  the  pair  of  tangents  through 

the  point  x'y'.  It  is  not  difficult  to  prove  that  this  equation  is 
identical  with  that  obtained  by  the  method  first  indicated. 

The  process  used  in  this  and  the  preceding  article  is  equally 

applicable  to  the  general  equation.  We  find  in  precisely  the 
same  way  that  I :  m  is  determined  from  the  quadratic 

?  (ox"*  4  2hx"y"  f  //2  +  2gx"  +  2fy"  +  c) 

+  2lm  [ax'x"  +  h  (x'y"  +  x'y)  -f-  ly'y"  +g  (x'  4  x")  +f(y'  +  y"]  +  c) 

4-  m2  (ax"'  4  2hx'y'  4  %"2  4  Zgx'  4  tfy  +  c)  =  0 ; 

from  which  we  infer,  as  before,  that  when  x'y"  lies  on  the  polar 
of  x'y  the  line  joining  these  points  is  cut  harmonically ;  and  also 

that  the  equation  of  the  pair  of  tangents  from  x'y  is 

{ax'x  4  h  (x'y  4-  xy')  4-  %'  +  g  (x  4  x')  +f(y  +  y')  +  c}8 
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93.  To  find  the  equation  of  a  circle  passing  through  three 
given  points. 

We  have  only  to  write  down  the  general  equation 

x*  +  ?/*  -f  2gx  +  2fy  +  c  =  0, 

and  then  substituting  in  it,  successively,  the  coordinates  of  each 

of  the  given  points,  we  have  three  equations  to  determine  the 

three  unknown  quantities  g,  /,  c.  We  might  also  obtain  the 

equation  by  determining  the  coordinates  of  the  centre  and  the 

radius,  as  in  Ex.  5,  p.  4. 

Ex.  1.  Fiud  the  circle  through  (2,  3),  (4,  5),  (6,  1). 

Ans.  (x-W*  +  (y-  §)2  =  <tf  (see  p.  4). 

Ex.  2.  Find  the  circle  through  the  origin  and  through  (2,  3)  and  (3,  4). 

Here  c  =  0,  and  we  have  13  +  4g  +  6/=  0,  25  +  6g  +  8/=  0,  whence  2g  =  -  23,  2/=  11. 

Ex.  3.  Taking  the  same  axes  as  in  Art.  48,  Ex.  1,  find  the  equation  of  the  circle 
through  the  origin  and  through  the  middle  points  of  sides  j  and  shew  that  it  also 
passes  through  the  middle  point  of  base. 

Ans.   2p  (x2  +  y2)  -p  (*-«*)  x  -  (p2  +  *«')  y  =  0. 

*94.    To  express  the  equation  of  the  circle  through  three  points 

a  y,  x"y",  x'"y"  in  terms  of  the  coordinates  of  those  points. We  have  to  substitute  in 
a;8  +  y  + 

the  values  of  #,  /,  c  derived  from 

(x1"*  +  y1"*}  -f  2gx"'  +  2fy'"  +  c  =  0. 
The  result  of  thus  eliminating  g^  y,  c  between  these  four  equa- 

tions will  be  found  to  be* 

(y'"-y'}  +  *'"(y  -y"}} 

(y    -y")  +  x    (y"  -y'")} 
(y'  -y'"}+x'   (y'"  -y  )} 

-(x'"*  +  y'"*){x    (y'  -y")  +  x'   (y"  -y  )+x"(y  -y')}=0, 
as  may  be  seen  by  multiplying  each  of  the  four  equations  by 

the  quantities  which  multiply  (a;*  +  yv)  &c.   in  the   last   written 
equation,  and  adding  them  together,  when  the  quantities  multi- 

plying g,f,  c  will  be  found  to  vanish  identically. 

*  The  reader  who  is  acquainted  with  the  determinant  notation  will  at  once  see  how 
the  equation  of  the  circle  may  be  written  in  the  form  of  a  determinant. 
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If  it  were  required  to  find  the  condition  that  four  points 

should  lie  on  a  circle,  we  have  only  to  write  a?4,  y4  for  x  and  y 
in  the  last  equation.  It  is  easy  to  see  that  the  following  is  the 

geometrical  interpretation  of  the  resulting  condition.  If  A,  B, 

(7,  D  be  any  four  points  on  a  circle,  and  0  any  fifth  point  taken 

arbitrarily,  and  if  we  denote  by  BCD  the  area  of  the  triangle 

BCD,  &c.,  then 

95.  We  shall  conclude  this  chapter  by  showing  how  to  find 

the  polar  equation  of  a  circle. 

We  may  either  obtain  it  by  substituting  fora?,  p  cos#,  and 

for  y,  p  sin  6  (Art.  12),  in  either  of  the  equations  of  the  circle 

already  given, 

a(aJ"  +  ̂ )42^u-f  2/y  +  o  =  0,   or  (x  -  a)*  +  (y  -  ft)9  =  r", 
or  else  we  may  find  it  independently,  from  the  definition  of  the 

circle,  as  follows  : 

Let  0  be  the  pole,  C  the  centre  of  the  circle,  and  OC  the 

fixed  axis;   let  the  distance    OC  —  d^ 
and  let  OP  be  any  radius  vector,  and, 

therefore,  =  p,  and  the  angle  PO  C=  0t 
then  we  have  O 

PC*=OI*+  OC*-20P.OC  cosPOC, 

that  is,  r8  =  p*  +  d?  -  2pd  cos  0, 

or  p*-2dp  cos0  +  d8-r*  =  0. 

This,  therefore,  is  the  polar  equation  of  the  circle. 

If  the  fixed  axis  did  not  coincide  with  0(7,  but  made  with  it 

any  angle  a,  the  equation  would  be,  as  in  Art.  44, 

p*-2dp  cos  (0-0)4^-^  =  0. 

If  we  suppose  the  pole  on  the  circle,  the  equation  will  take  a 

simpler  form,  for  then  r  =  d,  and  the  equation  will  be  reduced  to 

p  =  2r  cos0, 

a  result  which  we  might  have  also  obtained  at  once  geometrically 

from  the  property  that  the  angle  in  a  semicircle  is  right  ;  or  else 

by  substituting  for  x  and  y  their  polar  values  in  the  equation 

(Art.  79)  a:*  4  /  =  2ro;. 



CHAPTER    VII. 

THEOREMS  AND  EXAMPLES  ON  THE  CIRCLE. 

96.  HAVING  in  the  last  chapter  shown  how  to  form  the 

equations  of  the  circle,  and  of  the  most  remarkable  lines  related 

to  it,  we  proceed  in  this  chapter  to  illustrate  these  equations  by 

examples,  and  to  apply  them  to  the  establishment  of  some  of 

the  principal  properties  of  the  circle.  We  recommend  the 

reader  first  to  refer  to  the  answers  to  the  examples  of  Art.  49, 

to  examine  in  each  case  whether  the  equation  represents  a  circle, 

and  if  so  to  determine  its  position  either  (Art.  80)  by  finding 

the  coordinates  of  the  centre  and  the  radius,  or  (Art.  84)  by 

finding  the  points  where  the  circle  meets  the  axes.  We  add  a 

few  more  examples  of  circular  loci. 

Ex.  1.  Given  base  and  vertical  angle,  find  the  locus  of  vertex,  the  axes  having 

any  position. 

Let  the  coordinates  of  the  extremities  of  base  be  x'y',  x"y".  Let  the  equation 
of  one  side  be 

y  -  y'  =  m  (x  -  x\ 
then  the  equation  of  the  other  side,  making  with  this  the  angle  C,  will  be  (Art.  33) 

(1  +  m  tan  C)  (y  -  y")  =  (m-tmC)(x-  x"). 
Eliminating  TO,  the  equation  of  the  locus  is 

tan  (7  {(y  -  jf)  (y  -  y")  +  (x  -  x')  (x  -  x")}  +  x  (y'  -  y")  -  y  (x1  -  x")  +  x'y"  -  y'x"  =  0. 
If  C  be  a  right  angle,  the  equations  of  the  sides  are 

y  -y'  =  TO  (*  -  x')  ;    TO  (y  -  y")  +  (x  -  x")  =0, 
and  that  of  the  locus 

(y  -  y')  (y  -  y")  +  (x-  x')  (x  -  x")  =  o. 
Ex.  2.  Given  base  and  vertical  angle,  find  the  locus  of  the  intersection  of  perpen- 

diculars of  the  triangle. 

The  equations  of  the  perpendiculars  to  the  sides  are 

m  (y  _  y")  +  (x  -  x")  =  0,    (m  -  tan  C)  (y  -  y')  +  (1  +  m  tan  C)  (x  -  x')  =  0. 
Eliminating  TO,  the  equation  of  the  locus  is 

tan  C  {(y  -  yO  (y  -  y")  +  (x  -  x')  (x  -  x")}  =  x  (y'  -  y")  -  y  (x'  -  x")  +  x'y"  -  y'x" ; 
an  equation  which  only  differs  from  that  of  the  last  article  by  the  sign  of  tan  C,  and 
which  is  therefore  the  locus  we  should  have  found  for  the  vertex  had  we  been  given 

the  same  base  and  a  vertical  angle  equal  to  the  supplement  of  the  given  one. 

Ex.  3.  Given  any  number  of  points,  to  find  locus  of  a  point  such  that  TO'  times 
square  of  its  distance  from  the  first  +  m"  times  square  of  its  distance  from  the  second 
+  &c.  =  a  constant ;  or  (adopting  the  notation  used  in  Ex.  4,  p.  49)  such  that  £  (mr*) 
may  be  constant. 
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The  square  of  the  distance  of  any  point  xy  from  x'y'  is  (x  —  as')2  +  (y  -  )/)«. 
Multiply  this  by  TO',  and  add  it  to  the  corresponding  terras  found  by  expressing  the 
distance  of  the  point  xy  from  the  other  points  a/'/',  &c.  If  we  adopt  the  notation 
of  p.  49,  we  may  write  for  the  equation  of  the  locus 

2  (m)  x*  +  2  (m)  y*  -  22  (mat)  x  -  22  (TO/)  y  +  2  (nut1)  +  2  (my")  =  C. 
Hence  the  locus  will  be  a  circle,  the  coordinates  of  whose  centre  will  be 

_  2  (mx1)         __  2  (TO/) 

-  £W  y~~*W' 
that  is  to  say,  the  centre  will  be  the  point  which,  in  p.  50,  was  called  the  centre  of 
mean  position  of  the  given  points. 

If  we  investigate  the  value  pf  the  radius  of  this  circle  we  shall  find 

72*2  (TO)  =  2  (TO;-*)  -  2  (TOP*), 

where  2  (mr2)  —  C—  sum  of  TO  times  square  of  distance  of  each  of  the  given  pointa 
from  any  point  on  the  circle,  and  2  (mp2)  =  sum  of  TO  times  square  of  distance  of 
each  point  from  the  centre  of  mean  position. 

Ex.  4.  Find  the  locus  of  a  point  0,  such  that  if  parallels  be  drawn  through  it 

to  the  three  sides  of  a  triangle,  meeting  them  in  points  .5,  C  ;  C",  A'  j  A",  B"  ;  the 
sum  may  be  given  of  the  three  rectangles 

BO  .  00  +  C'  0  .  OA'  +  A"0  .  OB". 
Taking  two  sides  for  axes,  the  equation  of  the  locus  is 

or  x-  +  y1  +  2xy  cos  C  —  ax  —  by  +  m?  =  0. 

This  represents  a  circle,  which,  as  is  easily  seen,  is  concentric  with  the  circumscribing 
circle,  the  coordinates  of  the  centre  in  both  cases  being  given  by  the  equations 

2  (a  +  )3  cos  (7)  =  a,  2  (/3  +  a  cosC)  =  b.  These  last  two  equations  enable  us  to  solve 
the  problem  to  find  the  locus  of  the  centre  of  circumscribing  circle,  when  two  sides 
of  a  triangle  are  given  in  position,  and  any  relation  connecting  their  lengths  is  given. 

Ex.  5.  Find  the  locus  of  a  point  0,  if  the  line  joining  it  to  a  fixed  point  makes  the 
same  intercept  on  the  axis  of  x  as  is  made  on  the  axis  of  y  by  a  perpendicular  through 
0  to  the  joining  line. 

Ex.  6.  Find  the  locus  of  a  point  such  that  if  it  be  joined  to  the  vertices  of  a 

triangle,  and  perpendiculars  to  the  joining  lines  erected  at  the  vertices,  these  perpen- 
diculars meet  in  a  point. 

97.  We  shall  next  give  one  or  two  examples  involving  the 

problem  of  Art.  82,  to  find  the  coordinates  of  the  points  where 

a  given  line  meets  a  given  circle. 

Ex.  1.  To  find  the  locus  of  the  middle  points  of  chords  of  a  given  circle  drawn 
parallel  to  a  given  line. 

Let  the  equation  of  any  of  the  parallel  chords  be 

a  cos  a  +  y  sin  a  —  p  =  0, 

where  a  is,  by  hypothesis,  given,  and  p  is  indeterminate  ;  the  abscissae  of  the  pointa 
where  this  line  meets  the  circle  are  (Art.  82)  found  from  the  equation 

x-  -  2px  cos  a  +  p1  -  r-  sin*  a  =  0. 

Now,  if  the  roots  of  this  equation  be  »'  and  x",  the  x  of  the  middle  point  of  the 
N 
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chord  will  (Art.  7)  be  J  (x'  +  x"),  or,  from  the  theory  of  equations,  will  -p  cos  «. 
In  like  manner,  the  y  of  the  middle  point  will  equal  p  sin  a.  Hence  the  equation 

of  the  locus  is  y  -  x  tan  a,  that  is,  a  right  line  drawn  through  the  centre  perpendicular 
to  the  system  of  parallel  chords,  since  o  is  the  angle  made  with  the  axis  of  x  by 
a  perpendicular  to  any  of  the  chords. 

Ex.  2.  To  find  the  condition  that  the  intercept  made  by  the  circle  on  the  line 

xcosa  +y  sin  a  -p 

should  subtend  a  right  angle  at  the  point  x'y'. 

We  found  (Art.  96,  Ex.  1)  the  condition  that  the  lines  joining  the  points  x"y", 
x"'y'"  to  xy  should  be  at  right  angles  to  each  other  ;  viz. 

(X  -  X")  (X  -  X'")  +  (y-y")(y-  y'")  =  0. 

Let  x"y",  x"Y"  be  the  points  where  the  line  meets  the  circle,  then,  by  the 
last  example, 

x"  +  x"'  -  2p  coao,   x"x"'  -p"1  -  r2  sin2  o,    y"  +  y"'  -  2p  sin  a,  y"y"'  =  p*  -  r2  cus'a. 
Putting  in  these  values,  the  required  condition  is 

x*  +  y^  -  2px'  cos  a  —  2py>  sin  a  +  2p2  —  r2  =  0. 

Ex.  3.  To  find  the  locus  of  the  middle  point  of  a  chord  which  subtends  a  nght 
angle  at  a  given  point. 

If  x  and  y  be  the  coordinates  of  the  middle  point,  we  have,  by  Ex.  1, 

pcosa  =  x,    peiua  =  y,    p*  =  x2  +  y2, 
and,  substituting  these  values,  the  condition  found  in  the  last  example  becomes 

(x  -  aO2  +  (y  -yO2  +  *8  +  y2  =  r*. 
Ex.  4.  Given  a  line  and  a  circle,  to  find  a  point  such  that  if  any  chord  be  drawn 

through  it,  and  perpendiculars  let  fall  from  its  extremities  on  the  given  line,  the 
rectangle  under  these  perpendiculars  may  be  constant. 

Take  the  given  line  for  axis  of  x,  and  let  the  axis  of  y  be  the  perpendicular  on 
it  from  the  centre  of  the  given  circle,  whose  equation  will  then  be 

Let  the  coordinates  of  the  sought  point  be  xy,  then  the  equation  of  any  line 

through  it  will  be  y  —  y'  =  m(x  —  xr).  Eliminate  x  between  these  two  equations 
and  we  get  a  quadratic  for  y,  the  product  of  whose  roots  will  be  found  to  be 

This  will  not  be  independent  of  TO  unless  the  numerator  be  divisible  by  1  +  m2,  and 

it  will  be  found  that  this  cannot  be  the  case  unless  x'  —  0,  y^  =•  /J2  —  r2. 

Ex.  5.  To  find  the  condition  that  the  intercept  made  on    x  cos  a  +  y  sin  a  —  p 
b}  the  circle 

x2  +  y«  +  2gx  +  2/y  +  c  =  0 

may  subtend  a  right  angle  at  the  origin.  The  equation  of  the  pair  of  lines  joining 
the  extremities  of  the  chord  to  the  origin  may  be  written  down  at  once.  For  if  we 

multiply  the  terms  of  the  second  degree  in  the  equation  of  the  circle  by  p*,  those  of 

the  first  degree  by  p  (x  cos  a  +  y  sin  a),  and  the  absolute  term  by  (x  cos  a  +  y  sin  a)2, 
we  get  an  equation  homogeneous  in  x  and  y,  which  therefore  represents  right  lines 
drawn  through  the  origin  ;  and  it  is  satisfied  by  those  points  on  the  circle  for  which 
x  cos  o  +  y  sin  a  =  p.  The  equation  expanded  and  arranged  is 

2gp  cos  a  +  c  cos2  a)  x2  +  2  (gp  sin  a  +Jp  cos  a  +  c  sin  a  cos  a)  xy 

+  (^2  +  2/y;  sin  a  +  c  sin2  a)  y2  =  0. 
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These  two  lines  cut  at  right  angles  (Art.  74)  if 

2p2  +  2p  (g  cos  a  +/sin  a)  +  c  =  0. 

Ex.  6.  To  find  the  locus  of  the  foot  of  the  perpendicular  from  the  origin  on  a 
chord  which  subtends  a  right  angle  at  the  origin.  The  polar  coordinates  of  the  locus 

are  p  and  o  in  the  equation  last  found ;  and  the  equation  of  the  locus  is  therefore 

2  (a;2  +  y2)  +  "2gx  +  2/y  +  c  =  0. 
It  will  be  found  on  examination  that  this  is  the  same  circle  as  in  Ex.  3. 

Ex.  7.  If  any  chord  be  drawn  through  a  fixed  point  on  a  diameter  of  a  circle  and 
its  extremities  joined  to  either  end  of  the  diameter,  the  joining  lines  cut  off  on  the 
tangent  at  the  other  end  portions  whose  rectangle  is  constant. 

Find,  as  in  Ex.  5,  the  equation  of  the  lines  joining  to  the  origin  the  intersections 

of  a2  +  y~  -  2rx  with  the  chord  y  —  m(x  —  xr)  which  passes  through  the  fixed  point 
(x',  0).  The  intercepts  on  the  tangent  are  found  by  putting  x  =•  2r  in  this  equation 
aixl  seeking  the  corresponding  values  of  y.  The  product  of  these  values  will  be 

found  to  be  independent  of  mt  viz.  4r2 

98.  We  shall  next  obtain  from  the  equations  (Art.  88)  a  few 

of  the  properties  of  poles  and  polars. 

If  a  point  A  lie  on  the  polar  of  B,  then  B  lies  on  the  polar  of  A. 

For  the  condition  that  x'y'  should  lie  on  the  polar  of  x"y"  is 

x'x" +y'y" '  =  r8;  but  this  is  also  the  condition  that  the  point 
x"y"  should  lie  on  the  polar  of  x'y' .  It  is  equally  true  if  we 
use  the  general  equation  (Art.  89)  that  the  result  of  substituting 

the  coordinates  x"y"  in  the  equation  of  the  polar  of  x'y'  is  the 

game  as  that  of  substituting  the  coordinates  of  x'tf  in  the  polar 

of  x"y".  This  theorem  then,  and  those  which  follow,  are  true 
of  all  curves  of  the  second  degree.  It  may  be  otherwise  stated 

thus :  if  the,  polar  of  B  pass  through  a  fixed  point  A,  the  locus  of 
B  is  the  polar  of  A. 

99.  Given  a  circle  and  a  triangle  ABC,  if  we  take  the  polars 

with  respect  to  the  circle  of  A,  B,  (7,  we  form  a  new  triangle 

A'B'G'  called  the  conjugate  triangle,  A'  being  the  pole  of  5(7, 

B'  of  CA,  and  C'  of  AB.    In  the  particular  case  where  the  polars 
of  A,  B)  C  respectively  are  BG,  GA,  AB,  the  second  triangle 

coincides  with  the  first,  and  the  triangle  is  called  a  self -conjugate 
triangle. 

The  lines  A  A',  BB',  GG',  joining  the  corresponding  vertices  of 
a  triangle  and  of  its  conjugate,  meet  in  a  point. 

The  equation  of  the  line  joining  the  point  x'y'  to  the  inter- 
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section  of  the  two  lines  xx"  +  yy"  —  r8  =  0  and  xx'"+  yy'"  —  r2  =  0 
is  (Art.  40,  Ex.  3) 

AA\    (x'x"f  +  y'y'"  -  r«)  (xx*  +  yy"  -  r') 

-  (x'x"  +  //'  -  r>)  (xx"'  +  yy'"  -  r»)  -  0. 
In  like  manner 

BB\   (x'x"  +  //'  -  r')  (xx'"  4  <//"  -  r8) 

-  (*'V"  +  yy  -  r2)  (xx*  +  #/  -  O  -  0 

and   GC\   (x"x'"+y"y'"-r*}(xx'+yy'-r*) 

-  (aV"  +  //"  -  r")  (^"  4  yf  -  r')  =  0  • 

and  by  Art.  41  these  lines  must  pass  through  the  same  point. 

The  following  is  a  particular  case  of  the  theorem  just  proved  : 

If  a.  circle,  be  inscribed  in  a  triangle,  and  each  vertex  of  the  tri- 
angle joined  to  the  point  of  contact  of  the  circle  with  the  opposite 

side,  the  three  joining  lines  will  meet  in  a  point. 

The  proof  just  given  applies  equally  if  we  use  the  general 

equation.  If  we  write  for  shortness  Pl  =  0  for  the  equation  of 

the  polar  of  x'y,  (aa;'ic+&c.=0);  and  in  like  manner  Pa,  P8  for 

the  polars  of  #"#",  »'"/"  5  and  if  we  write  [^  2]  for  lhe  result  of 

substituting  the  coordinates  x"y"  in  the  polar  of  x'y',  (axV+&c.), 
then  the  equations  are  easily  seen  to  be 

AA'        [l,3jPt  =  [l,2]P., 
BD'        [1,2JP.  =  [2,3]P,, 

GG'        [»,8]P1-[1,8]P^ 
which  denote  three  lines  meeting  in  a  point.  It  follows  (Art.  60, 
Ex.  3)  that  the  intersections  of  corresponding  sides  of  a  triangle 
and  its  conjugate  lie  in  one  right  line. 

100.  Given  any  point  0,  and  any  two  lines  through  it  ;  join 

both  directly  and  transversely  the  points  in  which  these  lines  meet 

a  circle  ;  then,  if  the  direct  lines  intersect  each  other  in  P  and  the 

transverse  in  Q,  the  line  PQ  will  be  the  polar  of  the  point  0  with 

regard  to  the  circle. 

Take  the  two  fixed  lines  for  axes,  and  let  the  intercepts  made 

on  them  by  the  circle  be  \  and  A,',  n  and  p.  Then 

V 
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will  be  the  equations  of  the  direct  lines  ;  and 

*  +*-!-«,   f+'-l-O, \       p  X      p, 

the  equations  of  the  transverse  lines.     Now,  the  equation  of  the 
line  PQ  will  be 

for  (see  Art.  40)  this  line  passes  through  the  intersection  ot 

s+i-'.r+J". 
and  also  of  ^  -f  ̂-  1,    ?  4  *  -  1. 

X     /       '    X'      11 
If  the  equation  of  the  curve  be 

ax*  -f  2hxy  +  by*  4  2gx  +  2/#  +  c  =  0, 

X  and  X'  are  determined  from  the  equation  ax*  +  '2gx  +  c  =  0 
(Art.  84),  therefore, 

11  2(7          ,    1        1  2/1 -  +  -,  =  -  -^     and  -  +  —  =  -  —  . 
X      X'  c  '  /t      /A  o 

Hence,  equation  o 

but  we  saw  (Art.  89)  that  this  was  the  equation  of  the  polar  of 

the  origin  0.  Hence  it  appears  that  if  the  point  0  were  given, 

and  the  two  lines  through  it  were  not  fixed,  the  locus  of  the 

points  P  and  Q  would  be  the  polar  of  the  point  0. 

101.  Given  any  two  points  A  and  J5,  and  their  polars  with 

respect  to  a  circle  whose  centre  is  0  ;  let  fall  a  perpendicular  AP 

from  A  on  the  polar  of  B,  and  a  perpendicular  BQfrom  B  on  the 
,  OA      OB 

polar  of  A,    then  ~Jp=  SQ- 

The  equation  of  the  polar  of  A  (xyf)  is  xx'  -f  yy'—  r*  =  9  ;  and 

)  the  perpendicular  on  this  line  from  B(x"y\  is  (Art.  34} 

Hence,  since  ̂ (x^  +  y**)  =  OA,  we  find 
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and,  for  the  same  reason, 

OA       OU 

AP  =  BQ' 
102.  In  working  out  questions  on  the  circle  it  is  often  con- 

venient, instead  of  denoting  the  position  of  a  point  on  the  curve 

by  its  two  coordinates  xy',  to  express  both  these  in  terras  of  a 
single  independent  variable.  Thus,  let  ff  be  the  angle  which 

the  radius  to  x'y'  makes  with  the  axis  of  a;,  then  x'  —  r  costf', 
y'  =  rsin#',  and  on  substituting  these  values  our  formulae  will 
generally  become  simplified. 

The  equation  of  the  tangent  at  the  point  x'y'  will  by  this  sub- 
stitution become 

x  cos  6'  +  y  sin  &  =  r  ; 

and  the  equation  of  the  chord  joining  x'y'  ,  x"y",  which  (Art.  86, 
Ex.  3)  is 

x(x'  +  x")+y  (y'+y")  =r*  +  x'x"  +y'y", 
will,  by  a  similar  substitution,  become 

x  cosi  (0'  +  0")+y  sini  (ff  +  6")  =  r  cos|  (IT  -  0"), 

ff  and  Q"  being  the  angles  which  radii  drawn  to  the  extremities 
of  the  chord  make  with  the  axis  of  x. 

This  equation  might  also  have  been  obtained  directly  from 

the  general  equation  of  a  right  line  (Art.  23)  x  cosa  +  y  sina=^>, 
for  the  angle  which  the  perpendicular  on  the  chord  makes  with 

the  axis  is  plainly  half  the  sum  of  the  angles  made  with  the  axi& 

by  radii  to  its  extremities,  and  the  perpendicular  on  the  chord 

Ex.  1.  To  find  the  coordinates  of  the  intersection  of  tangents  at  two  given  point* 
on  the  circle     The  tangents  being 

x  cos  V  +  y  sin  0*  =  r,    x  cos  0"  +  y  sin  0"  =  r, 
the  coordinates  of  their  intersection  are 

cos  i  (e'  +  0")          Binacy  +  e*) 
r  r  cosi  (6'  -  6")  '  y  ~  r  cosi  (V  -  0")  ' 

Ex.  2.  To  find  the  locus  of  the  intersection  of  tangents  at  the  extremities  of 
a  chord  whose  length  is  constant. 

Making  the  substitution  of  this  article  in 

(x'  -  x")2  +  (y'  -  y")-  =  constant, 

it  reduces  to  cos  (6'  -  6")  -  constant,  or  0'  -  0"  =  constant.     If  the  given  length  o* 
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the  chord  be  2r  sin  fl,  then  0'  —  6"  —  2S.    The  coordinates  therefore  found  in  the  last 
example  fulfil  the  condition 

Ex.  3.  What  is  the  locus  of  a  point  where  a  chord  of  a  constant  length  is  cut 
in  a  given  ratio? 

Writing  down  (Art.  7)  the  coordinates  of  the  point  where  the  chord  is  cut  in  a 

given  ratio,  it  will  be  found  that  they  satisfy  the  condition  x2  +  y2  =  constant. 

103.    We  have  seen  that  the  tangent  to  any  circle 

has  an  equation  of  the  form 

x  cos  0  4-  y  sin  0  =  r  ; 

and  it  can  be  proved,  in  like  manner,  that  the  equation  of  tbe 

tangent  to  (a;  -  a)2  +  (y  -  /3)'2  =  r*  may  be  written 
(x-a)  cos0-f  (y-/3)  sin0  =  r. 

Conversely,  then,  if  the  equation  of  any  right  line  contain  an 
indeterminate  6  in  the  form 

(x  -  a)  cos0  +  (y  -  j3)  sin  0  =  r, 

that  line  will  touch  the  circle  (x  -  a)2  +  (y  -  /3)2  =  rc. 
Ex.  1.  If  a  chord  of  a  constant  length  be  inscribed  in  a  circle,  it  will  always  touch 

another  circle.  For,  in  the  equation  of  the  chord 

x  cos*  (e'  +  0")  +y  sinj  (6'  +  0")  =  r  cos|  (V  -  0"); 

by  the  last  article,  0*  -  0"  is  known,  and  0'  +  0"  indeterminate  j  the  chord,  therefore, 
always  touches  the  circle 

x2  +  y1  -  r2  cos2  t. 

Ex.  2.  Given  any  number  of  points,  if  a  right  line  be  such  that  m'  times  the 
perpendicular  on  it  from  the  first  point  +  m"  times  the  perpendicular  from  the  second 
•f  &c.  be  constant,  the  line  will  always  touch  a  circle. 

This  only  differs  from  Ex.  4,  p.  49,  in  that  the  sum,  in  place  of  being  =  0,  is  con- 
stant. Adopting  then  the  notation  of  that  Article,  instead  of  the  equation  there  found, 

{*2  (m)  -  2  (mx')l  cos  a  +  {yZ  (TO)  -  2  (my'}}  sin  a  =  0, 
we  have  only  to  write 

{xZm  -  2  (ma?)}  cos  a  +  {y2  (m)  -  2  (my1)}  sin  a  =  constant. 
Hence  this  line  must  always  touch  the  circle 

(        2   mx')l2     f        2  (m'* 

whose  centre  is  the  centre  of  mean  position  of  the  given  points. 

104.   We  shall  conclude  this  chapter  with  some  examples  of 

the  use  of  polar  coordinates. 
Ex.  1.  If  through  a  fixed  point  any  chord  of  a  circle  be  drawn,  the  rectangle 

inder  its  segments  will  be  constant  (Euclid  in.  35,  36). 
Take  the  fixed  point  for  the  pole,  and  the  polar  equation  is  (Art.  95) 
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the  roots  of  which  equation  in  p  are  evidently  OP,  01",  the  values  of  the    radius 
vector  answering  to  any  given  value  of  0  or  POC. 

Now,  by  the  theory  of  equations,  OP  .  OP1,  the  product  of  these  roots  will 
=  <P  -  r2,  a  quantity  independent  of  6,  and  therefore  constant,  whatever  be  the 
direction  in  which  the  line  OP  is  drawn.  If  the  point  0  be  outside  the  circle,  it 

is  plain  that  cP  -  r2  must  be  =  the  square  of  the  tangent. 

Ex.  2.  If  through  a  fixed  point  0  any  chord  of  a  circle  be  drawn,  and  OQ,  taken 

an  arithmetic  mean  between  the  segments  OP,  OP',  to  find  the  locus  of  Q. 

We  have  OP  +  OP',  or  the  sum  of  the  roots  of  the  quadratic  in  the  last  example, 
=  Id  cos  0  ;  but  OP  +  OP'  =  WQ,  therefore 

Hence  the  polar  equation  of  the  locus  is 

Now  it  appears  from  the  final  equation  (Art.  95) 
that  this  is  the  equation  of  a  circle  described  on 
the  line  OC  as  diameter. 

The  question  in  this  example  might  have  been  otherwise  stated:    "To  find  the 

locus  of  the  middle  points  of  chords  which  all  pass  through  a  fixed  point." 

Ex.  3.  If  the  line  OQ  had  been  taken  a  harmonic  mean  between  OP  and  OP1 
to  find  the  locus  of  Q. 

WP  OP' That  is  to  say,  OQ  =  op+op, ,  but  OP. OP'  =  #  -  r2,  and  OP  +  OP'  =  2d  cos  6  5 
tlterefore  the  polar  equation  of  the  locus  is 

d2  —  r*  d?  —  r* 

or  p  cos  0  =  • 

This  is  the  equation  of  a  right  line  (Art.  44)  perpendicular  to  OC,  and  i\t  a 
r2  ri 

distance  from  0  =  d  —  -3  ,  and,  therefore,  at  a  distance  from  C  -  -y  .    Hence  (Art.  88) 

the  locus  is  the  polar  of  the  point  0. 
We  can,  in  like  manner,  solve  this  and  similar  questions  when  the  equation   is 

given  in  the  form 

a  (x*  +  y2)  +  Igx  +  2/y  +  c  =  0, 

for,  transforming  to  polar  coordinates,  the  equation  becomes 

und,  proceeding  precisely  as  in  this  example,  we  find,  for  the  locus  of  harmonic  means, 

_  c   
p  ~  ~  g  cos  0  +/  sin  0 ' 

and,  returning  to  rectangular  coordinates,  the  equation  of  the  locus  is 

gx  +  fy  +  c  =  0, 
the  same  as  the  equation  of  the  polar  obtained  already  (Art.  89). 

Ex.  4.  Given  a  point  and  a  right  line  or  circle ;  if  on  OP  the  radius  vector  to  the 
line  or  circle  a  part  OQ  be  taken  inversely  as  OP,  find  the  locus  of  Q. 

Ex.  5.  Given  vertex  and  vertical  angle  of  a  triangle  and  rectangle  under  sides, 
if  one  extremity  of  the  base  describe  a  right  line  or  a  circle,  find  the  locus  described 
by  the  other  extremity. 

Take  the  vertex  for  pole ;  let  the  lengths  of  the  sides  be  p  and  p',  and  the  angle* 
they  make  with  the  axis  0  and  0',  then  we  have  />/  -  A2  and  0  0'  =  C. 
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The  Btudenfc  must  write  down  the  polar  equation  of  the  locus  which  one  base  angle 
is  said  to  describe ;  this  will  give  him  a  relation  between  p  and  0 ;  then,  writing  for  p, 

Jf-
2. 

—, ,  and  for  0,  C  +  tf,  he  will  find  a  relation  between  p'  and  0',  which  will  be  the 

polar  equation  of  the  locus  described  by  the  other  base  angle. 

This  example  might  be  solved  in  like  manner,  if  tl^e  vatio  of  the  sides,  instead 
of  their  rectangle,  had  beer  given. 

Ex.  6.  Through  the  intersection  of  two  circles  a  right  line  is  drawn.    Hud  the 
locus  of  i.te  middle  point  of  the  portion  intercepted  between  the  circles. 

The  equations  of  the  circles  will  be  of  the  form 

p  -  2r  cos  (0  -  a) ;    p  =  2r'  cos  (0  -  a')  j 
and  the  equation  of  the  locus  will  be 

p  =  r  cos  (0  -  a)  +  r'  cos  (0  -  a') ; 
which  also  represents  a  circle. 

Ex.  7.  If  through  any  point  0,  on  the  circumference  of  a  circle,  any  three  chorda 
be  drawn,  and  on  each,  as  diameter,  a  circle  be  described,  these  three  circles  (which, 
of  course,  all  pass  through  0)  will  intersect  in  three  other  points,  which  lie  in  one 
right  line  (See  Cambridge  Mathematical  Journal,  vol.  I.  p.  169). 

Take  the  fixed  point  0  for  pole,  then  if  d  be  the  diameter  of  the  original  circle, 
its  polar  equation  will  be  (Art.  95) 

p  =  d  cos  0. 

In  like  manner,  if  the  diameter  of  one  of  the  other  circles  make  an  angle  a  with  the 
fixed  axis,  its  length  will  be  =  d  cos  a,  and  the  equation  of  this  circle  will  be 

p  =  d  cos  a  cos  (0  —  a). 

The  equation  of  another  circle  will,  in  like  manner,  be 

,o  =  dcos/3cos(0-/3). 

To  find  the  polar  coordinates  of  the  point  of  intersection  of  the^e  two,  we  should 
seek  what  value  of  0  would  render 

cosa  cos (0  -  a)  =  cos /3  cos  (0  -  /3), 

and  it  is  easy  to  find  that    0  must   =  a  +  /3,    and   the   corresponding   value   of 
p  =  d  cos  a  cos  /3. 

Similarly,  the  polar  coordinates  of  the  intersection  of  the  first  and  third  circles  are 

0  =  a  +  y,   and   p  =  d  cos  a  cos  y. 

Now,  to  find  the  polar  equation  of  the  line  joining  feese  two  points,  take  the 

general  equation  of  a  right  line,  p  cos  (k  —  0)  =  p  (Art.  44),  and  substitute  in  it  suc- 
cessively these  values  of  0  and  p,  and  we  shall  get  two  equations  to  determine  p 

and  k.  "We  shall  get 

p  —  d  cos  a  COS  /3  cos  \k  —  (a.  +  /3)}  =  d  cos  a  cos  y  cos  {k  —  (a  +  y)}. 

Hence  k  —  a  +  ft  +  y.   and  p  =  d  cos  a  cos  /3  cos  y . 

The  symmetry  of  these  values  shows  that  it  is  the  same  right  line  which  join 
the  intersections  of  the  first  and  second,  and  of  the  second  and  third  circles,  and 

therefore,  that  the  three  points  are  in  a  right  line. 

o 



CHAPTER    VIII. 

PROPERTIES  OF  A  SYSTEM   OF  TWO  OR  MORE  CIRCLES. 

105.  To  find  the  equation  of  the  chord  of  intersection  of  two 
circles. 

If  5  =  0,  5'  =  0  be  the  equations  of  two  circles,  then  any 
equation  of  the  form  S+  kS'  =  0  will  be  the  equation  of  a  figure 
passing  through  their  points  of  intersection  (Art.  40). 

Let  us  write  down  the  equations 

S  =  *-a»  +      -/3'-r'!=0 

and  it  is  evident  that  the  equation  S+kS'  =  Q  will  in  general 
represent  a  circle,  since  the  coefficient  of  ary  =  0,  and  that  of 

a?*=  that  of  y*.  There  is  one  case,  however,  where  it  will  re- 
present a  right  line,  namely,  when  k  —  —  1.  The  terms  of  the 

second  degree  then  vanish,  and  the  equation  becomes 

8  -  S'=  2  (a'  -  a)  x  4  2  (£'  -  £)  y  +  r"  -  r2  +  a2-  a"  +  /S8  -  /S"=  0. 
This  is,  therefore,  the  equation  of  the  right  line  passing  through 

the  points  of  intersection  of  the  two  circles. 

What  has  been  proved  in  this  article  may  be  stated  as  in 

Art.  50.  If  the  equation  of  a  circle  be  of  the  form  S-}-  kS'  =  0 
involving  an  indeterminate  k  in  the  first  degree,  the  circle  passes 

through  two  fixed  points,  namely,  the  two  points  common  to  the 

circles  S  and  S'. 

106.  The  points  common  to  the  circles  S  and  /S"  are  found 

by  seeking,  as  in  Art.  82,  the  points  in  which  the  line  S—S' 
meets  either  of  the  given  circles.  These  points  will  be  real,  co- 

incident, or  imaginary,  according  to  the  nature  of  the  roots  of 

the  resulting  equation  ;  but  it  is  remarkable  that,  whether  the 

circles  meet  in  real  or  imaginary  points,  the  equation  of  the 

chord  of  intersection,  £—  5*  =  0,  always  represents  a  real  line, 
having  important  geometrical  properties  in  relation  to  the  two 
circles.  This  is  in  conformity  with  our  assertion  (Art.  82  )3  that 
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the  line  joining  two  points  may  preserve  its  existence  and  ita 

properties  when  these  points  have  become  imaginary. 

In  order  to  avoid  the  harshness  of  calling  the  line  S—  S',  the 
chord  of  intersection  in  the  case  where  the  circles  do  not 

geometrically  appear  to  intersect,  it  has  been  called*  the  radical 
axis  of  the  two  circles. 

107.  We  saw  (Art.  90)  that  if  the  coordinates  of  any  point 

xy  be  substituted  in  S,  it  represents  the  square  of  the  tangent 

drawn  to  the  circle  S  from  the  point  xy.  So  also  S'  is  the 

square  of  the  tangent  drawn  to  the  circle  8'$  hence  the  equation 
8  —  S'  =  0  asserts,  that  if  from  any  point  on  the  radical  axis 
tangents  be  drawn  to  the  two  circles,  these  tangents  will  be  equal. 

The  line  (S-  S')  possesses  this  property  whether  the  circles 
meet  in  real  points  or  not.  When  the  circles  do  not  meet  in 

real  points,  the  position  of  the  radical  axis  is  determined  geome- 
trically by  cutting  the  line  joining  their  centres,  so  that  the 

difference  of  the  squares  of  the  parts  may  =  the  difference  of  the 

squares  of  the  radii,  and  erecting  a  perpendicular  at  this  point  ; 

as  is  evident,  since  the  tangents  from  this  point  must  be  equal 
to  each  other. 

If  it  were  required  to  find  the  locus  of  a  point  whence  tan- 
gents to  two  circles  have  a  given  ratio,  it  appears,  from  Art.  90, 

that  the  equation  of  the  locus  will  be  S-ti2S'=Q,  which  (Art.  105) 
represents  a  circle  passing  through  the  real  or  imaginary  points 

of  intersection  of  S  and  S'.  When  the  circles  8  and  S'  do  not 
intersect  in  real  points,  we  may  express  the  relation  which  they 

bear  to  the  circle  8—k*S',  by  saying  that  the  three  circles  have 
a  common  radical  axis. 

Ex.  Find  the  coordinates  of  the  centre,  and  the  radius  of  kS  +  IS'. 

Ans.  Coordinates  are  -r     »  >  that  is  to  ̂   the  line  3oininS  the  centres 

of  5,  S'  is  divided  in  the  ratio  k  :  I.     Radius  is  given  by  the  equation 

(k  +  /)V2  =  (k  +  I)  (kr*  +  Zr'2)  -  kW, 
where  D  is  the  distance  between  the  centres  of  S  and  S'. 

108.  Given  any  three  circles,  if  we  take  the  radical  axis  of 

each  pair  of  circles,  these  three  lines  will  meet  in  a  point,  which 
is  called  the  radical  centre  of  the  three  circles. 

*  By  M.  Gaultier.  of  Tours  (Journal  de  ?£cole  Polvtechni(iue.  Cahier  xvi.  1813). 
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For  the  equations  of  the  three  radical  axes  are 

8-8'  =  0,    S'-S"  =  0,    S"-S  =  0, 
which,  by  Art.  41,  meet  in  a  point. 

From  this  theorem  we  immediately  derive  the  following: 

If  several  circles  pass  through  two  fixed  points,  their  chords  of 

intersection  with  a  fixed  circle  will  pass  through  a  fixed  point. 

For,  imagine  one  circle  through  the  two  given  points  to  be 
fixed,  then  its  chord  of  intersection  with  the  given  circle  will  be 

fixed;  and  its  chord  of  intersection  with  any  variable  circle 

drawn  through  the  given  points  will  plainly  be  the  fixed  line  join- 
ing the  two  given  points.  These  two  lines  determine  by  their 

intersection  a  fixed  point  through  which  the  chord  of  intersection 

of  the  variable  circle  with  the  first  given  circle  must  pass. 
Ex.  1.  Find  the  radical  axis  of 

x2  +  y*  -  4a;  -  by  +  7  =  0  ;    a;2  +  y2  +  Qx  +  8g  -  9  =  0. 
Ans,   lOo?  +  13y  =  16. 

Ex.  2.  Find  the  radical  centre  of 

(z_l)2+(y_2)2  =  7;     (x-3)*  +  y*=5;    (x  +  4)2  +  (y  +  1)*  =  9. 
An,.   (-^,-U). 

*109.  A  system  of  circles  having  a  common  radical  axis 
possesses  many  remarkable  properties,  which  are  more  easily 

investigated  by  taking  the  radical  axis  for  the  axis  of  y,  and  the 

line  joining  the  centres  for  the  axis  of  x.  Then  the  equation  of 

any  circle  will  be 

where  88  is  the  same  for  all  the  circles  of  the  system,  and  the 
equations  of  the  different  circles  are  obtained  by  giving  different 
values  to  k.  For  it  is  evident  (Art.  80)  that  the  centre  is  on 

the  axis  of  x,  at  the  variable  distance  k  ;  and  if  we  make  x  =  0 
in  the  equation,  we  see  that  no  matter  what  the  value  of  k  may 

be,  the  circle  passes  through  the  fixed  points  on  the  axis  of  ?/, 

y*  +  8*  =  0.  These  points  are  imaginary  when  we  give  8'2  the 
sign  -f,  and  real  when  we  give  it  the  sign  —  . 

*110.  The  polar  s  of  a  given  point,  with  regard  to  a  system  of 
circlet*  having  a  common  radical  axis,  always  pass  through  a 

fixed  point. 

equation  of  the  polar  of  x'y'  with  regard  to 
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is  (Art.  89)  x, 

therefore,  since  this  involves  the  indeterminate  k  in  the  first 

degree,  the  line  will  always  pass  through  the  intersection  of 

xxf  4-  yy'  +  8*  =  0,  and  £c+o?'  =  0. 

*111.  7%ere  can  always  be  found  two  points,  however,  such 

that  their  polars,  with  regard  to  any  of  the  circles,  will  not  only 

pass  through  a  fixed  point,  but  will  be  altogether  fixed. 

This  will  happen  when  xx'  +  yy'  +  8*  =  0  and  x  +  a'  =  0  re- 
present the  same  right  line,  for  this  right  line  will  then  be  the 

polar  whatever  the  value  of  k.  But  that  this  should  be  the  case 
we  must  have 

y'  =  0  and  a/2  =  S2,  or  x'  =  ±  8. 
The  two  points  whose  coordinates  have  been  just  found  have 

many  remarkable  properties  in  the  theory  of  these  circles,  and 

are  such  that  the  polar  of  either  of  them,  with  regard  to  any  of 

the  circles,  is  a  line  drawn  through  the  other,  perpendicular  to 
the  line  of  centres.  These  points  are  real  when  the  circles  of 

the  system  have  common  two  imaginary  points,  and  imaginary 

when  they  have  real  points  common. 

The  equation  of  the  circle  may  be  written  in  the  form 

which  evidently  cannot  represent  a  real  circle  if  k*  be  less  than 

S2 ;  and  if  ti*  =  S2,  then  the  equation  (Art.  80)  will  represent  a 
circle  of  infinitely  small  radius,  the  coordinates  of  whose  centre 

are  y  —  0,  x  —  ±  8.  Hence  the  points  just  found  may  themselves 
be  considered  as  circles  of  the  system,  and  have,  accordingly, 

been  termed  by  Poncelet*  the  limiting  points  of  the  system  of 
circles. 

*112.  If  from  any  point  on  the  radical  axis  we  draw  tan- 
gents to  all  these  circles,  the  locus  of  the  point  of  contact  must 

be  a  circle,  since  we  proved  (Art.  107)  that  all  these  tangents 

were  equal.  It  is  evident,  also,  that  this  circle  cuts  any  of  the 

given  system  at  right  angles,  since  its  radii  are  tangents  to  the 

given  system.  The  equation  of  this  circle  can  be  readily  found. 

*  Traite  des  Proprietes  Projectives,  p.  41. 
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The  square  of  the  tangent  from  any  point  (x=0,  y=h)  to  the 
circle 

being  found  by  substituting  these  coordinates  in  this  equation 

is  h*  +  8*  ;  and  the  circle  whose  centre  is  the  point  (x  =  0,  y  =  A), 
and  whose  radius  squared  =  h*  -f  8s,  must  have  for  its  equation 

or  a;1  4  y*  —  2%  =  8*. 
Hence,  whatever  be  the  point  taken  on  the  radical  axis  (i.e. 

whatever  the  value  of  h  may  be),  still  this  circle  will  always  pass 

through  the  fixed  points  (y=0,  x=±8)  found  in  the  last  Article. 
And  we  infer  that  all  circles  which  cut  the  given  system  at  right 

angles  pass  through  the  limiting  points  of  the  system. 
Ex.  I.  Find  the  condition  that  two  circles 

x2  +  y*  +  2gx  +  2/y  +  <?  =  0,  ar2  +  y2  +  Zff'x  +  2/'y  -t-  <f  =  0 
should  cut  at  right  angles.    Expressing  that  the  square  of  the  distance  between  **«j 
centres  is  equal  to  the  sum  of  the  squares  of  the  radii,  we  have 

(9  ~  9J  +  (/-/')2  =  9*  +  f3 

or,  reducing,  2gg'  +  2ff  =  e  +  c'. 

Ex.  2.  Find  the  circle  cutting  three  circles  orthogonally.  We  have  three  equations 
of  the  first  degree  to  determine  the  three  unknown  quantities  g,  f,  c;  and  the  problem 
is  solved  as  in  Art.  94.  Or  the  problem  may  be  solved  otherwise,  since  it  is  evident 
from  this  article  that  the  centre  of  the  required  circle  is  the  radical  centre  of  the  three 
circles,  and  the  length  of  its  radius  equal  to  that  of  the  tangent  from  the  radical 
centre  to  any  of  the  circles. 

Ex.  3.  Find  the  circle  cutting  orthogonally  the  three  circles,  Art.  108,  Ex.  2. Am. 

Ex.  4.  If  a  circle  cut  orthogonally  three  circles  S',  S",  S"'t  it  cuts  orthogonally 
any  circle  kS'  +  IS"  +  mS'"  —  0.  Writing  down  the  condition 

2.9  (kg'  +  lg"  +  mg'")  +  2f  (  kf  +  If"  +  mf")  =  (k  +  I  +  m)  c  +  (M  -f  fc"  4-  me"'), 
we  see  that  the  coefficients  of  k,  I,  m  vanish  separately  by  hypothesis. 

Similarly,  a  circle  cutting  Sr,  S"  orthogonally,  also  cuts  orthogonally  kS'  +  18". 

Ex.  5.  A  system  of  circles  which  cuts  orthogonally  two  given  circles  <S",  S"  h«os 
a  common  radical  axis.  This,  which  has  been  proved  in  Art.  112,  may  be  proved 
otherwise  as  follows  :  The  two  conditions 

enable  us  to  determine  g  and  /  linearly  in  terms  of  c.    Substituting  the  values  so 
found  in 

x*  +  y'2  +  2gx  +  2/y  +  c  =  0, 
the  equation  retains  a  single  indeterminate  c  in  the  first  degree,   and  therefore 
(Art.  105)  denotes  a  system  having  a  common  radical  axis. 

Ex.  6.   If  AB  be  a  diameter  of  a  circle,  the  polar  of  A  with  respect  to  any  circle 

which  cuts  the  firm*-  Tthogonally  will  pass  through  B. 



PROPERTIES  OF  A  SYSTEM  OF  TWO  OR  MORE  CIRCLES.      103 

Ex.  7.  The  square  of  the  tangent  from  any  point  of  one  circle  to  another  is 
proportional  to  the  perpendicular  from  that  point  upon  their  radical  axis. 

Ex.  8.  To  find  the  angle  (a)  at  which  two  circles  intersect. 
Let  the  radii  of  the  circles  be  R,  r,  and  let  D  be  the  distance  between  their 

centres,  then 
V2  =  IP  +  r2  -  2Rr  cos  a, 

since  the  angle  at  which  the  circles  intersect  is  equal  to  that  between  the  radii  to 
the  point  of  intersection. 

When  the  circles  are  given  by  the  general  equations,  this  expression  becomes 
2Er  cos  a  =  2Gg  +  2Ff-  C  -  c. 

If  8  =  0  be  the  equation  of  the  circle  whose  radius  is  r,  the  coordinates  of  the 
centre  of  the  other  circle  must  fulfil  the  condition  H2  —  2Rr  cos  a  =  8,  as  is  evident 
from  Art.  90,  since  D2  -  r2  is  the  square  of  the  tangent  to  S  from  the  centre  of  the 
Dther  circle. 

Ex.  9.  If  we  are  given  the  angles  o,  ft  at  which  a  circle  cuts  two  fixed  circles  S,  S', 
the  circle  is  not  determined,  since  we  have  only  two  conditions  ;  but  we  can  determine 

the  angle  at  which  it  cuts  any  circle  of  the  system  kS  +  IS'.    For  we  have 
P*  -  2flr  cos  a  =  8,    R*  -  IRr'  cos  ft  -  &, 

,nkrcosa  +  lr'  cos/3      kS  +  IS' whence  JP-2Jg-  £=  , 

which  is  the  condition  that  the  moveable  circle  should  cut  kS  +  IS'  at  the  constant 

angle  y  ;  where  (k  +  1)  r"  cos  y  =  Jcr  cos  a  +  lr'  cos/3,  r"  being  the  radius  of  the 
circle  kS  +  IS'. 

Ex.  10.  A  circle  which  cuts  two  fixed  circles  at  constant  angles  will  also  touch 
two  fixed  circles.  For  we  can  determine  the  ratio  k  :  I,  so  that  y  shall  =  0,  or  cos  y  =  1. 
We  have  (Art.  107,  Ex.) 

(*  +  /)2  r"»  =  (*  +  J)  (kr*  +  /r*)  -  UD\ 
Substituting  this  value  for  r"  in  the  equation  of  the  last  example,  we  get  a  quadratic 
to  determine  k  :  /. 

113.    To  draw  a  common  tangent  to  two  circles. 

Let  their  equations  be 

and  (a.  -rty+ty  _£')•  =  ,/» 
We  saw  (Art.  85)  that  the  equation  of  a  tangent  to  (S)  was 

(«-a)(rf-a)  +  (jr-£)y-ft-f'; 
or,  as  in  Art.  102,  writing 

x'-a  a    if-B       .    Q -  =cos0,  2  -  =sm0. r  r 

(x  —  a)  cos  6  +  (y  —  j3)  sin  9  —  r. 

In  like  manner,  any  tangent  to  ($')  is 

(x  -  a')  cos  6'+(y-  £')  sin  &  =  /. 
Now  if  we  seek  the  conditions  necessary  that  these  two 

equations  should  represent  the  same  right  line  ;  first,  from  com- 

paring the  ratio  of  the  coefficients  of  x  and  ̂ ,  we  get  tan  0=tan  6', 
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whence  &  either  =  0,  or  =  180°  -f  6.  If  either  of  these  conditions 
be  fulfilled,  we  must  equate  the  absolute  terms,  and  we  find,  in 
the  first  case, 

(a-a')  costf  +  t/S-/^)  sin0-f  r-r'  =  0, 
and  in  the  second  case, 

(a -a')  cos04  (tf-/^  sin  <9  +  r  +  r'  =  0. 
Either  of  these  equations  would  give  us  a  quadratic  to  deter- 

mine 0.  The  two  roots  of  the  first  equation  would  correspond 

to  the  direct  or  exterior  common  tangents,  Aa,  A'a  ;  the  roots 
of  the  second  equation  would  correspond  to  the  transverse  or 

interior  tangents,  Bb^  Kb'. 
If  we  wished  to  find  the  coordinates  of  the  point  of  contact 

of  the  common  tangent  with  the  circle  (£),  we  must  substitute, 

in  the  equation  just  found,  for  cos  0,  its  value,  -  —  ,  and  for 

sin  6,  -  -  ,  and  we  find r 

or  else,  (a-  a')  (of  -a)  +  (0-ff)  (/-  0)  +r  (r4  /)  =  0. 
The  first  of  these  equations,  combined  with  the  equation  (S) 

of  the  circle,  will  give  a  quadratic,  whose  roots  will  be  the 

coordinates  of  the  points  A  and  A',  in  which  the  direct  common 
tangents  touch  the  circle  (8)  ;  and  it  will  appear,  as  in  Art.  88, 
that 

is  the  equation  of  AA'  ,  the  chord  of  contact  of  direct  common 
tangents.     So,  likewise, 

is  the  equation  of  the  chord  of  contact  of  transverse  common 
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tangents.     If  the  origin  be  the  centre  of  the  circle  (£),  then  a  and 

&  =  0  ;  and  we  find,  for  the  equations  of  the  chords  of  contact, 

ax  +  @'    =  rr  +  r. 

Ex.  Find  the  common  tangents  to  the  circles 

xi  +  y*  -  4X  _  2y  +  4  =  0,  x*  4-  y2  +  4*  +  2y  -  4  =  0. 
The  chords  of  contact  of  common  tangents  with  the  first  circle  are 

The  first  chord  meets  the  circle  in  the  points  (2,  2),  (L^  a),  the  tangents  at  which  are 

y  =  2,  4*-3y=10, 

and  the  second  chord  meets  the  circle  in  the  points  (1,  1),  (£,  £),  the  tangents  at 
which  are 9=1, 

114.  The  points  0  and  0\  in  which  the  direct  or  transverse 

tangents  intersect,  are  (for  a  reason  explained  in  the  next 
Article)  called  the  centres  of  similitude  of  the  two  circles. 

Their  coordinates  are  easily  found,  for  0  is  the  pole,  with 

regard  to  circle  (8),  of  the  chord  A  A',  whose  equation  is 

Comparing  this  equation  with  the  equation  of  the  polar  of  the 

point  xy') 

(x'-a)  (aj-a)  +  (y1  -  0)  (y-$)=r\ 

(a'  —  a)  r  a!r  —  a.r 
we  get  x  —  a  =  ̂  -  —  ,   or  x  =  -  —  , r—r  r  -r 

r  —  r  r  —  r 

So,  likewise,  the  coordinates  of  0'  are  found  to  be 
ar  +  a.r 

These  values  of  the  coordinates  indicate  (see  Art.  7)  that  the 

centres  of  similitude  are  the  points  where  the  line  joining  the 

centres  is  cut  externally  and  internally  in  the  ratio  of  the  radii. 

Ex.  Find  the  common  tangents  to  the  circles 

x*  +  y*  -  6x  -  8y  =  0,  x2  +  y*  -  4*  -  6y  =  8. 
The  equation  of  the  pair  of  tangents  through  of  if  to 

(a
. 

is  found  (Art.  92)  to  be 
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Now  the  coordinates  of  the  exterior  centre  of  similitude  are  found  to  be  (— 2,  —  1) 
and  hence  the  pair  of  tangents  through  it  is 

25(*2  +  y«-6z-fy)=r(5x  +  5y-10)J;  or  xy +  <r  +  2y +  2  =  0;  or  (*  +  2)  (y  +  1)  =  I 
As  the  given  circles  intersect  in  real  points,  the  other  two  common  tangents 

become  imaginary ;  but  their  equation  is  found,  by  calculating  the  pair  of  tangents 
through  the  other  centre  of  similitude  (V.  V)>  to  ̂  

40zJ  +  xy  +  40y2  -  199*  -  278y  +  722  =  0. 

115.  Every  right  line  drawn  through  the  intersection  of  com- 
mon tangents  is  cut  similarly  by  the  two  circles. 

It  is  evident  that  if  on  the  radius  vector  to  any  point  P  there 

be  taken  a  point  Q,  such  that  OP=m  times  OQ,  then  the  x  and 
y  of  the  point  P  will  be  respectively  m  times  the  x  and  y  of  the 

point  Q ;  and  that,  therefore,  if  P  describe  any  curve,  the  locus 

of  Q  is  found  by  substituting  mx,  my  for  x  and  y  in  the  equation 
of  the  curve  described  by  P. 

Now,  if  the  common  tangents  be  taken  for  axes,  and  if  we 

denote  Oa  by  a,  OA  by  a',  the  equations  of  the  two  circles  are 
(Art.  84,  Ex.  2) 

x*  -f  y*  4-  2xy  cos  CD  —  2a  x  —  2a  y  +  a*  =0, 

tf + y*  -r  ̂xy cos  <*>  - 2a'^  -  %a'y  +  a" = o. 
But  the  second  equation  is  what  we  should  have  found  if  we 

had  substituted  ,  ,  —,  for  x,  y  in  the  first  equation;  and  it 

therefore  represents  the  locus  formed  by  producing  each  radius 

Tector  to  the  first  circle  in  the  ratio  a  :  a'. 

COR.  Since  the  rectangle  Op. Op'  is  constant  (see  fig.  next 
page),  and  since  we  have  proved  OR  to  be  in  a  constant  ratio  to 

Op,  it  follows  that  the  rectangle  OR.Op  =  OR1. Op  is  constant, 
however  the  line  be  drawn  through  0. 

116.  If  through  a  centre  of  similitude  toe  draw  any  two  lines 

meeting  the  first  circle  in  the  points  R,  R,  S,  /S"7  and  the  second  in 

the  points  />,  p,  c,  <r',  then  the  chords  ES,  pa-;  RS',  p'v  will  be 

parallel,  and  the  chords  RS,  pa  ;  li'S',  pa  will  meet  on  the 
radical  axis  of  the  two  circles. 

Take  OR,  OS  for  axes,  then  we  saw  (Art.  115)  that 

OR  =  mOp,  OS=mO<r,  and  that  if  the  equation  of  the  circle 

pap'<r'  be 

a  (x*  +  2xy  cos<w  -f-  y*}  -f  2gx  +  S  fy  +  c  =  0, 
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that  of  the  other  will  be 

a  (x*  -f  2xy  cos  CD  +  y*) 

4-  2m  (gx  +fy]  +  m*c  =  0, 
and,  therefore,  the  equation  of  the 

radical  axis  will  be  (Art.  105) 

Now  let  the  equations  of  pa  and 

of  pa  be 

a      b  a       b' 
hen  the  equations  of  RS  and 
R'S'  must  be 

It  is  evident,  from  the  form  of  the   equations,  that  RS  is 

parallel  to  pa ;  and  R8  and  pa  must  intersect  on  the  line 

1N  n 

or,  as  in  Art.  100,  on 

the  radical  axis  of  the  two  circles. 

A  particular  case  of  this  theorem  is,  that  the  tangents  at  R 

and  p  are  parallel,  and  that  those  at  R  and  p  meet  on  the 
radical  axis. 

117.  Given  three  circles  $,  /S",  8"  ;  the  line  joining  a  centre 

of  similitude  of  8  and  8'  to  a  centre  of  similitude  of  8  and  8" 

will  pass  through  a  centre  of  similitude  of  8'  and  S". 
Form  the  equation  of  the  line  joining  the  first  two  of  the  points 

/r«'-ar'    rff-flA    (rot'-ar"    rp"-ftr"\     (r'a"-r"a!    r'ff'-r"ffx 
(r-r>  >   r-r'  )'\r-rH   >    r-r"  )  '  V  r'-r"  "'    r'-r"J» 
(Art.  114],  and  we  get  (see  Ex.  6,  p.  24), 

+  r 
+  r 
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Now  the  symmetry  of  this  equation  sufficiently  shows,  that  the 

line  it  represents  must  pass  through  the  third  centre  of  similitude. 
This  line  is  called  an  axis  of  similitude  of  the  three  circles. 

Since  for  each  pair  of 
circles  there  are  two  cen- 

tres of  similitude,  there 
will  be  in  all  six  for  the 

three  circles,  and  these 

will  be  distributed  along 

four  axes  of  similitude, 

as  represented  in  the 

figure.  The  equations 
of  the  other  three  will 

be  found  by  changing 

the  signs  of  either  r,  or 

r',  or  r",  in  the  equation 
just  given. 

COR.  If  a  circle  (2)  touch  two  others  (8  and  $'),  the  line  join- 
ing the  points  of  contact  will  pass  through  a  centre  of  similitude  of 

8  and  8'.  For  when  two  circles  touch,  one  of  their  centres  of 
similitude  will  coincide  with  the  point  of  contact. 

If  2  touch  8  and  $',  either  both  externally  or  both  internally, 
the  line  joining  the  points  of  contact  will  pass  through  the  exter- 

nal centre  of  similitude  of  8  and  8'.  If  2  touch  one  externally 
and  the  other  internally,  the  line  joining  the  points  of  contact 

will  pass  through  the  internal  centre  of  similitude. 

*118.  To  find  the  locus  of  the  centre  of  a  circle  cutting  three 
given  circles  at  equal  angles. 

If  a  circle  whose  radius  is  /?,  cut  at  an  angle  a  the  three 

circles  S,  8',  8",  then  (Art.  112,  Ex.  8)  the  coordinates  of  its 
centre  fulfil  the  three  conditions 

S=^-2jSrcosa,  8'  =  IP-2ltr'  cosa,  8"  =  R*  -  2Er"  cosa. 

From  these  conditions  we  can  at  once  eliminate  It*  and 
R  cosa.  Thus,  by  subtraction, 

8-  8'  =  2£  (r  -  r)  cosa,    8-8"  =  2JR  (r"  -  r)  cosa, 

whence  (8-  8')  (r  -  r")  =  (S-  8")  (r  -  r'), 
the  equation  of  a  line  on  which  the  centre  must  lie.    It  obviously 



PROPERTIES  OF  A  SYSTEM  OF  TWO  OR  MORE  CIRCLES.      109 

passes  through  the  radical  centre  (Art.  108);  and  if  we  write 

for  8-  /S",  S-  S",  their  values  (Art.  105),  the  coefficient  of  a;  in 
the  equation  is  found  to  be 

-  2  (a  (r'-r")  +  a'(r"-r)  +  a"  (r-r')|, 
while  that  of  y  is 

-  2  (13  (r*  -  r")+  fg  (» •"  -  r)  4-  £"  (r  -  r% 
Now  if  we  compare  these  values  with  the  coefficients  in  the 

equation  of  the  axis  of  similitude  (Art.  117),  we  infer  (Art.  32), 
that  the  locus  is  a  perpendicular  let  fall  from  the  radical  centre 
on  an  axis  of  similitude. 

Jt  is  of  course  optional  which  of  two  supplemental  angles  we 

consider  to  be  the  angle  at  which  two  circles  intersect.  The 

formula  (Art.  112)  which  we  have  used  assumes  that  the  angle 

at  which  two  circles  cut  is  measured  by  the  angle  which  the 

distance  between  their  centres  subtends  at  the  point  of  meeting ; 

and  with  this  convention,  the  locus  under  consideration  is  a  per- 
pendicular on  the  external  axis  of  similitude.  If  this  limitation 

be  removed,  the  formula  we  have  used  becomes  $=.B*±2.5r  cos  a  ; 

or,  in  other  words,  we  may  change  the  sign  of  either  r,  r',  or  r" 
in  the  preceding  formulae,  and  therefore  (Art.  117)  the  locus  is  a 

perpendicular  on  any  of  the  four  axes  of  similitude.* 
When  two  circles  touch  internally,  their  angle  of  intersec- 
tion vanishes,  since  the  radii  to  the  point  of  meeting  coincide. 

But  if  they  touch  externally,  their  angle  of  intersection  accord- 

ing to  the  preceding  convention  is  180°,  one  radius  to  the  point 
of  meeting  being  a  continuation  of  the  other.  It  follows,  from 

*  In  fact,  all  circles  cutting  three  circles  at  equal  angles  have  one  of  the  axes 

of  similitude  for  a  common  radical  axis.  Let  Z,  Z',  Z"  be  three  circles,  all  cutting 
the  given  circles  at  the  same  angles  a,  /3,  y  respectively.  Then  the  coordinates  of  the 

centre  of  each  of  the  circles  S,  S',  S"  must  fulfil  the  conditions 

2  =  r2  -  2rR  cos  a,    S'  =  r2  -  2rft'  cos  /3,    Z"  =  r2  -  2rfi"  cos  y ; 

whence        (R  cos  a  -  R"  cos  y}  (Z  -  Z')  =  (R  cos  a  -  K  cos/3)  (Z  -  Z"). 
This  which  appears  to  be  the  equation  of  a  right  line  is  satisfied  by  the  coordinates 

of  the  centre  of  S,  of  <S',  and  of  -S",  three  points  which  are  not  supposed  to  be  on  a 
right  line.  Now  the  only  way  in  which  what  seems  an  equation  of  the  first  degree, 

such  as  ax  +  by  +  c  =  a'x  +  b'y  +  c'  can  be  satisfied  by  the  coordinates  of  three  points 
which  are  not  on  a  right  line,  is  if  the  equation  is  in  truth  an  identical  one,  a  =  a', 
b  =  b',  c-  c'.  The  equation,  therefore,  written  above  denotes  an  identical  relation  of 
the  form  Z=r£Z'  +  /Z",  shewing  that  the  three  circles  h>™<»  a  common  radical  axis. 
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what  has  been  just  proved,  that  the  perpendicular  on  the  external 
axis  of  similitude  contains  the  centre  of  a  circle  touching  three 
given  circles,  either  all  externally,  or  all  internally.  If  we 
change  the  sign  of  r,  the  equation  of  the  locus  which  we  found 
denotes  a  perpendicular  on  one  of  the  other  axes  of  similitude 
which  will  contain  the  centre  of  the  circle  touching  8  externally, 
and  the  other  two  internally,  or  vice  versd.  Eight  circles  in  all 
can  be  drawn  to  touch  three  given  circles,  and  their  centres  lie, 
a  pair  on  each  of  the  perpendiculars  let  fall  from  the  radical 
centre  on  the  four  axes  of  similitude. 

*119.  To  describe  a  circle  touching  three  given  circles.  We 
have  found  one  locus  on  which  the  centre  must  lie,  and  we  could 
find  another  by  eliminating  fi  between  the  two  conditions 

The  result,  however,  would  not  represent  a  circle,  and  the  solu- 
tion will  therefore  be  more  elementary,  if  instead  of  seeking 

the  coordinates  of  the  centre  of  the  touching  circle,  we  look  for 
those  of  its  point  of  contact  with  one  of  the  given  circles.  We 
have  already  one  relation  connecting  these  coordinates,  since 

the  point  lies  on  a  given  circle,  therefore  another  relation  be- 

tween them  will  suffice  completely  to  determine  the  point.* 
Let  us  for  simplicity  take  for  origin  the  centre  of  the  circle, 

the  point  of  contact  with  which  we  are  seeking,  that  is  to  say, 
let  us  take  a  =  0,  £  =  0,  then  if  A  and  B  be  the  coordinates  of 
the  centre  of  2,  the  sought  circle,  we  have  seen  that  they  fulfil 
the  relations 

S-£'  =  2JR(r-r'),    S-  S"  =  2E  (r-r"). 
But  if  x  and  y  be  the  coordinates  of  the  point  of  contact  of  2 
with  S)  we  have  from  similar  triangles 

Now  if  in  the  equation  of  any  right  line  we  substitute  mx,  my  for 
x  and  y,  the  result  will  evidently  be  the  same  as  if  we  multiply 
the  whole  equation  by  7«,  and  subtract  (m—  1)  times  the  absolute 

term.  Hence,  remembering  that  the  absolute  term  in  S-  S'  is 

*  This  solution  is  by  M.  Gergonne,  Annales  des  Mathematiques,  vol.  vil.  p.  289. 
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(Art.  105]  r'2-  r2  —  a'2-  £'8,  the  result  of  making  the  above  sub- 
stitutions for  A  and  B  in  (8—  S')  =  2R(r-r)  is 

(S-  S')  +  ̂  (a'2  +  /3"  +  r2-  r'8)  =  25  (r  -  r'), 

or  (5  +  r)(£-  S'H.KKr-r')8-^  -/3'2}. 

Similarly     (5  +  r)  (6'  -  8")  =  5  [(r  -  r")2  -  a"8  -  yS"2}. 
Eliminating  ̂ ?,  the  point  of  contact  is  determined  as  one  of 

the  intersections  of  the  circle  S  with  the  right  line 

8-8'  _  _  8-8" 

a'2  +  $*  -(r-  r'Y  ~  a"2  +  &"*  -  (r  -  r'J  * 

120.  To  complete  the  geometrical  solution  of  the  problem,  it 
is  necessary  to  show  how  to  construct  the  line  whose  equation  has 
been  just  found.  It  obviously  passes  through  the  radical  centre 
of  the  circles;  and  a  second  point  on  it  is  found  as  follows: 

Write  at  full  length  for  S—  8'  (Art.  105),  and  the  equation  is 

'y  4  r'  '2-  r'-a"*-  &"* 
a'2  +  tf  '2  -  (r  -  r')8  a"2  +  £"2  -  (r  -  r")8 

Add  1  to  both  sides  of  the  equation,  and  we  have 

a'x  +  ft'y  +  (r  —r)r  _  a"x  4  fi"y  +  (r"  —  r)r 

a'a  +  /3'2-(r-r')8    ''"'    a"8  -f  $"*  -  (r  -  r")8    ' 
showing  that  the  above  line  passes  through  the  intersection  of 

a.'x+/3'y+(r'-r)r  =  0,    a!'x  +  &"y  +  (r"  -  r)  r  =  0. 
But  the  first  of  these  lines  (Art.  1  13)  is  the  chord  of  common 

tangents  of  the  circles  S  and  S'  :  or,  in  other  words  (Art.  114),  is 
the  polar  with  regard  to  S  of  the  centre  of  similitude  of  these 
circles.  And,  in  like  manner,  the  second  line  is  the  polar  of  the 

centre  of  similitude  of  S  and  S"  ;  therefore  (since  the  intersection 
of  any  two  lines  is  the  pole  of  the  line  joining  their  poles)  the 
intersection  of  the  lines 

ax  +  fi'y  +  (r  -  r)  r  =  0,    OL'X  +  fi'y  +  (r"  -  r)  r  =  0 
is  the  pole  of  the  axis  of  similitude  of  the  three  circles,  with 
regard  to  the  circle  8. 

Hence  we  obtain  the  following  construction  : 
Drawing  any  of  the  four  axes  of  similitude  of  the  three 

circles,  take  its  pole  with  respect  to  each  circle,  and  join  the 
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points  so  found  (P,  P',  P") 
with  the  radical  centre;  then, 

if  the  joining  lines  meet  the 

circles  in  the  points 

(a,  6;  a',  6';  a",  ft"), 

the  circle  through  a,  a',  a"  will 
he  one  of  the  touching  circles, 

and  that  through  ft,  ft',  ft"  will 

"be  another.  Repeating  this 
process  with  the  other  three 

axes  of  similitude,  we  can  de- 
termine the  other  six  touching 

circles. 

121.   It  is  useful  to  show  how  the  preceding  results  may  be 
derived  without  algebraical  calculations. 

(1)  By  Cor.,  Art.  117,  the  lines  aft,  a'ft',  a"ft"  meet  in  a  point, 
viz.,  the  centre  of  similitude  of  the  circles  aa'a",  ftft'ft". 

(2)  In  like  manner  a'a",  ft'ft"  intersect  in  S,  the  centre  of 

similitude  of  C",  C". 

(3)  Hence  (Art.  116)  the  transverse  lines  a'ft',  a"ft"  intersect 

on  the  radical  axis  of  C",  C".     So  again  a"ft",  aft  intersect  on 

the  radical  axis  of  (7",  G.     Therefore  the  point  R  (the  centre  of 
similitude   of  aa'a",  ftft'ft")   must  be  the  radical  centre   of  the 

circles  0,  C',  G". 
(4)  In  like  manner,  since  a'ft',  a"ft"  pass  through  a  centre  of 

similitude  of  aa'a",  ftft'ft" ;  therefore  (Art.  1 16)  a'a",  ft'ft"  meet  on 

the  radical  axis  of  these  two  circles.     So  again  the  points  S'  and 
8"  must  lie  on  the  same  radical  axis ;   therefore  88' S",  the  axis 

of  similitude  of  the  circles  (?,  C",  (7",  is  the  radical  axis  of  the 

circles  aa'a",  ftft'ft". 
(5)  Since  a"ft"   passes  through   the  centre  of  similitude  of 

aa'a",  ftft'ft",  therefore  (Art.   116)  the  tangents  to  these  circles 
where  it  meets  them  intersect  on  the  radical  axis  88' S".     But 

this  point  of  intersection  must  plainly  be  the  pole  of  a"ft"  with 

regard  to  the  circle  C".     Now  since  the  pole  of  a"ft"  lies  on 

88' S",  therefore  (Art.  98)  the  pole  of  88' 8"  with  regard  to  C" 
lies  on  a"b".     Hence  a"b"  is  constructed  by  joining  the  radical 

centre  to  the  pole  of  SS'S"  with  regard  to  C". 



OPERTIES  OP  A  SYSTEM  OF  TWO  Oft  MORE  CIRCLES.     H3 

(6)  Since  the  centre  of  similitude  of  two  circles  is  on  the  line 

joining  their  centres,  and  the  radical  axis  is  perpendicular  to  that 
line,  we  learn  (as  in  Art.  118)  that  the  line  joining  the  centres  of 

V,  bb'b"  passes  through  R^  and  is  perpendicular  to  SS'S". 

121  (a).*  Dr.  Casey  has  given  a  solution  of  the  problem 
we  are  considering,  depending  on  the  following  principle  due 

to  him  :  If  four  circles  be  all  touched  by  the  same  fifth  circle, 

the  lengths  of  their  common  tangents  are  connected  by  the 

following  relation,  12.34  ±~14^23±T3.¥4  =  0,  where  12  denotes 
the  length  of  a  common  tangent  to  the  first  and  second  circles, 

&c.  This  may  be  proved  by  expressing  each  common  tangent 

in  terms  of  the  length  of  the  line  joining  the  points  where  the 
circles  touch  the  common  touching  circle. 
Let  R  be  the  radius  of  the  latter  circle 

whose  centre  is  0,  r  and  r  of  the  circles 

whose  centres  are  A  and  B,  then,  from  the 

isosceles  triangle  aOb,  we  have 

ab  =  2R  s'm^aOb. 
But  from  the  triangle  AOB,  whose  base 

is   Z>,   and   sides   R  —  r,    R-r,    we    have 
D*  —  (r—  r'Y 

&m2^aOb  =  ~—n  —  \        '       .     Now  the  numerator  of  this  frac- 4  (R  -  r)  (H  -  r  ) 

tion  is  the  square  of  the  common  tangent  12,  hence 

- 

But  since  the  four  points  of  contact  form  a  quadrilateral  in- 
scribed in  a  circle,  its  sides  and  diagonals  are  connected  by  the 

relation  ab.cd  -\-  ad.bc  —  ac.bd.  Substitute  in  this  equation  the 
expression  just  given  for  each  chord  in  terms  of  the  corre- 

sponding common  tangent,  and  suppress  the  numerator  R*  and 

the  denominator  <J(R-r)  (R-r)  (R-  r")  (R  -r'")  which  are 
common  to  every  term,  and  there  remains  the  relation  which 
we  are  required  to  prove. 

121  (b).    Let  now  the  fourth  circle  reduce  itself  to  a  point, 
this  will  be  a  point  on  the  circle  touching  the  other  three,  and 

*  In  order  to  avoid  confusion  in  the  references,  I  retain  the  numbering  of  the  articles 
in  the  fourth  edition,  and  mark  separately  th«ie  articles  which  have  been  since  added. 

Q 
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41,  42,  43  will  denote  the  lengths  of  the  tangents  from  that 

point  to  these  three  circles.  But  the  lengths  of  these  tangents 

are  .(Art.  90)  the  square  roots  of  the  results  of  substituting  the 

coordinates  of  that  point  in  the  equations  of  the  circles.  We 
see  then  that  the  coordinates  of  any  point  on  the  circle  which 
touches  three  others  must  fulfil  the  relation 

23  V(S)  ±  31  */(ff)  ±  12  V(#")  =  0. 
If  this  equation  be  cleared  of  radicals  it  will  be  found  to  be  one 

of  the  fourth  degree,  and  when  23,  31,  12  are  the  direct  common 

tangents,  it  will  be  the  product  of  the  equations  of  the  two 

circles  (see  fig.,  p.  112)  which  touch  either  all  externally  or 
all  internally. 

121  (c).  The  principle  just  used  may  also  be  established 

without  assuming  the  relation  connecting  the  sides  and  dia- 
gonals of  an  inscribed  quadrilateral.  If  on  each  radius  vector 

OP  to  a  curve  we  take,  as  in  Ex.  4,  p.  96,  a  part  OQ  in- 
versely proportional  to  OP,  the  locus  of  Q  is  a  curve  which 

is  called  the  inverse  of  the  given  curve.  It  is  found  with- 
out difficulty  that  the  equation  of  the  inverse  of  the  circle 

c  (**  +  </')  +  2^  +  2/^+1=0, 

which  denotes  a  circle,  except  when  c  =  0  (that  is  to  say,  when 
the  point  0  is  on  the  circle),  in  which  case  the  inverse  is  a  right 

line.  Conversely,  the  inverse  of  a  right  line  is  a  circle  passing 

through  the  point  0.  Now  Dr.  Casey  has  noticed  that  if  we 

are  given  a  pair  of  circles,  and  form  the  inverse  pair  with 
regard  to  any  point,  then  the  ratio  of  the  square  of  a  common 

tangent  to  the  product  of  the  radii  is  the  same  for  each  pair 

of  circles.*  For  if  in  g*  +f*  -  c,  which  (Art.  80)  is  r8,  we 

substitute  for  #,/,  c;  -,  -,  -,  we  find  that  the  radius  of  the c     c     c 

inverse  circle  is  r  divided  by  c;  and  if  we  make  a  similar 

substitution  in  c  +  c'  —  2gg'  -  2ff,  which  (Ex.  1,  p.  102)  is 
D2  —  r2  -  r'*,  we  get  the  same  quantity  divided  by  cc.  Hence 
the  ratio  of  D*  —  r*  —  r'2  to  rr  is  the  same  for  a  pair  of  circles 

*  This  is  equivalent  (see  Ex.  8,  p.  103)  to  saying  that  the  angle  of  intersection  is 
the  same  for  each  pair,  as  may  easily  be  proved  aeometrically. 
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and  for  the  inverse  pair ;  and,  therefore,  so  is  also  the  ratio  to 

Consider  now  four  circles  touching  the  same  right  line  in 

four  points.  Now  the  mutual  distances  of  four  points  on  a  right 

line  are  connected  by  the  relation  12.34  +  14.32  =  13.24:;  as 
may  easily  be  proved  by  the  identical  equation 

where  a,  ft,  c,  d  denote  the  distances  of  the  points  from  any 
origin  on  the  line.  Thus  then  the  common  tangents  of  four 

circles  which  touch  the  same  right  line  are  connected  by  the 

relation  which  is  to  be  proved.  But  if  we  take  the  inverse 

of  the  system  with  regard  to  any  point,  we  get  four  circles 

touched  by  the  same  circle,  and  the  relation  subsists  still  ;  for 

if  the  equation  be  divided  by  the  square  root  of  the  products 

of  ail  the  radii,  it  consists  of  members     .     ,  ,        „  ,„  ,  &c., 

which  are  unchanged  by  the  process  of  inversion. 

The  relation  between  the  common  tangents  being  proved  in 

this  way,*  we  have  only  to  suppose  the  four  circles  to  become 
four  points,  when  we  deduce  as  a  particular  case  the  relation 

connecting  the  sides  and  diagonals  of  an  inscribed  quadrilateral. 

This  method  also  shews  that,  in  the  case  of  two  circles  which 

touch  the  same  side  of  the  enveloping  circle,  we  are  to  use  the 

direct  common  tangent  ;  but  the  transverse  common  tangent 

when  one  touches  the  concavity,  and  the  other  the  convexity 

of  that  circle.  Thus  then  we  get  the  equation  of  the  four  pairs 

of  circles  which  touch  three  given  circles, 

23  V(#)  ±31  V(S')  ±  12  V($")  =  0. 
When  12,  23,  31  denote  the  lengths  of  the  direct  common  tan- 

gents, this  equation  represents  the  pair  of  circles  having  the 

given  circles  either  all  inside  or  all  outside.  If  23  denotes  a 

direct  common  tangent,  and  31,  12  transverse,  we  get  a  pair 
of  circles  each  having  the  first  circle  on  one  side,  and  the  other 

two  on  the  other.  And,  similarly,  we  gpt  the  other  pairs  of 

circles  by  taking  in  turn  31,  12  as  direct  common  tangents,  and 

the  other  common  tangents  transverse. 

*  Another  proof  will  be  given  in  the  appendix  to  the  next  chapter. 
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*CH  AFTER    IX. 

APPLICATION  OF  ABRIDGED  NOTATION  TO  THE  EQUATION 
OF  THE  CIRCLE. 

122.  IF  we  have  an  equation  of  the  second  degree  expressed 

in  the  abridged  notation  explained  in  Chap.  IV.,  and  if  we  desire 

to  know  whether  it  represents  a  circle,  we  have  only  to  transform 

to  x  and  y  coordinates,  by  substituting  for  each  abbreviation  (a) 

its  equivalent  (x  cosa-f  y  sina—  p) ;  and  then  to  examine  whether 
the  coefficient  of  xy  in  the  transformed  equation  vanishes,  and 

whether  the  coefficients  of  x2  and  of  y*  are  equal.  This  is  suffi- 
ciently illustrated  in  the  examples  which  follow. 

When  will  the  locus  cf  a  point  be  a  circle  if  the  product  01 

perpendiculars  from  it  on  two  opposite  sides  of  a  quadrilateral  Jy 

in  a  given  ratio  to  the  product  of  perpendiculars  from  it  on  the 
other  two  sides  f 

Let  a,  /S,  7,  8  be  the  four  sides  of  the  quadrilateral,  then  the 

equation  of  the  locus  is  at  once  written  down  ay  =  k/38,  which 

represents  a  curve  of  the  second  degree  passing  through  the 

angles  of  the  quadrilateral,  since  it  is  satisfied  by  any  of  the 
four  suppositions, 

a  =  0,/3  =  0;  a  =  0,8  =  0;  /3  =  0,7  =  0;  7  =  0,8  =  0. 

Now,  in  order  to  ascertain  whether  this  equation  represents  a 

circle,  write  it  at  full  length 

+y  sina  —  p)  (xcosy  +  y  s'my—p") 

@  -  p')  (#cos8  +y  s\n8-  p"). 

Multiplying  out,  equating  the  coefficient  of  x9  to  that  of  y\  and 
putting  that  of  xy  —  0,  we  obtain  the  conditions 

cos  (a  +  7)  =  k  cos(/3  +  8) ;  sin  (a  +  7)  =  k  sin  (0  +  8). 

Squaring  these  equations,  and  adding  them,  we  find  k  =  ±  1 ;  and 
if  this  condition  be  fulfilled,  we  must  have 

•+7  =  /3  +  S,  or  else  =180°H- 

whence  Q-@—-8-y,  or  180  +  5- 
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Kecollecting  (Art.  61)  that  a-/3  is  the  supplement  of  that 
angle  between  a  and  £,  in  which  the  origin  lies,  we  see  that  this 
condition  will  be  fulfilled  if  the  quadrilateral  formed  by  0/878  be 

inscribable  in  a  circle  (Euc.  III.  22).  And  it  will  be  seen  on 

examination  that  when  the  origin  is  within  the  quadrilateral  we 

are  to  take  &  =  —  1,  and  that  the  angle  (in  which  the  origin  lies) 
between  a  and  y8  is  supplemental  to  that  between  7  and  8 ;  but 

that  we  are  to  take  It  —  4  1,  when  the  origin  is  without  the  quad- 
rilateral, and  that  the  opposite  angles  are  equal. 

123.  When  will  the  locus  of  a  point  be  a  circle,  if  the  square 

of  its  distance  from  the  base  of  a  triangle  be  in  a  constant  ratio  to 

the  product  of  its  distances  from  the  sides  f 

Let  the  sides  of  the  triangle  be  a,  /3,  7,  and  the  equation  of 

the  locus  is  a/3  =  kyz.  If  now  we  look  for  the  points  where  the 
line  a  meets  this  locus,  by  making  in  it  oc  =  0,  we  obtain  the 

perfect  square  72  =  0.  Hence  a  meets  the  locus  in  two  coincident 
points,  that  is  to  say  (Art.  83),  it  touches  the  locus  at  the  point 

«7-  Similarly,  £  touches  the  locus  at  the  point  £7.  Hence  a 

and  /3  are  both  tangents,  and  7  their  chord  of  contact.  Now, 

to  ascertain  whether  the  locus  is  a  circle,  writing  at  full  length 

as  in  the  last  article,  and  applying  the  tests  of  Art.  80,  we  obtain 
the  conditions 

cos  (a  +  /8)  =  Jc  cos27 ;  sin  (a  +  ft)  =  k  sin27 ; 

whence  (as  in  the  last  article)  we  get  k  =  1,  a  —  7  =  7  —  #,  or  the 
triangle  is  isosceles.  Hence  we  may  infer  that  if  from  any  point 
of  a  circle  perpendiculars  be  let  fall  on  any  two  tangents  and  on 

their  chord  of  contact,  the  square  of  the  last  will  be  equal  to  the 
rectangle  under  the  other  two. 

Ex.  When  will  the  locus  of  a  point  be  a  circle  if  the  sum  of  the  squares  of  the 
perpendiculars  from  it  on  the  sides  of  any  triangle  be  constant  ? 

The  locus  is  a2  +  /S2  +  y2  =  c2 ;  and  the  conditions  that  this  should  represent 
a  circle  are 

cos2a  +  cos  2/3  +  cos2y  =  0 ;  sin  2a  +  sin  2)3  +  sin  2y  =  0. 

cos2a  =  -  2  cos  03  +  y)  cos(/3  -  y) ;  s:n2a  =  -  2  sin  (ft  +  y)  cos  (/9  -  y). 
Squaring  and  addin/jr. 

1  =4  COS2  03 -y);   /8  -  y  =  60°. 

And  so,  in  like  manner,  each  of  the  other  two  angles  of  the  triangle  is  proved  to 

be  60°,  or  the  triangle  must  be  equilateral. 
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124.    To  obtain  the  equation  of  the  circle  circumscribing  the 

triangle  formed  by  the  lines  a.  =  0,  ft  =  0,  7  =  0. 
Any  equation  of  the  form 

I  fty  +  mya  +  naft  —  0 
denotes  a  curve  of  the  second  degree  circumscribing  the  given 

triangle,  since  it  is  satisfied  by  any  of  the  suppositions 

a  =  0,  £  =  0  ;   £  =  0,  7  =  0;  7  =  0,  a  =  0. 

The  conditions  that  it  should  represent  a  circle  are  found,  by  the 

same  process  as  in  Art.  122,  to  be 

I  cos  (13  4  7)  +  m  cos  (7  +  a)  +•  n  cos  (a  +  ft)  =  0, 

I  sin  (ft  4-  7)  4-  m  sin  (7  -I-  a)  +  n  sin  (a  -f  ft)  =  0. 

Now  we  have  seen  (Art.  65)  that  when  we  are  given  a  pair 

of  equations  of  the  form 

J,  m,  n  must  be  respectively  proportional  to  ft'y"—  ft"y,  ya"-y"a', 
a'ft"  —  a"  ft'.  In  the  present  case  then  Z,  w,  n  must  be  pro- 

portional to  sin(£  —  7),  sin  (7  —  a),  sin  (a  —  /S),  or  (Art.  61)  to 
sin  .4,  sinJ9,  sin  (7.  Hence  the  equation  of  the  circle  circum- 

scribing a  triangle  is 

fty  &mA  +  ya  sin  #+  a/3  sin  0  =  0. 

125.  The  geometrical  interpretation  of  the  equation  just 

found  deserves  attention.  If  from  any  point  0  we  let  fall  per- 
pendiculars OP,  OQj  on  the  lines  a,  £,  then  (Art.  54)  a,  ft  are 

the  lengths  of  these  perpendiculars;  and  since  the  angle  be- 
tween them  is  the  supplement  of  (7,  the 

quantity  aft  sin  C  is  double  the  area  of  the 

triangle  OPQ.  In  like  manner,  ya.  siuB 

and  fty  sin  A  are  double  the  triangles 

OPR,  OQR.  Hence  the  quantity 

fty  BIU  A  +  ya.  sin  J5+  aft  BiuG 

is  double  the  area  of  the  triangle  PQR, 
and  the  equation  found  in  the  last  article 

asserts  that  if   the  point  0  be  taken  on  the  circumference  of 

the  circumscribing  circle,  the   area   PQR  will   vanish,   that  is 

to  say  (Art.  36,  Cor.  2),  the  three  points  P,  Qy  R  will  lie  on 
one  right  line. 
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If  it  were  required  to  find  the  locus  of  a  point  from  which, 
if  we  let  fall  perpendiculars  on  the  sides  of  a  triangle,  and  join 
their  feet,  the  triangle  PQR  so  formed  should  have  a  constant 

magnitude,  the  equation  of  the  locus  would  be 

fiy  sin  A  +  JOL  s'mB  +  a/3  sin  G=  constant, 
and,  since  this  only  differs  from  the  equation  of  the  circum- 

scribing circle  in  the  constant  part,  it  is  (Art.  81)  the  equation 

of  a  circle  concentric  with  the  circumscribing  circle.* 

126.  The  following  inferences  may  be  drawn  from  the  equa- 

tion l@y  +  mya  -f  wa)3  =  0,  whether  or  not  ?,  m,  n  have  the  values 
sin  .4,  sin-B,  sin  (7,  and  therefore  lead  to  theorems  true  not  only 

of  the  circle  but  of  any  curve  of  the  second  degree  circum- 
scribing the  triangle.  Write  the  equation  in  the  form 

7  (10  +  ma)  +  na/3  =  0  ; 
and  we  saw  in  Art.  124  that  7  meets  the  curve  in  the  two  points 
where  it  meets  the  lines  a  and  /3  ;  since  if  we  make  7  =  0  in  the 

equation,  it  reduces  to  a/3  =  0.  Now,  for  the  same  reason,  the 

two  points  in  which  I  ft  -f-  ma  meets  the  curve  are  the  two  points 
where  it  meets  the  lines  a  and  ft.  But  these  two  points  coincide, 
since  l(B  +  ma  passes  through  the  point  a{3.  Hence  the  line 

1/3  +  ma,  which  meets  the  curve  in  two  coincident  points,  is 

(Art.  83)  the  tangent  at  the  point  aft. 
In  the  case  of  the  circle  the  tangent  is  a  sin  B  +  ft  sin  A. 

Now  we  saw  (Art.  64)  that  a  sin  A  +  (3  sin  B  denotes  a  parallel 

to  the  base  7  drawn  through  the  vertex.  Hence  (Art.  55)  the 

tangent  makes  the  same  angle  with  one  side  that  the  base  makes 

with  the  other  (Euc.  in.  32). 

*  Consider  a  quadrilateral  inscribed  in  a  circle  of  which  a,  /3,  y,  &  are  sides  and  c 
a  diagonal  ;  then  the  equation  of  the  circle  may  be  written  in  either  of   the  forms 

sin  A     sinB     sin^          sinC'     smD          ^ 
---  H  --  ̂   --  ---  —  ss  00   -  •  —  h      ,,  ---  =  0. 
a  j8  •  y  d  c 

where  A  is  the  angle  in  the  segment  subtended  by  a,  &c.,  and  we  have  written  e  with 

a  negative  side  in  the  second  equation,  because  opposite  sides  of  the  line  are  considered 
in  the  two  triangles.  Hence,  every  point  on  the  circle  satisfies  also  the  equation 
sin  A  s\nB  sin  C  sinD 
-  +—3-   +  -  +  —  r—  =  0. 
a  ft  y  d 

This  equation  when  cleared  of  fractions  is  of  the  third  degree,  and  represents, 
together  with  the  circle,  the  line  joining  the  intersections  of  ay,  /35.  In  the  same 
manner,  if  we  have  an  inscribed  polygon  of  any  number  of  sides,  Dr.  Casey  has  shewn 

that  an  equation  of  similar  form  will  be  satisfied  for  anv  point  of  the  circle, 
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Writing  the  equations  of  the  tangents  at  the  three  vertices 
in  the  form 

m      n        '  n       I        J  I       m 

we  see  that  the  three  points  in  which  each  intersects  the  opposite 

side  are  in  one  right  line,  whose  equation  is 

I      m      n 

Subtracting,  one  from  another,  the  equations  of  the  three 

tangents,  we  get  the  equations  of  the  lines  joining  the  vertices 

of  the  original  triangle  to  the  corresponding  vertices  of  the 

triangle  formed  by  the  three  tangents,  viz., 

m      n       J  n      I       '  I      m       ' 

three  lines  which  meet  in  a  point  (Art.  40).* 

127.  If  a'jSy,  a"/3"y"  be  the  coordinates  of  any  two  points 
on  the  curve,  the  equation  of  the  line  joining  them  is 

_ 

7V
'-
 

for  if  we  substitute  in  this  equation  a'/3y  for  afiy,  the  equation 

is  satisfied,  since  a"/3"y"  satisfy  the  equation  of  the  curve,  which 
may  be  written 

I      m      n 
-  +  _  4  -  =  0. 
a      /3      7 

In  like  manner  the  equation  is  satisfied  by  the  coordinates 

a"/3'y.  It  follows  that  the  equation  of  the  tangent  at  any 

point  a'/Sy  may  be  written 
fe      ™/3      rc? 

71       /3'2  +  V2  ~ and  conversely,  that  if  Xa  +  /M/3  +  vy  =  0  is  the  equation  of  a 

tangent,  the  coordinates  of  the  point  of  contact  a'/3y  are  given 
by  the  equations 

I  m  n 

*  The  theorems  of  this  article  are  by  M.  Bobillier  (Annahs  des  Mathcmatiques 
vol.  xvni.  p.  320).    The  first  equation  of  the  next  article  is  by  M.  Hermes. 
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Solving  for  a',  $',  y  from  these  equations,  and  substituting  in 
the  equation  of  the  curve,  which  must  be  satisfied  by  the  point 

a'/^Y,  we  get 

This  is  the  condition  that  the  line  Xa  +  ft/3  +  vy  may  touch 

fiy  -4-  mya,  +  na{3  ;  or  it  may  be  called  (see  Art.  70)  the  tangential 
equation  of  the  curve.  The  tangential  equation  might  also 

be  obtained  by  eliminating  7  between  the  equation  of  the 
line  and  that  of  the  curve,  and  forming  the  condition  that  the 

resulting  equation  in  a  :  /3  may  have  equal  roots. 

128.  To  find  the  conditions  that  the  general  equation  of  the 
second  degree  in  a,  $,  7, 

aa*  +  £/32  +  C7*  +  2/#y  +  ZgyoL  +  2^a/3  =  0, 

may  represent  a  circle.     [Dublin  Exam.  Papers,  Jan.  1857]. 
It  is  convenient  to  avail  ourselves  of  the  result  of  Art.  124. 

Since  the  terms  of  the  second  degree,  x*  -I-  #a,  are  the  same  in 
the  equations  of  all  circles,  the  equations  of  two  circles  can  only 

differ  in  the  linear  part  ;  and  if  8  represent  a  circle,  an  equation 

of  the  form  S+lx  +  my  +  n  =  Q  may  represent  any  circle  what- 
ever. In  like  manner,  in  trilinear  coordinates,  if  we  have  found 

one  equation  which  represents  a  circle,  we  have  only  to  add  to 

it  terms  la.  -f  m(3  +  717  (which  in  order  that  the  equation  may  be 
homogeneous  we  multiply  by  the  constant  a  sin^-f  /3sin-5+7sin  0), 
and  we  shall  have  an  equation  which  may  represent  any  circle 

whatever.  Thus  then  (Art.  124)  the  equation  of  any  circle  may 
be  thrown  into  the  form 

(la  +  m/3  +  ny)  (a  sin  A  +  /3  sin  B  +  7  sin  C) 

+  k(j3y  smA  +  ya  sin#+  a/3  sin  C)  =  0. 

If  now  we  compare  the  coefficients  of  a2,  /82,  y*  in  this  form 
with  those  in  the  general  equation,  we  see  that,  if  the  latter 

represent  a  circle,  it  must  be  reducible  to  the  form 

(~A  a  +  ~^-j>!3  +  -r%  7)  (a  sin^l  +  ft  sin  B  -f  7  sin  0) 
\srnA        smJ5^     sin  0  '  J  v 

+  k  (j3y  sin  A  4  ya.  sin  B  4-  a/3  sin  C}  = 
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and  a  comparison  of  the  remaining  coefficients  gives 

2/  sin  B  sin  C  —  <s  mi*B  +  b  sin2  C  +  k  sin  A  sin  B  sin  (7, 

2^  sin  C  sin  A  =  a  sin8  C  -f  c  &\ri*A  -\-  ksm  A  sin  B  sin  (7, 

2^  sin  ̂ 4  sin  B  =  b  sinM  -t-  a  sin'2^  +  £  sin  A  sin  ̂   sin  (7, 

whence  eliminating  &,  we  have  the  required  conditions,  viz. 

b  sin* (7+  c  sin'^-  2/sinJ9sin<7  =  c  sinM  +  «  sin*C-  2^  sin(7sin^l 

=  a  smyB  +  b  sinM  -  2h  sin  ̂ 1  sin  B. 

If  we  have  the  equations  of  two  circles  written  in  the  form 

(la.  +  7W/9  +  My)  (a  sin  A  -f  fi  sin  B  +  y  sin  (7) 

+  &  (£y  sin  .4  +  ya  sin  B  +  a/8  sin  (7)  =  0, 

(I'a  +  m'fi  4  n'y)  (a  sin  A  +  /S  sin  B  +  y  sin  (7) 

+  &  (£y  sin  -4  +  ya  sin  1?  -I-  cr£  sin  (7)  =  0, 
it  is  evident  that  their  radical  axis  is 

la  -f  w/:?  +  rcy  -  (ftz  +  7?t'^  +  w'y), 

and  that  Za-f  mff  +  ny  is  the  radical  axis  of  the  first  with  the 
circumscribing  circle. 

Ex.  1.  Verify  that  a/3  -  y2  represents  a  circle  if  A  =  B  (Art.  123). 
The  equation  may  be  written 

a/3  sin  C+  (3y  smA  +  ya  einB  —  y  (a  «mA  +  /3  sin  B  +  y  sin  C)  =  0. 

Ex.  2.   When  will  no2  +  i/32  +  cy2  represent  a  circle  ? 

Ex.  8.   The  three  middle  points  of  sides,  and  the  three  feet  of  perpendiculars  he 
on  a  circle.    The  equation 

a2  sin  A  cos  A  +  /S2  sin£  cos5  +  y2  sin  C  cos  C  -  (/8y  sin  A  +  ya  sin  B  +  a/3  sin  £)=0, 
represents  a  curve  of  the  second  degree  passing  through  the  points  in  question.  For 
if  we  make  y  =  0,  we  get 

a2  sin^l  cos^l  +  /J2  sinB  cos  B  -  a/3  (sin  .4  cos  B  +  sin  B  cosA)  =  0, 

the  factors  of  which  are  a  sin  A  —  ft  sin  B  and  a  cos  A  —  ft  cos  B.    Now  the  curve  is 
a  circle,  for  it  may  be  written 

(a  cos  A  +  ft  cos  B  +  y  cos  C)  (a  smA  +  ft  sin  B  +  y  sin  C) 

-  2  (/3y  sin  A  +  ya  sin  B  4-  a/3  sin  C1)  =  0 
Thus  the  radical  axis  of  the  circumscribing  circle  and  of  the  circle  through  the  middle 

points  of  sides  is  a  cos  ̂ 4  +  ft  cosB  +  y  cos  C,  that  is,  the  axis  of  homology  of  the 
given  triangle  with  the  triangle  formed  by  joining  the  feet  of  perpendiculars. 

129.    We  shall  next  show  how  to  form  the  equations  of  the 

circles  which  touch  the  three  sides  of  the  triangle  a,  /3,  y.     The 
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general  equation  of  a  curve  of  the  second  degree  touching  the 
three  sides  is 

m*/3*  +  w  V  -  ZmnjSy  -  Znlya  -  Zlma/3  =  0.* 

Thus  7  is  a  tangent,  or  meets  the  curve  in  two  coincident 

points,  since,  if  we  make  7  =  0  in  the  equation,  we  get  the 

perfect  square  ZV  -I-  m'/3*  -  Zlmafi  =  0.  The  equation  may  also 
be  written  in  a  convenient  form 

for,  if  we  clear  this  equation  of  radicals,  we  shall  find  it  to  be 

identical  with  that  just  written. 

Before  determining  the  values  of  ?,  m<  n,  for  which  the  equa- 
tion represents  a  circle,  we  shall  draw  from  it  some  inferences 

which  apply  to  all  curves  of  the  second  degree  inscribed  in  the 
triangle.  Writing  the  equation  in  the  form 

ny  (ny  -  2la  -  2mj3)  +  (fa  -  w/3)2  =  0, 

we  see  that  the  line  (let.  -  m(3>\  which  obviously  passes  through 
the  point  a/3,  passes  also  through  the  point  where  7  meets  the 

curve.  The  three  lines,  then,  which  join  the  points  of  contact 

of  the  sides  with  the  opposite  angles  of  the  circumscribing 
triangle  are 

la.  -  m&  =  0,   7W/S  —  717  =  0,   ny  -  la.  =  0, 

and  these  obviously  meet  in  a  point. 

The  very  same  proof  which  showed  that  7  touches  the  curve 

shows  also  that  ny  —  Via  —  2m/3  touches  the  curve,  for  when  this 

quantity  is  put  =  0,  we  have  the  perfect  square  (la.  —  mft}*  =  0  ; 
hence  this  line  meets  the  curve  in  two  coincident  points,  that  is, 

touches  the  curve,  and  la.  —  mft  passes  through  the  point  of  con- 
tact. Hence,  if  the  vertices  of  the  triangle  be  joined  to  the 

*  Strictly  speaking,  the  double  rectangles  in  this  equation  ought  to  be  written 
with  the  ambiguous  sign  +,  and  the  argument  in  the  text  would  apply  equally.  If, 
hiowever,  we  give  all  the  rectangles  positive  signs,  or  if  we  give  one  of  them  a  positive 
sign,  and  the  other  two  negative,  the  equation  does  not  denote  a  proper  curve  of  the 
second  degree,  but  the  square  of  some  one  of  the  lines  la  ±  mft  ±  ny.  And  the  form 
in  the  text  may  be  considered  to  include  the  case  where  one  of  the  rectangles  is 

negative  and  the  other  two  positive,  if  we  suppose  that  Z,  »«,  or  n  may  denote  a 
negative  as  well  as  a  positive  quantity. 
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points  of  contact  of  opposite  sides,  and  at  the  points  where  the 

joining  lines  meet  the  circle  again  tangents  be  drawn,  their 

equations  are 

2la  +  2m£  -  ny  =  0,   2m&  +  2ny  -  la  =  0,    2ny  +  2la  -mj3  =  Q. 

Hence  we  infer  that  the  three  points,  where  each  of  these  tan- 
gents meets  the  opposite  side,  lie  in  one  right  line, 

la  +  m@  +  ny  =  0, 

for  this  line  passes  through  the  intersection  of  the  first  line  with 

7,  of  the  second  with  a,  and  of  the  third  with  fi. 

130.    The  equation  of  the  chord  joining  two  points 

a"/3'Y')  on  tne  curve  is 

For  substitute  a',  #',  y  for  a,  /3,  7,  and  it  will  be  found  that  the 
quantity  on  the  left-hand  side  may  be  written 

which  vanishes,  since  the  points  are  on  the  curve.  The  equation 

of  the  tangent  is  found  by  putting  a",  /3",  7"  =  a',  #',  «/  in  the 

above.  Dividing  by  2  /v/(a'/3'7'),  it  becomes 

Conversely,  if  Xa  -f  /u,/3  +  ̂ 7  is  a  tangent,  the  coordinate*  of 
the  point  of  contact  are  given  by  the  equations 

Solving  for  a'/3Y>  and  substituting  in  the  equation  of  the  curve, 
we  get 

1  +  ̂4^  =  0, \         //,  V 

which  is  the  condition  that  Xa  +  pfi  +  vy  may  be   a  tangent  ; 

that  is  to  say,  is  the  tangential  equation  of  the  curve. 

*  This  equation  is  Dr.  Hart's. 
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The  reciprocity  of  tangential  and  ordinary  equations  will  be 
better  seen  if  we  solve  the  converse  problem,  viz.  to  find  the 

equation  of  the  curve,  the  tangents  to  which  fulfil  the  condition 

I       m      n 
_  +  _  +  _  =  0, 
X          fJL          V 

We   follow   the   steps   of  Art.    127.      Let  X'a  4  ///8  +  v'y, 

K"&+fjk"/3+v"y  be  any  two  lines,  such  that  X'/u-V,  X"/*'V  satisfy 
the  above  condition,  and  which  therefore  are  tangents  to  the 

curve  whose  equation  we  are  seeking  ;  then 

l\         mfj>        nv   _ 

x'x"  4  M"  +  V7f  ''  ''  °» 
is  the  tangential  equation  of  their  point  of  intersection.  For 

(Art.  70)  any  equation  of  the  form  A\  -f  Bp  +  Cv  =  0  is  the 
condition  that  the  line  \a  +  /4/3  -f  1/7  should  pass  through  a 
certain  point,  or,  in  other  words,  is  the  tangential  equation  of  a 

point  ;  and  the  equation  we  have  written  being  satisfied  by  the 

tangential  coordinates  of  the  two  lines  is  the  equation  of  their 

point  of  intersection.  Making  X',  //,  v  =  X",  /u,",  v"  we  learn 
that  if  there  be  two  consecutive  tangents  to  the  curve,  the 

equation  of  their  point  of  intersection,  or,  in  other  words,  of« 
their  point  of  contact,  is 

The  coordinates  then  of  the  point  of  contact  are 

I  m  n 

"-£*'  P~JP>  7  =  ̂' 

Solving  for  X',  /*',  v  from  these  equations,  and  substituting  in  the 

relation,  which  by  hypothesis  X>V  satisfy,  we  get  the  required 

equation  of  the  curve 

131.    The  conditions  that  the  equation  of  Art.   129  should 

represent  a  circle  are  (Art.  128) 

m*  sin"  (7+  «"  sin*5  +  2mn  smB  sin  (7=  n*  sinM  +  F  sin*  (7 

+  2nl  sin  C  s'mA  =  I'  sin*J?  +  m'  sin*-4  +  2Z?w  sin  A  sin  /?, 

or   m  smG+n  smB=±(n  s\nA  +  I  sin  (7)  =±  (/  smB  +  m  s'mA). 
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Four  circles  then  may  be  described  to  touch  the  sides  of  the 

given  triangle,  since,  by  varying  the  sign,  these  equations  may 
be  written  in  four  different  ways.  If  we  choose  in  both  cases 

the  +  sign,  the  equations  are 

I  sin  C—m  sin  (74  n  (sin  A  —  sin  7?)  =  0; 

I  sin  B  +  m  (sin  A  —  sin  G)  —  n  sin  -6  =  0. 

The  solution  of  which  gives  (see  Art.  124) 

I  =  sin  A  (sin  B  +  sin  C  —  sin  A),   m  —  sin  B  (sin  G  +  sin  A  —  sin  J5), 

n  =  sin  C  (sin  A  +  sin  B  —  sin  G). 

But  since  in  a  plane  triangle 

sin  B  -f  sin  C—  sin  A  =  4  cos^A  sin  \B  sin  \  (7, 

these  values  for  7,  m,  n  are  respectively  proportional  to  cos8^, 

cos'^5,  cos'2£0,  and  the  equation  of  the  corresponding  circle, 
which  is  the  inscribed  circle,  is 

0  ,»
 

We  may  verify  that   this  equation  represents  a  circle  by 
writing  it  in  the  form 

/«  cos4i^4      /3  cos4J5      7cos*iC/\/ 
+       .    P  -  +   -•-/;-«  sin  -4  +  £  sin  5  +7  sin  0) 

V    sin  .4  smB  sin  (7    /  v 

4  cos5  i  ̂4  cos2  \B  cos2  ̂ (7,  ̂     .  •    r>       o   •    ̂ \ —    -      •    7^   •    n        (@y  sm^  +  7a  sm.B+ayS  sm(7)  =  0. 
sin  5  sin  C  ' 

*  Dr.  Hart  derives  this  equation  from  that  of  the  circumscribing  circle  as  follows  : 
Let  the  equations  of  the  sides  of  the  triangle  formed  by  joining  the  points  of  contact 

of  the  inscribed  circle  be  a'  =  0,  fi  =  0,  y'  =  0,  and  let  its  angles  be  A',  B',  C'  ;  then 
(Art.  124)  the  equation  of  the  circle  is 

/3y  sin  A'  +  y'a'  sin  R  +  o'/3'  sin  C"  =  0. 

But  (Art.  123)  for  every  point  of  the  circle  we  have  a'2  =  /3y,  /S'2  =  yn,  y*1  =  a/8, 
and  it  is  easy  to  see  that  A'  —  90  -  ±A,  &c.  Substituting  these  values,  the  equation 
of  the  circle  becomes,  as  before, 

cos  \A  J(a)  +  cos  JB  J(/3)  +  cosiC"  J(y)  =  0. 
If  the  equation  of  the  note,  p.  119,  be  treated  similarly,  we  find  that  every  point  of 

the  circle,  of  which  a,  /3,  y,  i  are  tangents,  satisfies  the  equation, 

cos  i  (12)      cosi  (28)      cos  $  (84)      cos  J  (41)  _ "  "  '  "    ' 

where  (12)  denotes  the  angle  between  a/3,  Ac.     Similarly  for  any  number  of  tangents. 
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In  the  same  way,  the  equation  of  one  of  the  exscribed  circles  in 
found  to  be 

in'i  C-  2/37  sin2|5  sin'J  0 

n*  JJ5  cos*  J4  =  0, 

or  cos   -4      -  «  +  sin   £  V£  +  sin    C          =0. 

The  negative  sign  given  to  a  is  in  accordance  with  the  fact,  that 

this  circle  and  the  inscribed  circle  lie  on  opposite  sides  of  the 
line  a. 

Ex.  Find  the  radical  axis  of  the  inscribed  circle  and  the  circle  through  the  middle 
points  of  sides. 

The  equation  formed  by  the  method  of  Art.  128  is 

2  cos2i4  cos2J5  cos"  1C  {acosA+pcosB  +  y  cos  £7} 

,     _/    cos4  kA      ̂ cos-JB         cos4AC'\ 
=  Bin  A  sin  B  sin  C  ( a  -r-*-  -r/3     .   *     +  y         '     1 . 

V     sin  A       ̂    smB       '    sva.C  J 

Divide  by  2  cos \A  cos  JB  cos \C,  and  the  coefficient  of  a  in  this  equation  in 

cos  \A  {2  cos2  J.4  sinJB  sin  ̂ C  -  cos  A  cos$B  cos^C}, 

or  cos  \A  sin  ±(A  -  B)  sin  b(A-  C). 

The  equation  of  the  radical  axis  then  may  be  written 

a  cos  %  A  /3  cos  ±B  ycos^C     _ 

Bin  i  (B  -  C)      sin  *  (U  -  A)  +  sin  £  (A  -  B)  ~    ' 
and  it  appears  from  the  condition  of  Art.  130  that  this  line  touches  the  inscribed  circle, 

the  coordinates  of  the  point  of  contact  being  sin2  J  (B—C),  sin2  J  (C—  A),  sin2^  (A—B). 
These  values  shew  (Art.  66)  that  the  point  of  contact  lies  on  the  line  joining  the  two 

centres  whose  coordinates  are  1,  1,  1,  and  cos  (B  —  C),  cos  (C  —  A),  cos  (A  —  B). 
In  the  same  way  it  can  be  proved  that  the  circle  through  the  middle  points  of  sides 

touches  all  the  circles  which  touch  the  sides.    This  theorem  is  due  to  Feuerbach.* 

*  Dr  Casey  has  given  a  proof  of  Feuerbach's  theorem,  which  will  equally  prove 

Dr.  Hart's  extension  of  it,  viz.  that  the  circles  which  touch  three  given  circles  can  be 
distributed  into  sets  of  four,  all  touched  by  the  same  circle.  The  signs  in  the  fol]ow- 
ing  correspond  to  a  triangle  whose  sides  are  in  .order  of  magnitude  a,  b,  c.  The 
exscribed  circles  are  numbered  1,  2,  3,  and  the  inscribed  4;  the  lengths  of  the  direct 

and  transverse  common  tangents  to  the  first  two  circles  are  written  (12),  (12)'.  Then 
because  the  side  a  is  touched  by  the  circle  1  on  one  side,  and  by  the  other  three  circles 
on  the  other,  we  have  (see  p.  115) 

(13)'  (24)  =  (12)'  (34)  +  (14)'  (23). 

Similarly  (12)'  (34)  +  (24)'  (13)  =  (23)'  (14), 

(23)'  (14)  =  (13)'  (24)  +  (34)'  (12), 

whence,  adding,  we  have  (24)'  (13)  =  (14)'  (23)  +  (34)'  (12) ; 
showing  that  the  four  circles  are  also  touched  by  a  circle,  having  the  circle  4  on  one 
tide  and  the  other  three  on  the  other. 
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132.  If  the  equation  of  a  circle  in  trilinear  coordinates  is 

equivalent  to  an  equation  in  rectangular  coordinates,  in  which 

the  coefficient  of  x*  4  y*  is  wi,  then  the  result  of  substituting  in 
the  equation  the  coordinates  of  any  point  is  m  times  the  square 

of  the  tangent  from  that  point.  This  constant  m  is  easily  deter- 
mined in  practice  if  there  be  any  point,  the  square  of  the  tangent 

from  which  is  known  by  geometrical  considerations;  and  then 

the  length  of  the  tangent  from  any  other  point  may  be  inferred. 

Also,  if  we  have  determined  this  constant  m  for  two  circles,  and 

if  we  subtract,  one  from  the  other,  the  equations  divided  respec- 

tively by  m  and  m',  the  difference  which  must  represent  the  ra- 
dical axis  will  always  be  divisible  by  a  sin  A  +£  sin  B+  7  sin  G. 

Ex.  1  .  Find  the  value  of  the  constant  m  for  the  circle  through  the  middle  points 
of  the  sides 

a2  sin  A  cos  A  +  /32  sin  B  cos  B  +  '/'  sinC'costf-  /3y  sin  A  -  ya  sin  B  -  a/3  ainC=  0. 

Since  the  circle  cuts  any  side  y  at  points  whose  distances  from  the  vertex  A  are  \e 
and  b  cos  A,  the  square  of  the  tangent  from  A  is  fabc  cos  A.  But  since  for  .4  we  have 
/3  =  0,  y  =  0,  the  result  of  substituting  in  the  equation  the  coordinates  of  A  ia 

a'2  sin  A  cos  A  (where  a'  is  the  perpendicular  from  A  on  the  opposite  side),  or  ia 
be  sin  A  sin  B  sinC  cos  A.  It  follows  that  the  constant  m  is  2  sin  A  sin  B  sin  C. 

Ex.  2.  Find  the  constant  m  for  the  circle  /3y  sin  A  +  ya  sin  B  +  aft  sin  C.    If  from 
the  preceding  equation  we  subtract  the  linear  terms 

(a  cos  A  +  flcosB  +  y  cosC)  (a  sin  .4  +  ft  sin  5  +  y  sinC), 

the  coefficient  of  a2  +  y-  is  unaltered.  The  constant  therefore  for  /3y  sin  A  &c.,  is 
—  sin  A  sin  B  sin  C.  It  follows  that  for  an  equation  written  in  the  form  at  the  end 
of  Art.  128  the  constant  is  -  k  sin  A  sin  B  sin  C. 

Ex.  3.   To  find  the  distance  between  the  centres  of  the  inscribed  and  circumscribing 

circle.    We  find  D2  —  JK2,  the  square  of  the  tangent  from  the  centre  of  the  inscribed  to 
- 

the  circumscribing  circle,  by  substituting  a=/3=y=r,  to  be  ----  6m^  sin  ZTsiif  (7~ 
or,  by  a  well-known  formula,  -  -  2Rr.    Hence  D2  =  B?  -  2Rr. 

Ex.  4.  Find  the  distance  between  the  centres  of  the  inscribed  circle  and  tha, 

Lhrough  the  middle  points  of  sides.  If  the  radius  of  the  latter  be  p,  making  use  of 
the  formula, 

sin  A  cos  A  +  sin  B  cos  B  +  sin  C  cos  C  =  2  sin  A  sin  B  sin  C, 

we  have  D2  -  p*  =  r2  -  rR. 

Assuming  then  that  we  otherwise  know  R  -  2p,  we  have  D  =  r  —  p  ;  or  the 
circles  touch. 

Ex.  5.   Find  the  constant  m  for  the  equation  of  the  inscribed  circle  given  above. 
An$. 

Ex.  6.  Find  the  tangential  equation  of  a  circle  whose  centre  is  a'/S'y'  and  radius  r. 
This  is  investigated  as  in  Art.  86,  Ex.  4  ;  attending  to  the  formula  of  Art.  61  ;  and 
is  found  to  be 

(\a'  +  nff  +  i/y')2  =  r*  (\2  +  /i2  +  r>  -  2uv  cos  A  -  2iA  cos  B  -  2\/*  cos  C). 
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The  corresponding  equation  in  a,  (3,  y  is  deduced  from  this  by  the  method  afterwards 
explained,  Art.  285,  and  is 

r*  (o  sin  A  +  ft  sin  B  +  y  sin  C)9  =  (/?/  -  /^y)2  +  (ya'  -  y'u)2  +  (aft'  -  a'/3)2 

-2  (ya'-y'a)  (a/3'-a'/3)  cos^-2(a/3'-a'/8)(/3y'-/3'y)  cos5-2  (/3y'-//y)  (ya'-y'a)cosC7. 

This  equation  also  gives  an  expression  for  the  distance  between  any  two  points. 

Ex.  7.   The  feet  of  the  perpendiculars  on  the  sides  of  the  triangle  of  reference  from 

the  points  a',  0*,  y' ;  -, ,  -; ,  -, ;  (see  Art.  55)  lie  on  the  same  circle.    By  the  help  of 
Ex.  6,  p.  60,  its  equation  is  found  to  be 

(/3y  sin^+y  a  sin.B+a/3  sin  C )  (a'  sin^+/3'  sinS+y '  sin  C )  (/3'y '  sin  A  +  y  'a'  sinB + a'/3'  sin  C ) 
=  sin.4  sin  B  sin  C  (a  sin  A  +  ft  sin  B  +  y  sin  C) 

(aa'(F+7'cosA)(7'+p'cosA)   /^(y'+a'cosJg)  (a'+y'cosff)   yy  V+ffcoseXft'+a'cosC)-) 

I  sin^  sinfi  sinCT"        "    /' 

Ex.  8.  It  will  appear  afterwards  that  the  centre  of  a  circle  is  the  pole  of  the  line 

at  infinity  a  sin  A  +  /8  sin  5  +  y  sinC';  and  it  is  evident  that  if  we  substitute  the 
coordinates  of  the  centre  in  the  equation  of  a  circle,  for  which  the  coefficient  of 

x2  +  y2  has  been  made  unity,  we  get  the  negative  square  of  the  radius.  By  these 
principles  we  establish  the  following  expressions  of  Mr.  Cathcart.  The  coordinates 
of  the  centre  of  the  circle  (Art.  128) 

(la  +  mft  +  ny)  (a  sin  4  +  &c.)  +  k  (fly  sin  A  +  &c.), 
R  R 

are       ̂   (k  cos  A  +  I  -  m  cosC  -  n  cos.fi),  k  (kcosJB-l  cosC  +m-n  cos^), 

~  (k  cosC-  /  cos  B  -  m  cos  A  +  n), 

where  R  is  the  radius  of  the  circumscribing  circle.    The  radius  p  is  given  by  the 
equation 

&?*  =  P?{&  +  2k  (I  cos  A  +  mcosB+n  cosC) 
+  I2  +  m2  +  n?  -  2mn  cos  A  -  2nJ  cos  B  -  2lm  cosC}, 

and  the  angle  of  intersection  of  two  circles  is  given  by 

pp'  cos  0  /  cos  .4  +  m  cos  B  +  n  cosC     I'  cos  A  +  m'  cos  B  +  n'  cosC 
~y~  ~k~  ~~w~ 

IV  +  mm'  +  nn'  —  (mn'  +  m'n)  cos  A  -  (nV  +  n'l)  cos  B  —  (lm'  +  I'm]  cosC 

+  kk'  ""- 

DETERMINANT   NOTATION. 

132(a).  In  the  earlier  editions  of  this  book  1  did  not  venture 

to  introduce  the  determinant  notation,  and  in  the  preceding 

pages  I  have  not  supposed  the  reader  to  be  acquainted  with  it. 
But  the  knowledge  of  determinants  has  become  so  much  more 

common  now  than  it  was,  that  there  seems  no  reason  for 

excluding  the  notation,  at  least  from  the  less  elementary  chapters 
of  the  book.  Thus  the  equation  of  the  line  joining  two  points 

(Art.  29),  the  double  area  of  a  triangle  (Art.  36)  and  the 
S 
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condition  (Art.  38),  that  three  lines  should  meet  in  a  point,  may 
be  written  respectively 

x  ,  y  >  l *„  y,,  i ^,5,  C 
/        /      i 

$}  u  %) 
,f  /          TV          /f  / 

^\_             _£)                (_y 

x  x  i 
=  0, 

x*  y»»  ! > 
4",  2?",  0" 

=  0. 

Ex.  1.   Find  the  area  of  the  triangle  contained  by  the  three  lines  la  +  mfi  +  n-y, 

I' a  +  Ac.,  <fcc.,  (J.J.Walker). 

Ana.  Iia,btc  be  the  sides  and  A  the  area  of  the  triangle  of  reference 

I  ,  m N 1 

Aa&e 

I'  ,  m' 

//'
 

I",  m" 

/,-"
 

a, 

6,   c    1 
a,    b 

e a,    i  ,   c    I 
/- 

/", 

m  ,  n 

I',  m' 

I",  m' 

n"
 

^  m",  »"  ! 
1  ,  T»  ,  n    I 

Ex.  2.  The  equation  of  the  perpendicular  from  a'ft'y'  on  la  -*-  mfi  +  ny  —  0,  may  be 
written 

a,  a',    1-mcozC-ncosB 

/3,  /3',  m  —  n  cos  A  —  I  cos  (7 
—  '  COS.B  -  mcos-4 

=  0. 

132  (5).  The  equations  of  the  circle  through  three  points 
(Art  94),  and  of  the  circle  cutting  three  at  right  angles  (Ex.  2, 
p.  102),  may  be  written  respectively 

y">-»  »-y  > ! 
/          /•/     i 

>     .9    »     /    j  1 

<• 

0. 

The  equation  of  the  latter  circle  may  also  be  formed  by  the 
help  of  the  principle  (Ex.  6,  p.  102),  as  the  locus  of  the  point 
whose  polars  with  respect  to  three  given  circles  meet  in  a 

point,  in  the  form 

,  y+/  ,/*  +/y  +c'   I 

The  corresponding  equation  for  any  three  curves  of  the  second 

degree  will  be  discussed  hereafter. 

132  (c).    If  the  radius  of  a  circle  vanishes,  (x— a)*+  (y—ft}*  =  0 

the  polar  of  any  point  xy\  (x'  —  a.)  (x  —  a)  +  (y'  —  /3)  (y  —  /3)  =  0 
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evidently  passes  through  the  point  a/3.  It  is  in  fact  the 

perpendicular  through  that  point  to  the  line  joining  a/3,  xy  ',  as  is 
evident  geometrically.  Hence  then  if  the  circle 

a2  +  ?/2  +  2yx  +  2fy  +  c  =  0 

reduce  to  a  point,  that  point  which,  as  being  the  centre,  is  given 

by  the  equations  #  +  #  =  0,  y+/=0,  also  satisfies  the  equation 
of  the  polar  of  the  origin  gx  +  fy  +  c  =  0. 

If  given  three  circles  >S",  $",  &"  we  examine  in  what  cases 

lS'+mS"-srfnS"'  can  represent  a  point,  we  see  that  the  coordinates 
of  such  a  point  must  satisfy  the  three  equations 

I  (x+g')  +  m  (x  +  g")  +  n  (x  +  g")  =  0, 

i  (y  +/)  •»•  ™  (y  +/")  +  *  (y  +/")  =  o, 
*  (/*  +A  +  <0  +  m  (g"x  +f"y  +  c")  +  ft  (/"*  +/wy  +  c'")  =  0, 

from  which  if  we  eliminate  ?,  772,  rc,  we  get  the  same  determinant 

as  in  the  last  article  ;  showing  that  the  orthogonal  circle  is  the 

locus  of  all  the  points  that  can  be  represented  by  IS'+m&'+nS'". 
The  expression  (Ex.  8,  p.  103)  for  the  angle  at  which  two 

circles  intersect  may  be  written  2r/  cos  6  =  Igg'  +  tyf  —  c  —  c. 
If  now  we  calculate  by  the  formula  of  p.  76  the  radius  of  the 

circle  Z/S^+m/S1"-}-  «$"',  and  reduce  the  result  by  the  formula  just 
given,  we  find 

(I  +  m  +  n?  r*  =  Z2/2  +  m  *r"*  +  nYm 

+  2mn/y//  cos  ff  +  2n7/V  cos  0"  -f  2foirV/  cos  6'", 

where  &  ',  0",  0"'  are  the  angles  at  which  the  circles  respec- 
tively intersect.  And  since  the  coordinates  of  the  centre  of 

7o>         «,/        o///          lg+mg"  +  nq"     lf+mf"+nf" IS  +  mS   +  nS     are   y  T    >y  --  ̂ —  ,    7    7    y  —  ,  we  see l+m  +  n  Z-fm-fw 
that  these  coordinates  will  represent  a  point  on  the  orthogonal 

circle  if  Z,  w,  w  are  connected  by  the  relation  ZV2+mV/2-f  &c.  =0. 
If  the  three  given  circles  be  mutually  orthogonal  this  relation 
reduces  itself  to  its  three  first  terms.* 

132  (d).  The  condition  that  four  circles  may  have  a  common 

orthogonal  circle  is  found  by  eliminating  (7,  F^  G  from  the 
four  conditions 

-  <7-c  =  0,  &c., 

*  Casey,  Phil.  Trans.,  1871,  p.  586, 
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and  is 
«  ,9  ,/  ,  1 

«'  ,/,/',! 
«",/',/",! 
<="', /",/'",  1 0. 

Since  c  denotes  the  square  of  the  tangent  from  the  origin  to 

the  first  circle,  and  since  the  origin  may  be  any  point,  this 

condition,  geometrically  interpreted,  expresses  (see  Art.  94)  that 

the  tangents  from  any  point  to  four  circles  having  a  common 
orthogonal  circle  are  connected  by  the  relation 

0(?.ABD  =  OB*.ACD  +  OD\ABC* 

132  (e).   If  a  circle 

cut  three   others  at  the  same  angle  0,  we  have,  besides  the 

equation  first  given,  three  others  of  the  form 

c'  +  2Rr'coa0-2Gg'-2Ff'+  (7=0; 

from  which,  eliminating  #,  F,  (7,  we  have 

Now  if  we  write  2R  cos  0  = 
resolvable  into 

;2+/,  -a?   ,  -y    ,  1 

c/  >  9'  >  /'  »  ! v  "  •^//  i 
c  >  9  i  J  i  l 

c'  +2S/  cos0,   /,/',! 
c"  +2.K/'  cos0,   /',/",  1 

'=0, 

the  
determinant  

just  
written  

is 

0   ,-«    ,  -y 

/  ,  1 

=  0. 

The  first  determinant  equated  to  zero  is,  as  has  just  been 

pointed  out,  the  equation  of  the  orthogonal  circle,  and  the  second 

when  expanded  will  be  found  to  be  the  equation  of  the  axis  of 

similitude  (Art.  117).  Thus  we  have  the  theorem  (Note,  p.  109) 
that  all  circles  cutting  three  circles  at  the  same  angle  have  a 

*  This  theorem  is  Mr.  R.  J.  Harvey's  (Casey,  Trans.  Royal  Irish  Acad.,  xxiv.  458). 
t  Since  this  only  differs  from  the  equation  of  the  orthogonal  circle  by  writing 

ef  +  \r'  for  c',  <fec.  we  obtain  another  form  for  this  determinant  by  making  the  same 
change  in  the  last  determinant  of  Art.  132  (*).  I  owe  this  form  to  Mr.  Cathcart. 
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common  radical  axis,  viz.,  the  axis  of  similitude.  If  in  the 

second  determinant  we  change  the  sign  either  of  /,  r",  or  r'", 
we  get  the  equations  of  the  other  three  axes  of  similitude.  Now 

it  has  been  stated  (Art.  118)  that  it  is  optional  which  of  two 

supplemental  angles  we  consider  to  be  the  angle  at  which  two 

circles  intersect ;  and  if  in  any  line  of  the  first  determinant  of 

this  article  we  substitute  for  6  its  supplement,  this  is  equivalent  to 

changing  the  sign  of  the  corresponding  r.  Hence  it  is  evident 

that  we  may  have  four  systems  of  circles  cutting  the  given 

three  at  equal  angles,  each  system  having  a  different  one  of  the 

axes  of  similitude  for  radical  axis;  calculating  by  the  usual 

formula  the  radius  of  the  circle  whose  equation  has  been  written 

above,  we  get  R  in  terms  of  X,  and  then  from  the  equation 

2.5cos0=\  we  get  a  quadratic  to  determine  the  value  of  \ 
corresponding  to  any  value  of  0. 

Ex.  1.  To  find  the  condition  for  the  co-existence  of  the  equations 

ax  4-  by  +  e  =  a'x  +  b'y  +  (f  —  a"x  +  b"y  +  eft  =  a'"x  +  b'"y  +  c'". 

Let  the  common  value  of  these  quantities  be  \ ;  then  eliminating  x,  y,  X  from  the  four 

equations  of  the  form  ax  +  by  +  c  =  X,  we  have  the  result  in  the  form  of  a  determinant 

1,1,  1,  1 

a,  a',  a",  a'" 
b,  b',  b",  V" 

e,  c?,  0",  tf" 
or  A  +  (7=  B  +  D,  where  A,  B,  G,  D  are  the  four  minors  got  by  erasing  in  turn  each 
column,  and  the  top  row  in  this  determinant. 

To  find  the  condition  that  four  lines  should  touch  the  same  circle,  is  the  same  as  to 

find  the  condition  for  the  co-existence  of  the  equations  a  =  /3  =  y  =  9.  In  this  case 
the  determinants  A,  B,  G,  D  geometrically  represent  the  product  of  each  side  of  the 
quadrilateral  formed  by  the  four  lines,  by  the  sines  of  the  two  adjacent  angles. 

Ex.  2.  The  expression,  p.  129,  for  the  distance  between  two  points  may  be  written 
r2  ( 

+  /3  sin5  +  y  sinC)2  — 
0,  0,        a      ,        P     ,        y 

0,  0,       a'     ,       p      ,       y' 

a,  a',        1      ,  -cosC",  -cosB 

P,  (?,  -cosC,        1      ,  -cos  A 

y,  y',  -COS.B,  -COS 4, 

and  this  determinant  may  be  resolved  into  the  product 

«,   a',  -  1 

P    P    J
° 

'   e~iB 

or  analogous  factors  arising  from  A  +  B  +  C  =  v. 
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Ex.  3.  To  find  the  relation  connecting  the  mutual  distances  of  four  points  on  a 

circle.  The  investigation  is  Prof.  Cayley's  (see  Lessons  on  Higher  Algebra,  p.  23). 
Multiply  together  according  to  the  ordinary  rule  the  determinants 

9,  -2*2,  - 

-2*,  - 

1,  *2,  y2, 

which  are  only  different  ways  of  writing  the  condition  of  Art.  94 ;  and  we  get  the 
required  relation 

0  ,  (12)',  (13)*,  (14)' 

(12)',  0  ,  (23)',  (24)* 

(13)*,  (23)*,  0  ,  (34)* 

(H)*,  (24)*,  (34)*,  0  =0, 

where  (12)*  is  the  square  of  the  distance  between  two  points, 
expanded  is  equivalent  to  (12)  (34)  ±  (13)  (42)  +  (14)  (23)  =  0. 

This  determinant 

Ex.  4.  To  find  the  relation  connecting  the  mutual  distances  of  any  four  points  in  a 

plane.  This  investigation  is  also  Prof.  Cayley's  (Lessons  on  Higher  Algebra,  p.  24). 
Prefix  a  unit  and  cyphers  to  each  of  the  determinants  in  the  last  example ;  thus 

1, 

0,         0,    0 
2,  -2ar,,  -2^,  1 &c. 

0,    0,    0, 

x*  +  y\ 

We  have  then  five  rows  and  four  columns,  the  determinant  formed  from  which,  accord- 
ing to  the  rules  of  multiplication,  must  vanish  identically.  But  this  ia 

0,  1   ,     1    ,     1    ,     1 

1,  0   ,  (12)*,  (13)*,  (14)' 

1,  (12)*,     0   ,  (23)*,  (24)* 

1,  (13)*,  (23)*,     0   ,  (34)* 

1,  (14)*,  (24)*,  (34)*,     0        =0, 
which,  expanded,  is 

(12)2  (34)2  {(12)«  +  (84),  _  (18),  _  (14)2  _  (23)«  _ 

4-  (13)2  (24)*  {(13)*  +  (24)*  -  (12)«  -  (14)*  -  (23)*  -  (34)*} 

+  (14)2  (23)*  {(14)»  +  (23)*  -  (12)*  -  (13)»  -  (24)*  -  (34)*} 

+  (23)*  (34)*  (42)'  +  (31)«  (14)*  (43)*  +  (12)'  (24)*  (41)*  +  (23)*  (31)*  (12)«  =  0. 

If  we  write  in  the  above  a,  b,  e  for  23,  31,  12 ;  and  R  +  r,  R  +  r',  R  +  r"  for  14,  24, 
34,  we  get  a  quadratic  in  R,  whose  roots  are  the  lengths  of  the  radii  of  the  circles 

touching  either  all  externally  or  internally  three  circles,  whose  radii  are  r,  r',  r",  and 
whose  centres  form  a  triangle  whose  sides  are  a,  b,  e. 

Ex.  5.  A  relation  connecting  the  lengths  of  the  common  tangents  of  any  five 
circles  may  be  obtained  precisely  as  in  the  last  example.     Write  down  the  two  matrices 

1, 

0, 

of* 

0,  0,  0 
*  -r",  -2x',  -2y't  2r'  ,  1 

*  _  r»zt  _  2x",  -  fy"  ,  2r",  1 

Ac. 

0,  0,     0,    0,  1 

1,  *',  y',  r',  x'*  +y'*  —  r'* 
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where  there  are  six  rows  and  five  columns,  and  the  determinant  formed  according  to 
the  rules  of  multiplication  must  vanish.    But  this  is 

0,  1    ,  1    ,      1   ,  1   ,     1 

1,  0   ,  (12)2,  (i3)2,  (14)2,  (J5)2 

1,  (12)2,  0   ,  (23)2,  (24)2,  (25)2 

1,  (13)2,  (23)2,     0   ,  (34)2,  (35)2 

1,  (14)2,  (24)2,  (34)2,  o   ,  (45)2 

1,  (15)2,  (25)2,  (35)2,  (45)2,     0      '  =  0, 
where  (1 2),  &c.  denote  the  lengths  of  the  common  tangents  to  each  pair  of  circles.    If 
we  suppose  the  circle  5  to  touch  all  the  others,  then  (15),  (25),  (35),  (45),  all  vanish,  and 

we  get,  as  a  particular  case  of  the  above,  Dr.  Casey's  relation  between  the  common 
tangents  of  four  circles  touched  by  a  fifth,  in  the  form 

0  ,  (12)2,  (13)2j  (14)2 
(12)2,     o    ,  (23)2,  (24)2 

(13)2,  (28)2,     o    ,  (34)* 

(14)2,  (24)2,  (34)2,     o        =0. 

Ex.  6.  Relation  between  the  angles  at  which  four  circles  whose  radii  are  r,  r',  r",  r'" 
intersect.  If  the  circle  r  have  its  centre  at  the  point  1  in  Ex.  4,  r'  at  2,  &c.  we  may 

put  for  122  =  r2  +  r'2  —  2rr'  cos  12,  &c.  in  the  determinant  of  that  example  which 
becomes  then 

0,  1  ,  1  _,  1  1 

1,  0  ,r'2+r2  -2r'r  cos2l,  r"2+r2   -2r"r   cos3~T,  r"'2+r2  -2r"'r  cos41 

-2^00812,  0  ,r"2+r'2 -2r"r' cos32~,r'"2+r'2-2r"V/cos42 

-2rr"cos!3i,r'2+r"2-2r'r"cos23,  1  ,  r'"2+r"2-2r"V"co8~43 

l.r2-|V"2-2rr"'cosl4,  r'2+r'"2-2rV"cos24,  r"2+r'"2-2rV"cos34,  0 =  0. 

subtracting  from  each  row  and  column  the  first  multiplied  by  corresponding  square 

of  radius  and  writing  p  for  - ,  p'  for  —, ,  &c.  this  reduces  to 

0   »      P    ,      p'    »     p"    >    p'" 
p    ,       1     ,  cos  21,  cos  31,  cos  41 

p'  ,  cosl2,       1     ,  cos  32,  cos  42 

p",  cosT3,  cos 23,       1     ,  cos 43 

p'".  cos  14,  cos  24,  cos34~,       I         -0. 

If  in  this  we  let  cos  21  _  cos  31  =:  cos  41  =  cos0,  we  have  the  quadratic  in 
mertioned  at  the  end  of  Art.  132  e. 
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CHAPTER    X. 

PROPERTIES  COMMON  TO  ALL  CURVES  OF  THE  SECOND  DEGREE, 
DEDUCED  FROM  THE  GENERAL  EQUATION. 

133.  THE  most  general  form  of  the  equation  of  the  second 

degree  is 

ax*  4  2hxy  4  by*  4  2gx  4  2/y  4  c  =  0, 

where  a,  i,  c,  /,  #,  A  are  all  constants. 
It  is  our  object  in  this  chapter  to  classify  the  different  curves 

which  can  be  represented  by  equations  of  the  general  form  just 

written,  and  to  obtain  some  of  the  properties  which  are  common 

to  them  all.* 
Five  relations  between  the  coefficients  are  sufficient  to  deter- 

mine a  curve  of  the  second  degree.  For  though  the  general 

equation  contains  six  constants,  the  nature  of  the  curve  depends 

not  on  the  absolute  magnitude,  but  on  the  mutual  ratios  of  these 

coefficients;  since,  if  we  multiply  or  divide  the  equation  by 

any  constant,  it  will  still  represent  the  same  curve.  We  may, 

therefore,  divide  the  equation  by  c,  so  as  to  make  the  absolute 

term  =  1 ,  and  there  will  then  remain  but  five  constants  to  be 
determined. 

Thus,  for  example,  a  conic  section  can  be  described  through 

Jive  points.  Substituting  in  the  equation  (as  in  Art.  93)  the 

coordinates  of  each  point  (x'y'}  through  which  the  curve  must 
pass,  we  obtain  five  relations  between  the  coefficients,  which  will 

enable  us  to  determine  the  five  quantities,  -  ,  &c. c 

134.  We  shall  in  this  chapter  often  have  occasion  to  use  the 

method  of  transformation  of  coordinates ;  and  it  will  be  useful 

*  We  shall  prove  hereafter,  that  the  section  made  by  any  plane  in  a  cone  standing 
on  a  circular  base  is  a  curve  of  the  second  degree,  and,  conversely,  that  there  is  no 
curve  of  the  second  degree  which  may  not  be  considered  aa  a  conic  section.  It  was  in 
this  point  of  view  that  these  curves  were  first  examined  by  geometers.  We  mention 

the  property  here,  because  we  shall  often  find  it  convenient  to  use  the  terms  "  conic 
section,"  or  "  conic,"  instead  of  the  longer  appellation,  "  curve  of  the  second  degree." 
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to  find  what  the  general  equation  becomes  when  transformed  to 

parallel  axes  through  a  new  origin  (x'y'}.  We  form  the  new 

equation  by  substituting  x+x'  for  a?,  and#  +  y'  for  y  (Art.  8), 
and  we  get 

a  (x+  x'}*+  2h  (x+x')  (y+y'}  +  1  (y+yj+  2g  (x+x')+  %f(y+y'}  +  c  =0. 

Arranging  this  equation  according  to  the  powers  of  the  vari- 

ables, we  find  that  the  coefficients  of  x\  xy,  and  ?/2,  will  be,  as 
before,  a,  2h,  b  ;  that 

the  new  g,  g'  =  ax'  4  hy'  +  g  ; 

the  new  /,  /  =  hx  +  ly'  +/; 

the  new  c,  c'  =  azf*  +  2hxy'  +  by™  +  2gx'  +  tyy'  +  c. 

Hence,  if  the  equation  of  a  curve  of  the  second  degree  be  trans- 
formed to  parallel  axes  through  a  new  origin,  the  coefficients  of  the 

highest  powers  of  the  variables  will  remain  unchanged,  while  the 

new  absolute  term  will  be  the  result  of  substituting  in  the  original 

equation  the  coordinates  of  the  new  origin.* 

135.  Every  right  line  meets  a  curve  of  the  second  degree  in 

two  real,  coincident,  or  imaginary  points. 

This  is  inferred,  as  in  Art.  82,  from  the  fact  that  we  get  a 

quadratic  equation  to  determine  the  points  where  any  line 

y  =  mx  4  n  meets  the  curve.  Thus,  substituting  this  value  of  y 
in  the  equation  of  the  second  degree,  we  get  a  quadratic  to 

determine  the  x  of  the  points  of  intersection.  In  particular 

(see  Art.  84)  the  points  where  the  curve  meets  the  axes  are 

determined  by  the  quadratics 

ax'  +  2gx  +  c  =  Q,  ly*  +  2fy  +  c  =  0. 
An  apparent  exception,  however,  may  arise  which  does  not 

present  itself  in  the  case  of  the  circle.  The  quadratic  may 

reduce  to  a  simple  equation  in  consequence  of  the  vanishing  of 

the  coefficient  which  multiplies  the  square  of  the  variable.  Thus 

is  an  equation  of  the  second  degree  ;  but  if  we  make  y  —  0,  we 
get  only  a  simple  equation  to  determine  the  point  of  meeting 
of  the  axis  of  x  with  the  locus  represented.  Suppose,  however, 

that  in  any  quadratic  Ax*  +  2Bx+  G-  0,  the  coefficient  G 

*  This  is  equally  true  for  equations  of  any  degree,  as  can  be  proved  in  like  manner. 
T 
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vanishes,  we  do  not  say  that  the  quadratic  reduces  to  a  simple 

equation  ;  but  we  regard  it   still   as  a  quadratic,  one  of  whose 2B 

roots  is  x  =  0,  and  the    other  x  —  --  -r-  .     Now    this   quadratic ^1 

may  be  also  written 

and  we  see  by  parity  of  reasoning  that,  if  A  vanishes,  we  ought 

to  regard  this  still  as  a  quadratic  equation,  one  of  whose  roots  is 

-  =  0,  or  x  —  co  ;  and  the  other  -  •  =  -  -^r  >  or  x  ~  ~  2  -n  -     r^ne 
same  thing  follows  from  the  general  solution  of  the  quadratic, 

which  may  be  written  in  either  of  the  forms 

_-B±*J(B*-AG)_  _C 
A  ~~  -B  +  */(B*-ACy 

the  latter  being  the  form  got  by  solving  the  equation  for  the 

reciprocal  of  a;,  and  the  equivalence  of  the  two  forms  is 

easily  verified  by  multiplying  across.  Now  the  smaller  A  is,  the 

more  nearly  does  the  radical  become  =  ±B-  and  therefore  the 
last  form  of  the  solution  shows  that  the  smaller  A  is,  the  larger 

is  one  of  the  roots  of  the  equation  ;  and  that  when  A  vanishes 

we  are  to  regard  one  of  the  roots  as  infinite.  When,  therefore, 

we  apparently  get  a  simple  equation  to  determine  the  points  in 
which  any  line  meets  the  curve,  we  are  to  regard  it  as  the 

limiting  case  of  a  quadratic  of  the  form  0  .  x*  +  2Bx  +  C=  0,  one 
of  whose  roots  is  infinite  ;  and  we  are  to  regard  this  as  indi- 

cating that  one  of  the  points  where  the  line  meets  the  curve  is 

infinitely  distant.  Thus  the  equation,  selected  as  an  example, 

which  may  be  written  (y  +  1)  (x  +  2y  +  3)  =  0,  represents  two 
right  lines,  one  of  which  meets  the  axis  of  x  in  a  finite  point, 

and  the  other  being  parallel  to  it  meets  it  in  an  infinitely 
distant  point. 

In  like  manner,  if  in  the  equation  Ax*  -f-  2Bx-\-  C=  0,  both  B 
and  C  vanish,  we  say  that  it  is  a  quadratic  equation,  both  of 

whose  roots  are  x  =  0;  so  if  both  B  and  A  vanish  we  are  to  say 

that  it  is  a  quadratic  equation,  both  of  whose  roots  are  x  =  oo  . 
With  the  explanation  here  given,  and  taking  account  of  infinitely 

distant  as  well  as  of  imaginary  points,  we  can  assert  that  every 

right  line  meets  a  curve  of  the  second  degree  in  two  points. 
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136.   The  equation   of  the   second   degree   transformed   to 

polar  coordinates*  is 

(a  cos'Q  -f  2h  cos  Q  sin  0  4  I  sin20)  p'2  +  2  (g  cos  6  +/sin  6)  p  +  c  =  0; 
and  the  roots  of  this  quadratic  are  the  two  values  of  the  length 

of  the  radius  vector  corresponding  to  any  assigned  value  of  0. 
Now  we  have  seen  in  the  last  article  that  one  of  these  values 

will  be  infinite,  (that  is  to  say,  the  radius  vector  will  meet  the 

curve  in  an  infinitely  distant  point,)  when  the  coefficient  of  p2 
vanishes.  But  this  condition  will  be  satisfied  for  two  values 

of  0.,  namely  those  given  by  the  quadratic 

a  -I-  2h  tan  6  4  b  tan'20  =  0. 
Hence,  there  can  be  drawn  through  the  origin  two  real,  coincident, 

or  imaginary  lines,  which  will  meet  the  curve  at  an  infinite 
distance  ;  each  of  which  lines  also  meets  the  curve  in  one  finite 

point  whose  distance  is  given  by  the  equation 

2  (g  cos  6  +f  sin  6)  p  +  c  =  0. 

If  we  multiply  by  f  the  equation 

a  cos*0  +  2h  cos  6  sin  6  +  b  sm*0  =  0, 

and  substitute  for  p  cos  6,  p  sin0  their  values  x  and  y,  we  obtain 
for  the  equation  of  the  two  lines 

ax*  +  2hxy  +  by*  =  0. 
There  are  two  directions  in  which  lines  can  be  drawn  through 

any  point  to  meet  the  curve  at  infinity,  for  by  transformation 

of  coordinates  we  can  make  that  point  the  origin,  and  the 

preceding  proof  applies.  Now  it  was  proved  (Art.  134)  that 

a,  h,  b  are  unchanged  by  such  a  transformation ;  the  directions 

are,  therefore,  always  determined  by  the  same  quadratic 

a  cos* 6  +  2h  cos  6  sin  6  +  b  sin20  =  0. 

Hence,  if  through  any  point  two  real  lines  can  be  drawn  to  meet 

the  curve  at  infinity,  parallel  lines  through  any  other  point  will 
meet  the  curve  at  infinity. \ 

*  The  following  processes  apply  equally  if  the  original  equation  had  been  in  oblique 

coordinates.  We  then  substitute  mp  for  x,  and  np  for  y,  where  m  is  ~r—  and  n  is 

— .    ~    '  (Art.  12) ;  and  proceed  as  in  the  text. 
t  This  indeed  is  evident  geometrically,  since  parallel  lines  may  be  considered  aa 

passing  through  the  same  point  at  infinity. 
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137.  One  of  the  most  important  questions  we  can  ask,  con- 
cerning the  form  of  the  curve  represented  by  any  equation,  is, 

whether  it  be  limited  in  every  direction,  or  whether  it  extend  in 
any  direction  to  infinity.  We  have  seen,  in  the  case  of  the  circle, 
that  an  equation  of  the  second  degree  may  represent  a  limited 
curve,  while  the  case  where  it  represents  right  lines  shows  us 
that  it  may  also  represent  loci  extending  to  infinity.  It  is 
necessary,  therefore,  to  find  a  test  whereby  we  may  distinguish 
which  class  of  locus  is  represented  by  any  particular  equation 
of  the  second  degree. 

With  such  a  test  we  are  furnished  by  the  last  article.  For 
if  the  curve  be  limited  in  every  direction,  no  radius  vector  drawn 
from  the  origin  to  the  curve  can  have  an  infinite  value ;  but  we 
found  in  the  last  article  that  when  the  radius  vector  becomes 

infinite,  we  have  a  -I-  2h  tan  6  +  b  tana#  =  0. 

(1)  If  now  we  suppose  h*  —  ab  to  be  negative,  the  roots  of 
this  equation  will  be  imaginary,  and 
no  real  value  of  6  can  be  found  which 
will  render 

a  cos*0  +  2h  cos  6  sin  6  +  b  sin*0  =  0. 
In  this  case,  therefore,  no  real  line 
can  be  drawn  to  meet  the  curve  at 

infinity,  and  the  curve  will  be  limited 
in  every  direction.  We  shall  show,  in  the  next  chapter,  that 
its  form  is  that  represented  in  the  figure.  A  curve  of  this  class 
is  called  an  Ellipse. 

(2)  If  h*-ab  be  positive,  the  roots  of  the  equation -^  •»     .  s\     .     i     i          M  /I  ^\ 

will  be  real;    consequently   there       \  \     /Y 
are  two  real  values  of  6  which  will 
render  infinite  the  radius  vector  to 

the  curve.     Hence,  two  real  lines 

(ax*  +  2hxy  +  by*  =  0)  can,  in  this 
case,  be  drawn  through  the  origin 
to  meet  the  curve  at  infinity.     A 
curve   of    this   class    is    called    a 

Hyperbola,  and  we  shall  show  in  the  next  chapter  that  its  form 
is  that  represented  in  the  figure. 
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(3)   If  A2  -  db  =  0,  the  roots  of  the  equation 

a  +  2h  tan  0  +  b  tan20  =  0 

will  then  be  equal,  and,  therefore, 
the  two  directions  in  which  a  right 
line  can  be  drawn  to  meet  the 

curve  at  infinity  will  in  this  case 
coincide.  A  curve  of  this  class  is 

called  a  Parabola,  and  we  shall 

(Chap.  XII.)  show  that  its  form  is    ''  I 
that  here  represented.     The  condition  here  found  may  be  other- 

wise expressed,  by  saying  that  the  curve  is  a  parabola  when 
the  first  three  terms  of  the  equation  form  a  perfect  square. 

138.  We  find  it  convenient  to  postpone  the  deducing  the 

figure  of  the  curve  from  the  equation  until  we  have  first,  by 

transformation  of  coordinates,  reduced  the  equation  to  its 

simplest  form.  The  general  truth,  however,  of  the  statements 

in  the  preceding  article  may  be  seen  if  we  attempt  to  construct 

the  figure  represented  by  the  equation  in  the  manner  explained 

(Art.  16).  Solving  for  y  in  terms  of  ic,  we  find  (Art.  76) 

by  =  -  (hx  +/)  ±  V{(^  -  ab}  x*  +  2  (hf-  bg)  x  4  (/'  -  be)}. 
Now,  since  by  the  theory  of  quadratic  equations,  any  quantity 

of  the  form  x*  -f  px  +  q  is  equivalent  to  the  product  of  two  real 
or  imaginary  factors  (x  —  a)  (a:  —  $),  the  quantity  under  the 

radical  may  be  written  (h*  —  ab)  (x  —  a.)  (x  —  f3).  If  then  Ji*  —  ab 
be  negative,  the  quantity  under  the  radical  is  negative  (and 

therefore  y  imaginary),  when  the  factors  x  —  a,  x  —  /3  are  either 
both  positive  or  both  negative.  Real  values  for  y  are  only 
found  when  x  is  intermediate  between  a  and  /3,  and  therefore 

the  curve  only  exists  in  the  space  included  between  the  lines 

x  =  a,  x  =  fi  (see  Ex.  3,  p.  13).  The  case  is  the  reverse  when 

h*  -  ab  is  positive.  Then  we  get  real  values  of  y  for  any  values 
of  ic,  which  make  the  factors  x—a,x  —  fi  either  both  positive 
or  both  negative;  but  not  so  if  one  is  positive  and  the  other 

negative.  The  curve  then  consists  of  two  branches  stretching 
to  infinity  both  in  the  positive  and  in  the  negative  direction,  but 

separated  by  an  interval  included  by  the  lines  a:  =  a,  #  =  /£?,  in 

which  no  part  of  the  curve  is  found.  If  h*  —  ab  vanishes,  the 
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quantity  under  the  radical  is  of  the  form  either  a:— a  or  a  — a?. 

In  the  one  case  we  have  real  values  of  y,  provided  only  that  x 

is  greater  than  a;  in  the  other,  provided  only  that  it  is  less. 

The  curve,  therefore,  consists  of  a  single  branch  stretching  to 

infinity  either  on  the  right  or  the  left-hand  side  of  the  line  x  =  a. 
If  the  roots  a  and  ft  be  imaginary,  the  quantity  under  the 

radical  may  be  thrown  into  the  form  (h*  -  ab)  {(x  —  y)*  -f  S2[. 

If  then  h*  —  db  is  positive,  the  quantity  under  the  radical  is 
always  positive,  and  lines  parallel  to  the  axis  of  y  always  meet 

the  curve.  Thus  in  the  figure  of  the  hyperbola,  Art.  137,  lines 
parallel  to  the  axis  of  y  always  meet  the  curve,  although  lines 

parallel  to  the  axis  of  x  may  not.  On  the  other  hand,  if  W  —  ab 
is  negative,  the  quantity  under  the  radical  is  always  negative, 

and  no  real  figure  is  represented  by  the  equation. 

Ex.  1.  Construct,  as  in  Art.  16,  the  figures  of  the  following  curves,  and  determine 
their  species : 

Sx*  +  key  +  y*  -  Bx  -  2y  +  21  =  0.        Ans.  Hyperbola. 

5a?  +  4xy  +  y»  -  5x  -  1y  -  19  =  0.        Ans.  Ellipse. 

4z2  +  4xy  +  y*  —  5x  —  2y  -  10  =r  0.        Ans.  Parabola. 

Ex.  2.  The  circle  is  a  particular  case  of  the  ellipse.  For  in  the  most  general  form 

of  the  equation  of  the  circle,  a  =  b,  h  =  a  cos  ta  (Art.  81) ;  and  therefore  A2  —  ab  is 
negative,  being  =  —  a?  sin'ta. 

Ex.  3.  What  is  the  species  of  the  curve  when  h  =  0  ?  Ant.  An  ellipse  when  a  and 
b  have  the  same  sign,  and  a  hyperbola  when  they  have  opposite  signs 

Ex.  4.  If  either  a  or  b  =  0,  what  ia  the  species  ?  Ans.  A  parabola  if  also  h  =  0 ; 
otherwise  a  hyperbola.  When  a  =  0  the  axis  of  x  meets  the  curve  at  infinity ;  and 
when  b  =  0,  the  axis  of  y. 

Ex.  5.   What  is  represented  by 

»2     2a7/  ,  .V*     2*      2y        _ 
~~n   T   T~T5  —   —   ?•  T  1  —  Vf 
a2      ab       b2      a        b 

Ans.  A  parabola  touching  the  axes  at  the  points  x  =  a,  y  -  b. 

139.  If  in  a  quadratic  Ax*  +  2Bx  -f  0=0,  the  coefficient  B 
vanishes,  the  roots  are  equal  with  opposite  signs.  This  then 
will  be  the  case  with  the  equation 

(a  cos'0  +  2&  cos  6  sin  d  +  b  sin*0)  pf  +  2  (g  cos  0  +/sin  6}  p  +  c  =  0, 

if  the  radius  vector  be  drawn  in  the  direction  determined  by 

the  equation  g  cos  6  -f  f  sin  6  —  0. 
The  points  answering  to  the  equal  and  opposite  values  of  p 

are  equidistant  from  the  origin,  and  on  opposite  sides  of  it; 
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therefore  the  chord  represented  by  the  equation  gx  +fy  =  0  is 
bisected  at  the  origin. 

Hence,  through  any  given  point  can  in  general  be  drawn  one 
chord  which  will  be  bisected  at  that  point. 

140.  There  is  one  case,  however,  where  more  chords  than  one 

can  be  drawn  ;  so  as  to  be  bisected,  through  a  given  point. 

If,  in  the  general  equation,  we  had  .<7  =  0,  f=0,  then  the 
quantity  g  cos  0  +f  sin  6  would  be  =0,  whatever  were  the  value 

of  6;  and  we  see,  as  in  the  last  article,  that  in  this  case  every 

chord  drawn  through  the  origin  would  be  bisected.  The  origin 
would  then  be  called  the  centre  of  the  curve.  Now,  we  can  in 

general,  by  transforming  the  equation  to  a  new  origin,  cause 

the  coefficients  g  and  f  to  vanish.  Thus  equating  to  nothing 
the  values  given  (Art.  134)  for  the  new  g  and/,  we  find  that 
the  coordinates  of  the  new  origin  must  fulfil  the  conditions 

These  two  equations  are  sufficient  to  determine  x'  and  y',  and 
being  linear,  can  be  satisfied  by  only  one  value  of  x  and  y  • 
hence,  conic  sections  have  in  general  one  and  only  one  centre.  Its 

coordinates  are  found,  by  solving  the  above  equations,  to  be 

In  the  ellipse  and  hyperbola  ab-  h2  is  always  finite  (Art.  137); 
but  in  the  parabola  ab  -  h*  =  0,  and  the  coordinates  of  the  centre 
become  infinite.  The  ellipse  and  hyperbola  are  hence  often 
classed  together  as  central  curves,  while  the  parabola  is  called 

a  non-central  curve.  Strictly  speaking,  however,  every  curve 
of  the  second  degree  has  a  centre,  although  in  the  case  of 
the  parabola  this  centre  is  situated  at  an  infinite  distance. 

141.  To  find  the  locus  of  the  middle  points  of  chords,  parallel 
to  a  given  line,  of  a  curve  of  the  second  degree. 

We  saw  (Art.  139)  that  a  chord  through  the  origin  is  bisected 

if  g  cos  <9-f/sin  6  =  0.  Now,  transforming  the  origin  to  any 

point,  it  appears,  in  like  manner,  that  a  parallel  chord  will  be 
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bisected  at  the  new  origin  if  the  new  g  multiplied  by  cos#-r  the 
new  f  multiplied  by  sin  0  =  0,  or  (Art.  134) 

cos0(az'  +  hy  -f  g)  +  sin0  (hx  +  by'+f)  =  Q. 

This,  therefore,  is  a  relation  which  must  be  satisfied  by  the  co- 
ordinates of  the  new  origin,  if  it  be  the  middle  point  of  a  chord 

making  with  the  axis  of  x  the  angle  6.  Hence  the  middle  point 

of  any  parallel  chord  must  lie  on  the  right  line 

cos0  (ax  +  hy+g)  +  sin 6  (hx  +  by  +/)  =  0, 

which  is,  therefore,  the  required  locus. 

Every  right  line  bisecting  a  system  of  parallel  chords  is  called 
a  diameter,  and  the  lines  which  it  bisects  are  called  its  ordinates. 

The  form  of  the  equation  shows  (Art.  40)  that  every  diameter 

must  pass  through  the  intersection  of 
the  two  lines 

but,    these   being   the    equations    by 
which  we  determined  the  coordinates 

of  the  centre  (Art.  140),  we  infer  that        / 

every  diameter  passes  through  the  centre  of  the  curve. 
It  appears  by  making  6 

alternately  =0,  and  =90°  in 
the  above  equation,  that 

ax  +  hy  +  g  —  0 

is  the  equation  of  the  diameter 

bisecting  chords  parallel  to  the 

axis  of  x,  and  that 

hx  +  by  +/=  0 

is  the  equation  of  the  diameter  bisecting  chords  parallel  to  the 

axis  of  y.* 

In  the   parabola   h*  =  ab,  or   j 

h         A 

,   and 

hence    the    line 

*  The  equation  (Art.  138)  which  is  of  the  form  by  =  -  (hx  +/)  ±  R  is  most  easily 
constructed  by  first  laying  down  the  line  hx  +  by  +/,  and  then  taking  on  each  ordi- 

nate  MP  of  that  line  portions  PQ,  PQ',  above  and  below  P  and  equal  to  R.  Thus 
also  it  appears  that  each  ordinate  is  bisected  by  hx  +  by  +  /. 
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ax  +  hy  +g  is  parallel  to  the  line 

hx  +  by+f;  consequently,  all  dia- 
meters of  a  parabola  are  parallel 

to  each  other.  This,  indeed,  is 

evident,  since  we  have  proved 
that  all  diameters  of  any  conic 

section  must  pass  through  the 

centre,  which,  in  the  case  of  the 

parabola,  is  at  an  infinite  distance,  / 

and  since  parallel  right  lines  may  be  considered  as  meeting  in 

a  point  at  infinity.* 
The  familiar  example  of  the  circle  will  sufficiently  illustrate  to 

the  beginner  the  nature  of  the  diameters  of  curves  of  the  second 

degree.  He  must  observe,  however,  that  diameters  do  not  in 

general,  as  in  the  case  of  the  circle,  cut  their  ordinates  at  right 

angles.  In  the  parabola,  for  instance,  the  direction  of  the  dia- 
meter being  invariable,  while  that  of  the  ordinates  may  be  any 

whatever,  the  angle  between  them  may  take  any  possible  value. 

142.  The  direction  of  the  diameters  of  a  parabola  is  the  same 

as  that  of  the  line  through  the  origin  which  meets  the  curve  at  an 

infinite  distance. 

For  the  lines  through  the  origin  which  meet  the  curve  at  in- 
finity are  (Art.  136) 

ax9  +  2hxy  +  by*  =  0, 

or,  writing  for  h  its  value 

But  the  diameters  are  parallel  to  ax  +  hy  =  0  (by  the  last  article), 
which,  if  we  write  for  h  the  same  value  \/(al)),  will  also  reduce  to 

V(«)a4  V(%  =  0. 

Hence,  every  diameter  of  the  parabola  meets  the  curve  once  at 

infinity,  and,  therefore,  can  only  meet  it  in  one  finite  point. 

*  Hence,  a  portion  of  any  conic  section  being  drawn  on  paper,  we  can  find  its 
centre  and  determine  its  species.  For  if  we  draw  any  two  parallel  chords,  and  join 

their  middle  points,  we  have  one  diameter.  In  like  manner  we  can  find  another  dia- 
meter. Then,  if  these  two  diameters  be  parallel,  the  curve  is  a  parabola ;  but  if  not,  the 

point  of  intersection  is  the  centre.  It  will  be  on  the  concave  side  when  the  curve  is  an 

ellipse,  and  on  the  convex  when  it  is  a  hyperbola. 

U 
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143.  If  two  diameters  of  a  conic  section  be  such  that  one  of 

them  bisects  all  chords  parallel  to  the  other,  then,  conversely,  the 

second  will  bisect  all  chords  parallel  to  the  first. 

The  equation  of  the  diameter  which  bisects  chords  making 

an  angle  6  with  the  axis  of  x  is  (Art.  141) 

(ax  +  hy  +  g)  +  (hx  +  by  +/)  tan  6  =  0. 

But  (Art.  21)  the  angle  which  this  line  makes  with  the  axis  is  & 
where 

a,         a  +  h  tan  0 tan  u  =  —  -j   =   7? , 

h  -f  b  tan  d  ' 

whence          b  tan  6  tan  Of  +  h  (tan  d  +  tan  0')  -I-  a  =  0. 
And  the  symmetry  of  the  equation  shows  that  the  chords  making 

an  angle  &  are  also  bisected  by  a  diameter  making  an  angle  6. 

Diameters  so  related,  that  each  bisects  every  chord  parallel 

to  the  other,  are  called  conjugate  diameters.* 
If  in  the  general  equation  h  =  0,  the  axes  will  be  parallel  to 

a  pair  of  conjugate  diameters.  For  the  diameter  bisecting  chords 

parallel  to  the  axis  of  x  will,  in  this  case,  become  ax+g  —  Q, 
and  will,  therefore,  be  parallel  to  the  axis  of  y.  In  like  manner, 

the  diameter  bisecting  chords  parallel  to  the  axis  of  y  will,  in 

this  case,  be  by  +/=  0,  and  will,  therefore,  be  parallel  to  the 
axis  of  x. 

144.  If  in  the  general  equation  c=0,  the  origin  is  on  the  curve 
(Art.  81) ;  and  accordingly  one  of  the  roots  of  the  quadratic 

(a  cos*0  +  2 h  cos  6  sin  6  +  b  sina0)  p*  +  2(g  cos  0  -f /sin  0)p  =  0 

is  always  p  =  0.  The  second  root  will  be  also  p  =  0,  or  the 
radius  vector  will  meet  the  curve  at  the  origin  in  two  coincident 

points,  if  #  cos  0+/ sin  0  =  0.  Multiplying  this  equation  by  p, 
we  have  the  equation  of  the  tangent  at  the  origin,  viz.  gx+fy =0.f 
The  equation  of  the  tangent  at  any  other  point  on  the  curve 

may  be  found  by  first  transforming  the  equation  to  that  point 
as  origin,  and  when  the  equation  of  the  tangent  has  been  then 

found,  transforming  it  back  to  the  original  axes. 

*  It  is  evident  that  none  but  central  curves  can  have  conjugate  diameters,  since  in 
the  parabola  the  direction  of  all  diameters  is  the  same. 

t  The  same  argument  proves  that  in  an  equation  of  any  degree  when  the  absolute 
term  vanishes  the  origin  is  on  the  curve,  and  that  then  the  terms  of  the  first  degree 
represent  the  tangent  at  the  origin. 
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Ex.  The  point  (1,  1)  is  on  the  curve 

3a;2  -  4xy  +  If  +  7x  -  5y  -  3  =  0  ; 

sransform  the  equation  to  parallel  axes  through  that  point  and  find  che  tangent  at  ii. 

Ans.  9x  —  5y  =  Q  referred  to  the  new  axes,  or  9  (a;  —  1)  =  5  (y  —  1)  referred  to 
the  old. 

If  this  method  is  applied  to  the  general  equntion,  we  get  for 

the  tangent  at  any  point  x'y  the  same  equation  as  that  found 
by  a  different  method  (Art.  86),  viz. 

ax'x  +  h  (x'y  +  y'x]  +  by'y  +g(x  +  x'}  +f(y  -f  y')  +  c  =  0. 

145.  It  was  proved  (Art.  89)  that  if  it  be  required  to  draw 

a  tangent  to  the  curve  from  any  point  xy',  not  supposed  to  be 
on  the  curve,  the  points  of  contact  are  the  intersections  with 

the  curve  of  a  right  line  whose  equation  is  identical  in  form 

with  that  last  written,  and  which  is  called  the  polar  of  x'y. 
Consequently,  since  every  right  line  meets  the  curve  in  two 

points,  through  any  point  x'y  there  can  be  drawn  two  real,  coin- 
cident^ or  imaginary  tangents  to  the  curve.* 

It  was  also  proved  (Art.  89)  that  the  polar  of  the  origin  is 

gx  +fy  4  c  =  0.  Now  this  line  is  evidently  parallel  to  the  chord 
gx+fy,  which  (Art.  139)  is  drawn  through  the  origin  so  as  to 

be  bisected.  But  this  last  is  plainly  an  ordinate  of  the  diameter 

passing  through  the  origin.  Hence,  the  polar  of  any  point  is 

parallel  to  the  ordinates  of  the  diameter  passing  through  that  point. 

This  includes  as  a  particular  case :  The  tangent  at  the  extremity 

of  any  diameter  is  parallel  to  the  ordinates  of  that  diameter.  Or 

again,  in  the  case  of  central  curves,  since  the  ordinates  of  any 

diameter  are  parallel  to  the  conjugate  diameter,  we  infer  that 

the  polar  of  any  point  on  a  diameter  of  a  central  curve  is  parallel 

to  the  conjugate  diameter. 

146.  The  principal  properties  of  poles  and  polars  have  been 

proved  by  anticipation  in  former  chapters.  Thus  it  was  proved 

(Art.  98)  that  if  a  point  A  lie  on  the  polar  of  B,  then  B  lies  on 

the  polar  of  A.  This  may  be  otherwise  stated :  If  a  point  move 

along  a  fixed  line  [the  polar  of  B]  its  polar  passes  through  a 

fixed  point  [B]  ;  or,  conversely,  If  a  line  [the  polar  of  A]  pass 

*  A  curve  is  said  to  be  of  the  »th  class  when  through  any  point  n  tangents  can  be 
drawn  to  the  curve.  A  conic  is,  therefore,  a  curve  of  the  second  degree  and  of  the 

second  class  j  but  in  higher  curves  the  degree  and  class  of  a  curve  are  commonly  not 
the  same. 
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through  a  fixed  point,  then  the  locus  of  its  pole  \  A]  is  a  fixed 
right  line.  Or,  again,  The  intersection  of  any  two  lines  is  the 

pole  of  the  line  joining  their  poles;  and,  conversely,  The  line 

joining  any  two  points  is  the  polar  of  the  intersections  of  the  polar s 

of  these  points.  For  if  we  take  any  two  points  on  the  polar 

of  A,  the  polars  of  these  points  intersect  in  A. 

It  was  proved  (Art.  100)  that  if  two  lines  be  drawn  through 

any  point,  and  the  points  joined  where  they  meet  the  curve,  the 

joining  lines  will  intersect  on  the  polar  of  that  point.  Let  the 

two  lines  coincide,  and  we  derive,  as  a  particular  case  of  this, 

If  through  a  point  0  any  line  OR  be  drawn,  the  tangents  at  R' 

and  R'  meet  on  the  polar  of  0  ;  a  property  which  might  also  be 

inferred  from  the  last  paragraph.  For  since  R'R",  the  polar  of 
P,  passes  through  0,  P  must  lie  on  the  polar  of  0. 

And  it  was  also  proved  (Ex.  3,  p.  96),  that  if  on  any  radius 
vector   through   the   origin,    OR  be 
taken  a  harmonic  mean  between  ORf 

and  OR",  the  locus  of  R  is  the  polar 
of  the    origin ;    and    therefore   that, 

any   line  drawn  through  a  point  is 

cut    harmonically    by    the  point,   the 

curve,  and  the  polar  of  the  point;  as   o/- 
was  also  proved  otherwise  (Art.  91). 

Lastly,  we  infer  that  if  any  line 

OR  be  drawn  through  a  point  0,  and 

P  the  pole  of  that  line  be  joined  to  0,  then  the  lines  OP,  OR 

will  form  a  harmonic  pencil  with  the  tangents  from  0.  For 

since  OR  is  the  polar  of  P,  PTRTf  is  cut  harmonically,  and 

therefore  OP,  OT,  OR,  OT'  form  a  harmonic  pencil. 
Ex.  L  If  a  quadrilateral  ABCD  be  inscribed  in  a  conic  section,  any  of  the  points 

li E,  F,  0  is  the  pole  of  the  line  joining  the  other 
two. 

Since  EC,  ED  are  two  lines  drawn  through 

the  point  E,  and  CD,  AB,  one  pair  of  lines  join- 
ing the  points  where  they  meet  the  conic,  these 

lines  must  intersect  on  the  polar  of  E ;  so  must 
also  AD  and  CB;  therefore  the  line  OF  in  the 
polar  of  E.  In  like  manner  it  can  be  proved  that 
EF  is  the  polar  of  0  and  EO  the  polar  of  F. 

Ex.  2.  To  draw  a  tangent  to  a  given  conic     -^  A* 
section  from  a  point  outside,  with  the  help  of  the  ruler  only. 

Draw  any  two  lines  through  the  given  point  E,  and  complete  the  quadrilateral 
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in  the  figure,  then  the  line  OF  will  meet  the  conic  in  two  points,  which,  being  joined 
to  E,  will  give  the  two  tangents  required. 

Ex.  3.  If  a  quadrilateral  be  circumscribed  about  a  conic  section,  any  diagonal  ia 
the  polar  of  the  intersection  of  the  other  two. 

We  shall  prove  this  Example,  as  we  might  have  proved  Ex.  1,  by  means  of  the 

harmonic  properties  of  a  quadrilateral.  It  was  proved  (Ex.  1,  p.  57)  that  EAt  EO, 
EB,  EF  are  a  harmonic  pencil.  Hence,  since  EA,  EB  are,  by  hypothesis,  two 

tangents  to  a  conic  section,  and  EF  a  line  through  their  point  of  intersection,  by 
Art.  146,  EO  must  pass  through  the  pole  of  EF;  for  the  same  reason,  F  0  must  pass 
through  the  pole  of  EF;  this  pole  must,  therefore,  be  0. 

147.   We  have  proved  (Art.  92)  that  the  equation  of  the  pair 
of  tangents  to  the  curve  from  any  point  xy  is 

(ao;/a+  2hxy+l}yz+  *2gx'+  2fy'+  c)(ax*+  2hxy  +  by*+  2gx+2fy+c) 

=  {ax'x  +  h  (x'y  +  y'x)  +  ly'y  +  g(x'  +  x)  +/(/  +  y)  4  c}\ 
The  equation  of  the  pair  of  tangents  through  the  origin  may  be 

derived  from  this  by  making  x'=yf=to  ;  or  it  may  be  got  directly 
by  the  same  process  as  that  used  Ex.  4,  p.  78.  If  a  radius 

vector  through  the  origin  touch  the  curve,  the  two  values  of  p 

must  be  equal,  which  are  given  by  the  equation 

(a  cos"  6  +  2h  cos  0  sin  0  +  b  sin2  6)  p*  +  2(g  cos  6  +/sin  6}  p  +  c  =  0. 
Now  this  equation  will  have  equal  roots  if  6  satisfy  the  equation 

(a  cos20  +  2h  cos  0  sin  d  +  b  siu'0)  c  =  (#  cos  0  +/sin  6}*. 

Multiplying  by  /oa  we  get  the  equation  of  the  two  tangents,  viz. 

This  equation  again  will  have  equal  roots  ;  that  is  to  say,  the 

two  tangents  will  coincide  if 

(ac-g'}(lc-f*)  =  (ch-fg}*, 

or  c  (ale  +  2fgh  -  af  -  If  -  ctf)  =  0. 

This  will  be  satisfied  if  c  =  0,  that  is  if  the  origin  be  on  the 

curve.  Hence,  any  point  on  the  curve  may  be  considered  as  the 

intersection  of  two  coincident  tangents,  just  as  any  tangent  may 

be  considered  as  the  line  joining  two  consecutive  points. 

The  equation  will  have  also  equal  roots  if 

abc  +  2fgh  -  af  -  If  -  cW  =  0. 

Now  we  obtained  this  equation  (p.  72)  as  the  condition  that  the 

equation  of  the  second  degree  should  represent  two  right  lines. 

To  explain  why  we  should  here  meet  with  this  equation  again, 
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it  must  be  remarked  that  by  a  tangent  we  mean  in  general  a  line 

which  meets  the  curve  in  two  coincident  points;  if  then  the 

curve  reduce  to  two  right  lines,  the  only  line  which  can  meet 

the  locus  in  two  coincident  points  is  the  line  drawn  to  the  point 

of  intersection  of  these  right  lines,  and  since  two  tangents  can 

always  be  drawn  to  a  curve  of  the  second  degree,  both  tangents 

must  in  this  case  coincide  with  the  line  to  the  point  of  inter- 
section. 

148.    If  through  any  point  0  two  chords  be  drawn,  meeting  the 

curve  in  the  points  R,  R",  /S",  $",  then  the  ratio  of  the  rectangles 

n/— >)  o//  will  be  constant,  whatever  be  the  position  of  the  point  0, 

provided  that  the  directions  of  the  lines   OR,  OS  be  constant. 

For,  from  the  equation  given  to  determine  p  in  Art.  136,  it 

appears  that 

OR.  OR'  =  acos*042Acos0siii0  +  &sin'{0  ' In  like  manner 
c 

08.0&'- 
n 

hence 

a  cosa#'  +  2h  cos  ff  sin(T  +  b  sinV ' 

OR^OR'  _  a  cosV  +  2h  cos  ff  sin  ff  +  &  sin2^ 

(9^.  6>£"  ~ But  this  is  a  constant  ratio;  for  «,  h,  b  remain  unaltered 

when  the  equation  is  transformed  to  parallel  axes  through  any 

new  origin  (Art.  134),  and  6,  6'  are  evidently  constant  while  the 
direction  of  the  radii  vectores  is  constant. 

The  theorem  of  this  Article  may  be  otherwise  stated  thus: 

If  through  two  fixed  points  0  and  0'  any  two  parallel  lines  OR 

f\f>f  (~)T}ff and  Ofp  be  drawn,  then  the  ratio  of  the  rectangles  ~,  /  ,-,  u  will 

be  constant,  whatever  be  the  direction  of  these  lines. 

For  these  rectangles  are 

  c   ^   
a  cos80  +  2h  cos  6  sin  6  +  b  sin20 '  a  cos*0  +  2^  cos  6  sin  6  +  b  sin"0 
(c  being  the  new  absolute  term  when  the  equation  is  transferred 

to  0'  as  origin) ;  the  ratio  of  these  rectangles  =-  ,  and  is,  there- c 

fore,  independent  of  6. 

This  theorem  is  the  generalization  of  Euclid  III.  35,  36. 
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149.    The  theorem  of  the  last  Article  includes  under  it  several 

particular  cases,  which  it  is  useful  to  notice  separately. 

I.  Let  0'  be  the  centre  of  the  curve,  then  O'p' '  =  O'p"  and 
the  quantity  O'p'.  O'p"  becomes  the  square  of  the  semi-diameter 

parallel  to  OR'.      Hence,   The  rectangles  under  the  segments  of 
two  chords  which  intersect  are  to  each  other  as  the  squares  of  the 

diameters  parallel  to  those  chords. 

II.  Let  the  line  OR  be  a  tangent,  then  OR  =  OR",  and  the 

quantity   OR'. OR"  becomes  the  square  of  the  tangent;    and, 
since  two  tangents  can  be  drawn  through  the  point  0,  we  may 

extract  the  square  root  of  the  ratio  found  in  the  last  paragraph, 

and  infer  that  Two  tangents  drawn  through  any  point  are  to  each 
other  as  the  diameters  to  which  they  are  parallel. 

III.  Let  the  line  00'  be  a  diameter,  and  OR,  O'p  parallel  to 

its  ordinates,  then  OR'=OR"  and  O'p'=  O'p".    Let  the  diameter 
()  7?2  CY  2 

meet  the  curve  in  the  points  A^  B,  then  =  -     ,  ^n,    . A  (J.  \J JD         A  C/  .  C/  JL> 

Hence,  The  squares  of  the  ordinates  of  any  diameter  are  propor- 
tional to  the  rectangles  under  the  segments  which  they  make  on  the 

diameter. 

150.  There  is  one  case  in  which  the  theorem  of  Article  148 

becomes  no  longer  applicable,  namely,  when  the  line  OS  is 

parallel  to  one  of  the  lines  which  meet  the  curve  at  infinity;  the 

segment  08"  is  then  infinite,  and  OS  only  meets  the  curve  in 
one  finite  point.  We  propose,  in  the  present  Article,  to  inquire 

()  Sf' 

whethe
r,  

in  this  case,  the  ratio  ~f\jy~Q
-pff  

w^  be  constan
t. 

Let  us,  for  simplicity,  take  the  line  OS  for  our  axis  of  x,  and 

OR  for  the  axis  of  y.  Since  the  axis  of  x  is  parallel  to  one  of 

the  lines  which  meet  the  curve  at  infinity,  the  coefficient  a  will  =  0 

(Art.  138,  Ex.  4),  and  the  equation  of  the  curve  will  be  of  the  form 

2hxy  +  ly*  +  2gx  +  2fy  +  c  =  Q. 
Making  y  =  0,  the  intercept  on  the  axis  of  x  is  found  to  be 

08=.  -  t— ;  and,  making  x  =  0,  the  rectangle  under  the  inter- 
x» 

cepts  on  the  axis  of  y  is  =  7  . 
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0&         b 

m^~R'  =  -Tg' 
Now,  if  we  transform  the  axes  to  parallel  axes  through  any  point 

x'y   (Art.  134),  b  will  remain  unaltered,  and  the  new  g=*hy'+gi Hence  the  new  ratio  will  be 

2  (%'+.?)' 
Now,  if  the  curve  be  a  parabola,  h  =  0,  and  this  ratio  is  con- 

stant; hence,  If  a  line  parallel  to  a  given  one  meet  any  diameter 

(Art.  142)  of  a  parabola,  the  rectangle  under  its  segments  is  in  a 

constant  ratio  to  the  intercept  on  the  diameter. 

If  the  curve  be  a  hyperbola,  the  ratio  will  only  be  constant 

while  yf  is  constant  ;  hence,  The  intercepts  made  by  two  parallel 
chords  of  a  hyperbola,  on  a  given  line  meeting  the  curve  at  infinity, 

are  proportional  to  the  rectangles  under  the  segments  of  the  chords. 

*151.  To  find  the  condition  that  the  line  \x  +  /j,y  +  v  may 
touch  the  conic  represented  by  the  general  equation.  Solving  for  y 

from  \x  H-  py  +  v  =  0,  and  substituting  in  the  equation  of  the 
conic,  the  abscissae  of  the  intersections  of  the  line  and  curve  are 

determined  by  the  equation 
b\v]  x 

The  line  will  touch  when  the  quadratic  has  equal  roots,  or  when 

(ajj,2  -  2h\p  +  b\'2)  (ctf  -  2ffjiv  +  bv*)  =  (gtf  -  hpv  -fy,\  +  b\v)\ 

Multiplying  out,  the  equation  proves  to  be  divisible  by  /u,2,  and 
becomes 

(be  -f)  X  +  (ca  -/)  ̂   +  (ab  -  h2)  v*  +  2  (gh  -  of)  pv 

+  2  (hf-  bg)  v\  +  2(fg-  ch]  \p  =  0. 

We  shall  afterwards  give  other  methods  of  obtaining  this 

equation,  which  may  be  called  the  tangential  equation  of  the 

curve.  We  shall  often  use  abbreviations  for  the  coefficients,  and 
write  the  equation  in  the  form 

A\*  +  Bf  -f  Cv*  +  2Fpv  +  2  Gv\  +  2H\fjL  =  0. 

The  values  of  the  coefficients  will  be  more  easily  remembered  by 
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the  help  of  the  following  rule.  Let  A  denote  the  discriminant 

of  the  equation;  that  is  to  say,  the  function 

ale  +  2fyh  +  af  -  t>f  -  ch\ 

whose  vanishing  is  the  condition  that  the  eouation  may  represent 

right  lines.  Then  A  is  the  derived  function  formed  from  A, 

regarding  a  as  the  variable;  and  B,  C,  2F,  2#,  2H  are  the 

derived  functions  taken  respectively  with  regard  to  6,  c,J^  y,  h. 

The  coordinates  of  the  centre  (given  Art.  140)  may  be  written 
G    F 

C>  0' 
MISCELLANEOUS  EXAMPLES. 

Ex.  1.   Form  the  equation  of  the  conic  making  intercepts  X,  X',  /u,  p.'  on  the  axed. 
Since  if  we  make  y  =  0  or  x  —  0  in  the  equation,  it  must  reduce  to 

a?  -  (\  -I-  V)  x  +  XX'  =  0,    y2  -  (M  +  /*')  y  +  w'  =  Oj 

the  equation  is 

2hxy  +  XX'y»  -  fifi.'  (\  +  V)  x  -  XV  (AI  +  /)  y  +  XX  V  =  0, 

and  h  is  undetermined,  unless  another  condition  be  given.    Thus  two  parabolas  can 
be  drawn  through  the  four  given  points  j  for  in  this  case 

Ex.  2.  Given  four  points  on  a  conic,  the  polar  of  any  fixed  point  passes  through 
a  fixed  point.  We  may  choose  the  axes  so  that  the  given  points  may  lie  two  on  each 
axis,  and  the  equation  of  the  curve  is  that  found  in  Ex.  1.  But  the  equation  of  the 

polar  of  any  point  x'y'  (Art.  145)  involves  the  indeterminate  h  in  the  first  degree, 
and,  therefore,  passes  through  a  fixed  point. 

Ex.  3.  Find  the  locus  of  the  centre  of  a  conic  passing  through  four  fixed  points 
The  centre  of  the  conic  in  Ex.  1  is  given  by  the  equations 

2/z/z'a?  +  2%  -  fin'  (X  +  XO  =  0,    2XX'#  +  2hx  -  XX'  (/*  +  /)  =  0  •, 

whence,  eliminating  the  indeterminate  h,  the  locus  is 

2/z/a;2  -  2XXy  -  u/z'  (X  +  X')  x  +  XX'  (ju  +  jt')  y  =  0, 

a  conic  passing  through  the  intersections  of  each  of  the  three  pairs  of  lines  which 
can  be  drawn  through  the  four  points,  and  through  the  middle  points  of  these  lines. 

The  locus  will  be  a  hyperbola  when  X,  X'  and  /z,  /*'  have  either  both  like  or  both 
unlike  signs  ;  and  an  ellipse  in  the  contrary  case.  Thus  it  will  be  an  ellipse  when  the 
two  points  on  one  axis  lie  on  the  same  side  of  the  origin,  and  on  the  other  axis  on 

opposite  sides;  in  other  words,  when  the  quadrilateral  formed  by  the  four  given 
points  has  a  re-entrant  angle.  This  is  also  geometrically  evident  ;  for  a  quadrilateral 
with  a  re-entrant  angle  evidently  cannot  be  inscribed  in  a  figure  of  the  shape  of  the 

ellipse  or  parabola.  The  circum  scribing  conic  must,  therefore,  always  be  a  hyperbola, 

so  that  some  vertices  may  lie  in  opposite  branches.  And  since  the  centre  of  a  hyper- 
bola is  never  at  infinity,  the  locus  of  centres  is  in  this  case  an  ellipse.  In  the  other 

case,  two  positions  of  the  centre  will  be  at  infinity,  corresponding  to  the  two  parabolas 
which  can  be  described  through  the  given  points. 
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CHAPTER    XL 

EQUATIONS  OF  THE  SECOND  DEGREE  REFERRED  TO  THE 
CENTRE   AS  ORIGIN. 

152.  IN  investigating  the  properties  of  the  ellipse  and  hyper- 
bola, we  shall  find  our  equations  much  simplified  by  choosing 

the  centre  for  the  origin  of  coordinates.  If  we  transform  the 

general  equation  of  the  second  degree  to  the  centre  as  origin,  we 

saw  (Art.  140)  that  the  coefficients  of  x  and  y  will  =0  in  the 
transformed  equation,  which  will  be  of  the  form 

ax*  +  2hxy  -f  by9  +  c'  =  0. 

It  is  sometimes  useful  to  know  the  value  of  c'  in  terms  of  the 
coefficients  of  the  first  given  equation.     We  saw  (Art.  134)  that 

where  #',  y  are  the  coordinates  of  the  centre.     The  calculation 

of  this  may  be  facilitated  by  putting  c'  into  the  form 

c'  =  (ax'  +  Tnf  +  g)  xf  +  (hxf  +  by'  +/)  /  +  gx  +  fyf  4  c. 
The  first  two  sets  of  terms  are  rendered  =  0  by  the  coordi- 

nates of  the  centre,  and  the  last  (Art.  140) 

¥^fy  4.  ffy-  af       _  afo  +  tfgh  -  af*  -  fy*  -  ch*  ̂ 
~9  ab-h*  +/  ab-h*^  ab-h* 

153.   If  the  numerator  of  this  fraction  were  =  0,  the  trans- 
formed equation  would  be  reduced  to  the  form 

ax*  -I-  2hzy  +  by*  =  0, 

and  would,  therefore  (Art.  73),  represent  two  real  or  imaginary 

*  Observing  that  when  /  and  g  vanish  the  discriminant  reduces  to  c  (ab  —  A2),  we 
can  see  that  what  has  been  here  proved  shows  that  transformation  to  parallel  axes 
does  not  alter  the  value  of  the  discriminant,  a  particular  case  of  a  theorem  to  be 

proved  afterwards  (Art.  371). 

It  is  evident  in  like  manner  that  the  result  of  substituting  x'y',  the  coordinates 
of  the  centre,  in  the  equation  of  the  polar  of  any  point  x"y",  viz. 

(ax'  +  hy'  +ff)  x"  +  (hx'  +  by'  +/)  y"  +  gx1  +fy'  +  c, 

is  the  same  as  the  result  of  substituting  x'y'  in  the  equation  of  the  curve.     For  the 
first  two  sets  of  terms  vanish  in  both  cases. 
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right  lines,  according  as  ab  —  A'2  is  negative  or  positive.  Hence, 
as  we  have  already  seen,  p.  72,  the  condition  that  the  general 

equation  of  the  second  degree  should  represent  two  right  lines,  is 

a  be  +  '2fyh  -  af  -  bg2  -  ctf  =  0. 
For  it  must  plainly  be  fulfilled,  in  order  that  when  we  transfer 

the  origin  to  the  point  of  intersection  of  the  right  lines,  the 
absolute  term  may  vanish. 

Ex.  ' ,  Transform  3x*  +  4xy  +  y*  —  5x  -  6y  —  3  =  0  to  the  centre  (£,  —  4). 
Ans.   12z2  +  16xy  +  ly*  +  1  =  C 

Ex.  2.     Transform  a:2  +  2xy  -  yz  +  8x  +  4y  -  8  =  0  to  the  centre  (-  3,  -  1). 
Ans.  x*  +  Ixy  -  y*  =  22. 

154.  We  have  seen  (Art.  136)  that  when  6  satisfies  the 
condition 

a  cos*0  +  2h  cos  0  sin  6  +  b  sin20  =  0, 

the  radius  vector  meets  the  curve  at  infinity,  and  also  meets 

the  curve  in  one  other  point,  whose  distance  from  the  origin  is 

c 

g  cos  0+f  sin  0  ' 
But  if  the  origin  be  the  centre,  we  have  g  =  0,  f—  0,  and  this 

distance  will  also  become  infinite.  Hence  two  lines  can  be  drawn 

through  the  centre,  which  will  meet  the  curve  in  two  coincident 

points  at  infinity,  and  which  therefore  may  be  considered  as  tan- 
gents to  the  curve  whose  points  of  contact  are  at  infinity.  These 

lines  are  called  the  asymptotes  of  the  curve ;  they  are  imaginary 

in  the  case  of  the  ellipse,  but  real  in  that  of  the  hyperbola.  We 

shall  show  hereafter,  that  though  the  asymptotes  do  not  meet  the 

curve  at  any  finite  distance,  yet  the  further  they  are  produced 
the  more  nearly  they  approach  the  curve. 

Since  the  points  of  contact  of  the  two  real  or  imaginary  tan- 
gents drawn  through  the  centre  are  at  an  infinite  distance,  the 

line  joining  these  points  of  contact  is  altogether  at  an  infinite 

distance.  Hence,  from  our  definition  of  poles  and  polars  (Art.  89), 

the.  centre  may  be  considered  as  the  pole  of  a  line  situated  altogether 

at  an  infinite  distance.  This  inference  may  be  confirmed  from 

the  equation  of  the  polar  of  the  origin,  gx  +fy  +  c  =  0,  which, 

if  the  centre  be  the  origin,  reduces  to  c  =  0,  an  equation  which 
(Art.  67)  represents  a  line  at  infinity. 
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155.  We  have  seen  that  by  taking  the  centre  for  origin,  the 

coefficients  g  and  /  in  the  general  equation  can  be  made  to 

vanish  ;  but  the  equation  can  be  further  simplified  by  taking  a 

pair  of  conjugate  diameters  for  axes,  since  then  (Art.  143)  h  will 

vanish,  and  the  equation  be  reduced  to  the  form 

ax*  +  by*  +  c  =  0. 

It  is  evident,  now,  that  any  line  parallel  to  either  axis  is  bisected 

by  the  other  ;  for  if  we  give  to  x  any  value,  we  obtain  equal  and 

opposite  values  for  y.  Now  the  angle  between  conjugate  diame- 
ters is  not  in  general  right  ;  but  we  shall  show  that  there  is 

always  one  pair  of  conjugate  diameters  which  cut  each  other  at 
right  angles.  These  diameters  are  called  the  axes  of  the  curves 

and  the  points  where  they  meet  it  are  called  its  vertices. 
We  have  seen  (Art.  143)  that  the  angles  made  with  the  axis 

by  two  conjugate  diameters  are  connected  by  the  relation 

b  tan0  tan  ̂   +  A  (tan  ̂ +  tan0')4  a  =  0. 

But  if  the  diameters  are  at  right  angles,  tan0'  =  —  ;  —  - 

(Art.  25).  Hence 

We  have  thus  a  quadratic  equation  to  determine  0.    Multiply- 

ing by  pa,  and  writing  #,  y,  for  p  cos#,  p  sin0,  we  get 

hxt-(a-b)xy~hyi  =  Q. 
This  is  the  equation  of  two  real  lines  at  right  angles  to  each  other 

(Art.  74)  ;  we  perceive,  therefore,  that  central  curves  have  two, 

and  only  two,  conjugate  diameters  at  right  angles  to  each  other. 

On  referring  to  Art.  75  it  will  be  found  that  the  equation 

which  we  have  just  obtained  for  the  axes  of  the  curve  is  the  same 

a  that  of  the  lines  bisecting  the  internal  and  external  angles 

between  the  real  or  imaginary  lines  represented  by  the  equation 

ax*  +  2hxy  +  by*  =  0. 
The  axes  of  the  curve,  therefore,  are  the  diameters  which  bisect 

the  angles  between  the  asymptotes;  and  (note,  p.  71)  they  will 

be  real  whether  the  asymptotes  be  real  or  imaginary  ;  that  is  to 

say,  whether  the  curve  be  an  ellipse  or  a  hyperbola. 

156.    We  might  have  obtained  the  results  of  the  last  Article 

by  the  .method  of  transformation  of  coordinates,  since  wo  can 
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thus  prove  directly  that  it  is  always  possible  to  transform  the 

equation  to  a  pair  of  rectangular  axes,  such  that  the  coefficient 

of  xy  in  the  transformed  equation  may  vanish.  Let  the  original? 

axes  be  rectangular;  then,  if  we  turn  them  round  through  any 

angle  0,  we  have  (Art.  9)  to  substitute  for  #,  x  cos#—  y  sin#, 
and  for  y,  x  s\n0  +  y  cos#;  the  equation  will  therefore  become 

a(x  co80—y  sin#)2  +  2A(a;  cos0  —  y  sin#)  (x  sm0  +  y  cos0) 

4  "b  (x  sin  6  +  y  cos  6)*  -f  c  =  0 
or,  arranging  the  terms,  we  shall  have 

the  new  a  =  a  cosa  6  +  2h  cos  6  sin  6  4-  b  sin8  6 ; 

the  new  h  =  b  sin  6  cos  6  +  h  (cosa  0  —  sina  6)  —  a  sin  6  cos  6 ; 
the  new  b  —a  sin20-  2 h  cos0  sin0  +  b  cos2 0. 

Now,  if  we  put  the  new  h  =  0,  we  get  the  very  same  equation 
as  in  Art.  155,  to  determine  tan0.     This  equation  gives  us  a 

simple  expression  for  the  angle  made  with  the  given  axes  by 
either  axis  of  the  curve,  namely, 

tan20=— j-. a  —  b 

157.  When  it  is  required  to  transform  a  given  equation  to 

the  form  ax*  +  by*  +  c  =  0,  and  to  calculate  numerically  the  value 
of  the  new  coefficients,  our  work  will  be  much  facilitated  by  the 

following  theorem :  If  we  transform  an  equation  of  the  second 

degree  from  one  set  of  rectangular  axes  to  another,  the  quantities 

a  +  b  and  ab  —  Ji*  will  remain  unaltered. 
The  first  part  is  proved  immediately  by  adding  the  values  of 

the  new  a  and  b  (Art.  156),  when  we  have 

a'  4  b'  =  a  +  b. 

To  prove  the  second  part,  write  the  values  in  the  last  article 

2a  =  a  +  b  +  2h  sin 20  +  (a  -  b)  cos20, 

2b'=a  +  b-2h&\u20-(a-b)  cos20. 

Hence        MV  =  (a  +  b)2  -  $h  sin  20  +  (a  -  b)  cos20}«. 

But  ±h'*  =  {2kcos20-(a-b)  sin20)8;     . 

therefore  4  (ctV  -  h")  =  (a  +  6)2  -  ***  -  (a  -  ̂)2  =  4  (ab  -  h9). 

When,  therefore,  we  want  to  form  the  equation  transformed 

to  the  axes,  we  have  the  new  h  =  0, 



158          CENTRAL   EQUATIONS  OP  THE  SECOND   DEGREE. 

Having,  therefore,  the  sum  and  the  product  of  a  and  &',  we  can 
form  the  quadratic  which  determines  these  quantities. 

Ex.  1.   Find  the  axes  of  the  ellipse  14a:2  —  4xy  +  1  ly2  =  60,  and  transform  the 
equation  to  them. 

The  axes  are  (Art.  155)  4x2  +  Gxy  -  4y*  =  0.  or  (2z  -  y)  (x  +  2y)  =  0. 

We  have  a'  +  b'  —  25  ;  a'b'  =  150  ;  a'  =  10  ;  V  —  15  ;  and  the  transformed  equation 
is  2*2  +  3y2  =  12. 

Ex.  2.  Transform  the  hyperbola  llx2  +  Slxy  -  24y*  =  156  to  the  axes. 

a'  +  b'  =  -  13,    a'b'  =  -  2028  ;    a'  =  39  ;    b'  =  -  52. 

Transformed  equation  is  3x2  —  4y2  =  12. 

Ex.  3.  Transform  ax2  +  2hxy  +  by2  =  c  to  the  axes. 

Ans.   (a  +  b-R)xi  +  (a  +  b  +  R)y'i  =  2c,  where  R2  =  4h*  +  (a  -  6)2. 

*158.  Having  proved  that  the  quantities  a  +  b  and  ab  -  h* 
remain  unaltered  when  we  transform  from  one  rectangular  system 

to  another,  let  us  now  inquire  what  these  quantities  become  if 

we  transform  to  an  oblique  system.  We  may  retain  the  old  axis 

of  x,  and  if  we  take  an  axis  of  y  inclined  to  it  at  an  angle  CD, 

then  (Art.  9)  we  are  to  substitute  x  +  y  cosco  for  x,  and  y  sineo 

for  y.  We  shall  then  have 

a  =  a,   li  —a  cos  CD  +  h  sin  CD, 

V  —  a  cos2  CD  +  2h  cos  CD  sin  CD  +  b  sin*o>. 

Hence,  it  easily  follows 

a'b'-h'* .  »  —  =          ,    —  =-5  -  =      - sin  CD  sin  CD 

If,  then,  we  transform  the  equation  from  one  pair  of  axes  to  any 
..     a  +  b  —  2hcosa>          ab-tf  .  ,        , 

other,  me  Quantities  —     —  r-^—      —  ana  -^—r,  —  remain  unaltered sin  CD  sin  CD 

We  may,  by  the  help  of  this  theorem,  transform  to  the  axes 

an  equation  given  in  oblique  coordinates,  for  we  can  still 

express  the  sum  and  product  of  the  new  a  and  b  in  terms  of 
the  old  coefficients. 

Ex.  1.  If  coso>  =  $,  transform  to  the  axes  10x2  +  Qxy  +  5y2  =  10. 

a  +  b  =  *tf,    ab=  ̂ 3S,    a  =  5,    b  =  «$». 

Ans.  16*2  +  41y2  =  32. 

Ex.  2.  Transform  to  the  axes  x2  -  3xy  +  y*  +  1  =  0,  where  w  =  60°. 

Ans.   x1  -  15y2  =  3. 

Ex.  3.    Transform  ox2  +  2hxy  +  bif  =  o  to  the  axes. 

Ans.  (a  +  b  -  2h  cos  u>  -  R)  x2  +  (a  -4-  b  -  2A  cos  a>  +  R)  y2  =  2c  sin2  w,  where 
R?  =  {2A  -  (a  +  b)  cos  a,}2  +  (a  -  £)2  sin2  w. 
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*159.  We  add  the  demonstration  of  the  theorems  of  the  last 

two  articles  given  by  Professor  Boole  (Cambridge  Math.  Jour.) 

m.  1,  106,  and  New  Series,  VI.  87). 

Let  us  suppose  that  we  are  transforming  an  equation  from 

axes  inclined  at  an  angle  o>,  to  any  other  axes  inclined  at  an 

angle  12  ;  and  that,  on  making  the  substitutions  of  Art.  9,  the 

quantity  ax*  +  2hxy  +  ty*  becomes  a  X*  +  2h'  X  Y+  V  Y*.  Now 
we  know  that  the  effect  of  the  same  substitution  will  be  to  make 

the  quantity  x*  4  2xy  cos  w  +  y*  become  JT2  +  2J£Fcos&  +  Y2, 
since  either  is  the  expression  for  the  square  of  the  distance  of 

any  point  from  the  origin.  It  follows,  then,  that 

ax9    +  %hxy     +  ly*     +  X  (x*  +  2xy  cos  o>    +  y2) 

=  a'Z"  +  2h'XY+  b'Y*  +  \  (X3  +  2  JET  cos!2  +  F2). 

And  if  we  determine  X  so  that  the  first  side  of  the  equation  may 

be  a  perfect  square,  the  second  must  be  a  perfect  square  also. 

But  the  condition  that  the  first  side  may  be  a  perfect  square  is 

(a  +  X)(5  +  X)  =  (A  +  X  cos  w)8, 
or  X  must  be  one  of  the  roots  of  the  equation 

X*  sin2o)  +  (a  +  b  —  2h  coseu)  X  -f  ab  -  h*  =  0. 
We  get  a  quadratic  of  like  form  to  determine  the  value  of  X, 

which  will  make  the  second  side  of  the  equation  a  perfect  square  ; 

but  since  both  sides  become  perfect  squares  for  the  same  values 

of  X,  these  two  quadratics  must  be  identical.  Equating,  then, 

the  coefficients  of  the  corresponding  terms,  we  have,  as  before, 

q'+  y_26'  cosQ     ab  -  ft      a'V-K _ 

sin2ft>  ""sin'fi"        '  "sm^fiT  "    "mtfoT 
Ex.  1.  The  sum  of  the  squares  of  the  reciprocals  of  two  semi-diameters  at  rign,. 

angles  to  each  other  is  constant. 

Let  their  lengths  be  a  and  /3  ;  then  making  alternately  x  =  0,  y  =  0,  in  the  equation 

of  the  curve,  we  have  aa?  =  c,  bfi2  =  c,  and  the  theorem  just  stated  is  only  the 
geometrical  interpretation  of  the  fact  that  a  +  b  is  constant. 

Ex.  2.  The  area  of  the  triangle  formed  by  joining  the  extremities  of  two  conjugate 
semi-diameters  is  constant. 

The  equation  referred  to  two  conjugate  diameters  is  -  „  +  J^r  =  1,  and  since  —  .—-- 
a  *     p*  sin-u) 

is  constant,  we  have  a'/3'  sinw  constant. 

Ex.  8.  The  sum  of  the  squares  of  two  conjugate  semi-diameters  is  constant. 

a  +  b-2hcosu>.  1       (\         1\         a'2  +  /3'2    . Since  -  r-5-       —  is  constant,  -.  --  (  -7.  +  -^  )  =  —rr^r--,    ^  constant  ;  and 
sm2o>  sm2o»  \a2     /32/      a2/32sin2w 

since  u'p'  sin  ta  is  constant,  so  must  a'2  +  #'2. 



160  THE   EQUATION   REFERRED  fo  THE    AXES. 

THE    EQUATION    REFERRED   TO   THE   AXES. 

160    We  saw  that  the  equation  referred  to  the  axes  was  of 
the  form 

B  being  positive  in  the  case  of  the  ellipse,  and  negative  in  that 
of  the  hyperbola  (Art.  138,  Ex.  3).  We  have  replaced  the 
small  letters  by  capitals,  because  we  are  about  to  use  the  letters 
a  and  b  with  a  different  meaning. 

The  equation  of  the  ellipse  may  be  written  in  the  following 
more  convenient  form  : 

Let  the  intercepts  made  by  the  ellipse  on  the  axes  be  #  =  «, 
y  =  &,  then  making  y  =  0  and  x  =  a  in  the  equation  of  the  curve, 

C  C 

we  have  Aa*  =  C,  and  A  =  —  .     In  like  manner  B—  7*  .     Sub- 

stituting these  values,  the  equation  of  the  ellipse  may  be  written 

Since  we  may  choose  whichever  axis  we  please  for  the  axis 
of  x,  we  shall  suppose  that  we  have  chosen  the  axes  so  that  a 
may  be  greater  than  b. 

The  equation  of  the  hyperbola,  which  we  saw  only  differs 

from  that  of  the  ellipse  in  the  sign  of  the  coefficient  of  y2,  may 
be  written  in  the  corresponding  form  : 

The  intercept  on  the  axis  of  a;  is  evidently  =•  +  «,  but  that  on 

the  axis  of  y,  being  found  from  the  equation  yi=—b\  is  imaginary  ; 
the  axis  of  y,  therefore,  does  not  meet  the  curve  in  real  points. 

Since  we  have  chosen  for  our  axis  of  x  the  axis  which  meets 

the  curve  in  real  points,  we  are  not  in  this  case  entitled  to 
assume  that  a  is  greater  than  b. 

161.  To  find  the  polar  equation  of  the  ellipse,  the  centre  being 
the  pole. 

Write  pcostf  for  x:  and  /osin0  for  y  in  the  preceding  equa- 
tion, and  we  get 

1    _  cos*0      sin'  0 
~  ~  ~        ' 



THE   EQUATION   REFERRED  TO    THE   AXES.  161 

an  equation  which  we  may  write  in  any  of  the  equivalent  forms, 

a'b*  _  a*tf  q*y 

P  ~  aVsinV +  V  cos*0  ~  b*  +  (a8  -  ,V)  sin'fl       a*  -  (a*  -  6")  cos20  * 
It  is  customary  to  use  the  following  abbreviations: 

and  the  quantity  e  is  called  the  eccentricity  of  the  curve. 

Dividing  by  a*  the  numerator  and  denominator  of  the  fraction 
last  found,  we  obtain  the  form  most  commonly  used,  viz. 

162.    To  investigate  the  figure  of  the  ellipse. 

The  least  value  that  b*  +  (a2  —  i2)  sin*d,  the  denominator  in 

the  value  of  pa,  can  have,  is  when  9  =  0  ;  therefore  the  greatest 
value  of  p  is  the  intercept  on  the  axis  of  #,  and  is  =  a. 

Again,  the  greatest  value  of  6*  4  (a*  —  J*)  sin*0  is  when 

sin  0  =  1,  or  0  =  90°;  hence,  the  least  value  of  p  is  the  intercept 
on  the  axis  of  y,  and  is  =  b.  The  greatest  line,  therefore,  that 
can  be  drawn  through  the  centre  is  the  axis  of  a?,  and  the  least 

line  the  axis  of  y.  From  this  property  these  lines  are  called 
the  axis  major  and  the  axis  minor  of  the  curve. 

It  is  plain  that  the  smaller  6  is,  the  greater  p  will  be ;   hence, 
the  nearer  any  diameter  is  to  the  axis 

major,  the  greater   it   will   le.     The 

form  of  the  curve  will,  therefore,  be 
that  here  represented. 

We  obtain  the  same  value  of  p 

whether  we  suppose  0  =  a,  or  6  =  -  a. 
Hence,    Two    diameters   which    make 

equal  angles  with  the  axis  will  be  equal.     And  it  is  easy  to  show 
that  the  converse  of  this  theorem  is  also  true. 

This  property  enables  us,  being  given  the  centre  of  a  conic, 

to  determine  its  axes  geometrically.  For,  describe  any  concen- 

tric circle  intersecting  the  conic,  then  the  semi-diameters  drawn 
to  the  points  of  intersection  will  be  equal ;  and  by  the  theorem 

just  proved,  the  axes  of  the  conic  will  be  the  lines  internally 

and  externally  bisecting  the  angle  between  them. 
T 
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163.  The  equation  of  the  ellipse  can  be  put  into  another 

form,  which  will  make  the  figure  of  the  curve  still  more 

apparent.  If  we  solve  for  y  we  get 

a 

Now,  if  we  describe  a  concentric  circle  with  the  radius  a  its 

equation  will  be 

Hence  we  derive  the  following  construction : 

"Describe  a  circle  on  the  axis  major  ̂  and  take  on  each  ordinate 
LQ  a  point  P,  such  that  LP may  be  to 
L  Q  in  the  constant  ratio  b  :  a,  then  the 

locus  of  P  will  be  the  required  ellipse." 
Hence  the  circle  described  on  the 

axis  major  lies  wholly  without  the  curve. 

We  might,  in  like  manner,  construct  the 

ellipse  by  describing  a  circle  on  the  axis 
minor  and  increasing  each  ordinate  in 
the  constant  ratio  a  :  b. 

Hence  the  circle  described  on  the  axis  minor  lies  wholly 
within  the  curve. 

The  equation  of  the  circle  is  the  particular  form  which  the 

equation  of  the  ellipse  assumes  when  we  suppose  b  =•  a. 

164.    To  find  the  polar  equation  of  the  hyperbola. 

Transforming  to  polar  coordinates,  as  in  Art.  161,  we  get 

b*  cos80  -  a*  sm'0  V  -  (a8  +  b*)  sin2  8  (a8  +  b")  cos'2  6  -  a8 ' 
Since  formulae  concerning  the  ellipse  are  altered  to  the  corre- 

sponding formula?  for  the  hyperbola  by  changing  the  sign  of  b*, 
we  must  in  this  case  use  the  abbreviation  c2  for  a8  +  b*  and 

e*  for  — 5 — ,  the  quantity  e  being  called  the  eccentricity  of  the 

hyperbola.  Dividing  then  by  a8  the  numerator  and  denominator 
of  the  last  found  fraction,  we  obtain  the  polar  equation  of  the 

hyperbola,  which  only  differs  from  that  of  the  ellipse  in  the  sign 

of  b'\  viz. 

8  =   y_ 
•  ~~     a*    rma^fl  1      * 
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165.    To  investigate  the  figure  of  the  hyperbola. 

The  terms  axis  major  and  axis  minor  not  being  applicable 
to  the  hyperbola  (Art.  160),  we  shall  call  the  axis  of  x  the 

transverse  axis,  and  the  axis  of  y  the  conjugate  axis. 

Now  V  -  (a2  +  J2)  sin20,  the  denominator  in  the  value  of  p2, 
will  plainly  be  greatest  when  0  =  0,  therefore,  in  the  same  case, 
p  will  be  least  ;  or  the  transverse  axis  is  the  shortest  line  which 

can  be  drawn  from  the  centre  to  the  curve. 

As  6  increases,  p  continually  increases,  until 

when  the  denominator  of  the  value  of  p  becomes  =  0,  and  p 

becomes  infinite.  After  this  value  of  0,  p2  becomes  negative,  and 
the  diameters  cease  to  meet  the  curve  in  real  points,  until  again 

when  p  again  becomes  infinite.  It  then  decreases  regularly  as 

6  increases,  until  6  becomes  =  180°,  when  it  again  receives  its 
minimum  value  =  a. 

The  form  of  the  hyperbola,  therefore,  is  that  represented  by 
the  dark  curve  on  the  figure,  next  article. 

166.  We  found  that  the  axis  of  y  does  not  meet  the  hyper- 

bola in  real  points,  since  we  obtained  the  equation  y*  =  —  b*  to 
determine  its  point  of  intersection  with  the  curve.  We  shall,  how- 

ever, still  mark  off 

on  the  axis  of  y  por- 

tions CBj  CB'=±b, 
and  we  shall  find 

that  the  length  CB 

has  an  important 
connexion  with  the 

curve,  and  may  be  conveniently  called  an  axis  of  the  curve. 
In  like  manner,  if  we  obtained  an  equation  to  determine  the 

length  of  any  other  diameter,  of  the  form  p*  =  —  R*,  although 
this  diameter  cannot  meet  the  curve,  yet  if  we  measure  on  it 

from  the  centre  lengths  =  +  jR,  these  lines  may  be  conveniently 
spoken  of  as  diameters  of  the  hyperbola. 
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The  locus  of  the  extremities  of  these  diameters  which  do  not 

meet  the  curve  is,  by  changing  the  sign  of  p*  in  the  equation  of 
the  curve,  at  once  found  to  be 

y*    x* 
or  ?5  --¥=!• b        a 

This  is  the  equation  of  a  hyperbola  having  the  axis  of  y  for 

the  axis  meeting  it  in  real  points,  and  the  axis  of  x  for  the  axis 

meeting  it  in  imaginary  points.  It  is  represented  by  the  dotted 

curve  on  the  figure,  and  is  called  the  hyperbola  conjugate  to  the 

given  hyperbola. 

167.  We  proved  (Art.  165)  that  the  diameters  answering  to 

tan  d  =  ±-  meet  the  curve  at  infinity;  they  are,  therefore,  the 

same  as  the  lines  called,  in  Art.  154,  the  asymptotes  of  the  curve. 

They  are  the  lines  CK,  CL  on  the  figure,  and  evidently  separate 

those  diameters  which  meet  the  curve  in  real  points  from  those 

which  meet  it  in  imaginary  points.  It  is  evident  also  that  two 

conjugate  hyperbolae  have  the  same  asymptotes. 

The  expression  tan#  =  ±-  enables  us,  being  given  the  axes 

in  magnitude  and  position,  to  find  the  asymptotes,  for  if  we 

form  a  rectangle  by  drawing  parallels  to  the  axes  through  B 

and  A,  then  the  asymptote  CK  must  be  the  diagonal  of  this 
rectangle. 

But,  since  the  asymptotes  make  equal  angles  with  the  axis  of  #, 

the  angle  which  they  make  with  each  other  must  be  =20. 

Hence,  being  given  the  eccentricity  of  a  hyperbola,  we  are  given 

the  angle  between  the  asymptotes,  which  is  double  the  angle  whose 

secant  is  the  eccentricity. 

Ex.  To  find  the  eccentricity  of  a  conic  given  by  the  general  equation. 
We  can  (Art.  74)  write  down  the  tangent  of  the  angle  between  the  lines  denoted 

by  ax*  +  2hxy  +  by1  =  0,  and  thence  form  the  expression  for  the  secant  of  its  half  ; 
or  we  may  proceed  by  the  help  of  Art.  157,  Ex.  3. 
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We  have 

where  R*  =  4h?  +(a-  bf  =  W  -  ±ab  +  (a  +  i)8. 

Hence 
£ 
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168.  We  now  proceed  to  investigate  some  of  the  properties 

of  the  ellipse  and  hyperbola.  We  shall  find  it  convenient  to 

consider  both  curves  together,  for,  since  their  equations  only 

differ  in  the  sign  of  5a,  they  have  many  properties  in  common 
which  can  be  proved  at  the  same  time,  by  considering  the  sign 

of  5a  as  indeterminate.  We  shall,  in  the  following  Articles,  use 
the  signs  which  apply  to  the  ellipse.  The  reader  may  then 

obtain  the  corresponding  formulae  for  the  hyperbola  by  changing 

the  sign  of  b*. 
x*      y* 

We  shall  first  apply  to  the  particular  form  -^  +  j*  =  1,  some 

of  the  results  already  obtained  for  the  general  equation.  Thus 

(Art.  86)  the  equation  of  the  tangent  at  any  point  x'y'  being 

got  by  writing  x'x  and  y'y  for  x*  and  y*  is 

^  +  ?^=i. The  proof  given  in  general  may  be  repeated  for  this  particular 

case.  The  equation  of  the  chord  joining  any  two  points  on 
the  curve  is 

(y-y')(y-y")_x*    y" ~~       ~'  +     ~1' 

which,  when  #',  y'  =  x"  ',  ̂",  becomes  the  equation  of  the  tangent 
already  written. 

The  argument  here  used  applies  whether  the  axes  be  rect- 
angular or  oblique.  Now  if  the  axes  be  a  pair  of  conjugate 

diameters,  the  coefficient  of  xy  vanishes  (Art.  143)  ;  the  coefficients 

of  x  and  y  vanish,  since  the  origin  is  the  centre  ;  and  if  a  and  V 

be  the  lengths  of  the  intercepts  on  the  axes,  it  is  proved  exactly, 
as  in  Art.  160,  that  the  equation  of  the  curve  may  be  written 
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And   it  follows  from   this   article   that   in   the  same  case  the 

equation  of  the  tangent  is 

169.  The  equation  of  the  polar,  or  line  joining  the  points 

of  contact  of  tangents  from  any  point  x'y',  is  similar  in  form  to 
the  equation  of  the  tangent  (Arts.  88,  89),  and  is  therefore 

—  +  wf- = i  or  xx'  |  yy  =  i . 
the  axes  of  coordinates  in  the  latter  case  being  any  pair  of 

conjugate  diameters,  in  the  former  case  the  axes  of  the  curve. 

In  particular,  the  polar  of  any  point  on  the  axis  of  x  is  — -^  —  1. 

Hence  the  pokr  ot  any  point  P  is  found  by  drawing  a  diameter 

through  the  point,  taking  CP.  CP'  =  to  the  square  of  the  semi- 

diameter,  and  then  drawing  through  P'  a  parallel  to  the 
conjugate  diameter.  This  includes,  as  a  particular  case,  the 

theorem  proved  already  (Art.  145),  viz.,  The  tangent  at  the 

extremity  of  any  diameter  is  parallel  to  the  conjugate  diameter. 

Ex.  1.  To  find  the  condition  that  \x  +  ny  =  1  may  touch  -  +  f*  =  1. 

or      o* Comparing  ̂ -  +  ̂  =  1,  Xaj  +  py  - 1,  we  find  —  =  \o,  ̂  =  /i£,  and  a2\*  +  *V  =  *• 

Ex.  2.  To  find  the  equation  of  the  pair  of  tangents  from  afjf  to  the  curve  (see 
Art.  92). 

Ex.  3.  To  find  the  angle  <f>  between  the  pair  of  tangents  from  x'y'  to  the  curve. 
When  an  equation  of  the  second  degree  represents  two  right  lines,  the  three  highest 

terms  being  put  =  0,  denote  two  lines  through  the  origin  parallel  to  the  two  former; 
hence,  the  angle  included  by  the  first  pair  of  right  lines  depends  solely  on  the  three 
highest  terms  of  the  general  equation.  Arranging,  then,  the  equation  found  in  the 
last  Example,  we  find,  by  Art.  74, 

,.,  -JS 
V        x'*  +  y'2  -  a2  -  b- 

Ex.  4.  Find  the  locus  of  a  point,  the  tangents  through  which  intersect  at  right 

angles. 

Equating  to  0  the  denominator  in  the  value  of  tan(/>,  we  find  a;2  +  y2  =  a2  +  A2,  the 
equation  of  a  circle  concentric  with  the  ellipse.  The  locus  of  the  intersection  of 
tangents  which  cut  at  a  given  angle  is,  in  general,  a  curve  of  the  fourth  degree. 

170.    To  find  the  equation,  referred  to  the  axes,  of  the  diameter 

conjugate  to  that  passing  through  any  point  x'y  on  the  curve. 
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The  line  required  passes  through  the  origin,  and  (Art.  169)  is 

parallel  to  the  tangent  at  x'y'  ;  its  equation  is  therefore 

Let  0,  6'  be  the  angles  made  with  the  axis  of  x  by  the  original 

diameter  and  its  conjugate  ;   then  plainly  tan  Q  —  —,  ;    and  from 
X  '          b*x' 

the  equation  of  the  conjugate  we  have  (Art.  21)  tan#  =  --  5-, 

P  ay  ' Hence  tan  6  tan  ff  =  —  ̂   ,  as  might  also  be  inferred  from  Art.  143. 

The  corresponding  relation  for  the  hyperbola  (see  Art.  168)  is 
7  a 

tan  0  tan  ̂   -3. 

171.  Since  in  the  ellipse  tan  6  tan  &  is  negative,  if  one  of 

the  angles  0,  0'  be  acute  (and,  therefore,  its  tangent  positive), 
the  other  must  be  obtuse  (and,  therefore,  its  tangent  negative). 

Hence,  conjugate,  diameters  in  the  ellipse  lie  on  different  sides  of 

the  axis  minor  (which  answers  to  6  =  90°). 

In  the  hyperbola,  on  the  contrary,  tan  9  tan  0'  is  positive  ; 
therefore  0  and  0'  must  be  either  both  acute  or  both  obtuse. 
Hence,  in  the  hyperbola,  conjugate  diameters  lie  on  the  same  side 

of  the  conjugate  axis. 

In  the  hyperbola,  if  tan  0  be  less,  tan0'  must  be  greater  than 

-  ,  but  (Art.  167)  the  diameter  answering  to  the  angle  whose 

tangent  is  -  ,  is  the  asymptote,  which  (by  the  same  Article) 

separates  those  diameters  which  meet  the  curve  from  those  which 
do  not  intersect  it.  Hence,  if  one  of  two  conjugate  diameters 

meet  a  hyperbola  in  real  points,  the  other  will  not.  Hence  also 

it  may  be  seen  that  each  asymptote  is  its  own  conjugate. 

172.  To  find  the  coordinates  x"y"  of  the  extremity   of  the 

diameter  conjugate  to  that  passing  through  x'y  . 
These  coordinates  are  obviously  found  by  solving  for  x  and  y 

between  the  equation  of  the  conjugate  diameter  and  that  of 

the  curve,  viz. 

xx'      yy  x*      y2 -+-  =  o       +     -i 



168  CONJUGATE   DIAMETERS. 

Substituting  in  the  second  the  values  of  x  and  y  found  from  the 

first  equation,  and  remembering  that  a;',  y'  satisfy  the  equation 
of  the  curve,  we  find  without  difficulty 

173.    To  express  the  lengths  of  a  diameter  (a'),  and  its  conju 

gate  (&'),  in  terms  of  the  abscissa  of  the  extremity  of  the  diameter. 

(1)  We  have  a"  =  as"  +  y'«. 

But                                  y  -jji  («•-<)• 

Hence  a7*  =  62  +  ̂^  *'2  =  &»  +  e  V. a 

(2)  Again,  we  have 

-- 

hence  £"2  = 
From  these  values  we  have 

or,  7%e  swm  o/^e  squares  of  any  pair  of  conjugate  diameters  of 

an  ellipse  is  constant  (see  Ex.  3,  Art.  159). 

174.  In  the  hyperbola  we  must  change  the  signs  of  b*  and 
6'2,  and  we  get 

a'a-Z>"  =  a8-&2, 

or,  The  difference  of  the  squares  of  any  pair  of  conjugate  diameters 

of  a  hyperbola  is  constant. 

If  in  the  hyperbola  we  have  a  =  £>,  its  equation  becomes 
**-/=«», 

and  it  is  called  an  equilateral  hyperbola. 

The  theorem  just  proved  shows  that  every  diameter  of  an 
equilateral  hyperbola  is  equal  to  its  conjugate. 

The  asymptotes  of  the  equilateral  hyperbola  being  given  by 
the  equation 
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are  at  right  angles  to  each  other.     Hence  this  hyperbola  is  often 

called  a  rectangular  hyperbola. 

The  condition  that  the  general  equation  of  the  second  degree 

should  represent  an  equilateral  hyperbola  is  a  =  —  b  ;  for  (Art.  74) 

this  is  the  condition  that  the  asymptotes  (ax*  +  2hxy  +  by*) 
should  be  at  right  angles  to  each  other  ;  but  if  the  hyperbola  be 

re  tangular  it  must  be  equilateral,  since  (Art.  167)  the  tangent 

of  half  the  angle  between  the  asymptotes  =  -  ;  therefore,  if 

this  angle  =•  45°,  we  have b  =  a. 

175.  To  find  the  length  of  the  perpendicular  from  the  centre 
on  the  tangent. 

The  length  of  the  perpendicular  from  the  origin  on  the  line 

^  +  l:=i, a         b 

*  (Art.  23) 

but  we  proved  (Art.  173)  that 

5V    ay*. 
a"        >   5 

ab 
hence  p=  —. 

176.    2b  ̂ 6?  2fo  aw#fe  between  any  pair  of  conjugate  dia- 
meters. 

The  angle  between  the  diameters  is  equal  to  the  angle  be- 
tween either,  and  the  tangent  parallel  to 

the  other.     Now  ^< 

Hence  sin  <£  (or  PGP')  =      ,  . 

The  equation  a'V  sin  (j)  =  ab  proves  that  the  triangle  formed 
by  joining  the  extremities  of  conjugate  diameters  of  an  ellipse  ot 

hyperbola  has  a  constant  area  (see  Art.  159,  Ex.  2). 
Z 
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177.  The  sum  of  the  squares  of  any  two  conjugate  diameters 

of  an  ellipse  being  constant,  their  rectangle  is  a  maximum  when 

they  are  equal;  and,  therefore,  in  this  case,  sin<£>  is  a  minimum  ; 

hence  the  acute  angle  between  the  two  equal  conjugate  dia- 
meters is  less  (and,  consequently,  the  obtuse  angle  greater)  than 

the  angle  between  any  other  pair  of  conjugate  diameters. 

The  length  of  the  equal  conjugate  diameters  is  found  by 

making  a  =  V  in  the  equation  a'2  +  b'*  =  a*  +  b*,  whence  a'"  is  half 
the  sum  of  a*  and  6*,  and  in  this  case 

The  angle  which  either  of  the  equi-conjugate  diameters  makes 
with  the  axis  of  x  is  found  from  the  equation 

tan0  tan^  =  --  2  , 
CL 

by  making  tan  0  =  —  tan  0';  for  any  two  equal  diameters  make 
equal  angles  with  the  axis  of  a;  on  opposite  sides  of  it  (Art.  162J. 

Hence  tan#  =  -  . a 

It  follows,  therefore,  from  Art.  167,  that  if  an  ellipse  and  hyper- 
bola have  the  same  axes  in  magnitude  and  position,  then  the 

asymptotes  of  the  hyperbola  will  coincide  with  the  equi-conjugate 
diameters  of  the  ellipse. 

The  general  equation  of  an  ellipse,  referred  to  two  conjugate 

diameters  (Art.  168),  becomes  a;8  +  y  =  a'8,  when  a  '  —  It  '.  We 
see,  therefore,  that,  by  taking  the  equi-conjugate  diameters  for 
axes,  the  equation  of  any  ellipse  may  be  put  into  the  same  form 

as  the  equation  of  the  circle,  a?*  +  y1  =  r8,  but  that  in  the  case  of 
the  ellipse  the  angle  between  these  axes  will  be  oblique. 

178.    To  express  the  perpendicular  from   the   centre   on    the 
tangent  in  terms  of  the  angles  which  it  makes  with  the  axes. 

If  we   proceed    to    throw    the    equation    of    the    tangent 

into   the   form   x  cosa  +  y  sina=^?    (Art.  23), 

we  tind  immediately,  by  comparing  these  equations, 

or'  _  cosa      y  _  sin  a ~  ~~ 
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Substituting  in  the  equation  of  the  curve  the  values  of  #',  y1 \ 
hence  obtained,  we  find 

p*  =  a2  cos2  a  4-  b*  sin2  a.* 

The  equation  of  the  tangent  may,  therefore,  be  written 

x  cosa  4-  y  sin  a  —  \/(a*  cos2  a  +  Z>2  sin2 a)  =  0. 

Hence,  by  Art.  34,  the  perpendicular  from  any  point  (x'y'}  on 
the  tangent  is 

V(a*  cos2 a  +  b*  sin2 a)  —  x'  cosa  —  y'  sin  a, 

where  we  have  written  the  formula  so  that  the  perpendiculars 

shall  be  positive  when  x'y'  is  on  the  same  side  of  the  tangent 
as  the  centre. 

Ex.  To  find  the  locus  of  the  intersection  of  tangents  which  cut  at  right  angles. 

Letp,p'  be  the  perpendiculars  on  those  tangents,  then 

p*  =  a?  cos2a  +  &  sin2a,  p1*  =  a2  sin2a  +  i2  cos2a,  p2  +  p*  =  a2  +  b*. 
But  the  square  of  the  distance  from  the  centre,  of  the  intersection  of  two  lines  which 

cut  at  right  angles,  is  equal  to  the  sum  of  the  squares  of  its  distances  from  the  lines 
themselves.  The  distance,  therefore,  is  constant,  and  the  required  locus  is  a  circle 
(see  p.  166,  Ex.  4). 

179.  The  chords  which  join  the  extremities  of  any  diameter 

to  any  point  on  the  curve  are  called  supplemental  chords. 

Diameters  parallel  to  any  pair  of  supplemental  chords  are 

conjugate. 

For  if  we  consider  the  triangle  formed  by  joining  the  extre- 
mities of  any  diameter  AB  to  any  point  on  the  curve  D  ;  since, 

by  elementary  geometry,  the  line  joining  the  middle  points  of 

two  sides  must  be  parallel  to  the  third,  the  diameter  bisecting 

AD  will  be  parallel  to  BD,  and  the  diameter  bisecting  BD  will 

be  parallel  to  AD.  The  same  thing  may  be  proved  analytically, 

by  forming  the  equations  of  AD  and  BD,  and  showing  that  the 

product  of  the  tangents  of  the  angles  made  by  these  lines  with 
7» 

the  axis  is  =   5 . a 

This  property  enables  us  to  draw  geometrically  a  pair  of  con- 
jugate diameters  making  any  angle  with  each  other.  For  if  we 

describe  on  any  diameter  a  segment  of  a  circle,  containing  the 

*  In  like  manner,  p*  -  a'2  cos2a  +  b"1  cos2/3,  a  and  /3  being  the  angles  the  perpen- 
dicular makes  with  any  pair  of  conjugate  diameters. 
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given  angle,  and  join  the  points  where  it  meets  the  curve  to  the 

extremities  of  the  assumed  diameter,  we  obtain  a  pair  of  supple- 
mental chords  inclined  at  the  given  angle,  the  diameters  parallel 

to  which  will  be  conjugate  to  each  other. 

Ex.  1.   Tangents  at  the  extremities  of  any  diameter  are  parallel. 

Their  equations  are  ^f  +  7T  =  ±  *• 

This  also  follows  from  the  first  theorem  of  Art.  146,  and  from  considering  that  the 
centre  is  the  pole  of  the  line  at  infinity  (Art.  154). 

Ex.  2.  If  any  variable  tangent  to  a  central  conic  section  meet  two  fixed  parallel 
tangents,  it  will  intercept  portions  on  them,  whose  rectangle  is  constant,  and  equal 

to  the  square  of  the  semi-diameter  parallel  to  them. 
Let  us  take  for  axes  the  diameter  parallel  to  the  tangents  and  its  conjugate,  then 

the  equations  of  the  curve  and  of  the  variable  tangent  will  be 

xx>   yy' 

The  intercepts  on  the  fixed  tangents  are  found  by  making  x  alternately  =  ±  a'  in  the 
Litter  equation,  and  we  get 

and,  therefore,  their  product  is  -^  (  1  --  ̂   j  ; 

which,  substituting  for  y'2  from  the  equation  of  the  curve,  reduces  to  £**. 

Ex.  3.  The  same  construction  remaining,  the  rectangle  under  the  segments  of  the 

variable  tangent  is  equal  to  the  square  of  the  semi-diameter  parallel  to  it. 
For,  the  intercept  on  either  of  the  parallel  tangents  is  to  the  adjacent  segment 

of  the  variable  tangent  as  the  parallel  semi-diameters  (Art.  149)  ;  therefore,  the  rect- 
angle under  the  intercepts  of  the  fixed  tangent  is  to  the  rectangle  under  the  segments 

of  the  variable  tangent  as  the  squares  of  these  semi-diameters  ;  and,  since  the  first 
lec  tangle  is  equal  to  the  square  of  the  semi-diameter  parallel  to  it,  the  second  rect- 

angle mu«t  be  equal  to  the  square  of  the  semi-diameter  parallel  to  it, 

Ex.  4.  If  any  tangent  meet  any  two  conjugate  diameters,  the  rectangle  under  its 

segments  is  equal  lo  the  square  of  the  parallel  semi-diameter. 

Take  for  axes  the  sem;-diameter  parallel  to  the  tangent  and  its  conjugate;  then 
the  equations  of  any  two  conjugate  diameters  being  (Art.  170) 

the  intercepts  made  by  them  on  the  tangent  are  found,  by  making  x  =  a',  to  be 

who^e  rectangle  is  evidently  =  b"*. 
We  might,  in  like  manner,  have  given  a  purely  algebraical  proof  of  Ex.  3. 
Hence,  also,  if  the  cent  re  be  joined  to  the  points  where  two  parallel  tangents  meet 

my  tangent,  the  joining  line*  will  be  conjugate  diameters. 

Ex.  5.   Given,  in  magnitude  and  position,  two  conjugate  semi-diameters,  Oa,  Ob, 
of  a  central  conic,  to  determine  the  position  of  the  axes.  , 
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The  following  construction  Is  founded  on  the  theorem  proved  in  the  last 

Example:— Through  a  the  extremity  of  either  diameter, 

draw  a  parallel  to  the  other ;  it  must  of  course  be  a  tan- 
gent to  the  curve.  Now,  on  Oa  take  a  point  P,  such 

that  the  rectangle  Oa.aP  =  Obz  (on  the  side  remote  from 
0  for  the  ellipse,  on  the  same  side  for  the  hyperbola), 
and  describe  a  circle  through  0,  P,  having  its  centre  on 

a C,  then  the  lines  OA,  OB  are  the  axes  of  the  curve; 

for,  since  the  rectangle  Aa.aB=  Oa.aP  —  Ob*,  the  lines 
OA,  OB  are  conjugate  diameters,  v  and  since  AB  is  a  dia- 

meter of  the  circle,  the  angle  AOB  is  right. 

Ex.  6.   Given  any  two  semi-diameters,  if  from  the  extremity  of  each  an  ordinate 
be  drawn  to  the  other,  the  triangles  so  formed  will  be  equal  in  area. 

Ex.  7.  Or  if  tangents  be  drawn  at  the  extremity  of  each,  the  triangles  so  formed 

will  be  equal  in  area. 

THE   NORMAL. 

180.    A  line  drawn  through  any  point  of  a  curve  perpen- 
dicular to  the  tangent  at  that  point  is  called  the  Normal. 

Forming,  by  Art.  32,  the  equation  of  a  line  drawn  through 

(xy'}  perpendicular  to  ( — 5-  4  -j*  =  1 J  ,  we  find  for  the  equation 
of  the  normal  to  a  conic 

x 

(y - 
or 

x'
 

c2  being  used,  as  in  Art.  161,  to  denote  a*  —  b\ 
Hence  we  can  find  the  portion  GN  intercepted  by  the  normal 

on  either  axis ;  for,  making  y  =  0  in 
the  equation  just  given,  we  find 

x  =  -5  x',  or  x  —  e*x'.  — J 

We  can  thus  draw  a  normal  to 

an  ellipse  from  any  point  on  the  axis, 

for  given  GN  we  can  find  x,  the  abscissa  of  the  point  through 
which  the  normal  is  drawn. 

The  circle  may  be  considered  as  an  ellipse  whose  eccentricity 

=  0,  since  c2  =  a2  —  b*  =  0.  The  intercept  ON,  therefore,  is  con- 
stantly =  0  in  the  case  of  the  circle,  or  every  normal  to  a  circle 

passes  through  its  centre. 
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181.  The  portion  MN  intercepted  on  the  axis  between  the 

normal  and  ordinate  is  called  the  Subnormal.  Its  length  is,  by 
the  last  Article, 

,     c»   ,     V    , 
af--tx'  =  -^x'. 

a2         a 

The  normal,  therefore,  cuts  the  abscissa  into  parts  which  are  in 
a  constant  ratio. 

If  a  tangent  drawn  at  the  point  P  cut  the  axis  in  T7,  the  in- 
tercept MT  is,  in  like  manner,  called  the  Subtangent. 

Since  the  whole  length  CT=—,  (Art.  169),  the  subtangent 

a*  -a/8 

The  length  of  the  normal  can  also  be  easily  found.     For 

But  if  If  be  the  semi-diameter  conjugate  to  (7P,  the  quantity 

within  the  parentheses  =  b'*  (Art.  173).     Hence  the  length  of  the 77/ 

normal  PN=  —  . a 

If  the  normal  be  produced  to  meet  the  axis  minor,  it  can  be jf 

proved,  in  like  manner,  that  its  length  =  -=-  .     Hence,  the  rect- 

angle under  the  segments  of  the  normal  is  equal  to  the  square  of 

the  conjugate  semi-diameter. 
Again,  we  found  (Art.  175)  that  the  perpendicular  from  the 

centre  on  the  tangent  =  -77  .     Hence,   the  rectangle  under   the 

normal  and  the  perpendicular  from  the  centre  on  the  tangent  is 

constant  and  equal  to  the  square  of  the  semi-axis  minor. 
Thus,  too,  we  can  express  the  normal  in  terms  of  the  angle 

it  makes  with  the  axis,  for 

!  I  Art   1781  •  «  <*       ' 
l-fiTl.    HO)   .         :      ... v x  —.  —  s  ;;  -  =-n  —  ;     n  — 

p       V(a  cos'a  +  V  sm'a) 
Ex.  1.  To  draw  a  normal  to  an  ellipse  or  hyperbola  passing  through  a  given  point. 

The  equation  of  the  normal,  aVy  —  tfx'y  -  c*x'y',  expresses  a  relation  between 
the  coordinates  x'tj  of  any  point  on  the  curve,  and  xy  the  coordinates  of  any  point 
on  the  normal  at  x'y'.  We  express  that  the  point  on  the  normal  is  known,  and  the 
point  on  the  curve  sought,  by  removing  the  accents  from  the  coordinates  of  the  latter 
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point,  and  accentuating  those  of  the  former.  Thus  we  find  that  the  points  on  the 

curve,  whose  normals  will  pass  through  (x'y')  are  the  points  of  intersection  of  the 
given  curve  with  the  hyperbola 

c*xy  =  a?x'y  -  bfyx. 

Ex.  2.  If  through  a  given  point  on  a  conic  any  two  lines  at  right  angles  to  each 

other  be  drawn  to  meet  the  curve,  the  line  joining  their  extremities  will  pass  through 
a  fixed  point  on  the  normal. 

Let  us  take  for  axes  the  tangent  and  normal  at  the  given  point,  then  the  equation 
of  the  curve  must  be  of  the  form 

oo;2  +  2hxy  +  by*  +  2fy  =  0, 

(for  c  =  0,  because  the  origin  is  on  the  curve,  and  g  —  0  (Art.  144),  because  the  tan- 
gent is  supposed  to  be  the  axis  of  x,  whose  equation  is  y  =  0). 

Now,  let  the  equation  of  any  two  lines  through  the  origin  be 

a?  +  2pxy  +  qy*  =  0. 

Multiply  this  equation  by  a,  and  subtract  it  from  that  of  the  curve,  and  we  get 

2  (h  -  ap]  xy  +  (b-  aq)  y1  +  2fy  =  0. 

This  (Art.  40)  is  the  equation  of  a  locus  passing  through  the  points  of  intersection 

of  the  lines  and  conic  ;  but  it  may  evidently  be  resolved  into  y  =  0  (the  equation  of 
the  tangent  at  the  given  point),  and 

which  must  be  the  equation  of  the  chord  joining  the  extremities  of  the  given  lines. 

The  point  where  this  chord  meets  the  normal  (the  axis  of  y)  is  y  =  —  ±—  .  t,ut  if 

aq  —  6 
the  lines  are  at  right  angles  q  =  —  1  (Art.  74),  and  the  intercept  on  the  normal  has 
the  constant  length 

~a  +  b' 

If  the  curve  be  an  equilateral  hyperbola,  a  +  b  —  0,  and  the  line  in  question  is 
constantly  parallel  to  the  normal.  Thus  then,  if  through  any  point  on  an  equilateral 
hyperbola  be  drawn  two  chords  at  right  angles,  the  perpendicular  let  fall  on  the  line 
joining  their  extremities  is  the  tangent  to  the  curve. 

Ex.  3.  To  find  the  coordinates  of  the  intersection  of  the  tangents  at  the  points 

*y,  *v. 
The  coordinates  of  the  intersection  of  the  lines 

~    y'x"  _  y"X'  '  ~    X'y"  -  y'X"  ' 

Ex.  4.  To  find  the  coordinates  of  the  intersection  of  the  normals  at  the  points 

_  (a2  -  y)  x'x"X        _  (b*  -  a2)  y'y"Y Ant.  —  »  y-~  » 

*  This  theorem  will  be  equally  true  if  the  lines  be  drawn  so  as  to  make  with  the 
normal  angles  the  product  of    whose  tangents  is  constant,   for,  in  this  case,  q  is 

2/*
 

constant,  and,  therefore,  the  intercept  — £-  ,  is  constant. 
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where  X,  Y  are  the  coordinates  of  the  intersection  of  tangents,  found  in  the  l
ast 

Example. 

The  values  of  X  and  Y  may  be  written  in  other  forms.    Since  by  combining  the 

equations 

we  get  the  results, 

hence 

We  can  also  prove 

l+**L+yjL 
1+   c?   *  P 

1  + 

181  (a).  Let  CF,  CQ  be  a  pair  of  conjugate  semi-diameter
s 

of  an  ellipse;  let  the  normal 
PN  meet  CQ  in  R  ;  take  PD, 

PD'  each  equal  to  CQ  ;  then 
the  lengths  of  the  lines  CD, 

CD  are  a  —  #,  o-fi  respec- 
tively. 

For 

67T=  OP+PZ/'+SPZX.  PR, 
but 

(Art.  175)  . 

(Art.  173), 

and  2P.ZX.  PjR  = 

Hence  CU*  =  (a  +  6)2.     Similarly  for  CD. 

The  axis-major  bisects  the  angle  DCD'.     For  the  line 

=  V+--  =     (a  -r  b). 

i/ 
Similarly  DN=-(a-V).      At  the  point  N,  therefore,  the 

base  of  the  triangle  DCD'  is  divided  in  the  ratio  of  the  sides, 
and,  therefore,  CN  is  the  internal  bisector  of  the  vertical  angle. 

In  like  manner,  it  is  proved  that  CN'  is  the  external  bisector. 
Hence  then,  being  given  two  conjugate  semi-diameters 

G'P,  CQ  in  magnitude  and  position,  we  are  given  the  axes  in 
magnitude  and  position.  For  we  have  only  from  P  to  let  fall 
on  CQ  the  perpendicular  PR;  to  take  PD,  PD  each  equal  CQ; 
then  the  axes  are  in  direction  the  bisectors  of  the  angle  DCD  \ 

while  their  lengths  are  the  sum  and  difference  of  CD,  CD. 
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182.    If  on  the  axis  major  of  an  ellipse  we  take  two  points 

equidistant  from  the  centre  whose  com-  T'/ 
mon  distance 

,   or  =  ±c, 

these  points  are  called  the  foci  of  the 
curve. 

The  foci  of  a  hyperbola  are  two  points  on  the  transverse 

axis,  at  a  distance  from  the  centre  still  =±c,  c  being  in  the 
hyperbola 

To  express  the  distance  of  any  point  on  an  ellipse  from  the 

focus. 
Since  the  coordinates  of  one  focus  are  (a;  =  +  c,  #  =  0),  the 

square  of  the  distance  of  any  point  from  it 

=  (at  -  cY  +  /*  =  &  4-  y"  -  2cx'  +  c\ 
But  (Art.  173) 

a^  +  ̂ ^  +  eV,  and  &2  +  ca  =  a2. 

Hence  FP*  =  aa  -  2caf  +  eV*  ; 

and  recollecting  that  c  =  ae,  we  have 

FP=a-ex'. 

[We  reject  the  value  (ex  —  a)  obtained  by  giving  the  other 

sign  to  the  square  root.  For,  since  x'  is  less  than  a,  and  e  less 
than  1,  the  quantity  ex  —a  is  constantly  negative,  and  there- 

fore does  not  concern  us,  as  we  are  now  considering,  not  the 

direction,  but  the  absolute  magnitude  of  the  radius  vector  FPJ] 
We  have,  similarly,  the  distance  from  the  other  focus 

since  we  have  only  to  write  —  c  for  +  c  in  the  preceding  formulae. 

Hence  FP+F'P=2a, 
or,  The  sum  of  the  distances  of  any  point  on  an  ellipse  from  the 

foci  is  constant^  and  equal  to  the  axis  major. 

183.    In  applying  the  preceding  proposition  to  the  hyperbola, 

we  obtain  the  same  value  for  FP*  •  but  in  extracting  the  square 
AA 
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root  we  must  change  the  sign  in  the  value  of  FP,  for  in  the 

hyperbola  x'  is  greater  than  a  and  e  is  greater  than  I.  Hence, 
a  —  ex'  is  constantly  negative  ;  the  absolute  magnitude  there- 

fore of  the  radius  vector  is 

FP=ex  -a. 

In  like  manner  F'P  =  ex'  -f  a. 

Hence  F'P-FP=2a. 

Therefore,  in  the  hyperbola,  the  difference  of  the  focal  radii  is 
constant,  and  equal  to  the  transverse  axis. 

The  rectangle  under  the  focal  radii  =  ±(a*  —  eV),  that  is, 

(Art.  173)  =6". 

184.  The  reader  may  prove  the  converse  of  the  above  results 
by  seeking  the  locus  of  the  vertex  of  a  triangle,  if  the  base  and 
either  sum  or  difference  of  sides  be  given. 

Taking  the  middle  point  of  the  base  (==  2c)  for  origin,  the 

equation  is 

Viy  4  (c  +  *)"}  ±  V{/  +  (c  -  *)*}  =  2a, 
which,  when  cleared  of  radicals,  becomes 

Now,  if  the  sum  of  the  sides  be  given,  since  the  sum  must 

always  be  greater  than  the  base,  a  is  greater  than  c,  therefore 

the  coefficient  of  y*  is  positive,  and  the  locus  an  ellipse. 
If  the  difference  be  given,  a  is  less  than  c,  the  coefficient  of  ̂  

is  negative,  and  the  locus  a  hyperbola. 

185.  By  the  help  of  the  preceding  theorems  we  can  describe 

an  ellipse  or  hyperbola  mechanically. 
If  the  extremities  of  a  thread  be  fastened  at  two  fixed  points 

F  and  Ffy  it  is  plain  that  a  pencil  moved  about  so  as  to  keep  thc3 
thread  always  stretched  will  describe  an  ellipse  whose  foci  are  F 

and  F*,  and  whose  axis  major  is  equal  to  the  length  of  the  thread 
In  order  to  describe  a  hyperbola,  let  a  ruler  be  fastened  at 

one  extremity  (F),  and  capable  of  moving 
round  it,  then  if  a  thread,  fastened  to  a 

fixed  point  F',  and  also  to  a  fixed  point  on 
the  rul»<»  (R),  be  kept  stretched  by  a  ring   (^>  I 
at  Pj  as  the  ruler  is  moved  round,  the  point 
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P  will  describe  a  hyperbola  ;  for,  since  the  sum  of  F'P  and  PR 

is  constant,  the  difference  of  FP  and  F'P  will  be  constant. 

186.    The  polar  of  either  focus  is  called  the  directrix  of  the 

conic  section.      The  directrix   must,  therefore 

(Art.  169),  be  a  line  perpendicular  to  the  axis 

major  at  a  distance  from  the  centre  =  ±  —  . c 

Knowing  the  distance  of  the  directrix  from 

the  centre,  we  can  find  its  distance  from  any 

point  on  the  curve.  It  must  be  equal  to 

o>        f  a  ,          ,.      1  ,  ,. 
--x,or  =  -(a-ex)  =  -(a-ex'). 

Bnt  the  distance  of  any  point  on  the  curve  from  the  focus 

=  a-ex'.  Hence  we  obtain  the  important  property,  that  the 
distance  of  any  point  on  the  curve  from  the  focus  is  in  a  constant 
ratio  to  its  distance  from  the  directrix,  viz.  as  e  to  1. 

Conversely,  a  conic  section  may  be  defined  as  the  locus  of  a 

point  whose  distance  from  a  fixed  point  (the  focus)  is  in  a  con- 
stant ratio  to  its  distance  from  a  fixed  line  (the  directrix).  On 

this  definition  several  writers  have  based  the  theory  of  conic 

sections.  Taking  the  fixed  line  for  the  axis  of  a;,  the  equation 
of  the  locus  is  at  once  written  down 

which  it  is  easy  to  see  will  represent  an  ellipse,  hyperbola,  or 

parabola,  according  as  e  is  less,  greater  than,  or  equal  to  1. 

Ex.  If  a  curve  be  such  that  the  distance  of  any  point  of  it  from  a  fixed  point 
can  be  expressed  as  a  rational  function  of  the  first  degree  of  its  coordinates,  then  the 

curve  muBt  be  a  conic  section,  and  the  fixed  point  its  focus  (see  O'Brien's  Coordinate 
Geometry,  p.  85). 

For,  if  the  distance  can  be  expressed 

p  =  Ax  +  By  +  C, 

since  Ax  +  By  +  C  is  proportional  to  the  perpendicular  let  fall  on  the  right  line  whose 

equation  is  (^a;  +  By  +  C  —  0)  the  equation  signifies  that  the  distance  of  any  point  of 
the  curve  from  the  fixed  point  is  in  a  constant  ratio  to  its  distance  from  this  line. 

187.    To  find  the  length  of  the  perpendicular  from  the  focus  on 
the  tangent. 

The  length  of  the  perpendicular  from  the  focus  (+  c,  0)   on 
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.      /  /         . 

the  line  ( -r  +  ~  =  1 )  is,  by  Art.  34. 
\  Q>  O  J 

but,  Art.  175, 

Hence  (see  fig.  p.  177 

Likewise  FT  =4  (a  +  6*')  =  £  -FT. o  o 

Hence  FT.FT  =  b*  (since  a'  -  eV  - 

or,  Tfo  rectangle  under  the  focal  perpendiculars  on  the  tangent  is 

constant,  and  equal  to  the  square  of  the  semi-axis  minor. 
This  property  applies  equally  to  the  ellipse  and  the  hyperbola. 

188.    The  focal  radii  make  equal  angles  with  the  tangent. 

For  we  had        FT=     FP  or 

but 

Hence  the  sine  of  the  angle  which  the  focal  radius  vector  FP 

makes  with  the  tangent  *=T>.     But  we  find,  in  like  manner, 

the  same  value  for  smF'PT,  the  sine  of  the  angle  which  the 
other  focal  radius  vector  F'P  makes  with  the  tangent. 

The  theorem  of  this  article  is  true  both  for  the  ellipse  and 

hyperbola,  and,  on  looking  at  the 
figures,  it  is  evident  that  the  tangent 
to  the  ellipse  is  the  external  bisector 

of  the  angle  between  the  focal  radii, 

and  the  tangent  to  the  hyperbola  the 
internal  bisector. 

Hence,  if  an  ellipse  and  hyperbola, 

having  the  same  foci  ,  pass  through  the  same  point,  they  will  cut 
each  other  at  right  angles,  that  is  to  say,  the  tangent  to  the  ellipse 
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at  that  point  will  be  at  right  angles  to   the    tangent   to   the 

hyperbola. 

Ex.  1.   Prove  analytically  that  confocal  conies  cut  at  right  angles. 
The  coordinates  of  the  intersection  of  the  conies 

satisfy  the  relation  obtained  by  subtracting  the  equations  one  from  the  other,  viz. 

(a2  —  a*2)  at*      (b2  —  b'2)  y'2  _ 

ttV2 b2b'2 —  °* 

But  if  the  conies  be  confocal,  a2  -  a*2  =  b*  —  b'2,  and  this  relation  becomes 

But  this  is  the  condition  (Art.  32)  that  the  two  tangents 

should  be  perpendicular  to  each  other. 

Ex.  2.  Find  the  length  of  a  line  drawn  through  the  centre  parallel  to  either  focal 
radius  vector,  and  terminated  by  the  tangent. 

This  length  is  found  by  dividing  the  perpendicular  from  the  centre  on  the  tangent 

(  ̂  J  ,  by  f  T;  J  the  sine  of  the  angle  between  the  radius  vector  and  tangent,  and  is 

therefore  =  a. 

Ex.  3.  Verify  that  the  normal,  which  is  a  bisector  of  the  angle  between  the  focal 
radii,  divides  the  distance  between  the  foci  into  parts  which  are  proportional  to  the 
focal  radii  (Euc.  vi.  3).  The  distance  of  the  foot  of  the  normal  from  the  centre  is 

(Art.  180)  =  &x',  Hence  its  distances  from  the  foci  are  c  +  e2x'  and  c  —  e2x',  quantities 
which  are  evidently  e  times  a  4-  ex'  and  a  -  ex'. 

Ex.  4.   To  draw  a  normal  to  the  ellipse  from  any  point  on  the  axis  minor. 

Ans.  The  circle  through  the  given  point  and  the  two  foci,  will  meet  the  curve  at 
the  point  whence  the  normal  is  to  be  drawn. 

189.  Another  important  consequence  may  be  deduced  from 

the  theorem  of  Art.  187,  that  the  rectangle  under  the  focal  per- 
pendiculars on  the  tangent  is  constant. 

For,  if  we  take  any  two  tangents,  we  have  (see  figure,  next 
page) 

FT       F't' FT.F'T'  =  Ft  .  F't',  or  ̂   =  -j^  ; 

FT1 but  -_-  is  the  ratio  of  the  sines  of  the  parts  into  which  the  line 

F't' 

FP  divid
es  

the  angle
  

at  P,  and 
 
_,„/ 

 
is  the  ratio

  
of  the  sines

  
of 
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the  parts  into  which  F'P divides  the  same  angle ;  we  have,  there- 

fore, the  angle  TPF=  t'PF'. 
If  we  conceive  a  conic  section  to  pass 

through  P,  having  F  and  Ff  for  foci,  it 
was  proved  in  Art.  188,  that  the  tangent 
to  it  must  be  equally  inclined  to  the  lines 

FP,  F'P:  it  follows,  therefore,  from 
the  present  Article,  that  it  must  be  also 

equally  inclined  to  PT,  Pt;  hence  we  learn  that  if  through  any 

point  (P)  of  a  conic  section  we  draw  tangents  (PT,  Pt}  to  a  con- 
focal  conic  section,  these  tangents  will  be  equally  inclined  to  the 

tangent  at  P. 

190.  To  find  the  locus  of  the  foot  of  the  perpendicular  let  fall 
from  either  focus  on  the  tangent. 

The  perpendicular  from  the  focus  is  expressed  in  terms  of 

the  angles  it  makes  with  the  axis  by  putting  x'  =  c,  if  —  0  in  the 
formula  of  Art.  178,  viz., 

p  =  ̂ /(a2  cos2  a  +  I*  sin2  a)  —  x'  cos  a  —  yf  sin  a. 

Hence  the  polar  equation  of  the  locus  is 

p  =  V(«8  cos"  a  +  b*  sin*  a)  -  c  cos  a, 

or  />*  +  2c/o  cos  a  +  c2  cos*  a  =  a2  cos2  a  +  b*  sin2  a, 

or  p*  -f  2cp  cos  a  =  b*. 

This  (Art.  95)  is  the  polar  equation  of  a  circle  whose  centre 

is  on  the  axis  of  x,  at  a  distance  from  the  focus  =  —  c;  the  circle 
is,  therefore,  concentric  with  the  curve.  The  radius  of  the  circle 

is,  by  the  same  Article,  =  a. 

Hence,  If  we  describe,  a  circle  having  for  diameter  the  trans- 
verse axis  of  an  ellipse  or  hyperbola,  the  perpendicular  from  the 

focus  will  meet  the  tangent  on  the  circumference  of  this  circle. 

Or,  conversely,  if  from  any  point  F  (see  figure,  p.  177)  we 

draw  a  radius  vector  FT  to  a  given  circle,  and  draw  TP  perpen- 

dicular to  FT,  the  line  TPwill  always  touch  a  conic  section,  having 

F  for  its  focus,  which  will  be  an  ellipse  or  hyperbola,  according  as 
F  is  within  or  without  the  circle. 

It  may  be  inferred  from  Art.  188,  Ex.  2,  that  the  line  CT, 

whose  length  =  a,  is  parallel  to  the  focal  radius  vector  F'P. 
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191.  To  find  the  angle  subtended  at  the  focus  by  the  tangent 

drawn  to  a  central  conic  from  any  point  (xy}. 

Let  the  point  of  contact  be  (x'tf),  the  centre  being  the  origin, 
then,  if  the  radii  from  the  focus  F  to  the  points  (xy),  (xy), 

be  p,  p',  and  make  angles  6,  6',  with  the  axis,  it  is  evident  that 

P  P 

Hence  cos(0-  0' 

but  from  the  equation  of  the  tangent  we  must  have **  +  y£-i 
"?"  +  V  - 

Substituting  this  value  of  yy',  we  get 

or  =  e*xx'  +  ex  H-  ex'  -f  a*  =  (a  -f  ex]  (a  +  ea;')  ; 

or,   since   p'  =  a  +  ex',    we    have,    (see    O'Brien's     Coordinate 
Geometry,  p.  156), 

eo.(tf-flO-2±2. 
Since  this  value  depends  solely  on  the  coordinates  xy,  and  does 
not  involve  the  coordinates  of  the  point  of  contact,  either  tangent 

drawn  from  xy  subtends  the  same  angle  at  the  focus.  Hence, 

The  angle  subtended  at  the  focus  by  any  chord  is  bisected  by  the 

line  joining  the  focus  to  its  pole. 

192.  The  line  joining  the  focus  to  the  pole  of  any  chord 

passing  through  it  is  perpendicular  to  that  chord. 

This  may  be  deduced  as  a  particular  case  of  the  last  Article, 

the  angle  subtended  at  the  focus  being  in  this  case  180°;  or 
directly  as  follows  :  —  The  equation  of  the  perpendicular  through 

(/vt/-y»  ?/?/  \ 

—  ,  +  -jr  =  !  )  is>  as  in 

Art.  180,  ^_^=c" 

*  "  y  " But  if  xy'  be  anywhere  on  the  directrix,  we  have  x'  =  —  ,  and 

it  will  then  be  found  that  both  the  equation  of  the  polar  and  that 

of  the  perpendicular  are  satisfied  by  the  coordinates  of  the  focus 

(x  =  c,y=  0). 
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When  in  any  curve  we  use  polar  coordinates,  the  portion 
intercepted  by  the  tangent  on  a  perpendicular  to  the  radius  vector 

drawn  through  the  pole  is  called  the  polar  subtangent.  Hence 

the  theorem  of  this  Article  may  be  stated  thus :  The  focus  being 

the  pole,  the  locus  of  the  extremity  of  the  polar  subtangent  is  the 
directrix. 

It  will  be  proved  (Chap,  xn.)  that  the  theorems  of  this  and 

the  last  Article  are  true  also  for  the  parabola. 
Ex.  1 .  The  angle  is  constant  which  is  subtended  at  the  focus,  by  the  portion  in- 

tercepted on  a  variable  tangent  between  two  fixed  tangents. 

ByArt.l91,itis  half  the  angle  subtended  by  the  chord  of  contact  of  the  fixed  tangents. 

Ex.  2.  If  any  chord  PP'  cut  the  direc- 
trix in  D,  then  FD  is  the  external  bisector 

of  the  angle  PFP*.  For  FTie  the  internal 
bisector  (Art.  191) ;  but  D  is  the  pole  of 

FT1  (since  it  is  the  intersection  of  PP',  the 
polar  of  T,  with  the  directrix,  the  polar  of 

F) ;  therefore,  DFte  perpendicular  to  FTt 
and  is  therefore  the  external  bisector. 

[The  following  theorems  (communi- 
cated to  me  by  the  ROT.  W.  D.  Sadleir)  are 

founded  on  the  analogy  between  the  equations  of  the  polar  and  the  tangent.] 

Ex.  3.  If  a  point  be  taken  anywhere  on  a  fixed  perpendicular  to  the  axis,  the  per- 
pendicular from  it  on  its  polar  will  pass  through  a  fixed  point  on  the  axis.  For  the 

intercept  made  by  the  perpendicular  will  (as  in  Art.  180)  be  eV,  and  will  therefore  be 

constant  when  x'  is  constant. 

Ex.  4.  Find  the  lengths  of  the  perpendicular  from  the  centre  and  from  the  foci  on 

the  polar  of  afy*. 

Ex.  5.  Prove  CM.  PN'  —  b*.    This  is  analogous  to  the  theorem  that  the  rectangle 
under  the  normal  and  the  central  perpendicular  on 
tangent  is  constant. 

Ex.6.  Prove  PN1.  AW  -  ̂   (a*  -  eV2).  When 
P  is  on  the  curve  this  equation  gives  us  the  known 

expression  for  the  normal  =  —  (Art.  181). 

Ex.  7.  Prove  FG .  F'G'  =  CM .  AW.  When  P  is 
on  the  curve  this  theorem  becomes  FG .  F'G'  =  £a. 

193.    To  find  the  polar  equation  of  the  ellipse  or  hyperbola, 

the  focus  F'  being  the  pole. 

The  length  of  the  focal  radius  vector  (Art.  182)=a-<u-'; 
but  x'  (being  measured  from  the  centre)  =  p  cos#  +  c. 
Hence  p  =  a  —  ep  cos  0  —  ec, 

1 
or 

=  a(l-e*)  =fr2 ~~  1  +  e  cos0  ~~ 

_ 

a  '  1  +e  cos0' 
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The  double  ordinate  at  the  focus  is  called  the  parameter  ;  its 

half  is  found,  by  making  6  =  90°  in  the  equation  just  given,  to  be 

=  — =a(l  — e8).     The  parameter  is  commonly  denoted  by  the 

letter  p.     Hence  the  equation  is  often  written 

P=2  '  l  +  ecos0* 

The  parameter  is  also  called  the  Latus  Rectum. 

Ex.  1.  The  harmonic  mean  between  the  segments  of  a  focal  chord  is  constant, 

and  equal  to  the  semi-parameter. 
For,  if  the  radius  vector  FP,  when  produced  backwards  through  the  focus,  meet 

the  curve  again  in  P',  then  FP  being  ̂   •  j— e  ̂  fl ,  FP1,  which  answers  to  (6  +  180°), 

wm==2't  l-ecos0' 

Hence  £  +  jH- 

Ex.  2.  The  rectangle  under  the  segments  of  a  focal  chord  is  proportional  to  the 
whole  chord. 

This  is  merely  another  way  of  stating  the  result  of  the  last  Example ;  but  it  may 

be  proved  directly  by  calculating  the  quantities  FP.  FP',  and  FP  +  FP',  which  are 
easily  seen  to  be  respectively 

a2"  1  —  e2  cos20'  M    ~a    1  —  e2  oos*6  * 

Ex.  8.  Any  focal  chord  is  a  third  proportional  to  the  transverse  axia  and  the 
parallel  diameter. 

For  it  will  be  remembered  that  the  length  of  n  jemi-diameter  making  an  angle  fl 
with  the  transverse  axis  is  (Art.  161) 

Hence  the  length  of  the  chord  FP  +  FP'  found  in  the  last  Example  =  —  . 

Ex.  4.  The  sum  of  two  focal  chords  drawn  parallel  to  two  conjugate  diameters  i* 
constant. 

For  the  sum  of  the  squares  of  two  conjugate  diameters  is  constant  (Art.  173). 

Ex  5.  The  sum  of  the  reciprocals  of  two  focal  chords  at  right  angles  10  each  other 
is  constant. 

194.   The  equation  of  the  ellipse,  referred  to  the  vertex,  is 

y=-x-^x=px-jx. 
B  B 
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Hence,  in  the  ellipse,  the  square  of  the  ordinate  is  less  than  the 

rectangle  under  the  parameter  and  abscissa. 

The  equation  of  the  hyperbola  is  found  in  like  manner, 

Hence,  in  the  hyperbola,  the  square  of  the  ordinate  exceeds  the 

rectangle  under  the  parameter  and  abscissa. 

We  shall  show,  in  the  next  chapter,  that  in  the  parabola 

these  quantities  are  equal. 

It  was  from  this  property  that  the  names  parabola,  hyperbola, 

and  ellipse,  were  first  given  (see  Pappus,  Math.  Coll.,  Book  VII.). 

CONFOCAL  CONICS.* 

194  (a).  Since  the  distance  between  the  foci  is  2c,  where 

c*  =  a8  —  V,  two  concentric  and  coaxal  conies  will  have  the  same 
foci  when  the  difference  of  the  squares  of  the  axes  is  the  same 

for  both  ;  and  if  we  take  the  ellipse  whose  semi-axes  are  a 
and  b,  any  conic  will  be  confocal  with  it,  whose  equation  is 
of  the  form 

-^-4.      y*       -1 
«*±A.*      &'±V  " 

If  we  give  the  positive  sign  to  X2,  the  confocal  conic  will  be 

an  ellipse;  it  will  also  be  an  ellipse  when  X8  is  negative  as 

long  as  it  is  less  than  b*.  When  X8  is  between  V  and  a8,  the 

curve  will  be  a  hyperbola,  and  when  X8  is  greater  than  a8,  the 

curve  is  imaginary.  If  \*  =  b*,  the  equation  reducing  itself 
to  y  =  0,  the  axis  of  x  is  itself  the  limit  which  separates  con- 
focal  ellipses  from  hyperbolas.  But  the  two  foci  belong  to  this 

limit  in  a  special  sense.  In  fact,  through  a  given  point  can 

in  general  be  drawn  two  conies  confocal  to  a  given  one,  since 

we  have  a  quadratic  to  determine  X2,  viz. 

or          X4 -  X»  (a8 4  &' - x* -  y'8)  4 a*b* -  6V* -  a y*  =  0. 

When  y'  =  0,  this  quadratic  becomes   (X'2  -  £'2)  (X'2  -  a'2  4  a/8)  =  0, 
and  one  of  its  roots  is  Xs  =  b*,  but  if  we  have  also  x'*  =  aa  -  b*, 

*  This  section  may  be  omitted  on  a  first  reading. 
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the  second  root  is  also  X2  =  &2,  and  therefore  the  two  foci  are  in 
a  special  sense  points  corresponding  to  that  value  of  X". 

If  in  the  quadratic  for  X2  we  substitute  Xa  =  a8,  we  get  the 

positive  result  (a2  -  b")  xf*  ;  if  we  substitute  X*  =  5*  we  get  the 

negative  result  (52  —  a2)  if*  ;  if  we  substitute  negative  infinity  we 
get  a  positive  result  ;  hence,  one  of  the  roots  lies  between 

a*  and  b*9  and  the  other  is  less  than  &2;  that  is  to  say,  one 
of  the  conies  is  a  hyperbola  and  the  other  an  ellipse,  as  is 

evident  geometrically.  In  fact,  through  a  given  point  P  can 

clearly  be  described  two  conies  having  two  given  points  F,  Ff 
for  foci  ;  viz.  the  ellipse,  whose  major  axis  is  the  sum  of  FP, 

F'P,  and  the  hyperbola  whose  transverse  axis  is  the  difference 
of  the  same  lines.  Conversely,  if  a',  a"  be  the  semi-axes  major 

of  the  ellipse  and  hyperbola,  FP  and  F'P  are  a'  +  a"  and 
a'  -a". 

194(5).  This  theory  can  be  made  to  furnish  a  kind  of 

coordinate  system  which  is  sometimes  employed  ;  viz.  any  point 
P  is  known  when  we  know  the  axes  of  the  two  conies,  confocal 

to  a  given  one,  which  can  be  drawn  through  it  ;  and  in  terms 

of  these  axes  can  be  expressed  the  ordinary  coordinates  of  P, 

and  the  lengths  of  all  other  lines  geometrically  connected  with 

it.  Perhaps  the  easiest  way  of  getting  such  expressions  is 

to  investigate  anew  the  problem  of  drawing  through  P  a  conic 

with  given  foci,  taking  for  unknown  quantity  the  transverse 

axis  of  the  conic.  Then  since  c2  is  known,  we  write  a*  —  c*  for 
&8.  and  have 

or  a4  -  a8  (a'8  +  y'*  +  (?)  +  cV2  =  0. 

In  like  manner,  if  Z>*  had  been  taken  as  the  unknown  quantity 
we  should  have  had 

The  products  of  the  roots  of  these  equations  are  respectively 

cV2  and  —  C2/2.  Hence,  we  have  at  once  expressions  for  the 
coordinates  of  the  intersections  of  two  confocal  conies,  viz. 

cV2  =  a'V2,  cy2  =  -  V*b"*.  The  last  value  being  negative, 

it  follows  that  one  of  the  values  of  b2  is  positive  and  the  other 
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negative;  that  is  to  say,  that  one  of  the  conies  is  an  ellipse 

and  the  other  a  hyperbola.  Considering  then  b"*  as  containing 
implicitly  a  negative  sign,  the  values  we  have  obtained  for  the 
coordinates  may  be  written  symmetrically 

194  (c).  From  the  second  term  in  either  of  the  equations 
we  get  an  expression  for  the  square  of  the  radius  vector  to 
the  point  P,  viz. 

This  also  may  be  got  by  adding  the  expressions  for  x*  an 
just  found,  since 

a"a"*  -  W  -  a"  (a'"  -  ft"»)  +  bm  (a"  - 

and  a"-b'*  =  a"*-b"*  =  c\ 

The  square  of  the  semi-diameter  of  the  ellipse  conjugate  to 

CPis  given  by  the  equation  ff  «  a"  +  6'8  -  (a"  +  &"*),  and  is 
therefore  V*  -  b"*  or  a"  -  a"*. 

If  p'  be  the  perpendicular  on  the  tangent  to  the  ellipse  at  P, 
we  have  $p'  —  ab\  and  therefore 

In  like  manner  if  p"  be  the  perpendicular  on  the  tangent  to 
the  hyperbola  we  have 

The  reader  will  observe  the  symmetry  which  exists  between 

these  values  for  j/8,  p"*%  and  the  values  already  found  for 
a/*,  ya.  If  the  two  tangents  at  P  be  taken  as  axes  of  coor- 

dinates, p',  p"  are  the  coordinates  of  the  centre  G.  The 
analogy  then  between  the  values  for  p',  p"  and  those  for  #',  y' 
may  be  stated  as  follows:  With  the  point  P  as  centre,  two 
confocal  conies  may  be  described  having  the  tangents  at  P 
as  axes,  and  intersecting  in  G.  The  axes  of  the  new  system 

are  a',  a"  ;  5',  b"  ;  and  the  tangents  at  G  to  the  new  system 
are  the  axes  of  the  old  system. 
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194  (d).   Keturning  to  the  quadratic  of  194  (a),  if  X",  x"1 

be  the  roots,  we  have  X'2X"a  =  a8^  -  b  *x"2  -  ay  2.     Now  if  x'\f 
x9      if 

be   a   point    external    to    —  j  +  jk  ««  1,   we    have    V  =  a'2  —  a*, 

X"2  =  a"8-a8;  and  it  will  be  observed  that  X"a  is  essentially 
negative,  since  the  axis  of  any  hyperbola  of  the  system  is  less 
than  that  of  any  ellipse.  Thus  we  have 

The  expression  given  (Ex.  3,  Art.  169)  for  the  angle  between 
the  tangents  to  an  ellipse  from  an  external  point  may  be  thrown 
into  the  form 

8 

(a"  -o»)  +(«"*-«")  ' 
SXli 

Now,  when  we  have  a  formula  tan<ft=  .,   D  we  have  at  once 
A  —  /. 

tan  J<£  =  ̂   ,  or  in  the  present  case  = 

We  have  seen  (Art.  189)  that  the  tangents  PT,  Ft  are 
equally  inclined  to  the  tangent  to  the  confocal  ellipse  at  P,  or, 
in  other  words,  that  that  tangent  is  the  external  bisector  of  the 

angle  TPt.  If  then  that  tangent  make  an  angle  ty  with  P71, 
•^r  will  be  the  complement  of  J<£,  and  we  have 

COR.  1.   We  have  always 

o'8  cosvi/r  4  a"*  sin8>|r  =  a*. 

COR.  2.  If  on  the  tangents  PT,  P*  be  taken  from 
portions,  equal  respectively  to  the  focal  distances  PF, 
the  length  of  the  line  joining  their  extremities  will  be  2a.  For 

if  we  consider  the  triangle  whose  sides  are  a'  4  a'',  a'  —  a"  (see 
Art.  194a)  and  2a,  and  apply  the  ordinary  trigonometric  formula 

tan2  A  (7=  (*""a)(*-"fr)     we  find  for  the  angle  between  the  first 8(s-c) 
two  lines  the  same  value  as  that  just  found  for  <£. 

COR.  3.   If  from  a  point  P  tangents  be  drawn  to  two  fixed 

confocal  ellipses,  the  ratio    (sin-^r  :  sin\/r')   of  the  sines  of  the 
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angles  which  these  tangents  make  with  the  tangent  to  the 
confocal  ellipse  passing  through  Pwill  be  constant  while  P  moves 

on  that  ellipse.  For  if  a  and  A  be  the  semi-axes  of  the 

interior  ellipses,  we  have,  from  what  has  been  just  proved, 

sin  T/T  /  /  a*  —  a*  \ 

sint'~  V  ((F^f)' 
an  expression  not  involving  a"*,  and  therefore  the  same  for 

every  point  on  the  ellipse  a'. 

THE   ASYMPTOTES. 

195.  We  have  hitherto  discussed  properties  common  to  the 

ellipse  and  the  hyperbola.  There  is,  however,  one  class  of  pro- 
perties of  the  hyperbola  which  have  none  corresponding  to  them 

in  the  ellipse,  those,  namely,  depending  on  the  asymptotes, 
which  in  the  ellipse  are  imaginary. 

We  saw  that  the  equation  of  the  asymptotes  was  always 

obtained  by  putting  the  terms  containing  the  highest  powers  of 

the  variables  =  0,  the  centre  being  the  origin.  Thus  the  equation 
of  the  curve,  referred  to  any  pair  of  conjugate  diameters,  being 

^..l-l 

a"      ft"       » 
that  of  the  asymptotes  is 

Hence  the  asymptotes  are  parallel  to  the  diagonals  of  the  paral- 

lelogram, whose  adjacent  sides  are  any  pair  of  conjugate  semi- 
diameters.  For,  the  equation  of 

CT'is-  =  —.  ,  and  must,  therefore, 
x      a  ' 

coincide  with  one  asymptote,  while 

the  equation  of  AB  (-,  +  |/= 

is  parallel  to  the  other(see  Art.  167). 

Hence,  given  any  two  conjugate  diameters,  we  can  find  the 

asymptotes;  or,  given  the  asymptotes,  we  can  find  the  diameter 

conjugate  to  any  given  one ;  for  if  we  draw  A  0  parallel  to  one 

asymptote,  to  meet  the  other,  and  produce  it  till  OB=  AO,  we 
find  Bj  the  extremity  of  the  conjugate  diameter. 
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196.  The  portion  of  any  tangent  intercepted  by  the  asymptotes 
is  bisected  at  the  curve,  and  is  equal  to  the  conjugate  diameter. 

This  appears  at  once  from  the  last  Article,  where  we  have 
proved  AT=  l>  =  AT  ;  or  directly,  taking  for  axes  the  diameter 
through  the  point  and  its  conjugate,  the  equation  of  the  asymp- 

totes is 

Hence,  if  we  take  x  —  a',  we  have  y  =  ±  V  ;  but  the  tangent  at 
A  being  parallel  to  the  conjugate  diameter,  this  value  of  the 
ordinate  is  the  intercept  on  the  tangent. 

197.    If  any  line  cut  a  hyperbola,  the  portions  DE,  FG,  in- 
tercepted between  the  curve  and  its  asymptotes,  are  equal. 

For,  if  we  take  for  axes  a 
diameter  parallel  to  DG  and 
its  conjugate,  it  appears  from 
the  last  Article  that  the  por- 

tion DG  is  bisected  by  the 
diameter  ;  so  is  also  the  portion 

EF;  hence  DE=FG. 

The  lengths  of  these  lines  can  immediately  be  found,  for, 

from  the  equation  of  the  asymptotes  (ji""f*"0)j  we  have 

Again,  from  the  equation  of  the  curve 

we  have         y  (=  EM  =  FM)  -  ±  V  J{^  - 

Hence  DE  (=  FG}  =  V  g,  -  J  (  ~  -  l)}  , 

and 

198.  From  these  equations  it  at  once  follows  that  the  rect- 

angle DE.  DF  is  constant,  and  =  V*.  Hence,  the  greater  DF  is, 
the  smaller  will  DE  be.  Now,  the  further  from  the  centre  we 

draw  DF  the  greater  will  it  be,  and  it  is  evident  from  the  value 
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given  in  the  last  article,  that  by  taking  x  sufficiently  large,  we 

can  make  DF  greater  than  any  assigned  quantity.  Hence, 

the  further  from  the  centre  we  draw  any  line,  the  less  will  be  the 

intercept  between  the  curve  and  its  asymptote,  and  by  increasing 

the  distance  from  the  centre,  we  can  make  this  intercept  less  than 

any  assigned  quantity. 

199.  If  the  asymptotes  be  taken  for  axes,  the  coefficients  g 
and  f  of  the  general  equation  vanish,  since  the  origin  is  the 
centre  ;  and  the  coefficients  a  and  b  vanish,  since  the  axes  meet 

the  curve  at  infinity  (Art.  138,  Ex.  4)  ;  hence  the  equation  re- 
duces to  the  form 

»S~Tf. 
The  geometrical  meaning  of  this  equation  evidently  is,  that 

the  area  of  the  parallelogram  formed  by  the  coordinates  is  constant. 

The  equation  being  given  in  the  form  xy  —  #*,  the  equation 
of  any  chord  is  (Art.  86), 

or 

Making  x'**x"  and  /  =  #",  we  find  the  equation  of  the  tangent 

or  (writing  x'y'  for 

From  this  form  it  appears  that  the  intercepts  made  on  the 

asymptotes  by  any  tangent  =2x'  and  2#';  their  rectangle  is, 

therefore,  4£8.  Hence,  the  triangle  which  any  tangent  forms  with 
the  asymptotes  has  a  constant  area,  and  is  equal  to  double  the  area 

of  the  parallelogram  formed  by  the  coordinates. 

Ex.  1.  If  two  fixed  points  (x'y1,  af'y")  on  a  hyperbola  be  joined  to  any  variable 
point  on  the  curve  (»"y")»  the  portion  which  the  joining  lines  intercept  on  either 
asymptote  is  constant. 

The  equation  of  one  of  the  joining  lines  being 

the  intercept  made  by  it  from  the  origin  on  the  axis  of  x  is  found,  by  making  y  =  0,  to 

be  x'"  +  x'.  Similarly  the  intercept  from  the  origin  made  by  the  other  joining  line  is 
x'"  +  x",  and  the  difference  between  these  two  (of  -  x")  is  independent  of  the  position 
of  the  point  x'"y"'. 
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Ex.  2.  Find  the  coordinates  of  the  intersection  of  the  tangents  at  x'y',  x"y". 
Solve  for  x  and  y  from 

x'y  +  y'x  =  W,     x"y  +  y"x  =  W, 

W  (x1  -  x") and  we  find 

,  _  y,x>,   » 
/fc*      yt2  2x'x" 

which  if  we  substitute  for  y',  y",  —  ,     „  becomes     ,  -  r,  . 
O    V     ff 

Similarly  9~  f+f 

200.  Jb  express  the  quantity  k*  in  terms  of  the  lengths  of  the 
axes  of  the  curve. 

Since  the  axis  bisects  the  angle  between  the  asymptotes,  the 

coordinates  of  its  vertex  are  found,  by  putting  x=y  in  the. 

equation  xy  =  &'2,  to  be  x  =  y  =  k. 
Hence,  if  6  be  the  angle  between  the  axis  and  the  asymptote 

a  =  "2k  cos  0, 

(since  a  is  the  base  of  an  isosceles  triangle  whose  sides  =  k  and 

base  angle  =0),  but  (Art.  165) 

henre  k=     -  . 

And  the  equation  of  the  curve,  referred  to  its  asymptotes,  is 

201.  The  perpendicular  from  the  focus  on  the  asymptote  is 

equal  to  the  conjugate  semi-axis  b. 

For  it  is  CFsmO,  but  CF=  V(«8+  &2),  and  sin0=  -^  —  ̂   . 
This  might  also  have  been  deduced  as  a  particular  case  of  the 

property,  that  the  product  of  the  perpendiculars  from  the  foci  on 

any  tangent  is  constant,  and  =  —  ~b*.  For  the  asymptote  may  be 
considered  as  a  tangent,  whose  point  of  contact  is  at  an  infinite 

distance  (Art.  154),  and  the  perpendiculars  from  the  foci  on  it 

are  evidently  equal  to  each  other,  and  on  opposite  sides  of  it. 

202.  The  distance  of  the  focus  from  any  point  on  the  curve  is 

equal  to  the  length  of  a  line  drawn  through  the  point  parallel  to  an 

asymptote  to  meet  the  directrix. 

cc 
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For  the  distance  from  the  focus  is  e  times  the  distance  from 

the  directrix  (Art.  186),  and  the  distance  from  the  directrix  is  to 

the  length  of  the  parallel  line  as  cos#  (=  -  ,  Art.  167 )  is  to  1. \       6  / 

Hence  has  heen  derived  a  method  of  describing  the  hyperbola 

by  continued  motion.  A  ruler  ABR,  bent 

at  j#,  slides  along  the  fixed  line  DU ;  a 

thread  of  a  length  =  RB  is  fastened  at  the 
two  points  R  and  F,  while  a  ring  at  P  keeps 

the  thread  always  stretched ;  then,  ae  the 

ruler  is  moved  along,  the  point  P  will  de- 
scribe an  hyperbola,  of  which  F  is  a  focus, 

DD'  a  directrix,  and  BR  parallel  to  an 
asymptote,  since  PF must  always  =Pfi. 



(    195    ) 

CHAPTER   XII. 

THE  PARABOLA. 

REDUCTION  OF  THE  EQUATION. 

203.  THE  equation  of  the  second  degree  (Art.  137)  will  re- 

present a  parabola,  when  the  first  three  terms  form  a  perfect 
square,  or  when  the  equation  is  of  the  form 

(OLX  +  0y¥  +  2gx  +  2fy  +  c  =  0. 

We  saw  (Art.  140)  that  we  could  not  transform  this  equation 
so  as  to  make  the  coefficients  of  x  and  y  both  to  vanish.  The 

form  of  the  equation,  however,  points  at  once  to  another  method 

of  simplifying  it.  We  know  (Art.  34)  that  the  quantities 

ax  -f  /%,  2gx  +  2/7/  +  c,  are  respectively  proportional  to  the 
lengths  of  perpendiculars  let  fall  from  the  point  (xy)  on  the 
right  lines,  whose  equations  are 

Hence,  the  equation  of  the  parabola  asserts  that  the  square  of 

the  perpendicular  from  any  point  of  the  curve  on  the  first  of 

these  lines  is  proportional  to  the  perpendicular  from  the  same 

point  on  the  second  line.  Now  if  we  transform  our  equa- 
tion, making  these  two  lines  the  new  axes  of  coordinates,  then 

since  the  new  x  and  y  are  proportional  to  the  perpendiculars 

from  any  point  on  the  new  axes,  the  transformed  equation  must 

be  of  the  form  y*  —px. 
The  new  origin  is  evidently  a  point  on  the  curve  ;  and  since 

for  every  value  of  a;  we  have  two  equal  and  opposite  values  of  y, 
our  new  axis  of  x  will  be  a  diameter  whose  ordinates  are  parallel 

to  the  new  axis  of  y.  But  the  ordinate  drawn  at  the  extremity 

of  any  diameter  touches  the  curve  (Art.  145)  ;  therefore  the  new 

axis  of  y  is  a  tangent  at  the  origin.  Hence  the  line  ax  +  /3y  is 

the  diameter  passing  through  the  origin,  and  2gx  +  2fy  +  c  is 

the  tangent  at  the  point  where  this  diameter  meets  the  curve. 

And  the  equation  of  the  curve  referred  to  a  diameter  and 

tangent  at  its  extremity,  as  axes,  is  of  the  form  y*  =px. 
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204.  The  new  axes  to  which  we  were  led  in  the  last  article 

are  in  general  not  rectangular.  We  shall  now  show  that  it  is 

possible  to  transform  the  equation  to  the  form  y*  =px,  the  new 
axes  being  rectangular.  If  we  introduce  the  arbitrary  constant 

&,  it  is  easy  to  verify  that  the  equation  of  the  parabola  may  be 
written  in  the  form 

Hence,  as  in  the  last  article,  ax  -f  fiy  -f  k  is  a  diameter, 

2  (g  —  ak)  x  +  2  (/  -  {Sk}  y  4-  c  —  k*  is  the  tangent  at  its  ex- 
tremity, and  if  we  take  these  lines  as  axes,  the  transformed 

equation  is  of  the  form  y'^—px.  Now  the  condition  that  these 
new  axes  should  be  perpendicular  is  (Art.  25) 

7      ag  +  j3f 
whence  K  —  -?  —  -^  . 

a  +p 

Since  we  get  a  simple  equation  for  &,  we  see  that  there  is  one 

diameter  whose  ordinates  cut  it  perpendicularly,  and  this  dia- 
meter is  called  the  axis  of  the  curve. 

205.  We  might  also  have  reduced  the  equation  to  the  form 

yl—px  by  direct  transformation  of  coordinates.  In  Chap.  XI. 
we  reduced  the  general  equation  by  first  transforming  to  parallel 

axes  through  a  new  origin,  and  then  turning  round  the  axes  so 

as  to  make  the  coefficient  of  xy  vanish.  We  might  equally 

well  have  performed  this  transformation  in  the  opposite  order  ; 

and  in  the  case  of  the  parabola  this  is  more  convenient,  since 

we  cannot,  by  transformation  to  a  new  origin,  make  the  coeffi- 
cients of  x  and  y  both  vanish. 

We  take  for  our  new  axes  the  line  ax  +  /3y,  and  the  line 

perpendicular  to  it  @x  —  ay.  Then  since  the  new  X  and  Y  are 
to  denote  the  lengths  of  perpendiculars  from  any  point  on  the 

new  axes,  we  have  (Art.  34) 

m 

If  for  shortness  we  write  a*  +  $*  =  7*,  the  formulae  of  trans- 
formation become 

whence  fx  =  a  Y  +  /3  JT     y   =  &Y—  aX. 
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Making  these  substitutions  in  the  equation  of  the  curve  it  becomes 

73  F  »  +  2  (gft  -fa)  X+2(g«.  +//3)  F-f  7c  =  0. 
Thus,  by  turning  round  the  axes,  we  have  reduced  the  equation 

to  the  form  jy  +  2ff'x  +  2y^  +  c'  =  0. 

If  we  change  now  to  parallel  axes  through  any  new  origin  xy', 

substituting  x  -f  #',  y  +  y"  for  x  and  y,  the  equation  becomes 

&y  +  2/oj  +  2  (ay  +/')  .y  +  &y  +  2/«'  +  2/Y  +  c'  =  o. 
The  coefficient  of  a?  is  thus  unaltered  by  transformation,  and 

therefore  cannot  in  this  way  be  made  to  vanish.  But  we  can 

evidently  determine  x'  and  /,  so  that  the  coefficients  of  y  and 
the  absolute  term  may  vanish,  and  the  equation  thus  be  reduced 

to  y^—px.  The  actual  values  of  the  coordinates  of  the  new 

,        f      ,     f'*-b'c'  2g' 
origin  are  y  —  —  jj  ,  x  =         ,,,  —  ;  and^>  is  evidently  -  ~  ,  or 

in  terms  of  the  original  coefficients 

When  the  equation  of  a  parabola  is  reduced  to  the  form  y*  =  px, 
the  quantity  p  is  called  the  parameter  of  the  diameter,  which  is 

the  axis  of  x  ;  and  if  the  axes  be  rectangular,  p  is  called  the 

principal  parameter  (see  Art.  194). 
Ex.  1.  Find  the  principal  parameter  of  the  parabola 

9x*  +  2ixy  +  %2  +  22*  +  46y  +  9  =  0. 

First,  if  we  proceed  as  in  Art.  204,  we  determine  k  =  5.    The  equation  may  then 
be  written 

(80?  +  4y  +  5)2  =  2  (4x  -  By  +  8). 

Now  if  the  distances  of  any  point  from  3x  +  4y  +  5  and  4a:  -  3y  +  8  be  Y  and  X,  we 
have 

and  the  equation  may  be  written  Y2  =  %X. 
The  process  of  Art.  205  is  first  to  transform  to  the  lines  3x  +  4y,  4a?  -  3y  as  axes, 

when  the  equation  becomes 

or 

which  becomes  3'  2  =  \  X  when  transformed  to  parallel  axes  through  (-  f  ,  -  1). 

Ex.  2.  Find  the  parameter  of  the  parabola 

^-?3,  +      _??_+1  =  0>  An,. a?      ad 

This  value  may  also  be  deduced  directly  by  the  help  of  the  following  theorem, 

which  will  be  proved  afterwards  :—  "  The  focus  of  a  parabola  is  the  foot  of  a  perpendi- 
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cular  let  fall  from  the  intersection  of  two  tangents  which  cut  at  right  angles  on  their 

chord  of  contact  ;"  and  "  The  parameter  of  a  conic  is  found  by  dividing  four  times 

the  rectangle  under  the  segments  of  a  focal  chord  by  the  length  of  that  chord" 
(Art.  193,  Ex.  1). 

Ex.  8.  If  a  and  b  be  the  lengths  of  two  tangents  to  a  parabola  which  intersect  at 
right  angles,  and  TO  one  quarter  of  the  parameter,  prove 

2  ? >        A 

206.  If  in  the  original  equation  gfi  =/a,  the  coefficient  of  x 
vanishes  in  the  equation  transformed  as  in  the  last  article  ;  and 

that  equation  b'y*  -\-2fy-\-c—  0,  being  equivalent  to  one  of  the form 

represents  two  real,  coincident,  or  imaginary  lines  parallel  to  the 
new  axis  of  x. 

We  can  verify  that  in  this  case  the  general  condition  that 

the  equation  should  represent  right  lines  is  fulfilled.  For  this 

condition  may  be  written 

c  (ab  -  h*)  =  af  -  Mify  +  If. 

But  if  we  substitute  for  a,  ̂,  £,  respectively,  a2,  a$,  y82,  the  left- 
hand  side  of  the  equation  vanishes,  and  the  right-hand  side 

becomes  (/a-#/9)2.  Writing  the  condition  fa  =g$  in  either 

of  the  forms  fa*  =gaj3,  fa/3  =g/3'\  we  see  that  the  general  equa- 
tion of  the  second  degree  represents  two  parallel  right  lines 

when  W  =  ob,  and  also  either  af=  hg^  orfh  =  bg. 

*207.  If  the  original  axes  were  oblique,  the  equation  is  still 
reduced,  as  in  Art.  205,  by  taking  for  our  new  axes  the  line 

ax  -f  /%,  and  the  line  perpendicular  to  it,  whose  equation  is 

(Art.  26)  (0  -  a  cosw)  a?  -  (a  -  £  cosw)  y  =  0. 

And  if  we  write  7*  =  a2  4  £*  —  2a/3  cosa>,  the  formulae  of  trans- 
formation become,  by  Art.  34, 

<yY=(ax  +  @y]  sinw,   <yX=  (/S  —  a  cos  w)  a;—  (a  —  /Scosw)^; 

whence  yx  sin  CD  =  (a  -  /8  cos  eo)  Y+  (BX  sin  a>  ; 

<yy  sin  a)  =  (/3  —  a  cos  CD)  Y—  aX  sin  CD 

Making  these  substitutions,  the  equation  becomes 

+  2sinao>(#£-/a)  X 

+  2  sin  CD  {((7  (a  -/3  cos  «)+/(/:?-  CCCOSCD)}  Y  4-  yc  sinaeD  =  0. 
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And  the  transformation  to  parallel  axes  proceeds  as  in  Art.  205. 

The  principal  parameter  is 

2g'          2(/a-tf/9)sin2ft> 

P— -y-- 

Ex.   Find  the  principal  parameter  of 

o2      ab      P      a       b  '  (a*  +  p  +  "2ab  cos  «)* ' 

FIGURE   OF  THE  CURVE. 

208.  From  the  equation  y*  =px  we  can  at  once  perceive  the 
figure  of  the  curve.  It  must  be  symmetrical  on  both  sides  of  the 

axis  of  a?,  since  every  value  for  x  gives  two 

equal  and  opposite  for  y.  None  of  it  can 
lie  on  the  negative  side  of  the  origin,  since 

if  we  make  x  negative,  y  will  be  imagi- 
nary, and  as  we  give  increasing  positive 

values  to  a-,  we  obtain  increasing  values 
for  y.  Hence  the  figure  of  the  curve  is 

that  here  represented. 

Although  the  parabola  resembles  the  hyperbola  in  having  in- 
finite branches,  yet  there  is  an  important  difference  between  the 

nature  of  the  infinite  branches  of  the  two  curves.  Those  of  the 

hyperbola,  we  saw,  tend  ultimately  to  coincide  with  two  diverg- 
ing right  lines ;  but  this  is  not  true  for  the  parabola,  since,  if  we 

seek  the  points  where  any  right  line  (x  =  ky  + 1)  meets  the 

parabola  (#2=^e),  we  obtain  the  quadratic 

whose  roots  can  never  be  infinite  as  long  as  k  and  I  are  finite. 

There  is  no  finite  right  line  which  meets  the  parabola  in  two 

coincident  points  at  infinity;  for  any  diameter  (y  —  m)^  which 
meets  the  curve  once  at  infinity  (Art.  142),  meets  it  once  also  in 

ni* 

the  point  x  =  —  ;  and  although  this  value  increases  as  m  in- 

creases, yet  it  will  never  become  infinite  as  long  as  m  is  finite. 

209.  The  figure  of  the  parabola  may  be  more  clearly  con- 
ceived from  the  following  theorem :  If  we  suppose  one  vertex 
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and  focus  of  an  ellipse  given,  while  its  axis  major  increases  with- 
out limit,  the  curve  will  ultimately  become  a  parabola. 

The  equation  of  the  el-  P 
lipse   referred  to  its  vertex 
is  (Art.  194) 

7S 

y*=  —  x   5  a;8. 

a          dl 
We  wish  to  express  b  in  terms  of  the  distance  VF(=m\ 

which  we  suppose  fixed.  We  have  m  =  a  —  </(a2  — 1>2)  (Art.  182), 
whence  6*  =  2am  —  m2,  and  the  equation  becomes 

2     /  2ra'J\         /2m      m*\    „ 
#2=    4m   a?-   3-    a?*. V  a  /         V  a        aV 

Now,  if  we  suppose  a  to  become  infinite,  all  but  the  first  term  of 

the  right-hand  side  of  the  equation  will  vanish,  and  the  equation 
becomes  „,« 

the  equation  of  a  parabola. 

A  parabola  may  also  be  considered  as  an  ellipse  whose  eccen- 

tricity is  equal  to  1.     For  ea=  1  --  ̂ .     Now  we  saw  that  —  2  , 

which  is  the  coefficient  of  a?"  in  the  preceding  equation,  vanished 
as  we  supposed  a  increased,  according  to  the  prescribed  condi- 

tions; hence  e?  becomes  finally  =  1. 

THE  TANGENT. 

210.    The  equation  of  the  chord  joining  two  points  on  the 

curve  is  (Art.  86)     ̂   _  ̂   (y  _  ̂   =y*-px, 

or  (y'+y")y=pz+y'y"' 
And  if  we  make  y"  =  y',  and  for  yz  write  its  equal  px,  we  have 
the  equation  of  the  tangent 

If  in  this  equation  we  put  y  =  0,  we  get  x  =  —  x',  hence  TM 
(see  fig.  next  page),  which  is  called  the  Subtangent,  is  bisected 
at  the  vertex. 

These  results  hold  equally  if  the  axes  of  coordinates  are 

oblique  ;  that  is  to  say,  if  the  axes  are  any  diameter  and  the 
tangent  at  its  vertex,  in  which  case  we  saw  (Art.  203)  that  the 

equation  of  the  parabola  is  still  of  the  form  y*  =p'x. 
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This  Article  enables  us,  there- 
fore, to  draw  a  tangent  at  any 

point  on  the  parabola,  since  we 

have  only  to  take  TV=  VM  and 

join  PT;  or  again,  having  found 

this  tangent,  to  draw  an  ordinate 

from  P  to  any  other  diameter, 

since  we  have  only  to  take  V'M'  '  =  T'V,  and  join  PM'. 

211.    The  equation  of  the  polar  of  any  point  x'y'  is  similar 
in  form  to  that  of  the  tangent  (Art.  89),  and  is,  therefore, 

Putting  y  —  0,  we  find  that  the  intercept  made  by  this  polar 

on  the  axis  of  x  is  —  xf.  Hence  the  intercept  which  the  polars  of 
any  two  points  cut  off  on  the  axis  is  equal  to  the  intercept  between 
perpendiculars  from  those  points  on  that  axis  ;  each  of  these 

quantities  being  equal  to  (x'  —  x"). 
DIAMETERS. 

212.  We  have  said  that  if  we  take  for  axes  any  diameter 

and  the  tangent  at  its  extremity,  the  equation  will  be  of  the 

form  y*=p'x. 
We  shall  prove  this  again  by  actual  transformation  of  the 

equation  referred  to  rectangular  axes  (y*=px),  because  it  is 

desirable  to  express  the  new  p'  in  terms  of  the  old  p. 
If  we  transform  the  equation  y*  —  px  to  parallel  axes  through 

any  point  (x'y'}  on  the  curve,  writing  x  +  x'  and  y  +  y'  for  x  and 
«/,  the  equation  becomes 

Now  if,  preserving  our  axis  of  x,  we  take  a  new  axis  of  y, 

inclined  to  that  of  x  at  an  angle  0,  we  must  substitute  (Art.  9), 

y  siri#  for  y}  and  x  +y  cos#  for  #,  and  our  equation  becomes 

if  sina0  4-  2/y  sin  0  =  px+py  cos  6. 

In  order  that  this  should  reduce  to  the  form  y*  =px,  we  must 
have 

2y'  sin  &  =p  cos  0,  or  tan  6  =  -±-f  . 

Now  this  is  the  very  angle  which  the  tangent  makes  with  the 
axis  of  x,  as  we  see  from  the  equation 

DD 
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The  equation,  therefore,  referred  to   a  diameter  and  tangent, 
will  take  the  form 

//- 

X,  or  y  =px. 

The  quantity  p'  is  called  the  parameter  corresponding  to  the 
diameter  VfM\  and  we  see  that  the  parameter  of  any  diameter  is 
inversely  proportional  to  the  square  of  the  sine  of  the  angle  which 

its  ordinates  make  with  the  axis,  since  p  —    .  .,„  . sin  a 

We  can  express  the  parameter  of  any  diameter  in  terms  of  the 

coordinates  of  its  vertex,  from  the  equation  tan  6  =  ~~, ;  hence j 

hence 

THE   NORMAL. 

213.    The  equation  of  a  line  through  (x'y')  perpendicular  to 

the  tangent  2yy'  =p  (x  +  x')  is  p 

If  we  seek  the  intercept  on 

the  axis  of  x  we  have  ~rjf 
M    N 

and,  since  VM=x',  we  must  have 
MN  (the  subnormal,  Art.  181)  =  %p. 

Hence  in  the  parabola  the  subnormal  is  constant,  and  equal  to 
the  semi-parameter.     The  normal  itself 
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214.  A  point  situated  on  the  axis  of  a  parabola,  at  a  distance 
from  the  vertex  equal  to  one-fourth  of  the  principal  parameter, 
is  called  the  focus  of  the  curve.  This  is  the  point  which, 
Art.  209,  has  led  us  to  expect  to  find  analogous  to  the  focus 
of  an  ellipse  ;  and  we  shall  show,  in  the  present  section,  that  a 
parabola  may  in  every  respect  be  considered  as  an  ellipse, 
having  one  of  its  foci  at  this  distance  and  the  other  at  infinity. 
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To  avoid  fractions  we  shall  often,  in  the  following  Articles,  use 
the  abbreviation  m  =  \p. 

To  find  the  distance  of  any  point  on  the  curve  from  the  focus. 

The  coordinates  of  the  focus  being  (m,  0),  the  square  of  its 
distance  from  any  point  is 

(of  -  m)*  +  y'*  =  x*  -  2mx'  -f  ma  +  ±mx'  =  (xf  +  m)\ 

Hence  the  distance  of  any  point  from  the  focus  =  x'  +  m. 
This  enables  us  to  express  more  simply  the  result  of  Art.  212, 

and  to  say  that  the  parameter  of  any  diameter  is  four  times  the 

distance  of  its  extremity  from  the  focus. 

215.  The  polar  of  the  focus  of  a  parabola  is   called   the 

directrix,  as  in  the  ellipse  and  hyperbola. 

Since  the  distance  of  the  focus  from  the  vertex  =  m,  its  polar 

is  (Art.  211)  a  line  perpendicular  to  the  axis  at  the  same  dis- 
tance on  the  other  side  of  the  vertex.  The  distance  of  any  point 

from  the  directrix  must,  therefore,  =  x'  +  m. 
Hence,  by  the  last  Article,  the  distance  of  any  point  on  the 

curve  from  the  directrix  is  equal  to  its  distance  from  the  focus. 

We  saw  (Art.  186)  that  in  the  ellipse  and  hyperbola  the 
distance  from  the  focus  is  to  the  distance  from  the  directrix  in 

the  constant  ratio  e  to  1.  We  see,  now,  that  this  is  true  for  the 

parabola  also,  since  in  the  parabola  e  =  1  (Art.  209). 
The  method  given  for  mechanically  describing  an  hyperbola, 

Art.  202,  can  be  adapted  to  the  mechanical  description  of  the 

parabola,  by  simply  making  the  angle  ABR  a  right  angle. 

216.  The  point  where  any  tangent  cuts  the  axis,  and  its  point 

of  contact,  are  equally  distant  from  the  focus. 

For,  the  distance  from  the  vertex  of  the  point  where  the 

tangent  cuts  the  axis  =x'  (Art.  210),  its  distance  from  the  focus 
is  therefore  x'  +  m. 

217.  Any  tangent  makes  equal  angles  with  the  axis  and  with 
the  focal  radius  vector. 

This  is  evident  from  inspection  of  the  isosceles  triangle, 

which,  in  the  last  Article,  we  proved  was  formed  by  the  axis, 
the  focal  radius  vector,  and  the  tangent. 

This  is  only  an  extension  of  the  property  of  the  ellipse 

(Art.  188),  that  the  angle  TPF=  T'PF'-,  for,  if  we  suppose  the 
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focus  Ff  to  go  off  to  infinity,  the  line  PF'  will  become  parallel 
to  the  axis,  and  TPF=  PTF.     (See  figure,  p.  '200) 

Hence  the  tangent  at  the  extremity  of  the  focal  ordinate  cuts 

the  axis  at  an  angle  of  45°. 

218.  To  find  the  length  of  the  perpendicular  from  the  focus  on 

the  tangent. 

The  perpendicular  from  the  point  (wz,  0)  on  the  tangent 

\yy'  =  '2m(x  +  x')}  is 

2771  (x'  +  m]         2m(x'  +  m) 

=  V^  +  SO  =  4(tmaf  +  4m')  =  Vl*  *»• 
Hence  (see  fig.,  p.  202)  FR  is  a  mean  proportional  between  FV 
and  FP. 

It  appears,  also,  from  this  expression  and  from  Art.  213  that 

FR  is  half  the  normal,  as  we  might  have  inferred  geometrically 
from  the  fact  that  TF=FN. 

219.  To  express  the  perpendicular  from  the  focus  in  terms  oj 

the  angles  which  it  makes  with  the  axis. 
We  have 

co.8-rinfT.B-  (Art.  212)  r 

Therefore  (Art.  218) 

The  equation  of  the  tangent,  the  focus  being  the  origin,  can 

therefore  be  expressed 

xcoBd  +  y  sina  +  --  =0, cos  a 

and  hence  we  can  express  the  perpendicular  from  any  other 

point  in  terms  of  the  angle  it  makes  with  the  axis. 

220.  The  locus  of  the  extremity  of  the  perpendicular  from  the 

focus  on  the  tangent  is  a  right  line. 

For,  taking  the  focus  for  pole,  we  have  at  once  the  polar 

equation 771 

p=          .   pcosa  =  ?w. 

cosa' 
which  obviously  represents  the  tangent  at  the  vertex. 

Conversely,  if  from  any  point  F  we  draw  FR  a  radius  vector 
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to  a  right  line  VR,  and  draw  PR  perpendicular  to  it,  the  line 
PR  will  always  touch  a  parabola  having  F  for  its  focus. 

We  shall  show  hereafter  how  to  solve  generally  questions  of 
this  class,  where  one  condition  less  than  is  sufficient  to  determine 

a  line  is  given,  and  it  is  required  to  find  its  envelope,  that  is 
to  say,  the  curve  which  it  always  touches. 

We  leave,  as  a  useful  exercise  to  the  reader,  the  investiga- 
tion of  the  locus  of  the  foot  of  the  perpendicular  by  ordinary 

rectangular  coordinates. 

221.  To  find  the  locus  of  the  intersection  of  tangents  which 
cut  at  right  angles  to  each  other. 

The  equation  of  any  tangent  being  (Art.  219) 

x  cos2a  +  z/  sin  a  cosa  +  w  =  0; 
the  equation  of  a  tangent  perpendicular  to  this  (that  is,  whose 

perpendicular  makes  an  angle  =  90°  +  a  with  the  axis)  is  found 
by  substituting  cos  a  for  sin  a,  and  —sin  a  for  cos  a,  or 

ajsinaa  —  y  sina  cosa-f  m  =  0. 
a  is  eliminated  by  simply  adding  the  equations,  and  we  get 

x  +  2m  =  0, 

the  equation  of  the  directrix,  since  the  distance  of  focus  from 
directrix  =  2m. 

222.  The  angle  between  any  two  tangents  is  half  the  angle 

between  the  focal  radii  vectores  to  their  points  of  contact. 

For,  from  the  isosceles  PFT,  the  angle  PTF,  which  the  tan- 
gent makes  with  the  axis,  is  half  the  angle  PFN,  which  the  focal 

radius  makes  with  it.  Now,  the  angle  between  any  two  tangents 

is  equal  to  the  difference  of  the  angles  they  make  with  the  axis, 

and  the  angle  between  two  focal  radii  is  equal  to  the  difference 

of  the  angles  which  they  make  with  the  axis. 

The  theorem  of  the  last  Article  follows  as  a  particular  case 

of  the  present  theorem  :  for  if  two  tangents  make  with  each 

other  an  angle  of  90°,  the  focal  radii  must  make  with  each  other 

an  angle  of  180°,  therefore  the  two  tangents  must  be  drawn  at 
the  extremities  of  a  chord  through  the  focus,  and,  therefore, 
from  the  definition  of  the  directrix,  must  meet  on  the  directrix. 

223.  The  line  Joining  the  focus  to  the  intersection  of  two  tangents 

bisects  the  angle  which  their  points  of  contact  subtend  at  the  focus. 
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Subtracting  one  from  the  other,  the  equations  of  two  tan- 

gents, viz. 

xcos*ct  +  y  sinacosa  -f  w  =  0,    iccos2/9  +  y  sin/3  cos/3  +  »i  =  0, 
we  find  for  the  line  joining  their  intersection  to  the  focus, 

x  sin  (a  +  £)  -  y  cos  (a  +  ft)  =  0. 

This  is  the  equation  of  a  line  making  the  angle  a  +  /&  with  the 
axis  of  x.  But  since  a  and  /3  are  the  angles  made  with  the  axis 

by  the  perpendiculars  on  the  tangent,  we  have  VFP=2a  and 

VFP'  =  2 13 ;  therefore  the  line  making  an  angle  with  the  axis 

=  a  +  @  must  bisect  the  angle  PFP'.  This  theorem  may  also  be 

proved  by  calculating,  as  in  Art.  191,  the  angle  (6  —  6')  subtended 
at  the  focus  by  the  tangent  to  a  parabola  from  the  point  xy,  when 

it  will  be  found  that  cos  (6  —  0')  =  -     —  ,  a  value  which,  being 

independent  of  the  coordinates  of  the  point  of  contact,  will 
be  the  same  for  each  of  the  two  tangents  which  can  be  drawn 

through  xy.  (See  O'Brien's  Coordinate  Geometry,  p.  156.) 

Cor.  1.  If  we  take  the  case  where  the  angle  PZ<P'=1800, 

then  PP'  passes  through  the  focus ;  the  tangents  TP,  TPr  will 

intersect  on  the  directrix,  and  the  angle  TFP=  90°  (See  Art. 
192).  This  may  also  be  proved  directly  by  forming  the  equa- 

tions of  the  polar  of  any  point  (-  m,  y'}  on  the  directrix,  and 
also  the  equation  of  the  line  joining  that  point  to  the  focus. 

These  two  equations  are 

y'y  =  2m(x-m),     2m  (y  -  y')  +  y'  (x  +  m)  =  0, 
which  obviously  represent  two  right  lines  at  right  angles  to 
each  other. 

COR.  2.  If  any  chord  PP' 
cut  the  directrix  in  Z),  then  FD 
is  the  external  bisector  of  the 

angle  PFP'.  This  is  proved  as 
at  p.  184. 

Cor.  3.  If  any  variable  tan- 

gent to  the  parabola  meet  two  fixed  tangents,  the  angle  sub- 
tended at  the  focus  by  the  portion  of  the  variable  tangent 

intercepted  between  the  fixed  tangents  is  the  supplement  of 

the  angle  between  the  fixed  tangents.  For  (see  next  figure) 
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the  angle  QRT  is  half  pFq  (Art.  222),  and,  by  the  present 
Article,  PFQ  is  obviously  also  halfpJT^,  therefore  PFQ  is  =  QRT, 
or  is  the  supplement  of  PRQ. 

COK.  4.  The  circle  circumscribing  the  triangle  formed  by  any 
three  tangents  to  a 

parabola  will  pass 
through  the  focus. 
For  the  circle  de- 

scribed through 

PR  Q  must  pass 
through  F,  since 

the  angle  contained 

in  the  segment  PFQ  will  be  the  supplement  of  that  contained 
in  PRQ. 

224.    To  find  the  polar  equation   of  the  parabola,  the  focus 
being  the  pole. 

We  proved  (Art.  214)  that  the  focal 
radius 

2m 
Hence 

This  is  exactly  what  the  equation  of  Art.  193  becomes,  if 

we  suppose  e=l  (Art.  209).  The  properties  proved  in  the 
Examples  to  Art.  193  are  equally  true  of  the  parabola. 

In  this  equation  0  is  supposed  to  be  measured  from  the  side 

FM;  if  we  suppose  it  measured  from  the  side  /T,  the  equation 
becomes 

2m 

P  =  1  +  COS0  ' 

This  equation  may  be  written 

p  COS''^#  =  TW, 

or  p*  cosj0=  (w)*, 

and  is,  therefore,  one  of  a  class  of  equations 

pn  cosw0  =  an, 
some  of  whose  properties  we  shall  mention  hereafter. 
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CHAPTER     XIII. 

EXAMPLES  AND  MISCELLANEOUS  PROPERTIES  OF  CONIC  SECTIONS. 

225.  THE  method  of  applying  algebra  to  problems  relating 

to  conic  sections  is  essentially  the  same  as  that  employed  in  the 

case  of  the  right  line  and  circle,  and  will  present  no  difficulty  to 

any  reader  who  has  carefully  worked  out  the  Examples  given  in 

Chapters  III.  and  VII.  We,  therefore,  only  think  it  necessary 

to  select  a  few  out  of  the  great  multitude  of  examples  which 

lead  to  loci  of  the  second  order,  and  we  shall  then  add  some 

properties  of  conic  sections,  which  it  was  not  found  convenient 

to  insert  in  the  preceding  Chapters. 

Ex.  1.  Through  a  fixed  point  P  is  drawn  a  line  LK  (see  fig.,  p.  40)  terminated  by 

two  given  lines.  Find  the  locus  of  a  point  Q  taken  on  the  line,  so  that  PL  =  QK. 

Ex.  2.  Two  equal  rulers  AS,  BC,  are  connected  by  u 
a  pivot  at  B ;  the  extremity  A  is  fixed,  while  the  ex- 

tremity C  is  made  to  traverse  the  right  line  AC;  find 
the  locus  described  by  any  fixed  point  P  on  EC. 

Ex.  3.  Given  base  and  the  product  of  the  tangents 

of  the  halves  of  the  base  angles  of  a  triangle  ;  find  the      - 
locus  of  vertex. 

Expressing  the  tangents  of  the  half  angles  in  terms  of  the  sides,  it  will  be  found 
that  the  sum  of  sides  is  given  ;  and,  therefore,  that  the  locus  is  an  ellipse,  of  which  the 
extremities  of  the  base  are  the  foci. 

Ex.  4.  Given  base  and  sum  of  sides  of  a  triangle ;  find  the  locus  of  the  centre  of 
the  inscribed  circle. 

It  may  be  immediately  inferred,  from  the  last  example,  and  from  Ex.  4,  p.  47,  that 
the  locua  is  an  ellipse,  whose  vertices  are  the  extremities  of  the  given  base. 

Ex.  5.  Given  base  and  sum  of  sides,  find  the  locus  of  the  intersection  of  bisectors 
of  sides. 

Ex.  6.  Find  the  locus  of  the  centre  of  a  circle  which  makes  given  intercepts  on 

two  given  lines. 

Ex.  7.  Find  the  locus  of  the  centre  of  a  circle  which  touches  two  given  circles,  or 
which  touches  a  right  line  and  a  given  circle. 

Ex.  8.  Find  locus  of  centre  of  a  circle  which  passes  through  a  given  point  anc 
makes  a  given  intercept  on  a  given  line. 

Ex.  9.  Or  which  passes  through  a  given  point,  and  makes  on  a  given  line  an  in- 
tercept subtending  a  given  angle  at  that  point. 

Ex.  10.  Two  vertices  of  a  given  triangle  move  along  fixed  right  lines;  find  th«, 
locua  of  the  third. 
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Ex.  11.  A  triangle  ABC  circumscribes  a  given  circle ;  the  angle  at  C  is  given,  and 
B  moves  along  a  fixed  line;  find  the  locus  of  A.. 

Let  us  use  polar  coordinates,  the  centre  0  being  the  pole,  and  the  angles  being 
measured  from  the  perpendicular  on  the  fixed  line;  let  the  coordinates  of  A,  B,  be  p 

0;  p',  6'.  Then  we  have  p'  cos  6'  =p.  But  it  is  easy  to  see  that  the  angle  A  OB  is 
given  (=  a).  And  since  the  perpendicular  of  the  triangle  AOB  is  given,  we  have 

pp'  sin  a 
j(pz  +  p'2  -  2pp'  cos  a)  ' 

But  0  +  0'  =  a ;  therefore  the  polar  equation  of  the  locus  is 
>22      2 

p*  COS2  (a  —  6)  +  p*  —  "2pp  cos  a  COS  (a  -  6) ' 
which  represents  a  conic. 

Ex.  12.  Find  the  locus  of  the  pole  with  respect  to  one  conic  A  of  any  tangent  to 
another  conic  B. 

Let  aft  be  any  point  of  the  locus,  and  \x  +  /j.y  +  v  its  polar  with  respect  to  the  conic 
A,  then  (Art.  89)  X,  p.,  v  are  functions  of  the  first  degree  in  a,  /3.  But  (Art.  151)  the 
condition  that  \x  +  /j.y  +  v  should  touch  B  is  of  the  second  degree  in  X,  /u,  v.  The 
locus  is  therefore  a  conic. 

Ex.  13.  Find  the  locus  of  the  intersection  of  the  perpendicular  from  a  focus  on  any 
tangent  to  a  central  conic,  with  the  radius  vector  from  centre  to  the  point  of  contact. 

Ans.  The  corresponding  directrix. 

Ex.  14.  Find  the  locus  of  the  intersection  of  the  perpendicular  from  the  centre  on 
any  tangent,  with  the  radius  vector  from  a  focus  to  the  point  of  contact.  Ans.  A  circle. 

Ex.  15.  Find  the  locus  of  the  intersection  of  tangents  at  the  extremities  of  conju- 
gate diameters.  a;2  «2 

Ans.  -  +  %-  =  2. 
a2      &• 

This  is  obtained  at  once  by  squaring  and  adding  the  equations  of  the  two  tangents, 
attending  to  the  relations,  Art.  172. 

Ex.  16.  Trisect  a  given  arc  of  a  circle.  The  points  of  trisection  are  found  as  the 
intersection  of  the  circle  with  a  hyperbola.  See  Ex.  7,  p.  47. 

Ex.  17.  One  of  the  two  parallel  sides  of  a  trapezium  is  given  in  magnitude  and 
position,  and  the  other  in  magnitude.  The  sum  of  the  remaining  two  sides  is  given  ; 
find  the  locus  of  the  intersection  of  diagonals. 

Ex.  18.  One  vertex  of  a  parallelogram  circumscribing  an  ellipse  moves  along  one 

directrix ;  prove  that  the  opposite  vertex  moves  along  the  other,  and  that  the  two 
remaining  vertices  are  on  the  circle  described  on  the  axis  major  as  diameter. 

226.  We  give  in  this  Article  some  examples  on  the  focal 

properties  of  conies. 
Ex.  1.  The  distance  of  any  point  on  a  conic  from  the  focus  is  equal  to  the  whole 

length  of  the  ordinate  at  that  point,  produced  to  meet  the  tangent  at  the  extremity  of 
the  focal  ordinate. 

Ex.  2.  If  from  the  focus  a  line  be  drawn  making  a  given  angle  with  any  tangent, 
find  the  locus  of  the  point  where  it  meets  it. 

Ex.  3.  To  find  the  locus  of  the  pole  of  a  fixed  line  with  regard  to  a  series  of  con- 
centric and  confocal  conic  sections. 

We  know  that  the  pole  of  any  line  ̂   + 1  =  l) ,  with  regard  to  the  conic 
/a2     «2        \ 
( —  +  Tjj  =  1 J  ,  is  found  from  the  equations  mx  —  a?  and  ny  =  b2  (Art.  1 69). 

E  E 
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Now,  if  the  foci  of  the  conic  are  given,  a*  —  b2  =  c2  is  given  ;  hence,  the  locus  of  the 
pole  of  the  fixed  line  is 

mx  -  ny  =  c», 

the  equation  of  a  right  line  perpendicular  to  the  given  line. 
If  the  given  line  touch  one  of  the  conies,  its  pole  will  be  the  point  of  contact. 

Hence,  given  two  confocal  conies,  if  we  draw  any  tangent  to  one  and  tangents  to  the 
eecond  where  this  line  meets  it,  these  tangents  will  intersect  on  the  normal  to  the 
first  conic. 

Ex.  4.  Find  the  locus  of  the  points  of  contact  of  tangents  to  a  series  of  confocal 
ellipses  from  a  fixed  point  on  the  axis  major.  Ans.  A  circle. 

Ex.  5.  The  lines  joining  each  focus  to  the  foot  of  the  perpendicular  from  the  other 
focus  on  any  tangent  intersect  on  the  corresponding  normal  and  bisect  it. 

Ex.  6.  The  focus  being  the  pole,  prove  that  the  polar  equation  of  the  chord 

through  points  whose  angular  coordinates  are  a  +  /3,  a  —  /3,  is 

5-  =  e  cos  0  +  sec  /3  cos  (0  —  a). 

This  expression  is  due  to  Mr.  Frost  (Cambridge  and  Dublin  Math.  Journal,  I.,  G8, 
cited  by  Walton,  Examples,  p.  375).  It  follows  easily  from  Ex.  3,  p.  37. 

Ex.  7.  The  focus  being  the  pole,  prove  that  the  polar  equation  of  the  tangent,  at 

the  point  whose  angular  coordinate  is  o,  is  ~-  —  e  cos  0  +  cos  (0  -  a). 

This  expression  is  due  to  Mr.  Davies  (Philosophical  Magazine  for  1842,  p.  192, 
cited  by  Walton,  Examples,  p.  368). 

Ex.  8.  If  a  chord  PPf  of  a  conic  pass  through  a  fixed  point  0,  then 

t&n^PFO.t&a^P'FO is  constant. 

The  reader  will  find  an  investigation  of  this  theorem  by  the  help  of  the  equation  ot 

Ex.  6  (Walton's  Examples,  p.  377).  I  insert  here  the  geometrical  proof  given  by 
Mr.  Mac  Cullagh,  to  whom,  I  believe,  the  theorem  is  due.  Imagine  a  point  0  taken 

anywhere  on  PP'  (see  figure  p.  206),  and  let  the  distance  FO  be  e'  times  the  distance 
of  0  from  the  directrix  :  then,  since  the  distances  of  P  and  0  from  the  directrix  are 

proportional  to  PD  and  OD,  we  have 

FP_^FO_e          Bin  PDF  .  smOJDF_  e 
FD  ''  OD~  e"  °r  BiaPFJ)  *  sin  OFD  ~  if  ' 

Hence  (Art.  192) 

or,  since  (Art.  191)  PFT  is  half  the  sum,  andPFT7  half  the  difference,  of  PFO  and  P'FO, 

tan  ±PFO  .  tan  \PTO  =  "  ~  *'  . 
It  is  obvious  that  the  product  of  these  tangents  remains  constant  if  0  be  not  fixed,  but 
be  anywhere  on  a  conic  having  the  same  focus  and  directrix  as  the  given  conic. 

Ex.  9.  To  express  the  condition  that  the  chord  joining  two  points  a?y,  x"y"  on  the 
curve  passes  through  the  focus. 

This  condition  may  be  expressed  in  several  equivalent  forms,  two  of  the  most 

useful  of  which  are  got  by  expressing  that  0"  =  0'  +  180°,  where  6',  0"  are  the  angles 
made  with  the  axis  by  the  lines  joining  the  focus  to  the  points.  The  condition 

sin  0"  =  -  sin  0'  gives 

a  -ex' 
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The  condition  COB  0"  =  —  cos  0'  gives 

Ex.  10.  If  normals  be  drawn  at  the  extremities  of  any  focal  chord,  a  line  drawn 
through  their  intersection  parallel  to  the  axis  major  will  bisect  the  chord.  [This 

solution  is  by  Larrose,  Nouvelles  Annales,  xix.  85.J 
Since  each  normal  bisects  the  angle  between  the  focal  radii,  the  intersection  of 

normals  at  the  extremities  of  a  focal  chord  is  the  centre  of  the  circle  inscribed  in  the 

triangle  whose  base  is  that  chord,  and  sides  the  lines  joining  its  extremities  to  the  other 

focus.  Now  if  cr,  b,  c  be  the  sides  of  a  triangle  whose  vertices  are  x'y*,  af'y",  x'"y'"% 
then,  Ex.  6,  p.  6,  the  coordinates  of  the  centre  of  the  inscribed  circle  are 

_  ax'  +  bx"  +  ex'"         _  ay'  +  by"  +  cy'" 
a+b+c       '    y          a+b+e 

In  the  present  case  the  coordinates  of  the  vertices  are  xf,  y'  ;  x",  y"  ;  -  c,  0  ;  and 

the  lengths  of  opposite  sides  are  a  +  ex",  a  +  ex',  2a  —  ex'  —  ex".  We  have  thsc«tfore 

(a  +  ex')  y"  +  (a  +  ex")tf y~  4a 

or,  reducing  by  the  first  relation  of  the  last  Example,  y  =  £  (if  +  y"),  which  proves  the 
theorem. 

In  like  manner  we  have 

(a  +  ex"}  x'  +  (a  +  ear*)  x"  —  (2a  —  ex'  —  ex")  c 
x  =  ~  —  4T~ 

which,  reduced  by  the  second  relation,  becomes 

2o 

We  could  find,  similarly,  expressions  for  the  coordinates  of  the  intersection  of 
tangents  at  the  extremities  of  a  focal  chord,  since  this  point  is  the  centre  of  the  circle 

exscribed  to  the  base  of  the  triangle  just  considered.  The  line  joining  the  intersection 
of  tangents  to  the  corresponding  intersection  of  normals  evidently  passes  through  a 
focus,  being  the  bisector  of  the  vertical  angle  of  the  same  triangle. 

Ex.  11.  To  find  the  locus  of  the  intersection  of  normals  at  the  extremities  of  a 
focal  chord. 

Let  a,  ft  be  the  coordinates  of  the  middle  point  of  the  chord,  and  we  have,  by  the 
last  Example, 

If,  then,  we  knew  the  equation  of  the  locus  described  by  a/3,  we  should,  by  making 

the  above  substitutions,  have  the  equation  of  the  locus  described  by  xy.  Now  the 
polar  equation  of  the  locus  of  middle  point,  the  focus  being  origin,  is  (Art.  193) 

-b*      ecos0 

which,  transformed  to  rectangular  axes,  the  centre  being  origin,  becomes 

d*a?  +  a*pP  =  Pea. 

The  equation  of  the  locus  sought  is,  therefore, 

a2*2  (x  +  c)2  +  (a2  +  c2)Y  =  PC  (a2  +  c2)  (x  +  <?). 
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Ex.  12.  If  0  be  the  angle  between  the  tangents  to  an  ellipse  from  any  point  P, 

and  if  p,  p'  be  the  distances  of  that  point  from  the  ^p 
0%  -L  n'2   4a2 

foci,    prove    that   cos  0  =   ~— -,       (see   also 

Art.  194  d). 
For  (Art.  189) 

But    cos  FPF'  -  cos  TPt  =  2  sin  TPF  .  sin  tPF-, 

and  2pp'  cos  FPF'  =  /o2  +  p'z  - 
Ex.  13.  If  from  any  point  0  two  lines  be  drawn  to  the  foci  (or  touching  any 

confocal  conic)  meeting  the  conic  in  R,  K  ;  S,  S'  ;  then  (see  also  Ex.  15,  Art.  231) 

It  appears  from  the  quadratic,  by  which  the  radius  vector  is  determined  (Art.  136), 
that  the  difference  of  the  reciprocals  of  the  roots  will  be  the  same  for  two  values 
of  0,  which  give  the  same  value  to 

(ac  -  02)  cos2  6  +  2  (ch-gf)  cos  0  sin  0  +  (be  -/2)  sin2  0. 

Now  it  is  easy  to  see  that  A  cos20  +  2H  cos  0  sin  0  +  B  sin20  has  equal  values  for  any 
two  values  of  0,  which  correspond  to  the  directions  of  lines  equally  inclined  to  the 

two  represented  by  Ax2  +  2Hxy  +  By1  =  0.  But  the  function  we  are  considering 
becomes  =  0  for  the  direction  of  the  two  tangents  through  0  (Art.  147)  ;  and  tangents 

to  any  confocal  are  equally  inclined  to  these  tangents  (Art.  189).  It  follows  from  this 
example  that  chords  which  touch  a  confocal  conic  are  proportional  to  the  squares  of 
the  parallel  diameters  (see  Ex.  15,  Art.  231). 

227.  We  give  in  this  Article  some  examples  on  the  parabola. 
The  reader  will  have  no  difficulty  in  distinguishing  those  of  the 
examples  of  the  last  Article,  the  proofs  of  which  apply  equally 
to  the  parabola. 

Ex.  1.  Find  the  coordinates  of  the  intersection  of  the  two  tangents  at  the  points 

xy,  x"y",  to  the  parabola  y2  =  px.  Ang  y  _  y'  +  y'  ̂   x  _  y'y^'  ̂ 

Ex.  2.  Find  the  locus  of  the  intersection  of  the  perpendicular  from  focus  on  tan- 
gent with  the  radius  vector  from  vertex  to  the  point  of  contact. 

Ex.  3.  The  three  perpendiculars  of  the  triangle  formed  by  three  tangents  intersect 

on  the  directrix  (Steiner,  Gergonne,  Annales,  xix.  59  ;  Walton,  p.  119). 
The  equation  of  one  of  those  perpendiculars  is  (Art.  32) 

which,  after  dividing  by  y"'  —  y",  may  be  written 

The  symmetry  of  the  equation  shows  that  the  three  perpendiculars  intersect  on  the 
directrix  at  a  height 

. 

Ex.  4.  The  area  of  the  triangle  formed  by  three  tangents  is  half  that  of  the  tri- 
angle formed  by  joining  their  points  of  contact  (Gregory,  Cambridge  Journal,  II.  16 

Walton,  p.  137.     See  also  Lessons  on  Higher  Algebra,  Ex.  12.  p.  15). 
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Substituting  the  coordinates  of  the  vertices  of  the  triangles  in  the  expression  of 

Art.  36,  we  find  for  the  latter  area  ~  (y'  -  y")  (y"  -  y'")  (y"'-y')  ;  and  for  the  former 

area  half  this  quantity. 

Ex.  5.  Find  an  expression  for  the  radius  of  the  circle  circumscribing  a  triangle 
inscribed  in  a  parabola. 

The  radius  of  the  circle  circumscribing  a  triangle,  the  lengths  of  whose  sides  are 

d,  e,f,  and  whose  area  =  Z  is  easily  proved  to  be  ̂   .  But  if  d  be  the  length  of  the 

chord  joining  the  points  x"y",  x'"y'",  and  6'  the  angle  which  this  chord  makes  with 

the  axis,  it  is  obvious  that  d  sin  0'  =  y"  —  y'".    Using,  then,  the  expression  for  the 

area  found  in  the  last  Example,  we  have  R  =  —  :  -  2-  -  .    We  might  ex- 
2  sin  0  sin  0    sin  0'" 

press  the  radius,  also,  in  terms  of  the  focal  chords  parallel  to  the  sides  of  the 

triangle.    For  (Art.  193,  Ex.  2)  the  length  of  a  chord  making  an  angle  0  with  the  axis 

fa  «  =  -,„.    Hence  JP  =  . sm20  4p 

It  follows  from  Art.  212  that  </,  c",  c'"  are  the  parameters  of  the  diameters  which 
bisect  the  sides  of  the  triangle. 

Ex.  6.  Express  the  radius  of  the  circle  circumscribing  the  triangle  formed  by  three 
tangents  to  a  parabola  in  terms  of  the  angles  which  they  make  with  the  axis. 

An''  ̂ Sdne'rinrimr*  °r  *=-B*'  ̂ e^V''  are  the  para. 
meters  of  the  diameters  through  the  points  of  contact  of  the  tangents  (see  Art.  212). 

Ex.  7;  Find  the  angle  contained  by  the  two  tangents  through  the  point  x'y'  to 
the  parabola  y2  =  4mx. 

The  equation  of  the  pair  of  tangents  is  (as  in  Art.  92)  found  to  be 

(y*  -  4mxf)  (yz  -  4roz)  =  {yy'  -  2m  (x  +  x')}2. 

A  parallel  pair  of  lines  through  the  origin  is 

ofy2  -  y'xy  +  mx2  =  0. 

The  angle  contained  by  which  is  (Art.  74)  tan  0  = 

Ex.  8.  Find  the  locus  of  intersection  of  tangents  to  a  parabola  which  cut  at 

a  given  angle. 

Ans.  The  hyperbola,  y»  -  4mx  =(x  +  f»)2  tan2<£,  or  y*  +  (x  -  ro)2  =  (a;  +  m)2  sec2<£. 
From  the  latter  form  of  the  equation  it  is  evident  (see  Art.  186)  that  the  hyperbola 
has  the  same  focus  and  directrix  as  the  parabola,  and  that  its  eccentricity  =  sec  </>. 

Ex.  9.  Find  the  locus  of  the  foot  of  the  perpendicular  from  the  focus  of  a  parabola 
on  the  normal. 

The  length  of  the  perpendicular  from  (fn,  0)  on  2m  (y  —  y')  +  y'  (x  —  x1)  =  0  is 

But  if  0  be  the  angle  made  with  the  axis  by  the  perpendicular  (Art.  212) *«-X??i 

Hence  the  polar  equation  of  the  locus  is 
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Ex.  10.  Find  the  coordinates  of  the  intersection  of  the  normals  at  the  points 

. 
Or  if  a,  0  be  the  coordinates  of  the  corresponding  intersection  of  tangents, 

then  (Ex.  1) 

Ex.  11.  Find  the  coordinates  of  the  points  on  the  curve,  the  normals  at  which 

pass  through  a  given  point  x'y*  . 
Solving  between  the  equation  of  the  normal  and  that  of  the  curve,  we  find 

2y*+(p*-2px')y=p*y', 
and  the  three  roots  are  connected  by  the  relation  yl  +  y2  +  yz  =  0.  The  geometric 
meaning  of  this  is,  that  the  chord  joining  any  two,  and  the  line  joining  the  third  to 
the  vertex,  make  equal  angles  with  the  axis. 

Ex.  12.  Find  the  locus  of  the  intersection  of  normals  at  the  extremities  of  chords 

which  pass  through  a  given  point  x'y', 
We  have  then  the  relation  fty'  =  2m  (x'  +  a)  ;  and  on  substituting  in  the  results 

of  Ex.  10  the  value  of  a  derived  from  this  relation  we  have 

2mx  +  (3y'  =  4m?  +  2p?  +  2mx'  j  2m?y  =  2ftmx'  -  p?y'  ; 
whence,  eliminating  /3,  we  find 

2  {2m  (y  -  y')  +  y'(x-  »*)}«  =  (4maf  -  y'z)  (y'y  +  2x'x  -  4mx'  -  2x^, 
the  equation  of  a  parabola  whose  axis  is  perpendicular  to  the  polar  of  the  given 

point.    If  the  chords  be  parallel  to  a  fixed  line,  the  locus  reduces  to  a  right  line,  as 
is  also  evident  from  Ex.  11. 

Ex.  13.  Find  the  locus  of  the  intersection  of  normals  at  right  angles  to  each  other. 

/?2 

In  this  case  a  =  —  m,  x  =  8m  +  '—  ,  y  =  /3,  y2  =  m  (x  —  SOT). tn 

Ex.  14.  If  the  lengths  of  two  tangents  be  a,  b,  and  the  angle  between  them  o>, 
find  the  parameter. 

Draw  the  diameter  bisecting  the  chord  of  contact;  then  the  parameter  of  that 

diameter  is//  =  ̂   ,  and  the  principal  parameter  is  p  =  ̂—  -  —  =  ̂-^  (where  w  is  the 

length  of  the  perpendicular  on  the  chord  from  the  intersection  of  the  tangents).  But 

2«ry  =  ab  sin  w,  and  IQx2  =  a2  +  &  +  2ab  cos  to  ;  hence 

-  (eeep.199). 

Ex.  15.  Show,  from  the  equation  of  the  circle  circumscribing  three  tangents  t& 

a  parabola,  that  it  passes  through  the  focus. 
The  equation  of  the  circle  circumscribing  a  triangle  being  (Art.  124) 

/3y  sin  A  +  ya  sin  B  +  aft  sin  (7  =  0  ; 

the  absolute  term  in  this  equation  is  found  (by  writing  at  full  length  for  o, 

x  cos  a  +  y  sin  a  -p,  &c.)  to  be  p'p"  sin  (ft  -  y)  +p"p  sin  (y  -  a)  +pp'  sin  (a  -  /3). 
But  if  the  line  a  be  a  tangent  to  a  parabola,  and  the  origin  the  focus,  we  have  (Art.  219) 

«  =  -^-  ,  and  the  absolute  term e      cos  a 

=        _   m*  .._     -  (sin  03-  v)  cos  o  +  sin  (y-  a)  cos  /3  +  sin  (a-  /3)  cosy}, 
cosa  cos/3  cosy  l 

which  vanishes  identically. 
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Ex.  16.  Find  the  locus  of  the  intersection  of  tangents  to  a  parabola,  being  given 
either  (1)  the  product  of  sines,  (2)  the  product  of  tangents,  (3)  the  sum  or  (4)  difference 
of  cotangents  of  the  angles  they  make  with  the  axis. 

Ans.  (1)  a  circle,  (2)  a  right  line,  (3)  a  right  line,  (4)  a  parabola. 

228.    We  add  a  few  miscellaneous  examples. 

Ex.  1.  If  an  equilateral  hyperbola  circumscribe  a  triangle,  it  will  also  pass  through 
the  intersection  of  its  perpendiculars  (Brianchon  and  Poncelet;  Gergonne,  Annales, 
XL,  205  ;  Walton,  p.  283). 

The  equation  of  a  conic  meeting  the  axes  in  given  points  is  (Ex.  1,  p.  148) 

-  /u/  (\  +  V)  x  -  \\'  G*  +  n1)  y  +  XX'/u/i'  =  0. 

And  if  the  axes  be  rectangular,  this  will  represent  anr  equilateral  hyperbola  (Art. 

174)  if  XX'  =  -  nn'.  If,  therefore,  the  axes  be  any  side  of  the  given  triangle,  and 
the  perpendicular  on  it  from  the  opposite  vertex,  the  portions  X,  X',  ft  are  given,  there- 

fore, n'  is  also  given  ;  or  the  curve  meets  the  perpendicular  in  the  fixed  point  y  =  —  , 

which  is  (Ex.  7,  p.  27)  the  intersection  of  the  perpendiculars  of  the  triangle. 

Ex.  2.  What  is  the  locus  of  the  centres  of  equilateral  hyperbolas  through  three 
given  points  ? 

Ans.  The  circle  through  the  middle  points  of  sides  (see  Ex.  3,  p.  153). 

Ex.  3.  A  conic  being  given  by  the  general  equation,  find  the  condition  that  the 

pole  of  the  axis  of  x  should  lie  on  the  axis  of  y,  and  vice  versa.  Ans.  Tic  =fff. 

Ex.  4.  In  the  same  case,  what  is  the  condition  that  an  asymptote  should  pass 

through  the  origin  ?  Ans.  of2  —  "2fgh  +  bg2  =  0. 

Ex.  5.  The  circle  circumscribing  a  triangle,  self  -conjugate  with  regard  to  an  equi- 
lateral hyperbola  (see  Art.  99),  passes  through  the  centre  of  the  curve.  (Brianchon 

and  Poncelet;  Gergonne,  xi.  210  ;  Walton,  p.  304).  [This  is  a  particular  case  of  the 

theorem  that  the  six  vertices  of  two  self  -con  jugate  triangles  lie  on  a  conic  (see  Ex.  1, 
Art.  375).] 

The  condition  of  Ex.  3  being  fulfilled,  the  equation  of  a  circle  passing  through 
the  origin  and  through  the  pole  of  each  axis  is 

h  (x2  +  Ixy  cos  co  +  j/2)  +fx  +  gy  =  0, 

or  x  (hx  +  by  +/)  +  y  (ax  +  hy  +  g)  -  (a  +  b  -  2h  cos  w)  xy, 

an  equation  which  will  evidently  be  satisfied  by  the  coordinates  of  the  centre,  pro- 
vided we  have  a  +  b  =  2h  cos  <a,  that  is  to  say,  provide.l  the  curve  be  an  equilateral 

hyperbola  (Arts.  74,  174). 

Ex.  6.  A  circle  described  through  the  centre  of  an  equilateral  hyperbola,  and 

through  any  two  points,  will  also  pass  through  the  intersection  of  lines  drawn  through 
each  of  these  points  parallel  to  the  polar  of  the  other. 

Ex.  7.  Find  the  locus  of  the  intersection  of  tangents  which  intercept  a  given 

length  on  a  given  fixed  tangent. 

The  equation  of  the  pair  of  tangents  from  a  point  x'y'  to  a  conic  given  by  the 
general  equation  is  given  Art.  92.  Make  y  =  0,  and  we  have  a  quadratic  whose  roots 
are  the  intercepts  on  the  axis  of  x. 

Forming  the  difference  of  the  roots  of  this  equation,  and  putting  it  equal  to  a 
constant,  we  obtain  the  equation  of  the  locus  required,  which  will  be  in  general  of 

the  fourth  degree  ;  but  if  g1  =  ac,  the  axis  of  x  will  touch  the  given  conic,  and  the 

equation  of  the  locus  will  become  divisible  by  y2,  and  will  reduce  to  the  second 
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degree.  We  could,  by  the  help  of  the  same  equation,  find  the  locus  of  the  intersection 
of  tangents  ;  if  the  sum,  product,  &c.,  of  the  intercepts  on  the  axis  be  given. 

Ex.  8.  Given  four  tangents  to  a  conic  to  find  the  locus  of  the  centre.  [The 

solution  here  given  is  by  P.  Serret,  Nouve'les  Annales,  2nd  series,  iv.  145.] 
Take  any  axes,  and  let  the  equation  of  one  of  the  tangents  be  x  cos  a  +y  sin  a  —p  =  0, 

then  a  is  the  angle  the  perpendicular  on  the  tangent  makes  with  the  axis  of  x ;  and 
if  0  be  the  unknown  angle  made  with  the  same  axis  by  the  axis  major  of  the  conic, 

then  a  —  6  is  the  angle  made  by  the  same  perpendicular  with  the  axis  major.  If  then 
*  and  y  be  the  coordinates  of  the  centre,  the  formula  of  Art.  178  gives  us 

(x  cos  a  +  y  sin  a  —  p)*  =  «2  cos2  (a  -  6)  +  V*  sin2  (a  —  6). 

We  have  four  equations  of  this  form  from  which  we  have  to  eliminate  the 

three  unknown  quantities  «2,  b*,  0.  Using  for  shortness  the  abbreviation  a  for 
x  cos  a  +  y  sin  a—p  (Art.  53),  this  equation  expanded  may  be  written 

a2  =  (a2  cos26  +  i2  sin20)  cos2a  +  2  (a2  -  i2)  cos0  sin0  cosa  sina  +  (a2  sin20  +  i2  cos20)  sin2a. 

It  appears  then  that  the  three  quantities  o2  cos20  +  i2  sin20,  (a2  -  52)  cos  0  sin  0, 
a2  sin20  +  i2  cos20,  may  be  eliminated  linearly  from  the  four  equations ;  and  the 
result  comes  out  in  the  form  of  a  determinant 

o2,  cos2  a,  cos  a  sin  a,  sin2  a 

/S2,  cos2/3,  cos /3  sin /3,  sin2/8 

•y2,  cos2  y ,  cos  y  sin  y,  sin2  y 

S2,  cos2  6,  cos  6  sin  6,  sin2 1 

which  expanded  is  of  the  form  Ac?  +  Bp1  +  Cy*  +  D&  =  0,  where  A,  B,  C,  D  are 
known  constants.  But  this  equation,  though  apparently  of  the  second  degree,  is  in 

reality  only  of  the  first ;  for  if,  before  expanding  the  determinant,  we  write  a2,  &c., 

at  full  length,  the  coefficients  of  x2  are  cos2a,  cos2/?,  cos2y,  cos2<5;  but  these  being 
the  same  as  one  column  of  the  determinant,  the  part  multiplied  by  a;2  vanishes  on 
expansion.  Similarly,  the  coefficients  of  the  terms  xy  and  y2  vanish.  The  locus  is 
therefore  a  right  line.  The  geometrical  determination  of  the  line  depends  on  prin- 

ciples to  be  proved  afterwards ;  namely,  that  the  polar  of  any  point  with  regard  to 
the  conic  is 

Aa'a  +  B?p  +  Cy'y  +  Di'8  =  0 ; 
and,  therefore,  that  the  polar  of  the  point  a/3  passes  through  yi.  But  when  a  conic 
reduces  to  a  line  by  the  vanishing  of  the  three  highest  terms  in  its  equation,  the  polar 
of  any  point  is  a  parallel  line  at  double  the  distance  from  the  point.  Thus  it  is  seen 

that  the  line  represented  by  the  equation  bisects  the  lines  joining  the  points  a/3,  yS ; 
ay,  /3<S;  aS,  /3y.  Conversely,  if  we  are  given  in  any  form  the  equations  of  four 

lines  a  =  0,  <fec.,  the  equation  of  the  line  joining  the  three  middle  points  of  diagonals 
of  the  quadrilateral  may,  in  practice,  be  most  easily  formed  by  determining  the 

constants  so  that  Aa?  +  B{P  4-  Cy*  +  DP  =  0  shall  represent  a  right  line. 

Ex.  9.  Given  three  tangents  to  a  conic  and  the  sum  of  the  squares  of  the  axes, 
find  the  locus  of  the  centre.  We  have  three  equations  as  in  the  last  example,  and 

a  fourth  o2  +  b*  =  k2,  which  may  be  written 

#*  =  (a2  cos20  +  62  sin20)  +  (a2  sin20  +  62  cos?0), 

and,  as  before,  the  result  appears  in  the  form  of  a  determinant 

a?,  cos2  a,  cos  a  sin  a,  sin2  a 
/S2,  cos«  /3,  cos  ft  sin  /3,  sin2  /3 

y2,  cos2  y,  cos  y  sin  y,  sin  2y 
I   /t2,       1     ,  0         ,1          =0, 
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which  expanded  is  of  the  form  Aa?  +  Bp2  +  Cy2  +  2)  =  0.  It  is  seen,  as  in  the  last 
example,  that  the  coefficient  of  xy  vanishes  in  the  expansion,  and  that  the  coefficients 

of  x2  and  y2  are  the  same.  The  locus  is  therefore  a  circle.  Now  if  Aa?  +  Bfi2  +  Cy2  =  0 
represents  a  circle,  it  will  afterwards  appear  that  the  centre  is  the  intersection  of 

perpendiculars  of  the  triangle  formed  by  the  lines  o,  /3,  y.  The  present  equation  there- 
fore, which  differs  from  this  by  a  constant  (Art.  81)  represents  a  circle  whose  centre 

is  the  intersection  of  perpendiculars  of  the  triangle  formed  by  the  three  tangents. 

If  we  consider  the  case  of  the  equilateral  hyperbola  o2  +  62  =  0,  we  see  that  two 
equilateral  hyperbolas  can  be  described  to  touch  four  given  lines,  the  centres  being 
the  intersections  of  the  line  joining  the  middle  points  of  diagonals  with  any  one  of 
four  circles  whose  centres  are  the  intersections  of  perpendiculars  of  the  four  triangles 
formed  by  any  three  of  the  four  given  lines.  From  the  fact  that  the  four  circles 
have  two  common  points  it  follows  that  the  four  intersections  of  perpendiculars  lie 
on  a  right  line,  perpendicular  to  the  line  joining  middle  points  of  diagonals  (see 
Art.  268,  Ex.  2). 

Ex.  10.  Given  four  points  on  a  conic  to  find  the  locus  of  either  focus.  The 
distance  of  one  of  the  given  points  from  the  focus  (see  Ex.,  Art.  186)  satisfies  the  equation 

p  -  Ax'  +  By'+C. 
We  have  four  such  equations  from  which  we  can  linearly  eliminate  A,  B,  C,  and  we 

get  the  determinant 

P'  ,  a"  ,  y",i 
p",  *»',  y"',  1 
p'",  x"",  y"",  1  1=0, 

which  expanded  is  of  the  form  lp  +  mp'  +  np"  +pp'"  =  0.     If  we  look  to  the  actual 
values  of  the  coefficients  I,  m,  n,  p,  and  their  geometric  meaning  (Art.  36),  this 
equation  geometrically  interpreted  gives  us  a  theorem  of  Mobius,  viz. 

OA .  BCD  +  OC .  ABD  =  OB .  A  CD  +  OD .  ABC, 

where  0  is  the  focus,  and  BCD  the  area  of  the  triangle  formed  by  three  of  the  points 
(compare  Art.  94).  It  is  seen  thus  that  l  +  m  +  n+p  =  0.  If  we  substitute  for  p 

its  value  J{(a;  —  sc')2  +  (y  —  y02}>  «&c->  and  clear  of  radicals,  the  equation  of  the  locus, 
though  apparently  of  the  eighth,  is  found  to  be  only  of  the  sixth  degree.  In  fact, 
we  may  clear  of  radicals  by  giving  each  radical  its  double  sign,  and  multiplying 

together  the  eight  factors  lp  ±mp'±  np"  ±  pp'"',  and  then  it  is  apparent  that  the 
highest  powers  in  x  and  y  will  be  (a;2  +  y2)4  multiplied  by  the  product  of  the  factors 
l+m  +  n  +  p;  and  that  these  terms  vanish  in  virtue  of  the  relation  l  +  m  +  n  +  p  =  0. 

If  the  four  given  points  be  on  a  circle,  Mr.  Sylvester  has  remarked  that  the  locus 
breaks  up  into  two  of  the  third  degree,  as  Mr.  Burnside  has  thus  shewn.  We  have 

by  a  theorem  of  Feuerbach's,  given  Art.  94, 

lp*  +  mp'2  +  np"2  +pp'"2  =  0. 

We  have  then         (I  +  m)  (lpz  +  mp'2)  =  (n  +  p)  (np"2  +  pp'"7), 

(lp  +  mpj  -  (np"  +pp'")*, 
whence,  subtracting  Im  (p  -  p')2  =  np  (p"  -  p'")2, 

•which  obviously  breaks  up  into  factors. 

THE    ECCENTRIC   ANGLE.* 

229.  It  is  always  advantageous  to  express  the  position  of  a 

point  on  a  curve,  if  possible,  by  a  single  independent  variable, 

*  The  use  of  this  angle  was  recommended  by  Mr.  O'Brien,  Cambridge  Mathematical 
Journal,  vol.  IV»  p.  99. 

FF. 
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rather  than  by  the  two  coordinates  x'y'.  We  shall,  therefore, 
find  it  useful,  in  discussing  properties  of  the  ellipse,  to  make  a 
substitution  similar  to  that  employed  (Art.  102)  in  the  case  of 
the  circle,  and  shall  write 

x'  =  a  cos  <£,   y'  —  b  sin  <£, 

a  substitution  evidently  consistent  with  the  equation 

©'+«)'- 
The  geometric  meaning  of  the  angle  <£  is  easily  explained. 
If  we  describe  a  circle  on  the  axis  major  as  diameter,  and 

produce  the  ordinate  at  P  to  meet  the  circle  at  $,  then  the  angle 

QCL=<f>,  for  CL=  GQ  cosQCL,  or  x=a  cos <j> 5  and  PL  =  -  QL 

(Art.  163);  or,  since  QL  =  a  sin<£,  we  have  y'  =  b  sin0. 

230.   If  we  draw  through  P  a  parallel  PN  to  the  radius  CQ, 

then    PM:  GQ  : :  PL  :  QL  : :  b  :  a, 

but         CQ  =  a,  therefore  PM  =  b. 

PN  parallel  to  CQ  is,  of  course,  —a. 
Hence,  if  from  any  point  of  an  ellipse 

a  line  =  a  be  inflected  to  the  minor  axis, 

its  intercept  to  the  axis  major  =  b.  If 
the  ordinate  PQ  were  produced  to  meet 

the  circle  again  in  the  point  Q',  it  could  D* 
be  proved,  in  like  manner,  that  a  parallel  through  P  to  the 

radius  CQ1  is  cut  into  parts  of  a  constant  length.  Hence,  con- 
versely, if  a  line  MN,  of  a  constant  length,  move  about  in  the 

legs  of  a  right  angle,  and  a  point  P  be  taken  so  that  MP  may 
be  constant,  the  locus  of  P  is  an  ellipse,  whose  axes  are  equal 

to  MP  and  NP.  (See  Ex.  12,  p.  47.) 

On  this  principle  has  been  constructed  an  instrument  for 

describing  an  ellipse  by  continued  motion,  called  the  Elliptic 

Compasses.  CA,  CD'  are  two  fixed  rulers,  MN  a  third  ruler  of  a 
constant  length,  capable  of  sliding  up  and  down  between  them, 

then  a  pencil  fixed  at  any  point  of  MN  will  describe  an  ellipse. 

If  the  pencil  be  fixed  at  the  middle  point  of  MN,  it  will 

describe  a  circle.  (O'Brien's  Coordinate  Geometry,  p.  112.) 
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231.  The  consideration  of  the  angle  <£  affords  a  simple 

method  of  constructing  geometrically  the  diameter  conjugate 

to  a  given  one,  for 
•/      b  ̂ 

-  tan  9. 

x 
Hence  the  relation 

tan  0  tan  0'  =  -  -a  (Art.  170) 

becomes  tan  <£  tan  <£'  =  —  1, 

or  <£-<£' =  90°. 
Hence  we  obtain  the  following  construction 

Q 

Let  the  ordi- 
nate  at  the  given  point  P,  when  produced, 
meet  the  semicircle  on  the  axis  major  at 

Qj  join  CQ,  and  erect  CQ'  perpendicular 
to  it  ;  then  the  perpendicular  let  fall  on 

the  axis  from  Q  will  pass  through  P',  a 
point  on  the  conjugate  diameter. 

Hence,  too,  can  easily  be  found  the  coordinates  of  P'  given 
in  Art.  172,  for  since 

cos</>' 

* 
sin  </>,  we  have  —  =  ̂   , 

and  since 
sin  <f>'  =  -  cos  <£,  we  have    -  =   . 

From  these  values  it  appears  that  the  areas  of  the  triangles 

PCM,  POM'  are  equal. 
Ex.  1.  To  expresa  the  lengths  of  two  conjugate  semi-diameters  in  terms  of  the 

angle  <£.  Ans.  a'2  =  a2  cos20  +  &  sin2</>  j   b'2  =  a2  sin2<£  +  bz  cos2</>. 

Ex.  2.   To  express  the  equation  of  any  chord  of  the  ellipse  in  terms  of  <£  and  <£' 

(see  p.  94).  ^    x  cog  ̂ ^  +  ̂   +  y  sin  j  ̂  +  ̂   _  cog ^  ((/)  _  ̂  a  b 

Ex.  3.   To  express  similarly  the  equation  of  the  tangent. 

Ans.   -  cosd) +f  sinrf)  =  1. a  o 

Ex.  4.   To  express  the  length  of  the  chord  joining  two  points  a,  /3, 

J52  =  a2  (cos  a  -  cosyS)2  +  b2  (sin  a  -  sin/})2, 

D  =  2  sin  i  (a  -  /3)  {a2  sin2i  (a  +  /3)  +  i2  cos2i  (o  +  0)}*. 

But  (Ex.  1)  the  quantity  between  the  parentheses  is  the  semi-diameter  conjugate  to 
that  to  the  point  £  (a  +  /3) ;  and  (Ex.  2,  3)  the  tangent  at  the  point  J  (a  +  /3)  is  parallel 

to  the  chord  joining  the  points  a,  /3 ;  hence,  if  b'  denote  the  length  of  the  semi- 
diameter  parallel  to  the  given  chord,  D  =  2b'  sin  £  (a  -  /3). 
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Ex.  5.  To  find  the  area  of  the  triangle  formed  by  three  given  points  o,  /3,  y 
By  Art.  86  we  have 

2L  =  ab  {sin  (a  —  /3)  +  sin  (ft  —  y)  +  sin  (y  —  a)} 

=  ab  {2  sinfc  (a  -  /3)  cosj  (a  -  ft)  -  2  sin$  (a  -  /3)  cos  J  (o  +  ft  -  2y)} 

=  4a6  sin*  (a  -  /3)  sinfr  (/3  -  y)  Bin$  (y  -  a) 

E  =  2ai  sin  }  (o  -  /3)  sin  i  (/3  -  y)  sin  £  (y  -  a). 

Ex.  6.  If  the  bisectors  of  sides  of  an  inscribed  triangle  meet  in  the  centre  its 
area  is  constant. 

Ex.  7.  To  find  the  radius  of  the  circle  circumscribing  the  triangle  formed  by  three 
given  points  a,  /3,  y. 

If  d,  «,/be  the  sides  of  the  triangle  formed  by  the  three  points, 

def    VV'V" 
*  =  -=  ~' 

where  b',  b",  b'"  are  the  semi-diameters  parallel  to  the  sides  of  the  triangle.  II 

c',  c",  S"  be  the  parallel  focal  chords,  then  (see  Ex.  5,  p.  213)  IP  -~"  .  (These 
expressions  are  due  to  Mr.  MacCullagh,  Dublin  Exam.  Papers,  1836,  p.  22.) 

Ex.  8.  To  find  the  equation  of  the  circle  circumscribing  this  triangle. 

Ans.   a*  +  y*-  2  (a*  ~  b*)  x_  cos^  (a  +  /3)  cos*  (0  +  y)  cos  £  (y  +  a) 

+  ̂   ̂   ̂   (/3  +  y)  sin  i  (y  +  a) 

=  £  (a8  +  A2)  -  i  (a2  -  A8)  {cos  (o  +  /3)  +  cos  (/3  +  y)  +  cos  (y  +  a)} 
From  this  equation  the  coordinates  of  the  centre  of  this  circle  are  at  once  obtained. 

Ex.  9.  The  area  of  the  triangle  formed  by  three  tangents  is,  by  Art.  39, 

ab  tan  }  (a  -  )3)  tan|  (p  -  y)  tanj  (y  -  a). 

Ex.  10.  The  area  of  the  triangle  formed  by  three  normals  is 

~  tani  (a  -  /8)  tani  03  -  y)  tan  J  (y  -  «)  {sin  03  +  y)  +  sin  (y  +  a)  +  sin  (a  +£)}*, 

consequently  three  normals  meet  in  a  point  if 

sin  (/3  +  y)  +  sin  (y  +  a)  +  sin  (a  +  /3)  =  0.'    [Mr.  Burnside.] 
Ex.  11.  To  find  the  locus  of  the  intersection  of  the  focal  radius  vector  FP  with 

the  radius  of  the  circle  CQ. 

Let  the  central  coordinates  of  P  be  x'y',  of  0,  xy,  then  we  have,  from  the  similar 
triangles,  FON,  FPM, 

y    _     if     _      &  sin  <fr 

x  +  c     ic7  +  c  ~  a  (e  +  cos  </>)  ' 
Now,  since  <£  is  the  angle  made  with  the  axis  by  the 

radius  vector  to  the  point  0,  we  at  once  obtain  the  polar 

equation  of  the  locus  by  writing  p  cos  0  for  *,  p  sin  0  for  y, 
and  we  find 

P  b 

a(e  +  cos</>)' be 

P  = 

c  +  (a  —  b)  cos  <£ 

Hence  (Art.  193)  the  locus  is  an  ellipse,  of  which  C  is  one  focus,  and  it  can  easily 

be  proved  that  /'  is  the  other. 
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Ex.  12.  The  normal  at  P  is  produced  to  meet  CQ ;  the  locus  of  their  intersection 
is  a  circle  concentric  with  the  ellipse. 

The  equation  of  the  normal  is 

cos  d>     sin  d>  ~ but  we  may,  as  in  the  last  example,  write  p  cos  </>  and  p  sin  dj  for  x  and  yt  and  the 
equation  becomes 

(a  —  b)  p  =  c2,  or  p  =  a  +  b. 

Ex.  13.  Prove  that  tan  \PFC  =  J(j--^)  tan  «<£• 

Ex.  14.  If  from  the  vertex  of  an  ellipse  a  radius  vector  be  drawn  to  any  point 
on  the  curve,  find  the  locus  of  the  point  where  a  parallel  radius  through  the  centre 
meets  the  tangent  at  the  point. 

The  tangent  of  the  angle  made  with  the  axis  by  the  radius  vector  to  the  vertex 

•s.  -7- — ;  therefore  the  equation  of  the  parallel  radius  through  the  centre  is x  +  a 

y  _     *f  b  sin d>       _  b  I  -  cosft  p 

x      x' +  a     o(l+cos^>)      a      sin<£     ' 

?x 
 x     • 

sin  <p  H —  cos  0  =  -  , Q  fit 

and  the  locus  of  the  intersection  of  this  line  with  the  tangent 

\  Bind)  +  -cosd>  =  1. o  a 

is,  obviously,  -  =  1,  the  tangent  at  the  other  extremity  of  the  axis. 0 

The  same  investigation  will  apply,  if  the  first  radius  vector  be  drawn  through 

any  point  of  the  curve,  by  substituting  a'  and  b'  for  a  and  b  j  the  locus  will  then  be 
the  tangent  at  the  diametrically  opposite  point. 

Ex.  15.  The  length  of  the  chord  of  an  ellipse  which  touches  a  confocal  ellipse, 

the  squares  of  whose  semiaxes  are  o2  -  A2,  b*  -  h*  is  ?-A?  [Mr.  Burnside]. ao 

The  condition  that  the  chord  joining  two  points  a,  /3  should  touch  the  confocal 
conic  is 

~    cos2*  («  +  /S)  +--  sin2i  («  +  #=.  cos2*  (a  -  /3), 

or        sin2i  (a  -  ft)  =  J^-  [V  cos2*  (a  +  j8)  +  a2  sin2i  (a  +  /3)}  =  ̂   6".     (Ex.  4). 
But  the  length  of  the  chord  is 

By  the  help  of  this  Example  several  theorems  concerning  chords  through  a  focus 
may  be  extended  to  chords  touching  confocal  conies.  Hence  also  is  immediately 

derived  a  proof  of  Ex.  13,  p.  212,  for  OR.  OR'  is  to  OS.  OS'  as  the  squares  of  the 

parallel  diameters  (Art.  149),  and  it  is  here  proved  that  the  chords  OR  —  OR', 
OS  -  OS'  are  to  each  other  in  the  same  ratio. 

232.    The  methods  of  the  preceding  Articles  do  not  apply  to 

the  hyperbola,.     For  the  hyperbola,  however,  we  may  substitute 

x  =  a  sec  <f>,  y'  =  b  tan  $, 

,ince  (-' 
V  a 
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This  angle  may  be  represented  geometrically  by  drawing 
a  tangent  MQ  from  the  foot  of 
the  ordinate  M  to  the  circle  de- 

scribed  on  the   transverse   axis, 

then  the  angle  QGM—  <£,  since 

We  have  also  QM=a  tan<£,  but  PM=b  tan<£.  Hence,  if 
from  the  foot  of  any  ordinate  of  a  hyperbola  we  draw  a  tangent 
to  the  circle  described  on  the  transverse  axis,  this  tangent  is  in 
a  constant  ratio  to  the  ordinate. 

Ex.  If  any  point  on  the  conjugate  hyperbola  be  expressed  similarly  y"  —  b  sec<J>', 
s"  =  atan<£',  prove  that  the  relation  connecting  the  extremities  of  conjugate  dia- 

meters is  <t>  =  $'.  [Mr.  Turner.] 

SIMILAR  CONIC  SECTIONS. 

233.  Any  two  figures  are  said  to  be  similar  and  similarly 
placed  if  radii  vectores  drawn  to  the  first  from  a  certain  point  0 
are  in  a  constant  ratio  to  parallel  radii  drawn  to  the  second  from 
another  point  o.     If  it  be  possible  to  find  any  two  such  points 
0  and  0,  we  can  find  an 
infinity  of  others  ;  for,  take 
any  point  (7,  draw  oc  parallel 

to  0  (7,  and  in  the  constant  Qx 

ratio  -£pi  then  from  the  similar  triangles  OCP^  ocp^  cp  is  parallel 

to  CP  and  in  the  given  ratio.  In  like  manner,  any  other  radius 
vector  through  c  can  be  proved  to  be  proportional  to  the  parallel 
radius  through  C. 

If  two  central  conic  sections  be  similar  and  similarly  placed, 
all  diameters  of  the  one  are  proportional  to  the  parallel  diameters 

of  the  other,  since  the  rectangles  OP.  OQ,  op  .  oq  are  propor- 
tional to  the  squares  of  the  parallel  diameters  (Art.  149). 

234.  To  find  the  condition  that  two  conies,  given  by  the 
general  equations,  should  be  similar  and  similarly  placed. 

Transforming  to  the  centre  of  the  first  as  origin,  we  find 

(Art.  152)  that  the  square  of  any  semi-diameter  of  the  first  is 

equal  to  a  constant  divided  by  a  cos*0  +  2h  cos  6  s\n6  +  b  sin'0, 
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and,  in  like  manner,  that  the  square  of  a  parallel  semi-diameter 
of  the  second  is  equal  to  another  constant  divided  by 

a  cos20  +  2h'  cos  0  sin  6  4  b'  sin2#. 

The  ratio  of  the  two  cannot  be  independent  of  6  unless 

a_h_b 

a'~  h'~  V ' 
Hence  two  conic  sections  will  be  similar  and  similarly  placed, 

if  the  coefficients  of  the  highest  powers  of  the  variables  are  the 

same  in  both  or  only  differ  by  a  constant  multiplier. 

235.  It  is  evident  that  the  directions  of  the  axes  of  these 

conies  must  be  the  same,  since  the  greatest  and  least  diameters 

of  one  must  be  parallel  to  the  greatest  and  least  diameters  of 
the  other.      If  the  diameter  of  one  become  infinite,  so  must  also 

the  parallel  diameter  of  the  other,  that  is  to  say,  the  asymptotes 

of  similar  and  similarly  placed  hyperbolas  are  parallel.     The 

same  thing  follows  from  the  result   of  the  last  Article,   since 

(Art.  154)  the  directions  of  the  asymptotes  are  wholly  determined 

by  the  highest  terms  of  the  equation. 

Similar  conies  have  the   same  eccentricity;  for  — ^ —  must 

be  =   5-^ —  .     Similar  and  similarly  placed  conic  sections m  a 

have  hence  sometimes  been  defined  as  those  whose  axes  are 

parallel,  and  which  have  the  same  eccentricity. 

If  two  hyperbolas  have  parallel  asymptotes  they  are  similar, 

for  their  axes  must  be  parallel,  since  they  bisect  the  angles 

between  the  asymptotes  (Art.  155),  and  the  eccentricity  wholly 

depends  on  the  angle  between  the  asymptotes  (Art.  167). 

236.  Since  the  eccentricity  of  every  parabola  is  =1,  we 

should  be  led  to  infer  that  all  parabolas  are  similar  and  similarly 

placed,  the  direction  of  whose  axes  is  the  same.     In  fact,  the 

equation  of  one  parabola,  referred  to  its  vertex,  being  yi=px,  or 

_  p  cos  6 

it  is  plain  that  a  parallel  radius  vector  through  the  vertex  of  the 

other  will  be  to  this  radius  in  the  constant  ratio  p  :  p. 
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Ex.  1.  If  on  any  radius  vector  to  a  conic  section  through  a  fixed  point  0,  OQ  be 
taken  in  a  constant  ratio  to  OP,  find  the  locus  of  Q.  We  have  only  to  substitute 
mp  for  p  in  the  polar  equation,  and  the  locus  is  found  to  be  a  conic  similar  to  the  given 
conic,  and  similarly  placed. 

The  point  0  may  be  called  the  centre  of  similitude  of  the  two  conies;  and  it  is 
obviously  (see  also  Art.  115)  the  point  where  common  tangents  to  the  two  conies 

intersect,  since  when  the  radii  vectores  OP,  OP'  to  the  first  conic  become  equal,  so 
must  also  OQ,  OQ,'  the  radii  vectores  to  the  other. 

Ex.  2.  If  a  pair  of  radii  be  drawn  through  a  centre  of  similitude  of  two  similar 
conies,  the  chords  joining  their  extremities  will  be  either  parallel,  or  will  meet  on  the 
chord  of  intersection  of  the  conies. 

This  is  proved  precisely  as  in  Art.  116. 

Ex.  8.  Given  three  conies,  similar  and  similarly  placed,  their  six  centres  of  simili- 
tude will  lie  three  by  three  on  right  lines  (see  figure,  page  108). 

Ex.  4.  If  any  line  cut  two  similar  and  concentric  conies,  its  parts  intercepted 
between  the  conies  will  be  equal. 

Any  chord  of  the  outer  conic  which  touches  the  interior  will  be  bisected  at  the 

point  of  contact. 
These  are  proved  in  the  same  manner  as  the  theorems  at  page  191,  which  are  but 

particular  cases  of  them ;  for  the  asymptotes  of  any  hyperbola  may  be  considered 

as  a  conic  section  similar  to  it,  since  the  highest  terms  in  the  equation  of  the  asymp- 
totes are  the  same  as  in  the  equation  of  the  curve. 

Ex.  5.  If  a  tangent  drawn  at  any  point  P  of  the  inner  of  two  concentric  and 

similar  ellipses  meet  the  outer  in  the  points  T  and  T',  then  any  chord  of  the  inner 
drawn  through  P  is  half  the  algebraic  sum  of  the  parallel  chords  of  the  outer 

through  Tand  T'. 

237.  Two  figures  will  be  similar,  although  not  similarly 

placed,  if  the  proportional  radii  make  a  constant  angle  with 

each  other,  instead  of  being  parallel ;  so  that  if  we  could  imagine 

one  of  the  figures  turned  round  through  the  given  angle,  they 
would  be  then  both  similar  and  similarly  placed. 

To  find  the  condition  that  two  conic  sections,  given  by  the 

general  equations,  should  be  similar,  even  though  not  similarly 

placed. 
We  have  only  to  transform  the  first  equation  to  axes  making 

any  angle  6  with  the  given  axes,  and  examine  whether  any 

value  can  be  assigned  to  6  which  will  make  the  new  a,  h,  b  pro- 

portional to  a,  h',  b'.  Suppose  that  they  become  ma,  mh',  mb'. 
Now,  the  axes  being  supposed  rectangular,  we  have  seen 

(Art.  157)  that  the  quantities  a  +  b,  ab  —  h*,  are  unaltered  by 
transformation  of  coordinates ;  hence  we  have 

a  +  b  —  m  (a  +  V), 
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and  the  required  condition  is  evidently 

ab-h*  _a'b'-h'* 

(a +  &)•"(«!' +&')'' If  the  axes  be  oblique,  it  is  seen  in  like  manner  (Art.  158)  that 

the  condition  for  similarity  is 

ab-tf  a'b'-h'* 

(a  +  b-Zh  cos  o>)*  ~  (a  +  br-  2h'  cos  «)* ' 
It  will  be  seen  (Arts.  74,  154)  that  the  condition  found  ex- 

presses that  the  angle  between  the  (real  or  imaginary)  asymptotes 

of  the  one  curve  is  equal  to  that  between  those  of  the  other. 

THE   CONTACT   OF  CONIC  SECTIONS. 

238.  Two  curves  of  the  m"*  and  ntb  degrees  respectively  inter- 
sect in  mn  points. 

For,  if  we  eliminate  either  x  or  y  between  the  equations,  the 

resulting  equation  in  the  remaining  variable  will  in  general  be 

of  the  mn1*  degree  (Higher  Algebra,  Art.  73).  If  it  should 
happen  that  the  resulting  equation  should  appear  to  fall  below 

the  mnih  degree,  in  consequence  of  the  coefficients  of  one  or 
more  of  the  highest  powers  vanishing,  the  curves  would  still 

be  considered  to  intersect  in  mn  points,  one  or  more  of  these 

points  being  at  infinity  (see  Art.  135).  If  account  be  thus 

taken  of  infinitely  distant  as  well  as  of  imaginary  points,  it 

may  be  asserted  that  the  two  curves  always  intersect  in  mn 

points.  In  particular  two  conies  always  intersect  in  four  points. 

In  the  next  Chapter  some  of  the  cases  will  be  noticed  where 

points  of  intersection  of  two  conies  are  infinitely  distant;  at 

present  we  are  about  to  consider  the  cases  where  two  or  more 
of  them  coincide. 

Since  four  points  may  be  connected  by  six  lines,  viz.  12,  34; 

13, 24 ;  14, 23 ;  two  conies  have  three  pairs  of  chords  of  intersection. 

239.  When  two  of  the  points  of  intersection  coincide,  the 

conies  touch  each  other,  and  the  line  joining  the  coincident  points 

is  the  common  tangent.    The  conies  will  in  this  case  meet  in  two 

real  or  imaginary  points  Z»,  M  distinct  from  the  point  of  contact. 
This  is  called  a  contact  of  the  first  order.     The  contact  is  said  to 
be  of  the  second  order  when  three  of  the  points  of  intersection 

GG. 
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coincide,  as,  for  instance,  if  the  point  M  move  up  until  it  coincide 

T 

with  T.  Curves  which  have  contact  of  an  order  higher  than 

the  first  are  also  said  to  osculate;  and  it  appears  that  conies 

which  osculate  must  intersect  in  one  other  point.  Contact  of 

the  third  order  is  when  two  curves  have  four  consecutive  points 

common;  and  since  two  conies  cannot  have  more  than  four 

points  common,  this  is  the  highest  order  of  contact  they  can 
have. 

Thus,  for  example,  the  equations  of  two  conies,  both  passing 
through  the  origin  and  having  the  line  x  for  a  common  tangent 
are  (Art.  144) 

ax*  -f  2hxy  +  by*  +  2gx  =  0,   «V  +  2h'xy  +  by  +  2gx  =  0. 

A.nd,  as  in  Ex.  2,  p.  175, 

x  {(ab1  -  a'b)  x  +  2  (hV  -  h'b)  y  +  2  [gV  -  g'b)}  =  0, 

represents  a  figure  passing  through  their  four  points  of  inter- 
section. The  first  factor  represents  the  tangent  which  passes 

through  the  two  coincident  points  of  intersection,  and  the  second 

factor  denotes  the  line  LM  passing  through  the  other  two  points. 

li'uow  gb' =g'b,  LM  passes  through  the  origin,  and  the  conies 
have  contact  of  the  second  order.  If  in  addition  hb'  =  h'b,  the 
equation  of  LM  reduces  to  x  —  0 ;  LM  coincides  with  the  tangent, 
and  the  conies  have  contact  of  the  third  order.  In  this  last 

case,  if  we  make  by  multiplication  the  coefficients  of  y*  the  same 
in  both  the  equations,  the  coefficients  of  xy  and  x  will  also  be 

the  same,  and  the  equations  of  the  two  conies  may  be  reduced 
to  the  form 

ax1  +  2hxy  +  by*  -f  2gx  =  0,   a V  +  2hxy  +  by"  +  2gx  =  0. 

240.  Two  conies  may  have  double  contact  if  the  points  of 

intersection  1,  2  coincide  and  also  the  points  3, 4.  The  condition 

that  the  pair  of  conies  considered  in  the  last  Article  should 
touch  at  a  second  point  is  found  by  expressing  the  condition 

that  the  line  LM,  whose  equation  is  there  given,  should  touch 
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either  conic.     Or,  more  simply,  as  follows:  Multiply  the  equa 

tions  by  g  and  g  respectively,  and  subtract,  and  we  get 

(ag  -  ag)  x*  +  2  (kg'  -  h'g)  xy  +  (bg'  -  Vg)  y*  =  0, 

which  denotes  the  pair  of  lines  joining  the  origin  to  the  two 

points  in  which  LM  meets  the  conies.  And  these  lines  will 
coincide  if 

241.  Since  a  conic  can  be  found  to  satisfy  any  five  conditions 

(Art.  133)r  a  conic  can  be  found  to  touch  a  given  conic  at  a 

given  point,  and  satisfy  any  three  other  conditions.  If  it  have 

contact  of  the  second  order  at  the  given  point,  it  can  be  made 

to  satisfy  two  other  conditions  ;  and  if  it  have  contact  of  the 

third  order,  it  can  be  made  to  satisfy  one  other  condition.  Thus 

we  can  determine  a  parabola  having  contact  of  the  third  order 

at  the  origin  with 

ax*  +  2hxy  +  by*  +  2gx  =  0. 

Referring  to  the  last  two  equations  (Art.  239),  we  see  that 

it  is  only  necessary  to  write  a  instead  of  a,  where  a  is  deter- 

mined by  the  equation  ab  =  A*. 
We  cannot,  in  general,  describe  a  circle  to  have  contact  of  the 

third  order  with  a  given  conic,  because  two  conditions  must  be 

fulfilled  in  order  that  an  equation  should  represent  a  circle  ;  or,  in 

other  words,  we  cannot  describe  a  circle  through  four  consecutive 

points  on  a  conic,  since  three  points  are  sufficient  to  determine 

a  circle.  We  can,  however,  easily  find  the  equation  of  the 

circle  passing  through  three  consecutive  points  on  the  curve. 
This  circle  is  called  the  osculating  circle,  or  the  circle  of 
curvature. 

The  equation  of  the  conic  to  oblique  or  rectangular  axes 

being,  as  before, 

ax*  -f  Zhxy  +  If  4  2gx  =  0, 

that  of  any  circle  touching  it  at  the  origin  is  (Art.  84,  Ex.  3) 

x*  +  2xy  cos  o>  +  y*  —  2rx  sin  to  =  0. 

Applying  the  condition  gb'=g'b   (Art.  239),   we  see  that  the 
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condition  that  the  circle  should  osculate  is 

q  =  —  rb  sin  o>,   or  r  =  ,  ~.S     * o  sin  w 

The  quantity  r  is  called  the  radius  of  curvature  of  the  conic 
at  the  point  T. 

242.    To  find  the  radius  of  curvature  at  any  point  on  a  central 
conic. 

In  order  to  apply  the  formula  of  the  last  Article  the  tangent 

at  the  point  must  be  made  the  axis  of  y.     Now  the  equation 

referred  to   a  diameter  through  the   point   and   its   conjugate 

(x*       y*        \  . 
la75  +  V*  ~  l  J  *8  trans^erre^  *°  Parallel  axes  through  the  given 

point,  by  substituting  x  +  a'  for  cc,  and  becomes 
x*       y*      2x 

a"  +  f*  +  ̂=°- Therefore,  by  the  last  Article,  the  radius  of  curvature  is 

1* 

Now  a  sin  ay  is  the  perpendicular  from  the  centre  on a  sin  co 

the  tangent,  therefore  the  radius  of  curvature 

-^,  or  (Art  176)-^. 

243.   Let  N  denote  the  length  of  the  normal  PN,  and  let 
denote  the  angle  FPN  between  the  normal 

and  focal  radius  vector,  then  the  radius  of 

curvature  is  —  n--  .    For  N=  —  (Art.  181). 
cos*i|r  a  v 

and  cos^=-,  (Art.  188),  whence  the  truth  of  the  formula  is 
manifest. 

*  In  the  Examples  which  follow  we  find  the  absolute  magnitude  of  the  radius  of 
curvature,  without  regard  to  sign.  The  sign,  as  usual,  indicates  the  direction  in  which 
the  radius  is  measured.  For  it  indicates  whether  the  given  curve  is  osculated  by 
a  circle  whose  equation  is  of  the  form 

x*  +  2xy  COB  w  +  y1  +  2rx  einw  =  0, 
the  upper  sign  signifying  one  whose  centre  is  in  the  positive  direction  of  the  axis 
of  x;  and  the  lower,  one  whose  centre  is  in  the  negative  direction.  The  formula  in 
the  text  then  gives  a  positive  radius  of  curvature  when  the  concavity  of  the  curve 
is  turned  in  the  positive  direction  of  the  axis  of  x,  and  a  negative  radius  when  it  ia 
turned  in  ths»  ouoosite  direction. 
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Thus  we  have  the  following  construction:  Erect  a  perpen- 
dicular to  the  normal  at  the  point  where  it  meets  the  axis ;  and 

again  at  the  point  Q,  where  this  perpendicular  meets  the  focal 
radius,  draw  GQ  perpendicular  to  it,  then  G  will  be  the  centre 

of  curvature,  and  GP  the  radius  of  curvature. 

244.  Another  useful  construction  is  founded  on  the  principle 
that  if  a  circle  intersect  a  conic,  its  chords  of  intersection  will 

make  equal  angles  with  the  axis.  For  the  rectangles  under  the 

segments  of  the  chords  are  equal  (Euc.  ill.  35),  and  therefore 

the  parallel  diameters  of  the  conic  are  equal  (Art.  149),  and 

therefore  make  equal  angles  with  the  axis  (Art.  162). 

Now,  in  the  case  of  the  circle  of  curvature,  the  tangent  at  T 

(see  figure,  p.  226)  is  one  chord  of  intersection  and  the  line  TL 
the  other;  we  have,  therefore,  only  to  draw  J!Z>,  making  the 

same  angle  with  the  axis  as  the  tangent,  and  we  have  the  point 

L*  then  the  circle  described  through  the  points  T,  L,  and, 
touching  the  conic  at  T,  is  the  circle  of  curvature. 

This  construction  shows  that  the  osculating  circle  at  either 

vertex  has  a  contact  of  the  third  degree. 

Ex.  1.  Using  the  notation  of  the  eccentric  angle,  find  the  condition  that  four 

points  a,  /3,  y,  8  should  lie  on  the  same  circle  (Joachhnsthal,  Crelle,  xxxvi.  95). 
The  chord  joining  two  of  them  must  make  the  same  angle  with  one  side  of  the 

axis  as  the  chord  joining  the  other  two  does  with  the  other ;  and  the  chords  being 

?cosi(a  +  /3)+f  sin*  (a +  j3)  =  co8  *(«-/?); 

?  cosi  (y  +  a)  +  |  sini  (y  +  *)  =  cos  J  (y  -  8) ; 

we  have  tan  £  (a  +  /3)  +  tan£  (y  +  i)  =  0  ;  a  +  /3  +  y  +  8  =  0 ;  or  =  2mir. 

Ex.  2.  Find  the  coordinates  of  the  point  where  the  osculating  circle  meets  the 
conic  again. 

We  have  a  =  ft  =  y ;  hence  S  =  -  3a ;  or  X  =  If?  -  3x';   Y  =  4^-  -  3y'. 
Ex.  3.  If  the  normals  at  three  points  a,  ft,  y  meet  in  a  point,  the  foot  of  the  fourth 

normal  from  that  point  is  given  by  the  equation  a  +  /3  +  y  +  a  =  (2m  +  1)  -r. 

Ex.  4.   Find  the  equation  of  the  chord  of  curvature  TL. 

Arts,   -cos  a  —  f  sin  a  =  cos2a. a  0 

Ex.  5.  There  are  three  points  on  a  conic  whose  osculating  circles  pass  through 

H  given  point  on  the  curve ;  these  lie  on  a^circle  passing  through  the  point,  and  form 
a  triangle  of  which  the  centre  of  the  curve  is  the  intersection  of  bisectors  of  sides 
(Steiner,  Crelle,  xxxn.  300 ;  Joachimsthal,  Crelle,  xxxvi.  95). 

Here  we  are  given  d.  the  point  where  the  circle  meets  the  curve  again,  and  from 

the  last  Example  the  point  of  contact  is  a  —  —  %8.  But  since  the  sine  and  cosine 
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of  &  would  not  niter  if  £  were  increased  by  360°,  we  might  also  have  a  =  -  $t  +  120°, 

or  =  —  $8  +  240°,  and,  from  Ex.  1,  these  three  points  lie  on  a  circle  passing  through  &. 
If  in  the  last  Example  we  suppose  X,  Y  given,  since  the  cubics  which  determine 

x'  and  y*  want  the  second  terms,  the  sums  of  the  three  values  of  x'  and  of  y'  are 
respectively  equal  to  nothing ;  and  therefore  (Ex.  4,  p.  5)  the  origin  is  the  intersection 
of  the  bisectors  of  sides  of  the  triangle  formed  by  the  three  points.  It  is  easy  to  see 
that  when  the  bisectors  of  sides  of  an  inscribed  triangle  intersect  in  the  centre,  the 
normals  at  the  vertices  are  the  three  perpendiculars  of  this  triangle,  and  therefore 
meet  in  a  point. 

245.    To  find  the  radius  of  curvature  of  a  parabola. 

The  equation  referred  to  any  diameter  and  tangent  being 

the  radius  of  curvature  (Art.  241)  is  ̂ —a  »  w^iere  # 

is  the  angle  between  the  axes.     The  expression  — 5 —  ,  and  the 

cos'i/r  ' 
construction  depending  on  it,  hold  for  the  parabola,  since 

N=  \p  sin  6  (Arts.  212,  213)  and  ̂   =  90°  -  6  (Art.  217). 
Ex.  1.  In  all  the  conic  sections  the  radius  of  curvature  is  equal  to  the  cube  of  the 

normal  divided  by  the  square  of  the  semi-parameter. 

Ex.  2.  Express  the  radius  of  curvature  of  an  ellipse  in  terms  of  the  angle  which 
the  normal  makes  with  the  axis. 

Ex.  3.  Find  the  lengths  of  the  chords  of  the  circle  of  curvature  which  pass 

through  the  centre  or  the  focus  of  a  central  conic  section.  2i'2  2£'2 
Ans.   —r  ,  and  — a  a 

Ex.  4.  The  focal  chord  of  curvature  of  any  conic  is  equal  to  the  focal  chord  of 
the  conic  drawn  parallel  to  the  tangent  at  the  point. 

Ex.  5.  In  the  parabola  the  focal  chord  of  curvature  is  equal  to  the  parameter  of 
the  diameter  passing  through  the  point. 

246.  To  find  the  coordinates  of  the  centre  of  curvature  of  a 
central  conic. 

These  are  evidently  found  by  subtracting  from  the  coordi- 
nates of  the  point  on  the  conic  the  projections  of  the  radius  of 

curvature  upon  each  axis.  Now  it  is  plain  that  this  radius  is  to 

its  projection  on  y  as  the  normal  to  the  ordinate  y.  We  find  the 
projection,  therefore,  of  the  radius  of  curvature  on  the  axis  of 

y  (by  multiplying  the  radius  —  by  ̂J  =  -~ .  The  y  of  the 

centre  of  curvature  then  is  — ^—  y'.  But  V*  —  V  +  ̂  y'\  there- 

fore the  y  of  the  centre  of  curvature  is  —74—  y'a.  In  like 
a' -6" manner  its  x  is  — -4—  x  . a  / 
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We  should  have  got  the  same  values  by  making  a  =  /3  =  y 
in  Ex.  8,  p.  220. 

Or,  again,  the  centre  of  the  circle  circumscribing  a  triangle  is 
the  intersection  of  perpendiculars  to  the  sides  at  their  middle 

points;  and  when  the  triangle  is  formed  by  three  consecutive 

points  on  a  curve,  two  sides  are  consecutive  tangents  to  the 

curve,  and  the  perpendiculars  to  them  are  the  corresponding 

normals,  and  the  centre  of  curvature  of  any  curve  is  the  intersec- 

tion of  two  consecutive  normals.  Now  if  we  make  x  =  x"  =  JT, 

y'  =  y"  =  Y,  in  Ex.  4,  p.  175,  we  obtain  again  the  same  values  as 
those  just  determined. 

247.  To  find  the  coordinates  of  the  centre  of  curvature  of  a 

parabola. 
The  projection  of  the  radius  on  the  axis  of  y  is  found  in  like 

manner  (by  multiplying  the  radius  of  curvature   -r-^  by 

=  sm*0; 

and  subtracting  this  quantity  from  y  we  have 

r=--        =  _(Art.  212). 
tan  6  p* 

In  like  manner  its  X  is  x  -\-  n  •?*,„  =  x  +  ?   —  =  3x'  +  i ». 2  sin  0  2 

The  same  values  may  be  found  from  Ex.  10,  p.  214. 

248.  The  evolute  of  a  curve  is  the  locus  of  the  centres  of 

curvature  of  its  different  points.  If  it  were  required  to  find  the 

evolute  of  a  central  conic,  we  should  solve  for  x'y'  in  terms  of 
the  x  and  y  of  the  centre  of  curvature,  and,  substituting  in  the 

/  c8  ca equation  of  the  curve,  should  have  (writing  -  =  A,   -j=B 

In  like  manner  the  equation  of  the  evolute  of  a  parabola  is  found 
to  be 

which  represents  a  curve  called  the  semi-cubical  parabola. 
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CHAPTER   XIV. 

METHODS  OF  ABRIDGED   NOTATION. 

249.  IF  $=0,  $'  =  0  be  the  equations  of  two  conies,  then 
the  equation  of  any  conic  passing  through  their  four,  real 

or  imaginary,  points  of  intersection  can  be  expressed  in  the 

form  S=JcS'.  For  the  form  of  this  equation  shows  (Art.  40) 
that  it  denotes  a  conic  passing  through  the  four  points  common 

to  S  and  /S";  and  we  can  evidently  determine  k  so  that  S=kS. 
shall  be  satisfied  by  the  coordinates  of  any  fifth  point.  It  must 

then  denote  the  conic  determined  by  the  five  points.* 
This  will,  of  course,  still  be  true  if  either  or  both  the  quan- 

tities S,  S'  be  resolvable  into  factors.  Thus  £=&a/9,  being 
evidently  satisfied  by  the  coordinates  of  the  points  where  the 

right  lines  a,  /3  meet  $,  represents  a  conic  passing  through  the 

four  points  where  S  is  met  by  this  pair  of  lines;  or,  in  other 

words,  represents  a  conic  having  a  and  j3  for  a  pair  of  chords  of 
intersection  with  S.  If  either  a  or  /3  do  not  meet  S  in  real 

points,  it  must  still  be  considered  as  a  chord  of  imaginary  inter- 
section, and  will  preserve  many  important  properties  in  relation 

to  the  two  curves,  as  we  have  already  seen  in  the  case  of  the 

circle  (Art.  106).  So,  again,  ay  =  k@8  denotes  a  conic  circum- 

scribing the  quadrilateral  a/^S,  as  we  have  already  seen  (Art. 

122).f  It  is  obvious  that  in  what  is  here  stated,  a  need  not 

*  Since  fivn  conditions  determine  a  conic,  it  is  evident  that  the  most  general 
equation  of  a  conic  satisfying  four  conditions  must  contain  one  independent  constant, 
whose  value  remains  undetermined  until  a  fifth  condition  is  given.  In  like  manner, 
the  most  general  equation  of  a  conic  satisfying  three  conditions  contains  two  in- 

dependent constants,  and  so  on.  Compare  the  equations  of  a  conic  passing  through 
three  points  or  touching  three  lines  (Arts.  124,  129). 

If  we  are  given  any  four  conditions,  in  the  expression  of  each  of  which  the  co- 
efficients enter  only  in  the  first  degree,  the  conic  passes  through  four  fixed  points; 

for  by  eliminating  all  the  coefficients  but  one,  the  equation  of  the  conic  is  reduced 

to  thfl  form  S  —  kS'. 
t  If  a/3  be  orifc  pair  of  chords  joining  four  points  on  a  conic  S,  and  y$  another 

pair  of  chords,  it  is  immaterial  whether  the  general  equation  of  a  conic  passing 

through  the  four  points  be  expressed  in  any  of  the  forms  S  —  haft,  S  -  kyS,  aft  —  kyS, 
where  k  is  indeterminate ;  because,  in  virtue  of  the  general  principle,  S  is  itself  of  the 
form  a/?  —  kyt. 
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be  restricted,  as  at  p.  53,  to  denote  a  line  whose  equation  has 

been   reduced   to   the   form  x  cosa  +  y  sina=^>;   but  that  the 
argument  holds  if  a  denote  a  line  expressed  by  the  general 

equation. 

250.  There  are  three  values  of  &,  for  which   S-kS'  re- 
presents a  pair  of  right  lines.     For  the  condition  that  this  shall 

be  the  case,  is  found  by  substituting  a  -  ha,  b  —  kb',  &c.  for 
a,  5,  &c.  in 

ale  +  2#A  -  af  -  bg*  -  ch*  =  0, 
and  the  result  evidently  is  of  the  third  degree  in  &,  and  is 
therefore  satisfied  by  three  values  of  k.  If  the  roots  of  this 

cubic  be  #,  F,  #",  then  S-k'S',  S-k"S',  8-k'"S',  denote 
the  three  pairs  of  chords  joining  the  four  points  of  intersection 

of  8  and  8'  (Art.  238). 
Ex.  1.  "What  is  the  equation  of  a  conic  passing  through  the  points  where  a  given conic  S  meets  the  axes  ? 

Here  the  axes  x  =  0,  y  =  0,  are  chords  of  intersection,  and  the  equation  must  be 
of  the  form  8  =  fay,  where  k  is  indeterminate.  See  Ex.  1,  Art.  151. 

Ex.  2.  Form  the  equation  of  the  conic  passing  through  five  given  points ;  for 

example  (1,  2),  (3,  5),  (-  1,  4),  (-  3,  -  1)  (-  4,  3).  Forming  the  equations  of  the  sides 
of  the  quadrilateral  formed  by  the  first  four  points,  we  see  that  the  equation  of  the 
required  conic  must  be  of  the  form 

(3x  -  2y  +  1)  (5*  -  2y  +  13)  =  Js  (x  -  4y  +  17)  (3x  -  4y  +  5). 

Substituting  in  this,  the  coordinates  of  the  fifth  point  (—4, 3),  we  obtain  k  =  —  *?J. 
Substituting  this  value  and  reducing  the  equation,  it  becomes 

79a:2  -  320:ry  +  301y*  +  1101*  -  1665y  +  1586  =  0. 

251.  The  conies  $,  S—ka/3  will  touch;  or,  in  other  words, 
two  of  their  points  of  intersection  will  coincide  ;  if  either  a  or  0 

touch  S,  or  again,  if  a  and  /3  intersect  in  a  point  on  8.     Thus  if 

T=Q  be  the  equation  of  the  tangent  to  S  at  a  given  point  on  it 

#y,  then  8=  T  (Ix  +  my  4  n),  is  the  most  general  equation  of  a 

conic  touching  S  at  the  point  x'y  ;  and  if  three  additional  con- 
ditions are  given,  we  can  complete  the  determination  of  the 

conic  by  finding  Z,  TW,  n. 

Three  of  the  points  of  intersection  will  coincide  if  Ix  -f  my  +  n 

pass  through  the  point  x'y  ;  and  the  most  general  equation  of  a 

conic  osculating  S  at  the  point  x'y  is  8=  T(lx+my-lx'-my'). 
If  it  be  required  to  find  the  equation  of  the  osculating  circle, 

we  have  only  to  express  that  the  coefficient  xy  vanishes  in  this HH. 
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equation,  and  that  the  coefficient  of  a?  =  that  of  if  ;  when  we 
have  two  equations  which  determine  /  and  m. 

The  conies  will  have  four  consecutive  points  common  if 

lx+my  +  n  coincide  with  T,  so  that  the  equation  of  the  second 

conic  is  of  the  form  S=kT*.  Compare  Art.  239. 
Ex.  1.  If  the  axes  of  S  be  parallel  to  those  of  /S",  so  will  also  the  axes  of 

S  —  kS'.  For  if  the  axes  of  coordinates  be  parallel  to  the  axes  of  8,  neither  S  nor 
S'  will  contain  the  term  xy.  If  S'  be  a  circle,  the  axes  of  S  —  kS'  are  parallel  to 
Che  axes  of  S.  If  S  —  Ic&  represent  a  pair  of  right  lines,  its  axes  become  the  internal 
and  external  bisectors  of  the  angles  between  them;  and  we  have  the  theorem  of 
Art.  244. 

Ex.  2.  If  the  axes  of  coordinates  be  parallel  to  the  axes  of  S,  and  also  to  those 

of  S  —  &a/3,  then  a  and  /3  are  of  the  forms  lx  +  my  +  n,  Ix  —  my  +  n'. 

Ex.  3.  To  find  the  equation  of  the  circle  osculating  a  central  conic.  The  equation 
must  be  of  the  form 

Expressing  that  the  coefficient  of  xy  vanishes,  we  reduce  the  equation  to  the  form 

and  expressing  that  the  coefficient  of  a?  —  that  of  y2,  we  find  \  =  /.,—  2  ,  and 
the  equation  becomes 

a*  b* 

Ex.  4.  To  find  the  equation  of  the  circle  osculating  a  parabola. 

Ans.  (  p*  +  4paO  (y*  -  px)  =  {2yyf  -p(x  +  x1}}  \1yy'  +  px  -  Spx'}  . 

252.  We  have  seen  that  S=7ca./3  represents  a  conic  passing 
through  the  four  points 

•PiQ'iPi  ?5  where  a,  @  meet 
S]  and  it  is  evident  that 
the  closer  to  each  other 

the  lines  a,  j3  are,  the 

nearer  the  point  P  is  to  p,  V_/ 

and  Q  to  q.  Suppose  that  the  lines  a  and  @  coincide,  then 

the  points  P,  p  •  Q,  q  coincide,  and  the  second  conic  will  touch 
the  first  at  the  points  P,  Q.  Thus,  then,  the  equation  S=ko? 
represents  a  conic  having  double  contact  with  S,  a.  being  the  chord 

of  contact.  Even  if  a  do  not  meet  S,  it  is  to  be  regarded  as  the 

imaginary  chord  of  contact  of  the  conies  S  and  S-kaf.  In 

like  manner  ay  =  k$*  represents  a  conic  to  which  a  and  y  are 
tangents  and  /3  the  chord  of  contact,  as  we  have  already  seen 

(Art.  123).  The  equation  of  a  conic  having  double  contact 

with  S  at  two  given  points  x'y',  x"y"  may  be  also  written  in  the 
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form  S=kTT',  where  Tand  T'  represent  the  tangents  at  these 
points. 

253.  If  the  line  a  be  parallel  to  an  asymptote  of  the  conic 

S,  it  will  also  be  parallel  to  an  asymptote  of  any  conic  repre- 
sented by  S=  &a/3,  which  then  denotes  a  system  passing  through 

three  finite  and  one  infinitely  distant  point.      In  like  manner, 

if  in  addition  /8  were  parallel  to  the  other  asymptote,  the  system 

would  pass  through  two  finite  and  two  infinitely  distant  points. 
Other  forms  which  denote  conies  having  points  of  intersection 

at  infinity  will  be    recognized  by   bearing   in  mind  the  prin- 
ciple (Art.  67)  that  the  equation  of  an  infinitely  distant  line  is 

G.OJ+  0.#  +  <7=0;  and  hence  (Art.  69)  that  an  equation,  appa- 
rently not  homogeneous,  may  be  made  homogeneous  in  form,  if 

in  any  of  the  terms  which  seem  to  be  below  the  proper  degree  of 

the  equation  we  replace  one  or  more  of  the  constant  multipliers 

by  O.aj-l-  Q.y  +  0.     Thus,  the  equation  of  a  conic  referred  to  its 

asymptotes  xy  =  kz  (Art.  199)  is  a  particular  case  of  the  form 

«7  =  /32  referred   to   two  tangents   and   the   chord   of  contact 

(Arts.   123,  252).     Writing  the  equation  xy  =  (O..r  +  Q.y  +  &)2, 
it  is  evident  that  the  lines  x  and  y  are  tangents,  whose  points  of 

contact  are  at  infinity  (Art.  154). 

254.  Again,  the  equation  of  a  parabola  y*  =px  is  also  a  par- 

ticular case  of  «7=/32.     Writing  the  equation  x  (0.  x + 0 .  y-\  p)  =y\ 
the  form  of  the  equation  shows,  not  only  that  the  line  x  touches 

the  curve,  its  point  of  contact  being  the  point  where  x  meets  #, 
but  also  that  the  line  at  infinity  touches  the  curve,  its  point  of 

contact  also  being  on  the  line  y.     The  same  inference  may  be 
d^awn  from  the  general  equation  of  the  parabola 

(ax  +  $y  Y  +  ( Igx  4-  2/#  +  c)  ̂  ( 0 .  x  +  0 .  y  +  I )  =  0, 

which  shews  that  both  Vyx  +  2fy  4-  c,  and  the  line  at  infinity  are 

tangents,  and  that  the  diameter  ax  +  fiy  joins  the  points  of  con- 
tact. Thus,  then,  every  parabola  has  one  tangent  altogether  at  an 

infinite  distance.  In  fact,  the  equation  which  determines  the 

direction  of  the  points  at  infinity  on  a  parabola  is  a  perfect 

square  (Art.  137);  the  two  points  of  the  curve  at  infinity 

therefore  coincide ;  and  therefore  the  line  at  infinity  is  to  be 
regarded  as  a  tangent  (Art.  83). 
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Ex.   The  general  equation 

ax*  +  Zhxy  +  by*  +  2gx  +  2fy  +  c  =  0 

may  be  regarded  as  a  particular  case  of  the  form  (Art.  122)  ay  =  kpt.  For  the  first 
three  terms  denote  two  lines  a,  y  passing  through  the  origin,  and  tie  last  three  terms 
denote  the  line  at  infinity  /3,  together  with  the  line  &,  Igx  +  2/y  +  c.  The  form  of  the 
equation  then  shows  that  the  lines  a,  y  meet  the  curve  at  infinity,  and  also  that  8 
represents  the  line  joining  the  finite  points  in  which  ay  meet  the  curve. 

255.  In  accordance  with  Art.  253,  the  equation  S=k@  is  to 

be  regarded  as  a  particular  case  of  S*=  a/3,  and  denotes  a  system 
of  conies  passing  through  the  two  finite  points  where  £  meets  8, 
and  also  through  the  two  infinitely  distant  points  where  S  is 

met  by  Q.x  -t-  O.y  +  k.  Now  it  is  plain  that  the  coefficients  of 

x\  of  xy,  and  of  y\  are  the  same  in  S  and  in  S-  k&9  and  there- 
fore (Art.  234)  that  these  equations  denote  conies  similar  and 

similarly  placed.  We  learn,  therefore,  that  two  conies  similar 

and  similarly  placed  meet  each  other  in  two  infinitely  distant 

points,  and  consequently  only  in  two  finite  points. 

This  is  also  geometrically  evident  when  the  curves  are 

hyperbolas;  for  the  asymptotes  of  similar  conies  are  parallel 

(Art.  235),  that  is,  they  intersect  at  in- 
finity; but  each  asymptote  intersects 

its  own  curve  at  infinity ;  consequently 

the  infinitely  distant  point  of  intersec- 
tion of  the  two  parallel  asymptotes  is 

also  a  point  common  to  the  two  curves. 

Thus,  on  the  figure,  the  infinitely  distant 

point  of  meeting  of  the  lines  OX,  Ox,  °  *~~ 
and  of  the  lines  OY,  Oy,  are  common  to  the  curves.  One  of 

their  finite  points  of  intersection  is  shown  on  the  figure,  the 
other  is  on  the  opposite  branches  of  the  hyperbolas. 

If  the  curves  be  ellipses,  the  only  difference  is  that  the 

asymptotes  are  imaginary  instead  of  being  real.  The  directions 

of  the  points  at  infinity,  on  two  similar  ellipses,  are  determined 

from  the  same  equation  (ax*  +  2hxy  +  by*  =  0)  (Arts.  136,234). 
Now,  although  the  roots  of  this  equation  are  imaginary,  yet 
they  are,  in  both  cases,  the  same  imaginary  roots,  and  therefore 

the  curves  are  to  be  considered  as  having  two  imaginary  points 
at  infinity  common.  In  fact,  it  was  observed  before,  that  even 

when  the  line  a  does  not  meet  S  in  real  points,  it  is  to  be  re- 
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garded  as  t  chord  of  imaginary  intersection  of  S  and  S-kafi, 
and  this  remains  true  when  the  line  a  is  infinitely  distant. 

If  the  curves  be  parabolas,  they  are  both  touched  by  the  line 

at  infinity  (Art.  254) ;  but  the  direction  of  the  point  of  contact, 

depending  only  on  the  first  three  terms  of  the  equation,  is  the 

same  for  both.  Hence,  two  similar  and  similarly  placed  para- 
bolas touch  each  other  at  infinity.  In  short,  the  two  infinitely 

distant  points  common  to  two  similar  conies  are  real,  imaginary, 

or  coincident,  according  as  the  curves  are  hyperbolas,  ellipses, 
or  parabolas. 

256.  The  equation  S=k,  or  S=k(Q.x  +  Q.y  +  1)*  is  mani- 
festly a  particular  case  of  S=kd\  and  therefore  (Art.  252)  de- 
notes a  conic  having  double  contact  with  $,  the  chord  of  contact 

being  at  infinity.    Now  S—  k  differs  from  S  only  in  the  constant 
term.     Not  only  then  are  the  conies  similar  and  similarly  placed, 

the  first  three  terms  being  the  same,  but  they  are  also  con- 
centric.    For  the  coordinates  of  the  centre  (Art.  140)   do  not 

involve  c,  arid  therefore  two  conies  whose  equations  differ  only 

in  the  absolute  term  are  concentric  (see  also  Art.  81).    Hence,  two 

similar  and  concentric  conies  are  to  be  regarded  as  touching  each 

other  at  two  infinitely  distant  points.     In  fact,  the  asymptotes  of 

two  such  conies  are  not  only  parallel  but  coincident ;  they  have 

therefore  not  only  two  points  at  infinity  common,  but  also  the 

tangents  at  those  points ;  that  is  to  say,  the  curves  touch. 

If  the  curves  be  parabolas,  then,  since  the  line  at  infinity 

touches  both  curves,  8  and  S—  fc*  have  with  each  other,  by 
Art.  251,  a  contact  at  infinity  of  the  third  order.  Two  para- 

bolas whose  equations  differ  only  in  the  constant  term  will  be 

equal  to  each  other;  for  the  curves  y*=px,  y*=p(x  +  n)  are 
obviously  equal,  and  the  equations  transformed  to  any  new  axes 

will  continue  to  differ  only  in  the  constant  term.  We  have  seen, 

too  (Art.  205),  that  the  expression  for  the  parameter  of  a  para- 
bola does  not  involve  the  absolute  term.  The  parabolas  then, 

S  and  S-7<?  are  equal,  and  we  learn  that  two  equal  and  similarly 

placed  parabolas  whose  axes  are  coincident  may  be  considered  as 

having  with  each  other  a  contact  of  the  third  order  at  infinity. 

257.  All  circles  are  similar  curves,  the  terms  of  the  second 

degree  being  the  same  in  all.     It  follows  then,  from  the  last 
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Articles,  that  all  circles  pass  through  the  same  two  imaginary 
points  at  infinity,  and  on  that  account  can  never  intersect  in  more 

than  two  finite  points,  and  that  concentric  circles  touch  each  other 

in  two  imaginary  points  at  infinity  ;  and  on  that  account  can 

never  intersect  in  any  finite  point.  It  will  appear  hereafter 

that  a  multitude  of  theorems  concerning  circles  are  but  parti- 
cular cases  of  theorems  concerning  conies  which  pass  through 

two  fixed  points. 

258.  It  is  important  to  notice  the  form  ZV  +  m*@*  =  wy, 
which  denotes  a  conic  with  respect  to  which  a,  yS,  7  are  the 

sides  of  a  self-conjugate  triangle  (Art.  99).  For  the  equation 
may  be  written  in  any  of  the  forms 

The  first  form  shows  that  ny  •+  m/3,  ny  —  mft  (which  intersect 
in  #7)  are  tangents,  and  a  their  chord  of  contact.  Consequently 
the  point  fiy  is  the  pole  of  a.  Similarly  from  the  second  form 

7<z  is  the  pole  of  (3.  It  follows,  then,  that  a/3  is  the  pole  of  7  ; 
and  this  also  appears  from  the  third  form,  which  shows  that  the 

two  imaginary  lines  la.  ±  mft  \/(—  1)  are  tangents  whose  chord 
of  contact  is  7.  Now  these  imaginary  lines  intersect  in  the 

real  point  a/3,  which  is  therefore  the  pole  of  7  ;  although  being 

within  the  conic,  the  tangents  through  it  are  imaginary. 

It  appears,  in  like  manner,  that 

denotes  a  conic,  such  that  a/3  is  the  pole  of  7  ;  for  the  left-hand 
side  can  be  resolved  into  the  product  of  factors  representing 
lines  which  intersect  in  a/3. 

COR.  If  Pa2  +  m2/?2  =  »2y2  denote  a  circle,  its  centre  must  be  the  intersection  of 
perpendiculars  of  the  triangle  a/3y.  For  the  perpendicular  let  fall  from  any  point 
on  its  polar  must  pass  through  the  centre. 

258*(o).  If  £e  =  0,  #  =  0  be  any  lines  at  right  angles  to  each 
other  through  a  focus,  and  7  the  corresponding  directrix,  the 
equation  of  the  curve  is **-f/=ey, 
a  particular  form  of  the  equation  of  Art.  258.  Its  form  shows 

that  the  focus  (xy)  is  the  pole  of  the  directrix  7,  and  that  the 

*  This  Article  was  numbered  279  in  the  previous  editions. 
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polar  of  any  point  on  the  directrix  is  perpendicular  to  the  line 

joining  it  to  the  focus  (Art.  192)  ;  for  y,  the  polar  of  (xy)  is  per- 
pendicular to  cc,  but  x  may  be  any  line  drawn  through  the  focus. 

The  form  of  the  equation  shows  that  the  two  imaginary 

lines  a?2  +  y*  are  tangents  drawn  through  the  focus.  Now,  since 
these  lines  are  the  same  whatever  7  be,  it  appears  that  all  conies 

which  have  the  same  focus  have  two  imaginary  common  tangents 

passing  through  this  focus.  All  conies,  therefore,  which  have  both 

foci  common,  have  four  imaginary  common  tangents,  and  may 
be  considered  as  conies  inscribed  in  the  same  quadrilateral.  The 

imaginary  tangents  through  the  focus  (xz  -f  yz  =  0)  are  the  same 
as  the  lines  drawn  to  the  two  imaginary  points  at  infinity  on  any 

circle  (see  Art.  257).  Hence,  we  obtain  the  following  general 

conception  of  foci  :  "  Through  each  of  the  two  imaginary  points 
at  infinity  on  any  circle  draw  two  tangents  to  the  conic  ;  these 

tangents  will  form  a  quadrilateral,  two  of  whose  vertices  will  be 

real  and  the  foci  of  the  curve,  the  other  two  may  be  considered 

as  imaginary  foci  of  the  curve." 
Ex.  To  find  the  foci  of  the  conic  given  by  the  general  equation.  We  hare 

only  to  express  the  condition  that  x  —  x'  +  (y  —  y')  J(-  1)  should  touch  the  curve. 
Substituting  then  in  the  formula  of  Art.  151,  for  X,  /*,  v  respectively,  1,  ,/(-  1), 

—  {x1  -f-  y'  J(—  1)}  ;  and  equating  separately  the  real  and  imaginary  parts  to  cypher, 
we  find  that  the  foci  are  determined  as  the  intersection  of  the  two  loci 

C  (x2  -  y2)  +  2Fy  -  2Gx  +  A  -  B  =  0,    Cxy  -  Fx  -  Gy  +  H  =  0, 

Wnich  denote  two  equilateral  hyperbolas  concentric  with  the  given  conic.    Writing 
the  equations 

(Cat  -  Gy  -  (Cy  -  F)*  =  G*  -  AC  -  (F*  -BC)  =  A(a-  6), 

(Cx  -G)(Cy-F)=FG-CH=Ah; 

the  coordinates  of  the  foci  are  immediately  given  by  the  equations 

(Cx  -  GY  -  }A  (R  +  a  -  b)  ;  (Cy  -  F)2  =  JA  (R  +  b  -  a), 

where  A  has  the  same  meaning  as  at  p.  153,  and  R  as  at  p.  158.    If  the  curve  is  a 

parabola,  (7=0,  and  we  have  to  solve  two  linear  equations  which  give 

)  x  =  FH+  ±(A  -  JS)  G  ;   (F2  +  G2)  y  =  GH  +  ±  (B  -  A)  F. 

259.  We  proceed  to  notice  some  inferences  which  follow  on 

interpreting,  by  the  help  of  Art.  34,  the  equations  we  have 

already  used.  Thus  (see  Arts.  122,  123)  the  equation  a.y  =  k@* 
implies  that  the  product  of  the  perpendiculars  from  any  point  of 

a  conic  on  two  fixed  tangents  is  in  a  constant  ratio  to  the  square 

of  the  perpendicular  on  their  chord  of  contact. 

The  equation  a.y  =  k/3$,  similarly  interpreted,  leads  to  the 
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important  theorem  :  The  product  of  the  perpendiculars  let  fall 

from  any  point  of  a  conic  on  two  opposite  sides  of  an  inscribed 

quadrilateral  is  in  a  constant  ratio  to  the  product  of  the  perpen- 
diculars let  fall  on  the  other  two  sides. 

From  this  property  we  at  once  infer,  that  the  anharmonic 

ratio  of  a  pencil,  whose  sides  pass  through  four  fixed  points  of  a 
conic,  and  whose  vertex  is  any  variable  point  of  it,  is  constant. 

For  the  perpendicular 

OA.OB.  sin  A  OB  OC.OD.smCOD     . 

Now  if  we  substitute  these  values 

in  the  equation  ay  4-  k@8,  the  con- 
tinued product  OA.OB.OG.OD 

will  appear  on  both  sides  of  the 

equation,  and  may  therefore  be 

suppressed,  and  there  will  remain 

BmAOB.smCOD  _,    AB.CD 

&mBOC.&mAOD  "      BG.AD ' 
but  the  right-hand  member  of  this  equation  is  constant,  while 

the  left-hand  member  is  the  anharmonic  ratio  of  the  pencil  OA, 
OB,  OG,  OD. 

The  consequences  of  this  theorem  are  so  numerous  and  im- 

portant that  we  shall  devote  a  section  of  another  chapter  to 
develope  them  more  fully. 

260.  If  8=0  be  the  equation  to  a  circle,  then  (Art.  90)  8  is 
the  square  of  the  tangent  from  any  point  xy  to  the  circle ;  hence 

S-  ka.fi  =  0  (the  equation  of  a  conic  whose  chords  of  intersection 
with  the  circle  are  a  and  ft)  expresses  that  the  locus  of  a  point, 
such  that  the  square  of  the  tangent  from  it  to  a  jived  circle  is  in  a 

constant  ratio  to  the  product  of  its  distances  from  two  faced  lines, 

is  a  conic  passing  through  the  four  points  in  which  thejixed  lines 
intersect  the  circle. 

This  theorem  is  equally  true  whatever  be  the  magnitude  of 
the  circle,  and  whether  the  right  lines  meet  the  circle  in  real  or 

imaginary  points;  thus,  for  example,  if  the  circle  be  infinitely 

small,  the  locus  of  a  point,  the  square  of  whose  distance  from  a 
fixed  point  is  in  a  constant  ratio  to  the  product  of  its  distances  from 
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two  fixed  lines,  is  a  conic  section  ;  and  the  fixed  lines  may  be 
considered  as  chords  of  imaginary  intersection  of  the  conic  with 

an  infinitely  small  circle  whose  centre  is  the  fixed  point. 

261.  Similar    inferences   can  be    drawn   from   the  equation 

8-  &a'2  =  0,  where  8  is  a  circle.     We  learn  that  the  locus  of  a 
point,  such  that  the  tangent  from  it  to  a  fixed  circle  is  in  a  constant 

ratio  to  its  distance  from  a  fixed  line,  is  a  conic  touching  the  circle 

at  the  two  points  where  the  fixed  line  meets  it  ;  or,  conversely,  that 

if  a  circle  have  double  contact  with  a  conic,  the  tangent  drawn  to 

the  circle  from  any  point  on  the  conic  is  in  a  constant  ratio  to  the 

perpendicular  from  the  point  on  the  chord  of  contact. 
In  the  particular  case  where  the  circle  is  infinitely  small,  we 

obtain  the  fundamental  property  of  the  focus  and  directrix,  and 

we  infer  that  the  focus  of  any  conic  may  be  considered  as  an  in- 
finitely  small  circle,  touching  the  conic  in  two  imaginary  points 
situated  on  the  directrix. 

262.  In   general,  if  in  the  equation  of  any  conic  the  coordi- 
nates of  any  point  be  substituted,  the  result  will  be  proportional  to 

the  rectangle  under   the  segments  of  a  chord  drawn  through  the 

point  parallel  to  a  given  line* 
For  (Art.  148)  this  rectangle 

_ 

a  cos'0  +  2h  cos  6  sin  6  +  b  sin*0  ' 

where,  by  Art.  134,  c'  is  the  result  of  substituting  in  the  equa- 
tion the  coordinates  of  the  point  ;  if,  therefore,  the  angle  6  be 

constant,  this  rectangle  will  be  proportional  to  c'. 
Ex.  1.  If  two  conies  have  double  contact,  the  square  of  the  perpendicular  from 

any  point  of  one  upon  the  chord  of  contact  is  in  a  constant  ratio  to  the  rectangle 
under  the  segments  of  that  perpendicular  made  by  the  other. 

Ex.  2.  If  a  line  parallel  to  a  given  one  meets  two  conies  in  the  points  P,  Q,  p,  q, 
and  we  take  on  it  a  point  Oy  such  that  the  rectangle  OP  .  OQ,  may  be  to  Op.  Oq  in 
a  constant  ratio,  the  locus  of  0  is  a  conic  through  the  points  of  intersection  of  the 
given  conies. 

Ex.  3.   The  diameter  of  the   circle   circumscribing  the  triangle  formed  by  two 

b'b" 

tangen
ts  

to  a  centra
l  

conic 
 
and  their  chord 

 
of  contac

t  
is  —  ;  where 

 
b',  b"  are  the 

semi-diameters  parallel  to  the  tangents,  and  p  is  the  perpendicular  from  the  centre 
on  the  chord  of  contact.  [Mr.  Burnside]. 

This  is  eauallv  true  for  curves  of  any  degree. 
J  I 
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It  will  be  convenient  to  suppose  the  equation  divided  by  such  a  constant  that  the 

result  of  substituting  the  coordinates  of  the  centre  shall  be  unity.  Let  £*,  t"  be  the 

lengths  of  the  tangents,  and  let  S'  be  the  result  of  substituting  the  coordinates 
of  their  intersection  ;  then 

«*  :  4*  :  :  S'  :  1,        «"*  :  4"»  ::  S'  :  1. 

But  also  if  w  be  the  perpendicular  on  the  chord  of  contact  from  the  vertex  of  the 

triangle,  it  is  easy  to  see,  attending  to  the  remark,  Note,  p.  154, 

Hence  =        . o         p 

But  the  left-hand  side  of  this  equation,  by   Elementary   Geometry,  represents  the 
diameter  of  the  circle  circumscribing  the  triangle. 

Ex.  4.  The  expression  (Art.  242)  for  the  radius  of  curvature  may  be  deduced 
if  in  the  last  example  we  suppose  the  two  tangents  to  coincide,  in  which  case  the 
diameter  of  the  circle  becomes  the  radius  of  curvature  (see  Art.  398)  ;  or  also  from 

the  following  theorem  due  to  Mr.  Roberts  :  If  n,  n'  be  the  lengths  of  two  in- 
tersecting normals  ;  p,  p'  the  corresponding  central  perpendiculars  on  tangents  ;  V 

the  semi-diameter  parallel  to  the  chord  joining  the  two  points  on  the  curve,  then 

np  +  n'p'  —  2i'2.  For  if  S'  be  the  result  of  substituting  in  the  equation  the  coordi- 

nates of  the  middle  point  of  the  chord,  ro,  o'  the  perpendiculars  from  that  point 
on  the  tangents,  and  2/3  the  length  of  the  chord,  then  it  can  be  proved,  as  in  the 

last  example,  that  (P  =  b'*S',  n  =  pS',  o'  =  p'S',  and  it  ia  very  easy  to  see  that 
no  +  »V  =  2/32. 

263.  If  two  conies  have  each  double  contact  with  a  third,  their 

chords  of  contact  with  the  third  conic,  and  a  pair  of  their  chords 

of  intersection  with  each  other,  will  all  pass  through  the  same 

point,  and  will  form  a  harmonic  pencil. 

Let  the  equation  of  the  third  conic  be  8  =  0,  and  those  of 
the  first  two  conies, 

£+£8=0,     S-f  71fv  =  0. 

Now,  on  subtracting  these  equations,  we  find  L*  —  M*  —  0, 
which  represents  a  pair  of  chords  of  intersection  (L±M=Q) 
passing  through  the  intersection  of  the  chords  of  contact  (L  and 

M],  and  forming  a  harmonic  pencil  with  them  (Art.  57). 
Ex.  1.  The  chords  of  contact  of  two  conies  with  their  common  tangents  pass 

through  the  intersection  of  a  pair  of  their  common  chords.  This  is  a  particular  case 

of  the  preceding,  S  being  supposed  to  reduce  to  two  right  lines. 

Ex.  2.  The  diagonals  of  any  inscribed,  and  of  the  corresponding  circumscribed 
quadrilateral,  pass  through  the  same  point,  and  form  a  harmonic  pencil.  This  is 

also  a  particular  case  of  the  preceding,  S  being  any  conic,  and  S  +  L2,  S  +  M1  being 
supposed  to  reduce  to  right  lines.  The  proof  may  also  be  stated  thus  :  Let  *„  <2,  c,  ; 

t3,  t4,  c2  be  two  pairs  of  tangents  and  the  corresponding  chords  of  contact.  In  other 
words,  ct,  c2  are  diagonals  of  the  corresponding  inscribed  quadrilateral.  Then  the 
equation  of  S  may  be  written  in  either  of  the  forms 
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The  second  equation  must  therefore  be  identical  with  the  first,  or  can  only  differ 

from  it  by  a  constant  multiplier.  Hence  tjt2  —  \t3tt  must  be  identical  with  c?  —  \022. 
Now  c?  —  Xc22  =  0  represents  a  pair  of  right  lines  passing  through  the  intersection  of 
Cj,  <?2>  an<^  harmonically  conjugate  with  them  ;  and  the  equivalent  form  shows  that 

these  right  lines  join  the  points  tvt3,  U4  and  ̂ 4,  t2t3.  For  tfa  —  \tjt  =  0  must  denote 
a  locus  passing  through  these  points. 

Ex.  3.  If  2a,  2/3,  2y,  25  be  the  eccentric  angles  of  four  points  on  a  central  conic, 
form  the  equation  of  the  diagonals  of  the  quadrilateral  formed  by  their  tangents. 
Here  we  have 

«,  =  -  cos2a  +  |  sin  2a  -  1,    «2  -  -  cos  2/3  4-  1  sin  2/3  -  1, 

c,  =  -  cos  (a  +  j8)  +  ?  sin  (a  +  )8)  -  cos  (a  -  /3), a  o 
and  we  easily  verify 

«A  -  c,»  = 

Hence  reasoning,  as  in  the  last  example,  we  find  for  the  equations  of  the  diagonals 

sin(a-0)  "  -  sin  (y  -  d)  ' 

264.  If  three,  conies  have  each  double  contact  with  a  fourth, 

six  of  their  chords  of  intersection  will  pass  three  by  three  through 

the  same  points,  thus  forming  the  sides  and  diagonals  of  a 

quadrilateral. 
Let  the  conies  be 

By  the  last  Article  the  chords  will  be 

As  in  the  last  Article,  we  may  deduce  hence  many  particular 

theorems,  by  supposing  one  or  more  of  the  conies  to  break  up 

into  right  lines.  Thus,  for  example,  if  8  break  up  into  right 

lines,  it  represents  two  common  tangents  to  S  +  M'\  S+N'2; 
and  if  L  denote  any  right  line  through  the  intersection  of  those 

common  tangents,  then  S  +  L*  also  breaks  up  into  right  lines, 
and  represents  any  two  right  lines  passing  through  the  intersec- 

tion of  the  common  tangents.  Hence,  if  through  the  intersection 

of  the  common  tangents  of  two  conies  we  draw  any  pair  of  right 
lines,  the  chords  of  each  conic  joining  the  extremities  of  those  lines 

will  meet  on  one  of  the  common  chords  of  the  conies.  This  is  the 
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extension  of  Art  116.     Or,  again,  tangents  at  the  extremities  of 

either  of  these  right  lines  will  meet  on  one  of  the  common  chords. 

265.  If  S+L*,  S+M*,   S+N\  all  break  up  into  pairs  of 
right  lines,  they   will    form   a   hexagon   circumscribing   S,  the 
chords  of  intersection  will  be   diagonals  of  that  hexagon,  and 

we  get  Brianchon's  theorem  :  "  The  three  opposite  diagonals  of 

every  hexagon  circumscribing  a  conic  intersect  in  a  point.11     By 
the  opposite  diagonals  we  mean  (if  the  sides  of  the  hexagon  be 

numbered  1,  2,  3,  4,  5,  6)  the  lines  joining  (1,  2)  to  (4,  5),  (2,  3) 

to  (5,  6),  and  (3,  4)  to  (6,  1)  ;  and  by  changing  the  order  in 
which  we  take  the  sides  we  may  consider  the  same  lines  as 

forming  a  number    (sixty)  of  different   hexagons,  for  each  of 

which  the  present  theorem  is  true.     The  proof  may  also  be  stated 

as  in  Ex.  2,  Art.  263.     If 

',*4-'/  =  0,     <A-cft  =  0,     ye-c,'  =  0, 

be  equivalent  forms  of  the  equation  of  $,  then  c,  =  c8  -  C8  re- 

presents three  intersecting  diagonals.* 

266.  If  three  conic,  sections  have  one  chord  common  to  all,  their 

three  other  chords  will  pass  through  the  same  point. 

Let  the  equation  of  one  be  S  =  0,  and  of  the  common  chord 

L  —  0,  then  the  equations  of  the  other  two  are  of  the  form 

S+£Jf=0,     S+LN=0, 

which  must  have,  for  their  intersection  with  each  other, 

but  M  —  N\s  a  line  passing  through  the  point  (MN). 
According  to  the  remark  in  Art.  257,  this  is  only  an  extension 

of  the  theorem  (Art.  108),  that  the  radical  axes  of  three  circles 

meet  in  a  point.  For  three  circles  have  one  chord  (the  line  at 

infinity)  common  to  all,  and  the  radical  axes  are  their  other 
common  chords. 

*  Mr.  Todhunter  has  with  justice  objected  to  this  proof,  that  since  no  rule  is  given 
which  of  the  diagonals  of  t^t^  is  ct  =  +  02,  all  that  is  in  strictness  proved  is  that  the 

lines  joining  (1,  2)  to  (4,  5)  and  (2,  3)  to  (5,  6)  intersect  either  on  the  line  joining 
(3,  4)  to  (6,  1),  or  on  that  joining  (1,  3)  to  (4,  6).  But  if  the  latter  were  the  case  the 
triangles  123,  456  would  be  homologous  (see  Ex.  3,  p.  59),  and  therefore  the  inter- 

sections 14,  25,  36  on  a  right  line ,-  and  if  we  suppose  five  of  these  tangents  fixed,  the 
sixth  instead  of  touching  a  conic  would  pass  through  a  fixed  point. 
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The  theorem  of  Art.  264  may  be  considered  as  a  still  further 
extension  of  the  same  theorem,  and  three  conies  which  have 

each  double  contact  with  a  fourth  may  be  considered  as  having 
four  radical  centres,  through  each  of  which  pass  three  of  their 
common  chords. 

The  theorem  of  this  Article  may,  as  in  Art.  108,  be  other- 

wise enunciated  :  Given  four  points  on  a  conic  section,  its  chord  of 
intersection  with  a  fixed  conic  passing  through  two  of  these  points 
will  pass  through  a  fixed  point. 

Ex.  1.  If  through  one  of  the  points  of  intersection  of  two  conies  we  draw  any  line 

meeting  the  conies  in  the  points  P,  p,  and  through  any 

other  point  of  intersection  B  a  line  meeting  the  conies  in 

the  points  Q,  q,  then  the  lines  PQ,  pq  will  meet  on  CD, 
the  other  chord  of  intersection.  This  is  got  by  supposing 
one  of  the  conies  to  reduce  to  the  pair  of  lines  OA,  OB. 

Ex.  2.  If  two  right  lines,  drawn  through  the  point  of 

contact  of  two  conies,  meet  the  curves  in  points  P,  p,  Q,  q, 

then  the  chords  PQ,  pq  will  meet  on  the  chord  of  inter- 
section of  the  conies. 

This  is  also  a  particular  case  of  a  theorem  given  in  Art.  264,  since  one  intersection 
of  common  tangents  to  two  conies  which  touch  reduces  to  the  point  of  contact 

(Cor.,  Art.  117). 

267.  The  equation  of  a  conic  circumscribing  a  quadrilateral 

(a.y  =  kf3S)  furnishes  us  with  a  proof  of  "Pascal's  theorem/' 
that  the  three  intersections  of  the  opposite  sides  of  any  hexagon 
inscribed  in  a  conic  section  are  in  one  right  line. 

Let  the  vertices  be  abcdef,  and  let  ab  =  0  denote  the  equation 

of  the  line  joining  the  points  a,  b ;  then,  since  the  conic  circum- 
scribes the  quadrilateral  abed,  its  equation  must  be  capable  of 

being  put  into  the  form 
ab.cd—bc.ad  =  0. 

But  since  it  also  circumscribes  the  quadrilateral  defa,  the  same 

equation  must  be  capable  of  being  expressed  in  the  form 

de.fa-ef.ad  =  Q. 
From  the  identity  of  these  expressions,  we  have 

ab.cd  —  de .fa  =  (be  —  ef]  ad. 

Hence,  we  learn  that  the  left-hand  side  of  this  equation  (which 
from  its  form  represents  a  figure  circumscribing  the  quadrilateral 

formed  by  the  lines  ab,  de,  cd,  of]  is  resolvable  into  two  factors, 

which  must  therefore  represent  the  diagonals  of  that  quadri- 
lateral. But  ad  is  evidently  the  diagonal  which  joins  the  vertices 
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a  and  d,  therefore  be—  ef  must  be  the  other,  and  must  join  the 
points  (ab,  de),  (cd,  af) ;  and  since  from  its  form  it  denotes  a  line 

through  the  point  (be,  ef),  it  follows  that  these  three  points  are 
in  one  right  line. 

268.  We  may,  as  in  the  case  of  Brianchon's  theorem,  obtain 
a  number  of  different  theorems  concerning  the  same  six  points, 

according  to  the  different  orders  in  which  we  take  them.  Thus, 

since  the  conic  circumscribes  the  quadrilateral  beef,  its  equation 

can  be  expressed  in  the  form 

be.cf-bc.ef=Q. 

Now,  from  identifying  this  with  the  first  form  given  in  the  last 
Article,  we  have 

ab.cd—be.cf=(ad—ef)  bc\ 
whence,  as  before,  we  learn  that  the  three  points  (ab,  cf),  (cd,  be), 

(ad,  ef)  lie  in  one  right  line,  viz.  ad  —  ef—  0. 
In  like  manner,  from  identifying  the  second  and  third  forms 

of  the  equation  of  the  conic,  we  learn  that  the  three  points 

(de,  cf),  (fa,  be),  (ad,  be)  lie  in  one  right  line,  viz.  bc-ad=Q. 
But  the  three  right  lines 

bc-ef=0,   ef-ad=Q,   ad-bc-^ 

meet  in  a  point  (Art.  41).  Hence  we  have  Steiner's  theorem^ 
that  "  the  three  Pascal's  lines  which  are  obtained  by  taking  the 
vertices  in  the  orders  respectively,  abcdef,  adefeb,  afcbed,  meet 

in  a  point."  For  some  further  developments  on  this  subject  we 
refer  the  reader  to  the  note  at  the  end  of  the  volume. 

Ex.  1.  If  o,  b,  c  be  three  points  on  a  right  line;  a',  b',  tf  three  points  on  another 
line,  then  the  intersections  (be',  b'c),  (ca',  c'a),  (ab',  a'b)  lie  in  a  right  line.  This  is 
a  particular  case  of  Pascal's  theorem.  It  remains  true  if  the  second  line  be  at  infinity 

and  the  lines  ba',  ca'  be  parallel  to  a  given  line,  and  similarly  for  cb',  ab' ;  ac',  be'. 
Ex.  2.  From  four  lines  can  be  made  four  triangles,  by  leaving  out  in  turn  one 

line :  the  four  intersections  of  perpendiculars  of  these  triangles  lie  in  a  right  line. 

Let  a,  b,  c,  d  be  the  right  lines ;  a',  6',  c',  d'  lines  perpendicular  to  them ;  then  the 
theorem  follows  by  applying  the  last  example  to  the  three  points  of  intersection  of 

a,  b,  c  with  d,  and  the  three  points  at  infinity  on  o',  b',  c'.* 

*  This  proof  was  given  me  independently  by  Prof.  De  Morgan  and  by  Mr.  Burnside. 
The  theorem  itself,  of  which  another  proof  has  been  given  p.  217,  may  also  be  deduced 

from  Steiner's  theorem,  Ex.  3,  p.  212.  For  the  four  intersections  of  perpendiculars 
must  lie  on  the  directrix  of  the  parabola,  which  has  the  four  lines  for  tangents.  The 

line  joining  the  middle  points  of  diagonals  is  parallel  to  the  axis  (see  Ex.  1,  p.  212). 
It  follows  in  the  same  way  from  Cor.  4,  p.  207,  that  the  circles  circumscribing  the  four 

triangles  pass  through  the  same  point,  viz.  the  focus  of  the  same  parabola.  If  we  are 
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Ex.  3.  Steiner's  theorem,  that  the  perpendiculars  of  the  triangle  formed  by  three 
tangents  to  a  parabola  intersect  on  the  directrix  is  a  particular  case  of  Brianchon's 
theorem.  For  let  the  three  tangents  be  a,  b,  c ;  let  three  tangents  perpendicular  to 

them  be  a',  b',  c',  and  let  the  line  at  infinity,  which  is  also  a  tangent  (Art.  254)  be  oo  . 

Then  consider  the  six  tangents  a,  b,  c,  <?',  <x> ,  a' ;  and  the  lines  joining  ab,  e'as ; 
be,  a'oo ;  cc',  aa'  meet  in  a  point.  The  first  two  are  perpendiculars  of  the  triangle, 
and  the  last  is  the  directrix  on  which  intersect  every  pair  of  rectangular  tangents 

(Art.  221).  This  proof  is  by  Mr.  John  C.  Moore. 

Ex.  4.  Given  five  tangents  to  a  conic,  to  find  the  point  of  contact  of  any.  Let 
ABODE  be  the  pentagon  formed  by  the  tangents;  then,  if  AC  and  BE  intersect  in 

0,  DO  passes  through  the  point  of  contact  of  AB.  This  is  derived  from  Brianchon's 
theorem  by  supposing  two  sides  of  the  hexagon  to  be  indefinitely  near,  since  any 
tangent  is  intersected  by  a  consecutive  tangent  at  its  point  of  contact  (Art.  147). 

269.    Pascal's  theorem  enables  us,  given  five  points  A,  B,  C, 
D,  E,  to  construct  a  conic;  for  if  we  draw  any  line  A P  through 

c 

one  of  the  given  points,  we  can  find  the  point  F  in  which  that 

line  meets  the  conic  again,  and  can  so  determine  as  many  points 

on  the  conic  as  we  please.  For,  by  Pascal's  theorem,  the  points 
of  intersection  (AB,  DE],  (BC,  EF],  (CD,  AF]  are  in  one  right 

line.  But  the  points  (AB,  DE},  (CD,  AF)  are  by  hypothesis 
known.  If  then  we  join  these  points  0,  P,  and  join  to  E  the 

point  Q  in  which  OP  meets  BC,  the  intersection  of  QEwiih  AP 
determines  F.  In  other  words,  F  is  the,  vertex  of  a  triangle 

FPQ  whose  sides  pass  through  the  fixed  points  A,  E,  0,  and  whose 

lase  angles  P,  Q  move  along  the  fixed  lines  CD,  CB  (see  Ex.  3, 

p.  42).  The  theorem  was  stated  in  this  form  by  MacLaurin. 
Ex.  1.  Given  five  points  on  a  conic,  to  find  its  centre.  Draw  AP  parallel  to  BC 

and  determine  the  point  F.  Then  AF  and  BC  are  two  parallel  chords  and  the  line 

joining  their  middle  points  is  a  diameter.  In  like  manner,  by  drawing  QE  parallel 
to  CD  we  can  find  another  diameter,  and  thus  the  centre. 

given  five  lines,  M.  Auguste  Miquel  has  proved  (see  Catalan's  Theoremes  et  Problemes 
de  Geometric  EUmentaire.  p.  93)  that  the  foci  of  the  five  parabolas  which  have  four 

Of  the  given  lines  for  tangents  lie  on  a  circle  <W.  Higher  Plane  Curves,  Art.  146). 
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Ex.  2.  Given  five  points  on  a  conic,  to  draw  the  tangent  at  any  one  of  them 
The  point  F  must  then  coincide  with  A,  and  the  line  QF  drawn  through  E  must 
therefore  take  the  position  qA.  The  tangent  therefore  must  bepA. 

Ex.  3.  Investigate  by  trilinear  coordinates  (Art.  62)  MacLaurin's  method  of 
generating  conies.  In  other  words,  find  the  locus  of  the  vertex  of  a  triangle  whose 

sides  pass  through  fixed  points  and  base  angles  move  on  fixed  lines.  Let  a,  /3,  y 
be  the  sides  of  the  triangle  formed  by  the  fixed  points,  and  let  the  fixed  lines  be 

la  +  mfl  +  ny  =  0,  I'a  +  m'ft  +  n'y  =  0.  Let  the  base  be  a  =  /i/3.  Then  the  line 
joining  to  /3y,  the  intersection  of  the  base  with  the  first  fixed  line,  is 

(IfjL  +  m)  ft  +  ny  =  0. 
And  the  line  joining  to  ay,  the  intersection  of  the  base  with  the  second  line,  is 

(I'fi  +  m')  a  +  n'fiy  =  0. 
Eliminating  fi  from  the  last  two  equations,  the  equation  of  the  locus  is  found  to  be 

Im'ap  -  (ro/3  +  ny)  (I'a  +  n'y), 
a  conic  passing  through  the  points 

Py,  ya,  (a,  la  +  m/3  +  ny),  (/3.  Ta  +  m'/3  +  n'y). 

EQUATION  REFERRED  TO  TWO  TANGENTS  AND  THEIR  CHORD. 

270.  It  much  facilitates  computation  (Art.  229)  when  the 

position  of  a  point  on  a  curve  can  be  expressed  by  a  single 

variable  ;  and  this  we  are  able  to  do  in  the  case  of  two  of  the 

principal  forms  of  equations  of  conies  already  given.  First,  let 
i,  M  be  any  two  tangents  and  R  their  chord  of  contact.  Then 

the  equation  of  the  conic  (Art.  252)  is  LM—  IP  •  and  if  jj,L  =  R 
be  the  equation  of  the  line  joining  LR  to  any  point  on  the 

curve  (which  we  shall  call  the  point  /*),  then  substituting  in  the 

equation  of  the  curve,  we  get  M—^R  and  p2L  =  M  for  the 
equations  of  the  lines  joining  the  same  point  to  MR  and  to  LM. 

Any  two  of  these  three  equations  therefore  will  determine  a 

point  on  the  conic. 

The  equation  of  the  chord  joining  two  points  on  the  curve 

For  it  is  satisfied  by  either  of  the  suppositions 

If  //,  and  p  coincide  we  get  the  equation  of  the  tangent,  viz. 

p*L  -  2f*R  +  M  =  0. 

Conversely,  if  the  equation  of  a  right  line  (i?L-%pR+M'*Q) 
involve  an  indeterminate  ^  in  the  second  degree^  the  line  will 

always  touch  the  conic  LM=  R*. 
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271.    To  find  the  equation  of  the  polar  of  any  point. 

The  coordinates  £',  If,  R  of  the  point  substituted  in  the 
equation  of  either  tangent  through  it  give  the  result 

Now  at  the  point  of  contact  Ma  =  -£,  and  /t  =  -=-  (Art.  270). 
Therefore  the  coordinates  of  the  point   of  contact  satisfy  the 
equation 

which  is  that  of  the  polar  required. 

If  the  point  had  been  given  as  the  intersection  of  the  lines 

aL  =  R,  bR  =  M,  it  is  found  by  the  same  method  that  the  equa- 
tion of  the  polar  is 

abL  -  2aR  +  M=  0. 

272.  In  applying  these  equations  to  examples  it  is  useful  to 

take  notice  that,  if  we  eliminate  R  between  the  equations  of 
two  tangents 

we  get  fjLpfL  =  M  for  the  equation  of  the  line  joining  LM  to 
the  intersection  of  these  tangents.  Hence,  if  we  are  given  the 

product  of  two  /z-'s,  //,//  =  a,  the  intersection  of  the  corresponding 
tangents  lies  on  the  fixed  line  aL  =  M.  In  the  same  case,  sub- 

stituting a  for  fj,/M  in  the  equation  of  the  chord  joining  the  points, 

we  see  that  that  chord  passes  through  the  fixed  point  (aL  -f  M,  R). 
Again,  since  the  equation  of  the  line  joining  any  point  /-i  to 

LM  is  tfL  =  Mj  the  points  -h  /it,  -  /x-  lie  on  a  right  line  passing 
through  LM. 

Lastly,  if  LM  =  Rz,  LM=  R'*  be  the  equations  of  two  conies 
having  L,  M  for  common  tangents,  then  since  the  equation 

fSL  =  M.  does  not  involve  R  or  R',  the  line  joining  the  point 
-f-  ILL  on  one  conic  to  either  of  the  points  +  /*  on  the  other,  passes 
through  LM  the  intersection  of  common  tangents.  We  shall 

say  that  the  point  +  p  on  the  one  conic  corresponds  directly  to 

the  point  +  //,  and  inversely  to  the  point  —  p  on  the  other.  And 
we  shall  say  that  the  chord  joining  any  two  points  on  one  conic 

corresponds  to  the  chord  joining  the  corresponding  points  on 
the  other. 

KK. 
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Ex.  1.  Corresponding  chords  of  two  conies  intersect  on  one  of  the  chords  of 
intersection  of  the  conies. 

The  conies  LM-R*,  LM  -  R*  have  R*  -  R*  for  a  pair  of  common  chords. 
But  the  chords 

w'L  -  (M  +  MO  R  +  M  =  o,  w'L  -(fi  +  nr)Rf  +  M  =  Q, 
evidently  intersect  on  R  -  R'.    And  if  we  change  the  signs  of  /n,  n'  in  the  second 
equation,  they  intersect  on  R  +  K. 

Ex.  2.  A  triangle  is  circumscribed  to  a  given  conic  ;  two  of  its  vertices  move  on 

fixed  right  lines  ;  to  find  the  locus  of  the  third. 
Let  us  take  for  lines  of  reference  the  two  tangents  through  the  intersection  of  the 

fixed  lines,  and  their  chord  of  contact.  Let  the  equations  of  the  fixed  lines  be 

aL-Jf=0,  bL-M=0, 

while  that  of  the  conic  is  LM  -  IP  =  0. 

Now  we  proved  (Art.  272)  that  two  tangents  which  meet  on  aL  —  M  must  have 

the  product  of  their  /u's  =  a  ;  hence,  if  one  side  of  the  triangle  touch  at  the  point  p, 

the  others  will  touch  at  the  points  -  ,  -  ,  and  their  equations  will  be 

p.  can  easily  be  eliminated  from  the  last  two  equations,  and  the  locus  of  the  vertex 
is  found  to  be 

the  equation  of  a  conic  having  double  contact  with  the  given  one  along  the  line  R*. 

Ex.  8.  To  find  the  envelope  of  the  base  of  a  triangle,  inscribed  in  a  conic,  and 
whose  two  sides  pass  through  fixed  points. 

Take  the  line  joining  the  fixed  points  for  R,  let  the  equation  of  the  conic  be 

LM  =  R2,  and  those  of  the  lines  joining  the  fixed  points  to  LM  be 

aL-M=Q,  bL-M=Q. 

Now,  it  was  proved  (Art.  272)  that  the  extremities  of  any  chord  passing  through 

(aL  —  M,  R)  must  have  the  product  of  their  /u's  =  a.  Hence,  if  the  vertex  be  /u,  the 

base  angles  must  be  -  and  -  ,  and  the  equation  of  the  base  must  be 

abL  -  (a  +  b)  pR  +  fSM-  0. 
The  base  must,  therefore  (Art.  270),  always  touch  the  conic 

a  conic  having  double  contact  with  the  given  one  along  the  line  joining  the  given 

points. 

Ex.  4.  To  inscribe  in  a  conic  section  a  triangle  whose  sides  pass  through  three 
given  points. 

Two  of  the  points  being  assumed  as  in  the  last  Example,  we  saw  that  the  equa- 
tion of  the  base  must  be 

abL  -  (a  +  b)  pR  +  p?M  =  0. 

*  This  reasoning  holds  even  when  the  point  LM  is  within  the  conic,  and  therefore 
the  tangents  L,  M  imaginary.  But  it  may  also  be  proved  by  the  methods  of  the 

next  section,  that  when  the  equation  of  the  conic  is  L2  +  M*  =  R2,  that  of  the  locus 
is  of  the  form  Z2  +  M*  =  k*&. 
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Now,  if  this  line  pass  through  the  point  cL  —  R  =  0,  dR  —  M  —  0,  we  must  have 

ab  -  (a  +  b)  pc  +  ffcd  =  0, 

an  equation  sufficient  to  determine  M. 

Now,  at  the  point  /u.  we  have  nL  =  R,  u?L  =  M ;  hence  the  coordinates  of  this 
point  must  satisfy  the  equation 

abL  —  (a  +  b)  cR  4-  cdM—  0. 

The  question,  therefore,  admits  of  two  solutions,  for  either  of  the  points  in  which  this 
line  meets  the  curve  may  be  taken  for  the  vertex  of  the  required  triangle.  The  geo- 

metric construction  of  this  line  is  given  Art.  297,  Ex.  7. 

Ex.  5.  The  base  of  a  triangle  touches  a  given  conic,  its  extremities  move  on  two 

fixed  tangents  to  the  conic,  and  the  other  two  sides  of  the  triangle  pass  through  fixed 
points ;  find  the  locus  of  the  vertex. 

Let  the  fixed  tangents  be  L,  M,  and  the  equation  of  the  conic  LM  =  R*.  Then 
the  point  of  intersection  of  the  line  L  with  any  tangent  (jj?L  —  2/u.R  +  M)  will  have 
its  coordinates  L,  ft,  M  respectively  proportional  to  0,  1,  2/x.  And  (by  Art.  65)  the 

equation  of  the  line  joining  this  point  to  any  fixed  point  L'R'M'  will  be 

LM '  -  L'M  =  2M  (LRf  -  L'R). 

Similarly,  the  equation  of  the  line  joining  the  fixed  point  L"R"M"  to  the  point 
(2,  n,  0),  which  is  the  intersection  of  the  line  M  with  the  same  tangent,  is 

2  (RM "  -  R'M )  =  M  (LM"  -  L"M). 

Eliminating  /*,  the  locus  of  the  vertex  is  found  to  be 

(LM'  -  L'M)  (LM" -  L"M)  =  4  (LR' -  L'R)  (RM"  -  R"to,, 

the  equation  of  a  conic  through  the  two  given  points. 

273.  The  chord  joining  the  points  JJL  tan$,  p  cot<£  (where; 

0  is  any  constant  angle)  will  always  touch  a  conic  having  double 
contact  with  the  given  one.  For  (Art.  270)  the  equation  of  the 
chord  is 

fSL  -  pB  (tan  $  +  cot  tf>)  +  M  =  0, 

which,  since  tan</>-f  cot$  =  2  cosec2(/>,  is  the  equation  of  a  tan- 

gent to  LM  sin22(£  =  R*  at  the  point  JJL  on  that  conic.  It  can  be 
proved,  in  like  manner,  that  the  locus  of  the  intersection  of  tan- 

gents at  the  points  ft  tan<£,  /z  cot</>  is  the  conic  LM=Rt  siu22$. 

Ex.  If  in  Ex.  5,  Art.  272,  the  extremities  of  the  base  lie  on  any  conic  having 
double  contact  with  the  given  conic,  and  passing  through  the  given  points,  find  the 
locus  of  the  vertex. 

Let  the  conies  be 

LM-R?=0,  LM  sin2  2<f>-JR2=0, 

then,  if  any  line  touch  the  latter  at  the  point  /u,  it  will  meet  the  former  in  the  points 

ft,  tan  <f>  and  /x  cot  <j> ;  and  if  the  fixed  points  are  /*',  /*",  the  equations  of  the  sides  are 

mi!  tan$£  -  (fi'  +  n  tan</>)  R  +  M=  0, 

HH"  cot  0L  -  (/'  +  M  cot  <£)  R  +  M=  0. 
Eliminating  yu,  the  locus  is  found  to  be 

(M  -  n'R)  (p"L  -  R)  =  tan2<£  (M  -  n"R)  (p'L  -  R). 
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274.  Given  four  points  of  a  conic,  the  anharmonic  ratio  of  the 

pencil  joining  them  to  any  fifth  point  is  constant  (Art.  259). 

The  lines  joining  four  points  //,  //',  //",  //,""  to  any  fifth 
point  ̂ ,  are 

JB)  +  (3f-/*fi)  =  0,   i*"   (jiL  -  5)  +  (Jf  -/*#)  =  <), 

5)  +  (M-  pE)  =  0,   //'"  (/*£  -  5)  +  (Jf  -  /*£)  =  0, 
and  their  anharmonic  ratio  is  (Art.  58) 

(/-/Q  (/"-/'") 

and  is,  therefore,  independent  of  the  position  of  the  point  p. 

We  shall,  for  brevity,  use  the  expression,  "  the  anharmonic 

ratio  of  four  points  of  a  conic,"  when  we  mean  the  anharmonic 
ratio  of  a  pencil  joining  those  points  to  any  fifth  point  on  the 
curve. 

275.  Four  fixed  tangents  cut  any  fifth  in  points  whose  anhar- 
monic ratio  is  constant. 

Let  the  fixed  tangents  be  those  at  the  points  //,  /&",  //",  /A"", 
and  the  variable  tangent  that  at  the  point  p  ;  then  the  anhar- 

monic ratio  in  question  is  the  same  as  that  of  the  pencil  joining 

the  four  points  of  intersection  to  the  point  LM.  But  (Art.  272) 

the  equations  of  the  joining  lines  are 

a  system  (Art.  59)  homographic  with  that  found  in  the  last 
Article,  and  whose  anharmonic  ratio  is  therefore  the  same. 

Thus,  then,  the  anhannonie  ratio  of  four  tangents  is  the  same 

as  that  of  their  points  of  contact. 

276.  The  expression  given  (Art.  274)  for  the  anharmonic 

ratio  of  four  points  on  a  conic  //,  //',  /A'",  //"'  remains  unchanged 
if  we  alter  the  sign  of  each  of  these  quantities  ;  hence  (Art.  272) 

if  we  draw  four  lines  through  any  point  LM,  the  anharmonic 

ratio  of  four  of  the  points  (/*',  //',  /A'",  /u."")  where  these  lines  meet 
the  conic,  is  equal  to  the  anharmonic  ratio  of  the  other  four  points 

(—  //,  —  //',  -  //",  —  p"")  where  these  lines  meet  the  conic. 
For  the  same  reason,  the  anharmonic  ratio  of  four  points  on  one 

conic  is  equal  to  that  of  the  four  corresponding  points  on  another  / 

since  corresponding  points  have  the  same  p  (Art.  272).  Again, 

the  expression  (Art.  274)  remains  unaltered,  if  we  multiply  each 
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p  either  by  t<in^>  or  cot<£;  hence,  we  obtain  a  theorem  of  Mr. 

Townsend's,  "  If  two  conies  have  double  contact,  the  anharmonic 
ratio  of  four  of  the  points  in  which  any  four  tangents  to  the  one 

meet  the  other  is  the  same  as  that  of  the  other  four  points  in  which 

the  four  tangents  meet  the  curve,  and  also  the  same  as  that  of  the 

four  points  of  contact. 

277.  Conversely,  given  three  fixed  chords  of  a  conic  aa', 

W,  cc'  ;  a  fourth  chord  dd\  such  that  the  anharraonic  ratio  of 

abed  is  equal  to  that  of  alfc'd  ',  will  always  touch  a  certain  conic 
having  double  contact  with  the  given  one.  For  let  a,  &,  c,  a',  &',  cf 
denote  the  values  of  p  for  the  six  given  fixed  points,  and  /*,  /u/ 

those  for  the  extremity  of  the  variable  chord,  then  the  equation 

when  cleared  of  fractions,  may,  for  brevity,  be  written 

where  A,  J5,  (7,  D  are  known  constants.     Solving  for  //,'  from  this 
equation,  and  substituting  in  the  equation  of  the  chord 

HpfL  -  (p  4  /*')  R  +  M=  0, it  becomes 

p(B/jk  +  D)L+It{tJi  (Ap  +C)-(Bp  +  D)}-  M(Afi  +  C)  =  0, 
or  tf(BL+AR}+n{DL  +  (C-B}R-AM}-(DR  +  CM)  =  ̂  
which  (Art.  270)  always  touches 

{DL  +  (  C-  B]  R  -  AM  Y  -f  4  (BL  +  AR]  (  GM+  DR)  =  0, 
an  equation  which  may  be  written  in  the  form 

4  (BG-  AD)  (LM  -  E>)  +  {DL  +(B+C)R  +  AMY  =  °» 
showing  that  it  has  double  contact  with  the  given  conic. 

In  the  particular  case  when  B=C^  the  relation  connecting 
t    jf  becomes 

, 

which  (Art.  51)  expresses  that  the  chord  ppL  -  (p  +  p)  R-t  M 
passes  through  a  fixed  point. 

EQUATION    REFERRED   TO   THE   SIDES   OF   A   SELF-CONJUGATE 
TRIANGLE. 

278.    The  equation  referred  to  the  sides  of  a  self-conjugate 

triangle  fa*  +  «i*/8*  —  r?<f  (Art.  258)  also  allows  the  position  of 
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any  point  to  be  expressed  by  a  single  indeterminate.  For  if 

we  write  1a.  =  ny  cos0,  mft  =  ny  sin0,  then,  as  at  pp.  94,  219, 
the  chord  joining  any  two  points  is 

fo  cosi  (0  +  0')  +  w/3  sin£  (0  +  0')  =  727  cos  \  (0  -  0'), 
and  the  tangent  at  any  point  is 

Za  cos  0  4-  7W/3  sin  0  =  ny. 

If  for  symmetry  we  write  the  equation  of  the  conic 

then  it  may  be  derived  from  the  last  equation,  that  the  equation 

of  the  tangent  at  any  point  a'^V  is 

aaaf  +  l/Stf  +  cyy  =  0, 

and  the  equation  of  the  polar  of  any  point  afPy'  is  necessarily 
of  the  same  form  (Art.  89).  Comparing  the  equation  last 

written  with  \a  +  fifi  +  vy  =  0,  we  see  that  the  coordinates  of 

the  pole  of  the  last  line  are  -  ,  ̂  ,  -  ;  and,  since  the  pole  of 

any  tangent  is  on  the  curve,  the  condition  that  \a.  +  p(3  +  vy 

\2      Lb2      va 
may  touch  the  conic  is  --  h  ̂-  4-  —  =  0.     When  this  condition a        b       c 

is  fulfilled  the  conic  is  evidently  touched  by  all  the  four  lines 

Xa  ±  /JL/3  ±  i/7,  and  the  lines  of  reference  are  the  diagonals  of  the 
quadrilateral  formed  by  these  lines  (see  Ex.  3,  Art.  146).  In  like 

manner,  if  the  condition  be  fulfilled  aa'2  +  Iff*  +  07'*  =  0,  the 

conic  passes  through  the  four  points  a',  ±  yS7,  ±  7'. 
Ex.  1.  Find  the  locus  of  the  pole  of  a  given  line  \a  +  fift  +  vy  with  repaid  to 

a  conic  which  passes  through  four  fixed  points  a',  ±  ft',  ±  y'. 

Ex.  2.  Find  the  locus  of  the  pole  of  a  given  line  Aa  -f  ///3  4-  vyt  with  regard  to  a 

conic  which  touches  four  fixed  lines  la  +  mft  +  ny.  Pa  m2/3  n2y  _ 
AllS.     -r~  "f-  •{•  -  —  U. 

\  fJi  V 

These  examples  also  give  the  locus  of  centre  ;  since  the  centre  ia  the  pole  of  the 

line  at  infinity  a  sin^d  +  ft  sin  B  +  y  sin  C. 

Ex.  3.  What  is  the  equation  of  the  circle  having  the  triangle  of  reference  for  a 

self-conjugate  triangle  ?  Ans.  (See  Ex.  2,  Art.  128)  a2  sin  2A  +  ft2  sin  IB  +  yy  sin2C'  =  U. 
It  is  easy  to  see  (see  Art.  258)  that  the  centre  of  the  circle  is  the  intersection  of 

perpendiculars  of  the  triangle,  the  square  of  the  radius  being  the  rectangle  under  the 
segments  of  any  of  the  perpendiculars  (taken  with  a  positive  sign  when  the  triangle 
is  obtuse  angled,  and  with  a  negative  sign  when  it  is  acute  angled).  In  the  latter 
case,  therefore,  the  circle  is  imaginary. 
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280*.  The  equation  (Art.  258  (a))  aj*  +  y*  =  eV  (where  the 
origin  is  a  focus  and  7  the  corresponding  directrix)  is  a  parti- 

cular case  of  that  just  considered.  The  tangents  through  (7,  x) 

to  the  curve  are  evidently  ey  +  x  and  ey  —  x.  If,  therefore,  the 
curve  be  a  parabola,  e  =  1  ;  and  the  tangents  are  the  internal 

and  external  bisectors  of  the  angle  (yx).  Hence,  "tangents  to 
a  parabola  from  any  point  on  the  directrix  are  at  right  angles 

to  each  other." 

In  general,  since  x  =  ey  cos<£,  y  =  ey  sin<£,  we  have 

x 

or  <f>  expresses  the  angle  which  any  radius  vector  makes  with  x. 

Hence  we  can  find  the  envelope  of  a  chord  which  subtends 

a  constant  angle  at  the  focus,  for  the  chord 

x  cos  J  (<£  +  $')  -I-  y  sin  J  (<j>  +  <£')  =  ey  cos  J  ($  —  <£>'), 

if  <£  —  <£'  be  constant,  must,  by  the  present  section,  always  touch 

a  conic  having  the  same  focus  and  directrix  as  the  given  one. 

281.  The  line  joining  the  focus  to  the  intersection  of  two 

tangents  is  found  by  subtracting 

x  cos  <£  -f  y  sin  <b  —  ey  =•  0, 

x  cos  <£'  +  y  sin  <£'  —  ey  =  0, 

to  be  x  sin  J  (<£  +  $)-y  cos  \  (<f>  +  <£')  =  0, 

the  equation  of  a  line  making  an  angle  i  (<#>  4  <£')  with  the  axis 
of  a?,  and  therefore  bisecting  the  angle  between  the  focal  radii. 

The  line  joining  to  the  focus  the  point  where  the  chord  of 
contact  meets  the  directrix  is 

x  cosi  (<£  +  </>')  +y  sini  (<£  +  <#>')  =0, 
a  line  evidently  at  right  angles  to  the  last. 

To  find  the  locus  of  the  intersection  of  tangents  at  points  which 
subtend  a  given  angle  2S  at  the  focus. 

By  an  elimination  precisely  the  same  as  that  in  Ex.  2,  Art.  102, 

the  equation  of  the  locus  is  found  to  be  (x*  +  y2)  cosa  S  =  e'V, 

*  Art.  279  of  the  older  editions  is  now  numbered  Art.  258  (a). 
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which  represents  a  conic  having  the  same  focus  and  directrix  as 

the  given  one,  and  whose  eccentricity  =   ^. 

If  the  curve  be  a  parabola,  the  angle  between  the  tangents  is 

in  this  case  given.  For  the  tangent  (x  cos$  4-  y  sin<£  -  7)  bisects 
the  angle  between  x  cos</>  +y  sin  <£  and  7.  The  angle  between  the 

tangents  is,  therefore,  half  the  angle  between  xvosty+y  sin(£  and 

x  cos  $'  -f-  y  sin  <£',  or  =  •£  (<£  —  <£').  Hence,  the  angle  between  two 
tangents  to  a  parabola  is  half  the  angle  which  the  points  of  contact 

subtend  at  the  focus ;  and  again,  the  locus  of  the  intersection  of 

tangents  to  a  parabola,  which  contain  a  given  angle,  is  a  hyperbola 
with  the  same  focus  and  directrix,  and  whose  eccentricity  is  the 

secant  of  the  given  angle,  or  whose  asymptotes  contain  double 

the  given  angle  (Art.  167). 

282.  Any  two  conies  have  a  common  self-conjugate  triangle. 
For  (see  Ex.  1,  p.  148)  if  the  conies  intersect  in  the  points 

A,  B,  C,  D,  the  triangle  formed  by  the  points  E,  F,  0,  in  which 

each  pair  of  common  chords  intersect,  is  self-conjugate  with 
regard  to  either  conic.  And  if  the  sides  of  this  triangle  be 

a,  /3,  7,  the  equations  of  the  conies  can  be  expressed  in  the  form 

atf  +  bf?  +  C72  =  0,     a'a*  +  b'&  +  cV  =  0. 
We  shall  afterwards  discuss  the  analytical  problem  of  reducing 

the  equations  of  the  conies  to  this  form.  If  the  conies  intersect 

in  four  imaginary  points,  the  lines  a,  ft,  7  are  still  real.  For  it 

is  obvious  that  any  equation  with  real  coefficients  which  is 

satisfied  by  the  coordinates  x'  +  x"»J(-l\  y' '  +  y" Y(-  1),  will 
also  be  satisfied  by  x'-x"  */(-  1),  #'-y'V(-l)»  and  tnat  tne 
line  joining  these  points  is  real.  Hence  the  four  imaginary 

points  common  to  two  conies  consist  of  two  pairs  x' ±x" \/(—  1)» 

y±/v(-i);  *'"±*""V(- 1),  jr±jrv(-i).  Tw°  °f  thc 
common  chords  are  real  and  four  imaginary.  But  the  equa- 

tions of  these  imaginary  chords  are  of  the  form  L±M*J(—  1), 

JJ  ±M'  V(- 1)»  intersecting  in  two  real  points  LM,  L'M'. 
Consequently  the  three  points  E,  F,  0  are  all  real. 

If  the  conies  intersect  in  two  real  and  two  imaginary  points, 

two  of  the  common  chords  are  real,  viz.  those  joining  the  two 

real  and  two  imaginary  points;  and  the  other  four  common 

chords  are  imaginary.  A»&  since  each  of  the  imaginary  chords 
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passes  through  one  of  the  two  real  points,  it  can  have  no  other 
real  point  on  it.  Therefore,  in  this  case,  one  of  the  three  points 
E,  Fj  0  is  real  and  the  other  two  imaginary ;  and  one  of  the 
sides  of  the  self-conjugate  triangle  is  real  and  the  other  two 
imaginary. 

Ex.  1.  Find  the  locus  of  vertex  of  a  triangle  whose  base  angles  move  along  one 
conic,  and  whose  sides  touch  another.  [The  following  solution  is  Mr.  Burnside's.] 
Let  the  conic  touched  by  the  sides  be  x*  +  y2  -  z2,  and  the  other  ax2  +  by2  -  cz2. 
Then,  as  at  Ex.  1,  p.  94,  the  coordinates  of  the  intersection  of  tangents  at  points  a,  y 
are  cos£  (a  +  y),  sin  \  (a  +  y),  cos  J  (a  -  y) ;  and  the  conditions  of  the  problem  give 

a  COS2 |  (a  +  y)  +  b  sin2^  (a  +  y)  =  c  COS2  J  (a  -  y)  ; 

or  (a  +  b  —  <?)  +  (a  —  b  —  c)  cos  a  cos  y  +  (b  —  c  —  a)  sin  a  sin  y  =  0. 
In  like  manner 

(a  +  b  -  c)  +  (a  -  b  -  c)  cos/?  cosy  +  (b  -  c  -  a)  sin/3  sin  y  =  0, 

whence  (a  +  b  -  c)  cos  £  (a  +  /3)  =  (b  +  c  -  a)  cosi  (a  -  £)  cos  y, 

(a  +  b  -  c)  sin  £  (a  +  /8)  =  (a  +  c  -  b)  cos  £  (a  -  /3)  sin  y ; 

and,  since  the  coordinates  of  the  point  whose  locus  we  seek  are  cos  £  (a  +  /?), 
sin  i  (a  +  /3),  cos  i  (a  -  /3),  the  equation  of  the  locus  iff 

«2 

+  c  -  a)2  ̂  (c  -f-  a  -  b)z  ~  (a  +  b  -  c)2  ' 

Ex.  2.    A  triangle  is  inscribed  in  the  conic  xz  +  y2  =  z1.  and  two  sides  touch  the 
3onic  ox2  +  by*  =  cz2  ;  find  the  envelope  of  the  third  side. 

-4ns.   (ca  +  ab  —  bc)2x*  +  (ab  +  be  —  ca)2y2  =  (be  +  ca  —  a£)2«2. 

ENVELOPES. 

283.  If  the  equation  of  a  right  line  involve  an  indeterminate 

quantity  in  any  degree,  and  if  we  give  to  that  indeterminate  a 

series  of  different  values,  the  equation  represents  a  series  of 
different  lines,  all  of  which  touch  a  certain  curve,  which  is  called 

the  envelope  of  the  system  of  lines.  We  shall  illustrate  the 

general  method  of  finding  the  equation  of  an  envelope  by 

proving,  independently  of  Art.  270,  that  the  line  ̂ L-ZviR+M, 

where  p  is  indeterminate,  always  touches  the  curve  LM  -  E2. 
The  point  of  intersection  of  the  lines  answering  to  the  values 

/-&  and  JM  +  k  is  determined  by  the  two  equations 

the  second  equation  being  derived  from  the  first  by  substituting 
/L6  4  k  for  /*,  erasing  the  terms  which  vanish  in  virtue  of  the  first 

equation,  and  then  dividing  by  Jc.  The  smaller  k  is,  the  more 

nearly  does  the  second  line  approach  to  coincidence  with  the 
LL. 
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first  ;  and  if  we  make  k  =  0,  we  find  that  the  point  of  meeting 

of  the  first  line  with  a  consecutive  line  of  the  system  is  de- 
termined by  the  equations 

or,  what  comes  to  the  same  thing,  by  the  equations 

tj,L-R  =  Q,   fjiR-M=0. 

Now  since  any  point  on  a  curve  may  be  considered  as  the  inter- 
section of  two  of  its  consecutive  tangents  (Art.  147),  the  point 

where  any  line  meets  its  envelope  is  the  same  as  that  where 
it  meets  a  consecutive  tangent  to  the  envelope  ;  and  therefore 

the  two  equations  last  written  determine  the  point  on  the 

envelope  which  has  the  line  p*L  —  2/j,R  +  M  for  its  tangent. 
And  by  eliminating  /x  between  the  equations  we  get  the  equa- 

tion of  the  locus  of  all  the  points  on  the  envelope,  namely 

A  similar  argument  will  prove,  even  if  L,  M,  R  do  not  re- 

present right  lines,  that  the  curve  represented  by  f^L-S^R-)-  M 

always  touches  the  curve  LM=  R*. 
The  envelope  of  L  cos  04  M  sin  <f>  —  R,  where  <f>  is  indeter- 

minate, may  be  either  investigated  directly  in  like  manner,  or 

may  be  reduced  to  the  preceding  by  assuming  tan  ̂   </>  =  /&,  when 
on  substituting 

,       1-V       .  2  fi cos*=fT7'  sm<*=f+y 
and  clearing  of  fractions,  we  get  an  equation  in  which  //.  only 
enters  in  the  second  degree. 

284.    We  might  also  proceed  as  follows:  The  line 

is  obviously  a  tangent  to  a  curve  of  the  second  class  (see  note, 

p.  147)  ;  for  only  two  lines  of  the  system  can  be  drawn  through 

a  given  point:  namely,  those  answering  to  the  values  of  /* 

determined  by  the  equation 

where  L',  RfJ  M'  are  the  results  of  substituting  the  coordinates 
of  the  given  point  in  Z,  R,  M.  Now  these  values  of  /u,  will 
evidently  coincide,  or  the  point  will  be  the  intersection  of  two 
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consecutive  tangents,  if  its  coordinates  satisfy  the  equation 

LM-R*.  And,  generally,  if  the  indeterminate  //,  enter  alge- 

braically and  in  the  nb  degree,  into  the  equation  of  a  line,  the 
line  will  touch  a  curve  of  the  wm  class,  whose  equation  is  found 
by  expressing  the  condition  that  the  equation  in  p  shall  have 

equal  roots. 

Ex.  1.  The  vertices  of  a  triangle  move  along  the  three  fixed  lines  a,  /?,  y,  and  two 

of  the  sides  pass  through  two  fixed  points  a'/3'y'>  a"P"y">  find  the  envelope  of  the 
third  side.  Let  a  +  fifi  be  the  line  joining  to  aft  the  vertex  which  moves  along  y, 
then  the  equations  of  the  sides  through  the  fixed  points  are 

y'  (a  +  ,1/3)  -  (a'  +  /x/3')  y  =  0,     y"  (a  +  yu/3)  -  (a"  +  ;u/3")  y  =  0. 
And  the  equation  of  the  base  is 

(a'  +  ,u/3')  y"a  +  (a"  +  /i/3")  /uy'/3  -  (a'  +  /i/3')  (a"  +  Mj3")  y  =  0, 
for  it  can  be  easily  verified  that  this  passes  through  the  intersection  of  the  first  line 

with  a,  and  of  the  second  line  with  /3.  Arranging  according  to  the  powers  of  /m,  we 
find  for  the  envelope 

(a|8y'  +  /3y'«"  ~  ya'jS"  -  ya'W  =  4a'/3"  (ay"  -  a"y)  (/3y'  -  /3'y)- 
This  example  may  also  be  solved  by  arranging  according  to  the  powers  of  a,  the 

equation  in  Ex.  3,  p.  49. 

Ex.  2.  Find  the  envelope  of  a  line  such  that  the  product  of  the  perpendiculars 
on  it  from  two  fixed  points  may  be  constant. 

Take  for  axes  the  line  joining  the  fixed  points  and  a  perpendicular  through  its 

middle  point,  so  that  the  coordinates  of  the  fixed  points  may  be  y  —  0,  x  =  +  c ;  then 

if  the  variable  line  be  y  —  mx  +  n  =  0,  we  have  by  the  condition  of  the  question 

(n  +  me)  (n  -  me)  =  &  (1 

or  »2 

but  i* 

therefore  w2  (x2  -  62  -  c2)  -  Zmxy  +  y*  -  V*  =  0 ; 

and  the  envelope  is  afy2  =  (y?  -  6*  -  c2)  (if  -  £2), 

**T*  +  l£  =  L 
Ex.  3.  Find  the  envelope  of  a  line  such  that  the  sum  of  the  squares  of  the  perpen- 

diculars on  it  from  two  fixed  points  may  be  constant.  2x2  2y'z  _ 
^~^2c2  +  V  ~ 

Ex.  4.  Find  the  envelope  if  the  difference  of  squares  of  perpendiculars  be  given. 
Ans.   A  parabola. 

Ex.  5.  Through  a  fixed  point  0  any  line  OP  is  drawn  to  meet  a  fixed  line  ;  to  find 
the  envelope  of  PQ  drawn  so  as  to  make  the  angle  OPQ,  constant. 

Let  OP  make  the  angle  0  with  the  perpendicular  on  the  fixed  line,  and  its  length 

is  p  sec  6;  but  the  perpendicular  from  0  on  PQ  makes  a  fixed  angle  (3  with  OP, 
therefore  its  length  is  =p  sec0  cos/3;  and  since  this  perpendicular  makes  an  angle 

-  0  +  j3  with  the  perpendicular  on  the  fixed  line,  if  we  assume  the  latter  for  the  axis 
of  x,  the  equation  of  P  Q,  is 

x  cos  (0  +  /3)  +  y  sin  (6  +  ft)  =  p  sec  0  cos  /?, 
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or  x  cos  (29  +  /3)  4-  y  sin  (20  +  /3)  =  2p  cos  /3  —  x  cos  /3  -  y  sin/3, 

an  equation  of  the  form  L  cos  (f>  +  M  sin  <£  =  /?, 

whose  envelope,  therefore,  is 

a2  +  if-  =  (x  cos/3  +  y  sin/3  -  2/j  cos  )8)2, 

the  equation  of  a  parabola  having  the  point  0  for  its  focus. 

Ex.  6.  Find  the  envelope  of  the  line  -  +  —  =  1,  where  the  indeterminates  are 

connected  by  the  relation  ju  4-  /i'  =  C. 

We  may  substitute  for  p.',   C  —  ft,  and  clear  of  fractions  ;   the  envelope  is  thus 
found  to  be  A*  +  B*  +  C*  -  2AB  -  2AC  -  2ZC  =  0, 

an  equation  to  which  the  following  form  will  be  found  to  be  equivalent, 

Thus,  for  example,  —  Given  vertical  angle  and  sum  of  sides  of  a  triangle  to  find  thy 
envelope  of  base. 

- 
The  equation  of  the  base  is 

where  a  +  b  —  c. 
The  envelope  is,  therefore, 

x2  +y2  —  2xy  —  2cx  —  2cy  +  c2  =  0, 

a  parabola  touching  the  sides  x  and  y. 

In  like  manner,  —  Given  in  position  two  conjugate  diameters  of  an  ellipse,  and  the 
sum  of  their  squares,  to  find  its  envelope. 

If  in  the  equation  —  ̂   +  .  ,2  =  1, 

we  have  a'2  +  V*  =  c2,  the  envelope  is 

x  ±  y  ±  e  =  0. 
The  ellipse,  therefore,  must  always  touch  four  fixed  right  lines. 

285.  If  the  coefficients  m  the  equation  of  any  right  line 

Xa  +  pfi  -r  vy  be  connected  by  any  relation  of  the  second  order 
in  \,  /*,  v, 

Atf  -I-  B^  +  Gv*  +  VFfjiv  +  2  Ov\  -r  2H\/j,  =  0, 

the  envelope  of  the  line  is  a  conic  section.     Eliminating  v  between 
the  equation  of  the  right  line  and  the  given  relation,  we  have 

(A^  -2GyoL  +  Co?)  V  +  2  (Hy*  -  Fyv.  -  Gyj3  +  Ca/3]  \p 

+  (By*  -  2Fy/3  +  Of)  p?  =  0, 
and  the  envelope  is 

Expanding  this  equation,  and  dividing  by  7*,  we  get 

(BG-  F*)  <?  +(CA-  #2)  f  +  (AB-  H*)  72 

2  +  (GH~  AF)  ffy  +  2  (HF-  BG)  7«  +  2  (FG  -  CH)  a/3  =  0. 
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The  result  of  this  article  may  be  stated  thus  :  Any  tangential 

equation  of  the  second  order  in  X,  /-t,  v  represents  a  conic,  whose 

trilinear  equation  is  found  from  the  tangential  by  exactly  the 
same  process  that  the  tangential  is  found  from  the  trilinear. 

For  it  is  proved  (as  in  Art.  151)  that  the  condition  that 

Xa  -f  ftfi  -f  vy  shall  touch 

aa*  -I-  b@*  +  cy8  +  2//3y  -f  2#ya  +  2hz/3  =  0, 
or,  in  other  words,  the  tangential  equation  of  that  conic  is 

(be  -f2)  X*  +  (ca  -  f)  p*  +  (ab  -  A2)  v8 

Conversely,  the  envelope  of  a  line  whose  coefficients  X,  /n,  v 

fulfil  the  condition  last  written,  is  the  conic  aa2  +  &c.  =  0  ;  and 
this  may  be  verified  by  the  equation  of  this  article.  For, 

if  we  write  for  A,  B,  &c.,  be  —f\  ca  -  g*,  &c.,  the  equation 

(BG-  F*)  a2  +  &c.  =  0  becomes 

(dbc  +  2fgh  -  af-  T>(f-ctf}  (ad'  +  &/3"+  cy9  +  2//3y  +  2#ya  -I-  2hoLj3)  =  0. 
Ex.  1.  We  may  deduce,  as  particular  cases  of  the  above,  the  results  of  Arts.  127, 

130,  namely,  that  the  envelope  of  a  line  which  fulfils  the  condition  ~  +  -  +  -  =  0 
\      ft       v 

)  +  J(£/3)  +  J(-Sy)  =  0  ;  and  of  one  which  fulfils  the  condition 

Ex.  2.  "What  is  the  condition  that  \a  +  fip  +  vy  should  meet  the  conic  given  by 
the  general  equation  in  real  points  ? 

Ans.  The  line  meets  in  real  points  when  the  quantity  (be  —f2)  X2  +  <fec.  is 
negative;  in  imaginary  points  when  this  quantity  is  positive;  and  touches  when 
it  vanishes. 

Ex.  3.  What  is  the  condition  that  the  tangents  drawn  through  a  point  a'ft'y' 
should  be  real  ? 

Ans.  The  tangents  are  real  when  the  quantity  (BC  '-  F2)  a'2  +  <fec.  is  negative  ; 
or,  in  other  words,  when  the  quantities  abc  +  2fgh  +  <fec.  and  aa'2  +  £/3'2  +  &c.  have 
opposite  signs.  The  point  will  be  inside  the  conic  and  the  tangents  imaginary  when 
these  quantities  have  like  signs. 

286.   It  is  proved,  as  at  Art.  76,  that   if  the  condition  be 

fulfilled,        ABG+  2FGH-  AF*  -  EG'  -  OH*  =  0, 

then  the  equation 

AV  -f  B^  -t-  Gf  +  2F/J.V  +  2  0v\,  +  ZffXtJL  =  0 

may  be  resolved  into  two  factors,  and  is  equivalent  to  one  of  the 

form  (a'X  f  £>  +  y  V)  (a"X  +  /3>  +  y'V)  =  0. 
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And  since  the  equation  is  satisfied  if  either  factor  vanish,  it 

denotes  (Art.  51)  that  the  line  Xa  +  p/3  +  vy  passes  through  one 

or  other  of  two  fixed  points. 

If,  as  in  the  last  article,  we  write  for  A,  be—  /*,  &c.,  it  will 
be  found  that  the  quantity  ABC  +  2FGH-\-  &c.  is  the  square 
of  abc  +  2fgh  +  &c. 

Ex.  If  a  conic  pass  through  two  given  points  and  have  double  contact  with  a  fixed 
conic,  the  chord  of  contact  passes  through  one  or  other  of  two  fixed  points.  For  let 

S  be  the  fixed  conic,  and  let  the  equation  of  the  other  be  S  =  (\a  +  up  +  i/y)2.  Then 
substituting  the  coordinates  of  the  two  given  points,  we  have 

&  =  (\a'  +  f*P  +  vy')2  ;    S"  =  (Xa"  +  /*/3"  +  i/y")2  J 

whence  (Xa'  +  tf  +  i/y')  4(8")  =  ±  W  +  rf"  +  "7")  4(S*), 

showing  that  Xa  +  ju/3  +  vy  passes  through  one  or  other  of  two  fixed  points,  since 

S',  S"  are  known  constants. 

287.  To  find  the  equation  of  a  conic  having  double  contact 

with  two  given  conies,  8  and  S'.  Let  E  and  F  be  a  pair  of 

their  chords  of  intersection,  so  that  S-  S'  =  EF\  then 

represents  a  conic  having  double  contact  with  8  and  S'  ;  for  it 
may  be  written 

or 

Since  fju  is  of  the  second  degree,  we  see  that  through  any 

point  can  be  drawn  two  conies  of  this  system;  and  there  are 

three  such  systems,  since  there  are  three  pairs  of  chords  E,  F. 

If  S'  break  up  into  right  lines,  there  are  only  two  pairs  of 

chords  distinct  from  /S",  and  but  two  systems  of  touching  conies. 

And  when  both  S  and  S'  break  up  into  right  lines  there  is  but 
one  such  system. 

Ex.  Find  the  equation  of  a  conic  touching  four  given  lines. 

Ans.  n*E*  -2fi(AC  +  BD)  +  F2  =  0, 
where  A,  Bt  C,  D  are  the  sides  ;  E,  F  the  diagonals,  and  AC  -  £D  =  EF.    Or  more 
symmetrically  if  L,  M,  N  be  the  diagonals,  L  ±  M  ±  N  the  sides, 

fjfl?  -fji(L*  +  M*-  N2)  +  M  2  =  0. 

For  this  always  touches  4LW  »  -  (L2  +  J/2  -  #2)2 

-(L  +  M+N)  (M+N-L)  (L  +  N-M)  (M+L-N}. 

Or,  again,  the  equation  may  be  written  N2  —   —%-.  +   •  2      (8ee  •^r^-  278). 



METHODS  OP  AfcRt&GEb  NOTATION.  263 

288.    The  equation  of  a  conic   having   double  contact  with 
two  circles  assumes  a  simpler  form,  viz. 

The  chords  of  contact  of  the  conic  with  the  circles  are  found 

to  be  -'  0    and   G-G'-     =  0 

which  are  therefore  parallel  to  each  other,  and  equidistant  from 

the  radical  axis  of  the  circles.  This  equation  may  also  be  written 

in  the  form  *J  C  ±J  G'  =  *JfJL. 

Hence,  the  locus  of  a  point,  the  sum  or  difference  of  whose  tangents 

to  two  given  circles  is  constant,  is  a  conic  having  double  contact 

with  the  two  circles.  If  we  suppose  both  circles  infinitely  small, 

we  obtain  the  fundamental  property  of  the  foci  of  the  conic. 

If  (j,  be  taken  equal  to  the  square  of  the  intercept  between 

the  circles  on  one  of  their  common  tangents,  the  equation  de- 
notes a  pair  of  common  tangents  to  the  circles. 

Ex.  1.   Solve  by  this  method  the  Examples  (Arts.  113,  114)  of  finding  common 
tangents  to  circles. 

Ans.  Ex.  1.  JC+  JC'  =  4  or  =  2.    Ans.  Ex.  2.  JC+  JC"  =  1  or  =  J  -  79. 

Ex.  2.  Given  three  circles  ;  let  L,  L'  be  a  pair  of  common  tangents  to  C',  C"  ; 

M,  M'  to  C",  C';  N,  N'  to  <7,  C'  ;  then  if  L,  3f,  JVraeet  in  a  point,  so  will  L',  M',  N'* 
Let  the  equations  of  the  pairs  of  common  tangents  be 

Then  the  condition  that  L,  M,  N  should  meet  in  a   point  is  t'  ±  t  =  t"  ;  and  it  is 
obvious  that  when  this  condition  is  fulfilled,  Z/,  M'  ,  N'  also  meet  in  a  point. 

Ex.  3.  Three  conies  having  double  contact  with  a  given  one  are  met  by  three 
common  chords,  which  do  not  pass  all  through  the  same  point,  in  six  points  which 
lie  on  a  conic.  Consequently,  if  three  of  these  points  lie  in  a  right  line,  so  do  the 

other  three.  Let  the  three  conies  be  S  -  L9,  8  -  Mz,  S-N2;  and  the  common 

chords  L  +  M,  M  +  JV~,  N  +  L,  then  the  truth  of  the  theorem  appears  from  inspec- 
tion of  the  equation 

=  (8  -  £2)  +  (L  +  M  )  (L  +  N). 

*  This  principle  is  employed  by  Steiner  in  his  solution  of  Malfatti's  problem,  viz. 
"To  inscribe  in  a  triangle  three  circles  which  touch  each  other  and  each  of  which 

touches  two  sides  of  the  triangle."  Stein  er*s  construction  is,  "  Inscribe  circles  in  the 
triangles  formed  by  each  side  of  the  given  triangle  and  the  two  adjacent  bisectors 
of  angles ;  these  circles  having  three  common  tangents  meeting  in  a  point  will  have 
three  other  common  tangents  meeting  in  a  point,  and  these  are  common  tangents  to 

the  circles  required.  For  a  geometrical  proof  of  this  by  Dr.  Hart,  see  Quarterly 
Journal  of  Mathematics,  vol.  I.,  p.  219.  We  may  extend  the  problem  by  substituting 

for  the  word  "circles,"  "conies  having  double  contact  with  a  given  one."  In  this 
extension,  the  theorem  of  Ex.  3,  or  its  reciprocal,  takes  the  place  of  Ex.  2. 
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GENERAL   EQUATION   OP  THE   SECOND   DEGREE. 

289.    There  is  no  conic  whose  equation  may  not  be  written 
in  the  form 

4  C72  +  2/J8y  -I-  Igyai  4  2^a/3  =  0. 
For  this  equation  is  obviously  of  the  second  degree  ;  and  since 

it  contains  five  independent  constants,  we  can  determine  these 

constants  so  that  the  curve  which  it  represents  may  pass  through 

five  given  points,  and  therefore  coincide  with  any  given  conic. 

The  trilinear  equation  just  written  includes  the  ordinary  Car- 
tesian equation,  if  we  write  x  and  y  for  a  and  /3,  and  if  we 

suppose  the  line  7  at  infinity,  and  therefore  write  7  =  1  (see 
Art.  69,  and  note  p.  72). 

In  like  manner  the  equation  of  every  curve  of  any  degree 

may  be  expressed  as  a  homogeneous  function  of  a,  $,  7.  For 

it  can  readily  be  proved  that  the  number  of  terms  iu  the  complete 

equation  of  the  nth  order  between  two  variables  is  the  same  as 

the  number  of  terms  in  the  homogeneous  equation  of  the  wth 
order  between  three  variables.  The  two  equations  then,  con- 

taining the  same  number  of  constants,  are  equally  capable  of 

representing  any  particular  curve. 

290.  Since  the  coordinates  of  any  point  on  the  line  joining 

two  points  a'/3y,  a"£"7"  are  (Art.  66)  of  the  form  fa'  +  ma.", 

Iff  4  mff',  ly  +  my",  we  can  find  the  points  where  this  joining 
line  meets  any  curve  by  substituting  these  values  for  a,  /9,  7, 

and  then  determining  the  ratio  I  :  m  by  means  of  the  resulting 

equation.*  Thus  (see  Art.  92)  the  points  where  the  line  meets 
a  conic  are  determined  by  the  quadratic 

P  (aa'a  +  bfi'*  +  cy"2  4  2/J3Y  4  2^7V  4  * 

4/(/3'7"  +  /3'Y)  4  g  (</«"  4  y"a)  +  h  (a'/T  4  a"/3')} 

4  m8  (aa"2  4  W*  4-  c7'/a  +  2//3r  '7"  +  2#7  "a"  +  2Aa"/8'/)  =  0  ; 

or,  as  we  may  write  it  for  brevity,  I2  S'  +  2lmP+  m*S"  =  Q. 

When  the  point  a.'j3'y  is  on  the  curve,  S'  vanishes,  and  the 
quadratic  reduces  to  a  simple  equation.  Solving  it  for  I  :  m, 

*  This  method  was  introduced  by  Joachitnsthal. 
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we  see  that  the  coordinates  of  the  point  where  the  conic  is  met 

again  by  the  line  joining  a"/3'Y'  to  a  point  on  the  conic  a'/3Y, 
are  SV  -  2Pa",  8"ff  -  2P/3",  ff'J  -  2Py".  These  coordinates 

reduce  to  a'/£?Y  if  the  condition  P=  0  be  fulfilled.  Writing  this 
at  full  length,  we  see  that  if  a"/3'Y'  satisfy  the  equation 

aaa'+  5/3/3'+  Cyy'+f($y'+  /3'y)  +  g  (y*  +  «/a)  +  h  (a/3'  +  a'/3)  =  0, 

then  the  line  joining  a"/3'Y'  to  a'/3Y  meets  the  curve  in  two 

points  coincident  with  a'/3Y;  in  other  words,  a"/3'Y'  lies  on 

the  tangent  at  aft'y'.  The  equation  just  written  is  therefore 
the  equation  of  the  tangent. 

291.  Arguing,  as  at  Art.  89,  from  the  symmetry  between 

a/37,  a'/3Y  of  the  equation  just  found,  we  infer  that  when  a'^Y 
is  not  supposed  to  be  on  the  curve,  the  equation  represents  the 

polar  of  that  point.  The  same  conclusion  may  be  drawn  from 

observing,  as  at  Art.  91,  that  P=  0  expresses  the  condition  that 

the  line  joining  a'/3Y>  a'^'Y'  shall  be  cut  harmonically  by  the 
curve.  The  equation  of  the  polar  may  be  written 

a'  (aa  +  h/3  +  gy)  +  ff  (ha.  +  bj3  +/y)  +  y  (gat  +//3  +  cy)  =  0. 

But  the  quantities  which  multiply  a',  ff,  7'  respectively,  are  half 
the  differential  coefficients  of  the  equation  of  the  conic  with  re- 

spect to  a,  /3,  7.  We  shall  for  shortness  write  £1?  $2,  /S3,  instead 

of  -=-  ,  -J-Q  ,  -j-;  and  we  see  that  the  equation  of  the  pol 
ar    s 

In  particular,  if  /3',  y  both  vanish,  the  polar  of  the  point  £7 
is  SV)  or  the  equation  of  the  polar  of  the  intersection  of  two  of  the 

lines  of  reference  is  the  differential  coefficient  of  the  equation  of 

the  conic  considered  as  a  function  of  the  third.  The  equation  of 

the  polar  being  unaltered  by  interchanging  a/?7,  a'/3Y?  mav 
be  written  a£/  +  ftS^  +  yS9'  =  0. 

292.  When  a  conic  breaks  up  into  two  right  lines,  the  polar 

of  any  point  whatever  passes  through  the  intersection  of  the 

right  lines.  Geometrically,  it  is  evident  that  the  locus  of  har- 
monic means  of  radii  drawn  through  the  point  is  the  fourth 

harmonic  to  the  pair  of  lines  and  the  line  joining  their  inter- 
section to  the  given  point.  And  we  might  also  infer,  from  the 

MM. 
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formula  of  the  last  article,  that  the  polar  of  any  point  with 

respect  to  the  pair  of  lines  aft  is  ft'a.  4  a'/3,  the  harmonic  con- 

jugate with  respect  to  a,  ft  of  ft'a.  -  a'/3,  the  line  joining  a/3  to 
the  given  point.  If  then  the  general  equation  represent  a  pail 

of  lines,  the  polars  of  the  three  points  fty,  yet,  aft, 

aa  +  hft  -r-  gy=  0,  ha,  4-  bft  +fy  =  0,  go.  +fft  +  cy  =  0, 

are  three  lines  meeting  in  a  point.  Expressing,  as  in  Art.  38, 

the  condition  that  this  should  be  the  case,  by  eliminating  a,  /3,  7 

between  these  equations,  we  get  the  condition,  already  found  by 

other  methods,  that  the  equation  should  represent  right  lines, 

which  we  now  see  may  be  written  in  the  form  of  a  determinant, 
a<  ̂>  ff 

9,f,  c    =0; 
or,  expanded,      abc  4  2fgh  —  afz  —  bgz  —  cW  —  0. 

The  left-hand  side  of  this  equation  is  called  the  discriminant* 
of  the  equation  of  the  conic.  We  shall  denote  it  in  what  follows 

by  the  letter  A. 

293.  To  find  the  coordinates  of  the  pole  of  any  line 

Xa  -f  ft{3  +  vy.  Let  afft'y'  be  the  sought  coordinates,  then  wo must  have 

aa!  4  hft'  4  gi  =  X,  ha!  +  Iff  +fy  =  n,  go?  4  fff  4  cy  =  v. 

Solving  these  equations  for  a',  /3r,  7',  we  get 

Aa'  =  X  (be  -/")  4  /*  (fg  -  ch)  -f-  v  (hf-  bg), 

A/8'  =  X  (fg—  ch)  4  A6  (ca  —  g')  4  v  (gh—  a/"), 

A7r  =  X  (hf-  bg)  4  ft  (gh-  of)  +  v(ab-  h*) ; 
or,  if  we  use  A,  B,  <7,f  &c.  in  the  same  sense  as  in  Art.  151, 
we  find  the  coordinates  of  the  pole  respectively  proportional  to 

Since  the  pole    of  any  tangent  to  a  conic  is  a  point  on  that 

tangent,  we  can  get  the  condition  that  Xa  -t-  /u./3  +  1/7  may  touch 
the  conic,  by  expressing  the  condition  that  the  coordinates  just 

found  satisfy  Xa  +  yu./3  +  vy  =  0.     We  find  thus,  as  in  Art.  285, 

AK  +  Btf  +  Cv*  +  ZFfAv  -f  2  Ov\  +  ZUXfji  =  0. 

*  See  Lessons  on  Modern  Higher  Algebra,  Lesson  XI. 
t  A,  li,  C,  <tc.  are  the  minors  of  the  determinant  of  the  la*t  article. 
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If  we  write  this  equation  2  =  0,  it  will  be  observed  that  the 

coordinates  of  the  pole  are  S1?  22,  28,  that  is  to  say,  the  diffe- 
rential coefficients  of  S  with  respect  to  X,  //,,  v.  Just,  then,  as  the 

equation  of  the  polar  of  any  point  is  «$/  -f  @St'  -f  7$,'  =  0,  so 
the  condition  that  Xa  +  /j,/3  •}•  wy  may  pass  through  the  pole  of 

X'a  -f  p&  4-  v'y  (or,  in  other  words,  the  tangential  equation  of 
this  pole)  is  X2/ +  /*£/  + vS/ B  0.  And  again,  the  condition 

that  two  lines  Xa  + /u./3 -f  1/7,  X'a  -f  fjf/3  +  1/7  may  be  conjugate 
with  respect  to  the  conic,  that  is  to  say,  may  be  such  that  the 

pole  of  either  lies  on  the  other,  may  obviously  be  written  in 
either  of  the  equivalent  forms 

X'2,  +  //22  +  v'28  =  0,  X2/  +  /*2/  + 1/2/  =  0. 
From  the  manner  in  which  2  was  here  formed,  it  appears  that 

2  is  the  result  of  eliminating  a',  /8',  7',  p  between   the  equations 

aaf  +  h/3'  +  gy'  +  pX  =  0,  ha.'  +  Iff  +//  +  pp  =  0, 

ga  +//3r  +  07'  +  pv  =  0,  Xa'  +  n/3'+  vj  =  0 ; 
in  other  words,  that  2  may  be  written  as  the  determinant 

X,  ̂t,  v,  0 

a,  A,  ,9,  X 

A,  ft,  /,  M 

6V 2 

Ex.  1.  To  find  the  coordinates  of  the  pole  of  \a  +  /u/3  +  vy  with  respect  to 
J(la)  +  J(m/3)  +  J(«y).    The  tangential  equation  in  this  case  (Art.  130)  being 

IfUf  +  mv\  +  n\f4.  =  0, 

the  coordinates  of  the  pole  are 

a'  =  mv  +  rip,   /3'  =  nX  +  lv,    y'  =  l/j.  +  m\. 

Ex.  2.  To  find  the  locus  of  the  pole  of  \a  +  pfi  +  vy   with  respect  to  a  conic 
being  given  three  tangents,  and  one  other  condition.* 

Solving  the  preceding  equations  for  I,  m,  n,  we  find  I,  m,  n  proportional  to 

X  (M/3'  +  vy'  -  \a'),  p  (vy'  +  Xa'  -  M/3'),  v  (\a'  +  pp  -  vy'). 

Now  J(?a)  +  J(mfi)  +  J(ny)  denotes  a  conic  touching  the  three  lines  a,  /3,  y  ;  and 
any  fourth  condition  establishes  a  relation  between  /,  m,  n,  in  which,  if  we  substitute 

the  values  just  found,  we  shall  have  the  locus  of  the  pole  of  Xa  +  /u/3  +  vy.  If  we 
write  for  X,  p,  v  the  sides  of  the  triangle  of  reference  a,  b,  c,  we  shall  have  the  locus 
of  the  pole  of  the  line  at  infinity  act  +  bf3  +  cy  ,  that  is,  the  locus  of  centre.  Thus 

the  condition   that  the   conic  should  touch  Aa  +  J3/3  +  Cy  being   -7  +  ̂  +  ̂  =0 .4       Jo       C 

*  The  method  here  used  is  taken  from  Heurn's  Researches  on  Conic  Sections. 
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(Art.  130),  we  infer  that  the  locus  of   the  pole  of  Xa  +  /it/3  +  try  with  respect  to  a 

conic  touching  the  four  lines  a,  /8,  y,    Act  +  Bft  +  Cy,  is  the  right  line 

\(fjip  +  vy  -Xa)      p.  (vy  +  Xa  -  up)      v  (\a  +  up  -  vy)  _ ___  _____  ___ 

Or,  again,  since  the  condition  that  the  conic  should  pass  through  a'P'y'  is 
J(/o')  +  Jfap')  +  J(ny')  =  0,  the  locus  of  the.  pole  of  \o  +  up  +  vy  with  respect  to  a 

conic  which  touches  the  three  lines  a,  p,  y,  and  passes  through  a  point  a'p'y',  is 

J{\o'  (fip  +  vy  -  Xa)}  +  J{/u/3'  (vy  +  \a-  M|8)}  +  J{yy'  (Xa  +  /u/3  -  vy)}  =  0, 

whioh  denotes  a  conic  touching  jt/3  +  vy  -  Xa,  i/y  +  Xa  -  /z/3,  Xa  -f  /u/3  —  vy.  In  the 
case  where  the  locus  of  centre  is  sought,  these  three  lines  are  the  lines  joining  the 

middle  points  of  the  sides  of  the  triangle  formed  by  a,  p,  y. 

Ex.  3.  To  find  the  coordinates  of  the  pole  of  Xa  +  /uj3  +  vy  with  respect  to 
ipy  +  mya  +  na/3.    The  tangential  equation  in  this  case  being,  Art.  127, 

PX2  +  mV  +  »V  -  tmnpv  -  2nlv\  -  2lm\f*.  =  0, 

the  coordinates  of  the  pole  are 

a  —  I  (/X  —  mp.  —  nv),  p'  =  m  (myu  —  nv  —  /X),  y'  =  n  (nv  —  l\  —  m/0, 

whence    my'  +  n/37  =  -  2/mraX,    na'  +  ly'  =  -  2lmnfi,   Ifi  +  ma'  =  -  Zlmnv  ; 

and,  as  in  the  last  example,  we  find  I,  m,  n  respectively  proportional  to 

a'  GU/?  +  vy'  -  Xa'),   ?  (vy'  +  Aa'  -  /x/3'),  y'  (x«'  +  I*P  ~  "70- 
Thus,  then,  since  the  condition  that  a  conic  circumscribing  afiy  should  pass  through 

I          TH          ft 

a  fourth  point  a'/S'y'  is  -;  4-  ̂ >  +  —  =  0,  the  locus  of  the  pole  of  Xa  +  pp  +  vy,  with 
regard  to  a  conic  passing  through  the  four  points,  is 

which,  when  the  locus  of  centre  is  sought,  denotes  a  conic  passing  through  thfc 
middle  points  of  the  sides  of  the  triangle.  The  condition  that  the  conic  should 

touch  Aa  +  Bp+Cy  being  j(Al)  +  J(£m)  +  J(C7n)  =  0,  the  locus  of  the  pole  of 
Xa  +  ft.ft  +  vy,  with  regard  to  a  conic  passing  through  three  points  and  touching 
a  fixed  line,  is 

J{Aa  (ftp  +  vy  -  Xa)}  +  J{Bp  (vy  +  Xa  -  fip)}  +  JCy  (Xa  +  /u/3  -  vy)  =  0, 

which,  in  general,  represents  a  curve  of  the  fourth  degree. 

294.  If  a"/3'Y'  be  any  point  on  any  of  the  tangents  drawn 

to  a  curve  from  a  fixed  point  a'/3Y>  the  line  joining  a'/3Yi  a"/3'Y' 
meets  the  curve  in  two  coincident  points,  and  the  equation  in 

1 1  m  (Art.  290),  which  determines  the  points  where  the  joining 
line  meets  the  curve,  will  have  equal  roots. 

To  find,  then,  the  equation  of  all  the  tangents  which  can  be 

drawn  through  a'/3Y>  we  must  substitute  la  +  mat?,  Z/3  +  TW#', 

ly+my'm  the  equation  of  the  curve,  and  form  the  condition 
that  the  resulting  equation  in  I :  m  shall  have  equal  roots. 
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Thus  (see  Art.  92)  the  equation  of  the  pair  of  tangents  to  a 

conic  is  Sff  =  P2,  where 

S=aa'2  +  &c.,    £'  =  aa'24&c.,   P=aaa'  +  &c. 
This  equation  may  also  be  written  in  another  form  ;  for  since 

any  point  on  either  tangent  through  a'/3y  evidently  possesses 

the  property  that  the  line  joining  it  to  a'fi'y'  touches  the  curve, 
we  have  only  to  express  the  condition  that  the  line  joining  two 
points  (Art.  65) 

a  (/3'7"  -  /3"7')  +  0  (v'*"  -  «/Y)  +  7  (W  -  «"£')  =  0 

should  touch  the  curve,  and  then  consider  a"/3"7"  variable,  when 
we  shall  have  the  equation  of  the  pair  of  tangents.     In  other 

words,  we  are  to  substitute  j3y'  -  j3'7>  7«'  —  7'a,  a/3'  —  a'/3   for 
X,  /-t,  v  in  the  condition  of  Art.  285, 

A\*  +  Btf  +  Cv*  +  2Ffjiv  +  2  Gv\  +  2H\fjL  =  0. 
Attending  to  the  values  given  (Art.  285)  for  A,  B,  &c.,  it  may 

easily  be  verified  that 

(aa2  +  &c.)  (aa'2  +  &c.)  -  (aaa'  +  &c.)2  =  A  (#/  -  /3'7)2  +  &c. 
Ex.  To  find  the  locus  of  intersection  of  tangents  which  cut  at  right  angles  to  a 

conic  given  by  the  general  equation  (see  Ex.  4,  p.  169). 
We  see  now  that  the  equation  of  the  pair  of  tangents  through  any  point  (Art.  147) 

may  also  be  written 

A  (y  -  y'}*  +  B(x-  a')2  +  C  (xy'  -  yx')* 

-2F(x-x')  (xye-yxf)  +  2G(y-yr}(xy'-x'y}-2H(x-x')  (y-y')  =  0. 
This  will  represent  two  right  lines  at  right  angles  when  the  sum  of  the  coefficients 

of  a:2  and  y1  vanishes,  which  gives  for  the  equation  of  the  locus 

C  (x*  +  y2)  -  %Gx  -  2Fy  +  A  +  B  =  0. 
This  circle  has  been  called  the  director  circle  of  the  conic.    When   the  curve  is  a 

parabola,  C  =  0,  and  we  see  that  the  equation  of  the  directrix  is  Gx  +  Fy  =  \  (A  +  B). 

295.    It    follows,  as  a  particular  case  of  the  last,  that   the 

pairs  of  tangents  from  (3y3  7«,  a/3  are 

By*+Ci3*-2F/3<y,    C<?  +  A<f  -  2  £7a,    A&  +  Ba?  -SHap, 

as  indeed  might  be  seen  directly  by  throwing  the  equation  of 
the  curve  into  the  form 

(aa  +  hfB+  gy?  +  (  Cf3*  4  By*  -  2F/3y)  =  0. 

Now  if  the  pair  of  tangents  through  £7  be  /3  -  &y,  /3  -  k'y,  it D 

appears  from  these  expressions  that  kk'  =  -fn  ana"  tuat  tne  corre- 
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spending  quantities  for  the  other  pairs  of  tangents  are  -r ,  -5 , A     x> 

and  these  three  multiplied  together  are  =  1.     Hence,  recollecting 
the  meaning  of  k  (Art.  54),  we  learn  that  if  A,  F,  B,  D,  G,  E 

be  the  angles  of  a  circumscribing  hexagon, 

sin  EAB.  sin  FAB.sm  FBC.a'm  DBG. am  DC  A. am  EGA  _ 
am  EA G. sin  FAG.  sin  FBA.aiu  DBA  .sin  JDCB.&m  ECB  ~    ' 

Hence  also  three    pairs  of  lines    will  touch  the  same  conic  if 

their  equations  can  be  thrown  into  the  form 

M*+  N*+  2f'MN=.  0,  N*+  U+  Zg'NL  =  0,  U  +  JP  4-  2h'LM=  0, 
for  the  equations  of  the  three  pairs  of  tangents,  already  found 

ean  be  thrown  into  this  form  by  writing  L^(A)  for  a,  &c. 

296.  If  we  wish  to  form  the  equations  of  the  lines  joining 

to  a'/Sy  all  the  points  of  intersection  of  two  curves,  we  have 

only  to  substitute  la.  4  wza',  1(3  4-  wi/3',  ly  4  ?w/  in  both  equations, 
and    eliminate    I :  m   from  the  resulting  equations.      For    any 

point  on  any  of  the  lines  in    question  evidently  possesses  the 

property  that  the  line  joining  it  to  a'/Sy  meets  both  curves  in 
the  same  point ;  therefore  the  equations  in  I :  wi,  which  determine 

the  points  where  one  of  these  lines   meets  both  curves,  must 

have   a  common  root ;  and  therefore  the  result  of  elimination 

between  them  is  satisfied.     Thus,  the  equation  of  the  pair  of 

lines  joining  to  a'/3y  the  points  where  any  right  line  L  meets  $, 
is  L"8-  2LL'P+  US  =  0.     If  the  point  a'£Y  be  on  the  curve 

the  equation  reduces  to  L'S—  2LP=0. 
Ex.  A  chord  which  subtends  a  right  angle  at  a  given  point  on  the  curve  passes 

through  a  fixed  point  (Ex.  2,  Art.  18] ).  We  use  the  general  equation,  and  by  the  formula 
last  given,  form  the  equation  of  the  lines  joining  the  given  point  to  the  intersection 
of  the  conic  with  \x  +  uy  +  v.  The  coordinates  being  supposed  rectangular,  these  lines 

will  be  at  right  angles  if  the  sum  of  the  coefficients  of  x2  and  y1  vanish,  which  gives  the 
condition 

(\x'  +  fiy'  +  v)  (a  +  d)  =  2  (a\xr  +  fyiy'). 
And  since  \,  /u,  v  enter  in  the  first  degree,  the  chord  passes  through  a  fixed  point, 

viz.  -^—  x',  "~  ,y'.  If  the  point  on  the  curve  vary,  this  other  point  will  describe 
a  conic.  If  the  angle  subtended  at  the  given  point  be  not  a  right  angle,  or  if  the 
angle  be  a  right  angle,  but  the  given  point  not  on  the  curve,  the  condition  found  in 
like  manner  will  contain  X,  /u,  v  in  the  second  degree,  and  the  chord  will  envelope 
a  conic. 

297.  Since  the  equation  of  the  polar  of  a  point  involves  the 
coefficients  of  the  equation  in  the  first  degree,  if  an  indeterminate 
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enter  in  the  first  degree  into  the  equation  of  a  conic  it  will 

enter  in  the  first  degree  into  the  equation  of  the  polar.  Thus, 

if  P  and  Pr  be  the  polars  of  a  point  with  regard  to  two  conies 

$,  /S",  then  the  polar  of  the  same  point  with  regard  to  S+k& 
willbeP+&P'.  For 

(a  +  ka)  oca'  +  &c.  =  aaa'  4-  &c.  +  k  }a'aa'  +  &c.}. 
Hence,  given  four  points  on  a  conic,  the  polar  of  any  given  point 

passes  through  a  fixed  point  (Ex.  2,  Art.  151). 
If  Q  and  Q  be  the  polars  of  another  point  with  regard  to  8 

and  $',  then  the  polar  of  this  second  point  with  regard  to  S+kS' 

is  Q  +  kQ'.  Thus,  then  (see  Art.  59),  the  polars  of  two  points 
with  regard  to  a  system  of  conies  through  four  points  form  two 

homographic  pencils  of  lines. 

Given  two  homographic  pencils  of  lines,  the  locus  of  the  inter- 
section of  the  corresponding  lines  of  the  pencils  is  a  conic  through 

the  vertices  of  the  pencils.  For,  if  we  eliminate  k  between 

P+yfcP',  Q+k@,  we  get  PQ  =  PQ.  In  the  particular  case 
under  consideration,  the  intersection  of  P+kP/1  Q  +  kQ'  is  the 

pole  with  respect  to  S  +  kS'  of  the  line  joining  the  two  given 
points.  And  we  see  that,  given  four  points  on  a  conic^  the  locus 
of  the  pole  of  a  given  line  is  a  conic  (Ex.  1,  Art.  278). 

If  an  indeterminate  enter  in  the  second  degree  into  the 

equation  of  a  conic,  it  must  also  enter  in  the  second  degree 

into  the  equation  of  the  polar  of  a  given  point,  which  will  then 

envelope  a  conic.  Thus,  if  a  conic  have  double  contact  with 

two  fixed  conies,  the  polar  of  a  fixed  point  will  envelope  one 

of  three  fixed  conies ;  for  the  equation  of  each  system  of  conies 
in  Art.  287  contains  //,  in  the  second  degree. 

We  shall  in  another  chapter  enter  into  fuller  details  re- 
specting the  general  equation,  and  here  add  a  few  examples 

illustrative  of  the  principles  already  explained. 

Ex.  1.  A  point  moves  along  a  fixed  line;  find  the  locus  of  the  intersection  of  its 

polars  with  regard  to  two  fixed  conies.  If  the  polars  of  an}'  two  points  a'/3'y',  «"/3"y" 
on  the  given  line  with  respect  to  the  two  conies  be  P',  P" ;  Q',  Q" ;  then  any  other 
point  on  the  line  is  Xa'  +  /xa",  X/3' + /x/3",  Xy'  +  /ry";  and  its  polars  \P'  +  H.P" 
\&  +  r*Q",  which  intersect  on  the  conic  P'Q"  =  P"Q'. 

Ex.  2.  The  anharmonic  ratio  of  four  points  on  a  right  line  is  the  same  as  that 
of  their  four  polars. 

For  the  anharmonic  ratio  of  the  four  points 

la  +  ma",  I' a  +  m'a",  l"a'  +  m"a",  I'" a!  +  m'"a", 



272  METHODS   OF  ABRIDGED   NOTATION. 

is  evidently  the  same  as  that  of  the  four  lines 

IP  +  mP",   fP'  +  m'P",    l"P'  +  m"P",    l'"P'  +  m"'P". 

Ex.  3.  To  find  the  equation  of  the  pair  of  tangents  at  the  points  where  a  conic  S 
is  met  by  the  line  y. 

The  equation  of  the  polar  of  any  point  on  7  is  (Art.  291)  a'Sl  +  pS2  =  0.  But 
the  points  where  y  meets  the  curve  are  found  by  making  y  =  0  in  the  general 
equation,  whence 

=  0. 

Eliminating  a',  ff  between  these  equations,  we  get  for  the  equation  of  the  pair 
of  tangents 

f  =  0. Thus  the  equation  of  the  asymptotes  of  a  conic  (given  by  the  Cartesian  equation)  is 

for  the  asymptotes  are  the  tangents  at  the  points  where  the  curve  is  met  by  the  line 
at  infinity  z. 

Ex.  4.  Given  three  points  on  a  conic  :  if  one  asymptote  pass  through  a  fixed 
point,  the  other  will  envelope  a  conic  touching  the  sides  of  the  given  triangle.  If 

<i,  *2  be  the  asymptotes,  and  act  +  bfi  +  cy  the  line  at  infinity,  the  equation  of  the 

conic  is  tfa  =  (act  +  £/3  +  cy)2.  But  since  it  passes  through  /3y,  ya,  a/3,  the  equa- 
tion must  not  contain  the  terms  a2,  /S2,  y2.  If  therefore  £,  be  \a  +  fif3  +  vy,  t2  must 

be  ̂   a  +  -  /3  +  -  y  ;  and  if  «2  pass  through  a'ffy',  then  (Ex.  1,  Art.  285)  «,  touches 

a  J(ao')  +  b  J(/3/3')  +  c  J(yy')  =  0.      The  same  argument  proves  that  if  a  conic  pass 
through  three  fixed  points,  and  if  one  of  its  chords  of  intersection  with  a  conic  given 

a         b         c 
by  the  general  equation  act2  +  &c.  =  0  be  Xa  +  M/3  +  vy  ,  the  other  will  bera  +  -/3  +  -y. 

Ex.  5.  Given  a  self  conjugate  triangle  with  regard  to  a  conic  :  if  one  chord  of 

intersection  with  a  fixed  conic  (given  by  the  general  equation)  pass  through  a  fixed 

point,  the  other  will  envelope  a  conic  [Mr.  Burnside].  The  terms  a/3,  /3y,  ya  are 
now  to  disappear  from  the  equation,  whence  if  one  chord  be  Xa  +  /&/3  +  vy,  the  other 
is  found  to  be 

Xa  (jug  +  vh-  \f)  +  A./3  (vh  +  \f-  ug)  +  vy  (X/+  P-g  -  vh). 

Ex.  6.  A  and  A'  (a1/31yu  0^272)  are  ̂ Qe  points  of  contact  of  a  common  tangent 
to  two  conies  U,  V;  P  and  P'  are  variable  points,  one  on  each  conic  ;  find  the  locus 
of  C,  the  intersection  of  AP,  A'P',  if  PP'  pass  through  a  fixed  point  0  on  the  common 
tangent  [Mr.  Williamson]. 

Let  P  and  Q  denote  the  polars  of  0,/^y,,  a.2/?2y2,  with  respect  to  U  and  V  respec- 
tively ;  then  (Art.  290)  if  a/3y  be  the  coordinates  of  C,  those  of  the  point  P  where 

AC  meets  the  conic  again,  are  Uat  —  2Pa,  Uftl  —  2P/3,  Uyl  —  IPy  ;  and  those  of  the 

point  /"are,  in  like  manner,  Fa2-2Qa,  Ac.  If  the  line  joining  these  points  pass 
through  0,  which  we  choose  as  the  intersection  of  a,  /?,  we  must  have 

a±-a  _     o, 

U^-2P8~  V0t-2Ql3' 

and  when  A,  A',  0  are  unrestricted  in  position,  the  locus  is  a  curve  of  the  fourth 
order.  If,  however,  these  points  be  in  a  right  line,  we  may  choose  this  for  the  lino  a, 

and  making  a,  and  a2  =  0,  the  preceding  equation  becomes  divisible  by  a,  and  re- 
duces to  the  curve  of  the  third  order  PF/32=  QU/3t.  Further,  if  the  given  points 
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are  points  of  contact  of  a  common  tangent,  I'  and  Q  represent  the  same  line ;  and 
another  factor  divides  out  of  the  equation  which  reduces  to  one  of  the  form  U  -  kV 
representing  a  conic  through  the  intersection  of  the  given  conicri. 

Ex.  7.  To  inscribe  in  a  conic,  given  by  the  general  equation,  a  triangle  whose 
sides  pass  through  the  three  points  fty,  ya,  aft.  We  shall,  as  before,  write  Slt  S2,  S3 

for  the  three  quantities,  aa  +  Jift  4-  gy,  ha  +  bft  +fy,  go.  +fft  +  ey.  Now  we  have 
seen,  in  general,  that  the  line  joining  any  point  on  the  curve  afty  to  another 

point  a'/3'y'  meets  the  curve  again  in  a  point,  whose  coordinates  are  S'a  —  2P'a, 

S'p  -  2P'J3',  S'y  -  2P'y.  Now  if  the  point  a'ft'y'  be  the  intersection  of  lines  ft,  y, 
we  may  take  a'  =  1,  /3'  =  0,  y'  =  0,  which  gives  S'  =  a,  P'  =  S^  and  the  coordinates 
of  the  point  where  the  line  joining  afty  to  fty  meets  the  curve,  are  aa  -  2S,,  aft,  ay. 
In  like  manner,  the  line  joining  afty  to  ya,  meets  the  curve  again  in  ba,  bft  —  2S2,  by. 
The  line  joining  these  two  points  will  pass  through  aft,  if ba 

or,  reducing  2£1&2  =  aaSz  +  bftS^ 

which  is  the  condition  to  be  fulfilled  by  the  coordinates  of  the  vertex.     Writing  in 

this  equation  aa  =  Sl  —  hft  —  gy,  bft  =  S2  -  ha  —  /y,  it  becomes 

h  (aSl  +  ftSJ  +  y  (/»,  +  g&,}  =  0. 

But  since  afty  is  on  the  curve,  aS,  +  ftS2  +  ySs  =  0,  and  the  equation  last  written 
reduces  to 

Now  the  factor  y  may  be  set  aside  as  irrelevant  to  the  geometric  solution  of  the 

problem  ;  for  although  either  of  the  points  where  y  meets  the  curve  fulfils  the  con- 
dition which  we  have  expressed  analytically,  namely,  that  if  it  be  joined  to  fty  and 

to  ya,  the  joining  lines  meet  the  curve  again  in  points  which  lie  on  a  line  with  aft  ; 
yet,  since  these  joining  lines  coincide,  they  cannot  be  sides  of  a  triangle.  The  vertex 
of  the  sought  triangle  is  therefore  either  of  the  points  where  the  curve  is  met  by 

fSl  +  gS2  -  hS3.  It  can  be  verified  immediately  that  fSl  =  gS2  =  hS3  denote  the 
lines  joining  the  corresponding  vertices  of  the  triangles  «/3y,  S^Sy  Consequently 

(see  Ex.  2,  Art.  60),  the  line  /#,  +  gS9  -  hS3  is  constructed  as  follows  :  "  Form  the  tri- 
angle DEF  whose  sides  E 

are  the  polars  of  the 
given  points  A,  JB,  C; 
let  the  lines  joining  the 
corresponding  vertices 
of  the  two  triangles 
meet  the  opposite  sides 
of  the  polar  triangle  in 

L,  M,  M ;  then  the  lines 
LM,    MN,    NL    pass 
through  the  vertices  of 

the  required  triangles." 
The  truth  of  this  construction  is  easily  shown  geometrically :  for  if  we  suppose  that 
we  have  drawn  the  two  triangles  123,  456  which  can  be  drawn  through  the  points 

A,  B,  C-,  then  applying  Pascal's  theorem  to  the  hexagon  123456,  we  see  that  the 
line  BC  passes  through  the  intersection  of  16,  34.    But  this  latter  point  is  the  pole 
of  AL  (Ex.  1,  Art.  146).     Conversely,  then,  AL  passes  through  the  pole  of  BC,  and  L 
is  on  the  polar  of  A  (Ex.  1,  Art.  146). 

This  construction  becomes  indeterminate  if  the  triangle  is  self  con  jugate  in  which 

case  the  problem  admits  of  an  infinity  of  solutions. 

NN- 



274  METHODS  OP  ABRIDGED  NOTATION. 

Ex.  8.  If  two  conies  have  double  contact,  any  tangent  to  the  one  is  cut  har- 
monically at  its  poiut  of  contact,  the  points  where  it  meets  the  other,  and  where 

it  meets  the  chord  of  contact. 

If  in  the  equation  S  +  E*  =  0,  we  substitute  la'  +  ma",  lp  +  mft",  ly'  +  my",  for 

a>  Pi  7)  (where  the  points  a'p'y',  a"ft"y"  satisfy  the  equation  S  =  0),  we  get 

Now,  if  the  line  joining  a'ft'y',  a"ft"y",  touch  S  +  B?,  this  equation  must  be  a 
perfect  square  ;  and  it  is  evident  that  the  only  way  this  can  happen  is  if  P  =  —  VR'R", 
when  the  equation  becomes  (IR1  —  mR")z  —  0  ;  when  the  truth  of  the  theorem  is 
manifest, 

Ex.  9.  Find  the  equation  of  the  conic  touching  five  lines,  viz.  a,  ft,  y,  Aa  +  Bft  +  Cy, 
A'a  +  B'ft  +  Cy. 

Am.  (/a)*  +  (mftfi  +  (ny)*,  where  I,  m,  n  are  determined  by  the  conditions 

I      m      n  _          I      m       n_/» 

A+B+C=    '    A'  +  Bi+G'~{ 

Ex.  10.  Find  the  equation  of  the  conic  touching  the  five  lines,  o,  ft,  y,  a  +  ft  4-  y 
2a  +  ft-y. 

We  have  /  +  m  +  n  =  0,  tf  +  m  —  n  =  0  :  hence  the  required  equation  is 

2  (-«)*  +  (3/3)*  +  (y)*  =  0. 

Ex.  11.  Find  the  equation  of  the  conic  touching  a,  ft,  y,  at  their  middle  points. 

Ans.  (a  a)*  +  (fy3)*  +  (cy)4  =  0. 

Ex.  12.  Find  the  condition  that  (/a)*  +  (ro/3)*  +  (nyfi  =  0  should  represent  a  para- 
bola. 

Ans.  The  curve  touches  the  line  at  infinity  when  -  +  -r  +  -  =  0. a     o      c 

Ex.  13.  To  find  the  locus  of  the  focus  of  a  parabola  touching  a,  ft,  y. 

Generally,  if  the  coordinates  of  one  focus  of  a  conic  inscribed  in  the  triangle  a/3y 

be  a'/3'y',  the  lines  joining  it  to  the  vertices  of  the  triangle  will  be 

and  since  the  lines  to  the  other  focus  make  equal  angles  with  the  sides  of  the  triangle 
(Art.  189),  these  lines  will  be  (Art.  55) 

a' a  =  ft' ft,   Pft  =  y'7,    y'y  =  a'a; 

and  the  coordinates  of  the  other  focus  may  be  taken  — , ,  3 ,  -> . 

Hence,  if  we  are  given  the  equation  of  any  locus  described  by  one  focus,  we  can 
at  once  write  down  the  equation  of  the  locus  described  by  the  other;  and  if  the 

second  focus  be  at  infinity,  that  is,  if  o"  sin  4  +  ft"  sin  B  +  y"  sin  C  =  0,  the  first 
sin  A      sin  B     pin  C 

must  lie  on  the  circle  —7-  +     &    +  — —  =  0.     The  coordinates  of  the  focus  of «  P  7 

a  parabola  at  infinity  are  ̂ nfl»    •  20 »    in2£'  8*nce  (remem^)erin&  ̂ e  relation  in 

Ex.  12)  these  values  satisfy  both  the  equations, 

a  sin  A  +  ft  siu  J3  +  y  sin  C  =  0,  J/a  +  Jm/3  +  >y  =  0. 
3in24    sin2J5 

The  coordinates,  then,  of  the  finite  focus  are  — j— ,  •   
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Ex.  14.   To  find  the  equation  of  the  directrix  of  this  parabola. 

Forming,  by  Art.  291,  the  equation  of  the  polar  of  the  point  whose  coordinates 
have  just  been  given,  we  find 

la  (sin2.B  -f  sm2C-  sin*  A)  +  wt/3  (sin2 C  +  sinM  —  sin2!?)  +  ny  (sirPA  +  sin-B  -  sin2  C)  =0, 

or  la  sin  B  sin  C  cos  A  +  m(3  sin  C  sin  A  cos  B  +  ny  sin  A  sin  B  cos  C  =  0. 

Substituting  for  n  from  Ex.  1 2,  the  equation  becomes 

/  sin  B  sin  C  (a  cos  A  -  y  cos  G)  +  m  sin  C  sin  A  (fi  cos  B  —  y  cos  C)  =  0 ; 

hence  the  directrix  always  passes  through  the  intersection  of  the  perpendiculars  of 
the  triangle  (see  Ex.  3,  Art.  54). 

Ex.  15.  Given  four  tangents  to  a  conic  find  the  locus  of  the  foci.  Let  the  four 

tangents  be  a,  fl,  y,  d ;  then,  since  any  line  can  be  expressed  in  terms  of  three  others, 
these  must  be  connected  by  an  identical  relation  aa  +  bj3  +  cy  +  dS  =  0.  This  relation 

must  be  satisfied,  not  only  by  the  coordinates  of  one  focus  a'/3'y'<5',  but  also  by  those 

of  the  other  -^ ,  ̂ ,  — ,  ̂ .    The  locus  is  therefore  the  curve  of  the  third  degree. 

a      b       c      d     n 
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CHAPTER    XV. 

THE  PRINCIPLE  OF  DUALITY;  AND  THE  METHOD  OF 
RECIPROCAL  POLARS. 

298.  THE  methods  of  abridged  notation,  explained  in  the 

last  chapter,  apply  equally  to  tangential  equations.  Thug,  if 

the  constants  X,  /u,,  v  in  the  equation  of  a  line  be  connected  by 
the  relation 

(a\  +  bp  +  cv)  (o'X+JV*  -f  <fv)  =  (a"\+b"p+<f'v)  (a'"X-f  &">+c"Vj, 
the  line  (Art.  285)  touches  a  conic.  Now  it  is  evident  that  one 

line  which  satisfies  the  given  relation  is  that  whose  X,  /*,  v  are 
determined  by  the  equations 

aX  +  bfM  +  cv  =  0,  a"X  +  &"/*  +  c"v  =  0. 
That  is  to  say,  the  line  joining  the  points  which  these  last 

equations  represent  (Art.  70),  touches  the  conic  in  question. 

If  then  a,  £,  7,  B  represent  equations  of  points,  (that  is  to 

say,  functions  of  the  first  degree  in  X,  /*,  v)  ay  —  kjSS  is 
the  tangential  equation  of  a  conic  touched  by  the  four  lines 

a/3,  $7,  78,  8a.  More  generally,  if  S  and  S'  in  tangential  co- 
ordinates represent  any  two  curves,  S-  k&  represents  a  curve 

touched  by  every  tangent  common  to  S  and  &.  For,  whatever 

values  of  X,  /u-,  v  make  both  $=0  and  £"  =  0,  must  also  make 

S—  £/S"  =  0.  Thus,  then,  if  8  represent  a  conic,  S-ka.j3  re- 
presents a  conic  having  common  with  S  the  pairs  of  tangents 

drawn  from  the  points  a,  /3.  Again,  the  equation  ay  =  k&* 
represents  a  conic  such  that  the  two  tangents  which  can  be 

drawn  from  the  point  a  coincide  with  the  line  a/3;  and  those 
which  can  be  drawn  from  7  coincide  with  the  line  7/3.  The 

points  a,  7  are  therefore  on  this  conic,  and  ft  is  the  pole  of  the 

line  joining  them.  In  like  manner,  S—a?  represents  a  conic 
having  double  contact  with  $,  and  the  tangents  at  the  points 

of  contact  meet  in  a ;  or,  in  other  words,  a  is  the  pole  of  the 
chord  of  contact. 

So  again,  the  equation  ay  —  tffi*  may  be  treated  in  the  same 
manner  as  at  Art.  270,  and  any  point  on  the  curve  may  be 
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represented  by  /^a  +  2pkft  +  7,  while  the  tangent  at  that  point 

joins  the  points  /4a  +  &/3,  yu^/34  7.* 
Ex.  1.  To  find  the  locus  of  the  centre  of  conies  touching  four  given  lines.  Let 

2  =  0,  £'  =  0  be  the  tangential  equations  of  any  two  conies  touching  the  four  lines 

then,  by  Art.  298,  the  tangential  equation  of  any  other  is  Z  +  kZ,'  =  0.  And  (see 
C*  J_  IfC1*       7T  -(-  TfTi* 

Art.  151)  the  coordinates  of  the  centre  are  'fTT'^Q't  Q  ,  ̂   >  tne  f°rm  °f  which 
shows  (Art.  7)  that  the  centre  of  the  variable  conic  is  on  the  line  joining  the  centres 

C*      W     C1*      Vr 

of  the  two  assumed  conies,  whose  coordinates  are  ̂  ,  -^ ;  ̂  ,  ̂   ;  and  that  it  divides 

the  distance  between  them  in  the  ratio  C  :  kC', 

Ex.  2.  To  find  the  locus  of  the  foci  of  conies  touching  four  given  lines.     We  have 

only  in  the  equations  (Ex.  Art.  258a)  which  determine  the  foci  to  substitute  A  +  kA' 
for  A,  &c.,  and  then  eliminate  k  between  them,  when  we  get  the  result  in  the  form 

{C  (x*  -  y2)  +  2Fy  -2Gx  +  A-B}  {C'xy  -  F'x  -  G'y  +  H'} 
=  {C  (x*  -  y2)  +  2fy  -  2G'x  +  A' -  JB1}  {Cxy  -Fx-Gy  +  H}. 

This  represents  a  curve  of  the  third  degree  (see  Ex.  15,  p.  275),  the  terms  of  higher 

order  mutually  destroying.  If,  however,  2  and  S'  be  parabolas,  S  4-  kZ,'  denotes 
a  system  of  parabolas  having  three  tangents  common.  We  have  then  C  and  C'  both 
=  0,  and  the  locus  of  foci  reduces  to  a  circle.  Again,  if  the  conies  be  concentric, 

taking  the  centre  as  origin,  we  have  F,  F',  G,  G'  all  =  0.  In  this  case  2  +  &£'  re- 
presents a  system  of  conies  touching  the  four  sides  of  a  parallelogram  and  the  locus 

of  foci  is  an  equilateral  hyperbola.f 

Ex.  3.  The  director  circles  of  conies  touching  four  fixed  lines  have  a  common 

radical  axis.  This  is  apparent  from  what  was  proved,  p.  270,  that  the  equation  of 
the  director  circle  is  a  linear  function  of  the  coefficients  A,  B,  &c.,  and  that  therefore 

when  we  substitute  A  +  kA'  for  A,  ifec.  it  will  be  of  the  form  S  +  kS'  =  0.  This 
theorem  includes  as  a  particular  case,  "  The  circles  having  for  diameters  the  three 

diagonals  of  a  complete  quadrilateral  have  a  common  radical  axis." 

299.  Thus  we  see  (as  in  Art.  70)  that  each  of  the  equations 

used  in  the  last  chapter  is  capable  of  a  double  interpretation, 

according  as  it  is  considered  as  an  equation  in  trilinear  or  in 

tangential  coordinates.  And  the  equations  used  in  the  last 

chapter,  to  establish  any  theorem,  will,  if  interpreted  as  equations 

*  In  other  words,  if  in  any  system  x'y'xf,  x"y"z",  be  the  coordinates  of  any  two 
points  on  a  conic,  and  x'"y'"z"'  those  of  the  pole  of  the  line  joining  them,  the  co- 

ordinates of  any  point  on  the  curve  may  be  written 

li." x'  +  2plkx"'  +  x",  fjfy'  +  Zfiky"'  +  y",  n*af  +  2fikzm  +  z", 
while  the  tangent  at  that  point  divides  the  two  fixed  tangents  in  the  ratios  ft  :  k, 

jik  :  1.  When  k  =  1,  the  curve  is  a  parabola.  Want  of  space  prevents  us  from  giving 
illustrations  of  the  great  use  of  this  principle  in  solving  examples.  The  reader  may 

try  the  question  :— To  find  the  locus  of  the  point  where  a  tangent  meeting  two  fixed 
tangents  is  cut  in  a  given  ratio. 

t  It  is  proved  in  like  manner  that  the  locus  of  foci  of  conies  passing  through  four 
fixed  points,  which  is  in  general  of  the  sixth  degree,  reduce*  to  the  fourth  when  the 

poiats  form  a  parallelogram. 
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in  tangential  coordinates,  yield  another  theorem,  the  reciprocal 
of  the  former.  Thus  (Art.  266)  we  proved  that  if  three  conies 

($,  S+  LM,  S+LN)  have  two  points  (S,  L)  common  to  all, 

the  chords  in  each  case  joining  the  remaining  common  points 

(M,  Nj  M—N],  will  meet  in  a  point.  Consider  these  as 
tangential  equations,  and  the  pair  of  tangents  drawn  from  L 

is  common  to  the  three  conies,  while  M,  N,  M—  N  denote  in 
each  case  the  point  of  intersection  of  the  other  two  common 

tangents.  We  thus  get  the  theorem,  "  If  three  conies  have  two 
tangents  common  to  all,  the  intersections  in  each  case  of  the 

remaining  pair  of  common  tangents,  lie  in  a  right  line."  Every 
theorem  of  position  (that  is  to  say,  one  not  involving  the  magni- 

tudes of  lines  or  angles)  is  thus  twofold.  From  each  theorem 

another  can  be  derived  by  suitably  interchanging  the  words 

"  point "  and  "  line  " ;  and  the  same  equations  differently  inter- 
preted will  establish  either  theorem.  We  shall  in  this  chapter 

give  an  account  of  the  geometrical  method  by  which  the  attention 

of  mathematicians  was  first  called  to  this  "  principle  of  duality."* 

300.  Being  given  a  fixed  conic  section  ( U)  and  any  curve 

(8),  we  can  generate  another  curve  (s)  as  follows:  draw  any 
tangent  to  S,  and  take  its  pole  with  regard  to  Z7;  the  locus  of 

this  pole  will  be  a  curve  s,  which  is  called  the  polar  curve  of  S 

with  regard  to  U.  The  conic  £/,  with  regard  to  which  the  pole 
is  taken,  is  called  the  auxiliary  conic. 

We  have  already  met  with  a  particular  example  of  polar 

curves  (Ex.  12,  Art.  225),  where  we  proved  that  the  polar  curve 
of  one  conic  section  with  regard  to  another  is  always  a  curve  of 

the  second  degree. 

We  shall  for  brevity  say  that  a  point  corresponds  to  a  line 

when  we  mean  that  the  point  is  the  pole  of  that  line  with  regard 

to  U.  Thus,  since  it  appears  from  our  definition  that  every  point 

of  s  is  the  pole  with  regard  to  17  of  some  tangent  to  £,  we  shall 

*  The  method  of  reciprocal  polars  was  introduced  by  M.  Poncelet,  whose  account 

of  it  will  be  found  in  Crelle's  Journal,  vol.  iv.  M.  Plucker,  in  his  "System  der 

Analytischen  Geometric,"  1835,  presented  the  principle  of  duality  in  the  purely  ana- 
lytical point  of  view,  from  which  the  subject  is  treated  at  the  beginning  of  this 

chapter.  But  it  was  Mbbius  who,  in  his  "  Baryeentrische  Calcul,"  1827,  had  made 
the  important  step  of  introducing  a  system  of  coordinates  in  which  the  position  of 

a  right  line  was  indicated  by  coordinates  and  that  of  a  point  by  an  equation. 
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briefly  express  this  relation  by  saying  that  every  point  of  s  cor- 
responds to  some  tangent  of  S. 

301.  The  point  of  intersection  of  two  tangents  to  S  will  corre- 

spond to  the  line  joining  the  corresponding  points  of  s. 

This  follows  from  the  property  of  the  conic  £7,  that  the  point 

of  intersection  of  any  two  lines  is  the  pole  of  the  line  joining 
the  poles  of  these  two  lines  (Art.  146). 

Let  us  suppose  that  in  this  theorem  the  two  tangents  to  S 

are  indefinitely  near,  then  the  two  corresponding  points  of  s  will 

also  be  indefinitely  near,  and  the  line  joining  them  will  be  a 

tangent  to  s;  and  since  any  tangent  to  S  intersects  the  con- 

secutive tangent  at  its  point  of  contact,  the  last  theorem  be- 

comes for  this  case :  If  any  tangent  to  S  correspond  to  a  point 

on  s,  the  point  of  contact  of  that  tangent  to  S  will  correspond  to 
the  tangent  through  the  point  on  s. 

Hence  we  see  that  the  relation  between  the  curves  is  reci- 

procal^ that  is  to  say,  that  the  curve  8  might  be  generated  from 

s  in  precisely  the  same  manner  that  s  was  generated  from  S. 

Hence  the  name  "reciprocal  polars." 

302.  We  are  now  able,  being  given  any  theorem  of  position 
concerning  any  curve  $,  to  deduce  another  concerning  the  curve  s. 

Thus,  for  example,  if  we  know  that  a  number  of  points  con- 
nected with  the  figure  S  lie  on  one  right  line,  we  learn  that  the 

corresponding  lines  connected  with  the  figure  s  meet  in  a  point 

(Art.   146),  and  vice  versa ;  if  a  number  of  points  connected 

with  the  figure  S  lie  on  a  conic  section,  the  corresponding  lines 

connected  with  s  will  touch  the  polar  of  that  conic  with  regard 

to  £7;  or,  in  general,  if  the  locus  of  any  point  connected  with  S 

be  any  curve  $',  the  envelope  of  the  corresponding  line  connected 

with  s  is  «',  the  reciprocal  polar  of  S'. 

303.  The  degree  of  the  polar  reciprocal  of  any  curve  is  equal 

to  the  class  of  the  curve  (see  note,  Art.  145),  that  is,  to  the  number 
of  tangents  which  can  be  drawn  from  any  point  to  that  curve. 

For  the  degree  of  s  is  the  same  as  the  number  of  points  in 

which  any  line  cuts  s ;  and  to  a  number  of  points  on  s,  lying  on 

a  right  line,  correspond  the  same  number  of  tangents  to  S  passing 

through  the  point  corresponding  to  that  line.  Thus,  if  8  be  a 
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conic  section,  two,  and  only  two,  tangents,  real  or  imaginary, 
can  be  drawn  to  it  from  any  point  (Art.  145);  therefore,  any 

line  meets  s  in  two,  and  only  two  points,  real  or  imaginary ;  we 

may  thus  infer,  independently  of  Ex.  12,  Art.  225,  that  the  reci- 
procal of  any  conic  section  is  a  curve  of  the  second  degree. 

304.  We  shall  exemplify,  in  the  case  where  S  and  s  are  conic 

sections,  the  mode  of  obtaining  one  theorem  from  another  by 

this  method.  We  know  (Art.  267)  that  "if  a  hexagon  be  in- 
scribed in  $,  whose  sides  are  A,  B,  (7,  D,  E,  F,  then  the  points 

ot  intersection,  AD,  BE,  OF,  are  in  one  right  line"  Hence  we 
infer,  that  "  if  a  hexagon  be  ctrcimscribed  about  s,  whose  vertices 

are  a,  5,  c,  d,  e,f,  then  the  lines,  ad,  be,  cf,  will  meet  in  a  point11 
(Art.  265).  Thus  we  see  that  Pascal's  theorem  and  Brianchon's 
are  reciprocal  to  each  other,  and  it  was  thus,  in  fact,  that  the 
latter  was  first  obtained. 

In  order  to  give  the  student  an  opportunity  of  rendering  him- 
self expert  in  the  application  of  this  method,  we  shall  write  in 

parallel  columns  some  theorems,  together  with  their  reciprocals. 

The  beginner  ought  carefully  to  examine  the  force  of  the  argu- 
ment by  which  the  one  is  inferred  from  the  other,  and  he  ought 

to  attempt  to  form  for  himself  the  reciprocal  of  each  theorem 

before  looking  at  the  reciprocal  we  have  given.  He  will  soon 

find  that  the  operation  of  forming  the  reciprocal  theorem  will 

reduce  itself  to  a  mere  mechanical  process  of  interchanging  the 

words  "  point "  and  "  line,"  "  inscribed  "  and  "  circumscribed," 
"  locus  "  and  "  envelope,"  &c. 

If  two  vertices  of  a  triangle  move         If  two  sides  of  a  triangle  pass  through 
along  fixed   right  lines,  while  the  sides    fixed  points,  while  the  vertices  move  on 
pass  each  through  a  fixed  point,  the  locus    fixed  right  lines,  the  envelope  of  the  third 
of  the  third  vertex  is  a  conic  section,    side  is  a  conic  section. 

(Art.  269). 
If,  however,  the  points  through  which  If  the  lines  on  which  the  vertices  move 

the  sides  pass  lie  in  one  right  line,  the  meet  in  a  point,  the  third  side  will  pass 
locus  will  be  a  right  line.  (Ex.  2.  p.  41).  through  a  fixed  point. 

In  what  other  case  will  the  locus  be  In  what  other  case  will  the  third  side 

a  right  line?  (Ex.  3,  p.  42).  pass  through  a  fixed  point?  (p.  49). 

If  two  conies  touch,  their  reciprocals  will  also  touch ;  for  the 

first  pair  have  a  point  common,  and  also  the  tangent  at  that  point 
common,  therefore  the  second  pair  will  have  a  tangent  common 

and  its  point  of  contact  also  common.  So  likewise  if  two  conies 

have  double  contact  their  reciprocals  will  have  double  contact. 
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If  a  triangle  be  circumscribed  to  a  If  a  triangle  be   inscribed  in  a  conic 
conic  section,  two  of  whose  vertices  move  section,  two  of  whose  sides  pass  through 
on  fixed  lines,  the  locus  of  the  third  ver-  fixed  points,  the  envelope  of  the  third  side 
tex  is  a  conic  section,  having  double  con-  is  a  conic  section,  having  double  contact 
tact  with  the  given  one.    (Ex.  2,  p.  250).  with  the  given  one.    (Ex.  3,  p.  250). 

305.  We  proved  (Art.  301,  see  figure,  p.  282)  if  to  two  points 

P,  P',  on  £,  correspond  the  tangents  pt,  pt',  on  s,  that  the  tan- 
gents at  P  and  P'  will  correspond  to  the  points  of  contact  p,  p', and  therefore  Q,  the  intersection  of  these  tangents,  will  corre- 

spond  to    the   chord    of  contact  pp.     Hence  we  learn  that  to 

any  point  Q,  and  its  polar  PP',  with  respect  to  S,  correspond  a 
line  pp'  and  its  pole  q  with  respect  to  s. 

Given  two  points  on  a  conic,  and  two  Given  two  tangents  and  two  points 
of  its  tangents,  the  line  joining  the  points  on  a  conic,  the  point  of  intersection  of  the 

of  contact  of  those  tan  gents  passes  through  tangents  at  those  points  will  move  along 
one  or  other  of  two  fixed  points.    (Ex.,  one  or  other  of  two  fixed  right  lines. 
Art.  '286,  p.  262). 

Given  four  points  on  a  conic,  the  polar  Given  four  tangents  to   a  conic,  the 
of  a  fixed  point  passes   through  a  fixed  locus  of  the  pole  of  a  fixed  right  line  is 
point.    (Ex.  2,  p.  153).  a  right  line.     (Ex.  2,  p.  254). 

Given  four  points  on  a  conic,  the  locus  Given  four  tangents  to  a  conic,  the 
of  the  pole  of  a  fixed  right  line  is  a  conic  envelope  of  the  polar  of  a  fixed  point  is 
section.    (Ex.  1,  p.  254).  a  conic  section. 

The  lines  joining  the  vertices  of  a  tri-  The  points  of  intersection  of  each  side 
angle  to  the  opposite  vertices  of  its  polar  of  any  triangle,  with  the  opposite  side  of 
triangle  with  regard  to  a  conic  meet  in  the  polar  triangle,  lie  in  one  right  line. 
a  point.    (Art.  99). 

Inscribe  in  a  conic  a  triangle  whose  Circumscribe  about  a  conic  a  triangle 
sides  pass   through  three  given  points,  whose  vertices  rest  on  three  given  lines. 
(Ex.  7,  Art.  297,  p.  273). 

306.  Given  two  conies,  8  and  £",  and  their  two  reciprocals, 
s  and  / ;  to  the  four  points  A,  B,  (7,  D  common  to  S  and  & 

correspond  the  four  tangents  a,  &,  c,  d  common  to  s  and  /,  and 

to  the  six  chords  of  intersection  of  S  and  5",  AB,  CD ;  A  (7,  BD  • 
AD,  BG  correspond  the  six  intersections  of  common  tangents 

to  s  and  s' ;  a&,  cd ;  ac,  bd ;  ad,  be.* 
If  three  conies  have  two  common  tan-  If  three  conies  have  two  points  corn- 

gents,  or  if  they  have  each  double  contact  mon,  or  if  they  have  each  double  contact 

with  a  fourth,  their  six  chords  of  inter-  with  a  fourth,  the  six  points  of  inter- 
section will  pass  three  by  three  through  section  of  common  tangents  lie  three  by 

the  same  points.  (Art.  264).  three  on  the  same  right  lines. 
Or,  in  other  words,  three  conies,  having  Or  three  conies,  having  each  double 

each  double  contact  with  a  fourth,  may  be  contact  with  a  fourth,  may  be  considered 

*  A  system  of  four  points  connected  by  six  lines  is  accurately  called  a  quadrangle, 
as  a  system  of  four  lines  intersecting  in  six  points  is  called  a  quadrilateral. 

00. 
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considered  as  having  four  radical  centres. 

If  through  the  point  of  contact  of  two 
conies  which  touch,  any  chord  be  drawn, 

tangents  at  its  extremities  will  meet  on 
the  common  chord  of  the  two  conies. 

If  through  an  intersection  of  common 
tangents  of  two  conies  any  two  chords  be 
drawn,  lines  joining  their  extremities  will 
intersect  on  one  or  other  of  the  common 

chords  of  the  two  conies.  (Ex.  1,  p.  250). 

If  A  and  B  be  two  conies  having  each 

double  contact  with  S,  the  chords  of  con- 
tact of  A  and  B  with  8,  and  their  chords 

of  intersection  with  each  other,  meet  in 
a  point,  and  form  a  harmonic  pencil. 
(Art.  263). 

If  A,  B,  C  be  three  conies,  having 
each  double  contact  with  S,  and  if  A  and 

B  both  touch  C1,  the  tangents  at  the  points 
of  contact  will  intersect  on  a  common 
chord  of  A  and  B. 

as  having  four  axes  of  similitude.  (See 

Art.  1 17,  of  which  this  theorem  is  an  ex- 
tension). 

If  from  any  point  on  the  tangent  at 
the  point  of  contact  of  two  conies  which 
touch,  a  tangent  be  drawn  to  each,  the 

line  joining  their  points  of  contact  will 
pass  through  the  intersection  of  common 
tangents  to  the  conies. 

If  on  a  common  chord  of  two  conies, 

any  two  points  be  taken,  and  from  these 

tangents  be  drawn  to  the  conies,  the  dia- 
gonals of  the  quadrilateral  so  formed  will 

pass  through  one  or  other  of  the  intersec- 
tions of  common  tangents  to  the  conies. 

If  A  and  B  be  two  conies  having  each 

double  contact  with  S,  the  intersections 
of  the  tangents  at  their  points  of  contact 
with  S,  and  the  intersections  of  tangents 
common  to  A  and  B,  lie  in  one  right  line, 
which  they  divide  harmonically. 

If  A,  B,  C  be  three  conies,  having 
each  double  contact  with  S,  and  if  A  and 

B  both  touch  C",  the  line  joining  the  points 
of  contact  will  pass  through  an  intersec- 

tion of  common  tangents  of  A  and  B. 

307.  We  have  hitherto  supposed  the  auxiliary  conic  £7  to  be 

any  conic  whatever.  It  is  most  common,  however,  to  suppose 

this  conic  a  circle ;  and  hereafter,  when  we  speak  of  polar  curves, 

we  intend  the  reader  to  understand  polars  with  regard  to  a  circle, 

unless  we  expressly  state  otherwise. 
We  know  (Art.  88)  that  the  polar  of  any  point  with  regard 

to  a  circle  is  perpendicular  to  the  line  joining  this  point  to  the 

centre,  and  that  the  distances  of  the  point  and  its  polar  are,  when 

multiplied  together,  equal  to  the  square  of  the  radius ;  hence  the 

relation  between  polar  curves  with  regard  to  a  circle  is  often 

stated  as  follows:  Being  given      - 

any  point  0,  if  from  it  we  let  fall 

a  perpendicular  OT  on  any  tan- 
gent to  a  curve  $,  and  produce 

it  until  the  rectangle  OT.Op  is 

equal  to  a  constant  K\  then  the 

locus  of  the  point  p  is  a  curve  s, 

which  is  called  the  polar  recipro- 
ntl  of  S.  For  this  is  evidently 
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equivalent  to  saying  that  p  is  the  pole  of  Prl\  with  regard  to 
a  circle  whose  centre  is  0  and  radius  k.  We  see,  therefore 

(Art.  301),  that  the  tangent  pt  will  correspond  to  the  point  of 

contact  P,  that  is  to  say,  that  OP  will  be  perpendicular  to  pi, 
and  that  OP.Ot  =  tf. 

It  is  easy  to  show  that  a  change  in  the  magnitude  of  k  will 

affect  only  the  size  and  not  the  shape  of  s,  which  is  all  that  in 

most  cases  concerns  us.  In  this  manner  of  considering  polars, 

all  mention  of  the  circle  may  be  suppressed,  and  s  may  be  called 

the  reciprocal  of  S  with  regard  to  the  point  0.  We  shall  call 

this  point  the  origin. 

The  advantage  of  using  the  circle  for  our  auxiliary  conic 

chiefly  arises  from  the  two  following  theorems,  which  are  at  once 

deduced  from  what  has  been  said,  and  which  enable  us  to  trans- 

form, by  this  method,  not  only  theorems  of  position,  but  also 
theorems  involving  the  magnitude  of  lines  and  angles : 

The  distance  of  any  point  P  from  the  origin  is  the  reciprocal  of 

the  distance  from  the  origin  of  the  corresponding  line  pt. 

The  angle  TQT  between  any  two  lines  TQ,  TQ,  is  equal  to 

the  angle  p  Op'  subtended  at  the  origin  by  the  corresponding  points 

p,p' ;  for  Op  is  perpendicular  to  TQ,  and  Op'  to  T'Q. 
We  shall  give  some  examples  of  the  application  of  these 

principles  when  we  have  first  investigated  the  following 

problem : 

308.  To  find  the  polar  reciprocal  of  one  circle  with  regard  to 

another.  That  is  to  say,  to  find  the  locus  of  the  pole  p  with  re- 
gard to  the  circle  (0)  of  any  tangent  PTto  the  circle  (0).  Let 

JfJV  be  the  polar  of  the  point  G 

with  regard  to  0,  then  having 

the  points  C,  p,  and  their  polars 

MN,  PT,  we  have,  by  Art.  101, 
00      Op  , 

the  ratio  -^  =  — £  but  the  first 

GP  * 
ratio  is  constant,  since  both  OG 

and  GP  are  constant ;  hence  the 

distance  of  p  from  0  is  to  its  distance  from  MN  in  the  constant 
ratio  OG:  GP]  its  locus  is  therefore  a  conic,  of  which  0  is  a  focus, 

MN  the  corresponding  directrix,  and  whose  eccentricity  is  OG 
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divided  by  CP.     Hence  the  eccentricity  is  greater,  less  than,  or 

=  1,  according  as  0  is  without,  within,  or  on  the  circle  C. 
Hence  the  polar  reciprocal  of  a  circle  is  a  conic  section,  of 

which  the  origin  is  the  focus,  the  line  corresponding  to  the  centre 
is  the  directrix,  and  which  is  an  ellipse,  hyperbola,  or  parabola, 
according  as  the  origin  is  within,  without,  or  on  the  circle. 

309.  We  shall  now  deduce  some  properties  concerning  angles, 
by  the  help  of  the  last  theorem  given  in  Art.  307. 

Any  two  tangents  to  a  circle  make  The  line  drawn  from  the  focus  to  the 

equal  angles  with  their  chord  of  contact.  intersection  of  two  tangents  bisects  the 
angle  subtended  at  the  focus  by  their 
chord  of  contact.    (Art.  191). 

For  the  angle  between  one  tangent  PQ  (see  fig.,  p.  282)  and 

the  chord  of  contact  PPf  is  equal  to  the  angle  subtended  at  the 
focus  by  the  corresponding  points  p,  q-,  and  similarly,  the  angle 

QPfP  is  equal  to  the  angle  subtended  by  p',  q  •  therefore,  since 
QPP'=QP'P,pOq=p'Oq. 

Any  tangent  to  a  circle  is  perpen-  Any  point  on  a  conic,  and  the  point 
dicular  to  the  line  joining  its  point  of  where  its  tangent  meets  the  directrix, 
contact  to  the  centre.  subtend  a  right  angle  at  the  focus. 

This  follows  as  before,  recollecting  that  the  directrix  of  the 
conic  answers  to  the  centre  of  the  circle. 

Any  line  is  perpendicular  to  the  line  Any  point  and  the  intersection  of  its 
joining  its  pole  to  the  centre  of  the  circle,  polar  with  the  directrix  subtend  a  right 

angle  at  the  focus. 

The  line  joining  any  point  to  the  If  the  point  where  any  line  meets  the 

centre  of  a  circle  makes  equal  angles  with  directrix  be  joined  to  the  focus,  the  join- 
the  tangents  through  that  point.  ing  line  will  bisect  the  angle  between  the 

focal  radii  to  the  points  where  the  given 
line  meets  the  curve. 

The  locus  of  the  intersection  of  tan-  The  envelope  of  a  chord  of  a  conic, 
gents  to  a  circle,  which  cut  at  a  given  which  subtends  a  given  angle  at  the  focus, 
angle,  is  a  concentric  circle.  is  a  conic  having  the  same  focus  and  the 

same  directrix. 

The  envelope  of  the  chord  of  contact  The  locus  of  the  intersection  of  tan- 
of  tangents  which  cue  at  a  given  angle  gents,  whose  chord  subtends  a  given  angle 
is  a  concentric  circle.  at  the  focus,  is  a  conic  having  the  same 

focus  and  directrix. 

If  from  a  fixed  point  tangents  be  If  a  fixed  line  intersect  a  series  of 
drawn  to  a  series  of  concentric  circles,  conies  having  the  same  focus  and  same 
the  locus  of  the  points  of  contact  will  be  directrix,  the  envelope  of  the  tangents  to 
a  circle  passing  through  the  fixed  point,  the  conies,  at  the  points  where  this  line 
and  through  the  common  centre.  meets  them,  will  be  a  conic  having  the 

same  focus,  and  touching  both  the  fixed 
line  and  the  common  directrix. 
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In  the  latter  theorem,  if  the  fixed  line  be  at  infinity,  we  find 
the  envelope  of  the  asymptotes  of  a  series  of  hyperbolas,  having 
the  same  focus  and  same  directrix,  to  be  a  parabola  having  the 
same  focus  and  touching  the  common  directrix. 

If  two  chords  at  right  angles  to  each          The  locus  of  the  intersection   of  tan- 

other  be  drawn  through  any  point  on  a  gents  to  a  parabola  which  cut  at  right 
circle,  the  line  joining  their   extremities  angles  is  the  directrix, 
passes  through  the  centre. 

We  say  a  parabola,  for,  the  point  through  which  the  chords 

of  the  circle  are  drawn  being  taken  for  origin,  the  polar  of  the 
circle  is  a  parabola  (Art.  308). 

The  envelope  of  a  chord  of  a  circle  The  locus  of  the  intersection  of  tan- 

which  subtends  a  given  angle  at  a  given  gents  to  a  parabola,  which  cut  at  a  given 
point  on  the  curve  is  a  concentric  circle.  angle,  is  a  conic  having  the  same  focus 

and  the  same  directrix. 

Given  base  and  vertical  angle  of  a  Given  in  position  two  sides  of  a  tri- 
triangle,  the  locus  of  vertex  is  a  circle  angle,  and  the  angle  subtended  by  the 
passing  through  the  extremities  of  the  base  at  a  given  point,  the  envelope  of  the 

base.  base  is  a  coniCj  of  which  that  point  is  a 
focus,  and  to  which  the  two  given  sides 
will  be  tangents. 

The  locus  of  the  intersection  of  tan-  The  envelope  of  any  chord  of  a  conic 
gents  to  an  ellipse  or  hyperbola  which  which  subtends  a  right  angle  at  any  fixed 
cut  at  right  angles  is  a  circle.  point  is  a  conic,  of  which  that  point  is 

a  focus. 

"  If  from  any  point  on  the  circumference  of  a  circle  perpen- 
diculars be  let  fall  on  the  sides  of  any  inscribed  triangle,  their 

three  feet  will  lie  in  one  right  line  "  (Art.  125). 
If  we  take  the  fixed  point  for  origin,  to  the  triangle  inscribed 

in  a  circle  will  correspond  a  triangle  circumscribed  about  a  para- 

bola ;  again,  to  the  foot  of  the  perpendicular  on  any  line  corre- 
sponds a  line  through  the  corresponding  point  perpendicular  to 

the  radius  vector  from  the  origin.  Hence,  "  If  we  join  the  focus 
to  each  vertex  of  a  triangle  circumscribed  about  a  parabola,  and 

erect  perpendiculars  at  the  vertices  to  the  joining  lines,  those 

perpendiculars  will  pass  through  the  same  point."  If,  therefore, 
a  circle  be  described,  having  for  diameter  the  radius  vector  from 

the  focus  to  this  point,  it  will  pass  through  the  vertices  of  the 

circumscribed  triangle.  Hence,  Given  three  tangents  to  a  para- 
bola, the  locus  of  the  focus  is  the  circumscribing  circle  (p.  207). 

The  locus  of  the  foot  of  the  perpen-  If  from  any  point  a  radius  vector  be 

dicular  (or  of  a  line  making  a  constant  drawn  to  a  circle,  the  envelope  of  a  per- 

angle  with  the  tangent)  from  the  focus  pendicnlar  to  it  at  its  extremity  (or  of  a 
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of  an  ellipse  or  hyperbola  on  the  tangent    line  making  a  constant  angle  with  it)  ia  a 
is  a  circle  conic  having  tlie  fixed  point  for  its  focus. 

310.  Having  sufficiently  exemplified  in  the  last  Article  the 

method  of  transforming  theorems  involving  angles,  we  proceed 
to  show  that  theorems  involving  the  magnitude  of  lines  passing 

through  the  origin  are  easily  transformed  by  the  help  of  the  first 
theorem  in  Art.  307.     For  example,  the  sum  (or,  in  some  cases, 

the  difference,  if  the  origin  be  without  the  circle)  of  the  perpen- 
diculars let  fall  from  the  origin  on  any  pair  of  parallel  tangents 

to  a  circle  is  constant,  and  equal  to  the  diameter  of  the  circle. 

Now,  to  two  parallel  lines  correspond  two  points  on  a  line 

passing  through  the  origin.  Hence,  :c  the  sum  of  the  reciprocals 

of  the  segments  of  any  focal  chord  of  an  ellipse  is  constant." 
We  know  (p.  185)  that  this  sum  is  four  times  the  reciprocal 

of  the  parameter  of  the  ellipse,  and  since  we  learn  from  the 

present  example  that  it  only  depends  on  the  diameter,  and  not 

on  the  position  of  the  reciprocal  circle,  we  infer  that  the  reci- 
procals of  equal  circles,  with  regard  to  any  origin,  have  the  same 

parameter. 

The  rectangle  under  the  segments  of  The  rectangle  under  the  perpendiculars 

any  chord  of  a  circle  through  the  origin  let  fall  from  the  focus  on  two  parallel 
is  constant.  tangents  is  constant. 

Hence,  given  the  tangent  from  the  origin  to  a  circle,  we  are 

given  the  conjugate  axis  of  the  reciprocal  hyperbola. 

Again,  the  theorem  that  the  sum  of  the  focal  distances  ol 

any  point  on  an  ellipse  is  constant  may  be  expressed  thus : 

The  sum  of  the  distances  from  the  The  sum  of  the  reciprocals  of  perpen- 
focus  of  the  points  of  contact  of  parallel  diculars  let  fall  from  any  point  within  a 

tangents  is  constant.  circle  on  two  tangents,  whose  chord  of  con- 
tact passes  through  the  point,  is  constant. 

311.  If  we  are  given  any  homogeneous  equation  connecting 

the  perpendiculars  PA,  PB,  &c.  let  fall  from  a  variable  point  P 

on  fixed  lines,  we  can  transform  it  so  as  to  obtain  a  relation 

connecting  the  perpendiculars  ap,  bp'  &c.,  let  fall  from  the  fixed 
points    a,  b,  &c.,  which  correspond   to  the  fixed  lines,  on  the 

variable  line  which  corresponds  to  P.      For  we  have  only  to 

divide  the  equation  by  a  power  of  OP,  the  distance  of  P  from 

the  origin,  and  then,  by  Art.    101,    substitute    for   each    term 
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W'lh'  F°r  examPle'  if  PAi  PBi  PG>  PD  be  the  Perpen- 

diculars let  fall  from  any  point  of  a  conic  on  the  sides  of  an 

inscribed  quadrilateral,  PA.PG=TcPB.PD  (Art.  259).  Divid- 
ing each  factor  by  OP,  and  substituting,  as  above,  we  have 

^-  .  -¥—  =  k  -JY  .    '...  ;  and  Oa,   Ob,  Oc,  Od  being  constant,  we 

infer  tha.t  if  a  fixed  quadrilateral  be  circumscribed  to  a  conic, 

the  product  of  the  perpendiculars  let  fall  from  two  opposite  vertices 
on  any  variable  tangent  is  in  a  constant  ratio  to  the  product  of  the 

perpendiculars  let  fall  from  the  other  two  vertices. 

The  product  of  the  perpendiculars  from          The  product  of  the  perpendiculars  from 

any  point  of  a  conic  on  two  fixed  tangents  two  fixed  points  of  a  conic  on  any  tan- 
is  in  a  constant  ratio  to  the  square  of  the  gent,  is  in  a  constant  ratio  to  the  square 

perpendicular  on  their  chord  of   contact,  of  the  perpendicular  on  it,  from  the  inter- 
(Art.  259).  section  of  tangents  at  those  points. 

If,  however,  the  origin  be  taken  on  the  chord  of  contact,  the 

reciprocal  theorem  is  "the  intercepts,  made  by  any  variable 

tangent  on  two  parallel  tangents,  have  a  constant  rectangle." 

The  product  of  the  perpendiculars  on  The  square  of  the  radius  vector  from 
any  tangent  of  a  conic  from  two  fixed  a  fixed  point  to  any  point  on  a  conic,  is  in 

points  (the  foci)  is  constant.  a  constant  ratio  to  the  product  of  the  per- 
pendiculars let  fall  from  that  point  of  the 

conic  on  two  fixed  right  lines. 

Generally,  since  every  equation  in  trilinear  coordinates  is 

a  homogeneous  relation  between  the  perpendiculars  from  a  point 

on  three  fixed  lines,  we  can  transform  it  by  the  method  of  this 

article,  so  as  to  obtain  a  relation  connecting  A,,  ̂ ,  v,  the  per- 
pendiculars let  fall  from  three  fixed  points  on  any  tangent  to 

the  reciprocal  curve,  which  may  be  regarded  as  a  kind  of  tan- 

gential equation*  of  that  curve.  Thus  the  general  trilinear 
equation  of  a  conic  becomes,  when  transformed, 

where  p,  p',  p"  are  the  distances  of  the  origin  from  the  vertices 

of  the  new  triangle  of  reference.  Or,  conversely,  if  we  are 

given  any  relation  of  the  second  degree  A\*  +  &c.  =  0,  con- 

*  See  Appendix  on  Tangential  Equations. 
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necting  the  three  perpendiculars  X,  //-,  P,  the  trilinear  equation 

of  the  reciprocal  curve  is 

where  a',  /3',  7'  are  the  trilinear  coordinates  of  the  origin. 
Ex.  1.  Given  the  focus  and  a  triangle  circumscribing  a  conic,  the  perpendiculars 

let  fall  from  its  vertices  on  any  tangent  to  the  conic  are  connected  by  the  relation 

sine  £  +  sin0'  £  -f  sin  6"  ?-  =  0, \  H  v 

where  6,  6',  6"  are  the  angles  the  sides  of  the  triangle  subtend  at  the  focus.  This 
is  obtained  by  forming  the  reciprocal  of  the  trilinear  equation  of  the  circle  circum- 

scribing a  triangle.  If  the  centre  of  the  inscribed  circle  be  taken  as  focus,  we  have 

6  =  90°  +  £A,  p  sin  \A  —  r,  whence  the  tangential  equation,  on  this  system,  of  the 
inscribed  circle  is 

fiv  cot  ±A  +  v\  cot  ±B  +  \fi  cot  i  C  =  0. 

In  the  case  of  any  of  the  exscribed  circles  two  of  the  cotangents  are  replaced  by 
tangents. 

Ex.  2.  Given  the  focus  and  a  triangle  inscribed  in  a  conic,  the  perpendiculars  let 
fall  from  its  vertices  on  any  tangent  are  connected  by  the  relation 

The  tangential  equation  of  the  circumscribing  circle  takes  the  form 

sin  A  J(X)  +  sin  B  JO*)  +  sin  C  4(v)  =  0. 

Ex.  3.  Given  focus  and  three  tangents  the  trilinear  equation  of  the  conic  is 

This  is  obtained  by  reciprocating  the  equation  of  the  circumscribing  circle  last  found. 

Ex.  4.   In  like  manner,  from  Ex.  1,  we  find  that  given  focus  and  three  points  the 
trilinear  equation  is 

tan  }6      +  tan  J6'      +  tan^d"      =  0. 

312.  Very  many  theorems  concerning  magnitude  may  be 

reduced  to  theorems  concerning  lines  cut  harmonically  or  an- 

harmonically,  and  are  transformed  by  the  following  principle: 

To  any  four  points  on  a  right  line  correspond  four  lines  passing 

through  a  point,  and  the  anharmonic  ratio  of  this  pencil  is  the 
same  as  that  of  the  four  points. 

This  is  evident,  since  each  leg  of  the  pencil  drawn  from  the 

origin  to  the  given  points  is  perpendicular  to  one  of  the  corre- 

sponding lines.  We  may  thus  derive  the  anharmonic  properties 
of  conies  in  general  from  those  of  the  circle. 

The  anharmonic  ratio  of  the  pencil  The  anharmonic  ratio  of  the  point  in 
joining  four  points  on  a  conic  to  a  variable  which  four  fixed  tangents  to  a  conic  cut 
fifth  is  constant.  any  fifth  variable  tangent  is  constant. 



THE   METHOD   OP   RECIPROCAL   POLAR8.  289 

The  first  of  these  theorems  is  true  for  the  circle,  since  all  the 
angles  of  the  pencil  are  constant,  therefore  the  second  is  true 

for  all  conies.  The  second  theorem  is  true  for  the  circle,  since 
the  angles  which  the  four  points  subtend  at  the  centre  are 
constant,  therefore  the  first  theorem  is  true  for  all  conies. 

By  observing  the  angles  which  correspond  in  the  reciprocal 

figure  to  the  angles  which  are  constant  in  the  case  of  the  circle, 

the  student  will  perceive  that  the  angles  which  the  four  points 
of  the  variable  tangent  subtend  at  either  focus  are  constant, 
and  that  the  angles  are  constant  which  are  subtended  at  the 

focus  by  the  four  points  in  which  any  inscribed  pencil  meets 
the  directrix. 

313.  The  anharmonic  ratio  of  a  line  is  not  the  only  relation 

concerning  the  magnitude  of  lines  which  can  be  expressed  in 

terms  of  the  angles  subtended  by  the   lines  at  a  fixed   point. 

For,  if  there  be  any  relation  which,  by  substituting  (as  in  Art.  56) 

t          ur       A-D  -       i     A-    -<.   OA.OS.smAOE 
for  each  line  AB  involved  in  it,     ~~fj~P   »  can        re~ 

duced  to  a  relation  between  the  sines  of  angles  subtended  at  a 

given  point  0,  this  relation  will  be  equally  true  for  any  trans- 
versal cutting  the  lines  joining  0  to  the  points  A,  J5,  &c. ;  and 

by  taking  the  given  point  for  origin  a  reciprocal  theorem  can  be 

easily  obtained.  For  example,  the  following  theorem,  due  to 

Carnot,  is  an  immediate  consequence  of  Art.  148 :  "  If  any 
conic  meet  the  side  AB  of  any  triangle  in  the  points  c,  c  ;  BC 

in  a,  a  ;  A  C  in  £,  b' ;  then  the  ratio 

Ac^Ac.Ba.Ba'._Cb.  Cb' _     „ 
'Ab.AV.Bc.Bc'.Ca.Ga'  ~ 

Now,  it  will  be  seen  that  this  ratio  is  such  that  we  may 

substitute  for  each  line  Ac  the  sine  of  the  angle  A  Oc,  which  it 

subtends  at  any  fixed  point ;  and  if  we  take  the  reciprocal  of 

this  theorem,  we  obtain  the  theorem  given  already  Art.  295. 

314.  Having  shown  how  to  form  the  reciprocals  of  particular 

theorems,  we  shall   add  some  general  considerations  respecting 
reciprocal  conies. 

We  proved  (Art.  308)  that  the  reciprocal  of  a  circle  is  an 

ellipse,  hyperbola,  or  r>arabola,  according  as  the  origin  is  within, PP. 
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without,  or  on  the  curve ;  we  shall  now  extend  this  conclusion  to 
all  the  conic  sections.  It  is  evident  that,  the  nearer  any  line  or 

point  is  to  the  origin,  the  farther  the  corresponding  point  or  line 

will  be ;  that  if  any  line  passes  through  the  origin,  the  corre- 

sponding point  must  be  at  an  infinite  distance ;  and  that  the  line 

corresponding  to  the  origin  itself  must  be  altogether  at  an  infinite 
distance.  To  two  tangents,  therefore,  through  the  origin  on  one 

figure,  will  correspond  two  points  at  an  infinite  distance  on  the 

other ;  hence,  if  two  real  tangents  can  be  drawn  from  the  origin, 

the  reciprocal  curve  will  have  two  real  points  at  infinity,  that  is, 

it  will  be  a  hyperbola ;  if  the  tangents  drawn  from  the  origin  be 

imaginary,  the  reciprocal  curve  will  be  an  ellipse ;  if  the  origin 
be  on  the  curve,  the  tangents  from  it  coincide,  therefore  the 

points  at  infinity  on  the  reciprocal  curve  coincide,  that  is,  the 

reciprocal  curve  will  be  a  parabola.  Since  the  line  at  infinity 

corresponds  to  the  origin,  we  see  that,  if  the  origin  be  a  point  on 

one  curve,  the  line  at  infinity  will  be  a  tangent  to  the  reciprocal 

curve ;  and  we  are  again  led  to  the  theorem  (Art.  254)  that 

every  parabola  has  one  tangent  situated  at  an  infinite  distance. 

315.  To  the  points  of  contact  of  two  tangents  through  the 

origin  must  correspond  the  tangents  at  the  two  points  at  infinity 

on  the  reciprocal  curve,  that  is  to  say,  the  asymptotes  of  the 

reciprocal  curve.  The  eccentricity  of  the  reciprocal  hyperbola 

depending  solely  on  the  angle  between  its  asymptotes,  depends 
therefore  on  the  angle  between  the  tangents  drawn  from  the 

origin  to  the  original  curve. 

Again,  the  intersection  of  the  asymptotes  of  the  reciprocal 

curve  (i.e.  its  centre)  corresponds  to  the  chord  of  contact  of 

tangents  from  the  origin  to  the  original  curve.  We  met  with 

a  particular  case  of  this  theorem  when  we  proved  that  to  the 

centre  of  a  circle  corresponds  the  directrix  of  the  reciprocal 

conic,  for  the  directrix  is  the  polar  of  the  origin  which  is  the 
focus  of  that  conic. 

Ex.  1.  The  reciprocal  of  a  parabola  with  regard  to  a  point  on  the  directrix  is>  an 
equilateral  hyperbola.  (See  Art.  221). 

Ex.  2.    Prove  that  the  following  theorems  are  reciprocal : 
The  intersection  of  perpendiculars  of  The  intersection  of  perpendiculars  of 

a  triangle  circumscribing  a  parabola  is  a  a  triangle  inscribed  in  an  equilateral  hy- 
point  on  the  directrix.  perbola  lies  on  the  curve. 
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Ex.3.   Derive  the  last  from  Pascal's  theorem.     (See  Ex.  3,  p.  247). 

Ex.  4.  The  axes  of  the  reciprocal  curve  are  parallel  to  the  tangent  and  normal  of 
a  conic  drawn  through  the  origin  confocal  with  the  given  one.  For  the  axes  of  the 
reciprocal  curve  must  be  parallel  to  the  internal  and  external  bisectors  of  the  angle 
between  the  tangents  drawn  from  the  origin  to  the  given  curve.  The  theorem  stated 

foUows  by  Art.  189. 

316.  Given  two  circles,  we  can  find  an  origin  such  that  the 

reciprocals  of  both  shall  be  confocal  conies.     For,  since  the  reci- 
procals of  all  circles  must  have  one  focus  (the  origin)  common ; 

in   order  that  the  other  focus  should   be   common,  it  is  only 

necessary  that  the  two  reciprocal  curves  should  have  the  same 

centre,  that  is,  that  the  polar  of  the  origin  with  regard  to  both 

circles  should  be  the  same,  or  that  the  origin  should  be  one  of 

the  two  points  determined  in  Art.  111.     Hence,  given  a  system 

of  circles,  as  in  Art.  109,  their  reciprocals  with  regard  to  one  of 

these  limiting  points  will  be  a  system  of  confocal  conies. 

The  reciprocals  of  any  two  conies  will,  in  like  manner,  be 

concentric  if  taken  with  regard  to  any  of  the  three  points 

(Art.  282)  whose  polars  with  regard  to  the  curves  are  the  same. 
Confocal  conies  cut  at  right  angles  The  common  tangent  to  two  circles 

(Art.  188).  subtends  a  right  angle  at  either  limit- 

ing point. 
The  tangents  from  any  point  to  two  If  any  line  intersect  two  circles,  its 

confocal  conies  are  equally  inclined  to  two  intercepts  between  the  circles  subtend 

each  other.  (Art.  189).  equal  angles  at  either  limiting  point. 
The  locus  of  the  pole  of  a  fixed  line  The  polar  of  a  fixed  point,  with  regard 

with  regard  to  a  series  of  confocal  conies  to  a  series  of  circles  having  the  same 

is  a  line  perpendicular  to  the  fixed  line,  radical  axis,  passes  through  a  fixed  point ; 
(Art.  226,  Ex.  3).  and  the  two  points  subtend  a  right  angle 

at  either  limiting  point. 

317.  We  may  mention  here  that  the  method  of  reciprocal 

polars  affords  a  simple  solution  of  the  problem,  "  to  describe  a 

circle  touching  three  given  circles."     The  locus  of  the  centre 
of  a  circle  touching  two  of  the  given  circles  (1),  (2),  is  evidently 

a  hyperbola,  of  which  the  centres  of  the  given  circles  are  the 

foci,  since  the  problem  is  at  once  reduced  to — u  Given  base  and 

difference  of  sides  of  a  triangle."     Hence  (Art.  308)  the  polar 
of  the  centre  with  regard  to  either  of  the  given  circles  (1)  will 

always  touch  a  circle  which  can  be  easily  constructed.     In  like 

manner,  the  polar  of  the  centre  of  any  circle  touching  (1)  and  (3) 
must  also  touch  a  given  circle.     Therefore,  if  we  draw  a  common 

tangent  to  the  two  circles  thus  determined,  and  take  the  pole 
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of  this  line  with  respect  to  (1),  we  have  the  centre  of  the  circle 
touching  the  three  given  circles. 

318.  To  find  the  equation  of  the  reciprocal  of  a  conic  with 
regard  to  its  centre. 

We  found,  in  Art.  178,  that  the  perpendicular  on  the  tangent 
could  be  expressed  in  terms  of  the  angles  it  makes  with  the  axes, 

Hence  the  polar  equation  of  the  reciprocal  curve  is 

4  =  az  cos20  +  b*  sin20, 
«v    ay 
~~ 

a  concentric  conic,  whose  axes  are  the  reciprocals  of  the  axes 
of  the  given  conic. 

319.    To  find  the  equation  of  the  reciprocal  of  a  conic  with 

regard  to  any  point  (xyf], 
The  length  of  the  perpendicular  from  any  point  is  (Art.  178) 

p  =  -  =  V(aa  cosa0  +  52  sm'fl)  -  x'  cos  8-y'  sin  6  ; 

therefore  the  equation  of  the  reciprocal  curve  is 

(xx  4  yy'  +  &8)a  = 
320.  Given  the  reciprocal  of  a  curve  with  regard  to  the  origin 

of  coordinates,  to  find  the  equation  of  its  reciprocal  with  regard 

to  any  point  (x'yf). 
If  the  perpendicular  from  the  origin  on  the  tangent  be  P, 

the  perpendicular  from  any  other  point  is  (Art.  34) 

P-a;'cos0-/sin6>, 

and  therefore  the  polar  equation  of  the  locus  is 

I?      &* **'  /  a          /     •      /i 

—  =  •=.  —  x  cos  v  —  y  sin  a  ; 

tf      x'x  +  y'y  +  tf      ,R  cos  6  p  cos  0 hence   „  =  ~  ~  anc*  ~Yt  —  =  —  r~  ---  / 
R  p  1<?          xx  -f  yy 

we  must  therefore  substitute,  in  the  equation  of  the  given 

tfx  U'y reciprocal,      ,      -  ,  -  ,..  tor  x,  and  —  -.  --  *-*  —  ,,  lory. 
'  xx  -1-  yy  4-  k*  xx'  -f  yy'  +  k*       y 
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The  effect  of  this  substitution  may  be  very  simply  written 
as  follows  :  Let  the  equation  of  the  reciprocal  with  regard  to 
the  origin  be 

- 

where  un  denotes  the    terms  of  the  nth  degree,  <fec.,   then  the 
reciprocal  with  regard  to  any  point  ts 

fxx'  +  yy'  +  k?\            i  xxf  +  y  v '  4-  &'2  \  * 
«.  +  «»-.  (   f   J  +  <V2  (   jf   )  +&c.  =--  0, 

a  curve  of  the  same  degree  as  the  given  reciprocal. 

321.  To  find  the  reciprocal  with  respect  to  xz  +y*  —  k*  of  the 
conic  given  by  the  general  equation. 

We  find  the  locus  of  a  point  whose  polar  xx'  +  yy  —  tf  shall 

touch  the  given  conic  by  writing  a/,  y',  -  tf  for  \,  /*,  v  in  the 
tangential  equation  (Art.  151).     The  reciprocal  is  therefore 

Ax1  4-  2Hxy  +  By*  -  2  Gtfx  -  2Ftfy  4  Ck"  =  0. 
Thus,  if  the  curve  be  a  parabola,  C  or  ab  —  h?  =  0,  and  the 

reciprocal  passes  through  the  origin.  We  can,  in  like  manner, 

verify  by  this  equation  other  properties  proved  already  geo- 

metrically. If  we  had,  for  symmetry,  written  k2  =  -  z\  and 

looked  for  the  reciprocal  with  regard  to  the  curve  x*  4-  y*  +  z2  =  0, 

the  polar  would  have  been  xxf  4-  yy'  4- zz' ,  and  the  equation  of 
the  reciprocal  would  have  been  got  by  writing  x,  y,  z  for  X,  p.  v 
in  the  tangential  equation.  In  like  manner,  the  condition  that 

\x  +  fiy  4-  vz  may  touch  any  curve,  may  be  considered  as  the 

equation  of  its  reciprocal  with  regard  to  y?  4  y2  4  z\ 
A  tangential  equation  of  the  wth  degree  always  represents 

a  curve  of  the  rcth  class ;  since  if  we  suppose  \x  4  fiy  +  vz  to 

pass  through  a  fixed  point,  and  therefore  have  \x  +  py'  +  vz'  =  0 ; 
eliminating  v  between  this  equation  and  the  given  tangential 

equation,  we  have  an  equation  of  the  nih  degree  to  determine 

X  :  fji  •  and  therefore  n  tangents  can  be  drawn  through  the  given 

point. 

322.  Before   quitting  the  subject  of  reciprocal  polars,  we 
wish  to  mention  a  class  of  theorems,  for  the  transformation  of 

which  M.  Chasles  has  proposed  to  take  as  the  auxiliary  conic 

&  parabola  instead  of  a  circle.     We  proved  (Art.  211)  that  the 

intercept  made  on  the  axis  of  the  parabola  between   any  two 
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lines  is  equal  to  the  intercept  between  perpendiculars  let  fall  on 

the  axis  from  the  poles  of  these  lines.  This  principle  then 

enables  us  readily  to  transform  theorems  which  relate  to  the 

magnitude  of  lines  measured  parallel  to  a  fixed  line.  We  shall 

give  one  or  two  specimens  of  the  use  of  this  method,  premising 

that  to  two  tangents  parallel  to  the  axis  of  the  auxiliary  parabola 

correspond  the  two  points  at  infinity  on  the  reciprocal  curve, 

and  that  consequently  the  curve  will  be  a  hyperbola  or  ellipse, 

according  as  these  tangents  are  real  or  imaginary.  The  reci- 
procal will  be  a  parabola  if  the  axis  pass  through  a  point  at 

infinity  on  the  original  curve. 

"  Any  variable  tangent  to  a  conic  intercepts  on  two  parallel 

tangents,  portions  whose  rectangle  is  constant." 
To  the  two  points  of  contact  of  parallel  tangents  answer  the 

asymptotes  of  the  reciprocal  hyperbola,  and  to  the  intersections 

of  those  parallel  tangents  with  any  other  tangent  answer  parallels 

to  the  asymptotes  through  any  point ;  and  we  obtain,  in  the  first 

instance,  that  the  asymptotes  and  parallels  to  them  through  any 

point  on  the  curve  intercept  on  any  fixed  line  portions  whose 

rectangle  is  constant.  But  this  is  plainly  equivalent  to  the 

theorem :  "  The  rectangle  under  parallels  drawn  to  the  asymp- 

totes from  any  point  on  the  curve  is  constant." 
Chords  drawn  from  two  fixed  points  If  any  tangent  to  a  parabola  meet  two 

of  a  hyperbola  to  a  variable  third  point  fixed  tangents,  perpendiculars  from  its  ex- 
intercept  a  constant  length  on  the  asymp-  tremities  on  the  tangent  at  the  vertex  will 
tote.  (Art.  199,  Ex.  1).  intercept  a  constant  length  on  that  line. 

This  method  of  parabolic  polars  is  plainly  very  limited  in 

its  application. 
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CHAPTER   XVI. 

HARMONIC  AND  ANHARMONIC  PROPERTIES  OF  CONICS* 

323.  THE  harmonic  and  anharmonic  properties  of  conic  sec- 
tions admit  of  so  many  applications  in  the  theory  of  these  curves, 

that  we  think  it  not  unprofitable  to  spend  a  little  time  in  point- 
ing out  to  the  student  the  number  of  particular  theorems  either 

directly  included  in  the  general  enunciations  of  these  properties, 

or  which  may  be  inferred  from  them  without  much  difficulty. 
The  cases  which  we  shall  most  frequently  consider  are 

when  one  of  the  four  points  of  the  right  line,  whose  anharmonic 

ratio  we  are  examining,  is  at  an  infinite  distance.  The  an- 
harmonic ratio  of  four  points,  A,  B,  (7,  D,  being  in  general 

(Art.  56)  =  -~-~  -r  -777^  reduces  to  the  simple  ratio  — ^~  when £j(j        JJL>  -DL> 

D  is  at  an  infinite  distance,  since  then  AD  ultimately  =  —  DC. 

If  the  line  be  cut  harmonically,  its  anharmonic  ratio  =  —  1 ;  and 
if  D  be  at  an  infinite  distance  AB  —  BC^  and  AC  is  bisected. 
The  reader  is  supposed  to  be  acquainted  with  the  geometric 

investigation  of  these  and  the  other  fundamental  theorems  con- 
nected with  anharmonic  section. 

324.  We  commence  with  the   theorem  (Art.  146) :  "  If  any 

line  through  a  point   0  meet  a  conic  in  the  points  R',  R",  and 

the  polar  of  0  in  R,  the  line  OR'RR"  is  cut  harmonically." 
First.  Let  R"  be  at  an  infinite  distance ;  then  the  line  OR 

must  be  bisected  at  R' ;  that  is,  if  through  a  fixed  point  a  line  be 
drawn  parallel  to  an  asymptote  of  an  hyperbola,  or  to  a  diameter 

of  a  parabola,  the  portion  of  this  line  between  the  fixed  point  and 

its  polar  will  be  bisected  by  the  curve  (Art.  211). 

*  The  fundamental  property  of  anharmonic  pencils  was  given  by  Pappus,  Math. 

Coll.  vn.  129.  The  name  "  anharmonic  "  was  given  by  Chasles  in  his  History  of 
Geometry,  from  the  notes  to  which  the  following  pages  have  been  developed.  Further 

details  will  be  found  in  his  Traite  de  Geometric  Superieure;  and  in  his  recently 
published  Treatise  on  Conies.  The  anharmonic  relation,  however,  had  been  studied 

by  Mobius  in  his  Barycentric  Calculus,  1827,  under  the  name  of  "  Doppelschnitts- 

verhaltniss."  Later  writers  use  the  name  ;<  Doppelverhaltniss." 
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Secondly.  Let  E  be  at  an  infinite  distance,  and  R'R"  must 
be  bisected  at  0  ;  that  is,  if  through  any  point  a  chord  be  drawn 

parallel  to  the  polar  of  that  point,  it  will  be  bisected  at  the  point. 

If  the  polar  of  0  be  at  infinity,  every  chord  through  that 

point  meets  the  polar  at  infinity,  and  is  therefore  bisected  at  0. 

Hence  this  point  is  the  centre,  or  the  centre  may  be  considered  as 

a  point  whose  polar  is  at  infinity  (Art.  154). 

Thirdly.  Let  the  fixed  point  itself  be  at  an  infinite  distance, 

then  all  the  lines  through  it  will  be  parallel,  and  will  be  bisected 

on  the  polar  of  the  fixed  point.  Hence  every  diameter  of  a  conic 

may  be  considered  as  the  polar  of  the  point  at  infinity  in  which  its 

ordinates  are  supposed  to  intersect. 

This  also  follows  from  the  equation  of  the  polar  of  a  point 

(Art.  145) 

Now,  if  xy  be  a  point  at  infinity  on  the  line  my  —  nx,  we  must 
77  Yi 

make  —  ,  =  —  ,    and   x    infinite,  and  the   equation  of  the  polar 

becomes  m  ̂ ax  +jiy+g}+n  ̂ x  +  iy  +  f  j  =  0? 
a  diameter  conjugate  to  my  =  nx  (Art.  141). 

325.  Again,  it  was  proved  (Art.  146)  that  the  two  tangents 

through  any  point,  any  other  line  through  the  point,  and  the 
line  to  the  pole  of  this  last  line,  form  a  harmonic  pencil. 

If  now  one  of  the  lines  through  the  point  be  a  diameter,  the 

other  will  be  parallel  to  its  conjugate,  and  since  the  polar  of 

any  point  on  a  diameter  is  parallel  to  its  conjugate,  we  learn  that 

the  portion  between  the  tangents  of  any  line  drawn  parallel  to 

the  polar  of  the  point  is  bisected  by  the  diameter  through  it. 

Again,  let  the  point  be  the  centre,  the  two  tangents  will  be 

the  asymptotes.  Hence  the  asymptotes  ,  together  with  any  pair  of 

conjugate  diameters,  form  a  harmonic  pencil,  and  the  portion  of 

any  tangent  intercepted  between  the  asymptotes  is  bisected  by 

the  curve  (Art.  196), 

326.  The  anharmonic  property  of  the  points  of  a  conic  (Art. 

259)  gives  rise  to  a  much  greater  variety  of  particular  theorems. 

For,  the  four  points  on  the  curve  may  be  any  whatever,  and 
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either  one  or  two  of  them  may  be  at  an  infinite  distance ;  the 
fifth  point  0,  to  which  the  pencil  is  drawn,  may  be  also  either 
at  an  infinite  distance,  or  may  coincide  with  one  of  the  four 
points,  in  which  latter  case  one  of  the  legs  of  the  pencil  will  be 

the  tangent  at  that  point ;  then,  again,  we  may  measure  the 

anharmonic  ratio  of  the  pencil  by  the  segments  on  any  line 

drawn  across  it,  which  we  may,  if  we  please,  draw  parallel  to 
one  of  the  legs  of  the  pencil,  so  as  to  reduce  the  anharmonic 
ratio  to  a  simple  ratio. 

The  following  examples  being  intended  as  a  practical  exercise 

to  the  student  in  developing  the  consequences  of  this  theorem, 

we  shall  merely  state  the  points  whence  the  pencil  is  drawn,  the 

line  on  which  the  ratio  is  measured,  and  the  resulting  theorem, 
recommending  to  the  reader  a  closer  examination  of  the  manner 

in  which  each  theorem  is  inferred  from  the  general  principle. 

We  use  the  abbreviation  [O.ABCD]  to  denote  the  anhar- 
monic ratio  of  the  pencil  OA,  OB,  OC,  OD. 

Ex.1.  [A.  AB  CD}  =  {£.  A  B  CD}. 
Let  these  ratios  be  estimated  by  the  segments  on  the  line  CD ;  let  the  tangents 

at  A,  B  meet  CD  in  the  points  T,  T',  and  let  the  chord 
AB  meet  CD  in  K,  then  the  ratios  are 

TK.DC \_KT.DC 

TD.KC~  KD.  T'C1 
that  is,  if  any  chord  CD  meet  two  tangents  in  7",  7*, 
and  their  chord  of  contact  in  K, 

KG.KT.  TD-KD.  TK.  T'C. 
(The  reader  must  be  careful,  in  this  and  the  following 

examples,  to  take  the  points  of  the  pencil  in  the  same 

order  on  both  sides  of  the  equation.  Thus,  on  the  left- 
hand  side  of  this  equation  we  took  K  second,  because  it 
answers  to  the  leg  OB  of  the  pencil ;  on  the  right  hand 
we  take  K  first,  because  it  answers  to  the  leg  OA). 

Ex.  2.   Let  T  and  T  coincide,  then 

KG.  TD  =  -KD.TC, 

or,  any  chord  through  the  intersection  of  two  tangents  is  cut  harmonically  by  ths 
chord  of  contact. 

Ex.  3.   Let  T  be  at  an  infinite  distance,  or  the  secant  CD  drawn  parallel  to  P7", 
and  it  will  be  found  that  the  ratio  will  reduce  to 

TK2  =  TO.  TD. 

Ex.  4.  Let  one  of  the  points  be  at  an  infinite  distance,  then  [O.ABC  <x>]  is  con* 
stant.  Let  this  ratio  be  estimated  on  the  line  C  co .  Let  the  lines  AO,  BO  cut  C  cc 

in  a,  b ;  then  the  ratio  of  the  pencil  will  reduce  to  -^ ;  and  we  learn,  that  if  two 

fixed  points,  A,  B,  on  a  hyperbola  or  parabola,  be  joined  to  any  variable  point  0, 

QQ. 
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and  the  joining  lines  meet  a  fixed  parallel  to  an  asymptote  (if  the  curve  be  a  hyper- 
bola), or  a  diameter  (if  the  curve  be  a  parabola),  in  a,  b,  then  the  ratio  Ca  :  Cb  will 

be  constant. 

Ex.  5.  If  the  same  ratio  be  estimated  on  any  other  parallel  line,  lines  inflected 
from  any  three  fixed  points  to  a  variable  point,  on  a  hyperbola  or  parabola,  cut  a  fixed 
parallel  to  an  asymptote  or  diameter,  so  that  ab  :  ac  is  constant. 

Ex.  6.  It  follows  from  Ex.  4,  that  if  the  lines  joining  A,  B  to  any  fourth  point 

0'  meet  C  <x>  in  a',  b',  we  must  have 
ab  _  aC 

a'b'  ~  a'C' Now  let  us  suppose  the  point  C  to  be  also  at  an  infinite  distance,  the  line  C  oo  becomes 

an  asymptote,  the  ratio  ab  :  a'b'  becomes  one  of  equality,  and  lines  joining  two  fixed 
points  to  any  variable  point  on  the  hyperbola  intercept  on  either  asymptote  a  constant 
portion  (Art.  199,  Ex.  1). 

Ex.7.  {A.  ABC  00}  =  {B.ABC<*>}. 

Let  these  ratios  be  estimated  on  C  <»  ;  then  if  the  tangents  at  A,  B,  cut  C  oo  in 
o,  6,  and  the  chord  of  contact  AB  in  -ZT,  we  have 

Ca  _  CK 

CK~  Cb 
(observing  the  caution  in  Ex.  1).  Or,  if  any  paralle 
to  an  asymptote  of  a  hyperbola,  or  a  diameter  of  a 

parabola,  cut  two  tangents  and  their  chord  of  con- 
tact, the  intercept  from  the  curve  to  the  chord  is 

a  geometric  mean  between  the  intercepts  from  the 

curve  to  the  tangents.  Or,  conversely,  if  a  line  ab,  parallel  to  a  given  one,  meet  the 
sides  of  a  triangle  in  the  points  a,  b,  K,  and  there  be  taken  on  it  a  point  C  such  that 

CK2  =  Co,  .  Cb,  the  locus  of  C  will  be  a  parabola,  if  Cb  be  parallel  to  the  bisector  of 
the  base  of  the  triangle  (Art.  211),  but  otherwise  a  hyperbola,  to  an  asymptote  of 
which  ab  is  parallel. 

Ex.  8.  Let  two  of  the  fixed  points  be  at  infinity, 

{oo.^LBoo  oo  '}  =  {«'.  AS  oo  oo'}; 

the  lines  oo  oo  ,  oo  '  oo  ',  are  the  two  asymptotes,  while  oo  oo  '  is  altogether  at  infinity. 
Let  these  ratios  be  estimated  on  the  diameter  OA  ;  let  y 

this  line  meet  the  parallels  to  the  asymptotes  B  oo  ,  B  oo  ', 

in   a  and  a!  ;   then   the  ratios  become  -r—  =  -~  -.   Or. Ua       UA 

parallels  to  the  asymptotes  through  any  point  on  a  hyper- 

bola cut  any  semi-diameter,  so  that  it  is  a  mean  propor- 
tional between  the  segments  on  it  from  the  centre. 

Hence,  conversely,  if  through  a  fixed  point  0  a  line 

be  drawn  cutting  two  fixed  lines,  £a,  J3a',  and  a  point  A 
taken  on  it  so  that  OA  is  a  mean  between  Oa,  Oa',  the 
locus  of  A  is  a  hyperbola,  of  which  0  is  the  centre,  and  ,  , 

Ba,  Ba',  parallel  to  the  asymptotes. 

Ex.9.  {oo  .ABco  oo'}  =  {oo'.^5oo  oo'}. 

Let  the  segments  be  measured  on  the  asymptotes,  and  we  have  9^  -Ob   (0  being Oo       Oa 

the  centre),  or  the  rectangle  under  parallels  to  the  asymptotes  through  any  point  on 
the  curve  is  constant  (we  invert  the  second  ratio  for  the  reason  given  in  Ex.  1). 
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327.    We  next  examine  some  particular  cases  of  the  anhar- 
monic  property  of  the  tangents  to  a  conic  (Art.  275). 

Ex.  1.  This  property  assumes  a  very  simple  form,  if  the  curve  be  a  parabola, 
for  one  tangent  to  a  para- 

bola is  alwaye  at  an  in- 
finite distance  (Art.  254). 

Hence  three  fixed  tan- 

gents to  a  parabola  cut 
any  fourth  in  the  points 

A,  B,  C,  so  that  AB  :  AC 
is  always  constant.  If 

the  variable  tangents  co- 
incide in  turn  with  each 

of  the  given  tangents,  we  obtain  the  theorem, 

pQ  _  JtP  _  Qr 

QR  ~  Pq  ~  ̂P ' 
Ex.  2.   Let  two  of  the  four  tangents  to  an  ellipse  or  hyperbola  be  parallel  to  each 

other,  and  let  the  variable  tangent  coincide  alter, 
nately  with  each  of  the  parallel  tangents.     In  the 
first  case  the  ratio  is 

—  ,  and  in  the  second  -j-r,. 

Hence  the  rectangle  Ab .  Db'  is  constant. 
It  may  be  deduced  from  the  anharmonic  pro- 

perty of  the  points  of  a  conic,  that  if  the  lines  joining  any  point  on  the  curve  0  to 

A,  D,  meet  the  parallel  tangents  in  the  points  b,  V,  then  the  rectangle  Ab.Db'  will 
be  constant. 

328.  We  now  proceed  to  give  some  examples  of  problems 

easily  solved  by  the  help  of  the  anharmonic  properties  of  conies. 

Ex.  1.  To  prove  MacLaurin's  method  of  generating  conic  sections  (p.  248),  viz. — 
To  find  the  locus  of  the  vertex  V  of  a  triangle  whose  sides  pass  through  the  points 

A,  B,  (7,  and  whose  base  angles  move  on  the  fixed  lines  Oa,  Ob. 

Let  us  suppose  four  such  triangles  drawn,  then  since  the  pencil  {C.aa'a"a'"}  is  the 
same  pencil  as  {C .bb'b"b'"},  we  have 

{aa'a"a'"}  =  {bb'b"b'"}, 
and,  therefore, 

{A  .  aa'a"a'"}  =  {B .  bb'b"b'"} ; 
or,  from  the  nature  of  the  question, 

{A.  VV'V"V'"}  =  {B.  VV'V'V"} ; 

and  therefore  A,  B,  V,  V,  V",  V"  lie 
on  the  same  conic  section.  Now  if  the 

first  three  triangles  be  fixed,  it  is  evident 

that  the  locus  of  V"  is  the  conic  section 

passing  through  AB  V  V'V". 
Or  the  reasoning  may  be  stated  thus:  The  systems  of  lines  through  A,  and 

through  B,  being  both  homographic  with  the  system  through  C,  are  homographic 
with  each  other ;  and  therefore  (Art.  297)  the  locus  of  the  intersection  of  correspond- 
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ing  lines  is  a  conic  through  A  and  B.    The  following  examples  are,  in  like  manner, 
illustrations  of  the  application  of  this  principle  of  Art.  297. 

Ex.  2.  M.  Chasles  has  showed  that  the  same  demonstration  will  hold  if  the  side 

ab,  instead  of  passing  through  the  fixed  point  C,  touch  any  conic  which  touches 

Oa,  Ob ;  for  then  any  four  positions  of  the  base  cut  Oa,  Ob,  so  that 

{«aVV"}  =  {bb'b"b"'}  (Art.  275), 
and  the  rest  of  the  proof  proceeds  the  same  as  before. 

Ex.  3.  Newton's  method  of  generating  conic  sections :— Two  angles  of  constant 

magnitude  move  about  fixed  points  P,  Q ;  A  A'  A'  A" 
the  intersection  of  two  of  their  sides  tra. 

verses  the  right  line  AA' ;  then  the  locus 

of  K,  the  intersection  of  their  other  two 

sides,  will  be  a  conic  passing  throug 

A  Q. 
For,  as  before,  take  four  positions  of 

the  angles,  then 

{P .  A  A' A"  A'"}  =  {Q.  AA'A"A'"} ; 

but  {P . AA'A"A'"}  =  {P.VVV" V'"}, 

{Q.AA'A"A'"}  =  {Q .  VVV'V"}, 
since  the  angles  of  the  pencils  are  the  same ;  therefore 

{P .  VV'V'V"}  =  {Q.  VVV'V'"} ; 

and,  therefore,  as  before,  the  locus  of  V"  is  a  conic  through  P,  Q,  V,  V,  V". 

Ex.  4.  M.  Chasles  has  extended  this  method  of  generating  conic  sections,  by 

supposing  the  point  A,  instead  of  moving  on  a  right  line,  to  move  on  any  conic 
passing  through  the  points  P,  Q ;  for  we  shall  still  have 

{P.AA'A"A'"}  =  {Q.AA'A"A'"}. 

Ex.  5.  The  demonstration  would  be  the  same  if,  in  place  of  the  angles  APV,  A  QV 

being  constant,  APV  and  AQV cut  off  constant  intercepts  each  on  one  of  two  iixed 

lines,  for  we  should  then  prove  the  pencil 

{P.  A  A' A"  A"'}  =  {P.  VVV'V'"}, 
because  both  pencils  cut  off  intercepts  of  the  same  length  on  a  fixed  line. 

Thus,  also,  given  base  of  a  triangle  and  the  intercept  made  by  the  sides  on  any 
fixed  line,  we  can  prove  that  the  locus  of  vertex  is  a  conic  section. 

Ex.  6.  We  may  also  extend  Ex.  1,  by  supposing  the  extremities  of  the  line  ab 

to  move  on  any  conic  section  passing  through  the  points  AB,  for,  taking  four 

positions  of  the  triangle,  we  have,  by  Art.  276, 

{aa'a"a'"}  =  {bb'b"b'"} ; 

therefore,  {A .  aa'a"a'"}  =  {B .  bb'V'b'"}, 
and  the  rest  of  the  proof  proceeds  as  before. 

Ex.  7.  The  base  of  a  triangle  passes  through  C,  the  intersection  of  common 

tangents  to  two  conic  sections ;  the  extremities  of  the  base  ab  lie  one  on  each  of  the 
conic  sections,  while  the  sides  pass  through  fixed  points  A,  B,  one  on  each  of  the 

conies ;  the  locus  of  the  vertex  is  a  conic  through  A,  B. 
The  proof  proceeds  exactly  as  before,  depending  now  on  the  second  theorem 

proved,  Art.  276.  \Ve  may  mention  that  this  theorem  of  Art.  276  admits  of  a  simple 
geometrical  proof.  Let  the  pencil  [O.A BCD}  be  drawn  from  points  corresponding 
to  {o.abcd}.  Now,  the  lines  OA,  oa,  intersect  at  r  on  one  of  the  common  chords  of 

the  conies ;  in  like  manner,  BO,  bo  intersect  in  r'  on  the  same  chord,  &c. ;  hence 
{rr'r"r'"}  measures  the  anharmonic  ratio  of  both  these  pencils. 
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Ex.  8.  In  Ex.  6  the  base  instead  of  passing  through  a  fixed  point  C,  may  be  sup- 
posed to  touch  a  conic  having  double  contact  with  the  given  conic  (see  Art.  276). 

Ex.  9.  If  a  polygon  be  inscribed  in  a  conic,  all  whose  sides  but  one  pass  through 
fixed  points,  the  envelope  of  that  side  will  be  a  conic  having  double  contact  with 

the  given  one. 
For,  take  any  four  positions  of  the  polygon,  then  if  a,  b,  c,  &c.  be  the  vertices 

of  the  polygon,  we  have 

{aa'a"a'"}  =  {bb'b"b'"}  =  {cc'c"c'"\,  &c. 

The  problem  is,  therefore,  reduced  to  that  of  Art.  277,  —  "  Given  three  pairs  of  points, 

aa'a",  dd'd",  to  find  the  envelope  of  a'"d'",  such  that 

{aa'a"a'"}  = 
Ex.  10.  To  inscribe  in  a  conic  section  a  polygon,  all  whose  sides  shall  pass  through 

fixed  points. 
If  we  assume  any  point  (a)  at  random  on  the  conic  for  the  vertex  of  the  polygon, 

and  form  a  polygon  whose  sides  pass  through  the  given  points,  the  point  z,  where 
the  last  side  meets  the  conic,  will  not  in  general  coincide  with  a.  If  we  make  four 
such  attempts  to  inscribe  the  polygon,  we  must  have,  as  in  the  last  example. 

{aa'a"a'"}  =  {zz'z"z'"}. 

Now,  if  the  last  attempt  were  successful,  the  point  a'"  would  coincide  with  z'",  and 
the  problem  is  reduced  to  —  "  Given  three  pairs  of  points,  aa'a",  zz'z",  to  find  a  point 
K  such  that 

{Kaa'a"}  =  {Kzz'z"}." 
Now  if  we  make  az"a'za'z'  the  vertices  of  an  inscribed  hexagon  (in  the  order  here 
given,  taking  an  a  and  z  alternately,  and  so  that 

az,  a'z',  a"z",  may  be  opposite  vertices),  then  either 
of  the  points  in  which  the  line  joining  the  inter- 

sections of  opposite  sides  meets  the  conic  may  be 
taken  for  the  point  K.  For,  in  the  figure,  the 

points  A  CE  are  aa'a",  DFB  are  zz'z"  ;  and  if  we 
take  the  sides  in  the  order  ABCDEF,  I,,  M,  N  are 
the  intersections  of  opposite  sides.  Now,  since 

{KPNL}  measures  both  [D.KA  CE}  and  [A.KDFB], 
we  have 

{KACE}  =  {KDFB}.  Q.  K.  D.* 
It  is  easy  to  see,  from  the  last  example,  that  1C 

is  a  point  of  contact  of  a  conic  having  double  con- 

tact with  the  given  conic,  to  which  az,  a'z',  a"z"  are  tangents,  and  that  we  have 
therefore  just  given  the  solution  of  the  question.  "  To  describe  a  conic  touching  three 
given  lines,  and  having  double  contact  with  a  given  conic." 

Ex.  11.  The  anharmonic  property  affords  also  a  simple  proof  of  Pascal's  theorem, 
alluded  to  in  the  last  example. 

We  have  {E.CDFB}  =  {A  .  CDFB}.     Now,  if  we  examine  the  segments  made  by 
the  first  pencil  on  BC,  and  by  the  second  on  DC,  we  have 

[CRMB]  -  {CDNS}. 

*  This  construction  for  inscribing  a  polygon  in  a  conic  is  due  to  M.  Poncelet  (  Trait  6 

des  Proprietes  Prqjectives,  p.  351).  The  demonstration  here  used  is  Mr.  Townsend's. 
It  shows  that  Poncelet's  construction  will  equally  solve  the  problem,  "To  inscribe  a 
polygon  in  a  conic,  each  of  whose  sides  shall  touch  a  conic  having  double  contact  with 

the  given  conic."  The  conies  touched  by  the  sides  may  be  all  different. 
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Now,  if  we  draw  lines  from  the  point  L  to  each  of  these  points,  we  form  two  pencils 
which  have  the  three  legs,  CL,  DE,  AB,  common,  therefore  the  fourth  legs  NL,  L.M, 

must  form  one  right  line.  In  like  manner,  Brianchon's  theorem  is  derived  from  the 
anharmonic  property  of  the  tangents. 

Ex.  12.  Given  four  points  on  a  conic,  ADFB,  and  two  fixed  lines  through  any 
one  of  them,  DC,  DE,  to  find  the  envelope  of  the  line  CE  joining  the  points  where 
those  fixed  lines  again  meet  the  curve. 

The  vertices  of  the  triangle  OEM  move  on  the  fixed  lines  DC,  DE,  NL,  and 
two  of  its  sides  pass  through  the  fixed  points,  B,  F;  therefore,  the  third  side 

envelopes  a  conic  section  touching  DC,  DE  (by  the  reciprocal  of  MacLaurin's  mode 
of  generation). 

Ex.  13.  Given  four  points  on  a  conic  ABDE,  and  two  fixed  lines,  AF,  CD,  pass- 
ing each  through  a  different  one  of  the  fixed  points,  the  line  CF  joining  the  points 

where  the  fixed  lines  again  meet  the  curve  will  pass  through  a  fixed  point. 

For  the  triangle  CFM  has  two  sides  passing  through  the  fixed  points  B,  E,  and 
the  vertices  move  on  the  fixed  lines  AF,  CD,  NL,  which  fixed  lines  meet  in  a  point, 

therefore  (p.  280)  CF  passes  through  a  fixed  point. 
The  reader  will  find  in  the  Chapter  on  Projection  how  the  last  two  theorems  are 

suggested  by  other  well-known  theorems.  (See  Ex.  3  and  4,  Art.  355). 

Ex.  14.  The  anharmonic  ratio  of  any  four  diameters  of  a  conic  is  equal  to  that  of 
their  four  conjugates.  This  is  a  particular  case  of  Ex.  2,  Art.  297,  that  the  anharmonic 
ratio  of  four  points  on  a  line  is  the  same  as  that  of  their  four  polars.  We  might 

also  prove  it  directly,  from  the  consideration  that  the  anharmonic  ratio  of  four 
chords  proceeding  from  any  point  of  the  curve  is  equal  to  that  of  the  supplemental 
chords  (Art.  179). 

Ex.  15.  A  conic  circumscribes  a  given  quadrangle,  to  find  the  locus  of  its  centre. 

(Ex.  3,  Art.  151). 

Draw  diameters  of  the  conic  bisecting  the  sides  of  the  quadrangle,  their  anhar- 
monic ratio  is  equal  to  that  of  their  four  conjugates,  but  this  last  ratio  is  given,  since 

the  conjugates  are  parallel  to  the  four  given  lines ;  hence  the  locus  is  a  conic  passing 
through  the  middle  points  of  the  given  sides.  If  we  take  the  cases  where  the  conic 
breaks  up  into  two  right  lines,  we  see  that  the  intersections  of  the  diagonals,  and  also 
those  of  the  opposite  sides,  are  points  in  the  locus,  and  therefore  that  these  points  lie 
on  a  conic  passing  through  the  middle  points  of  the  sides  and  of  the  diagonals. 

329.  We  think  it  unnecessary  to  go  through  the  theorems, 

which  are  only  the  polar  reciprocals  of  those  investigated  in 

the  last  examples ;  but  we  recommend  the  student  to  form  the 

polar  reciprocal  of  each  of  these  theorems,  and  then  to  prove  it 

directly  by  the  help  of  the  anharmonic  property  of  the  tangents 
of  a  conic.  Almost  all  are  embraced  in  the  following  theorem : 

If  there  be  any  number  of  points  a,  &,  c,  d,  &c.  on  a  right  line, 

and  a  homographic  system  a ',  6',  c',  d ',  &c.  on  another  line,  the 
lines  joining  corresponding  points  will  envelope  a  conic.  For  if 
we  construct  the  conic  touched  by  the  two  given  lines  and  by 

three  lines  aa',  bb',  cc,  then,  by  the  anharmonic  property  of  the 

tangents  of  a  conic,  any  other  of  the  lines  dd'  must  touch  the 
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same  conic.*  The  theorem  here  proved  is  the  reciprocal  of 
that  proved  Art.  297,  and  may  also  be  established  by  interpreting 

tangentially  the  equations  there  used.  Thus,  if  P,  P' ;  Q,  Q  re- 

present tangentially  two  pairs  of  corresponding  points,  P+XP', 

Q  +  \Q'  represent  any  other  pair  of  corresponding  points;  and 
the  line  joining  them  touches  the  curve  represented  by  the 

tangential  equation  of  the  second  order,  PQf  =  P'Q. 
Ex.  Any  transversal  through  a  fixed  point  P  meets  two  fixed  lines  OA,  OA',  in 

the  points  AA' ;  and  portions  of  given  length  Aa,  A'a'  are  taken  on  each  of  the 
given  lines;  to  find  the  envelope  of  aa'.  Here,  if  we  give  the  transversal  four 
positions,  it  is  evident  that  {ABCD}  =  [A'B'C'D'},  and  that  {ABCD}  =  {abed},  and 
[A'B'C'D'}  =  [a'b'c'd'}. 

330.  Generally  when   the  envelope  of   a  moveable  line  is 
found  by  this  method  to  be  a  conic  section,  it  is  useful  to  take 

notice  whether  in  any  particular  position  the  moveable  line  can 

be  altogether  at  an  infinite  distance,  for  if  it  can,  the  envelope 

is  a  parabola  (Art.  254).     Thus,  in  the  last  example  the  line  aa! 

cannot  be  at  an  infinite  distance,  unless  in  some  position  AA' 
can  be  at  an  infinite  distance,  that  is,  unless  P  is  at  an  infinite 

distance.     Hence  we  see  that  in  the  last  example,  if  the  trans- 
versal, instead  of  passing  through  a  fixed  point,  were  parallel  to 

a  given  line,  the  envelope  would  be  a  parabola.     In  like  manner, 
the  nature  of  the  locus  of  a  moveable  point  is  often  at  once 

perceived  by  observing  particular  positions  of  the  moveable  point, 
as  we  have  illustrated  in  the  last  example  of  Art.  328. 

331.  If  we  are  given  any  system  of  points  on  a  right  line 

we  can  form  a  homographic  system  on  another  line,  and  sueh 

that  three  points  taken  arbitrarily  a',  U ',  c   shall  correspond  to 
three  given  points  a,  J,  c  of  the  first  line.     For  let  the  distances 

of  the  given  points  on  the  first  line  measured  from  any  fixed 

*  In  the  same  case  if  P,  P'  be  two  fixed  points,  it  follows  from  the  last  article 

that  the  locus  of  the  intersection  of  Pd,  P'd'  is  a  conic  through  P,  P'.  We  saw 

(Art.  277)  that  if  a,  b,  c,  d,  &c.,  a',  b',  c',  d'  be  two  homographic  systems  of  points 
on  a  conic,  that  is  to  say,  such  that  {abed}  always  =  {a'b'c'd'},  the  envelope  of  dd'  is 
a  conic  having  double  contact  with  the  given  one.  In  the  same  case,  if  P,  P'  be 
fixed  points  on  the  conic,  the  locus  of  the  intersection  of  Pd,  P'd'  is  a  conic  through 
P,  P'.  Again,  two  conies  are  cut  by  the  tangents  of  any  conic  having  double  con- 

tact with  both,  in  homographic  systems  of  points,  or  such  that  {abed}  =  {a'b'c'd'} 
(Art.  276) ;  but  it  is  not  true  conversely,  that  if  we  have  two  homographic  systems 

of  points  on  different  conies,  the  lines  joining  corresponding  points  necessarily  en- 
velope a  conic. 
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origin  on  the  line  be  a,  £>,  c,  and  let  the  distance  of  any  vari- 
able point  on  the  line  measured  from  the  same  origin  be  x. 

Similarly  let  the  distances  of  the  points  on  the  second  lino 

from  any  origin  on  that  line  be  a',  &',  c',  a/,  then,  as  in  Art.  277, 
we  have  the  equation 

(a-b)(c-x)  =  (a'-V}(c'-x') 

(a-c](b-.x)       („'  -</)(£'-*')' 
which  expanded  is  of  the  form 

This  equation  enables  us  to  find  a  point  x  in  the  second  line 

corresponding  to  any  assumed  point  x  on  the  first  line,  and  such 

that  {«5c#}  =  [a'b'c'x'}.  If  this  relation  be  fulfilled,  the  line 

joining  the  points  #,  x'  envelopes  a  conic  touching  the  two  given 
lines  ;  and  this  conic  will  be  a  parabola  if  A  =  0,  since  then  x 
is  infinite  when  x  is  infinite. 

The  result  at  which  we  have  arrived  may  be  stated  con- 
versely thus  :  Two  systems  of  points  connected  by  any  relation 

will  be  homographic,  if  to  one  point  of  either  system  always  corre- 
sponds one,  and  but  one,  point  of  the  other.  For  evidently  an 

equation  of  the  form 

Axx'+Bx  +  Cjc'  +  D  =  Q 

is  the  most  general  relation  between  x  and  x  that  we  can  write 

down,  which  gives  a  simple  equation  whether  we  seek  to  deter- 
mine x  in  terms  of  x'  or  vice  versa.  And  when  this  relation 

is  fulfilled,  the  anharmonic  ratio  of  four  points  of  the  first 
system  is  equal  to  that  of  the  four  corresponding  points  of  the 

second.      For  the  anharmonic  ratio  .-  -  £-7  -  (  is  unaltered 
(x  -  z)  (y  -  w) 

*  M.  Chasles  states  the  matter  thus  :  The  points  a;,  x'  belong  to  homographic 

systems,  if  a,  b,  a',  V  being  fixed  points,  the  ratios  of  the  distances  ax  :  bxt  a'x'  :  b'x', 
be  connected  by  a  linear  relation,  such  as 

Denoting,  as  above,  the  distances  of   the   points  from  fixed  origins,  by  a,  b,  K\ 

b',  x',  this  relation  is 

which,  expanded,  gives  a  relation  between  x  and  x'  of  the  form 
AJL-X'  +  Bx  +  Cx'  +  -D  =  0. 
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if  instead  of  x  we  write  —  —     — ^,  and  make  similar  substitu 

tions  for  y,  z,  w. 

332.  The  distances  from  the  origin  of  a  pair  of  points  A,  B 

on  the  axis  of  x  being  given  by  the  equation,  ax*  4  2hx  4  5  =  0,  and 

those  of  another  pair  of  points  A ',  B'  by  dx*  4  %h'x  4  b'  =  0,  to 
•find  the  condition  that  the  two  pairs  should  be  harmonically  con- 

jugate. 
Let  the  distances  from  the  origin  of  the  first  pair  of  points 

be  a,  $ ;  and  of  the  second  a',  /3' ;  then  the  condition  is 

AA _     AB'         a- a'         «-#' 
^--^:  or 

which  expanded  may  be  written 

But 

The  required  condition  is  therefore 

al'  4  a'  i  _  2hh"  =  0.* 

It  is  proved,  similarly,  that  the  same  is  the  condition  that  the 
pairs  of  lines 

aa*  -f  2Aa/3  +  6/32,  a'a2  -f 

should  be  harmonically  conjugate. 

333.  If  a  pair  of  points  ax^  +  Shx  +  b,  be  harmonically  con- 

jugate with  a  pair  aV  +  2h'x  -f  b',  and  also  with  another  pair 

a"x*  +  2h"x  -f  b",  it  will  be  harmonically  conjugate  with  every 
pair  given  by  the  equation 

(aV  +  2h'x  +  b')  +  \  (a"x*  +  2h"x  +  I"}  =  0. 
For  evidently  the  condition 

a  (V  +  \b")  +  b(a'  +  Xa")  -  2A  (K  -f  \h"}  =  0, 
will  be  fulfilled  if  we  have  separately 

ab'  +  ba  -  <2hh'  =  0,    ab"  +  la"  -  2hh"  =  0. 

*  It  can  be  proved  that  the  anharmonic  ratio  of  the  system  of  four  points  will  be 

given,  if  (ab'  +  a'b  —  2M')2  be  in  a  given  ratio  to  (ab  —  h2)  (a'b'  —  ft'2). RR. 
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334.  To  find  the  locus  of  a  point  such  that  the  tangents  from 

it  to  two  given  comes  may  form  a  harmonic  pencil. 

If  four  lines  form  a  harmonic  pencil  they  will  cut  any  of  the 

lines  of  reference  harmonically.  Now  take  the  second  form 

(Art.  294)  of  the  equation  of  a  pair  of  tangents  from  a 

point  to  a  curve  given  by  the  general  trilinear  equation,  and 

make  7  =  0  when  we  get 

( Off*  4  #/2  -  2-RSY)  «2  -  2  ( Cafff  -  Fa'y'  -  Gff<j  +  H<f}  a£ 

4-  ( Ca«  +  A<f  -  2  0aY)  ff  =  0. 

We  have  a  corresponding  equation  to  determine  the  pair  or 

points  where  the  line  7  is  met  by  the  pair  of  tangents  from 

a'/3V  to  a  second  conic.  Applying  then  the  condition  of 
Art.  332  we  find  that  the  two  pairs  of  points  on  7  will  form 

a  harmonic  system,  provided  that  a'/8V  satisfies  the  equation 

( CIS"  4  #y2  ~  2^7)  ( CV  +  A'<f  -  2  G'ay) 

4  ( Co?  4  A<f  -  2  Gay)  ( C'j?  +  B'i1  -  2^7) 

=  2  ( Ca/3  -  Fay  -  Gfa  +  Bf)  ( (Toft  -  Fay  -  G'0y  +  5V). 

On  expansion  the  equation  is  found  to  be  divisible  by  7*,  and 
the  equation  of  the  locus  is  found  to  be 

(BG'+K  C-2FF')a?+  ( GA'+  C'A-2  G  G')F+  (AB'+A'B-VHH'tf 

+2(GH'+  G'H-  AF'  -  A'F)  ̂ j+2(HF'+  HF-  BG'-  BG]  ya. 

4  2  (FG'  +  FQ-CH'-  <7#)a/3  =  0; 

a  conic  having  important  relations  to  the  two  conies,  which  will 
be  treated  of  further  on.  If  the  anharmonic  ratio  of  the  four 

tangents  be  given,  the  locus  is  the  curve  of  the  fourth  degree 

F2  =  kSS\  where  S,  £',  F,  denote  the  two  given  conies,  and 
that  now  found. 

335.  To  find  the  condition  that  the  line  Xa  4  f*>/3  4  vy  should 

be  cut  harmonically  by  the  two  conies.     Eliminating  7  between 

this  equation  and  that  of  the  first  conic,  the  points  of  inter- 
section are  found  to  satisfy  the  equation 

(cX*  4  av"  -  2g\v)  a2  4  2  (cX/*  -/Xv  -  fffiv  4  hv*)  aft 

+  (c/u' 4  fo^-2/H  £•-<>. 
We  have  a  similar  equation  satisfied  for  the  points  where  the 

line  meets  the  second  conic;  applying  then  the  condition  of 



^ 
Art.  332. 
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Art.  332,  we  find,  precisely  as  in  the  last  article,  that  the  re- 
quired condition  is 

(be  +  Vc  -  2ff)  X"  +  (cat  +  c'a  -  Vgg1)  ̂   +  (ab'  +  a'b  -  2AV)  v* 

+  2  (gh'  +  g'h  -  af  -  off)  pv  +  2  (hf  +  h'f-  Itf  -  Vg)  v\ 

+  2  (fg  +fg  -  cJi  -  ch)  X/A  =  0. 

The  line  consequently  envelopes  a  conic.* 

INVOLUTION. 

336.  Two  systems  of  points  «,  &,  c,  &c.,  a',  £',  c',  &c.,  situ- 
ated on  the  same  right  line,  will  be  homographic  (Art.  331)  if 

the  distances  measured  from  any  origin,  of  two  corresponding 
points,  be  connected  by  a  relation  of  the  form 

Axx'  -f  Bx  +  Cx  +  D  =  0. 

Now  this  equation  not  being  symmetrical  between  x  and  #',  the 
point  which  corresponds  to  any  point  of  the  line  considered  as 

belonging  to  the  first  system,  will  in  general  not  be  the  same 

as  that  which  corresponds  to  it  considered  as  belonging  to  the 
second  system.  Thus,  to  a  point  at  a  distance  x  considered  as 

belonging  to  the  first  system,  corresponds  a  point  at  the  dis- 

tance—    ......  ~~n'i    but    considered  as   belonging   to   the   second -- 

,       Cx  +  D 
system,  corresponds  —  -^  -  =^  . 

Two  homographic  systems  situated  on  the  same  line  are 

said  to  form  a  system  in  involution,  when  to  any  point  of  the 
line  the  same  point  corresponds  whether  it  be  considered  as 

belonging  to  the  first  or  second  system.  That  this  should  be 

the  case  it  is  evidently  necessary  and  sufficient  that  we  should 

have  B=  G  in  the  preceding  equation,  in  order  that  the  relation 

connecting  x  and  x'  may  be  symmetrical.  We  shall  find  it 

*  If   substituting  in  the  equations  of  two  conies  Ut  F,  for  a,  \a  +  M«',  &c.  we 
obtain  results 

X2  U  +  2X/xP  +  /x2  U',  X2  V  +  2\/uQ  +  /x2  V, 

then  it  is  easy  to  see,  as  above,  that  UV  +  U'V-2PQ,  represents  the  pair  of  lines 
which  can  be  drawn  through  a'/3'y',  so  as  to  be  cut  harmonically  by  the  conies.  In 
the  same  case  (Art.  296),  the  equation  of  the  system  of  four  lines  joining  a'/3'y'  to 
the  intersections  of  the  conies,  is 

(UV  +  U'V-  2PQ)2  =  4  (UU'  -  P2)  (VV  -  Q2). 
U(F  -  F1  and  VV  —  Q2  denote  the  pairs  of  tangents  from  a'/S'y'  to  the  conicS. 
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convenient  to  write  the  relation  connecting  any  two  correspond- 

ing points  Axa/  +  H(x  +  x'}  +  B  =  Q; 
and  if  the  distances  from  the  origin  of  a  pair  of  corresponding 

points  be  given  by  the  equation 

ax*  +  2hx  +  b  =  0, 

we  must  have  Ab  -f  Ba  —  2llh  =  0. 

337.  It  appears  from  what  has  been  said  that  a  system  in 
involution    consists   of  a  number  of  pairs  of  points  on  a  line 

a,  a';  b,  b' ';  &c.,    and  such  that  the  anharmonic   ratio  of  any 
four  is  equal  to  that  of  their  four  conjugates.     The  expression  of 

this  equality  gives  a  number  of  relations  connecting  the  mutual 

distances  of  the  points.     Thus,  from  {abca}  =  {a'b'c'a},  we  have 

a  b .  ca'      a'b' .  ca 

aa  .  be      a  a .  b'c' ' 
or  ab.ca'.b'c'  =  —  a'b'.  c  a.  be. 

The  development  of  such  relations  presents  no  difficulty. 

338.  The   relation  Axx  +  H  (x  4-  x]  +  B  =  0,    connects    the 
distances  of  two  corresponding  points  from  any  origin  chosen 

arbitrarily  ;  but  by  a  proper  choice  of  origin  this  relation  can 

be  simplified.     Thus,  if  the  distances  be  measured  from  a  point 

at  the  distance  x  =  a,  the  given  relation  becomes 

A  (x  +  a)  (x  +  a)  +  H(x  +  x'  +  2a)  +  B=  0 ; 

or  Axaf  +  (H+Aa)  (x  +  x'}  -f  Aef  +  2#a  +  B  =  0. 
And  if  we  determine  a,  so  that  H+  AOL  =  0,  the  relation  reduces 

to  xx  =  constant.  The  point  thus  determined  is  called  the 

centre  of  the  system ;  and  we  learn  that  the  product  of  the  dis- 
tances from  the  centre  of  two  corresponding  points  is  constant. 

339.  Since,  in  general,  the  point  corresponding  to  any  point 

x  is   — JT'I  when  Ax  +  H—  0,  the  corresponding   point  is 

infinitely  distant:  or  the  centre  is  the  point  whose  conjugate  is 

infinitely  distant.  The  same  thing  appears  from  the  relation 

{oW}-{aWc},  or 

ac.bc  _  a'c'.b'c 

ac .be      a'c.b'c' 
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Let  c'  be  infinitely  distant,  Ic  ultimately  =  acf,  and  aV  =  6V, 
and  this  relation  becomes  ac.a'c  =bc.b'c]  or,  in  other  words,  the 
product  of  the  distances  from  c  of  two  conjugate  points  is  con- 

stant. The  relation  connecting  the  distances  from  the  centre 

may  be  either  ca.ca'  =  -}-k2  or  ca.ca  =  —  ?<?.  In  the  one  case 
two  conjugate  points  lie  on  the  same  side  of  the  centre  ;  in  the 

other  case  they  lie  on  opposite  sides. 

340.  A  point  which  coincides  with  its  conjugate  is  called  a 

focus  of  the  system.  There  are  plainly  two  foci/,  /'  equidistant 
from  the  centre  on  either  side  of  it,  whose  common  distance 

from  the  centre  c  is  given  by  the  equation  cft=-±U\  Thus, 

when  Jc2  is  taken  with  a  positive  sign,  that  is,  when  two  con- 
jugate points  always  lie  on  the  same  side  of  the  centre,  the  foci 

are  real.  In  the  opposite  case  they  are  imaginary.  By  writing 

x  =  x'  in  the  general  relation  connecting  corresponding  points, 
we  see  that  in  general  the  distances  of  the  foci  from  any  origin 

are  given  by  the  equation 

341.  We  have  seen  (Art.  336)  that  if  a  pair  of  corresponding 

points  be  given  by  the  equation  ax*  4-  %hx  +  b  =  0,  we  must  have 
Ab  +  Ba-  2Hh  =  0.     Now  this  equation  signifies  (see  Art.  332) 
that  any  two  corresponding  points   are   harmonically   conjugate 
with  the  two  foci.      The  same  inference  may  be  drawn  from 

the  relation  {aff'a'}  —  {aff'a},  which  gives 

af.af  _  a'f.af         fa_      _  frf_ 
aa'.ff7  ~  a'a.ff'  Q\fa~     fa'> 

or  the  distance  between  the  foci  ff  is  divided  internally  and  ex- 
ternally at  a  and  a  into  parts  which  are  in  the  same  ratio. 

COR.  When  one  focus  is  at  infinity,  the  other  bisects  the 

distance  between  two  conjugate  points;  and  it  follows  hence 

that  in  this  case  the  distance  ab  between  any  two  points  of  the 

system  is  equal  to  a'b\  the  distance  between  their  conjugates. 

342.  Two  pairs  of  points  determine  a  system  in  involution. 

We  may  take  arbitrarily  two  pairs  of  points 

ax*  +  2hx  +  6,  aV  +  Zh'x  +  V} 
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and  we  can  then  determine  A,  H,  B  from  the  equations 

We  see,  as  in  Art.  333,  that  any  other  pair  of  points  in  in- 
volution with  the  two  given  pairs  may  be  represented  by  an 

equation  of  the  form 

(ax*  +  2hx  -f  b)  +  \  (ax*  +  2h'x  +  b')  =  0, 
since,  when  A,  H,  B  are  determined  so  as  to  satisfy  the  two 

equations  written  above,  they  must  also  satisfy 

A  (b  +  \b')  +  B  (a  +  \a'\  -  2H  (h  +  \h')  =  0.* 
The  actual  values  of  -4,  B,  H,  found  by  solving  these  equations, 

are  2  (ah'  —  ah),  2(hb'  —  tib],  abf  -  a'b.  Consequently  the  foci 
of  the  system  determined  by  the  given  pairs  of  points,  are 

given  by  the  equation 

(ah'  -  ah)  x*  +  (off  -  ab)  x  +  (hb'  -  h'b)  =  0. 
This  may  be  otherwise  written  if  we  make  the  equations 

homogeneous  by  introducing  a  new  variable  y,  and  write 

U=  ax*  +  2hxy  +  by\      V  =  aV  +  2h'xy  4-  Vf. 
The  equation  which  determines  the  foci  is  then 

^^ 

dx  dy       dy  dx 

The  foci  of  a  system  given  by  two  pairs  of  points  a,  a'  ;  5,  bf 
may  be  also  found  as  follows,  from  the  consideration  that 

[afba]  =  {a'fb'a},  or 
af.ba'a'fJ/am 

a'f.  ba      af.  b'a'  ' 
whence  af  :  a'f2  ::  ab.ab'  :  a'b.a'b'] 

or/'  is  the  point  where  aa  is  cut  either  internally  or  externally 
in  a  certain  given  ratio. 

343.  The  relation  connecting  six  points  in  involution  is  of 

the  class  noticed  in  Art.  313,  and  is  such  that  the  same  relations 

*  It  easily  follows  from  this,  that  the  condition  that  three  pairs  of  points 

ax2  +  2hx  +  b,  a'x2  +  "2h'x  +  b',  a"x2  +  2h"x  +  b"  should  belong  to  a  system  in  in- 
volution, is  the  vanishing  of  the  determinant 

a,    h      b 
a',    h',    V 

a",  h",  b" 
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will  subsist  between  the  sines  of  the  angles  subtended  by  them 

at  any  point  as  subsist  between  the  segments  of  the  lines  them- 
selves. Consequently,  if  a  pencil  be  drawn  from  any  point  to 

six  points  in  involution,  any  transversal  cuts  this  pencil  in  six 

points  in  involution.  Again,  the  reciprocal  of  six  points  in  in- 
volution is  a  pencil  in  involution. 

The  greater  part  of  the  equations  already  found  apply 

equally  to  lines  drawn  through  a  point.  Thus,  any  pair  of  lines 

a  -  /A/3,  a  —  jjfft  belong  to  a  system  in  involution,  if 

and  if  we  are  given  two  pairs  of  lines 

they  determine  a  pencil  in  involution  whose  focal  lines  are 

(ah'  -  ah)  a2  +  (aV  -  a'b)  a/3  +  (hbf  -  Kb)  /32  =  0, 

_dUd_V= 

da.  d(3  '    dp  da.  ~ 

344.  A  system  of  conies  passing  through  four  fixed  points 

meets  any  transversal  in  a  system  of  points  in  involution. 

For,  if  £,  S'  be  any  two  conies  through  the  points,  S  +  \S' 
will  denote  any  other;  and  if,  taking  the  transversal  for  axis 

of  x  and  making  y  =  0  in  the  equations,  we  get  ax*  4-  2gx  +  c, 
and  da?  4-  2g'x  +  c  to  determine  the  points  in  which  the  trans- 

versal meets  S  and  /S",  it  will  meet  S  +  \S'  in 

ax*  +  "lax  -f-  c  +  X  («V  +  Igx  +  c'), 

a  pair  (Art.  342)  in  involution  with  the  two  former  pair. 

This  may  also  be  proved 

geometrically  as  follows  : 

By  the  anharmonic  proper- 
ties of  conies, 

{a.AdbA'}  =  {c.AdbA'}: 
but  if  we  observe  the  points 

in  which  these  pencils  meet 

AA,  we  get    {ACBA'\  =  {AB'iJA}  =  {AC'B'A}. 

Consequently  the  points  AA'  belong  to  the  system  in  in- 

volution determined  by  BB'^  (7(7,  the  pairs  of  points  in  which 
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the  transversal  meets  the  sides  of  the  quadrilateral  joining  the 

given  points. 
Reciprocating  the  theorem  of  this  article  we  learn  that,  the 

pairs  of  tangents  drawn  from  any  point  to  a  system  of  conies 

touching  four  fixed  lines^form  a  system  in  involution. 

345.  Since  the  diagonals  oc,  bd  may  be  considered  as  a  conic 

through  the  four  points,  it  follows,  as  a  particular  case  of  the  last 
Article,  that  any  transversal  cuts  the  four  sides  and  the  diagonals 

of  a  quadrilateral  in  points  Bff,  (7(7,  DD',  which  are  in  invo- 
lution. This  property  enables  us,  being  given  two  pairs  of  points 

BR,  DD'  of  a  system  in  involution,  to  construct  the  point  con- 
jugate to  any  other  (7.  For  take  any  point  at  random,  a ;  join 

aB,  aZ>,  a  (7;  construct  any  triangle  bed,  whose  vertices  rest  on 

these  three  lines,  and  two  of  whose  sides  pass  through  B'D',  then 
the  remaining  side  will  pass  through  0",  the  point  conjugate  to  C. 
The  point  a  may  be  taken  at  infinity,  and  the  lines  aB,  aD,  aG 

will  then  be  parallel  to  each  other.  If  the  point  (7  be  at  infinity 

the  same  method  will  give  us  the  centre  of  the  system.  The 

simplest  construction  for  this  case  is, — "  Through  .5,  Z>,  draw 

any  pair  of  parallel  lines  Bb,  DC  ;  and  through  B',  IX,  a  different 

pair  of  parallels  D'b,  B'c ;  then  be  will  pass  through  the  centre 

of  the  system." 
Ex.  1.  If  three  conies  circumscribe  the  same  quadrilateral,  the  common  tangent 

to  any  two  is  cut  harmonically  by  the  third.  For  the  points  of  contact  of  this 
tangent  are  the  foci  of  the  system  in  involution. 

Ex.  2.  If  through  the  intersection  of  the  common  chords  of  two  conies  we  draw 
a  tangent  to  one  of  them,  this  line  will  be  cut  harmonically  by  the  other.  For  in 

this  case  the  points  D  and  D'  in  the  last  figure  coincide,  and  will  therefore  be  a  focus. 

Ex.  3.  If  two  conies  have  double  contact  with  each  other,  or  if  they  have  a  con- 
tact of  the  third  order,  any  tangent  to  the  one  is  cut  harmonically  at  the  points  where 

it  meets  the  other,  and  where  it  meets  the  chord  of  contact.  For  in  this  case  the 
common  chords  coincide,  and  the  point  where  any  transversal  meets  the  chord  of 
contact  is  a  focus. 

Ex.  4.  To  describe  a  conic  through  four  points  a,  b,  c,  d,  to  touch  a  given  right 

line.  The  point  of  contact  must  be  one  of  the  foci  of  the  system  BB',  CC',  <fec.,  and 
these  points  can  be  determined  by  Art.  342.  This  problem,  therefore,  admits  of  two 
solutions. 

Ex.  5.  If  a  parallel  to  an  asymptote  meet  the  curve  in  C,  and  any  inscribed 
quadrilateral  in  points  abed ;  Ca.Cc=  Cb.  Cd.  For  C  is  the  centre  of  the  system. 

Ex.  6.   Solve  the  examples,  Art.  326,  as  cases  of  involution. 

In  Ex.  1,  AT  is  a  focus  :  in  Ex.  2,  Tis  also  a  focus  :  in  Ex.  3,  Tis  a  centre,  Ac. 

Ex.  7.  The  intercepts  on  any  line  between  a  hyperbola  and  its  asymptotes  arc 

equal.  For  in  this  case  one  foqus  of  the  system  is  at  infinity  (Cor.,  Art.  341). 
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346.  //  there  be  a  system  of  conies  having  a  common  self-con- 
jugate triangle,  any  line  passing  through  one  of  the  vertices  oj 

this  triangle  is  cut  by  the  system  in  involution. 

For,  if  in  aa2  -I-  &/32  +  c<f  we  write  a  =  &/3,  we  get 

a  pair  of  points  evidently  always  harmonically  conjugate  with 
the  two  points  where  the  line  meets  ft  and  7.  Thus,  then,  in 

particular,  a  system  of  conies  touching  the  four  sides  of  a  fixed 

quadrilateral  cuts  in  involution  any  transversal  which  passes 

through  one  of  the  intersections  of  diagonals  of  the  quadrila- 
teral (Ex.  3,  Art.  146).  The  points  in  which  the  transversal  meets 

diagonals  are  the  foci  of  the  system,  and  the  points  where  it 

meets  opposite  sides  of  the  quadrilateral  are  conjugate  points 
of  the  system. 

Ex.  1.  If  two  conies  U,  V  touch  their  common  tangents  A,  B,  <7,  D  in  the  points 

a,  b,  e,  d  ;  a',  b',  c',  d'  ;  a  conic  S  through  the  points  a,  b,  c,  and  touching  D  at  d', 
will  have  for  its  second  chord  of  intersection  with  V,  the  line  joining  the  intersections 
of  A  with  be,  B  with  ca,  C  with  ab. 

Let  V  meet  ab  in  a,  (3,  then,  by  this  article,  since  ab  passes  through  an  intersection 
of  diagonals  of  ABCD  (Ex.  2,  Art.  263),  a,  b  ;  a,  /3  belong  to  a  system  in  involution,  rf 
which  the  points  where  ab  meets  C  and  D  are  conjugate  points.  But  (Art.  345)  the 
common  chords  of  8  and  V  meet  ab  in  points  belonging  to  this  same  system  in 

involution,  determined  by  the  points  a,  b  ;  a,  /3,  in  which  8  and  V  meet  the  line  ab. 
If  then  one  of  the  common  chords  be  D,  the  other  must  pass  through  the  intersection 
of  C  with  ab. 

Ex.  2.  If  in  a  triangle  there  be  inscribed  an  ellipse  touching  the  sides  at  their 

middle  points  a,  b,  c,  and  also  a  circle  touching  at  the  points  a',  b',  c',  and  if  the  fourth 
common  tangent  D  to  the  ellipse  and  circle  touch  the  circle  at  d',  then  the  circle  de- 

scribed through  the  middle  points  touches  the  inscribed  circle  at  d'.  By  Ex.  1,  a  conic 
described  through  a,  b,  c,  will  touch  the  circle  at  d',  if  it  also  pass  through  the  points 
where  the  circle  is  met  by  the  line  joining  the  intersections  of  A,  be;  B,  ca;  C,  ab. 
But  this  line  is  in  this  case  the  line  at  infinity.  The  touching  conic  is  therefore  a 

circle.  Sir  W.  R.  Hamilton  has  thus  deduced  Feuerbach's  theorem  (p.  127)  as  a  par- 
ticular case  of  Ex.  1. 

The  point  d'  and  the  line  D  can  be  constructed  without  drawing  the  ellipse.  For 
since  the  diagonals  of  an  inscribed,  and  of  the  corresponding  circumscribing  quad- 

rilateral meet  in  a  point,  the  lines  ab,  cd;  a'b',  c'd',  and  the  lines  joining  AD.  BC; 
AC,  BD  all  intersect  in  the  same  point.  If  then  a.  /3,  y  be  the  vertices  of  the  triangle 

formed  by  the  intersections  of  be,  b'c'  ;  ca,  c'a'  ;  ab,  a'b'  ;  the  lines  joining  a'a,  b'fi,  c'y 
meet  in  d'.  In  other  words,  the  triangle  a/3y  is  homologous  with  abc,  a'b'c',  the 

centres  of  homology  being  the  points  d,  d'.  In  like  manner,  the  triangle  a/3y  is  also 
homologous  with  ABC,  the  axis  of  homoloerv  being  the  line  D. 

39. 
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CHAPTER    XVII. 

THE  METHOD  OF  PKOJECTION.* 

347.  WE  have  already  several  times  had  occasion  to  point 

out  to  the  reader  the  advantage  gained  by  taking  notice  of 

the  number  of  particular  theorems  often  included  under  one 

general  enunciation,  but  we  now  propose  to  lay  before  him  a 

short  sketch  of  a  method  which  renders  us  a  still  more  impor- 
tant service,  and  which  enables  us  to  tell  when  from  a  particular 

given  theorem  we  can  safely  infer  the  general  one  under  which 
it  is  contained. 

If  all  the  points  of  any  figure  be  joined  to  any  fixed  point 

in  space  (0),  the  joining  lines  will  form  a  cone,  of  which  the 

point  0  is  called  the  vertex,  and  the  section  of  this  cone,  by  any 

plane,  will  form  a  figure  which  is  called  the  projection  of  the 

given  figure.  The  plane  by  which  the  cone  is  cut  is  called  the 

plane  of  projection. 
To  any  point  of  one  figure  will  correspond  a  point  in  the  other. 

For,  if  any  point  A  be  joined  to  the  vertex  (9,  the  point  a, 

in  which  the  joining  line  OA  is  cut  by  any  plane,  will  be  the 

projection  on  that  plane  of  the  given  point  A. 
A  right  line  will  always  be  projected  into  a  right  line. 

For,  if  all  the  points  of  the  right  line  be  joined  to  the  vertex, 

the  joining  lines  will  form  a  plane,  and  this  plane  will  be  inter- 
sected by  any  plane  of  projection  in  a  right  line. 

Hence,  if  any  number  of  points  in  one  figure  lie  in  a  right 

line,  so  will  also  the  corresponding  points  on  the  projection ;  and 

if  any  number  of  lines  in  one  figure  pass  through  a  point,  so 

will  also  the  corresponding  lines  on  the  projection. 

*  This  method  is  the  invention  of  M.  Poncelet.  See  his  Traite  des  Proj>ri>  /,  s 
Projectives,  published  in  the  year  1822,  a  work  which  I  believe  may  be  regarded 
as  the  foundation  of  the  Modern  Geometry.  In  it  were  taught  the  principles,  that 
theorems  concerning  infinitely  distant  points  may  be  extended  to  finite  points  on  a 
right  line ;  that  theorems  concerning  systems  of  circles  may  be  extended  to  conies 

having  two  points  common ;  and  that  theorems  concerning  imaginary  points  and  lines 
may  be  extended  to  real  points  and  lines, 
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348.  Any  plane  curve  will  always  be  projected  into  another 
curve  of  the  same  degree. 

For  it  is  plain  that,  if  the  given  curve  be  cut  by  any  right  line 

in  any  number  of  points,  A,  J5,  6T,  D,  &c.  the  projection  will 
be  cut  by  the  projection  of  that  right  line  in  the  same  number  of 

corresponding  points,  a,  £,  o,  d,  &c. ;  but  the  degree  of  a  curve  is 

estimated  geometrically  by  the  number  of  points  in  which  it  can 

be  cut  by  any  right  line.  If  AB  meet  the  curve  in  some  real  and 

some  imaginary  points,  ab  will  meet  the  projection  in  the  same 

number  of  real  and  the  same  number  of  imaginary  points. 

In  like  manner,  if  any  two  curves  intersect,  their  projections 

will  intersect  in  the  same  number  of  points,  and  any  point 

common  to  one  pair,  whether  real  or  imaginary,  must  be  con- 
sidered as  the  projection  of  a  corresponding  real  or  imaginary 

point  common  to  the  other  pair. 

Any  tangent  to  one  curve  will  be  projected  into  a  tangent  to 
the  other. 

For,  any  line  AB  on  one  curve  must  be  projected  into  the 

line  ab  joining  the  corresponding  points  of  the  projection.  Now, 

if  the  points  A,  B,  coincide,  the  points  a,  6,  will  also  coincide, 

and  the  line  ab  will  be  a  tangent. 

More  generally,  if  any  two  curves  touch  each  other  in  any 

number  of  points,  their  projections  will  touch  each  other  in  the 

same  number  of  points. 

349.  If  a  plane  through  the  vertex  parallel  to  the  plane  of 

projection  meet  the  original  plane  in  a  line  AB:  then  any  pencil 

of  lines  diverging  from  a  point  on  AB  will  be  projected  into  a 
system  of  parallel  lines  on  the  plane  of  projection.     For,  since 

the  line  from  the  vertex  to  any  point  of  AB  meets  the  plane  of 

projection  at  an  infinite  distance,  the  intersection  of  any  two  lines 
which  meet  on  AB  is  projected  to  an  infinite  distance  on  the 

plane  of  projection.     Conversely,  any  system  of  parallel  lines  on 

the  original  plane  is  projected  into  a  system  of  lines  meeting  in  a 

point  on  the  line  DF,  where  a  plane  through  the  vertex  parallel  to 

the  original  plane  is  cut  by  the  plane  of  projection.     The  method 

of  projection  then  leads  us  naturally  to  the  conclusion,  that  any 

system  of  parallel  lines  may  be  considered  as  passing  through  a 

point  at  an  infinite  distance?  for  their  projections  on  any  plane 
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pass  through  a  point  in  general  at  a  finite  distance ;  and  again, 

that  all  the  points  at  infinity  on  any  plane  may  be  considered  as 

lying  on  a  right  line,  since  we  have  showed  that  the  projection 

of  any  point  in  which  parallel  lines  intersect  must  lie  somewhere 

on  the  right  line  DF  in  the  plane  of  projection. 

350.  We  see  now,  that  if  any  property  of  a  given  curve  does 
not  involve  the  magnitude  of  lines  or  angles,  but  merely  relates 

to  the  position  of  lines  as  drawn  to  certain  points,  or  touching 

certain  curves,  or  to  the  position  of  points,  &c.,  then  this  property 

will  be  true  for  any  curve  into  which  the  given  curve  can  be  pro- 

jected.    Thus,  for  instance,  "if  through  any  point  in  the  plane 
of  a  circle  a  chord  be  drawn,  the  tangents  at  its  extremities  will 

meet  on  a  fixed  line."     Now  since  we  shall  presently  prove  that 
every  curve  of  the  second  degree  can  be  projected  into  a  circle, 

the  method  of  projection  shows  at  once  that  the  properties  of 

poles  and  polars  are  true  not  only  for  the  circle,  but  also  for  all 

curves  of  the  second  degree.     Again,  Pascal's  and  Brianchon's 
theorems  are  properties  of  the  same  class,  which  it  is  sufficient 

to  prove  in  the  case  of  the  circle,  in  order  to  know  that  they  are 
true  for  all  conic  sections. 

351.  Properties  which,  if  true  for  any  figure,  are  true  for  its 

projection,  are  called  protective  properties.     Besides  the  classes  of 

theorems  mentioned  in  the  last  Article,  there  are  many  projective 

theorems  which  do  involve  the  magnitude  of  lines.     For  instance, 

the  anharmonic  ratio  of  four  points   in  a  right  line  [ABCD], 

being  measured  by  the  ratio  of  the  pencil  {O.ABCD}  drawn  to 

the  vertex,  must  be  the  same  as  that  of  the  four  points  {abed}, 

where  this  pencil  is  cut  by  any  transversal.     Again,  if  there  be 

an  equation  between  the  mutual   distances  of  any   number  of 

points  in  a  right  line,  such  as 

AB.CD.EF+k.AC.BE.DF+l.AD.CE.BF+&c.  =  Q, 

where  in  each  term  of  the  equation  the  same  points  are  men- 

tioned, although  in  different  orders,  this  property  will  be  pro- 
jective.    For  (see  Art.  311)  if  for  AB  we  substitute 

OA.OB.smAOB 

-Of-      ~,&c, 
each  term  of  the  equation  will  coqtain  OA,  OB.  QC.OD.  Ofi.  OF 
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in  the  numerator,  and  OP*  in  the  denominator.  Dividing,  then, 
by  these,  there  will  remain  merely  a  relation  between  the  sines 

of  angles  subtended  at  0.  It  is  evident  that  the  points  A,  B,  C, 

D,  E,  F,  need  not  be  on  the  same  right  line;  or,  in  other  words, 

that  the  perpendicular  OP  need  not  be  the  same  for  all,  provided 

the  points  be  so  taken  that,  after  the  substitution,  each  term  of 

the  equation  may  contain  in  the  denominator  the  same  product, 

OP.  OP.  OP',  &c.  Thus,  for  example,  "  If  lines  meeting  in  a 
point  and  drawn  through  the  vertices  of  a  triangle  ABC  meet  the 

opposite  sides  in  the  points  a,  b,  c,  then  Ab.Bc.  Ca  =  Ac.Ba.Gb." 
This  is  a  relation  of  the  class  just  mentioned,  and  which  it  is 

sufficient  to  prove  for  any  projection  of  the  triangle  ABC.  Let 

us  suppose  the  point  C  projected  to  an  infinite  distance,  then 

AC,  BC,  Cc  are  parallel,  and  the  relation  becomes 

Ab.Bc  =  Ac.Ba, 

the  truth  of  which  is  at  once  perceived  on  making  the  figure. 

352.  It  appears,  from  what  has  been  said,  that  if  we  wish  to 

demonstrate  any  projective  property  of  any  figure,  it  is  sufficient 

to  demonstrate  it  for  the  simplest  figure  into  which  the  given 

figure  can  be  projected ;  e.g.  for  one  in  which  any  line  of  the 
given  figure  is  at  an  infinite  distance. 

Thus,  if  it  were  required  to  investigate  the  harmonic  pro- 
perties of  a  complete  quadrilateral  ABCD,  whose  opposite  sides 

intersect  in  E,  F,  and  the  intersection  of  whose  diagonals  is  G, 

we  may  join  all  the  points  of  this  figure  to  any  point  in  space  0, 

and  cut  the  joining  lines  by  any  plane  parallel  to  OEF,  then 

EF  is  projected  to  infinity,  and  we  have  a  new  quadrilateral, 

whose  sides  ab,  cd  intersect  in  e  at  infinity,  that  is,  are  parallel ; 

while  ad,  be  intersect  in  a  point /at  infinity,  or  are  also  parallel. 

We  thus  see  that  any  quadrilateral  may  be  projected  into  a 

parallelogram.  Now  since  the  diagonals  of  a  parallelogram 
bisect  each  other,  the  diagonal  ac  is  cut  harmonically  in  the 

points  a,  g,  c,  and  the  point  where  it  meets  the  line  at  in- 
finity ef.  Hence  AB  is  cut  harmonically  in  the  points  A,  G,  C, 

and  where  it  meets  EF. 

Ex.  If  two  triangles  ABC,  A'B'C',  be  such  that  the  points  of  intersection  of 
AB,  A'B';  EC,  B'C';  CA,  C'A';  lie  in  a  right  line,  then  the  lines  AA',  ££',  CO 
meet  in  a  point. 
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Project  to  infinity  the  line  in  which  AB,  A'B',  «fec.  intersect ;  then  the  theorem 
becomes :  "  If  two  triangles  abc,  a'b'c'  have  the  sides  of  the  one  respectively  parallel 

to  the  sides  of  the  other,  then  the  lines  aa',  bb',  cc'  meet  in  a  point."  But  the  truth 
of  this  latter  theorem  is  evident,  since  aa',  bb'  both  cut  cc'  in  the  same  ratio. 

353.  In  order  not  to  interrupt  the  account  of  the  applications 

of  the  method   of  projection,  we  place  in   a  separate  section 

the    formal    proof    that    every    curve   of    the    second    degree 

may  be  projected  so  as  to  become   a  circle.     It  will  also    be 

proved  that  by  choosing  properly  the  vertex  and  plane  of  pro- 
jection, we  can,  as  in  Art.  352,  cause  any  given  line  EF  on  the 

figure   to  be  projected  to  infinity,   at  the  same  time  that  the 
projected  curve  becomes  a  circle.     This  being  for  the  present 

taken  for  granted,  these  consequences  follow : 

Given  any  conic  section  and  a  point  in  its  plane,  we  can  project 

it  into  a  circle,  of  which  the  projection  of  that  point  is  the  centre, 
for  we  have  only  to  project  it  so  that  the  projection  of  the  polar 

of  the  given  point  may  pass  to  infinity  (Art.  154). 

Any  two  conic  sections  may  be  projected  so  as  both  to  become 

circles,  for  we  have  only  to  project  one  of  them  into  a  circle, 

and  so  that  any  of  its  chords  of  intersection  with  the  other  shall 

pass  to  infinity,  and  then,  by  Art.  257,  the  projection  of  the 

second  conic  passing  through  the  same  points  at  infinity  as  the 
circle  must  be  a  circle  also. 

Any  two  conies  which  have  double  contact  with  each  other  may 

be  projected  into  concentric  circles.  For  we  have  only  to  project 
one  of  them  into  a  circle,  so  that  its  chord  of  contact  with  the 

other  may  pass  to  infinity  (Art.  257). 

354.  We  shall  now  give  some  examples  of  the  method  of 

deriving  properties  of  conies  from  those  of  the  circle,  or  from 

other  more  particular  properties  of  conies. 

Ex  1.  "A  line  through  any  point  is  cut  harmonically  by  the  curve  and  the  polar 

of  that  point."  This  property  and  its  reciprocal  are  projective  properties  (Art.  351), 
and  both  being  true  for  the  circle,  are  true  for  every  conic.  Hence  all  the  properties 
of  the  circle  depending  on  the  theory  of  poles  and  polars  are  true  for  all  the  conic 
sections. 

Ex.  2.  The  anharmonic  properties  of  the  points  and  tangents  of  a  conic  are  pro- 
jective properties,  which,  when  proved  for  the  circle,  as  in  Art.  312,  are  proved  for 

all  conies.  Hence,  every  property  of  the  circle  which  results  from  either  of  its 
anharmonic  properties  is  true  also  for  all  the  conic  sections. 

Ex.  3.  Carnot's  theorem  (Art.  313),  that  if  a  conic  meet  the  sides  of  a  triangle, 

Ab.Ab'.Bc.  Be.  Ca  .  Ca'  =  Ac .  Ac'  Ba .  Ba'.  Cb .  Cb', 
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is  a  projcctive  property  which  need  only  be  proved  in  the  case  of  the  circle,  in  which 

case  it  is  evidently  true,  since  Ab.Ab'  =  Ac.  Ac',  &c. 
The  theorem  can  evidently  be  proved  in  like  manner  for  any  polygon. 

Ex.  4.   From  Carnot's  theorem,  thus  proved,  could  be  deduced  the  properties  of 
Art.  148,  by  supposing  the  point  C at  an  infinite  distance;  we  then  have 

Ab.Ab'  _Ba.J]a' 
Ac.  Ac  ~  Be.  Be'  ' where  the  line  Ab  is  parallel  to  Ba. 

Ex.  5.  Given  two  concentric  circles,  Given  two  conies  having  double  con- 
any  chord  of  one  which  touches  the  tact  with  each  other,  any  chord  of  one 

other  is  bisected  at  the  point  of  con-  which  touches  the  other  is  cut  harmo- 
tact.  nically  at  the  point  of  contact,  and  where 

it  meets  the    chord  of    contact    of    the 

conies.     (Ex.  3,  Art.  345). 

For  the  line  at  infinity  in  the  first  case  is  projected  into  the  chord  of  contact  of 
two  conies  having  double  contact  with  each  other.  Ex.  4,  Art.  236,  is  only  a  particular 
case  of  this  theorem. 

Ex.  6.  Given  three  concentric  circles,  Given  three  conies  all  touching  each 

any  tangent  to  one  is  cut  by  the  other  other  in  the  same  two  points,  any  tan- 
two  in  four  points  whose  anharmonic  gent  to  one  is  cut  by  the  other  two  in 
ratio  is  constant.  four  points  whose  anharmonic  ratio  is 

constant. 

The  first  theorem  is  obviously  true,  since  the  four  lengths  are  constant.  The 
second  may  be  considered  as  an  extension  of  the  anharmonic  property  of  the  tangents 
of  a  conic.  In  like  manner  the  theorem  (in  Art.  276)  with  regard  to  anharmonic 
ratios  in  conies  having  double  contact  is  immediately  proved  by  projecting  the  conies 
into  concentric  circles. 

Ex.  7.  We  mentioned  already,  that  it  was  sufficient  to  prove  Pascal's  theorem 
for  the  case  of  a  circle,  but,  by  the  help  of  Art.  353,  we  may  still  further  simplify 
our  figure,  for  we  may  suppose  the  line  joining  the  intersection  of  AB,  DE,  to  that 
of  BC,  EF,  to  pass  off  to  infinity ;  and  it  is  only  necessary  to  prove  that,  if  a  hexagon 
be  inscribed  in  a  circle  having  the  side  AB  parallel  to  DE,  and  JBC  to  EF,  then 
CD  will  be  parallel  to  AF;  but  the  truth  of  this  can  be  shown  from  elementary 
considerations. 

Ex.  8.  A  triangle  is  inscribed  in  any  conic,  two  of  whose  sides  pass  through  fixed 
points,  to  find  the  envelope  of  the  third  (Ex.  3,  Art.  272).  Let  the  line  joining  the  fixed 

points  be  projected  to  infinity,  and  at  the  same  time  the  conic  into  a  circle,  and  this  pro- 

blem becomes, — "  A  triangle  is  inscribed  in  a  circle,  two  of  whose  sides  are  parallel 
to  fixed  lines,  to  find  the  envelope  of  the  third."  But  this  envelope  is  a  concentric 
circle,  since  the  vertical  angle  of  the  triangle  is  given ;  hence  in  the  general  case, 
the  envelope  is  a  conic  touching  the  given  conic  in  two  points  on  the  line  joining 

the  two  given  points. 

Ex.  9.  To  investigate  the  projective  properties  of  a  quadrilateral  inscribed  in  a 

conic.  Let  the  conic  be  projected  into  a  circle,  and  the  quadrilateral  into  a  parallelo- 
gram (Art.  352).  Now  the  intersection  of  the  diagonals  of  a  parallelogram  inscribed 

in  a  circle  is  the  centre  of  the  circle;  hence  the  intersection  of  the  diagonals  of  a 
quadrilateral  inscribed  in  a  conic  is  the  pole  of  the  line  joining  the  intersections  of 
the  opposite  sides.  Again,  if  tangents  to  the  circle  be  drawn  at  the  vertices  of  this 
parallelogram,  the  diagonals  of  the  quadrilateral  so  formed  will  also  pass  through 

the  centre,  bisecting  the  angles  between  the  first  diagonals ;  hence,  "  the  diagonals 
of  the  inscribed  and  corresponding  circumscribing  quadrilateral  pass  through  a  point, 

and  form  a  harmonic  pencil. ' 
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Ex.  10.  Given  four  points  on  a  conic, 
the  locus  of  its  centre  is  a  conic  through 

the  middle  points  of  the  sides  of  the  given 

quadrilateral.  (Ex.  15,  Art.  328). 

Ex.  11.  The  locus  of  the  point  where 

parallel  chords  of  a  circle  are  cut  in  a 
given  ratio  is  an  ellipse  having  double 
contact  with  the  circle.  (Art.  163). 

Given  four  points  on  a  conic,  the  locus 
of  the  pole  of  any  fixed  line  is  a  conic 
passing  through  the  fourth  harmonic  to 
the  point  in  which  this  line  meets  each 
side  of  the  given  quadrilateral. 

If  through  a  fixed  point  0  a  line  be 
drawn  meeting  the  conic  in  A,  B,  and  on 
it  a  point  P  be  taken,  such  that  [OABP] 

may  be  constant,  the  locus  of  P  is  a 
conic  having  double  contact  with  the 

given  conic. 

355.  We  may  project  several  properties  relating  to  foci  by 

the  help  of  the  definition  of  a  focus,  given  p.  239,  viz.  that 

if  F  be  a  focus,  and  A,  B  the  two  imaginary  points  in  which 

any  circle  is  met  by  the  line  at  infinity;  then  FA,  FB  are 

tangents  to  the  conic. 
Ex.  1.  The  locus  of  the  centre  of  a          If  a  conic  be  described  through  two 

circle  touching  two  given  circles  is  a  hy-    fixed  points  A,  B,  and  touching  two  given 
perbola,  having  the  centres  of  the  given    conies    which    also 
circles  for  foci. 

through    those 
points,  the  locus  of  the  pole  of  AB  is  a 
conic  touching  the  four  lines  CA,  CB, 

C'A,  C'Bt  where  C,  C',  are  the  poles  of 
AB  with  reg  ird  to  the  two  given  conies. 

In  this  example  we  substitute  for  the  word  'circle,'  "conic  through  two  fixed 

points  A,  B,"  (Art.  257),  and  for  the  word  '  centre,'  "  pole  of  the  line  AB."  (Art.  154). 
Ex.  2.  Given  the  focus  and  two  points  Given  two  tangents,  and  two  points 

of  a  conic  section,  the  intersection  of  tan-  on  a  conic,  the  locus  of  the  intersection 
gents  at  those  points  will  lie  on  a  fixed  of  tangents  at  those  points  is  a  right  line. 
line.  (Art.  191). 

Ex.  3.  Given  a  focus  and  two  tan- Given  two  fixed  points  A,  B  ;  two  tan- 
gents to  a  conic,  the  locus  of  the  other  gents  FA,  FB  passing  one  through  each 

focus  is  a  right  line.  (This  follows  from  point,  and  two  other  tangents  to  a  conic; 
Art.  189).  the  locus  of  the  intersection  of  the  other 

tangents  from  A,  B,  is  a  right  line. 

Ex.4    If  a    triangle   circumscribe   a          If  two  triangles  circumscribe  a  conic, 

parabola,    the  circle    circumscribing    the    their  six  vertices  lie  on  the  same  conic.* 
triangle  passes  through  the  focus,  Cor.  4, 
Art.  223. 

For  if  the  focus  be  F,  and  the  two  circular  points  at  infinity  A,  B,  the  triangle 
FAB  is  a  second  triangle  whose  three  sides  touch  the  parabola. 

Ex.  5.  The  locus  of  the  centre  of  a  Given  one  tangent,  and  three  points 
circle  passing  through  a  fixed  point,  and  on  a  conic,  the  locus  of  the  intersection 
touching  a  fixed  line,  is  a  parabola  of  of  tangents  at  any  two  of  these  points  is 
whi^  the  fixed  point  is  the  focus.  a  conic  inscribed  in  the  triangle  formed 

by  those  points. 

*  This  is  easily  proved  directly.  Take  a  side  of  each  triangle  and,  by  the  anhar- 
monic  nroperty  of  the  tangents  of  a  conic,  these  lines  are  cut  horn  ©graphically  by  the 
other  xour  sides  ;  whence  it  may  easily  be  seen  that  the  pencils  joining  the  opposite 
vertices  of  each  triangle  to  the  other  four  are  homographic: 
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Ex.  6.  Given  four  tangents  to  a  conic,  Given  four  tangents  to  a  conic,  the 
the  locus  of  the  centre  is  the  line  joining  locus  of  the  pole  of  any  line  is  the  line 
the  middle  points  of  the  diagonals  of  the  joining  the  fourth  harmonics  of  the  points 
quadrilateral.  where  the  given  line  meets  the  diagonals 

of  the  quadrilateral. 

It  follows  from  our  definition  of  a  focus,  that  if  two  conies  have  the  same  focus, 
this  point  will  be  an  intersection  of  common  tangents  to  them,  and  will  possess  the 
properties  mentioned  at  the  end  of  Art.  264.  Also,  that  if  two  conies  have  the  same 
focus  and  directrix,  they  may  be  considered  as  two  conies  having  double  contact  with 
each  other,  and  may  be  projected  into  concentric  circles. 

356.  Since  angles  which  are  constant  in  any  figure  will  in 

general  not  be  constant  in  the  projection  of  that  figure,  we  pro- 
ceed to  show  what  property  of  a  projected  figure  may  be  inferred 

when  any  property  relating  to  the  magnitude  of  angles  is  given  ; 

and  we  commence  with  the  case  of  the  right  angle. 

Let  the  equations  of  two  lines  at  right  angles  to  each  other 

be  x  =  0,  y  =  0,  then  the  equation  which  determines  the  direction 

of  the  points  at  infinity  on  any  circle  is  xl  +  yz  =  0,  or 

Hence  (Art.  57)  these  four  lines  form  a  harmonic  pencil. 

Hence,  given  four  points  A,  B,  C,  D,  of  a  line  cut  harmonically, 

where  A,  B  may  be  real  or  imaginary,  if  these  points  be  trans- 
ferred by  a  real  or  imaginary  projection,  so  that  -4,  B  may 

become  the  two  imaginary  points  at  infinity  on  any  circle,  then 

any  lines  through  (7,  D  will  be  projected  into  lines  at  right 

angles  to  each  other.  Conversely,  any  two  lines  at  right  angles 

to  each  other  will  be  projected  into  lines  which  cut  harmonically 

the  line  joining  the  two  fixed  points  which  are  the  projections  of 

the  imaginary  points  at  infinity  on  a  circle. 

Ex.  1.  The  tangent  to  a  circle  is  at  Any  chord  of  a  conic  is  cut  harmoni- 
right  angles  to  the  radius.  cally  by  any  tangent,  and  by  the  line 

joining  the  point  of  contact  of  that  tan- 
gent to  the  pole  of  the  given  chord. 

(Art.  146). 
For  the  chord  of  the  conic  is  supposed  to  be  the  projection  of  the  line  at  infinity 

in  the  plane  of  the  circle  ;  the  points  where  the  chord  meets  the  conic  will  be  the 
projections  of  the  imaginary  points  at  infinity  on  the  circle  j  and  the  pole  of  the 
chord  will  be  the  projection  of  the  centre  of  the  circle. 

Ex.  2.  Any  right  line  drawn  through  Any  right  line  through  a  point,  the 
the  focus  of  a  conic  is  at  right  angles  line  joining  its  pole  to  that  point,  and 
to  the  line  joining  its  pole  to  the  focus,  the  two  tangents  from  the  point,  form 
(Art.  192).  a  harmonic  pencil.  (Art.  146). 

It  is  evident  that  the  first  of  these  properties  is  only  a  particular  case  of  the 

T  T, 
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second,  if  we  recollect  that  the  tangents  from  the  focus  are  the  lines  joining  the 
focus  to  the  two  imaginary  points  on  any  circle. 

Ex.  3.  Let  us  apply  Ex.  6  of  the  last  Article  to  determine  the  locus  of  the  pole 
of  a  given  line  with  regard  to  a  system  of  confocal  conies.  Being  given  the  two 
foci,  we  are  given  a  quadrilateral  circumscribing  the  conic  (Art.  258o) ;  one  of  the 
diagonals  of  this  quadrilateral  is  the  line  joining  the  foci,  therefore  (Ex.  6)  one  point 

on  the  locus  is  the  fourth  harmonic  to  the  point  where  the  given  line  cuts  the  dis- 
tance between  the  foci.  Again,  another  diagonal  is  the  line  at  infinity,  and  since 

the  extremities  of  this  diagonal  are  the  points  at  infinity  on  a  circle,  therefore  by  the 
present  Article  the  locus  is  perpendicular  to  the  given  line.  The  locus  is,  therefore, 
completely  determined. 

Ex.  4.  Two  confocal  conies  cut  each  If  two  conies  be  inscribed  in  the  same 

other  at  right  angles.  quadrilateral,  the  two  tangents  at  any  of 

their  points  of  intersection  cut  any  dia- 
gonal of  the  circumscribing  quadrilateral 

harmonically. 

The  last  theorem  is  a  case  of  the  reciprocal  of  Ex.  1,  Art.  345. 

Ex.  5.  The  locus  of  the  intersection  The  locus  of  the  intersection  of  tan- 

of  two  tangents  to  a  central  conic,  which  gents  to  a  conic,  which  divide  harmoni- 
cut  at  right  angles,  is  a  circle.  cally  a  given  finite  right  line  AB,  is  a 

conic  through  4,  B. 

The  last  theorem  may,  by  Art.  146,  be  stated  otherwise  thus  :  "  The  locus  of  a 
point  0,  such  that  the  line  joining  0  to  the  pole  of  AO  may  pass  through  B,  is  a, 

conic  through  A,  B ;"  and  the  truth  of  it  is  evident  directly,  by  taking  four  positions 
of  the  line,  when  we  see,  by  Ex.  2,  Art.  297,  that  the  anharmonic  ratio  of  four  lines 
AO  is  equal  to  that  of  four  corresponding  lines  BO. 

Ex.  6.  The  locus  of  the  intersection  If  in  the  last  example  AB  touch  the 
of  tangents  to  a  parabola,  which  cut  at  given  conic,  the  locus  of  0  will  be  the 

right  angles,  is  the  directrix.  line  joining  the  points  of  contact  of  tan- 
gents from  A,  B. 

Ex.  7.  The  circle  circumscribing  a  tri-          If   two    triangles   are   both   self -con- 
angle  self -con  jugate   with  regard  to  an    jugate  with  regard  to  a  conic,   their  six 
equilateral  hyperbola  passes  through  the    vertices  lie  on  a  conic, 
centre  of  the  curve.    (Ex.  5,  Art.  228). 

The  fact  that  the  asymptotes  of  an  equilateral  hyperbola  are  at  right  angles  may 
be  stated,  by  this  Article,  that  the  line  at  infinity  cuts  the  curve  in  two  points  which 
are  harmonically  conjugate  with  respect  to  A,  B,  the  imaginary  circular  points  at 

infinity.  And  since  the  centre  C  is  the  pole  of  AB,  the  triangle  CAB  is  self -con  jugate 
with  regard  to  the  equilateral  hyperbola.  It  follows,  by  reciprocation,  that  the  six 
sides  of  two  self -conjugate  triangles  touch  the  same  conic. 

Ex.  8.  If  from  any  point  on  a  conic  If  a  harmonic  pencil  be  drawn  through 
two  lines  at  right  angles  to  each  other  be  any  point  on  a  conic,  two  legs  of  which 
drawn,  the  chord  joining  their  extremities  are  fixed,  the  chord  joining  the  extremities 
passes  through  a  fixed  point.  (Ex.  2,  of  the  other  legs  will  pass  through  a  fixed 
Art.  181).  point. 

In  other  words,  given  two  points  a,  c  on  a  conic,  and  {abed}  a  harmonic  ratio,  bd 
will  pass  through  a  fixed  point,  namely,  the  intersection  of  tangents  at  a,  c.  But  the 
truth  of  this  may  be  seen  directly:  for  let  the  line  ac  meet  bd  in  K,  then,  since 
{a.abcd}  is  a  harmonic  pencil,  the  tangent  at  a  cuts  bd  in  the  fourth  harmonic  to  K: 

but  so  likewise  must  the  tangent  at  c,  therefore  these  tangents  meet  bd  in  the  same 

point.  As  a  particular  case  of  this  theorem  we  have  the  following  :  "  Through  a  fixed 
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point  on  a  conic  two  lines  are  drawn,  making  equal  angles  with  a  fixed  line,  the  chord 

joining  their  extremities  will  pass  through  a  fixed  point." 

357.  A  system  of  pairs  of  right  lines  drawn  through  a  point, 

so  that  the  lines  of  each  pair  make  equal  angles  with  a  fixed  line, 
cuts  the  line  at  infinity  in  a  system  of  points  in  involution,  of 

which  the  two  points  at  infinity  on  any  circle  form  one  pair  of  con- 
jugate points.     For  they  evidently  cut  any  right  line  in  a  system 

of  points  in  involution,  the  foci  of  which  are  the  points  where  the 

line  is  met  by  the  given  internal  and  external  bisector  of  every 

pair  of  right  lines.     The  two  points  at  infinity  just  mentioned 

belong  to  the  system,  since  they  also  are  cut  harmonically  by 
these  bisectors. 

The  tangents  from  any  point  to  a  The  tangents  from  any  point  to  a 
system  of  confocal  conies  make  equal  system  of  conies  inscribed  in  the  same 
angles  with  two  fixed  lines.  (Art.  189).  quadrilateral  cut  any  diagonal  of  that 

quadrilateral  in  a  system  of  points  in 
involution  of  which  the  two  extremities 

of  that  diagonal  are  a  pair  of  conjugate 

points.  (Art.  344). 

358.  Two  lines  which  contain   a  constant  angle  cut  the  line 

joining  the  two  points  at  infinity  on  a  circle,  so  that  the  an/iar- 
monic  ratio  of  the  four  points  is  constant. 

For  the  equation  of  two  lines  containing  an  angle  8  being 

x  =  0,  y  =  0,  the  direction  of  the  points  at  infinity  on  any  circle 
is  determined  by  the  equation 

a?  +  y*  +  2xy  cos0  =  0; 
and,  separating  this  equation  into  factors,  we  see,  by  Art.  57,  that 
the  anharmonic  ratio  of  the  four  lines  is  constant  if  6  be  constant. 

Ex.  1.  "  The  angle  contained  in  the  same  segment  of  a  circle  is  constant."  We 
see,  by  the  present  Article,  that  this  is  the  form  assumed  by  the  anharmonic  property 
of  four  points  on  a  circle  when  two  of  them  are  at  an  infinite  distance. 

Ex.  2.  The  envelope  of  a  chord  of  a  If  tangents  through  any  point  0  meet 

conic  which  subtends  a  constant  angle  the  conic  in  T,  T',  and  there  be  taken 
at  the  focus  id  another  conic  having  the  on  the  conic  two  points  A,  B,  such  that 

same  focus  and  the  same  directrix.  {O.ATBT1}  is  constant,  the  envelope  of 
AB  is  a  conic  touching  the  given  conic 

in  the  points  T.  T'. 
Ex.  3.  The  locus  of  the  intersection  If  a  finite  line  AB,  touching  a  conic 

jf  tangents  to  a  parabola  which  cut  at  be  cut  by  two  tangents  in  a  given  an- 
a  given  angle  is  a  hyperbola  having  the  harmonic  ratio,  the  locus  of  their  inter- 
same  focus  and  the  same  directrix.  section  is  a  conic  touching  the  given  conic 

at  the  points  of  contact  of  tangents  from 
A.B. 
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Ex.  4.  If  from  the  focus  of  a  conic  a  If  a  variable  tangent  to  a  conic  meet 

line  be  drawn  making  a  given  angle  with  two  fixed  tangents  in  T,  T',  and  a  fixed 
any  tangent,  the  locus  of  the  point  where  line  in  M,  and  there  be  taken  on  it  a 

it  meets  it  is  a  circle.  point  /',  such  that  [PTM1 "}  may  be  con- 
stant, the  locus  of  P  is  a  conic  passing 

through  the  points  where  the  fixed  tan- 
gents meet  the  fixed  line. 

A  particular  case  of  this  theorem  is :  "  The  locus  of  the  point  where  the  intercept 
of  a  variable  tangent  between  two  fixed  tangents  is  cut  in  a  given  ratio  is  a  hyper 

bola  whose  asymptotes  are  parallel  to  the  fixed  tangents." 
Ex.  5.  If  from  a  fixed  point  0,  OP  be  Given  the  anharmonic  ratio  of  a  pencil 

drawn  to  a  given  circle,  and  TP  be  drawn  three  of  whose  legs  pass  through  fixed 
making  the  angle  TPO  constant,  the  points,  and  whose  vertex  moves  along  a 
envelope  of  TP  is  a  conic  having  0  for  its  given  conic,  passing  through  two  of  the 
focus.  points,  the  envelope  of  the  fourth  leg  is 

a  conic  touching  the  lines  joining  these 
two  to  the  third  fixed  point. 

A  particular  case  of  this  is :  "  If  two  fixed  points  A,  B  on  a  conic  be  joined  to 
a  variable  point  P,  and  the  intercept  made  by  the  joining  chords  on  a  fixed  line  be 
cut  in  a  given  ratio  at  M,  the  envelope  of  PM  is  a  conic  touching  parallels  through 
A  and  B  to  the  fixed  line. 

Ex.  6.  If  from  a  fixed  point  0,  OP  be  Given  the  anharmonic  ratio  of  a  pencil, 
drawn  to  a  given  right  line,  and  the  angle  three  of  whose  legs  pass  through  fixed 
TPO  be  constant,  the  envelope  of  TP  is  points,  and  whose  vertex  moves  along  a 

a  parabola  having  0  for  its  focus.  fixed  line,  the  envelope  of  the  fourth  leg 
is  a  conic  touching  the  three  sides  of  the 
triangle  formed  by  the  given  points. 

359.  We  have  now  explained  the  geometric  method  by 

which,  from  the  properties  of  one  figure,  may  be  derived  those 
of  another  figure  which  corresponds  to  it  (not  as  in  Chap.  XV., 

so  that  the  points  of  one  figure  r.nswer  to  the  tangents  of  the 

other,  but)  so  that  the  points  of  one  answer  to  the  points  of  the 
other,  and  the  tangents  of  one  to  the  tangents  of  the  other. 

All  this  might  be  placed  on  a  purely  analytical  basis.  If  any 

curve  be  represented  by  an  equation  in  trilinear  coordinates, 

referred  to  a  triangle  whose  sides  are  a,  £,  c,  and  if  we  interpret 

this  equation  with  regard  to  a  different  triangle  of  reference 

whose  sides  are  a',  £>',  c',  we  get  a  new  curve  of  the  same  degree 
as  the  first  ;*  and  the  same  equations  which  establish  any  pro- 

perty of  the  first  curve  will,  when  differently  interpreted,  establish 

*  It  is  easy  to  see  that  the  equation  of  the  new  curve  referred  to  the  old  triangle 

is  got  by  substituting  in  the  given  equation  for  a,  ft,  y ;  la+m/3+  ny,  l'a  +  m'p  +  n'y, 
I" a  +  m"/3  +  n"y,  where  la  +  m(3  +  ny  represents  the  line  which  is  to  correspond  to 
a,  <fcc.  For  fuller  information  on  this  method  of  transformation  see  Higher  1'lune 
Curves,  Chap.  vni. 
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a  corresponding  property  of  the  second.  In  this  manner  a 

right  line  in  one  system  always  corresponds  to  a  right  line  in 

the  other,  except  in  the  case  of  the  equation  aa  +  5/3  +  cy  =  0, 
which  in  the  one  system  represents  an  infinitely  distant  line, 

in  the  other  a  finite  line.  And,  in  like  manner,  a  en  +  6'/3  +  cy, 
which  represents  an  infinitely  distant  line  in  the  second  system 

represents  a  finite  line  in  the  first  system.  In  working  with 

trilinear  coordinates,  the  reader  can  hardly  have  failed  to  take 

notice  how  the  method  itself  teaches  him  to  generalize  all 

theorems  in  which  the  line  at  infinity  is  concerned.  Thus 

(see  Art.  278)  if  it  be  required  to  find  the  locus  of  the  centre 

of  a  conic,  when  four  points  or  four  tangents  are  given,  this 

is  done  by  finding  the  locus  of  the  pole  of  the  line  at  infinity 

aa  -f  bft  +  cy,  and  the  very  same  process  gives  the  locus  under 

the  same  conditions  of  the  pole  of  any  line  Xa  +  y^/3  4-  vy. 
We  saw  (Art.  59)  that  the  anharmonic  ratio  of  a  pencil 

P—kP',  P-IP',  &c.  depends  only  on  the  constants  k,  I,  and  is 

not  changed  if  P  and  P'  are  supposed  to  represent  different  right 
lines.  We  can  infer  then,  that  in  the  method  of  transformation 

which  we  are  describing,  to  a  pencil  of  four  lines  in  the  one 

system  answers  in  the  other  system  a  pencil  having  the  same 

anharmonic  ratio ;  and  that  to  four  points  on  a  line  correspond 
four  points  whose  anharmonic  ratio  is  the  same. 

An  equation,  8=0,  which  represents  a  circle  in  the  one 

system  will,  in  general,  not  represent  a  circle  in  the  other. 

But  since  any  other  circle  in  the  first  system  is  represented 

by  an  equation  of  the  form 

S-f  (aa  +  bft  4  cy)  (\a  +  pP  4-  vy)  =  0, 

all  curves  of  the  second  system  answering  to  circles  in  the 

first  will  have  common  the  two  points  common  to  8  and 
aa.  +  bj3  4  cy. 

360.  In  this  way  we  are  \  d,  on  purely  analytical  grounds,  to 

the  most  important  principles,  on  the  discovery  and  application 

of  which  the  merit  of  Poncelet's  great  work  consists.  The 

principle  of  continuity  (in  virtue  of  which  properties  of  a  figure, 

in  which  certain  points  and  lines  are  real,  are  asserted  to  be 

true  even  when  some  of  these  points  and  lines  are  imaginary) 
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is  more  easily  established  on  analytical  than  on  purely  geo- 
metrical grounds.  In  tact,  the  processes  of  analysis  take  no 

account  of  the  distinction  between  real  and  imaginary,  so  im- 
portant in  pure  geometry.  The  processes,  for  example,  by  which, 

in  Chap.  XIV.,  we  obtained  the  properties  of  systems  of  conies 

represented  by  equations  of  forms  S-ka.fi  or  S=ka?  are  un- 
affected, whether  we  suppose  a  and  ft  to  meet  S  in  real  or 

imaginary  points.  And  though  from  any  given  property  of  a 
system  of  circles  we  can  obtain,  by  a  real  projection,  only  a 

property  of  a  system  of  conies  having  two  imaginary  points 

common,  yet  it  is  plainly  impossible  to  prove  such  a  property  by 
general  equations  without  proving  it,  at  the  same  time,  for  conies 

having  two  real  points  common.  The  analytical  method  of 

transformation,  described  in  the  last  article,  is  equally  applicable 

if  we  wish  real  points  in  one  figure  to  correspond  to  imaginary 

points  on  the  other.  Thus,  for  example,  a2  •+  ft*  =  7*  denotes  a 
curve  met  by  7  in  imaginary  points ;  but  if  we  substitute  for 

a,  £;  P±  Q  V(-  1),  and  for  7,  R,  where  P,  Q,  R  denote  right 
lines,  we  get  a  curve  met  in  real  points  by  R  the  line  corre- 

sponding to  7. 
The  chief  difference  in  the  application  of  the  method  of 

projections,  considered  geometrically  and  considered  algebrai- 
cally, is  that  the  geometric  method  would  lead  us  to  prove  a 

theorem,  first  for  the  circle  or  some  other  simple  state  of  the 

figure,  and  then  infer  a  general  theorem  by  projection.  The 

algebraic  method  finds  it  as  easy  to  prove  the  general  theorem 

as  the  simpler  one,  and  would  lead  us  to  prove  the  general 

theorem  first,  and  afterwards  infer  the  other  as  a  particular 
case. 

THEORY  OF  THE   SECTIONS   OF  A  CONE. 

361.  The  sections  of  a  cone  by  parallel  planes  are  similar. 

Let  the  line  joining  the  vertex  0  to  any  fixed  point  A  in  one 

plane  meet  the  other  in  the  point  a ;  and  let  radii  vectores  be 
drawn  from  A,  a  to  any  other  two  corresponding  points  jB,  b. 

Then,  from  the  similar  triangles  OAB,  Oab,  AB  is  to  ab  in  the 
constant  ratio  OA  :  Oa ;  and  since  every  radius  vector  of  the  one 

curve  is  parallel  and  in  a  constant  ratio  to  the  corresponding 
radius  vector  of  the  o*her,  the  two  curves  are  similar  (Art.  233). 
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COR.  If  a  cone  standing  on  a  circular  base  be  cut  by  any 

plane  parallel  to  the  base,  the  section  will  be  a  circle.  This 

is  evident  as  before ;  we  may,  if  we  please,  suppose  the  points 

A,  a  the  centres  of  the  curves. 

362.  A  section  of  a  cone,  standing  on  a  circular  base,  may 

be  either  an  ellipse,  hyperbola,  or  parabola. 
A  cone  of  the  second  degree  is  said  to  be  right  if  the  line 

joining  the  vertex  to  the  centre  of  the  circle  which  is  taken  for 

base  be  perpendicular  to  the  plane  of  that  circle ;  in  which  case 

this  line  is  called  the  axis  of  the  cone.  If  this  line  be  not  per- 
pendicular to  the  plane  of  the  base,  the  cone  is  said  to  be  oblique. 

The  investigation  of  the  sections  of  an  oblique  cone  is  exactly  the 

same  as  that  of  the  sections  of  a  right  cone,  but  we  shall  treat 

them  separately,  because  the  figure  in  the  latter  case  being  more 

simple  will  be  more  easily  understood  by  the  learner,  who  may  at 

first  find  some  difficulty  in  the  conception  of  figures  in  space. 

Let  a  plane  ( OAB)  be  drawn  through  the  axis  of  the  cone 

OC  perpendicular  to  the  plane  of  the 

section,  so  that  both  the  section  MSsN 

and  the  base  A  SB  are  supposed  to 

be  perpendicular  to  the  plane  of  the 

paper;  the  line  RS,  in  which  the 
section  meets  the  base,  is,  therefore, 

also  supposed  perpendicular  to  the 

plane  of  the  paper.  Let  us  first 

suppose  the  line  MN,  in  which  the  M/ 
section  cuts  the  plane  OAB  to  meet 

both  the  sides  OA,  OB,  as  in  the  figure,  on  the  same  side  of 
the  vertex. 

Now  let  a  plane  parallel  to  the  base  be  drawn  at  any  other 

point  s  of  the  section.  Then  we  have  (Euc.  ill.  35)  the  square 

of  US,  the  ordinate  of  the  circle,  =  AR.RB,  and  in  like  manner 

rs*  =  ar.rb.  But  from  a  comparison  of  the  similar  triangles 
ARM,  arM;  BRN,  brN,  it  can  at  once  be  proved  that 

AR.RB  :  MR.RN::  ar.rb  :  Mr.rN. 

Therefore  RS*  :  rs*  ::  MR.RN:  Mr.rN. 

Hence  the  section  MSsN  is  such  that  the  square  of  any  ordinate 
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rs  is  to  the  rectangle  under  the  parts  in  which  it  cuts  the  line 

MN  in  the  constant  ratio  ES*  :  ME. EN. 
Hence    it   can    immediately    be   inferred 

(Art.  149)  that  the  section  is  an  ellipse, 
of  which   MN  is  the  axis  major,  while 

the  square  of  the  axis  minor  is  to  MN2 
in  the  given  ratio 

ES* :  ME. EN. 
Secondly.  Let  MN  meet  one  of  the 

sides  OA  produced.  The  proof  proceeds 

exactly  as  before,  only  that  now  we  prove 

the  square  of  the  ordinate  rs  in  a  constant 
ratio  to  the  rectangle  Mr.rN  under  the 

parts  into  which  it  cuts  the  line  MN  pro- 
duced. The  learner  will  have  no  difficulty 

in  proving  that  the  locus  will  in  this 

case  be   a  hyperbola,  consisting  evidently  of  the  two  opposite 

branches  NsS,  MsSf. 
Thirdly.  Let  the  line  MN  be  parallel 

to  one  of  the  sides.  In  this  case,  since 

AR  =  ar,  and  RB  :  rb  ::  EN :  rN,  we  have 

the  square  of  the  ordinate  rs(=ar.rb)  to 
the  abscissa  rN  in  the  constant  ratio 

ES*(=AE.EB):EN. 

The  section  is  therefore  &  parabola.* 

363.    It  is  evident  that  the  projections  of  the  tangents  at  the 

points  A,  B  of  the  circle  are  the  tangents  at  the  points  M,  N  of 

*  Those  who  first  treated  of  conic  sections  only  considered  the  case  when  a  right 
cone  is  cut  by  a  plane  perpendicular  to  a  side  of  the  cone ;  that  is  to  say,  when  MN 

is  perpendicular  to  OB.  Conic  sections  were  then  divided  into  sections  of  a  right- 
angled,  acute,  or  obtuse-angled  cone ;  and  according  to  Eutochius,  the  commentator 
on  Apollonius,  were  called  parabola,  ellipse,  or  hyperbola,  according  as  the  angle  of 
the  core  was  equal  to,  less  than,  or  exceeded  a  right  angle.  (See  the  passage  cited 

in  full,  Walton's  Examples,  p.  428).  It  was  Apollonius  who  first  showed  that  all 
three  sections  could  be  made  from  one  cone;  and  who,  according  to  Pappus,  gave 

them  the  names  parabola,  ellipse,  and  hyperbola,  for  the  reason  stated,  Art.  194.  The 
authority  of  Eutochius,  who  was  more  than  a  century  later  than  Pappus,  may  not 
be  very  great,  but  the  name  parabola  was  used  by  Archimedes,  who  was  prior  to 

Apollonius. 
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the  conic  section  (Art.  348) ;  now  in  the  case  of  the  parabola  the 

point  M  and  the  tangent  at  it  go  off  to  infinity  ;  we  are  therefore 

again  led  to  the  conclusion  that  every  parabola  lias  one  tangent 

altogether  at  an  infinite  distance. 

364.  Let  the  cone  now  be  supposed  oblique.     The  plane  of 

the  paper  is  a  plane  drawn  through  the  line  OC,  perpendicular  to 
the  plane  of  the  circle  AQSB.     Now  let 
the  section  meet  the  base  in  any  line  Q8, 

draw  a  diameter  LK  bisecting  QS,  and 

let  the  section  meet  the  plane  OLK  in  the 

line  MN,  then  the  proof  proceeds  exactly 

as  before ;  we  have  the  square  of  the  ordi- 
nate  US  equal  to  the  rectangle  LR.RK; 

if  we  conceive  a  plane,  as  before,  drawn 

parallel  to  the  base  (which,  however,  is  left 

out  of  the  figure  in  order  to  avoid  render-    v 
ing  it  too  complicated),  we  have  the  square 

of  any  other  ordinate  rs  equal  to  the  corresponding  rectangle 

Ir.rJc;   and  we  then  prove  by  the  similar  triangles  KRM,  krM\ 

LRN,  IrN,  in  the  plane  OLK,  exactly  as  in  the  case  of  the  right 

cone,  that  US'2 :  rs*,  as  the  rectangle  under  the  parts  into  which 
each  ordinate  divides  MN,  and  that  therefore  the  section  is  a 

conic  of  which  MN  is  the  diameter  bisecting  QS,  and  which  is  an 

ellipse  when  MN  meets  both  the  lines  OL,  OK  on  the  same  side 

of  the  vertex,  a  hyperbola  when  it  meets  them  on  different  sides 
of  the  vertex,  and  a  parabola  when  it  is  parallel  to  either. 

In  the  proof  just  given  QS  is  supposed  to  intersect  the  circle 

in  real  points ;  if  it  did  not,  we  have  only  to  take,  instead  of  the 

circle  AB,  any  other  parallel  circle  ab,  which  does  meet  the  sec- 
tion in  real  points,  and  the  proof  will  proceed  as  before. 

365.  We  give  formal  proofs  of  the  two  following  theorems, 

though  they  are  evident  by  the  principle  of  continuity : 

I.  If  a  circular  section  be  cut  by  any  plane  in  a  line  QS, 

the  diameters  conjugate  to  QS  in  that  plane,  and  in  the  plane  of 

the  circle,  meet  QS  in  the  same  point.  When  qs  meets  the  circle 

in  real  points,  the  diameter  conjugate  to  it  in  every  plane  must 

evidently  pass  through  its  middle  point  r.  We  have  therefore 

uu. 
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only  to  examine  the  case  where  QS  does  not  meet  In  real 

points.  It  was  proved  (Art.  361)  that  the  diameter  df  which 

bisects  chords,  parallel  to  qs,  of  any  circular  section,  will  be  pro- 
jected into  a  diameter  DF  bisecting 

the  parallel  chords  of  any  parallel 
section.  The  locus  therefore  of  the 

middle  points  of  all  chords  of  the 

cone  parallel  to  qs  is  the  plane  Odf. 

The  diameter  therefore,  conjugate 

to  QS  in  any  section,  is  the  inter- 
section of  the  plane  Odf  with  the 

plane  of  that  section,  and  must  > 

pass  through  the  point  R  in  which  /] 
QS  meets  the  plane  ODf. 

II.  In  the  same  case,  if  the  diameters  conjugate  to  QS  in  the 

circle,  and  in  the  other  section,  lie  cut  into  segments  RD,  RF;  Rg, 

Rk  /  the  rectangle  DR .  RF  is  to  gR .  Rk  as  the  square  of  the  dia- 
meter of  the  section  parallel  to  QS  is  to  the  square  of  the  conjugate 

diameter.  This  is  evident  when  qs  meets  the  circle  in  real 

points;  since  rs*  =  dr.rf.  In  general,  we  have  just  proved  that 
the  lines  gk,  df,  DF,  lie  in  one  plane  passing  through  the  vertex. 

The  points  D,  d  are  therefore  projections  of  g ;  that  is  to  say, 

they  lie  in  one  right  line  passing  through  the  vertex.  We  have 
therefore,  by  similar  triangles,  as  in  Art.  364, 

dr.rf :  DR. RFr.gr. rk-.gR.Rk; 

and  since  dr.rf'iB  to  gr.rk  as  the  squares  of  the  parallel  semi- 
diameters,  DR.RFis  to  gR.Rk  in  the  same  ratio. 

If  the  section  gskq  and  the  line  QS  be  given,  this  theorem 
enables  us  to  find  DR.RF,  that  is  to  say,  the  square  of  the 

tangent  from  R  to  the  circular  section  whose  plane  passes 
through  QS. 

366.  Given  any  conic  gskq  and  a  line  TL  in  its  plane  not 

cutting  it,  we  can  project  it  so  that  the  conic  may  become  a  circle, 

and  the  line  may  be  projected  to  infinity. 

To  do  this,  it  is  evidently  necessary  to  find  0  the  vertex  of 
a  cone  standing  on  the  given  conic,  and  such  that  its  sections 

parallel  to  the  plane  OTL  shall  be  circles.  For  then  any  of 
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these  parallel  sections  would  be  a  projection  fulfilling  the  con- 

ditions of  the  problem.  Now,  if  TL  meet  the  conjugate  dia- 
meter in  the  point  L,  it  follows  from  the  theorem  last  proved 

that  the  distance  OL  is  given;  for,  since  the  plane  OTL  is 

to  meet  the  cone  in  an  infinitely  small  circle,  OL*  is  to  gL.Lk 
in  the  ratio  of  the  squares  of  two  known  diameters  of  the  section. 

OL  must  also  lie  in  the  plane  perpendicular  to  TL,  since  it  is 

parallel  to  the  diameter  of  a  circle  perpendicular  to  TL.  And 

there  is  nothing  else  to  limit  the  position  of  the  point  0,  which 

may  lie  anywhere  in  a  known  circle  in  the  plane  perpendicular 
to  TL. 

367.  If  a  sphere  be  inscribed  in  a  right  cone  touching  the 

plane  of  any  section,  the  point  of  contact  will  be  a  focus  of  that 

section,  and  the  corresponding  directrix  will  be  the  intersection  of 

the  plane  of  the  section  with  the  plane  of  contact  of  the  cone  with 

the  sphere. 

Let  spheres  be  both  inscribed  and  exscribed  between  the 
cone  and  the  plane  of  the  section.  Now,  if 

any  point  P  of  the  section  be  joined  to  the 

vertex,  and  the  joining  line  meet  the  planes 

of  contact  in  Dd,  then  we  have  PD  =  PF, 
since  they  are  tangents  to  the  same  sphere,  and, 

similarly,  Pd  =  PF',  therefore  PF+PF'=Dd, 

which  is  constant.  The  point  (R),  where  FF' 
meets  AB  produced,  is  a  point  on  the  direc- 

trix, for  by  the  property  of  the  circle  NFMB 
is  cut  harmonically,  therefore  R  is  a  point  on  the  polar  of  F. 

It  is  not  difficult  to  prove  that  the  parameter  of  the  section 

MPN  is  constant,  if  the  distance  of  the  plane  from  the  vertex 
be  constant. 

COR.  The  locus  of  the  vertices  of  all  right  cones,  out  of 

which  a  given  ellipse  can  be  cut,  is  a  hyperbola  passing  through 
the  foci  of  the  ellipse.  For  the  difference  of  MO  and  NO  is 

constant,  being  equal  to  the  difference  between  MFf  and  NFf* . 

*  By  the  help  of  this  principle,  Mr.  Mulcahy  showed  how  to  derive  properties  of 
angles  subtended  at  the  focus  of  a  conic  from  properties  of  small  circles  of  a  sphere. 
For  example,  it  is  known  that  if  through  any  point  P,  on  the  surface  of  a  sphere,  a 

great  circle  be  drawn,  cutting  a  small  circle  in  the  points  A,  B,  then  tan  \AP  tan  £BP 
is  constant.  Now,  let  us  take  a  cone  whose  base  is  the  small  circle,  and  whose  vertex 
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368.  If  from  all  the  points  of  any  figure  perpendiculars  be 

let  fall  on  any  plane,  their  feet  will  trace  out  a  figure  which  is 

called  the  orthogonal  projection  of  the  given  figure.  The  ortho- 
gonal projection  of  any  figure  is,  therefore,  a  right  section  of  a 

cylinder  passing  through  the  given  figure. 

All  parallel  lines  are  in  a  constant  ratio  to  their  orthogonal 

projections  on  any  plane. 

For  (see  fig.  p.  3)  MM '  represents  the  orthogonal  projection 
of  the  line  PQ,  and  it  is  evidently  =  PQ  multiplied  by  the  cosine 

of  the  angle  which  PQ  makes  with  MM '. 
All  lines  parallel  to  the  intersection  of  the  plane  of  the  figure 

with  the  plane  on  which  it  is  projected  are  equal  to  their  orthogonal 

projections. 
For  since  the  intersection  of  the  planes  is  itself  not  altered 

by  projection,  neither  can  any  line  parallel  to  it. 

The  area  of  any  figure  in  a  given  plane  is  in  a  constant  ratio 

to  its  orthogonal  projection  on  another  given  plane. 

For,  if  we  suppose  ordinates  of  the  figure  and  of  its  pro- 
jection to  be  drawn  perpendicular  to  the  intersection  of  the 

planes,  every  ordinate  of  the  projection  is  to  the  correspond- 
ing ordinate  of  the  original  figure  in  the  constant  ratio  of 

the  cosine  of  the  angle  between  the  planes  to  unity;  and  it 

will  be  proved,  in  Chap.  XIX.,  that  if  two  figures  be  such  that 

the  ordinate  of  one  is  in  a  constant  ratio  to  the  corresponding 

ordinate  of  the  other,  the  areas  of  the  figures  are  in  the 
same  ratio. 

Any  ellipse  can  be  orthogonally  projected  into  a  circle. 

For,  if  we  take  the  intersection  of  the  plane  of  projection  with 

the  plane  of  the  given  ellipse  parallel  to  the  axis  minor  of  that 

ellipse,  and  if  we  take  the  cosine  of  the  angle  between  the  planes 

is  the  centre  of  the  sphere,  and  let  us  Cut  this  cone  by  any  plane,  and  we  learn  that 

"if  through  a  pointy,  in  the  plane  of  any  conic,  a  line  be  drawn  cutting  the  conic 
in  the  points  a,  b,  then  the  product  of  the  tangents  of  the  halves  of  the  angles  which 

ap,  bp  subtend  at  the  vertex  of  the  cone  will  be  constant."  This  property  will  be 
true  of  the  vertex  of  any  right  cone,  out  of  which  the  section  can  be  cut,  and, 
therefore,  since  the  focus  is  a  point  in  the  locus  of  such  vertices,  it  must  be  true 
that  tan^nfp  tan  Jft/)>  is  constant  (see  p.  210). 



THE   METHOD   OF  PHOJECTION.  333 

=  -  ,  then  every  line  parallel  to  the  axis  minor  will  be  unaltered 

by  projection,  but  every  line  parallel  to  the  axis  major  will 
be  shortened  in  the  ratio  b  :  a  ;  the  projection  will,  therefore 

(Art.  163),  be  a  circle,  whose  radius  is  b. 

369.  We  shall  apply  the  principles  laid  down  in  the  last 

Article  to  investigate  the  expression  for  the  radius  of  a  circle 

circumscribing  a  triangle  inscribed  in  a  conic,  given  Ex.  7, 

p.  220.* Let  the  sides  of  the  triangle  be  a,  /3,  7,  and  its  area  A,  then, 

by  elementary  geometry, 

r4* Now  let  the  ellipse  be  projected  into  a  circle  whose  radius  is  &, 

then,  since  this  is  the  circle  circumscribing  the  projected  triangle, 
we  have 

But,  since  parallel  lines  are  in  a  constant  ratio  to  their  projec- 

a': a  ::£:£' 

tions,  we  have 

and  since  (Art.  368)  A'  is  to  A  as  the  area  of  the  circle  (= 
to  the  area  of  the  ellipse  (=irdb]  (see  chap,  xix.),  we  have 

A  :  A::b:a. 

,.,    vun"' 

Hence  '   :    -p  :  :  ab  :obb    , 
vinr 

and  therefore  -a=  —  --,  —  . 
ab 

*  This  proof  of  Mr.  Mac  Cullagh's  theorem  is  due  to  Dr.  Graves. 
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CHAPTER   XVIII. 

INVARIANTS  AND  COVARIANTS  OF  SYSTEMS  OF  CONICS. 

370.  IT  was  proved  (Art.  250)  that  if  8  and  S'  represent 
two  conies,  there  are  three  values  of  k  for  which  kS  +  /S"  re- 

presents a  pair  of  right  lines.  Let 

S—  ax*  +  by*  +  cz*  +  2fyz  +  2gzx  +  2hxy, 

S'  =  ax*  +  &y  +  cV  +  2fyz  +  2gzx  +  2h'xy. 
We  also  write 

A  =  abc  +   2#A  -  a/1  -  £/  -  ch\ 

A'  =  a  W  +  2/y A'  -  a/2  -  ft'/*  -  c'A" . 
Then  the  values  of  k  in  question  are  got  by  substituting  ka  +  a, 

kb  -f  &',  &c.  for  a,  5,  &c.  in  A  =  0.  We  shall  write  the  resulting 
cubic  Afc8  4-  0yfc2  +  &k  +  A'  =  0. 

The  value  of  0,  found  by  actual  calculation,  is 

(be  -f]  a'  4  (ca  -g*}  b'  +  (ab  -  K2)  c' 

+  2(gh-  af}f  -f  2  (hf-  bg)g'  +  2(fg-  ch)  h' ; 
or,  using  the  notation  of  Art.  151, 

Aa  +  Bb'  +  Cc  +  2Ff  +  2Gg'  +  2Hh' ; 
or,  again, 

,  e?A      ,,  d&       ,  c?A       .,  d&        ,  d&      ,,  d& 
a  j-  +  P-jr  + c  T-  +f    j*  +9  j    + h    Ji  » 

da          db          do  df      1   dy  dh^ 

as  is  also  evident  from  Taylor's  theorem.  The  value  of  0'  is 
got  from  0  by  interchanging  accented  and  unaccented  letters, 

and  may  be  written 

0'  =  A  a  +  B'b  +  C'c  -f  2F'f+  2  G'g  +  2H'h. 

If  we  eliminate  k  between  kS+S'  =  0,  and  the  cubic  which 
determines  k,  the  result 

AS/8-  ®8"S+  ®'8'8*  -  A'S3  =  0, 

(an  equation  evidently  of  the  sixth  degree),  denotes  the  three 

pairs  of  lines  which  join  the  four  points  of  intersection  of  the 
two  conies  (Art.  238). 
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Ex.   To  find  the  locus  of  the  intersection  of  normals  to  a  conic,  at  the  extremities 

of  a  chord  which  passes  through  a  given  point  a/3.    Let  the  curve  be  S  =  -2  +  ̂  —  1  j 

then  the  points  whose  normals  pass  through  a  given  point  x'y'  are  determined  (Art.  181, 
Ex.  1)  as  the  intersections  of  B  with  the  hyperbola  S'  =  2  (c^xy+b^y'x  —  a^x'y).  We  can 
then,  by  this  article,  form  the  equation  of  the  six  chords  which  join  the  feet  of 

normals  through  x'y',  and  expressing  that  this  equation  is  satisfied  for  the  point  aft 
we  have  the  locus  required. 

We  have  A  =  -  JL  ,  9  =  0,  6'  =  -  (aV2  +  Py'*  -  c*),  A'  =  - 

The  equation  of  the  locus  is  then 

-  Pay  -  c2a/3)3  +  2  (a?x*  +  jy  _  C4)  (a^x  -  tfay  -  C2a|3) 

which  represents  a  curve  of  the  third  degree.  If  the  given  point  be  on  either  axis, 

the  locus  reduces  to  a  conic,  as  may  be  seen  by  making  a  =  0  in  the  preceding  equa- 
tion. It  is  also  geometrically  evident,  that  in  this  case  the  axis  is  part  of  the  locus. 

The  locus  also  reduces  to  a  conic  if  the  point  be  infinitely  distant  ;  that  is  to  say, 
when  the  problem  is  to  find  the  locus  of  the  intersection  of  normals  at  the  extremities 
of  a  chord  parallel  to  a  given  line. 

371.  If  on  transforming  to  any  new  set  of  coordinates, 

Cartesian  or  trilinear,  S  and  S'  become  S  and  /S",  it  is  manifest 

that  kS+  S'  becomes  JcS+  $',  and  that  the  coefficient  k  is  not 

affected.  It  follows  that  the  values  of  &,  for  which  kS+  S' 
represents  right  lines,  must  be  the  same,  no  matter  in  what 

system  of  coordinates  S  and  /S"  are  expressed.  Hence,  then, 
the  ratio  between  any  two  coefficients  in  the  cubic  for  &,  found 
in  the  last  Article,  remains  unaltered  when  we  transform  from 

any  one  set  of  coordinates  to  another.*  The  quantities  A,  0, 

©',  A'  are  on  this  account  called  invariants  of  the  system  of 
conies.  If  then,  in  the  case  of  any  two  given  conies,  having 
by  transformation  brought  8  and  &  to  their  simplest  form,  and 

having  calculated  A,  ©,  ©',  A',  we  find  any  homogeneous  rela- 
tion existing  between  them,  we  can  predict  that  the  same  relation 

will  exist  between  these  quantities,  no  matter  to  what  axes  the 

equations  are  referred.  It  will  be  found  possible  to  express  in 

*  It  may  be  proved  by  actual  transformation  that  if  in  S  and  S'  we  substitute 

for  x,  y,  z  ;  Ix  +  my  +  nz,  l*x  +  m'y  +  n'z,  l"x  +  m"y  +  n"z,  the  quantities  A,  9,  6'  A' 
for  the  transformed  system,  are  equal  to  those  for  the  old,  respectively  multiplied  by 
the  square  of  the  determinant 

I,    m,    n 

I',    m',   n' 

I",  m",  n" 
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terms  of  the  same  four  quantities  the  condition  that  the  conies 

should  be  connected  by  any  relation,  independent  of  the  position 
of  the  axes,  as  is  illustrated  in  the  next  Article. 

The  following  exercises  in  calculating  the  invariants  A,  0, 

©',  A',  include  some  of  the  cases  of  most  frequent  occurrence. 
Ex.  1.  Calculate  the  invariants  when  the  conies  are  referred  to  their  common 

self  -con  jugate  triangle.    We  may  take 

S  =  ax2-  +  bf  +  cz2,    S'  =  a'x2  +  by  +  c'z2  ; 

and  we  may  further  simplify  the  equations  by  writing  x,  y,  z,  instead  of  x  .J(a'), 

y  -J(^')>  z  «Jlc')>  6°  as  to  bring  S'  to  the  form  x2  +  yz  +  z~.  We  have  then 

A  =  ale,    e  =  bc  +  ca  +  ab,    &'  =  a  +  b  +  c,   A'  =  1. 

And  S  4-  kS'  will  represent  right  lines,  if 

#»  +  k2  (a  +  b  +  c)  +  k  (be  +  ca  +  ab)  +  abc  =  0. 

And  it  is  otherwise  evident  that  the  three  values  for  which  S  +  kS'  represents  right 
lines  are  -  a,  —  b,  —  c. 

Ex.  2.  Let  S',  as  before,  be  x2  +  y2  +  z2,  and  let  S  represent  the  general  equation. 

Ana.    6  =  (be  -/2)  4-  (ca  -  g2)  4  (ab  -  h2)  =  A  +  B  +  C  ;   e'  =  a  +  b  +  c. 

Ex.  3.  Let  S  and  S'  represent  two  circles  x2  +  y2  —  r2,  (x  —  a)2  +  (y  -  /3)2  -  r'2. 
Ans.    A  =  -  r2,   6  =  a2  +  /32  -  2rs  -  r'2,    B'  =  a2  +  /32  -  r2  -  2r'2,   A'  =  -  r'2.     So 

that  if  D  be  the  distance  between  the  centres  of  the  circles,  S  +  kS'  will  represent 
right  lines  if 

r2  +  (2,-2  +  r'2  -  Z>2)  k  +  (r2  +  2r'2  -  D2)  k2  +  r'W  -  0. 

Now  since  we  know  that  S—  S'  represents  two  right  lines  (one  finite,  the  other 
infinitely  distant),  it  is  evident  that  -  1  must  be  a  root  of  this  equation.  And  it  ia 
in  fact  divisible  by  k  +  1,  the  quotient  being 

r2  +  (r2  +  r'2  -  Z>2)  k  +  r'W  =  0. 

Ex.  4.  Let  S  represent  ̂   +  1!  -  1,  while  S'  is  the  circle  (x  -  a)2  +  (y  -  /3)2  -  r\ 

Ex.  5.   Let  S  represent  the  parabola  y2  —  4mx,  and  S'  the  circle  as  before. 
Ans.   A  =  -  4m2,    0  =  -  4m  (a  +  m),   B'  =  ft-  -  4ma  -  r-,   A'  =  -  r2. 

372.  To  find  the  condition  that  two  conies  S  and  /S'  should 
touch  each  other.  When  two  points,  A,  B,  of  the  four  inter- 

sections of  two  conies  coincide,  it  is  plain  that  the  pair  of  lines 

AC,  BD  is  identical  with  the  pair  AD,  BC.  In  this  case,  then, 
the  cubic 

must  have  two  equal  roots.     But  it  can  readily  be  proved  that 
the  condition  that  this  should  be  the  case  is 

(00'  -  9  A  AY  =  4  (&  -  3  A0')  (0/a  -  3A'0)t 
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or          ©20'a  +  ISA  A'00'  -  27  AaA'2  -  4A0'3  -  4A'03  =  0, 

which  is  the  required  condition  that  the  conies  should  touch. 

It  is  proved,  in  works  on  the  theory  of  equations,  that  the 

left-hand  member  of  the  equation  last  written  is  proportional 
to  the  product  of  the  squares  of  the  differences  of  the  roots  of 

the  equation  in  &;  and  that  when  it  is  positive  the  roots  of 

the  equation  in  k  are  all  real,  but  that  when  it  is  negative  two  of 

these  roots  are  imaginary.  In  the  latter  case  (see  Art.  282), 

S  and  S'  intersect  in  two  real  and  two  imaginary  points:  in 
the  former  case,  they  intersect  either  in  four  real  or  four 

imaginary  points.  These  last  two  cases  have  not  been  distin- 
guished by  any  simple  criterion. 

If  three  points  Aj  B,  G  coincide  the  conies  osculate  and  in 

this  case  the  three  pairs  of  right  lines  are  all  identical  so  that 

the  cubic  must  be  a  perfect  cube  ;  the  condition  for  this  are 

—  =  ~^L.  =  -  —  ;  .     The  conditions  for  double  contact  are  of  a 0       0       3A 

different  kind  and  will  be  got  further  on. 

Ex.  1.  To  find  by  this  method  the  condition  that  two  circles  shall  touch.  Forming 

the  condition  that  the  reduced  equation  (Ex.  3,  Art.  371),  r2  +  (r2+r'2-Z>2)£+r'2/5;2=0, 

should  have  equal  roots,  we  get  r2  4-  r'2  —  D2  =  ±  2rr'  ;  D  =  r  ±  r'  as  is  geometrically 
evident. 

Ex.  2.  The  conditions  for  contact  between  two  conies  can  be  shortly  found  in 

the  cases  of  trinomial  equations  by  identifying  the  equations  of  tangents  at  any 
point  given  Arts.  127,  130,  and  are  for 

fyz  +  gzx  +  hxy  =  0,   J(fa)  +  J(wy)  +  J(nz)  =  0,    (//)*  +  (gmfi  +  (An)*  =  0, 

for       J(fa)  +  4(mg)  +  J(iw)  =  0,   ax*  +  by*  +  cz*  =  0,     -)    +  +    -      =  0, \a/        \o  /        \c  J 

for  ax2  +  by"-  +  czz  =  0,  jyz  +  gzx  +  hxy  =  0,    («/2)^  + 

Ex.  3.  Find  the  locus  of  the  centre  of  a  circle  of  constant  radius  touching  a  given 

conic.  We  have  only  to  write  for  A,  A',  0,  0'  in  the  equation  of  this  article,  the 
values  Ex.  4  and  5,  Art.  371  ;  and  to  consider  a,  /3  as  the  running  coordinates.  The 

locus  is  in  general  a  curve  of  the  eighth  degree,  but  reduces  to  the  sixth  in  the  case  of 

the  parabola.  This  curve  is  the  same  which  we  should  find  by  measuring  from  the 
curve  on  each  normal,  a  constant  length,  equal  to  r.  It  is  sometimes  called  the  curve 

parallel  to  the  given  conic.  Its  evolute  is  the  same  as  that  of  the  conic. 
The  following  are  the  equations  of  the  parallel  curves  given  at  full  length,  which 

may  also  be  regarded  as  equations  giving  the  length  of  the  normal  distances  from 
any  point  to  the  curve.    The  parallel  to  the  parabola  is 

rs  _  (3^2  +  3.2  +  8mx  -  8m"2)  r*  +  {3y*  +  yz  (2x2  -  2mx  +  20w2) 

+  8mx3  +  8/»2*2  -  3->m*x  +  16m*}  r2  -  (y2  -  4ma;)2  {f  +  (x  -  m)2}  =  0. 
XX. 
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The  parallel  to  the  ellipse  is 

cV8  -  2cV«  {c2  (a2  +  62)  +  (a2  -  2i2)  x*  +  (2a2  -  62)  y2} 

+  r4  {c4  (a4  +  4a262  +  6«)  -  2c2  (a*  -  a2fi2  +  364)  z2  +  2c2  (3a«  - 

+  (a*  -  6a2i2  +  664)  x4  +  (6a4  -  6a262  +  b*)  y4  +  (6a4  -  10a262  +  664)  sty8} 

+  r2  {-  2a26V  (a2  +  52)  +  2c2x2i2  (3a4  -  o262  +  S4)  -  2c2/a2  (a«  -  a2*2  4-  364) 

-  62x*  (6a<  -  10a262  +  6i4)  -  ay  (6a4  -  10a262  +  664)  +  a2/  (4a«  -  6a442  - 

+  262  (a2  -  262)  z«  -  2  (a*  -  a2*2  +  3i4)  a*y*  -  2  (3a4  -  a262+  64)  a?y*+  2a2  (62  -  2a2)  y«} 

+  (&2*2  +  ay  -  a262)2  {(*  -  c)8  +  y2}  {(»  +  c)2  +  y2}  =  0. 

Thus  the  locus  of  a  point  is  a  conic,  if  the  sum  of  squares  of  its  normal  distances  to 

the  curve  be  given.  If  we  form  the  condition  that  the  equation  in  r2  should  have 
equal  roots,  we  get  the  squares  of  the  axes  multiplied  by  the  cube  of  the  evolute.  If 

we  make  r  =  0,  we  find  the  foci  appearing  as  points  whose  normal  distance  to  the 
curve  vanishes.  This  is  to  be  accounted  for  by  remembering  that  the  distance  from 

the  origin  vanishes  of  any  point  on  either  of  the  lines  a2  +  y2  =  0. 

Ex.  4.  To  find  the  equation  of  the  evolute  of  an  ellipse.  Since  two  of  the  normals 
coincide  which  can  be  drawn  through  every  point  on  the  evolute,  we  have  only  to 

express  the  condition  that  in  Ex.  Art.  370  the  curves  S  and  8'  touch.  Now  when  the 
term  &  is  absent  from  an  equation,  the  condition  that  A&3  +  Q'k  +  A'  should  have 
equal  roots  reduces  to  27AA'2  +  49'3  =:  0.  The  equation  of  the  evolute  is  therefore 
(a2*2  +  jy  -  c4)3  +  27a262c4xy  =  0.  (See  Art.  248). 

Ex.  5.   To  find  the  equation  of  the  evolute  of  a  parabola.    We  have  here 

S  =  y*-  4mx,   S'  =  2xy  +  2  (2m  -  of)  y  -  4my', 

A  =  -  4m2,   e  =  0,   6'  =  -  4m  (2m  -  x),   A'  =  4my, 

and  the  equation  of  the  evolute  is  27my2  =  4  (x  -  2m)3.  It  is  to  be  observed,  that  the 

intersections  of  8  and  S'  include  not  only  the  feet  of  the  three  normals  which  can  be 
drawn  through  any  point,  but  also  the  point  at  infinity  on  y.  And  the  six  chords  of 

intersection  of  S  and  S'  consist  of  three  chords  joining  the  feet  of  the  normals,  and 
three  parallels  to  the  axis  through  these  feet.  Consequently  the  method  used  (Ex., 

Art.  370)  is  not  the  simplest  for  solving  the  corresponding  problem  in  the  case  of  the 
parabola.  We  get  thus  the  equation  found  (Ex.  12,  Art.  227),  but  multiplied  by  the 

factor  4m  (2my  +  y'x  -  2my')  -  y'*. 

373.  If  S'  break  up  into  two  right  lines  we  have  A'  =  0, 

and  we  proceed  to  examine  the  meaning  in  this  case  of  0  and  0'. 
Let  us  suppose  the  two  right  lines  to  be  x  and  y ;  and,  by  the 

principles  already  laid  down,  any  property  of  the  invariants, 
true  when  the  lines  of  reference  are  so  chosen,  will  be  true  in 

general.  The  discriminant  of  S+  2kxy  is  got  by  writing  h  4  & 

for  A  in  A,  and  is  A  +  2&  (fg  —  ch)  -  ck*.  Now  the  coefficient 
of  Jc2  vanishes  when  c  =  0;  that  is,  when  the  point  xy  lies  on 
the  curve  8.  The  coefficient  of  k  vanishes  whenj/^  =  cA;  that 

is  (see  Ex.  3,  Art.  228),  when  the  lines  x  and  y  are  conjugate  with 

respect  to  S.  Thus,  then,  when  S'  represents  two  right  lines,  A' 
vanishes ;  0'  =  0  represents  the  condition  that  the  intersection  of 
the  two  lines  should  lie  on  S;  and  0  =  0  is  the  condition  that  the 

two  lines  should  be  conjugate  with  respect  to  8. 
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The  condition  that  A  +  0/fc  +  07<;a  should  be  a  perfect  square 

is  0*  =  4A0',  which,  according  to  the  last  Article,  is  the  condition 

that  either  of  the  two  lines  represented  by  S'  should  touch  8. 

This  is  easily  verified  in  the  example  chosen,  where  0"  —  4A0' 

is  found  to  be  equal  to  (be  —  /*)  (ca  -  g*). 
Ex.  1.  Given  five  conies  Sl;  S2,  &c.,  it  is  of  course  possible  in  an  infinity  of  ways 

to  determine  the  constants  lly  72,  &c.,  so  that 

may  be  either  a  perfect  square  Z/2,  or  the  product  of  two  lines  MN:  prove  that  the 
lines  L  all  touch  a  fixed  conic  V,  and  that  the  lines  M,  N  are  conjugate  with  regard 

to  V.  "We  can  determine  V  so  that  the  invariant  9  shall  vanish  for  V  and  each 
of  the  five  conies,  since  we  have  five  equations  of  the  form 

Act!  +  Bbt  +  Cc^  +  2/7,  +  2%!  +  2Hhl  =  0, 

which  are  sufficient  to  determine  the  mutual  ratios  of  A,  S,  &c.,  the  coefficients  in 

the  tangential  equation  of  V.  Now  if  we  have  separately  Aa^  +  &c.  =  0,  Aat  4-  &c.  =  0, 
Aa3  +  &c.  =  0,  &c.,  we  have  plainly  also 

A  (/,«!  +  I2a2  +  Isa3  +  ltat  +  ?5a5)  +  <fec.  =  0  ; 

that  is  to  say,  8  vanishes  for  V  and  every  conic  of  the  system 

11S1  +  12S2  +  13SS  +  ltS4  +  168K 

whence  by  this  article  the  theorem  stated  immediately  follows.  If  the  line  M  be 
given,  N  passes  through  a  fixed  point  ;  namely,  the  pole  of  M  with  respect  to  V. 

Ex.  2.  If  six  lines  x,  y,  z,  u,  v,  w  all  touch  the  same  conic,  the  squares  are  con- 
nected by  a  linear  relation 

/,»*  +  Id*  +  Ifi  +  l#P  +  Ijfi  +  ̂wn-  =  0. 

This  is  a  particular  case  of  the  last  example,  but  may  be  also  proved  as  follows  : 
Write  down  the  conditions,  Art.  151,  that  the  six  lines  should  touch  a  conic,  and 
eliminate  the  unknown  quantities  A,  B,  &c.,  and  the  condition  that  the  lines  should 
touch  the  same  conic  is  found  to  be  the  vanishing  of  the  determinant 

V.  tti2>  v*,  PI»II  "Ai,  ̂ 1 
Vl    ft22>    "22»    M2"2>    "3X5,    \2/ 

But  this  is  also  the  condition  that  the  squares  should  be  connected  by  a  linear  relation. 

Ex.  3.  If  we  are  only  given  four  conies  Slt  S2,  S3,  $4,  and  seek  to  determine  F,  as 

in  Ex.  1,  so  that  9  shall  vanish,  then,  since  we  have  only  four  conditions,  one  of  the 
tangential  coefficients  A,  &c.  remains  indeterminate,  but  we  can  determine  all  the 

rest  in  terms  of  that  ;  so  that  the  tangential  equation  of  V  is  of  the  form  L  -t-  &£'  =  0, 
or  V  touches  four  fixed  lines.  We  shall  afterwards  show  directly  that  in  four  ways 

we  can  determine  the  constants  so  that  ̂ Si  +  12S2  +  13S3  +  ltSt  may  be  a  perfect 
square. 

It  is  easy  to  see  (by  taking  for  M  the  line  at  infinity)  that  if  M  be  a  given  line 
it  is  a  definite  problem  admitting  of  but  one  solution  to  determine  the  constants,  so 
that  11S1  +  <fec.  shall  be  of  the  form  MN.  And  Ex.  1  shows  that  N  is  the  locus  of 
the  pole  of  M  with  regard  to  V.  Compare  Ex.  8,  Art.  228. 
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374.  To  find  the  equation  of  the  pair  of  tangents  at  the  points 

where  8  is  cut  by  any  line  \x  -f  py  +  vz.     The  equation  of  any 
conic  having  double  contact  with  S,  at  the  points  where  it  meets 

this  line,  being  kS  +  (\x  +  py  +  vz)'2  =  0,  it  is  required  to  deter- 
mine k  so  that  this  shall  represent  two  right  lines.     Now  it  will 

be  easily  verified  that  in  this  case  not  only  A'  vanishes  but  0 
also.     And  if  we  denote  by  S  the  quantity 

Atf  4-  BfS  +  6V  +  2Ffj,v  +  2  Gv\  +  2.SV, 

the  equation  to  determine  k  has  two  roots  =  0,  the  third  root 

being  given  by  the  equation  &A  +  2  =  0.  The  equation  of  the 

pair  of  tangents  is  therefore  2$=  A  (\x  +  py  +  vz}*.  It  is  plain 
that  when  \x  -f  py  -f  vz  touches  $,  the  pair  of  tangents  coincides 
with  \x  +  \y  +  vz  itself;  and  the  condition  that  this  should  be 

the  case  is  plainly  2  =  0;  as  is  otherwise  proved  (Art.  151). 
Under  the  problem  of  this  Article  is  included  that  of  finding 

the  equation  of  the  asymptotes  of  a  conic  given  by  the  general 

trilinear  equation. 

375.  We  now  examine  the  geometrical  meaning,  in  general, 

of  the  equation  0  =  0.     Let  us  choose  for  triangle  of  reference 

any  self-conjugate  triangle  with  respect   to  8,  which  must  then 

reduce  to  the  form  ax*  -f-  by*  +  cz*  ( Art.  258).     We  have  there- 
fore/^ 0,  g  =  0,  h  =  0.     The  value  then  of  0  (Art.  370)  reduces 

to  bca  +  cab'  +  abc,  and  will  evidently  vanish  if  we  have  also 

a  =0,  V  —  0,  c'  =  0,  that  is  to  say,  if  $',  referred  to  the  same 

triangle,  be  of  the  form  f'yz  +  g'zx  4  h'xy .     Hence  0  vanishes 

whenever  any  triangle  inscribed  in  S'  is  self-conjugate  with  regard 
to  S.     If  we  choose  for  triangle  of  reference  any  triangle  self- 

conjugate  with  regard  to  /S",  we  have/'  =  0,  #'  =  0,  A'  =  0,  and 0  becomes 

(be  -f)  a'  +  (ca  -g*)  b'  +  (ab  -  V]  c' ; 
and  will  vanish  if  we  have  be  =/2,  ca=g*,  ab  =  h*.  Now  be  =/* 
is  the  condition  that  the  line  x  should  touch  8;  hence  0  also 

vanishes  if  any  triangle  circumscribing  S  is  self-conjugate  with 

regard  to  S'.  In  the  same  manner  it  is  proved  that  0'  =  0  is  the 
condition  either  that  it  should  be  possible  to  inscribe  in  S  a  tri- 

angle self-conjugate  with  regard  to  /S",  or  to  circumscribe  about  S 
a  triangle  self-conjugate  with  regard  to  S.  When  one  of  these 
things  is  possible,  the  other  is  so  too 
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A  pair  of  conies  connected  by  the  relation  ©  =  0  possesses 
another  property.  Let  the  point  in  which  meet  the  lines  joining 

the  corresponding  vertices  of  any  triangle  and  of  its  polar  tri- 
angle with  respect  to  a  conic  be  called  the  pole  of  either 

triangle  with  respect  to  that  conic ;  and  let  the  line  joining  the 
intersections  of  corresponding  sides  be  called  their  axis.  Then 

if  0  =  0,  the  pole  with  respect  to  S  of  any  triangle  inscribed  in 

S'  will  lie  on  $';  and  the  axis  with  respect  to  S'  of  any  tri- 
angle circumscribing  S  will  touch  S.  For  eliminating  #,  y,  z 

in  turn  between  each  pair  of  the  equations 

ax  +  hy  +  gz  =  0,     hx  +  by  +fz  =  0,    gx  +fy  4-  cz  =  0, 

we  get  (ffh  -af)x  =  (hf-  lg}  y  =  (fg-  ch)  z, 

for  the  equations  of  the  lines  joining  the  vertices  of  the  triangle 

xyz  to  the  corresponding  vertices  of  its  polar  triangle  with 

respect  to  8.  These  equations  may  be  written  Fx  =  Gy  =  Hz, 

and  the  coordinates  of  the  pole  of  the  triangle  are  -=,,  -^ ,  -jj. 

Substituting  these  values  in  S',  in  which  it  is  supposed  that  the 

coefficients  a',  6',  c  vanish,  we  get  2Ff  +  2  Gg  -f  2Hhf  =  0,  or 
0  =  0.  The  second  part  of  the  theorem  is  proved  in  like 
manner. 

Ex.  1.  If  two  triangles  be  self -con  jugate  with  regard  to  any  conic  S',  a  conic  can 
be  described  passing  through,  their  six  vertices ;  and  another  can  be  described  touch- 

ing their  six  sides  (see  Ex.  7,  Art.  356).  Let  a  conic  be  described  through  the  three 
vertices  of  one  triangle  and  through  two  of  the  other,  which  we  take  for  x,  y,  z. 

Then,  because  it  circumscribes  the  first  triangle,  6'  =  0,  or  a  +  b  +  c  =  0  (Ex.  2, 
Art.  371),  and,  because  it  goes  through  two  vertices  of  xyz,  we  have  a  =  0,  b  =  0, 
therefore  c  =  0,  or  the  conic  goes  through  the  remaining  vertex.  The  second  part 
of  the  theorem  is  proved  in  like  manner. 

Ex.  2.  The  square  of  the  tangent  drawn  from  the  centre  of  a  conic  to  the  circle 

circumscribing  any  self-conjugate  triangle  is  constant,  and  =  a2  +  62  [M.  Faure] 
This  is  merely  the  geometrical  interpretation  of  the  condition  6  =•  0,  found  (Ex.  4, 
Art.  371),  or  a?  +  /32  —  r2  =  a2  +  62.  The  theorem  may  be  otherwise  stated  thus : 
"Every  circle  which  circumscribes  a  self-conjugate  triangle  cuts  orthogonally  the 
circle  which  is  the  locus  of  the  intersection  of  tangents  mutually  at  right  angles." 
For  the  square  of  the  radius  of  the  latter  circle  is  a2  +  &2. 

Ex.  3.  The  centre  of  the  circle  inscribed  in  every  self -con  jugate  triangle  with 
respect  to  an  equilateral  hyperbola  lies  on  the  curve.  This  appears  by  making 

62  =  -  a2  in  the  condition  8'  =  0  (Ex.  4,  Art.  371). 
Ex.  4.  If  the  rectangle  under  the  segments  of  one  of  the  perpendiculars  of  the 

triangle  formed  by  three  tangents  to  a  conic  be  constant  and  equal  to  M,  the  locus 

of  the  intersection  of  perpendiculars  is  the  circle  a;2  +  yz  =  a?  +  bz  +  M.  For  6  =  0 
(Ex.  1.  Art.  371)  is  the  condition  that  a  triangle  self-conjugate  with  regard  to  the 

circle  can  be  circumscribed  about  8,  But  when  a  triangle  is  self -con  jugate  with 
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regard  to  a  circle,  the  intersection  of  perpendiculars  is  the  centre  of  the  circle  and 

M  is  the  square  of  the  radius  (Ex.  3,  Art.  278).  The  locus  of  the  intersection  of  rect- 

angular tangents  is  got  from  this  example  by  making  M  —  0. 
Ex.  5.  If  the  rectangle  under  the  segments  of  one  of  the  perpendiculars  of  a 

triangle  inscribed  in  S  be  constant,  and  =  M,  the  locus  of  intersection  of  perpen- 

diculars is  the  conic  concentric  and  similar  with  S,  S  =  M(-^  +  j^\    [Dr.  Hart], 

This  follows  in  the  same  way  from  fl'  =  0. 
Ex.  6.  Find  the  locus  of  the  intersection  of  perpendiculars  of  a  triangle  inscribed 

in  one  conic  and  circumscribed  about  another  [Mr.  Burnside].  Take  for  origin  the 
centre  of  the  latter  conic,  and  equate  the  values  of  M  found  from  Ex.  4  and  5  ;  then 

if  a',  b'  be  the  axes  of  the  conic  S  in  which  the  triangle  is  inscribed,  the  equation  of 

the  locus  is  x2  +  y1  -  a2  —  b"2  =  ̂ >jfT  j>,  &  The  locus  is  therefore  a  conic,  whose  axes 
are  parallel  to  those  of  S,  and  which  is  a  circle  when  S  is  a  circle. 

Ex.  7.  The  centre  of  the  circle  circumscribing  every  triangle,  self-conjugate  -with 
regard  to  a  parabola,  lies  on  the  directrix.  This  and  the  next  example  follow  from 
6  =  0  (Ex.  5,  Art.  371). 

Ex.  8.  The  intersection  of  perpendiculars  of  any  triangle  circumscribing  a  para- 
bola lies  on  the  directrix. 

Ex.  9.  Given  the  radius  of  the  circle  inscribed  in  a  self-conjugate  triangle,  the 
locus  of  centre  is  a  parabola  of  equal  parameter  with  the  given  one. 

376.  If  two  conies  be  taken  arbitrarily  it  is  in  general  not 

possible  to  inscribe  a  triangle  in  one  which  shall  be  circum- 
scribed about  the  other;  but  an  infinity  of  such  triangles  can 

be  drawn  if  the  coefficients  of  the  conies  be  connected  by  a 

certain  relation,  which  we  proceed  to  determine.  Let  us  suppose 
that  such  a  triangle  can  be  described,  and  let  us  take  it  for 

triangle  of  reference;  then  the  equations  of  the  two  conies 
must  be  reducible  to  the  form 

8  =  x*  +  y*  +  z*  -  2yz  -  2zx  -  2xy  =  0, 

S'  =  2fyz  +  2gzx  +  2hxy  =  0. 
Forming  then  the  invariants  we  have 

values  which  are  evidently  connected  by  the  relation  02  =  4A0'.* 

*  This  condition  was  first  given  by  Prof.  Cayley  (Philosophical  Magazine,  vol.  vi. 
p.  99)  who  derived  it  from  the  theory  of  elliptic  functions.  He  also  proved,  in  the 

same  way,  that  if  the  square  root  of  £3A  +  £26  +  kQ'  +  A',  when  expanded  in  powers 
of  k,  be  A  +  Bk  +  CW  +  &c.,  then  the  conditions  that  it  should  be  possible  to  have 
a  polygon  of  n  sides  inscribed  in  U  and  circumscribing  V,  are  for  n  =  8,  5,  7,  «fec. 
respectively 

C=0,    |  C,  D 
C,  D,  E 
D,  E,  F 

E,  F,  O 

=  0,  Ac. 
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This  is  an  equation  of  the  kind  (Art.  371)  which  is  unaffected 

by  any  change  of  axes  ;  therefore,  no  matter  what  the  form  in 

which  the  equations  of  the  conies  have  been  originally  given, 
this  relation  between  their  coefficients  must  exist,  if  they  are 

capable  of  being  transformed  to  the  forms  here  given.  Con- 
versely, it  is  easy  to  show,  as  in  Ex.  1,  Art.  375,  that  when  the 

relation  holds  02  =  4A0',  then  if  we  take  any  triangle  circum- 

scribing S,  and  two  of  whose  vertices  rest  on  /S",  the  third  must 
do  so  likewise. 

Ex.  1.  Find  the  condition  that  two  circles  may  be  such  that  a  triangle  can  be 

inscribed  in  one  and  circumscribed  about  the  other.  Let  D2  —  r2  —  r'2  =  G,  then  the 
condition  is  (see  Ex.  3,  Art.  371) 

(G  -  r2)2  +  4r2  (G  -  r'2)  =  0,   or  (G  +  r2)2  =  4rV2  ; 

whence  D2  =  r'2  +  2rr',  Euler's  well  known  expression  for  the  distance  between  the 
centre  of  the  circumscribing  circle  and  that  of  one  of  the  circles  which  touch  the 
three  sides. 

Ex.  2.  Find  the  locus  of  the  centre  of  a  circle  of  given  radius,  circumscribing  a 
triangle  circumscribing  a  conic,  or  inscribed  in  an  inscribed  triangle.  The  loci  are 
curves  of  the  fourth  degree,  except  that  of  the  centre  of  the  circumscribing  circle 

in  the  case  of  the  parabola,  which  is  a  circle  whose  centre  is  the  focus,  as  is  other- 
wise evident. 

Ex.  3.  Find  the  condition  that  a  triangle  may  be  inscribed  in  S'  whose  sides 
touch  respectively  8  +  IS',  S  +  mS',  S  +  nS'.  Let 

S  =  x*  +  y*  +  z*  -  2  (I  +  If)  yz  -  2  (1  +  mg)  zx  -  2  (1  +  nh)  xy, 

S'  =  2fyz  +  2gzx  +  '2hxy; 

then  it  is  evident  that  S  +  IS'  is  touched  by  x,  &c.    We  have  then 

A  =  —  (2  +  lf+mff  +  nh)2  —  2lmnfgh, 

0  =  2  (f+g  +  h)  (2  +  lf+  mg  +  nh)  +  2fgh  (mn  +  nl+  Im), 

0'=  -  (/+  g  +  h)*  -  2  (I  +  m  +  n)fgh,    A'  =  2fgh. 
Whence,  obviously, 

{0  -  A'  (mn  +  nl+  Zm)}2  =  4  (A  +  ImnA*)  (0'  +  A'  (I  +  m  +  n)}, 
which  is  the  required  condition. 

377.  To  find  the  condition  that  the  line  \x  +  ju,y-t-vz  should 

pass  through  one  of  the  four  points  common  to  S  and  S'.  This 
is,  in  other  words,  to  find  the  tangential  equation  of  these  four 

points.  Now  we  get  the  tangential  equation  of  any  conic  of 

and  for  »  rr  4,  6,  8,  &c.  are 

D  =  0       J9,  E 
D,  E,  F 

E,  F    =0, E,  F,  G 

F,  G,  H 
=  0,  (fee. 
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the   system  S+kS'  by   writing  a  +  ka,  &c.  for  a,  &c.  in  the 
tangential  equation  of  $,  or 

2  =  (bo  -/')  X*  +  (ca  -/)  /a1  +  (ab  -  W]  v* 

We  get  thus  2  +  k<&  -f  &2S'  =  0,  where 

4>  =  (&?'  4-  b'c  -  2ff')  X"  +  (ca'  +  c'a  - 

-f  (a&'  +  a'b  -  2hh')  v8  -f  2  (^'  +  0'A  -  a/'  -  a/)  /*v 

-f  2  (A/  4  A/-  fy'  -  b'ff)  vX  +  2  (fy1  +fff  -  ch'  -  c'h)  X/i. 
The  tangential  equation  of  the  envelope  of  this  system  is  there- 

fore (Art.  298)  <&a  =  4SS'.  But  since  S  +  kS',  and  the  corre- 
sponding tangential  equation,  belong  to  a  system  of  conies 

passing  through  four  fixed  points,  the  envelope  of  the  system  is 

nothing  but  these  four  points,  and  the  equation  4>'J  =  4SS'  is  the 
required  condition  that  the  line  \x  +  fiy  +  vz  should  pass  through 

one  of  the  four  points.  The  matter  may  be  also  stated  thus  : 

Through  four  points  there  can  in  general  be  described  two 

conies  to  touch  a  given  line  (Art.  345,  Ex.  4)  ;  but  if  the  given 

line  pass  through  one  of  the  four  points,  both  conies  coincide 

in  one  whose  point  of  contact  is  that  point.  Now  4>"  =  4SS'  is 
the  condition  that  the  two  conies  of  the  system  S+kS',  which 
can  be  drawn  to  touch  Xa;  -f  py  -f  vz,  shall  coincide. 

It  will  be  observed  that  4>  =  0  is  the  condition  obtained 

(Art.  335),  that  the  line  Xa;  +  /it  y  -f  vz  shall  be  cut  harmonically 
by  the  two  conies. 

378.  To  find  the  equation  of  t  e  four  common  tangents  to  two 

conies.  This  is  the  reciprocal  of  the  problem  of  the  last  Article, 

and  is  treated  in  the  same  way.  Let  S  and  2'  be  the  tangential 

equations  of  two  conies,  then  (Art.  298)  2  +  &S'  represents  tan- 
gentially  a  conic  touched  by  the  four  tangents  common  to  the 

two  given  conies.  Forming  then,  by  Art.  285,  the  trilinear 

equation  corresponding  to  S  +  &S'  =  0,  we  get 

where 

F  =  (BCr+ffG-  2FF)  x'  +  (CA'  +  C'A  - 

+  2(GH'+  G'H-  AF-  A'F)  yz  +  2  (EF'+  H'F-  BG-  B'G)  zx 
+  2  (FG1  +  F'G-CH'-  C'H)  xy, 
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the  letters  A,  B,  &c.  having  the  same  meaning  as  in  Art.  151. 

But  A$-f-  JcF  +  &2A'>S"  denotes  a  system  of  conies  whose  en- 

velope is  F2  =  4AA'$/S";  and  the  envelope  of  the  system  evi- 
dently is  the  four  common  tangents. 

The  equation  F!i  =  4AA'/Sr/S",  by  its  form  denotes  a  locus 

touching  8  and  S',  the  curve  F  passing  through  the  points  of 
contact.  Hence,  the  eight  points  of  contact  of  two  conies  with 

their  common  tangents,  lie  on  another  conic  F.  Reciprocally,  the 

eight  tangents  at  the  points  of  intersection  of  two  conies  envelope 
another  conic  <t. 

It  will  be  observed  that  F  =  0  is  the  equation  found,  Art.  334, 
of  the  locus  of  points,  whence  tangents  to  the  two  conies  form 

a  harmonic  pencil.* 

If  S'  reduces  to  a  pair  of  right  lines,  F  represents  the  pair 
of  tangents  to  S  from  their  intersection. 

Ex.   Find  the  equation  of  the  common  tangents  to  the  pair  of  conies 

ax2  +by  +  cz*  =  0,   a'x*  +  Vy*  +  c'z2  =  0. 
Here  A  =  bo,  B  =  ca,  C  —  ab,  whence 

F  =  aa'  (be'  +  b'c)  x*  +  bb'  (ca'  +  c'a)  y*  +  cc'  (ab'  +  a'b)  z 
and  the  required  equation  is 

{aa'  (b'c  +  b'c)  z*  +  bb'  (ca'  +  c'a)  y*  +  cc'  (ab'  +  a'b)  z2}2 

=  labca'b'c'  (ax2  +  by*  +  cz*)  (a'x?  +  Vy1  +  c'z*), 
which  is  easily  resolved  into  the  four  factors 

x  j{aa'  (be')}  ±  y  J{bb'  (ca')}  ±  z  J{cc'  (a*')}  =  0-. 

378a.  If  8  and  8'  touch,  F  touches  each  at  their  point  of 
contact.  This  follows  immediately  from  the  fact  that  F  passes 

through  the  points  of  contact  of  common  tangents  to  S  and  S'. 
Similarly  if  8  and  8'  touch  in  two  distinct  points,  F  also  has 
double  contact  with  them  in  these  points.  This  may  be  verified 

by  forming  the  F  of  cz2  +  2hxy,  cz*  +  2h'xy  which  is  found  to 
be  of  the  same  form,  viz.  2cc'MV  +  2M'  (cti  4-  ch)  xy. 

From  what  has  been  just   observed,  that  when  8  and   S' 

have  double  contact,  F  is  of  the  form  IS  i-mS',  we  can  obtain 
a  system  of  conditions  that  two  conies  may  have  double  contact. 

For  write  the  general  value  of  F,  given  Art.  334, 

+  cz2  +  Zfyz  +  2gzx  +  2 

*  I  believe  I  was  the  first  to  direct  attention  to  the  importance  of  this  conic  in 

the  theory  of  two  conies. 
YY. 
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then  evidently  if  they  have  double  contact  every  determinant 
vanishes  of  the  system 

a  ,  b  ,  c ,  f  ,  g  j  k 

a,  b,  c,  f  ,  g,  h      =0. 

That  when  S  and  S'  have  double  contact,  $,  F  and  S'  are 
connected  by  a  linear  relation,  may  be  otherwise  seen,  as 

follows :  When  S  and  S'  have  double  contact  there  is  a  value 

of  k  for  which  kS+  S'  represents  two  coincident  right  lines. 
Now  the  reciprocal  of  a  conic  representing  two  coincident  right 
lines  vanishes  identically.  Hence  we  have 

identically.     But  the  value  of  k,  for  which  this  is  the  case,  is 
the  double  root  of  the  equation 

&3A  +  F0+&0'-f  A'=0. 

Eliminating  Jc  between  the  former  equation  and  the  two  dif- 

ferentials of  the  latter  we  have  S,  2',  4>  satisfying  the  identical 
relation 

S,      *,     X 

3A,    20,     0' 
0,  20',   3A'    =0. 

When  two  conies  have  double  contact  their  reciprocals  have 

double  contact  also ;  and  it  may  be  seen  without  difficulty  that 

the  relation  just  written  between  S,  S',  <I>  implies  the  following 
between  S,  S',  F 

8,  F  ,  ff 

3A,  2A0r,  0 

0',  2A'0,  3A' 
379.  The  former  part  of  this  Chapter  has  sufficiently  shown 

what  is  meant  by  invariants,  and  the  last  Article  will  serve 
to  illustrate  the  meaning  of  the  word  covariant.  Invariants 

and  covariants  agree  in  this,  that  the  geometric  meaning  of 

both  is  independent  of  the  axes  to  which  the  questions  are 

referred;  but  invariants  are  functions  of  the  coefficients  onlv, 

while  covariants  contain  the  variables  as  well.  If  we  are  given 

a  curve,  or  system  of  curves,  and  have  learned  to  derive  from 

their  general  equations  the  equation  of  some  locus,  Z7=0, 

=  0. 
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whose  relation  to  the  given  curves  is  independent  of  the  axes 

to  which  the  equations  are  referred,  U  is  said  to  be  a  covariant 

of  the  given  system.  Now  if  we  desire  to  have  the  equation 

of  this  locus  referred  to  any  new  axes,  we  shall  evidently  arrive 
at  the  same  result,  whether  we  transform  to  the  new  axes  the 

equation  U=  0,  or  whether  we  transform  to  the  new  axes  the 

equations  of  the  given  curves  themselves,  and  from  the  trans- 
formed equations  derive  the  equation  of  the  locus  by  the  same 

rule  that  £7  was  originally  formed.  Thus,  if  we  transform  the 

equations  of  two  conies  to  a  new  triangle  of  reference,  by 

writing  instead  of  x,  y,  z, 

Ix  4  my  4  raz,  I'x  +  my  4  riz,  l"x  +  m"y 4  ri'z ; 

and  if  we  make  the  same  substitution  in  the  equation  F*=4AA'$$', 
we  can  foresee  that  the  result  of  this  last  substitution  can  only 

differ  by  a  constant  multiplier  from  the  equation  F2  =  4AA'$/S", 
formed  with  the  new  coefficients  of  S  and  S'.  For  either  form 
represents  the  four  common  tangents.  On  this  property  is 

founded  the  analytical  definition  of  covariants.  "  A  derived 
function  formed  by  any  rule  from  one  or  more  given  functions 

is  said  to  be  a  covariant,  if  when  the  variables  in  all  are  trans- 
formed by  the  same  linear  substitutions,  the  result  obtained  by 

transforming  the  derived  differs  only  by  a  constant  multiplier 

from  that  obtained  by  transforming  the  original  equations  and 

then  forming  the  corresponding  derived." 

380.  There  is  another  case  in  which  it  is  possible  to  predict 

the  result  of  a  transformation  by  linear  substitution.  If  we  have 
learned  how  to  form  the  condition  that  the  line  \x  +  ny  +  vz 

should  touch  a  curve,  or  more  generally  that  it  should  hold  to 

a  curve,  or  system  of  curves,  any  relation  independent  of  the 

axes  to  which  the  equations  are  referred,  then  it  is  evident  that 

when  the  equations  are  transformed  to  any  new  coordinates, 

the  corresponding  condition  can  be  formed  by  the  same  rule 

from  the  transformed  equations.  But  it  might  also  have  been 

obtained  by  direct  transformation  from  the  condition  first  ob- 

tained. Suppose  that  by  transformation  Xrc  -\-iiy +  vz  becomes 

X  (Ix  4  my  4  nz)  4  p  (I'x  4  my  4  n'z)  4  v  (l"x 4  m"y  4  n"z), 
and  that  we  write  this  \'x 4 py  4  v'z,  we  have 

V  =  l\  4  l'^  +  Z'V,  p  =  wX  4  mi*  4  wi'V,  v  =  n\  4  n'fi  4  n"v. 
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Solving  these  equations,  we  get  equations  of  the  form 

If  then  we  put  these  values  into  the  condition  as  first  obtained 

in  terras  of  X,  /*,  v,  we  get  the  condition  in  terms  of  X',  /*',  v, 
which  can  only  differ  by  a  constant  multiplier  from  the  condition 
as  obtained  by  the  other  method.  Functions  of  the  class  here 
considered  are  called  contravariants.  Contra  variants  are  like 

covariants  in  this:  that  any  contra  variant  equation,  as  for 

example,  the  tangential  equation  of  a  conic  (be  —  /2)  X*  +  &c.  =  0 
can  be  transformed  by  linear  substitution  into  the  equation  of 

like  form  (b'c'  -/'*)  V2  +  &c.  =  0,  formed  with  the  coefficients 
of  the  transformed  trilinear  equation  of  the  conic.  But  they 

differ  in  that  X,  /*,  v  are  not  transformed  by  the  same  rule  as 

SB,  #,  z  ;  that  is,  by  writing  for  X,  ?X  -f  mp  +  nv,  &c.,  but  by  the 
different  rule  explained  above. 

The  condition  4>  =  0  found,  Art.  377,  is  evidently  a  contra- 

variant  of  the  system  of  conies  $,  S'. 

381.  It  will  be  found  that  the  equation  of  any  conic  co- 

variant  with  S  and  S'  can  be  expressed  in  terms  of  £,  S'  and  F  ; 

while  its  tangential  equation  can  be  expressed  in  terms  of  2,  2',  4>. 
Ex.  1.  To  express  in  terms  of  S,  S',  F  the  equation  of  the  polar  conic  of  S  with 

respect  to  S'.  From  the  nature  of  covariants  and  invariants,  any  relation  found  con- 
necting these  quantities,  when  the  equations  are  referred  to  any  axes,  must  remain 

true  when  the  equations  are  transformed.  We  may  therefore  refer  8  and  S'  to  their 
common  self  -con  jugate  triangle  and  write  S  —  ax1  +  by2  +  cz2,  S'  =  x2  +  y2  +  z2.  It 
will  be  found  then  that  F  =  a  (b  +  c)  x2  +  b  (c  +  a)  y2  +  c  (a  +  b)  z2.  Now  since  the 
condition  that  a  line  should  touch  S  is  bc\2  +  cap2  +  abv2  —  0,  the  locus  of  the  poles 

with  respect  to  S'  of  the  tangents  to  S  is  bcx2  +  cay2  +  abz2  =  0.  But  this  may  be 
written  (be  +  ca  +  ab)  (x2  +  y2  +  z2)  =  F.  The  locus  is  therefore  (Ex.  1,  Art.  371) 

QS'  =  F.  In  like  manner  the  polar  conic  of  S'  with  regard  to  S  is  Q'S  =  F. 

Ex.  2.  To  express  in  terms  of  S,  S',  F  the  conic  enveloped  by  a  line  cut  har- 
monically by  S  and  S'.  The  tangential  equation  of  this  conic  *  =  0  is 

(b  +  c)\2+(c  +  a)  fj.2  +  (a  +  b)  v2  =  0. 
Hence  its  trilinear  equation  is 

(c  +  a)  (a  +  b)  x2  +  (a  +  b)  (b  +  c)  y*  +  (c  +  a)  (b  +  c)  z2  =  0, 

or  (be  +  ca+  ab)  (x2  +  y2  +  z2)  +  (a  +  b  +  c)  (ax2  +  by2  +  cz2)  —  F  =  0, 

or  QS'  +  Q'S  -  F  =  0. 
Ex.  3.  To  find  the  condition  that  F  should  break  up  into  two  right  lines.    It  is 

abc  (b  +  c)  (c  +  a)  (a  +  b)  =  0,  or  abc  {(a  +  b  +  c)  (be  +  ca  +  ab)  —  abc]  =  0, 

or  AA'  (e0'  -  AA')  =  0. 

which  is  the  required  formula.  96'  =  AA'  is  also  the  condition  that  *  should  break 
up  into  factors.  This  condition  will  be  fourd  to  be  satisfied  in  the  case  of  two  circles 
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which  cut  at  right  angles,  in  which  case  any  line  through  either  centre  is  cut  har- 
monically by  the  circles,  and  the  locus  of  points  whence  tangents  form  a  harmonic 

pencil  also  reduces  to  two  right  lines.  The  locus  and  envelope  will  reduce  similarly 

if  D2  =  2  (r2  +  r'2). 
Ex.  4.   To  reduce  the  equations  of  two  conies  to  the  forms 

x-  +  y2  +  z2  =  0,   ax2  +  by"1  +  cz2  -  0. 
The  constants  a,  b,  c  are  determined  at  once  (Ex.  1,  Art.  371)  as  the  roots  of 

A&3  -  0£2  +  Q'k  -  A'  =  0. 
And  if  we  then  solve  the  equations 

a;2  +  y2  +  z2  =  8,  ax1  +  by2  +  cz2  =  8',  a  (b  +  c)  x1  +  b  (c  +  a)  if-  +  c  (a  +  b}  z2  -  F, 

we  find  x2,  y2,  z2  in  terms  of  the  known  functions  8,  S',  F.  Strictly  speaking,  we 
ought  to  commence  by  dividing  the  two  given  equations  by  the  cube  root  of  A,  since 
we  want  to  reduce  them  to  a  form  in  which  the  discriminant  of  S  shall  be  1  .  But  it 

will  be  seen  that  it  will  come  to  the  same  thing  if  leaving  S  and  S'  unchanged,  we 
calculate  F  from  the  given  coefficients  and  divide  the  result  by  A. 

Ex.  5.   Reduce  to  the  above  form 

3z2  -  6xy  +  9y2  -  2x  +  4y  =  0,   5x2  -  Uxy  +  8y2-6x-2  =  Q. 
It  is  convenient  to  begin  by  forming  the  coefficients  of  the  tangential  equations 

A,  B,  Ac.  These  are  -  4,  -  1,  18  ;  -  3,  3,  -  2  ;  -  16,  -  19,  -  9  ;  21,  24,  -  14. 
We  have  then 

A  =  -9,   6  =  -54,   6'  =  -99,   A'  =  -  54, 
whence  a,  b,  c  are  1,  2,  3.    We  next  calculate  F  which  is 

-  9  (23a;2  -  50xy  +  44y*  -  ISx  +  I2y  -  4). 
Writing  then 

X2  +    Y2  +    Z2  =    Sx2-    6xy  +    9y2  -    2x  +    4y, 

X2  +  2Y2  +  BZ2  =    Sx2-Uxy  +    8y2  -    6x  -    2, 

5X2  +  8Y2  +  9Z2  =  23x2  -  50xy  +  44y8  -  18*  +  12y  -  4. 

We  get  from  65  +    S1  -    F,  X2  =     (By  +  I)2, 

from  F  -  35  -  25',    Y2  =      (2x  -  y)2, 

from  25  +  35'-    F,    Z2  =  -  (x  +  y  +  I)2. 

Ex.  6.   To  find  the  equation  of  the  four  tangents  to  5  at  its  intersections  with  5'. 

AM.     (05  -  A5')2  =  4A5  (Q'S  -  F). 
Ex.  7.  A  triangle  is  circumscribed  to  a  given  conic  ;  two  of  its  vertices  move  on 

fixed  right  lines  \x  +  py  +  vz,  \'x  +  p.'y  +  v'z  j  to  find  the  locus  of  the  third.  It  was 
proved  (Ex.  2,  Art.  272)  that  when  the  conic  is  z2  —  xy,  and  the  lines  ax  —  y,  bx  —  y, 
the  locus  is  (a  +  b)2  (z2  —  xy)  =  (a  —  b)2  z2.  Now  the  right-hand  side  is  the  square  of 
the  polar  with  regard  to  5  of  the  intersection  of  the  lines,  which  in  general  would  be 

P  =  (ax  +  hy  +  gz)  (nv'  -  p'v)  +  (hx  +  by  +fz)  (v\'  -  v'\)  +  (gx  +fy  +  cz)  (V  -  \»  =  0, 
and  a  +  b  =  0  is  the  condition  that  the  lines  should  be  conjugate  with  respect  to  5, 

which  in  general  (Art.  373)  is  0  =  0,  where 

0  =  A\\.'  +  BW'  +  Cvv'  +  F  (fjLv'  +  IUL'V)  +  G  (v\r  +  i/\)  +  H  (\/UL'  +  X  '/*)  =  0. 
The  particular  equation,  fouud  Art.  272,  must  therefore  be  replaced  in  general  by 

Ex.  8.  To  find  the  envelope  of  the  base  of  a  triangle  inscribed  in  5  and  two  of 

whose  sides  touch  5'. 
Take  the  sides  of  the  triangle  in  any  position  for  lines  of  reference,  and  let 

5  =  2  (fyz  +  gzx  +  hxy), 

5'  =  x2  4-  y2  +  z2  —  2yz  —  2zx  -  2xy  —  2hkxy, 

where  x  and  y  are  tBe  lines  touched  by  5'.    Then  it  is  obvious  that  £5  +  5'  will  be 
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touched  by  the  third  side  z,  and  we  shall  show  by  the  invariants  that  this  is  ajlxed 
conic.    We  have 

whence  0'2  -  40A'  =  4AA'/fc,  and  the  equation  kS  +  S'  =  0  may  be  written  in  the  form 

(9'2  -  46  A')  S  +  4AA'S'  =  0, 
which  therefore  denotes  a  fixed  conic  touched  by  the  third  side  of  the  triangle.    It 

is  obvious  that  when  0'2  =  40A'  the  third  side  will  always  touch  S'. 

Ex.  9.  To  find  the  locus  of  the  vertex  of  a  triangle  whose  three  sides  touch  a 
conic  U  and  two  of  whose  vertices  move  on  another  conic  F.  We  have  slightly 

altered  the  notation,  for  the  convenience  of  being  able  to  denote  by  U'  and  V  the 
results  of  substituting  in  U  and  V  the  coordinates  of  the  vertex  x'y'z'.  The  method 
we  pursue  is  to  form  the  equation  of  the  pair  of  tangents  to  U  through  x'y'z'  ;  then 
to  form  the  equation  of  the  lines  joining  the  points  where  this  pair  of  lines  meets  F; 
and,  lastly,  to  form  the  condition  that  one  of  these  lines  (which  must  be  the  base 

of  the  triangle  in  question)  touches  V.  Now  if  P  be  the  polar  of  x'y'z',  the  pair  of 
tangents  is  UU'  —  P2.  In  order  to  find  the  chords  of  intersection  with  V  of  the  pair 

of  tangents,  we  form  the  condition  that  UU'  -  P2  +  \  V  may  represent  a  pair  of  lines. 
This  discriminant  will  be  found  to  give  us  the  following  quadratic  for  determining  X, 

X2A'  +  XF'  +  A  U'  V  =  0.  In  order  to  find  the  condition  that  one  of  these  chords  should 

touch  U,  we  must,  by  Art.  372,  form  the  discriminant  of  p.U  +  (UU'  -  P2  +  XF),  and 
then  form  the  condition  that  this  considered  as  a  function  of  p.  should  have  equal 
roots.  The  discriminant  is 

M2A  +  p,  (2Z7'A  +  X6)  +  {Z7'2A  +  X  (QU'  +  A  F')  +  X20'}, 
and  the  condition  for  equal  roots  gives 

X(4A0'-02)  +  4A2F'  =  0. 

Substituting  this  value  for  X  in  X2A'  +  XF'  +  A£7'F',  we  get  the  equation  of  the 
required  locus 

1GA3A'  V  -  4  A  (4A0'  -  62)  F+  U  (4A9'  -  02)2  =  0, 

which,  as  it  ought  to  do,  reduces  to  F  when  4A0'  =  02.* 
Ex.  10.  Find  the  locus  of  the  vertex  of  a  triangle,  two  of  whose  sides  touch  U, 

and  the  third  side  aU  +  bV,  while  the  two  base  angles  move  on  F.  It  is  found  by 
the  same  method  as  the  last,  that  the  locus  is  one  or  other  of  the  conies,  touching 
the  four  common  tangents  of  U  and  F, 

A  A'X2  F  +  X/uF  +  p?U  =  0, 

where  X  :  p.  is  given  by  the  quadratic 

a  (ab  -  pa)  X2  +  a  (4Ao  +  20£)  X/x  -  #V  =  0, 

where  o  =  4AA',  /3  =  02-4A0'. 
Ex.  11.  To  find  the  locus  of  the  free  vertex  of  a  polygon,  all  whose  sides  touch  U, 

and  all  whose  vertices  but  one  move  on  F.  This  is  reduced  to  the  last  ;  for  the  line 

joining  two  vertices  of  the  polygon  adjacent  to  that  whose  locus  is  sought,  touches 

a  conic  of  the  form  aU+bV.  It  will  be  found  if  X',  /u';  X",  p."  ;  X'",  p.'"  be  the 

values  for  polygons  of  n  —  I,  »,  and  n+l  sides  respectively,  that  X'"  =  /uX'2> 
p.'"  =  A'X'X"  (ap."  —  A'/3X").  In  the  case  of  the  triangle  we  have  X'  =  a,  p.'  =  A'/3; 

in  the  case  of  the  quadrilateral  X"  =  /S2,  p."  =  a  (4Ao  +  2/30),  and  from  these  we  can 

*  The  reader  will  find  (Quarterly  Journal  of  Mathematics,  vol.  I.  p.  344)  a  dis- 
cussion by  Prof.  Cayley  of  the  problem  to  find  the  locus  of  vertex  of  a  triangle  circum- 

scribing a  conic  S,  and  whose  base  angles  move  on  given  curves.  When  the  curves 
are  both  conies,  the  locus  is  of  the  eighth  degree,  and  touches  S  at  the  points  where 

it  is  met  by  the  polars  with  regard  to  5  of  the  intersections  of  tho  fwo  conies. 
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find,  step  by  step,  the  values  for  every  other  polygon.    (See  Philosophical  Magazine, 
vol.  xni.  p.  337). 

Ex.  12.  The  triangle  formed  by  the  polars  of  middle  points  of  sides  of  a  given 
triangle  with  regard  to  any  inscribed  conic  has  a  constant  area  [M.  Faure]. 

Ex.  13.  Find  the  condition  that  if  the  points  in  which  a  conic  meets  the  sides  of 

the  triangle  of  reference  be  joined  to  the  opposite  vertices,  the  joining  lines  shall  form 

two  sets  of  three  each  meeting  in  a  point.  Ans.  abc  —  "2fgh  —  of2  —  bgz  —  cli*  —  0. 

382.  The  theory  of  covariants  and  invariants  enables  us 

readily  to  recognize  the  equivalents  in  trilinear  coordinates  of 

certain  well-known  formulas  in  Cartesian.  Since  the  general 
expression  for  a  line  passing  through  one  of  the  imaginary 

circular  points  at  infinity  is  x  +  y  V(—  1)  +  c,  the  condition  that 

\x  +  py  +  v  should  pass  through  one  of  these  points  is  X2  +  f/f—  0. 
In  other  words,  this  is  the  tangential  equation  of  these  points. 

If  then  2  =  0  be  the  tangential  equation  of  a  conic,  we  may 

form  the  discriminant  of  2  +  &  (A.2  -f  p*).  Now  it  follows  from 

Arts.  285,  286,  that  the  discriminant  in  general  of  2  +  £S'  is 

But  the  discriminant  of  S  +  k  (X2  +  /-t2)  is  easily  found  to  be 

If,  then,  in  any  system  of  coordinates  we  form  the  invariants 

of  any  conic  and  the  pair  of  circular  points,  0'  =  0  is  the  con- 
dition that  the  curve  should  be  an  equilateral  hyperbola,  and 

0  =  0  that  it  should  be  a  parabola.  The  condition 

(a  +  Vf  =  ±(db-h*),  or  (a  -  b}2  +  4A2  =  0, 
must  be  satisfied  if  the  conic  pass  through  either  circular  point  ; 

and  it  cannot  be  satisfied  by  real  values  except  the  conic  pass 

through  both,  when  a  =  &,  h  =  0. 

Now  the  condition  X2  +  //,2  =  0*  implies  (Art.  34)  that  the 
length  of  the  perpendicular  let  fall  from  any  point  on  any  line 

passing  through  one  of  the  circular  points  is  always  infinite. 
The  equivalent  condition  in  trilinear  coordinates  is  therefore 

got  by  equating  to  nothing  the  denominator  in  the  expression 

*  This  condition  also  implies  (Art.  25)  that  every  line  drawn  through  one  of  these 
two  points  is  perpendicular  to  itself.  This  accounts  for  some  apparently  irrelevant 

factors  which  appear  in  the  equations  of  certain  loci.  Thus,  if  we  look  for  the  equa- 

tion of  the  foot  of  the  perpendicular  on  any  tangent  from  a  focus  a(3,  (x  —  a)2  +(y  —  /?)* 
will  appear  as  a  factor  in  the  locus.  For  the  perpendicular  from  the  focus  on  either 
tangent  through  it  coincides  with  the  tangent  itself.  This  tangent  therefore  is  part 
of  the  locus. 
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for  the  length  of  a  perpendicular  (Art.  61).  The  general  tan- 
gential equation  of  the  circular  points  is  therefore 

X*  +  p*  -|-  V*  -  2fJLV  COS  A  —  %V\  COS  B—  2X/U,  COS  (7=  0. 

Forming  then  the  0  and  0'  of  the  system  found  by  combining 
this  with  any  conic,  we  find  that  the  condition  for  an  equilateral 

hyperbola  0'  =  0,  is 

a  4.  l  4.  c  _  2/  cos  A  -  2<7  cos  B  —  2k  cos  C  =  0  ; 

while  the  condition  for  a  parabola  0  =  0,  is 

A  sinM  +  B  sin'  B  +  G  sin'  G  +  2F  sin  B  sin  G 

sin  G  sin  A  H-  2H  sin  J.  sin  5  =  0. 

The  condition  that  the  curve  should  pass  through  either  circular 

point  is  0"  =  40,  which  can  in  various  ways  be  resolved  into  a 
sum  of  squares. 

383.  If  we  are  given  a  conic  and  a  pair  of  points,  the 

covariant  F  of  the  system  denotes  the  locus  of  a  point  such 

that  the  pair  of  tangents  through  it  to  the  conic  are  harmoni- 
cally conjugate  with  the  lines  to  the  given  pair  of  points. 

When  the  pair  of  points  is  the  pair  of  circular  points  at  in- 
finity, F  denotes  the  locus  of  the  intersection  of  tangents  at 

right  angles.  Now,  referring  to  the  value  of  F,  given  Art.  378, 

it  is  easy  to  see  that  when  the  second  conic  reduces  to  X*  4  ft2  ; 

that  is,  when  A  =  B'  =  1,  and  all  the  other  coefficients  of  the 
tangential  of  the  second  conic  vanish,  F  is 

which  is,  therefore,  the  general  Cartesian  equation  of  the  locus 

of  intersection  of  rectangular  tangents.  (See  Art.  294,  Ex.). 

When  the  curve  is  a  parabola  (7=0,  and  the  equation  of  the 

directrix  is  therefore  2(Gx+  Fy)  =  A  +  B. 
The  corresponding  trilinear  equation  found  in  the  same  way  is 

2(B  cosB-G  -HcoaA  -  F  costf)  z.r. 

2(<?cosCr  -H-  FcosB-  G  cos4).ry 
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It  may  be  shown,  as  .in  Art.  128,  that  this  represents  a  circle, 
by  throwing  it  into  the  form 

i     .    A.      .    Rl      .   nfB+C+ZFcosA         C  +  A  +  2GcoaB 
(x  smA+y  amB+s  sin  (7)    -  -.  —  -.  --  x  H  --  -.  —  ̂   -  y 

1  \         sin  A  sin  B 
© 

•f \ 
=  -  — 

/     sm^ 

;  —  >s 
smC 

where  0  =  0  is  the  condition  (Art.  382)  that  the  curve  should 

be  a  parabola.  When  0  =  0,  this  equation  gives  the  equation  of 
the  directrix. 

384.  In  general,  2  +  &2'  denotes  a  conic  touching  the  four 

tangents  common  to  2  and  2';  and  when  k  is  determined  so 

that  2  -f  &2'  represents  a  pair  of  points,  those  points  are  two 
opposite  vertices  of  the  quadrilateral  formed  by  the  common 

tangents.  In  the  case  where  2'  denotes  the  circular  points  at 

infinity,  when  2  +  &2'  represents  a  pair  of  points,  these  points 
are  the  foci  (Art.  258a).  If,  then,  it  be  required  to  find  the  foci 

of  a  conic,  given  by  a  numerical  equation  in  Cartesian  coordi- 
nates, we  first  determine  k  from  the  quadratic 

Then,  substituting  either  value  of  k  in  2  -f  k  (X2  -f  yu,2),  it  breaks 

up  into  factors  (\x  +  py  +  vz'}  (\x"  +  fiy"  -f  vz")  ;    and  the  foci 

are  — ,  -,:  -77,  ̂  .     One  value  of  k  gives  the  two  real  foci, 
z  '  z  '  2    '  a ' 

and  the  other  two  imaginary  foci.     The  same  process  is  appli- 
cable to  trilinear  coordinates. 

In  general,  2  4  k  (A,2  -f  //,2)  represents  tangentially  a  conic 
confocal  with  the  given  one.  Forming,  by  Art.  285,  the  corre- 

sponding Cartesian  equation,  we  find  that  the  general  equation 
of  a  conic  confocal  with  the  given  one  is 

&S+/c{C(x*  +  y*)-2Gx-2Fy  +  A+B}  +  k*  =  0. 
From    this    we    can    deduce    that   the    equation    of    common 

tangents  is 

By  resolving  this  into  a  pair  of  factors 

i(*  -  a)2 +  (y  -  /?)*}  {(*  -  «•)' + (y  -  £7), 
we  can  also  get  a,  /8 ;  a',  /3'  the  coordinates  of  the  foci. zz. 
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Ex.  1.  Find  the  foci  of  2z2  -  2xy  +  2y*  -  2x  -  8y  +  11.  The  quadratic  here  is 
3&2  +  4£A  +  A2  =  0,  whose  roots  are  k  =  -  A,  k  =  -  $A.  But  A  =  -  9.  Using  the 
value  k  -  3, 

6\2  +  21M2  +  3i/2  +  18Mw  +  12j/\  +  30XM  +  3  (A2  +  p?)  =  3  (\  +  2/u  +  i/)  (3\  +  V  +  i/), 

showing  that  the  foci  are  1,  2;   3,  4.     The  value  9  gives  the   imaginary  foci 

Ex.  2.  Find  the  coordinates  of  the  focus  of  a  parabola  given  by  a  Cartesian 
equation.     The  quadratic  here  reduces  to  a  simple  equation,  and  we  find  that 

(a  +  b)  {A\*  +  Hfj?  +  tFfjiv  +  1Gi>\  +  2//X|u}  -  A  (\2 

is  resolvable  into  factors.    But  these  evidently  must  be 

(.  +  »)  (2GX  +  «„  and 

The  first  factor  gives  the  infinitely  distant  focus,  and  shows  that  the  axis  of  the  curve 

is  parallel  to  Fx  —  Gy.  The  second  factor  shows  that  the  coordinates  of  the  focus 
are  the  coefficients  of  X  and  fi  in  that  factor. 

Ex.  3.  Find  the  coordinates  of  the  focus  of  a  parabola  given  by  the  trilinear 
equation.    The  equation  which  represents  the  pair  of  foci  is 

6'L  =  A  (A2  +  p?  +  i/2  -  2/ty  cos  A  -  2v\  cosB  -  2Xji  cos  (7). 

But  the  coordinates  of  the  infinitely  distant  focus  are  known,  from  Art.  293,  since  it 
is  the  pole  of  the  line  at  infinity.  Hence  those  of  the  finite  focus  are 

F  sin  C" 

6'(7-A 

385.    The   condition    (Art.   61)    that   two   lines   should    be 

mutually  perpendicuKar, 

XX'  -i-  fjifju  +  vv  -  (/*/  +  pv)  cos  A  -  (v\f  +  v\)  cos  B 

-  (X//  -f  X-V)  cos  (7=0, 

is  easily  seen  to  be  the  same  as  the  condition  (Art.  293)  that 

the  lines  should  be  conjugate  with  respect  to 

Xs  +  tf  +  i/J  -  2/j.v  cos  A  -  2v\  cos  B  -  2X/*  cos  (7=0. 

The  relation,  then,  between  two  mutually  perpendicular  lines  is 

a  particular  case  of  the  relation  between  two  lines  conjugate 

with  regard  to  a  fixed  conic.  Thus,  the  theorem  that  the  three 

perpendiculars  of  a  triangle  meet  in  a  point  is  a  particular 
case  of  the  theorem  that  the  lines  meet  in  a  point  which  join 

the  corresponding  vertices  of  two  triangles  conjugate  with  re- 
spect to  a  fixed  conic,  &c.  It  is  proved  (Geometry  of  Three 

Dimensions,  Chap.  IX.)  that,  in  spherical  geometry,  the  two 

imaginary  circular  points  at  infinity  are  replaced  by  a  fixed 
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imaginary  conic;  that  all  circles  on  a  sphere  are  to  be  considered 
as  conies  having  double  contact  with  a  fixed  conic,  the  centre 
of  the  circle  being  the  pole  of  the  chord  of  contact  ;  that  two 
lines  are  perpendicular  if  each  pass  through  the  pole  of  the 
other  with  respect  to  that  conic,  &c.  The  theorems  then,  which, 
in  the  Chapter  on  Projection,  were  extended  by  substituting, 
for  the  two  imaginary  points  at  infinity,  two  points  situated 
anywhere,  may  be  still  further  extended  by  substituting  for 
these  two  points  a  conic  section.  Only  these  extensions  are 
theorems  suggested,  not  proved.  Thus  the  theorem  that  the 
intersection  of  perpendiculars  of  a  triangle  inscribed  in  an 
equilateral  hyperbola  is  on  the  curve,  suggested  the  property 
of  conies  connected  by  the  relation  0  =  0,  proved  at  the  end 
of  Art.  375. 

It  has  been  proved  (Art.306)  that  to  several  theorems  concern- 
ing systems  of  circles,  correspond  theorems  concerning  systems 

of  conies  having  double  contact  with  a  fixed  conic.  We  give 
now  some  analytical  investigations  concerning  the  latter  class 
of  systems. 

386.  To  form  the  condition  that  the  line  \x  +  py  -f  vz  may 

touch  S+  (\'x  4  p'y  +  v'z)*.  We  are  to  substitute  in  2,  a  4  X'*, 
b  4  //2,  &c.  for  a  ,  5,  &c.  The  result  may  be  written 

where  the  quantity  within  the  brackets  is  intended  to  denote 

the  result  of  substituting  in  8  pv  —  pfv,  v\f  —  v'X,  X//~  \'/j,  for 
#,  y,  z.  This  result  may  be  otherwise  written.  For  it  was 
proved  (Art.  294)  that 

(ax*  4  &c.)  (ax'*  4  &c.)  -  (axaf  4  &c.)2  =  A  (yzf  -  y'z?  4  &c. 
And  it  follows,  by  parity  of  reasoning,  and  can  be  proved  in 
like  manner,  that 

(A\*  4  &c.)  (A\f*  4  &c.)  -  (A\\'+  &c.)8  =  A  {a  (pV-  //!/)*+  &c.}, 

where  A\\'  +  &c.  is  the  condition  that  the  lines  \x  4  py  •+  vz, 
\'x  +  f/y  -f  vz  may  be  conjugate  ;  or 

^XX'-f  J?/i//+  Cvv'  +  F(nv'+  f/v)  +  O  (v\'+  v'\)  +  H(\p'+  7l».; 

If  then  we  denote  ̂ 4A/*  +  &c.  by  2',  and  A\\'  +  &c.  by  C 
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and  if  we  substitute  for  a  (pv' —  fi'v)*  +  &c.  the  value  just  found, 
the  condition  previously  obtained  may  be  written 

(A-r-s')s-n2  =  o. 
If  we  recollect  (Art.  321)  that  X,  p,  v  may  be  considered  as 

the  coordinates  of  a  point  on  the  reciprocal  conic,  the  latter 

form  may  be  regarded  as  an  analytical  proof  of  the  theorem 

that  the  reciprocal  of  two  conies  which  have  double  contact  is  a 

pair  of  conies  also  having  double  contact.  This  condition  may 

also  be  put  into  a  form  more  convenient  for  some  applications,  if 

instead  of  defining  the  lines  \x  -\-  py  4  vz,  &c.  by  the  coefficients 

X,  /u,  V,  &c.,  we  do  so  by  the  coordinates  of  their  poles  with  re- 

spect to  $,  and  if  we  form  the  condition  that  the  line  Pf  may  touch 

8+  P"2,  where  P'  is  the  polar  of  x'y'z',  or  axx'  4-  &c.  Now  the 

polar  of  x'y'z'  will  evidently  touch  S  when  xy'zf  is  on  the  curve ; 
and  in  fact  if  in  S  we  substitute  for  X,  /A,  v ;  £„  £2,  S8  the  coeffi- 

cients of  a;,  y,  z  in  the  equation  of  the  polar,  we  get  A  £?.  And 

again  two  lines  will  be  conjugate  with  respect  to  £,  when  their 

poles  are  conjugate ;  and  in  fact  if  we  substitute  as  before  for 

X,  ̂   v  in  n  we  get  AjR,  where  R  denotes  the  result  of  substituting 

the  coordinates  of  either  of  the  points  x'yz',  x"y'fz",  in  the 

equation  of  the  polar  of  the  other.  The  condition  that  P'  should 
touch  S+  P"2  then  becomes  (1  +  £")  S'  =  E\ 

387.    To  find  the  condition  that  the  two  conies 

S+  (\'x  +  p'y  +  i/«)",     S+  (\"x -f  f*"y  +  v'z]*, 
should  touch  each  other.     They  will  evidently  touch  if  one  of 

the    common    chords  (X'#  +  fjfy  -f  v'z)  ±  (\"x  +  tf'y  -f  v"z]    touch 
either  conic.     Substituting,  then,  in   the  condition  of  the  last 

Article  X'  ±  X"  for  X,  &c.,  we  get 

(A  +  2')  (S'  ±  2H  -f  2")  =  (2r  ±  n)», 
which  reduced  may  be  written  in  the  more  symmetrical  form 

(A  +  S')  (A  +  2")  =  (A  ±  H)2. 

The  condition  that  S+P'*  and  S+  P"'2  may  touch  is  found 
from  this  as  in  the  last  Article,  and  is 

(I  +  S')  (I  +  8")  =  (1  ±  BY. 
Ex.  1.  To  draw  a  conic  having  double  contact  with  S  and  touching  three  given 

conies  S  +  P'2,  S  +  P"2,  S  +  P""1,  also  having  double  contact  with  S.    Let  xyz  be  the 
coordinates  of  the  pole  of  the  chord  of  contact  with  S  of  the  sought  conic  S  +  J'-, 
then  we  have 

(1  +  S)  (1  +  /SO  =  (1  +  P')*  J  (1  +  S)  (1  +  -S")  =  (1  +  P")2 ;  (1  +  S)  (1  +  S"')  =  (1  +  P'")2 
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where  the  reader  will  observe  that  S',  S",  S"'  are  known  constants,  but  S,  P',  &c. 
involve  the  coordinates  of  the  sought  point  xyz.  If  then  we  write  1  +  S  -  k2,  &c., 
we  get 

kk'  =  1  +  P',  kk"  =  1  +  P",  kk1"  =  1  +  P'". 

It  is  to  be  observed  that  P',  P",  P"'  might  each  have  been  written  with  a  double 
sign,  and  in  taking  the  square  roots  a  double  sign  may,  of  course,  be  given  to 

k',  k",  k"'.  It  will  be  found  that  these  varieties  of  sign  indicate  that  the  problem 
admits  of  thirty-two  solutions.  The  equations  last  written  give 

k  (k1  -  k")  =  P'  -  P"  j  k  (k"  -  k'")  -  P"  -  P'"  ; 

whence  eliminating  k,  we  get 

P'  (k"  -  k"')  +  P"  (k"'  -  &0  +  P'"  (V  -  k")  =  0, 

the  equation  of  a  line  on  which  must  lie  the  pole  with  regard  to  S  of  the  chord 

of  contact  of  the  sought  conic.  This  equation  is  evidently  satisfied  by  the  point 

P*  =.  P"  =  P"'.  But  this  point  is  evidently  one  of  the  radical  centres  (see  Art.  306) 
of  the  conies  8  +  P'2,  S  +  P"2,  S  +  P'"2. 

pi      p"       pm 

The  equation  is  also  satisfied  by  the  point  p  =  -p-,  =  -r^  .    In  order  to  see  the 
geometric  interpretation  of  this  we  remark  that  it  may  be  deduced  from  Art.  386 

that  the  tangential  equations  of  S  +  P'2,  S  +  P"2  are  respectively 

(1  +  S')  2  =  A  (\x'+  fjiy'  +  vz')*,    (1  +  S"}  Z  =  A  (\x"  +  py"  +  vz'J. 

Hence 

represent  points  of  intersection  of  common  tangents  to  S  +  P'2,  S  +  P"2,  that  is  to 

x'     x" eay,  the  coordinates  of  these  points  are  -n  ±  T/>  ,  &c.,  and  the  polars  of  these  points, 

pi       pn  pi       pii       pin 

with  respect  to  S,  are  77  ±  nr  .    It  follows  that  17  =  I??  =  jjp^  denote  the  pole,  with 

respect  to  S,  of  an  axis  of  similitude  (Art.  306)  of  the  three  given  conies.  And  the 

theorem  we  have  obtained  is,—  the  pole  of  the  sought  chord  of  contact  lies  on  one 
of  the  lines  joining  one  q/  the  four  radical  centres  to  the  pole,  with  regard  to  S,  of 
one  of  the  four  axes  of  similitude.  This  is  the  extension  of  the  theorem  at  the  end 
of  Art.  118. 

To  complete  the  solution,  we  seek  for  the  coordinates  of  the  point  of  contact  of 

S  +  P2  with  S  +  P'2.    Now  the  coordinates  of  the  point  of  contact,  which  is  a  centre 
x     x'  k 

of  similitude  of  the  two  conies,  being  T  —  r/  >  &c.,  we  must  substitute  x  +  p  x'  for 

»,  &c.  in  the  equations  kk'  =  1+  P',  &c.,  and  we  get 
' 

where  J?,  R'  are  the  results  of  substituting  x"y"z",  x'"y"'z'"  respectively  in  the  polar 
of  x'y'z'.    We  have  then 

k  (k'  -  k")  =  P'  -  P"  +  j,  (S'  -R);  k(k'-  k'")  =  P1  -  P"'  +  |>  (S'  -  #), 

whence  eliminating  k,  we  have 

the  equation  of  a  line  on  which  the  sought  point  of  contact  must  lie  ;  and  which 

evidently  joins  a  radical  centre  to  the  point  where  P',  P",  P'"  are  respectively  pro- 
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portional  to  k'  — "  -  p ,  V"  -  Y  ,  or  to  1,  k'k"  -  R,  k'k'"  -  R. 
But  if  we 

form  the  equations  of  the  polars,  with  respect  to  S  +  P'*,  of  the  three  centres  of 
similitude  as  above,  we  get 

(k'k"  -R)P'  =  P",  (k'k"'  -  R')  P'  =  P'",  Ac., 

showing  that  the  line  we  want  to  construct  is  got  by  joining  one  of  the  four  radical 

centres  to  the  pole,  with  respect  to  S  +  P'2,  of  one  of  the  four  axes  of  similitude. 
This  may  also  be  derived  geometrically  as  in  Art.  121,  from  the  theorems  proved, 

Art.  306.  The  sixteen  lines  which  can  be  so  drawn  meet  S  +  P'2  in  the  thirty-two 
points  of  contact  of  the  different  conies  which  can  be  drawn  to  fulfil  the  conditions 

of  the  problem.* 

*  The  solution  here  given  is  the  same  in  substance  (though  somewhat  simplified 
in  the  details)  as  that  given  by  Prof.  Cayley,  Crelle,  vol.  XXXIX. 

Prof.  Casey  (Proceedings  of  the  Royal  Irish  Academy,  1866)  has  arrived  at  another 
solution  from  considerations  of  spherical  geometry.  He  shows  by  the  method  used, 
Art.  121  (a),  that  the  same  relation  which  connects  the  common  tangents  of  four  circles 

touched  by  the  same  fifth  connects  also  the  sines  of  the  halves  of  the  common  tan- 
gents of  four  such  circles  on  a  sphere;  and  hence,  as  in  Art.  121  (6),  that  if  the 

equations  of  three  circles  on  a  sphere  (see  Geometry  of  Three  Dimensions,  chap.  IX.) 

be  S  -  L*  =  0,  S  -  M*  =  0,  S-N*  =  0,  that  of  a  group  of  circles  touching  all  three 
will  be  of  the  form 

J{\  (-S   - 

-  N)}  =  0. 

This  evidently  gives  a  solution  of  the  problem  in  the  text,  which  I  have  arrived 

at  directly  by  the  following  process.  Let  the  conic  S  be  x2  +  y2  +  z2,  and  let 

L  =  Ix  +  my  +  nz,  M  =  I'x  +  m'y  +  n'z ;  then  the  condition  that  S  -  Z,8,  S  -  M 2 
should  touch  is  (Art.  387)  (1  -  S')  (1  -  S"}  =  (1  -  R)"*,  where  S'  =  P  +  m2  +  n2, 
S"=Z'2-H»/2+n'2,  R=ll'+mm'+nn'.  I  write  now  (12)  to  denote  4(\.-S')(i-S")-(l-R). 

Let  us  now, . according  to  the  rule  of  multiplication  of  determinants,  form  a  deter- 
minant from  the  two  matrices  containing  five  columns  and  six  rows  each. 

1,    0,     0,     0,          0 

1,    I,     m,     n,    4(1 -S') 
17'        *v»'         -»'         f/1  O'f\ 

9        i  I        7/fr  |         f*  j       N\^    ""*  O     J 

1,  T,  m",  »",  J(l  -  S- 
1,  /'",  m'",  n'",  J(l  -  SJ 

1,  /4,  ;ra4,  n4,  4(1  -  S&] 

The  resulting  determinant  which  must  vanish,  since  there  are  more  rows  than 
columns,  is 

0,            ],       1,       1,       1,  1 

4(1  -  S'),       0,  (12),  (13),  (14),  (15) 

4(1  -  8"),    (12),     0,     (23),  (24),  (25) 

4(1  -  S'"),  (13),  (23),     0,     (34),  (35) 

4(1  -  8J,     (14),  (24),  (34),     0,  (45) 

4(1  -  S.),    (15),  (25),  (35),  (45),  0      =0, 

an  identical  relation  connecting  the  invariants  of  five  conies  all  having  double  contact 

with  the  same  conic  S.     Suppose  now  that  the  conic  (5)  touches  the  other  four, 

o, 
o, 

o, o, 
1, 

-1, 

I, 

m, 

»» 

4(1  -  <*'), 

-1, 

l't 

m', 

«', 

4(1  -  s"), 
X 

-1, 
I", 

m", 

n", 

4(1  -  sf"), 

-1, 

r, 

m'", 

»'", 

4(L-8t), 

-1, 

/4, 

m4, 

n4, 

4(i  -  sj. 
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Ex.  2.  The  four  conies  having  double  contact  with  a  given  one  S,  which  can  be 

drawn  through  three  fixed  points,  are  all  touched  by  four  other  conies  also  having  double 
contact  with  S*  Let 

S  =  x*  +  y*  +  Z2  —  2yz  cos  A  —  Izx  cos  B  -  2xy  cos  C, 

then  the  four  conies  are  S  —  (x  ±  y  ±  z)2,  which  are  all  touched  by 

S  =  [x  cos  (B-C}+y  cos  (C  -  A)  +  z  cos  (A  -  B)}*, 

and  by  the  three  others  got  by  changing  the  sign  of  A,  B,  or  C,  in  this  equation. 

Ex.  3.  The  four  conies  which  touch  x,  y,  z,  and  have  double  contact  with  S  are 

all  touched  by  four  other  conies  having  double  contact  with  S.  Let  M  =  £  (A  +  B+  C), 
then  the  four  conies  are 

S  =  {x  sin  (M  -  A)  +  y  sin  (M  -  J?)  +  z  sin  (M  -  C)}*, 

together  with  those  obtained  by  changing  the  sign  of  A,  B,  or  C  in  the  above  ;  and 
one  of  the  touching  conies  is 

_  (x  sin  %B  sin  ±C     y&njtC  sin  \A      z  sin  \A  si 

"t        sin^T  rinJ/F  sin  \C 
the  others  being  got  by  changing  the  sign  of  x,  and  at  the  same  time  increasing  B 

and  C  by  180°,  &c. 

Ex.  4.  Find  the  condition  that  three  conies  U,  V,  W  shall  all  have  double  contact 

with  the  same  conic.  The  condition,  as  may  be  easily  seen,  is  got  by  eliminating 

X,  fi,  v  between 
A\3  -  e\>  +  e'\/i2  -  Ay  =  o, 

and  the  two  corresponding  equations  which  express  that/uF-  vW,  v  W  —  \U  break 
up  into  right  lines. 

then  (15),  <fec.  vanish;    and  we  learn  that  the  invariants  of  four  conies  all  having 
double  contact  with  S  and  touched  by  the  same  fifth  arc  connected  by  the  relation 

0,     (12),  (13),  (14) 
(12),     0,    (23),  (24) 

(13),  (23),     0,    (34) 

(14),  (24),  (34),     0      =0, 

or  J{(12)  (34)}  ±  J{(18)  (24)}  ±  J{(14)  (23)}  =  0. 

We  may  deduce  from  this  equation  as  follows  the  equation  of  the  conic  touching 
three  others.  If  the  discriminant  of  a  conic  vanish,  8=1,  and  then  the  condition  of 

contact  with  any  other  reduces  to  JR  =  1.  If,  then,  a,  /3,  y  be  the  coordinates  of  any 

point  satisfying  the  relation  S—  L?  =  0,  or  x"2  +  y*  +  z2  —  (Ix  +  my  +  nz}2  =  0,  then 

evidently  denotes  a  conic  whose  discriminant  vanishes  and  which  touches  S  —  L*. 

If,  then,  we  are  given  three  conies  S  —  L?,  S  —  M2,  S  —  JV2,  take  any  point  a,  ]8,  y 
on  the  conic  which  touches  all  three  and  take  for  a  fourth  conic  that  whose  equa- 

tion has  just  been  written,  then  the  functions  (14),  (24),  (34)  are  respectively 

1  -  -v«\  >   1  —  TT^  >   1  —  i/  m  >  and  we  see  that  any  point  on  the  conic  touching j(b)  J(b)  4(b) 
all  three  satisfies  the  relation 

J[(23)  W(5)  -  L}-}  ±  J[(31)  U(S)  -  M}]  ±  J[(12)  U(S)  -  N}}  =  0. 
*  This  is  an  extension  of  Feuerbach's  theorem  (p.   127),  and  itself  admits  of 

further  extension.    See  Quarterly  Journal  of  Mathematics,  vol.  vi.  p.  67. 
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388.  The  theory  of  invariants  and  covariants  of  a  system 
of  three  conies  cannot  be  fully  explained  without  assuming  some 

knowledge  of  the  theory  of  curves  of  the  third  degree. 
Oiven  three  conies  17,  F,  TF,  the  locus  of  a  point  whose  polars 

with  respect  to  the  three  meet  in  a  point  is  a  curve  of  the  third 

degree,  which  we  call  the  Jacobian  of  the  three  conies.  For  we 

have  to  eliminate  x,  y,  z  between  the  equations  of  the  three 

polars 
TF8z=0, 

and  we  obtain  the  determinant 

,-  r.wj-o. 
It  is  evident  that  when  the  polars  of  any  point  with  respect  to 

U,  V,  W  meet  in  a  point,  the  polar  with  respect  to  all  conies  of 

the  system  W  +  mV+nW  will  pass  through  the  same  point. 

If  the  polars  with  respect  to  all  these  conies  of  a  point  A  on 

the  Jacobian  pass  through  a  point  B,  then  the  line  AB  is  cut 

harmonically  by  all  the  conies;  and  therefore  the  polar  of  B 

will  also  pass  through  A.  The  point  B  is,  therefore,  also  on 

the  Jacobian,  and  is  said  to  correspond  to  A.  The  line  AB 

is  evidently  cut  by  all  the  conies  in  an  involution  whose  foci 

are  the  points  A,  B.  Since  the  foci  are  the  points  in  which  two 

corresponding  points  of  the  involution  coincide,  it  follows  that 

if  any  conic  of  the  system  touch  the  line  AB,  it  can  only  be 

in  one  of  the  points  A,  B  ;  or  that  if  any  break  up  into  two 

right  tines  intersecting  on  AB,  the  points  of  intersection  must 
be  either  A  or  B,  unless  indeed  the  line  AB  be  itself  one  of 

the  two  lines.  It  can  be  proved  directly,  that  if  IU+  m  F+  n  W 

represent  two  lines,  their  intersection  lies  on  the  Jacobian. 
For  (Art.  292)  it  satisfies  the  three  equations 

whence,  eliminating  I,  m,  n,  we  get  the  same  locus  as  before. 

The  line  AB  joining  two  corresponding  points  on  the  Jacobian 

meets  that  curve  in  a  third  point ;  and  it  follows  from  what 
has  been  said  that  AB  is  itself  one  of  the  pair  of  lines  passing 

through  that  point,  and  included  in  the  system  IU+  mV +  nW. 
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The  general  equation  of  the  Jacobian  is 

(ag'h")  x> 

where  (ag'h")  &c.  are  abbreviations  for  determinants. 
Ex.  1.  Through  four  points  to  draw  a  conic  to  touch  a  given  conic  W.  Let  the 

four  points  be  the  intersection  of  two  conies  U,  V;  and  it  is  evident  that  the  problem 

admits  of  six  solutions.  For  if  we  substitute  a  +  ka',  &c.  for  a  in  the  condition 
(Art.  372)  that  U  and  W  should  touch  each  other,  Jc,  as  is  easily  seen,  enters  into 
the  result  in  the  sixth  degree.  The  Jacobian  of  Z7,  V,  W  intersects  W  in  the  six 
points  of  contact  sought.  For  the  polar  of  the  point  of  contact  with  regard  to  W 
being  also  its  polar  with  regard  to  a  conic  of  the  form  A.Z7+  p.V  passes  through  the 
intersection  of  the  polars  with  regard  to  U  and  V. 

Ex.  2.  If  three  conies  have  a  common  self  -conjugate  triangle,  their  Jacobian 

is  three  right  lines.  For  it  is  verified  at  once  that  the  Jacobian  of  ax1  +  by2  +  cz*, 

a'x*  +  b'f  +  c'z\  a"x*  +  V'y*  +  c"«2  is  xyz  =  0. 

Ex.  3.  If  three  conies  have  two  points  common,  their  Jacobian  consists  of  a  line 
and  a  conic  through  the  two  points.  It  is  evident  geometrically  that  any  point  on 
the  line  joining  the  two  points  fulfils  the  conditions  of  the  problem,  and  the  theorem 

can  easily  be  verified  analytically.  In  particular  the  Jacobian  of  a  system  of  three 
circles  is  the  circle  cutting  the  three  at  right  angles. 

Ex.  4.  The  Jacobian  also  breaks  np  into  a  line  and  conic  if  one  of  the  quantities 

S  be  a  perfect  square  Z,2.  For  then  L  is  a  factor  in  the  locus.  Hence  we  can  describe 

four  conies  touching  a  given  conic  S  at  two  given  points  (S,  L)  and  also  touching  S"  ; 
the  intersection  of  the  locus  with  S"  determining  the  points  of  contact. 

When  the  three  conies  are  a  conic,  a  circle,  and  the  square  of  the  line  at  infinity, 
the  Jacobian  passes  through  the  feet  of  the  normals  which  can  be  drawn  to  the  conic 

through  the  centre  of  the  circle. 

388  (a).  We  return  now  to  the  theory  of  two  conies  which 

it  was  not  possible  to  complete  until  we  had  explained  the 

nature  of  Jacobians.  We  have  seen  that  a  system  of  two  conies 

$,  S'  has  four  invariants  A,  0,  0',  A',  and  a  covariant  conic  F, 
but  there  is  besides  a  cubic  covariant.  In  fact,  the  covariant 

conic  F  has  a  common  self-conjugate  triangle  with  $,  S' 
(Art.  381,  Ex.  1),  therefore  (Art.  388,  Ex.  2)  if  we  form  J  the 

Jacobian  of  S,  S',  F  we  obtain  a  cubic  covariant,  which,  in  fact, 
represents  the  sides  of  the  common  self-conjugate  triangle  of  S 

and  S'.  It  appears  from  (Art.  378a)  that  J  vanishes  identi- 

cally if  S  and  S'  have  double  contact.  We  have  given  (Art.  381, 
Ex.  4)  another  method  of  obtaining  the  equation  of  the  sides 

A  A  A. 
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of  the  common  self-conjugate  triangle,  and  if  we  compare  the 
results  of  the  two  methods,  we  get  the  identical  equation 

eT  =  F  -  F«  (©£'  +  &8)  +  F  (A'0£2  4  A0'£") 

+  F&S"  (0©'  -  3  A  A')  -  A'2A£8  -  A'A'/S"3 

+  A'  (2  A©'  -  0'2)  8*8'  -t-  A  (2  A'©  -  0/2)  SS"- 

Thus  we  see  that  a  system  of  two  conies  has,  besides  the  four 

invariants,  four  covariant  forms  $,  /S',  F,  J,  these  being  con- 
nected by  the  relation  just  written.  In  like  manner,  there  are 

four  contravariant  forms  2,  2',  4>,  T,  where  the  last  expresses 
tangentially  the  three  vertices  of  the  self-conjugate  triangle,  its 
square  being  connected  by  a  relation,  corresponding  to  that  just 

written,  between  2,  2',  4>  and  the  invariants. 

Ex.  1.  Write  down  the  12  forms  for  the  conies  x2  +  y1  +  z2,  ax2  +  by*  +  cz*. 

Ans.  A  =  1,  6  =  a  +  b  +  c,  Q'  =  lc  +  ca  +  ab,  A'  =  abc, 

J=(b-c)(c-a)(a-b)xyz, 

r  =  (b  -  c)  (c  -  a)  (a  - 

Ex.  2.  Find  an  expression  for  the  area  of  the  common  conjugate  triangle  of  two 
conies.    The  square  of  the  area  is  found  to  be 

where  M  is  the  area  of  the  triangle  of  reference,  and  T'  the  result  of  substituting  in  T, 
Bin  A,  sin  B,  sin  C,  the  coordinates  of  the  line  at  infinity.  That  the  expression  must 

contain  in  the  numerator  the  condition  of  contact,  and  in  the  denominator  I",  is 
evident  from  the  consideration  that  this  area  must  vanish  if  the  conies  touch,  and 
becomes  infinite  if  any  vertex  of  the  triangle  be  at  infinity. 

388(5).  We  have  already  explained  what  is  meant  by 
covariants  which  express  relations  satisfied  by  x,  y,  z,  the 
coordinates  of  a  point  lying  on  a  locus  having  some  permanent 

relation  with  the  original  curve  or  curves,  and  by  contravariants 

which  express  relations  satisfied  by  X,  /*,  v  the  tangential 
coordinates  of  a  line,  whose  section  by  the  original  curve  or 

curves  has  some  property  unaffected  by  transformation  of 
coordinates.  There  are  besides  forms  called  mixed  concomitants 

which  contain  both  «,  ?/,  z  and  also  X,  /*,  v,  and  these  we  proceed 
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to  enumerate  for  the  system  of  two  conies  S,  8'.  These 
mixed  concomitants  of  a  system  of  two  curves  may  also  be 

regarded  as  covariants  of  the  system  of  three,  consisting  of 

S.  S'  and  the  right  line  \x  +  py  +  vz.  For  instance,  we  may 
form  the  Jacobian  of  that  system,  or  the  locus  of  the  point 

whose  polars,  with  respect  to  8  and  S',  intersect  on  \x  4-  py  +  vz^ 
thus  obtaining  the  mixed  concomitant  N  or 

X  , 

which  for  the  canonical  form  is 

X  (b  -  c)  yz  4-  p  (c  -  a)  zx  4  v  (a  -  b)  xy. 

There  is  evidently  a  corresponding  reciprocal  form  N'  obtained 

in  the  same  way  from  S,  S',  which  for  the  canonical  form  is 

afiv  (b  —  c)  x  +  bv\  (c  —  a)  y  4  c\fj,  (a  —  b)  z. 

This  expresses  the  equation  of  the  line  joining  the  poles  of 

\x  4-  fj,y  4  vz  with  respect  to  8  and  8'.  Again,  for  any  line 
\x  -i-  py  +  vz,  we  may  take  its  pole  with  regard  to  S  and 

again  the  polar  of  that  point  with  regard  to  S'  and  so 
obtain  a  companion  line  K.  This  for  the  canonical  form  is 

a\x  4-  bfj,y  4-  cvz.  We  obtain  a  different  companion  line  K'  by 

taking  the  pole  with  regard  to  S'  and  then  the  polar  with 
regard  to  8,  thus  finding  bc\x  4-  capy  +  abvz.  Gordan  has 
shewn  (Clebsch,  Geometric,  p.  291)  that  there  are  in  all  eight 

mixed  concomitants  of  a  system  of  two  conies  in  terms  of  which, 
and  of  the  forms  previously  enumerated,  all  other  concomitants 

can  be  expressed.  In  addition  to  the  four  already  mentioned  we 

may  take  the  Jacobian  of  K,  8  and  \x  +  py  +  vz,  or  for  the 
canonical  form 

IJLV  (b  —  c)  x  +  v\  (c  —  a]  y  4-  fyt  (a  —  b)z; 

and,  in  like  manner,  the  Jacobian  of  Kf,  S',  and  \x  +  py  4-  vz,  or 

fjivo?  (b  —  c)  x  4-  v\b*  (c  —  aj  y  4-  X/^c2  (a  —  b]  z. 
These  with  the  two  reciprocal  forms 

\ayz  (b  —  c)  +  fibzx  (c  —  a)  +  vcxy  (a  —  b), 

and  \bc  (b  —  c)yz  +  pea  (c  ~a)zx-\-  vab  (a  -  b)  xy 

make  up  the  entire  system. 

We  return  now  to  the  theory  of  three  conies. 

388 (c).    To  find  the  condition  that  a  line  \x  +  /*y  +  vz  should 

oe  cut  in  involution  by  three  conies.     It  appears  from  Art.  335 
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and  from  the  Note,  Art.  342,  that  the  required  condition  is  the 
vanishing  of  the  determinant 

cX*  —  2<7i/X  4av*,   C/JL*  -  2/v/tfc    4  5v2,  c\fju  —fv\  —gvp   +hv* 

c'X8  -2/vX  4aV,  c>*  -  2/V/A  4  5V,  c'X/*  - 

When  this  is  expanded  it  becomes  divisible  by  v8,  and  may  be 
written 

x8  (ic'f) + ^3  (c«y)  -*-  ̂8  (o&'A") + xv  (2  (CA:D  - 
4-  XV  (2  (£//')  -  (Wh")}  4  AA2X  {2  (c^T')  - 

+  /iV  }2  (a//0  -  (caT')}  4  v'X  {2  (ft/A")  - 

This  may  also  be  written  in  the  determinant  form 

=  0. 

a  , 

^,    C  ,    2/  ,    2<9r  , 

2^ 
a',  < 

*',  c',  2/',  2/, 

27^'
 

y,  c",  2/",  2^", 

2A"
 

x, 
v    j 

M 

j ti,               V      , X 

V  ,    /L6       ,     X 

From  the  form  of  this  condition,  it  is  immediately  inferred  that 

any  line  cut  in  involution  by  three  conies  £7,  F,  W  is  cut  in 

involution  by  any  three  conies  of  the  system  lU-\-mV+nW. 
The  locus  of  a  point  whence  tangents  to  three  conies  form  a 

system  in  involution  is  got  by  writing  #,  y,  z  for  X,  /A,  v  in  the 

preceding,  and  the  reciprocal  coefficients  A,  B,  &c.  instead  of 

a,  &,  &c. 

389.  If  we  form  the  discriminant  of  IU+  mV+  nW,  we  may 

write  the  result  Z3A  4  Fm6H  +  ̂w0,18  +  ̂mn^^  +  &c">  anc*  tne  co" 
efficients  of  the  several  powers  of  /,  ?w,  w  will  be  invariants  of 

the  system  of  conies.  All  these  belong  to  the  class  of  invariants 

already  considered,  except  the  coefficient  of  Imn,  in  which  each 
term  abc  of  the  discriminant  of  U  is  replaced  by 

ab'c"  +  aV'c'  4-  a'b"c  4  abc"  4  a"bc'  +  a"b'c,  &c. 
Another  remarkable  invariant  of  the  system  of  conies,  first 

obtained  by  a  different  method  by  Prof.  Sylvester,  is  found  by 

the  help  of  the  principle  (Higher  Algebra,  Art.  139),  that  when  we 
have  a  covariant  and  a  contravariant  of  the  same  degree,  we 
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can  get  an  invariant  by  substituting  differential  symbols  in 

either,  and  operating  on  the  other.  By  the  help  of  the  Jacobian 
and  the  contravariant  of  the  last  article  we  get  the  invariant  T, 

T=  (0&V7  +  4  (ab'f")  (ac'f)  +  4  (bc'g"}  (ba'g")  +  4  (ca'A")  (cVh") 
+  8  («//')  (&//')  +  8  (afh")  (cfh"}  +  8  (tfh")  (bg'h") 
-  8  Wk")  (bc'f'}  -  8  (Wf)  (ca'g")  -  8  (off)  (ab'h") 

389a.  Some  of  the  properties  of  a  system  of  three  conies 

can  be  studied  with  advantage  by  expressing  each  in  terms  of 

four  lines  ce,  y,  z,  w  :  thus 

U=  ax*  +  by*  +  cz*  +  dw\     V=  a'x*  +  Vyl  +  cV  +  d'v?, 
W=  a"  a?  +  b'Y  +  cV  +  #V. 

It  is  always  possible,  in  an  infinity  of  ways,  to  choose  #,  ̂ ,  «,  w, 

so  that  the  equations  can  be  brought  to  the  above  form;  for 

each  of  the  equations  just  written  contains  explicitly  three  in- 
dependent constants  ;  and  each  of  the  lines  a;,  y,  2,  w  contains 

implicitly  two  independent  constants.  The  form,  therefore,  just 

written  puts  seventeen  constants  at  our  disposal,  while  U,  V,  W, 
contain  only  three  times  five,  or  fifteen,  independent  constants. 

The  equations  of  four  lines  are  always  connected  by  a  relation 

of  the  form  w  *=  \x  +  py  +  vz,  and  we  may  suppose  that  the 
constants  X,  &c.  have  been  included  in  a?,  &c.,  so  that  this  rela- 

tion may  be  written  in  the  symmetrical  form  x  +  y  +  z  +  w  =  0. 
Let  it  be  required  now  to  find  the  condition  that  27,  F,  W 

may  have  a  common  point.  Solving  for  a;2,  y\  z\  w*  between 
the  equations  £7=0,  F=0,  TF=0,  and  denoting  by  J,  B,  <?,  D 

the  four  determinants  (bed"),  (dc<j'\  (dafb"),  (&aV'),  we  get 

x\  y\  z\  w2  proportional  to  A,  B,  C,  D;  and  substituting  in 
x  +  y  +  z  +  w  =  0,  we  obtain  the  required  condition 

or 

=  UABCD. 

The  left-hand  side  of  this  equation  is  the  square  of  the 
invariant  T  already  found;  the  right-hand  side  ABCD  is  an 
invariant  which  we  shall  call  M,  whose  vanishing  expresses  the 

condition  that  it  may  be  possible  to  determine  /,  ?H,  w,  so  that 
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mV+  n  W  shall  be  a  perfect  square.  This  invariant  may 

be  directly  found  from  the  principle  that  when  the  equation 

of  a  conic  is  a  perfect  square  its  reciprocal  vanishes  identically. 

The  reciprocal  of  18+  mS'+  n8"  is  evidently  (Art.  377) 

and  if  we  equate  separately  each  coefficient  to  zero  and  then 

linearly  eliminate  the  six  quantities  f,  m2,  &c.,  we  get  the  result 

A  ,  B  ,  C  ,  F  ,  G  ,  H 

A  ,  B'  ,  C',  F',  &  ,  H' 
A",  B",  0",  F",  G\  H" 

H 

where  ̂ 412,  &c.  denote  the  coefficients  in  3>J2,  &c.,  Art.  377. 
This  determinant  is  of  the  fourth  degree  in  the  coefficients  of  each 

conic,  those  of  the  first  conic,  for  example,  entering  in  the  second 

degree  into  the  first  row,  and  in  the  first  into  the  fifth  and 
sixth,  and  so  for  the  others.  It  follows  that  four  conies  of  the 

system  S+  IU+  mV-\-  nW  can  be  determined  so  as  to  be  per- 
fect squares  (see  Ex.  3,  Art.  373),  for  if  we  equate  to  nothing 

the  invariant  M  found  for  S+IU,  F,  W,  we  have  an  equation 
of  the  fourth  degree  for  determining  I. 

38%.  Considering  two  conies,  if  we  form  the  discriminant 

of  the  reciprocal  system  ZS-fwiS'  we  get  no  new  invariant, 
the  discriminant  in  fact  being 

A'2. wS"  the  coefficient But  if  we  form  the  discriminant  of  /S  + 

of  lmn,  answering  to  0m  of  Art.  389,  or 

is  an  invariant  of  the  second  degree  in  the  coefficients  of  each 

conic,  not  expressible  in  term  of  the  invariants  A,  0II2,  &c. 
Mr.  Burnside  has  shewn  that  the  invariant  T  of  Art.  389, 

which  is  of  the  same  order  in  the  coefficients,  is  expressible  in 
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terms  of  this  new  invariant  and  of  those  of  Art.  389.     In  fact, 

let  two  of  the  conies  have  the  canonical  form,  and  write  them 

o;2  +  /  +  z2  =  0,    lx*  +  my*  +  nz*  =  0, 

ax*  +  by*  4  cz*  +  tyyz  +  ̂ gzx  +  Vhxy  =  0. 
If  then  we  form  the  resultant  of  the  three,  that  is,  the  condition 

that  they  shall  have  a  common  point,  the  first  two  equations 
are  satisfied  by 

x2  =  m-n  =  a,  yz  =  n-l  —  ̂ ^  zt  =  l-m  —  y. 

Substituting  these  values  in  the  third  and  clearing  of  radicals, 
we  have 

[a*a?+b*F+(?<f-2bc/3y-2caya-  2o£>a/3+  4(-4#y+  By*  +  Caff)}* 
=  64a£7  (Fffh*  +  GhfB  +  Hfgy). 

The  left-hand  side  of  the  equation  is  what  we  have  before 

called  T2.  Writing  then  for  a,  /3,  7  their  values  m  —  n^  n  —  l, 
I  -  m,  we  can  reduce  T  to 

[I  (b  +  c)  +  m  (c  +  a)  +  n  (a  +  b)}*  -  4  (a  +  1  +  c)  (amn  -f-  bnl  +  dm) 

-  4  (AT  +  Bin*  +  Cn*)-±(A  +  B  +  G)  (mn  +  nil  Im) 

+  8  [Al  (m  +  n)  1  Bm  (n  +  l)+  Cn  (I  +  m)} 

all  the  separate  groups  in  which  expression  will  be  found  to  be 

fundamental  invariants  of  the  system,  except  Al*  +  Bm9  +  Cn\ 
which  is  ̂ n^jgg  —  ©  where  0  is  the  invariant  of  this  Article. 
Thus  we  get 

T=  «•„  -  *  (0mem  +  o^  +  e,nej  +  120. 
If  we  consider  the  discriminant  of  IS+mS'+nS"  as  a 

ternary  cubic  in  Z,  TTZ,  w,  and  by  the  theory  of  cubic  curves  form 

its  S  and  T  invariants,  Mr.  Burnside  has  calculated  the  S  to 

be  27a-48Jf,  and  the  T  to  be  ST(72M-  T72).  Thus  we  have 

T'2-48Jf,  and  T(72M-  T2)  expressed  in  terms  of  the  ten fundamental  invariants  which  occur  in  the  discriminant  of 

IS+mS'  +  nS".  And  though  M,  T,  0  are  not  linearly  ex- 
pressible in  terms  of  these  ten,  yet  we  have  just  shown  how 

to  form  two  equations  implicitly  connecting  M  and  T  with  these 

ten  ;  and  of  course  we  could,  if  we  please,  eliminate  either  M  or 

T  from  these  equations,  and  thus  get  an  equation  connecting 
either,  singly  with  the  fundamental  invariants. 
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389e.  Any  three  conies  may  in  general  be  considered  as 

the  polar  conies  of  three  points  with  regard  to  the  same  cubic ; 

or,  in  other  words,  their  equations  may  all  be  reduced  to  the 
form 

a  (a*  -  2ya)  +  j3  (y*  -  2zx)  +y(z*-  2xy)  =  0. 
If  we  use  for  the  equations  of  the  conies  the  forms  given  in 

Art.  389a,  the  equation  of  the  cubic  whence  they  are  derived 
will  be 

x9      y*      z*      w* 

A  +  H  +  7J+D=()>
 

and  it  appears  that  if  the  invariant  M  vanish  (in  which  case 

either  -4,  B,  G  or  D  vanishes),  an  exception  occurs,  and  the 
conies  cannot  all  be  derived  from  the  same  cubic.  In  the 

general  case,  the  equation  of  the  cubic  may  be  obtained  by 
forming  the  Hessian  of  the  Jacobian  of  the  three  conies,  and 

subtracting  the  Jacobian  itself  multiplied  by  twice  T. 

If  we  operate  with  the  conies  on  the  cubic  contravariant, 

or  with  their  reciprocals  on  the  Jacobian,  we  obtain  linear 

contravariants  and  covariants  which  geometrically  represent  the 

points  of  which  the  given  conies  are  polar  conies,  and  the  polar 
lines  of  these  points  with  respect  to  the  cubic. 
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CHAPTER   XIX. 

THE  METHOD  OF  INFINITESIMALS. 

390.  REFERRING  the  reader  to  other  works  where  it  is 

shown  how  the  differential  calculus  enables  us  readily  to  draw 

tangents  to  curves,  and  to  determine  the  magnitude  of  their 

areas  and  arcs,  we  wish  here  to  give  him  some  idea  of  the 

manner  in  which  these  problems  were  investigated  by  geometers 
before  the  invention  of  that  method.  The  geometric  methods 

are  not  merely  interesting  in  a  historical  point  of  view;  they 

afford  solutions  of  some  questions  more  concise  and  simple  than 

those  furnished  by  analysis,  and  they  have  even  recently  led  to 

a  beautiful  theorem  (Art.  399)  which  had  not  been  anticipated 

by  those  who  have  applied  the  integral  calculus  to  the  recti- 
fication of  conic  sections. 

If  a  polygon  be  inscribed  in  any  curve,  it  is  evident  that  the 

more  the  number  of  the  sides  of  the  polygon  is  increased,  the 

more  nearly  will  the  area  and  perimeter  of  the  polygon  approach 

to  equality  with  the  area  and  perimeter  of  the  curve,  and  the  more 

nearly  will  any  side  of  the  polygon  approach  to  coincidence  with 

the  tangent  at  the  point  where  it  meets  the  curve.  Now,  if  the 

sides  of  the  polygon  be  multiplied  ad  infinitum,  the  polygon  will 

coincide  with  the  curve,  and  the  tangent  at  any  point  will  coincide 

with  the  line  joining  two  indefinitely  near  points  on  the  curve. 

In  like  manner,  we  see  that  the  more  the  number  of  the  sides  of 

a  circumscribing  polygon  is  increased,  the  more  nearly  will  its 

area  and  perimeter  approach  to  equality  with  the  area  and  peri- 
meter of  the  curve,  and  the  more  nearly  will  the  intersection  of 

two  of  its  adjacent  sides  approach  to  the  point  of  contact  of  either. 

Hence,  in  investigating  the  area  or  perimeter  of  any  curve,  we 
may  substitute  for  the  curve  an  inscribed  or  circumscribing 

polygon  of  an  indefinite  number  of  sides;  we  may  consider  any 

tangent  of  the  curve  as  the  line  joining  two  indefinitely  -near 
points  on  the  curve,  and  any  point  on  the  curve  as  the  inter- 

section of  two  indefinitely  near  tangents. 

BBB. 
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391.  Ex.  1.    To  find  the  direction  of  the  tangent  at  any  point 

of  a  circle. 
In  any  isosceles  triangle  A  OB,  either  base  angle  OB  A  is  less 

than  a  right  angle  by  half  the  vertical  angle ;  but  as  the  points 

A  and  B  approach  to  coincidence,  the 

vertical  angle  may  be  supposed  less 

than  any  assignable  angle,  therefore 

the  angle  OBA  which  the  tangent 

makes  with  the  radius  is  ultimately  A.| 

equal  to  a  right  angle.  We  shall 

frequently  have  occasion  to  use  the 

principle  here  proved,  viz.  that  two 
indefinitely  near  lines  of  equal  length 

are  at  right  angles  to  the  line  joining  their  extremities. 

Ex.  2.  The  circumferences  of  two  circles  are  to  each  other  as 
their  radii. 

If  polygons  of  the  same  number  of  sides  be  inscribed  in  the 
circles,  it  is  evident,  by  similar  triangles,  that  the  bases  ab,  AB, 
are  to  each  other  as  the  radii  of  the  circles,  and,  therefore,  that 

the  whole  perimeters  of  the  polygons  are  to  each  other  in  the 

same  ratio ;  and  since  this  will  be  true,  no  matter  how  the 

number  of  sides  of  the  polygon  be  increased,  the  circumferences 
are  to  each  other  in  the  same  ratio. 

Ex.  3.  The  area  of  any  circle  is  equal  to  the  radius  multiplied 

by  the  semi-circumference. 
For  the  area  of  any  triangle  OAB  is  equal  to  half  its  base 

multiplied  by  the  perpendicular  on  it  from  the  centre ;  hence  the 

area  of  any  inscribed  regular  polygon  is  equal  to  half  the  sum  of 

its  sides  multiplied  by  the  perpendicular  on  any  side  from  the 
centre  ;  but  the  more  the  number  of  sides  is  increased,  the  more 

nearly  will  the  perimeter  of  the  polygon  approach  to  equality 

with  that  of  the  circle,  and  the  more  nearly  will  the  perpen- 
dicular on  any  side  approach  to  equality  with  the  radius,  and  the 

difference  between  them  can  be  made  less  than  any  assignable 

quantity ;  hence  ultimately  the  area  of  the  circle  is  equal  to  the 

radius  multiplied  by  the  semi-circumference ;  or  =  trr*. 

392.  Ex.  1.    To  determine  the  direction  of  the  tangent  at  any 
point  on  an  ellipse. 
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Let  P  and  Pf  be  two  indefinitely  near  points  on  the  curve, 

then  FP+  PF'  =  FPf  +  PFf  ;  or, 

taking  FR  =  FP,  FR'=F'P',  we 

have  P'R^PE';  but  in  the  tri- 

angles PEP',  PR'P',  we  have  also 

the  base  PPf  common,  and  (by 

Ex.  1,  Art.  391)  the  angles  PEPf 
PE'P'  right  ;  hence  the  angle 

PFR  =  P'PR.  Now  TPF  is  ultimately  equal  to  PP'F,  since 
their  difference  PFP'  may  be  supposed  less  than  any  given 

angle  ;  hence  TPF—  T'PF  ',  or  the  focal  radii  make  equal  angles 
with  the  tangent. 

Ex.  2.    To  determine  the  direction  of  the  tangent  at  any  point 

on  a  hyperbola. 
We  have 

FfPf  -  F'P=  FP'  -  FP, 
or,  as  before, 

Hence  the  angle 

or,  the  tangent  is  the  internal  bisector  of  the  angle  FPF' . 
Ex.  3.    To  determine  the  direction  of  the  tangent  at  any  voint 

of  a  parabola. 

We  have  FP=PN,  and  FF  =  FN'-,  hence 

the  angle  N'FP=FFP.     The  tangent,  there-  N, 
fore,  bisects  the  angle  FPN.  N 

393.   Ex.  1.    To  find  the  area  of  the  para- 
bolic sector  FVP. 

Since  PS=PR,  and  PN=FP,  we  have  the 

triangle  FPR  half  the  parallelogram  P8NN*. 

Now  if  we  take  a  number  of  points  P'P",  &c. 
between  F  and  P,  it  is  evident  that  the  closer 

we  take  them,  the  more  nearly  will  the  sum  of 

all  the  parallelograms  PSN'N,  &c.  approach 
to  equality  with  the  areaDFPAT,  and  the  sum  of  all  the  tri- 

angles PFR,  &c.  to  the  sector  VFP-  hence  ultimately  the  sector 
PFV  is  half  the  area  DVPN,  and  therefore  one-third  of  the 
quadrilateral  DFPN. 
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R'/  N 

MM' 

Ex.  2.  To  find  the  area  of  the  segment  of  a  parabola  cut  off 

by  any  riff  Jit  line. 

Draw  the  diameter  bisecting  it,  then  the  parallelogram  PR' 
is  equal  to  PM'  ,  since  they  are  the  corn- 
plements  of  parallelograms  about  the  dia- 

gonal ;  but  since  TM  is  bisected  at  F', 

the  parallelogram  PN'  is  half  PR  ;  if, 
therefore,  we  take  a  number  of  points 

P,  P',  P",  &c.,  it  follows  that  the  sum  of 

all  the  parallelograms  PM'  is  double  the 
sum  of  all  the  parallelograms  PN',  and 
therefore  ultimately  that  the  space  VPM 
is  double  VPN;  hence  the  area  of  the 

parabolic  segment  V'PM  is  to  that  of  the  parallelogram  V'NPM in  the  ratio  2  :  3. 

394.  Ex.  1.  The  area  of  an  ellipse  is  equal  to  the  area  of  a 

circle  whose  radius  is  a  geometric  mean  between  the  semi-axes  of 
the  ellipse. 

For  if  the  ellipse  and  the  circle  on  the  transverse  axis  be 

divided  by  any  number  of  lines 

parallel  to  the  axis  minor,  then 

since  mb  :  md\\  m'b'  :  m'd'  ::b:a, 

the  quadrilateral  mbb'm'  is  to 
mdd'm'  in  the  same  ratio,  and  the 

sum  of  all  the  one  set  of  quad-  A' 
rilaterals,  that  is,  the  polygon 

Bbb'b"A  inscribed  in  the  ellipse 
is  to  the  corresponding  polygon 

Ddd'd"A  inscribed  in  the  circle, 
in  the  same  ratio.  Now  this  will 

be  true  whatever  be  the  number  of  the  sides  of  the  polygon  ;  if 

we  suppose  them,  therefore,  increased  indefinitely,  we  learn  that 

the  area  of  the  ellipse  is  to  the  area  of  the  circle  as  b  to  a  ;  but 

the  area  of  the  circle  being  =  Tra*,  the  area  of  the  ellipse  =  irab. 

COR.  It  can  be  proved,  in  like  manner,  that  if  any  two  figures 
be  such  that  the  ordinate  of  one  is  in  a  constant  ratio  to  the 

corresponding  ordinate  of  the  other,  the  areas  of  the  figures  are 
in  the  same  ratio. 
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Ex.  2.  Every  diameter  of  a  conic  bisects  the  area  enclosed  by 
the  curve. 

For  if  we  suppose  a  number  of  ordinates  drawn  to  this  dia- 
meter, since  the  diameter  bisects  them  all,  it  also  bisects  the 

trapezium  formed  by  joining  the  extremities  of  any  two  adjacent 

ordinates,  and  by  supposing  the  number  of  these  trapezia  in- 
creased without  limit,  we  see  that  the  diameter  bisects  the  area. 

395.  Ex.  1.    The  area  of  the  sector  of  a  hyperbola  made  by 

joining  any  two  points  of  it  to  the  centre,  is  equal  to  the  area  of  the 

segment  made  by  drawing  parallels  from  them  to  the  asymptotes. 

For  since  the  triangle  PKC  =  QLC,  the  area  PQG=PQKL. 
Ex.  2.   Any  two  segments  PQLK,  BSNM,  are  equal,  if 
PKi  QL::BM:  SN. 

For 

PK:  QL::  CLi  CK, 

but  (Art.  197) 

CL  =  MT',  CK=NT-, 
we  have,  therefore, 

BM:  SN::  MT' :  NT,         c       L  M    T'   NT 
and  therefore  QB  is  parallel  to  PS.  We  can  now  easily  prove 

that  the  sectors  PCQ,  BCS  are  equal,  since  the  diameter  bisect- 

ing PS,  QB  will  bisect  both  the  hyperbolic  area  PQBS,  and 
also  the  triangles  PCS,  QGB. 

If  we  suppose  the  points  Q,  B  to  coincide,  we  see  that  we 

can  bisect  any  area  PKNS  by  drawing  an  ordinate  QL,  a  geo- 
metric mean  between  the  ordinates  at  its  extremities. 

Again,  if  a  number  of  ordinates  be  taken,  forming  a  continued 

geometric  progression,  the  area  between  any  two  is  constant. 

396.  The  tangent  to  the   interior   of  two   similar,  similarly 

placed,  and  concentric  conies  cuts  of  a  constant  area  from  the 
exterior  conic. 

For  we  proved  (Art.  236,  Ex.  4)  that  this  tangent  is  always 

bisected  at  the  point  of  contact ;  now  if  we  draw  any  two  tangents, 

the  angle  AQA  will  be  equal  to  BQB' 
and  the  nearer  we  suppose  the  point  Q 

to  P,  the  more  nearly  will  the  sides 

AQ,A'Q  approach  to  equality  with  the 

sides  BQ,  B'Q;  if,  therefore,  the  two 
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tangents  be  taken  indefinitely  near,  the  triangle  A  QA'  will  be 

equal  to  BQH,  and  the  space  AVB  will  be  equal  to  A'VB'; 
since,  therefore,  this  space  remains  constant  as  we  pass  from  any- 
tangent  to  the  consecutive  tangent,  it  will  be  constant  whatever 

tangent  we  draw. 

COR.  It  can  be  proved,  in  like  manner,  that  if  a  tangent 

to  one  curve  always  cuts  off  a  constant  area  from  another,  it  will 

be  bisected  at  the  point  of  contact ;  and,  conversely,  that  if  it 

be  always  bisected  it  cuts  off  a  constant  area. 

Hence  we  can  draw  through  a  given  point  a  line  to  cut  off 

from  a  given  conic  the  minimum  area.  If  it  were  required  to 

cut  off  a  given  area,  it  would  be  only  necessary  to  draw  a  tangent 

through  the  point  to  some  similar  and  concentric  conic,  and  the 

greater  the  given  area,  the  greater  will  be  the  distance  between 
the  two  conies.  The  area  will,  therefore,  evidently  be  least  when 

this  last  conic  passes  through  the  given  point ;  and  since  the  tan- 
gent at  the  point  must  be  bisected,  the  line  through  a  given 

point  which  cuts  off  the  minimum  area  is  bisected  at  that  point. 

In  like  manner,  the  chord  drawn  through  a  given  point 
which  cuts  off  the  minimum  or  maximum  area  from  any  curve 

is  bisected  at  that  point.  In  like  manner  can  be  proved  the 

following  two  theorems,  due  to  the  late  Professor  MacCullagh. 

Ex.  I.  If  a  tangent  AB  to  one  curve  cut  of  a  constant  arc  from 

another,  it  is  divided  at  the  point  of  contact,  so  that  AP :  PB  in- 
versely as  the  tangents  to  the  outer  curve  at  A  and  B. 

Ex.  2.  If  the  tangent  AB  be  of  a  constant  length,  and  if  the 

perpendicular  let  fall  on  AB  from  the  intersection  of  the  tangents 
at  A  and  B  meet  AB  in  M,  then  AP  will  =  MB. 

397.    To  find  the  radius  of  curvature  at  any  point  on  an  ellipse. 
The  centre  of  the  circle  circumscribing  any  triangle  is  the 

intersection  of  perpendiculars  erected  at  the  middle  points  of  the 

sides  of  that  triangle ;  it  follows,  therefore,  that  the  centre  of  the 

circle  passing  through  three  consecutive  points  on  the  curve  is 
the  intersection  of  two  consecutive  normals  to  the  curve. 

Now,  given  any  two  triangles  FPF',  FP'F',  and  PN,  P'N, 
the  two  bisectors  of  their  vertical  angles,  it  is  easily  proved  by 

elementary  geometry,  that  twice  the  angle  PNP'=  PFP'+  PF'P. 
(See  figure,  Art.  392,  Ex.  1). 
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Now,  since  the  arc  of  any  circle  is  proportional  to  the  angle 
it  subtends  at  the  centre  (Euc.  VI.  33),  and  also  to  the  radius 

(Art.  391),  if  we  consider  PP'  as  the  arc  of  a  circle,  whose  centre 

is  N,  the  angle  PNP'  is  measured  by  -       .     In  like  manner, 

PR 
taking  FR  =  FP,  PFP'  is  measured  by  -=  ,  and  we  have 

PN  ~  FP  + 
but  PR  =  PR  =  PP'  sin  PPF\ 

therefore,  denoting  this  angle  by  0,  PN  by  R,  FP,  F'P,  by  p,  p', 
2  I       1 we  have 

Hence  it  may  be  inferred,  that  the  focal  chord  of  curvature  is  double 

the  harmonic  mean  between  the  focal  radii.  Substituting  =-/  for 

sin  0,  2a  for  p  -f  //,  and  6'2  for  pp',  we  obtain  the  known  value 

The  radius  of  curvature  of  the  hyperbola  or  parabola  can  be 

investigated  by  an  exactly  similar  process.  In  the  case  of  the 

parabola  we  have  p'  infinite,  and  the  formula  becomes 
2  1 

I  owe  to  Mr.  Townsend  the  following  investigation,  by  a 

different  method,  of  the  length  of  the  focal  chord  of  curvature : 

Draw  any  parallel  QR  to  the  tangent  at  P,  and  describe  a 
circle  through  PQR  meeting  the  focal 

chord  PL  of  the  conic  at  C.     Then,  by 

the   circle  PS.SC=  QS.SE,  and  by 
the  conic  (Ex.  2,  Art.  193) 

P8.8L:Q8.8E::  PL  i  MN-9 
therefore,  whatever  be  the  circle, 

SO  i  SL::MN:PL; 

but   for  the    circle    of    curvature   the 

points  S  and  P  coincide,  therefore  PC  :  PL  : :  MN :  PL ;  or,  the 
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focal  chord  of  curvature  is  equal  to  the  focal  chord  of  the  conic 

drawn  parallel  to  the  tangent  at  the  point  (p.  219,  Ex.  4). 

398.   The  radius  of  curvature  of  a  central  conic  may  other- 
wise be  found  thus  : 

Let  Q  be  an  indefinitely  near  point  on  the  curve,  QE  a 

parallel  to  the  tangent,  meeting  the 

normal  in  $;  now,  if  a  circle  be  de- 
scribed passing  through  P,  $,  and 

touching  PT  at  P,  since  QS  is  a  per- 
pendicular let  fall  from  Q  on  the 

diameter  of  this  circle,  we  have 

PQZ=PS  multiplied  by  the  diameter; 

PQ* 

or  the  radiu
s  

of  curv
atur

e  

=  -JL 
 
.     Now,

  
since

  
QR  is  alwa

ys 

drawn  parallel  to  the  tangent,  and  since  PQ  must  ultimately 

coincide  with  the  tangent,  we  have  PQ  ultimately  equal  to 

QR  ;  but,  by  the  property  of  the  ellipse  (if  we  denote  CP  and 

its  conjugate  by  a',  £>'), 

V*  :  a"  ::  QR*  :  PR  .  RP'  (=  2a'.  PZ2), 

therefore 
a 
b'*    PR 

Hence  the  radius  of  curvature  =  —,  .  -^  .    Now,  no  matter  how a      1  o 

small  PR,  PS  are  taken,  we  have,  by  similar  triangles,  their 

.   PR      OP      a'       „  ,.        ,  6* ratio  ̂ ~  =  ~nm  —  ~  •     Hence  radius  of  curvature  =  —  . .ro        G.I        p  p 
It  is  not  difficult  to  prove  that  at  the  intersection  of  two  con- 

focal  conies  the  centre  of  curvature  of  either  is  the  pole  with  respect 
to  the  other  of  the  tangent  to  the  former  at  the  intersection. 

398  (a).  If  we  consider  the  circle  circumscribing  the  triangle 

formed  by  two  tangents  to  a  curve  and  their  chord,  it  is  evident 

geometrically,  that  its  diameter  is  the  line  joining  the  inter- 
section of  tangents  to  the  intersection  of  the  corresponding 

normals.  Hence,  in  the  limit,  the  diameter  of  the  circle 

circumscribing  the  triangle  formed  by  two  consecutive  tangents 
and  their  chord  is  the  radius  of  curvature  ;  that  is  to  say,  the 
radius  of  the  circle  here  considered  is  half  the  radius  of  curvature 

(Compare  Art.  262,  Ex.  4). 
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399.  If  two  tangents  be  drawn  to  an  ellipse  from  any  point  oj 
a  confocal  ellipse,  the  excess  of  the  sum  of  these  two  tangents  over 

the  arc  intercepted  between  them  is  constant.* 
For,  take  an  indefinitely  near  point  T,  and  let  fall  the  per- 

pendiculars TR,  T'S,  then  (see  fig.) 

(for  P'R  may  be  considered  as  the  continuation  of  the  line  PP') in  like  manner 

Again,  since,  by  Art.  189,  the  angle 

TTR=  T'T8,  we  have  TS=  T'R; 
and  therefore 

Hence  (PT+TQ)-(P'T'+  T'Qf)  =  PP'  -QQ^PQ-P*  Q. 
COR.  The  same  theorem  will  be  true  of  any  two  curves  which 

possess  the  property  that  two  tangents  TP,  TQ  to  the  inner  one 

always  make  equal  angles  with  the  tangent  TT'  to  the  outer. 

400.  If  two  tangents  be  drawn  to  an  ellipse  from  any  point 

of  a  confocal  hyperbola,  the  difference  of  the  arcs  PK,  QK  is  equal 

to  the  difference  of  the  tangents  TP,  TQ."\ 
For  it  appears,  precisely  as 

before,  that  the  excess  of 

T'P'-P'iTover  TP-PK=T'R, 

and  that  the  excess  of  T'  Qf-  Q'K 

over  TQ-QK  is  T'8,  which  is 

equal  to  TR,  since  (Art  189)  TT' 
bisects  the  angle  R  T'S.  The  dif- 

ference, therefore,  between  the 

excess  of  TP  over  Pff,  and  that 

of  TQ  over  QK  is  constant  ;  but 

in  the  particular  case  where  T 

*  This  beautiful  theorem  was  discovered  by  Bishop  Graves.  See  his  Translation  q/ 

Chasles's  Memoirs  on  Cones  and  Spherical  Conies,  p.  77. 
•j-  This  extension  of  the  preceding  theorem  was  discovered  by  Mr.  Mac  Cullagh, 

Dublin  Exam.  Papers,  1841,  p  41  ;  1842,  pp.  68,  83.  M.  Chasles  afterwards  inde- 

pendently noticed  the  same  extension  of  Bishop  Graves's  theorem.  Comptes  Rendus, 
October,  1843,  torn.  xvn.  p.  838. 

ccc. 
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coincides  with  K,  both  these  excesses  and  consequently  their  dif- 

ference vanish;  in  every  case,  therefore,  TP—PK=  TQ-  QK. 

COR.  Fagnani's  theorem,  u  That  an  elliptic  quadrant  can  be 
so  divided,  that  the  difference  of  its  parts  may  be  equal  to  the 

difference  of  the  semi-axes,"  follows  immediately  from  this 
Article,  since  we  have  only  to  draw  tangents  at  the  extremities 

of  the  axes,  and  through  their  intersection  to  draw  a  hyperbola 

confocal  with  the  given  ellipse.  The  coordinates  of  the  points 

where  it  meets  the  ellipse  are  found  to  be 

*=*.  «•-  * 
401.  If  a  polygon  circumscribe  a  conic,  and  if  all  the  vertices 

but  one  move  on  confocal  conies,  the  locus  of  the  remaining  vertex 

will  be  a  confocal  conic. 

In  the  first  place,  we  assert  that  if  the  vertex  T  of  an  angle 

PTQ  circumscribing  a  conic,  move  on  a  confocai  conic  (see  fig., 

Art.  399) ;  and  if  we  denote  by  a,  b,  the  diameters  parallel  to 

TP,  TQ;  and  by  a,  £,  the  angles TPT',  TQ'T',  made  by  each  of 
the  sides  of  the  angle  with  its  consecutive  position,  then  aa  =  b/3. 

For  (Art.  399)  TR=  T'8;  but  2K=  TP.a-,T'S=  T'Q'.p,  and 
(Art.  149)  TP  and  TQ  are  proportional  to  the  diameters  to 

which  they  are  parallel. 

Conversely,  if  aa  =  bfi,  T  moves  on  a  confocal  conic.  For 

by  reversing  the  steps  of  the  proof  we  prove  that  TR=  T'S; 

hence  that  TT'  makes  equal  angles  with  TP,  TQ,  and  therefore 
coincides  with  the  tangent  to  the  confocal  conic  through  T;  and 

therefore  that  T'  lies  on  that  conic. 
If,  then,  the  diameters  parallel  to  the  sides  of  the  polygon  be 

a,  b,  c,  &c.,  that  parallel  to  the  last  side  being  d,  we  have  aa  =  b/3, 
because  the  first  vertex  moves  on  a  confocal  conic;  in  like 

manner  bj3  =  cy,  and  so  on  until  we  find  aa  =  dS,  which  shows 
that  the  last  vertex  moves  on  a  confocal  conic.* 

*  This  proof  is  taken  from  a  paper  by  Dr.  Hart;  Cambridge  and  Dublin  Mathe- 
matical Journal,  vol.  iv.  193. 



NOTES. 

PASCAL'S  THEOREM,  Art.  267. 

M.  STEINER  was  the  first  who  (in  Gergonne's  Annales)  directed  the  attention  of 
geometers  to  the  complete  figure  obtained  by  joining  in  every  possible  way  six  points 

on  a  conic.  M.  Steiner's  theorems  were  corrected  and  extended  by  M.  Pliicker 

(Crelle's  Journal,  vol.  v.  p.  274),  and  the  subject  has  been  more  recently  investigated 
by  Messrs.  Cayley  and  Kirkman,  the  latter  of  whom,  in  particular,  has  added  several 
new  theorems  to  those  already  known  (see  Cambridge  and  Dublin  Mathematical 
Journal,  vol.  v.  p.  185).  We  shall  in  this  note  give  a  slight  sketch  of  the  more 
important  of  these,  and  of  the  methods  of  obtaining  them.  The  greater  part  are 

derived  by  joining  the  simplest  principles  of  the  theory  of  combinations  with  the 

following  elementary  theorems  and  their  reciprocals  :  "  If  two  triangles  be  such  that 
the  lines  joining  corresponding  vertices  meet  in  a  point  (the  centre  ofhomology  of  the 
two  triangles),  the  intersections  of  corresponding  sides  will  lie  in  one  right  line  (their 

axis)"  "If  the  intersections  of  opposite  sides  of  three  triangles  be  for  each  pair  the 
same  three  points  in  a  right  line,  the  centres  of  homology  of  the  first  and  second, 

second  and  third,  third  and  first,  will  lie  in  a  right  line." 
Now  let  the  six  points  on  a  conic  be  a,  b,  c,  d,  c,  f,  which  we  shall  call  the 

points  P.  These  may  be  connected  by  fifteen  right  lines,  ab,  ac,  JL*c.,  which  we  shall 
call  the  lines  C.  Each  of  the  lines  C  (for  example)  ab  is  intersected  by  the  fourteen 
others ;  by  four  of  them  in  the  point  a,  by  four  hi  the  point  b,  and  consequently  by 
six  in  points  distinct  from  the  points  P  (for  example  the  points  (ab,  cd),  &c.).  These 

we  shall  call  the  points  p.  There  are  forty-five  such  points ;  for  as  there  are  six  on 
each  of  the  lines  C,  to  find  the  number  of  points  p,  we  must  multiply  the 
number  of  lines  C  by  6,  and  divide  by  2,  since  two  lines  C  pass  through  every  pointy. 

If  we  take  the  sides  of  the  hexagon  in  the  order  abode/,  Pascal's  theorem  is,  that 
the  three  p  points,  (ab,  de),  (cd,  fa],  (be,  ef},  lie  in  one  right  line,  which  we  may  call 

either  the  Pascal  abcdef,  or  else  we  may  denote  as  the  Pascal  j  ,  '  -    ̂   j- ,  a  form 
which  we  sometimes  prefer,  as  showing  more  readily  the  three  points  through  which 
the  Pascal  passes.  Through  each  point  p  four  Pascals  can  be  drawn.  Thus  through 

(ab,  de)  can  be  drawn  abcdef,  abfdec,  abcedf,  abfedc.  We  then  find  the  total  number 
of  Pascals  by  multiplying  the  number  of  points  p  by  4,  and  dividing  by  3,  since 

there  are  three  points  p  on  each  Pascal.  We  thus  obtain  the  number  of  Pascal's 
lines  =  60.  We  might  have  derived  the  same  directly  by  considering  the  number  of 
different  ways  of  arranging  the  letters  abcdef. 

Consider  now  the  three  triangles  whose  sides  are 

ab,  cd,  ef,  (1) 

de,  fa,  be,  (2) 

&  be,  ad,  (3) 
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The  intersections  of  corresponding  sides  of  1  and  2  lie  on  the  same  Pascal,  therefore 

the  lines  joining  corresponding  vertices   meet  in  a  point,   but  these  are  the  three 
Pascals, 

(ab  .  de  .  cf}  fed  .fa  .  be\          <ef.  be  .ad) 

\cd  .fa  .be  I'       \ef.bc.  ad]  '       \ab  .  de .  cf]  * 
This  is  Steiner's  theorem  (Art.  268) ;  we  shall  call  this  the  g  point, 

(ab.de.  cf\ 

\cd.fa.be\. (ef    hf    ad) 

\ef. 

The  notation  
shows  

plainly  
that  on  each  Pascal's  

line  there  is  only  one  g  point  ;  for 

given  the  Pascal  |a,  '  *  ̂   j-  the  g  point  on  it  is  found  by  writing  under  each  term 
the  two  letters  not  already  found  in  that  vertical  line.  Since  then  three  Pascals 

intersect  in  every  point  g,  the  number  of  points  g  =  20.  If  we  take  the  triangles 
2,  3;  and  1,  3  ;  the  lines  joining  corresponding  vertices  are  the  same  in  all  cases 
therefore,  by  the  reciprocal  of  the  second  preliminary  theorem,  the  three  axes  of  the 

(ab.cd.ef\ 

three  triangles  meet  in  a  point.    This  is  also  a  g  point  -j  de  .fa  .  be  ?•  ,  and  Steiner 
(cf.  be.  ad) 

has  stated  that  the  two  g  points  just  written  are  harmonic  conjugates  with  regard 

to  the  conic,  BO  that  the  20  g  points  may  be  distributed  into  ten  pairs.*  The  Pascals 
which  pass  through  these  two  g  points  correspond  to  hexagons  taken  in  the  order 
respectively,  abcfed,  afcdeb,  adcbef;  abcdef,  afcbed,  adcfeb;  three  alternate  vertices 
holding  in  all  the  same  position. 

Let  us  now  consider  the  triangles, 

ab  cd  ef  (1) 

ab.ce.dfl         cd.bf.ae}          ef.bd.ac} 

de.bf.ac)'       af.ce.bd)'       bc.ae.df)  '       () 
ab.ce,  df\          cd.bf.ae]          ef.bd.ac] 

cf.bd.aef'       be.ac.df)'       ad.ce.bff'       W< 
The  intersections  of  corresponding  sides  of  1  and  4  are  three  points  which  lie  on 

the  same  Pascal  ;  therefore  the  lines  joining  corresponding  vertices  meet  in  a  point. 
But  these  are  the  three  Pascals, 

a6.ce.  df\          cd  .  bf.  ae  "1          ef.  ac  .  bd*\ 
cd.bf.ae)1       ef.ac.bd)'       ab.df.ce]' 

ab.ce.  df} 

We  may  denote  the  point  of  meeting  as  the  h  point, 

ef.  ac The  notation  differs  from  that  of  the  g  points  in  that  only  one  of  the  vertical 
columns  contains  the  six  letters  without  omission  or  repetition.  On  every  Pascal 
there  are  three  h  points,  viz.  there  are  on 

ab  cd  en          °*'cd-ef\          «*.«?V)  ab.Cd.7/\ 

ab.ce.  df\ 

cd.bf.ae\  . 

ef.  ac .  bd) 

cf.bd.ae)          ac.be.df>          bf.ce.ad) 

where  the  bar  denotes  the  complete  vertical  column.  We  obtain  then  Mr.  Kirkman's 

extension  of  Steiner's  theorem  :—The  Pascals  intersect  three  by  three,  not  only  in 
Steiner's  twenty  points  g,  but  also  in  sixty  other  points  h.  The  demonstration  of 
Art.  268  applies  alike  to  Mr.  Kirkman's  and  to  Steiner's  theorem. 

In  like  manner  if  we  consider  the  triangles  1  and  5,  the  lines  joining  corresponding 
vertices  are  the  same  as  for  1  and  4  ;  therefore  the  corresponding  sides  intersect  on 

*  For  a  proof  of  this  see  Staudt  (Crete,  LXII.  142). 



NOTES.  381 

Si  right  line,  as  they  manifestly  do  on  a  Pascal.  In  the  same  manner  the  corre- 
sponding sides  of  4  and  5  must  intersect  on  a  right  line,  but  these  intersections  are 

the  three  h  points, 

ab.ce.df\  ae.~cd.bf\  ac.bd^ef} 
ab.ce.df\  ae.cd.bf\  ac.bd.ef} 
de .  bf.  ac>,        bd.  of.  ce  >  ,        df.  ae.bc>  . 

cf.ae.bd)          ac.be.df)          ce.bf.ad) 

3S  through  th 
ab.cd.  ef\ 

de.af.bcY. 

cf.be. ad) 

cf.ae.bd)  ac.be.df)  ce.bf. 

Moreover,  the  axis  of  4  and  5  must  pass  through  the  intersection  of  the  axes  ot 
ab.cd.  ef\ 

1,  4,  and  1,  5,  namely,  through  the  g  point, 

Cf. 
In  this  notation  the  g  point  is  found  by  combining  the  complete  vertical  columns 

of  the  three  h  points.  Hence  we  have  the  theorem,  "  There  are  twenty  lines  G,  each 
of  which  passes  through  one  g  and  three  h  points."  The  existence  of  these  lines 
was  observed  independently  by  Prof.  Cayley  and  myself.  The  proof  here  given  is 

Prof.  Cayley's. 
It  can  be  proved  similarly  that  *'  The  twenty  lines  G  pass  four  by  four  through 

fifteen  points  i."  The  four  lines  G  whose  g  points  in  the  preceding  notation  have 
a  common  vertical  column  will  pass  through  the  same  point. 

Again,  let  us  take  three  Pascals  meeting  in  a  point  h.    For  instance, 

ab.ce.df}          de.bf.ac)          cf.ae.bd} 

de.bf.ac)'       cf.ae.bd}'       ab.df.ce)' 
We  may,  by  taking  on  each  of  these  a  point  p,  form  a  triangle  whose  vertices  are 

(df,  ac),  (bf,  ae),  (bd,  ce)  and  whose  sides  are,  therefore, 

ac.bf.de)          bf.ce.ad}          bd.ac.ef] 

df.ae.cb}t       ae.bd.cf}'       ce.df.ab}' 
Again,  we  may  take  on  each  a  point  h,  by  writing  under  each  of  the  above 

Pascals  af.cd .be,  and  so  form  a  triangle  whose  sides  are 

ac.bf.de}          cf.ae.bd}^         df.ab.ce} 

be.cd. aft '       be.cd. afj'       be.cd.af}' 
esponding  sides  of  these  triangles, 
•ee  g  points, 

be.cd.  af\  be.cd.  af\  be.cd.  af\ 

cf.ae.bdY,       df.ab.ce^,       cf.ab.del. 
ad.bf.ce>  ac.ef.bd)  ad.ef.bc) 

But  the  intersections  of  corresponding  sides  of  these  triangles,  which  must  therefore 

be  on  a  right  line,  are  the  three  g  points, 

be.cd. 

ac .  bf.  de 

df.  ae. 
I  have  added  a  fourth  g  point,  which  the  symmetry  of  the  notation  shows  must 

lie  on  the  same  right  line ;  these  being  all  the  g  points  into  the  notation  of  which 

be  .  c d .  af  can  enter.  Now  there  can  be  formed,  as  may  readily  be  seen,  fifteen  different 

products  of  the  form  be.cd.af-,  we  have  then  Steiner's  theorem,  The  g  points  li« 
four  by  four  on  fifteen  right  lines  7.  Hesse  has  noticed  that  there  is  a  certain  reci- 

procity between  the  theorems  we  have  obtained.  There  are  60  Kirkman  points  h, 
and  60  Pascal  lines  H  corresponding  each  to  each  in  a  definite  order  to  be  explained 

presently.  There  are  20  Steiner  points  g,  through  each  of  which  passes  three  Pascals 
H  and  one  line  G ;  and  there  are  20  lines  G,  on  each  of  which  lie  three  Kirkman 

points  h  and  one  Steiner  g.  And  as  the  twenty  lines  G  pass  four  by  four  through 
fifteen  points  i,  so  the  twenty  points  g  lie  four  by  four  on  fifteen  lines  /.  The 
following  investigation  gives  a  new  proof  of  some  of  the  preceding  theorems  and 
also  shews  what  h  point  corresponds  to  the  Pascal  got  by  taking  the  vertices  in 
the  order  abcdef.  Consider  the  two  inscribed  triangles  ace,  bdf;  their  sides  touch 

a  conic  (see  Ex.  4,  Art.  355) ;  therefore  we  may  apply  Brianchon's  theorem  to  the 
hexagon  whose  sides  are  ce,  df,  ae,  bf,  ac,  bd.  Taking  them  in  this  order,  the  dia 
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ce .  bf.  ad  \ 

gonak  of  the  hexagon  are  the  three  Pascals  intersecting  in  the  h  point,  df.  ac .  be  I ae.bd.cf) 

And  since,  if  retaining  the  alternate  sides  ce,  ae,  ac,  we  permutate  cyclically  the  other 

three,  then  by  the  reciprocal  of  Steiner's  theorem,  the  three  resulting  Brianchon 
points  lie  on  a  right  line,  it  ia  thus  proved  that  three  h  points  lie  in  a  right  line  G. 
From  the  same  circumscribing  hexagon  it  can  be  inferred  that  the  lines  joining  the 

point  a  to  {be,  df}  and  d  to  {ac,  ef]  intersect  on  the  Pascal  abcdef,  and  that  there  are 
six  such  intersections  on  every  Pascal. 

More  recently  Prof.  Cayley  has  deduced  the  properties  of  this  figure  by  consider- 
ing it  as  the  projection  of  the  lines  of  intersection  of  six  planes.  See  Quarterly 

Journal,  vol.  IX.  p.  348. 

Still  more  recently  the  whole  figure  has  been  discussed  and  several  new  properties 
obtained  by  Yeronese  (Nuovi  Teoremi  suit  Hexagrammum  Mysticum  in  the  Memoirs 
of  the  Reale  Accademia  dei  Lincei,  1877).  He  states  with  some  extension  the 
geometrical  principles  which  we  have  employed  in  the  investigation,  as  follows: 
I.  Consider  three  lines  passing  through  a  point,  and  three  points  in  each  line ;  these 
points  form  27  triangles  which  may  be  divided  into  36  seta  of  three  triangles  in 
perspective  in  pairs,  the  axes  of  homology  passing  three  by  three  through  36  points 
which  lie  four  by  four  on  27  right  lines.  II.  If  4  triangles  a^Cj,  a2£2c2,  <fec.  are  in 

perspective,  the  first  with  the  second,  the  second  with  the  third,  the  third  with  the 
fourth,  and  the  fourth  with  the  first,  the  vertices  marked  with  the  same  letters 

corresponding  to  each  other,  and  if  the  four  centres  of  homology  lie  in  a  right  line,  the 
four  axes  will  pass  through  a  point.  III.  If  we  have  four  quadrangles  a^c^i,  Ac. 
related  in  like  manner,  the  four  points  of  the  last  theorem  answering  to  the  triangles 
bed,  cda,  dab,  abc  lie  on  a  right  line.  Considering  the  case  when  all  four  quadrangles 
have  the  same  centre  of  homology,  we  obtain  the  corollary  :  If  on  four  lines  passing 
through  a  point  we  take  3  homologous  quadrangles  0,6,0^,  a^b^d^,  a3b3c3d3 ;  then  we 
have  four  sets  of  three  homologous  triangles,  a^c^  Ac.  the  axes  of  homology  of  each 
three  passing  through  a  point  and  the  four  points  lying  on  a  right  line.  IV.  If  we 
have  two  triangles  in  perspective  afi^^  a2b2c2,  and  if  we  take  the  intersections  of 

i,e2,  JjC, ;  c,rt2,  c2o, ;  o,621  a26,,  we  form  a  new  triangle  in  perspective  with  the  other 
two,  the  three  centres  of  homology  lying  on  a  right  line.  It  would  be  too  long  to 
enumerate  all  the  theorems  which  Veronese  derives  from  these  principles.  Suffice  it  to 

say  that  a  leading  feature  of  his  investigation  is  the  breaking  up  of  the  system  of 
Pascals  into  six  groups,  each  of  ten  Pascals,  the  ten  corresponding  Kirkman  points 
lying  three  by  three  on  these  lines  which  also  pass  in  threes  through  these  points.  It 
may  be  added  that  Veronese  states  the  correspondence  between  a  Pascal  line  and  a 
Kirkman  point  as  follows :  Take  out  of  the  15  lines  C  the  six  sides  of  any  hexagon, 
there  remain  9  lines  C;  out  of  these  can  be  formed  three  hexagons  whose  Pascals 
meet  in  the  Kirkman  point  corresponding  to  the  Pascal  of  the  hexagon  with  which  we 
started. 

After  the  publication  of  Veronese's  paper  Cremona  obtained  very  elegant  demon- 
strations of  his  theorems  by  studying  the  subject  from  quite  a  different  point  of  view. 

From  the  theory  of  cubical  surfaces  we  know  (Geometry  of  Three  Dimensions, 
Art.  536),  that  if  such  a  surface  have  a  nodal  point,  there  lie  on  the  surface  six  right 
lines  passing  through  the  node,  which  also  lie  on  a  cone  of  the  second  order,  and 
fifteen  other  lines,  one  in  the  plane  of  each  pair  of  the  foregoing;  by  projecting  this 
figure  Cremona  obtains  the  whole  theory  of  the  hexagon. 

It  may  be  well  to  add  some  formulae  useful  in  the  analytic  discussion  of  the 

hexagon  inscribed  in  the  conic  LM  —  R*.  Let  the  values  of  the  parameter  /u 
(Art.  270)  for  the  six  vertices  be  a,  b,  c,  d,  e,  f,  and  let  us  denote  by  (nb)  tli« 

quantity  abL  -  (a  +  b)  R  +  M,  which,  equated  to  zero,  represents  the  chord  joining 
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two  vertices.  Then  it  is  easy  to  see  that  (ab)  (cd)  -  (ad)  (be)  is  LM  -  R2  multiplied 
by  the  factor  (a  -  c)  (b  —  d),  and  hence  that  if  we  compare,  as  in  Art.  268,  the  forms 

(ab)  (cd)  -  (ad)  (be),  (of)  (de)  -  (ad)  (ef)  we  get  the  equation  of  the  Pascal  abcdef  in 
the  form 

(a-  c)  (b  -  d)  (ef)  =  (a-e)  (f-  d)  (be). 

The  same  equation  might  also  have  been  obtained  in  the  forms,  which  can  easily  be 
verified  as  being  equivalent, 

(a-e)  (b-f)  (cd)  =  (c-e)  (b  -  d)  (of), 

(c  -  a)  (b  -f)  (de)  =(c-e)  (d  -f)  (ab). 
The  three  other  Pascals  which  pass  through  (be)  (ef)  are 

(a  -  c)  (b  -  d)  (ef)  =  (a  -/)  (e  -  d)  (be), 

(a-b)(c-d)  (ef)  =  (a-e)  (f-  d)  (be), 

(a-b)(c-d)  (ef)  =  (a  -/)  (e  -  d)  (be), 

these  being  respectively  the  Pascals  abcdfe,  acbdef,  acbdfe. 
Consider  the  three  Pascals 

(a  -C)(b-  d)  (ef)  =  (a  -  e)  (f-  d)  (be)  =  (b  -f)  (c  -  e)  (ad) ; 

these  evidently  intersect  in  a  point,  viz.  a  Steiner  ̂ -point ;  but  the  three 

(a  -  e)  (b  -  d)  (ef)  =  (a  -  e)  (f-  d)  (be)  =  (b  -  e)  (c  -/)  (ad) 

intersect  in  a  Kirkman  A-point. 
Mr.  Cathcart  has  otherwise  obtained  the  equation  of  the  Pascal  line  in  a  deter- 

minant form.  It  was  shewn  (Art.  331)  that  the  relation  between  corresponding  points 
of  two  homographic  systems  is  of  the  form 

Aaa'  +  Sa  +  Co.'  +  D  =  0. 

Hence,  eliminating  A,  B,  C,  D,  we  see  that  the  relation  between  four  points  and 
other  four  of  two  homographic  systems  is 

t,  a,  a',  1 

77'>  7>  7'>  ! 
88',   8,   8',  1     =  0,< 

and  the  double  points  of  the  system  are  got  by  putting  8'  =  8,  and  solving  the  quad- 
ratic for  8.  But  we  saw  Art.  289,  Ex.  10,  that  the  Pascal  line  LMN  passes  through 

.2",  K'  the  double  points  of  the  two  homographic  systems  determined  by  ACE,  DFB 
the  alternate  vertices  of  the  hexagon.  And  since,  if  8  be  the  parameter  of  the  point 

K,  we  have  M,  R,  L  respectively  proportional  to  82,  8,  1,  it  follows  that  the  equatio 
of  the  Pascal  abcdef  is 

M,  R,R,L\ 
ad,    a,   d,  1    \ 

be,    b,    e,l    \ 

cf,    c,   /,  1    !  =  0. 

SYSTEMS  OP  TANGENTIAL  COORDINATES,  Art.  311. 

Through  this  volume  we  have  ordinarily  understood  by  the  tangential  coordinates 

of  a  line  la  +  mfi  +  ny,  the  constants  I,  m,  n  in  the  equation  of  the  line  (Art.  70) 
and  by  the  tangential  equation  of  a  curve  the  relation  necessary  between  these 
constants  in  order  that  the  line  should  touch  the  curve.  We  have  preferred  this 
method  because  it  is  the  most  closely  connected  with  the  main  subject  of  this  volume, 

and  because  all  other  systems  of  tangential  coordinates  may  be  reduced  to  it.  "We 

*  On  this  determinant  see  Cayley,  Phil  Trans.,  1858,  p.  436. 
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wish  now  to  notice  one  or  two  points  in  this  theory  which  we  have  omitted  to 

mention,  and  then  briefly  to  explain  some  other  systems  of  tangential  coordinates. 
We  have  given  (Ex.  G,  Art.  132)  the  tangential  equation  of  a  circle  whose  centre  is 

a'/3'y'  and  radius  r,  viz. 

(la'  +  m?  +  ny')2  =  r2  (P  +  w*  +  n*  -  2ron  cos  A  -  2nl  cos  B  -  11m  cos  C) ; 

let  us  examine  what  the  right-hand  side  of  this  equation,  if  equated  to  nothing, 
would  represent.  It  may  easily  be  seen  that  it  satisfies  the  condition  of  resolvability 
into  factors,  and  therefore  represents  two  points.  And  what  these  points  are  may 

be  seen  by  recollecting  that  this  quantity  was  obtained  (Art.  61)  by  writing  at  full 
length  la  +  nt/3  +  ny,  and  taking  the  sum  of  the  squares  of  the  coefficients  of  x 

and  y,  I  cos  a  +  m  cos  /3  +  n  cos  y,  /  sin  a  +  m  sin  ft  +  n  sin  y.  Now  if  a2  +  62  =  0,  the 
line  ax  +  by  +  c  is  parallel  to  one  or  other  of  the  lines  x  ±  y  J(  —  1)  =  0,  the  two 
points  therefore  are  the  two  imaginary  points  at  infinity  on  any  circle.  And  this 
appears  also  from  the  tangential  equation  of  a  circle  which  we  have  just  given: 

for  if  we  call  the  two  factors  to,  o>',  and  the  centre  a,  that  equation  is  of  the  form 
a2  =  r2a»a»',  showing  that  w,  o>'  are  the  points  of  contact  of  tangents  from  a.  In 
like  manner  if  we  form  the  tangential  equation  of  a  conic  whose  foci  are  given,  by 

expressing  the  condition  that  the  product  of  the  perpendiculars  from  these  points 
on  any  tangent  is  constant,  we  obtain  the  equation  in  the  form 

(la'  +  mp'  +  ny')  (la"  +  mp"  +  ny")  =  tftaw', 
showing  that  the  conic  is  touched  by  the  lines  joining  the  two  foci  to  the  points 

to,  w'  (Art.  258o). 
It  appears  from  Art.  61  that  the  result  of  substituting  the  tangential  coordinates 

of  any  line  in  the  equation  of  a  point  is  proportional  to  the  perpendicular  from  that 

point  on  the  line ;  hence  the  tangential  equations  aft  =  kyS,  ay  =  k{P  when  inter- 
preted give  the  theorems  proved  by  reciprocation  Art.  311.  If  we  substitute  the 

coordinates  of  any  line  in  the  equation  of  a  circle  given  above,  the  result  is  easily 
seen  to  be  proportional  to  the  square  of  the  chord  intercepted  on  the  line  by  the 

circle.  Hence  if  Z,  2'  represent  two  circles,  we  learn  by  interpreting  the  equation 
2  =  £2£'  that  the  envelope  of  a  line  on  which  two  given  circles  intercept  chords 
having  to  each  other  a  constant  ratio  is  a  conic  touching  the  tangents  common  to 
the  two  circles. 

Lastly,  it  is  to  be  remarked  that  a  system  of  two  points  cannot  be  adequately 
represented  by  a  trilinear,  nor  a  system  of  two  lines  by  a  tangential  equation.  If 
we  are  given  a  tangential  equation  denoting  two  points,  and  form,  as  in  Art.  285, 
the  corresponding  trilinear  equation,  it  will  be  found  that  we  get  the  square  of  the 

equation  of  the  line  joining  the  points,  but  all  trace  of  the  points  themselves  has  dis- 
appeared. Similarly  if  we  have  the  equation  of  a  pair  of  lines  intersecting  in  a  point 

a'fi'y',  the  corresponding  tangential  equation  will  be  found  to  be  (la'  +  mft'  +  ny')2=0. 
In  fact,  a  line  analytically  fulfils  the  conditions  of  a  tangent  if  it  meets  a  curve  in 
two  coincident  points ;  and  when  a  conic  reduces  to  a  pair  of  lines,  any  line  through 
their  intersection  must  be  regarded  as  a  tangent  to  the  system. 

The  method  of  tangential  coordinates  may  be  presented  in  a  form  which  does 

not  presuppose  any  acquaintance  with  the  trilinear  or  Cartesian  systems.  Just  as 
in  trilinear  coordinates  the  position  of  a  point  is  determined  by  the  mutual  ratios 
of  the  perpendiculars  let  fall  from  it  on  three  fixed  lines,  so  (Art.  311)  the  position 

of  a  line  may  be  determined  by  the  mutual  ratios  of  the  perpendiculars  let  fall  on 
it  from  three  fixed  points.  If  the  perpendiculars  let  fall  on  a  line  from  two  points 
A,  B  be  \,  /u,  then  it  is  proved,  as  in  Art.  7,  that  the  perpendicular  on  it  from  the 

point  which  cuts  the  line  AB  in  the  ratio  of  m  :  I  is  ,  ̂ ,  and  consequently  that 

if  the  line  pass  through  that  point  we  have  /\  +  m/u  0,  which  therefore  may  be 
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regarded  as  the  equation  of  that  point.  Thus  \  +  n  =  0  is  the  equation  of  the  middle 

point  of  AB,  \  —  fj.  =  0  that  of  a  point  at  infinity  on  AS.  In  like  manner  (see 
Art.  7,  Ex.  6)  it  is  proved  that  ZA.  +  m/x  +  nv  —  0  is  the  equation  of  a  point  0,  which 
may  be  constructed  (see  fig.  p.  61)  either  by  cutting  BC  in  the  ratio  n  :  m  and  A  D 

in  the  ratio  m  +  n  :  1;  or  by  cutting  AC  ::  I  :n  and  BE  :  :  I  +  n  :  m,  or  by  cutting 
AS  :  :  m  :  I  and  CF  :  :  I  +  m  :  n.  Since  the  ratio  of  the  triangles  AOB  :  AOC  is  the 

same  as  that  of  BD  :  BC,  we  may  write  the  equation  of  the  point  0  in  the  form 

BOG.  \  +  CO  A  .n  +  AOB.v-0. 
Or,  again,  substituting  for  each  triangle  BOG  its  value  p'p"  sin  0  (see  Art.  311) 

\  sin  0     (i  sin  0'      v  sin  0"  _ 

P  P'  P" 
Thus,  for  example,  the  coordinates  of  the  line  at  infinity  are  X  =  ju.  =  v,  since  all 
finite  points  may  be  regarded  as  equidistant  from  it  ;  the  point  l\  +  m/*  +  nv  will 
be  at  infinity  when  I  +  m  +  n  =  0  ;  and  generally  a  curve  will  be  touched  by  the 
line  at  infinity  if  the  sum  of  the  coefficients  in  its  equation  =0.  So  again  the 
eauations  of  the  intersections  of  bisectors  of  sides,  of  bisectors  of  angles,  and 
of  the  perpendiculars,  of  the  triangle  of  reference  are  respectively  \  +  /*.  +  v  =  0, 
X  sin  A  +  p.  sin  B  +  v  sin  C  =  0,  \  tan  A  +  ft  tan  B  +  v  tan  C  =  0.  It  is  unnecessary  to 
give  further  illustrations  of  the  application  of  these  coordinates  because  they  differ 
only  by  constant  multipliers  from  those  we  nave  used  already.  The  length  of  the 

perpendicular  from  any  point  on  la  +  m/3  +  ny  is  (Art.  61) 

la'  +  m/3'  +  ny' 
J(P  +  m2  +  »2  -  2mn  cos  A  -  2nl  cos  B  -  21m  cos  C)  ' 

the  denominator  being  the  same  for  every  point.  If  then  p,  p',  p"  be  the  perpen- 
diculars let  fall  from  each  vertex  of  the  triangle  on  the  opposite  side,  the  perpen- 

diculars X,  /A,  it  from  these  vertices  on  any  line  are  respectively  proportional  to 

Ip,  mp',  np"  ;  and  we  see  at  once  how  to  transform  such  tangential  equations  as  were 
used  in  the  preceding  pages,  viz.  homogeneous  equations  in  /,  m,  n,  into  equations 
expressed  in  terms  of  the  perpendiculars  X,  p.,  ».  It  is  evident  from  the  actual  values 
that  X,  fi,  v  are  connected  by  the  relation 

It  was  shown  (Art.  311)  how  to  deduce  from  the  trilinear  equation  of  any  curve  the 
tangential  equation  of  its  reciprocal. 

The  system  of  three  point  tangential 
coordinates  just  explained  includes  under 

it  two  other  methods  at  first  sight  very 
different.  Let  one  of  the  points  of  re- 

ference C  be  at  infinity,  then  both  v 

and  p"  become  infinite,  but  their  ratio 
remains  finite  and  =•  sin  COE,  where 
DOE  is  any  line  drawn  through  the 
point  0.  The  equation  then  of  a 
point  already  given  becomes  in  this 

sin  0 — 

When  0  is  given  every  thing  in  this  equation  is  constant  except  the  two  variables 

'  but   since    sin  COE  =  sin  QDA*   these    two    variables    are    re- 

spectively AD,  BE.      In  other  words,  if  we  take   as  coordinates  AD,  BE  the 
DD1). 
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intercepts  made  by  a  variable  line  on  two  fixed  parallel  lines,  then  any  equation 
a\  +  b/j.  +  c  =  0,  denotes  a  point  ;  and  this  equation  may  be  considered  as  the  form 

assumed  by  the  homogeneous  equation  aX  -f-  b/u.  +  cv  =  0  when  the  point  v  =  0  is 
at  infinity.  The  following  example  illustrates  the  use  of  coordinates  of  this  kind 
We  know  from  the  theory  of  conic  sections  that  the  general  equation  of  the  second 

degree  can  be  reduced  to  the  form  a/3  —  k-t  where  a,  ft  are  certain  linear  functions 
of  the  coordinates.  This  is  an  analytical  fact  wholly  independent  of  the  inter- 

pretation we  give  the  equations.  It  follows  then  that  the  general  equation  of  curves 

of  the  second  class  in  this  system  can  be  reduced  to  the  same  form  a/3  =  &2,  but  this 
denotes  a  curve  on  which  the  points  a,  ft  lie  and  which  has  for  tangents  at  these 
points  the  parallel  lines  joining  a,  ft  to  the  infinitely  distant  point  k.  We  have  then 
the  well  known  theorem  that  any  variable  tangent  to  a  conic  intercepts  on  two  fixed 
parallel  tangents  portions  whose  rectangle  is  constant. 

Again,  let  two  of  the  points  of  reference  be  at  infinity,  then,  as  in  the  last  case 
the  equation  of  a  line  becomes 

+  sin  0-.  sin  B0j)  +  gin  0».  sin  COE P 

or,  as  may  be  easily  seen, 

When  the  point  0  is  given,  the  only 
things  variable  in  this  equation  are 
AD,  AE,  and  we  see  that  if  we  take 
as  coordinates  the  reciprocals  of  the 

intercepts  made  by  a  variable  line  on     __ 
the  axes,  then  any  linear  equation  \ 
between  these  coordinates  denotes  a  \ 

point,  and  an  equation  of  the  nth  degree  denotes  a  curve  01  the  n1*  class. 
It  is  evident  that  tangential  equations  of  this  kind  are  identical  with  that  form 

of  the  tangential  equations  used  in  the  text  where  the  coordinates  are  the  coefficients 

I,  m,  in  the  Cartesian  equation  Ix  +  my  =  1,  or  the  mutual  ratios  of  the  coefficients 
n  the  Cartesian  equation  Ix  +  my  +  n  =  0. 

EXPRESSION  OP  THK  COORDINATES  OP  A  POINT  ON  A  CONIC  BY  A  SINGLE 
PARAMETKR. 

We  have  seen  (Art.  270)  that  the  coordinates  of  a  point  on  a  conic  can  be 
expressed  as  quadratic  functions  of  a  parameter.  We  show  now,  conversely,  that 
if  the  coordinates  of  a  point  can  be  so  expressed,  the  point  must  lie  on  a  conic.  Let 
us  write  down  the  most  general  expressions  of  the  kind,  viz. 

x  =  aX2  +  2h  \n  +  b,S,  y  =  o'X2  +  2A'Xu  +  iy,  z  =  a"X2  +  2A'V  +  J'y. 

Then,  solving  these  equations  for  X2,  2X/u,  /u2,  we  have  (Higher  Algebra,  Art.  29) 

AX2  =  Ax  +  A'y  +  A"z,  2AX/i  =  Hx  +  H  'y  +  H"z,  A/i»  =  Bx  +  B'y  +  B"z, 
where  A  is  the  determinant  formed  with  a,  h,  b,  4c.,  and  A,  //,  B,  &c.  are  the  minors 
of  that  determinant.    The  point  then,  evidently,  lies  on  the  locus 

(Hx  +  H'y  +  H"z)*  -4(J.x  +  A'y  +  A"z)  (Bx  +  B'y  +  B"z). 

If  we  look  for  the  intersection  with  this  conic  of  any  line  ax  +  fty  +  yzt  we  have 
only  to  substitute  in  the  equation  of  this  line  the  parameter  expressions  for  x,  y,  z, 
and  we  find  that  the  parameters  of  the  intersection  are  determined  by  the  quadratic 

(aa  -I-  a'  ft  +  a"y)  X2  +  2  (ha  +  h'ti  4-  A'V)  A  u  +  (£a  +  b'ft  +  b"y)  /u2  =  0. 
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The  line  will  be  a  tangent  if  this  equation  be  a  perfect  square,  in  which  case  we 
must  have 

(aa  +  a'p  +  a"y)  (la  +  6'/3  +  V'y)  =  (ha  +  h'p  4-  A"y)2, 
which  may  be  regarded  as  the  equation  of  the  reciprocal  conic.     If  this  condition  is 

satisfied,  we  may  assume 

aa  +  a'/3  +  a"y  =  P,   ha  +  h'ft  +  h"y  =  lm,   ba  +  b'p  +  V'y  =  m2, whence 

Aa  =  At*  +  Him  +  Bm>,   A/3  =  A'P  +  H'lm  4-  B'm?,   Ay  =  A"P  +  H "lm  +  B"m* ; 

that  is  to  say,  the  reciprocal  coordinates  may  be  similarly  expressed  as  quadratic 
functions  of  a  parameter,  the  constants  being  the  minors  of  the  determinant  formed 
with  the  original  constants. 

The  equation  of  the  conic  might  otherwise  have  been  obtained  thus :  The  equation 
of  the  line  joining  two  points  is  (Art.  132a)  got  by  equating  to  zero  the  determinant 

formed  with  x,  y,  z ;  x',  y',  z' ;  x",  y",  z".  If  the  two  points  are  on  the  curve,  we  may 
substitute  for  their  coordinates  their  parameter  expressions ;  and  when  the  two  points 
are  consecutive,  we  see,  by  making  an  obvious  reduction  of  the  determinant,  that  the 

equation  of  the  tangent  corresponding  to  any  point  X,  p.  is 

=  0. 

Expanding  this  and  regarding  it  as  the  equation  of  a  variable  line  containing  the 
parameter  A.  :  /*,  its  envelope,  by  the  ordinary  method,  gives  the  same  equation  as 
before. 

The  equation  of  the  line  joining  two  points  will  be  found,  when  expanded,  to  be 

of  the  form  X\\'  +  Y  (\/z'  +  X'/x)  +  Zfifj.'  =  0,  and  we  can  otherwise  exhibit  it  in 
this  form,  for  the  coordinates  of  either  point  satisfy  the  equations  x = aX2+2AA/u+&M2,  &c., 

and  we  have  also  ////'X2  —  X/u  (X'/x"  +  X' '/x')  +  X'X"/i2  =  0  ;  hence,  eliminating  X2,  X/x,  fj~, 
we  have 

x,      a  ,  2h  ,6 

y,      a',  24'          ,     V 

z,      a",  2h"         ,      V      =  0. 
If  the  parameters  of  any  number  of  points  on  a  conic  be  given  by  an  algebraic 

equation,  the  invariants  and  covariants  of  that  binary  quantic  will  admit  of  geometric 
interpretation  (see  Burnside,  Higher  Algebra,  Art.  190).  A  quadratic  has  no  invariant 
but  its  discriminant,  and  when  we  consider  two  points  there  is  no  special  case, 
except  when  the  points  coincide.  In  the  case  of  two  quadratics  their  harmonic 
invariant  expresses  the  condition  that  the  two  corresponding  lines  should  be  conjugate 
and  their  Jacobian  gives  the  points  where  the  curve  is  met  by  the  intersection  of  these 
lines.  If  we  consider  three  points  whose  parameters  are  given  by  a  binary  cubic,  the 
covariants  of  that  cubic  may  be  interpreted  as  follows :  Let  the  three  points  be  a,  b,  c, 

and  let  the  triangle  formed  by  the  tangents  at  these  points  be  ABC',  these  two 
triangles  being  homologous,  then  the  Hessian  of  the  binary  cubic  determines  the 
parameters  of  the  two  points  where  the  axis  of  homology  of  these  triangles  meets 
the  conic;  and  the  cubic  covariant  determines  the  parameters  of  the  three  points 
where  the  lines  Aa,  £b,  Cc  meet  the  conic.  In  like  manner,  if  there  be  four  points 
the  sextic  covariant  of  the  quartic  determining  their  parameters,  gives  the  parameters 
of  the  points  where  the  conic  is  met  by  the  sides  of  the  triangle  whose  vertices  are 
the  points  ab,  cd ;  crc,  bd ;  ad,  be. 

ON  THE  PROBLEM  TO  DESCRIBE  A  CONIC  UNDER  FIVE  CONDITIONS. 

We  saw  (Art.  133)  that  five  conditions  determine  a  conic ;  we  can,  therefore,  in 

general  describe  a  conic  being  given  m  points  and  n  tangents  where  m  +  n  =  5.    Wo 
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shall  not  think  it  worth  while  to  treat  separately  the  cases  where  any  of  these  are  at 

an  infinite  distance,  for  which  the  constructions  for  the  general  case  only  require  to 
be  suitably  modified.  Thus  to  be  given  a  parallel  to  an  asymptote  is  equivalent  to  one 
condition,  for  we  are  then  given  a  point  of  the  curve,  namely,  the  point  at  infinity  on 
the  given  parallel.  If,  for  example,  we  were  required  to  describe  a  conic,  given  four 
points  and  a  parallel  to  an  asymptote,  the  only  change  to  be  made  in  the  construction 

(Art.  269)  is  to  suppose  the  point  E  at  infinity,  and  the  lines  DE,  QE  therefore  drawn 
parallel  to  a  given  line. 

To  be  given  an  asymptote  is  equivalent  to  two  conditions,  for  we  are  then  given 
a  tangent  and  its  point  of  contact,  namely,  the  point  at  infinity  on  the  given 
asymptote.  To  be  given  that  the  curve  is  a  parabola  is  equivalent  to  one  condition, 
for  we  are  then  given  a  tangent,  namely,  the  line  at  infinity.  To  be  given  that  the 
curve  is  a  circle  is  equivalent  to  two  conditions,  for  we  are  then  given  two  points  of 
the  curve  at  infinity.  To  be  given  a  focus  is  equivalent  to  two  conditions,  for  we  are 
then  given  two  tangents  to  the  curve  (Art.  258a),  or  we  may  see  otherwise  that  the  focus 
and  any  three  conditions  will  determine  the  curve ;  for  by  taking  the  focus  as  origin, 
and  reciprocating,  the  problem  becomes,  to  describe  a  circle,  three  conditions  being 
given;  and  the  solution  of  this,  obtained  by  elementary  geometry,  may  be  again 
reciprocated  for  the  conic.  The  reader  is  recommended  to  construct  by  this  method 
the  directrix  of  one  of  the  four  conies  which  can  be  described  when  the  focus  and 

three  points  are  given.  Again,  to  be  given  the  pole,  with  regard  to  the  conic,  of  any 
given  right  line,  is  equivalent  to  two  conditions ;  for  three  more  will  determine  the  curve. 

For  (see  figure,  Art.  146)  if  we  know  that  P  is  the  polar  of  R'R",  and  that  T  is  a 
point  on  the  curve,  7",  the  fourth  harmonic,  must  also  be  a  point  on  the  curve ;  or 

if  OT\>Q  a  tangent,  OT'  must  also  be  a  tangent ;  if  then,  in  addition  to  a  line  and  its 
pole,  we  are  given  three  points  or  tangents,  we  can  find  three  more,  and  thus  determine 
the  curve.  Hence,  to  be  given  t he  centre  (the  pole  of  the  line  at  infinity)  is  equivalent 
to  two  conditions.  It  may  be  seen  likewise  that  to  be  given  a  point  on  the  polar  of  a 
given  point  is  equivalent  to  one  condition.  For  example,  when  we  are  given  that  the 

curve  is  an  equilateral  hyperbola,  this  is  the  same  as  saying  that  the  two  points 
at  infinity  on  any  circle  lie  each  on  the  polar  of  the  other  with  respect  to  the  curve. 

To  be  given  a  self -con  jugate  triangle  is  equivalent  to  three  conditions;  and  when 

a  self -con  jugate  triangle  with  regard  to  a  parabola  is  given  three  tangents  are 

given. 
Given  five  points. — We  have  shown,  Art.  269,  how  by  the  ruler  alone  we  may  deter- 

mine as  many  other  points  of  the  curve  as  we  please.  We  may  also  find  the  polar 
of  any  given  point  with  regard  to  the  curve ;  for  by  the  help  of  the  same  Article  we 

can  perform  the  construction  of  Ex.  2,  Art.  146.  Hence  too  we  can  find  the  pole 
of  any  line,  and  therefore  also  the  centre. 

Five  tangents. — We  may  either  reciprocate  the  construction  of  Art.  269,  or  reduce 
this  question  to  the  last  by  Ex.  4,  Art.  268. 

Four  points  and  a  tangent.— We  have  already  given  one  method  of  solving  this 
question,  Art.  345.  As  the  problem  admits  of  two  solutions,  of  course  we  cannot 

expect  a  construction  by  the  ruler  only.  We  may  therefore  apply  Carnot's  theorem 
(Art.  313), 

Ac .  AS. Ba .  Ba' .  Cb .  CV  •=  Ab .  AV. Bc.Bc'.Ca.  Ca'. 

Let  the  four  points  a,  a',  b,  V  be  given,  and  let  AB  be  a  tangent,  the  points  c,  c'  will 
coincide,  and  the  equation  just  given  determines  the  ratio  A&  :  £c*,  everything  else  in 
the  equation  being  known.  This  question  may  also  be  reduced,  if  we  please,  to  those 
which  follow ;  for  given  four  points,  there  are  (Art.  282)  three  points  whose  polars  are 
given ;  having  also  then  a  tangent,  we  can  find  three  other  tangents  immediately, 
and  thns  have  four  points  and  four  tangents. 

Four  tangents  and  a  point.— This  is  either  reduced  to  the  last  by  reciprocation,  or 
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by  the  method  just  described ;  for  given  four  tangents,  there  are  three  points  whose 
polars  are  given  (Art.  146). 

Three  points  and  two  tangents.— It  is  a  particular  case  of  Art.  344,  that  the  pair  of 
points  where  any  line  meets  a  conic,  and  where  it  meets  two  of  its  tangents,  belong  to 
a  system  in  involution  of  which  the  point  where  the  line  meets  the  chord  of  contact  is 
one  of  the  foci.  If,  therefore,  the  line  joining  two  of  the  fixed  points  a,  b,  be  cut  by 

the  two  tangents  in  the  points  A,  £,  the  chord  of  contact  of  those  tangents  passes 

through  one  or  other  of  the  fixed  points  F,  F',  the  foci  of  the  system  (a,  b,  A,  B),  (see 
Ex.  Art.  286).  In  like  manner  the  chord  of  contact  must  pass  through  one  or  other 

of  two  fixed  points  G,  G'  on  the  line  joining  the  given  points  a,  c.  The  chord  must 
therefore  be  one  or  other  of  the  four  lines,  FG,  FG',  F'G,  F'G';  the  problem,  there- 

fore, has  four  solutions. 

Two  points  and  three  tangents. — The  triangle  formed  by  the  three  chords  of  contact 
has  its  vertices  resting  one  on  each  of  the  three  given  tangents ;  and  by  the  last  case 

the  sides  pass  each  through  a  fixed  point  on  the  line  joining  the  two  given  points ; 
therefore  this  triangle  can  be  constructed. 

To  be  given  two  points  or  two  tangents  of  a  conic  is  a  particular  case  of  being 

given  that  the  conic  has  double  contact  with  a  given  conic.  For  the  problem  to 
describe  a  conic  having  double  contact  with  a  given  one,  and  touching  three  lines,  or 

else  passing  through  three  points,  see  Art.  328,  Ex.  10.  Having  double  contact  with 
two,  and  passing  through  a  given  point,  or  touching  a  given  line,  see  Art.  287.  Having 
double  contact  with  a  given  one,  and  touching  three  other  such  conies,  see  Art. 

387,  Ex.  1. 

ON   SYSTEMS  OF  CONICS  SATISFYING  FOUR  CONDITIONS. 

If  we  are  only  given  four  conditions,  a  system  of  different  conies  can  be  described 

satisfying  them  all.  The  properties  of  systems  of  curves,  satisfying  one  condition 
less  than  is  sufficient  to  determine  the  curve,  have  been  studied  by  De  Jonquieres, 

Chasles,  Zeuthen,  and  Cayley.  References  to  the  original  memoirs  will  be  found 

in  Prof.  Cayley's  memoir  (Phil.  Trans.,  1867.  p.  75).  Here  it  will  be  enough  briefly 
to  state  a  few  results  folio  whig  from  the  application  of  M.  Chasles'  method  of 
characteristics.  Let  p  be  the  number  of  conies  satisfying  four  conditions,  which 

pass  through  a  given  point,  and  v  the  number  which  touch  a  given  line,  then  /*,  v 
are  said  to  be  the  two  characteristics  of  the  system.  Thus  the  characteristics  of 

a  system  of  conies  passing  through  four  points  are  1,  2,  since,  if  we  are  given  an 
additional  point,  only  one  conic  will  satisfy  the  five  conditions  we  shall  then  have ; 
but  if  we  are  given  an  additional  tangent  two  conies  can  be  determined.  In  like 
manner  for  three  points  and  a  tangent,  two  points  and  two  tangents,  a  point  and 

three  tangents,  four  tangents,  the  characteristics  are  respectively  (2,  4),  (4,  4),  (4,  2), 
(2,  1).  We  can  determine  a  priori  the  order  and  class  of  many  loci  connected  with 

the  system  by  the  help  of  the  principle  that  a  curve  will  be  of  the  rath  order,  if  it  meet 
an  arbitrary  line  in  n  real  or  imaginary  points,  and  will  be  of  the  nth  class  if  through 
an  arbitrary  point  there  can  be  drawn  to  it  n  real  or  imaginary  tangents.  Thus  the 
locus  of  the  pole  of  a  given  line  with  respect  to  a  system  whose  characteristics  are 

u,  v,  will  be  a  curve  of  the  order  v.  For,  examine  in  how  many  points  the  locus  can 
meet  the  given  line  itself.  When  it  does,  the  pole  of  the  line  is  on  the  line,  or 
the  line  is  a  tangent  to  a  conic  of  the  system.  By  hypothesis  this  can  only  happen 
in  9  cases,  therefore  v  is  the  degree  of  the  locus.  This  result  agrees  with  what  has 
been  already  found  in  particular  cases,  as  to  the  order  of  locus  of  centre  of  a 
conic  through  four  points,  touching  four  lines,  <fcc.  In  like  manner  let  us  investigate 
the  order  of  the  locus  of  the  foci  of  conies  of  the  system.  To  do  this  let  us  generalize 

the  question,  by  the  help  of  the  conception  of  foci  explained  Art.  258a,  and  we  shall 
see  that  the  problem  is  a  particular  case  of  the  following :  Given  two  points  A,  B 
to  find  the  order  of  the  locus  of  the  intersection  of  either  tangent  drawn  from  A  to 
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a  conic  of  the  system  with  one  of  the  tangents  drawn  from  B.  Let  us  examine  in 

how  many  points  the  locus  can  meet  the  line  AB  ;  and  we  see  at  once  that  if  a  point 
of  the  locus  be  on  AB,  this  line  must  be  a  tangent  to  the  conic.  Consider  then  any 
conic  touching  AB  in  a  point  T,  then  the  tangent  A T meets  the  tangent  BT  in  the 
point  T,  which  is  therefore  on  the  locus;  and  likewise  the  tangent  AT  meets  the 
second  tangent  from  B  in  the  point  B,  and  the  tangent  BT  meets  the  second  tangent 
from  A  in  the  point  A.  Hence  every  conic  which  touches  AB  gives  three  points 
of  the  locus  on  AB.  The  order  of  the  locus  is  therefore  3i/,  and  A  and  B  are  each 
multiple  points  of  the  order  v.  Thus  the  locus  of  foci  of  conies  touching  four  lines 

is  a  cubic  passing  through  the  two  circular  points  at  infinity.  If  one  of  the  con- 
ditions be  that  all  the  conies  shonld  touch  the  line  AB,  then  it  will  be  seen  that 

any  transversal  through  A  is  met  by  the  locus  in  v  points  distinct  from  A,  and  that 
A  itself  also  counts  for  v ;  hence  the  locus  is  in  this  case  only  of  the  order  2v ;  which 
is  therefore  the  order  of  the  locus  of  foci  of  parabolas  satisfying  three  conditions. 

An  important  principle  in  these  investigations  is  that  if  two  points  A,  A'  on  a 
right  line  so  correspond  that  to  any  position  of  the  point  A  correspond  m  positions  of 

A',  and  to  any  position  of  A'  correspond  »  positions  of  A,  then  in  m  +  n  cases  A 
and  A'  will  coincide.  This  is  proved  as  in  Arts.  336,  340.  Let  the  line  on  which 

A,  A'  lie  be  taken  for  axis  of  x ;  then  the  abscissae  x,  x'  of  these  two  points  are  con- 
nected by  a  certain  relation,  which  by  hypothesis  is  of  the  mth  degree  in  x'  and 

the  nth  in  x,  and  will  become  therefore  an  equation  of  the  (m  +  »)th  degree  if  we 
make  x  =  x'. 

To  illustrate  the  application  of  this  principle,  let  us  examine  the  order  of  the  locus 
of  points  whose  polar  with  respect  to  a  fixed  conic  is  the  same  as  that  with  respect 

to  some  conic  of  the  system  ;  and  let  us  enquire  how  many  points  of  the  locus  can  lie 

on  a  given  line.  Consider  two  points  A,  A'  on  the  line,  such  that  the  polar  of  A 
with  respect  to  the  fixed  conic  coincides  with  the  polar  of  A'  with  respect  to  a  conic 
of  the  system,  and  the  problem  is  to  know  in  how  many  cases  A  and  A'  can  coincide. 
Now  first  if  A  be  fixed,  its  polar  with  respect  to  the  fixed  conic  is  fixed ;  the  locus 
of  poles  of  this  last  line  with  respect  to  conies  of  the  system,  is,  by  the  first  theorem,  of 
the  order  i/,  and  therefore  determines  by  its  intersections  with  the  given  line  v  positions 

of  A'.  Secondly,  examine  how  many  positions  of  A  correspond  to  any  fixed  position  of 
A'.  By  the  reciprocal  of  the  first  theorem,  the  polars  of  A'  with  respect  to  conies  of 
the  system,  envelope  a  curve  whose  class  is  /u,  to  which  therefore  /i  tangents  can  be 

drawn  through  the  pole  of  the  given  line  AA'  with  respect  to  the  fixed  conic.  It 
follows  then,  that  n  positions  of  A  correspond  to  any  position  of  A'.  Hence,  in  p.  +  v 
cases  the  two  coincide,  and  this  will  be  the  order  of  the  required  locus. 

Hence  we  can  at  once  determine  how  many  conies  of  the  system  can  touch  a  fixed 
conic  :  for  the  point  of  contact  is  one  which  has  the  same  polar  with  respect  to  the 
fixed  conic  and  to  a  conic  of  the  system ;  it  is  therefore  one  of  the  intersections  of  the 

fixed  conic  with  the  locus  last  found ;  and  there  may  evidently  be  2  (ju  +  v)  such 
intersections.  We  have  thus  the  number  of  conies  which  touch  a  fixed  conic,  and 

satisfy  any  of  the  systems  of  conditions,  four  points,  three  points  and  a  tangent,  two 
points  and  two  tangents,  <fcc.,  the  numbers  being  respectively  6,  12,  16,  12,  6.  From 
these  numbers  again  we  find  the  characteristics  of  the  system  of  conies  which  touch  a 
fixed  conic  and  also  satisfy  three  other  conditions,  three  points,  two  points  and  a 

tangent,  <fec. ;  these  characteristics  being  respectively  (6,  12),  (12,  16),  (16,  12),  (12,  6). 
We  find  hence  in  the  same  manner  the  number  of  conies  of  the  respective  systems 

which  will  touch  a  second  fixed  conic,  to  be  36,  56,  56,  36.  And  thus  again  we  have 
the  characteristics  of  systems  of  conies  touching  two  fixed  conies,  and  also  satisfying 
the  conditions  two  points,  a  point  and  a  tangent,  two  tangents ;  viz.  (36,  56),  (56,  56), 
(56,  36).  In  like  manner  we  have  the  number  of  conies  of  these  respective  systems 
which  will  touch  a  third  fixed  conic,  viz.  184,  224,  184.  The  characteristics  then 
rf  the  systems  three  conies  and  a  point,  three  conies  and  a  line  are  (184,  224). 
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(224,  184).  And  the  numbers  of  these  to  touch  a  fourth  fixed  conic,  are  in  each  case 
816,  so  that  finally  we  ascertain  that  the  number  of  conies  which  can  be  described  to 

touch  five  fixed  conies  is  3264.  For  further  details  I  refer  to  the  memoirs  already 
cited,  and  only  mention  in  conclusion  that  2v  -  /x  conies  of  any  system  reduce  to 
a  pair  of  lines,  and  2/j.  —  v  to  a  pair  of  points. 

MISCELLANEOUS  NOTES. 

(1).  Art.  293,  p.  267.  In  connection  with  the  determinant  form  here  given 
it  may  be  stated  that  the  condition  that  the  intersection  of  two  lines  \x  +  py  +  vz, 

\'x  +  f*'y  +  v'z  should  lie  on  the  conic,  is  the  vanishing  of  the  determinant 
« ,  h  ,  g ,  X,  V 

A,  b,f,  /*,/*' 

9  ,  f  ,  o  ,  v,  v' \,    /X,    V, X',  /,  S, 

(2)  Art.  228,  Ex.  10,  p.  217.  Add,  Either  factor  combined  with  lp+mp'+np"+pp'" =0 

gives  a  result  of  the  form  \p  +  up'  +  vp"  =  0,  where  X  +  ̂   +  v  =  0,  which  represents 
a  curve  of  the  third  degree. 

(3).   Art.  372,  p.  337.     The  discrimination  of  the  cases  of  four  real  and  four 

imaginary  points  has  been  made  by  Kemmer  (Giessen,  1878).    His  result  is  that  if 

D  =  ©2®'2  +  18AA'©®'  -  27 A2 A'2  -  4A®''  -  4A'©3, 

L  =  2  (®'2  -  3A'®)  2  -  (©©'  -  9AA')  <t»  +  2  (@2  -  3A®')  £', 

M  =  i  {L2  -  (*2  -  422')  JD}, 

N  =  D  {A'223  -  A'®'*22  4-  (©"2  -  2A'©)  222' 

+  A'®2<f>2  +  (©2  -  2A@')  22'2  -  AA'«J>» 

+  A®'*22'  -  A©*S'2  +  A22'3  -  (©©'  -  3AA')  22'*}, 

we  must  have  D  and  M  positive,  L  and  N  negative,  in  order  to  have  four  real  points 
of  intersection. 

I  add  a  selection  from  some  miscellaneous  notes  which  had  been  sent  me  at 

vaiious  times  by  Messrs.  Burnside,  Walker,  and  Cathcart,  to  be  used  when  a  new 
edition  was  called  for,  but  which  I  did  not  remember  to  insert  in  their  proper  places. 

(4)  B.  Art.  231,  Ex.  10.   If  the  normals  at  four  points  meet  in  a  point,  their 
eccentric  angles  are  connected  by  the  relation  u  +  /3  +  y  +  5=  (2m  + 1)  TT.     Hence  (see 
Art.  244,  Ex.  1)  the  circle  through  the  feet  of  three  of  the  normals  from  any  point 
passes  through  the  point  on  the  conic  opposite  to  the  fourth  point. 

(5)  B.   If  1,  2,  3,  4  be  the  feet  of  four  normals  from  a  point,  and  r12  denote  the 

semi-diameter  parallel  to  the  chord  12,  then  r212  +  r234  =  a2  +  b2. 

(6)  B.  Art.  169,  Ex.  3.   To  any  rectangular  axes,  tan</>  =     ̂ ~   '-,  where  P 
has  the  same  meaning  as  in  Art.  383.  If  the  coordinates  be  trilinear,  the  right-hand 
side  is  multiplied  by  J/,  which  is  the  value  of  x  sin  .4  +  y  sin  B  +  z  sin  C. 

(7)  B.  If  the  tangents  be  drawn  from  the  pole  of  ax  +  py  +  yz,  tan  <f>  =  ̂ ,^  _  ̂   , 

where  2,  0,  B'  have  the  same  meaning  as  in  Art.  382,  Q  is  the  quantity  representing 
tangentially  the  circular  points  at  infinity,  viz. 

a2  +  02  +  yi  _  20y  cos  A  -  2ya  cos  B  -  2a/3  COS  C; 
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and   II  =  0  is  the  condition  that  ax  +  fty  +  yz,  and  the  line  at  infinity  should  b 

conjugate,  or 

n  =  Aa  sin  A  +  Bp  sin  B  +  Cy  sin  C  +  F  (ft  sin  C  4-  y  sin  B)  +  G  (y  sinA  +  a  sin  (7) 
+  H  (a  sin  B  +  /3  sin  A). 

As  a  particular  case,  the  angle  between  the  asymptotes,  for  which  Q  =  0,  Z  =  B  =  lie 

(8)  B.  The  length  of  the  chord  intercepted  on  any  line  is  given  by  the  two, 

following  equations,  p  being  the  parallel  semi-diameter  : 

p  _     ez        js_  -sea 
p2  ~  ez  -  n«  '  /t>«  ~~  M  2A2u  ' 

Compare  Art.  231,  Ex.  15. 

(9)  B.    If  n  =  Aaa'  +  £$(?  +  Cyy'  +  F  (fty1  +  fiy)  +  G  (ya'+y'a)  +  H  (a/3'  +  a.'  ft), 

the  Jacobian  of  IT,  Z,  Q  is  a  parabola  touching  ax  +  ft'y  +  y'z  —  0,  the  normals  where 
this  line  meets  the  conic,  and  the  two  axes. 

(10)  B.  The  area  of  a  triangle  circumscribing  a  conic  is     f-  —  l  z  3  ]  . 

(11).   The  squares  of  the  semi-axes  of  the  conic  are  given  by  the  quadratic 
«A2  =  o. 

(12).  The  equation  of  a  conic  circumscribing  a  triangle,  of  which  a,  b,  c  are  the 

sides  and  b't  b",  b'"  the  semi-diameters  parallel  to  them,  is 

(13)  W.  The  area  of  the  triangle  formed  by  the  polars  with  respect  to  an  ellipse  of 

points  P,  Q,  R,  is  ̂ ^QQR^ROp^POR)  >  where  (QOR)  is  the  area  of  the  triangle 
formed  by  P,  Q,  and  the  centre. 

(14)  W.  If  P,  Q,  R  be  the  middle  points  of  the  sides  of  a  circumscribing  triangle, 

and  a,  /3,  y  the  eccentric  angles  of  the  point  of  contact,  (0,0  R)  —  \ab  tan  \  (/3  -  y). 

From  this  expression  can  easily  be  deduced  Faure's  theorem  (Art.  381,  Ex.  12). 

(15)  C.  The  relation  (Art.  388a)  is  a  particular  case  of  the  following  connecting 
the  covariants  of  three  conies  : 

&VF*  -  A"JFF32  =  72, 

where  7=0  denotes  the  locus  of  the  point  whence  tangents  to  the  three  conies  are  in 
involution  (see  Art.  3880). 

(16)  C.  Art.  883,  p.  352.    The  expression  in  the  trilinear  equation  of  the  director 
circle  there  given,  may  be  written 

&S  -  {U  +  M*  +  N*-  ZMNcosA  -  2NL  cosfl  -  2LMcos  C}, 

where  L-ax  +  hy  +  gz,   M  =  hx  +  by  +fz,   N  =  gx+fy  +  cz. 
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Angle, 
between   two  tajs  whose  Cartesian 

^  equations  are  given,  21,  22. 
ditto,  for  trilinear  equations,  GO. 
between  two  lines  given  by  a  single 

equation,  69. 
between  two  tangents  to  a  conic,  166, 

189,  212,  213,  269,  391. 
between  two  conjugate  diameters,  169. 
between  asymptotes,  164,  392. 
between  focal  radius  vector  and  tan- 

gent, 180. 
subtended  at  focus  by  tangent  from 

any  point,  183,  206. 
subtended  at  limit  points  of  system  of 

circles,  291. 
theorems  respecting  angles  subtended 

at  focus  proved  by  reciprocation,  284, 
by  spherical  geometry,  331. 

theorems  concerning  angles  how  pro- 
jected, 321,  323. 

Anharmonic  ratio,  295. 
fundamental  theorem  proved,  55. 
what,  when  one  point  at  infinity,  295. 
of    four    lines    whose  equations  are 

given,  56,  305. 
property  of  four  points  on  a  conic, 

240,  252,  288,  318. 
of  four  tangents,  252,  288. 
of  three  tangents  to  a  parabola,  299. 
these  properties  developed,  297. 
properties  derived  from  projection  of 

angles,  321,  323. 
of  four  points  on  a  conic  when  equal 

to   that   of  four   others   on   same 
conic,  252. 

on  a  different  conic,  252,  303. 
of  four  points  equal    that   of  their 

polars,  271. 
of  four  diameters  equal  that  of  their 

conjugates,  302. 
of  segments  of  tangent  to  one  of  three 

conies  having  double  contact,   by 
other  two,  319. 

Apollonius,  328. Arc, 

line   cutting   off  constant   arc  from 
curve  where  met  by  its  envelope,  374. 

theorems  concerning  arcs  of  conies.  377. 
Area, 

of  a  polygon  in  terms  of  coordinates 
of  its  vertices,  31,  130. 

of  a  triangle,  the  equations  of  whose 
sides  are  given,  32,  130. 

of   triangle   inscribed   in   or  circum- 
scribing a  conic,  212,  220,  391. 

Area, 

of  triangle  formed  bv  three  normals. 220. 

constant,  of  triangle  formed  by  join- 
ing ends  of   conjugate  diameters, 

159,  169. 
constant,  between  any  tangent  and 

asymptotes,  192. 
of  polar  triangles  of  middle  points  of 

sides  of  fixed  triangle  with  regard 
to  inscribed  conic,  351,  392. 

of  triangles  equal,  formed  by  drawing 
from  end  of  each  of  two  diameters 
a  parallel  to  the  other,  173. 

found  by  infinitesimals,  371. 
constant,  cut  from  a  conic  by  tangent 

to  similar  conic,  373. 
line  cutting  off  from  a  curve  constant 

area  bisected  by  its  envelope,  374. 
of  common  conjugate  triangle  of  two 

conies,  362. 
Asymptotes, 

defined   as  tangents  through   centre 
whose  points  of  contact  are  at  in- 

finity, 155. 
are  self -con  jugate,  167. 
are  diagonals  of  a  parallelogram  whose 

sides  are  conjugate  diameters,  190. 
general  equation  of,  272,  340. 
and  pair  of  conjugate  diameters  form 

harmonic  pencil,  296. 
portion  of  tangent  between,  bisected 

by  curve,  191. 
equal  intercepts  on  any  chord  between 

curve  and,  191,  312. 
constant   length    intercepted    on  by 

chords  joining  two  fixed  points  to 
variable,  192,  294,  298. 

parallel  to,  how  cut  by  same  chords, 298. 

by  two  tangents  and  their  chord, 
298. 
buected  between  any  point  and  its 

polar,  295. parallels   to,   through  any   point   on 
curve  include  constant  area,    192, 

294,  298. 
how  divide  any  semi-diameter,  298. 

Axes, 

of  conic,  equation  of,  156. 
lengths,  how  found,  158,  392. 
constructed  geometrically,  161. 
how  found  when  two  conjugate  dia- 

meters are  given,  173,  176. 
of  reciprocal  curve,  291. 
axis  of  parabola,  196. 

EEE. 
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Axes, 

of  similitude,  108,  224,  282. 
radical,  99,  127. 

Bisectors  of  angles  between  lines  given  by 
a  single  equation,  71. 

of  sides  or  angles  of  a  triangle  meet 
in  a  point,  5,  34,  54. 

Bobillier  on  equations  of  conic  inscribed  in 
or  circumscribing  a  triangle,  120. 

Boole  on  invariant  functions  of  coefficients 
of  a  conic,  159. 

Brianchon's  theorem,  244,  280,  381. 
Burnside,  theorems  or  proofs  by,  80,  220, 

221,  242,  246,  257,  272,  342,  391. 

Carnot,  theorem  of  transversals,  289,  318, 
388. 

Cartesian,  equations,  a  case  of  trilinear,  64. 
Ca?ey,  theorems  by,  113,  127,  135,  358. 
Cathcart,  theorems  by,  129,  132,  391. 

Cayley,  theorems  and  pi-oofs  by,  134,  342, 
350,  358,  379,  381,  389. 

Centre, 
of  mean  position  of  given  points,  50, 
of  homology,  59. 
radical,  99,  282. 
of  similitude,  105,  221,  282. 
chords  joining  ends  of  radii  through 

c.s.  meet  on  radical  axis,  107,224, 250. 
of  conic,  coordinates  of,  143,  153. 
pole  of  line  at  infinity,  155,  296. 
how  found,  given  five  points,  247. 
of  system  in  involution,  308. 
of  curvature,  230,  37G. 

Chasles,  theorems  by,  295, 300, 304, 377, 389. 
Chord  of  conic,  perpendicular  to  line  join- 

ing focus  to  its  pole,  183,  321. 
which  touches  confocal  conic,  propor- 

tional to  square  of  parallel  semi- 
diameter,  212,  221,  391. 

Chords  of  intersection  of  two  conies,  equa- 
tion of,  334. 

Circle,  equation  of,  14,  75,  87. 
tangential  equation  of,  120,  124,  128, 

•288,  385. 
trilinear  equation  of,  128. 
passes  through  two  fixed  imaginary 

points  at  infinity,  238,  325. 
circumscribing  a  triangle,  its  centre 

and  equation,  4,  86,  1 18,  130,  288. 
inscribed  in  a  triangle,  122,  288. 
having  triangle  of  reference  for  self- 

conjugate  triangle,  254. 
through  middle  points  of  sides  (see 

Feuerbach),  86,  122. 
which  cuts  two  at  constant  angles, 

touches  two  fixed  circles,  103. 
touching  three  others,  110,  114,  135, 

291  • 
cutting  three  at  right  angles,  102,  130. 

361. 

or  at  a  constant  angle,  132. 
cutting  three  at  same  angle  have 
common  radical  axis,  109,  132. 

circumscribing  triangle  formed  by 
three  tangents  to  a  parabola,  passes 
through  focus,  207, 214, 274, 285, 320. 

Circle  chcumscribing  triangle  formed  by 
two  tangents  and  chord,  241,  376. 

circumscribing  triangle  inscribed  in  a 
conic,  220,  333. 

circumscribing,  or  inscribed,  in  a  self- 
conjugate  triangle,  341. 

circumscribing    triangles   formed  by 
four  lines  meet  in  a  point,  246. 

when   five  lines  are  given,   the  five 
such  points  lie  on  a  circle,  247. 

tangents,  area,  and  arc  found  by  in- 
finitesimals, 370. 

Circumscribing  triangles,  six  vertices  of 
two  lie  on  a  conic,  320,  381. 

Class  of  a  curve,  147. 
Common  tangents  to  two  circles,  104,  106, 

263, 
to  two  conies,  344. 
their  eight  points  of  contact  lie  on  a 

conic,  345. 
Condition  that, 

three  points  should    be  on  a  right 
line,  24. 

three  lines  meet  in  a  point,  32,  34. 
four   convergent    lines  should    form 

harmonic  pencil,  56. 
two   lines  should   be  perpendicular, 

21,  59,  354. 
a  right  line  should   pass  through  a 

fixed  point,  50. 
equation  of  second  degree  should  re , 

present  right  lines,   72,    149,    153, 
155,  266. 
a  circle,  75,  121,  352. 
a  parabola,  141,  274,  352. 

an  equilateral  hyperbola,  169,  352. 
equation  of  any  degree  represent  right 

lines,  74. 
two  circles  should  be  concentric,  77. 
four  points  should  lie  on  a  circle,  86. 
intercept  by  circle  on  a  line  should 

subtend  a  right  angle  at  a  given 

point,  90. two  circles  should  cut  at  right  angles, 
102,  348. 

that  four  circles  should  have  common 
orthogonal  circle,  131. 

aline  should  touch  a  conic,  81,  152, 
267,  340. 

two  conies  should  be  similar,  224. 
two  conies  should  touch,  336,  356. 
a  point  should  be  inside  a  conic,  261. 
two  lines  should  be  conjugate  with 

respect  to  a  conic,  267. 
two  pairs  of  points  should  be  harmonic 

conjugates,  305. 
four  points  on  a  conic  should  lie  on  a 

circle,  229. 
a  line  be  cut  harmonically  by  two 

conies,  306. 
in  involution  by  three  conies,  363. 

three  pairs  of  lines  touch  same  conic> 270. 

three  pairs  of  points  form  system  in 
involution,  310. 

a  triangle  may  be  inscribed  in  one 
conic  and  circumscribed  to  another, 342. 
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Condition  that, 
that  two  lines  should  intersect  on  a 

conic,  391. 
a  triangle  self-conjugate  to  one  may 

be  inscribed  or  circumscribed  to 
another,  340. 

three  conies  have  double  contact  with 
same  conic,  359. 
have  a  common  point,  365. 
may  include  a  perfect  square  in  their 

syzygy,  366. lines  joining  to  vertices  of  triangle 
points    where    conic    meets    sides 
should  form  two  sets  of  three,  351. 

Cone,  sections  of,  326. 
Confocal  conKs,  186. 

cut  at  right  angles,  181,  291,  322. 
may  be   considered  as    inscribed    in 

same  quadrilateral,  239. 
most  general  equation  of,  353. 
uangents    from    point  on    (1)   to   (2) 

equally  inclined  to  tangent  of  (1), 
182. 

pole  with  regard  to  (2)  of  tangent  to 
(1)  lies  on  a  normal  of  (1),  209. 

used    in  finding  axes   of    reciprocal 
curve,  291. 

in  finding  centre  of  curvature,  376. 
properties  proved  by  reciprocation,  291. 
length    of    arc    intercepted    between 

tangent  from,  377. 
Conjugate  diameters,  146. 

their  lengths,  how  related,  159,  168. 
triangle  included    by,    has   constant 

area,  159,  169. 
form  harmonic  pencil  with  asymp- 

totes, 296. 
at  given  angle,  how  constructed,  171. 
construction  for  218. 

Conjugate  hyperbolas,  165. 
Conjugate  lines,  conditions  for,  267. 
Conjugate  triangles,  homologous,  91,  92. 
Continuity,  principle  of,  325. 
Covariants,  347. 
Criterion,  whether  three  equations  repre- 

sent lines  meeting  in  a  point,  34. 
whether  a  point  be  within  or  without 

a  conic,  26 1 . 
whether  two  conies  meet  in  two  real 

and  two  imaginaiy  points,  337. 
Curvature,   radius  of,  expressions   for  its 

length,  and  construction  for,  228,375. 
circle  of,  equation  of,  234. 
centre  of,  coordinates  of,  230. 

De  Jonquieres  388. 
Determinant  notation,  129. 
Diagonals  of  quadrilateral, 

middle  points  lie  in  a*  line,  26,  62,  216. 
circles  described  on,  as  diameters,  have 
common  radical  axis,  277. 

Diameter,  polar  of  point  at  infinity  on  its 
conjugate.  296. 

Director  circle,  269,  352. 
when  four  tangents  are  given,  have 
common  radical  axis,  277. 

Directrix,  179. 
of  parabola,  equation  of.  269,  352. 

Directrix  of  parabola  is  locus  of  rectangular 
tangents,  205,  269,  352. 

passes  through  intersection  of  per- 
pendiculars of  circumscribing  tri- 

angle, 212,  247,  275,  230,  342. 
Discriminant  defined,  266. 

method  of  forming,  72,  149,  153,  155. 
Distance  between  two  points,  3,  1 0,  133. 
Distance  of  two  points   from    centre   of 

circle   proportional  to    distance  of 
each  from  polar  of  other,  93. 

when  a  rational  function  of  coordi- 
nates, 179. 

of  four  points  in  a  plane,  how  con- 
nected, 134. 

Double  contact,  228,  234,  346. 
equation  of  conic  having  d.  c.  with 

two  others,  262. 
tangent  to  one  cut  harmonically  by 

other,  and  chord  of  contact,  312, 319. 
properties  of  two  conies  having  d.  c. 

with  a  third,  242,  282. 
of  three  having  d.  c.  with  a  fourth, 

243,  263,  281. 
tangential  equation  of,  355. 
condition  two  should  touch,  356. 
problem  to  describe  one  such  conic 

touching  three  others,  356,  358. 
Duality,  principle  of,  276. 

Eccentric  angle,  217,  &c.,  243. 
in  terms  of  corresponding  focal  angle, 220. 

of  four  points  on  a  circle,  how  con- 
nected, 229. 

Eccentricity,  of  conic  given  by   general 
equation,  164. 

depends   on  angle    between    asymp- 
totes, 164. 

Ellipse,  origin  of  name,  186,  328. 
mechanical  description  of,  178,  218. 
area  of,  372. 

Envelope  of 
line  whose  equation  involves  indeter- 

minates  in  second  degree,  257,  &c. 

line  on  which  sum  of  pei-pendiculars 
from    several  fixed  points  is  con- 

stant, 95. 
given  product  or  sum  or  difference  of 

squares  of  perpendiculars  from  two 
fixed  points,  259. 

base  of  triangle  given  vertical  angle 
and  sum  of  sides,  260. 

whose  sides  pass  through  fixed  points 
and  vertices  move  on   fixed  lines, 259. 

and  inscribed  in  given  conic,  250,  280, 319. 

which  subtends  constant  angle  at  fixed 
point,    two    sides    being    given    in 

position,  284. 
polar  of  fixed  point  with  regard  to  a 

conic  of  which  four  conditions  are 

given,  271,  280. 
polar  of  centre  of  circle  touching  two 

given,  291. chord   of  conic  subtending  constant 
angle  at  fixed  point,  255. 
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Envelope  of 
perpendicular  at  extremity  of  radius 

vector  to  circle,  205. 
asymptote  of  hyperbolas  having  same 

fccus  and  directrix,  285. 
given  three  points  and  other  asymp- 

tote, 272. 
line  joining  corresponding  points  of 

two  homographic  systems 
on  different  lines,  302. 
on  a  conic,  253,  303. 

free  side  of  inscribed  polygon,  all  the 
rest  passing  through  fixed  points, 
250,301. 

base  of  triangle  inscribed  in  one  conic, 
two  of  whose  sides  touch  another, 
349. 

leg  of  given  anharmonic  pencil  under 
different  conditions,  324. 

ellipse  given  two  conjugate  diameters 
and  s\xm  of  their  squares,  260. 

Equation,  fts  meaning  when  coordinates 
of  a  given  point  are  substituted  in 
it ;  for  a  right  line,  circle,  or  conic, 
29,  84,  128,  241. 

ditto  for  tangential  equation  384. 
pair  of   bisectors  of  angles  between 

two  lines,  71. 
of  radical  axis  of  two  circles,  98,  128. 
common  tangents  to  two  circles,  104, 

106,  263. 
circle  through  three  points,  86,  130. 
cutting    three    circles    orthogonally, 

102,  130. 
touching  ttxree  circles,  114,  135,  359. 
inscribed  itx  or  circumscribing  a  tri- 

angle, 118,  126,  288. 
having    triangle    of    reference    self- 

con  jugate,  254. 
tangential  of  circle,  129,  384. 
tangent  to  circle  or  conic,  80, 147,  264. 
polar  to  circle  or  conic,  82,  147,  265. 
pair  of  tangents  to  conic  from  any 

point,  85,  i49,  269. 
where  conic  meets  given  line,  272. 

asymptotes  to  a  conic,  272,  340. 
chords  of  intersection  of  two  conies, 
334. 
circle  osculating  conic,  234. 
conic  through  five  points,  233. 
touching  five  lines,  274. 
having  double  contact  with  two  given 

ones,  262. 
having  double  contact  with  a  given  one 

and  touching  three  others,  356. 
through  three  points,  or  touching  three 

lines,  and  having  given  centre,  267. 
and  having  given  focus,  288. 

reciprocal  of  a  given  conic,  292,  348, 
356. 

directrix  or  director  circle,  269,  352. 
lines  joining  point  to  intersection  of 

two  curves,  270,  307. 
four  tangents  to  one  conic  where  it 

meets  another,  349. 
curve  parallel  to  a  conic,  337. 
e  volute  to  a  conic,  231,  338. 
Jacobian  of  three  conies,  360. 

Equilateral  hyperbola,  168. 
general  condition  for,  352. 
given  three  points,  a  fourth  is  given. 

215,  290,  321. 
circle    circumscribing    self -con  jugate 

triangle  passes  through  centre  215, 
342. 

Euler,    expression   for   distance  between 
centres    of  inscribed    and    circum- 

scribing circles,  343. 
Evolutes  of  conies,  231,  338. 

Fagnani's  theorem  on  arcs  of  conies,  378. 
Faure,  theorems  by,  341,  351,  392. 
Feuerbach,  relation  connecting  four  points 

on  a  circle,  87,  217. 
theorem  on  circles  touching  four  lines, 

127,  313,  359. 
Fixed    point,    the    following    lines    pass 

through  a 
coefficients  in  whose  equation  are  con- 

nected by  relation  of  first  degree,  50. 
base  of  triangle,  given  vertical  angle 

and  sum  of  reciprocals  of  sides,  48. 
whose    sides    pass    through    fixed 

points,  and  vertices  move  on  three 
converging  lines,  48. 

line  sum  of  whose  distances  from  fixed 

points  is  constant,  49. 
polar  of  fixed  point  with  respect  to 

circle,  two  points  given,  100. 
with  respect  to  conic,  four  points 

given,  153,  271,  281. 
chord  of  intersection  with  fixed  centre 

of  circle  through  two  points,  100. 
of  two  fixed  lines  with  conic  through 

four  points,  one  lying  on  each  line, 302. 

chord  of  contact  given  two  points  and 
two  lines,  262. 

chord  subtending  right  angle  at  fixed 
point  on  conic,  175,  270. 

when  product  is  constant  of  tangents  of 
parts    into  which    normal    divides 
subtended  angle,  175. 

given  bisector  of  angle  it  subtends  at 
fixed  point  on  curve,  323. 

perpendicular  on  its  polar,  from  point 
on  fixed  perpendicular  to  axis,  184. 

Focus,  see  Contents,  pp.  177-190,  209-212. 
infinitely  small  circle  having  double 

contact  with  conic,  241. 
intersection  of  tangents  from  two  fixed 

imaginary  points  at  infinity,  239. 
equivalent  to  two  conditions,  386. 
coordinates  of,  given  three  tangents, 

274. 
when  conic  is  given  by  general  equa- 

tion, 239,  353. 
focus  and  directrix,  179,  241. 
theorems  concerning  angles  subtended 

at,  284,  331. 
focal  properties  investigated  by  pro- 

jection, 320. 
focal  radii  vectores  from  any  poi  nt  h  ave 

equal  difference  of  reciprocals,  2 1 2. 
line  joining  intersections  of  focal  nor- 

mals and  tangents  passes  through 
other  focus,  211. 
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Focus, 

locus  of,  given  three  tangents  to   a 
parabola,  207,  214,  274,  285,  320. 

given  four  tangents,  275,  277. 
given  four  points,  217,  288. 
given  three  tangents  and  a  point,  see 

Ex.  3,  p.  288. 
of  section  of  right  cone,  how  found,  331. 
of  systems  in  involution,  309. 

Gaultier  of  Tours,  99. 
Gergonne,  on  circle  touching  three  others, 

110. 
Gordan,  on  number  of  concomitants,  363. 
Graves,  theorems  by,  333,  377. 

Hamilton,  proof  of  Feuerbach's  theorem, 313. 
Harmonic,  section,  56. 

what  when  one  point  at  infinity,  295. 
properties  of  quadrilateral,  57,  317. 
property  of  poles  and  polars,  85,  148, 

295,  297,  318. 
pencil  formed  by  two  tangents  and 

two  co-polar  lines,  148,  296. 
by   asymptotes   and   two  conjugate 

diameters,  296. 
by  diagonals  of  inscribed  and  circum- 

scribing quadrilateral,  242. 
by  chords  of  contact  and   common 

chords  of  two  conies  having  double 
contact  with  a  third,  242. 

properties  derived  from  projection  of 
right  angles,  321. 

condition  for  harmonic  pencil,  305. 
condition  that  line  should  be  cut  har- 

monically by  two  conies,  306. 
locus  of  points  whence  tangents  to  two 

conies  form  a  harmonic  pencil,  306. 
Hart,  theorems  and  proofs  by,  124,  126, 

127,  263,  378. 
Harvey,  theorem  on  four  circles,  132. 
Hearne,  mode  of  finding  locus  of  centre, 

given  four  conditions,  267. 
Hermes,  on   equation    of    conic  circum- 

scribing a  triangle,  120. 
Hesse,  381. 
Hexagon  (see  Brianchon  and  Pascal), 

property  of  angles  of  circumscribing, 
270,  289. 

Homogeneous,  equations  in  two  variables, 
meaning  of,  67. 

trilinear  equations,  how  made,  64. 
Homographic  systems,  57,  63. 

criterion  for,  and  method  of  forming, 
304. 

locus  of  intersection  of  corresponding 
lines,  271. 

envelope  of  line  joining  corresponding 
points,  302,  303. 

Homologous  triangles,  59. 
Hyperbola,  origin  of  name,  186,  328. 

area  of,  373. 

Imaginary,  lines  and  points,  69,  77. 
circular  points  at  infinity,  tangential 

equation  of,  352. 
every  line  through  either  perpen- 

dicular to  itself,  351. 

Infinity,  line  at,  equation  of,  64. 
touches  parabola,  235,  290,  329. 
centre,  pole  of,  155,  296. 

Inscription  in  conic  of  triangle  or  polygon 
whose    sides    pass    through    fixed 
points,  250,  273,  281,  307. 

Intercept   on   chord  between  curve  and 
asymptotes  equal,  191,  312. 

on  asymptotes  constant  by  lines  join- 
ing two  variable  points  to  one  fixed, 

192,  294,  298. 
on  axis  of  parabola  by  two  lines,  equal 

to  projection  of  distance  between 
their  poles,  201,  294. 

Intercept  on  parallel  tangents  by  variable 
tangent,  172,  287,  299,  385. 

Invariants,  159.  335. 
Inversion  of  curves,  1 14. 
Involution,  307. 

Jacobian  of  three  conies,  360,  &c. 
Joachimsthal, 

relation  between  eccentric  angles  of 
four  points  on  a  circle,  229. 

method  of  finding  points  where  line 
meets  curve,  264. 

Kemmer,  391. 

Kirkman's  theorems  on  hexagons,  380. 
Latus  rectum,  185. 
Limit  points  of  system  of  circles,  101,  291. 
Locus  of 

vertex  of  triangle  given  base  and  a 
relation  between  lengths  of  sides, 
39.  47,  178. 

and  a  relation  between  angles,  39,  47, 

88,  107. 
and  intercept  by  sides  on  fixed  line,  300. 
and  ratio  of  parts  into  which  sides 

divide  a  fixed  parallel  to  base,  41. 
vertex  of  given  triangle,  whose  base 

angle  moves  along  fixed  lines,  208. 
vertex  of  triangle  of  which  one  base 

angle  is  fixed  and  the  other  moves 
along  a  given  locus,  51,  96. 

whose  sides  pass  through  fixed  points 
and  base  angles  move  along  fixed 
linea,  41,  42,  248,  280,  299. 

generalizations  of  the  last  problem,  300. 
of  vertex  of  triangle  which  circum- 

scribes a  given  conic  and  whose 
base  angles  move  on  fixed  lines, 
250,  319,  349. 

generalizations  of  this  problem,  350. 
common  vertex  of  several   triangles 

given  bases  and  sum  of  areas,  40. 
vertex  of  right  cone,  out  of  which 

given  conic  can  be  cut,  331. 
point  cutting  in  given  ratio  parallel 

chords  of  a  circle,  162. 
intercept  between  two  fixed  lines,  on 

various  conditions,  39,  40,  47. 
variable  tangent  to  conic  between 

two  fixed  tangents,  277,  323. 
point  whence  tangents  to  two  circles 

have  given  ratio  or  sum,  99,  263. 
taken  according  to  different  laws  on 

radii  vectores  through  fixed  point,  52. 
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Locus  of, 

such  that  Smr2  =  constant,  88. 
whence  square  of  tangent  to  circle  is 

as  product  of  distances  from  two 
fixed  lines,  240. 

cutting   in   given  anharmonic  ratio, 
chords  of  conic  through  fixed  point, 

on  perpendicular  at  height  from  base 
equal  a  side,  given  base  and  sum  of 
sides,  59. 

such  that  triangle  formed  by  joining 
feet  of  perpendiculars  on  sides  of 
triangle  has  constant  area,  119. 

point  on  line  of  given  direction  meeting 
sides  of  triangle,  so  that  oc*=oa.ob, 
'298. 

on  line  cut  in  given  anharmonic  
ratio, 

of  which  other  three  describe  right 
lines,  and  line  itself  touches  a  conic, 
324. 

chords  through  which  subtend  right 
angle  at  point  on  conic,  270. 

whence  tangents  to  two  conies  form 
harmonic  pencil,  306. 

whose  polars  with  respect  to  three 
conies  meet  in  a  point,  360. 

middle  point  of  rectangles  inscribed  in 
triangle,  43. 
of  parallel  chords  of  conic,  143. 
of  convergent  chords  of  circle,  96. 

intersection   of    bisector    of    vertical 
angle     with    perpendicular    to    a 
side,  given  base  and  sum  of  sides, 
61. 

of    perpendicular    on    tangent    from 
centre,  or  focus,  with  focal  or  central 
radius  vector,  209. 

focal  radius  vector  with  corresponding 
eccentric  vector,  220. 

of  perpendiculars  to  sides  at  extremity 
of  base,  given  vertical  angle  and 
another  relation,  47. 

of  perpendiculars  of  triangle  given  base 
and  vertical  angle,  88. 

of  perpendiculars  of  triangle  inscribed 
in  one    conic    and   circumscribing 
another,  342. 

eccentric  vector  with  corresponding 
normal,  220. 

co  ITCH  ponding  lines  of  two  homogra- 
phic  pencils,  271. 

polars  with  respect  to  fixed  conies  of 
points  which  move  on  right  lines, 
271. 

intersection   of  tangents  to  a  conic 
which  cut  at  right  angles,  166,  171, 
'269,  352. 
to  a  parabola  which  cut  at  given 

angle,  213,  256,  285. 
at   extremities   of   conjugate  dia- 

meters, 209. 
whose  chord  subtends  constant  angle 

at  focus,  284. 
from  two  points,  which  cut  a  given 

line  harmonically,  322. 
each  or  both  on  one  of  four  given 

tangents,  302,  320. 

Locus  of, 

at  two  fixed  points  on  a  conic  satisfy- 
ing two  other  conditions,  220,  320. 

various  other  conditions,  215. 
intersection  of  normals  at  extremity 

of  focal  chord,  211. 
or  chord  through  fixed  point,  214,  335. 
foot  of  perpendicular  from  focus  on 

tangent,  182,  204,  351. 
on  normal  of  parabola.  213. 
on  chord  of  circle  subtending  right 

angle  at  given  point,  91. 
extremity  of  focal  subtangent,  184. 
centre  of  circle  making  given  inter- 

cepts on  given  lines,  208. 
centre  of  inscribed  circle  given  base 

and  sum  of  sides,  208. 
of  circle  cutting  three  at  equal  angles, 

108. 
of  circumscribing  circle  given  vertical 

angle,  89. 
of  circle  touching  two  given  circles, 

291,  320. 
centre  of  conic  (or  pole  of  fixed  line) 

given  four  points,  153,  254,  2»J8, 
271,  281,  302,  320. 

given  four  tangents,  216,  254,  267, 
277,  281,  321,  339. 

given  three  tangents  and  sum  of 
squares  of  axes,  216. 

four  conditions,  267,  389. 
pole  of  fixed  line  with  regard  to  sys- 

tem of  confocals,  209,  322. 

pole  with  respect  to  one  conic  of  tan- 
gent to  another,  209,  278. 

focus  of  parabola  given  three  tan- 
gents, 207,  214,  274,  285,  320. 

focus  given  four  tangents,  275,  277. 
given  four  points,  217,  288,  392. 
given  three  tangents  and  a  point,  288. 
given  four  conditions,  389. 
vertices  of  self-con  jugate  triangle,com- 

mon  to  fixed  conic,  and  variable  of 
which  four  conditions  are  given, 389. 

MacCullagh,  theorems  by,  210,  220,  333, 
374,  377. 

MacLaurin's  mode  of  generating  conies, 
247,  248,  251,  299. 

Malfatti's  problem,  263. 
Mechanical  construction  of  conies,  178, 

194,  203,  218. 
Middle  points  of  diagonals  of  quadrilate- 

ral in  one  line,  26,  62. 
Miquel,  on  circles  circumscribing  triangles 

formed  by  five  lines,  247. 
Mobius,  217,  278,  295. 

Moore,  deduction  of  Steiner's  theorem  from 
Brianchon's,  247. 

Mulcahy,  on  angles  subtended  at  focus,  33 1 . 

Newton's  method  of  generating  conies,  300. 
Normal,  173,  &c.  335. 
Number  of  terms  in  general  equation,  74. 

of  conditions  to  determine  a  conic,  136. 
of  intersections  of  two  curves,  225. 
of  solutions  of  problem  to  describe 

a  conic  touching  live  others,  390. 
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Number   of   concomitants  to  system  of 
conies,  363. 

O'Brien,  217. 
Orthogonal  systems  of  circles,   102,   131, 

348,  361. 
Osculating  circle,  227,  234. 

three  pass  through   given  point  on 
curve,  229. 

Pappus,  186,  295,  328. 
Parabola    (see    Contents,    pp.    195—207, 

212-214). 
origin  of  name,  180,  328. 
has  tangent  at  infinity,  235,  290,  329. 
coordinates  of  focus,  239,  274.  354. 
equation  of  directrix,  269,  352. 
touching  four  lines,  274. 

Parallel  to  conic,  equation  of,  337. 
Parameter,  185,  197,  202. 

same  for  reciprocals  of  equal  circles, 
286. 

Pascal's  hexagon,  245,  280,  301,  319,  380. 
expression  of  coordinates  by  single, 

217,  248,  386. 
Perpendicular,  equation  and  length,  26,  60. 

condition  for,  59. 
extension  of  relation,  321,  354. 
from  centre  and  foci  on  tangent,  169, 

179,  204. 
Pliicker,  278,  380. 
Polar  coordinates   and   equations,   9,   36, 

87,  95,  IdO,  162,  184,  207. 
poles  and  polars,  properties  of,  92, 148. 
polar,  equation  of,  82,  147,  265. 
pole  of  given  line,  coordinates  of,  266. 
polar  reciprocals,  276,  &c. 
point  and    polar  equivalent    to   two 

conditions,  388. 
Poncelet,  101,  278,  301,  314. 
Projection,  314,  332. 

Quadrilateral, 
middle  points  of  diagonals  lie  on 

a  right  line,  26,  62,  216. 
circles  having  diagonals  for  diameters 

have  common  radical  axis,  277. 
harmonic  properties  of,  57,  317. 
inscribed  in  conies,  148,  319. 
sides  and  diagonals  of  inscribed  quad- 

rilateral cut  transversal  in  involu- 
tion, 312. 

diagonals  of  inscribed  and  circum- 
scribed form  harmonic  pencil,  242. 

Radical  axis  and  centre,  99,  122,  224.  282. 
Radius  of  circle  circumscribing  triangle 

inscribed  in  conic,  213,  220,  333. 
Radius  of  curvature,  227. 
Reciprocals,  method  of,  66,  276,  294,  356. 

Sadleir,  theorems  by,  184. 
Self-conjugate  triangles,  91. 

circle  having  triangle  of  reference  for, 
254. 

of  equilateral  hyperbola,  215. 

Self -con  jugate  triangle 
vertices  of  two  lie  on  a  conic,  322,  34 1 . 
equation  of  conic  referred  to,  238,  253. 
common  to  two  conies,  257,  362. 

determination  of,  349.  361. 
Serret    on    locus    of    centre    given    four 

tangents,  216. 
Similitude,  centre  of,  105,  223,  282. 
Similar  conies,  222. 

condition  for  224. 
have  points  common  at  infinity,  236. 
tangent    to    one  cuts  constant    area 

from  other,  373. Steiner, 

theorem   on    triangle    circumscribing 
parabola,  212,  247,  275,  290,  342. 

on    points    whose    osculating    circle 
passes  through  given  point,  229. 

theorems  on  Pascal's  hexagon,  246,  380. 
solution  of  Malfatti's  problem,  263. 

Subnormal  of  parabola  constant,  202. 
Supplemental  chords,  172. 
Systems  of  circles  having  common  radical 

axis,  100. 
of  conies  through  four  points  cut  a 

transversal  in  involution,  312. 

Tangent,  general  definition  of,  78. 
to  circle,  length  of,  84. 
to  conic  constructed  geometrically,  15 1 . 
determination  of   points  of  contact, 

five  tangents  given.  247. 
variable,  makes  what   intercepts  on 

two  parallel  tangents,  172,  181. 
or  on  two  conjugate  diameters,  172. 
of  parabola,  how  divides  three  fixed 

tangents,  299. 
Tangential  equations,   65,   276,   Ac.,   383, 

&c. 
of  inscribed  and  circumscribing  circles, 

121,  125,  288. 
of  circle  in  general,  128,  384. 
of  conic  in  general,  152,  260. 
of  imaginary  circular  points,  352. 
of  confocal  conies,  353,  384. 
of  points  common  to  four  conies,  344. 
interpretation  of,  384. 

Townsend,  theorems  and  proofs  by,  252, 
301,  376. 

Transformation  of  coordinates,  6,  9,  157, 335. 

Transversal,  how  cuts  sides  of  triangle,  35. 
Carnot's  theorem  of,  289,  318,  388. 
met  by  system  of  conies  in  involu- 

tion, 312. 
Triangle,  circumscribing,  vertices  or  two 

lie  on  a  conic,  320. 
Triangles  made  by  four  lines,  properties 

of,  217,  246. 
Trilinear  coordinates,  57,  60,  264. 

Veronese,  382. 

Walker,  391. 

Zeuthen,  389. 

THE    END. 
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