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P KEF ACE.

TlIE fact that certain bodies, after being rubbed,

appear to attract other bodies, was known to tlie

ancients. In modern times, a great variety of other
phenomena have been observed, and have been found
to be related to these phenomena of attraction. They
have been classed under the name of Electric phe-
nomena, amber, fWrjooi*, having been the substance
in which they were first described.

Other bodies, particularly the loadstone, and pieces
of iron and steel which have been subjected to certain

processes, have also been long known to exhibit phe-
nomena of action at a distance. These phenomena,
with others related to them, were found to differ from
the electric phenomena, and have been classed under
the name of Magnetic phenomena, the loadstone, ftSym,
being found in the Thessalian Magnesia.

These two classes of phenomena have since been
found to be related to each other, and the relations

between the various phenomena of both classes, so

far as they are known, constitute the science of Elec-

tromagnetisni.

In the following Treatise 1 propose to describe the



V1 PREFACE.

most important of these phenomena, to shew how they
may he subjected to measurement, and to trace the
mathematical connexions of the quantities measured.
Having thus obtained the data for a mathematical
theory of electromagnetism, and having shewn how
this theory may be applied to the calculation of phe-
nomena, I shall endeavour to place in as clear a light

as I can the relations between the mathematical form
of this theory and that of the fundamental science of
Dynamics, in order that we may be in some degree
prepared to determine the kind of dynamical pheno-
mena among which we arc to look for illustrations or
explanations of the electromagnetic phenomena.

In describing the phenomena, I shall select those
which most clearly illustrate the fundamental ideas of
the theory, omitting others, or reserving them till the
reader is more advanced.

The most important aspect of any phenomenon from
a mathematical point of view is that of a measurable
quantity I shall therefore consider electrical pheno-
mena chiefly with a view to their measurement, de-
scribing the methods of measurement, and defining
the standards on which they depend.

In the application of mathematics to the calcidation
of electrical quantities, I shall endeavour in the first

place to deduce the most general conclusions from the
data at our disposal, and in the next place to apply
the results to the simplest cases that can be chosen.
1 shall avoid, as mud! as 1 can, those questions whirl,
though they have elicited the skill of mathematicians!
have not enlarged our knowledge of science.
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The internal relations of the different branches of

the science -which we have to study are more numerous
and complex than those of any other science hitherto

developed. Its external relations, on the one hand to

dynamics, and on the other to heat, light, chemical

action, and the constitution of bodies, seem to indicate

the special importance of electrical science as an aid

to the interpretation of nature.

It appears to me, therefore, that the study of elcc-

tromagnetism in all its extent has now become of the

first importance as a means of promoting the progress

of science.

The mathematical laws of the different classes of

phenomena have been to a great extent satisfactorily

made out.

The connexions between the different classes of phe-

nomena have also been investigated, and the proba-

bility of the rigorous exactness of the experimental

laws has been greatly strengthened by a more extended

knowledge of their relations to each other.

Finally, some progress has been made in the re-

duction of eleetromagnctism to a dynamical science,

by shewing that no electromagnetic phenomenon is

contradictory to the supposition that it depends on

purely dynamical action.

What has been hitherto done, however, lias by no
means exhausted the field of electrical research. It

has rather opened up that field, by pointing out sub-

jects of enquiry, and furnishing us with means of

investigation.

It is hardly necessary to enlarge upon the beneficial
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results of magnetic research on navigation, and the

importance of a knowledge of the true direction of

the compass, and of the effect of the iron in a ship.

But the labours of those avIio have endeavoured to

render navigation more secure by means of magnetic

observations have at the same time greatly advanced

the progress of pure science.

Gauss, as a member of the German Magnetic Union,

brought his powerful intellect to bear on the theory

of magnetism, and on the methods of observing it,

and he not only added greatly to our knowledge of

the theory of attractions, but reconstructed the whole

of magnetic science as regards the instruments used,

the methods of observation, and the calculation of the

results, so that his memoirs on Terrestrial Magnetism

may be taken as models of physical research by all

those who are engaged in the measurement of any

of the forces in nature.

The important applications of electromagnetism to

telegraphy have also reacted on pure science by giving

a commercial value to accurate electrical measure-

ments, and by affording to electricians the use of

apparatus on a scale which greatly transcends that

of any ordinary laboratory. The consequences of this

demand for electrical knowledge, and of these experi-

mental opportunities for acquiring it> have been already

very groat, both in stimulating the energies of ad-

vanced electricians, and in diffusing among practical

men a degree of accurate knowledge which is likely

to conduce to tlie general scientific progress of the

whole engineering profession.
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There arc several treatises in 'which electrical and

magnetic phenomena are described in a popular way.

These, however, arc not what is wanted by those who

have been brought face to face with quantities to be

measured, and whose minds do not rest satisfied with

1 ceture-room exper iments

.

There is also a considerable mass of mathematical

memoirs which arc of great importance in electrical

science, but they lie concealed in the bulky Trans-

actions of learned societies
;

they do not form a con-

nected system
;

they are of very unequal merit, and

they are for the most part beyond the comprehension

of any but professed mathematicians.

I have therefore thought that a treatise would be

useful which should have for its principal object to

take up the whole subject in a methodical manner,

and which should also indicate how each part of the

subject is brought within the reach of methods of

verification by actual measurement,

The general complexion of the treatise differs con-

siderably from that of several excellent electrical

works, published, most of them, in Germany, and it

may appear that scant justice is done to the specu-

lations of several eminent electricians and mathema-

ticians. One reason of this is that before I began

the study of electricity I resolved to read no mathe-

matics on the subject till I had first read through

Faraday's Experime7\tal Researches on Electricity. I

was aware that there was supposed to be a difference

between Faraday's way of conceiving phenomena and

that of the mathematicians, so that neither he nor
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they were satisfied with each others language. I had

also the conviction that this discrepancy did not arise

from either party being wrong, I was first convinced

of this by Sir William Thomson* to whose advice and

assistance, as well as to his published papers, I owe

most of what I have learned on the subject.

As I proceeded with the study of Faraday, I per-

ceived that his method of conceiving the phenomena

was also a mathematical one, though not exhibited

in the conventional form of mathematical symbols. I

also found that these methods ^vcre capable of* being

expressed in the ordinary mathematical forms, and

1h us compared with those of the professed mathema-

ticians.

For instance, Faraday, in his mind's eye, saw lines

of force traversing all space where the mathematicians

saw centres of force attracting at a distance : Faraday

saw a medium where they saw nothing but distance

:

Faraday sought the seat of the phenomena in real

actions going on in the medium, they were satisfied

that they had found it in a power of action at a

distance impressed on the electric fluids.

When I had translated what I considered to be

Faraday's ideas into a mathematical form, I found

that in general the residts of the two methods coin-

cided, so that the same phenomena were accounted

for, and the same laws of action deduced by both

methods, but that Faraday's methods resembled thoso

* I toko this opportunity of acknowledging my obligations to Sir

\V. Thomson and to Professor Tait for many valuable suggestions made
during the printing of tins work.
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in -which we begin with the whole and arrive at the

paints by analysis, while the ordinary mathematical

methods were founded on the principle of beginning

with the parts and building up the whole by syn-

thesis.

I also found that several of the most fertile methods

of research discovered by the mathematicians could be

expressed much better in terms of ideas derived from

Faraday than in their original form.

The whole theory, for instance, of the potential, con-

sidered as a quantity which satisfies a certain partial

differential equation, belongs essentially to the method

which I have called that of Faraday. According to

the other method, the potential, if it is to be considered

at all, must be regarded as the result of a summa-

tion of the electrified particles divided each by its dis-

tance from a given point. Hence many r>l' tin* mathe-

matical discoveries of Laplace, Poisson, Green and

Gauss find their proper place in this treatise, and their

appropriate expression in terms of conceptions mainly

derived from Faraday.

Great progress has been made in electrical science,

chiefly in Germany, by cultivators of the theory of

action at a distance. The valuable electrical measure-

ments of W. Weber are interpreted by him according

to this theory, and the electromagnetic speculation

which was originated by Gauss, and carried on by

Weber, Riemann, J. and C. Neumann, Lorenz, &c. iB

founded on the theory of action at a distance, but

depending either directly on the relative velocity of the

particles, or on the gradual propagation of something,
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whether potent in I or force, from the one particle to

the other. The great success which these eminent

men have attained in the application of mathematics

to electrical phenomena gives, as is natural, addi-

tional weight to their theoretical speculations, so that

those who, as students of electricity, turn to them as

the greatest authorities in mathematical electricity,

would probably imbibe, along with their mathematical

methods, their physical hypotheses.

These physical hypotheses, however, are entirely

alien from the way of looking at things which I

adopt, and one object which I have in view is that

some of those who wish to study electricity may, by
reading this treatise, come to see that there is another

way of treating the subject, which is no less fitted to

explain the phenomena, and which, though in some
parts it may appear less definite, corresponds, as I

think, more faithfully with our actual knowledge, both

in what it affirms and in what it leaves undecided.

In a philosophical point of view, moreover, it is

exceedingly important that two methods should be

compared, both of which have succeeded in explaining

the principal electromagnetic phenomena, and both of

which have attempted to explain the propagation of

light as an electromagnetic phenomenon, and have
actually calculated its velocity, while at the same time
the fundamental conceptions of what actually takes

place, as well as most of the secondary conceptions of

the quantities concerned, are radically different.

I have therefore taken the part of an advocate rather

than that of a judge, and have rather exemplified one
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method than attempted to give an impartial description

of both, r have no doubt that the method wliieh I

have called the German one will also find its sup-

porters, and will be expounded with a skill worthy
of its ingenuity.

I have not attempted an exhaustive account of elec-

trical phenomena, experiments, and apparatus. The
student who desires to read all that is known on these

subjects will find great assistance from the TraiU
tVElectriciti of Professor A. de la Rive, and from several

German treatises, sucli as Wiedemann's Galvanismus,

Riess' Reibimgselektrichat, Beer's Einleitung in die Ek-k-

trostatik, &c.

I have confined myself almost entirely to the ma-

thematical treatment of the subject, kit I would

recommend the student, after he has learned, experi-

mentally if possible, what are the phenomena to be*

observed, to read carefully Faraday's Experimental

Researches in Electricity. lie will there find a strictly

contemporary historical account of some of the greatest

electrical discoveries and investigations, carried on in

an order and succession which could hardly have been

improved if the results had been known from the

first, and expressed in the language of a man who

devoted much of his attention to the methods of ac-

curately describing scientific operations and their re-

sults *.

It is of great advantage to the student of any

subject to read the original memoirs on that subject,

for science is always most completely assimilated when

* Life mill Letter* of Fumiinif, vol. t. p. 393.
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it is in the nascent state, and in the case of Faraday's

Researches this is comparatively easy, as they are

published in a separate form, and may be read con-

secutively. If by anything I have here written I

may assist any student in understanding Faraday's

modes of thought and expression, I shall regard it as

the accomplishment of one of my principal aims—to

communicate to others the same delight which I have

found myself in reading Faraday's Researches.

The description of the phenomena, and the ele-

mentary parts of the theory of each subject, will be

found in the earlier chapters of each of the four Parts

into which this treatise is divided. The student will

hud in these chapters enough to give him an elementary

acquaintance with the whole science.

The remaining chapters of each Part are occupied

with the higher parts of the theory, the processes of

numerical calculation, and the instruments and methods

of experimental research.

The relations between electromagnetic phenomena

and those of radiation, the theory of molecular electric

currents, and the results of speculation on the nature

of action at a distance are treated of in the last four

chapters of the second volume.

Fiih. 1, ]873.
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Vol. I. Page 335, dele last 14 lines.

M 336, line 1, cfete therefore.

336, line 2, for the potential at <' to exceed tlmt fit l>

by P, r««i a current, C, from X to 7.

336, line 4, for C to D will cause the potential at

to exceed that lit H by the same quantity

p: read X to Y will utilise sui e*pml eui-

rent C from A to 5.

There must be as many different unite as there are different

kinds of quantities to be measured, but in all dynamical sciences

it is possible to define these units in terms of the three funda-

liH-nlJil units of L n^t h. Time, and M :i - TIh:> the nnii- ...)' :m«ti

and u| volume tire defined respectively as the square and the cube

whose sides tiro (lie unit of length.

Sometimes, however, we find several units of the same kind

founded on independent considerations. Thus the gallon, or the

volume of ten pounds of water, is used as a unit of capacity as well

as the cubic foot. The gallon may be a convenient measure in

some eases, but it is not :i systematic one, since its nunierienl re-

lation to the cubic foot is not a round integral number.

In fmmin^ u matlieuial ie:il system \\\- suppose Ibe funda-

mental units of lcngtli, time, and mass to he given, and deduce

all the derivative units from these by the simplest attainable de-

finitions.

The formulae at which we arrive must be such that a person

vol. T. n
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PRELIM1XA II V.

I>\ THE M 14 AS l It KM ENT "E <JE A NT [TIES.

1."] Every expression of a Quantity consists of two factors or

components. One of these is the name of a certain known quan-

tity of the same kind as tin* quantity to I xpivsscd, which is

taken as a standard of reference. The other component is the

number of times the standard \h to be taktii in Cftdsff to make tip

the required quantity. The standard quantity is technically culled

the Unit, ami I lie number is called the Xuinrriral Value of (he

quantity.

There must he as many different units as there are different

kinds of quantities to be measured, but in all dynamical sciences

it is possible to define these units in terms of the three funda-

mental units of Length, Time, and Mass. Thus the units of area

and of volume are delimd ivspceli wly as the square and the cube

whose sides are the unit of length.

Sometimes, however, we find several units of the same kind

founded on independent considerations. Thus the gallon, or the

volume of ten pounds of water, is used as a unit of capacity as well

as the cubie foot. The gallon may be a convenient measure in

some cases, but it is not a systematic one, since its numerical re-

lation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda-

mental units of length, time, and mass to he given, and deduce

all the derivative units from these by the simplest attainable dr-

linn ions.

The formulae at which we arrive must be such that a person

VOL. T. n
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of any nation, by substituting for the different symbols the nu-
merical value of the quantities as measured by his own national
units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest importance
to employ units belonging to a properly defined system, and to
know the relations of those units to tin.- liindainnitai .mils, so thai
we may he able at once to transform our results from one system to
another.

This is most conveniently done by ascertaining the dimensions
"! i'vn unit in tonus of the throe fundamental units. When a
given unit varies as the «th power of one of these units, it is said
to be of n dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube
whose side is the unit of length. If the unit of length varies,
the unit of volume will vary as its third power, and the unit of
volume is said to be of three dimensions with respect to the unit, of
length.

A knowledge of the dimensions of units furnishes a test which
ought to be applied to the equations resulting from any lengthened
investigation. The dimensions of every term of such an equa-
tion, with respect to each of the throe fundamental units, must-
be Uie same. If not, the equation is absurd, and contains some
error, as its interpretation would be different according to the arbi-
trary system of units which we adopt*.

The Three Fundamental Unite.

8*3 (l) Length. The standard of length for scientific purposes
in this country is one foot, which is the third part of the standard
yard preserved in the Exchequer Chambers.

In France, and other countries which have adopted the metric
system, it is the metre. The metre is theoretically the ten mil-
lionth part of the length of a meridian of the earth measured
from the pole to the equator ; but practically it is the length of
a standard preserved in Paris, which was constructed by Borela
to correspond, when at the temperature of melting ice, with the
value of the preceding length as measured by Delambre. The metre
has not been altered to correspond with new and more accurate
measurements of the earth, but the are of the meridian is estimatedm terms of the original metre.

theory of duuuiaions was first fltifcd by Fourier, Theork dC CMw, § 160.
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In astronomy tin- moan distance of the earth from the sun is

sometimes taken as a unit of length,

In the present state of science the most universal standard of

length wliit-h we could assume would be the wave length in va< mini

of a particular kind of light, emitted 1 iy some widely diffused sub-

stance such as sodium, which has wrll-delined lines in its spei 1 nun,

Nnrii a standard would lie independent of any changes in the di-

mensions of I he earth, and should he adopted by those who expect

their writings to be more permanent than that body,

Ju treating of the dimensions of units we shall call (lie miil of

length |/,|. 11/ is I he numcrtca] value of a length, it is undcr-

Itood to be expressed in tonus of the concrete unit [I], so I hat

the actual length would lie fully expressed by f\L\.

4.~] (2) That:. The standard unit of time in all civilized eoun-

Iries is deduced from the time of rotation of the earth about its

axis. The sidereal day, or the I rue period nf rot a Id f the earth,

can be ascertained with great exactness by the ordinary observa-

tions of aetrom i .. i ; i ,| i| M . ..,.|.-n- day .-an Le d.-dured

from this by our knowledge of 1 he length of tin year.

The unit of time adopted in all physical researches is one second

of mean solar time.

In astronomy a year is sometimes used as a unit of lime. A
more universal unit of time mi-hl lie fmnd by taking tha periodic

time of vibration of the particular kind of light whose wave length

is the unit of length.

We Bhall call the concrete unit of time [T], and the numerical

measure of time (,

5.] (3) Mat*. The standard unit of mass is in this country the

avoirdupois pound preserved in llie f\rLr. pier (Cambers. I he

grain, which is often used as a unit, is defined to be the 7000th
part of this pound.

In the metrical system it is the gramme, which is theoretically

the mass of a cubic centimetre of distilled water at standard tem-

perature and pressure, but practically it is the- thousandth part

of a standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com-
pared by weighing is far greater than that hitherto attained in

the measurement of lengths, so that all masses ought, If possible,

to be compared directly with the standard, and not deduced from

experiments on water.

In descriptive astronomy the mass of the sun or that of the

n 2
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earth is sometimes taken as a unit, but in the dynamical theory
of astronomy the unit of mass is deduced from the unite of time
find length, enmbined with the tlid of universal gravitation. The
astronomical unit of mass is that mass which attracts another
body placed at the unit of distance so as to produce in that body
the unit of acceleration.

In framing- a universal system of units we may either deduce
the unit of mass in this way from those of length and time
already defined, and this we can do to a rough approximation in

the present state of science
;

or, if we expect * soon to be able to

determine the mass of a single molecule of a standard substance,
we may wait for this determination before fixing a universal

standard of mass.

We shall denote the concrete unit of mass by the symbol [M]
in treating of the dimensions of other units. The unit of mass
will be taken as one of the three fundamental units. When, as

in the French system, a particular substance, water, is taken as
a standard of density, then the unit of mass is no longer inde-
pendent, but varies as the unit of volume, or as [Z 3

].

If, as in the astronomical system, the unit of mass is defined
with respect to its attractive power, the dimensions of \M~\ are

For the acceleration due to the attraction of a mass m at a

distance r is by the Newtonian Law . Suppose this attraction

to act for a very small time t on a body originally at rest, and to
cause it to describe a space a, then by the formula of Galileo,

whence m = 2 — . Since r and s are both lengths, and I is a

time, this equation cannot be true unless the dimensions of m are
[Zr3 T~2

]. The same can be shewn from any astronomical equa-
tion in which the mass of a body appears in some but not in all

of the terms f.

n,1 5FiS£ £* *Z™ Jcr LuftmolmuV Academy of Vienna,

?mV ™ J £ w ™ * °"
J?

,e 'Trternal M»«ot.8 of Qmm? Phil. aLj.. Aug1S-.S: ;„„l.-,rU. I hniHHon wi « The Sis, t if Atom*,' S'-i/i<rr, ;:| |
> 7 /,

t V J
(

*
ri

B"cond
,'
ire WW" ft* unita, t).« MtronomiMJ m.it of ma* sronldoe about 932,000,000 pounds.
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Derived Untie,

(5.1 The mi il of Velocity is that velneily in whieh unit of length

is described in unit of time. Its dimensions are
|
Lt~ '].

If we adopt the units of length and time derived from the

vibrations of light, then the unit of velocity is the velocity of

light.

The unit of Acceleration is that acceleration in which the velo-

city increases hy unity in unit of time. Its dimensions are [LT~ *].

The unit of Density is the density of a substance which contains

unit of mass ill unit of volume. Il> dirnm-mos arc
[
M h ' \.

The unit of Moment niu is the m»nu<utuni of unit of mass moving

with unit of veloeily. Its dimensions arc
|
M LT '|.

The unit of Force is the force which produces unit of momentum

in unit of time. Its dimensions are [ML 2'_s
],

This is tin absolute unit of force, and this definition of it is

implied in every equation in Dynamics. Nevertheless, in many

text hooks in which these equations are given, :i ditter-ml mill ot

force is udopted, namely, the weight of the national unit of ma ;

and then, in order to satisfy I lie equations, the national nnil of mass

is itself abandoned, and an artificial unit is adopted as the dynamical

unit, eqiuil to the national unit divided by the numerical value of

the force of gravity at the place. In ihis way both 1 1n- "nil of three

and the unit of mass are made to depend on the valnu of the

force of gravity, which varies from place to place, so that state-

ments involving these quantities are not romplrto without a know-

ledge of the force of gravity in the places where these statements

were found to he true.

The abolition, for all scientific purposes, of this method of mea-

suring forces is mainly due to the introduction of a general system

of making observations of magnetic force in countries in which

the force of gravity is different. All such forces are now measured

according to the strictly dynamical method deduced from our

definitions, and the numerical results are the same in what. v. r

country the experiments are made.

The unit of Work is the work clone by the unit of force acting

through (lie unit of length measured in its own direction. Its

dimensions are [ML*T~*\.

The Energy of a system, being its capacity of performing work,

IB measured by the work wli ich the syBtem is capable of performing

by the expenditure of its whole energy.
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The definitions of other quantities, and of the units to which

they a ro referred, will be given when we require them,

In transforming- the values of physical quantities determined in

terms of one unit, eo as to express them in terms of any other unit

of the same kind, we have only to remember that every expres-

sion for the quantity consists of two factors, the unit and the nu-

merical part which expresses how often the unit is to be taken.

Hence the numerical part of the expression varies inversely as the

magnitude of the unit, that is, inversely as the various powers of

the fundamental quits which arc indicated by the dimensions of the

derived unit.

On PIu/-t>ml Continuity and Discontinuity.

7.] A quantity is said to vary continuously when, if it passes

from one value to another, it assumes all the intermediate values.

We may obtain the conception of continuity from a consideration

of the continuous existence of a particle of matter in time and space.

Such a particle cannot pass from one position to another without

describing a continuous line in space, and the coordinates of its

position must be continuous functions of the time.

In the so-called ' equation of continuity,' as given in treatises

on Hydrodynamics, the fact expressed is that matter cannot appear

in or disappear from an element of volume without passing in or out

through the sides of that element.

A quantity is said to be a continuous function of its variables

when, if the variables alter continuously, the quantity itself alters

continuously.

Thus, if ft is a function of r, and if, while x passes continuously

from ;r to dfj, n passes continuously from «„ to u
x , but when x

passes from .Tj to z.,, n passes from n{ to n.2) v{ being different from

« l5 then « is said to have a discontinuity in its variation with

respect to x for the value = xls because it passes abruptly from w,

to «|' while # passes continuously through scv
If we consider the differential coefficient of it with respect to for

the value the limit of the fraction

when x,
z
and are both made to approach .Tj without limit, then,

if .f
l(
arid .>:, are always on opposite sides of a*,, the ultimate value of

the numerator will be it
J}

and that of the denominator will

be zero. If « is a quantity physically continuous, the discontinuity
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can exist only with respect to the particular variable x. We must

in this case admit that it has on infinite differential coefficient

when 9 = xv If w is not physically continuous, it cannot be dif-

ferentiated at all.

It. is possible in physical questions to gel rid of the idea oi

discontinuity without sensibly altering the conditions of the case.

If .i< is a very little less than and .r, a very little giv >' lhan

zlt then « will be very nearly equal to «, and «„ to «,'• ^Vo

may now suppose n to vary in any arbitrary but continuous manner

from » to *
3
between the limits 4 and jv In many physical

questions we may begin with a hypothesis of this kind, and then

invest i-:He the result when the values of .f„ am! are made t«.

approach that of a, and ultimately to reach it. The result will

in most cases lie independent of the arbitrary manner in which wo

have supposed « to vary between the limits.

Dhamilnv'thj rf a Function tfmm Matt Our lari«U,\

8.] If we suppose the values of all the variables except x to be

constant, the discontinuity of the function will occur for particular

values of *, and these will be connected with the values of the

other variables by an equation which we may write

<\> — </> (*, y, &C-) = 0-

The discontinuity will occur when
«f»
= <>. When

<f>
is positive the

function will have the form F% (*, v, z, &c.). When * is negative

it will have the form F
x
(x, jr, t, &c.). There need be no necessary

relation between the forms J'', and Fv
To express this discontinuity in a mathematical form, let one of

the variables, say x, be expressed as a function of
<f>

and the other

variables, and let F
x
and be expressed as functions of <pf $. z, &c-

We may now express the general form of the function hy any

formula which is sensibly equal to F, when ^ is positive, and In

when
<l>

is negative. Sueh a formula i* the following—

1 + ¥*

As long as » is a finite quantity, however great, F will he a

continuous function, but if we make n infinite will be equal to

F2 when <t>
is positive, and equal to Fx when <f>

is negative.

mscontimtity of the Derivatives of a Conlinnmn Funcf^.

The lirst derivatives of a continuous function may he discon-
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tinuous. Let the values of the variables for which the discon-

tinuity of the derivatives occurs be connected by the equation

4» = <j>(z,y,z...) = 0,

and let 1\ and F2 be expressed in terms of
<l>

and n — 1 other

variables, say (y, z . . .).

Then, when is negative, Fl
is to be taken, and when

<f>
is

positive F$ is to be taken, and, since F is itself continuous, when

<f>
is zero, F

x
= F2 .

dF, dF„
Hence, when <h is zero, the derivatives -j-^ and -?-= may lie

a(f> atfi

different, but the derivatives with respect to any of the other

dF dF
variables, such as —r^- and — must, be the same. The rtiscon-

dy <hf

tiuuity is therefore confined to the derivative with respect to all

the other derivatives being continuous.

Periodic and Multiple Functions.

9.] If « is a function of x such that its value is the same for

,r, .r + o, .r +''', and all values i.f ./• diiferitlg by a, u is called a

periodic function of x, and a is called its period.

If x is considered as a function of 11, then, for a given value of

it, there must bo an infinite series of values of x differing by

multiples of a. In this case .t is called a multiple function of u,

and a is called its cyclic constant.

dx .

The differential coefficient has only a finite number of values

corresponding to a given value of u.

On the Relation of Physical Quantities to Direetiam in Space.

10.] In distinguishing the kinds of physical quantities, it is of

great importance to know how they are related to the directions

of those coordinate axes which we usually employ in defining :h.

positions of things. The introduction of coordinate axes into geo-

metry by Des Cartes was one of the greatest steps in mathematical

progress, for it reduced the methods of geometry to calculations

performed on numerical quantities. The position of a point is made

to depend on the length of three lines which arc always drawn in

dMcrniinatr directions, and the line joining two points is in like

manner considered as the ivsultanf of three lines.

But for many purposes in physical reasoning, as distinguished
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from calculation, it is desirable to avoid explicitly introducing the

'

n, (
.i:i n coordinates, a.ul t, lix the mind ul - >

,

instead Of its to coordinate^ and on

. Uvelion of a f-rce ii.ataul of it* three comp^nts. Lh.s n ''

,
,, <im .ni] ,anug ^metrical ;.ud ,1,^,1^ U,s . v ].-,-

; nd n,r, ^uruMh-n tl 1 her, although the^;--'<<f
H t did not receive their full development til) Hamilton made

I,!, next -rent st,, i, dealing with space, by th, mventl .1
In.

Calculu, of Quaternions .

^ ^
Aa the methods of Dob Ca.tet. 111

Jfal of ^ence, and as they are really the most useful

,
1(*,s (>f calculation, we shall all our results m the

'1 „ la... n v i 1,1 Wr.il«.lth,,nln-h, mn

Ht id,,, as di.iu^hcd from, ^rations-! un 1,d

; ;

Uuaten.iou*, will I, of *r,at use In u< ... the stud, ot a r

of -..Irel.und especially in « -

Ll with'a number of physical ****** the 1^**$
t , ,:„!, ..Ihrrnn I, exposed far .noresnnply by » h-« —

'

Hamilton's, than by the ordinary equal lmo-.

uTono of the most implant features of Hamilton's method »

the division of quantities into Scalar and Vectors.

A Scalar quantity is eupable of l,in, ,,„ ,! )'
dehne ,

si„*le numerical specification. Its numerical valne do« not m

ZfJy dc,,nd ,1 the directions we assume for the connate

"X Vector, or Directed quantity, requires for b Uoitote
numerical specifications, and these may most imply be understood

as having reference to the directions of the coordinate axes.

M
So iar entities do not involve direction. The volume of a

fft
W,ieal figure, the mass and the energy of a

the hydrastatical pressure at a point in a fluid, and the potential

at a point in space, are examples of scalar quantities.

"

A vector quantity has direction as well as magn.tude ami
.

*

such that a reversal of its direction reverses it* I*e

^cement of a point, represented by a straight hue drawn troni

t riginal to \ts Bnal position, may be taken a, the typical

vector quantity, from which indeed the name of Vector^f
The velocity of a body, its momentum, the force acting on it

an electric current, the magnetization of a partttlc of n-on, arc

instances of vector quantities. -JUL*
There are physical quantities of another k.ud wh.ch are reeled
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to directions in space, but which are not vectors. Stresses and
strains m solid bodies arc examples of these, and the properties
ot bodies considered in the theory of elasticity and in the theory
of double refraction. Quantities of this class require for their
definition nine numerical specifications. They are expressed in the
language of Quaternions by linear and vector functions of a vector

I he addition of one vector quantity to another of the same kind
is performed according to the rule given in Statics for the com-
pos.tion of forces. In fact, the proof which Poisson gives of the
parallelogram of forces' is applicable to the composition of any

quantities .neb that a reveal of their «igu is equivah-nl to turning
them end for end. 5

men we wish to denote a vector quantity by a single symbol,
and to call attention to the fact that it is a vector, so that we must
consider its direction as well as its magnitude, we shall denote
it by a German capital letter, as % &c .

In the calculus of Quaternions, the position of a point in space

f
dfmed hJ ih0 vect*r dra™ from a fixed point, called the origin,

to that point. If at that point of space we have to consider any
physical quantity whose value depends on the position of the point
that quantity is treated as a function of the vector drawn from
the origin. The function may be itself either scalar or vector.
The density of a body, its temperature, its hydrostatic pressure,
tbe potential at a point, are examples of scalar functions. The
resultant force at the point, the velocity of a fluid at that point,
the velocity of rotation of an element of the fluid, and the couple
producing rotation, are examples of vector functions.

12.] Physical vector quantities may be divided into two classes
in one of which the quantity is defined with reference to a line,
while in the other the quantity is defined with reference to an
an -a.

For instance, the resultant of an attractive force in any direction
j""v m,a<n,r,I 1> V liiwling (he work win,!, ,1 UY,uld do on
body if the body were moved a short distance in that direction
and divrd.ng it by that short distance. Here the attractive force
is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be denned as the quantity of heat which
crosses a small area drawn perpendicular to that direction divided
by that area and by the time. Here the flux is defined with
reference to an area.
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There are certain cases in which a quantity may be measured

wHh reference t<. a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may

divert our attention either to the original and the actual position

of a particle, in which case the displacement of the pariicle is

measured by the line drawn from the first position to the senmd,

or we may consider a small area fixed in space, and determine

what quantity of the solid passes across that area during the dis-

placement. .... i

In the same way the velocity of a Haul may bo investigated

cither with respect to the actual velocity of the individual parti-

He*, or with respect to the quantity -['the lluid whieh flows through

any fixed area.
, , t

Hut In these eases we require to know separately the density of

the body as well as the displaecme r velocity, in order to apply

the first method, and whenever we attempt to form a molecular

Iheurv we have in use the second method.

In the case of the flow of electricity we do not know anything

of its density or its velocity in the conductor, we only know tho

value of what, on the fluid theory, would correspond to the product

of tho density and the velocity. Hence in all *uch cases we must

apply the more general method of measurement of tho flux across

an area. e

In electrical science, electromotive force and magnetic force

belong to the first class, being defined with reference to lines.

When we wish to indicate this fact, we may refer to them as

On the other hand, electric and magnetic induction, and electric

currents, belong to the second class, being defined with reference

to areas. When we wish to indicate this fact, we shall refer to them

as Fluxes.

Each of these forces may be considered as producing, or tending

to produce, its corresponding flux. Thus, electromotive force pro-

duces electric currents in conductors, and tends to produce them

in dielectrics. It produces electric induction in dielectrics, and pro-

bably in conductors also. In the same sense, magnetic force pro-

duces magnetic induction.

13.] In some cases the flux is simply proportional to the force

and in the same direction, but in other cases we can only affirm

that the direction and magnitude of the flux are functions of the

direction and magnitude of the force.
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The case iu which the componeute of the flux are linear functions
of those of the force is discussed in the chapter on the Equations
of Conduction, Art. 296. There are in general nine coefficients
which determine the relation between the force and the flux. In
certain cases we have reason to believe that six of these coefficients
form three pairs of equal quantities. In sueh cases the relation be-
tween the line of direction of the force and the normal plane of the
flux ifl of the same kind as that between a diameter of an ellipsoid
and its conjugate diametral plane. In Quaternion language, the
one v.vii.r H .s,nl f«, ],, « linear and vector function of the other! and
when there are three pairs of equal coefficients the function is' said
to he self-conjugate.

In the case of magnetic induction in iron, the ilux, (the mag-
netization of the iron,) is not a linear function of the magnetizing
loree. In all eases, however, the product of the force and the
flux resolved in its direction, gives a result of scientific import-
ance, and this is always a scalar quantity,

U.] There are two mathematical operations of frequent occur-
rence which are appropriate to these two classes of vectors or
directed quantities.

In the vn,v of forces, we have to lake the integral a |mo
of the product of an element of the line, and the revived part of
the force along that element. The result of this operation is
called the Line-integral of the force. It represents the work
done on a body carried along the line. In certain cases in which
the hue-integral does not depend on the form of the line but
only on the position of its extremities, the line-integral is called
the Potential.

In the case effluxes, we have to take the integral, over a surface
ot the flux through every element of the surface. The result of
this operation is called the Surface-integral of the flux. It repre-
sents the quantity which passes through the surface.

There are certain surfaces across which there is no flux If
two of these surfaces intersect, their line of intersection is a line
ot flux In those eases in which the flux is in the same direction
as the force, lines of this kind are often called Lines of Force It
would be more correct, however, to speak of them in electrostatics
and magnetic* as Lines of Induction, and in eleetrokinematics asLmes of Plow.

to.] There is another distinction between different kinds of
directed quantities, which, though very important in a physical
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point of view, is not so necessary to be observed for tbe sake of

the mathematical methods. This is the distinction between longi-

tudinal and rotational properties.

The direction and magnitude of a quantity may depend upon

some action or effect which takes place entirely along a certain

li,u .. or it mav depend upon something of tin- nature of rota-

tion about that line as an axis. The laws of combination of

directed quantities are the same whether they are longitudinal or

rotational, so that there is no difference in the mathematical treat-

ment of the two classes, but there may be physical circumstances

which indicate to which class we roust refer a particular pheno-

menon. Thus, electrolysis consists of the transfer of certain sub-

stances along a line in one direction, and of certain other sub-

stances in the opposite direction, which is evidently a longitudinal

phenomenon, and there is no evidence of any rotational effect

about the direction of the force. Hence we infer that the electric

current which causes or accompanies electrolysis is a longitudinal,

and not a rotational phenomenon.

On the other hand, the north and south poles of a magm-i do

not differ as oxygen and hydrogen do, which appear at opposite

places during electrolysis, so that we have no evidence that mag-

netism is a longitudinal phenomenon, while the effect of magnetism

in rotating the plane of polarized light distinctly shews that mag-

netism i* a rotational phenomenon.

On Line-integrals.

16.] The operation of integration of the resolved part of a vector

quantity along a line is important in physical science generally,

and should l>e clearly understood.

Let x, y, z be the coordinates of a point P on a line whose

length, measured from a certain point A, is s. These coordinates

will be functions of a single variable #.

Let It be the value of the vector quantity at P, and let the

tangent to the curve at P make with the direction of R the angle e,

then J2eo8« is the resolved part of R along the line, and the

is called the line-integral of R along the line s.

We may write this expression
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whore A", Y} Z are tlie components of E parallel to ar, yt
z respect-

ively.

Tliis quantity is, in general, different for different lines drawn
between A and P. When, however, within a certain region, the
quantity

Xdx+ Ydy+Zdz =—
that is, is an exact differential within that region, the value ofL
becomes L _
and is the same for any two forms of the path between A and 1\
provided the one form can be changed into the other by con-
tinuous motion without passing out of this region.

On Potentials.

The quantity <i> h n scalar function of the position of the point,
and is therefore independent of the directions of reference. It is

called the Potential Function, and the vector quantity whose eom-
pnii.'iits arc A', >', Z \> said to have a notasgft) * it'

'--<#. *--(£•
When a potential function exists, surfaces for which the po-

tential is constant are called Equipotential surfaces. The direction
of J? at any point of such a surface coincides with the normal to

the surface, and if ft be a normal at the point P, then $ = -—

.

The method of considering the components of a vector as the
first derivatives of a certain function of the coordinates with re-
spect to these coordinates was invented by Laplace * in his treat-
ment of the theory of attractions. The name of Potential was first
given to this function by Green fi who made it the basis of his
treatment of electricity. Green's essay was neglected by mathe-
maticians till 1846, and before that time most of its important
theorems had been rediscovered by Gauss, Chaslcs, Sturm, and
Thomson J.

In the theory of gravitation the potential is taken with the
opposite sign to that which is here used, and the resultant force
in any direction is then measured by the rate of increase of the

* Mdc, Cfleste, liv. Hi.

t Pksay on the Application of MHtlle,,]aticftl Analjais to the Theories of Electricity
VJ'

Mngnettna, Nntti iigbam, 1828. Reprinted fa Cr<lk'« Journal, *nd in Mr. FerSedition of titven'e Works. 8

X Thomson and Tait, A7iUnrnl I'hiht'jfl-y. § J S3.
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.

potential function in that direction. In electrical and magnetic

investigations the potential is defined bo that the resultant force

in any direction is measured by the decrease of the potential in

that direction. This method of using the expression makes il

correspond in sign with potential energy, which always decreases

when the bodies are moved in the direction of the forces acting

on them.

17.] The geometrical nature of the relation between the poten-

tial and the vector thus derived from it receives greal light, from

Hamilton's discovery of the form of the operator by which t lie vector

is derived from the potential.

The resolved part of the vector in pny direction is, as we hove

seen, the first derivative of the potential with respect to a co-

ordinate drawn in Unit direction, the sign being reversed.

Now if t, J, k are three unit vectors at right angles to each

other, and if A', Y, Z are the components of the vector ft resolved

parallel to these vectors, then

® = ix+jr+Mi (i)

and by what we have said above, if + is the potential.

dA* f/+

dx +J dS
+ d

If we now write V for the operator,

(/ . d , d

,.d* . dA> *

# = (4)

The symbol of operation V may be interpreted as directing us

to measure, in each of three rectangular directions, the rate of

increase of and then, considering the quantities thus found as

vectors, to compound them into one. This is what wo are directed

to do by the expression (3). But we may also consider it us direeliuy;

us first to find out in what direction •+ increases i'usle-t, and 1 hen

to lay off in that direction a vector representing this rate of

increase.

M, Lame, in his TraU<$ det Fonctiorts Inverte*, uses the term

Differential Parameter to express the magnitude of this greatest

rate of increase, but neither the term itself, nor the mode in which

Lame' uses it, indicates that the quantity referred to has direction

as well as magnitude. On those rare occasions in which I shall have

to refer to this relation as a purely geometrical one, I shall call the

vector g the Slope of the scalar function using the word Slope
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to indicate the direction, as well as the magnitude, of the most

rapid decrease of 4>.

18,] There are eases, however, in which the conditions

«_ rfI = 0, and
dy dz dz dx dx dy

which are those of Xdx\Ydy+ Zdz being a. complete differential,

are fiillillrd thrnughuiit si certain region of space, and yel Hie line-

iategral from A to P may be different for two lines, each of

which lies wholly within that region. This may be the case if

the region is in the form of a, ring, and if the two lines from A

to P pass through opposite segments of the ring. In this case,

the one path cannot he transformed into the other hy continuous

motion without passing out of the region.

"We are here led to considerations belonging to the Geometry

of Position, a subject which, though its importance was pointed

out by Leibnitz a»;d illustrated by Gauss, has been little studied.

The most complete treatment of this subject lias been given by

J. E. Listing *.

Let there be p points in space, and let I lines of any form he

drawn joining these points so that no two lines intersect each

other, and no point is left isolated. We shall call a figure com-

posed of lines in this way a Diagram. Of these lines, p — 1 are

sufficient to join the p points so as to form a connected system.

Every new line completes a loop or closed path, or, as we shall

call it, a Cycle. The number of independent cycles in the diagram

is therefore k — I—p+ 1

.

Any closed path drawn along the lines of the diagram Is com-

posed of these independent cycles, each being taken any number of

times and in either direction.

The existence of cycles is called Cyelosis, and the nnmlier of

cycles in a diagram is called its Cyclomatic number.

CydosU m Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces are

either infinite or closed. Bounded surfaces are limited by one or

more closed lines, which may in the limiting cases become finite

lines or points.

A finite region of space is bounded by one or more closed

surfaces. Of these one is the external surface, the others are

Per Cen*n* RaiimlkJier Pompfeze. Giitt. Abh., Bel. x. S. 97 (1831).
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included in it and exclude each other, and are called internal

surfaces.

If tho region lias one hounding siur face, we may suppose that

surface to contract inwards without breaking its continuity or

cutting itself. If the region is one of simple continuity, such 08

& sphere, this process may be continued till it is reduced to a

point; hut if the region is like n ring, the rcsiill will l>e :i closed

curve; and if the region has multiple connexions, the result will

he ;i diagram of lines, aud the cyclomatic iiumher of the diagram

will he that of the region. The space outside the region has the

same cjTelomatic number as the region itself. Hence, if the region

is bounded by intenuil as well as external surfaces, its cyclomatic

number is the sum of those due to all the surfaces.

When :i region encloses within itself other regions, it is called a

IVriphraelie region.

Tin- number "f internal bounding surfaces of a region is called

its periphractic number. A closed surface is also periphractie, its

number being unity.

The cyclomatic number of a closed surface is twice that of the

region whielt it, hounds. To lind 1 be eyclomat if immber of a

bounded surface, suppose all the boundaries to contract inwards,

without breaking continuity, till they meet. The surface will then

be reduced to a point in the case of an acyclic surfacej or to a linear

diagram in the case of cyclic surfaces. The cyclomatic number of

the diagram is that of the surface,

19.] Theorem L If throughout any acyclic region

X(to+ Ydy + Z<k = - D+,
(he value of the Hue-integral from a point A to a point P taken

along any path withitt the region will &e Ihe same.

We shall first shew that the line-integral taken round anv closed

path within the region is zero.

Suppose the equipotcntial surfaces drawn. They are all either

closed surfaces or art* hounded entirely by the surface of the region,

80 that a closed line within the region, if it cuts any of the sur-

faces at one part of its path, must cut the same surface in the

opposite direction at some other part of its path, and the corre-

sponding portions of the line-integral bring equal and opposite,

the total value is zero.

Hence if AQP aud AQ'P are two paths from A to 1\ the line-

integral for AQ'P is the sum of that for AQP and the closed path
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AQ'PQA. But the line-integral of the closed path is zero, there-

fore those of the two paths are equal.

Hence if the potential is given at any one point of such a

region, that at any other point is determinate,

20.] Theorem II. In a cyclic ret/ion in which the equation

Xdz+Ydy+Zdz =-m
is everywhere fulfilled, the line-integral from A to P, &l#y «

line drawn within the region, will not in general be determinate

unlets the channel of communication between J and P be specified.

Let K he the cyclomatie number of the region, then K sections

of the region may he made by surfaces which we may call Dia-

phragms, so as to close up K of the channels of communication,

and reduce the region to an acyclic condition without destroying

its continuity.

The line-integral from A to any point P taken along a line

which does not cut any of these diaphragms will be, by the last

theorem, determinate in value.

Now let A and P he taken indefinitely near to each other, but

on opposite sides of a diaphragm, and let K be the line-integral

from A to P.

Let A' and F he two other points on opposite sides of the same

diaphragm and indefinitely near t<> each oilier, and let K' be the

line-integral from £ to F. Then K'= K.

For if we draw AA' and PF, nearly coincident, but on opposite

sides of the diaphragm, the line-integrals aloug these lines will be

equal. Suppose each equal to X, then the line-integral of AT is

equal to that of A'A + AP+ PP,= -f' +X+Z = K = tbat of AP-

Hence the line-integral round a closed curve which passes through

one diaphragm of the system in a given direction is a constant

quantity K. This quantity is called the Cyclic constant corre-

sponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut

the diaphragm of the first cycle p times in the positive direction

and / times in the negative direction, and let p—p'=nv Then

the line-integral of the closed curve will he n1Kv

Similarly the line-integral of any closed curve will be

/l
l
A\ -r n i

K
2 + . . . +%E '>

where nK represents the excess of the number of positive passages

of the curve through the diaphragm of the cycle K over the

number of negative passages.



21.] StfBFACE-INTEGUA LS. Hi

If two curves are such that one of them may be transformed

into the other by continuous motion without at any time passing

through any part of space lor which tin' condition of having a

potential is not fulfilled, these two curves are called Reconciled ilu

curves. Curves for which this transformation cannot In* etleeU-d

are called Irrcc.oncileable curves *.

The condition that Xd,r+ Ydy + Zds is a complete differential

of some function + f>r all |m tints within a certain return, luriirs in

several physical investigations in which the direeled quantity and

the potential have different physical interpretation.*.

In pure kinematics we may suppose A", )', Z to he the com-

ponents of the displacement of a point of a continuous body whose

original coordinate* are as, y, s, then the condition expres • ;!..••

these displacements constitute a non-ndationa? strain f.

If X, Y, Z represent the components of the velocity of a Jluid at

the point ss,y, ^, then the condition expresses thai tin- motion of the

fluid is irrotalional.

If A, Yy'/t represent the components of the force at the point

a?, $, z, then the condition expresses that the work done on a

particle passing from one point to another is the difference of the

potentials at these points, and the value of this difference is the

same for all reeoncileal.le paths between the I wo points.

On Surface- In tetjraU,

21.
j
Let dS he ihe element of a surface, aud t the angle which

a normal to the surface drawn towards the jKisitive side of the

surface makes with the direction of the vector quantity it, then

jj R cos tdS is called the surface-integral of R over the surface S.

TlIKORF.M III. T/f si/jftf('-i„/tymf
<>f

the jhtjr Ihfimtjk a cfaxed

surface may be expressed as the volume-integral of its convergence

t.tkm within the surface. (See Art. 25.)

Let A. Y, Z be the component- <A' /i', and let f,tn
t

*i he the

direction-cosines of the normal to S measured outwards. Then the

surface- integral of It over S is

JfRco*tdS=jjxids + JJr»dS + jj

-r- jjxdydz + fj Ydzdx + fj
Zdxdy ;

(I

)

' Sw SirW. Ilcumm 'On V\,rt<-x M oik, 11/ Truit*. U S. Edin., 18«0.
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the values of X, Y, Z being those at a point in the surface, and

the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,

the coordinate $ must have an even number of values, since a lme

parallel to a? must enter and leave the enclosed space an equal

number of times provided it meets the surface at all.

Let a point travelling from a? = -cc to = first enter

the space when w = xv then leave it when a> = ar2J and so on;

and let the values of X at these points be Xlt X^, See., then

jjxdydz=ff{{X3-Xl) + {Xi-XJ + ke. + (Xin-X, H _ 1)}dydz. (2)

If X is a quantity which is continuous, and has no infinite values

between a?, and then

where the integration is extended from the first to the second

intersection, that is, along the first segment of x which is within

the closed surface. Taking into account all the segments which lie

within the closed surface, we find

//r**=Iff****- «
the double integration being confined to the closed surface, but

the triple integration being extended to the whole enclosed space.

Hence, if X, Y
t
Z are continuous and finite within a closed surface

5, the total surface-integral of 11 over that surface will be

the triple integration being extended over the whole space within S.

Let us next suppose that X, T
}
Z are not continuous within the

closed surface, but that at a certain surface f(r, //, z) = the

values of X, f, Z alter abruptly from X, 7, Z on the negative side

of the surface to A", Y\ Z' on the positive side.

If this discontinuity occurs, say, between ae
x
and a?2> the value

ofls-ljwillbe

£%»*W^M TO

where in the expression under the integral sign only the finite

values of the derivative of X are to be considered.

In this ease therefore the total surface-integral of R over the

closed surface will be expressed by
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+jf{Y'-Y)dzdv + fj{Z'-Z)fodr, (7)

or, if r, m', n' are the direction-cosines of the normal to the surface

of discontinuity, and &$* an element of that surface,

+fj{
i\r-X) + «'(r-})+ ap-Z)} d?, (h)

where the integration of the last term is to lie extended over the

surface of discont inuity.

1 1' at every point where X, Y} Z are continuous

dX dY d%
rt

Hi +W + * =
°'

(9)

and at every surface where they are discontinuous

rX' + m Y' + n'Z' = t'X+m' Y+ n'Zf ( 1 m
then the surface-integral over every closed surface ie zero, and the

distribution of the vector quantity is said to be Solenoid a 1.

We shall refer to equation (0) as the General adenoidal con-

dition, and to equation (10) as the Superlieial solennidal condition.

22.] Let us now consider the case in which at every point

within the surface S the equation

is fulfilled. We have as a consequence of this the surface-integral

over the closed surface equal to zero.

Now let the closed surface S consist of three parts Slt S , and

S2 . Let Sy be a surface of any form bounded by a closed line /,,.

Let S
tt
be funned by drawing lines front every point of always

coinciding with the direction of A'. If /, w, n are (lie direct iun-

cosincs of the normal at any point of the surface S , we have

J? cose = Xl+ Ym+Zn = 0. (12)

Hence this part of the surface contributes nothing towards the

value of the surface-integral.

Let &j bo another surface of any form bounded by the .dosed

curve Lt in which it meets the surface S .

Let Q ]} Qm Q3
be the surface-integrals of the surfaces Slf

S , S,if

and let Q be the surface-integral of the closed surface & Then
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and we know that Q = 5
^14 ^

therefore Q% — — Qi J ^ 5
^

or, in other words, the surface-integral over the surface 5a
is equal

and opposite to that over 5, whatever be the form and position

of S2y provided that the intermediate surface Sa is one for which R

is always tangential.

If we suppose L
x

a closed curve of small area, S will he a

tubular surfaee having the property that the surface-integral over

every complete section of the tube is the same.

Since the whole space can be divided into tubes of this kind

provided dX dJT dZ^
Q ^ 16 j

a distribution of a vector quantity consistent with this equation is

called a Solenoidal Distribution.

On Tubes and Lines oj'Flm.

If the space is so divided into tubes that the surface-integral

for every tube is unity, the tubes are called Unit tubes, and the

surface-integral over any finite surface S bounded by a closed

curve L is equal to the number of such tubes which pass through

5 in the positive direction, or, what is the same thing, the number

which pass through the closed curve L.

Hence the surface-integral of S depends only on the form of

its boundary L, and not on the form of the surface within its

boundary.

On Peripkracik Regions.

If, throughout the whole region bounded externally by the single

closed surface Sx , the solenoidal condition

dX (IV <IZ n
, 1 I —
da! dy dz

is fulfilled, then the surface-integral taken over any closed surface

drawn within this region will be zero, and the surface-integral

taken over a bounded surface within the region will depend only

on the form of the closed curve which forms its boundary-

It is not, however, generally true that the same results follow

if the region within which the solenoidal condition is fulfilled is

bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of

these is the external surface and the others are internal surfaces,
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and the region S is a periphractic region, having within it other

regions which it completely encloses.

If within any of these enclosed regions, o\, the solenoidal con-

dition is not fulfilled, let

=
jj

R cos t dS
l

l„. tit.' suriVr-integral for the surface enclosing this region, and

lot <23 , &c. be the corresponding quantities for the other cn-

vl'X-il regi-m-.

Then, if a dosed surface .9' is drown within the region Mm

value of its surface-integral will he zero only when tins surface

8' does not include any of the enclosed regions -V. \e. If i'

includes anv of these, tin- siud'aec-iiil rgral is the ssiiu id' Hie surfaeo-

integrals of the different enclosed TOgious which lie within it,

For the same reason, the surface-integral taken over ft surface

hounded hy a closed curve is the same Tor such surfaces only hounded

by the closed curve as are reconcileable with the given surface by

continuous motion of the surface within the region -S.

When wc have to deal with a periphroctie region, the first thing

to be done is to reduce it to an nperiphractic region by drawing

lintH joining the dilU n ui hounding surfaces. Each of these lines,

provided it joins surfaces which were not already in continuous

connexion, reduces the periphractic number hy unity, so that the

whole number of lines to be drawn to remove the periphraxy is

equal to the periphractic number, or the number of internal sur-

faces. When these lines have been drawn we may assert that if

the solenoidal condition is fulfilled in the region 8, any closed surface

drawn entirely within 5, and not cutting any of the lines, has its

surface-integral zero.

In drawing these lines we must remember that any line joining

surfaces which arc already connected does not diminish the peri-

phraxy, but introduces cyclosis.

The most familiar example of a periphractic region within which

the solenoidal condition is fulfilled is the region surrounding a mass

attracting or re] idling inversely as (he square of 1 lie distance.

In this ease we have

r* r* t*

where m is the mass supposed to be at the origin of coordinates.

At any point where r is finite

dX 47 dZ .
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but at the origin these quantities become infinite. For any closed

surface not including the origin, the surface-integral is zero. If

a closed surf -ice includes the origin, its surface-integral is 4w»z.

If, for any reason, we wish to treat the region round m as if it

were not periphraetic, we must draw a line from » to an infinite

distance, and in taking surface-integrals we must remember to add

4-rrm whenever this line crosses from the negative to the positive

side of the surface.

On lUght-Mnded and Left-handed Relations in Space.

23.] In this treatise the motions of translation along any axis

and of rotation about that axis, will be assumed to be of the same

sign when their directions correspond to those of the translation

and rotation of an ordinary or right-handed screw *.

For instance, if the actual rotation of the earth from west to east

is taken positive, the direction of the earth's axis from south to

north will be taken positive, and if a man walks forward in the

positive direction, the positive rotation is in the order, head, right-

hand, feet, left-hand.

If we place ..iirM'lvis nn the positive side of a surface, the positive

direction along its bounding curve will be opposite to the motion

of the hands of a watch with its face towards ua.

This is the right-handed system which is adopted in Thomson

and Tait's Natural Philosophy, § 243. The opposite, or left-handed

system, is adopted in Hanulton's and Tait's Quaternions. The

operation of passing from the one system to the other is called, by

Listing, Perversion.

The Teflexion of an object in a mirror is a perverted image of the

object.

When we use the Cartesian axes of y, z, we shall draw them

* The combined action of the muscles of the arm when we turn the np|irr hid. of

the right-hand outwards, and at the same timo thrust the hand forwards, will

impress the right-handed screw motion on the memory more firmly than any verbal

definition. A common corkscrew may be used m % material synilwl of the same

relation.

Professor W. H. Miller has suggested to me that as the tendnw of the vine are

right-handed screws and those of the hop left-baiuled, the two systems of relations in

space might be culled those of the vine and the hop i-eHpeothety,

The system of the vine, which we adopt, is that of Linuieun, and of screw-makers

in all civilized countries except Japan, De Candolle was the first who called the

liop-tendril right-hsmded, and in this he is followed by Listing, ami by most writers

on the rotatory polarization of light, Screws like the hop-tendril are made for the

couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary

carriages, but tU.:v":m: always called left-banded screws* by those who use them.
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bo that the ordinary conventions about the cyclic order of the

symbols lead to a right-handed system of directions in space. Thus,

if * is drawn eastward and y northward, z must be drawn upward.

The areas of surfaces will be taken positive when the order of

integration coincides with the cyclic order of the symbols. Thus,

the area of a closed curve in the plane of .ry may he written either

the order id" integral ion being -r, >t in the lirst expression, and y, j-

in the second.

Tliis relation between the two products dxdy and dyds may

be compared with that between the products of two perpendicular

vectors in the doctrine of Quaternions, the sign of which depends

on the Older of multiplication, and with the reversal of the sign

of a delcriuinrml when the adjoining rows or columns are ex-

changed.

For similar reasons a volume-integral is to he taken positive when

the order of integration is in the cyclic order of the variables x,y,

and negative when the cyclic order is reversed.

We now proceed to prove a theorem which in useful as esta-

blishing a connexion Let ween the surface-integral taken over a

finite surface and a line-integral taken round its boundary.

24.] Tiikorem IV. A fhir-Urfe/jml taken round a closed curve

may be expressed in terms of a surface-integral ta&en over a

surface bounded by the curve.

Let X, Y, Z he the components of a vector quantity % whose linc-

intogral is to be taken round :i ej.ised curve .v.

Let S he any continuous finite surface hounded entirely by the

closed curve s, and let £, r/, ( be the components of another vector

quantity 23, related to V, / by the equations

dZ dT dX dZ * ^_tfX
* ~dy~ <fe

' n ~ dt dm* 1 ~"
das 3?' [)

Then the surface-integral of 93 taken over tho surface S is equal to

the line-integral of %l taken round the curve x. It is manifest that,

£ ijjf fulfil of themselves the solenoidal condition

(M + + - o.
dx dy dz

Let tf m3 H be the direction-cosines of the normal to an element
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of the surface dS, reckoned in tin? positive direction. Then the

value of the surface-integral of 33 may he written

(tt+ mn+ nOdS. (2)

In order to form a definite idea of the meaning of the element

d5, we shall suppose that the values of the coordinates x, y, z for

every point of the surface are given as functions of two inde-

pendent variables a and £. If £ is constant and a varies, the point

(ic} y, £) will describe a curve ou the surface, and if a series of values

is given to jS, a series of such curves will be traced, all lying on

the surface 5. In the same way, by giving a series of constant

values to a, a second series of curves may be traced, cutting the

first series, and dividing the whole surface into elementary portions,

any one of which may be taken as the element dS.

The projection of this element on the plane of yt
z is, by the

ordinary formula,

ldS=A%-^)dfida. (3)\la dfi dfi da' ' w
The eitpressions for mdS and ndS are obtained from this by sub-

stituting x, y, z in cyclic order.

The surface-integral which we have to find is

or, substituting the values of £, t;, ( in terms of X, Y, Z,

dX dX dV
7dY ,dZ dZ, TO

''-3 t-v—h t , m —r— j dS. (5)
/{? ay (/x as dy dx'

The part of tliis which depends on X may be written

f f ( dX ,dz dx dz dx\ dX ,dx dy dx dy\\ , ,

J J {dz~\Udp~Tp W~~ dy~{fadp~dp d<) }

$ a
'
^

adding and subtracting ^ this becomes

ffj dx /dJCdx dXdy^ d^Xdz^

JJ \d3 v/jf da da da dz da'
j dfi War da dy

dx AX dx dX dy dX rfzJ
~ Ta \dx~ dp +

~dy d(i
+

1z T&S
f̂ d<ti (7)

-//(
dX dx dX dx*.

, n ,

>TaW-dJTa^ da
' P

As we have made no assumption as to the form of the functions

a and fi, we may assume that a is a fuuetion of Xt or, in other

words, that the curves for which a k constant are those for whioh
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/

X is constant , In this case = 0, and the expression becomes

by integration with respect to a,

where the integration is now to lie performed round the closed

curve. Since all the quantities are now expressed in terms of one

variable /3, we may make *, the length of the bounding curve, the

independent variable, ami 1 1n* expression in.iv 1 lieu be written

is*. (m
where the integration is to be performed round the curve s. Wo
may treat in the same way the parts of the surface-integral which

depend upon Y and S£
t
so that we get finally,

where the first integral is extended over the surface S, and the

second round the bounding curve * *.

On the effect of the operator V on a vectorJunction.

25.] We have seen that the operation denoted by V is that by

which a vector quantity is deduced from its potential. The same

operation, however, when applied to a vector function, produces

results v,lii. h enter into Hie hvn theorems we have jusl proved

(III and IV). The extension of this operator to vector displacements,

and most of its further development, is due to Professor Tait t-

Let <r be a vector function of p, the vector of a variable point.

Let us suppose, as usual, that

p = ix+jy + kz,

and <r as iX+jY+ &Zj

where X, Y
y
Z are the components of <r in the directions of the

axes.

We have to perform on <r the operation

~ t
da

"***^

dy dz
'

Perforating this operation, and remembering the rules for the

• Thi* theorem waa given by Professor Stokes. Smith's Prke Examimttmn, 1854,
ijue«timi 8. It is proved in Tli-irn.-Ji m i»inl T:m\s Xtituntf Philosophy. § 1 • > {;').

t See I'toe, R, 8. Edin., April 28 > 1862. * On GreeuV and other allied Theorems,'
Tra/u. R. $. Edin., 1869-70, a wry valuable paper; and 'On hohi« Quaternion
Integrals/ Proc. F. s. AV/r'n.. 1*70-71".
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multiplication of i, tt k, we find that V a consists of two parts,

one scalar and the other vector.

The scalar part is

Sv cr = — ( ^ + 'V -f '^V sec Theorem III.

and the vector part is

If the relation between X, F} Z and £, rj, £ is that given by

equation (1) of the last theorem, we may write

V V cr = i £+ j >j+ k C See Theorem IV.

It appears therefore that the functions of X, Y, Z which occur

in the two theorems nre both obtained by the operation V on the

vector whose components are Xt 1, Z. The theorems themselves

may be written

j j
jsv<r(h =fj S.<rUt>ds, (III)

and JS<r dp = jj S.V <r Uv* ; (IV)

where ds is an element of a volume, eft of a surface, dp of a curve,

and Uv a unit-vector in the direction of the normal.

To understand the meaning of these functions of a vector, let us

suppose that cr is the value of <r at a point P, and let us examine

the value of tr— tr
fl

in the neighbourhood of P.

If we draw a closed surface round P} then, ifthe

\^ ' surface-integral of <r over this surface is directed

inwards, S V er will be positive, and the vector

p <r— «r near the point P will be on the whole

/* k \^ directed towards P, as in the figure (1).

I propose therefore to call the scalar part of

JO* %t
V <r the convergence of a at the point P.

To interpret the \*ector part of Vtr, let us

suppose ourselves to be looking in the direction of the vector

whose components are £ 77, £ and let us examine

the vector <r— <rQ near the point P. It will appear

^ as in the figure (2), this vector being arranged on
* the whole tangentially in the direction opposite to

the hands nj' a watch.
Fig. 2.

I propose (with great diffidence) to call the vector

part of Vcr the curl, or the version of ft at the point P.
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At Fig. 3 we have an illustration of curl combined with con-

\-ergence.

Let us now consider the meaning of the equation ,

rv<x = 0. \
This implies that V tr is a scalar, or that the vector \^
<r is the slope of some scalar function +. These f
applications of the operator V are due to Professor ^ 3

Tait *. A more complete development of the theory

is given in his paper ' On Green's and other allied Theorem-;

to which I refer the reader for the purely Quaternion investigation

of the properties of the operator V.

2G.] One of the most remarkable properties of the operator V i»

that when repeated it becomes

{
d- (P_ d 1

W* +
df

+

an operator occurring in all parts of Physics, which we may refer to

as Laplace's Operator.

This operator is itself essentially scalar. When it acts on a

scalar function the result is scalar, when it acts on a vector function

1 he result is a vector.

If, with any point P as centre, we draw a small sphere whose

radius is r, then if qa is the value of q at the centre, and q the

menu value of y tor all points within the sphere,

so that the value at the centre exceeds or falls short of the mean
value according as V"y is positive or negative.

I propose therefore to call v'*q the concentration of q at the

point P, because it indicates the excess of the value of q at that

poiut over its mean value in the neighbourhood of (lie point.

If q is a scalar function, the method of finding its mean value is

well known. If it is a vector function, we must find its mean
value by the rules for integrating vector I'uuetmns. I'be result

of course is a vector.

• Proceeding* li. S. Edm.. 1862. f Tram. It. S, &!%»., 18G9-70.



PART I

ELECTROSTATICS.

CHAPTER L

DESCRIPTION OP PHENOMENA.

Electrification by Friction.

27.] Experiment I * Let a piece of glass and a piece of resin,

neither of which exhibits any electrical properties, be rubbed to-

gether and left with the rubbed surfaces in contact. They will

still exhibit no electrical properties. Let them be separated. They

will now attract each other.

If a second piece of glass be rubbed with a second piece of

resin, and if the pieces be then separated and suspended in the

neighbourhood of the formeT pieces of glass and resin, it may be

observed

—

(1) That the two pieces of glass repel each other.

(2) That each piece of glass attracts each piece of resin.

(3) That the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called Elec-

trical phenomena, and the bodies which exhibit them are said to

be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by

friction.

The electrical properties of the two pieces of glass are similar

to each other but opposite to those of the two pieces of resin,

the glass attracts what the resin repels and repels what the resin

attracts.

* See Sir W. Thomson ' On tlie Mathematical Theory of Electricity/ Cambridge

and WuMin MathtmaUrnl Journal, March, 1848.



28.] ELECTRIFICATION.

If a body electrified in any manner whatever behaves as the

glass does, that is, if it repels the glass ami attracts the resin, the

body a said to be vitwoutly electrified, and if it attracts the glass

and repels the resin it is said to be resinoudy electrified. All

do :t rili rj bodies it re found to be either vitreously or resinously

fieri rifled.

It is the established practice of men of science to call the vitreous

electrification positive, and the resinous electrification negative.

The exactly opposite properties of the two kinds of electrification

justify us in indicating them by opposite signs, but the applica-

tion of the positive sign to one rather than to the other kind must
be considered as a matter of arbitrary convention, just as it is a
matter of convention in mathematical diagrams to reckon positive

dislanccs towards the right hand.

No force, either of attraction or of repulsion, can be observed

between an ebrd-ified body ami a hotly not electrified. When, in

any rase, bodies not previously electrified are observed to be acted

on by an elec trified body, it is because they have become electrified

by induction.

Electrification by Induction,

28.] ExPKMMmrr II* Let a hollow vessel of metal be hung
up by white silk threads, and let a similar thread
be attached to the lid of the vessol so that the vessel

may he opened or closed without touching it,

[jr1 'lie 1 pii'fes «\' j.-hi-- and ivhh be similarly sus-

nended and electrified as before.

Let the vessel be originally uneleetrilicd, thru if

an electrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid

closed, the outside of the vessel will be fouud to

be vitreously electrified, and it may be shewn that

the electrification outside of the vessel is exactly the
same in whatever part of the interior space the gla-s

Flg
"
4

is suspended,

If the glass is now taken out of the vessel without touching it,

••Udrith-ulion of the glass will be the same ;is helhre il wa.s

put in, and that of the vessel will have disappeared.
This electrification of the vessel, which depends on the glass

*
J!

1"' ™t (wvcral experiments whicli follow, are du« to Varwlay, < On SLilic
Metrical Inductive Action.

1

Phil. Mag., 1843, or Exp. Jta.. vol. ii, p. 27t>.
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being within it, and which vanishes when the glass is removed, is

called Electrification by induction.

Similar effects would be produced if the glass were suspended

near the vessel on the outside, but in that case we should find

an electrification vitreous in one part of the outside of the vessel

and resinous in another. When the glass is inside the vessel

the whole of the outside is vitreously and the whole of the inside

resinously electrified.

Electrification by Conduction.

29.] Experiment III. Let the metal vessel be electrified by

induction, as in the last experiment, let a second metallic body

be suspended by white silk threads near it, and let a metal wire,

similarly suspended, be brought so as to touch simultaneously the

electrified vessel and the second body.

The second body will now be found to be vitrcously electrified,

and the vitreous electrification of the vessel will have diminished.

The electrical condition has been transferred from the vessel to

the second body by means of the wire. The wire is called a con-

ductor of electricity, and 'the second body is said to be electrified

by conduction.

Conductors and Insulators.

Experiment IV . If a glass rod, a stick of resin or gutta-percha,

or a white silk thread, had been used instead of the metal wire, no

transfer of electricity would have taken place. Hence these latter

substances are called Non-conductors of electricity. Non-conduc-

tors are used in electrical experiments to support electrified bodies

without carrying off their electrieity. They are then called In-

sulators.

The metals are good conductors ; air, glass, resins, gutta-percha,

vulcanite, paraffin, &c. are good insulators; but, as we shall see

afterwards, all substances resist the passage of electricity, and all

substances allow it to pass, though in exceedingly different degrees.

This subject will be considered when we come to treat of the

Motion of electricity. For the present we shall consider only two

classes of bodies, good conductors, and good insulators.

In Experiment II an electrified body produced electrification in

the metal vessel while separated from it by air, a non-eondueting

medium. Such a medium, considered as transmitting these electrical

effects without conduction, has been called by Faraday a Dielectric
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medium, and the action which takes place through it is called

Induction.

In Experiment III the electrified vessel produced electrification

in the second metallic body through the medium of the wire. Let

us suppose the wire removed, and the elect rilied piece of glass taken

out of tli' I
v. ithont touching it, and removed to a sufficient

distance. The second body will still exhibit vitreous electrifica-

tion, hut the vessel, when the glass is removed, will have resinous

electrification. It' We now hrin^ (lie wire into contact with buth

bodies, conduction will take place along the wire, and all electri-

fication will disappear from both bodies, shewing that the elec-

trification of the two bodies was equal and opposite.

30.
|

ExPKKtMEVT V. In Experiment II it was shewn that if

a piece of glass, electrified by rubbing it with resin, is hung up in

an insulated metal vessel, the electrilication observed outside does

not depend on the position of the glass. If we now introduce the

piece of resin with which the glass was rubbed into the same vessel,

without lunching it in' the vessel, it will be found that there is

no electrification outside the vessel. From this we conclude that

the electrification of the resin is exactly equal and opposite to that

of the glass, 15 v putting in any number of bodies, electrified in

any way, it may be shewn that the electrification of the outside of

the vessel is that due to the algebraic sum of all the electrifica-

tions, those being reckoned negative which arc resinous. We have

thus a practical method of adding the electrical effects of several

bodies without altering the electrification of each.

31.] Expeuimi:.\t VI. Let a second insulated metallic vessel, 7f,

be provided, and let the electrified piece of glass be put into the

first vessel A, and the electrified piece of resin into the second vessel

li. Let the two vessels be then put in communication by the metal
wire, as in Experiment III. All signs of electrification will dis-

appear.

Next, let the wire be removed, and let the pieces of glass and of

resin be taken out of the vessels without touching them. It will

be found that A is electrified resinously and Jj vitrconsly.

If now the glass and the vessel A be introduced together into a
larger insulated vessel Ct it will be found that there is no elec-

trification outside C. This shews that the electrification of A is

exactly equal and opposite to that of the piece of glass, and that
ofB may be shewn in the same way to be equal and opposite to that

ol the piece of resin.
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We have thus obtained a method of charging a vessel with a

quantity of electricity exactly equal and opposite to that of an

electrified body without altering the electrification of the latter,

and we may in this way charge any number of vessels with exactly

equal quantities of electricity of cither kind, which we may take

for provisional units.

32,] Experiment VII. Let the vessel B, charged with a quan-

tity of positive electricity, which we shall call, for the present,

unity, be introduced into the larger insulated vessel without

touching it. It will produce a positive electrification on the out-

side of C. Now let S be made to touch the inside of C. No change

of the external electrification wdl be observed. If B is now taken

out of C without touching it, and removed to a sufficient distance,

it will be found that B is completely discharged, and that C has

become charged with a unit of positive electricity.

Wc have thus a method of transferring the charge ofB to C.

Let B be now recharged with a unit of electricity, introduced

into C already charged, made to touch the inside of C, and re-

moved. It will be found that B is again completely discharged,

so that the charge of C is doubled.

If this process is repeated, it will be found tUsit howevi-r highly

C is previously charged, and in whatever way B is charged, when

B is first entirely enclosed in Cy then made to touch C, and finally

removed without touching C, the charge of B is completely trans-

ferred to C, and B is entirely free from electrification.

This experiment indicates a method of charging a body with

any number of units of electricity. We shall find, when we come

to the mathematical theory of electricity, that the result of this

experiment affords an accurate test of the truth of the theory,

33.] Before we proceed to the investigation of the law of

electrical force, let us enumerate the facts we have already esta-

blished.

By placing any electrified system inside an insulated hollow con-

ducting vessel, and examining the resultant effect on the outside

of the vessel, we ascertain the character of the total electrification

of the system placed inside, without auy communication of elec-

tricity between the different bodies of the system.

The electrification of the outside of the vessel may be tested

with great delicacy by putting it in communication with an elec-

troscope.

We may suppose the electroscope to consist of a strip of gold
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leaf hanfrint* between two bodies charged, one positively, and the

other negatively. If the gold leaf becomes electrified it will incline

towards the body whose electrification is opposite to its own. By
increasing the electrification of the two bodies and the delicacy of

the suspension, an exceedingly small electrification of the gold leaf

may bo detected.

Winn ivr come to describe eleef rotiH'ters and multipliers we
Khali liud that there are still more delicate methods of detecting

electrification and of testing the accuracy of Wtt theorems, hut at

present we shall suppose the testing to he made by connecting the
hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable de-
monstration of the laws of electrical phenomena*.

34.] I. The total electrification of a body, or system of bodies,
remain* always the same, except in so far as it receives electrifi-

cation from or gives electrification to other bodies.

In all electrical experiments the electrification of bodies is found
to change, but it is always found that this change is due to want
of perfect insulation, and that as the means of insulation are im-
proved, the loss of electrification becomes loss. We may therefore
assert that tho electrification of a body placed in a perfectly in-
sulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the total
electrification of tho two bodies remains the same, that is, the one
Ifisr-s iis umr-li |>.,sil[\v r, r -uin> as much negative electrification as
the other gains of positive or loses of negative electrification.

For if the two bodies are enclosed in the hollow vessel, no change
ol the total electrification is observed.

III. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative elec-
trification are produced.

For the electrification of the whole system mav be tested in
the hollow vessel, or the process of electrification may be carried
on within the vessel itself, and however intense the electrification of
the parts of the system may be, the electrification of the whole,
as indicated by the gold leaf electroscope, is invariably zero.
The electrification of a body ie therefore a physical quantity

capable of measurement, and two or more electrifications can be
combined experimentally with a result of the same kind as when

\i9°
D Stat'° EUsctrical k**1** Action.' Phil. Mag., 1843, or Exp. Rt*., rot. ii.

I) 1
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two quantities are added algebraically. We therefore are entitled

to use language fitted to deal with electrification as a quantity ns

well as a quality, and to speak of any electrified body as « charged

with a certain quantity of positive or negative electricity/

35.] While admitting electricity, as we have now done, to the

rank of a physical quantity, we must not too hastily assume that

it is, or is not, a substance, or that it is, or is not, a form of

energy, or that it belongs to any known category of physical

tjuuntitie*. All that we have hitherto proved is that it cannot

be created or annihilated, so that if the total quantity of elec-

tricity within a closed surface is increased or diminished, the in-

crease or diminution must have passed in or out through the closed

surface.

This is true of matter, and is expressed by the equation known as

tin- K<|uatu.H <>f C<iu1 iuuily in I lvd:'o<l\ namies.

It is not true of heat, for heat may be increased or diminished

within a closed surface, without passing in or out through the

surface, by the transformation of some other form of energy into

beat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme-

diate action of bodies at a distance. For a body outside the closed

surface may make an exchange of energy with a body within

the surface. But if all apparent action at a distance is the

result of the action between the parte of an intervening medium,

and if the nature of this action of the parts of the medium is

clearly understood, then it is conceivable that in all eases of the

increase or diminution of the energy within a closed surface we

may be able to trace the passage of the energy in or out through

that surface.

There is, however, another reason which warrants us in asserting

that electricity, as a physical quantity, synonymous with the total

electrification of a body, is not, like heat, a form of energy. An
electrified system has a certain amount of energy, and this energy

can be calculated by multiplying the quantity of electricity in

each of its parts by another physical quantity, called the Potential

of that part, and taking half t he sum of the products. The quan-

tities ' Electricity ' and ' Potential,' when multiplied together,

produce the quantity 'Energy.' It is impossible, therefore, that

electricity and energy should be quantities of the same category, for

electricity is only one of the factors of energy, the other factor

being ' Potential.'
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Energy, which is the product of these factors, may also be con-

sidered as the product of several other pairs of factors, such as

A Force x A distance through which the force is to act.

A .M:h> x Gravitation acting through a certain height.

A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel at

that pressure.

A Chemical Aflinily x A chemical change, measured by the number
of electro-chemical equivalents which enter

into combination.

II' we obtain distinct mechanical ideas of the nature of electric

potential, we may combine these with the idea of energy to
determine the physical category in which 'Electricity' is to be
placed.

B6.] In most theories on the subject, Electricity is treated as
a substance, but inasmuch as there are two kinds of electrification

whuli, bciiitf combined, annul each other, and since we cannot
conceive of two substances annulling each other, a distinction has
been drawn between Free Electricity and Combined Electricity.

Theory of Two Fluuln.

In the theory called that of Two Fluid*, all bodies, in their
^electrified state, are supposed to be charged with equal quan-
tities of positive and negative electricity. These quantities are
supposed to be so great that no process of electrification has ever
yet deprived a body of all the electricity of either kind. The pro-
cess of electrification, according to this theory, consists in taking
a certain quantity P of positive electricity from the body A and
communicating it to J?, or in taking a quantity N of negative
electricity from B and communicating it to A, or in some com-
bination of these processes.

The result will be that A will have P+tf units of negative
electricity over and above its remaining positive electricity, which
is supposed to be in a state of combination with an equal quantity
of negative electricity. This quantity F+N is called the Free
electricity, the rest is called the Combined, Latent, or Fixed elec-
tricity.

In most expositions of this theory the two electricities are called

J

Fluids/ because they are capable of being transferred from one
body to another, and are, within conducting bodies, extremely
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mobile. The other properties of fluids, such as their inertia,

weight, and elasticity, are not attributed to them by those who

have used the theory for merely mathematical purposes ; but the

use of the word Fluid has been apt. to mislead the vulgar, including1

many men of science who are not natural philosophers, and who

have seized on the word Fluid as the only term in the statement

of the theory whieb seemed intelligible to them.

We shall see that the mathematical treatment of the subject has

been greatly developed by writers who express themselves in terms

of the 1 Two Fluids' theory. Their results, however, have been

deduced entirely from data which can be proved by experiment,

and which must therefore be true, whether we adopt the theory of

two fluids or not. The experimental verification of the mathe-

matical results therefore is no evidence for or against the peculiar

doctrines of this theory.

The introduction of two fluids permits us to consider the negative

electrification of A and the positive electrification of B as the effect

of any one of three different processes which would lead to the same

result. We have already supposed it produced by the transfer of

P units of positive electricity from A to J?, together with the

transfer ofN units of negative electricity from B to A. But if

P+jV units of positive electricity had been transferred from A
to B} or if P+N units of negative electricity hud been transferred

from Bto A, the resulting f free electricity ' on A and on B would

have been the same as before, but the quantity of * combined

electricity' in A would have been less in the second case and greater

in the third than it was in the first.

It would appear therefore, according to this theory, that it is

possible to alter not only the amount of free electricity in a body,

but the amount of combined electricity. But no phenomena have

ever been observed in electrified bodies which can be traced to the

varying amount of their combined electricities. Hence either the

combined electricities have no observable properties, or the amount

of the combined electricities is incapable of variation. The first

of these alternatives presents no difficulty to the mere mathema-

tician, who attributes no properties to the fluids except those of

attraction and repulsion, for in this point of view the two fluids

simply annul one another, and their combination is a true mathe-

matical zero. But to those who cannot use the word Fluid without

thinking of a substance it is difficult to conceive that the com-

bination of the two fluids shall have no properties at all, so that



370 THEORIES OP ONE AND OP TWO FLUIDS.

the addition of more ot lees of the combination to a body shall not

in any way affect it, either by increasing its muss or its weight, or

altering some of its other properties. Hence it has been supposed

by some, that in every process of electrification exact ly equal quan-

tities of the two lluids are transferred in opposite directions, so

that the total quantity of the two fluids b any body taken to-

gether remains always the same. By this new law they ' contrive

to save appearances/ forgetting that there would have been no need

of the law except to reconcile the 'two fluids' theory with facts,

and to prevent it from predicting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in

the theory of Two Fluids except that, instead of supposing the two
substances npial rind opposite in all respects, one of them , gene-

rally the negative one, has been endowed with the properties and
name of Ordinary Matter, while the other retains the name of The
Electric Fluid. The particles of the fluid are supposed to repel
one another according to the law of the inverse square of the
distance, and to attract those of matter according to the same
law. Those of matter are supposed to repel each other and attract

those of electricity. The attraction, however, between units of the
diUerent substances at unit of distance is supposed to be a very little

greater than the- repulsion between units of tbo same kind, so that
a unit of matter combined with a unit of electricity will exert a.

foree of attraction on a similar combination at a distance, this

force, however, being exceedingly small compared with the force
between two uncombined units.

This residual force is supposed to account for the attraction of
gravitation. Unelectrified bodies are supposed to be charged with
as many units of electricity as they contain of ordinary matter.
When they contain more electricity or less, they are said to be
positively or negatively electrified.

This theory does not, like the Two-Fluid theory, explain too
much. It requires us, however, to suppose the mass of the electric
fluid so small that no attainable positive or negative electrification
has yet perceptibly increased or diminished either the mass or tho
weight of a body, and it has not yet been able to assign sufficient

reasons why the vitreous rather than the resinous electrification
should be supposed due to an excess of electricity.

One objection has sometimes been urged against this theory by
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men who ought to have reasoned better. It has been said that

the doctrine that the particles of matter uncombined with elec-

tricity repel one another, is in direct antagonism with the well-

established fact that every particle of matter attracts every other

part icle throughout the universe. If the theory of One Fluid were

true we should have the heavenly bodies repelling one another.

But it is manifest that the heavenly bodies, according to this

theory, if they consisted of matter uncombined with electricity,

would be in the highest state of negative electrification, and would

repel each other. We have no reason to believe that they are in

such a highly electrified state, or could be maintained in that

state. The earth and all the bodies whose attraction has been

observed are rather in an unelectrifisd state, that is, they contain

the normal charge of electricity, and the only action between them

is flic residual force lately mentioned. The artificial manner, how-

ever, in which this residual force is introduced is a much more

valid objection to the theory.

In the present treatise I propose, at different stages of the in-

vestigation, to test the different theories in the light of additional

classes of phenomena. For my own part, I look for additional

light on the nature of electricity from a study of what takes place

in the space intervening between the electrified bodies. Such is the

essential character of the mode of investigation pursued by Faraday

ill his Experitttental Researches, and as we go on 1 intend to exhibit

the results, as developed by Faraday, W. Thomson, &e., in a con-

nected and mathematical form, so that we may perceive what

phenomena are explained equally well by all the theories, and what

phenomena indicate the peculiar difficulties of each theory.

Measurement of the Force between Electrified Bodies,

38] Forces may l>e measured in various ways. For instance,

one of the bodies may bo suspended from one arm of a delicate

balance, and weights suspended from the other arm, till the body,

when uneleetrified, is in equilibrium. The other body may then

be placed at a known distance beneath the first, so that the

attraction or repulsion of the bodies when elect rilled may increase

or diminish (he apparent weight of the first. The weight wliie.h

must be added to or taken from the other arm, when expressed

in dynamical measure, will measure the force between the bodies.

This arrangement was used by Sir \V. Snow Harris, and is thai

adopted in Sir W, Thomson's absolute electrometers. See Art. 217.
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It is sometimes more convenient to use a torsion-balance in

which a horizontal arm is suspended by a fine wire or fibre, so as

to be capable of vibrating about the TOrtical wire Lit; 1111 axis, and

the body is attached to one end of the arm and acted on by the

force in the tangential direction, so as to turn the arm round the

vertical axis, and so twist the suspension wire through a certain

angle. The torsional rigidity of the wire is found by observing

the time of oscillation of the nnn, the moment of inertia <>f the

arm being otherwise known, and from the angle of torsion and

the torsional rigidity the force of attraction or repulsion can be

deduced. The torsion-balance, was devised by Miehell for the de-

termination of the force of gravitation between small bodies, and

was used by Cavendish for this purpose. Coulomb, working in-

dej lently of these philosophers, reinvented it, and successfully

applied it to discover the laws of electric and magnetic forces

;

and the torsion-balance has ever since been used in all researches

where small forces have to be measured. See Art. 215.

39.] Let us suppose that by either of these methods we can

measure the force between two electrified bodies. We sball suppose

the dimensions of the bodies small compared with the distance

between them, so that the result may not be much altered by

any.incquality of distribution of the electrification on either body,

and we shall suppose that both bodies are so suspended in air as

to be at a considerable distance from other bodies on which they

miglit induce electrification.

It is then found that if the bodies are placed at a fixed distance

and charged respectively with e and S of our provisional units of

electricity, they will repel each other with a force proportional

to the product of e and If either e or <' is negative, that is.

if one of the charges is vitreous and the other resinous, the force

will be attractive, but if both e and ^ arc negative the force is again
repulsive.

We may suppose the first body, J, charged with m units of
vitreous and « units of resinous electricity, which may be con-
ceived separately placed within the body, as in Experiment V.

Let the second body, B, be charged with m' units of positive

ami ./ uiiii> of m live electricity.

Then each of the m positive units in A will repel each of the m
positive units in B with a certain force, say/, making a total effect

equal to mm'/.

Since the effect of negative electricity is exactly equal and
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opposite to that of positive electricity, each of the m positive units

in A will attract each of the »' negative units in B with the same

force/, making a total effect equal to wn'f.

Similarly the n negative units in A will attract the m' positive

units in B with a force nni'f, and will repel the «' negative units

in B with a force nn'f

Hie total repulsion will therefore be (mm'+ nn')f \ and the total

attraction will be («*»'+ m'n)f.

The resultant repulsion will be

(mm'4 n n'— >« re

y— nm')f or (aw— re) (m'— k')/.

Now Jti— n = e is the algebraical value of the charge on A, and

m'—n'=er
is that of the charge on B

f
so that the resultant re-

pulsion may be written ee
ff1

the quantities e and 4 being always

understood to be taken with their proper signs.

Variation of the Force with the Distance,

40.] Having established the law of force at a fixed distance,

we may measure the force between bodies charged in a constant

manner and placed at different distances. It is found by direct

measurement that the force, whether of attraction or repulsion,

varies inversely as the square of the distance, so that iff is the

repulsion between two units at unit distance, the repulsion at dis-

tance r wdl be/r-2 , and the general expression for the repulsion

between e units and d units at distance r will be

ee r \

hejiiiitimi of the F.krirnntativ Unit of Electricity.

41.] We have hitherto used a wholly arbitrary standard for our

unit of electricity, namely, the electrification of a certain piece of

glass as it happened to be electrified at the commencement of our

cxperiments. We are now able to select a unit on a definite prin-

ciple, and in order that this unit may belong to a general system

we define it so that/may be unity, nr in other words

—

The electrostatic unit of electricity is that quantity of electricity

which, when placed at unit of distancefrom an equal quantity, repels

it with unit offorce.

This unit is called the Electrostatic unit to distinguish it from

the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the

simple form T= 0r~*\ or,
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The reptt&tiofl between two small bodirn >'liarwA respectively with e and

e units of electricity is nutnerieally equal to the product of the charges

divided hif the square of the distance,

DiMensioas of' the Electrostatic Unit of Quantity.

42.] If [Q] is the concrete electrostatic unit of quantity itself,

and e f e' the numerical values of particular quantities j if [A] is

the unit of length, ami r the numerical value of the distance ; and

if [J'] is the unit of force, and 2? the numerical value of the force,

then the equation becomes

F[F] = ee'r~* [Q
2
]

wheii.v [Q] = [2)^1]

= [/J T 1

.7/1].

This unit is called the Electrostatic Unit of electricity. Other

units may be employed for practical purposes, and in other depart-

ments of electrical science, but in the equations of electrostatics

quantities of electricity are understood to be estimated in electro-

static units, just as in physical astronomy we employ a unit of

mass which is founded on the phenomena of gravitation, and which
differs from the units of mass in common use.

Troof of the Law of Electrical Force,

43.] The experiments of Coulomb with the torsion-balance may
be considered to have established the law of force with a certain

approximation to accuracy. Experiments of this kind, however,
are rondored difficult, and in some degree uncertain, by several

disturbing causes, which must be carefully t.raced and corrected for.

In the first place, the two electrified bodies must be of sensible

dimensions relative to the distance between them, in order to be
capable of carrying- charges sufficient to produce measurable forces.

The action of each body will then produce an effect on the dis-

tribution of electricity on the other, so that the charge cannot be
considered as evenly distributed over the surface, or collected at
the centre of gravity; but its effect must be calculated by an
intricate investigation. This, however, has been done as regards

two spheres by Poisson in an extremely able manner, and the

investigation has been greatly simplified by Sir W. Thomson in

his Theory of Electrical Images, Sec Arts. 172-17 I.

Another difficulty aims from the action of the electricity

induced on the sides of the case containing the instrument. By
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making the inside of the instrument accurately cylindric, and

making its inner surface of metal, this effect can be rendered

definite and measurable.

An independent difficulty arises from the imperfect insulation

of the bodies, on account of which the charge continually de-

creases. Coulomb investigated the law of dissipation, and made

corrections for it in his experiments.

The methods of insulating charged conductors, and of measuring

electrical effects, have been greatly improved since the time of

Coulomb, particularly by Sir W, Thomson; but the perfect ac-

curacy of Coulomb's law of force is established, not by any direct

experiments and measurements (which may be used as illustrations

of the law), but by a inathematicjil consideration of the pheno-

menon described as Experiment VII, namely, that an electrified

conductor B, if made to touch the inside of a hollow closed con-

ductor C and then withdrawn without touching C, is perfectly dis-

charged, in whatever manner the outside of C may be electrified.

By means of delicate electroscopes it is easy to shew that no

electricity remains on B after the operation, and by the mathe-

matical theory given at Art. 74, this can only be the ease if the

force varies inversely as the square of the distance, for if the law

had been of any different form B would have been electrified.

The Electric Field.

44.] The Electric Field is the portion of space in the neigh-

bourhood of electrified bodies, considered with reference to electric

phenomena. It may be occupied by air or other bodies, or it

may be a so-called vacuum, from which we have withdrawn every

substance which we can act upon with the means at our dis-

posal.

If an electrified body be placed at any part of the electric field

it will be acted on by a force which will depend, in general, on

the shape of the body and on its charge, if the body is so highly

charged as to produce a sensible disturbance in the previous elec-

trification of the other bodies.

But if the body is very small and it* charge also very small,

the electrification of the other bodies will not he sensibly disturbed,

and we may consider the body as indicating by its centre of gravity

a certain jxiint of the field. The force acting on the body will

then be proportional to its charge, and will be reversed when the

charge is reversed.
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Let e be the charge of the body, and F the force acting on the

"body in a certain direction, then when c is very small F is propor-

tional to e, or F z= Re,

where 21 is a quantity depending on the other bodies in the field.

If the charge e could be made equal to unity without disturbing

the electrification of other bodies we should have F = 11,

We shall call R the Resultant electric force at the given point

..I' 1 1n.' field.

Electric Potential.

45.] If the small body carrying tin' small charge e be moved

from the given point to an indefinite distance from the diet rifled

bodies, it will experience at each point of its course a force Re,

where R varies from point to point of the course. Let the whole

work done on the body by these electrical forces be Ve, then V is

the potential at the point of the field from which the body started.

If the charge e could be made equal to unity without disturbing

the electrification of other bodies, we might define the potential at

any point as the work done on a body charged with unit of elec-

tricity in moving from that point to an infinite distance.

A body electrified positively tends to move from places of greater

positive potential to places of smaller j>ositive, or of negative

potential, and a body negatively electrified tends to move in the

opposite (invrj ion.

In a conductor the electrification is distributed exactly as if

it were free to move in the conductor according to the same law.

If therefore two parts of a conductor have different potentials,

positive electricity will mow from the part having greater potential

to ihc part having less potential as long as that difference con-

tinues, A conductor therefore cannot be in electrical equilibrium

unless every point in it has the same potential. This potential is

called the Potential of the Conductor.

Equipoh'H thi I Sit rfaces

.

46\] If a surface described or supposed to be described in the

electric field is such that the electric potential is the same at every

point of the surface it is called an Equipotential surface.

An electrified point constrained to rest upon such a surface will

have no tendency to move from one part of the surface to another,

I><t;iusl' the potential is the same at every point. An equips mi ial

surface is therefore a surface of equilibrium or a level surface.
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The resultant force at any point of the surface is in the direction

of the normal to the surface, and the magnitude of the force is such

that the work done on an electrical unit in passing from the surface

Fto tbe surface V is V— T.

No two equipotential surfaces having- different potentials can

meet one another, because the same point cannot have more than

one potential, but one equipotential surface may meet itself, and

this takes place at all points and lines of equilibrium.

The surface of a conductor in electrical equilibrium is necessarily

an equipotential surface. If the electrification of the conductor is

positive over the whole surface, then the potential will diminish as

we move away from the surface on every side, and the conductor

will be surrounded by a series of surfaces of lower potential.

Hut if (owing to the aetion of external electrified bodies) some

regions of the conductor are electrified positively and others ne-

gatively, the complete equipotential surface will consist of the

surface of the conductor itself together with a system of other

surfaces, meeting the surface of the conductor in the lines which

divide the positive from the negative regions. These linos will

be lines of equilibrium, so that an electrified poiut placed on one

of these lines will experience no force in any direction.

When the surface of a conductor is electrified positively in some

parts and negatively in others, there must be some other electrified

body in the field besides itself. Tor if we allow a positively

electrified point, starting from a positively electrified part of the

surface, to move always in the direction of the resultant force upon

it, the |T.iciLtuil at Oil' [<-iut will rontniiially dimiuiih till the point-

reaches either a negatively electrified surface at a potential less than

that of the first conductor, or moves off to an infinite distance.

Since the potential at an infinite distance is zero, the latter case

can onlv occur when the potential of the conductor is positive.

In the same way a negatively electrified point; moving off from

a negatively electrified part of the surface, must either reach a posi-

tively electrified surface, or pass off to infinity, and the latter case

can only happen when the potential of the conductor is negative.

Therefore, if both positive and negative electrification exists on

a conductor, there must be some other body in the field whose

potential has the same sign as that of the conductor but a greater

numerical value, and if a conductor of any form is alone in the

field the electrification of every part is of the same sign as the

potential of the conductor.
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Lines of Force.

47,] The line described by a point moving always in the direc-
tion of the resultant force is called a Line of force. It cuts the
equipotential surfaces at right angles. The properties of lines of
force will be more fully explained afterwards, because Faraday has
expressed many of the laws of electrical action in terras of his

conception of lines of force drawn in the electric field, and indicating
both the direction and the magnitude of the force at every point.

Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,

the resultant force is normal to the surface, and it will be shewn
in Art, 78 that it is proportional to the superficial density of the

electrification. Hence the electricity on any small area of the
surface will be acted on by a force tending from the conductor

and proportional to the product of the resultant force and the
di'usity, that is, proportions] to the square of (lie resultant force

This force which acts outwards as a tension on every part of
the conductor will be called electric Tension. It is measured like

ordinary mechanical tension, by the force exerted on unit of area.

The word Tension has been used by electricians in several vague
senses, and it has been attempted to adopt it in mathematical
language as a synonym for Potential ; but on examining the cases

in which the word has been used, I think it will be more con-
sistent with usage and with mechanical analogy to understand
by tension a milling force of so many pounds per squaw imeh

exerted on the surface of a conductor or elsewhere. We shall find

that the conception of Faraday, that this electric tension exists not

only at the electrified surface but all along the lines of force, leads

to a theory of electric action as a phenomenon of stress in a
medium.

Electromotive Force*

49.] When two conductors at different potentials are connected
by a thin conducting wire, the tendency of electricity to flow

along the wire is measured by the difference of the potentials of
the two bodies. The difference of potentials between two con-

ductors or two points is therefore called the Electromotive force

between them.

Electromotive force may arise from other causes than difference
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of potential, but these causes are not consider*! in treating ol
:

sta-

tical electricity. We shall consider them when we come to chepucal

actions, motions of magnets, inequalities of temperature, U.

Capacity of a Conductor.

50 1 If one conductor is inflated while all Ihc surrounding con-

ducto s are kept at the sero potential hy being put « comrnu

nieation with the earth, and if the conductor, when cha,ged w,th

, quantity E of electricity, has a potent.nl t, the rato of i. to I

is eaTlcd the Capacity of the conductor. If the conductor .e coin-

1^010^ within » conducting vessel without touchmg , ,

hen the char.^ on the inner conductor will be equal and op-

%X « charge on the inner surface of the outer conduct

Z will to equal to the capacity of the inner conductor mulfphed

by the difference of the potentials of the two conductors.

Ehctrk Accumulators.

A system consisting of two conductors whose opposed surfaces

are se ated from each other by a thin stratum at an msuMm*

Wimn is called an electric Accumulator. Its capacity » d ectly

proportional to the area of the opposed surface, and invert >
pro-

Lrtional to the thickness of the stratum between them A Le>d,u

ar is an accumulator in which glass is the insulating medium.

Accumulators are sometimes called Condensers but I gfr.g

restrict the term 'condenser' to an instrument which is used not to

hold electricity hut to increase its superficial density.

PROPERTIES OF BODIES IN RELATION TO STATICAL ETJMCm.

Bemtance to the Passage of Electricity ihrwgh a Bodg.

51 1 When a charge of electricity is communicated to any part

of a mass of metal the electricity is rapidly transferred from places

of high to places of low potential till the potential of the whole

mass becomes the same. In the case of pieces of meta used in

ordinary experiments this process is completed m a time too short

to he observed, but in the case of very long and thin wires, such

as those used in telegraphs, the potential does not become uniform

till after a sensible time, on account of the resistance of the wire

to the passage of electricity through it.

The resistance to the passage of electricity is exc^dingly dif-

ferent in different substances, as may be seen from the tables at
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Arts. 3G2, 366, and 369, which will be explained in treating of

Electric Currents.

All the metals are good conductors, though the resistance of

lead is 12 times that of copper or silver, that of iron 6 times,

and that of mercury GO times that of copper. The resistance of all

metals increases as their temperature rises.

Selenium in its crystalline state may also he regarded as a con-

ductor, though its resistance is 3.7 x 10' 2 times that of a piece

of copper of the same dimensions. Its resistance increases as the

temperature rises. Selenium in the amorphous form is a good

insulator, like sulphur.

Many liquids conduct electricity by electrolysis. This mode of

conduction will be considered in Part II. For the present, we may

regard all liquids containing water and all damp bodies as con-

ductors, far inferior to the metals, hut incapable of insulating a

charge of electricity for a sufficient time to he observed.

On the other hand, the gases at the atmospheric pressure, whether

dry or moist, are insulators so nearly perfect when the electric tension

is small that we have as yet obtained no evidence of electricity passing

through them by ordinary conduction. The gradual loss of charge

by electrified bodies may in every ease be traced to impeded insu-

lation in the supports, the electricity either passing through the

substance of the support or creeping over its surface. Hem e, when

two charged bodies are hung up near each other, they will preserve

their charges longer if they are electrified in opposite ways, than if

they are electrified in the same way. For though the electromotive

force tending to make the electricity pass through the air between

them is much greater when they are oppositely electrified, no per-

ceptible loss occurs in this way. The actual loss takes place through

the supports, and the electromotive force through the supports is

greatest when the bodies are electrified in the same way. The result

appears anomalous only when we expect the loss to occur by the

passage of electricity through the air between the bodies.

Certain kinds of glass when cold air marveloiisk perfect in-

sulators, and Sir W. Thomson has preserved charges of electricity

for years in bulbs hermetically sealed. The same glass, however,

becomes a conductor at a temperature below that of boiling water.

Gutta-percha, caoutchouc, vulcanite, paraffin, and resins are good

insulators, the resistance of gutta-percha at 75° F. being about

6 X 10 l ° times that of copper.

Ice, crystals, and solidified electrolytes, are also insulators.

VOL. I. M
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Certain liquids, such as naphtha, turpentine, and some oils, are

insulators, but inferior to most of the solid insulators.

The resistance of most substances, except the metals, and selenium

and carbon, seems to diminish as the temperature rises.

DIELECTRICS.

Specifc Inductive Capacity.

52.] All bodies whose insulating power is such that when they

are placed between two conductors at different potentials the elec-

tromotive force acting on them does not immediately distribute

their electricity so aa to reduce the potential to a constant value, are

called by Faraday Dielectrics.

Faraday discovered that the capacity of an accumulator depends

on the nature of the insulating medium between the two conductors,

as well as on the dimensions and relative position of the conductors

themselves. By substituting other insulating media for air as the

dielectric of the accumulator, without altering it in any other

respect, he found that when air and other gases were employed as

the insulating medium the capacity of the accumulator remained the

same, but that when shell-lac, sulphur, glass, &c., were substituted

for air, the capacity was increased in a ratio which was different

for each substance.

The ratio of the capacity of an accumulator formed of any di-

electric medium to the capacity of an accumulator of the same form

and dimensions filled with air, was named by Faraday the Specific

Inductive Capacity of the dielectric medium. It is equal to unity

for air ami other gases al nil pressures, and probably at all tempe-

ratures, and it is greater than unity for all other liquid or solid

dielectrics which have been examined.

If the dielectric is not a good insulator, it is difficult to mea-

sure its inductive capacity, because the accumulator will not hold a

charge for a sufficient time to allow it to be measured ;
hut it ia

certain that inductive capacity is a property not confined to good

insulators, and it is probable that it exists in all bodies.

Absorption of Electricity.

53.] It is found that when an accumulator is formed of certain

dielectrics, the following phenomena occur.

When the accumulator has been for some time electrified and is

then suddenly discharged and again insulated, it becomes recharged
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in the same sense as at first, but to a smaller degree, so that it may
be discharged again several times in succession, these discharges
always diminishing. This phenomenon is called that of the Re-
sidual Discharge.

The instantaneous discharge appears always to be proportional

to the difference of potentials at the instant of discharge, and the
ratio of these quantities is the true capacity of the accumulator;
but if the contact of the discharger ie prolonged so as to include

some of the residual discharge, the apparent capacity of the accu-
mulator, calculated from such a discharge, will be too great.

The accumulator if charged and left insulated appears to lose its

charge by conduction, but it is found that the proportionate rate

of loss is much greater at first than it is afterwards, so that the
measure of conductivity, if deduced from what takes place at first,

would be too great. Thua
t when the insulation of a submarine

cable is tested, the insulation appears to improve as the electrifi-

cation continues.

Thermal phenomena of a kind at first sight analogous take place

in the case of the conduction of heat when the opposite sides of a

body are kept at different temperatures. In the case of heat we
know that they depend on the heat taken in and given out by the

body itself. Hence, in the case of the electrical phenomena, it

has been supposed that electricity is absorbed and emitted by tin-

parts of the body. We shall see, however, in Art. 329, that the

phenomena can be explained without the hypothesis of absorption of

electricity, by supposing the dielectric in some degree heterogeneous.

That the phenomenon called Electric Absorption is not an
actual absorption of electricity by the substance may be- shewn by

charging the substance in any manner with electricity while it is

surrounded by a closed metallic insulated vessel. If, when the

substance is charged and insulated, the vessel be instantaneously

discharged and then left insulated, no charge is ever communicated
to the vessel by the gradual dissipation of the electrification of the

eluii'geil suliT-taner within il

.

54.] This fact is expressed by the statement of Faraday that
it is impossible to charge matter with an absolute and independent

charge of one kind of electricity *.

In fact it appears from the result of every experiment wfueh

has been tried that in whatever way electrical actions may take

* Exp. Res., vol i. series xi. % ii. 'On tlie Absolute Clwrge of Matter,' and (1244).

e 2
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place among a system of bodies surrounded by a metallic vessel, the

charge on the outside of that vessel is not altered.

Now if any portion of electricity could he forced into a body

so as to be absorbed fa it, or to become latent, or in any way

to exist in it, without being connected with an equal portion ot

the opposite electricity by lines of induction, or if, after having

I,,,,,- absorbed, it could gradually emerge and return to its or-

dinary mode of action, we should find some change of electrifica-

tion in the surrounding vessel.

As this is never found to be the case, Faraday concluded that

it is impossible to communicate an absolute charge to matter, and

that no portion of matter can by any change of state evolve or

render latent one kind of electricity or the other. He therefore

regarded induction as « the essential function both in the first

development and the consequent phenomena of electricity.' His

« induction' is (1298) a polarized state of the particles of the

dielectric, each particle being positive on one side and negative

on the other, the positive and the negative electrification of each

particle being always exactly equal.

Disruptive Discharge*.

55.] If the electromotive force acting at any point of a dielectric

is gradually increased, a limit is at length reached at which there

is a sudden electrical discharge through the dielectric, generally

accompanied with light ami .sound, and with a temporary or per-

manent rupture of the dielectric.

The intensity of the electromotive force when this takes place

depends on the nature of the dielectric. It is greater, for instance,

in dense air than in rare air, and greater in glass than in air, hut

in every case, if the electromotive force be made great enough,

the dielectric gives way and its insulating power is destroyed, so

that a current of electricity takes place through it. It is for this

reason that distributions of electricity for which the electric resultant

force becomes anywhere infinite cannot exist in nature.

The Electric Glow.

Thus, when a conductor having a sharp point is electrified,

the theory, based on the hypothesis that it retains its charge,

leads to the conclusion that as we approach the point the super-

ficial density of the electricity increases without limit, so that at

the point itself the surface-density, and therefore the Tesultant

• See Faraday. AVp. Rts., vol. i.. series xii. and xiii.
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electrical force, would be infinite. If the air, or other surrounding
dielectric, bad an invincible insulating power, this result would
actually occur

; but the fact is, that as soon as the resultant force

in the neighbourhood of the point has reached a certain limit, the

insulating power of the air gives way, so that the air close to

the point becomes a conductor. At a certain distance from the

point the resultant force is not sufficient to break through the.

insulation of the air, so that the electric current is checked, and
the electricity accumulates in the air round the point.

The point is thus surrounded by particles of air charged with

electricity of the same kind with its own. The effect of this charged

air round the point is to relieve the air at the point itself from

part of the enormous electromotive force which it would have ex-

perienced if the conductor alone had been eleel riiieil. hi fact the

surface of the electrified body is no longer pointed, because the

point is enveloped by a rounded mass of electrified air, the surface

of which, rather than that of the solid conductor, may be regarded

as the outer electrified surface.

If this portion of electrified air could be kept still, the elec-

trified body would retain its charge, if not on itself at least in its

neighbourhood, but the charged particles of air beiug free to move
under the action of electrical force, tend to move away from the elec-

trified body because it is charged with the same kind of electricity.

The charged particles of air therefore tend to move off in the direc-

tion of the lines of force and to approach those surrounding bodies

which are oppositely electrified. When they are gone, other un-

charged particles take their place round the. point, and since these

cannot shield those next the point itself from the excessive elec-

tric tension, a new discharge takes place, after which the newly

charged particles move off, and so on as long as the body remains

electrified.

In this way the foil, iwing phenomena are produced \: .id

close to the point there is a steady glow, arising- lYom ihe con-

stant discharges which are Inking place helweeii (he pond and the

air very near it.

The charged particles of air tend to move off in the same genend

direction, and thus produce a current of air from the point, con-

sisting of the charged particles, and probably of others carried uJong

by them. By artificially aiding this current we may increase the

glow, and by checking the formation of the current we may pre-

' ent the continuance of the glow.
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The electric wind in the neighbourhood of the point is sometimes

very rapid, hut it soon loses its velocity, and the air with its charged

particles is carried about with the general motions of the atmo-

sphere, and constitutes an invisible electric cloud. When the charged

particles come near to any conducting surface, such as a wall, they

induce on that surface an electrification opposite to their own, and

are then attracted towards the wall, but since the electromotive

force is email they may remain for a long time near the wall

without being drawn up to the surface and discharged. They

thus form an electrified atmosphere clinging to conductors, the pre-

sence of which may sometimes be detected by the electrometer.

The electrical forces, however, acting between charged portions

of air and other bodies are exceedingly feeble compared with the

forces which produce winds arising from inequalities of density

due to differences of temperature, so that it is very improbable

that any observable part of the motion of ordinary thunder clouds

arises from electrical causes.

The passage of electricity from one place to another by the

motion of charged particles is called Electrical Convection or Con-

vective Discharge.

The ideetrieal glow is therefore produced by the constant passage

of electricity through a small portion of air in which the tension

is very high, so as to charge the surrounding particles of air which

are continually swept off by the electric wind, which is an essential

part of the phenomenon.

The glow is more easily formed in rare air than in dense air,

und more easily when the point is positive than when it is negative.

This and many other differences between positive and negative elec-

trification must l>e studied by those who desire to discover some-

thing about the nature of electricity. They have not, however,

been satisfactorily brought to bear upon any existing theory.

The Electric Jirits/t.

56.] The electric brush is a phenomenon which may be pro-

duced by electrifying a blunt point or small ball so as to produce

an electric field in which the tension diminishes, but in a less rapid

manner, as we leave the surface. It consists of a succession of

discharges, ramifyins us they diverge from the ball into the air,

and terminating either by charging portions of air or by reaching

some other conductor. It is accompanied by a sound, the pitch of

which depends on the interval between the successive discharges,

and there is no current of air as in the ca&e of the glow.
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ELECTRIC SPARK.

The Electric Spark.

57.] When the tension in the space between two conductors is

considerable all the way between them, as in the case of two balls

whose distance is not great compared with their radii, the discharge,
when it occurs, usually takes the form of a spark, by which nearly
the whole electrification is discharged at once.

In this case, when any part of the dielectric has given way,
the parts on either side of it in the direction of the elect ii<- force

are put into a state of greater tension so that they also give way,
and so the discharge proceeds right through the dielectric, just as

when a little rent is made in the edge of a piece of paper a tension

applied to the paper in the direction of the edge causes the paper to

he torn through, beginning at the rent, but diverging occasionally

where there are weak places in the paper. The electric spark in

the same way begins at the point where the electric tension first

overcomes the insulation of the dielectric, and proceeds from that,

point, in an apparently irregular path, so as to take in other weak
points, such as particles of dust floating in air.

On the Electric Force required to produce a Spark in Air.

In the experiments of Sir W. Thomson * the electromotive force

required to produce a spark across strata of air of various thick-

nesses was measured by means of an electrometer.

The sparks were made to pass between two surfaces, one of which
was plane, and the other only sufficiently convex to make the sparks

occur always at the same place.

The difference of potential required to cause a spark to pass was
found to increase with the distance, hut in a less rapid ratio, so that

the electric force at any point between the surfaces, whieh is the

quotient of the difference of potential divided by the distance, can

be raised to a greater value without a discharge when the stratum

of air is thin.

When the stratum of air is very thin, say .0025 A of a centimetre,

the resultant force required to produce a spark was found to be

;")27.7, in terms of centimetres and grammes. This corresponds to

an electric tension of 11.2D grammes weight per square centimetre.

When the distance between the surfaces is about a •millimetre

the electric force is about 1 30, and the electric tension .tJ8 grammes
weight per square centimetre. It is probable that the value for

* Proc. /!. fr'., I860 ; or, RepriiiL, chap. xix.
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greater distances is not much less than this. The ordinary pressure

of the atmosphere is about 1032 grammes per square centimetre.

It is difficult to explain why a thin stratum of air should require

a greater force to produce a disruptive discharge aeross it than a

thicker stratum. Is it possible that the air very near to the sur-

face of dense bodies is condensed, so as to become a better insu-

lator? or does the potential of an electrified conductor differ from

that of the air in contact with it by a quantity having a maximum

value just before discharge, so that the observed difference of

potential of the conductors is in every case greater than the dif-

ference of potentials on the two sides of the stratum of air by a

constant quantity equivalent to the addition of about .005 ot an

inch to the thickness of the stratum ? See Art. 370.

All these phenomena differ considerably in different gases, and in

the same gas at different densities. Some of the forms of electrical

discharge through rare gases are exceedingly remarkable. In some

cases there is a regular alternation of luminous and dark strata, so

that if the electricity, for example, is passing along a tube contain-

ing a very small quantity of gas, a number of luminous disks will

he seen arranged transversely at nearly equal intervals along the

axis of the tube and separated by dark strata. If the strength of

the current be increased a new disk will start into existence, and

it and the old disks will arrange themselves in closer order. In

a tube described by Mr. Gassiot* the light of each of the disks

is bluish on the negative and reddish on the positive side, and

bright red in the central stratum.

These, and many other phenomena of electrical discharge, are

exceedingly important, and when they are better understood they

will probably throw great light on the nature of electricity as well

as on the nature of gases and of the medium pervading space. At

present, however, they must be considered as outside the domain of

the mathematical theory of electricity.

Electric Phenomena of Tourmaline,

58,] Certain crystals of tourmaline, and of other minerals, possess

what may be called Electric Polarity. Suppose a crystal of tour-

maline to be at a uniform temperature, and apparently free from

electrification on its surface. Let its temperature be now raised,

the crystal remaining insulated. One end will be found positively

* Intdlteiual Olmnvr, March, 1869.
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and the other end negatively electrified. Let the surface he de-

prived of tins apparent electrification by menus ,.1' ;i tlamr or ..:1ht-

wise, then if the crystal be made still hotter, electrification of the

same kind as before will appear, but if the crystal be cooled tlie

end which was positive when the crystal was heated will become

negative.

These electrifications are observed at the extremities of the crys-

tallography axis. Some crystals are terminated by a sis-sided

pyramid at one end and by a three-sided pyramid at the other.

In these the end having the six-sided pyramid becomes positive

when the crystal is heated.

Sir W. Thomson supposes every portion of these and other hemi-

hodral crystals to have a definite electric polarity, the intensity

of which depends on the temperature. When the surface is passed

through a flame, every part of the surface becomes electrified to

Midi an extent as to exactly neutralize, for all external points,

the effect of the internal polarity. The crystal then has no ex-

ternal electrical action, nor any tendency to change its mode of

electrification. But if it be heated or cooled the interior polariza-

tion of each particle of the crystal is altered, and can no longer

be balanced by the superficial electrification, so that there is a

resultant external action.

Plan if this Treatise.

59.] In the following treatise I propose first to explain the ordinary

theory of electrical action, which considers it as depending only

on the electrified bodies and on their relative position, without

taking account of any phenomena which may take place in the

surrounding media. In this way we shall establish the law of the

inverse square, the theory of the potential, and the equations of

Laplace and Poisson. We shall next consider the charges and

potentials of a system of electrified conductors as connected by

a system of equations, the coefficients of which may be supposed

to be determined by experiment in those cases in which our present

mathematical methods are not applicable, and from those we shall

determine the mechanical forces acting between the d.llerent elec-

trified bodies. ...

We shall then investigate certain general theorems by which

Green, Gauss, and Thomson have indicated the eolations »l so-

lution of problems in the distribution of electricity. One result

of these theorems is, that if Poissou's equation is satisfied by any
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function, and if :il (lie surfaec nj' every conductor the function

has the value of tin? potential of that conductor, then the func-

tion expresses the actual potential of tbc system at every point. W©
also deduce a method of finding problems capable of exact solution.

In Thomson's theorem, the total energy of the system is ex-

pressed in the form of the integral of a certain quantity extended

over the whole space between the electrified bodies, and also in

the form of an integral extended over the electrified surfaces only.

The equation between these two expressions may be thus inter-

preted physically. We may conceive the relation into which the

electrified bodies are thrown, either as the result of the state of
the intervening medium, or as the result of a direct action between
the electrified bodies at a distance. If we adopt the latter con-
ception, we may determine the law of the action, but we can go
no further in speculating on its cause. If, on the other hand,
we adopt the conception of action through a medium, we are led to

enquire into the nature of that action in each part of the medium.
It appears from the theorem, that if we are to look for the seat

of the electric energy in the different parts of the dielectric me-
dium, the amount of energy in any small part must depend on
the square of the intensity of the resultant electromotive force at
that place multiplied by a coefficient called the specific inductive
capacity of the medium.

It is better, however, in considering the theory of dielectrics

in the most general point of view, to distinguish between the elec-
tromotive force at any point and the electric polarization of the
medium at that point, since these directed quantities, though re-
lated to one another, are not, in some solid substances, in the same
direction. The most general expression for the electric energy of
the medium per unit of volume is half the product of the electro-
motive force and the electric polarization multiplied by the cosine
of the angle between their directions.

Iu all fluid dielectrics the electromotive force and the electric
polarization are in the same direction and in a constant ratio.

If we eabudate <m (his hypothesis the total energy residing
in the medium, we shall find it equal to the energy due to the
electrification of the conductors on the hypothesis of direct action
at a distance. Hence the two hypotheses are mathematically equi-
valent.

If we now proceed to investigate the mechanical state of the
medium on the hyjwthesis that the mechanical action observed
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between electrified bodies is exerted through and by means of

the medium, as in the familiar instances of the action of one hotly

on another by means of the tension of a rope or the pressure of

a rod, we find that the medium must be in a state of mechanical

stress.

The nature of this stress is, as Faraday pointed out *, a tension

along the lines of force combined with an equal pressure in all

directions at right angles to these lines. The magnitude of these

stresses is proportional to the energy of the eleetri fixation, or, in

other words, to the sijinin: 'if tin- ivsul

i

;m
. force mul-

tiplied by the specific inductive capacity of the medium.

This distribution of stress is the only one consistent with Un-

observed mechanical action on the electrified bodies, and also with

the observed equilibrium of the fluid dielectric which surrounds

them. I have therefore thought it a warrantable step in scientific

procedure to assume the actual existence of this state of stresB, and

to follow the assumption into its consequences. Finding the phrase

electric tension used in several vague senses, I have attempted to

confine it to what I conceive to have been in the mind of some

of those who have used it, namely, the state of stress in the

dielectric medium which causes motion of the electrified bodies,

and leads, when continually augmented, f<> disruptive discluM-^,

Kleetrk- tension, in this sense, is » tension r.f exactly the same

kind, and measured in the same way, as the tension of a rope,

and the dielectric medium, which can support a certain tension

and no more, may be said to have a certain strength in exactly

the same sense as the rope is said to have a certain strength.

Thus, for example, Thomson has found that air at the ordinary

pressure and temperature can support an electric tension of 9600

grains weight per square foot before a spark passes.

60.] From the hypothesis that electric action is not a direct

action between bodies at a distance, but is exerted by means of

the medium between the bodies, we have deduced that this medium

must he in a state of stress. We have also ascertained the cha-

racter of the stress, and compared it with the stresses which may

occur in solid bodies. Along the lines of force there is tension,

and perpendicular to them there is pressure, the numerical mag-

nitude of these forces being equal, and each proportional to the

square of the resultant force at the point. Having established

these results, we are prepared to take another step, and to form

• Exp. Eta., Merits xi. 1297.
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an idea of the nature of tlie electric polarization of the dielectric

medium.

An elementary portion of a body may be said to be polarized

wh&D it acquires equal and opposite properties on two opposite

sides. The idea of internal polarity may be studied to the greatest

advantage as exemplified in permanent magnets, and it will be

explained at greater length when we come to treat of magnetism.

The electric* polarization of an elementary portion of a dielectric

is a forced *tate into which the medium is thrown by the action

of electromotive force, and which disappears when that force is

removed. We may conceive it to consist in what we may call

an electrical displacement, produced by the electromotive force.

AY hen the electromotive force acts on a conducting medium it

produces a current through it, but if the medium is a non-con-

ductor or dielectric, the current cannot flow through the medium,
but the electricity is displaced within the medium in the direction

of the electromotive force, the extent of this displacement de-

pending on the magnitude of the electromotive force, so that if

the dectronii.il ivr force increases or diminishes the electric displace-

ment increases and diminishes in the same ratio.

The amount of the displacement is measured by the quantity

of electricity which crosses unit of area, while the displacement

increases from zero to its actual amount. This, therefore, is the

measure of the electric polarization.

The analogy between the action of electromotive force in pro-

ducing electric displacement and of ordinary mechanical force in

producing the displacement of an elastic body is so obvious that
I have ventured to call the ratio of the electromotive force to the
corresponding electric displacement the cwjjirhrnf of e/ecfric ehidicily

of the medium. This coefficient is different in different media, and
varies inversely as the specific inductive capacity of each medium.

The variations of electric displacement evidently constitute electric

currents. These currents, however, can only exist durino- the
variation of the displacement, and therefore, since the displace-

ment cannot exceed a certain value without causing disruptive

discharge, they cannot he continued indefinitely in the same direc-

tion like the currents through conductors.

In tourmaline, and other pyro-electric crystals, it is probable that

a state of electric polarization exists, which depends upon tem-
perature, and does not require an external electromotive force to

produce it If the interior of a body were in a state of permanent
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electric polarization, the outside wmdd -ra.imdh I me charged
in such a manner as to neutralize the action of the internal elec-
trification for all points outside the body. This external superficial
charge could not be detected by any of the ordinary test., and
could not be removed by any of the ordinary methods lor dis-

charging superficial electrification. The internal polarization of
the substance would therefore never be discovered mi!.-, U
means, such as change of temperature, the amount of (he internal
polarization could be increased or diminished. The csl t-mal elec-

trification would then he no longer capable of neutralizing the
external effect of the infernal polarization, and mi apparent elec-

trification would be observed, as in the case of tourmaline.

If a charge <? is uniformly distributed over the surface of a
sphere, the resultant, force at any point, id' the medium surrounding
the sphere is numerically equal to the charge e divided by the square
of the distance from the centre of the sphere. This resultant force,

according to our theory, is accompanied by a displacement of elec-

tricity in a direction outwards from the sphere.

If we now draw a concentric spherical surface of radius /\ (he whole

displacement, E, through this surface will be proportional to the

resultant force multiplied by (lie area of the spherical .-airfare. Hut

the resultant force is directly as the charge e and inversely as the

square of the radius, while the area of the surface is directly as the

square of the radius.

Hence the whole displacement, E, is proportional to the charge t*,

and is independent of the radius.

To determine the ratio between the charge e, and the quantity

of electricity, E, displaced outwards through the spherical surface,

let us consider the work done upon the medium in the region

between two concentric spherical surfaces, while the displacement

is increased from E to E+bE. If Vl
and F2 derfote the potential*

at the inner and the outer of these surfaces respectively, the elec-

tromotive force by which the additional displacement ia produced

is f
i
— V„, so that the work spent in augmenting the displacement

If we now make the inner surface coincide v. nli that of the

electrified sphere, and make the radius of the other infinite, /
j

becomes /', the potential of the sphere, and V .
heroines zero, so

that, the whole work done in the surrounding medium is l b/'.

IJut by the ordinary theory, the work done in augmenting the

charge is Vbe, and if this is spent, as we suppose, in augmenting



f>2 ELECTROSTATIC PHENOMENA. [6l.

the displacement, 8J?=8<?, and since E and e vanish together,

^T — c, or

—

The displacement outward* through any spherical surface concentric

witk the sphere is equal to the charge on the sphere.

To fix our ideas of electric displacement, let as consider an accu-

mulator formed of two conducting plates A and B, separated by a

stratum of a dielectric C. Let W be a conducting wire joining

A and B, and let us suppose that by the action of an electromotive

force a quantity Q of positive electricity is transferred along the

wire from B to A. The positive electrification of A and the

negative electrification of B will produce a certain electromotive

force acting from A towards B in the dielectric stratum, and this

will produce an electric displacement from A towards B within the

dielectric. The amount of this displacement, as measured by the

quantity of electricity forced across an imaginary section of the

dielectric dividing it into two strata, will be, according to our

theory, exactly Q. See Arts. 75, 76, 111.

It appears, therefore, that at the same time that a quantity

Q of electricity is being transferred along; the wire by the electro-

motive force from B towards A, so as to cross every section of

the wire, the same quantity of electricity crosses every section

of the dielectric from A towards B by reason of the electric dis-

placement.

The reverse motions of electricity will take place during the

discharge of the accumulator. In the wire the discharge will be

Q from A to B, and in the dielectric the displacement will subside,

and a quantity of electricity Q will cross every section from

towards A.

Every case of electrification or discharge may therefore he con-

sidered as a motion in a closed circuit, such that at every section

of the circuit the same quantity of electricity crosses in the some

time, and this is the case, not only in the voltaic circuit where

it has always been recognised, but in those cases in which elec-

tricity has been generally supposed to bo accumulated in cumin

places.

61.] We are thus led to a very remarkable consequence of the

theory which we are examining, namely, that the motions of elec-

tricity are like those of an incompressible fluid, so that the total

quantity writhin an imaginary fixed closed surface remains always

the same. This result appears at first sight in direct contradiction

to the fact that we can charge a conductor and then introduce
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it into tlic closed space, and so alter the quantity f electricity
within that space. But we must remember thai the ordinary tin -vv

takes no aceuunt of the eleetric displacement in the substance of
dielectrics which we have been investigating, but confines its

attention to the electrification at the bounding surfaces of the
conductors and dielectrics. In the case of the charged conductor
let us suppose the charge to he positive, then if the surrounding
dielectric extends on all sides beyond the closed surface these will be
electric polarization, accompanied with displacement from within
outwards all over the closed surface, and the surface-integral of
the displacement taken over the surface will be equal to the charge
on the conductor within.

Thus when the charged conductor is introduced into the closed
space there is immediately a displacement of a quantity of elec-

tricity equal to the charge through the surface from within out-
wards, and the whole quantity within the surface remains the
same.

Hie theory of electric polarization will be discussed at greater
length in Chapter V, and a mechanical illustration of it will be
given in Art. 334, but its importance cannot be fully understood
till we arrive at the study ol' electromagnetic phenomena.

62.] The peculiar features of the theory as we have now de-
veloped them are :

—

That the energy of electrification resides in the dielectric medium,
whether that medium be solid, liquid, or gaseous, dense or rare,

or even deprived of ordinary gross matter, provided it he still

capable of transmitting electrical action.

That the energy in any part of the medium is stored up in

the form of a state of constraint called electric polarization, the

amount of which depends on the resultant electromotive force at

the place.

That electromotive force acting on a dielectric produces what
we have called electric displacement, the relation between the force

and the displacement being in the most general <msc <>!' a kind

to be afterwards investigated in treating of conduction, but in

the most important cases the force is in the same direction as

the displacement, and is numerically equal to the displacement

multiplied by a quantity which we have called the coefficient of

electric elasticity of the dieleetric.

That the energy per unit of volume of the dieleetric arising from

the electric polarization is half the product of the electromotive
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force and the eleetric displacement multiplied, if necessary, by the

cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied

by a tension in the direction of the lines of force combined with

an equal pressure in all directions at right angles to the linea

of force, the amount of the tension or pressure per unit of area

being numerically equal to the energy per unit of volume at the

same place.

That the surfaces of any elementary portion into which we may

conceive the volume of the dielectric divided must be conceived

to be electrified, so that the surface-density at any point of the

surface is equal in magnitude to the displacement through that

point of the surface reckoned inward*, so that if the displacement

is in the positive direction, the surface of the element will he elec-

trified negatively on the positive side and positively on the negative

side. These superficial electrifications will m general destroy one

another when consecutive elements arc considered, except where

tin* dielectric has an internal charge, or at the surface of the

dielectric.

That whatever electricity may he, and whatever we may under-

stand by the movement of electricity, the phenomenon which we

have called electric displacement is a movement of electricity in the

same sense as the transference of a definite quantity of electricity

through a wire is n movement of electricity, the only difference

being that in the dielectric there is a force which we have called

electric elasticity which acts against the electric displacement, and

forces the electricity bach when the electromotive force is removed

;

whereas in the conducting wire the electric elasticity is continually

giving way, so that a current of true conduction is set up, and

the resistance depends, not on the total quantity of electricity dis-

puted from its position of equilibrium, but on the quantity which

crosses a section of the conductor in a given time.

That in every case the motion of electricity is subject to fche

same condition as that of an incompressible fluid, namely, that

at. every instant as much must flow out of any given closed space

as flows into it.

It follows from this that every electric current must form a

closed circuit. The importance of Ibis result will be seen when we

investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direct action at a distance

is mathematically identical with that of action by means of a
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medium, the actual phenomena may be explained by the one
theory as well as by the other, provided suitable hypotheses he

introduced when any difficulty occurs. Thus, Mossotti has deduced

the mathematical theory of dielectrics from the ordinary theory

of attraction by merely giving an electric instead of a magnetic
interpretation to the symbols in the investigation by which Poisson

has deduced the theory of magnetic induction from the theory of

magnetic fluids. He assumes the existence within the dielectric of

small conducting elements, capable of having their opposite surfaces

oppositely electrified by induction, but not, capable of losing or

gaining electricity on the whole, owing to their being insulated

from each other by a non-conditctiny medium. This theory i>f

dielectrics is consistent with the laws of electricity, and may be

actually true. If it is true, the specific inductive capacity of a

dielectric may be greater, but cannot be less, than that of air or

vacuum. No instance has yet been found of a dielectric having

an inductive capacity less than that of air, but if such sin mid

be discovered, Mossotti's theory must be abandoned, allhnn^h bis

formulae would all remain exact, and would only require us to alter

the sign of a coefficient.

In the theory which I propose to develope, the mathematical

methods arc founded upon the smallest possible ammint "f hypo-

thesis, and thus equations of the same form are found applicable to

phenomena which are certainly of quite dill'errnt natures, as. for

instance, electric induction through dielectrics ; conduction through

conductors, and magnetic induction. In. all these eases the re-

lation between the force and the effect produced is expressed by

a set of equations of the same kind, so that when a problem in

one of these subjects is solved, the problem and its solution may
be translated into the language of the other subjects and the

results in their new form will also be true.

vol. i. F



CHAPTER II.

ELEMENTARY MATHEMATICAL THEORY OF STATICAL

ELECTRICITY.

Definition of Electricity as a Mathematical Quantity.

63.] We have seen that the actions of electrified bodies are such

that Uh> electrification of one body may be equal to that of another,

or to the sum of the electrifications of two bodies, and that when

two bodies nre equally niul oppositely electrified they bave no elec-

tvieul effect on external bodies when placed together within a closed

insulated conducting' vessel. We may express all these results in

a eoneise and consistent manner by describing an electrified body as

charged with a certain quantity of electricity, which we may denote

by e. When the electrification is positive, that is, according to the

usual convention, vitreous, e will be a positive quantity. When the

electrification is negative or resinous, e will be negative, and the

quantity — e may be interpreted either as a negative quantity of

vitreous electricity or as a positive quantity of resinous electricity.

The effect of adding together two equal and opposite charges of

electricity, +e and — e, is to produce a state of no electrification

expressed by zero. We may therefore regard a body not electrified

as virtually charged with equal and opposite charges of indefinite

magnitude, and an electrified body as virtually charged with un-

equal quantities of positive and negative electricity, the algebraic

sum of these charges constituting the observed electrification. It is

manifest, however, that this way of regarding an electrified body

is entirely artificial, and may be compared to the conception of the

velocity of a body as compounded of two or more different velo-

cities, no one of which is the actual velocity of the body. When

we speak therefore of a body being charged with a quantity e of

electricity we mean simply that, tbe body is electrified, and that

the electrification is vitreous or resinous according as e is positive

or negative.
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.

ON ELECTRIC DENSITY,

Distribution in Three Dimensions.

6+.] Definition. The electric volume-density at a given point

in space is the limiting ratio of the quantity of electricity within

a sphere whose centre is the given point to the volume of the

sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which may be posi-

tive or negative.

Distribution on a Surface.

It is a result alike of theory and of experiment, that, in certain

cases, the electrification of a body is entirely on the surface. The
density at a point on the surface, if defined according to the method
given above, umtld he infinite. We therefore adopt a different

method for the measurement of suriaee-densify.

Definition. The electric density at a given point on a surface is

the limiting ratio of the quantity of electricity within a sphere
whose centre is the given point to the area of the surface contained
within the sphere, when it« radius is diminished without limit.

We shall denote the surface-density hy the symbol a.

Those writers who supposed electricity to be a material fluid

or a collection of particles, were obliged in this case to suppose
the electricity distributed on the surface in the form of a str.ilam
of a certain thickness (J, its density being or that value of p
whieh would result from the particles having the closest contact
of which they are capable. It is manifest that on this theory

ft — «.

Wlien (t is negative, according to this theory, a certain stratum
of thickness $ is left entirely devoid of positive electricity, and
filled entirely with negative electricity/.

There is, however, no experimental evidence cither of the elec-

tric stratum having any thickness, or of electricity being a fluid

or a collection of particles. We therefore prefer to du without tL,.

symbol for the thickness of the stratum, and to use a special symbol
for surface-density.

Distribution along a Line.

H is sometimes convenient to suppose electricity &tributed
on a line, that is, a long narrow body of which we neglect the

J 2
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thickness. In this case we may define the line-density at any point

to be the limiting- ratio ol' the electricity on an element of the

line to the length of that element when the element is diminished

without limit.

If A denotes the line-density, then the whole quantity of elec-

tricity on a curve is e = [\d», where d* is the element of the curve.

Similarly, if tr is the surface-density, the whole quantity of elec-

tricity on the surface is

e —JJff d$

where dS is the element of surface.

If p is the volume-density at any point of space, then the whole

electricity within a certain volume is

where dx dy dz is the element of volume. The limits of integration

in each case are those of the curve, the surface, or the portion of

space considered.

It is manifest that e, A, <r and p are quantities differing: in kind,

each beings one dimension in space lower than the preceding, so that

if a be a line, the quantities e, a A, aa
tr

}
and a*p will be all of the

same kind, and if a be the unit of length, and A, a, p each the

unit of the different kinds of density, a A, a 2
<r, and a 3

p will each

denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let A and B be two points the distance between winch

is the unit of length. Let two bodies, whose dimensions are small

compared with the distance AB
}
be charged with equal quantities

of positive electricity and placed at A and B respectively, and

let the charges he such that the force with which they repel each

other is the unit of force, measured as in Art. 6. Then the charge

of either body is said to he the unit of electricity. If the charge of

the body at B were a unit of negative electricity, then, since the

action between the bodies would he reversed, we should have an

attraction equal to the unit of force.

If the charge of A were also negative, and equal to unity, the

force would be repulsive, and equal to unity.

Since the action between any two portions of electricity is not
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affected by the presence of other portions, the repulsion between

e units of electricity at A and / units at B is the distance

AB being unity. See Art. 39.

Law of Force between Electrified Bodies.

66.] Coulomb shewed by experiment that the force between

electrified bodies whose dimensions are small compared with the

distance between them, varies inversely as the square of the dis-

tance. Hence the actual repulsion between two such bodies charged

with quantities e and e" and placed at a distance r is

r*'
We shall prove in Art. 74 that this law is the only one con-

sistent with the observed fact that a conductor, placed in the inside

of a closed hollow conductor and in contact with it, is deprived, of

all electrical charge. Our conviction of the accuracy of the law

of the inverse square of the distance may be considered to rest

on experiments of this kind, rather than on the direct measure-

ments of Coulomb.

Resultant Force between Two Bodies.

67.] In order to find the resultant force between two bodies

we might divide each of them into its elements of volume, and

consider the repulsion between the electricity m each of the elements

of the first body and the electricity in each of the elements of the

second body. We should thus get a system of forces equal in

number to the product of the numbers of the elements into w hich

we have divided each body, and we should have to combine the

effects of these forces by the rides of Statics. Thus, to find the

component in the direction of .r we should have to find the value

of the sextuple integral

p //(/— ,/) dx dtf d: d/di/th'

{0*~aT)** Car
1

'

where x,i/
t
z are the coordinates of a point in the first, body at

which the electrical density is p, and of
t 1/, and ff are the

corresponding quantities for the second body, and the integration

is extended first over the one body and then over the other.

Resultant Force at a Point.

68.] In order to simplify the mathematical process, it is con-

venient to consider the action of an electrified body, not on another
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body of any form, but on an indefinitely small body, charged with

an indefinitely small amount of electricity, and placed at any point

of the space to which the electrical action extends. By making

lilt- charge nf this body indefinitely small we render insensible its

disturbing action on the charge of the first body.

Let e be the charge of this body, and let the force acting on

it when placed at the point {x, yt
z) be Re, and let the direction-

cosines of the force be /, w, », then we may call R the resultant

force at the point («, y, »),

In speaking of the resultant electrical force at a point, we do not

necessarily imply that any force is actually exerted there, but only

that if an electrified body were placed there it would be acted on

by a force Be, where e is the charge of the body.

Definition. The Resultant electrical force at any point is the

force which would be exerted on a small body charged with the unit

of positive electricity, if it were placed there without disturbing the

actual distribution of electricity.

This force not only tends to move an electrified body, but to

move the electricity within the body, so that the positive electricity

tends to move in the direction of B and the negative electricity

in the opposite direction. Hence the force R is also called the

Electromotive Force at the point (*, y, z).

When we wish to express the fact that the resultant force is a

vector, we shall denote it by the German letter @. If the body

is a diekvtrir, then, a-v .rdin^ to the theory adopted in this

treatise, the electricity is displaced within it, so that the quantity

of electricity which is forced in the direction of (5 across unit

of area fixed perpendicular to (S is

© = £-mt
4 IT

where £> is the displacement, (S the resultant force, and A' the

specific inductive capacity of the dielectric. For air, K = 1

.

[)' the body is a eonduetot, the state of constraint is continually

giving way, so that a current of conduction is produced and main-

tained as long as the force C? acts on the medium.

Components of the Remitant Force.

If X, Y, 7j denote the components of A*, then

X - Rl, Y ss Rm, Z=Rn;
where I, m, n are,the direction-cosiues of J?.



6o.] ELECTROMOTIVE FORCE. 71

Line-Integral of Electric Force, or Electromotive Force along

an Arc of a Curve.

69,] The Electromotive force along a given arc AT of a curve is

numerically measured by the work which would be done on a unit

of positive electricity carried along the curve from the beginning,

A, to P, the end of the arc.

If * is the length of the arc, measured from A, and if the re-

sultant force It at any point of the curve makes nn angle c with

the tangent drawn in the positive direction, then the work done

on unit of electricity in moving along the element of the curve

'/* will he R cos tds,

and t Ik- Mai clccl ronmtive force I will be

/" = f If cos e tls,

Jo

the integration l>eing extended from the beginning to the end

of the are.

If we make use of the components of the force R, we find

Jn ^ m (14 ih'

If X, Y, and % are such that -V <ix + Ytty + Zth is a complete

differential of a function of #, g }
s, then

JA

where the integration is performed in any way from the point A
to the point P, whether along the given curve or along any other

line between A and P.

In tins ease /'is a scalar function of the position of a point in

space, that is, when we know the coordinates of the point, the value

of V is determinate, and this value is independent of the position

and direction of the nxcs of reference, Sec Art. Hi.

On Functions nf lite Position of a Point.

In what follows, when we describe a quantity as a function of

the position of a point, we mean that for every position of the point

the function has a determinate value. We do not imply that this

value can always be expressed by the same formula for all points of

space, for it may be expressed by one formula on one side of a

"iveit suifaee and hy another formula on the other side.
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On Puteu lint Functions.

70.] The quantity X<fa + Ydj? -f Zdz is an exact differential

whenever the force arises from attractions or repulsions whose in-

tensity is a function of the distance only from any number of

points. For if r
l
be the distance of one of the points from the point

y, z\ and if A'
t
by the repulsion, then

with similar expressions for Y
t
and Z

x
, m that

X
y
da+ Y\ dy+Z

y
dz = 2^ dr

x \

and since is a function of r
x
only, B

1
drx is an exact differential

of some function of rtl say Yx .

Similarly for any other force R>, acting from a centre at dis-

tance 7*
2 ,

A;, dx + y., d// +Zz
dz - R, dr

2
= d f

'

2
.

But X = X
x + X2 + &c. and Y and Z arc compounded in the same

way, therefore

Xdf+ Ydy+Zdn = dVy+ dJ'^+ Scc. = dV,

Ff the integral of this quantity, under the condition that ¥ —
at an infinite distance, is called the Potential Function.

The use of this function in the theory of attractions was intro-

duced by Laplace in the calculation of the attraction of the earth.

Green, in his essay ' On the Application of Mathematical Analysis

to Electricity,' gave it the name of the Potential Function. Gauss,

working independently of Green, also used the word Potential,

Clausius and others have applied the term Potential to the work

which would be done if two bodies or systems were removed to

an infinite distance from one another. We shall follow the use of

the word in recent. English works, and avoid ambiguity by adopting

tin' following definition due to Sir W. Thomson.

Definition, of Potential. The Potential at a Point is the work

which would be done on a unit of positive electricity by the elec-

tric forces if it were placed at that point without disturbing the

electric distribution, and carried from that point to an infinite

distance.

71.1 Expressions for the Resultant Force and its components in

terms of the Potential.

Since the total electromotive force along any arc AB is
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if we put ds for the arc AB we shall have for the force resolved

in the direction of d$,

It cos e = — -j^ }

whence, hy assuming d» parallel to each of the axes in succession,

we get
x _ dV y (IV

z &7\
~

dan
~ dy dz

'

n idVf dT z dV\i

We shall denote the force itself, whose magnitude is U and whose

components are X, F, by the German letter @, as in Arts. 1

7

and 68.

The Potential at all Points within a Conductor w tht same.

72,] A conductor is a body which allows the electricity within

it to move from one part of the body to any other when acted on

by electromotive force. When the electricity is in equilibrium

there can be no electromotive force acting- within the conductor.

Hence it = throughout the whole space occupied by the con-

ductor. From this it follows that

dV ' dV . dV
ri

dx dy dz

and therefore for every point of the conductor

V = C\

where C is a constant quantity.

Potential of a Conductor,

Since the potential at all points within the substance of the

conductor is C\ the quantity C is called the Potential of the con-

ductor. C may be defined as the work which must be done by

external agency in order to bring a unit of electricity from an

infinite, distance to the conductor, llic distribution .
.1" A-M n.'ity

being supposed not to he disturbed by the presence of the unit.

If two conductors have equal potentials, and are connected by

a wire so fine that the electricity on the wire itself may he neg-

lected, the total electromotive force along the wire will be zero,

and no electricity will pass from the one conductor to the other.

If the potentials of the conductors A and B he VA and VB ,
then

the electromotive force along any wire joining A and B will be
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in Che direction AB t
that is, positive electricity will tend to pass

from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec-

tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem-

perature, in Thermodynamics, has to Heat, Electricity, Fluids,

and Heat all tend to pass from one place to another, if the Poten-

tial, Pressure, or Temperature is greater in the first place than in

the second. A fluid is certainly a suhstanee, heat is as eertainly

not a substance, so that though we may find assistance from ana-

logies of this kind in forming clear ideas of formal electrical rela-

tions, we must be careful not to let the one or the other analogy

suggest to us that electricity is either a substance like water, or

a stale of agitation like heat.

Potential due to any Electrical System.

73.] Let there be a single electrified point charged with a quautity

e of electricity, and let r be the distance of the point a',/, / from it,

then r= Xdr =
l

=

Let there be any number of electrified points whose coordinates

a« h)> (^2.^2^2). &c - and th<?ir charge» ev &c-»
411(1

let their distances from the point (if,y\z') be rlt rit &c, then the

potential of the system at x\ /, / will be

*§||
Let the electric density at any point (z, y, z) within an elec-

trified body be p, then the potential due to the body is

V= jjj^fadydz;

where r= {(.r-a') 3 + -/)a + %t J

1

the integration being extended throughout the body.

On th Proof of the Law of the Inverse S/pwrc.

74.] The fact that the force between electrified 1>odies is inversely

as the square of the distance may be considered to be established

by direct experiments with the torsion-balance. The results, how-

ever, which we derive from such experiments must be regarded

as uflVeted by ;m error depending on the probable error of each,

experiment, and unless the skill of the operator be very great,
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the probable error of an experiment with the torsion-balance is

considerable. As an argument that the attraction is really, and

not merely as a rough approximation, inversely as the square of the

distance, Experiment VII (p. 34) is far more conclusive than any

measurements of electrical forces can be.

In that experiment a conductor B, charged in any manner, was

enclosed in a hollow conducting vessel C, which completely sur-

rounded it. C was also electrified in any manner.

B was then placed in electric communication with C\ and was then

again insulated and removed from C without touching it, and ex-

amined by means of an electroscope. In this way it was shewn

that a conductor, if made to touch the inside of a conducting vessel

which completely encloses it, becomes completely discharged, so

that no trace of electrification can In: discovered by (lie most

delicate electrometer, hnwever strongly the conductor or the ve^el

has been previously electrified.

The methods of detecting the electrification of a body arc so

delicate that a millionth part of the original electrification of B
could he observed if it existed. No experiments involving the direct

measurement of forces can be brought to such a degree of accuracy.

It follows from this experiment that a non-electrified body in the

inside of a hollosv conductor is at the same potential as the hollow

conductor, in whatever way that conductor is charged. For if it

were not at the same potential, then, if it were put in electric

connexion with the vessel, either by touching it or by means of

a wire, electricity woi.M
;

i i ,, the one body to the other, and

the conductor, when removed from the vessel, would be found to be

electrified positively or negatively, which, as we have already stated,

is not the case.

Hence the whole space inside a hollow conductor is at the same

potential as the conductor if no electrified body is placed within it.

If the law of the inverse square is true, this will be the case what-

ever be the form of the hollow conductor. Our object at present,

however, is to ascertain from this fact the form of the law of

attraction.

For this purpose let us suppose the hollow conductor to be :i thin

spherical shell. Since everything is symmetrical about its centre,

the shell will be uniformly electrified at every point, and we have

to enquire what must be the law of attraction of a uniform spherical

shell, so as to fulfil the condition that the potential at every point

within it shall be the same.
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Let the force at a distance r from a point at which a quantity e

of electricity ib concentrated be R, where R is som« function of r.

All central forces which are functions of the distance admit of a

potential, let us write® for the potential function due to a unit

of electricity at a distance r.

Let the radius of the spherical shell be «, and let the surface-

density he <r. Let P be any point within the shell at a distance

p from the centre. Take the radius through P as the axis of

spherical coordinates, and let r be the distance from P to an element

$8 of the shell. Then the potential at P is

r= Tcr a2 sin 6 d$ d<f>.

Jo Jo t

Now = d*— 2 ap cos Q+ p3
,

rdr— &p sin 9 d$.

Hence V=2t(<t^-\
P
/{r)dr;

and V must be constant for all values ofp less than a.

Multiplying both sides by p and differentiating' with respect to p,

F= 2ir<x<i {/{* +P)+f
Differentiating again with respect to^j

= j"{* +p)-f {*-!>)

Since a and p arc independent,

/" (>-) = f?, a constant.

Hence /(*•) = Cr+C,

.nul tin' potential function is

f f

The force at distance f is got by differentiating this expression

with respect to r, and changing the sign, so that

or the force is inversely as the square of the distance, and this

therefore is the only law of force which satisfies the condition that

the potential within a uniform spherical shell is constant*. Now

• See Pratt's Mechanical Philosophy, p. 144.
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this condition is shewn to be fulfilled by the electric forces with

the most perfect accuracy. Hence the law of electric force is

verified to a corresponding degree of accuracy.

Surface-Integral of Electric Induction, and Electric Displacement

through a Surface,

75.] Let R be the resultant force at any point of the surface,

and e the angle which R makes with the normal drawn towards the

positive side of the surface, then R cos « is the component of the

force normal to the surface, and if dS is the element of the surface;

the electric displacement through dS will be, by Art. 68,

— KB cos < dS.

Since we do not at present consider any dielectric except air, K— 1

.

We may, however, avoid introducing at this stage the theory of

electric displacement, by calling R cos t dS the Induction through

the element dS. This quantity is well known in mathematical

physic, hut the name of induction is burrowed from Faruihiy.

The surface-integral of induction is

J
fit cos < dS,

and it appears hy Art. 21, that if A", Yt
Z are the components of R,

and if these quantities are continuous within a region bounded by a

closed surface 5, the induction reckoned from within outwards is

jjMmm * f' +
^tedyd*,

the integration being extended through the whole space within the

surface.

Induction through a Finite Closed Surface due to a Single Centre

of Force.

76.] Let a quantity e of electricity be supposed to be placed at a

point 0, and let r bo the distance of any point P from 0, the force

at that point is R = in the direction OP.

Let a line be drawn from in any direction to an infinite

distance. If is without the closed surface this line will either

not cut the surface at all, or it will issue from the surface as many

times as it enters. If is within the surface the line must first
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issue from the surface, and then it may enter and issue any number

of times alternately, ending by issuing from it.

Let « he the angle between OP and the normal to the surface

drawn outwards where OP cuts it, then where the line issues from

the surface cos « will be positive, and where it enters cos t will

be negative.

Now let a sphere be described with centre and radius unity,

and let the line OP describe a conical surface of small angular

aperture about as vertex.

This cone will cut off* a small element da> from the surface of the

sphere, and small elements dSu dS2) kc. from the closed surface at

the various places where the line OP intersects it.

Then, since any one of these elements dS intersects the cone at a

dislamv / IVr.ni the vertex and at an obliquity t,

dS = r2 sec < dv>

;

and, since li — er~ 2
, we shall have

Hco&€ dS = ± eda •

the positive sign being taken when r issues from the surface, and

the negative where it enters it.

If the point is without the closed surface, the positive values

are equal in number to the negative ones, so that for any direction

of r, 2 R COS e dS = 0,

and therefore fj R cos tdS — 0,

the integration being extended over the whole closed surface.

If the point is within the closed surface the radius vector OP

first issues from the closed surface, giving a positive value of e da,

and then has an equal numfier of entrances and issues, so that in

this case 2 U cos edS = e da.

Extending the integration over the whole closed surface, we shall

include the whole of the spherical surface, the area of which is 4 it,

so that

j
fft cos t dS = eJ J

da> = 4 ite.

Hence we conclude that the total induction outwards tlirough a

clnsud stir face due to a centre of force e placed at a point O is

aero when is without the surface, and 4 ite when is within

the surface.

Since in air the displacement is equal to the induction divided
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by 4tt, the displacement through a closed surfaee, reckoned out-

wards, is equal to the electricity within the surface.

Corollary. It also follows that if the surfaee iB not closed but

is bounded by a given closed curve, the total induction through

it is <ae, where <a is the solid angle subtended by the closed curve

at 0. This quantity, therefore, tlcjiour.!* only on the closed curve,

and not on the form of the surface of which it ia the boundary.

On (he E'ftalions of Laplace and Pvisson.

77.] Since the value of the total induction of a single centre

of force through a closed surface depends only on "whether the

centre is within the surface or not, and does not depend on its

position in any other way, if there are a number of such centres

elf &c. within the surface, and e/, e2', &c. without the surface,

we shall have

fItfcostdS =

where s denotes the algebraical sum of the quantities of elec-

tricity at all the centres of force within the closed surface, that is,

the total electricity within the surface, resinous electricity beings

reckoned negative.

If the electricity is so distributed within the surface that the

density is nowhere infinite, we shall have by Art. 64,

4 r>e = iirJ^pdxdydZf

and by Art. 75,

jjR cos c dS =
fjjH+|E+ dz.

If we take as the closed surface that of the element of volume

'/,/ tit/ d:, we shall have, by equating these expressions,

dX dY dZ

and if a potential V exists, we find by Art. 7 1

,

d*r d*r a*r

This equation, in the case in which the density is zero, is called

Laplace's I

1

]. |i:at inn. In its more general form it was first given by

Poisson. It enables us, when we know the potential at every point,

to determine the distribution of electricity.
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We shall denote, as at Art, 26, the quantity

d*r d*r a*r\ ir

and we may express Poisson's equation in words by saying that

the electric density multiplied by 4rtr is the concentration of the

potential. Where there is no electrification, the potential has no

concentration, and this is the interpretation of Laplace's equation.

If we suppose that in the superficial and linear distributions of

electricity the volume-density p remains finite, and that the elec-

tricity exists in the form of a thin stratum or narrow fibre, then,

by increasing p and diminishing the depth of the stratum or the

section of the fibre, we may approach the limit, of true superficial

or linear distribution, and the equation being true throughout the

process will remain true at the limit, if interpreted in accordance

with the actual circumstances.

On the Conditions to befulfilled at an Electrified Surface.

78.] We shall consider the electrified surface as the limit to

which an electrified stratum of density p and thickness v approaches

when p is increased and p diminished without limit, the product pv

being always finite and equal to cr the surface-density.

Let the stratum be that included between the surfaces

F{*,y,t) = F= a (1)

and F=a+&. (2)

(3)If we put i?2 =
dF
dx

dF
dy

2

*JL

and if l
t
tn, n are the direction-cosines of the normal to the surface,

dF
dx

Jim — -j—

»

Jin =
dz

(4)

Now let }\ be the value of the potential on the negative side

of the surface F = a, V its value between the surfaces F= a and

F= a + Jr, and Y2 its value on the positive side of F = a+ h.

Also, let p,, p\ and be the values of the density in those three

portions of space. Then, since the density is everywhere finite,

the second derivatives of /' are everywhere iinite, and the first

derivatives, and also the function itself, are everywhere continuous

and Iinite.

At any point of the surface F = a let a normal be drawn of
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length v, till it meets the surface F — a + ft, then the value of F at

the extremity of the normal is

or a+k = a + vR+ lkc.

The value of V at the same point is

<n
:> dV\ .

dy dz

_ r A dF' .

(5)

(6)

(7)

(8)
.ft c/y

Since the first derivatives of V continue always finite, the second

side of the equation vanishes when h is diminished without limit,

and therefore if F± and V
l
denote the values of V on the outside

and inside of an electrified surface at the point x, y, g,

rx = rv o)
If %+ dx, y+ dy, z + dz he the coordinates of another point on

the electrified surface, F=a and Fa at this point also ; whence

n dF
t

dF . dF
<r/j3 f/y f«;

f
rfr, dFr

(10)

(12)

and when e/*r, <& vanish, we find the conditions

dy
'

fife ffe

where C is a quantity to he determined.

Next, let us consider the variation of and -j- along- the
tlx

ordinate parallel to x hit ween the surfaces F— a and F=«+i
rfjF d 2F

dF

We have

dV dF, d*V . . . v, tfand (14)

Hence, at the second surface, where F=a + i, and Fhecomes V% ,

dF, dF,
,
d*F'

, „ nfiv

WV 00) war

VOL. I. G
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whence -^5- dx+&c —Cl> (16)

by the first of equations (12).

Multiplying by Rl, and remembering that at the second surface

R£dx=/t (17)

we find -£p h = CJUK (18)

Similarly- ^i.^. (19)

P
and -Tp- A = CRn*. (20)

Adding (7^- +
,// + ^-)* = CR

> <21 )

#r rf
3 r' , . .

hence C = — iirp'v = — 4ira, (23)

where tr is the surface-density; or, multiplying the equations

(12) by /, wf, n respectively, and adding,

,,dK dV,^ ,dV« dV^ ,dV3 dF,^ „ ,„ .

This equation is called the characteristic equation of V at a surface.

This equation may also be written

dF
x

dK

where vlt v2 are the normals to the surface drawn towards the

first and the second- medium respectively, and F,, F
2 the potentials

at points on these normals. We may also write it

R2 cos c,+ JS, cos f j -f- 4 n<r = ; (
2C)

where Rj, R2 are the resultaut forces, and iu *3 the angles which

they make with the normals drawn from the surface on either

side.

79.] Let us next determine the total mechanical force acting on

an element of the electrified surface.

The general expression for the force parallel to x on an element

whose volume is d&dgdz, and volume-density p, is

dX = — ^p da dy dz. (27)
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In the present case we have for any point on the normal if

dV dK
e

(»«)

also, if the clement of surface is dS, that of the volume of the

element of the stratum maybe written dSdv, and if Xis the whole
force on a stratum of thickness v,

Integrating- with respect to vt we find

(30)

dV» dV
x d*F' m

When t> is diminished and / increased without limit, the product

pv remaining always constant and equal to <r, the expression for

the force in the direction of a? on the electricity vdS on the element
of surface dS is v **v/<K dK\

that is, the force acting on the electrified element <rdS in any given
direction is the arithmetic mean of the forces acting on equal
quantities of electricity placed one just inside the surface and the
other jnsl. outside tin- Mirfaeo close In the actual position of the
element, and therefore the resultant mechanical force on the elec-

trified element, is eipial to the resultant of the forces which would
act on two portions of electricity, each equal to half that on the
element, and placed one on each side of the surface and infinitely

near to it.

80.] When a conductor is in electrical equilibrium, thv whole of the
electricity h on the surface.

We have already shewn that throughout the substance of the
conductor the potential /' is constant Hence v 2 V is zero, and
therefore by Poisson's equation, p is zero throughout the substance
of the conductor, and there ean be no electricity in the interior
of the conductor.

Hence ;i superficial distribution of electricity is the only possible

one in the case of conductors in equilibrium. A distribution

through.,ui (he mass e ;) u ,.nU . -\ist in equilibrium when the body
is a non-conductor.

o i
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Since the resultant force within a conductor is zero, the resultant

force just outeide the conductor is along the normal and is equal to

47IO-, acting outwards From the conductor.

81.] If we now suppose an elongated body to he electrified, we

may, by diminishing its lateral dimensions, arrive at the conception

of an electrified line.

Let ik he the length of a small portion of the elongated body,

and let. c he its circumference, and <r the superficial density of the

electricity on its surface ;
then, if A is the electricity per unit of

length, A _ c<r, and the resultant electrical force close to the

surface will he . X
4 77 rT = 4 7T - *

C

If, while A remains finite, c he diminished indefinitely, the force

at the surface will be increased indefinitely. Now in every di-

electric there is a limit beyond which the force cannot be increased

without a disruptive discharge. Hence a distribution of electricity

in whii'h a, finite quantity is placed on a finite portion of a line

is inconsistent with the conditions existing in nature.

Even if an insulator could be found such that no discharge eould

be driven through it by an infinite force, it would he impossible

to charge a linear conductor with a finite quantity of electricity,

for an infinite electromotive force would be required to bring the

electricity to the linear conductor.

In the same way it may be shewn that a point charged with

a finite quantity of electricity cannot exist in nature. It is con-

venient, however, in certain cases, to speak of electrified lines and

points, and we may suppose these represented by electrified wires,

and by small bodies of which the dimensions are negligible com-

pared with the principal distances concerned.

Since the quantity of electricity on any given portion of a wire

diminishes indefinitely when the diameter of the wire is indefinitely

diminished, the distribution of electricity on bodies of considerable

dimensions will not be sensibly affected by the introduction of very

fine metallic wires into the field, so as to form electrical connexions

between these bodies and the earth, an electrical machine, or an

electrometer.

On Lines of Force.

82.] If a line he drawn whose direction at every point of its

course coincides with that of the resultant force at that point, the

line is called a Line of Force.
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If lines of force be drawn from every point of a lino they will

form a surface such that the force at any point is parallel to the

tangent plane at that point. The surface-integral of the force with

respect to this surface or any pari of i( will (he re fort' I" 1 zero.

If lines of force rtc drawn from every point of a closed curve L
t

they will form a tubular surface S . Let the surface Slt hounded

by the closed curve Z,, bea section of this tube, and let be any

other section of the tube. Let Qa > Qlt Qs be the surface-integrals

over S0i Slt S2 ,
then, since the three surfaces completely enclose a

space in which there is no attracting matter, we have

Q»+Qi+Qi = o.

But
<8o = ®> therefore Q2 = — Q x

, or the surface-integral over

the second section is equal anil opposite to that over the first : but

since the directions of the normal are opposite in the two cases, we
may say that the surface-integrals of the two sections are equal, the

direction of the line of force being supposed positive in both.

Such a tube is called a Solenoid*, and such a distribution of

force is called a Solenoidnl distribution. The velocities of an in-

compressible fluid are distributed in this manner.

1
1* \w m;|i| ••<»• any surface divided into elementary portions such

tliat the surface-integral of each element is unity, and if solenoids

are drawn tlirough the field of force having these elements for their

Itasis, tlii'ii Mirfacc-iiiteii-nil for any other surface w\W be re-

presented by the number of solenoids which, it cuts. It is in this

sense that Faraday uses his conception of lines of force to indicate

not only the direction but the amount of the force at any place in

the field.

TPe have used the phrase Lines of Force because it has been used

by Faraday and others. In strictness, however, these lines should

be called Lines of Electric Induction.

In the ordinary cases the lines of induction indicate the direction

and magnitude of the resultant electromotive force at every point,

because the force and the induction are in tho same direction and
in a constant ratio. There arc other eases, however, in which it

is important to remember that these lines indicate the induction,

and that the force is indicated by the oquipotential surfaces, being

normal to these surfaces and inversely proportional to the distances

of consecutive surfaces.

• From o-wx^, ji tube. Faraday uses (3271) the term ' SphondytuM ' in tho tame
Ht'iise.
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0)1 Specific Inductive Capacity.

83.] In the preceding investigation of surface-integrals I have

adopted the ordinary conception of direct action at a distance,

and have not taken into consideration any effects depending on the

nature of the dielectric medium in which the forces are observed.

But Faraday has observed that the quantity of electricity

induced hy a given electromotive force on the surface of a conductor

which hounds a dielectric is not the same for nil <lu Ve t t ies. The

induced electricity is greater for most solid and liquid dielectrics

than for air and gases. Hence these bodies are said to have a

greater specific inductive capacity than air, which is the standard

medium.

We may express the theory of Faraday in mathematical language

by saying that in a dielectric medium the induction across any

surface is the product of the normal electric force into the coefficient

of specific inductive capacity of that medium. If we denote this

coefficient by K, then in every part of the investigation of sur-

face-integrals we must multiply X, 1\ and Z by K, so that the

equation of Poisson will become

± K dV+— K~+~ K—+4n =0
dx ' dx dy' dy dz ' dz

At the surface of separation of two media whose inductive capa-

cities are K
l
and K2t and in which the potentials are f\ and Vit

the characteristic equation may be written

£r dF2 „ dV
x

.

dv 1 a if

where v is the normal drawn from the first medium to the second,

and tr is the true Burface-density on the surface of separation

;

that is to say, the quantity of electricity which is actually on the

surface in the form of a charge, and which can he altered only by

conveying electricity to or from the spot. This true electrification

must be distinguished from the apparent electrification <r'f which is

the electrification as deduced from the electrical forces in the neigh-

bourhood of the surface, using the ordinary characteristic equation

j +47TO-'= 0,
dv av

If a solid dielectric of any form is a perfect insulator, and if

its surface receives no charge, then the true electrification remains

zero, whatever be the electrical forces acting on it.
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Hence -j- = ir t- > and p -y1 +4ircr'= 0,
rti; A

t
dv A,, dv

ffi\ _ 1 Tin' Kq, dVt _
rfv K

x
—K

t
dv Aj— K,,

The surface-density tf is that of the apparent electrification

produced at the surface of the solid dielectric by induction. It,

disappears entirely when the inducing force is removed, but if

during the action of the inducing force the apparent electrification

of the surface is discharged by passing a flame over the surface,

then, when the inducing force is taken away, there will appear an

electrification opposite to a *,

In a heterogeneous dielectric in which A' varies continuously, if

ft be the apparent volume-density,

&T d*V d*V , n

dx*
+
df

+
ds*

+ p

Comparing this with the equation above, we find

. dKdV dKdV dKdF
rt

" '
'
T

(h- dj> d// dtf d; dz

The true dectrification, indicated by p, in the dielectric whose

variable inductive capacity is denoted by K
t
will produce the same

potential at every point as the apparent electrification, indicated by

p', would produce in a dielectric whose inductive capacity is every-

where equal to unity.

• Suo ftuutlajr'H ' Remark h on si.iii.- Iti.l.;<-li. 11.' /' diu'jf ./ t/tr Ro>jnl /«-

stittitioii, Feb. 12, 1858.



CHAPTER III.

SYSTEMS OP CONDUCTORS.

On the Superposition of Electrical Systems.

84.] Let E1 be a given electrified system of which the potential

at a point P is F1} and let E
%
be another electrified system of which

the potential at the same point would be V2 if E± did not exist.

Then, if E
l
and E2

exist together, the potential of the combined

system will be F
x+ Vq>

Hence, if V be the potential of an electrified system E, if the

electrification of every part of E be increased in the ratio of n to 1,

the potential of the new system uE will be n F.

Energy of an Electrified System.

85.] Let the system be divided into parts, Alt A^, &c. so small

that the potential in each part may be considered constant through-

out its extent. Let ely e2 , &c. he the quantities of electricity in

each of these parts, and let Vlf F%, &c. be their potentials.

If now e
x

is altered to nelt et to neit &c, then the potentials will

become nFlt nF2 , &c.

Let us consider the effect of changing n into n -f dn, in all these

expressions. It will be equivalent to charging A
l
with a quantity

of electricity e^du, A.
£
with e.,iln, &c. Tbcse charges must be sup-

posed to he brought from a distance at which the electrical action

of the system is insensible. The work done in bringing e
l
dn of

electricity to Alt whose potential before the charge is %VU and after

the charge (n+ dn) Fl} must lie between

n V1 ex dn and (n+ dn)F
x *?, dn

.

In the limit we may neglect the square of dn, and write the

expression F^ndn.
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Similarly the work required to increase the charge of At is

F„ a, n dn, so that the whole work done in increasing the charge

of the system is

(F
1

<?
l
+F2

<?2+ &c.)«rf».

If we suppose this process repeated an indefinitely great number

of times, each charge being indefinitely small, till the total effect

becomes sensible, the work done will be

V{Ve)j<ndn = 4S(^)(*ha
-»a

a
)i

where 2 (Vc) means the sum of all the products of the potential of

each element into the quantity of electricity in that element when

Is ), and « is the initial and % the final value of n.

If we make « r= and », = 1, we find for the work required to

charge an unelectrified system so that the electricity is e and the

potential V in each element,

Q = i2(F*).

General Theory of a System of Conductors.

86.] Let A
lt

Ag, ...A„ be any number of conductors of any

form. Let the charge or total quantity of electricity on each of

these be J?M E2 , ... Eni and let their potentials be F
x ,
F
2 , ...

rospt-TtivHy.

Let us suppose the conductors to be all insulated and original ly

free of charge, and at potential zero.

Now let A
{
be charged with unit of electricity, the other bodies

being without charge. The effect of this charge on A^ will be to

raise the potential of A
v
topllt that of J2 to pl2 , and that of An to

JPim where pu> &c. are quantities depending on the form and rela-

tive position of the conductors. The quantity jo,, may be called the

Potential Coefficient of A
1
on itself, and p^ may be called the Po-

tential Coefficient of Aj on A2t and so on.

If the charge upon A
l
is now made E

y ,
then, by the principle of

superposition, we shall have

w.mbM,
Now let A

x
be discliarged, and A,2 charged with unit of electricity*

and let the potentials of Alf A±> ... A„ be fciPai Pz»> *nen *ne

potentials due to Ez
on A.

2
will he

Similarly let us denote the potential of A, due to a unit charge

on At by p rt , and let us call pTt
the Potential Coefficient of AT on Atf
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then we shall have the following equations determining the po-

tentials in terms of the charges :

f\ - pn Ex
. + prl Er . . . +pnl En ,

F
t =p llt

E
1

... + p„ET ...+pn,Eti , (1)

We have here n linear equations containing n2 coefficients of

p< rtential.

87,] By solving these equations for EJt E2 , &c. we should obtain

n equations of the form

Ef = qrirx ... + qT.K- + ?nX (2)

K = • . + ?».*,- + ff„X

The coefficients in these equations may he obtained directly from

those in the former equations. They may be called Coefficients of

Induction.

Of these qn is numerically equal to the quantity of electricity

on .7, when .l
}

is at potential unity and all the other bodies are

at potential zero. This is called the Capacity of Alt It depends

on the form and position of all the conductors in the system.

Of the rest ij
rr

in the charge induced on Ar when A
t

is main-

tained at potential unity and all the other conductors at potential

zero. This is called the Coefficient of Induction of As
on At .

The mathematical determination of the coefficients of potential

and of capacity from the known forms and positions of the con-

ductors is in general difficult. We shall afterwards prove that they

have always determinate values, and we shall determine their values

in certain special eases. Fot the present, however, we may suppose

them to be determined by actual experiment.

Dimensions of Ihem- Vuefltciente.

Since the potential of an electrified point at a distance r is the

charge of electricity divided by the distance, the ratio of a quantity

of electricity to a potential may be represented by a line. Hence

all the coefficients of capacity and induction (q) are of the nature of

lines, and the coefficients of potential (p) are of the nature of the

reciprocals of lines.
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88.] Theorem L The coefficient* of Ar relative to At are equal to

those of At
relative to A,.

If Er , the charge on A^ , ia increased by Si?,, the work spent in

bringing hE
r
from an infinite distance to the conductor Ar

whose

potential is Vr , is by the definition of potential in Art. 70,

Vr lEr ,

and this expresses the increment of the electric energy caused by

this increment of charge.

If the charges of the different conductors are increased by 8 Ei ,

&cv the increment of the electric energy of the system will be

If, therefore, the electric energy Q is expressed as a function

of the charges E
x ,
Eit &c., the potential of any conductor maybe

expressed as the partial differential coefficient of this function with

respect to the charge on that conductor, or

Since the potentials are linear functions of the charges, the energy

must be a quadratic function of the charges. If we put

CErEt

for the term in the expansion of Q which involves the product

ErE„ then, by differentiating with respect to JP„ we find the term

of the expansion of V
n
which involves Ef to be CEr .

Differentiating with respect to ETi we find the term in the

expansion of VT which involves Em to be CEX .

Comparing these results with equations (1), Art. 86, we find

prt
= — ]>„,

or, interpreting the symbols p rit
and ptr

:

—

Tin' ji-.n-iiliul "1' ./. due to a tin it eli urge on . / is equal In tin-

potential of A
r
due to a unit charge on At .

This reciprocal probity of the electrical action of one conductor

on another was established by Helmholtz and Sir W. Thomson.

If we suppose the comluetors A
t

and At to be indefinitely small,

we have the following reciprocal property of any two points :

—

The potential at any point A„ due to unit of electricity placed

at Ar
in presence of any system of conductors, ia a function of the

positions of Ar
and A, in which the coordinates of Ar

and of A
t

enter in the same manner, so that the value of the function is

unchanged if we exchange Ar and At
.
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This function is known by the name of Green's Function,

The coefficients of induction qrt and q„ are also equal. This is

easily seen from the process by which these coefficients arc obtained

from the coefficients of potential. For, in the expression for qrt ,

pr, and p„ enter in the same way as p„ and prf
do in the expression

for qir . Hence if all pairs of coefficients pTt and p„ are equal, the

pairs qTt and q,f are also equal.

89.] Theorem II. Let a charge ET be placed on A
T , and let all

the other ecndueton be at potential zero, and let the charge

induced on A
s
be —n

rt
Eri then ifAr

is discharged and insulated,

and A, brought to potential V
f , the other conductors being at

potential zero, then the potential of Ar trill be

For, in the first case, if Vr is the potential of Art we find by

equations (2),

#1 = q„ Z, and ET = q„ Fr .

Hence E
t
=^Er , and =

In the second case, we have

ET = = q„K+<ir,K'

Hence Fr =; - V,= nrt V$ .

From this follows the important theorem, due to Green :

—

If a charge unity, placed on the conductor A\ in presence of

conductors Alt A,z , &c. at potential zero induces charges —nlt

—

«

2 , &e. in these conductors, then, if A is discharge<l and in-

sulated, and these conductors are maintained at potentials Fl}
F
2 ,

&c., the potential of A will be

The quantities (?;) are evidently numerical quantities, or ratios.

The conductor A^ may be supposed reduced to a point, and

A
x ,
A

2 , &c. need not be insulated from each other, but may be

different elementary portions of the surface of the same conductor.

We shall sec the application of this principle when we investigate

Green's Functions.

90.] Throuem III. The coefficients of potential are all positive,

but none of the coefficientspr, is greater thanp„ or pt ,
.

For let a charge unity be communicated to An the other con-

ductors being' uncharged. A system of equipotential surfaces will
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be formed. Of these one will be the surface of Ar , and its potential

will heprr . If A, is placed in a hollow excavated in A
T
so as to be

completely enclosed by it, then the potential of A
t
will also be/j^.

If, however, A, is outside of Ar its potential pr>
will lie between

p„ and zero.

For consider the lines of force issuing from the charged con-

ductor Ar . The charge is measured by the excess of the number

of lines which issue from it over those which terminate in it.

Hence, if the conductor has no charge, the number of lines which

enter the conductor must be equal to the number which issue from

it. The lines which enter the conductor come from places of greater

potential, and those which issue from it go to places of less poten-

tial. Hence the potential of an uncharged conductor must be

ini rtTju'diuU' between the highest and lowest potentials in the field,

and therefore the highest and lowest potentials cannot belong to

any of the uncharged bodies.

The highest potential iuu>: 1 ln'i-.-i". >iv 1.,-
, .

• hat of the charged

body Art and the lowest must be that of space at an infinite dis-

tance, which is zero, and all the other potentials such as prt
must

lie between p„ and zero.

If Ah
completely surrounds A{i thenjt»„ =prr

91.] Tn KuiiKM I V. S<u,c of the coefficients of induction are positive,

and the sum of all tftase belonging to a single conductor is not

numerically greater titan the coefficient of capacity of that con-

ductor, which is always positive.

For let Ar be maintained at potential unity while all the other

conductors are kept at potential zero, then the charge on Ar is qTr)

and that on any other conductor A
t
is qrit

.

The number of lines of force which issue from Ar is/>„. Of these

some terminate in the other conductors, and some may proceed to

infinity, but no lines of foree can pass between any of the other

conductors or from them to infinity, because they are all at potential

zero.

No line of force can issue from any of the other conductors such

as Alt because no part of the field has a lower potential than A
t

,

If At is completely cut otf from Ar by the closed surface of one

of the conductors, then qFt
is zero. If A, is not thus cut otf, q„ is a

negative quantity.

If one of the conductors A
t
completely surrounds Ar} then all

the lines of force from Ar fall on A
t
and the conductors within it,
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and the sum of the coefficients of induction of these conductors with

respect to Ar will he equal to q„ with its sign changed. But if

A
t

is not completely surrounded by a conductor the arithmetical

sum of the coefficients of induction q ri>, &« will be less than ?„.

We have deduced these two theorems independently by means

of electrical considerations. We may leave it to the mathematical

student to determine whether one is a mathematical consequence

of the other.

Resultant Mechanical Farce on any Conductor in term of the Charges,

92.] Let 5<J> be any mechanical displacement of the conductor,

and let <J> be the the component of the force tending to produce that

displacement, then « ^e work done H the forC€ durinff

the displacement. If this work is derived from the electrification

of the system, then if Q is the electric energy of the system,

' or' *=-|f-
m

Here Q = 4(^+3,^+ to.) (5)

If the bodies are insulated, the variation of Q must be such that

^ E±> &c. remain constant. Substituting therefore for the values

of the potentials, we have

Q = \^{EtEtpn), (6)

where the symbol of summation 2 includes all terms of the form

within the brackets, and r and * may each have any values from

1 to ». From this we find

!=-**^*# w
as the expression for the component of the force which produces

variation of the generalized coordinate <£.

Resultant Mechanical Force in terms of the Potentials.

93.] The expression for * in terms of the charges is

where in the summation r and s have each every value in suc-

cession from 1 to ii.

Now ET
- where t may have any value from l to n,

?i> that
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Now the coefficients of potential are connected with those of

induction by n equations of the form

2r(A,jW)=l, (10)

and \ u{n — I ) of (In- iui-tii

^(^70=0* (It)

Differentiating with respect to $ we get ^n{n + l) equations of

the form fei#f« **\ _ „

where a and 6 may be the same or different.

Hence, putting a and b equal to r and $,

but 2, {Etprt) = ^, so that we may write

* = (14)

where and i may have each every value in succession from I

to n. This expression gives the resultant force in terms of the

potentials.

If each conductor is connected with a battery or other con-

trivance by which its potential is maintained constant during the

displacement, then this expression is simply

under the condition that all the potentials are constant.

The work done in this case during the displacement 5$ is <4>d<£,

and the electrical energy of the system of conductors is increased

by SQ
; hence the energy spent by the batteries during the dis-

placement is

*a#+&<2 = 2<i>s<£ = 2iQ. (i6)

It appears from Art. 02, that the resultant force * is equal to

—
f
j , .

under the condition that the ehur^vs of the conductors arc

(10
constant. It is also, by Art. 93, equal to =-= , under the con-

(t<f>

dition that the potentials of the conductors are constant. If the
conductors are insulated, they tend to move so that their energy
is diminished, and the work done by the electrical forces during
IIh> displacement is equal to the diminution of energy.

If the conductors are connected with batteries, so that their
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potentials are maintained constant, they tend to move so that the

energy of the system is increased, and the wort done by the

electrical forces during the displacement is equal to the increment

of the energy of the system. The energy spent by the batteries

ia equal to double of either of these quantities, and is spent halt

in mechanical, and half in electrical work.

Ok the Comparison of Similar Electrified Systems.

94.] If two electrified systems are similar in a geometrical sense,

so that the lengths of corresponding Hues in the two systems

are as L to L\ then if the dielectric which separates the conducting

bodies is the same in both systems, the coefficient* of induction

and of capacity will be in the proportion of L to U
.

For if we

consider corresponding portions, A and A', of the two systems, and

suppose the quantity of electricity on A to be E, and that on A

to be E\ then the potentials V and V at corresponding points

B and due to this electrification, will be

V =AB> and 1 = AW'
But AB is to as I to //, so that we must have

E-.E'-.-LV'. LT.
But if the inductive capacity of the dielectric is different in the

two systems, being K in the first and K' in the second, then if the

potential at any point of the first system is to that at the cor-

responding point of the second as V to V, and if the quant,ties

of electricity on corresponding parts are as E to W> we shall have

E-E'::LVK:IfV'K'.

By this proportion we may find the relation between the total

electrification of corresponding parts of two systems, which are

in the first place geometrically similar, in the second place com-

posed of dielectric media of which the dielectric inductive capacity

at corresponding points is in the proportion of K to K\ and m

the third place so electrified that the potentials of corresponding

points are as V to Vf
.

From this it appears that if q lie any coefficient of capacity or

induction in the first system, and c{ the corresponding one in the

second,
>! <{ • '• IJK UK' \

mid if p and / denote corresponding coefficients of potential in

the two systems, , 1 1
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If one of the bodies be displaced in the first system, and the

corresponding body in the second system receive a similar dis-

placement, then these displacements are in the proportion of L
to L\ and if the forces acting on the two bodies are as F to F'

i

then the work done in the two systems will be as FL to F*U.
But the total electrical energy is half the sum of the quantities

of electricity multiplied each by the potential of the electrified

body, so that in the similar systems, if Q and Q' be the total

electrical energy,

Q : Q' : : EV : E' F,

and the difference of energy after similar displacements in the two
systems will be in the same proportion. Hence, since !•'!, i- pro-

portional to the electrical work done during the displacement,

FL : FL' •.•EV- E'V.

Combining these proportions, we find that the ratio of the

resultant force on any hody of the first system to that on the

••ora^ponding body of ihe second system M

F>. F' :: V*K : V'*K',

E~ E'^
or F- F'

• * ' ' L2K ' L'-K'

The first of these proportions shews that in similar systems the

force is proportional to the square of the electromotive force and
to the inductive capacity of the dielectric, but is independent of the

actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive capacity

is greater than that of air, and electrified to given potentials, will

attract each other more than if they had been electrified to the
Mime potentials in air.

The second proportion shews that, if the quantity of electricity

on each body is given, the forces are proportional to the squares

of the electrifications and inversely to the squares of the distances,

and also inversely to the inductive capacities of the media.

Hence, if two conductors with given charges are placed in a
liquid whose inductive capacity is greater than that of air, they
will attract each other less than if they had heen surrounded with

air and electrified with the same charges of electricity.

vol. I. if



CHAPTER IV.

GENERAL THEOREMS.

95.1 Ik the preceding crater wo have calculated the poten »l

function and invented its properties on the

there is a direct action at a distance between electrified bodies,

which is the resultant of the direct actions between the vanous

electrified parts of the bodies.

If we call this the direct method of investigate, the inverse

method Will consist in assuming that the potential is a function

Characterised by property the same a, those winch we have already

established, and investigating the form of the wnttoau

In the direct method the potential is calculated trom the dis-

tribution of electricity by a process of integration and ,s luund

to satisfy certain partial differential cqu.Lin,,, In the inverse

method the partial differential equations are supposed given^ and

we have to find the potential and the distribution of electricity.

It is only in problems in which the distribution of electncity

is riven that the direct method can be used. When we have to

find the distribution on a conductor we must make use of the

inverse method. .

We have now to shew that the inverse method leads in every

case to a determinate result, and to establish certain general

theorems deduced from PoisWs partial differential equation

<h>
1 if * dz l 1

The mathematical ideas expressed by thie equation are of a

different kind from those expressed by the equation

J— at J-co J —a, 1

U the differential equation we express that the values of the

second derivatives of V in the neighbourhood of any point, and



96.] CHARACTERISTICS. OF THE POTENT I A I,. 09

the density at that point are related to each other in a certain

manner, and no relation is expressed between the value of V at
that point and the value of p at any point at :i sensible distune.,

from it.

In the second expression, on the other hand, the distance between
tlie point at which p exists IV. -m the point at
which 7 exists is denoted by r, and is distinctly rm.gnisnd in i] u .

expression to be integrated.

The integral, therefore, is the appropriate mathematical expression
for a theory of action between particles at a distance, whereas the
differential equation is the appropriate expression for a theory of
action exerted between contiguous parts of a medium.
We have seen that the result of the integration satisfies the

differential equation. We have now to shew that it is the only
solution of that equation fulfilling1 certain conditions.

We shall in this way not only establish the mathematical equi-
valence of the two expressions, but prepare our minds to pass from
the theory of direct action at a distance to that of action between
contiguous parts of a medium.

Characteristics of the Potential Function.

00.] The potential function V, considered as derivwl by integration
from a known distribution of electricity either in the substance of
bodies with the volnme-density p or on certain surfaces with the
surface-density tr

t p and <r being everywhere finite, has been shewn
to have the following characteristics :

—

(1) Fis finite and continuous throughout all space.

(2) V vanishes at an infinite distance from the electrified system.
(3) The first derivatives of V are finite throughout all space, and

continuous except at the electrified surfaces.

(4) At every point of space, except on the electrified surfaces, the
equation of Poisson

d*r <py d*r

is satisfied. We shall refer to this equation as the General
Characteristic equation.

At every point where there is no electrification this .-quatiou
becomes the equation of Laplace,

d?V d*V &V

H 3
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(5) At any point of an electrified surface at which the surface-

density is «r, the first derivative of F, taken with respect to the

normal to tlie surface, changes its value abruptly at the surface,

so that dV (IV .

+ -j- +47T«T = 0,
dv (iv

where v and v are the normals on either side of the surface, and

Tand V are the corresponding potentials- We shall refer to this

equation as the Superficial Characteristic equation.

(6) If V denote the potential at a point whose distance from

any fixed point in a finite electrical system is r
y
then the product

Vr, when r increases indefinitely, is ultimately equal to B, the total

charge in the finite system.

97.] Lemttut. Let V he any continuous function of .r, y> *, and

let u, v, w be functions of a;, y, % subject to the general solenoidal

condition du dv d«f _ ^ (1)

dx
+

dy ~dz
~

where these functions are continuous, and to the superficial sole-

noidal condition

I (it,~a2) + m (f,- v2)+ n (*>,-

w

a) = 0. (2 )

at any surface at vrhich these functions become discontinuous,

£ m> w being the direction-cosines of the normal to the surface,

and ft,, vlf w, and w2> t>2> w2
the values of the functions on opposite

sides of the surface, then the triple integral

vanishes when the integration is extended over a space bounded by

surfaces at which either V is constant, or

lit+ mv +nw = 0, (4)

/, m, n, being the direction-cosines of the surface.

Before proceeding to prove this theorem analytically we may

observe, that if u, t>, w be taken to represent the comments of the

velocity of a homogeneous incompressible fluid of density unity,

and if V be taken to represent the potential at any point of space

of forces acting on the fluid, then the general and superficial equa-

tions of continuity ((1) and (2)) indicate that every part of the

space is, and continues to be, full of the fluid, and equation (4)

is the condition to be fulfilled at a surface through which the fluid

does not pass.

The integral M represents the woTk done by the fluid against

the forces acting on it in unit of time.
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Now, since the forces which act on the Hni<l are derived from

the potential function Vf the work which they do is suhject to the

law of conservation of energy, und the work done on the whole

fluid within a certain space may ho found if we know the potential

at the points where each line of flow enters the space and where

it issues from it. The excess of the second of these potentials over

the first, multiplied by the quantity of fluid wbieh is transmitted

aJong each line of flow, will give the work done by that portion

of the thud, and the sum of all such products will give the whole

work.

Now, if the space he bounded by a surface for which f~=C, a

constant quantity, the potential will be the sumo at the place

where any line of flow enters the space and where it issues from

it, so that in this case no work will be done by the forces on the

fluid within the space, and M= 0.

Secondly, if the space be bounded in whole or in part by a

surface satisfying equation (4), no fluid will enter or leave the space

through this surface, so that no part of the value ofM can depend

on this part of the surface.

The quantity M is therefore zero for a space bounded externally

by the eln.^rd surface ('=€', and it remains zero though any part

of this space be cut off from the rest by surfaces fulfilling the

condition (4).

The analytical expression of the process by which we deduce the

work done in the interior of the space from that which takes place

at the hounding surface is contained in the following method of

integration by parts.

Taking the first term of the integral M,

IK^it =ffn»n<w-f$ft%mm
where ss «, /\ — w

2
F
2 + »3 V.A— «4 1\ + &c.

;

and where «,/',. n.J\, &v. are the v;ihu s of it and v at the points

whose coordinates are (#J} $, z\ (a?2 , y, s\ &c, »
t , a?2 , &c. being the

values of .r where the ordinate cuts the bounding surface or surfaces,

arranged in descending order of magnitude.

Adding the two other terms of the integral If, we find

M^jJvfaV) <Uj dz+ffz (v V) dz dx+ffz (w V) dxdy

fdu dv dn\
, , ,

f' (-r + , 4- , J
d.r dy dz

\x dy dz>ill
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If I, m, n are the direction-cosines of the normal drawn inwards

from the bounding surface at any point, and dS an element of that

surface, then we may write

the integration of the first term being extended over the bounding

surface, and that of the second throughout the entire space.

For all spaces within which «, v
t
v> are continuous, the second

term vanishes in virtue of equation (1). If for any surface within

the space », v, to are discontinuous hut subject to equation (2), we

find for the part ofM depending on this surface,

M
l
= j ?\ (h v

i + vl
\
pi+%*^>)

M.i = ~fj
1'

2&% + vh v
*+ w

*
(l &i ;

where the suffixes , and a ,
applied to any symbol, indicate to which

of the two spares separated by the surface the symbol belongs.

Now, since V is continuous, we have at every point of the surface,

we have also dS^ — dS2 — dS;

but since the normals are drawn in opposite directions, we have

so that the total value of M, so far as it depends on the surface of

discontinuity, is

The quantity under the integral sign vanishes at every point in

virtue of the superficial solenoidal condition or characteristic (2).

Hence, in determining the value of M, we have only to consider

the surface-integral over the actual bounding surface of the space

considered, or

M = —jj}
r
{lv>+ mv 4- ww) dS.

Case I. If V is constant over the whole surface and equal to C,

M= — cjf{In + me + nte) dS.

The part of this expression under the sign of double integration

represents the surface-integral of the flux whose components are

n, tf, W, and by Art. 21 this surface-integral is zero for the closed

surface in virtue of the general and superficial eoienoidal conditions

(I) and (2).
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Hence M = for a space bounded by a single equipotential

surface.

If the space is bounded externally by the surface V — C\ and

internally by the surfaces F= Cl} F= C2 ,
&c., then the total value

ofM for the space so bounded will be

where M is the value of the integral for the whole space within the

surface f — C, and 3ft ,
M2 are the values of the integral for the

spaces within the internal surfaces. But we have seen that M,
M

i ,
M.£i &c. are each of them zero, so that the integral is zero also

for the periphractic region between the surfaces.

Case 2. If lit + mv + nw is zero over any part of the bounding

surface, that part of the surface can contribute nothing to the value

of Af
t
because the quantity under the integral sign is everywhere

zero. Hence M will remain zero if a surface fulfilling this con-

dition is substituted for any part, of the bounding surface, provided

that the remainder of the surface is all at the same potential.

1)8.3 ^e are now prepared to prove a theorem which we owe to

Sir William Thomson*.

As we shall require this theorem in various parts of our subject,

I shall put it in a form capable of the necessary modifications.

Let a, A, c be any functions of a?, y, z (we may call them the

components of a flux) subject only to the condition

da dh ilc ri

where p has given values within a certain spare. This is the general

characteristic of a, &, c.

Let us also suppose that at certain surfaces (S) «, A, and are

(lisf.nitimtnus, but sitisly the condition

I {a
x
—«g+ m (it—b£ + « (fj— c

2)+ 4 7T a = ; (6)

where /, a/, 11 are tin- .1 in-et i.nt-e. -sines of the normal to the surface,

et
lt

Aj, c
x
the values of a, 6, c on the positive side of the surface, and

a±} 6it cs those on the negative side, and er a quantity given for

every point, or the surface. This condition is the superficial charac-

teristic of a, l>} c.

Next, let us suppose that V is a continuous function of z,

which either vanishes at infinity or whose value at a certain point

is given, and let V satisfy the general characteristic equation

'* '''i»i'ri,i>j> <tn>t UMln MnfhriMltioii Jinirnti/. I'Vlirunrv. 18-18.
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^ da: dp dy d: az

and the superficial characteristic at the surfaces (£),

K being a quantity which may be positive or zero but not negative,

given at every point of space.

Finally, let 8 it Q represent the triple integral

8 * s =inh {a
" +i>2+ c2) 49 dy (Ui <9)

extended over a space bounded by surfaces, for each of which either

V = constant,

^ +^ +^=^^+^4f +J^:^i^ =i^, (io)

where the value of q is given at every point of the surface ;
then, if

a, b, e be supposed to vary in any manner, subject to the above

conditions, the value of Q will be a unique minimum, when

dV , vdV KdV (n)
' =K

Ty'
1 ]

Proof.

If we put for the general values of &, b, c,

-=*f**J <">

then, by substituting these values in equations (5) and (7), we find

that u, v, w satisfy the general solenoidal condition

dit dv dto

We also find, by equations (6) and (8), that at the surfaces of

discontinuity the values of ttu V» *t and r2 ,
to
3

satisfy the

superficial solenoidal condition

(2) /(«1
-«i)+ »»fa- y2)+ w (

wi- K'*) = °*

The quantities u, v, w, therefore, satisfy at every point the sole-

noidal conditions us stated in the preceding lemma.
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We may now express Q in terms of u, v, w and V,

+ l((/("^+^ +w '2')&*'fe
-

(13)

The last term of <3 may be written 2 J/, where M is the quantity

considered in the lemma, and which wo proved to be zero when the

space is bounded by surfaces, each of which is either equipotcntial

or satisfies the condition of equation (10), which may bo written

(4) Iti + mv+ nw = 0.

Q is therefore reduced to the sum of the first and second terms.

In each of these terms the quantity under the sign of integration

consists of the sum of three squares, and is therefore essentially

positive or zero. Hence the result of integration can only be

positive or zero.

Let us suppose the function V known, and let us find what values

of «, v, w will make Q a minimum.

If we assume that at every point u = 0, v = 0, and w = 0, these

values fulfil the solenoidal conditions, and the second term of Q
is zero, and Q is then a minimum as regards the variation of

It, v, to.

For if any of those quantities had at any point values differing

from zero, the second term of Q would have a positive value, and

Q would be greater than in the case whieh we have assumed.

But if ii = 0, v = 0, and w = 0, then

* ' dx ay dz

Hence these values of a, 6, e make Q a minimum.

Rut the values of a
t

b, c, as expressed in equations (12), are

perfectly general, and include all values of these quantities con-

sistent with the conditions of the theorem. Hence, no other values

of a, 6, c can make Q a minimum.

Again, Q is a quantity essentially positive, and therefore Q is

always capable of a minimum value by the variation of as 6, c.

Hence the values of a, 6, c which make Q a minimum must have

a real existence. It does not follow that our mathematical methods

are sufficiently powerful to determine them.

Corollary I. If a
t
b

}
e and K are given at every point of space,

and if we write
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llY , „dV rrdV
(12) * = * = K^+ V

>
c = K

}te
+w

>

with the condition 1
1

)

flu dv dw _
Tlx

+
dy

+
dz ~ '

then Yj «, v} w can be found without ambiguity from these four

equations.

Corollary II. The general characteristic equation

d „dY d „dY d vdT
dx dx dy dy dz dz

where Tis a finite quantity of single value whose first derivatives

are finite and continuous except at the surface S, and at that surface

fulfil the superficial characteristic

, fr dV
x

..<?!:,, (
,-<Wy

Tr
dV*\

dy 8 dy

can he satisfied by one value of Y, and by one only, in the following

eases.

Case 1. "When the equations apply to the space within any closed

surface at every point of which V= C.

For wc have proved that in this ease b, c have real and unique

values which determine the first derivatives of V, and hence, if

different values of V exist, they can only differ by a constant. But

at the surface V is given equal to C, and therefore V is determinate

throughout the space.

As a particular case, let us suppose a space within which p =
bounded by a closed surface at which Y—C. The characteristic

equations are satisfied by making V= C for every point within the

space, and therefore Y= C is the only solution of the equations.

Case 2. When the equations apply to the space within any closed

surface -M every point of which J^is given.

For if in this case the characteristic equations could be satisfied

by two different values of V, say V and Y't put U= Y— Y\ then

subtrartinfr (He ehariu-f eristic equation in Y' from that, in Y, we

find a characteristic equation in 17. At the closed surface U =
because at the surface Y=Y', and within the surface the density

is zero because p — p'. Hence, by Case 1, U = throughout the

t.ui-l<*cd spare, and therefore Y= Y' throughout this space.
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Case 3. When the equations apply to a space bounded by a

closed surface consisting: °f two parts, in one of which V is given at

every point, and in the other

where q is given at every point.

For if there are two values of V, let V* represent, as before, their

difference, then we shall have the equation fulfilled within a closed

surface consisting of two parts, in one of which Uf— 0, and in the

other JU' dU' dU'
I — \- m -= h n —7— — :

dx dy ds

and since U'— satisfies the equation it is the only solution, and

therefore there is but one value of V possible.

Note.—The function Tin this theorem is restricted to one value

at each point of space. If multiple values are admitted, then,

if the space considered is a cyclic space, the equations may be

satisfied by values of V containing terms with multiple values.

Examples oi' ilii- will occur in Electromagnet-ism.

(Jlh] To apply this theorem to determine the distribution of

electricity in an electrified system, we must make A'= 1 throughout

the space occupied by air, and A'= x throughout (he Kpaeo occupied

by conductors. If any part, of the space is occupied by dielectrics

whose inductive capacity differs from that of air, we must make K
in that part of the space equal to the specific induetive capacity.

The value of F, determined so as to fulfil these conditions, will

be the only possible value of the potential in the given system.

Green's Theorem shews that the quantity Q, when it has its

minimum value corresponding to a given distribution of electricity,

represents the potential energy of that distribution of electricity.

See Art. 100, equation (11).

In the form in which Q is expressed as the result of integration

over every part of the field, it indicates that the energy due to the

electrification of the bodies in the field may he considered as the

result of the summation of a certain quantity which exists in every

part of the field where electrical force is in action, whether elec-

1 1 ilication be present or not in that part of the Held.

'I'll.' Mini I-.. matical method, therefore, in which Q, the symbol

of electrical energy, is made an object of study, instead of
i>,

the

symbol of electricity itself, corresponds to the method of physical

speculation, in which we look for Ihe seat of elccfcrK-al action in



HIS GENERAL THEOREMS. [l°0.

every part of the field, instead of confining onr attention to the

electrified bodies.

The fact that Q attains a minimum value when the components

of the electric force arc expressed in terms of the first derivatives

of a potential, shews that, if it were possible for the electric force

to be distributed in any other manner, a mechanical force would

be brought into play tending to bring the distribution of force

into its actual state. The actual state of the electric field is

therefore a state of stable equilibrium, considered with reference

to all variations of that state consistent with the aetual distribution

of free electricity.

Green's Theorem.

100.] The following remarkable theorem was given by George

Green in his essay ' On the Application of Mathematics to Electricity

and Magnetism.
1

I have made use of the coefficient K, introduced by Thomson, to

give greater generality to the statement, and we shall find as we

proceed that the theorem may be modified so as to apply to the

most general constitution of crystallized media.

We shall suppose that U and V are two functions of x, y, z,

which, with their first derivatives, are finite and continuous within

the space bounded by the closed surface S.

We shall also put for conciseness

d -dU d „dU d -dU
(1

<

and &JtKi4*C+ y&m-±*& (2)
dy da dy dy dz dz

where A' is a real quantity, given for each point of space, which

may be positive or zero but not negative. The quantities p and

p correspond to volume-densities in the theory of potentials, but

in this investigation they are to be considered simply as ab-

breviations for the functions of U and V to which they are here

equated.

In the same way we may put

/A -j

—

\-mh -j- + nK -j- =ittv, (3)
dx dy dz

ljr dF -.dV „dF
, fA

.

and IK -j- +mK + « A - = 4 tt er', (4)
ax rly

where /, m, n are the direction-cosines of Ihc normal drawn inwards
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from tlie surface S. The quantities u and a correspond to super-

ficial densities, but at present we must consider them as defined by

the above equations.

Green's Theorem is obtained by integrating by parts the ex-

pression

4 *M
=JJJ

K
Ci;^ +^ *s^** (5)

throughout the spaeo within the surface jS'.

dV
If we consider as a component of a force whose potential is F,

dU
and if -y- as a component of a flux, the expression will give the

work done by the force on the flux,

If we apply the method of integration by parts, we find

fff^rd ^dU d v dU d „f/6\ . . . . .

or J vM= fji 77 </ r<|8 +^4 F<&^ dz. ( 7)

In precisely the same manner by exchanging J/and Vt we should

fin<l

4vM=+jj i *«Uds+
fjj

4*pUdxd>y dz. (8)

The statement of Green's Theorem is that these three expressions

for J& are identical, or that

M=ff<r'rdS+ fffp'rd*d2?dz=ff<TUd$+ fjf
pUdxdydz

4ttJJJ ^dx dx * dy dy ^ dz dz*
11

Correction of Green's Theoremfor Cyclases.

There sire eases in which the resultant fofOB
»J

:ni.v
I

1 "!" 1 pi 8

certain region fulfils the ordinaiy condition uf having a potential,

while the potential itself is a many-valued function of the coor-

dinates. For instance, if

z--\-y" x +y

we find V = tan- 1 ^ , a many-valued function of x and ^, the

values of V forming an arithmetical series whose common dilference
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is 2ir, and in order to deBne which of these is to be taken in

any particular case we must make some restriction as to the line

along which we are to integrate the force, from the point when;

V s= to the required point.

In this case the region in which the condition of having a

potential is fulfilled is the cyclic region surrounding the axis of z,

this axis being a line in which the forces are infinite and therefore

not itself included in the region.

The part of the infinite plane of xz for which x is positive may

be taken as a diaphragm of this cyclic region. If we begin at

a point close to the positive side of this diaphragm, and integrate

along a line which is restricted from passing through the diaphragm,

the line-integral will he restricted to that value of V which is

positive hut less than 2 v,

Let us now suppose that the region bounded by the closed surface

S in Green's Theorem is a cyclic region of any number of cycles,

and that the function V is a many-valued function having any

number of cyclic constants.

The quantities ^> ^ > and ^ will have definite values at all
a d$ ag wt

points within S, so that the volume-integral

—— + ——

,

vfo dx dy dtf dz dz*

has a definite value, <r and p have also definite values, so that if U

is a single valued function, the expression

jj<rUd8+ fj
fpUilx ih/ <?:

has also a definite value.

The expression involving V has uo definite value as it stands,

for Tis a many-valued function, -and any expression containing it

is many-valued unless some rule he given whereby we are directed

to select one of the many values of Tat each point of the region.

To make the value of V definite in a region of ft cycles, we must

conceive ft diaphragms or surfaces, each of which completely shuts

one of the channels of communication between the parts of the

cyclic region. Each of these diaphragms reduces the number of

cycles by unity, and when ft of them are drawn the region is still

a connected region but acyclic, bo that we can pass from any one

point to any other without cutting a surface, but only by recon-

cileable paths.
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Let 5, bo the first of these diaphragms, and let the line-integral

of the force for a line drawn in the acyclic space from a point

on the positive side of this surface to the contiguous point on

the negative side be ^ , then n
t

is the first cyclic constant.

Let the other diaphragms, and their corresponding cyclic con-

stants, be distinguished by suffixes from 1 to n, then, since the

region is rendered acyclic by these diaphragms, we may apply to

it the theorem in its original form.

We thus obtain for the complete expression for the first member

of the equation

fffp'rdxdfdz+ffa'rdS+Jf + ff^'K^lSt+kc. +fj^^dS*.

The addition of these terms to the expression of Green's Theorem,

in the case of many-valued functions, was first shewn to be necessary

by Ilelmholtz * and was first applied to the theorem by Thomson.

Physical Interpretation of Green's Theorem.

The expressions ad& and pdxdydz denote the quantities of

electricity existing on an element of the surface S and in an

element of volume respectively. We may therefore write for either

of these quantities the symbol e, denoting a quantity of electricity.

We shall then express Green's Theorem as follows

—

M = 2 (TV) = 2(F'tf);

where we have two systems of electrified bodies, e standing in

succession for eXf &c., any portions of the electrification of the

lirst system, and V denoting the potential at any point due to all

these portions, while e' stands in succession for e{, <?./, &c, portions

of the second system, and V denotes the potential at any point

due to the second system.

Hence Vd denotes the product of a quantity of electricity at a

point belonging to the second system into the potential at that

point due to the first system, and 2 (
Vd) denotes the sum of all

such quantities, or in other words, 2 ( Vd) rcpresente that part of

the energy of the whole electrified system which ia due to the

action of the second system on the first.

In the sunn? way S
(
V'<s) represents that part of the energy of

* * tJobcr Integrate der Hydrodynamigchen Gloioliungen welohe dt,n Wirlxllwi

wegungttn tntoyrtwhen,' CrtlU, 1838* Tnuudatetl by Tait in PhiL Mtuj., 18U7, (»>

t ' On VorU-x Motion,' Tram. R. S. Edin.. «v. part i. p. 241 (1868).
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the whole system which is due to the action of the first system on

the second.

If we define V as where r is the distance of the quantity e

of electricity from the given point, then the equality between these

two values of M may be obtained as follows, without Green s

Theorem

—

This mode of regarding the question belongs to what we have

called the direct method, in which we begin by considering certain

portion* of ,1,,-irieity, placed at certain point, of space, and acting

on one another in a way depending on the distances between these

points, no account being taken of any intervening medium, or ot

any action supposed to take place in the intervening space.

Green's Theorem, on the other hand, belongs essentially to what

we have called the inverse method. The potential is not supposed

to arise from the electrification by a process of summation but

the electrification is supposed to be deduced from ^perfectly

arbitrary function called the potential by a process of difteren-

In ihe direct method, the equation is a simple extension of the

law that when any force acts directly between two bodies, action

and reaction are equal and opposite.

In the inverse method the two quantities are not proved directly

to be equal, but each is proved equal to a third quantity, a triple

integral which we must endeavour to interpret.

If we write R for the resultant electromotive force due to the

potential V}
and I, m, * for the direction-cosines of Jt, then, by

Artn
' jit av dV~§-m

If we also write K for the force due to the second system, and

l'
t
m% ri for its direction-cosines,

and the quantity M may be wiitten

M - i_
[Jf

{KRK cos M dy dt, (I ()
)
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f.

where cos t — ll'+ mm'+ nn\

being the angle between the directions of R and R,
Now if K is what we have called the coefficient of electric

inductive capacity, then KR will be the electric displacement due
to the electromotive force R, and the product KBR* cos e will
represent the work done by the force Rf on account of the dis-
placement caused by the force R, or in other words, the amount
of intrinsic energy in that part of the field due to the mutual
action of R and Ay .

We therefore conclude that the physical interpretation of Green's
theorem is as follows

;

If the energy which h known In exist in an ehrtriliud system
is due to actions which take place in all parts of the field, and
not to direct aetion at a distance between the electrified bodies,
then that part of the intrinsic energy of any part of the field

upon which the mutual action of two electrified systems depends
is FCltR* cos e per unit of volume.

The energy of an electrified system due to its action on itself is,

hyArt. 85, \2{er),

which is by Green's theorem, putting 17= V

,

..«-n///'(i|+f|+g)***. m
and this is the unique minimum value of the integral considered
in Thomson's theorem.

Green's Function.

101.] Let a closed surface S be maintained at potential zero.

Let F and Q be two points on the positive side of the surface S
(we may suppose either the inside or the outside positive), and
let a small body charged with unit of electricity be placed at P

;

the potential at the point Q will consist of two parts, of which one
is due to tho direct action of the electricity on P, while t he otli.r

is due to the action of the electricity induced on S by jP. The
hitter part of the potential is called Green's Function, and is

denoted by Gpr
This quantity is a function of the positions of the two points

P and Q, the form of which depends on that of the surface S. U
has been determined in the case in whieh S is a sphere, and in

a very few other cases. It denotes the potential at Q due to the

electricity induced on S by unit of electricity at P.
vor.

i ,
,



114 GENERAL THEOREMS. [iOI.

The actual potential at any point Q due to the electricity at P
and on S is j

r + °**>

where r
pa

denotes the distance between P and Q.

At the surface S, , and at all points on the negative side of S, the

potential is zero, therefore i
, ,

'pa

where the suffix a indicates that a point A on the surface S is taken

instead of Q.

Let (r
pj denote the surface-density induced by P at a point A'

of the surface S, then, since GM is the potential at Q due to the

superficial distribution,

where is an element of the surface S at .4', and the integration

is to be extended over the whole surface 5.

But if unit of electricity had been placed at Q, we should have

had by equation (1), \

= - <V (
3

)V
=-// (4)

where <rga is the density induced by Q on an element dS at A, and

ra</ is the distance between A and A'. Substituting1 this value of

in the expression for G
pil , we find

Since this expression is not altered by changing-
p

into and

„
into,, we find that

t?,
tf (6)

a result which we have already shewn to be necessary in Art. 88,

but which we now see to be deductible from the mathematical process

by which Green's function inuy U calculated.

If we assume any distribution of electricity whatever, and place

in the field a point charged with unit of electricity, and if the

surface of potential zero completely separates the point from the

assumed distribution, then if we take this surface for the surface S,

and the point for P, Green's function, for any point on the same
side of the surface as P, will be the potential of the assumed dis-

tribution on the other side of the surface. In this way we may
construct any number of cases in which Green's function can be
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found for a particular position of P . To find the form of the
function when the form of the surface is given and the position
of P m arhtrary is a problem of far greater difficulty, though
as we have proved, it is mathematically possible.
Let us suppose the problem solved, and that the point P i8

taken withm the surface. Then for all external point, the potential
of the superficial distribution is equal and opposite to that ofP
lhe superficial distribution is therefore centrobaric *, and its action
on all external points is the same as that of a unit of negative
electricity placed at P.

S

Method of Approximating to the Values of Coejjhient* of Capacity $c.

102.] Let a region be completely bounded by a number of
surfaces SQ ,

Slt S2 , &c, and let K be a quantity, positive or zero
but not negative, given at every point of this region. Let V
be a function subject to the conditions that its values at the
surfaces Slt S,, &c. are the constant quantities (\, (L. fee., and that
at the surface S y;

^=°- 0)
where v is a normal to the surface S . Then the integral

taken over the whole region, has a unique minimum when V satisfies
the equation d dV d dy d w
throughout the region, as well as the original conditions.
We have already shewn that a function F exists which fid ill. (]„

conditions (1) and (3), and that it is determinate in value. We
have next to shew that of all functions fulfilling the surface-con-
ditions it makes Q a minimum.

Let % be the function which satisfies (1) and (3), and let

be a function which satisfies (1).
It follows from this that at the surfaces $lt S2 , &c. (7 = 0.
Tlw value of Q becomes

«=»y//^(fr + ^.)^(fr+&,)

• Tlu>maon andTrirt Natural PhUotophy, § 62ft.

I 2
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Let us confine our attention to the last of these three groups

of terms, merely observing that the other groups are essentially

positive. By Green's theorem

the first integral of the second member being extended over the

surface of the region and the second throughout the enclosed space.

But on the surfaces 8„ 8* fcc. tf= 0, so that these contribute

nothing to the surface-integral.

Again, on the surface S
,^ = 0, so that this surface contributes

nothing to the integral. Hence the surface-integral is zero.

The quantity within brackets in the volume-integral also dis-

appears by equation (3), so that the volume-integral is also zero.

Hence Q is reduced to
— i>

Both these quantities aTe essentially positive, and therefore the

minimum value of Q is when

dx dy dz

or when U is a constant. But at the surfaces 5, &c. U = 0. Hence

U = everywhere, and F gives the unique minimum value of Q.

Calculation of a Superior Limit of the Coefficient* of Capacity.

The quantity Q in its minimum form can be expressed by means

of Green's theorem in terms of Flt Fi3 fee, the potentials of SXi S2 ,

and Ex ,
H2t &e, the charges of these surfaces,

Q = i(*
r
iJEi+F'*A + &*0; (9)

or, making use of the coefficients of capacity and induction as defined

in Article 87,

q = i{r1
a
Ju +r,* fe + &c.)+r1 r^+fce. (10)

The accurate determination of the coefficients q is in general

difficult, involving the solution of the general equation of statical

electricity, but we make use of the theorem we have proved to

determine a superior limit to the value of any of these coefficients.



102.] METHOD OF APPROXIMATION. H7
To determine a superior limit to the coefficient of capacity qmake V

x = I, and V%i F3 , &c. each equal to zero, and then take
any function f which shall have the value I at S

l3 and the value
at the other surfaces.

Prom this trial value of 7 calculate Q hy direct integration,
and let the value thus found be Q

f
. We know that Q' is not lew

than the absolute minimum value Q, which in this case is £ qn .

Plence
qn is not greater than 2 Q'. (in

If we happen to have chosen the right value of the function
V

y then qn = 2 Q'
} but if the function we have chosen differs

slightly from the hue form, then, since Q k a minimum, Q will
still be a close approximation to the true value.

Superior Limit oftU Coefficient* of Potential.

We may also determine a superior limit to the coefficients of
potential defined in Article 86 by means of the minimum value
of the quantity Q in Article 98, expressed in terms of a, £, e.

By Thomson's theorem, if within a certain region hounded by the
surfaces S^, $u &c. the quantities a, b, c arc subject to the condition

da db dc

and if ta+wb +nc sa q (13)

be given all over the surface, where /, m, » are the direction-cosines
of the normal, then the integral

ie an absolute and unique minimum when

m
When the minimum is attained Q is evidently the same quantity

which we had before.

If therefore we can find any form lor a, A, r which satisfies the
condition (12) and at the same time makes

j fq dS, = % jjq dS, = % &c. ; (I G)

and if Q" be the value of Q calculated by (H) from these values of
a

> c, then Q" is not less tlian
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If we take the ease in which one of the surfaces, say 52 ,
sur-

rounds the rest at an infinite distance, we have the ordinary ease

of conductors in an infinite region ; and if we make E% = and

E- for all the other surfaces, we have F2 = at infinity, and

a. 2 Q"
pu is not greater than -

^,
-

In the very important case in which the electrical action is

entirely between two conducting surfaces ^ and 4, of which S,2

completely surrounds S
1
and is kept at potential zero, we have

E1
=-E2 and qn pn = 1.

Hence in this case we have

E
qn not less than ^> ; (18 )

and we had before ^ ^ greater than 2 Q'
j

(19)

so that we conclude that the true value of ?u , the capacity of the

internal conductor, lies between these values.

This method of finding superior and inferior limits to the values

of these coefficients was suggested by a memoir ' On the Theory

of Resonance,' by the Hon. J. W. Strutt, EkiL Trans., 1871. See

Art. 308.



CHAPTER V.

MECHANICAL ACTION BETWEK.N I' I.K' TRIF1KD BODIES.

103.] Let F= C be any closed equipotential surface, C being

a particular value of a function V
%
the form of which we suppose

known at every point of space. Let the value of Ton the outside

of this surface he f'\, and on the inside F
2 , Then, by Poisson's

equation

<PF &V d*V

we can determine the density p l
at every point on the outside, and

the density p2 at ever}1

" point on the inside of the surface. We shall

call the whole electrified system thus explored on the outside 7?,
;

and that on the inside jB2 . The actual value of V arises from the

combined action of both these systems.

Let 72 be the total resultant force at any point arising from

the aetion of E
x
and JEj, R is everywhere normal to the eojii-

potential surface passing through the point.

Now let us suppose that on the euuipotential surface V = C
electricity is distributed so that at any point of the surface at

which the resultant force due to Y;'j and /:._, reckoned outwards

is Iit the surface-density is c, with the condition

R = 4 n <r
; (2)

and let us call this superficial distribution the electrified surface S,

then we can prove the following theorem relating to the aetion of

this electrified surface.

11 any equipotential surface belonging to a given electrified

system be coated with electricity, so that at each point the surlhrt-

R •

density <r = — , where R is the resultant force, due to the original

electrical system, acting outwards from that point of the surface,

then the potential due to the electrified surface at any point on
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the outside of that surface will be equal to the potential at the

same point due to that part of the original system which was on

the inside of the surface, and the potential due to the electrified

surface at any point on the inside added lo that due to the part of

the original system on the outside will he equal to C, the potential

of the surface.

For let us alter the original system as follows :

Let us leave everything the same on the outside of the surface,

but on the inside let us make F2 everywhere equal to C, and let us

do away with the electrified system R
t
on the inside of the surface,

and substitute for it a surface-density <t at every point of the

surface S, such that R — 4 v (3)

Then this new arrangement will satisfy the characteristic's of F at

every point.

For on the outside of the surface both the distribution of elec-

tricity and the value of F are unaltered, therefore, since F originally

satisfied Laplace's equation, it will still satisfy it.

On the inside V is constant and p zero. These values of f and p

also satisfy the characteristic equations.

At the surface itself, if T\ is the potential at any point on the

outside and V% that on the inside, then, if /, m t
n are the direction-

cosines of the normal to the surface reckoned outwards,

JVX dJ\ dV. _ u*

dx dy az

and on the inside the derivatives of F vanish, so that the superficial

characteristic

,tdVt fdV\ r/F
£ , Mi dF,2,

is satisfied at every [joint of the surface.

Hence the new distribution of potential, in which it has the

old value on the outside of the surface and a constant value on

the inside, is consistent with the new distribution of electricity,

in which the electricity in the space within the surface is removed

and a distribution of electricity on the surface is substituted for

it. Also, since the original value of F, vanishes at infinity, the

new value, which is the same outside the surface, also fulfils this

condition, and therefore the new value of V is the sole and only

value of F belonging to the new arrangement of electricity.



EQUIVALENT ELECTKIKIED SUliFACE.

On the Mechanical Action and Reaction of (he tysfanx /
, and /:'.,.

1Q4] If we now suppose the equipotential surface V — to

become rigid and capable of sustaining the action of forces, wo
may prove the following theorem.

If on every element d& of an equipotential surface a force

—
- i2

2 rf£be made to act in the direction of the normal reckoned

outwards, where R is the 'electrical resultant force' along the
normal, then the total statical effect of these forces on the

.surface considered as a rigid shell will lie the .same as the total

statical effect of the electrical action of the electrified system
outside the shell on the electrified system Ea inside the shelf, the

parts of the interior system E2 being supposed rigidly connected

together.

We have seen that the action of the Aw\ 1, •
.

i , , in the last

theorem on any external point was equal to that of the internal

system Rit and, since action and reaction are equal and opposite,

the action of any external electrified body on the electrified surface,

considered as a rigid system, is equal to that on the internal system
J?3 . Hence the statical action of the external system E

x
on the

electrified surface is equal in all respects to the action of E
x
on the

internal system E
2

.

But at any point just outside the electrified surface the resultant

force is R in a direction normal to the surface, and reckoned positive

when it acts outwards. The resultant inside the surface is zero,

therefore, by Art. 70, the resultant force acting on the element

dS of the electrified surface is $Rvd8, where a is the surface-

density.

Substituting the value of o- in terms of R from equation (2), and
denoting by pdS the resultant force on the electricity spread over

the element dS, we find

This force always acts along the normal and outwards, whether
R he positive or negative, and may be considered as equal to a

pressure p= — R? acting on the surface from within, or to a tension

of the same numerical value acting from without.

* Set; Sir W. Thomson ' On tin.- AUmctiunH of Uiuulucting anil Nmi-coiKiuctitij,'
kl<fL-tnfied BtHlius,' Cauthidqc Mathcinatiail Jottrwtf, May 1S43, and Reprint,
Art. VII, $ H7.

^
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Now R is the resultant due to the eomhined action of the

external system Et
and the electrification of the surface S. Hence

the effect of the pressurep on eaeh element of the inside of the surface

considered as a rigid hotly is equivalent to this eomhined action.

But the actions of the different parts of the surface on eaeh other

form a system in equilibrium, therefore the effect of the pressurepm
the rigid shell is equivalent in all respects to the electric attraction

of B
l
on the shell, and this, as we have before shewn, is equivalent

to the electric attraction of E^ on -E, considered as a rigid system.

If we had supposed the pressure p to act on the outside of the

shell, the resultant effect would have been equal and opposite, that

is, it would have been statically equivalent to the action of the

internal system Et
on the external system 2St .

Let us now take the case of two electrified systems E
x
and

EZi such that two equipotcntial surfaces F= C
l
and V— C% ,

which

we shall call 6\ and & respectively, can be described so that % is

exterior to Slt and 5, surrounds S.£ , and E%
lies within^

Then if J?
x
and i?a represent the resultant force at any point of

& and S
2
respectively, and if we mate

the mechanical action between ^ and Ez is equivalent to that

between the shells S, and S2 ,
supposing every point of S, pressed

inwards, that is, towards S2 with a pressure ft,
and every point of

S.£
pressed outwards, that is, towards with a pressure p2 ,

'

105.3 According to the theory of action at a distance the action

between JF, and E2 is really made up of a system of forces acting in

straight lines between the electricity in B, and that in E^ and the

actual mechanical effect is in complete accordance with this theory.

There is, however, another point of view from which we may

examine the action between E
l
and 7v When we see one body

acting on another at a distance, before we assume that the one

acts directly on the other we generally inquire whether there is

any material connexion between the two bodies, and if we find

strings, or rods, or framework of any kind, capable of accounting

for the observed action between the bodies, we prefer to explain

the action by means of the intermediate connexions, rather than

admit the notion of direct action at a distance.

Thus when two particles are connected by a straight or curved

rod, the action between the particles is always along the line joining

them, but we account for this action by means of a system of
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internal forces in the substance of the rod. The existence of these
internal forces is deduced entirely from observation of the effect

of external forces on the rod, and the internal forces themselves
are generally assumed to he the resultants of forces which act
between particles of the rod. Thus the observed action between
two distant particles is, in this instance, removed from the class

of direct actions at a distance by referring it to the intervention
of the rod

; the action of the rod is explained by the existence
of internal forces in its substance ; and the internal forces are
explained by means of forces assumed to act between the particles

of which the rod is composed, that is, between bodies at distances

which though small must be finite.

The observed action at a considerable distance is therefore ex-

plained by means of a great number of forces acting between
bodies at very small distances, for which we are as little able to

account as for the action at any distance however great.

Nevertheless, the consideration of i]u > phenomenon, :is explained

in this way, leads ua to investigate the properties of the rod, and
to form a theory of elasticity which we should have overlooked
if we had been satisfied with the explanation by action at a distance.

106*.] Let us now examine the consequence of assuming that, the
action between electrified bodies can bo explained by the inter-

mediate action of the medium between them, and let us ascertain

what properties of the medium will account, for the observed action.

We have first to determino the internal forces in the medium,
and afterwards to account for them if possible.

In order to determine the internal forces in any case we proceed
as follows :

Let the .system _V be in equilibrium under the action of the

system of external forces F. Divide M by an imaginary surface

into two parts, M
1
and M,,, and let the systems of external forces

acting on these parts respectively be Fl and F*. Also let the

internal forces acting on M
x
in consequence of its connexion with

H% be called the system /.

Then, since M
l

is in equilibrium under the action of Jj and /,

it follows that / is statically equivalent to Fy reversed.

Li the ease of the electrical act inn between two electrified systems

Wj and F2 , we described two closed equipotential surfaces entirely

surrounding F, and cutting it off from Flf and we found that the

application of a certain normal pressure at every point of the inner

side of the inner surface, and on the outer side of the outer surface,
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would, if these surfaces wore each rigid, act, on the outer surface

with a resultant equal to that of the electrical forces on the outer

system A\ ,
and on the inner surface with a resultant equal to that

of the electrical forces on the inner system.

Let us now consider the space between the surfaces, and let us

suppose that at every point of this space there is a tension in the

direction of R and equal to ^ X1 per unit of area. This tension

will act on the two surfaces in the same way as the pressures on

the other side of the surfaces, and will therefore account for the

action between Ex
and E2 , so far as it depends on the internal force

in the space between S± and *Sa .

Ijct us next investigate the equilibrium of a portion of the shell

bounded by these surfaces and separated from the rest by a surface

everywhere perpendicular to the equipotential surfaces. We may

suppose this surface generated by describing any closed curve on

Slt and drawing from every point of this curve lines of force till

they meet S
t

.

The figure we have to consider is therefore bounded by the two

equipotential surfaces S, and &, and by a surface through which

there i> n<> induction, vvIlllIi we may cull N„.

Let us first suppose that the area of the closed curve on S
1
is very

small, call it dSlt and that C2 = C\ + dK
The portion of space thus bounded may be regarded as an element

of volume. If v is the normal to the equipotential surface, and

dS the element of that surface, then the volume of this element

is ultimately dSdv,

The induction through dS
x

is HdS
l ,

and since there is no in-

duction through £„, and no free electricity within the space con-

sidered, the induction through the opposite surface dS
2

will be

equal and opposite, considered with reference to the space within

the closed surface.

There will therefore be a quantity of electricity

on the first equipotential surface, and a quantity

on the second equipotential surface, with the condition

tfj-l- tfj = 0,
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Let us next consider the resultant force due to the action of the

electrified systems on these small electrified surfaces.

The potential within the surface o\ is constant and equal lo C\ t

and without the surface S.
i

it is constant and equal to C.t . In the

shell hetween these surfaces it is continuous from C
t
to Ca .

Hence the resultant force is zero except within the shell.

The electrified surface of the shell itself will he acted on by forces

which are the arithmetical means of the forces just within and just,

without the surface, that is, in this case, since the resultant, force

outside is zero, the force acting on the superficial electrification is

one-half of the resultant force just within the surface.

Hence, if XdSdv he the total moving force resolved parallel

to x, due to the electrical action on hoth the electrified surfaces of

the element dS dv,

where the suffixes denote that the derivatives of p are to he taken

at dS
x
and dS,

l
respectively.

Let l} m, n he the direction-cosines of F
%

the normal to the

oqnipotential surface, then making

<&> as Idv, dy — mdv, and dz — ndvt

AT\ (dV, ,,d*V dW
t

d*f\ .
f

Wk =
%>> + (/w + mm + awHr 1

&c - ;

and since e„ - we may write the value ci' A

^ ir 7 , d { ,dV dV dV. .

* 1 dx v dx dy dz 1

But e, = — — RdS and U-J+tii
(¥-+n~) = -Jti

1
4ir v dz dy dz'

therefore XdSdv ' >- dS dv
j

or, if we write

*» ***fc **4 *=*£ ;

or the force in any direction on the elenu ni arising from the action

of the electrified system on the two electrified surfaces of the

element is equal to half the rate of increase of p in that direction

multiplied hy the volume of the element.
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This result is the same if we substitute for the forces acting on

the electrified surfaces an imaginary force whose potential is — ±P>

acting on the whole volume of the clement and soliciting- it to

move so as to increase h jk

If we now return to the case of a figure of finite size, bounded

by the equipotential surfaces S
L
and 8* and by the surface of no

induction Su) we may divide the whole space into elements by a

series of equipotential surfaces and two series of surfaces of no

induction. The charges of electricity on those faces of the elements

which are in contact will be equal and opposite, so that the total

effect will be that due to the electrical forces acting on the charges

on the surfaces &\ and 6'
2 , and by what we have proved this will he

the same as the action on the whole volume of the figure due to a

system of forces whose potential is — £P-

But we have already shewn that these electrical forces are

t-i|uiv;tlmt to a tension p applied at all points of the surfaces 6^

and Hence the effect of this tension is to pull the figure in

the direction in which p increases. The figure therefore cannot be

in equilibrium unless some other forces act on it.

Now we know that if a hydrostatic pressure p is applied at every

point of the surface of any closed figure, the effect is equal to

that of a system of forces acting on the whole volume of the figure

and having a potential p. In this case the figure is pushed in

the direction in which j> diminishes.

We can now arrange matters so that the figure shall be in

equilibrium.

At every point of the two equipotential surfaces Sl and 8it let

a tension = p be applied, and at every point of the surface of no

induction Sa let a pressure = p be applied. These forces will keep

the figure in equilibrium.

For the tension p may be considered as a pressure p combined

with a tension 2p. We have then a hydrostatic pressure^ acting

at every point of the surface, and a tension 2 p acting on S
l
and 8.3

only.

The effect of the tension 2p at every point of St and S,2 is double

of that which we have just calculated, that is, it is equal to that

of forces whose potential is —p acting on the whole volume of the

figure. The effect of the pressure p acting on the whole surface

is by hydrostatics equal and opposite to that of this system of

forces, and will keep the figure in equilibrium.

107.] We have now determined a system of internal forces in
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the medium which is consistent with the phenomena so far as
we have examined them* We have found that in order to account

for the electric attraction between distant bodies without admitting
direct action, we must assume the existence of a tawtion p at every
point of the medium in the direction of the resultant force 22 ui

that point. In order to account for the equilibrium of the medium
itself we must further suppose that in every direction perpendicular

to If there is a pressure p*.

By establishing the necessity of asamuin- ilieso internal fortes

in the theory of an electric medium, we have advanced a step in

that theory which will not be lost though we should fail in

accounting for these internal forces, or in explaining the mechanism
by which they can be maintained in air, glass, and other dielectric

media.

We have seen that the internal stresses in solid bodies can be

ascertained with precision, though the theories which account for

these stresses by means of molecular forces may still be doubtful.

In the same way we may estimate these internal electrical forces

before wo are able to account for them.

In order, however, that it may not appear as if we hud n...

explanation of these internal forces, we shall shew that on the

ordinary theory they must exist in a shell bounded by two equ [po-

tential surfaces, and that the attractions and repulsions of the elec-

tricity on the surfaces of the shell are sufficient to account for them.

Let the first surface S
t
be electrified so that the surface-density is

and the second surface S
2 so that the surface-density is

iir

then, if we suppose that the value of V is C
y
at every point within

6'j
, and C3 at every point outside of S,2) the value of V between these

surfaces remaining as before, the characteristic equation of V will

he satisfied everywhere, and V is therefore the true value of the

potential.

We have already shewn that the outer and inner surfaces of the

shell will be pulled towards each other with a force the value of

which referred to unit of surface is p, or in other words, there is a

tension p in the substance of the shell in the direction of the lines

of force.

* See Faraday. Exp. J?«. (1224) and (1297).
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If we now conceive the shell divided into two segments by a

surface of no induction, the two parts will experience electrical

forces the resultants of which will tend to separate the parts with

a force equivalent to the resultant force due to a pressure p acting

on every part of the surface of no induction which divides them.

This illustration is to he taken merely as an explanation of what

is meant by the tension and pressure, not as a physical theory to

account for them.

108.] We have next to consider whether these internal forces

are capable of accounting for the observed electrical forces in every

ease, us well us in the case where a closed equipotential surface can

be drawn surrounding one of the electrified systems.

The statical theory of internal forces has been investigated by

writers on the theory of elasticity. At present we shall require only

to investigate the effect of an oblique tension or pressure on an

element of surface.

Let p bi» the value of a tension referred to unit of a surface to

which it is normal, and let there be no tension or pressure in any

direction normal to p. Let the direction-cosines of p be lt m, n.

Let dg dz be an element of surface normal to the axis of x, and let

the effect of the internal force be to urge the parts on the positive

side of this element with a force whose components are

Pa dy dz 'n *he direction of x,

P,v
dydz fi and

Pit% dz . . . . • s.

From every point of the boundary of the element dy dz let lines

be drawn parallel to the direction of the tension p, forming a prism

whose axis is in the line of tension, and let this prism be cut by a

plane normal to its axis.

The area of this section will be / dg dx, and the whole tension

upon it will be pldydx, and since there is no action on the sides

of the prism, which aru normal to p, the force on the base dgdz

must be equivalent to the force pldydx acting in the direction

(I, til, n). Hence {he component in the direction of a:,

Pxxdydz — pl~dydz\ or

P** = Pl
2

>

Similarly p*v — pint, (1)

Pxz = pin.

If we now combine with this tension two tensions p' and p" in

directions {F, m% it') and (/", «*" »") respectively, we shall have



Io8 '] COMPONENTS OP STRESS, fty

P*x=pl* + $ttP + p"l"\

= pirn +j>'f m' I" m",
(2 )

P*i = pin +/ l' n' +jf'l"n".

In the case of the electrical tension and pressure the pressures
are numerically equal to the tension at every point, and are in
directions at right angles to the tension and to each other. Hence
nut tin**1

t. „
1 & P=P =-P* (9)

p + ?* + r* - \
%

im+ i*m>+ym» = 0j fo^ftf+ e,

n»= ^ ^
we find Ptx _ (2^-1)^,

for the action of the combined tension and pressures.

Also, since p - — J?^ where j, the resilltant forcej an(}

since Ml = X
t
Rm = Y, Rn = Z,

8*

1

8x

where X, r, Z are the components of R, the resultant electromotive
force.

The expressions for the component internal forces on surfaces
uornial to y and a may be written down from symmetry.

To determine fie conditions of equilibrium of the elemettf dxdydz.

This element is bounded by the six planes perpendicular to the
nxes of coordinates passing through the points (x, y, z) and (x + <te,

y + dy
y z+ dz).

The force in the (Erection of ce which acts on the first face dydz
—PttAgth) tending to draw the element towards the negative

fiiuV On the second face dydz, for which x has the value x + dx,
the tension //„ has the value

pm dydz+(^- fa dy dz,

and this tension tends to draw the clement in the positive direction.
I' we next consider the two faces dzdx with respect to the

VOL, J. K
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tangential forces urging tbem in the direction of a, we find the

force on the first face —pvx dztlx, and that on the second

ptt dz dx+ {gr jfo) dzdxdy.

Similarly for the faces dmdy, we find that a force -p,t dxdy acte

on the first face, and

pa dx dy + ( (l
-pJ) * dy dz

on the second in the direction of a?.

If $dxdydz denotes the total effect of all these internal forces

acting parallel to the axis of x on the six faces of the element, we find

or, denoting by £ the internal force, referred to unit of volume, and

resolved parallel to the axis of x,

> d d d

with similar expressions for t; and £ the component forces in the

other directions *.

Differentiating the values ofp^p^ and^ given in equations

we find

c
4t, Vfo dy dz J

But by Art. " 7

Hence £ = pX.

Similarly n = P^j (
10

)

Thus, the resultant of the tensions and pressures which we have

supposed to act upon the surface of the element is a force whose

components are the same as those of the force, which, in the

ordinary theory, is ascribed to the action of electrified bodies on the

electricity within the element.

If, therefore, we admit that there is a medium in which there

is maintained at every point a tension p in the direction of the

* This investigation may he «<mi|Mired with that of thy 'equation of continuity

in hydrodynamics,' and wjth others in which the effect on an element of volume

is deduced from the values of certain quantities at it* Ixmuding surface.
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resultant electromotive force R
} and such that 8* = a*,, combined

with an eqnal pressure p in every direction at right angles to the
resultant E, then the mechanical effect of these tensions and
pressures on any portion of the medium, however bounded, will be
identical with the mechanical effect of the electrical forces according
to the ordinary theory of direct action at a distance.

109.] This distribution of stress is precisely that to which Fara-
day was led m his investigation of induction through dielectric
lie sums up in the following words

'(1297) The direct inductive force, which may be conceived to
be exerted in lines between the two limiting and charged con-
ducting surfaces, is accompanied by a lateral or transverse force
equivalent to a dilatation or repulsion of these representative lines
(1224.); or the attracting force which easts amongst the par-
ticles ol the dielectric in the direction of the ind.ietir.u is ac-
companied by a repulsive or a diverging force in the transverse
direction.

« (1298) Induction appears to consist in a certain polarized state
of the particles, into which they are thrown by the electrified body
sustaining the action, the particles assuming positive and negative
points or parts, which are symmetrically arranged with respect
to each other and the inducting surfaces or particles. The state
must be a forced one, for it is originated and sustained only by
force, and sinks to the normal or quiescent state when that force
is removed. It can be continued only in insulators by the same
portion of electricity, because they only can retain this state of the
particles/

This is an exact account of the conclusions to which we have
been conducted by our mathematical investigation. At every point
o the medium there is a state of stress sueh that there is tension
along the lines of force and pressure in all directions at right angles
fe these lines, the numerical magnitude of the pressure being equal
to that of the tension, aud both varying as the square of the
resultant force at the point.

^ eXpreSSi°n ,electric ^n*"*' ^ been used in various senses
by different writers. I shall always use it to denote the tension
"long the lines of force, which, as we have seen, varies from point,
to point, and is always proportional to the square of the resultant
turce at the point,

UOq The hypothesis that a state of stress of this kind existsW fi fluid dielectric, such as air or turpentine, may at first sight

K J
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appear at variance with the established principle that at any point

in a fluid the pressures in all directions are equal. But in the

deduction of this principle? from a consideration of the mobility

and equilibrium of the parte of the fluid it is taken for granted

that no action such as that which we here suppose to take place

along the lines of force exists in the fluid. The state of stress

which we have been studying is perfectly consistent with the

mobility and equilibrium of the fluid, for we have seen that, if

any portion of the lluid is devoid of electric charge, it experi-

ences no resultant force from the stresses on its surface, however

intense these may he. It is only when a portion of the fluid

becomes charged/ that its equilibrium is disturbed by the stresses

on its surface, and we know that in this case it actually tends to

move. Hence the supposed state of stress is not inconsistent with

the equilibrium of a fluid dielectric.

The quantity Q t
which was investigated in Thomson's theorem,

Art. 98, may be interpreted as the energy in the medium due to

tin distribution of stress. It appears from that theorem that the

distribution of stress which satisfies the ordinary conditions also

makes Q an absolute minimum. Now when the energy is a

minimum for any configuration, that configuration is one of equi-

librium, and the equilibrium is stable. Hence the dielectric,

when subjected to the inductive action of electrified bodies, will

of itself take up a state of stress distributed in the way we have

described.

It must, be carefully borne in mind that we have made only one

step in the theory of the action of the medium. We have supposed

it to be in a state of stress, but we have not in any way accounted

for this stress, or explained how it is maintained. This step,

however, seems to me to be an important one, as it explains, by

the action of the consecutive parts of the medium, phenomena which

were formerly supposed to be explicable only by direct action at

a distance.

111.] I have not been able to make the next step, namely, to

account by mechanical considerations for these stresses in the

dielectric. I therefore leave the theory at this point, merely

stating what are the other parts of the phenomenon of induction

in dielectrics.

I. Electric Displacement. When induction takes place in a

dielectric a phenomenon takes place which is equivalent to a

displacement of electricity in the direction of the induction. For
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instance, in a Leyden jar, of which the inner coating is chafed
pos.tively and the outer coating negatively, the displacem,,^ „,
the substance of the glass is from within outwards.
Any increase of this displacement is equivalent, during the time

of increase, to a current of positive electricity Iron, wiihin nulw.nls
and any dimmution of the displacement is equivalent to a cum-nl
in the opposite direction.

The whole quantity of electricity displaced through any area
of ;t surface fixed in the dielectric is measured by the ,,itanl it y'wliieli
we have already investigated (Art. 75) as the «.rtW- integral of

induction through that area, multiplied by ~K, where A" i* the

specific inductive capacity of the dielectric.

II. Superficial Electrification uf the I\j rt kl.-s of tlie Oideel nr.
Conceive any portion of the dielectric, large or small, to l„ ,1

(in imagination) from the rest by a closed surface, thru we mart
suppose that on every elementary portion of ihi, surface (here is

an electrification measured by the total displacement of electricity
through that element of surface reckoned inwards.

In the case of the Leyden jar of ivhieb the hilar mating is

charged positively, any portion of the glass will have its inner
side charged positively and its outer side negatively. If ibis
portion be entirely in the interior of the glass, its superficial elec-
trification will be neutralized by the opposite electrification of tin

parts in contact with it, but if it be in contact with a conducting
body which is incapable of maintaining in itself the inductive state,
the superficial electrification will not be neutralized, but will

stitute that apparent electrification which is commonly called the
Electrification of the Conductor.
The electrification therefore at the bounding surface of a .(in-

ductor and the surrounding dielectric, which on the old theory
was called the electrification of the conductor, must he called in the
theory of induction the superficial electrification of the surrounding
dielectric.

According to this theory, all electrification is the residual effect
of the polarization of the dielectric. This pohirizulioti exists

throughout the interior of the substance, but it is there neutralized
by the juxtaposition of oppositely electrified parts, so that it is only

f
ll,e surface of the dielectric that the effects of the eJectrificatioil

become apparent.

The theory completely accounts lor the theorem of* Art.
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the total induction through a closed surface is equal to the total

(juantity of electricity within the surface multiplied by 4 17. For

what we have called the induction through the surface is simply

the electric displacement multiplied by 4tt, and the total displace-

ment out wards is necessarily equal to the total electrification within

(lie sitifarc.

The theory also accounts for the impossibility of communicating

an absolute charge to matter. For every particle of the dielectric

is electrified with equal and opposite charges on its opposite sides,

if it would not be more correct to say that these electrifications are

only the manifestations of a single phenomenon, which we may call

Electric Polarization.

A dielectric medium, when thus polarized, is the seat of electrical

energy, and the energy in unit of volume of the medium is nu-

merically equal to the electric tension on unit of area, both quan-

tities being equal to half the product of the displacement and the

resultant electromotive force, or

where p is the electric tension, SD the displacement, @ the electro-

motive force, and K the specific inductive capacity.

If the medium is not a perfect insulator, the state of constraint,

which we call electric polarization, is continually giving way. The

medium yields to the electromotive force, the electric stress is

relaxed, and the potential energy of the state of constraint is con-

verted into heat. The rate at which this decay of the state of

polarization takes place depends on the nature of the medium.

In some kinds of glass, days or years may elapse before the polar-

ization sinks to half its original value. In copper, this change

may occupy less than the billionth of a second.

We have supposed the medium after being polarized to be simply

left to itself. In the phenomenon called the electric current tlie

constant passage of eleetrit i(y through the medium tends to restore

the state of polarization as fast as the conductivity of the medium

allows it to decay. Thus the external agency which maintains the

current is always doing work in restoring the polarization of the

medium, which is continually becoming relaxed, and the potential

energy of this polarization is continually becoming transformed

into heat, so that the final result of the energy expended in main-

taining the current is to raise the temperature of the conductor.



CHAPTER VI.

ON POINTS AND LINES OF EQUILIBRIUM.

112.] If at any point of the electric field the resultant force is

zero, the point is called a Point of equilibrium.

If every point on a certain line is a point of equilibrium, the line

is called a Line of equilibrium.

The conditions that a point shall be a point of equilibrium are

that at that point

— - — - ---0~ 3
dy ~ ' dz

~

At such a point, therefore, the value of V is a maximum, or

a minimum, or is stationary, with respect to variations of the

coordinates. The potential, however, can have a maximum or a

minimum value only at a point charged with positive or with

negative electricity, or throughout a finite space bounded by a

surface electrified positively or negatively. If, therefore, a point

of equilibrium ocCuts in an unelectrified part of the field it must
he a stationary point, and not a maximum or a minimum.

In fact, the first condition of a maximum or minimum is (hat

(fx
2 (h/1 '

1

d:-

must be all negative or all positive, if they liavc finite values.

Now, by Laplace's equation, at a point where there is no elec-

trification, the sum of these three quantities is zero, and therefore

this condition cannot be fulfilled.

Instead of investigating the analytical conditions for the cases

in which the components of the force simultaneously vunisL, we
shall give a general proof by means of the equipotential stirfaces.

If at any point, Pf there is a true maximum value of V
%
then, at

all other points in the immediate neighbourhood of P, the value of

V is less than at P. Hence P will he surrounded by a series of
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closed equi potential surfaces, each outside tins one before it, and at

all points of any one of these surfaces the electrical force will be

directed outwards. But we have proved, in Art, 76, that the surface-

integral of the electrical force taken over any closed surface gives

the total electrification within that surface multiplied by in. Now,

in litis case the force is everywhere outwards, so that the surface-

integral is necessarily positive, and therefore there is positive elec-

trification within the surface, and, since we may take the surface as

near to P as we please, there is positive electrification at the point P.

In the same way we may prove that if V is a minimum at P,

then P is negatively electrified.

Next, let P be a point of equilibrium in a region devoid of elec-

trification, and let us describe a very small closed surface round

P, then, as we have seen, the potential at this surface cannot be

everywhere greater or everywhere less than at P. It must there-

fore be greater at some parts of the surface and less at others.

These portions of the surface are bounded by lines in which the

potential is equal to that at P. Along lines drawn from P to

points at which the potential is less than that at P the electrical

force is from P, and along lines drawn to points of greater po-

tential the force is towards P. Hence the point P is a point of

stable equilibrium for some displacements, and of unstable equili-

brium for other displacements.

113.] To determine the number of the points and lines of equi-

librium, let us consider the surface or surfaces for which the

potential is equal to C\ a given quantity. Let us eall the regions

in which the potential is less than G the negative regions, and

those in which it is greater than C the positive regions. Let

/,, be tin- low tist, and i\ the highest potential existing in the

electric tield. If we make C =/',,, the negative region will in-

clude only the electrified point or conductor of lowest potential,

and this is necessarily electrified negatively. The positive region

consists of the rest of space, and since it surrounds the negative

region it is periphrastic. See Art. 18.

If we now increase the value of C the negative region will

expand, and new negative regions will be formed round negatively

electrified bodies. For every negative region thus formed the

surrounding positive region acquires one degree of periphraxv.

As the different negative regions expand, two or more of them
may meet in a point or a line. If u + 1 negative regions meet,

the positive region loses n degrees of periphraxv, and the point



114*] I'll KUt number. i:;t

or the line in which they meet is a point or line of equilibrium

of the «th decree.

When C becomes equal to Ft the positive region is reduced to

the electrified point or conductor of highest potential, and has
therefore lost all its periphraxy. Hence, if each point or line of
equilibrium, counts for one, two, or n according to its degree, tlio

number so made up by the points or linos now considered will

be one less than the number of negatively electrified bodies.

There are other points or lines of equilibrium which occur where

the positive regions become separated from each other, and the

negative region acquires periphraxy. The number of these, reck-

oned according to their degrees, is one less than (he number of

positively electrified bodies.

If we call a point or line of equilibrium positive when it is the

meeting-place of two or more positive regions, and negative when
the regions which unite there are negative, then, if there are p
bodies positively and it bodies negatively electrified, the sum of

the degrees of the positive points and lines of equilibrium trill he

p— I f and that of the negative ones n — 1

.

But, besides this definite number of points and lines of equi-

librium arising from ihe jim.-tioii of diligent regions, flu-re may
be others, of which we can only affirm that their number must bo

even. For if, as the negative region expands, it meets itself, it

becomes a cyclic regioD, and it may acquire, by reputedly meeting

itself, any number of degrees of eyelosis, each of which corresponds

to the point or line of equilibrium at which the cyclosis was

established. As the negative region continues to expand (ill it.

fills all space, it loses every degree of cyclosis it lias acquired, and

becomes at last acyclic. Hence there is a set of points or lines

of equilibrium at which eyelosis is lost, and these are equal in

number of degrees to those at which it is acquired.

If the form of the eleetrilied bodies or conductors is arbitrary,

we can only assert that the number of these additional |K»ints or

lines is even, but if they are electrified points or spherical con-

ductors, the number arising in this way cannot exceed in — — 2),

where n is the number of bodies.

114.] The potential close to any point P may be expanded in

the scries

where HJt 7/,, &e. arc homogeneous functions of r, wIloh-

dimensions are 1,2, &e. respectively.
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Since the first derivatives of V vanish at a point of equilibrium,
JF

l
= 0, if /' }jf. a point of equilibrium.

Let B
t
he the first function which does not vanish, then dose to

the point P we may neglect all functions of higher degrees as
compared with H

t
.

Now ji
f
=

is the equation of a cone of the degree i, and this cone is the cone
Ol closest contact with the equipotential surface at P.

It appears, therefore, that the equipotential surface passing
through P has, at that point, a conical point touched by a cone
of the second or of a higher degree.

If the point P is not on a line of equilibrium this cone
does not intersect itself, but consists of i sheets or some smaller
number.

If the nodal line intersects itself, then the point P is on a line
of equilibrium, and the equipotential surface through P cuts itself
in that line.

If there are intersections of the nodal line not on opposite points
of the sphere, then P is at the intersection of three or more lines
of equilibrium. For the equipotential surface through P must cut
itself in each line of equilibrium.

115.] If two sheets of the same equipotential surface intersect,
they must intersect at right angles.

For let the tangent to the line of intersection be taken as the

axis of then — = 0. Also let the axis of x ho :i tangent to

one of the sheets, then _ = 0. It follows from this, by Laplace's

equation, that — = 0, or the axis of v is a tangent to the other
sheet.

This investigation assumes that H% is finite. If ff vanishes let
the tangent to the line of intersection be taken as the axis of,, and
let x = r cos 0, and y = r sin 0, then, since

tL^n d'- V
M '

+ p = >

or ^Z.i dK> 1 tl-
dr-

~
l"
r dr

+
r* d$'2 ~ °

'

the solution of wliich equation in ascending powers of r is

f =f ],+ ^ r cos (& + a) + A, r* cos (2 + <g + &c. + A( ^ cog {i$+
.
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At a point of equilibrium Aj is zero. If the first term that does

not vanish is that in r\ then

y— = 4 r' 009 (* ^+ a<)+ terms in higher powers of r .

This gives £ sheets of the cquipotential surface V= Fn ,
intersecting

at angles each equal to ^ . This theorem was given by Rankine*.

It is only under certain conditions that a lino of equilibrium can

exist in free space, but there must be a line of equilibrium on iho

surface of a conductor whenever the electrification of the conductor

is positive in one portion and negative in another.

In order that a conductor may be oppositely electrified in different

portions of its surface, there must be in the field some places where

the potential is higher than that of the body and other! where it- is

lower. We must remember that at an infinite distance the potential

is zero.

Let us begin with two conductors electrified positively to the

same potential. There will be a point of equilibrium between the

two bodies. Let the potential of the first body be gradually raised.

The point of equilibrium will approach the other body, and as the

process goes on it will coincide with a point on its surface. If the

potential of the first body be now increased, the cquipotcntiaj

surface round the first body which has the same potential as the

second body will cut the surface of the second body at right angles

in a closed curve, which is a line of equilibrium.

Eamshaiv's Theorem.

116.] An electrified body placed in a field of electric force cannot.

U' in stable equilibrium.

First, let us suppose the electricity of the moveable body (A), and

also that of the system of surrounding bodies {B), to be fixed in

those bodies.

Let Vhe the potential at any point of the moveable body due to

the action of the surrounding bodies (/?), and let e be the electricity

on a small portion of the moveable body A surrounding this point.

Then the potential energy of A with respect to B will be

M= !£(*>),

where the summation is to be extended to every electrified portion

of A,

* ' Summary uf the Properties of certain Stream Linen,* Phil. M<vj-, Oct. ]Sfl4,

See also, Thomson trad Tait'e Natural Philoxophy, § 780 : ami Rankine anil Stoke*,

fa the Proe. R. 8., 1867, p. 468 ; film W, It. Smith, Prac. (I. S. Edm., 1869-70, p 70.
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Let a, b, c be the coordinates of any electrified part of A with
respect to axes fixed in A, and parallel to those of ms y> ft. Let the
coordinates of the point fixed in the body through which these axes
pass be £ ,h £

Let us suppose for the present that the body A is constrained to
move parallel to itself, then the absolute coordinates of the point
a, 0, c will be

a? - y = i}+b, z = c+c
The potential of the body A with respect to B may now be

expressed as the sum of a number of terms, in each of which F
is expressed in terms of *, b, c and £ n, & and the sum of these
terms is a function of the quantities <r, b

t
c, which are constant for

each point of the body, and of £ (, which vary when the body is

moved.

Since Laplace's equation is satisfied by each of these terms it is

satisfied by their sum, or

d*M d*M d iM
Now let a small displacement be given to A, so that

dM
= ^* ^ " m ^r

*
ni*r

'

then -
d
- dr will be the increment of the potential of A with respect

to the surrounding- system B.
If this be positive, work will have to be done to increase r, and

there will be a force ~ tending to diminish r and to restore A to

its former position, and for this displacement therefore the equi-
librium will be stable. If, on the other hand, this quantity is
negative, the force will tend to increase r, and the equilibrium will
be unstable.

Now consider a sphere whose centre is the origiu and whose
radios is ?> and so small that when the point fixed in the body
lies within this sphere no part of the moveable body A can coincide
with any part of the external system B. Then, since within the
sphere y zJ/= o, the surfiiee-integral

.//'
dr

taken over the surface of the sphere.

Hence, if at any part of the surface of the sphereW is positive,

there must be some other part of the surface where'it is negative,
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ill

and if the body A be displaced in a direction in which — is
dr

negative, it will tend to move from its original position, and its

equilibrium is therefore necessarily unstable.

The body therefore is unstable even wheu constrained to move
parallel to itself, h fortiori it is unstable when altogether free.

Now let us suppose that the body A is a conductor. We might
treat this us a case of equilibrium of a system of bodies, the move-

able elect rieity being considered as part of that system, and we
might argue that as the system is unstable when deprived of so

degrees of freedom by the fixture of its electricity, it must
u fortiori be unstable when this freedom is restored to it.

we may consider this ease in a more particular way, thus

—

First, let the electricity be fixed in A, and let it move through

the small distance dr. The increment of the potential of A due to

... . (IM
,this cause is —y~ dr.

dr

Next, let the electricity be allowed to move within A into its

position of equilibrium, whieh is always stable. During this motion

the potential will necessarily be dhtinuhed by a quantity which we
may call Cdr.

Hence the total increment of the potent ial when the electricity

is free to move will be m
dr

and the force tending to bring A back towards its original position

where is always positive.

/ )/

Now we have shewn that — is negative for certain diree-
dr

lions of r, hence when the electricity is free to move the instability

in these directions will be increased.



CHAPTER VII.

FORMS OF THE EQUIPOTENTIAL SURFACES AND LINES OF

INDUCTION IN SIMPLE CASES.

117.] We have seen that the determination of the distribution

Of electricity on the surface of conductors may he made to depend
on the solution of Laplace's equation

dl V (PF d*¥
1 — 4- =

dx l df2 '

jfe?

F being a function of and e, which is always finite and con-
tinuous, which vanishes at an infinite distance, and which has
a given constant value at the surface of each conductor.

It is not in general possible by known mathematical methods
to solve this equation so as to fulfil arbitrarily given conditions,
but it is always possible to assign various forms to the function
V which shall satisfy the equation, and to determine in each case
the forms of the conducting surfaces, so that the function V shall
be the true solution.

It appears, therefore, that what wo should naturally call the
inverse problem of determining the forms of the conductors from
the potential is more manageable than the direct problem of de-
termining the potential when the form of the conductors is given.

In fact, every electrical problem of which we know the solution
has been constructed by an inverse process. It is therefore of
great importance to the electrician that he should know what
results have been obtained in this way, since the only method by
which he can expect to solve a new problem is by reducing it

to one of the cases in which a similar problem has been con-
structed by the inverse process.

This historical knowledge of results can be turned to account in
two ways. If we are required to devise an instrument for making
electrical measurements with the greatest accuracy, we may select
those forms for the electrified surfaces which correspond to cases
of which we know the accurate solution. If, on the other hand
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we are required to estimate what will be the electrification of bodies
whose forms are given, we may begin with some case in which one
of the equipotential surfaces takes a form somewhat resembling the
given form, and then by a tentative method we may modify the pro-
Mem till it more nearly corresponds to the given case. This method
is

i

evidently very imperfect considered from a mathematical point
of view, but it is the only one we have, and if we are not allowed
to choose our conditions, we can make only an approximate cal-
culation of the electrification. It appears, therefore, that what we
want is a knowledge of the forms of equipotential surfaces and
lines of induction in as many different cases as we can collect
together and remember. In certain classes «,f eases, such as those
relating" to spheres, we may proceed by mathematical methods. In
Other eases we cannot afford to despise the humbler method of
actually drawing tentative figures on paper, and selecting that
winch appears least unlike the figure we require.

This latter metliod I think may be of some use, even in cases in
which the exact solution has been obtained, for I find that an eye-
knowledge of the forms of the equipotential surfaces often leads to a
right selection of a mathematical method of solution.

I have therefore drawn several diagrams of systems of equipotential
surfaces and lines of force, so that the student may make himself
faimhar with the forms of the lines. The methods by which such
diagrams may be drawn will be explained as we go on, as they
belong to questions of different kinds.

1 18.] In the first figure at the end of this volume we have the
equipotential surfaces surrounding two points electrified with quan-
tities of electricity of the same kind and in the ratio of 20 to 5.

Here each point is surrounded by a system of equipotential
surfaces which become more nearly spheres as they become smaller,
but none of them are accurately spheres. If two of these surfaces,
one surrounding each sphere, be taken to represent the surfaces
of two conducting bodies, nearly but not quite spherical, and if
these bodies be charged with the same kind of electricity, the
charges being as 4 to 1, then the diagram will represent the
equipotential surfaces, provided we expunge all those which are
drawn inside the two bodies. It appears from the diagram that
the action between the bodies will be the same as that between
two points having the same charges, these points being not exactly
m the middle of the axis of each body, but somewhat more remote
than the middle point from the other body.
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The same diagram enables us to see what will be the distribution

of electricity on one of the oval figures, larger at one end than
the other, which surround Iwth centres. Such a body, if electrified

with a charge 25 and free from external influence, will have the

surface-density greatest at the small end, less at the large end,

and least iu a circle somewhat nearer the smaller than the larger end.

Tliere is one equipotential surface, indicated by a dotted line,

whieh consists of two lobes meeting at the conical point P. That
point is a point of equilibrium, and the surface-density on a body
of the form of this surface would be zero at this point.

The lines ol force in this case form two distinct sj'stems, divided

from one another by a surface of the sixth degree, indicated by a
dotted line; passing through the point of equilibrium, and some-
what resembling one sheet of the hyperboloid of two sheets.

This diagram may also be taken to represent the lines of force

and equipotential surfaces belonging to two spheres of gravitating

matter whose masses are as 1 to t.

119.] In the second figure we have again two points whose
charges are as 4 to 1, but the one positive and the other negative.

In this case one of the equipotential surfaces, that, namely, corre-

sponding to potential zero, is a sphere. It is marked in the diagram
by the dotted circle Q. The importance of this spherical surface

will be seen when we come to the theory of Electrical Images,
We may see from this diagram that if two round bodies are

charged with opposite kinds of electricity they will attract each other
as much as two points having the same charges but placed some-
what nearer together than the middle points of the round bodies.

Here, again, one of the equipotential surfaces, indicated by a
dotted line, has two lobes, an inner one surrounding the point whose
charge is 5 and an outer one surrounding both bodies, the two
lobes meeting in a conical point P which is a point of equilibrium.

If the surface of a conductor is of the form of the outer lobe, a
roundish body having, like an apple, a conical dimple at one end of
its axis, then, if this conductor be electrified, we shall be able to
determine the superficial density at any point. That at the bottom
of tlu> dimple will be zero.

Surrounding this surface we have others having a rounded
dimple which flattens and finally disappears in the equipotential
suri'uiv passing through the point marked M.
The lines of force in this diagram form two systems divided by a

surface which passes through the point of equilibrium.
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If we consider points on the axis on the further side of the point
A we find that the resultant force diminishes to the double point P,
where it vanishes. It then changes sign, and reaches a maximum
at M, alter which it continually dimimO,-

This maximum, however, is only a maximum relatively to other
points on the axis, for if we draw a surface perpendicular to the.

axis, M is a point of minimum force relatively to neighbouring
points on that surface.

120.] Figure III represents the equipotcntial surfaces and lines
of force due to an electrified point whose charge is 1 placed at
//, and surrouuded by a field of force, which, before the intro-
duction of the electrified point, was uniform in direction and
magnitude at every part. In this ease, those lines of force which
belong to A are contained within a surlace of revolution which
has an asymptotic cylinder, having its axis parallel to the un-
disturbed lines of force.

The eipiipoteiitm! surfaces have each of them an asymptotic
plane. One of them

! indicated by a dotted line, has a conical
point and a lobe surrounding the point A. Those below this surface
have one sheet with a depression near the axis. Those above have
a closed portion surrounding A and a separate sheet with a slight
depression near the axis.

If we take one of the surfaces below A as the surface of a con-
ductor, and another a long way below A as the surface of another
conductor at a different potential, the system of lines and surfaces
between the two conductors will indicate the distribution of electric
force. If the lower conductor is very far from A its surface will
be very nearly plane, so that we have here the solution of the
distribution of electricity on two surfaces, both of them nearly
plane and parallel to each other, except that the upper one has
a protuberance near its middle point, which is more or less pro-
minent according to the particular equipotential line we choose for
tin; surface.

121.] Figure IV represents the equjpotential surfaces and lines
of force due to three electrified points //, B and C, the olmrgy nf A
being 15 units of positive electricity, that of J? 12 units of negative
electricity, and that of C 20 units of positive electricity. These
points are placed in one straight line, so that

AH = o, BC = 16, AC = 25.

In this case, the surface for which the potential is unity consists
of two spheres whose centres are A and € and their radii 15 and 20.

VOL. [, r.
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These spheres intersect in the circle which cuts the plane of the

paper in 7) and J/, so that B is the centre of this circle and its

radiug is 12. This circle is an example of a line of equilibrium, for

the resultant force vanishes at every point of tins line.

If we suppose the sphere whose centre is A to ho a conductor
with a charge of 3 units of positive electricity, and placed under
the influence of 20 units of positive electi-ieity at C, the state of
the ease will he represented hy the diagram if we leave out all the
lines within the sphere A. The part of this spherical snrface within
the small circle D2X will be negatively electrified hy the influence

of a All the rest of the sphere will he positively electrified, and
the small circle BD' itself will he a line of no electrification.

"We may also consider the diagram to represent the elect rification

of the sphere whose centre is C
t
charged with 8 units of positive

electricity, and influenced by 15 units of positive electricity placed
at A,

The diagram may also he taken to represent the case of a con-
ductor whose surface consists of the larger segments of the two
spheres meeting in Llf, charged with 23 units of positive elec-
tricity.

We shall return to the consideration of this diagram as an
illustration of Thomson's Theory of Electrical Imaf/cn. See Art. Ifi8.

122.] I am anxious that these diagrams should be studied as

illustrations of the language of Faraday in speaking of 1

lines of
force,' the * forces of an electrified body,' Sec.

In strict mathematical language the word Force is used to signify
the supposed cause of the tendency whieh a material body is found
to have towards alteration in its state of rest or motion. It is

indifferent whether we speak of this observed tendency or of its

immediate cause, since the cause is simply inferred from ihe effect,

and has no other evidence to support it.

Since, however, we ate ourselves in the practice of directing the
niKiwit ..t'.mr own bodies, and of moving other things in this way,
we have acquired a copious store of remembered sensations relating
to these actions, and therefore our ideas of force are connected in
our minds with ideas of conscious power, of exertion, and of fatigue,
and of overcoming or yielding to pressure. These ideas, which give
a colouring and vividness to the purely abstract, idea of force, do
net in mnlli •vuitically trained minds lead to any practical error.
But in the vulgar language of the time when dynamical science

was unknown, all the words relating to exertion, such as force,
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energy, power, &c, were confounded with each other, though some
of the schoolmen endeavoured to introduce a greater precision into
i ln'ii- language.

The cultivation and popularization of correct dynamical ideas
since the time of Galileo and Newton has effected an immense
change in the language and ideas of common life, but it is only
within recent times, and in consequence of the increasing im-
portance of machinery, that the ideas of force, energy, and power
have become accurately distinguished from each other. Very few,
however, even of scientific men, are careful to observe these dis-
tinctions

;
hence we often hear of the force of a cannon-hall when

cither its energy or its momentum is meant, and of the force of an
electrified body when the quantity of its electrification is meant.
Now the quantity of eleetrieity in a body is measured, according

to Faraday's ideas, by the number of lines of force, or rather of
induction, which proceed from it. These lines of force must all
terminate somewhere, either on bodies in the neighbourhood, or on
the walls and roof of the room, or on the earth, or on the heavenly
bodies, and wherever they terminate there is a quantity of elec-
tricity exactly equal and opposite to that on the part of the body
from which they proceeded. By examining the diagrams this will
be seen to be the case. There is therefore no contradiction bet ween
Faraday's views and the mathematical results of the old theory,
but, on the contrary, the idea of lines of force throws great light
on these results, and seems to afford the mean, of rising by a con-
tinuous process from the somewhat rigid conceptions of the old
theory to notions winch may be capable of greater expansion, so
as to provide room for the increase of our knowledge by further
researches.

123.] These diagrams are constructed in the following manner : -
First, take the ease of a single centre of force, a small electrified

body with a charge E. The potential at a distance r is F= —
;

hence, if we make r= j , we shall find r, the radius of the sphere

for which the potential is V. If we now give to V the values
1, 2, 3, &c, and draw the corresponding spheres, we shall obtain
a scries of eqmpotential surfaces, the potentials corresponding to
" Inch are measured by the nat ural numbers. The sections of these
spheres by a plane passing through their common centre will he
circles, which we may mark with the number denoting the potential

1 %
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of each. These are indicated by the dotted circles on the right,

hand of Fig. 6.

If there be another centre of force, we may in the same way draw

the equipotential surfaces belonging to it, and if we now wish to

lind the form of the equipotential surfaces due to both centres

together, we must remember that if l\ be the potential due to oue

centre, and T2 that duo to the other, the potential due to both will be

r, + Vt= V. Hence, since at every intersection of the equipotential

surfaces belonging to the two series we know both J\ and ? 2 ,
we

also know the vsdue of F. If therefore we draw a surface which

passes through all those intersections for which the value of V is

the same, this Burface will coincide with a true equipotential surface

at all these intersections^ aud if the original systems of surfaces

i.r drawn sjuHU-ienth close, the new surface may be drawn with

any required degree of accuracy. The equipotential surfaces due to

two points whose charges are equal and opposite are represented by

the continuous lines on the right hand side of Fig. 6.

This method may be applied to the drawing of any system of

equipotential .surfaces when the potential is the sum of two po-

tentials, for which we have already drawn the equipotential surfaces.

The lines of force due to a single centre of force are straight

lines radiating from that centre. If we wish to indicate by these

lines the intensity as well as the direction of the force at any point,

we must draw them so that they mark out on the equipotential

surfaces portions over which the surface-integral of induction has

definite values. The best way of doing this is to suppose our

plane figure to be the section of a figure in space formed by the

revolution of the plane figure about an axis passing through the

centre of force. Any straight line radiating from the centre and

making an angle Q with the axis will then trace out a cone,

and the surface-integral of the induction through that part of any

surface which is cut olf by this cone oil the side next the positive

direction of the axis, is 2iri?(l— cos d).

If we further suppose this surface to be bounded by its inter-

section with two planes passing through the axis, and inclined at

tin- alible whose are is equal to half the radius, then the induction

through the surface so bounded is

^(1 _cos0) = 2^, say;

and B = cos" 1 (l — 2

If wc now give to + a series of values 1 , 2, 3 ... E, we shall find
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a corresponding series of values of 0, and if E be an thenumber of corresponding lines of lore,, Ending the ,,C , ill 1„.
equ;d to /:,

We have therefore a method of drawing lines of force so thatthe charge of any centre is indicated by the number of hues whichconverge to lt
, and the induction through any surface cut off in theway described is measured by fhe number of lines of force whieh

pass through it. The doited straight lines on (he left hand si.f,
of Ftg. 6 represent the lines of force due to each of two electrified
points whose charges are 10 and - 10 respectively.

If there are two centres of force on the axis of the ih-,m , wemay draw the lines of force for each axis corresponding to values
oJ *

t
and *

a ,
and then, by drawing lines thmngh the .,.ns,,.„I»v

interseet.ons of these lines, for which the value of % +y is t,l,c
same, we may find the lines of force due to both centres "and in
the same way we may combine any two systems of linen of force
which are symmetrically situated about the same axis. The con-
tinuous curves on the left hand side of Kg. represent the lines
of force due to the two electrified points acting at once.

After the equipotential surfaces and lines of force have been
constructed by tins method the accuracy of the drawing may !>,.

tested by observing whether the two systems of lines are every-
where orthogonal, and whether the distance between consecutive
equpotenty surfaces is to the distance between consecutive lines
of force us half the distance from the axis is to the assumed unit of
length.

In the case of any such system of finite dimensions the line of
iorce whose index number is + has an asymptote which passes
through the centre of gravity of the system, and is inclined to the

axis at an angle whose cosine is 1 -2 | . where E is the total

electrification of the syslem, provided + is less than 11. Lines of
force whose index is greater than E are finite lines.

The lines of force corresponding to a field of uniform force parallel
to the axis are lines parallel to the axis, the distances from the
axis being the square roots of an arithmetical series.

The theory of equipotential surfaces and lines of force in two
dimensions will be giveu when we come to the theory of conjugate
functions*.

a *J*V va**T '
0,1 tt,e Flow of Electrwitv in Conducting Surface*/ l»y I'rof, W. ii.

Smith, Proc. S, S. Edifi., 1869-70, p. 70.



CHAPTER VIII.
*

SlMPLtL CASKS OK ELUC'l'ltlKICATIOX.

Parallel Planes.

124.] We shall consider, in the first place, two parallel plane

conducting surfaces of infinite extent, at a distance c from each

other, maintained respectively at potentials A and B,

It is manifest that in this case the potential V will be a function

of the distance z from the plane A, and will be the same for all

points of any parallel plane between A and B, except near the

boundaries of the electrified surfaces, which by the supposition

are at an infinitely great distance from the point considered.

Hence, Laplace's equation becomes reduced to

the integral of which is

and since when z = 0, V = A, and when z = c, V = B
>

V=A+{B-J)y

For all points between the planes, the resultant electrical force

is normal to the planes, and its magnitude is

e

lu the substance of the conductors themselves, It = 0. Hem..r

the distribution of electricity on the first plane has a surface-

density cr, where
f—B

Jtto- — li —
e

On the <itlier surface, where the potential is £, the surface-

density a will be equal and opposite to <r, and

4 71 a = — /f —
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Let u* next consider a portion of the firat surface whose area
is S, taken so that no part of S is near the boundary of the
surface.

The quantity of electricity on this surface is A\ = 6V, and, hy
Art. 70, the force acting on every unit of electricity is 4 It, so that
the whole force acting n the area $ and attracting it towards
the other plane, is

f - k RSv = J-JPS = — (B ~A?
Utt 8 xr C"

Here the attraction is expressed in terms of the area $ the
difference of potentials of the two surfaces {A-B), and the distance
between Ihem t: The attraction, expressed in terms of ehaigo
E} on the area <S

T

. is «

The electrical energy due to the distribution of elect rieity on the
area 8, and tliat on an area S' on the surface Ji defined by projecting
S on the surface Ji by a system of lines of force, which in this case
arc normals to the planes, is

= Fc.

The first of these expressions is the general expression of elec-
trical energy.

The second gives the energy in terms of the area, the distance,
and the difference of potentials.

The third gives it in terms of the resultant force $ and the
volume Sc included between the areas S ando", and shews that the
energy in unit of volume is p where 8 Tip = JF.
The attraction between the planes is jiS, or in other words, there

is an electrical tension (or negative pressure) equal to p ou every
unit of area.

The fourth expression gives the energy in terms of the charge.
The fifth shews that the electrical energy is equal to the work

which would be done by the electric force if the two surfaces were
b> be brought together, moving parallel to themselves, with their
electric charges constant.



152 SIMPLE CASES. [
I2 5*

To express the charge in terms of the difference of potentials,

J_
S_

4tt c

we have i $
,

E, = — --(B-A) = q{B-A).

1 ^

The coefficient -— —- = q represents the charge due to a differ-

enee of potentials equal to unity. This coefficient is called the

Capacity of the surface 5, due to its position relatively to the

opposite surface. \

Let us now suppose that the medium between tlie two surfaces

is no longer air but some other dielectric substance whose specific

inductive capacity U A', then the charge due to a given difference

of potentials will be K times as great as when the dielectric is air,

*

=

m^M
The total energy will be

The force between the surfaces will be

2 71 B 2_
KS

Hence the force between two surfaces kept at given potentials

varies directly as JT, the specific capacity of the dielectric, but the

force between two surfaces charged with given quantities of elec-

tricity varies inversely as K.

Two Concentric Spherical Surfaces.

125.] Let two concentric spherical surfaces of radii a and b, of

which h is the greater, be maintained at potentials A and B
respectively, then it is manifest that the potential V is a function

of r the distance from the centre. In this case, Laplace's equation

becomes ^lT+ I SI =
drl r dr

The integral of this is

V- C\+C,r- ]

j

and the condition that V— A when t - a, and 7 = B when r. = 4,

gives for the space between the spherical surfaces,
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_ Aa-Bb A—B
I — : -+ f~' •

dV_ A-B

If a-j, it2 are the surface-densities on the opposed surfaces of n

folio
1

sphere (<!' l-idius <t, and n splu'i'i<-:i] hollow of radius 4. then

J_ A-B 1 B-j

11 and E.. be the whole charges of electricity on these surfaces,

The capacity of the enclosed sphere is therefore
h — tt.

If the oiiter surface of the shell he also spherical and of radius c,

then, if there are 110 oilier conductors in the neighbourhood, the

charge on the outer surface is

E3
- Be.

Hence the whole charge on the inner sphere is

and that, of the outer

F^E,^~(3-A)+j3c.

If we put b = cc
t we have the case of a sphere in an infinite

space. The electric capacity of such a sphere is a, or it is nu-

merically equal to its radius.

The electric tension on the inner sphere per unit of area is

1 i 3 (A-B)2

8tt a- (b— a)S

The resultant of this tension over a hemisphere is ir<f
2
}» = F

normal to the base of the hemisphere, and if this is balanced by a

surface tension exerted across the circular boundary of the hemi-

sphere, the tension on unit of length being T
t
we have

F = 2naT.

Hl'lKV F= T
h* (A—B) 2 _ E*
8 (b-af

—
Ba 2

16 wo (b— a)8
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If a spherical soap bubble is electrified to a potential A, then, if

its radius is a, the charge will lu: A a, and the surface-density

will be
1 A

in a

The resultant electrical force just outside the surface will be l7r<r
t

and inside the babble it is zero, so that by Art, 7 (J the electrical

force on unit of area of the surface will be 2^o-a
,
acting outwards.

Hence the electrification will diminish the pressure of the air

within the bubble by 271^, or

But it may be shewn that if T is the tension which the liquid

film exerts across a line of unit length, then the pressure from

within required to keep the bubble from collapsing is 2 - . If the

electrical force is just sufficient to keep the bubble in equilibrium

when [lie air within and without is at the same pressure

a2 = i6 7r*r.

Two Infinite Coaxal Cylindric Surfaces.

126.3 ^ct radius of the outer surface of a conducting cylinder

be a, and let the radius of the inner surface of a hollow cylinder,

having the same axis with the first, be b. Let their potentials

l>e A and H respectively. Then, since the potential /' is ill this

case a function of/, the distance from the axis, Laplace's equation

becomes

#f l dV

_

dr*
+

r dr~ °'

whence V = C
x+

C

2
log r.

Since V = A when r = a, and V = B when r = b,

Ahg~ +iflog^
y ' "

log-

Ef <T
i> ai surface-densities on the inner and outer

surfaces,

A-B B-A
47rcr

i
- P 4tt^ = ...

a log - b log- -
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If E
l
and E

t
are the charges on a portion of the two cylinders of

length I, measured along the axis,

E, = a«al<fj = h—f I =-%
Iog-

The capacity of a length I of the interior cylinder is therefore

7- i—
If the space between the cylinders is occupied by a dielectric of

specific capacity K instead of air, then the capacity of the inner
cylinder is I £

•i

f~
log -

The energy of the electrical distribution oti the part of the infinite

cylinder which we have considered is

. IK{A—Bf

B

C

Kg. 5.

127.] Let there be two hollow cylindric conductors A and B,
Fig. 5, of indefinite length, having the axis of x for their common
axis, one on the positive and the other on the negative side of the
origin, and separated by a short interval near the origin of co-
ordinates.

Let a hollow cylinder C of length 21 be pjaced with its middle
point at a distance x on the positive side of the origin so as to

extend into both the hollow cylinders.

Let the potential of the positive hollow cylinder he A, that of
the negative one j?, and that of the internal one C, and let us put
a for the capacity per unit of length of C with respect to J, and

j3 for jibe same quantity with respect to B.

The capacities of the parts of the cylinders near the origin and
near the ends of the inner cylinder will not be affected by the

value of # provided a considerable length of the inner cylinder

enters each of the hollow cylinders. Near the ends of the hollow
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Cylinders, and near the ends of the inner cylinder, there will he

distributions of electricity which we are not yet able to calculate,

but the distribution near the origin will not he altered by the

motion of the inner cylinder provided neither of its ends comes

near the origin, and the distributions at the ends of the inner

cylinder will move with it, so that the only effect of the motion

will he to increase or diminish the length of those parts of the

inner cylinder where the distribution is similar to that on an in-

Unite cylinder.

Hence the whole energy of the system will he, so far as it depends

on x}

Q= \a{l+x){C-AY + )Lp {l-x) {C-Bf + quantities

independent of x

;

aii'l the resultant force parallel to the axis of the cylinders will he

If the cylinders A and B are of equal section,, a — ft, and

X= a(B-A) (C-biA+ B)).

It appears, therefore, that there is a constant force acting on

the inner cylinder tending to draw it into that one of the outer

cylinders from which its potential differs most.

If C be numerically large and A + B comparatively small, then

the force is approximately X = a (B—A) C;

so that the difference of the potentials of the two cylinders can be

measured if we can measure X, and the delicacy of the measurement

will be increased by raising C, the potential 0/ the inner cylinder.

This principle in a modified form is adopted in Thomson's

Quadrant Electrometer, Art, 219.

The same arrangement of three cylinders may he used as a

measure of capacity by connecting B and C. If the potential of

A is zero, and that ofB and C is F, then the quantity of electricity

on A will be B
9
= (y13 + a </+ *)) F;

so that by moving C to the right till so becomes the capacity of

the cylinder C becomes increased by the definite quantity a£ where

1

a = ^ ,

2 log-
a

a and b being the radii of the opposed cylindrie surfaces.



CHAPTER IX.

spj i urical harmonics.

Oh Singular Points at which the Potential becomes hjinilt.

1*28.] We have already shewn that the potential due to a
quantity of electricity e, condensed at a point whose coordinates

arc fa, b, c), is *
K }

r=*-; (1)

where r is the distance from the point («, b
t
c) to the point (jj, t/

t
s),

and /* is the potential at the point (x, yt
z).

At tlic point (>, '.-} the potential and all its derivatives* beenme
infinite, but at every other point they are finite and continuous,

and the second derivatives of V satisfy Laplace's equation.

Hence, the value of F, as given by equation (1), may be the

actual value of the potential in the space outside a closed surface

surrounding; the point (a, b, c), but we cannot, except for purely

mathematical purposes, suppose this form of the function to hold

up to and at the point fa, 5, c) itself. For the resultant force close

to the point would be infinite, a condition which would necessitate

a discharge through the dielectric surrounding the point, and

besides this it would require an infinite expenditure of work to

charge a point with a finite quantity of electricity.

We shall call a point of this kind an infinite point of degree zero.

The potential and all its derivatives at such a point are infinite,

but the product of the potential and the distance from the point

is ultimately u finite quantity r when the distance is diininidied

without limit. This quantity'; is called the cho ///<• of t.lic infinite

point.

This may be shewn thus. ' If V he the potential due lo other

electrified bodies, then near the point V is everywhere finite, and

the whole potential is e/= /'+-

,

r

whence Vr = Ff
r+ e.
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When r is indefinitely diminished V r remains finite, so that

ultimately fr = e.

129.1 Tlicre are other kinds of singular points, the properties of

which we shall now investigate, hut, "before doing so, we must define

some expressions which wo shall find useful in emancipating our

ideas from the thraldom of systems of coordinates.

An axis is any definite direction in space. We may suppose

it defined in Cartesian coordinates by its three direetion-cosines

/, at, nr, buffer still, we may suppose a mark made on the surface

of a sphere where the radius drawn/VfJW the centre in the direction

of the axis meets the surface. We may call this point the Pole

of the axis. An axis has therefore one pole only, not two.

IF through any point a>, y, z a plane he drawn perpendicular to

the axis, the perpendicular from the origin on the plane is

p = lx+ my + 7iz. (2)

The operation d . <l d d

dJ
=l

<lx+
M Ty+*W W

in culled Differentiation with respect to an axis h whose direction-

cosines are I, m, n

Different axes are distinguished by different suffixes.

The cosine of the angle between the vectoT r and any axis A<

is denoted by \if and the vector resolved in the direction of the

axis by p t , where
A, r = ?, a- + w ty+ }t

t
i- —p s . (4)

The cosine of the angle between two axes //, nnd h
{
is d< -unU- \ by

pu where ^ = + m . nij + ^ Vj , (5)

From th<?se definitions it is evident that

dr p (

dh

dl-^-dT'

(8)dhj r

X.iw let us suppose tii:il the (.olential at the point (ar, gt z\ due

to a singular point of any degree placed at the origin is

If such a point be planed at the extremity of the axis h, the

potential at y, z) will be

&fW-lh% (y-W&h (Z-«h))
;
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and if a point in all rejects equal and of opposite sign be placed
at the origin, the potential due to the pair of point s will be

d
- ~ Mh^ F (*> V> *) + terms containing A*.

If we now diminish h and increaseM without limit, their product

, TTJfF
COn 'Sta,lt atld CtlUal fo JV'> the nlti™te value of the

potential of thy pair of points will be

Y*3*'
9
'fl

SatiS,leS Ijapla°e
'

S then ^hich is the
d,fl,reiice of two functions, each of which separately satisfies the
equation, must itself satisfy it.

If we be-in with an infinite point of degree zero, for which
1

V
we shall gL«t for a point of the first degree

m^mm^ 01)

A point of the first degree may be supposed to consist of two
points of degree zero, having equal and opposite charges 3L and-Jfif and placed at the extremities of the axis L The len^h
of the ax.s is then supposed to diminish and the magnitude of the
c-barge,.to inercn*, so thai their prodn,t MJ is always equal ,o

*X .J
he ultimat* re6^ of this process when the two point,

coincide is a point of the first degree, whose moment is iTand
whose *m is A point of the fi r,t degree nun- therefore he
called a Double point.

By placing two equal and opposite points of the first degree at
the extremit.es of the second axis A2 , and making MJ,. = M W( .

got by the same process a point of the second degree who'se potential
is r

- j/ .!!_ K
dh

v
tl/i.

2 r

y 3A,A
a
— p vlm

* 3 ~ '

r (12)
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We may call a point of the second degree a Quadruple point)

because it is constructed by making four points approach each

other. It has two axes, ^ and /5, (
and a moment Mt .

The di-

rections of those two axes and the magnitude of the moment com-

pletely define the nature of the point.

130.] Let us now consider an infinite point of degree i having

i axes, each of which is defined by a mark on a sphere or by two

angular coordinates, and having also its moment Mi}
so that it is

dclined hy + \ independent quantities. Its potential is obtained

hv diueruntiatinff /" with respect to the / axes in succession, so

that it may be written

r
f ^(-lyjfi „

di

Al
•- (

13
)

'
v 1 i

dfi
l
...dfr

i
r

The result of the operation is of the form

where Ttl which is called the Surface Harmonic, is a function of the

i cosines, Ai . . . A
f
of the angles between r and the i axes, and of the

£ 1) cosines, fin , &c. of the angles between the different axes

themselves. In what follows we shall suppose the moment M{
unity.

Every term of 7
f
consists of products of these cosines of the form

Mi2* Mm - f*a»-i-a* ritft •••• ri'f

in which there are * cosines of angles between two axes, and i— 2 s

cosines of angles between the axes and the radius vector. As each

axis is introduced by one of the » processes of differentiation, the

symbol of that axis must occur once and only once among the

suffixes of these cosines.

Hence in every such product of cosines all the indices occur

once, and none is repeated.

The number of different products of * cosines with double suffixes,

and i— 2 s cosines with single suffixes, is

v= !4 (15)
2* J_ j

»-2»

For if we take any one of the N different terms we can form

from it 2* arrangements by altering the order of the suffixes of the

cosines with double suffixes. From any one of these, again, we

can form * arrangements by alteri: g I he order of these cosines,

and from any one of these we can form '-2* arrangements by

altering the order of the cosines with single suffixes. Hence, with-

out altering the value of the term we may write it in 2'\*_ ' <-2*
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<K«W ways, and if we do so u, u] , lhl, {rnns W(J ah „
the whole permutation, of* symbob, the number of which is !

the

1

vILil
911

*°
expr

Tu
th
f

a !J£,rticular symbo1 i ***** mm
I the T>°

r 2"* °nIy
'
We WTit« jt - 11 to the Aor the //. Thus the equation

that the whole system of terms may be divided into twoporhons ,n one of which the symbol, occur, "among the diction!«Xmm of the rachus vector, and in the other among the cc*il
<>f the angles between the axes.

Let us now assume that up to a certain value of i

*< = AiM 2 (V)+ ,/u 2 (A*-* /*»)+ &..

+ 4..2(\<-V)+ &o. (17)
Tfcie , B evidently true when *= I and when * = 2. We shall shew
that if it M tr„e for , it U true for i+ 1. We may write the aerie,

where 8 indicate, a summation in whicli all values of a not neater
than i , are to Im taken.

b

Multiplying by and remembering tliat »- = rA, weobtam by (HX for the value of the boM harmonic of ne-itive
degree, and moment unity,

Differentiating £ with respect to a new axis whose symbol is
J, we should obtain Fi+l with its sign reversed,

+ ,.2.-21-1 2 (^-2.-1^.+
1) J, (2Q)

If we wish to obtain the terms containing * cosines with double
snfHxes we must diminish , by unity in the second term, and we find

->Wt = li^{^-^a [^..(2*-2/-l)2(7V-
a*+

V"J

If we now make I^M^^^t)
then ^ . * {4+l,r*-*<<+')-i v

(23)

and this value of Js the simc as that obtained bv chamyinff i

VOL. [.
|j
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into i~h 1 in the as inn. .1 expression, equation (19), for V
{

. Hence
the assumed form of Viv in equation (19), if true for any value oft,

is true for the next higher value.

To find the value of Ait} put s — in equation (22), and we find

^+1,0 = % ; (24)

and therefore, since A
x

is unity,

and from this we obtain, by equation (22), for the general value of
the coefficient |2»— 2s

and finally, the value of the trigonometrical expression for T4 is

Tina is the most general expression for the spherical surface-

harmonie of degree i. If i points on a sphere are given, then, if any
other point P is taken on the sphere, the value of T

t
for the point

P is a function of the j distances of P from the i points, and of the
i 1) distances of the i points from each other. These t points
may be called the Poles of the spherical harmonic. Each pole
may be defined by two angular coordinates, so that the spherical
harmonic of degree i has 2i independent constants, exclusive of its

moment, JfJ,

131.] The theory of spherical harmonies was first given by
Laplace in the third book of his MJcaniqne Celeste. The harmonica
themselves are therefore often called Laplace's Coefficients,

They have generally been expressed in terms of the ordinary
spherical coordinates B and <p, and contain 2i-f 1 arbitrary con-
stants. Gauss appears* to have had the idea of the harmouie
being determined by the position of its poles, but I have not met
with any development of this idea.

In numerical investigations I have often been perplexed on ac-
count nf the apparent waul of defmitencss of 1],,. idea of a Laplace's
Coefficient or spherical harmonic. By conceiving it as derived by

the successive differentiation of 1 with respect to i axes, and as

expressed in terms of the positions of its i poles on a sphere, I

Causa. Woke. bd.v. 8. SOI.
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SY1IMJSTJUCAL SYSTEM.

HJ3

:<s tin., sum of ;i numlwi- ,
i .

tx
!
Mt'*« tlu> harmonic—^ ;„ . jrouics

'
-* **** *

Symmetrical System

one half of the equator ^ distances round

Mid cos s - when both are greater.

\Vhen all the poles are concentrated at the vo\u cA'ih Ithe harmonic become, aM narxnonie ibr „Uh „ - o ? T'zoual harmmii<> io «f * '
which j = o. As Ihr

symbol «
*'***« TC

ft* it the

^mmmim^^ *

' 2
{ n |i-iifi_2»M

j

'

(29)

and „,„«, whl(:h sha]1 wrj(ii ^ md ^ r(.s,Hviivi l<
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= S-j<- l )" 2»|.|l| i-2. "'-"^}- <
30 >

In this expansion the coefficient of pt
is unity, and all the other

terms involve v. Hence at the pole, where /*=1 and v=0, Qi
= l„

It is shewn in treatises on Laplace's Coefficients that Qt
is the

coefficient of Ai in the expansion of (1 — 2pi +/*2 )~*.

The other harmonics of the symmetrical system are most con-

veniently obtained by the use of the imaginary coordinates given by
Thomson ;)in! Tail, Xtrdtm/ PAil'.wji/ii/, vol. i. p. M8,

£ = x 4.^— 1^, y) = x~V—ly. (31)

The operation of differentiating with respect to <r axes in sue-
—

cession, whose directions make angles - with each other in the
IF

plane of the equator, may theti l>v written

d/ij ...dh9 d$° drf

The surface harmonic of degree i and type <r is found by

differentiating ~ with respect to t axes, a- of whieh are at equal

intervals in the plane of the equator, while the remaining i—

a

coincide with that of z, multiplying the result by and dividing

by [i. Hence
Ji+ l v .la- Jit 1

Now f'+ij* = 2f*if*cos(<r^ + ^3); (35)

Hence F^Z^M^^ *^^' (37)

where the factor 2 must be omitted when a = 0.

The quantity is a function of 6, the value of whieh is given

in Thomson and Tait's Natural Philosophy, vol. i. p, 149.

It tuny le derived from Q t

by ll quation

*V "
r
T^"*

!

3iF*'
(38)

where <2i is expressed as a function of u only.
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we^tif"
8 the diff4irentiations oa & - &m inmm m,

We may also express it as a homogeneous function of „ and „,

I 2 2g «^
\

v + n i-v-2n ^ 1

f C*°)

In this expression the coefficient of the first term is unity and
the other, may be written down in order by the application of
ljaplaee s equation.

Tl„. folUvim- „.|„U„I1B wi ,| ,„. ,;„,„,, ;„ n„.tlah.mm .

K .s
•Buy may be deduced at once from the expansion of Q,.

Harmonics of Positive Degree.

133 ]
We have hitherto considered the spherical surface harmonic

I, as derived from the solid harmonic

This solid harmonic is a homogeneous function of the coordinates
of the negative degree -(*+ l). Its values vanish at an infinite
distance and become infinite at the origin.

We shall now shew that to every such function there corresponds
another which vanishes at the origin and has infinite values at an
infinite distance, and is the corresponding solid harmonic of positive
decree t.

A solid harmonic in general may be defined as a homogeneous
function of y, and s> which satisfies Laplace's equation

tlx*
+
df

+
dz* ~ °"

Let //^ he a Iiomogeneous function of the degree i, such that

Ht = \±M^Tf = r2,+% (43)

Then = (2i+ l)f**-^+ ^

,

'

f/J=(2i + \)((2i-})ic^ r*)r*-*i:+ 2(2i+\)r^/!^^ +^ f
<.
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Hence

Now, since fj is a homogeneous function of negative degree i+ 1,

rff
f

" rf^ ... ,

The first two terms therefore of the right hand member of

equation (44) destroy each other, and, einee }\ satisfies Laplace's

equation, the third term is zero, bo that H
t
also satisfies Laplace's

equation, anil is therefore a solid harmonic of degree i.

We shall next shew that the value of //, thus derived from l\ is

of the most general form.

A homogeneous function of z of degree i contains

4(^+ 1) (i+ 2)
terms. But

is a homogeneous function of degree i— 2, and therefore contain a

4 * (*— 1) terms, and the condition v 2#, = requires that each of

these must vanish. There are therefore | i (i— 1) equations between
the coefficients of the |(*+ 1)(*+ 2) tcrms of the homogeneous
function, leaving 2t+l independent constants in the most general

form of

But we liave seen that ft has 2i+l independent constants,

therefore the value of flj is of the most general form.

Application of Solid liarmonies to the Theory o/Mlectrifed Spheres.

134.] The function satisfies the condition of vanishing at

infinity, hut does not satisfy the condition of being everywhere
finite, for it becomes infinite at the origin.

The function U
t
satisfies the condition of being finite and con-

tinuous at finite distances from the origin, but does not satisfy the
condition of vanishing at an infinite distance.

But if we determine a closed surface from the equation

f
i = H>, (iG)

and make Ii
t
the potential function within the closed surface and
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potential outside it, then by making the surface-density „
satiety the characteristic equation

"rfr~^ + U(r = ' (47)

we shall have a distribution of potential which satisfies all the
conditions.

It is manifest that if flj and V
t
are derived from the same value

of r«, the surface 7/, = 7; will be a spherical surface, and the
surface-density will also he derived from the same value of Y

t
.

Let a be the radius of the sphere, and let

Then at the surface of the sphere, where = a,

and dZ_m_
dr dr

47Tff
'

whence we find //, and I. in term,'; of 6',

We have now obtained an electrified system in which the potential
js everywhere finite and continuous. This system consists of a
spherical surface of radius a

t
electrified so that the surface-density

is everywhere CY(i where is some constant density and Y
i

is a
surface harmonic of degree i. The potential inside this sphere,
arising from this electrification, is everywhere flj, and the potential
outside the sphere is 1\.

These values of the potential within and without the sphere
might have been obtained in any given ease by direet integration,
I mt the labour would have been great and the result applicable only
t<> the particular rase.

I8fc] We shall next consider the action between a spherical
surface, rigidly electrified according to a spherical harmonic, and
an external r|,T<

i system which we shall call K.

Let V be the potential at any point due to the system E, and
!, that due to the spherical surface whose surface-density is <r.
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Then, by Green's theorem, the potential energy of K on the

electrified surface is equal to that of the elect ritiod surface on /•.', or

ffF<rdS='2,r
i
(fE, (50)

where the first integration is to be extended over every element dS
of the surfaec of the sphere, and the summation 2 is to be extended

to every part dE of which the electrified system E is composed.

But the same potential function Vi may be produced by moans
of ;i combination of 2* electrified points in the manner already

described. Let us therefore find the potential energy of E on
each a compound point.

Tf Mn is the charge of a single point of degree zero, then M\J'
is the potential energy of V on that point,

If there are two such points, a positive and a negative one, at

.

the positive and negative ends of a line h
i} then the potential energy

of E fin the double point will be

nnd when 3f increases and /, diminishes indefinitely, but so that

the value of the potential energy will be For a point of the first degree

-.r

Similarly for a point of degree i the potential energy with respect

to E will be ,inr

M
This is fhe value of the potential energy of E upon the singular

point of degree L That of the singular point on E is 2%4E, and,
by Green's theorem, these are equal. Hence, by equation (50),

dh
x

. . . d/t;

If <r = CY
{
where C is a constant quantity, then, by equations

(49) and (M),

'
=
~i±~2l+i' <51 >

Hence, if V is any potential function whatever which satisfies

Laplace's equation within the spherical surface of radius a > then the
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integral of VTtd8} extended over every element tl$
}

,,f i]„. surfan-
of a sphere of radius a, is given by the equation

where the differentiations of V ;l re taken with respect tn the axes
of the harmonic 7„ and the value of the differential coefficient is
that at the centre of the sphere.

136.] Let iia now suppose that V is u solid hnnnoinY of positive
degree j of the form j

(63)

At the Spherical surface, t = «, the value of V is the surface har-
monic TJt and equation (52) becomes

where the value of the differential coefficient is that at the centre
of the sphere.

When i is numerically different from j, the surface-integral of
the pmdiu-t I'. vanishes. For, when ; is less than

J, the n.-suli

of the differentiation in the second memher of (54) is a homogeneous
function of .r, y, and z, of degree j—i, the value of which at the
centre of the sphere is zero. If t is equal to,/ the result is a constant,
the value of which will he determined in the next article. If the

differentiation is carried further, the result is zero. Hence the
surface-integral vanishes when i is greater than j.

137.] The most important case is that in which the harmonic
rJYj is differentiated with respect to i new axes in succession, the
numerical value of / being the same as that of i, but the directions
of the axes being in general different. The final result in this case
is a constant quantity, each term being the product of i cosines of
angles between the different axes taken in pairs. The general
form of such a product may he written symbolically

which indicates that there are 9 cosines of angles between pairs of
axes of the first system and s between axes of the second system,
the remaining i—2s cosines being between axes one of which
belongs to the first and the other to the second system.

In each product the suffix of every one of the 2i axes occurs

once, nnd one*1 onlv.
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The number of different products for a given value of # is

&m CliJf ....

The final result is easily obtained by the successive differen-
tiation of *

tr 1 n r, I2/-2*
-
]j

s « - l?J|^*2<^# •

Differentiating this j times in succession with respect to the new
axes, so as to obtain any given combination of the axes in pairs,
we find that in differentiating r*> with respect to a of the new axes'
which are to be combined with other axes of the new system, we
introduce the numerical factor 2 s{2s—2) ... 2, or 2*W In con-
tinuing the differentiation the p*a become converted into p.% but
no numerical factor is introduced. Hence

<*'
_iV 1 ou \

2i-2*
\

s

dh^Zdh
t

r)Y
s = jT S ti- SW«tf tHt*)} (56)

Substituting this result in equation (54) we find for the value of
the surface-integral of the product of two surface harmonics of the
same degree, taken over the surface of a sphere of radius a,

ff
r

<r'ds= (^T^^^iC- J

|^|^ sc^^.jV</—)} .m
This quantity differs from zero only when the two harmonics are

of the same degree, and even in this case, when the distribution of
the axes of the one system bears a certain relation to the distribution
of the axes of the other, this integral vanishes. In this case, the
two harmonics are said to he conjugate to each other.

On Conjugate Harmonics.

138.] If one harmonic is given, the condition that a second
harmonie of the same degree may be conjugate to it is expressed
by equating the right hand side of equation (57) to zero.

If a third harmonie is to be found conjugate to both of these
there will be two equations which must be satisfied by its 2i
variables.

If we go on constructing new harmonics, each of which is con-
jugate to all the former harmonics, the variables will be continually
more and more restricted, till at last the (2*+l)th harmonic will
have all its variables determined by the 2i equations, which must
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be satisfied in order that it may he conjugate to the 2/ preceding
J i it rmonies.

Hence a system of 2*+l harmonies of degree i may be con-
structed, each of which is conjugate to all the rest. Any other
harmonic of the same degree may be expressed as the mm of this
system of conjugate harmonies each multiplied by a coefficient.
The system described in Art. 132, consisting of 2i+ I bar-

rnon.es symmetrical about a single axis, of which the first is zonal
the next *-i pairs tesseral, and the last pair sectorial, is a par-
ticular case of a system of 2i+l harmonics, all of which are
conjugate to each other. Sir W. Thomson has shewn hmv |„
express the conditions that 2/+1 perfectly general harmonics,
each of which, however, is expressed as a linear function of the
2f+1 fiamiOTli«8 of th's symmetrical system, may be conjugate
to each other. These conditions consist of i(2i+\) linear' cona-
tions connecting the (2i+l)2

coefficients which enter into the
expressions of the general harmonics in terms of the symmetric*]
harmonics.

Professor Clifford has also shewn how to form a conjugate system
of 2

1+ 1 sectorial harmonics having different poles.
Both these results were communicated to the British Associationm 1871.

139.] If we take for ]) the zonal harmonic QJt we obtain a
remarkable form of equation (57).

In this case all the axes of the second system coincide with each
other,

Tho cosines of the form ^ will assume the form A where ,\ is I lie

cosine of the angle between the common axis of Qs and an axis of
the first system.

The cosines of the form will all become equal to unity.
The number of combinations of* symbols, each of which is

distinguished by two out of > suffixes, no suffix being repeated, is

N _ l_L_ _
2*

j
a

\
i-2a ' (

58
)

and when each combination is equal to unity this number represents
the sum of the products of the cosines fin, or S(ju /}.
The number of permutations of the remaining^'- 2* symbols of

the second set of axes token all together is
\

i-2s
. Hence

2 "*) sa |i^2* 2 A'-*". (59)

Equation (57) therefore becomes, when Tj is the zonal harmonic,
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=^ r<w! "'' (60)

where Yt(J^
denotes the value of PJ in equation (27) at the common

pole of all the axes of Qj.

140.] This result is a very important one in the theory of

spherical harmonies, as it leads to the determination of the form

of a series of spherical harmonics, which expresses a function having

anv arbitrarily assigned value at each point of a spherical surface.

For let .Fbe the value of tin- function at any given point of the

sphere, say at the centre of gravity of the clement of surface dS,

and let Q t
he the zonal harmonic of degree i whose pole is the point

P on the sphere, then the surface-integral

FQ.dS

extended over the spherical surface will he a spherical harmonic

of degree i, because it is the sum of a number of zonal harmonics

whose poles are the various elements dS, each being multiplied by

FdS. Hence, if we make

we may expand F in the form

/''= AJtl
+A

x
Y

x + %Ui. +Ai
Y;t (62)

or

This is the celebrated formula of Laplace for the expansion in

a series of spherical harmonies of any quantity distributed over

the surface of a sphere. In making use of it we are supposed to

take a certain point P on the sphere as the polo of the zonal

harmonic Q ( , and to find the surface-integral

FQtdS

over the whole surface of the sphere. The result of this operation

when multiplied U' J;'
;

I g:\vs the value of A
;
Y

;
at the point P,

and by making V travel over the surlace of the sphere the value of

A,Y
{
at any other point may be found.
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Uni A
;
i

4
is a general surface harmonic of degree i, and we wish

to break it up into the sum of a series of multiples of the 2/+ ]

conjugate harmonics of that degree.

Let P
t
he one of these conjugate harmonics of a particular type,

and let B
{
P

{
he the part of belonging to this type.

We must first find /•/

which may be done by means of equation (57), makiug the second

set of poles the same, each to each, as the first set.

We may then find the coefficient li
t
from the equation

B
< * tJIfp"'s- w

For suppose /'expanded iti terms of spherical liarm-mies, and let

JijPj be any term of this expansion. Then, if the degree of /} is

different from that of Ptl or if, the degree being the same, Pj is

conjugate to Pit the result of the surface-integratinn is /.em. Hence
the result of the surface-integration is to select the coefficient of the

harmonic of the same type as i?.

Tin- nutel remarkable example of the actual development of a

function In a series of spherical harmonics is the calculation by

Gauss of the harmonics of the first four degrees in the expansion

of the magnetic potential of the earth, as deduced from observations

in various parts of the world,

H« has determined the twenty-four coefficients of the three

conjugate harmonies of the first degree, the five of the second,

seven of the third, and nine of the fourth, all of the symmetrical

system. The method of calculation is given in his General Theory

of Terrestrial Magnetism.

141.] When the harmonic P
{
belongs to the symmetrical system

we may determine the surface-integral of its square extended over

the sphere by the following method.

The value of r* Yf is, by expiations (31) and (36),

m* = mk (f
' + "'> H^V-**" &c)i

and by equations (33) and (64),

IVrlnnning the differentiations, we I i ml that the only Ir-nt^

which do not disappear are those which contain z^9
. Hence
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v 1 ; 2 ;+ 1 2s* » »

except whin ff = 0, in which ease we have, by equation (GO)

\ Qif<lS = (67}

These expressions give the value of the surface-integral of the

square of any surlaee harmonic of the sy in metrical system.

We may deduce from this the value of the integral of the square

of the function 3,.<*>
s
given in Art. 1 32,

This value it; identical with that given hy Thomson and Tait, and is

true without exception for the case in which a = 0.

142.] The spherical harmonics which I have described are those

of integral degrees. To enter on the consideration of harmonics

of fractional, irrational, or impossible degrees is beyond my purpose,

which is to give as clear an idea as I can of what these harmonics

are. I have done so by referring the harmonic, not to a system

of polar coordinates of latitude and longitude, or to Cartesian

coordinates, but to a number of points on the sphere, which I

have called the Poles of the harmonic. Whatever be the type

of a harmonic of the degree t, it is always mathematically possible

to find t points on the sphere which are its poles. The actual

calculation of the position of these poles would in general involve

the solution of a system of 2i equations of the degree i. The

conception of the genera! harmonic, with ils poles placed in any

manner on the sphere, is useful rather in fixing our ideas than in

making calculations. For the latter purpose it is more convenient

tu consider the harmonic as the sum of 2 /+ 1 conjugate harmonics

of selected types, and the ordinary symmetrical system, in which

polar coordinates are used, is the most convenient. In this system

the first type is the zonal harmonic Q if in which all the axes

coincide with the axis of polar coordinates. The second type if

that in which i— 1 of the poles of the harmonic coincide at the pole

of the sphere, and the remaining one is on the equator at the origin

of longitude. In the third type the remaining pole is at 90° of

longitude.

In the same way the type in which / — a poles coincide at the

pole of the epic. -re, snid the remaining <r are placed with their axes
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at equal intervals - round the equator, is the type 2 a, if one of the

poles is at the origin of longitude, or the type 2<r + 1 if it is at

longitude r— •

143.] It appears from equation (60) that it is always possible

to express a harmonic as the sum of a system of zonal harmonies
of the same degree, having their poles distributed over the surface
of the sphere. The simplification of this system, however, does not
appear easy. I have however, for the sake of exhibiting to the
eye some of the features of spherical harmonies, calculated the zonal
harmonics of the third and fuUrLli decrees, and drawn, by the
method already described for the addition of functions, the equi-

potcntial lines on the sphere for harmonics which are the sums of
two zonal harmonics. See Figures VI to IX at the end of this

volume.

Fig. A I iv|i]VKf)it,s the sum of two zonal harmonics of (he third

degree whose axes are inclined 1 20° in the plane of the paper, and
the sum is the harmonic of the second type in which <r = 1, the axis
being perpendicular to the paper.

In Fig. VII the harmonic is also of the third degree, but the
axes of the zonal harmonics of which it is the sum are inclined

90°, and the result is not of any type of the symmetrical system.
One of the nodal lines is a great circle, but the other two which are
intersected by it are not circles.

Fig. VIII represents the tlilference of two zonal harmonies of

the fourth degree whose axes are at right angles. The result is a
tesseral harmonic for which i = i, a = 2.

Fig. IX represents the sum of the same zonal harmonies. The
result gives some notion of one type of the more genera] har-
monic of the fourth degree. In this type the nodal line on the
sphere consists of six ovals not intersecting each otlur. Within
these ovals the harmonic is positive, and in the sextuply connected
part of the spherical surface which lies outside the ovals, the har-

monic is negative.

All these figures are orthogonal projections of the spherical

surface.

1 have also drawn in Fig. V a plain section through the :ixis

of a sphere, to shew the eqiiipotential surfaces and lines of force

due to a spherical surface electrified according to the values of a

spherical harmonic of the first degree'.
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Within the sphere the equipotential surfaces are equidistant

pianos, ami the lines of force are straight lines parallel to the axis,

their distances from the axis being as the square roots of the

natural numbers. The lines outside the sphere may he taken as a

representation i if thi'.-r wlii el > would be due Id the earth's magnetism

it* it were distributed according to the most simple typo,

144.] It appears from equation (52), by making i = 0, that if

V satisfies Laplace's equation throughout the space occupied by a

sphere nf radius u, (In n the integral

1
1 J'dS= I

(G9)

where the integral is taken over the surface of the sphere, (IS being

an element of that surface, and T is the value of F at the centre

of the sphere. This theorem may be thus expressed.

The value of the potential at the centre of a sphere is the mean

value of the potential lor all points of its surface, provided the

potential be due to an electrified system, no part of which is within

the sphere,

It follows from this that if / satisfies Laplace's equation through-

out a certain continuous region of space, and if, throughout a

finite portion, however small, of that space, / is constant, it will

be constant throughout the whole continuous region.

If not, let the space throughout which the potential has a

constant value (' be separated by a surface 8 from the rest of

the region in which its values differ from C, then it will always

be possible to find a finite portion of space touching S and out-

side of it in which F is either everywhere greater or everywhere

less than C.

Now describe a sphere with its centre within S, and with part

of its surface outside 8, but in a region throughout which the value

of F is everywhere greater or everywhere less than C.

Then the mean value of the potential over the surface of the

sphere will be greater than it* value at the centre in the first ease

and less in the second, and therefore Laplace's equation CAlinof

be satisfied throughout the space occupied by the sphere, contrary

to our hypothesis. It follows from this that if F=C throughout

any portion of a connected region, F—C throughout the whole

of the region which can be reached in any way by a body oi

finite size without passing through electrified matter. (Wu sup-

pose the body to be of finite size because a region in which F is

constant may be separated from another region in which it is
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variable by an electrified surface, certain points or lines of which
are not electrified, so that a mere point might pass out of il„.
region through one of these points or lines without passing,
through electrified matter.) This remarkable theorem is due to
Gauss. See Thomson and Tait's Natural P/titosojify, § 497,

It. may be shown in the same way that if throughout any finite
portion of space the potential has u value which can he expressed
by a continuous mathematical formula satisfying Laplace's equation,
the potential will be expressed by the same formula throughout
every purl of space which can he readied wkl.oul passiti«- tlmm-h
electrified matter.

For if in any part of this space the value of the function is /

different from V, that given by the mathematical formula, then,
since both V and V satisfy Laplace's equation, U= V'—V does!
But within a finite portion of the space U = 0, therefore by what
we have proved V = throughout the whole space, or V- F.

145.] Let Y
i
be a spherical harmonic of i degree? and of any

type. Let any line be taken as the axis of the sphere, and lot the
harmonic be turned into » positions round the axis, the angular

distance between consecutive positions beinfe— -

If we take the sum of the n harmonics thus formed the result
will be a harmonic of % degrees, which is a function of & and ofthe
sines and cosines of n

<f>.

If * is less than i the result will be compounded of harmonics for
which * is zero or a multiple of n less than i, but if » is greater
than i the result is a zonal harmonic. Hence the following theorem :

Let any point be taken on the general harmonic Yti and let a
small circle be described with this point for centre and radius 0,
and hit n points he taken at equal distances round this circle, then
if Qi is the value of the zonal harmonic for an angle 0, and if }/ is

the value of % at the centre of the circle, then the mean of the
ft values of % round the circle is equal to Yf provided » is greater
than i.

If n is greater than i+s, and if the value of the harmonic at
each point of the circle be multiplied by ein*4> or cos*0 where
* is less than and the arithmetical moan of those pn.dnr-ls he
A„ then if is the value of lor the angle &, the coefficient
of sin s<f> or cos s<f> in the expansion of Y. will be

%®

vol. L m



178 SPHERICAL HARMONICS. [146.

In thia way we may analyse Y
t
into its component conjugate

harmonics by means of a linite number of ascertained values at

srWU'<l points on I lie spheiv.

Application of Spherical Harmonic Analysis to the Determination

of the Distribution qf Electricity on fy/ttH'i'urf on.'/ nearly Spherical

Conductors under the Action of known External Electrical Forces,

146.] We shall suppose that every part of the electrified system

which acts on the conductor is at a greater distance from i]n:

cent re of the conductor than the most distant part of the conductor

itself, or, if the conductor is spherical, than the radius of the

sphere.

Then the potential of the externa] system, at points within tin's

di- lance, may be expanded in a series of solid harmonics of positive

degree y _ A^+Ax tY1 + &c + At 7, r*. (70)

The potential due to the conductor at points outside it may be

expanded in a series of solid harmonies of the same type, but of

lli'-Vll : Vr <h'n!V

U=D^+B
1
Y^ + &<i . +BJi

±
l

. (71)

At the surface of the conductor the potential is constant and

equal, say, to CI Let us first suppose the conductor spherical and

of radius a. Then putting" r = a, we have f/+ V=C, or, equating

the coefficients of the different degrees,

B = a{C-A ),

B
t
=-a*A1} (72)

E
{
= -a2t+l A

{
,

The total charge of electricity on the conductor is i?u .

The surface-density at any point of the sphere may be found

from the equation

dV dV
4tt(t = —

dr dr

Distribution of Electricity on a nearly Spherical Conductor.

Let the equation of the surface of the conductor be

* = «(1 +JF)> (74)

k
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when) F is a function of the direction of r, and is ft numerical
quantity the square of which may be neglected.

Let the potential duo to the external electrified system be ex-
pressed, as before, in a series of solid harmonics of positive decree
and let the potential V be a series of solid harmonics of negative*
degree. Then the potential at the surface of the conductor is

obtained by substituting the value of r from equation (74) in these
series.

Hence, if C is the value of the potential of the conductor and
Bu the charge upon it,

C=A
t} + Al

aY
1 + ...+A

i
atY

i ,

+ A1
aFYl+ ...+iA

l
aiFY

i ,

. . -(J+VBja-O+VFYj. (75)

Since F is very small compared with unity, we have first a set
of equations of the form (72), with the additional equation

= -^0 \$ + 3A
x
a + &c. + (i + 1 ) A. a* FY,

+2 (Bj irV* U -2 ((/+ 1 ) Bj <H**» pyj . (7B)

To solve this equation we must expand F, F)\ . . . FY
i
in terms of

spherical harmonies. If F cml be expanded in terms 'of spherical
harmonies of degrees lower than k, then FY, can be expanded in
spherical harmonies of degrees lower than

Let therefore

B l

-F-3A
l
aFY

l-..,-(2i+ \)A
i
aiFYi=S.{Bia-^)Yj)} (77)

then the coefficients B
i

will each of them be small compared ivith

the coefficients B ..,B
t
on account of the emallnesfl of F, and

therefore the last term of equation (7G), consisting of terms in BJ>\
may be neglected.

I lence the coefficients of the form B
} may be found by expanding

equation (70) in spherical harmonics.

For example, let the body have a charge B
a , and be acted on by

no external force.

Let J'
7
be expanded in a series of the form

/'
T = S

{
I^ + fcc. +W (78)

Then Ji^ SJ^&c. +B^Y, = v (B, a-U">Y,)t (7!))

V 2
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or the potential at any point outside the body is

and if <r is the surface-density at any point

dU
-in or = j— 7

or Izaa = ^ (1 {k-\)S
k
Y
k). (81)

Hence, if the surface differs from that of a sphere by a thin

stratum whose depth varies according- to the values of a spherical

harmonic of degree k, the ratio of the difference of the superficial

densities at any two points to their sum will be /— 1 times the*

ratio of the difference of the radii of the same two points to their

sum.



CHAPTER X.

CONPOCAL QITADRIC SURFACES*.

147.] Let the general equation of a con focal system be

x1
zz

\*- at + a-— b'1
+ ~ l

* O
where A is a variable parameter, which we shall distinguish by the
suffix k

x
for the hypcrboloids of two sheets, Ag for the hypcrboloids

of one sheet, and A3 for the ellipsoids. The quantities

**) Of A
2^ c} A3

are in ascending order of magnitude. The quantity a is introduced
for the sake of symmetry, but in our results we shall always suppose
a = 0.

If we consider the three surfaces whose parameters are V Aa> A <»

wg find, by elimination between their equations, that the value of
a;
2 at their point of intersection satisfies the equation

a2 {P-a*) {c*-a*) = (A^-^HA^-^HAa2 -^).
(
2
)

The values of y
% and z2 may be found by transposing a

t
b, c

syvcimetrically.

Differentiating this equation with respect to A,, we find

dx \
x

If <h
x
is the length of the intercept of the curve of intersection of

K and A.
5
cut off between the surfaces A

A
and + then

4,

(0

* This investigation La chiefly borroweJ from a very interesting work,

—

Ltfon* mr
leg Fonctim* Ittvene* des Transcemfontes et hi Surface* Itothermc: Par G. Lame*.
P*riSj 1857.
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The denominator of this fraction is the product of the squares of

the semi-axes of the surface A,

,

Tf we put

JV = A
;i
*-A/, /V = \,

2-V, and J)./ = VVj W
and if we make a = 0, then

It is easy to see that J?
a
and DA are the semi-axes of the central

section of k
x
which is conjugate to the diameter passing through

the given point, and that I)., is parallel to (k2 , and Dz to <fo3 .

If wo also substitute for the three parameters A,, A
2 ,

A.
5
their

values in terms of three functions a, ft, y, defined by the equations

da <i . .

-7— — j 1 i
1 » A, = when a = 0.

c
A 2
= A when ,3 = 0, (7)

dy c
~j— = .

rt
.

-

? > A, = when y = ;

then ^ = i i?
aia tfa, <&2 = ^ Z>3 J9t dp, ds^=^D

1
Di dy. (8)

148.] Now let V be the potential at any point a, ft y, then the

resultant foree in the direction of dm
i

is

li =~ (U
-

dVda dF
1 ~

fifej

—
dads-y d~a D2DZ

' ^'

Since ds
y , d#it and ds^ are at right angles to each other, the

surface-integral over the element of area <&
2 <&3 is

,, , , dF c Ik Jk AA
a 3

rfet i>
2
7J

3
c c " *

(.0)

Now consider the element of volume intercepted between the

surfaces a, y, and a+ rfa,
fi + dfi, y+dy. There will bo eight

such elements, one in each octant of space.

We have found the surface-integral for the element of surface

intercepted from the surface « by the surfaces /3 and fi + dp, y and

y+ dy.
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The surface-integral for the corresponding element of the surface
a±da will be

^^dfidy+^-l-dad^dy

since B
x

is independent of a . The surface-integra] for the two
opposite faces of the element of volume, taken with respect to the
interior of that volume, will he the difference of these quantities, or

Similarly the surfaee-integralB for the other two pairs of forces
will be

tjf-t*9*£*v 1111(1
Tyi l-***Wy-

These six faces enclose an element whose volume is

]) 1J) 2 7) 2

Mjifes&a = -a—*—5- dadpdy,

and if p is the volume-density within that element, we find by
Art. 77 that the total surface-integral of the element, together with
the quantity of electricity within it, multiplied by 4?r is zero, or,

dividing by dadfidy,

d2F„ n dW d2F 7) 2 T) 2 /3 2

which is the form of Poisson's extension of Laplace's equation re-

ferred to ellipsoidal coordinates.

If p = the fourth term vanishes, and the equation is equivalent

to that of Laplace.

For the general discussion of this equation the reader is referred

to the work of Lame* already mentioned.

149.] To determine the quantities a, & y, we may put them in

the form of ordinary elliptic functions by introducing the auxiliary

angles 6, and ft
where

Aj = £ sin0, (12)

A2 = Ve2 sin2 tf>-f 6
s cos3

0, (13)

Aa = * . (14)
sin $

If we put b = l'c, and k- + jf2 = 1, we may call £ and k' the two

complementary moduli of the confocal system, and we find

a
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an elliptic integral of the first kind, which we may write according

to the usual notation F(k$).

In tin; same way wc lind

''0 vl—a"cos-0

where Fit is the complete function for modulus iV,

Here o is represented as a function of the angle 6, which is a
function of the parameter A lt £ as a function of

tf>
and thence of A

£ ,

und y as a function of ^ and thence of A3 .

But these angles and parameters may be considered as functions

°f ft y- The properties of such inverse functions, and of those

connected with them, are explained in the treatise of M. Lame on
that subject.

It is easy to see that since the parameters are periodic functions

of the auxiliary angles, they will bo periodic functions of the

quantities «, /S, y : the periods of A
t
and A 3 are 4 F(k) and that of A2

Particular Solutions.

ISO.] If r is a linear function of a, /3, or y, the equation is

satisfied. Hcnee we may deduce from the equation ihe distribution

of electricity on any two confocal surfaces of the same family
maintained at given potentials, and the potential at any point
between them.

The Hyperholoids of Two Sheets.

When a is constant the corresponding surface is a hyperboloid
of two sheets. Let us make the sign of a the same as that of x in
the sheet under consideration. We shall thus be able to study one
of these sheets at a time.

Let oj, 0^ be the values of a corresponding to two single sheets,
whet Iter of different hyperboloids or of the same one, and let Vu F2

be the potentials at which they are maintained. Then, if we make

the conditions will be satisfied at the two surfaces and throughout
the space between them. If we make V constant and equal to V

l

in the space beyond the surface a,, and ronstant and equal to J\
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in the space beyond tlie surface a2> we shall have obtained the
complete solution of this particular ease.

The resultant force at any point of either sheet is

or R, = ll^L".' (20)

If px
he the perpendicular from the centre on the tangent plane

at any point, and P
x
the product of the semi-axes of the surface,

then pyD^D^ = P
x .

Hence we find _ F, — K cp<
#1 = -1 2

~jr> (21)

or the force at any point of the surface is proportional to the per-
pendicular from the centre on the tangent plane.

The surface-density or may he found from the equation

iv fr = li
l . (22}

The total quantity of electricity on a segment cut off by a plane
whose equation is x = a from one sheet of the hyperboloid is

The quantity on the whole infinite sheet is therefore infinite.

The limiting forms of the surface are :

—

(1) When a = F
iJt)

the surface is the part of the plane of zz on
the positive side of the positive branch of the hyperbola whose
equation is xt »a

(2) When a == the surface is the plane of yz.

(3) "When a — —F
{k)

the surface is the part of the plane of xz on
the negative side of the negative branch of the same hyperbola.

The Uifperholoids of One Sheet.

By making /3 constant we obtain t he equation of the hyperboloid
of one sheet. The two surfaces which form the boundaries of the
electric field must therefore belong to two different h\qx iboloids.

The investigation will in other Tespeets he the same ns for the
hyperboloids of two sheets, and when the difference of potentials

is given the density at any point of the surface will be proportional

to the perpendicular from the centre on the tangent plane, and the

whole quantity on the infinite sheet will be infinite.



186 CONFOCAI, QUADRIC SURFACES. [150.

Limiting Forms.

(1) When = tho surface is the part of the plane of xz
between the two branches of the hyperbola whose equation is

Writ It'll alinvr,
, 1 I),

(52) When - F(&) the surface is the part of the plane of my
which is on the outside of the focal ellipse whose equation is

The Ellipsoids.

For any given ellipsoid y is constant If two ellipsoids, yt
and y,„

be maintained at potentials f\ and ^ then, for any point y in the
space between Ihem, we have

The surface-density at any point is

*» £=55 '

(27)

where j>8 is the perpendicular from the centre on the tangent plane,
and P

a is the product of the semi-axes.

Hie whole charge of electricity on either surface is

Q2 = c
]£^=-Qlt (28)

a finite quantity.

When y = F{k) the surface of the ellipsoid is at an infinite

distance in all directions.

If we make F
3 = and yz = F(&), we find for the quantity of

electricity on an ellipsoid maintained at potential V in an infinitely

extendod field, y

The limiting form of the ellipsoids occurs when y = 0, in which
ease the surface is the part of the plane of xt/ within the focal
ellipse, whose equation is written above, (25).

The surface-density on the elliptic plate whose equation is (25), and
whose eccentricity is i, is

. = V \
1

A/ 1 # w^w
and its charge is ^ V

G = *jpr <«>
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Particular Gutes.

161.] If £ is diminished till it becomes ultimately zero, the
system of surfaces becomes transformed in the following manner:—

The real axis and one of the imaginary axes of each of Ihe

hyperboloids of two sheets are indefinitely diminished, and the
surface ultimately coincides with two planes intersecting in the
axis of z.

The quantity a becomes identical with 0, and the equation of the
system of meridional planes to whirl, (lie (jrsi. system is reduced is

a-
2 f

(sino)a_ (c~os"^
_0

'
(32)

The quantity
ft is reduced to

/5= = log tan*, (33)

whence we find

If we call the exponential quantity + the hyperbolic
coaine of ft or more concisely the hypocosine of 0, or cos / /?, and if

we call 4 {efi-e-») the hyposine of ft or sin h ft and if by the same
analogy we call

the hyposecant of ft, or sec h ft,(•(is/-

• \ g the hypocosecant of ft, or cosecA/3,

sin ^ £
the hypotangent of or tan £ft

, cos/tfi,. .

an
gin yjt p

Q hypoeotangent of ft, or cot h ft ;

then A2 = esec //ft, and the equation of the system of hyperboloids

of one sheet is

(sec Aftf (tanjS/3)2 ~ v
*

*35)

The quantity y is reduced to ^, so that X
3
= e eosec y, and the

equation of the system of ellipsoids is

(secy)*
+

(lan y)- '

1
'

Ellipsoids of this kind, which are figures of revolution about tlicir

-mu jugate axes, are called Planetary ellipsoids.
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The quantify of electricity on a planetary ellipsoid maintained at
potential V in an infinite field, is

7
Q = c ~

' (37)

where e sec y is the equatorial radius, and c tan y is the polar radius.
If y — o, the figure is a circular disk of radius ct and

* = +J*s (38)

V
Q = c~- (39)

2

152.] Second Case, Let b = c, then I = 1 and V =
"t— 2

a — log tan , whence X
x
= tan A a, (40)

and the equation of the hypcrboloids of revolution of two sheets
becomes y*+sp

(tanl^p " (secAa) a
= **' m)

The quantity becomes reduced to </>, and each of the hypcr-
boloids of one sheet is reduced to a pair of planes intersecting in
the axis of x whose equation is

y
z

_£
(sin0) 2

(cosj8) 2
~ 0, (42)

This is a system of meridional planes in which /3 is the longitude.

The quantity y becomes log tan
, whence A3

= c cot i 7i

and the equation of the family of ellipsoids is

{eoUyf
+

(cosec/ty)2
= c<1

' <43 >

These ellipsoids, in which the transverse axis is the axis of revo-
lution, arc called Ovary ellipsoids.

The quantity of electricity on an ovary ellipsoid maintained at a
potential V in an infinite field is

n 7
Q = C

J' (44)

If the polar radius is A = <?eot Ay, and the equatorial radius isB = c cosec h y,

,
A + Va2—j}*
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If the equatorial radius is very small compared to the polar radius,
as in a wire with rounded ends,

When both b and c become zero, their ratio remaining finite,

the system of surfaces becomes two systems of confoeal cones, and
a system of spherical sur&ces of which the radius is inversely
proportional to y.

If the ratio of b to c k zero or unity, the system of surfaces
becomes one system of meridian planes, one system of right cones
having a common axis, and a system of concentric spherical surfaces
of which the radius is inversely proportional to y. This is tlu>

ordinary system of spherical polar roonlinat.s.

Ct/lindric Surfaces.

153.] When c is infinite the surfaces are cylindric, the generating
lines being parallel to t. One system of cylinders is elliptic, with
the equation

(cos £ a) 2 + (ein^af ~ (4?)

The other is hyperbolic, with the equation

= (48)
(cos/3) 2

(sin;})*

This system is represented in Pig. X, at the end of this volume.

Confoeal Paraboloids.

154.] If in the general equations we transfer the origin of co-

ordinates to a point on the axis of x distant t from the centre of
the system, and if we substitute for xf A, i, and c, t + x

t i + \
t

e+ 6 t

and t+ c respectively, and then make t increase indefinitely, we
obtain, in the limit, the equation of a system of paraboloids whose
foci are at the points x — b and a? = t;

4(*_X)+-J^ + =o. (49)

If the variable parameter is A for the first system of elliptic

paraboloids, p for the hyperbolic paraboloids, and v for the second

system of elliptic paraboloids, we have A, b, p, c, v in ascending

order of magnitude, and
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x — X + fi+ v— c—b,

V
2

c-b

x =
fx =
V —

It =

lt(i+ c)— i)eos/<a, "]

£ + (*— 6) cos 8, L

4 + 6)cos^y; J

4 (A+ c) + h (c—b) (cos y— cos/3— cos A a),
•

(51)

z —

* > 1 1 , a , 8 T y
2 (c— 6) sin A sin-cosfl-j

\ ' 2 2 2

2 (c

—

6) cos £ - cos
M

sin //
v

' 2 2 2

7

(52)

When h — c we have the case of paraboloids of revolution about

the axis of a?, and x = a (e
2 * eBy

),

y = 2ffffa+r cos j9, (53)

z = 2a^+>sin/3.

The surfaces for which f3 is constant are planes through the nxis,

ji being the angle which such a plane makes with a fixed plane

through the axis.

The surfaces for which a is constant are eonlbcal paraboloids.

When <t=u the paraboloid is reduced to a straight line terminating

at the origin.

We may also find the values of «, 8, y in terms of r
} t

and tp,

the spherical polar coordinates referred to the focus* as origin, and

t he axis of the parabolas as axis of the sphere,

a — log(r* cos 4 0),

(54)

y = log (ft sin

We may compare the case in which the potential is equal to a,

with the zonal solid harmonic /, Q«, Both satisfy Laplace's equa-

tion, and are homogeneous functions of xt z, but in the case

derived from the paraboloid there is a discontinuity at the axis, mid

i has a value not differing by any finite quantity from zero.

The surface-density on an electrified paraboloid in an infinite

field (including the case of a straight line infinite in one direction)

is iuversely as the distance from the focus, or, in the case of

the line, from the extremity of the line.



CHAPTER XI.

THEORY OP ELECTRIC IJIAOES AND ELECTRIC INVERSION.

155.] We have already shewn that when a Conducting sphere
is under the influence of a known distribution of electricity, the
distribution of electricity on the surface of the sphere can be
determined by the method of spherical harmonics.

For this purpose we require to expand the potential of the in-

fluencing- system in a series of solid harmonies of positive degree,
having the centre of the sphere as origin, and we then find a

corresponding series of solid harmonics of negative degree, which
express the potential due to the electrification of the sphere.

By the use of this very powerful method of analysis, Poisson

determined the electrification of a sphere under the influenee of

a given elect rieal system, and he also solved the more difficult

problem to determine the distribution of electricity on two con-

ducting spheres in presence of each other. These investigations

have been pursued at great length by Plana and others, who have
confirmed the accuracy of Poisson.

In applying this method to the most elementary case of a sphere

under the influence of a single electrified point, we require to expand
the potential due to the electrified point in a series of solid har-

monics, and to determine a second series of solid harmonies which

express the potential, due to the electrification of the sphere, in the

- 1 nice mitside.

It does not appear that any of these mathematicians observed

that this second series expresses the potential due to an imaginary

electrified point, which has no physical exist* nee as an electrified

point, but which may be called an electrical image, because the

action of the surface on external points is the same as that which

would be produced by the imaginary electrified point if the spherical

surface were removed.
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This discovery seems to have been reserved for Sir W. Thomson,

who lias developed it into a method of great power for the solution

of electrical problems, and at the same time capable of being pre-

sented in an elementary geometrical form.

His original investigations, which are contained in the Cambridge

uml Dublin Mathematical Journal, 1848, arc expressed in terms of

the ordinary theory of attraction at a distance, and make no use of

the method of potentials ntid of the general theorems of Chapter IV,

though they were probably discovered by these methods. Instead,

however, of following the method of the author, I shall make free

use of the idea of the potential and of cquipotential surfaces, when-

ever the investigation can be rendered more intelligible by such

means.

Theory of Electric Images.

156.] Let // and B, Figure 7, represent two points in a uniform

dielectric medium of infinite extent.

Let the charges of A and B be e
y

and ea respectively. Let P be any

point in space wlu^e distaures from

A and B are r
l
and respectively.

Then the value of the potential at B
will 1 ic v— £l + h. (i)

The cquipotential surfaces due to

this distribution of electricity are represented in Fig. I (at the end

(jf this volume) when t\ and e., are of the same sign, and in Fig, II.

when they are of opposite signs. We have now to consider that

surface for which V — 0, which is the only spherical surface in

the system. When ex and e2 are of the same sign, this surface is

entirely at an infinite distance, but when they are of opposite sigUB

there is a plane or spherical surface at a finite distance for which

the potential is zero.

The equation of this surface is

= 0.

Its centre is at a point C in AB produced, such that

AC : BC
and the radius of the sphere is

2 a

AB-p 6'

''1 hi

The two points A and H are inverse points with respect to this
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sphere, that is to say, they lie in the same radius, and the radius is

a racan proportional between their distances from the centre.
Since this spherical surface is at potential zero, if we suppose

it constructed of thin metal and connected with the earth, there
will be no alteration of the potential at any point either outside or
inside, hut the electrical action everywhere will remain thai due hi

the two electrified points A and B,

If we now keep the metallic shell in connexion with the earth
and remove the point B, the potential within the sphere will become
everywhere zero, but outside it will remain the same as before.

For the surface of the sphere still remains al Ihr same pnh-ntial,

and im rimn-v has been made in die exterior deel rilieat ion

Hence, if an electrified point A be placed outside a spherical

conductor which is at potential zero, the electrical actiou at all

points outside the sphere will be that due to the point ./ together
with another pmnt H within the sphere, which we may call (lie

electrical image of A.

In the same way we may shew that if B is a point placed inside

the spherical bhell, the electrical action within the sphere is that
due to B, together with its image A,

15/.] Definition of an Electrical Image. An electrical image is

an electrified point or system of points on one side of a surface

which would produce on the other side of that surface the same
electrical action which the actual electrification of that surface

really does produce.

In Optics a point or system of points on one side of a mirror
or lens which if it existed would emit the system of rays which
actlUl liv t .xiste on the other side of the mirror or lens, is called a
virtual image.

Electrical images correspond to virtual images in optics in betiifr

related to the space on the other side of the surface. They do not

correspond to them in actual position, or in the merely approximate

character of optical foci.

There are no real electrical images, that is, imaginary electrified

points which would produce, in the region on the same side of the

elect rified surface, an effect equivalent to thai of the eleelrificd surface.

For if the potential in any region of space is equal to that due
to a certain electrification in the same region it must he actually

produced by that electrification. In fact, the electrification at any

point may be found from the potential near that point In I he

application of Poisson's equation.

VOT.. i. o
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Ijet a be the radius of the sphere.

Let /"be the distance of the electrified point A from the centre C.

Let e he the charge of this point.

Then the image of the point is at B, on the same radius of the

a2 a
sphere at a distance . and the charge of the image is —e —

I'il?. 7

We have shewn that this image
will produce the same effect on the

opposite side of the surface as the

actual electrification of the surface

does. We shall next determine the

surface-density of this electrifica-

tion at any point P of the spherical

surface, and for this purpose we shall

make use of the theorem of Coulomb,
Art. 80., that if Ti is the resultant force at the surface of a conductor,

and <j the superficial density,

R = 4 7r«r,

Ji bring measured away from the surface.

We may consider R as the resultant of two forces, a repulsion

jp2 actingT al°ug £P> and attraction ej acting along PB.

Resolving these forces in the directions of AC and CP, we find

that the components of the repulsion are

AP*
along AC, and -j^ along CP

AF-'

Those of the attraction are

so that the components ofNow BP = AP, and BC =
J J

the attract inn may be written

1 f% ]~ efJpl ahnS AC, and -e J- — along CP.

The components of the attraction and the repulsion in the
direction of AC are equal and opposite, and therefore the resultant
force is entirely in the direction of the radius CP. This only
confirms what we have already proved, that the sphere is an equi-
potential surface, and therefore a surface to which the resultant
force is everywhere perpendicular.
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The resultant force measured along CP, the normal to the surface
m the direction towards the side on which A is placed, is

a APS ' ^
If A is taken inside the sphere /is less than a, and we must

measure R inwards. For this case therefore

In all cases we may write

„ AD.Ad 1"W I?* » (5)

where ,10, ^ are the segments of any line through A cutting the
sphere, and their product is to he taken positive in all eases.

158.] Prom this it follows, by Coulomb's theorem, Art. 80,
that the surface-density at P is

AJ). Ad l

*— e
T7~cPIF^ <

c
)

The density of the electricity at any point of the sphere varies
inversely as the cube of its distance from the point A.
The effect of this superficial distribution, together with that of

the point A, is to produce on the same aide of the surface as themm4 a potential equivalent to that due to e at A, and its image

- *j at % and on the other side of the surface the potential is

everywhere zero. Hence the effect of the superficial distribution
by itself is to produce a potential on the side of A equivalent to

that due to the image at B
t and on the opposite side a

potential equal and opposite to that of e at A.

The whole charge cn the surface of the sphere is evidently -e-
since it is equivalent to the image at B. /
We have therefore arrived at the following theorems on the

action of a distribution of electricity on a spherical surface, the
surface-density being inversely as the cube of the distance from
a point A either without or within the sphere,

U-t the density he i-iven ley the equation

where C is some constant quantity, then by equation (6)

„ AD.Ad

O 2
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Tin- action of this superficial distribution on any point separated

from A by the surface is equal to that of a quantity of electricity

— e, or 4 it aO
AD .Ad

concentrated at A.

Its action on any point on the same side of the surface with A is

equal to that of a quantity of electricity

fAJKAd
concentrated at H t he image of //.

The whole quantity of electricity on the sphere is equal to the

first of these quantities if A is within the sphere, and to the second

if A is without the sphere.

These propositions were established hy Sir W. Thomson in his

original geometrical investigations with reference to the distribution

of electricity on spherical conductors, to which the student ought

to refer.

159.] If a system in which the distribution of electricity is

known is placed in the neighbourhood of a conducting sphere of

radius a, which is maintained at potential zero hy connexion with

the earth, then the elect rilioai ion* due to the several parts of the

system will be superposed.

Let Alf A.it ke. be the electrified points of the system, J\,J», &c.

their distances from the centre of the sphere, e
1 ,

e
2 , &e. their

charges, then the images ifj, i?
2 , &c. of these points will be in the

aft a2

same radii as the points themselves, and at distances -7- » -7- &c.

from the cent re of the sphere, and their charges will be

a a- „
-e-rr , — e - -&c.

/ 1 Ji

The potential on the outside of the sphere due to the superficial

electrification will be the same as that which would be produced by
the system of images /)',, JL, &c. This system is therefore called

the electrical image of the system A lt At , &c.

If the sphere instead of being at potential zero is at potential / .

we must superpose a distribution of electricity on its outer surface

having the uniform surface-density

V
(T =

The effect of this at all points outside the spherv will be equal 1"
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that of a quantity Va of electricity piaml at its centre, nml jit

all points inside the sphere the potential will he simply increased
byT.
The whole charge on the sphere due to an external system of

influencing1 points Al} A,, &c. is

/>'= r<i-e
t

" -e., -&c, (!>)A Si

from which either the charge E or the potential V may he cal-

culated when the other is given.

When the electrified system is within the spherical surface the
induced charge on the surface is equal and of opposite sign to the
inducing charge, as we have before proved it to be for every closed
surface, with respect to points within it,

160.] The energy due to the mutual action between an elec-
trified point e, at a distance/ from the centre of the sphere greater
than a the radius, and the electrification of the spherical surface
due to the influence of the electrified point and the charge of the
sphere, is

where V is the potential, and E the charge of the sphere.

The repulsion between the electrified point and the sphere is

therefore, by Art. f)2,

Hence the force hetween the point and the sphere is always an
attraction in the following cases

—

(1) When the sphere is uninsulated.

(2) When the sphere has no charge.

(3) When the electrified point is very near the surface.

In order that the force may be repulsive, the potential of the

sphere must be positive and greater than e fJ,/ .. . and the

charge of the sphere must be of the same sign as e and greater

than
/(/*-«")

At the point of equilibrium the equilibrium is unstable, the force
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being an attraction when the bodies are nearer and a repulsion

when they arc farther off".

When the electrified point is within the spherical surface the

force on the electrified point is always away from the centre of

the sphere, and is equal to

e*af
(«'-/*)*'

The surface-density at the point of the sphere nearest to the
electrified point where it lies outside the sphere is

The surface-density at the point of the sphere farthest from the
electrified point is

When B, the charge of the sphere, lies between

fif-af "* "/(/+«>»
the electrification will be negative next the electrified point and
positive on the opposite side. There will be a circular line of division

between the positively and the negatively electrified parts of the
surface, and this line will be a line of equilibrium.

the equipotential surface which cuts the sphere in the line of equi-
librium is a sphere whose centre is the electrified point and whose

radius is V/2—a*.

The lines of force and equipotential surfaces belonging to a case
of this kind are given in Figure IV at the end of this volume.

Images m an Infnile Plane Condoling Surface.

lf>l.] If the two electrified points A and B in Art. 156 are
electrified with equal charges of electricity of opposite signs, the
surface of zero potential will be the plane, every point of which is

equidistant from A and /?.
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Hence, if be an electrified point whose charge is e, and AD
a perpendicular on the plane, produce AB
to B so that BB = AB, and place at B
a charge equal to — then this charge
at ./>' will lie the image of A, and will

produce at all points on the same side of
the plane as A, an effect equal to that

of the actual electrification of the plane.

For the potential on the side of A due
to A and B fulfils the conditions that

V-T= everywhere except at. A, and
that V= at the plane, and there is only
one form of F which can i'ullil t h« r conditions.

To determine the resultant force at the point P of the plane, we

observe that it is compounded of two forces each eiiuul to —-

,

AF*
one acting- along AP and the other along PB. Hence the resultant
of these forces is in a direction parallel to ABand equal to

e AB
£P* ' Zip

'

Hence R, the resultant force measured from the surface towards the
space in which A lies, is

Fig, 8.

„ 'IcAD
li — , >

AB*

and the density at the point P is

eAB
2 77///"

(15)

(If)

On Electrical Inversion.

162.] The method of electrical images leads directly to a method
of transformation by which we may derive from tiny electrical

problem of which we know the solution any number of other

problems with their solutions.

We have seen that the image of a point at a distance r from the

centre of a sphere of radius R is in the same radius and at a distance

r such that r/-=Il*, Hence the image of a system of points, lines,

or surfaces is obtained from the original system by the method
known in pure geometry as the method of inversion, and described

by Chasles, Sain,on, ;md ..llu v muthrmal iri;ms.
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If J ami Hart* I wo points, A' and 1? their images, being" the

centre of inversion, and 72 the radius of the

sphere of inversion,

OA.OA' = R1 = OB.OB*.

Hence the triangles OAB, OFA' are similar,

WW* .'/J? : A'J? : : : 0JT •
j Q£©fi : R*.

its potential at B will be

IF a quantity of electricity <? be placed at A,

1 =
AH

If / be placed at y/' its potential at will be

Y'~ _5_.
2^

In the theory of electrical images

6\(f : :OA\R. :R: OA'.

KBDfee /': t~' ::R :OB, (17)

or the potential at i? due to the electricity at ^ is to the potential
at the image of B due to the electrical image of A as R is to OB.

Since this ratio depends only on OB and not on OA, the potential
at B due to any system of electrified bodies is to that at B* due
to the image of the system as R is to OB.

If r be the distance of any point A from the centre, and / that
of its image A', and if e be the electrification of A, and if that of A\
also if L, S, K be linear, superficial, and solid elements at A> and
If, S'

t
K' their images at A\ and A, tr, p, A', <r\ p' the corresponding

line-surface and volume-densities of electricity at the two points,
V the potential at A due to the original system, and V* the potential
at A* due to the inverse system, then

f

£
L

A!" /a

R
5

=

/
: 7 ~ IT

/'

r* ~ #
A 8

A 7<:

R

r

r'

~p~~ R*

R

r

If in the original system a certain surface is that of a conductor,

* See Thomson and Tait'a A'eK«r«/ Philosop/ty, $ 515,
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and has therefore a constant potential P, then in the transformed

system the image of the surface will have a potential P ' But

by placing at 0, the centre of inversion, a quantity of electricity

equal to ~PJi, the potential of the transformed surface is reduced
to zero.

Hence, if we know the distributu>n of electricity on a conductor
when insulated in open space and charged to the potential ue
can find by inversion the dislrihutioi a conductor u Ims,- form is

the image of the first under the inlluenee of an cleetrilied point with
a charge —PR placed at the centre of inversion, the conductor
being in connexion with the earth.

163.] The following geometrical theorems are useful in studying
cases of inversion.

Every sphere becomes, when inverted, another sphere, unless

it passes through the centre of inversion, in which ease it becomes
a plane.

If the distances of the centres of the spheres from the centre of
invetsion are a and and if their radii are a and a', and if we
define the power of the sphere with respect to the centre of in-

version to be the product of the segments cut off by the sphere

from a line through the centre of inversion, then the power of the

first sphere is a-— a\ and that of the second is a'
2— a'*. We

have in this case

a ~ a ~ a1 -a? ~ W ' <
19

)

or the ratio of the distances of the centres of the first and second

spheres is ecpual to the ratio of their radii, stud to the ralio of tin-

power of the sphere of inversion to the power of the first sphere,

or of the power of the second sphere to the power of the sphere

of inversion.

The centre of either sphere corresponds to the inverse point of

the other with respect to the centre of inversion.

In the cast.' in which the inverse surfaces arc a plane and a

sphere, the perpendicular fmm the centre of inver-i"n on th, plane

is to the radius of inversion as this radius is to the diameter of

the sphere, and the sphere has its centre on this perpendicular and

passes through the centre of inversion.

Every circle is inverted into another circle unless it pusses

through the centre of inversion, in which case it becomes a straight

line.
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The angle between two surfaces, or two lines at their intersection,

is not changed by inversion.

Every circle which passes through a point, and the image of that
point with respect to a sphere, cuts the sphere at right angles.

Hence, any circle which passes through a point and cuts the
sphere at right angles passes through the image of the point

164.] We may apply the method of inversion to deduce the
distribution of electricity on an uninsulated sphere under the
influence of an electrified point from the uniform distribution on
an insulated sphere not influenced by any other body.

If the electrified point be at A, take it for the centre of inversion,
and if A is at a distance / from the centre of the sphere whose
radius is a

t the inverted figure will be a sphere whose radius is tt'

and whose centre is distant/", where

^ = 7=7^- (20)

The centre of either of these spheres corresponds to the inverse
point of the other with respect to A, or if C is the centre and B the
inverse point of the first sphere, C will be the inverse point, and if
the centre of the second.

Now let a quantity e' of electricity be communicated to the
second sphere, and let it he uninfluenced by external forces. It
will become uniformly distributed over the sphere with a surface-
density j

ct'=a ^" (21)

Its action at any point outside the Bphere will be the same as
that of a charge e placed at E the centre of the sphere.
At the spherical surface and within it the potential is

(22)

a constant quantity.

Now let us invert this system. The centre Br
becomes in the

invert system the inverse point B, and the charge J at if
AB

becomes S at B} and at any point separated from B by the

surface the potent inl is that due to this charge at B,
The potential at any point P on the spherical surface, or on the

same side as B, is in the inverted system

? AB

'



1 65-] SYSTEMS OF IMAUKS. 2iK\

If we now superpose on this system a charge e at A, where

the potential on the spherical surface, and at all points ou the same
Side as B, will be reduced to zero. At all points on the same side
as A the potential will bo that due to a charge * at A, and a charge

i at B.
f
But , B a' a

(21)

as we found before for the charge of the image al: B.
To find the density at any point of the first sphere we have

Substituting for the value of a in terms of the quantities be-
longing to the first sphere, we find the same value as in Art. 1 58,

a — H. 1 . (oa\

On Finite Systems of Successive Images.

165,] If two conducting planes intersect at an angle which is

a submultiple of two right angles, there will be a finite system of
images which will completely determine the electrification.

For let AOB be a section of the two conducting planes per-
pendicular to their line of inter-

section, and let the angle of

intersection A Of! —
let P

be an electrified {joint, and let

PO = /, and FOB = 0. Then,
if we draw a circle with centre

and radius OP, and find points

which are the successive images
of P in the two planes beginning
with OB, we shall find Q l

for the Fig. 10.

image of P m OB, P, for the image of in OA, <?a for that ol
in OB, P.

A for that of Q.A in OA, and Qt for that of P3 in OB.
If we had begun with the imago of P in AO we should have

found the same poiute in the reverse order Q.it Pa , Q.if Pt> Qv
provided AOB is a submultiple of two right angles.
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For the alternate images Pn P
2 ,
P3 are ranged round the circle

at angular intervals equal to 2 JOB, and the intermediate images

Qi> Qz> Qi are at intervals of the same magnitude. Hence, if

l.iOn is li sitliunilfiplv of 2tt, there will he a finite number of
image*, and none of these will fall within the angle AOB. If,

however, AOB is not a submultiple of it, it will be impossible to
represent the actual electrification as the result of a finite series of
electrified points.

HJOB = -, there will be n negative images Q lf Q>, &c., each

equal and of opposii -
,

/', :,,,.! — I positive images i^,
P$, &c, each equal to P, and of the same sign.

O
The angle between successive images of the same sign is — •

ft

If we consider either of the conducting planes as a plane of sym-
metry, we shall find the positive and negative images placed

symmetrically with regard to that plane, so that for every positive

image there is a negative image in the same normal, and at an
equal distance on the opposite side of the plane.

If we now invert this system with respect to any point, the two
planes become two spheres, or a sphere and a plane intersecting

at an angle - , the influencing 1 point P being within this angle.

The successive images He on the circle which passes through P
and intersects both spheres at right, angles.

To find the position of the images we may either make use of
the principle that a point and its image are in the same radius

of the sphere, and draw successive chords of the circle beginning
at P and passing through the centres of the two spheres al-

ternately.

To find the charge which must be attributed to each image, take
any point in the circle of intersection, then the charge of each
image is proportional to its distance from this point, and its sign
is positive or negative according as it belongs to the first or the
second system.

166.] We have thus found the distribution of the images when
any space bounded by a conductor consisting of two spherical surfaces

meeting at an angle - , and kept at potential zero, is influenced by

au electrified point.

We may by inversion dedmv the ease of a conduct ur consist im>



TWO INTERSECTING SPHERES. 205

of two spherical segments meeting- at a re-entering angle -
,
charged

to potent ial unity and placed in free space.

For this purpose we invert the system with respect to P. The
circle on which the images formerly lay now becomes a straight
line through the centres of the spheres.

If the figure (11) represents

a section through the line of

centres AB, and if D, JJf are the

points where the circle of in-

tersection cuts the plane of the

paper, then, to find the suc-

cessive images, draw DA a

radius of the first circle, and
draw DC, OB. making

TT ^ IT*

angles-,"-, &e. with DA. Fig. 11.
it it

The points C\ B, kc. at which they cut the line of centres will

be the positions of the positive images, and the charge of each
will he represented by its distances from D. The last of these
images will be at the centre of the second circle.

To find the negative images draw DP, DQ} Sec, making angles
TT 2 7T

- >
—

- , &c. with the line of centres. The intersections of these
*it ft

lines with the line of centres will give the positions of the negative
itiuiges, and the charge of each will be represented by its distant
from D.

The surface-density at any point of either sphere is the sum
of the surface-densities due to the system of images. For instance,

the surface-density at any point S of the sphere whose centre is

A
y

is

" -sao {
1 +c^-^*> + -Ac-)§ +mq

where A, £, C
}
Sec. are the positive series of images.

When S is on the circle of intersection the density is zero.

To llnd the total charge on each of the spherical segments, we
may lind the surface-integral of the induction through that segment
due to each of the images.

The total charge on the segment whose centre is A due to the

image at A whose charge is DA is
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n . DA + OA
, , _ „

~ M

where is the centre of the circle of intersection.

In the same way the charge on the same segment dne to the

image at B is ^(DB+ OB), and so on, linos such as OB measured
from to the left being1 reckoned negative.

Hence the total charge on the segment whose centre is A is

k {DA+DB+DC+ &c.)

+

i (OA+ OB+ OC+ &e.),

- \ {DP +DQ + &c.)- 4 (
OP+ OQ+ &c.).

167.] The method of electrical images may be applied to any
space bounded by plane or spherical surfaces all of which cut one

another in angles which are submultiples of two right angles.

In order that such a system of spherical surfaces may exist, every

solid angle of the figure must be trihedral, and two of its angles

must be right angles, and the third either n right angle or a
sul .multiple oi'lwti right angles.

Hence the eases in which the number of images is finite ten—
(1) A single spherical surface or a plane.

(2) Two planes, a sphere and a plane, or two spheres intersecting

at an angle - •

(3) These two surfaces with a third, which may be either plane

or spherical, cutting both orthogonally.

(•1) These three surfaces with a fourth cutting the first two

"Ming: nallv and the third at an anyle ^ . Of these four surfaces

one at least must be spherical.

We have already examined the first and second eases. In the

first case we have a single image. In the second ease we have
2n-l images arranged in two series in a circle which passes

through the influencing point and is orthogonal to both surfaces.

In the third easu we have, besides these images, their images with
respeel t... the third surface, that is. -in- I images in all besides the
influencing point.

In the fourth case we first draw through the influencing point

a circle orthogonal to the first two surfaces, and determine on it

the positions and magnitudes of the n negative images and the
n—l positive images. Then through each of these 2n points,

including the influencing point, we draw a circle orthogonal to

the third and fourth surfaces, and determine on it two series of
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nnagos,# M each series. We shall obtain in this way, besides themluenetng point 2«*'-i positive and 2**' negative images!
Ihese 4 a* po.nta are the intersection of n circles with othor
cycles, and these circles belong to the two systems of Usee of
curvature of a eyclide.

If each of these points is charged with the proper quantity ofclcctncty, the surface: whose potential is zero will %*& of L»>
spheres, forming two series of whieh the recessive spheres of the
first set intersect at angles | ami those of the second set at angles

f*
Whi,e eveT sphere of the first set is orthogonal to every sphere

of the second set .

Case of Two Spheres cutting Orthogonally. See Fig. IV at the
end of this volume.

168.] Let A and B, Fig. 12, be the centres of two spheres cutl in-
each other orthogonally in D and
If, and let the straight bine 1)1/ out
the line of centres in C. Then C
is the image of A with respect to
the sphere B

}
and also the image

of B with respect to the sphere
whose centre is A. If AD — a>

BD = ft then AB = J^P+J2, and
if we place at A, B, C quantities

of electricity equal to m ft atKI - respectively, then both

spheres will be equipotential surfaces whose potential is unity
>> e may thorelor. determine iron, tin, By*trm the distribution „f

electricity in the following cases ;

(1) On the conductor BDQ1/ formed of the ,

both spheres. Its potential is 1, and its charge is

This quantity therefore measures the capacity of such a figure
when free from the inductive action of other bodies
The density at any point P of the sphere whose centre is A and

llK
'
dv™ iy J,t a,1

> Poillt « <>' the sphere wh,«, ,,„iru is & are
respectively

%. 12.
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At the points of intersection, 2>, IX, the density is koto.

If one of the spheres is very much larger than the other, the

density at the vertex of the smaller sphere is ultimately three times

that at the vertex of the larger sphere.

(2) The lens P'DQ'If formed hy the two smaller segments of

the spheres, charged with a quantity of electricity = ^£==: i

V ct
2 + £

2

and acted on hy points A and B, charged with quantities a and 8,

is also at potential unity, and the density at any point is expressed

by the same formulae.

(3) The meniscus DPJ/Q' formed by the difference of the

segments charged with a quantity a, and acted on by points B

and C, charged respectively with quantities 8 and - — , is also
vo! 4 /3

a

in equilibrium at potential unity.

(4) The other meniscus QDVJf under the aetion of A and C.

We may also deduce the distribution of electricity on the following

internal surfaces.

The hollow lens F/JQ'O under the inlluenco of the internal

electrified point C at the centre of the circle DD'.

The hollow meniscus under the influence of a point at the centre

of the concave surface.

The hollow formed of the two larger segments of both spheres

under the influence of the three points A, B, C.

But, instead of working out the solutions of these eases, we shall

apply the principle of electrical images to determine the density

of the electricity induced at the point P of the external surface of

the conductor PDQI? by the action of a point at charged with

unit of electricity.

Let OA = a, OB = b, OP = r, BP = p,

AD = a, BD = 0, AB =
Invert the system with respect to a sphere of radius unity and

centre 0.

The two spheres will remain spheres, cutting each other ortho-

gonally, and having their centres in the same radii with „•-/ and H.

If we indicate hy accented letters the quantities corresponding to

the inverted system,

, a b , a 8
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If, in the inverted system, the potential of the surface is unitythen the density at the point P~ is
y '

* -
4tto' (

1 " (y) )
'

If, in the original system, the density at P is <r, then

jr_ 1

and the potential is I. By placing at a ncgntiv, charge of

electricity equal to unity, the potential will become zero over the
surface, and the density at P will he

This gives the distribution of electricity on one of the spherical
surfaces due to a charge placed at 0. The distribution on the
other spherical surface may be found by exchanging a and *, a and
ft and putting q or AQ instead of/?.

To find the total charge induced on the conductor by the elec-
tnf.ed pomt at 0, let us examine the inverted system.

In the inverted system we have a charge a' at AT, and p at

and a negative charge at a point & in the line A'W,

such that ACxVB w
If 0A'= a\ 01?= b\ QC- <f, we find

Inverting this system the charges become

a
— j

and _ a^ _i = - a/3

V"*+/33 C' + a3_a2£S
*

Hence the whole charge on the conductor due to a unit of
negative electricity at is

t + £ aj3

VOL, I

.
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Distribution of !:/<<•(ricity on Three Spherical Surfaces which

Intersect at lliyht Angles.

1 89.] Let the radii of tbe spheres be a, (3} y, then

BC = </pr+y~2 , CA = *Jy* + a\ AB = </a*+fi.

Let PQIt, Fig. 13, be the feet

of the perpendiculars from ABC
on the opposite sides of the tri-

angle, and let be the inter-

section of perpendiculars.

39x690 P is the image of B in

the sphere y, and also tbe image

of C in the sphere ft. Also is

the image of P in the sphere a.

Let charges a, and y be

placed at A, B, and C.

Then the charge to be placed

at P is

1

Fig. 13.

y w + 7s

Also AP =

sklered as the image of J5 , is

aj3y

p r
, so that the charge at 0, con-

2 + 02 +
In the same way we may find the system of images which are

electrically equivalent to four spherical surfaces at potential unity
intersecting at right angles.

I
J 1 he radius of the fourth sphere is and if we make the charge

at the centre of this sphere = 8, then the charge at the intersection

of the line of centres of any two spheres, say « and fa with their

plane of intersection, is 1

+ £3

The charge at the intersection of the plane of any three centres
ABC with the perpendicular from D is

1
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and the charge at the intersection of the four perpendiculars is

Sjfttm «fJbw AUrmti*g at Right Angles under the
Actum ofan Electrified Point.

be D^f
f0UPfCTeS^ A -BA* &nd kt the e,ectrM P»«n*

and at right angles. IW eix sphereg ^ (

- ~ •

m of which eachW through and th Jof intersection of two of the original spheres
8

The three spheres B%t C,, J), wiD intersect in another point beeide*Let this pomt be called A', and let C, and ZT be themtersec mns of Cu A , 4, f # 4, j V, ^ J | * £
ZT£& •

7 * °f theSe^ ^ «*« one ofthe «x (*fj m a pomt There will bo six such points.

<«), («*) m a pomt There will be four such points. BSnally

poL
B

l
Bp w w M> {ed)>m <** wiU intersect in ™

* and centre 0, the four spheres At B, C, D will be inverted into
spheres and the other ten spheres will be,,,,,,- planes. Of the
points of intersection the first four A', F, C% 1/ will become thocentres of the spheres, and the others will correspond to the other
eleven points in the preceding: article. These fifteen points form
the image of m the system of four spheres.
At the point M which is the image of in the sphere A, we

must place a charge equal to the image of 0, that is, - i
f where a

is the radius of the sphere A, and a is the distance of Ha centre

#™C°V ^ W
°

raUSt Place thG Pr0pei" olla,^,s at

The charges for each of the other eleven points may he found from
the expressions in the last article by substituting V, / 6' for

y% y, ft, and multiplying the result for each point by the distance
ot the pomt from 0, where

t a.
a a

p %
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Two Spheres not Intersecting.

171.] When a space is bounded by two spherical surfaces which

do not intersect, the successive images of an influencing1 point

within this space form two infinite series, all of which lie beyond

the spherical surfaces, and therefore fulfil the condition of the

applicability of the method of electrical images.

Any two non-intersecting spheres may be inverted into two

concentric spheres by assuming as the point of inversion either

of the two common inverse points of the pair of spheres.

We shall begin, therefore, with the case of two uninsulated

concentric spherical surfaces, subject to the induction of an elec-

trified point placed between them.

Let the radius of the first be b, and that of the second be™, and

lei the distance of the influencing point from the centre be r =t he*.

Then all the successive images will be on the same radius as the

iullueneing point.

Let Qln Fig. 14, he the image of P in the first sphere, P
2
that

of Q in the second sphere, <2i that of P
}
in the first sphere, and

so on j then

OP,.0Q. = P,

and OP^OQ^ =
also 0Q(I

— be~*
t

OP
1
= i<8»

+ s*\

Hence OP, = 8$f*+**»^

If the charge of P is denoted by P,
14

- then

p, = p<*™
f Qt

= -p<>-<" **n
Next, let Q{ be the image of P in the second sphere, P/ that of

Q{ in the first, &c,

ooy= be^-«t opj= be-™,
oq;= w-\ a?y=

;

p; = Pe-% Q;=Pe*-<*-\

Of these images all the P's are positive, and all the Q's negative,

all the P"s and Q's belong to the first sphere, and all the P's and
Q"e to the second.
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The images within the first sphere form a converging scries, the
sum of which is

-P m— 1

This therefore is the quantity of electricity on the first or interior
sphere. The images outside the second sphere form a diverging
series, but the surface-integral of each with respect to the spherical
surface is zero. The charge of electricity ou the exterior spherical
surface is therefore

If we substitute for these expressions their values in terms of
OA, OB, and OP, we find

charge on B = —P OB AP
OP AB

If we suppose the radii of the spheres to become infinite, the case
becomes that of a point placed between two parallel planes A and B.
In this case these expressions become

PB
charge on A — —P~-

,

AM
i ~ AP
charge on B = ^P .

AB
172.] In order to pass from this case to that of any two spheres

not intersecting each

other, we begin by
finding the two com-
mon inverse points 0,
<)' through which all

circles pass that are

orthogonal to both

spheres. Then, invert-

ing the system with

respect to either of

these points,the spheres

become concentric, as

in the first case.

The radius OAPB on which the successive images lie becomes
an arc of a circle through and 0*, and the ratio of ffP to OP is

Fig. 15.
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equal to Ce" where C is a numerical quantity which for simplicity
wc may make equal to unity.

Wc therefore put

Let /3— a = nr, u — a — Q,

Then all the successive images of P will lie on the arc OAPBCf.
The position of the image of P in A is Q where

That of <2„ in // is P
l where

or

Similarly

u(P
t) = «+ 2*w, = 2a-«-2tf CT .

In the same way if the successive images of P in B, A B, &c
are P{, Q{, &c.,

To find the charge of any image P
t we observe that in the

inverted figure its charge is

/<Vi
In the original figure we must multiply this by OP

t
. Hence the

charge of P
t
in the dipolar figure is

P /op,.<yp
]

/V op.ap.VP

If we make £ = s/~0P.~(7p, ami call £ the parameter of the
point P, then we may write

p — 1*. pl> -
f

P,

or the charge of any image is proportional to its parameter.
If we make use of the curvilinear coordinates v, and r, such thai

then
&
gjg jjg _ yfcsiui?

cosA«-cos»' * ~ cos/Sb-cosa**
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x2 + (y— kcotv)2 = A2 cosecat?,

(x+ k cot h nf + y
2 = A* oosec AH,

cot l? = -f-r , cot Aw = *
;

2 ky 2kx

\/cosAm— eos»

Since the charge of each image is proportional to its parameter,

& and is to be taken positively or negatively according- as it is of
the form P or Q, we find

P*/cos hu— cos v

Q. = -

1",

'/coa h (u+ 2 a vf) —cos v

P ijcos An —cos t?

VCOS A (2 a—M— 2^ or) — COS V

Pv COS A»—COSP
cos A — 2 j — cos v

P*JC0s7i 7<— COS V

%/cos A (2 j3—w+ 2 * ct)— cos f

We have now obtained the positions and charges of the two
inlinite series of images. We have next to determine the total

charge on the sphere A by finding the sum of all the images within
it which are of the form Q or P*. We may write this

P*JCOS — COS V A .

V COS A [ft
— 2 * nr)— COS V

—PjCOSAW— COS V 2< n /- , .

-/cos A(2a— n— 2atff)— cost?

In the same way the total induced charge on B is

1

v cos ^ « — cos v JLi 1 ~i j

v cos A{u-\-2s — cos v

*"° VcoB/t(28—«-(2 /3—« + 2 # 13-)— cos v

* Id those expression;* we must remember that

arid the other functions of w are derived from these by the same definitions as the
corresponding trigonometrical finietionH.

The method of Applying dipolar coordinates to thi» case -was given by Thomson in
LiouvHtet Journal for 1847. See Thomson's reprint of Electrical Pape>-», § 211, 212.
In the text I have made use of the investigation of Prof. Betti, JVnotw Cimcnio,
vol. xx, for the Analytical method, but 1 have retained the idea of electrical image* as
used I v Tlmmwi) in Ids original investigation, Vkil. May., 1853.
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173.] We shall apply these results to the determination of the
coefficients of capacity and induction of two spheres whose radii are
a and 6

}
and the distance of whose centres is c.

In this case

| ^ ft
4 + + g*— 2 £2 cg— 2 c* a2— 2 a2 63

"

sin*.a=-> smA./3!= T .

Let the sphere be at potential unity, and the sphere B at
potential zero.

Then the successive images of a charge a placed at the centre
of the sphere A will be those of the actual distribution of electricity.
All the images will lie on the axis between the poles and the
centres of the spheres.

The values of u and v for the centre of the sphere A are

» — 2 a} v = 0,

Hence we must substitute a or k ^t— for p ona 2a for «, and
sin a a '

v= in tins equations, remembering that P itself forms part of the
charge of A, We thus find for the coefficient of capacity of A

am = k^ ——-

—

-
,

sin k{snr— a)

for the coefficient of induction of A on B or of 5 on A

and for the coefficient of capacity of 5

To calculate these quantities in terms of a and b, the radii of the
spheres, and of c the distance between their centres, we make use
of the following quantities
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Wo may now write the hyperbolic sines in terms ofp % qt r ; thus

2t=*> 2k
t=0

Jt.= a?

ft _ p

p r*

2 k

~
~r-~

2 k

0T —

Proceeding to the actual calculation we find, either hy this

process or by the direct calculation of the successive linages as

shewn in Sir W. Thomson's paper, which is more convenient for

the earlier part of the series,

<U =
c c(c2 -a*~l>*) c(c*-a*-b* + at>)(c*-a*-l,*-a&)

174.] We have then the following- equations to determine the

charges J7a and Eh of the two spheres when electrified to potentials

F<, and Fb respectively,

A Pi fa-

it we put qaA q^-q^ = D = ^ ,

and pao = qbb If, Puf> = - ,u &, Pht>
- i/,

whence P«*Pu>-pJ - &
then the equations to determine the potentials in terms of the

charges are F = 2?fl+AA
and jo^, jo^, and are the coefficients of potential

The total energy of the system is, by Ait. 85,
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The repulsion between the spheres is therefore, by Arts. 92, 93,

where <? is the distance between the centres of the spheres.

Of these two expressions for the repulsion, the first, which
expresses it in terms of the potentials of the spheres and the
variations of the coefficients of capacity and induction, is the most
convenient for calculation.

We have therefore to differentiate the o's with respect to c.

These quantities are expressed as functions of I; a, 0, and «r, and
must be differentiated on the supposition that a, and h are constant.
From the equations

* = «rimU=: & sin kfi _ c
Shl k a ei"M

,

sin ^ ct

we find
rfa = !

m^acos^
(

dc k sin ^ -sr

r£/3 _ cos ^ a sin

rfe £ sin A ct
'

die

_

c/i cos // a cos k {$

dc
~~

sin h ss
7

whence we find

dgaa _ cosj? acos/<j3 q„„ _ ^t<=«> (sc—a cos A /3) cos k(W— a)
dc sin hts h ^/-o c (sin h{szi— o)J

2 7

flfygj, _ cofl^aoos^ft £^ g cos // * ct

dc ~ Bin Act £
+ ^=1 (glnjT^'

= C'0S ^ « C0£ /'P<h±_ y*=»($c+ b cos/t a) cos A
(ff +

ofc sin Act" £ <^«*o e (sinA(/3+ * CT)p
Sir William Tliomson lias calculated the force between two

spheres of equal radius separated by any distance less than the
diameter of one of them. For greater distances it is not necessary
to use more than two or three of the successive images.
The series for the differential coefficients of the fa with respect

to e are easily obtained by direct differentiation
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dq^ _ 2 a? be 2&a a8 g(2cg -263 -a3
)

dqnh _ ad gg^(3 g3- ffl
a_^)

<fr
~ ^ +

£a (c
a—a 2—

i

z
)

'kit, _ 2^2c 2ag^ C (2g2 -2 gg-^)
-&e.

Distribution of Electricity on Two Spheres in Contact.

175.] If we suppose the two spheres at potential unity and not
influenced by any other point, then, if we invert the system with
respect to the point of contact, we shall have two parallel planes,

distant — and ~ from the point of inversion, and electrified by

the action of a unit of electricity at that point.

There will be a series of positive images, each equal to unity, at

distances jQ- + from the origin, where s may have any integer

value from — =c to + oo.

There will also be a series of negative images each equal to — l,

the distances of which from the origin, reckoned in the direction of

a, are -+*(-+).

When this system is inverted back again into the form of the
two spheres in contact, we have a corresponding series of negative
images, the distances of which from the point of contact are of the

form —-1— where a is positive for the sphere A and negative

for the sphere B. The charge of each image, when the potential

of the spheres is unity, is numerically equal to its distance from the

point of contact, and is always negative.

There will also be a series of positive images whose distances

from the point of contact measured in the direction of the centre

of a, are of the form
1 A K
a M b'

When * is zero, or a positive integer, the image is in the sphere A.
When * is a negative integer the image is in the sphere B.
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The charge of each image is measured by its distance from the
origin and is always positive.

The total charge of the sphere A is therefore

—Ml + - J

Each of these series is infinite, but if we combine them in the form

the series 1 lenmie- convcr^-in^.

In the same way we find for the charge of the sphere Ji,

The values of Ha and Eb arc not, so far as I know, expressible
in terms of known functions. Their difference, however, is easily
expressed, for

G -fa +
-ah Ttb

k-sA

is

a + b a + b

When the spheres are equal the charge of each for potential unity

-E°~ a
2,=i 2*(2*-l)

'

= *(l-4 + *-i-f&c.),

— «log
fl

2 — 1.0986 a.

When the sphere A is very small compared with the sphere B
the charge on A is

^=]-2,=i7 approximately;

or

The charge on ^ is nearly the same as ifA were removed, or

The mean density on each sphere is found by dividing the charge
by the surface. In this way we get
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* ~ 47r«8 ~ 246'

,T
''

_
4tt^ ~ 4^'
it

2

Hence, if a very small sphere is made to touch a very largo one,

the mean density on the small sphere is equal to that on the large
73"

sphere multiplied by — , or t .641930.

Application of Electrical Inversion to the case of a Spherical BowL
170. Ono of the most remarkable illustrations of (ho power of

Sir W. Thomson's method of Electrical Images is furnished by his

investigation of the distribution of electricity on a portion of a

spherical surface bounded by a small circle. The results of this

investigation, without proof, were communicated to M. Liouville

and published in his Journal in 1817. The complete investigation

is given in the reprint of Thomson's Electrical Papers, Article XV,
I am not aware that a solution of the problem of the distribution

of electricity on a finite portion of any curved surface has been

given by any other mathematician.

As 1 wish to explain the method rather than to verify the

calculation, I shall not enter at length into either the geometry

or the integration, but refer my readei-s to Thomson's: work.

Distribution of Electricity on an Ellipsoid.

177.] It is shewn by a well-known method * that the attraction

of a shell bounded by two similar and similarly situated and

concentric ellipsoids is such that there is no resultant attraction

on any point within the shell. If we suppose the thickness of

the shell to diminish indefinitely while its density increases, we
ultimately arrive at the conception of a surface-density varying

as the perpendicular from the centre on the tangent plane, and

since the resultant attraction of this superficial distribution ou any

point within the ellipsoid is zero, electricity, if so distributed on

the surface, will be in equilibrium.

Hence, the surface-density at any point of an ellipsoid undis-

turbed by external influence varies as the distance of the tangent

plane from the centre.

• Thomson and Tftit's Natural P?iitotophtf, § 520, or Art. ICO of thiij book.
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fikiribntion of Electricity on a Disk.

By making two of the axes of the ellipsoid equal, and making
the third vanish, we arrive at the case of a, circular disk, and at an
expression for the surface-density at any point P of such a disk
when electrified to the potential ^and left undisturbed hy external
influence. If a be the surface-density on one side of the disk,

and if KPL be a chord drawn through the point Pt then

<r - 7
'
2 7T

2 s/KP.Pl

Application of ike Principle of Electric Inversion

.

178.] Take any point Q as the centre of inversion, and let R
be the radius of the sphere of inversion. Then the plane of the
disk becomes a spherical surface passing through Q, and the disk
itself becomes a portion of the spherical surface bounded by a circle.

We shall call this portion of the surface the bwl.
If S' is the disk electrified to potential V and free from external

influence, then its electrical image S will be a spherical segment at
potential zero, and electrified by the influence of a quantity V'R of
electricity placed at Q.

We have therefore by the process of inversion obtained the
solution of the problem of the distribution of electricity on a
bowl ot a plane disk when under the influence of an electrified

point in the surface of the sphere or plane produced.

Influence of an Electrified Point plated on the unoccupiedpari of (He

Spherical Surface.

The form of the solution, as deduced by the principles already
given and by the geometry of inversion, is as follows

:

If C is the eentral point or pole of the spherical bowl S, and
if a is the distance from C to any point in the edge of the segment,
then, if a quantity q of electricity is placed at a point <>ln the
surface of the sphere produced, and if the bowl S is maintained
at potential zero, the density <r at any point P of the bowl will be

„ = J ? jl /W^jt
2* 2 QP* /V a* -CP*'

CQ, CP, and QP being the straight lines joining the points, C
t Q,

and P,

It is remarkable that this expression is independent of the radius
of the spherical surface of which the bowl is a part. It is therefore
applicable without alteration to the case of a plane disk.
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Influence of any Number of Electrified Points.

Now let us consider the sphere as divided into two parts, one of
which, the spherical segment on which we have determined the
electric distribution, we shall call the howl, and the other the
remainder, or unoccupied part of the sphere on which the in-
fluencing- point Q is placed.

If any number of influencing points are placed on the remainder
of the sphere, the electricity induced by those on any point of the
bowl may be obtained by the summation of the densities induced
by each separately.

179.] Let the whole of the remaining surface of the sphere
be uniformly electrified, the surface-density being p, then the
density at any point of the bowl may be obtained by ordinary
integration over the surface thus electrified.

We shall thus obtain the solution of the case in which the bowl
is at potential zero, and electrified by the influence of the remaining
portion of the spherical surface rigidly electrified with density p.
Now let the whole system be insulated and placed within a

sphere of diameter/, and let this sphere be uniformly and rigidly
electrified so that its surface-density is p\

There will be no resultant force within this sphere, and therefore
the distribution of electricity on the bowl will he unaltered, but
the potential of all points within the sphere will lje increased by
a quantity V where

r __

f
Hence the potential at every point of the bowl will now be F,
Now let us suppose that this sphere is concentric with the sphere

of which the bowl forms a part, and that its radius exceeds that
Off the latter sphere by an infinitely small quantity.
We have now the case of the bowl maintained at potential Tand

influenced by the remainder of the sphere rigidly electrified with
superficial density p+p',

180.] We have now only to suppose p + p'= 0, and we get the
case of the bowl maintained at potential V and free from external
influence.

If (t is the density on either surface of the bowl at a given point
wheu the bowl is at potential zero, and is influenced by the rest
of the sphere electrified to density Pl then, when the bowl is main-
tained at potential V

t
we must increase the density on the outside

of the bowl by p\ the density on the supposed enveloping sphHere.
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Tlit' result of this investigation is that if/ is the diameter of
the sphere, a the chord of the radius of the bowl, and r the chord
of the distance of P from the pole of the bow], then the surface-

density <r on the inside of the bowl is

V
2 it

2/
and the surface-density on the outside of the bowl at the same
point is y

In the calculation of this result no operation is employed more
abstruse than ordinary integration over part of a spherical surface.

To complete the theory of the electrification of a spherical bowl
we only require the geometry of the inversion of spherical surfaces.

181.] Let it be required to find the surface-density induced at

any point of the bowl by a quantity q of electricity placed at a
point Q, not now in the spherical surface produced.

Invert the bowl with respect to Q, the radius of the sphere of
inversion being A\ The bowl S will be inverted into its image
and the point P will have P9

for its image. We have now to
determine the density <t' at P* when the bowl £' is maintained at
potential P, such that q = F'B

} and is not influenced by any
external force.

The density <r at the point P of the original bowl is then

tins bowl being at potential zero, and influenced by a quantity q of
electricity placed at Q.

The result of this process is as follows :

Let the figure represent a section

through the centre, 0, of the sphere,

the pole, C, of the bowl, and the in-

fluencing point Q, J) is a point

which corresponds in the inverted

figure to the unoccupied polo of the

rim of the bowl, and may be found

by the following construction.

Draw through Q the chords EQE'
and FQF', then if we suppose the

radius of the sphere of inversion to

be a mean proportional between the
segments into which a ehord is divided at Q, S'F1

will be the
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iinage rtZR Bisect the arc m //, so that ^
draw i^D to meet the sphere in A /, ia the poiut reqn'ircu.
Also through O, the centre of the sphere, and Q draw //OO//'
meeting the sphere in //and IV. Then if P bo any point in the
howl, the surface-density at P on the side which is separated from
Q by the completed spherical surface, induced by a quantity a of
electricity at Q, will be

v s

where a denotes the chord drawn from (?, the pole of the bowl
to the rim of the howl.

On the side ne*t to Q the surface-density is

inr.pq-

V0I„ I.



CHAPTER XII.

THEORY OF CONJUGATE FUNCTIONS IN TWO DIMENSIONS.

182 .J The number of independent cases in which the problem
of electrical equilibrium has been solved is very small. The method
of spherical harmonics has been employed for spherical conductors,

and the methods of electrical images and of inversion are still more
powerful in the cases to which they can be applied. The case of

surfaces of the second degree is the only one, as far as I know,
in which both the equipotential surfaces and the lines of force are

known when the lines of force are not plane curves.

But there is an important class of problems in the theory of
fleet rical equilibrium, and in that of the conduction of currents,

in which we have to consider space of two dimensions only.

Tor instance, if throughout the part of the electric field under
consideration, and for a considerable distance beyond it, the surfaces

of all the conductors are generated by the motion of straight lines

parallel to the axis of s, and if the part of the field where this

ceases to be the case is so far from the part considered that the
electrical action of the distant part on the field may be neglected,

then the ek>rt rieity will be uniformly distributed :d<>n»' each gene-
rating line, and if we consider a part of the field bounded by two
planes perpendicular to the axis of s and at distance unity, the
potential and the distribution of electricity will be functions of 9
and if only.

If p dx dy denotes the quantity of electricity in an element whose
base is dx tig and height unity, and tr ds the quantity on an element
of area whose base is the linear element fh and height unity, then
the equation of Poisson may be written
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orEf*
8 i9 00 ftee

•* * **** *• •*m»

folwir
0ral PTOblCm

°
f *** W * stated as

C tt'lfS^ °f tW° mm by closed curve*feg, &c. ba^gm* to find the form of a function, V such thatat these boundaries its value mav be V V *r> , ,

I *m not aware that any perfectly general solntion of even 06.

Art ,90 „ applicable to this ease, and » mod, more powerftl tb-any kno,™ method applicable to three dimensions.

tJvlX°
d

°
n propcrties of *»*«»<i

jfteftitition of Conjugate Funethm.

of!£! f^jSltrfe "1 *? SaM * *2&t!*° -notionsoi a ana y, if a + V- 1 8 is a function of a-+ y~f »
It follows from this definition that

da dfi , do. dQ
d*~dj> and ff*#^ (i)

A* +
4r»-°« ^ +^ = °-

(2)

Hence both functions satisfy Laplace's equation. Also

dad^_dad£_'da S
da* Jq\*

ofLT^,? coordinate,, and if^ fc the interceptof the curve (8 « the^^ ^
ifc the mtercept of a between the curves 8 and + rfA then

?

ds
% 1

~^ =
It

' ("0

and the curves intersect at right angles

standi,
6U^ 1

th
!.

P
f
0tontiaI ^V*-, "here k is some con-£ th

T^ Satlsf> ^P*"* equation, and the curve, (a) willbe equxpotent.al curve,. The curves (8) will he lines of fore,, and
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the surface-integral of a surface whose projection on the plane of

xy k the curve AJi will he where and /3B are the

values of P at bhe extremities of the curve.

If a series of curves corresponding to values of a in arithmetical

progression is drawn on the plane, and another series corresponding

to a series of values of £ having the same common difference, then

the two series of curves will everywhere intersect at right angles,

and, if the common difference is small enough, the elements into

which the plane is divided will be ultimately little squares, whose

sides, in different parts of the Held, are in different directions and of

different magnitude, heing inversely proportional to R.

If two or more of the equipoteutinl lines (a) are closed curves

enclosing a continuous space between them, we may take these for

the surfaces of conductors at potentials {F^+ka^ {V^+ka.^, &c.

respectively. The quantity of electricity upon any one of these

between the lines of force ft and fr, will be —
The number of equipotential lines between two conductors will

therefore indicate their difference of potential, and the number of

lines of force which emerge from a conductor will indicate the

quantity of electricity upon it.

We must next statu some of the most import mil theorems

relating to conjugate functions, and in proving them we may use

either the equations (1), containing the differential coefficients, or

the original ddinition, which makes use of imaginary symbols.

184.] Theorem I. If x and if are conjugatefunctions with respect

to x and y> and if x" and if' are aho conjugate functions with

respect to x and y, then the functions x'-ha" and y'+y" witt

be conjugate functions with respect to x and y.

For — = ~- , and —5— = -v— >

dx dy ' dx dy

therefore
dx dy

drf M , W <lf
Also ^=-i- and w = ~

or x +z" and f+f KTO conjugate with respect to x and y.
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Graphic Representation of a Function which is the Sum of Two
(iivr.)i function.*.

Let a function (a) of and if be graphically represented by a

series of curves in the plane of xy, each of these curves corre-

sponding to a value of a which belongs to a series of such values

increasing by a common difference, 8.

Let any other function, /3, of x and if be represented in the same

way by a series of curves corresponding to a series of values of /?

having the same common difference as those of a.

Then to represent the function a+ /3 in the same way , we must

draw a series of curves through the intersections of the two former

series from the intersection of the curves >>.'; and to thai of ihe

curves (a+ 6) and (£—8), then through the intersection of (a+2 ©)

and (j8— 26"), and so on. At each of these points (lie function will

have the same value, namely a + fi. The next curve must be drawn

through the points of intersection of o and + 8, of o+8 and fi,

of a-i-26" and /3— 8, and so on. The function belonging to this

curve will be a+ /3 + 8.

In this way, when the series of curves (a) and the series (/S) are

drawn, the series (o+ /3) may be constructed. These three series of

curves may be drawn on separate pieces of transparent paper, and

when the first and second have been properly superposed, the thin!

may he drawn.

The combination of eoiijugate functions by addition in this way

enables us to draw figures of ninny interesting eases with very

little trouble when we know how to draw the simpler cases of

which they are compounded. We have, however, a far more

powerful method of transformation of solutions, depending on the

following theorem.

185.] Theorem: II. If x" and f are conjugate functions with

respect to the variables x' and f, and if x and f are conjugate

functions with respect to x and y, then x" and f mil. be con-

jugate functions with respect to x and if.

M dx" M W df
VoT

dx " dx
+

df dx
*

df df df drf

df dy dx* dy
'

df_
dy

'
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and *C m MM±*£M
dy W dy df dy

'

dy" dy' df dtf

dy' fa dtf dm
'

tlx
'

and these are the conditions that x" and /' should be conjugate
functions of x and y.

This may also be shewn from the original definition of conjugate
functions. For x"+ +f~if j s a function of tf+^/ZTi/, atKi

is a function of#.f V— ly. Hence, x"+J^ly"
is a function of a + «/— 1 y.

In the same way we may shew that if af and / are conjugate
functions of x and y, then w and y are conjugate functions of af

and y.
This theorem may be interpreted graphically as follows :

Let x\ y' be taken as rectangular coordinates, and let the curves
corresponding to values of x" and of/' taken in regular arithmetical
series be drawn on paper. A double system of curves will thus be
drawn cutting the paper into little squares. Let the paper be also
nded with horizontal and vertical lines at equal intervals, and let

these lines be marked with the corresponding values of af and /.
Next, let another piece of paper be taken in which x and y are

made rectangular coordinates and a double system of curves /
is drawn, each curve being marked with the corresponding value
of xr

or /. This system of curvilinear coordinates will correspond,
point for point, to the rectilinear system of coordinates x\ / on the
first piece of paper.

Hence, if we take any number of points on the curve x" on the
first paper, and note the values of af and / at these points, and
mark the corresponding points on the second paper, we shall find
a number of points on the transformed curve If we do the
same for all the curves af%f on the first paper, we shall obtain on
the second paper a double series of curves 3f\y" of a different form,
but having the same property of cutting the paper into little

squares.
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1S(3.] Theorem: III. If V is any function of »' and f, and fx'
and f are conjugate functions of co and if, then

the integration being between the same limit*.

For

<2
2

dx' dx ^ ft/ dx
'

dx*

d-r JUM 07 d^ df d*F <g

+
dtf dx*

+
df dx2 *

and
df ~

dx'2 dy\
+

d*V aWdf d?Vdf
dsf df dy dy df2 dy

+
dx* df

Adding the last two equations, and remembering the conditions

of conjugate functions (1), we And

dVd*y"

d2 F cPF
dx2 dy%

d*F (dx'

dx

(dx'
2

<tf\ dT idf- df\W +
dy >

+
df* \dx

+
d7, )

dif
+ If-

fy

Henee

//' d' F
(
dx' df _ dx' dy\

~W3 + dp) \tx dy dy dx >

[f,d*V d*F. 7 , fffd*r d*K ,dx' dff dx'df,, .

II +
tlfy^ =jj + j^) {T*i-Ty

rr,d 2 r d"-j\ . , _

,

If V is a potential, then, by Poisaon's equation

0T .
d2 r

and we may write the result

jj
pdady = jjp dvf df

or the quantity of electricity in corresponding portions of two

systems is the same if the coordinates of one system are conjugate

functions of those of the other.
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Additional Theorems on Conjugate Functions.

187.] Theorem IV. If ax
and ylt and also xs and. y2 , are con-

jugatejmictions of sc ami y, then, if

X = ^1 ^2—^1 Vi , and Y= y2 -f a?
2^ f

X and Twill be conjugatefunctions of x and y.

For X+ J~=\Y= + Vl) 4 y2).

Theorem V. If $ be a solution of the equation

W +
dy l ~ °'

d$

R and wi7Z conjugatefunctions of x and y.

For R and are conjugate functions of^ and Ife and these
are conjugate functions of a* and .y.

^

Example I.— 7w remm.

188.] As an example of the general method of transformation
let us take the case of inversion in two dimensions.

If is a fixed point in a plane, and OA a fixed direction, and
if r - OP = tree, and = A0i\ and it' x, y are the rectangular
coordinates of P with respect to 0,

P = log -Vtf2
e = tan- 1 1

,

a x (ft)

a? = as? cos 0, ^ = ae? sin 0,

/s and are conjugate funeliims uf.r and //,

If / = »p and 0' = )t$, p and & will l>e conjugate functions of p
and 0. In the case in which « =— 1 we have

a*
/ =— , and &=-d,

(6)

which is the case of ordinary inversion combined with turning the
figure I80'

:

round OA.

Inversion in Two Dimensions.

In this case if r and / represent the distances of corresponding
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points from O, e and / the total electrification of a body, 5 and S'

superficial elements, V and V solid elements, <r and </ aurface-

densities, p' and p
f
volume densities, $ and corresponding po-

tentials,

/ _
7~~S

1=1,
e

a2 /2 r* a4 /*

r2
—

az ' r
_
r*~ a*'

a2 / r* a!

r'
2

'

p
' ' a* (?)

Example II.

—

Electric Images in Two Dimension*.

189.] Let be the centre of a circle of radius AQ = A, and let

.27 be a charge at Af then the potential

at any point P is

<p = 2Ehg
T̂j

; (8)

and if the circle is a section nf n lmllow

eondueting cylinder, the surface-density

E
at any point Q is — •

17 *

Invert the system with respect to a point 0, making

AO - mb, and a2 = -
1 ) 5

2
;

then we have a charge at A' equal to that at A, where AA' — — •

The density at Q' is

E l2-Hf
2irb A'Q'*

'

and the potential at any point P' within the circle is

</»' = </> = 2^ (logi- log ^P),

= 2# (log OF -logA'F—log»). (9)

This is equivalent to a combination of a charge at J', and a

charge —E at 0, which is the image of A', with respect to the

circle. The imaginary charge at is equal and opposite to that

afc^'.

If the point F is defined by its polar coordinates referred to the

centre of the circle, and if we put

P — logr—log*, and p = log AA'— log b,

then AF = be"t
AA'=be*>, AO-her^^ (10)
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and the potential at the point (p, 0) is

$ = Jnog (<?-8»o— 2<r<lf>
e<

i cosd+ e2f)

-E log 2 e*> c>p cos d + e-P) + 2E P(I . (11)

This is the potential at the point
(P) 0) due to a charge E, placed

at the point (p , 0), with the condition that when
{
, = (), = 0.

In this case p and are the conjugate functions in equations (5)

:

p is the logarithm of the ratio of the radius vector of a point to

the radius of the circle, and $ is an angle.

The centre is the only singular point in this system of coordinates,

and the line-mtegvid of
/
^th round a (dosed curve is zero or 2*.

according as the closed curve excludes or includes the centre.

Example III,

—

Neumann's Transformation offhia Case*.

190.] Now let a and £ be any conjugate functions of % and v,

such that the curves (o) are equipotcntial curves, and the curves
':, a iv lines of force duo to ;i system consisting of a charge of half

a unit at the origin, and an electrified system disposed in any
manner at a certain distance from the origin.

Let us suppose that the curve for which the potential is a is

a closed curve, such that no part of the electrified system except the

half-unit at the origin lies within this curve.

Then all the curves (a) between this curve and tl rigin will lie

closed curves surrounding the origin, and all the curves (0) will

meet in the origin, and will cut the curves (a) orthogonally.

The coordinates of any point within the curve (o
(()

will be determ-

ined by the values of « and j3 at that point, and if the point travels

round one of the curves o in the positive direction, the value of j3

will increase by 2tt for each complete circuit.

If we now suppose the curve (a ) to be the section of the inner

surface of a hollow cylinder of any form maintained at potential

zero under the influence of a charge of linear density E on a, line of

which the origin is the projection, then we may leave the external

elect rified system out of consideration, and we have for the potential

at any point (a) within the curve

<t>
= 2^(0-^), (12)

and for the quantity of electricity on any part of the curve a„

between the points corresponding to fa and fa,

Q = 2E(p
l
-p

i). (13)

• See Crelle's Journal, 1861,
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If in this way, or in any other, we We determined the dis-

tribution of potential for the ease of a given curve of section when
the charge is placed at u given point taken as origin, we may pass

to the case jn which the charge is placed at any other point by an
application of the general method of transformation.

Let the values of a and /3 for the point at which the charge is

placed be a
x
and fa, then substituting in equation (11) a— au for p,

and /3—j3
1

for 0, we find for the potential at any point whose co-

ordinates are a and fa

(p = E\og (1 — 2tf"~«i cos (p—fa) + e-^~ a
^)

-JS-log (l-2ea+ «
1
- a^cos^-j9

1) + ^(«+-,-2-
)) + 2 ^(a

l
-a ). (H)

This expression for the potential becomes zero when a=c^, and is

finite and continuous within the curve a,, except at the point a,/ilt

at which point the first term becomes infinite, and in its immediate
neighbourhood is ultimately equal to 2 J?log/, where / is the

distance from that point.

We have therefore obtained the means of deducing- the solution

of Green's problem for a charge at any point within a closed curve

when the solution for a charge at any other p. Jul is kn.,\vn.

The charge induced upon an element of the curve a„ between the

points |9 and £ + f//3 by a charge J? placed at the point a
x fa is

M 1— (»!-«*)

2~1t l -g^-^o) cos + <2*(«i-«o>

From this expression we may find the potential at any point

a, fa within the closed curve, when the value of the potential at

every point of the closed curve is given as a function of fa and
there is no electrification within the closed curve.

For, by Theorem II of Chap. Ill, the part of the potential at

oj fa t
due to the maintenance of the portion dfi of the closed curve

at the potential Ft is nVf where n is the charge induced on r//3 by

unit of electrification at Oj fa . Hence, if V is the potential at a

point on the closed curve defined as a function of fa and */> the

potential at the point a, ft, within the closed curve, there being no

electrification within the curve,

* 2 7T J6 1 — 2 <?<«i -«•> cos (£- ft) + e3 t«T-«o)
*
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Example IV.

—

Distribution of Electricity near an Edge of a

Conductorformed by Two Plane Faces,

191.] In the case of an infinite plane face of a conductor charged

with electricity to the surface-density <r„, we find for the potential

at a distance y from the plane

V— &~Avv^jti

where C is the value of the potential of the conductor itself.

Assume a straight line in the plane as a polar axis,, and transform

into polar coordinates, and we find for the potential

V =. C— 4Tttrn a ^sittfl,

and for the quantity of electricity on a parallelogram of breadth

unity, and length ae? measured from the axis

E = or^aeP.

Now let ub make p = np and $ = ntf, then, since p and & are

conjugate to p and 6, the equations

V= C—4x<r «<?*J,/ sin ntf

and E-<r
fi
ae"</

expross a possible distribution of electricity and of potential.

If we write r for at-*', r will be the distance from the axis, and

6 the angle, and we shall have
_ r*
V — C— 4 it (Tn -z—r sm n 0,

f»

V will be equal to G whenever n& = x or a multiple of x.

Let the edge be a salient angle of the conductor, the inclination

of the faces being a, then the angle of the dielectric is 2x— a, bo

that when — 2 it— a the point is in the other face of the conductor.

We must therefore make
,„ , x

n (2x— a) = x, or « —
2 x-— u

w

Then F = C— 4 x

c

a {-) sin
27r_g

»

The surface-density <r at any distance ** from the edge is
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When the angle is a salient one a is less than xr, and the surface-

density varies according- to some inverse power of the distance

from the edge, so that at the edge itself the density becomes

infinite, although the whole charge reckoned from the edge to any

finite distance from it is always finite.

Thus, when a=0 the edge is infinitely sharp, like the edge of a

mathematical plane. In this case the density varies inversely as

the square root of the distance from the edge.

When a— - the edge is like that of an equilateral prism, and the
3

density varies inversely as the f-
power of the distance.

When a = - the edge is a right angle, and the density is in-

2

versely as the cube root of the distance.

When a=
lT>

the edge is like that of a regular hexag. > i i

|

i-'.-m

3

and the density is inversely as the fourth root of the distance.

When a — tt the edge is obliterated, and the density is constant.

When a= |-ir the edge is like that in the inside of the hexagonal

prism, and the density is directly as the square root of the distance

from the edge.

When «— 4 it the edge is a re-entrant right angle, and the density

is directly as the distance from the edge.

When a=£ir the edge is a re-entrant angle of GO", and the

density is directly as the square of the distance from the edge.

In Teality, in all cases in which the density becomes infinite at

any point, there is a discharge of electricity into the dielectric at

that point, as is explained in Art. 55.

Example V.

—

Ellipses mid Hyperbolas. Fig. X.

192.] We have seen that if

.t
l
=: cos i/r, y1

=e+sm.ty i 0)

x and y will be conjugate functions of and *.

Also, if = cos*, y., = sin*, (2)

z.t and y. will be conjugate functions. Hence, if

x and y will also he conjugate functions of <i>
and *.

In this case the points for which
<f>

is constant lie in the ellipse

whose axes are <?+ + e-+ and — tr+.
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The points for which y is constant lie in the hyperbola whose
axes aro 2 cos y and 2 sin y.

On the axis of x
}
between = — I and $ = + 1,

<}> = 0, l/r — cos-1 a?. (4)

On the axis of x
s
beyond these limits on either side, we have

x> I, y=0, <f>= hg{x+J^\)} (5 )

x < - 1 , y - tt, = log
( %/*•«—

i

Hence, if is the potential function, and y the function of flow,
we have the case of electricity flowing from the negative to the'

positive side of the axis of x through the space between the points
— 1 and +1, the parts of the axis beyond these limits being
impervious to electricity.

Since, in this case, the axis ofy is a line of flow, we may suppose
it also impervious to electricity.

We may also consider the ellipses to be sections of the equi-
potential surfaces due to an indefinitely long flat conductor of
breadth 2, charged with half a unit of electricity per unit of length.

If we make y the potential function, and $ the function of flow,

the ease becomes that of an infinite plane from which a strip of
breadth 2 has been cut away and the plane on one side charged to
potential it while the other remains at zero.

These cases may he considered as particular cases of the quadrie
surfaces treated of in Chapter X. The forms of the curves are
given in Pig. X.

Example VI.—Fig. XI.

193.] Let us next consider «>' and / as functions of x and y} where

x'= b log / = b tan-1 - » (6)

af and / will be also conjugate functions of and y.
The curves resulting from the transformation of Fig. X with

respect to these new coordinates are given in Fig. XI.
If jf and f are rectangular coordinates, then the properties of the

axis of x in the first figure will belong to a series of lines parallel
to J in the second figure for which /= bn'^ where »' is any
infetriT.

The positive values of af on these lines will correspond to values
of as greater than unity, for which, as we have already seen,

y = mtt, $ - log {x+ v/ar2ZTl) = log (e> + *Je^- 1). (7)
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The negative values of af on the same lines will correspond to

values of a less than unity, for which, as we have seen,

4» = 0, yfr = COS-1 JC = COS
-1 * 6

. (8)

The properties of the axis of g in the first figure will belong to

a series of lines in the second figure parallel to nf, for which

/ = (9)

The value of V along these lines is ^ — n for all points

both positive aud negative, and

<t>
= log(y+ + = log (** +Vi$ f i). (10)

194.] If we consider $ as the potential function, and \jf as the

function of How, we may consider the caso to be that of an in-

definitely long strip of metal of breadth ish with a non-conducting

division extending from the origin indefinitely in the positive

direction, aud thus dividing the positive part of the strip into two
separate channels. We may suppose this division to be a narrow
slit in the sheet of metal.

If a current of electricity is made to flow along one of those

divisions and back again along the other, the entrance and exit of
the current being at an indefinite distance on the positive side of

the origin, the distribution of potential and of current will be given

by the functions <p aud respectively.

If, on the other hand, we make y(r the potential, and $ the

function of flow, then the case mil be that of a current in the

general direction of y} flowing through a sheet in which a number
of non-conducting divisions are placed parallel to extending from

the axis of */ to an indefinite distance in the negative direction.

195.] We may also apply the results to two important cases in

statical electricity.

(1) Let a conductor in the form of a plane sheet, bou tided by a
straight edge hut otherwiso unlimited, be placed in the plane of xz
on the positive side of the origin, and let two infinite conducting

planes he placed parallel to it and at distances \isb on either side.

Then, if yp is the potential function, its value is for the middle

conductor and £ tt for the two planes.

Let us consider the quantity uf electricity on a part of the middle

conductor, extending to a distance 1 in the direction of z} and from

the origin to x = a.

The electricity on the part of this strip extending from <r, to #a
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Hence from the origin to /= a the amount is

E=±-\Qg(<F + \fe*-\) . (11)

If a is large compared with bf this becomes

1 .1E— loir2e t'

.

(12)
<y +0 log "J

Hence tlie quantity of electricity on the plane hounded by the
straight edge is greater than it would have been if the electricity

had been uniformly distributed over it with the same density that
it has at a distance from the boundary, and it is equal to the
quantity of electricity having the same uniform surface-density,

but extending to a breadth equal to b log„ 2 beyond the actual
I " titulary of t lie plate.

This imaginary uniform distribution is indicated by the dotted
straight lines in Pig. XI. The vertical lines represent lines of
force, and the horizontal lines equipotential surfaces, on the hypo-
Diesis that the density is uniform over both planes, produced to

inliuily in all directions.

196.] Electrical condensers are sometimes formed of a plate

placed midway between two parallel plates extending considerably

beyond the intermediate one on all sides. If the radius of curvature
of the boundary of the intermediate plate is great compared with
the distance between the plates, we may treat the boundary as
approximately a straight Hue, and calculate the capacity of the

condenser by supposing the intermediate plate to have its area
extended by a strip of uniform breadth round its boundary, and
assuming the surface-density on the extended plate the same as
it is in the parts Hot mar tile boundary.

Thus, if S be the actual area of the plate, L its circumference,
and B the distance between the large plates, we have

6=-]S, (13)
IT

and the breadth of the additional strip is

«-3M.it (i«)

so that the extended area is

8< = 8+M-hgJ. (is)
IT
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The capacity of the middle plate is

Correctionfor the Thicfams of the Plate.

Since the middle plate is generally of a thiekness which cannot

be neglected in. comparison with the distance between the plates,

we may obtain a better representation of the facts of the ease by
supposing the section of the intermediate plate to correspond with

the curve = if-'.

The plate will he of nearly uniform thickness,
f)
= 2b\jf', at a

distance from the boundary, but will be rounded near the edge.

The position of the actual edge of i)u> plate is found by putting

/= 0, whence
;c
'= (j \ g C0Bp (! 7 )

The value of <j> at this edge is 0, and at a point for which x = a

it is a + b togfj 2

b

Hence the quantity of electricity on the plate is the same as

Efa strip of breadth B *

had been added to the plate, the density being assumed to by every-

where the same as it is at a distance from the boundary.

Density near the Edge.

The surface-density at any point of the plate is

1 d$ I e
h

Ait 3£r
~~

4 Ttb ,
2*'

V e * —1

1

d + i

— _ **'

T \e " + | if
(J -&C.A (19)

The quantity within brackets rapidly approaches unity ag x*

increases, so that at a distance from the boundary equal to n times

the breadth of the Btrip a, the actual density is greater than the

normal density by about -
ia+t of the normal density.

In like manner we may calculate the density on the infinite planes
X

- 1 ^
(20)

4iri ,

Ve* + 1

When tn'=0, the density is 2"* of the normal density.

VOL. E. R
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At n times the breadth of the strip on the positive side, the

density is less than the normal density by about rif
At n times the breadth of the strip on the negative side, the

density is about— of the normal density.

These results indicate the degree of accuracy to be expected in

applying this method to plates of limited extent, or in which

irregularities may exist not very fur from the boundary. The same

distribution would exist in the ease of :iit infinite series of similar

plates at equal distances, the potentials of these plates being

alternately + V and — V. In this case we must take the distance

between the plates equal to B.

197.] (2) The second case we shall consider is that of an infinite

series of planes parallel to xz at distances B= irbJ and all cut off by
the plane of yz, so that they extend only on the negative side of this

plane. If we make c/j the potential function, we may regard these

planes as conductors at potential zero.

Let us consider the curves for which </> is constant.

When /= ntsb, that is, in the prolongation of each of the planes,

weW af= b log 4 + e-*) (21)

when if= {u + tyb-, that is, in the intermediate positions

x — b log 4 — *""*). (22)

Hence, when is large, the curve for which is constant is

an undulating line whose mean distance from the axis of / is

approximately „ i f . 1 \11 J *= 2), (23)

and the amplitude of the undulations on either side of this lino is

When tf> is large this becomes he~*+
} so that the curve approaches

to the form of a straight line parallel to the axis of/ at a distance

a from ab on the positive side.

11' we suppose a plane for which .r. = a, kept at a constant

potential while flu: system of parallel planes is kept, at a different

potential, then, since b$ = a + b log
e 2, the surface-density of

the electricity induced on the plane is equal to that which would
have been induced on it by a plane parallel to itself at a potential

equal to that of the series of planes, but at a distance greater

than that of the edges of the planes by b log,, 2.
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If B is the distance between two of the planes of the series,

B = Ttbt so that the additional distance is

198.] Let us next consider the space included between two of
the equipotential surfaces, one of which consists of a aeries of parallel

waves, while the other corresponds to a large value of and may
he considered as approximately plane.

If li is tlie depth of these undulations from the crest to the trough
of each wave, then we find for the corresponding" value of f/;,

* = * ]°8 • (26)

eh — 1

The valiio of./ at the crest of llio wave is

log §(** + *-*). (27)

Hence, if ^ is tlie distance from the crests of the waves to the
opposite plane, the capacity of the system composed of the plane
surface and the undulated surface is the same as that of two planes
at a dislanee A+ a' where

B 2
(28)

l+e
109.] If a single groove of this form be made in a conductor

having the rest of its surface plane, and if the other conductor is

a plane surlace at a distance A> the capacity of the one conductor
with rospret to the other will bo diminished. Tin- amount of this

diminution will be less than the - th part of the diminution due

to n such grooves side by side, for in the latter case the average
electrical force between the conductors will be less than in the
former ca.se, so that the induction on the surface of each groove will

be diminished on account of the neighbouring grooves.

If L is the length, B the breadth, and J) the depth of the groove,
the capacity of a portion of the Opposite plane whose area is 5 will be

8 LB a'

4ir/i iirA.A+ a'
' ^

If A is large compared with B or a, the correction becomes

L B- . 2

4^ a* s' 175 »
m

R 2
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and for a slit of infinite depth, putting T) — =c, the correction is

To find the surface-density on the series of parallel plates we

must find cr = —^ when d> = 0. We find
4 TS (fa

*

<r = JL _J (32)
iTti/ / Jt

V e h — \

The average density on the plane plate at distance A from the

edges of the aeries of plates is (r = -^—^ . Hence, at a distance from

the edge of one of the plates equal to na the surface-density is

1

. — - of this average density.

200.] Let us next attempt to deduce from these results the

distribution of electricity in the figure formed by rotating the

plane of the figure about the axis /= — It In this case, Poisson'a

equation will assume the form

cPV &Y 1 dV^ +^ + ^T7^ + 1^ =
-

(33)

Let us assume r=$, the function given in Art, 193, and determine

the value of p from this equation. We know that the first two
terms disappear, and therefore

If we suppose that, in addition to the surface-density already

investigated, there is a distribution of electricity in space according

to the law just stated, the distribution of potential will be repre-

sented by the curves in Fig. XI.

Now from this figure it is manifest that -yp is generally very

small except near the boundaries of the plates, so that the new
distribution may be approximately represented by what actually

exists, namely a certain superficial distribution near the edges of

the plates.

If therefore we integrate jjpdx'd/ Ixjtween the limits tf= and

//— iSt an(1 from = to x = + =o
t we shall find the whole

additional charge on one side of the plates due to the curvature.
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~ . dtb dylr
oince .

— ;~ »

ay ax

-imfa**' (35)

Integrating will i respect to//, we litul

p(M<W =
g
-g —g— log—^— » (3C)

i b i j?a
B ^= l6£ + 48^-&C

-

(37)

This is the total quantity of electricity which we must suppose

distributed in space near the positive side of One of the cylindrie

plates per unit of circumference. Since it is only close to the edge

of the plate that the density is sensible, we may suppose it all

condensed on the surface of the plate without altering sensibly its

action on the opposed plane surface, and in ealculut inif the at traction

between that surface and the cylindrie surface we may suppose this

electricity to belong to the cylindrie surface.

The superficial charge on the positive surface of the plate per

unit of length would have been — if there had been no curvature

,

Hence this charge must be multiplied by the factor (l + £

to get the total charge on the positive side.

In the case of a disk of radius Ji placed midway between two

infinite parallel plates at a distance It, we find for the capacity

of the disk »,> , „K' +2^j2 + 4if. (38)
ft

Theory of Thomson' ts Guard-Ting.

201. ] In some of iSir W. Thomson's electrometers, a large piano

surface is kept at one potential, and at a distance a from this surface

is placed a plane disk of radius li surrounded by a large plane plate

called a Guard-ring with a circular aperture of radius IX concentric

with the disk. This disk and plate are kept at potential zero.

The interval between the disk and the guard-plate may be

regarded as a circular groove of infinite depth, and of breadth

lif—R, which wc denote by B,



246 CONJUGATE FUNCTIONS, [202.

The charge on the disk due to unit potential of the large disk,

H-
supposing the density uniform, would he -

The charge on one side of a straight groove of breadth B and
length L — 2itR, and of infinite depth, would be

1
BB

1 A+ a''

But since the groove is not straight, but has a radius of curvature

B
It, this must be multiplied by the factor -f \ p )

•

The whole charge on the dish is therefore

B* . RB , B v

A A * A +
It2 + K*-R? a

(40)
$A 6J A+ a

The value of a cannot 1m? greater than

H log 2 n
a —— °

, = 0.2 2 i? nearly.

If B is small compared with either A or R this expression will

give a sufficiently good approximation to the charge on the disk

due to unity of difference of potential. The ratio of A to B
may have any value, but the radii of the large disk and of the

guard-ring must exceed 11 by several multiples of A.

Example VII.—Pig. XII.

203.] Ilclmholtz, in his memoir on discontinuous fluid motion*,

has pointed out the application of several formulae in which the

coordinates are expressed as functions of the potential and its

conjugate fnnet ion.

One of these may bo applied to the case of an electrified plate

of finite size placed parallel to an infinite, plane surface connected

with the earth.

Since fct
= A$ and ^j, = A ^r,

and also a?2 = A cos and y2 = A tf* sin \fr t

are conjugate functions of
<f>
and

-ty,
the functions formed by adding

#2 to x2 and^j to y > will be also conjugate. Hence, if

w = A 0+ A cos

y — Aip + AtP sin ^,

* KUnir/l. Akad. <kr Wi*«cnech<iftai, fen Berlin, April 23, 1868.



202,] TWO EQUAL DISK*, 247

then x and y will be conjugate with respect to $ and and </» and

\jf will be conjugate with respect to as andy.

Now let x and y be rectangular coordinates, and let kty be the

potential, then k<p will be conjugate to k being any constant.

Let us put i|r = x, then y — .7 tt, .p = . / (</>— #+).

If
<f>

varies from —w to 0, and then from to +ae, a? varies

from —oo to —^ and from —J to — oo. Hence the equi potential

surface for which tt is a plane parallel to x at a distance 6 = itA
from the origin, and extending from — oo to x = —A,

Let us consider a portion of this plane, extending from

co = —(A 4- &) to a: = — A and from z = to z = c,

let us suppose its distance from the plane of a-z to be y — /> — An,

and its potential to be F= = iir.

The charge of electricity on any portion of this part of the plane

is found by ascertaining the values of
<f>

at its extremities.

If these are fa and fa, the quantity of electricity is

— cl>(fa-fa).

We have therefore to determine from the equation

x = —(A + a) — A(<p—e*),

ij> will have a negative value fa and a positive value fa at the edge

of the plane, where x = —A, $ = 0.

Hence the charge on the negative side is — c&fa } and that on

the positive side is ckfa.

If ue suppose that a is large compared with A,

a — —1+e A

fa = -
A
- \-YC *

<P* = ^g { - + 1 + log (~ + 1 + &e.)} •

If we neglect the exponential terms in fa we shall find that the

charge on the negative surface exceeds that which it would have

if the superficial density had been uniform and equal to that at a

distance from the boundary, by a quantity equal to the charge on a

strip of breadth A — with the uniform superficial densitv.

The total capacity of the part of the plane considered is

c=^{fa-fa)^
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The total charge is CV, and the attraction towards the infinite

plane is

A

- ^—7a {a + s- log -3- + &e.}

The equipotcntial lines and lines of force are given in Pig. XII.

Example VIII.—Theory of a Qratimj of Parallel Wires. Pig. XIII.

203.] In many electrical instrument* a wire grating is used to

prevent certain parts of the apparatus from being electrified by

induction. We know that if a conductor be entirely surrounded

by a metallic vessel at the same potential with itself, no electricity

can be induced on the surface of the conductor by any electrified

body outside the vessel. The conductor however, when completely

surrounded by metal, cannot be seen, and therefore, in certain cases,

an aperture is left which is covered with a grating of fine wire.

Let us investigate the effeet of this grating in diminishing the

effect of electrical induction. We shall suppose the grating to

consist of a series of parallel wires in one plane and at equal

intervals, the diameter of the wires being small compared with the

distance between them, while the nearest portions of the electrified

bodies on the one side and of the protected conductor on the other

are at distances from the plane of the screen, which are considerable

compared with the distance between consecutive wires.

204.] The potential at a distance / from the axis of a straight

wire of infinite length charged with a quantity of electricity A per

unit of length is F = — 2A log /+ C. (1)

We may express this in terms of polar coordinates referred to an
axis whose distance from the wire is unity, in which case we must
nmke = l + 2reos<J+ r2, (2)

and if we suppose that the axis of reference is also charged with

the linear density A', we find

V = — A log ( 1 — 2> eos + r2)— 2 A' log r + C. (3)

If we now make

r = <? »j 6 = , (4)
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then, by the theory of conjugate functions,

F= -Alog \l~2e cos —S + c /
, -2X'loge a + (r,)

where at :uk1 // are rectangular eoordinates, will he the value of th*'

potential due to an infinite series of fine wires parallel to i in the

plane of .yz, and passing through points in the axis of x for whirh

x is a multiple of «.

Each of these wires is charged with a linrar density A.

The term involving A' indicates an electrification, producing a

4irA'
constant force — in the direction of v,

a
J

The forms of the equipotential surfaces and lines of force when

A'= are given in Fig, XIII. The cquipotential surfaces near the

wires are nearly cylinders, so that we may consider the Solution

approximately true, even when the wires are cylinders of a dia-

meter which is finite but small compared with the distance between

them.

The cquipotential surfaces at a distance from the wires become

more and more nearly planes parallel to that of the grating.

If in the equation we make y = i
t , a quantity large compared

with </, we find approximately,

F
t
= - (A + V) + C nearly. (6)

If we next make y — — &t where i.
2 is a negative quantity large

compared with a, we find approximately,

T2=_ i^i*(A_A') + C nearly. (7)

If c is the radius of the wires of the grating, c being small

compared with a, we may find the potential of tho grating itself

hy supposing that the surface of the wire coincides with the cqui-

potential surface which cuts the plane "f'//c at a distance c from the

axis of e. To find the potential of the grating we therefore put

ar = c, and y = 0, whence

F = -2 A log 2 sin— +6'. (8)

205.] We have now obtained expressions representing the elcr-

trical state of a system consisting of a grating of wires whose

diameter is small eumpaivd with the distance between them, and

two plane conducting surfaces, nnu on uach side of tlie grating,

and at distances which arc great compared with the distauce

between the wires.
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Tin; suvfiu:o-(lonsity <r, on the first plane is got from the equa-

That on the second plane a., from tlie equation (7}

4 _^ =_^
(
X_X'). (10)

If we now write a
,

/ n . ire\ /..v
a = — „ log

fl
(2sin )>

(llj
2ir * v a 7

and eliminate A and A' from the equations (6), (7), (8), (0), (10),

we find

4 * ffl a + *. +
2Ji4) = r

, (1 + 2V r
a
- rS * (12)

* y* * a J v a a

4 »

„

2 («,

+

k +
2-M«) _ _ r, + r2 (1 + 2 1 ) - r™i (is)

When the wires are infinitely thin, a becomes infinite, and the

terms in winch it is the denominator disappear, bo that the case

is reduced to that of two parallel planes without a grating in-

terposed.

If the grating is in metallic communication with one of the

planes, say the first, f"= l\, and the right-hand side of the equation

for it, becomes f\— Hence the density <r
l
induced on the first

plane when the grating is interposed is to that which would have

been induced on it if the grating were removed, the second plane

being maintained at the same potential, as 1 to 1 +
Q^

We should have found the same value for the effect of the grating

in diminishing the electrical influence of the first surface on the

second, if we had supposed the grating connected with the second

surface. This is evident since 6
X
and l>., enter into the expression

in the same way. It is also a direct result of the theorem of

Art. 88.

'fiie induction of the one electrified plane on the other through

the grating is the same as if the grating were removed, and the

distance between the planes increased from &
l + l>2 to

+ + 2
1

If the two planes are kept at potential zero, and the grating

electrified to a given potential, the quantity of electricity on the

grating will be to that which would be indxiced on a plane of equal

area placed in the same position as

2 b
l

h., is to 2 it
l
i
2 + a {6 X + £

a).
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This in vest igation is approximate only when b
x
and b

2
are large

compared with a, and when a is large compared with c. Hit;

quantity a is a line which may bo of any magnitude. It becomes

infinite when c is indefinitely diminished.

If we suppose c = £ a there will be no apertures between the

wires of the grating, and therefore there will be no induction

through it. We ought therefore to have for this case a = 0. The
formula (11), however, gives in this ease

a = - ~ log, 2, =-0.11 a,

which is evidently erroneous, as the induction can never be altered

in sign by means of the grating. It is easy, however, to proceed

to a. higher degree of approximation in the case of ;i grilling of

cylindrical wires. I shall merely indicate the steps of this process.

Method of Approximation.

206.] Since the wires are cylindrical, and since the distribution

of electricity on each is symmetrical with respect to the diameter

parallel to g}
the proper expansion of the potential is of the form

V= CJogf+se^eositf, (II)

where r is the distance from the axis of one of the wires, and the

angle between r and yy
and, since the wire is a conductor, when

r is made equal to the radius V must bo constant, and therefore

the coefficient of each of the multiple cosines of must vanish.

For thr sake of conciseness let us assume he v. coordinates t, >)• •x ''-

such that

a^=2nx
i

aij = 2 Try, ap = 2if, afi— 2 v 6, Sec. (15)

and let Fp = log
(
ei+0+ e-(i+A_2 cosf). (16)

Then if we make

by giving proper values to the eocl!icioiits A we inaj express any

potential which is a function of \] and cos £ and does not become

iafinite except when jj + /3 = and cos £ = 1

.

When /3 = the expansion of F in terms of p and is

Fe
= 2 logp+ T^p2 cos2 0^r^Tr p*cos40+ &c. (18)

For finite values of /9 the expansion of F is

F, =
jg+ 2 log (1 -<H»)f p cos fl- _f

'
cos 20+ &o. (19)
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In the case of the gratiug with two conducting planes whose

equations arc rj = —ft and rj= /33J that of the plane of the grating

being jj as 0, there will be two infinite series of images of the

grating. The first series will consist of the grating itself together

with an infinite series of images on both sides, equal and similarly

electrified. The axes of these imaginary cylinders lie in planes

whose equations are of the form

q = ± mM4%& (20)

ii being an integer.

The second series will consist of an infinite series of images for

which the coefficients Aq, A^, A±, &c. are equal and opposite to the

same quantities in the gratiug itself, while Au As , &c. are equal

and of the same sign. The axes of these images are in planes whose

equations are of the form

H = 2&± 2*1(0, + ft), (21)

m being an integer.

The potential due to any fiuite scries of such images will depend

on whether the number of images is odd or even. Hence the

potential due to an infinite series is indeterminate, but if we add to

it the function Btf+C, the conditions of the problem will be sufficient

to determine the electrical distribution.

We may first determine V
x
and T2 , the potentials of the two

conducting planes, in terms of the coefficients A , A 1 ,
&c, and of

B and C. We must then determine and <r2 , the surface-density

at any point of these planes. The mean values of crj and <r2 are

given by the equations

4 * *j = 4o-B, ** Wi = 41+*. C
22)

We must then expand the potentials due to the grating itself

and to all the images in terms of p and cosines of multiples of 0,

adding t<> thr refill Bpcos6+C.

The terms independent of 6 then give V the potential of the

grating, and the coefficient of the cosine of eaeh multiple of 6

equated to zero gives an equation between the indeterminate co-

efficients.

In this way as many equations may be found as are sufficient

to eliminate all these coefficients and to leave two equations to

determine <r
x
and <r2 in terms of Vx> V.£i and V.

These equations will be of the form

Vx
-V= 4Tr(r

1 (41+ a-y) + 4iro-2 (a+ y),

r2-F= 4ir<r1
(a + y) + 4Tra2 (^+ a-)'). (23)
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The quantity of electricity induced on one of the planes protected

by the grating, the other plane being1 at a given difference of

potential, will be the same as if the plates had been at a distance

a+ y

The values of a and y are approximately as follows,

a \ . a 5 v*c*
n '— ( lof* — • -

2tt I
&

2ir<J 3 15a 4 + 7i
4

(?
4

+ 2e a [l + e~"" + e " fl + &C./ + &0. [ » (24)



CHAPTER XIII.

ELECTROSTAT IC INSTBUMEN TS.

Oil Electrostatic Instrument*,

The instruments which we have to consider at present may be

divided into the following1 elasses :

(1) Electrical machines for the production and augmentation of

elect rification.

(2) Multipliers,, for increasing electrification in a known ratio.

(3) Electrometers, for the measurement of electric potentials ami

charges.

(4) Accumulators, for holding large rhvtrieal charges

Electrical Machines.

207.] In the common electrical machine a plate or cylinder of

glass is made to revolve so as to rub against a surface of leather,

on which is spread an amalgam of zinc and mercury. The surface

of the glass becomes electrified positively and that of the rubber

negatively. As the electrified surface of the glass moves away

from the negative electrification) of the rubber it acquires a high

positive potential. It then comes opposite to a set of sharp metal

points in connexion with the conductor of the machine. The posi-

tive electrification of the glass induces a negative electrification

of the points, which is the more intense the sharper the points

ami the nearer they are to the glass.

When the machine works properly there is a discharge through

the air between the glass and the points, the glass loses part of

its positive charge, which is transferred to the points and so to

the insulated prime conductor of the machine, and to any other

hotly with which it is in electric communication.

The portion of the glass which is advancing towards the rubber

has thus a smaller positive charge than that which is leaving it

at the same time, so that the rubber, and the conductors in com-

munication with it, become negatively electrified.
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Tlie highly positive surface of the glass where it leaves the

ruhber is more attracted by the negative charge of the rubber than
the partially discharged surface which is advancing towards tin-

rubber. The electrical forces therefore aefc as a resistance to the force

emj .loved in turning the machine. The work done in turning the

machine is therefore greater than that spent in overcoming ordinary

friction and other resistances, and the excess is employed in pro-

ducing a state of electrification whose energy is equivalent to this

excess.

The work done in overcoming friction is at once converted into

heat in the bodies rubbed together. The electrical energy may
be also converted either into mechanical energy or into heat.

If the machine does not store up mechanical energy, all the

energy will be converted into heat, and the only ditierence between
the heat due to friction and that due to electrical action is that the
former is generated at the rubbing surfaces while the latter may be
generated in conductors at a distance *.

We have seen that the electrical charge on the surface of the

glass is attracted by the rubber. If this attraction were sufficiently

intense there would be a discharge l>etween the glass and the

rubber, instead of between the glass and the collecting points. To
prevent this, flaps of silk are attached to the rubber. These become
negatively electrified and adhere to the glass, and so diminish the
potential near the rubber.

The potential therefore increases more gradually as the glass

moves away from the rubber, and therefore at any one point there
is less attraction of the charge on the glass towards the rubber, and
consequently less danger of direct discharge to the rubber.

In some electrical machines the moving part is of ebonite instead
of glass, and the rubbers of wool or fur. The rubber is then elec-

trified positively and the prime conductor negatively.

The EUclropkorm of Volt-a,

208,] The eleetrophorus consists of a plate of resin or of ebonite

backed with metal, and a plate of metal of the same size. An
insulating handle can be screwed to the back of either of these

plates. The ebonite plate lias a metal \nn which conn eels the metal

* It i< pr. .ljnLlt! that in many cast* wlure dynamical (.neipy is converted into hent
by friction, part of the energy may be first transformed into electrical energy and
then converted into heat aa the electrical energy Sh spent in maintaining currents of
short circuit close to the rubbing surfaces. See Sir W. Thomson, 'On the Eleelro-
dynamic Qualities of Metale.' Phil. Tram'., 1850, p. 050.
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plate with the metal back of the ebonite plate when the two plates

are in contaet.

The ebonite plate is electrified negatively by rubbing it with

wool or cat's shin. The metal plate is then brought near the

ebonite by means of the insulating handle. No direct discharge

passes between the ebonite and the metal plate, but the potential

of the metal plate is rendered negative by induction, so that when

it comes within a certain distance of the metal pin a spark passes,

and if the metal plate be now carried to a distance it is found

to have a positive charge which may be communicated to a con-

ductor. The metal at the l>ack of the ebonite plate is found to

have a negative charge equal and opposite to the charge of the metal

plate.

In using the instrument te charge a condenser or accumulator

one of the plates is laid on a conductor in communication with

i hg earth, and the other is first laid on it, then removed and applied

to the electrode of the condenser, then laid on the fixed plate and

the process repeated. If the ebonite plate is fixed the condenser will

be charged positively. If the metal plate is fixed the condenser will

be charged negatively.

The work done by the hand in separating the plates is always

greater than the work done by the electrical attraction during the

approach of the plates, so that the operation of charging the con-

denser involves the expenditure of work. Part of this work is

accounted for by the energy of the charged condenser, part is spent

in producing the noise and heat of the sparks, and the rest in

overcoming other resistances to the motion.

On Machines producing Electrification by Mechanical Work.

209.] In the ordinary factional electrical machine the work done

in overcoming friction is far greater than that done in increasing

the electrification. Hence any arrangement by which the elec-

trification may be produced entirely by mechanical work against

the electrical forces is of scientific importance if not of practical

value. The first machine of this kind seems to have been Nicholson's

Revolving Doubler, described in the Philosophical Transaction* for

1788 as 'an instrument which by the turning of a Winch produces

the two states of Electricity without friction or communication with

the Earth/

210.] It was by means of the revolving doublcr that Volta

succeeded in developing from the electrification of the pile an
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electrification capable of affecting his electrometer. Instruments
on the same principle have been invented independently by Mr
C. F. Varley* and Sir W. Thomson,

These instruments consist essentially of insulated conductors of
various forms, some fixed and others moveable. The moveable
conductors are called Carriers, and the fixed ones may be called
Inductors, Beceivers, and Regenerators. The inductors and receivers
are so formed that when the carriers arrive at certain points in
their revolution they an almost eemplelely surrounded hy a con-
ducting body. As the inductors and receivers cannot completely
surround the carrier and at the same time allow it to move freely
in and out without a complicated arrangement of moveable pieces,
the instrument is not theoretically perfect without a pair of re-
generators, which store up the small amount of electricity which
the carriers retain when tliey emerge from the receivers.

For the present, however, we may suppose the inductors and
receivers to surround the carrier completely when it is within them,
in which case the theory is much amplified.

We shall suppose the machine to consist of two inductors A and
C, and of two receivers B and Z>, with two carriers F and G.
Suppose the inductor A to be positively electrified so that its

potential is A
%
and that the carrier F'\& within it and is at potential

F. Then, if Q is the coefficient of induction (taken positive) between
A and F} the quantity of electricity on the carrier will be Q {F—A).

If the carrier, while within the inductor, is put in connexion with
the earth, then F= 0, and the charge on the carrier will he — QAt

a negative quantity. Let the carrier be carried round till it is

within the receiver B, and let it then come in contact with a spring
bo as to be in electrical connexion with B. It will then, as was
shewn in Art. 32, become completely discharged, and will com-
municate its whole negative charge to the receiver B.
The carrier will next enter the inductor C, which we shall suppose

charged negatively. While within C it is put in connexion with
the earth and thus acquires a positive charge, which it carries off

and communicates to the receiver U, and so on.

In this way, if the potentials of the inductors remain always
constant, the receivers B and B receive successive charges, which
are the same for every revolution of the carrier, and thus every

revolution produces an equal increment of electricity in the re-

ceivers.

* Sptcineatioji of Patent, Jan. 27, 1850, No. 200.

VOL. I. y
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But by putting the inductor A in communication with the re-

ceiver D, and the inductor C with the receiver B, the potentials

of the inductors will be continually increased, and the quantity

of electricity communicated to the receivers in each revolution will

continually increase.

For instance, let the potential of A and he U, and that of B

and C, f , and when the carrier is within A let the charge on A

and C he x, and that on the carrier *, then, since the potential

of the carrier is zero, being in contact with earth, its charge is

z= — QU. The carrier enters B with this charge and communicates

it to B, If the capacity of B and C is B, their potential will be

chauged from 7 to V— Q U.

If the other carrier has at the same time carried a charge — Q7
from C to Dt

it will change the potential of A and from U to

U- % 7t if Q' is the coefficient of induction between the carrier

A
and C, and A the capacity of A and D. If, therefore, Un and 7n
be the potentials of the two inductors after n half revolutions, and

lfn+1 and 7H+1 after n+ 1 half revolutions,

U — V — ' V

' u+ l — jty

If we write — ^ and = » we find

Hence

^. = 1(1 (1 + 1 {(1—/»2)-— (I +j»?)")>

It appears from these equations that the quantitypU+qV con-

tinually diminishes, so that whatever he the initial state of elec-

trification the receivers are ultimately oppositely electrified, so that

the potentials of A and B are in the ratio ofp to — q.

On the other hand, the quantity pU—q7 continually inereases,

so that, however little pU may exceed or fall short of qV at first,

the difference will be increased in a geometrical ratio in each
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revolution till the electromotive forces become so great that the
insulation of the apparatus is overcome.

Instruments of this kind may he used for various purposes.

For producing a copious supply of electricity at a high potential,

as is done by means of Mr. Varley's large machine.
For adjusting the charge of a condenser, as in the case of

Thomson's electrometer, the charge of which can be increased or
diminished by a few turns of a very small machine of this kind,
which is then called a Replenishes

For multiplying small differences of potential. The inductors
may he charged at first to an exceedingly small potential, as, for
instance, that, due to a thermo-electric pair, then, by turning the
muL-hinr, the dilh.Tei«v el' potentials may be continually multiplied,
till it becomes capable of measurement by an ordinary electrometer.
liy determining by i xperimeiil the ratio of inmost- ul' ibis did'erence

due to each turn of the machine, the original electromotive force
with which the inductors were charged may he deduced from the
number of turns and the final electrification.

In most of these insi mim-ii1> lh<- , .n tiers are made to revolve
about an axis and to come into the proper positions with respect

to the induotors by turning an axle. The connexions are made by
means of springs bo placed that the carriers come in contact with
them at the proper instants.

211.] SirW. Thomson*, however, has constructed a machine for

multiplying electrical charges in which the carriers are drops of
water falling out of the inside of an inductor into an insulated
receiver. The receiver is thus continually supplied with electricity
of opposite sign to that of the inductor. If the inductor is electrified

positively, the receiver will receive a continually increasing charge
of negative electricil y.

,

The water is made to escape from the receiver hy means of a
funnel, the nozzle of which is almost surrounded by the metal of
the receiver. The drops falling from this nozzle are therefore
nearly free from electrification. Another inductor and receiver of
the same construction are arranged so that the inductor of the
one system is in connexion with the receiver of the other. The
rate of increase of charge of the receivers is thus no longer constant,
but increases in a geometrical progression with the time, the
charges of the two receivers being of opposite signs. This increase
goes on till the fulling drops are so diverted from their course by

* Prac. R. S., June 20, 1867.

S 2
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the electrical action that they fall outside of the receiver or even

strike the inductor.

In this instrument the energy of the electrification is drawn

from that of the falling drops.

212.] Several other electrical machines have been constructed

in which the principle uf cleclrie induction is employed. Of these

the most remarkable is that of Holtz, in which the carrier is a glass

plate varnished with gum-lac and the inductors are pieces of

pasteboard. Sparks are prevented from passing between the parts

of the apparatus by means of two glass plates, one on each side

of the revolving carrier plate. This machine is found to be very

effective, aud not to be much affected by the state of the atmo-

sphere. The principle is the same as in the revolving doubter and

the instruments developed out of the same idea, but as the carrier

is an insulating plate and the inductors are imperfect conductors,

the complete explanation of the action is more difficult than in

the case where the carriers are good conductors of known form

and are charged and discharged at definite points.

213.] In the electrical machines already described sparks occur

whenever the carrier comes in

contact with a conductor at a

d liferent potential from its

own.

Now we have shewn that

whenever this occurs there is

a loss of energy, and therefore

the whole work employed in

turning the machine is not con-

verted into electrification in an

available form, but part is spent

in producing the heat and noise

of electric sparks.

I have therefore thought it desirable to shew how an electrical

machine may be constructed which is not subject to this loss of

efficiency. I do not propose it as a useful form of machine, but

as an example of the method by which the contrivance called in

heat-engines a regenerator may be applied to an electrical machine

to prevent loss oi' work.

In the figure let A, £
t

C, A*, 2T, C represent hollow fixed

conductors, so arranged that the carrier P passes in succession

within each of them. Of these //, A' and B, R nearly surround the

Fig. 17.
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carrier when it is at the middle point of its passage, but Ct C do not

cover it bo much.

We shall suppose A, P, C to he connected with .1 Leyden jar

of great capacity at potential % and A', if, C to he connected with
another jar at potential — V.
P is one of the carriers moving in a circle from A to C, &c,

and touching in its course certain springs, of which a and a are

connected with A and A' respectively, and e, 4 are connected with
the earth.

Let us suppose that when the carrier P is in the middle of ./

the coefficient of induction between P and A is —A. The capacity

of Pin this position is greater than //, since it is not completely

surrounded by the receiver A. Let it he A + a.

Then if the potential of P is V\ and that of A, F, the charge
on P will he (A +a)U—AF.
Now let P be in contact with the spring a wh«>n in the middle

of the receiver A, then the potential of P is F, the same as that

of A
t
and its charge is therefore a P.

If P now leaves the spring a it carries with it the charge a V,

As P leaves A its potential diminishes, and it diminishes still more
when it comes within the influence of C, which is negatively
elect rified.

If when P comes within C its coefficient of induction on C is

— C, and its capacity is C' + c', then, if U is the potential of P
the charge on P is

If C'Y'= aV>

then at this point XI the potential of P will be reduced to zero.

Let P at this point come in contact with the spring J which is

connected with the earth. Since the potential of P is equal to that

of the spring there will he no spark at contact.

This conductor C, by which the carrier is enabled to be connected

to earth without a spark, answers to the contrivance called a
regenerator in heat-engines. We shall therefore call it a Re-
generator.

Now let P move on, still in contact with the earth-spring </, till

it comes into the middle of the inductor B, the potential of which
is F. If —B is the coefficient of induction between /' and B at

this point, then, since U= the charge on P will he —BV.
When P moves away from the earth-spring it carries this charge

with it. As it moves out of the positive inductor B towards the
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negative receiver A' its potential will be increasingly negative. At

the middle of A', if it retained its charge, its potential would be

J'F'+BF
A'+ a'

'

and if BF\s greater than cfV its numerical value will he greater

than that of V\ Hence there is some point before /' reaches the

middle of J' where its potential is — / '. At this point let it come

in contact with the negative receiver-spring a*. There will be no

spark since the two bodies are at the same potential. Let P move

on to the middle of A', still in contact with the spring, and therefore

at the same potential with A'. During this motion it communicates

a negative charge to ./'. Al the middle of A' it haw- liic fpring

and carries away a charge —vtY* towards the positive regenerator

C, where its potential is reduced to zero and it touches the earth-

spring e. It then slides along the earth-spring into the negative

inductor B', during which motion it acquires a positive charge BfV
which it finally communicates to the positive receiver A, and the

cycle of operations is repeated.

During this cycle the positive receiver has lost a charge aFand
gained a charge B' V. Hence the total gain of positive electricity

is KV'-aK
Similarly the total gain of negative electricity is BV—a'V.
By making the inductors so as to be as close to the surface of

the carrier as is consistent, with insulation, B and BF may he made

large, and by making the receivers so as nearly to surround the

carrier when it is within them, a and a
f may be made very small,

and then the charges of both the Leyden jars will be increased in

everv revolution.

The conditions t.n Lie fulfilled by the regenerators are

€'V'^aV, and CV= d V,

Since a and a are small the regenerators do not require to be

either large or very close to the carriers.

On Electrometers and Electroscopes.

214] An electrometer is an instrument by means of which

electrical charges or electrical potentials may be measured. In-

struments by moans of which the existence of electric charges or

of differences of potential may be indicated, but which are not

capable of affording numerical measures, are called Electroscopes,

An electroscope if Sufficiently sensible may be used in electrical

measurements, provided we can make the measurement depend on
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the absence of electrification. For instance, if we have two charged

bodied A and Ti we may use the method described in Chapter I to

determine which body lias the greater charge. Let the body A

be carried by an insulating support into the interior of an insulated

closed vessel C. Let C be connected to earth and again insulated.

There will then be no external electrification on C. Now let A

he removed, and B introduced into the interior of C, and the elec-

trification of C tested by an electroscope. If the charge of B ia

equal to that of A there will be no electrification, but if it is greater

or less there will be electrification of the same kind as that o( li, or

the opposite kind.

Methods ol this kind, in which the thing to Ik- observed is the

non-existence of some phenomenon, are called mill or zero methods.

They require only an instrument capable of detecting the existence

of the phenomenon.

In another class of instruments for the registration of phe-

nomena the instrument may be depended upon to give always the

same indication for the same value of the quantity to he registered,

but the readings of the scale of the instrument are riot proportional

to the values of the quantity, and the relation between these

readings and the corresponding value is unknown, except that the

one is some continuous function of the other. Several electrometers

depending on the mutual repulsion of parts of the instrument

which are .similarly electrified are of this eluss. The use of such

instruments is to register phenomena, not to measure them. Instead

of the true values of the quantity to be measured, a series of

numbers is obtained, which maybe used afterwards to determine

these values when the scale of the instrument has been properly

investigated and tabulated.

In a still higher class of instruments the scale readings are

proportional to the quantity to be measured, so that all that is

required for the complete measurement of the quantity is a know-

ledge of the coefficient by which the scale readings must he

multiplied to obtain the true value of the quantity.

Instruments so constructed that they contain within themselves

the means of independently determining the true values of quan-

tities are called Absolute Instruments.

Coulomb*s Torsion Balance.

215.] A great number of the experiments by which Coulomb
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established the fundamental laws of t'U^etricity were made by mea-

suring the force between two small spheres charged with electricity,

one of which was fixed while the other was held in equilibrium by
two forces, the electrical action between the spheres, and the

torsional elasticity of a glass fibre or metal wire. See Art. 38.

The balance of torsion consists of a horizontal arm of gum-hie,

suspended by a fine wire or glass fibre, and carrying at one end a

little sphere of elder pith, smoothly gilt. The suspension wire is

fastened above i<> the vi rtual axis of an arm which can bo moved
round a horizontal graduated circle, so as to twist the upper end
of the wire about its own axis any number of degrees.

The whole of this apparatus is enclosed in a ease. Another little

sphere is so mounted on an insulating stem that it can be charged

and introduced into the case through a hole, and brought so that

its centre coincides with a definite point in the horizontal circle

described by the suspended sphere. The position of the suspended

sphere is ascertained by means of a graduated circle engraved on
the cylindrical glass case of the instrument.

Now suppose both spheres chargedj and the suspended sphere

in equilibrium in a known position such that the torsion-arm makes
an angle 6 with the radius through the centre of the fixed sphere.

The distance of the centres is then 2 a sin £ $} where a is the radius

of the torsion-arm, and if F is the force between the spheres the
moment of this force about the axis of torsion is Fa cos \ 0.

Let both spheres be completely discharged, and lot the torsion-

arm now be in equilibrium at an angle with the radius through
the fixed sphere.

Then the angle through which the electrical force twisted the
torsion-arm must have been -<f>, and if M is the moment of
the torsional elasticity of the fibre, we shall have the equation

Fa cos \Q = M(Q— 0).

Hence, if we can ascertain M> we can determine F} the actual
force between the spheres at the distance 2 a sin \ 6.

To find M, the moment of torsion, let / be the moment of inertia

of the torsion-arm, and T the time of a double vibration of the arm
under the action of the torsional elasticity, then

M= ±ITK
In all electrometers it is of the greatest importance to know

what force we are measuring. The force acting on the suspended
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sphere is due partly to the direct action of the fixed sphere, but

partly also to the electrification, if any, of the sides of the case.

If the case is made of g\uss it is impossible to determine the

electrification of its surface otherwise than by very difficult mea-

surements at every point. If, however, either the case is made
of metal, or if a metallic case which almost completely encloses the

apparatus is placed as a screen between the spheres and the glass

case, the electrification of the inside of the metal screen will depend

entirely on that of the spheres, and the electrification of the glass

case will have no inllnence on the spheres. In this way we may
avoid any indofinitenesa due to the action of the case.

To illustrate this by an example in which we can calculate all

the effects, let us suppose that the case is a sphere of radius ft,

that the centre of motion of the torsion-arm coincides with the

centre of the sphere and that its radius is a ; that the charges on

the two spheres are 7^ and 7i\, and thai the an <*]* between their

positions is 0; that the fixed sphere is at a distance tfj from the

centre, and that r ia the distance between the two small spheres.

Neglecting for the present the effect of' induction on the dis-

tribution of electricity on the sniiill spheres, Hie fbree tietween

them will be a repulsion

EE
X— —5~ >

and the moment of this force round a vertical axis through the

centre will be

EE
X
aa

x
sin 6

r3

The image of Ex
due to the spherical surface of the case is a point

h
in the same radius at a distance — with a charge —Et

— . and the

moment of the attraction between E and this image about the axis

of suspension is

, a— sin 6

EE,
'

1 \a 2 ~-2 COS0H ^J.

1 *i <V

-EE
X

aaySmB

8»jl_2_»cos5+

If &, the radius of the spherical case, is large compared with a
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and «j, the distances of the spheres from the centre, we may neglect

the second and third terms of the factor in the denominator. The

whole moment tending to turn the torsion-arm may then he written

EE, aax
sin

j
± -

p {
= M (6-^

Electrometersfor the Measurement of Potentiate.

£16.] In all electrometers the moveable part is a body charged

with electricity, and its potential is different from that of certain

"f the fixed parts round it. When, as in Coulomb's method, an.

insulated body having a certain charge is tised, it is the charge

which is the direct object of measurement. We may, however,

connect the bails of Coulomb's electrometer, by means of tine wires,

with different conductors. The charges of the balls will then

depend on the values of the potentials of these conductors and on

the potential of the case of the instrument. The charge on each

ball will be approximately equal to its radius multiplied by the

excess of its potential over that of the case of the instrument,

provided the radii of the balls are small compared with their

distances from each other and from the sides or opening of the

ease.

Coulomb's form of apparatus, however; is not well adapted for

measurements of this kind, owing to the smallncss of the force

between spheres at the proper distances when the difference of po-

tentials is small. A more convenient form its that of the Attracted

Disk Electrometer. The first electrometers on this principle were

constructed by Sir W. Snow Harris*. They have since been

brought to great perfection, both in theory and construction, by
Sir W. Thomson f.

When two disks at different, potentials are brought face to face

with a small interval between them there will be a nearly uniform

electrification on the opposite faces and very little electrification,

on the hacks of the disks, provided there are no other conductors

or electrified bodies in the neighbourhood. The charge on the

positive disk will be approximately proportional to its area, and to

the difference of potentials of the disks, and inversely as the distance

between them. Hence, by making the areas of the disks large

* PAc? Tratu. 1834.

+ See an excellent report on Electromotors by Sir W. Thomson. Report of (lie

British Awotiafioit, Dundee, is<i7.
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and lit'' distance between ihem small. :i small <liltWnu:<' of pn1 outial

may give rise to a mensurable force of attraction.

The mathematical theory of the distriluttin of electricity over

two disks thus arranged is given at Art. 202, but since it is im-

possible to make the case of the apparatus so large that we may

suppose the disks insulated in an infinite space, the indications of

the instrument in this form are not easily interpreted numerically,

217.] The addition of the guard-ring to the attracted disk is one

of the chief improvements which Sir W.Thomson has made on the

apparatus.

Instead of suspending the whole of one of the disks and determ-

ining the force acting upon it, a central portion of the disk is

separated from the rest to form the attracted disk, and the outer

ring forming the remainder of the disk is fixed. In this way the

force is measured only on that part of the disk where it is most

regular, and the want of uniformity of the electrification near the

Fig. 18.

edge is of no importance, as it occurs on the guard-ring and not

on the suspended part of the disk.

Besides this, by connecting the guard-ring with a metal case

surrounding the back of the attracted disk and all its suspending

apparatus, the eleetrification of the hack of the disk is rendered
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impossible, for it is part of the inner surface of a closed hollow

conductor all at the same potential.

Thomson's Ahsotute Electrometer therefore consists essentially

of two parallel plates at different potentials, one of which is made

so that a certain area, no part of which is near the edge of the

plate, is moveable under the action of electric force. To fix our

ideas we may suppose the attracted disk and guard-ring uppermost.

The fixed disk is horizontal, and is mounted on an insulating stem

which has a measurable vertical motion given to it by means of

a micrometer screw. The guaid-ring is at least as large as the

fixed disk; its lower surface is truly plane and parallel to the fixed

disk. A delicate balance is erected on the guard-ring to which

is suspended a light moveable disk which almost fills the circular

apitture in the gunrd-rinir without rubbing against its sides. The

lower surface of the suspended disk must be truly plane, and we

must have the means of knowing when its plane coincides with that

of the lower surface of the guard-ring, so as to form a single plane

interrupted only by the narrow interval between the disk and its

guard-ring.

For this purpose the lower disk is screwed up till it is in contact

with the guard-ring, and the suspended disk is allowed to rest

upon the lower disk, so that its lower surface is in the same plane

as that of the guard-ring. Its position with respect to the guard-

ring is then ascertained by means of a system of fiducial marks.

Sir W, Thomson generally uses for this purpose a black hair

attached to the moveable part. This hair moves up or down just

in front of two black dots on a white enamelled ground and is

viewed along with these dots by means of a piano convex lens with

the plane side next the eye- If the hair as seen through the lens

appears straight and bisects the interval between the black dots

it is said to be in its sighted poxili'on, and indicates that the sus-

pended disk with which it moves is in its proper position as regards

height. The horizontally of the suspended disk may be tested by

comparing the reaexion of part of any object from its upper surface

with that of the remainder of the same object from the upper

surface of the guard-ring.

The balance is then arranged so that when a known weight is

placed on the centre of the suspended disk it is in equilibrium

i,, its sighted position, tin- whole apparatus bring fivol from

electrification by putting every part in metallic communication.

A metal ease is placed over the guard-ring so as to enclose the
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balance and suspended disk, sufficient apertures being left to see

the fiducial marks.

The guard-ring, case, and suspended disk are all in metallic

communication with each other, but are insulated from the other

parts of the apparatus.

Now let it be required to measure the difference of potentials

of two conductors. The conductors are put in coiumuuiot ii»n with

the upper and lower disks respectively by means of wires, the

weight is taken off* the suspended disk, and the lower disk is

moved up by means of the micrometer screw till the electrical

attraction brings the suspended disk down to its sighted position.

We then know that the attraction between the disks is equal to

the weight which brought the disk to its sighted position.

If W be the numerical value of the weight, and (j the force of

gravity, tin1 force is !f'a, and if A is the ami of the suspended

disk, D the distance between the disks, and V the difference of the

potentials of the disks,

_ .

r

If the suspended disk is circular, of radius J2, and if the radius of

the aperture of the guard-ring is iif, then

218.] Since there is always some uncertainty in determining the

micrometer reading corresponding to D = } and since any error

* Let an denote the radius of the suspended disk by II, and that of the aperture
of the guard-ring by If. thi>n the breadth of the annular interval between thu
disk and the ring will be tt = K—R.

If the distance between the suspended disk and the large fixed disk is D, and
Jin; difllsvra-e >if jKtMnf.i:>N ln.-twi-i.-n these t\\*\i- i- 1", then. Ii\ the tn\ >:Al:*ii>>n in

Art. 2t)l, the quantity of electricity oq tho suspended disk will be

Q - V \~TD 8J I)** }*

where a^-fl^^, or a= 0.220635 (If-R) t

If the surface of the guard-ring in hot exactly in the plane of the surface of
the suspended disk, let us suppose that the distance between the- fixed dink and
the guard-ring is not D but JJ+ := If, then it appear* from the investigation in

Art. 2'2r> that there will he an additional charge of electricity near the edge of
the disk on account of it* height 2 above the general surface of the guard-ring.
The whole charge in this case is therefore

y
t $i> ijT dTI <° -D> "ft

—
&-d J

'
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in the position of the suspended disk is most important when I)

is small, SirW. Thomson prefers to make all his measurements

depend on differences of the electromotive force /'. Thus, if f and

V are two potentials, and D and & the corresponding distances,

For instance, in order to measure the electromotive force of a

galvanic hattery, two electrometers are used.

By means of a condenser, kept charged if necessary by a re-

plenishes the lower disk of the principal electrometer is maintained

at a constant potential. This is tested by connecting the lower

disk of the principal electrometer with the lower disk of a secondary

electrometer, the suspended disk of which is connected with the

earth. The distance between the disks of the secondary elec-

trometer and the force required to bring the suspended disk to

its sighted position being constant, if we raise the potential of the

condenser till the secondary electrometer is in its sighted position,

we know that the potential of the lower disk of the principal

electrometer exceeds that of the earth by a constant quantity which

we may call V
If we now connect the positive electrode of the battery to earth,

and connect the suspended disk of the principal electrometer to the

negative electrode, the difference of potentials between the disks

will be F+u, if is the electromotive force of the battery. Let

D he the reading of the micrometer in this case, and let If be the

reading when the suspended disk is connected with earth, then

In this way a small electromotive force v may be measured

hy the electrometer with the disks at conveniently measurable

distances. When the distance is too small a small change of

absolute distance makes a great change in the force, since the

and in thft cxpresmor, for tbo attraction we muat substitute for A, the area of the

tliftk, the corrected quantity
4x{Ji + R) \

A - \ * { JP +W-W-IP)^;+8 (B+ R) {V'-J>) log. —tfZTir \

'

where R = radius of suspended disk,

#= radius of aperture in the guard-ring,

D =» dustance between fixed and suspended disks,

D' m distance between fixed disk and guard-ring,

a .= 0.220635 {K-li).

When a is small compared with D we may neglect the second term, and when

If— 1) is small m^y neglect the last term.
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force varies inversely as the square of the distance, so that any

error in the absolute distance introduces a large error in the result

unless the distance is large compared with the limits of error of

the micrometer screw.

The ellect of small irregularities of form in the surfaces of I 111'

disks and of the interval between them diminish according to the

inver.se cube and higher inverse power* of the distance, ami what-

ever be the form of a corrugated surface, the eminences of which
just reach a plane surface, the electrical effect at any distance

which is considerable compared to the breadth of the corrugations,

is the same as that of a plane at a certain sin all distance behind

the plane of the tops of the eminences. See Arts. 197, lfl8.

Ilv means of the auxiliary electrification, tested by the auxiliary

electrometer, a proper interval between the disks is secured.

The auxiliary electrometer may be of a simpler construction, in

which there is no provision for the determination of the force

oi attraction in absolute measure, since all that is wanted is to

secure a constant electrification. Such an electrometer may be

called a gauge electrometer.

This method of using an auxiliary electrification besides the elec-

trification to be measured is called the Heterostatic method of

electrometry, in opposition to the Idiostatic method in which the

whole effect is produced by the electrification to be measured.

In several forms of the attracted disk electrometer, the attracted

disk is placed at one end of an arm which is supported by being
attached to a platinum wire passing through its centre of gravity

and kept stretched by means of a spring. The other em] of the

arm carries the hair which is brought to a sighted position by
altering the distance between the disks, and so adjusting the force

of the electric attraction to a constant value. In these electro-

meters this force is not in general determined in absolute measure,

but is known to be constant, provided the torsional elasticity of

the platinum wire does not change.

The whole apparatus is placed iu a Leyden jar, of which the inner

surface is charged and connected with the attracted disk and
guard-ring. The other disk Is worked by a micrometer screw and
is connected first with the earth and then with the conductor whose
potential is to be measured. The difference of readings multiplied

by a constant to be determined for each electrometer gives the

potential required.

219.] The electrometers already described are not self-acting.
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but require for each observation an adjustment of a micrometer

crew, or some other movement *M*b must be made by be

observer. They are therefore not fitted to act a* ^If-re^tenns in-

struments, which must of themselves move into the proper portion.

This condition is fulfilled by Thomson's Quadrant Electrometer.

The electrical principle on which this instrument is founded may

be thus explained :

—

A and B are two fixed conductors which may be at the same

or at different potentials. is a moveable conductor at a high

potential, which is so placed that part of it is opposite to the

surface of A and part opposite to that of B, and that the proportions

of these parts are altered as C moves.

For this purpose it is most convenient to make C moveable about

an axis, and make the opposed surfaces of A, of B, and of C portions

of surfaces of revolution about the same axis.
'

In this way the distance between the surface of C and the

opiXMcd surfaces of A or of B remains always the same, and the

motion of C in the positive direction simply mcreases the area

opposed to B and diminishes the area opposed to A.

If the potentials of A and B are equal there wxU be no force

x™ C from A to Bt
but if the potential of C differs from that

of* more than from that of A, then C will tend to move so as

to increase the area of its surface opposed to B.

By a suitable arrangement of the apparatus this force may be

xnade nearly constant for different positions of C withm certain

limits so that if C is suspended by a torsion fibre, its deflexions

Z\ be nearly proportional to the difference of potential, between

A and B multiplied by the difference of the potential of C from

the mean of those of A and B.

C is maintained at a high potential by means of a condenser

provided with a replenisher and tested by a gauge electrometer,

Ll A and B are connected with the two conductors the d^erence

of whose potentials is to be measured. The higher the potential

of the more sensitive is the instrument. Tins electrification of

C, being independent of the electrification to be measured, places

this electrometer in the heterostatic class.

We may apply to this electrometer the general theory of systems

of conductors given in Arts. 93, 127.

j , t jiy C denote the potentials of the three conductors re-

spectively. Let a, i, o be their respective capacities, p the coefficient

ofimduction between B and C, j that between C and A, and r that
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between A and B. All these coefficients will in general vary with

the position of C
f
and if C is so arranged that the extremities of A

and B are not near those of C an long as the motion of C is confined

within certain limits, we may ascertain the form of these coefficients.

If 6 represents the deflexion of C from A towards B, then the p;irt

of the surface of A opposed to C will diminish us increases.

Hence MA is kept at potential 1 while B and C are kept at potential

0, the charge on A will be a — a — ad, where and a arc

constants, and a is the capacity of A-

If A and B are symmetrical, the capacity of B is 4 = £„+ a 0,

The capacity of (' is not altered 1>y tin- motion, for the only

effect of the motion is to bring a different part of C opposite to the

interval between A and B. Hence c= c,.

The quantity of electricity induced on C when B is raised to

potential unity is p = p — ad.

The coefficient of induction between A and C is q = yo + a0.

The coefficient of induction between A and B is not altered by

the motion of C, but. remains t = r .

Hence the electrical energy of the system is

Q = lAta+hBH+lCtc+BCji + CAq+ ABr,

and if is the moment of the force tending to increase 0,

dQ=
JO

A, B, C being supposed constant,

= - a + 4 B*a-BCa+ CAa ;

or G = a{A—B) {C-\{A + B)).

In the present form of Thomson's Quadrant Electrometer the

conductors A and 3 are in the form of

a cylindrical box completely divided

into four quadrants, separately insu-

lated, but joined by wires so that two

opposite quadrants are connected with

A and the two others with B.

The conductor C is suspended so as

to be capable of turning about a

vertical axis, and may consist of two

opposite flat quadrantal arcs supported

by their radii at their extremities.

In the position of equilibrium these quadrants should be partly

VOL. I.
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within A and partly within B, and the supporting radii should

be near the middle of the quadrants of the hollow base, so that

the divisions of the box and the extremities and supports of C

may be as far from each other as possible.

The conductor C is kept permanently at a high potential by

being connected with the inner coating of the Leyden jar which

forms the case of the instrument. B and A are connected, the first

with the earth, and the other with the body whose potential is to be

measured.

If the potential of this body is zero, and if the instrument he

in adjust iiirut. there ought to be no i'oree tending' to make V move,

but if the potential of A is of the same sign as that of C, then

G will tend to move from A to B with a nearly uniform force, and

the suspension apparatus will be twisted till an equal force is

called into play and produces equilibrium. For deflexions within

certain limits the deflexions of C will be proportional to the

product (A-B)(C-l(A+B)).

By increasing the potential of C the sensibility of the instrument

may be increased, and for small values of 4 {A 4- B) the force will be

nearly proportional to (A— B) C.

On the Measurement of Electric Potential*

220.] In order to determine large differences of potential in ab-

solute measure we may employ the attracted disk electrometer, and

compare the attraction with the effect of a weight. If at the same

time we measure the difference of potential of the same conductors

by means of the quadrant electrometer, we shall ascertain the

absolute value of certain readings of the scale of the quadrant

electrometer, and in this way we may deduce the value of the scale

readings of the quadrant electrometer in terms of the potential

of the suspended part, and the moment of torsion of the suspension

apparatus.

To ascertain the potential of a charged conductor of finite size

we may connect the conductor with one electrode of the electro-

meter, while the other is connected to earth or to a body of

constant potential. The electrometer reading will give the potential

of the conductor after the division of its electricity between it

and the part of the electrometer with which it is put in contact.

If A' denote the capacity of the conductor, and Kf
that of this part
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of the electrometer, and if 7
f 7

f
denote the potentials of these

bodies before making contact, then their common potential after

making contact will he

= KV+K'VV =
K+ K*

Nonce the original potential of the conductor was

If the conductor is not large compared with the electrometer,

A' will be comparable with A', and unless we can ascertain thy

Valium nt A and A' llu.- scn>nd trnn ni' I he expression will have
a doubtful value. Hut. if we can make the potential of the electrode

of the electrometer very nearly equal to that of the body before

making contact, then the uncertainty of the values of A" and A"
will be of little consequence.

If we know the value of the potential of the l>ody approximately,

we may charge the electrode by means of a ' replenished or other-

wise to this approximate potential, and the next experiment will

give a closer approximation. In this way we may measure the

potential of a conductor whose capacity is small compared with

that of the electrometer.

To Measure the Potential at any Point in the Air.

221.] First Method. Place a sphere, whose radius is small com-
pared with the distance of electrified conductors, with its centre

at the given point. Connect it by means of a fine wire with the

earth, then insulate it, and carry it to an electrometer and ascertain

the total charge on the sphere.

Then, if 7 be the potential at the given point, and a the

radius of the sphere, the charge on the sphere will be — 7a= Q,
and if f r

be the potential of the sphere as measured by an elec-

tmmeler w\wi\ yh.y-\ in a v- o 1 1 whose walls are connected with
the earth, then n ,.,

wlli'TUV 7+ 7' — Q}

or the potential of the air at the point where the centre of the
sphere was placed is equal hut of opposite sign to the potential of

the sphere after being connected to earth, then insulated, and
brought into a room.

This method has been employed by M. Delraann of Creuznach in

t a
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measuring the potential at a certain height above the earth's

surface.

Second Method. We have supposed the sphere placed at the

given point and first connected to earth, and then insulated, and

carried into a space surrounded with conducting matter at potential

zero.

Now let us suppose a fine insulated wire carried from the elec-

trode of the electrometer to the place where the potential is to

he measured. Let the sphere be first discharged completely. This

may be done by putting it into the inside of a vessel of the same

metal which nearly surrounds it and making it touch the vessel.

Now let the sphere thus discharged he carried to the end of the

wire and made to touch it. Since the sphere is not electrified it

will be at the potential of the air at the place. If the electrode

wire is at the same potential it will not be affected by the contact,

but if the electrode is at a different potential it will by contact

with the sphere be made nearer to that of the air than it was

before. By a succession of such operations, the sphere being

alternately discharged and made to toucb the electrode, the poten-

tial of the electrode of the electrometer will continually approach

that of the air at the given point.

222.] To measure the potential of a conductor without touching

it, we may measure the potential of the air at any point in the

neighbourhood of the conductor, and calculate that of the conductor

from the result. If there be a hollow nearly surrounded by the

conductor, then the potential at any point of the air in this hollow

will be very nearly that of the conductor.

In this way it lias been ascertained by SirAV. Thomson that if

two hollow conductors, one of copper and the other of zinc, are

in metallic contact, then the potential of the air in the hollow

surrounded by zinc is positive with reference to that of the air

in the hollow surrounded by copper.

Third Me/hod. If by any moans we can cause a succession of

small bodies to detach themselves from the end of the electrode,

the potential of the electrode will approximate to that of the sur-

rounding aiT. This may be done by causing shot, filings, sand, or

water to drop out of a funnel ov pipe connected with the electrode.

The point at which the potential is measured is that at which

the stivinn ceases to he continuous and breaks into separate parts

or drops.

Another convenient method is to fasten a slow match to the
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electrode. The potential is veiy soon made equal to that of the

air at the burning" end of the match. Even a fine metallic point

is sufficient to create a discharge by means of the particles of the

ah* when the difference of potentials is considerable, but if we
wish to reduce this difference to zero, we must use one of the

methods stated above.

If we only wish to ascertain the sign of the difference of the

potentials at two places, and not its numerical value, we may cause

drops or filings to be discharged at one of the places from a nozzle

connected with the other place, and catch the drops or filings

in an insulated vessel. Each drop as it falls is charged with a

certain amount of electricity, and it is completely discharged into

the vessel. The charge of the vessel therefore is continually ac-

cumulating, and after a sufficient number of drops have fallen, the

charge of the vessel may be tested by the roughest, methods. The
sign of the charge is positive if the potential of the nozzle is positive

relatively to that of the surrounding air.

MEASUREUXNT OF SURFACE-DENSITY OF ELECTRIFICATION.

Theory of the Proof Plane.

223.] In testing the results of the mathematical theory of the

distribution of electricity on the surface of conductors, it is necessary

to be ul ilc !o measure the surface-density at different points of

the conductor. For this purpose Coulomb employed a small disk

of gilt paper fastened to an insulating stem of gum-lac. He ap-

plied this disk to various points of the conductor by placing it

so as to coincide as nearly as possible with the surface of the

conductor. He then removed it by means of the insulating stem,

and measured the charge of the disk by means of his electrometer.

Since the surface of the disk, when applied to the conductor,

nearly coincided with that of the conductor, he concluded that

the surface-density on the outer surface of the disk was nearly

equal to that on the surface of the conductor at that place, and that

the charge on the disk when removed was nearly equal to that

on an area of the surface of the conductor equal to that of one side

of the disk. This disk, when employed in this way, is called

Coulomb's Proof Plane.

As objections have been raised to Coulomb's use of the proof

plane, I shall make some remarks on the theory of the experiment.
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The experiment consists in bringing a small conducting- body

into contact with the surface of the conductor at the point whore

the density is to be measured, and then Temoving the body and

determining its charge.

We have first to shew that the charge on the small body when

in contact with the conductor is proportional to the surface-

.1. inirity which existed at the point of contact before the small body

was placed there.

We shall suppose that all the dimensions of the small body, and

especially its dimension in the direction of the normal at the point

of contact, are small compared with either of the radii of curvature

of the conductor at the point of contact. Hence the variation of

the resultant force due to the conductor supposed rigidly electrified

within the space occupied by the small body may be neglected,

and we may treat the surface of the conductor near the small body

as a plane surface.

Now the charge which the small body will take by contact with

a plane surface will be proportional to the resultant force normal

to the surface, that is, to the surface-density. "We shall ascertain

Ike ,'ininmit of the charge for particular forms of the body.

We have next to shew that when the small body is removed no

spark will pass between it and the conductor, so that it will carry

its charge with it. This is evident, because when the bodies are

in contact their potentials are the same, and therefore the density

on the parts nearest to the point of contact is extremely small.

When the small body is removed to a very short distance from

the conductor, which we shall suppose to be electrified positively,

then the electriGcation at the point nearest to the small body is

no longer zero but positive, but, since the charge of the small body

is positive, the positive electrification close to the small body will

be less than at other neighbouring points of the surface. Now
the passage of a spark depends in general on the magnitude of the

resultant force, and this on the surface-density. Hence, since we

suppose that the conductor is not so highly electrified as to be

discharging electricity from the other parts of its surface, it will

not discharge a spark to the small body from a part of its surface

which we have shewn to have a smaller surface-density.

224.] We shall now consider various forms of the small body.

Suppose it to be a small hemisphere applied to the conductor so

as to touch it at the centre of its llat side.

Let the conductor be a large sphere, and let us modify the form
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of the hemisphere so that its surface is a little more than a hemi-

sphere, and meets the surface of the sphere at right angles. Then

we have a ease of which we have already obtained the exact solution.

See Art, 168.

If A and B be the centres of the two spheres cutting each other

at right angles, 1)1)' a diameter of the circle of intersection, and C

the eentre of that circle, then if V is the potential of a conductor

whose outer surface coincides with that of the two spheres, the

quantity of electricity on the exposed surface of the sphere A is

\V{AD+ U f) + AC- CI)- BC),

and thill on the exposal surface nf the sphere B is

4 V{AD+BD+ BC-CD-AG),
the total charge being the sum of these, or

¥{AD+BD-CD).

If a and are the radii of the spheres, then, when a is large

compared with /3, the charge on B is to that on A in the ratio of

4 a* v 3 a b a" 7

Now let ir l>e the uniform surface-density on A when B is re-

moved, then the charge on A is

4 is a2
<r,

and therefore the charge on B is

or, when /i is very small compared with a, the charge on the

hemisphere B is equal to three times that due in a surface-density t

extending over an area equal to that nf the circular base of the

hemisphere.

It appears from Art. 175 that if a small sphere is made to touch

an electrified body, and is then removed to a distance from it, the

mean surface-density on the sphere is to the surface-density of the

body at the point of contact as it
2

is to 6, or as 1.645 to I.

225.] The most convenient form for the proof plane is that of

a circular disk. We shall therefore shew how the charge on a

circular disk laid on an electrified surface is to be measured.

For this purpose we shall construct a value of the potential

function so that one of the equipotential surfaces resembles a circular

flattened protuberance whose general form is somewhat like that of

a disk lying ou a plane.
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Let <r be the surface-density of a plane, which we shall suppose

to be that of xy.

The potential due to this electrification will be

V — — 4 TTV Z.

Now let two disks of radius a be rigidly electrified with surface-

densities —<t' and + <r. Let the first of these be placed on the plane

of with its centre at the origin, and the second parallel to it at

the very small distance c.

Then it may lie shewn, as we shall see in the theory of mag-

netism, that the potential of the two disks at any point ia to <f e$

whore <o is tin' solid angle s'.iken.led by the ed^-e of either disl; at

the point. Hence the potential of the whole system will be

V= — 4ir<rz+w<r'c.

The forms of the eqmpotential surfaces and lines of induction

are given on the left-hand side of Fig. XX, at the end of Vol. II.

Let us trace the form of the surface for which V=0. This

surface is indicated by the dotted line.

Putting the distance of any point from the axis of z — r, then,

when r is much less than a, and z is small,

(O = 2 7T— 2tt - -J-&C.
a

Hence, for values of r considerably less than a, the equation of

the zero equipotential surface is

= — 4 tt(t z -f- 2Tiac—2T!fT — +&C.

;

4

& c
or z

t}
—

2<r+ <r'-
a

Hence this equipotential surface near tin axis is nearly Hat.

Outside the disk, where r is greater than a, a> is zero when z is

zero, so that the plane of xg is part of the equipotential surface.

To find where these two parts of the surface meet, let us find at

dV
what point of this plane = 0.

When r is very nearly equal to a

Hence, when

dV 2<j'e
-j- = — 4 rr (T-)

az t— a-

= 0, r
<i
= a +

dz '
U T

2 77 CT

The equipotential surface V — is therefore composed of a disk-
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like figure of radius r , and nearly uniform thickness z , and of the

part of the infinite plane of xy which lies beyond this figure.

The surface-integral over the whole disk gives the charge of

electricity on it. It may be found, as in the theory of a circular

current in Part IV, to be

= 4 it aa'c flog 2) -f it tr/A
l ° r —a 1

The charge on an equal area of the plane surface is v <r f 8
, hence

the charge on the disk exceeds tliat on an equal area of the plane

in the ratio of 9 , 8irr . ..

1 + 8 - log— to unity,

where z is the thickness and r the radius of the disk, z t>eing sun-

posed small compared with r.

Electric Accumulators and the Measurement, of Capacity.

226.] An Accumulator or Condenser is an apparatus consisting

of two conducting surfaces separated by an insulating dielectric

medium.

A Leyden jar is an accumulator in which an inside coating of

tinfoil is separated from the outside coating by the glass of which

the jar is made. The original Leyden phial was a glass vessel

containing water which was separated by the glass from the hand

which held it.

The outer surface of any insulated conductor may be considered

as one of the surfaces of an accumulator, the other being the earth

or the walls of the room in which it is placed, and the intervening

air being the dielectric medium.

The capacity of an accumulator is measured by the quantity of

electricity with whieh the inner surface must be charged to make

the difference between the potentials of the surfaces unity.

Since every electrical potential is the sum of a number of parts

Found by dividing each electrical element by its distance from a

point, the ratio of a quantity of electricity to a potential must

have the dimensions of a line. Hence electrostatic capacity is a

linear quantity, or we may measure it in feet or metres without

ambiguity.

In electrical researches accumulators are used for two principal

purposes, for receiving and retaining large quantities of electricity

in as small a compass as possible, and for measuring definite quan-

tities of electricity by means of the potential to which they raise

the accumulator.
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For the retention of electrical charges nothing hns luni devised

more perfect than the Lcyden jar. The principal part of the loss

arises from the electricity creeping along the damp uneoated surface

of the glass from the one coating to the other. This may be checked

in a great degree by artificially drying the air within the jar, and
by varnishing the surface of the glass where it is exposed to the

atmosphere. In Sir W. Thomson's electroscopes there is a very

Small percentage of loss from day to day, and I believe that none
of this loss can be traced to direct conduction either through air

or through glass when the glass is good, but that it arises chiefly

from superficial conduction along the various insulating stems and
glass surfaces of the instrument.

In fact, the same electrician has communicated a charge to

sulphuric acid in a large bulb with a long neck, and has then her-

metically sealed the neck by fusing it, so that the charge was com-
pletely surrounded by glass, and after some years the charge was
found still to be. retained.

It is only, however, when cold, that glass insulates in this

way, for the charge escapes at once if the glass is heated to

a temperature below lOO^C.

When it is desired to obtain great capacity in small compass,

accumulators in which the dielectric is sheet caoutchouc, mica, or

paper impregnated with paraffin are convenient.

227.] For accumulators of the second class, intended for the

measurement of quantities of electricity, all solid dielectrics must be

employed with great caution on account of the property which they

possess called Electric Absorption.

The only safe dielectric for such accumulators is air, which has

this inconvenience, that if any dust or dirt gets into the narrow

space between the opposed surfaces, which ought to he occupied only

by air, it not only alters the thickness of the stratum of air, but

may establish a connexion between the opposed surfaces, in which
f ;iM' Hie accumulator will not hold a charge.

To determine in absolute measure, that is to say in feet or metres,

the capacity of an accumulator, we must either first ascertain its

form and size, and then solve the problem of the distribution of

electricity on its opposed surfaces, or we must compare its capacity

with that of another accumulator, for which this problem has been
solved.

As the problem is a very difficult one, it is best to begin with an
aeeumulalor ennst ruetetl of a form for which the solution is known.
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Tims the capacity of an insulated sphere in an unlimited space is

known to be measured by the rail ius of the sphere.

A sphere suspended in a room was actually used by MM. Kohl-

rausch and Weber, as an absolute standard with which they com-
pared the capacity of other accumulators.

Tlie capacity, however, of a sphere of moderate size is so small

when compared with the capacities of the accumulators in common
use that the sphere is not a convenient standard measure.

Its capacity might be greatly increased by surrounding the

sphere with a hollow concentric spherical surface of somewhat
greater radius. The capacity of the inner surface is then a (burih

proport ional to the thickness of the stratum of air and the radii of

the two surfaces.

Sir W, Thomson has employed this arrangement a« a standard of

capacity, but the difficulties of working the surfaces truly spherical,

of making them truly concentric, and of measuring their distance

and their Tadii with sufficient accuracy, are considerable.

We arc therefore led to prefer for an absolute measure of eupaeity

a form in which the opposed surfaces are parallel planes.

The accuracy of the surface of the planes can he easily tested,

and their distance can he measured by a micrometer screw, and
may be made capable of continuous variation, which is a most
important property of a measuring instrument.

The only difficulty remaining arises from the fact that the planes

must necessarily be hounded, and that the distribution of electricity

near the boundaries of the planes has not been rigidly calculated.

It is true that if we make them equal circular disks, whose radius

is large compared with the distance between them, wo may treat

the edges of the disks as if they were straight lines, and calculate

the distribution of electricity by the method due to Helmholtz, and
described at Art. 202. But it will be noticed that in this ease

part of the electricity is distributed on the hack of each disk, and
that in the calculation it has been supposed that there are no
conductors in the neighbourhood, which is not and cannot be the

case in a small instrument.

228.] We therefore prefer the following arrangement, due to

Sir W, Thomson, which we may call the Guard-ring arrangement,

by means of which the quantity of electricity on an insulated disk

may he exactly determined in terms of its potential.
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Fig. 20.

Guard-ring Accumulator.

Bb is a cylindrical vessel of conducting material of which the

outer surface of the upper face is accurately plane. This upper

surface consists of two parts,

a disk A} and a broad ring

BB surrounding the disk,

separated from it by a very

small interval all round, jxist

sufficient to prevent sparks

passing. The upper surface

of the disk is accurately in

the same plane with that of

the guard-ring. The disk is

supported by pillars of insulating material GG, V is a metal disk,

the under surface of which is accurately plane and parallel to Hli.

The disk C is considerably larger than A. Its distance from A
is adjusted and measured by means of a micrometer screw, which

is not given in the figure.

This accumulator is used as a measuring instrument as follows :

—

Suppose C to be at potential zero, and the disk A and vessel Bb
both at potential V. Then there will be no electrification on the

back of the disk because the vessel is nearly elided and is all at the

same potential. There will be very little electrification on the

edges of the disk because BB is at the same potential with the

disk. On the face of the disk the electrification will be nearly

uniform, and therefore the whole charge on the disk will be almost

exactly represented by its area multiplied by the surface-density on

a plane, as given at Art. 1 24,

In lad, we leiini from the investigation at Art. 201 that the

charge on the disk is

I SA 8A A + a J

'

where R is the radius of the disk, Bf that of the hole in the guard-

ring, A the distance between A and C, and a a quantity which

cannot exceed {ff—R)^^.

If the interval between the disk and the guard-ring is small

compared with the distance between A and Qt the second term will

be very filial!, and the charge on the disk will be nearly

yRt+R*
BA
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Now let the vessel Bb be put in connexion with the earth. The

charge on the disk A will uo longer be uniformly distributed, but it

will remain the same in quantity, and if we now discharge A we

shall obtain a quantity of electricity, the value of which we know

in terms of V, the original difference of potentials and the measur-

able quantities E, R and A.

Ou the Comparison of the Capacity of Accumulators.

229.] The form of accumulator which is best fitted to have its

capacity determined in absolute measure from the form and dimen-

sions of its parts is not generally the most suitable for electrical

experiments. It is desirable that the measures of capacity in actual

use Bhould be accumulators having only two conducting surfaces, one

of which is as nearly as possible surrounded by the other. The

guard-ring accumulator, on the other hand, has three independent

conducting portions which must lu' rliiirinul ami discharged in n

certain order. Hence it is desirable to be able to compare the

capacities of two accumulators by an electrical process, so as to test

accumulators which may afterwards serve as secondary standards.

I shall first shew how to test the equality of the capacity of two

guard-ring accumulators.

Let A be the disk, B the guard-ring with the rest of the con-

ducting vessel attached to it, and C the large disk of one of these

accumulators, and let A', If, and C be the corresponding parts of

the other.

If cither of these accumulators is of the more simple kind, having

only two conductors, we have only to suppress B or if, and to

suppose A to be the inner and C the outer conducting surface. C

in this case being understood to surround A.

Let the following connexions be made.

Let B be kept always connected with C\ and if with C, that is,

let each guard-ring be connected with the large disk of the other

condenser.

(1) Let A be connected with B and C and with J, the electrode

of a Leyden jar, and let A' be connected with if and C and with

the earth.

(2) Let A, B, and C be insulated from J.

(3) Let A be insulated from B and C\ and A' from if and C.

(4) Let B and C be connected with F and C and with the

earth,

(5) Let A he connected with A'.
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(6) Let A and A' be connected with an electroscope K
We may express these connexions as follows :

—

(1) 0=C=Bf=A'
1

A=B=C'= J.

(2) o= C=J? =A'
1

A=B=C
|

/.

(3) o= C=JT \* |
J

|
if=6",

(4) M' |
4

|

B=C'=o.

(5) M' = A
|
B=C'= Q.

=0=1? K= E-A
|
,S=C?'=0.

Here the sign of equality expresses electrical connexion, and the
vertical stroke expresses insulation.

In (1) the two accumulators are charged oppositely, so that A is

positive and A? negative, the charges on A and A' being uniformly
distributed on the upper surface opposed to the large disk of each
aiviiiniibitnr.

In (2) the jar is removed, aud in (3) the charges on A and A' are

insulated.

In (4) the guard-rings are connected with the large disks, so that
the charges on A and A', though unaltered in magnitude, are now
distributed over their whole surface.

In (5) A is connected with A'. If the charges are equal and of
opposite signs, the electrification will be entirely destroyed, and
in (6) this is tested by means of the electroscope B.

The electroscope E will indicate positive or negative electrification

according as A or A' has the greater capacity.

By means of a key of proper construction, the whole of these
operations can be performed in due succession in a very small
fraction of a second, and the capacities adjusted till no electri-

fieation can be detected by the electroscope, and in this way the
capacity of an accumulator may be adjusted to be equal to that of
any other, or to the sum of the capacities of several accumulators,
so that a system of accumulators may he formed, each of which has
its capacity determined in absolute measure, i. e. in feet or in metres,
while at the same time it is of the construction most suitable for
ek'ctrieii] ex|)criments.

Hi is method of comparison will probably be found useful in
determining the specific capacity for electrostatic induction of
different dielectrics in the fomi of plates or disks. If a disk of
the dielectric is interposed between A and C, the disk being con-
siderably larger than A

t
then the capacity of the accumulator will
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be altered and made equal to that of the same accumulator when A
and C are nearer together. If the accumulator with the dielectric

plate, and with A and C at distance a?, is of the same capacity as

the same accumulator without the dielectric, and with A and at

distance if, then, if a is the thickness of the plate, and AT its specific

dielectric inductive capacity referred to air as a standard,

a + x — a

The combination of three cylinders, described in Art. 127, has

been employed by Sir W. Thomson as an accumulator whose capa-

city may be increased or diminished by measurable quantities.

The experiments of MM. Gibson and Barclay with this ap-

paratus are described in the Proceedings of the Rot/al Society, Feb. 2,

1871, and PJtil. Trans., 1871, p. 573. They found the specific in-

ductive capacity of paraffin to be 1.975, that of air being unity.



PART n.

ELECTRO KINEMATICS.

CHAPTEE I.

THE ELECTRIC CURRENT.

S30.] AVe have seen, in Art. 45, that when a conductor is in

electrical equilibrium the potential at every point of the conductor

must he the same.

If two conductors A and B are charged with electricity so that

the potential of A is higher than that of B, then, if they are put

in communication by means of a, metallic wire C touching both of

them, part of the charge of A will be transferred to B} and the

potentials of A and B will become in a very short time equalized.

231.1 During this process certain phenomena are observed in

the wire C, which are called the phenomena of the electric conflict

or current.

The first of' these phenomena is the transference of positive

electrification from A to B and of negative electrification from B
to A. This transference may be also effected in a slower manner

by bringing a small insulated body into contact with A and B
alternately. By this process, which we may call electrical con-

vection, successive small portions of the electrification of eaeh body

are transferred to the other. In either case a certain quantity of

electricity, or of the state of electrification, passes from one place

to another along a certain path in the apace between the bodies.

Whatever therefore may be our opinion of the nature of elec-

tricity, we must admit that the process which we have described

constitutes a current of electricity. This current may be described
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as a current of positive electricity from A to B, or a current of

negative electricity from B to A
%
or as a combination of these two

currents.

According1 to Foehner's and Weber's theory it is a combination

of a current of positive electricity with an exactly equal current

of negative electricity in the opposite direction through the same
substance. It is necessary to remember this exceedingly artificial

hypothesis regarding the constitution of the current in order to

understand the statement of some of Weber's most valuable ex-

perimental results.

If, as in Art. 30, we suppose V units of positive electricity

transferred from A to B
i
and JV units of negative electricity trans-

ferred from B to A in unit of time, then, according to Weber's
theory, P=sN, and P ox N\z to be taken as the numerical measure
of the current.

We, on the contrary, make no assumption as to the relation

between !' and A, but attend only to the result of the current,

namely, the transference ofP+ 2? of positive electrification from A
to B, and wc shall consider P+N the true measure of the current.

The current, therefore, width Weber would call 1 we shall call 2.

On Steady Currents.

232.] In the case of the current between two insulated con-

ductors at different potentials the operation is soon brought to

an end by the equalization of the potentials of the two bodies,

and the enrrent is therefore essentially a Transient current.

Hut there arc methods by which the difference of potentials of
tin. conductors may be maintained constant, in which case the

current will continue to flow with uniform strength as a Steady
Current.

The Voltaic Battery.

The most convenient method of producing a steady current is by
means of the Voltaic Battery,

For the sake of distinctness we shall describe DanielFs Constant
Battery :

—

A solution of sulphate of zinc is placed in a cell of porous earth-

enware, and this cell is placed in a vessel containing a saturated

solution of sulphate of copper, A piece of zinc is dipped into the

sulphate of zinc, and a pi-ve ni' enppi-r is flipped in(<i lh<' Milphahr

of copper. Wires are soldered to the zinc and to the copper above

vol. x. u
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the surface of the liquid. This combination is called a cell or

element of Daniell's battery. See Art. 272.

233.] If the cell is insulated by being placed on a non-con-

ducting stand, and if the wire connected with the copper is put

in contact with an insulated conductor A, and the wire connected

witli the zinc is put in contact with B, another insulated condin-tor

of the same metal as A, then it may be shewn by means of a delicate

electrometer that the potential of A exceeds that of B by a certain

quantity- This difference of potentials is called the Electromotive

Force of the Danicll's Cell

.

If A and B aiv now disconnected from the cell and pul in

communication by means of a wire, a transient current passes

through the wire Iron; A to B, and the potentials of A and B

become equal. A and B may then be charged again by the cell,

and the process repeated as long aa the cell will work. But if

A and B be connected by means of the wire C, and at the same

time connected with the battery as before, then the cell will main-

tain a constant current through C, and also a constant difference

of potentials between A and B. This difference will not, as we

shall see, be equal to the whole electromotive force of the cell, for

part of this force is spent in maintaining the current through the

cell itself.

A number of cells placed in series so that the zinc of the first

cell is connected by metal with the copper of the second, and

so on, is called a Voltaic Battery. The electromotive force of

such a battery is the sum of the electromotive force* of the cells

of which it is composed. If the battery is insulated it may bu

charged with electricity as a whole, but the potential of the copper

end will always exceed that of the nine end by the electromotive

force of the battery, whatever the absolute value of either of these

potentials may be. The cells of the battery may he of very various

construction, containing different chemical substances and different

metals, provided they are such that chemical action does not go

on when no current passes.

234.] Let us now consider a voltaic battery with its euds insulated

from each other. The copper end will be positively or vitreously

electrified, and the zinc end will be negatively or resinously electrified.

Let the two ends of the battery be now connected by means

of a wire. An electric current will commence, and will in a very

short time attain a constant value. It is then said to be a Steady

Current.
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Properties of the Current.

235.] The current forms a closed circuit in the direction from

copper to zinc through the wires, and from zinc to copper through

the solutions.

If the circuit be broken by cutting1 any of the wires which

connect the copper of one cell with the zinc of (lie next in order, the

current will be stopped, and ill*.- potential of the end of the wire

in connexion with the copper will be found to exceed that of the

end of the wire in connexion with the zinc by a constant quantity,

namely, the total electromotive force of the circuit.

Electrolytic Action of the Current.

236.] As long as the circuit is broken no chemical action goes

on in the cells, but as soon as the circuit is completed, zinc is

dissolved from the zinc in each of the Daniell's cells, and copper is

deposited 011 the copper.

The quantity of sulphate of zinc increases, and the quantity of

sulphate of copper diminishes unless more is constantly supplied.

The quantity of zinc dissolved and also that of copper deposited is

the same in each of the Daniell's cells throughout the circuit, what-
ever the size of the plates of the cell, and if any of the cells be of a
different construction, the amount of ohemica] action in it bears

a constant proportion to the action in the Daniell's cell. For
instance, if one of the cells consists of two platinum plates dipped
into suljmurie acid diluted with water, oxygen will be given off

at the surface of the plate where the current enters the liquid,

namely, the plate in metallic connexion with the copper of Daniell's

cell, and hydrogen at the surface of the plate where the current

leaves the liquid, namely, the plate connected with the zinc of

Daniell's cell.

The volume of the hydrogen is exactly twice the volume of the

oxygen given off in the same time, and the weight of the oxygen is

exactly eight times the weight of the hydrogen*

1 ti every cell of the circuit the weight of each substance dissolved,

deposited, or decomposed is equal to a certain quautity called the
electrochemical equivalent of that substance, multiplied by the
strength of the current and by the time during which it has
been flowing.

For the experiments which established this principle, see the
seventh and eighth series of Faraday's Experimental Itetearchesj

u 2
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and for an investigation of the apparent exceptions to the rule, see

Miller's Chemical Physics and TViodemAnn's Gnlvanismns.

237.] Substances which are decomposed in this way are called

Electrolytes. The process is called Electrolysis. The places where

the current enters and leaves the electrolyte arc called Electrodes.

Of these the electrode by which the current enters is called the

Anode, and that by which it leaves the electrolyte is called the

Cathode. The components into which the electrolyte is resolved

are called Ion's : that wliich appears at the anode is called the

Anion, and that which appears at the cathode is called the Cation.

Of these terms, which were, I believe, invented by Faraday with

the help of Dr. Whewoll, the first three, namely, electrode, elec-

trolysis, and electrolyte have been generally adopted, and the mode

of conduction of the current in which this kind of decomposition

and transfer of the components takes place is called Electrolytic

Conduction.

If a homogeneous electrolyte is placed in a tube of variable

section, and if the electrodes are placed at the ends of this tube,

it is found that when the current passes, the anion appears at

the anode and the cation at the cathode, the quantities of these

ions being electrochemically equivalent, and such as to be together

equivalent to a certain quantity of the electrolyte. In the other

parts of the tube, whether llur section be large or small, uniform

or varying, the composition of the electrolyte remains unaltered.

Hence the amount of electrolysis which takes place across every

section of the tube is the same. Where the section is small the

action must therefore be more intense than where the section is

large, hut the total amount of each ion which crosses any complete

section of the electrolyte in a given time is the same for all sections.

The strength of the current may therefore be measured by the

amount of electrolysis in a given time. An instrument by which

the quantity of the electrolytic products can be readily measured

is culled a Voltameter.

The strength of the current, as thus measured, is the same

at every part of the circuit, and the total quantity of the elec-

trolytic products in the voltameter after any given time is pro-

portional to the amount of electricity which passes any section in

the same time.

238.] If we introduce a voltameter at one part of the circuit

of a voltaic battery, and break the circuit at another part, we may
suppose the measurement of the current to be conducted thus.
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Let the ends of the broken circuit he A and ii, and let A be the

anode and B the cathode. Let an insulated ball be made to touch

A and B alternately, it will curry from A to B a certain measurable

quantity of electricity at each journey. This quantity may be

u i .i ii, I
liy i\\ electrometer, or it may be calculated by mul-

tiplying the electromotive force of the circuit by the electrostatic

capacity of the ball, Electricity is thus carried from A to B on the

insulated ball by a process which may be called Convection. At
the same time electrolysis goes on in the voltameter and in the

cells of the battery, and the amount of electrolysis in each cell may
be compared with the amount of electricity carried across by the

insulated ball. The quantity of a substance which is electrolysed

by one unit of electricity is called an Electrochemical equivalent

of that substance.

This experiment would be an extremely tedious and troublesome

one if conducted in this way with a hall of ordinary magnitude

and a manageable battery, for an enormous number of journeys

would have to bo made before an appreciable quantity of the electro-

lyte was decomposed. The experiment must therefore be considered

as a mere illustration, the aetual measurements of electrochemical

equivalents l>eing conducted in a different way. But the experi-

ment may be considered as an illustration of the process of elec-

trolysis itself, for if wc regard electrolytic conduction as a species

of convection in which an electrochemical equivalent of the anion

travels with negative electricity in the direction of the anode, while

an. equivalent of the cation travels with positive electricity in

the direction of the cathode, the whole amount of transfer of elec-

tricity bfinn' one unil, wu shall have an idea of the process of

electrolysis, which, so far as I know, is not inconsistent with known
facts, though, on account of our ignorance of the nature of electricity

and of chemical compounds, it may be a very imperfect repre-

sentation of what really takes place.

Magnetic Action of the Curretit.

239.] Oersted discovered that a magnet placed near a straight

electric current tends to place itself at right angles to the plane

passing through the magnet and the current. See Art. 475.

If a man were to place his body in the line of the current so

that the current from copper through the wire to zinc should flow

from his head to his feet, and if he were to direct his face towards
the centre of the magnet, then that end of the magnet which tends
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to point to the north would, when the current flows, tend to point

towards the man's right hand.

The nature and laws of this electromagnetic action will he dis-

cussed when we come to the fourth part of this treatise. "What

we are concerned with at present is the fact that the electric

current has a magnetic action which is exerted outside the current,

and by which its existence can be ascertained and its intensity

measured without breaking the circuit or introducing anything into

the current itself.

The amounl of the magnetic action has been ascertained to he

strictly proportional to the strength of the current as measured
by the products of electrolysis in the voltameter, and to be quite

independent of the nature of the conductor in which the current

is flowing, whether it be a metal or an electrolyte.

240.] An instrument which indicates the strength of an electric

current by its magnetic effects is called a Galvanometer.

Galvanometers in general consist of one or more coils of silk-

covered wire within which a magnet is suspended with its axis

horizontal. When a current is passed through the wire the magnet
tends to set itself with its axis perpendicular to the plane of the

coils. If we suppose the plane of the coils to be placed parallel

to the plane of the earth's equator, and the current to flow round
the coil from east to west in the direction of the apparent motion
of the sun, then the magnet within will tend to set itself with
its magnetization in the same direction as that of the earth con-
sidered as a great magnet, the north pole of the earth being similar

to that end of the compass needle which points south.

The galvanometer is the most convenient instrument for mea-
suring the strength of electric currents. We shall therefore assume
the possibility of constructing snch an instrument in studying the

laws of these currents, reserving the discussion of the principles of
the instrument for our fourth part. When therefore wo say that
an electric current is of a certain strength we suppose that the
measurement is effected by the galvanometer.
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CONDUCTION AND RESISTANCE,

241 .] If by means of an electrometer we determine the electric

potential at different points of a circuit in which a constant electric

current is maintained, we shall find that in any portion of the

circuit consisting' of a. single metal of uniform temperature through-

out, the potential at any point exceeds that at any other point

farther on in the direction of the current by a quantity depending

on the strength of the current and on the nature and dimensions

of the intervening portion of the circuit. The difference of the

potentials at the extremities of this portion of the circuit is called

the External electromotive force acting on it. If the portion of

the eireuit under consideration is not homogeneous, but contains

transitions from one substance to another, from metals to elec-

trolytes, or from hotter to colder parts, there may be, besides the

external electromotive force, Internal electromotive forces which

must be taken into account.

The relations between Electromotive Force, Current, and llesist-

ance were first investigated by Dr. G. S. Ohm, in a work published

in 1827, entitled Die Galvanische Kette Mathematisch Bearbeitet,

Iran shit id iu Taylor's Scientific Memoirs. The result of these in-

vestigations in the case of homogeneous conductors is commonly

called 1 Ohm's Law.'

Ohm's Law.

The electromotive force acting between the extremities of any pari

of a circuit is the product of the strength of the current and the

Resistance of thatpart of the circuit.

Here a new term is introduced, the Resistance of a conductor,

which is defined to be the ratio of the electromotive force to

the strength of the current which it produces. The introduction
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of this term would have been of no scientific value unless Ohm
had shewn, as he did experimentally, that it corresponds to a real

physical quantity, that is, that it lias a definite value which is

altered nul v when the nature of the conductor is altered.

In the first place, then, the resistance of a conductor is inde-

pendent of the strength of the current flowing through it.

In the second place the resistance is independent of the electric

potential at which the conductor is maintained, and of the density

of the distribution of electricity on the surface of the conductor.

It depends entirely on the nature of the material of which the

conductor is composed, the state uf aggregation of it* parts, and its

temperature.

The resistance of a conductor may he measured to within one

ten thousandth or even one hundred thousandth part of its value,

and so many conductors have been tested that our assurance of the

truth of Ohm's Law is now very high. Iu the sixth chapter we
shall trace its applications and consequences.

Generation of Heat by the Current,

24:2.] We have seen that when an electromotive force causes

a current to flow through a conductor, electricity is transferred

from a place of higher to a place of lower potential. If the transfer

had been made by convection, that is, by carrying successive

charges on a ball from the one place to the other, work woidd have

been done by the electrical forces on the ball, and this might have

been turned to account. It is actually turned to account in a

partial manner in those dry pde circuits where the electrodes have

the form of hells, and the carrier ball is made to swing like a
pendulum between the two bells and strike them alternately. In
this way the electrical action is made to keep up the swinging

of the pendulum and to propagate the sound of the bells to a

distance. In the case of the conducting wire we have the same
transfer of electricity from a place of high to a place of low potential

without any external work being done. The principle of the Con-
servation of Energy therefore leads us to look for internal work in

the conductor. In an 1 Urfn lyte this internal work consists partly

of the separation of its components. In other conductors it is

entirely converted into heat.

The energy converted into heat is in this case the product of
the electromotive force into the quantity of electricity which passes.

But the electromotive force is the product of the current into the
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resistance, and the quantity of electricity is the product of the

current into the time. Hence the quantity of heat multiplied by

the mechanical equivalent of unit of heat is equal to the square of

the strength of the current multiplied into the resistance and into

the time.

The heat developed by electric currents in overcoming the re-

sistance of conductors has been determined by Dr. Joule, who

first established that the heat produced in a given time is pro-

portional to the square of the current, and afterwards by careful

absolute measurements of all the quantities concerned, verified the

equation JII=C 2 Elt

where / is Joule's dynamical equivalent of heat, // the number of

units of heat, C the strength of the current, R the resistance of the

conductor, and t the time during which the current flows. These

relations between electromotive force, work, and heat, were first fully

explained by Sir W. Thomson in a paper on the application of the

principle of mechanical effect to the measurement of electromotive

forces *.

243 ] The analogy between the theory of the conduction of

electricity and that of the conduction of heat is at first sight almost

complete. If we take two systems geometrically similar, and such

that the conductivity for heat at any part of the first is proportional

to the conductivity for electricity at the corresponding part of the

second, and if we also make the temperature at any part of the

first proportional \<> the electric potential at the corresponding point

of the second, then the flow of heat across any area of the liist

will he proportional to the flow of electricity across the corre-

sponding area of tho second.

Thus, in the illustration we have given, in which flow of elec-

tricity corresponds to flow of heat, and electric potential to tem-

perature, electricity tends to flow from places of high to places

of low potential, exactly as heat tends to flow from places of high

to places of low temperature.

244.] The theory of potential and that of temperature may

therefore bo made to illustrate one another; there is, however, one

remarkable difference between the phenomena of electricity and

those of heat .

Suspend a conducting body within a closed conducting vessel by

a silk thread, and charge the vessel with electricity. The potential

• Fkil. Mag.t T>w. 1*61.
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of the vessel and of all within it will be instantly raised, but

however long and however powerfully the vessel he electrified, and
whether the body within he allowed to come in contact with the

vessel or not, no signs of electrification will appear within the

vessel, nor will the body within shew any electrical effect when
taken out.

But if the vessel is raised to a high temperature, the body
within will rise to the same temperature, but only after a con-

siderable time, and if it is then taken out it will be found hot,

and will remain so till it has continued to emit heat for some time.

The difference between the phenomena consists in the fact that

bodies are capable of absorbing and emitting heat, whereas they

have no corresponding property with respect to electricity. A body
cannot be made hot without a certain amount of heat being

supplied to it, depending on the mass and specific heat of the body,

but tilt- : :
i-! ..|'

;i 1 •
I

\

- nuvbr rai>e.| io any extent

in the way already described without communicating any electricity

to the body.

245.] Again, suppose a body first heated and then placed inside

the closed vessel. The outside of the vessel will be at first at the

temperature of surrounding bodies, but it will soon get hot, and
will remain hot till the beat, of the interior body has escaped.

It is impossible to perform a corresponding electrical experiment.

It is impossible so to electrify a body, and so to place it in a
hollow vessel, that the outside of the vessel shall at first show no
signs of electrification but shall afterwards become electrified. It

was for some phenomenon of this kind that Faraday sought in

vain under the name of an absolute charge of electricity.

Heat may he hidden in the interior of a body so as to have no
external action, but it is impossible to isolate a quantity of elec-

tricity so as to prevent it from being constantly in inductive

relation with an equal quantity of electricity of the opposite kind.

There is nothing therefore among electric phenomena which
corresponds to the capacity of a body for heat. This follows at
once from the doctrine which is asserted in this treatise, that
electricity obeys the same condition of continuity as an incom-
pressible fluid. It is therefore impossible to give a bodily charge
of electricity to any substance by forcing an additional quantity of

electricity into it. See Arts. 61, 111, 329, 334.
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ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

The Poten tials of Different Substances in Contact.

246.] If we define the potential of a hollow conducting vessel

as the potential of the air inside the vessel, we may ascertain this

potential by means of an electrometer as described in Part I,

Art. 222.

If we now take two hollow vessels of different metals, say copper

and zinc, and put them in metallic contact with each other, and

then test the potential of the air inside each vessel, the potential

of the air inside the zinc vessel will be positive as compared with

that inside the copper vessel. The difference of potentials depends

on the nature of the surface of the insides of the vessels, being

gmitest when the zinc is bright and when the copper is coated

with oxide.

It appears from this that when two different metals are in

contact there is in general an electromotive force acting from the

one to the other, so as to make the potential of the one exceed

that of the other by a certain quantity. This is Volta's theory of

Contact Electricity.

If we take a certain metal, say copper, as the standard, then

if the potential of iron in contact with copper at the zero potential

is /, and that of zine in contact with copper at zero is Zt
then

the potential of zinc in contact with iron at zero will be Z—I.

It appears from this result, which is true of any three metals,

that the differences of potential of any two metals at the same

temperature in contact is equal to the difference of their potentials

when in contact with a third metal, so that if a circuit be formed

of any number of metals at the same temperature there will be

electrical equilibrium as soon as they have acquired their proper

potentials, and there will be no current kept up in the circuit.
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247.] If, however, the circuit consist of two metals and an elec-

trolyte, the electrolyte, according to Volta's theory, tends to reduce
the potentials of the metals in contact with it to equality, so that
the electromotive force at the metallic junction is no longer balanced,
and a continuous current is kept up. The energy of this current
is supplied by the chemical action which takes place between the
electrolyte and the metals.

248.] The electric effect may, however, be produced without
chemical action if by any other means we can produce an equali-

zation of the potentials of two metals in contact. Thus, in an
experiment due to Sir W. Thomson*, a copper funnel is placed in

contact with a vertical zinc cylinder, so that when copper filings

are allowed to pass through the funnel, they separate from each
other and from the funnel near the middle of the zinc cylinder,

and then fall into an insulated receiver placed below. The receiver

is then found to he charged negatively, and the charge increases

as the filings continue to pour into it. At the same time the zinc

cylinder with the copper funnel in it becomes charged more and
more positively.

If now the zinc cylinder were connected with the receiver by a
wire, there would be a positive current in the wire from the cylinder
to the receiver. The stream of copper filings, each filing charged
negatively by induction, constitutes a negative current from the
runnel to the receiver, or, in other words, a positive current from
the receiver to the copper funnel. The positive current, therefore,

passes through the air (by the filings) from zinc to copper, and
through the metallic junction from copper to zinc, just as in the
ordinary voltaic arrangement, but in this case the force which keeps
up the current is not chemical actio u but gravity, which causes the
filings to fall, in spite of the electrical attraction between the
positively charged funnel and the negatively charged filings.

249.] A remarkable confirmation of the theory of contact elec-

tricity is supplied by the discovery of Peltier, that, when a current
of electricity crosses the junction of two metals, the junction is

heated when the current is in one direction, and cooled when it

is in the other direction. It must be remembered that a current
in its passage through a metal always produces heat, because it

meets with resistance, eo that the cooling effect on the whole
conductor must always he less than the heating effect. We must
therefore distinguish between the generation of heat in each metal,

North Britfeh Hevmc, 1864, p. 353 and Proe. JR. June SO, 1867.
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due to ordinary resistance, and the generation or absorption of heat

at the junction of two metals. We shall call the first the frictional

generation of heat by the current, and, as we have seen, it is

|ii\,[n>i'ti. mal fag fibe Mjoaxe of fch»« .-iinvnl, an.] i- thf .same whether

the current be in the positive or the negative direction. The second

we may call the Peltier effect, which changes its sign with that

of the current.

The total heat generated in a portion of a compound conductor

consisting of two metals may be expressed by

•J

where // is the quantity of heat, ./ the mechanical equivalent of

unit of heat, R the resistance of the conductor, C the current, and

t the time ; n being the coefficient of the Peltier effect, that is,

i\\c heat absorbed at the junction due to the passage of unit of

current for unit of time.

Now the heat generated is mechanically equivalent to the work

done against electrical forces in the conductor, that is, it is equal

to the product of the current into the electromotive force producing

it. Hence, if E is the external electromotive force which causes

the current to flow through the conductor,

JH=CEt = RC* i-Jn Cf,

whence E = EC—in.

It appears from this equation that the external electromotive

force required to drive the current through the compound conductor

is less than that due to its resistance alone by the electromotive

force /n. Hence JU represents the electromotive contact force

at the junction acting in the positive direction.

This application, due to Sir W. Thomson *, of the dynamical

theory of heat to the determination of a local electromotive force

is of great scientific importance, since the ordinary method of

connecting two points of the compound conductor with the elec-

trodes of a galvanometer or electroscope by wires would be useless,

owing to the contact forces at the junctions of the wires with

the materials of the compound conductor, In the thermal method,

on the other hand, we know that the only source of energy is the

current of electricity, and that no work is done by the current

in a certain portion of the circuit except, in heating that portion

of the conductor. If, therefore, we can measure the amount of the

• Proe. U.S. BtfiK , Dec 15. 1851 ; nt.d T/w. R. S. Edin., 1854.
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current and the amount of heat produced or absorbed, we can

determine the electromotive force required to urge the current

through that portion of the conductor, and this measurement is

entirely independent of the effect of contact forces in other parts of

the circuit.

The electromotive force at the junction of two metals, as de-

termined by this method, does not account for Volta's electromotive

force as described in Art. 246. The latter is in general far greater

than that of this Article, and is sometimes of opposite sign. Hence
the assumption that the potential of a metal is to be measured by
that of the air in contact with it must be erroneous, and the greater

part of Volta's electromotive force must be sought for, not at the

junction of the two metals, but at one or both of the surfaces which
separate the metals from the air or other medium which forms the

third element of the circuit.

250.] The discovery by Seebeek of thermoelectric currents in

circ uits of different metals with their junctions at different tem-

peratures, shews that these contact forces do not always balance

each other in a complete circuit. It is manifest, however, that

in a complete circuit of different metals at uniform temperature the

contact forces must balance each other. Por if this were not the

case there would be a current formed in the circuit, and this current

might be employed to work a machine or to generate heat in the

circuit, that is, to do work, while at the same time there is no

expenditure of energy, as the circuit is all at the same temperature,

and no chemical or other change takes place. Hence, if the Peltier

effect at the junction of two metals a and A be represented by 11^
when the current flows from a to b, then for a circuit of two metals

at the same temperature we must have

n^+n^ = 0,

and for ;) circuit, nf three metals a, h, c
f
we must have

n^+n^+n^ = o.

It follows from this equation that the three Peltier effects are not
independent, but that one of them can be deduced from the other
two. Por instance, if we suppose c to be a standard metal, and
if we write 1\ r= Jnac and Ph

- Jnbet then

tfn^ — Pn
—pb .

The quantity P
tl

is a function of the temperature, and depends on
the nature of the metal a.

251.] It has also been shewn by Magnus that if a circuit is
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formed of a single metal no current will be formed in it, however

the section of the conductor aud the temperature may vary in

different parts.

Since in this case there is conduction of heat and consequent

dissipation of energy, we cannot, as in the former case, consider this

result as self-evident. The electromotive force, for instance, between

two portions of a circuit might have depended on whether the

current was passing from a thick portion of the conductor to a thin

one, or the reverse, as well as on its passing rapidly or slowly from a

bot portion to a eold one, or the reverse, and this would have made

a current possible in an unequally heated circuit of one metal.

Hence, by the same reasoning as in the case of Peltier's phe-

nomenon, we find that if the passage of a current through a

conductor of one metal produces any thermal effect which is re-

versed when the current is reversed, this can only take place when

the current flows from places of high to places of low temperature,

or the reverse, and if the heat generated in a conductor of one

metal in flowing from a place where the temperature is a? to a

place where it is >/, is H, then

and the electromotive force tending to maintain the current will

be 8m .

If a, yy z be the temperatures at three points of a homogeneous

circuit, we must have

+ + - °>

according to the result of Magnus. Hence, if we suppose c to be

the zero temperature, and if we put

Qx
= Sa and Q v

= Sv .,,

we find Sxv = Qs— Q V i

where Q x is a function of the temperature x, the form of the

function depending on the nature of the metal.

If we now consider a circuit of two metals a and b in which

the temperature is x where the current passes from a to b, and

* where it passes from b to a, the electromotive force will be

F= P„x-

P

bx+ QkK- Q*,» + - + Q..,- %* i

where P^ signifies the value of P for the metal a at the tempera-

ture 3>, or

km. P^Q^-iP.y-QJ-^-Q^+^-Q^ '

Since in unequally heated circuits of different metals there are in
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general thermoelectric currents, it follows that P and Q are m
general different for the same metal and same temperature.

252.] The existence of the quantity Q was first demonstrated by
Sir W. Thomson, in the memoir we have referred, to, as a deduction

IViiin tin- | il i

•
-i l> i li -3i nf vnTmoelMrie inversion discovered by

Gumming * who found that the order of certain metals in the ther-

moelectric scale is different at high and at low temperatures, so that

for a certain temperature two metal* may be neutral to each other.

Thus, in a circuit of copper and iron if one junction be kept at the

ordinary temperature while the temperature of the other is raised,

a current seta from copper to iron through the hot junction, and

the electromotive force continues to increase till the hot junction

has reached a temperature T, which, according to Thomson, is

about 28i C. When the temperature of the hot junction is Taised

still further the electromotive force is reduced, and at last, if the

temperature be. raised high enough, the eum-nl is reversed. The

reversal of the current may be obtained more easily by raising the

temperature of the colder junction. If the temperature of both

junctions is above T the current .sets from iron jo copper through

the hotter junction, that is, in the reverse direction to that ob-

served when both junctions are below T.

Hence, if one of the junctions is at the neutral temperature T
and the other is either hotter or colder, the current will set from

copper to iron through the junction at the neutral temperature.

253.
|

["Van this fact Thomson reasoned as follows :

—

Suppose the other junction at a temperature lower than T.

The current may be made to work an engine or to generate heat in

a wire, and this expenditure of energy must be kept up by the

transformation of heat into electric energy, that is to say, heat

must, disappear somewhere in the circuit. Ts
Tow at the tempera-

ture T iron and copper are neutral to each other, so that no
reversible thermal effect is produced at the hot junction, and at

the cold junction there is, by Peltier's principle, an evolution of

heat. Hence the only place where the heat can disappear is in the

copper or iron portions of the circuit, so that either a current in

iron from hot to cold must cool the iron, or a current in copper

from cold to hot must cool the copper, or both these effects may
take place. By an elaborate series of ingenious experiments Thom-
son succeeded in detecting the reversible thermal action of the

current in passing between parts of different temperatures, and

• Cavtbridtje Tratttadumt, 1823.
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he found that the current produced opposite effects in copper and
in iron *,

When a stream of a material fluid passes along a tube from

a hot part to a eold part it heats the tube, and when it passes

from eold to hot it cools the tube, and these effects depend on
the specific capacity for heat of the fluid. If we supposed elec-

tricity, whether positive or negative, to be a material fluid, we
might measure its specific heat by the thermal effect on an un-

equally heated conductor. New Tlmms. ,11V experiments shew that

positive electricity in copper and negative electricity in iron carry

heat with them from hot to cold. Hence, if we supposed either

positive or negative electricity to be a fluid, capable of being

heated and cooleJ, and of communicating heat to other bodies, we
should find the supposition contradicted by iron for positive elec-

tricity and by copper for negative electricity, bo that we should

have to abandon both hypotheses.

This scientific prediction of the reversible effect of an electric

current upon an unequally heated conductor of one metal is another

instructive example of the application of the theory of Conservnln n

ofEnergy to indicate new directions of scientific research. Thomson
ha* al.su applied the Sremxl Law of Thermodynamics to indicate

relations between the quantities which we have denoted by P
and Q }

and has investigated the possible thermoelectric properties

of bodies whose structure is different in different directions, lie

has also investigated experimentally the conditions under which

these properties are developed by pressure, magnetization, &c.

254.] Professor Taitf has recently investigated the electro-

motive force of thermoelectric circuits of different metals, having

their junctions at different temperatures. He finds that the elec-

tromotive force of a circuit may be expressed very accurately by

the formula

where t
y

is the absolute temperature of the hot junction, t
2

that

of the cold junction, and f the temperature at which the two metals

are neutral to each other. The factor a is a coefficient depending

on the nature of the two metals composing the circuit. This law

has been verified through considerable ranges of temperature by

Professor Tait and his students, and he hopes to make the thermo-

electric circuit available as a thermometric instrument in hi*

* ' On the Electrodvnamie Qualities of Metala.' Phil. 7>«n*..

t 1'tiK. R. & Edin., geaaion 1870-71. |>. 308, ftlso Dt*. IS, 1B?1.

VOL. I, X
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experiments on the conduction of heat, and in other cases in which

the mercurial thermometer is not convenient or has not a sufficient

range.

According to Tait's theory, the quantity which Thomson calls

the sj>ecinc heat of electricity is proportional to the absolute tem-

peratmv in each pure mi:t:d, tlmu^h ils magnitude and even its

sign vary in dili'erent metals. From this he has deduced hy ther-

modynamic principles the following results. Let &a i, t;,t, kQ t

be the specific heats of electricity in three metals a, t>, c} and let

'J'bc-f i\<K-> he the temperatures at which pairs of these metals are

neutral to each other, then the equations

(*b- *,) Tle +

T

M+ (A3-*k)f* = 0,

V* - {K-h){h-h)V^-h{h+ t^
express the relation of the neutral temperatures, the value of the

Peltier effect, and the electromotive force of a thermoelectric circuit,



CHAPTER IV.

ELECTROLYSIS.

Electrolytic Conduct io ».

255.] I have already stated that when an electric current in

any part of its circuit passes through certain compound substances

G9&]&& Electrolytes, the passage of the current is accompanied by

a certain chemical process called Electrolysis, in which the substance

is resolved into two components called lone, of which one, called

the Anion, or the electronegative component, appears at the Anode,

or place where the current enters the electrolyte, and the oilier,

called the Cation, appears at the Cathode, or the place where the

current leaves the electrolyte.

The complete investigation of Electrolysis belongs quite as much

to Chemistry as to Electricity, We shall consider it from an

electrical point of view, without discussing its application to the

theory of the constitution of chemical compounds.

Of all electrical phenomena electrolysis appears the most likely

to furnish us with a real insight into the true nature of the electric

current, because we find currents of ordinary matter and currents

of electricity forming essential parts of the same phenomenon,

ll improbably for this very reason that, in the present imperfectly

formed state of our ideas about electricity, the theories of electro-

lysis are so unsatisfactory,

The fundamental law of electrolysis, which was established by

Faraday, and confirmed by the experiments of Reetz, Hittorf, and

others down to the present time, is as follows :

—

The Bomber of electrochemical equivalents of an electrolyte which

are decomposed by the passage of an electric current during a given

time is equal to the number of units of electricity which are trans-

ferred by the current in the same time.

The electrochemical equivalent of a substance is that quantity

x %
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of the substance which is electrolysed by a unit current passing

through the substance for a unit of time, or, in other words, by the

passage of a unit of electricity. When the unit of electricity is

defined in absolute measure the absolute value of the electro-

chemical equivalent of each substance can he determined in grains

or in grammes

The electrochemical equivalents of different substances arc pro-

portional to their ordinary chemical fquivalents. The ordinary

chemical equivalents, however, are the mere numerical ratios ui

which the substances combine, whereas the electrochemical equi-

valents are quantities of matter of a determinate magnitude, de-

pending on the definition of the unit of electricity.

Every electrolyte consists of two components, which, during the

electrolysis, appear where the current enters and leaves the elec-

trolyte, and nowhere else. Hence, if we conceive a surface described

within the substance of the electrolyte, the amount of electrolysis

which takes place through this surface, as measured by the elec-

trochemical equivalents of the components transferred across it

in opposite directions, will be proportional to the total electric

current through the surface.

The actual transfer of the iona through the substance of the

electrolyte in opposite directions is therefore part of the phenomenon

of the conduction of an electric current through an electrolyte. At

every point of the electrolyte through which an electric current

is passing there are also two opposite material currents of the anion

and the catiou, which have the same lines of flow with the electric

current, and are proportional to it in magnitude.

It is therefore extremely natural to suppose that the currents of

the ions are convection currents of electricity, and, in particular,

that every molecule of the cation is charged with a certain fixed

quantity of positive electricity, which is the same for the molecules

of all cations, and that every molecule of the anion is charged with

an equal quantity of negative electricity.

The opposite motion of the ions through the electrolyte would

then be a complete physical representation of the electric current.

We may compare this motion of the ions with the motion of gases

and liquids through each other during the process of diffusion,

there being this difference between the two processes, that, in

diffusion, the different substances are only mixed together and the

mixture is not homogeneous, whereas in electrolysis they are chemi-

cally combined and the electrolyte is homogeneous. In diffusion
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the determining cause of the motion of a substance in a given

direction is a diminution of the quantity of that substance per

unit of volume in that direction, whereas in electrolysis the motion

of each ion is due to the electromotive force acting on the charged

molecules.

256.] CHausius*, who has bestowed much study on the theory

of the molecular agitation of bodies, supposes that the molecules

of all bodies arc in a state of constant agitation, but that in Bolid

bodies each molecule never passes beyond a certain distance from

its original position, whereas in fluids a molecule, after moving

a certain distance from its original position, is just as likely U>

move still farther from it as to move back again. Hence the

molecules of a fluid apparently at rest are continually changing

their positions, and passing irregularly from one part of the fluid

to another. In a compound fluid he supposes that not only the

compound molecules travel about in this way, but that, in the

collisions which occur between the compound molecules, the mole-

cules of which they are composed are often separated and change

partners, so that the same individual atom is at one time associated

with one atom of the opposite kind, and at another time with another.

This process Clausius supposes to go on in the liquid at all times, but

when an electromotive force acts on the liquid the motions of the

molecules, which before were indifferently in all directions, are now

influenced by the electromotive force, so that the positively charged

molecules have a greater tendency towards the cathode than towards

the anode, and the negatively charged molecules have a greater

tendency to move in the opposite direction. Hence the molecules

of the cation will during their intervals of freedom struggle towards

the cathode, but will continually be cheeked in their course by

pairing for a time with molecules of the anion, which are also

struggling through the crowd, but in the opposite direction.

257.] This theory of Clausius enables us to understand how it is,

that \vlirr.:h the a<-tu:i! n, : ;
„ .- r v v, ..f :m electrolyte requires an

electromotive force of finite magnitude, the conduction of the

current in the electrolyte obeys the law of Ohm, so that every

electromotive force within the electrolyte, even the feeblest, produces

a current of proportionate magnitude.

According to the theory of Clausius, the decomposition and

recomposition of the electrolyte is continually going on even when

there is no current, and the very feeblest electromotive force ia

• Pogg. Ann. bd. ci. a. 338 (1857).
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sufficient to give this process a certain degree of direction, and so

to produce the currents of the ions and the eleetric current, which

is part of f lie same phenomenon. Within the electrolyte, however,

the ions are never set free in finite quantity, and it is this liberation

of the ions which requires a finite electromotive force. At the

electrodes the ions accumulate, for the successive portions of the

ions, as they arrive at the electrodes, instead of finding1 molecules of

the opposite ion ready to Combine with them, are forced into com-

pany with molecules of their own kind, with which they cannot

combine. The electromotive force required to produce this effect

i." nf Unit-- magnitude, and forms im opposing L'led n nnotivc force

which produces a reversed current when other electromotive forces

are removed. When this reversed electromotive force, owing to

the accumulation of the ions at the electrode, is observed, the

electrodes are said to In: l\>l;iri/.rd.

258.] One of the best methods of determining whether a body

is or is not an electrolyte is to place it between platinum electrodes

and to puss a current through it for some time, and then, dis-

engaging the electrodes from the voltaic battery, and connecting

them with a galvanometer, to observe whether a reverse current,

due to polarisation of the, electrodes, passes through the galvano-

meter. Such a current, being due to accumulation of different

substances on the two electrodes, is a proof that the substance has

been electrolytically decomposed by the original current from the

battery. This method can often be applied where it is difficult,

by direct chemical methods, to detect the presence of the products

of decomposition at the electrodes. See Art. 27 1

.

259.] So far as we have gone the theory of electrolysis appears

very satisfactory. It explains the electric current, the nature of

which we do not understand, by means of the currents of the

material components of the electrolyte, the motion of which,

though not visible to the eye, is easily demonstrated. It gives a

clear explanation, as Faraday lias shewn, why an electrolyte which

conducts in the liquid state is a non-conductor when solidified, for

unless the molecules can pass from one part to another no elec-

trolytic conduction can take place, so that the substance must
he in a liquid state, either by fusion or by solution, in order to be

a conductor.

But if we tfo on, and assume that the molecules of the ions

within the electrolyte are actually charged with certain definite

quantities of electricity, positive and negative, so that the elec-
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trolytic current is simply a current of convection, we find that this

tempting hypothesis leads ns into very difficult ground.

In the first place, we must assume that in every electrolyte each

molecule of the cation, as it is liberated at the cathode, commu-

nicates to the cathode a charge of positive electricity, the amount

of which is the same for every molecule, not only of that cation

hut of all other cations. In the same way each molecule of the

anion when liberated, communicates to the anode a eharge of

negative electricity, the numerical magnitude of which is the same

as that of the positive charge due to a molecule of a cation, but

with sign reversed.

If, instead of a single molecule, we consider an assemblage of

molecules, constituting an electfochemical equivalent of the ion,

then the total charge of all the molecules is, as we have seen, one

unit of electricity, positive or negative.

260.] We do not as yet know how many molecules there are

in an electrochemical equivalent of any substance, but the molecular

theory of chemistry, which is corroborated by many physical con-

siderations, supposes that the number of molecules in an elec-

trochemical equivalent is the same for all substances. We may

therefore, in molecular speculations, assume that the number of

molecules in an electrochemical equivalent is N, a number unknown

at present, but which we may hereafter find means to determine *.

Each molecule, therefore, on Wing liberated from the state of

combination, parts with a charge whose magnitude is -- , and is

positive for the cation and negative for the anion. This definite

quantity of electricity we shall call the molecular charge. If it

were known it would be the most natural unit of electricity.

Hitherto we have only increased the precision of our ideas by

exercising our imagination, in tracing the electrification of molecules

and the discharge of that electrification.

The liberation of the ions and the passage of positive electricity

from the anode and into the eathode are simxiltaneous facts. The

ions, when liberated, are not charged with ela-trinty, h<-n. e, when

they are in combination, they have the molecular charges as above

described.

The electrification of a molecule, however, though easily spoken

of, is not bo easily conceived.

We know that if two metals are brought into contact at any

• Sec not* to Art. 6.
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point, the rest of their surfaces will be electrified, and if the metals

are in the form of two plates separated by a narrow interval of air,

the charge on each plate may become of considerable magnitude.

Something- like this may be supposed to occur when the two

components of an electrolyte are in combination, Each pair of

molecules may 1k> supposed to touch at one point, and to have the

rest of their surface charged with electricity due to the electro-

motive force of contact.

But to explain the phenomenon, we ought to shew why the

charge thus produced on each molecule is of a fixed amount, and
why, when a molecule of chlorine is combined with a molecule of

zinc, the molecular charges are the same as when a molecule of

chlorine 5s combined with a molecule of copper, although the elec-

tromotive force between chlorine and zinc is much greater than
that between chlorine and copper. If the charging of the molecules

is the effect <>(' ihe electromotive force of contact, why should

electromotive forces of different intensities produce exactly equal

charges ?

Suppose, however, that we leap over this difficulty by simply

asserting the fact of the constant value of the molecular charge,

and that we call this constant molecular charge, for convenience in

description, one molecule qf electricity.

This phrase, gross as it is, and out of harnvmy with the rest of

this treatise, will unable us at least to state clearly what in known
about electrolysis, and to appreciate the outstanding difficulties.

Every electrolyte must be considered as a binary compound of

its anion and its cation. The anion or the eation or both may be

compound bodies, so that a molecule of the anion or the cation

may be formed by a number of molecules of simple bodies. A
molecule of the anion and a molecule of the cation combined to-

gether form one molecule of the electrolyte.

In order to act as an anion in an electrolyte, the molecule which
so acts must be charged with what we have called one molecule

of negative electricity, and in order to act as a cation the molecule

must be charged with one molecule of positive electricity.

These charges are connected with the molecules only when they

are combined as anion and cation in the eleetrolvte.

When the molecules are electrolysed, they part with their charges
to the electrodes, and appear as unekctrified bodies when set free

from combination.

If the same molecule is capable of acting as a cation in one
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electrolyte and as an anion in another, and also of entering into

compound bodies which are not electrolytes, then we must suppose

that it receives a positive charge of electricity when it acts as a

ration, a negative charge when it acts as an anion, and that it

is without charge when it is not in an electrolyte.

Iodine, for instance, acts as an anion in the iodides of the metals

and in hydriodic acid, but is said to act as a cation in the bromide

of iodine.

This theory of molecular charges may serve as a method by

which we may remember a good many facta about electrolysis.

It is extremely improbable that when we come to understand the

true nature of electrolysis we shall rota in in any form the theory of

molecular charges, for then we shall have obtained a secure basis

on which to form a true theory of electric currents, and so become

independent of these provisional theories,

261.] One of the most important steps in our knowledge of

electrolysis has been the recognition of the secondary chemical

processes which arise from the evolution of the ions at the elec-

trodes.

In many cases the substances which are found at the electrodes

are not the actual ions of the electrolysis, but the products of the

action of these ions on the electrolyte.

Thus, when a solution of sulphate of soda is electrolysed by a

current which also passes through dilute sulphuric acid, equal

quantities of oxygen are given off at the anodes, and equal quan-

tities of hydrogen at the cathodes, both in the sulphate of soda

and in the dilute acid.

But if the electrolysis is conducted in suitable vessels, such as

U-shaped tubes or vessels with a porous diaphragm, so that the

substance surrounding each electrode can be examined separately,

it is found that at the anode of the sulphate of soda there is an

equivalent of sulphuric acid as well as an equivalent of oxygen,

and at the cathode there is an equivalent of soda as well as two

equivalents of hydrogen.

It would at first sight seem as if, according to the old theory

of the constitution of salts, the sulphate of soda were electrolysed

into its constituents sulphuric acid and soda, while the water of the

solution is electrolysed at the same time into oxygen and hydrogen.

But this explanation would involve the admission that the same

current which passing through dilute sulphuric acid electrolyses

one equivalent of water, when it passes through solution of sulphate
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of soda electrolyses one equivalent of the salt as well as one equi-

valent of the water, and this would he contrary to the law of

elect meheniical equivalents.

But if we suppose that the components of sulphate of soda are

not SO, and NaO but SO,, and Na,—not sulphuric acid and soda

hut sulphion and sodium—then the sulphion travels to the anode

and is set free, hut being unable to exist in a free state it breaks

up into sulphuric acid and oxygen, one equivalent of each. At

the same time the sodium is set free at the cathode, and there

decomposes the water of the solution, forming" one equivalent of

soda and two of hydrogen.

In the dilute sulphuric acid the gases collected at the electrodes

are the constituents of water, namely one volume of oxygen and

two volumes of hydrogen. There is also an increase of sulphuric

acrid at the anode, but. its amount is not equal to an equivalent.

It is doubtful whether pure water is an electrolyte or not. The
greater the purity of the water, the greater the resistance to elec-

trolytic conduction. The minutest traces of foreign matter are

sufficient to produce a great diminution of the electrical resistance

(if water. The electric resistance r>|* water as determined by different

observers has values so different that we cannot consider it as a

determined quantity. The purer the water the greater its resistance,

and if we could obtain really pure water it is doubtful whether it

woidd conduct at all.

As long as water was considered an electrolyte, and was, indeed,

taken as the type of electrolytes, there was a strong reason for

maintaining that it is a binary compound, and that two volumes

of hydrogen are chemically equivalent to one volume of oxygen.

If", however, we admit that water is not an electrolyte, we are free

to suppose that equal volumes of oxygen and of hydrogen are

chemically equivalent.

The dynamical theory of gases leads us to suppose that in perfect

gases equal volumes always contain an equal number of molecules,

and that the principal part of the specific heat, that, namely, which

depends on the motion of agitation of the molecules among each

other, is the same for equal numbers of molecules "T :dl gases.

Hence we are led to prefer a chemical system in which equal

volumes of oxygen and of hydrogen are regarded as equivalent,

and in which water is regarded as a compound of two equivalents

of hydrogen and one of oxygen, and therefore probably not capable

of direct el eel ivIvm's.
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While electrolysis fully establishes the close relationship between

electrical phenomena an<l those of ehemieid combination, the tart

that every chemical compound is not an electrolyte shews that

chemical combination is a process of it higher order of complexity

than any purely electrical phenomenon. Thus the combinations of

the metals with each other, though they are good conductors:, and

their components stand at different points of the scale of electri-

fication by contact, are not, even when in a fluid state, decomposed

by the current. Most of the combinations of the substances which

net us anions are not conductors, and therefore :nv not electrolytes.

Besides these we have many compounds, containing the same com-

ponents as electrolytes, but not in equivalent proportions, and these

are also non-conductors, and therefore not electrolytes.

On, the Conservation of Energy in Electrolysis,

2G2.] Consider any voltaic circuit consisting partly of n batten

partly of a wire, and partly of an electrolytic cell.

During the passage of unit of electricity through any section of

the circuit, one electrochemical equivalent of each of the substances

in the cells, whether voltaic or electrolytic, is electrolysed.

The amount of mechanical energy equivalent to any given

chemical process can be ascertained by converting the whole energy

due to the process into heat, and then expressing the heat in

dynamical measure by multiplying the number of thermal units by

Joule's mechanical equivalent of heat.

Where this direct method is not applicable, if we can estimate

the heat given out by the substances taken first in the state before

the process and then in the stale after the process during their

reduction to a final state, which is the same in both cases, then the

thermal equivaleii! of the process is the ilitierenee of the Xwn quan-

tities of heat .

In the ease in which the chemical action maintains a voltaic

circuit, Joule found that the heat developed in the voltaic cells is

less than that due to the chemical process within the cell, and that

the remainder of the heat is developed in the connecting wire, or,

when there is an electromagnetic engine in the circuit, part of the

heat may be accounted for by the mechanical work of the engine.

For instance, if the electrodes of the voltaic cell are first con-

nected by a short thick wire, and afterwards by a long thin wire,

the heat developed in the cell for each grain of zinc dissolved is

greater in the lirst case than the second, but the heat developed
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ill the wire is greater in the second case than in the first. The

sura of the heat developed in the cell and in the wire for each grain

of zinc dissolved is (lie same in both eases. This has been esta-

blished by Joule by direct experiment.

The ratio of the heat generated in the cell to that generated

in the wire is thai of the resistance of the cell to that of the wire,

eo that if the wire were made of sufficient resistance nearly the

whole of the heat would he generated in the wire, and if it were

made of sufficient conducting power nearly the whole of the heat

would be generated in the cell.

Let the wire be made so as to have great resistance, then the

heat generated in it is equal in dynamical measure to the product

of the quantity of electricity which is transmitted, multiplied by

the electromotive force under which it is made to pass through

the wire.

263.] Now during the time in which an electrochemical equi-

valent of the substance in the cell undergoes the chemical process

which gives rise to the current, one unit of electricity passes

through the wire. Hence, the heat developed by the passage

of one unit of electricity is in this case measured by the electro-

motive force. But this heat is that which one electrochemical

equivalent of the substance generates, whether in the cell or in the

wire, while undergoing the given chemical process.

Ilenee the following important theorem, first proved by Thomson

{Phil. Mag. Dec. 1851):

—

'The electromotive force of an electrochemical apparatus is in

absolute measure equal to the mechanical equivalent of the chemical

action on one electrochemical equivalent of the substance/

The thermal equivalents of many chemical actions have been

determined by Andrews, Hess, Favre and Silbermann, &c., and from

these their mechanical equivalents can be deduced by multiplication

by th mechanical equivalent of heat.

This theorem not only enables us to calculate from purely thermal

data the electromotive force of different voltaic arrangements, and

the electromotive force required to effect electrolysis in different

cases, but affords the means of actually measuring chemical affinity.

It has long been known that chemical affinity, or the tendency

which exists towards the going on of a certain chemical change,

is stronger in some cases than in others, but no proper measure

of this tendency could be made till it was shewn that this tendency

:u eeriain cases' is exactly equivalent to a certain electromotive
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force, and can therefore be measured according to the very same

principles used in the measurement of electromotive forces.

Chemical affinitv being therefore, in certain cases, reduced to

the form of a measurable quantity, the whole theory of chemical

processes, of the rate at which they go on, of the displacement of

one substance by another, &c, becomes much more intelligible than

when chemical affinity was regarded as a quality mi generis, and

irreducible to numerical measurement.

When the volume of the products of electrolysis is greater than

that of the electrolyte, work is done during the electrolysis in

overcoming the pressure. If the volume of an electrochemical

equivalent of the electrolyte is increased by a volume v when

electrolysed under a pressure p, then the work done during the

passage of a unit of electricity in overcoming pressure is Pjp, and

the electromotive force required for electrolysis must include

part equal to vp, which is spent in performing this mechanical

work.

If the products of electrolysis are gases which, like oxygen and

hydrogen, are much rarer than the electrolyte, and fullil Boyle's

law very exactly, vp will be very nearly constant for the same

temperature, and the electromotive force required Tor electrolysis

will not depend in any sensible degree on the pressure. Heine it

has been found impossible to check the electrolytic decomposition

of dilute sulphuric acid by confining the decomposed gases in a

email space.

When the products of electrolysis are liquid or solid the quantity

vp will increase as the pressure increases, so that if is positive

an increase of pressure will increase the electromotive force required

for electrolysis.

In the same way, any other kind of work done during electro-

lysis will have an effect on the value of the electromotive force,

as for instance, if a vertical current passes between two zinc

electrodes in a solution of sulphate of zinc a greater electromotive

force will be required when the current in the solution flown

upwards than when it flows downwards, for, in the first case, it

carries zinc from the lower to the upper electrode, and in the

second from the upper to the lower. The electromotive force

required for this purpose is less than the millionth part of that

of a Daniell's cell per foot.



CHAPTER V.

ELECTROLYTIC POLARIZATION.

2G4.] When an electric current is passed through an electrolyte

bounded by metal electrodes, the accumulation of the ions at the
elect nul.

I

•'• ' "luces the phenomenon called Polarization which
consists iu an electromotive force acting- in tlic opposite direction

to the current, and producing- an apparent increase of the resistance.

When a continuous current is employed, the resistance apjwars

to increase rapidly from the commencement of the current, and
at last reaches a value nearly constant. If the form of the vessel

in which the electrolyte is contained is changed, the resistance is

altered in the same way as a similar change of form of a metallic

conductor would alter its resistance, but an additional apparent

resistance, depending- on the nature of the electrodes, has always
to be added to the true resistance of the electrolyte.

265.] These phenomena have led some to suppose that there is

a finite electromotive force required for a current to pass through
an electrolyte. It has been shewn, however, by the researches of

Lenz, Neumann, Beetz, Wiedemann *, Faalzow f, and recently by
those of MM. F. Kohlrausch and W. A. Nippoldt J, that the con-

duction in the electrolyte itself obeys Ohms Law with the same
precision as in metallic conductors, and that the apparent resistance

at the bounding surface of the electrolyte and the electrodes is

rjitiivlv due to polarization.

206.] The phenomenon called polarization manifests itself in

the case of u eunt.imious current by a diminution in the current,

indicating a force opposed to the current. Resistance is also per-

ceived as a force opposed to the current, but we can distinguish

" Gidranhmu*, b& L + Merlin M<mat*herietit
t
July, 1868.

t Fogg. Ann. bd. exxxviii. s. 2St> (OctoWr, lS'JU).
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between the two phenomena by instantaneously removing or re-

versing the electromotive force.

The resisting force is always opposite in direction to the current,

and the external electromotive force required to overcome it is

proportional to the strength of the current, and changes its direc-

tum win 11 the direction of the current is changed. If the external

electromotive force becomes zero the run-cut simply stops.

The electromotive force due to polarization, on the other hand,

is in a fixed direction, opposed to the current which produced it.

If the electromotive force which produced the current is removed,

the polarization produces a current in the opposite direction.

The difference between the two phenomena may be compared

with the difference between forcing a current of water through

li long capillary tube, and forcing water through a tube of mode into

length up into a cistern. In the first case if we remove the pressure

which produces the flow the current will simply stop. In (lie

second case, if we remove the pressure the water will begin to How

down again from the cistern.

To miikc the mechanical illustration more complete, we have only

to suppose that the cistern is of moderate depth, so thai when a

certain amount of water is raised into it, it begins to overflow.

This will represent the fact that the total electromotive force due

to polarization haa a maximum limit.

267/] The cause of polarization appears to be the existence at

the electrodes of the products of the electrolytic decomposition of

the fluid between them. The surfaces of the electrodes are thus

rendered electrically different, and an electromotive force between

theiu is called into action, the direction of which is opposite to thul

of the current which caused the polarization.

The ions, which by their presence at the electrodes produce the

phenomena of polarization, are not in a perfectly free state, but

are in a condition in which they adhere to the surface of the

electrodes with considerable force.

The electromotive force due to polarization depends upon the

density with which the electrode ie covered with the ion, but it

is not. proportional to this density, fur the electromotive force due*

not^ncrease so rapidly as this density.

This deposit of the ion is constantly lending to become free,

and either to diffuse into the liquid, to escape as a gas, or to be

precipitated as a solid.

The rati- of this dissipation of the polarization is exceedingly
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small for slight degrees of polarization, and exceedingly rapid near

the limiting value of polarization.

268.] We have seen, Art. 262, that the electromotive force acting

in any electrolytic process is numerically equal to the mechanical

equivalent of the result of that process on one electrochemical

equivalent of the substance. If the process involves a diminution

of the intrinsic energy of the substances which take part in it,

as in the voltaic cell, then the electromotive force is in the direction

of the current. If the process involves an increase of the intrinsic

energy of the substances, as in the case of the electrolytic cell,

the electromotive force is in the direction opposite to that of the

current, and this electromotive force is called polarization.

In the case of a steady current in which electrolysis goes on
continuously, and the ions are separated in a free Btate at the

electrodes, we have only by a suitable process to measure the

intrinsic energy of the separated ions, and compare it with that

of the electrolyte in order to calculate the electromotive force

required for the electrolysis. This will give the maximum polari-

zaf ion.

But during the first instants of the process of electrolysis the

ions when deposited at the electrodes are not in a free state, and
their intrinsic energy is less than their energy in a free state,

though greater than their energy when combined in the electrolyte.

In fact, the ion in contact with the electrode is in a state which
when the deposit is very thin may be compared with that of

chemical combination with the electrode, but as the deposit in-

creases in density, the succeeding portions are no longer so in-

timately combined with the electrode, but simply adhere to it, and
at last the deposit, if gaseous, escapes in bubbles, if liquid, diffuses

through the electrolyte, and if solid, forms a precipitate.

In studying polarization we have therefore to consider

(1) The superficial density of the deposit, which we may call

t. This quantity a represents the number of electrochemical

equivalents of the ion deposited on unit of area. Since each

electrochemical equivalent deposited corresponds to one unit of
electricity transmitted by the current, we may consider <j as re-

presenting cither a surface-density of matter or a surface-density of

electricity.

(2} The electromotive force of polarization, which we may call /j.

This quantity p is the difference between the electric potentials

of the two electrodes when the current through the electrolyte
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is so feeble (.bat the proper resistance of the electrolyte makes no

sensible di (Terence between these potentials.

The electromotive force p at any instant is numerically equal

to the mechanical equivalent of the electrolytic process going on at

that instant which corresponds to one electrochemical equivalent of

the electrolyte. This electrolytic process, it must he remembered,

< *ists in the deposit of the ions on the electrodes, and the state

in which they are deposited depends on the actual state of the

surface of the electrodes, which may be modified by previous

deposits.

Hence the electromotive force at any instant depends on the

previous history of the electrode. It is, speaking very roughly,

a function of v, the density of the deposit, such that = when
a = 0, but p approaches a limiting value much sooner than <r docs.

The statement, however, that p is a function of a cannot be

considered accurate. It would be more correct to say tbat p is

a function of the chemical state of the superficial layer of the

deposit, and that this state depends on the density of the deposit

according to some law involving the time.

269.] (3) The third thing we must take into account is the

dissipation of the polarization. The polarization when left to itself

diminishes at a rate depending partly on the intensity of the

polarization or the density of the deposit, and partly on the nature

of the surrounding medium, and the chemical, mechanical, or thermal

action to which the surface of the electrode is exposed.

If we determine a time T such that at the rate at which

the deposit is dissipated, the whole deposit would be removed in

a time T, we may call T the modulus of the time of dissipation.

When the density of the deposit is very small, T is very large,

and may be reckoned by clays or months. When the density of

the deposit approaches its limiting value T diminishes very rapidly,

and is probably a minute fraction of a second. In fact, the rate

of dissipation increases so rapidly that when the strength of the

current is maintained constant, the separated gas, instead of con-

tributing to increase the density of the deposit, escapes in bubbles

as fast as it is formed.

270.] There is therefore a great difference between the state of

polarization of the electrodes of an electrolytic cell when the polari-

zation is feeble, and when it is at its maximum value. For instance,

if a number of electrolytic cells of dilute sulphuric acid with

platinum elect nules are arranged in series, and if a small electro-

VQX, j, *
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motive lone, such as that of one Daniell's eel I, be made to act

on the circuit, the electromotive force will produce a current of

exceedingly short duration, for after a very short time the elec-

tromotive force arising from the polarization of the cell will balance

that of the Daniell's cell.

The dissipation will be very small in the ease of so feeble a state

of polarization, and it will take place by a very slow absorption

of the gases and diffusion through the liquid. The rate of tins

dissipation is indicated by the exceedingly feeble current which

still continues to flow without any visible separation of gases.

If we neglect this dissipation for the short time during which

the state of polarization is set up, and if we call Q the total

quantity of electricity which is transmitted by the current during

this time, then if A is the area of one of the electrodes, and tr

the density of the deposit, supposed uniform,

Q - Ac.

If we now disconnect the electrodes of the electrolytic apparatus

from the Daniell's cell, and connect them with a galvanometer

capable of measuring 1 he whole discharge through it, a quantity

of electricity nearly equal to Q will be discharged as the polari-

zation disappears.

271.] Hence we may compare the action of this apparatus, which

is a Ibrin of Kilter's Secondary Pile, with that of a Leyden jar.

Both the secondary pile and the Leyden jar are capable of being

charged with a certain amount of electricity, and of being after-

wards discharged. During the discharge a quantity of electricity

nearly equal to the charge parses in the opposite direction. The
difference between the eliarge and the discharge arises partly from

dissipation, a process which in the case of small charges is very

slow, but which, when the charge exceeds a certain limit, becomes

exceedingly rapid. Another part of the difference between the charge

and the discharge arises from the fact that after the electrodes

have been connected for a time sufficient to produce an apparently

complete discharge, so that the current has completely disappeared,

if we separate the electrodes for a time, and afterwards connect

them, we obtain a second discharge in (he same direction as the

origiual discharge. This is called the residual discharge, and is a

phenomenon of the Leyden jar as well as of the secondary pile.

The secondary pile may therefore be compared in several respects

to a Leyden jar. There are, however, certain important differences.

The charge of a Leyden jar is very exactly proportional to the
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electromotive force of the charge, that is, to the difference of
potentials of the two surfaces, and the charge corresponding1 to unit

of electromotive force is railed the capacity of the jar, a constant

quantity. The corresponding* quantity, which may be called the

capacity of the secondary pile, increases when the electromotive

force increases.

The capacity of the jar depends on the area of (lie opposed
surfaces, on the distance between them, and on the nature of the

substance between them, but not on the nature of the metallic

surfaces themselves. The capacity of the secondary pile depends
on the area of the surfaces of the electrodes, hut not on the distance

between them, and it depends on the nature of the surface of the

electrodes, as well as on that of the fluid between them. The
maximum difference of the potentials of the electrodes in each

element of a secondary pile is very small compared with the maxi-
mum difference of the potentials of those of a charged Leyden jar,

so that in order to obtain much electromotive force, a pile uf many
elements must be used.

On the other hand, the superficial density of the charge in the

secondary pile is immensely greater than the utmost superficial

density of the charge which can be accumulated on the surfaces

of a Leyden jar, insomuch that Mr, C. F. Varley *, in describing

the construction of a condenser of great capacity, recommends a

series of gold or platinum plates immersed in dilute acid as prefer-

able in point of cheapness to induction plates of tinfoil separated

by insulating material.

The form in which the energy of a Leyden jar is stored up
is the state of constraint of the dielectric between the conducting

surfaces, a state which I have already described under the name
of electric polarization, pointing out those phenomenii attending

this state which are at present known, and indicating the im-

perfect state of our knowledge of what really takes place. See

Arts. G2, 111.

The form in which the energy of the secondary pile is stored

op is the chemical condition of the material stratum at the surface

of the electrodes, consisting of the ions of the electrolyte and the

substance of the electrodes in a relation varying from chemical

combination to superficial condensation, mechanical adherence, or

simple juxtaposition.

The seat of this energy is close to the surfaces of the electrodes,

* Specification of C. F. Varloy, 1 Electric Huk-graphx, &<:..' Jn»- 1&<30.

Y 2
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and not throughout the substance of the electrolyte, and the form

in which it exists may be called electrolytic polarization.

After studying the secondary pile in connexion with the Leyden

jar, the student should again compare the voltaic hattery with

some form of the electrical machine, such as that described in

Art 9
1 1

.

Mr. Varley hns lately* found that the capacity of one square

inch is from 175 to 542 microfarads and upwards for platinum

plates in dilute sulphuric acid, and that the capacity increases with

the electromotive force, being about 175 for 0.02 of a Daniell's

cell, and 542 for l.G Darnell's cells.

But the comparison between the Leyden jar and the secondary

pile may be carried still farther, as in the following experiment,

due to Buff t- It is only when the glass of the jar is cold that

it is capable of retaining a charge. At a temperature below 100°C

the glass becomes a conductor. If a test-tube containing mercury

is placed in a vessel of mercury, and if a pair of electrodes are

connected, one with the inner and the other with the outer portion

of mercury, the arrangement constitutes a Leyden ja** which will

hold a charge at ordinary temperatures. If the e)<?ctrodes are con-

nected with those of a voltaic battery, no current will pass as long

as the glass is cold, but if the apparatus is gradually heated a

current will begin to pass, and will increase rapidly in intensity as

the temperature rises, though the glass remains apparently as hard

as ever.

This current is manifestly electrolytic, foT if the electrodes are

disconnected from the hattery, and connected with a galvanometer,

a considerable reverse current passes, due to polarization of the

surfaces of the glass.

If, whilo the hattery is in action the apparatus is cooled, the

current is stopped by the cold glass as before, but the polarization

of the surfaces remains. The mercury may be removed, the surfaces

may be washed with nitric acid and with water, and fresh mercury

introduced. If the apparatus is then heated, the current of polar-

ization appears as soon as the glass is sufficiently warm to conduct it.

We may therefore regard glass at 100°C, though apparently a

solid body, as an electrolyte, and there is considerable reasou

to believe that in most instances in which a dielectric has a

slight degree of conductivity the conduction is electrolytic. The

* Proc. & S., Jan. 12, 1871-

t Annalea tkr Chemie ttnd Fharmatie, bd. ic. 257 (1854).
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existence of polarization may be regarded as conclusive evidence of

electrolysis, and if the conductivity of a substance increases as the

temperature rises, we hove good grounds for suspecting that it is

electrolytic.

On Constant Voltaic Elements.

272.] When a series of experiments is made with ;i voltaic

battery in which polarization occurs, the polarization diminishes

during the time that the current is not flowing, so that when

it begins to flow again the current is stronger than after it has

flowed for some time. If, on the other hand, the resistance of the

circuit is diminished by allowing the current to How through u

short shunt, then, when the current is again made to flow through

the ordinary circuit, it is at first weaker than its normal strength

on account of the great polarization produced by the use of the

short, circuit.

To get rid of these irregularities in the current, which are

exceedingly troublesome in experiments involving exact measure-

ments, it is necessary to get rid of the polarization, or at least

to reduce it as much as possible.

It does not appear that there is much polarization at the surface

of the zinc plate when immersed in a solution of sulphate of zinc

or in dilute sulphuric acid. The principal seat of polarization is

at the surface of the negative metal. When the fluid in which

the negative metal is immersed is dilute sulphuric acid, ii is seen

to Income covered with bubbles of hydrogen gas, arising from the

electrolytic decomposition of the fluid. Of course these bubbles,

by preventing the fluid from touching the metal, diminish the

surface of contact and increase the resistance of the circuit. But

besides the visible bubbles it is certain that there is a. thin coating

of hydrogen, probably not in a free state, adhering to the metal,

and as we have seen that this coating is able to produce an elec-

tromotive force in the reverse direction, it must necessarily diminish

the electromotive force of the battery.

Various plans have been adopted to get rid of this coating of

hydrogen. It may be diminished b> some extent by mechanical

means, such as stirring the liquid, or rubbing the surface of the

negative plate. In Smee's battery the negative plates are vertical,

and covered with finely divided platinum from which the bubbles of

hydrogen easily escape, and in their ascent produce a current of

liquid which helps to brush off other bubbles as they are formed,

A far more efficacious method, however, is to employ chemical
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means. These ate of two kinds. In the batteries of Grove and

Buiisen flu* in native plate is immersed in a fluid rich in oxygen,

and the hydrogen, instead of forming- a couting on the plate,

combines with this substance. In Grove's battery the plate is

of platinum immersed in strong nitric acid. In Bnnsen's first

battery it is of carbon in the same acid. Chromic acid is also used

for the same purpose, and has the advantage of being free from the

acid fumes produced by the reduction of nitric acid.

A different mode of getting rid of the hydrogen is by using

copper as the negative metal, and covering the surface with a coat

of oxide. This, however, rapidly disappears when it is used as

the negative electrode. To renew it Joule has proposed to make

the copper plates in the form of disks, half immersed m the liquid,

and to rotate them slowly, so that the air may act on the parts

exposed to it in turn.

The other method is by using as the liquid an electrolyte, the

cation of which is a metal highly negative to zinc.

In Daniell's battery a copper plate is immersed in a saturated

solution of sulphate of copper. When the current flows through

the solution from (he zinc le ihc cropper no hydrogen appears on

the copper plat;-, but copper is deposited on it. When the solution

is saturated, and the current is not too strong, the copper appears

to act as a true cation, the anion SO4 travelling towards the zinc.

When these conditions are not fulfilled hydrogen is evolved at

the cathode, hut immediately acts on the solution, throwing down

copper, and uniting with S 4 to form oil of vitriol. When this

is the case, the sulphate of copper next the copper plate is replaced

by oil of vitriol, the liquid becomes colourless, and polarization by

hydrogen gas again takes place. The copper deposited in this way

is of a looser and more friable structure than that deposited by true

electrolysis.

To ensure that the liquid in contact with the copper shall be

saturated with sulphate of copper, crystals of this substance must

be placed in the liquid close to the copper, so that when the solution

is made weak by the deposition of the copper, more of the crystals

may be dissolved.

We have seen that it is necessary that the liquid next the copper

should be saturated with sulphate of eopper. It is still more

necessary that the liquid in which the zinc is immersed should he

free from sulphate of copper. If any of this sa,lt makes its way

to the surface of the zinc it is reduced, and copper is deposited
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on the zinc. The zinc, copper, and fluid then form a little circuit

in which rapid electrolytic action goes on, and the zinc is eaten

away by an action which contributes nothing1 to the useful effect

of the battery.

To prevent this, the zinc is immersed either in dilute sulphuric

acid or in a solution of sulphate of zinc, and to prevent the solution

of sulphate of copper from mixing- with this liquid, the two liquids

are separated hy a division consisting of bladder or porous earl In n-

w;ire, which allows electrolysis to take place through it, but

effectually prevents mixture of the fluids hy visible currents.

In some batteries sawdust is used to prevent currents. The

experiments of Graham, however, shew that the process of diffusion

goes on nearly as rapidly when two liquids are separated by a

division of this kind as when they are in direct contact, provided

there are no visible currents, and it is probable that if a septum

is employed which diminishes the diffusion, it will increase in

exactly the same ratio the resistance of the element, because elec-

trolytic conduction i^ :i process (lie malbenialieal laws of which

have the same form as those of diffusion, and whatever interferes

with one must interfere equally with the other. The only differ-

ence is that diffusion is always going on, while the current flows

only when the battery is in action.

In all forms of Darnell's battery the final result is that the

sulphate of copper finds its way to the zinc and spoils the battery.

To retard this result indefinitely, SirW, Thomson* has constructed

Darnell's battery in the following form.

Fig. 21.

In each cell the copper plate is placed horizontally at the bottom

* Proc. & 8., Jim. 10,1871
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and a saturated solution of sulphate of zinc is poured over it. The
zinc is iu the form of a grating1 and is placed horizontal ly near Ihc

surface of the solution. A glass tube is placed vertically in the

solution with its lower end just above the surface of the copper

plate. Crystals of sulphate of copper arc dropped down this tube,

and, dissolving in the liquid, form a solution of greater density

than that of sulphate of zinc alone, so that it cannot get to the

zinc except by diffusion. To retard this process of diffusion, a

siphon, consisting of a glass tube stuffed with cotton wick, is

placed with one extremity midway between the zinc and copper,

and the other in a vessel outside the cell, so that the liquid is

very slowly drawn off near the middle of its depth. To supply

its place, water, or a weak: solution of sulphate of zinc, is added

above when required. In this way the greater part of the sulphate

of copper rising through the liquid by diffusion is drawn off by the

siphon before it reaches the zinc, and the zinc is surrounded by
liquid nearly free from sulphate of copper, and having a very slow

downward motion in the cell, which still further retards the upward
motion of the sidphate of copper. During the action of the battery

copper is deposited on the copper plate, and S04 travels slowly

through the liquid to the zinc with which it combines, forming

sulphate of zinc. Thus the liquid at the bottom becomes less dense

by the deposition of the copper, and the liquid at the top becomes
more dense by the addition of the zinc. To prevent this action

from changing the order of density of the strata, and so producing
instability and visible currents in the vessel, care must be taken to

keep the tube well supplied with crystals of sulphate of copper,

and to feed the cell above with a solution of sulphate of zinc suffi-

ciently dilute to be lighter than any other stratum of the liquid

in the cell.

Daniell's battery is by no means the most powerful in common
use. The electromotive force of Grove's cell is 192,000,000, of
Daniell's 107,900,000 and that of Bunsen's 188,000,000.
The resistance of Daniell's fell i- in -vh< :-nl -ivuter (ban tlinl of

Grove's or Bunsen's of the same size.

These defects, however, are more than counterbalanced in all

cases where exact measurement* are required, by the fact that
Daniell's cell exceeds every other known arrangement iu constancy
of electromotive force. K has also the advantage of continuing
in working order for a long time, and of emitting no gas.
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LINK A II ELECTRIC CURRENTS.

On Systems of Linear Conductors.

273.] Any conductor may be treated as a linear conductor if it

U arranged so that the current must always pass in the sunn- manner

between two portions of its surface which are called its electrodes.

For instancy a mass of metal of any form the surface of which ia

entirely eovered with insulating material except at two places, at

which the exposed surface of the conductor is in metallic contact

with electrodes formed of a perfectly conducting material, may be

treated as a linear conductor. For if the current be made to enter

at one of these electrodes and escape at the other the lines of tlow

will be determinate, and the relation between electromotive force,

current and resistance will be expressed by Ohm's Law, for the

current in every part of the mass will be a lineaT function of E.

But if there be more possible electrodes than two, the conductor

may have more than one independent current through it, aud these

may not be conjugate to each other. See Art. 282.

Ohm's Law.

274.] Let E be the electromotive force in a linear conductor

from the electrode A1
to the electrode At .

(See Art. on.) Let

C be the strength of the electric current along the conductor, that

is to say, let C units of electricity pass acrosu every section in

the direction A
x
A2

in unit of time, and let R be the resistance of

the conductor, then the expression of Ohm's Law is

E= CR. (')

Linear Conductors a rramjet/- in Hcri>:x.

275.] Let 4, A2
be the eleetrodes of the first conductor and let

the second conductor be placed with ouc of its electrodes in contact



§80 LINEAR ELECTRIC CURRENTS. [276.

with A2 , bo that the second conductor has for its electrodes A%i A^.
The electrodes of the third conductor may he denoted by A%
and Av

Let the electromotive force along each of these conductors he
denoted by El2t E^, EMt and so on for the other conductors.

Let the resistance of the conductors be

-^lit Rsii K<Mt &c -

Then, since the conductors are arranged in series so that the same
current C flows through each, we have by Ohm's Law,

E
l2 = ORn ,

E
25 = CRiii E^^CR^. (2)

I P E is the resultant electromotive force, and R the resultant

resistance of the system, we must have hy Ohm's Law,

E = GR. (3)

Now En+En+E,^
(
4

)

the sum of the separate electromotive forces,

= C(Rl2 4- ifgg 4-Ru)
by equations ( 2 ).

Comparing this result with (3), we find

R= Rn+ Rn +Rw (5)

Or, the resistance of a series of conductor* is the turn of ike resistances

of (he conductor& taken separately.

Potential at any Point of the Series.

Let A and C he the electrodes of the series, R a point between
them, a, c, and b the potentials of these points respectively. Let
R

x
be the resistance of the part from A to B, R

2
that of the part

from B to C} and R that of the whole from A to C, then, since

a—b = R^C, b—c — R^C, and a—c = RC,

the potential sit B is
Ri « + B l

c
6 - ^ f (6)

which determines the potential at B when those at A and C are

given.

Resistance of a Multiple Conductor.

276\] Li t a number of conductors ABZ, ACZ, ADZ he arranged

side by side with their extremities in contact with the same two
points A and Z. They are then said to be arranged in multiple

arc.

Let the resistances of these conductors be RJf R2f i?3 respect-
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ively, and the currents C2 ,
C
3 , and let the resistance of the

multiple conductor be B, and the total current C, Then, since the

potentials at A and Z are the same for all the conductors, they have

the same difference, which we may call E. We then have

E=C
1
J2, = C2 7?, = Cs

B
9
- CB,

but C = C
x 4 C

2+ C
3 ,

whence ._ = ^ + ~ + _. V)

Or, the reciprocal of the resistance of a Multiple conductor is tie sum

of the reciprocals of the component conductors.

If we call the reciprocal of the resistance of a conductor the

conductivity of the conductor, then we may say that the con-

ductivity of a multiple conductor is the sum of the conductivities of

the component conductors.

Current in any Branch of a Multiple Conductor.

From the equations of the preceding article, it appears that if

Cy is the current in any branch of the multiple conductor, and

R^ the resistance of that branch,

where C is the total current, and B is the resistance of the multiple

conductor as previously determined.

Longitudinal Resistance of Conductors of Uniform Section.

277.] Let the resistance of a cube of a given material to a current

parallel to one of its edges be p, the side of the cube being unit of

length, p is called the ' specific resistance of that material for unit

of volume.'

Consider next a prismatic conductor of the same material whoso

length is I and whose section is unity. This is equivalent to /

cubes arranged in series. The resistance of the conductor is there-

fore Ip.

Finally, consider a conductor of length I and uniform section s.

This is equivalent to s conductors similar to the last arranged in

multiple arc. The resistance of this conductor is therefore

8

When we know the resistance of a uniform wire we can determine
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tlit; specific resistance of the material of which it is inade if we can

measure its length and its section.

The sectional area of small wires is most accurately determined

by calculation from the length, weight, and specific gravity of the

specimen. The determination of the specific gravity is sometimes

inconvenient, and in such cases the resistance of a wire of unit

length and unit mass is used as the * specific resistance per unit of

weight.'

If r is this resistance, / the length, and m the mass of a w ire, then

m

Ott the Dimension* of the Quantities involved in these Equations.

278.] The resistance of a conductor is the ratio of the electro-

motive force acting on it to the current produced. The conduct-

ivity of the conductor is the reciprocal of this quantity, or in

other words, i he ratio of the run'en 1 to the electromotive force

producing it.

Now we know that in the electrostatic system of measurement
the ratio of a quantity of electricity to the potential of the con-

ductor on which it is spread is the capacity of the conductor, and
is measured by a line. If the conductor is a sphere placed in an
unlimited field, this line is the radius of the sphere. The ratio

of a quantity of electricity to an electromotive force is therefore a
line, hut the ratio of a quantity of electricity to a current is the

time during which the current flows to transmit that quantity.

Hence the ratio of a current to an electromotive force is that of a
line to a time, or in other words, it is a velocity.

The fact that the conductivity of a conductor is expressed in the

electrostatic system of measurement by a velocity may be verified

by supposing a sphere of radius r charged to potential F, and then
connected with the earth by the given conductor. Let the sphere

contract, so that as the electricity escapes through the conductor
the potential of the sphere is always kept equal to V. Then the
charge on the sphere is rV at any instant, and the current is

-ji
{r^)> but, since V is constant, the current is % F

t and the

electromotive force through the conductor is V.

The conductivity of the conductor is the ratio of the current to

the electromotive force, or -y , that is, the velocity with which the
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radius of the sphere must diminish in order to maintain the potential

constant when the charge is allowed to pass to earth through the

conductor.

In the electrostatic system, therefore, the conductivity of a con-

ductor is a velocity, and of the dimensions [IT'1
].

The resistance of the conductor is therefore of the dimensions

The specific resistance per unit of volume is of the dimension of

[T], and the specific conductivity per unit of volume is of the

dimension of [T" 1
].

The numerical magnitude of these coefficients depends only on

the unit of time, which is the same in different countries.

The specific resistance per unit of weight is of the dimensions

279.] We shall afterwards find that in the electromagnetic

system of measurement the resistance of a conductor is expressed

by a velocity, so that in this system the dimensions of the resist-

ance of a conductor arc \LT~X\.

The conductivity of the conductor is of course the reciprocal oi

The specific resistance per unit of volume in this system is of the

dimensions [M-1
], and the specific resistance per unit of weight

is of the dimensions [L'^T~ lM].

On. Linear Systems of Conductors in general.

280 ] The most general case of a linear system is that of n

points, 4, 4i . .A> connected together in pairs by

linear conductors. Let the conductivity (or reciprocal of the re-

sistance) of that conductor which connects any pair of points, say

A and 4., be called Kpq)
and let the current from Ap

to Aq
be C .

Let P and T he the electric potentials at the points A„ and A,

respectively, and let the internal electromotive force, if there be

any, along the conductor from A
f
to ^, be Epq

.

The current from A
p
to v/

fl

is, hy Ohm's Law,

Anion- these quantities we have the following sets of relations :

The conductivity of a conductor is the same in either direction,

or A
p,

as aw . y *

The electromotive force and the current are directed quantities
,

so that 3m=_^ }
and C„=-C,p

.
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Let Plt Pif ...Pn be the potentials at dp A2 , ... An respectively,

and let Qlf ... Q n be the quantities of electricity which enter
the system in unit of time at each of these points respectively.

These are necessarily subject to the condition of ' continuity'

Q1 + Q1 ..+#„ = 0, (4)

since electricity can neither be indefinitely accumulated nor pro-
duced within the system.

The condition of ' continuity 1
at any point A

p is

Q,=C,i+Cpt +Soc. + Cpn . (5)

Substituting the values of the currents in terms of equation

(1), this becomes

+ (K
Pt
Epl +bc.+Kpn $t>H). (6)

The symbol K
pp

does not oceur in this equation. Let us therefore
give it the value

Kpp = -(Kpl +Kn + &e. + A;
;1 ) ; (7)

that is, let K
pp

be a quantity equal and opposite to the sum of
all the conductivities of the conductors which meet in Ap . We
may then write the condition of continuity for the point Ap ,

A'
1,l
P

I
+Ar

|lS P!+&c . +Kpp
P
p+ kc. + KpnPm

= KpxEpl +8cc.+Kp%Fpa-Qp . (8)

By substituting' 1, 2, &c. n for p in this equation we shall obtain
n equations of the same kind from which to determine the »
potentials Plt P.2) &cM Pn .

Since, however, there is a necessary condition, (4), connecting the
values of Q, there will be only n — 1 independent equations. These
will be sufficient to determine the differences of the potentials of the
points, but not to determine the absolute potential of any. This,

however, is not required to calculate the currents in the system.
If we denote by B the determinant

Kn 1
X

13 , ....

D =
(9)

^(*—ite>—
and hy~£

pq) the minor of K
pq , we find for the value ot'P

p
-Pni

(P
p
-Pn) J) = {KnEn+ &c.- QJDfl+ (K21^ + &c.- Qjan + &c.

+ (^i^i+&c+A'4(lJS9n-Q
(r
)i>M+ &c. (10)

In the same way the excess of the potential of any other point,
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say Ag, over that of A n may be determined. We may then de-

termine the current between Ap and A
tl
from equation (1), and so

solve the problem completely,

281.] We shall now demonstrate a reciprocal property of any

two conductors of the system, answering to the reciprocal property

we have already demonstrated for statical electricity in Art. 88.

B
The coefficient of Q a

in the expression for l\ is
—ff-

. That of Qp

J)
in the expression for P

s
is -—2 •

Now D
pq

differs from Bw only by the substitution of the symbols

such as Eu for KM , But, by equation (2), these two symbols are

equal, since the conductivity of a conductor is the same both ways.

Hence Dp„
= Bw , {11)

It follows from this that the part of the potential at Ap arising

from the introduction of a unit current at A
Q

is equal to the part of

the potential at A^ arising from the introduction of a unit current

at A
p

,

We may deduce from this a proposition of a mure practical form.

Let A, B) C} D be any four points of the system, and let the

effect of a current Q, made to enter the system at A and leave it

at B}
be to make the potential at C exceed that at ]) by P. Then,

if an equal current Q he made to enter the system at V and leave

it at B, the potential at A will exceed that at B by the same

quantity P,

We may also establish a property of a similar hind relating to

the effect of the internal electromotive force Hr% , acting along- the

conductor which joins the points Ar and A, in producing an ex-

ternal electromotive force on the conductor from A
r
to A9> that is

to say, a dillerence of potentials Pp
—P

i
. For since

the part of the value of P
p
which depends on this electromotive

force is 1
T n . p

and the part of the value of P
g

is

iTherefore the coefficient of En in the value of P
p
— P

Q
is

i {D9r+Dwt
-BM-Lqr }.

(12)

This is identical with the coefficient of E,ta in the value of P.. — P,.
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If therefore an electromotive force E be introduced, acting- in the

conductor from A to if, and if this causes the potential at C to

exceed that at J) by P
t
then the same electromotive force E intro-

duced into the conductor from C to D will cause the potential at A
to exceed that at B by the same quantity P,

The electromotive force E may be that of a voltaic battery intro-

duced between the points named, care being- taken that the resist-

ance of the conductor is the same before and after the introduction

of the battery.

282.] If
'

Dr+Dv-D^-Dr = 0, (13)

the conductor A
t
,A

q
h said to be cod; /it/ate to A r Att and we have

seen that this relation is reciprocal.

An electromotive force in one of two conjugate conductors pro-

duces no electromotive force or current along- the other. We shall

find the practical application of this principle in the case of the

electric bridge.

The theory of conjugate conductors has been investigated by
Kirchhoff, who has stated the conditions of a linear system in the

following manner, in which the consideration of the potential is

avoided.

(1) (Condition of ' continuity.') At any point of the system the

sum of all the currents which flow towards that point is zero.

(2) In any complete circuit formed by the conductors the sum
of the electromotive forces taken round the circuit is equal to the

sum of the products of the current in each conductor multiplied by
the resistance of that conductor.

We obtain this result by adding equations of the form (1) for the

complete circuit, when the potentials necessarily disappear.

Heat Generated in the System.

283.] The mechanical equivalent of the quantity of heat gene-

rated in a conductor whose resistance is R by a current C in unit of

time is, by Art. 242, JH _^ ^
We have therefore to determine the sum of such quantities as

EC2 for all the conductors of the system.

For the conductor from A
p
to A

q
the conductivity is Kpti and the

resistance Bpti where K^ R^ _
| ^

The current in this conductor is, aceoiding to Ohm's Law,

%* = Z*Pp^P*>< (IB)
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We shall suppose, however, that the value of the current is not

that given by Ohm's Law, hut X
p7 , where

To determine the heat generated in the system we have to find

the sum of all the quantities of the form

or 2
{W+2^,(7wi;

j+ i?MrV}. (18)

Giving C
pij

its value, and remembering the relation between K
pq

and Ji
p ,

this becomes

2 (<?„+ 2Y„) -f i?M7V (19)

Now since both C and X must satisfy the condition of continuity

at 4, we have ^ _ Cpl + C^+lkc. + C^, (20)

Q Jll
= Xpl +^2+ &c.+XJJNJ (21)

therefore = Ypl+ Ypi+ &c. + Yrn . (22)

Adding together therefore all the terms of (19), we find

2(i?„X2
M) = 2P„ &+ 2W (23)

Now since R is always positive and Y2
is essentially positive, the

last term of this equation must he essentially positive. Hence the

first term is a minimum when Y is zero in every conductor, that is,

wben the current in every conductor is that given by Ohm's Law.

Hence the following theorem

:

284.] In any system of conductors in which there are no internal

electromotive forces the heat generated by currents distributed in

accordance with Ohm's Law is less than if the currents had been

distributed in any other manner consistent with the actual con-

ditions of supply and outflow of the current.

The heat actually generated when Ohm's Law is fulfilled is

mechanically equivalent to ^P
y Qi

, that is, to the sum of the

products of the quantities of electricity supplied at the different

external electrodes, each multiplied by the potential at which it is

supplied.

vol. 1. v



CHAPTER VII.

CONDUCTION IN THREE DIMENSIONS.

Notation of Electric Curreals,

285.] At any point let an element, of area dS be taken normal

to tlitj axis of and let Q units of electricity pass across this area

from the negative to the positive side in unit of time, then, if

-~ becomes ultimately equal to u- when dS is indefinitely diminished,
(t S

% is said to he the Component of the electric current in the direction

of x at the given point.

In the some way we may determine v and 10, the components of

the current in the directions ofy and z respectively.

286.] To determine the component of the current in any other

direction OR through the given point 0.

Let 1, m, n be the direction-cosines of OB, then cutting off from

the axes of x, y, z portions equal to

r r r

I m 11

respectively at A, B and C, the triangle ABC
will be normal to 07?,

The area of this triangle ABC will be

linn

and by diminishing r this area may be diminished without limit.

The quantity of electricity which leaves the tetrahedron ABCO
by the triangle ABC must be equal to that which enters it through

the three triangles OBC, OCA, and OAB.
r
2

The area of the triangle OBC is ^ — and the component of
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the current normal to its plane is a, so that the quantity wineh

enters through this triangle is i r
2

•

The quantities which enter through, the triangles OCA and OAB
respectively are v w

\ r
2 —. > and h r~— •

If y is the component of the velocity in the direction OR, then

the quantity which leaves the tetrahedron through ABC is

Since this is equal to the quantity which enters through the three

other triangles

j

1 • 1 1 2 t mi

multiplying by —3— » we get
T

y = lit+ + 1110. (1)

If we put «a + v2 + «fa = r2
,

and make V
t
m\ nr

such that

it — IT, v = !»'r s and a? = n'Y
;

then y = r +««'+ *#). (2)

Hence, if we define the resultant current as a vector whose

magnitude is r, and whose direction-cosines are F, mr

, and if

y denotes the current resolved in a direction making an angle $

with that of the residtant current, then

y = T COS
; (3)

shewing that the law of resolution of currents is the same as that

of velocities, forces, and all other vectors.

287.] To determine the condition that a given Burfaee may

be a surface of flow.

Let F{x,y,z) = \ (4)

be the equation of a family of surfaces any one of which is given by

making \ constant, then, if we make

d\* tfjij* M* 1
fgs

to
+

dj\ ~w (5)

the direction-cosines of the normal, reckoned in the direction in

which A increases, are

,.dk ,,</\ , T <r/\ ,,.v
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Hence, if y is the component of* the current normal to the surface,

= n\
\
U
da

+ V
dy ds 3

C
7 )

If y = there will be no current through the surface, and the

surface may he called a Surface of Flow, because the lines of motion

are iu the surface.

288.] The equation of a surface of How is therefore

dk dk dk A

da dy dz
(8)

If this equation is true for all values of A, all the surfaces of the

family will be surfaces of flow,

289.] Let there be another family of surfaces, whose parameter

is A', then, if these are also surfaces of flow, we shall have

dk* dk' dk'

da dy dz
(9)

If there is a third family of surfaces of" flow, whose parameter

is A", then
(ix

» dk"
+ W—r- = 0. (10)

dm '
" dy dz

Eliminating- between these three equations, u, 0, and tc disappear

together, and we find

dk

'('/

dk'

<h

dk"

dy

dk

dx

dX
da

J

dk"

dk

dk'

l.r

= 0;
dz

dz

or A"= </){A, A'); (12)

that is, A" is some function of A and A'.

290.] Now consider the four surfaces whose parameters are A,

A+ fiA, A', and A' + SA'. These four surfaces enclose a quadrilateral

tube, which we mnv call the tube 5A.fi A'. Since this tube is

bounded by surfaces across which there is no flow, we may call

it u Tube of Flow. 11' wr take any two ri<.rl i n n s arrows t!u' hiV,

the quantity which enters the tube at one section must be equal

to the quantity which leaves it at the other, and since this quantity

is therefore the same for every section of the lubr, let us call it

L bk , SA' where L is a function of A and A', the parameters which

determine the particular tube.
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291.] If bS denotes the section of a tube of flow by a plane

normal to z, we have by the theory of the change of the inde-

pendent variables,

fd\ dX _ ri\ dX-

dz dz dy

and by the delinitiou of the components of the current

nbS= Lbk.bk'. (14)

-**-)• (l3)

rT , fdk dk' dk dk\
Hence, u — IA-. j r — J-v

tty dz dz dy *

a» » 1 r fdk dk' dkdk\
Similarly v = L{~.— —,-

)

;

Vftjfe dx dx dz>

_ j ,dk dk' dk dk'

~ Y&? dy dy dm*

(15)

299.] It is always possible when one of the functions X or A' is

known, to determine the other so that L may be equal to unity.

For instance, let as take the plane ofyz r and draw upon it a series

of equidistant lines parallel to y, to represent the sections of the

family A' by this plane. In other words, let the function k' be

determined by the condition that when x = k'= z. If we then

make L = I, and therefore (when x = 0)

=judy
t

then in the plane {v = 0) the amount of electricity which passes

through any portion will be

ffv dy dz =Jjdk dk'. (16)

Having determined the nature of the sections of the surfaces of

flow by the plane of yz, the form of the surfaces elsewhere is

determined by the conditions (8) and (9). The two functions k

and A' thus determined are sufficient to determine the current at

every point by equations (15), unity being- substituted for L.

On Lines of Floto.

293.] Let a series of values of k and of k' be chosen, the suc-

cessive differences in each series being unity. The two series of

surfaces defined by these values will divide space into a system

of quadrilateral tubes through each of which there will be a unit

current. By assuming the unit sufficiently small, the details of

the current may be expressed by these tubes with any desired

amount of minuteness. Then if any surface be drawn cutting the
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system of tabes, the quantity of the current which passes through

this surface will be expressed by the number of tubes which cut it,

since each tube carries unity of current.

The actual intersections of the surfaces may be called Lines of

Flow. When the unit is taken sufficiently small, the number of

lines of flow which cut a surface is approximately equal to the

number of tubes of flow which cut it, so that we may consider

the lines of flow as expressing not only the direction of the current

but its strength, since each line of flow through a given section

corresponds to a unit current.

On Current-Sheets and Current-.Functions.

294.] A stratum of a conductor contained between two con-

secutive surfaces of flow of one system, say that of k\ is called

a Current-Sheet. The tubes of flow within this sheet are deter-

mined by the function A. If KA and \F denote the values of \ at

the points A and P respectively, then the current from right to

li'I't ncross siny lino drawn un the sheet frnni A to P is \ {— A. ; .

If AP be an element, ds, of a curve drawn on the sheet, the current

which crosses this element from right to left is

d\ j

us

This function A, from which the distribution of the current in

the sheet can he completely determined, is called the Current-

Funetion.

Any thin sheet of metal or conducting matter bounded on both

sides by air or some other non-conducting medium may be treated

as a current-sheet, in which the distribution of the current may

be expressed by means of a current-function. See Art. 647.

Equation of
1 Continuity?

295.] If we differentiate the three equations (15) with respect to

a?, y, z respectively, remembering that L is a function of A and A',

we find du dp dw
-j—V -j—I

—

j- = 0. (17
ax dy nz

The corresponding equation in Hydrodynamics is called the

Equation of ( Continuity.
1

The continuity which it expresses is

the continuity of existence, that is, the fact that a material sub-

stance cannot leave one part of space and arrive at another, without

going through the space between. It cannot simply vanish in the
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one place and appear in the other, but it must travel along a con-

tinuous path, so that if a closed surface l>e drawn, including the

one place and. excluding the other, a material substance in passing

from the one place to the other must go through the closed surface.

The most general form of the equation in hydrodynamics is

<*(p*0
+ 'VO +

f?{Pw) +
(h _ (is)

dx dg dz rft

where p signifies the ratio of the quantity of the substance to the

volume it occupies, that volume being in this case the diH'erential

element of volume, and {pn), (pv), and {pie) signify the ratio of the

quantity of the substance which crosses an element of area in unit

of time to that area, these areas being normal to the axes of to, y, and

z respectively, Tims understood, the equation is applicable to any

material substance, solid or fluid, whether the motion be continuous

or discontinuous, provided the existence of the parts of that sub-

stance is continuous. If anything, though not a substance, is

subject to the condition of continuous existence in time and space,

the equation will express this condition. In other parts of Physical

Science, as, for instance, in the theory of- electric and magnetic

(plant it it s, equations of a similar form occur. We shall call such

equations ' equations of continuity' to indicate their form, though

we may not attrihute to these quantities the properties of matter,

or even continuous existence in time and space.

The equation (17), which we have arrived at in the case of

electric currents, is identical with (18) if we make p = 1, that is,

if we suppose the substance homogeneous and incompressible. The

equation, in the ease of fluids, may also be established by either

of the modes of proof given in treatises on Hydrodynamics. In

one of these wo truce the euursc and the deformation of a certain

element of the fluid as it moves along. In the other, we fix: our

attention on an element of space, and take account of all that

enters or leaves it. The former of these methods cannot be applied

to electric currents, as we do not know the velocity with which the

electricity passes through the body, or even whether it moves in

the positive or the negative direction of the current. All that we

know is the algebraical value of the quantity which crosses unit

of area in unit of time, a quantity corresponding to {pn) in the

equation (18). We have no means of ascertaining the value of

either of the factors p or «, and therefore we cannot fnllmv a par-

ticular portion of electricity in its course through the body. The

other method of investigation, in which we consider what passes
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through the walls of an element of volume, is applicable to electric

currents, and is perhaps preferable in point of form to that; which

we have given, but as it may be found in any treatise on Hydro-

dynamics we need not repeat it here.

Quan tity of Electricity which passes through a given Surface.

296.] Let r be the resultant current at any point of the surface.

Let dS be an element of the surface, and let e be the angle between

r and the normal to the surface, then the total current through

the surface will be ff
If

rcoserftf,

the integration being extended over the surface.

As in Art. 21, we may transform this integral into the form

Jam*! -///(£ + ci«)

in the case of any closed surface, the limits of the triple integration

being those included by the surface. This is the expression for

the total efflux from the closed, surface. Since in all cases of steady

currents this must be zero whatever the limits of the integration,

the quantity under the integral sign must vanish, and we obtain

in this way the equation of continuity (17).



CHAPTER VIIT.

RESISTANCE AND CONDUCTIVITY IN THREE DIMENSIONS.

On Ike most General Relations between Current and Electro-

am/ in: Fore.

297.] Let the components of the current at any point be u, v, to.

Let the components of the electromotive force he X, Y, Z.

The electromotive force at any point is the resultant force on

a unit of positive electricity placed at that point. It may arise

(1) from electrostatic action, in which case if V is the potential,

r—f. w
(W uf/ az

or (2) from electromagnetic induction, the laws of which wc shall

afterwards examine; or (3) from thermoelectric or electrochemical

action at the point itself, tending to produce a current in a given

direction.

We shall in general suppose that X, Y, Z represent the com-

ponents of the actual electromotive force at the point, whatever

be the origin of the force, but we shall occasionally examine the

result of supposing it entirely due to variation of potential.

By Ohm's Law the current is proportional to the electromotive

force. Hence X, Y, Z must be linear functions of u, v, », We
may therefore assume as the equations of Resistance,

X= it
l»+Q3 y+ i>

2 a>, \

Y= Psu+Rtv+Q^A (2)

Z = Q,u +Pl
v-irRs w.

)

We may call the coefficients R the coefficients of longitudinal

resistance in the directions of the axes of coordinates.

The coefficients P and Q may be called the coefficients of trans-

verse resistance. They indicate the electromotive force in one

direction required to produce a current in :t different direction.
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Tf we were at liberty to assume that a solid body may be treated

as a system of linear conductors, then, from the reciprocal property

(Art. 281) of any two conductors of a linear system, we might shew

that the electromotive force along; z required to produce u unit current

parallel to t/ must be equal to the electromotive force along; y re-

quired to produce a unit current parallel to z. This would shew

that P
x
= Q lt and similarly we should find P

z
= Q,,, and P3

= Qa .

When these conditions are satisfied the system of coefficients is said

to he Symmetrical. When they are not satisfied it is called a

Skew system.

We have great reason to believe that in every actual case the

system is symmetrical, but we shall examine some of the con-

sequences of admitting the possibility of a skew system.

298 ] The quantities u, v, w may be expressed as linear functions

of X, }. '/, by a system of equal i. ms, winch we may call liquations

of Conductivity,

% = r
1J+ p<tY+ q.1 Z> \

v = fhX+r2 Y+]h Z, (3)

to — ptX+ &Y+ r3 #j )

wc may call the eoHiicicnts /• the coefficient* of Longitudinal con-

ductivity, and p and q those of Transverse conductivity.

The coefficients of resistance are inverse to those of conductivity.

This relation may be defined as follows :

Let [PQJi] be the determinant of the coefficients of resistance,

and \_pqr\ that of the coefficients of conductivity, then

[PQli] = PXP2P9+ ^i^^+^/^^-P^^-^^/^-^^^, (4)

[pqr] = pxp%p%+ ft ft + /*! f, r
3
- Pl <h r

,
-pi q2 rs~p9 qa r^ (5)

[PQR] [pqr] = I, (s)

[_PQIt] Pl = (P.
2
P3-QM, [pqr] P

x
= {p,p,- qi rl)t (7)

&c.

The other equations may be formed by altering 1 he symbol*
P> Q> & P> *t* f» an<l the suffixes 1, 2. 3 in cyclical order.

Pate of Generation of Heat,

209.] To find the work done by the current in unit of time
in overcoming resistance, and ho generating heat, we multiply the
components of the current by the corresponding components of the
electromotive force. We thus obtain the following expressions for

IF, the quantity of work expended in unit of time :

i
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=n
t
u 2 + !t.r + R* «f2 + (^i + Q\)w + (A+ + (P3+ Q») i (9 )

= r
1
X^^ + r^+C/Jl + ?l)^+ C/-'2+^+(A+ ?3)^ (10)

By a proper choice of axes, either of the two latter equations may

bo deprived of the terms involving the products of u, v, w or of

X, Yj Z, The system of axes, however, which reduces W to the form

R^+ R^v^+R^w2

is not in genera] the same as that which reduces it to the form

r^ +r^+ r^Z2
.

It is only when the coefficients Plf JP4 ,
P3

are equal respectively

to QX1 Q2 , Q3
that the two systems of axes coincide.

If with Thomson * we write

P = S+T, Q = S-T;l (n)
and p = s + t, q — a — S

then we have

[PQR] = MiBi
R

s
+2S

l
S
2
S3
-S*R

l
-S.*R.i-S.*R3

j

and [PQR] f| = + 5PX»
j[i^^r^+S^-i^, I (13)

[PQiJ] *, = -RV
T

X + 8,T, +S3 T,. )

If therefore we cause 6\, S2J 53 to disappear, ^ will not also dis-

appear unless the coefficients 2
1

are zero.

Condition of Stability.

300,] Since the equilibrium of electricity is stable, the work-

spent in maintaining the current must always he positive. The

conditions that, W must be positive are that the three coefficients

Rlt R2> if3, and the three expressions

must all be positive.

There arc similar conditions for the coefficients of conductivity.

• Trttn*. R. S. Edin.. 1853-i,
i>.

165.
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Equation of Continuity in a Homogeneous Medium.

301.] If we express the components of the electromotive force

as the derivatives of the potential V
t
the equation of continuity

^1 + ^ +^ = (15)
ax ay dz

becomes in a homogeneous medium

aw d'V d°-r , d*r d*v d*r , ,

If the medium is not homogeneous there will he terms arising1

from the variation of the coefficients of conductivity in passing

from one point to another.

This equation corresponds to Laplace's equation in an isotropic

medium.

302.] If we put

[rs] = r
J

r,
i r1+2sl

s,
i
3s~r^l

--r3^-r3
s3

2
, (17)

and [A/i\= A
l
A2A^+2B1Bi

/l-A
l
B

1

2 -AiB^—AaB3
i
, (18)

where [rs] A^ = r^sf, \

[ri\B1 = #s *s-r1 «„[ (lfl)

and so on, the system A, B will be inverse to the system r, s
} and

if we make

A^ + Atf** A<
i
zi + 2B1

yz+2B
2 zx+ 2B;i

xy = [AB]p*
} (20)

we shall find that

c 1

(21)

is a solution of the equation.

In the case in which the coefficients T are zero, the coefficients A
and B become identical with B and S. When /"exists this is not

the ease.

In the case therefore of electricity flowing out from a centre in an

infinite homogeneous, but not isotropic, medium, the equipotential

surfaces are ellipsoids, for each of which p is constant. The axes of

these ellipsoids are in the directions of the principal axes of con-

ductivity, and these do not coincide with the principal axes of

resistance unless the system is symmetrical.

By a transformation of this equation we may take for the axes

of*, g, z the principal axes of conductivity. The coefficients of tin

forms 4 and B will then be reduced to zero, and each coefficient
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of the form A will bo the reciprocal of the corresponding coeffi-

cient of tho form r. The expression for p will bo

?! + ^ + ?! = ^L. (22)

*i H H W3

303.] Tlie theory of the complete system of equations of resist-

ance and of conductivity is that of linear functions of three vari-

ables, and it is exemplified in the theory "I' Si rains and in other

parts of physics. The most appropriate method of treating it is

that hy which Hamilton and Tait treat a linear and vector function

of a vector. "We shall not, however, expressly introduce Quateruioo

notation.

The coefficients Tu T.it T}
may be regarded as the rectangular

components of a vector T, the absolute magnitude and direction

of which are fixed in the body, and independent of the direction of

the axes of reference. The same is true of i
l} (.,, f.., which are the

components of another vector t.

The vectors T and t do not in general coincide in direction.

Let us now take the axis of z so as to coincide with the vector

T, and transform the ecpiations of resistance accordingly. They

will then have the form

X= i?j u + S.A
v +S.2 w-Tv, \

F = % u + ILv + S1
w + TuA (23)

Z — S^n + SiV + Iijv.
'

It appears from these equations that we may consider the elec-

tromotive force as the resultant of two forces, one of them depending

only on the coellieictits A
1

and \ and the other depending on Tah'W.

The part depending on R and S is related to the current in the

same way that the perpendicular on the tangent plane of an

ellipsoid is related to the radius vector. The other part, depending

on T, is equal to the product of T into the resolved part of the

current, perpendicular to the axis of T, and its direction is per-

pendicular to T and to the current, 1>eing always in the direction m
which the resolved part of the current would lie if turned !M)" in

the positive direction round 1\

Considering the current and T as vectors, the part of the

electromotive force due to T ia the vector part of tho product,

Tx current.

The coefficient T may be called the Rotatory coefHcienl. We

• See Thoranon imd Tait*s Natural Philosophy. J 154.
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have reason to believe that it does not exist in any known sub-

stance. It should he found, if anywhere, in magnets, which have

a polarization in one direction, probably dxie to a rotational phe-

nomenon in the substance.

304.] Let us next consider the general characteristic equation

of F,

d , dF dF dF. d , dV dF dF,
+ P* dy

+ * iff)
+ * (* * + r

« * +* * )

d , dF dF 4K

where the coefficients of conductivity pt gt r may have any posit ive

values, continuous or discontinuous, at any point of space, and F
vanishes at infinity.

Also, let a, l>, c be three functions of *, y} 2 satisfying the condition

da db dc

+ (25)

dF dF dF
and let a^r.-^+p^+^+n,

dF dF tir
6 =^ + r*^ +^Tz

+v> (26)

dF dF dF
C =^d? + Kdj +r

*dz
+W -

Finally, let the triple-integral

W= [if

{

2 + RZ
P +Rs

c*

+ + Qi) t>c+ (P-2+ Qt) <?« + C^3 + Qs) « fi
) fafyfc (27)

be extended over spaces bounded as in the enunciation of Art, 97,

where the coefficients P, Q, R are the coefficients of resistance.

Then W will have a unique minimum value when a, b} c aie such

that v, w are each everywhere zero, and the characteristic equation

(24) will therefore, as shewn in Art, 98, have one and only one

solution.

In this case W represents the mechanical equivalent of the heat

generated by the current in the system in unit of time, and we have

to prove that there is one way, and one only, of making thie heat

a minimum, and that the distribution of currents (abc) in that case

is that which arises from the solution of the characteristic equation

of the potential F.

The quantity W may be written in terms of equations (25) and (26),
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.„ fffl dV
'
l dV * ,/r

+r
*di

jvar
,

jvdF , .dVdV), , ,

+ /jff{R*& +RJ v* + J?3
2

+(A+ + (A+ 6*)**+(A + »f

}

Since 4. + = 0, (20)
(Mr tfy <&

the third term of W vanishes within the limits.

The second term, being the rate of conversion of electrical energy

into heat, is also essentially positive, lis minimum vulue is zero,

and this is attained only when u, p, and w are everywhere zero.

The value of W is in this case reduced to the first term, and is

then a minimum and a unique minimum.

305.] As this proposition is of great importance in the theory of

electricity, it may be useful to presrnt the following pr<>"f <>(' t In

•

most general case in a form free from analytieal operations.

Let us consider the propagat ion of electricity through a conductor

of any form, homogeneous or heterogeneous.

Then we know that

(1) If we draw a line along the path and in the direction of

the electric current, the line must pass from places of high potential

to places of low potential.

(2) If the potential at every point of the system he altered in

a given uniform ratio, the currents will be altered in the same ratio,

according to Ohm's Law.

(3) If a certain distribution of potential gives rise to a certain

distribution of currents, and a second distribution of potential gives

rise to a second distribution of currents, (lien a third distribution in

which the potential is the sum or difference of those in the first

and second will give rise to a third distribution of currents, such

that the total current passing through a given finite surface in the

third case is the sum or difference of the currents passing through

it in the first and second cases. For, by Ohm's Law, the additional

current due to an alteration of potentials is independent of the

original current due to the original distribution of potentials.

(4) If the potential is constant over the whole of a closed surface,



352 HESISTANCE AND CONDUCTIVITY. [3°5-

and if there are no electrodes or intrinsic electromotive forces

within it, then there will be no currents within the closed surface,

and the potential at any point within it will he equal to that at the

surface.

If there are currents within the closed surface they must either

be closed curves, or they must begin and end either within the

closed surface or at the surface itself.

Uut since the current must pass from places of high to places of

low potential, it cannot flow in a closed curve.

Since there are no electrodes within the surface the current

cannot, begin or end within the closed surface, and since the

potential at all points of the surface is flu- >amo, there can be

no current along lines passing from one point of the surface to

another.

Hence there are no currents within the surface, nml tln'ivlWi:

there can be no difference of potential, as such a difference would

produce currents, and therefore the potential within the closed

surface is everywhere the same as at 1 lie surface.

(5) If there is no electric current through any part of a closed

surface, and no electrodes or intrinsic electromotive forces within

the surface, there will be no currents within the surface, and the

potential will be uniform.

We have seen that the currents cannot form closed curves, or

begin or terminate within the surface, and since by the hypothesis

they do not pass through the surface, there can be no currents, and

therefore the potential is constant.

(6) If the potential is uniform over part of a closed surface, and

if there is no current through the remainder of the surface, the

potential within the surface will be uniform for the same reasons.

(7) If over part of the surface of a body the potential of every

point is known, and if over the rest of the surface of the body the

current passing through the surface at each point is known, then

only one distribution of potentials at points within the body can

exist.

For if there were two different values of the potential at any

point within the body, let these be f\ in the first ease and V
%

in

the second case, and let us imagine a third case in whieh the

potential of every point of the body is the excess of potential in the

first ease over thai in the second. Then on that part of the surface

for whieh the potential is known the potential in the third case will

be zero, and on that part of the surface through which the currents
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arc known the currents in the third case will he zero, so that by

(6) the potential everywhere within the surface will be zero, or

there is no excess of Vx over F2 , or the reverse. Hence there is

only one possible distribution of potentials. This proposition is

true whether the solid he bounded by one closed surface or by
several

.

On the Approximate Calculation of Ike Resistance of a Conductor

of a given Form.

306.] The conductor here considered lias its surface divided into

three portions. Over one of these portions the potential is main-

tained at a constant value. Over a second portion the potential has

a constant value different fr 1 1 u first. The whole nfthc lemaimhr

of the surface is impervious to electricity. We may suppose the

< nixlitions of the first and second portions to be fulfilled by applying

to the conductor two electrodes of perfectly conducting material,

and that of the remainder of the surface by coating it with per-

fectly non-conducting material.

Under these circumstances the current in every part of the

conductor is simply proportional to the ditlerenee between the

potentials of the electrodes. Calling this dine renee the electro-

motive force, the total current from the one electrode to the other

is the product of the electromotive force by the conductivity of the

conductor as a whole, and the resistance of the conductor is the

reciprocal of the conductivity.

It is only when a conductor is approximately in the circumstances

above defined that it ean be said to have a definite resistance, or

conductivity as a whole. A resistance coil, consisting of a thin

wire terminating in large masses of copper, approximately satisfies

these conditions, for the potential in the massive electrodes is nearly

constant, and any differences of potential in different points of the

same electrode may be neglected in comparison with the difference

of the potentials of the two electrodes.

A very useful method of calculating the resistance of such con-

ductors has been given, so far as I know, for the first time, by

the Hon, J. W. Strutt, in a paper on the Theory of Resonance*.

It is founded on the following considerations.

If the specific resistance of any portion of the conductor be

changed, that of the remainder being unchanged, the resistance of

von. I.

• Phil 7V<iw>.. 1871, p. 77. &» Art. 102.

a a
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the whole conductor will be increased if that of the portion is

increased, and diminished if that of the portion be diminished.

This principle may he regarded as self-evident, but it may easily

be shewn that the value of the expression for the resistance of a

system of conductors between two points selected as electrodes,

increases as the resistance of each member of the system in-

creases.

It follows from this that if a surface of any form be described

in the suhstance of the conductor, and if we further suppose this

surface to be an infinitely thin sheet of a perfectly conducting

substance, the resistance of the conductor as a whole will be

diminished unless the surface is one of the equipotential surfaces

in the natural state of the conductor, in which case no effect will

be produced by making it a perfect conductor, as it is already in

electrical equilibrium.

If therefore we draw within the conductor a series of surfaces,

the first of which coincides with the first rleelrodc, and the h.<\

with the second, while the intermediate surfaces are bounded by

the non-conducting surface and do not intersect each other, and

if we suppose each of these surfaces to be an infinitely thin sheet

of perfectly conducting matter, we shall have obtained a system

the resistance of which is certainly not greater than that of the

original conductor, and is equal to it only when the surfaces we

have chosen are the natural equipotential surfaces.

To calculate the resistance of the artificial system is an operation

of much less difficulty than "the original problem. For the resist-

ance of the whole is the sum of the resistances of all the strata

contained between the consecutive surfaces, and the resistance of

each stratum can be found thus :

Let dS be an element of the surface of the stratum, » the thick-

ness of the stratum perpendicular to the element, P the specific

resistance, E the difference of potential of the perfectly conducting

surfaces, and dC the current through dS, then

dC=E^-dSt (0
p V

and the whole current through the stratum is

C=Eff—dSf
(2)

JJ pv

the integration l>eing extended over the whole stratum bounded by

the non-conducting surface of the conductor.
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Hence the conductivity of the stratum is

and the resistance of the stratum is the reeiprocal of this quantity.

If the stratum be that bounded by the two surfaces for which
the function F lias the values J1* and F+dF respectively, then

dF r*$&* ,<IF* ,dF^i
T = +(#)+(*)] <<)

and the resistance of the stratum is

(IF
1 M
- sjFdS
P

To find the resistance t.f the whole artificial conductor, we have
only to integrate with respect to and we find

„ C dF

The resistance R of the conductor in its natural state is greater
than the value thus obtained, unless all the surfaces we have chosen
are the natural equipotential surfaces. Also, since the true value
of R is the absolute maximum of the values of i?, which can thus
be obtained, a small deviation of the chosen surfaces from the true

equipotential surfaces will produce an error of R which is com-
paratively small.

This method of determining; a lower limit of the value of the
resistance is evidently perfectly general, and may be applied to

conductors of any form, even when p }
the specific resistance, varies

in any manner within the conductor.

The most familiar example is the ordinary method of determining
the resistance of a straight wire of variable section. In this case

the surfaces chosen are planes perpendicular to the axis of the
wire, the strata have parallel faces, and the resistance of a stratum
of section S and thickness d.s is

and that of the whole wire of length j is

m
where 5' is the transverse section and is a function of

a a 2
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This method in the ease of wires whose section varies slowly

with the length gives a result very near the truth, but it is really

only a lower limit, for the true resistance is always greater than

this, except in the case where the section is perfectly uniform.

307.] To find the higher limit of the resistance, let us suppose

a surface drawn in the conductor to be rendered impermeable to

electricity. The effect of this must be to increase the resistance of

the conductor unless the surface is one of the natural surfaces of

Ilow. By means of two systems of surfaces we can form a set of

tubes which will completely regulate the flow, and the effect, if

there is any, of this system of impermeable surfaces must be to

increase the resistance above its natural value.

The resistance of each of the tubes may be calculated by the

nK-thml already given for a line wire, and the resistance of the

whole conductor is the reciprocal of the sum of the reciprocals of

the resistances of all the tubes. The resistance thus found is greater

than the natural resistance, except when the tubes follow the

natural lines of flow,

In the case already considered, where the conductor is in the

form of an elongated solid of revolution, let ns measure x along the

axis, and let the radius of the section at any point be b. Let one

set of impermeable surfaces be the planes through the axis for each

of which <j> is constant, and let the other set be surfaces of revolution

for which ^2 — (9)

where i/r is a numerical quantity between and 1

.

Let us consider a portion of one of the tubes bounded by the

surfaces
<f>
and 4>+ d(j>, and $+3$, as and x + /f*.

The section of the tube taken perpendicular to the axis is

If be the angle which the tube makes with the axis

tun (11)

The true length of the element of the tube is <Lr seed, and its

true section is
^ J2^ C0B dy

so that its resistance is

2o_-^— see**- 2o—— +*-V (12)

Let £«j*§n **d Ji =Jptt\ {13)
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the integration being- extended over the whole length,, x, of the

conductor, then llu: resistance of the tube dty dty is

and its conductivity is

2(A+ yjf£)

To find the conductivity of the whole conductor, which is the

sum of the conductivities of the separate tubes, we must integrate

this expression between = and <p = 2tt, and between V —
and 1^ = 1 . The result is

which may be less, but cannot be greater, than the true con-

ductivity of the conductor.

AVhen —- is always a small quantity will also be small, and we

may expand the expression for the conductivity, thus

The first term of this expression, , is that which we should
A.

have found by the former method as the superior limit of the con-

ductivity. Hence the true conductivity is less than the first term

but greater than the Whole series. The superior value of the

resistance is the reciprocal of this, or

A" ;

If, besides supposing the flow to be guided by the surfaces ^ and

iff, we had assumed that the flow through each tube is proportional

to d\(f dtp, we should have obtained as the value of* the resistance

under this additional constraint

jr=l{A+\ii)> (17)

which is evidently greater than the former value, as it ought to 1)0,

on aceount of the additional constraint. In Mr. Strutt's paper this

is the supposition made, and the superior limit of the resistance

there given has the value (IT), which is a little greater than that

winch we have obtained in (Hi).



358 RESISTANCE AND CONDUCTIVITY, [3°8.

308.] We shall now apply the same method to find the correction

which must be applied to the length of a cylindrical conductor of

radius a when its extremity is placed in metallic contact with a

massive electrode^which we may suppose of a ditlcrent metal.

For the lower limit of the resistance we shall suppose that an

infinitely thin disk of perfectly conducting matter is placed between

the end of the cylinder and the massive electrode, so as to bring

the end of the cylinder to one and the same potential throughout.

The potential within the cylinder will then be a function of its

length only, and if wt* supple the i-urfaee of the electrode whore

the cylinder meets it to be approximately plane, and all its dimen-

sions to be large compared with the diameter of the cylinder, the

distribution of potential will be that due to a conductor in the form

of a disk placed in an infinite medium. See Arts. 152, 177.

If E is the difference of the potential of the disk from that of

the distant parts of the electrode, C the current issuing from the

surface of the disk into the electrode, arid p the specific resistance

of the electrode, p'C=iaE. (18)

Hence, if the length of the wire from a given point to the

electrode is L
}
and its specific resistance p, the resistance from that

point to any point of the electrode nut near the juuetiuu id

j>
L 9*

and this may be written

mmJL^.JCm 09)

where the second term within brackets is a quantity which must

be added to the length of the cylinder or wire in calculating its

resistance, and this is certainly too small a correction.

To understand the nature of the outstanding error we may
observe, that whereas we have supposed the flow in the wire up

to the disk to be uniform throughout the section, the flow from

the disk to the electrode is not uniform, but is at any point in-

versely proportional to the minimum chord through that point. In

the actual ease the flow through the disk will not be uniform,

but it will not vary so much from point to point as in this supposed

case. The potential of the disk in the actual ease will not he

uniform, but will diminish from the middle to the edge.

309,] We shall next determine a quantity greater than the true

resistance by constraining the Ihuv through Ihe disk to lie uniform
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at every point. We may suppose electromotive forces introduced

for tliis purpose acting- perpendicular to the surface of the disk.

The resistance within the wire will be the same as before, but

in I hi' eleetrode the rate of gen era t inn of heat will he the airfare-

integral of the product of the flow into the potential. Tho rate of

Q
lluw at any point is — , and the potential is the same as that of

an electrified surface whose surface-density is <r, where

t*»J3f. (20)

p being the specific resistance.

We have therefore to determine the potential energy (,t the

electrification of the disk with the uniform surface-density «r.

The potential at the edge of a disk of uniform density a is easily

found to be 4<kt. The work done in adding a strip of breadth

da at the circumference of the disk is 2 -na <rtia . 4 a <r, and the

whole potential energy of tho disk is the integral of this,

or f=^««. (20

In the case of electrical conduction the rate at which work is

done in the electrode whose resistance is lif is

p

whence, by (20) and (21),

and the correction to be added to the length of the cylinder is

4 8— — a,

p 3tt

this correction being greater than the true value. The true cor-
t

rection to be added to the length is therefore — ait, where n is a

number lying between - and — , or between 0.785 and 0.8 19.

Mr. Strutt, by a second approximation, has reduced the superior

limit of n to 0.8282.



CHAPTER IX.

CONDUCTION' THROUGH HETKKOlJENEOfS MEDIA.

On the Conditions to be Fulfilled at the Surface of Separation

between Tioo Conducting Media.

310.] There are two conditions which the tlt*f ribution of currents

must fulfil in general, the condition that the potential must be

continuous, and the condition of ' continuity' of the electric currents.

At the surface of separation between two media the first of these

conditions requires that the jiotentials at t\vn points mi opposite

sides of the surface, but infinitely near each other, shall be equal.

The potentials arc here understood to be measured by an elec-

trometer put in connexion with the given point by means of an

electrode of a given metal . If the potentials are measured by the

method described in Arts. 222, 246, where the electrode terminates

in a cavity of the conductor filled with air, then the potentials at

contiguous points of different metals measured in this way will

differ by a quantity depending on the temperature and on the

nature of the two metals.

The other condition at the surface is that the current through

any element of the surface is the same when measured in either

medium.

Thus, if V1 and are the potentials in the two media, then at

any point in the surface of separation

and if ttlr vlt wv
and are *ne components of currents in the

two media, and m, n .the direction-cosines of the normal to the

surface of separation,

ity I+ Wj m +wx
n — w3 1 +#s m+w2 «. (2)

In the most general case the components u, v, w are linear



sl'KFACl-MJUXmTLON^ 801

functions of the derivatives of V, the forms of which tire jriven in

the equations
u = ^ x+fc y+ fo|
v = q3x+ (3)

w = p2X+ qx
Y+ TgZ,}

where X, Y, Z are the derivatives of V with respect to x, t

respectively.

Let us take the ease of the surface which separates a medium

having these coefficients of conduction from an isotropic medium

having a coefficient of conduction equal to r.

Let X'
t
Y\ Z' be the values of X, Y, Z in the isotropic medium,

then we have at the surface

or Xdw+ Ydy +Z,k = X'dx+ Y'dy+ Z'<kt (5)

when I dx+ m (jjr+ J*m•= 0, ( C

)

This condition gives

J'=J+4*<r7, far+4rri = Z+ 4 tt <r n, (7)

where o- is the surface-density.

We have also in the isotropic medium

% = rX\ V
r=rY'

t
0m rZ\ (8)

and at the boundary the condition of flow is

u'l+ ifm + utn = u I+ vm+ wn, (9)

or r [iX+ taY+ nZ+ 4 % a)

= l(t
x
X+pzY+ffrZ) + m(ftX+ px

Z) + n(pAX+ q, Y+ r^Z), (10)

whenee

4 7T (r r = (/ (r
2
— r) + wft 4- «A>) ^+ (^Ja+ "l

('a

—

J
) + >"/i)

}

+ + W-Pl+ * (r3- r )) (
1 1

)

The quantity a represents the surface-density of the ehar^r

on the surface of* separation. In crystallized and organized sub-

stances it depends on the direction of the surface as well as on

the force perpendicular to it. In isotropic substances the coeffi-

cientsp and q are zero, and the coefficients r are all equal, so that

4** = (^-- l)(lX+mY+nZ), (12)

where r
x
is the conductivity of the substance, f that of the external

medium, and /, w, n the direction-cosines of the normal drawn

towards the medium whose conductivity is r.

When both media are isotropic the conditions may he greatly
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simplified, tor if fr is the specific resistance per unit of volume, then

1 tr. _ 1
to — - — —— > (i3)

and if i- is the normal drawn at any point of the surface of separation

IVmii ihe lirst medium towards the second, the conduction of con-

tinuity is
j_ dl\ _ J_ di\

^ 14
>

h
x

dv k.£ dv

If
1
and 2 are the angles which the lines of flow in the first and

second media respectively make with the normal to the surface

of separation, then the tangents to these lines of flow are in the

eame plane with the normal and on opposite sides of it, and

#1 tan tq — fr2 tan S2 . {
l

'>

Thi^ may In- culled the law of refraction of lines of flow.

311.] As an example of the conditions which must be fulfilled

when electricity crosses the surface of separation of two media,

let us suppose the surface spherical and of radius a, the specific

resistance Lriiur /<\ within and fr„ without the surface.

Let the potential, both within and without the surface, he ex-

I

i:j jhIcJ in solid harmonics, and let the part which depends on

the surface harmonic S
i
be

within and without the sphere respectively.

At the surface of separation where r sa a we must have

f\ = l\ and £fiS. aa.i.S. (3)1 3 k
l

dr kt dr
w

From these conditions we get the equations

(A^A.^a^ +B.-B^O,
(4)

^1 ^"1
1

^2

These equations are sufficient, when we know two of the four

quantities Alt A.,
t
Blt fi2 , to deduce the other two.

Let ue suppose A
x
and Bx known, then we find the following

expressions for A,, and B.,,

l) + Jc
i
i)A

1 + (*1-&Mi+ l)if,«-'w + 1
>

At ~ ^ (2 1 -h I

)

(5)
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In this way we can. find the conditions which each term of the

harmonic expansion of the potential must satisfy for any number of
strata bound**! by concentric spherical surfaces.

312.] Let us suppose the radius of the first spherical surface

to be Oj, and let there be a second spherical surface of radius a3

greater than alf beyond which the specific resistance is i3 . If there

are no sources or sinks of electricity within these spheres there

will be no infinite values of F, and we shall have B
1
= 0.

We then find for 4, and B.it the coefficients for the outer medium,

A^k^i+l? = [{*,(/+ 1)+V'} +

+ i(^ + l){/-
1
-A

2){^-/[-3)Q)"
+l

]j1

The value of the potential in the outer medium depends partly

on the external sources of electricity, which produce currents in-

dependency of the existence of the sphere of heterogeneous matter

within, and partly on the disturbance caused by the introduction of

the heterogeneous sphere.

The first part must depend oti solid harmonics of positive degrees

only, because it cannot have infinite values within the sphere. The
second part must depend on harmonics of negative degrees, because

it must vanish at an infinite distance from the centre of the sphere.

Hence the potential due to the external electromotive forces must
be expanded in a series of solid harmonics of positive degree. Let
A$ be the coefficient of one these, of the form

Then we can find Alt the corresponding coefficient for the inner

sphere by equation (6), and from this deduce Aly Btl and J?.,. Of
these B,

3
represents the effect on the potential in the outer medium

due to the introduction of the heterogeneous spheres.

Let us now suppose = k
x

, so that the case is that of a hollow

shell for which k = £SI separating an inner from an outer portion of

the same medium for which i=A
1

.

If we put

c = 1

(2 i +i)2
/-, k, {k,

+

1

)
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(7)

then A
1
= k

t L (2 *+ 1 )*CA3,

A., = /
2 (2 i + 1 ) (Aj (i -h 1 )+ A™ i) 6'Az ,

B
%
- » (2 i + 1 ) (A,- 4) «i

2<

7i
3
= i^-Ai) & <£ + J )

(aV^-a^CA.,. J

The diflerencc beUveeri ./
;

,
Hu- undisturbed coefficient, and its

value in the liollow within the spherical shell, is

a,-a
1 = tk^w wmfa - cf

+t

)
cj*- w

Since this quantity is always positive whatever be the values

of jf-j and £
2

, it follows that, whether the spln-ru-al shell mnduet*

bettor or worse than the rest "!' ihe medium, tin- i-lcetrieul notion

within the shell is less than it would otherwise he. If the shell

is a better conductor than the rest of the medium it tends to

equalize the potential all round the inner sphere. If it is a worst;

conductor, it tends to prevent the electrical currents from reaching

the inner sphere at all.

The ease of a solid sphere may be deduced from this by making

Oj = 0, or it may he worked out independently.

313.] The most important term in the harmonic expansion is

that in which i — I , for which

C= 1 r>

A, = 9 l\ &2CA3 , A, = 3 i2 (2 kt + &.,)C

A

3 ,

The case of a solid sphere of resistance k
t
may be deduced from

this by making- a
x
= 0. We then have

(0)

k —k
3 k

l+ 2ki^ 3

It is easy to shew from the general expressions that the value

of _Zf
3

in the case of a hollow sphere having a nucleus of resistance

ku surrounded by a shell of resistance £
2 , is the same as that of

B uniform solid sphere of the radius of the outer surface, and of

resistance A', when 1

(2k
l
+ kil)a^ + (i

l-ii
)a^K =

( 2 ^ + k.?i <t*- 2 {k
x
— I" 1 j + (11)
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314.
|
If there are n spheres of radius a

x
and resistance k

x ,
placed

in a medium whose resistance is k.ls at such distances from each

other that their effects in disturbing the course of the current

may he taken as independent of each other, then if those spheres

are all contained within a sphere of radius //.,, the potential at a

great distance from the centre of this sphere will be of the form

V^(A+nB^)co S 6, (12)

where the value of B is

J3 = a^A. (13)

The ratio of the volume of the n small spheres to I hat "f tin-

sphere which contains them is

P = (14)

The value of the potential at a great distance from the sphere

may therefore be written

Now if the whole sphere of radius a
2 had been made of a material

of specific resistance A', we should have had

That the one expression should be equivalent to the other,

" 2 X-j + ki—2p{kx
— A2)

2 '

This, therefore, is the specific resistance of a compound medium

consisting of a substance of specific resistance k,, in which are

disseminated small spheres of specific resistance i\, the ratio of the

volume of all the small spheres to that of the whole being p. In

order that the action of these spheres may not produce effects

depending on their interference, their radii must be small compared

with their distances, and therefore J)
must be a small fraction.

This result may he obtained in other ways, but that here given

involves only the repetition of the result already obtained for a

single spin "iv.

When the distance between the spheres is not great compared

k —k
with their radii, and when --3 \ is considerable, then other

2 A'j +
terms enter into the result, which we shall not now consider,

lit consequence of these terms certain systems of arrangement of
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the spheres cause the resistance of the compound medium to he

different in different directions.

Application of the Principle of Images.

315. j Let us take as an example the case of two media separated

hy a plane surface, and let us suppose that there is a source S

of electricity at a distance a from the plane surface in the first

medium, the quantity of electricity flowing- from the source in unit

of time being 8.

If the first medium had hoen infinitely extended the current

at any point P would have been in the direction SP, and the

E Sk
potential at P would have been — where E as —- and r, = SP,

In the actual case the conditions may be satisfied by taking

a point /, the image of S in the second medium, such that IS
is normal to the plane of separation and is bisected by it, Let r

2

be the distance of any point from 7, then at the surface of separation

?
"i
- ra» (0

^l__*2.
(2)

dv dv

Let the potential F, at any point in the first medium be that

due to a quantity of electricity E placed at S
t
together with an

imaginary quantity E2 at /, and let the potential F
2

at any point

of the second medium be that due to an imaginary quantity E
x
at

5, then if jf k E,rt
= — + ^ and V., = 1

, (3)

the superficial condition V
x
—V% gives

E+E^E,, (4)
and tin- condition

k
1
dp k.

t
dv m

*™
(6)

The potential in the first medium is therefore the same as would
be produced in air by a charge E placed at 8, and a charge E

x

at / on the electrostatic theory, and the potential in the second
medium is the eame !( k that which would be produced in air by
a charge E

x
at 8.



3I7-] STRATUM WTTI! PAR ALLKL SIDES. 'M'u

The current at any point of the first medium is the same as would

k,— k
have been produced by the source S together with a source ~—^ 5

placed at J if the first medium had been infinite, and the current

at any point of the second medium is the same as would have been

2 k S
produced by a source placed at S if the second medium had

been infinite.

"We have thus a complete theory of electrical images in the case

of two media separated by a plane boundary. Whatever be the

nature of the electromotive forces in the first medium, the potential

they produce in the first medium may be found by combining their

direct effect with the effect of their image.

If we suppose the second medium A perfect conductor, then

£3 = 0, and the image at I is equal and opposite to the course

at S. This is the case of electric images, as in Thomson's theory

in electrostatics.

If we suppose the second medium a perfect insulator, then

fc2
r= <x>

f
and the image at I is equal to the source at S and of the

same sign. This is the case of images in hydrokineties when the

fluid is bounded by a rigid plane surface.

316.] The method of inversion, which is of so much use in

electrostatics when the bounding surface is supposed to he that

of a perfect conductor, is not applicable to the more general ense

of the surface separating two conductors of unequal electric resist-

ance. The method of inversion in two dimensions is, however,

applicable, as well as the more general method of transformation in

two dimensions given in Art. 190 *.

Conduction through a Plate separating Two Media.

317.] Let us next consider the effect of a plate of thickness AB of

a medium whose resist-

ance \xk... and separating %

two media whose resist-

ances are l\ and &3 , in £
—

^ /

altering the potential due

to a source S in the first

medium.

The potential will be Fi*- 2S-

* See Kircblioff, Pogg. Ann, Ixiv. 497, and bevii. 344
;
Quincke, Yogg. xcvli. 382;

ftnd Smitli, jFVcw. 1L S. Klin., 1869-70. )> 79.

J J
t ±
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equal to that due to a system of charges placed in air at certain

points along the normal to the plate through &
Make
AI=$At

BI^SB, AJ
X
-1

X
A, BIt

-J^B} JJ^Tt
At fee.;

then we have two series of* points at distances from each other equal

to twiee the thickness of the plate.

318.] The potential in the first medium at any point F is equal to

that at a point F in the second

and that at :i pemt P" in tin- third

Ws +A^A +&c
-

(l0)

where L I', &o. represent the imaginary charges placed at the

points /, &c> and the accents denote that the potential is to be

taken within the plate.

Then, by the last Article, for the surface through A we have,

For the surface through B we find

*3+ *3 A
l!

"
"l

Similarly for the surface through A again,

j' _ *!
_

*a /j = 2— (13)

and for the surface through i?,

j* j — 2 ^

If we make X\—

A

2 , , /-,— £.

we find for the potential in the first medium,

r= fs-" m +f-w^+/('-» ,

)^ii5
+fe

+ (15)
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For the potential in the third medium we find

If the first medium is the same as the third, then k, = k, .md
p = p', und the potential on the other side of the plate will be*

If the plate h a very much better conductor than t],e r,<t of the
medium, P is very nearly equal to 1 . If the plate is a nearly perfect
insulator, P is nearly equal to - I, and if the plate diflers'little in
conducting power from the rest of the medium, p is a small quantity
positive or negative.

The theory of this case was first stated by Green in his < Theory
of Magnetic Induction' {Essay, p. 65). His result, however is
correct only when p is nearly equal to 1 * The quantity^ which
he uses is connected with p by the equations

If we put P=
1

^**
k

, we shall have a solution of the problem of

the magnetic induction excited by a magnetic polo in an infinite
plate whose coefficient of magnetization is *.

On Stratified Conductors,

319.] Let a conductor be composed of alternate strata of thick-
ness c and J of two substances whose coefficients of conductivity
are different. Required the coefficients of resistance and conduc-
tivity of the compound conductor.

Let the plane of the strata be normal to Z. Let every symbol
relating to the strata of the second kind be accented, and let
every symbol relating to the compound conductor be marked with
a bar thus, X. Then

X= X S3 X\ (C + <f) % = cu + </„',

7=r= r, (c +<f)v = cv+sv
'

i

We must first determine „, >/
t :uul /' iu tt , rn;s itj

-

X, J and w from the equations of resistance, Art. 297, or those

nSb^S
Tbomaon'i

>
'Note on Induced Magnetism in a Plate,' Comb. a,u£

ifvb. Math, Joitrn., Nov. 1345, or %,nV, art. ix, { 156.

VOL. I, B U
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of conductivity, Art. 298. If we put 3 for the determinant of the

coefficients of resistance, we find

ur3D = B2
X- Q3 F+wfc%

Similar equations with the symbols accented give the^ values

of v' and /. Having1 fotmd 7i, v and w in terms of X, Y and Z,

we may write down the equations of conductivity of the stratified

conductor. If we make h = — and h'——l% we find

- Ap2+b'p2 - _ ftQz+A'lt
p*
=

/i+ A'
' ?2 ~ h + h'

'

fx
-

(A+A')(<?+c)

<?+ (A+ AO(<?+<0

320.] If neither of the two substances of which the strata are

formed has the rotatory property of Art. 303, the value of any

P or p will he equal to that of its corresponding Q or q. From

this it follows that in the stratified conductor also

Pi = 9i, ~P% — ?2 > Pz — ?3>

or there is no rotatory property developed by stratification, unless

it exists in the materials.

321.] If we now suppose that there is no rotatory property, and

also that the axes of a;, y and z are the principal axes, then the

p and q coefficients vanish, and

er. + o'rr
f _ ert -f dr2' _ c+ ef

f
i - c + S '

r£ ~ 'c+s '
ra " "a—7"
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If we begin with both substances isotropic, but of different
conductivities, then the result of stratification will be to make
tbe resistance greatest in the direction of a normal to the strata,
and the resistance in all directions in the plane of the strata will
be equal.

322.] Take an isotropic substance of conductivity cut it into
exceedingly thin slices of thickness «, and place them alternately
with slices of a substance whose conductivity is and thickness

Let these slices be normal to «. Then cut this compound con-
ductor into thicker slices, of thickness &, normal to y, and alternate
these with slices whose conductivity is s and thickness k2 i.

Lastly, cut the new conductor into still thicker slices, of thick-
ness e, normal to «, and alternate them with slices whose con-
ductivity is * and thickness £3 c.

The result of the three operations will be to cut the substauce
whose conductivity is r into rectangular parallelepipeds whose
dimensions nr. „, * a ,ul e, where 6 is exceeding small compared
with c, and a is exceedingly small compared with i, and to embed
these parallelepipeds in the substance whose conductivity is s

f
so

that they arc separated iVem each other Ay, in the direction of r,
k
t b m that of 9) and in that of z. The conductivities of the
conductor bo formed in the directions of Xj ij and t are

m {1+^(1 + k2) (I +&n)) r+ (K+M. 4 L k,\ i

(1+^ (1 tfs+i)
*•

_ ( * + *g + *2 *a ) r+ (A
t
+ kz+ A, £a + £3+^ ^^ s

__( 1 + *
») (r+ ft + Jc2+ k, K) *)

K ( 1 + *i+ *l+ \ &
3+ A, + k

x + 1J ^ *

The accuracy of this investigation depends upon the three
dimensions of the parallelepipeds being of different orders of mag-
nitude, so that we may neglect the conditions to be fulfilled at
their edges and angles. If we make &lf £ and *, each unity, then

If r = o, that is, if the medium of which the parallelepipeds
are made is a perfect insulator, then

it h j

r
<2

r» =
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If r = co, that is, if the parallelepipeds are perfect conductors,

In every case, provided ^ = k2 = it may be shewn that

rti r3 and r3 are in ascending1 order of magnitude, so that the

greatest conductivity is iu the direction of the longest dimensions

of the parallelepipeds, and the greatest resistance in the direction

of their shortest dimensions.

323.] In a rectangular parallelepiped of a conduct ing solid, let

there be a conducting channel made from one angle to the opposite,

the channel being a wire covered with insulating material, and

let the lateral dimensions of the channel be so small that the

conductivity of the solid is not affected except on account of the

current conveyed along the wire.

Let the dimensions of the parallelepiped in the directions of the

coordinate axes be a, A, c, and let the conductivity of the channel,

extending from the origin to the point {a-bc), be abcK.

The electromotive force acting between the extremities of the

channel is aX+bY+cZ,

and if C" be the current along the channel

C - Kabc(aX+ bY+cZ).

The current across the face be of the parallelepiped is bcn t
and

this is made up of that due to the conductivity of the solid and

of that due to the conductivity of the channel, or

bcu - bcirtX+PzY-yq^ +KabciaX+bY+uZ))

or » = (r
l + Ka*)X+(pil

+Kab)r+(gs+Kca)Z.

In the same way we may find the values of v and w. The

coefficients of conductivity as altered by the effect of the channel

will be

n + Ka\ r„+Kb*, r^+Ec^,

p^Kbc, pi+Kca, p. t
+ Kab,

qv +Kbct <{, + Kca, +

In these expressions, the additions to the values of pit &c., due

to the effect of the channel, are equal to the additions to the values

of q t
, &c. Hence the values of j», and qt cannot be rendered

unequal hy the introduction of linear channels into every element

of volume of the solid, and therefore the rotatory property of

Art. 309, if it does not exist previously in a solid, cannot he

introduced by such means.
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324.] To construct a framework of linear conductors which, shall
have ant/ given coefficient* of conductivity forming a symmetrical

Fig. 24.

Let the space be divided into equal small

cube**, of which Id the figure represenl one.

Let the coordinates of the points O, L
t M, Nt

and their potentials be as follows

:

$ z Potential.

L Oil O+Y+Z,
M ioi q+z+x,
N iio o+x+r,

Let these four points be connected by sir conductors,

OL, OJf, ON, MN
t NL, LM

t

of which the conductivities are respectively

Tlie electromotive forces along these conductors will be

r+% z+x, x+y y-z} z-x, x-rt

and the currents

A{Y+Z
}> B(Z+X), C(X+Y)

S P{Y-Z)
t Q[Z~X), R(X-Y).

Of these currents, those which convey electricity in the positive
direction of x are those along LMt LN, OM and ON, and the
quantity conveyed is

n = (B+ C+Q +R)X+(C-R)Y +(B-Q)Z.
Similarly

v - {C-R)X +(C+A+R + P)Y+(A-P)Z,
»= (J?-Q)J +(A-P)Y + (A+£+P+ Q)Z;

whence we find by comparison with the equations of conduction,
Art, 298,

4 A = ^+^-^+ 2^, 4? = r2 + r^ ri_ 2pii
iP=r

3 + r
1
-r

2 + 2j}.
1 , 4 Q - ^ +^-^-2^,

4 = r
l+ r2~r3+ 2p3t 4 R = r^r^-^-2^.



CHAPTER X.

CONDUCTION IN DIELECTRICS.

325.] We have seen that when electromotive force acts on a

dielectric medium it produces in it a state which we have called

electric polarization, and which we have described as consisting'

of electric displacement within the medium in a direction which,

in isotropic media, coincides with that of the electromotive force,

combined with a superficial charge on every clement of volume

into which we may suppose the dielectric divided, which is negative

on the side towards which the force acts, and positive on the side

from which it acta.

When electromotive force acts on a conducting1 medium it also

proihir-i'S wlial is called an electric current.

Now dielectric media, with very few, if any, exceptions, are

also more or less imperfect conductors, and many media which are

not good insulators exhibit, phenomena of dielectric induction.

Hence we are led to study the state of a medium in which induction

and conduction are going on at the same time.

For simplicity we shall suppose the medium isotropic at every

point, but not necessarily homogeneous at different points. In this

case, the equation of Poisson becomes, by Art. 83,

d /„tfP\ d ,„dVs (I rtrd?\ , n M
S <

A £> + 7 + S <N") * 1• = (I)

where K is the ' specific inductive capacity.'

The • equation of continuity' of electric currents becomes

d A <W\
,

d_ A 4f\ d A d]\ _ dp _ ,

fa V <fe' "*\<ty V dy>
"*"

dz. V dz> dl ~ ' **>

where r is the specific resistance referred to unit of volume.

When A' or r is discontinuous, these equations must be trans-

formed into those appropriate to surfaces of discontinuity.
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In a strictly homogeneous medium r and K are both constant, so
that we find

&r d*r *r • p aP+ d^ + d^^'^K^'dl' (3)

whence p = Ce »
; (*)

or, if we put T= p -Ce r
m (5 \

This result shews that under the action of any external electric

forces on a homogeneous medium, the interior ofwhich is originally

charged in any manner with electricity, the internal charges will

die away at a rate which does not depend on the external forces,

so that at length there will be no charge of electricity within
the medium, after which no external forces can either produce or
maintain a charge in any internal portion of the medium, pro-
vided the relation between electromotive force, electric polarization

and conduction remains the same. When disruptive discharge
occurs these relations cease to be true, and internal cliargo may
be produced.

On Conduction through a Condenser,

326.] Let C be the capacity of a condenser, /** its resistance, and
E the electromotive force which acts on it, that is, the difference of
potentials of the surfaces of the metallic electrodes.

Then the quantity of electricity on the side from which the

electromotive force acts will be CE, and the current through the

substance of the condenser in the direction of the electromotive

force will be
li

If the electrification is supposed to be produced by an electro-

motive force Jj acting in a circuit of which the condenser forms

part, and if represents the current in that circuit, then

dQ M dE

Let & battery of electromotive force E and resistance f\ be

introduced into this circuit, then

dQ_Ea-E_E +cdE ^d( ~ r,
~~ R T

tU

Hence, at any time ^,

^ (lUfl) where <J\ = J|| (8)
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Next, let the circuit r
x
be broken for a time t2 ,

E{=JQ=E
1 e where T2

- CR. (9)

Finally, let the surfaces of the condenser be connected by means

of a wire whose resistance is rs for a time iAi

B{=E
z
)=Eie~n where T3

= (10)
Ji + T.A

If Q., is the total discharge through this wire in the time j!

3 ,

Iii this way we may find the discharge through a wire which

is made to connect the surfaces of a condenser after being charged

for a time i„ and then insulated for a time L. If the time of

charging is sufficient, as it generally is, to dcvelope the whole

charge, and if the time of discharge is sufficient for a complete

discharge, the discharge is

327.] In a condenser of this kind, first charged in any way, next

discharged through a wire of small resistance, and then insulated,

no new electrification will appear. In most actual condensers,

however, we find that after discharge and insulation a new charge

is gradually developed, of the same kind as the original charge,

but inferior in intensity. This is called the residual charge. To
account for it we must admit that the constitution of the dielectric

medium is different from that which we have just described. We
shall find, however, that a medium formed of a conglomeration of
small pieces of different simple media would possess this property.

Theory of a- Composite Dielectric.

328.] We shall suppose, for the sake of simplicity, that the

dielectric consists of a number of plane strata of different materials

and of area unity, and that the electric forces act in the direction

of the normal to the strata.

Let a
x ,

a.£ ,
&c. be the thicknesses of the different strata.

Xu X2 ,
&c. the reBultmt electrical f.mv wilhin each stratum.

Pvthf &c ' the current due to conduction through each stratum.

/, ,/2 , &c. the electric displacement.

»i» &c. the total current, due partly to conduction and partly

to variation of displacement.
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Tj, r2 ,
&c. the specific resistance referred to unit of volume.

Klt Kli &c. the specific inductive capacity.

l\, i
2 , &c, the reciprocal of the specific inductive capacity.

E the electromotive force due to a voltaic hattery, placed in
the part of the circuit leading from the last stratum towards the
first, which we shall suppose good conductors.

Q the total quantity of electricity which has passed through this
pirt of the circuit up to the time t.

i? the resistance of the hattety with its connecting wires.
<ru the surface-density of electricity on the surface which separates

the first and second strata.

Then in the first stratum Ave have, by Ohm's Law,
Xi = riPi- (l)

By the theory of electrical displacement,

^=*TVi. (2)
By the definition of the total current,

^=A+f' (3)

with similar equations for the other strata, in each of which the
quantities have the sunk belonging tr» that stratum.

To determine the surface-density on any stratum, we have an
equation of the form s r

^12 =/2-/i, (4)

and to determine its variation we have

TT^A-A- (5)

By differentiating (4) with respect to #, and equating the result
to (5), we obtain

or, hy taking account of (3),

= u
z — &c. — U.

(7)
That is, the total current u is the same in all the strata, and is

equal to the current through the wire and battery.

We have also, in virtue of equations (1) and (2),

from which we may find X
1
hy the inverse operation on «,

r r
1 1 A" 1
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The total electromotive force K is

E = <*, A'
Jl
+ tf

!J
J£3 + &c., (10)

an equation between 2?, the external electromotive force, and u, the

external current.

If the ratio of r to k is the same in all the strata, the equation

reduces itself to

which is the case we have already examined, and in which, as we

found, no phenomenon of residual charge can take place.

If there are n substances having- different ratios of r to k, the

general equation (II), when cleared of inverse operations, will be

a linear differential equation, of the »th order with respect to E
and of the (»— l)th order with respect to tt, I being- the independent

variable.

From the form of the equation it is evident that the order of

the different strata is indifferent, so that if there are several strata

of the same substance we may suppose them united into one

without altering the phenomena.

329.] Let us now suppose that at first f%rfit &c. are all zero,

and that an electromotive force suddenly made to act, and let

us find its instantaneous effect.

Integrating- (8) with respect to t, we find

Q - j udt = — fjJ
dt+ -^r-Xj-f const. (13)

Now, since Xx
is always in this case finite,

j
X

t
tit must be in-

sensible when i is insensihlr. and then-fure, since X
l

is originally

zero, the instantaneous effect will be

I1 =4»#1 Q. (14)

Hence, by equation (10),

E = 4:7r (X-j a, + *2 a4 4- &e.) <3, (15}

and if C be the electric capacity of the system as measured in this

instantaneous way,

Q 1
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This is the same result that we should have obtained if wo had
neglected the conductivity of the strata.

Let us next suppose that the electromotive force E is continued
uniform for an indefinitely long time, or till a uniform current of
conduction equal to p is established through the system.
We have then X\ = >

xp, and therefore

% = (ri^+r^+ kc.)p, (17)

li Ji be the total resistance of the system,

y
Ji -

j}
= *j«, + r2 ffs -f &c (18)

III this Hlilto 1l;j\T- by (2),

so that .^(^--^ m
If we now suddenly connect the extreme strata by means of a

conductor of small resistance, E will be suddenly changed from its

original value 7^ to zero, and a quantity Q of electricity will pass
through the conductor.

To determine Q we observe that if A7

,' be the new value of X
thenbyd^ m*m***m y

Hence, by (10), putting E = 0,

= «
1
2'] + &c.+ i7?( (r1 it

1 + «2 i2+&c.)Q} (21)

or = 3> + "| Q. (22)

Hence Q = — g?JJ, where C is the capacity, as given by equation
(Hi). The instantaneous discharge is therefore equal to the in-
.'-UtfitaiH'ous eh: ir^o.

Let us next suppose the connexion broken immediately after this

discharge. We shall then have u = 0, so that by equation (8),

Xt = X'e n
, (23)

where X' is the initial value after the discharge.

Hence, at any time

The value of E at any time is therefore
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and the instantaneous discharge after any time t is EC. This is

culled the Tesidual discharge.

If the ratio of r to h is the same for all the strata, the value ofE
will be reduced to zero. If, however, this ratio is not the same, let

the terms be arranged according to the values of this ratio in

descending order of magnitude.

The sum of all the coefficients is evidently zero, so that when

i — o, E = 0. The coefficieuts are also in descending order of

magnitude, and so are the exponential terms when t is positive.

Hence, when t is positive, E will be positive, so that the residual

discharge is always of the same sign as the primary discharge.

When i is indefinitely great all the terms disappear unless any

of the strata are perfect insulators, in which case r
l

is infinite lor

that stratum,' and R is infinite for the whole system, and the final

value of E is not zero but

E= i? (l-4iro1 i1 (7). (25)

Hence, when some, but not all, of the strata are perfect insulators,

a residual discharge may be permanently preserved in the system.

330.] VTe shall next determine the total discharge through a wire

of resistance R kept permanently in connexion with the extreme

strata of the system, supposing the system first charged by means

of a long-continued application of the electromotive force E.

At any instant we have

E — ffj rxpx -f az r2ps+ &c.+R u = 0, (20)

and also, by (3), u =& +^ . (27)

Hence {R+RJu = a, r^+a^r/^- +&c. (28)

Integrating with respect to i in order to find Q, we get

(R+R ) Q = «,r,(/l
/-/

x)+W/s
'-/

a)+&c, <29)

where/ is the initial, and// the final value of

/

x .

In this case// = 0, and / - ^> (4 Jj.^
~ <?)

"

Hence {R+ R ) Q = + ^^- + kc.)-E CRf (30)

where the summation is extended to all quantities of this form

belonging to every pair of strata.

(31)
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It appears from this that Q is always negative, that is to say, in
the opposite direction to that of the current employed in charging
the system.

This investigation shews that a dielectric composed of strata of
different kinds may exhibit the phenomena known as electric
absorption ami residual discharge, all hough none of the miIkIiiucch

of which it is made exhibit these phenomena when alone. An
investigation of the cases in which the materials are arranged
otherwise than in strata would lead to similar results, though
the calculations would be more complicated, so that we may
conclude that the phenomena of electric absorption may be ex-
pected in the case of substances composed of parts of different
kinds, even though these individual parts should be microscopically
small.

It by no means follows that every substance which exhibits this

I
-In nomeuon is so composed, for it may indicate a new kind of

electric polarisation of which a homogeneous substance may be
capable, and this in sonu- ca*es may perhaps resemble electro-

chemical polarization much more than dielectric polarization.
The object of the investigation is merely to point out the true

mathematical character of the so-called electric absorption, and to
shew how fundamentally it differs from the phenomena of heat
which seem at first sight analogous.

331.] If we take a thick plate of any substance and heat it

on one side, so as to produce a flow of heat through it, and if

we then suddenly cool the heated side to the same temperature
as the other, and leave the plate to itself, the heated side of the
plate will again become hotter than the other by conduction from
within.

Now an electrical phenomenon exactly analogous to this can
be produced, and actually occurs in telegraph cables, but its mathe-
matical laws, though exactly agreeing with those of heat, dill'er

entirely from those of the stratified condenser.

In the case of heat there is true absorption of the heat into
the substance with the result of making it hot. To produce a truly
iiiutlogous phenomenon in electricity is impossible, but we may
imitate it in the following way in the form of a lecture-room
experiment.

Let 4u ^ti &c. be the inner conducting surfaces of a series of
condensers, of which Blt Ike. are the outer surfaces.

Let Al} Ai} he, be connected in series by connexions of resist-
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ance Jl, and let a current be passed along this series from left to

right.

Let us first suppose the plates J?
ft ,
Bxs B2 , each insulated and

free from charge. Then tho total quantity of electricity on each of

the plates B must remain zero, and since the electricity on the

plates A is in each case equal and opposite to that of the opposed

7

Fig. 25.

surface they will not be electrified, and no alteration of the current

will be observed.

But let the plates B be all connected together, or let each be

connected with the earth. Then, since the potential of Ax
is

positive, while that of the plates B is zero, A
x

will he positively

electrified and B
x
negatively.

If Plt P2 , &c. are the potentials of the plates A
x , A2 , &c, and C

the capacity of each, and if we suppose that a quantity of electricity

equal to Q passes through the wire on the left, Qx
through the

connexion Bx , and so on, then the quantity which exists on the

plate A
x
is Qq—Qi, and we have

Qq—Qi —

Similarly C
%
P

% ,

and so on.

But by Ohm's Law- wc have

dt

di

If we suppose the values of C the same for each plate, and those

of R the same for each wire, we shall have a series of equations of

the form
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at

at

If there arc n quantities of electricity to be determined, and if
either the total electromotive force, or some other equivalent con-
ditions he given, the differential equation for determining any one
of them will he linear and of the «th order.

By an apparatus arranged in this way, Mr. VarJey succeeded in
imitating the electrical action of a cable 12,000 mihs ],,ng.

When an electromotive force ia made to act along the wire on
the left hand, the electricity which flows into the system is at first

principally occupied in charging the afferent condensers hegimiin^
with Alr and only a very small fraction of the current appear*
at the right hand till a considerable time has elapsed. If galvano-
meters be placed in circuit at ltv &c. they will be affected
by the current one after another, the interval between the times of
equal indications being greater as we proceed to the right.

332.] In the case of a telegraph cable the conducting wire is

separated from conductors outside by a cylindrical sheath of gutta-
percha, or other insulating material. Each portion of \hc table
thus becomes a condenser, the outer surface of which is always at
potential zero. Hence, in a given portion of the cable, the quantity
of free electricity at the surface of the conducting wire ia equal
to the product of the potential into the capacity of the portion of
the cable considered as a condenser.

If ffj, a
2 are the outer and inner radii of the insulating sheath,

and if K is its specific dielectric capacity, the capacity of unit of
length of the cable is, by Art. 1 26,

K

2log^

Let v be the potential at any point of the wire, which we may
consider as the same at every part of the same section.

Let Q be the total quantity of electricity which has passed

through that section since the beginning of the current. Then the

quantity which at the time t exists between sections at x ami at

find this is, by what we have said, equal to cvbn:
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Hence cv —
da (2)

Again, the electromotive force at any section is — tt and by
Ohm's W, dv_

}
dQ

**'

~ di ~ k
dt ' (3)

where k is the resistance of unit of length of the conductor, and
dQ .

-g is the strength of the current. Eliminating Q between (2) and

(3), we find dv

Tliis is the partial differential equation which must he solved
in order to obtain the potential at any instant at any point of the
cable. It is identical with that which Fourier gives to determine
the temperature at any point of a stratum through which heat
is Bowing in a direction normal to the stratum. In the case of
heat e represents the capacity of unit of volume, or what Fourier
calls CD, and k represents the reciprocal of the conductivity.

If the sheath is not a perfect insulator, and if £ is the resist-
ance of unit of length of the sheath to conduction through it in a
radkl direction, then if Pl is the specific resistance of the insulating
material,

*i= SftloR-SL. (5)

The equation (2) will no longer be true, for the electricity is
expended not only in charging the wire to the extent represented

by 0*, but in escaping at a rate represented by |- . Hence the rate
of expenditure of electricity will be 1

d*Q dv l

~'<tedl=
c
Tt
+ T*> B

whence, by comparison with (3), we get

. dv d*v k
C&

di = d^-T
x

v
> C

?)

and this is the equation of conduction of heat in a rod or ring
as given by Fourier *.

333.] If we had supposed that a body when raised to a high
potential becomes electrified throughout its substance as if elec-
tricity were compressed into it, we should have arrived at equa-
tions of th.s very form. It is remarkable that Ohm himself,

* Thtorie dt /« Chaicur, art. 105.
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misled by the analogy between electricity and heat, entertained
sin opinion of this kind, and was thus, by moans of an erroneous
opinion, led to employ the equations of Fourier to express the
true laws of conduction of electricity through a long wire, long
before the real Teason of the appropriateness of these equations had
been suspected.

Mechanical Illustration of the Properties of a Dielectric.

334.] Five tubes of equal sectional area A, B, C, D and P are
arranged in circuit as in the figure.

A, B, C and D are vertical and equal,

and I' is hurizontiit.

The lower halves of A, B
t C, B

are filled with mercury, their upper
halves and the horizontal tube P are

filled with water.

A tuW with n sl.,|,rr.<-k (.} cuii-

neets the lower part of A and B
with that of C and Z>, and a piston

P is made to slide in the horizontal

tube.

Let us begin by supposing that

the level of the mercury in the tour

tubes is the same, and that it is

indicated by %}
B

, <?
,
D0J thai

the piston is at P , and that the

stopcock Q is shut.

Now let the piston be moved from P to Plf a distance a. Then,
since the sections of all the tubes are equal, the level of the mercury
in A and C will rise a distance a, or to A, and C\, and the mercury
in B and D will sink ati equal distance a, or to B

x
and Dlm

The difference of pressure on the two sides of the piston will
be represented by ia.

This arrangement may serve to represent the state of a dielectric
acted on by an electromotive force 4 a.

The excess of water in the tube J) may be taken to represent
a positive charge of electricity on one side of the dielectric, and the
excess of mercury in the tube A may represent the negative charge
on the other side. The excess of pressure in the tube P on the
side of the piston next J) will then represent the excess of potential
on the positive side of the dielectric.

vol. t c ,
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I E the piston is free to move it will move back to P and be

in equilibrium there. Tit is. represents the complete discharge of

the dielectric.

During the discharge there is a reversed motion of the liquids

throughout the whole tube, and this represents that change of

electric displacement which we have supposed to take place in a

dieleetric.

I have supposed every part of the system of tubes filled with

incompressible liquids, in order to represent the property of all

electric displacement that there is no real accumulation of elec-

tricity at any place.

Let us now consider the effect of opening the stopcock Q while

the piston P is at Pp
The level of A^ and D

l
will remain unchanged, hut that of B and

C will become the same, and will coincide with B
c,
and C .

The opening of the stopcock Q corresponds to the existence of

a part of the dielectric which has a slight conducting power, but

v. hi'-li ii"' extend through the whole dieleetric so as to form

an open channel.

The charges on the op p. site sides of the dielectric remain in-

sulated, but their difference of potential diminishes.

In fact, the difference of pressure on the two sides of the piston

sinks from ia to 2a during the passage of the fluid through Q,

If we now shut the stopcock Q and allow the piston P to move
freely, it will come to equilibrium at a point P2 , anil the discharge

Avill be apparently only half of the charge.

The level of the mercury in A and B will be above its

original level, and the level in the tubes G and 1) will he \a

below its original level. This is indicated by the levels X, II,,

If the piston is now fixed and the stopcock opened, mercury will

flow from B to C till the level in the two tubes is again at lin and

C6 . There will then be a difference of pressure == a on the two

sides of the piston P. If the stopcock is then closed and the piston

P left free to move, it will again come to equilibrium at a point P.s ,

half way between P
2 and F , This corresponds to the residual

charge which is observed when a charged dielectric is first dis-

charged and then left to itself. It gradually recovers part of its

charge, and if this is again discharged a third charge is limned, thr

successive charges diminishing in quantity. In the case of the

illustrative experiment each charge is half of the preceding, and the
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discharges, which are i fee. of the original charge, form a series
whose sum is equal to the original charge.

If, instead of opening and closing the stopcock, we had allowed it

to remain nearly, but not quite, closed during the whole experiment,
we should have had a case resembling that of the electrification of a
dielectric which is a perfect insulator and yet exhibits the phe-
noiiit'iion roller] ' electric absorption/

To represent the case in which there is true conduction through
the dielectric we must either make the piston leaky, or we must
establish a communication between the top of the tube A and the
top of the tube D.

In this way we may construct a mechanical illustration of the
properties of a dielectric of any kind, in which the two electricities

are represented by two real fluids, and the electric potential is

represented by fluid pressure. Charge and discharge are repre-
sented by the motion of the piston P, and electromotive force by
the resultant force on the piston.

c c a
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THE MEAStJBBMBFT OF ELECTRIC RESISTANCE.

335.] In the present state of electrical science, the determination

of the electric resistance of a conductor may be considered as the

cardinal operation in electricity, in the same sense that the deter-

mination ofweight is the cardinal operation in chemistry.

The reason of this is that the determination in absolute measure
of other electrical magnitudes, such as quantities of electricity,

electromotive forces, currents, &c, requires in each case a com-
plicated series of operations, involving generally observations of
time, measurements of distances, and determinations of moments
of inertia, and these operations, or at least some of them, must
be repeated for every new determination, because it is impossible

to preserve a unit of electricity, or of electromotive force, or of
current, in an unchangeable state, so as to bo available for direct

comparison.

But when the eleetric resistance of a properly shaped conductor
of :i properly chosen material has been once determined, it is found
that it always remains the same for the same temperature, so that
the conductor may he used as a standard of resistance, with winch
that of other conductors can be compared, and the comparison of
two resistances is an operation which admits of extreme accuracy,

"When the unit of electrical resistance has been fixed on, material
copies of this unit, in the form of ' Resistance Coils/ are prepared
for the use of electricians, so that in every part of the world
electrical resistances may be expressed in terms of the same unit.

These unit resistance coils are at present the only examples of
material electric standards which csn be preserved, copied, and used
for the purpose of measurement. Measures of electrical capacity,

which are also of great importance, are still defective, on account
of the disturbing influence of electric absorption.

336.J The unit of resistance may be an entirely arbitrary one,

as in the case of Jacobi's Etalon, which was a certain copper
wire of 22.4932 grammes weight, 7.G1975 metres length, and 0.G67
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millimetres diameter. Copies of tibia have been made by Leyscr of
Leipfflg, and are to be found in different places.

According1 to another method the unit may bo defined as the
resistance of a portion of a definite substance of definite dimensions.
Tims, Siemens' unit is defined as the resistance of a column of

mercury of one metre long, and one square millimetre section, at
tlie temperature 0°C.

337.] Finally, the unit may be defined with reference to the
electrostatic or the electromagnetic system of units. In practice

the electromagnetic system is used in all telegraphic operations,

and therefore the only systematic units actually in use are those
of this system.

In the electromagnetic system, as we shall shew at the proper
place, a resistance is a quantity homogeneous with a velocity, and
may therefore be expressed as a velocity. See Art. 628.

338,] The first actual measurements on this system were made
by Weber, who employed as his uiiil one millimetre per second.

Sir W. Thomson afterwards used one foot per second as a unit,

bat a large number of electricians have now agreed to use the

unit of the British Association, which professes to represent a
resistance which, expressed as a velocity, is ten millions of metres
per second. The magnitude of this unit is more convenient than
that of Weber's unit, which is too small. It is sometimes referred

to as the B.A. unit, but in order to connect it with the name of
the discoverer of the laws of resistance, it is called the Ohm,

339.] To recollect its value in absolute measure it is useful

to know that ten millions of metres is professedly the distance

from the pole to the equator, measured along the meridian of Paris,

A body, therefore, which in one second travels along a meridian

from the pole to the equator would have a velocity which, on the

electromagnetic system, is professedly represented by an Ohm.
I say professedly, because, if more accurate researches should

prove that the Ohm, as constructed from the British Associations

material standards, is not really represented by this velocity, elec-

tricians would not alter their standards, but would apply a cor-

rection. In the same way the metre is professedly one ten-millionth

of a certain quadrantal arc, but though this is found not to be
exactly true, the length of the metre has not been altered, but the

dimensions of the earth are expressed by a less simple number.
According to the system of the British Association, the absolute

value of the unit is originally chosen so as to represent as nearly
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as possible a quantity derived from the electromagnetic absolute
system.

340.] When a material unit representing- this abstract quantity
has been made, other standards are constructed by copying this unit,

a process capable of extreme accuracy—of much greater accuracy
than, for instance, the copying of foot-rules from a standard foot.

These copies, made of the most permanent materials, are dis-

tribute! over all parts of the world, so that it is not likely that
any difficulty will be found in obtaining copies of them if the
original standards should be lost,

Uut such units as that of Siemens can without very great
lahour he reconstructed with considerable accuracy, so that as the
relation of the Ohm to Siemens unit is known, the Ohm can be
reproduced even without having a standard to copy, though the
labour is much greater nud the accuracy much less than by the
method of copying.

Finally, the Ohm may be reproduced

by the electromagnetic method by which
it was originally determined. This method,
which is considerably more laborious than
the determination ofa foot from the seconds

pendulum, is probably inferior in accuracy

to that last mentioned. On the other hand,

the determination of the eleetroma^m tie

unit in terms of the Ohm with an amount
of accuracy corresponding to the progress

of electrical science, is a most important

physical research and well worthy of being
repeated.

The actual resistance coils constructed

to represent the Ohm were made of an
alloy of two parts of silver and one of pla-

tinum in the form of wires from .5 milli-

metres to .8 millimetres diameter, and from
one to two metres in length. These wires

were soldered to stout copper electrodes.

The wire itself was covered with two layers
of silk, imbedded in solid paraffin, and enclosed in u til in brass
case, so that it can be easily brought to a temperature at which
its resistance is accurately one Ohm. This temperature is marked
on the insulating support of the coil. :'See Fig. 27.)
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1

On 00 Forms of Resistance Grih.

341.] A Resistance Coil is a conductor capable of being' easily

placed in the voltaic circuit, so as to introduce info the circuit

a known resistance.

The electrodes or ends of the coil must be such that no appre-

ciable error may arise from the mode of making tin- enuuexn n<.

For resistances of considerable magnitude it is sufficient that the

electrodes should be made of stout copper wire or rod well amal-
gamated with mercury at the ends, and that the ends should be

made to press on flat amalgamated copper surfaces placed in mercury

cups.

For very great resistances it is sufficient that the electrodes

should be thick pieces of brass; and that the connexions should

be made by inserting1 a wedge of brass or copper into the interval

between them. This method is fount! very convenient.

The resistance coil itself consists of a wire well covered with

silk, the ends of which arc soldered permanently to the elec-

trodes.

The coil must be so arranged that its temperature may be easily

observed. For this purpose the wire is coiled on a tube and
covered with another tabs, so that it may fa placed in a vessel

of water, and that the water may have access to 1 he instil- and the

outside of the coil.

To avoid the electromagnetic effects of the current in the coil

the wire is first doubled back on itself and then coiled on the tube,

so that at every part of the coil there are equal and opposite

currents in the adjacent parts of the wire.

When it is desired to keep two coils at the same temperature the

wires are sometimes placed side by side and coiled up together.

This method is especially useful when it is more important to

secure equality of resistance than to know the absolute value of

the resistance, as in the ease of the equal arms of Wheatstone's

Bridge, (Art. 347).

When measurements of resistance were first attempted, a resist-

ance coil, consisting of an uncovered wire coiled in a spiral groove

round a cylinder of insulating material, was much used. It was
called a Rheostat. The accuracy with which it was found possible

to compare re^intanees was semi found to be inconsistent with the

use of any instrument in which the contacts are not more perfect

than can be obtained in the rheostat. The rheostat, however, is
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still used for adjusting the resistance where accurate measurement is

not required.

Itesistance coils are generally made of those metals whose resist-

ance is greatest and which vary least with temperature. German
silver fulfils these conditions very well, but some specimens are

found to change their properties during the lapse of years. Hence
for standard coils, several pure metals, and also an alloy of platinum
and silver, have been employed, and the relative resistance of these
during several years has been found constant up to the limits of
modern accuracy.

342.] For very great resistances, such as several millions of
Ohms, the wire must be either very long or very thin, and the
construction of the coil is expensive and difficult, Hence tellurium
and selenium have been proposed as materials for constructing
standards of great resistance. A very ingenious and easy method
of construction has been lately proposed by Phillips*. On a piece
of ebonite or ground glass a fine pencil-line is drawn. The ends
of this filament of plumbago arc connected to metallic electrodes,

and the whole ia then covered with insulating varnish. If it

should be found that the resistance of such a pencil-line remains
constant, this will be the best method of obtaining a resistance of
several millions of Ohnig.

343.] There are various arrangements by which resistance coils

may be easily introduced into a circuit.

Tor instance, a series of coils of which the resistances are 1, 2,

4, 8, 16, &c., arranged according to the powers of 2, may be placed
in a box in series.

The elect l odes consist of stout brass plates, so arranged on the
outside of the box that by inserting a brass plug or wedge between

• Phil hfag., July, 1870.
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two of them as a shunt, the resistance of the corresponding- coil

may be put oat of the circuit. This arrangement was introduced
by Siemens.

Kach interval between the electrodes is marked with the resist-

ance of the corresponding coil, so that if we wish to make the
resistance box equal to 107 we express 107 in the binary scale as

G4 + 32 + 8 + 2 + 1 or 1101011. We then take the plugs out
of the holes corresponding to 64, 32, 8, 2 and 1, and leave the
plugs in 16 and 1.

Tins method, founded on the binary scale, is that in which the
smallest number of separate coils is needed, and it is also that
which can be most readily tested, For if we have another coil

equal to 1 we can test the equality of 1 and l', then that of 1 + l'

and 2, then that of 1 + i' + 2 and 4, and so on.

The only disadvantage of the arrangement is that it requires

a familiarity with the binary scale of notation, which is not
generally possessed by those accustomed to express every number
in the decimal scale.

344.] A box of resistance coils may he arranged iu a different
way for the purpose of mea-

suring conductivities instead of

The coils are placed so that

one end of each is connected

with a long thick piece of

metal which forms one elec-

trode of the box, and the other

end is connected with a stout piece of brass plate as iu the former
case.

The other electrode of the box is a long brass plate, such that

by inserting brass plugs between it and the electrodes of the coils

it may be connected to the first electrode through any given set of
coils. The conductivity of the box is then the sum of the con-
ductivities of the coils.

In the figure, in which the resistances of the coils are 1,2, 4, &c,
and the plugs are inserted at 2 and 8, the conductivity of the

box is i + £ = h and the resistance of the box is therefore f
or

This method of combining resistance coils for the measurement
of fractional resistances was introduced by Sir \V

r

. Thomson under
the name of the method of multiple ares. Sec Art. 27(5.

Fig. 29.
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On the Comparison of Resistances.

345.] If E is the electromotive force of a battery, and 7? the
resistance of the battery and its connexions, including the galvan-
ometer nscd in measuring the current, and if the strength of the
current is I when the battery connexions are closed, and Ilt L
when additional resistances rlt rt are introduced into the circuit^

then, hy Ohm's Law,

Mm m = /, (S+r
t
) =

|
Eliminating B, the electromotive force of the battery, and R

the resistance of the battery and its connexions, we get Ohm's
formula ^ J%

This tnelhod requires a measurement of the rutins of /, Ix
and 74

and (bis implies a galvanometer graduated lor absolute mea
snrementa.

If the resislsnvi's ,. ami ,\ are equal, then f
l
;ind Z, arc equal,

and we can test the equality of currents by a galvanometer which
is not capable of determining their ratios.

But this is rather to be taken as an example of a faulty met hod
than as a practical method of determining resistance. The electro-
motive force E cannot be maintained rigorously constant, and the
internal resistance of the battery is also exceedingly variable, so
that any methods in which these are assumed to be even for a short
time constant are not to be depended on.

346.] The comparison of resistances can bo made with extreme

accuracy by eitber of two methods, in which the result is in-

dependent of variations of R and E.
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The first of these methods depends on the use of the differential
galvanometer, an instrument in which there are two coils, the
currents in which are independent of each other, so that when
the currents are made to flow in opposite directions they aet in
opposite directions on the needle, and when the ratio of these
currents is that of m to n they have no resultant effect on the
galvanometer needle.

Let Iu T
s
he the currents through the two coils of the galvan-

ometer, then the deflexion of the needle may he written

6 = mi jfj— n 7,

,

Now let the battery current I be divided between the coils of
the galvanometer, and let resistances A and B be introduced into
the first and second coils respectively. Let the remainder of the
resistance of their coils and their connexions be a and £ respect-
ively, and let the resistance of the battery and its connexions
between € and D be r, and its electromotive force R
Then we find, by Ohm's Law, for the difference of potentials

between C'and 71

C~ 1) - h M + = 4(i5+ /3) = £-/r,

and since T a-T — T

where I) = (A + a) {B+ £)+ r (A + a+ B+ p).

The deflexion of the galvanometer needle is therefore

and if there is no observable deflexion, then we know that the
quantity enclosed in brackets cannot differ from zero by more than
a certain small quantity, depending on the power of the battery,
the suitableness of the arrangement, the di'liVriey of the silvan'
ometer, and the accuracy of the observer.

Suppose that B has been adjusted so that there fc no apparent
deflexion.

Now let another conductor A' be substituted for A, and let
A' bo adjusted till there is no apparent deflexion. Then evidently
to a first approximation A'?= A.
To ascertain the degree of accuracy of this estimate, let Un-

altered quantities in the second observation lie iioecntcd, then
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m(B+ p)-n(J + a) = -^5,

Hence n(A'-A) = - ^ 8'.

If 3 and b', instead of being1 both apparently zero, had been only

observed to be equal, then, unless we also could assert that E = Wt

the right-band side of the equation might not be zero. In fact,

die method would be a mere modification of that already described.

The merit of the method consists in the fact that the thing
observed is the absence of any deflexion, or in other words, the

method is a Null method, one in which the non-existence of a force

is asserted from an observation in which the force, if ifc had been
tliit'ci'i'iit from zero by more than a certain small amount, would

have produced an observable effect.

Null methods are of great value where they can be employed, but
they can only be employed where we can cause two equal and
opposite quantities of the same kind to enter into the experiment
together.

In the case before us both S and ft' are quantities too small to be

observed, and therefore any change in the value of E will not affect

the accuracy of the result.

The actual degree of accuracy of this method might be ascer-

tained by taking a number of observations in each of which A'
is separately adjusted, and comparing the result of each observation

with the mean of the whole series.

(bit by putting A' out of adjustment by a known quantity, as,

for instance, by inserting at A or at B an additional resistance

equal to :t hundredth part of A or of 7?, and II ten observing

the resulting deviation of the galvanometer needle, we can estimate

the number of degrees corresponding to an error of one per cent.

To lind the actual degree of precision we must estimate the smallest

deflexion which could not escape observation, and compare it with
the deflexion due to an error of one per cent.

* If the comparison is to be made between A and B, and if the
positions of A and B are exchanged, then the second equation
becomes

This investigation is taken from Weber's treatise on GftlvMiometrw (?,

1 ransacliont, x. p. 8&
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D 1/
whence (m + n) {B—A) — -~ 8 — 6'.

jfi J'j

Ifa and n, A and B, a and /3 arc approximately eijiuil, then

5- = |—| + a) (A + a + 2 r) - &').

Here 6—6' may be taken to he the smallest observable deflexion

of the galvanometer.

If the galvanometer wire be made longer and thinner, retaining
the same total mass, thou n will vary as the hmgth of ihc win?

and a as the square of the length. Hence there will be a minimum

value of ^-i

—

-—-i- ' when
n

If we suppose the battery ivstst:imv, small i-oivi|»:ir.-i] will* .7.

tins gives
a = i4i

or, <7/tf resistance of each coil of the galvanometer should he one-third

of the resistance to be measured.

We then find a ,. 2

E) nE v

If we allow the current to flow through one only of the coils

of the galvanometer, and if the deflexion thereby produced is A
(supposing the deflexion strictly proportional tp the deflecting

force), then

mE 3 nE .„ , l= -, ;— = - —7- it r — and a. — - A.

„ B—A 2 8— h"
IJmee = — •

A 3 A

In the differential galvanometer two currents are made to

produce equal and opposite effects on the suspended needle. The
force with which either current art* on the needle depends not

only on the strength of the current, but on the position of the

windings of the wire with respect to the needle. Hence, unless

the coil is very care fully wound, the rutin r.f ,n U< >* \w.\\ rhurige

when the position of the needle is changed, and therefore it is

necessary to determine this ratio by proper methods during each
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course of experiments if any alteration of the portion of the needle

H SUSpCcti'd.

The other null method, in which Wheatstone's Bridge is used,

requires only an ordinary galvanometer, and the observed zero

deflexion of the needle is due, not to the opposing action of two
currents, but to the non-existence of a current in the wire. Hence
we have not merely a null deflexion, but a null current as the
plu'iiMiuenon observed, and no errors run uri.-e from WBCtf of
regularity or change of any kind in the coils of the galvanometer.
The galvanometer is only required to be sensitive enough to detect

the existence and direction of a current, without in any way
determining its value or comparing its value with that of another
current,

347.] Wheatstone's Bridge consists essentially of six conductors

connecting four points. An electromotive

force E is made to act between two of the

points by means of a voltaic battery in-

troduced between B and C. The current

between the other two points and A is

measured by a galvanometer.

Under certain circumstances this current

becomes zero. The conductors BO and OA
are then said to be conjugate to each other,

which implies a certain relation between the resistances of the

other four conductors, and this relation is made use of in measuring
resistances.

If the current in OA is zero, the potential at must be equal

to that at A. Now when we know the potentials at if and C we
can determine those at and A by the rule given at Art. 274,
provided there is no current in OA,

/t _ By + C0
t

Bb+Cc

whence the condition is g£ _

where b, c, 0, y are the resistances in CA, AB, BO and OC re-

spectively.

To determine the degree of accuracy attainable by this method
we must ascertain the strength of the current in OA when this

condition is not fulfilled exactly.

Let A, B, C and he the four points. Let the currents along
BC, CA and AB be x, y and *, and the resistances of these
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conductors a, It and c. Let the currents along OA, OB and OC be

£ V, C and the resistances o, £ and y. Let an electromotive force

E act along ISC, Required the current £ along OA.
Let the potentials at the points A, B, C and l>e denoted

by the symbols A, B> C and 0. The equations of conduction are

ax= B-C + E, a £ = 0-A,
ty=C-A, pt)=0-B,
cz tz A—B, y{ = 0-C;

with the equations of continuity

= 0,

i) + z — x — 0,

C+x—y - o.

By considering the system as made up of three circuits OBC\
OCA and OAB in which the currents are a?, y, g respectively, and
applying- KirchhofTs rule to each < \ <!«>, we eliminate the values

of the potentials 0, A, B, C, and the currents £ if, £ and obtain the
following equations for 0, y and ^,

(a+fS+y)x-yy -fi ess A'3

— ya: + (i + y+ a)y -o; =0,

Hence, if we put

I) =

we lii id

and

ay

—y

+ (e + a + j8) * = 0.

-y -£
6+ y+ a — a

— a c + a-\-f3

E W+ Y) (<f+ /3) + a(«4 c+ p+y)}.

348.] The value of D may be expressed in the symmetrical form,

B = adc + ltc{j3 + y) + ca(y+ a)+a&(a-\. p)+ (a+ 6 -{ c}[/3y+ ya+ ap)

or, since we suppose the battery in the conductor a and the

galvanometer in a, we may put B the battery resistance for a and
G the galvanometer resistance for «. We then find

£ = BG(l>+c + p+y) + B(!> + y)(c+ l3)

+ + (£+y)+#c(/3H-y)-f /3y(4-fc).

If the electromotive force E were made to act along OA, the

resistance of OA being still a, and if the galvanometer were |>hurd
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in BC, the resistance of BC being still a, then the value of 2>

would remain the same, ami the current in HC due to the electro-

motive force E acting along OA would be equal to the current

in OA due to the electromotive force E acting in BC.

Hut if we simply disconnect the battery and the galvanometer,

and without altering their respective resistances connect the battery

to and A and the galvanometer to B and C, then in the value of

B we must exchange the values of B and G. If JX be the value

ofD after this exchange, we find

B'-I)=(G-B) {(l+ c)($+y)-(b + y)($ic)} t

= (B-G)
Let. us suppose that the resistance of the galvanometer is greater

than thai of the battery.

Let us also suppose that in its original position the galvanometer

connects the junction of the two conductors of least resistance /9, y
with the junction of the two conductors of greatest, resistance h,r

3

or, in other words, we shall suppose that if the quantities 6, c, y, (i

are arranged in order of magnitude, b and e stand together, and

y and stand together. Hence Ihe quantities — and v— y are

of the same sign, so that their product is positive, and therefore

Ji'—B is of the same sign aB B—G.
If therefore the galvanometer is made to connect the junction of

the two greatest resistances with that of the two least, and if

the galvanometer resistance is greater than that of the battery,

then the value of D will be less, and the value of the deflexion

of the galvanometer greater, than if the connexions are exchanged.

The rule therefore for obtaining the greatest galvanometer de-

flexion in a given system is as follows

:

Of the two resistances. Hint of the battery and that of the

galvanometer, connect the greater resistance so as to join the two
greatest to the two least of the four other resistances.

349.| We shall suppose that we have to determine the ratio of

the resistances of the conductors AB and A C, and that this is to he
done by finding a point on the conductor BOC

t
such that when

the points A and are connected by a wire, in the course of which
a galvanometer is inserted, no sensible deflexion of the galvano-
meter needle occurs when the battery is made to act between B
and C.

The coie 1 in lor HOC may be supposed to be a wire of uniform

resistance divided into equal parte, so that the ratio of the resist-

ances of BO and OC may he read off at once.
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Instead of the whole conductor being a uniform wire, we may
make the part near of such a wire, and the parts on each side
may be coils of any form, the resistance of which is accurately
known.

We shall mow use a different notation instead of the symmetrical
notation with which we commenced.
Let the whole resistance of BAG he R.
Let c — viR and b = {\—m) R.
Let the whole resistance of ROC be S,

Let £ = nS and y — S.

The value of n is read off directly, and that of m is deduced from
it when there is no sensible deviation of the galvanometer.

Let the resistance of the battery and its connexion* be J?, and
that of the galvanometer and its connexions G.

We find as before

1) = 0{BR+B8+RS} + m{\-m)R?{B+S) + n{\-n)S*{B+R)
f (m + n— 2m n) RRS,

and if £ is the current in the galvanometer wire

£ = —jp (« - m).

In order to obtain the most accurate results we must make the
deviation of the needle as great as possible compared with the value
of (»—»). This may be done by properly choosing the dimensions
of the galvanometer and the standard resistance wire.

It will be shewn, when we come to Galvanometry, Art. 710,
that when the form of a galvanometer wire is changed white
its mass remains constant, the deviation of the needle for unit
current is proportional to the length, but. the resistance increases
as the square of the length. Hence the maximum deflexion is
shewn to occur when the resistance, r>f the galvanometer wire is

equal to the constant resistance of the rest of the circuit.

In the present case, if ft is the deviation,

ft = CjC£,
where C is some constant, and G is the galvanometer resistance
which varies as the square of the length of the wire. Hence we
find that in the value of D, when ft is a maximum, the part
involving G must be made equal to the rest of the expression.

If we also put m = «, as is the case if we luive made a correct
observation, we find the best value of G to be

G = »(1
VOL. I. D d
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This result is easily obtained by considering the resistance from

A to through the system, remembering' that BC
t
being conjugate

to AO, has no effect on this resistance.

In tin; snme way we should Jind that if the total area of the

acting surfaces of the battery is given, the most advantageous

arrangement of the battery is when

BSB=

Finally, we shall determine the value of S such that a given

change in the value of n may produce the greatest galvanometer

<li 'Ilex ion. By differentiating the expression for £ we find

If we have a great many determinations of resistance to make
in which the actual resistance has nearly the same value, then it

may he worth while to prepare a galvanometer and a battery for

this purpose. In this case we find that the best arrangement is

8= B, B = G = 2n{\-n)M,

and if « = i 6' = ±R.

On the Use of WheainUyaJs Bridge*

350.] We have already explained the general theory of Wheat-
stone's Bridge, we shall now consider some of its applications.

The comparison which can be effected with the greatest exact-

ness is that of two equal resistances.
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Let us suppose that /3 is a standard resistance coil, aud that
we wish to adjust y to be equal in resistance to 0.
Two other coils, 6 and e, are prepared which are equal or nearly

equal to each other, and the four coils are placed with their electrodes
in mercury cups so that the current of the battery is divided
between two branches, one consisting- of £ and y and the other
of b and e. The coils b and e are connected by a wire PR, as
uniform in its resistance as possible, and furnished with a scale
of equal parts.

The galvanometer wire connects the junction of £ and y with
a point Q of the wire PR, and the point of contact at Q is made
to vary till on closing first the battery circuit and then the
galvanometer circuit, no deflexion of the gal variometer needle is
observed.

The coils /3 and y are then made to change places, and a new
position is found for Q. If this new position is the same as the
old one, then we know that the exchange of /9 and y has produced
no change m the proportions of the resistances, and therefore y
is rightly adjusted. If Q has to be moved, the direction and
amount of the change will indii-aie the nature and amount of the
alteration of the length of the wire of y, which will make its
>vsi*tunee e<ptal to that of,*

If the resistances of the coils b and c, each including part of the
wire PR up to its zero reading, are equal to that of b and c
divisions of the wire respectively, then, if x is the scale reading
of Q in the first case, and y that in the second,

c+ z _ fi_ c+y _ y
b-x y ' h—y ~ ~$

'

whence f- = i + (*±£M£zf)

Since b-y is nearly equal to + and both are great with
respect to x or we may write this

p- 1+4
-b~Tc'

When y is adjusted as well as we can, we substitute for b aud c
other coils of (say) ten times greater resistance.

The remaining difference between and y will now produce
ten times greater difference in the position of Q than with the

D d 4
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original coils 1 and and in this way we can continually increase

the accuracy of the comparison.

The adjustment hy means of the wire with sliding contact piece

is more .[iiickly made than by means of a resistance box, and it is

capable of continuous variation.

The hattery must never be introduced instead of the galvano-

meter into the wire with a sliding contact, for the passage of a

pow erful current at the point of contact would injure the surface

of the wire. Hence this arrangement is adapted for the case in

which the resistance of the galvanometer is greater than that of the

hattery.

On the Measurement of Small Resistances.

351*] When a short and thick conductor is introduced into a

circuit its resistance is bo small compared with the resistance

occasioned by unavoidable faults in the connexions, such as want

of contact or imperfect soldering, that no correct value of the

resistance can he deduced from experi-

ments made in the wav described above.
II

The object of such experiments is

generally to determine the specific re-

sistance of the substance, and it is re-

sorted to in cases when the substance

cannot be obtained in the form of a

long thin wire, or when the resistance

to transverse as well as to longitudinal

conduction has to be measured.
Fig. 33.
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Fig, 34.

Sir W. Thomson * has described a method applicable to such

cases, which we may take as an example of a system of nine

conductors.

• Proc. It. $., June 6, 18(51.
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The most important part of the method consists in measuring
the resistance, not of the whole length of the conductor, but of

the part between two marks on the conductor at some little dis-

tance from its ends.

The resistance which we wish to measure is that experienced

by a current whoso intensity is uniform in any sec) ion of the

conductor, and which flows in a direction parallel to its axis.

Now close to the extremities, when the current is introduced

by means of electrodes, either soldered, amalgamated, or simply

pressed to the ends of the conductor, there is generally a want of

uniformity in the distribution of the current in tin- conduWnr.

At a short distance from the extremities the current becomes
sensibly uniform. The student may examine for himself the
investigation and the diagrams of Art,. HKS, where a current is

introduced into a strip of metal with parallel sides through one

of the sides, but soon becomes itself parallel to the sides.

The resistance of the conductors between certain marks Sj S'

and TT* is to be compared.

The conductors are placed in series, and with connexions as

perfectly conducting as possible, in a battery circuit (if small reli-
ance. A wire SVT is made to touch the conductors at S and T,

and S'V'T is another wire touching them at 5' and T.
The galvanometer wire connects the points Tand V of these wires.

The wires SVT and S'F'Z" are of resistance so great that the
resistanco duo to imperfect connexion at S, Tt

8' or T may bo
neglected in comparison with the resistance of the wire, iind 7

%
V*

are taken so that the resistance in the branches of either wire

leading to the two conductors are nearly in the ratio of the resist-

ances of the two conductors.

Calling 77 and /'the resistances of the conductors SS' and TT.
,} A and C those of the branches £7*and TT,

„ P and 7? those of the branches S'V and V*T*.

„ Q that of the connecting piece S'T.

„ B that of the battery and its connexions.

„ G that of the galvanometer and its connexions.

The symmetry of the system may be understood from the

skeleton diagram. Pig. 33,

The condition that B the battery and G the galvanometer may
be conjugate conductors is, in this ease,

/T _ 77 K Q
C A + \C a) P+Q + B - °-
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Now the resistance of the connector Q is as small as we eon
make it. If it were zero this equation would bo reduced to

C ~ A*
and the ratio of the resistances of the conductors to he compared
would he that of Cto A, ae in Wheatstone's Bridge in the ordinary

form.

In the present case the value of Q is small compared with P
or with i?, so that if we assume the points V, V so that the ratio

of J? to C is nearly equal to that of P to A, the last term of the
equation will vanish, and we shall have

Fx Hz: C;A.
The success of this method depends in some degree on the per-

fection of the contact between the wires and the tested conductors
at SS'

y
T' and T, In the following1 method, employed by Messrs.

Matthiessen and Ilockin *, this condition is dispensed with.

Fig. 35.

352.] The conductors to be tested are arranged in the manner
already described, with the connexions as well made as possible,

and it is required to compare the resistance between the marks
SS' on the first conductor with the resistance between the marks
T'T cm the second.

Two conducting points or sharp edges are fixed in a piece of

insulating material bo that the distance between them can be

accurately measured. This apparatus is laid on the conductor to

he tested, and the points of contact with the conductor are then

at a known distance Each of these contact pieces is connected

* Laboratory. Matthiessen and Hockin ou Alloys,
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with a mercury cup, into which one electrode of the ^iilvnm>mrl«T

may be plunged.

The rest of the apparatus is arranged, as in Wheatstone's Bridge,

with resistance coils or boxes A and C, and a wire PR with a

sliding contact piece Q, to which the other electrode of the galva-

nometer is connected.

Now let the galvanometer be connected to S and Q, and let

A
1
and C

x
be so arranged, and the position of Q so determined, thai

there is no current in the galvanometer wire.

Then we know that vc. < , t>^
AJ> _ A

t
+J*Q

SY ~ C[+QR.

where XS, PQ, &c. stand for the resistances in these conductors.

Krom this we gel

XS A+ P Qi

XY ~ Al + Ci
+P~R'

Now let the electrode of the galvanometer be connected to S%

and let resistance be transferred from (7 to A (by carrying resistance

coils from one side to the other) till eltrtrie rtpiililn-titm of tin'

galvanometer wire can be obtained by placing Q at some point

of the wire, say Q.2 . Let the values of C and A be now C2 aud A.it

and let ^+ C2 +PR = A
l + C

1+PR = P.

Then we have, as before,

XT ~ R
'

Whence
SS_ = A^-A^ QlQi

In the same way, placing the apparatus on the second conductor

at TT* and again transferring resistance, we get, when the electrode

is in r,
XT A

3+ PQa

IT R—'
and when it is in JP,

XT _ Aj+PQ4

XV R
'

Whence
TT

We can now deduce the ratio of the resistances SSf
and T'T, for

S$' _ ^2-^+(3 L Qa
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When great accuracy is not required we may dispense with the
resistance coils A and C, and we then find •

The readings of the position of Q on a wire of a metre in length
cannot he depended on to less than a tenth of a millimetre, and the
resistance of the wire may vary considerably in different parts
owing to inequality of temperature, friction, See. Hence, when
great accuracy is required, coils of considerable resistance are intro-

duced at A and C, and the ratios of the resistances of these coils

can be determined more accurately than the ratio of the resistances

of the parts into which the wire is divided at Q.
It will be observed that in this method the accuracy of the

determination depends in no degree on the perfection of the con-
tacts at SS' or TT.

This method may be called the differential method of using
Wheatstonc's Bridge, since it depends on the comparison of ob-
servations separately made.

An essential condition of accuracy in this method is that the
resistance of the connexions should continue the same during the
course of the four observations required to complete the determ-
ination. Hence the scries of observations ought always to be
repeated in order to detect any change in the resistances.

On the Comparison of Great Resistance*.

353. ] When the resistances to he measured are very great, the
comparison of the potentials at different points of the system may
be made by means of u delicate electrometer, such as the Quadrant
Electrometer described in Art. 213.

If 4 he roiuliift'T.s whose resistance is to be measured are placed
in series, and the same current passed through them by means of a
battery of great electromotive force, the difference of the potentials
at the extremities of each conductor will be proportional to the
resistance of that conductor. Hence, by connecting the electrodes
of the electrometer with the extremities, first of one conductor
and then of the other, the ratio of their resistances may be de-
termined.

This is the most direct method of determining resistances. It
involves the use of an electrometer whose readings may be depended
on, and we must also have some guarantee that the current remains
constant during the experiment.
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Four conductors of great resistance may also be arranged as in

Wheatstone's Bridge, and the bridge itself may consist of the

electrodes of an electrometer instead of those of a galvanometer.

The advantage of this method is that no permanent current is

required to produce the deviation of the electrometer, whereas the

galvanometer cannot be deflected unless a current passes through

the wire.

354.] When the resistance of a conductor is so great that the

current which can be sent through it by any available electromotive

force is too small to be directly measured by a galvanometer, a

condenser may be used in order lo accumulate the elretrieily for

a certain lime, and then, by discharging the condenser through a

galvanometer, the quantify accumulated may be estimated. This

is Messrs. Bright and Clark's method of testing the joints of

submarine cables,

335.] But the simplest method of measuring the resistance of

such a conductor is to charge a condenser of great capacity and to

connect its two surfaces with the electrodes of an electrometer

and also with the extremities of the conductor. If E is the dif-

ference of potentials as shewn by the electrometer, $ the capacity

of the condenser, and Q the charge on either surface, R the resist-

ance of the conductor and ,r the current in it, then, by the theory

of condensers, „ ...
' Q — SA.

By Ohm's Law, E = list,

and by the definition of a current,

* ~ W'

Hence Q=ltS
flQ>
at

and Q= Q,e

where Qn is the charge at first when <f = 0.

Similarly E = E e

where E is the original reading of the electrometer, and E the

same after a time U l'Vom this we find

which gives R in al>solute measure. In this expression a knowledge
<>f the value of the unit of the electrometer scale is not required.
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If S, the capacity of the condenser, is given in electrostatic

measure as a certain number of metres, then, B is also given in

electrostatic measure as the reciprocal of a velocity.

If S is given in electromagnetic measure its dimensions are

•j? , and 7? is a velocity.

Since the condenser itself is not a perfect insulator it is necessary

to make two experiments. In ihe first we determine the resistance

of the condenser itself, i?
, and in the second, that of the condenser

when the conductor is made to connect its surfaces. Let this he Bf,

Then the resistance, B, of the conductor is given by the equation

J_ 1 I

This method has been employed by MM. Siemens.

Thomson's* Methodfor the Iktermimtion of the Resistance of
the Galvanometer.

356.] An arrangement similar to Wheatstone's Bridge has been
employed with advantage by Sir W. Thomson in determining the

Gu-lvanomttcr

Fig. 36.

resistance of the galvanometer when in actual use. It was sug-
gested to Sir W. Thomson by Mauce's Method. See Art. 357.

Let the battery be placed, as before, between B and C in the
figure of Article 347, but let the galvanometer be placed in CA
instead of in OA. If b$-cy is zero, then the conductor OA is

conjugate to BC, and, as there is no current produced in OA by the
battery in BC, the strength of the current in any other conductor

* Proc. R. i>\, Jan. 10. 18/1.
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is independent of the resistance in OA, Hence, if the galvano-
meter is placed in CA its deflexion will remain the same whether
the resistance of OA is small or great. We therefore observe
whether the deflexion of the galvanometer remains the same when
and A are joined by a conductor of small resistance, as when

this connexion is broken, and if, hy properly adjusting the re-

sistances of the conductors, we obtain this result, we know that

the resistance of the galvanometer is

where c, y, and ,9 are resistance coils of known resistance.

It will be observed that though this is not a nidi method, in bhe
sense of there being no current in the galvanometer, it is so in

Mm souse of the fact observed In -nig i lie negative one, that the
deflexion of the galvanometer is not changed when a certain con-
tact is made. An observation of this kind is of greater value
tlmn :m observation of the equality of two different deflexions of
the same galvariuitieter, for in the laitn- ease then- is time for

alteration in the strength of the battery or the sensitiveness of
the galvanometer, whereas when the deflexion remains constant,
in spite of certain changes wliich we can repeat at pleasure, we are
Bure that the current is quite independent of these changes.
The determination of the resistance of the coil of a galvanometer

can easily be effected in the ordinary way of using Wheatstone's
Bridge by placing another galvanometer in OA. By the method
now described the galvanometer itself is employed to measure its

own resistance.

Mancc's* Method of determining the Resisiunce of the Battery.

357.] The measurement of the resistance of a battery when in

action is of a much higher order of difficulty, since the resistance

of the battery is found to change considerably for some time after

the strength of the current through it is changed. In many of the

methods commonly used to measure the resistance of a battery such
alterations of the strength of the current through it occur in the
eourse of the operations, and therefore the results are rendered
doubtful.

In Manee's method, which is five from this objection, the battery

is placed in BC and the galvanometer in CA. The connexion

between and B is then alternately made and broken.

• I'rnc. II. Jan. 19, 1 871,
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If the deflexion of the galvanometer remains unaltered, we know
that OB is conjugate to CA, whence cy = a a, and a, the resistance

of tlii 1 halt pry, is obtained in terms of known resistances e, y, a.

When the condition cy= a a is fulfilled, then the current through
the galvanometer is

Ea
li

and this is independent of the resistance between and B. To
test the sensibility of the method let us suppose that the condition
cy = tia is nearly, hut not accurately, fulfilled, and that y is the

Fig. 37.

current through the galvanometer when and B are connected
by a conductor of no sensible resistance, and y v

the current when
and B are completely disconnected.

To find these values we muefc make equal to and to =c in the
general formula for y, and compare the results.

In this way wo find

3?f>—.h _ « cy—aa
# y(c+ a)(a+y)'

where y and y1
are supposed to be so nearly equal that we may,

when their difference is not in question, put either of them equal
to the value of the current when the adjustment is perfect.

The resistance, <?, of the conductor AM should he equal to

that of the battery, a and y, should be equal and as small as
possible, and t, should br npial to a-\-y.

Since a galvanometer is most sensitive when its deflexion is

small, we should bring the needle nearly to zero by means of fixed

magnets before making contact between and B.

In this method of measuring the resistance of the battery, the
current in the battery is not in any way interfered with during the
operation, so that we may ascertain its resistance for any given
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strength of current, so as to determine how the strength of current

effects the resistance.

If if \* the t-unvnt in the galvanometer, the actual current

through the battery is x with the key down and x
l
with the

key up, where(b \ f b ac \
1 + )» = » ( 1 + - + —; .),

the resistance of the battery is

cy
a = —

,

a

and the electromotive force of the battery is

E=y(6+ c+-(b+ y)).
CI

The method of Art, 356 for finding the resistance of the galva-

nometer dilfers from this only in making and breaking contact

between and A instead of between and if, and by exchanging

a and (i \vu obtain for this case

ffu-ffi _ cy- bfi

y y (c+P)(p+y)'

On the Comparison of Electromotive Forces.

358,1 The following method of comparing the electromotive forces

of voltaic and thermoelectric arrangements, when no current passes

through them, requires only a set of resistance coils and a constant

battery.

Let the electromotive force E of the battery be greater than that

of either of the electromotors to be compared, then, if a sufficient

A

'i 1-X
B

,

t

—c

H

i

Fig. 38.

resistance, J?
x , be interposed between the points Alt Bx

of the

primary circuit EBx
A

t
E, the electromotive force from B

x
to A

x
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may be made equal to that of the electromotor E
x

. If the elec-

trodes of this electromotor arc now connected with the points
Alt Bx

no current will flow through the electromotor. By placing
a galvanometer C7, in the circuit of the electromotor and
adjusting; the resistance between Ax and if,, till the galvanometer
(?, indicates no current, we obtain the equation

JEt
-

where Hi is the resistance between A
t
and j?tJ and C is the strength

of the current in the primary circuit.

In the same way, by taking a second electromotor Ez and placing
its electrodes at At and B%t so that no current is indicated by the
galvanometer G.,

,

A - &e,

where tfa is the resistance between A.> and ]i
t . If the observations

of the galvanometers G\ and G., are simultaneous, the value of V,

the current in the primary circuit, is the same in both equations,
and we find

In this way the electromotive force of two electromotors may be
compared. The absolute electromotive force of an electromotor
may be measured either electrostatically by means of the electro-

meter, or electromagnetically by means of an absolute galvano-
meter.

Tliis method, in which, at the time of the comparison, there
is no current through either of the electromotors, is a modification

of Poggendoitf's method, and is due to Mr. Latimer Clark, who
has deduced the following values of electromotive forces :

CotuVTLlTatcd „
solution of \unH.

Dwindl 1. Amalgamated Zinc HSO,+ iaq. Cu SO, Copper =1.0/9
n - » HSO, + 12»q. CuSO, Copper =0.97S
HI. „ HSO ( +12aq. Cu NO, Copper —1.00

&*m I. „ m it H NO, Cwboa =1.964
n

- » .r „ sp. g.1.38 Carbon = l.ftSS°™ » HSO.+ 4aq. H NO, P]atiatim=l.&56

A Volt is an deetrtmoiive forte equal to 100,000,000 vrtits of (he centimttrc-gratame-
<HCtt>«( Slf'hUt.



CHAPTER XII.

ON THE ELECTHIC ItKSISTANCE OP SUBSTANCES.

3o9.] There are three classes in which we may place different

substances in relation to the passage of electricity through them.
The first class contains all the metals and their alloys, some

sulphurate, and other compounds containing metals, to which we
must add carbon in the form of gas-coke, and selenium in the

crystalline form.

fii all t lie.*; substance* conduct ion takes place without any
decomposition, or alteration of the chemical nature of the substance,

cither in its interior or where the current enters and leaves the

body. In all of them the resistance increases as the temperature
rises.

The second class consists of substances which are called electro-

lytes, because the current is associated with a decomposition of

the substance into two components which appear at the electrodes.

As a rule a substance is an electrolyte only when in the liquid

form, though certain colloid substances, such as glass at lOO^C,

which are apparently solid, are electrolytes. It would appear from
the experiments of Sir B. C. Brodie that certain gases are capable

of electrolysis by a powerful electromotive force.

In all substances whieh conduct by electrolysis the resistance

diminishes as the temperature rises.

The third class consists of substances the resistance of which is

so great that it is only by the most refined methods that the

passage of electricity through them can be detected. These are

called Dielectrics. To this class belong a considerable number
of solid bodies, many of which are electrolytes when melted, some
liquids, such as turpentine, naphtha, melted paraffin, &c, and all

gases and vapours. Carbon in the form of diamond, and selenium

in the amorphous form, belong to this class.

The resistance of this class of bodies is enormous compared with

that of the metals. It diminishes as the temperature rises. It
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is difficult, on account of the great resistance of these substances,

to determine whether the feeble current which we can force through
them is or is not associated with electrolysis.

Ou the Electric Resistance tf MeUtte.

360.J There is no part of electrical research iu which more
numerous or more accurate experiments have been made than in

the determination of the resistance of metals. It is of the utmost
importance in the electric telegraph t hat the metal of whicb the
wires are made should have the smallest attainable resistance.

Measurements of resistance must therefore he made before selecting

the materials. When any fault occurs in the line, its position is

at once ascertained by measurements of resistance, and these mea-
surements, in which so many persons are now employed, require

the use of resistance coils, made of metal the electrical properties

of which have been carefully tested.

The electrical properties of metals and their alloys have been
studied with great care by MM, Matthiessen, Vogt, and Hockin,
and by AIM. Siemens, who have done so raucli to introduce exact

electrical measurements into practical work.

It appears from the researches of Dr. Matthiessen, that the effect

of temperature on the resistance is nearly the same for a considerable

number of the pure metals, the resistance at 100
eC being to that

at 0"C in the ratio of 1.414 to 1
3
or of 1 to 70.7. For pure iron

the ratio is 1.645, and for pure thallium 1.458.

The resistance of metals has been observed by Dr. C.W. Siemens*
through a much wider range of temperature, extending from the
freezing point to 350°C, and in certain cases to 1000°C. He finds

that the resistance increases as the temperature rises, but that the
rate of increase diminishes as the temperature rises. The formula,

which he finds to agree very closely both with the resistances

observed at low temperatures by Dr. Matthiessen iind with his

own observations through a range of 1000oC, is

where T is the absolute temperature reckoned from — 273 e
C, and

a, y are constants. Thus, for

Platinum r = O.039369yi+ 0.002164077'— 0.2413,

Copper r = 0.0265777^ + 0.0031443?'— 0.22751,

Iron r = 0.072545?1J-fO,0038133Z'— 1,23971.

* I'roc. It. S„ A|tril 2?, 1871.
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From data of this kind the temperature of a furnace may be
determined by mean* of an observation of the resistance of a
platinum wire placed in the furnace.

Dr. Matthiessen found that when two metals are combined to
form an alloy, the resistance of the alloy is in most cases greater

than that calculated from the resistance of the component metals
and their proportions. In the case of alloys of gold and silver, the
resistance of the alloy is greater than that of either pure gold or
pure silver, and, within certain limiting proportions of the con-

stituents, it varies very little with a slight alteration of the pro-
portions. For this reason Dr. Matthiessen recommended an alloy

of two parts by weight of gold and one of silver as a material
for reproducing the unit of resistance.

The effect of change of temperature on electric resistance is

generally less in alloys than in pure metals.

Hence ordinary resistance coils are made of German silver, on
account of its great resistance and its small variation with tem-
perature.

An alloy of silver and platinum is also used for standard coils.

361.] The electric resistance of some metals changes when the
metal is annealed

; and until a wire has been tested by being
repeatedly raised to a high temperature without permanently
altering its resistance, it cannot be Telied on as a measure of
resistance. Some wires alter in resistance in course of time without
having been exposed to changes of temperature. Hence it is

important to ascertain the specific resistance of mercury, a metal
which being fluid has always the same molecular structure, and
which can be easily purified by distillation and treatment, with
nitric acid. Great care has been bestowed in determining i\w

resistance of this metal by W. and C. F. Siemens, who introduced
it as a standard. Their researches have been supplemented by
those of Matthiessen and Hockin,

The specific resistance of mercury was deduced from the observed
resistance of a tube of length I containing a weight to of mercury,
in the following manner.

No glass tube is of exactly equal bore throughout, but if a small

quantity of mercury is introduced into the tube and occupies a
length A of the tube, the middle point of which is distant x from
one end of the tube, then the area * of the section near this point

will be * = — , where C is some constant.

vol. i. EC
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The weight of mercury which fills the whole tube is

w = pjsdx = p CI — >

where n is the number of points, at equal distances along the

tube, where A has been measured, and p is the mass of unit of

volume.

The resistance of the whole tube in

J 4
W »

where r is the specific resistance per unit of volume.

Hence icR = rP 2 (A) £ (i) ~

,

wR ri
l

;\iv\

gives the specific resistance of unit of volume.

To find the resistance of unit of leng-th and unit of mass we must
multiply this by the density.

It appears from the experiments of Matthicssen and Hockin that

the resistance of a uniform column of mercury of one metre in

length, and weighing one gramme at
&
C, is 13.071 Ohms, whence

it follows that if the specific gravity of mercury is 13.595, the

resistance of a column of one metre in length and one square

millimetre in section is 0.96146 Ohms.

362,] Tn the following table R is the resistance in Ohms of a
column one metre long and one gramme weight at 0°C, and r is

the resistance in centimetres per second of a cube of one centi-

metre, according to the experiments of Matthiessen *

Percentage
increment of

Specific resistance for
gravity * r 1°C at 20°C.

Silver 10.50 hard drawn 0.1689 1609 0.377

Copper 8.95 hard drawn 0.1469 1642 0.388
Gold 19.27 hard drawn 0.4150 2154 0.365
Lead 11.391 pressed 2.257 19847 0.387
Mercury 13.595 liquid 13.071 96146 0.072
Gold 2, Silver 1 . . 15.218 hard or annealed ] .668 10988 0.065
Selenium at 100°C Crystalline form 6xl0 13

1.00

Phil. Mwj , May, 1S65.
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On the Eleelrie Resistance of Electrolytes.

363.] The measurement of the electric resistance of electrolytes

is rendered difficult on account of the polarization of the electrodes,

which causes the observed difference of potentials of the metallic

electrodes to be greater than the electromotive force which actually
produces the current.

This difficulty can be overcome in various ways. In certain

cases we can get rid of polarization by using electrodes of proper
material, as, for instance, zinc electrodes in a solation of sulphate
of zinc. By making the surface of the electrodes very large com-
pared with the section of the part of the electrolyte whose resist-

ance is to be measured, and by using only currents of short duration

in opposite directions alternately, we can make the measurements
before any considerable intensity of polarization has been excited

by the passage of the current.

Finally, by making two different experiments, in one of which
the path of the current through the electrolyte is much longer tbau
in the other, and so adjusting the electromotive force that the
actual current, and the time during which it flows, are nearly the
same in each case, we can eliminate the effect of polarization

altogether.

364.] In the experiments of Dr. Paalzow * the electrodes were
in the form of large disks placed in separate flat vessels rilled with
the electrolyte, and the connexion was made by means of a loug
siphon filled with the electrolyte and dipping into both vessels.

Two such siphons of different lengths were used.

The observed resistances of the electrolyte in these siphons
being E

l
and E

£ , the siphons were next filled with mercury, and
their resistances when filled with mercury were found to be B

'

and iq.

The ratio of the resistance of the electrolyte to that of a mass
of mercury at

CC of the same form was then found from the
formula

To deduce from the values of p the resistance of a centimetre in

length having a section of a square centimetre, we must multiply

them by the value of r for mercury at 0°C. See Art. 3U 1.

» Berlin Moimtzbentht, July, 18Q&,

E e %
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The results given by Paalzow are as follow s

—

Mixtures ofSulphuric Acid ami Water.

™ Resistance ccmi|wri*l
p- with meroairy.

H,S04
• .... 1S°C 90950

1^80,+ 14ffO .... I9°C 14157

1^80,+ 13HS .... 22'C 13310

H.
f
SO< +499 BX) .... 22°C 184773

Sulphate of Zinc and Water

.

ZnS04 + 23H*0 .... 23°C 194400

ZnSO« + 24H*0 .... 23°C 191000

Zn S0
4 + 105 ffO .... 23°C 354000

Sulplutle of Copper and Water.

CUSO.+ 45IFO .... 22°C 202410

CuS04 +105H2O .... 22°C 339341

Suipftaie of Magnesium and Water.

MgSO, + 34 H*0 .... 22
aC 1 991 80

MgSO,+ 107 IPC) 22°C 324000

Hydrochloric Acid ami Water.

HCI + 15H2 .... 23°C 13G2G

HC1 + 500 H*0 23°C 86679

365.] MM. P. Kohlrausch and W. A. Nippoldt* bave de-

tcrmincd tlie resistance of mixtures of sulphuric acid and water.

They used alternating magneto-electric currents, the electromotive

force of which varied from i to of that of a Grove's cell, and

by means of a thermoelectric copper-iron pair they reduced the

electromotive force to t fl b\ of that of a Grove's cell. They found

that Ohm's law was applicable to this electrolyte throughout the

range of these electromotive forces.

The resistance is a minimum in a mixture containing about one-

third of sulphuric acid.

The resistance of electrolytes diminishes as the temperature

increases. The percentage increment of conductivity for a vise of

1°C is given in the following table.

* Pogg., Ann. exxxviii, p. 286, Oct. 1869.
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Jie&intance of Mixtures of Sulphuric Acid and Water at 22°C in terma

of Mercury at 0%\ MM. Kolilrausch and Nippoldt.

Specific gravity
at 18'5

0.9985

1.00

1.0504

1 .0989

1.1431

1.2045

1.2031

13163

1.3547

1.3994

1.4482

1.5026

Percentage
of H-iHlh

0.0

0.2

8.3

14.2

20.2

28.0

35.2

41.5

.
40.0

50.4

55.2

00.3

Resistance

at 22*C
(Hg =D

746300

465100

34530

18946

14990

13133

13132

14286

15762

1772«;

20796

25574

Percentage
increment of

conductivity

for re,

0.47

0.47

0.653

0.646

0.799

1.317

1.259

1410
1 .674

1.582

1.117

1.791

On the Electrical Resistance of Dielectrics.

366.] A great number oi" determinations of the resistance of

gutta-percha, and other materials used as insulating media, in the

manufacture of telegraphic cables, have been made in order to

ascertain the value of these materials as insulators.

The tests are generally applied to the material after it has been

used to cover the conducting wire, the wire being- used as one

electrode, and the water of a tank, in which the cable is plunged,

as the other. Thus the current is made to pass through a cylin-

drical coating oi" the insulator of great area and small thickness.

It is found that when the electromotive force begins to act, the

current, as indicated by tlu.' galvanometer, is by no means constant.

The first effect is of course a transient current of considerable

intensity, the total quantity of electricity being that required to

charge the surfaces of the insulator with the superficial distribution

of electricity corresponding to the electromotive f. .«ve. This lir.<1.

current therefore is a measure not of the conductivity, but of the

capacity of the insulating layer.

But even after this current 1ms been allowed to subside tin?

residual current is not constant, and does not indicate the true

conductivity nf J lie substance. It. is fonud that the current con-

tinues to decrease for at least half an hour, so that a determination
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of the resistance deduced from the current will give a greater value
if a certain time is allowed to elapse than if taken immediately after

applying the battery.

Thus, with Hooper's insulating" material the apparent resistance

at the end of ten minutes was four times, and at the end of
nineteen hours twenty-three times that observed at the end of
one minute. When the direction of the electromotive force is

reversed, the resistance falls as low or lower than at first and then
gradually rises.

These phenomena seem to he due to a condition of the gutta-
percha, which, for want of a better name, we may call polarization,

and which we may compare on the one hand with that of a series

of Leyden jars charged by cascade, and, on the other, with Ritter's

secondary pile, Art. 271.

If a number of Leyden jars of great capacity are connected in

series by means of conductors of great resistance (such as wet
cotton threads in the experiments of M. Gaugain), then an electro-

motive force acting on the series will produce a current, as indicated

by a galvanometer, which will gradually diminish till the jars are
fully charged.

The apparent resistance of such a series will increase, and if the
dielectric of the jars is a perfect insulator it will increase without
limit. If the electromotive force be removed and connexion made
between the ends of the series, a reverse current will \m observed,

the total quantity of which, in the case of perfect insulation, will be
the same as that of the direct current. Similar effects are observed
in the case of the secondary pile, with the difference that the final

insulation is not so good, and that the capacity per unit of surface

is immensely greater.

In the ease of the cable covered with gutta-percha, &c, it is found
that after applying the battery for half an hour, and then con-
necting the wire with the external electrode, a reverse current takes
place, which goes on for some time, and gradually reduces the
system to its original slate.

These phenomena are of the same kind with those indicated
by the 'residual discharge' of the Leyden jar, except that the
amount of the polarization is much greater in gutta-percha, fee.

than in glass,

This state of polarization seems to be a directed property of the
material, which requires for its production not only electromotive
force, but the passage, by displacement or otherwise, of a eon-
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eiderable quantity of electricity, and this passage: requires a con-
siderable time. When the polarized state has been get up, there

is an internal electromotive force acting' in the substance in the

reverse direction, which will continue till it hag either produced
a reversed current equal in total quantity to the first, or till the
state of polarization has quietly subsided by means of true con-
duction through the substance.

The whole theory of what has been called residual discharge,

absorption of electricity, electrification, or polarization, deserves
a careful investigation, and will probably lead to important dis-

coveries relating to the internal structure of bodies.

367.] The resistance of the greater number of dielectrics di-

minishes as the temperature rises.

Thus the resistance of gutta-percha is about twenty times as great
at 0°C as at 24°C. Messrs. Bright and Clark have found that the
following formula gives results agreeing with their experiments.

If r is the resistance of gutta-pereha at temperature T centigrade,

then the resistance at temperature T+i will be

R = r x 0.8878',

the number varies between 0.8878 and 0.9.

Mr. Hockin has verified the curious fact that it is not ontil some
hours after the gutta-percha has taken its temperature that the
resistance reaches its corresponding value.

The effect of temperature on the resistance of india-mbber is not
so great as on that of guttn-pcrcha.

The resistance of gutta-percha increases considerably on the
application of pressure,

The resistance, in Ohms, of a cubic metre of various specimens of
gutta-percha used in different cables is as follows*.

Name of Cable.

Red Sea 267 x 10 12 to .362 x 10 13

.Malta-Alexandria 1.23 x 10 12

Persian Gulf 1.80 x 10 1

2

Second Atlantic 3.42 x 10 12

Hooper's Persian G id f Cure 7 1.7 x 1
1 -

Gutta-percha at 24°C 3.53 x 10 12

368.] The following table, calculated from the experiments of

* Jenkin'a Cantor Ltcturte*



424 RESISTANCE. [369

,

M. Ihilf, described in Art. 271, shew* the resistance nf ;i cubic

metre of glass in Ohms at different temperatures.

Temperature. Resistance.

200*C 227000
250° 13900

300° 1480
350* 1035

400° 735

369.] Mr. C. F. Varley * lias recently investigated the conditions

of the current through rarefied gases, and finds that the electro-

motive force K is equal to a constant Fa together with a part

depending on the current according to Ohm's Law, thus

E=E
i
>+RCt

For instance, the electromotive force required to cause the

current to begin in a certain tube was that of 323 Darnell's cells,

but an electromotive force of 304 cells was just sufficient to

maintain the current. The intensity of the current, as measured

by the galvanometer, was proportional to the number of cells above

304. Thus for 305 cells the deflexion was 2, for 306 it was 4,

for 307 it was 6, and so on up to 380, or 304 + 76 for which the

deflexion was 150, or 76 x 1.97.

From these experiments it appears that there is a kind of

polarization of the electrodes, the electromotive force of which

is equal to that of 301 Daniell's cells, and that up to this electro-

motive force the battery is occupied in establishing this state of

polarization. "When the maximum polarization is established, the

exc^es of electromotive force above that of 304 cells is devoted to

maintaining the current according to Ohm's Law.
The law of the current in a rarefied gas is therefore very similar

to the law of the current through an electrolyte in which we have

to take account of the polarization of the electrodes.

In connexion with this subject we should study Thomson's results,

described in Art. 57, in which the electromotive force required

to produce a spark in air was found to be proportional not to the

distance, but to the distance together with a constant quantity.

The electromotive force corresponding to this constant quantity

may he regarded as the intensity of polarization of the electrodes.

370.] MM. "Wiedemann and Ruhlmanu have recently f investi-

• Proe. It. 8., Jam 1% 1871.

t Btriekte der Kiinigl. Si»ch». GatHteAafl, Oct. 20, IS 71-
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gated the passage of electricity through gases. The electric current
was produced by Holtz's machine, and Hie discharge took place
between spherical electrodes within a metallic vessel containing
rarefied gas. The discharge was in general discontinuous, and the
interval of time between successive discharges was measured by
means of a mirror revolving along with the axis of Holtz's machine.
The images of the series of discharges were observed by means of
a heliometcr with a divided object-glass, which was adjusted till

one image of each discharge coincided with the other imago of
the next discharge. By this method very consistent results were
obtained. It was found that the quantity of electricity in mob
discharge is independent of the strength of the current and of
the material of the electrodes, and that it depends on the nature
and density of the gas, and on the distance and form of the
electrodes.

These researches confirm the statement of Faraday* that, the
electric tension (see Art, 48) required to cause a disruptive discharge
to begin at the electrified surface of a conductor is a little less

when the electrification is negative than when it is positive, bul
that when a discharge does take placOj much more electricity passes
at each discharge when it begins at a positive surface. They also
tend to support the hypothesis stated in Art. 57, that the stratum
of gas condensed on the surface of the electrode plays an important
part in the phenomenon, and they indicate that this condensation
is greatest at the positive electrode.

• Exp. Ra,, 1501.

vol,. 1.









Vol. I





FIG. I ,

A it 118

.





fj. JSlpkerie&l- sur&as o/'s&/r/ /vttenUeU-.

, fit/rtf ti/ MiT.i tjfu/fft fnri-r 't//>,af /Jrs fl,rtS

doltest {jju> tjf th/> Lift* nf'/Sm* T O.t fJttis





Pro m

Art izrj

Lines Wfy/Y-t: rrsrrf /u/uyM//f>*//fd .St/.r/*;*-v.s

fbr thel/elevatus ofthe Clar&Kwn /hiss









Jweftrtrt trf ft <spff*>rffii/Sft>fhct> '// w/ttrA fJu: siyirrft'rm/ r/fft.vfv

is rf. hstrrrwfuf ft/ f//r /t/itt *//y/rr





Fig vi

An IK?

/ I'&fy.:-'*:-
'

' ;ui Clarendon fresc





VII .

Arr 144

Spherical liarmonio of the tJursfs tjfcpr&s

i — .? .





yig vni.

Art. 143

Sphenail Harnwmc a/[me /ourfJi dtyree

i . 4> 9 = *

ForMe bei&pafa zflhe (Zamrvfcn /Hss





FIG IX

Art. ivi.

Form» .Dei&pai&f oftfe Cfareni&nlfasf





<^<W Miue*i>M's £lsctric: ty. /

Pie x

.

Aif 192.

f&rfkt.Deltya&s afti* Clarert/Im frets





3W J/'/.w&f J[laelnctly. V&l I

Fig XI

Art. 193

Lutes of" Force near e*h?a .

Far Delepa&s of'1&& Clarendon ffass.









Fl<*. XTTI

Art 203










