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PREFACE.

A KNOWLEDGE of the principles of this bi'anch of the Pure

Mathematics is absolutely necessary, before any one can success-

fully undertake the perusal of works on Natural Philosophy, in

which the effects of the observed laws that govern the material

world are reduced to calculation.

For Students deficient in this knowledge, yet anxious to obtain

as much information as may enable them to master the chief ana-

lytical difficulties incident to the study of Elementary Treatises

on the Mixed Mathematics, this book has been written: with the

hope, too, that by its means a subject of high interest may be

rendered accessible to an increased number of I'eaders.

The ample Table of Contents which accompanies this woi-k

will sufficiently exhibit its plan
—and a very hasty glance will at

once shew that its chief object is to treat of Functions of one Vari-

able; at the same time the Theory of Functions of two Variables,

and its application to questions of Maxima and Minima, is fully

explained. But the Chapters on the Integral Calculus contain

rules for the Integration of Explicit Functions only.

A few words may be here added in order to explain the prin-

ciples adopted in laying down the definitions.

By a method, similar to that of M. Poisson I have shewn that

?/j -fix +
}i)

can always be put under the form u + Ah + Uh~, whence

we obtain the equation
ii,-u = Ah+Uh\

The term Ah is defined to be the differential of u, and A, or the

coefficient of h, is called the differential coefficient.

And from these definitions, the Rules for Differentiation have

been in general derived.
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IV PREFACE.

But as the algebraical labour of finding A may sometimes be

greatly diminished, if, after dividing both sides of the equation

Ui
— u = Ah+ Uh' by h, we make h — 0, this method is in a few in-

stances made use of.

The symbol -j- for the differential coefficient of u =f(x), in-
CI jc

vented by Leibnitz, and used almost without exception by the

continental writers, is here retained—I mention the fact, since the

notation d^u for the same term has lately been revived by some

Cambridge Mathematicians.— I do not pretend to decide the ques-

tion which of the two -7- or d^u estimated by its power of best

representing the differential coefficient ought to be preferred, but

I see that the latter is, to say the least, an imperfect notation, and

is liable to the important objection that the suffix x,' in the cal-

culus of finite differences has a meaning entirely diffei'ent from

that indicated by the a: in d^. But the most important objection

is that already alluded to, that when the proposed notation has

been learned in our own elementary works, the eye must become

familiarized with that of Leibnitz, before the works of Lacroix

and Laplace can be read with advantage.

Lastly, if it be considered necessary to offer an inducement

to any one to enter upon the study of a science—which is the

result of one of Newton's most brilliant discoveries, let him know
" that it is a high privilege, not a duty, to study this language

of pure unmixed truth. The laws by which God has thought

good to govern the universe are surely subjects of lofty contem-

plation, and the study of that symbolical language by which alone

these laws can be fully decyphered, is well deserving of his noblest

efforts*."

* Professor Sedgwick on the Studies of the University.



PREFACE TO THE SECOND EDITION.

To this edition;, many examples have been added, and some

alterations made in the early chapters, intended to facilitate the

labour of the reader. The Integral Calculus is terminated by a

chapter upon the Solution of Differential Equations of Two Varia-

bles. The theory of these equations is of necessity briefly explained.

Upon the whole^, there will be found nearly sixty additional

pages, which it is hoped, will increase the usefulness of the

work.

King's College, London.
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THE

DIFFERENTIAL CALCULUS.

CHAPTER I.

1. One quantity u is said to be a function of another

,r when the value of the magnitude of u depends upon the

variation of x. Thus the area of a triangle is a function of

the base, when the altitude remains unaltered, since the area

will increase or decrease with the increase or decrease of the

base.

And if u = aaP ^hx^ where a and h are constant quan-

tities, and X a variable one, w is said to be a function of <r,

since if x changes, the value of u will be altered : this relation

between u and x is usually expressed by writing u =f{3o) or

<P (*•), the symbols /and (p expressing the word function.

The quantities expressed by the letters a and h are omitted

in the equation u =f(x). Since, although they determine the

particular kind of function, they remain unchanged, while x

passes through every degree of magnitude.

The quantity x is called the independent variable, and

u the dependent variable.

2. Functions are also named explicit and implicit : an

explicit function of ti?, is when u is known in terms of a?,

as in the equation u = ax- + bx. An implicit function is

when u and x are involved together, as in the equation
u"x — aux + bx-= 0. An implicit function is written f{u,x)
or

(p (m, x) = 0.

3. Functions are also divided into algebraical and tran-

scendental.
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2 DEFIXITIONS.

Algebraical functions are those where u may be expressed
in terms of x, by means of an equation consisting of a finite

number of terms.

Thus u = ax"" + bw"'~^ -^ kc. -\- qx^+ rx + s where (m) is

finite, is an algebraical function of x.

A Transcendental function is one where u is equal to

an infinite series, the sum of which cannot be expressed by
a limited number of terms.

Thus 21 = log (l + x), which

if OJ^ x^ X* . ^ . 1
= — {x 1- + &c. to mnnity > ,

M[ 2 3 4^
-^

j

_ , «/ lL • « «

and u = sm x = x 1 &c. to infinity,
2.3 2.3.4.5

are transcendental functions of x.

4. The equation u-f(x) expresses the relation between

the function u and the single variable a?, and the values of

u solely depend upon the change that may take place in x :

but if we have an equation between three unknown quantities,

such as

u = ax~y
—

bx'if,

where x and y are independent of each other, i. e. not con-

nected together by any other equation ; then the value of u

depends upon the change, both of x and y, and u is said to

be a function of two variables ; this is expressed by writing

As an instance, we may again take the area of a triangle

the magnitude of which depends upon the rectangle of the

base and the altitude, which lines are totally independent of

each other.

It is obvious that there may be functions of three, four,

or of n variables.

• M = l +,r + .i'^ + .r^+&c. to infinity is an algebraical function oi x, since the sum

of the series is expressed by -j
, <



PRINCIPLES. 3

5. Let us however return to functions of one variable,

and let u = f {oe) express the general relation between the

function and its independent variable oc.

Let X increase and become x + A, then the value of u
will most probably be altered. Let the new value be repre-

sented by Wi,

then Ui=f(x + h),

and u =f(x), by hypothesis.

•• ih-u=f(x + h)-f(x).

Now Ui
— u, or the difference between the functions of

X + h and x, must depend upon h, and we shall first shew

that it may be expressed by a series of the form

Ah + Bh'+Ch^+kc.

or that Ui=u + Ah + Bh~+ Ch^+ kc.

where the powers of h ascend : the primary object of the

Differential Calculus is to find the value of the coefficients

A, B, C, kc.

6. We will first shew that u^ may be expressed by a

series of the above form by a few particular examples.

(1) Let u = x^;

.'. Ill
= C^ + hy = x^ + Sx^h + 5xh^ + h*

= u + Sx^h + 3xh^ + ¥,

which is of the required form.

(2) Next, let 71 = x";

(n — l)
.-. u, = (x + hY=x''+nx"-'h + 7i^ ^v''-^^ + kc.

by the Binomial Theorem.

Or, putting m for x",

n -
1

u, = 7/, + nx^'^h + n x'"~"h^ + &c.
2

a series with ascending powers of h.

A 2



* PRIKCIPLES.

(3) Let u = Aw"" +Ba/''+ CxPw + kc;

.-. Wi = J {x + /*)'" + B{x+ hy +C{x + hy + &c.

(tn — l)= J (a?'"+ ma;"'-^h + m w'^-'^M + &c.)

+ 5(.r''+wa?"-'A + w-^^?^^^.r''-2A2^ &c.)
2

+ C (j;-^ ^pxP-^h+p ^-^^ .r^-2/i2 + &c.)
2

+ &c.

= Ja?" + ^.r" + CccP-ir &c.

+ (m Jo?'"-' + tiBx"-' + &c.) A

, (w -
1) C7^ — O

2 2
^

+ &c. + &c.

= u + ph + qh^ + &c.

by writing u for its value, Aw"' + Bx" + &c., and putting p, 7,

&c. for the coefficients of h, h^, &c.

(4) It may also be shewn that «''+*, log (x+h), sin {x+h),
can be expanded into series of the form

u + Ah + Bh^+Ch\ Sec.

but we proceed to demonstrate the following general Propo-
sition.

7. Prop. If u =f{x), and u^ be the value of u when x
becomes x + h, then

Ut^
= u + Ah -\- Uh^,

where u is the original function, and Uh^ represents all the

terms that follow Ah.

(1) Wj or f(x + h) can contain only such powers of h,

as have positive indices. For if

u,= M+ Ah"+ Bh-^ + &c. = J/ + JA" + -^ + &c.
h^^

when A = 0, Wj instead of becoming = w, would be infinite.
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(2) The first term of the expansion must = u.

For let w, or f{x + h) ^ M + Ah'' + &c. then let A = 0;

.-. f{,v)
= u = M, i. e. M = u ;

or Uj = u + Ah"- + Sec.

Let therefore 71
^
or f{x + h) = u + Ah" + Bh^ + &c.

where a is the least of all the indices of h, and /3 the next in

magnitude, and Al, B, &c. are functions of x.

Now whether cV becomes x + h, or h becomes 2h, u^ will

become /(,?? + 2 A), and the expansions upon either suppositions
will be identical.

(1) Let // become 2h or h +h, and let u^ be the value

of ?<i ;

• W2 =f{x + 2/i)

--=u + A (2hY + B {2h)P + &c.

= u + 2"Ah" +2^BhP + &c (1).

(2) Let .r become .v + h, then 7I1 becomes as before

f{x + 2h) or Uo_, and let {u), (A), (B), &c. represent the values

of M, A, B, &c.

••• W2 = (m) + (i) A" + (B)h^ + &c.

But (m) is the same as m,, for it is /(a? + A),

.-. (w) = w + ^A" + 5A^ + &c.
^

':

Also (^), (5), &c. being what ^, B, &c. become by putting
X + h for a?,

.-. U) = ^ + J,A«> + ^,A^> + &c.

{B) = B + Bih"^ + B,hP^ + &c.
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then multiplying (A) by h" and (B) by A^, and substituting

we have

7/2
= w + ^A" + -S/i^ + &c.

H- J/t" + ^1^"+"' + &C.

+ Bhf^ + &c.

= u + 2Jh" + JiA"+«' +2Bh^ + &c...(2).

Equating the coefficients of the same powers of h in series

(1) and (2),

2j = 2°J, i. e. 2 = 2°; .-.0 = 1,

and Ml =f{x + h) = ii + Ah + fi/i'^ + &c.

whence it appears that the second term of the expafision of

f{x + h) contains the first power of h only.

From this it follows that aj = 1 for A^h"' is the second

term of the expression for A when x becomes a? + A ; and

therefore

W2 = M + 2 Ah + A^h^ + 25/i^ + &c. from (2)

= u + 2Ah +2ft.Bhl^ + kc (1)

Now, since in series (2) a term is found involving h~, some

corresponding term must be found in series (l); and as /3 is

less than any index that follows it, j3 must = 2. And there-

fore,

w, =f(.v + h) = u + Ah + Bh- + Chy + &c.

= u + Ah+{B+ Chy-^ + kc.)h'

= ti + Ah + Uh^.

8. The second term of the expansion, or Ah^ is called the

differential of u : differential being the diminutive of difference.

For Ah is the first term of the difference between ?<i and ^^,

and consequently a part only of the difference : but the differ-

ence and differential differ the less, the less h is, and in cases of

approximation, the latter is sometimes taken for the former.
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Instead of writing differential at full length, the letter d is

used, thus du is put for, differential of n, and thus du = Ah:
but as in this case h is called the differential of a?, instead of h

dx is written, for symmetry of notation, and thus du = Ada'.

A is called i\\efirst differential coefficient.^
and is expressed

(11//

by the symbol
—

,
when u = f{x).

(X Ub

Hence we define a differential to be the second term of the

expansion of f{x + A), and the differential coefficient to be the

coefficient of the first power of h.

(17/,

The process by which A, or — is found is called dif-

ferentiation.

Hence also by our definitions we see that the differential

of u = A multiplied by the differential of a ; or calling the first

differential ^?/, and the second ex, we have

?
.. hi du

6U = AdX, .'. -;— = ^ = —-
,

dx dx

or the ratio of the differentials of u and x is equal to the ratio

of the differential coefficient to unity. ,)V .' (

We have used the
'

letter ^ to avoid confounding the

differentials with the differential coefficients.

9. Again, since u^ = u + Ah + Uh^,

—-— = A + Uh;
h

that is, the ratio of the increment «i
- m of the function to

the increment of x, = A + Uh, and as h decreases, tends to

A as its limit, and when h vanishes actually
= A.

That is, A or — is the limit of the ratio of the increment i

dx
of the function to that of the variable upon which it depends.
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10. Hence we have a method of finding the differential

coefficient, that is, the coefficient of the first power of h.

Expand f{x + h), subtract / (^r') ,
divide both sides by h, then

make h = 0, and the term or terms remaining of the expansion
will be equal to the coefficient required. This method is fre-

quently very convenient.

11. We have seen that if u be any function of x, and

w becomes x + h,

f{w + h) = u + -^h+ Uh\
ax

Similarly, if j), q, &c. be functions of a*, then they will

respectively become when x is made x -{ h,

ax

dq ,

and q + -— h + Qh'^
ax

where Ph'^ and Qh^ represent all the terms after the first

power of h.

12. Hence it appears that in order to find the differential

or differential coefficient, we have merely to put w + h for a',

and expand f(x + h) according to the powers of /«, and the

term corresponding to Ah will give us at once both of the

objects of our enquiry. But such a direct process would be

always tedious, and often almost impracticable.

We proceed to investigate rules which will not only

greatly diminish the labour of differentiation, but render

it a simple algebraical operation.

We will first however apply the general process to the

function

a + w
u = -

;

h + X
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a + X h
+

a + X -\- h h + 00 h + X
'

b + x + h h
1 +

h -\- OB

a + X h \ 1

+
b + X b + xj h

1 +
b + X

/a + X h \ ,
h h^ ,= + . j

1 + &c.
(

\b + X b + xl
*

h + X {b + xy

a + X i 1 a+X \ r;

'

b+x [b + X {b + xy]

du 1 a+x b ~ a

dx b + X (b + xy^ (b + xy

a + x
Again. Since n =

,
we shall have by the same process

b — a
u = u + h . I -—

) +ph^ + qh;^ + &c.
\(b + x')J

til— u b — a
and —-— = + ph + qh^ + &c. ;

n (o + xy

and by making h = 0, as in Art. 10,

du b — a

dx (b + xy^

RULES FOR FINDING THE DIFFERENTIAL COEFFICIENT.

13. Let u = ax where a is a constant quantity. For x

put X -\- k;

dii
.'. u becomes u + —— h + IJh^ ;

dx

.'. K +— h + Uh^ = n {x -\- h) = nx + ah = r/ + ah.
dx



10 RULES FOR FINDING

Equating the coefficients of h^

du d(ax)-— = a, or = a.
ax dx

14. Let u = ax ^b, where a and b are constant.

The same substitutions being made,

u + -—h -\- UJr = a(uV + h) ^ b = ax ^ b + ah
dx ^

= ti + ah;

du
.•. — = a,

dx

. . d(ax^b)
that IS, = a.

dx

But by the preceding Article,

d(ax)

dx

d(ax^b) d(ax)

dx dx

that is, constant quantities connected with a variable one by
the signs

± disappear in differentiation.

15. Let u = ax'"'. Then making x become x + h,

du
h

= ax'" + max'"~^ . h + &c. ;

u + -—h + Uh~ = a{x + h)'"
= a . (x'" + mx""^ h + &c.)

du

dx
= max"''^,

or to find the differential coefficient of ax"'', we must multiply

by the index and then diminish the index by unity.

iiX. II = 5x' ; ,•.—- = 35x''.
dx
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THE DIFFEKENTIAL COEFFICIENT. 11

16. Let u= ap where p is a function of (a?);

. ^„;;j^

* , /•:! '7^jf »i,i '/
• therefore if x becomes <r + h,

V

u becomes ti h k + Uh ,

d X

p p + ^h + Ph';

.'. u -\- -—h + Uh^ = ap + a— h + aP.fi';
dx d,v

du dp
dx dx

. . d(ap) dp
that IS, ^— = a-^.

dx dx

17- If u = ap + b, a and b being constant quantities,

du dp
then -— = a .

-—-
,

dx dx

d(ap + b) adp d{ap)

dx dx dx

18. Let «« = j9 + 7 + r + &c. where p, q, r are each func-

tions of X ;

du dp do dr
.-. u + -— h + kc. = p + -- h + a + -— h + r + -— h + kc. ;

dx dx ax dx

du dp do dr
• ••
— = -^ + -^ + — + &c. ;

dx dx dx dx

d .(p + q + r + &c.) dp dq dr ,
,

dx dx dx dx ^

Hence the differential coefficient of the sum of any functions

equals the sum of the differential coefficient of each function

taiven separately.



12 ROLES FOR FINDING

19. Let u = pq,

... u + -^h+ UK' = {p + ^h+ Ph') x(q + ^h + Qh')dx dx dx

I dq dp\= pq + [p -f- + q .-^\h -\- Blv ^ &c. ;

\ dx dxl

du dq dp
dx dx dx

'

4- P.
rA

or the differential coefficient of the product of two quantities

equals the sum of the products of each quantity into the

differential coefficient of the other.

p du
1 /. 11 1 •

20. Let u=~: Here — may be found bv substitut-

q dx

ing the values which t(, jj,
and q have when x becomes x -\- h ;

but it may be deduced in an easy manner from the preceding

Article.

p
Since 7/ = -

,

du dq dp
.'. qu-p\ and q- y n -— = —-

\

dx dx dx

du 1 dp
dw q dx
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21. Let ii=pqr, writing qr for q in Art. 19;

du d(qr) dp
'

dx dec dx

d.(qr) dr dq

dx dx dx

du dr dq dp
dx dx dx ' dx

Similarly may the differential coefficient be found for the

product of n functions, and it will be equal to the sum if

the n products of the differential coefficient of each of

the quantities multiplied by the remaining n - 1 factors.

Thus

dAp.q.r.s...(n)] dp ,s ^9
'JLJl \-^-^ = a . r . s . . An -

1) -f- + pr s . . An -
1) .

—^
dx

^ ^ dx ^ ^ ^ dx

dr
+ pqs...{n

- I)—- + kc.
dx

22. Let u =
p", p being a function of x ;

.-. u^^h + uh' = (p + ^h + phr.
dx dx

Let P, = ^+Ph;dx

... (p + '!lh + Ph'y={p + p,hydx

=
p'' + np"-^ Pih + Bk'' + &c.

=
ja" + np"-' l~^

+ Ph\h + Bh' + &c.

= p" ^ np"-' j^h + np"-' . Ph' + Bl^ + &c.
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therefore, equating the coefficients of h,

du
, dp

dx dw

or, to find the differential coefficient of p", multiply by
the index, diminish the index by unity, and then multiply

by the differential coefficient of p.

Ex. If w =
(a^ + ii^y then p = d~ + x^ and — = 2a? ;

dx

.*. -— = n(a^ -^ x^-Y-.9,x.
dw

23. The rule for finding the differential coefficient of

p" is perfectly general, but where n = 1, it has a value

which it is useful to remember. Thus

dp
d (v />) _ 1 i_idp ^ dx

dx ^ dx 2\/p

whence this rule. To find the differential coefficient of the

square root of any quantity, divide the differential coeffi-

cient of the quantity under the square root by twice the

square root of the quantity itself.

Ex. Let u = v a + bx + ex'- ;

o dp
.-. p = a + bx + cx^ ; .-. — = b + 2cx;

dx

,
du b + 2cx

and — =
d^ 2 \/a + bx + ex-

24. u = — . Here -— may be deduced from the general
p""

dx ^ ^

form w =
I?" ; but as its form ought to be remembered, we

shall deduce it separately.
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(5) u =
^=a^-%

du
, n

da? w"+^

.„ 1 du 1

II u = -
,
— =

X dx x^

X + a
(6) u = -;^ X +

d{x + a) , d(x + b)

W„ ^"^ + *) •

—^i
-

^^ + ""^--^du dx dx

dx (c^ 4- b)'-

X + b — {x + a) b — a

{x + bf {x + bf

(7) u =
a?"

(^ + 1)"

dx
~

{x + ly"

(x + I) . mx'"'^ — mx"' mx"'~^

X + 1
1'"+^

.r + l]
m + \

(8) u = a/i +x^=1 + a?^]S

-— = 1.(1 -t-.i?0"-'-2.l'
=

(9) w = Vx + -s/l + a?-,

,
d(x -h\/l + x^) 'va? a^ + 'v/l+d?^

and —^ — = 1 + /
=

j^^^.^- .

dx c V I + x^ V 1 + cT^
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dll
J
V ,?• + -x/l +.1?-

(10) u = (2n.v + ,vy

(11) u =

du d(2n.v + .r~)—- = m(2a.v + .v-)'"-^ .
— ^

dx d.v

= 2m . (2a,v + .r-)'"-' . (a + ,r).

V ff" — .t"'^

dV «" + *'" .3^
,
d \/a' — tr""

since =
,
and

X

d.v
a/o-^ + ,T'-'

'

d.v y/a'-x'^

/ iV / ;^
X

du V r/- + .r- V " - •^'

{a/
-
ar)v + (cr + x-).v~

[(a^ + 'V^)^ {a^
-

x^')i

2a-.v

(12) n =

a- + X y{a - X )a

V'l + *• + \/i - .V _ {\/i + .! + V 1 -
•^^)'

x/l + X -\/l -<r 2.r'

1 +a/i - a?"

a?

2 ^^______^

dx~ oc' x^y/l -x^

1 + \/l - tv'

X^ \/\ - c/

B



18 EXAMPLES.

(13) U = A^ (l + A'-)
. Vl - x^ = {x + x^)\/l -

oc\

1 + 3x^ — .x' — 3 x^ — x" — X*

1 + .3?"- ^X'^

a/i - x"

(1 4) u =
{a + x) (b + x) (c + x) :

du—- = 3X-+2 (a + b + c)x + ab + ac + be.
ax

, , X du 1

(15) 11 =
y/\+X^ dx (1+^')^"

(l6) M= \/\ + x-

, ^ x^-x^+1 du 4'xlx^-l)
(17) u=~

(18) w

a?
' + <j?^ + 1 d .r (x^ + x'^ + 1 Y

x^ du 3x^

^T+^'' d~v
~
(l+x^i'

\/\ +x^~ 1 du 2(\/l +ct?=^- 1)-

(19) u =
. :

— =
.—....^ .

V 1 + a?' + 1 dx x^\/\ + x~

(20) w=-^^ii2!: ^ ^ 0^- ^) a/^^Ti

V'cr
- 1 dx

(^x
-

l)i



CHAPTER ir.

DIFFERENTIATION OF CIRCULAR, EXPOKENTIAL, AXD

LOGARITHMIC FUNCTIONS.

25. To find the differential coefficient of it., when

11 = sin tT, cos .x", tan w, sec a?, &c.

The following Proposition must first be proved,

sin h tan h
If h be an arc,

--— and —-— are each = unity, when h = 0*.
h h •'

* This Proposition may be thus proved,

Since sin^ vanishes when A = 0, it must depend upon the positive powers of A.

Let therefore

sin7* = rtA'" + 6A"+ &c. ^ah^+Nh",

where Nh" includes all the terms after ah"'. Therefore, writing 2 A for h,

sin 2h = a . (2/i)"'+ y{2h)" = 2" nh"' +2" Nh";

N
sin 2//. „ , 2"'ah"' -\-2" Nh'

' "
a

'

— 2 cos /; = = —^—^~~—^—
sin h ah"" + Nh"' ,

^
,

1 +— h"-"'
a

let A = 0; .-. cos A = 1;

.•, 2 = 2"; .'. m = ];

and sin A =ah + Nh",

and cos A = Vl - sin- A = Vl -{ah + Nh"f= 1 - —
; H &c,

, ^ , sin A ah+Nh" , n^h?
^"'^

^""^=^^-, .^/.^
..A+ +&C.

1-— +&C.

Now A > sin h < tan A,

or k> nh + Nh^<ah +—— + Sic.
2

or \> a + Nh"-'^ < -7 + . + &c.
-2

b2
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It is proved, see Trigonometry^ Art. 53,

that h > sin h < tan /^,

or A lies between sin h and tan //.

If therefore

sin h ,
sin A

,
tan h

= 1 ;
.-. also = 1, and - =1.

tan h h h

sin h cos h \
, ,

Now = = - = 1, when It = 0,
tan h 1 1

sin// ,
tan A

, .• i i

.-.
— and are also respectively equal to unity-

h h

2(5. Let 11 = sin w.

For X, put x + h-^ therefore u becomes

u + -— A + Uhr.
ax

d 11'

and u + --h + UJv = sin (r + /?),
ax

and ^* = sin x ;

— A + Uh~ = sin
(.r? + /i)

- sin x
dx

h\ .
/*

= 2 cos
(
cf + -

. sin -

a + Nli"-'^
But .. ,„ = I, when /; = ;

a + —zi^ + &c.

.•.
j ^also=l, when« = 0;

a .

.-.

y
=

1, 1. e. a = 1;

.•. sin h = h + Nh", and . = 1 + Nh'-^ = 1, when A = 0,

^'' « , tan h , ^i" „ . , . «
and tan A = ft + --^+ &c. and —r— = 1 + •:7+ &c. =

1, when n = 0.
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. A-B A + B
Since sin ^ — sin 5 = 2 sin . cos

sin -
du

(
/t^

h U a = cos <r + -
dx V 2/ A

2

and nuikino- /? = 0,

sm-
h

= I,

2

du— = cos or,
dx

d . sin X
or = cos X.

dx

27. u = cos a' ; putting x + h for ^,

M H /i + Ufi^ = cos (.r + h) ;

•.
—— h + Uh^= cos

(ci- + A)
— cos .2?

h\ .
h

= — 2 sin
(
<r + - sm -

;
"5 / 2

sin-
rfw . / A\ 2
__ + C;A = - sin Lr + - -——

,

dx V 2/ /i

and making h = 0,

du d.cosx-— = —
;

= - sin X.
dx dx
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28. 11 = tan x ;

du
.• u + -— h + Uh^ = tan (cc + li) ;dx

du

dx

du
- h + UJi^ = tan (x + A)

- tan x-

tan ^ (l 4- tan\r)

1 — tan X . tan h

du tan A (l + tanker)

dx h 1 - tan x . tan A

17 , ,
tan h

make /i = 0, tan h = 0, and = l.

h

du d . tan x
, o

^

= 1 + tan" .5? = sec-.r =
dx dx cos^tt?

29. i( = sec X = —
cosa^

by differentiation,

— d . cos X

du dx sin if sin x i

da^ (cOSiT?)"^ (cos cT)^ cos cT? cos.r

d . sec X
or — = tan x . sec x.

dx

30. z^ = f . sin 0? = 1 — cos <» ;

dw d.cosx

31. w = cotan a; =

dx dx

cos<r

= sin X.

sin <r

d . cos X d sin x
sm .?? . cos X .

du dx dx (sin x)'^ + cos x

dx (sin J?)-
sincf]

= — — =» -
Ccosect,r)==

-
(I + cot.rl").

(sin xy
^ y

I
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1

32. u = cosect x =
.

—
sin X

d sin X

du dx — cos X
-T- =—

, ..,

= —==^^ = — cot X cosect X.
d^v sin .z'

"
sin cT-

33. Hence collecting the results.

If u = sin X, —— = cos X,
dx

d It

u = cos X,
—— = — sin X,
dx

du 1

?i = tan X,
-— = 1 + tan^a; =
dx cos iV

du
u = sec X,

—— = sec x . tan x,
dx

du
u = c sin X ; .'.

-— = sin x^
dx

u = cot cr,
-— = -

(1 + cot%?) = ^— ,

dx sm^x

du
u = cosec X, — = — cosec x . cot x.

dx

34. To find the differential coefficients of the arc in

terms of the sine, cosine, tangent, &.c.

Before we do this it will be necessary to shew that if

u be a function of x, or if u = f(x)^ and consequently x

a function of u (since it is a matter of convention which

of the two is the independent variable), or as it is written

/""'(m), where /""' is called the inverse function,

du 1

dx dx

du
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or that if A be the coefficient of h in the expansion of

Ui=f(x + h), and if B be the coefficient of m in the ex-

pansion of .1 + h =/'"' (u + m), where ii + m =
?<,,

B

Let ^u, o.r, be the differentials of u and .i'.

1 hen since - = -
.

b b

a

hi _ _l_

CiV c.r

CU

But since the ratio of the differentials is equal to the

ratio of the differential coefficient to unity,

hii du vx dec
.-. TT- = — and ^ = -—

.

ow doc 6U du

. . du 1

And •• -p
= T- •

dx dv

du

But of this Proposition we add another proof which may
appear to some more satisfactory.

Let u=f(x), and when ,v becomes ,v + h let u + m be

the value of u ;

dit
.'. 71 }- m = u -\ h + Ulr ;

dx

du,
.-. m = —- k + Uli- (I),dv
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Let now x be required in terms of u, or ,v =f (u) ;

.-. w + h = X + -—m + Xtw ;

die

or //, = -— m + X7n' ;

a It

therefore, by substituting for h in equation (l),

du dec ^ „dii idx ,\^
m ^ — X — m + Xm- -— + U. -—/«•+ Xm~ .

dx du dx \du I

Equating the coefficients of {ni),

d \(, d X
1 = — X — ;

dx du

du 1

that IS,
— = —
dx dx

du

Ex.* When M = sin~'.r, cos^'.r, tan"'.^, &c. find
du

dx

(l) 7< = sin~\x'; .-. .r- = sin ?< ;

dx
/ r-,^- ,

.'.
—— = cos w = V 1 — sin" u ~ \/ \ — X ;

du

du 1 1

dx dx ^i-,v~
du

dx
(2) u = cos '

x^ or X = cos u; .*. —- = — sin u ;

du

du 1 1

dx sin w y/i — cB^

* By u = sin~' x is meant, u is an arc whose sine is .v. Similarly, u = tan~' .r is an

arc a of which the tangent is ?•; these are called inverse functions. Thus, if («=log,r,

then H=log~'.r expresses that u is a number of which the logarithm is ,r.
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(3) u = tan~\r ; .'. x = tan u ; .•.-— =
(1 + tair u) ;

au

du 1 1

,2do! 1 + tan-« ] + c^?'

do?

(4) ?/ = sec \t?; .•.,v=secu; .'.
—— = sec u tan ?i ;

du

du

da sec u tan ?« x y/a" — 1

(5) u = cot^^iT ; .-. X = cot ?< ; .•.—- = -
(l + cot^ «) ;

du

du 1 _ 1

rfcf 1 + cot" 7/ 1 + .r^

fi If*

(6) u = cosec-' .r; .-. x = cosec ic^ .-. ~^=- cosec?/ .cot u;
^ du

du - 1 1

dx cosec ?< cot ?« x\/x^-l

(7) i/ = v.sim'.v; .-. x = v sin . ?^ ;

.-,
— = sin u = \/\ - cos^ti = \/(l -

cos?*) (l + cosw).
du

Bnt 1 - cos w = a? ; 1 + cos ?* = 2 - x,

dw / z 1
^«* ^

.-.
— = \/2x - X- and —- = ,- -- .

Hence recapitulating ;

rf,sin~^r 1

dx 's/l
- x'^

d . cos" 'a' - 1

dx y/i -.t'-'
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d.ta.n~^x 1

dx 1 + or

d.sec'^iv 1

d,v a; y/cr - I

d . cot^'cr — 1

dx 1 + x''^

d . 00860"^^ — 1

dx X \/x' - 1

d .V sin
'^ V 1

dx \/2x-x'

35. Ao-ain, if 7^ = sin ^-;^ a

nn

.-.
— = sin u ;

a
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V a 1

Or
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Ir h"'

where A = b 1 &c.
2 3

and B is also a function of (^
—

1).

This being proved,

dx

=
«".{! + Ah + BIr + &c.} by the Lemma ;

.-. equating the coefficients of //,

du— = Aa'.
d.v

CoR. Let e be that value of a whicli makes ^=1,

or (^
-

1)
- i

(e
-

1)^ + ^ie- 1)
- kc. = 1 ;

dcV

e is found to be = 2.71828, &c. and is the base of what is

called the hyperbolic system of logarithms.

dtV

37. Next let u = log w; .-. x = a"; .-. — =A a'' = A , .t ;

du

dw, _ 1 _ 1 1

d.v dw A X

dn

dii 1 diV
If the base be (e), A = \ and — = -

,
or d . log w = — .

dx X X

diif

38. We next proceed to find the value of — when
dx

u =
f{z). where ^r is a function of x, so that z =

(p{x).

In fact, the labour of differentiation is often much
lessened bv the substitution of z for some function of x,

when we want to find the differential coefficient of a com-

plicated function.
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As in Art. 34, let hi, ^^, ^a% be the corresponding

differentials of it, z, x.

A A C
Then since 15

=
7;

x
i;

•

Jo c -O

^U ^u ^z

^.v ^z Sec

Su du Sti du Sz d%
But -^ =

-J- , ^- = 7- r
and ^ = — .

hx doc dx dz dcv dx

du du dz

dx dz dx

Or if m and h be the increments of % and x, the co-

efficient of h in f{x + h)
= the product of the coefficients

of m and h in the expansions of /(^4-m) and (^(x + h).

But we give another proof of this important proposition.

Let u hecome f{z) where z=(p{v),

and let z + m be the value of ~ when x becomes x + h.

Then since 71 is a function of x as well as of z, the

value of u will become

du „
n + -—// + Uh-,

dx

and / iz) becomes u + —— m + Zm ;

dz

du du „ „
.-. -r-h+ Uh^ = -—m + Zm" (l).dx dz

dz
But z + m = (h(x + h) = z + -— h + Z^h^;^ dx

dz
, „ ,,

.-. m =— h + Zih^,
dx

where Z,^" represents the terms after — . h,
dx
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substituting this value of m, in equation (l),

-r-h + Uh^ = -—.-— h + -—. ZJf + Z {-— h + ZJr
\

,

da,' dz dx dx \da? J

equating the coefficients of h.

du du dz

d,v dz d,v

Ex. Let 11 = 9.az -{- bz-, where z = \/ 1 + .^7^,

du dz X
= 2a -f 2hz, and

dz dx \/i + a?^

du 2(a + bz).x 2{a + b\/l + x^)x

39. Next let u = sin z, where ^ is a function of x.

du du dz
1 hen — = — . — ,

dx dz dx

du du dz
But —- = cos;^; .•.

-— = cos«.——
dz dx dx

du
40. Let u = cos z

;
find — .

dx

XT
^^

Here — = - sm ^ ;

dz

du du dz . dz— = — .
— = — sin ;^ .

—
dx dz dx dx

4L Let u = tan z.

du ^ .. s
du .

^ s^^— = (l + tan-^) ; .-.-— =
(i + tan''^?)

—-

dz ^ ' dx ^ dx
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Similarly,

EXAMPLES.

jf du dzn u = sec . ^, = sec ;jr . tan ^ .
—

,dx da,'

du . dz
u = v . sin z,

—- = sin z . — ,

d.v da-
'

du
, , ^

dz
w = cot . ^, = _

(1 + cot-^) .
,dv dx

du dz
u = cosec .z, —- = - cosec ^ . cot ^ .

—
d.x dx

._, A . .p ,
du

42. Again ir u = a\ find — .

dx

du
Since — = A «',

du du dz </^

dx dz dx dx

Cor. If ^ = ], .-. a =
e, .\ = e' .

—
dx dx

43. And if u =
log {z), find -^

du

d^?

r^, <^W, 1 1

Then —=-.-;
dz A z

dn du dz 1 1 dz

dx dz dx A z dx

If ^ = 1,

dz

d . log (^z)
d X

dx z

Or the differential coefficient of the logarithm of any quantity,

is equal to the differential coefficient of the quantity, divided

by the quantity itself.
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EXA31PLES OF DIFFERENTIATION.

(1) 11 = sin 3.T' . cos 2a?,

du— = 3 cos 3a? cos 2a? — 2 sin 3a' . sm 2a?

dee

= cos 3,17 cos 2a? + 2(cos3.^cos2<??
- sinSa? sin 2a?)

= cos 3 w cos 2 a? + 2 cos 5 x.

(2) ?^ = sin (cos a?)
= sin ;», if ;^ = cos a? ;

d-z* du dz X . V •
/' \

.-. — = — .
— = cosi? . (- sina?)

= - sm a? cos (cos a?).
dec dz dx

($) 7^ = sin~^ — , = sin ^^, if :^ = .. ,

du dx

dx
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(5) M=h.l. (cr+H-\/2,r + a?2)=h.l. {x+1 + \/ (o) + iy-l\.

whence, from the last example,

du 1 1

doe
y/Jo) +1)^-1 \/2a^ + oe^

(6) ^^ = h. 1. = h. 1.

y/w^ + 1 + a; ('\/<r^ + 1 + a?)-

. 2
= - 2 h. I.(v.i'^ + 1 + cv)

= , , bv Example (4.).

y/x^ + 1

(7) u = h. 1.

^
= h. 1. .2?

- h. 1. {y/x- + 1 + ^O ;

dz^ 1 1

(8) w = h.l.

dx X y/uc^ + 1

0? du

y/cG^ + 1 _[. 1

'

dx X y/x"^ + 1

(9) ^f^log.r]"; .-.
— =w.(log,r)"

'— = w . (loo;.?;)
'

.
-

dx
^ ^ '

oc

(JO) 11 = log (log tr)
=

log z ;

d?^ du dz 11
da' d;? dx z X .rlogto 0?

(11) w = a?-'^^^ = ..X-, suppose.

du 1 dz . 1

h. \.u = zhA.x; .-. —.- ^ -
logx + z .-;

dx u dx X

du

dx !z

dz 1
- + -—

. log X )
c dx )

li z^x, -^ = a?'
S
1 + log a;|

= x" log {ex),
dx

(12) u = z\ z and v being functions of x.

du 1 dv
, ,

dz I

h.lu = vh.\.z; .:
:^-

•- = -.- •^- 1- ^ + ^
•;;n.- Zdx 21 ax ax z
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dii „ [dv .
,

V ds;\

dv ydx z dx]

Let z = sin x-, and ?' = cos oe ;

du -1 { . , , . cos^.r]
.-. — = sin ,T

™^''
{
— sin ^r h. 1. sm x + -^ > .

dx \ sina7j

(is) 7« = e^ = e~, if i^ = e'" ;

du dz
.'. — z= e~ .-— = e~ .e^ = e e^.

dv dx

(14) 11 = is^'\ where .?, ??, and y are functions of ,t?.

Let v-'- = u^ ; .•. w =
^''',

d7<
f dvj V, d%\and — = .^' '

•(
n. 1. ;j: . -^ ~ •~r( •

dv
\

dx z dx]

^ dv, f, , dy y dv\
But ••• V, = v^' ; .'. —'- = vy . h. 1. 1' X -^ + -

.
—

> ;

dx
\

dx V dx)

du „ f
, , /, , dy y dv\ v'^ dz]

dx
[ \ dx V dx} z dx]

{dv V dv I dz]

dx V dx z dx)
= Z . V--'

(l5) 71 = h. 1. tan x ;

die 1 + tan^.T sec'^<r

dx tan X tancT" sinircos-r sm2.r

, ^. 1 , / 1 + sin X
(16) U = h. 1. V ;

1 — sm X

X . X X
cos - + sin - 1 + tan -

Q Q

h.i : : = h.i. m-mm

X . X X
cos sin - 1 - tan -

2 2 2

= h. 1. tan (45 + -
|
= li. 1. tan z, if ;j: = 45 + '-

:

e2
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dz
2 .

du dix 1

dx sin2^ sin (90 + ^) sin (90
-

a?) cos a?

(17) M = h.l. V = h. 1. tan-;
1 + cos J7 2

du 2i 1

do? , a; sino?
sin 2 .

-
2

(18) M = h. 1. (cosA' + \/-l sina?) ;

du - sin tj? + \/ - 1 cos .2? /
— cos c'r + v - 1 sin ,r

•• -T- = 7=^^ = V -1 j=-.
—

«'^ cosa? + V -1 sma? cosif + v — 1 ^^"-^

1 /6 + acosa?\
(19) u =

. .cos-' .

h + acoso?
Let ;jr = ,

a + 6 cos X

— dz

du 1 d.x
'

dx ^a^ _ 62 y/j _ ^2

_ dz a sin a? . (a + 6 cos x) —bsinx (b + a cos j?)
But -— = ^ ^ —^

ax (a + ocoscT')''

(a^
—

b^). sin.r

1 -^=1 -

(a + b cos
x)'^

b + a cos x\ *

^a + b cos.3?y

(a + ft cos .r)^
-

(b + a cos
ct)''

(a + 6 cos x)'

{a^
-

ft'')
-

(a^
-

ft^)
cos^ a? (a^

-
6^) sin^ a?

(a + ft cos
tX')" (a + ft cos xY
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/ \/€? — 6^ . sin X

a + 6 cos 0?

doc y/a^ — h^

^\ — %^ a + b . cos x

and

d«

dxdu 1

1

a + 6 . cos 07

a?', ^
1 .

, aJVS rfw 1 -
(21) u=—y^sm '. -: -— = -. .

^/2 1 + a?' d.2' 1 + a?2 v^i + ^*

, ,
1 dw X"', /e

(23) ?/ = log
ix+2f du X

^x + \.ix-\rS)^'
dx a^ + ex- + llx + 6

e (a s,\n X - cos x) du .^ ,

(24) u = ^^
5

^
: -r- = e . sm x.

a' + 1 a.r



CHAPTER III.

SUCCESSIVE DIFFEEENTIATION. MACLAUKIN S THEOREM.

cJ It

44. If u=f(x), — the differential coefficient may also
CI tV 7

be a function of x, suppose it to be equal to p, or that —=p;
(t 7)

then p is also capable of being differentiated, and — will be
U/tV

the differential coefficient ; this again may be a function of x,

or — may = o a function of .v ; then q may be differentiated,
dcv

and so on.

This process is called successive differentiation, and -—
dx

5

-J-
^
—L

^ &c. are called the first, second, third, &c. differential
doo doc

coefficients.

A convenient notation is readily found.

du
Since « = -—

;

ax

d.\t
<1^

dp
'

\dx} .... .^,
d:~u

—!- = ^—— which IS written -—
;

doc dx dx'

Cm li

indicatino- that the function u and —- have both been dif-
° dx Jda

ferentiated. The third differential coefficient or -—
dx

;d-u^ld-u\
[d^'l _ _"
dx

~
dx''

'

d"u
and the w^'' differential coefficient is written -— .

ct *v



maclaurin's theorem. 39

Ex. 1 . Let u = ct?* + x^ + a?^ + .3? + 1,

du— = ^x^ + ^x- + 2^+1,
dx

Ex. 2.

= 3 .4^7- + 2.3J? + 2,

= 2.3.407 + 2.3,

da?*



40 maclaurin's theorem.

Then by successive differentiation we have

fjfit

—- = jB + 2 C.r + SDa"" + 4Eai^ + &c,
ax

cPu ^-—- = 2 C + 2 . a Z^j:- + 3 . 4£a?2 + &C.

d?u
= 2 . 3 . Z) + 2 . 3 . 4£a' + &c.

dai^

d^u

a a?'

&c. = &c.

Make .r = in these several equations, and let Uq, U^, f^*

du d'u
Us, &c. represent the values of u, — , , &c. on this sup-

d.v dx^

position ;

..Uo = A, U, = B, U, = 2C; .: C
^'

1.2'

U.,^2.3.D; .. D=Us ,

2.3

E -Ua. , &c. = Sec. ;

2.3.4

a^ cV^ „ cr*

.-. ti = Uo + Ui X -yUo. h f/s . h Ui . + &c.
1.2 2.3 2.3.4

a?"

Cor. The general term is obviously
=

U^^
1.2.3...n

(1) u = (x + ay ; .-. ^0 = «^ ^- 6- ^^h^" * = ^>

duU/U/ -13-— =4.a? + a ; .-. (/i
= 4a'

dx '

-—
2
= 4.3a7 + a| ; .'. 6'2 = 3.4a,

dx

rfu

dx'
= 2.3.4 (.r + r/);

.-. fl^ = '2 . 3 . ifl^
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—- = 2.3.4; .-. fj,
= 2.3.4,

dw^

d^u—- = 0; .-. f7,
= 0, and f7„, U., &c. all = 0;

dx^

3.4,, 2.3.4
,

2.3.4
^^"^ 1.2 1.2.3 2.3.4

= a' + 4 a''' a? + Gfr.i?" + 4ac??^ + w*.

(2) Expand (a + 6.r + cx^y,

u= (a + bx + cx^y ; .'. Uo = a",

— = n.{a + hx + cxy-'{h + 'icx) ; .-. L\ = w6a"-\
da?

^ = n{n-\){a + hx+cx~y'^ {h-^2cxf+2cn . {a+hx+cx^-]',
dx"

.-. U2 = n.(n- l)a"-~b~ + 7i . 2c . a"
-1

da?'

= w . (w
-

1) . (w
-
2)(a + fea? + c.^'^)"~^(6 + 2cxy

+ 2n.{n -
l)a + bx + ca?^]"""^2c.

6 + 2ca?]

+ 2c. w(w -!).(« + 6c'P + ca?^)"~^(6 + 2cx) ;

.-. f/g
= ^i(w - 1) (w

-
2) . a"-^6^ + 2 . 3?i. (w

-
l)a"-^6c,

&c. = &c.

(n— 1^

+
/« ("

-

IJ (^^

-
a)

^..3 J3 ^ „ , („
_

1) .

„.-4,j
a?^

+ &C.

(3) Expand sin x and cos a? in terms of the arc <r.

If u = sin ir, If u = cos a;,

du du .

then -— = cos a?,
-— = — sin x,

dx dx
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d~u . d~u—- = — sm cT,
—~

dor doc

d?u d?u
= — cos A',

-—
7 = + sm .r,

da^ rf.2?^

d^u . d^u~— = + sm X,
—— = cos a?,

&c. = &c. &c. = &c.

after the 4"^ differentiation the values of the differential

coefficients recur.

Now make ,v = 0, then in the series for sin w,

Uo = o, U, = \, U., = o, U^=-i, C/,
= 0, f/,

= + i, &c.

and for the coSc2,

.-. smw = A' 1 &c.
2.3 2.3.4.5

and COS x = 1
1 &c.

1.2 2.3.4

(4) Similarly, if ?^ = tanA', we may find tan r in terms

of X.

But more readily in the following manner*,

let u = tan a; = a^x + a-^oe^ + a^x^ + a^^aP -f &c.

.-.
— = (1 + tan-.??)

=
a, + Sa^x^ + 5a^x^ + la^x*' + &c.

But J 4- tanker = 1 + {a^x + a-iX^ + o.^o;'' + &c.)-

= 1 + a\x^ + Qa^a^x^ + (al + 2a^a^)x'' + &c. ;

therefore equating coefficients of the like powers of x

* That tan .1: can only involve odd powers of (a.) may be thus shewn :

Let tan d- = «,.»• + boX^ + Ugj.'^ + h^x'^ + aj-r^ + &c. ;

.-. tan (- x) = - «! X + b^x^ - UgX^ + b^x* - a^x^ + &c. ;

. •. tan X - tan (- a-)
= 2 «! .r + 2 a^ .r^ + 2 flg x^ + &c.

But tan (- .r)
= - tan (.r) ; . •. tan x - tan (- .r)

= 2 tan x ;

.-. tan.r = a^x + «,«'' + «'s-«''' + &c.



CIRCULAR FUNCTIONS. 43

1

2

S
' 3.5

3
1 4 17 17

7a, = a.; + 2f/.ia. = - + =
; ••• a. = — ;' ^ '9 3.5 5.9 '5.7.9

x^ 2a?^ 17.t?'^
• •• u = a- + (- h h &c.

1.3 3.5 5.7.9

(5) t« = sin^'cX', whence if ,2? = 0, ^0= sin"' = 0,

and —- =
y -= i-a?- =l+-^-H ci;"' + -.r + &c.

daj Vl-w~ ' 2 2.4 2.4.6 /-^.:

/ -».

but from Maclaurin's Theorem, ~7~5~~

— = ^i+2t72. +3U.S. +4.U,.- +5U,. +&c.*77-dx 1.2 2.3 *
2.3.4! ^2.3.4.5 ^4-^

Equating coefficients of the same powers of or ;

SU^ 1

2.3 2

2.3.4.5 2.4

7 t7v 1.3.5

2.3.4.5.6.7 2.4.6
9 • • C/

"y

— X • O • O ^

.r^' 1.3^0?" 1^3^5^.^?'
.-. sin '.T = a? + h 1

— + &c,
1.2.3 1.2.3.4.5 1.2.3.4.5.6.7

1 x^ 1.3 x'' 1 .3.5 x^
= X + .

— + — + .
— + kc.

1.2 3 2.4 5 2.4.6 7

the general term of which is obviously

1.3.5 (2n -3) cr-"-'

2.4.6 2w - 2
'

2n-l
'
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By this series, the length of a circular arc may be found ;

thus, let sin~^r = 30: .•. w = -;
o

„
1 1 1 1.3 I

.-. 30=- + . + - .— + &c.
2 1.2 3x8 2.4 32x5

(6) The same series may be thus obtained without the

use of Maclaurin's Theorem.

Let ti = sin~^<z- = a^x + a^x^ + a^w^ + a-x"' + &c. ;

for that sin~'<r cannot contain even powers of x, may be

proved by the method used in the note.

Differentiating&

— - = «!+ 3«3.3?-+ 5a^x + la^x ¥ &c.
dx v 1 — 07^

^ 1 , 1 -3
,

1 .3 .5
, „

But / -„

= 1 +-<2?2+__.a?^+ a-^+SiC.
V^l-o?- 2 2.4 2.4.6

equating coefficients,

1 1

«!= 1, 3o3=-; .-. a3 = -.-.

1.3
_ _1 . 3 1

^2.4 2.4 5

1.3.5 1.3.51
7a,= —-—;;; -•• «7

=
2.4.6'

'
' 2.4.6 7

X 1 .??'' 1 . 3 .r'^,
1 . 3 . 5 .r"

.-. sin- ^r = - + -.- + — •
- + ^ ^ ,.

•
- + ^c-

1 2 3 2.45 2.4.67

(7) u = Vdn-\T, .T = 0, f7o
= tan-'o = 0;

dU 1 V i 6 . c

... =
^

= ]
- .r* + .3?^

- 0? + &c.
' '

dx 1 + 't?'

,r Sf/gO,'^ W,x^ 5U,x'
~ '^'^

^^2 1 .2.3 2.3.4 2.3.4.5
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',U,= h Uo=0, — =-i'; .: U,= -2, f7,= 0,

U, = 1; .-. ?75= 2.3.4, &c. &c.
2.3.4

2w^ 2.3. 40?''

.*. U = X — + 8ec.

2.3 2.3.4.5

x'^ .v'

or tan '07 = 0? \- &c.
3 5

a series for the arc in terms of the tangent.

46. Hence may be found approximate expressions for the

lencrth of the arc of a circle.

Let <a? = —
; .-. tan- =

1,
4 4

TT 1 1 ] 1
„

and - = !-- + + --&C.
4 3 5 7 9

Again, since - = tan '- + tan --,» '
d. 9. 34 2 3

and tan~^ - = .—, + —-7
- &c.

2 2 3 2'' 5.2^

tan-'- =
.-, + -^1^ -&c. ;

3 3 3 3^ 5.3^

Machin having found that

TT 1 . 1

- = 4 tan" '

.
- - tan ^— ,

4 5 239

invented a series which is rapidly convergent.

The formula may be thus proved :

let A = 4 tan"'- = 4a.
5
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But tan A = tan 4 a =

4 4

4 tan a — 4 tan-' a 5 1 25

1 — 5 tanker + tan* a () l

1 -— +

4(125 -5) 4 X 120 120

625 - 150+ 1 476 119'

120
1

tan ^ - 1 119 1

and tan (^
-

45")
=
^-^^^-^^

= ^^^ =^ ;

+ 1

119

1

25 625

>1,

. A - 45"= tan-^
239

,1 ,1
.-. 45"= 4tan-' -tan"'—

5 239

= 4^ .- + -.--&C.}
[5 3 5"^ 5 5'

j

-I

11111 1

. + - • — &C./
239 3 (239)'' 5 (239)' j

47- The logarithm of x cannot be found by Maclaurin's

Theorem, since if a^ = 0, Uq, Ui, f/o, &c. become infinite:

but 71 = log (1 + x) may be easily found.

Suppose the logarithms to be hyperbolic, i. e. let -4 = 1.

«^ = h. 1. (1 + x) ; .-. f7o= 1^- 1- (1)
= 0,

= = 1 — X + X~ — X + X — X + &c.
dx 1 + X

by division.

But from the theorem,

du ^^ ^^ U^x- U^x^ U^x^-—= Ui+ Uox + + -— + —-— + &c.
dx 2 2.3 2.3.4
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therefore equating coefficients,

C7,= l, f/o=-l, f/3=2, U,= -2.3, U,= 2.3.4>;

.v~ 2a?^ 2.3x' 2.3.4>x^
.-. 7* = log; (1 + cv)

= x - — + 1 \- &c.^^ ''

2 2.3 2.3.4 2.3.4.5

or of' x^ af
= cc ^ + &c.

2 3 4 5

CoR. Had a been the base of the system, then

— = — .
, where A = (a -

\)
- \a -lY + \a - \\~ &c.

dx A x+1 V / ^ \ d

1 x^ x^
and locr (i -\- x) = — (x 1 &c.)^ ^ A 2 3

= -hyp. log. (1 +x).A

Hence, if we know the hyp. log. we may find the log to a

base a by mviltiplying the hyp. log. by
—

. The factor — is

called the modulus.

48. The series for log (l + x) does not converge, and

is useless in actual computation ; but from it a number of

series may be derived which are rapidly convergent.

Let - X be written for x in the series for log (l + x) ;

o Q 4. "j

X~ X" X X
.-. log; (l - x) = -X &c.^^ -'

2 3 4 5

subtract this from log (l + x)^ then since log re- log b = log
-

/I + x\ . X^ X'

log = 2 \x + — + — + &c.|,'^

\1 -xl '
3 5

'

1 + X M M - N
for put —: ; .-. x = — —

,

1 - .^
^ N M + N

^ ,
M \M-N , /M-Ay ^

1

and log
— = 2 {

— + i ——- + &c. > .

a



48 SERIES FOR THE

Suppose M=^N+z; .-. M + N=2N+z;

''^ ^ *
\2N+z ^(2N+zy

'

{2N+zy j

and finally,
if z = 1,

W(iV+l) = logiV+2|— +i7-T7
—

77-3
+ &C.I,

a formula from which logarithms may be calculated.

Thus, since log 1 = 0,

fl 1 1 1 1 1

log 2= 2^- + -.- + -.- + &c.>,^
[3 3 3^ 5 3^

j

fl 1 1 1 1 1

log 3 = log 2 + 2 <~ + -
.
- + -

.
- + &c. > ,

fl 1 1 1 1 1

log4 = log5 + 2 <- + -.- + -.- + &c.>,

&c. &c.

49. Expand a^ in ascending powers of x.

u = a" <J7 = 0; .'. Uo= 1

— = A.a'' •• U, = A
dx

^=A'a^ U. = A'
da;'

^ = A'a^ •• U, = A'
dor

=A".a'' .U„=A'';
d.x"

A' a;' A^v' A'x'
,'. ff' = 1 + ^ ^ + + + TT^—7 + S:c.

1.2 2..S 2.3.4

where ^ =
(//

-
1)

- ^ («
-

l)' + J («
-

l)'
- &c-
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Cor. I. Let .r = —
,

or Ax = I;A

-A ill
". a''=l + l+i+ + + &c. = 2.7182818, &c. .-. = e.

-^2.3 2.3.4

1 -
, , ,

. loga
.-. — h. 1. a = h. 1. e; .-. A = -

;

A log e

loea
... (a

-
1)

- 1
(a

_
1)2 + 1

(a
_

1)3
_ &c. =

losr e

Hence in the system of hyperbolic logarithms of which the

base is e,

J = (e
_

1)
- 1

(e
-

1)2 +
1 e^> - &c. = |^ = 1,

and c* = 1 + ,r + h -\ + &c.
1.2 2.3 2.3.4

CoR. 2. To compute A.

i 1

Since e = a^
•,

.'. e+^ = «, and e~^ = --^
a

.-. — A = log I

-
)

in the Napierian system.

004
O) W OB

Now I02: ( 1 + -^i?)
= .r"

! h &c.^
2 3 4

for 1 + w put n ;

.-. \ogn = {n
-

I)
-
^{n

- Vf + \n -
l]-'

- &c. ;

D
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Let a = 10.

A =
(.9) + 4 (.9)^ + 1

(.9)^ + &c. = 2.302585

and — = .43429448.
A

This is the number by which we must multiply the Napierian

logarithms to obtain those calculated to a base 10, or Brigg'^s

logarithms.

50. In the expansion for e"^'

or e^' = 1 + X + h h + + &c. ;

1.2 2.3 2.3.4 2.3.4.5

put successively for x, a?v —
1, and —xy/— !;

x^
. . e^''-' = 1 + x"^ + + —~ &c.

2 2.3 2.3.4 2.3.4.5

I
— /— x^ x^^/ -1 x^ x^\/ -I

2 2.3 2.3.4 2.3.4.5

by addition and then by subtraction.

gW-i^g-rV3r^2 ji
-- +~^ &c.^ =2cos^.

*- 2 2.3.4 '

gxVri
x^ x^

-e-^^-i = 2V -1 ]x + hc.\
2.3 2.3.4.5

= 2\/-l sin.r.

Again adding and dividing by 2,

gxv-i _ cos.r + v-l . sin.i'.

Also by subtraction and dividing by 2,

g-x\/-\ _ cos,J?
- v— 1 sin a;.
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Cor. 1. Hence cos<t? =

fV-l ^-x\l-\

and sin x =
2\/-l

tan ,v = —7=—j=
1 eW-i_g-W-i 1 /e2W-i_j

Cor. 2. These equations have been proved independently
of the value of x, we may therefore put mx for a? ;

.-. cosm.r + V — 1 sin 7W,f? = e'"'" ^=0^ ^^\"

= (cos .r + V - 1 sin
,r)"',

the formula of De Moivre.

51. We have seen, that,

u^ u^ ti^

loff (l + u) = u
1 1- &c. ;

2 3 4

/ i\ u-^ ir^ ?<-*
-•• log 1 + - = M-' + + &c. ;

"^

\ u) 2 3 4

•• ^og 1/ li
= log?*

= (w
-
u~^)

- 1
(w-

-
u~^)

For 7^ write e'''^^^; .*. \ogu = xy/ — \-^

... .^yrr = (e-^^ - e--^~) - 1 (e^wri _ g-sWri^ ^ g^^^

= 2 v -1 {sin .r - 1 sin 2,3? + 1 sin 3x —
&c.| ;

.-.
- = sm ,r — i sm 2 .T + -i^ sm 3 a? — &c. ;

Q -4 .3

therefore, differentiating,

^
— cos tr — cos 2j7 + cos 3,2? — cos 4a? + &c.

d2
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e'
"^

„ ^—- cosA' + v— 1 sin A'
52. By division, 7= = e"

e "^

cos tt?
— v — 1 sin ti?

1 + V -1 tantT

1 — V -1 tan-z-

ScV'sZ-l =h. 1. (1 +\/-i tancT') -h. 1. (l -a/-] tancv).

But h.l. 5(1 +?*)| -h.l. (1 -w) = 2{«*+— + — +&C.};

.-. 2cX'\/-l = 2{'\/-ltana? + i\/-ltan.??]^

+ ^,y^tana??+ &c.}

= 2 -xZ-l jtan a? - i tan
a-]^ + \ tan

,t?]^
- &c.

}
;

.'. 00 = tan tV —
-g-

tan
1^
+ \ tan cZ' p

-
&c.,

which we have obtained before.

53. From the expressions for sin.x' and coscr some
series may be deduced ; which, although not

strictly exam-

ples of the application of Maclaurin"'s Theorem, may find

a place here.

Since sin x = x 1 &c.,
2.3 2.3.4.5

and that sin a; vanishes whenever oc; = 0, i
tt, ± 27r, ± Stt, &c. ;

.•. 07, {rr-x~), (2V--07-), (S-TT'-o?^), &c. are factors of the

equation sin ,x = 0\ and therefore

%ma! = Ax.{'7r'- .-p') (2^ ir
-

x') {3' t^
-

x") (4V^ - x% &c.

='^"^-^-3(^-2-$)0-i$)'^^-'

where A; = J . tt" x 2-77" x S'tt", &c. ;
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sin X
Let <i? = 0; ,'.'-—^=1, and the right hand side of the

equation is reduced to A; ; .-. /c = 1 ;

sin. =
.(l-^;) (l-^-^) (l-^.l&c.

.t?'^ cX'*

But sin X = X \\ \ &c. \ ;
' 2.3 2.3.4.5 ^

therefore, equating coefficients of like powers,

1 fl 1 1 1 1

111 TT-

••• —
„ + -5 + -^ + &c. = —

1^ 2^ 3^ 6

9 4
.r- .1?*

Also, since cos x = \ 1- &c. vanishes, when
2 2.3.4

IT Sir Stt
a;=± —

,
i—

,
± — gjc.

2 2 2

Cos.. = A i'i - x^] . CX-^v^ . f"^-
a'^)

. &c.
02 /

\ ga ; \ 02

, f 2\v^ f 2Kv'\ f 2^l?2\
=
M'-^l{'-iv)0-5v)

^-

whence making .r = 0, k = 1 ;
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O'TT J

a?-fl 1 1 12^ar f 1 1 1
= ]

-
TT"

0?^ ,3?^

But cos a- = 1 H &c. :

1.2 2.3.4

2^ il' 11 1 1

111 -2
TT

54. Since

1^ 3' 5^ 8

w^\ ( cc^ \ ( x^

h. 1. sin X = h. 1. cX' + li. 1-
I

1
| + h. 1.

(
1 ^-—

I + &c. ;

in differentiating,
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1

^ + +
12_02 ^2_Q2 ^2_Q2

1 TT

20"' 20tan7r0

* •
,

*^ ^o ^ y J 2cr 2^\/-i
Again, let — = -0-; .-. a? = tt^V -

l, and — =

-21' V - 1

TT

, + 2Tre
,

COS A' 1+6-==^^-^ > l+e" /
and -;— = „ ,-^V — 1 = r:nv - I ;

20-\/-ir 1 1 1

TTOy/ - 1 I -e

1 + e^ire

1

^ +

r>2 ^2

+ &c.=
TT 62^^^+ 1

2
*

gS-TrO _ J 20'"

Again, cos . =
(^1

- ^] (.

-
^, j (^1

-—
j

&c.

h. 1. cos<r = h. 1. I 1 -
oa^2

TT"

+ h.l. 1 -
2" OB'

f-2 2
D TT

+ h.l

j,
&c. ;

•I'-iv)

2.1?. 2.17

sin J-'

COS.T

TT

2^r^
+

2-

1 -
TT

2"^ ai''

+ &c.

= 2a?
TT

1 -
2V-

+

2^

TT

-+ &c.

TT J

Let it =0%
TT

_7r0 2^ 40
if — ^ .'• 2.1? X —

p,
=: —

^

2 TT" TT

7r9 iO
'. tan — = —

2 TT \l'^-0^
+

i
+ =T-F. + &^

32 _0^ 52 _^! I'
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Next, let ^ = -0';

.'. X = —V -
1? and 2x .— = -,

Q

">
7r~ TT

sin X 1 1 - g-'^'^V"^ 1 J _ gTrO g'n-e _ 1

cos

1 1
„ TT e^^-1

+ ., ... + ——^, + &c. =
l2+f^2 3.^^. g.^^i 40 e-^^+l

Other similar series may be readily deduced.

55. From the expression

^ x'
e" = 1 + .2? + 1 h &c.

1.2 2.3

Lagrange in the Calcul. des Fonctions has derived an expres-

sion for the general term of the polynomial (a+6+c+c?+&c.)'".

Thus for X put {a-\-h + c + d + &c.) w ;

_.^ g(a
+6 + r + ,? + &c.)a- ^ 1 + ^,^ ^ ft + c + &C.) X

1 .2

{a + h + c + d+ hc.y . x
1 O Q -»j9

+ &c.

m

- + &C.

But e'*'^''"*''
+ ^'-''' = e""" X e'^ x e*-'* + &c.

a^x^ a^x^ .

= (1 + a A' + 1- + &c.)^ 1.2 2.3

^ ,
b-x' b\v'

^ ^
X (1 + bx + + + &c.)^

1 .2 2.3

C^X^ (?X^
X (1 + ex + + + &c.)^ 1.2 2.3

&c.
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Now the m'^ term of this expansion will be the product of

aP.xP h'l.x'i c\w'
X X X &c.,

1 .2 ...p 1 .2 ... g 1 .2 ... r

where p + q -\- r + &c =m,

whence (« + 6 + c + d+ &c.)"' will consist of terms included

under the general expression

1 .2.3 ...m X aP.b'i.c^,.

I .2 ... p X. 1 . 2 . . .
(/
X 1 . 2 . 3 . , . r X &c.

subject to the condition that p + g + r + &c. = m.

EXAMPLES.

+ ^n.{n-l). {ti
-

2) x"-^ +n{n-}){n-2){n-3). x"-^} .

d^u
(2) If u = e'' sm X, ——; = 2 e^ cos x,^ ^ dx'

d^u d^u d^^u-— = -2w, -— = 4?/,
—— = -8?^.

dx^ dx- dx^~

(3) Shew that

Sx' 1x^
(cos .xy = i V — - &C.^ ^

4. 8

4 6
(tan . xf = x'^ + - x^ + - x^ + kc.^ ^

3 5

0^ 30?* Sx^
e^'"'- = 1 + .T + &c.

2 2.3.4 2.3.4.5
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(4) Expand iim(a + bje + ex"), and log (a + b ,v + c a;-)

according to the powers of a\

(5) If cos (m)
- cos (m + y) = x, shew that

,V f X \'^

y = 4 cot w . + &c,
sin m "^

\sin m)

(6) If sin u = m sin x, prove that

m (m^
-

1) .r^ m {9m'^
- lOm^ + l) x^

u = mx + + 1- &c.
2.3 2.3.4.5



CHAPTER IV.

Taylor's theorem.

56. If u=f{w), and u^ be the value of u when a;

becomes oo + h,

du d^u h^ d^u ¥ d"u h"
Ml = 11 + -— h-^ -— + -— + &c. + -— . + Sec.

dx d.v^l.2 dx^2.3 d.v" 2.3....n

The proof of this theorem may be made to depend upon the

following proposition.

If «.=/(.. + A), ^ = ^,
or the coeffieient of h is the same in the expansion f(a; + 2h),
whether we suppose in f{x + h), x to become x + h, or h to

become h + h, i.e. 2h.

Let x + h =
Ofi;

and —— = some function of Xi = (b (xi).
dxi

'

dU] dui dx du^ dh

dx^ dx dxi dh dx^

dxi
But '. Xi = X + h, —~ =

1, if /t be constant,dx

dx^
and —— =1, if .r be constant;

dh

dui dui

dx dh
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Hence also it is obvious, that
dx dh

d^Ui d^7ii
1. e. =

,

dw' d¥

and that =
dx'' dh"

Let .-. Ml =f(w + h)=u +— .h+ Pie + QhP + Rhy + &c.
dx

du

dx
in order and magnitude, beginning with the least ;

restoring the terms after -^— A, and arranging the indices of h

du^ du d^u dP dO ^ dR
.-. -^ = — + 3—> + -- /i" + —-

/i/^ + -— hy + &c.,dx dx dx^ dx dx dx

, dui du „ , ^ o ,

and —i = — + aPh''-' +BQh^-' + yRhy-' + &c. ;

dh dx

.-. taking away the common term ——
, and dividing by h,dx

we have

d^u dP
^ , rfQ « ,

dx^ dx dx

= aP/i«-- + (iQhft-^ + 7i?/i^-^ + &c.

Now since in the upper series there is a term —-
independent

of /i, there must also be a term in the lower series equal to

d^u—-
, that does not involve h ; let this term be the first, as we

dx^

have supposed the indices a, /3, 7, &c. to be taken in order

of magnitude and increasing;
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—-=aPh''-^, and a-2 = 0; .-.0 = 2,
d.v-

(Pu ^ dru 1

and 2P= -;-;;; .-. P=-7-^.
dcP a a?" 1.2

Similarly,

—
h'^'\ or-— A, must = /3Q/i^"";

da? da?

i.e. — =j8QA/^-^ .-. /3-3 = 0, and jS = 3;
ax

and^A/^-' = ^/r = 7i2A>'-^
dtV dw

.'. —^ = yRhy-'^; .-. 7-4 = 0, or 7 = 4;
dx

, dQ d^u 1
• ^ = i_: =

* dw dx^ 2.3.4<

and similarly may the other coefficients be found ;

dit dru /r d^u h^
.-. u^ = II + -— h + --T, H-

——
7 1- &c.

dx da'- 1.2 d.'j?''2.3

d"^^ A"

d,»" 1 . 2 .3— »z

a theorem which will give the expansion of /(a? + A) in all

cases, if x remain indeterminate.

CoR. We may now deduce the theorem of Maclaurin

which we have proved by an independent process in the

preceding chapter.
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For by making a? = 0, 7/, becomes f(K) and u,
—

, ,

dx dw^

d^u——
, &c. become U^^ Ui, U^, U^, &c.

d.v*

.'. f(h) = Uo+ U,h+ U,— + Us^+ &c.
1.2 2.3

or putting a? for h, in which case u may be put for /(r)

= Uo+ UiX+ Uz-— + U3 + &c.
1.2 2.3

the theorem required.

E X A 31 P L E S.

57. To expand sin (x + A), cos (x + h), log (.r + h) and

(a- + hy, by Taylor's Theorem,

c?«« - d'u h^ d^u h?
Ui=u + —-h + -—^ + —— + &c.

dx dx" 1.2 d.r^ 2 . 3

(1) u = sincT-;

du d^u . d^u d*u
.'. — = cos<r,

—— =— sma?, —x= —
cos.z?, =sm<2;,dx dx^ dx^ dx*

after which the values recur ;

.'. u, = sin (x + ^) = sin ,37 + cos x .h — sinx cos x
1.2 2.3

+ sm X 1- cos X— &c.
2.3.4 2.3.4.5

(2) U = COS X,

d7c . d^u d^u . d^u
—- = - sm X. —~ = - COS cr,

—- = sm <r,
-—- = cos <r,

dx dx' dx' dx*

after which the values recur ;
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/ ix . h h-

M, = COS {ix 4- ri)
= cos x — sin x . cos x

1 1 .2

+ sin tr . Y cos a? — Sec.
2.3 2.3.4

Cor. If in the two expansions we make x = 0, we have

sm A = A h &c.
2.3 2.3.4.5

cos ft = 1
1 &c.

1.2 2.3.4

(3) 7^ = log (.r) ;

du 1
, d^M „ d^u , d*«^

•

_ ^ _ _ T1-1 _. jQ~^ ^ 2iT~ = 2 . 3il?~
*

dx X
'

d,r?^
'

dix^ dx^

. r ,. ,
h , hr

,
h^

,
h'

.'. wi = log (,» + A) = log .^7 + - -
-I

.
- + i .

- - ^ .
- + &c.

let <r = 1 ; .'. log 1 = 0;

.-. log {\+h)^h- ^hr + \h? - \h' + ih'- &c.

(4) u = x"" ;

du
,

rf-«« , , „ d^7i , ^^ V « ,

•. — =nx"-\ =n(w-l)c??"-^
—-

=w.(w-l)(w-2)..r"-^;
dct? do?- a A'

.-. Wi = (07 + A)" = x" + n. x^'-'h + -—^ ^
. x^-^h^

^ ^ 1.2

n(n-l)(n-2) ,,, „
+ —^ ^-^ ^

. x''-^h^ + &c.
1 .2.3

(5) The following Proposition which is used in some

demonstrations of the parallelogram of forces, is a good

application of the Theorem. Given that

f{^)-f{h)=f{co + h)+f{x-h),

find the form of f(x).
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Let u be put for f(x),

.'. u.f(h) = 2{u + -— + — + &c.h
"^ ^ dx^ 1,2 d.v^ 2.3.4^ ^

, 1 d^u h" 1 d^u h^ ,

.:f(h) =2{l +-3-2 + --3-^ +&C.5.

Now since h is entirely independent of a;, the coefficients

1 d^u 1 d*i«—
. , 5 8ec.,

u dx^ u dx^

which cannot contain /i, must be constant.

. . \d?u ^
d'u

Let therefore ——— = - a" ; .•. -r—r,
= - a u%

udx^ dx''

d^u ^d~u , ^
d'u

Hence /(;^)
=
251-^-^

+
^-^-^

-
&C.5

= 2cosa^,

and .-. f{x) = 2 cos acv ; and /(.i'
± A) = 2 cos a (<r

±
h),

and the Proposition is verified by the well known trigono-

metrical formula

2 cos ^ . 2 cos 5 = 2 cos {A + B) + 2 cos {A -
B).

58. Taylor's Theorem may be used to approximate to the

roots of equations.

Let ^ = be an equation, of which x is one of the roots,

and a an approximate value of x, so that x - a -\- h, h being

a very small quantity, hence since Jf = is a function of x ;

d.f{a) , d\f{a) W
,
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but since h is assumed very small, we may neglect the terms

after the second, and so obtain an approximate value of h ;

• • =/ («) +—
J

— ^ ; ••• fi = TTTT =
'

da d.f{a) p

and w = n —

da

f(a)

P

If this value of a? be not sufficiently near the true one,

let it be put = ffj,
and let the above process be again made use

of, and we shall at length arrive at results more and more near

the true one.

Ex. 1. x^ — S.v +1=0. By trial 1.5 is found to be near

one of the roots.

/(a) = a-' - 3a + 1 = (1.5)^
- 3 x (1.5) + 1 = -

.125,

d.f(a)
da

= 3a" -3 = 6.75 - 3 = 3.75 ;

.125
h = + '-^^ = + .033 ;

3.75

.-. x= 1.5 + .033= 1.533.

Ex. 2. iv" = 100. Since 3^ = 27 and 4* = 256, it is clear

that J7 lies between 3 and 4; let a = (3.5).

Now <2? h. 1. ^ - h. 1. 100 = = w ;

- du
.-. 1 + log 07 = -—

;

dx

.-. /(a) = 3.5 h. 1. (3.5)
- h. 1. 100.

d.f{a) , , ,—^=1+ log (3.5).da

E
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'

THE transfor:mation;

But in the Napierian system,

log 100 = 4.60517.

log 3.5 = 1.25276;

.-. f(a) = 3.5 X 1.25276 - 4.60517 = - .2205],

d.f(a)—^Ll^ = 1 + log 3.5 = 2.25276 ;

da

.22051
h = — = .09832 ;

2.25276

.-. X = a + h = 3.59832;

a more exact value may be obtained by writing 3.59832 for a,

and proceeding as above.

The Napierian logarithms may be obtained from a table of

the common logarithms by dividing each logarithm by the

number .43429.

2
Thus N. log 100 = = 4.60517,®

.43429

52. Transform the equation

x" - px""-^ + qx"--
- &c. = 0, or X = 0,

into one whose roots shall be diminished by a constant quan-

tity ^.

Let X = z + y;

• X=f(z + y), and let Z=f(z);

_ ^ dz d'z r d^z f
dz dz^ 1.2 dz^ 9..3

by Taylor"'s Theorem,
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Or if Z,, Zo, Z-s, Sec. Z„, be put for the differential co-

efficients, the transformed equation becomes

Z,.v^ z,.r
,

Z„.,?/"-^ Z„,fZ + Z^y + + + &c. + -— + - = 0,
1.2 2.S 1 .'2...(n

- I) '2. 3. ..71

where Z is the value of A', wlien .t^ is put for {v ;

.-. Z z=ii;^ -p;^"-' + qz"-'' -kc.

and Z, = 7is;"-^ - (u
-

l)pz"-~ + (n
-
2)7^"-^

- &c.

Z„_i = 7i(n-l){)i-2)...3.2z-(n-l) . (n-2)...2.p,

and Z„ =n(7i-l){n-2)...3.2;

therefore by substitution, the transformed equation will be-

come, after writing the terms in an inverse order,

y" + (71X
-

p)y'''^ + &c. + Z = 0.

Cor. This transformed equation may be used to take

away any particular term of an equation, by putting any
of the coefficients Z,, Z,, &c. = 0, and substituting in the

others the value of z derived from it.

Ex. Take away the second term from the equation

3cV^ + 15a- + 25x -3 = 0.

The transformed equation is, when x =z z + y,

Z+Z,y+ —^ + -^ = 0, (for Z, =
0),1.22.3

Z = 3.r' + 15;^- + 25z- ~ 3,

Zi = 9-^'^ + 30,^ + 25,

Zo= 18.^ 4- 30,

Z3 = 18, and Zj = 0.

e2
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r. ^ 30-5
But Z, =

; .-. z= =
,

18 3

Z, = 25 - 50 + 25 = 0,

_ 125 125 225 -152
Z = + 3 = .

9 "^ 3 9

152 18?/
.-. + —^ = 0,

9 6

152
.-. y'

= 0.

27

60. Let ?/=(«+ 6,r + cxY. Find .

Since the coefficient of If in Taylor's Theorem is

divided by i.2...w, if we expand

{a + 6(,r + A) + c(a? + ^)~}%

and collect the terms which are multiplied by A", these when

multiplied by 1.2.3...W will give ;

Let a + h.v -\- ex"- — p, and b + '2.cw = q;

p 4p^
'

But 4pc = 4ac + 4.ftcx + 4c^.r"^ = (^j + 2c.r)-'+ 4ac - 6-

= (f+e-, if e-= 4-ac - b^;

I p 4;/ 4/rj
^

\\ 2p I ^f]
=
p'|(l +

r/,A)-'+e,^'A-'j'-

+ r.-^^-^(l +q,hy^-'e:h'+kc.\.
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Then writing down the coefficient of A" in (1
-t-

r/iA)'-'',

/^''-^.. {i + qj>y'-\

A^-'... (1 +(hhf'-\

&c &c.

we shall have by addition the coefficient of //", which niul-

d"u
tiplied by \ .2 . 3...n, will jrive

——
.

Now by the Binomial Theorem, the coefficient of

ofA-MnT^:^^'-^=
^

^ ^^^ ^ ;^^ ; ^^_^
-Vyr-...-(2),

^ (2r-4).(2r-5)...(2r-n+ l) „ ^ .^

r,2
(7 6

therefore, substituting
— for 7,.

—- for e,', and multiplying"^

2y^ 4./>-

(2) by r x e,'-, and (3) by e,\ &c. and the sum of

(1), (2), (3), &c. by \.2.S...n.f,

d'u f2r.(2r-l).(2r-2)...(2r-n+ 1) g"

d:^=^--'-"^^lTT-2-: s-t:::::^ ^rT"
" ^

r . (2 r
-

2) . . . (2 r - w -f 1 ) 7" e'
. "1

1 . 2 n-2 2"jO" q~ ]

= 2r.(2r-l).(2r-2)...(2r-r^+ l)(i)
.p- \' +

^--^^yZ7)-^

i
ô o r. (2r-- l)..,2?- -3 7'

,..(,._!)(,. -2) n. (n-l)...(n-5) e«
-,—

;
• - "T" Cv^» ( •

1.2 .3 2r (2r-5) r/'
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Ex. 1. Let u = -
, the example given by Euler.

VI - w-

Here r = - 1, a =
1, 6 = 0, c= -I, p = 1 - x\ q= -2x,

d^il-x-yi 1

2?
(* = i

,

e'= -4;

d.37"

1 .2...W. a?" .

J
7i, (w

-
1) 1

(1
_

^^sy^t^

•

i^ + S-
^[7^

-"2

1.3 n.(n-l)...(n-3) I 1.3.5 yt.(M-l)...y^-5 1^

2.4*1 .2 ... 4
'

x'^ 2.4.6' 1 . 2 ... 6 \v^

the law of which is obvious.

Ex. 2. Let u = ^/i - a!\

Here r = ^ ; .-. 2r — 1 = 0, and some of the coefficients

will be -
. The example however can be easily put under a

proper form.

For, since u = \/ 1 — a;\

du — ai

dx Y^i _ ^2

d~u 1

dw~ (1
-

X')
i

d-\/l + X' 1

or — = —
7 :77a '

dx' (1
-

x-)i

1 = .(1-X-) 5
;

dx" dx"-^

and writing 7i - 2 for n, and - - for r, we shall have the

required term.
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Ex. 3. Let u = V cos ^,

cos ^ - 1 — 2 sin^ - = 1 - .27^,

by substituting a/' for 2sin^-;

.'. W = V cos ;^ = Vl —
X^,

which is reduced to the preceding case.

EXAMPLES.

(1) Tan (,v + h) = tan x -{- h . sec^x + h~. tan c^ . sec^a? + &c.

(2) Sin '

{x + /O = sin-^j? + -7 ^, + —r ^

+ -^ ^ + &c.
2 . 3 (1

-
cl?~)2

(3) Prove that if u=f{a;)

fx\ du X d?u X- d?u x^

-^

[2)
~^^

~'dx2
'^
dx^'^T^ dx^' 2.3.2^

( X \ du x^ d^u x"^ d?u x^
f I 1=7/ - -1 J- &c
-'Kl-^xj dx'l+x dx^'2{^l+xY dx^'2.3{\+xy

(4) Find the &-^ differential coefficient of Vcos.t?.

(5) Approximate to a root of the equations

(1) x'^-\2x - 2S = 0. Ans. .1? = 4.302,

(2) x'^ {• X- 3 = 0. Ans. .2? = 1.165.



CHAPTER V.

FAILURE OF TAYLORS THEOREM; LIMITS OF THE SAME

THEOREM.

61. By the Theorem of Taylor we are enabled to ex-

pand the f{a; + h) into a series of the form

f(x) +'ph + qh-+ rh"'+ &c.

where the powers of h are integral and ascend.

Indeed Ave may prove a priori, that so long as x retains

its general value, the expansion of f{x + h) cannot contain

any fractional powers of h.

For, suppose that

/ (,v -^ h) = U+ P\/h + &c.

where U represents the sum of the terms involving integral

powers of h.

Then since a; + h enters f(.v -\- h) in the same manner as

,v enters /(•r), it is plain that both functions (undeveloped)

have the same number of values, and that the developement

of/(ci' + /i) ought to contain no more than /(cx) orf(,v-i-h)

does.

Now if particular values be given to .r, wliich will neither

make P infinite nor evanescent ; then to each value of F there

will correspond two values of P\/h, since \//i has two values

+ a or — a ; and consequently the expanded function will

contain twice as many values as the unexpanded one ; and there-

fore twice as many as f{w), which is manifestly contradictory.

Similar reasoning will apply when the index of // is —
'/t
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62. If then we give such a value a to x in f(x + h) as

will make the unexpanded function f{a + h) to contain frac-

tional powers of h, we cannot expect that Taylor's Theorem
will give the required developement. Now the hypothesis
that X = a introduces a fractional index of h into /(tV + h),

supposes that in the original function there must have been

some such terms as (71
—

a)", which becomes (x
— a + h)" in

ni

Wi, or /i" when ,v = a. In such a case it is clear that some of

the differential coefficients will become infinite, when x = a.

As an illustration, let us suppose that

m

y = b + {x
-

a)" ;

du m --1
.. — = -

{x
- ay ,

ax n

, d^ti m (m \ --2
and —T

= 1 {x
-

ay- .

ax' n \n I

— m — -
1

and Wi r= 6 + (,r
-

a)" ^ . {x
-

a)" h
n

+ -. --l].(x-a)" + &c.
n \n J 1.2

m fm \ im \ ^~p h^
+ -. — 1 ... _p + l (.r-a)" &c.

m
where if — < p, that term and all that follow will become

w

infinite when x = a.

This circumstance of the differential coefficients becoming
infinite when x = a is called the Faihire of Taylor's Theorem,
an improper term, since it rather may be taken as an index

that the function cannot be expanded according to the integral

powers of h.

63. Again, as the general expansion of f(x + h) can never

contain negative powers of //, for if f{x + h) could

= A + Bh"" + kc.
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if h = 0, f{o(! + 1i)
instead of becoming /(a?), would be infinite,

we may be led to expect that if x = a introduces into the un-

expanded function f{x + h) a term involving h~", the ex-

pansion by Taylor's Theorem will indicate some absurdity.

Now it is clear that to have such a term dependent on h~",

M
we must orio-inally have had such a term as ; for" -^

{w- ay
putting X + h for a?,

ilf
,

MM— becomes : r- = t- ,

X - a^ ('^ + /i - «)" ^"

when X = a. M not being supposed to vanish when x = a.

Here all the differential coefficients of are in-

{x
- af

finite when x = a.

64. The theorem therefore fails whenever x = a makes

some radical disappear from u = f(x), and therefore introduces

into «*i =f{x + h), some term involving a fractional power of

h ; or when x = a renders the original function infinite.

As a simple example of the first case, let u = b + \/x — a ;

.-, Ui = h + ^/X + h — a

make x = a ;

.-. 21 = b, Ui = b + V //,

and the expanded function contains infinite terms.

1

As an example of the second case, let u = ;

X — a

1 I h ^'
o

X — a -^ h X — a (r
— ay {x — a)'

where 7^ = co , ?<i
= -

, and the terms of the expanded functions

are infinite when x is put = a.
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65. Should however f(a + h) contain, when expanded,

integral powers of h as far as the 7i^^, and afterwards frac-

tional powers, the first (n) coefficients may be found by
means of Taylor's Theorem. The following proposition will

establish this fact :

Let Wi =f(x + h) when expanded according to the powers
of h, contain when .v = a, fractional powers of h after the

(71
—

1)"^ power. Then the differential coefficients as far as

the (/i
—

1)"' can be assigned, but all the succeeding ones

Avill be infinite.

Let /(a + h)=A + Bk + C/r + &c. + Nh"-' + Ph" + &c.

where a is a fraction between n — 1 and n.

Now since the coefficients A, B, C, JV, do not contain h

we may obtain their values in the same manner as we deter-

mined the coefficients of Maclaurin's Theorem, by finding

the successive differential coefficients o£ f(a + h) with respect

to h, and then making h = 0.

Thus,

'^•^^'' "^ ^^ = B + 2Ch + kc. + (n-l) iV/i"-'- + aPA"-^ + &c.
dh

d'f(a + h)

dh"
= 2C + &c. + (/i-l)(w-2)iV/i''-3 + a(a-l)P/i«-~+&c.

/,1^^
^

=...(n-l)(y^-2)-2.1iY+a.(a-l)...(a-i^ + 2)PA"-"
+
S

d\f(a + h)

dh"
= a (a

-
1) (a

-
2). ..(a -n+ ]). P^""" + &c.

Now if h be made = 0, since a>7i-l, but <n, the

terms involving P will vanish from the first (/a
-

1) equations,

and the (w -
1) differential coefficients will be found.
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But since a — n is negative,

d"f(a + h) «(a- l)(a-2)...(a- w+ 1).P . ...
-j—i 1 = '-^— ' — IS innnite,

dh" A"-"

when h = 0.

66. Ao-ain, should the substitution of a' = a introduce

negative powers of h, all the differential coefficients will be

infinite. This case, to which we have previously alluded, is

when u = f(iv) contains a term ^ ,
for then if a? becomes

,v + //, = = T— when ..r = a.^ '

(a-
-

a.)'" (ct>
- A -

«)"'
A'"

Let then /(a + h) = Ah'" + &c.

(/ f(a + /i)
- ?w^

.-.
-^^ = + &c.

dh h"'^'

d^f {a + h)
- m (m + 1 ) (m + 2)...(m + n -

l). A
and

dh'- hm + n

d"f{a + h) .„ ,

where it is manifest that if h = 0,
—^—

-; \vA\ become
dh

finite.in

From this reasoning it is obvious that if the n^^ differ-

ential coefficient become infinite when x = a, the true expan-

sion contains a fractional pov/er of h lying between n -
!

and {7i) and that if x = a makes f{.v)
= oc thc> true expansion

contains negative powers of h.

Thus, let u =/Cr) = b+ (,r
-

o)?, find f(a + A),

d?i , , ,

dx

3-:
= T • T 7 ^:i ^^''1=^''^ = *= ^^ •''' = " ^

dx- (.p
-

a)-i

.', the fractional index of Ji is <2>1.
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But 7^1
= 6 + {v -r h -

a)i = h + h% when w = o,

and 4- lies between 2 and 1.

Again, if u — b.v'" + c{.v
—

a)'' ,

du
, cp .

--^

doc q

d^u
= W (777

-
1 ) . . . (m - 77 + ] ) ftcT'"'

""

?^ /z' ,^ (p „ . ,^ .i+ r .-.--- 1 .. .
- 77 + 1

1
. c7

q ^q I ^q

and let -<77 but > 77 - 1. Then -— is the first differen-

q dx"

tial coefficient which becomes infinite, and there ought in

£

the true expansion to be a terra involving ^' which there is,

for by putting w + h for x, and afterwards writing a for .r,

p

we have f(a + h) = b.{a + h)'" + ch" .

If m<n, the values of the differential coefficients will

disappear when x = a, until we come to the w"", which is infi-

nite when X = a.

67- In functions of this description we must have re-

course to the common algebraical methods, first writing x + h

for cT, and then putting a for x.

Thus, suppose u = 2ax + a \/x^ - a^ ;

.-. /(a + h)
= 2a{a + h) + a -s/ {a + hy - aj^

= 2a(a-\- h) + a \/2ah + h'^

= 2 o (a + A) + a v 2 a ^ . I 1 +— I ,

and then expand [l+
—

|
by the Binomial Theorem.
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68. Limits of Taylor''s Theorem.

If f{x + h) be expanded by Taylor's Theorem, and we

stop at the n^^ term, the sum of the first n terms may differ

widely from the true value of f{x + h) ; it is therefore neces-

sary to calculate the amount or the limit of the error which

arises from neglectino; the remainino; terms before we make

use of the preceding terms as an approximation to the value

of f{x + h).

The object of the following pages is to ascertain these

limits; but the following proposition must precede the in-

vestigation.

69. Prop. If u =z f(x) vanish when x = 0, then u and

— will have the same sign while x increases from to a,

if a be positive, but contrary signs if a be negative;
—

being supposed neither to change its sign, nor to become

infinite while w increases from to a.

Let a be divided into n equal parts, each = h or a = nh.

Then since f{a; + h) =f(,v) +~ h + P/r (l) ;

a .V

therefore making a? = 0; and therefore u or /(i) =
;

and if Ui and P, be the value of — and P,
ax

f(h)= UJi + PJr.

Now if [Jo, Ih, U,...U,\ f^'^ 1 n
} be the values 01 -— and r...

Po, P„ P....PJ dx

When h, 2 A, :ik...{n
—

\)]i are put for ,r, we have from (l)

f{h + h) -f(h) = U^h + P,h%

f(2h + h) -f{k + h) = ILh + P,h%

fl(n - ])h + h\ -f\(n -
o)h + h\

= U„h + PJr,
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whence, by addition,

f(nh) or f\a) = {U,+ U,+ U^+kc.+ U„)h + {P,-\-Po+kc. + P,)Ir;

and by diminishing h, the first term ( C^j + f/g + f/^s + &c. + f7„) /i

may be rendered greater than the second, and therefore the

algebraical sign of /(a) will depend alone on the first term.

1-1 • ^^^
Also f(h) will have the same sign as U^, which is —

when X = 0.

^ . c??* ...
Or, since — does not change its sign,

del'

die

f(Ji) will have the same sign as — .

Also f{2h) -f(h) will have the same sign as f/^, which

is the valne of — when iv = h = -
; and therefore the same

d,v n
du

sign as -—
.^ dx

And therefore /(a) which has the same sign as the sum

of the products {U^+ 11.^+ U^^ &c. + f7„)
- will have the
a

n

du
same sign as — , if a be positive, but the contrary sign

dx
if a be negative.

70. This proposition being premised, let it be applied to

find the limit of the error incurred in neglecting any terms of

Taylor's Theorem.

Let us now assume that the true value of /(cP + li)
or Wj

lies between the values

du d'u h^ d"u h" mlf"-^
u+ -7-h + '—-^ + &c. + —-. 1-

dx dx~1.2
'

del?"' 1 .2...W 1 .2.3...(w+ 1)

du dhi h" d^u A" . iI//^"+'
and %+-—/«+ —-z h &c. + ——

. h
dx dx^l.9.

'

dx"' I .2...n 1.2..,(ri+l)
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where m and M are the least and greatest values of which the

remaining part of Taylor's Theorem

dx"+' d.v"+'
'

7^ + 2 dw^^^ (n + 2)(n + 3)

is capable of;

/ du dru h^ d^u h" \ mh"+'

dx dx^l.2 dx" 1 .2...nl 1.2.,.(w + l)

<
1 .2 .3...(n+ l)

[ du d^u h^
or u^-\u -\- -—h + ——^—- + &c.

\ da, dx~ 1 . 2

d^u h" \ mh"^^

dx''l...n) 1 .2...(n + 1)
'

M/i"+^ du d^u h"
and ;

- ?/, + M + —- h + &c. + -, > 0.

I .2.3...{ti+ I) dx dx" l...n

Now both these quantities vanish when h = 0, since then

Therefore by the Lemma, their first differential coefficient

will also have the same sign. Now differentiating with respect

to h,

du, (du d'u d"u h"'^ ] mh"—- -
{
— + .h + &c. + .- } > 0,

dh [dx dx'' dx"" \...{n-\)] 1.2...W

^
Mh" dui du d~u h d"u h"'^

and + — -\ + &c. + — ——- > 0.

l...n dh dx dx^ \ aa?" l...(w
—

1)

Again, considering these expressions as functions of h which

vanish when h = 0, for then —- = —
; their first differential

dh dx
coefficients will have the same sign as the functions have, or be

both greater than zero ; whence again differentiating, we have
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d'u,
j
d'u d"-'u li"-~ \ _ nth"-'

'dh^~\d^''^
^' ^

dx"-^ T72...(n -
2) j

1 . 2...n - 1

^ '

Mh"-' dhi, d'u d"-~u A" -2

and r— + —- + &c. + -7---^ . > 0,
\.9....n-\ dh^ dx^ rfcr"-"* 1.2...W-2

which are both functions of h, which vanish when h = 0,

since then.
div dw'

Now if this process be continued (« + l) times, we shall at

length obtain

dh"" +
1

- m > 0,

and M - —j—r > ;

d"+^u, d'+^u,
or since =

,

dA"+' dx"^'

,, d''+'u^ , d''+'u,M > 0, and
;

— m > 0,

a condition which is satisfied by taking M equal the greatest

value of the {n + l)'^ differential coefficient, and m equal the

least value.

d"+'f(x + h) ,
d" + 'f(x)

or M = '-
, , and m =—r—-,— ,

dx'' +
' dx"+'

and therefore the true value of u^ lies between

du d'u h^ d"+'f(x) h"+'
u + ^h + -— + &c. +

-^ ^

dx dx^l.2 d<j?"+' l.2.3{n + l)

du d^u h^ d"+'f{x + h) h"+'
and u + —— h + -—7 + &c. +

dx dx' 1 . 2 da?"-^^ 1 . 2 (w + 1)

and the error made by omitting the terms after the n^^ is less than

(M-m)h" + '

3 .2..?...(??,+ ])

'

F
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Ex. 1. Let u = xP;

ax ^

and M = p .{p- I) . (p -2)..c.(p
-
n) . {x + hy-"''^ ;

therefore error committed by omitting the terms of {x + /i)^,

after the n^^

.^
p.(p-l)(p-.) (p-n) ^ _

1.2.3 (w-1)
^^ ^ ^

Ex. 2. Let u = a"
',

d"u , , (fui , ^,
.'. = A"a% and

' = ^"a^+^;
dx" dx"

therefore the true expansion of d^"^^ lies between the series,

a^'.ll + Ah + + &c. + + ) ,

I 1.2 1.2...?i \.2...n+l]

( ,
A~h^ A"Ii" A''+'h"+'a!' ]

and a'^ .{I + Ak+ \- &c. -\ 1 >
,

[
1.2 1.2...n 1 .2.3...n+l \

and the error committed by omitting the terms after the n!

1.2...(w + l)^
^

< ^n^-fi .n _
1)^ if u^ be the w*^ term.

w + 1

Again, if U„ be the first term that converges,

U„ . n+ 1

> 1, 1. e. —TT— > 1-

th

U„+i
'

Ah

Let (n+l) = 2 Ah,

U U '-^

therefore error <— . (a^
-

1), < — . (a
'^ -

1).
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Ex. 3. Let u = logo?;

and the error, by omitting the terms after the w*^, is

71. From this reasoning, it is plain that there is some

one term which is exactly equal to the sum of the terms after

the 7i"'. Let N be this term, therefore /(^r + h) becomes

du drzi /r (d"u Nh \ A"
w + -r- /i + -^TT, r-r + Sec. + ( -;-^ + 1 ^—_ ,

dw dcG^l.2 \dw" n + l)l.2...n

and to find the value of h, which shall make
da;" 1.2...n

greater than the remaining terms of the series, we must merely
have

d"u Nh d"u n + l

-z
— > 5

or h < ~— .
—-—

,

dx" 71+1 dx" N

it is not necessary that N should be known, we may substitute

for it a greater quantity, as M.

72. We may here add some remarks upon a method of

notation, by which the Theorems of Taylor and Maclaurin

may be put under very simple forms.

We have hitherto considered the letter d prefixed to u, as

in du, d~zi, d^u, &c. to be a symbol of operation and not of

quantity, thus d, d\ # &c. indicate that u has been differ-

entiated, once, twice, &c- But we may separate the d and its

powers from ic ; and if we treat it as an algebraical quantity,

no error can arise, so long as we bear in mind its original

sijrnification.

F2



84 LIMITS OF TAVLOr's THEOREM.

Thus suppose in Taylor''s Theorem where we have

du d?u h^ d?u W"

Ui = u + —- .h + -— h
dx da^\.9. da^2.3^

we look upon c? as a factor of u we shall have

d
,

d' /r d' Iv"

' dx da^ ] .2 dx^^.S '

let -— = t^ and .-.
——

„ = f, &c.,
dx dw"

.-. ?^. = w |i + th H + + hc.\.
1.2 2.3 '

= we' ;

for e"* when expanded will produce a series of the required

form, and so long as we take care that the powers of d be

referred to operation and not to quantity, no error can be

produced, and thence Taylor's Theorem may be concisely

written

"../,

M, = 7^g'*^

Again since Maclaurin's Theorem is

u = Uo+ UvX + 1- + &c.
1.2 2.3

if we may be allowed to treat the coefficients f/oj ^u ^25 ^3» &c.

as powers C", ^\ W, (7^ &c. we have

u= 1 + Ux + + + &c.
1.2 2.3

Nor can error arise, if we keep in mind the original

meaning of the coefficients L\^ U^, U2, &c. and if when we

expand e^'^ we change the indices of U into suffixes, putting

U(, instead of unity. But the utility of this method of

notation will be chiefly apparent when the reader enters

upon the study of the Calculus of Finite Differences.



CHAPTER VI

VANISHING FRACTIONS.

73. Sometimes the substitution of a particular value

for the unknown quantity, will make both the numerator and

denominator of a fraction vanish, such a fraction is called a

vanishing fraction.

x^ — 1

Thus becomes =- when .v = 1, but since bv divi-
X - 1

a;~ - 1

sion = (x + 1), the true value of the fraction when
.7?
— 1

.r = 1 is 1 + 1 = 2.

In this exaraple the numerator and denominator vanish

when X = 1, because both contain the factor (x
—

]), which is

= on the supposition of .??= 1.

74. We proceed to shew that the values of these frac-

tions may be finite, nothing or infinite.

Let u = — he the fraction, and let x = ahe the value of x,
Q

which makes P = and Q = 0.

Then P and Q must be both divisible by (x
-

a) or the

powers of (x
—

a),

let P = p.x -
a\\ and Q^q.x- n\' ;

» X — a
u = ~

.

9 X — a
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(1) Let m = n; .-. u = -
^ and = — when x = a,

which is finite, since neither p nor q contain (a?
—

a).

P 1

(2) L.etm>n; .'. 71 = - .x - ar'" =
0, if cP = «.

pi 1 .p

(3) Let nKn; .-. zi = -
. = - = x , 11 a? = a.

75, From the preceding example it appears that the true

value of the fraction is found bv getting; rid of the factor

(,v
—

o)'", which is common both to the numerator and denomi-

nator.

When m and n are whole numbers, the value may be

found by successive differentiations.

For since P and Q are each functions of x ; when x be-

comes X + h, the fraction m will become

P + dP.h + d'P +(/'P + &c.

f{x + h) 1.2 2.3

^^'' "^ ^'^
Q + dQ.h + drQ^ + ^^Q^ + &c.

'

, f/P dQ
writing dP, dQ, &c. for —-

,
——

, &c.
a,2? ax

Let a? = a; .-. P = 0, and Q = 0,

and the fraction, by dividing each term by h, becomes

^, ^, dP + d'P-^ + d'P.— +kc. ,_,
f(a + h) 1.2 2.3 dP

^ ^' ^ ^ = —
, when A = 0,

^ dQ + d~Q + a^Q. + &c.
1.2 2.3

P
which is the value of u = —; when x = a.

Q
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Should, however, x = a make all the differential coefficients

of P to the «z"^ order, and those of Q to the ?^*'^ order dis-

appear, we have

+ &c.
f{a + h) dx'" 1.2.3...m

(pia + h) d''Q h"—
. + &c.

da.'" l.2.3...n

If m = n, dividing numerator and denominator by
A™

, and then making h = 0,
1 .2.3.,.m

d'"P

da;""

dx'"

If m > w, w is = 0.

If m < w, 21 is = -
. » c»

76. If m be a fraction, this method is inapplicable. /

Since oa = a will make some one of the differential coefficients /

infinite. '

X

a^

rr., .. {x'-a^)^ y y— dP
Thus, if u = — . = V v + « = v2«, —- = -

^—-
's/X — a dx \/x"

dQ 1

and —- = 7= »

a-2? 2\/a?-a

both of which become infinite when x = a.

In such a case we must have recourse to a method, which

is perfectly general, and not difficult in its application.

p
Let — be the fraction, where P and Q both vanish when

Q.

X = a. For x put « + A, and let the numerator and deno-
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minator be expanded according to the powers of h, the indices

increasing, so that the fraction becomes

J,h"^ + B,hi^^ + C^hy^ + kc."

which is of the proper form, since when h = the fraction

becomes -
.

There will obviously be three cases, a = a, , a> a^, and

a < a, .

(l) If rt = ai divide each term by '''-'% and we have

A + Bh^-^' + Chy' + kc. A
"

A, + B,k(^^-"+C,hy^'" + kc. Jj

which is infinite.

(2) a> a^^ then the fraction

^/i"-«i + 5A^-°' + &c

when h = 0,

A, + 5,A^i-"> + &:c.

(3) a< a^, we have then

= 0, when h = 0.

A+BhP-'^ + kc. A
= — = CO, when h = O

P cc
Cor. 1. If ti = — becomes —

, when x = a it may be
Q cc

reduced to the form -
.

1 1

p" 1 Q »
For —=! — =:— = — = -

, when r = a.

Q Q \ I o

p r ^
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Cor. 2. If u = — = ,orcc-cc, when .r = a,
P Q

11 may be reduced to the form —
.

11 Q-P
i or = — = -

, when a? = a.
P Q PQ o'

CoR. 3. IfPxQ = Oxco, when .r = a, it may be put

under the form -
.

For Q = —
, if Qi= 0, when .v = a ;

(all

1 P .^

Qi Q. o'

^•^ 1

Ex. 1. Find the value of u =
, when .t = 1,

^ ^ dP . .P = a?'- 1 ; .-. = 3W^= 3, when x = 1,

dQ
Q = ,v^+2x'-,v — 2 ; .'. = 3.v^+4>a! - I =6, if w = I ;

dcp

3 1

6 2

Ex. 2. Find the value of , when .r = 0,
.T"

1-10
?* = = -

, when X = 0,

P = a^ - h% and Q =
,r,

—— = rt"" log a -If log ft = log a - log 6 =
log

-
, when x ~ 0,

and -— = 1 ; . . u - log
-
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af-w
Ex. S. M = —

7.
= -

, 11 .«• = 1,
1 — c1? + log X

"P =. of — cT, and Q = 1 - a? + log <r,

= 37^(1 + l0g<J?) -1=0, II iT? = 1,
dco

dQ 1 .„__ = -1 + - = 0, if cr= 1,

= af'(l + log xy + ~ =2, if iv = I,

d"'Q 1
,

..
,

do)^ or

2
.-. u = = - 2.- 1

_ 1 — Sm X + cos .T . „ TT

Ex. 4. w = -; =1, ir T = -
.

sm x + cos a? — 1 2

a — <» - a h. 1. a + « h. 1. a? , „

Ex. 5. u = .
= -

1, II *' = «•

a -VSaa? - a?^

e^ - 1 - log (l + a?)
Ex. 6. w =

^-^^
= -, when cV = 0,

e^ - 1 = ,r + + —- + &c.
1.2 2.3

a?^ 0^ <r*

log (1 + a;)
= a? - - + - - - + &c. ;

2
'^

o

1 i- ^
.17
-

-. + &C.
e - 1 - log (1 + a;) o

cr^ a;^

1 - - + &c.

__.2.™_— =
1, if a? = 0.
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y/d^ — x^ + a - w o ,

Ex. 7. u = —z—v-^ .- = -
,
when x = a.

y/a — ,v + 'Y d^— x^

dP
. dQ , , . '.

Here —r- and —— are both infinite when <v = a.
da; ax

We must have recourse to the second method, and since

if X be > «, V ff" — .t?" is impossible, let <a? = a — A, and making
the substitutions

y/'iah -K''+h va a-h + \/h
u = —F=

y/h + A^]i {c^ j^ ax -\- x^) 1 + y/a^ + ax + x^

Let a? = a, or Zf = 0. Then u = ^r=- .

1 + V 3a"

We misrht have divided the numerator and denominator at

once bj y/a -
x, and then

y/a + X + y/a — x y/ 9. a
u =

.

^
= r=

, when x = a.

1 + y/a" + ax + x^ 1 + y/Sa}^

1 2
Ex 8. If u = = CO — CO , when <r = 1,

1 — X I — x^

2 l+a?-2 (l-.a?) 1
, _-
Jr, II X = 1.

1 - .r 1 — cV" 1 - X- 1 — x^ 1 + .r
^

ttx 1 — X
Ex. 9. If u =

(l
-

x) tan
2 irx

cot
2

2
when c?? = 1 , ?^ = —

.

TT

Ex. 10. If w =
--/^^^; 7 5 find its value when

4fX 2,2?(e^''+ 1)

.'P = 0,

TT e^'-l
7* = — . = -

,
if .r = 0.

4.r 6^^^+ 1
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x'
Now by expanding e^' by the formula e" = 1 + x -\ 1- &c.

1.2

2 9 o

TT ,V TT'.T
TT* + •

1- &C. \ / TT H + &C.
TT / 1.2 I TT / 1.2

u =

.2 + 7ra? + + &c./ \2+7ra?+ + &c.
i . 2 1.2

Let .V = ;

if
u = - = —

8

Jbx. 11. i( =
,
when ^r = co .

Let \og;v
= y; .'. ^r = e%

y yu = — =

1 + V + J^ + -^- + &c.
1.2 2.3

1

1 II if

,, + 1 + - + -^- + &c.
y 2 2.3

1
,= 0, when y = OS

0+ 1 + CO CO

loff.r

Similarly, if u = ——, we have, n y =
log.r,

?*
y=— = 0, when « = CO

e'

by expanding r '"', and dividing the numerator and denomi-

nator by ;/.

1 TT . . T^
Ex. 12. u =

,
when ,r = ; n =

2,?"^ 2.j7tan7r<r o



EXAMPLES. 93

Ex. 13. u =
:
—

,
,f = 0; M = 1.

X — sin X

tan X — sin x 1

Ex. 14. U = ^- -.

--
,
X = 0; U = -

(sm xy 2

Ex. 15.
1-(W+1). d7"+W. A'''

+ '

W(w+l)u =
; -:; , .r= 1 ; w = —
(1 -x)' 2

a — X — a log; f
—

Ex. lb. i^ = -
a — \/d^—{a —x)'

,
X = a, M = — 1.



CHAPTER VII.

MAXIMA AND MINIMA.

77- If II =f(x) express the relation between the function

u, and the variable x, then if x = a make /(«) greater than

hothf(a + h) andf{a —
h); u = f(a) is said to be a max-

imum: but if /(a) be less than both f(a + h) and /(a -
h),

it is called a minimum.

Hence the value of a function is said to be a maximum
or minimum, according as the particular value is greater or

less than the values which immediately precede and follow it.

From this definition it appears, that if a quantity eithei'

continually increases or constantly decreases, it does not possess
the property of a maximum or minimum. Also, as the words

maximum or minimum are used in a relative and not in an

absolute sense, functions may possess many maxima or minima.

78. In the circle the sine which = 0, when the arc = 0,

increases as the arc increases, till the arc = 90°, when the sine

= radius, from this value it decreases, till at the end of the

second quadrant it becomes = 0.

At 90", therefore, it is a maximum ; for any two sines

drawn on opposite sides of the sin 90", and equidistant from

it, will be both less than the radius.

In the parabola, the line drawn from the focus to the

vertex, is less than either of two focal distances which can be

drawn to the curve on opposite sides of it ; it is therefore a

minimum.
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By reference to figures l and 2, we perceive that

NP in
fig.

1. is a maximum,

NP 2. is a minimum.

N

79. One of the most important applications of the Dif-

ferential Calculus, is that which affords rules for the discovery

of these values.

But the following proposition must first be established.

If y = AJi + AJr + A^lt" + &c. + A,X + A,+Ji"+' + &c.,

where the ratio of any coefficient to the one immediately

preceding is finite, i. e. —
^
— is finite, h may be so assumed

A,J

that any one term shall be greater than the sum of all the

terms that follow it.

Let r be greater than the greatest ratio between the co-

efficients ;

.\ -r<r, or A2<A-^t,
Ai

<r

A,

&c.

As<A,r~,

Ai < A^r\

A^h + A^h" + A^K^ + &c. < ^1^ + A^rlr + A^rh^ + &c,

<A^h {1 +rh +rVr + &c.}

1

<Aih
1 -rh
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Let rh =
-i, or h = —

; .-. = 2 ;
"* 2 r 1 -rh

.-. Jih + A.>h^+ A^h^^ kc. <2Aih;

.-. A.jfi^ + A^h^ + he. < Jih ;

and in the same manner may A-Ji^ be shewn to be greater than

Asff' + A.ik* + kc.

We have here supposed the series to proceed to infinity :

if it extend to n terras, it is evident, a fortiori that any
one term is greater than the sum of all that follow it.

80. Prop. If ?/ =f(^x) be a maximum or minimum

. . du
when cV = a. Then on the same supposition,

= 0.

dx

Let Ui=f(x + h), and Uo—f(a; —
h).

Now at a maximum or minimum, u =f{cc) must be

greater or less than both f(x + h), and f{x —A), or greater

or less than both u^ and u^.

Hence, u^— u and 7*2
— ^* 'imst both have the same alge-

braical sign.

du d^u h" d?u h^
But U^-U= —-k+ —— + —-r -— -i- &C.

dx dw^ 1 . 2 dx^ 2 . 3

du d^u K' d^u h^
and .-. U2-U = ---h -ir

——
--^ + &c.

dx dx^ 1 . 2 dx^ 2 . 3

by writing
— h for h in the value of Wj

— u.

Hence, since the first term of the expansion can be made

greater than the sum of all the terms that follow it, (if the

supposition of w = a, does not make any of the diff'erential

du
coefficients infinite,) it is clear that so long as the term —— h

dx

exists, so long will u,^
- u and 7*2

- '< have a different alge-
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braical sign : i. e, u^ and tCo cannot be both greater or both

less than u. Therefore, if there be a maximum or minimum,

du , „— = 0, therefore
dcV

u^-u = -——. + ^—; + &c.
dx' 1 . 2 dx^ 2 . 3

d-u h^ d'u h^
and iio -u - —-—

7-^ 1- &e.
dx'' 1 . 2 dx^ 2 . 3

d^u
,

. /.

Now if cr = a does not make -— = 0, the sign of w,
- u and

dx^

Wo - u, since fi^ is positive, will depend upon that of -~ .

CL X

dru
If therefore —- be positive, u^ - u and u., - u are posi-

dx^

tive

If be negative, u^ - u and u.^— u are negative.
dx"^

If therefore —^ be positive, u-^ and u^ are both greater

than u, or w is a minimum, and if —
5- be negative, then

dx~

Ui and U2 are both less than m ; or w is a maximum. Hence

this rule: to find whether u=f{x) contains any maxima or

minima, put
— = 0, substitute the values of x thus found

in ,
if the results be positive, we have minima; if nega-

dx^

tive, maxima.

d^u
81. Should however = when x = a,

dx'^

Uy-u = + -—- + &c.
dx"^ 2.3

d^ti h?

u-i-u = - —^ 1- &c.
dx^ 2.S

G
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and
««j

- u and u.^^
- u have again different signs ; and there-

fore there will be no maxima or minima if exist. Hence

it is obvious that we can have a maximum or minimum only
when the first differential coefficient that does not vanish is of

an even order.

CoR. 1. If w = maximum or minimum, any constant

multiple of M is a maximum or minimum.

du dii .

For if — = 0, a— IS also = ;

due d,v

and therefore if w = maximum, au is also a maximum.

Cor. 2. If f{.x) be a maximum or minimum, /{xy^^
where n is integral, is also a maximum or minimum.

For let u =f(x),

and U=fix)]";

dw

if ?/ be a maximum or minimum,

dU
and -- = w.7(^"-V0^)=O; •.•/(J?) = 0;

dx

and therefore f/ is a maximum or minimum.

CoR. 3. If u=f{x) be a maximum or minimum, logw
is sometimes a maximum or minimum.

dJ] 1 du
Let XJ = log 71 ; .*. -—- = -.-—.

dx u dx

I ^ du dU
/ But -- = 0; .-. 3- = 0,

dx dx

or U '\% 9. maximum or minimum, unless .r = a makes u = 0.
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1 . . ,

Cor. 4. If u = maximum, - is a minimum, and con-
u

versely .

1 dv I du
For let 1' = - ; •' -r =

? 1" »

u dw u aw

drv 2 du^ 1 d^u 1 d^u .

= + — . .
—- = . , when u = maximum.

dw^ y? da^ vr doc- u^ dx^

Therefore, if —- be negative, is positive, or it u be
dw^ d(xr

a maximum, — is a minimum.
u

EXAMPLES.

(l) Let w = .T^ - 6ci;- + ll.T - 6; find the values of se

which make u a maximum or minimum.

du— = S/F^ _ j2_j, + 11 = 0;
dx

.-. .r- - 4,^ + 4 = i
; .-. .r = 2 ± —7- = 2 ^

V^S
~"

S
'

dl^u ^—- = 6.r - 12.
dc^

Let .r = 2 J
; .". = 2 v .1 indicates a minimum.,

3 dsc^

\/3 d^u /-
.r = 2 ; .-. =-2v3 a maximum.

3 dcc'^

a?

(2) Let t/
= .rtan^ ; find .r that y may be

4Acos~0

maximum or minimum.

C?7/ ^ X
-^ = tan0- -^-^^,
rf.r 2^ cos 6^

f/^V 1

g2
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d u
From -— = 0, a; = 2h tan 9 cos- = 2hsm0 cos 6 ;

a A'

, «^'2/ . . . .

also -— IS negative ; .-. ^ is a maximum,

and y = 2h tan . sin cos ; r-r—^
4/i cos^ e

This equation is that of the path of the projectile, and the

maximum value of y is the greatest altitude above the horizon-

tal plane.

(3) w =
sine??]'". |sin (a

-
ct)}";

find o; that u may be a

maximum or minimum.

du -|m-l .
I

sin a - ^
ax '

= m sm a? 1 sin a - ^ T . cos ,t

— w sin oeY . sin a —
a?]""'

cos (a
-

a?)
=

;

'. m sin (a
-

a?) . cos <r - w sin <» cos (a
-

a?)
=

;

sin (a
—

x) . cos cF w

cos (a
—

0?)
. sin a? m

sin (a
—

a?) cos a? + cos (a
—

x) sin a? n + m
sin (a

—
a?) cos a? — sin x cos a — a? w — wi

sin a n + m
or

sin (a
— 2

a-) w — m

or sin (a
-

Sa?)
= . sm a,
n + m

whence a — 2x may be found from the tables ; and there-

fore a?.
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log 0?

(4) u =
; find w that u may be a maximum.

du 1 — log X

dx x^

.•. \ogx = 1 = log e ;

and u = —
.

e

(5) Find that fraction which exceeds its second power

by the greatest possible number.

Let X be the fraction ;

.•. u = X — x^ is a maximum ;

du ,

.•• — = 1 - 2,r = ; .•, ,r = i,dx '^

d^u
~—^ = -

2, or X =
-^j

IS a maximum.
dX

^ _ _ i
,8

~ ^5 v,x ^ -
2

(6) Find the distance of P from J,
that Z CP5 may be a maximum.

^5 = a, AP =
.??,

AC = b, L CPB = 9 ;

.-. d= zCPJ- lBPA

h
,
a- - tan-*-

X X
= tan ' tan~* —

,

tan d =

h a

X X {b
—

a) .X

ah x^ + ah
1+-
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and because is a maximum, tan d is also a maximum, and

1 .

IS a minimum ;

tan0

ar^ + ah ab
.-. u = = X -\ ,

X w

du ah /—--— = 1 ^ = 0; .-.x^y/ab;
ax X'

and therefore AP is a tangent to a circle circumscribing the

triangle PBC.

(7) Of all triangles upon the same base, and having the

same perimeter, the isosceles has the greatest area :

2P the perimeter and a the given base,

X and y the remaining sides ;

.-. area = y/P . {P -
a) . (P - x) . {P - y) ;

and since P and P - a are invariable, and if y/u be a max-

imum, u is also a maximum.

Let u = {P-x).{P- y).

But P - y = P - {2P - a - x) = a ^ X - P y

.-. u = (P -
x) . (a + X -

P),

du , „ „— = -
(a + ,r - P) + P - J7 - ;

dx

.-. - a - 2jf + 2P =
;

a
.'. a?= P- -,

2

a

y=2P-a-x=2P-a-P+-
2

2

and therefore x = y, or the triangle is isosceles.
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Since —:
= —

2, the tnanffle is a maximum.

and area = — v P .{P — a).

(8) Divide a number a into two such parts, that the

product of the m^^ power of the one into the n^^ power of the

other may be a maximum.

£ one part ; therefore a — <r is the other ;

u = o!'" .a — ci?
I",

— = mx"' . a — w\ - x"' .na —
x\ax '

-1

= 0?""
^

. a — .f
I"

^

-[ma
— {m + n) .x\ =0,

whence a? = 0, a? = a, and a? =
m + n^

~= j(m- l).cr'"-^a-a;r"' - (n- I) . x"-K a - x]"'^}

\ma — {m + 11) .x\
- {m + n) .x^ \a -

a?]"

-I

^ fit

which vanishes when x = and a? = a, but if x =
^

^
/ met \'"-i / no N"-'

= - (m + w) . .
;

\m + nj \m + n)

ma
.' X = gives u = maximum.m + n

X = and X = a will give no results unless m and « are even.
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And then —^ = /// . {m -
l) (m -

2)...2 . 1 . a - x
|"
+

(^ (.r),X"

--^ = n.(fi-l) {n
-

2). ..2 . 1 . ct'" +(h{a- x),

,
dru

and —-^ = m . (m -
1) (m -

2)...2 . 1 . a", when a? = 0,

and -— = w . (w -
I) (w

-
2)..,2 . 1 .a'", whencr = a;

both of which correspond to minima.

(9) v^ — Zaux + c^=Q\ find .r that u may be a max-
imum.

Instead of solving the equation with respect to w, dif-

ferentiate the implicit function ; and we have

——
. (w — ax) — au + X = 0.

ax

T, du
^

a^
-But —— =

; .-. X — au == 0, or w = —
;

ax a

whence, by substitution in the original equation,

- ScT^-h *•''= 0...(1); .-. x^=2a^; .-. x = a.\/2.
x'

a^

Differentiating a second time,

d^u ^ ., ^ du du . du
(w

— ax) -H
-—

. (2w- a)
— a -—i-2<r = 0.

dx' dx dx dx

^ du ,2 ^^ ^ ^ -i -i^But — = 0, and u — ax = —^— ax =— . Lv' - an = + ax ;

dx a ct

d^u —2x 2

dxf^ ax a

From equation (l) wc also have c7? = 0; and therefore

u = 0.



EXAMPLES. 105

JNow -^—^
= —J = -

,
II X = 0.

(Pu - 2,v

dx^ vj^ — aoG

Treating the fraction as a vanishing one,

(^u - 2 2—-— = = -
, when ct? = ;

ax du a
2u a

dcV

.'. X = gives u = 0, a minimum.

Also X = av ~ gives m = a\/ 4, a maximum.

(lO) Bisect a triangle by the

shortest line.

ABC the triangle, and PQ the

shortest line.

CP = x\
fj I) (^ the three sides of

the triangle, C the b

^BCA.

• AABC = 2ACPQ;

ab sin C xy sin C
= <?

2
=

A'?/ sin C ;

ah — 2a?«, /. ^
2 / C

2*- = x^ + y^
— 2xy cos C = tr'^ + ~ —ah cos C = minimum ;

4cl?"

.-. 2m—- = = 2cV

.r* = —— , or cr? = V —
' and y = ;— = V —

'

4 2 2,Z' 2

„ ah ah
, ^ , . ^x , /2a6 + c^-(aV6^)\

•. w— —+ ao cos C=ao. (1— cos C)'=ao. ^ )

c- - (a
-

6)-

^ /(c - a + 6) (c + « - 6)
.•. u = \/
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(ll) Describe about a given circle

ABC, the least isosceles triangle.

DPQ the triangle, DP touching the

circle at A.

DO = a>; .'. DA = \/.v'
- a' ;

OA =a.

Now DB : PB :: DA : 0A\

DB ioc + a) X a
.-. PB = —-OA= ,——-

.-. ADPQ = PBxDB

a(x + a) , . X \- (V^
X

(<2? + a)
= a ^ =

\/x^ — a^ y/CD — a
minimum.

Whence, if u=
, r = 2a, and w = a^.3v3.

CO — a

(12) Find the greatest area that can be included by four

given straight lines.

Let a, 6, c, d = the four lines,

Q the z included by a, 6,

^ ... / c, df,

i) the diagonal subtending the

two angles, and dividing the quadrila-

teral into two As;

ah . sin0 cdsin <h
.-. u = area = -{

— = maximum ;

du

dO
= \Aah . cos 9 + cd cos ^ .

——
j

=

But c^ + d'^ - 2cd cos = /)' = ar + b- -2ab. cos ;

sin 6

sin
'

d(h s\n6
'. cd. —— = ab

dd
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ab
.-. substituting this value, and dividing by

—
.

sin 9
cos d + cos (h .

— =
;

'

sin0

.'. sin
(p
.cos9 + sin Qcoscp

= sin
{<p + Q) = = sin tt ;

.-.
(p + 0= TT,

or the quadrilateral is one which may be inscribed in a circle,

ah + cd .

and u - sin Q = ViP -a){P- h) (P -c){P- d).

where P =
o, + b + c + d

(13) Cut the greatest ellipse

from a given cone. ABD the

cone. PB the elliptic section,

AC = a, CN=.v,

BC=^I3, NP = y,

PB the axis-major
= 2 a,

and axis-minor = 2b.

Now area of ellipse
= irab, {Integral Calculus).

And 26 = y/PQx BD = \^2,v x 2/3 = 2y^'(ia;,

2a = ^/BN~ + NP' = yfT^- + NP-.

DN d-x
Bnt NP = CA X ^^= a

'^

CD fi

2a=^/(^ +
.^.r+^3(/3-a.)^

area = „ =^^V^T^l' +
^,(/3

-»)' = maximum,
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+
(i3 + ^)-^(i3-.tO 1

V = 0;

V (i3 +
^)'+|-(/3-.^r^

whence
^-^ ^f^

= -
(a' + fi') ;

2/3 (g^
-

/3^)
^

/j Va^ -
14/3^ g^ + /3^

and the problem is possible so long as g* — 14j3^g^ + /3^ is

positive. The limit of possibility is when the radical dis-

appears.

Then g" - 14/3=^ g" + 49/3*
=

48/3* ;

... a' = 7/3^
± a/48^= ^3^7 ± ^a/s; ;

••• g = /3(2iV^i'),

2/3 6±4V'3_/3 3 + 2v^3 /3

3
'

8 ± 4 y/s 3
'

2 + \/i a/s
and X =

(14) The content of a cone being given, find its form

when its surface is a maximum.



x

EXAMPLES. 109

the altitude, and y the radius of the base,

the given content =
,

u = surface = convex surface + base.

And convex surface = sector of circle of which the radius is the

slant side and the arc the circumference of the base of cone ;

But ^~
= —

; ••• y + x^ = ;

X X

.'. u = 'ira I >;

(111 n •> S. / ~i ~\

whence because -— =
;

cT-^
- 2a^ = 2^^y ar + a' ;

ax

.-. {x^ + a^)
- 2ai "^Zx^ + d^ + a^ = 4.a^ ;

.. \/x^ + a'^ = 3a2 ;

.-. c^ = 8a% and x = 2 a,

a^ a^
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82. The following examples are added by way of ex-

ercise, the prirtcipal steps to the solution of the questions

being indicated.

(l) Divide a line into two such parts, that their pro-
duct multiplied by the difference of their squares shall be

a maximum.

Let 2ff be the line, a + oc and a — ,x the parts;

•. « = {a?
~

a^) . 4>ax = maximum, whence x =
a

Vi

(2) Let u = (mx + n) . {ny + m) be a maximum, and

let a"'\b'"-^=c-, find x.

Here — = m {ny + m) + n {m.v + n)
— =

;

dx dx

and because w.r log o + w?/log6 = logc,
—

may be found,

loff

and X =

c6"

a"

log(a-0

(3) Inscribe the greatest rectangle in

a given triangle.

AD = a, BC = b, AN=x; .'.Pp =—
;

a

f) V /7 1

.-. u = Pp . TVD = — (a - ,r), whence r = -
, and u = -ABC

(4) Inscribe the greatest isosceles triangle in a given

circle.

liCt r/ = radius, the triangle is equilateral, Ride = (7v3,

area «=
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(5) Inscribe the greatest rectangle

in a semicircle.

CN =
cr, CA = a, NP = \/a' - CD

BN

.'. u=2PM .CM=2a)'\/a^-w^\ .-. ,v=
a

and M=a^\/2. ?

Cor. The same construction applies to any curve.

Let AC = h, AM = a? ; .-. PM= f{w), and u = 2(h-a') .f{x).

Ex. 1. BAD a parabola; then

y = 9,\/mx, and u =
A^{h

— x)\/mx.

Ex. 2. BAD a segment of a circle;

AM =
<3?, radius = a ;

.*. PJ/ = V 2 aa? — .r^, and m = 2 (6
-

.r)
. v 2 « a? — x^.

(6) Inscribe the greatest ellipse in a

given isosceles triangle.

IfZ>a=2.r, cb = y; .'.u = 7r.yx.

Let AD = a, DB = b.

Now ciV =
2 2

c^ a — X

BD-

nN =
ax — 9.x

DN:
a — X

ax

a — X

n y
But . AN^ = PN^= -. {Na .ND) ;

a — 9.x

a — X
= y

(a
— 2

-r')
a

{a-xf
'

whence t/~
= — (a

— 2
a?) ;

a

.-. iryx^
irb J a

.x\/a — 9x% .'. .r = -

Va
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(7) Inscribe the greatest parabola in a given isosceles

triangle.

(8) Cut the greatest parabola from a given cone.

(9) Required the least triangle TCt^
which can be described about a given quadrant.

u = ^CT X Ct = ma,

CA = «, CM =w, CN = y;

a'
: CT = -

X y

and if ?« = maximum, <r = ?/ and /.ACP=^4i5^.

(10) The same when APB is a parabolic arc and C
the focus.

AN = X, AC = a, u = (x + ayV ,

2^/x

a
whence x = -

(] 1) Within a given parabola inscribe the greatest para-

bola, the vertex of the latter being at the bisection of the

base of the former.

(12) The corner of a leaf is turned back,

so as iust to reach the other ed^e of the

page : find when the length of the crease is

a minimum.

AP = X, AB = a; .-. ^a = v2a^,

also Aa.PQ = 2AQ.AP. -r

Since AQaP may be inscribed in a circle;

u^ = PQ2
2x - a

3a
X
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83. If X = a, make — = co , the preceding rules are
dx

inapplicable, since they are founded upon the supposition that

f{a + h) is expanded according to the ascending integral

powers of h by means of Taylor's Theorem ; but when the

differential coefficients become infinite, the developement cannot

be effected by it.

Let then f{a + Ji)
be expanded by the ordinary methods,

and assume

/(« + h) = f(o) + P/i« + QhP + Rhy + &c.

where a is the least of all the indices, of h ;

.-. /(a + h) -f(a) = Ph'^ + QW^ + Rhy + &c. ... (l),

and f{a -
h) -f{a) = P{- h)- + Q(- hf + &c.

by writing
- h for h in series (l).

Now if h be made very small, the algebraical sign of the

developements will depend on that of their first term. If

therefore we have a maximum or minimum, since

f{a + h)-f{a), and f{a-h)-f(a) must have the same signs,

PA" and P(-h)" ; and .-. A" and (-A)" must have the same sign,

or a must either be an even number or a fraction with an
even number for its numerator.

(1) If a be an even number, it shews that at a maximum
or minimum the first existent term of the developement must
involve an even power of h, a conclusion we have already come
to in the preceding pages.

(2) If a be a fraction, it must be of the form
2m + 1

Ex. Let u -h + c{x — a)\

du 2c 1

Here -— = —
-,. , which is infinite, if x = a,

dx 3 ,v - of
H
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But X = a, gives u = h,

w = a + h gives u = b + ch^^

,v = a — h u^ b + chs

and /(« + h) and f{a -
h) are both >f{o), if c be positive,

<f{a), if c be negative.

If .'. c be positive a,' = a, makes ii = b a minimum,

c be negative oe = a^ w = 6 a maximum.

For other examples, see Collection of Examples on the

DiiFerential and Integral Calculus.



CHAPTER VIII.

EQUATIONS TO CURVES.

84. We proceed to treat briefly of the equations to a

•straight line, to the circle, the conic sections, and some other

curves, which will be frequently referred to in the succeeding

pages.

For complete investigations of the properties of the conic

sections and curves in general, we must refer to works ex-

pressly written on these subjects.

The object of this Chapter is to furnish the student with

such a knowledge of the nature of certain curves, as may make
the applications of the Differential Calculus to them obvious

and interesting.

We must first premise some elementary remarks before we

explain the nature of these equations.

85. From a point A, assumed at

pleasure, draw two lines Ay, Ax, perpen- m^

dicular to each other; then the position of

a point P, situated within the angle yAx,
will be known if the perpendicular distances -^

PN and PM from P upon Ax, and Ay be known.

Ay and Ax are called axes, and PM and PN the ordinates

of the point P: but since AN = PM, the line PM is seldom

drawn, but the position of P determined by taking AN equal
to it, and then from N drawing NP perpendicular to A x.

NP is then called the ordinate, and AN the abscissa;

and AN and NP the co-ordinates of P.

Ax is termed the axis of abscissas, and Ay the axis of

ordinates.

h2
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86. Now a cui've is a series of points, and if their re-

spective distances from two such axes rs Ay and Aa; be known,
the curve itself may be drawn. Also every possible equation

y =f{x) may be represented by a series of points ; for if it be

assumed that the values of w may be taken along the line Aa;,

and those of y be drawn perpendicular to the axis, we shall

have, when x = AN, y =f(AN), which may be represented by
some line as A^P. Hence AiV is called the axis of .v, and Ay
the axis of y and the point A the origin of the co-ordinates ;

since the values of cV and y begin at A, and are measured

from it.

87. If AN = a, and NP =
h,
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Cor. 1. The distance of a point
P from the origin, or

AP = ^/AN''+PN'' = y/w'+y-.

CoR. 2. The distance between two

points P and Pi is thus found. '

A the origin. AN = x, AN^ =
.t?, ,

NP =
y, NP, =

y,;

y
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Thus if ^S" be the pole, SP the radius

vector, SA the original position of 5'P, and

z ASP = e,

r =f{0) is the equation to the spiral.

r and $ are called polar co-ordinates.

We now proceed to investigate the equa-

tion to the straight line.

line.

90. The equation to the straight ^

A'V, Ay the two axes of x and y.

AN-^w]

NP=y\,
iPCA = e\ AB = h.

ek

B7i \ to PN, r

/

Pn BA
Then -zr- = ^rz tan 9.

Bn LA

or = tan = (i, bv writing a for tan 9 ;

.-. y = a,v + b.

Cor. 1. If the line be drawn through a given point, le£

a and /3
be the co-ordinates of the point.

Then, when c-v = a, y =
(3 ;

.•. /3
= oa + h,

and y = aw + h;

'. y
-

(6
= a(x -

a).

Cor. 2. If the line be drawn through the origin,

AB =
; and .-. h = 0;

and y=aoe is the equation to a line drawn through //,
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91. If two lines intersect, find the point of intersection.

Let y = ax + b, and y = a^x + b^ be the equations of the

two lines.

Then, at the point of intersection, the values of the

co-ordinates are the same for both lines ;

.-. ax + b = a^x + 61,

b,-b
and X =

a ~
tti

a&i — ab abi
— a^b

and y = V b =
a — a, a — a.

92. Find the equation to the line which passes through

two given points.

Let y = ax + b be the equation to the line where a

and b are to be determined.

a and /3, ui and /3i
tlie co-ordinates of the two points;

.-. j3
= aa +b (1),

and j3i=f/ai+/> (2);

.•. (i
—

j3i= a . (a
-

tt]) ;

.-. a = .

a —
oi

But •.• y = ax + 6,

and (i
= aa + b;

.-. y
-

13
= a.(x -

a) = ^
• (x

-
a).

a — Oi

93. To find the angle which two y

straight lines make with each other at

the point of intersection.

y = ax + b, and y = «i<.r + 61 ,

the equations to the two lines.
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PQR and P,QR, the lines.

From A draw An parallel to Pi?,

and Am parallel to P'R';

.'. ^nAm= PQP';

.'. PQP' = 71 Ax - mAx = tan"' a -
tan~*aj,

and tan PQP' =
1 + ffflj

CoR 1. If the lines be parallel, PQP'=0, and «-«i=0;
•. «j

= a,

and y = ax + b] . ,, , ,.
,• , are the equations to two parallel lines.

y = ax + bi]

CoR. 2. If the lines be perpendicular,

1 « —
«i

tan PQP'
I + aa^

J
1

'. 1 + «rtj = 0, and <?!
=

,

a

therefore, if y = ax + b be the equation to a line,

1

y= --x + bi
a

is the ecjuation to a line perpendicular to it.

94. Find the equation to a line drawn through a given

point perpendicular to a given line.

y =z ax + b, the equation to the given line, a and /3 the

co-ordinates of the given point ;

.-. y = r + by is the equation to the perpendicular,X

also )3
= -

^ a + &! , since it passes through (a, ^) ;

• •. (y
-

(i)
= — {x

-
a) is the equation required.

a
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95. Find the perpendicular distance of a given point

from a given line.

y = ax + b the equation to the given line, and (/3, a) the

given point ;

•• (y-/3) = --G^-a)

is the equation to a perpendicular from a given point upon
the given line.

Then if ^ be the distance required, and y^ and x^ the

co-ordinates of the point of intersection of the given line with

the perpendicular,

5 = Vi^v, - af + (iM
-
I3y = (x,

-
«) •^

x. — a
But ax^ + h = (i ;

a

'+\

.-. x^ (a^ + 1)
= a(i + a — ab;

afi + a- ab
x,=

a? + 1

a^ —ab — a^a ^ ,n i ^

x,-a = — = -r-:(p-6-«a);
a- -\-l a~ + 1

\/d^ + 1 -\/a^ + 1

where /Sj is the value of y when x = «.

96. Find the equation to a straight line which passes

through a given point, and makes with a given line a given

angle.

Let y = ax + b be the equation to the given line,

y = a^x + 6i the required equation,

j3 and a the co-ordinates of the given point ;

•• ill
-

/3)
=

^fi ('^
-

") is tli6 equation to the line.
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Let tan~'m be the given angle;

.-. tan~^w = tan~'« - tan~^«i ;

.*. tan"^a, = tan~^a - tan"'m ;

a — m
a, =

^
1 + ma'

••
(2/

- 0) = f=^ (.»
-

<•)
\ + 7na

is the equation required.

97- Find the equation to a straight line, which cuts the

axis of ?/ at a distance B from the origin, and the axis of x at

a distance A from the origin, in terms of B and A.

y = ax + h the equation to the line,

when cT = 0, y = B = .•. b,

and ^ = 0, x = A; .•.aA + B = 0; .-. a =
A

.'.y = - — ^ + B\
A

y X . .

.'.
—

H = 1 IS the equation.

THE CIRCLE.

98. The circle is a curve of which the property is, that

every point in its circumference is equi-distant from the centre.

Let a and /3 be the co-ordinates of the centre,

X and y of a. point in the circumference,

a the radius.

Then distance between two points a, /8, and .r, y

= "V^x -
a)~ + (y

-
(iy = fi, the radius ;

.-. y" + x'^ - 2fty
- 2ax + a~ + fi~

- a^ = 0,

is the equation to the circle.
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Cor. 1. If the origin be in the circumference, and the

axis of X pass through the centre,

/3
= 0, and a = a ;

.-. y^ + x^ - 2ax = 0,

or y-
= 2ax — x^.

Cor. 2. If the origin be in the centre,

a = 0, and /3
=

;

.*. y' + x^ — d^ = 0,

and y^
= a^ - x^.

TRANSFORMATION OF CO-ORDINATES.

99- In some problems it is necessary to change the

position of the axes, the place of the origin, or the inclination

of the axes ; these cases will be separately treated.

(l) Let the origin be changed,
but the axes remain parallel.

A the origin at first,

B the new origin.

P a point in the curve.

,^ > the co-ordinates of B.
BC =

/3 J

AN = X, BM = X,,

NP=y, MP=y,.

Then x = x^ + a^ and y =
yi + l^-

Substitute these values for x and y, and the equation i?-

transformed, and the co-ordinates are measured from B.
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(2) Let the axes be changed but still rectangular.

Aw^ Ay, the old axes,

Axx, Ay I, the new ones.

AN = x, AM = Xi, ia!Axi = 6,

NP = y, MP =
y,.

Draw Mm perpendicular to PiY, and Mn perpendicular to

Ax;

.-. X = An - Nn =
c^i cos

-
yi sin 9,

y = Nm + Pm =
t^i sin B + y^ cos Q. For Z mPM = Q.

(3) New axes not rectangular, but the origin the same.

Ayi^, Ax\, the new axes,

Ly^Ax^ = A,

z Xi Ax = 0,

PM parallel to Ay^,

AM = Xi, AN = X,

MP=y„ NP^y,

X = All, +nN = x^ cos + yi cos (A + 0),

y = Nm + Pm =
ci'i

sin -v y^ sin {A + 0).
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Cor. 1. If we wish to transform from oblique to rect-

angular. Since

X = jb\ cos Q -\-yi cos {A + 6), #

y = x\ sin d + y^ sin (J + 0) ;

.*. ^ sin =
x^ cos sin + ?/j

cos {A + 0) sin 0,

1/ cos =
c^i COS sin + ?/j

sin (^A + 0) cos ;

.',
2/
cos — a? sin =

2/i {sin {A + Q) . cos — cos {A + 0) sin d\

=
2/j

sin ^ ;

y cos — X sin

Again,

a? sin {A + G) = x^ sin (^ + 6) cos + y^ sin (^ + 0) cos (A + 9),

y cos (^ + 0)
=

x^ cos (J + 0) sin 9 + y^ sin (J + 9) cos (^ + 0) ;

.*. tP sin (A + 9)
—
y cos (J + 0) = a^j

sin A ;

iT sin (A + 9)
—

y cos (^ + 0)

sm^

Let (0,
= ly.Ax) ; .-. J =

(Oj
-

9), and J + =
0j ;

^ cos 9 — X sin
•'• ^^

"
sin (0,

-
0)

'

X sin 9^
—
y cos 0j

and ci? =
;

—r ——
.

sm (0
- 9J

Cor. 2. If J = 90", cos {A + 9) = - sin

and sin (A + 9) = cos 0,

and X =
cVj

cos 9 — y^ sin 0,

2/
=

tX-j
sin + ?/i

cos 0,

as in the preceding case.
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t^

(4) If the origin and inclination of the axes be changed.
Let a and /3 be the co-ordinates of the origin, and then we
must put

x = a + a?j
cos 6 + yy cos (A + 9),

2/
=

/8 + cVj
sin + 2/i

sin (A + 6).

100. To transform rectangular co-ordinates into polar,

the origin being the pole.

AP = r,

zPAN=e;
.'. w = r COS0,

y = r sin 0,

which put for x and y and the equation will be transformed.

But if the point S be the pole, y

draw SB perpendicular to Ax, and

Sm perpendicular to PN,

AB = a, SP = r,

BS =
fi, ^PSm, = e;

.-. X = AB + BN =. a -V r cos ^,

y = BS + Pm =
/3 + r sin 9.

Ex. 1. Find the polar equation to the circle round a

point S, co-ordinates a and
j3,

a^ + y'
= a^ ;

.-. (a + r cos 9y + (/3 + r sin 9y = a~ ;

.-. r^ +2r.{acos9 + fi sin 0) + a' + /3'
- «- = 0.

Ex.2. Transform {x^ + y^y = a" {x^
-

y") into polar co-

ordinates, the origin being the pole,

x'^ + y~
= r~, and x = r cos 9, y = r sin 9 ;

.'. r'' = a^r^ . (cos^0
—

sin-0) ;

.•, r'^ = a' cos 20.
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Ex. 3. Transform the equation or ~ y^
= a? into another,

the co-ordinates of which are rectangular, but the axis of y is

inclined at an Z 45*^ to the axis of a?,

w = Xi cos —
3/1

sin 9,

y = c^j
sin + w^ cos 0,

= 27r-45; cos 9 = cos 45 =
V^

-1
and sin 9 = - sin 45 = —^ ;

V2

.•. .t' =
'^i + Vx

a/2
—

?

y =
v/2

X'' —y—— = =
2tV^y^

= d' ;

a
•^'1^1

= -

THE PARABOLA.

101. If from a fixed line QDq perpendicular lines, as

QP, are drawn intersecting lines equal in

length, but drawn from a fixed point S,

the locus of P is the parabola.

Draw SD perpendicular to Qq.
Bisect SD in J, then the curve passes

through A.

Let SA = AD = a,

AN=w,

NP =
y.
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Now QP or DN = SP ;

.-. nA+AN= ^NP' + SN'' ;

.-. a + a; = y/y^ + (a?
-

a)- ;

.-. (a+x)' or (x- af + 4^aa; = y^ + (x
-

a)';

.-. y"
= '^•ax.

Cor. Let SP = r, and iASP = e.

Then r = DN =2a + SN = 2 a + r cos PSN

= 2a — r cos G ;

2a
.-. r =

a

1 + cos
~

7^
cos-

The polar equation.

THE ELLIPSE.

102. If from two fixed points S and H two lines SP

and PH be drawn and intersect, and SP+PH=a constant line,

The locus of P is an ellipse.

Let SP+PH = 2a.

Bisect SH in C, and take CA = CM = o, the curve passes

through A and il/.
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Through C draw BCb perpendicular to SH.

With centre S and radius = a cut this line in the points
B and b the curve will pass through B and 6, since HB and

Hh each = a.

Let CS : CA :: e : 1 ;

i*. CS = ae, which is called the eccentricity.

Make CN=a^, and CB = b, SF = D,

NP = y HP =
D,.,

.-. D^= SN'+ NP'={ae + xy + y\

Df = HN~ + NP~ = (ae
-

x)' + y";

.-. D'+ D^'=2(a''e'+x^+y'),

and D^- — Z>,~
= 4ae.i\

But Z> + Z),
= 2a;

. . D -/>i = 2e<2?;

.•. D = a + ex, and D^= a — ex.,

.-. D^ + i>i'
= 2 a"^ + 2 e^i- = 2 {a^e~ + o?'^ + ?/') ;

.-. y'=a'.(l -e')-x'.{l
-

e")

=
(1

-
e") (a^

-
,2?2).

CS^ a^-CS- SB'-CS^ b'
But 1 -e'= t -

a^ a^ a- a^
'

and 1-
— = 1.

6^ a^

Cor. 1. If A be the origin.

Make AN =
x^ ;

.*.
.t?j

=s rt + .r, or ,r =
a?,
— «
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a

Cor. 2. If S be the pole, and ASP = 9, and SP=r;

... (2a
-
r)2= HP' = ^iV^+ iVP2 = (2ae - SNf + r' snr0,

and SN = r cos PSH = -rcos9;

.-. 4a^- 4ar + r^= (2ae + r cos0)^+ r^ sin^0

= 4a^e^ + 4aer cos + ?'^;

.-. r.(\+e cos 0) = a (l
-

e-),

« (1
-

e^)
r =

1 + e cos 9

CoR. 3. If C be the pole, CP = r, and PCJ/ = 9.

Then cr = r cos 9, and
2/
= r sin ;

••• — 4-
— =
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Then HP' = HN' + NP- = (ea + a^f +y'= D,\

SP- = SN~ + NP- = {ea
- xf +y'=D-;

whence Df+D^=2. {a-e^ + x'' + y~),

and Di' — D' = i^aex.

Also D^- D = 2a,,

.-. D^ + D = 2ex;

.". D^= a + ex, and D = ex — a\

.'. 2a' + 2e^x'^=2{a'e^+x^+y'^),

and y2
=

(e^'
- 1 ) . x^ - {e^

-
i) a-

= {e'- \).{x''-a^)

a'
{x'-a").

Making h-=a-{e-- 1) ;

y~ x~

7 9 9
o~ a"

Cor. 1. \i A he the origin, and AN =
x^^

.J? =
.Vj + a ;

.-. a? + « =
,rj + 2a,

and X — a =
x^\

.'. x'^ - d^ = x^ + 9.ax^^

and y^
= —(2 ax^ + x^^).

Cor. 2. To find the polar equation, S being the pole,

SP^r,

L ASP = e.

12
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Then (2 a + rf - HP' = PN'+ HN'

= PN'+i2CS -SNf
= r^ sin^ + (2ae - r cos 0)^;

... 4-a' + 4-ar + r^ ^ r^ + 4a' e^- 4aer cos0;

.-. r . (1 + e cos 0) = a (e-
-

l),

«(e-'-l)

1 + e cos 6

Cor. 3. If C be the pole,

CP = r,

z PCA =
;

.-. X = r cos 0, and r/
= r sin 0,

a- 0"

cos-0 sin'f?

a~o~

= 1

r=^ =
6' cos'^0 - a" sm"^'

ah b

r =
y6- cos^e - a~ shTe \/e' • cos^0-1*

104. The asymptotes being the

axes, and the centre the origin, find

the equation to the hyperbola.

The asymptotes are lines, as CO
and Co, drawn through the centre,

making an angle = tan"' - with the

axis of the hyperbola.

CN=x, CM=iv,, and OCA=oCJ=ti,

NP = y, MP =
y,.

Draw Mn perpendicular to CAN,
and Pm perpendicular to Mn.
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Since MP is parallel to Co, and Pm is parallel to CAN,

.-. AMPm = e.

Now X = Cn + nN =
a^^ cos 9 + yi cos 6^ = (oe^ + y,) cos 0,

y = il/w — ilfm = Xi sin t?
-

t/i sin t? = (tti
—

^i) sin ;

oe' y' {x, + y,y {.v,
-
y,y .

cos- 17
— sin' t7 = 1 .

2

But tan ^ = -
; .-. 1 + tan^^ = = -^t^

a cos^ a'*

cos^ 9 1

and
sin- 9 cos^ 1

V d^ h^ + a^^

{w
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Now if the centre be the origin, the equation to the curve

is the same when (- x) and {- y) are put for x and y: con-

sequently the origin of the co-ordinates of the general equation

is not in the centre; since Dy and Ew will both change their

signs, when (- y) and (- w) are put for y and w.

To get rid of these terms, transform the equation to the

centre by putting w -\- a and y + fi for w and y, and making the

coefficients of cV and y respectively
= 0, we shall have two

equations for determining a and /3 ;

2AE-BD
and a =

/3
=

B'-4AC '

2CD-BE
B" - ^AC

The equation is now reduced to

Ay~ + Bxy+C.v- + F, = Q.

Next, to get rid of the term Bxy ; let the axes be changed

to others, making an angle 9 with the axis of x^ by putting

X = .V cos —
?/ sin 0,

and y = X sin 6 + y cos Q.

Therefore the coefficient of wy becomes

2A sin Bco%e + B (cos^ Q
- sin- 0)

- 2 C sin cos 9 = 0,

or (y/- C) sin20 = - 5cos20;

•*• tan 20= ,

an equation which is always possible, since the tangent passes

throuo-h all degrees of magnitude from zero to infinity.
The

reduced equation finally becomes

My- + Nar + F, = 0,

which may be made to coincide with the equations to the

circle, the ellipse, or the hyperbola, by giving proper values

to M, N, and F,.
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Cor. 1. If B"^ = 4fAC, a and /3
are infinite, and the curve

has not a centre.

The equation without the term B^vy becomes

My' + N/v"" + Px + Ry + F = 0.

Now 4.M.N=4.AC -B' = Oi

therefore either M or N = 0.

Let iV = ; then the equation becomes

My^ + Px + Ry + F==0.

Again, to get rid of the terms Ry and F, make

X = X + a, and y = y + b,

and we have

If/ + (2 Mb + R)y + Px+ Pa + Rb + Mh' + F =
;

to determine a and b,

-R
let 2Mb + R=0, or b = —-

,

Rb + Mb"' + F
and Pa + Rb + Mb^ + F=0; .-. a = ^ ;

and the equation becomes

My^ + Px = 0,

the equation to the parabola.

If M = 0, then we shall have

Nx~ + Ry=^0.

Cor. 2. If My^ + Nx' = F...(l) be an ellipse,
find the

axes.

The equation to the ellipse is

a^y' + b'x~ = a"'b' (2);

let h be such a quantity as multiplied into the equation (l),

will make the terms identical with those of equation (2) ;
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.\hM=a\ hN=b\ and hF=a'b-;

F
.-. h'MN=a'b~ = hF; .-. h = MN

F If f If
N N M M

106. We have assumed that

to prove this we must find M and N in terms of A, C, and R.

By putting

X = X cos 9 —
y ainO in the general equation,

and y = r sin 6 + y cos ;

Jf = ^ cos- - 5 sin cos a + C sin'^ ;

A^ = ^ sin^ + Bsinecos9+ C. cos^ ;

.: M + N=A+ C,

M- N=(A -C). cos 20- 5. sin 20.

-B
But since tan 20= -,

A - C

cos 20= —7 ,
and sin 20 =

^(^ -
c)^ + B'

'

a/(j - cy + B'
'

^_^^ (A-Cy + B^-

^^^j_^y^s.;
V{A - cy + B'

.'. 2M=A + C+ \/(A - cy + B\

2N=A+ C - V(A - cy + B^ ;

.-. 4MN = (A + cy - {A - cy - B'

= ^AC- B\

Whence, if 4^AC > jB^ M and N have the same sign,

if 4-AC< 5% different signs,

= B^, either M or N must = 0.
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CISSOID.

107- ^Q-S is a semi-

drcle.

Take AN and BM equal.

Draw the ordinates NQ,
MR.

Join AR cutting NQ in

P. The locus of P is the cissoid

AN = .V

NP = y

AB = 2 a

B

Now
AN' AM' AM-' AM
NP' MR' AM. MB MB'

X 2a — ,v

or — =

f-

X

^3

2a — A'

CoR. The Polar Equation.

AP=r, LPAN=e,

X = r cos 0, y = T sin 9,

y^ sin-Ox r cos 9

x^ cos'9 2a — X 2a —r cos 9
'

2 a sm^9 = r cos 9 (sm^9 + coh'9) ;

sin 9
r = 2a

cos 9
sin 9

2 a tan 9 . sin 0.
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THE CONCHOID OF NICOMEDES.

108. The line CP revolves

round a fixed point C, cutting the

line ARN : RP is always of the

same length ;
then the point P will

trace out the conchoid.

Let RP = AB = a, AN = x,

CA = b, m =
y.

MP'- AR~ RN' RP'-NP
CM' CA' NP- NP~

w
(b + yf y'

... y*+ ohy'+ (b'+ x' - «'0 y--2a~by - an'= 0.

Con. Let CP = r, ^ PCM = 6,

r==CP=PR+ CR = a +
cosO

109. AQB is a semi-circle,

and NP is taken a fourth pro-

portional to AN, AB, and NQ.

The locus of P is the

" witch."

AN = w, AB = 2a,

NP = y; .-. NQ = \/2a.r -
x',

and .V : 2a :: \/2aoc -x^iy;

2 a \/2 a CO - x'

y= =2a sj'-
2a - X

X
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110. The Logarithmic Curve.

In this curve, the abscissa is the

logarithm of the ordinate, or if a be

the base of the system, the equation
•"

to the curve is ?/
= a"*,

.-. AB = a'= 1, m

or the ordinate through the origin is always unity.

* It is obvious that as the abscissa increases arithmetically,
the ordinate increases geometrically.

111. The Quadratrix of Dinostratus.

While the ordinate RN of the quadrant

AQB moves uniformly from A to BC^ the

radius revolves from CA to CB, cutting ^A'
in P: the locus of P is the curve required.

AN = w, CB=l,
NP =

y, z QCA = e.

Then e
TT

,v : 1 ; .-. e =
ttx

PN
CN

— tan Q ;

y TTA'
or = tan— ;

I - oc 2

y = (\
-

x) . tan
TT.V

Cor. When x =
], y = Cb = -

•K

112. If RN move as before, and a line as

QPM parallel to AC move uniformly from AC,
the intersection P of RN and QM will trace

the Quadratrix of Tschirnhausen.
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Here AQ = ~, and NP = sin JQ .

ttA'
'. y = sin is the equation.

113. The Cycloid is the curve described by a point in

the circumference of a circle, which is made to roll along

a horizontal line.

Let BQD be the circle, the centre ; and when it's di-

ameter is perpendicular to the horizontal line at A, let the

point P, which generates the curve, also be at A-

Then Ab must = Ph, since each point of Pb has been

in contact with each successive point of Ab.

Let AN=.v, BD = 2a,

NP^y, ^ QOB = e ;

.-. X = Ab - Nb = aO - a sin 6 ^ a (0
- sin 0) ;

.•. y = bm = a ver. sin = a (l
— cos 0) ;

6 cannot be eliminated between these equations.

CoR. 1. To find the differential equations.

dtV

d^="""^' d0
= o ( 1

— cos 0) ;

dy d0 sin

doc dec 1
— COS0

d0

a sin

y

5in(9 = V^I -cos'a = \/(l-cos0)x(l+cos0)= \/- x ^^^—^
;
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. a sin d = vS ay —
y' ;

dy s/^ay-f
div y

CoK. 2. To find the equation from D.

DM =
00^, .-. Xi=2a-y,

MP =
:v, , y,= AB - a ;

dyx dx f y

2 a - .r

Cor. 3. The equation from D may be also found from

the properties of the curve.

Join Ph and QB^ then these being equal and parallel,

PQ = Bb = AB -Jb= AB -Pb= DQ.

For AB is equal to the semi-circumference DQB.

Let DOQ =
(p.

Then y = PM = MQ + PQ = a sin ^ + «^ = « ((i + sin 0),

r = i>ilf = a ver. sin = a (l
- cos 0),

and eliminating d) by differentiation we have the equation

previously obtained.

THE TROCHOID.

114. The trochoid is the curve traced out by a point B
in the circumference of the circle BRb, which is carried

through space by the rolling of the outer circle AQ upon
the horizontal line.
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P a point in the trochoid. Thi-ough P draw a horizontal

1
L joR = e.

A. ]sr

line MRPm. Take O and o the centres of the circles.

Draw ORQ and oP.

Then Pm = RM, and z AOQ = Z A^oP.

Let OA = a, AN =
c?;]

OB = b, NP =
y\

Then it is obvious that arc^Q=^^^;

.-. w = AA^ - NA^ = a9 - h sin 9,-

y = NP =
Oil, + om = a — b cos 9.

^
b

Let - = e ;

a

.'. ,v = a (9
~ e sin 9),

y = a{\
— e COS0).

If e = 1, that is 6 = r/, the trochoid becomes the common

cycloid and their equations coincide.

115. SPIRALS.

(l) The spiral of Archimedes. In this spiral the radius

vector varies directly as the angle described,

or roc0; .-. >• = a^ is the equation-
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Its equation may be found from the following mechanical con-

struction :

Let the line SA revolve uniformly
round S^ while a point P moves uni-

formly from S along ^S*^, then P will

trace the spiral of Archimedes.

Let Z ASP = e,

SP = r;

and let a = value of r when = 2 7r;

9a TT

a
. r = — 9 = m9 by putting m =

a

.TT •ZTT

(2) The logarithmic spiral. Here the angle described is

the logarithm of the radius vector, its equation is r = a^.

This curve is also called the equiangular spiral, since the

angle at which it cuts the radius is constant.

(3) The hyperbolic spiral. In this spiral as the angle
increases the radius vector decreases, and its equation is

a
r = -

, or 6^ >• = a.
u

(4) The lituus so called from its form,

1 ^ «•-

Here r oc —~= , or = — .

^9 r

(5) The spiral of Archimedes, the hyperbolic, and the

lituus, are included under the general equation

r=a9",

as we shall see bv putting n = 1,
-

1, or -,
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(6) The involute of the circle is described by the extre-

mity of a string which is unwound from the circumference of

a circle*.

A the point from which the string began to be unwrapped,
QP the string once coincident with the arc AQ^ and therefore

= JQ; PY a. tangent to the curve JP or to the involute, SY
perpendicular to the tangent, join SP.

SP=r\

.-. SQ = PY = ^/SP~ - SY' ;

a- = r- — P
2 .

p~ = r- - a^, is the equation.

CoR. If = sec-' - = PSQ, and 9 = i ASP,
a

e + (p
= Vr^ — a"

a
; .: = y/r^ — cr — sec

a

* The figure is drawn inaccurately, AP should be perpendicular to the circlfe at A.



CHAPTER IX.

TANGENTS TO CURVES.

116. Def. a TANGENT is a line which has a point in

common with a curve, and which, of all the straight lines that

can be drawn through the point, approaches nearest to the

curve.

PPi the curve.

QPT the tangent of which the equation is required.

AN =

NP

A the origin of co-ordinates.

Ay and Ax the axes of y and cc respectively.

>, and y -fi-v) the equation to the curve,

and
2/1
= AoTi + B the equation to the line ;

• •• y = Ax + B, because it passes through P;

•• iVi-y) = A.- (a?i
-

<x)
is the equation to the line

by eliminating B.

K
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Let NN, = h; .: N,P, =f(x + h)=y+-^h + Ph\
d 00

and NxQ.- A {x \- Ti) ^ B = y -^ Ah \

.'. QP, = lA-^]k- Ph\
\ ax)

And QPi the distance between the curve and the line, will be

the least when the term involving h vanishes ;

dy
that is, when A = -—

.

ax

For if A be the distance between the curve and any other

line where A does not = 0,
,
ax

( ^y\A = ± mh - Ph^, where m = ± A.- —-
;

V dx)

A ± ink - Phr - ± tw - Ph m .

= — = CO , when A = 0,

^^^-f^^4y^x'
-P/r -Ph

or A is infinitely greater than QP^ ;

dy
therefore when P 7^ is a tangent A = ——

'•>

dx

QfV
and .•• (yi

-
y) = -^

{x^
—
x) is the equation to the tangent.

Ct 00

CoR. 1. From P draw PG perpendicular to the tangent

and meeting the axis of x in G, it is called the normal, and

since if y = ax + hhe the equation to a line, y = x + hy is

(Jv

the equation to a line perpendicular to it ;

d 00

.-. t/i
=

<J?i + 6i is the equation to the normal,
dy

and .•.
(?/i -y) = - -—

(a?,
-
x) since it passes through P.
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Cor. 2. To construct the equation to the tangent,

dy
let Xi = 0\ .'. y^ = AD = y — x—

,

dx

._ dco

«, = ; .'. — .i\
= AT = y .v.^

dy

Find therefore from the given equation 2/ =/ G^')
the value of

— in terms of x or y, one or both ; substitute this value, and
dx
we shall find AD and AT. Join TD; this line produced is

the tangent.

dv
Cou. 3. Hence since (^i —y) = — (^1

—
<^)

a oc

is the equation to the tangent, and

dw
y^-y =

-di^^^-^)

is the equation to the normal ;

dv , dx „_
.-. — = tan PTN, and - -— = tan PG.^?,

da; dy

or — = tan PGN.
dy

CoR. 4. NT and NG are respectively called the sub-

tangent and sub-normal, and are useful in drawing the tangent
and normal,

- ,T^ ...y. ,r^ dx dx
and NT = AN + AT = x + y x = y -—.,^

dy
^
dy

and from similar triangles NTP, PGN,

Nr- f dy
^^-^NT^—Tx^yj^v^

dy
K2
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Hence to draw a tangent or normal, find the values of NT
or NG. Join P, T, or P, G, and we have the tangent or

normal required.

CoR. 5. The length PT of the tangent

= VPN' -^ NT' = \/f ^y'~^=y \/ 1 +~:
dy ay'

the length PG of the normal

^y/pN^VNG^ = \/Wy^. = y\/i + ^,^ax" dx^

CoE. 6. The tangent of the angle which the tangent

makes with the axis of x is ——
; whence the angle at which

dx ^

the curve cuts the axis may be found.

For the angle which the tangent makes with the axis at

the point of section will be the same that the curve makes.

Find therefore the co-ordinates of the point of section,

and substitute them in the expression for ——
, and the resulting

CLOG

value will be the tangent of the angle required.

Ex. 1. Let y = — be the equation to the curve.
1 + a?

Here if iX- = 0, y = 0-,

and therefore the origin is the point of section,

^ dy 1 1
,

and -— = 7 -,
= -

, when t' = ;

dx (1 + xy 1

.-. tan = 1 = tan 45" ; .-. = 4.'5".
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Ex. 2. Let the curve be the cycloid.

dy ^2a-y I'ia
Here —- =

^=
— = V 1»

dsc y/y y

which is infinite if
^Z
=

; or at the origin the curve cuts the

axis of oe at an angle of 90''.

117- Find the length of the perpendicular from the

origin upon the tangent, and the angle which the line from the

origin to the point of contact makes with the tangent.

Draw AY perpendicular to PT.

T A N

Then from similar triangles AYT, NPT,

AT xNP , dx
AY — =

( V <*')PT ^^
dy

^

y
y- OB-dy^

doc

y
^ / dx^ ^ / dy'^

VI +p^ dx

dx X

dy y y
-

px'

And aAPT= lTPN - /: APN = tan-' . tan"'.-;
dy y ^ '^^

. . tan APT = —^ ^ = ^—^ . .V *"5'
"

X dx X + py 'd!L - ^
y ^y -//r/cjp^ ^

Ex. Let the curve be the circle, and the origin m the

centre.
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y^ =^d^ - x^.
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whence <r = 5 7^^

^rjar^^VlZfl, if ^« = a^ + /3^

The double sign shews that two tangents can be drawn from

the same point.

Cor. If ^ = r, or let the point be in the circumference ;

.\x = -— = a, and y(i = y^; .-.
2/
=

/3,
r

or the tangent touches the circle at the given point.

119. Draw a tangent parallel to a given line.

Let A - tangent of the angle which the given line makes

with the axis of a; ;

.•.
— = A, since tangent and line are parallel ;

and y^— y = A . {x^— x) is the equation required.

If it pass through a given point, the co-ordinates of the

point may be put for x^ and
?/j,

and then from the given

equation to the curve, and from that of the tangent, the point

to which the tangent is to be drawn may be found.

120. Asymptotes are tangents to the curve at a point

infinitely distant from the origin.

These may be drawn, if the values of AD or AT, or of

both remain finite, when either x or y, or x and ?/, are in-

finite.

Asymptotes may be thus constructed :

(1) If AD and AT he finite, join T, D, and the line

produced is the asymptote.
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(2) If AD be infinite, and AT finite, the asymptote is

perpendicular to the axis of x, passing through T.

(3) If AD be infinite, and AT = 0, the asymptote co-

incides with the axis of y.

(4) If AD be finite, and AT infinite, the asymptote is

parallel to the axis of a? ; and if AD = is coincident with it.

Example. Draw an asymptote to the hyperbola.

y
__ 6 / „ ^ dy h a + X
Here y = -\/ 'iax + w\ and —- = -

,^ dy b i , a + X \ hx
AD = y

- X-^ = -
.{\/2aX + X^

;;,

:> = =
dx a

[ \/2acr + ,j?«J \/2ax +a^

h
s= 6 if ci? = CO ;V 2a

1 +—
X

dx llax -t X ax a
AT = y X = X = = = a,

dy a + X a + X a^ 1+-
X

when 0? = CO ;

.•• ^ 7^ =
-^ major-axis, or T and C coincide.

Join CD, it produced, is the asymptote.

121. This method is frequently difficult of application.,

and the following is more generally useful.

If possible, let the equation to the curve be put under the

form

y = Ax + B + - + — + - + kc.
X X X

then it is obvious, that as x increases, the terms after S
decrease ; and when x becomes infinitely great, they vanish,

and the equation to the infinite branch of the curve is

y = Ax + B.
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But this is the equation to a straight line cutting the axis

of 7/ at a point y = B, and x = 0, and making an angle
= tan" 'J, with the axis of x. Hence it appears that the

infinite branch of the curve is coincident with the line de-

termined by the equation y = Ax + B.,

C D
.'. if y = Ax + B + 1

—- + &c. be the equation to a curve,
X x"^

y = Ax + B is the equation to the asymptote.

CoR. If the form of the expanded f{x) be

D E
y = Ax^ + Bx + C +— + —

, + &c.
•^ X x^

the asymptote is a parabolic curve, of which the equation is

y = Ax^ + Bx + C.

EXAMPLES,

(l) Find the equation to the tangent in the ellipse.

The centre being the origin.

if x^

W '

"'

dy^

dw
h^

X

ar y
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a' y

^
+ feS _ y» ;

A 4'••• yyi-y
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Here y~
=

or

9.a — aa

dy J 3x'^.{2a- x) +00^ _al^ (6a -Sa?)

(2a
-

w)'^
2

'

(2a -a?)=^»rfS
=
4

.-. sub-normal = y
dy x~ {3 a

—
x)

dx (2 a -xY
d 11

dividing y
—

^y y^-,
CLW

I dy 2a — X x^(3a-x) (Sa — x)

y dx x^ (2a
— xy X . (2a

—
x).

X {2 a — x)
•. sub-tangent

Also •.•

lia — X -

dy x~. (3a — x)

dx y. (2a
— xy

The equation to the tangent is

x^ 3a — X
(yi

-
y)

—
(tPl

—
X),

y (2 a -x)

2
or (3 a — x)

or 2/2/1
-
y

(2 a - x)
Y' • \^\

~
^)''>

x~
••• yyi =

\(3a—x') (x^—x)

2/1

2a — X
\

x^

(2 a -xf

\/X

2a — X -1

(2 a
- xp

Making y^ and x^^ successively
= 0,

{(3a
—

I??). a?i
—
ax^ ;

\(3a
—

a?) a?i
—
ax^.

^^ a .X
-, .^ [ X \AT =

, and JZ) = -Vi = a.
3a — X \2a — x)

Note—PTD in the figure should be a straight line.
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dy
If <r = 2a, -— and «i are infinite; there is therefore an

ax

asymptote through B perpendicular to the axis of x.

(3) Rectangular hyperbola referred to the asymptotes.

a^ a^
Here iix = — ; .*. y =— ,

dy a^ I y

dx 2 a^ X

y
yx-y=-- G^i

-
a;),X

xy^ -xy = -yx, -yx,

xyi+yxi = 2yx = a';

,^1
= 0, yi

= AD = —
,

yi
= o, x, = AT = —.

y

^ _ AT. AD a'
, ,. , .

The ADAT = = = a"*, which is constant.
2 2xy

(4) Let ^/y = v a — 's/x ; find the equation to the

tangent

dy \/y
dx y/,X

\/y ( X

y/ X

Let -r,
=

; .-. AD = y +—j— =y + V 't^y^

y/x

y \/x /
—

2/,
= 0; .-. AT=x +

Vy
AD + AT = x + 2 \/xy + y = (^/.^' + Vyf = «•
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(5) Draw a tangent to the cycloid

AN =
cc,

NP =
y,

JB = 2a.

dy ^/^aoo — x^
Then

X

y
y.x

dx

dx

dy \/2ax - a^
p

NP.AN

i. e. NT : NP :: AN : NQ;

and z iV is common to As ANQ, TNP; .-. they are simil

4

and lPTN=£QAN;

.-. the tangent TP is parallel to the chord AQ.

Also since z AQB is always = 90, PG is parallel to BQ

(6) Draw a tangent to the conchoid

xy = {a + y) \/h' - y'^ ;

ar.

x =
l^-

+
l)y/b^~-y\^y

dx a J-
r,

(« + «/)— = —7,vb -y — ,

dy y ^W - f

dy yV^^-f



158 ASYMPTOTES.

(7) Draw an asymptote to the hyperbola

h , h ( 2a\2

a a \ .X

b , - 2a l.(-l._i) 4^2 5
= i-.r{H-l— + ?—12 ^-.-~-+ -+kc.]a ^ '^ X 1.2 x^ or '

b
,

I a~ B
= ± Ax + a .

— +-+&C. (,
a 2 X X''

"

and therefore y=^ -
(x + a) is the equation to two asymptotes;

and since if a; = 0, y — ^b-^

and if ?/
= 0, x = —

a,

both will pass through the centre, and they will be equally
inclined to the axis of x.

(8) Draw the asymptote to the curve

y^
= aP' + ax~ = x^ll + —

)
;

( a\^ .
^

a A B
.-. y = x[l + ~\ = ,j;

1
1 + 1

.
- + — + - + &c.

V xj ^ -^ X X- X' *

a A B
= 07+-+ — + - + &C. ;

3 X x^

V*. y = X + - is the equation to the asymptote which cuts the

a
axis of X at an z = 45", and at a point x = .

(9) Let y .{ax -r h")
= x^, draw an asymptote,

aP 1 x"
, .

b"

y = = by puttmff — = c
ax + b- a X + c a
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a c a ^ w or or
1 + -

X

x^ ex C' c
+ + &c. ;

a a a ax

ay = x"' — ex + c- is the equation to the asymptotic curve.

This being put under the form

ay -ic'=a;'-cx + -= \x -^\
;

or
yx--^ =^\y-i-a

shews that the curve is a parabola, the axis of which is

perpendicular to the axis of x, and the position of the vertex

determined by making

c c

Xi=- and i/i
= ^ — ; the latus rectum = a.

(10) Let the equation be ay^ -hx'^-\- c^xy = 0.

Let y = ^x;

.'. aa?*^* - bx^ + c^x^z = ;

.. ax^z^— bx^+ c^z = 0;

• />!*
• • tc —

and a? will be infinite when b — a«* = 0,

or ^ = \/ -
,

and then y = xz = x \/ -
,

a

is the equation to the asymptote.
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(11) Find when the curve, which is the locus of the

general equation of the second order, has an asymptote.

Ay~ + Bjcy + Cv^ + Dy + Eoo + F =

is the general equation,

or y^+ 2 (ax + b) y + cw^ + ex +/= 0,

dividing by J, and making the proper substitutions ;

.-. y^+ 2(ax + b)y + (ax + bf = (a^-c)x^+ {2ab -e)x + b^-f,

and y=- {ax + 6)
± \/(a^- c)x^+ (2ab - e)x + (b^-f) ;

J(„
+
^)i ^/(„=_e) + ?^

f 6 r~— f 1 2a
x{a+ - i Va'^-cn + — 7-

[
a? [

2x {a

b-e V'-n
+

X X'

ab-e A B\
—

c) x^ a^

/ ,^ab—e A
= -

\ax + b i^ \/ d~ - c {x + ^
—

^
— + — + &c.) |

;

and therefore the equation to the asymptote, which is of the

form y = mx + w, is

/ 2ab - e\

y=-(a^^^^)x-[b^--^,
B' C

which is possible when a^ > c, or —— > —
,

or B^-^AC>0,

which is the case in the hyperbola.

Cor. If a''^=6', the equation is of the form

2/
= -

(ffc^ + 6)
± V mo?. \/l+-...

which cannot be reduced to the form y = Ax + B.
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122. Find the locus of the intersections of perpendiculars

drawn from the origin upon the tangent, with the tangent.

Let y =f{x) be the equation to the curve;

•'• iVi
-

y)
= i^\

~
''^')

^^ ^^^ equation to the tangent,

fj If*

and Vi = x^ is the equation to the perpendicular from the

dy

origin upon the tangent.

J dy J,

Between these three equations eliminate y, x, and ——
,
and

^
d.v

the resulting equation will contain y^ w^ and constant quan-

tities, which will be the equation to the curve required.

Ex. Let the curve be the hyperbola, and the origin the

centre ;

y- x^ dy W X

b' a^ dx a' y

and .-. Wj = I'-x^ from equation to perpendicular;
h"

h* x" h^ \o'^ x'j b^ b"x"
''

y^ a' y- a' fh' h~\ a? a

.'. X' —

X

a~x{'
— o yi

a^x^

1
^' Vi -%iand

f/
= .

— X =
a Xi \/arxx —

h^yx

xx^ yy^out —
2 W~ ^ '^ equation to tangent;

cC' b'

'\/c?x^ — ly^yi

.'. Orf + vf)-
= a^xy^

-
b'^yil

L
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Cor. If a = 6, or the hyperbola be the equilateral,

(,^1 + iff = «' {^\^
-

y\)- The equation to the lemniscata.

Prob. P any point in a curve, PG a normal; let Pp
make with PG the angle pPG = z APG.

A. ST

Find the equation to Pp

AN = .%^

NP = y

G p

a?i and t/i
the co-ordinates of Pp ;

dx
= p •'• {y\-y) = ^ • ("^1

~
'^) ^^ ^^^ equation,

where J = tan Ppx.

But Pp.r = APp + P^G = ^APG + P^G,

and 27iPG = 2(7r
- PJG - JGP) ;

.-. 'iAPG + P^G = Stt - PAG -2 AGP.,

V 1

or P«.'r = 27r-tan-^- - 2 tan'^ - = (Stt
- M) ;

.-. A = tan (27r
- ilf )

= - tan iW

A' 1

F_
2

?/ P
x' 1

y 2»

<r p — 1

2/ 2p
1 -

X p^
— 1
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2pa;
—
y (l

-
p')

2py + lV (l
—

p")
'

- 2px -y(\- p") ,and .-. y^-y= -^ ^ ~ (w, -
cc).

r. Ti- ^ J 2.(py + w) {px -
y)

Cor. If ^,
=

a',
= Ap = -^^ ,'' ./

2p.v
— y (1

—
p')

This is an optical problem, giving the focus A and the

equation to ray AP, to find the equation to the reflected ray ;

p is the intersection of the reflected ray with the axis.

EXAMPLES.
i2

(1) Let 2/"
= «'"'^'; NT=naj; NG =—

nx

a
If 71 = 2, the curve is the parabola ; NT = 2x, NG => -

(2) Let the curve be the witch :

NT =
; NG = -.

a X'

(3) The focus of a parabola is in the centre of a given

circle, its vertex bisects the radius, find the point and angle of

intersection of circle and parabola.

(4) Shew that the normal to the curve defined by y-
= 'i-ax^

4
is a tangent to the curve defined by y"

^ (.r-Sa)^; and

that when the curves intersect x = 8a.

(5) If ?/'-
= 4a

(cJ7 + a) be the equation to a parabola,
the origin in the focus, shew that the points of intersection of

the tangents, and perpendiculars from the focus, are determined

by the equations

y
x^

= - a, and ?/i
= -

•

l2



CHAPTER X.

THE DIFFERENTIALS OF THE AREAS AND LENGTHS
OF CURVES : OF THE SURFACES AND VOLUMES

OF SOLIDS OF revolution: spirals.

123. One of the applications of the Integral Calculus

is to find the areas of curves included between given ordinates/

the lengths of their arcs, and the surfaces and contents of

solids.

The solids of which we shall treat are called solids of

revolution, since they may be supposed to be generated by
the revolution of a plane figure round a line, thus termed an

axis. Hence it follows that every section perpendicular to the

axis will be a circle, the radius of which is the revolving or-

dinate, and every section made by a plane passing through
the axis will reproduce the original area.

Considering the areas and lengths of curves, and the

contents and surfaces of solids, to be functions of one of the

quantities x or y, we can, by the Differential Calculus, find

equations between the differential coefficients of these functions,

and expressions containing x or y^ by which we shall hereafter

obtain the values of the functions themselves.

We shall find it useful first to establish the truth of the

following Proposition.

124. If J + Bx, Ai + BiX, and A + hx, be three alge-

braical expressions taken in order of magnitude, viz.

A^ + BiX< A + Bx, but > A + hx,

then shall A^
— A.



DIFFERENTIAL OF THE AREA. 165

For if A do not equal J,,

since A + Bx > Ai+ B^x.

and Ai+ BiX>A +bx;

.-. A -A,+ (B,-B)x is>0,

and Ai - A + (B^- b) x is > 0,

whatever x be ; but if we make x = 0, we have

A - ^, >o,

and A^- A >0;

or both {A -
A^) and - (A -

A^) are at the same time >
an absurdity, unless Ai= A.

125. Let AP be a curve, and

y=f(x), the equation to it, where

AN = X, NP = y ; and let A = area

ANP.

Then — =
y.dx

Let NN-i = hi- Complete the paral- a
lelograms QN^ and PN^.

Then the area P.PNN, is >CDPN„ <CD QA^...(1).

Now u4 depends upon x, for as <r changes, A changes ;

.-. A = ANP =
(p (x) ; and .-. AN,P, = (p{x-^h);

. . , ^ dA ,
d-A h^

by Taylor''s Theorem ;

and n3PN^ = yh,

njQN, = hx P,N, = h.f{x + h)=h \y+ph + PhH, p=-~;dx

there'fore, dividing by h, we have by (l),

dA d'A h
^ , „• „

-r- + ^—7 + kc.>y<y + ph + P/r;
dx dx' 1 .2

u V I
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i. e. y -^ph At Ph^
dA (PA h

+ &c. and y
dec dw'- ] . 2

are in order of magnitude ; whence, by the Lemma,

dA

dw
=

y-

126. If s = length of the

curve AP.,

ds / dy~

dx dx-

Draw the tangent PM, and

chord PP'.

Then

arc PP' > chord PP' < PM + MP, .

7 72 7 2

But arc PP'=AP,- AP=(h {x + h) -d) (x)=—h^-^ -^ + he
' dx dx- I . 2

chord PP'= y/Pm'+ {P'mf^=\/K'^ {ph + PJrf

= h ^/(i +f) + opph+ P~Ji\

PM = ^Pm^ + Mm'"^ - y/lf+pVi' = h\/r+p\

MP, = MN, -N,P, = (y+ph)- (y+ph + Ph^)=~Phr;

whence, dividing by h

ds d^s h
-r- +
d'lc dx'' 1 . 2

+ &c. >y/l +p-+2Pph + P-h- < ^/l + p-- Ph

Pp
>\/l +p^+ /

- h^Uc.<\/\j^rr-Ph ;

.V --i = ^i+^- = V 1 +
^

c?.r

,2

•
P, TO = P, iV,

- PA^ = y + ;>/; + Ph- -~ y ^ ph \- Ph\

Mm = Pm . isn MPm = h . im PTX = h .
—

.

'' ^

'^^'- + iUL +^)i-t^ * u7^ f^^t^ V^»^Y
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127. If V be the volume of a solid of revolution APp,

Let AN = w\
dV d~ V^ h^NP =y); .-. JPp =/(,» + /,) =F+—/i+ + &C

Then the solid Ppp^ P^ is > cylinder PMm^p,

< cylinder RP^p^r ;

. dV d'V Ir
^ „j

1. e. -T-h + ^-^, :
—- + &c. > Tryh,

IX dx- 1 .
«

<7r(y + ph + P/ry^h,

dV d'V h ,

or ^ + -^^ z
—

7 + &c. > Try- < iriy +ph+ Ph),
dx daf 1 . 2

or > Try- < Try- + ^Ttpyh + &c.

whence — = Try.
dx

Prop. The surface of a truncated cone, of which the

radii of the greater and smaller ends are a, h, and the slant

side 6',
= 7rs{a + 6).

Let / = length of cone, radius of the base = a,

I.- h;
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therefore, surface* of frustum

= Trla - irl^h
= tt {sa + l^{a -h)\,

but Z or /jH- 5 :
/j

:: a : 6;

.'. s :
l^

:: a — b : by

.'. sb = l^{a
—

b) ;

.-. surface of frustum = tts . (a + b).

128. If .S'= surface of the solid of revolution JPp,

dS
da)

= 27ry
d,v^

AN =.r^

NP =y
JP =s

NN, =
h]

Draw the tangent P3I, and chord PP'.

* The surface of a cone when unwrapped coincides with the sector of a circle,

the centre of which is the vertex of the cone, and radius the slant side, and arc or

base, the circumference of the base of the cone.

But area of sector = ^-
'- =

^ circumference of the base of cone x slant side ;

or if (.?) be the slant side, and (a) the radius of the cone's base,

convex surface of rone = h . 27r«r.< = Trrc.
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Then, surface generated by arc PP' will be

> than that by the chord PP' ,

< by PM and MP'.

Now chords PP^ and PM generate truncated cones, of

which the surfaces respectively are

7r{PN +P, N, } PP', and tt {
PiV + MN, ]

PM ;

and MP' will generate a circular zone = iriMN^ — NiP^) -,

and the surface generated by arc PP,

dS d^S h"
= ^r-h->r-— + &c.
ax d.v~ 1 . 2

But {PN+PiN,\PP'
= (2y + ph + Ph') . \/A' + iph + Phy
= (2y + ph + PIr) !i\/l +p- + Mh,

Mh = terms involving h ;

and (PN+MN,)PM •

= {2y + ph) . \/h^ + p'li'
= {2y + ph)h \/l + p^,

also MN,'-N,P,'

= (y+phf-(y+ph+ Ph")- =-Ph~(2y+ 2py+ Ph^)

= - N/r, by substitution ;

•. +—^ + &c. > 7r(22/ + ph + Ph^) \/l + p^ + Mh
dx dx 1 . 2

< 7r(22/ +ph)^y\ + p^
- Nh

> 'iTvys/ 1 +^" + ii//i+.terms involving A,

< ^Tryy/l +p' +ph\/l +p^-Nh

/ yMh> 2 7r2/V H-JM- +
—^=^ + &c.

•s/i +p'

< 27ry\/l+p' + ph\/l +p^ - Nh:,
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dS
n/ 1 + p-"

= 2 7rtJ

129. The expressions that we have just obtained, and

those of the preceding Chapter, are only applicable to the cases

where the equation to the curve is known in terms of the rect-

angular co-ordinates; we shall now find corresponding ex-

pressions for the perpendicular upon the tangent, the area and

length of a curve, &c. when referred to polar co-ordinates ;

that is, when r = f{0), or p =f{T), p being the perpendicular
on the tangent, r the radius vector, and the angle traced

out by r.

First, to find the expression for the perpendicular on

the tangent in polar curves.

SN = X, SP = r,

NP =
y, SY = p, and lASP = 0.

Now, Art. 117, SV = p

dy
dec

das'^

But ,x = SP cos PSN = - r cos =/(0),

y^SP sin PSN = + r sin =
(0),

dy

ana — = i -^ i — =
,dx \ddj \dxj dw

dO

dw

d0

P

dw dy
•^

d9 dd

/d.^ df
de^ dO'

^ dw
, ^ ^ dr

But -—= + r sni f?
_ cos .

—-
,

du dv

dy dr
and -f- = r cos + sin (?.-—;

dO cI9
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•'•
2/ ^7^

- -^ ^T^
= '" sin-0 + r cos-0 = r,

~r A •

P

whence p may be found in terms of ?• and 9; but the

formula may be put under a form more convenient for practice.

Thus,

_ 1

^

dO' 1 1 c^r^

I 1 du dr

1 ^ du~

f dff'

Example. Find the value of p in the Conic Sections.

m
r =

1 + e cos
' where m = X latus rectum ;

1 e
.". U = (-

—
. COS0,m m

du ^
• n.-— = . sm ;

dd m

du^ 1

^*' + 3^o
= —

-{l +2ccos0 + e'i

—
,

. (2w? ?t
- 1 + e-) ; •.• e COS = mri - \ ,

m
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1 (2m -
r(l -e')l

.-. p^

m^. r

2m — r(l —
e~)

mr
(1) In parabola, e=l; .-. jf = — ,

and m = 2;SA;

. SY' = SP.SA.

(2) In ellipse, e<l; 7n = — ; l-e- = —g;

b4

a
r

6-r

^
b'^ h^ 2a -r

Q — r
a a?

b'

(3) In hyperbola, e^ > 1 ; e^ - 1 = — :

• '• p =
7-; ^

= ~
'

2m + r(e^-l) 2a + r

and therefore in ellipse and hyperbola, SY^ =—
jz^
—

Cor. 1. Since if * = arc of a curve,

dx dor

If 5, X, y be functions of 0,

ds ds dd dy dy dd— ^
, -, • ";;

—
, and — = ~~rz •

~^ •>

dw dO dx dx dd dx

d^_^di^^^r;;d?

which is the differential coefficient of s=f(9)-
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Cor. 2. Assuming the expression p =

1 1 \ dr-

li
=

:7.
+

r

X/ r" + -—

^2 ^2 ^A ^01^

^^' .Wl n ..^'-Pr* = r .

d0^ \p' rV p^

dO_ P

dr ry/r'^
—
p^^
*

whence given 0=f(r), we may find p =
(p(j).

ds ds dr
Cor. 3. Smce 37^

= 3- x -rr. ^

dfj dr du

ds / ^
dr' dr / ^

dG'

ar a r r- - p

dA r~

Cor. 4. If J = area ASP, -rr = —
d6 ~

For ASP = ANP - ^iVP = ANP -^ ;

2

dA dx ^ ( dx dy\ , (
dx dy\

= lr". (Alt. 129.)
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130. To draw a tangent to a spiral.

P the point to which the tangent is to be

drawn. y

TS the pole. Join SP. Suppose PT to

be the tangent. Draw SY perpendicular to

PT, and ^7" perpendicular to PS.

ST is called the sub-tangent.

And ^'r = ^P.|^=-7==^ =
alsor-.^.PY s/r-j)^ dr

Find therefore from the equation to the spiral ^
,

or

clB
r^.— , according as the equation is 6 =f(r), or p =f(r).

dr

Draw ST perpendicular to SP and equal to either of

these values.

Join TP, it is the tangent.

CoR. Since *S'r= =tr-—==F^,
"^ X^ O^ O-t

dr dii J

1 ldu\ . ^t^ ^d$
ST' KdOJ

'

dr d^

1 „ {du\- 1 1

= w + -77;
= ^^^. +

SY-' \d0) SP"- ST'

131. Asymptotes to Spirals.

If ST remain finite when SP is infinite, a tangent may be

drawn which will touch the curve at a point infinitely distant

from S, and is therefore an asymptote. And since those lines

are said to be parallel which coincide only at an infinite dist-

ance ; the asymptote must be drawn parallel to the infinite

line SP.
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dB
Hence to construct, we must find 6 and r^ — when r is

dr

infinite. Draw SP at the angle found by making r = co
, ST

perpendicular to SP, and from T draw TP parallel to the

infinite radius vector, TP produced is the asymptote.

EXAMPLES.
o"

(1) Find the equation between j) and r, when Q = —^

9= — = a"u";
J."

ti"^
a"

du 1 ^'1 1 -. •— = = by substitution ;

dO na\u"-' 6"
''

U- +
du^ _ 1

r-»-''^_
1

|6^"+7-^"l
^
=

7'
+

^i«
-

7' \ 6'"
J

^

dO

b".r
••• 7^

=
a/ 6-" + r^"

(2) 'Draw a tangent and asymptote to the spiral ; where

a
9 = - = mi;

r

1 du 1

;
.. iS I = a;ST dd a

or the locus of T is a circle radius = a.

Since ST is constant, and = tT

when r = CO .

Produce SA indefinitely. Draw

ST perpendicular to it and = a.

Then a line from T parallel to SP
will be the asymptote required.
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(3) If 7'^= a^ COS 20 which is the polar equation to the

Lemniscata ; find equation between ]}
and r.

Here m^ =

•. cos 2

a^ cos 2
'

1

2 2

d0 1

du li^a^ sin 20^

and sin 2

d0 1
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Cor. 1. Since = A; .'. — = 1 + ^*;
P p"

P 1"
= sin SPY =

, ;

r V 1 + J^

r
'• p — —

;
= mr., by substitution.

Vi + J:'

Cor. 2. The radii including equal angles are propor-
tional.

Let SP and SPi including an / a,

and SQ and SQ^ include the same angle.

Let z ASP=0,

and ASQ=-(p;

.-. SP = a\ SQ =
a'i>,

SPi = a^+«, SQ, = 0^^+" ;

SP,

^P
= a", and

SQ,
-=a";

^'P SQ

SP, SQ,
'

or SP : SP, :: SQ : SQ,.

Cor. 3. Given the ratio of SP and SP„ which include

an angle a, find a.

Let SP : SP, :: I : 1 + c.

But SP=^a\ and 5Pi = o^+";

^SP
= 1 + c = a" ;

a
.-. h. 1. (1 + c)

= a h. \. a = aA =
, if /3 = constant Z SPY,

tanf5

or a = tan
/3 . h. 1. (l + c).

M



CHAPTER XI.

CURVATURE AND OSCULATING CURVES.

132. When two curves, as QPQ^, RPP], cut each

other in the manner represented in the figure, the values

of y and x are the same for both curves

at the point of intersection ; i. e. if y=f{oc)
be the equation to the curve RPP^, and

y = (f> (x) the equation to QPPi, and

AN = a, and NP = b, the values «, and

b put for X and y will make the equations
b = f (a) and b =

(p (a) true equations, and

.-. /(a) =
^(a).

133. But if for .r, a + A, be written, (or as we shall put

it, a? + h,) the values of the ordinates of the two curves no

longer become equal, and their difference, which is represented
in the figure by PiQi, is equal to the difference between

f{x + h) and
(p (x + h), and will therefore be some function

of h, and its value will depend upon the relations existing

between the differential coefficients of f{x) and d) (x).

For, let y,
= iV,P„ y, = N, Q,, z =/(.<), and v =

(p {x);

d. d~ X h~ z h'

dx dx'1.2 dx^2.H
+ &c.

dv d^v h^ d^v h^
and

2/2
=

2/ + -7- /i + -;—, + ^-r, + &c. ;

dx dx^ I .2 dx^ 2 . 3

(dv (^^\ J
/^^^ d^ z\ h~

\dx dx) \dx'^ dx'y 1.2

or putting A^ A^A^, &c. A^ for the coefficients of A, /i^, h^, &c.
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The distance A between the curves, or the difference

between the ordinates, is represented by a series with ascending

powers of h, so that

A = AJi + AJi^ + A^lv" + AJi"" + &c. + AJf + &c.

d V d ^
Cor. 1. First, let J^ =

; .•,— = —, or the first

da: cLv

differential coeflScients are equal.

^ dv dis
, .

-But -r- and — represent the trioronometrical tangents
dx d.v

t^ » i'

of the angles which the tangents of the two curves at the

point P make with the axis of w.

Hence at such a point the ordinates are equal, and the

tangents are coincident.

This is called a contact of the first order.

CoR. 2. Let not only Ji = 0, but Ao = 0, therefore we

have

This is called a contact of the second order.

And in o-eneral the curves are said to have a contact of

the n^^ order when the first power of h, in the expression for

A is h"'^^ ; ii e. when all the differential coefficients as far as

the (n + 1)"^
are respectively equal in both series.

134. To find the degree of contact which a proposed
curve of given species has with a given curve of known dimen-

sions.

Let y =
f{.x) be the equation to the given curve, and

y^ = (p (,r,) the equation to the proposed curve, which is sup-

posed to contain 7i arbitrary constants.

m2
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Then, to determine these n constants, we must have the

n equations

dy dy, a^y d'y, d"-'y d^-'y,
y=''-

di^=d^,^ ^=d^' ^"^^:^
=
d;^'

or the contact must be of the (w
-

1)'^ order.

Thus, let it be required to find the degree of contact

which a straight line may have with a given curve ; we observe

that the equation to the line is y^
= aw^ + 6, and contains two

arbitrary constants a, b, or the contact may be of the first

order.

/ Next to determine the line which has a contact of the

first order with a curve.

In this example — = = a ; and .-. y = yi, and .r = a?i,
d.v dx^

dy
.-. y = ax + h^ or b = (y

— ax) = y x ;

dx

therefore substituting for a, and 6,

dy dy

d u
or y^

— y = ~-
(jx-^

—
a), which is the equation to the tan-

gent, or the tangent has a contact of the first order, with

the curve which it touches.

135. In the circle of which the equation is

R'={oo,-ay+{y,-(iy

there are three arbitrary constants, the radius R and the

co-ordinates of the centre a and
/3. The circle therefore may

have a contact of the second order, and the constants may
be determined by means of the equations

dy dy^ d^y d"y,

dx dxi dx' dxx
2
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The circle so found is called the circle of curvature, and its

radius the radius of curvature of any point in a given curve.

For since the curvature in the same circle is uniform,

while it varies inversely as the radius in different circles, and

that curves are geometrically said to have the same curvature,

when at a common point, they have the same tangent, and

ultimately the same deflection from the tangent, which con-

ditions are both fulfilled by the circle that has a contact

of the second order ; this circle is assumed to be the proper
measure of curvature, and curves are said to have the same

or different curvature, according as the radii of these circles

are the same or different, and the curvature in general

oc
radius of curvature

The circle of curvature is also called the osculating circle.

136. To find the radius of curvature, and co-ordinates

of the centre of the osculating circle to any proposed curve.

Let y =f{aj) be the equation to a given curve,

R"- = (w^
—

a)'' + (yi
—

fiy' the equation to the circle ;

••. o = {.v,-a) + {yr-fi).p^ ..(1),

and0=..g.(,,-/3).g (.).

1. ,

'

^fydy, d'y d'y,
But y =

yi, <c = a-^ ^-^^V" = ~i— » awd —- = -—
;

a.v ax^ dw^ dv^

.-. changing Xi into <r, and yi into y;

=
(2/-/3r-|l+^|

from (1).
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d'yY \ dx~

dor

d.r-

1 +3—J from (2).

id'yy
\da!-

df\^
(-sy

dx"'

This expression has two signs ; but if we call the radius

,
. d?y

positive, where the curve is concave to the axis, or when
dw^

is negative ; and if, on the contrary, when the curve is con-

vex, or when - is positive, the radius be reckoned negative,
dx-

we shall always have

/ dy-\^

7? =. 1
'^''

dx'^

The co-ordinates a and /3 may be found from the equations

dy'

,, dx~

d y

dx'

dy~

and X - a- -
iy

- m .-— = A -7— ;^•' ^^ dx d-y dx

d^'

and the circle is thus completely determined.
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In the annexed figure, let AP be

the given curve, PO the radius of

curvature, and therefore the centre

of the osculating; circle.

Jtl = a,
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and y =f{x) ; «/, w,
— and —

; may be eliminated,

and there will be an equation between a, /3 and constant quan-
tities which is that of the evolute.

188. Since cT - a + (w - /3) . -7- = ;

but this is the equation to the normal of the original curve,

drawn from a point of which the co-ordinates are x, y, and

passing through a point whose co-ordinates are a and /3.

Hence the normal passes through the centre of the circle of

curvature, and therefore the radius is coincident with the

.normal.

139. The radius of curvature is a tangent to the evolute,

dy
Resuming the equation {^v

—
a) + (y

-
p) .
— = 0.

Differentiate it, considering y, /3
and a as functions of x ;

^«
/ /2N ^'y

,

^y" ^^ ^y n

dx dx^ dx~ dx dx

da rf/3 dy
dx dx dx

da

dy dx da

dx

.-.

Or-a)-(r/-^).^
= 0;

or (/5-./) = ^.(«-cr),aa
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which is the equation to the tangent drawn to a point, of

which the co-ordinates are /3 and a, and passing through

a point co-ordinates y, x.

d3
But (3 -

y)
= — (a

-
x) is identical with

da

or the equation to the normal of the original curve.

Hence the normal to the curve, i. e. the radius of curva-

ture is the tangent to the evolute.

140. To find the length of the evolute.

Since R^ = {x
- of + (y

-
/3)-;

differentiating, considering ?/, a, /3, R, as functions of x,

dR
^ ^

/ da\ Idy d(3\

dx \ dxj \dx dxj

= (.-„). (,-/3)g,-{(.-»).^.(,-/3)g).

But (x
-

a) + (y
-

/3) .
-^ =

;

dx dx dx

or - RdR - {x -a)da + {y
-

/3) d(i.

^ dy , n da

But..-„=-(,-/3)£=+(j/-/3);^;

ill - &\
'.
- RdR = (x-a)da + (y- /3) rf/3

=
^^^^

. {da'+ f/^=^)...(l) ;

and R = y/{x -
a') + (y

-
(iy-= (y

-
/3) V^-,

+ 1,
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.-. dividing (l) by (2),

-dR = ^/dci'+dfi^ = ds ;

.-. dRJ=ds = 0;

.-. J? ± 6' = a constant.

Hence if the curve be algebraical, R may be found in

finite terms, and the length of the evolute known ; that is,

the evolutes of algebraic curves are rectifiable.

Cor. Let
6'i and s., be the lengths of the arcs of the

evolute from its commencement to the points where the radii

are y^ and
y.^ ;

and
rya
± So = c,

7i
-
72 ^ (*'i

-
«2)

= 0»

let Sj
— So= a;

••• ±«= (72- 7i),

or the difference in length between two radii of curvature

equals the length of the arc of the evolute intercepted by
them.

From this property of the curve

it has derived the name of evolute.

For if we take a string of con-

stant length, one end of which is

fastened at B, and the remainder is

made to coincide with the curve

COO^B, then if the string be unwrap-

ped or evolved from COO^B, it will

describe the curve APP^.

COB is called the evolute, and

APP^ involute.
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From this construction it is obvious,

(1) That the arc 00^ is equal to P^O^ - PO.

(2) That O is the centre of a circle of which the radius

is OP, and is consequently the radius of curvature to the

point P.

(3) That PO is a tangent to the evolute.

(4) That PO is a normal to the curve.

141. Another geometrical method of finding the radius of

curvature and the co-ordinates of the centre of the osculating
circle is to assume that centre to be the limit of the intersec-

tions of two consecutive normals.

The truth of this assumption may be thus shewn :

iy
~

i^)
— • ("^

~
") ^'^ the equation to the normal,

or
(a' -a)^{y-(i).~ = 0.

Now at the point of intersection, a and )3 remain the same

d v
for the two normals, while w, y and -— vary, since at a con-

dx

secutive point, x and y become x + dx and y + dy \ therefore

differentiating, considering a and /3 as constant,

dy- , ^ d-«

The same equation we have before obtained to find the co-ordi-

nate /3 of the centre, and a is then known from

^ dy
dx
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142. Hence may we find the radius of curvature in

spirals.

AP the spiral, >5' the pole.

PO a normal, and O the point of ul-

timate intersection of two consecutive nor-

mals.

O is the centre of the circle of curva-

ture.

SY = p, SO = rj

Now SO' = SP- + PO' ~2P0. PN,

or r,^
= r"- + R^-2R.p for PN = SY.

Then since SO and OP remain constant, while

SP and SY vary, and since p -/{r) ;

dpr-R
dr

R = r,-~
dp
dr

dr

dp

If OM be drawn perpendicular to PS, or PS produced,

PM = ^ the chord of curvature through S,

1 „,, SY dr p dr
and P3f -^ PO x-— = r .—-.-= p .— .

SP dp r dp

143. Evolutes to spirals.

The point O will trace out the evolute, and PO is always
a tangent to it, and SN is perpendicular to PO, we must

therefore find the relation between SO and SN.

Now r^ = r^ -\- R~ - 2 Rp .

id pi = PY = V y^ - p^an(

0),

(2),
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and p=fir) (S),

and R = r.4- (4),
dp

between these equations p, r and R may be eliminated, and

the resulting equation will involve r^, pi, and constant

quantities, which will be the equation required.

Ex. Let the spiral be the equiangular.

Here p = rsm (3
= mr ;

rdr T

dp m

and pi
= vr^ -

p' = rvi - m^ ;

R =
mV 1 — «r

and p = mr = m K =

But r{' = r + R^-2Rp;

m'^

2 Pi' :Pi' 2;?,^
r/ = +

^

1 - to"^ ?72^ (l
- m~) 1 — W"

.-. pi = mri,

or the evolute is a spiral similar and equal to the original, and

described round the same pole S.

144. When two curves intersect, we have seen that the

distance between them, measured along the ordinate is, (when

oj becomes a' + h) expressed by the equation

A = A^h + Azfi^ + Ash^ + AJv" + AJv' + &c.

If therefore we put {- h) for /i, we shall have an expression
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for the distance between them at a point where the abscissa is

,v — h : let A] be this distance ;

.-. Ai = - AJi + AJi^ - A^h^ + AJi' -
A-Jt" + &c.

Now assuming that h may be taken so small that any one

term shall exceed the sum of all that follow it. We observe

First, that if J, = 0, A and Ai have the same sign, or that

in a contact of the first order, the curves touch, but do not in-

tersect.

Thus the tangent does not cut the curve, unless Ao = 0, or

at a point of contrary flexure.

Secondly. Let both J, = and Ao = 0, or the contact be

of the second order. Then

A= A^Ii" + AJi' + he.

A, = - A^h^ + A,h' - kc,

which have different signs, and therefore if the osculating
curve be below the given curve at a point where the abscissa

is ,27 + //, it will be above it at a point Avhere w becomes x — h.

Hence the circle of curvature both cuts and touches the curve.

There is an exception to this rule, which is when the

radius of curvature is a maximum or minimum ; for then A^=0,
and the expressions for A and Aj have the same sign.

If the contact be of the third order,

A = Aji^ + AJi" + he.

A, = AJi'-A-Ji' + kc;

that is, A and A, have the same sign, and therefore the oscu-

lating curve does not cut the given curve.

From this reasoning it is obvious that, when the contact is

of an even order, the osculating curve both touches and cuts

the given curve, but when the contact is of an odd order, it

merely touches it.
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145. When the radius of cvirvature is a maximum or

minimum, the contact is of the third order, or Ao= 0.

dy d'y d^y

(1 + p')^
Then R=- ^-^

.

dR
But if R be the maximum or mmimum, —— = 0;

dx

/ 7, (1 + p1^

9

d^y 3pq"
or r = -—- =

5
.

dx^ 1 +/>

But from the circle,

and if there be a contact of the third order, we may differen-

tiate this equation again, and put the co-ordinates of the

curve for those of the circle;

.-. Qpq +pcj + (y
-
I3)r ^0;

.-. 3pq = -
(y

-
fi)

. r,

and I + ir= -
(y

-
(3) .g ;

3pq r
"

1 +p^ 7
'

^ 3pq'

I + p~

The same result as before, and therefore when ^3, which is the

difference between the third differential coefficient of y =/(a?),

and of R~= (x
-

a)" + {y
-

/3)', equals 0, or when the contact

is of the third order, the radius of curvature is either a maxi-

mum or minimum.
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EXAMPLES.

(1) Find the radius of curvature and evolute of the

common parabola.

dy
dx
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But y"
= i-ax ;

•••

(4«^i3)i=^(a-2a;)

]6a'3'' = (a-2aV;
27

4. 4.

.-. i3^ = . (a - 2a)'^ = x{^, by puttinoj a -2a = Wy.^
21a 27a

-^ ^ ^

The equation to the semi-cubical parabola.

(2) In the Conic Sections, the radius of curvature oc

(normal)'.

/ dy^
Lenffth of normal = N' = y \/ 1 + -—

;

dx'' y

l+:7^ Andx-j N-^
R =

_drj_ _^3^
dx^ dx'-

Now if the vertex be the origin, and the axis the axis of x,

y~ = 2'mx + nx^ ;

dy
.', y

—— = m + nx ;

dx

d^y dy'^

dx- dx^

••• y -1—2
= '^y y—dx^

" "
dx''

= n . (2mx + nx^)
- (m + nx)'

m
N
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(3) Find the radius of curvature to any point of an

ellipse.

h .

a

dy b X

dx ay/d^-w'

y/ d~ — tV~ +
w^

d'^y hi \/ d' — x" \ h a^ ha

dx^ a\ d^ — x'^ la' (a~
—

x"^)^ (d^
-

x'^)^

'

dy' b\v" a' - (a^ - b') x"" d'-e^x'

dx' a" {d'
—

x^) a" {a"
—

a^) d' — x'

'. R =
ha

Coil. Let ^1 be the radius at the vertex, and R^ the

radius at the extremity of the minor axis ;

(a'-a^e^)% b'
,

a"" a^
.-. Ri = = -

, and i?2 = r~ = r '

ba a ba b

therefore, the length of the evolute of the elliptic quadrant

a^ b^ a^-W
= R2- Ri = -r

— =—
,

—
;

a ab

and therefore the length of the whole evolute

= ± . (a^
_ h%

ab
^ '

dR
If /? be a maximum or minimum, =

;

dx

.'. — 3 \/a^ - e^x' . ^x =
;

.'. X = 0, and x^ = —; but x= - or >a is impossible,
e e
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•. d'R o / ; o d J

and --- = - .S e: v d^ - e'x~ + ^e-x -—v « — e^x^
dce^ ax

= — 3e^a, if x = 0;

therefore jR is a maximum, when x = 0, or ?/
= ± 6.

Hence, at the extremities of the minor axis the circle of

curvature touches the ellipse.

(4) To find the equation to the evolute.

^ dx^ (a-
-

e^x^) \/d^ — x^ y {or
—

e^x'^)

d^y ha h^

dx^

(a' - e'x'
] ye\ ^

^3(aey

^ -^ dy (d~ - e^x^) y/d^ - x^ b xx-a= -(y-(3). dx ha a y/d^ — w^

(a^ - e^x^) e~x^

a^ or

a?V - a X- (a)3

n> ae~ a^ algs

•J 9
X' If

K"t - + V-,
= 1 ;

a- h~

2 y, /-Iv 2

a^ (6/3)3
•

y-
- = 1

or (a a)' + (6/B)'
= (ae)^ = (« -

b^)l

n2
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(5) Radius of curvature of cycloid.

AN=x ,

AB = 2a\

'^ 'vy

aa!~ y

dy d^y -a dy
dx dx'

y'^ dx
'

^y a

dx^ y^
'

laY y 2a ^ /2a y^ /

\y I a y y a
^

Evolute.

^ 2a ?/

a/2 aw -
2/ -2/

2/

= - 2\/2ay -y-y
dtf

x-a=-{y-(i)~=-2ydx

.-. a = X + 2 \/2ay -
y^.

Take therefore,

AM = X + 2 \/2 ay - y-
= AN + 2 Rn,

and MO = NP, and O is a point in the evohite.

Its identity with the cycloid may be thus shewn:

~=1+ ~(^-y) ^ ^ 1

2 (g
-

y) ^ 2a-y
d^ \/2ay -y'^' dx y y

'

da _ da d(i da dy da /2a —y
dx dfi' dx d(i' dx dj3 y

. ^ - A A^-y _ . /2a-(-^)

• AOD in the figure should be a curve.
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Take Am =
.i\
= —

j3, and mO — a =
y^;

da dy^ Ila — x^ y/lax^ — cc^

d(i dx^ .r-j Xy

The equation to a cycloid, of which the vertex is A, and

the diameter of the ffeneratino- circle = 2a.

(6) Find the chords of curvature drawn through the

centre and focus of an ellipse.

Since by Conic Sections

CD'+CP~=AC'+BC\
and CD^ PF= AC. BC.

If CP = r, and PF = p,

a~b~

p-—
d^+h- - T-

is the equation between p and r, measuring from the centre ;

.-. 2 h. 1. p = h. 1. d'h^ - h. 1. {a? +b'- r') ;

dp r

pdr «""'+ b'~ — r"
'

, , , , 2pdr 2(a^+b^-r^) qcD'
.-. chord tlirough centre = = =

,^
dp p CP
dr 2 (a" + b- - r-) 2 CD^

diameter = 2r— = = .

dp p PF
Chord through the focus.

Here p' = 2a — r

2h.l.j9 = h. 1. &2+h.l. r-h.l. (2a -r);

2dp 1 1 2a
= - +

pdr r 2 a — r r>(2a—r)'

dr _ r (2a -
r) _ SP. HP _ CD\

'''

^dp~ a AC 'AC'

'^CD-
.. chord =

--^.
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(7) Find the form of the parabola

y = a + hx + cx^ ,

which has a contact of the second order, with a given curve at

a given point.

Make the given point the origin : then the equation be-

comes

y = bco + cvr^;

dy d'y
.•. —— =

7>
= o + 2cA% and =

(I
= 2c.

dx dx~

But at the origin x =
; .-. b = p, and c = -;

qx- q f 2p phjf
.-. y = px + = -. [x^ + — x + ^] — ;^ ^

2 2 V q q~)2q

The equation to a parabola, of which the axis is perpen-
dicular to the axis of x, and the co-ordinates of the vertex

,
and — -

;

2q q

2
the latus rectum = -.

Cor. The general equation to the second degree, or

y-+ {ax -t b) y + cx~ + ex + f= o,

containing five constants, may have a contact of the fourth

order, with a curve. And should there be a point at which

a^— 4c = 0, the osculating curve is a parabola.

Immediately before and after this point, or must be greater
or less than 4c ; and therefore the osculating parabola is in-

termediate between an oscidating ellipse and hyperbola.
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EXAMPLES.

(1) Uy'~ + a;^ = aa;-ay; which is an equation to the

a
cu'cle, R = —^ .

(2) In the cubical parabola where a~y = x^-^

R= x-^ ;

6a x

and in the semicubical parabola where ay^ = ar^;

(4« + 9^^)^R= -
6a

(3) The equation to the hyperbola being y'
= —(x'^-a') ;

R = -—^
; and the equation to the evolute is

ah

(aa)^-(ft/3)^
= (a' + 6')i.

(4) In the parabola the chord of curvature through the

focus = 4>SP.

(5) If yx = a\ R = - ~-
,
and equation to evolute is

{a + /3)'
-

(a
-

/3)3
= (4a)i

(fi)
The equation to the catenary is 9.y

=
a\e'' + e "j ;

shew that the radius of curvature is equal, but opposite,

y~
to the normal. R = .

a

(7) If r = «(l + cosO) ; find equation between p and >•
;

2\/«r '~r

and shew that radius of curvature =
;
and chord = — .
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(8) In the spiral of Archimedes, if r = —7=.
, shew that

the radius = the chord of curvature.

(9) Find the evolute of the spiral of which the equa-
2 2

tion IS p = e . -5 . The evolute is a similar curve,
e — a~

,22 2

2 2 *'i
~

^1 1
^

Pi = e .-^ g- ; and a. = — .

e — a e

(10) Find the chords of curvature drawn through the

centre and focus of an hyperbola.

(11) If y \/ 1 + -7-^
= a, be the equation to a curve

a lv

(the Tractrix) ; the equation to the evolute is — = —~
da a

(the Catenary).

(12) The length of an arc of the evolute of the para-
bola is expressed by



CHAPTER XII.

SINGULAR POINTS IN CURVES.

146. If in the equation to a curve expressed by y =f{,v),

where y is the ordinate, and x the abscissa ; some value of a?

as a makes any of the differential coefficients 0,
-

, or -
,

•^

the point so determined is called a singular point.

(l) Let the values of the first differential coefficient be

considered ;

dy
Since — represents the tangent of the angle which the

ax 1
(III

tangent makes with the axis of x, if —— = 0^ the tangent is

parallel to the axis of x, and this circumstance generally

indicates a maximum or minimum value of the ordinate.

If —— = -
,
the tangent is perpendicular to the axis of x.

diV

dy
If M = when -— = 0, then the axis of ,r is a tangentax ^

to the curve at the origin.

If a? = when — = -
, then the tangent passes through

the origin, and is coincident with the axis of y.

When — = -
. Many branches may pass through the

point, as we shall see in the succeeding pages.



202 SINGULAR POINTS IN CURVES.

If —— have a real value when —^ = 0, the ordinate is a
ao!' ax

maximum or minimum, as in the annexed figures.

cPy
Before we proceed to investigate the values of -—

j
at these

points, we must establish the following proposition:

147- Prop. If the ordinate y be reckoned positive, a

d"y
curve IS convex or concave to the axis, according as is

positive or negative.

In the annexed figures, let

JN=x)

NP=y

M

-Vi

r >

and y =
f(.v) be the equa-

NN, =
h^

tion to the curve.

A S N^

Draw the tangent PM, its equation is

dy

Now at the point Pj, the equation to ^

the curve becomes N^P^ = f{a; + h), or ~a
—

?y

M

N,

N,P,=y + -f-h^ T^ -- + -A + &c. ;dx dx- 1 . 2 dx-^ 2.3

and for the tangent, putting x + h for .?•-, and N^M for y^,

d X
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therefore the deflection from the tangent, or MP^

in figure (l)
=

iV^M -N^P, = --^^ - T^ &c.

.„ figure (.)
= ,V.P,

-
N,M^^^

_
^_.^_ , S.C. ;

and since Ir is positive, and that Ji may be taken so small,

that the first term of the expansion may be made greater than

the sum of all the terms that follow it, the algebraical sign

d'^y
of J/Pj will depend upon that of

doc'

But we have seen that when the curve is concave to the

dx' 2
axis, J/P, = —

^;^
-— &c. ; and when convex to the axis,

d^y h- TT 1
. . .

it = + ~ i- &c. Hence whea y is positive, a curve is
dx' 1,2 J f ^

I . 1- d~y . . .

convex or concave to the axis, according as —'— is positive or
dx'-

negative, or generally according as y and —- have the same or
dx'~

different signs.

148. Sometimes the curve after being convex to the

axis suddenly changes its curvature, and becomes concave,

the point at which the change takes place is called a point
of inflexion, or of contrary Jlexure.

If the tangent at this point be produced, one branch of

the curve will be above it and the other below it, consequently
d" n

on one side of the point in question
—'- will be positive, and
QjX 7 9

u~y
on the other side negative. Hence at the point itself —'—

dx"

must = 0, or cc, for no quantity can change its sign without

passing through zero or infinitv.

There is not however a point of inflexion corresponding
d~ u

to every value of x. that makes —- = 0, for not only must
dx~ ^
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this equation be satisfied, but —-^ must change its siffn after

having passed through the point under consideration.

Also if the same value of ,v that makes -~ = 0, also makes
doc

d?y 1 Ml 1 •
r.-~ = 0, there will not be a point of contrary flexure

aoo

For since —— is a function of x, write .v + h and oo -h for oc.
dCG^

d'y
and then —-^ becomes, on these two suppositions, either

dry d^y , d^y /r

-^ ^ '
dar dx' dx' 2

(Py
But at a point of inflexion =

;

dx'^

.-. the deflections from the tangent at points .i' + h and x — h

are respectively proportional to

dry d^y K~

dx' dx^ 2

d''y dS/ /r
and -— h + -f- &c. ,

fZ.r^ dx^ 2

which have contrary signs if —- do not =
; but if —- = 0,

dx^ dx^

and —~ do not vanish, the deflections before and after the
dx'^

point will iiavc the same algebraical sign, and the branches are

both concave, or both convex, to the axis.

And hence in general there may be a point of contrary

flexure, when the first differential coefficient which does not

vanish is of an odd order.
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Hence, to find whether a curve has a point of inflexion,

d^y 1

put =0, or -
, and if a be one of the values of x so^

dx'

determined, substitute a + h, and a - h for .37 in the expres-

sion for —;. Then if —
:;
be affected with different signs,

dx' dx'

X = a gives a point of contrary flexure.

Ex. 1. The cubical parabola ary = ^r',

x^

y =
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COS 9 = e gives the point of contrary flexure,

and
2/
= fl (1

-
e^)

= a 1 —-A =
a a

149. Points of contrary flexure in spirals.

A^—X-^

Let there be two spirals, one concave and the other convex

to the pole.

Take two points P and P, in each near to each other, and

draw SY and SVi perpendiculars on the tangents at P and Pj,

and let SY=p, SP = r, and SP, = r + h,

and p =/(>•) the equation to the spiral;

therefore if A be the difference between SYi and SY^ we

have in figure (l), where the curve is concave to the pole,

dp d'p hr
A =/(r + h)

-
f(r) = J-.h + -JL + &c. ;

but in figure (2), where the spiral is convex to S.,

A=/(,-)-/(r + A)=-^.A-f?il-&c.;dr dr- 1 .2

dp
and as h may be taken so small that -— h may be greater

than all the terms that follow, we see that the spiral is con-

dp .

cave or convex to S, accordmg as -— is positive or negative.
dr
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Hence at a point of contrary flexure — = 0, and changes

its sign immediately before and after the point under con-

sideration.

EXAMPLES.

Let ?* = a d'\ find the point of contrary flexure,

h.l. r = h.\.a->r7i h. 1. 0;

1 _ de \

dd e
^

a r"

r
^

1dr nr nr na^r

l-iHr. Butf=
P

^^ r \/ r~ - p-

p r"

\/r^ —
p'^ no,"

2 2 2

r'' n'a" r" + n-a"
~.= 1 +2-^-r 2

-
2

"
i^n If

n

n + 1

r «

vCI- 1.

_ » - 2

dp n + I 1 \/~l 1. i+J r "

drw ^/i 2-"»
.

^
r " +

omitting the denominator ;

n ''

r " + w^a"
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LI 11
.-. {n + l)r" (r" + n^a")

- r" = o ;

12 2

.-. 7'" Inr" + n'(n + l)a"} = 0,

whence r = 0, and >• = a|
— yz .(??.+ l) p ,

n
If — be a fraction with an even denominator, it is obvious

that n . (n + 1) must be a negative number;

1let n~ + n = - p; .-. w + J- = ^/^ - p ;

n _ _ 1

h^'V^~P'-< '• P "lust never exceed
^^.

If ^ = i? ^ = -
i» and r = —7= , or = —- the equa-

tion to the lituus.

MULTIPLE POINTS.

150. Whenever two or more branches of a curve pass

through a point, it is called a multiple point ; and a double,

triple, or quadruple point, according as two, three, or four

branches pass through it.

If the branches intersect, as in figure (l), I»
/

which represents a double point, there will

be at P two tangents, inclined at different

angles to the axis, and thus — will have
ax

two values corresponding to one of .v or y.

Should however the branches pass

through P, as in
fig.

2. and touch each

other, and the contact be only of the

first order, there will be but one value

fj ffj
—

of —-
; but as there are two deflections

da?

from the tangent, there will be two values of

v^

A N

d'y

TV

dx'

O
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151. Problem. If u =
f(cc, y) = be the equation to

a curve, cleared of radicals, and there be a point where two or

more branches intersect,
— = - at the point of intersection.
dx ^

Let the equation be differentiated, the result will be of

the form

,^ ^y ^T , ,, du ^ ,^ du
M.~-+N=0, where il/ =— and iV^= — .

d<v dy dx

dtj
Then since two branches intersect,

—^ will have two values,
dx

but M and N will be the same for both. Let a and /3 be the

two values of — ;

dx

.-. Ma + N = 0,

and M(i + N=0;

.'. M{a- fi)
= 0, and a - /3 does not = ;

J XT . dy N
.-. M=0; and .-. iV^=0, and -^ = = -.

dx Mo
dv

Cor. 1. Hence the value of
j^

or — may be found, bydx
the same method as that by which the values of vanishing
fractions are determined.

N
Thus, since p = = - when x = a and y = b ; difFer-

. M
entiating numerator and denominator,

M,p + N.
, ,^ dN dM

ilfj + M.p dy dx

or M^p^ + 9,M^p + No = 0;

a quadratic equation, from which two values of p may be

found, and which, if possible values, indicate that the curve

has a double point.
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Cor. 2. If, however, J/j
= 0, N^ = 0, and Mo = 0, when

.V = a and y = b, differentiate numerator and denominator a

second time, and putting q = --^^ we shall have jt
of the

form

p= -
M.q + M.,p^ + M^p + Mr,

_ , when X = a and y = h;

M-iP" + MiP + 3/5

whence we have a cubic equation of the form

p^ + api^ + bji + c = to determine |j ;

and if there be three possible roots, there is a triple point.

This process must be continued, if the numerator and

denominator again vanish.

Ex. 1. Find the species of point at the origin of the curve,

ay — X — b,v = 0.

Differentiating and puttmg p for — ,

•iayp
- ox' - 2hx =

;

3x' + 2hx
P = -

, if .r = and y = 0,

2ay

there may be a multiple point.

Differentiating the numerator and denominator,&

6x + 2h 2b .

p = =
, when .X' = ;

2a/J 2ap

and
a a

p=± V-;

which sliews that the origin is a double point, and that the

tangents cut the axis at angles,

V-, and tan-i I- xZ-V
a \ aj

tan
a

o2
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This example will be useful in shewing another method by
which multiple points may be found. Thus, if there be a

surd quantity which disappears from the equation y =f('v)

by making x = a, but which is found in the equation

dy
then -— will have two values, while y has but one, and a

aw
double point is indicated. For resuming the example, and

solving it with respect to ?/»

y
X J——

= ± —7= v <r + 6,

va

dy VcT + h w
— :=: rfc -p^ i

^ „ , ,

do^ \/a 2\/a\/x + b

MaUe. = 0. The„, = o;a„d^=.xA,asbef„.e.
dx a

Ex. 2. Find the point at the origin of the Lemniscata.

{x^ + y^y = a^{x^
-

y^).

Here 2(a? + py) . {x"^ + y^)
= a^{w -py) ;

a^.v -2x(x^ + y~) .,
•• P =• ~l ^ . o 57

= -
, It 0? and y = 0,

a^y + 2y(x^ + y^)
^ '

a^ - 2 (x^ + y^)
— 2x{2x + 2yp)

c?p + 2p(a7'^ + «/•*) + 2t/(,r + 22//>)

= -r- , II a? = and y = ;

a^p

.: p^ = 1, and p = i i,

and the values of —- are + 1 and -
1, or — = tan 45, and

dx dx
tan 135.



MULTIPLK POINTS. 213

Ex. 3. Find the same, when tr^ — ayai^ + hy^ = 0.

Here 4tX'^ — ax'p — 2ayx + 3by"p =
;

9,ayx
— 4cr^

.'. p = —
;
— = -

, when 0? and v = 0,

Sby^-ax'
^ '

2ap,v + 2ay -12off'

71. :;
= ~

> n X = 0,
bbpy -2ax

2ap + 2axq + 2ap —2^x d'y

6bp^ + 6byq-2a
' ^ "

rf^
'

4<ap
, if tf = ;

6bp' -2a

6bp^
- 2ap =

4!ap, or p . ^bpf"- a|
=

;

.-. p = 0, and p = ±
a

V
there is a triple point at the origin, and the axis of x is one of

the tangents.

The triple point at A is repre-
sented in the annexed figure; TAt
is the axis of x, ATi and AT, are

the tangents of the angles

tan"i \/ -
,
and tan~^ f

- \/

Ex. 4. Find the species of point at the origin of the curve

y'^
— Saxy + x^ = 0.

Here if x = 0, //
=

; therefore, differentiating,

dy
dx

dy
dx

y- a.v ay -X- = 0;dx da-

ay —
.t;^

= p =
-i,

= - if :i' = and ?/
= :

?/
- aw J ^
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ap — 2.V an
.'. p = =

,
n X =

;

^yj)
— a 2pp — a

.". 2yp'^
— ap = op,

or
J) (yp

—
a) =

;

a a
.'.

/}
= 0, and p = - = - = M .

y

The origin is therefore a double point, and the two axes

are the tangents.

The curve is represented in the annexed figure.

V

d 7/

152. If the branches touch, then -^ will have but one
d.v

value, and yet at the same time be of the form -
.

•^

For, supposing the contact to be of the n}^ order between

two branches of the curve ; then the values of the differential

coefficients, as far as the (n + 1)"' coefficient, when x= o, and

y = b, will be the same for both branches ; but after the w"'

will be different.

Let M ~ + N = he the equation after the first diff'er-
dx

entiation, the original equation being previously freed from the

said quantities-

Then, repeating the differentiation (n) times, we have

d" + 'y
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M being the same as before, and N^ being the sum of the

differential coefficients below the {n + 1)'^, togetlier with

functions of w or y.

But -—
f- has two values, as a and /3, while M and N,

remain unchanged ;

.-. M.{a- l^)
= 0; .-. M =0.

But M ~ + N^O; .-. if ,7/ = rt, and v = 6, iV = ;

ttcl'

and .-. — = -
.

da;

The analytical character of double points of this descrip-

lion IS, that when -— = - has but one value,
—-^ which also

Q
ax dx'^

= -
, has two.

CONJUGATE OR ISOLATED POINTS.

153. Conjugate or isolated points are those which have

real existence, and are determined by the equation to the curve:

but from which no branches extend.

Hence if x = a and y = h give such a point, then x = a -\- h,

d y/

and x = a — h, will make y impossible, as well as —^ , and manydx
of the differential coefficients.

1 dy ^
At such a point -— = -

,
it the equation be cleared of

dx ^

radicals.

In differentiating the equation u = f(xy) = it will be of

the form M~ + N = 0.

dx
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Now at a conjugate point
—^ is impossible, let it
ft' tC

= (a+/3V^);

.-. Ma + N+ M^ s/^ =
;

whence M = 0, and Ma + A^ = ; .-. N = 0,

dx

whence the value of — raav be determined bv the method
d.r

used for finding the multiple points.

Ex; ay- - 3c^ + hx~ = 0,

•iayp
- 3.T- + 'ibx =

;

3x"-2bx
•• P =

6x-2l) h

,
if .t- = ;

2ap op

.-. p =
;

and .-. p = '\/
a a

Now .r = gives y = 0, whi
a

ile j9
= \/ -

. . X — h
Also suice 7/

= a; \/ ,
if a; = + //, or -

A, the values
a

of y are impossible, and the origin is therefore a conjugate

point. The same result ma}' be obtained by differentiating the

equation

y = XV-~b

a
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For -/ = V +
dw a 2^a \/x - b

and if .f = 0,
-^ = V .

d.v a

And in general, if there be a surd which vanishes from the

equation y=f(x) if .r = a, but which becomes impossible in

d u
—— =

cf) (x), there will be a conjugate point. If at the same

time the values of y are impossible, both before and after the

point.

CUSPS.

154. When two branches of a curve touch each other at

a point through which the branches do not extend, the point
is called a Cusp.

The branches have at this point but one tangent, and the

cusp is of the Jirst species when the branches lie on opposite

sides of the common tangent, and of the second species when

upon the same side.

Hence \i x = a and y = b give the point in question,

d tj— will have but one value at the point : and when either
dw

d^y
a + h, or a - h is put for oc, will have two values.

dx^

* d" ij

If the values of
;
be both positive or both negative, the

dx~

cusp is of the second species, and if one value be positive and

the other negative, the cusp is of the first species, for the

d^y
deflection of the tangent from the curve is measured by

-~
.

CtOG

Since by the definition the branches suddenly stop at the

cusp, either a + h, or a - h, when put for x will make the or-

dinate and the differential coefficients impossible.
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Figures (l) and (2) exhibit cusps of the first and second

species.

N A N

Sometimes the cusp is of the form represented in the above

A ]V

figure,
in which {a + h) and (a

—
h) when put for x will give

real values for the ordinate.

These are discoverable by observing, that if ju = a and

y = h give the point P, that y = b — k makes cV impossible.

Or we may at once transform the equation to the axis of y

making: x = f~^ (y) ; and find the values of x,
~—

, and at^ -^

dy dy'~

and near the point where y = b.

Ex. 1. The semi-cubical parabola.

ay^ = w^,

y =
a

V «

dx

d^y

dx~
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If .r = 0, y and —^ = 0, if r = -
h, they are both impossible.

d'^y
But if w = h, y and —'- have two values, one positive and the

other negative ; the axis of x is therefore a tangent : there are

two branches to the curve, one above and the other below the

axis of tr, and both convex to it, but the curve does not extend

throuo-li the origin to the negative axis of the abscissas. The

origin is a cusp of the first species.

Ex. '2. Find the point, when x = a in the curve of

which the equation is

y = b + c.v' + {,v
—

a)
5

;

doD 2

, d-y 5.S ^
'

and —H = 26- + (x - a) .
• dx^ 2.2 ^

Let X = a;

.'. y = b + ca"-,

. dy d~y
and -— =2crt; and—^ = 2c,dx dx'

X = a + h;

I. / 7\'> 1?, 1 d'^y 15 ,1
y = b + c {a + hy + h % and -—^ = 2c H h^ ;

dx~ 4'

whence in consequence of the index 1, y and —'- have each

d'y
two values, but those of —^ are both positive, and since

CLOG

7 r 1 ^y 1 d~y
a - fi put ior x makes y,

—- and -~
impossible, the point

€t/<V CtiV'

is a cusp, and of the second species.
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Take x = a, y = b -\- cd\ and draw a tangent through P
inclined to the axis of abscissas at an z = tan~*2('a, and then

draw two branches above the line through two points Q and

Q], where

5

MQ, = 6 + c (a + hf + /t% and MQi ^ b + c (a + hf - h

and the curves will be represented.

For additional illustrations of these points, the student is

referred to Peacock''s Collection of Examples of the Appli-

cations of the Differential and Integral Calculus.

155. We shall conclude this Chapter by a few remarks

upon the subject of tracing curves by means of their equations.

(1) If it be possible, let the equation be solved with

respect to one of the unknown quantities as y, and let it be

put under the form y=f{^)-

Then give to ,v all the possible positive values the equa-

tion admits of, and so determine the branches above and below

the axis of positive abscissas.

Next put {- x) for x in the equation y =f(x), and in the

equation, thus transformed, again substitute for x all its pos-

sible positive values, and the branches above and below the

axis of negative abscissas will be determined.

(2) Ascertain whether the curve has asymptotes, and if

it has, draw them.

(3) Find whether the branches be concave or convex to

the axis, and determine the nature and situation of the singular

points.

The preceding remarks refer to curves having rectangular

co-ordinates, but if the equation be between r and 6, we must

give to 9 all values from = to 9 =-- 2'7r, and draw the corre-

sponding values of ;•.&

Ex. 1. Let y = x.
, trace the curve.

X — a

Take A the origin.
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Draw AlV and Ay the two axes.

A

Let o! = ; .-. t/
= 0,

x<a: .. y is positive,

a.' = a, y = CO ,

at >a<2a, y is negative,

cT = 2 a, y = 0,

x>2a, y is positive,

a? = CO , t/ is CO .

Again, let -
/v, be put for a? ;

X + 2a
.'. y = — X

X + a

To draw the asymptote,

is always negative.

1 -
2a

y = x
X

a
1

X

I 2a\ , a .
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.-. y = x\\ ^ -&c.(X .V '

a

2 a-
= X - a &c. ;

X

.-. y =z X — a is the equation to the asymptote.

Take therefore AB = a, and AD = a, and the line BD pro-
duced is the asymptote. Also take AC- 2(1.

Then since y = 0, both when x = and x = 2a, the curve

cuts the axis at A and C.

Between A and B the curve is above the axis, and at B
the ordinate is infinite ; from B to C the curve is below the

axis, and from C to infinity is above Ax. Again, since if .v be

negative y is negative ; the branch on the left hand of A is

entirely below the axis.

To find the value of
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Since (w- -2ax + 9a~) ^ (x
- of + a^, the roots are im-

possible; therefore — does not = 0, or there is no maximum
dx

or minimum ordinate.

. d'y 2 .

(.^
- af - 2

5 (a-
-

a)2 + an - 2 a^
A<ram,

' — — •

dx^ {x -
a)^ {x - ay"

.•.
—V is positive if x<a, and is negative if x>a.
dx'

But X <a, y is positive, and x> a <9.a^ y is negative ;

and x>2a, y h positive;

therefore from A to B, and from B to C the curve is convex,

and from C concave to the axis.

d'y 2 a" . • • 1

If 07 be negative,
-— =

-^
is positive, but y is negative ;

therefore the branch from A to the left hand is concave to the

axis.

.,
cr" + 1 x+1

Ex. 2. Let y' = = {v - .z + i) ;

X — 1 X — 1

/X + 1 y-V .'V x~- X + I.^ X - 1

A the origin; Ax^ Ay the axes.

If 0/ = 0, y = - -_^= is impossible,

x<i, y is impossible,

,1? = 1, y is ± CO
,

.r>l, y is possible ±,

.p = X
, ;?/

is X ±
;

therefore there are two infinite branches extending above and

below the axis of positive abscissas.



224 EXAMPLES.

V^
- 1

For X put - cT; .-. y = ± \/ '^^ -(x^ + x + l), which is

X + J

impossible, if a? be < 1, and =0, \i x=\.

If a7>l, and increase to infinity, y is possible ± and

increases to infinity ; therefore there are two infinite branches

which meet the axis A.%\ in a point C, if JC= 1.

To find the asymptote :

y = ^\/lL^.Vi-
1
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= i
j 1 + - + &c. i .r ( I + &c.)

1 ^ o >= ± .-J?
> 1 + — + __ + &c. J ;
^ 2 a;' x^

^

.-. y = i
(a? + 1) gives the two asymptotes.

Take AD = AD, =^, and JC = 1 Join CD and CD, , these
|

lines are the asymptotes, and if through B an infinite ordinate a

be drawn, two branches of the curve will lie within the angular
j

space formed by the intersections of this line with CD and CD^

produced.

For these branches of the curve will always lie above the

asymptotes. Since the ordinate of the asymptote is always less

than the ordinate of the curve.

This may be thus shewn. Let y, be the ordinate of the

asymptote ;

.-. y~
=-

, and ^1^
= o;-^ + /r + 1

;

,v — 1

••• y~-y^ =
^zr^

'

3.V + 1

«r (y + yd (y
-

Vi)
=

4 . (cr
-

1)

But y + y, is essentially positive ; therefore y — y, is posi-

tive ; or y >y,.

By a similar mode of reasoning it may be shewn that the

branches which extend from C, above and below the axis Cx,,

lie between the lines D,C, and DC (asymptotes) produced.

dy
To find the values of -— .

clx

2 h. 1.
2/
= h. 1. (,v^ + 1)

- h. 1. (,r
-

1) ;

P
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dx 2

3x^ 2x' - 3x^ - 1

^X'+l X-]J 2(X- l)t . y/x^ + 1

'

which is CO , if x = \, or a? = — 1.

Hence the infinite ordinate through B touches the curve at

an infinite distance from Ax, or is an asymptote : and the curve

at C where y = cuts the axis at right angles. Also since the

numerator 2x^ — Sx^ — 1 is = — 2 when x = 1, and is = 3 when

X = 2, there is some value of x between 1 and 2 which will

d 7J

make — = 0, or « a minimum. Take AM this value, and
dx

MP and Mp will be minimum ordinates.

Ex. 3. As a last example, let the equation be between

polar co-ordinates.

Trace the curve defined by the equation r = a (l + cos0),

p

e=0; .-. r = ff (1 + ])
= 2a,

TT

9=-; .-. r = a.

TT
Let $ =—

\- a; '. cos 9 = - sin a,
2

and r = a(l — sin a), or r < a,

""
/I

a = —
, or y = TT ; .". r = 0.

2

Again, let 9 = (tt + a) ; .'. cos 9 = — cos a,

and r = a (1
— cos a), which increases as a increases,

and r = a when a = PO.
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Affam, let 6 = ha; .-. cos h a = + sin a ;

'. r = a('l +sina), which increases as a increases, and when

TT
a = —

, or (9 = 2 TT, ;• = 2 a.
9

It is obvious that the curves in the first and fourth qua-
drants are the same, and those in the second and third resemble

each other in every respect.

Take AB = 2a, AC = AD = a, and the points at which it

cuts the axes are determined This curve is called the Car-

dioide.

EXA3IPLES.

(1) U y = a.v + b.T- + c.v^; there is a point of inflexion

a'

(~) V' = ~; ->
'••

trace the curve : there are inflexions

if .r = ±
a/2

*

/.v
— 9

i^) y = {^ -~) \/ ^
? trace the curve ; there is a

w

conjugate point if .i' = 2 ; and y is a minimum if cT = — -
.

(4) y~ = ax^- — x^, a cusp of the first species at the origin,

2fl
an inflexion \f ,r = a ; a maximum ordinate if ,v = — .

3

(5) If y =
, there are two points of flexure; the

1 + ,r~

curve cuts the axis at 45°, and the axis of x is an asymptote to

the two infinite branches.

p2
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(6) (a?^ + 2/")^
= 4aa?2/ ; a double point at the origin,

p = and = CO ,

(7) ('X^ + y^y = ^a^x^if ; a quadruple point at the origin.

(8) tf + 2axif - a,v^ = 0\ a triple point at the origin,
1

jo
= ± ——-

, and = x .

V2



CHAPTER XIII.

CHANGE OF THE INDEPENDENT VARIABLE.

156. From the equation y =f{oc), we have in the pre-

ceding pages derived the values of the differential coefficients

ax ax

considering a? to be the independent variable : but as it is left

entirely to our own choice which quantity of the two we may
assume to be a function of the other, let us see what sub-

stitutions we ought to make for

dy d~y

ax dx^

when y is changed into the independent variable, and x be-

comes the function.

Again, it is frequently convenient to make a substitution

for X in the equation y=f(x), such that

x^=<p(d), and .'. y = f(9);

we must therefore find the values of

dy d^y

ax ax

on this new supposition.

We have indeed already seen that

dx 1

dy~dy^'
dx
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dy dy dx
and that —- = — . --r ;

dO dw dO

and Mn the following Propositions these equations will be again

proved, and other important results obtained.

157- Prop. If y=f(a;), and therefore x =f'^(y), find

. dy d^y
the value or the difterential coeihcients — ,

—
-, &c. in

dcV dx^

terms of

dx d~x d^x
&c.

dy' dy^' dy'

Let y + A; be the value of y when x becomes x -\-li\

••• ^ =
:7^^ + t4— + ^4— + &C (1).dx dx- 1 . 2 dx" 2.3

And since ^'p + h = f~^(y + k),

dx drx k" d?x k^
••• ^* = T- ^ + -r^ + T-^ • + &c.

dy dy^ 1 . 2 rf^^ 2.3

substituting for h in equation (l),

dx [dy dy' 1.2 dy' 2.S j

rf^^ idx~
,.^

rfa? rf-'.T ,, ]
1

rAi~'^ +7-' ,-^ +&c-r-
—

;,'*• (dy- dy dy- J 1.2

dx' [dy' j
1.2.3

dx

+ &c.

dx dy \dx dy' dx^ dy~) 1.2

!d^x

dy dx cC^y d^x d^y dx''] /c'

dt^J~v^^d^''d^~'dy^'"d^^' dfj 2?^
+

+ &c.
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therefore, equating coefficients,

dy d.v dy I , / /.

doc dy d,v dx r'l

dy

dy d^w d^y dx^

dx
'

dy^ dx^ dy~

d^x d~y dx^
+ -4-— = 0;

dy^ dx^ dy

d~x

d'y ^ dy-

dx^ doD^

df
and, putting

p, q, r, &c. for the differential coefficients when y=f(x),

andpi, 7i, 7-,,
&c when x=f-'(y);

d\v dy dx d^y d^x d?y dx^
Also, since —

-:. .
—- + 3 —- .

-—
. —~^ + —— .

-j—^
=

;

dy^ dx dy dx^- dy dx^ dy^

.'. }\p -r Sp^qq^ + rp^^
= 0,

or ^ - -i^ + rp,^ = ;

Pi Pi

Sq;'-r,p," * = ?—'
Pi

and similarly may the other coefficients be found.

Example. Take the expression for the radius of cur-

vature

dy'\l

R^}—££L^^^, and if ..=/-(,);
_dry -q
dx'
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R =

3
1\

•»

P
2i

3

L,et y' = 4 ma' ; .t =—
,4m

: R =

a a;

dy
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mir' + &c.

dy (dw d\v m^

1 d^y fdx^ ^
dx d~x

^U2'd7'[d&''''~^de'd~ef' . ,

+ &c.

dy dw (dy d'x d^y dar\ rii' „
^

.

'dw'Td'^ ^KdTx'W^ Tx^'d^')
'

^ '^
"""

dy dy dw
'

dO
^

d^'~dd'

dy^

dy _ de

dw dw

de

d^y dy d^w d^y dw~

d&''^'d^'"de'^ dw^'dO''

d'^y dy d^w

d^ d¥~d^'de^
dx~ dw'



234 CHANGE OF THE

dy dj'a; dx d'y

, d^y Je'de^~d9'd&'
and -

-7-5
=

; ;
•

[del

R =
dy d'x dx d~y

Je'dO^'de'dF'

Let {V = - rcosO and y = r sin be the equations between

iv and 9, and y and 9 ;

d,v . - „dr dy ^ . ,.
d,r

.-.
—- = + r sin - cos 9—-

, and —- = r cos + sin .
—-

;

d9 d9 d9 d9

d^x - • ^^'" ^ d^'^'
= + r cos t? 4- 2 sin —— — cos 9 .

an

"
d&'^d9^^

** "^

d^'
^

d?/ d"it' dx d^y
"""

d^dW^'d^'d^'

dr^ d"r
= r- + 2 . r .

d9~ d9'

. dr'\^

d r^ d~ r
;•- + 2 . r

Ex. 1. Let r = a sin 0, the equation to the circle from

a point in the circumference, 9 being the angle between the

tangent at origin and the radius vector r, and a being the

diameter ;
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dr ^ /~7,— = a cos = ^/ a- - r,
dd

— = — a sin y = — *' ;

r-^ + «- - r )^ ff'^ a

Ex. 2. Let r" = a' cos 2 0, the equation to the Lemniscata;

dr a' . ^ ff~ / r^

-^ __.sm20= --. V 1--;
dQ r r a*

d r „ a^ - r' a',i ^,1

dO r r

d^r a^ . ^ (i i' 2a~ ^
—-;=—. sin 2 .

-—
. cos 2

dO^ r~ dd r

= -- 1-
,1

'
• 2 •>

r" V a J r a

d~r «' - r' „ a + r
_ y

'^ -^

•. r^ + 2

r'
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variable, be transformed into one where = cos~'a; shall be

the independent variable.

a; = cos 6 ; ..-—=— sm 0, and —~ = - cos 6 = - x,
ad dd

dy^

and — = — = - —^ ^
dne dx sin dO^

d9

d^y dy d?x d^y l dy

d^y d¥~d^'d^ dff'~^^'''''^^dd
and -—- = ——^_^—^-^^^_^i_

; -r - _^
a.T?^ aa?^ ,jani?(JLV //^ tf

dO^

d v d/" v
.'. substituting for x,

-—
,

-—
, and for 1 -cr'^ = sin-0,

dx dx''

1 d^y cos 9 dy cos 9 dy y

shi^ d&'
~

sin' 6
'

d9
"^

sin^O
'

d0
"^

iiii^
" ^ '

d-y

an equation which is satisfied by making

y = Acos{9+ B).

160. Find the radius of curvature, where the arc is the

independent variable.

V dx~j , ds'i dy^-R =—^—T"^— 5 and —
:
= 1 + —-r

d^y dx^ dx^

dx~

But if X and y be functions of 5,

'dyV
dy- dsj _lds\^Udxy (dyY\_ds\

dx\~ \dxj \\dsj \dsj j dx~^

ds
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••• U) ^
(i)

=
^'

and fl ^V'= f—V

dy d^x dx d~y

, d~y ds
'

ds'~ ds ds^
and =

;

dx'^ fdx\-'

ds

1

R =
dy d'^x dx d^y

o 5

ds ds'^ ds ds~

which, by multiplying numerator and denominator by ds^,

ds^
may be written R = —— -——-—

,

dy d\v — dx dy
where dy, dx, d~y, and d~x are the first and second differ-

entials of y and x with respect to *.

1 dy d^x dx d^y
'^^^'"' R^Ts'd?~d^-d?'

_ dx^ dij^
But —- + ~= I;

ds~ ds-

dx drx dy d'~y
.'. — .

—
J +— .—^ = 0;

ds ds~ ds ds'

d^y

'
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dy d-jc dx d'^y dy \dsV \d.r

ds ds~ ds ds^ ds d'^x

ds~

dw'

But ' ^^ ' '

ds~l dy' \ds~

ds~

d'^y\^ fd~x\-

/ id^yV' (d'^x\~ ds

dy^

'

ds

1 . / fd'yV' ^ fd'xy
R Kds'J \ds-

and R =

/(d-'yy uPxy'

d\v\-/dx- dy-\ /d^x\

W^rf^/ fd'^\' [d7)

ds') Kds'J f^yy \ds'J
[dy\"-

d-x

\

or multiplying numerator and denominator by d^, and using

d~y, and d'~x^ for the second differentials of y and x,

R= ''

Vid"-yy+{d\vy'

Ex. Find the radius of curvature of the catenary-

Tj /-TT- o , , , s + y/s'+c'
Here a? = v ^'" + *~? ^"d y

-
e, h. 1. :
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doo

, and —:-
=

ds v^c-'+s'^ ds' (e2+.9^)i'

d^^

, and
'

— cs

/^\- uPyy _c' + c's' _ c^

R = C-+ s a;-



CHAPTER XIV.

FUNCTIONS OF TWO OR MORE VARIABLES. IMPLICIT

FUNCTIONS.

161. As yet we have only treated of functions of a single

variable, we next proceed to the case in which u =f{xy),
where x and y are independent of each other, and the value

of u correspondent to new values w + /i, and y + k^ of x and

y are required.

Now if ti is a function of x and y, or u =f{^'vy),

u may vary on three suppositions; 1st, x may vary, and y
remain constant ; 2d, y may vary, and x remain constant ; and

3d, X and y may both vary together.

Suppose 7i = xy^, and let x become x + h, and y re-

main constant ; therefore if u be the value of u,

71^ = (.p + h) y-
= xy'+ y'h.

Next let y become y + k, and x be constant, and let

Wi be the value of u ;

.-. u^ = X (y + ky= xy- -\- 2xyk + xk~.

Again, in the equation u =
xy'~ write x + A, and y + k for

?/, and let U2 be the value of y, that is, Wg =fi^' + '*» V + k) ;

.'. U2 = {x + K) (v + ky = xy^ + y-h + 2xyk + 2ykh + xk~ + k^h,

the same result as would have been obtained had we put

// + /(• for
//

in n\ or x + h for x in 7/,.
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162. Next considering the question in a general point
of view.

Let u = f{v,y)., then if y remain constant, while x be-

comes w + h, we have by Taylor's Theorem,

du d^u h" d^u Ji"

f{x + h, y) =ti + -—h + -—
; + —— + &c. ;"^ ^ dx dw 1.2 dx-' 2.3

or, if X remain constant while y becomes y + A;,

du d"u k^ d^u k"^

f{x,y + k) = u + -—k + —
-^ + -— . + &c.

-^ ^ '^ '
dy dy' \ .^ dy' 2 . 3

Suppose now that x and y both vary ; or x become x + h,

and y become y + k; it is not possible to make both these

assumptions at once : but if we use either of the two series,

for f(x + k, y) or f{x,y + k), and in the former put y + k
for y, or in the latter x + h for x, we shall in either case

have f{x + h, y + /c), and its true developement.

Assuming the first expansion,

-^ , ^
du d^u K~ d^u h^

f{x + h.y) =u + ~-.h+ -—, + —^ + &c.
dx dx- 1 . 2 dx' 2 . 3

du d'u
l5ut u=f(xy), and therefore -—

, -^-~, are also func-
dx dx'^

- . .- , „ - du d^u
tions of X and y, it thereiore y become y + k ; u, — ,

—^ ,

dx dx-

&c. will become functions oi y + k, and may be expanded by

Taylor's Theorem, x being considered constant.

Let therefore y become y + k;

du d'^71 k' d^u k^
.-. u becomes u + -y- . k +-^—x h -rr- f- &c (a),

dy dy^ 1.2 dy^ 2.3

.
du d~u

. du
and to obtain the values of ——

, 7—^, &c. we must write ^— ,

dx dx' ax

d^u . . . • / X

, &c. for u in the series (a);
dx^

Q
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d {—\ d'' (—]
du du

'

\d.v)
'

\dxl k'
.'.

-— becomes -r- + ,
k +——^—

. \- &c.
dx dw dy dif 1 • 2

d . (^'~
d'^u d^u

'

\dx\
^j-z, -j—. +

5
./r+&c.

d.v^ dx- dy

d f— ]
d^u d^u

'

\dx")
-n -1—. +

;
.k + kc.

dx"^ dx" dy

(du
d .

\

—
. d^u \dx

ijut It has been agreed to write — lor
, ,°

dy . dx dy
which expresses that the function has been differentiated twice,

1st considering x as variable, and then making y variable :

\dx^j . . d^u
, \dx"', .

and =—— IS written —^
——^ , and is written

dy dydx'' dy"
d'"'^".u—

, denotino; the differential coefficient when the func-
dy^.dx""

°

tion has been differentiated 7n times with regard to x, and

n times with regard to y.

Making these substitutions, and multiplying the expan-
d'U d^ii h^

sion of — by h, that of bv ? &c. we shall have
dx -^

dx^ -^
I .2

^, , ,^ rfw
,

d~u k' d^u k?

f{x + A, y + k) = ?i + -— k + -—- ~ " + -— + &c.
'^ ^

dy dy' 1.2 dy^ 2.3

dti d^u d^u hk~
^ k + —hk + , .,

, -— + &c.
dx dy.dx dy.dx 1.2

d-u h^ d'u h^k
-I H . (- &c.

dx^ 1.2 dy . dx'^ 1 . 2

d^u fir

+ -r-: + &C.
dx^ 2 . 3

+ &c + &c.
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163. But this developement was obtained, by first sup-

posing cV, and then y to vary ; but manifestly we should

have had an equal result, had y first become y + k, and then

3) to have increased to x + h. On this supposition we have

du d'^u k~ d^u k^

f{w, y + k) = 70 + —-k + -—; + -—
T,

• + &c. ;•^ ^ -^ ^

dy dy-1 .2 dj/ 2.3

and then putting o! + h for x,

dii dhc /r d"'u h^
u becomes u -f h +—— — \-

—
1- &c. ,

dw \d£' 1 . 2 dx' 2 . 3

du du d^u d^u h~
-T- 3-+ 3

—r ''+ . V ,
•
—- + &C. ,

dy dy dxdy dxdy 1.2

d^u d~u d^u h

dy~ dy~ dxdy~ 1

+&C.;

whence by substitution the total developement becomes

du d'ti hr d^u h^

f(x + h, y + ^) = u + ^-h + ~~--^ + -—-—- + &c.
dx dx^ I . 2 dx^ 2 , 3

du d^u d^u h^k
+ T-^^+ :r^r ^^ + tti + Sic.

dy dxdy dxdy 1.2

d'^u k^ d"u k'h
+ -—7 + ~—

--, + &c.
dy- 1 .2 dxdy- 1 .2

d^u W
+ -7^ + &c.
dy 2 . 3

+ &c.

CoR. 1. Since the series are equal, the coefficients of the

same powers of h and k ought to be equal ;

d'^u d^u

dydx dxdy
0.2
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and

dy-dx
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du d^u
ential coefficients, and for the same reason —-

,
——

, &c. are

dy dy^

also called partial differential coefficients, and these partial

differential coefficients are frequently included within brackets,

thus
(

—
)

is the partial differential coefficient with respect
\dxl

to X, and
(

—
|

is the partial differential coefficient with

\dyl
'du\ _ , /du

Jy
differentials of u, with regard to x and y respectively.

-, (du\ ,
- (du\ .

respect to t/, and —
a.r, and —

jrf?/,
are the partial

du du
, . , .

165. The term -p- /i + -7— ^? which involves only the
dw dy

first powers of h and k is called the total differential of w,

and putting dx for /i, and dy for k, is thus written ;

[du\ fdu\
du = —-

]. dx + {-—] dy,
\dxj \dy I

or the total differential of u ^/(xy) is the sum of the par-

tial differentials.

Ex. 1. u = x'"y". tind dti and shew that -—— = - -

dydx dxdy

du\ , (du\

dxj \dy I

-. du = mo;'""' .
2/"

• dx + nx'^y^'^dy

= a?'"~^y'^ (jnydx + nxdy),

^
d^u d^u

and -—7— = 7imx"'~^ . «" ' =
dydx

*
dxdy'

Ex. 2. w = sin x'y,

du „ du— =^ ^xycosx'-y, —-—x^cosx^y,dx
'

dy

d^u . . . 2
^^^

= + 2<r cos x^y — ^x'y sin x y =
dy.dx dxdy
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166. Having given the first differential of w, we may
form by differentiation the successive differentials (Pti, d^u, &c.

For

(dti\ fdu\ ,

And differentiating;, considering ( -r- 1
and

(

-—
|
as func-

''' °
\dwj \dyj

tions of X and t/, and dx and dy constant, we have, by

writing successively, (
—

)
and I

—
1 for u in (iS),

\dx) \dy J

, (du\ [d^u\ ,
d^u

dA — = \.dx -\^
~—--

• dy,
\dxj ydx'^ J dydx

ldu\ d'u
/"^^^^j

\dyj dxdy \dy^j

Then substituting these values, since

(du\ fdu\
(Tu = d .[

— \.dx + d\
—

. dy,
\dxj \dy I

dJ^u
, .,

dhi
, ,

d'u
d~u = . dx- + 2 . . dy . dx + --—, . dy.

dai^ dx.dy
'

dy

Again, to find rf m, substituting as before

(d'u\ (dl'iiX d^u

/ d'u \ d?u d^u

\dxdyj dx^dy dxdydx

(d^u\ d^u
(^'^^\^

\dy^ ) dxdy~ \dy^ )

fd}^u\ ..
du

•• d 'It = hj-^J dx' + 3 . -T-^-j- dx-dy
\dx-^ ) dx^dy

d^u
, „ , (d^ii\ ,

..

+ 3 .
, ., ,

. dy- .dx-\-\-- dy\
dy'dx

^
\dy'J

^
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I67. The law of continuity is almost obvious ; for the

numerical coefficients appear to be those of the terms of the

expansion of the binomial (A + k)" : but to prove that tht

coefficients of the successive differentials of u do follow the

law of the coefficients of the binomial theorem, let us assume

that

d"u
,

d"u
(Tu = dcv" + n .

—-
. ax'' ay

dec" div"-'dy
^

n - I d"u ,_„,.,
+ n .

—--
,,_ ,

dw" 'dif + &c.
2 dx" ~dy^

Then, differentiating the successive terms by means of

du du
du = -—dx + ——

. dy,dx dy

, (d"u\ d"+^u d"+'u
,

d.\
-— = -.dx + .dy (1),
\dxV dx"+' dx^dy

^ ^ '

d.\--——- =- — - .dx + ————.dy (2),
\dx"-'dy) dx"dy dx^-'dy'

^ '

/ d"u \ d"+^u d"+'u

W'-'df)
^
dx^-'df'^''^ dx^-'di^'"''^

^^^'

&c. = &c.

Then, multiply (l) by dx", (2) by n.dx^'^dy, (3) by

71 . 1 . dx"* '~dy", and addingo

d"^'u^~~-.dx'' + ' + {n+ l).[~~~].dx"dy
da?"+^

^

Kdx^dy)
'

9. d.nn"-^i1ii^
^

{n + I) .n d"'^^u

dx"~^dy^

or if the formula be true for the index n, it is true for n + I,

and we have seen that it is true when n = 3
;

it is therefore

always true.



248 DIFFERENTIATION OF

Cor. If instead of dx and dy we write h and k, we have

du du
du = — h + -—

k,
dx dy

d^u = -— h'^ + 2 — hk + , A;%
dx^ dydx dy^

d^u ^^ d^u ,,, d'^u
, ,, d^u .

d^u = ~~h^ + S~~~ h^k + S-——-h¥ + -— k\
dar dw^ dy dy dx dy

&c.

and therefore Wg =/ {(<^ + h), (y + k)\

d'^u d^u
= u + du -\ 1 1- 8ic.

1.2 2.3

d"u
+ + &c.

1 .2.3...n

or the expansion of f(x + h, y + k) may be found from the

successive differentiation of u =f{x, y).

168. Again, if u =f{x, y, z), and if x + h, y + k, z + m,
be new values of x, y, %, and u^ the value of u,

du du du
U2 = u + —— h + —— k + —— m

dx dy dz

+ Ah^ + B¥+ Cm' + he.

For, supposing % to be constant while x and y become

a? + A, and y + k respectively ;

, \ du du
,'. f{x + h, y + k, z)

= u + -— h + -— k + kc.
dx dy

Now, let z become z + m;

1
du

.'. u becomes u + ——m + &c.
dz

du du d^u

dx dx dzdx
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du du d^u— becomes + -—-- m + &c.

dy dy d% dy

&c. = m,

du du du
u, =f{w ^h,y + k,^ + m) = u + — m +— h +— k + hc.

and in a similar manner may the expansion of a function of

four or more variables be effected.

CoR. Hence, if for m, h, and A;, we put d^, dx, and dy,

(du\ (du\ ^ (du\
du = d ./(.r, y, ^) = [-)

d. +
(^- j

dy +
(^-j

d..

This result may however be obtained in the following manner :

169. Let ic =f{x, y, z) ; find du.

Let n =
(j) (y, %), so that we may put

.-. du =
f

—
]
dx + i-r-] dn.

\dxj \dnl

But 71 =
(p (2/, ^)j

dn dn
.'. dn = —- .dy + —- .dz;

dy d%

du du dn du dn
.-. du = —- d.v + --.— d y + —-. -— d%.

dcV dn dy dn d%

_ du dn du

dn dy dy

du dn du
and -—.— =— ;

dn d% dz

du du
,

du
.'. du = —- doff + -—

. dy + -r- . dz
-^

dx dy
" dz
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and the same method may be extended to any number of

variables ; whence it appears that the differential of a function

of any number of variables = the sum of the partial differ-

entials.

IMPLICIT FUNCTIONS.

170. When y is an implicit function of w, it is frequently

very difficult to solve the equation with respect to ?/, and to

obtain y=f{a;)\ but by considering f{x^y) = to be a

function of two variables, we may from the preceding ex-

pansions for such functions obtain rules easy of application.

We shall first shew that if ?^ = =f(x, y), du = 0.

Let ?/] represent the function when a: becomes x + h; and

therefore y becomes y + k;

ldii\ ,
/d^u\ \h^

(du\ ,
d'~u

\dyi dccdy

ld''u\ k~

\dy') 1.2

+ &c.

But because i( = 0, whatever the values of x and y may
be ; therefore also U] = 0;

'du\ ldu\ (d~u\ /r d~u fd^u\ k
= \~-\ h + [--] k + \--\ + -—— hk +

dxj \dyj \dx''j 1.2 dx dy \dy'^J 1.2

But y + k is also a function of x + h,

du d'-y h~
k = -±h + --^,-

— + &c.
dx dx- 1 . 2

therefore, substituting for A,

\\dxj \dyl dxj
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idu\ (du\ dy

\d.v) \dy J dx

dii

a theorem bv which -^ may be found from the partial dif-

dw •'

[du\ . (du\
ferentials —- and \-^\-

\d.vj \dy}

dy
Ex. ti^ - Saxy + O!^ = ;

find -—
.

^ ^
dcV

Let u =
y-^
- Saosy + oc^ ;

du ..

,-.
— = - Say + 3,1' ,

d.v

du— =
32/"

- Sax.
dy

fdu\ ld7i\ dy _
\dxl \dy I dx

.-.
- Say + Sx^ + (3^/

- Sax) — =
;

aoo

dy ay — ar

dx y^
— ax

fdu\ ldu\ dy
CoR. 1. Since — + — .^ = 0;

dxj \dy j dx

du\ (du\ dy
—-] dx +[--].-- dx = 0,
dxj \dy I dx

or
(
—

\ doB -ir [—-] dy = 0. Since y = fix)
\dx) \dy j

Whence du = 0.

CoR. 2. Hence, since if u = 0, du^O; .-. if dn = 6i

d-u = 0; and thus if u ^ 0, rf"M = 0.
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CoE. 3. From the equation

du\ /du\ dy

^dx) \dy ) dw

dif

may d^u = be found ; for writing p for ——
,
we have

d 00

du\ /du\

and (
—

)
and

f

—
)
are functions of a? and y ; therefore if

\d.vj \dy I

V be put

du\ (du\

t) = will be a function of the three variables x, y, and p ;

and therefore

dv dv dy dv dp
or — + -—._£+ — ,_L = o;

dx dy dx dp dx

dp d'y , P 1
whence -— = a = -—- may be lound ;

dx dx^
•'

and if d^u be required, we must put iv —f{x, ?/, p, 7); and

then we have

dw dw dw dw
d^u = -Z-- dx + -—- dy + —— dp + —— do = 0;

dx dy dp dq

whence -— or may be found.
dx dx' ^

171. Next, let ft = be a function of three variables

X, 2/, z, or let z be an implicit function of {x, y); and let

z + m he the value of % when the independent variables, x

and y, become respectively x + h and y + k;
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.'. since u^ = =f{x + h, y + k, z + m),

(du\ /du\ (dti\=
(

—
]
h + [—] k + (—] m ^- Afv + Bk-" + Cm" + &c.

\d.vj \dy I \dzl

But % + m =
<p {x + h, y + k) ;

fdz\ , fd%\
.-. /n= (-—] h + [—] k + &c.

\diV/ \dyl

therefore, substituting for /«, we have

"-m
du\ dz) ( fdic\ idu\ dz\

.d^j dx) \\dy ) \dx) dy\

whence, since h and k are independent, we have

iduX (du\ d%

\d,vj ydzj dx

/du\ fdu\ d%

\dy I \dzl dy

whence dz = —- dx -\ dy may be found.
dx dy

-^ ^

172. If we wish to obtain the differential coefficients of

the superior orders, we can find them by differentiating the

equations

(du\ /du\ dz

U^ii-.j-d:."' (>'

fdzi\ (du\ dz

and thus obtain -—
, and

\dx') dydx \dy"

We must consider these equations as functions of x^ y, %^

(du\ (du\ fdu\ ,and that -—
, H— and -— are also functions of the

\dxj \dy ) \dzj
same variables.
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Let equation (l) be differentiated with respect to x, it

must then be considered as a function of a- and z, and the

fill dii
differentials of — and —

, may be derived from (l), by first
doc dz ^ y J

du
J.

du
putting

—— for ti, and then — for u in equation (l) ;

d^-u\ d'~u dz d~u dz
+ -. ^--r- +

doc'^ } dx.dz dx dz.dx dx

d-u\ dz^ (du\ d'^z

\dz' I dx'^ \dz I dx"'

I'.

d''zi\ d'~u dz (d''u\ dz"
or !

—- + 2 . -,
—-

.
-— +

'\dx'' J dz.dx dx \dz' J dx~

Again, differentiate (2) with respect to //.

We may obtain the differentials of —
|
and f

—
|
from

•^

\dyj \dz j

(2) by first writing (-7—)
for u, and then

(-7—)
for u in (2),

whence we have

ld~u\ d^u dz /d''u\ dz^

Kdy^ j

~

dzdy 4y \dz' j dy^

(du\ fd''z\ , ^

M,;^)-y-" --W

Now either differentiate (1) with respect to
?/,

or (2) with

1 • . 1 r.
dz d'-z

respect to x ; and since m the former case —— becomes —
,

dx dydx
d'^ d % d iij

and that in the latter -^— becomes -—7— ,
and that

dy dxdy dydx
d^%

, , .„ ,
. 1 . 1

, the results will be identical.

dxdy
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Let equation (l) be differentiated with respect to y\ and

(du\ . (du\ ,.
. -/si

to do this put (— and (— tor w in equation (2), whence

we have

d^u d'u dz d'U dz
+ -,
—7--^- +

dx.dy d.vdz dy dz ,dy dx

fd'^u\ dz dz fdw\ d^z , ^

-f .
—

.
— + — — =0 (.5).

\dz^ I dx dy \dzj dy.dx

d~z d'^z d~z
From the equations (3), (4), (5),

——
, , —7 and

dx^ dy~ dydx
may be found.

By a similar process may the differentials of the third

order be found.

ELIMINATION BY 3IEANS OF DIFFERENTIATION.

173. We have seen that if a constant quantity be con-

nected with the function by the signs ±, it disappears from the

diff'erential coefficients. Should however it be multiplied into

the function or any term of the function, it will still appear in

the value of the diff'erential coefficient.

Thus if M = be a function of x and y, involving a con-

stant a, both 11 = and du = will contain a, but between

these two equations it may be eliminated, and an equation will

arise independent of a, which is called a diff'erential equation.

Thus, let y = ax^\

dy I dy
.-. — = Sa-r, or a =— .

—
;

dx 2x dx

X dy
2

'

dx

an equation from which a has disappeared.

'^~2-dx'
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By differentiation also irrational and transcendental quan-
tities may be eliminated.

Thus, let y =
{a? + x^Y '•>

m

ax n n{(r + x^) n {a^ + x^^

If there be two constants as a and h involved in the

equation y =f(x), then to eliminate them, the equations u = 0,

du = and d'^u = must be combined.

Ex. 1. Let u = y
— ax^ — bx =^0,

or y = ax^ + bx;

.-.
—^ = 2ax + b,
dx

d~y
-4 = 2a;
dx

dy d-y

dx dx-

x^ d y dy „ d-y
y ± -x-^ +.v^ —^

2 dx'^ dx dx^

d-y 2 dy 2y

dx'^ X dx X'

Ex. 2. Let y = a . cos mx + b. sin mx eliminate a

and b.

dy . ,— = — ma sm mx + mb cosmx,
dx

—
^ = — m n cos mx — m^h sm m.x



KY DIFFEllENTIATION. 257

= — ;//' ^a COS m.i + b sin 7nx\

= — my ;

dw"'
+ m^y = 0.

Ex. 'J. Let y = ne^^ sin {ii.v + 6) eliminate w an(! h.

— = 2ae'--'' sin
(.S.t-

+ />) + Sae~'' cos
(."^a'

+ 6)
dx

= 2y + 3y cot
(.'J.r

+ ft),

—^ = 4f/e-' sin (3.V + b) + Gae^'' cos (:i.r + ft)

+ Gae-'' cos (S.r + 6)
- pr/^-' sin (r,,v + ft)

= -
5?/ + 12?/ cot {3.V +

ft)

dy= - 5y + 'i
~ S

// ;

dv

d'y dy
.-.

-^ -4 -^ + \3y -0.
d,T'' dx

174. Again, if 11 =f{.Tyz) =0, or ^ =/(.riy).

We may by means of the partial differential coefficients

— and — eliminate two constants from z =f{ooy), and by
dy d,v

proceeding to the second differential, we have three other equa-

d'z d'x
^

d'z
1 , J? /? . ^

tions for and ,
and therefore nve constants

dx'- dyd.v dy'

may be eliminated : and not only constants, but indeterminate

functions.

Ex. 1. Let X == f{a.r + by) ; eliminate the arbitrary

function.

Let {ax +
ftt/)

— r ;

R
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, dx dz dv
and — = — .

—
,

dx dv dx

But -T-=f (v), and — = a;
dv dx

dz
,

dz dz dv
and -— = —-.—- =/' (u) . b,

dy dv dy
•' ^ ^

dz
f

or 6.— = ahf {v),

and a .
— = ab ./' {v) ;

.*. a —- = 0.
a.2? ay

As an example. Let ^ = sin (a<27 + hy) ;

.-.
—— = a cos (aa? + 6?/),

and -— = h cos (a.2? + by) ;

.•. a — = 0,
dx dy

and similarly if z = (ax + hyY, ox z ^ log {ax + hy), the

differential equation will be verified.

Ex. 2. Let z= {x + y)'" <p {or
-

y~) ; eliminate the func-

tion.

^- = m . (a? + 2/)'"-^ (a?=
- r) + 2 (a- + yy cp' (aJ" -f).x... (l),dx

~ = m.{x + yy-' (j) (x' -y')- 2(^01 + y)'" (j)' {x~ -f).y,.. (2).
dy
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Multiply (1) by y.,
and (2) by x, and add ;

.'. y V X — = m {x + ?/)'" (h {or
—

y')
= tnx^

dx dy

or py + qx = mx.

Ex. 3. Let zx = f \

—
\ eliminate the function.

X \yj

•'•

d^- x'^^Xyj
''

xy'^
'

\y)'

dy y^
'

\y)
'

z 1
, (x\or p + - = — ./

-
,

X xy \y/

--.-^'©^

px + z y

qx a?'

.'. px + qy + z — 0.

Ex. 4. Let % = f{y + ax) + (piy
-
ax) eliminate the

arbitrary functions.

— = a ./' (y + ax)
- ad)' (y

-
ax),

dx

dz—- = /" (y 4- ax) + d>' (y
- ax).

dy
• •

r2
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Differentiating a second time,

d^%

— arf" (y + aw) +
arcj)" (y

-
aw).

=f"(y + aw) + (p"{y-aw)df

1 d^z

a^' dx^^

d^z o d^z
.-. a2 _— = 0.

dx^ dy

This equation occurs in some investigations in Natural

Philosophy.



CHAPTER XV.

maxima and minima of functions of two variables.

Lagrange's theorem.

175. If zi =/(*', y) be an equation between the function

u, and the two independent variables, x and y, there may
be some particular value of a,', and also a value of y, which

will make the function greater or less than the values which

immediately precede or follow it. It is then a maximum or

minimum. We proceed to find the relation between the

differential coefficients, when this circumstance takes place.

176. Let «, be the value of ?/, when x + h and y + A',

are written for x and y respectively ; and u.^ the value of u

when X - h and y -k are substituted for the same quantities.

d"u ^ ^ d'u
, ^ . d^u

Also put A for —-
,
B for -——

,
and C tor --^r • 1 hen

dx dydx dy'

,^ u + — k + ~k+i \AK' + 2Bhk+ CkH + &c.
dx dy

^

and w. = u- {
~ h -r — k] + ^ \AK- + 2Bhk + CkH - &c.
\dx dy I

^

Now since the values of h and k may be assumed so small

that, (as long as the differential coefficients — and — remain
dx dy

finite) the algebraical sign of u^ — u and u.^
— u will depend

upon that of the term

du
, du,\— h + — k \,

dx dy J
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it is manifest, that if this term exist, u^ — u and u.^
— u cannot

be both positive or both negative, or there cannot be a mini-

mum or maximum of u.

„,, - . . du du
therefore at a maximum or mmimum -— h -\ k must

dx dy
= 0. A condition which can only be fulfilled by making
du , du—- = 0, and -— = 0.

dw dy

Therefore at a maximum or minimum,

u,-u = \{Ah~ + 2Bhk + Ck') + &c.

h"
= \A + 2Bn + CnH + &c.

1.2

by putting k = nh.

Therefore the sign of u^ — u, and also of u^
—

?^, will

A'

depend upon that of the coefficient of — , that is, upon

J + 2B7i + Cn\

Hence, this term must not change its sign whatever be the

value of n ; which it will not do, if it can be put under the

form of the sum of two squares, as (.r + a)' + /3^

Now A + 2Bn+ Cn~ = - \CJ +2BCn + C'n^

= ^ {CA-B- + {B + Cny\

Lj^cj-B'.e-{?:,.n)y,

which will be of the requisite form, if CA be not less than

B^ : or to have a maximum or minimum of a function of two

• 1 1 ^1 du
^
du

, J
variables, we must nrst have — = and — =

; and second-
dx dy

d'u d^u [ d^u \2

'y- d7'
'

df
"" '^^' "^'•""

irf^-)
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It IS obvious that —- and must have the same sign ;

dx' dtf
*

and if they be both negative, ?^ is a maximum, if positive,

«* is a minimum.

If the second differential coefficient of u become = 0, when

the firs^ does, there will not be a maximum or minimum,
unless the third differential coefficient vanishes, and the fourth

neither vanishes nor changes its sign whatever be the value

of n.

Ex. 1. Let u = x'^ + y^
- 3axy,

du ^ cc^
-— = 3x~ -Say = 0; .:y = -,
a X a

du— =3y^ - Sax = 0;
dy

X*
.'. — - aa? = 0;

a,

therefore x — 0, and x^ — a^ — 0; whence x = a, the other two

roots are impossible,

x^ a^
and y = — = — = a, or =0.

a a

d"u d~u drii
Also --— = 6x,

—— = w, and -—-- = -3a.
dx'' dy dydx

If 07 = 0, J = 0, C = 0, and 5= -3a.

If cT = «, A = 6a, C = 6a, B=^-3a,

AC = S6a\ and B^ = 9a%

and X = a gives a minimum,

and u = —
a^,

,v = gives neither a maximum nor minimum.

Ex.2. 11, = x'^y^(a
- X -y), find the values of ,r and ;/

that ?t may be a maximum or minimum.
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ci tl~— = SoG^y'{u
— a- -

if)
-

.r^y'
= 0.

d.T

du— = 2 art/ (a
—

.?
—

i/)
—

.r'y~
=

;

dy
'

.". o(a — <v — y) = .r,

2 (a
- .V -y) = y ;

.-. 2x = 3y;
a

.-. off — 3.r — 2.1" = ar, or .v = -
,

2

a
2a-3y-2y =

y, or y = -;

a a a
.-. a — a' — y = a

2 3 6
'

d'u

dar

- , (a a^ a a-
a'^] a^

A = 6xy~(a - ,r - ?/)
- 6',r- ?/

= b {- .
— .- .

— >= ,

V~ 9 f) 4 9 J 9
'

dy'
^ -^^ -^[8 6 8 3} 8

'

d'u
-—— = B = G<v'y(a

— ,v — y)
—

3x^y'^
— 2x^y

dxdy

.'. AC = —, and B"

a'
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h. 1. a
.-. ^ + 1 - (.r + 1).—-— =0,

n 1. c

or {x -\- 1) h. 1. c = {w + 1) h. 1. a, and .-.

h 1.6
Also ^ + 1 -

(// + 1) . ,—,
— =

;

rr+' = a'+i.

and

h. 1. c

Al so z+ I = (a-+ I).

h. 1. a

(!/+0
h.l.h

-. X =

y

h. \.c
^'' ' ^

h.l. c'

(.v + 1) h.l. a — logc

logo

(,PH- ])h.l. a -h.l. 6

log h

,v log rt + {.V + 1
) log a

—
log 6 -f (am- 1) log rt — log c = log A ;

.-. Set- log a + 2log « - log be = log J ;

log ^ fee — 2 logo
•. x =

.-. .T + l =

y + 1

u =

slog (a)

log^6c I- log« log (Abe a)

3 log a S log a

log (A be a)

3 log 6
'

(log^ftca)^

log (abcy

and ;? + 1 = log (A ben)

3 log c

Ex. 4. In a circle of given

radius, inscribe the greatest tri-

angle.

R the radius.

a, 6, c the sides.

= z 5, (p= iC.

BC X AD
ft = maximum,
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and 2jff X AD = JB .AC, (Euclid, Book vi. Prop, c.)

or 2 Re sin 6 = cb,

or b = 2R sinO ;

sin
.-. c = b.—i—^ = 2R sm <h,

sin d ^

a=2RsmA = 2R sin
{(p + 0).

BC.AD a.bc „, . ^ .

But u = = = 2ic sm 9 sm d) sm (&> + Q) = max.

.-. — = 2^^ {cos0. sin
{(p + 0) + sin 0. cos

{(^ + 9)^ sin
(p
= 0,

and =2R" \cos(p . sin
{(p + 9) + sin .

cos{(p +9)] sin0 = O;
Cv CD

.-. sin
{(p + 29) = = sin tt,

and sin (0 + 20)
= = sin tt ;

.-.
(p
+ 29 = Tr,

and + 20 = tt;

.-.0-0=0, or =
;

.-. 3 0= TT, and 0-60",

and ^ = 7r- 20 = 60",

and the triangle is equiangular ;

and u = 2R-.sin^60 = RK^^^ .

4

Ex. 5. Inscribe the greatest parallelopipedon within a

given ellipsoid.

Let 211?, 2 1/, 2z be the edges,

2ff, 2h, 2c the principal diameters of the ellipsoid;

.-, u —
8.T?y^ is a maximum.

,- z^' w- xP'

But - + -„+•;,
= 1 ;c a' h'
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_ '''

2 7 2a

du dz
.-. — = 8y% + 8y.v—- = 0,

d.v dx

du d%— = 8a>» + 8v,r -— = 0.

dy dy

_, d% cc c'^ - (?;5f y c^

But — = .
—

,
and -— = .

—
:

dec % a" dy ^ b"

x^ & , y c-

\ z .
— = 0, and z t>

= ^ '

z a' % b~

z^ c/
-

z^ y^ x^- = -, and - = 7i= •••
-2^& a^ c~ a

3x- a—- = 1 , and X = —^ ;

• *i i • •
71 = •—^

,
^" _ 1 .

c
anci ——

jj , . . ^ — —-7^ ,

. 8 a 6c
and u =

^> x/s'

LAGRANGE'S THEOREM.

177- Let u=f{y), where y = x + x(p{y), and z is in-

dependent of X ; required ic or /(.y) in terms of x.

By Maclaurin,

u = r7„+ fr r + U,^^ + f/3-^ + &c. + '^ + &c.
1.2 2.3 1.2.3 ...w
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du d'u
where Uq, U^, U.^, &c. are the values of —

, -, &c. ;

d.T dx'^

when at = 0.

First, if a? = 0, y = z ; .-. Uo=f(z).

du du dy du du dyNow -— = — .
—

, and — = — .
-—

.

dx dy dx dz dy dz

But -l =
ci.(p'{y).'^ + (p (y), where

(p'y
= ^^^dx ' dx '^ ^

dy

dy (p (y)
' / \ '

dx 1 -
x(p' (y)

^y , , ^' ( \ ^y
.
^y ^

d%
"

d% dz I — x<p (y)

dx ' dz

du du ^ dy ^ ^ du dy , ^ ^
du

dx dy
' dz dy dz ' dz

d.f(z)
Make X =

; .-. L\ = cb {z) .

",

^
.

dz

dii dri]
Next, let

,^ (;/)-=— ;

du dui

dx dz

d'U d'^Ux d'~U]

dx'^ dxdz dzdx dz dz

\

"f

-© '^h^m

dz

U,=
4:,<.)P.-^)
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And so may ^3 be found, but to find U„

assume — = ».L_—__—_———1 •

let SoivVr-^^^^^f^-

d''u d"u,,_i d''u„_i \ dx

dx" dx.dz"-^ dz"-^dx dz"-^

{,
, du\

dzn-V

u.=

{, , d.f(z)]

dz"-'

Hence if the assumption be true for w —
1, it is true

for 71 ;
and it is true for n = 1 and n = 2; therefore it is uni-

versally true, and writing Z for — ,
we have

u =f{z) + [cp {z) .Z].- +
"-^^

.
—

d^.{[<pi^)Y.z} j^ d--^|[^^^)]^z}
x"

^
dz- '2.3 rfj5?"-' '1.2.3.W

+ &C (1),

which is the theorem required.
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Cor. ^^ f{y)=y or y be required, then

f(z) = z, and Z = ^^^=l;dz

..y = .^<p(.).-^ 1- -TT^

-.^4M!.^ + &c (.).
dz' 2.3

Ex. 1. y^
— ay + b = 0; find ?/ or the root of the cubic

equation.

Here y = - + -
. if^, comparing this with y = z -i- axp (y),

a a
"

and taking series (2),

z^-, x= -, <p{y)=y';a a

dz dz~

—^^ ^ ^^ = 10 . 11 . I2z^ ;

dz^

a; <r" „ x
.'. y = z + z^. - + 6 . z^ . 1- 8 . 9^'

' 1.2

. z'. .v' + &c

1 1.2 2.3

10. 11 . 12

2.3.4

6,6^ b' h' b'
'

=-{l + -3 + 3.— +12- + 55.— +&.C. .

a ^
a? a" a^ «

Ex. 2. In the same example find y".

Here Z = w^"~\ (.^)
= z^ and using series (l) ;

.-.
(f) (z) . Z =— *,^n + 2n
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{cp(z)Y-Z=n.z^^'; .-. ll^Ml!l?=ri.(n + 5).5^"+%
d^

{^{z)YZ= n.z"+';..«. . d^cp(z)}\Z
d^ n.(n + S) . (^i + 7).^"'^';

•i? n(n + 5) ^. _

^ 11.2
.M n/n

n
+

. (n + 8)!. {n + 7) ^^^

1.2.3
3?"

+^ 0?^ + &C.

a"
^

a^ a 1.2 a* a-

71 . (tz + 8) (w + 7) 6' 1
, ,

1.2.3 a' a"

Ex. 3. Find log ?/, when I - y -\- a^ = 0,

y = 1 + a^, and ?^ = log y ;

= 1, .r = 1, (^ {y)
= a^, / (^) =\ogz;z

1

Z=-;
%

.-. /(^) = log(l) = 0,

{%) . Z = a~ .
- = a.

{(l){z)YZ
= a''~-;

z

d\(p(z)\-.Z
dz z

1 a'
= '2.Aa? - a^^ ^ = 1

,

z

and
{(p {z)Y . Z =^ a?'

z

d. \(t){z)YZ _
dz

= 3Aa?'.-
1 a33

z^
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d'A(h(z)l\Z ,, ,
1 GA.a'^ 2a^'

^^'/^ = 9A'a'\ ^— + —^
a^ z % z'

= dA-a' - GAa" + 2a^ ;r = 1,

•' logZ/
= « + (2^ -

1) + (9A" - 6A + 2). + &c.

Ex. 4. Let y = w + e sin ?/, find y .

Comparing this with y = z + .vcp («/),

z — m, X = e^ <l>{y)
~ ^i" 2/>

^"^ /(^) = ^-

Here Z = = 1 ;

dz

y = x +
^'^^l dz 1.2 d!^ 2.3

(.^)
= sin ;y = sin m if .r = ;

.-.
|<^(2r)}-

= sin^^;

.-.
^ ^ ^ ^^ = 2 sm :? . cos ^ = sin 2z = sm 2m it a; = 0,

dz

{(f) (z)'^
= sin-'^;

{d(b{z)\'
.-. -^^— ^^— = 3 sin'^cos^,

dz

d^{<p(z)Y
d%^

= 6 sin ^jr cos" z - 3 sin' z

= 6 sin ;y - 9 sin^ z

= ^ (3 sin 3 2? - sin z),

(putting for sin'* z^ |-
sin ^ -

^ sin 'iz ;)

e e' .
e^

.-. ^ = m + sin w .
- + sin 27n . + f (3 sin 3?« - siii m)

-——
1 1.2 2.3

+ &C.
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178. To determine the curve whicli touches any nuinl)er

of curves of a given form, and described after a given law.

For the better explanation of this application of the Differ-

ential Calculus to curves, let us take a particular case, and

suppose it were required to find the equation to the curve,
that shall touch any number of circles, having a constant

radius ?•, but the centres of which are placed in a curve

whose equation is known.

Then if y and ,v be the co-ordinates of the touching curve,
a and /3 the co-ordinates of the centre of one of the circles

0/
-

(i)~ + {.V
-

a)
' = >••'.

But /3 and a are the co-ordinates of the curve in which

the centres of the circles are found; therefore
^i is a known

function of a, or 13
=

(fj (a) ;

••• \y-(p(a)\''+Cv-aY = r^
(1.)

Now if we suppose a to receive an infinitely small

increment, the equation (l) will belong to an equal circle,

the centre of which is infinitely near to that denoted by
equation (]), and the two circles will intersect at a point
of whici) the co-ordinates are ultimatelv <v and ?/ ; and simi-

larly proceeding with a third and other circles we may con-

ceive the touching curve to be formed by the continual inter-

sections of these circles.

And to determine its equation, which must be independent
of a, a must be eliminated between the equations \y — (b(a)\^
+ ('V

-
ay-

=
)'', and the equation which indicates that we

have passed from the consideration of one circle to the other,
that is, the differential of the equation (l), taken with respect
to a.

Hence we may conclude, that if V=f(xi/a) =0 represent
the equation of one of the given curves, the touching curve

may be found by eliminating a between the equations

V = 0, and =0.
da

S
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dV
That V = 0, and —— = 0, are simultaneous equations,

da

may be thus shewn. Resuming the equation to the circle.

Let a + Sa, and /3 -r ^/3 be the values of a and ft in the

consecutive circle ;

.-. {w-{a + ^a)Y+ y-{ft + ^ft)Y = r';

therefore by subtraction,

(.^
_ ^y -

jo?
-

(a + 'U)Y^ + (y- ftf -{y-{ft + Sft)Y
= 0,

or Sa {2 . {X
-

a)
-
^a} + Sft {2 . {y

-
ft)

-
Sft\

= 0,.

or 2 (x
-

a) + 2 .
(tj

-
ft)
~ -

{S ft J^ + Sa} = 0.

da da

Now make Sa = 0, and Sft
= 0, in which case the point

of intersection of the two circles becomes a point in the touch-

ing curve, and -=/- becomes the differential coefficient of ft
oa

with respect to a ; ^

.-. 2 (x
—

a) + 2 (y
-

ft)
-~- = 0, which is the differential co-
ca

efficient of (x
-

a)" + (y
-
ftY

= ^'" with respect to a, between

which two equations a may be eliminated.

Prob. I. Find the equation to the curve which shall

touch all the straight lines defined by the equation

y = ax -t r\/a^ + 1,

where r is a perpendicular of constant length from tlie origin

upon the lines.

Differentiating with respect to a, x and y being constant,.

ra r \/d~ + l

a?+ . ^ =0; .-. -=
y/a- +1 -*' «
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-•2 y 9
1 r r — cu

o^ cc" x'

.'. a =

/— r
and y'a- + l = -a- =

-. y = aw + r \/rr + 1

= - vr- - x"^ ;

^8 ^.:; ^i _ ^:

.'. «/^ + or = r", the equation to a circle.

Prob. II. A straight line of given length slides down

between two rectangular axes, find the curve to which it is

always a tangent.

Let c be the length of the line,

a and h the co-ordinates of its extremities, or the parts
of the axes cut off in any given position of the line;

.-. —1-7=15 and a- -\- fr = c~ ;

a b

X y db

a b da

db db a
and a -I- 6 -— = 0, .•.-— = --;

da da b

x^ ya , , /y
-.
— - -— = 0, and b = a \/ -;
a bC X

a^ + 0- =
k'-^a'lyl^\

= c';

s2
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a!3

a = c

vys + a? 3

«4
and b = c

\/xi + ,^3

a b c

.'. (a?3 + yl)i = c,

and a?3 + y3 = cl

If the equation of condition be a" + 6" = c", then the

equation to the touching curve will be

n n n

Prob. III. Find the curve which touches all the ellipses

described round the same centre and with coincident axes,

the rectangle of the axes being a constant area.

Here "^ + ^ = I (l).
a' b

a& = m^ = the constant area (2).

Differentiating, a variable and b'=f(a),

x" y- db

a-* b^ da

db
b + a-— = from (2),da

db _ b

da a
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2 *> 7 'J 2
,v v o ir no

^^ =0, orf.
= -;

«•* Ir a Ir a

h = a — , and ab = rri- = a? — \

y

Ir = mr — \

cc

x" y' 1

a b m-

m^
.-. wy = —

,

2

the equation to the rectangular hyperbola.

Prob. IV. Find the equation to the curve whose tangent

cuts off from the axes, two lines the sum of which = c,

V'V + y/y = vc
Prob. V. Find the curve which touches all the curves

included under the equation

y = X tan 6 -
4!h cos'- 9

being supposed variable :

x'^ = 4<h (h
-

y).

Prob. VI. Find the curve when AD" = a"-^.AT.

Prob. VII. Find the curve, so that the rectangle con-

tained by two lines, drawn perpendicular to the axis of x, one

from the origin, the other from a given point in it to meet the

tangent, may = 6'-.

Prob. VIII. P'ind the curve whose tano-ent cuts off from

the axes a constant area.



THE

INTEGRAL CALCULUS.

CHAPTER I.

1. The Integral Calculus is the inverse of the Differ-

ential, its object being to discover the original function from

a given relation b

tions of X and u.

a given relation between the differential coefficients and func

In this treatise, we shall solely confine ourselves to the

dzif

case in which the first differential coefficient — is an explicit
ax

function of x, as (b'{x), and zi =
(p(^v)

is required.

d 7/f

2. The process by which u is found from — is called

integration, and when to be performed is expressed by pre-

fixing the symbol j^.

du
Thus if — =

cb(x),ax

u =
fj:.<p (x) + C.

The letter C, representing a constant quantity, is added,

since constant quantities connected with the original function

by the signs
± disappear in differentiation : and therefore,

when we return to the original value n, an arbitrary quan-

tity as C must be added, the value of which will be determined

by the nature of the Problem.

du
3. The simplest case is when -—- = ax'", a monomial.

dx
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Let u = Ax" + C\

dii
.\ — = nAaf ' = ax"^

•,

djff

.-. a = 71 J, and ni = n - I ; .'. n = (m + \),

and A = ~ =
n m + 1

Lax"'= ^— ..1?"'
+ ' + C;

TO + 1

or to inteorate a monomial, add unity to the index, and

divide by the index so increased, and add a constant.

CoR. ]. Thus also if -— = ax '" = —
,

dx .«?'"

a 1

w = . : + C,m - 1 x'"-'

which is derived from the preceding by writing
- m for m.

CoR. 2. The general formula fails when w = -
1, for then

a.x'-' a
u = + C = - + C.

1-1

dn a 1

But if m = - 1
,

-— = - = a .
-

.

dx X X

1 rf.logci' a rf.(log.i')
Now - =

; .-.- = 0. —^
;

X dx X ax

and .-. a .
\
— = a . log .t? + C ;

(1 7/

however, the true value of —- may be derived from the
dx

general expression, if C be first determined.

For, suppose n = when x = h;

ah''*' ab"'+''

.-. = + C, or C = ;

m + I m +1
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.•. u = a. ,
a fraction of the form -

m + 1

when m = —
1, and of which the real value is

a h. 1.
- = a h. \. x - a h. 1. h = « h. 1. .t + C ;

b

the same value as that which has been just obtained by a differ-

ent process-

4. Since if // = log^ /'(,r)|
=

log(.«), where ;?=/(<x'),

(In d.v

d.r z

ril
I dx

.-. X— = loo(^) + C.
z

Hence, if we have a fractional expression, such that the

numerator is the differential coefficient of the denominator,
the integral is the logarithm of the denominator.

„ - du ,v 2,r
Ex. 1. Let — = = 1

dw 1 + ,??-
~

1 + x'

•. w =
J . h. 1. (! + x^)

= h. 1. \/l + X-.

„ ^ du 2.r - 1

Ex. 2. Let — =
dx x~ — X + 1

.-. u = h.l. (x'
- X + J).

5. Again, since

dp dq dr d

dx dx dx dx

r [dp dq dr
\ r of ,

•
/ L/ -^ ;r -^ J" + ^^r =

/ J- 0> + 7 + '• + &c.)
Jr\dx dx dx

J Jidx

^ p + 7 + r + &c.
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or the integral of the sum of any numher of differential

coefficients = sum of the integrals of each differential coefficient

taken separately.

Ex. Let — = Ax'" -r Bx" + C wf + &c. ;

dx

.-. u = Jjlx'" + Bf^x" + Cjlx^ + &c.

x'"-'+ ,r"+
' + ,v^+

' + &c.
in + I 71 + 1 p + I

(). If -— = -'". — , where ;^ is a function of .r, find ?(.

dx dx

Since if u = z"-+' + C,

du , ,
d%

d% «'"+'
.-. Lz'\— = -+ C;

•^ dx m + 1

or to integrate a function of this description, increase the

index by unity, divide by the index so increased, and by the

differential coefficient of the quantity under the index.

EXAMPLES OF SIMPLE INTEGRATION.

d u (t x^

(l) Let -— = ax^\,
dx

^ du a
(2) Let — = — = ax

dx X-

1 »'du -

(3) Let -— = ax" ;

dx m+n

(4) Let -^= (ax" -f hy\v"-\dx

. . U/ —
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Let z = ax" + h ;

dz

dx
= nax" '

1 dz
.-. (aw" + hy . x"-^ = — .z'".-—;

na. dx

.-. u=~. L.z'".
1 - dz x^'"

+ '

na dx na . {m + 1)

{ax" + by"
+ '

na . (m + 1
)

du , ,, (ax + by-^'
(5)
— = (ax + by ;

.: u= —
•

^ ^ dx a- {m + 1)

(6)
— ^ (ax" + by .x% m being a whole number.
dx

Expand (ax" + by by the binomial, and after having mul-

tiplied each term by a?', integrate them separately.

('7\ — = '-

, m and n beina; whole numbers.
^'^ dx (a + bxy'

^

z — a
Let a + bx = z ; .-. x = —-—

;

b

x^ {z
-

a.y

(a + bx)" b'\z"
'

du du dz du

dx dz dx dz

du I du 1 (z
-

o)"

dz
~

b' dx
~

6'"
+ ' ^

1 r(^z- ayu
6'"

+ ' J, z"

Expand (z
-

a)'" by the binomial, and integrate cacli term

separately, first dividing by z".
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(8)
-— = —— -—r~, m and w beinfj inteoers.

1 doo 1

lor * put -; .-.
— =

,

iz dz z^

du du
2

«""^"
and ^ = —r- . z" =

doc dz (az + 6)"
'

.-. n = - r-

^m + « — 2

Jziaz+by'

which resolves itself into the preceding case.

, ^ du 1 11
(9) -r =

d,v a + bx'- a b

a
1 + -

.v^

JLet z- = ~..v-^ .-. z— -v/ - • '*) and — = \/ -
a ^

a dx ^
a

du du dz du /b 1 1

dec dz dx dz a a V \- z'"'

1 r 1

or 11 = :

/
. .

y/ab -J-- 1 +-"

T^ •/> ,
du 1

iJut it ?< = tan~\5:,
dz 1 + ^"^

'

'^

,
1 fb

.-. «=-—=. tan-'^ =—-= .tan-\t"\/ _.
\/«6 \/a6 a

du 1 1 /^
I'X. -— =

^; .-. z^ = —-^tan-^,r\/ _.
dx 2 + 3x~ y^g

^
2

c^w 1
, ,

(10)
—- =

; .-. u = h. 1. (a + x).dx a + X

J <z

^^'^ £^rf^' .-. M = ih.i.(i + .x.^)
= h.ivr7^
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(12)
-— = (a+ba;+cxy" . {b+2cx); .-, u= '

m + l

dec W2 + 1

'

Integrate by the preceding methods the differential co-

efficients

(1) aA (2) ax- + ha? + cr^ (3) (a.r' -i- i)- . .r?-.

(4) (2a^ +.;y.(a + ^). (5);r^. (6) f' t~'''^'

1 _ 1 lu h c e\

1+5* .r-(afo.p) Vci? CD~ aP' ar)

(10) (f/cr + hcc^y. (11) («
+ hw +

-|
.

(12) {ax' + -
j

. (13) (l + .r-) (l + .x)'
. .r--.

(1 + ocf . (1
-

a?) ^ a?^

(14)
^

^-^ - (15)--::.. (16)

X,<

«^ 1 + .r^
"> ^

(2 + ocy

7- These simple integrals being found, it will be con-

venient to classify the remaining functions in the following
order.

(l) Rational fractions of the form

Ax''-' + Bx'' + CxP + &c.

J,x"' + 5, .a?"' + C,cr?'> + &c.

(2) Irrational quantities.

(:>) Exponential and logarithmic functions which are of

the forms

«'/(«'), log(.i>), log (/^), p'" log ((/).

(4) Circular functions which are of the form

sin/>, /(sin p), &c.

'I'hc melliodh for lIk' iiitcgraticju of such functions will

l)c given in the four succeeding Chapters.



CHAPTER ir.

RATIONAL FRACTIONS.

8. Every rational fraction may be represented by

Ax'"-' + Bx'"-' + Ca'"'-' + &c.

A,x'" + B,x'"-' + C,a)"'-- + &c.
'

m

for it is manifest that the index of x in the numerator can by
division be made less by unity at least, than that of x in the

denominator.

To integrate this fraction we must first separate it into

fractions of a more simple form.

Now the denominator may be composed 1st of simple

factors all different. 2d. Some of the factors may be equal.

.Srd. It may contain quadratic factors, the roots of which are

impossible. 4th. It may be an assemblage of all these.

9. We shall first consider the case where the factors are

all different.

Let therefore — be a fraction where V is the product of

n factors all different, so that

V = {x
-

tti) {x
-

a.,) {x
-

cTg) ... (x
-

a,).

. U A\ A2 A^ Aj,
Assume — = 1-

--
^ + 1- &c.

V {x
-

a,) (c^?
-

a.2) {x -a^)
'

'

{x
-

a,)

"

•. U=Ay {x
-

fto)
. {x

-
0,3) ...{x- a,) + A... {x -a^) . {x

-
a.^)

. {x - a ,)

+ Sec. + A„ . (x
-

a^) (x
-

a,,) ... (.c
-

«„_,)
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Successively make cr=o, , a.^, «3, &c. ; and let
f/„_, f7„.,,

U,i.^ &c. be the corresponding values of T/;

.-. U,^
= A, (a,

-
a^) (r/i

-
a,) ... (a,

-
«„),

or ^i,
=

(gi
-

no) (r/i
-

a^)

Similarly, Ao = ——
, and A _ 3

3

(cfo-«,)(a2-cf3), &c. (o;,-a,)(ff3-a2)...

fiv) =^' f-^— + A, f-J— + A, f-l— + hc.

= Ax h. 1. {x
-

n^) + A2 h. 1. {w
-

a.^ + ^3 . h. 1. {x
-

a^) + &c.

= h. 1. (x
-

a,)^i (x
-
a^Y^ {x

-
aiY^...{x

-
a,J^".

10. Let some of the roots be equal, viz. m of them = «,

or let {x — a)"^ be a factor of V.

Let r -
(.1?

-
a)'" Q.

U A B C P
Assume — =

1- 1 1- &c. + — ;

V {x
-

a)'" {x
-

a)'"-' {x
-

a)"-- Q

.'. U=AQ+ \B . (x
-

a) + C. {x
- af + kc.\ (^ + P (x

-
a)'".

Let X = a, and let U^, Q^ be the values of U and Q ;

.-. f/„
= ^Q,„ and^ = ^;

.-. U--!i.Q = (x-a) \[B+ C.(x-a) + D (x
- af + &c.]

Q + P(x -ay"-'\.

Hence, as the right-hand side of the equation is divisible

by (x
—

a), the left-hand side is also, let the division be

effected, and let U' be the quotient ;

.-. f/' = \B + C. (x -a) + D (x
- of + &c.

\ Q+ P.(.v- ay-'.
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Again, make x = a, and we have B = -~-
, and proceed-

ing in the same manner we at length arrive at P, which

is either constant, or a function of w ; if the latter, the case

is reduced to that of the preceding article.

To illustrate these methods, we will take two examples*.

du x~ — 7<J? + 1

(1) Integrate
— = —
dw -r^ — C)ar + Wx — Q

The denominator is = [x
-

\){x
-

2) {x - 3).

x^-1x+l A B C
Let ———-^

~ = + + ;

a?'*
— bx'- + 11^? — o X — I X —2 X — 2

.-. x'^ -7x + l=J {x-2) {x-3) + B{x-1) {x-3) + C . {x
-
l){x-2).

5
Let.r=l; .-. 1 -7 + l = -5=J(l-2)(l-3)=2^; .-. J = --.

2

x = 2; .-. 4-14+l = -9=5(2-l)(2-3)= -5; .-.5 = 9,

. x = 3; .-. 9-21 + l = -ll = C(3-l)(3-2)=2C; .. C= ,

2

rU ^ r ^ r ^ 11 r 1

' '

Jx V 2' Jx X - \

'

Jx X - 2 2
*

Jx X-3

5 11
= - - h. 1. (x-l) + 9 h. 1. (x

-
2) h. 1. (x

-
3)

(2) Integrate

\/(cr- 1)^(^-3)"*

du 2x — 5

dx
(ci?

+ 3)(a7 + 1)"

2X-5 A B P
Let ——

r„ = + +
{x + 3) {x + 1)^ {x + 1)- X + \ X + 3''

'. 2x - 5 = A . {x + 3) + B {x + \){x + 3) + P . {x 4 1)^

* In these and the following examples the constant will be omitted.
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Let ,r = - 1 ; .-. -7 = A (3
-

I)
= 2A; .. A = --;

7
.-. 2 cf?

- 5 + -
(ct? + 3)

= jB (x + 1)(.v + 3) + P{x + if ;

—^
, or —(x+l) = B (,v + 1) (cv + 3) + P{x + ly ;

... 11 = 5(^ + 3) + PCr+ 1).
2

Let.r+1 = 0; .-.— = 25; .-.5 = —,
2 4

11 11

A' + 3 = 0; .-. — = -2P; .-. P =
;

2 4

fU _ _1 r 1_ H r_l
11 r 1

' '

J„V
~

2 X (cT + 1 )2
4 X ct? + 1 4 X .r- + 3

7 1 11
, 1

11
, , .= -

. + — h. 1. A- + 1 h. 1. (a; + 3)
2 ct? + 1 4 4

7 1 11
,

/.r + 1

+ — h. 1

2 a? + 1 4 \,r + 3

11. Next, let F contain quadratic factors having impos-

sible roots.

(1) Let V contain two impossible roots only, and let

(jv
—

a)" + /3" be the quadratic factor ;

U Mx+N P
Assume .-. — =

-5 + -;
V (x

-
a)- + j3^ Q

.-. U= (Mx ^ N)Q+ P \(x - ay + /3-}.

Put x = a + I3\/-1 \ .-. (x
-

a)
- + /3-

= 0.

Then fJ becomes f/, + (\\/- 1, and Q becomes Qi + Q.>\/-^
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Substituting and making the sum of the possible quan-

tities = 0, and also the coefficient of v- 1, =0, M and N
may be found.

,

Or if P be first found, subtract P {{x
- af +

(i^]
from

each side of the equation ;

.-. U-P \{w
- af +

/3^}
= {Mx + N).Q.

Divide both sides by Q, and then

M X + N = ^^^^ —- is known ;

Q

rU _ r Mx + N rP
iv~ Jr {x

- af + /3'

"^

X Q

^ . du Mx + N -

To integrate
-— = ^ , let a? - a = « ;® dx {x

- ay + fr

du du Mz + Ma + N
daff dz ^ + j8'

%''

Mz Ma + N
+

u

+ ^' z' + ^'
'

= i/ h. 1. ^/;^^= + ^^^ tan-
(I

= M h. 1. v/(.^
- aY + /3' + ^2_L^ tan-M

CoR. If a = 0, or

i3 V /3

du Mx + N
d^

"
x' + fi"

'

u = i¥h. 1. s/x' + /3- +
-g

*^»^''
^
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_, ^ du X - 2 a; - S
Ex. 1. Let — =—r =

dw x-^ + 1 (x + 1) (x"^
- X + 1)

X -5 A Mx + N
Let — = +

x^ -\- I X + \ (x'^
- X + l)^

.-. X -3 = A{^x^
- X + 1) -{^ {x + \) {Mx + N),

4
X = — 1 ; .'. —4' = 3A,orA= ;

3

4> , „ , 4a?^ - X - 5 (4<r
-

5) (x + l)
.-. X -3 + - (x^ -X + 1) = = -^^ — '

3 '3 3

=
(a? + 1) {Mx + N) ;

.'. = Mx + N;

rX - 3 4^1 1 r 4.1? - 5
"

y, a?^ + 1

~
3 J^x + I 3 J.vX^ -X + 1

To integrate
—du 4'X — 5 4-x — 5

dx x"" - X + \ ( 1\' 3

Let X — = ^
;

•'• 4a? — 5 = 4^ — 3 :

2

/•4« -3 r ^ /• 1

•• ""= /~T^* /

—
i~' /
—

^
Jz -j;" + - Jz z^ + - Jz z^ ^.

-
4 4 4

= 2h. 1. U' +
-j

-2A/3tan->
2%

-— = --h.]. (^+l)+-h.l.(.^2-.,? + l)-—^tan-^—7-

,
,
ly/x''-x+ i\t 2 _ 2.i?-l

= n.l. I 7= tan > —-^ .
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Ex. 2. Let -— = —
-TT^r^ ,

which includes
d.r Or + l)(a?+ 2)*(a7-+ 1)

the three cases.

U A B C Mx + N ^

Let — = + + + —
,

V ct? 4- 1 {x + 9.f X + 2 x' + 1

\= A.{x^ 2)2 (.x^'^
+ 1) + [5 + C . Or + 2)} (^2 + 1) (.r + 1)

+ {Mx + iV) . 0^ + 1) {x + 2)-,

0? = -2; .-. 1 =5.5.(1 -2) = -5jB, i. e. 5= --,
5

a?=-l; .-. 1 = J . 2 = 2J ;
.\ A = -.

1 - ^^ '-—1 L + 2 1—1 L = C . (ct? + 2) ix + 1) (a; + l)
2 5

+ (ilf07 + N) . Or + 1) 0^ + 2)',

(5a?^ + 18 0?^ + 23a?2 + IScT + 8)
or - ^^ =

(ct?
+ 2) .

(c27
+ 1)

10 _.

\C.{x' + 1) + {Mx + iV) G^ + 2)}.

Divide both sides by {x + 2) . (a- + l), or ^r^ + Sa? + 2

5.r- + ^x + 4

10
C 0^' + 1) + {Mx + iV) Or + 2).

Q 9
Letcr=-2; .-. --=5C; .-.0=- — ;

5 25

9 0r^+l) 5a?"^+3,r+4 (70?^+ 15^^ + 2) .,^ __. , .

11 L = _ -"^ L = (Mx + N) (x + 2),
25 10

.
50

(7<r + 1) .
O"*^ + 2) ,-, ,-^ , .

or _ 1! ^-—^ ^ = (Mx + JV)(x + 2);
50

7x + 1

•. Mx 4- iV = -
50

lv~V
^

2' Iv X + 1

~
'5 J^ (x + 2)- 25/^a? + 2 50*ira?'+l

1 11 9,1/^7= -h.\.(x+ 1) + -hA.(x + 2)- —
2

^ ^5a? + 2 25 ^50

h. 1. v .r'^ + 1 tan~ '
X.^

50

t2
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12. If there be m quadratic factors, each =
(.r

-
a)* +

fi'^,

we must assume

U _ Mx + N M,w + N, P

.-. U=\Mw + N^ {M,x + N,) [{w
- af + /3-]

+ &c.
\

Q + P{(a?-a)^ + /3'5™;

and after determining {Mx + iV), by putting {x - of + ^^ = 0,

and subtracting {Mx + N) . Q from U; divide both sides by
the factor (x

-
a)^ + /3", and then proceed in a similar manner

to find Ml and iVi-

Ex. Let — = — -—
, resolve it into its par-V {x^+ iy(x + 1)

^

tial fractions.

U Mx + N M^x + iVi P
+

:: +
V (x^ + ly X- + 1 a? + 1

'

.-. U=^ 1 = {(Mx + N) + {MiX + iVJ (x' + iy\{x+l) + P 0^2+ 1)1

Let X = v- 1 ;

.-. 1 ={My/~l + N).{y/^ + l)
=-M + My/~l + Ny/~l + N;

.'. N-M=l, and N+ M = 0; .: N=^^-M; ..M = -^,

l+^.{x+l)(x-l)=^^=(MiX+N,).(x^ + l).(x+l) + P(x^+iy;

.'. \ = {MiX + iV,) {x + 1) + P{x^ + 1).

Let X = -%/- 1 ; ••• + J
=

(iW", V- 1 + iV,) (v/^ + l)

= - iWi + il/i ^/-\ + JViy^ + iV, ;

.-. iV,-J/, = +l, andiVr,+ iWi=0; .-. iVi=^, and i¥,= -iVi=-i

0?= -1; .-. l=Px2; .-. P = i;

^ - _ 1 '^~ ^
J

r - 1
J

1
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13. The fraction - i to be integrated must be

X 1

divided into two others, -hy^. 7:75 and i.7-; n,- The
(ci' +1)-

'^

{oc^ + 1)^

former is easily integrated, for

'

must be integrated by a method which we now

proceed to explain.

d.pq dq dp
Since -/2 = p.-i + g./;dx dx dx

r do .dp

or if any differential coefficient can be divided into two parts,

one of which is a function of a?, as p, and the other the

differential coefficient of a known function q\ then w, the

required function, is equal to the product of p and q minus the

integral of q multiplied by the differential coefficient of p.

The utility of this method depends upon the function

q .
—

being less complicated than the original differential
G/tV

coefficient.

Ex. 1. Let — = 07^1 + ^vy = x\x(l + x'f.
dx

do
Here p = x^,

—- = ,r (l -f ^v^' ;

dx

d3!
' ^ ' ' '

2.3

2.3

X

2.3 ^" 2.4
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du 1

Ex. 2. Let
dx {ar' + iy

1 x^ + I x^ 1

Now -r-z r:—7 = y—. ^ = ^—. -c^ +
Or^ + If-' {x^ + 1)" 0^2 + 1)" {x" + If

'

. f
^

^ f
'''

if
'

• '

J, {x' + ly J, (x' + ly J. {x' + ly-'
'

«

X^ X
But -— — = X.

(x^- + 1)" {X' + 1)"

do V
Here p = x, and -— = —--^ = x (x^ + l)~" ;^ dx {x^ + 1)"

'

dp 1

r X^ - X 1 r I

Jx {x~ + 1)"

~
(2w-2)(a?'+ 1)"-'

^
2n-2 'X(a?' + l)"-'

'

/•I 1 a? 1 /- 1

^^ {x- + 1)"

~
2w -2

(ci?- + 1)"-^

~
2W-2 Jx

{x"- + \y-^

1 X 2n - 3 r 1

""

2w - 2
(.r^ + l)»-i

"*"

2w - 2 'X (.r^ + 1)"-'
'

r 1 r 1

by this process
J^ ^-q^„

is made to depend upon
J^ ^^^^^y-,

'

and by substituting n-1, n -2, and n- (n
-

I) for w, it will

be reduced to / —^ = tan~^tr.
JxX' + 1

Ex. Let w = 4, or let /-- — be required.
^(.r + 1)'

r I I X 5 r [

J.r (x^ + ly
^

6
'

{x^ + ly
"^

fi 'Jri^^Try'
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r I 1 X 3 r \

r 1 1 iP 1 r 1

X {w^ + \f
~

'i' x^ + \ 2 J^ a?^+ 1

1 a? 1

2 ^'^ + 1 2
+ - tan'^r;

f
I 1 a? 5 0? S . 5 X

3.5 _,
tan

'

X.
2.4.6

14. To the / -—z may also be referred the

Jx{x- +1)"

r Mx + N

For, let X — a = z\

. Mx + N _ Mz + {Ma + N)

=
""IwTW ^ ^"^^ ^ ^^ /(i^Vr\m

'

and M ( — =

Ma + N
and (J/a + A' ) /

— —— = —;- /
—-~

w^'
Ma + N r /3 Ma + Nr P _ Ma + N r 1

jS^'" 7,; (f+lf
~

jS'""-' X (t/^ + 1)'"

'

by putting -r = y, or z =
/B^/, which can be integrated by

the preceding method.
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15. Let -— =
dx (a?2 + 1)"

'

a?™
, » *

, dq X
Here « = .37*""%

-— = -—^
—

;^ dx {x^ + 1)»

r a?™ a?'"-^ m-1 ,- .r™"^

J^ (a?2 + 1)"

^ ~
(2w-2)(a7-+ 1)»-'

"*"

2W-2 7^(372+ ])"-''

X (a?2-ri)"-^

" ~
(2w -

4) (a?"'' + 1)"-^

"*" 2^^ '

X (a?^^ + l)""'

'

and in this manner if m < w, the integral is reducible either

to \ -r-. r- or /—-r
—

; the former of which is imme-
}, {x" + l)"-

J {x^ + 1)'

diately integrable, and the latter is integrated by the method

of Art. 13.

16. Next, to integrate functions of the form

d?"" , 1

and
(a + 6a? + cx^y a?*" {a -\-hx -v cx^y

'

In these cases the trinomial ex- + hx -^ a must be reduced

to a binomial ; and then the integration may be effected by
methods already given : we will first however shew how the

function may be integrated when m = and n= \.

du 1

17. Integrate dx a + bx + cx'^

1 1 1

a + bx + ca? c fa. h
+ -X + X-

,c c
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_ 6 d«
Let x + — = ^; .-. -— =1,

2c doc

, ^ hx a
.^

a h^

and X' + f.
- = ^~ + ;

c c c 4c'*

rf?^ du d% du 1

rfA' d% dx dx I o ^ ^
c U^ + - - —

C 4c~

- >—
c 4c'*

(1) Let->-^g, or 4ffc>6^;

=-/"—^
c Jz

^ 4aiac - o^

4c'^

Jz z + a a

1
*

tan"' — ;

a

1 2c _, / 2csf

•. u = -
. /

= • tan , ,

VA/4ac-62/

2 ,
2ca? + 6

. tan-^

a h^
, o ^^ - ^o-c

(2) Let - <—-„ ,
make a' = 5

—
'

^
c 4c 4c

.•. u
c J^^-ot 2ca JA^-a % + aJ

^.h.i.
'"-"

2ca \z + uj

1 2ca? + b - y/b^ — 4>ac

,
h. 1. 7-

\/6'^
- 4ac 2ctr + 6 + V 6^ - 4aG

Ex.1. Leta = 6 = c=l; .-. \/4ac - b^ = y/3,

r 1 2

A 1 + .1? + ,r"' a/q

2 2a? + 1

—7= tan 1—
7^- .

V3 VS
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Ex.2. Let c = fe = 1, and a = — 1 ;
.". vfe~ — 4ac=\/5;

••• /-T-i— =4=h.i.f?iiil^^).

18. To integrate

cC"

(a + bx + coe^)"

a?"' 1 0?"

(a + bx + c\rO" c" / ^ 6 a
U?' + - J- + -
V, c c

Let X + — = ^, or cT + a = ^, if a =—
;

2c 2c

o b « , a *'
/ 2 . /32X

C C C 4-0

'

J.V (a + ba! + cvy ^?Jz (F±^
Here are two cases :

/XT a b~ r (i^ — a) 1 /> 11
^^^ ^*

c^4?'
^^"

i.C^N^W
""^^

the method used in Art. 15.

(2) Let -<
^'

• . r
^^

"
"^'" r ^"

-
«)'"

must be integrated by the method of partial fractions.

19. Again, to integrate
a?'" (a + bx + caf'')"

1 d^ I

Let uV = ~; .-. — = ^— — z ;

z dec iV

du du d% ^du
d.v dz dw dz '

z"'^^" ^du
{az' + bz + cy dz

'
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<ym + 2K-i

'" ''

I(a^- + 6;^ + c)"'

which is a case of the preceding article.

20. Next to integrate the differential coefficients

1
A

^

and
P" _ 1

'
"

oe^ + i

Since when n is an even number,

-'"" X / 9
47r

^

.^»-l = (x-l)(x-\- l)(ci?^-2<i?cos
— + 1) {af'-2xcos

— + 1)...

continued to the factor

(n
- 2\

cV — 2 a! cos TT + 1
;

V w 7

and when n is odd,

27r 47r
0?" - 1 = (a;

-
1) (a?-

- 2 cP cos— + 1) (<2?~
- 2 .2? cos— + l) . . .

continued to the factor

n - 1

aff^
— 2x cos TT + 1 ;

and since the factors of a?" + 1 = are contained in

2m + 1

w^ —2x cos TT + 1 ;

we may integrate these differential coefficients by resolving

them into partial fractions, having simple and quadratic

equations for their denominators : to effect this the follow-

ing process which obviates the necessity of finding the

constants of the successive numerators may be used.

Case l. Let n be even, resolve into its quadratic

factors.

\
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Since a?" - l = {x
- \){x -\- \) {cc^

- 2a; cos 1- 1),n

, „ 2m7r
where a?~ — 2<j? cos + 1

n

represents all the quadratic factors.

•. log (cX"
-

1)
= log (x-l) + log (o? + l) + log (x^

- 2a? cos 1- 1) ;

n

2imr
2 it?

— 2 cos
Wit?" 1 1 71

+— +
d?"-! x-\ sv + \ „ 2m7r

x^ — 2oc cos 1- 1

n

,
2W7r

20?'^ — 2a? cos
nx^ XX n

+ +
ct?" - 1 X — \ X -ir \ 2m7r

x^ — 2x cos 1- 1

n

Now subtract n from the left hand side of the equation,
and what will amount to the same thing, subtract, on the right

side, one from each simple factor, and two from each quad-
ratic factor : then

2m7r
2 — 2<rcosnil n

+
d?"-l X - 1 X + 1 2nnr

x'^ — 2x cos 1- 1

n

•/:^=l""g ("''-')-

2w7r
1 — X cos

71

,
2m7r

X' — 2x cos + 1

n

1 -fixThe last integral is of the form /
— ^ , and is, if

we make x -
(i
= z ; 1 -

/3'
=

^^, and integrate

^ i« „, /- s^ . « . 2m7r
= d tan" ^

- p log v xf^ + d , or smcc 6 = sm ;
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2m7r

r 1 1 2 f

X — cos

sin tan '

n \ . 2TO7r
sin

n

2nnr— cos
n log \/ w^ — 2tV COS ^' ^

I

•

\

The method when n is odd is precisely the same, but there

is but one simple factor.

The same method also applies to : for when n

is odd,

a;" + 1 = {x + l){x^ -2x cos tt + 1
) ;

n

and when n is even,

/ 9
2m + I

x" + 1 = {x
- 2tr cos TT + 1) ;

n

and proper substitutions being made for w, all the factors will

be exhibited.

21. Finally, to integrate the functions and — .
•^ ^

x" - 1 x" + 1

Since all the quadratic factors of x" — 1 are included in the

2 WITT

general formula x^ — 2^7 cos \- 1.

n

X'- Mx+N P
Let = + — ;

x" - \ „ /2w7r\ Q
X' — 2x cos - + ^

.'. X' = (Mx + N). Q+ P{<j?"-2a7cos(
J
+ l}.

2m7r / . 2m7r
• Let X = cos + v - 1 sni

,

n n
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and let Qi be the value of Q ; and on this supposition also let

z be put for this particular value of .v, for the sake of brevity ;

But .r" - 1 = Q (j?^
- 2a? cos + 1) ;

n

.-. wa?"
^ = Q \2x - 2 cos

\ n

2m7r
^ dQ

+ {x^ -2w cos 1- 1 )
.
—

;

n dx

„ 1 ^ / 2w?7r
.'. nz"'^ = Qi 2^ - 2 cos

V n

.'. n%" = n= Q^ i2z- -2s? cos = Q^(z- -
1).

o- 1 o 2'rmr
Since ;^" = 1

, and z- - 2% cos 1- 1 = ;

n

« ^ w

Hence ^' = {Mz + N)

z' - 1

n

z'-l'

or w(il/s? + iV) = z'{z'^- 1) =;jr'
+ '

.

(^
- -

)
(l)-

_, . 2mTr / , 2w7r
liut since z = cos 1- v — 1 sin

n n

1 2wz7r /
—

. 2m7r
.'. - = cos v— Isin ,

% n n

2m7r
id z = 2\/ -1ana z = 2v -

J sin ,

n

- ,, 2n(r + l).7r / . 2m(r+J).7r
and ^'"*"' = cos h v -1 sin

n n
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whence substituting in (l), we have

2m7r -. j . 'im-wMn . cos + Mn\/ -l sin 1- Nn* n n

(/2m.(r+l)7r\

/ . /2w(r+])7r\l , . Swtt

/ 2m.(r+l)7r . 2m7r . 2m(r+l)7r . 2nnr
= 2V — 1 cos sin 2 sin . sin ;

n n n n
>

. 27??7r 2m(;-+l)7r . 2w?7r
.-. Mn sin = 2 cos . sin

,

n n n

,, 2 /2m . (r + l) tt

or M = -
. cos

n V w

2
.
2m . (r + 1) TT . 2W7r

and iV = . sin sin
n n n

2 2m (r + 1) TT 2m7r
. cos —

. cos
n n n

2 ^mr . IT
= — —

. cos ;

n n

2m (r + 1) TT 2m r . tt

_, »T^ ci? . cos cosMx -^ N 2 n n

„ 2m7r n „ 2m7r
.V''

- 2 cV cos—— +1 .r- - 2.3? cos + 1

n n

Case I. Let n be odd ; .-. Q = * -
l, and P = A;

v" — 1

also w'- =f(Mx + N) . (x
-

I) + A /

where /. (Ma; + iV) represents the numerator of the fraction,

formed by reducing the fractions having quadratic denomi-

nators into one.

L.et X =z 1; .-. = n, and A = — .

X - 1 n
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.-. / «=-•/ + -•
JxX^ - 1 n JxSo

- \ n

2m.(r+l)7r ^mr.tr
' W COS COS

n n

„ 2mir
or — 2cV cos 1- 1

n

, . „ ,
- r Mw + N

the latter integral is of the form /
—

^
J^ x^ - 2ax + 1

= M .\\.\. y/a^ - SacT + 1 +
Ma + N

putting for M and N their values ;

tan
-1

SmTT

w — a

y/l-d'

2m7r
and since a = cos ; .-. v 1 - « = sin

w n

Ma + N 2 . 2m.(r+l).7r ,

Also —y
= .sin —

, we have
Vl - a' n n

r cc' 1 /•
1 2 f

/
= —

. / 1

—
{ cos .

J^a"- 1 n J
{oo

-
I) n\

2m (r + l) TT

w

h.l. \/c'i?'^
- 2,r

27n7r . 2m{r + 1) tt

cos + ]
— sin

n n

2w7r
/iV — cos

tan -1
n

2nnr
sm

w

where m must be taken from m = 1 to w =
w- 1

CoR. 1 . If r = 0, we have /
——-

J X — 1

I
o Q/wtt / 2m7r

= -
. h. 1. (.r

-
1) + -

. cos . h. 1. V ''^^
- 2.1^ cos + 1

2 r« TT

2m7r
,t?
— cos

.sin
n n

. tan
-1

n

2rmr
sin

n
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Cor. 2. If we add to the integral the constant quantity

'2m7^^

'2m (r + 1) . TT^— sin
n

— cos

tan-V
n

2m IT
sin

7»

Since tan"^ {A- B) =

w' 1

A-B
1 + J5

•. f—— = — .h.l. Or-l)
2 /2w. (r + 1) 7r>

+ — . cos
n \ n j

h.l. V a?2-2cr
2»W7r 2 . 2w (?• + 1) TT

cos hi . sm
n n n

2imr
J? sin

tan -ij
91

1 —W COS
2nnr

n

d /
= - h. 1.

(.J7
-

1) + - cos

, , , /~ 2wx 2 . 2m7r
h, 1. V^ ^^ - 2.17 cos +1 .sin

2m7r
ajsm

tan~^ X

n

\ — X cos
2m7r

1 1

92

Ex. f— = -h.l. (a?- 1) +
2 Stt
- cos
5 5

AT 2^7r 2 . 27r
,

\/ a?^ - 2,r cos— 4-1 sin — tan ^{^
5 5 5

U

a? sin
27r

1 — ^ cos
27r
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2 ^'^u 1 a/~^ ^
+ - COS — h. 1. 'v a?^ - 2x cos— + 1

2 . 47r
_j— sin — tan ^

5 5

<rsin
47r 1

1 — ct? COS
47r

+ c.

Cor. If w be even, there will be two terms of the

A B
form and ; and A and B may be found by put-

os- I w + \
^ ^ ^

ting + 1 and — 1 for x in the equation

a?' = f{Mx + N)(x -l) + A '^—^
,

X - \

and X' =f{Mx + N) {x + l) + i? ^-^;

.*. ^ = —
, and B = ^ —.

n n

22. Also the function
X'

, since the quadratic fac-
a?" + 1

tors of the denominator are included in the general formula,
(Qinr -X- W

-
j

TT + 1 5 may be integrated in a similara^ — 'ix cos
n

manner, and will be found to depend upon the terms

(cos
(^n-r-l){{2m^l)}. ^^ ^—2

n
2m+ 1

2X cos TT + 1

+ sm
f
n - r - 1) (2in + 1) tt

n I

tan -1

'2m + 1

X sin I TT
71

'2171+ 1

1 - X cos ( TT
n

+ C.

n
If w be even, m must be taken from m = o to m = —

2

If n be odd m = 1 to m =
n- 1
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and there will be a simple factor (.r + 1), and a fraction
J

w + 1

where A = (-ir
n

2—
. COS

n

r 1

CoR. Hence / will depend upon the terms
J^x" + 1

^ ^

i(n
-

1) . (2m + 1) . ttI ... /T~ (2m + l\
I- —^ >.h.l. V x^ -2a; cos i W + 1

2 . (n- l).(2m + l)7r— — . sin
n n

tan -1

. {2m + 1)
'

cr.sin TT
n

2m + 1

\— W cos I TT

+ C.

n

23. To integrate
w'" - 2cV" cos a + 1

The quadratic factors of the denominator will be all com-

• 1-7 9 /^ in 2w7r + a
prised in the term x" — 2.v cos y + 1, where 6 =

Let
cV Mo! + N

n

+ t;;
a?2« _ 2^" . cos a + 1 c^ — 2x cos 0+1 Q

.-. x'' =
(c^?2

- 2a?cos + 1) Z' + (J/cT? + iV). Q.

Let .x- = cos 4- V - 1 sin =
;^, and Q, be the value of Q ;

Now 0?'^" — 2 x" cos a + 1 = (a^'
— 2 ^r cos 9 + 1) . Q ;

do
2n. a?^''~^-2w.a?"-^cosa= (2^-2cosO) Q + (x -2xcos6+l) dx

2w^^"~' - 2w^""' cos a = {2z - 2 cos 9) . Q,,

or 2ns;^" - 2nz"cosa = n(is^"
-

1)
= (Ssr^- 2^cos0). Qj

n (z^"
-

1)
.-. Qi =

u2
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%'^ - I 1

z
z

1
'

or cos {(r
- w + l)} + V^- 1 sin (r

- n + I)

= n \M (cos9 + y/ - I sin 6) + N] x -
sin n6

sin t^

.cosOsmnd ,, /
—

. ^ smn9\
/ - I . sm nd + N .

—
;

sin 6 J

. ((r
- n + l).(2m7r + a)]

/,,cos0sinw0 ,, /
—

. ^ ,^ smn9\= n. [M ^-- + J/V-l .sinn0+iV. —; ;

V sm (9 sin /

, ^ sm <-
,, 1 sin (r

- w + 1) ^ 1
I

n
.'. M = — .

n sin w0 n sin a

iV.sinw^ iVsina 1 . . J/, cos sin a
and ^

—
;,
—

,
or—

-,

——- = - cos (r
- m + 1) y -.

—
sin t^ sin t^ 71 sin (j

= {—. cos (r - n + 1) 0. sin . sin (r
- w + 1) 0. cos0> -;

——
[n n J sin

] sin (r
— n)9 1 sin {n — r) 9

n sin n sin

!in

-
r) (2m7r + a)]

n J

n sin n9 n sin a

and the integral is reduced to that of

'X . %m {r
- n + \)9 + sin {n

- r)9

« sm a . Jx 0^ — 2w cos 0+1

The integral of which is known.
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EXAMPLES.

9,x + 3 1, Or-1)^

/• 17^ 1 r >f 1

^ ^
.'^ {x" + 1) .

(a?'^
+ 4) 3 \ 2 J

/-
Sct-^ + .r - 2 1 1 5 1

(4) /
= .

J^{pc -\Y-{pc' ^\) 2(a?-iy' 2 a;-l

\/x^

2
*'

a? - 1

+ 1 -1— tan X

. (1 + xy
"

V

Sx\ 1

= a' +

= u- +

2 / 1 + a- 2

3\

tan '
a?.

I
^"^ + -

) ^ r— + log \/l +
V 4/ (1 + xj

^ ^ X

+ tan"' X.
2,x^ X

^1 / 1 5 5.t7\ 1 5
-I

.r.

X b
= -.log\/a + hx + c

^a + bx + car c &

+ fA_2)./- \
.

\2c^ cl J a + bx + cx^

r X a? + 2 2

r X^ X^ . zi—
(11) \~ = logV'^ + 1-
^ ^ Kx- +1 3

^

2 /2<r+l
tan"'
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, ^ /' a?* a?* 1 , va?^ - a? + 1 1
,
a? y/3

(12) /- = -+-log— — + __tan-^—^--.
JxO^+l 2 3

^
(2^+1) y/s 2-0?

(13) /
= -loff + -tan-'-.

Jxw^ -a'^ 4 a? + a 2 o

, , /- a?2 1
,

a?2- 07^/2+1 1 ,a?\/2
(14) /— = 7=log -. + -=tan-i-—

JxX +\ 4V2 a?^ + a?V2 + l 2 \/2 1-

, ^ r 1 1, (a?-l)'\/a?^-a7+l 1 .wy/s
^,a?«-l 6

^(a?+l)'N/'^' + a?+l 2a/3 1 - ^'

a^



CHAPTER III.

IRRATIONAL aUANTITIES.

24. The functions of this class will be treated of in the

following order :

(1) Those which are the differential coefficients of known

functions.

(2) Those which may be reduced to rational functions

by means of obvious substitutions.

(3) Those which must be referred by means of Formulas

of Reduction to known integrals.

du 1

25. Class I. Since if z* = sin~'<r, -r- =
dw y/\-x^'

and \i u = cos ^

x^
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1

Cor. Since f ,
— = / = f

—
. ,

where % = -%
a

and

.".
/
—7===— = sin"'(^)

= sin
'(-),

1

r 1 I a _l_ r 1

a '
a-^

1 -1
1 -1^^= - sec

'
sf = —

. sec

26. Class II. Next, to integrate the differential coefficients:1111
(1) If =_^== required / y- -

Let V cT^ + a^ = .Ti^ ;

2_ «
. . a? — -r -

,

;^'*
- 1

2h.l.a? = h.l.a2-h.l.(2r^- 1);

1 du I d%

xz ax z~ — I dx

du du dz du dz \ d%
But -;

— = —r- • -;
—

; .'•
-;

•
-;

=
5 T • ~7~ »

dx dz dx dz dx z' — l ax

du 1

'
d^^

~
5?=-l

'
•
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and ?*= -
f
-—-= +i. f\ + \

=1.11.1.

. . . \/a^ + 0!'^ + X , , , (-\/a- + x^ + xY
= i . h. 1. = i

. h. 1.

V a'' + c-r^ — a? «

= h.i.--
-- -'"

(2) Since

a

1

V a?" + 2ac2? V (<2? + ay — a^

.-.
I

:^tr- = h. 1. (cT + a + V .x"' + 2 0.J?).

(S) If''"

Let VtV^ + a^ = 5f ;

1 du 1 d^

d?/ dti dz
and — = — .

—
;

dcV dz dx

du dz 1 dz

dz dx z^ — a^ dx^

du 1

u

dz z^ — a^''

I n I 1 \ I .
^
z -a

= — . h.l.
Jz z^ — a^ 9.a ^z\z — a z + aj 2a

1 y/x^ + a^ - a 1 . . ar^

z + a

hA. ,
= — .h.l.

2a
*

'^x^ + d' + a 2a (v^a?^ + a^ + of

= '.h.i/
^

a \\/a?^ + ff- + a
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du 1

(4) Similarly, "
;7-

=
/ ^ 2

>

ax x\/ or -co'-

\ i CO

M = -
. h. 1.

a yy/a^ — x^ + a

27. The function ,_
t^

is easily reduced to a

Va + 6a? + c/»

known form.

1 1 1

For
y/a + bx + cx" Vc ^«^5^ + ^c

c c

\ L

^
V 2 c/ c 4c

^''
^/hi) +

which is of the form

4c2

1

-v/a^^ia^'

1
, ,

6 /a 6a? „
2c

.= -^ . h. 1. X + — +\/-+— + X^ y ZZ

y/c -^ c c y/ 'iac - o

1 /2 ca? + 6 + 2 \/c va + 6a? + cx^
= —T^.h. 1.

-v/c V \/4^ac - 6-

Let a = 1, 6 = 1, c= 1 ;

1 _
/2a? + l +2\/l +a? + a?^\

^

1 1 1

Also,
y/a + bx -cx^ y/c ,^f^^ ^ _ ^

c c
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^
c 4c- V 2cj 4c' V 2c/

d. sin'M —

which is of the form
\/a" - %^ dz

^

b

r 1 ^ • -1 2c

''"s/ a + hx — cx^ VC /4ac+6
40^

2CtT? — 61
, _ / 2ccT? - 6 \

= —r- sin
*

/- =
I

VC \-\/4ac + 6v

Ex. Let a = 6 = c = 1 ;

'^^ V 1 + a? — -i"^ \ V 5 /

28. Integrate dx x^a + bx + ex"'

1 dcX? 1 „

Let cr = -; .•.-—=- — =- a?^ ;

dw du dx 1 1 - 1

X =
d% dx dz \ / be ^^ y/a^ + 6» + c

- V « + - + -5

1

or u
^^ y/az^ + 6^? + c

which has been just integrated.

du 1

29. Integrate 3— = . •

dx
ar^'s/a + bx -\- cx^

1 du z^ du dz du
^

Let .r = —
; •'•-;— = —

/
= =

~7~ • T"
~ ~

J~ ^
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b b
I az 4-

.-. u= -
f .

^z \/ az^ +

az +
2 2

^az' + hz + c a
'

^az- + bz + c

b
az + —

I I { 2

a \/az^ + bz + c ~
'\/az"-\-bz + >

b1 y t) r 1

y/az" + bz + c A .
/

—
.

a 2a 'Jz^az^->r bz + c

the integral of which depends upon a preceding example.

du 1

30. Integrate
-— = ,

dx {a +bx)'\/ c -\- ex

Let z = y/c + ex ;
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(2) Let ae<hc, and let =p ;

'• "^

b'is^-f^' (ib'l\z-[3 z + (i]

I
,

. z - & 1
, , \/c + ex - 3

= -— h. 1.
'— = TT— h. 1. -—-- —^

.

/36 ^ + ^ /36 ^/c + ea?+/3

Let a =b = c = 1, and e = - 1 ; .-. /3
= v2 ;

r
^ ^

K 1
n/i - ^'P

- \/^

''•^
(1 + 0?) y/l - X v^2 \/l -a? + \/2

1
, ,

- 3 + a; + 2\^\/l - x
. h. 1.

y/2
' '

1 + a?

ofw 1

3L Integrate
-— = . .

d'V (a + bx) y/c + ear

dx 1

Let a + hx = z\ .•,-— = -,
a^ 6

>s — a
and a? =

h
'

c6^ + e (i^
-

o)^ ch" + ea^ — 2ae;s + ez-
c + ex^ =

2^

= —
. {^^

- 2az ¥ z^\ by substitution ;

dtt 1 du
' -r- = jn

= T~ • ^ '

6

= —
J-,

. / , a known integral.
Ve -''- ^ y/z^'

- 2az + /3^
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„- _. du
32. Inteffrate —- =

dx (a + hx^) y/c + e ar

_ 1 dw 1
L.et a? = -

; .-. — = .

ss dss z^

.
1

^^ du dz „ du
-^"^

7 2 r: > „
= T- • -7-

= - ^ • T- '

{az^ + b)y/cz^ + e dz dx dz

du z

dz (az- + b^cz^ + e

Again, make \/cz^ + e = v,

% 1 dv

's/cz^ + e c dz

, , , (v^-e\ ,
av^-ae + bc

and az~ + b = a
{ ) + 6 = —

;

\ c J c

z 1 dv du dv

(az^ + b) A^cz^ + e ^'^^ — ae + be dz dv dz''

dti 1

dv av^ - ae + bc^

• u=- f
^

=
^

f
^

Jv av^— ae + bc aJj,t;^±/3^'

which will be a circular arc, or a logarithm, according as the

positive or negative sign is taken.

_. du 1

33. Integrate
—-
dx (a + bx) '\/cx^ + ex + m

(a + bx) y/cx^ + ex + m \/c .
, x * / « e

(a + bx) \/ ^v + —X +
m

c c
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e dx
Let a; -i

= z; .'.
—- = 1.

2c dz

he ^
And hx + a = hz + a = bz + fib.

2c

X ^ ^
2

-Let - = a ;

c 4>c''

by/c
'

^^(z + (i)\/z' + a:'

Again, make z + j3
= -;

319

Z'

1 "/? 12/3 1

+ a-=— + a +p =-^ +5i'
1)^ V v~ V o

1

1 / ij^

?* = —
\/c' / 1 /l 2j3 1

^/f - V -? +
Yz

hy/c' JvV^-'^fi^'v + 'o''

a known form.

£
34. Next, to integrate X{a + hxy, where ^ is a ra-

tional function of x.

Make a + hx = z'^;

zi -a ^
dx q „_,

.-. X = —-—
, and -r- = 7 ^ »

b dz b

and f,X. (a + bxf=!,Z. ;^p.

1
5?'"' =

| /,
Z. srP+'-S

,
z'i — a .

where Z is the value of ^, when —-— is put tor x.
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35. Again, to integrate A . (x + yl + <r^)« , where x is

either a rational function of <r, or of x and \/l + x^.

Make x + ^ I + x^ = z^ ;

.-. 1 + x~ = %^9 - 2x%'i + X- ;

.-. .t? = -1
[z'i

-
z-i) ;

and \/\ + a?^ = ^« + 0? = 1
(^' + ^-«) ;

2, being the value of JT, when 1
(^'

~
^"'i') is put for x.

36. Lastly, to integrate

1 , a?™"*
and

(1 -.r'")V2c^?'"
- 1 (1

-
.r'") V S.^"" - 1

In the former, make 20?"" - 1 = ;K^'"a?-'";

.'. 07^'" - 2.r"' + 1 = .1?^'" (]
-

s?^™),

or —;;r-
= 1 " ^'^ O),

/



•IRRATIONAL FUNCTIONS. 321

"^
X

(1 -^Ov^.i^'"-l
"

-^^ (1
-

.??"')
.r;;r Jx

~
L T^^^' '

which is rationalized.

In the latter, let 2a;'" ~ 1 = z^'" ;

,„'"-! „2to-1

and 1 - .tf"' =1-4 (^'"' + 1)
= i . (1

-
sf"'") ;

(1
-

a-''")5r
rfiJT 1-2^-'

2.z""-^
'

, which is rational.
z 1 - z'"'

These formulas were integrated by LexelL

BINOMIAL DIFFERENTIAL COEFFICIENTS.

du -

37. Next, to integrate
— = x^-' {a + hx^ .

CLOu

. ,. 1 1
^^ m p ,

This function may be rationalized whenever — or — + - is
n n q

an integer.

(1) Let a + 6.r" - 2f« ;

cr" =
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--1
du q ^ /z'' - a\" dz du d'.

dx nb \ h ) doo dz dx^

du q „^ . Iz'i - a

dz nh

— I

which is rational if — be an integer, and easily integrable,

m
n

by expanding the binomial

(2) If — be a fraction.
n

Let
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Cor. We have assumed that m and n are integers, but

T V
if they be fractions as - and —

.

Make v^^ = -t ; .•. x^ =
u''*', and a.- > = v''^'\

Also n is assumed positive, for if not, let

1

71

,r= ; .-. x-" = ti\

Ex. 1. Let —- = .T^\/l + <r^.

m 4
Here r» — 1 = 3, and n = 2 , .-. — =- = 2.

M 2

Let 1 4- ,7?- = s?-; .-. .r'- = x'- - 1,

.-. a?' = (sr-
- 1)5;.-— ,

aon

du du dz
and :^ = j-'j-^dx dz dx

rf^ dxi dz
.'. Iz' — 1) z- — = —-'

.— ;

dx dz dx

.-. — =
;^^(^'-

-
1)

= ^* - ^^;
dz

^ ^' r
5 3

(1 -H wy {x"' + ly
^
^

^ ^ du
Ex. 2. Let —- =

dx x'y/T+x^'

Here - = - -
, and - = - i

; .-.- + -= - 2.

X2
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1 1

And
x~^

•V a/i + x'^ of y/x-~ + 1 \/x~'^ + 1

Let x''^ -\- \ = z^.

_., dz
.'. X '^ = — z .

—
,dw
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du du dz z" dz
or

dx dz dx 1 + i^" dw
'

du z^

dz 1 + «"'

which may be integrated by partial fractions.

38. These methods of substitution are seldom adopted,

the formula of reduction fw— = PQ—fQ-~r- being more

generally useful.

p

Instead however of integrating the formula ^.r'"~'(a + 6^")'
for every value of w, we shall confine ourselves to the cases

in which 7i = 2, and where «, b, have particular values, the

integrals thus found will be those which are of frequent
occurrence in physical problems.

n^i r X"" r X'" r 1

These are
/

. , /
. -, / >

-
.

Having integrated these functions, we shall next integrate

—r==-, and
/ , and

/
.

'

^.v -\/2ax — x^ ^.t x'" \/ lax — ai^ ^""y/ a + bx + cx^

d u x'"

39. — = -
, , (m) an integer,dx ^i — o!^

X'" , X
I ^,m — \

r X

J ~7T^^
=

J-^^'"
X^\/l -x^ ^/\ -

dq X
Here p = x'" ', and

dx y/l _,^2'

dp _ J
-

—— = (m -
l)a;"' % and o = — -v/ 1 — x^ \dx
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a;'"

/
, = - .r™-' \/l - x' + (m -

1) /,.r'"-^ \/l
- x^

= _ ,r"'-' Vl - .r- + (m -
1) { \ (m -

1) / ,

putting
—

-. for v 1 - .1?'' ;

m
/

.' = - x"'-' \/l - cv^ + (m -
1) / y ^

-^,r a/ 1 _ ,t?2
-^ r a/ 1 - c-P

J y^i _ ,^2 wi w X ^1 _ .r?8

'

and by putting m —
2, m —

4, m —
6, &c. for m, the integral

will be reduced either to

f
, or f —. ;

^.r v 1 _ ^2 -'r V 1 - a?^

that is, to — V 1 - .r-, or sin~\r, according as m is odd or

even.

J
p. ^^
' —

, be required. Here m = 4,
«V 1 — X''

r ,r^ x^ y/ \ — X^
g

r c-f"

Xy 1 - a7«

~
4

^
*/, x/l -a?^

r <r'^ XV 1 - a?^
J

/- 1

L ^\ - x' 2 ^X v^i - .r"^

^V 1 - cr"' ,

=
1 +i2 sin~'.r + C;

-^^Vl -.i?2 [4 2.4j 2.4
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40. To find the general value of the integral.

(1) Let m be even = 2w,

d let P2„=: f-^==, and Q2„_, = .r'""Vl -
«^';

1 2W - 1

-'a n - 2
— ~

P* 2)1-4
—

1

2W - 2

1

2w — 4

Q2«-3 +

Q2„-5+

2W

272. -3
27^ - 2

2w - 5

271 — 4
» 2n-6>

P, = -
4 Qi + 2 ^o> where Po= sin-'cr ;

(2n- I) .(2n-3)

+

2n. (2n -2) {2n -4)

(2n -
1) (2n

-
3) (2w - 5) 3 . 1

Q2«-5+&C.V

sin~'.'i?+ C.
2n . (2w-2)(2w-4) 4.2

If the integral be assumed = 0, when w = 0. Then C = 0,

for Q2n-i, Q2«-3. &c. each = 0.

TT

If .r=l, Q2«-i5 Q2«-39 &c. each = 0, and sin
'

a; = — ;

from.r = Ol {2n-l).(2n-3).{2n- 5)...3.1 ir
j-

x~^ from tr = Ol

^^\/\ - .T^' to cr=lj.^1 _ ,-p2' tOcr=lj 2w . (2/i-2).(27i-4)...4.2 2

(2) Let m be odd and = 2n + I ;

1 2w

2W + 1 2n+ 1

1 271-2
* 2n-l = ~

TTT ^ Q2n-2 + TT"^ ^
* 2«-3J

271-1 271 -1

^3 =-iQ2+f/*l,
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C CG ,

and P, = / —y = - V I -x^

f 1 2w

[Sw+l (2W+1)(2W-1)

2w.(2w-2) \+ — ^^ Q.ln 4 + &C. >

(2w + l)(2w-l)(2w-3)
'""'

j

2n . (2yt-2)(2n-4)...4.2 /—^—,
(2w + l)(2w-l) (2w-3)...5.3

If -P2»n-i=0 when a?=0, since then Qa„» Q.^,,-^? &c>-

each =
;

9.71 . (2w -2) (27i
- 4)...4.2 ^

.-. = ^ '— + C
(2w + 1) (2w -

1) (2W.
-

3). ..5 . 3

whence by subtraction,

2w . (2w -
2) (2w -

4)...4.2
-^271 + 1

—
(2n + 1) (2m

-
1) (2n

-
3). ..5 . 3

1 2W ^ „ I

\2n + 1
""

(2w + 1) (2w- 1)

Let iX' = 1 :

,,2«+i from cx = 0) 2w . (2w -
2)...6 . 4 . 2

\)(2n- 1)...7.5.3'

,^2n+i from <x =
0|

2w

Cor. If w be infinite, then we may make Po„ = P2» + i>

TT 1 .3.5.7, &c. 2.4.6.8, &c.
or

2 2 . 4 . 6 . 8, &c. 3 . 5 . 7 . .9, &C.
'

TT 2.2.4.4.6.6.8.8, &c.
or — =

,

2 1.3.3.5.5.7.7.9, &c.

which is Wallis's theorem for the length of the circle
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d u 1

rf<'r ,r"'\/l + .r-

1
, rf(/

c^

Here p= r, and -— =^
.

dp w? + 1—
, and q = \/l + -t'";

•• / T =
;

— + (m + 1) .
/

-s—

^— + (m + 1). / -^=^ + (m + 1). 7=-;

1 1 \/l + a?' m r 1

For w + 2 put w? ;

z' 1 1 VI + X~ OT-2 /- 1

a formula of reduction by which the integral may be reduced

either to

f 7---=- 5
"r f ^

. =

4- X'

accordino; as m is odd or even,

and { 1 = h.l.

-
x/cT?

- + 1 = - \/l +.r^

.r
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42. Inteerate
.r'" y/x" - 1

r \ r .V rid. \/aP' — 1

-'^ w'" \/w' - 1

~
y, .r'"

+ >

^/.r2 - 1

~
- ^ 'i'"'

* '

'

d.v

y/w'^ — 1
, ^ r y/.V^

— 1

;

— + (w + 1) .
/

,
- (m + 1 )

. / >

r 1 1 V c??'
-

1 m r 1

.-.
/ -)--—— = .

— + •

/ / ;

therefore, writing m for (m + 2),

1 1 \/x- - 1 m -2 r 1

-l .r'" \/ar - 1

"
w - 1 cr'"-

' m-l' J.r .i-"'
-^ V^^^^

'

a formula by which the integral may be reduced, when m is

7;
odd, to / = sec '.r, and when m is even, to

^ X \/X' — 1

' .-2 / ..a

V^.i?2 + 1

J .?7^ \/X^ - 1 <2?

1

Example. Find / —
,

> " x^ V .r*-
— 1

/ , /^:
=

2
•

5
—- + i • sec ^x;

1 1.3

-.r.r''\/.r'^
- 1

"^
00^ 2.4' .i?'-^ 2.4

sec ' X.
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43. Inteirrate —— =

^
.27'" r- .r"-' . (a

-
ct) + ax'"-'

-^T^y^ax — .v'
• "^ \/'iax — rr

rx"'-Ha-x) r x'"-^
^ _

j
+a. ——..^^..^ .

- '^ V lax — x~ '^f \/2ax — x^

Now jlx"'-^—y=^.^^=x"'-^\/2ax-x^-{m-l).jl\/2ax-x~.x"'-~

.t'"'-' r X"
--x'"-^ \/2a x-x^ -'i.{m -\)a . I ^ + {m-\). I

—
'^xy/2ax-x- 'Ji\/2ax-x-

therefore, substituting

x'"-^
m f

- = - A'"'~
'

\/2ax-x'^ + (2m -I) a.
j

-
;

^r^y2ax — x^ '^'\/2ax—x^

x"'''^\/2ax — x'~ 2m -I »,'"
- 1r X"' X'" "'V 2ax-x~ 2m -I r X'"
-

'

.-.
/ , ^ = - ~ + .«./—-==,
'^.ry/2ax-x'^ m m ^\/2ax-x~

a formula by which the integral may be reduced to

I
= Fsin-^-.

^'•\/2ax — x^ ^

The last term = a'".- —^ Fsin"' -
.m m — \ m—2 ... 2.1 a

CoR. Suppose \he value of the integral be when x = 0,

and its value be required when x = 2a.

Then, since all the terms on the right-hand side vanish

when 07 = ; therefore C = : and when .r = 2a, all the terms

of the form ,r'"'~^ v Sa.r - ar vanish, but Fsin~' — = tt;
2a

from a? = to 0? = 2 a.
x^

r X-

•^•^V Sao? —

\ .3.5. ..{2m -S). {2m -I)
TT . a . 7 r

1 .2 . 3... (m -
1) m
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44. Let -— =
doc .v"" \/2ax - .V-

^, ,
1 dz I

Make z = -; .-. -— = = — z' ;

.V dx w

du , du ^m + I

dx dz -y/^az - 1

'

"
2a

where /3
= — .

,<?'"-'

Now f
'

- 2;r^"-' \/;r
-

/3
- 2 (W -

1) .
j;

*'"-^ \/z-(i
^i\/z -

(H

= 2z"'-^V z - fi -2(m -I) . / J +2 (m-1). / ;

-^^V^ - ^ -'^^^ \/z - /3

^'\/z-(i 2m - 1
"^ 2m - 1

'^

/.y^ _ ^

a formula by which the integral may be reduced to

Example. Let w = 2, or / = be required.

Here w —
l = l ;

?< = C -
r,A//3 . (;? \/^ -

/3 + 2/:{a/;i;
-

/3)

\/2a \'^' 2at?7 a 2a.r /
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o ly/lax — or \/2ax — x'
(j - J.

''

V 2ax^ 2a^x

45. Integrate —
dx \/a-\-hx + cx-

m n

f-
'\/a +b.T + c.r''^ y- /a b

/t vc -V - + -X + or
c c

b
L,et X -\

= z ;

2c

2
^ a

^
fi b'

c c r 4c

and makino- — = «,

f . .: , -^-f
1 r (sf

-
a)'

and by expanding (z
-

a)'", the integral may be made to

depend upon /

Example. Let w = 2 ;

r x^ 1 r%^ - 2a% + a^

•^^ \/a + 6,1? + CO?' vc •"- v^^ ±
/3^

and /-/' ,l:^gIg-g.h.l.(.W;^^?);
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•• f
or zV'^'i/3'^ 2a

2\/c \/c

V c

y/z"- ±73-

a^-

y/a + b.v+c.ic^ ix h h\ 1 f3¥ o.X
, ^ /-^^

—p—
2 4c c/ ^/^ \8c~ 2c

I
4c-

j

36'^ - 4ac
/2c.X' + 6 + 2 v/c. \/a H- fed? + CcF^

8 c- a/^

4o. Integrate
-—

2c

rf^'P .r"'\/a + /),r'+ c,r''

1

Let tP = -
;

.du ^m + 1

d^ y/ a%' + bz + r

u=C- f—^
zin-\

az^ + bz + c

which may be integrated by the preceding method.

1

47. Lastly, integrate

with in Mechanics,

VC —
,V'\/2o.T — x'^

,v

whicli is met

V c — w \/2 ffl.r — lV^ \/r \/2ano — .v^

1 1 , 1 ,1' 1 . 3 x~
^

c y/2aa!-x' 2 c 2 . 4 c'
'
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asand thus the integral depends upon / =^, which h
'Jxy/'Hax — x'-

been found already.

48. We shall conclude this chapter by proving Ber-

noulli"'s series for the integration of u.

c;- r r
^

since Lu = ux — Lx— ,
•' • dx

,
., du x^ du , ^ ,rf-w

and \^x
-— = —

. 4 . \.x^
—

,•' dx 2 dx ^ •"
dx'

. grf-w
x^ d^u

J
. ^d^u

' dx' S dx- ^ '
dx'

^ ^dhi x^ d^ii
J

. ^d^u
dx^ 4 dx' * dx^

&€.... = &C.

x^ du x^ d^u ,r' d^H
.-. l,u = UX .

—- + .
~—

.
—- + &f.

I .2 dx 2.3 dx' 2.3.4 dx^

Ex. Let u = ax^ + bx^ + ex + e ;

du
.". -— = 3ax^ + 2hx + c,dx

dHi—— = 6«,r + 26,
dx'

d^u ^ ,
d^u——

„ = Off, and =
;

dx^ dx*

r 17, 2
3ax* + 2bx^+cx^

,
6^^' nx^

.-. Lw = ffiT?* + o.t^ + c.t"^+etr hff.i' + —
2 3 4

ax* bx'^ ex'
= + + — + ex.

4 3 2
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E X A RI P L E S.

/ {(a+bo!)'^ 2a(a + bx) a'] 2(a + bx)i

r\/a-{

J.T a,'

y/a+ b.v \/a+bx b iy/a +bx-s/a\

X 2\/a Ix/a + bw+y/af

(3) /
- =

\-
~ - -

a{a-¥bxy-^d' .{a^bx)-ar\
^^ \/a + bx [75 j

2 ^/ a + bw

, ^ r 1 \/4. + Sx 3
, \/4 + 3x -2

(4) / 2 /
- = 7 -log

(5) //- ^(1 +xf ^ ^ ]
2

-2(1 +
.T?)

- 1'

(1 +^)i 1 3
~^' "'

'J y/i +,-p

(6) ^>vrT^=(.'-f ^^J<i^'.

'A§

^^ X ,!?« Vr^ 3.V-J 7

(8) \\x' (1 + .T^nf = ^^1- ~
^1 -^vf
(1 + .T^O'^-

73?=^ -2
(9) /-^Mi+-'^^)-^ = -^;^(l + .^^'0

63

Jt^ \ _ rff

(II)
^1- a?'

fa?* 4.1'^ 8 1 .

= - {- + i > V 1
- x^.

[5 15 15J

ic^'

ijx^ 5x\ / „ 5
- + + — > V I

- cr^ + -
6 24 l6j 1(

sin '/» .
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(12) f = -i + \\/l+.v^
^'x''\/\^x^ V>^ 15^^ 15.1?]

/.I f 1
_2_1

X

/• 1
'

tT + a

''^
(2a.a7 + cr^)^

<^^ y/^.ax + a?^

/- 1 f 1 2 1 X + a

"^^
{2ax + x^f~ \s{2ax+x'') 3a^] a^^/oax + x''

r 1 2. (207 4-1)
(16) /

= 1 ^.
''^

(1 + .J? +
.r'^)5

3V 1 + ^'i' + ^

- 1 f 1 81 2 (2.r + 1)

J'^(l+x + x')^

~
\l+a? + x^ 3} gy/i + X + x^

(18) f
5 ^ =

-^lJL^ + tan
- '

(y/x).

(ig) r-W^ ^
I

- - 1
I
2 \/a? + 2 tan"^ \/ct7.

^ ^
J^l +x \3 J

Rationalize the integrals

^^/ 7^
.r + 3x^

' ^^^ X a?5 + ^(1 + a?)

in (1) make x = »'^, and in (2) make (l + iv)
= «

3



CHAPTER IV.

INTEGRALS OF LOGARITHMIC AND EXPONENTIAL FUNCTIONS.

49- These functions are of the form X (log cx)",

-Y.log F, X.a"^ where X and Y are functions of w.

50. Integrate /,
X . (log x)".

Let/,X=P, f,P.~=Q, and f,Q.- = R.

Then X^ (log ^)"
= P (log ^vf -n.iP. (log .r)"

"
^ -

,

and /'-.(log.r)"-l
= Q(log.r)"-^-(w-l)./,Q.(log.r)"-^-,

Jx X '^

f
-

. (log xy-' = R (log xy -'-{n-2).f,R. (log xy\ -
;

&C.

. •.
/^
^ (log xy = P (log .1?)" -n.Q (log .r)«-i

+ n . (w -
1) . i? . (log xy-^

- Sec.

Ex.
/,

cr-" (log .r)%

/,
.r*" (log xy = f:::!l(^g_^)! _ _^

.

/^
.^'«+> . (log xy-^ .

-

a?'"+* (log.^?y' n

m + 1 m + 1
/,.«-. (log*)"-'.

j;.. „og „).-. = ?!:^m:::
_^ ./„.- . oog ..)--,
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and in this manner may the integral be reduced to

faf^ = 1
,

if n be a whole number,m 4- 1

and .-. Lv"' . (log wY =
j (log wY (log x)

w.(w-l), , „ ,
w. (w -

1) . (w
-

2)....2. 1

Every term of the integral vanishes both when x = and

<r = 1 , except the last, which vanishes only when a? = 0.

from a^ = Ol 1 . 2 . 3....(w - l) . wfrom a^ = Ol

.•/,*'" (log .^r, t^,^^ J
=

(»w + l)
w + 1

r ^
51. Integrate /

—
, n a whole number,*=

J.{\ogxy

X / dx d.logcX' 1

J, (log xY
Since a?—~— = a; - = 1

(log^r)" (log A')" dx X

rd. {Xx)
— X.x 1 I dx

(w
-

1) (log a?)"-' w - 1 (log.x')"-'

Let llHf) = P;
da?

X (log a?)" (w- 1
) (log a?)"

-
' w - 1 J^ (log xf

- '
'

and f
^

-.
"^-"^

I

^ r Q

^.r (log .^)"

" '

(w
-

2) (log aj"
- ^ n-2' J.r (log .r)"

- '
'

where Q
da?

^ - ^a? Px

(log ,^?)" (w -
1) (log xy-^ (n - l)(7i-2) . (log .r)"

Q.a-

(w
-

1) (w -
2) (w

-
3) (log xy-'^

Y2

-&c.
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in this manner the integral may be reduced to f —.—— ,

'^x (log X)
where X^ is a function of w, which cannot be integrated except

by a series.

Example. ,
— —y

r a?™

J^ (log a?)
2

1

r X-
I -^

Jx (log xf '^^
(log cef

+
(m+l).y^-log OS Jx log X

To integrate / .

^* log 0?

Let log x = x; .'. X = e', and x^ = e""' ;

Jx log .p J, z dz J Z Jz z

(m + 1)2;!?2 (/» + 1)V ,
1

= lA\-^{m + \)z+- ^— +
^ ^

+&c. .-.•'^^ ^ 1.2 2.3 *»

(m+l)^«^ (^+1)^.2?*= log^ + (m+l).^+
^ ^,

+ —-_^_ + &c.

(m + l)^(loga^f (m + iy(logA-y=
log.loga? + (m+l)logc^+ j-^^

+
^-j^

+&C.

Cor. If «i = 0, we have

fr— = log • log ^ + (log x) + -^~- + 8ec.

Jx log a? 1.2

52. Integrate f^w" . X, X being a function of a'.

Since = a* log a = ^ a^ ;

da?

.-. ^a* =
a*
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Therefore, integrating by parts.

A A J doc

^ dX ^ dP ^
Let —- = P,

—- = Q, &c.
dw diV

, ^ Xd' 1 . „La'.X=—- .LPa'

Pa' 1 ,

f.a^-P=-j--^.fQa^;

/,a^.^=.^.g-|
+
|3-&c.)

Example. Let
f^.v"'

. a"" be required.

cV"* . a^ m

X"^
1

, ^.r m - \

f^w^'^-^
. a^ = _

.

j,x^^--'
.

A
&c.

aX

f^rn ^._^. K ^^"'-
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ra'' -a' A a"
•'•

i ^"
"

(w-l).a?"-'

~
(«

-
1) . (w

-
2) . .r'

^"^ - &C.

it>-2

(w -!).(»- 2). (w- 3)..r'-^

(w
-

1) . (n - 2)
^ '

-l).(n-2)..,.l
' X "^

'

and T— can be found by expanding a*.

1 + J c'P H 1 1- &C,
„ a^' 1.2 2.3
For ^ = —

1
^

J^l- J^.2?^ „= - + ^ +— + + &C.
X 1.2 2.3

/-a'
, , ,

A'x^ A\v' A\v'
.'.

/
— = h. \.x + A.x + s + z

—
o + —:r-:^ + &c.

1.2'^ 2.3' 2.3.r

Ex. 1. Find /
-

log {a + bx).

log (a + 6c2?)
= log a (1 + -

a?)
=
log a + log (l + -

.v)

(h b\v' b\v^ b\v'
^

\
= log a + (-X 2 + ^TT

~
:rT + &^-

1
'^

Va 2a^ 3a^ 4a' /

.'.
/
-
log (a -I- 6<r)

= log a . log a

Ex. 2. Find /,cr"^

,t?»*- = 1 + fix log W + ^—. ^—^ + ^^ 2_£_ + &c.^ 1.2 1.2.3
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•. fX" = x + n. !,w log 0C + —-. f,x^ (log xf
1. • /4

n?
+— •^^'(log*)' + &c•

The integration of the terms depends upon /a?'" (log a?)"*.

Now
/v'"

. (log xy = .

I
(log xy . (log xy-^

m.(m-l) ,, , , „ m.(m -
I) .{m -2)...3.2 .1]

+ -7-^ ^ • (log a?)'""'
- &c. ± i^ ^—^ -^ > ;

(m + 1)-
^ ^ ^

(m + l)-" I

.-. ^a?logcr = — .(loga?-l),

/p3
r 2 . 1 1

/,.X" (log J?)^
= -

I
(log xY -

I log a? +—
I

,

x^ ( 3.2 3.2)
£ (^ log <^)'

= -
I
(log cX')^

-
I (log xf + -^ (log x)

-
~^\ ,

&c.

and arranging the terms according to the powers of log x,

nx^ 11?x^ n^x^ n'^x^
Lv"'' = X — + — — + — &c.

•'

2^ 3^ 4>^ 5''

x"- nx^ n^x'^
^

'2 ~"F +
-^-&<^-)^iog'^

«3 ^ „4 ^2 „5
7^^ (loga?)^

i

/a?* nx n~x^ „ \ 'n/{\c
+ + -— - &c. —^

V 3 42 5^ / 1 .

V4 5^ 6^ / 1

+ &c.

Cor. Since x^ (log <r)" vanishes both when x = 0, and

.r = 1,
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from A' = 0) n rv^ n^ w^from w = 0)

and if 91= 1,

. 11111
Lw'' =

-o + -, —7 + —
.
- &c.

•'^
1 2^ 3^ 4* 5' .

between the same limits.

This last integral gives the area of a curve, of which the

equation is y = a;", included between two ordinates, each = 1,

one drawn through the origin, and the other at a distance = 1

from it.

EXAMPLES.

2. 1.2d? / 2

( 1
) £a?2 (log^y=j-{ (log ^'y~3 ^°s '^ "^

9

-^^
-v/log a;

~
4Vlog a;

'

^ "^
8 log x (8 . log xf

1.3.5
+ -—, r^ + &C. J. .

(8.log a?y
*

r cV* a?^ 5x^ 25 r x'

^ ^
J^ (loga?)^ 2 (log xy 2 . log x 2

'

X log w
'

(x^ 3x^ 6x 6]
(4) /x..^ =

a^|---^
+
^-^|.

^
Xa?*~ {30,^ 2.3.'f'^ 2.3..rj 2.3' J^x'

r d' a^ . 1 3 3.5 -

Ja^ (2c77J (2xAf (2xAf (2xAy -,

also = —7-. {
^^ ^ + ^^ - + &c.|.

y/x [1 1-3 3.5 3.5.7 '

, ^ . ffrom a? = Ol l n
^ -^

J tOcr=lJ m+1 (m + 2y

-4 + &c.
n^ n^

(m + sy (m + ^y



CHAPTER V.

CIRCULAE FUNCTIONS.

54. These are of the form sin" 6, cos" 6, (sin 6)'" (cos 6)",

, &c. ,
and ^.sin"'a?, where JTis a function of .r.

(sin ey

Almost all these functions may be integrated by parts,

and may be thus reduced either to known or to more simple

integrals.

These are

1 111
sin 9, cos 0,

—
r^r , tan 0, cot 6, ^ . ^ , -i—p. , and

cos''^ cost^smt^ sm0 cos0

(1) f^sinO
= - cos 6.

(2) fQCosO= sin 9.

(3) f
—

2^
= tan a

. ^ / sin
, ,

(4) fetan0= / -=-h.l.cosa
^ -^ JecosO

/-COS0 , , . ^

(5) /ecot0= / ^--r= + h.l. sma

11 ,1
55. Integrate -r—r

, ;;: , and .

—
.° sm0 COS0 sm^cost/
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, r 1 r sinO r sinO r / sin sin \

^^^
Je dnO

^
Je sin"^^

"
Je i-cos^0

" ^j (^i_cos0
"^

i+cos^j

sin^

2 Vl+COS0/ 2
V 2/

COS^-
2

(2)
r 1 ,

1

i"^ yesin 1
+

=
/ ^—y

= h. 1. tan ^ = h. 1. tan - + -

J^smcp 2 V* 2

(3) l-^-7i ^= /^ n= /
-^ ^ = h.l.(tan0).^ ^

Jesin0cos0 .'e sin 20 Jg0sin20
^

56. Find ^ A". sin~^ cV, where ^ is a function of x.

Make f^X = P, and then integrating by parts,

r P
/^X.sin"^^= Psin~\r' - /

,

r P
and / .

- has been integrated.

Ex. f
- sin~'.r?. Here P=-vl-a?^;

.-. r = - V 1 - .r'^ . sin" ^r + /\/ 1 - cT^

= - vl - cc^ . sin"' .r + co.

Similarly may j^Xco^'^ x be integrated.
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du
57. To integrate

-— = Xtan-^a;.
ax

Let/,X=P;

r P
Jx I

347

« X +a;^

Ex. / tan-' X be required.
Jx\ + X^

p= f—— = Ml -)
= a?-tan-^^7;

S 1

.'. /'_^tan-^r = (a;-tan-'a?)tan-'a?-X(a;-tan-^r)—
—-

/r 1 + .r^
^ + *

/ : {ian~^ xy
= {x - tan-' a,)

tan"^ a; - h. 1. V 1 + x' +

=
j.-P

_ 1
(tan"' a?)}

tan"' x - h. 1. \/l + x^.

du . .

58. Integrate
— = sin" if.

Integrating by parts, since sin" 6 = sin"
~ '

. sin ;

.-. j^sin"0
= /sin»-'0.sinO

= - sin"-' e.cose + in-l).fe sin""^ ^ cos° ;

and putting 1 - sin^ 6 for cos^ 9

= -sin''-'0cosa + (w-l)./0sin"--0-(w-l)/esin"0;

^ . ^ sin""' 0. cos »*-! r • « 9/1
.-. /^.sin"0= + /esin"-^^,

a formula by which j^
sin" may be reduced to - cos 0, or 9,

according as n is odd or even.

sin^ 9 cos 9 2 . . _

Ex. /6(sin'0)
= ^— +--/osin0

sin^ 9 . cos 2
= cos 9.

S 3
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59. Integrate
—- = cos"^.
du

fe cos''^ = /cos"-
' e.cosO

= + cos"-' sin 0+ (n- 1) . /ecos"-^Osin^O

= cos"-'0 sin0 + (w
-

1) fecos^-"e
-

(n -
l) /qcos^O

cos"-'0 sinO n - 1 .

n n

a formula by which
[q cos"0 may be reduced to sin 9 or 0,

according as n is odd or even.

cos^0sin B 2
Ex. jeco&^9

= i--_^cos0
3 3

cos^^sinO 2
. ^

+ - sin 9.
3 3

^^ -^ du 1

60. Let —r =
d9 (sin0)"'

Since sin^^ + cos^0 = 1 ;

sin^0 + cos^0

Jd (sin 9Y Jeh (sin 9y Je (sin 0)"

cos^0/•I r cos^y
"
X (sin0)«-^

"^ X (sin 0)"
'

r COS^0 COS0 ^
f

^^"^
^""^

Je (sin 9y
^~

(n-\) (sin0)"->

~ w^ X(sin0)"-''

' • ^
(w

-
1) (sin 0)"-' V n-lj Je (sin 0)"-^

COS w - 2
+ - 1 Je (sin 9)"-(n -\) (sin 9y-' n

a formula by which n may be diminished.
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r 1

Ex. Let u = -r-.
—

;r-o be required ;

Je (sin ey
^

therefore here n = 3;

cosOr 1 cost)
1 r ^

Je (sin ey
^ ~

2 (sin Oy
"*" ^X^e sin 6

cosO , , / 9>
+

2 (sin ey llog(^tan-j

61. If —- = ——
, then, as in last article,

ad (cos^)"

r 1 r sin^G

JeicosOy-^
"^

JdJcosOy
'

,
/• sin"0 sin 1 r cos

and /
~~ =

/ ; :

Je (cosOy (n-l). (cos oy-' n - l ^e(cos0)"-'

sin0
u =

sm t/ n — 2 r 1

{n-l){cosey-'
"*" n- I Je (cos 0)"-^

*

62. Let —
^
=

(sin 0)'" (cos Oy m and w both integers,

(sin 0)'" (cos ey = (sin 0)™ cos e (cos f^)"-^

. /e(sin0r(cos0)"=
^'^"^^'"'"'^'"'^^"

-+^:^/e(sina)'"^^ (cos^)-^'' ^ ^ m+1 m+1 -^ ^ ^

(sinm'"
+
'(cos0)"-' w-1,,,. ^ ,

^^

m-fl +^ti/e(^^"^r(cos0r-^-/e(sin0r(cos0rj;

/ yi-l\ w + Ti (sinm-^+Vcos^)"-'
.-. 1+ ]u= u=- ^: ~—

\ m+ 1/ m+ I m + 1

m + I Jg
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(sin 0)™
+ '

(cos ey-' n-1
i L. ^ i— 4- .

j (sm dy" (cos 8)"m + n m +n

a formula by which the integral may be reduced to

/e(sin0)"', or
/e (sin 0)™ cos 0.

Ex. Let m = 2, and w = 2 ;

.5 5

(sin ey COS (sin Oy cos 2 cos

3.5 3.5'

substituting the value of /0(sin0)^ from Art. 58.

„ ^ du sin'"0
63. Let T^

= —
T7,'a 6 cos"

u =
sin'" --^0 sine (sin0)'"-^ m-\ r(sme)/•sm'""'ysmy l^smt^j" m - i r

Je {cosOy (w-l).(cos0)»-^

~
n-i ^^6 (cos 0)""'^

'

a formula by which the integral is easily reducible to a known

form.

Let m = 3, and w = 4 ;

(sin0)' (sin0)- 2
/•

sinO
.-. w =

Je(cos0)*

"
3 (cos 0)3

~
3 \' (cos 0)'

(sine)^ _
2 1

3 (cos 0)' 3
'

cos

1 ({siney 2
\, }- cos-0>

(cos0)M 3 3
I

„ <sm-t/
—

} ;

(cos 0)
'

1
•'
j
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otherwise thus,

r {sin Oy r sin . (l
- cos^ 6) r sin r sin 6

Je (cos ey
"

Je (cos Oy
"

Je (cos ey
"

Je {cosOy

_ 1
^ cos^ 9 COS

1

COS^0
{i-cos«05

cos^0 \ 3J

64. Find feO'sinO.

feO" sine= -e"cos9 + n.f6''-' cos 9,

ji)9"-' cos9 =+ 9"-' sin 9 -
(n -

1) fe 9"'- sin 9,

fe 0"-^ sin = - 9"-' cos 9 + (n-2) [q 9"-' cos 9,

&c. = &c. &t.

je9"sin9 = - 9" cos 9 + n9^-' sin 9 + n(n -
i)9''-'cos9

- n(n -l){n- 2)0«-^ sin 9 - &c.

CoR. Similarly may f^&'cos9 be found and shewn to be

= 9''sin9 + n9"-' cos 9- n(n- 1)9"-^ sin 9

~ n{n -
I) (n

-
2)9"'^ cos 9 + &c.

65. Integrate sinmO.coswO, sin»»0 sinnO, and

cosm0.cos7iO.

Since sin J . cos 5 = ^
.

{sin {A + B) + sin (A -
B)\ ;

.'. sin m9 . cos wO = ^ .

|sin (m + ?i)6 + sin (m -
w)0} ;

r,. „ ^^ , fcos(m + w)0 cos(w?-w)0)
•. feism m9. cos n9) =- ^.{ ^^ —i- + ^

-f—\.
[ m + n m - n

j
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Also since cosmO . cos nO =
^. {cos (m + n)6 + cos (m -

n)9\,

and sin m9 . sin n9 = ^. {cos (m
- n)9 - cos (m + n)9];

(sin (m + n)9 sin(m-n)9\
.'. L {cos m9 .cos n9) = ^ . { 1 ?,

'^

[ m + n m - n ]

_ - .. _ . ^ , [sin (m + n)9 sin {m—n)9\
and L (sm mQsmnB) = - ^.{ ) .

'^

\
m + n m - n

]

QQ. Integrate (tan0)'% and (tan^)-'".

(tane)'"
=

(tan0)'"-2 {l + tan^^ - l}

= (tan0r-^^^4?^-(ta"^r"''

.'.
fe (tan 9)-

= ^^^"^^'""' -
fe (tan 0)'"-^

in — 1

fe (tan e)-"- = (^5!^^^ |^ (ta„ 0).-.,
•' m — 3

&c. &c.

,^ ^^ (tane)—! (tan^^-^ (tan0)"-' ^

•'"^ ^ m -\ m - 3 m- 5

a formula by which the integral may be reduced either to 9, or

r sin 9 , . ^
jo

tan = / = - h. 1. cos d.
'e cos9

tan^9
Ex. fe (tan 9)'

=
fe (tan 9f>

/e (tan ey = tan
-^(^^)

= tan -
;

.-.
/e (tan 9)'

= — tan + 9.
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Je (tan BY J^
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1 + tan'^O - tan^^

(tan O)"" Je (tan 0)'"

d . (tan 0)

d0 r 1 1 r 1

(tan 0)'" X(tan0)'"-2" (^j-i) (tan0)'«-' Je(tan0)"*-2'

1 r 1

and
X (tan ey-' (m -

3) (tan 6)'"-^ Jd (tan 0)

1

m — i '

JeaandY'(tan^)"' (m-i)(tane)
m-l

1 _ 1

"^

(w -
3) (tan 0)^^

~
m-5 (tan 0)"

-^ "^vm-5

a formula by which the integral is reduced to 0, or

/'-^ = h.l. (sin0).
Je tan 9

'

68. jxe"'"
sin A\r.

. do
,

Integrating by parts, and making p = sm kx, and —- = e

in the formula li^p-r-
= P9 - Jx9-r > ^^ "^^^

rtcF rfcr

e^'^sinAr-r k . ,,^

Le"'' sin ka;= . Le"'' coskx (1),
a ^

e"^ cos koJ l^ r ax r

and Le cos kx = + -
. Le sm A; a'.

4'

Multiplying by
-

, and transposing

k^ r „ .
ke'^'' co%kx k . ..

,
. .

-. £e"" sinfcar = -— ~ + -
- S.e"" coskx (2).

d^
^' a a

,a»
i
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Adding (l) and (2),

k\ r „r. . (a .smkx - k cos kx) e'"

. „, , (a . sin AjcT - A; cos A;a?) e"

/,e"^ sin kx = ^ ^

(a . cos /ca? + A; sin A;.r)e°

Similarly, y^e co%kx = —
^

fC "T CI

du 1

69. To integrate
—- = r .

ax a + . cos a?

1 - tan -
2

Since cos x =^———

1 + tan^ -
2

Let ^ = tan -
;

2

.'. cos X =
1 -^^

1 +z^

4z d%
sin a? = —

-7-
(1 + %y dx

But sin ^ = V 1 -
( ; )

= -

d% (1 + ;?^)

2af

+ «

*

del? 2

1 du I +%^

1-^2 d^ 2
a + fc

7,

du

d% a (1 + %") + 6 (1
-

^')
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(l) Let «>6;

dti 2 2 1

d% a + b+ (a -b)ss^ a + b a-b
1 + 7 . m^

a + b

2

a + b

y/a^ - 6~

(2) Let a<b;

a-b V a + b)

A ^ /a -b x\
tan-MV r.tan->.

\^ a + b 2j

du
'

d% {b- a) b + a

b — a
-z'

/b + aV ;
+ %

1 a/^-^ki'^^"''
.-. W = . V :;

n. 1.

b -a b + a /b + a
z

b — aV!

v/fe + a + \/b - a . tan -
1 2

. h 1.

x/62 _ „2
^/b + a-y/b-a. tan -

. 1

70. Similarly may / r-^— be found.
* ^ '' Jwa + bsmx

sm-r , r cos a?

Also / ; ,
and

/
Jxa + b cos X Jx a + b cos X

d . cos X

r sin a? 1 / dx ^
i i / . /. „^o »,\

For /
= - 7^ = - 7 . h. 1. (a + o cos .r),

J « + 6 cos cr 6 a + b cos a? 6

z2
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COS X r a + b COS X — a
and

r cos X r a + '

Jx a + b cos X J^r b (a{a -\- b cos x)

1 a

\b b a + b

1 \ X a r 1

> cos x] h b Jx a + b cos x

And to integrate . Let tan x = z ;

a + b tan x

dx

dz 1 + ^^
'

/
I .

/•
Jx a + b tan a? A (l +

sr^) (a + 6»)

which must be integrated by partial fractions.

EXAMPLES.

/ X r/- m5 nfCsin6>V 4(sin0)^ s)

. ^((cos^)^ 5(cos0)' 5 cos 6)) 5^
(.) /e(cos^)^

= -
^{'-V

^V^ ^^ ^
16

•

(3) /e (sin ey (cos 0)*
= ^''"^''°'^^'

+ - sin^0 cos

^ • a a ^
sin t^ cos a + —;

16 16

(4) /e(sin0r(cos0y^
=
(^^%^)(sin0)^.

(5) / r = - cos 0< h > + -logtan -
^ '

Je (sin ey U (sin Oy 8 (sin eff 8
^ 2

r 1 . f 1 4 ^
I

^^^
Je (cos 0)"

" ''^^ ^
|5(cos0f

"^

15 (cos 6^)=^

"^

15.cos0r
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r jsiney 1
f (sin ey 4(singy

8|

ricosoy r, ^., 3 COS 01 1 3,^0
(8) /

^^ ~ = I (cos Of > , . ^,,
- -

• log tan - .^^
Je(sin0)^ \^

^
2 J(sin0)« 2^2

^'^^
ie (sin 0)~ . (cos Oy

"
l2(cos0)-^

~
2

j ^m^

3
, /tt y\

+ -
. log tan —I-

-
2

^
V4 2/

10") / = cot 2 0.^
Je(sin0y(cos0)- 3 cos (sin 0)=^

3

1 1) f^e^ . cos = 0' sin + 30- cos - 60 sin - 6 cos 0.

(sin ^^y x\/\—ar . _ or
sin~Vv = sin \v + — ,

Jf

a;

r X . ,

sin"^1?
, /\ - x

13) / jTaSm-^o? = J + log V :;

•

*^x (1
- '^ )^ a/T^ 1 + ^

14) r tan~^r = <j7tan"'a? - i(tan"^.j?)^
-
\o^\/\-^x~.

Jx\ -V X^

e"'^. sin .r' (a sin ,27-2 COS
.J?)

2.6°'*'

15) Le''\ (sin xy = — + -7-^
—-

p 1 1
[

- 6 sin a* r 1
|

v/r (a + 6 cos
.1?)^

or -b^\a + bcosx J^a +b cos cr
j



CHAPTER VL

APPLICATION OF THE INTEGRAL CALCULUS TO DETERMINE
THE AREAS AND LENGTHS OF PLANE CURVES, AND THE
VOLUMES AND SURFACES OF SOLIDS OF REVOLUTION.

71. We have seen in the Differential Calculus, that if

y = f(x) be the equation to a curve, and J the area of a

dJ
portion ANP, that —— = y=f{^x).

a oc

Hence, when the equation to a curve is given, its area may
be found by finding the value of ji/(a?), and this integral may
in general be found by means of the rules given in the pre-

ceding Chapters.

If the equation to the curve be between polar co-ordinates,

dA r rt^

dd^ 2
then —r = —

; .\ A = —
Je 2

It is frequently convenient to put y=f{%), i.e. to sub-

stitute % for {x) ; but then, since

dA dA doo doe

dz dx d% dz

dw - dx

72. Again, if * represents the length of a curve, of which

the equation is y = /(x).

ds ^ / dif-

dx
^ '

dx^
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s = 1 +

dy
where — must be found from y=fios).dx

73. Also, if V and S respectively represent the volume

and surface of a solid of revolution, since

dV
.^ ,

dS-— = Try\ and—-=27r^dx dx dx

/ dy^=
7r/,2/^ and »S' = 27r./^2/V 1

+^2-

74. A constant must be added to each of these integrals,

the determination of which depends upon the nature of the

particular problem.

As an illustration, let the

area ABD be required, the na-

ture of the curve ANP being

known by the equation y=f(x),
where AN = x, and NP =

y.

Let AB = a, and ANP=A;

dA
dx

= y =f{^) ;

.-. A = ANP =
fJ(x)=:(p(x) + C (1).

Now to find C, we observe that if x = the area = ;

if therefore at the same time (p{x)
= 0; .•. C = 0,

and ANP =
(p(x),

and ABD =
(p{a).,

the same result as would have been obtained had we succes-

sively put X = and x = a m equation (l), and subtracted

the former result from the latter.

This process is called integrating between the limits of

X = and x — a.
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To take a second instance, let the area DBCE be required
where AC = h ; putting a for x in equation (l),

area. ABD =
(pia) + C,

and area.ACE =
cp(b) + C ;

.'. areaBDEC =
(j)(b)

-
^(a).

Hence, if the value of an integral u =
^(x) be required

between two values a and b of ^r, omit the constant, and having

put a and b successively for x in (p(v)^
subtract (p(a)

from

0(6).

This is called integrating between the limits or values of

.V, a and 6, and the integral so found is called a definite

integral.

AREAS OF CURVES.

75. To find the areas of curves, or to integrate the-

function

dA dA r-
>=

?/,
or

dw d0 o

Ex. 1. To find the area of

the circle.

CN = ,v\

CA = a]

• "• A =
f^y

=
f^ y/d^ — x''

;

•. area CBPN =
{, y/d' - x".

But CBPN is a circular area, of which the cosine is CN^
and radius = CA.

Hence f^\/nr—,v"= a circular area, of which the cosine =.r,

and radius = n.
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Again, let AN = w, then NP = y = v 2 a a,'
- x^ ;

.-. ANP =
/, y = /, \/2 ax - x^.

But ANP is a circular area, of which AN is the versed

sine ;

•*• XV 2atr — .T"' = a circular area, of which ver-sin = x.

Resuming the expression for CBPN, we have

O 9 o O

, y r a- — X r a- r X'

CBPN=Wa^-x^ =
f-y=f^,

= J-rr=.
-
I-7-r=.

v /- ^+ - V a" — 0?

ff" . ,
tT' xy— .sin-^- + -^

2 a 2

= -.sin-i- + ACPN;
2 a

.-. C^PiV - CPN = sector 5CP = - . sin' - =
2 a 2

Cor. Since C^PiV = - . sin"' - + —"^
,

2 « 2

let .r = a ;

.'. area oi the quadrant ^CiJ = = ——
;^

2 2 4

therefore area of circle = trn^.

(2) To find the area of an ellipse.

h yHere y
— - \/ rr — x^ ;

a

A =
jly =

-
.

fr \/a^
— x^ = -

. circular area cos = ,r + C-
a -^ a

But ^ = when .r ^(\\ .-. C = ;
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6
.'. ^ = - X circular area cos = x, and rad = a ;

a

therefore whole ellipse

= - X circle radius a, = - ira^ = irab.
a a

(3) To find the area of the common parabola.

y^
= 47WcX^ ; .-. y = 2 \/mx.

area = ^?/
= 9. j^y/mx = 2 y/m • | <2?^ + C

And area = 0, if a? = ; .-. C =
;

.*. area = —-— x^ = :^2\/ mx .x = ^yx

=
I of circumscribing rectangle.

(4) To find the area of the Witch.

2a
y = — y/ 2ax — x^ %

. r\/2ax — x^ r 2a — X
. . area = j^y

= 2a = 2a / . =
Js X '^^\/2ax - x'

= 2a| \
.

' ^ + a
\ —^==\

I
''^ y/2ax — x^ *'? y/ 2ax — x^)

= 2a < y/2ax — a^ + a ver-sin"^ -
> + C

I «j

And area = 0, if .r = ;
.-. C =

;

a { y/2ax — ,r + a ver-sin~' — > ..-. area = 2

Let X = 2a\

.•. area = 2« x a. ver-sin' (2)
= 2 7r«^ = 2 area of circle rad = a.
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(5) Find the area of the hyperbolic sector CAP.

Sector CJP = ACNP - area JNP.

L.etCN = a)]

NP =y\-> •• y =
7\/ct7"-a'-.

CA = a

b

a

x^ — a^
ANP= ,y^- ,V^'-a' = -'

/ -7=

= - .

\cV \/a;^-a'^-p.\/.v'—a~-a^. h. 1. (a) + 'V x~ - a^) |

.

|! y.^2 -a'--.h.l {.V + -y.??^
-

a')\ + C,

6rt
and = . h. 1. a + C.

2

For ANP = 0, if x = a; therefore, subtracting

wy ba , , ftv + s/cv'^
—

ANP =— .h.l.
2 2 \ a

a~

= ACiVP
ba (X + \/x^ — a^

-"•"'( a

ba
^

IX y
.-. sector CAP =— . h. 1. - + 7

2 \a

(6) Find the area of the

portion PNMQ, PQ being an

arc of the rectangular hyper-
bola.

a-
Here yx = — . Let CN=ci,^

2

and CM=(i,

Ly = — f- = -
. h. 1. <r + C ;'^

2 JxX 2

jr M
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.-. PQMN = - .(h.\. (i -hA. a) =~.hA. (^),
2 2 \aj

and sector CPQ= area CPQM - A CQiW=CNP +PNMQ - CQM.

But. ^=— ; .. CNP^CQM;
2 4

.-. sector CPQ = area PNMQ.

(7) Find the area of the cissoid.

Here?/-=—^— ; .-. y =—-==,2a -x ^2a-a;

.-. area = j^y
=

/
,

'^x's/ 2a — X

= - 2 \/2 a - a? . .a?^ + 3 . ^r^ \/2 a - a?

= - 2v^ a - a? . a?^ + 3 .
/j, \/2ax — x^

= - 2x's/2ax~ a;^+ 3 circular area ver-sint'»+ C,

from ct? = 0, to 0? = 2 a,

area = 3 . = — a-.
2 2

(8) Find the area of the cycloid;

Measuring from the vertex,

dy s/2ax — x"

dx X

area =J,y = yx -
jx^ -^

-
.V'^'

~
/r V 2 ax — x^

= yx — circular area ver-sin = x + C,

from .r = 0, and ,-.//= o, to x - 2a, where y - Tra.
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Semi-cycloidal area = 2 7ra' -
2'^^' ~%'^^~ "<

.-. cycloid
= 3 Tra^ = 3 . area of generating circle.

(9) Area of the conchoid,

CA = «, AN = X,

AB = b, NP = y.

X

dA dA dy
dx dy doB^

Now

dA dA dx dx

dy dx dy dy

and .^? = I - + 1
) ^/h^ - 2/^

dy f y y/V^f

y

ab^ + y^

^y/b^-y^

^ =
-^^^^

=
-/;

ab~

yy/b'
-

y' J \/bi'
-

y'h
r

= C -ab.hA. y
+V6^^^-?sin-^?,

b + -n/6' -y^ 2 2

6^ 7r

and = C .
-

, since area = 0, when y = b;
2 2

•. area = ll.sin-^l\-abh.l( ^=)
[2 bj \b + ^b^-yy

t\/b'yv o'- «/'

which is infinite, if y = 0,
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(lO) In the common pa-
rabola to find the area ASP.

6'A = a, AASP=e,
SP = r,

2a a
r =

1 + cos ^ „

'

2
cos^-

••• ASP =
feir^

=
i. I^ = i. r-^.sec^?e 2' ,0--2

Je cos^ -
2 2

9
a . tan -

. 1 + tan^
d0 V 2

2

tan - + ^ tan^ - > + C, and C =

since the area = 0, when 9 = 0;

.-. area JSP = a^ Itan - + i
. tan^ -i.

I 2 3
2J

(11 ) Find the area of a portion of the lemniscata.

Here r = a^ cos 20;

•*• jei»*^
= - •/ecos20 = — sin20 + C.

There is no area when = 0; .-.0 = 0;

«' • a
.•. area = — sm 2 0.

4

Let = 45° ;

o

.*. 5^th of lemniscata = — ;

4

and therefore area of lemniscata = a
2
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(12) Find the area of the spiral of which the equation is

r = a $".

dA
, ,

If A be the area, -7^ =2**-

dA dA dr
^^^

7e ^'d^'dO^

dA dA d6 , „dd

dr dQ dr ^ dr^

dr

Here
G)'

d0 1 Ir-i= -r . r
dr '-

dO _1_ , 14

2na"
4/-;^

=—T-/- "'

1 ^ '-ir^ ^
or area = ——r • '' + ^>

^ ^ 2n + 1
2W«"

and C = 0, if area = 0, when r = 0.

Cor. Let w = 1, or the spiral be that of Archimedes;

.-. area = r— .

o«

But if R be the value of r when = 27r,

a= -—
;

27r

27rr^ Trr^
. . area = —z-=r = —;= •

6R 3R
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At the end of the first revolution r = R ;

ttR-
therefore area of spiral in first revolution = .

To find the area after two revolutions of the radius vector

we must find r when = 47r.

n n
Now r =— =— 47r = 2i?.

27r Stt

But before r = 2i?, it will have made two revolutions, and

therefore have twice generated the area from r = to r = B.

Consequently we must subtract the area described in the

first revolution from that in the second ;

TT.i^Rf TT.R' IttR'
.'. area = =

.

3R 3 3

And area intercepted between the arcs of the first and second

,
. 77rR' ^R'

^ _
revolution = = 2 7r/c .

3 3

At the n^^ revolution r = nR,

(71- 1)'^ r^{n-l)R;

TT (7iRy-{{n-l)RY
area after n revolutions =

3 R

irR'

\n^
- (n- if]

Area after (n + 1) revolutions = —^ j(n + 1)^
-

w^^ ;

TT R'

space between the arcs after n + l and w revolutions

\(n + ly + (»?
-

1)^
-
2w^|

= .bn = 2mrR~

= n times the space between the first and second.
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(1.'}) Find the area of the curve of which the equation is

1/
- Saxy + cc^ = 0.

If the curve be traced there will be found a nodus as

JPMQ, to which the axes Ay and A,v are tangents.

y
Let y = xz

; .-. x = - = tan PAN;
X

.r'^' — Sax z + X =
;

Sax 3az'
.'. X = -, and y =

1 +z^ 1 + %'

And since x is = 0, for each of the branches APM and AQ,N^
this will happen if ^ = oo or = 0.

dA dA dx dx

dz dx dz '

dz^

dx 3a .

\l + z^ - 3z^\ 1-2^

. dx
••• -4=J,y.— = 90

dz
z~(l -2^^)

'-- (1 + z')

(1 + ^0

Sz""

1

.4 (I + ^)')

Aa
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Let .r = 0; .-. C = -
3« - - y

and let «i = - at il/ ;

X

.'. area
2

[
•'^

(1 + z^"); 3 1 + ^i=*J

Again, integrating between ^ = oo and z = z-^ for the branch

APM,

area {1 2 1 1

2(1 + ziy 3 1 +z-'\

the nodus APMQ = area APMm - area AQMm =
Sa"

(14) Find the area of the evolute of an ellipse

D'n^|=''
where CA^^ = a, and C^i =

/3.

Let y = xz ;

2

A'* =

2 /a

—
-,, where r=-;

1 + {czy P

a
,v = , and y =

az

\\ + {cz)'.\i'

"

{i + {czy\i

For the arc i?,^, the limits of x are and a ;

thev are x and 0.

•. of z.

J
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Now
dJ dA d.v d.v

dz dx dz ' dx

d,v aci% 3

and —- = -
^>f'dx {l+{c%)i]i

dx .. r (c^r)!

C
.\. (1 + v-y

X
(1 + vy

" ~
6 (1 + vy

^ 2 •

j,, (TT^
•

and
/•

'"'

= - ^ + !/•
^

"^"'^ f 7^ ^2
= o r,

+ 1
. tan-^ «

;

371

A=-
3 a' 1 tJ

777 :7rz 7 ^TT, + + tan 'uL
6(l+iJ-)-^ 8.(1+^5-)" 2.8 l+t?' 2.8 '

from >? = CO , that is from u = co ,

to ^ = to V = 0.

Area B,CA ^"-^1.-.'^='^^;
16 2 32

therefore whole area = 4 . B,CAIVx^l,
~ iraR
8

'

3 a- - W «2 _ je

8 a

.S (a'
- hy-

TT
;

8 ah

A A 2
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THE LENUTHS OF CURVES.

76. To find the lengths of curves, or to integrate

d^ / dy' , ,.
, ^= V 1 +

:7^,,
vvhen p =f{v).ax dx~

Ex. ]. Find the length of an arc (measured from the

vertex) of the common parabola.

_?/
= 4 ma?;

dy 2m dy' 4m- m
• •

,

~
i •'•

—J Tj

=
.,

—
dx y ax~ y~ x

"\/X 4 m
Jv dor - •»• .1' Jx \/X

m tn
r X + ~ r -

r X + m / 2 / 2

*^a V tT^ + mx "

\/x~ + mx \/x' + mx

= 'V X' + mx + — h. 1. (x + — + \/ ^v' + mx) 4- C,

0... 4-- h. 1.
- + C.

9 V 2

Since *• = 0, when x = 0;

/-T, w?
/'2ti? 4- m 4- 2 V •^' + ^"^\

.-. A' = V *"" + *"'^" 4-
— h. 1. .

2 V '" /

Ex. 2. Find when curves included under the general

equation y = nx" are rectifiable.

dy m '^n!'

~-= -ax "
;

dx n

/ m^ d' 2 m— 2 n

.-. fi =
\ \/ 1 \

~ .x^* ; wliich is integrablc.



LEN'GTHS OF CURVES. 373

(l) When IS an integer = 7',

w 1 >n 1 2r + 1

or 1 = — ,
or — = — + 1 =

n 2 7* n 2 7' 2r

71

(2) When + ^ = an integer = q,^ ^
2777 -2n ^ '' ^

m 1 m 2q
or 1 =

, or
n 2q - 1 n 2q - 1

Let 7-= 1, 2, 3, &c. 7=1, 2, 3, &c. ;

m 3 5 7 7n 2 4- 6
•.— = -, -, -, &c. and — = -, -, -, Sjc.

n 236 71 13'5
7/i 3

(3) Let — = -
, or the curve be the semi-cubical parabola ;

3 . dy 3a
, \/x , .

/- 2
7/
= a.i'2, and — = — x-'i = ^^, by putting \/c= — ;^

dc77 2 ^c ''3a

« =
/" \/ 1 + - = —^ .

/r \/.r + c =—^ -
(a: + c)^ 4- C.

^' vc
"

v c ^

1 2
But if 5 = 0, ,r' = ; .-. C = 7^

- c5 ;

1 2

(4) Find the length of the cycloid.

= v^dy /2a — x

dx X

dii' 2a — X 2 a
... 1+/^=^! + = —

;

dx^ X X
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•• «=
/ V — = \/2«. [—7-== 2\/2a.v + C,

and C = 0, since s - when .v = ;

therefore s = 2\/2ax = iw'ice. the chord of tlie arc of the

generating circle, corresponding to the arc of the cycloid.

Hence the cycloid is rectifiable.

And if .V = 2o, s = 2 y/^ci' = 4«,

or the length of the semi-cycloid = twice the diameter of

the circle.

(0) Find the length of the arc of an ellipse.

^> / .

ij
- - \/ a' - <r-,

a

dy h ,v

dx a' ^a- - x'
'

dy' h-.v"' ft^ — (or -lr)x' (f — e'ixr
.'. 1 ^

-^ = 1 H = ^^ — = ;

dx^ d''(d~
-

x~) a^(a~
-

x^) a~ - x^

.'. s = —-^===-- = a /
—

^ , it ,T = za ;

•^'' y/a^ — x' •^~ vl - ^-

.•. expanding v 1 — e'-^- by the binomial,

r \ , , 1.1 1.1.3

-J'y/x-^
^ 2.4 2.4.6 ^'

—-^

If the (juadrant bo required, we must integrate between

the limits if .r = and x = a, or from ^ = to x =
I, but

then

z~"

L
z'-" TT 1 ..T .5 (2w -

])

a/i -- 2 ^ 4 ()'
^ n

I
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Xv^rr5^2"2' .'Vrr^^ 2*274'

r Z*^ TT I .3.3
/
—

>
= —

.
;, , &c. ;

.-. also /
—

;
= —

;

therefore elliptic quadrant

TTffl . 1
.,

1.3 l-3'.5
g

.

a series which is rapidly convergent when e is a small fraction.

(6) The length of the elliptic quadrant may be found by
circular functions. For since x is never > a,

Let .r = acos0; .-. « = -Va' - a'cos- ^ &sin 0.
a

ds ^ I dec- dtr / 2
• ' a
—

r'
—^— = \/—- + -^ = V rt'^ sin- G + &' cos-^^^"^

dd
^

d&^
'

dO

= a y/l - ^ coi^ 9

= a ? 1 - 1 e- cos^e - ^- e' cos^ 9 - ^-^ e" cos" 9 - &c.
^^ 2 2.4. 2.4.6 '

which must be integrated from 9 = 0, to 9 = -
.

2

Now
fe

cos'^G = + sin a.cos^''-^ + (2w - l) ./o cos^"--0. sin^0

sinOcos2"-^0 2n-l . „_,_
= + —

. /cos~"
~
y,

2 w 2 ?i
"^
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and sin cos-""' = 0, when = 0, and = -;
o

calling je
cos^" =

P.^„

2n - I

2w

2w - 3

2w — 2

P., = 1
. P, = i = 1 - from f^ = to = -

;

(2w -
1) .(2n -3) 3.1 TT

'"
~

27^.(27^-2) 4.2 *2'

/ec„s'e = l.^; /,cos'0 = l^.f

,
1.3.5 IT

' 2.4.62

_7r« 1
3

1.3
^

1.3^5
6 1.3^5^7 ,_ .

'' *'"
2 '^'~2^''' ~2^?^ 2^4^6=^'^ 2^4-^6^8'^^ ^'^'

(7) Find the length of a hyperbolic arc.

h / d\f b X
V = - V x'^ - «-,

-^ = -
.
—

;

a doc a ^ x"" - a^

ds ^ / dy- ^ /(b' + a') .1- - a' . /e'x'
- a'

d,r rfa'" a^ {x
- « )

A- - a

and as .v is to be taken from .v = a to w = x ;

therefore ^ must be taken between ^ = 1, and ;y = x ;



But a f \/^-^—l=ae iz
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e'z~

J _ ^
1 1.1 1 1 . 1 . .'J 1

^r^-l'\
'^

{ezY 2.4>'{ezy 2.4.6 (e;^)«

1 . 1 . .S . 5 1

1

whence, after multiplying every term of the expansion, it

appears that every term except the first depends upon the

integration of / 7 , when m is odd.
-^z Z'" VZ' - 1

. ^ r 1 1 ^yz^ - 1 111 -2 r 1

Now /
-. = . h . / >

- z"' ^/z~ - 1 m-l z'"-' m-l J, -"'-2 ^z' - 1

and vanishes both when .^ = 1, and z = zt ;
til 1 '
tU — \

~ 1 7n -2 r 1 from ;? = 1
|

Jzi%75^
~

'«' - 1 ^'- ^'"-V^'-l
'

to ^ = CO J

'

^ z \/z^ — 1

TT

But /
— = sec"^^ = - from r = 1 to r = co ;

Xi A/ A*

/:

I -i!r
9 O

'

an

z^ y/^ - 1

. r
^ r

1
ii_^ -.

V/77^^^"''^^V^^^i ^•'^~'

1 ^ C ^ 1 . 3 . a TT

^"^^^

J77F~1
^

^ ^'.rV^^^
^
2~^- 2

&;c. = &c.
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, z ira 1 1.1 1

,-. .s = ae .
/
—. •

] -g •
- + -7— • -,

' /v2_ 1 2 ^~
e 2^4 «*

1.1.3^ 1 1 . 1 . 3- . 5- 1

+ .
1

. h &C. > .

2-.4^ 6 e^ 2=.4^6-.8 e'
'

Now the equation to the asymptote is 7 = — ;

leno-th of asymptote = 'V .v +—— = .r \/ 7,

— = ex = aez.

But ae
/

= ae\/%'~ - 1 -aez from .? = 1 to ;i: = x •

-- \/z^ - 1

If therefore ^ be the length of the asymptote, and H
the length of an infinite hyperbolic arc,

TTff , , 1 1.11 1 . 1 . 3^ 1

-. +
e ii- . 4 e'^ 2^ . 4- . 6 e'

1 . 1 . 3- . .---,2 1

2-. 4-. 6^8 e'
'

(8) Find the length of an arc of the logarithmic curve.

. dif
Here y = «', and -^ = Aa^ = A .y,

dx

, (Zs </5 rfcV J
——

,
1

and — = -—.— = V 1 + ^ r • -r '>

dy dw dy Ay

rVl +AUf r Ay r 1

•y Ay 'Jy\/\ + A~f -^yAyy/^+^'f

a/i +A'y' 1

,
, Ay ^^= + - h. 1. . + C,

A A I +^1 + A'y-

\/i + A' 1

and 6' = if
//
= 1 ;

••• C = 7 h. 1

A
' '

] +\/-i + A'''
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.s>^ -J^l + ^-Z/--\/l +.J^ + h.l. 7^ 1-

(y) Find the length of an arc of the Lenniiscata.

r- = d~ cos 2 0, and s =
/ \/ 1 + r" .

o . . dd
., / r' d9 /- de

Now - r = a" sin 20 .
-— = rr \/ 1 .

—- = v'^ a' - r' .
-—

;

dr a* dr dr

rdO - V
a

dr y/ a
» _ 4.1

dd' a^
-. 1 + r-

dr a — r

= /—.=- = ff . /
—

,- ,
if r= a.^

--
\\/l — .«- Vl + 2f"v

r 1
, ^

\ .3 . \ .'1.5
^ ,

.

J. y/i-z^
^ 2 2.4. 2.4.6 ^

+

1 . o' . \ .3.5

Ijct the integral be required from 9 = 45° to = 0; i. c.

from r -- to r = a, or from ;i- = to itf = 1 ;

«"
J

TT

/
—

,
. -^ = — .

—
,
and

/ -^
—

. ,

J.^l-;^- 2.4 2 J.^i-:^^ 2.4.6 2

•• -^ =— •
)
1

: + ; : r, + —,
—

z~;^>
—

z
- &c. -

.

2
'

2' 2' . 4- 2' . 4-^ . (r 9.- . h~ . (r . 8~
'

The whole lenirth of the lemniscata = 4s = the circumference

of a circle rad = a multiplied into the series between the

brackets.
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THE VOLUMES AND SURFACES OF SOLIDS OF REVOLUTION.

77- To find the volumes and surfaces of solids, or to

integrate the functions

dV
, .dS / dy'-— =

Try', and -- =
^tt// V 1 +^ax d.T aw

Ex. (l) To find the content of a cone with a circular base.

Let a = altitude b = radius of base.

Then if the vertex be the origin and the altitude the

axis of <r,

a



VOLUMKS OF SOLIDS. 381

(3) Find the cunttnt or volimie of a spliere.

y-
= 2 aw — x'\

.-. content =
tt/,.

. (2a.r
-

x") = ttI aa'' - —
)
+ C,

and content = when .7^ = ; .-. C =
;

.•. content of segment = irar
\(i

—
-/^ •

But TT.r-ff = content of a cylinder, base = ttJ^, and alti-

tilde = r/, and 7r.r~ - = content of a cone of the same base;
o

tiierefore content of a spherical segment is the difference be-

tween the contents of an isosceles cone of the same altitude,

and of a cylinder on the same base but altitude equal to the

radius.

Let X = 2 « ;

2 4 2 2
.•. sphere = ^-nd' (a n\ = -tvcv^ = - 7ra~2a = - of circum-

scribing cylinder.

(4) Find the content of the prolate spheroid formed by
the revolution of an ellipse round its major axis,

^^ = i (rr
-

.t'^) (1);
a

.-. solid = TT /
- (fr -.T'"')

= TT—Ja^x )
+ C,

Jxd'
^

a'\ r> J

from X = —
r/, to x = + a

4
= - 7r

3
h-a.

If the solid content of the oblate spheroid, which is formed

by revolution round the minor axis be required ; take the

minor axis for the axis of ,r, and the major axis for that of y.
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Then in equation (l) put y for a; and ,v for y, we have

¥ a-

or 0'

from ,v = —
b, to j? = + />,

4
.-. solid = -

TTft'b;
3

therefore prolate spheroid : oblate spheroid

:: b~a : a~h :: b : a.

Coil. Hence sphere on major axis : prolate spheroid

A A,
? 7 2 2 i2

:: -7r« : -irb n :: a : o,
3 3

and sphere on minor axis : oblate spheroid :: /r : (r.

(5) Content of the solid generated by the conchoid round

the axis of a\

,vy
= (a + y) v^/)-

-
y',

dV dV dw
^
dx

dy dx dy
'

dy

dw a y-
-^

(a + y) ab^ + y'
and —- = -w b- y -

dy r \/h^ - y' //• \/l>'
-

if

'

-^r \\/lf —
y~ y/b'^

—
y

and f 1 =-f ^//>=*
-

rf + 2 f„y Vfr -
v''

Jy V h^ - y^
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and F = 0, w\\e\\y = h; .-. = C - tt < «&--'/ ; .•. C=
^ ^^

;

I 2j 2
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.-. solid = TT {(2az/
- i/)^-f {2 ay - f)^

— 2a . circular area, ver-sin = y + C]

{2ay-y~)i .= TT 2r/7r X circular area ver-sin = y + C.
3

^

Let y = 2a ; .'. solid = 0,

and therefore 0= - 2</7r + C; .-. C = 7r^a^;
2

.-. solid = 7r^a^+ tt (2 ay -
y^)^ -2air . circular area ver-sin = y ;

therefore let f/
=

;

therefore whole solid = ira-'.

(7) Find the solid generated by the revolution of the

cycloid round its base.

Make the base the axis of ,v ;

dy \/2ay —
y^"

dx y

dV
.,

dV dy dV^2ay-y'
and ~— =

Try- ---.—- =- -;
a .r ay d.v dy y

... r^^.f^jL^."^ vs/ 2ay —
y-

y'" y"'~^ \/2ay-y' 2m-\ ,m - 1

r y- r 'V2ay-y' 2m-l ,- y"Now
/

-
y- = + a

/
—

,

-'yV^ay-y^ m m ^y's/^ay-y-

"J
y[ ^ ^ _ yW2ay-y

'

^^^^
r

y[

y\/2ay—y^ S "^y\/2ay —
if

y^ y\/2ay-fC y yV2ay-y^ 3 /- y

^y \/2 a y—y~ ?/
^ \/ 2 ay —

y^

I

' =r= - y/2ay —
y~ + a . ver-sin"' '-;

^;i\/2ay — y'
' '

«
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r y^ y^ 's/'-Zay -y- 5 ,

.'.
y

~ = - '—- — ay\/2ay-y'

3.5 > 3.5
, . ,y— '— a^ \/2ay — i/ h or ver-sin ^ -

,

2.3 2.3 a

from
2/
= to y = 2a

;

.
-

2 « • T '

V^ay-y•^A/2a'"-'"2

r =
" 3

(8) Find the solid generated by the revolution of the

cycloid round its axis.

dV
If V be the volume, —— = ttw^,

and V=7r f.y^'^Tr lyKv- 2 f^xy.—\,

, dy ^/2ax -x" .

and — = (equation irom vertex) ;

dx X

'•' i^3Gy—^2J^y\/2ax-a)'.

X
But if = ver-sin ^ -

,

a

y = a{0 + sin 0), \/2ax - x"^ = a sin 0,

dx
and d7 = a (l

- cos 0) ; •'• t^ = sm ;

d V

.'. l^y y/2ax-x"~ = a'
fe

sin^ 0.(0 + sin 0) = a^ /e (0 sin'^ + sin=^ 0).

But fe 0. sin^ =
/(sin^ 0)

-
fe fe (sin^ 0),

sin 20
and /e sin- = | /^ (l

- cos 20) = - -

, ,
!0 sin2 0\ 02 cos 20

and /
= _ +

4
J

e V2 4/4 8

Bb
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_ r- sin 20 0^ COS 26)

fO sin^ 9 =
2 4 4 8

e^ esm29 COS20 tt' from =

4 4 8

"
4

'

to 9 =::i

J r
•

3 /I
^^"^ cos

and /sin^
=

;; -|
cos

3

=
I from 9 = to 9 = IT,

and y^cT?
=

(Tra)^ .2a from .i? = to ct? = 2«, or y = to y = 7ra ;

(9) To find the volume of a conical figure, the base of

which is bounded by any given curve.

From A draw AD perpendicular to
^

the base, and = a.

In AD take AN = x, N being a point

in a section he, parallel and similar to

the,base BC

Let A = area of the base,

S = area of section be ;

S _ hN^ _ AN^ _ x^

~A ''bD^'IlIT
~ "''

a'

S=A-,
a''

and -— = S = A .—
dx a^

.-. F= -/,.T?2
= ^^ + C, and C = 0;

ABC^
Aa^ A. a

so"

= base X ^ of the altitude.
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Cor. This proposition is manifestly true for a pyramid
of any base.

(10) To find the content of a Groin, a solid of which the

sections parallel to the base are squares, and those perpen-

dicular bounded by a given curve.

Let the given curve AD be a quadrant.

therefore generating area = (2y)'
= 4y" ;

.-.
— = 4«- = 4(2aa?

-
cT- );

dx

I ^^\
.-. F = 4 I a<2?^

I
,
and from x — to .v = a,

To find the surface :

generating surface = perimeter of square = 8y ;

adS ds /—-— = 8 V ^— = S\/ a^ - OCT .

dx dx ^y d'^ — ,xr

. S = ^ax = % a^.

= 8a;

And similarly may the content and surface be found,

whatever be the curve APD.

Also, if the base be any other figure, of which the area is

a function of y as a circle, a parabola, a triangle, &c. and

APB be a curve of which the equation is y=f{x), the surface

and solid content may be found.

(11) Find the volume of the solid gene-

rated by the revolution of a parabolic area

round its ordinate.

AM =
a?, BN = Xi , AB = a,

MP = %, NP=y,, BC = h;

B B2
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dV
J

= T^yC = TT

a OB
I

= IT

{a-cc)~= 7r(a--— )
V 4-m/

4-ma —
y^\

^
tt

and

4m ; (4m)

dV _dV _ TT

dxi dy
;, \b' -2b^y^ + y*\;

(4 m)-

•• ^ "= t:;^ {^'y
~

"^r' ^ \ \
^^""^ y = o to y =

t,

X
J

2bY y']
:; {b*y + — '

(4m)- \ S 5

7r b'

(4m)'
f>-l+Si

TT // 8

(4m)- 15

But b^ = 4-ma ; .-.

.-. F=— 7rff-6.
15

1 «=*

(4 m)- 6^'

(15) Find the volume of the \x

solid generated by the circle BQP s

which revolves about an axis A
ANx, m Its own plane.

Let AO = b, OB = a,

MQ =
y, OM = X.

Then surface generated by QP

= 7r(NP' - NQ') =
7r\(b + yf-(b- yf] = ^^rby;

dV TTfl-

.'. = 4fTrby; .-. F = 47r6 Ljy
= 47rO -,

dx '

2

or solid = ^TT^ba^.

d 9 ds
Surface = 27r. L{NP + NQ) .

— = 47r6. T-— = 47r6.7rff
dx dw

= A-TT^bn
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(13) The surface of a sphere.

J ; , ^y a - cr

y — \/ 'iax—x , and ^— =
^

—
f^* y/^ax-.tr

dy^ (a
- xy a^ d

1+-T^=1 +
.2 o„^ ,.,2

dix^ 2aw - ar 2ax - w y

. / dy~ . a r ^
Surface =

Stt/,?/ V 1 + ;7^
=

Stt/,?/.
- =

2irj^a
= ^-nax + C

Surface = 0, if a; = ; .-.0 = 0;

.-. surface of a segment = Stt^.t ;

.-. surface of sphere
= 27ra.2« = 47ra.

(14) Convex surface of a paraboloid.

, dy 2m
V' = \>mx, — =—

;

dx y

dy^ 4fmr 4m^ m x + m
dx y imx x x

sur

rface =• /^27rw \/ 1 + -—^ = 4 7rv w . Lvx \/ —dx

= 4!'ir\/mjx\/X -It m

= 4 7r\/m| {x + m)^ + C,

= 47r\/m| W7.2 4- C ;

face = .

\ (x + w)2
-
m^l .

(15) Find the surface generated by the revolution of the

cycloid round its base.

dy \/'i.ay--y- ^ / d^ \/'iay
Here -f = ^—^

; .-. V l + :A = -'>
dx y dx y

dS _dS dx _ ^
/ df dx

'

dy dx dy
'

dx^ dy

/
— y

v'^ay-y'
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y

^^<\/9,a
—
y

= 2 TT \/2 a\-2y \/2 a -
y + 2

J^ \/2 a - y\

= 27r'\/2a {- 'iys/ 9.a -y (2o
-

2/)^|,

from ^ = to y = 2a\
4

.
32

.

•. surface generated by sevni-cycloid
= 27r.- (2a)^ = — ttk'^.

(l6) Find the same when round the axis.

Measuring irom the vertex,
— = 'v "

•

dx CD

Surface = 2 7r /"v-r- = 27r<vs - {xS-—\^ s = 2\/2aai
•'^ dx Y d^l

= 2 TT
|2

1/^2^ - 2 ^/^j, \/7v \J^.l^:f\

= ^'TT [yY^ax - V2a^v 2a -
x\

Q
= ^iry/Qa \y \/x + -

{(2a
-
x)^\^

3

from 0? = to iX' = 2 a, or y = ^ to y = ira.

Q

Surface = 47rv 2a {7ra\/2a . (2a)^}

4
= Stto i 7ra aJ

*
3

'

i 3j

(17) To find the surface of the prolate spheroid.

y = - V a' - x\ and 1 + -— = -—
,

a dx^ a'' — x'

,2^2dS ds h V— -^ /a?-e^x-— = 27r?/
— =27r-Va^- ,r^V -

o r
rfcV a A' a a^ — x'^

_ 27r6

a
y/a"- e^x^

V.-^'<= 27r/>. . - „
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S^^irb
or e

1 5-
=

-/"V^l
-^'' if ^= — >

ex

a

1 y* '^

Sf'

sin
* ^ + Vi -«--/. a/i- »'

=
-|

sin
^
;^ + -VI -%'•,

2

5 =
^.jsin-("^

ea'

+

from a;' = — a to a? = + a.

2'7rba . , / ry
Surface = . |sin-^e + eV 1 -^

\

= 277(1^] -\/l
- e^

sin~^e
+ 1-«1-

Let e = 0, or spheroid become a sphere ;
.*.

sin 'e
= 1,

and surface =
27ra^{l + l}

= 47ra^

(18) To find the surface of an oblate spheroid.

BM^x^ CN=x

MP^y, NP =
y.

dS _ ds

dS ds
or -- = 27r<2?.--;

dy dy

dS ds ^ /a^ - e^x
•. -r- = ^irx -— = 27ra? V —

: r
dx dx w — x'^
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du /o - e^

Let — =1 X SJ —
d cc ff -

OL

a?'

Make \/ff^ - a^ = -z% .•

— X dz

y/aJ'-w' dx

e

du du dz d% J

dx dz dx dx
a 2

C + ^ '

•. u= -
ej^ \/& + %^

= \z \/(? + ^ + c^ h. 1. {z 4 y/z- + c^) ^
.

The integral must be taken from x = Q to .t? = a ;

.'. % must be taken from z = a to s? = 0.

= -
. < av c^

2
I

«* = - + a'^ + (? h. 1.

« + va" + c~'

!

•. surface = 9.8 = Sttc . lay/& + a^ + c^ h. 1. >

= 27re<-
a /

0-«')u 1 /!+«=
27ra2.|l

+ ^^ ^h
2e •••(^:)1-

Let e = 0, or let spheroid become a sphere.

Then, since — h.l.
f

1 = 1 when e = 0,
2e VI - e]

the surface = 47ra".



CHAPTER VII.

DIFFERENTIAL EQUATIONS.

78. In the integrations which have been performed in

the preceding Chapters, the differential coefficient, has been

either given as a function of one of the variables, or else in

such terms of the two, that by a very evident process, it has

been reduced to a function of one only. We now proceed
to integrate differentials, when the differential coefficients and

the variables w and y are mingled together.

79. Differential equations are divided into classes, de-

pendent upon the order and degree of the differential coeffi-

cient.

Thus an equation involving,

dy d^y d^y d"y

dw da;"^ dw^ dx"^

is called a differential equation of the w"^ order and of the

first degree, while one containing

d_l^ Idyy^ idyV'^ ^^ (dy_V
dx

'

\dxj
'

\dxj
'

\dxj

is said to be of the first order, and of the n^^ degree : and finally

an equation in which are to be found the n^^ powers of the

differential coefficients, and the m"^ differential coefficient is

named an equation of the w*^ order and the n^^ degree.

We shall confine ourselves to the more simple classes,

beginning with that in which the first power of the first dif-

ferential coefficient is alone found.
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Differential equations of the first order and the first degree.

80. These are included under the formula

dw

where M and N may be any functions of x and y, we shall

begin with homogeneous equations.

dy
81. Let M + N — = 0, be a homogeneous equation, in

which the sum of the indices of y and oc together, is the same

in every term.

Make y = wz ; .-.
— = z + ai —— .

dx dx

Divide by N and the equation becomes,

M dy M dz

M
NBut "t; must be of no dimensions, and will be a function of

y . M
- or ^: let .-. — ^f{z)\

dz
(

,

dx 1

xdz z +f{z)

\CJ JzZ+f{z)

the right hand side of the equation may be integrated by the

ordinary rules.

We put X =yz, or y = .vz, as may be most convenient,

for the solution is more easily effected, when we substitute

for that differential coefficient which involves the fewest terms.
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We may here remark that the notation fXclx, and /^X,

both of which will be met with, mean the same thing.

dy
Ex. 1. Let .t + y =

(a-
-
v) -j-

•

dy dz
Here make y = xx; .-.

-— = z + x -—;
da; dx

dz ^ + y 1 + «
... z + Of -— = = .

dx X — y \ — %

dz I + z^
.•. X

dx I — z

dx 1 — z 1 «

xdz I + z' I + z~ 1 + z~

•. log [-]
= tan-^ z -

\og\/l + ^;

.-. log (
- V 1 t- ^- ,

or log
= tan

' -
07

Ex. 2. Find the curve in which the subtangent is equal

to the sum of the abscissa and ordinate.

^, dx . .

Here y
— = x + y ; and let x = yz ;

dy

dx dz X -\- y
.-. -— = z + y —- = = ^ + 1 ;

dy
•

dy y

'^''=1; ...log (??!=. = ?

ydz \c ) y

Ex. S. Find the curve in which the subnormal = y - x,

dy dy x
•^ dx

'' dx y

dz I z - I

Let y = xz ;
.'. z + x -—= 1 =

;

dx z z
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clx — %

,vdz z^ — z + l"*

Ex. 4. Find the curve in which the distance from the

origin to a point in the curve equals the subtangent.

y /J fp

Here AP = NT, or Vy' + x" = y
—

.

dy

-., ,
dz \/x^ + ?/ /

Make cc = y%% .-. z + y .
— = — = v 1 + « .

dy y

dy I

/, 7>
_

ydz ^y\JrZ~-z

c^ {x ^ 's/ ,11^ + y")] y'

Ex. 5. {y CG - y/y) = \/y .
—

. Make x = yz.

dy
Ex. 6. X y = y/XT + y~. Make y = xz.

dx

Then xr = c~ + 2cy.

82. The equation (a +hx + cy)dx+(ai + hxX + Ciy)dy=0
can be rendered homogeneous by making

V = a + bx + cy, and z = ai + b^x + Ciy ;

.'. dv = bdx + cdy, dz = b^dx + c^dy ;

.•. c,rft)
— cdz =

(bci
—
b\c)dx,

bdz — b^dr = (Ac,
— b^c)dy .,



DIFFERENTIAL EQUATIONS. 397

whence by substitution the equation becomes

v(cidv -
cdz) + z{bdz -

b^dv) = 0,

or (vci
—
b^z)dv + (bz — cv)dz = 0,

which is a homogeneous equation.

CoR. This method is inapplicable when bc^=b^c-, but

since then c,
= —-

, the equation becomes

a, + b]X + bi
— \dy = 0,

i. e. {a + b.v + cy) dw + \a^ +
— {bx + cy) idy = 0,

an equation in which the variables may be separated by

, . dss - cdy
making bx + cy = z ;

.-. d,v ~ 7 ;

dz — cdy ( biZ\
.-. (a + z) + («! + —-

lrf7/
= 0;

.-. (a .+ z)dz —
(ca + cz — aJ)

-
b^z)dy = 0;

dy (a + z) (a + z)

dz ca - a^b + (c
-

bi)z a + (^z

where a = ca — a^b and (i
= c - b^, the integral of which

may be readily found.

83. To integrate the linear equation, (so called since

the first power of y is alone involved).

^+Py=Q,ax

in which P and Q are functions of x.

Since -—
(yef'^) = —- e^-^ + e-^^

^
. Pydx dx

r^-+



398 DIFFERENTIAL EQUATIONS.

It is obvious that if we multiply both sides of the equa-
tion by ef'^, the left hand side will be a complete dif-

ferential, and the right hand a function of x alone ; both

sides may therefore be integrated.

Multiply therefore by e^'^.

ax

.-. yef'P = C + Jef'P.Q;

dy
Ex. 1. Let v y = ax"^-

dx

Here P = 1, /,P = .r ; .-. e^^ = e% Q = aar^ ;

.-. ye" = C + aje" . .-r^ = C + ae^' {x^
- 3x^ + 6x -

6\ ;

.-. y = Ce'" + a \x^
- S.x^ + 6x -

6] .

Ex. 2. (l + x^)
-^ - yx = a;
dx

dy X a
or — -ydx 1 + a^ 1 + x^

a? , „ , 1 r T,
1

HereP=--^-;; /;P = log-^.= ; 6^^^ = ^^^^

1 r 1 1

/•I aa?
= a

/ -} c^ !
=

I- + c ;

^r (1 + a?-)i y^l + ,^2

-•. y — ax -v rV 1 -I- tr^.
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84. The equation y"'"^
— + Py'" = Qy" may be reduced

to the preceding form, in the following manner.

Divide by y".

... ym-n-X _y_ ^ pym-n ^ Q

, dy dz
Let ?/"-" = (m- n) %, .-. t/'"-"-* -^ = -—

.

.'.
— + (m -

n) Px = Q ;

dw

which is of the required form.

d 1) ft 1) TYl

Ex. V = —-
. (WheweWs Dynamics, p. 182.)

ds s s~

^ „ dv dz
Let v^ = 2z; .-. v—— = —

;

ds ds

dz 2hz m
ds s s^

HereP =-— ; .-.
/,
P = -2Alog (..)

= log^ ; •ef'''=^r
s s s

.-. zs ^ = - m jgS
' ' = c +

2A + 1

(2^+ 1)5

Integration of exact differentials. The method of finding

a factor which will render a function infegrable.

85. The equation Mdx + Ndy = is not always the

result of the differentiation of f{a)y) =c: for after the dif-

ferentiation its terms may have been divided by some common

factor, or the equation may have arisen from the elimination

of an arbitrary constant between the primitive equation and its

derivative.
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But whenever Mdw + Ndy = is the complete differential

of a function of two variables, the condition = — is

docdy dydx
die du

fulfilled, or since M = —- and iv = —-
;

dof dy

dM d-u dN
dy dacdy dw

Hence as it is necessary that every equation Mdx+Ndy=0
which is a complete differential should fulfil this condition, we

have conversely a method by which we may find whether any

equation is or is not a complete differential ; and since then

— = M, and -— = JV, we can by integrating these partial
daj dy
differential equations, find the integral.

dzt
86. For since M = —

, J/ is the partial differential co-
rf ct;

efficient of w, with regard to x, considering x alone to vary,

and its integral will give all the terms in which x is to be

found : let the integration be performed. Then

Here instead of adding a constant C, we have put F, for

as y has been supposed not to vary, the constant will include

those terms of the original equation, which are functions of y

alone. Next to determine Y: differentiate with regard to y\

du _df^M dV

dy dy dy

But— =iV, .•.-— = AT-_ ;

dy dy dy

dlM^
u =/^-^((--^)^-
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87. Since Y ought to be a function of y only,

a-- dy

should be independent of x. To prove this, let y + hyhe put
for y in

j^. M, when we have

f,{M + -— Sy + kc.) = f,M + Sy f ~z- ^ kc.
ay J.V dv

h is removed from beneath the sign of integration since
j^

refers

to the variation of x only.

df,M _ rdM

dy /r dy
Hence =

/
——

;

J.r dv

dM^

Jy \ J.T dy j

dY_ rdM

dy Jx dy

= 0;

Now differentiate with regard to x ;

d'Y _dN dM
dxdy dx dy

„ r I ^. dLM\ . ,
or F=

/ \N J
contains y only.

Jy \ dy }

We may remark that had the partial differential coefficient

A^ or — been first integrated, the same result would be

dy
obtained ; and in the application of the theory, that differential

must be chosen which appears most likely to facilitate the

solution of the equation.

2d-27 2xdy
Ex. 1. Let du =

Co
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Here M =
; N =

- 2x

dM

s/x^ -if y y x^ - y^

2y dN -2
( -y^ 2y

u

dy {x'-y')V dx y \{x'-f)^j {x'
- f)V

= f,M+ Y=2f,y/x~-y'+ Y = 2\og {x + ^^^') + V,

du -2y dY -2x
= +

<iy (x + y/x'- -y^)\/x^-y^ dy y y/x^ - y^

2 idY y

dy y/x^ -2/^1 't^ + v x" - y

+ 3C\/

=
--}-V- y)

Vx"

2 ix" -
y''

-

-f\ y{x +

x"^ —
y^\

y/x" -
y^)

Y= C -2\ogy;

y

.'. u = log

X + V a?^ — y,2\ S

y
+ c.

^ ^ , a(xdx + ydy) ydx-xdy , , ,

Ex.2. Let du = , Z^^^ +^ ~ + 3by^dy=0.
\/X

2 + y-
2 .

'
cT"^ + y~

ax y

y/x^ + if
oD^ + y

ay X

\/x' + 1/-
^' + y'

+ sfcy-^.

Here
dM ay X —

y~ dN
dy (.r'- + 2/"-)§ {x' + 2/^)2 d •a?

X
u = LM + Y= a \/x^ + 2/^ + tan-^ - + Y,

y

du ay X dY
dy y/x^ + y'' y' + oo'' dy

dY

dy
= 3by^;

.'. Y = by^ -^ C and u = a \/x^ + y'^ + tan"' - + by^ + C
y
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Ex.3. /
—

-^
—^=tan-i- + C;

.' ,r~ + y y

this may be derived from the preceding example by making
« = and 6 = 0.

88. When the equation Mdoo -\- Ndy = does not fulfil

^. . dM dN
,

.
,

. ^ ^
the condition =

;
a property which is termed the

dy dx
criterion of integrability^ it is no longer a complete differential,

some factor having disappeared from it. Could however the

the factor be restored, every equation of this class might be

integrated by the same process : but there is great difficulty in

finding this factor ; in most cases the diff*erential equation, by
which it is to be determined, is more complicated than the

original one.

Thus suppose % to be the factor, then Mxdx + Nzdy =

is a complete diff'erential, and therefore

d (Mz) _ d (Nz)

dy dx

dM ,,d« dN ^^dz

dy dy dx dx

whence z is to be found, a problem in most cases imprac-
ticable.

It may be determined when z contains only one variable

dz .
,

as X, for then -—- = 0, and then
dy

dz 1 /dM dN\
zdx N \dy dx )

The right hand side must be a function of x only, which is

the case in the linear equation, for iV = 1, and M contains only
the first power of y ; therefore integrating

log- = A'; .'. z = ce''.

C2
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89. But to find a priori the multiplier which will make

the equation dy + {Ptj
- Q) dw = an exact differential.

Let z be the multiplier : multiply by it ;

.-. %dy + z {Py - Q)dx = Ndy + Mdw ;

dx rfo?' dy dy

dx dy

dz , dz
.-.
— dx = {Py - Q) dx -—

\- Pzdx
dx dy

dz
= dy + Pzdx ; since {Py - Q) dx = - dy ;

dy

dz dz
.-. — dx + -— dy = dz = Pz dx ;

dx dy

1 dz
1. e. - -— = P ;

z dx

.-. z = e^'^ ;

which justifies the assumption made, when the linear equation

was solved in a preceding article.

90. We shall now add some few problems which illustrate

the solution of differential equations.

Find the curve which cuts any number of curves of a

given species at a given angle.

Let y and x be the co-ordinates of the curve of given species,

yi and x^ those of the required curve,

m =
tangent of given angle.
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Then tan * m = tan '

tan
" ' -

dx dx,
'

dy dyi

dx dxjm =

J
dy dy,

dx dxi

dy
and — may be found from the given curve, and is a function

of X and y, or
(p (xy), and since at the point of intersection

the co-ordinates of both curves are the same, we may for x,

and
2/1 put X and y; and then the equation to the required

curve is

dy^

dx
mh + (f){xtj) ~\ =

(j)(xy)
-

which is of the first order and degree.

CoR. If the required curve cut the given curves at right

angles,

1
1 ^ ^ dy dy I

thenw = -; .: \ ^ (p{xy)
— ^ 0-, ,-.—=-——-,

'^ dx dx
fpK^'V)

which is the equation to the Orthogonal Trajectory.

Ex. 1. Find the curve which will cut all the parabolas
that have a common vertex and axis at right angles.

Let y~
= 2m X be equation to one of the parabolas;

my

dy 2x y^
,^ ,^

•'•
~i

—
'1

• •
~ ~

\p
~

''^
)'dx y 2

the equation to an ellipse of which the centre is the common

vertex of the parabolas, and the major axis is perpendicular

to the common axis, the ratio of the axes being \/2 : 1 ; c

being indeterminate shews that any ellipse of which the axes

are in the given ratio will cut the parabolas at right angles.
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(2) Find the curve which will cut at right angles all the

ellipses that have a common centre, coincident major axes

and the ratio of their axes constant.

Let if
= n (a^

—
.r^) be the equation to one of the ellipses

in which y/n = -
;

a

dy \/ncc .v dx
•• T-= /

= -n- = --—
•;

dv ^ar -x" y dy

dy d.v
.•. n — =—

;

y a?

-log(|)=logQ;

.-, y" = — ,1?,

the equation to a parabola, of which the vertex is in the

common centre of the ellipses.

If w = 2, y^
= — X, the common parabola, this case is

obviously the converse of the preceding problem.

(3) Find the curve which intersects at an angle of 45°,

all the straight lines drawn from the origin to meet it.

Let y = ax be one of the lines ;

y
.'. (p(xy)

= a = -
,
and m = 1 ;

. , ^y dy _y dy

X dx X dx

a homogeneous equation,

, , lVx' + y'\ _Jywhence log I

1

= — tan
X
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Let y = rsinO, x = r cos (tt
-

0) = — r cos 9 ;

.-. r = V 07^ + «^, and = - tan 9 ;

<r

.*. log [-I =6; .'. r = ce^,

the equation to the logarithmic spiral.

91. To integrate, RiccaiVs equation, so called from its

proposer,

— + bv^ = a,v'".

dx ^

dv
(1) If m = 0. Then — = a —

hy^ which is easily inte-
CL X

grable.

(2) If m be not = 0. We must proceed as follows.

1 %
Case 1. Let y = 1

—-
;

hx X

dx dz 2zdx
••• '^y=-i—z + ^-bx^ x^ a^

dx bz' 2%dx
bifdx =-- + —— dx + -——-;

\ dy -irby^dx = -^ + ~ dx = ax"'dx;
x~ x^

dz bz^

dx x^
.-. — + -— = Ocr"'+^

which is homogeneous if m +2 =0, or w = —
2, and the vari-

ables may be separated if w = - 4 ; for then we have,

dz bz^ a dz dx

dx w' X bz —a x^

If m have any other value, make

1 „ dy, „ , dxi- = -; .r'"+3 = CO, ; .\ dz= - ~\ x'^-^^dx =
Vi Vi »i + 3
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it? X m + 3

1 1 m + 4

—r + 7 ;;^

—
:, *'i "-^i =

t/i (w2 + 3)7/1 m + 3
whence

;^
+ ——

^ x^
"''^'^

dx^ =
^ dx^.

b a m + 4
Let =

tti;
= Oi ;

= Wj.
TO + 3 m + 3 m + 3

Then dt/i + ^iVi^dx^ = aia?i"'id.x'i,

which is of the same form as the original equation, and may
be made homogeneous if wzj = —

2, and the variables may be

separated by the preceding process if m^ = — 4.

By continuing the same methods it is evident that we

shall have a similar equation,

dy2 + hyidx^ =
a^x^'""^dx.2,

where mg = ^-

; and h.^^ a^ are derived from 61 and a^
mi + 3

as these were from b and a ; which equation will be in-

tegrable if Wg = — 4,

And hence if among the series of indices

m + 4 Wj + 4 ^2 + 4
— m, , J 5 &c.

m + 3 mi + 3 mg + S

any one becomes = -
4, the equation is integrable. And

by successively putting these indices = -
4, we find that

8 12 16 20
the values of m are, -4, --, -—

,
-—

,

-—
-, &c.,

which are included under the general form
,

?i being2n — 1

any whole number.

1

Case 2. Make in the original equation 7/
= -

;

dv\ b
,

.-. - -^~
-\
—- dx = ax™dx ;

.-. dyi + ay^x"'dx = bdx.
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I
1 _ '"

Let .1^"'
+
'=:'»; .-. .r = .<"+^ .•.dx = w,

"^^
dx.m + \

And dyi -\ yi^ dx^ = —- Wi '"'^^dx^,
7» + 1 m + 1

or putting = 0i, = «i, and =m,.m +1 m + 1 m 4- 1

which may be integrated by the former method if 7Wj
= —

;

1. e. II =
, whence m = —

. Hence Riccati sm + 1 271 — 1 2n + 1

— 4<n
equation is integrable when m is of the form . The^ *

2w=fl
first case belonging to the upper and the second to the lower

sign.

O'"d V
Ex. 1. Integrate dy+y~dx= —~ {PeacocWs Examples).

Here —
-|-

is of the form —
;

2n + 1

.'. let 7/
= —

, and let a?'""*"' = a;~3+^ = x's = x, ;

.'. X =
.Tj"^; dx = -

3x^~^dx^; x^ =
a?j~'* ;

dy, 3
^ ^

.•.
;

-X *dx. = —3adx,,

dy^
—
3a^y^dx^ = —

3x^~'^dx^.

Let -3a^=b^, -3 =
a^;

.'. dyi + h^y^dx^ = a^x^'^dx^.

Now let yx
=

1

^
.
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doc
I

Then dz^ + h^%^^
—- = UiW^ -da.\,

or Ti^rf^i
= (a,

-
biZ^)dxi ;

da?! dz^ d%^

x^' ai
—

biZj^ 3(a^^,^
—

1)

3a r /aZi + 1 1 rl /sd\%\''y^ + x^ + 3a

X, J azi-l c J c Sa^x^^yx + Xx- 3a^

.-. c'^ = c =

since — = X3 and «, = -
;

c^ \3a^x~^ + y{x~^ — 3a)\

1 i3a:Kv~^ + 2/(1+ 3fla?i)l~
c^ \3a^a7-s + 2/(1

-
3ax^)}

^ iSa^x'^ + y(l + 3ax3)]
C = e'^"" \

— -
\

\3d^x''i + 2/(1
-
3ax^)\

ardx
Ex.2. Let dy +y^dx = —^

x^

8 - 4w
Here is of the form

3 2n - 1

let « = - + —; and •.•6 = 1, /w = - -
;^

.?? cV^ 3

.'. d;^ + 5— = «<»'"* a.r becomes

da? a'x^dx . 2 ,

di^ + 2;^—^
= ^— = orx idx.

X ^g

1 2 1

Let 2f = — ,
and ••• m + 2 = - -

; .-. w + 1 = -
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Let
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For differentiating we obtain

l~ -a] (y + ax -
c') +{—- + a] (y

- ax -
c)

= 0,
\a£0 J \a,v I

and making successively y = ax + c, and y ^ - ax + c', we

(^y dy , ^

get the results -^ = a; -— = - a ; as we ought.^ dx dx

The integral {y
— aw -

c) (y + ax -
c) - contains two

arbitrary constants, and appears to be more general than

those of the other equations which involve but one con-

stant; but we must remember that each factor ought to

be separately considered, and that we obtain no other lines

but those which would result from an integral including

one constant only, of which constant this equation is also

susceptible.

This equation may be obtained by observing that if

dy
we refer to the original equation we have — = ± a ; and

integrating y-c= ^ax, and squaring both sides, {y-cy=a^ar^.

This equation gives two lines, inclined at different di-

rections to the axis of x, but both cutting the axis of y

in the same point ; and by giving to (c) different values,

we may have groups of such lines in pairs.

And the integral of (y
- ax + c) (y + ax -

c) gives the

same result, except that each factor only represents lines

inclined in the same direction ; but by giving to c and c

all possible values, and taking care to collect together those

straight lines in which c and c are equal, we shall find

the solutions comprised in the equation (y
-
cf = a^x^, which

is limited to the single constant c.

dy" /—
Ex.2. Let^ = aa?, or p = ^^y/ a^'->

dx

.-.
— = \/ax. and ^ = - y/ax;
dx dx
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'. y = - \/a x^ + c, and y = -- y/a x'
2 /— 3 2 /— a

y = -V a x^ + c, and y = -- y/a x^ + c',
3 3

4
each of which is comprised in {y

- cy = -ax^.

Ex. 3. Find the curve when s = ax -\- by.

ds . / dy'~ dy
Here -— = V l+-^ = a + 6— .

ctj; aa^' do?

. ^ dy . . . .
^ dyAnd •.•

— IS obviously constant, let -— = m;
dx " dx

.•. y = mx + c, the equation to a straight line ;

y-c
cV

= m, an
\ X J \ X J

93. When the equation only involves x and p, and

the equation is easily solved with regard to x, we can in-

tegrate thus :

Since x = f(p) = P, and -— = p;dx

whence t/ is a function of
jo, and therefore of x.

Ex. 1 . Let X + ap = bv i + p^ ;

.-. ?/= - ap^ + bp\/l + p-
-
fp(-ap + by/l + p~)

The elimination of p will give y in terms of x.

1 /l—x
Ex.2. Let (l4-«^) .27=1 ; .'. x = -,and«=\/ —--.

1 +p'^ X

.'. y = px -
/ = px — tan"^ p + C

= V^.r-.'P--tan-i V -^+ C.
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Ex. 3. Let v ^= V 1 + -7^, '

ax dx'

.-. 'px
= \/\ 4- /J ; .•. 't? = -;

.-. y =: px -
JpX

= px -
/

'^p P

r ^ r P= px -
/ .

-
/ .

^ppy/l+p^ -^py/l+p^

= px-\og I -
]
-a/i +p^

\1 +V 1 +pV

••• ^ = ^"S
I ^^^ j

= ^°^
I c 1

94. When the differential equation contains, y, x and p,

and is homogeneous with respect to y, the variables can be

separated by making y = zx; for then x will disappear, and

we shall have ^=f(p)-
dz

But . y = xz; .-. p - z = x -—
;^ dx

1 dx 1

se dz p — z

dz

Idx dp f {j))

X dp p-fip) p-f(p)'

r ^P
And X being found a function of ;>; y = p^-

-
j^^ ^ ^ y may

be determined in terms of jo and therefore in terms of x.

Ex. Let y -px = x 's/l -\- p~.

Make y = a%; .-. z -p = 's/l + p'^ ;

z 1 dz
.-. z^ - 2zp = i^ ^^' ^^

""
o
~ ~ ~ ^ "^ ''^ J~ '
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d% z 1 _ 1 sf^ + 1

dx 2 2% 2 z

doe 2z

415

,vdz 1 + «""'

•. log
— = loff =

log

.-. <a?^ + y" —2cx = 0,

the equation to a circle the origin being in the circumference.

This is the solution of the problem ; find the curve in which

the perpendicular from the origin upon the tangent is equal

to the abscissa.

95. Integration of the equation, called Clairaufs For-

mula.

y = pw +f(p) = p^' + P-

Differentiate, when we have

dy dp dP
= p + oe + ;

doo d.v doc

dy dP dp
.-. since —^ = «, and = P -;- ->

we have
dx dw dw

=
(a? + P')

—
; .-.

— = 0, or .v + P' =^ 0.

dx dx

d 7)

If we make -— =
;
« = c ; .-. y = ex + c'.

dx

This equation appears to have two arbitrary constants ; but

if we put c for p in the original equation, and C for P, C
being what P becomes when c is substituted for p, we shall

have y = cx+C; .'. C =
c', and the equation has but one

arbitrary constant. This is the general solution of the dif-

ferential equation.

Again from x + P' = 0, a value of p will be obtained

which is a function of x or y, and does not introduce into
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the original equation the constant by the elimination of which

the differential equation was formed, such a solution of the

equation is called a singular or particular solution.

The particular value may, however, be derived from the

general solution, by making c to vary ; and as y = ex + C is

the equation to a straight line, we evidently see that the par-
ticular solution gives the equation to the curve which is

the locus of the intersections of the straight lines denoted by
the general solution.

Ex. 1. y —
p,v = a\/l + p^ ;

dy dp ap dp
doc dx y/i ^ p'^

rfiT
'

{ ap ] ^ dp
{x + —-=^=\ = 0, and 3^ = 0;

.'. p = c, and y = c,T + a \/l + c"^

which is the general solution.

- ap a^ 1 +p- \/a^ - oc^ 1

But cf = —
> ; ••• -;

= —5—; •'• = ~

y/\^f x^ p" 00 p

cV /
- ap -a

a^ a' a^ - x'

's/d~
- x~ \/a? - x^ \/d^ - x^

= - \/d- - x^ ;
'- y^ + x^ = or-

which is the solution to the following problem. "Find the

curve, in which each of the perpendiculars drawn from a given

point upon the tangent, is equal to a given line :" and we find

(see Art. 178, Diff. Calculus); that it is the curve which is

formed by the intersections of the line defined by

y = cx + aVI + c^
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Ex.2. Let y =pa? + -(l +p"); •'• y^ = ^a(a +
<v).

P

Ex. 3. Let (y
-

px)'" = a'"-' l--aA;

,„

„-,^^^
^m I \m' — 1 /

this is the curve in which AD'" = o'""' AT.

Ex. 4. Find the equation to the curve, when the rectangle

contained by the perpendiculars on the tangent, one from the

origin and the other from a point in the axis of a?, at a distance

2 c from the origin shall equal a given quantity b^.

Here "ill. . y*-(^^Zl^P =
j,',

V 1 +p^ Vl +p"

whence if b'^ + c'^ = a'-, y-
= —

|
a^ - (c

-
/r)^ j

.

Integration of differential equations of the second

and higher orders.

96. The integration of differential equations of the higher
order is effected only in a few instances. We shall begin with

the most simple.

97- To integrate
-— = X, X being a function of x.
CLOG

.-. ^ = /,J^; y^f.l.x.

and so on; the. constants have been omitted.

Dd
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98. Next to integrate —^^
= F.

dy d^y dp dp dy dp
Let -— = ^; ••• :ri

= :r
=
T" 7" "^:7~'dx dx^ dx dy dx dy

.: p^=Y, and ^ = C + /,F.^
dy 2

d^y , dy d^y
Ex. 1. Let -^ = x^--, make -;-

= p, -r^ = q ;

rfa?^ a a? oa?"

dq s ^\ r^ ^P.
.-. -^ = o[f\ .-. q = —+ C = —-;

dx 4 dx

x'
, J

x" ex"
,

.-. u = + ex + c ; and y = + — -^r c x ^ c

^4.5 -4.5.6 2

rf^« 1

Ex. 2. Integrate --„ = —7=^;
tt'^' Vat/

dp djp 1

••• -JZ=Pdx dy 's/ay^

t- = 2 V - + c = 2 —^—p=
— by substitution ;

2 a y/a

dx V a

which may be integrated by making \/y + v 6 = ^•

99. To integrate equations involving p and q, we must

put
— instead of q, and the equations will be transformed to

dx
those of the first order.

Ex. 1. Find the curve in which the radius of curvature is

inversely as the abscissa.
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Here

dar

dy d"y dp
o,putt,ng-=p; •rf^=rf^^

dp
da; 2x

p w'^ ¥ — ar^

- - ~~
!_-*

""
TT ^

1 _ _
a' ^a'-Qr- arf

6^ - .r^

p =
y/a' -

(b^
- ,vy

It*"

Ex. 2. Find the same when radius of curvature = —
.

a

dp
dx a

(1 + f)i
"
~^"

p a a + ex
= - + c =

.i;

1 0?" - (a + c<r)^

p (a + cxy

a -\- ex
••• i>

=

Ex. 3. Integrate
—

^
= ^ + m

dx^
*

d.r^

D D 2
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Let-— =p; .-. -- =g + mp';dx ax

doo

dp g + mp^
'

. dy p
and —- =

dp g + mpr

both of which are integrable, and a relation between y and x

may be found.

d^y ,^ d y^
Ex. 4. Integrate —-^

= F + m -—
:;

.

dx^ dx-

Make^=p; •. ^ = ^;a<a? dx rfcr

.-. ~ = Y + mp^.dx

dx dy

dp dz

.-. 2w25? = Jr ;

a linear equation of the first order and degree.

This equation is used, to find the velocity of a body moving
down a circular arc, in a resisting medium.

100. Next to solve the equation

d'^y ^dy

__
, r dy d-y idu A ^Make y = e''" ; .-.

—^ = we-''" ; -p-r = I h ^ I e^'^' ;

dx dx^ \dx J
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.-. ef'"" [u^ + Pu + Q + — > = 0;
[ ax]

du
whence u + Pu + Q + —- = 0,

aw

an equation of the first degree and order ; but which is seldom

integrable when P and Q are functions of x.

101. Let P and Q be constant, and let P = ^ ; Q = B.

du ^ J r,
.-. — + u~ + Au + B = 0;

dx

du ^
or -—

I- (w
-

a) (^^
-

o)
=

;

dx

an equation which is satisfied by making u— a and u = h.,

^ r II M.T + c' ^ ax

and y = ef^' = e'"^'" = c,e'2C ,

either of these values when substituted for y will satisfy the

conditions of the differential equation, but the complete solution,

which must comprise two constants is

y = c.e'"' + C2e*%

for by substitution we find that their value also satisfies the

condition required.

Cor. 1. If the roots of the equation u^ + Au + B be

impossible, then

a = a + /3\/-l, and 6 = a - /3'\/
- 1 ;

= e"''
\ (ci + Cg) cos (ix + (ci -Cg)v- 1 sin (ix\.

Make Ci + 0^ = A sin ^, (cj
-

Cg)v- 1 = A cos ^ ;

.-. //
= y/e"-^ {sin ^ cos (ix + cos ^ sin (ix\

= ^c"'' sin {(ix + ^).
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Cor. 2. Let the roots be equal ; or a = b.

Then y = e"'^ (cj + c^)
= c^e"'' which has but one constant.

To find the second constant.

Suppose b = a + h; .-. y = c,e'"" + c^e"'"'
+ ''''

= e"' jci + c,e*'j
= e'''

{ci
+ c^ + c^hx + -—~ + &c.

|
;

make Ci + Cg
= c', c.^h

= c", and /t = ;

.-.
?/
= e"' (c' + c"a-0.

102. The equation

d^V ^dy
dw dx

is seldom integrable when P and Q are functions of ,v ; it can

however be solved when

P = ; and Q =

For make a + 6.^ = e'"" ;

rf;;r 1 d?/ dy dz dy 1

(/,77 a + bx^ dx dz dx dz a + bx

d^y d'^y dz 1 dy b

dx" dz' dx a + bx dz (a + bx)-

d~y_^dy\
1

'^dz^ dz) (a + bx)'

whence by substitution, and multiplying by {a + bx^,

d^z
^ , ,dy

which may be integrated by the preceding methods.
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103. To integrate the general equation

-^ + A-—4 + 5—-4 +&C. + L2/
= 0;

where A, B, C, &c. L, are constant.

dy d'y „

Let y = e'"'' ; .-.
-^ = me'"' ; -^ = w«'e'"% &c.

.-. -m" + Jm"-' + Bm"'^^ + Cm^-'^ + &c. + L = 0.

Let a, b, c, &c. be the roots of this equation ; then

y = e"'', y =
«''•'', ?/

=
e*^"^; &c.

will be particular integrals of the general equation, and the

substitution of each in it will satisfy it. Hence the complete

integral will be, by the introduction of n constants

y = Cie"" + c^e'"' + Cgg'-'^ + &c.

CoR. 1. Should any of the roots be equal, as a = b;

then for Cje"'' + Cge*', we must put e''^(ci + 02^?);

.-. y = e"'^ (ci + CgcT) + Cge*^^'^' + &c.

And if three roots be equal, and a be the equal root, we

must put for

Cje"'' + c.^e'''' + 036''%

the term

and so on for any number of equal roots.

CoR. 2. If pairs of roots be impossible, we must sub-

stitute for the impossible exponential functions, the cosines

and sines of the circular arcs, to which they are equivalent.

Ex. 1. ——• + n^u = 0.

dO'
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Let M = e"'^ .-.
— = 7«e'"'^; —- = m2e'"%

.-, m^e""^ + n^e'"^ = ; .-. rnr + n- = 0, and m = ± ws/- 1 ;

=
(c' + c") COS nO + (c'

-
c")V^ sin wO

= ^ cos (w ^ + B).

If c' + c" = J cos B, and (c
-

c") \/'^\ = - J sin B.

Ex. 2. —- + n-u + a^ = 0.

dB

Make a^ = n^j^, and u + j3
— w, whence we have

d'w

and the solution is performed as in the preceding example,

d^s ds
Ex. 3. -— + 2k — + fs = 0.

df dt
-^

Make s = e'"' ; .-. ni^ + 2km + f= 0;

.-. m= -k^ y/^ s/f- k' = -k^ a y/ - 1 ;

.-. s = e-*' (c'e«*^~ + c" e- "'^"')
= Jg-*' cos (a# + B).

Examples (l) and (2) are useful in Physical Astronomy^
Ex. (3) gives the space a function of the time, when a body
moves through the arc of a cycloid, the resistance varying as

the velocity.

d^y d'^y dy
Ex.4. -4-6-4+ 11-/-- 62/

= 0.
rf.r* dw^ d,v

Let y = e""'; .*. m^ - 6m^ + 11 m - (i = 0,

the roots of which are 1, 2, 3;

.-. y = Cye^ + c.^e-^ + c-^e^".
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Ex. 5. Let -4 - 3 —4 + 3 -^ -
1/
= 0.

dw^ dx' dw

Here if ^ = e""', m? - Sm" + 3m -1 = 0, or (w -
l)^

= 0,

And .-. y = e" {c^ + 0.^0; + c^ob^).

_ d^y dy .

Ex.6. —
^^ + 8-^ + lbt/ = 0; .-. y = e-' '{€,+ c.,w).

dar dx

d^y dy
Ex. 7. -r^,-'^-r + 34>y

= o; •'• y = ^4e^'^cos (5 + 5x).
dx~ dw

Ex.8, ^-i^ + 1.0.

Make *• = e^ .•.— = -; -^ = - -^
,

a-j? <r d<v X dz

d^y (d^y dy\ 1

dx'' \dx~ dz) x^
'

d^y dy
d%^ dz

'. y = e' (ci + c.,z)
= X (c, + c, log a').

c?\v \^ _ y_

dx^ X dx x^
Ex. 9. ~r^.+

-
-r--~^ = %

1 • 1 ^^y
making x = e', we have -— - y =

;

y = c^e' + c^e
^ = c,,r + —

X

Ex. 10. Integrate -j—^
—

a^y = 0.d^
dx'

Here m* - o'* = 0, the roots are ± a, ± a\/ — 1 ;

.'. y = Cjc"^ + c.,e~"*" 4- .^ cos (5 + ax^.
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Ex. 11. Integrate -r—r + « V = 0.

TT 4 .
'^ liV'-l -li-s/^

Here m^ + a^ = ;
— = ::=

—
,
and = -^ -;

a ^/2 V2

.'. y = Ae'^^ cos L6 + —^ + J,e ^^ cos LSj + —-;=.

d y 1 d~«/
Ex 12. Tnteffrate = — .^

dx' a' dx'

Let y = e""'; .-. m^
m^

ar

The roots of which are, , 0, ;

a a

.•. y = c'lC" + c.>e
"
+ c^ + dx.

d"y
Ex. 13. Integrate —- -

y = 0.

doc"

Make y = e"""
;

.-. m" -1 = 0,

let 1, ai, as, as, a^, &c. a„_,, be the roots of this equation;

.-. y =
Cie-" + c\e"-'' + Cse"-"'' + &c. + c„e""-'*'.

104. To solve the equation,

d^y ^ dy ^ ^ ,

We shall shew that the solution of this equation may be

made to depend upon that of the equation,

d,~v dyy
+ P Y^ + Q// = o (2)

dx~ (IX
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To effect this, we proceed to apply to this equation, a

method called by Lagrange,
" The Variation of the Para-

meters ;" which consists in this, that if y =
c'yi + c"y2 be the

solution of the equation (2), we may assume it to be that

of equation (l), if c' and c" be considered no longer constant

but functions of w.

Let .•. y = c'yi + c'y.^ be the solution of (l) ;

_ dy__ ,d]h n^y^ ^ ^
dx d.v dv *

div doo

But as we have made but one supposition to determine c and

c", we may make another, let therefore

dc dc" dy , dy^ ,, dy-^

dx dw
'

dw dx dx
'

d'^y ,d^y\ n^^lhi dc dyx dc" dy^

dx^ dx^ dx' dx dx dx dx
'

whence by substitution in the original equation (l),

dc' dyi dc" dy.^

dx dx dx dx

which by means of equation (2) is reduced to

dx dx dx dx

dc" yi dc

dx t/a dx

dc_lfHh _ y\ dy^\ ^.
dx\dx y^ dx)

dc
whence —-^ is found to be a function of /r, and c' = X. + C\,

dx
also similarly c"= ^^ + Cg;
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A similar proof of this proposition applies to equations of

a higher order.

Ex. 1. Integrate ——; + a~y = cos fix.
CI/ Ou

The solution of the equation -—- + c^y = is

ax''

y = c cos ax + c sin ax ;

assume this to be the solution of the proposed equation ;

dy , . „ dc dc" .

•,
— = - c a sm ax -\- c a cos ax + -7- cos ax + —— sm ax
dx dx dx

= — c'a sin ax + c"a cos ax.

,
dc' dc" .

Since we make —— cosatr+—— sina^ = 0;
dx dx

(Fy ,2 " 2
• ^^' • ^^"

= — ca cos ax — c a smax - a-;— sin ax + a —— cos ax
da^ dx dx

dc . dc"
= - a~y

- a — sm a a? + a -— cos ax ;

dx dx

dc' . dc" ^
.-. — a-r- smaa; + a -— cos a ^^ = cosp**.dx dx

„ dc" cos ax dc
But -— = -

-.
—

;

dx sin ax dx

dc / . cos^ax\dc / . cos^a^N ^
a —— sm a<r + —;

= cos px ;

dx \ sm ax I

.'. -J—
= cos/3a?sina.T

=
{sin(a + /3).r + sin(a-/i).i'},dx a 2a

and = -
COS/3.J' cosa.v =—

|cos(a + fi)x + cos{a- (i)x];
dx a 2 a
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1 fcos(a + (3)x cos(a-B).v
•'• c =Ci+— [ H +'SaV a + (3 a- 13

,,
1 /sin(a + /3)A' sin(a-/3).r

1 {co?,(ix cos/3.1'
'. y = c, cos ax + Cg sm a<J? + —

[

——^ +

=
Ci cos aoc -\- c.^ sin aa? +

2a Va + /3 a -
j8

cos /3 *

COS O tT

= A cos (fi + a*') + —,
—

^, , making the proper substitutions.
a" — p'

Ex. 2. Integrate ——„ + a"?/
= X.

dw~

Let 1/
= c'coSttc'T + c"sinaA', which is the solution of

—f- + a^^
_

0^ be that of the proposed equation. Proceed-
d.T^

ing as in Example 1, we have

dc' . dc" X
—— sin ax

;

— cos ax = .

dw dx a

. - dc" dc cos ax
And -—=--

, ;

dx dx sma.T

dc 1 dc" 1

.-. — = ^smoct', and —— = -^ cos a<r ;

dx a dx a

.'. c' = Ci fj.X sin ax,
a

c" = C2+ - LX cos a ci? ;

a

cosaa; .

.*. y = Ci cos acT + Cg sin a/r
J.v
X sm a.x'

a

sinaa? . „
H L A cosa.T'.

a
•'

This case includes Example l.
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^V (III

Ex. 3. Integrate —^ + A^ + By = X, X being a

function of a?.

Let a and b be the roots of the equation m^ + Am + B = 0;

.-. ?/
= c'e"'' + c'V^ may be assumed the solution of the dif-

ferential equation ;

dy f „ , n h dc , dc"
. .

-± = ace"' + be e*"^ + e"""— + e*"^ .

dx dx dx

dc'
,

dc"
Make e"^— + e''^-_=0;

dx dx

.-. —=a.c'e'" + bc"e^\
dx

d'V o , o » ,
dc

i.
dc"—^ = a'ce"' + b^c e''' + ae"^— + be^"" ;

dx~ dx dx

.-. c'e^^iar + Aa + B) + c"e''{b" + Ab + B)

dc , , dc"
+ ae"'^— +fee'''- = X.

dx dx

And d^ + Aa + B = 0\ b^ -\- Ab + B = 0;

dc' . , dc"
... ae«^— + fegAr—.^x.

dx dx

^ ,
dc'

, ,
dc"

But be"'—- +66*'-— = 0;
dx dx

.-. (a
_

6)6"^
— = X, and -

(a
- 6)e''*— = X;

•• C = 0, + _l_/,^e— , c" = c, —LXe-"' ;

a -b a -b^

.'. y = ce"'' + ce'-' ^-^f^Xe'"' - -l—f^Xe'''.a - b a — b
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(fy dy
Ex. 4-. Integrate ——̂ - 5-— + Qy = a\

dx^ dw

Here a = 3, 6 = 2, X = x ;

1 / 10\
.-. y = cie-" + c^e'' + -U" + — 1

•

For further information on the subject of these equa-

tions, the reader is referred to the Differential Calculus

of Lacroix, and to the Collection of Examples by Professor

Peacock ; to both of which works the author of the present

treatise has been greatly indebted.

FINIS.
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