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EDWARD H. COURTENAY

In the publication of the following Treatise on the

Differential and Integral Calculus by Edward H. Courtenay,

two Institutions have an equal interest— the Military

Academy where he was graduated in the year 1821, and

the University of Virginia, where he died in the Fall of 1853.

Mr. Courtenay was born in the City of Baltimore, on the

19th of November, 1803. He entered the Military Academy
as a cadet in September, 1818, and was the youngest

member of the Class of that year.

The Course of Study embraced a term of four years. In

three years Mr. Courtenay made himself highly proficient in

all the branches, and was graduated at the head of his class,

in July, 1821.

In his initiatory examination he made a strong impression

on the mind of the examiner, who remarked, when the

examination was concluded, that " a boy from Baltimore, of

spare frame, light complexion and light hair, would

certainly take the first place in his class."

We transcribe the following record from the Eegister of

the United States Military Academy.

" Edward H. Courtenay—Promoted Bvt. Second Lieut.,

Corps of Engineers, July 1, 1821.—Second Lieut. July 1,

1821.—Acting Asst. Professor of Natural and Expeiimental

Philosophy, Military Academy, from July 23, 1821, to Sept.
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1, 1822
;
and Asst. Professor of Engineering, from Sept 1,

1822, to Aug. 31, 1824.—Acting Professor ol Natural and

Experimental Philosophy, Military Academy, from Sept. 1.

1828, to Feb. 16, 1829
;
and Professor, from Feb. 16, 1829,

to Dec. 31, 1834.—Resigned Lieutenancy of Engineers, Feb.

16, 1829
;
and Professorship of Natural and Experimental

Philosophy, Dec. 31, 1834.—Professor of Mathematics,

University of Pennsylvania, from 1834 to 1836.—Division

Engineer, New York and Erie Raih-oad, 1836-37.—Civil

Engineer, in the service of United States, employed in the

construction of Fort Independence, Boston Harbor, from

1837 to 1841.*—Chief Engineer of Dry Dock, Navy Yard,

Brooklyn, N". Y., 1841-42.—Professor of Mathematics,

University of Virginia, since 1842.—Author of Elementary

Treatise on Mechanics, ti*anslated from the French of M.

Boucharlat, with additions and emendations, designed to

adapt it to the use of the Cadets of the U. S. Military

Academy," 1833.—Degree of A. M., conferred by University

of Pennsylvania, 1834; and of LL. D., by Hampden

Sidney College, Ya., 1816."

* Mr. Courtenay, while employed as Engineer in the construction of the works

in Boston Harbor, was associated with that distinguished officer, Colonel Sylvanus

Thayer, of the Corps of Engineers.
The year before Mr. Courtenay entered the Military Academy, as a Cadet,

Colonel Thayer had been appointed Superintendent. He was then engaged in

laying the foundation of the system of instruction and discipline which has

imparted so much reputation to that institution.

It was among the most agreeable and cherished remerabrancesofMr. Courtenay's
life that he enjoyed the entire confidence and friendship of so interesting and

distinguished a man.

The relation of principal and pupil, in a public institution became the basis of

a sincere and generous friendship ;
and when the news reached the north thai

Courtenay was dead, no eye was moistened by a tear of warmer sympathy than

that of the Superintendent who had guided his yOuth and admired his life.
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The autlior of this notice examined Mr. Courtenay when

he entered the Militarj^ Academy, was associated with

him in the Academic Board, and knew hira intimately

in all the situations which he subsequently filled; and

yet feels quite incompetent to do justice to the memory
of so perfect a man and so dear a friend.

The painter who has a faultless form to delineate or a

perfect landscape to transfer to the canvas, is embarrassed

by the very perfection of his subject. He has nothing to

put in opposition to the beautiful—no shading that can give

full effect to the living light. Characters which afford

strong contrasts are easily drawn—it is the perfect char-

acter which it is difficult to sketch.

The intellectual faculties of Professor Courtenay were

blended in such just proportions, that each seemed to aid

and strengthen all the others. He examined the elements

of knowledge with a microscopic power, and no distinction

was so minute as to elude the vigilance of his search. He

compared the elements of knowledge with a logic so scruti-

nizing that error found no place in his conclusions
;

—and

he possessed, in an eminent degree, that marked character-

istic of a great mind, the power of a just and profound

generalization.

His mind was quick, clear, accurate and discriminating

in its apprehensions
—

rapid, and certain, in its reasoning

processes, and far-reaching and profound in its general

riews. It was admirably adapted both to acquire and

use knowledge.

The intellectual faculties, however, are but the pedestal
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and shaft of the column—the moral and social
^
faculties

are its entablature or crowning glory. It \s these faculties

vvhicli shed over the whole character a soft and attractive

radiance, exhibiting in a favorable light the majesty of

intellect and the divine attributes of truth, justice and

beneficence.

It was the ardent desire and steady aim of Professor

Courtenay, during his whole life, to be governed by

these principles, and there are few cases in which the

ideal and the actual have been brought more closely

together. Modest and unassuming in his manners even

to diffidence, he was bold, resolute and firm in asserting

and maintaining the right. Liberal in his judgments of

others, he was exacting in regard to himself He could

discriminate, reason, and decide justly even when his own

interests were involved in the issue. His love of truth

and justice was stronger than his love of self or of friends.

His intercourse with others was marked by the gentlest

courtesies. He was an attentive and eloquent listener.

Diff'erences of opinion, appeared to excite regret rather than

provoke argument, and his habitual respect for the opinions,

wishes and feelings of others, imparted an indescribable

charm to his manners.

As a professor he was a model. He was clear, concise,

and luminous in his style and methods. Laborious in the

preparation of his lectures, even to the minutest facts, he

was at all times prepared to impart information. His manner,

as a teacher, was highly attractive. He never by look, act,

word, or emphasis disparaged the efforts or undervalued

the acquirements of his pupils. His pleasant smile and kind
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voice, when be would say,
" Is that answer peTfeMy

correct ?
"

gave hope to many minds struggling \vith the

difficulties of science and have left the impression of affec-

tionate recollection on many hearts.

At the Military Academy, on the banks of the Hudson,

where Mr. Courtenay was educated, and where lie first

labored to advance the interest of instruction and science,

his name is recorded on the list of distinguished graduates,

and honorably enrolled among the most eminent Professors

of that Institution. There his labors and memory will live

long together.

At the University of Yirginia he has left a name equally

dear to that distinguished Faculty of which he was an orna-

ment and to the many pupils whom he there taught. When

these, in later years, shall revisit their Ahna Mater, to revive

iarly and cherished recollections—to strengthen the bonds of

early friendships and renew their resolves to be good and

great, they will find that a wide space has been made vacant.

They w^ill realize in sorrow that a favorite professor has been

transferred from the halls of instruction to the grove of pines

which borders the town, and which contains the remains of

the revered dead. Thither they will go, in the twilight of

the evening, to visit the grave of a man of science—their

able teacher and faithful friend. In reviewing his life and

contemplating his character, they will exclaim—
'' Mark the perfect mau and behold the upright ;

for the

end of that man is peace."

FisHKiLL Landing,
March 10th, 185555. j



NOTICE.
The following work was left by Professor Courtenay, in manuscript, in

a highly finished condition
;
and yet, it must be regretted that it could not

receive the final corrections of the author. A premature death, at the

meridian of life, placed the work in other hands, and any slight inaccuracies

of language which may now appear, would doubtless have been corrected,

if the sheets could have passed under the eye of the author.

It is a cause of thankfulness, however, that the work was entirely com-

pleted by Professor Courtenay ;
and in its publication the plan, language,

and even the punctuation, have been followed with a fidelity due to the

memory of a friend.

The work will be found more full and extensive than any which has yet

appeared in this country on the same subject ;
and the part which relates

to the Calculus of Variations will be especially acceptable to the Amencac

public.

It is perhaps not improper to add, that the Publishers have generously

offered to publish the work on very favorable terms, and that the protltji,

whatever they may be. will go to the family of the author.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

FIRST PRINCIPLES.

1. In all mathematical calculations, the quantities which are

^presented for our consideration belong to one of two remarkable

classes : namely, constant quantities, which are such as preserve

the same values throughout the limits of one investigation; or

variable quantities, which may assume successively different values,

the number of such values being unlimited.

The first letters of the alphabet, as a^ b, c, dec, are usually

employed to denote constant quantities, and the last letters z, y, .r,

&c. are used, to represent such quantities as are variable.

2. When two quantities x and y are mutually dependent upon

each other, so that a knowledge of the value o'f one will lead

to that of the other, they are said to be functions of each other.

Thus, in the equations

y = ax, 7/
=z bx"^ -{- ex -\- e, y = ax^ 4- bx"^ — ex -j- e,

the value of y is determined as soon as that of x is known
;
and

accordingly y is said to be a function of x.

In like manner, an assumed value of y will fix the correspond-

ing values (if
.T,

and therefore a; is a function of y. There is

this difference, however, between the two cases : when the value
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of X is assumed, that of y is obtained by a si nple substitu-

tion
;

whereas the determination of the value of x from that

of y requires the solution of an equation. Hence, y is called

an explicit function of x^ but x is said to be an implicit func-

tion of y.

The general fact that y is an explicit function of x is written

thus :

y — Fx, or y = 9a:,

when the character F or
(p

stands as the representative of certain

operations to be performed on the quantity x, the result of which

operations will be a quantity equal in value to y. And when

we wish to imply that the values of x and y are connected by

an unresolved equation, or that y is an implicit function of x,

we write

F(x, y) = 0, or (p{x, y) = 0.

For the purpose of illustration, let there be taken the three

equations

yz=ax-\-b (1),

y^ax^i-bx-i-c (2),

y = ax^-{- bx^ -{- ex -\- e (3),

and suppose x to receive an increment h in each equation, con

verting it into x + ^h and causing y to assume a new value y,.

Then if the form of each function, or value of y, be supposed

to remain unchanged, the three equations (1), (2), and (3), will

beccme respectively

yi = a{x-{-h)\-b a)

y, = a{x + hy + b{x + A) + c
(.5),

and yi = a{x + hf + b{x + hy -h c(x + h) -j- e
(«).

Subtracting (1) from (4) we obtain

y^-~ y -zz. ah (7V
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From (2) and (5) we get

yx-y = a{2xh + h"^) + bh (8).

And from (3) and (6)

V,
- y = a(Sx^h + 3xh^ + h^) -f- b{2xh + h"^) + ch (9).

From (7) we ieduce, by division, s^

h (10);

and from (9)

from (8) ^^-j-^
= a{2x + A) + ^ (H) ;

z=z2ax -^ ah + b'y

^ = a{Sx^ + 3;rA + h^) + b{2x + k) + c (12).

The results, (10), (11), and (12), express tne ratio between

the increment h assigned to x, and the corresponding increment

y\
— y imparted to y. The values of this ratio, in the three

examples selected, present remarkable differences.

In ^he first example, this ratio retains the same value a, what

ever may be the value assigned to the increment h. In the

second example it consists of two parts,

one = 2ax -\- 6,

entirely independent of A, and the other = aA,

which varies with h. If the value of h be supposed to diminish,

the ratio

2ax-^b-\-ah (11),

will become more and more nearly equal to 2ax + b
; and, final-

ly, when h becomes indefinitely small, the ratio is reduced to

this latter value.

The corresponding increments h and y,
—

y, when indefinitely

/TV or THE 1^
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small, are called the differentials of the quantities x and y, and

the limiting value of the ratio

h

.is called the differential coefficient^ because it is the multiplier of

the diflcrential of x necessary to produce the differential of y.

The differentials of x and y are written dx and rfy, the char-

acter d being the symbol of an operation to be performed on

dy
X or y, not a fixctor : and the differential coefficient is written -—

ax

Moreover, one of the variables (usually x) is called the inde-

pendent variable, its increment dx (although small) being arbi

trary ;
while the other y, whose increment dy depends on that

of x, is called the deijeiident variable or simply the function.

In the third example, the ratio

Vi
— y
h

reduces, at the limit when ^ = 0, to

% = 3«^2 4. 2bx + c.

dx

These examples illustrate
'

the fact that two indefinitely small

quantities may yet have a finite ratio
;
and they suffice to show

that the form of the differential coefficient, which is usually a

function of x, will depend very materially on the form of the

original function y.

(3.) The considerations just presented analytically admit of

geometrical illustration. For, whatever may be the relation be-

tween X and y, the former may be regarded as the abscissa, and

the latter as the ordinate of a plane curve; and the determination

of the relation between the corresponding increments of x and y,

is reduced to finding the change in the length of the ordinate

produced by an arbitrary change in the length of the abscissa.



FIRST PRINCIPLES. 17

It is the chief object of the Differential Calculus to investigate:

the laws of increase of functions having various forms, when sucl

changes are produced by an arbitrary change in the value of

the independent variable upon which the values of the functions

depend.

Geometrical considerations will also point out very clearly how

it happens that a given augmentation of the variable x will, in

different stages of its magnitude, produce widely different increments

of the function y.

Referring to the an-

nexed diagram, it will

be apparent that near

the vertex G of the

^urve CPE^ a slight

increase in the value of

the abscissa x wmU produce a comparatively large increase in the

value of the ordinate y ;
but when the tangent to the curve forms

a smaller angle with the axis OX^ as at P, the same increment

in X will produce a much smaller increase of y ;
and if the tangent

be nearly parallel to OX, the increment received by y will be very

small in comparison with that given to x. Finally, by continuing

to increase x^ the ordinate y may first cease to increase, and may
afterwards actually decrease, or the increment of y may become

negative; and these different results will occur without any change

in the form of the function y.

4. One of the first inquiries presented for consideration is the

determination of the general form of the function F{x -f A) ; for,

since we desire to compare

y — Fx with y^
— F{x + A),

it is important to know what form F{x -f- h) will assume when ex-

panded into a series of terms involving x and h. Hence the fol-.

lowing
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Fro2)ositlon. To determine the general form of the development

of any function of the algebraic sum of two quantities, such as

F(x -f ^Oj arranged according to the powers of the second h.

1st. There must be one term m the development of the form

Fx. and the other terms must contain h. For, since the develop,

ment is supposed to be general, and therefore true for all values h^

it ought to be applicable when h = 0, in which case the undeveloped

function F(x + h) reduces to Fx. This condition wmII be satisfied

by supposing the first term in the development to be Fx, and all

Jhe succeeding terms to contain powers of h, since the supposition

^ = will then give rise to an equation, Fx — Fx, which is identi-

eally true. And no other conceivable form of development would

lead to this result. ''^

. We may therefore write

F(x + k) =: Fx -\- Ah" -{- Bh^ + Ch' -{- 6zc. (1),

in which the coeflicients A, B, C, &c., will usually be functions of
ar,

and the exponents a, 6, c, (Sec, undetermined constants.

2d. None of the exponents, a, b, c, &c., can be negative. For if

there could be a term of the form

Bh-^ or
y,,

it would become infinite when k = 0, thus rendering the developed

expression infinite, while the undeveloped expression would become

simply Fx, &nd this latter would probably be finite.

/ 3d. None of the exponents can be fractional. For if there could

be a term of the form

Eh' or JS'/h'

such term would have as many different values as there are units

in s ; that is,
it would have « values

;
and each of these val\ie9
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could be combined in succession with the aggregate of the othdr

terms of the series.

Now if each of these other terms, except the first term Fx^ be

supposed to have but one value, the sum of all the terms containing

h will have s different values. And if Fx be susceptible of n dif-

ferent values, the entire development will admit of ti X s values,

since each value of Fx may be combined, in succession, with each

value of the remaining terms.

But F{x -f- /*) being of the same form with Fx^ must have the

same number n of values. Thus, for example, if

F{x-\r'ti) = {x^-hy, then Fx = (^,

and both will have three values.

If F(x^K)^a{x-\-hY^-h(x-\-hy,

then Fx z:z ax^ -\- h3^
^

and both will have five values, &c.

Thus, in the case supposed above, where there was one fractional

exponent, F{x + A) would have n values when undeveloped, but

» X s values when developed—a manifest absurdity.

We conclude therefore that the exponents cr, 6, c, &;c., in the

general development, must be positive integers ;
and in order to

nfiake the development include every possible case, we write

F{x \-}i)-Fx-\- Ah + Bh^ + Ch? -f Bh^, &c.,

including every power oi'h. If in any particular case some of these

terms should be unnecessary, it will suffice to suppose the cor-

responding coefficients A^ B, (7, &c., to reduce to zero.

We have a familiar example of the expansion of F{x + h) in the

well known binomial theorem. Thus, if

F(x -\- h) — (x + hy = x"" -{- nx^'-Vi

nin — \) „,„ w(w — 1)(« — 2)
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we shall have

^ere A^ B^ (7, &c., are functions of x.

The following are likewise examples of the development as apt

plied to particular cases.

2. Let Fx— {a'\- xy+ bx^ : then

F{x-\-J^ = {a + x + hy + b(x + A)«,

^hich expressions, when expanded by the binomial theorem, give

F{z + h) = (a + x)^-\-^(a
-{- x)'^ h -^{a -^ xf* h^ + &c.,

+ bx* + nbx"'^ h -f -^\
~^^

^a;'»-2A2 + &c.

= i^a: + rw6a;«-i + « (" + ^)~ J
^

^hich corresponds with the general form,

3 Let Fx = log X : then

F(x + h) = log (.r + A) = log [x (l
+

^)]
=z log a: -h

log^'l
+

^)

f^here Jlf denotes the modulus of the system of logarithms,

frhich also corresponds to the general form.
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It may be well to observe, that although the form of the develop-

ment of F{x -f Jf)
is always sach as has been indicated while a;

retains its general value, yet it is possible (in some cases) to assign

certain particular values to x which shall cause the development

in this form to become impossible.

Thus, if in the second of the above examples, we put x — ^ a,

the true development of F{x + h) will become einiply

F{x-\rh)=l^ -\-b{- ay -f bn{- «)«•-> h -f &c.,

in which one fractional exponent appears.

The same supposition causes all the coefficients involving negative

powers of a 4- a: to become infinite in the general expansion. If

will be shown hereafter that the particular cases in which the

general development is inapplicable, are always indicated by sonne

of the terms of the development becoming infinite. At present

it is sufficient to remark that the number of such cases is compara

tively small, and that they will receive a special examination.

6. From the development of F(x -f A), we derive a direct and

general method of finding the differential of any proposed function

y = Fx,

For, if we give to x an increment h, we shall have

yi = F{x + h) =:Fx-{- Ah-\- Bh"^ + Ch^ + &c.

r .y^
— y =1 F{x + h)

- Fx =: Ah -\- Bh^ + Ch^ -f- &c.

.
.

.
yjLZj. ^A-^Bh^Ch?'-^- &c.

h

And by passing to the limit, when A = 0, we get

-f- = ^, whence dy = Adx,
ax
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Thus it appears that the coefficient A of the 1st power of h

in the development of F(x 4- h) is the differential coefficient of

the proposed function, and this multiplied by dx gives the re-

quired differential of y.

It will be found convenient, however, to form rules for dif-

ferentiating functions of the various forms likely to arise, and

to this investigation we proceed next.
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CHAPTER II.

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS.

6. Prop. To differentiate the product of two functions of a sin-

gle variable.

Let u = yz,

^here y and z are given functions of the same independent variable

x^ and let x take an increment A, converting u, y, and s, into Wj, yj^

and 2i. Then, since
y-^

and
z-^

will each be a function of a: -j- K
we shall have

and 2i = + ^jA 4- ^^^2 _}_ c^^^ _j_ ^c.

•

.
•

. t^i
= yi^i = y0 + (^s + ^liy)A + {Bz + ^^y + AA;)h^

-f (6^2; 4- Cjy +AB^ + ^i^)^^ + &c.

.
•

. ^^ =
J^fip^ ^Azi- A,y + (i?. + B,y -^ AA,)h

+ (Cs + Ciy + ^A + Ji^)A2 4- &(i

and when A = 0, this becomes
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Thus the differential of the product yz of two functions is found by

multiphjing each function by the differential of the other function^ and

adding the results.

7. Prop. To differentiate the product of several functions of a

single variable.

1st. Let u — vyz, where v, y, and 2, are functions of the inde-

pendent variable x.

Put yz = s ; then u = vs,

and by the last proposition,

du = vds -{-sdv^ and also ds = ydz + zdy.

Substituting the values of s and ds in that of du, there result*

du = V [ydz + zdy) + yzdv = vydz •\- vzdy -f- yzdv.

2d. Let u = svyz.

Put yz =: w ; then u = svwy

.

•
. du = svdw -f- swdv -}- t't^cfs = sv(ydz + 2:cfy) 4 syzdv -f fy?«^s,

or, ifw = svydz -f- 5^'^rfy + syzdv + vy^rf.? ;

and the same method could be applied to the product of a greater

number of functions.

Hence w^e have the following rule for the differential of the

product of several functions :

Multiply the differential of each factor by the continued product of

all the other factors, and add the results.

8. Prop. To differentiate a fraction whose numerator and denom.

inator are functions of a single variable.

Let u = -, where y and z are functions of x,
z
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Then y = mz, and this differentiated by the rule for products,

givea
y

dv = udz -f zdu z=z- -dz -\- zdu
z

.
'

. zdy z=: ydz + z'^dn^

11-1. . ^^y — y^^;
and by reduction du = —'—

z^

Thus the rule is as follows :

Multiply the differential of the numerator by the denominator^ and

the differential of the denominator by the numerator ; subtract the

second product from the first, and divide the remainder by the square

of the denominator.

9. Prop. To differentiate a power of a single variable.

1st. Let u z=z ic", where n is a positive integer.

Regarding x"* as the product x. x, x. ar, &c., of n equal factors

each = ar, and applying the rule for differentiating a product, we

get
du z= x'^-^dx + x'*-'^dx -f x^^-^dx -f &c., to n terms.

.
•

. du =. nx^-'^dXj

and the rule in this case is the follownig :

Multiply the given power (x") by the exponent (giving nx") ;
then

diminish the exponent by unity (giving nx"""^) ;
and finally, multiply

by the differential of the root (producing nx°~^dx).

2d. Now suppose the exponent n to be a positive fraction -
c

«

Then u = x~

,
•

. u^ =
a:«, where the exponents a and c are both positive integers.

Hence, by the application of the rule just established for such

cases, we have
cu^^^du = ax'^^^dx

, aa;«-i - a a;"-'
,

a tt-i-.o4 -
,

a «— i ,

,
•

. du = dx =
;

—
J

dx= -X ^
«dx r=z-X^ dx.

(/)'-'
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and the rule for differentiating thp power is the same as when the

exponent is a positive integer.

3d. Let the exponent be a negative integer, or w = tt"^

\ X
Then w = — =

n+l

and this differentiated by the rule for fractions, gives

x^'ri _ (;i + l)a:"+^ ndx _ , ,

du = \ . ^
^ dx= -TT = — nr-^-^dx.

And the rule is still the same.

4th. Let the exponent be a negative fraction, or let u = x

Then u" = a^*, and by the first and third cases,

cu^-^du = — aoir'^^dx, or, du = dx.

a xr'^^dx a -?-i .

du =
; ^

= X ' dx.
'

(.-)-

and the formula is still the same.

We might have deduced the rule for differentiating a power, as

alike applicable to all cases, by employing the binomial theorem
;

for, since the second term in the development of
(aj + A)", is

na:*»-'A, for all values of w,

we must have —^—- = na:"-', or, d (a:") = nx^-^dx.
dx

' ' \ /

It is intended, however, to demonstrate the truth of the binomial

theorem by the aid of the differential calculus, and hence the neces-

sity of establishing the rules for differentiation, without reference to

that theorem.

Remark. If the function which it is proposed to differentiate

contain a constant factor, such factor will appear in the differential.
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Thus d {ax) = adx, for when x takes the increment A, the function

ax becomes

/ I l,\ A U-i
— U J ^^

«, = a (a; -f A) and .
•

.
~~— = a and -^ = a.

^ ^ '
Ji dx

Similarly if m = a . Fx, where F denotes any function,

then u^ = aF (x + h) and du z=z ad [Fx) .

10. Prop. To differentiate the algebraic sum of several functions*

of a single variable.

Let u=:As-{-Bv—Ci/-h Dz,

where 5, v, y, and z, are functions of ar.

Then when x takes the increment h,

As becomes As^ z= A [s -\- A^h -\- B-Ji? -f- C^"^ &c.).

Bv becomes Bvy^ = B {y ^- AJi -\- Bji^ + CJi^ &lq,),

Cy becomes Cy^ = C {y + A^h -\- BJi^ + CJi^ &c.).

Dz becomes Dz^ = D {z -{- A^h + B^h^ + C4A* &;c.).

, *. u becomes u^ = As -^ Bv — Cy -{- Dz

+ {AA^ 4- BA^ - CJ3 -{-DA^ h + &;c.

.
•

. du-— {AA^ + BA^ — CA^ + DA^) dx.

But A-^dx = ds, Azdx = dv, A^dx = c/y, A^dx =: dz.

.'. du = Ads+ Bdv — Cdy + Ddz,

And the rule is as follows :

Differentiate the terms successively^ and take the algebraic sum of

the result.

' Remark. If a constant be connected with a variable quantity by

tne sign -f or —
,
such constant will disappear by differentiation.

Thus, when we have u =: a -{• Fx^ then

u^=i a -{- F {x •{- h) :=z a -{ Fx -^ Ah -{- Bh"^, &c.,

= w -f- Ah 4- ^A^ &c.

.
•

. rfw = Adx, the constant a having disappeared.
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EXAMPLES.

'11. 1. To ditferoritiate

//
= 4^3 4. 7^2 _ 8^ 4- 5,

Applying the rule tor powers to each term we obtain

dy^'iX ^5 x^dx -\-l X 2xdx — Sdx =
(

1 '^x^ -f I Lc - S)dx.

.'.-^ = 12a:2-j- 14^-8.
ax

2. 1/
= ax^(bx -\- c)

=: abx^ -f- uvx^.

Differentiating this as a product, we get

dy =. 2ux[bx -f- c)dx + ax%dx =z {l^ahx"^ -\- 2acx)dx.

Or by first perfomiing the multiplication indicated, and then dif

ferentiating as a sum, ihe same result is obtaint-d.

r.^ = Sabx^-\-2acx.
dx

Differentiating by the rules for fractions and powers, we obtain

VZx'\b + x'^fdx
—

8(6 -f- x^f X Ax^ x 2xdx
dy =

{b + ^2)6

l'>x%b -}- x^)
- 2ix* ^ 12.f2(/>

-
.r^) ,= ^^ dx = ax.

{b -h X^y (b f ^2)4

dy _ 1 2^:2(6- x'')
' ' lx~ '~{b~+x^y

'

y = -/a + bx"^ = {a -f- bx'^)^,

2 ' dx
^a -f bx^
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5. u = x{l + x^)(l + x^).

du— = (1 + a:2)(l -h x^) + x{\ + x^) X 2a; + x{\ + a;^) x 3««

= 1 + ic2 4- ar3 + a;5 + 2^2 ^. 2a;5 + 3a;3 + 3a:«

= 1 + 3a;2 + 4a;3 + 62:*.

6. M = yr+'/nf^ ==
[a;
+ (1 +

a;2)*]*

29

-{x+^l^-x^)
_'/a;+v/M-a;2

V^+ yT+lc2 X y^FT^ 2-/! H-^2

7. w := 6a;

8. « = — — 6 = car® — b.

du 8 *
-— = - bx ,

dx 3

du

ax

6c

u = V^Vv^ + 1 = « (^ + 1) •

eft* = lx'*{x^ + 1
)*c?a; + I x^{x^ + 1)"* X I x'^dx.

O ,6 <^

du _ {x^ + 1)*
*

dx
Sx

+
7a;* + 4

4a: (x^+l)^ 12V5\4^+1

10. _ Vi +a;4- VT-x _ (-y/l +a:+ y^l -a;)'~
2a;

,^-\- X - yT-
1 + VI

«fw _ -
x^(\

- x^f^ - (1 4- -y/T^ a;2) _ _ 1 + -/l
- a;^

dx

11. « =

ar2v'i

ic + v/r+ a;2

= -(--^/^^^)=.vT+l^-
(1 + z')
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12. u =
y^pT-i- + Y^ZT^Y

3^ 4.1;

2x-x/x yc^
- x^

V' ^x

13. t« = W « + .^ + V a + a; H- -y/a 4- a; &c., continued indefl

nitely.

Here « = -\A~H- ar + «*, and .
•

. w^ = a + ^ + w,

or, I

c/m. 1

u = a + x, ,-.% = - +
y/a 4- a^ -I-

^,

dx
y4:a -h 4a; + 1

The functions considered hitherto are called algebraic functions,

because they require only the performance of the common algebraic

operations of addition, subtraction, multiplication, division, raising

of powers, and extraction of roots. There is a second and very

extensive class of functions, in which the variable enters as an

exponent, or in connection with logarithms, sines, cosines, tangents,

circular arcs, &;c., of which the following are examples : a', x*,

logo:, sin
a:, (cosar)"'"**, sin-^

ar, (loga:)^^"^, &;c. These are called

transcendental functions, and they will be considered m the next

chapter.
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CHAPTER III.

TRANSCENDENTAL FUNCTIONS.

12. Prop. To 'differentiate w = log a;.

Let X take the increment A, converting u into

Wj = log (a; + h).

Then «i =log (
a; + A) = log ^ (l + ^H == log ar -f log (l f -V

_L ir/^ A2 A3 A* . \

where M is the modulus of the system.

,
•

.
— = ^

,

' = — and G?w = — dx.
dx dx X X

Hence the rule is as follows :

Multiply the differential of the variable by the modulus of the sys

tern in which the logarithm is taken^ and divide the product by the

variable.

If the logarithms belong to the Naperian system whose njodulus

is equal to unity, we shall have

(/(log 2;)=.-^.

As the essential properties of logarithms are the same in all sys-

tems, while the form of the differential is simplest in the Naperian

system, the logarithms employed throughout the Calculus will



82 DIFFERENTIAL CALCULUS.

always be the Naperian, unless the contrary is distinctly specified,

and the rule for differentivating a logarithm will be simply this:

Divide the differential of the quantity by the quantity itself.

13. Prop. To differentiate an exponential function as u = a', the

base a being constant.

Passing to logarithms we have

log u =: X log a.

du
.

•
. c?(log u) = d{x log a) or —r-=zioga.dx',

', du = log a.u.dx z=: log a . a*, dx and — = log a . a*.

And the rule for differentiating an exponential is this :

Multiply the exponential (a^) by the differential of the exponent

(dx), and that product by the Naperian logarithm of the base (log a).

Cor. If a = e, the Naperian base, we shall have log e = 1
;

aiju.
•

. d{e')
= e'dx, and -~-^ = e'.

Remark. The rule for differentiating logarithmic functions will

often be found useful, even when the original function is algebraic,

since by passing to logarithms we may give the function a simpler

form.

Examples af Logarithmic and Exponential Functions.

14. 1. Let u - log {x -h-y/F-f"^.

du = ^(^+v^+_^ ^ ! + (! + ^_y^^

« 4-^/1 +a:2 , dx du^ dx = ' —
(•^-+Vl +•'»') -A-t-*^ /rH-a:2

*

'dx
yTl-a;»
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Passing to logarithms we have

log w = log a; -f log (a2 ^ x^) \- -
log (a^

—
x^).

u~x a?-\-x^ "^2 a2~a;2

(/;c 2a;c?^ xdx

X a^ -^ x^ a^ — a;2

.!=(<.« +.»)vs^^^+ 2.V"^
- .^ -

^^^;g

r.2 _ 9:2

3. w = log
v<^Mrr__

Multiplying numerator and denominator by the numerator we have

2ar2 4- 1 - 2x y/x^ -f- 1

'^ = i«g W:^i

du 4x- 2-vAM- 1 - 2a;2(a;2 + 1)

log (2a;2 + 1 _ 2a:'vAM-l)

4. w = a;«V-i. Then log « = a-y/— 1 log x,

^
du _ /—- dx

^:

and du = a^/— 1 . .r«V^ .
— = a^/— 1 aj^v^-^ c?a:.V a; ^

Thus the rule for differentiating a power is still the same, when th«

exponent is imaginary
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\ 6. w = X*. Then log w = a; log x.

.. — =z\o%x,dx -\- X,— = (log a; -f l)daf

This signifies that x is raised to a power whose exponent is a:*,

and it must not be confounded with (a;*)', which latter implies that

«* is raised to the x*^ power.

u w dx
Thep log w = a:* log a: .

•
.
— = log a;(logar -f l)a;*(/x -f ^*—
u X

.
•

. ^ = X*' . a;'

l^log
a;(log a: + 1

) +-J

7. u = e** where e is the Naperian base.

log u z= X* log e =z X' ,'.-— = e*', x* (log x -|- 1).

8. tt = ««*. Then log w =z e* log a:

du xA 1\
...- =

a:«(loga:
+

-j.'.

0. M = log (nar) . Then du = —^^—^ =—.^^ ' nx X

This result is the same as when u = log ar,
as might have been

anticipated since log {nx) = log n -f log a:,
and log n is constant.

10. » = log(log^). Then rf„ = iil2Sf) . =_^
log a; x.loga;

du _ 1
'

dx"" z log X
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11. w = (log xY = log "ar. Then du = n log
"-^ x . c?(log z)

du n . log
»-^

ar

' ' dx~ X
'

12. « = e log V^H^. Then log u = log ^d^+x^

,', u =^a? 4- a:2 = (a2 + a;^)* and ^ = -^

13. u = c'''^''". cZw = «'°'"" . c^
(log-a:)

.
•

. -7- = - • c . log'-^ar.dx X °

14. " = 7 ^ ^^g^^
~

8
^* ^^^ ^ "*"

32
***

--- = ic^ log2a; + -x^ log a; — - a;3 log x — ~x^ -\--x^ = 3^ log^x.dx Z Z o o

15. u = e'(x^
- 4a;3 + 12a:2 _ 24a; + 24)

^ = e'{x*
- 4a;3 + 12a;2 - 24a: + 24)

+ e*{4x^
- ]2a;2 4- 24a; — 24) = e* . ar*.

Trigonometrical JFunctions.

15. The trigonometrical functions sin
a*,

cos
a;,

tan x, &c. will next

be considered, but the determination of the forms of their differen-

tials will be facilitated by the following

mi 1. . , . arc arc . arc . .

Fi'op. Ihe limit to the ratios -r— , -; ,? and ) when the
sm chord tang

arc is diminished indefinitely, is unity.

, ^. sin cos rad— versin , versin
Proof, femce =—-— = =1 —

-,
tan radius rad rad
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and since the last term in this equalHy can be

rendered smaller than any assignable quantity

by taking the arc sufficiently small, it follows

, ,. . , . sin .

that the limit to the ratio is unity.
tan

But both the chord AB and the arc AB
are intermediate in value between the sine

BD and the tangent AT, Hence at the limit, when the arc ia

indefinitely small,

arcarc

sin

arc

tan

sm

tanchord

16. Prop. To differentiate y = sin x.

to. the well known trigonometrical formula,

make

Then

sin a — sin 6 = 2 sin - (a
—

b) cos -.{a -{-b)^

\{a-b)=lh,

x-\- h and

and

2

b = x.

\(a
+ b) =x +

^h.

.
•

. sin
(a; + A)

~ sin a; = 2 sin - h . cos {^ + ^h).

am {x -\- h)
— sin x 2 sin - A . cos

(a: + -
h)

2

1

2

But at the limit when A = 0,

h

— cos
(a: + -

A),

sm-A

1, and cos
(a? + -

A) = cos a?.

<6
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.
•

.
-^ = -^—;

—- = cos ar, and c?(sm a;) = cos a; . aa;.

dx dx

17. Prop. To differentiate y = cos ar.

Here y z= cos a: = sin I
- '^ — x\

where -jt = semi-circumference of the circle whose radius = 1.

. •. dy z=z c?sin 1-* —
a:|
=

conJ-it
— x\ • cil-'"^ — x\=: — sinxdz

dy d cos X
' ' dx~ dx

~
'

the negative sign prefixed to the value of this ratio signifies that the

cosine decreases as the arc increases.

18, Prop. To differentiate u = tan x.

, , . ,
sin a; cos a; . fl? sin a: — sin a; . c? cos z

du = a (tan x)= d =  

^ ' cos X cos^a;

cos^a; -f sin^a; . dx 07= dx =—— = sec^a; . dx.
cos^a; cos-^a?

die d tan x
=. sec'^x.

dx dx

19. Prop. To differentiate u = cot a:.

du =
fl?(cot :fc)

= dtanl-'je — x\=: sec^l-ir — x\. d
[-or'

— x\

=. — cosec^a;.
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21. Prop. To difTerentiate u = cosecar.

du = </(cosec2;) = c?secj-'n'
— x\

=
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Thus let ab represent an arc x described

with rad = 1
,
and bh^ = dx sl small in-

crement given to x. Then

eb — sin x, ce = cos ar, at = tan x, ct= sec
ar,

sb^ = d . sin x^ sb = d . cos x, iti
= d . tan

a;,

r^i = 0? . sec a:.

Also when bb-^
is diminished continually,

the small figures bsb^ and trt^ will continu-

ally approach to the forms of right angled triangles, becoming ia

definitely near to such forms at the limit. Moreover, the two small

triangles will then be similar to cbe. Hence we shall have the

proportions

cb : ce : : bb^ : b^s or 1 : cos x : : dx : rf sin ar = cos xdx.

cb : eb : : bb-^ : bs or 1 : sin x : : dx : dcos x = sin xdx.

The latter result should be written c? cos a; = — sin a: . rfar,
be-

cause the cosine diminishes as the arc increases.

Again we have the proportions

ca : ct : : rt : tt^ ) .
'

. ca X cb : {ct)^ : : bb^ : t\

and cb : ct '.: bb-^ : rt ) or P : sec^a; \\ dx \ d tan x.

Also ca : at

cb : ct

rt

. d tan X = sec'^xdx.

rt^ ) .

'

. ca X cb : at X ct : : bb^ : rt^

bb^ : rt ) or 1^ : tana:, sec ar : : dx : d secx.

.' . d sec X = tan x . sec x . dx.

In the same manner, expressions for rfcotar, rfcoseca;, &c.^

could be obtained.

Circular Functions.

26. We will now consider the circular functions, sin~^a:, tan-^a:^

&c., which expressions are read, the arc whuse sine is
ar,

the arc

whose tangent is
ar, &c.
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In these cases, it is the arc which is the function, or dependent

variable, the independent variable being the sine, or the tangent, &;c.

27. Prop. To differentiate y = sin—^j?.

Since this notation is intended to imply that y is the arc whose

sine is equal to
a;,
we must have as an equivalent relation

dx = cosy . dy and

X = ^my

dy 1 1

dx cos y ^i _
sin2y yT"~ x*

d sin—^ar 1

dx ,/r- X'

28. Prop. To differentiate y = cos-^ar.

Here a: = cos y, .'. dx = — sin y . dy

, dy_ 1_ 1^ 1_
' '

dx'~ sin y
~

^1 - cos^
~ ~
^^

d cos~^jr 1

dx
~

yT"-^r^*

29. Prop. To differentiate u = tan-^a:.

X = tan M, .'. dx ^= sec^w . du

, du_ Jl_ _ 1 _ 1
' '

dx~~ sec^w
""

1 4- tan^it
~

i -\- x^

d tan-^r _ 1

* •

d7~
~

1 -f a:2*

30. Prop. To differentiate u = cot-\r.

X = cot w, .
•

. c?a; = — cosec^w . du

du I 1 1

dx cosec^w 1 -f cot^w 1 -f ^'^

d cot""'x 1
* '

dx
~ ~"

1 4-a:2

*
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31. Prop. To differentiate u = sec-^a:.

X = sec M, ,*. dx := tan w . sec w . du

du I 1 1

dx tan w . sec u sec ?^ y^ec^^— 1 x-^x^
— 1

c? sec~^a; 1

fl^;c y^

32. Pro;?. To differentiate u z= cosecr'^x.

X = cosec u, ,'. dx z= — cot u . cosec w . du

du 1 1

dx cot w . CDsec u ^osec wycosec^w
~ 1

1

X-y/^- 1

</ cosec-^ar 1

d^
xy/x^

— 1

33. Prop. To differentiate w = versin-^ar.

z = versin u .'. dx = sin u .du =
-y/'l

versin u — versin^w du

du 1 1

^^
y^~versin i^ — versin^w -^^Ix

—

(? versin—^a; 1

or,
rfa; y^5^^ a;2

34. Projo. To differentiate u = coversin-^a;.

X — coversin u

.
•

, dx z=. — cos u . du = —
y'2 coversin u — coversin^z^ cfo*

du_ 1
__

1

<**
-y/^ coversin u — coversin^u -^^x

— x^

d coversin~^a? 1

or, ,
—— = — -——^ • .

dx
^Azx

— x"^
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35. The differentiation of trigonometrical and circular functions

will now be illustrated by examples.

\ EXAMPLES.

1. u = S sin*a;.

(/m = 3 X 4 sin^a; . c? sin re = 12 sin^rc . cos x . dx

du
.

•
. -r- = 12 sin^a; . cos x.
dx

2. w = cos nx.

du = — sin nx . d{nx) = — nsmnx . dx

du
.

•
. T" = — w- sm nx.
dx

3. u =: tan*«ar.

du z= n tan"~^ nx . d tan nx = n^ tan"-^ nx . sec^nar . dx

.
•

.
-— = w^ tan"-^ nx . sec^wa;.
dx

4. u = sin Bar . cos 2a:.

du = (3 cos 3a; . cos 2a; — 2 sin 3a; . sin 2x)fl?a:

du
.

•
. -r- = 3 cos 3a; . cos 2a; — 2 sin 3a;. sin 2a; = cos 3a; cos 2a; -f- 2 cos 5ar.

dx

5. u z=z (sin x)*. Then log u z=z x . log (sin x)

diL du
.• .
— =r [log (sm a;) 4- a; cot

a;](/a;
.•.—-=: (sin x)*. [log (sin x)-\- x cot x\

6. w = (cos a;)"'*-
*. Then log w

— sin :t log (cos x)

.
•

,
— = (cos a;)»'°

*
[cos x log (cos x)

— sin a; tan x\

7. w = sin (cos a*),
c?m = cos (cos a:)fl?

cos x,

du • f \
.

•
. -r- z=. — sm a; . cos (cos x),
dx ^
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,aA.CL

yi-h^'

u  —  

V 1 +• ^' _

V

(1 -I- x'Y - a;2 (1 + a:2)

(i + ^^)(i-TTi^)

-i X'^^^'Y ^*^

cfar

9.

10. u = log

i +a;2

c?M _ 1
'

*
' ^ ~

1 + x^'

u = log tan X.

du ^<:,''x 1 _ 2

dx
~"

taTi t
~ '

sin a; . cos x
~

sin 2a;

1 + sia i 1 , , ,
. \ 1

T /,

^—-^^ -.
-
log (1 4- sni x)-- log (1

- sin ar>

du

dx
_ 1 r cos X ocw? ^ 1 _ ^^^ ^

__
'^~

2 Ll 4- sin a; i — sm x J
~~

1 — sin^a:
"

cos x

IL

12.

w = sin~^ (S.^
—

4a;2).

3 - 12^2 3

-/I
-

(^x
-

4x''y- -/i
-

u = log (cos a; + \/— 1 • sin ^).

<fM -^— 1 . cos a; — sin x i—
dx

13.

cos a:

1

+-/=nr:
1.

du = 1

-1 /^ ~f" ^ • ^^^ ^\

\a + 6 . cos a:/

Ih -\- a. cos a:\

\a -|- 6 . cos a:/

Y^a^
— IP-

f. ib + « • cos ar\2

V \a -{- b . cos a*/

a sinar (a 4- & cos
a:)
— b^\nx{b -\- a cos

a;)

(a2
_

irf {a-\-b cos
ar)[(a + b cosa;)2

_
(5 4. « cos xYy

dx'
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du (a^
—

62^ sin ^

^^
(a?
- P)\a + b cos

x)[{a^
-

P){1
-

cos^a:)]*

1

a -i- b cos X

14. u =z e" cos X.

du . / . ^—- = €* cos a; — c'^ sin x =z e'' (cos ic — sm x).
dx

15. w = tan-i (yi + a;2 _
^r).

^ _ (1 -h ar2)"^;g
~ 1 _ _ 1

d^~ \ + (VTT^2 _ ^.)2

~
. 2(1+ X')

16. w = log Vsin ^ + log ^cos x.

du 1 /cos a; sin a:\ 1

rfo;

~~
2 \ sin ic cos x)sin ic cos a-7 tan 'Zx

17. t^ = log -v / h - tan-i a; .

V X — X 4i

-
log (1 + ;r)

- -
log (1

-
a:) + 2

tan-» ar.

^ _ 1
1^

1 _ 1

<jfa;

~
4(1 4- a:)

"^
4(1

-
ar) 2(1 + a;2)

"
1 - a;**

_ _ e^' (a sin a; — cos x)
18. « = 5^—

„
— ^.

^W 1 r / . V .  
. 1

-r = — ae^' [a sin x — cos x) 4* «^** cos ar + e«* sm x\
dx a^ -\- i

^ ^ ' •*

= e** sin a;.



CHAPTER IV,

SUCCESSIVE DIFFERENTIATION.

36 When we differentiate a function u = Fx^ the differential co-

efficient — will usually be itself a function of x, and will therefore

admit of being differentiated. This will simply be equivalent to

examining the comparative rates of increase of the independent

variable x and the variable ratio —• This differentiation will give

rise to a second differential coefficient, which may also be a function

of
a;, and this, in its turn, being differentiated will give a third differ-

ential coefficient, &c.

37. To illustrate this subject, let w == a;^ be the proposed function.

The first differential coefficient,

— - 3a;2

second differential coefficient.

dx
= 6a?,

third differential coefficient,

jdua—
dx

_ ~dx _ ^
dx

As the third differential coefficient in this example proves con-
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stant, the fourth and all succeeding differential C(/efficients will be

equal to zero.

38, The preceding notation of successive differential coefficientft

being inconvenient, it is replaced by the following :

du
.

-, dx . d^u
£ or —

;

—
J we write ——

;
dx dx^

'

da

e.^^ . dx . oPm „^"^ d we write ——
? &c.,

dx dx^

~dx'

the symbols d"^, d^, &c., indicating the repetition of the process of

differentiation twice, thrice, &;c., aaid not the formation of a power.

On the contrary, the expressions dx^, dx^, &;c., represent powers
d'^u

of dx. The second differential coefficient
-j-^ niay be obtained

immediately from the first differential coefficient —? by differen-
dx

thus producing -r-j

and then dividing the result by dx.

Now since the law according to which the independent variable

X changes, in different stages of its magnitude, is entirely arbitrary,

we adopt, as most simple, that law by which the successive incre-

ments of X are supposed equal ;
that is, we make dx constant.

The same supposition will enable us to derive each successive

' differential coefficient from the preceding coefficient by a similar

process of differentiation and division.

EXAMPLES.

du d'^u
39. 1. ti = x". — = n.r«-i,

-—. = n(n — Ux*-^
dx dx^ ^ '

~ = n{n - l)(n
-

2)a;'-3^
™ = n{n

-
l){n

-•
2)(»

- 3)x—
^ &c.
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This operation will terminate when n is a positive integer ;
but

if n be a negative integer or a fraction, the number of variable

differential coefficients will be unlimited,

dy 1 iPy 1 d^y 1.2

d*y 1.2.3 ^, , d^y ^ 1 . 2. 3 . . . .(n
-

1)—— = and by analogy -— = dt -*

dx^ a;* dx"" x*

the upper sign will apply when n is odd, and the lower when n is

even.

3. tt = sin X,

du
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7. . uz=ze*,

di~^'' ^~^'' "^"^'^

the coefficients being all equal.

8. u — sin(wa;).

du . . d^u o . / X o-— = n cosiwa:),
—— = — n^&minx). &c.

dx ^ dx^ ^ '

The formation of successive differential coefficients will be found

extremely useful in the expansion of functions by the methods

which will be explained in the chapters immediately succeeding.
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CHAPTER V.

MACLAURIN S THEOREM.

40. The theory of Maclaurin is a very general and useful formula

for the development or expansion of a function of a single variable,

in a series involving the positive ascending powers of that variable,

when such development is possible.

41. Prop. If y = Fx, where Fx denotes such a function of a; as

can be expanded in a series containing the positive ascending powers

of
a:,

then will the form of the development be the following :

in which the parentheses are used to denote the particular values of

dtj d'^ii

the quantities y, ~, --7-^, &c., enclosed therein, when x is taken

equal to zero.

Proof. By hypothesis, y can be expressed in the form

y = A-{-Bx+Cx'^ + Dx^-\- Ex* + &c., (1),

in which A, B, (7, &c., are unknown constants.

. •. ^ = B + 2Cx-^- SBx" + 4Fx^ + &c.
ax

^=2C+2.SDx + S.4Ez^ + &(i,
dx^

^ = 2 . 3i> + 2 . 3 . 4JKr -f &c.
dx^ a

^=3 2.3.4^+ &c.

&c. dec.

4
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Now making x — in each of these expressions, we obtain

.-..=,„, .=(*), <-=i(S)=ji,(S).

These values, being substituted in (1), reduce it to the form

which agrees with the enunciation.

This formula, called Maclaurin's Theorem, may be written thus

or again, if we represent the 1st, 2d, 3d, &c., differential coeffi-

cients, which are functions of x, by FiX, F^^ F^x^ &c., the formula

may be written

1
' ^ 1.2 ^ 1.2.3

+ ^*' 1:2:3^+^" W-

EXAMPLES.

42. 1. To expand i^^j)
= (a + a?)".
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Here g = «{« + ^)"-\ "^
= «(» -!)(« + =')-">

-g
= »(«-!)(» -2) (a + »)-',

-T^ = n(n
—

1) (»
—

2) (»
—

3) (a + a;)"-*, &o., &c.

Hence, when a; = 0.

(S)
=

'^(^
^

1) (»*
-

2) (^
-

3)a«~*, &c., &c.

And, therefore, by substitution in Maclaurin's formula,

y = (a -f- a;)"
= a« + na»-iar + ^\

~
^
a^'-^x^

n(n-\){n-2)+
1.2.3

"" "^

Thus we have a simple proof of the binomial theorem, applicable

to all values of the exponent, whether positive or negative, integral

or fractional, real or imaginary.

2. To develop y = log (1 + x),

the modulus of the system being M,

dy M d^y M d^y 1.2if

dx \ -\-x dx^ (1 + xY dx^ (1 4- x)

d^y _ 1 . 2 . 3Jf

d^- (1 + xY'
^'''
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.
•

. when X = 0, {y) = log 1=0,

idy\ M l<Py\ M l(Pq\ \ .2M ld^y\ 1.2.3.lf ,

i^;^ r wr^T wr—i-' w) =—
^1

—
' ^^

And by substituting these values in Maclaurin's f rmula, we have ^-

y z=z log (1 + a:)
= M{x — -^

x^ -\-
- x^ — - x^ -\- &c.)

/w o 4

which is the fundamental theorem used in the computation of loga

rithms, and is, indeed, that which was employed in deducing the

rule for differentiating logarithms.

3. To expand y = sin x.

Here Fx z=is\nx

.
'

. F-^x =z cos Xj F^x = — sin
ar, F^x = — cos x, F^x = sin x,

and the succeeding coefficients recur in the same order.

.'. FQ = sin = 0, F^O =r cos =
1, F^Q = 0, F^O = -

1,

F,0 rr 0, F^O = 1, &c.

.

•
. by substitution in (4) the third form of Maclaurin's theorem,

we have

x^
.

x^ x"^

&mx =z X f- (Sec.
1.2.3 ^1.2.3.4.5 1.2.3.4.5.6.7^

This series converges very rapidly when x is small.

\/ 4. To expand y = cos x.

Fx = cos X, F^x ~ — sin x, F2X — — cos
ar, F^x= sin x, F^x = cos x,

and the succeeding coefficients recur in the same order,

..F0 = 1, F^O = 0, F^O = -
1, F^O = 0, F^O = 1, F,0 = 0, &c.

.
•

. cos ar = 1 — -—- + ^ &c.1.2^1.2.3.4 1.2.3.4.5.0^
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5. To develop y = a*.

Employing Naperian logarithms, we have

Fx z= a', F^x — a*, log a, F2X = a* . log^a, F^^x = a*. log%, &c

r,FO=:l,FyQ = log a, F2O z= log^a, 7^30 = log^a, F^O = log^a, &«.

X x''" x^
.-. o' = 1 +

logay
+ log^a j-^

4-
log'a-j-^-g

This is called the exponential theorem.

Cor. Jf a = c the Naperian base, then log a = loge = 1,

••-' = » +
i
+ o+r:2:3 + r72:3r4 + *'^'

and if a; = 1 also,

a formula for the Naperian base.

Cor. If a: = 1, but a not equal e, then

a r= 1 4- log a +
Y"^ log^a +

^ ^ ^ V'g^a + 772^74 l^g*« + *^«-

a formula for a number in terms of its Naperian logarithm.

Prop. To express the sine and cosine of an arc in terms of

imaginary exponentials.

In the series giving the value of e*, put successively

z^— 1, and — z^— 1 ^^^ ^•

1 1.2 1.2.3 1.2.3.4

+
1.2 3.4.5

-^^-
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1 1.2^ 1.2.3

+ 1.2.3.4 1.2.3.4.5
— (fee.

But the first series within the [ ] is the development of cos 2, and

the second that of sin z.

.

•

. cos 2 = g«v^^+ e-V-i
(^),

These singular formulae, discovered by Euler, are very useful in

the higher branches of analysis, especially in the development of

functions.

Cor. ]f we divide {JB) by (.4), there will result

tang =
.V=r g2zv'=r_ 1

-
l[e^v^i ^ e-^V^ /ZrT[e2zv^=r_^ 1]

(C).

Cor. If we make z = xy—l in (^), (^), and (C), we can

express the sine, cosine, and tangent of an imaginary arc in terms

of real exponentials ;
thus :

8in (^^/^ly = .^^.
. .

(D), cos (^/3T) = fll+i!. . . (r)
2V

tan (a;-/— 1)

e-2x _ 1 1 -e^'

"^^(e-^' -f 1) V- HI + «^')



55

Cor. If we square [A) and {B) and add, there will result

cos^z -f sin^z = = 1.

And similarly s,m^(x^— 1) 4* cos^^^r^— 1)
= 1;

two results obviously correct.

43. The applications of Maclaurin's theorem are often much

restricted by the great labor necessary in forming the successive

differential coefficients. This may sometimes be avoided by ex-

panding the first differential coefficient by some of the algebraic

processes. For example,

To expand u = tan~^;c.

,_ du 1

which gives by actual division, the quotient

1 — x^ -^ x^ — x^ -\- x^ — &c.

. .
•

. Fx =. tan-i;r,

FyX z=: \ — X? -{- X^ — X^ -{- X^ — &C.

F^x =z — 2x -f- 4x^ — Qx^ + Sx"^ — &c.

i^3a;
== - 2 + 3. 4a:2 -. 5 . 6a:* + 7 . ^x^ - &c.

/;a; = 2.3.42: - 4.5. 62;3 -f Q.l .%x^ - &;c.

i?;^:
= 2 . 3 . 4 - 3 . 4 . 5 . 62;2 + 5 . 6 . 7 . 8a;* ~ (fee.

i<;a:
= -2.3.4.5.6a; + 4. 5.6.7. 8a;3 -&c.

F^x= -2.3.4.5.6 + 3.4.5.6.7.8a;2-&c.

'

i^ga;
= 2.3.4.5.6.7.8a;-&c.

&c., &c.

.-. i?^0 = tan-iO =0, i^iO = l, F^O = 0, Fjd = - 1 .2,

Ffi = i^sO = 1.2.3.4, FqO = 0,

F^0=- 1.2.3.4.5.6, i^80=0,&c.
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Therefore, by substitution in Maclaurin's formula,

Fx = tm-^x = X — -x^ + - x^ — -x' -t -x^ — &c.
o o i ^

If, in this formula, we make u = -'^^
— arc of 45°,

then ir=tan45° = l.

• • r=o-3+5-7 + ^^-)'

and 'T' = 4(1
- - -h

^
—

i^
+ &c.);

a formula for determining the ratio of the diameter to the cir-

cumference of a circle.

This series converges so very slowly, that even a tolerably

accurate approximation to the value of -tt cannot be deduced from

it, without employing a great number of terms.

44. Frop. To deduce Euler's more convergent series for the

ratio of the diameter to the circumference.

If in the trigonometrical formula

, ,
, tan a -\- tan b

tan (a -f- 6) = ,i^ ^
1 — tan u . tan b

we put a + ^ = T *' ^^^^ ^" (^ -f ^) = 1>

.
•

. 1 •— tan a . tan b = tan a -{- tan 6
;

1 -. -. 7
1 — t^" ^

whence we deduce tan o = -—
;

•

1 + tan a

And, therefore, if any value be assigned to tan a, that of tan *

can be determined.

Let tan a = -
, then tan b = = -•

1 il . ,1
.

•
. T * = tan-1 - 4- tan-i-.
4 5« o
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B.. „-,i =
l_>(i)V!(!)-_>(!)V^

.

and tan-l.l_JQ%jg_jg+&c.

•'•4^
=
2-3:25 + 5:2^' -tT'^-^"-

+3 3 . 33
+

5 . 3^ 7.3^
+

By taking six terms in the first set, and four in the second, and mul-

tiplying by 4, we get the common approximation,

-^r^ 3. 1416.

Cor. We might extend this method, obtaining series still more

convergent. For if we take four arcs Cj, Cg, 03, and c^, such that

Cj 4- ^2 == tan-^ - and Cg + c^ = tan"*^ -. Then Ci+ <^2+ ^3+ ^4= ""*>

and if we assume the values of tan Tj and tan Cg, those of tan Cg and

tanc^ can be determined. Moreover, the values of tan c^, tan Cj.

tan C3, and tan c^, can all be repdered less than i, and therefore th6

series for determining \ ir will be more convergent.

45. Prop. To obtain more convergent series for the value of if,

2 tan a
If in the formula tan 2a =

1 — tan2tt'

1

we put tana = r, then
o

^ o 5 5
tan 2a = = —-»

25

2xA
2 tan 2a 12 120

and •
•

• jBH 4a = = =— •• ' -^-^
I _ tan2 2a . _ 2b^

119

144
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Now this result is very little greater than unity, and therefore 4a

must be slightly greater than 45°.

Put

Then
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1.2.32.4
,

1.3.4.52.6 „
,

.

-^^^^17272^^+ 1.2.3.23
^' + ^''

* 1.2.22
-^

1.2.3.23
-^ ^^^•

_,
1.2.32.4.52.6 ^.^^'= 1.2.3.23

^ + ^^'

12.2.32.4.52.6
, ,

^^"^ 1.2.3.23
+'^^'

• /;= 0, i^iO = 1, F^o = 0, F^o = 12, i<;o = 0, f.o = p. 32,

i^fiO^O, F^0 = 12.32.52, &c.

. ,
12.a;3 12.32.a;5

1.2.3^1.2.3.4.5

12.32.52.0:'

1.2.3.4.5.6.7
-i- &C.



CHAPTER VI.

47. Taylor's Theorem is a general formula for the development

of a function of the algebraic sum of two variables.

Proi[t. \t'
1/
= Fx, and if x be supposed to receive an increment

h, converting y into y^ = F{x + ^) ;
th*^n will

dy h
, d^y h'^

'

d^y h^ d^y h*

^, , ,, ^ ,
dFx h

^

d^Fx li'

d^Fx h^ d^Fx A^

dx^ '1.2.3 dx*
*

1.2.8.4"^
^'

To prove the truth of this formula, we first establish the following

principle :

If in the expression y^ = F(x -\- h) we suppose first that x is

variable and h constant, and then suppose h variable and x constant,

the first differential coeflicient will be the same in both cases;

& = '!

This is almost self-evident, for when a given increment is assigned

to X, or to h the same increment must be imparted to ar + A, and

therefore F{x -|- h) =z y^ will undergo the same change in the one

case as in the other. Hence the ratio of the corresponding change*

of X and yj is equal to the latio of the changes in h and y^ This

is true whatever may be the magnitudes of the increments im
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parted to x or A, provided that magnitude be the same in both

cases. But when we suppose these increments indefinitely small, it

is no longer necessary to consider them equal. For since the ratio

-^ does not contain dx, it will have the same value whether dx.
dx

and dh be supposed equal or unequal.
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A -— p _ 1 ^^ _ 1 d-'Fx
•*•

dx' ~2dx~ 1.2' dx^
'

1 c?5 _ 1 d^Fx j._l^_ ]__ d*Fx

3
' ^ ~

1.2.3
'

~d^' ~'i"d~x~ 1.2.3.1' dx*
'

'^

Hence, by substitution in (1),

^, . ,, ^ </i^;c ^ d'^Fx h? d'Fx h?

 

"^-^-172:3:4+ ^^^

dy h d'^y h? d^y h^
or, y^::3y4._. _ + _.__+_. _____

^
^;r* 1.2.3.4^

]f we denote the successive clifTerential coefficients by F-^x, F^
F^x, F^x^ &;c., the series may be written

J? ^2 ^3

Cor. The formula of Maclaurin may be readily deduced from

that of Taylor; for if we make x = in (2), there will result

Fh = FO + Ffi - + /iO
— + F,0—--

which is Ma'claurin's theorem.

EXAMPLES.

48. 1. To expand sin (x -\- h), in terms of the powers of the

aic^.

F{x-{- h) =zsm{x + h),
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.
•

. Fx z=z sin x^ F^x = cos
a:, F^x = — sin x,

F^x = — cos X, F^x =z sin x^ &c.

.
*

. By substitution in Taylor's formula

h h^ h^
liii (x -\- h) r= sin a; + cos a; - — sin x-—- — cos x -—-—-

-f- <tec.

+ cos ^ (A
- j-^ + -j-^-^

- &c
)

= sin a? . cos h + cos a; . sin A, a well known formula.

2. To expand cos [x -f- A), in terms of the powers of the

arc h,

F (x + h) = cos (x + h),

.' . Fx= cos X, F^x = — sin x, F^x = — cos ar,

F^x = sin
a;, /"^a;

= cos x, &;c.

.
•

. By substitution in Taylor's Theorem we have

cos (« -j- A) = cos a: — sm ic - — cos a:
-—- + sm x

= cos.r(l-
— +

j-^^-^^-&c.,)

7^3 ^5

= cos X . COS A — sin a; . sin A, . . . a well known formula.

3. To expand log (a; -f A), where M is the modulus of the

system.

i^aj = logar, ^1^ = -, i^ga:
= -—

,

if^ =—-—, jb^x = —
, &c.,
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... log(^ + A)=log.: + if^--
— + 3^-— +&C.)

4. To expand Wj = tan-i(a; + ^),

u = tan-'^x = Fx, F.x = -—
;

—- = —— = cos^u,

F^ = — 2sin u . cos u— = — sin 2w . cos%.

F^x = (— 2cos 2w . cos'^u -}- 2sin 2m . cos m . sin m)
—

= — 2cos u . cos Su -y- = —• 2cos 3m . cos^w.
ax

FaX = 2.3 (sin 3m . cos^m + cos 3m . cos^m . sin u)—* ^ ^ dx

= 2 . 3cos2m . sin 4M-r- = 2 . 3 . sin 4m . cos*m,
ax

&c., &c.

k h!^

•
•

. tan~i (x -\- h) =2
u-^

z=i u -{ cos^m sin 2m . cos^m ~

7^3 7^4 7^5— COS Zii . cos^w —- + sin 4m . cos% —- -f cos 5m . cos^m — &c.
3 4 5

6. To expand u = tan(.T -f- h).

Fx = tan X, F^x = seo'^x, F^x = 2 sec^a: . tan
a;,

i^go;
= 2 sec^o; (1 + 3 tan2a:). &c., &c. N^

.
•

. tan {x + h)
= tan x + sec^a; - + 2 sec^a; . tan x -—-

1 1 . /i

7^3

+ 2 sec^a; (1 + 3 tan2a;) r—,r-r, + &c.
1 . 2 . o

Prop. Having given u = Fy, and y = dpx^ to form the

differential coefficient — of m with respect to
a:,

without eliminating

y "between the equations, in which the characters F and 9, denote

any functions whatever.



TAYLOR'S THEOREM. 65

Let X take an increment h converting y into
y^^
— ^{x -\- A).

Then if k denote the increment received by y. we shall have, by-

Taylor's theorem,

Also when y takes the increment k^ it imparts to w = Fy. an

increment

„, ,. _, du k d'^u P d?u P

or by substituting for k its value, (1). «

duVdy h d?-y hP' d^y h^
, ^

1

1 . 2 dy^ Ldx 1 ax^ ] . 2 J

Dividing both members by A, and then passing to the limit by

-..-.,., 21-.
— u du

making h = 0, in which case —^-r— = — we get
ii ax

Thus it appears that the differential coefficient of u with respect

to X, is found by differentiating u as though y were the inde-

pendent variable, then differentiating y as th(jugh x were the

independent variable, and finally, multiplying the first of the co-

efficients so found by the second.

49. It might perhaps seem at first view that the equation (2) is

necessarily and identically true, and therefore that the precedmg

investigation is unnecessary. But it must be borne in mind that the

dy which appears in the coefficient
-j-

and which represents (ho

increment given to y by assigning an arbitrary small increni- i' dx

to the variable x, is not necessarily the same as dy which ap{)cairf in

5
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du—
,
since this latter increment of y is arbitrary (though likewi"'

small).
^ ^ du

1. u = a^j y = 0*, to nnd —•

du . dy ,
. .

Here — = ay.]oga, -—^b'logb.

du du dy , , , , lx , , ,7..— = -; r- — av . b^ Aos a . \os b . = a^ . 6* . log a . log 6.

dx dy dx & 5 fe &

2. w = log y. y z=i log a;.

c/m 1 c?y 1 du 1 1 _ 1

dy
~

y^ dx~ x'
' ' dx~ y x~ xlogx

50. Taylor's Theorem may be employed in approximating to the

roots of numerical equations.

Let Fx = be the given equation, and a an approximate vahie

of one of its roots found by trial
;
then we may put x = a -{- h, in

which A is a small fraction whose higher powers will be small in

comparison with A, and may therefore be nejjlected without great

error. . But

h K^ h^
Fx = F(a + h) = Fa +

F,a.j
+ ^2«y^ + ^3« XT^^g

+ <^c. = 0.

.
•

. By neglecting the terms involving ^2? ^^? <^c., we get

Fa-\- F.a~ = and .'.h = —
-jr—^

1 F^a

Adding this approximate value of h to a, we have

Fa .

X =z a —FT- nearly.
F^a

•'

Call this value a^ and put x = a^ -\' h^

Then by similar reasonmg we shall find

A, = ~-, and x = a^ z~- = aj' ^ nearer approximation,

and the same process may be repeated if necessary.
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51. Find tlie positive root of the equation

x^ ~ 12a:2 -f 122; - 3 = e

to three places of decimals inclusive.

Here we find by trial that

a; > 2 . 6 and ar < 3.

Put cf = 2 . 8.

.'. Faz=za^ - \2a? -|- 12a — 3

= (2.8)*- 12(2.8)2+ 12(2.8)-3= -2.0144
dWn

F^az=z
~- =4a3-24a+ 12 = 4(2.8)3-24(2.8)4-12 = 32.608,

— 2.0144
.«. A = - —-^-—- = 0.062.nearly. .'.x=:a + ^ = 2.862 nearly

To test the accuracy of this approximation, put

«! = 2 . 802 and x --a^-^ h^.

Fa^ = (2 . 862)*- 12(2 . 862)2+ 12(2 . 862) -3=0 . 144674 nearly

F^a.^ = 4(2 . 862)3
_

24(2 . 862) -f 12 = 37 . 083072 nearly.

. 144674

.•.a; = ai + Ai = 2.862 -0.003901 =2.858099 = 2.858

to three places of decimals.

If the process were repeated it would be found that

a: = 2 . 85808
;

so that the second approximation is true to foui places of decimals,

and the fifth place is slightly erroneous.

2. Given ^* = 100

to find the value of x to the place of hundredths.

Passing to the common logarithms, we have

X log X = log 100 = 2. .
•

. a: log a; — 2 = 0.

Also ^ > 3, and a; < 4.
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IRut a == 3 . 5, and x = a -{- k.

,'. Fa z=z a log a — 2, F^a = —-^ = log a -f -^,

where M = modulus of the common system = . 43429448

Fa =3.51og(3.5) -2= .544068 X 3.5-2= —0.01)5762

F,a = . 544068 -f • 434294 = . 978362.

^ .0957<)2

•••*=r97s3oi
= •«««•

.•.a?=: 3.5 -f. 098 = 3.598 or a: = 3 . 60 nearly.

We shall now apply Taylor's Theorem in deducing rules for the

rtxpansion and differentiation of functions of more complicated

forms.

52. Prop. To establish a general rule for differentiating any

function of two quantities p and q, which quantities are themselves

functions of the single independent variable x.

Let u — F(p, q), where p =/x, and q =fjX, the characters

F,f, and /^, denoting any function whatever, and let x take the

increment h, converting p in p + k = p^, q into q -{• I = qi, and

u into Uy

Then n, = F(p -^ k, q -^ I)
= F(p -f k, q,),

which may be developed by Taylor's Theorem as a function of

p + A:, observing that
q-^,

which does not contain k, will appear in

the development as would a constant :

.-.«. = ^-C/- + *,?,)=^U ?.) +^,^ -Y

+ f£^.f^^^,. (1).
dp'' 1.2 ^ '

But F (p, ^i) = P(Pi q + /), which developed as a function of

q \- I, gives
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And similarly the coefficient of k in the second term of (1).

dF(n, q,) ^ dF(p,q^- l)

dp dp

may also be developed as a function of
5- -f ^, and will give

dF{p. q-\-l) _ dF(p,q) d rdF{p, q)-\
I

dp
-

dp
^
dqL dp Jl"^*^"^

And in like manner

<PF{p.q,) _ d^Fjp, q + l) _ d^Fjp^q) d_frf^^l
dpP'

~
dp''

-
dp''

'^
dqL dp' J"^^"^

.'.By substitution in (1).

H- terms involving P, kl^ P^ P, &a

o ^ T dp h d'p h?"

duTdq h ^d'q 7.2 1
^

c^yLt/a: 1^6^x2 1.2^ 'J

duVdp h d''p W 1 , *

Now dividing by A, and then passing to the limit, by making

h =: 0, m winch case —^—— = -^, we obtam
h dx

du du dq du dp . .

dx
~

dq dx dp dx ^ '*

..^~dx = du = '!^.'^dx + -.'^^4x. (3).dx dq dx dp dx ^ '
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Thus it appears that we must differentiate u with respect to

each function, as though the other functions were constant, and

add the results.

53. It is very important that the precise signification of the

notation here employed should be distinctly understood. By an

attentive consideration of the manner in which the several expres-

sions employed in the formulae (2) and (8) arise, it will appear

that the expression ^in (2), represents the ratio of the change

in X to the entire change in w, which latter is produced partly by

the change imparted to ^, and partly by that imparted to q\

that the expression
—

represents the ratio of the change in x

to that part of the change in u which is communicated through

q : and that — • ~
represents the ratio of the change in x to

that part of the change in u, which is communicated through p.

du dq du

dq dx
'

dx*

or to suppose that the first of these expressions can be brought

to the form of the second by the ordinary process of algebraic

reduction. This will appear evident, when it is recollected that

the du which appears in — refers to the total change in
?/, while

ax

the da which occurs in f-. refers only to so much of the
dq dx'

-^

change in u, as is communicated through q. Similarly,
— •

-p,

dti
must not be confounded with -7-, for a like reason.

dx

54. To differentiate u — F{p^ q, r, s, &c.) when p, q, r, 5, &c.

are functions of the same variable x.

By attributing to x an increment A, and reasoning as in the last

proposition, we readily prove that

We nmst be careful, therefore, not to confound j^-* 33-, with
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fdii. dp du dq du dr du ds "]A

4- terms in A^, A^, &c.

T»^rt<posmg M, dividing by A, and then passing to the limit, we hav«

du du dp du dq du dr
,
da ds

,
.— = ±1-| 1-j 1

.
1- &c.

dx dp dx dq dx dr dx ds dx

du , , du dp .
,
du dq ^

du dr .

.-, -—dx =du = -
f-

' dx + -J- '-y-
' dx -{- -J-

'

-J-
' dx

dx dp dx dq dx dr ax

du ds

'^'Ts'di'^'^'^^'''

that is, we must differentiate u with respect to each of the functions,

as if the other functions were constant, and add the results.

55. Prop. To differentiate u = F(p, a;),
where p — fx.

Here u is directly a function of x, and also indirectly a function of

X through p.

Now if in the equation u = F{p,q), which gives

du du dp du dq

dx
~

dp dx dq dx

we put q = Xy there will result

^
du du dp du dx

"~ ^^' "^ dx~ dp dx dx dx

du du dp du , . . dx

dx
~~

dp dx dx ^ '^ dx~ '

The formula (1) is that required, but we must distinguish care-

fully between the differential coefficient — in the first member, and

the similar expression in the second. The latter, called the partial

differential coefficient of u with respect to
a:,

refers only to that part

of the change in u which results directly from a change in x, while p

is supposed to remain constant
;
and the former, called the total dif-
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fereiitial coefficient of u with rospect to x^ refers to the entire changt

in u. which is partly th^ direct result of a change in x, and partly

an indirect effect produced through jo.

To distinguish the total from the partial differential coefficient, it

has been agreed to enclose the former in a parenthesis ;
thus we

write

VdtrK _ du dp dti
^

Fdn "1 du dp du

Lc/iJ dp dx dx
' '

""
LdxJ

~
dp dx dx

Here again there is a necessity for caution, so as not to confound

du— • dx with du
;
the former being only a part of the change im-

O-X

parted to u by a change in x, while the latter is the symbol of the

entire change.

Cor. if there were given u =1 ^{Pt ^t ^0

where p and q are functions of
a;,

then

\d^r\
du dp du dq du

\jix\ op dx dq dx dx

and similar expressions would apply if there were a greater numbei

of functions.

EXAMPLES.

56. 1. u = sin—^ (p
—

q), where p z= Sx and q = 4a^.

^P ^1
-

(jo
- qf ^2 yi

- (p-qf dx
'

dx

dn __du dp du dq 3 - V2x'^

dx dp dx dq dx y'i_(^)_o)2

3 - VZx' 3

2. u =:pq^ where p = e*, and q = x^ — 'ix^ -h ISx^ — 24a: + 24

du du dp dq . o , ^ „ ^ .
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du du dp du do ^
•

.
•

.
— = — ' -^

-\
-i = e* . ar*.

dx dp dx dq dx

x^p^ x^p X*
t. *'' =

~4 8 ""^32'
^ p = \ogx.

du _ x*p X* dp _\ du _ 3 2 x^p
I

^^

=r a;^ (log a;)
2.

4. « = —
^

where • p =: a sin
a:,

and q = cos a;.

c?w f**^ .c?'< c°* dp dq-— = —
-, -^ = T——tj -f- = a cos

a;,
-— = — em ar,

rf/t>
a^ + 1 (/g a-^ -\- V dx

'

dx
*

dx
~

a2 4- 1

\.dxA
~

dp dx dq dx dx

gax= ——-—- (a cos a; + sin a; + a^ sin x — a cos a;) = c°* sin x.
a^ + 1

^ '

Differentiation of Im/plicit .Functions,

57. In the various cases hitherto considered, we have supposed

.he function to be given explicitly in terms of the variable. It is

now proposed to establish rules for differentiating implicit, functions.

Prop. Having given F(x, y)
= 0, to form the differential coeffi-

cient —- without solving the equation.

Put u = F (x^y): then u will be a function of x directly, and

also indirectly through y.

[dn~\

du dy du

dxj~dy dx dx
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Hence by substitution and reduction

\ ax -\- //7dx^ [ax + 2/^)^ \ ax -{- y^f {ax -f- y'^Y

2a^xy — 2xy[x^ -\- Saxy -f- y^) 2a^xy"
{ax + y^)^

~
{ax + y'^Y

58. Since it is possible to form the successive differential coeffi-

cients of y with respect to x^ without solving the given equation, it'

will be possible to expand y in terms of x by Maclaurin's Theorem.

1. Given y^
_ 3^ _|_ ^^

—
0,

to expand y in terms of the ascending powers of x.

^ ^ '

dx
'

dy
^^ ' dx 3(1— y^)

Expanding the last expression by actual division, we have

|=J(l+,2 + ,. + ^,)

.
•

.§ =
^ (2y4- 42/^ -f 62/5-f &c.) ^ = 1 (2y + 63/3+ l2y^+ &c.)

^=.1- (40 + 1080^/2 4- &c.)~ = ^(40 4- 1120/^4- &c.)&c

But when a; = 0, [y] = 0,

•

L^J^i' Lrf^J=^' L;z^J=3^' L^J=^' Ud^y^'*"*

.'.By substitution in Maclaurin's formula,
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2. To expand y in terms of the descending powers of
ar, from

the relation

ay^
—

x^y
— ax^ = 0.

Put x^ = -: then ayH — y — a = 0.
V

o ^'*
3

(^^' o 2 1 ^.y ^^^
,*. u—ay^v—y—a, -r- — ay^. ~r- = oay^v — 1, -j- = i

—x—
-^ ^ ^

dv dy
* '

c/y 1 — I^t/</2«

^ =
(1
- ^..y^,^

' ^^•' ^«-

But when t; = 0, [y]--a, [J]=-< [^] = - Ca^ &a

,'. y = -a — -
j—
- &c.

or by rephicing v by
—

,

1 1.2

The use of this method is much restricted by the great labor

usually required in forming the successive differential coefficients.



CHAPTER VII.

ESTIMATION OF THE VALUES OF FUNCTIONS HAYINO THE

INDETERMINATE FORM.

59. It frequently occurs that the substitution of a particular value

for a variable a; in a fractional expression will cause that expression

to assume the indeterminate form -• Such expressions are often

called Vanishing Fractions, and they may be regarded as limits to

the values of the ratios expressed by these fractions, when the

variable value of x is caused to approach indefinitely near to some

particular value.

X* — I
Thus in the example u = — —

,
the value of which can usually

be determined when that of x is given, by a simple substitution, we

find that it assumes the form - when x = 1. But the value of u

is even then determinate
;

for if we divide the numerator and de-

nominator of the fraction by a: — 1, before making a? = 1, we get

x^ -\- x^ -{- X -\- 1"~
x^-i- x+1

as a general value of w, and this becomes

1 4- 1 4- 1 -f 1 4- when X = I.
1 + 1 + 1 3

Here we see plainly that it is the presence of the common factor

a? — 1 in the numerator and denominator which causes the fraction

to assume the indeterminate form. In this, and in all similar cases,
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the removal of the common factor serves to determine tlie value

of u. But it usually occurs that the discovery of this factor is

attended with considerable difficulty, and hence the necessity of

some more general method by which to estimate the values of frac-

tions which assume the indeterminate form -, when the variable x

tal\es a particulai value. Such a method is readily supplied by the

Differential Calculus.

It should be observed, however, that there are other indeterminate

forms besides -, such as the following :

0'

00 X 0, 00 — 00
, 00, 00 0. 1-

00 .--_.. . - +

00

each of which will be considered in succession.

60. Pro}^ To determine the value of a function which takes the

form - for a particular value of the variable.

Let u = — = be a function which takes the form - when
Q (px

X = a; that is, let Fa = 0, and cpa = : let it be proposed to find

the particular value [w] assumed by u when x = a.

Suppose X to take an increment h, converting w, P, and Q
into

t«i, Pj, and Q-^, respectively, and let Pj = F (x -{- h) and

Q^ =.
(p [x -\- h) be expanded by Taylor's Theorem : then denoting

the successive differential coefficients Fx by F^x, FnX, &;c., and those

of (px by cpiX, (p^, &c., we have

P. Fjx^k)
Fx + F^l^F^x^^^F^x^^^^.

01* when x = a

(pa + <Pi« Y
+ 92« ]—2

"'" ^^^
1 2 3

"*" ^^'
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But by hypothesis, Fa — 0, and 9a = 0. .
*

. Omitting the first

term in the numerator and denominator, and then dividing each by

h. we get

•" =— T- ¥—~ ••(')

Now making A = 0, we convert w^ into
[w], and thus obtain

[u] = —L.

Hence it appears that, in order to determine the value of a

function — which takes the form - when x = a, we must replace
(px

Fx and (px by the values of their first differential coefficients, and

then make x = a in each.

It will sometimes occur that this substitution will reduce to zero

both F^a and cp^a^ in case

r -,
F.a . .11 -. . ,

If = = - remams still undetermmed.
•- -^

(p-^a

we then omit F^a and cp^a in equation, (I) and divide the numerator

and denominator by --^, thus obtaining

F^a + F,a^-h&;c,
u, = 1 ...(2)

<p^a 4- 93« 3
+ &c.

which becomes \u] = —^

when ^ = 0.
'

.

*

. when the first diff*erential coeflScients both reduce to zero, they

must be replaced by the second difl'erential coefficients. If Fza and
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<p2« both become zero also, we omit them in (2), then divide by
h
-, and finally make h = 0, obtainingu

[w] = -2-.

And since the same reasoning may be extended, we have the fol-

lowinf? rule for findino; the value of \u\ =z — = -, viz. :
^ ^

(pa

Si(hstitute for Fx a)id (px their Jirst, second^ third^ cC'c, differential

coefficients^ and make x =:z a in each result^ until a pair of coefficients

is obtained, both of which do not reduce to zero ; the fraction thus

found will be the true valUe of [u].

EXAMPLES.

61. 1. u =2 — = - when ic = 1.
X — i

Fx = x^ —•
1, and (px = x — I. .

•
. F^x = 5x\ and (p^x = 1.

.

•

. F-,a = 5, (p.a = 1, and [wl =: —i- = - = 5.
*- -*

(p^a 1

This result is easily verified by division, before making :r = 1
;
thus

by actual division

x^ - 1

X — 1
=z x^ -[- x'-^ -\- x^ -\- X -^ I = 5 when x = I,

«*-6* . .

u = = - when x z= 0.
X

F.x ]o<f a.a* — loff b . b' F.a
, , , r -i^ = -=

r-^ .•.^
= loga-Iog6 = [«].

This result is easily verified by expanding a* and b*.

a* — b"
Thus

J Or X X
1 + log a .

J
+ log^a

_
-j- &c. - 1 - log 6.

J
—

log^A
•

-v^
-f &c.
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X
.

•
. tt = log a — log 6 '{-

-—-
(log^a

—
log26) + <S20.

.
•

. [w] =: log a — log 6 by making a; = 0.

a — Va2~— x^
3, « = 5—- = - when x = 0,

x^

^ _ ar(a2
-

a:^)"* ; / F,a _0
(p-^x

~
2x.

'
' *

9ja

Here the first differential coefficients prove equal to zero, and

therefore they must be replaced by the second differential coeffi-

cients. But

F^x (a^
-

0:2)"* + a:2(r/2
_

a:2)"*
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impossibility of developing the corresponding function F {x -\- h) by

Taylor's Theorem, for that particular value of
ar,

and therefore the

process founded on such development fails.

The expedient adopted in such cases, is that of substituting

a -{• h for X, then expanding numerator and denominator by the

common algebraic methods, then dividing numerator and denomi-

nator by the lowest power of h found in either, and finally making

A = 0. A few examples will illustrate this method.

(^2
_ ^2\^ Q

63. 1. u = o = t: when x =a.

(a
—

X)

Here the first differential coefficients reduce to zero, and all suo

ceeding coefficients become infinite when x = a. We therefore put

a -{- h for X and expand.

••
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Remarl\ This method may be used even in those cases to which

(he method of differentiation is applicable. We will now consider

the other indeterminate forms.

P Fx
64. Prop. To find the value of the function w = -—• = —. which

Q (px

assumes the form ^ when ar = a.
GO

_^__

Put P = — and Q — — Then we have
p q

1

P 5'
^ uu z= ^ =z -=: - when a? = a.

1 />

Thus the function being reduced to the ordinary form -, its value

may be found by the methods already explained.

Now
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65. Prop. To find the value of the function u =z Px Q =^Fx X
<i;>ii

which takes the form oo X when x = a.

Put P = — Then u = — = ^ when x = a, the common form.
p p

., . 1
, dp I dP F.x

Nowsmce^ = -, we have -^-__=-^^^^

But since when P = i^a: =:= oo
,
its differential coefficients will aisc

be infinite, the value of u will take the form ^, unless the infinite

factor should disappear by division.

66. Prop. To find the value of the function u z=P — Q = Fx —
cpx^

which takes the form qo-qo when x =: a.

Put P = - and Q = -' Then
P 9

1 1 9—P ,u = = = - when^ x z= a^
p q pq

'

and the value is to be found by the ordinary method.

67. Prop. To find the value of the function u z= fI= (Fxf which

+ 00

takes either of the forms 0°, oo o, or 1
,

when x = a.

1st. Let the form he u = 0°. Passing to logarithms we have

log u = Q. \ogP = (px. log {Fx)
'

• Uog u] = (pa. log {Fa) = — x <x> ,

which is one of the forms already provided for.

Thus, having found log u, we have u — €^°s «.

2d. Let the form be i^=oo «. Then log u=:Q. log P-z(px. log (Fx),

•
 

• ['og u] = (pa. log {Fa) = X oo .

a form already considered.
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3d. Let the form be 1*" .

Then log u = Q log P = (px . log(^a:).

.

•
. [log u] = (pa. log (Fa) = db oo X 0,

and the form is still the same.

EXAMPLES.

68

Here Fx

. 1. u = {1
—

x).teLnlx'-\= X (X) when a; = 1.

=
tan|a;'-j

and (px = l^x,

•
. F^x =

'^ sec^^a;

•

0, (p,x = -
1,

2-sec^(lX2)

(l-cos=l*)=H.ir 1 'n'

1

2. w = e''". sin ar == 00 X when a: = 0.

L 1 L
Fx = e'

y (px = sin
a;,

.
*

. F^x = -e'
, cp^x

= cos x.

Here the function still takes the form oo X ;
but the true value

\_

is easily found by expanding e".

For >..-(! +l+^_ + .^-^3 + &o.)«>

= ^. + , + _i_ +_L_ + &c

.-. e* X 02 = « = [«].
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a:" 00
3. M = — = — when a: = GO .

e* GO
,

Differentiating n times, we get

^ n(»-l)(H-2)....3.2.1 ^
L J

goo

loi^a: GO
,

4. « = = — when a; = oo .

a;" QO

... M = :?> = _i_=o.

6. u =
:;

= c» —GO when ar = 1.
I — X I — x^

I \ 1 l-a;2

1(1 _a;2) _(1 -x)

= = - when X z=l,

1

r T
2 1.

J. u = 7 — :;
= 00 — (© when a; = !•

a; — 1 log a:

I x — \ ,

M (^
" V ^^*g^ ^
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_ log 1 4- 1 - 3 _
•

*
• L''J

~
i7jg 1 -f nil

~ *

Differentiating numerator and denominator of the value of m l

second time, and making x = 1, we get

r 1
^ ^

7. u := X' = 0° when x = 0.

log u = X. log a; = —Ox <»
,

when ar = 0.

, log a? 00
, ^

or, log u = 7 = when ar = 0.°
1 00

ar

Then Fx = log a:,
and (pa;

= -•

1

.
•

.
—^ = = -— ar. .

•
. flog u] = —^ = 0, and [u] = 1

8. i* = ar"»* = 0°, when x = 0.

Since = I when x = 0, .
•

. a-^'^ ' = x' = 1 when a; = 0.

And similarly sin a:»'° * = a:* = 1 when x = 0.

Again, since sin x . log a: = sin ar . log x . log e.

.-. a;8iii* _ gsinx.log* _ 1 ^h^jn a; = 0.

.
•

. sin X . log X = 0, when a: = 0.

And similarly siji x . log sin a; = when a: = 0.

9. u = cot a;"'"* * = oo <> when x = 0.

cos a;

log w = sin ar . log -r— = sin x (log cos x — log sin x).

= — = when a: = 0, .

•
. [w] = 1.
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1

10. w = (1 -f nx)' = 1" when x = 0.

loff (1 + nx) ,

loff u = —^-^^ = - when x = 0.° X

. •. By differentiation, [1 >g w] = - = n, and [«] -.= e*.

This result is easily verified
;

for by expanding (1 + nx)' by

the binomial theorem, we obtain

which series is the expansion of e".

11. w = (cos aar)
=

l°°j when x = 0.

loff cos ax .

log u = cosec^ca; . log cos ax — —^- = - when x = 0,

Put log cos ax = Fx and sin^ca? = (par.

,
•

. F-^ = — a. tan ax, (p^x
= 2c . sin ex. cos ex = c. sin 2 ex,

/>_
9ia

~

Diffeientiating again we get

F^ = — a^ . sec^aar, <p2^
= ^^^ • ^^^ ^^^'

.
•

.
—^ = •

.
•

. ImI = e ^



CHAPTER VIIT.

MAXIMA AND MINIMA FUNCTIONS OF A SINGLE VARIABLE.

69. If u be a function whose value depends on that of a variable

a*,
so that u = Fx, and if, when x takes a certain value a, the cor-

responding value W| of u be greater than the values which immedi-

ately precede and follow it, then the value Wj is called a maximum ;

but if the intermediate value be less than those which precede and

follow it immediately, the value w^ is said to be a minimum.

Suppose for example that when x = a, the general value w = Fx

becomes Wj = Fa, that when x = a ±i h u becomes Wg = F(a -\- h\

or
y/g
= F((i

—
A), and suppose that for some small but finite value

of h, and for all values between that and zero, the corresponding

values of both V2 and Wg shall be less than Wj, then will u^ be a

maximum; but if U2 and u^ be both greater than u^^ then the latter

will be a minimum.

70. In order to discover the conditions necessary to render a

function {u = Fx) either a maximum or minimum, the following

principle will be established.

Prop. In any series Ah'^ -f- -Bh^ + Oh*^ + &c., arranged accordmg

to the positive ascending powers of h, a value may be assigned to h

so small as to render the first term ^A*, (which contains the lowest

power of A), greater than the sum of all the succeeding terms.

Proof. Assume A > Bh^-'^ + Ch'^"'^ -+ <S2C., a condition always

possible, since by diminishing h the second member may be ren-
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dered less than any assignable quantity. Multiply each member by

A«
;
and there will result Ah*^ > Bh^ + Ch'^ -}- &;c., as stated in the

enunciation of the proposition.

Cor, The value of h may be taken so small that the sign of the

first term shall control that of the entire series.

71. Prop. To determine the conditions necessary to render a

function w of a single variable x^ either a maximum or minimum.

Let u = Fx, and suppose x to receive successively an increment

and a decrement h. Then developing by Taylor's Theorem, we get

rr/ , X.X ^ .

dFx h
^

d-'Fx h?
,

d?Fx h?
, ,

«,=^(.+A)=^.-f^.;^ +^.^ + -^.j-^+&c. (1)

^, ^, ^ dFx h dP-Fx h? d?Fx A3

«3=^(.-A)=^.-— .- +_._.-—.^_ + &c. (2).

Now in order that Fx may exceed both F(x 4- K) and F{x — h)^

it is obviously necessary that the algebraic sum of the terms suc-

ceeding the first term in each of the series (I) and (2) shall be

negative ;
that is, we must have by employing the usual notation,

•^1^- Y
+
^2^172

+
^^"^TTsTs"

+ &<=•<<>•••• (3),

/? 7/2 7;
3

and
-F,x-j + F^-'YTi- ^^^rTaTs +&<=.< ... . (4).

Now the sign of the first term in each of the series (3) and (4)

will control that of the entire series when h is taken sufficiently

small, and since the first terms of (3) and (4) have contrary signs,

it is impossible that both of these series shall be negative, so long. as

the term F^x .
- has a finite value. Hence the first condition neces-

sary to render Fx a maximum is that F^x .
-- = 0, or since h is finite

^...^^ = 0....(5).
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Now oniitting the first terms of (o) and (4), we have

and Fr,x
_

-7^3a;.-j-^-^
+ &c. < . . . . (7).

The signs of the series
((i)

and (7) will be controlled by those of

their first terms, which Urnis have the positive sign in both series;

and therefore each series will be negative when F2X
-—- is an essen-

tially negative quantity, or when i^g-r
^^ essentially negative, (since

-—- IS always positive).

Thus the two conditions which usually characterize a maximum

value of Fjc are

dFx ^ ,
cf^Fx^ = 0, and — <0.

On the contrary, when Fx is a minimum, we must have Fx less

than F{x -{- h) and F{x
—

h), and therefore by a 'similar counse

of reasoning, the necessary conditions are

dFx ^ ^ d^Fx ^
__.^0, and — >0.

The conditions here obtained are those usually applicable : the

exceptions will now be considered.

72. The results obtained in the last proposition indicate the

following as the ordinary rule by which to discover those values of

the independent variable x, which will render any proposed function u

a maximum or minimum.
du

1st. Form the first differential coefficient -7—, place its value equal

to zero, and then solve the equation thus formed, obtaining the

several values of x.



MAXIMA AND MINIMA 93

2d. Form the second differential coefficient -—-,
and substitute for

J?,
in the value of that coefficient, each of the values found above.

d/'-u

Then all those values of x which render -— negative, will corres-
CLX

pond to maximum values of u
;
but those values of x which render

dhi-—
positive, will correspond to minimum values of u. And when

ax

the proper values of x have been ascertained, the maximum or

minimum values of u are found by simple substitution in the

•equation u z=. Fx.

73. 1. In the application of the preceding method, it may occur that a

value of ar, obtained by making —- = 0, will, when substitued in -r-—
,

dx dx^

cause that coefficient to reduce to zero also. In that case, the signg

of the series, (6) and (7), in the last proposition, will depend on the

terms which contain the third differential coefficients
;
and since

these terms have contrary signs in the two series, the value of x

which renders -— = 0, and -—- = 0, cannot render it either a maxi-
dx dx^

mum or minimum, unless it should happen to render -— = also.

When this occurs, we must examine the sign of the fourth differential

coefficient, which now controls the sign of each series, and if this be

negative, the value of u will be a maximum
;

but if positive, a

minimum.

And since the same reasoning could be extended when other differ

ential coefficients reduce to zero, we have the following more general

rule for the discovery of maximum and minimum values of a func-

tion of a single variable.

1st. Form the first differential coefficient, place its value equal to

zero, and deduce the corresponding values of x.

2d. Substitute each of these values in the succeeding differential

coefficients, stopping at the first coefficient which does not reduce to^
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zero. If this coefficient be of an odd degree, the corresponding value

of u will be neitner a maximum nor a minimum
;
but if it be of an

even degree, the value of u will be a maximum or mininum, accord-

ing as the sign of that coefficient is negative or positive.

The annexed diagram will

illustrate the fiict that the

same function may have sev-

eral maximum and several

minimum values
;
and that P Q R S X

one minimum may exceed another maximum. Thus, if the curve

CDEFGH be the locus of the equation y
—

Fx, then will DQ and

FS represent maximum values of the ordinates y, while (7P, ER,

and GX \n\\\ be minimum values of the same. Also the minimum

6^A" exceeds the maximum DQ.
74. The substitution of a value x = a. derived from the equation

^ =: 0, in the succeeding differential coefficients, will sometimes

cause the first of these coefficients w^hich does not reduce to zero, to

become infinite.

This happens only when the development o^ F (x -{• h) in the

ordinary form (by Taylor's Theorem) is not possible for that parti-

cular value of X. We must then find by other methods (such as

algebraic development) the true value of the term which cannot be

obtained by Taylor's Theorem. If it be found to contain a power
JJL 1

of A, which will change sign with A, such as h or A
,
the value of

u will be neither a maximum nor a minimum
;
but if the power o

& 14
h be such as will not change with

/i, as It or A
,
the value of

will be a maximum when that term is essentially negative, and 9{

minimum when the term is essentially positive.

75. Finally, it may occur that when x has a particular value a,

Ihc first diffiirential coefficient -r- will become infinite, and, therefore.
ax 'J
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m order t ) complete the search for maximum and minimum values

of u. we ought to solve the equation -r- = oo
,
and if a be a root of

that equation, we must substitute a -f ^h and a — A for a; in r^ = Fx.

Then if the term containing the lowest power of h be found to

change sign with h, there will be neither maximum nor minimum
;

but if not, there will be a maximum when that term is negative, and

a minimum when it is positive.

76. Prop, To determine the maximum and minimum values of

an implicit function of a single variable x.

Let F [x, y) = be the relation connecting x and y,

du

Put u = F{x^y) = (i',
^hm | = -

|.
dy

T^ 1 . . . . dy r. du ^ ^

But when y is a maximum or minimum, —- =
; .•.—_ — also,

dx dx

and we have the two following conditions by which to determine the

values of x and y, viz. :

'£jl^^O...(l), and « = ^(.,y) = 0. ...(.).

Having found the values of x and y which correspond to either a

maximum or minimum, we distinguish one from the other by sub-

stituting the same values in the successive differential coefficients,

and stopping at the first which does not reduce to zero. If this be

negative, y will be a maximum
;

if positive, ia minimum.

The successive differential coefficients are formed Without difficulty

dv
from the value of —- already found, and their particular values, when

(tx

-— = 0. become much simplified.

„, du du d?u d^u
„ .

,

Thus, put -=;,,- = ff,
— =p^, — = ,„ &o., and employ

the
[ ]

to represent .the particular values of the quantities enclosed,
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when — =
/>^
= 0. Then observing that /?i q-^ &c., are usually func-

tions of both a: and y, we have

tdjp^ d^ dy\_ (dq^ ,

dq^ di/\

^ _ _ W-g <^y ^-g/ ^^\dx
'^

dy' dx)
dx^

~
q^

^1^

-0
And in a similar manner the higher differential coefficients can be

formed, although the operation is more laborious.

77. The following considerations will facilitate^ the application of

the preceding principles to particular examples :

1st. If a quantity which is a maximum or minimum contain a

constant factor, that factor may be omitted and the result will still

be a maximum or minimum.

2d. If w be a maximum or minimum, then w ± a is also a max-

imum or minimum, but a — u will be a minimum when w is a

maximum, and a maximum when w is a minimum.

3d. If tt be a maximum, - will be a minimum: and if u be a
u

minimum, - win be a maximum.
u

4th. If w be a maximum or minimum and positive, then m^, w^,

ftnd in general t^", will be a maximum or minimum where n is any

positive integer: but if w be negative, t*^, w*, and in general u^^^

will be a maximum when u is a minimum
;
and a minimum when u

is a maximum.
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5th. If w be a nnaximum or minimum and positive, log u will also

be a maximum or minimum.

6th. \i the power u^" be a maximum or minimum, the root u is

not necessarily either a maximum or minimum
;

for it may be

imaginary ;
and even when w^n _ q ^nd a maximum, the corw

responding root i^ = 0, although real, is not admissible as a

maximum, because the adjacent values of u are imaginary.

7th. The value x = cc cannot correspond to a maximum or

minimum value of w, because x cannot have a preceding and a suc-

ceeding value
;
but u = ao may be a maximum provided the pro-

ceding and succeeding values of u have like signs.

8th. In determining whether u is a. maximum or minimum by

the sign of -^,
when — has the form of a product ?'i

. ^2 • ^3 ^»»

and X =: a causes one factor v^ to become equal to zero, the only

term in -r-^ necessary to be examined is that involving —-^, since
dx^

^ ax
,

the other terms disappear with v^.

78. 1. To determine the values of the variable x which render

the function u =: Qx -\- Sx"^ — 4x^ a maximum or minimum, and

the corresponding values of the function u.

Here u = 6x }- Sx^ — 4x^. .
•

. -^ = 6 + 6ir - I2x^ = 0.
ax

oil 13., 1

^-r=2 •••^ = 4^4= + ^ '' -2
Hence if u have maximum or minimum values, they must occur

when a? = 1 or when a; = — -•

To discover whether these values are maxima or minima, we

form the second differential coefficient : thus

dPu
--— = 6 - 24a; = 6 - 24 = - 18 when, x = 1

= 6 -H 12 = + 18 when xz=z -L
*•» 2
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.
'

. when X = I, m = 6 + 3 — 4 = 5 a maxiinum,

1 3 17
whan X = — -i u = ^S + - + -=— -a minimum.

2 4 2 4

2. u = X* — 8x^ -f 22ic2 — 24a: + 12, a maximum or minimum.

^ = 4x^ — 24a;2 + 44a; - 24 = or x^ - 6x^ -\- Ux — Q = 0,
ax

The value a; = 1 is obviously a root of this equation, and by

dividing the first member by x — I we have for the depressed

equation

x^ — 5x + 6 = 0. .-.x = 2, or x = S.

Hence the values requiring examination are

ic = 1, a; =z 2, and x = 3.

But -— = 12x^ — 48a; + 44 = 4- 8 when x = 1,ux
= — 4 when a; = 2,

= + 8 when x = B,

, when X = l^' u = S a minimum,

when a; =:= 2, u z=z 4 a maximum,

when a; = 3, u z=S a minimum.

3. u z=z x^ — 5a;* + Sa;^ + 1 a maximum or minimum

du

j-
— b3^^ 20a;3 + 15a;2 = or a;* — 4a;3 + 3a;2 = . . . (1)

.
•

. a:2 = 0, or a;^ — 4a; 4- 3 = 0,

4ind the four roots of (1) are 0, 0, 1, and 3.

d^u I d^ij\— = 20a;3-60a;2+30a;= when x=0
;

I .
•

. let us examine —
J-

= — 10 " a;=l
; then, ?^ = 2, a max.

= + 90 " a;=3
; then, ti = ~ 26, a min

d^u— = 60a;2 - 120a; + 30 = 30 when a; = 0.

,
•

, f* = 1 is neither a maximum nor a minimum.
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79. In each of the preceding examples, the condition — = oo
,

renders a; = oo
,
and therefore not applicable to a maximum or

minimum.

Remark. In forming the second differential coefficient, it will save

labor to omit any positive numerical factor common to every term

of the first differential coefficient, and the sign of the second differ-

ential coefficient will not be affected by such omission.

80, Ex. 1. M = -7 -f- a maximum or minimum.
{x + 'Zy

du 3
(a; 4- 3)2(a: + 2)

- 2
(.r + 3)3 ^-— = —^^ ^—^——

f-—
^ '— = 0, or, -r- = 00

du

dx~ (^ + 2)3

~ "' "''
dx

But, when ^ = we have Z{x + ZY{x + 2)
-

2{x + 3)^ rr:

•
. re + 3 = 0, or, 3(a; -f 2) = 2(a; -I- 3), .

•
. x = -

Z, or, a: = 0.

d^u _ 6
(a; + 3) (a; + 2)^- 12 {x + 3)^(a; + 2) f 6

(a: + 3)
^

dx"^
~

{x + ^Y
9 27= - when a; = 0, and .

•

. u z=:-—- a minimum.
8 4

= "
a; = - 3.

Now, without actually forming the 3d differential coefficient, it

is easily seen that it will contain one term (and only one) which

will not reduce to zero when x z=z — 3
; and, therefore, the corres-

ponding value of u is neither a maximum nor minimum.

27
The value a; = 0, gives u = — &. minimum,

,. ^ . du 3(a:4-3)3(a; + 2)-2(a:4-3)3Now takmg the equation
— = —^^

—j
—

-t-k^i
— —~ oo

,dx \X -f- 4i\

we get a; + 2 = 0, or, a; = •—
2,

and by putting successively a; = — 2 -f- ^ and a; = — 2 — A,

in the value of the original function m, there results
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''»
= ^(" + ^) = (-2+A + 2)^-—A^—

„, ., (-2-A + 3)3 (1-A)»
"' = ^(" - *) = (32irx+2p

= A^—

•nd since both of these are positive values, and less than that

orresponding to a: = —
2, we have w = oo a maximum.

2, w = "7
—r—rf^i a maximum or mmimum.
{x + 1)3

.'.a- — 1=0, or, 2(a; + 1)
—

3(a?
—

1) = 0, or, a; -f 1 = 0.

.•.a:=l, or, a; = 5, or, a; = — 1.

^ _ 2(a: + 1)^ -12(a; + l)(.r
-

1) + 12(a;
-

1)^

dx^
~

(x-i- 1)5

.
•

. -r-z = - when a: = 1, and « = 0, a mmimum.
dx^ 4:

'

= — —— when X = 5, and u = —-
a, maximum.

324 27

When a: = —
1, w = oo

,
which is neither a maximum nor •

minimum, for

but «3 = i?-(a-A)= (-^-f) <0,

S tt=:6-|-(^ — a),a maximum or minimum.

-T- = rt (^
""

^) = 0, ,
'

. X = a, and « = 6.
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Hence wi cannot develop by Taylor's Theorem. Put a zt hy

for X in the value of u.

and «3 = 6 + (a
- A ~ a)*= 6 + (- A)*

This last value is imaginary, and therefore, u — b is neither •

maximum nor a minimum.

4. u = b -\- (x
—

a) ,
a maximum or minimum.

—-= -
(a;
—

a) = 0, .
*

. ar = a, and u = b.

ax o

cPu 4 'i-—-
^
= -

(ar
—

a) = ao
,
when x = a. Then put x = a drA.

.
•

. «2 = 6 + (a + ^ - a)^= 6 + (+ A)^ > b,

End ^3 = 6 + (a
— A — a) = 6 + (

—
A) > 6, also.

.
•

. X = a gives w = 6, a minimum.

6. M = 6 — (a
~

a;) ,
a maximum or minimum.

-—= -(a — x) = 0, .
•

. a; = a, and w = 5.

-—=::—— (a
—

a;) '=—00, when x — a. Then put a; = a ± A.

.', W2=:6--(-A)*<6, and Wg = 6 - (+ A)*< 6, also.

.
•

, X = a gives w = 6, a maximum.

I
6. u := b -^ {x

—
a) + c {x

—
a)2, a maximum or minimum,

| =
|(.-a)*+2c,(.-«)

= 0.

5 4
• T — rt = 0, or,

- + 2c(^ — a)^ = 0.
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125 3125
'. x=:a,&nd u = b, or, x=a- --—, and u = b - -—

216c3'

d^u 10
, v-i . ^

But -z- = —
(a;
—

a) + 2c = oo
,

when x = a
oLx y

46656c*

-c>0when^ = a-^^3

Hence when x=. a — 125
> we have u =:b

3125

216c3 46656c5

a minimum. ,

In order to examine the value of a; = a, put a zfc A for x in

the original value of u.

. •. 2^2
=. 6 +(+ A)*+ c(-h A)2 > 5, 2*3

= 6 +(- /^)* +r(-A)2<6.

.

•

. t< rz: 6 is neither a maximum nor a minimum.

7. To inscribe the greatest rectangle in a

given circle.

Put the diameter AC =. a, arid the side

AB = X
;
then

ADz=z-y/a^-x^ and ^^X^i)=a;v/a2-a.'2.

.
•

, -M = {AB X AJ)y = a;2(a2
—

x'^)='d max.

= 2a22; — 4x^ = 0. .
•

. ar = 0, or x = a

-— = 2a2 — 12a:2
_ 2a2 when a; =

rfa;2

4a2 X =z a

AD = \/ a2 -— - a2 = a \/- AB,

. 1
and the rectangle must be a square. Its area is - a^.

8. To inscribe a maximum cylinder in a given right cone having

a circular base.
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Put JO the radius of the cone's

base = 6, CO the altitude of the

cone = a, DF the altitude of the

cylinder = x.

Then from the similar triangles

COA and CQD we have

CQxOA
CO'.CQ-r. OA:QD= CO

(a
—

x)b

n/- 9. ^

F /"'^ ^N&

•
. volume of cylinder = — ~

.
•

. M = (a
— x^x = a^x — 2ax'^ -f- ^^ = maximum.

, ~z- = a^ — 4ax + Sx^ = 0, or x'^ — -ax == — rr a'.
dx '33

2 ^1 1
X = -a±-a = a or =-a.

t> O O

d'^u

-r-^
— — 4a •\- Qx =z 2a when a; = a

2a
1

Hence the altitude of the cylinder is one-third of the cone, and con-

sequently
4 4

volume of cylinder = — 'rtab'^ = - volume of cone.
^1 y

9. Find the greatest and least ordinates of the curve whose

equation is a^i/
— ax^ -f- a;^ = 0.

Put u =
a"^!/

— ax^ + x^ z= , , , . (1).

du
Then

dx
— —2ax-\- 3a:2 (2).

Combining (1) and (2), we get

2 4
a: = and y = 0, or x — -a and y = —-a.

O ,61
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But ^ = a«, ^=.-2a-U6^,

Ldx'A Ldx'^A VdyA a

2 ,. 2
a; = -a.

2 4
•

. When a: = 0, y = 0, a min., and when a; = -«, y = — a — a max.

10. To find a number re such that its x*^ root shall be a maximum.

du

dx
w = ar* = a maximum. — = ic* (1

—
log a;)

= 0.

.1_2
.

•

. a? * =0 or 1 — log a: = 0.

The first of these equations gives a: =
;
the second log a* = 1

;

1

whence x = e and m = e« = maximum.

In this and in many similar examples, we may draw the final in-

ference without forming the second differential coefficient, it being

obvious from the nature of the

question that there is one, and

only one maximum, and it be-

ing easy to decide which of the

values of x is that applicable

to the maximum.

11. To cut the greatest para-

bola from a given right cone

having a circular base.

Put AB the diameter of the ^'

base = a^ AC the slant height

=: 6, and BG = x.

Then ^ G" = a —
ar, and by the property of the circle,

• FE = ^FG = 2y/x{a-x]
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Also by the similar triangles BA C and B OD^ we have
/-

BA..AC:..BG.. GB^^^^J^
'

^y
^^

/.

But tnc area of the parabola
•

'V ^^^ l ^ /^
*^

o A bx / ^/ * y^
FDE z=^FEx GD:=-' ~Jax - x\ V> A,3 3 a ^

fjy /'
T 3 <

^
I V ^

.•. w=aa;3—a;*= max. :
-— ii=3aa;2—4a;3=0, and a:=0 or x=-a, ^\ /^

dx 4 ' ^1

the second value being obviously that required, since when a; =
the area of the parabola = 0.

. •. area of maximum parabola = -ab-y/^.

12. To form the greatest quadrilateral with

four given lines taken in a given order.

Put AB^a, BC=h, CD = c, DA = e, A^
angle BAD = x, and BCD =

ar^,
the latter an-

gle Xj being obviously a function of
ar, since the

two are connected by the relation

[BDy = a2 4- e2 _ 2aecosx = b^ + c^ — 26c.cosa;i (I).

But area ABCD = AABD + aBCD = - ae sin a; + ]-
be sin x^.

.*. «=acsina;4-^<^.sinari=:amax., and -— =aecosa;-|-6ccosa:,— =0.
ax ^dx

Now by differentiating (1), we have

. dx^
ae . smx = be . sni x-, —r-^»

dx

dx-, ae . sin ar du
, , ae sin x

,' .-r- z=z -— . .'.—- z=ae. cos X -\- be. cos x-, -—
: = 0.

ax be . sm x^ dx be sm x^

,
•

. sin 2 cos x^ -\- sin
x-^

cos x = 0, or sin {x + x^)
= 0.

.

•

. a; 4- a?i
= 0, or a: -f ar^

= 180°.

The latter is plainly the required solution, and consequently the

quadrilateral must be such as can be inscribed in a circle.
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13. To find the greatest quadrilateral that can be contained within

a given perimeter.

Suppose ABCB to be the required

figure, and suppose two of the sides x and y

to vary, while the other two sides v and z

and the diagonal t remain unchanged.

Then, since ABCB is supposed to be the

greatest quadrilateral which can be formed

with the given perimeter, the triangle ABC
must be greater than any other triangle having the same base /,

and

the sum of the sides z=z x -{ y z=z b ?i constant.

But if X -{ y -^ t = s,

the area oi i\iQ AABC —\/-si- s — x\l-s — y\l-s — t\

Therefore, by squaring and omitting the constant factors

- s and -s —
t,

we have

u —
iry^

—
^) \^^~y) ~ (o*

~
^) (^'^

~ ^ +^) = ^ maximum.

= I
- s—

a:)

— r- s—b-\-x\z=zO^ or 6—2j=:0, and .
•

. xz=:-b.
du

dx

,'. y=zb — x=:x = -b.
til

that is, the sides AB and BC must be equal. Similarly it may be

shown that x — v^ v = z^ z = y.

Hence the figure must be equilateral, and, consequently, either a

rhombus or square. But, since the lengths of the sides are now

given, the quadrilateral must admit of being inscribed in a circle.

.
•

, The figure must be a square.

14. To find the greatest figure of n sides contained within a given

perimeter.
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, By supposing two sides AB and BC to

vary, while the other sides remain fixed in

magnitude and position, we prove, as in

the last example, that AB =: BC, and

similarly that BC= CD, CD = DE, &c.

Therefore the required figure must be

equilateral. ,

Then, supposing the three equal sides HA, AB, and BC, to vary

in position, while the other sides remain fixed, we show, as in a pre-

ceding example, that the circumference of a circle can be described

through H, A, B, and (7; and, similarly, that a circumference can

be drawn through A, B, C, and D. But only one circumference can

be drawn through the same three points A, B, and C. Therefore

the same circumference passes through H, A, B, C, and D. And,

similarly, it may be shown that this circumference passes through

JS, F, G, &c. .
*

. The polygon must be equiangular, and, conse-

quently, regular.

15. To divide a line a into n parts, x, x-^, a:,, &c., and determine

the relations between those parts when the continued product of

their numerical values shall be a maximum.

Let two of these parts x and
x-^ vary, while x^^ a-g, &c.,"remaiH

constant.

Put iCg + ^3 + <fcc. = b, and X2X x^x x^ &c. = c

Then x -\- x-^^=ia—h, and xx^'X^'X^ &c. = x{a — b — x) c.

.*. u=:x{a — b — x)-=z£k maximum, -— = a — 6 — 2a; =
^ ' ax

.
•

. xz=-{a — b), and
x-^
= a — b — x =1 -{a — b) z= x.

Similarly, X2 = x, x^z= x, (fee, and, therefore, the parts are all

equal.

10. To determine the number of equal parts into which a given

number a must be divided, so that their continued product may be a

maximum.
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Let X •=. required number of parts ;
then - = value of one part.

a a a ^ ^ /aY- X - X - &;c. to X factors = I -
J

; a maximum.
X X

«=log I

j
= a: (log a—log a;)

=: a max. —=:loga—logar—1=0

.

'

. U)^
- = I. - = e, and x = —'XX e

This is a solution in the arithmetical sense only when a is a mul-

tiple off, {' >v otherwise x would not be an integer.

The general solution belongs to the following problem. To find

th
a number x such that the x power of - shall be a maximum.

17. To determine the point P, in the line joining the centres

C and C\ of two unequal spheres, from which the greatest amount

of spherical surface can be seen.

PutC'0 = r, CiOi = ri, CCy^ = a CP — x, C^P z=z x^ = a ^ x.

,'. CD = —, aZ), =li-, DEz=zr
X ^ ^

X. X

r^ r{x
—

r)

ftnd similarly A^i = r,{x^
-

^i)

*. Surface of zone OEQ = 2 rrr
r(x

—
r)

OyEj^Qi = 2';rri
'•iC^i-^)
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^3 J.
3

^2 _^ ^ 2 1— -- max.
X a — X

J r*

u
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.

*
. Surface ABbai=- h (2a

—
-h.coix).

lit li)

Surface a^bvf= fb x vo = -b^ y/Z coseca;.

Hence by the nature of the question, we shall have

1 3 -

QABba^ 4- Sa^bi>f= 36 (2a
— - 6 cot

rr) -\- ^b^ -/S cosecx = a min.

.
•

. u =2a ~ ~b cot X + -b y^ cosec a; = a minimum.

-J- = -
6(cosec2a;-- WS cosec a; cot a;) = 0. .

•

. cos x = —-
dx 2 ^ ^ ^

^3
.

•

. a; = 54° 44' 08".

This is the celebrated problem relating to the form of the cellt

of the bee.



CHAPTER IX.

FTIKCT20^S OP TWO INDEPENDENT VARIABLES.

81. Hitherto it has "been supposed that the function u depended,

either directly or indirectly, on a single variable x. But the value

,of u may depend on the values of two or more variables, entirely

independent of each other. Thus, if there were given

u = xy -\- 2/2, .... (1).

we might suppose x to vary and y to be constant; or y to be

variable and x constant
; or, lastly, x and y may vary simulta-

neously. These three suppositions lead to three essentially different

changes in the function w.

Thus when x becomes x -\- h, and y is constant, u becomes

Uy — xy -{ hy '\- y^.

When y becomes y -\- k^ and x is constant, u becomes

^2 = xy 4- xk \- y"^ -{- 2yk 4- Jc^.

And finally, when x and y become respectively x -{ h and y + ^,

u becomes u^ = xy -{- hy -{- kx -\- y"^ -\- 2ky -\- k"^ -\- hk.

The general case is presented in the following proposition.

82. Prop. Having given u = F{x, «/)....(!)., to develop

v^ z= F [x -\- h y -{- k), the variables x and y being independent

of each other.

Since x and y are supposed to have no mutual dependence, they

may be supposed to vary successively.

Let X take an increment h
;
then u becomes u^ = F (x -^ h, y)

which, developed as a function of x -i- k by Taylor's Theorem, gives
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''•
=
"+^-i+^^-t:2+^-3-i:2:3+*'^ (2)-

m which w,
—

, -7-2 , &c., are functions of both x and y.

Now, if in every term of (2), we replace y by y -f k, we shall

convert
u^^
= F{x -\- h, y) into u^ z=z F (x + h^ y -\- k)^ and, since

each term in the second member of (2) will then be a function

of y -\- k^ we must replace

- du k d^u k^
u by „+-.- +_._ + &0.

ydu du

du . du
^

dx k dx k"^ .

^ ^^ ^ + ^-T +
-^-TT2+^^-

d^u dhi
,

dx"^ k
dx^

P
dx^

^^ (/^2+-^-l+-^T72 + &c-

dH d^u

d^u d^u
,

dx^ k dx^ k"^ .

rf? ''y 1^5
+ -^

•

1
+^^ •O + *^"-

c/j7 d^u
But we put for convenience —-z—=

, indicating thereby

that two differentiations of w have been performed, the first with

respect to ar,
and the second with respect to y. Similarly we put

^du , d'^u
d^ — d—

dx d^u djp" d?u

-;^
=

Srf^'
""'' ^r =

rfi^'
*' '^''' expression indi-

eating one differentiation with respect to
rr, followed by two with

respect to y; and the second implying two differentiations with

regard to
a;,

followed by one with regard to y. And generally, we

denote the result of n differentiations with respect to
a;,

followed by

w differentiations with respect to y, by the symbol.

dx*dy^
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Now let the necessary substitutions be made in (2), and we

shall get

dii h du k d'^u h?" dhi hk ,d^u k^

^^'^'^'^d^'i'^d^'l'^ H^'Tyz^dld^ 'T'^df'T^
d^u A3 ^Zy^ h2jc dH hk"^ dhi k^

'^d'x^' I .2.S~^ dchl^'Y^'^ dxdt/^'U2'^df^' l.2,S
"*" ^*

which is the proposed expansion.

If we had supposed the variable y to receive its increment first,

we should have obtained the following series for u^.

du k du h d^u k"^ d^u kh
*

d^u h^
**

~^'^d^'i'^di"i'^d^
'

T72
"^

di/dx 'T'^d^'T^
dhi k^ dH k'^h d^u kh? dhi h'^

^
If

'

1.2.3
"^
dfdx

'

172
"^

di/dx^

'

172 /"^
*

1.2.3
^*

The two series must obviously give equal results, and being true

for all values of k and k, the coefficients of the like powers and pro-

ducts of h and k must be equal.

d'^n d^it d^u d^u d^u d^u
&c.

dxdy dydx dx'^dy dydx^ dxdy"^ dy'^dx

Hence the result of n differentiations with respect to t, followed

by m differentiations with respect to y, will be the same as that pro

duced by performing the differentiations in a contrary order.

EXAMPLES OF DIFFERENTIAL COEFFICIENTS.

83. 1. w = xhj -f- a2/2.

du „ „ du o ^ d'^u ^ d^u ^

d^u dhi „ .

3x^ and -—- = oz^ also.

dxdy dydx

iPu d^H dhi _ d^u d^u d^u

d^
"^ ^' df"^' 1^ = 6x = j^^ --j^

=
=J^^

dx*
~- ^'

dxUy
~ ^ "^

dydx^' dxHy-^
"

dy-'dx^'
*' ^

8
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, X du y du

y dz x^ + y^ dy x^ -\- y^

cPu x"^ — y"^ dhi

dxdy (x^ + y^y dydx
(fee, &;c.

„ . da du . ,

3. u =: smx . cos y. -7- = cos x . cos y-r-= — sin a; . sin y.^ dx ^'dy
^

dhi . d'^u d^u
-

,
= — cos a; . sin y = , ,

?
——- = — sin a; cos y

dxdy dydx dx^

dhi . . d^u, dhi
=. sin ic sin y = = &c.

dx'^dy dydx^ dxdydx

In general the order of the differentiations is immaterial, provided

we always differentiate the same number of times with respect to

the same variable.

The expressions
— and — are called partial differential co-

du du
efficients: -T~dx and -^^y are called partial differentials, and

du z=. -T- dx •\- -T- dy is the total differential of u.
dx dy

84. Similarly, if m = F{x^ y, 2), where ar, y, and ^, are
'

inde-

pendent variables, then

du . du . du .

du =: -— dx -\- -r- dy -\- -r- dz.
dx dy dz

And generally, to differentiate a function of several independent

variables, we must differentiate successively with respect to each,

and add the results.

85. If it were proposed to develop Wj = F[x -{ h^ y -{- Jc^
z -{ l)^

where u = F{x, y, z), we should obtain, by supposing ar, y, and z

to vary, and reasoning as in the expansion of F(x -\- h, y -\- k)^

du h du k du I dhi h^ d^u hk d?\i k^

^^'''''^di'\'^d^'l~^d^'l^dx^'T72'^d^'T'^d^/'r^
d^u M_,^J^ dh(^

kl dhi P
dxdz 1

'

dz^ 1.2 dydz 1
'

dx^ 1.2.3

d^u hH' d^u h^(i^ P ^Ihi hH

dx-'dy

'

1.2"^^?^]^'l.2'^t/y3'r273"^^i2^*IT2'^
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Remark. The formula du = -;- dx -{- -r dy -\-
—- dz -\- &c., for

dx dy dz

differentiating a function of several variables, may be deduced im-

mediately fVom the preceding development.

For put k =: rh^ I = rji^ &c. where r, r^ &c. are arbitrary, since

ar, y, z, &;c., are independent of eaoh other. Then by substitution

and reduction,

U^
— U du dll «^W . .

^ • T TO B—i— = -r-\-r-r--\-r.—r- &c. + terms m h. A^ &c.
h dx dy dz

and by passing to the limit, making h = 0, neglecting terms con

taining A, A*, &;c., and finally making

M,
— u = c?w, h = dx, rh := k = dy, r->h =: I =z dz, &c., we get

du .
.
du .

,
du .

, „
du = -r- dx -{- -T dy + —- dz -{- &c

dx dy dz
^^^y>L

86. Prop. To differentiate successively u =z F(x ,y).

We have already found the first differential

du du
du =z -— dx -^ -r- dy.

dx dy

Differentiating this and observing that —
,
and — are usuallj

functions of both x and y, but that dx and dy are constant, we get

„ d^u , „ d'^u , -
,

d'^u , _
,
d^u . „

and by differentiating again, we have
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and similarly may i^w, g?^w, &;c., be found, the numerical coefficients of

the several terms proving the same as in the powers of the binomial.

Implicit Functions of two Independent Variables.

87. Pvo^. Let F{x^y, s)= 0, so that z shall be an implicit function

of the two independent variables x and y, and let it be proposed to

form expressions dz^ d'^z^ dec, without solving the equation with

respect to z.

Put u z:z F (x^y^z) =:
\ then, observing that u is directly a func-

ion of the independent variables x and y, and also indirectly a func-

;ion of x and y through 0, we shall have for the total differential

.oefficientg]
and g]

id^rX du dz du ^ ,,. ^ \d^i~\ du dz du ^ ,^.

du du

dz dx dz dy
dx du^ dy du

dz dz

du du

dz dz dx dy
,

'

. dz :=z —- dx -\- ~j-
' dy z=z —dx -rdy.

ax dy du du

dz dz

Next to form d^z^ we have

But by differentiating (1) with respect to x, (2) with respect to y,

and (1) or (2) with regard to y or x, respectively, and observing that

du du du . . ^ ,

-7-, -r-, ~r-, arc functions 01 x, y, and z, we get
dx dy dz

dhi
dz_

d?u dz^ du dH d^u _
d^'di'^'d^''d7''^dz'dx''

^
dx''

"
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d^u dz d^u, dz^ du d?z . d^u

dydz dy dz^ dy"^ dz dy"^ dy"^

d^u dz d?u dz dz du d^z d^u d'^u ^^
__ f.

<j?yrf2; dx dz^ dy dx dz dxdy dxdy dxdz dy

d-z d'^z d^z
whence —^,

——
,
and

, , may be found in terms of the partial
dx^ dy^ dxdy

*'

differential coefficients of the first and second orders of w, with

respect to x, y, and 2, all of which are easily formed.

88. Prop. Having given u = 92, and z = F{x,y), to differentiate

u without previously eliminating z.

If we suppose x alone to increase, it will impart a change to «

through z
;
and a similar change will be transmitted to m, when |

alone varies
;
thus we shall have

du
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If it were required to eliminate two con'stants, we might differen-

tiate twice, thus obtaining three equations, including the primitive,

(1), with which the elimination could be effected, and the resulting

equation would contain x, y,
—

,
and

-r-^-
Surds and transcendental

quantities may also be eliminated by a similar process.

90. 1. Given y^ = 2ax, oy u z= y^
— 2ax = 0, to eliminate 2a.

tdiil

^ dv ^ ^ ^ V^ ^ dy

3,-2.1
= 0,

an equation in which 2a does not appear, but which implies tlie

same relation between x and y.

I
2. Eliminate the surd from the equation y = (a^ -f x^) (1).

3. Eliminate a and b from the equation y = ax^ -\- bx . . . , (\),

|= 2«. + 6...(2)g
= 2a (3).

By combining (1), (2), and (3).

/di

2 dx^^ \dx dx^

or i!^^?.f^ + ?y=0.
dz^ x' dx x^

I, Eliminate the exponential from the equation y = 2ae^',

dy ^~-= 2ace^' = cy,
dx
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5. Eliminate a and h from the equation y = a cos 2a; + ^ sin 2flJ.

~= --2a sin 2x-\-2b cos 2x, —-^ = — 4a cos 2a; — 46 sin 2a: = — 4y*

•••S + ^-o-

91. Prop. Let tt = 7^0, and z = cp{x, y), where a; and y are in-

dependent variables, and let it be proposed to eliminate the func-

tion F.

Differentiate u first with respect to
ar,

and then with respect to y,

du du dz dFz d(p{x^ y) . .

' '

dx dz dx dz dx
' ' ' '

\ i*

du du dz dFz d(p{x, y) .

dy~dz dy
~

dz dy
' ' ' '

\ r

Now divide (1) by (2), observing that the common factor —r-

will disappear;

du dcp (ar, y)

dx
__

dx du d(p(x, y) du d(p(x, y)
' '

du^ d(p (ar, y)
^

dx dy
~

dy dx

dy dy

in which equation F does not appear.

1. Eliminate the function F from the equation u — F{ax^ -\- by^).

Put ax^ + by^ = z. ,-. ^=: Sax'', and ~=z 2hy.dx dy

du ^, du ^ ^
.-. -—'2by = -—'Zax\

dx dy

2. Eliminate the function F from the equation u = -^(-)

dx~ a;2 \y) X Ay)' y
^^^

dy
~

x Ay) y'

^ '

Idx'^ xJ^L-y^J~ xy^ \y)- dy^ xy

du
,

du
'. u-^x-—\-y-- = 0.

dx dy
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3. Prove that if y =: as'mx -^ b sin 2^, then

dx* dx^

y = a sin ar -f ^ sin 2a;. . . . (1 ). -^
= a cos ^ -f 26 cos 2ar.

—^=:— Of sina:— 4/>»sin2;j?. . . .(2). and —^=asina:-f 16isin2a:. . (3)
dx^ dx'^

^ '

Multiply (1) by 4, and (2) by 5, and add the results to (3);

thus

92. Proj). To determine whether any proposed combination of

X and y, as F{x^ y)^ is a function of some other combination, as

Put u = F(x, 7/),
and z = (p(x, y); then if i* be a functicn

of z, we must have

du du dz J ^^ _ ^^^ ^^

dx^ dz dx dy~ dz dy

. du dz du dz
'

dx dy
~

dy dx

which is the required test.

1. Is u = x^— 6x^y+ V2xy^— 8y^ a function ofz = 2y + a — xl

$^ = 3a;2 - Uxy + 12y2. ^ = - Gx^ -\- 24xy - 24y2.
dx

"^ "^

dy

dz
,

dz— = —
1, and — = 2.

aa; dy

du dz _ - ^, , o^ 2
^^ ^^

Hence u is a function of z.

2. Is w =
l<)g(a;2)

— 2 logy, a function of 2; = sinla + -
j?

du 2 du 2 dz / , y\ y dz / , v\ 1—=-, --=_-, --= -co-(a + ^).'v ^=co^(a-f-)—dx x dy y dx \ xj x^ dy \ xf x
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du dz 2 / y\ du dz

dx dy x^ \ xj dy dx

Hence w is a function of 2;.

3. Is u == x"^ + y^ a function of = tan {x -{- y)1

^ = 2^, J = 2y, J= sec^x + y), J = sec^^ + y).

du dz ^ „, . ^ du dz ^ 0/ . \
.

•

. -7
— = 2.r sec2(a: + y), and —-•-— = 2y sec^far + 2/)»

dx dy
^ '

dy dx ^

Hence u is not a function of z.

Development of Functions of Two Independent Variables*

93. Prop. To extend Maclaurin's Theorem to functions of two

independent variables.

If, in the general development of F{x + h^ y +k)^ we make

a: = 0, and y = 0, and denote the particular resulting values by the

use of the
[ ], changing h and k into x and y respectively, we shall

obtain

[d.'^a
"I xy VdhfX y"^ rd'^u~\ x?

dMy\
' T "^

LT^J
*

TT2
"^ Ld^J

'

1.2.3

Example. Expand u = e^sin y.

du . du dhi . d^u

d^U
. (^3?/ , rf3^

^-^^=..-e'smy,
_=-e'cosy, &c., &c.
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-M =..£].«, [|]-..K]-.LS-]='.

r^i_o [—1-0 [—-1-1 f-^^l-o

-7-^ I

= —
1, &c., the law being quite apparent.

x^y y^ x^y xy^

12 1.2. 3
'

1.2.3 1.2-3

x^y

12. 3. 4
+ &c.

94. In a similar manner we might apply the general formula

deduced in the last proposition to the expansion of any function

of two variables, x and y, but among these functions there is one

of peculiar interest, in consequence of its frequent occurrence in the

application of the Calculus to Physical Astronomy. The formula

for the expansion referred to, is known as Lagrange's Theorem.

It will be deduced in the next proposition.

Prop. Having given u = Fz, and z = y -{- x(pz, where F and

9 denote any function, and y is independent of x, to expand u in

terms of the ascending powers of the variable x.

We observe first that u \s a function of x, and therefore if we

denote, as usual, by [w], 7- , -j-^
1 &c., the particular values as-

du d Uj

sumed by u^ y^yi? <^c., when a; = we shall have, by Maclaurin's

Theorem,

Now since « = y + x^z^ (
1
).

.
•

. when a; = 0, [z]
=

y, and .

*

. [w] = Fy.
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du du dz du du dz

dx
~

dz dx dy
~

dz dy

But by differentiating (1) with respect to x we get

dz d(pz dz
,

dz cpz ,^.
=:^z + x-—>— whence ^ = ^...(2).(13/ UZ ilJU UJy - U/^)Z

1 X • =

dz

And by differentiating (1) with respect to y we havf>

dz d(pz dz dz 1 , .

dy
~

dz dy ^y
~

^ ^f>^

. .

\»
.

.Dividing (2) by (3) and reducing, we obtain

dz _ dz

dx~ dy'

du du dz du dz du
' '

dx
~

dz dx~ dz dy
~

dy

Hence when a: = 0, and z = y^ I
—- I == cpy

—-^.

-T . . du du.
Now assume w, such that (p^

•
-7- = -—
dy dy

Jdu,
du du^ dP-u d'^u^ d^Uy^and ft)

' '

dx dy dx"^ dydx dxdy dy

But ^ = ?^.^ = ^.^^.^=^^.f^ = (,2)2.^.
dx ,dz dx dz dy dy

^ '

dy

'

dx^ dy Ldx'^J dy

A.nd similarly it may be shown that

UarO"" dy^
' UxO~ £^^3

,
<fea
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But to show that this law of formation of the differential coeflS.

cients is general, suppose that it has been proved that

d^-H _ L^ ^
^^J

. . . .

(4)

_ . ,
^

du du„_-, d'^-^u c?"~%„_i
Put {:o'A

»-i .— = —^- .

•

.
— "—*

^"^^
dy dy 'dx^-^ Qf.y«-i

d^U d'^Un—^ d'^Un-i '-m
'

dx"" dy^'-'^dx dxdy''-^ dy''-'^

ax dz dx dz dy dy
^

dy

..« '^'-[(-)-a_ ^ ^ (5)*

dx"" dy''-^

Thus the form (4), if true for any value of n, is also true for the

next higher value. Now it has been shown true for n = 1 and

/I = 2
;
and hence it is true when n r=: 3, w = 4, &;c., or it is uni-

versally true.

Now making x =: d and z ~ y and the expression (5) becomes

Ldx" J (/;/"-!

Making the substitutions for
[?/], I -i- '

y-^ L <^c., in the expan-

sion {A), we get

4(-)^-f]

+-^.F^ -lis +*«•••• (^)-

This formula is called Lagrange's Theorem.
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Coi\ Let u = Fz = z) then Fy = y, and —- = 1.

A formula foi the expansion of z when we have given z =: y -\- xapz.

EXAMPLES.

95. 1 . Given z^ ^ az + b = to express z in terms of a and b.

Here z = ~
-}-

-
z^, which corresponds to the form z = y -\- iP(pz,

when we make

- = y,
- =

a;,
and 2^ = cpz.a a

Hence by substitution <py = y^ z= —)

ay ay
"^

a^ dy^ dy^
^

a^

Introducing these values into the formula (M), it becomes

b P I b^ 1 b'' 1 b^ 1

=^[X + ^ + 3^ + 12^,+ 55^,&c.]a"- a-^ a^ a^ a^^ -'

If b be very small in comparison with a this series will converge

very rapidly.

2. Given
q^
—

z-{-z'^ + z^ + z^-{- &c.,

to revert the series, that is to express z in terms of y.

By transposition, z = y — (z^ -\- z^ -\- z* -{. &c.)

Put a; = — 1. 92 = 22 ^ 23 ^ g4 _|. <S2c,
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Then (py = y^ -\- y^ + y* -{- 6zc.

d[{(pyy] ^ d[(y^-{-y^-hy*+&,c.Y]

dy dy

=2(2y3+5y*+9ys+ 143/64- &c^

(9y)3 = (2/2 4. y3 4. y4 4. &c.)3 = 2^« + 3y7 4- 6y8 4- <fec

.
•

, "^'^^f^^'^ = 5 . 6y* 4- 3 . 6 . 7y5 4- 6 . 7 . 8y6 4- &c.

(py)4 = (y2 4. y3 4. y4 4. &c.)* = y^ 4. 4^/9 4" &<2-

... "^'[(^-f)'] z= 6 . 7 . Sy'* + 4 . 7 . 8 . 9y6 4- &c.
dy^

((py)5
=

(2/2 4. y3 4_ y4 4. &e.)^ = ylO + &C.

.-. ^^i^^^ = 7.8.9.10y6 4.&c. &c.. &c.
dy^

,
'

. By substitution in formula (i/).

^ = y — J [y2 4- y3 4. 2^4 4_ y5 4_ y6 4_ (S^e.J

+
^^^[2.2^3

+ 2.5i/^ 4- 2.9y« + 2.Uy^ + &c.]

~.Y-i-3[5.6y*
+ 3.6.7y5 4-6.7.8y6 4-&c.]

^

[6 . 7 . 8y5 4. 4 . 7 . 8 . 93/6 4- &cJ1.2.3.4

1

[7.8.9.IO3/64-&C.]
1 .2.3.4.5

-f- <^c. =:
2/
—

y"^ -\- y^
—

y* + y^
—

y^ -h <S2c.

8. GiA en 1 — s 4- «* = to expand z".

Here z = I -^ e*. Put a? = 1, y = l,(p2 = e*, i^g = «*,

dFy diy*)
. (py = ev. Fy = y", 9y • -^ = ev •-^ = .i/y-^ cv = ne.
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d!/ V^^^ dy ]~ dy

= 2ne^y . 2/"-^ + n{n— \) e^v . 2/«-2 =zn(n + \) e\

dy^L^^^^
'

dy J~ dy^

= 9ne^y . y"-! + Gn{n — 1) e^y . 2/n-2 4. ^
(„.
_

j) („
_

2) c^V y»-»

= ?i
(ri^ -f- 3/1 -}- 5) e^. &c. 6zc.

Hence, by substitution in formula (Z), we have

4. Given ;? =
2/ 4- ^ . sin ^, to expand ^ and sin e.

Put a; = e, 90 = sin z, Fz = sin 2.

.
•

. (py = sin y , (^y)^ = sin
"^y^ ('^yY = sin ^y &c.

.
•

.
—
—;

= 2 sm
2^

. cos y. = sm 2y.

rf2 [((pz/)3"| d (3 sin ^y.cosy) „ . „ « . ,

-^^ = -^—^ ?^=6sm2,.cos'2,-3sm>y.

= 3 sin
2/ (1 4- cos 2^/

— -
-f

- cos 2y)

=
gsm y + 2 ^2

^'^ ^2/
-2^'^yj

9 3= - sin 01^
— - sin y. &c.

Hence by substitution in (M).

«==:y4-siny54-sin2yj^4-(-sin3y-?sinyj—1-^+&0.

A . rr . dFy . 1

Again Fy = sin y. .

•

. (py .
-— = sm y . cos y rr: - sin 2y.
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df dFyl <? (cos?/, sin 2?/) \2
^ V

[«?]dy L dt/ J dy dy

c?|-cosy
—

-cos3yj 3 . „ 1 .

=z-sm3y--siny.
dy 4c 4

^r 3 dFyl c^Mcos.y.sin3,) _ ^^[^"^^^-^"^^-^)]

dy^ L^^^^
*

dy J rfy2 ^^2

c?2 I- sin 22/
— - sin 4y

j_ 2 sin 4y — sin 2y. &c. &c.

Hence by substitution in formula (L).

1 e /8 1 \ ^2
sin 2 = sin y 4- - sin 2y .

Y
+ (-sin Sy — - sin

yj j-^

+ (2 sin 4y — sin 2y)
-—~—- + &c.

Qii Ji d fj til w 77 h
5. Givenw4-— .-4--T-^'r-^+ :rT

'

i o » + ^^- = 0, to find
c/o; 1 dx^ 1,2 a^-* 1 . 2 . 3

A in terms of w and its differential coefficients.

_, dti dHi d^u

j^i i?i \ 1 . 2 1.2.3 /

w 1
,

- Vofi^
, Pa^^ . .

•••2' = -^'
=
"^'

'*'=* T^+T^"^ "

 

V^%i' 1-2^ V 1.2.3
+
*"7

Now if a be a root of the equation u — 0, and .r an approximate

value of a, so that .t + A = a, we may use this series in finding a

g
more exact value of x. Thus, if re = - = 1 . 5 be an approximate
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root of the equation u — z'^ — 2x^ -i- 4x — 8 = 0^

then 1 . 5 4- ^ = a and

23Herew=— — .-. h = . i\ and a = 1 . 5 + . 11 = 1 . 61

nearly. And if we repeat the operation by putting x ~ 1 . 61, a

nearer approximatiim will be obtained.

CHAPTER X.

MAXIMA AND MINIMA FUNCTIONS OF TWO INDEPENDENT VARIABLES.

96. A function u of two independent variables x and y, is said to

be a maximum when its value exceeds all those other values

obtained by replacing x hy x ±: h and y hy y dc k, when h and k

may take any values between zero and certain small but finite

quantities ;
and u is said to be a minimum when its value is less

than all other values determined by the conditions above described.

97. Prop. Having given u = F(x, ?/),
when x and y are inde-

pendent variables, to determine the values of x and y which shall

render u a maximum or minimum.

Suppose X to receive an increment ± k, and y an increment ± ^,

the value h and k being small but finite and entirely independent of

each other
;
and denote by Wg the value assumed by u, so that

Mg = F(x ± h, y ±. k).
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Then, by Taylor's Theorem, as applied to functions of two inde-

pendent variables, we have

_ ,du {±h) dii {±k) ,

d^u (±hY^2-^ + ^*—]" dy ~T~'^'d7^"nr
d^u (±h) (±k) d^u {±:ky

'^d^i~\ \~^ dif'~~v:¥"^^^'

Now in order that u may exceed Wg ^^"^ ^ small values of

\ and A-, whether positive or negative, it is obviously necessary

to have

^ (±^ . ^ (^^) d'^u {±hY dhi {±h) {±k)
dx \ dy \ dx^ 1 . 2 dxdy 1 1

in which series we must be at liberty to make h and k both positive

or both negative, or one positive and the other negative : or, finally

either may be taken equal to zero, the other remaining finite.

Now when ^ = the series (1) reduces to

in w^hich h may be taken so small that the sign of the first ternj

— •

,
which contains the lowest power of A, shall control the

sign of the series. But this term obviously changes sign with A,

since — does not contain h
;
and as we are at liberty to make h

alternately positive and negative, it is impossible that the series (2)

should remain negative so long as — • -^—- has any value other

than zero.

We have then, as a first condition necessary to render u a

maximum,

du (drzh) ^ .
. du ^ . ^^
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Omitting the first term in (2) we have

dx^ 1.2
'

dx^ 1.2.3
+ &c. < . . . . (3).

Here again the sign of the series will depend on that of the first

term when h is small, and since that term does not change sign

when we substitute — h for -(- ^, the series (3) will remain negative

for small values of A, when

— •\^ < 0, or simply when ^ < 0.

Hence _< .... (5)
i

is a second condition necessary for a maximum.

98. Returning to the series (1) and supposing A = while k re-

mains finite, we prove, by a course of reasoning entirely similar,

that the following conditions are also necessary, viz. :

1
= 0.... (C) and

5<0....(2)).
Now omitting the terms in (1) which contain the first powers ol

fe and k, and which it has been seen must reduce to zero, we obtain

d-'u (dbhy d^u (zth) (ztk) d^u (±ky d^u (=bA)3

d^' 1.2 ~^d^' 1

'

1 dy^' 1.2
^

dx^' l.'Z.Z

,

d^u {±h)^.(±k) d^u_ {± K)(±kY
'

dxHy 1.2 dxdy"^ 1 . 2

k
or, by making t = ^j where r is entirely arbitrary, since h and k

have no necessary dependence upon each other.

l.2Ldx^ dxdy^ dy^J

h^ fd^u ^ d^u ^ „ d^u ^dH"! „ ^^ ...



132 DIFFERENTIAL CALCULUS

in which, when h is small, the sign of the series will depend

on that of

cPu ^ d^ii „ d^udb2r~— 4- r
dx^ dxdy dy^

and this must be negative for all values of r. whether positive or

negative, when w is a maximum.

^Ve must now search for the condition necessary to rendei

d^u . d'^u d'^u ^ /^v .. 11 1 „-—- ± 2r-—-—
\- r^-r-r < . . . . (5) for all values of r.

dx^ dxdy dy^
^

d ii d iL d it

Put for brevity -r—- = A, -r—r- = B, and -r—- = C,
dx^ dydx dy^

Then A, B, and C, must, if possible, be so related to each other

that A ± 2Br -j- Cr"^ shall be negative for every roal value of r.

Now it is known, from the theory of equations, that if we solve

the equation A ± 2Br -f Cr^ = with respect to r, and obtain the

values

=l^B^-JB^ - AC ^ z^ B-JB^- AC
^\ = -^

' and r^z=
"L- :,

and then substitute in the polynomial A ± 2Br -f C'r^, for r values

alternately a little greater and somewhat less than r^ or rg, the sign

of fhe polynomial will undergo a change. If therefore the proposed

substitution be possible, the condition A i 2Br -j- Cr"^ < for all

valueB of r will be impossible.

And so long as the values of r^ and rg are real and unequal, this

substitution can be made; but if those values of r prove imaginary,

it will no longer be possible to substitute for r, real quantities alter-

nately greater and less than such values, and therefore the polyno-

mial cannot change its sign.

No\^ by examining the values of i\ and rg it will be seen that the

condition necessary to render r^ and rg imaginary is B'^ <C AC,

Hence we have a fifth condition necessary for a maximum, viz. •
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when this condition is satisfied, the condition (5) will also be satis-

fied, since (5) is true when r = 0.

It ought to be remarked, however, that when B^ = AC, the two

roots Vi and rg become real and equal, and therefore in passing

over one of these roots, we necessarily pass over both. Thus the

sign of polynomial will not change, so that the fifth condition would

be more correctly stated as follows :

dx^'^dy^ \dxdyj >
• • • •

^ ^

By a course of reasoning entirely similar, we can prove that the

five conditions necessary to render u a minimum are the following;

du du d'^u d'^u d^u d^tt / dhc \^i= ,

^ "^
' ^

"^
' ^ ^ ' df^' d^'df~ [dm) >

-_ .,,dhi ^ ^
du ^ . -

. ,

99. 11 -7-r= 0, when —- = 0, there can be neither maxmium nor
dx^ dx

Urif (17/

minimum, unless .-. = also; and similarly, if —- = 0, when
dx^ ''

dy^

—- = 0, there can be neither maximum nor minimum unless -—= 0.

dy dy^

There are other conditions likewise necessary to render u »

maximum or minimum in such cases, but they are usually of so

complicated a character as to be unfit for use.

EXAMPLES.

100. 1. To determine the values of x and y which render

u =. x^ \- y"^
— Zaxy a maximum or minimum.

^ = 3:^2 - 3ay = 0, . . . . (1 )
. ^ = 3y» - 3«:« = 0, . . . . (2),

From (1), y = — ,
and this substituted in (2), gives

a;* — a^a; =
;

.
•

. a; = 0, or, x —a,

the two other roots being imaginary.
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it

But when a;
—

0, y = —= 0,

and when x =. a^ 2/
= «•

Now forming the second differential coefficients, we get

dP'u d^u
-— = 6a; = when a: = 0, -j-r = Qy = when V = 0,

=. 6a when x = a, = Qa when y =z a,

d^u ^ d^u dH / dhi \2

d^dy =-^^Txi-df~ l^)
= ~'"' "'''" . = and

2,
= 0.

= 27a2 when a; = a and y — a.

.

•

. The five conditions necessary for a minimum are fulfilled

when X z=i a and y =. a^ viz.

.

•
. u =: a^ -\- a^ — 3a^ = — a^.

But when a: = and y == 0,
-—

r and -7— reduce to zero, while
dx^ dy^

UrlA d U
~rr-^ and -r-^ do not reduce to zero. Hence the value w = 0, is
dx^ ay^

neither a maximum nor a minimum.

2. To find the lengths of the three edges of a rectangular par-

allelopipedon which shall contain a given volume, a', under the

least surface.

Let
a;, ?/,

and z, be the required edges, .

*

. xyz = a^ . . . (1).

And u =. 2(xy -{- xz -\- yz) = surface = a nainimum.

a^ a?
But from (1), xz = —

,
and yz z=i—»

i^y
+
j+^)----m-

du ^ 2a? ^ ,_. .du _ 2a3 .

5J
= 2y--^ = 0,... (3). and ^ = 2^-^ = (4)

•
. x^'s

= a^ = xy^, .
•

. X =z y^ and consequently x^ = a',



MAXIMA AND MINIMA. 135

.
•

. a: = a, y =z a^ and z =z a.

dx^ dy"^ \dxdy)
~ ""' ^ "'12 >0,

,
•

. -M = 2(a2 4- a2 _j_ 0^2^
_

^0^2 _ a minimum, and the parallelo-

pipedon must be a cube.

3. Given x -\- y \- z i=. <:(
^
to find the values of

rr, y, and z^ when

cos arcos y cos 2 -- z^ =: a maximum.

Regarding x and y as independent variables, and z a function

of X and y, we obtain by differentiating

X \- y \- z ^=. t<
^
with respect to x and y successively.

>+!=« ^"^
'+!=« (!)•

But since it =. maximum,

log u = log cos X -\- log cos y + log cos z = maximum,

((/

locr u\ dz—r-—
)
= — tan X — tan 2 -7- = 0,

dx I dx

(d]o2,u\ dz ^ .

and I
—r^— )

=r — tan y — tan 2 -- = 0.
\ dy J

^
dy

or, by replacing
-- and — by their values derived from equa>

tions (1). — tan x + tan 2 = 0,
— tan y + tan g = 0,

1
•

. tan X = tan z = tan y, and x = y=z=-'Jir.
o

3I /'V 1

4. To find the greatest rectangular parallelopipedon which can be

inscribed in a given ellipsoid.

Let a, h, and c, be the semi-axes of the ellipsoid, x, y, and z^

tbp co-ordinates of one of the vertices of the parallelopipedon.
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Then 2x, 2y, and 2z, are the three edges of the parallelopipedon,

alid, therefore, 2x . 2y . 20 = maximum, or

u = xyz = maximum (1).

But, since each vertex is in the surface of the ellipsoid, the co-

ordinates X, y, z, must satisfy the equation of the surface.

.••4+1+^ = 1 (2)-
a^ b^ c^

^

Differentiating (2) with respect to x and y successively, regarding

g as a function of the independent variables x and y, we get

2x 2z dz _ 2y 2z dz _

But, from (1) we have

dz ^ ln.v\ .
dz

dy0=^^+^-!=*^' 0=^-+-j'-5^.=o.

dz dz
or, by introducing the values of ~ and — from equations (3).

^^"^2/^ = 0, and xz -xy'j^ = 0.
a^z l)^z

•
. a^z"^ — c^x"^ and h^z"^ = c^y^ .

•

.
—- = -^ = 7-

 a^ c^ 6-*

x"^ z^ y^

it/ if/ i*/ I*

Hence from (2),
—

n H n H r = 1 and x = -—= : in like
^ '

a^ a^ a^ y^
h c

manner it may be shown that, y = —:,
and z = —

y 3 y 3

Thus the edges of the parallelopipedon must be proportional to

the axes to which they are parallel. In each of the last two

examples, the formation of the second differential coefficient has

been omitted as unnecessary, it being easily seen that the proposed

question admitted of the maximum or minimum sought, and also

that the values found were the only suitable values.



CHAPTER XL

CHANGE OF THE INDEPENDENT VARIABLE.

101. Hitherto we have employed the differential coefficienti

dy d'^y „ du dhc . , . , , , i . ,

-~,
-—

,
&c. or —

, -j-^,
&c. exclusively upon the hypothesis that x

was the independent variable. Dut there are many cases in which it

is more convenient to adopt some other quantity t upon which both

X and y, or x and u depend as the independent variable, and perhaps

to pass from one supposition to the other within the limits of the

same inv^.stigation.

c??/ d'^zi du dP"Uj

It then becomes necessary to express
—

,

—
-|,

&c. or —-,
——

,&c,dX QiX d'Xi OiX

in terms of the differential coefficients of a: and y, or those of a; and u

taken with respect to the new variable t.

dv dP"tj

102. P/'ojc. Given y =z
(pa?,

and x = Ft^ to express -^,
and

-r-^
in

,.
dx yi'^x dy d'^y .

Since y is a ivinction of
ar, and x a function of

/,
we have

dy

dy dy dx ,,. . dy dt, , ^.

di

dij
Now differentiating (1), and observing that ~ is a function of i

through X, we get

d^y d^y dx^ dy d^x

'd^~d^"dfi~^dx"di^'
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dhj d]i d'^x d^y dx d'^x dy
d'^u __~di^^'dx"dfi _'d^'~dt~~dfi"di

'

dx^
~

dx^
~

dx^

dfi dF

The two formulae {A) and {B) resolve the problem.

d'^u d^n
Cor. In a similar manner we might form expressions for —-, —^

dx^ dx*

upon the same hypothesis, but they are seldom required.

Cor. If y be takeji as the independent variable, then

and .-. :i^=l^=0.tz



CHANGE OF THE INDEPENDENT VARIABLE. 139

d^y
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Since u is a function of x and y, each of which is a function of r,

we have
du du dx du dy
dr dx dr dy dr

And .similarly, x and y being functions of ^,

du du dx du dy

~a^'^7i"dd'^ Ty"dd
^ ^

Multiply (1) by
—

-, and (*2) by
— and subtract; then multiply (1)

by -h- and (2) by -i- and subtract. We shall then obtain

du dx du dx du /dx dy dy dx\

dr
'

dd dd dr
~

dy \dr
'

dd dr dd i

and
di(, dy du dy du /dx dy dy dx\

du dy du dy du dx du dx

du dr d.) dd dr ^
du dr dd dd dr

and -r- =
dx dx dy dy dx dy dx dy dy dx

dr
'

dJ
~

dr
'

dd dr dd dr dd

105. These formulae become much simplified when we have«

X z= r cos ^, y — r sin ^, the common formula for passing from rec-

tangular to polar co-ordinates. For we then have

dx . dy . . dx - ^ dy .

-— = cos ^, -r- = sm 6,
-— = -^ r .smO, -^ =: r cos d,

dr dr dd dd

dx dy dy dx . „.
,

. om
.

•

.
— . -4- ;-'-rT = r(cos24 -f- sni^^) = r.

dr dd dr dd ^ ^

du du sin d du. du
. du cos d du

dx dr r dd dy dr r dd

Ex. liavmg given x- y— =z a, to transform the equation to

the variables r and d, where x = r cos d, y = r sin d.

du du
X-- y—-= rcos
dy

^ dx

./ . ^du. cos^ du\ .
/ du B\n 6 du\

)(sin43- H —)—rsm^(cosd-3 -jr-l
\ dr r dd) \ dr r d6f

du= (cos^fl + sin«J)- = ^ = «,
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CHAPTER XII.

106. It has been shown that the general development of F{x -f- A),

so long as the value of h remahis unassigned, is of the form

F{x -\-h) z=Fx-\- Ah-\- Bh? + (7A3 + &c (1),

containmg none but the positive integral powers of A.

But although this be true for the general value of ic, it is possible

in some cases, to assign certain particular values to x^ which shall

cause fractional powers of h to appear in the development ; and to

such cases Taylor's Theorem does not apply, because its proof de-

pends upon the assumption that the series (1) holds true. If, for

example, we assign to x such a value as shall cause fractional powers

of h to appear in the undeveloped function, we may expect to find

similar powers in the development, and we therefore cannot expegt

Taylor's Theorem to give the correct expansion. Now when the

particular value a: = a introduced into the undeveloped function

the fractional power A", there must have been in the general ex-

pression for Fx (before a was substituted for x) a term of the form

{x — «)» which becomes {x
— a. -\- K)"^

in F{x + A), and reduces to

A* when X z=. a.

When this occurs some of the differential coefficients will cer-

tainh" become infinite, if we make a; = a.
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To illustrate this fact, take the example

u = Fx =zb \- {x
— ay -\- {x

—
ay,

and suppose x to receive the increment h, converting u into

m

u^ = F{x-{- h) =b~{- {x
— a-^ hy + {x

— a-{- hy.
m  

Now, for the particular value x = a^u-^ becomes b -{• h^ { h\

But by for.ning the successive differential coefficients of u with re-

spect to x^ we get

dii „, „ m , .^-1

^= 1.2,3 + !!i(!^-i)(^-2k-«)"-.ax-^ n\n /\n /
^

It 7W//M ,\/'/^ ^\i>n .A, ^^_4 „

and since the exponent of x — a is diminished by unity at each dif-

ferentiation, it must eventually become negative, rendering the co*

efficient infinite when x =. a. Moreover, all the succeeding differen-

tial coefficients will likewise become infinite.

It may be observed also that if the lowest (and therefore the first)

fractional exponent which appears in the deveh'pment, be interme-

diate in value between the integers r and r + 1
;
then the first di^

ferential coefficient which becomes infinite will be the (r -f- \)th.

It appears then that this peculiarity will arise whenever the value

assigned to a; causes a surd (such as (x
—

a)" )
to disappear in Fc^^

while the corresponding surd
[(.r
— a 4- ^'

)" ]
continues to appear

in F{x 4- h) in the form of a fractional power of h. This inappli-

cability of Taylor's Theorem, improperly called a failure of the
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theorem, occurs precisely when the development is impossible in the

general form, and therefore does not result from any defect in the

theorem itself.

Again, it has been^shown that the general development does noi

contain negative powers of /i, because we would have, (if there were

such a term Ch~'^) F{x 4* ^0 = ^^ — ^ when A = 0, an obvious

absurdity. But when we assign to x such a value a as shall render

Fx T=z CD
,
the above argument ceases to be conclusive. In this case

Fx = CD
,
and the differential coefficients will be infinite also. Thus

Taylor's Theorem will be inapplicable.

Here also we see that the presence of a^ negative power of h in

the development must result from a term of the form — in Fx,^
(x
—

a)«
*

which becomes -—r- in Fix -}- h) and reduces to -r- = Bh-^
{x — a -\- h)

^ ' A"

when a; = a.

We conclude, therefore, that there are two cases in which

Taylor's Theorem is not applicable, viz. :

1st. Wiien x =ia causes a surd to disappear in Fx^ thereby in-

troducing a fractional power of h into F (x -{-K),

2d. When x =. a renders Fx = ao .

EXAMPLES..

107. 1st. Case. Given u = b -^ {x -^ c)^ -\- {x
- ay= Fx, tc

expand Uj^=: F(x + h) = b + (x-^ c i- A)2+ (^x
— a + hy.

^__1 1 3 -i

.
•

. ]\y substitution in Taylor's Theorem,
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M, -_. 5 f (^ + cY 4- (^ - a)^+ \2{x
+ c) + l{x

-
af\j

Now this development is entirely true for all values of x, except

X = a^ v/hich renders the term 1 • 2 + - •

-(a;
—

a)
——

,
and all

suoceed'./]g terms, infinite
;

the true development in this ease being

«i = 6 +(a + c + /O' + ^^*-'= 6 + (a + c)2 + 2(« -f- c)h + h^ + h^,

which agrees with the series (1), only so far as to include the term

h

[2(:.4c)+|(.-«f]i

2d. Case. Given u = b -\ vun a: -^ -—-—- = Fx, to expand
[x
— ay

c

u, ^ F{x -i-h)=b + M- + '^^ H-
(^z:^_pip-

rftt 1 . 2c rf% 1 . 2 . 3c—- = cos a; — rr? -J-.-
-. - • Sin ;r -f ;r

,

dx (x
—

a)3 ^A"' {\
- ' a/

c/3«^ 1.2.3.4c . .

-—- = — cos X
;; :t— » WC , (WC

dx^ (x
—

a)^

.'. By substitution in Taylor's Theorem,

c r 1.2c lA
„ _ 6 + sin X +

^_r^,+ [cos^
-
-^--^,}j

r . .1.2.3C-1 7*2 r l.l\3.4c-l ^3
4-

— Sm a: 4- r—r + — COL' r. - •

-7
— ——5 &c

L (^
—

«) J 1-2 L (a;
— a/ J 1 .2.3

This development is correct except when x =z a, the true devel

opment then being (Art. 48)

c k'^

u ~= b -\- sin (a -\- h)-^ -— — 6+ sina+ cA"-2-|-cosa./i—sina——. (fee
h^ 1.2
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flere the very first term given by Taylor's formula, viz.:

Fx =:b -^ sin a -f- 7 :^' is incorrect.

(a
- af

108. Prop, if the true development of F(x -f h) contain posi.

tive integral powers of h to the (n
—

\)th power inclusive, followed

by a term containing h* where s is a fraction intermediate in value

between, n — \ and w, the first n terms of the expansion will be

given correctly by Taylor's Theorem, but the {n + \)th term will

not be given correctly.

Proof. Let the true development of F{x -\- h), when x = a,he

F(x -{- h)= A + Bk + Ch^ -\- Dh^ + Nh^-^ -f Ph» + &c.,

where s denotes a fraction greater than n — \ and less than n.

Then, since the diflTerential coefficients of F{x -{- A), taken first

with respect to 2:, and afterwards with respect to A, are equal, we

have

ax ah

\-{n
—

l)iV^A'»-2-f sPh'-^-^ &c.

1.2C4-2.3Z>A

+ {n- Z){n
-

+ (5
—

2)(5
—

\)sPh'-^ -f- &c.

ax^ dh^

"IlE^JlI
= l,2.ZD + {n- 3)(w

-
2){n

-
l)Nh»-i'

-\-(s—n+2){s-n+S) (s—2)(s— l)sPA»-«+i-i-<Sca

d^F{x + h)

dx"
=

{s -n -i- l)(s -n-\- 2)(s
— w + 3) .

{s
-

2){s
- l>PA»-«-f &c.

Now when h = 0, the preceding expressions reduce to

10
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-^^ = 1.2.3 («-3)(«-2)(»-l)iV.

-^ =(.-n+l)(.,-«+2)(«-«+3) (.-2)(s-l>- = « .

„ dFx „ 1 d^Fx ,

Thus each of the terms A, Bh, Ch^, &c., of the true development

will be given correctly by Taylor's Theorem as far as the term

Nh'^~^ inclusive (that is to n terms), but the {n \- V)th term of the

true expansion is Ph'^ while by Taylor's series it would appear to

be infinite.

The results established in th;"s proposition are important, because

it frequently occurs that the first or leading terms of an expansion,

are those only which we have occasion to consider.



PART 11.

APPLICATION OF THE DIFFERENTIAL CALCULUS TO

THE THEORY OF PLANE CURVES.

CHAPTER I.

TANGENTS TO PLANE CURVES. NORMALS. ASYMPTOTES.

109. In the application of the Differential Calculus to the investi-

gation of the properties of plane curves, we regard the two variable

co-ordinates x and y or ^ and r, which serve to fix the position of a

point on the curve, as the independent variable and the dependent

function respectively.

These two quantities are connected by a general relation called

the equation of the curve.

Such as y z=z Fx OT r = cp&, F{x, y) = 0, . or
(p(r, d) = 0. .

When the form of this equation is given, we can readily deter-

dy dp"XI

mine the values of the differential coefficients — ?

-7-^' &c., or
(aiX clx

df dP'v

Ta' -TTT5 <^c-) hi terms of the co-ordinates, and these values will be

found extremely serviceable in the discussion of the properties of

ihe. curves.

110. The first application of the Calculus to Geometry which it

is proposed to make, is the determination of the tangents to plane

curves.
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Prop. To find the general differential equation of a Hue which is

tangent to a plane curve at a given point x-^^ y,.

O TAD. Da X

The equation of the secant line RS, passing through the points

r^ 2/1
and x^ y^-,

is

y -yi = \x-x,)., ..(1).

But if the secant RS be caused to revolve about the point Pj, ap-

proaching to coincidence with the tangent TT, the- point Pg ^'^^

approach Pj, and the differences y^
—

y^ and X2
—

arj
will also di-

minish, so that at the limit, when RS and TV coincide,
— —
X2

•—
x^

will reduce to -^, and the equation (1) will take the form

dy.
y -y\

dx.
(x
-

x^) r (2),

which is the required equation of the tangent line at the point x^ y,.

111. To apply (2) to any particular curve we substitute for

-—- its value deduced from the equation of the curve and expressed

in terms of the co-ordinates of the point of tangency.

Oor. The differential coefficient —^ represents the trigonometrical
ClX-i

tangent of the angle P^TX formed by the tangent line with the

axis of X.

Cor. To find the value of the subtangent D-^T^ we make y =
in (2). The corresponding value of x will be the distance OT, and
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therefore x — x^ will represent the subtangent i>i^, this latter being

reckoned from D^ the foot of the ordinate. Thus

subtan D-^T =z x X. —

dx-.

(3).

In the formula (3), x represents the independent variable, but if

we take y as the independent variable, this formula may be simpli-

fied. For it has been shown that ~ = —-— or -p- = -;-. Henco
ax ax

(3) may be written
dy

ily^ dy
dx

dx.
subtan i)ir= -yi~ (4).

112. Prop. To determine the general differential equation of a

line which is normal to a plane curve at a given point i^i yj.

The equation of the normal

FN, which passes through the

point a?! ^1, will be of the form

y -yi = h(x-x^) . . . (5),

O T A Dwhere
t^

denotes the unknown

tangent of the angle PNX formed by PN with the axis of x.

But since the normal PN is perpendicular to the tangent PT^ we

must have, by the condition of perpendicularity of lines in a plane,

1 + //, = or ^ = where t = -p-* ^
t dx^

Replacing t^ by its value in (5) there results

tan. ancle PTI\

dxi

-^)=-S-(^--') ••••(«)•

dx^To apply (6) we substitute for —- its value derived from th«

equation of the given curve.

/
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. Cor. To find the value of the subnormal i>iV, we make y =
in (6) and thus obtain ON as the corresponding value of x.

.•.DN=x-x, =
y,^^^

(7),

when either the subtangent or subnormal has been determined, the

tangent and normal can be readily constructed.

APPLICATIONS.

113. 1. Let the curve be the common parabola, whose equation is

y^ = 2px.

...^=:^, ^=Z., and ^-^.
' '

dx y dx-^ y^ dy^

Hence the equation of the

tangent is

{x
-

x^)y -Vx
yi

or yyi
-

yi"
= p(x

-
x{),

whence t o d n

And that of the normal is

y-yi = -j(^- ^i)-

y\ ^p^i

P P
Also, subtani^J":

and
P

subnorm DN z= y,
— z= p.

Thus it appears that the subtangent of the parabola is negative and

equal to twice the abscissa
;
and the subnormal is positive and con

stant, being equal to the semi-parameter.'
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2. The Ellipse, aV 4. hH"^ = anj"^

151

dx
.

.

. ^1 ^ _ 1 and -j^
dx^ a?y^ dy^

.

•

. The equation of the tangent is

'i;» or, CL^yVi + b^xx-^
= a^-b'^.

dxi o^y-i"
Also subtangent = —

y^
—- =
dy^ hH^

= X.,

And subnormal yi
dx^

b^

o. The logarithmic curve, whose

equation is y =z a'.

dx
= log a . a*.

subtan = — = — wi.
log a . a*i log a

where m is the modulus of the system of logarithms whose

base is a.

Also subnorm.^:: log a . a'^^y^

In this curve, the values of the abscissas are the logarithms of the

values of the corresponding ordinates in the system whose base is «.

114. Pro'p. To determine expressions for the tangent, the normal,

and the perpendicular from the

origin to the tangent of a plane

curve.

^'or the tangcLt P T, we have

PT = '^PD'' -i- £>T^

14 ^̂̂
1^*
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For the normal PIS', we have

PN=: -y/FD^ + DN^ =
y.yji

4- ^-
For the perpendicular 0^, we have

Ex. The general equation of all parabolas.

The general name of parabola is applied to all curve? included in

the equation y'^ = a'^—'^x, in whi'. h m may 7'epresent any positive

number either whole or fractional. When m = 2, thf* curve be-

comes the common parabola.

TT - « 1 dy  
^^~^ 3 d^ m?/'^'^ mx.

Here y^=a^-^x, .'. — = -? and -— = —^— = —L^ dx my"^-^ dy a'» ^

y^

. dx. m?/,*"

dy^ a""-!
'

dy^ a'"-^
.y^2subnorm =y.~ =: -— = —i-,

^^dx^ my{^-^ mx^

tan = y, a/
1 +

^2
= ^/y^+ niW,

»d perp = ..^^-^^. = iMLllJ!^^

D+5-T [^.^+»wj*

115. Prop. To obtain expressions for the polar subtangent, sub*

normal, tangent, normal, and perpendicular to the tangent of a

plane curve, when it is referred to polar co-ordinates.
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Let AB be the curve, Q the pole, F the

point to be referred, QX the fixed axis

from which the variable angle PQX is

retkoned, QP the radius vector, TQN a

line drawn through the pole Q^ perpen-

dicular to the radius vector PQ^ and limit-

ed by the tangent PT. and the normal PiV",

QS a perpendicular on the tangent fi'om

the pole. Then QT is called the polar

subtangent, and QN the polar subnormal.

Put QP= r, angle PQX = 6, angle QPT = w,

angle PT^X = i, QD = x, DP = y.

Then QT =z QP . tan QPT =r r tan w = r . tan(i
—

&)

tan i — tan &= r .

1 -f- tan i tan ^

But
dy

tan I z=^ ~-r,
ax

tan ^ tani^ =
dy

dx

1 +
a; dx

Now if we change the independent variable from x to d, we

must employ the formula ~ — —^

dd

t&nu =
d^
d^

dx

dd

dx dy''
(!)•

And from the formula for passing from rectangular to polar co-or-

dinates, we have x =z r cos d, y =^ r sin ^, which being differentiated

with respect to ^, observing that r is a function of ^, we get

dx dr ^

-7- = — • cos 5 — r . sm
aJ d^

dy dr . .

,

.

-Vf = -xr^iv. ^ + r cos &.
dd d6
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and these substituted in (1) give

r cos ^l-rr' sin & -\- r cos ^
|
— r sin ^(

--

\dd I \d&
cos fl — r sni

tan w =
rcosdl— -cosfl — r sin

^j-|-
r sin ^j—'sind + ^cosdj

dr~ dr

dd

.
•

. subtangent ^7^= r tan u =

Also subnormal V-^
^ ~

dr dr

dd

QT~ d6

Tangent FT =z y^QF^ + QT^ = ^y 1 + f^— .

dr^

Normal FN = ^/QF^ + QN^ = \/r^ +

FQ X QT r2

dr^
dd^'

Perpendicular QS FT

EXAMPLES.

V ^ s^

116. 1. The spiral

of Archimedes whose

equation is r = a&.

dd- "'' rf7" a'

dd r'
subtan QT = r^ -7-= — ,

subnorm ON = ^= a.
dr a^ ^

d6
^

tan FT-V^- norm PiV=yVH^ perp §^
^•Ha'*
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2. The logarithmic spiral r -.:=. a .

In this curve, the numerical value d of the arc which measures

the variable angle is the lo^rarithm of the value of the radius vector r,

in the system whose base is a.

-77 = loff aa =ir . loff a. .
*

. Subtan =
d^ ^ ^

log a
= mr, where

m = modulus. Subnormal = r . log a =—•

This curve cuts every

radius vector under the

same angle ;
that is, the

tangent at any point is

inclined to the radius vec-

tor at that point in a

constant angle.
d^

J or tan u =.r-j-
dr

1
=»?.

r log a log a

If a = e the Naperian base, then log a = 1, tan w = 1 and u = 45°^

and QT= QN=r.
3. The lemniscata of Bernouilli, r^ = o? cos 21

dv — T^ —o^
r-z-=:—a2sin21 .*. subtan rr——.——r, subnorm = • sin 21
dd a2sni2^' r

perp
vVM-«*sin2 2^ V^a4cos22a + a4sin22^ <^^

This curve has the form of the figure

8, is perpendicular to the axis AB at

A and B^ and forms angles of 45* with ^\

AB at the pole Q. For when ^=0,
dr

OT6=if,r — a, and —- = 0. And when 6 = 45°, or 135°, or 225**,

or 315°, then r = 0.

d&
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Rpctilinear Asymptotes.

117. A rectilinear asymptote to a curve is a line which touches

the curve at a point infinitely distant from the origin, and yet passes

within a finite distance of the origin.
^

118. If in the difiTerential equation of a tangent line

y — y^-=.
—^

{x — ar^),
we make successively ar=0, and y=0

we shall obtain for the distances intercepted on the axes,

Now if when either
x-^

or y^ becomes infinite, one or both of these

values should prove finite, the curve will have an asymptote whose

position will be determined by the values of ;r' and ?/'.

Tf ^' — a, and y' z=. h when a and h are both finite, the asymptote

will cut both axes: if ^' =a and y' = oo
,
the asymptote will be

parallel to the axis of y\ and, finally, if ar' = oo and y' = 6, the

asymptote will be parallel to the axis of x.

119. When the curve is referred to polar co-ordinates, there will

be an asymptote M'henever the subtangent (which is then equal to

the perpendicular from the pole upon the tangent) becomes finite

for an infinite value of the radius vector. Its position will be fixed

also, since it will be parallel to the radius vector; that is, it will form

w^ith the radius vector an indefinitely small angle. The existence of

an asymptote may be ascertained from the equation of the curve by

findinsf what value of & will render r infinite. If the same value o/o

6 makes r'^ — either finite or zero, there will be an asymptote parallel
• dr

to the radius vector, and passing through the extremity of the sub.

tangent.

120. 1. The hyperbola aV — ^^^^ = — »^^^-

cAr, ahj^ a'' M y^^ a V y^^ a
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.
.

b . fjx, I a? hx-, .

Also y,=— 'x,/x,'^—a^=i
—- \/ 1 ;,=

—' when a;, or y, = oo.•'^
a ^ ^ a \

x-^^
a

dy-, hx, hx,

^ ^^ ^

dx^ a a

.
, dx^ bx^ a -

and x' = X. — y,
~ =z X. • -— = a;, — ar, = 0.

d(/^
^

a h

.

•
. The hyperbola has an asymptote passing through the origin,

and forming with the axis of a; an angle whose tangent = ±.—
2. The logarithmic curve y :=a''.

dy , ,
dx, a*i

-J- = log a . a', x' = X, — y.
--^ = x, — = a:, — m.

, dy, x.a^\

Now when x^=. -foo,yi= + oo, .•.a;' = oo and y' ^=z cc and

the corresponding tangent is not an asymptote.
~~

But when
ajj
= — oo

, y^ = 0. .
•

. a;' = — od and y' z=i 0, and

therefore the axis of x is an asymptote.

x^
3. The cissoid whose equation is y'^

= or ^Zry'^—y'^x—x^=(S
d/V ~~ X —

•*^ "t" o

y.''

.
•

. a;' n: 2r, when
x-^
= 2r and y^ = cc .

Also y'=y^_..^J^?^=y^_^i(5!r^)

—
QC when a?i=2r.4y—

2a:j

•
. The cissoid has an asymptote parallel to y, at a distance 2r

from the origin.
r
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4. The parabola y^— 2par.

-f-i = -^ ,' . x' = X.— v. -^-^=ar,—-2iri= —a;,=ao -when a:,= 00.

Also y'=yi— a^i— Tzryj—-y3=:-?/i= ao when yi= QOor
iCi
= GO,

,

'
. The parabola has no asymptote. •

5. To find the equation of the asymptote to the curve %fz:zax^-\-x^

yj = ao
,

when
iPj
= 00 .

- + 3
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8. The logarithmic spiral r = a .

dd m - mr^
-r- = —i subtan = = mr = go when r = oo .

ar r r

.

•
. There is no asymptote.

4. The Lituus r^ = a.

iU 2a2 2a2/-2 2^2 ^ ^
3- = 7- .

•

. subtan = —p— = — = when r = 00
ar r** r-^ r

Also r =z CD when ^ = 0. .
•

. The fixed axis is an asymptote.

Circular Asymptotes.

121. When the equation of the curve has such a form as will ren-

der r = Si finite value when ^ = 00
,
the curve will make an infinite

number of revolutions about the pole before becoming tangent to a

circle whose radius = a. This circle is therefore called a circular

asymptote. If r > a for every finite value of 6, the curve will lie

wholly exterior to the circle; but if r < a for all finite values of &^

the curve will lie entirely within the circle.

1 . Let the equation be (r^
—

ar)&'^
= I or ^ =

y/T^
— ar

Then ^ = 00 when r z=z a. And & is real when r > a, but imagi

nary when /• < a.

.
•

. The circle with radius = a is an asymptote, and lies within

the spiral.

2. The curve {ar
—

r'^)&'^=z\.

d z=z = 00 when r z=z a.

'>/ar
— r2

Also ^ is real when r <^a^ and imaginary when r^ a,

.
•

. The circle with radius = a is an asymptote and encloses the

curve within it.



CHAPTER II.

CURVATURE AND OSCULATION OF PLANE CURVES.

122. As introductory to the discussion of the subject of the cur-

vature of plane curves, the following proposition will be found

useful :

Prop. To show that the limit to the ratio of the chord and arc of

any plane curve, when that arc is

diminished indefinitely, is unity, and

to deduce an expression for the

differential of the arc of a plane

curve, in terms of the differentials

of the co-ordinates.

Let PPj be an arc of a plane

curve APB^ whose equation is y

Put ODz:zx, DP=y, I)D^=h, i>iA=yi, -4P=s, ^Pi=*i.

Then y^ = F(x-{~h).

The arc PP^ is intermediate in length between the chord PP^z=C,
and the broken line PIP^ = B. If, therefore, we can prove that

the limit to the ratio — is unity, it will follow that the limit to the

ratio of the chord and arc is unity, and therefore at that limit the

expression for the chord PPj will be a suitable expression for the

arc P7\ which wiU then become the differential of s.

Fx.
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But -^_ -P^H--Piy _ V/^^-^ + AT^+ Pir

and by dividing numerator and denominator by h

L
, dy^ r 1 </2y ,

k dh/ , ,
"1

=^-= 1, when A=0.

V ' "^
c^a;2

"^ r ^ •^ +
173

'

5^
*

c/x3
+ ^c-

at the limit.

1 +^
arc _ ds _ chord _ tan PT _ 'V

^
dx^

chord
' dx~ dx

~
dx

~
h

T 'V'

£=v/^ +& .•... = ..vA^=.^+ir.3.

Also ds =z dy -v/l +
dx-^

di^'

123. In the first of these expressions x is the independent variable
;

m the second, y.

Cor, If we wish to employ some other quantity t upon which

*, X and y depend, as the independent variable, we must use the

formuljB for changing the independent variable, viz. :

ds dy
ds dt dy dt

dx
~

dx dx
~~

dx

~dt 'di

11
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which, substituted in the value of -7- give
dx °

V df
^

dfi

124. We proceed now to consider the osculation of plane curves.

Let Y = Fx (1), and y = (^x (2) be the equations of two plane

curves, the first of which is given in species, magnitude, and position,

but the latter in species only.

Then the constants or parameters which enter into equation (1) are

fixed and determinate, but those which appear in (2) entirely arbi-

trary, and may therefore be so assumed as to fulfil as many inde-

pendent conditions as there are constants to be determined.

If, when the abscissa x is sup-

posed the same in both curves, the

condition y =. Y \s satisfied, the

curves will have a common point

P, but will usually intersect at

that point.

If the condition -f- = —— be true also, the curves will have a
ax dx

common tangent such as SPT\ and the contact is then said to be of-

the first order : if the second differential coefficients be also equal,

d^y d^Y
viz.,~- = --—

,
the contact is said to be of the second order; if

dx^ dx^

d^y d^Y
-r-r = —7-^, the contact is of the third order, <fec. &c.
dx^ dx^

125. In order to show that the contact will be more intimate as

the number of corresponding equal differential coefficients becomes

greater, let x take the arbitrary increment ^, converting y and Y
into

2/1
and Yj respectively.

„„ ^ ^^dY k
^

d-^Y h^ ^d^Y A3

dx 1 dx^ 1 . 2 dx^ 1.2.3
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+ &c.

Now the value of this difference, which expresses the distance by

which the one curve departs from the other, measured on the line

parallel to y, will depend, when h is small, chiefly upon the terms

containing the lowest powers of h.

>

If, then, the first differential coefficients derived from the equations

of three curves (A), [B) and (6') be equal, at a common point, and

if the second differential coefficients derived from the equations of

(A) and [B) be also equal, but those derived from (A) and (6')

unequal, the curves (^4) and (B) will separate more slowly than

(A) and (C), because the expression for the difference of the ordi

nates of (A) and (C) corresponding to the abscissa x -{- h, will con-

tain a term including the second power of
/i,

but the difference of

the ordinates of [A) and [B) will contain no power of h lower than

the third.

126. The order of closest possible contact between one curve

entirely given, and another given only in species, will depend on the

number of arbitrary parameters contained in the equation of the

second curve.

Thus a contact of the first order requires two conditions, viz. :

the first of these conditions being employed in giving the curves a

common point, and the second in giving their tangents at that point

a common direction. Hence there must be at least two arbitrary

parameters.
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A contact of the second order requires three parameters ;
one of

the third order, four parameters, &c. Hence the straight line, whose

equation y z=zax -\- b has two parameters, a and 6, can have contact

of the first order only.

The circle (x
—

a)^ + {y
—

b)^ z=z r^ having in its equation three

parameters, can have contact of the second order.

The parabola can have contact of the third order; the ellipse or

hyperbola a contact of the fourth order, &c.

The curve of a given species, which has the most intimate contact

possible with a given curve at a given point, is called the osculatory

^urve of that species.

The osculatory circle is employed to measure the curvature of

plane curves, and its radius is called the radius of curvature of the

given curve*

127. Prop. To determine the radius of curvature of a given curve

at a given point, and also the co-ordinates of the centre of the oscu«

latory circle.

Let the equation of the given curve be yz=:Fx (1), and that of the

required circle (x
— aY-\- (y

—
b)^

=z r^ (2), the quantities a, 6 and r

being those which it is proposed to determine.

There being three disposable parameters, a, 6, and r, in equation

(2), we can impose the three conditions

^, dy dY ^ d-^y d^Y
2/=i,^

=
-^ and ^=^-

with which determine a, 6, and r, and the contact will be of the

second order.

Denote the first and second differential coeflicients derived fronn

thr equation of the given curve by p^ and p'\ that is, put

-d^
= ^ ^"^ ^^=^-

Then, since the corresponding differential coefficients derived from
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the equation of the osculatory circle must have the same values, we

shall have

Now let (2) be differentiated twice successively, replacing

I and gbyyand/'.

.. (ar-a)-f(y-6)/=0...(3),and H-/2+(y_6)/'=0.. . (4).

The equations (2), (3), and (4), will jusib suffice to determine

a, 6, and r.

Thus, from (4) y-b=-^ (5) or 6=y-f—,7 (6)

and from (3) and (4) a; - a = -
(y
-

b)p' = ^'0 +/')
, _ ^^

Now combining (2), (5), and (7), we get

, _ (1 4- p'^f P'^l 4- P'^Y _ (1 -h
P'^)\

The equations (6), (8), and (9), resolve the problem. To apply

them to a particular case, we form the differential coefficients p' and

p" from the equation of the given curve, and substitute their value?

in (G), (8), and (9).

Cor. Since 1 + j:>'2
or 1 -f^ =

-r^, (Art. 122) the value dt

r may be written thus

r=±^....(10).
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Remark. We may omit the double sign ± in (9) and (10) and

regard the radius of curvature as an essentially positive quantity in

all cases. This double sign is sometimes employed to indicate the

direction of the curvature, being positive when the curve present?

its convexity to the axis of ar,
and negative in the contrary case.

But it seems more simple to consider r essentially positive, and to

cPy
fix the direction of the curvature by the sign of

-7-^-
It will now

be shown that the sign of this second differential will always be de-

termined by the direction of the curvature.

If the curve be convex

towards the axis of x^ as

in Fig. 1, and if an incre-

ment h be given to the

abscissa OD = x, the or-

dinate y will take an in-

crement

dy k d^y h^ d^y h^

and the ordinate of the tangent will take a corresponding increment

£T = -—-.-, and the former of these two increments will be the
dx I

greater since the tangent lies between the curve and the axis of x.

d'^y A2 ^^y ^3

dJ'T^^d^' 1T2". 3•••^A-^^-:7l-7^ + :7^-T-^-^ + &c.>0.

or since the sign of this series depends, when h is small, on that of

the first term, we must have —'— > 0.

But when the curve is concave towards tne axis of x, as in Fig. 2,

^Pi-^7'<0, and
.•.^|<0.

Again, since the arc s and the abscissa x may always be supposed
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to increase together,
-— may be considered as essentially positive,

and therefore the sign of r in (10) would be controlled by that of

d^ It is in this way that the sign of r may be regarded as indi-

cating the direction of the curvature.

EXAMPLES.

128. 1. To find the radius of curvature of the common parabola

y2 = 2par, at a given point.

Here

. r =

dy p
p =
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3. The logarithmic curve y

y .. 1

DIFFERENTIAL CALCULUS.

log a.a' z=z P m dx
where m =. modulus.

(1 + v'^f ['-ST
my

When y = 0, r = x
;

and when y = co
,
r =z id also.

4.
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X
But DF = v2ax — x'\ and i^F = a versin-^ —

Hence the equation of the cycloid is

y = ^'Xax—o? + a . versin-^
a

1

y^
^-^

^
« /2a

-y/2ax
— ic2 /a; x^

~ V
V a~^

i'" = -
Xy/%IX — x"^

(2«)'*-v/tiaa:
— a;^ = 2 -v/2a(2a

-
a:),

ayx
'^/^ax x"

or, r = 2 chord PE.

129. Prop. At the points of greatest and least curvature of any

curve, the oscula^ory circle has contact of the third order.

The condition which chai-acterises these points, is that the differen-

dr
tial coefficient — shall reduce to zero, since r is a* minimum when

dx

the curvature is greatest, and a maximum when it is least.

But by the general formula for the radius of curvature,

(1 4- P""} , , . d'y
t =—Y'' ^'^ ^^''^' ^^ P"""'° dx"

^ ^ '
»

ZL - Z =: 0.
dx jp"2

^
1+/2

v*;-

d^y
This is the value of the third differential -—

,
at the points of

greatest and least curvature, of any curve; and if it can be shown
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that the third differential coefficient in the osculatory circle has the

same value, it will follow that the contact must be of the third

order.

But in the circle we have already found y — b = rf—i

which being identical with (1), the contact must be of the third

order.

130. Prop. If two curves have contact of an even order, they

will intersect at the point of contact
;
but if the order of their con-

tact be odd, they will not intersect at that point.

If Z" = Fx^ and y = (pa:,
be the equations of the two curvesj the

difference of their ordinates corresponding to the abscissa x-\- h,

will be expressed by

'
'''~\dx dx]\ \ )^\vlx-^ dx'').l.%

Now when the order of contact is even, the first term of this dif-

ference which does not reduce to zero, must contain an odd power

of ± A, and must therefore change sign with A, thus imparting a

change of sign to Y^ — y^, in passing through the point x,y.

Hence the first curve will lie alternately above and below the

second, intersecting it at the point x^y.

But if the order of contact be odd, the first term in the difference

will contain an even power of ± A, which will not change sign with

/i, and therefore there will be no intersection
;
the first curve lying

entirely above or entirely below the second.

Cor. The osculatory circle intersects the curve, except at the

points of greatest and least curvature.

For usually, the circle has contact of the second order—but at the
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points of greatest and least curvature, the contact is of the third

order.

Cor. At those points of ^y
a curve where jt?"

= 0, a

straight line may have con-

tact of the second order,

and it will intersect the curve. If p'" = 0, also there will be no
^

intersection unless jp"" = 0, also.

131. Prop. To find a formula for the radius of curvature, when

any quantity i, other than the abscissa x, is taken as the independent

variable.

To effect this object, we must substitute in the value of r, already

found, the values of p' =—^ and p"= y^, given by the formula

for changing the independent variable, viz. :

dy dt

dx
~

dx^

U
We thus obtain

"^ d^ \d3^ dJ^J ^d^"dt~ di^'di
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diJ dv d!^v

If y be the independendent variable,
— = —- =

1, and — = 0.

_ds^

dy'^

If s be the mdependent variable,
— =z—-z=. 1,

•'•
'"'^0?^ dx _d^ df ^^''

dd'^ ds di^ ds

djtP" 0??/^ tt.s^

But -— + -^ = -^^
= 1, which, being differentiated with respect

to 5, gives

^ d^x dj_ d^_f. /ox

ds
'

d,^
"^

ds
'

ds'
- ^> • • • • v^;-

(4).
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Adopting the variable angle ^ as the independent variable, denoting

iho radius vector by r, and the radius of curvature by i2, we have,

from the formulae for the transformation of co-ordinates,

dx dr
X z=ir cos ^, 2/

= ^ sin ^, .
•

.

—j-
= — r sin^ -f- cos 4—

,

^^=rcos& H- sm^-r--
dd dd
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2. The spiral of Archimedes r = a&.

Pi = a, pr^
= .'. R

r2 + 2a?-

When r 0, E = -
a, and when r = oo

,
i2 = r

3. The hyperbolic spiral r& = a.

Pi =
"P"
- "

T' ^^''

2a 2r3

a2

'. R =
+ 2--— a3

a" a*

v hen r = 0, i2 = 0, and when r == od
,
i? = oo .

4. The litims rH = a^.

I'l

.•.i2 =

When d = 0, r = 00 and

Ji=cc
;
when ^= 1, /=«,

125

1

"~2



RADIUS OF CURVATURE. 175

135. Prop. To obtain a formula for the radius of curvature of

curves referred to the radius vector and the perpendicular upon the

tangent.

From the general value of the perpendicular when the ctirve is

referred to the ordinary polar co-ordinates r and ^, viz. : (Art. 115.)

P= , ==: weobtam
-rr^

= -^ - »-" =
;>i

V ^
c/c)2

which, differentiated with respect to d, gives

dr dP-r ^r"^ dr 2r* dp ^ c?^

Yd"d^-'^~^'~d^'~^'~dd~ ''!&'

r. , . . r. dp . . dp dr 1 T .T , ^dr
Substituting for

-^
its value — • — and divide by 2 -^r'

d^r _ 2r3 r* dp _
"*•

~d6i'~'^'~"^"di-~'^'~^^'

dr d^r
Now substituting the values of— and -— in that of i?, we get

ij = (^ +^1 )

^

p^
'

r2 4- 2pi^
—

rp^

r dr~
dp~ dp
Tr

^«(7-)-'(f-?|-')

Ex. The involute of the circle whose equation referred to p and>

is p^ = r^

dr p r»
^^ P n 2

dp r dp r
^



CHAPTER in.

EVOLUTES AND INVOLUTES.

136. The curve which is the locus of the centres of all the oscu-

latory circles applied to every point of a given curve, is called the

evolute of that curve, the latter being termed the involute of the

former.

137. Prop. To determine the evolute of a given curve y = Fx.

If in the formulae for the co-ordinates of the centre of the oscu-

latory circle, viz. : (Art. 127.)

P
,^+P"

(1) and h = y -\-

l-fp'2
(2),

p p

we substitute the values of p' and p'\ derived from the equation of

,the curve y =z Fx (3), we shall have the three equations (1), (2),

and (3), involving the four variable quantities x, y, a, and 6; and by

eliminating x and y the result will be a general relation between

a and 6, the coordinates of the required evolute. This equation

being independent of x and y will apply to every point in the

desired curve.

138. In most cases the necessary elimina-

tion is quite difficult; the following are com

paratively simple examples.

1 . The evolute of the common parabola.

Here we have y^
_

^px .... (1).

.•.w'=:^-i and «" = _^.
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y y^ p^ p

177

(2).

6 = y —
+ p2 y^ y^ . r
y2 p2

^
p2

^
p2

(3).

4 i
From (2) and (3) we get x =z —-—> and y^ —p b

',

and these values substituted in (1) give

p^b^ =:'ilp
-P

•••^'=^.(«-^)^3 'Zip

the equation of the semi-cubical parabola, whose axis coincides with

that of the given curve
;

the distance Aa between the vertices

being = p the semi-parameter.

2. The ellipse

A^y^ ^ B^x"^ = A^B^ .... (1).

B^x „ J5*

A^f -f B^x"^

2

1 -f p'2 =

<
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the equation of the required evolute.

When a .— 0, 6 = ±^ ;
and when 5 = 0, a = ±

^.

The curve consists of four branches presenting their convexitiesi

towards the axis, and tangent to each other as shown in the diagram.

The equilateral hyperbola referred to its asymptotes.

xi/ =z (?• (1).

/ = -^' /'
X^ X'

c* + x^ p'

c'* 4- a;'^
, ,

c* 4- a;*

r,a — x-\ PT^—5 h — y-\-
2x^

3

2c2^

and \/a-^b-^^a -b =
2x3 /c

.(1),

III
Hence by multiplication (a + b)

—
(a —b) = (4c) .

139. Prop. Normals to the involute are tangents to the evolute,

From the equation of the osculatory circle (x —a)^-^ (y—by^r*,

we get by differentiation

x-a+p\y-b) =

a relation alike applicable to the y

circle and the given curve, since

X, y and p' are the same in both.

Now wheL v» e pass from a point

x,y to another point on the circle,

the quantities x, y and p' must be
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considered variable, but a and b constant
;
but when we pass to a

point on the curve, x^ y, p\ a, and 6 will all vary, and in both cases

p" will be the same.

The first supposition gives, by differentiating (1) with respect to ar,

i+/2+y'(y-6) = o (2),

and the second gives

1
^'

fy^-/^+y'(y-6)=odx dx

"\^ence by combining (2) and (3)

(3>

dx db
'

da
~~

da
"^

db
Now — represents the tangent of the angle formed by the axis

of ar, with the tangent to the evolute AB at the point P^, and

J-
=: tangent of the angle formed by the same axis with the normal

PPi to the involute LM at the point a:,y; which normal passes

through the point P^. Hence this normal not only passes through

the point cr,i, but it also coincides in direction with the tangent to

the evolute at that point.

140. Prop. The difference of any

two radii of curvature is equal to the

arc of the evolute intercepted between

those radii.

Resuming the equation

(x
-

a)2 + (y
-

6)2 = r2,

and differentiating with respect to a,

us an independent variable, we obtain
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(.-„)g-,)+(.-.)g-g=4.

Bat (._„)| + (,-.)| = |[._„+(,_.)g].0.

,

. ,.dh dr

db \ y — b
, ,/, </<^2v dr

or since — = ,= , .- .{x
—

a)\\ -{- —-\z=— r--"(\),da p' X — a ^

^\ d(i?l da ^

(db'^\

or,

Dividing (1) by (2), there results,

(-S)'=
_ dr

da

But
1
1 + -7"ol = "Tj where s is the arc of the evolute which

\ da^J da . .

terminates at the point a, b.

.'. —-=z:jp-—. and ds = :=pdr.
da da

Thus it appears that the increment of s is always numerically

equal to the increment of r.

Hence s must always differ from r by a constant quantity, or we

must have s =: c =f v, and similarly for the arc «j, which terminates

at the point a^^b^, s-^
= c ^ r^, .

*

. s^
— s = r —

r^, which result

agrees with the enunciation.

141. In finding the evolutes of polar curves, it is usually most

convenient to employ the relation between r and p, the radius vect

and the perpendicular on the tangent; thus, let r = radius vecto.

the given curve, p = the perpendicular on the tangent, r^
= radiu

vector of the evolute, p^ = the perpendicular on its tangent.
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Then since the radius of curvature

PPy^ = JK, at the point P, is tangent

to the evolute at Pj, the perpend icu-

ular QT^^ is parallel to the tangent ^

TP.

Also QT is parallel to PP^

.-. PT^:=QT^p,

and PT= QT^^p^.

.', ri2=: B'-{-r^-2Bp, . . . (1).

dr

(2).

Also P = r

dj)
(3) (Art. 135). And r ^ Fp, (4), th«

equation of the given curve.

By eliminating r, p, and P, between (1), (2), (3), and (4), there

will result a relation between rj and p^ which will be the equation

of the required evolute.

Ex. The l(»garithmic or equiangular spiral r = cp (4).

-—=ze, and R — cr^ .

dp
(3). r-^ =. p-^ + p^\, (2).

ri2 = 722 ^ r2 - 2P/? (i).

From (1) and (3), r^ = cV^ -f- r^ _ ^crp, which combined with

(4) gives

r2 - c2^2(i 4. c2)
_ 2c>2

-
c^.pi{c^

__
1) (5).

From (2) and (4), c^p^ =^2 ^ ^^^2^ ^r, p^c^-V) = p^\ . . (6).

Then from (5) and (6), rj^ = c^pi^ or, rj
==

cjOj,
the equdr

tion of a similar and equal spiral.



CHAPTER IV.

CONSECUTIVE LINES AND CURVB8.

142. If different values be successively assigned to the constants

or parameters which enter into the equation of any curve, the

several relations thus produced will represent as many distinct

curves, differing from each other in form, or in position, or in both

these particulars, but all belonging to the same class or family of

curves. When the parameters are supposed to vary by indefinitely

small increments, the curves are said to be consecutive.

Thus let F(x,y,a)= 0, . . . . (1), be the equation of a curve,

and let the parameter a take an increment h, converting (1), into

F(x,i/,a -\- h) = 0, ....(2), then if h be supposed indefinitely

email, the curves (1) and (2) will be consecutive. Moreover, the

curves (1) and (2) will usually intersect, and the positions of the

points of intersection will vary with the value of h, becoming fixed

and determinate when the curves are consecutive.

143. Prop. To determine the points of intersection of consecutive

lines or curves.

To effect this object, we must combine the equations

F(x, y, a) = 0, (1). and F(x, y,a + h) = 0, . .. , (2).

and then make h = 0, in the result.

Expanding (2) as a function of a -f- ^^ by Taylor's Theorem, and

observing that x, and y, being the same in (1) and (2), (since they
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refer to the points of intersection.) are to be considered constant in

this development, we obtain

dF(x,y,a) h
F{x,y,a + h) = F{x,y,a) + da 1

_^d2F(x^y^J^^
da? 1.2^

But F{x, y, a) = 0,

. dF{x, y, a) h d^F{x, y, a) h?
,

. __ ^
' '

Ja
'

1
^

da^
*

1 . 2
"^ ^^- - "*

,. .,. , , dF(x,y,a) , d^F(x,y,a) A
. ,

And when h=0 this reduces to —^L^l^ = (3).da ^

The two conditions (1) and (3), serve to determine the co-ordi.

nates x and y, of the required points of intersection.

,144. Fx. To determine the points of intersection of consecutive

normals to any plane curve.

The general equation of a normal is

(y-yi)/ + ^-^i = o, (1).

in which x^^ y^, and p\ are parameters, all of which vary together.

Differentiating (I) with respect to
x-^^

and observing that y^ and

p' are functions of
arj,

and that x and y are to be considered con-

stant, we get

(3'-y.K-p'"-i=o,....(2)-

or, , = ,. 4- i±/-V . (3). and .
•

. . =
..-'^/^.

  i^)-

The values (3) and (4) being identical with those of the co-ordi-

nates of the centre of the oscuhitory circle, it follows that consecu-

tive normals intersect at the centre of curvature. This principle is

sometimes employed in determining the value of the radius of

curvature.
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'

'

145. Prop. The curve which is the locus of all the points of in.

tcrsection of a series of consecutive curves touches each curve in

the series.

If we eliminate the parameter a between the two equations

F(^x,y,a) = ... (1) and ili'-lllll = ... (2),

the resulting equation will be a relation between the general co-ordi-

nates X and y of the points of intefsecti>»n, independent of the par-

ticular curve whose parameter is a, or, in other words, the equation

of the locus.

Resolving (2) with respect to a the result may be written

and this substituted in (1) gives

^hy,<p(^,y)] = o (3),

which will be the equation of the locus.

dyNow if the differential coefficient -7^ be the same whether de-
dx

rived from (1) or (3), the two curves will have a common tangent

at the point x,y, and therefore will be tangent to each other.

Differentiating with respect to a:, we obtain fvam.
(

I
)

dF{x,y,n) , dF(x,y,a) dy

dx dy dx
= . . . . (4),

a„d from (3),
''^T^. ?/. P(^..'/)1 + dF[.,yM-,y)]

_ dy^
^ ' dx dy dx

d:plx,y) L dx J ^ ^

But the first and second terms of (4) and (5) are identical, and the

third term of (5) is equal to zero by (2).

dv
Hence the values of ~ given by (4) and (5), and by (1) and (3),
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are the same, and consequently the two curves (1) and (3) arc tan-

gent to each other.

146. The curve (3) which touches each curve of the series, is

called the envelope of the series.

147. 1. To determine the envelope of a series of equal circles

whose centres lie in the same straight line.

Assuming the line of centres as the axis of a:,
the equation of one

of these circles will be of the form

{X + f »-2 = 0. (1)-

in which a is the only variable

parameter.

Differentiating with respect to

a, we get - 2a; + 2a = .

t^//.,.
f(

. v-^4(a)

From (2) a — x, and this substituted in (1) gives

= 0. y ±r.

This is the equation of two straight lines parallel to and equidis-

tant from the axis of
ar,

a result easily foreseen.

2. The envelope of a series of equal circles whose centres lie in

the circumference of a sriven circle.

Let + yi' 0....(1)

be the equation of the fixed circle. /

that of one of the moveable circles.

The variable parameters are
x-^

and y^^ the latter being a function

of the former.

dy\From (2) we have ~
^{x

— x^ —2{y — y^)
-~^ z= . , . (3).
OiX't

But from (1) a:^ + yi
—' = or

"^^^ - ^i - ^i

dxy dxi Vi V'V^--V
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This value in (3) gives

-
(^
-

^i) + (y --vA? - a^i^)

V^
= 0.

or x-i-
y^i = 0, and

(4).

Now combining (1), (2), and (4), so as to eliminate
rCj

and yi, we get

©r ^ + y + ^1
== T^'

y/x^ + y^

.
•

. ^x^ + 2/2
-

rj = ± r. .

•

. a;2 4- y2
_

(^^ ± y)2.

This is the equation of two concentric circles whose radii aie

r^ 4- y and r^
— r respectively.

3. The curve which touches every chord connecting the extremi

ties of conjugate diameters of an ellipse.

Let Q^Py^ and Q2P2 ^® conjugate diameters of the ellipse ACBD^

Xy and y^ the co-ordinates of P^,
c

X2 and
1/2

those of Pj.

Put AO = a, OC-b,

tan PjO^ = tan ^1
= — =

/],

tan Pg^^ = tan ^2
= ^ =

/g-

^2

Then, since by the property of the ellipse, ^j/j
= ~

.
—

h'^x-^X2
=

o.'^yiy2 and X2
62.f,

Also aV^2 4 J2^^2 ^ a2y^2 4. J2^^2 ^ ^2^32 4.
^|l^

fl'^y2'^

62Xi2
(a2yj2 + ^,23.^2)



or

ENVELOPES. 187

.•.^_^
= i and .•.., =^ and .,

=—^ = -^
 •

.
*

. The equation of the line P1P2 i^

'^.(3/
+
^)-2/^(--f)-a^

= 0....(l).

Differentiating (1) with respect to x^ we get

But aVi^ + ^'^1' = aW (3), and . •. ^ = _^
Hence (2) can be reduced to

.

aV.(y
+ g +

6^.,(.-f)=0....(4).

Combining (1) and (4) we have x^ =
^^^^T^^S"

-nrl •
,/ - -bx^i^x - ay) __ _ gfe^ (6.g

-
ay)

' ' Vi-
a{bx-j-ay)

~
2 (aV + ^^•^')

These values reduce (3) to the form

aH^ [(bx + ayf + (bx
-

qy)^] _ ^ _^ jr^^ __

4 (aV + 62a;2)2

"
'

^^ FT "^ K ~
'

/T a
the equation of an ellipse whose semi-axes are ci\/

- and b\/-. and

which is, therefore, similar to the original ellipse.

4. The envelope of a series of lines drawn from every point in a

parabola, and forming with the tangent angles equal to those included

between the tangent and the axis.
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Let PD be one of* the lines.

Put DPT z= PTD z=:&,AE =z
a;,
EP = y,.

Then PDE =2^, and the equation of the line PD is

y — yi = tan^r2^(^
—

x^) (1).

_ ^^, 2tan^ dx,
, . ^ ^ dih p

But tans 2^= —
2I— "T 2 >

^"^ ®"''^*^
2/i =rPa-;,1— tan^J

«^-^] yi'

. tan 2^= .^1 i;??/i

;^2 Vi'-P^

"t yyx^
— fy + />Vi

—
2/)x.y, = 0. . . .

Differentiating ('i) with respect to
(/j,

we find

(2).

2////i + /^^
—

2/>a;
=: 0, and

i/j
z=z

This vahie, substituted in (2), gives

4r>2^2_4^3j._^^4 ^2px
—

rP- —
2/?a;

22/
'

2;?a?
—

jo2 = 0,

or by reduction (2ar
—

pj- + (2//)2
= . . . (3).

This can be satisfied only by making 2jr — ;? = and y = 0,

.
•

. (3) represents a point whose co-ordinates are x = -p and y = 0.

Thus the lines will all pass through the focus; as might have been

foreseen from the well-known property of the pai-abola.

5. From every point in the circumference of a circle, pairs of

tangents are diavvn to another circle
;
to find the curve which touches

every chord connecting correspond in jj points of contact.
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Let Pi be a point on the first

circle P1P2 and P-^P^ a pair of tan-

gents, P2P2 <^*i® <^f the chords,

the origin at the centre of the se-

cond circle, x-^y^ the co-ordinates of

P|, ^^2^2 those of Pg' ^3^3 those of

Then
tj
—

y^
— — ^

(a;
—

2:2) (1) is the equation of the

chord P^Py
Also ?/jy2+^i^2=^^ (2) the equation of the tangent P^Pi

applied to the point P^.

y^y^-^rx^x^—r"^ ... (3) the equation of the tangent P3P1 applied to

the point Pj.

Then ^i (2/2
-

^s) + a^i (arg
—

iCg)
= 0, and

X
which reduces (1) to y^y^^ ^-

{x
—

x^)

-Vz
y\

or yVx + xx^ = ViVz + ^1^2 = '•^ (4).

Now differentiating (4) with respect to
arj,

we get

dx.
-{ x :=0, But 2/i2 4- (arj— a)2 = ^1= (5).

a = and y
y\

li+a:=:0,

or
ya:j —xy^ — ay (6).

Combining (4) and (6) we have

2/1
= -^--—^ and iTj

= ——-—
f-.'^^

a;2 + y^
^

x^ -\- y^

These values substituted in (5) give

(rc2+ ?/2^2
\ i /

Hence the curve required is always a conic section. It is a circle

when a = 0, an ellipse when a < rj, a parabola when a •=. Vy and a

hyperbola when a > Vy.
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SINGULAR POINTS OF CURVES.

148. Those points of a curve which enjoy some property not

common to the other points, are called singular points. Such are

multiple points, or those through which several branches of the curve

pass; conjugate^ or isolated points; cusi^s^ or points at which two

tangential branches terminate
; points of inflexion, &c. These will

be examined successively.

Multiple Points,

149. These are of two kinds, viz. : 1st. When two or more

branches intersect in passing through a point, their several tangents

at that point being inclined to each other
;

and 2d. When the

branches are tangent to each other, their rectilinear tangents being

coincident.

150. Prop. To determine whether a given curve has multiple

points of the first species.

At such a point, there must be as many rectilinear tangents, and

uv
therefore as many different values of the differential coefficient —
as there are intersecting branches.

Let F(x,y) = = «,..... (1), be the equation of the given

curve, freed from radicals.



MULTIPLE POINTS. 191

du

__ du rfjB

Then since p' = -^ z=z —, and since differentiation never in-
dx du

dy

troduces radicals where they do not exist in the expression differen-

tiated, the value of 'p' above given cannot contain radicals, and

therefore cannot be susceptible of several values, unless it assumes

the indeterminate form -•

Hence the condition p' z=i- will characterize the points sought.

To discover whether such points exist, and if so, to find their posi-

tions, we form the partial differential coefficients -7- and -r from^ dx dy

the equation of the curve, then place their values equal to zero, and

determine the corresponding values of x and y.

If these values prove real, and satisfy (1), they may belong to a

multiple point. We then determine the value of />' by the method

applicable to functions which assume the indeterminate form -, and

if there be several real and unequal values of
jt:}', they will corre-

spond to as many intersecting branches of the curve, passing through

the point examined.

EXAMPLES.

151. 1. To determine whether the curve x^ -j- Saar^y
—

ay^ = 0,

has multiple points of the first species.

|3
= a,* -f 2aa;2y

—
ay3 = 0, . . . . (1).

du du_ =, 4x3 -f 4«^y^ (2).
— = 2aa;2 - Zay\ (3).

_ \x^ 4- ^oxy
^

^3ay2 — 2aa-?
^ *'
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Placing (2) and (3) equal to zero, we get

xix^ + «y) = 0, (5).

and, 2;r2 _ 3^2 ^ o (6).

Combining (5) and (G) we have three

pairs of values for x and y, viz. :

a; = 0, and y = 0,

OT,x=-\- -a-^, and y — — -a, or, x=z — ~a^/Q, andy= — -u.

The first pair of values will alone satisfy (1), and therefore the

origin is the only point to be examined.

Placing X =: 0, and y = 0, in (4), there results

^ 12a;2 4- 4ay + 4axp'

Qui/p'
— 4.ax

when

or by substituting for numerator and denominator their differential

coefficients,

24a; + Sap' + 4axp"_ Sap' __ ^^^^^ j
a; =:— w P.n

^^
p^:

.X =
6«y^ + (yat/p"

— 4a ijap'^
— 4a

. '. p'(Qap'^
—

4a) — Saj)', and consequently

p' = 0, or, p' = -\- \/2, or, p' = —
-y^.

Hence the origin is a triple point, the branches being inclined to

the axis in angles whose tangents are 0, + y^, and —
y^,

pectively.

The form of the curve is shown in the diagram.

= w (I).

res.

2. The curve ay^
—

x^y
— ax^

^"^ -
3a;2y

_ 3aa;2 = 0, (2). ^ = 3ay2
- a;3 = (3).dx

From (2) and (3), a; = 0, and y = 0, or, a: = a -^, and y :=—a.

The first pair of values satisfies (I), but the second does not.

Therefore the origin is the point to be examined.
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Hence p' = ,/ 7 —.,- = -^. r^-o = a ^^^^^
\ a

Gy 4- ] ^xp' -f 3a:2yo" + 6a 6a

Ottp'-^ H- i5aj/p"
— ijx iSap'"^

.
•

. p'3
__

1^ and p' = 1.

when j
a; =

This being the only real value of />', there is but one branch

passing through the origin, and therefore the curve has no multiple

points.

3. The cyrve x* — 2ay^
- Sahj^-— 2a'^x^ + a* = = -w (1).

— = 4:{x^
-

a'^x)
= (2). ^ = -

6(ay2 + a^^) = 0. . . (3).
\JLJO (jv il

From (2) and (3) we get six pairs of values, viz. :

a: = 0, and y = 0, or, ic = 0, and y = —
a,

or, X — a, and y = 0, or, x = —
a, and y = 0,

or, a; =: a, and y = —
a, or, a; = —a, and y = — a.

But of these six pairs of values, the 2d, 3d, and 4th, are the only-

ones which satisfy (1), and therefore there are but three points to

be examined.

' _ ^'^^ — ^<^^^ _ 6a;2 — 2a^ _ 4 ( a; = dc a
^ ~

Say' + 3.a2y

""

{ijay -\- Sa^)p'

~
Sp'

^ ^"
[y =

and »' =r —— when \

~
^i> \y — —a-

.
•

. p' = ± I
-

J
at the point where x z=: a and y =

'' = '© " "
a; = — a and y =

;?'
= ±

/^
P « "

a; = and y = - a.

Thus the curve has three double pomts.

13
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152. Proj). To determine whether a given curve has multipk

points of the second species.

Here the mode of proceeding is similar to that in the last propcr-

sition, but the resulting values of
jt?' prove equal although given by

an equation of the second or higher degree.

Ex. The curve x'^ + x'^y'^
—

^ax^y -f- a^y"^ = = w (1).

~ =4a:3+ 23^2/2 _i2aa:y=i0 . . (2), ~—'lx^y—Ux^^'i.a^y=^ . . (3).
GLJu CLU

From (2) and (3) a: = and y = 0, and this is the only pair of

values which will satisfy (1). Hence the origin is the only point to

be examined.

,_ \2axy—2xy'^—^x^ _ 12ay+\2axp'—2y^—4xyp'— 12x^_
2x^y

—
ijax'^-\-'2a^y 4xy-\-2x^p'

—
l2ax-^2a^p' 2a^p"

when X = and y = 0. .'. p'"^ = —— = and »' = ±0.
2a^

And the origin is a double point of the 2d species.

153. We may prove directly that at a double point of the 2cl

kind, the condition p' = 7: is always fulfilled.

Thus suppose the two branches to have contact of the w'* order.

Then the first n difftrential coefficients will be the same for the two

branches, but the (« -f- 1)^^ differential coefficient will be different

at the double point.

Let P~- + Q — (1) be the result obtained by differen-

tiating the given equation once, in which F and Q are functions of

r and y, the original equation having been freed from radicals.

By repeating the differentiation n times, we get
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in which P is the same as m (1), and ^j is a function of ir,y,and

the differential coefficients of the several orders less than {n -f- 1).

Now the {n -\- X)th differential coefficient has, by supposition, two

different values a and h for the same values of P and Q^

,'. Pa+ Qi = 0, and Pb -^ Q^ z= 0,

and by subtraction P{a — b) = 0. .'. P = since a and b are

unequal.

This value of P substituted in (1) gives ^ = 0.

' '

dx P

Multiple points of the 2d species are characterized by having but

one value (or rather two or more equal values) for -^, but several

d'^y

unequal values for -~ or some higher coefficient.

Conjugate or Isolated Points.

154. These are points whose co-ordinates satisfy the equation of

a curve, but from which no branches proceed. When p' assumes

the imaginary form for real values of a; and y, the corresponding

point will be isolated, as the curve will then have no direction
;
and

since imaginary values occur only where radicals are introduced, the

condition p' z= - will also hold true in such cases.

The converse proposition, viz. : that at a conjugate point p' will

be imaginary, is not always true
;

for if in the development

any one of the differential coefficients should prove imaginary, y,

would be imaginary also.
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To determine with certainty whether a point (rt,6)
is isolated, sub-

stitute successively a + h and a -^ h for x, and if both values of y^

prove imaginary (A being small), the point will be imaginary;

otherwise it will not.

155. If the coefficient 7)' = — be found to have multiple values,

«ome being real and some imaginary, we may regard the result ks

indicating the indefinitely near approach of a conjugate point to a

'•eal branch of the curve.

EXAMPLES.

156. 1. To determine whether the curve

«y2
_ a;3 -f 4ax2 - ba^x + Sa^ = = « . . . . (1)

has conjugate points.

^ = - 3a:2 + 8a^ - 5a2 = (2), ~=2ay = (3).
w,x dy

5
From (2) and (3), x = a and y = 0, or x =z -a and y = 0.

o

The first pair of values satisfies (1), and therefore the point {afi)

must bo examined. . ;

,
3x2 g^a- _^ 5^2 6a; - 8a 1

y = — ^ —
.^ / ; when \

2ay 'Zap' p' \y
— 0.

.•./2= _
1, p' ^ ±y=~r.

This result being imaginary, we conclude that the point examined

is isolated.

2. The curve {c^y
—

x^f z=z{x
—

a)^ (x
—

bf^ in which a > 6.

u ~. (c^y
-

a:3)2
^

(x
- af (x

-^
b)^ = (I),

^ = 2c^c^y-x^)=0 (3),

—
=:-6a:2(c2y-a;3)-.5(a;--a)*(a;-6)6-G(ar~a)»(a:~6)«=0 . . . (2>.
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Th« equations (2) and (3) give

X =ia and y = — ,
or a; = 6 and y = -j ;

both of which pairs of values satisfy (1), and therefore both require

examination.

_Qx^(c^y-x^) 5(ar
-

a)^(^
- by + 6(a;

-
af{x

- by

= 4. J^ 2-1 L^^ L.^ i-=-^ when ar=:5,

3a2
=:^-whena;i=<z.

Thus/)' is real at both points. But if we substitute b ± h for 4

hi (1), and solve with respect to y, we get

both of which values of y are imaginary when k is taken less that

a — 6
;
so that the point where x=:b and yrr

— is a conjugate point,

although p' is real.

This result is confirmed by forming the succeeding differential

coefficients
;
thus

p"=:l^Qx
+
^.^(x-a)^{x-bY-\-\6{x-a)\x-bf

+ Q{x—a) (x—b) I

= —
,
when x z=k

This is a real value also. •

But the next coefficient will contain the term G{x'-a) —Q[b—a)

which is imaginary, since a"^ b.

The value x =:z a does not belong to a conjugate point, as is .seen
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by substituting a ± h for x in (1), and solving with respect to jf,

^us,

which is real when A > 0, but imaginary when A < 0.

Cusps.

157. A cusp is that peculiar kind of double point of the second

•jpecies at which two tangential branches terminate without passing

fhrough the point.

C^usps are of two kinds, viz. :

1st. That in which the two ^

branches lie on different sides

of the tangent, as in Fig. 1.

2d. That in which they lie

on the same side of the tangent, as in Fig. 2.

dif
The test of a cusp is that ~~ shall have two real and equal values

at some point, (a.i), and that when we substitute a-\-h and a—h

for X, we shall find, in one case, two real and

unequal values of y, and in the other two "^

imaginary values. The only exception to

this is that offered by the case shown in

Fig. 3, where a cusp of the first kind occurs
u

at a point P, with the tangent parallel to the

Rxis of y. It will then be more convenient to form the value of

dx
-r-, which should be ± 0, and to try whether the successive substi-
dt/

tution of b -{- h and b — h for y will render
a?, in one case, real and

double, and iri the other imaginary. The condition ;?'
= - serves as

A guide in selecting the pdints to be examined.
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EXAMPLES.

158. 1. To detennine whether the curve (5y
—

ca;)^
= («

—
a)*

has a cusp, and if so, of which kind.

u-{hy- cxf -{x — afz^^ (1),

^ = -
2c(6y

-
ex)

_
5(a:

-
a)* = (2).

^
= 26(6y-c.:) = (3).

dC
From (2) and (3) we obtain a: = a, and y = —^

and as these values satisfy (1), we must examine the point (a, -t-)

, 2ciby -cx)-\-^ix-aY .
ixz=a

p'~—S-l——-'——^ ^=1- when ) m
,

^
2b{by -^cx) (^

=
~r

2bcp'—2c^-\-20(x-aY 2bcp'-2c^=
2by-.^c

=
2b^^-^^2fc^

^^^" ^ = ^'

.
•

. by^ - 2bcp'--c\ p'2-2-^p'=
-

-^ andp'= -^± 0.

'

.

•

. There are two equal values of
jt?',

and consequently two tan

tt.C

gential branches proceed from the point, a,
— •

Now put successively x == a -{- h, and x z=z a — h, and solve with

respect to y.

when x=a-{-h, y=z — ~j^ ^j ^wo real and unequal values.

when x=a—h, y=i ~-^ ~ two imaginary values.

cic

Hence there is a cusp at the point a,
—

,
and the tangent at thai

point is inclined to the axes of x and y.

Again, the ordinate V of the tangent corresponding to the abscissa

. 7 • "^
. / T

ac -{- ch . . . . , ^ ,

a + /i, is
-y- -tp/i = which is greater than one of the cor-
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responding values of y, and less than the other. Therefore the

branches lie on different sides of the tangent, and the cusp is of the

jfirst kind.

Remark. The kind of cusp can usually be found \qyy easily by

examining the values of the second diiferential coefficient; for the

deflection of the curve from the tangent is controlled by the sign of

—^« Hence, when the two values of this coefficient have contrary

signs, the cusp will be of the first kind, but when the signs are alike,

it will be of the second kind.

2, The semi-cubical parabola cy'^ = x^.

u—cf—x^ . . . (1),

dn

dx

dn
3x^--=0 . . . (-2), -=2cy=0...(3).

. •. a; = 0, and y == 0, and as these satisfy (1) there may be a

cusp at the origin.

,
3.i'2 iSx

/ = -— = ^r—7 = ^r—7
whcn X = 0.

""Zcy 2cp 2ep

P — =: and p' = ±0,
"Zc

two real and equal values.

Now put d- A for x in (1), and

there will result,

when a; = + A, y = two real and unequal values,

0-A, y=±y/-- two imaginary values.

.

•

. There is a cusp at the origin. Also the ordinate Y of the

tangent corresponding to the abscissa -f A. is -f p'h = 0, which

being intermediate in value between the two corresponding values

of y, the cusp is of the first kind.

159. Sometimes it is more convenient to solve the equation with

respect to y before differentiating.
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Ex. {y 5)2
z= (x-ay

y = b-{-cx' ±.{x- a)* p' = 2cx±^{x-- a)*.

Now
ij has but one value h 4- ca?^ or to speak more correctly, it

has two equal values {b -\- ca? ± 0) when x = a, and p' = 2ca dt Q,

has then two equal values also.

When x=:a + h, y= h-\-c{a-^hy±(+ h) two resil and unequal values.

" x—a—h^ y= h-\-c{a—hy±:(—h) two imaginary values.

Hence there is a cusp at the point

(a, b + ca^).
^

Also p" z=2c ±f-l{x - a)^ = 2c ±

when X ^=z a.

And since the two values of p" have the

same sign, the cusp at the point (a,
b 4- cd^) is of the second kind.

The kind of cusp would also appear by comparing the ordinate Yof
the tangent with the two values of y.

For when x = a -^ h, Y =z b -\- ca^ -\- p'h = b -{ ca^ -{• 2cah,

which is less than either value of y, when h is small.

Points of Inflexion.

160. Points of inflexion or contrary flexure are those at which

the curve changes the direction of its curvature, being successively

convex and concave towai-ds a fixed line as the axis of x.

It has already been remarked that a curve is convex towards the

axis ot X when -—- is positive and concave when -r— is negative
(JLjb (XJC

Hence a point of inflexion will be characterized by having the second

diflTerentiai coefficient aff*ected with contrary signs, at points situated



202 DIFFEEENTIAL CALCULUS.

near to, but on different sides of the point in question. But since a

variable quantity changes its sign only when its value passes through

zero or Infinity, the condition —
-|-
= or —- = oo will belong to

a point of inflexion. But the converse is not necessarily true, for

the sign of— does not always change after its value has reached

or 00 . We must therefore see whether a change in the sigQ of

dP'y
-r— will or will not occur.

We may also recognize a point of inflexion by the consideration

that at such a point the tangent intersects the curve, and therefore

the ordinate of the tangent will, on one side of the point be greater,

and on the other less than the corresponding ordinate of the curve. •

EXAMPLES.

161. 1. The cubical parabola d^y = x^,

y = —' p = —
;r-' i' = -^ = when a? =

a^ o/' a^

'
. The origin is a point to be examined.

Put X z=: -\- h, and y = y^,

X =z —
h, and y = ^g*

Then 5^.->0, _- --r \''K

dx''
~

d^
^

Hence the origin is a point of inflexion. The condition p" = oo

gives X z=: oD
, apd therefore is not applicable.

162. Sometimes it happens that two of the peculiarities which

chaiacterize singular points occur at the same point of a curve.
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Ex, a?y^
- 2abx^y

— a;5 = = w . . . . (1),

Y

^
du

^= -Adbxy-bx^ =0 (2),

^= 2a3y-2a6a:2= 0... . (3).

The equations (1), (2), and (3), _
are all satisfied by the values

a; = 0, y = 0.

Aahxy -f 5a;* ,
r a: =

and there is either a cusp or a double point at the origin, the axis

of X being tangent to the curve.

IfiCr=0 + A, y
— -— ±\/ ,

two real values, ore

greater and the other less than the ordinate (0) of the tangent.

\^ X — —
h^ y =z~^ ^\/ 4 '

^^^ ^^^^ values when

h is small, but both greater than 0.

Hence there is a double point of the second species at the origin,

jand one branch of the curve has an inflexion at that point.

163. In addition to the singular points already described, two

Other classes may be noticed, viz. : Stop Points, or those at \vl\ich a

«ingle branch terminates abruptly ;
and Shooting Points, at which

two or more branches terminate without being tangent to each

other. Both are of rare occurrence, but the following are examples

of curves belonging lo these classes.

1. y = X Ao^x. This curve has a stop point at the origin.

For, y has but one, value, and that is real vshen a; > ;
but the
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value of // is impossiMe when a: < 0, since negative quantities can

not properly be regarded as having any logarithms.

2. !/
— ^ tan""^ -, or, y = ^ cof^a;.

X

This curve has a shooing point at the

origin, for

dx

1 X
tan-i--—-—

X i \- x^
= tan-i(-j- 00

)

-^ = 1.5708 when a: = +
it

= tan-^(- 00 )=—-*= - 1.5708 when x = -
0,

and whether x be positive or negative, y will have but one value.

164. When a curve has the spiral form, and is therefore more c, i-

veniently referred to polar co-ordinates, we may distinguish tJ e

existence of a point of contrary flexure by the condition that

—= at tliat point, and that it shall have contrary signs on differ
ar

ent sides of that point. This we proceed to show.

Q Q

In Fig. 1, the curve is concave to the pole Q ;
and in Fig. 2, it is

convex.

la the first case r and p increase together^ and therefore
-j~

is posi.

tive. In the second case, p diminishes as r increases, and therefore

dp~- IS negative. Hence, in passing through a point of contrary

dt)

flexure,
~- will change its sign, becoming equal to zero at that point,

pjr -^ plainly could not b<»come infinite, since j9 cannot exceed r.
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CURVILINEAR ASYMPTOTES.

165. When two curves continually approach each other, and meet

vnly at an infinite distance, each is said to be an asymptote to the

other.

166. Prop. To determine the conditions necessary to render two

curves asymptotes to each other.

Let the curves be referred to rec-

tangular axes, and let the ordinates

iJP and EP\ corresponding to the

same abscissa OE = x^ be express-

ed by means of the equations of

thfc curves in terms of x. The

difference PP' = y^
—

y can then be expressed in terms of x, and

if tbiv difference be reduced to zero by. making a; = oo
, (being

finite for all other values of x,) the curves will be asymptotes to

each other.

This condition is fulfilled only when the difference (expanded into

a series, contains none but negative powers of
a;, without an abso-

lute term, for in such cases only will the difference Vi
— y become

zero when x =: cc .

Hence we must be able to express yx~ V in the form

y^
—

y = Ax-<^ -f Bx-^ 4- Car-" + &c.,

or the difference x^
— x of the two abscissae, corresponding to the

same ordinate, must admit of being expressed in the form

Xi
— x = A^y-^x + B^y-K -f- C^y^x + &c.
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167. Cor. If there be three curves, (^), (^), and (C), and if

the difference of the corresponding ordinates of [A) and (^), and

that of the ordinates of (^4) and (C), be thus expressed.

y2
—

yi = Ar-^ + Bx-^"-^'"' + Cx-^''-^'''^ (1).

2/3
-

yi = B,x-<^-^'^ + Ci.r-^«+^> + &c, . . . . (2).

the three curves will be asymptotes to each other, and, moreover,

the curve (C) will lie nearer to i^A) than [B) does. For, by

making x sufficiently large, the term Jar-", or — may be rendered

greater than the sum of the succeeding terms of (1), or greater than

the sum of those terms increased by the series (2).

168. Cor. The curve whose equation can be written in the f(jrm

y = n^Ax'' -\- Bx^ -\- Cx" + Ji.r-«i + B^x-^x -|- C^r-^^i + &c.,

can have an infinite number of curvilinear asymptotes.

For by taking any curve whose equation is of the form

y^z=z D + Ax^ + Bx^ + Cx"" + ^2^"^ + B^prK + &c.

in which the absolute term i>, and the terms involving the positivt*

powers of
a;,

are the same as in the given equation, the difference

l/\
~ y will reduce to zero when a; = oo .

169. ProiJ. To find the general form of the expanded value of

the ordinate in such curves as admit of a rectilinear asymptote.

Since the equation of the rectilinear asymptote has the form

y ~ AyX -\- j5i, the equation of the desired curve must take the forna

y = A^x + ^1 + Jar« 4- Bx-^ + Cxr<^ + &c.

170. 1. The common hyperbola a^y^
_ ^2^2 _ _ ^^2^2^

y = ± -(a:2
_ a2)*= dt-{x- \a?jr-^ -\a^x-'^

-
&c.)

IJut y = zh -
a; is the equation of two straight lines passing
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through the origin and equally inclined to the axis of x. Hence

these lines are asymptotes to the hyperbola.

2. To determine whether the curve y z= b{x^ —a^) has either

rectilinear or curvilinear asymptotes.

By expansion

y zzz
b{'jcr^ + -a2a:-3 ^ &c.) = hx-^ + - ba?x-^ + &c.

But y = is the equation of the axis of x. Hence that axis is a

rectilinear asymptote to the curve.

To discover whether there is an asymptote parallel to the axis

of y, let the equation be solved with respect to x\ thus

a; = dr (a2 + 62^-2)*
= ± (^ .|. h2^-\y-2

_
<^c.)Z

Here it is evident that two lines parallel to the axis of y, and at

distances therefrom equal to 4- a and — a respectively, will be

asymptotes to the curve, their equations being

X =z -\- a and x z= — a.

The hyperbola whose equation (referred to its asymptotes) i«

xy =^ b will be a curvilinear asymptote, and there may be found any

number of other curvilinear asymptotes.



CHAPTER VII.

TRACING OF CURVES.

171. In this chapter it is proposed to give such general directions

as are necessary in tracing a curve from its given equation, and in

discovering the chief peculiarities which characterize it.

The following steps will be found useful :

1st. Having resolved the equation, if possible with respect to y,

let ditTerent positive values be assigned to x from a: =: to .c = <x,

and let those points be noticed particularly wh3re y = 0, y = x, or

y zzz an imaginary value. The first indicates an intersection with

the axis of x, the second shows the existence of an infinite branch,

and the third gives the limits of the curve in the direction of x

positive.

2d. Aspign to x all negative values from x = to x = -•
oo,

and observe the same peculiarities with respect to y as when x was

positive. In both cases the negative as well as the positive values

of y must be examined so as to include the branches below as well

as those above the axis of x.

3d. Determine whether the curve has asymptotes, and determine

their position.

4th. Find the value of the differential coefficient -f- and deter-
ax

mine from thence the angles at which the curve cuts the axes, as

well as tlie points at which the tangent is parallel to either axis.

dhj
5th. From the value of -r-— ascertain the direction of the cur-



TRACING OF CURVES. 209

vature and the positions of the points of contrary flexure when

they exist.

6th. Determine the positions and character of the other singular

poir.ts, if there be such.

EXAMPLES.

172. 1. Let tho equation of the proposed curve be

x^ — n^

Resolving with respect to y we have

and since each value of x gives two values of y numerically equal

but having contrary signs, the curve must be divided symmetrically

by the axis of x. *

\^ X be positive and numerically less than a, y will be imaginary,

and there will be no point of the curve between the axis of y and

a parallel thereto at a distance equal to a on the right of the

origin.

When a: — a, y = 0, when a: > a, y is real, and continues so for

all greaJer values of
.r, becoming infinite when a; = od .

If x be negative and numerically less than &, y is imaginary, and

there is no point between the axis of y and a parallel thereto at the

distance ::=
6, on the left of the origin.

When x =. —h^y becomes infinite
;
and when re <— 6, that is,

negative and numerically greater than 6, y becomes real and con-

tinues to increase without limit as the numerical value of x increases,

being i'lfinite when x z=z — oo .

Th;:s it appears that the curve has six infinite branches.

Again, since x =. —h makes y infinite, there is an asymptote

parallel to the axis of y, and at a di^tance therefrom equal to — 6.

14
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Also by resolving the given equation with respect to y, anc

expanding, we get

y= -'^-4—('-#(-4)"'
{x 4- by

(1
7 Q 12 \ 1

^ ~~
o
~ + Q ~i' &;c. I = db (^

—
^ ft + terms involv

ing powers of x).

Hence y __ ±i{x
— -b) is the equation of two straight lines, which

are asymptotes to the curve, and are inclined to the axis of x at

.nngles of 45'^ and 135° respectively.

If we combine this equation of these asymptotes with that of the

curve, we shall find that each of the asymptotes intersects that

branch of the curve which lies on the right of the axis of y.

Forming the value of —- from the equation of the curve, we have

di/ 2x^ 4- Sbx^ + a^

dr
—

4 *

)l{x^
- a^Y [x + b)^

which, placed equal to zero, gives the cubic equation

in M^hich there must be one real and negative root, since the absolute

term is positive. The other two roots are imaginary, as is easily

Keen from the form of the equation. Thus there are two points

corresponding to the same negative abscissa, one above and the

other equally below the axis of x. at which the tangent is parallel to

the axis of x.

By making ~ z=i co
^
we get ar = a or a? = — 6. The first corres-

ponds to a point at which the curve intersects the axis of x perpeiv
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dicularly. The second belongs to the point of contact of one of the

asymptotes as before seen.

By forming the value of
-7-|,

we should find that the curve is con-

cave to the axis of x when x is positive, and convex when x is

negative.

The curve has neither multiple points, cusps, conjugate points, nor

inflexions.

2, The curve whose equation is if

X* — a%2

2x — a

When a: = 0, y = 0, and therefore the curve passes through the

origin.

When X = -^ y =zdt ao
,
when x z= -\- oo

, y
—

-{- ao
,
and when

ar = —
oo, y = — CD .

Thus the curve has four infinite brancnes.

When X = a, or ar = —
a, y = corresponding to two interseo

tions with the axis of x.

Since ^ =
^

renders y = rt oo
,
there is one asymptote whose

a
equation is * = o*



212 DIFFERENTIAL CALCULUS.

. Also, by resclving with respect to y, and expanding, we get

1 n
= -Y (a? + - -h terms involving negative powers of ^)

y = — [a:
+ -

J
is the equation of a second asymptote.

Forming the value of the differential coefficient —
,
we have

dy

dy 6ar* — 2a?x^ — Aax^ + 2a ^a:

This expression becomes infinite when x =: -^ when a: = ± a, and

when a; = 0.

Hence the curve cuts the axis of x perpendicularly at the origin,

and at distances therefrom = -f a and — a respectively. The value

dv
of v^ becomes zero when 6a;* — Aax"^ — Sa^^e^ _j_ 2a3^ __ q which

dx

corresponds to a value of x between and — a. The corresponding

value of y is a maximum.

There are inflexions at the points where a: = a and ic = — a, as will

readily appear by substituting for x values alternately a little greater

and somewhat less than a, and similarly for values greater and less

than — a. For if x be rather greater than a in the equation

x^ — (jfix^

y3 = -— —iV will be positive ;
but if a; be somewhat less than

<*a? "~~ (I

a, y will become negative. Thus the curve will cross the tangent at
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the point where it meets the axis. The same will be true when rr= —a.

There will be a third inflexion between x = and x =z -a, for the

curve touches the axis of y at the origin, and a parallel asymptote at

the distance - a from that axis, and, therefore, must chan£;e the

direction of its curvature between those two parallels.

Finallv by making the value of -— = -we shall find that there
(tec \J

is a cusp of the first kind at the origin. The form of the curve is

represented in the diagram.



PART III.

THEORY OF CURVED SURFACES.

CHAPTER I.

TANGENT AND NORMAL PLANES AND LINES.

173. The consideration of surfaces affords an application of the

vheory of functions of two independent variables. Thus if x, y,

ind z, be the co-ordinates of any point in the surface, and z =z (p(x,y)

*he equation of the surface, the values of x and y may be assumed

arbitrarily, and that of z will become determinate.

174. Prop. To determine the general differential equation of a

plane drawn tangent to any curved surface at a given point {x^, y^, Zj)

situated in the surface.

Let the surface and plane be intersected by planes respectively

parallel to xz and yz, and passing through the point (x^, y^, z-^).

The equations of the line cut from the tangent plane by the plane

parallel to ccz will be of the forms

x-x^ = t{z-z^) (1), and y = y^ (2),

and those of the intersection parallel to yz will be of the forms

y — y, = s(g
—

^i) . . . . (3) and x = x^ (4).

Also the equation of the tangent plane, which contains these lines,

will have the form

A(x - X,) -f B(y -yi)+C(z-z,)=0.,.. (5).

The equation of its trace on xz is A(x—Xi)= — C(z—z^)-\-jByi . . (6).

"
yz^'B(y-y,)=-C{z-z,)+ Ax,.,(7),
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But the trace (6) is parallel to the intersection (1) (2), and the trace

(7) is parallel to the intersection (3) (4).

C , C
.-. t = and s = —^«A Jo

which values reduce (5) to the form

z-z^=z-(x-x^)-\--(i/ -y^) (8).

Now since the intersections (1) (2) and (3) (4) are respectively

tangent to the corresponding curves cut from the surface, we must

,
dx,

, dy, \ dz, ,1 dz.
have t — ~~ and s = -r-^ or - = -—^ and - =z -—^»

a^i dz^ i dXi s dy^

Hence (8) reduces to

z — z^ = —-
(x
—

x^) 4- —^ {y
~

l/i)
• ' ' (^)» t^G desired equation.

The expressions
-~ and —^ are the partial differential coeffi-

dx^ dy^

cients derived from the equation of the surface, and they will have

the same values at the point {x^^y^z^^ as the similar coefficients de-

rived from the equation of the plane, tangent at that point.

175. Cor. If the equation of the surface be given under the form

u = cp(x, y, z,)
= 0,

the equation of the tangent plane will take a more symmetrical

form. For we then have (Art. 57)

r^^^"} _du du dz rdu~\ du du dz

Ldxj dx dz dx
~

^

L dyj
~

dy dz dy
~ '

du du

XT dzy dx-, dz-, dy-.Hence —i = -i, -—^ = fi,
dx^ du

dy-^^
du

dz^ dz^

and by substitution in (9) and reduction, we obtain the more sym
metri(;al form

/ \
^^

, / \
^^

, / \ du
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176. Prop. To determine the equations of a line normal to a

curved surface at a given point {x-^.y^z-^)

The equations of a line passing through the point {x^.y^^.z.)., have

the forms

x-x^ = t{z- 0i), y -y^ = s{z
-

z^) ;

ahd since the normal line is perpendicular to the tangent plane, we

have by the conditions of perpendicularity of a line and plane

(-4
= Ct and B = Cs), the following relations:

du du

. _^ _ dz^ _ dx^ B
dz-^ dyj

U dx^ da
~

C
~

dy-^

~
au

dz^ dz-^

These conditions give for the equations of the normal line

L or
^

^

,

dz
, \ r.\ \

du .
 du

,
.

177. Cor. If
^j, ^2, ^3, he the angles formed by the normal witl

the axes of .r, y, and 2, respectively, or those lormed by the tangent

plane with the planes of yz., xz, and xy, w^e shall have

dz-^ du

A dx^ d.i\

*~.^/3M^i^2^6'2~ idzl^^dz^

~~
/d^'~a^'~T^'

V d.i^^

"^
dy^^

"^ V dx^^'^dy^^'^dz^^

dz^ du

dyi dy^
cosfl, =

Vdz^
dz-^ Idu^ du^ du^

^"^^^ ydJ^^d^^^Jz'}

cos ^3 =

du

1 ~dz^

fdk^ dz.^
, [d^ ,

du'^ du^

d^'^d^^



TANGENT PLANES TO CURVE SURFACES. 217

178. Prop. To determine the equations of a line drawn tangent

to a curve of double curvature, at a given point (^i,yi,^i), on the

curve.

The curve will be given by the equations of its projections on two

of the co-ordinate planes, as arz, and yz\ thus

F{x, ^) ^ 0, . . . . (1). and 9(y, ^) = (2).

The equations of the required tangent will have the forms

X -x^ = t{z-z^), (8). and y - yi = s{z
-

z^), (4);

and since the projections of the tangent are tangent to the projections

of the curve, (-3)
and (4) will take the forms

^-^l = -^^{^-^l)^"{^)'
and 2_^j =

-^-l(y-yj),
.. (6).

in which equations the values of -r-^ and -— are to be derived
dx-^ dy^

from (1) and (2), the equations of the given curve.

179. Prop. To determine the equation of a plane drawn through

a given point of a curve of double curvature, and normal to the

curve at that point.

The equation of a plane passing through the point (^1,^1,2^1), is of

the form

A{x-x,) + B{y - y,) + C{z
-

z,)
= 0. . , . (1).

But, since the plane is to be perpendicular to the tangent line, we

must have the conditions

^ = (7/=C^, and ^=:(7s=e^\
dzy; dz^

which values reduce (1) to the form

(-—
.)|;+(2/-.,)|+(^-..)=o,

.

the required equation.
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EXAMPLES OF TANGENT PLANES TO SURFACES.

180. 1. The tangent plane to the sphere whose equation ia

«* = iC^ -f- 2/2 _|_ ^,2 — ^2 __
Q^

XT ^^ ^ da ^ du ^
Here -— =z 2a;, -r- = 2y, -r- = ^z.

ax ay dz

Therefore by substitution in the general differential equation of a

tangent plane to a curved surface, we get

-\-2z^{z-z^)=0.

.
•

. xx^ 4- yVi + ^^i
= ^\ 4- 2/i^ + z-^

= r^, the required equation.

2. The ellipsoid ifrir^ + C + ^-l^O.
a^ b^ c^

du _ 2x du 2y du 2z

^""^' dij"^!^' ~dz^'^'

•
•

• ^(^^
- ^0 + T2'(y

-
yi) + ^IH^

-
^i)
= 0.

^2W 71/ .

^2

/»•'>• ?y?y zz

or,
—-- +^ -I

—
^7
= 1, the required equation of the tangent

a^ b^ c^

plane.
x'^

rhp. livnorlinlnirl nf r»nA sViPP.t ->/ =r — -I-

b'^ C2

iK"^ w^ 2f2

3. The hyperboloid of one sheet ^ = -t+75 5
1 =0.

du 2a; du 2y c??/ 2^

^
~

'^' Ty~l^' 1z^~"^'

.
•

. -y + ^|- ^*

— 1 = 0, the equation of the tangent plane.
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4. The conoid u = c^-x^ + yV _ ^2^2 _ 0.

<^u , „ du ^ „ du _ „ ^ ^

dx '

rfy
*"

c/2
^

or, c^ar^i + z-^yyy^ + (y^^
_

^2)^2^ = y^z^^ the equation of the

tangent plane.

CHAPTER II.

CYLINDRICAL SURFACES, CONICAL SURFACES. AND SURFACES OF

REVOLUTION.

181. Prop. To determine the general differential equation of all

cylindrical surfaces.

These surfaces are generated by the motion of a straight line,

which touches a fixed curve, and remains parallel to a fixed line

in every position.

Let the equations of the fixed curve or directrix be

F{x,z)=.0,,... (1). i^,(y,.)=0,....(2),

those of the generatrix, in one of its |)ositions, being

x = tz + a, (3). y=:sz + b, (4).

Since the generatrix continues parallel to a fixed line, the values

of t and 5 will continue constant for all positions of the generatrix,

but a and b will vary with its position.

Eliminating x between (1) and (3), and y between (2) and (4),

we get one rehition between z and cr, and a second between z and 6.

Then combining these equations to eliminate 2, we obtain a relation

between a and
/;,

which may be written

6 = 9c/, ... . (5).
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But from (3) and (4), a z=l x — tz, and b =
i/
— sz.

,' . (5) becomes y — az = ip(x
—

tz), .... (G).

This is a general equation of all c\lindrical surfaces, but it con-

tains the unknown function cp. To eliminate this function, differen-

tiate (t))
with respect to x and y successively, and divide the first

result by the second
;
thus

dz d:(x
—

tz) d(x
—

tz)

dx
~

a{x
—

fz) dx

and
dz d (x

—
tz) d{x

—
tz)

dy d[x
— tz) dy

dz dz

dx dx

<iz dz
1 — if

— — t—
dy dy

whence i—- 4- ^-y- = 1 . • • . ("7),
the required equation.

182. Cor. if we denote the primitive or integrated equation of a

cylindrical surface hy f{x^y^z) z=z u =i the differential equation (7)

may be reduced to a more symmetrical form. For since

du dn

dz dx J ^^ _ ^y

dx da dy du

dz dz

we obtain by substitution in (7) and reductior.

dv da du . ,^.

a form often more convenient than (7).

183. Pr<jp» To determine the equation of the cylindrical surface

which envelops a given surface, and whose axis» is parallel to a

given line.

The enveloping and enveloped surfaces being tangent to each
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Other, will hiave a common tangent plane at every point in the curve

of contact, and the equation of one of these planes will be

in which z^ y^ z^ refer to a point of contact. Moreover the differen-

, , a- ' dzi dz-i du du du .
, , ,

tial coemcients —-^5 —— or --.
—

?
-—

»
-— are the same whether de-

axy ayj ax^ dy-^ dz^

rived from the equation of the cylinder or from that of the enveloped

surface. Hence, if we form the differential coefficients from the

equation of the given surface, and substitute their values in the dif-

ferential equation of the cylinder, the result will characterize the

points of contact, being the equation of a surface containing those

poilits. This equation, when combined with that of the enveloped

surface, will give the equations of the curve of contact, and ihence

the cylinder can be determined.

184. ^Jc. A sphere M = x^ -{- y^ -^ z^ — r^ =0 is enveloped by
a cylinder whose axis is parallel to the axis of ^

;
to find the curve

of contact.

Here we have ar = a the equation of the projection of the generatrix

on xzj and y = 6 the equation of the projection of the generatrix on yz,

.'. t = 0, s = 0.

Ai du ^ dti ^ du ^^'^° ^ = 2^'
Ty
= ^^' ^ = ^-

Hence by substitution in (8),

0.2x -\-0.2y + 2z = or « = 0,

and the points of contact all lie in the plane of xy.

Combining the equations x'^ -{- y^ -\- z"^ — r^ =z and 5 = 0,

there results

a;2 -(- y2 __j.2 _ 0.
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.

•

. The curve of contact is a great circle of the sphere, as might

have been foreseen.

185. P/o/j. If any surface of the second order be enveloped by a

cylinder, the curve of contact will be an ellipse, hyperbola or para-

bola, or a variety of one of those curves.

The general equation of surfaces of the second order is

.•.^
= Dz-i-2Ex-\'Fy-^l p = Bz-^2Cy + Fx + H,

du~= By + 2Az-\- I)x-{- G.

' '

^Tx "^'^ ^ Tz -<^^+2J5'^+i^y+/) ^s{Bz^2Cy-^Fx^H)

+ (% + 2.42H-i>ar+ (?) =0,

which is the equation of a plane.

Hence the points of contact are confined to one plane. But any

section, by a plane, of the surface represented by the equation (1).

will necessarily be a line of the second order, and therefore the

truth of the proposition is apparent.

Conical Surfaces.

186. Prop. To determine the general differential equation of all

conical surfaces.

These surfaces are generated by the motion of a straight line

which touches constantly a fixed curve snd passes through a

fixed point.

Let the equations of the directrix be

i^{:r,^)
= . . . . (1), F,(,j,z)=0....(i);

those of the generatrix in one of its positions being
t

X — a — t{z
—

c) . . , . (3), and y — b = s{z
—

c) . , , . (4).

where a, b, and c, denote the co-ordinates of the fixed point or vertex.
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The quantities t and s vary with the position of the generatrix,

hut a, 6, and c, are constant.

Eliminating x between (1) and (3), and y between (2) and (4), we

i:et one relation between z and /, and a second between z and s.

Then combining these equations to eliminate 0, we obtain a relation

between t and s, which may be written

s — (^t (5).

But from (3) and (4), t^
^ ~

^, and s = ^^^^.
^ '

z — c z — c

.
•

. (5) becomes — = 9 (6).

This is an equation of conical surfaces, but it contains the unknown

function
(p.

To eliminate this function, differentiate (6) with respect

to X and y successively, and divide the first result by the second
;

thus

_ y — fe dz
d^[^ ] d[ ] _ dcp[ ] pi X — a dz

[1
X — a dz\

z—G {z
— cY dxj{z-cf dx d[] dx d^] Lz-G {z
—

cf

and

1 y — h dz
__ G?p[ ]

c?
[ ] _ c?(p[ ]

r x — a dzl

TTc
"

(z
- cf

'

Jy
~
Tf ]

^
~di'~ ~d[]

^
L (z-cfd^T

1.

Now by division

. . dz . dz

dz dz
.

•

. 2 — c =
(a;
—

a)
— 4- (y

—
b)
— • • •

(7) the required equation.

187. Cor. If we denote the primitive or integrated equation of a

conical surface by / {x, y, z) z= u =: 0, the differential equation (7)

may be reduced to a more symmetrical form.



du
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centre on the axis of y at a distance -b from the origin, the points of

contact must lie in the surface of such a sphere.

By combining the equations of the two spheres, we get

by = 7"^ or y =z —— and x^ -\- z^ — —— (62
—

r^).
6 O'^

Hence the curve of contact is a circle perpendicular to the axis o*

y, and at a distance -7- from the origin.

189. Prop. If any surface of the second order be enveloped by a

cone, the curve of contact will be an ellipse, hyperbola, or parabola,

or a variety of one of these curves.

The general equation of surfaces of the second order is

Az'^-\-Bzy+Cy'^+ Dzx^Ex'^-[-Fxy+Gz+Hy-[-Ix+K=:0=u..{\).

(Lit UlJ

.'.—=Dz+Fy-\-^Ex+I, —^Bz^Fx-^'^Cy^-H,

^ = By -{- Ifx + 2Az -{- G.

= [Bz -hFy+ 2Fx+I] {x-a)-i- [Bz + Fx -{- 2Cy + H] (y-b)

-f [By -{- Bx -{- 2Az -\- G] {z
—

c)
= 0,

or, 2[Az^ + (7y2 -^ Ex^ + ^[Bzy + Bzx + Fxy]

+ [G - Ba- Bb- 2Ac]z + [H - Fa - Be - 2Cb]y

+ [I-Fb -Be- 2Fa]x- [Gc -{- lib -^ la] =0 . . . (2).

By combining (1) and (2), we get

[G + Ba -\- Bb -\- 2Ac] z + [H + Fa -\- Be -\- 2Cb]y

-f [I -\- Fb + Be + 2Fa]x -h 2K -\- Gc -^ lib -{- la = 0.

This is the equation of a plane, and therefore the curve of contact

is the intersection of the given surface by a plane, and consequently

an ellipse, hyperbola, or parabola.

15
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190. Prop. To determine the general differential equation of all

surfaces of revolution.

Let a: = ^2 + a . • . . (1) ) , ., ,. ^ ^u^ '^

J.
be the equations of the axis.

y=^sz-\-h (2) j

J^(:r,0)
= . . . . (3), and F^{y,z) = ^ . . . . {\\

those of the generatrix.

The characteri^ic property of this surface is, that every plane

section perpendicular to the axis is a circle. Now the equation of a

plane perpendicular to the line (1) (2) is

z-\- tx ^ 8y — c,

and the circle cut from the surface by this plane may be supposed

situated on the surface of a sphere whose centre may be assumed at

any point on the axis, and whose radius will be determined by the

value of c, when the centre has.been chosen.

Take the centre of the sphere at the point (a, i, 0), where the axis

pierces the plane of xy^ and the equation of the sphere will be

{x
- ay 4- (y

— by + 22 _ j.2^

But r and c are mutually dependent upon each other, which fact

may be indicated by the equation c =
(p(r^). Hence

z + tx-i-sy = (p[{x- af Ar {y
- bf -\- z'^'] (5).

To eliminate the unknown function 9, differentiate (5) with respect

to y and x successively, and divide the first result by the second.

. ^4.,_MJx^ and ± + ,-<^*n^''[].• ' J TO — jr T A -3 ana ——
\- i — x ^—r

ay dy \ ay dx dy \ ax

dz
r :

^^

. dy __''_ dy_^' '

dz dz'

dx dx

or
{x-a-tz)~-(y-b-sz)-£ ^{x-a)s-{y^b)t=0 . . . (6),

which is the required equation of surfaces of revolution.
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Cor. When the axis of revolution coincides with that of z^ we have

^ = and .<? = 0, a = and 6 = 0.

dz dz
. •. (6) reduces to a:— -y— = 0.... (7).

191, Prop. A given curved surface revolves about a fixed axis ;

to determine the surface which touches and envelopes the moveable

surface in every position.

The required surface will obviously be a surface of revolution,

whose generatrix will be the curve of contact of that surface with

one of the moveable surfaces.

Hence if we determine the values of the differential coefficients

-— and -r- from the given surface, and substitute them in the gene-
ix dy

°

ral differential equation of all surfaces of revolution, the result will

characterize the points of contact, being the equation of a surface

containing those points. This equation, combined with that of the

given surface, will give the equations of the curve of contact or the

required generatrix.

192, 1. A right cone with a circu-

lar base, whose vertex is at the origin,

and whose axis coincides originally

with the axis of x^ is caused to re-

volve about the axis of ^ : to deter-

mine the form of the enveloping sur-

face.

Put the semi-angle ^OC of the

:one = v, and tan v — t.

Then the equation of the cone, in

the position AOB will be

^2 _^ y2 ^ fly.2^

dz — and

s2 = t^x^

dy

(1)
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which values substituted in the differential equation of surfaces of

revolution, viz.

dz dz ^ . xy , a^xyx—-y— =
(i^ gives -^H ^ = 0.

dy dx z z

,' . x =1 or y = 0.

Combining the first of these results, a; = 0, with the equation of tlie

cone, we get

^2 _|_ ^2
_ Q^

.
2; =r and y = 0,

which conditions apply to the origin exclusively ;
but the second

result y = 0, gives by combination with (1)

z"^ r= fx"^' or z z= diz tx and y = 0,

which are the equations of the lines OA and OB.

Hence the required envelope is a double cone generated by the

revolution of the lines OA and OB about OZ.

2. A sphere (.r
—

a)^ -f- (y
—

i)2 -|- ^^ — r^, revolves about the

•xis of 2
;
to find the enveloping surface. Here we have

dz
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When o? -\- h'^ = r^, this reduces to

^2 _^ y2 _j_ ^2 _ 2r(a:2 _|. 2/2)*= ;

and when a = 0, b = 0, x^ + y"^ -{- z"^ =
r"^^

the equation of the sphere.

/|j2 y'2i ^2
3. An ellipsoid

— -f^ -}-—=: 1, revolves about the axis of y ;^
a^ 0^ c^

to determine the enveloping surface.

The differential equation of the surface is, in this cas

Also,



CHAPTER III.

CONSECUTIVE SURFACES AND ENVELOPES.

193. Ill the last chapter we have presented some examples of

surfaces enveloping a series of other surfaces, but in the only case

considered, the enveloped surface was supposed to be of invariable

form, and its change of position was effected only by a revolution

around a fixed axis. In that case, the enveloping surface was neces-

sarily a surface of revolution.

It is now proposed to consider the envelopes to any series of con-

secutive surfaces.

194. If different values be successively assigned to the constants

or parameters which enter in the equation of any surface, the several

relations thus produced, will represent as many distinct surflices,

differing from each other in form, or in position, or in both these

particulars, but all belonging to the same class or family of surfaces.

When the parameters are supposed to vary by infinitely small in-

crements, the surfices are said to be consecutive.

Thus let F{x^ y, 2;, a) = 0, .... (1), be the equation of a surface,

and let the parameter a, take an increment A, converting (1), into

F(x, y, z, a -{- h) = 0, . . . . (2) ;
then if h be supposed indefinitely

small, the surfaces (1) and (2) will be consecutive. Moreover, the

surfaces (1) and (2) will usually intersect, and their intersection will

vary with the value of h, becoming fixed and determinate when the

surfaces are consecutive. *
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195. Prop. To determine the equations of the intersection of con-

secutive surfaces.

To effect this object, we must combine the equations

F{x,y,z,a) = 0, . . . , (1); and F{x,y,z,a-^ A) = 0, . . . . (2),

and then make h = Q.

By reasoning precisely as in the case of consecutive curves,

(Art 143) we prove that the two conditions

i^(^,y,.,a) = 0,....(l), and ^^^iMI = 0, . . . . (3),

must be satisfied at the same time.

By combining these equations, so as to eliminate first y, and thes

a:, we shall have the equations of the projections of the required in-

tersection on xz^ and yz.

196. Prop. The surface which is the locus of all the intersections

of a series of consecutive surfaces, touches each surface in the

series.

If we eliminate the parameter a between the two equations

F{x,y,z,a) = (1), and 5^'-^) = 0, . . . . (2),

the resulting equation will be a relation between the general co-ordi-

nates x^ y, 2;,
of the points of the various intersections, independent

of the particular curve whose parameter is a, or in other words, the

equation of the locus.

Resolving (2) with respect to a, the result may be written

a = (p(x, y, z),

and this substituted in (1) gives

F[x,y,z,cp{x,y,z)] = 0, . . . . (3),

which will be the equation of the locus.

Now differentiating both (1) and (3) first with respect to x, and

then with respect to y, we readily prove, precisely as in the case of
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dz dz
consecutive curves, that the values. of -7- and -7- are the same

dx dy

whether derived from (1) or (3). Hence the two surfaces (1) and

(3) will have a common tangent plane, and will therefore be niutu

ally tangent to each other at all points common to 'those surfaces.

197. The surface (3), which touches each surface of the series, is

called the envelope of the series.

198. Ex. To determine the envelope of a series of equal spheres

whose centres lie in the same straight line.

Assuming the line of centres as the axis of ar,
the equation of one

of these spheres will be of the form

(^
_

a)2 _^ 2^2 4. ^2 _ ,.2 ^ (1),

in which a is the only variable parameter.

Differentiating with respect to a we get

— 2a: + 2a = (2).

From (2) a =r
a:, and this substituted in (1) gives

2/2 _|_ ^2 _ ^2 _ 0^

This is the equation of a right cylinder with a circular base, the axis

of which coincides with that oi x.
• '

199. When the equation of the proposed surface contains two

parameters a, 6, independent of each other, we must have the three

conditions

F(.,y,.,a,l,) = . . . (1), '-^^^^^^ = . . . . (2).

and ^^Lfl^ = 0....(3).db ^

And by eliminating a and b between (1), (2), and (3), the equation

of the required envelope will be obtained. Also, if the proposed

equation should contain three or more parameters a, b,c, &c., two of

which, a and b, are arbitrary, and the others connected with them
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by given relations, such relations will enable us to eliminate the ad-

ditional parameters and to obtain a final equation between x, y, and z.

jC V z
200. 1. A plane whose equation is —h t + - = 1? Js touched in

^. a c

every position by a surface, the variable parameters a, 6, and t'being

connected by the relation ahc z=z m^ : to determine the equation of

the surface or envelope.

From - + r-l 1=0.. ..(1) we obtain by differentiation.
a c

^ ''

regarding a and h as independent, and c dependent upon them,

X z dc ^ ,^, , y z dc ^ ,^^

But the condition ahc = m^ . . . . (4) gives by dllferentiation

dc dc
be -{- ab -J-

= 0, and ac -}- ab —- = 0.
da ab

dc c
^

dc c
.'. — = 5 and -—=:—-.

da a db b

which values substituted in (2) and (3) reduce them to the forms

X z c ^ -, y z c .

, X z ^ y z .

whence - = - and - = —
a c be

These Values in (1) £?ive
- H f - = 1,^
c c c

or — = 1. .

•

. c = 32.
c

And similarly b = 3y, a = Sx.

Finally by replacing a, b, and c, in (4), by their values just found, we

obtain xyz = — as the equation of the enveloping surface.

2. To find the envelope of all the spheres whose centres lie in the



^34 DIFFERENTIAL CALCULUS.

same plane, and whose radii are proportional to the distances of

their centres from a fixed point in that plane.

Assuming the plane of the centres as that of xy^ and the origin at

the fixed point, the equation of one of the spheres will take the form

{x
- af + (y

_
6)2 4- s2 _ ,.2 ^ (1),

in which a, 5, and r, are variable parameters, a and b being inde

pendent, and r connected with them by the relation

r2 =i: t'^{a? + b"^)
. . . . (2) where t is a constant.

Eliminating r between (1) and (2) we have

(x
-

a)2 + (3/
- by 4- s^ - t\o,'^ 4- ^^) = (3).

Differentiating with respect to a and b successively,

_ {x- a) -fa = (^ .. . (4), and -
{y
—

b)
- t% = . . . (5).

X It

,'. a =!
^,

and b —
;

which values in (3) give

(a;2 + y2)(^2
_

^4)
^ 2^2 (1

-
^2)2 or a;2 4- y2 =. —— z^.

1 -f

This is the equation of a right cone with a circular base, its axis

being coincident with that of 2, and its vertex at the origin.



CHAPTER IV.

CURVATURE OF SURFACES.

201. Two surfaces are said to be tangent to each other when they

have a common point, {x, y, z,) and a common tangent plane at that

point.

Let the equations of the two surfaces be

F(X,Y,Z,)=0..,.(1), and (p(a:,y,^)
= . . . . (2).

The analytical conditions necessary for a simple contact, or contact

of the Jirst order, are

„ ,_. ^ dZ dz dZ dz
' ^' ' dX dx\ dY dy

If the second differential coefficients, derived from the equations of

the two surfaces be also equal, viz. :

'

d'^Z dH d?Z d'^z ,
d'^Z d'^z

and
dX^~dx^' dY^~ dy' dXdY dxdy

'

the contact is said to be of the second order. If the third differential

coefficients be also equal, the contact is of the third order, &c.

202. In order to show that the contact will be more intimate as

the number of equal differential coefficients becomes greater, let the

arbitrary increments h and k be given to the independent variables,

X = a: and Y = y, converting Z and z into Zj and z^, we shall then

have (Art. 82)

'- ^dX'l 'dY'\^dX^'l.2^ dXdY
'

I'^dY^'Trz'^'
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dz h dz h d'^z K^ d^z hh d'^z k^

and when Z zzz z.

VdZ dzlh VdZ dzlk nPZ d^zl h^

^^
~

^'
-
\jlx~dx\\^ UY'TyAi'^ L'dX^'~d^^\Tyz

^' ^'''

Now the value of this difference will depend (when h and k are

very small), chiefly on the terms containing the lowest powers or

h and k. If, therefore, the first differential coefficients, derived from

the equations (/I), (^), and (C), of three surfaces, at a common

point, be equal, and if the second differential coeflicients, derived fiom

(^4) and (^), be also equal, but those of [A) and (6') unequal, the

surfaces {A) and [B) will separate more slowly, in departing from

the common point than will the surfa<-es (^A) and (C).

203. The order of closest possible contact between one surface

entirely given, and another given only in species, will depend on the

number of arbitrary parameters contained in the equation of the

second surface.

Thus a contact of the first order requires three conditions, and

therefore there must be three 'arbitrjiry parameters. A contact ol

the second order requires six parameters; one of the third order,

ten parameters, &c. Hence the plane, whose equation has three

parameters, may have contact of the first order. The sphere cannot,

except at particular points, have contact of the second order, since

its equation has but four parameters ;
but of two tan^^'i'- spheres,

one may have closer contact than the other.

The ellipsoid, hyperboloid, and paraboloid, can eac)' have contact

of the second order.

204. Prop. To determine the radius of curvat« re of a normal

section of a given surface at a given point.

Assume the tangent plane at the given point as Ibtt of xy\ the

normal coinciding with the axis of z.



CURVATURE OF SURFACES. 237

Let OX^ be the trace of the se-

cant plane on that ol xy^ forming

with OX an angle 1 AOB the

normal section, and P a point in

that section. Put

OEz^x, ED-y, DP—z, OD=x^
The co-ordinates of the curve

AOB, estimated in its own plane,

are x^ and z
;
and the general value

of the radius of curvature of a plane curve where
x-^

and z are the co-

ordinates, and any quantity t the independent variable, is (Art. 131."^

3

Ez= K]
'dfi' ~di

d'^x-^
dz

If
'

di

which, applied to the present case, making t =
ar,

and observing that

- ds dx.
^

dz .
^

at —r~ = —r^ and -r- = 0, reduces to
dx dx dx

R =m
(Pz^

dx^

(!)

dH
Jn this expression, the coefficient -^ has reference to those points

of the surface which lie in the curve A OB^ and therefore it differs

d'^z
from the partial differential coefficient

-j-^
derived from the equation

of the surface, which latter refers to the change in z produced by a

change in x only, while y is constant.

Let z z=i
(p(ir,3/)

be the equation of the surface
;
then (Art. 55)

dy
[dz~\

^dz
dxA

~
dx

»ent case.

dz dy dz dz

dy dx~ dx dy
snice y-

= tan & in the pre-
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r-i=
d^z ^ d^z , d^z ,,

dx^ dxdy dy^

dx 1

Also —7-^ = T* Hence by substitution in (1) and reduction,
c&»C/ COS u

^"^l^z
~

~~d^ ~7~; dH ~7
' ' *

^^^'
—— cos^d -f- 2 -J—r- cos B . sni & -\

—
;-r-

• sin-^^
dx^ dxdy dy^

205. Prop. The sum of the curvatures of any two normal sec-

tions of a curved surface, drawn through the same point of the

surface, and perpendicular to each other, is constant, those curva-

tures being measured by the reciprocals of the radii of curvature.

Let & and &^ be the inclinations of the secant planes to the plane

{)ixz\ R and R^ the radii of curvature of the two sections at theii

common point. Then, since the sections are perpendicular to each

other,

^1
=: -

-TT -f- ^, and .

•
. cos 4 = sin ^j,

sin 4 = — cos d^,

and by formula [P]

1 d'^z ^, , ^ d^z , . , ,

dH . ^,
-7- = -7-^

• cos2^ + 2 -—r • cos ^ sm ^ + -r-s
• sni^^.R dx^ dxdy dy^

1 d'^z d^z d^z

Hence by addition and reduction

\ \ d'^z dH ^ u-- 4- -TT- = -7—- + -7-7: = a constant lor the same pomt.R i?i dx^ dy^

Cor. The normal sections of greatest and least curvature at anjF

point of a curved surface, are perpendicular to each other.

For since -—
-j-

-— is constant, -r- will be greatest when ~ isR Ri R /S|

least, and it will be least when -^ is greatest.
^1
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206. The sections of greatest and least curvature are called '
* \

*

,

principal aections^ and the corresponding radii are called principal -"f

radii. ^""^w^

207. Prop. To determine the principal radii of curvature at a

given point of a curved surface.

By differentiating
— with respect to ^, as an independent variable,

and placing the differential coefficient equal to zero, we get

H (Pz (Pz

d?z
+ 2 -r^ • sin a cos ^ = 0.

d'^z Td^z d^zl_ d^z

dxdy Ldy^ dx^J dxdy
^ ''

From which we obtain two values of cot L viz. :

_ ^2
~
^2

^ V \jf
~
d^U

"^
\d^y}

CO _ —^
dxdy

Substituting this value in the formula (P), which may be written

thus

1 + cot2^R
d^z 10^^^ f 4 _L

^^^

dz^ dxdy dy^

and denoting by i?i and i?2 the least and greatest radii of curvature,

there results

Ri=- ;
=zl==== (B).

^2^ -JV-. /n J9-. 79.-19 y J9 VO V /

f;x2

i23=: : (S).

dx-'
"^

rfj/2 V L^^2 ^^2j
+

"^Xdxdy)
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208. Prop. To express the radius of curvature of any normal

section in terms of the principal radii R^ and i?25 ^^^ ^^^ angle 9

formed by that section with the principal section of greatest curva-

ture.

If we make successively ^ = 0, and & = -ic in [P] we obtain
tit

And these will be the values of R-^ and ^^, if the planes of xz and

yz be supposed to coincide with those of greatest and least curva-

ture. Thus we shall have, upon this supposition,

dx^
~
R;

^^
dy-^

~
R^

d'^z
The same supposition renders =z 0, as appears when we

put^ = in [Q).

These conditions reduce (P), when & is replaced by (p, to the form

jn
R\tlz r

yr-j~
R^Q.ii^^^ -j- Z^^sin^^p

^ ^'

the desired formula.

209. Prof. If the two principal sections of a curved surface, at

any point, have their concavities turned in the same direction, then

every normal section through that point will be concave in the same

direction.

In the formula (7"), the signs of i^^and R.^ depend upon those of

d'^z d'^z

-T-T7 and -1—:; and the signs of these coefficients indicate the direc-
dx^ dy^

' ^

tions of the curvature of the principal sections.

In the case under consideration, the signs of R-^ and i?2 ^^^"st be

alike, arid therefore if both be +, the sign of R will be -|- also;

but if \n)\\\ 1)0 —
,
then the sign of R will likewise be negative.

Froii! which the truth of the proposition is apparent.
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)>lv. Cor. If i?i and i?2 be also equal, then R = E^ = B2 for

w<ery vdlne cf
f),

and every normal section, through the same point,

will hi ve tl^e same curvature. This occurs at the vertices of sur-

faces of revolution,

211. Prop. If one principal section of a surface be concave, and

the other convex, it ^\ill be possible to select a value
(p-^

for 9, which

shall render E infinite, or the section a straight line
; also, between

the values 9 = —
9^ and

:p
-

-l- (pj,
the signs of E and E^ will be

alike
;
but from 9 = (pj

to 9 =- •n' — 9^, the signs of R and E2 will

be alike.

In the formula [7^], suppose E^ negative, and it will become

E = B,R,

/tjcos^vp
— M^ s)n29

in which transformed expression, the quaniities R-^^
and E2 are to be

<X)nsidered essentially positive.

Now suppose 9 so taken that E^ COS29
—

y?^ 3ia*9 -= 0, a condition

that will be fulfilled when

= 9i
= tan- m "• —'-m.

Then i2=,ZlAj??^c^.

Thus there are two sections corresponding to the argles f ^
and

-
9| which give straight lines. Also, if 9> —

9^ and 9<9i;
then E2 cos2 9— i^j sin29 > 0, and .

•
. 72 < 0.

But if 9 > 9i and 9 < * — 9i, then E^ co&^cp
— Ri sin29 < 0,

and i2 > 0.

Hence the surface may be divided into four parts by two planes,

and if the first of these parts be supposed concave the second will

be convex, the third concave and the fourth convex.

212. Prop. To determine whether the principal radii at any point

have the same or contrary signs, the co-ordinate planes not being

coincident with the principal sections.

16
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The general values of R^ and i?2 ^^^Y ^® reduced to the forms

R2 =

p" + q" + vW+^"f - ^pW -
«"')

2

P[' + 9" -ViP" + 9"Y - ^{P"9" - ^'

and these values will have the same sign when 'p"q"
— s"'*^ > 0, and

contrary signs when "p^'q"
— s"^ < 0.

213. Prop. At every point of a curved surface, a paraboloid

(either elliptical or hyperbolic) can be applied, with its vertex at

that point, which shall have contact of the second order with the

given surface.

Assume the point of contact as the origin, the normal being taken

as the axis of
2;,

and the planes of xz and yz coincident with the

principal sections of the surface.

Take the normal as the axis of the paraboloid, its vertex being at

tbe point of contact, and turn the paraboloid about its axis until iU

principal sections coincide with xz and yz. The equation of the

paraboloid when in this position will be Ax^ ± By"^ = Cz^

which may be written z =
~j^

rb —— ?

c c
where 2P = — and 2Pi = ~, which represent the parameters

of the principal sections, are entirely arbitrary.

Take P = i?j, and P^ = R^. Then 2 = ^^ ± ^•
„ rf22 1 c?22 1

and therefore R-^ and J?, are the principal radii of curvature of the

paraboloid also. Then, for any other normal section of the parabo-
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loid, we shall have R ±i2A
the same value as that

i?i sin2(p ± R2 cos2(p'

of the radius of curvature of the corresponding normal section of the

surface. (Art. 208).

Cor. It appears that when the principal sections of two tangent

surfaces have contact of the second order, every other normal sec-

tion made by the same plane drawn through the same point will

likewise have contact of the second order.

214. Prop. To determine the radius of curvature of an oblique

section of a curved surface.

Take the point of contact as the origin, and the tangent plane as

that of xy.

Let OXj be the trace of the secant plane on a;y, aOb the section

of the surface by that plane, A OB the normal section by the plane

ZOX, R the radhis of curvature of AOB at 0, r the radius of

curvature of aOh at 0. Draw OZ^ perpendicular to OXj, in the

plane a Ob, and refer that section to the rectangular axes OXj and OZj.

Put Od '—
ar^, dp = z-^,

X = angle between a Ob and A OB^

pD ^z, DE= y, OE = x.
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Then at the point we shall have

l.dxj LdxJ

dx^ dx^

d?-z d^z, ^ .
,

ds-, dx-i ds
But = 0, cos X. .

•

. -7-: = -r-^-
• cos X. Also — z=-—- = -—>

* dx^ dx^ dx dx dx

.'. r = E ,cos\

^nd consequently radius of the oblique section = projection of th«

radius of the normal section, on the plane of the oblique section.

This result is known as Meusnier''s Theorem.

Cor. If a sphere be described whose radius shall be identical with

that of the normal section, and if through the tangent to that section

any plane be drawn intersecting the sphere and the given surface,

then will the small circle cut from the sphere be osculatory to the

fwrve cut from the surface.

Lines of Curvature,

215. If, through the consecutive points of any curve traced upon

a given surface, normals to that surface be drawn, such consecutive

normals will not usually lie in the same plane, and therefore will

not intersect; but when the consecutive normals do inteij^ect, the

corresponding curves (which enjoy peculiar properties) are called

lines of curvature.

216. Prop. To determine the lines of curvature passing through

any point on a curved surface.

Let the equations of the normals passing through any point

(*!' y\^ 2;i),
be

T-x^-^t{z-z;)=0=P . . .{\) and y-y^^s{z-z;)=0=Q . . .(2),

and suppose the independent variables x and y to receive the incre-

ments h and k.
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Then the equations of the normal in the new position will be

<i+S-'-=» «•

U these two normals intersect, the equations (1), (2), (3), and (4)^

will apply to the point of intersection; and if the co-ordinatf

K, y, and s of that point be eliminated between the four equations,

the result will be a relation between the increments h and k and con-

stants, it being observed that t = —^ and s = -r^, are constant foi

^dP dP
^

the same pomt, and the same is true oi -7—, -7—, &c.
^

dx^ dy^

This relation between h and k implies a necessary relation between

the new values of x and y, in order that an intersection of the nor

mals may be possible ;
and when the normals are consecutive,

A =r 0, and ^ — 0, and - =
-j^ Thus by omitting P and Q (each

of which is equal to zero) in (3) and (4), then dividing by A, ant'

finally making A =: 0, those equations become

dP
dP_ dy^ . dQ dQ dy^ _

dx-^ dy^ dx^
~ ' * * * ^ -''

^^^ ^y^ dx^

~ * * *
v />

or, by forming the values of the partial differential coefficients,

dP dP dQ , dQ ^ .,.
.

.^.

^

dx^ dx^
^

^'dx-^dy-^ dx-^ dxj dy^ dxi
'

^^^(z-z\-^ ^^1 ^yi
I /^ ^ ^d% dy^_dzl ^i-O-

dx^dy^
'^

dy^'dx^ c/a:i

^

^Uy^^' dx^ dy^' di~ \

and by eliminating z —
0^, putting

(7),
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we obtain

J;-,[*"(i+i?'^)-y?'?"^]

+
^[p"(i+?'^)-?"(i+y^)]-s"(i+/^)+/?y'=o...(i/),

dv
This is a quadratic equation, giving two values of -^,

the tangent

of the angle between the axis of x and the projection of the tangent

to the line of curvature passing through (arj^/i^i), upon the plane

of xy. Hence there will be two lines of curvature passing through

mch point of the surface
;
and if

jc>', q\ &c., be replaced in (f^) by

ilieir general values derived from the equation of the surface, the

result will be the differential equation of the projection of every

pair of lines of curvature upon the plane of xy.

217. Prop. The lines of curvature at any point of a curved sur-

face intersect each other at right angles, and they are respectively

tangent to the sections of greatest and least curvature.

If we suppose the plane of a??/, (which in the last proposition was

assumed arbitrarily) to coincide with the tangent plane at the point

tuider consideration, we shall have

y=|^=0,
and / =

|;-
= 0.

Hence the equation ( CT) may be reduced to the form

^ y^^^_
dx^^

^ y dx^
^ ^

Hence if ^j and ^2 denote two angles determined by the condition

that tan ^^ and tan ^2 shall be the roots of this equation, we shall

have, by the theory of equations,

tan dj tan dg = —
1, or 1 + tan ^^ tan ^g

= 0,

which is the condition of perpendicularity of two lines in the plane

of xy forming angles dj and ^2 with the axis of x. Thus the tan-

gents to the two lines of curvature intersect at right angles.
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218. Again, if we divide equation ( F) by -~^ = tan^^ and replace

by cot^, the result will become identical in form with equation

(Q), which serves to determine the two angles formed by the prin-

cipal sections with the plane of xz^ and hence the directions of the

lines of curvature are tangent to the curves of principal section.

219. Prop. The consecutive normals to a surface drawn through

points in the lines of curvature, intersect at the same points as the

consecutive normals to the principal sections to which the lines of

curvature are tangent.

Regarding the tangent plane at the given point of the surface as

still coincident with that of a;y, we shall have

dz dz
z^ = 0,

-—= and -~- = and the equation (7), gives
U/X-I Vx

1 tand
or

dx-^ dx-^dy-^ dx^dy^ dy-^

Now if the plane of xz be supposed coincident with a principal

d'^z

section, these expressions will be still further simplified, since ^
will then be =

; thus,

__1_ _ 1

d^z-^

~
d'^z-^

dx-^ dy-^

But these expressions are precisely the same as those previously

found for the radii of curvature of the principal sections, and henco

the centres of curvature of the principal sections must coincide with

the points of intersection of consecutive normals to the surface

through points in the lines of curvature.



INTEGEAL CALCULUS. PART L

CHAPTER 1.

FIRST PRINCIPLES.

1. The ©bject of the Integral Calculus is to determine the function

from which any proposed differential has been obtaim-d. The pro-

cess by which this is effected is called integration^ and is indicated

by the sign /, the result being called the integral of the proposed

differential.

2. Whenever the given differential can be reduced to a knowi

form, we may return to the function by simply reversing the rulea

for differentiation.

3. Since d(a.Fx) 3 a . d(Fx) =z aFyX. dx, we infer that

faFyX .dx = a fF^x . dx^

that is, we may remove any constant factor from under the sign of

integration, placing it as a factor exterior to that sign.

/a
1

-
F^x .dxz=z-Ja. F^x . dx.

Therefore we may introduce a constant factor under the integral

sign, provided we write its reciprocal, as a factor, exterior to that

sign.

5. To differentiate the algebraic sum of several functions, we dif-

ferentiate each function separately, and take the algebraic sum of the
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several differentials. Hence, in order to integrate the algebraic sum

of several differentials, we have only to integrate the several terms

successively.

Thus f{adx -f hdy
— cdz + edv) = fadx -\-fhdy —fcdz -\-fedv

z=z ax + by
— cz -\- ev.

6. Again, since differentiation causes all constants connected with

the variables by the signs + and — to disappear, it follows, that in

effecting an integration, we should always add a constant, in order

to provide for that which may have disappeared by differentiation :

thus we write

fadx z= ax -{- c^

in which the value of c will be arbitrary, unless fixed by other con-

ditions.

Suppose, for example, that the general value of the integral is JT,

so that

X =: ax -\- c\

and that for a particular value x^ of x^ the integral assumes a known

value Xj: then

Xj = ax-^ + c, and .
*

. c = Xj —ax^.

And this value substituted in the general integral, gives

X z=z a{x
-

x^) + X^.

Integration of the Form (Fx)°dFx.

7. Prop. To integrate the form {FxYdFx.

Here we have /{Fx^dFx = f{n + l){Fx)"dFx

=-^ fd{FxY+^=!^^^. e.
n -\- I

^
[ w -f- 1

The same process can obviously be applied, whenever the quan.

tity exterior to the parenthesis, can be rendered the exact dif-
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ferential of that within, by the introduction or suppression of a

constant.

Hence we have the following rule for the integration of this form,

viz. :

'

Divide the given expression by the differential of the quantity within

the
( ),

then increase the exponent of the
( ) by unity ^

and finally^

divide by the exponent thus increased.

EXAMPLES.

8. 1. To integrate ax^dx.

a ax*
faxHx = a fx^dx — -fAx^dxz=— -f- c.

2. To integrate -y^^^ -f x^ . ZcxHx.

f{b^ -f a:*)* Scx^dx =^'l f 1(62 + a:*)*, ^^'dx = ^(b^ + x^)^+ C

3. To integrate dy — (2a + Sbxydx.

This may be integrated in two ways ;
thus

y = f(2a + Uxfdx =f(Sa^ + SiJa^x + 64ab^x^ + 21bH^)dx

= fSaMx 4- f'SCm^xdx + fh4ab^x^dx + f^lb^xMx

27= ^a^x + 18a26a;2 + l^abH'^ + — ¥x^ + c (1).

Again

y = /(2a 4- Zbxfdx=^ /4(2a+ 36a:)3. Udx = ^(2a+362:)*+c-

4a> 27= ot4- 8a3a: 4- 18a26a;2 + 18ai2a;3 -f —63a;* + Cj (2).

The formulae (1) and (2) are identical. For if yj denote the

particular value of y when a; = 0, we shall have from (1) yj = c
;

4a* 4a*
and from (2) y^ = — + c^, •

'

• ^ =
3^
+ ^i-
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4. To integrate dy = 3(46a:2
_

2cx^y {4bx
—

Scx^)dx

y = I /(46a;2
— 2czY {^^^

—
Qcx^)dx = | {4bx^

-
2cz^y + c.

9. In each of the preceding examples the proposed differential has

Deen brought to the required form, viz. : that in which the part ex-

terior to the
( )

is the exact differential of that within, by intro-

ducing a constant factor. To ascertain when this is possible, take

the last example, and denote by A the required unknown factor : then

y = \f(Ux^ - 2cx^)^(12Abx
-

9Acx^)dx,

and if this be of the required form, we must have

d(Ux^
—

2cx^) = (12Abx
—

9Acx^)dx

or Sbx — 6cx^ = \2Abx — ^Acx"^,

and since this condition must be satisfied without reference to tlie

value of X, we must have, by the principle of indeterminate coeffi.

cients, the two separate conditions

86 = \2Ab (1) and - 6c = - Mc (2).

Fro.n(l) ^=:^=? and from (2) ^=| =
|

The values of ^ derived from (1) and (2) being identical, the pro-

posed reduction is possible.

The next example will illustrate the contrary case.

1. dy = {Ab-^x -f 3aa;2)^(262 + %ax)dx.

If possible, let A be the required factor. Then

y = l.f(^b^x + ^ax^y (2b^A + SaAx)dx,A
and .

•

. d{4b^x -f Saz'^) = (26M + SaAx)dx,

or 462 ^ Qax = 262^ -f SaAx,
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which gives the two separate conditions

462 _ 262^ (1) and Qa = SaA (2).

From(l) A = ^^=z2, and from (2) A=~ =
^^

These values of A being different, the desired reduction is impossible.

2. 10 mtegrate ay = ;:—^»

adx
3, dy =

X y/ohx -\- '^C^X^

i

y = afx~\Sbx + ^c^x^f^dx = ~f{3bx-^ + 4c2) *. Sbx-^dx
oO

axdx
4. rfy =

{2bx + a;2

*

y = af {2bx + a:2)"'. a^^/i: = a f(2br-^ + 1 )~^ i^"^)
• ^dz

^ l.f (2bx-' + 1 )~"^.
2;-2 . 2bdx =

^ (26ar-i -f 1)~*4. c

a r2bx + ar2"|—i ,

ax= r 5
—

\

^
-\- c =— + c.

bL x^ J h^2bx + a:2

5. dy = —^ ^ dx.
X — a

y = 3/a;*(a;2 + ax + a2)af2;
= 3 / (a:0 4- aa:« + a^x^)dx

+ c.

/x-' ax^ a'^x^\



CHAPTER II.

iLBMENTARY TRANSCENDENTAL FORMS.

Loga/rithmiG Forms,

10. Prop, To integrate the forms and —^—'—

X JuX

Since d{a log x) = .', J = a log x -\- c.

T/ 1 T^ X a.dFx Pa.dFx . „ .

Also since d{a . log Fx) = ——— .
•

. /
—=— = a . log ^a? + e.

EXAMPLES.

adx
11. 1. To integrate dy = , .

'

»

°
b -^ ex

^'=tfb^x=^^^'^^''-^''^
+ ^ = ^"^ [(^+ ^^)^]

+ (^'

2. io integrate ay = a -h 2^

^==y ^2^=^^S(«+2;r*)+ (7=:log(a+2:r*)+ logc=log[c(a4-2x*)].

In this example the constant introduced by the integration is put

into the form of a logarithm (which is always admissible) for the

purpose of simplifying the form to which the integral is finally

reduced.
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'7xdx
3. To integrate a

8« - Sx^

1 c= logc
—

log (8a — Zx^y = log

(8a
-

3a;2)*

4. io intepjrate a?/ = —^ ^^^

y
_ b_

r{S\x^
- lOSx^a^ + b4x^a^ - 12xa^ + a^)dx

n*/ or?

or
, ,^_/L81.-108a3+_-_ + ^J^.

:^ ^["^ a;2 - 108a2:r + 54a* log a: +— - -^1 + C7.

Circular Forms.

dx
12. Pro/?. To integrate the form dy =z ±.

Taking the upper sign, we have

I
-^^

1 1
-^^

4- ««
I

« 1 I a
P———-——- — I — - I -- -

Let the quantity under the sign of integration be compared with

dz
the well known form c?(sin-"^2) = — -

,
and it will be found

identical therewith, provided we make -x =. z.

r -'-
But /

—
:

= sm-^0 + c, . •. I — =sm~^— -tc

^
6 a

a
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Similarly, since /
- = cos""^^ + c.

— dx 1 , &^ .— = - • cos-i \- c.

dx
13. Prop. To integrate the form dy = ± ^

""
„

«

Taking the upper sign, we have

r 1

'=/.
dx

2 4-^2^2

c?:c

1 +
/j2;i;2 ab

-dx
a

Comparing the expression under the sign of integration with the

dz
well known form c?(tan~^2;)

,.
bx

inakmg
— =z z.

l+z-, they become identical by

But
/rf72

= tan-i. + c. .-.

1 +

- dx ,—
7?-o

= tan-i-a;4-<?.
o2a;2 a

.
•

. y z=:—- tan~i h <^«

1^

= COt-^2 -{- C.

••• y-f-t/ a 2 -L ^2a;2 „5 d

14. Prop. To integrate the form dy =i dtz

dx

Taking the upper sign, we have
aryPi

-dx dx
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Comparing the expression under the sign of integration with the

dz
known form o?(sec"~^2;)

=
, they become identical by making

z^^/z^
— 1

hx

a f

But f—;

= sec-^z + c. .

•

J zJ7-l

dx

hx Ih^x^

secri J-c.

1 -^hx
.•

. 2/
= - sec \- c.

a a

— dz
And similarly, since / = cosec'^g + <?•

J Zyfz^ -\

•/ X

-dx

y/hH''
- Q?

= - cosec"
bx
+ c.

dx
15. Prop. To integrate the form c?y = ± •

ya^x
— b'^x^

Taking the upper sign, we have

r 2b

/+ dx
dx

UbH 46*^2

V ~a2 ^

262
dx

J V "^ ~^
262

dx

H^-)-m
Comparing the expression under the sign of integration with the

known form cif(versin~^^)
= dz

'^z — z^
, they become identical by

2^2.c

making
—— =. z.

dz

y/2z
— Z'

r 262

But —^== = versin-^2r -f- c.

^/22 — ^2

dx

JvM*)-(W
= versm-* —— -f c,

a2
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1 . , ^b'^x
. y = -l

versin-i —^ -f e.

a/'

— dz
And similarly, since / — — = coversin-^0.dmilarly, since f—i^

EXAMPLES. \-^^4..

16. 1. To integrate dy =
x/a^

- 62^*

y-¥b

^ '^ dx
a 1 . ,

bx^:= = — sm-1— -f c.

b^x* 26 a

JxA^
x^dx

2. To integrate dy =
j-q_—g'

1 fSx^dx 1 w 3x ,

-f
^ _ . - Sx dx
3. To integrate ay

-i C -I
/-I 8a; *c?a; . r^\ 2x ' dx

y = yb
J 2 .Qx^ -Q.Qo^ L/2 . 62;* - 6 . 6x*

= 4 ye . versin~i(6a;')+ c.

17. Since each of the trigonometrical functions can be expressed

in terms of any other, all the circular forms must apply, whenever

one is applicable. To illustrate this, take the example

or dx
dy z= —-—

x/2^4x^
17
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—--xdx f i
'3 It

-^l.x dx
2^ 1

-v/l
- 2a:3 3

=
oSm-*V^^-f<^.

J
r» Q 1

or y =
^^____

=.leos-V^ + c,

J
Again,

/» x'^dx 1 />

1 /. - 12a;2c^

^y n/2 . 4:r3 -or, 2/

:r
— = - versm-i [Ax^) -f- c« ,

4a;3_(4a;3j2
6

1

^ , ,
= = — ^ coversm-i (4a:3) + e^,^J V2.4:r3- (42:3)2

6 V /T- 3

Again, y = y-

ic a: dx \s/l^'^dx

-2\/2'"^" 1
, /r

V2-" Vr -^
a? 4-«i

or
1

y = - cosec-
3

X 4- c«.

a:-3_l| *c/a;Finally, y = p-x^x^i^^x-^-\^

=
-itan-y|

^ - 1 + «?.

01 = -
cotan-y

- ar-3— 1 4- <v
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Trigonometrical Forms.

18. Prop. To integrate the forms sin xdx^ cos x dx, seG^xdx^

Qosec^xdx, sec x tan xdx^ and cosec x cot xdx.

Since d(cosx)=z—sinxdx^ .'. fsmxdx=z —f—smxdxz=— cosic-f-c.

"
c?(sin x) = cos xdx, .

'

. /cos xdx =. sin x -\- c.

"
c?(tan x)z= sed^xdx^ .

•

. fsec^xdx = tan x + c.

"
c?(cot x)=z

—
cosea^xdx, .

*

. fcosed^xdx = — cot x -{- c.

"
c?(sec x)= sec x tan

irc^ar, .

•

. /sec re tan xdx = sec a: + c.

"
6?(coseca:)=—cosec ircotaro?^;, . *. /cosec a*cota;G?a;= —coseca;-f-<?.

EXAMPLES.

19. 1. To integrate dy = 2 cos ^x . dx,

2 /* 2
y = /2 cos 8a; . 6?a; = - / cos Sx . d(Sx) = - sin Sx -f c.

2. fl?y
= 5 sec^

(a;^)
. ar^c^.

y=:/5 sec2(a:3) .

a;2fl?a:=|ysec2(a;3)
3
a;2c/a;=|y"sec2(a;3) (/(a:3)

3

dy = 6 sec 4x . tan 4a: . dx

5= -tan(a;3)-}-c.

6 /• 3
y =.-

I sec 4a: . tan 4a: .
c?(4a:)

=: - sec Ax + c,

dy = 2 sin (a -f- 3a;)c?a:,

y = ^J sin (a + 3a:) Sdx = ~J sin (a + 3a:) . c?(a -{- 3a:)

2= — - cos (a -|- 3a;) + c,
o

3 1

5.
6?y = -cosec2(-y/2^ . a:^c^a:.

V =
--^y*cosec2(v^)

. -y^. a: Va; = -
-y=

coty^ +
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6. dy =^2 cosec {nx) . cot {nx) . dx,

y z=z-
j cosec («a;) cot (»a;) . d (nx) = -^ - cosec (»m;) -f «•

Exponential Forms.

20. Prop. To integrate the form dy = a*(il»^.

Since cfot* = log a . a*(fo?, .
•

. fa*dx = flog a . a*dx

log a

EXAMPLES.

21. 1. To integrate dy = 3e*(/a;, where « is the Naperian base.

3e*
y=Sre'dx = , h c = 3e* -f- c.

log e

2. dy = ba^'dx,

8. dy zn me^'dx.

y =z— / e^'dinx) = —e»* + c.

The cases which ha\re now been considered include all the

elementary forms.



CHAPTER in

RATIONAL FRACTIONS.

22. Having disposed of the simple and elementary forms, d
such as admit of being brought to such by some veiy obvious

process, we shall proceed to the consideration of more complicated

expressions, endeavoring in each case to resolve them by a sys-

tematic process into one or more of the elementary forms.

23. The first form, in point of simplicity, which we shall hav«  

occasion to consider, is that of a rational algebraic fraction, and ii

such expressions we may always regard the highest exponent of tht.

variable in the numerator as less than the corresponding exponent ii

the denominator, since the fraction, when not given originally in that

form, may be reduced by actual division, to a series of monomial

terms and a fraction of the desired form.

24. Prop. To integrate the form

5a;«-i 4. cx^-2 . . . . _|_ /a; -f I;

dv = dx,

\st Case. When the denominator of the proposed fraction can be

resolved into real and unequal factors of the first degree.

To illustrate this case, take the example

- ax \- c . ax •{• c .

x^ -{- bx x{x -f h)

Assume z=—
|

-— where A and £ are unknown
x^ -{- ox X X -\- b
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constants whose values are to be determined by the condition that

this assumed equality shall be verified.

Reducing the terms of the second member to a common denomi

nator, we have

ax + c _ A{x 4- h) Bx _ Ax -^ Ah -^ Bx
x^ 4- bx~ x"^ -\- bx x^ -{- bx~ . x^ -\- bx

Hence ax -{- c = Ax -\- Ah -\- Bx\

and since this condition is to be fulfilled without reference to the

value of X, the principle of indeterminate coefficients will furnish

the separate equations

c = Ab, and a = A -\- B.

Thus we shall have two equations with which to determine the values

of the two constants A and B. Resolving them, we find

A
^ jr> 4 c ab — cA = T- and B =. a — A =za — - = —-— •

Hence by substitution

dx_

x+b
^ J x^ -\-bx J X J X + b bJ X b J i

=
^ log a: +

^^-y-^log {x + b) + C.

As a second illustration take the following example

dy = „  , dx.
x^ -\- bx

A a A
^

B
Assume = f-

x^ -\- bx X X -^ b

111
^ _ ^{^ + ^) ,

-gt? _ Ax + Ab + Bx

x^-^bx"^ a;2 + bx x^ -fJx
~

x"^ -\- bx
'

.' . a = Ax -\- Ah + Bx, and consequently by the principle of inde.

terminate coefficients

a=: Ah and = A -[- B, whence A =^ and B:='-A=—t'
h
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And by substitution

/adx
r adx _a rdx a P

~bx "J bi^T) "bJ ~x"~bJ
dx

(x ^b) bJ X bJ x-^b

=
^ logo;

-
^log (a; + 6) + log c

= log (x^)
—

log [{x + by] + log c

T. m . 7 (2 + Sx — 4:x^)dx
Ex. io integrate dy = —

Here the factors of the denominator are or, 2 -j- ar,
and 2 — «, and

we therefore assume

2 + 3a; - 4a;2 A
,

B O
Ax — x^ X 2 -i- a; 2 — a?

_4:A- Ax^ + 2Bx-Bx'^-{-'ZCx-\- Cx^

4x — x^

,',2-h^x — 4:x^ = 4:A —Ax^ -\- 2Bx — Bx^ -^ 2Cx -^ Cx%

and by comparing the coefficients of the like powers of x, we have

2=4:A, S=2B + 2C, -4.= -A-B+ C.

These conditions give

^=1, ^-|-C = |
and B^0 = 4-A = 'L

r,A = ^
B =

l.
C=-l,

^ 2J x^ 2J 2-\-x^J 2-
— dx

X

= iloga: + -log (2 + ar) + log (2
-

a;) + c.

25, A similar decomposition into partial fractions, each integrable ,

by the logarithmic form, will be possible whenever the denominator
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can be resolved into simple and unequal factors. For if the num-

ber of such factors be n, each constant numerator, as A, B, C, &c.,

will be multiplied (in the reduction to a common denominator) by

all the denominators except its own
;
and since each denominator

contains only the first power of the variable x, it follows that there

will appear in the numerator of the sum of the reduced fractions

every power of x to the (n
—

\)th power inclusive, and also an ab-

solute term. Hence the number of equations formed by placing

the absolute terms, and the coefficients of the like powers of x equal

to each other, will be n, and therefore just sufficient to determine

the n constants A, B, C, &c.

26. When the factors of the denominator are not immediately

apparent, we may place the denominator equal to zero, determine

the roots x^, ot^, &c., of the equation so formed, if practicable, and

employ the factors x — x^^ x — X2, &;c.

(4 + 7x)dx

Put 2a:2 _ 4a; _ 10 = or^ x^ — 2x — 5 = 0.

Then x = I dr-y/tT,
and the factors of the denominator are

x — I +^ and X — \ —y^

_ 1 r {\^lx)dx ^ \_
r (4 + '^x)dx

•
'

• ^ ~ 2^ 0:2 - 2.1: - 5
~
2^

(^
_ 1 + ^^^ _ 1 _^

"^zJ x-\ +-v^ 2^a;-l-v^*

r.^-^lxzziAx — A--Ay^+Bx — B + ^y^

whence 4. z=: -- A - Ay/Q ^ B + B^ and 7 = A + B,

from which we deduce

A = '^-'' and 5 = lvi±il.
2v/6 2JQ
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7y/0"-ll ^ dx^ 7-v/6"+ 1 1
p

dx

4y^ J X —1+^6 4y/6
J x — 1 —y^

=^^^^^^iog(.-i+yoy+ ^^^1^^

27. 2c? Clase. When the denominator of the proposed fraction

contains equal factors of the first degree.

To illustrate, take the example dy = — ^—-— dx.^ ^
(a; + hy

If we attempt, as in the first case, to resolve this into three frac-

tions having denominators of the first degree, by assuming

a-\-hx-\-cx^ _ A B C

{x + hy
~

X -{-h X -i-h
"^

a; + a'

there will result

a -\- bx -^ cx^ = {A -^ £ + C)(x -\- hf,

and .•.a=(^H-^+C)A2, h={A-{-B-{-C)'Zh, and c={A+B+C\

whence ^ = ^ =f
Thus the assumed condition would establish a necessary relation

between the constants a, 6, c, and A, where none such should exist,

those constants being entirely arbitrary.

It is easily seen that such a result might have been anticipated :

.. A
^

B
^

C A-\-B-\- C ,

tor smce ——-
-\

-— 

-\
-—- = , the proposed ex-

X -\- h x -\- h X \- h X i- h ^^
(t "4~ ox "4" c3/^

pression
—-— — can only be reduced to this form when the

numerator is divisible by (x -f h)^. Hence the decomposition of

the proposed expression into three fractions of this form is not usu

ally possible, and when possible it is not necessary because the form

of the fraction can be modified by reducing it to simpler terms.
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But if we put x-\-h=z, we shall have dx=dz, and by substitution

(g 4- 5a; -f cz^)dx _ [a + b{z
—

A) + c(g^
— 2zh + k^)]dz

_ fg - 5A + cA^ h-2ch c 1~
L (a;-f A)3

"^
(a:+A)2

"^
a; + AJ

dz

dx.

Hence the proposed fraction can be resolved into three fractious

having the forms

A B ^ C
'

and
(x + hy (x 4- hy x-\-h

and since the same reasoning would apply if the number of equal

factors were greater, we may in general assume

a -{- bx -\- cx"^ . . . . 4- ix"~^ A
,

B I

{x 4- hy {x 4- A)» {x 4- hy-^ x -\- K

the number of such fractions being n.

EXAMPLES.

2 3;^

28. 1 . To integrate dy = -. dx.^
{x— af

2 — 3a: A
,

B
Assume 7 r-z = -7—• rr 4-

(x
— ay (x

— ay X — a

2 — Sx _ A B(x — a) _A-{- Bx — Ba
'''

(x-ay~ (x
- ay

"^
(x
-

a)2

~
{x
- ay

,'.2 — Sx =AA- Bx^Ba, whence 2 = A — Ba, and —S = B.

.'. B =: — 3 and ^=24- Ba = 2 •—
3a, and consequently

y= (2 -3a)/^% - 3/-^ = (2 ^3a)-i- -3 log (a:-a)4-(^.

When the denominator contains both equal and unequal factors

of the first degree, the two methods must be combined.
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a;2 _ 4a; + 3 ,

Since a;- — 6x^ }- 9x = x{x^
— 6x -{- 9)

= x{x
— Sy we assume

a;2 ~ 4a; + 3 _ A B C _ J(a;-3)^4-^a;+ Cx{x-^)

x^—Qx'^-\-9x~' x"^ {x—Zf {x—Z)~ x'^-Qx^-\-9x

.
•

. a;2 — 4a; 4- 3 = ^(a;2
— 62; + 9) -\- Bx + C{x^

-
3a;),

whence 3 = 9^, -4=— 6^+^-3C, and 1 = ^ + C/.
»

.•.u4=i» C=% and ^ = 0.

=
|loga;

4- ilog(a;
-

3)^ + ^logc = ilog[ca;(a;
-

3)2]

= log [ca;(a;- 3)2]*

dx
dy —

{x - ^Y{x + 3)

A-SSUme 7 -r-^T
-—

r^ = 7 tr-r H + .
, oX9 +

(a;-2)2(a;+3)2~ (a;-^2)2
'

a;-2
'

(a;+3)2
'

(a;+3)

.

•
. 1 = ^(a;+3)2+^(a;-2) (a;+3)2+ C(a:-2)2+i)(a;-2)2(a;+3),

or 1 = ^(a:2 + 6a; + 9) + B{p(? + 4a;2 — 3a; — 18)

+ Cr(a;2
_ 4a; + 4) + D{x'^

_ a;2 - 8a; + 12).

.•.0 = ^ + Z>, o = ^ + 4^4-(7-i>, = 6^-3^-4C-8i>,

and 1 = 9J - 18^ 4- 4(7 + 12i>.

These equations give, by elimination,

^ = —, ^ = ^, C = — » and Z) =— •

25 125 25 125

•*• ^ ~
25./

(a;
-

2)2

""
125«/ ^^"^ 25^

(a; 4-3)2 "''125/ ~-^

=
-25(^)

-
li^"^^^

-
^)
-
25T^^
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29. Cose Zd. When the simple factors of the denominator are

imaginary.

These factors, which correspond to the imaginary roots of an

equation, enter in pairs, and are of the forms

X ±: a -\- b y/
—

1, and ar ± a — 6 y— 1.

and their product gives the real quadratic factor

x^ ± lax + a2 4- 62 =:
(a;
± a)2 + 62

Hence, if there be but one pair of simjfle imaginary factors, or a

single quadratic factor, in the denominator, the corresponding partial

Ax 4- B
fraction will be of the form -. r ^ . ,^ ,

in which the numerator
\x ± a)2 -j- 62

must consist of two terms, one containing the first power of x^ and

the other an absolute term, because the denominator now contains

the second power of x
; and, therefore, if we introduced a constant

only into the numerator, we should not provide for having the

exponent of the highest power of
ic,

in the numerator, only one less

than the corresponding power in the denominator.

But when there are several equal quadratic factors, the denomi-

nator being of the form

\{x ± a)2 + 62]«,

the partial fractions will be of the forms

Ax^ B Cx-\- D Ex + F
[(a;
± a)2 + 62]« [(a:

± a)2 -f 62J«-i
'

(a;
± a)2 -f 62

the number of such fractions being n.

That such a decomposition is possible in all cases, will appear

more clearly by the following illustration. Let the proposed frao-

tion be
cx^ + ex^ -h fx^ 4- gx"^ -\- hx + i

[(a?
± a)2 4- 6'2p

Put X ±: a =zy, and y^ -{- b^ = z\
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Then the fraction can be reduced successively to the following

forms

c{y q= af + e{y gp a)^ + f{y gz a)3 4. g[y rp gf ^ h{y ^a)+i

cy^ + ^iv^ +f\y^ + ^1?/^ + Ky + «]

z'>

_ (cy + 0(g^ - 6^)^ + (/ly + 9r)(z'^
-

b^) 4- Ky + h-
^6

_ [c{x±a)+ e,]{z^-2z^^-^M)+ [f,{x±a)+g,]{^^-b^)+h,(x±a)-^i,~'
z^

_ {cb^ —fib^ + h^)x + ^*(^2± «)<^ —f^b\92 ± a)4-h ±V_
[(i ± a)2 -f 62]3

(-- 2c 6^ 4-/i)a;
- 26'-^c (g^^ a) +/i(^2 ^ ^) ca; + c{e^ di a)

"^
[(a;±a)2 + 62]2

"^
(a:±a)2 + 62'

which is of the form

Ax-\- B Cx^ D Ex-\-F

[(a; ± af + 62]3
'

[(a; ± a)2 + 62]2

'

{x ± a)2 + 52

And a similar decomposition would evidently be possible, if there

were n equal quadratic factors in the denominator.

30. It appears therefore, that when the denominator contains

simple imaginary factors, the general form presented for integration,

will be

{Ax + B\dx
dy = -z~ — ^

,„-, ,
where n may be any integer.^

[(x ± a)2 + 62]«'
J J 5

Put a; ± a = 2, then

_ {Az ^ Aa -^ B)dz
y =

(s2 + 62)n

_ r ^gc^g P (B ^^ Aa)dz ^
•

*
• ^ - y

(22 + ^2)«
+ y

(^24. 52)«

-
2(/i- i)(g2 4-62)«-i'

(g2+l2p
/»_^C?g
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by making B =fAaz= A^. Thus the proposed integral is found to

depend on the more simple form, / ^ J^
.

It will now be shown that this latter can be caused to depend on

dz

diminished by unity. Thus we have

/dz7— —-

,
in which the exponent of the parenthesis is

dz _ (^2 _{_ ^2)^2 ^ ^2^2 hHz

(22 + 62)«-J (^2 4- 62)
n

(^2 -j. 62)«
'

(^2 ^ J2)«

•
'

*

-^
(^2 -f 62)"

-
62'«/ (^^^62)^^1

~
b^J (^2 + i2)«

V >

1(^2 -I- 62)«-7
~

(^^qr^Tpi (22 4. 62)^-'

/• 2;2(/2; _ 1 /»

• y (.2
. 62\„-2(,z_i)y ^

dz 1

(22_|_62)n-2(w— 1)^ (22_^62)«-l 2(n-l) (z^ -{ b^)*"^'

which value, substituted in (1), reduces it to the form

dzr dz _ I r dz 1 f ^

J Jf^Wyt
-
"^J (^2 _|. 62)«-i

~
252(n- I)-' (22 + ^2)^

n-1

262(7i- 1)(S2 -f 62)'-l

.
2n-3 r, c/2

262(n
_

1)(22 -f 62)«-l
'

262
(?i
_

1)
,A

(2:2 + 62)—'

A2\n-i
^^" ^® rendered dependent upon

/dz, ^ 7 2\w-2 ' ^^•' ^^ ^^^* eventually, the original integral will

depend on the form / -
dz 1 . z- tan-i -.

22+62 6 b

31. We infer, therefore, that the integration of a rational fraction

can be effected whenever its denominator can be resolved into simple

or quadratic factors, and that the integral will be expressed in the

form of logarithms, powers, or circular arcs.
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S2. 1.

GENERAL EXAMPLES.

dx
dy

x^ — \

Since {x^
—

1) = {x"^ -\- x + \) {x
—

\), and x^-\'X+l

1 1= (.+
l

+ i/=:3)(. + ^ 2 3).

we assume
Ax-\- B +

x^— 1 x"^ \- X -{- \ X — V

.'. 1 =iAx^ + Bx — Ax - B -{- Cx^+ Cx+ a

whence = ^+ C, = B+ C — ^and I = O — B,

H-l)
X^ + X+ I

dx -dx

x-V

2and if we put x -{-
- = z^ ov x^ + x -{•

- = z", x
Z 4

there will result

r

— - and dx — rfg,
4>

I r dx 1
(a; + 2)rf«

n^ 3-|'og(^-l)-J
(-a-!

2^(/0

J
z^ +

2dz

4^2
+ 1

1 1 1 Sj" 4- 1= -log {x
-.

1)
-

-log(a:2 -f- a: + 1)
-— -tan-i ^^i^ +
vr V3-

2. dy —
dx

X {a -\- bx^y
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Assume
^^^ _^ ^^2)2

-
3.
+

(« _|. ^^2^2
+

« + 6a?2

*

.-. l=Aa^, 0=2Aab+B-\-Da, 0=Ab^+Db, 0=C-\-JSa, 0=M,

.'. A = \, B=--, (7=0, i> = --^, ^=0.

1 Pdx h r xdx h r xdxTT 1 rdx b C ^dx b r xa
Hence, y = -^ / 7

—
.

. oxo 5 /
—rd?^ X a »/

(a + oa;2)2 ^24/^^ 6a;2

1 1 a;2

2a(a + 5a:2)

'

2a2
^ a + 6a;2

Put a:* 4- a;^ — 2 = 0, and resolve with respect to a^.

.-.
a:2=:-l±|=:l,

or 2r2 = -2,

.'.'(«* + a;2 _ 2) = (a;2 4. 2) {x^ -l) = {x^ + 2) {a: + 1) («
~

l)j

and we may assume,

+ T + -T-r-o- Then
x*-^x^ + 2~ x + 1 x-l x^ + 2

x'^=A{x^-z'^-\-2x-2)+B{x^+x'-^2x-\'2)+C(x^-x)-^D{x»-l).

.'.0 = A + B+C, l = -^ + j54-A0=:2^-h25--(7,
0= —2A-\-2B - D.

.

•'• ^"~
""6*/^~+l 6^a-- 1 "^3^0:2 + 2

=- log (a: + 1)*+ log (a:
- 1)*+^ tan-i-^

+ c
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4. dy = -' Since
\ — x^

l~a;6=(l-a:3) (l+a:3)=(l-a:) (l+ar-h^^) (1+a:) {X-x-^x^ put

1 ^
.

i?
.

Car + Z)
,

^.r + i^

1— a:6 Xj^x'X-x'X-^x-^x^l—x-^-x^

.'. l= A{l-' x -\- x^— x^+ x^— x^)-\-B{\'{-x -^ x^+ x^+ x^ -\- x^)

+ (7 (a;
— x^+x^-x^)-\-D{l -x + a;3-a;*)+ ^(2;+ir2-a;*— a;^)

-\-F(l + x-x^ -X*).

.•.l=A + B-{-I)-^F, 0=:-A + B-{-O-D + E-\-F,

= A-^B-C+F, 0=^A-^B + D^F,
= A+B+C-I) — F-F, 0=— A-^B— C-E,

(x-{-2)dx 1 /'(a;-2)cfa;

1, ,,^ ,
1, ,, . ^ 1 r(2.v+l)dx_^l f 3aSdfa;

1_
r{2x-\ )dx ]

y-
3d

(-tf-i
3c^

(-a^i

=loga-|-ar)*-log(l-2:)*+j^log(l+rr+:r2)-l log(l-ar \-x^)

2dx 2cL

^ ^ 1
1 yf

3 3

^\1-^/ ^\l-a:4-W 2V3V -y/S

,2x — 1\
4-tan-i =:l + c.

V3 /

18



CHAPTER IV.

IRRATIONAL FRACTIONS.

33. The differential form next to be considered is that which is

still algebraic, but which involves irrational or surd quantities. As

the general mode of treating such expressions is the same in prin-

ciple, whether presented in the entire or fractional form, they will

be considered in the latter, which is of very frequent occurrence,

and which presents some difficulties peculiar to itself.

34. When an irrational fraction, which does not belong to one of

the known elementary forms, is presented for integration, we en-

deavor to rationalize it, that is, to transform it into a rational form

by suitable substitutions. The following are the principal cases

•n which this is possible.

35. Case \st. When the fraction contains none but monomial terms.

As an example to illustrate this case, suppose

ni mi

ay = ax.

a-^x*^ -\- b-^x*

Put X — 2""*" or ar = s^, where I is any common multiple of

the denominators w, wi, c, and e.

"Then x^ = z^\mce
^

qj. x^ z=z g" where -i- is an integer since

/ is a multiple of n.

n

Similarly x"^ — zP^\ritt^ ^.e
_

gcinm«^ and x^ = 2«i»»»««.
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Also dx = nmce . z'^^"-^dz.

Hence ay = {nmce . z^*^^'-^az\

which is a fraction entirely rational.

m!x. To integrate ay = —j ^ dx.

Assume x = z^^ : then x =z z^, x = z^, x = 2®, a; = g^,

and dx =z 12z^'^ . dz.

206— 3^2 24^9 - 36^5 ^
.

•

. av = 122;^^ . dz =z dz

= (24^8
- 720' + 216^6 - 64825) cfe

+ 1908(2*
- 3^3 + 9^2 - 272 +81 - -^^)

c&.

y = 12/(228
_ Qz'' + 182« - Mz^)dz

243

2 + 3
+

1908^^2*
- 3^3 + 922 _ 272 + 81 - -^) c/g

«7 t: /

n ^ 27 T
+ 1908 -25--2'»+323-— 22+8l2-243]0g(2+ 3) +«

+ 1908
Qa;^- |a;*

+ 3a;*-
^a:^+81a:^-243 log(a;^+3)]

+c.

36. 2c]? Case. When the surds which enter the given expression

contain no quantity within the
( )

but one of the form (a-\-hx).

As an example, take

^ {a + hxT +(« + tor

(a + ix)^ + h
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Put a -{- bx = z^""^ where the exponent of 2 is a multiple of all

tne denominators n, m, and c.

Ml mi e^

Then (a + bx)'* = s"!'"^ {a + bxy = 2'»i«% (a + 62:)'
=

g«i«"»,

_ _ nmc . .

and ax = ——- .
z^^'^-^dz,

and Dy substitution

g»iwjc _L. ^OTinc
(/v = 7- ;

—
TV • nmc . z^^'^-'^dz.

vhich form is entirely rational.

x^dx
37. 1. To integrate dy =

(1 + 4:.)*

Assume 1 -\- 4x = z"^. Then

r = ^^^,
^^ = ^5 x^ =

^{z^-Sz^-\-Sz^-l),
md {l+4x)^=z^.

..,d,==±l'^^:^'-±^J^^]zdz = ±(z^-s + ^-l-U^
128\ Z^ I 12«\ ^2 ;2*y''^'

^^^^ ^
(1+4^)* 3(l+4:r)^J

2. c?y =

Put 1 + a: = z\ Then a: = 22 _ 1^ f/a- = 22^0, and -/l + a? = 1

_ 22c/2? _ 2(/2 _ C?2 </2

.
•

. y = log (2
—

1)
-

log (0 4- 1) -f c,

. 2-1, , Vl-ha:-l
y = log——-r + C = log ^-—=-_: + C.
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38. CoLse Zd. When the proposed fraction contains no surd except

one of the form

y/oT-^- bx ± c^x^ = c \/—- +—-x±.x\

When the last term is positive, assume

\/^ + -^^ + ^'' = ^ + ^'7 then
^^—x-\-x^=zz^-{-2zx-{-x»

a — c^z^
X —

2c^(a -bz-\- c^z^) ^

2c^z—b i^c^z — by

and
^bx^^cH^=c(z-^x)=ci^z-^——j= ^,^ _ ^

—^-

The values of x, ya -{- bx -\- c^x^, and dx, being all expressed ra-

tionally in terms of z, the proposed differential when transformed

will also be rational.

Again, if the term involving x^ in the surd be negative, denotw

by x^ and
arg

the roots of the equation

"^

;^ ~:^
= ^' ^^^"^ ^' -

-^
-
^ = (^

-
^iK^ - ^2),

and therefore — H—- — x^ = {x2
—

x)(x
—

Xi),

Now assume -^Jx^— x) (x
—

x^) = (2;
—

x^) . z.

,'. X2
— x = {x

•—
Xj)z^, whence x — ^ ^

1 +^2

''-'-^^^^
and v'a + *^-c»^ =

-(^-^.)='43-^-

Hence the several expressions which enter into the proposed dil^

ferential will be rational, and therefore that differential will become

entirely rational.

dx
39. 1. To integrate dy = ---

.
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Assume Vl + a: + x^ = z -{- x; then 1 -\- x -\- x^ = s^ -i 2zx-\-x^

1-^2 2(1 -0+^2) y, ,

 „ 1-0 + ^2

/'20-1 2(1-04-22)
/. 2c?0 . ,^ .,,

= log ^r 7- + c = log ; h e6 2^ - 1
^ ^

2VTT^T^ -
(2x 4- 1)

= log [2/r+V+^ 4- (2a; 4- 1)]
-

log 3 4- <?

= log [2 y/1 4- a: 4- x^ + 2a? + 1] 4" Cj.

2. c/y =

Put 1 4- a: — a;2 = 0, and find the roots
ar,

and
a?2i

thus

ajj
= -

4- ^ V^ ^^^^ ^2 = 9
"

9 V^' ^ow assume

^14-a;— a;2 or ^/(a;— arj) (a;2~a;)

--_y/5-ar=(a:-----/5)2r2 and

^i-iv^.Vl=p-'
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dx

Assume \/t^ + x^=z+x ;
then — -\- x'^ = z^ •{ 2zx + «*

X = -—-—
,
dx= TTTr^TT^

—-
«^5 and '\/a^-\-b^x^ — —— •

26^2
'

(262^)2
5 V I

262

r 2bH 2bz 252 (a2 4- 62^2) /* 26c?g
•

*
• ^~~y a2-62^2

X
^qr^v

^
(2622)2

^- J a'^b^z^

\ r bdz
,

\ P — bdz 1 , a ^bz
,

== /
1 / = lOff 1- c,

aJa-\-bz a J a — bz a ^ a \- bz

1 , a4-6a;— Va2_|.52^2 i -i/a2 + 62a;2 — a
,=— log ^^ + c = — log

-5^ h c.

a "^

a-bx-ir-\/d?'-^h''x^
« ^^

40. The other irrational forms which admit of being rationalized,

are chiefly those belonging to the binomial class, which it is proposed

to consider carefully in the next chapter.



CHAPTER V.

BINOMIAL DIFFERENTIALS.

41. Pro-p, To determine the conditions under which the general form

dy = x^ {a -\- bx^)^dx, can be rendered rational.

If we put aj^rs™", there will result x^ — 0«i», x^ = z^t^ and

dx = mn . z'^^-'^dz.

.
•

. dy z= z^i^{a 4- hz*^'^Y nmz*'^^dz,

so that the form will be equally general if written thus

dy =z x^{a + bx^)Pdx (1),

in which p is the only fractional exponent.

Assume a-\-bx^ = z'y
then x = I—-—

j

and by substitution in (1),

1
CT+i

dy^—^iz-a)""
'zW

nb »

Hence, if be a positive or negative integer, or zero, the

m+l
^

quantity (z
—

a)
" can be developed in the form of a series of mo-

mials (with a limited number of terms), a rational fraction, or



/
& /

BINOMIAL DIFFERENTIALS.

jiiity, and thus the value of di/ can be rendered entirely r
/ \'S

be QjFor, although p is a. fractional exponent, the expression can be
*o^/,

transformed as to remove the fraction, by the method explained in
•

the first case of irrational fractions.

Again, since a:»'(a + bx^)P= x"^+^P(ax-^ + 6)?, if we put

ax-^ -}- b = z, there will result,

'?

/

=f-^T''-^"--f-^')

m+np+l

m+np+l
m+l

.
•

, x"^'^^Pdx

. dy— —

a

n

m+np+\

-(.-6)

-p-i

m+l

{z-h)
p-\

dz.

zP.dz,

m ~\~ 1

And this can be readily rationalized when hi? is a positive

or negative integer or zero.

We conclude, therefore, that there are two cases in which it will

be possible to rationalize the general binomial differential, viz. :

1st. When the exponent m of a; exterior to the parenthesis,

increased by unity, is exactly divisible by the exponent n of a:

within the
( ) ;

or

2d. When the fraction thus formed, increased by the exponent p
of the

( )
is an integer or zero.

42. These two relations are called the conditions of integrahility o{

binomial differentials.

43. 1. To integrate dy = x^{a + x'^ydx,

m + l
Here m = 5, « = 2, = 3, an integer,

and the expression can be rendered rational.

Put a-\-x'^z=z, .'. xz={z- ay, x^ = {z
- af

x^dxz=^{z-afdz,
and dy=hz-af . Xiz= \{z^-^2az^-\a^^)dz
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Here m = —
2, ?i = 2, and ^ = — -•

.
•

. = —
-, a fraction ;n 2 '

, . wi + l 13
but \-p =1 —- — -=: — 2, a negative integer,

and the expression can therefore be rendered rational by the second

transformation.

Put a:-2+l=:^, ,'. x={z — \)^, r^=.{z^\Y
1 1-1

ar^ .dx =z — ~{z — V)dz^ and dy =z — -(z
—

l)z dz.

, 1 -i - 1 -f .

or, dy =z — -z dz A- ~z dz.
z z

.'. y=-'^fz-hz + lfz'-*dz=-(z^ + z-^)-^c.

z-\-l
,

ar-2 + 2
.

1 /I ^ \ .

«



CHAPTER VI.

FORMULA OF REDUCTION.

44. When a binomial differential satisfies either of the conditions

of integrability, it is possible to transform it into a rational expres-

sion
; but, instead of applying this process of rationalization directly,

it is often more convenient to employ certain formulce of reduction^

which render the proposed integral dependent upon others of simpler

form, or such as have been previously integrated.

45. Such formulae are deduced by employing another known as

the formula for integration by parts.

Thus, since d(uv) = udv + vdu, we have

fud(o = uv — fvdu (1).

By this formula, fudv^ is ma5e to depend upon fvdu, which

latter integral may be more simple.

46. Prop. To obtain a formula for diminishing the exponent m
of ar,

exterior to the
( ),

in the general binomial form

y = fx^(a + bx^)Pdx.

Put (a + bx'*)Px^-^dx = dv, and a;'"-"+^ = u.

Then v = ^—-—---.-, and du z= (m ^ n -\- l)x^'*-^dx,
7ib(p-\- 1)

But y z=z /a;^-«+i(a + bx^)Px^~'^dx = fudv =z uv — fvdu.

x-»+^,^M^-)^' _ '!^jzJL±\f^u + 4;r«)^><& (2).
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The formula (2), effects the object of diminishing the exponent m
of ic, but it increases by unity the exponent p of the

( ), and as this

would often be an inconvenience, we must endeavor to modify (2).

Now /a;"»-«(a + bx*)f^^dx = /a;'"-" (a + bx'')P{a + bx^)dx

= a/a;'"-'»(a + bx^)Pdx-^b Jx'^ia -\- bx^)vdx.

. •. y = fx'^ia + bx'')Pdx = -y-^ -^

- (^-
- ^^ +

|)^y-^.-n(,, + b^n)pdx
- ^^-±lfxrn(a + bx-)Pdx.

Hb(/j -Hi).' 7i{p -f 1)
-^ ' ^

Transposing the last term to the first member and reducing, we

have

-^ ^/a;'"(a + bx'^\Pdx = ~-^T^—

Hence y = fx^(a + bx")Pdx

_ x"'-^^\a + 6x'»)^i
— (m — n-\- l)a. fx"^^{a + bx«}Pdx ._
fc(,,^ -f m + 1)

 
^ ^'

47. By this formula, the proposed integral is made to depend

upon another of a similar form, but having the exponent m — w of

X, exterior to the
( ),

less than the oiiginal exponent m, by w, the

exponent <>f x within the
( ).

48. Prop, To obtain a formula for diminishing the exponent p
of the

( ),
in the general integral

y = fx^ia -}- bx^)Pdx.

Since fx^{a -f- bx^)Pdx = fx^(a + bx'^)P-\a -}- bx^)dx

= afx'^(a 4- bx'')P-^dx -\- b/x'^'^^a + bx'')P-'^dx\

and since by applying formula {A) to the last integral, replacing

m by (w-|-«), and p by (/>
—

1),
we get

* ^

b(np + m 4- 1)
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.
•

. y =z /x'"{a + bx'')Pdx =z a fx'^{a -f bx'')P-^dx H
-"- -—-

Tip ~j~ TUf ~T~ X

np + m + l''
^ '

x^'*-^\a •\- hx^^P \- pnoi Jx^{(x -\- hx'^y~^dx ,„.~
np -\- m -\-\

49. By the use of this formula, the proposed integral is made to

depend upon a similar integral, but having the exponent of the ( )

diminished by unity.

50. When the exponents m and p are negative, and numerically

large, it is generally convenient to increase them, so as to bring

their values nearer to zero, and hence we require two additional

formulae, one for increasing the exponent of the variable exterior to

the
( ),

and the other, for increasing the exponent of the ( ).

51. Prop. To obtain a formula for increasing the exponent
—- m,

of the parenthesis in the general integral

y = fxr^{a + bx")Pdx.

From formula (A), we obtain, by transposition and reduction,

xrn-n+i(a.uix'*)P+^—b(np-^m+\)fxP(a-{-bx'')Pdx
fx'^-Ha-^bx'^)Pdx=z

i—!-—-I — ^^
,

'

/-
^—^^-^ ^-

Now making m — n z= — m^, or m =^ n — m^, there results

fxr^i{a + bx^)Pdx

_ xr^v^\a 4- bx'^)P^'^
—

b{np -\- n — m^ -\- 1) /ir-*"i+» (cr. + bx^)Pdx
""

a(-mi-f 1)
'

or by omitting the subscript accents and reducing,

y
—

fxr^ia + bx^)Pdx

y.-m+i
((J _|_ 5^ft)p+i^h(^^_np—n— l)fx-^+''(a-\-bx'*)Pdx ,- - —

-a(m~l) ^^>-

52. By the use of this formula the exponent — m of x exterior

to the
( )

is increased by n the exponent of x within the
( ).
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53. Prop, To obtain a formula for increasing the exponent
— p

of the
( )

in the general integral

y — fx'^{a -f bx^)-Pdx.

From formula (B) we obtain, by. transposition and reduction,

fx'^{a-i-bx^)p-^dx = ^— ^ ^^-^-^——^-—^^-^ ^

Now making p — I = —
p^ or p =z i — p^^ there results

/a;'"(a -|- bx*)-Pidx

_ a;'"+i(a + 6a;«)-Pi+i + {np^
— n — m — \)fx'^{a + bx'^yPi+^dx"

-.na{^p^+l) [ .

or by omitting accents and reducing

y = fx^{a + bx^)-Pdx

__
a;"*+i (a+ Sa:«)-i^i+ {np—n—m— l)fx'^[a-\-bx'')-P^'^dx~

na{p
-

1)
^^'

64. By the use of this formula, the exponent
—

j? of the
( )

is

increased by unity.

Applications of Formuloe (A), (B), (C), and (D).

x'''^dx

55, 1. To integrate dy = where m is an odd integer.

y 1 — x^

Put 771 successively equal to 1, 3, 5, 7, dsc, and apply f /,. Thus

y'

xdx J

-===i — —y 1 — x^ -\- Ci by the rule for powers,
v/l —x^

which m n= 3, /i -= 2, and p z=z —-^
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y^_f^=_J,4
0:^^ + *y^^ by formula (A), in

which m = 5, 7i = 2, and p = —
^'

Hence by substitution,

Jy/T^r^^~ yi 5-7 +3.5.7* + 1.3.5.7;^-^
^^"

and generally

r ^"^^ _ _ fl^^. I

l-('»-l)
^„-.,

I

l.(>»-3)(m-l)^_, ^ ^,^

•/t/l
— a;2 Lm (m—2).m (m—4){m—2)m

•••• +
1.3.5.7....{m-2)(m) J ^^

^ + ^-

2. To integrate <iy
=

,
where 771 is an even integer.

Put m = 0, 2, 4, 6, Ace, and apply (^4) thus

r = sm-^x + Cq by one of the circular forms.

«/-v/l
— x^

which m = 2, n = 2^ and ^ = — -.
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which m = 4, ri = 2, and ^ = — -.

f J
= —

^3:5/1
— a;2 + -

/- .^
"^

;
and generally

/» a;'"d'a; 1
, /:; ,

m — 1 /» x^-'^dx

Hence by substitution,

/» a;2c?a; 1 , 1

/. x*dz n
3 ,1.3 \

/^ r
,

1.3 .
, ,

_

f;/TT7.
= -

(i
^' +

2:4^)v^^^+o ^'"-'^ + ^*-

Vr^^^" ^6'' +4.6
"^

+2.4.67^ +2A(}"" *+-"

and generally

/» a-'«c/^ /I
, . l.(w-l) , . l.(m-3)(m-l) ^ . „

/^i _ -J.2 \m {m—2)m [fn~4:){m—'2)m

_ _ _

1. 3.5.7...(m-3)(m-lU ,p-^
^2.4.6.8. .. (M-3)»t 7^

1.3.5.7...(m -3)(m-l) .
, .+

3.4.6.8...(m-2).m
"" ''^^-

3. c?y =—~= = 7r\\ + X) ^dx,

a;2y 1 -f x

Make m = + 2, ^ = —
-, and n = 1, and apply (C7) : then
tit

— _ -/' + ^ _ 1 y ^f
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Now put 1 -f a; = z^^ then x = z^ — \^ dx — 2zdz and -y^l + x=zz.

P dx r 2zdz _ r 2dz _ /* dz _ /* dz

'J TjT^x -J {f-\)z-J z'^-l~J z-\ J z-\-l

2 — 1 "v/l 4- a; — 1 ^= log—r^ + (7 = log -^, h C7.

^ ^ y 1 + a: + 1

I

"4. dy = ~ dx = x-\a + bx) dx.

Put m = —
1, n = 1, and P = ^,

and apply (5) ;
then

/» (g -h bxfdx x^a-^ bxy ,2^, .. ^ .4

2"^
^ ""^

2

Now put m = —
1, w = 1, and jo = ^,

and apply (i!5)
to

the last integral ;
thus

i -a

f^'(a + bx)hx = ^'^^ '^ ^"^^ + \/x-^(a + 6x)'"*c^:r.

2-^^-1 2

Now put a + ^^ = 2^; then x = —r—
,

dx = —r-, and

y'a -f- 6i«J = 2.

1
^ 1

=—:log
>- + (7 = -^ log ^^

>^
-f a

ya 2 -f- y a ya ya + 6;c -f ya

and by substitution,

19



290 INTEGRAL CALCULUS.

^ ya 4- ft^ + V a

5. cfy = ^
=

ar-i(l + 2a:) Va:.

Put w = —
1, 71 = 1, i> = ^,

and apply (i)), then
(*

3

.(1 + 2.)* 1.(5-,)
i

But Sx-^{\ + 2a:)"'*c?a:
= log \LJl^ — + (7, by the laat ex-

yTT^a; + 1

ample.
2

. , Vl + 2^ - 1
, n

yT+2a; vTT2x-|-l



CHAPTER VII.

LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

56. We shall now proceed to the integration of those forms

which involve transcendental functions, beginning with the case of

logarithmic functions.

57. Of the logarithmic forms, only a very limited number can be

integrated, except by methods of approximation. The principal

integrable forms will be examined.

58. Prop. To integrate the form dy =z X . log*»a:. dx, in which JST

is a given algebraic function of x.

Put Xdx = dv, and log"a? = w, and apply the formula for inte

gration by parts. Thus

dx
V = fXdx^ and du = n , log^-^a: .

—
,
and since ftcdv -zzUv — Jvdu^X

.
•

. fX, log«a: . dx = log«a; . fXdx —f\n. log^-^a; . /(Xdx) .
—

I

or, by making JXdx = X^

—^
.

log"-^a: dx.
X

If, therefore, it be possible to integrate the algebraic form Xdx,

the proposed integral will depend upon another of the same general

form, but having the exponent of the logarithm less by unity.

rx
Now put / —^dx = X2, and by a similar process, there will

result

/X
PX—^

log" -^x.dx = Xz log" -^z — {n
—

\) J —^
log»-2a;. dx.
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If n be a positive integer, the repeated application of this formula

will cause the proposed integral to depend ultimately upon the alge-

/X XX—-
dx, provided we can integrate Xdx, —^

dx^
—-

c/ar,
X «C 2t

&c., obtaining in each an integral in the algebraic form.

log X . dx
Ex. To integrate dy =

(1 + xy

Here X =
^-^,

=
(1 + .)-

. •. /Xc/ar = /(I + ar)-2rfa:
= -

j-i-
= Xj.

* 1 , -. ^^^ X ^
P dx

Also, w = 1, and .
*

. y z=. —— \- I —
;

—
:•' ' ^ \+x^ J x-^x^

But
/^-f^,=/5-/3^^

= log.-log(l+.)-f 6'.

59. Prop. To integrate the form dy =z x"^ . log"a; . dx^ in which

n IS a positive integer.

Put x^ = X; then X. = fXdx = fx^dz = -^^^ -

m + l

And, therefore, by the last proposition,

y = /af» . log"a;. dx =—-—
log"a;

—/ x^ . log'-^a; . dx :

m-\-l
°

m-\-\
°

and similarly,

x^^^ n — 1
fx^losi^-'^xdx = lo2'»-^ar f x^los^-'^xdx.^ m + 1^ m+1'' ^

/*a;'"log'»-2a:(/a; =——-
lofi;'*"^^;

__ f 3f^\oa*-'^x.dx,m+l° w-fl °

dzc. &;c. &c.

Hence by successive substitutions,
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/j;ff«+i
n ^ n{n — 1)

' *^ m+lL m+1 °
(wH-1)^

n(?i-l)(?i-2)(yi-3) 3.2.1
"]

Cor. This formula ceases to be applicable when m = —
1, as the

terms become infinite
;
but we then have

dx loff^^^iC

/ orHog'^x . dx =zflog"x -— z=f log«a; . c?(log a;)
= ^ + (7.

Ux. To integrate dy — x^ . \og^x . dx.

Here m = 3, n = S, ^+1=4, r* — 1=2, n — 2=1.

rr* r ^ s 2 3 2 n
. •. y=>3.1og3a;.rf^=—

[^log3i;--log2a;+-^loga: ^J + 0.

2. dy =
"

• da; = a: log^a; . cfe.

X
3

Here m = — - and n = 6,

.•.wi4-l = —
-, w — 1=4, » — 2 = 3, w — 3 = 2, w — 4 = 1.

2
.

•
. y = ^ [log^a; -f 5 . 2 log*a; -f 5 • 4 . 221og3a;

a:*

-t- 5 . 4 . 3 . 23Iog2a; + 5.4.3.2. 241oga; + 5 . 4 . 3 . 2 . 1 . 2^] + C.

Remark. If we suppose n to be a positive fraction, the same

formula will apply, but the series will not terminate.

x^dx
60. Prop. To integrate the form dy = -——. in which w is a posj.

tive integer.

Put x^+'^ = u and •— = dv. then
log"a; x

duz=(m-\-l )x^dx. and v = —
-;

—.
^ ^ '

(/I
—

l)log«-iar
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Applying the formula fudv = uv — fvdu, we obtain

log"a:

~
{n — l)log"-ia; n — \J log''*~V

^

log«-"i^

~ ~
(«—2)log«-2a;

"^
n — '^J log"-2^*

log«-2a;

~~
{n — 3) log«-% n — sJ log^-^a;*

^* ^*

/a;'»c?a;

x'^+^ f 1
.

wi + 1 1
:zz — •

I
 .

log»a; n — l Llog^-^a; w — 2 log^-^a;

 (m + l)^ _1_ .

"^
(w
-

2) (w
-

3)

'

iog«-3a;'

*

• * ' "^
(w
-

2) (»
-

3) (w-4)...3.2.l'loga?J

+
(„_i)(„._2)(?i-3) ...3.2.1 ./ iog^*

The last integral admits of only an approximate determination,

but its form may be simplified ; thus,

put z = a;"*+^, then dz =: (m -\- l)x^dx, and (m 4* 1) ^ogx = logg.

'x^^dx _ /* (?2;

log X
~
J

log 5;

This, also, can only be integrated approximately by expanding

the expression under the sign of integration into a series, and then

integrating the terms separately, a method which will be considered

more at length in a future chapter.

m X^dx
3. 10 integrate approximately dy =

:j

—
g—

Here m = 4 and n = 3, .-.^4-1= 5, w — 1=2, n — 2 = 1.

P x^dx _ _ ars V 1 5 1 1
,

25 /' x^dx
* ^ ~V k^ ~ ~ T Llog2^ T

'

ioi^J 2«/

log X
~
J \

-- c , /* ^ t/a; r dz
Now put .r^ z^ z, then / -;

= / ,- ;
•/ log ar »/ log r

^^ . logarj 2«/ log*'

log
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and, making log ^ =
^, we have z = e*, dz — e^, dU

=log [log a;5] 4- log a;5

4-^-^2 log^o;* +
^ ^ ^^

log^ar^-f &c.

Exponential JFuncUons,

61. To integrate the form dy = a^ .x^.dxy when m is a positive

integer.

Put a''dx=dv. and x^=u: then t;=T ^a* and du=mx^~^dx,
log a

a* . a:*" ^ ^ , ^ , . ., ,

.
•

. fa* .x^,ax = fa* . x^-'^dx, and similarly
log a log a

» /a* . x^^^dx = -V- ^ fa* . x^-^dx
log a log a

/a* . x^^'^dx = -J ; fa* . x^^^dx, &c. &c. &a
log a log a

^ence, by substitution,

a* r
y = fa* .x'^.dx = 1 x^

logaL

mar'«v—1

log a L log a

log^a log^a
"^

log'"a J
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Or
62. Prajp. To integrate dy = —dx^ when w is a positive integer.

Put xr^dxz=dv and a'=i^ ; then v= and du = log a . a^ctr.m — \

/w^dx
a'

, lofja r a'^dx , . ., i

=r — 7 -T r H ^—-
/ 7, and similarly,

/a^dx
a' log a Pa'dx

a;'»-i

~ ~
(?/i
—

2)^""^ m~— 2
*

J a^
Pa'dx a* log a fa'dx » „ »

y ^2 = "
(;;ri--3ji^

+
;;^-3 V i^'

^'- ^'- ^'-

Hence, by substitution,

/a'dx_
a" r log a log^a ^

^-~(^_l)a;m-iL +^r^"2^
+
(m-2) (m-sf

"^ ^

3). ..2.1'^ J
+

(m — 2) (wi
—

3)

4- -2)...2.W(m— l)(m-2j...2. W a;

The last integral can only be found approxiiiiately.

1. To integrate dy = a" . xMx.

Here m = 3, m—-1=2, m — 2 = 1. Hence

logaL log a log^a log^aj

2. To integrate dy =. e' .x* . dx.

Here m = 4, m — 1=3, m — 2 = 2, m — 3 = 1, log c = 1.

.

•
. y = e*(a;*

— 4a;3 + 12a:2 __ 24x + 24) + C.

3. dy = e-*a;2fl£r = r-*(— x^dx = —
e-'{— xYd{— x).

Here m = 2, m — 1 = 1, logc = 1, and x in the general formula

is to be replaced by — x,

r.y=fe-*.x^,dxz=z - r-*(a;2 + 2ar + 2) + C.
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4. dy =: ~— dx.
X*

Here w = 4, 7n— 1=3, &c.

the last integral being found, approximately, as in a previous exam,

pie, by expanding a*.

1 +x^

(1 + xy

Put \ + XzizZ.

5. To integrate dy = ^^ ^
e* . dx.

.•.a:=0-l, l+a;2=l+s2-23+l=22_22+2, dx=zdz, e'=e'-\

or by integrating the last term by parts

y = Lre^-2/ — dz-2—+2—dz]=e^-'^2 -^



CHAPTER VIII.

TRIGONOMETRICAL AND CIRCULAR FUNCTIONS.

63. S\nce the tangent, cotangent, secant, cosecant, versed-sine, and

coversed-sine, can all be expressed rationally in terms of the sine

and cosine, it will only be necessary to investigate formulae for the

integration of expressions involving sines and cosines.

64. Prop, To obtain a formula for diminishing the exponent m of

sin
a;,

in the general integral

y = /sin'"ar . cos"2r . dx^ when m is an integer.

Put cos»a: . sin x .dx = dv, and sin'^-^a; =: u
;

cos** a?

then V = .-» and dii = (m — I) sin"»~2^ . cos a? . dx.
n + I

*

and by the formula for integration by parts

/•• « «' J sin"»-ia:.cos«+i2;
,

m— 1 ^ „ «+•> j
y=fsm^x . cos"a; .dx= 1 ——jsm^-^x.cos^^^x.dx.

But cos«+2a: — cos^a; .. cos^a; = (1
—

sin^a;) cos^a:?

sin'"-^a: . cos"+^a;

y = -
rA+ 1

A /sin'^2^. cos*a: . dx —
: /sin*"ar . cos*a; . dx.

Transposing the last term and reducing, we obtain

, sin'"-^a: . cos"+^a;
,
m— 1 ^ . „ ,

fsiTi^x . cos"a; .dx = 1 jsvd^^H . cos"ar . ax.m + n m-\-n
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And similarly,

^. „ , sin"»-3^.cos"+iar
.
m — 3 ^. . ^ ,

fsmr^^x.Qos'^x.dx= ;

— -fsm^'^x.cos^x.dx.m -{- n — 2 m-{-n—2

y.. «._A - J sin"'-5;P.cos'»+ia:
,

w* — 5 . . ^,- ^ .

/sin'^^a;. cos^x.ax= 1 -fsm^'^-^x.cos^x dx^m -f- n — 4 m-^n—4:

&c. &c, &;c.

Hence by successive substitutionsf

-,
cos«+ia; r . , .

m — 1

y = /sin*"a; . cos^a; .ax =
;

— sm'^-^ic H ;
sin"^^^m 4- ^ m-\-n — 2

(m—l)(m—3) . . o

(m+n—2)(m+w— 4)

(m-l)(m-3)(m-5) 4 or 3""
(w+n—2)(m+7i-4)(m+7i-6)...(w+ 3) or (w-f-2)

X sin^ic or sin
a:]

(m— l)(m—3)(w— 5) 2 or 1

(m+ n)(m-fw—2)(m+w— 4)...(/i-f3) or (^-{-2)

X /sin ir . cos"a: . dx or fcos^x .dx
(JS').

65. This formula renders the proposed integral dependent upon

that of the form

sin X . cos"a: . dx or cos^a; . dx,

according as m is odd or even, the effect of the formula first ob-

tained being to diminish by 2 the exponent m of sin x, at each

application.

Also the first of these two final forms is immediately integrable

by the rule for powers : for

7/ X cos^+^a; ^
/cos"a: .smx.dx = — /cos"a; . a(cos x) = —

-f C.
'' ^ ' n {• I

Hence we have only to obtain a formula for the integration of the

jrm co^^x.dx, in order to effect the complete integration of the

proposed differential.
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66. Prop. To integrate the form dy = cos^a; . dx where n is ac

hiteger.

Put cos X .dx =: rfv, and cos"-*^a; = u
;

then t; = sin a: and du z=: —
(;t
— 1

)
cos^'-^ar sin x dx.

Hence by substitution in the formula fudv =z uv — fvdu, we obtain

/cos^x.dz — sin x . cos"-i^4- (w^ l)/cos"~2^ . sin% . dx

= sin X . cos"-^a:-f- (?^
—

l)/c()s"~2^(l —coii^x)dx

= sin a; . cos^-^^^- [ti
—

l)fcos"-^x .dx—
()i
— \ )/cos"a; . dz.

Transposing the last term and reducing, we get

sin X . cos"-i^
,
n — \ ^ „ , , . ., ,

fcos^x.ax = j fcos^-^x.dx, and similarh
n n ''

„ _ sin a; . cos"-^^:
,
n — 3 ^ ,

_

jcos^~''X . ax =z
1 -fcos'^-^x.dx.

n — 2 7i — 2

sin X . cos**-5a; w — 5 ^ „ ,

/cos^-^a; . dx =
1 -fcos^-^x.dx,

n — 4 n — 4

&c. &c. &c.

Hence by successive substitutions,

sin aTp ,
w — 1

y = fcos^x . dx=z cos'*-'^^;-] r cos^-^a;
n ^ n — 2

(„_l)(^_3)(«-5)...4or3 .
^• • • •

4-7
—^7 7(7-

—
^TT r. ^cos2a: or cos

a;]

(«—2)(w—4)(w— b) ... 3 or 2 *

+S SvT ~. o- o /«^s x.dxoT fdx. . {F).
/t(/A—2)(;i—4) 3 or 2 ^ '^

This formula renders the proposed form dependent upon one o(

two known forms, viz.
;

/cos a; . rfa; = sin a; 4- C', when n is odd,

or, fdx = X -{ Cf when n is even.
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67. The two propositions just given effect the complete integra.

tion of siu^a; . cos«a: . dx, when m and n are integers, by first

diminishing the exponent m of the sine, and then the exponent n

of the cosine. But it is often preferable to reduce n first, and for

this purpose we require the following proposition.

68. Prop, To integrate dy = sm^x . cos"a; . dx^ by first dimin

ishing the exponent n of the cosine.

If in the formula {JE), we make a; = -
-tt —

iCj,
w = Wj, and

n !•= Wj, then

sin a? = cos x^, cos x = sin
arj,

dx =z -^
dicj,

and by substitution we shall obtain

/sin"*a; . cos"2; .dx z= — /cos^iajj . sin^^x^dx-^

sin'«i+ia:i r „ ,
, ^ i=

;
cos^i-^rr, + &c. ,

Wj -(- mj
'- -^

or by omitting the accents and changing signs,

, . , sin'^+^a; _
, .

w — 1 o

fsm^x , cos"2; . dx = — cos'*""-^a; H ;
cos*~3a;

n -^ m^ n-\- m — 2

(H-\-m—2)(n-\-m—4)

{n-l){n-S) (n-5) 4 or 3
"^

{n-{-m—2)(n+ m—4t){n-^m—Q), . (m+ 3) or (m-f2)

X cos^a; or cos
a;]

"^(/i-|-m)(^+m-2)(M+w-4). .(mH-3) or (m+2)

X /cosar. sin'":c.c?a; or / si n'".'c. c?ar. .... (G).

But fcosx. sin'"^; . c?a; = /sin'"a; . c^(sin x)——' + C,
^ ^ m -\- I

which will be the required form when n is odd.

We have therefore only to provide a formula for the integration

of the form sin'"a: . dx^ which will be necessary when n is nvon.
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This may be readily effected by substituting in formula {F), m

1

2
for n, and - * — a; for x, and changing the signs. Thus

fsm^x. dx = [sm'^-^a; -] sm'^-^a;
•^ m ^ m — 2

(wz
—2)(m—4)

(m-l)(m-3)(m-5) ... 4 or 3 . , . ^

(m
—
2){m—4)(7n

—
b) ... 3 or 2 -*

(m— l)(m—3)(w— 5) . . . 2 or 1 ^. , ^, , „.+ ^^

/"
—

rr/^
—TT-^ r /sin a;c?a; or /dx (H),

69. The formulse (G) and (/f) effect the same object as {B) and

(F), reducing the integral fs'm^x.cos^x.dx to one of the known

forms

fdx :=: x-\-C^ /cosa:.c?a; = sina:-f (7, or, /sina;.c?a; =— cosa;4- C',

the exponent m or n which is first reduced being an even integer,

and the other exponent an even or odd integer.

But if ?7z be odd, {E) alone will effect the integration, whether n

be an integer or fraction
;
and similarly, if n be odd, ( G), alone

will suffice.

70. Prop. To integrate i;he forms dx, and dx, where
cos"a; sm'".r

m and n are integers.

By the formula {JE) the first of these forms may be reduced to

dx sin X . dx
or

,

cos^a: cos^a;

dx cos x . dx
-. , or :

•

sm'^^r sm^'ic

and by {G), the second may be reduced to

-, ^ fsinx .dx cos-^+^ic ^ . Pcosx.dx sin"-""**^*
, -,

But/ -—= ^Cand / —:--— = —r  ^•

Hence there will remain to be integrated the forms

cos-'^x.dx (1), and sin-"a; .dx (2).
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Put in (1), cosx.dx — dv, and cos-^-^a; = u,

then V = sin a;, and du = {n -\- l)cos-"~22; ^ gj^ x . dx,

and by substitution in the formula for integration by parts,

fcos—^x .dx = smx. cos""^^^; — (n + 1) /sin^ar . cos-^-^^g ^ ^gg

= sin a; . cos-^-^a: — (^ -h 1) fGos-~^~^x . dx -\- (n •}- \) fcos'~^x . dx.

Transposing and reducing, we get

/dx
sin x 11 P dx

cos^+^^^r
~

in 4-1 )cos'»+^a; n + \J (.X {n -\- Ijcos""^^

sin a;
.

to — 2 /*

n — 1«/ (

cos"a;
;
and by analogy

/ClX
Olll A> lb — i<J J UJU , ,^= 7 r-. z

—
I

/ —
, and similarly

cos"a; {n
—

l)cos"~ia; w — 1«/ cos""^^;'
•'

/dx
sin a: n — 4i P dx

cos'*"^^;
~~

(n — 3^cos"~^a: n — 3«/ cos"~*a;

{n
—

l)cos"~i

dx sin

cos'»~2^
~

(w
—

3)

&c. &c, &;c. Hence by substitution

/dx
sin a: r 1

cos^a:
~

w— 1 Lcos"~ia: in—(n—3)cos"~%

(n-2)(TO-4)

{n
—

3)(w
—

5)cos"~^a;

(w-2)(to-4)(w-6) 3 or 2

4-&C.

J

+
^ r dx
1 / or fdx (/).
1 «/ cos X ^ '

(n— 3)(/i
—5)(m—7) 2 or 1 .cos^a; or cos a:.

(w—2)(n
—4)(n-6) 1 or P dx

\n-\){n-~^){n-'b) . . . . 2 or

The second of these integrals, fdx=zx-\- C, will never be re-

quired, because its coefficient is zero, and therefore we stop at the

preceding term. For the first we have

/dx
_ P cos X .dx P cos a; . rfa; _ 1 /"cos x,dx 1 /"cos x . dx

cos X J cos^a; ~J 1 — sin^a? ~~2«' 1 -f- sin a; 2«/ 1 -— sinas

= ilog(l+sin^)-ilog(l-sinx)+e = log[i±^-||]*+(7

2sin(jr+ix)cos(l<-l:r)"'*= log

_2sin(i*-l:.)cos(i*
+

i.)_
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dx

/dx. ^ , replace in (/), n by m,

X by -"jr —
ar,

and y by z. Then

/dx __
cosa; r 1

sin'"a;

~
w — 1 Lsin'""^

w—2

ic (m—3)siu'"-3;5

(m—o)(w
—

5) siii'"-^a;

(??i—2)(m—4)(77i— 6) ... 3 or 2 "1

(m—3)(m—5Xwi— 7) ... 2 or 1 . sin'^^o; or sin a:J

(^_2)(m-4)(m-6) ... 1 or /• rf^
^

The second integral has a coefficient equal to zero, and therefore

will never be used. For ti:e first we have, by replacing x by

- < — a; in (/j) ,
and changing signs

i

/-— = — loff cot Tzx =z log ;

— = loff tan - x -f- C.
sin* ^2 ^1 '=2

cot -a;

dx
72. Prop. To integrate dy = -^ where m and n are

integers.

Since sin^a: + cos^a; = 1.

/dx P{s\n^x 4- co»^x)dx

sin'"a; . cos"a;
~

*^ sin'"^: . cos'»a;

/dx r dx

sin"»-2a; . cos"a; •/ sin'"a; . cos^-^a;

/(sin^a;

+ cos2a;)c?a; /^(sin^a; -f cos2a;)(fa;

gjj^m-2^ . cos^a; J sin'^a; . cos"-^^

/dx r 2dx
I /*

^^

sixi^-^x . cos"a: *^ sin"*~^a; . cos^-^a; *^ sin'^a; . cos*~*af
*

and by continuing to introduce the factor

sin^a; + cos^a: = 1,



TRIGONOMETRICAL FUNCTIONS. 805

we obtain finally one or more of the following known forms

x.dx rQ,Q)'$,x.dx Psmx.dx Pcosz.dx

/dx p dx Psmx.dx Pcosx.dx Psmx.dx P(

sin'^jr «/ cos^aj •/ cos"a; «/ sin'^ic •/ cos a: «/ smic

Applications of Formulce (E), (F), (G), (H), (I,) and (K).

73. 1 . To integrate dy = sin^^; . cos^a; . dx.

Here m = 5, and n = 5, and since both are odd we may apply

(E) or
( G) with equal advantage. Employing (U) we have

y = r^ [sin%' + -
sin^a;] + -^-— fsmx,

cos^a; . dx

f»Qg6/g 11
[sin*a; + -

sin^a:]
— cos^o; + (7

10 *- '2 -" 10.6

cos^a^r ,1.9 , n , ^

2. c/y = sin% . cos^a: . dx.

Here m = 6, yi = 3, and since t^ is odd we apply (G),

su-i'x
r 2 1 I

^
/•

•
fi ^ s"^''^ / 9 , 2\ , ^

.' . y — [cos^icj + - /cos a; . sm^a; . dx = ——- 1 cos^a: + -
1 -f- C/.

3.
(;?y
= sin^ic . dx.

In (^) make m z=z 6.

cos a; ,5., ,5.3. ^5.3.1 ,„
.

•
. y = ^ [sinSa; + - sm^a; + ^-^

sm
a;] + ^ ^ ^

x + C.

4. c?y = sin^a; . cos^ar . dx.

In (B) make m = 8 and n = 6.

cos^a:.. -
,

7 . ,
,

7.5 . ,
,

7.5.3 . ^
y = - IT t^^^ ^ +

12
'^^ "^ +

12710
'^" ^ + T2no:8

'"' ^^

7.5.3.1 , , ,+
14. 12. 10. 8-^^"^

^•^^'

20
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and by applying (F) to the last term, we get

cos':r 7 7 7

sin a: r ,
,

5
, ,

15
, ,

5a;
.

_
+
^yg [0OS»^ + - C0S3X + _ COS *] + ^^ + a

5. dv = -—
T- f^^-

In (-£^)
make w = 5 and n = — 2. Then

— 1 r . . .
4 . ^ , 4 . 2 /* sin a: . c?a;

y = ^ [sin*a; + -
sin^:?;] -\-

——
/

—
3 cos a;'- 1

-^ 3.1«/ cos^a;

""

[sin*a; + 4 sin2a; — 8] -f C.
3 cos a;

t/a:

6. rfy

In (JST) make m = 5. Then

_ _ ^Qs^ r 1
,

3 1 3J^ r dx
~~

4 Lsin*a: 2 sin^a^J 4 . 2 •>' sin a;

cosa^ri
. 31.3, ^.^

7. c?y =
cos^a;

In (/) make /i = 6. Then

^ sin .r r 1 4 J_ ,

4 2 1]^
5 Lcos^a?

"^
3

*

cos^a; 3
*

1 cos a;J
"*" *

8. dy =
sin*a; . cos^a;

Introducing the factor sin^a; + cos^ar, we obtain

/(sin^a;

4- co^'^x)dx P dx P dx

sin*a: . cos^a; ~J sin^a: . cos^a; «/ sin^a;

/dx
n dx r dx

cos^a; »/ sin^a? «/ sin*a;

\ Lsin^a: sin a:J
= tana:— cot a; •
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74. When m = —
n^ formulae (B) and {G) cease to be applica-

ble, but we then have

V = I dx = ftan^x .dx or y = I —. dx = I cofar dj:^ J cos«a; "J sm«a; J

To integrate the first of these expressions, put sec'^ — 1 for tan^

and in the second put cosec^ — 1 for cot'^. Thus

/tan^a; . dx=JX>w?x . tan"-^^; . dx-=.f%^(^x . tan^-^ar . dx—ftan^-'^x.di

1
tan"-^a; — ^^tan^-^a;. c?a;

tan"-^^; — / (sec^a;
• - 1 ) tan*~*a; . dx

tan^-^a; tan^-^a: H-Ztan^-^a; . dx
n — I n — 6

tan"-^a: tan'*-^^ -|
_ tan^-^a; — &c,

n — 1 w — 3

the last term being

'

sin a: . dx

cos a;

when n is odd or /c?a; = a; + C when n is even.

cos"a:c?a;

/sin
X dx— = — log cos a; + (7 = log sec a; +

cos X ^

CI. ., 1 r QOS'^XdX C 7

Similarly, /—.
= / cot"a; . dx

cof'-ia;
,

cot«-3a: cot«-^a:
,

.= H + &c.
n — 1 n — 6 n — 5

The last term being /cot x .dx =. log sin a; + C^ or fdx =:z x -\- C.

75. When the proposed form is /sin'"a:.cos'*arc?a;, in which m and n

are integers, the integration may be conveniently effected by con-

verting the product sin'»a; . cos"a; into a series of terms involving

sines or cosines of multiples of x. The integration can then be

perfoi-med without introducing powers of the sines or cosines.

The proposed transformation can always be accomplished by the
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repeated application of one or more of the three trigonometrusal

forraulfie.

sin a cos 6 = - sin (a -f- 6) -j-
- sin (a

—
6),

sin a sin 6 = - cos (a
—

b)
— - cos (a + h\

COS a COS 6 = - cos
(ct
—

6) + ^ cos (a + 6).

To illustrate this process take the following example.

dy = sin^o; . cos^xdx

. / . NO . /sin 2ar\2
sm-^ic . cos^^c = sm x (sm a; . cos

a;)^
= sm a: I

—-—
I

1 . /I — cos 4a;)= - sm a:

4 (1

— cos 4a;\ 1 . 1 .

1 = - sm a; — - sm a; . cos 4a:2/8 o

= - sin a; + TTT sin 3a: — -— sin 5x,
o lb lo

.
•

. y z= / I - sin a: + T^
sin 3a: — — sin 5a:

Jia;

= — - cos a:—-— cos 3a: + — cos 5x -\- C.
o 48 oO

76. Prop. To integrate the form dy = b°^ . sin"a: . dx.

Put sin X .dx = dv, and ft"^sin"~^a: =: u, then v = — cos x,

and du = (n
—

l)b°^^in^~'^x . cos xdx -\- a . log b • 6«^sin"~^a: . dx.

.'. y==:fb'^^sm.^x.dx=:—b°^^sm^~'^x. cos x-{-{n— I)fb^^s'm^-^xcos^xdx

+a. log 6./6"sin"~^a:. cos x. dx.

But, by applying the formula fudv = uv — fvdu to the last integral,

making sin*-'a:.cos x.dx = dv and 6*^* = u, we get

/6'»^sin"'-ia;.cosa;.c?a;=-sin"a:.6** a log 6 /sin"a? . 6" . cto,
n n

•nd, by replacing cos^a; by 1 — sin^a:, we have

/'5axsinn-2^ cos^a: . dx = rb''^sm*-^xdx — /6«=^£in"a; . dg.  
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ff-^nce, by substitution, ^^^^^^"^^'^ /' ^

Jh^^ . sin"« . aa: = — o°^sm"-ia; . cos a; H ^- o«*Wn"t^ i ^ O >

(alos^y ^^"'^- ^^ ^-^
/sin*^ . 6«^6?a; + (w

— 1
) / 6«^sin«-2a; .dx ^V_

*

—
(n
—

V) fh^^^\X)J^x .dx.

\ 'ansposing, colie^-ting like terms and reducing, we obtain

/ i-^sui-a: . dx =
/^|^g^N2_{.,^2

(<^ ^^g 6 . sm a; - n cos x)

-i- 7-'-
--
r.^? o /^°^siii"-2^ . c^a; ... (X).

B^ repeated applications o^ (Z) we obtain the final integral.

lyax

j'h^^dz = —
;

—r + C, whv>ii n is even ;
and when n is odd,

a log

J b'Hhi X . dx, which is given bv (Z) without an integration, since

the lasS ler.n then contains the factor n — 1=1 — 1=0, and

therefore tha^ term disappears.

77. Prop. lo integrate the form d^
- •

^'^^^cs^o; . dx.

Put a? =
a;^
— -

r, then cos x = sin a: .,
sir: ;:• .- — cos

ajj,

i»* _- 5««i.o
^

^
dx ~

OvVj.

,-i^" -, . , ^ 6«^isin»-^ar,. , .

^•,yz=zb
^

/6«^ism«a; d>; n=- -7^-i ttt-,
—

^('^J Vr^ fma?,— ncosa;,)^ "^ ' *

(a log 0)2+^2
V . 1 ./

ra
n(n--l)b

^
^, . o 7 11 •. .•

4- -\ -^- f I'^^is^L'^^x-.dXi, and by sausiic'uiGn,
^(alogZ>)2-f7l2-^

1 1' J »

fb'^'cos*x . dx = -7—; r,^ .

-- (a log 6 . cos a: -^ r &!ia j<J

(alog6)2-f.n^
^ "^ -^

n(7i — 1) ^, „ , ,-,,^
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lax
Here the final intem-al will be Jh'^^dx = —j + (7, whei. n is^ a log 6

even
;
and when n is odd, f b'^^c.os x . dx^ to which (if) applies with,

out an integration.

1. To integrate dy = ««^ . cos x .dx.

In {M) make 6 = e, n = 1, log 6 = log e = 1. Then

y = ^
. [a cos a; + sin

a;J + C7.

2. dy := e^ . sin^a: . (fa;.

In (Z) make 6 = e, a = 1, » = 3, log 6 = I. Then

e^ . sin2a; ^ . « .,.3.2,.
y = yTTs^ L^'n a; — 3 cos

a;] +
^ ^^

fe^'smx.dx

1 fi 1— e^
[sin^a;

— 3 sin^a; . cos
a;] + tt: • « e*(sin a:— cos a;)-f'

C.
10 ^ -^

'

10 2

1_

10
or, y = —-

e*[sin3a; + Scos^a; -f- 3sin x — 6cos
x'\ + C.

8. c?y = e-<"sin kx.dx = - e-«*sin A:a? .
c?(A;a:).

In (Z) make 6 = e, a? = ^a;, a == — -? Then

er'^'^ia sin A-a; + ^ cos A:a:)

^
k'^ + a'^

78. Prop. To integrate the form dy = X. sin-^a:. c?ar,
in which X

is an algebraic function of x.

Put Xdx = dv, and sin~^a: = u
;

Uien V = fXdx = Xj, and du =

. /» X-^dx

and the proposed integral is thus caused to depend upon anrjther

whose form is algebraic.
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79. Prop. To integrate the form dy = Xcos-^x.dx^ in which X
IS an algebraic function of x.

Put Xdz = dv, and cos-'o; = u
;

dx
then v = /Xcilr = X^ and c?«^ =

;

.
•

. y = Xcos-^a; -f /
—-^^

,
an aleebrais form.

./
-/l

- a;2

Cor. The same process will apply to each of the forms

Xtaxr'^xdx, X cot^^zdx, Xsecr'^xdx^ 6zc.,

since the differential coefficients of tan-^ar, cot^^x*, sec-^a;, &c,
are all algebraic.

1. dt/ = ar^sin'^o: . dx.

Here X = x^, .-. X^ = fXdx = fx^dx =z ^

3. t/y = -—-—1 • tan -*«.
x'^dx

Put c?v = =dx — —-—
;:,

and u = tan~^«,
1 4- a;2 1 4- a:^

.
*
. V = ar — tan-^a;, and du -z

l+a;2

xdx f tan~ia; . dx
, xo /* ^'"^

. /"tan"
.
•
. y = a: tan-^a: - (tan-i;r)2

- J j^p^2+ 7
—

^-x^

= ar tan-la; - (tan-W- ^
log(l + x^)'\-\{XmrHf { C.

1

tan"-iar(a;
—

-tan"»a;)- log yl-l-a^ -r 0,



CHAPTER IX.

APPROXIMATE INTEGRATION.

80. When a given differential cannot be reduced to a form

exactly integrable, we may expand the differential coefficient, either

by Maclaurin's theorem, by the common binomial theorem, or

otherwise
;
then multiply by dx^ and finally integrate the terms suc-

cessively. If the resulting series be convergent, a limited number

of terms will give an approximate value of the integral.

81. This method may also be employed with advantage, when an

exact integration would lead to a function of complicated form.

And the two methods can be used jointly to discover the form of

the developed integral.

EXAMPLES.

82. 1. To integrate dy = ——— dx, in a series.

Expanding by actual division, we have

1 — a: -}- a;2 — ic^ + ic* — &c
\^x

.
•

. y = /(I _ a; 4- a?2 _ a;3 -f a:* — ^Q.)dx.

the required series.
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Again J—_—
dx — log( \ -\- x) -{ C^

.
'

. log(l + x)— X ^^ + r ^^ — - x'*' -{-
- x'^ — &C.-J- c,^^ 2 a 4 5

whore c = C — C-^.

But when a; == 0, ]og(l -\- x)
= \og\ — 0, .-.0 = 0,

.
•

. log(l -\- x) = x — - x"^ -\-
- x^ — - x^ -{ -x^ — (Szc.

^ o 4 o

a well known formula.

2. c/y == ;r*(l
-

x-^ydx.

Expanding (1
—

x"^) by the binomial theorem,

(l-.^)*=l-i.^-i.^-l.e_-|-.s_&„.

.-. y = fx^{l -g
^^ -

8
** -

1^
=^° - ni ^° - &c.)<&.

= 3^-7^-44^-125^ -mi" -&c.+ a

3. dy=z—:=,'

= ^ -o ^' + 2^"' -
ari^o"'

+ *'''• + ^-

dx
But /*-^^= = log(a: + vTT^)+ Ci.

•/-j/l -\- x^

.-. log(*+v/I+^)=x-^x3+-!^;r»-H^:r'+ &c.+ (7-(r..
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Now when xzzzO, \og(x+^+x^)=\ogl=0. ..C—C^—d.

_^—^— 1 1 ^ 1 ^ 'i

.
•

. log (^ + ^l+X^)=.X-^X^ + ^ri-=
X^ - 5^-^ X'' + &C.

2.3
'

2.4.5 2.4.6.7

1+"^

dx
4. To integrate dy = ———^

both in ascending and descending

powers of x.

——-=l-a;24-a:*-a;6+&c. and ——- =:_-—_+— ~--+&c.
l-\-x^ x^-\-l x^ x^ x^ x^

/dx—-—- = tan-la; + C = f il ~ x^ \- x^ - x^ k.Q.)dx
\ -\- x^ ^ '

= X — -x^ \- -x^ — - x'^ -\- &c. + C.

dx

The two results become equivalent, by selecting the constants C

and Ci such that Cj
— (7 = -

-jr.

For, the first series =: tan-^ic + 0.

And the second " = — tan-^ - + C, = — cot"' a: + 6\.
X

.
•

. In order that the two series may be equal, we must have

tan-^a; + (7 = — cot-^a; + Cj,

or tan-^a; + cot-^a; = C'l
—

(7, or - 1 = Cj
— C.

5t dy — ^
_

— dx.

Expanding the numerator we have

(1
-

e2a;2)*= 1 - 1 e^x^ -\- J— e^x* - J \^ ^ eH^ &;c
"^ ' 2 2.4 2.4.0
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11 13 dx

2.4 2.4.6 'yir=^

/- and have been
/I — x^

already integrated in the chapter relating to binomial differentials.

We might also expand (1
—

x"^) by the binomial theorem, then

perform the multiplication indicated, and finally integrate the terms

in succession. Adopting the first course we have

y = sin-^a; + h ^^
(o ^V^

~ ^^ ~
9

shi-^a:!

83 • Prop. To obtain a series which shall express the integral of

every function of the form Xdx, in terms of X, its differential co-

efficients, and X.

Put X =z u, dx = dv : then du = -^- • dx, and v = x,
dx

Now substituting in the formula fudv = uv ~ fvdu we get

fXdx = Xx — I -^
• xdx.

Next, put -J- = i^ and xdx = dv^
dx

then du =z ,^'dx and v = —-— x^,
dx^ 1.2

rdX
,

dX x' pd'^X x^
,

•••y^^^"=-^TT2-y^TT2^"-

^. ., ,
rd^X x^

,
d^X x^ pd^X x^ , , ,

By substiution

^^, ^ dX x^
_^
d^X x^ d?X a^

, , nfXdx=Xx— -— . -—-
4-
-—  

^. ^
—

-i-Y
•

, ,^ .3 ^
-J- &c. 4- 0.

dx l.'Z dx^ 1.2.3 dx^ 1.2.3.4
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This formula, called Bernouilli's series, shows the possibility of

expressing the integral of every function of a single vaiiahle, in

terms of that variable, since the several differential coefficients

-T—> —i-^-> &;c., can always be formed. But the series is often diver-

gent, and then of no use in giving the value of the integral ap-

proximately.

CHAPTER X.

INTEGRATION BETWEEN LIMlTb AND SUCCESSIVE INTEGRATION.

84. The integrals determined by the methods hitherto explained

are called indefinite integrals, because the value of the variable ar,

and that of the constant (7, both of which appear in the integral, re-

main undetermined. But in applying the Calculus, the nature of the

question will always require that the integral should be ta\o»i be-

tween given limits. Thus, suppose the integral to originate, [yr its

value to reduce to zero) when x ^z: a: this condition will a/: the

value of the constant C. Then, to determine the value of tbo e^-'tire

or definite integral, we replace x by 6, the other extreme vali & of

the variable.

Ex. To integrate dy = Sx^dx, between the limits x = x^ and x . te^

y = fSx^dx = x^ -\- C. But when x = x^, y = 0.

.
•

. =
arjS 4- (7 and C = —

x^\

and by substitution in the indefinite integral

y =z x^ —
x-^^.

Now make x =
org,

and there will result

y = x^ — XjS,

the complete or definite integral.
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A slight examination will show that the desired result will always

be obtained by substituting in the indefinite integral for the variable

a?,
first the inferior limit

x^^
and then the superior limit X2, and then

subtracting the first result from the second. In these substitutions

the constant C may be neglected, since it will disappear in the

subtraction.

85. The integration ofSx'^dx between the linAits
arj

and X2, when x^

s the inferior limit, or that at which the integral originates, and X2

the superior limit, is indicated by the notation.

/ Sx^dx.

86. The precise signification of this definite integral will, perhaps,

be better understood by the aid of the following

Prop. The definite integral L Xdx, (where X is a function of x^

which does not become infinite for any value of x between the limits

X = a and x = b,) is the limit of the sum of the values assumed

by the product Xh, as x is caused to increase by successive equal

increments (each = h) from x z= a to x =z b; the value of h being

continually diminished, and consequently the number of these incre-

ments being indefinitely increased.

Thus, if Xq X^ X2 X^ . . . Xn^i be the values assumed by X, when

X takes successively the values a, a-\-h, a-j-2A, a-{-Sh, . . . a+(w— ])A,

then will
/a
Xdx be the limit to the value {Xq-^X-^-^-X^.. .-\-Xn~i)h,

provided nh z=z b — a, and h be diminished indefinitely.

Proof. Let x and x -\- h he any two successive values of x, and

denote by Fx the general or indefinite integral fXdx.

Then by Taylor's Theorem,

rr/ . X.N r. ,
^^^ ^

.

d-'P'^ ^'
,

d^Fx h^
. ,
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which may be written, F{x -\- h) = Fx + Xh -{- Ph"^, ... (1), where

P is a function of x and h.

Suppose the difference 6 — a to be divided into n equal parts,

each equal to A, so that b — a =z nh.

Now, putting successively a, a + ^5 a + 2A . . . a+ (w
— 1 )A for ?

in (1), and denoting the corresponding values of P by Pq, -^i, &c.,

we get

F{a J\-K)^Fa-\- X^h + P^h"^

F(a 4- 2A) = F[{a + h) -\- h] = F{a + A) -j- X^h + P^h^

F{a + 3A) = F[{a + 2h) -i- k] = F {a -[- 2h) -{- X^h + Pg^^

&c. &;c. &c.

F{a-\-nh)= F[{a-\-{7i-l)h)+h]=F[a+ {n-l)k] + Xn-,h-\-Pn-,h?

adding these equations, and omitting the terms common to both

members of the sum, there results

F(a + nh) = Fa-{- h(X, + X^ + Xg . . . . + Xn-,)

+ h^P, + P^ + Pg . . . . + P„_3).

But, since every value of X is finite, none of the values of P will

become infinite. If, therefore, we denote the greatest value of

P by P, we shall have

Po+Pi-{-P2'-'-^-Pn-i<Pn,andsmceF{a-\-nh)=:Fb,iindnk=b—a.

.-, Fb-Fa-h{X,-\-X^ + X^.,.-\- Xn-,) <{b- a)P . h.

But 6 — a and P are both finite, and therefore by diminishing A, the

second member can be rendered less than any assignable quantity.

Hence Fb — Fa must approach indefinitely near to equality with

h{XQ -f- -STi + Xj . . . . -|- Xn_i) when h is continually diminished.
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Successive Integration,

87. If the second differential coefficient —rr= Xhe given instead

of the first, two successive integrations will be required to deter-

mine the original function y in terms of x. Thus, multiplyingby dx

and integrating, we get

/-S-<^^
= /^'^^' or % = fXd.^X,+ C,.

Multiplying again by dx^ and integrating, we get

f^ dx = fX^dx -h / C^dx,
dx

or y = Xj + C^x + C/g.

d^t/
88. Similarly, if there were given -j-j

= X, three successive in-

tegrations would give

y = x, + -^c,x^+c,x+a1.2

d^y
And if there were given -7-^

= X, then
(tx

1.2.3...(w-l)

'

1.2.3...(n-2)

the number of arbitrary constants introduced being n.

89. The result obtained by performing the above integrations may
be indicated thus

f^Xdx"" zzz y :

it is called the w** integral of Xdx".

90. Prop. To develop the n'* integral f^Xdx^ in a series.

Employing Maclaurin's Theorem, we have
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"^
Laf^2 J 1.2.3.. (m4-2)'^ Lc/x-^ J iT2:'3T:(:^~3y

^ • • • l^-I-

The terms within the
[ ]

are the arbitrary constants C\ C^ C3 . . . (7,,,

as far as
\^j'Xdx^ inclusive, but taken in an inverted onler.

91. Prop. To deduce the development of /""Xclx^ from that ofX
By Maclaurin's Theorem, we have

and this may be converted into the series [72] by multiplying each

term by ar", then dividing the successive terms l)y I . 2 . 3 . . . n.

by 2 . 3 . 4 . . . (^i + 1), by 3 . 4 . 5 . . .
(/i + 2), &c., and finally

annexing terms of the form

C^x
-^

C^x--^
1.2.3 ... (/i- 1)' 1.2.3.. . (m- 2)'

"•

/*
dx*

-—^——

Here X^iX—x') *=1 + 1^2 + 1. - ^^ + L t • - -^^ + &o.
2 2 4 2 4 h

Also « = 4. Therefore multiplying by .1* and dividing successively

by 1.2.3.4, by 3.4.5. O, &c., and finally annexing the terms

containing the constants, we get

J ^/\Z^ *"^
1 "^1.2'^1.2.3"^1.2.3.4"^2.3.4.5.6

4- &c.
1.3a;8

.
1.3.5^i'>

2.4.5.0.7.8  

2.4.0.7.8,9. 10
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2. What curves are characterized by the equations -r-^
= 0, and

(Py
—y = 0, respectively 1

\..U g=0, then /S..=|=C..

.
•

. I -j-dx
= f Cydx^ or y = C-^x -f Cg, a straight line.

2a.if g = o. then /2...=g = .>

•I%^ = SC,^ or |=C,.+ C„

-j-dx
z= f Cyxdx 4- / Cgfi^a;

or y = -^— + C^x + Cg, a parabola.

21



PiRT II.

RECTIFICATION OF CURVKS. QUADRATURE OF

AREAS. CUBATURE OF VOLUMES.

CHAPTER I.

RECTIFICATION OF CURVES.

92. To rectify a curve Is tO determine a straight line whose length

shall be equivalent to that of the curve, or simply to obtain an ex-

pression for the length of the curve, in terms of the co-ordinates of

its two extremities.

93. Prop. To obtain a general formula for the length of the arc

of a plane curve, when referred to rectangular co-ordinates.

Let AB be the proposed arc, P a

point in it, OX and OY the co-ordi-

nate axes.

Put OD = X, DP !/,
AP = s

Then since ds = dxV'-%
we shall have by integration

1 j_ ^!^'\h

/( (5), the required formula.

dy^
94. To apply (S) we replace -j-^ by its value, in terms of x,

deduced from the equation of the curve, and then integrate between

the limits x = OE and x — OF.
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96. Again if y be taken as the Independent variable, we shall have

/ do?
ds = dy\/ \ -{-

-—-
. and therefore

5 = / / 1 + 3~T/ ^y • • • ('^1)5
^ second formula.

dx^
This will be applied by substituting for -—- its value, in terms

of y, derived from the equation of the curve, and then integrating

between the proper limits.

EXAMPLES.

96. 1. To find the length of the para-

bolic arc AB^ included between the ordi-

nates b^ and
h^.

The equation of the curve is y^ = 2px.

dx y
.' , -J- =z—,

dy p

which substituted in
[S-^) gives

But by formula {B\ %
^

'^-^ ^

Y

f

"S D ^=-

/b' + y^)^dy =
\{p''-\- y2)^y -f

\p''f{v'
+ y^)

^
dy

To integrate the last term, put (/>2 -f. y^y = z -\- y,

r,p^-\-y'^ = z'^^zy^y\ y =tjZ^, dy =: ^'^

and

(1).

2z 2^2
db.

(^. ,,,.)*., +^^-^^_i>^
+ ^^

2^ 2z

 fiv^^f)-'^y=-f^.'^^^=-f^=-^o,.^c.
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And by substitution in (1),

/0>» + y')^dy = \{f + y^.y
-

\p'.-\og [(p^ + y^*- y-\ + C,.

•
•

• * = ^1^-^
-
1^

. log [{P^ + y^)*
-

y] + C,.

- To determine the value of C^, put y = h^ and s = 0, since the

arc is supposed to commence at the point A.

Thus =.
(^' + V)^.

_lyi„g[(^. + j^.)i_ j_] + (7^.

i,

substitution

when y = ^2

2i? ^^-/^
2

/ 2J_A2N* A

If the arc be reckoned from the vertex 0, the ordinate
h-^
= 0,

. _ (i>^ -f- V-)^6, 1 , ^ (/>^ + V)*- ^2
* • "

2/? 2^ "
j9

~
2p "^2^ ^

i9

2. The cycloid y = y^2r^— x^ { r . versin""^

Here dy l^\2r — X
and

dy"^ 2r — r 2r
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Hence by substitution in formula (S).

4- = J -^ dx = 2 -v/S^ + C.

But when a; = 0, s = 0, .

*
. (7=0, and hence s = 2y^^rx,

or, the cycloidal arc OP = 2 chord 01. of the generating circle.

When X = 2r, s = arc OFA = 2 diameter 00.

.
'

. arc AOB of the entire cycloid = 4 diameters of the generating

circle.

3. The circle y*
_ ^2 _ ^^.2^

d^ __x j,^^_j,^_^.

.
•

. s z= I ~dx=:ir I —— = r . sin~i—|- €.^ y ^
-y/^-x^

f

This result involves a circular arc, the very quantity we wish to

determine, and is therefore inapplicable.

To obtain an approximate result, expand the differential coefficieni

(r^
—

x"^)
and integrate: thus

r/l
,

1 ^2 1.3 a:* 1.3.5 x^ ^ . \.

Vx ,
\ a:3

,
1.3 a;5

,
1.3.5 a:\ ,

1 ,,=
4r+2:3--^+2:4r5-7H+2:476:7*7^+H +

^-

But if 5 =: when a; = 0, then (7 = 0, and .

•

, when a; = r,

the value of the arc APB of the quadrant.

And.f r=l, .^-.=:l-f_ +^-^ + ^-__4.&o.
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4. The ellipse a^y^ -f- ^^-^^ = a^6^.

^ dx'~ "^
ttV^

~
a?{aW — b^x^)

~
^2 _

^2^
»

a2_62
^^ ^^

, , dy'" a? a?' — c2a;2
01 1 + -—. = —" = — -, where e is the eccen-

ax^ a? — x^ a?' — x^

tric^ty.

/.
(a2
_

,2^2)4 ^ (1
_

,2,^^2)4 ^
. * = / -^^ ~ dx=

j -~^dx, by making
- = x^,

{a^-x'^f {l-x^^Y
"*

This expression has already been integrated approximately.

5. To determine what curves of the parabolic class are rectifiable.

The equation of this class of curves is 2/"
= aa;*", in which n and

m are positive integers.

dy m - — I

1^

(m
— n\

n )

*
1

and this can be rationalized, when —
-;

=z r, an integer, that is,

when — = (Art. 41 ).
n 2r

Hence, if one exponent, n, be even, and the other, m, greater by

unity, the curve will be rectifiable
;
that is, an exact expression for

the length of the curve can be obtained in terms of the co-ordinates

of its extremities.

The term rectifiable is sometimes restricted to those curves whose

lengths can be expressed algebraically, or without employing tran-

scendental quantities ;
and with this restriction, the value of r must

be positive, otherwise s would be transcendental.

Now applying the other condition of integrability, we hav»

h - = r, an mteger, whence —= —-— •

w — n\ 2 ' ^  m 2r

(m

— n\
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Hence, if one of the exponents be an even integer,, and the other

less by unity, the curve will be rectifiable.

Combining the two results, we find it simply necessary that m
and n should differ by unity.

97. Prop. To obtain a formula for the rectification of polar

curves.

Here we have to express s in terms of r or &, and for this pur-

pose we must transform the formula
[>S'], by means of the relations

u^ ux dij

^2
=
^+i-2"--(l)-

^ = ^-cos^...(2). y = /-sind...(3),

the quantity ^ being taken as the independent variable.

Then (2) and (3) give

dx dr dy dr
-jT = — r sin ^ -f cos 6—^ and -rr = r cos & + sin d -— •

dd d6 d&
^

dA

^d&^

ds^ dr d^'"^

.
•

. -7-=! r^sin^^ — 2r sin ^ cos ^— + cos^^ -—
d^^ d& d&^

dr d?'^

-f r^cos^^ + 2r sin & cos ^ -rr -f s'mH -—
dd dd^

,

—=/[-+!:> (n

1. The logarithmic spiral r = a^, between the limits r = r^ and

-— = log a.a^ =— , where m is the modulus.
dd -^ m '

.
•

. d& = — dr = — dr, and by substitution in {T),
aO r

.
.

. s =
f(r^ + ^\ ^dr

= (m2 + l)^fdr = {m^ + l)i + C

But 5 = 0, when r = r^, .', C = —{m^ + l)\,

.•. s = (1 -4- m2)*(r— rj), and when r = r^, s={l-{-m'^y{r^—r^.
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2. The spiral of Archimedes r = a^, from the pole to the

point r = Ty

dd a a*f
^ '

This expression is entirely similar to that integrated in rectifying

the parabola.

. .. . = !i(^l±Ij!)*+ la log
'•- + (''^ + '-'°)*

.

3. The lemniscata r"^ = a^cos 2^, ^—^

*=~'-^' „.A_ii\i .„4_,,^i
«^(l-^)* («*--*)'

(a*
—

r*)

1.8.5 r'2 .
"1 .+

3

which, integrated from r = a to r = 0, gives for the arc BIA or

one-fourth of the entire length of the curve.

* = 4^+2:5 + 2:4:^+2:47on3'H

98. When the curve is characterized by a relation between the

radius vector r and the perpendicular p upon the tangent. To

obtahi a formula for the rectification in this case, we assume the

value of the perpendicular found in the Differen. Calculus, p. 154 viz.:



\^.

)v
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QUADRATURE OF PLANE AREAS.

cfe2 c/r2

J92

 

(i&2 p^ y.2^,.2
—

p2^ y2 — ^2

- = /-
rdr

(CT), the required formula.

£!». The involute of the circle from ^ = to

Here the equation of the curve is r^ = a^ -f p^.

*f a 2a 2a

But when ^ = 0, s = 0. .'. C = —
-—', and

829

when V = 2'ff'a, 5 = 2'7r%.

CHAPTER II,

QUADRATURE OF PLANE AREAS.

99. The quadrature of a plane curve is the determination of a

square equal in area to the space bounded in part or entirely by that

curve. The problem is regarded as resolved when an expression for

the area in terms of Itnown quantities has been obtained, the number

of terms being limited.

100. Prop. To obtain a general formula for the value" of the plane

area ABCD^ included between the curve BC^ the axis OX, and the

two parallel ordinates AD and BC^ the curve being referred to

rectangular co-ordinates.

Put OE=x, EP=y, EF=h, FP^^y^,

and the area AEPDz=:A.

Then when x receives an increment A,

the area takes a corresponding increment

EPP^Fy intermediate in value between the

rectangle FP and the rectangle FS.
A EF
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But
C3FS
niFF

ViXh
y Xh

,
dy h_ d^i

1
'^

dx^ 1.2
+ &C.

^2

dx y dx^ 1.2.y
+ &c. = 1, when A = 0.

Hence at the limit, when h is taken indefinitely small, the area

EPP-^F^ which is always intermediate in value between FP and FS^

must become equal to each of these rectangles, or equal to y X h.

.

•

. dA = ydx, and consequently

A = fydx ( ^)? the required formula.

101. If the area were included between

two curves 2)0 and D^Ci^we should find by

a similar course of reasoning

A = /{Y-y)dx (V,),

in which Y and y denote the ordinates

FP and FPi, corresponding to the same

abscissa OF.

102. To apply ( F) or
( V{), we eliminate y, or y and y, by

employing the equation of one or both curves, and then integrate

between the limits x = OA and x z= OB.

EXAMPLES.

103. 1. The area ABCD, included between the parabolic arc

DC, the axis of x, and two given ordinates AD and BC.

Put OA=a^, AD=h^, OB=az, BC=:bJ OE=x, and FP=y.

Then, from the equation of the parabola,

we have

y^ = 2px, or y = (2p) . x .

.
•

. And by substitution in formula
( F),

/
A

A=f{2p)^.xhc = ^^(2p)^.x^+ C=~(2px)\x-\- C = r,^y+ C.i

E B

2

3
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2
But A= 0, when x =z a^ and y — b^, .

•

. C = — -
a^b-^^o

2
.

•
, A = -

{xy
—

a-Jb^ = ADPE', and when a: = ag and y = b^o

A =
^{aj>^-a,b^)

= ADCB.

Cor. If the area OBCB of the semi-parabola were required, we

should have

2 2
aj = 0, ^1 = 0, and .' . A =- aji^ = o circumscribing ;o o

and for the entire area of the parabola

4 2 2
2A =~ aj}^ = -

ttg
. 2^2 = Q circumscribing.

2. The circle y"^
= r"^ — a;^, or its seg-

ment ACD.

Here ^ = fydx = /(r2
-

x'^f dx,

or by employing formula (^),

Suppose the area to be reckoned from A.

area ^ = when x = OA =' — r,

.
•

. (7 = i r2 cos-i(- 1) = i
-jrrz.

.
•

. A=i- -rrr^ -f
-

a;(r2
— aj^r— - r^ cos-^ —

2 2 2 r

And when x = -\- r, A = - itr"^ =z area of semicircle AUB,

.
•

. area of entire circle AEBD = itr^.
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T^ find the area of the aegment A CD, make x—OG=—a^ then

.

•
. segment CADC =r. AC -a.CG.

3. The elliptic segment A C^D^

Here the equation of the curve is

y = ^ («2
-

0:2)4

,* . A z= fydx = - / (a^
—

x^) dx.

,
'

, 2A = segment A C^D^ =z -
. segment ACD of a circle described

on AB.

Hence the area of the entire ellipse = --area circle = -"!fa^='!t'ab
^ a a

1 X
4. The cycloid y = (2rx

—
x^) -\- r . versin-^-

Put OD = X, DP = y.

Then the area OPD = fydx. JV^^R/^'

But since y is a transcendental /

function of
a;, it will be preferable A

to integrate this expression by parts. Thus

A = fydx = xy — Jxdy.
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But from the equation of the curve we have

dx=xA or dy -4-
2r — a;

dx.
X \ X

.' . A =z xy — f '^^rx
— x^ . dx.

Now / -y/2ra;
— x'^dx = fy-^dx where

y-^
is the ordinate DP-^ of

the generating circle, corresponding to the abscissa OD = x^

or f ^'2rx
— x'^dx = area OP^D.

.
'

. area OPD — xy — area OP-J)^ and when x — OC z=.^r,

area semi-cycloid OAC — OC X CA — area semicircle OP-fi

1 3

Z lit

.

'

. area entire cycloid = Sirr^ = 3 area generating circle.

104. Prop. To determine a general formula for the quadrature of

polar curves, their equation having the form r = Fd,

Let QX be the fixed axis, QP the

radius vector, forming with QX an

angle measured by the arc 6 described

with radius equal to unity.

Let 6 take the increment
t,

convert-

ing r into rj = F(d -\- <),
and adding

the sector QPP^ to the area QIP=A,

previously swept over by the radius vector,

but < QPiO. Also the ratio

Now QPP^ > QPK,

qpK

-r^ X r^t

r X rt

, ,
dr t

,

dh' <2
. , ,,

= 1 + 2*. i + 2—
= I when t = 0.
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Hence at the limit, when t is replaced by c?^, and QPP-^ becomes

dA, the value of QPP^ will be equal to QKP or QP^O. Thus we

shall have dA =-r^ .d&.

.
•

. A = -
fr^d& . . . . ( Fg), the required formula.

1. The spiral of Archimedes r =. a^>

A =
^ fr^d&=l a^f&m

= i a^^ + (7 = i— + (7.

U A = when r = 7%, then C = — -— •

6 a

For the area of one convolution estimated from the pole, we hav«

the limits rj = and ?2 = 2'n'a.

o

2. The logarithmic spiral from r = r^ to r = r2.

Here r = a . .'. dr = log a . a . c?^ and d& = . •—•

log a r

.. A=:lfrW=-—frdr = j-^r^-^a2 2 log a 4 log a

= T ^(^2^
—

^1^)? between the limits r^ and rg: the quantity

m denoting the modulus.

3. The hyperbolic spiral from r = r, to r =
rj.

IT « J <*^^ 7.
^^

T a
,Here r = -

) ar = —
j d^ = ofr = -dr.

d ^2 >/ r-

. . A = — -fadr =z — -ar -\' C =
^

T between the lim-

Its rj and r^.
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4. The lemniscata r^ == a^cos 2 4.

A = \:SrH^ =\ a^'f cos 2m,z=zla^sm 2& + C.

,«

Put A = when ^ =
; jthen (7 = 0, and ^ = - a^sin 2^,

4

which gives, when r = 0, or 6 =
-<ji^,*

A = -a\

.
'

. Entire area = a"^ = square described on semi-axis.

105. Prop. To find a formula for the quadrature of a plane curve,

when its equation is given by a relation between the radius vector,

and the perpendicular upon the tangent.

Since d^ = -^'—,. A = \frm=\f-Jr^^

1. The involute of the circle

(r^—p^y

and this, between the limits ^ = 0, and p = 2'jra, within which tlie

entire circumference is unwound, gives

A=^ 'j(^a\

Cor. The area included between the involute ABS, the circle,

and the tangent AS, is equivalent to that swept over by the radius

sector, and therefore equal to -^«

c^ir^ ct^i

2. The epicycloid p^ = ^^ _ ^\ where c = a + 26, a and b

being the radii of the fixed and generating circles.
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Put
(r-2
—

a^y =Z, .
•

. ^2 _ 2;2 _|_ ^2^ ,.^^ _ ^^g^

(C2
-

r2j4 ^ (c2
_ a2 - 22)*

.
•

. ^ = i f
/(c2

- a2 _ z'^f^z'ds

2;(c2
— 0,2 _ ^2)^c ^^2

^
(f2y

/* dz

Aa 4a
(C2
_ a2 - 22)

2^J

2(c2
_ a2 - 22)*c . (c2

-
a?)c . ,

r/-2 - a^^ ^
4a 4a Lc^ — a^J

This, between the limits r=a and r=c,

gives

=
^(a2

+ 3a6 + 2b^) = 0/PFO.

But OIL = - t(ah,

1 62^
.

•
. IPVL = ^ epicycloid = — (3a + 26),

62-r

and, IVIyLI =— (3a + 26), the entire epicycloid.
a

If 6 = -
a, then epicycloid = 4'n'62 = -th^ :=: area fixed circle.

If b = a, then epicycloid = 5'xb^ = 5'7ra2 = 5 area fixed circle^



CHAPTER III.

QUADRATURE OF CURVED SURFACES.

106. Prop. To obtain a general formula for the quadrature of a

surface of revolution.

Let AB be the arc of a plane curve

which revolves about the axis OX, P and

Pj points taken on the curve so near to

each other that the arc PPj may present

its concavity to OX at every point.

Put ODz=zx, DP=.y, DD^=:h, A^j - y„ JP=«.

The surface generated by the arc PPi, is intermediate in magni-

tude between those generated by the chord PPj, and the broken

line PTPy Denoting these surfaces by C and B^ we have

1
iPD 4- TD^)2ifPT^- (TDi'

-
P^D^^)t(

{PJ) + P^D^)PP,.2if

- (^-P^ + VT)PT-^ (^Pi^i + PiT)P^T~
{2PD + VP^)PP^

Dividing numerator and denominator by A, and then passing to

22
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the limit, we obtain —- = 1. And hence the limit to the value of
C

the surface (7, generated by the chord, will be a proper expression

for the elementary surface generated by the arc PPj, when that arc

becomes indefinitely small.

But at the limit, when h = dx^ C = 2'jryll -f y^l «^.

Hence we have for the differential of the surface,

dA =
2^y(l

+ g)V and .'. A=
2^/J(l

+ g)V^, ..{W)^

or, A = 2'jrfi/ds ( W{).

107. To apply (W), we eliminate, by means of the equation of

the generating curve,- y. and
-j-,

and then integrate between the

given limits. Similarly, we apply ( Wj) by expressing y in 'terms

of s, or ds in terms of y and dy.

EXAMPLES.

108. 1. The surface of the sphere. Y

Here the generating curve is a circle whose equa-

tion is



Y- a ^

QUADRATURE OF CURVED SURFACES.
^^ 339

i
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2 4 16

32
and when x = 2r, A = S'rrh-^ —

rrr^ the entire suiface.
o

4. The surface generated by the revolution of the cycloid about

its base.

In the formula A = 2irfyds, the quantity y denotes the distance

of a point in the revolving curve from the axis of revolution, and

must therefore be replaced in the present instance, by 2r — ar.

.
 

. A = 2'r^f(2r- x)ds = 2'7r/(2r
—

x)i

' ^'*

= 2^V^(4ra:^
-

I ^^) + 0.^o

But .4=0, when x =: 0, y. (7=0, ,. •. ^=2^ ^/27(4ra;*-?a:^);o
and when x = 2r.

.
•

. A =:-^ tir^
;
and the entire surface 2A = — 

'n'r'^.

o o

109. Prop. To obtain a general formula for the quadrature of any

curved surface, whose equation is

referred to rectangular co-ordinates.

Let CAPB be a portion of the

surface included between the planes

of xz and yz^ and the planes BP^^

AP^ drawn parallel thereto.

:
Put OA^ = x, OB^ = A^P^ = y,

P^P = 0, A GBP = A, and let

z = F{x,y) ... (1) be the equation y^

of the surface.

Then, since the value of^ will be determined by the assumed values

of the independent variables x and y, we shall have A =
(p(x,7j).

Now when x receives an increment A^a-^^
= A, the area A takes th«

increment AB, becoming

A / . J \ .
,
dA h d^A h?

,
cPA A3

. .
1 n

-r^
,y; -r

^^ I
^

dx'' \.2^ dj^ 1.2.3^^^^
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Similarly, when y alone takes an increment B-p^ = k, A takes the

increment BG, becoming

,
dA k

,

d?A k'' (PA k^
, ,

But, when x and y increase simultaneously, A takes an increment

AB -\-BG-{- PI, becoming

_ dA h dA k (PA h? d-'A hk d^A B

d^A h? d^A h^k d'^A hk^ d^ k^
^ "^

*

r."2T3
"^

dx^dy

'

172
"^

dxdy^

'

172
"^

'd^
'

17273
"^ ^

.-. FI=A,-A-(A,-A)-{A,-A)
d^A hk

.

(^3^ k'^k
.

f/3^4 AF
+ ZTTJ-

' T—^ + T-7T •

t-t: + <Sce.

6^xc/y 1 dx^dy 1.2 rf^t/y2 1.2

PI d^A d^A h d^A k

lUc
"

dxdy
"^

dx-'dy

'

\ .2^ dx .dy''' \7z'^

which, at the limit when h =z and ^ = 0, reduces to

PI d^A

J

(!)•
Pill dxdy

Now this quotient, which results from dividing the elementary

surface PI by its projection Pj/j on the plane of xy, is equal to

,
where v denotes the angle formed by the tangent plane at the

point P with the plane of xy.

But from the theory of surfaces (DifF. Cal., Art. 177), we ha\B

1

V c^a:2
"^

dy^

d^A dz^ dz^

dxdy V dx"^ dy

d^A
Now, since the second differential coefficient -r—T- is obtained by

dxdy
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^=//(

differ'^ntiating the function A of x and y, first as though x were

alone variable, and then as though y only varied, we shall obtain

d^A
the value of A by multiplying the value of -7—7- by dxdy, and then

performing two successive integrations with respect to x and y, the

order of these integrations being immaterial, since that of the

differentiations is arbitrary.

This double integration is indicated by the symbol //, and the

result is called a double integral. Thus

dz"^ dz^ \4
1 -\-
— + —^xdxdy . . . . ( TFg), the required formula.

The limits of these integrations, in the case represented in the

diagram, are y = and y = OBj = b, x =1 and x = OA^ = a.

But if the surface were terminated laterally by a cylinder (instead

of by planes parallel to xz and yz), the elements of this cylinder

being parallel to the axis of z, and its base in the plane of xy repre-

sented by the equation y^ =fa, then the superior limit of the first

integration would he y = y-^ =f^^ the inferior limit being still zero.

This will be rendered plain by an example.

110. 1. Required the surface of the tri-rectangular triangle ABC,

From the equation of the surface q

x^-hy^
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But when y = 0,

and when y = -y/r^
—

x^,

V^2

y

^r

= 0,

1, and sin-i(l) = ^«'.

2 -^ 2 2

between the limits x = 0, and x = r.

2. The axes of two equal

circular semi-cylinders in-

tersect at right angles, form-

ing the figure called the

groin. Required the entire

surface intercepted upon the

two cylinders.

Assuming the axes of the

cylinders as those of x and

y respectively, the equation of the cylinder whose axis coincides

with X will be y^ -\- z^ = r^, and that of the cylinder whose axis

coincides with y will be x^ -{- z^ = r"^.

The entire surface to be estimated is projected upon xy in the rec-

tangle ABCF, and the triangle OGF is the projection of one-eighth

of this surface. To compute this portion to which the equation

^2 _|_ 2;2
_ ^2 applies, we have A —J / I 1 + t"^ + 'T^\ dxdy, in

•.vhicb the limits of integration are y =0 and y = x, x= and x = r.

dz X dz ^
Jut from the equation x"^ -\- z^

dx

•
•

• ^
=//(i + ip'^y =ffl '^'^y =ff

rdxdy

ydx xdx

or
Vr

V-r

between the given limits.
x" *^ -x/r" — X'-

A = —
r-s/i^

— a;2 -j- C = r"^ between the limits a: = and x — r,

,'. SA = 8r2, the entire surface of the groin.



CHAPTER IV,

CUBATURE OF VOLUMES.

111. Prop To obtain a general formula for the volume generated

by the revolution of a plane figure about a fixed axis.

Let OX, the axis of
a:,

be the axis

of revolution, ABCF the generating

area. Put

OD=x, DP=y, DD^=h, D,P,=y^,

and let y = Fx be the equation of the

bounding curve AB.

The volume generated by the revolution of the small quadrilateral

DPP^D^ is intermediate in magnitude between the cylinders gene-

rated by the rectangles PD^ and FD^ But

cylinder FDj^ _ ity-^h _ y{*

cylinder Pi>i
"

ify'^h

~
y^

dy h dhj h^

A2
^

dx y^ dx-^ 1.2. y

dy^ h^

dx^ y^

= 1 when h = 0.

Therefore at the limit the volume generated by DPP^D^ — cyl

inder PD^^ or dV =z ify^dx, and consequently V = itfy'^dx . . . (X)

the required formula.

To apply (X), we substitute for y^ its value in terms of x derived

from the equation of the bounding curve AB., and then integrate be

tween the given limits.



CUBATURE OF VOLUMES. 345

112. 1. The sphere.

Here the equation of the circle which bounds the generating

area is a*^ -4- y'^
== r^,

o

I*ut V = when ar = —
r.

/I \ 2
then 6' = — < I

- r^ — r^
j

— - n'r^.

+T B

1 2 4
.-. V =

'Ti[r'^x
— -

a.-3) -f-
- <r?-3 and when a; = -|- r, V — ~ icr^.

f 2. The ellipsoid of revolution, generated by the revolution of the

semi-ellipse about its greater axis 2a.

Here y''z=z-{a^-x''). .'. V=-^f(a^-x^)dx=--(a'^x-=;X^)-{'a

which gives between the limits x = — a and x = -{- a.

4 2 2
F = - -Trb^a =z -

{2a .

tb"^)
= -

circumscribing cylinder.

^
3. The paraboloid of revolution

y2
_

2px. V = 2'rt'p fxdx = 'rrpx^ + C.

If V = when a; =
;

then C7 = and V= tipx^ ;

which becomes, when a: =
iCj

and y = y^,

F =
-TTjoar^^

—
x^. t(y^ = -

circumscribing cylinder.

4. The parabolic spindle generated by the revolution of the para«

bolic area A QB about the double ordinate A£.

Put OQ = a, OA =zb, 01) = X, DP = y. Then QC = a - y,

rt ic2\2 ^
x^=. 2p{a—y) and V='^J \^~ K')

^^— T~J^^^P'^~' 4cfpa;2 4-a;*)c?ar.
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But if F = when x = 0, then (7=0; and when x = OA = 6,

or since

2
.

1

O D

V = ifa^
(l
-

3
+

5)
=

15
'^<*^* = volume ^^0.

1 (\

.

•
. volume AQB = —- ira^.

15

5. The volume generated by the revolution of the cycloid about

its base.

Put 0V= 2r, ODz=:x, DF = y, /F = = 2r — y.

Then from the equation of the cycloid,

dx /2r
—

z\^

dz

V
2^-n4 ^--rr^T---^ p

But by formula (.4), T4|«/I1

fyk^r-y)~^dy=- \y\2r-yf-{-\rJ\}{2r-y)^dy

fy\2r-y)~^dy=--y^{2r-y)^^ lrfy\2r-y)~^dy

Also fy~^{2r - y)~^dy = f-—1=- = versin-i h
''y/'Zry-y-

^

.',
F='rr(2r-y)*Qy*

+
^A+^A'^)-^'^^-'.versin-i^

f C.
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5
Put V = and y z= 2r. Then C = -rV2, and when y = 0.

5
F = - /•3'ff2 = volume B VO.

5 5
,

•

. volume £VA = Sr^-n'^ = ^'n'r-itr^ = -
circumscribing cylinder.2 8

C. The volume generated by the revolution of the cycloid about

its axis. (See last Fig.).

Put VI = X, IP = y, VO = 2r, and to facilitate the integration,

introduce the variable angle VCU = &.

Then x = r{l
— cos &), y = r(sin &-{-&), dx = r . sin &dd.

.
•

. r = irfy^dx = crr^ f{s\n^ + 2^ . sin2^ + &^ . sin12 4
But /sin3^ .c^^ = ~~

Q ^^^^^ . cosd — - cos ^ =: -, from ^ = to ^ = -r.

o So
2/(3 . sin24 .dd =f&.d& -fd . cos2m

= -^2_^sin2^+- /sin 2^ . d& by integrating by parts.

= -^2_^sin2^— -cos2^ =0*^^ from ^ z= to ^ =<r,2 2 4. 2

and /^2, sm&.d^ = -~ &^ cos ^ + 2 /^ . cos ^c/J

= _ ^2 cos ^ + 2^ sin ^ — 2 /sin ^fl?d

= _ ^2 cos ^ -f 2& sin ^ + 2 cos ^

= -^2 _ 4^ from a =: to ^ = <r.

-^-2 —
-J.

113. Prop. To obtain a general formula for the volume of all

solids which are symmetrical with respect to an axis.

Such solids may be generated by the motion of a plane figure, as

ABCD, of variable dimensions, and of any form, whose centre G
remains upon the axis OX, its plane being always perpendicular to

OX, and its variable area X being a function of
ar, its distance from

the origin.
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By a method entirely similar to

that applied to solids of revolution,

we may show that dV := Xdx,

and .-. V=fXdx (Zi),

the required formula.

To apply (JT,) we must express the

value of the area X in terms of x, and then integrate between the

proper limits.

Cor. The same formula is applicable to any solid generated by

the motion^of a section of variable dimensions parallel to a given

plane, when the area of the section can be expressed in functions of

its distance from the fixed plane.

114. 1. The ellipsoid with three unequal axes.

x^ Ip" z^
Here we have -— -f —-

4- -:: = 1
,

a^ b^ c^

or b'^c'^x'^ + a^c2^2 _|_ ^2^2-2 _ a^b^c^.

Make CC-^ = x, and put successively

y = and z = 0.

Then when

c

y = 0, z =

and when

2 _ ,,.2 A^i;

z = 0, y = --y/^- x^ = D,C\.
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2. The elliptical paraboloid cz^ + ^"^ = «^^»

349

Put successively

then

Then

CB

y = and « = ;

""^^ and CD = a x\i

y/bc

X = —-=.' And
-y/bc

r
,

1 tid^x^
I x.dx = - —-= + 0,

If r=0 when X = 0, then C = 0, and

•.
•

. When X = 0^ =
arj

^ = « ~~F== = o '^i^i — o circumscribing

cylinder.

3. The groin or solid formed by the intersection of two cylinders

whose axes are perpendicular to each other.

1st. Let the bases of the cylinders be

equal senn-eircles.

Then the generating section A-^BiC^D^

will be a square.

Put OG^GE= EA = r, OG^ = x,

G,E,^y=E,A,,
Then A^B^C^D^z=z Aif, and from the

equation of the circle EOF^

y2
_ 2rx — x^. .

•

. V~ fXdx = f{Srx-4x^)dx = 4rx^ _
|

a:^ -f (7.

But V = when x z= 0, .

*
. (7=0, and when x = r,

8 2 2
pr_ r^= - r .2r .2rz= -

circumscribing parallelopipedon.

2d. Let the bases be unequal parabolas.

Then the generating section will be a rectangle.

Put OG = a, GE=b, EA=b^, OG^z=x, G^E^ = y, ^,^, = y,
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Then 2pa;, y^
—

^p^x. .

•

. X = 2y . 2yi = ^x^/pp^.

V ." fXdx — ^y/vPi fxdx = Ax'^^pp^ = 2x . yy^, and when ar = a.

V z=z 2abb^
— -a . 26 . 26^ = -

circumscribing parallelopipedon.

4. The Conoid, with a circular base.

Put DA = a, DE - 2r, DG = x, GI = y.

Then the generating triangle IFH z=: X z= ay

=:
a-\J'lrx

— x^.

.

'

. V := fXdx ~ a f^2rx — x'^.dx

— a . segment BGH,

and when x ~ 2r, F = a •

(semi-circle DHE).

or volume conoid = -• volume circumscribing cylinder.

Cor. A similar result will be obtained if we suppose the base

to have any other form, the generating triangle being still perpen-

dicular to the base.

115. Prop. To obtain a general formula for the volume of asolicl

bounded by any curved surface, whose equation is referred to

rectangular co-ordinates.

First suppose the volume bounded by the co-ordinate planes of

xy^ xz^ and yz^ by planes parallel to xz and yz^ respectively, and by

the curved surface (7a/6, whose equation is

^1 = F{x,y),

Put OA^ = X, OB^= A^P^ z= y,

PiPi = ^, A^ = ^v

A^a^ = dx, P^ G-i
= dy^ PiP = ^^^'

Let the volume be intersected by

planes AG^ and a/j, parallel to yz,

and including between them the

lamina or slice Ail: let this la-

mina be cut by planes 6/j BD^^ &c.,
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dividing /t into pri»ms such as P/j, &;c.
; and, finally, let each prisna

be subdivided into elementary parallelopipedons, such as z-^d by

planes parallel to ary, the successive planes being at distances from

each other denoted by dx, dy^ and dz^ respectively. Then the

Volume of one of these elementary parallelopipedons will be

oxpr.;ssed by dxdydz\ and if this be integrated with respect to 2,

regarding x and y as constant between the limits 2; = and

z =: z^rzz P^P = F(x,y)^ the result obtained will represent the sum

of all the parallelopipedons contained in the prism P/j. A second

integration, with respect to y, between the limits y= and y=A-^G-^,

will give the sum of the prisms contained in the lamina AI-^ ;
and a

third integration, with respect to
.r,

between the limits x = and

X =z Oa^, will give the sum of the laminae, which
constitute/the

entire

volume. / ^ / .

Henc" the required formula is » J^ ^^^/
^

^t^

V=fffdxdydz (1). { ^ ''/•
•'

The symbol ///denotes three successive integrations^wiuriie^aeol
" /

y,

to the variables ar, y, and z^ and the result is called the triple mtegratJ^
of dxdydz. ^ * /

Cor. If the volume were bounded on every side by the curved

surface, the same formula (1) would apply, but the limits of inte-

gration would be different, those of the first integration being

z =z
z-^^

and z = z^ where z^ and
z^,

are the two extreme values

of z corresponding to the same values of x and y, and derived from

the equation of the surface
;
those of the second integration being

y z=zy^ and y = 7/3,
the extreme values of y corresponding to the

same value of x^ and derived from the equation of the section per-

pendicular to 0X\ and, finally, those of the third integration being

t^ and 0^2,
the extreme values of x.

116. 1. The tri-rectangular spherical sector.

Here the limits of the integration are ^=0 and P^P— -y/r"^
—x^—-y*,

y=0 and y=.ByEz=L ^r^—x"^, ar=0, and x=zOA=r.
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.
•

. V z= fffdxdydz = ffzdxdy

—
ff^r'^

_ a,.2
_

y2 , dxdy. But

/-v/r2—:r2—y2. dy— -y(r'^—x'^—y'^)

+J('-'-^')/7S
G?y

?/(/2-a;2
—

?/2)

l//-2—if2— y2

4.1(^2-^2) sin-i--^=l'* ' ^ 2_,r2 4
v-

=:-';r(r2— a:2)
between the liiriits given.

V—x

between the limits.

2. The volume cut from a paraboloid of revolution, 4;he equation

of whose generating curve is y^ = 2px^ by a right cyliii^
'• with a

circular base, its axis passing through the focus, and the diameter of

its base being equal to p.

The equation of the paraboloid being y2 _|_ 2;2
—

'2/jx, and that of

the cylinder y^ z=z px — x^, the limits of integration in th- present

case will be

2=4- x/'Zpx
—

y2 and z = —
y^2/jx

—
y^,

y = 4- ypx — ic2 and y = — ypx — a;2,

X = and x = p.

\ V=fffdxdydz=ffzdxdy=ff2(2px-y^)^dxdy.
°

ut
f(2px^y^)^dy=ly{2px-y^)^+px fjJL=-^

*^y2px—y^

1 1 «
= o y(^P^

-
2/^) + P^ ' sin-^ -7=

= a:y/y2~l- a:2 4. 2jo.r . sin-^ \/^—~ between the limits.
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dx

= —
^ (j>2

_
a;2)*-|- 2j9^2^sin~^\ 7'^:

— a;

2 |.

o

2p

p—x

+rf
x^dx

v//>^~--
x^

-
gM/^'^

=4+9

'2\^ I

1
T •

1
^

^ ) H— /^ sm-i -
2 ^

between the limits x = and a; =
j!7.

117. Pro/>. To obtain a general formula for the volume of a solid

bounded by a surface whose equation is referred to polar co-ordinates.

Let the volume be divided

into elementary wedges such

as 6^1 Z>, CO by planes drawn

through the axis OC. Let

each wedge be subdivided

into elementary pyramids,

such as FGDEO, by coni-

cal surfaces generated by

the revolution, about the

axis 0(7, of lines OD, OE,

&c., inclined to 0(7 in con-

stant angles. Finally, let each pyramid be subdivided into elemen-

tary parallelopipedons, such as fd^ by concentric spherical surfaces

with their centres at the origin 0.

The co-ordinates of a point d are Od =z r^ dODi = 6, and

AOD-^ = V
;
and the three edges of the elementary parallelopipedon

fd are dd^ =: dr, de = rdd, and dt = r cos & ,dv; the last expres-

sion being obtained by observing that when the line OD revolves

around the axis 0(7, the point d describes a small arc dt whoso

23
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centre lies upon the axis OC, and whose radius is the perpen*-

dicular distance of d from that axis, and therefore expressed by

r. smZOd = r cos &.

Hence the volume of tho parallelopipedon will be expressed by

r2 cos &dv . d&dr, and .' . V = fffr'^ cos &dv .d(i .dr . . . . (1 )

will be the required formula for the entire volume.

The first integration, if performed with respect to r, while v and &

remain constant, will give the sum of the parallelopipedons con-

tained in the pyramid DEFGO^ the limits of the integration being

r r= and r = 01) = F{vJ).
A second integration with respect to &, while v remains constant,

will give the sum of the pyramids contained in the wedge G^D-^CO,

and the third integration with respect to v will give the sum of the

wedges which constitute the entire volume.

118. 1. The hemisphere with radius equal to a.

Here the limits of the integrations are

r — and r = a, & = and & = ~^, v = and v = 2if.

•
. F = ///r2 cos ^.dvMdr= i ffr^ cos &.dvd^ = I a^ffcos &.dv.d6

o o

= -
a^/sin &.dv=z-a'^. sin - 'rcfdo =z

- a^v= - a^. S-r= - 'Ko.^.

3 3

2. The volume cut from a sphere whose radius is a, by a cylindei

with a circular base w^hose radius = ^, the

centre of the sphere being on the axis of the

cylinder.

Here we shall have for half the required

volume 01 ABODE,

Iv =/// 7-^ cos &.dvd&dr,

the limits of mtegration being

£
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Igt r = and r = 01= b sec &,

6=0 and 4=cos-1-j v = and v = 2if,
a

2d. r=0 and r=a, ^=cos-i- and d = -<r, «; = and v = 2*.

The first set of limits give

Cffr^ cos ddv.dddr= -ffr^ cos 6dv.d3= - ffb^ sec^^ cos &dv . d^
o o

= 1 63//sec2^ . 6?i'c?^ = i^Vtan a . dv

= -i^tan I cos-i -]fdv

= h-^
tan/tan-i^—jv

= ^IP-s/a^-h^

A.nd the second set of limits give

fffr'^(X)s6dv,d^dr= -ffr^ cos d.dv.dd = -a^ffoos&dv . cW
o o

= -a^/sin^ .c?v
o

= -a^sm- cr/rf?;
— - a^ sm

|
sm—^ *^

ifdv

-H'-^)-=i-('-^^>
.•.lF=:|4a3-(a2-62)^/^2i:p]

and
F=^'^ra3-(a2-62)^1.



PAKT III.

INTEGRATION OF FUNCTIONS OF TWO OR MORE

VARIABLES.

CHAPTER I.

INTEGRATION OP EXPRESSIONS CONTAINING SEVERAL INDEPENDENT

VARIABLES.

119. When a differential expression, containing two or more

Independent variables, can be obtained directly by differentiating

some function of those variables, it is said to be an exact differentio.l.

Thus xdy -f ydx is an exact differential, being equal to d(xy) ;
so

also is Zx'^dy
— Zydx -f- Qxydx — ^xdy, being equal to d(^x'^y—Zxy) ;

but x'^dy
— Zydx is not an exact differential, there being no expression

which, when differentiated, will produce that proposed.

120. If a differential be exact, its integral can be determined in

all cases by methods which will be explained, but we shall first

establish whereby to distinguish exact differentials.

121. Prop. To determine the conditions which indicate that any

proposed differential is exact.

Let the proposed expression be Pdx + Qdy^ in which P and Q

may be functions of one or both variables.

If this expression be the exact differential of some function u of

X and y, we shall have

du = Pdx -\- Qdy (1).
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But by the general process for differentiating a function of two

independent variables, we have

du=.^^dx-^^^dy (2).dx dy
^ ^ ^

And since (1) and (2) mjist, from the nature of the supposition, be

identical, the following conditions will exist, viz. ;

^=^ (^)' «4: (^)-

Now differentiate (3) with respect to y, and (4) with respect to «,

and there will result

dP^_ d'^u dQ _ dH
dy
~

dxdy dx
~

dydx

But it has been shown that the result of differentiating «, with

respect to x and y, successively, is the same, without reference to

the order of the differentiations, or that

dhi__dhi_ dl^_d^
dxdy

~
dydx

' '

dy dx ''

Hence, when the proposed differential Pdx -f Qdy is exact, the

condition (5) will be fulfilled. The converse is equally true, as will

appear fully when we attempt to integrate such expressions, and

hence the condition (5) is called the test of inlegrability.

122. Now let the proposed expression be Pdx -j- Qdy -f- Rdz^

involving three independent variables.

If this be an exact differential of some function u of
a;, y, and ^, then

fifii fi'ii (i^i

du z= -— dx -\- -r- dy -^ -r- dz = Pdx -\- Qdy 4- Rdz ;

dx dy dz

whence
du du

^-Tx! ^-Ty'
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cPu d'^u dH d^u d^u d^u

dxdy
~

dydx' dxdz
~

dzdx* dydz dzdy

Hence we have three following conditions of integrability,

dP_dQ dP__dB^ ^_^
dy
~

dx* dz
~

dx^ dz
~

dy

Similarly, if the expression were Pdx + Qdy + J^dz + Sds -j- &c.,

involving n independent variables, there would be - n (w
—

1), con-

ditions of the forms

dP__dQ dP_dE dP_dS_ dQ_dB_ dQ_dS
dy
^

dx^ dz
~

dx ds
~

dx ^
'

dz
~

dy
^

ds
~

dy

123. 1. Is a^ydx + x^dx -\- Pdy + a^xdy an exact differential 1

Here F = a'^y + ^^ and Q — b^ -^ d^x.

dP , dO , dP dO , ,

.
*

.
—r— = a^,

—r— = a^, .

•

.
—;— = —-^ and the expression if

dy dx dy dx

integrable.

dx dy xdy
2. Is Y H T ^^ exact differential ?

Here P =.
(a:2 + y-^y and Q = y-\\ - (a-2 -f y'^j^x'],

^ = - y (a;2 + y')^ , ^ - y-'[-{x^-^f)^+x\x^+y^)\

or —7-= — y(^^ + 2/^)
= —

p, and the expression is integrable
ctx ^y

3. Is Zxdy
—

Ay'^dx an exact differential %

and since 8y and 3 are not equal, the expression is not integrable.

124. Prop. To oblain a general formula for the integration of the

form du = Pdx + Qdy^ when the condition of integrability is

satisfied.
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Since the term Pdx has resulted from the differentiation of the

function m, with respect to x only, y being regarded as invariable, it

follows that u will be obtained by integrating Pdx with reference to

X alone
;
but as u may have contained terms involving y alone,

which terms necessarily disappear in a differentiation with reference

to x^ we must complete the integration of Pdx, not as usual by

adding a constant C, but by adding a quantity Z", which is some

unknown function of y and"^constant, and we thus provide for the

reappearance of such terms as may have disappeared in the first

differentiation. Thus we get

u = fPdx+ F, . . . . (1),

in which the value of Y remains to be determined.

Differentiating (1) with respect to y, there results

du dfPdx dY ^ ^^ _ n
dy~ dy dy' dy~

'

dY ^ dfPdx dY^ 1^ dfPdx\^
'-'1^

= ^—^' Ty''-{^
—
drr

and by integration

This value reduces (1) to the fjrm

u=fPdx + f[Q-^^']dy (2),

which is the required formula.

125. It ife necessary to prove, however, that the coefficient

dfPdx
Q of dy, does not contain x, since otherwise, the second

ay

integration would be attended with the same difficulty as the first.

Differentiating that coefficient with respect to
or,
we obtain

dQ (PfPdx _dQ _d^fPdx _dQ dP
dx dydx

~~
dx dxdy dx dy
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and this is equal to zero by the condition of integrability, which it

«upposed to be satisfied. Hence the coefficient of dy in (2) cannot

contain x.

126. This proof also establishes the truth of the converse of the

. . . , 1 , ,. . dP cW .

iirst proposition, viz : that when the condition -r- = -r— is satis-

fy ao;

fiod, the integration is possible.

127. By a similar process we obtain a second formula

„ = /e.,+/[p-^f].. (3).

in which the coefficient of dx does not contain y.

Cor. If there were given du = Fdx + Qdy -\- Rdz^ we would

write

u = fPdx -f F,

hi which F is a function of y and z.

Then differentiating with respect to y, we obtain

dV _d_u_ d fPdx _ ^ _ dfPdx
dy

~
dy dy

~
d'y

'

•••

Ty''
=

L^--VJ^''
and by integrating with respect to y and adding a function Z of «,

we get

Now differentiating with reference to z, we obtain

dZ_du dfPdx d/Qdy ±[ f^ff^.l
dz
~

dz dz dz dz\J dy J

in which the coefficient of dz is independent of x and y.
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128. In piactice it will be found usually more convenient, and

always more instructive, to apply the method, rather than the form

ula explained above
; especially where there are three variables.

EXAMPLES.

129. 1. Integrate du, = {Zx^ + 'ilaxij)dx + {ax^ + Zif)dy,

Here P =: 3^2 _f_ ga^iy, Q = ax^ + Sy^.

dP ^ dO , ,—• = 2ax z= ——
,
and the expression is integrable.

But f£dx = f(Sx^ -I- 2axy)dx = x^ -\- ax^y,

dfPdx ^ , ^ dfPdx
. •. -^ = ax^, and Q ^—— = ax'^+Zy'^—ax'^=^y\

These values reduce (2) to the form,

u = x^ -{ ax'^y + f^'^dy = x^ -[ ax^y + y^ + (7.

2. Integrate du — {Sxy^—x^)dx
—

{l-{-6y^
—

Sxhj)dy,

P = Zxy-^-x\ ^=_(l + 62/2-32-23/), ^ = 62^^ = ^.
3 1

u = fPdx z= /(3a:y2
—

x'-)dx
—
-a:V _ ^3 ^ j;
Z 3

•* •

1|^= ^
~

^"^'^ = -(1+ 6^2
_

3a:2y)- 3;r2y ^ _ 1 _,.
Oj,»

-'- -rdy= -dy^Qy^y, and F = - y - S;/ -f ft

3 1

•. tt =
^a:2y2-3«^

— y — 2y3+ a
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3. du =
(sill y -\- y cos x)dx -f (sin x -{- x cos y)dy,

dP dO—- =: COS y + COS a: = -^ •

dy
^

dx

u =z f (sin y -\- y cos
a;)c?a;

= a; sin y + y sin a; + ^,

dY du . . ^ ^•
. -^- = -; a; cos y — sin a; = 0, .

•
. Y z=. C.

dy dy
"

and w = a; sin
^^ -f 2/

sin a: + C.

4. rf„^-^+^^+ ^^'^

a — ^ a — z («
—

2)^

rfP_ 1 _(f^ rfP _ y _dR dQ _ x _dR
dy~ a — z~ doc! dz («

— ^Y
~

dx'' dz («
— ^Y

~~

^V

*J a — z a — z dv dii a — zdy dy a — z

dz
~

dz (a— zY
Then ^=^-,-f2^„ = 0, .-. Z = C.

i2L + <7.

130. In practice the preceding process may be abridged by first

integrating Pdx, then integrating the terms in Qdy^ which do not

contain x, and finally integrating those terms in Bdz which do not

contain either x or y, and adding the results. That the complete

integral will be given by this process, appears immediately, from the

consideration that the integration of Pdx necessarily gives all the

terms in the integral sought except such as contain y and z without x.

Hence in integrating Qdy we must not consider any term which con-

tains X. as otherwise we would introduce into the integral new terms

containing x. Similarly the integration of the selected terms in

Qdy gives all the remaining terms except such as contain z only, and

therefore in integrating Rdz we must neglect all terms involving

both X and y.
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E,. du = ^'^^ + y^y + '^'
+ g^^--4i + zdz + fdy.

This satisfies the conditions of integrability, and by taking the

terms in Pdx we get

Now taking the terms in Qdy which do not contain
ar,
we get

fQdy = fyMy = -y\

and finally taking the terms in R which do not contain x nor y,

JRdz =fzdz = - 2^.

.
•

. I* = (;r2 + 2/2 + ^2)4 4. tan-i
^
+ 1

3^3 ^.
^
^2 + (7.

Homogeneous Exact Differentials.

131. Although the methods of integration just explained apply to

all exact differentials, yet another and simpler process can be used

when the expression belongs to the class called homogeneous. A
differential expression is said to be homogeneous when the sum of

the exponents of the variables is the same in the coefficient of every

term. Thus

ax^dx --
by'^dy

xdy \- ydx, x^zdx + xz^f^x — xyzdy, and

(:.3_^y3)ti

are homogeneous differentials. The degree of the terms is estimated

by this sum of the exponents ;
thus in the first expression it is 1, in

the second it is 3, and m the third it is 2 — = — --•
10 lo
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132. Prop. If an exact differential be homogeneous, and the terms

of any degree except
—

I, its integral may be obtained by simply

replacing dx^ dy^ and dz^ &;c., by ar, y, s, &c., respectively, and di-

viding the result by w -f- 1, when n denotes the degree of the terms.

Proof. Let da = Pdx -f Qdy + Pdz -\- &c., be homogeneous and

exact, in which P, Q^ B, 6zc., are algebraic functions of x, y, z, &c.,

of the degree n.

This must have resulted from the differentiation of a homogeneous

algebraic function

u = P,x+ Q,y 4- /2^2 + &c (1),

of the degree ?i -f 1, since differentiation diminishes by unity one

of the exponents in the term differentiated at every step.

Put y = y^x, z = z^x, &;c., and substitute in P^, Q^, i?„ &c.,

which quantities contain x, y, z, &;c., involved to the n*^ degree.

Replace also y by y^x, z by z^x, (fee, in (1) ;
then each term in the

value of u will contain the factor

x''+\ and .'.u = P2^«+i (2),

in which Pg is a function of y^, z^, &c., but does not contain x.

Differentiating (2) with respect to x we get

~ = (n+ l)P,x. .... (3).

A similar substitution in the value of du gives

du = Pdx + Qd{yix) + Ed{zyx) + &c (4) ;

dii
and therefore the partial differential coefficient —- derived from (4)

by differentiating the products y^x^ z^x, &c., with respect to x only, is

~ = P+«yx + i?^i,&c.....(5).

Multiplying (3) and (5) by x and equating the results, we get

(n -f 1) P2:c«+i = Pa; + Qy^x + JRz^x
- Px + Qy + Ms ^ &c.
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2 n + 1

fts stated in the enunciation.

133. When n = —
I, this formula would make u z=z co . In this

case it is easily seen that the formula ought not to be applicable,

because it is not then true that the desired mtegral is an algebraic

function of the degree n -\- 1
]

but on the contrary it is tran-

scendental.

1. To integrate du = {2y^x -f 3y^)dx + {2x^y + 9xy^ + Sy^)dy,

dP dO— = 4.yx+ 9y2 =:. _^.
dy

-^ ^
dx

.
•

, the differential is exact
;

it is also homogeneous, and since

» = 3 or w + l =4, w = ^^4^ + <^=y^-^'+3^^«+2y*+ C.
n -\- \

dP 1 dq
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{^^/x]f—z)dx xdy 2{x^—Z'\/x)ds y/xdz .

This being homogeneous and of the degree
—

-, its integral, if

possible, must be

'2{'l)/xy—z)x 'Hxy ^[x^/y^zy/x)s "Hz-y/x^_ __. ^ 1 f_ i,^

26-2y^ '^^'^Vy
* *

~
2.r«/ + zor — xy -f- Axy — Az3^+ 2zx .p_^y —^^ ,p

This, differentiated, gives

(y^-l^f^^ f^dy 2{xy^-zx^)ds hz
^^ -

-2 + -2^ -
,3

-

,2
'

which is identical with the proposed expression (1).

It must be distinctly understood that in the differential expressions

here considered, the variables x, y, z, (fee, are wholly independent

of each other. If, then, the conditions of integrability be not ful-

filled, the integration must be impossible, since there is no relation

between the variables, by the aid of which we might hope to trans-

form the given differential into another of an integrable form.

It would be otherwise if a relation between the variables were

given in the form of a differential equation, such Pdx + Qdy = 0.

Here the form of the first member may be greatly modified by

the introduction of a variable factor (or by other methods), and thu^

(he integration may be facilitated.



CHAPTER II.

DIFFERENTIAL EQUATIONS. •

135. A differential equation between two variables x and y is a

relation involving one or more of the differential coefficients such as

g.g,g,^, .„.„,,..„ (If. g)-,(g)U.
Such equations are arranged in classes dependent upon the 07'der

and degree of the differential coefficient. Thus, when the equation

„ dy d'^y d^y . . . , .

involves only the first powers oi —
,

-— • • • • —
^,

it is said to be

of the n^^ order and \st degree.

When it contains only the powers of the 1st differential coefficient,

viz.: -r, \~\ • • •
. |-;^| , it is of the \st order and n*^ degree,

dx \dxf \dxf

And when it contains the n^^ powers of one or more differential co-

efficients, and a coefficient of the m^^ order, the equation is of the

n*'^ degree and m*^ order.

136. The resolution of a differential equation consists in finding

a relation between x and y and constants. This relation, called the

primitive, must be such, that the given differential equation can be

deduced from it, either by the direct process of differentiation, or by

the elimination of a constant between the primitive and the direct

differential equation. Hence the same primitive may have several

differential equations of the same order. Thus the equation

a^/ + 6.r + c = . . . . (1)

gives by differentiation a -^ -f 6 = . . . . (2),
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and by elimination between (1) and (2) we get the indirect differen-

tial equations

bx —-
-\- c- 6y = . . . . (3), when a is eliminated

;

and ay •\- c — aa;— = , . . . (4), when b is eliminated.
cix

In each of the equations (2), (3), and (4), the variables are con

hected by the same relation as in
(1), which latter is their common

primitive.

131. As the integration of differential equations can be effected

in comparatively few cases, it is found convenient to arrange them

in the order of the difficulties presented, commencing with the sim-

plest oase.

Differential Equations of the First Order and Degree,

1?3. These are of the general form P+(?-^=:0 or Pf/i:H- Qd>j=0,

in which P and Q may be functions of both x and y. The integra-

tion will obviously be possible, by the method applied to differential

expre&sioiifi, whenever Fdx + Qdy is an exact differential, and the

required solution will be of the form

F{x,y)=: C,

where C is an arbitrary constant.

139. Again, the Jntegration can be effected whenever the separa-

tion of the variables is possible, that is, when the equation can bo

reduced to the form
Xdx + Ydy = 0,

where X is a function of x only, and Y a function of y only.

The form of the solution will then be

Fx -\-(pyz= C,

which requires only the integration of functions of a single variable.
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The separation of the variables is possible in several casea.

140. Cane \st. Let the fljrm be

Ydx + Xdy = 0,

in which the coefficient of dx contains only y, and that of dy contains

only X.

Divide by XY, the product of the two coefficients, and there will

result

dx
, dy ..... . ... ,-~

-f-
~ =z 0, ni which the variables are separated.

141. Ex. Given (1 -j- y'^)dx
— srdy = 0, to find the primitive

relation between x and y.

Divide by (1 + y")-^ >
then

dx dy ^ ^ i-
t ^

which is the required relation.

142. Case 2d. Let the fjrm be

XYdx 4- Xi Y^dy = 0,

in which each coefficient is the product of a function of x by anothei

function of y.

Divide by Xi F,

.
•

. -v^ -|
~~ = 0, and the variables are separated.

A^ r

143. Ex. Determine the primitive of

(1
— xfydx

—
(1 + y>Vy = 0.

' Divide by x^y,

(I —xf ^
1 + y . ^ dx 2dx

, dv ,

...
L___I,;^___^^2,

= 0, or,
--—

+dx--j.^dy:=.0,

.*. 2\ogx+x—logy—yz=C.

24
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144. Case 3c?. Let the proposed equation be homogeneous, or d^

the form

Put y = xz, then dy = xdz + zdx^

und by substitution

^n+m^^OT J^ aZ'^-'^ 4- 62'«-2 .... -{- pz'^-'^)dx

dx {ez^ +fz'^-^ 4- gz"^-"^ . . . . + 5'2:'"-»)(/2

= and the variables are separated.

145. JEx. To find the primitive of

x'^dy
—

y'^dx
—

iryc?;c
= 0.

Put y = xz^ then c/y
= arc/^ 4" ^dx.

.
•

. x^(xdz 4- ^c?ic)
— x^z^dx — x^zdx = 0,

dx dz ^ ^ , 1 ^
.

•
.

5
= 0, and log X 4-

- = c7:

or, by restoring the value of z = -^

X
log X -\-

- z=z C.
y

2. xdy — ydx = dxyx'^
—

y^.

y z=xZy then
a;(a:(/2; 4- ^(/a;)

— xzdx =
a:(l

—
g^) V^r^

.
•

.
— =

Y' • • log a: = sni-^2 4" C,

146. The same method of transformation may be extended to

such differential equations as involve any function of- unmixed with
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the variables, provided the equation would be otherwise homo

geneous.

_y
-Er. xydy — y^dx =(a; + vY^ '^dx.

Put y = xz^ or,
- = ^j

. •, x'^z(xdz + zdx)
— x'^z^dx = a;2(l -f z^e-'dx^

dx e'zdz , ,
«*

. >^
.

•
.
— = ..

,

.,
,

and log X = h C/.

?!.
y

.•.loga:=-^+C = -^ + C7.

147. Case \ih. Let the form be

{a -{• hx -\- cy)dx + («i + h-^x + c-^y)dy = 0.

Put a -|- 6a: 4- cy = v, and aj + b-^x + c^y = u.

Then c?«; = 6c?^ + cdy, and c?w = b-^dx + c^cfy,

and by elimination

_ c-,dv — cdu , . M 1 T bdu—h.dv
ax = —.—'—-—

,
and smiilarly dy = — -^— •

.
•

. By substitution v(c^dv
—

cdu) + u{bdu — ^^c^v) = 0,

which is a homogeneous equation. . .

148. This method fails when
bc-^
—

b-^c
=z 0, because the attempt

to eliminate either dx or dy causes the other to disappear

be
also. But since we then have Cj

= ~, the proposed equation

reduces to

b c

{a-\-bx-^ cy)dx + (aj + b^x + -^y)dy
= . (1).

Put bx -\- cy = z^ then x = —7—^, and dx =
j
—-\
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and, by substitution in (1),

, ,
.dz — cdy t

, h.z\ .

(« + ^)
—
y-^ + («i

+
-l-yy

= 0.

ca -\- cz — a^b
—

byZ

an equation in which the variables are separated.

149. Ex. Find the primitive of

{\^x + y)dx + (1 + 2^ + ^)dy = 0.

Put I -j~ X -\- y = v^ 1 -\-2z-^ Sy = u'j then

dx -\- dy z=: dv, and 2dx -j- oc?y = c^w,

,
•

. c?a; = 3c?v — du, and Jy = t/i* — 2dv.

.
•

. v{Bdv
—

du) + 2^(g?i/
—

2dv) = 0.

Now put u = r?^, then du =. rdv-\-vdr^ and, consequently,

v{Zdv — rc?v — vt?/) + rv[rdv -\- vdr — 2dv) = 0,

••'--^^[('-l)ve+>-[4f-|)]=«

or llog [«^
- Suv f 3,.=] + -L ta„->fA (H^ifAnl ^ c

150. Case 5^A. Let the form be dy + Xydx = -X\(/ar (l)j ^n

which X and Xj are functions of x.

The peculiarity of this form is that no power of y except the first
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enters into it, and for this reason it is usually called a linear

equation. Its solution is always possible.

Put y = X^ where X2 is an arbitrary function of x, which may

be so assumed as to facilitate the integration ;
and z sl new and

undetermined variable. Then

t/y = Xjcfe -f zdX2, and (1) can be reduced to the form

Xr^dz -f '^dX^ + XX^dx z= X^dx (2).

Now let Xg be determined by the condition

zdX^ =z X,dx (3),

and (2) will become Xg^/^ + XX.^dx — 0.

.
•

. = — Xdx and log 2 == — fXdx, .' . z =z t '.

This value, substituted in (3), gives

e-'SXdzdX2 = X^dx or dX^^ ef^^^X^dx.

.• . Xj = JeS^d^x^dx, and y = 0X2 = e-fxdxfefxdzx^dx ... (4),

which is the required relation between x and y.

151. Let there be now taken the more general form

dy 4- Xydx = X^y^dx (5).

This is easily reduced to the linear form (1). For put

m — n -{- \ and z = y-«.

i/^dz
Then dz =: ^ ny-^-Hy or dy =z —

n

Substituting this value of dy in the equation (5), and reducicgj

we get

dz Xdx
1

~ = Xydx^ or dz — nXzdx = — nX^dx . . , . (6),

which becomes identical with (1) when we replace

2 by y, —nX by X and — wJC^ by Xj.
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... z = -\-=- ne^fxdxfx^e-r^fxdxdx (7)

Cor. In forming the integral fXdx^ it will be unnecessary to add a

constant C. For if we replace fXdx by X^ + (7, the formula (4)

will become

y = e-^3 -CfeXz
+
cx^dx = ^x.^-cfeX, gC x^dx = e-^^ fe^' X^dx,

in which the constant C has disappeared.

152. 1. To determine the primitive of (1 -f x'^)dy
— yxdx = adx.

yxdx

1 +a;2 \-\-x
Here dy ^ ^ ^^

= -—
j

—-
dx, which, compared with the linear

form, gives

X = — ———r and X^ =l+x^ '

l-i-x

r.fXdx = -f-
xdx ,

1= l0£f

efxdx — e log [(i+x^rt_
(1 _^ a;2)"^and e-f^^"" = (1 + «^)^.

,
•

. J,
= (1 + a:^)*F—^^ + cl = ax + (7 (1 + x^)*.

2. c?y + yt^a; = xy^dx.

Here X = 1, Xj = a;, y"* = y^, or m = 3, and n = 2,

and, by substitution in (7),

or I=:[(7e2x + aj +
|]y2.

3. c?y
— r ydx = 6cfo*,
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^''' ^ = i^' ^1 = *• •

•

• /^<^^ =/r^ = 'OS (1
-

"Y'

e/Xdx— glog(l-a:)a_ ^1
__

a;)o^

fX^ef^^^ . dx =z fh{\
- xY dx=z ^—-

(1
-

a;)«+i + C,
tt "P 1

4. Find an expression for the sum of the series

X x"^
^

x^ x^
^ = T +n + 17375 + 1737577 + ^''-

Differentiating, we obtain

dv x"^ X^ X^ r3 7*5

i=^ +7+0 + 075 +^^-=i+-^(^+o+il:5+^«-)

= 1 -f ^y. .'. di/
— xydx = dx^ a linear equation.

Also fXdx = — fxdx =1 -\x\

,' . y = e (fe dx), the desired expression.

153. Case 6th. Let the form be

dy -f Sy^i/a;
=r ax^dx (1).

This form, which is called RiccaWs equation, involves only the

second power of y. Its integration has been effected for certain

values of the exponent w, but a solution applicable to all values of

m has not been discovered.

154. It is obvious that when m = the equation (1) will be inte-

grable, for then

dy
dy + by'^dx = adx. .

*

. ^-r-r = dx,
a — by^

and the variables are separated.
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ihus we have 2a U ax =z r

.
•

. 2a 6 ^ = log
—

4- C.

6 y — a

Next suppose m to have some value other than 0.

\ z
Assume y = -, 1

—
^, where z is an undetermined variable, but

hx x^

obviously a function of x. Then *

dx 2zdx dz a/ ^
.

^^
. ^'\

Substituting these values in (1), it becomes

dz hz^dx , , bz^ , ,„ , ,^^
-^ -\

=: a^iFdx or dz -\ dx =z ax^-^^dx .... (2).
x^ a;* x'^

Now this equation (2) will be homogeneous, and therefore inte-

grable when wz = —
2, and thus a new integrable case is found.

Again, if w = —
4, the variables x and z can be separated, for then

z^ dz dx
dz -{- b—dx = axr^dx. .

•

.
—- == —r.

x^ a — bz^ x^

which is a third integrable case.

155. To obtain others, put

- = y. and a:'"^^
_

-j.

z
'

Then dz=d—=-% x-^^Ux=-^.
Vi y^ y«+3

, ax \ m+Sj
and — = —r arj dx^,

x^ m -\- 6
^

Hence by substitution in (2),
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b a
J ^ m + 4

Now put = a,,
—- = 6,, and —- = m,

and (3) will become, after reduction,

^^1 + b^yi^dx^ = ai-Tj'"! c/a;j (4),

which is identical in form with (1). Hence (4) must be integrable

when the exponent m^ has either i)f the three values 0,
—

2, or — 4.

Moreover when a relation has been obtained by integration between

z\ and y^. a simple substitution will give the desired relation be-

tween X and y.

We have therefore to examine whether by assigning either of the

values 0,
--

2, or — 4 to m-^, any new values of m will arise.

T^ wi + 4
. „ ^ , 3m, -f 4

i3ut m, = -• .'. mm-,-{-3m-,=z —m—% and m= ^—r-w + 3
wij-f- 1

.
*

. when nil =z 0, m = —
4, a case before considered

;

and when m^ = —
2, m = —

2,
" " "

o

but when m^ = —
4, m = —

-, a new case.
o

Q
Hence Riccati's equation is integrable when m = — - also.

o

. 156. In a manner entirely similar to that by which (1) was trans-

formed into (4), may we transform (4) into a new equation

^1/2 + hy2dH — o^x^dx^ .... (5),

, . , m^ + 4
-, ,, ^ Smg 4- 4m which m, = ,

and therefore w, = .
^

mj 4- 3'
*

m^ 4- 1

And by repeating the process, a series of such equations may be

formed
;
so that it will be possible to find a relation between x and

y when any one of the following quantities or exponents shall

be = — 4
;

viz. :

m -f- 4 m, + 4 w„ + 4 „

m, or mi = -, or mg = ^—
-, or m^ = ^—

-, &c.
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But we have seen that one integrable case is that in which

8 4.2
m = — - = — ——' which being of the required form, the

12
adjacent numbers — 4 and ~ are also of that form

;
and thence

the same reasoning can be extended to the other numbers in the series.

158. Second Transformation of BiccaiVs Equation.
—In the given

equation

dy + hy'^dx = ax^dx (1).

put y = — ,
and a;"'+i = a?,

m

dy. ^ dx. ^ ^ X. ^'^^dx-y
then dy z= -j^, x'^dx = ~

,
and dx = -—r-rr'

Also, y^ = — ,
and therefore by substitution in (1),

m

y^'^{m + \)y^^ m + 1
''

JNow make -• = 6,, = a,, ;

—- = w,,

and the equation (8) will reduce to

dy^ + ^i2/i'^^-^i
= a^x^^idx-^ (9).

which is of the same form with (1).

The equation (8) will evidently be integrable whenever m-^ has

any one of the values included in the series before found, that is,

4n



880 INTEGRAL CALCULUS.

Hence we have a new series of integrable cases corresponding tc

all values of m, included in the formula — -——-• Thus Riccati's
2n -\- I

inequation is integrable whenever the exponent m can be expressed i

4/i
, . - . ...

the form — r, the quantity n being a positive integer.

It appears also, that whenever the given value of m is found hi

4/1
the second series, the terms of which have the form —

;

—
-, an

2/t -j- 1

application of the second transformation will transfer m to the first

series, and then the repeated application of the first transformation

will eventually reduce m to the value —4.

159. 1. To integrate the equation
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• • ^^1 - -
b,x,^ ^^ +

x,^'
^'^' -

b,x^
^
x,^^l^

Hence by substitution

cfej b^z^dx^ a-^dx-^ dz-^ _ dx^

or, by replacing a-^
and Sj by their values

dz^ dx^ Sadxj 2^2^

3. cfy 4- y'^^^ = ^x^dx. . . (1).

Here m=— -=— .r r- .

•

. Put y= 7- + -| = "+ -f*
3 27t — 1 bx x^ X x^

Then (/^j + z^xrHx = 4x ^dx.

Now make gj = — ,
and x =x =

x^. Then

- ^^ + -2
• ^' = l^c^^i' «^ ^2/1 + ^^Vi^dx = 3ari-*(/ar,. . (2).

Vi Vi ^1

Repeating the process of substitution as in the last example, we

get

ds^ 4- \'ilz^x{-'^dx^=: Zxf^dx^ or,
3c?ari dz2

i" W - 1
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the integral of which is

- =
logc[^^J or, .-

[2^]=^^'

c = e^

or.

2x%z^ - a:)-i
-
^x^-

1

S(;r + e/) - 1 - Qx'^ - 12a:~*-^

160. If the proposed form be thj + hi/x^dx
~

c^«</a;, which differs

from the form just considered, in having a power of x in the second

term of the first member, it may be readily reduced to the simpler

form by making x^dx = dz. For then

a;r+i = (r 4. 1)2;,
and a;«+i = (r + 1)'

r+l ^H-1

.
•

. a;«c?a; =: [(r + l)zJ^Uz, and c/y + hyHz

s—r

= c[(r 4- 1 )z]'^^dz
z=. az'^dz,

the form in which Riccati equation has been integrated.

Of the Factors necessa/ry to render Differential Equations

exact.

161. The cases examined above embrace the principal forms in

which the integration is possible by a separation of the variables.

We now proceed to consider those in which the first member of au
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equatn^n Pdx -^ Qdy = can be rendered an
«:^act*<}ifirg*enttat^bv ^^ ^

the introduction of a suitable factor. \ /^y •> .^
"^

162. If the eqajition Pdx -\- Qdy =z has been obtaineid byiJl^AJt (j

aiflferentiation, it will satisfy the test of integrability, viz. :
^ ^

dP _ dQ
dy

~
dx "*

but if it has resulted from the elimination of a constant between the

direct differential and its primitive, that condition will not be

satisfied, although the same relation between x and y will be implied

by the two differential equations.

163. Prop. To show that an indirect differential equation can

always be rendered exact by the introduction of a suitable factor.

Let Pdx -\- Qdy =0 (1)

be the given equation which has resulted from the elimination of a

constant c between the primitive and its direct differential
;
and let

the primitive be solved with respect to c, giving a result of the

form
c = F{x,y) (2).

Differentiating (2), c will disappear, and we shall obtain an equation

of the form,

F,dx -^Q,dy = (3).

Now, since (1) and (3) contain the same constants, combined with

X and y, and since the same relation connects x and y in the two

dv
equations, the differential coefficient -j- must be the same, whether

derived from (1) or (3).

• ±--L-_£l. or £-A and • ^-^

Hence, if we multiply (1), the first member of which is not an

P
exact differential by -^ = —

i, we shall convert it into (3), which is
-t Q

exact.
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Cor, If it were possible to determine this factor, the integration

of every differential ec[nation of the first order and degree, could be

effected without serious difficulty, but, unfortunately, the difficulty

of discovering this factor is usually insuperable.

164. Prop. To exhibit the condition or equation, the solution of

which would give tiie factor necessary to render any proposed

differentia! equation exact.

Let Pdx -f- Qdy =^0 be the given equation, and z the required

factor.

Then Pzdx 4- Qzdy = 0, and the first member will be exact.

dPz dQz , . , ,. .

.
*

.
—

7
— = —7— ,

the requH'ed condition.

No general method of resolving this equation is known. There

are, however, several particular cases in which the factor can be

found.

165. Prop. To show that when the factor which renders an

equation integrable has been found, an indefinite number of such

factoi's can be discovered.

Let z be the factor first found. Put

Pzdx + Qzdy = du.

Multiply by Fu, an arbitrary function of u, and there will result

Fu . Pzdx 4- Fn . Qzdy = Fu .du;

and, since the second member is exact, (containing u only) the first

member must be exact also.

.-. z.Fu = z.Ff(Pzdx -\- Qzdy) is a suitable factor.

166. Prop. To explain the process for finding the required factor,

whei! ihe equation can be separated into two parts, for each of which

a sc]
. r.'i, ;) '..I- can be found. Let

> :

(•) he divisible into the two parts.
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{P,dx -^ Q^dy) + {P^dx 4- Q^dy) = (2),

and let z^ and
Zy,

be the factors, which will render

P^dx + Qidi/ and Pg^j; + Qzdy separately integrable.

Put Zy{Pidx + Q\dy) = du-^^
and z^P^dx + ^2^y) = ^u.^

Then s^i/^i^i and z^F^u^ will also be suitable factors to render the

two parts separately integrable. If therefore we can so select F^u^

and i^2"2^^ ^^ ^^^^^ ^^® condition

either of those factors will render the entire equation integrable.

167. 1. To find the primitive of

adx hdy cx^dx _ . .

^ y y*
~~

This can be resolved into the two parts

adx
. bdy . cx^dx
h-^ and r-;

X y y*
'

the first of which is an exact differential, and therefore 0^ = 1
;
and

the second can be rendered exact by the factor y* = stj.

= a log X -\- h log y = log {x'^.y^).

^2 =y L~^2 (- ^^)j =/(- ^w^) = ^^—p-

Hence we must endeavor to satisfy the condition z-^F^u^ = z^F^u.],^ or

1 X.iP, [log (^«y»)] = y».
i^,(- '^^.

L^—
)
= .c*iii

71 + 1/

in which k and
Ar^

are undetermined constants. Then

25
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a condition which will be satisfied by making

kb = b and ka = k,n. or k = 1 and Ar, = -•

Hence a?«</* is the required factor.

Now multiply (1) by x°i/^, and there will result

Q^o-i yb(i^ _|_ ix'^yh-i fly
_ cx^-\-n dx = 0,

which is exact, since

dy
^

dx *

and the required solution is

a -f- ?t + 1

2, • -
a:fl?y

—
ydx

— - adx = 0.

This can be resolved into - xdy — ydx, and — -
adx, of which the

first will be rendered exact by the factor z^ = —,
and the second

xy
18 already exact, givinjr ^g = !•

•
•

• ^- -IlyG ^'y -
y'^) =flj -fi

= ^^gT

And we must satisfy the conditions

Assume
^,(log^^)=|- .-.l/'.llog^^j^l.
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Hence ~y is the proper factor.

1 xdy ydx 1 adx

which is exact, and the solution is

J^
+ i~+(? = or y+&^ + |

= 0.

168. Prop. To determine the factor necessary to render a differ-

ential equation exact, when that factor is a function of one variable

only.

Let Pdx -h Qdy = .... (1) be the given equation, and z z= Fx

the required factor.

.
•

. zPdx -f zQdy = will be exact, and therefore

d(zP) d(zQ) . ^ .
:, ^ ^ dz ^

-^,—- = -^—-

; or since z does not contain y, and therefore -;- = 0,
dy dx

^ ^'
dy

'

dy dx dx z (^x^dy dx \

Here, by hypothesis, the first member does not contain y, and

therefore the second member must be independent of y also. Con.

eequently

rVdP d<J\dx , A, , . , ,

log z = /
I

— —- I— =
9^; and z = e^i the required value.

169. 1. Given ydx — xdy = (1).

Suppose z to contain x only.

dP_dy^_^ dQ _ d(—x) _
dy dy

^

dx
~~

dx

[dP
dQldx _ 2dx

dy dx jQ
""

X

...log«=-/?^
= logi and ^ = 1.
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Multiplying (1) by — we get

l^?^ = and 1=0 or y = C^.

2. The linear equation di/ -\- Xydx — X^dx = 0.

Suppose z — Fx. .•.-— = -^-^, ^-^- == X and -7^ = 0.
, dy dy dx

.
•

. log 2; = jXdx and z = c/^^^, the factor sought.

Multiplying (1) by this factor, we have

efxdx^f^y _|_ eS^<^^ Xydx — eS^^^ X^dx = 0, which is exact.

Remark. The value of z found by the method just explained, was

obtained by assuming that a factor containing x only can be dis-

covered
;
but since such factor may nut exist, it will be proper to

apply the test of integrability to the transformed equation."

170. Prop. To determine the factor necessary to render a homo-

geneous differential equation exact.

Let Pdx -f Qdy = (1)

be a homogeneous differential equation, the coefficients P and Q
being each of the 7i"» degree; and let the factor z be of the m'*

degree. Then
/ zPdx-\-zQdy =

will be exact, homogeneous, and of the (m + w)'* degree.

Hence, by the rule for integrating homogeneous exact differentiial

•xpressions, we have

or, since C is arbitrary, we may put (w + h + 1) C = 1.
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1
. z = is a suitable factor.

Px^ Qy

Ex. {xy + y^)dx
-

{x''
-

xy)dy = (1).

Here xy -\- y^ = F and — x^ -^ xy = Q.

1 1
. •. z

Multiply (1) by z.

Px -f Qy 2iry2

dx dx xdy
,
% _ /v

2y "*""2J~ 2y2"^ 27""
*

389

\ X \ 1 X

Geometrical Applications of Differential Equations of the

first order and degree.

171. 1. Determine the curve whose tangent PT is a mean pro-

portional between the parts ^7" and BT
^,^_^^^

of its axis, intercepted between the tan-

gent and two fixed points A and B.

Place the origin at B^ and put

BD = x^ DPzzzy^ BA = a.

The equation of the tangent is y — y^ = —— • {x ~ arj),

in which when

•nd

dx

Vi
dx^ = BD-{-DT=lBT.

dx^

And >T^z=zPD^+DT^ = y.^^+y 2^
dy^
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Hence, by the conditions of the problem.

PT^ = BTxAT, or y,2 + y,2^

Reducing, and omitting accents, we get

y'^dy = x^dy — ^xydx — axdy -\- aydxj

which is the differential equation of the required curve.

This may be written

2xydx — xMy ydx — xdy

and, since both members are exact, we get by integration

y -\
= a -

-}- (7, or x^ \- y"^
— ax — Cy=() ; or, finally,

which is the equation of a circle whose radius is - ya^+ C^
j
and

the co-ordinates of whose centre are - a and -
C, the latter co-ordi-

nate being arbitrary.

2. Find the curve in which the subtangent is constant.

Let ari^i be the co-ordinates of the point of contact.

_, ,
dx-, dy dx

Then, subtangent = —
y-^
— = —

a, or —= —•

X

.-. logcy = -^, cy = e«.
ft

This is the equation of the logarithmic curve.

8. To find the curve in which the subtangent is equal to the sum

of the abscissa and co-ordinate.

The differential equation of the curve will be

dx— y -J- = ^ + 3/5
or xdy -f- ydx -f ydy = 0.

CLy
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.

•

.
7/'^ -\- 2x1/ = (7, a hyperbola.

4. The curve in which the subnormal is constant.

Subnormal = y—- = a. .
•

. ydi/ = adx.
ax

.
•

. y2 = 2ax + (7, a parabola.

172. Prop. To find the equation of a trajectory or curve which

shall intersect all the curves of a given family in the same angle.

Let (p(a:,y,a)
r= (1)

be the equation of a class of curves, in which the parameter a may take

any value
;
and let t — tang 13,^ , / B,

where (3 represents the con-

stant angle of intersection.

Suppose a to take a parti-

cular value, «! and let A^B-^

be the particular curve in the

general class resulting from this supposition. Then, if x^^ denote

its general co-ordinates, its equation will be

9(^1,2/1, «i) = (2),

and the differential coefficient ~, derived therefrom, will, when ap-
CiX-i

plied to the point P, express the trigonometrical tangent of the angle

PTX or Vj, included between the tangent PT and the axis of x.

Also, if X and y denote the general co-ordinates of the required

dif

trajectory CPD, the differential coefficient
-^, given by its equation,

will, when applied to P, give the tangent of PLX or v.

L

But /3 = Vj

or by substitution,

V. .
•

. tan /3

i==

dj/i dy

dx^ dx

1 -J- ^.^
dxy^ dx

tan Vj
— tan v

1 4- tan Vj tan v

(3).
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Now at the point P, where the curves A^B-^^ and CPD inter.sect,

x^ =z X and yj = y. Hence -— can be expressed in functions of
(IX t

X, y, and a^, and thereft)re (8) may be written thus

n^, y,%a,)
= 0.... (4).

But (2), when applied to P, gives

9(^,2/, «i) = (5).

If then «! be eliminated between (4) and (5), the resulting equa,

tion, being independent of the position of the particular curve A^B^,

will apply to all points in the required curve CPD.

173. 1- Determine the curve which cuts at right angles all straight

lines drawn through a given point.

Let X2^J2 ^^ ^^® co-ordinates of the given point.

The equation of one of the straight lines passing through that

point will be of the form

.
•

. 9(a^i2'i«i) -y\-y2 — ai(-^i
-

a-g)
= and

-j:^
= a

dy^ dy

dx,
~

'~^*

Also ^ = tan - -r = 00. .
•

.
——- = od. and consequently

dx^ dx

Also at the point of intersection

y-y%- «i(^
-

.Ta)
= (2).

Now eliminating a^ between (1) and (2), we get

dy
* — ^2 + ^ (y

—
2^2)
= 0, or (tdx — x^dx -f ydy — y^dy = 0,

which is the differential equation of the curve.
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And by integration ^ a:^ — 3C2X + 7, y^
—

3/2^
= ^>

or {x
-

x^f + (y
-

^2)' = 2C + ar^^ + y^^.

Hence the curve soiiglit is a circle whose centre is at the point x^, y2>

and the radius arbitrary.

2. The curve which cuts at an angle of 45° all straight lines

drawn through the origin.

Here <p{x^, y^, a{) =y^ — a^x^ = 0.

dx

flj
also t = tan 45° = 1.

1 I
^'J

(I), and y — a^x — (2).

Eliminating a^, 1 + - . — = ' -— or xdx + ydy = yc?^
—

xdy.

This being a homogeneous equation, it will be rendered exact by

multiplying by ^— =^,.
xdx -f- yrfy _ ydx — a*o?y ^

Voi? -f yH i
• • "^^ L c^ Ja:-* -I- x^ + y^

tan-i?'.
x

Put y = r sin ^, a; = r cos {^ —^')— —r cos ^. .-.?•= {x^ -f ?/2y

and tan •

. log
- z= & and r = ce

,

the equation of the logarithmic spiral.

3. The curve which cuts at right angles

all parabolas having a common vertex and

coincident axes.

Here (^{x^, y^, a^) = y^^
— 2a^x^ = 0.

*

dx^ y

Also t = 00. . 1 + ^-1
= 0.... (1),
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and y'^
—

"Xa^x = (2).

Eliminating Cj, 1 + ~-'-~ = or 2xdx + ydy = 0.
tiX CLX

••-' +
2^^=''^'

or ^ + |,
= I.

This is the equation of an ellipse whose axes have the ratio 1 : y/S!

CHAPTER III.

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND OF THE

HIGHER DEGREES.

174. These equations contain the several powers of the coefficient

dy-~ to the n^^ power inclusive where n denotes the degree of the

equation. The most general form of such an equation is

g+-|S+«^S + - + .|+.= o....(i).

which equation can be derived from its primitive only in attempting

to eliminate the n** power of a constant c between the primitive

and its direct differential. For the direct differential contains only

the first power of—, and therefore cannot be identical with (1) ;
but

if we suppose the primitive to contain several powers of the same con-

stant c, as c', c^, c^ • • • •

c", .and resolve with respect to c, there will

result n values of c, from each of which c will disappear by differen-

tiation
;
and each of the resulting differential equations will contain

d/u

only the first power of
-^,

each being a factor of (1 ).
Hence by mul iiply-
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mg together these n equations, we shall produce (1). If therefore

dv
we resolve (1) with respect to —^ thereby ascertaining its n con-

stituent factors of the first degree, then integrate each, annexing the

same constant c to every result, and finally multiply the results to-

gether, the complete primitive, which includes all these separate

results, will be obtained. It will be obvious, that in order to render

this method applicable to all equations of the first order, it would

be necessary to have a process for the solution of equations of all

degrees.

Unfortunately no such process is known.

175. 1. To find the complete primitive of the equation

. I^ =- w-

Resolving with respect to
—j—^

we get

!=+<.. ...(2), and !=-«.. ..(3).

Integrating (2) and (3), and annexing the same constant to each,

we have

y =1 ax -^ c . . . , (4), and y zzz — ax -{- c . . . . (5),

either of which satisfies the given equation (1). It is also satisfied

by their product.

{y
— ax — c) {y + ax — c)

z=z 0,
>

or y2
_

2cy
— a^x^ -f c2 =

(6).

For, by differentiating (6),

2ydy--2cdy—2a'^xdx=0^ and c=y——•

dx
This value, substituted in (6), gives

dx dx dx^
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or, by reduction, —^ = a^,

which is identical with (1).

f =+«*>, and ^i=-aK\ax dx

2 1-8- '^ i 4
.

•
. By integration y = - « •^"'+ <',

a^d y == — n (^ -^ + <?.

. •• (y
-

1
A^ -

<•) (,'/ + 1'^^^^- <^)
= 0.

4
(y
~

0^ = o '^"^^ *^^ complete primitive of (1),

.l-:+..|-.=o....o).

^ 33 _ ? ± (y!+_^)* . ^^ ^ ^ xdx^
ydy^

^^ y y
'

' ' ^ ~
y^+^*

. •. a; = + (^2 + y2) +c, and a; =—(0:2+^2)^ + c.

or

,.. (a;
— c— y/x'^ + y2) (a:-c+ V^-2 + //2^

= 0, or ifz=c'^~2cx.

4. Determine the equation of the curve which has the property

5 — t/a: 4- hy.

fl^ , _2a6 dy _\—a?

c?.y fffi
-y/a2 -I- 62 _ 1

5:;-r:r6i^—6^-1
— = '«±^.

.
•

. y = ma; 4- «a; 4- c, and y = wia; — waf -f <?.
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.
•

. 2/2
= vfi^x^ — n^x^ -f- 2cma: + c^*

This is the equation of two straight lines, which intersect on the

axis of y, and which become imaginary when a? -{-b"^ <C 1. Suppose

a =
y/Iand

^ -
\/|

•*• «' + ^' = 1' «^ =
^

^^^ ^ ~ ^'=
^*

.

•

. 7?i = 1 and n = 0, .

•
. y = a; + c,

and the two lines become a single line, inclined to the axis of x in

an angle of 45°.

176. When the proposed differential equation cannot be resolved

with respect to —-. its primitive may still be found in certain cases,

the principal of which will be examined.

Case Ist. When the equation contains only one of the variables,

and the solution with respect to that variable is possible.

Let X be the variable which enters into the equation. Put

dy
-p
=

/>!, and resolve with respect to x. The result will be of the form

x = (ppi (1).

But since dy = p^dx, an integration by parts will give

y = p^x
- fxdp^ (2).

Eliminating x between (1) and (2), we get

y=Pi.(pPi- fcppi .dp^ (3),

in which the last term is integrable as a function of a single variable.

Effecting the integration, we may unite the result thus

y = J^Pi (4).

Then, eliminating p^ between (1) and (4), we obtain the desired

relation between x and y.

177. This method may sometimes be applied advantageously

even when the more general method is applicable, provided the

differential equation can be solved more easily for x than for -^«
dx
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Ex. To find the primitive of the differential equation

^"^ " =
r+v

= '^^ • • • • (^)-

.
•

. y = p,^p,
- fyp, . dp, = j^^

-
fYZfJl

=
r+77^

-
*'"'~'^^> + ^

('-*)•

But from
(1), p, =

(l:Z^y,
and 1+Jt>i^ = i

and these values reduce (2) to

y={x- x^)^- tan-i^LzL5\*+
a

178. When the equation (still supposed to contain x only), cannot

be resolved either for x or p^, we may substitute xz for p^, and we

can then divide every term by a power of x, thereby depressing the

degree of the equation, except in the case where there is an absolute

term. If then the depressed equation can be solved for x or «, we

shall have either

x = (pz,
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QZ
This relation, together with x = -——-

expresses the relation be-

;ween x and y.

179. Case 2d. When the equation is homogeneous with respect

to X and y.

Let n denote the degree of the equation in x and y, and put

y = xz, then the equation will be divisible by x", and if the trans-

formed equation can be solved for z, we shall have a result of the

form

z =z
9j9i, .

•

. dz = d{cpp{). But y = xz^ .'. dy = xdz + zd^^^

or, dy =z xd((pp^) -f cppidx, or, p-^dx = xd((pp-i)-{- (pp^dx^

^^dx^Ji^p^ and log^^/-*^-^l = J.^,

This combined with y z=
x(ppi, gives the desired relation between

X and y.

Ex. y — X2)i =z -/r+ 2h'^ .a;.

Put y = xz, substitute and divide by x, then

^ -Pi = VTTpi^ z = p,-i- vT'+7^^ dz=dp,+-^A=,
V 1 +Pi

p^dx = dy — xdz -f- zdx —
x\^dp^-\- ~J^^~\-\-{'p^-^ -y/l + Pi^)dx^
^ V^+Pi'^

dx dp^ V\'^P\

X
Vl+y?,2 1+iV

log a; = —
log(;)i + -y/T+T^)— log(l + P\) + logc.

. X = But y = xz =.

vT+7?(^i + vTTi^i^) VI 4- p,»

... ^j = V^ZIZ, and
.r(c + y^^^y^)^ ^2^

the desired relation.
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180. Case Zd. Let the form be . »

in which cpi
-

J
does not contain x or y.

By differentiation, ^ = p, = ;,, + ^ ^' + ^?1 .

^3,'' dz dx dp^ dx

\ (//>! / dx

This is satisfied either by making

. +
^^=0.....(^).

o. |'=0 (.).

Now the differential coefficient -r—^ in (2), contains onlv p ,
since

dpi

(pPi does not contain x or
?/, and therefore (2) contains only x and

/>!.
if then, we eliminate />j between (1) and (2), the rc^M t will be

a relation l)etween x and y. But this relation cannot bo the com-

plete primitive, because it contains no arbitrary eo'. -t. We
must then refer to the condition (3), which gives by int<- ration

p^ z=z C, a constant.

It appears then, that in the proposed equation, which s known asf

ClairauWti form, the complete primitive is obtained b\ imply re*

placing
—

by an arbitrary constant.

Ex. 1. To find the primitive of

(til

Replacing the differential coefficient -- by (7, we hnv .

y - Cx=.a{\ -¥ C^) (2).
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The correctness of this solution is easily verified
;
for by differen-

tiating (2) we get

and by eliminating C between (2) and (3), we obtain (1).

2. ydx - xdy = a{dx^ + dy^)\ or, y =
x'^£+(^i

+
^-j^a.

Substituting C for
-^

we get y = (7x -f (1 -f C^fa.

181. Case 4th. Let y =z Px -\- Q, (1).

when P and Q are functions of
p-^.

By differentiation, dy = p^dx = Pdx -f ^dP + dQ.

.*• {Px- P)dx-xdP = dQ, and dx -^r -p^
—

dPz=z--^^.

This being a linear equation, its solution is of the form

^ =
.--^''-''.[-/A--..-^-], or, x = Fp,.

Hence if jOj be eliminated between this and (I), the result will be

a relation between x and y,

182. 1. y=p^xip^^,.,.{\).

dy z= pydx = p^dx + 2xp^dp^ -f- 2p-^dpy

.
•

. (1
—

p^)dx
—

2xdp^ = 2dp^.

dp^ 2dp-i
,'.dx-}-2x

Pi-^ A - 1

. X z= e

v ^j
— 1

26
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1 (72

^^i
= 1 + ;

and from (1), p^
~ ^^

2. 2/
= a 4-^i)^+.i^i2....(l).

^iC?ar
= (1 + p^dx + art^j + 2/?iC?p^.

.

•

. dx \- xdp^ = —
2pidp^, and x — e~^^^^ [—/2e-^^^^ 'P\<^Pi\'

But €-^^^' = 6^', and fe^'p,dp, = eP'(p^-l) -]-C^,

.'. X 1^2(1 —p^) + Ce-Pi where (7= — Cj;

1 . 1
and from (1), p^z= —-x dz- 'y/4y

— 4ar + a:^.

.

•
. By eliminating pj we get

= 2 q= v/42/
- 4a: + a:^ + Ce

4a4:j/4y-4z+x3

3. y = ^(;>i--v/l+i^i')- •••(!)•

In this example ^ = 0, and by differentiation

p^dx = p^dx + xdpj^
—

\l-\-~Pi' dx — Pix{\ + p^) dp-^.
-i.

•

.
— = ^^-—- ^

^ cfpi, the integral of which is

and fpi + (c
- a:)vT+p7 = (2).

y(c
-

a:)
But from (1), p^x

- x^l 4-Pi^ = y. .

•

. i?i=
^^>2c

- xY

and vT+ ;,» = -—^—
^.

.
•

.;,,- |i^-i,
=
^^!:^-

1

.- . 2/2 (a;2
_

2ca;)
= -

a;2(2f
—

xf, or finally a:2 + y2
_

2ca:.



CHAPTER IV.

SINGULAR SOLUTIONS OF DIFFERENTIAL EQUATIONS.

183. Differential equations may be regarded as resulting in all

cases either from the immediate differentiation of their primitives or

from the elimination of constants between the primitives and their

direct differentials.

184. Taking the latter and more common case, let

be the complete primitive of the differential equation

.(.,,,|)
= 0....(2),

where (2) has arisen from an elimination of the constant c between

(1) and its immediate differential

[SiM],,....,,,

Now if the constant c were replaced in (1) and (3) by any func-

tion of X and y, the elimination of this function would necessarily

lead to the same equation (2).

If then it be possible to replace c by such a function of x and y,

<Jin equation (1) as shall give by differentiation a result entirely simi-

to (3), after it has been modified by a like substitution of this fiino-

tion of X and y for c ythen the elimination of that function would

necessarily lead to (2) the proposed differential. Hence equation

(1) with the value of c so replaced may be properly considered an
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integral of (2) ; although it is essentially ditferent in form from the

ordinary integral (1), in which c is an ai'bitrary constant.

Such a solution of a differential equation is called a singular solu-

tion or a singular integral^ while the term particular integral is ap-

plied to each of the results obtained by substituting various constant

values for c, in the general integral.

185. Prop. To determine the conditions necessary to render pos-

sible a singular solution of a differential equation.

Let the ordinary primitive

F(x,y,c) = (1)

be differentiated regarding c as variable, and there will result

rdF(x,y,c) -\ dF(x, y,c) (^Jc\
I dx J"^ dc \dx}~

'

and to render this equation identical with

R?^]- »
which is obtained by supposing c constant, the necessary condition

will be

Now (a) is satisfied either by making

^^^ = (^)- -
(S=0.....(5).

The condition (5) gives c = constant, and therefore (4) can alone

supply the suitable variable value of c.

The equation (4) may give several values of c, and then there

will be as many singular solutions.

186. It must be observed that the value of c derived from (4),

is not necessarily a function of x and y, or of either : for if c be

connected with x and g only by the signs 4- and —
,
those variables
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will not appear in (4), and consequently the values of c derived

from (4), will be constants corresponding to particular integrals, and

not singular solutions.

187. And again, the derived values of c may be functions of x

and y, and yet not variable. For if the primitive (1) be solved

with respect to any constant, as a, appearing in it, the result will

assume the form

«=/(^,y,c), (6);

and if by assigning any particular value to
<r,

this value of a should

become either identical with that of c given by (4) ;
or if the latter

be a function of the former, then c will be invariable, and therefor*^

will not correspond to a singular solution.

188. If we solve the complete primitive (1) for x and y succes*-

sively, the results may be written in the forms

^=/(y,«) (7). y=A{^,c) (8).

Which differentiated with respect to c, give (since the first members

do not contain c)

.iM.o, ^)=0, .•4:=0...(0).and|
= 0,.(.0).

That is, if the primitive can be solved with respect to x or
_?/,

we

may differentiate either of those values with respect to c, placing the

result equal to zero. Thus (9) or (10) may be employed instead

of (4), when more convenient, in obtaining those values of c which

give singular solutions.

189. it may be observed that no differential equation of the fir^t

order and first degree can have a singular solution; for such equa-

tions have complete primitives containing only the first powers of c,

and these priftiitives, when differentiated with respect to c, give a

result (4) independent of c, which result cannot furnish a value of e.

190. The relation connecting the complete primitive with the
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singular solution, can be illustrated geometrically. For the former

always represents a series of curves of the same class, in which c is

the variable parameter, and as the process for obtaining the equa-

tion of the envelope of these curves is identical with that by which

we find the singular solution, it follows that this solution must repre-

sent the envelope.

191, 1. Required the singular solution of the diiferential equation

ijdx
— xdy — a{dx^ + dy'^)-, or, y — xp-^ + «(1 + Pi")- • • • (!)•

This example belongs to Clairault's form, and therefore the com-

plete integral is

yn:c^ + a(l+c2)*, ....(2).

.
•

. -1.-X + ac{\ + c2)~*= 0, and c —
-/a^-

This value substituted in (2) gives

Thus the general solution (2) represents a series of straight lines

all tangent to the circle represented by the singular solution (3).

2. yp^^ + 2ar^i
— y = 0.

The general solution of this example has been found to be (p. 396)

dc
y/^2

_ 2cx

.
•

. c — a: = 0, and c = x.

This value substituted in the general integral, gives

3/2
= a;2 _ 2a;2, or y^ _|_ ^2 _ q^ ^\^q singular solution.

The general integral in this example represents a series of para-

bolas which do not intersect, and therefore the singular solution can-

not, in this case, represent an envelope.
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1 ^
3. a!Pr^-yi>i + 2^

= ^' <>^'

y^Tv^-^-^ 0)-

This is Clairault's form, and therefore the general solution is

w-c^ + I. h2\ ' ^±-x--^-^ and c-^^f^*y-cx + ^,...,{2y
. .

^^.-^ 2^2-^'
and c_y-.

This value in (2) gives

y = y 2
^^ "^ V 2 ^"^

"^ ^V 2 ^^' ^^ ^^ "^ ^^^'

Here the singular solution represents a parabola tangent to a

series of straight lines represented by (2).

192. In the method of finding the singular solution of a differential

equation, just explained and illustrated, it has been supposed that the

general solution of the equation was known
;

but when it is not

given we require the following proposition.

193. Prop. To determine the conditions by which singular solu-

tions of differential equations may be found, without first determin-

ing their complete primitives.

Let u = F{x,y,c) = (1),

be the complete primitive of the differential equation,

«2 = J^2(^^y'>Pi) = 0, . . . . (2) ;
and suppose

„^^P^-j^j,^^,^^^,^^^)^0 (3),

to be the direct differential of (1).

Also let U = f{x^y) = .... (4) be the singular solution of (2),

and jr,= [tel.]=/.(^,y)
= 0....(5),

the direct differential of (4).

Now, whether we eliminate c between (1) and (3), or eliminate a
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certain function of x and y; viz., the value of c (expressed in terms

of ar and y), derived from the condition

dF(x,y,c) _
dc

~ "'

between (4) and (5), the result will be (2) or its equivalent.

Let (3) be solved with reference to c, giving a result of the form

c = (p{x,y,p^) (6),

and let this value be substituted in (1) ;
we shall thus have (2) op

its equivalent under the form

u = F(x,y,cp) = (7),

where
cp

is put for
<?:(ar, y,j9j) ; for, by hypothesis, (2) is the result of

the elimination of the constant c between (1) and (3).

Now, since (2) and (7) are equivalent, the elimination of
jt?,

between them must lead to an identical equation in x and y ; that

is, an equation, which, being true for all values of x and y, does not

imply a relation between them.

Let Pi=f(^,l/) (B)

be the result obtained by solving (2) with respect to p^

This value substituted in (7) gives the identical equation before

referred to, which can be differentiated with respect to x and y,

successively, as though they were independent variables, since the

equation does not imply any relation or mutual dependence between

them.

Then, differentiating (7), and observing tjiat (p contains a:, y, and j»i,

while ^1 =zf(x,ij), we get

du du d(p .
du d(p dp^

dx dcp dx d:p dp^ dx

du
.
du d(p du di> dpi

and 3-+ :>--T--|- :r-T--TJ^ =^-
ay d(D d^ d(p dp^ dy



SINGULAR SOLUTIONS. 409

dp-^ /du du dr)\ /dii dp \
' '

dx
~

\dx dp dx)
'

\dp djj-^r

dp^ /du du dp\ /du dp \

dij

~
\dy dp tiyj

'

\dp dp^)

But when the sohition is singular, we have the condition

— = — = -^ = 0) and ^ = 00

dp dc
^

' '

dx '

dy
*

dx -
^ dy ^

or —=0 and — =0.
dp^ dp^

If j^i be eliminated between either of the last two equations and

(2), the result will be a singular solution, provided it satisfies (2).

Thus we can find the singular solution without previously fmding

the general solution.

Or, again, from (2), we have

V.dx J~ dx dy dx dp^ \dx dy dx)
~

dp^
~~

\dx dy dx)
'

\dx dy dx)
'

and, since the divisor is infinite, when the solution is singular, we

shall have the condition

which will give suitable values of p^ to be substituted in (2), in order

to obtain singular solutions.

194. 1. Find the singular solution of the differential equation

% = ^P\ —yPi + b =
(1),

without previously finding the general integral.

Differentiating i^g with respect to^j and placing the result equal

to zero, we get

du^ ^ ^ y
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this substituted in (1) gives
•

-I ^ + b = 0, or y^-4bx = (2).^x Zx ^ '

This equation satisfies (1), as will be seen by substituting for

X and
jt?!,

their values derived from (2).

•£-(t)"-'(t)+'=»'
" '-"+'=»•

an identical equation. Hence (2) is a singular solution.

or Mr^
—

y-\-{y
—

x)p^ + (a
-

x)p^^ = (1),

2 =
2/
- ^ + 2(a

-
x)p^ = 0, .'.p,=

^

dp,
' ~

. -V- "^^^^--^ '

-^^-^a-x)
This value, substituted in (1), gives

This satisfies (1), and is therefore a singular solution.



CHAPTER V.

INTEGRATION OF DIFFERENTIAL EQUATIONS OF THE SECOND ORDER.

195. Differential equations of the second order, when presented

in their most general form, include

jr, y, -7- and
-r-y,

and may therefore be written

Of these comparatively few admit of being integrated, and there-

fore only such particular varieties of the general form as admit of

integration or reduction to a lower order will be examined.

196. Case 1st. Let the equation involve only x and -7-^, the form

being

Then resolving the equation, if possible, with respect to
-p^,

we

get
d^y d^y
-4 = F-^x

— X. .
•

.
-j^2

^"^ — Xdx^ and by integration,
(IX ttX

^ = fXdx'= X. 4- Cv -'• ^dx = X.dx + C.dx,
dx dx

and, y = fX^dx + fC^dx=:Xr,^C^x^C^.
*

The 'constants C^ and Cg being arbitrary.
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200. Case Sd. Let the equation involve ~ and ~ ^^^Ji ^^^
Cl'Xi QiX

form being

d"Xi

Resolving with respect to
-r-^

if possible, we have

This is an equation of the first order, which being integrated gives

X = F^'p^, and y = fp^dx = fp^ -f-i = F^p^.

Hence, by eliminating j9„ we obtain a relation between x and y,

and y = ?
, + C,.

Hence, by eliminating p^^ we get

202. Case Aith. Let the equation involve

«,
— and — only, being of the form

^T'^' d^)
= ^'
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Keplacing -j-
and -^ by/*^ and

-^,
the proposed equatiofl

reduces to

^(.,^.f)
= 0....(l),

which is of the first order between x and j^j, and must therefore be

resolved, if possible, by some one of the methods applicable to such

equations.

Thus, if the equation (1) can be solved with respect to
a?, giving

^^F^n (2),

we shall have, since y = fpidx = p^x
—

fxdp^,

y =Pi^ ~ f^iPidPi (3) ;

and, by eliminating p^ between (2) and (3), the desired relation

between x and y will be obtained.

Or, again, if (1) can be solved for^j giving

Pi = J'i^ (4),

then y = fp^dx =. JF^x . dx^ the integral sought.

If neither of these suppositions be true, we can only resort to

some one of the expedients exhibited in the foregoing chapters.

^03.^^. i-g + ^ +I^O-
df)

By substitution -z--
o^

•nd by integration

^. =C/-^=*!^ when
(7=5-

J_ o* a* - (b^
- x^y ^
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dy h^ — x^

dx ^a^ -_
(62
- x^Y

.•, y =z I —
,
the desiidesired relation.

.y/oT- {h'^-x^Y

dy d^y
204. Case 6th. Let the equation involve y, -r-, and

-=-j only,

the form being

By a substitution similar to that adopted in the last case, we have

But -p^ = -p- •

-T^ = Pi -p-, and by substitution
dx dy dx ^

dy

which is an equation of the first order between y and pi.

dn)

By substitution —^ — V ~ ''nf^Vi
— ^'

CLX

•

'~dl-~d^ Tx' ^^^ y-^i'i,

cr by making p-^ = 2z, and consequently Pidpy^ = df^,

-T 2mz = y, c?^ — 2mzdy = ydy.

This is a linear equation of the first order and first degree, and

therefore integrable.

206 » Case 6th. If we reckon (as usual) x or y as of the dimen-

dij d^v
sion 1, and agree to reckon -f- of the dimension 0, and -r-r of the

dx '

dx^
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dimension — 1, then every equation of the second order which, upon

this supposition, is homogeneous, may be reduced to an equation of

th« first order, by making y z=z vx and -j-r-
== —° dx^ X

For, if n denote the degree of the coefficients, the terms contain-

ing
—-— must have a factor of the degree n -{- \, and those contain-

ing -J-
must have factors of the degrees. Hence after substituting

the assumed values of y and
-r-^-, every term of the equation will
O/X

necessarily be divisible by ic", and thus x will disappear, leaving an

equation between v, ^, and p^, of the general form

T. 7 T 7 T
dx dv

But dy = p^dx = vdx + xdv. .' .
— =
X Pi

— V

dp^ z dx dp^
Also —" = — .

•

.
— = -^-

.

•

. zdv = [p.
—

v)dp,^
dx X X z

or by substituting the value of 2, obtained by resolving (1), an equa-

tion of the first order will arise between v and p^^ from which py^

may be found in terms of v. Then by eliminating p^ from the

equation
dx dv

X
~

Pi
— V

and integrating, we shall get log x = (pv.

Lastly, eliminating v between this result and y = vx, the desired

relation between x and y will be obtained.

207. £:-c, a:2^ -
a:^

- 3y = 0.

Making —^ == - and y =z vx we get
dx^ X

xz —
;r/>j

— ovx = or 2 —-
^j

•— 3v = 0.
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.
*

, z = 2^1 + Sv and (^^ + Sv)dv = (^j
—

v)dpi,

p^dv + vdp^ = Pidp^
— Svdv.

1 3
C + PiV — j:p^

—
^ ^'^ or jp^

—
2p-^v -f «^^ = 4^^ -f 2C7.

7?i
— V =

-y/4t;2 _j_ 26". Hence

.
 

. »2 = C, (2» + v'4»2 + 2e). But » = ^

y =
a:3 2(7(7i 36. 1 ^ ^^1 X
-7^

-—i = aa;3 whei 777 = « and -—-* = ».

4Ci 4a; x 4Ci 2



CHAPTER VI.

INTEGRATION OF DIFFERENTIAL EQUATIONS OF THE HIGHER ORDERS.

208. The integration of differential equations of an order higher

than the second is attended with difficulties still greater than those

which have been overcome hitherto, and in consequence the number

of integrable forms is very restricted. The following exhibit a few

of the simplest cases.

1st. Let the form be f(^, ^^\ = 0.

_, d^-^y , d^y du ^ , , . .

rut r ~ u, then -— = -—
,

and by substitution

^('"S=«'

which is an equation of the first order between u and x. This being

resolved, gives

u = F^x. .

•

.
-—~ =: F^x and y = f*-'^F^x . dx*-\
Q/X

209. Next let the form be

id^ d-hj\ _
\dx^' dx^-^f

~

d^'^^ti d^ij d/^"it

Put -—
^
= w, then -—-= -—

-, and by substitution

an integrable form of the second order, which has been already

examined.
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210. 1. Let ^-^-l.

Put ^ — ^ —^
dx^

~
'

c?a;* ~"rfar'

rfw 1
.

•
. w-r- =1, or dx z=z udu, and a; = —u^ + C'v

.', uz= ^2x-2C^ or —
|-=v^2x-2^.

2. d^_d'^y
dx^

~
c/a:^

'

Put J = « then ^ = _.

c?2|( d'^u du du

dx^
~

'

dx^ dx
' ~

dx

.
•

.
—- =u^ 4- Cj and aa; =
d^^ VmH-"^

.•.:. =
iog!H:J^l±Z!....(i).

dy ^ ^ p udu
, ^Now p, =- =

fudx=J-^====V^^:^^
+C^

= « + ^3^ + C, . . . . (2).
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Then, to eliminate u between (1) and (2), we get from (1)

C\e' z= M 4- y^-w^ + C\, a/e^''
— 2u C^e' -}- u^ = u^ + C^

which, substituted in (2), gives a result which may be written in tht

*brm

CHAPTER VII.

INTEGRATION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS.

211. In the applications of the Calculus to Physical Astronomy,

it occurs, not unfrequently, that several variables, as
ic, y, /, <fcc.

are connected by co-existent relations, the number of such relations

being one less than the number of variables
;
and the object pro-

posed is, to deduce equations which shall express the values of ar, y,

dsc. in terms of the remaining variable t. The following solution of

some of the simplest cases of such equations was first given by

D'Alembert.

212. Prop. To resolve the system of equations,

in which J, jB, C, Z), ^j, B^^ Cj, and i>i, are constants, and T'and 7*,

functions of t; so as to express x and y in terms of t.
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Eliminating first -^, and then —
,
we can reduce the proposed

eq.uations to the forms

^^ax^-by
= T^.,,.{\), and ^+a,x -\-h,y =T^ , . . {%

in which T^ and T^ are also functions of
t,
and a, 6, a^^ b^ are constants.

Multiply (2) by an undetermined constant m, and add the resulting

product to (1).

. •. A(^ + ^y) + („ + ™„J
(,
+ l^/) = ^^+ »^3.

TI.T -1 T 1 T • ^ + ^^^1Now determme m by the condition m =i
;

a -f 7na^

or /wa -+- m^tti
— b — mh^ = 0,

and suppose m^ and ?«2 ^^ ^^ ^^® ^^*^ values of m given by this

quadratic.

Also put a 4- ^i^i = ^1 and a -f- m^a^ = r^. Then

dt
(x + Wjy) + rj (a; + m^y) =T^^ m^T 3̂?

—
(a: 4- m^y) \- r^{x -{ m^jj) = T^-h m^T^.

These being linear equations of the first order, their solutions will be

x-\-,miy—e^''^* [fe^^* (^2"^^*i^3y^] )
from which x and y may be

x+m^=ze-^^t [/e'-a* (^2+^27^3)0?^] )
found in terms oft.

213. £!x. Let ^ + 4y + 6x = e*, and -^ + x + 2y=z e2* be the

proposed equations.

As these have the forms (1) and (2) of the last article, we mul-

tiply the second by m, and add.

. •..

-i^{x
+ my) 4-(5 -^m)\x-\- ^ ^^y\ = c* + me^^-



i22
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This, being integrated, will give a relation between v and t. Also,

in finding the values of ?/i and n from equations (4), two cubic equa-

tions will arise, and therefore each of these quantities will have three

values. Denoting them by m-^^m^-, and wig, n^^n.^^ and Wg, and represent-

ing the three values of the second member, after integration by

/7i, U^t and
C/'g,

there will result three equations of the form

X 4- m^y 4- n^z = U^

(P-^-m^y -\- n^z = t/g,

from which a;, y, and z, can be found in terms of t,

215. Prop. To integrate the system of equations.

(P'T

-^ + ax + hy + c = 0. ,..{}),

^ -h a^a; + 6iy 4- ci = . . . . (2).

Multiply (2) by w, and add. Then
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Here — = n—;

= w. .
•

. m^ + 5w = — 4.

^ ., ^j
_ _

1^ and ^2 = — 4. .
•

. Wj = 2 and Wj = V^'

. •. « = i 4- 4(7^62* + 4C6^2t _ (7^e»v^
_

Cse'*y/'\



CALCULUS OF YAEIATIONS.

CHAPTER I.

FIRST PRINCIPLES.

1. Tn the general expression u =z 9 (a^i, iP2? ^3 • • • • ^n)? which signi-

fies that t* is a function of several independent variables x^, ^Tg, ^^..x^,

the value of u obviously depends upon two essentially different con-

siderations, viz. : 1st. The values of the variables
x-^, ^25 ^3 ^»?

and 2d., the form of the function
cp.

2. The consideration of the changes imparted to u by changes in

the values of the independent variables, while the function
<p

is sup-

posed to retain the same form, is the chief object of the Differential

Calculus, and then the form of the function is supposed to be

known. But there are many cases, especially in questions relating

to maxima and minima, in which the form of the function necessary

to fulfil some specified condition, is the principal object of inquiry.

For the resolution of such questions, the ordinary methods of the

Differential Calculus do not suffice, and their consideration is

reserved for the Calculus of Variations.

3. There are, it is true, some cases in which it becomes necessary

to consider the change in u due to both these causes, namely, a change

in the values of the independent variables, and a change in the form
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of the function, but it is with the latter that the Calculus of Variations

is more immediately concerned.

4. The form of a function may be so connected with the form or

forms of one or more other functions, that when the latter are given,

the former will become known. For example, a differential coefficient

has a certain form always deducible from that of the function itself.

This connection between functions is expressed by calling the original

function, whose form is arbitrary, the primitive, and that whose form

is dependent upon it, the derived function.

Now if the form of one or more of the primitive functions be

supposed to change, the form of the derived function will undergo a

corresponding change, and if the relation connecting the forms of

the primitive and derived functions be invariable, the change in the

form of the latter will not be arbitrary, but will be connected with

the change in the form of the former by a fixed relation.

5. To trace this dependence, or to investigate the change in a

derived function resulting from an arbitrary change in the form of its

primitive^ is the design of the Calculus of Variations.

6. In this, as in the Differential Calculus, it is usually necessary

that the increments of the function shall admit of being indefinitely

diminished, and also that such increments shall continue indefinitely

small, when any values, consistent with the conditions of the ques-

tion, are assigned to the variables
ar^, a^gj

<Szc.

Hence the necessity of the following proposition.

7. Prop. To investigate a general "method of giving to a function

such a change of form as shall impart to it an increment of any pro-

posed order of m.-ignitude, without reference to the values of the

independent variables
arj, a^g, x^. . . .x^ which enter into it.

Let u = 9(^1, X2,x^ x^) be the original function, and

^ Mj z=z
(pi(j*i, x^^x^.... ar„),

after it has undergone the required

change of form
;
and suppose i to represent a small quantity of the

same order of magnitude as that which we desire to impart to the
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difference u^
—

u, so that if u^
— u = ni, the quantity n shall be

neither excessively great or extremely small. Then

i

~~
i

musi be finite for all values of x^^ a-g, x^.. . x^^ consistent with the

conditions of the question. Assume

i

u^
—

u=zi.\{x^,x^,x^,,.x^ or u^ = u -\- i.-\^{x^,X2,x.^. . .x^)',

in which the function 4^ is subjected to no condition but that

of not becoming infinite for any values of
arj, iTg, x^. . .x^ within the

restriction of the problem.

Hence, in order to impart to a given primitive function such a

change of form as shall cause it to receive an increment susceptible

of indefinite diminution, we must add to it another arbitrary function

of the variables (subject to the above restriction), multiplied by a

constant e, which constant is to be assumed of the same order of

magnitude as that proposed to be given to the increment of the

function.

8. Ex. Suppose u = sin x, where x can take any value between

and
-TT, and let the increment Wj

—
u, proposed to be given to n by

a change of form, be required of the same order of magnitude

with dx.

Then making i = adx, when a is nearly equal to unity, we may
write

Ui = u -\- i cos X, or u^^iu -\- i sin 2x, or
?^j
= w -f i sin 4x, &c.

;

but it would not be admissible to assume

u^ z= u -^ i tan a?, .•

because tan x would become infinite for one of the admissible values
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of .r, viz., 2.' =r -
"TT,

and therefore i tun x would not be necessarily

small, as required.

If the iiicreuient required to be given to u^ were of *he same order

with dx"^ or dx^, then we would make

i = a. dx"^ or i
— a . dx^.

9. The indefinitely small change in the value of a function pro-

duced by a change in its form, is called a variation, and it appears

that the, variation of a primitive function is entirely arbitrary, but

the variation of a derived function is dependent upon that of its

primitive, and therefore not arhitrar\.

10. Prop. Let u = y(x-^, X2, x^ . . . . x„) be an indeterminate func-

tion of x^,X2.X2 .... .r„, and let v =. Fu denote a relati<jn by which v

is derived from u, that is, a rehition i)^ form, but not oj magnitude :

it is proposed to find the change in the value of the derived function

(or the variation of v) resulting from an indefinitely small change in

the form of w.

Let (p(.ri,d:2% .... ^„) be replaced by

^{x-^.x^.x^ x^) -f i . -vl
(a;^, x^.x^ x^\

and let the operation denoted by the sym lol i^' be performed on the

substituted function so far as to obtain the coefficient of the first

power of i in the development of

If the co-efficient of this term be denoted by w, then will t . w be

the variation of v. This will appear by reasoning entirely similar

to that employed in the Diflferential Calculus, in finding the differen-

tial of a function (p. 18).

11. The proposition enunciated above is far more general than

that commonly presented for consideration. Usually the only

derived functions necessary to be considered, are such as are
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obtained by the processes of differentiation and integration, which

are represented by the symbols d and /respectively ;
and for these

two cases, the symbol F is distributive^ that is,

F{^ + 9') = i^(p + F^',

Thei. to find the variation of v = i^ip, substitute ^ •\- i,\ ^ox
(p,

and since F{^ -{- i.\) = F(^ -\- F{i.W
the variation or increment given 'to F(^ will be F{i,\) or i.F\^
since i is a constant, and therefore not a function of

a?], a-g,
&c.

12. Thus far we have supposed the function to receive the kind of

increment peculiar to the calculus of variations, viz., that due to a

change of form
;
but if the independent variable be supposed to

change also, the function will receive an additional increment, and

the total change imparted to the function will be the algebraic sum

of the two increments resulting from the two causes.

13. The following notation is used to distinguish the increments

due to one or both of these causes.

l.s'if. The character h refers to the change in the value of the func-

tion resulting from a change in its form.

2c/. The character d refers to the change in the value of the func-

tion produced by changes in the values of the independent variables

ari,a-2,
&c.

3c/. And the character D refers to the total change resulting from

both causes.

.

•

. if w be a determinate function of several variables, then

Du =. du.

.
•

. If w be an indeterminate function of invariable quantities, then

Du = Su.

And if u be an indeterminate function of variable quantities, then

Du = du -\- 6u.

14. Since an independent variable admits of both species of change,
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we might denote that change by either character. Unless the con-

trary is specified this change will be indicated by d.

15. The distinction between differentiation and variation admits

of a simple geometrical illustration.

Thus let
2/

r=
(pa; (1) be the equation of

a curve A CB and y^ = (^-^x (2), that of a

second curve A-^C-^B-^^ the form and posi-

tion of the second curve being supposed

to differ very slightly from those of the

first.

Put OD = x, DD^ ^ dx, DC -y, and i>Ci = y^ Then the

change NE imparted to y by an addition DD^ — dx to ar,
while the

point referred remains on the same curve A CB^ will represent dy ;

the change CC-^ = y^
—

y^ imparted to y by passing from C to a

point Ci on the second curve, (while x remains unchanged,) will

represent 8y ; and the change NE-^ due to both causes will represent

Dy.

16. Prop. Given u =f(xi, x^^x^.. ..
ar„)

a determinate function of

several variables, to determine its total increment.

Since the form of the function is supposed invariable, we have

Du = du =— dxi + J
—

. dx2 -f • . . • + J—' dx^ \A\,
UXj^ dX^ ^^n

17. Prop. Given u = (^(xi^a^^x^ . . . . x^) an indeterminate function

of several variables, to determine its total increment.

Here the form of the function and the magnitudes of the independ-

ent variables must be supposed susceptible of change, and therefore,

Du = du -f- Su.

But du = -- ' dx, -{- -r- • dxo -{-

dxi dx2
4-

du

dx.
dXn',

and Su = ^ 4. (a?!, X2,X2 x„). Hence,
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^ du , ,

du .

+ — -dxn-i-i--^ (ari, x^, arg . . . iP„) . . . (5).

18. Prop. Given u = F-
(p {x^, x^, x^^ . . . . ar„),

where F is the

symbol of a derived function which fulfils the condition F
{(p -{• 9')

=i Fcp -{- Fcp', and 9 is the symbol of an indeterminate function, to

determine the total increment of u.

Here Su = F[i"l. {x^, x^, x^ a-„)],

z= F'S'Cp {x-^,X2,x^,....x^).

dx^
^

dx^
^

dx^
"^

-^ F'S'(p {x^,a^,x^,...,x,) {C).

19. Prop. Given F = / {x^, Xr^, 2:3,
... . ar„, u^, u^, Wg, <),

where / is a determinate function of the quantities within the
( ) ;

a*!, 2*2, % . . . . a:„ being independent variables, and w^, Wg, u^. . . . u^

indeterminate functions of one or more of these variables, to find the

total increment of V.

Here V varies in consequence of changes in the values of
ajj, oi^^

rg, . . a;„, and also from the changes in the forms of Wj, u^., -Wg, . . u^.

Now V is directly a function of
iCj,

and indirectly a function of x^

through u^, ^2, ^^3,
. . . . u^. Hence, if

a^j
be supposed alone variable,

the change in V will be

dV
, ,

dV du^ ^ dV duo ^ ,
dV du^ ,

-r-dx^ J^ --.—±,dx^ + - -l.dx^ + .. .-—.—^^dx^'^
dx-^ du-^ dx^ du2 dx^ du^ dx-^

^ '

and similarly, where
arg

alone varies, the change in V will be

\_dX2 duy^ dx^ du^ dx^
' ' ' '

du^ dx^X

and the other variables will furnish like expressions.
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Now let the form of the function u^ change, ofeher things being the

same, and the corresponding change in F will be

dV '

since V is a function of w^, and the change produced in F by a

change in
u-^ depends only upon the amount of change in w^, not on

the manner in which it is received.

Introducing similar terms for the variations of Wg? %? .... '^'n- «'ind

adding, the total change in V will be thus expressed

i)r=r— +— •^ +— •-^+.... + — -"^l/x
\jlx^ du^ dx^ du2 dx^ du^ dx^ J

^

,

VdV
,

dV du. dV du^ , .
dV du-\ ,

^.dx^ du^ dx^ du^ dx^ du^ dx^j

U (( (( 4(

VdV^
dV d^ dV

du^_ dV_ dvj\

L.dx^ dui dx^ c/wg d^n
* ' * *

du„ dx„ J

the quantity in the last line being the variation proper or 6 T

20. Given U = FV, when V = f (x^, x^, 2:3, ... . a.'„, ?/^, u^

W3, . . . . «„), where/ is a determinate function of the quantities

within the ( ),
and i^a derived function which satisfies the condition

^ (9 + 9') — F^^ + Fq^', to find the increment of U.

First, let
aTj

alone vary, and since F is a determinate function of

a?i, ^^2) ^-q? . . . • a^„, Wj, Wg, W3, ....«„, it follows that so long as the

forms of Wj, Wg' '^3,
. . . . w„ remain unchanged, the quantity V will

be a determinate function of the independent variables
jtj, x^

iCg,
. . . . a;„, and therefore the corresponding change in U will be

[-Jf]'^^"
"''•^^*

[^]
denotes the total differential coefficient of XJ with respect to

.r^.
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And similarly when x^ alone varies, the correspondirg change

in (7 is
I
-—

I dx.y : and the other variables will furnish like

Xjixr^l
2'

expressions.

Now to find the change in TJ due to a change in the form of w^,

we observe that the change in CT, resulting from a change of any

kind in w^, might, at first, appear to be properly expressed, (as in the

last proposition,) by owj. Now this would be true if U were

properly a function of w^, that is, a quantity whose magnitude is

fixed by that of u^^ ;
but such is not the case, their relation being

one of form, not of magnitude; and therefore the desired increment

is not —
(5"i«j.

But although U is not a function of Wj, it is derived

from t^i, the form of TJ being dependent upon that of F, which latter

depends upon the form of Wj. And since TJ = FV^ .
*

. hTJ z=. F6 V,

But, by the last proposition,

^ V = -z— 6uy -f -r-^Uo + &;c.

au^ awg

dV
.

•

. F-r- '
Su^, is the part of dU which results from a variatic^n m

the form of u^.

Hence, the entire increment

:i,".



CHAPTER II.

APPLICATIONS OF GENERAL FORMULAE TO FUNCTIONS OF ONE VARIABLE.

21. Prop. To find the totsJ increment of the differential coefficient

-7-^, y being an indeterminate function of the single variable x.

Here the quantity proposed can vary only in two ways, viz : by a

change in the magnitude of the independent variable a;, and by a

change in the form of the function y, the case corre'sponding to that

of formula (C), with the number of variables reduced to one. We
therefore estimate the two changes separately and add the results.

Now when x takes the increment dx^

d*y , , , d^y . rf«+iy ,
u = -f- becomes u -\- du = \- . ,^dx

the corresponding change in ?* being -—q5jC?a;:
and hence the total

increment of u will be

Du = du-\-5u = ^^dx + S^.
c?a;"+i

^
dx''

d^il
But the symbol -—^ satisfies the condition i^((p + <p')

=
i^(p + ^^'^

CLX

and therefore

^d*y _ d^{y-\-Sy) d*y _ d*y d^Sy d*y d*Sy

dx*
~~

dx^ dx^
~~

dx* dx* dx*
~

c?a;*

dx"" dx""-^^
^

dx*-*
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22. It IS to be observed that 6y requires a certain restriction
;

for it was shown that when

it is necessary to assume the function 4^ of such form as not to

become infinite for any values of
iCj, iCg &;c., within the limits of the

question. This condition is sufficient when we consider only the

primitive function
;
but when it is necessary to take account of a

function derived from the primitive, it becomes also necessary that

the function similarly derived from \> should not become infinite for

any admissible values of the variables.

Thus when we say that 6F(^ = iF-^^, it is to be understood that

F-<\^
remains finite for all suitable values of

iCj, a^g,
&;c. In the present

example, there being but one variable x, we have

oy z= t . -Lx • 0-—= I .
—-—

.

d^-l/X
and we must so select -1 that , shall be finite for all admissible

values of X.

23. Prop. To find the total increment of

=/L^,y
d^ ^

'

dx' dx'^

where y is an indeterminate function of x.

This is a particular case of the general investigation which resulted

in the formula [/>]. To make that formula applicable to the present

case, we reduce the number of variables to one, and put

dy d'^y „

Making the substitutions, and putting, for brevity,

^JL-M ^-i^ ^-P ^-P ^-P
dx-'"^^ dy-'^r Jy-"^' .d^y~^^-----dny-^'

d-j- d^— d—^
ax dx^ dx*

we get
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or by substituting for d—
,
5 -— &c.

their values given by the last proposition,

24. Here ^y is to be expressed as hitherto by i .\>x^ and therefore

v}^
is to be assumed of such form that neither it, nor any of its first

n differential coefficients shall become infinite for any value of x con-

sistent with the conditions of the problem.

25. Prop. To find the total increment of U = /
^ Vdx when

^-^L'^'c^x' dx^ dx-S

It is obvious that a definite integral can change its value only in

three ways, viz. ;

1st. By a change of the superior limit Xi, while the inferior limit

Xq and the form of the diflferential coefficient V remain the same
;

S'i.

By a change in the lower limit Xq, while the superior limit and the

form of V ai e unchanged ;
and Sd. By a change in the form of V

while the limits are invariable.

The complete variation or total increment is the algebraic sum of

the three separate changes thus produced. Denote by F, the value

of Fwhen x =.
x-^^ and suppose x-^ to take an increment dx^ Then

Vydx-^ will be the corresponding increment received by U) for when
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Xi takes an increment, IT, which consists of an indefinite number of

terms, each of the form Vdx, simply receives an additional term,

expressed by V^dx^.

And similarly, when Xq takes an increment dxQ, the correspond-

ing increment of U will be —
V^dxQ, since U will thereby be

deprived of one term expressed by VQdxQ.

•
•

. DU= V.dx. - V.dx. + 8 f^^ Vdx,J
Xq

and we must now find an expression for ^ /
^

V^x, the change in TJ

^Xq

due to a change in the form of V. But the operation denoted by the

symbol /
^
satisfies the condition i^((p + 9') =. F^ -\- F(^''

*f
Xq

.-. S r^Vdx =. TUV + 8V)dx - T'Vdx
JXq JXq

' J
Xq

^ r^vdx^ rHv.dx-r^vdx=.rHv.dx.J
Xq JXq JXq JXq

dv d^ij
Now as F is a determined function of x, y, ~, -r^, &c., its form'^'

dx dx^
'

(considered as a function of x\ can vary only by a change in the

form of the function y.

Hence the variation of F, found as in the last proposition, is

Now, by applying the formula for the integration by parts to the

second member, we get

in which [Pi^y^i and [Pi^yjo represent the values of P^dy at the

superior and inferior limits respectively. Similarly



438 CALCULUS OF VARIATIONS.

Jxq
^
dx^ L^dxA^ L^dxjQ Jxq dx dx

*

or, by applying a similar process to the last term,

=['-.f-S"],-[''-S-t"].

And if we integrate n times successively the term

y%
r^ ^"^y 7 1 .,1 T

Pn . —i-^ dx, there will result

Px. ^ d»8y ^
r ^ d^-^y dPn d'^-'^Sy

Now collecting the coefficients of Sy, -^, &c, we get

^^a-o L c^j;
^

dx^
06C . . . -TV ; ^ j j
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4''.-],[f],-^-H.-[f].+-

which is the expression required.

26. The value of i> /
^
Fc?a; found in the above propositions, con.

tains three parts essentially different from each other, viz. :

1st. The terms V^dx^
—

^o^^-^o? which are independent of the

change in the form of F, but depend exclusively on the variations of

the limits.

2d. The cerms \P^
—

&;c.]i^y, which depend upon the form of the

function, not for every value of x
;
but for limiting values alone.

3d. The termxS within the sign of integration

which depend upon the general change in the form of the function.

27. The nature of this difference becomes more apparent by

observing that hy =zi. \x. For it is plain that the terms in the first

class are wholly independent of the form of the function
-^t'.

that

those in the second class do not require for their determination a

knowledge of the^rm of the function 4^, but only the values of that

function and its first n — \ differential coefficients, at the limits
;

and that the terms of the third class depend upon the form of the

function 4-, and cannot be determined so long as that form remains

arbitrary.

28. Proip. To find the total increment oi U = I
^

Vdx, when
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,, ^r dy d-^y d'tj IdiA /d^v\^ =f b' ^' i' sJ
• • • •

5]^'
^- y-

(7.).' \ii^:
'" y-

(II' (SI-]'
the quantity V being supposed to contain explicitly the limiting

values of one or more of the quantities, a:, y,
—

,
&c.

Since a^j, y-^
and

a-^, y^ are connected by the same general relation

as X and y, the integral /
^

Fc/ar can be varied only in the three

methods explained in the last proposition.

Now when
x-^

receives the increment dx^^ the form of the function

y remaining unchanged, the increment received by ?7 will be

Similarly, when Xq receives an increment dx^^ the change in U
(vill be

\dxjQ

Now let the form of the function y change, while other things

remain the same, and the corresponding change in U will be

JdSyK rx.JV^ ^^{dSjA r.,_dV_ _ ^^
\dxfi'fx„ ^/M \dx/itJxo ^/d£\

\rf2/j \dx}„

^\dx^}, Jx, IdW" +
^ dx^ ), Jx, (dhj\
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dV dV dV dV

rfF rfF rfF dV

\dx/Q \dxyQ

Now integrating by parts, as in the last proposition, and collecting

the terms, we obtain

&c., <Ssc., <kc., (fee.

29. Pro/?. To find the total increment of (T =J
^

Vdx, in which
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JXq L ax dx^

+(-i)-^]^-<'- («)•

And if there be several indeterminate functions of x in the value of

XJ^ each will introduce a set of similar terms in DU ov 5U.

30. Remark. The results just obtained are equally true, whether

the functions
a;, y, z, &c., are entirely independent of each other, or

are connected by one cr more equations of condition.

31. Prop. To find the total increment of U = /
^

Vdx, in which

_ r dy d^y d^'y dz d'^z d^z T

the functions y and z being connected by the relation Z = 0, which

relation may, or may not, be a differential equation.

The equation (a) of the last proposition is immediately applicable

to this case, but since z and y are connected by a given relation, hz

and ^y are not both arbitrary, one being dependent upon the other.

32. If the equation Z = can be resolved with respect to one of

the variables (as 0), giving a result of the form z = Fy^ the several

dz dP'Z
differential coefficients -—

-, -j- , &;c., can be formed by simple differ-
dx dx^

entiation, and these values, substituted in that of F, will render it a

function of a:, y, and their differential coefficients. Thus, the case will

become the same as that considered in a previous proposition.

But since the equation Z = is often a differential equation which

cannot be integrated, this method is frequently inapplicable. It will

now be shown that by another method (due to Lagrange) one of the

variation^! hv or hz can be removed from under the sign of integration.
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^ dL dL ^ dL
^

dL
,Put T- = a, —J- =/3,

——- = 7, &c., -^ =r a',

a— a —
dx dx^

Now, since the equation Z n: is true for all forms of y and z con-

sistent with the conditions of the question, we must have ^L = 0.

+ „-fe + ;3'f^-/^ + &c. = (a).

When this equation can be integrated so as to give a value of

either ^y or ^z in terms of the other, (as for example that of ^z in

terms of ^y), we can form the values of -^-. -—r k>Q,.. by differ-^" dx dx^ ''

entiation, and then substitute them in the value of ^C/', as determined

in the last proposition, thus effecting the desired transformation. But

as this integration is rarely possible, it is usually necessary to adopt

the method referred to above, which will be now explained.

33. The value of 6V being

dV=my -hF,^+ f/^ + &c. + N'dz
^ dx dz^

^^' dx ^^^ dx^^^""'

e can (without disturbing the equality nere expressed) add t ) the

second member of this equation, the value of SL multiplied by an

arbitrary quantity X, since X.dL = 0, Hence we may write

iF = (JV+ Xa)iy + (P, + X^)J + (A + ^r)^ + &«•

+(iVr'+x«')&+(/','+x/3')^-+(r,'+X7')'^
+ &c.
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. •. iU= (P, +\I3- '^^^'^''''^
+ «fec.),5yi

+ (P, +
X,'-^c.)..(t)^

-(P,' + X/-&c.)„.(f)+&c.

Now let it be required to determine an expression for SU con-

taining but one of the variations Si/, dz, under the sign of integration.

If the value of X be determined by the condition

,V' + Xa'-^(^M:) + &e.=0
ax

the variation Sz will disappear from under the sign of integration,

and similarly, if X be determined by the condition

ax

8y will disappear from under the sign of integration.

The following example exhibits an application of this method.
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34. Prop, To fold the total increment oi U = I
^ Vdx in which

--/[^-'IS g'M
and v-fUv'^l-'^^ . ^1

rfar
'

dy
'

^dy_ ^d^y
dx dx^

dv dv dv dv o C i
^^ ht,

dx dx^

The equation L = becomes in this case

V — — since / vdx = z. Hence

-— = -- or a = w, and similarly (3 = p^, y = jOg? <^^*-

ay dy

A-lso -r- = —r- or a' = and similarly (3' = —
1, 7'= &c

a2 as

And by substituting these values in the formula of the last pro-

position, we obtain

«{/=[/>, + X^.
- ^^^^^ + &c.], . Si,,

+ [P, + Xp,
-

&C.J, .

(§)
- [A + X;,,

-
&c.]„(g).+&c.

^
(XA -

X„&„) +
^^' [iVT'

+ ^] 5^ . dx.
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Since P/ = 0, P^ — &c., there will be no terms containing

(?) (?) ^-

By adding V^dx-^
—

VQdxQ to the expression for SU just found, we

shall obtain the total increment DU, and in order to reduce DU to

form in which Si/ shall be the only variation remaining under the

sign of integration, we determine X by the condition

which gives X = —
/ N'dx,

Denoting this value by i we obtain

DU= r,dx,
- V,dx, + [P, + i.p,-^~^ + &o.]fy,

+ [P, + ip,
-

&c.], .

(5)^
- [A + ip,

-
&c.]„.(^)

+&C.

—
(i,fo,

—
;„&„)



CHAPTER III.

SUCCESSIVE VARIATION.

35. Thus far no condition has been imposed as to the invariability

of form of the function 4* <^'* ^V' l^e conclusions arrived at are

equally true, whether that form be variable or invariable.

Thus if the symbol F satisfy the condition

F{^ + ^')
= /9 + F^\

it is equally true that

^i<9 = FS(^ = Fi . +,

whether the form of
sj^

be constant or variable. But this condition

ceases to be immaterial when it is necessary to take account of the

second variation^ that is, the variation of the variation. Thus in the

case just referred to, we should always have

6''F(^ =z F^-'^ z=: Fi6^.

But this, when the form of 4" i^ supposed invariable, reduces to

^2i^9 = FO.

Now FO = 0, since by the nature of the function F, we have •

F{(p i-0)=zF^-{- FO

.', F.O = F{(p-^0)- F<p = F(p
- F^=zO. .

•

. S^Fip = 0.

Hence for convenience we agree that the variation Su of any func-

tion 7/, although of arbitrary form, shall yet preserve that form inva-

riable, so as in all cases to satisfy the condition

d^u = 0.



SUCCESSIVE VARIATION. 449

36. We may notice here a striking analogy between a primitive

function and an independent variable, the first increment of each

being arbitrary, and the second equal to zero.

37. Prop. To find the second variation of the differential coefficient

•-—. It has been already shown that

dy _ d'^Si/ _
d'^i/ _ vT/^^"^! — ^^"^y _ ^"'^^y

dx*
~

'dx^^
^^ ' '

dx^
~

L dx^'J
~

'dx^
~

dx^
'

But since y is a primitive function d'^y
= 0.

d^S'^y ^ -. , ^„ dy
,

•
. —j-^ = ^j ^^^ consequently 6^—^ = 0.

ax ax

38. Prop. To find the second variation of

^-'^U^^' dx' dx-J

We have already found

6V
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Similarly J

[-^.^
= ^^ i_^,

and

dx dx

. dV d^V
, .

d^V dSy

dx ^ dx L dxl

&c. (fee. (fee.

Henee, by substitution, we at length find

^
dx L dxA

39. Prop, To find the second variation of / Vdx^ when

It has been shown that ^f Vdx = fd Vdx, and similarly we get

d^fVdx = 8 [Sf Vdx] = Sf6Vdx = fSWdx.

Substituting for 8"^ F, its value found in the last proposition, we

obtain

d^V RdVT" „ ) ,

dx.m \S1*'']

By similar methods, the third and higher variations could be

deduced, but the results are of little practical value.



CHAPTER TV.

MAXIMA AND MINIMA.

40. The Calculus of Variations is applied with great advantage in

resolving questions of maxima and minima, to which the ordinary

methods of the Differential Calculus are not applicable.

41. A maximum value of a function is one which exceeds other

values of that function, produced by infinitely small changes in any

or all of its varying elements.

In the Differential Calculus, these changes in the values of the

function are produced by changes in the values of the independent

variables, while the form of the function remains the same
;
but in

the Calculus of Variations the changje in the value of the function is

due to a change in its form.

42. The problem of maxima and minima, as resolved in the

Differential Calculus, is the following:

Given u =^fx^ where x is an independent variable, and / a func-

tion of determinate form, to find what values of x will render u <*

maximum or minimum.

In the Calculus of Variations, the corresponding problem is this ;

Let 9 denote a function of indeterminate form, and u =: Fc^ o.

function derived therefrom, to find what form of
(p

will render u a

maximum or minimum.

43. The mode of resolving this latter problem is as follows :

Let
(p -f- *• + ^® substituted for 9 in the derived function, and let

/"
((p + i . 4-) be developed in terms of the ascending powers of t.
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Then, by a course of reasoning, entirely similar to that employed in

the Differential Calculus, it will appear that when
(p

has the form

proper to render Fq) a maximum or minimum, the coefficient of

the firfjj^. power of i must reduce to zero, and that of the second

power of i must be negative for a maximum, but positive for a

minimum. In other words, if the form of 9 alone be supposed to

change, we must have 5u = 0. But when, from the nature of the

question, both the form of 9 and the value of x are liable to varia-

tion, we must have

J)u = 0.

44. The application of this theory will now be explained, observing

that in the present state of this Calculus, the functions to which it is

iftpplied are, almost exclusively, those having the form of a definite

integral, such as

r^ vdx.

45. Prop. Let y z= cpx be an indeterminate function of a single

variable x, and let it be proposed to find the form of 9, which shall

render

a maximum or minimum, the symbol / denoting a determinate

ftmction.

Let du = Mdx ^ N^4-dx-^ P/P:rdx^ P-f^J^ + &c.
dx dx^ dx^

Then ,Jz, = ivr^y + P,^+P2^+<fcc.

and if the form of 9 be such as will render u a maximum or mini*

mum for any given value of a:,
we must have

^i^.-=0, or iV^^y + P^^-hP,^f + &c. =0.
"• dx *"

dx^
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This equation cannot in general be satisfied without destroying the

independent character assigned to the form of the function 4/ or 8y.

For, unless the coefficients iV", P^, Pg? ^^-i ^® separately equal to

zero, the equation

m, + i>r-^ + p,''4!.+^o. = o.

will establish a relation between the form of the function -^ or 5y,

and that of 9 or y, which is inadmissible. Nor is it possible in gen-

eral to satisfy the separate conditions iV= 0, Pj = 0, Pg = ^? ^^-i

since each of these equations establishes a relation between x and ?/,

or in other words, determines the form of y.

Hence unless all these equations should concur in giving the same

form to y, they would contradict each other : and since this concur

rence does not usually take place, the problem does not ordinarily

admit of a solution.

46. If in the last proposition the value of u should contain but one

du d'^v
of the quantities y,

—
,

-—
, &;c., or if by the nature of the pro-

posed question, the value of all but one of these be fixed for each

value of ar, the equation

will be reduced to a single term, and can therefore be satisfied.

47. Example. Let u =flx, y, —J, and let it be required to de-

termine what form attributed to the function y will render u a max-

imum or minimum, it being understood that the value of y is to be

given for each value of x.

In this case, since y is constant for the same value of
ar, 8y = 0,

and the equation

^^y + Pi^+ P2 ?7 + &c. = reduces to
dx dx^
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C.

The following geometrical application will render chis example

more intelligible.

Prop. To determine a curve such that, if at each point P a tangent

be drawn and produced to cut two ^

given lines, DC and i^iC^, parallel to

the axis of y, the rectangle DC X D-^C-^

of the parte intercepted between the

tangent and the axis of x shall be a

maximum or minimum
;

it being un-

derstood that the curve is to be compared only with such other

curves as pass through that point.

Let be the origin, OX and OJ^the axes.

Put OD z=a, OD^ = «! 0G = x, GP = y.

Then we shall have

DC=y-{x-a)dy_

dx
dy dyand

D^C^=y+{a^-x)-^-^=y-{x-a;)-£

•.r=i>cxA^.-[.-(-«)|] X
t-(-c.,)|]./(.,4)

(JF=My + A
dx

where iv — —- and P. = ——•

dy ^dy
dx

8V =
[2y+(a + a,- 2x)^^5y

+ [2{x
-

a,) {^
-

a)^£

^y{a + a,-2x)]
dSy

dx

But since it is proposed that the curve shall at each point be com-

pared with such curves only as pass through the same point, we

must have

Sy =

and therefore the condition 5V =z 0, which is necessary for a maxi*

mum or minimum, becomes
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2
(a;
-

a) (a;
-

aj)^ + y (a + «!
—

2a;) =

. 2^ — -^ ^^ —
y X — a X — a^~

"*

whence by integration,

21og2/
—

log {x — d)— log (x
—

aj) = logc.

or log (2/2)
= log [c {x — a)(x — a^)]

.

•

. 2/2
_

c(.^
_

^) (^
_

^^)^

the quantity c being an arbitrary constant.

This equation obviously represents an ellipse or hyperbola accord-

ing as c is negative or positive.

Passing now to the second variation, we have

^
dx L dxj

and since in the present case V
==flx,y,-j-\ and 6y =

w e shall have 6^ V = -J-^^-, • f^l
'

or i.r =
2(:r-«)(:.-«,)[^|j]'

or by putting for (x
—

a) (x
—

a^) its value —
c

5=
c L c/a; J

The sign of this quantity is the same as that of c. Hence the

curve is an ellipse when F is a maximum, and a hyperbola when V
is a minimum. In the first case the curve lies entirely within the

lines CD and C^B^ ;
and ir the second entirely exterior to those

lines.
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48. Pro'p. To find the form of the function y, ai d the values of

the limits Xq and
arj, which shall render the definite integral

U = /
^ Vdx a maximum or minimum, when

V =

the character / denoting, as usual, a determinate function.

Here, we have

DU= V,dx,
-

V,dx, + [Pi
-
^' +

^^-J
^yi

Two cases may occur in the attempt to satisfy this equation, viz. :

1st. The variation Si/, or the f )rm of the function 4^, may be

wholly unrestricted (except by the general condition always appli-

cable to this function) ; or,

2d. It may be necessary to assume the function 4^ of such form as

will satisfy some given condition or conditions.

In the first case, the object proposed is to determine among all

possible functions, that one which shall render u a maximum or mini-

mum. In the second case, the derived function is required to belong

to a particular class, each individual of which fulfils certain given

conditions.

Maxima and minima belonging to the first of these divisions axe

called absolyte,a.ndi those belonging to the second division are termed

relative. Taking the first of these divisions, put for brevity
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and equation (.4) will reduce to the form

«i
-

^0 +f''^ b'Sy'dx = (B).

This equation cannot be satisfied so long as the form of Sy or
-j/

remains unrestricted, unless we have the two independent conditions:

ttj
—

«o = ^> ^^^ 6 = 0.

For, if a^
— a be not equal to zero, we must have

a, — Qq =z — / ^bSy'dx,J Xq

a condition manifestly impossible, since the value of the definite

integral in the second member cannot possibly remain invariable;

while we are at liberty to change arbitrarily the form of the quan-

tity to be integrated ;
but the value of a^

—
Oq, which depends only

upon the values which certain quantities have at the limits, will not

necessarily vary with a change in the form of 5y, Hence, we must

have

flj
—

Oq = 0, and /
^

b5y .dx=zO.

Now this last equation cannot be true for every form of Sy,

unless b =: 0, or
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a differential equation which serves to determine the form of the

function y.

49. The two equations, a^
—

a^ =: 0, and 6 = 0, differ essentially

in their signification, the latter establishing a general relation between

the variables x and y, while the former connects the particular values

which these quantities have at the limits of integration.

50. Without this distinction, the solution of the problem would

be impossible, since there could not be two general relations between

X and y.

51. The coefficients of the increments in the equation a^
—

«o = ^

being constant, and the increments themselves either entirely arbi-

trary, or restricted by a limited number of conditions, that equation

will be equivalent to as many distinct equations as can be formed by

placing equal to zero each of the coefficients of those increments

which remain arbitrary, after we have eliminated all such increments

as are restricted by the given conditions. We now proceed to show

that the equations thus formed, together with that obtained by

integrating the differential equation 6 = 0, will just suffice for the

complete solution of the problem when a solution is possible.

52. The differential equation 6 = 0, or

dx dx2
^ ^

dx"^
^ '

d ^y
is in general of the 2n** order. For since V contains ——

,

dV d^v
the quantity P» = —7^ will usually contain —-^ also

;
and therefore

d—~
dx"^

—,— will usually contam -—-•
dx""

^
dx^""

Hence the integral of ((7) will usually contain 2n arbitrary

constants.

di] d'^ii d^'^'^v
But if the limiting values of

rr, y, -—,
—
| T^i^ ^® entirely
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unrestricted, the equation a^
—

oto
= will contain 2n -\- 2 arbitrary

increments, viz. :

in which case that equation cannot be satisfied, since there would be

formed, by placing the coefficient of each arbitrary increment equal

to zero 2/1 + 2 equations, while there are but 2n constants whose .

values are to be determined.

This result might have been anticipated, for it is evident that if

the form of the function y, and the limits of integration be entirely

unrestricted, the integral may have any value from to oo
, and,

therefore, cannot admit of a maximum or minimum.

53. The nature of the restriction imposed upon the limits must

depend in each case upon the conditions of the proposed problem.

1st. Let the limiting values of
a?, viz., Xq and

x-^
be given ;

that is,

let it be proposed to find such a form of the function
3/

as will

render fVdx, when taken between fixed limits, a maximum or

minimum.

Here we have dx^ = 0, and dxQ = 0, and the equation a-^— a =
is now equivalent to the following separate equations :

[P2-&c.]i= 0, [P2-&c.]o=0, &c. &c. &c....[P„]i=0, [P„]o=0.

The number of these equations is 2n, the same as that of the con-

stants remaining to be determined
;
and hence the solution is in this

case complete.

2d. Let the limiting values of both x and y be given.

Then dx-^
= 0, Sf/^

= 0, dxQ = 0, Si/q
—

0, and the equation

a,
—

»(,
— is equivalent to 2n — 2 separate equations, viz. : those

formed by placing equal to zero the coefficients of the following

inciements :
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'ET],'[g.,'B],'[g].--[£3],^E3J.-
But there are now two additional equations resulting from the

substitution of the given limiting values of x and y in the general

solution of the differential equation 6 = 0. For let the integral of

that equation be

/Ky,Ci,C2 c^n\ =0,

where Cj, rg Cgn are the 2/a arbitrary constants. Then we shall

have the 2/i equations

/[•^l, Vv Cj. ^2 . . . . C2„]
= 0, f\x^, y^, Cj, ^2 C2„]

= 0,

[P3
-

&c.]i= 0, [P3
-

&c.]o=0, &c. &c. . . . [PJi = 0, [PJo = 0,

with which to determine the 2/^ constants.

3d. Similarly, if the limiting values of x^y^ and -—were given the

new conditi<3n, w ould remove two of the preceding equations, viz. :

but two new conditions would be derived from the substitution of

the limiting values of

the general solution.

the limiting values of — in the equation obtained by differentiating

/[^,y,^i,<'2 <^2n]
= 0.

For let /j [x, y, ^, Cj, Cg, c^„]
=

be the result of a differentiation with respect to x. Then we shall

have

and /i [xq, ^0,
(J^j

,c^,c^ c^n]
= 0.



MAXIMA AND MINIMA OF ^NE VARIABLE. 461

54, Similarly, if the limitirig values of -7^ were given, two more

equations would disappear from the group obtained by making

(X- —
(?(,
=

; and, on the other hand, two new equations would

d'^y
result from the substitution of the limiting values of -— in the

equation obtained by differentiating the general solution twice
;
thus

preserving the total number of equations equal to 2/i, the same as

that of the constants to be determined. And, in general, whatever

may be the number of the quantities having given limits, the total

number of equations will be 2/i, and therefore just sufficient for the

complete solution of the problem.

dy
55. When the limiting values of a;, y, -^, &c., are not absolutely

(XX

fixed, but simply connected by one or more equations of condition,

the variations of the quantities so connected are not independent,

and therefore two or more of the equations, resulting from the con.

dition
ffj
—

ay = 0, will be replaced by a single equation. Thus

the total number of equations deducible from a^
—

cxq
= will be

diminished
; but, on the other hand, a number of new equations,

just sufficient to supply the deficiency, will arise from the equations

of condition. To illustrate this, take the following

Exam-iyle. Let the limiting values of x and y be connected by the

equations

Vi^fi^i and yo=foXQ.

The quantities dx^^ dy^^ dxQ, 6yQ will be connected by the following

relations :

Now, substituting the values of ^y^ and ^y^^ derived from these equa.

tions in «!
—

Oq = 0, and placing equal to zero the coefficient of

each remaining variation, the following equations will result :
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r.^[A-f +
.o.]^x(//.-[|])=o

The other equations being the same as heretofore.

These equations, (2n in number,) in connection with the four fol-

lowing, viz. :

Vl =/l^0» Vl =/0^"05 /(^15 yi? ^15 ^25
* * * *

^2«)
=^ "

fV^O-i Vo^ ^15 ^2'
* * * '

^2")
^^ ^

will just suffice for determining the 2n + 4 quantities

•^n y^ ''^05 yo5 ^15 ^2'
' *   

^2«*

. And if the limiting values of x and — were also connected by
dy

r me Jimiimg vaiues oi x ana

the relations

we should have

Hence, the first three terms in each of the quantities, a-^
and a^^

will reduce to one, and the number of equations deducible from

aj
—

GTo
= will be reduced to 2/i — 2» But we shall have in addi*

tion six other equations, viz. : the four used in the preceding case,

and the two following :

f [^\^ Vi^ /I'^i, Ci, cg,
• • •

C2«]
= 0, /' [xq, yo, /o'^o, c\, c^r

"
^'aj

= ^>

which are obtained by differentiating the general solution
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/(a?, y, Ci, C2, C2„)
= 0,

dy
and substituting in the result the limiting values of rr, y, and —.

Thus the total number of equations will be 2n + 4, which is just

jsufRcient.

And the same result will be found true when the restrictions

imposed upon the limiting values of the several variations are more

numerous.

57. The exceptions to the preceding theory will now be considered.

58. Case \st. Let F be a linear function of the highest differ-

ential coefficient -7—.

d^P
Then P« will not contain this coefficient, and therefore

,
cannot

dx^

be of an order higher than 2w — 1. Hence, the equation

^_^dP,^dy_,__ d^^
dx

^
dx'

-r \ } ^„

cannot be of an order higher than 2/i — 1, a^d its solution will con

tain 2« — 1 disposable constants. Thus the equation aj
—

a^ = 0,

which is equivalent to 2w equations, cannot, in this case, be satisfied.

59. It may even be proved that the equation 6 = cannot, in this

case, be of an order higher than 2?i — 2.

For, put = ^- Then F = ^v + ^',

. dy d'^y d^—^y
where ^ and 0' are functions of

.r, y,
—

, yy,
• • •

^J^
.

It has been shown already that the equation 6 = does «iot, in

it is 01this case, contain -7-^,
and therefore it is only necessary to prove

that it does not contain the coefficient
,

.
,

.

Now, this coefficient cannot occur, unless it be in one of two terms,
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d-^Pn-, d-P^
viz: —

;

— or ——
.

dx''-^ dx''

r. rr . ., r. dV dV
^ , d^Pn dH

d-^
dx^

^2n—\y d^P
Now to find the coefficient of

, , ',
in —r—" we must form the

vahies of ly), ly^l?
* ' * *

\~~„)'
^"^ reject, m each, every term

except that of the highest order.
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dx"^-^ du dx^-'^ du rfa:^"-^'

and, since this term is precisely the same as the terra of thie same

d^P
order in —j-—, the two will disappear in

d-'Pn-, _ d^
dx""-^ dx""

'

. •. the equation i = is not of an order higher than 3?*Vv4. /

60. Case 2d. Let V=:y'fx+F (x, p^) ,
where Pi = ^'

'^

)/ »

Here i^=:!^=A and A = 1I =^M
^

/ l

and since V is in this case a function of
ir, y, and -^ only, the equa-dx

tion 6 = will become simply

N —^ = 0, or, /c = -j-idx ' ' ^ dx

and is immediately integrable, giving

P\ — ffr ' dx — f^x 4- c.

Substituting the value of Pj, derived from the proposed equation,

we shall have an equation involving x^^ p^^ &c-, which, solved with

respect to jOj, will give a result of the form

Vx = <P(^, c)
or £ =

(p{x, c)

.-. y = 9i(5:,c) + Ci. . . . (1).

Now suppose the limiting values of x given, those of y being in-

determinate :

The equation a,
— a = is then equivalent to the two equations

[P{\, = 0, and [PJo = or f,x, + c - 0, (2) and fyC^+c = (3)

The two equations, (2) and (3) contain but one arbitrary constant

c,^
and therefore cannot usually be satisfied, although the general

30
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solution (1) contains the proper number of constants. Hence the

proposed problem does not admit of a solution.

61. If in the case just considered /c = 0. so that V = F{x,p^)

the two equations (2) and (3) become identical, and the solution is

then possible: but it belongs to the indeterminate class, since one of

the constants remains entirely arbitrary.

62. The results just obtained are not peculiar to functions of the

first order, such as that just considered for if V be supposed of such

form as will give

and if the limiting values of x only be given, similar reasoning will

apply. The equation 6 = will, in this instance, as in the preced-

ing, be immediately integrable, giving

^-^' + ^''-=^=^+"'

and the first two equations resulting from the equation «!
—

«(,
= 0,

are
f-^x-^ -f c = 0, and f-^x^ + c = 0.

These two equations cannot usually be satisfied except when

fyX = 0, in which case y does not appear in the value of V.

d'v
And in general if

-7-j
be the lowest differential coefficient appear-

dV
ing in F, the form of F being such that —

rj- =fx^, and if the lim-

d-^
dx*

ititing values of x and of those coefficients which are higher than the

«'* be alone given, we may prove, in like manner, that the problem

will not admit of a solution.

Casf 3c?. Let iV — 0, and let the limiting values of x only be

given.

In this case the equation 6 = becomes
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ax dx^ dx^

and is integrable, giving

dP^ d'^P^ ,

and the two conditions furnished by placing equal to zero the coeffi-

cients ^y, and Si/q^ viz. :

[P,-^^ + &c.], = and
[i>,-^+&c.]„=0

are equivalent to the single condition c = 0.

Hence the equation a^
—

gtq
= is equivalent to but 2^ — 1

equations, instead of 2w, and the problem is indeterminate. This

result might have been expected, for since y does not appear in F,

nor in the conditions fulfilled at the limits, the coefficient -~- might
dx ^

have been taken as the principal function, instead of y, and then the

equations given hy DU—0 would have been just sufficient to estab-

d'u
lish a relation between x and —

,
without arbitrary constants, which

relation, when integrated, must give an equation between x and y,

containing one arbitrary constant.

63. i^i in the last case, one of the limiting values of y were given,

the problem would again become determinate. Similarly, when

dyN =z and P. = 0, and both limiting values of y and — are in-
dx

determinate, the solution will contain two arbitrary constants, and

will be rendered determinate by assigning at least one limiting value

to y and -^•

And generally, if the first m terms of the equation

,^ dP, d'^Po .

dx dx^



4:68 CALCULUS OF VARIATIONS.

be wanting, and if there be no conditions fixing the limiting values

>(v, —,••••. —,
—

^, the solutionwill contain m arbitrary constants.^
dx dx""-^

''

The preceding cases afford the principal examples of exception to

the general theory. We now return to the consideration of that

theory.

64. As it will sometimes be possible to integrate the equation

,, dP, d^P
,

one or more times without determining the form of the function F,

and as the consideration of these cases will greatly facilitate the

application of the theory to particular examples, we proceed to

examine some of these cases, arranging them m two classes.

dv d'^xi

65. \it Case. Let the first m of the quantities y,
—

, -7-^,
&c. be

wanting in F, or let

v=f\.,p pi\

Then tbe first m terms of tne equation

dP
N- ^^ + &c. =

dx

will be wanting, and that equation will reduce to

dx'^ cf:c»n+i

which gives,^ when integrated, m times,

dP
P« ^ + &c. = Co + c^x + c^x'^ + :

• • • c^-v»i^\

a differential equation of the order 2w — m.

66. Case 2d. Let the independent variable x be wanting in F,

or let
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2y d^y"}J dy d

=^\y^dx^ d

In this case, we have

^-" '"' ' '

dx-^ dx-

dV = my + Pid%-^ P2^3 + ^'•

or, by substituting for iV^, its value derived from the equation,

"-'£'+ IS-" -"'•=»•"="

-=[-.3+l-S>4'-.S-l-S]-+-

P„ -j-^^
dx gives, by an integration by parts,

^ ^ ^ J dx dx""
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^ dx L ^
dx^ dx dx J

^if^dx^ dx dx^^ dx^ dxr^^'

^ ^"
dx- dx dx-^

+ ^^ + ^ ^^ dx-^ dx ^^^

which is a differential equation of an order not higher than 2w — 1.

Thus it appears that when V does not contain the independent

variable
ar,

the equation b =iO can be reduced at least one order.

67. The following are the most important applications of for

mula (i)) :

1st. Let
^=/(|) («)•

Here V=c-\- P^-^hj
formula (i)), since P^ = 0, Pg = 0, &c.

But r is a function of -^- .

•

. P, =—r— is also a function of ^—
dx ^

dy dx

di

Hence by substituting for V and P^ their values, and then solving

with respect to —
,
the result would take the form

dy i

-=o,. ..y = c,x + c.

Here y is a linear function of x^ and this result shows that linear

functions have the property of giving a maximum or minimum value

dy
to every function of

-j-
which admits of such a value.

CLX

2d. Let y =
f(y^t) W-

Then F = c + ^i ^•dx
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3d. Let
V=f(y,'^) W-

Then v=e+P,'^{-'j.p.dx^ ax ax

68. Case Sd. Let the function V belong at the same time to both

of the preceding classes, that is, let the independent variable x, and

di/ dp" XI

the first first m of the quantities y, -^, -7-^, &;c., be wanting in F.

The equation 6 = gives, as in the first case by integration,

dP
Pm -^ + &C. = Co + C^X + C^X'^ + &C Cm-yX^-K

.

•

. Pm= —T^ — ^^- + ^0 + <^1^ + ^2^^ + <^C Cm-iX"*-^,

This value substituted in

the differential of the given relation

+ &c. &c.

r d^:^_ d^^^;np^dr^yl

+ Uq+c^x+ c^x^+^zc c^_i .

a;'»-ij ^^^ dx.

Integrating by parts, we get
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^-+V r dr^+'^y dp,n+^ dm^hn
..

+/[^6 + c^x + ^2^2 4. &c +
c^-i.T—^]'^^^^

. . . . (JS^.

But since in general

x'^'-j-^dx^x^ '-^-r.x^-^'-—\^r{r-X)x^-^-—^ &c.

4-(-l)''.r(r- l)(r-2) 2.1
dxVI—r

if we put successively r equal to (1, 2, 3, .... wi — 1), and substitute

the resulting values of the integrals,

fx^-^dx fx-^^^hx .... A-^—^^r

in equation (^) it will be a flifr<^rential equation of the order

2/1 — m — 1] that is, the original differential equation will have

had its order reduced by m -}• I degrees.

69, Suppose for example that

Then the equation 6 = 0, becomes

dx dx^
*

dP
whence by integration P^ = -y-^ -\- c.

"^

and this value substituted in the differential of (1) viz.:

^^=[aS+aS>
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dx
"^ 2

^^2
c' + c-^ + P,-/.

a differential equation of the second order as it should be, since

2/i — m — 1 = 2.

Belative Maxima and Minima of One Variable.

70. Prop. To determine the form of the function 7/
= cpx which

will render / Vdx (taken between certain limits) a maximum or min-

imum, when
7/

is selected from those functions which satisfy the

additional condition fV'dx=:c (between the same limits); the

dij d ^1/

quantities V and V being functions of a;, y, -^,
-—

,
&c.

The condition fVdx = a maximum or minimum, gives

DfVdx = (1).

And the condition fV'dx — c, gives

DfV'dx = (2).

Multiply (2) by an arbitrary quantity X, and add the result to (1);

then DfVdx + X.DJV'dx = or Df{ V+\V')dx = ....
(3)

and equation {?)) will include all the conditions involved in the prob«

lem, and will imply that both (1) and (2) are necesf^arily true.

For since by hypothesis X is an arbitrary quantity, we may write

I)f{V-^\Vyh = and Df{V -{ \V')dx =

.

•
. Df{\ - Xg) Vdx = or {\ - \)J)fVdx = 0.

Now Xj and X^ are not equal, and therefore X|
—

Xg is not equal

to zero. Hence we must have

OfVdx =r 0, and . *. from (3) DfVdx = also.
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Thus (3) includes all the conditions required; and therefore if we

replace F" by V + W, the problem can be solved as one of abso-

lute maxima or minima.

The formula (3) expanded and applied to the limits Xq and x^ gives

V,dx^- Vodxoi-S f^"^
Vdx +X( V^'dx^^ Vo'dx^)+8 r^XV'dx=0.

71. Cor. It may be shown in nearly the same manner, that when

fVdx = a maximum or minimum, and also

fV'dx = c and fV'dx = c',

the problem may be solved as a case of absolute maxima and minima

by replacing F by V-]-XV' -\-X' V" where X and X' are arbitrary

constants.

Applications.

72. We will now illustrate the principles already explained by a

few examples.

1. To find the nature of the line (lying entirely in one plane)

which is the shortest distance between two given points.

Let XqIJq be the co-ordinates of the point

,B

Ar

|r„
1^'

x

A^ and
x-^ijy^

those of B. The general value

of the length of the arc of a plane curve AB

is /
(
1 + -T-f )

dx taken between the proper

limits. Hence in the present case we shall have

U = r^ Vdx = f'^ll-hi^) dx= & minimum.
^Xq J

Xq \ dx^J

Here V = \\ -^--^'A
—

•'^(t)'
^"^ consequently by formula (a),

the solution of the equation 6=0 becomes

y = c^ -f- c'.

and the shortest path from ^ to .5 is a straight line.
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The equation
'

a^— aQ = or V^dx^
—

VqcIxq + Pfyi — Pq^q =

disappears in this case, since

dxQ = 0, dx^ — 0, (J^i
= 0, and SyQ = 0,

the limiting values of both x and y being fixed.

To determine the values of the constants c and c' we have the two

equations

2/i
= cx^ + c\ and y^ = cXq + c'

;

thus the solution of the problem is complete.

2. To find the line of shortest distance between two given curves.

Let the equation of the curve AB be yQ = FqXq (1),

and that of the curve CD,

As in example 1,

(2).

.

•

. y = cx-i- c\

x~
and the shortest distance is still a

straight line.

To determine the values of the constants c and c', and the limiting

values
a*Q, «/o, x^, y^, we proceed, as follows :

From (1) and (2) we get the following conditions connecting dxQf

6yQ', dx^ and Sy-^, viz. :

^^<^ "^
Lt^J

*

'^'^" ^^o^-^o, and 8y^ + [Jj dx^ = t^dx^,

dF\x,

. dx-^

[!]„='''
"""^

[1],=
'''

•

. 5yQ = {t^— c) dxQ, 6y^ = {t^
—

c) dxy.

in which

A-lso

t, = -j^, and /,
=

dxQ
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Substituting these values in the equation a^
—

aQ = 0, and replacing

Fj. Fq, Pj, Fq by their values, we get

(1 + c^)^dx^
-

(1 + c')^dxo + c (1 + c2)~* (^
-

c)dx^

-c{\ +c2)~*(/o-0«?-^o = 0.

Now, placing equal to zero the coefficient of dxQ and dx^, the only

arbitrary increments renriainiiig in the equation, we get

(1 + c^)^ -h c (1 + c^f^iii -c) = 0, and

(l+c2)*+c(l+c^)"*(fo-c)=0;

or, 1 + c^i
= . . •

(3), and l+cto=zO -- -

(4).

These two equations, with the following

suffice to determine the six quantities, c, c', a-Q, ^qi ^i5 ^i*

The equations (3) and (4) show that the shortest line UJS' cuts

both curves at right angles.

73. In the preceding example, suppose the given curves to become

straight lines perpendicular to the axis of x. Then dxQ = 0, and

rfiPj
= 0, since the extremities of the shortest line will necessarily

have invariable abscissae.

. n dvn -. d)/-, 1
Also

Iq
= -~ =z Qo

,
and

t^
— -—- = ao; .' . c —— = 0;

'I'^Q dx-t
tff

and as c' is now indeterminate, the required line of shortest distance

may pass through any point of AB.

This is an example of Exception 2.

3. To find the form of the function y, which shall render

a maximum or minimum.
"<>('*'&*'

Here we have
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and therefore, by formula (6),

^=''i^^-

Making c =
Z*»,

and solving with respect to dx, we get

l"dv
dxz= ^

This comes mider the binomial foriii,and therefore is integrable when

1 .
11

an integer or zero
;

that is, when n has one of the following

values, viz. :

,111. 1
1 1 1

X
^'

2' 3' 4'
•

' ^''
""

' "2'
~

3'

"
i'

As a particular case of this problem, suppose n = — -;

or dx

y^_y2
 

y//^- 2/^ V^ —
y^
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1 -^ 2y i
.

•

. X -\- c = -I' versin ~
(ly
—

y^) .

If the limiting values of x and y be given, then

(Ixq = 0, Sijq
= 0, dxj^ = 0, 6y^ = 0,

and the equation Gj
—

a^ = disappears.

To find the two constants c and I, we have the two equations

1/ • "'2^0 /I -,

^0 + ^ =
2

^®^^"^
"1

'^^^ ~"
^« '

>
a-i + c = -^. versin

-y-y^yi-yi^

and if a^o
= 0, and yo = ^^ then c = 0, and

^7 . ~^2y /^
r-

. . . . n\
X — -I' versin -^ —

v/lt/
—

y^ V^r

74. The equation (1) of this last example exhibits the solution of

the celebrated problem of the Brachydochrone^ or the curve of

swiftest descent.

Thus, let A and B be two points in the same ver-y^ g-

tical plane, and let it be proposed to determine the

nature of the curve APB^ along which a heavy body
will descend from A to B (under the influence of the

force of gravity alone) in the shortest possible time.

Denoting by t the time occupied in passing from A to any point P
in the unknown path, the co-ordinates of which point are x and y;

by s the variable arc AP^ and by g the velocity acquired by a heavy

body falling vertically during a unit of time
;
then it is shown by

the principles of Mechanics, that the velocity acquired by the body

in descending along the curve, (when it has reached the point P,)

will be expressed by

V^, and also by -^^^-^M-j
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• *• / y
(
1 + ^) dx = B, minimum between the limits

X = x^z=: 0, and x =z x^ = AF.

The equation (1) represents a cycloid, the axis DC =.1 being

vertical, and the extremity of the base coincident with A^ the point

of departure.

75. 4. Through two given points A and B^ draw a curve, of given

length, so that the area included between the chord AB and the

curve APB may be the greatest possible.

This is a problem of relative maxima and minima, since the curve

is to be selected from a particular class, viz. : those which have a

given length /,
or which fulfil the condition

Also JVdx =z I
^

ydx = a maximum.
*/Xq

Therefore by the method of relative maxima y'')^
and minima, we have A ^ d b

= V^dx^
-

Torfi-o 4- ^ r^ Vdx
Xq

+ X( V^,Jx^
- V^ . dx, + Sf''' Vdx]V

Xq

Here the limiting values of both x and y are invariable, giving

dxQ = 0, Sy^ = 0, dx^ = 0, Sy^ = 0.
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Also r+xr'=. + x(.+|:)*=/(„|)
Hence the equation a,

—
o„ disappears, and formula (6) gives

V+XV' = c +

0-£)

.•,.-c)(l.gf
= X and %=j^-.

, (v — c)dy
or dx= J—I— ^%:^, whence

ic = — [X2
-

(y
-

c)2f + c' or {x
~

c^^ + (3/
-

c)2 = \^

and the required curve is the arc of a circle.

To determine the constants c,c\ and X we have the three equations

(^0
-

c'f + {Vo
- cf = X2, {x,

- cy + (yi
-

cy = X2 and

i chord AB -l

=
sin(^),

or when the origin is at A and the chord AB coincides with the

axis of ic,

c'2 4- c2 = X2, (x^
—

c')2 -f- c2 = X2, and -i = sin--.
^X «iX

76. 5. Given the length / of the curve joining two fixed points

A and B, to find the form of the curve when the surface generated by

its revolution about the axis AB is the greatest possible.
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nerefVci.=ly,[l+'£:j,.
a

= a maximum,

«.d/F'<^=/;^'(.+|-:)*..=/.

.-. J)U=zI>f{V + XV')dx = and

v+xP...,(,.|:)Vx(..g)*=4.|).
The equation a^

—
aQ = disappears, and (b) gives

•••(H-f.)'=-'+^.|:=*^"-^--

To integrate this put 2'ry + X = 2 and
y'^FZT^

= 2;
—

^,

and
'/(2*y -f- X)2

- c2 =
;2- ^2

2^
^^ = -2^'T

'2'n-
^

i 2'Ji' '^2'rfy -f- X — y/(2^_j. x)2
— c«

e - 27r'y -4- X -f v^-n-y + X)2
- c^

2'K
log

= C71og
y+CJ' "t VW^ c'f - C'»

C"

31
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in which C ::= ^, (7' = ^, and C" =~
This is the equation of the Catenary, which therefore is the required

curve.

77. Prop. To find the form of the function and the values of the

limits Xq and
x-^

which shall render

U ~ V -\- I
^ Vdx a maximum or minimum, where

*JXq

The general equation 6 = 0, being derived exclusively from the

terms under the sign of integration, must be the same as in the last

proposition, and therefore it will be necessary to consider only those

terms which refer to the limits :

Fut 0?F = M'dx, + N'dy, + P,'d i^\
+
A'<^(0)

+ &c. . • .

Then the additional terms in D U, resulting from F', are

and the first member of the equation aj
—

Oq = will be increased

by these terms, which, being of the same form with the terms pre-
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viously found in that equation, there will be no difference in the

manner of discussing it in its modified form.

It must be remembered, however, that the possibility of satisfying

the condition 1)17 = 0, depends upon the fact that the number of

independent increments in the equation a^
—

ao = 0, does not usually

exceed the number of arbitrary constants in the integral of the

equation b z= 0. Hence if,
in any particular case, the number of

independent increments should be greater than the number of

constants, the solution would be impossible.

Now in the case at present under consideration, the number of

increments.

"-*-(§). m.
relating to the inferior limit is n' -f- 2 ;

and the number of incre-

ments already found to exist in ag i^ n -f 1.

If then 7i'-|-2>^+l} or n' ^ n — 1, the solution of the prob

lem will be impossible.

Similar remarks apply to the superior limit
;
and we conclude

that when the new function V contains any coefficient of an order

higher than n — 1, the function U will not admit of a maximum or

minimum.

78. Prop, To find the form of the function y and the values of

the limits Xq and x^, which shall render ^ — J
^ Vd^ a maximum

or minimum, where

^=^t ^'I • • • •S '- y-
(Do-

• • •

(S)o'
^- y-

\dx)^ [(ix'^'U

The general equation DU = becomes in this case (p. 411)
*
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+^.''"'-](t)/^--

This being written in the form

«i
—

«o + /
^

h^ydx = 0,

shows that b is the same as before, and therefore the form of the

function y is not changed by supposing Fto contain explicitly the

limiting values of a:, y^ -f-, &;c.

Also the terms in a^
—

CTq
= are of the same nature as if V

did not contain the limits, forming a series

A^dx^ 4- ^i%i + C^
('^^j

+ &c. 4- A^dx^ + ^0(^1/0 + Co (^)
&c.

i4|, ^1, Cj, &;c., Jq, ^0? ^05 ^^'1 teing constants. For in the ex-

pressions

/
^

m-^dx^ I
^

Mffix, &c.,
*f
Xq

^
Xq

the same supposition is made as in the terms
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and the other coefficients of the several increments in the equation

a^
—

Oq = 0, where V did not contain the limits
;

viz. : that the

value of y, derived from the equation b = 0, has been substituted in

m,, mo, &;c. This substitution being effected, and the definite integrals

being formed, the quantities A^^ B-^, Aq^ B^^ &c., will become entirely

constant.

Thus the mode of treating the equation i> t^" = is in all respects

the same as in the case previously considered.

The following examples will illustrate the cases considered in the

last two propositions.

79. Ex. Having given the area c of the figure BAA-^B^^ bounded

by the axis of ar, by two ordinates passing through the given points

B and J5,, and by a curve ACA-^^to find the nature of the curve and

the values of the extreme ordinates BA and BiA^, when the peri.

meter of the figure is a minimum. Put

OB=x,, OB,=x,, BA=y,, B,A,=y^.

Then, sin(ie

BB^ = x^
—

Xq

is constant, we have

BA + B,A, + ACA^ = yo -f yi

Also P' V'dx = f%dx = c.
*^
Xq

V
Xq

.-. U= V"-\- r\V+\V')dxz=amimV Xn

mmimum.

mmimum.

Here U contains a term V"^ exterior to the sign of integration,

involving the limiting values of y, and, therefore, by the method
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applicable to such cases, combined with that of relative ma.cima

and minima, we have

Now V -{- "kV = fly,
—

j,
and therefore by formula (6)

dx

Put
^^
=

/3, and i^a, then
^1
+ g) (,/3

-
y)^ = «2

;

{^—y)dy 1
.•,dx =

^^^^^—--^^-—
— and a: = ^2 + [oc2

-
(^
_ yf^

or, (a:
—

Cg)^ + (y
—

i^)^
=

'^^j the equation of a circle.

Hence, the curve ACA^, is a circular arc.

To determine the values of the ordinates yg ^^^ Vii ^^^ ^^^^ ^^

a, the radius of the circle, we recur to the equation

ttj
—

ccq
= 0, which becomes, in the present case

+ iV^'%i+iV^%o = 0, (1),

since V+W does not contain Pg? -^3? ^^-f ^"d ^" contains only y^

and yp

Also, since the points B and B^ are given, G?a:,
= 0, and dx^ = 0.

Thus, (1) is equivalent to the two conditions
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But
dV" dV"

N'=^=\, and N"=^=l.
dyQ dy^

Hence, by substituting the values of iV^', N" and P^, we obtain

(1).= +- ' 0)
= --

And therefore the arc ACA^ is a semicircle, the tangents at A and

A^ being perpendicular to OX.

Also, radius a = -(iCj—aro), and yi= y^.

But area BAA^By^=z 2(1- yQ+ -'ira? = c, and .

'
. yo becomes known,

thus making the solution complete.

80. £x. To find the curve of swiftest descent from one given curve

to another, the motion being supposed to commence at the upper

curve.

Let AB and A^B^ be the given curves, and

CCi the curve required.

Put OD =Xq, I)C= yo, OE = x,

EP = y, OF=x,, FC,= y,, CP=s.

Then, by the principles of Mechanics (before

cited), the velocity acquired by the body in

descending from C to P along the curve CPC^, is expressed by

^./^ F7T /^
—

; ; ^ . . ds dx f du^
^2yy IP = /2y(y^yo)', and also by — = —W 1 +

dt dt

rf« =
[%(3,-y„)r^.[l

+ £-]V
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Here F contains the limit yg explicitly; and therefore DC'' will c^»d

tain the additional terms

[X? "«(SW ^"'^
t-^?

"»
''']

^^°

which terms appear in the equation a^— aQ = 0, but not in the equa-

tion 6 == 0.

Also, since F =
/(y, -f-

j,
we have, by formula (6),

_. rfy_^ rae_(y-y„)-i^
  

u!j: L y — yo -I

This is the differential equation of a cycloid having the axis parallel

to y, the cusp or extremity' of the base at the upper point «», y„ and

the diameter of the generating circle = 2C.

The equation Oj
—

o, = gives, in this case,

+
(7^^'no^^)^yo

= 0....(i).

But no = 3—= T-= — iV^= 1-^, smce JV^ t^=
ayo «y <^« or

.',fn,dx=-f-^ dx^-P.i-c,,
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r.f^^n,dx-^{P,\-{l\\,
and

fi^f^ri.dx

Again, if the differential equations of the two given curves be

1:='°'
^""^

lf='"
we shall have the following conditions connecting the values of dx^,

6^Q, dx^, and dy^, viz. :

^Vo + (^ )
^-^0

=
^0^-^05 and 5y^ '^\£\ ^^^— ^i^-^i*

Now substituting the values of ^y^^ Sy,, I ^n^dx^ and / M-^l iirdx
*J
Xq J Xq \dx/Q

in (1), and placing the coefficients of dx^ and dx^, separately, equal to

zero, we get

r. + (PA[^.-g)J
= 0, and

-[(A)o-(A),]['»-ffi)J=<''
->

-
[(-g-)*-<--)-*]r©I(-£)^-
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From (2) we obtain l + ^i(;r^)
— ^j ^"^ therefore the cycloid

intersects the second curve at right angles.

Also, from (3) we get 1 + ^o ij) =0; .'. t^
=

to,

and the tangents to the two curves, at the points of intersection with

the cycloid, are parallel. The co-ordinates of those points are

readily found.

81. Prop. To determine the forms of the functions y and z, and

the values of the limits x^ and Xq, which shall render

U =^ I
^ Vdx a maximum or minimum, where

Jxq

r dy d'^y d'^y dz d'^z d^z'X

The equation 1)17=0 becomes in this case

V,dx,
-

V,dx, +
\_P,

-
^' + &c.]

Sy,
-
[p,-^2^ &c.]

.

oy,

+[^--].(a-[A-.o,,(f)^....4n53]^

+(-')-'^]^^''-

d"'P "H «
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If the functions y and z be independent of each other, their varia-

tions hy and ^z will also be independent ; and, by reasoning as in

previous propositions, it will appear that we shall have the conditions

dx dx^ ^ '
dx'^

'

dP ' d'^P' d^P '

iVr'_^ + lil2_&c....+(-l)-.^ = 0...(l).dx dx^ ^\ ) ^^m \ )

And for the equation of the limits

V^dx^- r„<&„+ [a-g +
&c.] ^y^

-
[p,

-^ +
&c.]^iyo

+ [A' - &c.]
("ff)^

- IP' - &c,]„
(J)^-

&c. &c. =
(2;.

The mode of treating these equations is exactly the same as that

employed when V contained but one function, and by reasoning, as

in that case, it may be readily shown that the number of equations

applicjible to the solution of the problem will not, in general, be

affected by any equations of condition restricting the limits. For

every such equation of condition will diminish by unity the number

of terms in (2), either by reducing to zero the variation which

appears in such term
; or, by uniting two terms in one, and thereby

diminishing by unity the number of equations deducible from (2).

But the given equation of condition will just supply the place of

that which has disappeared.

Thus it will suffice to prove that (1) and (2) furnish the requisite

number of equations in a single case, as when the limits of x are

alone fixed.
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Now the first of equations (1 )
is of the order 2n in y, and m -\- n

in 0, and the second of equations (1) is of the order m H- n in y,

and 2wi in z. They are therefore of the forms

^r dy d'^'-^^y dz d^"'z']

If, then, we differentiate (3) 2m times, and (4) m + n times, we

shall have 3///- -f ?* + 2 equations with which to eliminate the 3wi-j-n

quantities ^, -,— sm+n'
^ ® resulting equation will be

of the order 2m -{- 2n in y. The integral of this equation will con-

tain 2m + 2u constants. But the number of equations given by

(2) is exactly 2/i + 2?>?, viz. : the 2ri equations,

and the 2m equations,

[P2'-&C.]i =r 0, &C.

Plence the problem is in general determinate, but there are

exceptions entirely similar to those considered in the case of a single

dependent function y.

82. If the functions y and z be connected by an equation L = 0,

and if it be possible to resolve that equation with respect to y cr s,

so as to obtain a result of the form z =/l.r, y, j-,
dec.

j,
the values

dz d.^z

of —
, —-, &c., can be formed by differentiation, and substituted in

that of F, which will then contain ar, y, and the differential coeffi-

cients of y with respect to
ar,

thus presenting a case already

considered.
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83. But since the proposed equation L z= is often a differential

equation difficult to be integrated, we are often compelled to adopt

the method already noticed, (Page 444) in which by the introduction

of a new indeterminate quantity X, and a suitable determination of

its value, we are enabled to obtain an expression for (^tT" which shall

contain but one of the variations §7/ and 6z under the sign of inte-

gration.

Thus, if we denote by ^, the sum of the terms exterior to the sign

of integration in the value ofSV, (Page 445) there will result

and if we so assume the quantity X as to fulfil the condition

dx

it will appear by reasoning, similar to that employed when y was

the only function, that the condition 6U =z cannot be satisfied (so

long as the form of 6y is arbitrary) unless we have the two conditions

^=0 and iV+Xa-^t^-^4-&c. = 0.
dx

Hence, we have for the solution of the problem, the three general

equations

and i,' + x.'-ll^±^ + &c. = 0.
ax

which are just sufficient to determine the three unknown quantities,

X, y and z.

84. We will now give, in conclusion, examples to illustrate the

cases and methods above explained.
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Ex, To find the nature of the line which is the shortest distance

between two given points in space there being no restriction by

which the line is required to be confined to one plane.

The general value of the length of the arc of a curve of double

curvature is
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dy dz
•—=in and —• = n in which m and n are constants,
ax ax

,' . y z=z mx 4" Pi and z =l nx •\- q.

These are the equations of a straight line, which therefor.e is the

vnortest distance required.

To find the values of the constants m, w, jr;,
and q^ we introduce

the given limits x^^ y^? ^g? ^\i Vi^ ^u ^^^^ thus get

which suffice to determine 7n, 7i,^ and q.

85. If the limiting values of x only were given, those of y and z

remaining indeterminate, the terms exterior to the sign of integra-

tion would give

(P.)i = 0> (^1)0 = 0, {P,'\ = 0, (P/)„ = 0,

which are equivalent to the two equations

m = and w = 0,

thus leaving the other two constants p and q indeterminate, and pre-

senting one of the cases of exception already noticed.

86. JEx, To find the shortest distance between two given

surfaces.

Let the equation of the first surface be /o(^o? ^o^ ^n)
== • • • •

(1)

and that of the second surface /i(^i? Vii ^1)
= ^ " • '

(2)

and we immediately deduce as before

y = mx -\- p (3), z = nx -{• q (4)

which show that the shortest path is still a straight line.

To fix the co-ordinates of the extremities of this line we form the

complete increment of (1) and (2) thus :



496 CALCULUS OF VARIATIONS.

LdxQ d;/^ \dj/Q dz^ \dx)j
^

dy^
' ^

dz^
^ ~

\dx^ dy^ \dxj^ dz^ \dx)^\ dy^
^^

dz^
^ ^ ^

Put for brevity

^ ^ ^/q jfi

dyQ dy. dz^ dz.

dxQ dx-^ dxQ dx^

their values derived fforn equations (3) and (4). We shall thus

ibtain

(1 + mmQ + wwo) dxQ + Wo^yo + ^'o^^o = ^

(14- wzwij + nn^) dx-^ + ^i*^//! + n-^^z-^
=: 0.

Now eliminating, by the aid of these equations, dx^ and dx-^, from

the equations

F„rfx„ + (P,)/y„ + (P/)„fe„ =

and placing equal to zero the coefficients of ^y(„ 8zq^ Sy^^ §z^, we

obtain

ttIqVq
-

(Pi)o (1 + mirif^ 4- >iWo)
= •

(7)

^i ^1 - (^i)i (1 + mm, 4- w/?i) = (8)

Wo 1^0
-

(A')o (1 + mm, + n^o) =0 (9)

f^i
-

(A')i (1 + wiT^i + n«i) = (10).

If now we replace Vq and (Pi)o &c. in (7), (8), (9) and (10), by

their values

(1 -f m2 + w2)*
— &c.

y'l 4" m^ -f- '/t^
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we readily find from (7) and (9) m = mg, n = Wo (11)

and from (8) and (10), m =zm^ and n = w^ (12).

Now eliminating Xq^ i/q, Zq^x^^ y^, s^, which quantities occur in the

values of Wq, Wq, mj, and n^, by means of the six equations,

Vo = m^Q-rP, Vi = ^a^i + P,

Zq — uXq -^ q, z^
—

7ia?i + q,

there will remain the four equations (11) and (12) with which to

Compute the values of tw, n^ /?, and q ;
thus the line of shortest

distance will be fixed in position ; and, by combining its equations

with those of the given surfaces, we can find the values of

87. The equations (11) and (12) show that the line of shortest

distance is normal to both surfaces. For the assumed values of

m^ and % indicate that they represent the tangents of the angles

formed by the projections of the normal to the first surface on the

planes of xy and xz with the axis of x
;
while m and n denote the

tangents of the corresponding angles formed by' the projections of

the line of shortest distance.

A similar remark applies to the quantities Wj and Wj, and the

normal to the second surface.

88. JEx, To find the shortest distance traced on the surface of a

given sf)here betw;een two given points in tlie surface.

Here the quantity to be rendered a minimum is the same as in

the last tw :> examples, viz. :

but since the path is restricted to the surface of a given sphere, the

32
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co-ordinates a:, y, and 2;, of any point in the required path, will be

connected by the relation

z^ + y^ -\-z^ = r^, or L = x + y^-{- z^ = (2).

Hence the variations of y and z will not be independent of each

other.

dz
Now we might form from (2) the value of —

, which, substituted

in (1), would reduce V to a form in which it would no longer con-

tain the function z, or its differential coefficient, or we may adopt the

method of Lagrange, which is usually the easier. Taking the second

method, we have

-=(+£+£)*•
dy dz

dx dx
•n T> t

d^
dx^

'

dx^V^ +^ +
rfJ^ V^ +

rf^^-^

,^ dV ^ ,^, dV ^

dy dz

dL dy rt d^
,

d^ n,

dy dx'
^

dy^

^'
dx'

^

dx

Hence the equations iV-fXa ^—
i^

^ -f &c. = 0,

ud jr+x«'-
'^^^''^'^^'^ + &c. = 0,

oeoome, in this case,

dx dx dx dx

^ dz dP' ^dz dX ^
dz dx dx dx

'
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= 0....(3),

= 0....(4).

ys+
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The equation a^
-

ao = in this case disappears, since

dxQ = 0, dx^ = 0, dj/Q = 0, ^y^ = 0, 6zq = 0, and Sz^ = 0.

The constants — and —^ are found by substituting

^o,yo.^o, ani
arj, y^, 2?i,

for
a?, y, and e in (9) .

89. If the limiting values of x only were given, or the problem

that in which it is required to find on the surface of the sphere, the

shortest path between two parallel sections, the variations 6i/q, dy^,

(52o, (J^i,
would not reduce to zero, and the equation Oj

—
a^ =

would give the four conditions

(P,+ >.^)„=0, (P,+ X^)i=0, (/>,'+ X/3')o=0, (A'+X^')i=0.

dy

or, I ^=^=:==.I + X„y„ = 0--..(10);

/! + - + -
dx'^ dx^

dz

and
I
—-^—^-

I + X„.„ = 0. . . .
(11) ;

, V dx^ dx^

which apply to the inferior limit, with two similar equations for the

gruperior limit.

Eliminating \q between (10) and (11), there results

,\/

dy dz

= 0,
dx dx

dx"^ dx^l

Hence, the constant c = in (5) ;
and that equation becomes

dy dz . dy dz
. . 2? /. — y — = ; or,

-^ = ^.
dz dx y «
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.
•

. log y =. log z + log m = log mz ;
and y = mz.

This is the equation of a plane passing through the axis of x, and

forcoing an arbitrary angle (tan-^m) with the plane of xz- Hence,

the required path is the arc of any great circle perpendicular to the

planes of the parallel sections.

aT-rc

^^-i.

'Sj.

^x-^



M .









vW





THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSEP FOR FAILURE^TO RETURN
THIS BOOK ON THE DATE DUE. THE PENALTY
WILL INCREASE TO 50 CENTS ON THE FOURTH
DAY AND TO $1.00 ON THE SEVENTH DAY
OVERDUE.

OCT 29 1942 APR 28 1948

,..- o.A^
aAii^'SOAT'

SEP 13 1944

AUG 1719*

TOlanSTW

^^^ 80I84S

PEC a 1945
-—i^^

^<i
w

onir98i9 .

RECDUJ
mui 19S9

MAR 19 1347

APti 14 mi

'^OV la tfl47

LD 21-100m-7,'40(6936s)l



-Wv^V




