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PREFACE

The invention of Analytic Geometry by Descartes in the

early part of tiie seventeenth century, quickly followed by that

of the Infinitesimal Calculus by Newton and Leibnitz, pro-

duced a complete revolution in the mathematical sciences them-

selves and accelerated in an astonishing degree the progress of

all the sciences in which mathematics are aji{)lied, but arreste<l

for a time the progress of pure geometry. The new methods,

characterized by great generality and facility in their application

to problems of the most varied kinds, offered to the succeeding

generations of investigators more inviting fields of research and

promises of surer and richer reward than the special and ap-

parently more restricted methods of the ancients. During the

eighteenth century hardly any important addition to geometry

was made that was not the direct product, either of the Cartesian

method alone, or of that method in alliance with the Infinitesi-

mal Calculus.

AVith the present century, however, a new era commenced in

pure geometry. The first impulse was given by the Descriptive

Geometry of Monge
;
then followed Carnot's Theory of Trans-

versals, Poncelet's Projective Properties of Figures and Method

of Reciprocal Polars, the researches of Steiner, Poinsot, Ger-

gonne, Cayley, MacCullagh, and many others, crowned by
the brilliant discoveries of Chasles.

All this progress, it is true, has been chiefly in the higher

departments of pure geometry, and has not yet essentially changed
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the substance or form of what is known as Elementary Geometry,
which is little more than the Geometry of Euclid in a modern

dress, with certain necessary additions in solid geometry; for,

although some of the recent discoveries are of a remarkably

simple character and (if simplicity were the only requisite) might

be introduced into the elements, it is generally conceded that in

elementary instruction it Ls most expedient to commence with the

Euclidian geometry, and to reserve the new developments for

subsequent study under the name of the Modern Geometry.

Nevertheless, this advance in the general science has not failed

to produce its legitimate eifect upon the primary branch
;
and

the modern treatises on the elements, especially in France, from

that of Legendee in 1794 to that of Rouch]& and Comberousse

in 1868, exhibit a gradual and marked improvement both in

matter and method.

In the following treatise, designed especially for use in colleges

and schools, I have endeavored to set forth the elements with all

the rigor and completeness demanded by the present state of the

general science, without seriously departing from the established

order of the propositions, or sacrificing the simplicity of demon-

stration required in a purely elementary work. Some subjects,

not usually included in elementary works, are so placed that they

may be omitted without breaking the chain of demonstration,

and the remainder may be used as an abridged course in those

schools where the time allotted to the study does not suffice for

the perusal of the whole. Such, for example, are the articles on

Maxima and Minima at the end of Book V. and those on Similai

Polyedrons and the Regular Polyedrons at the end of Book VII.

As the student can make no solid acquisitions in geometry

without frequent practice in the application of the principles he

has acquired, a copious collection of exercises is given in the

Appendix. The discouraging difficulties which the young student

commonly experiences in his first attempts at demonstrating new

theorems, or solving new problems, are here obviated in a great
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degree by giving him such suggestions for the solution of many
of the exer(;ises as may fairly be presumed to be necessary foi

him at the successive stages of his progress. These suggestions

are given with less and less frequency as he advances, and he

is finally left to rely entirely upon his own resources when he

may be supposed to have acquired by practice considerable

familiarity with principles, and dexterity in their application.

The Appendix on the Modern Geometry, although restricted to

the properties of the straight line and circle, will serve a good

purpose, it is hoped, either as an introduction to such works as

those of PoNCELET and Chasles in which the methods of pure

geometry are employed, or as a companion to the works of

Salmon and others in which the new geometry is treated by the

analytic method.

In the preparation of this work, I have derived valuable aid

from a number of the more recent French treatises on Element-

ary Geometry, and especially from those of Bobillier, Briot,

CoMPAGXON, Legendre (edited by Blanchet), and the very

complete TraiU de G^omUrie Elementaire of R0UCI16 and CoM-

BEROUSSE. The last named work has furnished many of the

exercises of Appendix I. and much of the matter of Appendix II.

Wa>4Hington University,
St. Louis, June 1, 1869.

J«
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Elements of Geometry.

INTRODUCTION.

1. Every person possesses a conception of space indefinitely ex-

tended in all directions. Material bodies occupy finite, or limited,

portions of space. The portion of space which a body occupies can

be conceived as abstracted from the matter of which the body is

composed, and is called a geometrical solid. The material body filling

the space is called 2i physical solid. A geometrical solid is, therefore,

merely the form, or figure, of a physical solid. In this work, since

only geometrical solids will be considered, we shall, for brevity, call

them simply solids.

2. Definitions. In geometry, then, a solid is a limited, or bounded,

portion of space.

The limits, or boundaries, of a solid are surfaces.

The limits, or boundaries, of a surface are lines.

The limits of a line are points.

3. A solid has extension in all directions
;
but for the purpose of

measuring its magnitude, it is considered as having three specific

dimensions, called length, breadth and thickness.

A surface has only two dimensions, length and breadth.

A line has only one dimension, namely, length. The intersection

tf two surfaces is a line.

A point has no extension, and therefore neither length, breadth

nor thickness. The intersection of two lines is a point.

4. Although our first notion of a surface, as expressed in the defi-

nition above given, is that of the boundary of a solid, we can suppose
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such boundary to be abstracted and considered separately from the

solid. Moreover, we may suppose a surface of indefiuite extent as to

length and breadth ; such a surface has no limits.

Similarly, a line may be considered, not only as the limit of a

surface, but as abstracted from the surface and existing separately in

space. Moreover, we may suppose a line of indefinite length, or

without limits.

Finally, a point may be considered, not merely as a limit of a line,

but abstractly as having only position in space.

5. Definitions. A straight line is the shortest

line between two points ;
as AB.

Since our first conception of a straight line may be regarded as

derived from a comparison of all the lines that can be imagined to

exist between two points, i.e., of lines of limited length, this definition

(which is the most common one) may be admitted as expressing such

a first conception ;
but since we can suppose straight lines of indefi-

nite extent, a more general definition is the following:

A straight line is a line of which every portion is the shortest line

between the points limiting that portion.

A broken line is a line composed of difiTer-

ent successive straight lines; as ABCDEF.

A curved line, or simply a curve, is a line

no portion of which is straight; as ABC.
If a point moves along a line, it is said to de^a^ibe the line.

6. Definitions. A plane surface, or simply a

plane, is a surface in which, if any two points

are taken, the straight line joining these

points lies wholly in the surface.

A curved surface is a surface no portion of which is plane.

7. Solids are classified according to the nature of the surfaces

w hich limit them. The most simple are bounded by planes.

8. Definitions. A geometrical figure is any combination of points,

lines, surfaces, or solids, formed under given conditions. Figures

formed by points and lines in a plane are called plane figures. Those

formed by straight lines alone are called rectilinear, or right-lined^

figures ;
a straight line being otlten called a right line.



INTRODUCTION. 11

9. Definitions. Geometry may be defined as the science of extension

and position. More specifically, it is the science which treats of the

construction of figures under given conditions, of their rneasuremeni.

and of their properties.

Plane geometry treats of plane figures.

The consideration of all other figures belongs to the geometry oj

space, also called the geometry of three dimensions.

10. Some terms of frequent use in geometry are here defined.

A theorem is a truth requiring demonstration. A lemma is an

auxiliary theorem employed in the demonstration of another theo-

rem. A problem is a question proposed for solution. An axiom is a

truth assumed as self-evident. A postulate (in geometry) assumes

the possibility of the solution of some problem.

Theorems, problems, axioms and postulates are all called propo-

sitions.

A corollary is an immediate consequence deduced from one or more

propositions. A scholium is a remark upon one or more propositions,

pointing out their use, their connection, their limitation, or their

extension. An hypothesis is a supposition, made either in the enun-

ciation of a proposition, or in the course of a demonstration.
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BOOK I.

RECTILINEAR FIGURES.

THE STRAIGHT LINE.

1. AxTOM. There can be but one straight line between the same

two points.

2. Podulate. A straight line can be drawn between any two points ;

and any straight line can he produced (i. e., prolonged) indefinitely.

3. Axiom. If two indefinite straight lines coincide in two points,

they coincide throughout their whole extent, and form but one line.

Hence two points determine a straight line; and a straight line

may be designated by any two of its points.

4. Different straight lines drawn from the same point are said to

have different directions ; as OA, OD, etc. The
ĉ _

point from which they are drawn, or at which

they commence, is often called the origin.

If any one of the lines, as OA, be produced

through 0, the portions OA, OB, on opposite

sides of 0, may be regarded as two different lines having opposite

directions reckoned from the common origin 0.

Hence, also, every straight line AB has two opposite directions,

namely, from A toward B (J. being regarded as

its origin) expressed by AB, and from B toward

A (B being regarded as its origin) expressed by BA. If a line AB
is to be produced through B, that is, toward

C, we should express this by saying that ^
—+

J
—-

AB is to be produced; but if it is to be
12
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produced through A^ that is toward D, we should express this by

saying that BA is to be produced.

ANGLES.

5. Definition. An angle is a figure formed by two

straight lines drawn from the same point; thus

OA, OB form an angle at 0. The lines OA, OB
are called the sides of the angle ;

the common point

0, its vertex.

An isolated angle may be designated by the letter at its vertex, as

"the angle 0;" but when several angles are formed at the samf

point by different lines, as OA, OB, OC, we desig-

nate the angle intended by three letters
; namely, by

one letter on each of its sides, together with the one

at its vertex, which must be written between the other

two. Thus, with these lines there are formed three

different angles, which are distinguished as A OB, BOC and AOC.

Two angles, such as A OB, BOC, which have the same vertex

and a common side OB between them, are called adjacent.

6. Definition. Two angles are equal when one can be placed upon

the other so that they shall coincide. Thus, the

angles A OB and A' O'B' sire equal, i{ A' O'B' can

be superposed upon A OB so that while O'A' coin-

cides with OA, 0'B' shall also coincide with OB.

The equality of the two angles is not affected by

producing the sides
;

for the coincident sides con-

tinue to coincide when produced indefinitely (3).* Thus the magnitude

of an angle is independent of the length of its sides.

7. A clear notion of the magnitude of an angle will be obtained

by supposing that one of its sides, as OB, was at first

coincident with the other side OA, and that it has

revolved about the point (turning upon as the leg

of a pair of dividers turns upon its hinge) until it

has arrived at the position OB. During this revolution the movable

side makes with the fixed side a varying angle, which increases by

insensible degrees, that is, continuously; and the revolving line is

* An Arabic numeral alone refers to an article in the same Book
;
but in refer-

ring to articles in another Book, the number of the Book is also given.
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said to describe, or to generate, the angle A OB. By continuing the

revolution, an angle of any magnitude may be generated.

It is evident from this mode of generation, as well as from the defi-

nition (6), that the magnitude of an angle is independent of the

length of its sides.

PERPENDICULARS AND OBLIQUE LINES.

8. Definition. When one straight line meets another, so as to make

two adjacent angles equal, each of these angles is called a right

angle ; and the first line is said to be perpendicular to the second.

Thus, \i AOG and BOC are equal angles, ^

each is a riglit angle, and the line CO is per-

pendicular to AB.

Intersecting lines not perpendicular are said

to be oblique to each other.

PROPOSITION L—THEOREM.

9. At a given point in a straight line one perpendicular to the line

can he drawn^ and but one.

Let be the given point in the line AB. Suppose a line 02),

constantly passing through 0, to revolve about ^

0, starting from the position OA In any one

of its successive positions, it makes two different

angles with the line AB; one, AODy with the

portion OA; and another, ^0Z>, with the por-

tion OB. As it revolves from the position OA around to the posi-

tion OB, the angle AOD will continuously increase, and the angle

BOD will continuously decrease. There will therefore be one posi-

tion, as OC, where the two angles become equal ;
and there can evi-

dently be but one.

10. Corollary. All right angles are equal. That is, the right

angles AOC, BOC made by a line CO

meeting AB, are each equal to each of

the right anglesJ^'O'C", B'O'C, made

by a line CO' meeting any other line

A'B'. For, the line A'O'B' can be ap- ^
-

plied to the line A OB, so that 0' shall

Cf

Bf



BOOK 15

fall upon 0, and then OC will fall upon OC, unless there can be

two perpendiculars to AB at 0, which by the preceding proposition

is impos^sible. The lines will therefore coincide and the angles will

be equal (6).

; PKOPOSITION II.—THEOREM.

11. The two adjacent angles which one straight line makes with

another are together equal to two right angles.

If the t'.vo angles are equal, they are right angles by the definition

(8), and no proof is necessary.

If they are not equal, as AOD and BOD, still the sum o^ AOD
and BOD is equal to two right angles. For, let OCbe drawn at

perpendicular to AB. The angle AOD is the ^
sum of the two angles J^OC and COD. Adding
the angle BOD, the sum of the two angles A OD
and BOD is the sum of the three angles AOC,
COD and BOD. The first of these three is a

^ ^

right angle, and the other two are together equal to the right angle

BOC; hence the sum of the angles AOD and BOD is equal to two

right angles.

12. Corollary I. If one of the two adjacent angles which one

line makes with another is a right angle, the other is also a right

angle.

13. Corollary II. If a line CD is perpen-

dicular to another line AB, then, reciprocally,

the line AB is perpendicular to CD. For,

CO being perpendicular to AB at 0, AOC ^

is a right angle, hence (Cor. I.) AOD is a

right angle, and A or AB is perpendicular

to CD, ^

14. Corollary III. The sum of all the consecutive angles, A OB^

BOCf COD, DOE, formed on the same side

of a straight line AE, at a common point 0,

is equal to two right angles. For, their sum

is equal to the sum of the two adjacent angles

A OB, BOE, which by the proposition is equal

to two right angles.
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15. Corollary TV. The sum of all the cousecutive angles AOB
BOC, COD, DOE, EOA, formed about a

point 0, is equal to four right angles. For,

if two straight lines are drawn through 0,

perpendicular to each other, the sum of all

the consecutive angles formed about will

be equal to the four right angles formed by
the perpendiculars.

16. Scholium. A straight line revolving from the position OA
around to the position OB describes the two

right angles AOC and COB; hence OA and

OB, regarded as two different lines having

opposite directions (4), are frequently said to

make an angle with each other equal to two

right angles.

A line revolving from the position OA from right to
left, that is,

successively into the positions OC, OB, OD,
when it has arrived at the position OD will

have described an angle greater than two

right angles. On the other hand, if the

position OD is reached by revolving from

left to right, that is, successively into the

positions OE, OD, then the angle AOD is

less than two right angles. Thus, any two ^

straight lines drawn from a common point make two different angles

with each other, one less and the other greater than two right angles.

Hereafter the angle which is less than two right angles will be

understood, unless otherwise expressly stated.

17. Definitions. An acute angle is an angle ^

less than a right angle; as AOD. An obtuse

angle is an angle greater than a right angle; as

BOD.
18. When the sum of two angles is equal to a

right angle, each is called the complement of the other. Thus DOC
is the complement of AOD, and AOD is the complement of DOC.

19. When the sum of two angles is equal to two right angles, each

is called the supplement of the other. Thus BOD is the supplement

of AOD, and AOD is the supplement of BOD.
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20. It is evident that the complements of equal angles ar*' equal

to each other; and also that the supplements of equal angles are

equal to each other.

PROPOSITION III.—THEOREM.

21. Conversely, if the sum of two adjacent angles is equal to two

right angles, their exterior sides are in the same straight line.

Let the sum of the adjacent angles AOD,
BOD, be equal to two right angles ; then, 0^
and OB are in the same straight line.

For BOD is the supplement of AOD (19),

and is therefore identical with the angle which OD makes with the

prolongation of ^0 (11). Therefore OB and the prolongation of

A are the same line.

22. Every proposition consists of an hypothesis and a conclusion.

The converse of a proposition is a second proposition of which the

hypothesis and conclusion are respectively the conclusion and hy-

pothesis of the first. For example, Proposition II. may be enun-

ciated thus :

Hypothesis
—if two adjacent angles have their exterior sides in the

same straight line, then— Conclusion—i\\Q sum of these adjacent

angles is equal to two right angles.

And Proposition III. may be enunciated thus :

Hypothesis
—if the sum of two adjacent angles is equal to two

right angles, then— Conclusion—these adjacent angles have their

exterior sides in the same straight line.

Each of these propositions is therefore the converse of the other.

A proposition and its convei-se are however not always both true.

PROPOSITION IV.—THEOREM.

23. If two straight lines intersect each other, the opposite (or vertical)

angles are equal.

Let AB and CD intersect in 0; then will the B c

opposite, or vertical, angles AOC and BOD be

equal. For, each of these angles is the supple-

ment of the same angle BOC, or AOD, and

hence they are equal (20).

2* B
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In like manner it is proved that the opposite angles AOD and

BOC are equal.

24. Corollary I. The straight line EOF which bisects the angle

AOG also bisects its vertical angle BOD, For, the angle FOD is

equal to its vertical angle EOC, and FOB is

equal to its vertical angle EOA , therefore if
I

EOC ahd EOA are equal, FOD and FOB
are equal.

25. Corollary II. The two straight lines

EOFf HOG, which bisect the two pairs of

vertical angles, are perpendicular to each J

other. For, HOC = HOB and COE =
BOF; hence, by addition, HOC + COE = HOB + BOF; that

is, HOE= HOF; therefore, by the definition (8), HO is perpen-

dicular to FE.

PROPOSITION v.—THEOREM.

26. From a given point without a straight line, one perpendicular

can be drawn to that line, and hut one.

Let AB be the given straight line and P the given point.

The line AB divides the plane in which it

is situated into two portions. Let the por-

tion containing P, which we suppose to be

the upper portion, be revolved about the line

AB {i.e., folded over) until the point P comes

into the lower portion; and let P' be that

point in the plane with which P coincides

after this revolution. Restoring P to its

original position, join PF\ cutting AB in C, and again revolve the

upper portion of the plane about AB until P again coincides with

P'. Since the line AB is fixed during the revolution, the point Cis

fixed; therefore PC will coincide with P'C, aid the angle PCD
with the angle P' CD. These angles are therefore equal (6), and

BC is perpendicular to PP' (8), or PC perpendicular to AB (13).

There can therefore be one perpendicular from the point P to the

line AB.

Moreover, PC is the only perpendicular. Let PD be any other
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line drawn from P to AB^ and join P'D. Then, when the upper

portion of the plane is revolved until P coincides with P', D being

fixed, PD coincides with P'D, and consequently the angle Pi) with

the angle P'DC. Hence the angles PDC and P'DC are equal.

Now PP' being the only straight line that can be drawn from P to

P' (1), PDP' is not a straight line
;
and if PD is produced to E,

PDE and DP' are different straight lines. Hence the angle PDP'

is less than two right angles, and its half, PDC, is less than one

right angle; that is, PD is an oblique line. Therefore PC is the

only perpendicular. .

27. Corollary. Of the two angles which any oblique line drawn

from P makes with AB, that one is acute within which the perpeu

dicular from Pupon AB falls
; thus, PDC is acute.

PROPOSITION VI.—THEOREM.

28. The perpendicular is the shortest line that can be drawn from a

point to a straight line.

Let PC be the perpendicular, and PD any oblique line, from the

point P to the line AB. Then PC < PD.

For, produce PC to P', making CP' =
CPf and join P'D. When the portion of the

plane which contains P is revolved about

AB, as in the preceding proposition, until P
coincides with P', PD also coincides with

P'D; and hence PD = P'D. But the

straight line PP', being the shortest distance

between the points P and P', is less than the broken line PDP'.

Therefore PC, the half of the straight line, is less than PD, the half

of the broken line.

29. Definition. By the distance of a point from a line is always
understood the shortest distance. By the preceding proposition,

therefore, the perpendicular measures the distance of a point from a

straight line.

Also, by the distance of one point from another is understood the

diortest distance, that is, the straight line between the points.
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PROPOSITION VII.—THEOREM.

30. Two oblique lines drawn from the same point to a straight line^

cutting off equal distances from the foot of the perpendicular, are equal.

Let the oblique lines PD, FE, meet the line AB in the points D
and Ef cutting off the equal distances CD
and CE from the foot of the perpendicular.

Then PB = PE.

For, DCE being perpendicular to PC,

and CD = CE, the figure PCD may be re-

volved about PC into coincidence with

PCE; and yince the point D will fall on E, PD will coincide with

PE. Therefore PD = PE.

31. Corollary. The angles PDC, and PEC are equal ;
that is, two

equal straight lines from a point to a straight line make equal acute

angles with that line.

32. Definition. A broken line, as ABCDE, is called convex, when

no one of its component straight lines, if pro-

duced, can enter the space enclosed by the b ^—--—..^/>

broken line and the straight line joining its

extremities.

CH

PROPOSITION VIII.—THEOREM.

33. A convex broken line is less than any other line which envelops it

and has the same extremities.

Let the convex broken line AFGE have the same extremities -4,

E, as the line ABCDE, and be enveloped by

it; that is, wholly included within the space

bound-ed by ABCDE and the straight line

AE. Then AFGE < ABCDE.

For, produce AF and EG to meet the en-

veloping line in H and K. Imagine ABCDE to be the path of a

point moving from A to E. If the straight line AH be substituted

forABCH, the path AHDE mil be shorter than the path ABCDE
the portion HDE being common to both. If, further, the straight

line FK be substituted for FHDK, the path AFKE will be a still

shorter path from A to E. And if, finally, GE be substituted for
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GKE, AFGEviWl be a still shorter path. Therefore, AFGE is less

than any enveloping line.

34. Scholium. The preceding demonstration applies when the en-

veloping line is a curve, or any species of line whatever.

PKOPOSITION IX.—THEOREM.

35. Oj two oblique lines drawn from the same point to the suine

straight line, that is the greater which cuts off upon the line the greater

distance from the perpendicular.

Let FC be the perpendicular from F to AB, and suppose CE >
CD; then FE > FD.

For, produce FC to PVraaking CF' =
CF, and join DF', EF'. Then, as in Pro-

position VI., we have FD = F'D, and FE
---= F'E. But (33), the broken line FDF'
is less than the enveloping line FEF' ;

therefore FD, the half of FDF', is less than

FE, the half of FEF'.

If the two oblique lines are on opposite sides of the perpendicular,

as FE and FD', and if CE > CD', take CD = CD', and join FD.

Then, as above FE^ FD; and, by Proposition VII., FD = FD'
;

hence FE > FD'.

36. Corollary I. (Converse of Proposition VII.). Two equal ob-

lique lines cut off equal distances from the perpendicular.

37. Corollary II. (Converse of Proposition IX.). Of two unequal

oblique lines, the greater cuts off the greater distance from the per-

pendicular. .

PEOPOSITION X.—THEOREM.

38. If a perpendicular is erected at the middle of a straight line,

then,

1st. Every point in' the perpendicular is equally distant from the

extremities of the line ;

2d. Every point withou. the perpendicular is unequally distant from
the extremities of the line.
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Let AB be a finite straight line, and C its middle point ; then,

1st. Every point P in the perpendicular

erected at C is equally distant from A and B.

For, since CA = CB, we have (30) PA =^PB.
2d. Any point Q without the perpendicular

is unequally distant from A and B. For, Q

being on one side or the other of the perpendicular, one of the lines

QAy QB must cut the perpendicular ;
let it be QA and let it cut in

P; join PB. The straight line QB is less than the broken line

QPB, that is, QB <: QP -\- PB. But PB = PA; therefore

QB<QP-\- PA, or QB < QA.
39. Corollary. Every point equally distant from the extremities

of a straight line lies in the perpendicular erected at the middle of

the line.

40. Definition. A geometric locus is the assemblage of all the

points which possess a common property.

In this definition, points are understood to have a common property

when they satisfy the same geometrical conditions.

Thus, since all the points in the perpendicular erected at the

middle of a line possess the common property of being equally dis-

tant from the extremities of the line (that is, satisfy the condition

that they shall be equally distant from those extremities), and no

other points possess this property, the perpendicular is the locus of

these points ;
so that the preceding proposition and its corollary are

fully covered by the following brief statement :

The perpendicular erected at the middle of a straight line is the locus

of all the points which are equally distant from the extremities of thai

line. fll

41. Scholium. Two points are sufficient to determine a straight

line (3) ;
hence any two points each of which

is equally distant from the extremities of a

straight line determine the perpendicular at

the middle of the line. Thus if P and P'

are known to be each equally distant from

A and B, the line PP' joining these points is

known to be perpendicular to AB at its mid-

dle p )iut.

i

I

I

\

1
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PAEALLEL LINES.

42. Definition. Parallel lines are straight

lines which lying in the same plane cannot

meet, though indefinitely produced : as AB^

CD,

43. Axiom. Through the same point there cannot be two parallels

to the same straight line.

Thus, if through a point P, one line CD is

drawn parallel to AB, the axiom assumes

that any other line drawn through P, as

EPFy will not be parallel to AB, but will

meet it, if both EF and AB be sufficiently produced.

PROPOSITION XI.—THEOREM.

44. Two straight lines perpendicular to the same straight line are

parallel.

Let AB and CD be perpendicular to AC; then, they are parallel.

For, if they could meet when produced, we

should have from one point (their point of

meeting) two perpendiculars to the same

straight line AC, which (26) is impossible.

Therefore they cannot meet, and by the defi-

nition (42) are parallel.
^

45. Corollary I. Through a given point a parallel to a given

straight line can always be drawn. For, let C be the given point,

and AB the given line. From Ca perpendicular CA can be drawn

to AB (26) ;
and at Ca perpendicular CD to CA can be drawn (9);

and by the preceding proposition CD will be parallel to AB.

46. Corollary II. A straight line perpendicular to one of two par-

allels is perpendicular to the other.

Let AC he Si perpendicular to AB; it will also be perpendicular

to the parallel CD. In the first place it is to be observed that A C

being a different line from AB cannot also be parallel to CD (43),

and must therefore meet CD in some point, as C. More'over the

perpendicular to AC at C is parallel to AB (44) and must coincide

with CD (9) and ( 4-3). Hence ^ C is perpendicular to CD
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pendicular IK, to be revolved in its oivn plane about / (as npon a

pivot), until IG comes into coincidence with its equal IH. The

angle GIK being equal to its vertical angle HIL, the indefinite line

IK will fall upon IL and form with it but one line. Moreover, the

point G being then at H, the line GB which is perpendicular to IK
will then c« incide with HC which is perpendicular to JL, and con-

sequently the angles IGB and IHC will coincide. Therefore the

angles HGB and GHC are equal.

Hence, also, their supplements, HGA and GHD, are equal.

50. Corollary L The alternate-exterior angles, AGE and DHF,
being equal to their vertical angles, HGB and GHC, are also equal

to each other. -

51. Corollary II. Any one of the eight angles is equal to its cor-

responding angle. Thus, since HGB = GHC and GHC =FHD,
there follows HGB = FHD; etc.

52. Corollary III. The sura of the two interior angles on the same

side of the secant line is equal to two right angles. For, GHD -\-

HGB = GHD + GHC= two right angles (11).

53. Scholium. When the secant line is oblique to the parallels,

there are formed four equal acute angles and four equal cbtuse

angles, and each acute angle is the supplement of each obtuse angle.

But if any one of the eight angles is a right angle, they are all right

angles.

PKOPOSITION XIV.—THEOKEM.

54. Conversely, when two straight lines are cut by a third, if the alter-

nate-interior angles are equal, these two straight lines are parallel.

Let EF cut AB and CD in the points G and H, and let HGB
and GHC be equal; then, AB and CD are

parallel.

For, a parallel to AB drawn through H
makes with GH stn interior angle, alternate

to HGB, which is equal to HGB (49);

this angle must therefore coincide with the

angle GHC, and the parallel drawn through

ETmust coincide with CD. That is, CD is parallel to AB.

55. Corollary I. If the alternate-exterior angles are equal, or if the

corresponding angles are equal, the two lines are parallel.
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56 Corollary II. If the sura of the two interior angles Dn the

same side of the secant line is equal to two right angles, :he two

lines are parallel.

57. Corollary III. From (52) and (56) it follows that, when two

straight lines are cut by a third, if the sum of two interior angles

on the same side of the secant line is not two right angles, the two

straight lines are not parallel; and it is evident that they will meet,

if produced, on that side of the secant line on which the two in-

terior angles are together less than two right angles.
•

PEOPOSITION XV.—THEOREM.

58. Two parallels are everywhere equally distant.

Let AB and CD be two indefinitely extended parallels ; G and H
any two points in CD; GE and HF the per-

pendiculars from G and H upon AB. Then,

GE and HF are also perpendicular to CD ^

(46), and measure the distance between the

parallels at G and H^ or at E and F. We are to prove that GE=
HF.

Let M be the middle of GH, and suppose MN drawn perpendicu-

lar to G^jffand consequently also to EF. The portion of the figure

on the right of IfiV may be revolved upon the line MN {i.e., folded

over) ;
the angles at M and N being right angles the indefinite lines

MD and NB will fall upon 3W and NA; and since 3IH= MG,
the point H will fall upon G, so that HF and GE (being then per-

pendiculars from the same point G upon the same straight line NA)^
will coincide (26). Therefore GE= HF.

59. Corollary. The locus (40) of all the
^^

points at a given distance, MN, from a given
^ "

straight line AB, consists of two parallel
"*

lines, CD and CD', drawn on opposite sides ^'

of ABj at the givej distance from it.
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PEOPOSITION XVI.—THEOREM.

D'

60. If two angles have their sides respectively parallel and ly\ ig in

the sa'ie direction, they are equal.

Let the angles ABC, DEF,ha,ye their sides JBA and ED parallel

and in the same direction, and also their sides

^C and EF parallel and in the same direc-

tion. Then ABC =I)EF.

Far, let DEj produced if necessary, inter-

sect BC in G. The angle DGO is equal to

its corresponding angle ABC and also to its

corresponding angle DEE (51) ;
therefore

ABC = DEE.
Note. Two parallels, as BA and ED, are said to be in the same

direction when they lie on the same side of the indefinite straight

line joining the origins, B and E, of these parallels.

61. Corollary I. Two angles, as ABC and D'EE', having their

sides parallel and lying in opposite directions (that is ED' opposite

to BA and EF' opposite to BC), are equal. For we have

D'EF' = DEF=ABC.
62. Corollary II. Two angles, as ABC and DEF', having two of

their sides, BA and ED, parallel and in the saine direction, while

their other two sides, BC and EF', are parallel and in opposite

directions, are supplements of each other.

63. Corollary III. If two angles, ABC, DEF, have their sides per-

pendicular each to each, that is, AB to ED and
ABC to EF, they are either equal or supple- /

mentary. For, suppose the angle DEF to be

revolved into the position HEK, by revolving

ED and EF each through a right angle ;
that

is, ED through the right angle DEH and EF
through the right angle FEK. Then EH
being perpendicular to ED is parallel to AB, and EK being perpen-
dicular to EF is parallel to ^C (44) ; therefore tiEK, or DEF, is

either equal to ABC by (60) or (61), or it is the supple:nent of

J^Cby(62).
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TRIANGLES.

64. Definitions. A plane triangle is a portion^ of a plane bounded by
three intersecting straight lines

;
as AB C. The sides of

the triangle are the portions of the bounding lines in-

cluded between the points of intersection
; viz., AB,

BCf CA. The angles of the triangle are the angles

formed by the sides with each other; viz., CAB, ABC, BCA. The

three angular points, A, B, C, which are the vertices of the angles,

are also called the vertices of the triangle.

If a side of a triangle is produced, the angle

which the prolongation makes with the adjacent

side is called an exterior angle ; as A CD.

65. A triangle is called scalene {ABC) when no two of its sides

are equal ;
isosceles (DEF) when two of its sides are equal ; equilair

eral ( GHI) when its three sides are equal.

IA right triangle is one which has a right angle ;
as MNP, which is

right-angled at N. The side MP^ opposite to the right angle, is called

the hypotenuse.

The base of a triangle is the side upon which it is supposed to

stand. In general any side may be assumed as the base
;
but in an fl

isosceles triangle DEF, whose sides i)jEJand DF are equal, the third

side EF is always called the base.

When any side BC of a, triangle has been

adopted as the base, the angle BA C opposite to

it is called the vertical angle, and its angular

point A the vertex of the triangle. The per-

pendicular AD let fall from the vertex upon the base is then called

the altitude of the triangle.
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PKOPOSITION XVII.—THEOEEM.

66. Any side oj a triangle is less than the s^im of the other two.

Let BC he any side of a triangle whose other two

Bides are AB and AC; then BC < AB -\- AC,

For, the straight line BC is the shortest distance be-

tween the points jB and C
67. Corollary. Any side of a triangle is greater than the difference

of the other two. For, if from each member of the inequality

BC<AB-\- AC
we subtract ABy we shall have

BC -AB<:AC,oTACy BC—AB.

PKOPOSITION XVIIL—THEOEEM.

68. The sum of the three angles of any triangle is equal to two right

angles.

Let ABC be any triangle ; then, the, sum of its three^angles. Ay B
and Cy is equal to two right angles.

For, produce BC to D, and draw CE par-

allel to BA. The angle A CE is equal to its

alternate angle BAC (49), and the angle

ECD is equal to its corresponding angle

ABC (51). Therefore the sum of the three angles of the triangle

is equal to ECD -\- ACE + BCA, which is two right angles (14).

69. Corollary I. Any exterior angle, as A CD, is equal to the sum

of the two opposite interior angles, A and B; and consequently

greater than either of them.

70. Corollary II. If one angle of a triangle is a right angle, or an

obtuse angle, each of the other two angles must be acute
; that is, a

triangle cannot have two right angles, or two obtuse angles.

71. Corollary HI. In a right triangle, the sum of the two acute

angles is equal to one right angle ;
that is, each acute angle is the

complement of the other (18).

72. Corollary IV. If two angles of a triangle are given, or only

their sum, the third angle will be found by subtracting their sum

from two right angles.
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73. Corollary V. If two angles of one triangle are respectively

equal to two angles of another triangle, the third angle of the one

is also equal to the third angle of the other. >

PROPOSITION XIX.—THEOREM.

74. The angle contained by two straight lines drawn from any point

within a triangle to the extremities of one of the sides is greater than

the angle contained by the other two sides of the triangle.

From any point D, within the triangle ABC, let ^

DB, DC be drawn; then, the angle BDC is greater

than the angle J5J.C

For, produce BD to meet AC in E. We have the

angle BDC>BEC(i6d), and the angleBEC>BA C;

hence BDC> BAC
75. Definition. Equal triangles, and in general equal figures, are

those which can exactly fill the same space, or which can be applied

to each other so as to coincide in all their parts.

4PROPOSITION XX.—THEOREM.

76. Two triangles are equal when two sides and the included angle

of the one are respectively equal to two sides and the included angle of

the other.

In the triangles ABC, DEF, let AB be equal to DE, BC to EF,
and the included angle B fl

equal to the included angle
^ ^ ^mm

E; then, the triangles are

equal.

For, the triangle ABC
may be superposed upon
the triangle DEF, by applying the angle B to the equal angle E, the

side BA upon its equal ED, and the side BC upon its equal EF.

The points A and C then coinciding with the points D and F, the

side A C will coincide with the side DF, and the triangles will coin-

cide in all their parts ;
therefore they are equal (75).

" 77. Corollary. If in two triangles ABC, DEF, there are given

B = E, AB = DE Sind BC= EF, there will follow A = D,C= F,

and AC =DF, r-

/
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PROPOSITION XXI.—THEOREM.

78. Two triangles are equal when a side and the two adjacent angles

of the one are respectively equal to a side and the two adjacent angles

of the other.

In the triangles ABC, DBF, let ^C be equal to EF, and let th^

angles B and C adjacent to

BGhQ respectively equal to

the angles E and F adja-

cent to EF; then, the tri-

angles are equal.

For, the triangle ABC
may be superposed upon the triangle DEF, by applying BC to ita

equal EF, the point B upon E, and the point C upon F. The angle

B being equal to the angle E, the side BA will take the direction of

ED, and the point A will fall somewhere in the line ED. The angle

C being equal to the angle F, the side CA will take the direction of

FD, and the point A will fall somewhere in the line FD. Hence

the point A, falling at once in both the lines ED and FD, must fall

at their intersection D. Therefore the triangles will coincide through-

out, and are equal.

79. Corollary. If in two triangles ABC, DEF, there are given

B = E, C = F, and BC = EF, there will follow A = D, AB =
DE,aiidAC=DF.

C E f F

PROPOSITION XXII.—THEOREM.

80. Two triangles are equal when the three sides of the one are re-

spectively equal to the three sides of the other.

In the triangles ABC, DEF, let AB be equal to DE, AC to DF,
and BC to EF; then, the triangles

are equal. ^^ ^^^
For, suppose the triangle ABC to ^^ \ y^ h\ \

be placed so that its base BC coin- ^ ^
^\^ \7

cides with its equal EF, but so that ^^G
the vertex A falls on the opposite side

of EF from Z), as at 6?; and join DG which intersects EF in H.
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Then, by hypothesis, EG= ED and EG = ED ; therefore, E and F
being two points equally distant from D and G, the line EE is per-

pendicular to DG Sit its middle point -H'(41).^ Hence, if the figure

DEE be revolved upon the line EF,
H being a fixed point, HD will fall

(ipon its equal HG, and the triangle

DEE will coincide entirely with the

triangle GEE. Therefore, the tri-

angle DEE is equal to the triangle

GEE, or to the triangle ABC.
81. Corollary. If in two triangles ABC, DEE, there are given

AB = DE,AC=DE,BC= EE, there will follow A = D,B=E,
C=E.

82. Scholium. In two equal triangles, the equal angles lie opposite

to the equal sides.

PROPOSITION XXIII.—THEOREM.

83. Two right triangles are equal, 1st, when the hypotenuse and a

side of the one are respectively equal to the hypotenuse and a side of the

other ; or, 2d, when the hypotenuse and an acute angle of the one are

respectively equal to the hypotenuse and an acute angle of the other.

1st. In the right triangles ABC,
DEE, let the hypotenuse AB be

equal to DE, and the side AC to

DE; then, the triangles are equal.

For, applying AC to its equal

DE, the angles C and E being

c^qual, the side CB will take the direction FE, and B will fall somc-

;\liere in the line EE. But AB being equal to DE, will cut off on

FE the same distance from the perpendicular (36), and hence B will

fall at E. The triangles will therefore coincide, and are equal.

2d. Let AB = DE, and the angle ABC= the angle DEE', then,

the triangles are equal.

For, the third angles BAC and EDF are equal (73), and hence

iho triangles are equal by (78).
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PKOPOSITION XXIV.—TITEOKEM.

84. If two sides of a triangle are respectively equal to two sides oj

another, hut the included angle in the first triangle is greater than the

included angle in the second, the third side of the first triangle is greater

than the third side of the second.

Let ABC and ABD be the two triangles in which the sides A 7?,

A C are respectively equal to the sides AB, AD,
but the included angle BA C is greater than the

included angle BAD ; then, BC is greater than

BD.

For, suppose the line AE to be drawn, bisect-

ing the angle CAD and meeting BC in E;

join DE. The triangles AED, AEC are equal (76), and therefore

ED = EC. But in the triangle BDE we have

BE^EDy BD,

and substituting EC for its equal ED, .

BE-\-EG> BD, or BC > BD.

85. Corollary. Conversely, if in two triangles ABC, DEE, we

have AB = DE,AC= DF, hut BC> EF; then, A > D.

For, if A were equal to D, we should
^

have BC =EF (76) ;
and if A were less

than D, we should have ^C < EF (by the

above proposition) ; but as both these conclu-

sions are absurd, being contrary to the hy-

pothesis, we can only have J. > Z>.

PEOPOSITION XXV.—THEOKEM.

86 In an isosceles triangle, the angles opposite to the equal sides are

equal.

Let AB and AC he the equal sides of the isosceles triangle ABC.

then, the angles B and Care equal. ^

For, let D be the middle point of BC, and draw AD. a

The triangles ABD and ADC are equal (80) ;
therefore / : \

the angle ABD = the angle ACD (82). /
\

\

87. Corollary 1. From the equality of the triangles ^—
^
—

^,

ABD and ACD, we also have the angles ADB = ADC,
3**
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and BAD = CAD ;
that is, the straight line joining the vertex and

the middle of the base of an isosceles triangle is perpendicular to the

hose and bisects the vertical angle. ^

Hence, also, the straight line which bisects the vertical angle of an

isosceles triangle bisects the base at right angles.

H%.^ Corollary II. Every equilateral triangle is also equiangular;

and by (68), each of its angles is equal to one-third of two right

angles, or to two-thirds of one right angle.

PROPOSITION XXVI.—THEOREM.

89. If two sides of a triangle are unequaly the angles opposite to them

are unequal, and the greater angle is opposite to the greater side.

In the triangle ABC, let AB be greater than AC\
then, the angle A CB is greater than the angle B.

For, from the greater side AB cut off a part AD =
AC, and join CD. The triangle ADC is isosceles,

and therefore the angles ADC and ACD are equal

(86). But the whole angle ACB is greater than its

part ACD, and therefore greater than ADC; and ADC, an exterior

angle of the triangle BDC, is greater than the angle B (69) ;
still

more, then, is A CB greater than B.

PROPOSITION XXVII.—THEOREM.

90. If two angles of a triangle, are equal, the sides opposite to them

are equal.

In the triangle ABC, let the angles B and C be

equal ; then, the sides AB and A C are equal.

For, if the sides AB and A C were unequal, the

angles B and C could not be equal (89).

91. Corollary. Every equiangular triangle is also equilateral.

1 •
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PROPOSITION XXVIII.—THEOREM.

92. If two angles of a triangle are unequal, the sides opposite to them

are unequal, and the greater side is opposite to the greater angle.

In the triangle ABC let the angle Cbe greater than

the angle JB; then, AB is greater than AC.

For, suppose the line CD to be drawn, cutting off

i'roni the greater angle a part BCD = B. Then BDC
is an isosceles triangle, and DC= DB. But in the

triangle ADC, we have AD + DC '> AC', or, putting

DB for its equal DC, AD ^ DB> AC', ov AB> A C.

POLYGONS.

93. Definitions. A polygon is a portion of a plane bounded by

straight lines; as ABCDE. The bounding lines

are the sides; their sura is the perimeter of the

polygon. The angles which the adjacent sides make

with each other are the angles of the polygon ;
anS

the vertices of these angles are called the vertices

of the polygon.

Any line joining two vertices not consecutive is called a diagonal;

as J-C

94. Definitions. Polygons are classed according to the number of

their sides :

A triangle is a polygon of three sides.

A quadrilateral is a polygon of four sides.

A pentagon has five sides
;
a hexagon, six

;
a heptagon, seven ; an

octagon, eight; an enneagon, nine; a decagon, ten; a dodecagon,

twelve; etc.

An equilateral polygon is one all of whose sides are equal; an

equiangular polygon, one all of whose angles are equal.

95. Definition. A convex polygon is one no side of which when

produced can enter within the space enclosed by the perimeter, as

ABCDE in (93). Each of the angles of such a polygon is less than

two right angles.

It is also evident from the definition that the perimeter of a convex



36 GEO M ETR Y.

polygon canuot be intersected by a straight line in more than two

|X)ints.

A concave polygon is one of which two or

more sides, when produced, will enter the space

enclosed by the perimeter; as MNOPQ, of

which, OP and QP when produced will enter

within the polygon. The angle OPQ, formed

i)y two adjacent re-entrant sides, is called a re-

entrant angle; and hence a concave polygon is sometimes called a

re-entrant polygon.

All the polygons hereafter considered will be understood to be

convex.

96. A polygon may be divided into triangles by diagonals drawn

from one of its vertices. Thus the pentagon

ABODE is divided into three triangles by the

diagonals drawn from A. The number of triangles

into which any polygon can thus be divided is evi-

dently equal to the number of its sides, less two.

The number of diagonals so drawn is equal to the

number of sides, Tess three.

97. Two polygons ABODE,
A'B'G'D'E', are equal when they

can be divided by diagonals into the

same number of triangles, equal each

to each, and similarly arranged ;
for

the polygons can evidently be super-

posed, one upon the other, so as to coincide.

98. Definitions. Two polygons •

are mutually equiangular when

the angles of the one are re-

spectively equal to the angles

of the other, taken in the same

order; as ABOD, A'B'O'D', in

which A = A', B = B', etc.

The equal angles are called homologous angles; the sides containing

equal
-

angles, and similarly placed, are homologous sides ; thus

A and A' are homologous angles, AB and A'B' are homologous

eides, etc.
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Two polygons are mutually equilateral when the sides of the one

are respectively equal to the sides of

the other, taken in the same order
;

as MNPQ, M'N'P'q\ in which

MN = M'N\ NP = N'P', etc.

The equal sides are homologous ;
and

angles contained by equal sides simi-

larly placed, are homologous ;
thus MN and M'N' are homologous

sides
;
M and M' are homologous angles.

Two mutually equiangular polygons are not necessarily also mu-

tually equilateral. Nor are two mutually equilateral polygons

necessarily also mutually equiangular, except in the case of tri-

angles (80).

If two polygons are mutually equilateral and also mutually equi-

angular, they are equal ;
for they can evidently be superposed, one

upon the other, so as to coincide.

PEOPOSITION XXIX.—THEOREM.

99. The sum of all the angles oj any polygon is equal to two right

angles taken as many times less two as the polygon has sides.

For, by drawing diagonals from any one vertex, the polygon can

be divided into as many triangles as it has sides, less two (96). The

sum of the angles of all the triangles is the same as the sum of the

angles of the polygon, and the sum of the angles of each triangle is

two right angles (68). Therefore, the sum of the angles of the

polygon is two right angles taken as many times less two as the

polygon has sides.

100. Corollary I. If N denotes the number of the sides of the

polygon, and B a right angle, the sum of the angles is 2B X
(N—2) = (_2N— 4:)E = 2NB — 4B; that is, twice as many

right angles as the polygon has sides, less four right angles.

For example, the sum of the angles of a quadrilateral is four

right angles ;
of a pentagon, six right angles ;

of a hexagon, eight

right angles, etc.

4
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101. Corollary II. If all the sides of any polygon ABODE, be

/5roduced so as to form one exterior angle at

each vertex, the sum of these exterior angles,

a, b, c, d, e, is four right angles. For, the sum

of each interior and its adjacent exterior angle,

as 4. + <*j is two right angles (11); therefore,

the sum of all the angles, both interior and

exterior, is twice as many right angles as the

polygon has sides. But the sum of the interior angles alone is twice

as many right angles as the polygon has sides, less four right angles

(100) ;
therefore the sum of the exterior angles is equal to four right

angles.

This is also proved in a very simple manner, by drawing, from

any point in the plane of the polygon, a series of lines respectively

parallel to the sides of the polygon and in the same directions as

their prolongations. The consecutive angles formed by these lines

will be equal to the exterior angles of the polygon (60), and their

sum is four right angles (15).

QUADEILATERALS.

102. Definitions. Quadrilaterals are divided into classes as follows :

1st. The trapezium (J.) which has no two of its

sides parallel.

2d. The trapezoid (J5) which has two sides par-

allel. The parallel sides are called the bases, and

the perpendicular distance between them the alti-

tude of the trapezoid.

3d. The parallelogram (C) which is bounded by
two pairs of parallel sides.

The side upon which a parallelogram is supposed

to stand and the opposite side are called its lower and upper bases.

The perpendicular distance between the bases is the altitude.

103. Definitions. Parallelograms are divided into species, ju"

follows :

\

\Z^
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1st. The rhomboid (a), whose adjacent sides

are not equal and whose angles are not right

angles.

2d. The rhombus, or lozenge (6), whose sides are

all equal.

3d. The rectangle (c), whose angles are all equal

and therefore right angles.

39

4th. The square (d), whose sides are all equal and whoise

angles are all equal.

The square is at once a rhombus and a rectangle.

PEOPOSITION XXX.—THEOEEM.

104. In every parallelogram, the opposite angles are equal, ana cfie

opposite sides are equal.

Let ABCD be a parallelogram.

1st. The opposite angles B and D, contained An
by parallel lines lying in opposite directions,

are equal (61) ;
and for the same reason the

opposite angles A and C are equal.

2d. Draw the diagonal A C. Since AD and

BC a.re parallel, the alternate angles CAD and ACB are equal (49),

and since DC and AB are parallel, the alternate angles ACD and

CAB are equal. Therefore, the triangles ADC and CBA are equal

(78), and the sides opposite to the equal angles are equal, namely,

AD = BC,2indiDC=: AB.

105. Corollary I. A diagonal of a parallelogram divides it into

two equal triangles.

106. Corollary II. If one angle of a parallelogram is a riglil

angle, all its angles are right angles, and the figure is a rectangle.
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PEOPOSITION XXXI.—THEOREM.

107. If the opposite angles of a quadrilateral are equals or if tXs

opposite sides are equal, the figure is a parallelogram.

1st. Let the opposite angles of the quadrilateral ABCD be equal,

or ^ -== O and B = D. Then, by adding equals,

we have s- --.

A + B=0 + D; \ \^
therefore, each of the sums A -{- B and C -\- D
is equal to one-half the sum of the four angles. But the sum of the

four angles is equal to four right angles (100) ; therefore, A -{- B is

equal to two right angles, and the lines AD and ^Care parallel (56).

In like manner it may be proved that AB and CD are parallel.

Therefore the figure is a parallelogram.

2d. Let the opposite sides of the quadrilateral ABCD be equal,

\j. _^L = AD and AB = DC. Then, drawing
the diagonal AC, the triangles ABC, A CD are

equal (80) ; therefore, the angles CAD and ACB
are equal, and the lines AD and BC Sive parallel

(54). Also since the angles CAB and ACD are

equal, the lines AB and DC are parallel. Therefore ABCD is

parallelogram.

PROPOSITION XXXII.—THEOREM.

108. If two opposite sides of a quadrilateral are equal and parallel,

the figure is a parallelogram.

Let the opposite sides BC and AD of the

quadrilateral ABCD be equal and parallel.

Draw the diagonal AC. The alternate angles

CAD and ACB are equal (49), and hence the

triangles ADC and CBA are equal (76). There-

fore, the sides AB and CD are equal and the figure is a parallelo-

gram (107).
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PROPOSITION XXXIII.—THEOREM.

109. The diagonals of a parallelogram bisect each other.

Let the diagonals J.C, BD of the parallelogram ABCD intersect

in E) then, AE= ^Cand ED = EB.

For, the side AD and the angles EAD, ADE,
of the triangle EAD, are respectively equal to /
the side CB and the angles ECB, EBC of the f^ Y
triangle ECB\ hence these, triangles are equal

(78), and the sides respectively opposite the equal angles are equal,

namely, AE= EC and ED = EB.

110. Corollary I. The diagonals of a rhombus ABCD bisect each

other at right angles in E. For, since AD = CD
and AE= EC, ED is perpendicular to AC (41).

111. Corollary II. The diagonals of a rhombus

bisect its opposite angles. For, in each of the isos-

celes triangles ADC, ABC, BCD, DAB, the line

drawn from the vertex to the middle of the base

bisects the vertical angle (87).

PROPOSITION XXXIV.—THEOREM.

112. If the diagonals of a quadrilateral bisect each other, the figure

is a parallelogram.

Let the diagonals of the quadrilateral ABCD bisect each other

m E. Then, the triangles AED and CEB are

equal (76), and the angles EAD, ECB, respect-

ively opposite the equal sides, are equal. There-

fore AD and BC are parallel (54). In like

manner AB and DC are shown to be parallel,

and the figure is a parallelogram.

113. Corollary. If the diagonals of a quadrilateral bisect each

other at right angles, the figure is a rhombus.

4 *
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APPLICATIONS.

PROPOSITION XXXVII.—THEOREM.

121. If a straigJit line draivn parallel to the base of a triangle bisects

one of the sides, it also bisects the other side; and the portion of it

intercepted between the two sides is equal to one-half the base.

Let DE be parallel to the base BC of the triangle

ABC, and bisect the side AB in D; then, it bisects

the side ^Oin ^, and JDE = hBG.

1st. Through D suppose DF to be drawn parallel

to AC. In the triangles ADE, DBF, we have

AD -—z DB, and the angles adjacent to these sides

equal, namely DA.E = BDF, and ADE = DBF (51) ; therefore

these triangles are equal (78), and AE = DF. Also, since DEGF
is a parallelogram, DF= EC (104) ;

and hence AE= EC.

2d. The triangles ADE and BDF being equal, we have DE= BE,
and in the parallelogram DECF we have DE = FC; therefore

BE= FC. Hence F is the middle point of BG, and DE= hBC.

122. Corollary I. The straight line DE, joining the middle points

of the sides AB, AC^ of the triangU ABC, is parallel to third side BC,
and is equal to one-half of BC. For, the straight line drawn through

D parallel to BC, passes through E (121), and is therefore identical

with DE Consequently, also, DE= iBC.

123. Corollary 11. The straight line dravm parallel to the bases of a

trapezoid, bisecting one of the non-parallel sides, also bisects the opposite

side.
A D

Let ABCD be a trapezoid, BC and AD its y^ 1

parallel bases, E the middle point of AB, and
^/L.

-X^ 1 ^

let EF be drawn parallel to -BC or AD
; then, /

F is the middle of DC. For, draw the diago-

nal AC, intersecting EF in H. Then in the triangle ABC, EH is

drawn through the middle of AB parallel to ^C; therefore H is

the middle of AC. In the triangle ACD, HE is drawn through

the middle of AC parallel to AD
;
therefore F is the middle of DC.

124. Corollary III. In a trapezoid, the straight line joining the

middle points of the non-parallel sides is parallel to the bases, and ii

equal to one-half their sum.
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1st. Let AD be the bisector of the angle

BAQ P any point in it, and PEj PF, the per-

pendicular distances of Pfrom AB and AC]
then, PE= PF.

For, the right triangles APE, APE, having
the angles PAE and PAF equal, and AP com-

mon, are equal (83) ; therefore, PE = PF.

2d. Let Q be any point not in the bisector, but within the angle ;

then, the perpendicular distances §^and QH are unequal.

For, suppose that one of these distances, as QE, cuts the bisector

in some point P: from P let PP be drawn perpendicular to AC,
and join QF. We have QH < QF; also QF < QP -{- PF, or

QF < §P -f PE, or QF< QE; therefore, QH
When the angle BAC is obtuse, the

point Q, not in the bisector, may be so

situated that the perpendicular on one of

the sides, as AB, will fall at the vertex A
;

the perpendicular QH is then less than

the oblique line QA. Or, a point Q' may
be so situated that the perpendicular Q'E', let fall on one of the sides,

as AB, will meet that side produced through the vertex A; this

perpendicular must cut the side A C in some point, K, and we then

have Q'H' < Q'K < Q'E\
127. Corollary. The bisector of an angle is the locus (40) of all

the points within the angle which are equally distant from its sides.

QF

PEOPOSITION XL.—THEOKEM.

128. The three bisectors of the three angles of a triangle meet in the

same point.

Let AD, BE, CF, be the bisectors of the

angles A, B, C, respectively, of the triangle

ABC.
Let the two bisectors AD, BE, meet in 0.

The point 0, being in AD, is equally dis-

tant from AB and AC (126); and being
in BE, it is equally distant from AB and BC;
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therefore, the point is equally distant from

-4 Cand BC, and must lie in the bisector of

the angle C (127). That is, the bisector CF
also passes through 0, and the three bisect-

ors meet in the same point.

129. Corollary. The point in which the three bisectors of the

angles of a triangle meet is equally distant from the three sides of

the triangle.

PROPOSITION XLI.—THEOREM.

130. The three perpendiculars erected at the middle points of the

sides of a triangle meet in the same point

Let DGy EHj FK, be the perpendiculars

erected to BC, CA, AB, respectively, at their

middle points, D, E, F,

It is first necessary to prove that any two of

these perpendiculars, as DO, EH, meet in some

point. If they did not meet, they would be

parallel, and then CB and CA being perpen-

diculars to these parallels from the same point C, would be in one

straight line, which is impossible, since they are two sides of a tri-

angle. Therefore, DG and EH are not parallel, and must meet in

some point, as 0.

Now the point being in the perpendicular i) G^ is equally distant

from B and C (38), and being also in the perpendicular EH, it -is

equally distant from A and C\ therefore it is equally distant from A
iftid B, and must lie in the perpendicular FK (39). That is, the

perpendicular FK passes through 0, and the three perpendiculars

meet in the same point.

131. Corollary. The point in which the three perpendiculars meet

is equally distant from the three vertices of the triangle.
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PKOPOSITION XLII.—THEOREM.

182. The three perpendiculai's from the vertices of a triangle to the

opposite sides meet in the same point.

Let AD, BE, CF, be the perpen- ?:.... 4 J?'

diculars from the vertices of the tri-

BC and

angle ABC to the opposite sides, re-

spectively.

Through the three vertices, A, B, C,

draw the lines B'C, A'B', A'C, re-

spectively parallel to BC, AB, AC, ^'

Then the two quadrilaterals ABCB'
and ACBC are parallelograms, and we have AB'

AC = BC; therefore AB' = AC, or A is the middle of B' C
But AD being perpendicular to ^C is perpendicular to the parallel

B'C', therefore AD is the perpendicular to B'C erected at its

middle point A. In like manner, it is shown that BE and CFare

the perpendiculars to A'C and A'B' at their middle points; there-

fore, by (130), the three perpendiculars meet in the same point.

133. Definition. A straight line drawn from any vertex of a tri-

angle to the middle point of the opposite side is

called a medial line of the triangle. Thus, D being

the middle point of BC, AD is the medial line to

BC.

PEOPOSITION XLIII.—THEOREM.

134. The three medial lines of a triangle meet in the samejyoint.

Let D, E, F, be the three middle points of

the sides of the triangle ABC', AD, BE, CF,

the three medial lines.

Let the two medial lines, AD and BE, meet

in 0. Let G be the middle point of OA, a^nd

H the middle point of QB; join OH, HD,
DE, EG. In the triangle A OB, OH is par-

allel to J.^, and OH = ^AB: and in the triangle ABC,"ED is

parallel to ^^, and ED = ^AB (122).

'

Therefore, HO and ED,

being parallel to AB,nre parallel to each other; and each being
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equal to hAB, they are equal to each other
; consequeutly, EGHD

is a parallelogram (108), and its diagonals

bisect each other (109). Therefore OB = OG
= GA, or OD = ^AD ;

that is, the medial

line BE cuts the medial line AD at a point

whose distance from D is one-third of AD. In

the ^me way it is proved that the medial line

OF cuts AD at a point whose distance from D
is one-third of AD, that is, at the same point 0; and therefore the

three medial lines meet in the same point.

SYMMETRICAL FIGURES.

a. Symmetry with 7'espect to an axis.

135. Definition. Two points are symmetrical with respect to a fixed

straight line, called the axis of symmetry, when this axis bisects at

right angles the straight line joining the two points.

Thus, A and A' are symmetrical with respect to

the axis 3fN, if 3IN bisects AA' at right angles

at a.

If the portion of the plane containing the point

A on one side of the axis MN, is revolved about ^
'^*

this axis (or folded over) until it coincides with the

portion on the other side of the axis, the point A' at which A ftills

is the symmetrical point of A.

136. Definition. Any two figures are symmetrical with respect to

an axis when every point of one figure has its symmetrical point on

the other.

Thus, A'B' is the symmetrical figure

of the straight line AB, with respect to

(lie axis MN, every point, as C, of the one,
^~

having its symmetrical point C" in the

other.

The symmetrical figure of an indefinite

straight line, AB, is an indefinite straight

line, A'B\ which intersects the first in the

axis and makes the same angle with the

axis as tlie first line.
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137. Definition. In two symmetrical figures the corresponding

symmetrical lines are called homologous.

Thus, in the symmetrical figures ABODE,
A'B'C'D'E', the homologous lines are AB
and A'B\ BCsmd B'C, etc.

In all cases, two figures, symmetrical with

I'C'spect to an axis, can be brought into coin-

cidence by the revolution of either about the

axis.

6. Symmetry with respect to a centre.

138. Definition. Two points are symmetrical with respect to a fixed

point, called the centre of symmetry, when this centre bisects the

straight line joining the two points.

Thus, A and A' are symmetrical with respect ...'^,

to the centre 0, if the line AA' passes through ,.••'*

and is bisected at 0. ,..-'''

The distance of a point from the centre is called a

its radius of symmetry. A point A is brought into

coincidence with its symmetrical point A\ by revolving its radius

OA through two right angles (16).

139. Definition. Any two figures are symmetrical with respect to

a centre, when every point of one figure has its symmetrical point

on the other.

Thus, A'B' is the symmetrical -i

figure of the straight line AB with

respect to the centre 0.

Since the triangles AOB, A' OB',

are equal (76), the angle B is equal

to the angle B'
; therefore, AB and A'B' are parallel.

the homologous lines of two figures,

cymmetrical with respect to a centre,

are parallel. Thus, in the symmetri-
cal figures ABOD, A'B'O'D', the

homologous lines J.^ and A'B' are

parallel, BO and B' O' are parallel,

etc.

Twd figures symmetrical with respect to a centre can be brought
5 D

,'-' O

In general,
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into coincidence by revolving one of them, in its own plane, about

the centre
; every radius of symmetry revolving through two right

angles at the same time.

140. Definition. Any single figure is called a symmetrical figure,

either when it can be divided by an axis into two figures symmetri-

cal Y>^ith respect to that axis, or when it has a centre such that every

strafght line drawn through it cuts the figure in two points which

are symmetrical with respect to this centre.

Thus, ABCDC'B' is a symmetrical

figure with respect to the axis MN,

being divided by MN into two figures,

ABCD and AB'C'D, which are sym-

metrical with respect to MN.

Also, the figure ABCDEF is symmetrical with respect to the

centre 0, its vertices, taken two and two,

being symmetrical with respect to 0. In

this case, any straight line KL drawn /^ "--->.v::l yo

through the centre and terminated by the

perimeter, is called a diameter.

PROPOSITION XLIV.—THEOREM.

141. IJ a figure is symmetrical with respect to two axes perpendicular

to each other, it is also symmetrical with respect to the interseciion of

these axes as a centre of symmetry.

Let the figure ABCDEFGH be

symmetrical with respect to the two

perpendicular axes MNy PQ, which

intersect in 0\ then, the point is

also the centre of symmetry of the

figure.

For, let T be any point in the

perimeter of the figure; draw TRT'

perpendicular to MN, and TSt per-

pendicular to P§; join T' 0, Ot and i^/S.

Since the figure is symmetrical with respect to MN, we have RT'

= ET; and since RT= OS, it follows that RT' = OS; therefore,
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RT' OS is a parallelogram (108), and RS is equal and parallel

to or.

Again, since the figure is symmetrical with respect to P§, we have

St = ST = OR; therefore, SROt is a parallelogram, and RS is

equal and parallel to Ot Hence, T\ and t, are in the same

straight line, since there can be but one parallel to RS drawn

through the same point 0.

Now we have OT' = jRaS and 0< = RS, and consequently OT' =
Ot; therefore, any straigh^: line T'Ot, drawn through 0, is bisected

at C
;
that is, is the centre of symmetry of the figure.
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THE CIRCLE.

1. Definitions. A circle is a portion of a plane bounded by a

curve, all the points of which are equally distant from a point within

it called the centre.

The curve which bounds the circle is called

its circumference.

Any straight line drawn from the centre

to the circumference is called a radius.

Any straight line drawn through the centre

and terminated each way by the circumfer-

ence is called a diameter.

In the figure, is the centre, and the curve ABGEA is the cir-

cumference of the circle
;
the circle is the space included within the

circumference; OA, OB, OC, are radii; AOCis a diameter.

By the definition of a circle, all its radii are equal ; also all its

diameters are equal, each being double the radius.

If one extremity, 0, of a line OA is fixed, while the line revolves

in a plane, the other extremity, J., will describe a circumference,

whose radii are all equal to OA.

2. Definitions. An arc of a circle is any portion of its circumfer-

ence
;
as DEF.

A (Aord is any straight line joining two points of the circum-

ference; as DF. The arc DEF is said to be subtended by its

chord DF.

Every chord subtends two arcs, which together make up the whole

circumference. Thus DF subtends both the arc DEF and the arc

DCBAF. Whei an arc and its chord are spoken of, the arc less than
52
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a semi-circumference, as DEF, is always understood, unless otherwise

stated.

A segment is a portion of the circle included between an arc and

its chord
; thus, by the segment DEF is meant the space included

between the arc DF and its chord.

A sector is the space included between an arc and the two radii

dra^vn to its extremities ;
as A OB.

3. From the definition of a circle it follows that every point

within the circle is at a distance from the centre which is less than

the radius; and every point without the circle is at a distance from

the centre which is greater than the radius. Hence (I. 40), the

locus of all the points in a plane which are at a given distance from a

given point is the circumference of a circle described with the given point

as a centre and with the given distance as a radius.

4. It is also a consequence of the definition of a circle, that two

circles are equal when the radius of one is equal to the radius of the

other, or when (as we usually say) they have the same radius. For

if one circle be superposed upon the other so that their centres coin-

cide, their circumferences will coincide, since all the points of both

are at the same distance from the centre.

If when superposed the second circle is made to turn upon its

centre as upon a pivot, it must continue to coincide with the first.

5. Postulate. A circumference may be described with any point as r

a centre and any distance as a radius. Ql j^

4;

AKCS AND CHOKDS.

PROPOSITION I.—THEOEEM.

6. A straight line cannot intersect a circumference in more iiian two

points.

For, if it could intersect it in three points, the three radii drawn -

"

to these three points would be three equal straight lines drawn from

the same point to the same straight line, which is impossible (I. 36).

5*
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PEOPOSITION II.—THEOREM.

7. Every diameter bisects the circle and its circumference.

J jet AMBN be a circle whose centre is
;

then, any diameter A OB bisects the circle and

its cirjcuraference.

For, if the figure ANB be turned about AB
as an axis and superposed upon the figure

AMB, the curve ANB will coincide with the

curve AMB, since all the points of both are

equally distant from the centre. The two

figures then coincide throughout, and are therefore equal in all

respects. Therefore,J.^ divides both the circle and its circumference

into equal parts.

8. Definitions. A segment equal to one half the circle, as the seg-

ment AMB, is called a semi-circle. An arc equal to half a circum-

ference, as the arc AMB, is called a semi-drcwnference.

PEOPOSITION III.—THEOREM.

9. A diameter is greater than any other chord.

Let AC he any chord which is not a diame-

ter, and A OB a diameter drawn through A :

then AB> AG.

For, join OC. Then, AO -{r OC > AC
(I. 66) ;

that is, since all the radii are equal,

AO-^ OB > AC, or AB> AC.

PROPOSITION IV.—THEOREM.

10. In equal circles, or in the same circle, equal angles at the centre

intercept equal arcs on the circumference, and conversely.

Let 0, 0', be the centre of equal^ A T> A' D

circles, and AOB, A'O'B', equal angles

at these centres
; then, the intercepted

arcs, AB, A'B', are equal. For, one of

the angles, together with its arc, may be

superposed upon the other; and when
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the equal angles coincide, their intercepted arcs will evidently coin-

cide also.

Conversely, if the arcs AB, A'B' are equal, the angles A OB,
A' O'B' are equal. For, when one of the arcs is superposed upon its

equal, the corresponding angles at the centre will evidently coincide.

If the angles are in the same circle, the demonstration is siniilar.

11. Definition. A fourth part of a circum-

ference is called a quadrant. It is evident from

the preceding theorem that a right angle at the

centre intercepts a quadrant on the circum-

ference.

Thus, two perpendicular diameters, AOCy
BOD, divide the circumference into four quad-

rants, AB, BQ CD, DA.

PROPOSITION v.—THEOREM.

12. In equal circles, or in the same circle, equal arcs are subtended

by equal chords, and conversely.

Let 0, O^he the centres of equal circles, and AB, A'B\ equs,\

arcs; then, the chords AB, A'B', are

equal.

For, drawing the radii to the extremi-

ties of the arcs, the angles and 0'

are equal (10), and consequently the

triangles A OB, A' O'B', are equal

(I. 76). Therefore, AB == A'B'.

Conversely, if the chords AB, A'B', are equal, the triangles AOB,
A' O'B' are equal (I. 80), and the angles 0, 0' are equal. There-

fore (10), arc ^^ = arc A'B'.

If the arcs are in the same circle, the demonstration is similar.

PROPOSITION VI.—THEOREM.

13. In equal circles, or in the same circle, the greater arc is subtended

by the greater chord, and conversely ; the arcs being both less than a

semi-circumference
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Let the arc A C be greater than the

arc AB; then, the chord AC is greater

than the chord AB.

For, draw the radii OA, OB, 00.

In the triangles AOC, A OB, the angle

A 00 is obviously greater than the angle A OB; therefore, (I. 84),

chor?lJLO> chord ^^.

Conversely, if chord J.(7 > chord AB, then, arc J.C > arc AB.

For, in the triangles A 00, A OB, the side J.C > the side AB;
therefore (I. 85), angle AOC > angle A OB; and consequently,

arc AC ^ arc AB.

14. Scholium. If the arcs are greater than a semi-circumference,

the contrary is true
;
that is, the arc AMB, which is greater than the

arc AMCy is subtended by the less chord
;
and conversely.

PROPOSITION VII.—THEOREM.

15. The diameter perpendicular to a chord bisects the chord and the

arcs subtended by it

Let the diameter DOD' be perpendicular to

the chord AB at C; then, 1st, it bisects the

chord. For, the radii OA, OB being equal

oblique lines from the point to the line AB,
cut off equal distances from the foot of the per-

pendicular (I. 36); therefore, AC= BC.

2d. The subtended arcs ADB, AD'B, are

bisected at D and D'
, respectively. For, evei-y point in the per-

pendicular DOD' drawn at the middle of AB being equally distant

from its extremities A and B (I. 38), the chords AD and BD are

equal; therefore, (12), the arcs AD and BD are equal. For the

same reason, the arcs AD' and BD' are equal.

16. Corollary I. The perpendicular erected upon the middle of a

chord passes through the centre of the circle, and through the

middle of the arc subtended by the chord.

Also, the straight line drawn through any two of the three points

O, C, D, passes through tlie third and is perpendicular t'» the

chord AB.
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17. Corollary II. The middle points of any
number of parallel cliords all lie in the same

diameter perpendicular to the chords.

In other words, the locus of the middle points

of a system of parallel chords is the diameter

perpendicular to these chords.

PKOPOSITION VIII.—THEOREM.

18. In the same circle^ or in equal circles, equal chords are equally

distant from the centre; and of two unequal chords, the less is at the

greater distance from the centre.

1st. Let AB, CD, be equal chords
; OE,

OF, the perpendiculars which measure their

distances from the centre 0; then, OE =
OF.

,

For, since the perpendiculars bisect the

chords (15), AE=CF; hence (I. 83), the

right triangles AOE and COF are equal,

and OE = OF.

2d. Let CG, AB, be unequal chords; OE, OH, their distances

from the centre ;
and let CG be less than AB

; then, OH> OE.

For, since chord AB > chord CG, we have arc AB > arc CG ;

BO that if from C we draw the chord CD = AB, its subtended arc

CD, being equal to the arc AB, will be greater than the arc CG.

Therefore the perpendicular OH will intersect the chord CD in some

point J. Drawing the perpendicular OF to CD, we have, by the

first part of the demonstration, OF = OE. But OH > 01, and

01> 0F(1. 28); still more, then, is 0H> OF, or 0H> OE.

If the chords be taken in two equal circles, the demonstration is

the same.

19. Corollary I. The converse of the proposition is also evidently

true, namely : in the same circle, or in equal circles, chords equally

distant from the centre are equal ;' and of two chords unequally distant

from the centre, that is the greater ivhose distance from the centre is

the less.

5**
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20. Corollary II. The least chord that x;an be

drawn in a circle through a given point P is the

chord, AB, perpendicular to the line OP joining

the given point and the centre. For, if CD is

any other chord drawn through P, the perpen-

dicular OQ to this chord is less than OP; there-

fore, by the preceding corollary, CD is greater

than AB.

PKOPOSITION IX.—THEOREM.

21. Through any three points, not in the same straight line, a eireum.'

ference can he made to pass, and hut one.

Let A, B, C, be any three points not in the

same straight line.

1st. A circumference can be made to pass

through these points. For, since they are

not in the same straight line, the lines AB,

BC, AC, joining them two and two, form a

triangle, and the three perpendiculars DE,

FG, HK, erected at the middle points of the sides, meet in a point

which is equally distant from the three points A, B, C, (I. 131).

Therefore a circumference described from as a centre and a radius

equal to any one of the three equal distances OA, OB, OC, will pass

through the three given points.

2d. Only one circumference can be made to pass through these

points. For the centre of a7iy circumference passing through the

three points must be at once in two perpendiculars, as DE, FG, and

therefore at their intersection
;
but two straight lines intersect in

only one point, and hence is the centre of the only circumference

that can pass through the three points.

22. Corollary. Two circumferences can intersect in but two points;

for, they could not have a third point in common without having the

same centre and becoming in fact but one circumference.
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TANGENTS AND SECANTS.

23. Definitions. A tangent is an indefinite straight line which has

but one point in common with the cir-

cumference; as ACB. The common

point, 0, is called the point of contact,

or the point of tangency. The circum-

ference is also said to be tangent to the

line AB at the point C.

A secant is a straight line which

meets the circumference in two points ;

as^i^.

24. Definition. A rectilinear figure is said to

be circumscribed about a circle when all its sides

are tangents to the circumference.

In the same case, the circle is said to be inr

scribed in the figure.

PEOPOSITION X.-.THEOKEM.

25. A straight line oblique to a radius at its extremity cuts the dr-

cumference.

Let AB be oblique to the radius OC at its

extremity C; then, AB cuts the circumfer-

ence at (7, and also in a second point D.

For, let OE be the perpendicular from

upon AB; then OE < OC, and the point E
is within the circumference. Therefore AB
cuts the circumference in C, and must evi-

dently cut it in a second point D.
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PROPOSITION XL—THEOREM.

26. A straight line perpendicular to a radius at its extremity ia a

tangent to the circle.

Let AB be perpendicular to the radius 00
at its extremity 0; then, AB is a tangent to

the circle at the point O.

For, from the centre draw the oblique
line OD to any point of AB except 0. Then,
OD "> 00, and Z) is a point without the cir-

cumference. Therefore AB having all its

points except without the circumference, has but the point in

common with it, and is a tangent at that point (23).

27. Corollary. Conversely, a tangent AB at any point is perpen-
dicular to the radius 00 drawn to that point. For, if it were not

perpendicular to the radius it would cut the circumference (25), and

would not be a tangent.

28. Scholium. If a secant EF, passing through a point of the

<5ircumference, be supposed to revolve

upon this point, as upon a pivot, its

second point of intersection, D, will

move along the circumference and ap-

proach nearer and nearer to 0. AVhen

the second point comes into coincidence

with 0, the revolving line ceases to be

strictly a secant, and becomes the tan-

gent AB; but, continuing the revolution,

the revolving line again becomes a secant, as E'F', and the second

point of intersection reappears on the other side of 0, as at D'.

If, then, our revolving line be required to be a secant m the stridi

sense imposed by our definition, that is a line meeting the circum-

ference in two points, this condition can be satisfied only by keeping

the second point of intersection, D, distinct from the first point, C,

however near these points may be brought to each other
; and, there-

fore, under this condition, the tangent is often called the limit of the

secants drawn through the point of contact; that is to say, a limit

toward which the secant continually approaches, as the second point
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of intersection (on either side of tlie first) continually approaches

the first, but a limit which is never reached by the secant as such.

On the other hand, as the tangent is but one of the positions of

our revolving line, it has properties in common with the secant
;
and

in order to exhibit such common properties in the most striking

manner, it is often expedient to regard the tangent as a secant whose

tivo points of intersection are coincident. But it is to be observed that

we then no longer consider the secant as a cutting line, but simply as

a line drawn through two points of the curve
;
and we include the

tangent as that special case of such a line in which the two points

are coincident. In this, we generalize in the same way as in algebra,

when we say that the expression x = a — b signifies that x is the

difference of a and b, even when a = b, and there is really no differ-

ence between a and b.

PKOPOSITION XII.—THEOREM.

29. Two parallels intercept equal arcs on a circumference,

"VVe may have three cases :

1st. When the parallels AB, CD, are both

secants
; then, the intercepted arcs J.Cand BD

are equal. For, let OM be the radius drawn

perpendicular to the parallels. By Prop. VII.

the point M is at once the middle of the arc

AMB and of the arc CMD, and hence we have

AM= BM and CM=DM,

whence, by subtraction,

AM— CM= BM— DM;

AC= BD.
that is,

2d. When one of the parallels is a secant, as AB, and the other is

a tangent, as EF at 3f, then, the intercepted arcs A3f and B3I are

equal. For, the radius OM draw^n to the point of contact is per-

pendicular to the tangent (27), and consequently perpendicular also

10 its parallel AB; therefore, by Prop. VII., AM= BM.
3(1. Wlien both tlie parallels are tangents, as ^i^at M, and GH
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if

at N; then, the intercepted arcs MAN and MEN are equal. For,

drawing any secant AB parallel to the tangents,

we have by the second case,

AM = BM and AN= BN,

whence, by addition,

that is.

AM-\-AN= BM-{-B]Sr,

c/
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at its middle point (7, passes through both centres (16) ;
and there

can be but one straight line drawn between the two points and 0',

35. Corollary. When, two circumferences are tangent to each other,

their point of contact is in the straight line joining their centres. It

has just been proved that when two circumferences intersect, the two

points of intersection lie at equal distances from the line joining the

centres and on opposite sides of this line. Now let the circles be

supposed to be moved so as to cause the points of intersection to

approach each other; these points will

ultimately come together on the line

joining the centres, and be blended in a

single point C, common to the two cir-

cumferences, which will then be their

point of contact. The perpendicular to

00' erected at (7 will then be a common

tangent to the two circumferences and take the place of the common

chord.

PKOPOSITION XIV.—THEOKEM.

36. When two circumferences are wholly exterior to each other, the

distance of their centres is greater than the sum of their radii.

Let 0, 0' be the centres. Their dis-

tance 00' is greater than the sum of

the radii OA, O'B, by the portion AB
interposed between the circles.

PEOPOSITION XV.—THEOREM.

37. When two circumferences are tangent to each other externally, the

distance of their centres is equal to the sum of their radii.

Let 0, 0', be the centres, and C the point

of contact. The point C being in the line

joining the centres (35), we have 00' =
00-\- O'C.
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PROPOSITION XVI.—THEOREM.

88. When tivo circumferences intersect, the distance of their centres

is less than the sum of their radii and greater than the difference of their

radii.

Let aiid 0' be their centres, and A
one of their points of intersection. The

point A is not in the line joining the

centres (34) ;
and consequently there is

formed the triangle AOO', in which we

have 00' < OA -^ O'A, and also

00' > OA - O'A (I. 67).

PROPOSITION XVII-THEOREM.

39. When two circumferences are tangent to each other interrially,

the distance of their centres is equal to the difference of their radii.

Let 0, 0', be the centres, and (7 the point of

contact. The point C being in the line joining

the centres (35), we have 00' = 00— 0' C.

PROPOSITION XVIII.—THEOREM.

40. When one cirmimference is wholly within another, the distance

of their centres is less than the difference of their radii.

Let 0, 0', be the centres. We have the dif-

ference of the radii OA — O'B == 00' -f AB.

Hence 00' is less than the difference of the

radii by the distance AB.

41. Corollary. The converse of each of the preceding five propo-

sitions is also true : namely
—

1st. When the distance of the centres is greater than the sum of

the radii, the circumferences are wholly exterior to each other.
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2d. \YheD the distance of the centres is equal to the sum of the

radii, the circumferences touch each other externally.

3d. When the distance of the centres is less than the sum of the

radii, but greater than their difference, the circumferences intersect.

4th. When the distance of the centres is equal to the difference

of the radii, the circumferences touch each other internally.

5th. When the distance of the centres is less than the difference

of the radii, one circumference is wholly within the other.

MEASURE OF ANGLES.

As the measurement of magnitude is one of the principal objects

of geometry, it will be proper to premise here some principles in

regard to the measurement of quantity in general.

42. Definition. To measure a quantity of any kind is to find how

many times it contains another quantity of the same kind called the

unit.

Thus, to measure a line is to find the number expressing how many
times it contains another line called the unit of length, or the linear

unit.

The number which expresses how many times a quantity contains

the unit is called the numerical measure of that quantity.

43. Definition. The ratio of two quantities is the quotient arising

from dividing one by the other
; thus, the ratio of A to B is —

To find the ratio of one quantity to another is, then, to find how

many times the first contains the second; therefore, it is the same

thing as to measure the first by the second taken as the unit (42).

It is implied in the definition of ratio, that the quantities compared
are of the same kind.

Hence, also, instead of the definition (42), we may say that to

measure a quantity is to find its ratio to the unit.

The ratio of two quantities is the same as the ratio of their

numerical measures. Thus, if P denotes the unit, and if Pis con-

tained m times in A and n times in B, then,

A mP m
B~ nP~ n

44. Definitioii. Two quantities are commensurable when there ia

6 * E
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some third quantity of the same kind which is contained a whole

number of times in each. This third quantity is called the common

measure of the proposed quantities.

Thus,. the two lines, A and B, are commensurable, if there is some

line, C, which is contained a whole num-

ber of times in each, as, for example,
' ' ' ' ' ' ' '

7 times in A, and 4 times in B. ^'—•
—

«
—

'
—

»

The ratio of two commensurable quan- q,
—

,

tities can, therefore, be exactly expressed

by a number whole or fractional (as in the preceding example

by -1, and is called a commensurable ratio.

45. Definition. Two quantities are incommensurable when they

have no common measure. The ratio of two such quantities is called

an incommensurable ratio.

If A and B are two incommensurable quantities, their ratio is still

expressed by —

46. Problem. To find the greatest common measure of two quantities.

The well-known arithmetical process may be extended to quantities

of all kinds. Thus, suppose AB and CD are two straight lines

whose common measure is required. Their greatest common meas-

ure cannot be greater than the less line

CD. Therefore, let CD be applied to AB ^' ' '

J"^
as many times as possible, suppose 3 times, ^' ""^^
with a remainder EB less than CD. Any
common measure of AB and CD must also be a common measure

of CD and EB
;
for it will be contained a whole number of times in

CD, and in AE, which is a multiple of CD, and therefore to measure

AB it must also measure the part EB. Hence, the greatest common

measure of AB and CD must also be the greatest common measure

of CD and EB. This greatest common measure of CD and EB
cannot be greater than the less line EB

; therefore, let EB be applied

as many times as possible to CD, suppose twice, with a remainder

FD. Then, by the same reasoning, the greatest common measure

of CD and EB, and consequently also that of AB and CD, is the

greatest common measure of EB and FD. Therefore, let FD be

applied to EB as many times as possible : suppose it is contained
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exactly twice in EB without remainder
;
the process is then com-

pleted, and we have found FD as the required greatest common

measure.

The measure of each line, referred to FD as the unit, will then be

as follows : we have

EB = 2FD,

CD = 2EB -{- FD = 4FD -\- FD = 6FD,

AB =^ ZCD -i- EB = IdFD -\- 2FD = IIFD.

The proposed lines are therefore numerically expressed, in terms of

17
the unit FDy by the numbers 17 and 5

;
and their ratio is —

5

47. When the preceding process is applied to two quantities and

no remainder can be found which is exactly contained in a pre-

ceding remainder, however far the process be continued, the two

quantities have no common measure; that is, they are incommen-

surable, and their ratio cannot be exactly expressed by any number

whole or fractional.

48. But although an incommensurable ratio cannot be exactly

expressed by a number, it may be approximately expressed by a

number within any assigned measure of precision.

A
Suppose

— denotes the incommensurable ratio of two quantitiesB
A and B] and let it be proposed to obtain an approximate numeri-

cal expression of this ratio that shall be correct within an assigned

measure of precision, say Let B be divided into 100 equal

parts, and suppose A is found to contain 314 of these parts with a

remainder less than one of the parts ; then, evidently, we have

A 314 ... 1— = withm —-»

B 100 100

that, is, is an approximate value of the ratio — within the as-
100

^^ B
signed measure of precision.

A .

To generalize this,
—

denoting as before the incommensurable
B

ratio of the two quantities A and jB, let B be divided into n equal
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parts, and let A contain m of these parts with a remainder less than

one of the parts ;
then we have

—
;

= — within -
;

*

B n n

and, since n may be taken as great as we please,
-
may be made less

•, n

7)1/

than any assigned measure of precision, and — will be the approxi-
n

A
mate value of the ratio — within that assigned. measure.

49. Theorem, Two ineommensurahle ratios are equals if their approxi-

mate 7iumerical values are always equals when both are expressed within

the same measure of precision however small.

A A'
Let — and — be two incommensurable ratios whose approximate

numerical values are always the same when the same measure of

precision is employed in expressing both
; then, we say that

B~ B'

For, let - be any assumed measure of precision, and in accordance

with the hypothesis of the theorem, suppose that for any value of

1 A A'
->the ratios—' —

j
have the same approximate numerical expres-

sion, say
—

» each ratio exceeding
—

by a quantity less than -;
n n n

then, these ratios cannot differ' /rom each other by so much as -
n

But the measure - may be assumed as small as we please, that is less

A A'
than any assignable quantity however small; hence — and — cannot

B B
differ by any assignable quantity however small, and therefore they

must be equal.

The student should study this demonstration in connection with

that of Proposition XIX., which follows.
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50. Definition. A proportion is an equality of ratios. Thus, if the

A . A' .

ratio -- is equal to the ratio —y the equalityB B

B~ B'

is a proportion. It may be read :

" Ratio of A to B equals ratio of

A' to B\" or "A is to B as A' is to B':'

A proportion is often written as follows :

A:B = A':B'

where the notation A : B is equivalent to ^ -^ ^. When thus

written, A and B' are called the extremes, B and A' the means, and

B' is called a fourth proportional to A, B and A'
; the first terms

J. and A\ of the ratios are called the antecedents—the second terms,

B and B', the consequents.

When the means are equal, as in the proportion

A:B = B: Q
the middle term B is called a mean proportional between A and C,

and G is called a third proportional to A and B,

PKOPOSITION XIX.—THEOREM.

51. In the same circle, or in equal circles, two angles at the centre are

in the same ratio as their intercepted arcs.

Let A OB and AOChe two angles at the centre of the same, or at

the centres of equal circles; AB and J. C, their intercepted arcs;

then,

A OB AB
AOC~ AC

1st. Suppose the arcs to have ^'

a common measure which is con-

tained, for example, 7 times in

the arc AB and 4 times in the arc AC; so that if AB is divided

into 7 parts, each equal to the common measure, A C will contain 4

of these parts. Then the ratio of the arcs AB and AC is 7 : 4 ;

Uiat is,
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AG~ 4: /^vfv\
Drawing radii to the several ^O / i 1 \ \^^
points of division of the arcs, ^'^^^~c^^
the partial angles at the centre

subtended by the equal partial arcs will be equal (10) ; therefore

the angle AOB will be divided into 7 equal parts, of which the

angle AOG will contain 4
;
hence the ratio of the angles A OB and

^0Cis7 : 4; that is,

AOB 7

AOC~ 4

Therefore, we have

AOB ^AB
AOC~ AG

or,

AOB:AOG=AB:Aa
2d. If the arcs are incommensurable, suppose one of them, as A C,

to be divided into any number n of equal parts ;
then AB will con-

tain a certain number m of these parts, plus a remainder less than

AB
one of these parts. The numerical expression of the ratio will

^ C
77l< 1

then be —
, correct within -

(48). Drawing radii to the several

points of division of the arcs, the angle JL 0(7 will be divided into n

equal parts, and the angle A OB will contain m such parts, plus a

remainder less than one of the parts. Therefore, the numerical

expression of the ratio will also be —> correct within -
; that^ AOG . n n'

. , . AOB, , . . , .

IS, the ratio has the same approximate numerical expression as

AB ...
the ratio —r-f however small the parts into which AG is divided;

therefore these ratios must be absolutely equal (49), and we have for

incommensurable, as well as for commensurable, arcs,

AOB AB
AOG~ AG

ar,

AOB:AOC=AB:AC.
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PKOPOSITION XX.—THEOEEM.

62. The numerical measure of an angle at the centre of a circle is

the same as the numerical measure of its intercepted arc, if the adopted

unit of angle is the angle at the centre which intercepts the adopted unit

of arc.

Let A OB be an angle at the centre 0, and

AB its intercepted arc. Let AOC be the

angle which is adopted as the unit of angle,

and let its intercepted arc AG ho. the arc

which is adopted as the unit of arc. By
Proposition XIX. we have

AOB_AB
AOG~ AG

But the first of these ratios is the measure (42) of the angle A OB
referred to the unit AOC', and the second ratio is the measure of the

arc AB referred to the unit A G. Therefore, with the adopted units,

the numerical measure of the angle A OB is the same as that of the

arc AB.

53. Scholium I. This theorem, being of frequent application, is

usually more briefly, though inaccurately, expressed by saying that

an angle at the centre is measured by its intercepted arc. In this con-

ventional statement of the theorem, the condition that the adopted

units of angle and arc correspond to each other is understood
;
and

the expression
"

is measured by" is used for "has the same numerical

measure as."

54. Scholium II. The right angle is, by its nature, the most simple

unit of angle ; nevertheless custom has sanctioned a different unit.

The unit of angle generally adopted is an angle equal to -^^^th

part of a right angle, called a degree, and denoted by the symbol °.

The corresponding unit of arc is -^ih part of a quadrant (11), and

is also called a degree.

A right angle and a quadrant are therefore both expressed by 90°.

Two right angles and a semi-circumference are both expressed by
180°. Four right angles and a whole circumference are both ex-

pressed by 360°.

The degree (either of angle or arc) is subdivided into minutes and
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seconds, denoted by the symbols
' and "

: a minute being -^^^th part

of a degree, and a second being -^th part of a minute. Fractional

parts of a degree less than one second are expressed by decimal parts

of a second.

An angle, or an arc, of any magnitude is, then, numerically ex-

pressed by the unit degree and its subdivisions. Thus, for example,

an angle equal to ^th of a right angle, as well as its intercepted arc,

will be expressed by 12° 51' 25". 714

55. Definition. When the sum of two arcs is a quadrant (that is,

90°), each is called the complement of the other.

When the sum of two arcs is a semi-circumference (that is, 180°),

each is called the supplement of the other. See (I. 18, 19).

56. Definitions. An inscribed angle is one whose vertex is on the

circumference and whose sides are chords ; as BA C.

In general, any rectilinear figure, as ABC, is

said ta be inscribed in a circle, when its angular

points are on the circumference; and the circle

is then said to ho, circumscribed about the figure.

An angle is said to be inscribed in a segment

when its vertex is in the arc of the segment, and

its sides pass through the extremities of the sub-

tending chord. Thus, the angle BAC is inscribed in the segment

BAC.

PROPOSITION XXI.—THEOREM.

57. An inscribed angle is measured by one-half its intercepted arc.

There may be three cases :

hi. Let one of the sides AB of the inscribed

angle BAC be a diameter; then, the measure

pf the angle BACis one-half the arc BC.

For, draw the radius OC. Then, AOC being

an isosceles triangle, the angles OAC and OCA
are equal (I. 86). The angle BOC, an exterior

angle of the triangle AOC, is equal to the sum

of the interior angles OAC Siud OCA (I. 69), and therefore double
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either of them. But the angle BOC, at the centre, is measured by
the arc J5C'(53); therefore, the angle OAC is measured by one-half

the arc BC.

2d. Let ^he centre of the circle fall within the inscribed angle

BAC; then, the measure of the angle BAC is one-half of the

arc BC.

For, draw the diameter AD. The measure of

the angle BAD is, by the first case, one-half the

arc BD; and the measure of the angle CAD is

one-half the arc CD; therefore, the measure of

the sum of the angles BAD and CAD is one-half

the sum of the arcs BD and CD; that is, the

measure of the angle BAC is one-half the arc BC.

3d. Let the centre of the circle fall without the inscribed angle

BAC; then, the measure of the angle BAC is

one-half the arc BC.

For, draw the diameter AD. The measure of

the angle BAD is, by the first case, one-half the

arc BD
;
and the measure of the angle CAD is

one-half the arc CD; therefore, the measure of

the difference of the angles BAD and CAD is

one-half the difference of the arcs BD and CD;
that is, the measure of the angle BAC is one-half the arc BC.

58. Corollary 1. All the angles BAC, BDC,
etc., inscribed in the same segment, are equal.

For eacr is measured by one-half the same ^

arc BMC.

•59. Corollary IL Any angle BAC, inscribed in

a semicircle is a right angle. For it is measured

by half a semi-circumference, or by a quad-
rant (54).
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60. Corollary III. Any angle BA C, inscribed ^^^
—^^

in a segment greater than a semicircle, is acute; /
.^^"''^^ \\

for it is measured by half the arc BD C, which / ^^ V\

is less than a semi-circumference. ^K" ---pMO

Any angle BDC, inscribed in a segment less ^^^^^^^
than a semicircle, is obtuse

;
for it is measured d

by lialf the arc BA C, which is greater than a

semi-circumference.

61. Corollary IV, The opposite angles of an inscribed quadrilateral

ABDC, are supplements of each other. For the sum of two oppo-

site angles, as BAC and BDC, is measured by one-half the circum-

ference, which is the measure of two right angles, (54) and (I. 19).

PROPOSITION XXII.—THEOREM.

62. An angle formed by a tangent and a chord is measured by one-

half the intercepted arc.

Let the angle BAC be formed by the

tangent AB and the chord AC; then, it is

measured by one-half the intercepted arc

AMC.

For, draw the diameter AD. The angle

BAD being a right angle (27), is measured

by one-half the semi-circumference AMD ;

and the angle CAD is measured by one-half the arc CD; therefore,

the angle BA C, which is the difference of the angles BAD and CAD,
is measured by one-half the difference of AMD and CD, that is,

by one-half the arc AMC.

Also, the angle B'AC is measured by one-half the intercepted ar(;

ANC. For, it is the sum of the right angle B'AD and the angle

CA D, and is measured by one-half the sum of the semi-circumference

AND and the arc CD; that is, by one-half the arc ANC.
63. Scholium. This proposition may be treated as a particular case

of Prop. XXI. by an application of the principle of (28). For, con-

sider the angle CAD which is measured by one-half the arc CD.

Let the side AC remain fixed, while the side AD, regarded as a

secant, revolves about A until it arrives at the position of the tangent
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AB'. The point D will move along the circumference, and will

ultimately coincide with A, when the line AD has become a tangent

and the intercepted arc has become the arc CNA.

PROPOSITION XXIII.—THEOREM.

64. An angle formed by two chords, intersecting within the circum-

ference, is measured by one-half the sum of the arcs intercepted between

its sides and between the sides of its vertical angle.

Let the angle AEC be formed by the chords

AB, CD, intersecting within the circumference;

then will it be measured by one-half the sum

of the arcs AC and BD, intercepted between

the sides of AEC and the sides of its vertical

angle BED.

For, join AD. The angle AEC is equal to the sum of the angles

EDA and EAD (I. 69), and these angles are measured by one-half

of J.Oand one-half of BD, respectively'; therefore, the angle AEC
is measured by one-half the sum of the arcs A C and BD.

PROPOSITION XXIV.—THEOREM.

65. An angle formed hy two secants, intersecting without the circum-

ference, is measured by one-half the difference of the intercepted arcs.

Let the angle BAC be formed by the secants

AB and AC; then, will it be measured by one-

half the difference of the arcs BC and DE.

For, join CD. The angle BDC is equal to the

sum of the angles DA C and A CD (I. 69) ;
there-

fore, the angle A is equal to the difference of the

angles BDC and A CD. But these angles are meas-

ured by one-half of BC and one-half of DE re-

spectively ; hence, the angle A is measured by one-half the differ-

ence of BC and DE.
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66. Corollary. The angle BAE, formed by
a tangent AB and a secant AE, is measured

by one-half the difference of the intercepted

arcs BE and BC. For, the tangent AB
may be regarded as a secant whose two

points of intersection are coincident at B
(28).

For, the same reason, the angle BAD,
formed by two tangents AB and AD, is

measured by one-half the difference of the intercepted arcs BCD
and BED.
A proof may be given, without using the principle of (28), by

drawing EB and BC.

PROBLEMS OF CONSTRUCTION.

Heretofore, our figures have been assumed to be constructed under

certain conditions, although methods of constructing them have not

been given. Indeed, the precise construction of the figures was not

necessary, inasmuch as they were only required as aids in following

the demonstration of principles. We now proceed, first, to apply

these principles in the solution of the simple problems necessary for

the construction of the plane figures already treated of, and then to

apply these simple problems in the solution of more complex ones.

All the constructions of elementary geometry are effected solely

by the straight line and the circumference, these being the only lines

treated of in the elements
;
and these lines are practically drawn^

or described, by the aid of the ruler and compasses, with the use of

which the student is supposed to be familiar.

PROPOSITION XXV.—PROBLEM.

67. To bisect a given straight line.

Let AB be the given straight line.

With the points A and B as centres, and with a

radius greater than the half of AB, describe arcs

intersecting in the two points D and E. Through

these points draw the straight line DE, A'hich bi-

sects AB at the point C. For, D and E being
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ecjually distant from A and B, the straight line DE is perpendicular

to AB Sit its middle point (I. 41).

PKOPOSITION XXVI.—PEOBLEM.

68. At a given point in a given straight line, to erect a perpendicular

to that line.

Let AB be the given line and C the given

point.

Take two points, D and E, in the line and at

equal distances from C. With D and E a.s cen- —
^ A D c E B

tres and a radius greater than DO or CE de-

scribe two arcs intersecting in F. Then CF is the required perpen-

dicular (I. 41).

69. Another solution. Take any point 0,

without the given line, as a centre, and with

a radius equal to the distance from to G
describe a circumference intersecting AB in C ^\ /'^ "^

and in a second point D. Draw the diameter

DOE, and join EO. Then EG will be the re-

quired perpendicular : for the angle EGD, inscribed in a semicircle,

is a right angle (59).

This construction is often preferable to the preceding, especially

when the given point is at, or near, one extremity of the given

line, and it is not convenient to produce the line through that

extremity. The point must evidently be so chosen as not to lie in

the required perpendicular.

PKOPOSITION XXVII.—PEOBLEM.

70. From a given point without a given straight line, to let fall a per-

pendicular to that line.

Let AB be the given line and the given

point.

With C as a centre, and with a radius suf-

ficiently great, describe an arc intersecting
^'^

AB in D and E. With D and E as centres

and a radius greater than the half of DE,
7*

'

.--- E
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describe two arcs intersecting in F. The line CF is the required

perpendicular (I. 41).

71. Another solution. With any point in

the line ^liS as a centre, and with the radius

OC, describe an arc CDE intersecting AB ^ o

in D. With Z) as a centre and a radius

equal to the distance DC describe an arc

intersecting the arc CDE in E. The line CJ^is the required perpen-

dicular. For, the point D is the middle of the arc CDE, and the

radius OD drawn to this point is perpendicular to the chord

CE (16).

/E

PROPOSITION XXVIII.—PROBLEM.

72. To bisect a given arc or a given angle,

1st. Let AB be a given arc.

Bisect its chord AB by a perpendicular as in (67).

This perpendicular also bisects the arc (16).

2d. Let BA be a given angle. With A as

a centre and with any radius, describe an arc

intersecting the sides of the angle in D and E.

With D and E as centres, and with equal radii,

describe arcs intersecting in F. The straight

line AF bisects the arc DE^ and consequently

also the angle J5^0 (12).

73. Scholium. By the same construction each of the halves of an

arc, or an angle, may be bisected
;
and thus, by successive bisections,

an arc, or an angle, may be divided into 4, 8, 16, 32, etc., equal

parts.
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PKOPOSITION XXIX.—PEOBLEM.

74. At a given point in a given straight line,to construct an angle

fqual to a given angle.

Let A be the given point in the straight line

AB, and the given angle.

With as a centre and with any radius describe

an arc MN terminated by the sides of the angle.

With ^ as a centre and with the same radius,

OM, describe an indefinite arc BC. With J5 as a

centre and with a radius equal to the chord of

MN describe an arc intersecting the indefinite arc

^O in D. Join AD. Then the angle BAD is

equal to the angle 0. For the chords of the arcs MX und BD are

equal ; therefore, these arcs are equal (12), and consequently also the

angles and A (10).

PKOPOSITION XXX.—PEOBLEM.

75. Through a given point, to draw a parallel to a given straight

line.

Let A be the given point, and BC the given line.

From any point B in ^C draw the straight -P

line BAD through A. At the point A, by /

the preceding problem, construct the angle / \

DAE equal to the angle ABC. Then AE is A.

parallel to BC {I. 55). L j c

76. Scholium. This problem is, in practice, more accurately solved

by the aid of a triangle, constructed of

wood or metal. This triangle has one

right angle, and its acute angles are

usually made equal to 30° and 60°.

Let A be the given point, and BC
the given line. Place the triangle,

EFD, with one of its sides in coinci-

dence with the given line BC. Then

place the straight edge of a ruler MN
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against, the side EF of the triangle. Now, keeping the ruler firmly

fixed, slide the triangle along its edge until the side ED passes

through the given point A. Trace the line EAD along the edge

ED of the triangle ; then, it is evident that this line will be parallel

to BG.

One angle of the triangle being made very precisely equal to a

right angle, this instrument is also used in practice to construct per-

[)endiculars, with more facility than by the methods of (68) and (70).

PROPOSITION XXXI.—PROBLEM.

77. Two angles of a triangle being given, to find the third.

Let A and B be the given angles.

Draw the indefinite line QM. From any

y-oint in this line, draw ON making the

angle MON= A, and the line OP making
the angle NOP = B, Then POQ is the

required third angle of the triangle (I. 72).

PROPOSITION XXXII.—PROBLEM.

78. Two sides of a triangle and their included angle being given, to

construct the triangle.

Let b and c be the given sides and A their y' *

included angle.
^ c

Draw an indefinite line AE, and construct p

ihesing\eEAF=A. On AE take AC= b,

and on AF take AB = c
; join BC. Then

ABC is the triangle required; for it is a

formed with the data.

With the data, two sides and the included angle, only one triangle

can be constructed
;
that is, all triangles constructed with these data

are equal, and thus only repetitions of the same triangle (I. 76).

79. Scholium. It is evident that one triangle is always possible,

whatever may be the magnitude of the proposed sides and their in-

cluded angle.
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PEOPOSITION XXXIII.—PKOBLEM.

80. One side and two angles of a triangle being given, to construct

the triangle.

Two angles of the triangle being given, ^^ ^-^
the third angle can be found by (77) ;

and

we shall therefore always have given the c

two angles adjacent to the given side. Let,

thp^, c be the given side, A and B the angles

adjacent to it.

Draw a line AB = c; at A make an

angle BAD = A, and at B an angle ABE = B. The lines AD
and BE intersecting in C, we have ABC as the required triangle.

With these data, but one triangle can be constructed (I. 78).

81. Scholium. If the two given angles are together equal to or

greater tlian two right angles, the problem is impossible; that is, no

triangle can be constructed with the data; for the lines AD and BC
will not intersect on that side of AB on which the angles have been

constructed.

PEOPOSITION XXXIV.—PKOBLEM.

82. The three sides of a triangle being given, to construct the

triangle.

Let a, 6 and c be the three given sides. a

Draw BC= a; with C as a centre and a
^ ^

radius equal to b describe an arc
; with B as

a centre and a radius equal to c describe a

second arc intersecting the first in A. Then,

ABC is the required triangle.

With these data but one triangle can be con-

structed (I. 80).

83. Scholium. The problem is impossible when one of the given

Bides is equal to or greater than the sum of the other two (I. 66).

7** F

c-
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PKOPOSITION XXXV.—PEOBLEM.

84. Two sides of a triangle and the angle opposite to one of them

being given, to construct the triangle.

AVe shall consider two cases. y ^

ls|i. When the given angle A is acute,
"

and Ihe given side a, opposite to it in the

triangle, is less than the other given side c.

Construct an angle DAE = A. In

one of its sides, as AD, take AB = c;

with ^ as a centre and a radius equal to

a, describe an arc which (since a < c) will

intersect AE in two points, C and C", on the same side of A. Join

BC and BC". Then, either ABC or ABC" is the required tri-

angle, since each is formed with the data
;
and the problem has two

solutions.

There will, however, be but one solution, even with these data, when

the side a is so much less than the side c as to be just equal to the

perpendicular from B upon AE. For then the arc described from B
as a centre and with the radius a, will touch AE in a single point

C, and the required triangle will be ABC, right angled at C.

2d. When the given angle A is either

acute, right or obtuse, and the side a

opposite to it is greater than the other

given side c.

The same construction being made

as in the first case, the arc described

with B as a centre and with a. radius

equal to a,' will intersect AE in only one

point, C, on the same side of A. Then ABC will be the triangle

required, and will be the only possible triangle with the data.

The second point of intersection, C", will fall in EA produced, and

the triangle ABC thus formed will not contain the given angle.

85. Scholium. The problem is impossible when the given angle A
is acute and the proposed side opposite to it is less than the perpen-

dicular from B upon AE) for then the arc described from B will not

intersect AE,

The problem is also impossible when the given angle is right, or

C'\
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obtuse, if the given side opposite to the angle is less than the other

given side
;
for either the arc described from B would not intersect

AE, or it would intersect it only when produced through A. More-

over, a right or obtuse angle is the greatest angle of a triangle (I. 70),

and the side opposite to it must be the greatest side (I. 92).

PEOPOSITION XXXVI.—PROBLEM.

86. The adjacent sides of a parallelogram and their included angle

being given, to construct the parallelogram.

Construct an angle A equal to the given

angle, and take AC and AB respectively equal

to the given sides. With jB as a centre and a

radius equal to A C, describe an arc
;
with (/ as

a centre and a radius equal to AB, describe another arc, intersect-

ing the first in D. Draw BD and CD. Then ABDCis a parallelo-

gram (I. 107), and it is the one required, since it is formed with tlie

data.

Or thus: through B draw BD parallel to J.C, and through C
draw CD parallel to AB.

PROPOSITION XXXVII.—PROBLEM.

87. To find the centre of a given circumference, or of a given are.

Take any three points, A, B and C, in the

given circumference or arc. Bisect the arcs

AB, BC, by perpendiculars to the chords AB,
BC (72) ;

these perpendiculars intersect in the

required centre (16).

88. Scholium. The same construction serves to describe a circum-

ference which shall pass through three given points A, B, C; or to

circumscribe^Si circle about a given triangle ABC, that is, to describe

% circumference in which the given triangle shall be inscribed (56),
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PEOPOSITION XXXVllI.—PROBLEM.

89. At a given point in a given circumjerence,

the circumference.

Let A be the given point in the given circum-

ference. Draw the radius OA, and at A draw

BAD perpendicular to OA; BC will be the re-

quired tangent (26).

If the centre of the circumference is not

given, it may first be found by the preceding

problem, or we may proceed more directly as

follows. Take two points D and E equidistant

from A
;
draw the chord DE, and through A

draw BAC parallel to DE. Since A is the

middle point of the arc DE, the radius drawn

to A will be perpendicular to DE (16), and con-

sequently also to BC' therefore ^Cis a tangent

at A.

to draw a tan^ ent t/t

PROPOSITION XXXIX.—PROBLEM.

90. Through a given point without a given circle to draw a tangmt
to the circle.

Let be the centre of the given circle and P
the given point.

Upon OF, as a diameter, describe a circumfer-

ence intersecting the circumference of the given

circle in two points, A and A'. Draw PA and

PA, both of which will be tangent to the given

circle. For, drawing the radii OA and OA', the

angles OAP and OA'P are right angles (59) ;

therefore PA and PA' are tangents (26).

In practice, this problem is accurately solved by placing the

straight edge of a ruler through the given point and tangent to the

given circumference, and then tracing the tangent by the straight

edge. The precise point of tangency is then determined by drawing

a perpendicular to the tangent from the centre.

91. Scholium. This problem always admits of two solutions. More-

over, the portions of the two tangents intercepted between the given
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point aud the points of tangency are equal, for the right triangles

POA and FOA' are equal (I. 83) ; therefore, FA = FA'.

PKOPOSITION XL.—PKOBLEM.

y2. To draw a commoyi tangent to two given circles.

Let and 0' be the centres of the given circles, and let the

radius of the first be the greater.

1st. To draw an exterior <iommon tangent. With the centre 0,

and a radius OM, equal to the

difference of the given ra^ii,

describe a circumference; and

from 0' draw a tangent O'M
to this circumference (90).

Join 031, and produce it to

meet the given circumference

in A. Draw O'A' parallel to

OA, and join AA'. Then AA' is a common tangent to the two

given circles. For, by the construction, OM = OA — 0'A\ and

also 031= 0A—3fA, whence 3fA = O'A', and A310'A' is a par-

allelogram (I. 108). 1 But the angle 31 is a right angle ; therefore,

this parallelogram is a rectangle, and the angles at A and A' are

right angles. Hence, AA' is a tangent to both circles.

Since two tangents can be drawn from 0' to the circle Oif, there

are two exterior common tangents to the given circles, namely, AA'

and BB', which meet in a point T in the line of centres 00'

produced.

2d. To draw an iiiterior common tangent. With the centre

and a radius 03/ equal to the sum of the given radii, describe a cir-

cumference, and from 0' draw a tangent 0'3I to this circumferenct .

Join 031, intersecting the given cir-

cumference in A. Draw O'A' par-

allel to OA. Then, since 01/ =
OA f O'A', we have A3I= O'A',

and A3I0'A' is a rectangle. There-

fore, AA' i^ a tangent to both the

given circles.

There arc two interior common
8
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tangents, AA! and BB\ which intersect in a point T in the line of

centres, between the two circles.

93. SchoHum. If the given circles intersect each other, only the

exterior tangents are possible. If they are tangent to each other

externally, the two interior common tangents reduce to a single com-

mon tangent. If they are tangent internally, the two exterior tan-

gebts reduce to a single common tangent, and the interior tangents

are not possible. If one circle is wholly within the other, there is

no solution.

i

PKOPOSITION XLI.—PKOBLEM.

94. To inscribe a circle in a given triangle.

JL
Let ABC be the given triangle. Bisect any two of its angles, aa

B and C, by straight lines meeting in 0. From the point let fall

perpendiculars OD, OE, OF, upon the three

sides of the triangle ;
these perpendiculars will

be equal to each other (I. 129). Hence, the

circumference of a circle, described with the

centre 0, and a radius = 0Z>, will pass through

the three points Z>, E, Fj will be tangent to the

three sides of the triangle at these points (26),

and will therefore be inscribed in the triangle.

95. Scholium. If the sides of the triangle are produced and the

exterior angles are bisected, the intersections 0', 0", 0"\ of the

H
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bisecting lines, will be the centres of three circles, each of which

will touch one side of the triangle and the two other sides produced.

In general, therefore, /our circles can he drawn tangent to three inter-

secting straight lines. The three circles which lie without the triangle

liave been named escribed circles.

PROPOSITION XLII.—PEOBLEM.

96. Upon a given straight line, to describe a segment which shall

contain a given angle.

Let ABhe the given line. At the point B construct the angle

J.^(7 equal to the given angk. Draw BO per-

pendicular to BCy and DO perpendicular to

AB at its middle point D, intersecting jBO in 0.

With as a centre, and radius OB describe the

circumference AMBN. The segment AMB is

the required segment. For, the line BC, being

perpendicular to the radius OB, is a tangent to

the circle; therefore, the angle ABC is meas-

ured by one-half the arc ANB (62), which is also the measure of

any angle AMB inscribed in the segment AMB (57). Therefore,

any angle inscribed in this segment is equal to the given angle.

97. Scholium. If any point P is taken within the segment AMB,
the angle APB is greater than the inscribed angle

AMB (I. 74) ;
and if any point Q is taken without

this segment, but on the same side of the chord AB
as the segment, the angle AQB is less than the in-

scribed angle AMB. Therefore, the angles whose

vertices lie in the arc AMB are the only angles of

the given magnitude whose sides pass through the

two points A and B
; hence, the arc AMB is the

locns of the vertices of all the angles of the given

magnitude whose sides pass through A and B.

If any point M' be taken in the arc AM'B, the angle AMB is the

supplement of the angle AM'B (61) ;
and if BM' be produced to

J5', the angle AM'B' is also the supplement oi AM'B', therefore

AM'B' = AMB. Hence the vertices of all the angles of the given

magnitude whose sides, or sides produced, pass through A and B, lie
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in the circumference AMBM'
;
that is, the locus of the vertices of all

the angles of a given magnitude whose sides, or sides produced, pass

through two fixed points, is a circumference passing through these points,

and this locus may be constructed by the preceding problem.

It may here be remarked, that in order to establish a certain line

as a locus of points subject to certain given conditions, it is necessary

nof -only to show that every point in that line satisfies the conditions,

but also that no other points satisfy them
;

for the asserted locus

must be the assemblage of all the points satisfying the given condi-

tions (I. 40).

INSCRIBED AND CIRCUMSCRIBED QUADRILATERALS.

98. Definition. An inscriptible quadrilateral is one which can be

inscribed in a circle
;
that is, a circumference can be described pass-

ing thiiough its four vertices.

I

PROPOSITION XLIIL—THEOREM. i
99. A quadrilateral is inscriptible if two opposite angles in it are

supplements of each other.

Let the angles A and G, of the quadrilateral ^

ABCD, be supplements of each other. De- /^^^ \\

scribe a circumference passing through the b^- -^2)
three vertices B, C, D; and draw the chord l\ ^^ j

BD. The angle A, being the supplement of \\y-^ J
C, is equal to any angle inscribed in the seg-

^^
raeut BMD (61) ;

therefore the vertex A must

be on the arc BMD (97), and the quadrilateral is inscribed in tlie

circle.

100. Scholium. This proposition is the converse of (61).
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PKOPOSITION XLIV.—THEOEEM.

101. In any circumscribed quadrilateral^ the sum of two opposite sides

'.s equal to the sum of the other two opposite sides.

Let ABCD be circumscribed about a circle;

then,

AB^ DC=AD-j- BC.

For, let U, Fj G, H, be the points of contact

of the sides
;
then we have (91),

AE=AH, BE= BF, CG = CF, DG = DH.

\dding the corresponding members of these equalities, we have

AE-^ BE-\r CG-{^ DG = AH-\- DH^ BF-{- CF,

that is,

AB^DC=AD-\-BC.

PROPOSITION XLV.—THEOREM.

102. Conversely, if the sum of two opposite sides of a quadrilateral

is equal to the sum of the other two sides, the quadrilateral may be cir-

cumscribed about a circle.

In the quadrilateral ABOD, let AB-\- DC=
AD -\- BC; then, the quadrilateral can be cir-

cumscribed about a circle.

Since the sura of the four angles of the quad-

rilateral is equal to four right angles, there must

be two consecutive angles in it whose sum is not

greater than two right angles ;
let B and C be

these angles. Let a circle be described tangent to the three sides

AB, BC, CD, the centre of this circle being the intersection of the

bisectors of the angles B and C; then it is to be proved that this

circle is tangent also to the fourth side AD.

From the point A two tangents can be drawn to the circle (90).

One of these tangents being AB, the other must be a line cutting

CD (or CD produced) ; for, the sum of the angles B and C being

not greater than two right angles, it is evident that no straight line

a*
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can be drawn from A, falling on the same side of BA with Ci), and

not cutting the circle, which shall not cut CD.

This second tangent, then, must be either AD \

or some other line, AM, cutting CD in a point M H^^^^^^^^^^^^^d

differing from D. If now AM is a tangent, K ^
ABCM is a circumscribed quadrilateral, and by I \

the "preceding proposition we shall have |\
/ \

AB + CM= AM-\- BC. i
""^^—

c

But we also have, by the hypothesis of the present proposition,

AB -\- DC=AD-\-Ba

Taking the difference of these equalities, we have

DM=AM—AD;
that is, one side of a triangle is equal to the difference of the other two,

which is absurd. Therefore, the hypothesis that the tangent drawn

from J. and cutting the line CD, cuts it in any other point than D,

leads to an absurdity ; therefore, that hypothesis must be false, and

the tangent in question must cut CD in D, and consequently coincide

with AD. Hence, a circle has been described which is tangent to

the four sides of the quadrilateral ;
and the quadrilateral is circum-

scribed about the circle.

103. Scholium. The method of demonstration employed above is

called the indirect method, or the reductio ad absurdum. At the

outset of a demonstration, or at any stage of its progress, two or

more hypotheses respecting the quantities under consideration may
be admissible so far as has been proved up to that point. If, now,

these hypotheses are such that one must be true, and only one can

be true, then, when all except one are shown to be absurd, that one

must stand as the truth.

While admitting the validity of this method, geometers usually

prefer the direct method whenever it is applicable. There are, how-

ever, propositions, such as the preceding, of which no direct proof is

known, or at least no proof sufficiently simple to be admitted into

elementary geometry. We have already employed the reductio ad

absurdum in several cases without presenting the argument in full
;

Bee (I. 47), (I. 85), (27).
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PROPORTIONAL LINES. SIMILAR FIGURES.

THEOEY OF PROPORTION.

1. Definition. One quantity is said to be proportional to another

when the ratio of any two values, A and B^ of the first, is equal to

the ratio of the two corresponding values, A' and B'y of the second
;

60 that the four values form the proportion

AiB = A':B\
A A'

B B'

This definition presupposes two quantities, each of which can have

various values, so related to each other that each value of one cor-

responds to a value of the other. An example occurs in the case of

an angle at the centre of a circle and its intercepted arc. The

angle may vary, and with it also the arc
;
but to each value of the

angle there corresponds a certain value of the arc. It has been

proved (II. 51) that the ratio of any two values of the angle is equal

to the ratio of the two corresponding values of the arc
;
and in ac-

cordance with the definition just given, this proposition would be

briefly expressed as follows :

" The angle at the centre of a circle is

proportional to its intercepted arc."

2. Definition. One quantity is said to be reciprocally proportional

to another when the ratio of two values, A and B, of the first, is

equal to the reciprocal of the ratio of the two corresponding values,

A! and B\ of the second, so that the four values form the proportion

A'.B = B':A\

A B'
^

A'
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For example, if the product j) of two numbers, x and y, is given

so that we have

xy=p,

then, a; and
2/ may each have an indefinite number of values, but as

X increases y diminishes. If, now, A and B are two values of x,

while A' and B' are the two corresponding values of y, we must have

A X A' =p,

BxB'=p,
whence, by dividing one of these equations by the other,

and therefore
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we may, under these conditions, infer the proportion

A:B = A': B'.

5. Let us now consider the numerical proportion

a'.h = a'^h'.

Writing it in the form
a a'

and multiplying both members of this equality by bb \ we obtain

ab' = a'b,

whence the theorem : ilie product of the extremes of a (numericaV)

proportion is equal to the product of the means.

Corollary. If the means are equal, as in the proportion a : 6 = 6 : c,

we have b"^ = ac, whence b = Vac] that is, a mean proportional be-

tween two numbers is equal to the square root of their product.

6. Conversely, if the product of two numbers is equal to the product

of two others, either two may be made the extremes, and the other *wo the

means, of a proportion. For, if we have given

ab' = a'b,

then, dividing by bb', we obtain

- = —
> or a : = a : .

b b'
»..

Corollary. Tlie terms of a proportion may be written in any order

which will make the products of the extremes equal to the product

of the means. Thus, any one of the following proportions may be

inferred from the given equality ab' = a'b:

a : b = a' : b',

a : a' = b : b',

b : a = b' : a',

b :b' = a '. a,

b' : a' = b : a, etc.

Also, any one of these proportions may be inferred from any other.

7. Definitions. When we have given the proportion

a : b = a' : b',
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and infer the proportion
a:a' = h'.h',

the second proportion is said to be deduced fty alternation.

"When we infer the proportion

6 : a = 6' : a',

this proportion is said to be deduced hy inversion,

8. It is important to observe, that when we speak of the products^

of the extremes and means of a proportion, it is implied that at least

two of the terras are numbers. If, for example, the terms of the

proportion

are all lines^ no meaning can be directly attached to the products

A y^ B'y B y^ A', since in a product the multiplier at least must be

a number.

But if we have a proportion such as

A : B = m : n. 4
in which m and n are numbers, while A and B are any two quanti-

ties of the same kind, then we may infer the equality nA = mB. M
Nevertheless, we shall for the sake of brevity often speak of the

product of two lines, meaning thereby the product of the numbers

which represent those lines when they are measured hy a common unit.

9. If J. and B are any two quantities of the same kind, and m

any number whole or fractional, we have, identically,

mA A^
MB'~^ B' 4

that is, equimultiples of two quantities are in the same ratio as the

quanfMies themselves.

Similarly, if we have the proportion

A : B = A' : B\

and if m and n are any two numbers, we can infer the proportions

mA : mB = nA' ! nB\

mA : nB = mA' : nB'.
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11. Definition. A continued proportion is a series of equal ratios, as

A:B = A':B'=^A":B" = A!" : B'" = etc.

12. Let r denote the common value of the ratio in the continued

proportion of the preceding article
;
that is, let

A A' A" A"
r = =— =— =— = etc. :

B B' B" B'"

then, we have

A = Br, A=B'r, A!' = B"r, ^'" = jB'"r, etc.,

and adding these equations,

A-^A-\-A'-\- A'" + etc. = {B ^ B' -\- B" + B'" + etc.) r,

whence

A^ A' ^ A" -^ A'" + etc. A A'
! ! ! =1 r = — = — = etc •

^ + ^' + ^" + jB"' + etc. B B'

that is, the sum of any number of the antecedents of a continued pro-

portion is to the sum of the corresponding consequents as any antecedent

is to its consequent. . al

If any antecedent and its corresponding consequent be taken with

the negative sign, the theorem still holds, provided we read algebraic

sum for sum.

In this theorem the- quantities A, B, C, etc., must all be quantities

of the same kind.

13. If we have any number of proportions, as

a : b =^ c : d,

a':b' = c':d\

a":6" = c":t^",etc.;

then^ writing them in the form,

a c a' ^_c' a" c"

b~d' b'~d' 'b"~J''^^''

and multiplying these equations together, we have

I
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hb' h" ... dd'd" ...

or

aa' a" ... '.hh' h" ... = c c' c" . . . : d d' d" , . .
,

that is, if the corresponding terms of two or more proportions are mul-

tiplied together, the products are in proportion.

If the corresponding terms of the several proportions are equal,

that isy if a = a' = a", b = b' =^ b", etc., then the multiplication

of two or more proportions gives

a' :b' = c': d\

a':b' = c':d';

that is, if four numbers are in propor-tion, like powers of these number,

are in proportion.

14. If A, B and C are like quantities of any kind, and if

A
,
B— = m, and — = n,B '

G
then

A~ = mn.

If Ay B and C were numbers, this would be proved, arithmetically,

by simply omitting the common factor B in the multiplication of the

two fractious
;
but when they are not numbers we cannot regard B

as a factor, or multiplier, and therefore we should proceed more

strictly as follows. By the nature of ratio we have

J. = J5Xm, B = CX n,

therefore, putting C X n for B, we have

A= C X n X m= CX mn,
thai is,

A— = mn:
C

a result usually expressed as follows : the ratio of the first of three

quantities to the third is compounded of the ratio of the first to the second

and the ratio of the second to the third.

9 G
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PROPORTIONAL LINES.

PROPOSITION L—THEOREM.

Id. A parallel to the base of a triangle divides the other two sides

^rwortionally.

Let DE he a parallel to the base, BC, of the triangle ABC; then,

AB:AD = AC:AE. ^ «
1st. Suppose the lines AB, AD, to have a /-\ M

common measure which is contained, for exam- / "\ ^
pie, 7 times in AB, and 4 times in AD

;
so that J \ „

if AB is divided into 7 parts each equal to the

common measure, AD will contain 4 of these

parts. Then the ratio of AB to AD is 7 : 4 ^ o

(II. 43) ;
that is Jl— = - Jl

AD 4* ^^1
Through the several points of division of AB, draw parallels to the

base; then J. will be divided into 7 equal parts (I. 125), of which

AE will contain 4. Hence the ratio of AC to AE is 7 : 4
;
that

is,^

AC_7_
AE~ A

Therefore, we have

AB AC
AD

~
AE

or AB:AD = AC:AE.

2d. If AB and AD are incommensurable, suppose one of them,

as AD, to be divided into any number n of equal parts; then, AB
will contain a certain number m of these parts pltis a remainder less

than one of these parts. The numerical expression of the ratio

will then be —> correct within -
(II. 48). Drawing parallels to

AD n n

BC, through the several points of division of AB, the line ^^will

be divided into n equal parts, and the line AC will contain m such

parts plus a remainder less than one of the parts. Therefore, the
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numerical expression of the ratio —— will also be — > correct within —AE n n

Since, then, the two ratios always have the same approximate nu-

merical expression, however small the parts inio which AD is dVided,

these ratios must be absolutely equal (II. 49), and we have, as before,

AB_AC^
AD

~
AE

or AB:AD = ACiAE, [1]

16. Corollary I. By division (10), the proportion [1] gives

AB— AD'.AB = AC—AE'.AC,

or
• DB:AB = EC:Aa

Also, if the parallel DE intersect the sides BA
and CA produced through A, we find, as in the

preceding demonstration,

AB:AD = AC:AE,

from which, by composition (10),

AB-\-AD:AB = AC-\-AE:AOy

or DB:AB = EC:Aa

17. Corollary II. By alternation (7), the preceding proportions

give
AB:AC=AD:AE,

DB:EC=AB:AC,

which may both be expressed in one continued proportion,

AB AD DB
AC~ AE~ EC

This proportion is indeed the most general statement of the proposi-

tion (15), which may also be expressed as follows : if a straight line

is drawn j^'^rallel to the base of a triangle, the corresponding segments

on the two sides are in a constant ratio.
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18. Corollary III. If two straight lines MN, M'N\ are intersected

by any number of parallels AA\ BB\ CC\ etc., the corresponding

segments of the two lines are proportional.

For, let the two lines meet in 0; then, by
*

Corollary II.,

OA AB OB BC DC CD
^

etc.,
o'l'-
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1st. Let AD bisect the angle A of

the triangle ABC; then,

DB:DC=AB:Aa
For, through B draw BE parallel

to DA, meeting CA produced in E.

The angle ABE = BAD (I. 49), and the angle AEB = CAD
(I. 51) ; and, by hypothesis, the angle BAD = CAD ; therefore, the

angle ABE= AEB, and AE= AB (I. 90).

Now, in the triangle CEB, AD being parallel to EB, we have (17),

DB:DC=AE:Aa
or DB: DC=AB:AC;
that is, the side BC is divided by AD internally into segments pro-

portional to the adjacent sides AB and A C.

2d. Let AD' bisect the exterior angle BAE; then,

D'B:D'C=AB:AC

For, draw J5jE^' parallel to D'A; then, ^J5^' is an isosceles tri-

angle, and AE' = AB. In the triangle CAD', we have (17),

D'B:D'C=AE' :AC,

or D'B'.D'C=AB:AC{

that is, the side BC is divided by AD' externally into segments pro-

portional to the adjacent sides AB and A C.

22. Scholium. When a point is taken on a given finite line, or on

the line produced, the distances of the point from the extremities of

the line are called the segments, internal or external, of the line.

The given line is the sum of two internal segments, or the difference

tjf two external segments.

23. Corollary. If a straight line, drawn from the vertex of any

angle of a triangle to the opposite side, divides that side internally

in the ratio of the other two sides, it is the bisector of the angle ;
if

it divides the opposite side externally in that ratio, it is the bisector

of the exterioi angle. (To be proved).
9*
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SIMILAR POLYGONS.

24. Definitions. Two polygons are similar^ when they are mutually

equiangular and have their homologous sides proportional.

In similar i)olygons, any points, angles or lines, similarly situated

in each, are called homologous.

The ratio of a side of one polygon to its homologous side in the

ether is called the ratio of similitude of the polygons.

PROPOSITION IV.—THEOREM. J
25. Two triangles are similar, when they are mutually equiangular.

Let ABCy A'B'C'y be mutually equiangular triangles, in which

A = A\ B = B\ O = C; then,

these triangles are similar.

For, place the angle A' upon its

equal angle A, and let B' fall at b

and C" at c. Since the angle Abe is

equal to B, be is parallel to BC
(I. 55), and we have (15),

AB:Ab = AC:Ac,
or

AB:A'B' = AC:A'C\

In the same manner, it is proved that

AB:A'B' = BC:B'C';

and, combining these proportions,

4B _ AC _ BC
A'B'~ A'C'~ B'C' [1]

Therefore, the homologous sides are proportional, and the triangles

are similar (24).

26. Corollary. Two triangles are similar when two angles of the

one are respectively equal to two angles of the other (I. 73).

27. Scholium I. The homologous sides lie opposite to equal angles.

28. Scholium II. The ratio of similitude (24) of the two similar

triangles, is any one of the equal ratios in the continued propor-

tion [1].
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29. Scholium III. In two similar triangles, any two homologoua

lines are in the ratio of similitude of
A A'

the triangles. For example, the per-

pendiculars AD, A'D\ drawn from the

homologous vertices A, A\ to the op-

posite sides, are homologous lines of

the two triangles; and the right tri-

angles ABD, AB'D\ being similar

(25), we have

AD _ AB _ AC
A'D'~ A'B''' A'C

BG
B'C

In like manner, if the lines AD, A'D\ were drawn from Aj A!
, to

the middle points of the opposite sides, or to two points which divide

the opposite sides in the same ratio in each triangle, these lines

would still be to each other in the ratio of similitude of the two

triangles.

PROPOSITION v.—THEORExM.

30. Two triangles are similar, when their homologous sides are pro-

portional.

In the triangles ABC, A'B'C, let

AB__A^^ BC
,

A'B'~ A'C'~ B'C'

then, these triangles are similar.

For, on AB take Ah = A'B', and

draw he parallel to BC. Then, the

triangles Ahe and ABC are mutually

equiangular, and we have (25),

AG_BG
Ac be

[1]

AB AB— or
Ah A'B'

Comparing this -with the given proportion [1], we see that the first

ratio is the same in both
;
hence the second and third ratios in each

are equal respectively, and, the numerators being the same, the

denominators are equal; that is, A,C = Ac, and B'C = be.

Therefore, the triangles A'B'C and Abe are equal (I. 80) ;
and since

Abo is similar to ABC, A'B'C is also similar to ABC.
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31. Scholium. In order to establish the similarity of two polygons

according to the definition (24), it is necessary, in general, to sho\A

that they fulfill two conditions : 1st, they must be mutually equi-

angular, and 2d, their homologous sides must be proportional. In

the case of triangles, however, either of these conditions involves the

other ;
and to establish the similarity of two triangles it will be suf-

ficient to show, either that they are mutually equiangular, or that

their homologous sides are proportional.

I

PROPOSITION VI.—THEOREM.
'^^1

32. Trvo triangles are similar^ when an angle of the one is equal to

an angle of the other, and the sides including these angles are propor-

portional.

In the triangles ABC, A'B'C, let a a'

A = A\ and yy //

A'B'~A'C''
b^-.-./c

^, ^

then, these triangles are similar. ^ ^
^^H

For, place the angle Al upon its ^^^
equal angle A ;

let B' fall at 6, and C at c. Then, by the hy-

pothesis,

AB_AC
Ab~ Ac'

Therefore, be is parallel to BC (19), and the triangle Abe is simi

to ABC (25). But Abe is equal to A'B'C; therefore, A'B'C is

also similar to ABC.

4liar
IPROPOSITION VII.—THEOREM.

33. Two triangles are similar, when they have their sides parallel

each to each, or perpendicular each to each.

Let ABC, abc have their sides par-

allel each to each, or perpendicular

each to each
; then, these triangles are

similar.

For, when the sides of two angles
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are pamllel each to each, or perpen-

dicular each to each, these angles are

either equal, or supplements of each

other, (I. 60, 62, 63). In the present

case, therefore, three hypotheses may be

made, namely, denoting a right angle

hyE,

1st hyp. A + a = 2B, B -\- b = 2R, C+ c = 2B;

2d " A = a. B -{-b = 2B, C-{- c = 2B;

3d " A = a, B = b, whence C= c.

The 1st and 2d hypotheses cannot be admitted, since the sum of all

the angles of the two triangles would then exceed four right angles

(I. 68). The 3d hypothesis is therefore the only admissible one;

that is, the two triangles are mutually equiangular and consequently

similar.

34. Scholium. Homologous sides in the two triangles are either

two parallel sides, or two perpendicular sides; and homologous, or

equal, angles, are angles included by homologous sides.

PKOPOSITION VIII.—THEOREM.

35. If three or more straight lines drawn through a common point

intersect two parallels, the corresponding segments of the parallels are

in proportion.

Let OA, OB, OC, OB, drawn through

the common point 0, intersect the parallels

AD and ad, in the points A, B, C, D and

a, b, c, d, respectively ; then,

4B_BC_CD
ab be cd

For, the triangle OAB is similar to the tri-

angle Oab (25) ;
OBC is similar to Obc

;

and CD to Ocd
; therefore, we have

4B_qB__BC_0C_CD
ab Ob be Oc cd

\<.
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36. Scholium. The demonstration is the same whether the parallels

cut the system of diverging lines on the same side, or on opposite

sides, of the point 0. Moreover, the demonstration extends to any

corresponding segments, as AC and ac, BD Sind bd^ etc.
;
and the

ratio of any two corresponding segments is equal to the ratio of. the

distances of the parallels from the point 0, measured on any one of

the'diverging lines.

PROPOSITION IX.—THEOREM.

37. Conversely, if three or more straight lines divide two parallels

pro2yortionally, they pass through a common point.

Let Aa, Bb, Cc, Dd, divide the parallels

AD and ad proportionally ;
that is, so that

AB_BC_CD
~ ab be cd

[1]

then, Aaj Bb, etc., meet in a common point.

For, let Aa and Cc meet in 0; join Ob.

Then, in order to prove that Bb passes

through 0, we have to prove that Ob and

Bb are in the same straight line. Now, if

they are not in the same straight line, Ob produced cuts AD in some

point P differing from B
;
and by the preceding theorem, we have

AP
ab

AG
ac

But, from the hypothesis [IJ, wB have by (12),

ACAB
ab ac

whence, AP = AB, which is impossible unless P coincides with B,

and Ob produced coincides with Bb. Therefore, Bb passes through

0. In the same way, Dd is shown to pass through O.
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PROPOSITION X.—THEOREM.

38. If two polygons are composed of the same number of triangles

similar each to each and similarly placed, the polygons are similar.

Let the polygon ABCD, etc.,

be composed of the triangles

ABC, A CD, etc.; and let the

polygon A'B' C'D\ etc., be com-

posed of the triangles A'B'C,

A'C'D\ etc., similar to ABC,
A CD, etc., respectively, and

similarly placed ; then, the polygons are similar.

1st. The polygons are mutually equiangular. For, the homolo-

gous angles of the similar triangles are equal ;
and any two corre-

sponding angles of the polygons are eithv homologous angles of two

similar triangles, or sums of homologous angles of two or more

similar triangles. Thus B = B'
;
BCD = BCA -{- ACD =

B'C'A' -f A'C'D' = B'C'D'', etc.

2d. Their homologous sides are proportional. For, from the simi-

lar triangles, we haye

AB
A'B'

BG
B'C

AC
A'C

CD AD DE= —-—
:
= etc.

CD' A'D' D'E'

Therefore, the polygons fulfill the two conditions of similarity (24).

PROPOSITION XI.—THEOREM.

39. Conversely, two similar polygons may he decomposed into the

same number of triangles similar each to each and similarly placed.

Let ABCD, etc., A'B' CD',

etc., be two similar polygons.

From two homologous vertices,A
and A', let diagonals be drawn in

each polygon ; then, the polygons

will be decomposed as required.

For, 1st. We have, by the definition of similar polygons,
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Angle B = B', and = BG_-
B'C"

therefore, the triangles ABC and

JL'J5'C" are similar (32).

2d. Since ABC and A'B'C
are similar, the angles BCA and

B'^'A' are equal; subtracting

these equals from the equals ^CZ)

and B' C'D\ respectively, there remain the equals AGD and A' C'D\

Also, from the similarity of the triangles ABC and A'B'C, and

from that of the polygons, we have

BC CD. AG_^ ^
A'C'~ B'C'~ CD''

therefore, the triangles ACD and A' CD' are similar (32).

Thus, successively, each triangle of one polygon may be shown

be similar to the triangle similarly situated in the other.

40. Scholium. Two similar polygons may be decomposed into simi-

lar triangles, not only by diagonals, but by lines drawn from any two

homologous points. Thus, let be any arbitrarily assumed point in

the plane of the polygon

ABCD, etc.; and draw OA,

OB, OC, etc. In the similar

polygon A'B'CD', etc., draw

A' 0' making the angle

B'A'O' equal to BAO, and

B' 0' making the angle

A'B' 0' equal to AB 0. The intersection 0' of these lines, regarded as

a point belonging to the polygon A'B' CD', etc., is homologous to the

point of the polygon ABCD, etc.; and the lines O'A', O'B',

O'C, etc., being drawn, the triangles O'A'B', O'B'C, etc., are

ghown to be similar to OAB, OBC, etc., respectively, by the same

method as was employed in the preceding demonstration.

If the point is taken without the polygon, and its homologcus
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point 0' found as before by constructing the triangle O'AIB' similar

a O^.fliff:::

to OAB, the polygons will be decomposed into triangles partly addi-

tive and partly subtractive. Thus the polygon ABODE is equal to

the sum of the two triangles 0J5C and OCD, diminished by the

triangles OBA, OAE and OED-, and the polygon A'B' C'D'E' \9,

similarly decomposed.

Homologous lines in the two polygons are lines joining pairs of

homologous points, such as OA and 0'A\ OB and O'B', etc., the

diagonals joining homologous vertices, etc.
;
and it is readily shown

that any two such homologous lines are in the same ratio as any

two homologous sides, that is, in the ratio of similitude of the poly-

gons (24).

41. Oorollary. Two similar polygons are equal when any line in

one is equal to its homologous line in the other.

PROPOSITION XII.—THEOREM.

42. Tlie perimeters of two similar polygons are in the same ratio as

any two homologous sides.

For, we have (see preceding figures),

AB _ BO _ _„

A'B'~ B'0'~~
— '

— ^^•'

etc.

whence (12),

AB -f ^(7 -f CD + etc. _ AB_ _ BC^
A'B' J^ B'O' ^ O'D' H- etc.

~"
AB'

~
B' 0'

CD'
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APPLICATIONS.

PROPOSITION XIII.—THEOREM.

44. If a perpendicular is drawn from the vertex of the right an

to the hypotenuse of a right triangle :

Jst. The two triangles thus formed are similar to each other and to ffl

the whole triangle ;

2d. The perpendicular is a mean proportional between the segments ^

of the hypotenuse; M
3d. Each side about the right angle is a mean proportional between

the hypotenuse and the adjacent segment.

Let C be the right angle of the triangle

ABC, and CD the perpendicular to the hy-

potenuse ; then,

1st. The triangles J. C-Z) and CBD sire simi-

lar to each other and to ABC. For, the triangles ACD and ABC
have the angle A common, and the right angles, ADC, ACB, equal;

therefore, they are similar (26). For a like reason CBD is similar

to AB C, and consequently also to A CD.

2d. The perpendicular CD is a mean proportional between the

segments AD and DB. For, the similar triangles, A CD, CBD, give

AD: CD = CD: BD.

3d. The side J. is a mean proportional between the hypotenuse

AB and the adjacent segment AD. For, the similar triangles, ACD,
ABC, give

AB:AC=AC:AD.

In the same way, the triangles CBD and ABC give,

AB:BC= BC:BD. i
45. Corollary I. If all the lines of the figure are supposed to be

expressed in numbers, being measured by any common unit, the

preceding proportions give, by (5),

CD' = ADX BD,

AC'=ABX AD,

BG'= AB X BD;
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u'liere we employ the notation CD^, as in algebra, to signify the pro-

duct of CD multiplied by itself, or the second power of CD\ ob-

serving, however, that this is but a conventional abbreviation for

"second power of the number representing CD" (8). It may be

read " the square of CD," for a reason that will appear hereafter.

46. Corollary II. By division, the last two

ceding corollary give /"' "^^"'of the

that is, the squares of the sides including the right angle are propor-

tional to the segments oj the hypotenuse.

47. Corollary III. If from any point C in the

circumference of a circle, a perpendicular CD is

drawn to a diameter AB, and also the chords CJ.,

CB ; then, since A CB is a right angle (II. 59),

it follows that the perpendicular is a mean proportional between the

segments of the diameter ; and each chord is a mean proportional be-

tween the diameter and the segment adjacent to that chord.

PKOPOSITION XIV.—THEOKEM.

48. The square of the hypotenuse of a right triangle is equal to the

sum of the squares of the other two sides.

Let ABC be right angled at C; then,
'^

AB' = AC'' + ^C\

For, by the preceding proposition, we have

AC' = ABX AD, and BC' = AB X BD,

the sum of which is

ACP -i:BC' = ABx iAD + BD) = AB X AB = AB\

49. Corollary I. By this theorem, if the numerical measures of

two sides of a right triangle are given, that of the third is found.

For example, if^C=3, ^C = 4; then, AB = -,/[3' 4 4^]
= 5.
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If the hypotenuse, AB, and one side, AC, are given, we have

BC' = AB' — AC'; thus, if there are given AB = 5, AC= 3,

then, we find BC= x/\b'
—

3^]
== 4.

50. Corollary II. If JL C is the diagonal of a square
^

ABCD, we have, by the preceding theorem,

wh
AC' = AB' + BC' = 2AB\

ence,

Tc'

AB
= %

and extracting the square root,

AC
AB
= V2 = 1.41421 + ad inf.

Since the square root of 2 is an incommensurable number, it follows

that the diagonal of a square is incommensurable with its side.

51. Definition. The projection of a point A
upon an indefinite straight line XI^ is the foot

P of the perpendicular let fall from the point

upon the line.
. ... ^ ^ ^

The projection of a finite straight line AB
upon the line XY is the distance PQ between the projections of th

extremities of AB.

If one extremity B of the line AB is in the

line XY, the distance from B to P (the projec-

tion of A) is the projection of AB on XY; for

the point J5 is in this case its own projection.

PKOPOSITION XV.—THEOREM. H
52. In any triangle, the square of the side opposite to an acute angle

is equal to the sum of the sqiLares of the other two sides diminished by

twice the product of one of these sides and the projection of the other

upon that side.

Let C be an acute angle of the triangle ABC,
P the projection of A upon BC by the perpen-

dicular APf PC the projection of J. C upon BC; i>^

then,

Fig. 1.
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54. Corollary. From the preceding three theorems, it follows that

an angle of a triangle is acute, right or obtuse, according as the

square of the side opposite to it is less than, equal to, or greater than,

the sum of the squares of the other two sides.

PROPOSITION XVII.—THEOREM. i
55. If through a fixed point within a circle any chord is drawn, the

product of its two segments has the same value, in whatever direction the

chord is drawn.

Let P be any fixed point within the circle 0,

AB and A'B' any two chords- drawn through P;

then,

PAX PB = PA' X PB'.

For, join AB' and A'B. The triangles APB',

A'PBy are similar, having the angles at P equal,

and also the angles A and A' equal (II. 58) ; therefore,

whence (5),

PA : PA' = PB' : PP,

PAX PB = PA' X PB'.

56. Corollary. If AB is the least chord, drawn

through P (II. 20), then, since it is perpendicular

to OP, we have PA = PB (II. 15), and hence

PA^ = PA' X PB '

;
that is, either segment of the

least chord drawn through a fixed point is a mean

proportional between the segments of any other chord drawn through

that point.

57. Scholium. If a chord constantly passing through a fixed point

P, be conceived to revolve upon this point as upon a pivot, one seg-

ment of. the chord increases while the other decreases, but their

product being constant (being always equal to the square of half the

least chord), the two segments are said to vary reciprocally, or to be

recip'^oeally proportional (2).



BOOK III 116

PROPOSITION XVIII.—THEOREM.

58. If through a fixed point without a circle a secant is drawn, the

product of the whole secant and'its external segment has the same value,

in whatever direction the secant is drawn.

Let P be any fixed point without the circle 0,

PAB and PA'B' any two secants drawn through P;

then,

PA XPB = PA' X PB\

For, join AB' and A'B. The triangles APB\
A'PB, are similar, having the angle at P common,
and also the angles B and B' equal (II. 58) ;

there-

fore,

PA : PA' = PB' : PB,
whence (5),

PAX PB = PA' X PB'.

59. Corollary. If the line PAB, constantly passing through the

fixed point P, be conceived to revolve upon P, as upon a pivot, and

to approach the tangent PT, the two points of intersection, A and B,

will approach each other
;
and when the line has come into coinci-

dence with the tangent, the two points of intersection will coincide

in the point of tangency T. The whole secant and its external seg-

ment will then both become equal to the tangent PT; therefore,

regarding the tangent as a secant whose two points of intersection

are coincident (II. 28), we shall have

PT' = PA' X PB';

that is, if through a fixed point without a circle a tangent to the circle

is drawn, and also any secant, the tangent is a mean proportional be-

tween the whole secant and its external segment.

60. Scholium I. When a secant, constantly passing through a fixed

point, changes its direction, the whole secant and its external seg-

ment vary reciprocally, or they are reciprocally proportional, since

their product is constant (2).

61. Scholium II. The analogy between the two preceding proposi-

tions is especially to be remarked. They may, indeed, be reduced

to a single proposition in the following form : If through any fixed
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point in the plane of a circle a straight line is drawn Intersecting the

circumference, the product of the distances of the fixed point from the

two points of intersection is constant.

PKOPOSITION XIX.—THEOREM.

62. In any triangle, if a medial line is drawn from the vertex to the

1st. The sum of the squares of the two sides is equal to twice the

square of half the base increased by twice the square of the medial line;

2d. The difference of the squares of the two sides is equal to twice

the product of the base by the projection of the medial line on the base.

In the triangle ABC, let D be the middle

point of the base BC, AD the medial line from

A to the base, P the projection of A upon the

base, DP the projection of AD upon the base
;

then,

1st. AB' + AG' = 2BD' + 2AD' ;

2d. AB'—AG' = 2BG X DP,

For, if AB> AC, the angle ADB will be obtuse and ADO will

be acute, and in the triangles ABD, ADC, we shall have, by (53)

and (52).

AB' = BD' + AD' + 2BD X DP,

AC'=DC' + ^^' — 2DC X DP.

Adding these equations, and observing that BD = DC, we have

1st. IB' + AG' = 2BD' + 2AD\

Subtracting the second equation from the first, we have

AB'— AG' :-= 2 {BD ^ DC) X DP;
that is,

2d. AB' — AC' = 2BG X DP.
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63. Corollary I. In any quadrilateral, the sum of the squares of

the four sides is equal to the sum of the squares

of the diagonals plus four times the square of

the line joining the middle points of the diag-

onals.

For, let E and F be the middle points of the

diagonals of the quadrilateral ABCD; join

EF, EJj, ED. Then, by the preceding theorem,

we have in the triangle ABC,

IE' + BG" = 2AE' + 2BE\

and in the triangle ADCy

CD'-^DA' = 2AE' + 2DE\

whence, by addition,

AB' -\-BC'-{- GD'-\- DT = 4AE' + 2 (BE* -f DE').

Now, in the triangle BED, we have

BE' + im'=.2BF'+2EF'';
therefore,

AB' -i- BC" + CD' -\- DA' = 4AE' -f 4BF' + AEF\

But AAE' = (2AEy = AU\ and ABF' = (2BFy = BD'
;

hence, finally,

AB' -f BC' -f CD'-^DA' = AC' + BD' + 4EF\

64. Corollary II. In a parallelogram, the sum of the squares of

the four sides is equal to the sum of the squares of the diagonals.

For if the quadrilateral in the preceding corollary is a parallelo-

gram, the diagonals bisect each other, and the distance EF is zero.

PKOPOSITION XX.—THEOREM.

65. In any triangle, the product of two sides is equal to the product

of the diameter of the circumscribed circle by the perpendicular let fall

upon the third side from the vertex of the opposite angle.
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Let AB, A C, be two sides of a triangle ABC,
AD the perpendicular upon BC, AE the di-

ameter of the circumscribed circle
; then,

ABXAC=AEXAD.

For, joining CE, the angle ACE is a right

angle (II. 59), and the angles E and B are equal (II. 58) ;
there-

fore, the right triangles AEC, ABD, are similar, and give

AB:AE=AD:AQ

whence, AB X AC= AE X AD.

.
PROPOSITION XXI.—THEOREM.

66. In any triangle, the product of two sides is equal to the proi

of the segments of the third side formed by the bisector of the opposite

angle plus the square of the bisector.

Let AD bisect the angle A of the

triangle ABC; then,

ABXAC=DBX DC-i- DT.

For, circumscribe a circle about

ABC, produce AD to meet the cir-

cumference in E, and join CE. The

triangles ABD, AEC, are similar, and give

AB:AE=DA:AC,

whence AB X AC= AE X DA = (DE + DA) X DA
= DEX l>A-\- DA\

Now, by (55), we have DE X DA = DB X DC, and hence

ABX AC=DBX DC^DT.

67. Corollary. If the exterior angle BAF is bisected by AD', the

same theorem holds, except that plus is to be changed to minus.
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For, producing D'A to meet the circumference in E\ and joining

CE', the triangles ABD\ AE'C, are similar, and give

AB : AE' = AD' : AC,

whence AB X AC =^ AE' X AD' = {D'E' — D'A) X D'A

= D'E' X D'A — WA\

or, by (58), AB X AC=D'B X D'C— D'A'

PROBLEMS OF CONSTRUCTION.

PROPOSITION XXII.—PROBLEM.

68. To divide a given straight line into parts proportional to given

straight lines.

Let it be required to divide AB into parts

proportional to 31, N and P. From A draw

an indefinite straight line AX, upon which lay-

off AC =31, CD = N, DE = F, join EB,
and draw CF, DG, parallel to EB; then AF,

FG, GB, are proportional to 31, N, F (18).

69. Corollary. To divide a given straight line AB into any num-

ber of equal parts, draw an indefinite line AX, upon
which lay ofi* the same number of equal distances,

each distance being of any convenient length ; through

3f the last point of division on AX draw 3IB, and

through the other points of division of AX draw par-

allels to 3IB, which will divide AB into the required

number of equal parts. This follows both from the

theory of proportional lines and from (I. 125).
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PEOPOSITION XXIII.—PROBLEM.

70. To find a fourth proportional to three given straight lines.

Let it be required to find a fourth propor-

tional to My N and P. Draw the indefinite ^v n
lines AX, AY, making any angle with each

otRer. Upon AX lay off AB = M, AD = N;
and upon AY lay off J. (7= P; join BC, and

draw DE parallel to BC; then AE is the re-

quired fourth proportional.

For, we have (15),

AB:AD = AC: AE, or M: N=PxAE.

71. Corollary. If AB = M, and both AD and J. Care made equal

to N, AE will be a third proportional to Jfand N] for we shall have

M:N=N:AE.

PEOPOSITION XXIV.—PROBLEM.

72. To find a mean proportional between two given straight lines.

Let it be required to find a mean proportional

between M and N. Upon an indefinite line lay

off AB = 3I,BC = N; upon AC describe' a

semi-circumference, and at B erect a perpen-

dicular, BD, to A C. Then BD is the required

mean proportional (47).

Second method. Take AB equal to the greater

line 3f, and upon it lay off BC = N. Upon
AB describe a semi-circumference, erect CD per-

pendicular to AB and join BD. Then BD is

the required mean proportional (47).

73. Definition. When a given straight line is divided into two

segments such that one of the segments is a mean proportional

between the given line and the other segment, it is said to be divided

in extreme and mean ratio.

Thus AB is divided in extreme and

mean ratio at C, if AB : AC =
ACiCB.

cf
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If C is taken in BA produced so that AB : AC = AC : CB
then AB is divided at C", externally, in extreme and mean ratio.

PROPOSITION XXV.—PROBLEM.

74. To divide a given straight line in extreme and mean ratio.

Let AB be the given straight line. At B erect the perpendicular

BO equal to one half of AB.

With the centre and radius /
^X/?'

OB
J
describe a circumference, /

^^^^"j
and through A and draw A

^.^^\ J
cutting the circumference first

I; -^f—
—i^^^^

in D and a second time in i)'.

Upon AB lay off ^C = AD, and upon BA produced lay off

AC ^= AD'. Then AB is divided at G internally, and at C exter-

nally, in extreme and mean ratio.

For, 1st, we have (59),

AD' :AB = AB:AD or AC, [1]

whence, by division (10),

AD' — AB:AB = AB — AC:AQ

or, since DD' = 20B = AB, and therefore AD' — AB = AD' —
DD'=:AD = AC,

AC : AB = CB : AC,
and, by inversion (7),

AB'.AC=AC'.CB;

that is, AB is divided at C, internally, in extreme and mean ratio.

2d. The proportion [1] gives by composition (10),

AD' + AB : AD' = AB + AD : AB,

jT, since AD' = AC, AD' + AB = CB, AB -^ AD = DD' -f

AD = AD' = AC,
CB:AC = AC:AB,

and, by inversion,

AB : AC = AC : CB;

m
.that is, AB is divided at C, externally, in extreme and mean ratio.

11
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Then, by the construction we have (17),

M_ CA DA
N~ CB~ DB'

therefore, by the definition (76), AB is divided harmonically at C
and Z), and in the given ratio.

78. Scholium. If the extreme points A and D are given, and it is

required to insert their conjugate harmonic points B and C, the har-

monic ratio being given = 31 : N, we take on AX, as before, AE=
M and EF= EG = iV, join ED, and draw GB parallel to ED,
which determines B) then, join FB and draw jE^C parallel to i^^,

which determines C
Also if, of four harmonic points J., B, C, D, any three are given,

the fourth can be found.

PEOPOSITION XXVII.—PROBLEM.

79. To find the locus of all the points whose distances from two given

points are in a given ratio.

Let A and B be the given points, and let the given ratio beM ; N,

Suppose the problem solved, and

that P is a point of the required

locus. Divide AB internally at

C and externally at D, in the ratio

M'. N, and join PA, PB, PC, PD.

By the condition imposed upon P
we must have

PA:PB = 31: N= CA : CB = DA : DB;

therefore, PC bisects the angle APB, and PD bisects the exterior

angle BPE (23). But the bisectors PC and PD are perpendicular to

each other (I. 25) ; therefore, the point P is the vertex of a riglit

angle whose sides pass through the fixed points C and D, and the

locus of P is the circumference of a circle described upon CD as

a diameter (II. 59, 97). Hence, we derive the following

Construction. Divide AB harmonically, at C and D, in the given

ratio (77), and upon CD as a diameter describe a circumference.

This circumference is the required locus.
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PROPOSITION XXVIII.—PROBLEM.

80. On a given straight line, to construct a polygon similar 'o a given

polygon.

Let it be required to construct

u^on A'B' a polygon similar to

ABCDEF.
Divide ABCDEF into tri-

angles by diagonals drawn from

A. Make the angles B'A'C
and A'B'C equal to jBJ.(7and J.jB (7 respectively; then, the triangle

A'B'C will be similar to ABC (25). In the same manner construct

the triangle A'D'C similar to ADC, A'E'D' similar to AED, and

A'E'F' similar to AEF. Then, A'B'C'D'E'F' is the required

polygon (38).

PROPOSITION XXIX.—PROBLEM.

81. To construct a polygon similar to a given polygon, the ratio

similitude of the two polygons being given.

Let ABCDE be the given

polygon, and let the given ratio

of similitude be M : N.

Take any point 0, either

within or without the given

polygon, and draw straight lines

from through each of the

vertices of the polygon. Upon

any one of these lines, as OA, take OA' a fourth proportional

M, Nf and OA, that is, so that

Jf:N= OA: 0A\

N\-

to

In the angle AOB draw A'B' parallel to AB; then, in the angle

BOC, B'C parallel to BC, and so on. The polygon A'B'C'D'E'

will be similar to ABODE) for the two polygons will be composed
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of the same number of triangles, additive or subtractive, similarly

placed; and their ratio of similitude will evidently be the given

ratio if: iV.' (40).

82. Scholium. The point in the preceding construction is called

the centre of similitude of the two polygons.
11 »
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COMPARISON AND MEASUREMENT OF THE SURFACES OF
RECTILINEAR FIGURES.

1. Definition. The area of a surface is its numerical measure,

referred to some other surface as the unit
;
in other words, it is the

ratio of the surface to the unit of surface- (II. 43).

The unit of surface is called the superficial unit. The most con-

venient superficial unit is the square whose side is the linear unit.

2. Definition. Equivalent figures are those wliose areas are equal.

PEOPOSITION I.—THEOREM.

3. Two rectangles having equal altitudes are to each other as their

Let ABCD, AEFD, be two rectangles hav-

ing equal altitudes, AB and AE their bases ;

then,
ABCD AB
AEFD

~~
AE-^

-I 1-—r—

E

Suppose the bases to have a common meas-

ure which is contained, for example, 7 times in

AB, and 4 times in AE\ so that if AB is

divided into 7 equal parts, AE will contain 4 of these parts ; then,

we have

AB_1
AE~~ A

If, now, at the several points of division of the bases, we erect

[)erpendicu]ars to them, the rectangle ABCD will be divided into 7

126

I



BOOK IV 127

equal rectangles (I. 120), of which AEFD will contain 4; conse-

quently, we have

ABCD 7

AEFD
~

4

and therefore

ABCD AB
AEFD

~
AE

The demonstration is extended to the case in which the bases are

incommensurable, by the process already exemplified in (II. 51)

and (III. 15).

4. Corollary. Since AD may be called the base, and AB and AE
the altitudes, it follows that tioo rectangles having equal bases are to

each other as their altitudes.

Note. In these propositions, by "rectangle" is to be understood

"surface of the rectangle."

PKOPOSITION II.—THEOKEM.

5. Any two rectangles are to each other as the products of their bases

by their altitudes.

Let B and B' be two rectangles,

k and k' their bases, h and A' their h

altitudes; then.

B^
B'

k X h

k' X h''

For, let /S be a third rectangle

having the same base k as the rec-

tangle B, and the same altitude h' as the rectangle B'
\
then we

have, by (4) and (3),

B _h S__k
S~h'* B'^F

and multiplying these ratios, we find (III. 14),

B_ _ kX h

B'~k'Xh''

6. Scholium. It must be remembered that by the product of two
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lines, is to be understood the product of the numbers which represent

them when they are measured by the linear unit (III. 8).

PROPOSITION III.—THEOREM.

7. The area of a rectangle is equal to the product oj its base and

altiiude.

Let H be any rectangle, k its base and

h its altitude numerically expressed in a

terms of the linear unit; and let Q be

the square whose side is the linear unit ;

then, by the preceding theorem,

B _ JcX h

I

1 XI
k X h.

B
But since Q is tlie unit of surface,

— = the numerical measure,

area, of the rectangle B (1); therefore,

Area of B= k X h.

8. Scholium I. When the base and altitude are exactly divisible

by the linear unit, this proposition is rendered

evident by dividing the rectangle into squares each

equal to the superficial unit. Thus, if the base

contains 7 linear units and the altitude 5, the rec-

tangle can obviously be divided into 35 squares

each equal to the superficial unit
;
that is, its area =: 5 X 7. The

proposition, as above demonstrated, is, however, more general, and

includes also the cases in which either the base, or the altitude, or

both, are incommensurable with the unit of length.

9. Scholium II. The area of a square being the product of two

equal sides, is the second power of a side. Hence it is, tliat in arith-

metic and algebra, the expression "square of a number" has been

adopted to signify "second power of a number."

AVe may also here observe that many writers employ the expres-

sion
"
rectangle of two lines" in the sense of "

product of two lines,'*

because the rectangle constructed upon two lines is measured by the

product of the numerical measures of tlie lines.
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PROPOSITION IV.—THEOREM.

10. The area of a parallelogram is equal to the product of its base

and altitude.

Let ABCD be a parallelogram, k the

numerical measure of its base AB, h

that of its altitude AF; and denote its

area by S; then,

S=k X A.

For, let the rectangle ABEF be con-

structed having the same base and alti-

tude as the parallelogram ;
the upper bases of the two figures will be

in the same straight line FG (I. 58). The right triangles AFD and

BEG are equal, having AF = BE, and AD = BG (I. 83). If

from the whole figure ABGFwe take away the triangle AFD, there

remains the parallelogram ABGD; and if from the whole figure we

take away the triangle BEG, there remains the rectangle ABEF;
therefore the surface of the parallelogram is equal to that of the

rectangle. But the area of the rectangle is Jc X^ h (7) ; therefore

that of the parallelogram is also k X h; that is S := k X h.

11. GorollaryJ. Parallelograms having equal bases and equal alti-

tudes are equivalent.

12. Gorollary II. Parallelograms having equal altitudes are to

each other as their bases
; parallelograms having equal bases are to

each other as their altitudes; and any two parallelograms are to

each other as the products of their bases by their altitudes.

PROPOSITION v.—THEOREM.

13. The area of a triangle is equal to half the product of its base

and altitude.

Let ABGhe a triangle, k the numerical raeas- ^ ^

ure of its base BG, h that of its altitude AD;
and 8 its area

; then,

S=ik X h.

For, through A draw AE parallel to CB, and through B draw BE
11**
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parallel to CA. The triangle ABC is one-half the parallelogram

AEBG (1. 105) ;
but the area of the parallelogram =^k y^h) there-

fore, for the triangle, we have S= hk X h.

14. Corollary I. A triangle is equivalent to one-half of any par

allelogram having the same base and the same altitude.

15. Corollary II. Triangles having equal bases and equal altitudes

are equivalent.

16. Corollary III. Triangles having equal altitudes are to each

other as the'ir bases
; triangles having equal bases are to each other

as their altitudes
;
and any two triangles are to each other as the

products of their bases by their altitudes.

I

1
PKOPOSITION VI.—THEOREM.

17. The area of a trapezoid is equal to the product of its altitude by

half the sum of its parallel bases.

Let ABCD be a trapezoid; JfiV= A, its al- ^ ^f ^ n

titude; AD = a, BC = b, its parallel bases;

and let 8 denote its area
; then,

i

S=l{a-\-b) X h.

N

For, draw the diagonal A C. The altitude of each of the triangles

J.i)Cand ABC is equal to /t, and their bases are respectively a and

b
;
the area of the first is I a X h, that of the second is 2 6 X /i

;
and

the trapezoid being the sum of the two triangles, we have

S=laXh + H X h = h(a-^ b) X h.

18. Corollary. The straight line EF, joining the middle points of

AB and i)(7, being equal to half the sum of AD and BC (I. 124),

the area of the trapezoid is equal to the product MN X EF.

19. Scholium. The area of any polygon may be found by finding

the areas of the several triangles into which it may be decomposed

l)y drawing diagonals from any vertex.

The following method, however, is usually preferred, especially in

^surveying. Draw the longest diagonal AD of tiie proposed polygOD

I
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ABGDEF] and upon AD let fall the per-

pendiculars BM, CJSr, JEP, FQ. The poly-

gon is thus decomposed into right triangles

and right trapezoids, and by measuring the

lengths of the perpendiculars and also of the

distances AM, MN, ND, AQ, QP, PD, the

bases and altitudes of these triangles and

trapezoids are known. Hence their areas can be computed by tbe

preceding theorems, and the sum of these areas will be the area of

the polygon.

PKOPOSITION VII.—THEOREM.

20. Similar triangles are to each other as the squares of their homolo-

gous sides.

Let ABC, A'B'C be similar tri-

angles; then,

ABC BC'

A'B'C'~ WV"

Ijet AD, A'D', be the altitudes.

By (16), we have

BCX AD ^BG^ ADABC
A'B'C B'C'XA'D' B'C'^A'D'

But the homologous lines AD, AID'
,
are in the ratio of similitude

of the triangles (III. 29) ;
that is,

AD

therefore,

ABC

BC
AID' B'C

BC ^ BC__ BG^
— - - -

I rit^A'B'C B'C B'C B'C

21. Corollary. If we had put the ratio ^42) : A'D' in the place'of

the ratio BC' B^C, we should have found

ABC AD'

A'B'C A'D'
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and in general, we may conclude that the surfaces of two similar tri

angles are as the squares of any two homologous lines; or, again, the

ratio of the surfaces of two similar triangles is the square of the ratio

of similitude of the triangles.

PROPOSITION VIII.—THEOREM.

22. Two triangles having an angle of the one equal to an angle o

the other are to each other as the products of the sides including the

equal angles.

Two triangles which have an angle of the one

equal to an angle of the other may be placed with

their equal angles in coincidence. Let ABG, ADE,
be the two triangles having the common angle A ;

then,

ABC^ ABX AG
ADE~~ ADX AE I

For, join BE. The triangles ABC, ABE^ having the common

vertex B, and their bases A (7, AE, in the same straight line, have

the same altitude; therefore (16),

ABC AG
ABE~ AE 4

The triangles ABE, ADE, having the common vertex E, and their

bases AB, AD, in the same straight line, have the same altitude
;

therefore,
ABE AB
ADE~ ad'

Multiplying these ratios, we have (III. 14),

ABG ABXAO
ADE~ AD X AE
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PKOPOSITION IX.—THEOKEM.

23. Similar polygons are to each other as the squares of their homolo-

gous sides.

Let ABCBEF, A'B' G'D'E'F', be two similar polygons; and

denote their surfaces by S and

8'; then, b^

S'

~
aw' ^""••-"" ^"^

For, let the polygons be de-

composed into homologous tri-

angles (III. 39). The ratio of the surfaces of any pair of homolo-

gous triangles, as ABC and A'B'C\ A CD and A' CD', etc., will be

the square of the ratio of two homologous sides of the polygons

(20) ; therefore, we shall have

ABC ACD ADE AEF AB^

A'B'C A'CD' A'D'E' A'E'F' A'B"

Therefore, by addition of antecedents and consequents (III. 12),

ABC + ACD + ADE + AEF S AB'

A'B'C ^ A'CD' -{- A'D'E' -\- A'E'F' S' A'B72

24. Corollary. The ratio of the surfaces of two similar polygons is

the square of the ratio of similitude of the polygons ;
that is, the

square of the ratio of any two homologous lines of the polygons.

PROPOSITION X.—THEOREM.

25. The square described upon the hypotenuse of a right triangle

is eqxiivalent to the sum of the squares described on the other two

sides.

12



134 GEOMETRY.

Let the triangle ABC be right angled
at C\ then, the square AK^ described

upon the hypotenuse, is equal in area

to the sum of the squares AF and J5Z),

described on the other two sides.

For, from Cdraw CF perpendicular

to *AB and produce it to meet KFl in L.

Join CK, EG. Since ACF and ACB
are right angles, CF and CB are in

the same straight line (I. 21) ;
and for

a similar reason A C and CD are in the

same straight line.

In the triangles CAK, GAB, we have AK equal to AB, being
sides of the same square ;

A C equal to A G, for the same reason
;

and the angles CAK, GAB, equal, being each equal to the sum

of the angle CAB and a right angle; therefore, these triangles are

equal (I. 76).

The triangle CAK and the rectangle AL have the same base AK;
and since the vertex C is upon LF produced, they also have the

same altitude; therefore, the triangle CAK in equivalent to' one-half

the rectangle AL (14).

The triangle GAB and the square AF have the same base A G ;

and, since the vertex B is upon FC produced,, they also have the

same altitude
; therefore, the triangle GAB is equivalent to one-

half the square AF (14).

But the triangles CAK, GAB, have been shown to be equal;

therefore, the rectangle AL is equivalent to the square AF.

In the same way, it is proved that the rectangle BL is equivalent

to the square BD.

Therefore, the square AH, which is the sum of the rectangles AL
and BL, is equivalent to the sum of the squares ^i^and BD.

26. Scholium. This theorem is ascribed to Pythagoras (born about

600 B. C), and is commonly called the Pythagorean Theorem. The

preceding demonstration of it is that which was given by Euclid in

his Elements (about 300 B. C).
It is important to observe, that we may deduce the same result

from the numerical relation AB^ = AC^ -{- BC^, already established

in rill. 48) For, since the measure of the area of a square is the

«



BOOK IV. 135

second power of the number which represents its side, it follows

directly from this numerical relation that the area of which AB^ is

the gaeasure is equal to the sum of the areas of which AC^ and BG^
are the measures. In the same manner, most of the numerical rela-

tions demonstrated in the articles (III. 48) to (III. 67) give rise to

theorems respecting areas by merely substituting, for a product, the

area represented by that product. This may be called a transition

from the abstract (pure number) to the concrete (actual space).

On the other hand, we may pass from the concrete to the abstract.

For example, in the above figure it has been proved that the areas

of the rectangles AL, BL, are respectively equal to the areas of the

squares AF, BD. But the rectangles, having the same altitude, are

to each other as their bases J.P, PB', and the squares are to each

other as their numerical measures AC^^ BC^; hence, we infer the

numerical relation

AC' :BC' = AP: PB,

which was otherwise proved in (III. 46).

Henceforth, we shall employ the equation AB^ = AC' -f- PC', as

the expression of either one of the theorems (III. 48) and (IV. 25).

27. Corollary. If the three sides of a right triangle be taken as the

homologous sides of three similar polygons constructed upon them, then

the polygon constructed upon the hypotenuse is equivalent to the sum of

the polygons constructed upon the other two sides.

For, let P, Q, E, denote the areas of the polygons constructed

upon the sides AC, PC, and upon the hypotenuse AB, respectively.

Then, the polygons being similar, we have

Q BG' Q
~

BG'

from the first of which we derive, by composition,

P+ Q ^ AC' ^PG' ^ AP^^

Q PC'
~

PC'

which compared with the second gives at once

P = P+ Q.
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PKOBLEMS OF CONSTRUCTION.

PROPOSITION XI.—PROBLEM.

28. To construct a triangle equivalent to a given polygon.

Let ABCDEFhe the given polygon.

,Take any three consecutive vertices, as

A, By C, and draw the diagonal A C. Through
B draw BP parallel to ^0 meeting DC pror

duced in P; join AF.

The triangles APQ ABQ have the same

base AC; and since their vertices, Pand B,

lie on the same straight line BP parallel to AG, they also have the

same altitude; therefore they are equivalent. Therefore, the penta-

gon APDEF is equivalent to the hexagon ABCDEF. Now, taking

any three consecutive vertices of this pentagon, we shall, by a pre-

cisely similar construction, find a quadrilateral of the same area;

and, finally, by a similar operation upon the quadrilateral, we shall

find a triangle of the same area.

Thus, whatever the number of the sides of the given polygon, a

series of successive steps, each step reducing the number of sides by

one, will give a series of polygons of equal areas, terminating in a

triangle.

PROPOSITION XII.—PROBLEM.

29. To construct a square equivalent to a given parallelogram or to a

aiven triangle.

1st. Let J. C be a given parallelogram ;
k its

base, and h its altitude.

Find a mean proportional x between h and k,

by (III. 72). The square constructed upon x

will be equivalent to the parallelogram, since

x' = hX k.

2d. Let ABC be a given triangle; a its base

and h its altitude.

Find a mean proportional x between a and

^h; the square constructed upon a; will be

equivalent to the triangle, since a;'' = a X ^^
r= \ah.

\Zj^
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30. Scholium. By means of this problem and the preceding, a

square can be found equivalent to any given polygon.

PKOPOSITION XIII.—PROBLEM.

31. To construct a square equivalent to the sum of two or more given

squareSj or to the difference of two given squares.

1st. Let m, n, p, q, be^the sides of given squares.

Draw AB = m, and BC= n, perpendicular to

each other at B; join AC. Then (25), AG^ =
m^ -\- n\

Draw CD = p, perpendicular to A C, and join

AD. Then AD'= AG' -\-p'=m' + n'-{-p\
Draw DE= q perpendicular to ADy and join

AE. Then, AE' = AD' -{- q'
= m' + n' +

p'^ -{- q^; therefore, the square constructed upon
AE will be equivalent to the sura of the squares

constructed upon m, w, p, q.

In this manner may the areas of any number of given squares be

added.

2d. Construct a right angle ABC, and lay off

BA = n. With the centre A and a radius = m,

describe an arc cutting -BC in C. Then BC' =
AC' — AB'= m^— n"^; therefore, the square con-

'''

structed upon ^Cwill be equivalent to the difference of the squares

constructed upon m and n.

32. Scholium I. By means of this problem, together with the pre-

ceding ones, a square can be found equivalent to the sum of any
number of given polygons^ or to the difference of any two given

polygons.

33. Scholium II. If m, n, p, q, in the preceding problem are ho-

mologous sides of given similar polygons, the line AE in the first

figure is the homologous side of a similar polygon equivalent to the

sum of the given polygons (27).

And the line BC, in the second figure, is the homologous side of a

similar polygon, equivalent to the difference of two given similar

polygons.
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One side of a polygon, similar to a given polygon, being known,!

the polygon may be constructed by (III. 80).

PROPOSITION XIV.—PROBLEM.

34. Upon a given straight line to construct a rectangle equivalent to

a given rectangle.

Let k '

be the given straight line, and A C the

given rectangle whose base is k and altitude h.

Find a fourth proportional h\ to k\ k and
A,,

by (III. 70). Then, the rectangle constructed

upon the base k' with the altitude^A' is equiva-

lent to AC] for, by the construction, k' : k =
h:h\ whence, k' X h' = k X h (7). k'

PROPOSITION. XV.—PROBLEM.

35. To construct a rectangle^ having given its area and the sum of

two adjacent sides.

Let MN be equal to the given sum of the

adjacent sides of the required rectangle; and

let the given area be that of the square whose

side is AB.

Upon 3IN as a diameter describe a semi-

circle. At 31 erect MP= AB perpendicular

to MN, and draw PQ parallel to 3fN, intersecting the circumference

in Q. From Q let fall QE perpendicular to 3fN; then, MB and

RN are the base and altitude of the required rectangle. For, )\y

(IIL 47), MBX BN=QB' = FM' = AB'

PROPOSITION XVI.—PROBLEM.

36. To construct a rectangle, having given its area and the difference

of two adjacent side.^.



BOOK IV. 139

Let MN be equal to the given difference of

the adjacent sides of the required rectangle;

and let the given area be that of the square

described on AB.

Upon MN as a diameter describe a circle.

At M draw the tangent MP = AB^ and from

P, draw the secant PQR through the centre of

the circle
; then, PR and PQ are the base and

altitude of the required rectangle. For, by (III. 59), PR X PQ =
PM'' = AB\ and the difference of PR and PQ is QR = MN.

PROPOSITION XVII.—PROBLEM.

37. To find two straight lines in the ratio of the areas of two given

polygons.

Let squares be found equal in area to the

given polygons, respectively (30). Upon the

sides of the right angle. ^C'-B, take CA and CB

equal to the sides of these squares, join AB and

let fall CD perpendicular to AB. Then, by (III. 46), we have

AD : DB = CA' : CB'] therefore, AD, DB, are in the ratio of

the areas of the given polygons.

PROPOSITION XVIII.—PROBLEM.

38. To find a square which shall he to a given square in the ratio of

two given straight lines.

Let AB' be the given square, and M : N I

| ^^J"

the given ratio.

Upon an indefinite straight line CL, lay

ofi' CD = M, DE = N; upon CE as a

i\'i

diameter describe a semicircle ; at D erect fy^ p^
the perpendicular DE cutting the circum- ^ del
ference in F\ join EC, EE; lay off i^'jS' =^J5, and through H
draw HO parallel to EC; then, EG is the side of the required

square. For, by (III. 15), we have

EG:EH=EC:EE,
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whence (III. 13),

FO^ : FH' = FG' : FE\
Also, by (III. 46),

FG':FE'=CD: DE=M: K
Hence,

FG':FH' = MiN.

But FFL= AB^ therefore the square constructed upon FG is to the

square upon AB in the ratio M : N.

PROPOSITION XIX.—PROBLEM.

39. To construct a polygon similar to a given polygon and whose area

shall be in a given ratio to that of the given polygon.

Let P be the given polygon, and let a be one of

its sides; let 31: Nhe the given ratio.

Find, by the preceding problem, the side a' of a

square which shall be to a"^ in the ratio M : N; ^^

upon a', as a homologous side to a, construct the

polygon P' similar to P (III. 80) ;
this will be the \

^'

polygon required.

For, the polygons being similar, their areas are

in the ratio a'^ : a^ or if : iV, as required.

PROPOSITION XX.—PROBLEM.

40. To construct a polygon similar to a given polygon P and equiva-

lent to a given polygon Q.

Find 31 and JV, the sides of squares

respectively equal in area to P and Q,

(30).

Let a be any side of P, and find a
jjf

fourth proportional a' to 31, N and a:
^_____^

upon a', as a homologous side to a, con- \ P'
|

struct the polygon P' similar to P; this ^—
—,
—'

will be the required polygon. For, by

construction,

M_ a_^

N~ a''
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therefore, taking the letters P, Q and P\ to denote the areas of the

polygons,

but, the polygons P and P' being similar, we have, by (23),

P' a"'

and comparing these equations, we have P' = Q.

Therefore, the polygon P' is similar to the polygon Pand equiva-

lent to the polygon Q, as required.

T 1 .

^7^."t

. -^--tT

»
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REGULAR POLYGONS. MEASUREMENT OF THE CIRCLE,

MAXIMA AND MINIMA OF PLANE FIGURES.

REGULAR POLYGONS.

1. Definition. A regular polygon is a polygon which is at once

equilateral and equiangular.

The equilateral triangle and the square are simple examples of

regular polygons. The following theorem establishes the possibility

of regular polygons of any number of sides.

PROPOSITION L—THEOREM.

2. If the circumference of a circle be divided into any number of

equal parts, the chords joining the successive points of division form a

regular polygon inscribed in the circle ; and the tangents drawn at the

points of division form a regular polygon circumscribed about the circle.

Let the circumference be divided into the

equal arcs AB, BC, CD, etc.
; then, 1st, draw-

ing the chords AB, BC, CD, etc., ABCD, etc.,

is a regular inscribed polygon. For, its sides

are equal, being chords of equal arcs; and

its angles are equal, being inscribed in equal

segments.

2d. Drawing tangents at A, B, C, etc., the

polygon GHK, etc., is a regular circumscribed

polygon. For, in the triangles AGB, BHC, CKD, etc., w^e have

AB = BC= CD, etc., and the angles GAB, GBA, HBC, HCB,
etc., are equal, since each is formed by a tangent and chord and is

measured by half of one of the equal parts of the circumference

142
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(II. 62) ; therefore, these triangles are all isosceles and equal to each

other. Hence, we have the angles G'= H = K, etc., and AG =
GB = BH = EC = CK, etc., from which, by the addition of

equals, it follows that GH= HK, etc.

3. Corollary I. Hence, if an inscribed polygon is given, a circum-

scribed polygon of the same number of sides can be formed by

drawing tangents at the vertices of the given polygon. And if a

circumscribed polygon is given, an inscribed polygon of the same

number of sides can be formed by joining the points at which the

sides of the given polygon touch the circle.

It is often preferable, however, to obtain the circumscribed polygon

from the inscribed, and reciprocally, by the following methods :

1st. Let ABCD . .. . be a given inscribed polygon. Bisect the

arcs ABj BC, CD, etc., in the points E^F,

G, etc., and draw tangents, A'B', B' C',

C'D\ etc., at these points ; then, since the

arcs EF, EG, etc., are equal, the polygon

A'B' C'D' is, by the preceding propo-

'tion, a regular circumscribed polygon of

the same number of sides as ABCD ....

Since the radius OE is perpendicular to

AB (II. 16) as well as to A'B', the sides A'B\ AB, are parallel;

and, for the same reason, all the sides of A'B'CD' are parallel

to the sides of ABCD respectively. Moreover, the radii OA,

OB, OC, etc., when produced, pass through the vertices A',BIC', etc. ;

for since B'E= B'F, the point B' must lie on the line OB which

bisects the angle EOF (I. 127).

2d. If the circumscribed polygon A'B' CD' .... is given, we have

only to draw OA', OB', OC, etc., intersecting the circumference in

A, B, C, etc., and then to join AB, BC, CD, etc., to obtain the in-

scribed polygon of the same number of sides.

4. Corollary II. If the chords AE, EB, BE, EC, etc., be drawn,

a regular inscribed polygon will be formed of double the number of

sides of ^^ CD....

If tangents are drawn at A, B, C, etc., intersecting the tangents

A'B', B'C, CD', etc., a regular circumscribed polygon will be

formed of double the number of sides of A'B' CD'. . . .

It is evident that the area of an inscribed polygon is less than

B'
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that of the inscribed polygon of double the number of sides
;
and

the area of a circumscribed polygon is greater than that of the cir-

cumscribed polygon of double the number of sides.

•: PROPOSITION II.—THEOREM.

5. A circle may he circumscribed about any regular polygon ; and a

circle may also be inscribed in it. «
Let ABCD. . . be a regular polygon ; then, ^^^Z^^^^ n
1st. A circle may be circumscribed about //^'- 1

•' \\
it. For, describe a circumference passing I/I \\/ \M

through three consecutive vertices A, B, C \\ /6\ J/j

(11.88); let be its centre, draw OJT per- VW'' ^\/// Mi
pendicular to -SCand bisecting it at jET, and \^_J^^^^ j|

join OA, OD. Conceive the quadrilateral -^^hI
AOHB to be revolved upon the line OH (i. e., folded over), iS^i

HB falls upon its equal HC. The polygon being regular, the angle
HBA = HCD, and the side BA = CD; therefore the side BA will

take the direction of CD and the point A will fall upon D. Hence

OD = OA, and the circumference described with the radius OA
and passing through the three consecutive vertices A, B, C, also

passes through the fourth vertex D. It follows that the circumfer-

ence which passes through the three vertices B, C, D, also passes

through the next vertex E, and thus through all the vertices of the

polygon. The circle is therefore circumscribed about the polygon.

2d. A circle may be inscribed in it. For, the sides of the polygon

being equal chords of the circumscribed circle, are equally distant

from the centre
; therefore, a circle described with the centre and

the radius OH will touch all the sides, and will consequently be in-

scribed in the polygon.

6. Definitions. The centre of a regular polygon is the common cen-

tre, 0, of the circumscribed and inscribed circles.

The radius of a regular polygon is the radius, OAy of the circum-

scribed circle.

The apothem is the radius, OH, of the inscribed circle.

The angle at the centre is the angle, A OB, formed by radii drawn

to the extremities of any side.
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7. The angle at the centre is equal to four right angles divided by
the number of sides of the polygon.

8. Since the angle ABC is equal to twice ABO, or to ABO -f

BAO, it follows that the angle ABC of the polygon is the supple-

ment of the angle at the centre (I. 68).

PROPOSITION III.—THEOREM.

9. Regular polygons of the same number of sides are similar.

Let ABODE, A'B'C'D'E', be

regular polygons of the same num-

ber of sides
; then, they are similar.

For, 1st, they are mutually equi-

angular, since the magnitude of

an angle of either polygon de-

pends only on the number of the

sides (7 and 8), which is the same in both.

2d. The homologous sides are proportional, since the ratio

AB : A'B' is the same as the ratio BC : B'C, or CD : CD', etc.

Therefore the polygons fulfill the two conditions of similarity.

10. Corollary. The perimeters of regular polygons of the same num'

her of sides are to each other as the radii of the circumscribed circles,

or as the radii of the inscribed circles ; and their areas are to each other

as the squares of these radii. For, these radii are homologous lines

of the similar polygons (III. 43), (IV. 24).

PROPOSITION IV.—PROBLEM.

11. To inscribe a square in a given circle.

Draw any two diameters AC, BD, perpen-

licular to each other, and join their extremities

)y the chords AB, BC, CD, DA ; then, ABCD
an inscribed square (II. 12), (II. 59).

(/
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13. Scholium. In the right triaDgle ABO, we have AB* =
OA^ + OB' = 20A\ whence AB = OA. V% by which the side of

the inscribed square can be computed, the radius being given.

PROPOSITION v.—PROBLEM.

14. To inscribe a regular hexagon in a given circle.

Suppose the problem solved, and let

ABCDEFhe a regular inscribed hexagon.

Join BE and AD; since the arcs AB, BG,

CDy etc., are equal, the lines BE, AD, bisect

the circumference and are diameters inter-

secting in the centre 0. The inscribed angle

ABO is measured by one-half the arc AFE,
that is, by AF, or one of the equal divisions of the circumference ;"

the angle A OB at the centre is also measured by one division, that

IS, hj AB; and the angle BAO == ABO; therefore the triangle

ABO \& equiangular, and AB =^ OA. Therefore the side of
tho^g

inscribed regular hexagon is equal to the radius of the circle. ^|
Consequently, to inscribe a regular hexagon, apply the radius six

times as a chord.

15. Corollary. To inscribe an equilateral triangle, ACE, join the

alternate vertices of the regular hexagon. fli

16. Scholium. In the right triangle ACD, we have J-0' =
AD'— DC'= (2A Of — To' = SAO'; whence, AC= AO.V%
by which the side of the inscribed equilateral triangle can be com-

puted, the radius being given.

The apothem, OH, of the inscribed equilateral triangle is equal to

one-half the radius OB; for the figure AOCB is a rhombus and its

diagonals bisect each other at right angles (I. 110).

The apothem of the inscribed regular hexagon is equal to one-half

the side of the inscribed equilateral triangle, that is, to l/3 ;
for

the perpendicular from upon AB is equal to the perpendicular

from A upon OB, that is, to AH.
The angle at the centre of the regular inscribed hexagon is ^ of

4 right angles, that is, f of one right angle = 60°.
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The angle of the hexagon, or ABC, is f of a right angle = 120°.

The angle at the centre of the inscribed equilateral triangle is f of

one right angle = 120°.

PROPOSITION VI.—PROBLEM.

17. To inscribe a regular decagon in a given circle.

Suppose the problem solved, and let

ABC X, be a regular inscribed decagon.

Join AF, BG; since each of these lines bi-

sects the circumference, they are diameters and

intersect in the centre 0. Draw J5^ intersect-

ing OA in 31.

The angle A3fB is measured by half the

sum of the arcs KF and AB (II. 64), that is,

>y two divisions of the circumference; the inscribed angle 3IAB is

measured by half the arc BF, that is, also by two divisions
;
there-

fore A3IB is an isosceles triangle, and MB = AB.

Again, the inscribed angle MB is measured by half the arc KG,
that is, by one division, and the angle 3I0B at the centre has the

same measure
;
therefore 03IB is an isosceles triangle, and 031=

MB = AB.

The inscribed angle MBA, being measured by half the arc AK,
khat is, by one division, is equal to the angle AOB. Therefore the

isosceles triangles A31B and AOB are mutually equiangular and

nmilar, and give the proportion

whence

OA'.AB = ABi AM,

OA X A3I=AB'= 031';

i

at is. the radius OA is divided in extreme and mean ratio at 31

(III. 73) ;
and the greater segment 031 is equal to the gide AB of

the inscribed regular decagon.

Consequently, to inscribe a regular decagon, divide the radius in

extreme and mean ratio (III. 74), and apply the greater segment ten

times as a chord.
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18. Corollary. To inscribe a regular penta-

gon, ACEGK, join the alternate vertices of the

regular inscribed decagon.

19. JScholium, By (III. 75), we have

AB = OA.
VI

by which the side of the regular decagon may be computed from the

radius.

The angle at the centre of the regular decagon is f of one right

angle = 36°
;
the angle at the centre of the regular pentagon is \

of one right angle = 72°.

The angle ABC of the regular decagon is f of one right angle =
144°

;
the angle A CE of the regular pentagon is

-f
of one right

angle = 108°.

PROPOSITION VII.-PROELEM.

20. To inscribe a regular pentedecagon in a given circle.

Suppose AB is the side of a regu-

lar inscribed pentedecagon, or that

the arc AB is ^ of the circumfer-

ence.

Now the fraction
-^-^

:z^ ^
—

J^ ;
therefore the arc AB \s the dif-

ference between ^ and
y\j-

of the circumference. Hence, if we

inscribe the chord AC equal to the side of the regular inscribed

hexagon, and then CB equal to that of the regular inscribed decagon,

the chord AB will be the side of the regular inscribed pentedecagon

required.

21. Scholium. Any regular inscribed polygon being given, a regu-

lar inscribed polygon of double the number of sides can be formed

by bisecting the arcs subtended by its sides and drawing the chords

of the semi-arcs (4). Also, any regular inscribed polygon being

given, a regular circumscribed polygon of the same number of sides

lan be formed (3). Therefore, by means of the inscribed square, we

can inscribe and circumscjibe, successively, regular polygons of 8,

16, 32, etc., sides
; by means of the hexagon, those of 12, 24, 48, etc.,

sides
; by means of the decagon, those of 20, 40, 80, etc., sides

; and.
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finally, by means of the pentedecagon, those of SO, 60, 120, etc.,

sides.

Until the beginning of the present century, it was supposed that

these were the only polygons that could be constructed by elementary

geometry, that is, by the use of the straight line and circle only.

Gauss, however, in his Disquisitiones Arithrneticce, LipsiWy 1801,

proved that it is possible, by the use of the straight line and circle

only, to construct regular polygons of 17 sides, of 257 sides, and in

general of any number of sides which can be expressed by 2" -j- 1,

n being an integer, provided that 2^* + 1 is a prime number.

PROPOSITION VIII.—THEOREM.

22. The area of a regular polygon is equal to half the product oj its

perimeter and apothem.

For, straight lines drawn from the centre to the vertices of the

polygon divide it into equal triangles whose bases are the sides of

the polygon and whose common altitude is the apothem. The area

of one of these triangles is equal to half the product of its base and

altitude (IV. 13) ; therefore, the sum of their areas, or the area

of the polygon, is half the product of the sum of the bases by the

common altitude, that is, half the product of the perimeter and

apothem.

PROPOSITION IX.—THEOREM.

23. The area of a regular inscribed dodecagon is equal to three times

the square of the radius.

Let AB, BC, CD, DE, be four consecu-

tive sides of a regular inscribed dodeca-

gon, and draw the radii OA, OE; then,

the figure ABODE is one-third of the

dodecagon, and we have only to prove

that the area of this figure is equal to

the square of the radius.

Draw the radius OD
;
at A and D draw

the tangents AF and GDF meeting in F;

join AC and CE, and let J.Oand OEhe produced to meet the tan-

13 «
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gent GF in H and G. The arc AD, containing three of the sidea

of the dodecagon, is one fourth of the cir-

cumference
;
therefore the angle A OD is

a right angle, and OF is a square de-

scribed on the radius.

Since A C and CE are sides of the regu-

lar inscribed hexagon, each is equal to

the radius
;
therefore OA CE is a paral-

lelogram. Hence also GO^lTand GECH
are parallelograms.

The triangles D^Oand BCA are equal (I. 80). The area of the

triangle DEC is one-half that of the parallelogram EH (IV. 14) ;

therefore the two triangles DEC and BCA are together equivalent

to the parallelogram EEC. Adding the parallelogram OC to these

equals, we have the figure OABCDE equivalent to the parallelogram

OH. But the parallelogram OH is equivalent to the square OF
(IV. 11); therefore the .figure OABCDE, or one-third the dodecagon,

is equivalent to the square OF, that is, to the square of the radius.

Therefore, the area of the whole dodecagon is equal to three times

the square of the radius.

24. Scholium. The area of the circumscribed square is evidently

equal to four times the square of the radius. The area of the circle

is greater than that of the inscribed regular dodecagon, and less than

ihat of the circumscribed square; therefore, if the square of the

radius is taken as the unit of surface, the area of a circle is greater

than 3 and less than 4.

I
PROPOSITION X.—PROBLEM.

25. Given the perimeters of a regular inscribed and a similar cir-

rumscribed polygon, to compute the perimeters of the regular inscribed

and circums&rihed polygons of double the number of sides.

Let AB be a side of the given inscribed polygon, CD a side of the

similar circumscribed polygon, tangent to the arc AB at its middle

point E: Join AE, and at A and B draw the tangents AF and

BG; then AE is a side of the regular inscribed polygon of double
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the number of sides, and FO is a side

of the circumscribed polygon of double

the number of sides' (4).

Denote the perimeters of the given \ \ \

inscribed and circumscribed polygons \ \ ;

by p and P, respectively ;
and the pe- \ \ i /

rimeters of the required inscribed and '%'

circumscribed polygons of double the

number of sides by p' and P', respectively.

Since 0(7 is the radius of the circle circumscribed about the poly-

gon whose perimeter is P, we have (10),

P_qc qc
p~ OA^^ OE*

and since OF bisects the angle COE, we have (III. 21),

qc_ CF^
0E~ FE

therefore,

P__CF
p
~
FE

whence, by composition,

P_±jp _ CFJ-JE_ CE

2p

~
2FE "FG

Now FG is a side of the polygon whose perimeter is P', and is con-

tained as many times in P' as CE is contained in P, hence (III. 9),

CEP^
FG~ P''

and therefore,

p+p
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acute angles ^^^and FEN are equal,

and give
AH EN
AE

~
EF

Since AH and AE are contained the

same number of times in p and p\ re-

spectively, we have o

AH p
AE~P''

and since EN and EF are contained the same number of times in

jo' and P', respectively, we have

EF~ P''

therefore, we have

P' F''

whence __^___
p' = Vp X P', [2]%

Therefore, from the given perimeters p and P, we compute P' by
the equation [1], and then with p and P' we compute p' by the

equation [2].

26. Definition. Two polygons are isoperimetric when their peri]

ters are equal.

PROPOSITION XI.—PROBLEM.

27. Given the raditis and apothem of a regular polygon, to compute

the radius and apothem of the isoperimetric polygon of double the num-

ber of sides.

Let AB be a side of the given regular polygon, the centre of

this polygon, OA its radius, OB its apothem.

Produce DO to meet the circumference of the

circumscribed circle in O'; join O'A, O'B;

let fall OA^ perpendicular to O'A, and

through A' draw J.'P' parallel to AB.

Since the new polygon is to have twice as

many sides as the given polygon, the angle at

its centre must be one-half the angle AOP>\
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therefore the angle AO'B, which is equal to one-half of AOB
(II. 57), is equal to the angle at the centre of the new polygon.

Since the perimeter of the new polygon is to be equal to that of

the given polygon, but is to be divided into twice as many sides,

each of its sides must, be equal to one-half of AB\ therefore A'B',

which is equal to one-half of AB (I. 121), is a side of the new

polygon ;
O'A' is its radius, and O'D' its apothem.

If, then, we denote the given radius OA by R, and the given

apothem OD by r, the required radius O'A' by jB', and the apothem
O'D' by r'i we have

0'/>' =^ = -^-^-±-^
2 2

^

'

or

r' =^- [1]

In the right triangle OA'O'y we have (III. 44),

WA'=00' X O'D',

or

E' = VRy:^'\ [2]

therefore, r' is an arithmetic mean between R and r, and jR' is a

geometric mean between R and r'.

MEASUREMENT OF THE CIKCLE.

The principle which we employed in the comparison of incommen-

surable ratios (II. 49) is fundamentally the same as that which we

are about to apply to the measurement of the circle, but we shall

now state it in a much more general form, better adapted for subse-

quent application.

28. Definitions. I. A variable quantity, or simply, a variable, is a

quantity which has different successive values.

II. When the successive values of a variable, under the conditions

imposed upon it, approach more and more nearly to the value of

some fixed or constant quantity, so that the difference between the

variable and the constant may become less than any assigned quan-

tity, without becoming zero, the variable is said to approach indefi-

13=^*
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nitely to the constant ; and the constant is called the limit of the

variable.

Or, more briefly, the limit of a variable is a constant quantity to

which the variable, under the conditions imposed upon it, approaches

indefinitely.

As an example, illustrating these definitions, let a point be re-

quii"fid to move from A to B under the fol-

lowing conditions : it shall first move over
| | i i i

one-half of AB, that is to C; then over
^ ^

one-half of CB, to C"
;
then over one-half of C'B, to G" ;

and so

on indefinitely ;
then the distance of the point from -4 is a variable^

and this variable approaches indefinitely to the constant AB, as its

lirnit, without ever reaching it.

As a second example, let A denote the angle of any regular poly-

gon, and n the number of sides of the polygon ; then, a right angle

being taken as the unit, we have (8),

^ = 2-1
n

The value of J. is a variable depending upon n; and since n may be

4
taken so great that - shall be less than any assigned quantity how-

ever small, the value of ^ approaches to two right angles as its limit,

but evidently never reaches that limit.

29. Principle of Limits. Theorem. If two variable quantities

are always equal to each other and each approaches to a limit, the two

limits are iiecessarily equal.

For, two variables always equal to each other present in fact but

one value, and it is evidently impossible that one variable value

shall at the same time approach indefinitely to two unequal limits.

30. Theorem. The limit of the product of two variables is the pro-

duct of their limits. Thus, if x approaches indefinitely to the limit a,

and y approaches indefinitely to the limit b, the product xy must

approach indefinitely to the product ab
;
that is, the limit of the pro-

duct xy is the product ab of the limits of x and y.

31. Theorem. If two variables are in a constant ratio and each

approaches to a limit, these limits are in the same constant ratio.

Let X and y be two variables in the constant ratio m, tliat is, let
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X = my; and let their limits be a and b respectively, Since y ap-

proaches indefinitely to b, my approaches indefinitely to mb
; there-

fore we have x and my, two variables, always equal to each other,

whose limits are a and mb, respectively, whence, by (29), a = mb;
that is, a and b are in the constant ratio m.

PROPOSITION XII.—THEOREM.

32. An arc of a circle is less than any line which envelops it and has

the same extremities.

Let AKB be an arc of a circle, AB its chord
j

and let ALB, AMB, etc., be any lines enveloping

it and terminating at A and B.

Of all the lines AKB, ALB, AMB, etc. (each

of which includes the segment, or area, AKB, be-

tween itself and the chord AB), there must be at least one minimum,

or shortest line.* Now, no one of the lines ALB, AMB, etc., envelop-

ing AKB, can be such a minimum
; for, drawing a tangent CKD to

the arc AKB, the line A CKDB is less than A CLDB
;
therefore

ALB is not the minimum ;
and in the same way it is shown that no

other enveloping line can be the minimum. Therefoi*, the arc AKB
is the minimum.

33. Corollary. The circumference of a circle is less than the perimeter

of any polygon circumscribed about it.

34. Scholium. The demonstration is applicable when AKB is any
convex curve whatever.

PROPOSITION XIII.—THEOREM.

35. If the number of sides of a regular polygon inscribed in a circle

be increased indefinitely, the apothem of the polygon will approach to

the radius of the circle as its limit.

* If we choose to admit the possibility of two or more equal shortest lines, still

we say that of all the lines, AKB, ALB, etc., there must be one which is either

{he minimum line, or one of the minimum lines.
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Let AB be a side of a regular polygon inscribed

in the circle whose radius is OA ; and let OD be

its apothem.

In the triangle OAD we have (I. 67),

OA— 0D< AD.

•N'ow, by increasing the number of sides of the polygon, the length

of a side AB may evidently be made as small as we please, or less

than any quantity that may be assigned. Hence AD, or ^AB, and

still more OA — OD, which is still less than AD, may become less

than any assigned quantity ;
that is, the apothem OD approaches to

the radius OA as its limit (28).

PROPOSITION XIV.—THEOREM.

36. The circumference of a circle is the limit to which the perimeters

of regular inscribed and circumscribed polygons approach when the

number of their sides is increased indefinitely; and the area of the

circle is the limit of the areas of these polygons.

Let AB and CD be sides of a regular inscribed

and a similar circumscribed polygon ;
let r denote

the apothem OE, E the radius OF, p the perimeter

of the inscribed polygon, P the perimeter of the cir-

cumscribed polygon. Then, we have (10),

£==—
Pi: r'

whence, by division (III. 10),

Now we have seen, in the preceding proposition, that by increasing

the number of sides of the polygons, the difference B — r may be

made less than any assigned quantity ; consequently the quantity

p, may also be made less than any assigned
|x(iJ r), or P

quantity. But P being always greater, and p always less, than the

circumference of the circle, the difference between this circumference
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and either Por^ is less than the difference P— p, and consequently

may also be made less than any assigned quantity. Therefore, the

circumference is the common limit of P and p.

Again, let s and S denote the areas of two similar inscribed and

circumscribed' polygons. The difference between the triangles COD
and A OB is the trapezoid CABD, the measure of which is

\{CD -\- AB) X EF) therefore, the difference between the areas of

the polygons is

^-5 = i(P + i>) X (i^-r);

consequently,

/S — s < P X (P — r).

Now by increasing the number of sides of the polygons, the quantity

P X {B — r), and consequently also S — s, may be made less than

any assigned quantity. But S being always greater, and s always less,

than the area of the circle, the difference between the ariea of the

circle and either ^ or s is less than the difference S— s, and conse-

quently may also be made less than any assigned quantity. There-

fore, the area of the circle is the common limit of /S' and s.

PKOPOSITION XV.—THEOKEM.

37. The circumferences of two circles are to each other as their radiij

and their areas are to each other as the squares of their radii.

Let B and P' be the radii of

the circles, C and C their cir-

cumferences, 8 and S' their areas.

Inscribe in the two circles simi-

lar regular polygons; let P and

P' denote the perimeters, A and

A' the areas of these polygons;

then, the polygons being similar, we have (10),

P__B A — 31
F'~~B'' A'~B"'

These relations remain the same whatever may be the number of

Bides in the polygons, provided there is the same number in each (9).

When this number is indefinitely increased, P approaches C as its
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limit, and P' approaches C as its

limit (36) ; and since Pand P' are

in the constant ratio of R to R\
their limits are in the same ratio

(31); therefore

C R^
R'

[1]

And since the limit of A is S, and the limit of A' is S\ it follows

in the same manner that

S_
R'

R'^
[2]

«S8. Corollary I. The proportion [1] is by (III. 9) the same as

0'

2R

2R'

and the proportion [2] is the same as

S'~ 4.R"~~ (2R'y''

therefore, the circumferences of circle are to each other as their diame-

ters, and their areas are to each other as the squares of their diameters, I
39. Corollary II. Similar arcs, as AB,

A'B'j are those which subtend equal an- \ /'

gles at the centres of the circles to which

they belong; they are therefore like

parts of their respective circumferences,

and are in the same ratio as the circumferences. Also the similar

sectors A OB and A'O'B' are like parts of the circles to which they

belong. Therefore, similar arcs are to each other as their radii, and

similar sectors are to each other as the squares of their radii.

40. Corollary III. The ratio of the circumference of a circle to its

diameter is constant; that is, it is the same for all circles. For, from

the proportion [3] we have

Yl

_0
2R 2R''
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This constant ratio is usually denoted by r, so that for any circle

whose diameter is 2R and circumference 0, we have

— =
TT, or 0= 2t.R.

2R

41. Scholium. The ratio ;r is incommensurable (as can be proved

by the higher mathematics), and can therefore be expressed in num-

bers only approximately. The letter ;r, however, is used to symbolize

its exact value.

PROPOSITION XVI.—THEOREM.

42. The area of a circle is equal to half the product of its circum-

ference by its radius.

Let the area of any regular polygon circum-

scribed about the circle be denoted by J., its

perimeter by P, and its apothem which is equal

to the radius of the circle by B ;
then (22),

A =
iPXR,orj

= iE.

Let the number of the sides of the polygon be continually doubled,

then A approaches the area S of the circle as its limit, and P ap-

proaches the circumference C as its limit
;
but A and P are in the

constant ratio ^B ;
therefore their limits are in the same ratio (31),

and we have

|=iiJ,or^ iCxB. [IJ

43. Corollary I. The area of a circle is equal to the square of its

radius multiplied by the constant number tt. For, substituting for C
its value 27rB in [1], we have

S=7:B\

44. Corollary II. The area of a sector is equal to half the product of

its arc by the radius. For, denote the arc ab of the sector aOb hy c,

and the area of the sector by s
; then, since c and s are lilie parts of

G and S, we have (IIL 9),
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8_ c_ ^c X B
S~ C~~ ^G X B

I

But S=iCX B; therefore s =
-J-c X i?. -

45. Scholium. A circle may be regarded as a regular polygon of an

infinite number of sides. In proving that the circle is the limit to-

wards which the inscribed regular polygon approaches when the

number of its sides is increased indefinitely, it was tacitly assumed

that the number of sides is always finite. It was shown that the dif-

ference between the polygon and the circle may be made less than

any assigned quantity by making the number of sides sufficiently

great; but an assigned difference being necessarily a finite quantity,

there is also scjme finite number of sides sufficiently great to satisfy

the imposed condition. Conversely, so long as the number of sides

is finite, there is some finite difference between the polygon and the

circle. But if we make the hypothesis that the number of sides of

the inscribed regular polygon is greater than any finite number, that

is, infinite, then it must follow that the difference between the poly-

gon and the circle is less than any finite quantity, that is, zero ; and

consequently, the circle is identical with the inscribed polygon of an

infinite number of sides.

This conclusion, it will be observed, is little else than an abridge

statement of the theory of limits as applied to the circle
;
the abridg-

ment being effected by the hypothetical introduction of the infinite

into the statement.

Ji

PEOPOSITION XVII.—PEOBLEM.

46. To compute the ratio of the^circumference of a circle to its diame-

ter, approximately.

First Method, called the Method of Perimeters. In this

method, we take the diameter of the circle as given and compute the

perimeters of some inscribed and a similar circumscribed regular

polygon. We then compute the perimeters of inscribed and circum-

scribed regular polygons of double the number of sides, by Propo-

sition X. Taking the last-found perimeters as given, wo compute

the perimeters of polygons of double the number of sides by the same

method
;
and so on. As the number of sides increases, the lengths
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of the perimeters approach to that of the circumference (36) ; hence,

their successively computed values will be successive nearer and

nearer approximations to. the value of the circumference.

Taking, then, the diameter of the circle as given = 1, let us begin

by inscribing and circumscribing a square. The perimeter of the

inscribed square = 4 X -j X V^2 = 2i/2 (13) ;
that of the circum-

scribed square = 4
; therefore, putting

P=4,
p = 2|/2 = 2.8284271,

we find, by Proposition X., for the perimeters of the circumscribed

and inscribed regular octagons,

r>. __ 2p X P
P-hP

= 3.3137085,

y = |/p X P' =-3.0614675.

Then taking these as given quantities, we put

P = 3.3137085, p = 3.0614675,

and find by the same formulae for the polygons of 16 sides

P' = 3.1825979, / = 3.1214452.

Continuing this process, the results will be found as in the followmg

TABLE.*

Number
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From the last two numbers of this table, we learn that the cir-

cumference of the circle whose diamtter is unity is less than

3.1415928 and greater than 3.1415926
;
and since, when the diame-

ter =^ 1, we have C= tt, (40), it follows that'

:r = 3.1415927

within a unit of the seventh decimal place.

Second Method, called the Method of Isoperimeteks. This

method is based upon Proposition XI. Instead of taking the diame-

ter as given and computing its circumference, we take the circum-

ference as given and compute the diameter
;
or we take the semi-

circumference as given and compute the radius.

Suppose we assume the semi-circumference ^C=l; then since

C= 27ri?, we have

E R'

that is, the value of tt is the reciprocal of the value of the radius o

the circle whose semi-circumference is unity.

Let ABCD be a square whose semi-perimeter
= 1

;
then each of its sides ^=

^. Denote its

radius OA by R, and its apothem OE by r
;
then

we have
r = \ =-0.2500000,

i2=il/2^= 0.3535534.

Now, by Proposition XI., we compute the apothem r' and the

radius R' of the regular polygon of 8 sides having the same pe-

rimeter as this square ; we find

r' = "^^tr ^ 0.3017767,
2

R' = i/R X r' = 0.3266407.

Again, taking these as given, we put

r = 0.3017767, R = 0.3266407,

and find by the same formulae, for the apothem and radius of the

isoperimetric regular polygon of 16 sides, the values

r' = 0.3142087, R' = 0.3203644.
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Continuing this process, the results are found as in the following

TABLE.

Number of sides.
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I taS48. Scholium II. Archimedes (born 287 B. C.) was the first,

assign an approximate value of -. By a method similar to the

above "
first method," he proved that its value is between Z\ and

3ff, or, in decimals, between 3.1428 and 3.1408 ; he therefore

assigned its value correctly within a unit of th^ third decimal place.

The number 3|, or %f^ usually cited as Archimedes' value of n-

(although it is but one of the two limits assigned by him), is often

used as a sufficient approximation in rough computations.

Metius (A. D. 1640) found the much more accurate value f-ff»

which correctly represents even the sixth decimal place. It is easily

remembered by observing that the denominator and numerator writ-

ten consecutively, thus 113|355, present the first three odd numbers

each written twice.

More recently, the value has been found to a very great number

of decimals, by the aid of series demonstrated by the DiflTerential

Calculus. Clausen and Dase of Germany (about A. D. 1846), com-

puting independently of each other, carried out the value to 200

decimal places, and their results agreed to the last figure. The

mutual verification thus obtained stamps their results as thus far

the best established value to the 200th place. (See Schumacher's

Asironomische Nachrichten, No. 589.) Other computers have car-

ried the value to over 500 places, but it does not appear that their

faults have been verified.

The value to fifteen decimal places is

.r = 3.141592653589793. d
For tlie greater number of practical applications, the value tz= 3.1416

is sufficiently accurate.

MAXIMA AND MINIMA OF PLANE FIGUEES.

49. Definition. Among quantities of the same kind, that which is

greatest is called a maximum ; that which is least, a minimum.

Thus, the diameter of a circle is a maximum among all straight

lines joining two points of the circumference
;
the perpendicular is a

minimum among all the lines drawn from a given point to a given

straight line.
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An enclosed figure is said to be a maximum or a minimum, when

its area is a maximum or a minimum.

60. Definition. Any two figures are called isoperimetrie when

their perimeters are equal.

PROPOSITION XVIII.—THEOREM.

51. Of all triangles having the same base and equal areas^ that which

is isosceles has the minimum perimeter.

Let ABC be an isosceles triangle, and A'BC

any other triangle having the same base and an y
equal area

; then, AB -\- AC < A'B -\- A' C. ^ ZX\
For, the altitudes of the triangles must be /y^\

equal (IV. 15), and their vertices A and A lie ^ ^
in the same straight Jine MN parallel to BC.

Draw CND perpendicular to MN^ meeting BA produced in D
; join

A!D. Since the angle NAC = ACB =- ABC= DAN, the right

triangles ACN, ADN, are equal ; therefore, AN is perpendicular to

CD at its middle point N, and we have AD = AC, A'D = A' C.

But BD < A'B + A'D] that h, AB -^ AG< A'B + A' C.

52. Corollary. OJ all triangles having the same area, that which is

equilateral has the minimum perimeter. For, the triangle having the

minimum perimeter enclosing a given area must be isosceles which-

ever side is taken as the base.

PROPOSITION XIX.—THEOREM.

53. Of all triangles having the same hose and equal perimeters, thai

which is isosceles is the maximum.

Let ^J50 be an isosceles triangle, and let A'BC,
^

^ ^

standing on the same base BC, have an equal /S^^^^^\\
perimeter ;

that is, let AlB -\- A!C =^ AB -{- A O; /^'^"'^^ ^
then, the area of ^j5C is greater than the area of

A'BC.

For, the vertex A' must fall between BC and the parallel MN
drawn through A ; since, if it fell upon MN, we should have, as in

the preceding demonstration, A'B -\- A' C y> AB -\- AC. and if it
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fell above MN, the sum A'B -{- A' C would be still greater. There-

fore the altitude of the triangle ABC is greater than that of A'BC,
and hence also its area is the greater.

54. Corollary, Of all isoperimetric triangles, that which is equilai

eral is the maximum. For, the maximum triangle having a given

perimeter must be isosceles whichever side is taken as the base.

PEOPOSITION XX.—THEOREM.

55. Of all triangles formed with the same two given sides, that in

which these sides are perpendicular to each other is the maximum.

Let ABC, A'BC, be two triangles having the a

sides AB, BC, respectively equal to A'B, BC;
then, if the angle ABC is a right angle, the area

of the triangle ABC is greater than that of the

triangle A'BC.

For, taking BC as the common base, the altitude AB of the tri-

angle ABC is evidently greater than the altitude A'D of the

triangle A'BC.

I

PROPOSITION XXI.—THEOREM. i
56. Of all isoperimetric plane figures, the circle is the maximum.

1st. With a given perimeter, there may be constructed an hifinite ^ :

number of figures of different forms and various areas. The areaW

may be made as small as we please (ly. 35), but obviously cannot

be increased indefinitely. Therefore, among all the figures of the

same perimeter there must be .one maximum figure, or several maxi-

mum figures of diflTerent forms and equal areas.

2d. Every closed figure of given perimeter containing a maximum

urea must necessarily be convex, that is, such that any straight line

joining two points of the perimeter lies wholly within the figure.

Let ACBNA be a non-convex figure, the

straight line AB, joining two of the points in its /^ "^
perimeter, lying without the figure ; then, if the / X
re-entrant portion ACB be revolved about the

\^ ^l:)^'

line AB into the position ACB, the figure \ ^
ACBNA has the same perimeter as the first ^~ -^
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figure, but a greater area. Therefore, the non-convex figure cannot

be a maximum among figures of equal perimeters.

3d. Now let ACBFA be a maximum figure formed with a given

perimeter; then we say that, taking any

point A in its perimeter and drawing AB ^,^""^7"^-^'

so as to divide the perimeter into two equal y^^ / YsN„

parts, this line also divides the area of the f / / ^y^^'^\

figure into two equal parts. For, if the
\\ /i^^^^^"^^^ W)^'

area of one of the parts, as AFB, were ^\" '";^

greater than that of the other part, A CB,
—

q-^"^^

then, if the part AFB were revolved upon

the line AB into the position AF'B, the area of the figure AF'BFA
would be greater than that of the figure A CBFA, and yet would

have the same perimeter; thus the figure ACBFA would not be a

maximum.

Hence also it appears that, ACBFA being a maximum figure,

AF'BFA is also one of the maximum figures, for it has the same

perimeter and area as the former figure. This latter figure is sym-

metrical with respect to the line ABy since by the nature of the revo-

lution about ABj every line FF' perpendicular to ABj and termi-

nated by the perimeter, is bisected by AB (1. 140).* Hence F and F'

being any two symmetrical points in the perimeter of this figure, the

triangles AFB and AF'B are equal.

Now the angles AFB and AF'B must be right angles ;
for if they

were not right angles the areas of the triangles AFB and AF'B
could be increased without varying th'e lengths of the chords AF^

FB, AF', F'B (55), and then (the segments AGF, FEB, AG'F',

F'E'B, still standing on these chords), the whole figure would have

its area increased without changing the length of its perimeter; con-

sequently the figure AF'BFA would not be a maximum. There-

fore, the angles i^and F' are right angles. But jPis any point in the

curve AFB; therefore, this curve is a semi-circumference (H. 59, 97).

Hence, if a figure ACBFA of a given perimeter is a maximum,
its half AFB, formed by drawing AB from any arbitrarily chosen

point A in the perimeter, is a semicircle. Therefore the whole figure

is a circle.'*'

* This demonstration is due to Steiner, Crelle^s Journal fur die reine uwf

angewandte Mathematik, vol. 24. (Berlin, 1842.)
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PROPOSITION XXIL—THEOREM.

57. Of all plane figures containing the same area, the circle has the

minimum perimeter.

Let (7 be a circle, and A any-

other figure having the same area
f

\ / \

as C\ then, the perimeter of is

less than that of A.

For, let ^ be a circle having

the same perimeter as the figure

A
; then, by the preceding theo-

rems A <:^ B, OY G < B. Now, of

two circles, that which has the less

area has the less perimeter ;
there-

fore, the perin^eter of Cis less than that of B, or less than that of ^.

PROPOSITION XXIII.—THEOREM. J
58. OJ all the polygo7is constructed with the same given sides, thai is

the maximum which can he inscribed in a circle.

Let P be a polygon constructed with the sides a, b, c, d, e, and

inscribed in a circle S, and let P'

be any other polygon constructed

with the same sides and not inscrip-

tible in a circle.; then, P ^ P'.

For, upon the sides a, b, c, etc.,

of the polygon P' construct cir-

cular segments equal to those stand-

ing on the corresponding sides of P. The whole figure S' thus

formed has the same perimeter as the circle >S; therefore, area of

S^ area of S' (56); subtracting the circular segments from both,

we have P>P'.

i
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PROPOSITION XXIV.—PROBLEM.

59. Oj all isoperimetric polygons having the same number of sides^

the regular polygon is the mojcimum.

1st. The maximum polygon P, of all the isope-

rimetric polygons of the same number of sides must

have its sides equal ;
for if two of its sides, as AB',

B' C, were unequal, we could, by (53), substitute for

the triangle AB'C the isosceles triangle ABC
having the same perimeter as ^^'Oand a greater

area, and thus the area of the whole polygon could be increased with

out changing the length of its perimeter or the number of its sides.

2d. The maximum polygon constructed with the same number of

equal sides must, by (^5S), be inscriptible in a circle
; therefore it

must be a regular polygon.

PROPOSITION XXV.-THEOREM.

60. Of all polygons having the same number of sides and the same

area, the regular polygon has the minimum perimeter.

Let Pbe a regular polygon, and i/

any irregular polygon having the

same number of sides and the same

area as P; then, the perimeter of P is

less than that of M.

For, let iV be a regular polygon

having the same perimeter and the

same number of sides as ilf
; then, by

(59), if < iV, or P < K But of two

regular polygons having the same

number of sides, that which has the

less area has the less perimeter ; therefore the perimeter of P is less

than that of N, or less than that of if.

15
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PROPOSITION XXVI.—THEOREM.

Ql, Jf a regular polygon be constructed with a given perimeterj
its

area will be the greater^ the greater the number of its sides.

Let F be the regular polygon of three

sides, and Q the regular polygon of four

sicles, constructed with the same given

perimeter. In any side AB of P take

any arbitrary point D ;
the polygon P

may be regarded as an irregular poly-

gon of four sides, in which the sides AD, DB, make an angle with

each other equal to two right angles (I. 16); then, the irregular

polygon P of four sides is less than the regular isoperimeti'ic polygon

Q of four sides (59). In the same manner it follows that Q is less

than the regular isoperimetric polygon of five sides, and so on.

PROPOSITION XXVII.—THEOREM.

62. If a regular polygon be constructed with a given area, its perim-i

eter will be the less, the greater the number of its sides.

Let P and Q be regular polygons

having the same area, and let Q have

the greater number of sides; then, the

perimeter of P will be greater than that

of §.

For, let P be a regular polygon having

the same perimeter as Q and the same

number of sides as P; then, by (61),

Q > P, or P '> R\ therefore the perimeter of P is greater than

that of 11, or greater than that of Q.



GEOMETRY OF SPACE.

I

BOOK VI.

THE PLANE. POLYEDRAL ANGLES.

1. DEFimrioN. A plane has already been defined as a surface such

that the straight line joining any two points in it lies wholly in the

surface.

Thus, the surface MN is a plane, if, A and B
being any two points in it, the straight line AB
lies wholly in the surface.

The plane is understood to be indefinite in

extent, so that, however far the straight line is produced, all its

points lie in the plane. But to represent a plane in a diagram, we

are obliged to take a limited portion of it, and we usually represent

it by a parallelogram supposed to lie in the plane.

DETERMINATION OF A PLANE.

PROPOSITION I.—THEOREM.

2. Through any given straight line an infinite number .of planes may
he passed.

Let AB be a given straight line. A
straight line may be drawn in any plane,

and the position of that plane may be

changed until the line drawn in it is

brought into coincidence with AB. We shall then have one plane
171
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passed through AB ;
and this plane may be turned upon AB as an

axis and made to occupy an infinite number of positions.

3. Scholium. Hence, a plane subjected to the single condition that

it shall pass through a given straight line, is not fixed, or deter-

minate, in position. But it will become determinate if it is required

to pass through an additional point, or line, as shown in the next

pr()position.

A plane is said to be determined by given lines, or points, when it

is the only plane which contains such lines or points.

PROPOSITION II.—THEOREM.

4. A plane is determined, 1st, by a straight line and a point ivithout

that line; 2d, by two intersecting straight lines; 3d, by three points not

in the same straight line ; 4th, by two parallel straight lines.

1st. A planeMN being passed through a given straight line ABy and

then turned upon this line as an axis until it

contains a given point C not in the line ABy
is evidently determined

; for, if it is then

turned in either direction about AB, it will

cease to contain the point C The plane is

therefore determined by the given straight

line and the point without it.

2d. If two intersecting straight lines ABy A C, are given, a plane

passed through AB and any point C (other than the point A) of ACy
contains the two straight lines, and is determined by these lines.

8d. If three points are given, J., By C, not in the same straight

line, any two of them may be joined by a straight line, and then the

plane passed through this line and the third point, contains the three

points, and is thus determined by them.

4th. Two parallel lines, AB, CD, are by
^*' '"

definition (I. 42) necessarily in the same

plane, and there is but one plane containing e

them, since a plane passed through one of

them, AB, and any point E of the other, is determined in position.

5. Corollary. The intersection of two planes is a straight line.

For, the intersection cannot contain three points not in the same

straight line, sii ce only one plane can contain three such points.

I
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PERPENDICULAES AND OBLIQUE LINES TO PLANES.

6. Definition. A straight line is. perpendicular to a plane when it

is perpendicular to every straight line drawn in the plane through

its foot, that is, through the point in which it meets the plane.

In the same case, the plane is said to be perpendicular to the line.

PROPOSITION III.—THEOREM.

7. From a given point without a planer one perpendicular to the plane

can he drawn, and hut one.

Let A be the given point, and MN the plane.

If any straight line, as AB, is drawn from A
to a point B of the plane, and the point B is

then supposed to move in the plane, the length

of AB will vary. Thus, if B move along a

straight line BB' in the plane, the distance AB
will vary according to the distance of B from

the foot C of the perpendicular AC let fall from A upon BB',

Now, of all the lines drawn from A to points in the plane, there

must be one minimum, or shortest line. There cannot be two equal

shortest lines
;
for if AB and AB' are two equal straight lines from

A to the plane, each is greater than the perpendicular AC let fall

from A upon BB'
\
hence they are not minimum lines. There is

therefore one, and but one, minimum line from A to the plane. Let

AP be that minimum line
; then, AP is perpendicular to any straight

line EF drawn in the plane through its foot P. For, in the plane of

the lines AP and EF, AP is the shortest line that can be drawn

Irom A to any point in EF, since it is the shortest line that can be

drawn from A to any point in the plane MN', therefore, AP is per-

pendicular to EF (I. 28). Thus AP is perpendicular to any, that is,

to every, straight line drawn in the plane through its foot, and is

therefore perpendicular to the plane. Moreover, by the nature of

the proof just given, AP is the only perpendicular that can be drawn

from A to the plane MN.

8. Corollary. At a given point Pin a plane MN, a perpendicular

can be erected to the plane, and but one.

15 *
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and

A B

M

For, let M'N' be any other plane, A' any point without it,

A'P' the perpendicular from A' to

this plane. Suppose the plane M'N'
to be applied to the plane MN with

the point P' upon P, and let AP be

the position then occupied by the

I)erpendicular^'P'. We then have ^
-j

'-

-/,

one perpendicular, AP, to the plane I
MNf erected at P. There can be no other : for let PB be any other

straight line drawn through P; let the plane determined by the two

lines PAy PB, intersect the plane MN in the line PC; then, since. I
APG is a right angle, BPC is not a right angle, and therefore BP is

not perpendicular to the plane.

9. Scholium. By the distance of a point from a plane is meant the

shortest distance; hence it is the perpendicular distance from the

point to the plane.

PROPOSITION IV.—THEOREM.

10. Oblique lines drawn from a point to a plane, at equal distances

from the perpendicular, are equal ; and of two oblique lines unequally

distantfrom the perpendicular the more remote is the greater.

1st. Let AB, ^ C be oblique lines from

the point A to the plane MN, meeting the

plane at the equal distances PB, PC, from

the foot of the perpendicular AP; then,

AB= A C. For, the right triangles APB,
APC, are equal (I. 76).

2d. Let AD meet the plane at a dis-

tance, PD, from P, greater than PC; then,

AD>AC. For, upon PD take PB=
PC, and join yIP: then ^P>^P (L 35);

but AB= AC; therefore, AD>AC.
11. Corollary I. Conversely, equal oblique lines from a point to a

plane meet the plane at equal distances from the perpendicular; and

of two unequal oblique lines, the greater meets the plane at the

greater distance from the perpendicular.
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12. Corollary II. Equal straight lines from a point to a plane meet

the plane in the circumference of a circle whose centre is the foot of

the perpendicular from the point to the plane. Hence we derive a

method of drawing a perpendicular from a given point A to sl given ~

plane il/iV^ find any three points, B, 0, JE, in the plane, equidistant

from Ay and find the centre P of the circle passing through these

points; the straight line AP will be the required perpendicular.

PROPOSITION v.—THEOREM.

IS. If a draight line is perpendicular to each of two straight lines at

their point of intersection, it is perpendicular to the plane of those lirfes.

Let AP be perpendicular to PB and PC,

at their intersection P; then, AP is perpen.

dicular to the plane MN which contains those

lines.

For, let PD be any other straight line

drawn through P in the plane MN. Draw

any straight line BDC intersecting PB, PC
PD, in B, C, D; produce AP to A' making ! ///

PA' ~= PA, and join A and A' to each of
''j'i''

the points B, C, D.
.

/
Since BP is perpendicular to AA', at its

middle point, we have BA = BA', and for a like reason CA= CA' ;

therefore, the triangles ABC, A'BC, are equal (I. 80). If, then,

the triangle ABC is turned about its base PC until its plane coin-

cides with that of the triangle A'BC, the vertex J. will fall upon A'^,

and as the point D remains fixed, the line AD will coincide with

A'D] therefore, D and Pare each equally distant from the extremi-

ties 0^ AA', and DP is perpendicular to AA' or AP(J. 41). Hence

-4P is perpendicular to any line PD, that is, to every line, passing

through its foot in the plane 3IN, and is consequently perpendicular

to the plane.

14. Corollary I. At a given point P of a straight line AP, a plane

can be passed perpendicular to that line, and but one. For, two per-

pendiculars, PB, PC, being drawn to AP in any two different planes

APB, APC, passed through AP, the plane of the lines PB, PC, will
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u Q

JV

be perpendicular to the line AP. Moreover, no other plane passed

through P can be perpendicular to AP; for, any other plane not con-

taining the point (7 would cut the oblique line^C in a point C
different from C, and we should have the angle APC different from

APC, and therefore not a right angle.

15. Corollary II. All the perpendiculars ^

PB, PC, PDj etc., drawn to a line AP at the

same point, lie in one plane perpendicular to

ylP. Hence, if an indefinite straight line

PQ, perpendicular to AP, be made to revolve,

always remaining perpendicular to AP, it is

said to generate the plane 3IN perpendicular.

to AP; for the line PQ passes successively, during its revolution,

through every point of this plane.

16. Corollary III. Through any point C without a given straight

line AP, a plane can be passed perpendicular to AP, and but one.

For, in the plane determined by the line AP and the point C, the

perpendicular CP can be drawn to AP, and then the plane generated

by the revohition of PC about AP as an axis will, by the preceding

coroliary, be perpendicular to AP; and it is evident that there can

be but one such perpendicular plane.

PROPOSITION VI.—THEOREM.

17. If from the foot of a perpendicular to a plane a straight line is

drawn at right angles to any line of the plane, and its intersection with

that line is joined to any point of the perpendicular, this last line will

he perpendicular to the line of the plane.

Let AP be perpendicular to the plane
^

MN; from its foot P let PD be drawn at

right angles to any line BC of the plane;

then, A being any point in AP, the straight

line ^Z) is perpendicular to J5C

For, lay off DB = DC, and join PB, PC,

AB, AC. Since DB = DC, we have

PB = PC (I. 30), and hence AB = AC
(10). Therefore, A and D being each equally distant from~ B and

C, the line AD is perpendicular to BC (I. 41).

I
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iV

PAKALLEL STRAIGHT LINES AND PLANES.

18 Definitions. A straight line is parallel to a plane Vihen it can-

not meet the plane though both be indefinitely produced.

In the" same case, the plane is said to be parallel to the line.

Two planes are parallel when they do not meet, both being indefi •

nite in extent.

PEOPOSITION VII.—THEOREM.

19. If two straight lines are parallel, every plane passed through one

of thein and not coincident with the plane of the parallels is parallel

to the other.

Let AB and CD be parallel lines, and

MN any plane passed through CD;
then, the line AB and the plane 3/iVare

parallel.

For, the parallels AB, CD, are in the

same plane, A CDB, which intersects the plane 3IN in the line CD ;

and if AB could meet the plane 3IN, it could meet it only in some

point of CD; but AB cannot meet CD, since it is parallel to it
; there-

fore AB cannot meet the plane MN.
20. Corollary I. Through any given straight line HK, a plane can

be passed parallel to any other given straight line AB,

For, in the plane determined by AB and any
^ ~'^ ^

point H of UK, let HL be drawn parallel to

AB
; then, the plane MN, determined by HK

and HL, is parallel to AB.

21. Corollary II. Through any given point 0, a plane can be passed

parallel to any two given straight lines AB, CD, in space.

For, in the plane determined by the

given point and the line AB let aOb be

drawn through parallel to AB ; and in

the plane determined by the point O and

the line CD, let cOc^ be drawn through

parallel to CD; then, the plane determined

by the lines ab and cd is parallel to each

01 the lines AB and CD.
15= M
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•

PKOPOSITION VIII.—THEOREM.

22. If a straight line and a plane are parallel, the intersections 0/

the plane with planes passed through the line are parallel to that line

and to each other.

Let the line AB be parallel to the plane

MNy and let CD, EF, etc., be the intersec-

tions of MN with planes passed through

AB] then, these intersections are parallel

to AB and to each other.

For, the line AB cannot meet CD, since

it cannot meet the plane in which CD lies
;
and since these lines are

in the same plane, AD, and cannot meet, they are parallel. For the

same reason, EF, GH, are parallel to AB.

Moreover, no two of these intersections, as CD, EF, can meet ;
for

if they met, their point of meeting and the line AB would be at

once in two different planes, AD and AF, which is impossible (4).

23. Corollary. If a straight line AB is parallel to a plane MN, a

parallel CD to the line AB, drawn through any point C of the plane,

lies in the plane. -«|

For, the plane passed through the line AB and the point C inter- f|

sects the plane MN in a parallel to AB, which must coincide with

CD, since there cannot be two parallels to AB drawn through the

same point C.

I

PROPOSITION IX.—THEOREM.

24. Planes perpendicular to the same straight line are parallel tc

each other.

The planes MN, PQ, perpendicular to the same

straight line ^5, cannot meet; for, if they met, we

should have through a point of their intersection

two planes perpendicular to the same straight line,

which is impossible (16) ; therefore these planes are

parallel.

.1/
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J

l-KOPOSITION X.—THEOEEM.

25. The intersections oj tivo parallel planes with any third plane are

parallel.

Let JOT and PQ be parallel planes, and ^ b
AD any plane intersecting them in the V /\ \

lines AB and CD
; then, AB and CD are \ / \

parallel. ^\~ V ^

For, the lines AB and CD cannot meet, p \ \i>

since the planes in which they are situ- \ \ / \
ated cannot meet, and they are lines in \

-^- ^
the same plane AD\ therefore they are

parallel.

26. Corollary. Parallel lines A (7, BDy intercepted between parallel

planes 3IN, PQ, are equal. For, the plane of the parallels A C, BD,
intersects the parallel planes i/iV, PQ, in the parallel lines AB, CD;

therefore, the figure ^^DCis a parallelogram, and AC == BD.

PROPOSITION XL—THEOREM.

27. A straight line perpendicular to one of two parallel planes is

perpendicular to the other.

Let JfiV and PQ be parallel planes, and let the ^f I

straight line AB be perpendicular to PQ ; then, I ~Jj /

it will also be perpendicular to MN.

For, through A draw any straight line AC m
the plane MN, pass a plane through AB and AC,
and let BD be the intersection of this plane with

PQ. Then jiC and BD are parallel (25); but

AB IS perpendicular to BD (6), and consequently

also to AC) therefore AB, being perpendicular to any line AC
which it meets in the plane MN, is perpendicular to the plane MN.

28. Corollary. Through any given point A, one pla/^e can be passed

parallel to a given plane PQ, and but one. For, iiuni A a perpen-

dicular AB can be drawn to the plane PQ (7), and then through A
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a plane MN can be passed perpendicular to AB (14) ; the plane MN
is parallel to PQ (24).

No other plane can be passed through A parallel to PQ\ for every

plane parallel to PQ must be perpendicular to tlie line AB (27), and

there can be but one plane perpendicular to AB passed through the

same point A (14).

PROPOSITION XII.—THEOREM.

29. The locus of all the straight lines drawn through a given point

parallel to a given plane, is a plane passed through the point parallel to

thz given plane.

Let A be the given point, and PQ the given

plane ; then, every straight line AB, drawn through

A parallel to the plane PQ, lies in the plane MN
passed through A parallel to PQ.

For, pass any plane through AB, intersecting the

plane PQ in a straight line CD ;
then AB is paral-

lel to CD (22). But CD is parallel to the plane

MN, since it is in the parallel plane PQ and can-

not meet MN-, therefore, the line AB drawn through the point A
parallel to CD lies in the plane MN (23).

30. Scholium. In the geometry of space, the term loctis has the

same general signification as in plane geometry (I. 40) ; only it is not

limited to lines, but may, as in this proposition, be extended to a

surface. In the present case, the locus is the assemblage of all the

points of all the lines which satisfy the two conditions of passing

through a given point and being parallel to a given plane.

31. Corollary. Since two straight lines are sufficient to determine

a plane (4), if two intersecting straight lines are each parallel to a

given plane, the plane of these lines is parallel to the given plane.

PROPOSITION XIII.—THEOREM.

32. If two angles, not in the same plane, have their sides respectively

parallel and lying in the same direction, they are equal and their

planes are parallel.

I

I

3f
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Let BA C,B'A' C, be two angles lying in the

planes MN, M'N'-, and let AB, A (7, be parallel

respectively to A'B', AC\ and in the same

directions.*

1st. The angles BA C and B'A 'C are equal.

For, through the parallels AB, A'B', pass a

plane AB\ and through the parallels AC
A'C, pass a plane AC, intersecting the

first in the line AA'. Let BC be any plane

parallel to AA', intersecting the planes AB', AC, in the lines BB',

CC, and the planes 3IN, 31'N', in the lines BC, B'C, respectively.

Since AA' is parallel to the plane BC, the intersections BB', CC,
are parallel to AA' SLud. to each other (22) ; hence, the quadrilaterals

AB' and AC are parallelograms, and we have AB = A'B', AC=
^'C, and BB' = AA' = CC. Therefore. BB' and CC are equal

and parallel, and the quadrilateral .BC" is a parallelogram, and we

have BC=B'C. The triangles ABC, A'B' C, therefore, have

their three sides equal each to each, and consequently the angles

BA C and B'A'C are equal.

2d. The planes of these angles are parallel. For, each of the

lines AB, A C, being parallel to a line of the plane M'N', is parallel

to that plane, therefore the plane MN of these lines is parallel to the

plane M'N' (31).

PKOPOSITION XIV.—THEOREM.

33. If one of two parallel lines is perpendicular to a plane, the other

is also perpendicular to that plane.

Let AB, A'B', be parallel lines, and let

AB be perpendicular to the plane MN] then,

A'B' is also perpendicular to MN.

For, let A and A' be the intersections of

these lines with the plane ; through A' draw ' "

jv

any line A'C in the plane MN, and through

A draw J. parallel to ^'C and in the same direction. The angles

* Two parallels AB, A^B^, lie in the same direction when they lie on the same

side of the line ^^^ joining their origins A and A\ Compare note (I. 60).

16
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BAG, B'A'C, are equal (32) ;
but BAG is a right angle, since BA

is perpendicular to the plane; hence, B'A'G' is a right angle; that

is, B'A' is perpendicular to any line A' G' drawn through its foot in

the plane MN, and is consequently perpendicular to the plane.

34. Gorollary I. Two straight lines AB, A'B', perpendieular to the

same plane MN, are parallel to each other. For, if through any point

of *A'B' a parallel to AB is drawn, it will be perpendicular to the

plane MN, since AB is perpendicular to that plane ; but through the

same point there cannot be two perpendiculars to the plane ;
there-

fore, the parallel drawn to AB coincides with A'B\

35. Gorollary II. If two straight lines A and B
are parallel to a third G, they are parallel to each

other. For, let MN be a plane perpendicular to

C; then (33), A and B are each perpendicular to

this plane and are parallel to each other (34),

36. Gorollary III. Two parallel planes are everywhere equally dis-

tant All perpendiculars to one of two parallel planes are also- per-

pendicular to the other (27) ;
and since they are parallels (34) inter-

cepted between parallel planes, they are equal (26).

M

PROPOSITION XV.—THEOREM.

37. If two straight lines are intersected by three parallel planes, their

corresponding segments are proportional.

Let AB, GD, be intersected by the parallel

planes MN, PQ, RS, in the points A, E, B, and

G,F,D; then,

AE_CF
EB

~
FD

M
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Thi plane of the lines DA and DO cuts the parallel planes MN and

PQ in the lines AC and GF; therefore, AC and GF are parallel,

and we have

AG CF
GD
~
FD

Comparing these two proportions, we obtain

AE_CF
EB

~~
FD

DIEDRAL ANGLES.—ANGLE OF A LINE AND PLANE, ETC.

38. Definition. When two planes meet and are terminated by their

common intersection, they form a diedral angle.

Thus, the planes AE, AF, meeting in AB, and ter-

minated by ABj form a diedral angle.

The planes AE, AF, are called the faces, and the

line AB the edge, of the diedral angle.

A diedral angle may be named by four letters, one

in each face and two on its edge, the two on the edge being written

between the other two
; thus, the angle in the figure may be named

DABC.
When there is but one diedral angle formed at the same edge, it

may be named by two letters on its edge ; thus, in the preceding

figure, the diedral angle DABC may be named the diedral angle

AB.

39. Definition. The angle CAD formed by two straight lines -4 C,

AD, drawn, one in each face of the diedral angle, perpendicular to

its edge AB at the same point, is called the plane angle of the diedral

angle.

The plane angle thus formed is the same at whatever point of the

edge of the diedral angle it is constructed. Thus, if at B, we draw

BE and BE in the two faces respectively, and perpendicular to AB,
the angle EBF is equal to the angle CAD, since the sides of these

angles are parallel each to each (32).

It is to be observed that the plane of the plane angle CAD is

perpendicular to the edge AB (13) ;
and conversely, a plane perpen-

(li'^ular to the edge of a diedral angle cuts its faces in lines which
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be

A
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PROPOSITION XVI.—THEOREM.

44. Tivo diedral angles are in the same ratio as their plane angles.

Let CABD and GEFHhe two die-

dral angles; and let CAD and GEH
be their plane angles.

Suppose the plane angles have a

common measure, contained, for exam-

ple, 5 times in CAD and 3 times in

GIlH; the ratio of these angles is

then 5 : 3. Let straight lines be drawn

from the vertices of these angles, dividing the angle DA C into 5

equal parts, and the angle HEG into 3 equal parts, each equal to

the common measure; let planes be passed through the edge AB and

the several lines of division of the plane angle CAD, and also planes

through the edge EF and the several lines of division of the plane

angle GEH. The given diedral angles are thus divided into partial

diedral angles which are all equal to each other since their plane

angles are equal. The diedral angle CABD contains 5 of these

partial angles, and the diedral angle GEFH contains 3 of them
;

therefore, the given diedral angles are also in the ratio 5:3; that is,

they are in the same ratio as their plane angles.

The proof is extended to the case in which the given plane angles

are incommensurable, by the method exemplified in (II. 51).

45. Corollary I. Since the diedral angle is proportional to its plane

angle (that is, varies proportionally with it), the plane angle is taken

as the meamire of the diedral angle, just as an arc is taken as the mea-

sure of a plane angle. Thus, a diedral angle will be expressed by
45° if its plane angle is expressed by 45°, etc.

46. Corollary II. The sum of two adjacent die-

dral angles, formed by one plane meeting another,

is equal to two right diedral angles. For, the sum

of the plane angles which measure them is equal

to two right angles.

In a similar manner, a number of properties of

diedral angles can be proved, which are analo-

gous to propositions relating to plane angles.

The student can establish the following :

16 «-
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Opposite or vertical diedral angles are equal; as CABN and

DABMj in the preceding figure.

When a plane intersects two parallel planes,

the alternate diedral angles are equal, and the

cofresponding diedral angles are equal; (the

terms alternate and corresponding having sig-

nifications similar to those given in plane

geometry.)

Two diedral angles which have their faces respectively parallel, or

(if their edges are parallel) respectively perpendicular to each other, are

either equal or supplementary.

PROPOSITION XVII.—THEOREM.

47. If a straight line is perpendicular to a plane, every plane passedl

through the line is also perpendicular to that plane.

Let AB be perpendicular to the plane MN;
then, any plane PQ, passed through AB, is also

perpendicular to MN.

For, at B draw BC, in the plane MN, perpen-

dicular to the intersection BQ. Since AB is per-

pendicular to the plane MN, it is perpendicular to

BQ and BC; therefore, the angle ABC is the

plane angle of the diedral angle formed by the planes PQ and MN\\
and since the angle ABCh a right angle, the planes are perpendicu-

lar to each other.

48. Corollary. If AG, BO and CO, are

three straight lines perpendicular to each

other at a common point 0, each is per-

pendicular to the plane of the other two,

and the three planes are perpendicular to

each other.
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and

PKOPOSITION XVIII.—THEOKEM.

49. IJ two planes are perpendicular to each other, a straight line

drawn in one of them, perpendicular to their intersection, is perpendicu-

lar to the other.

Let the planes PQ and MN be perpendicular to each other

at any point B of their intersection BQ, let BA
be drawn, in the plane PQ, perpendicular to BQ)
then, BA is perpendicular to the plane MN.

For, drawing BC, in the plane MN, perpendicu-

lar to BQ, the angle ABC is a right angle, since it

is the plane angle of the right diedral angle formed

by the two planes ; therefore, AB, perpendicular to

the two straight lines BQ, BC, is perpendicular to their plane

i£i\^(13).

50. Corollary I. If two planes, PQ and MN, are perpendicular to

each other, a straight line BA drawn through any point B of their

intersection perpendicular to one of the planes MN, will lie in the

other plane PQ (8).

51. Corollary II. If two planes, PQ and MN, are perpendicular
to each other, a straight line drawn from any point A of PQ, per-

pendicular to MN, lies in the plane PQ (7).

PKOPOSITION XIX.—THEOREM.

52. Through any given straight line, a plane can be passed perpen-

dicular to any given plane.

Let AB be the given straight line and MN the

given plane. From any point A of AB let AC
be drawn perpendicular to MN, and through AB

'

and A C pass a plane AD. This plane is perpen- /

dicular to MN (47).
^

Moreover, since, by (51), any plane passed

through AB perpendicular to MN must contain the perpendicular

A C, the plane AD is the only plane perpendicular to MN that can

be passed through AB, unless AB is itself perpendicular to MN, in

which case an infinite number of planes can be passed through it

perpendicular to MN (47).

N
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PROPOSITION XX.—THEOREM.

63. Ij two intersecting planes are each perpendicular to a third planCt

their intersection is also perpendicular to that plane.

Let the planes FQ, ES, intersecting in the

.line AB, be perpendicular to the plane MN;
then, AB is perpendicular to the plane MN.

For, if from any point A of AB, a perpen-

dicular be drawn to MN,_ this perpendicular

will lie in each of the planes PQ and BS (51),

and must therefore be their intersection AB.

54. Scholium. This proposition may be otherwise stated as follows:

Tf a plane (MN) is perpendicular to each of two intersecting planes

{PQ and BS), it is perpendicular to the intersection {AB) of those

planes.

PROPOSITION XXI.—THEOREM.

55. Every point in the plane which bisects a diedral angle is e^

distant from the faces of that angle.

Let the plane AM bisect the

diedral angle CABD; let P be

any point in this plane ;
PE and

PF the perpendiculars from P
upon the planes ABC and ABD;
then, PE = PF.

For, through PE and PF pass

a plane, intersecting the planes

ABC and ABD in OE and OF;

join PO. The plane PEF is per-
•

pendicular to each of the planes ABC, ABD (47), and consequently

perpendicular to their intersection AB (54). Therefore the angles

FOE and POF measure the diedral angles MABC and MABD,
which by hypothesis are equal. Hence the right triangles FOE and

POi^are equal (L 83), and PE = PF.
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66. Definitions. The projection of a point A

upon a plane MN, is the foot a of the perpen-

dicular let fall from A upon the plane.

The projection of a line ABODE , . .
, upon a

plane MN, is the line abcde . . . formed by the

projections of all the points of the line

ABCDE. . . upon the plane.

PROPOSITION XXII.—THEOREM.

57. The projection of a straight line upon a plane is a straight line.

Let AB be the given straight line, and

MN the given plane. The plane Ab, passed

through AB perpendicular to the plane MN,
contains all the perpendiculars let fall from

points of AB upon MN (50) ; therefore, these

perpendiculars all meet the plane MN in the

intersection ah of the perpendicular plane

with 3IN. The projection of AB upon the

plane MN is, consequently, the straight line ah.

58. Scholium. The plane Ah is called the projecting plane of the

straight line AB upon the plane MN.

PROPOSITION XXIII.—THEOREM.

59. The acute angle which a straight line makes with its own pro-

jection upon a plane, is the least angle which it makes with any line of

that plane.
A

Let Ba be the projection of the straight line

BA upon the plane MN, the point B being

the point of intersection of the line BA with

the plane; let J5C be any other straight line

drawn through B in the plane ; then, the angle

ABa is less than the angle ABC.

For, take BC= Ba, and join AC. In the

triangles ABa, ABC, we have AB common, and Ba = BC, but

Aa <^ A C, since the perpendicular is less than any oblique line ;

therefore, the angle ABa is less than the angle ABC (I. 85).
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PROPOSITION XXIV.—THEOEEM.

63. Two straight lines not in the same plane being given: 1st, a

common perpendicular to the two lines can he drawn ; 2d, hut one such

common perpendicular can he drawn ; 3d, the common perpendicular is

the shortest distance hetween the two lines.

Let AB and CD be the given straight

lines.

1st. Through one of the given lines,

say ABj pass a plane 3fN, parallel to

the other (20) ;
let cd be the projection

of CD upon this plane. Then, cd \yill

be parallel to CD (22), and therefore

not parallel to AB; hence it will meet

AB in some point c. At c dra\y cC perpendicular to cd in the pro-

jecting plane Cd ;
then Cc is a common perpendicular to AB and

CD.

For, CD and cd being parallel, Cc drawn perpendicular to cd is

perpendicular to CD. Also, since Cc is the line which projects the

])oint C upon the plane 3IN, it is perpendicular to that plane, and

therefore perpendicular to AB.

2d. The line Cc is the only common perpendicular. For, if an-

other line EF, drawn between AB and CD, could be perpendicular

to AB and CD, it would be perpendicular also to a line FG drawn

parallel to CD in the plane il/iV, and consequently perpendicular to

the plane 3IN; but EH, drawn in the plane Cd, parallel to Cc, is

perpendicular to the plane 3IN; hence we should have two perpen-

diculars from the point E to the plane 3£N, which is impossible.

3d. The common perpendicular Cc is the shortest distance between

AB and CD. For, any other distance EF is greater than the per-

pendicular EH, or than its equal Cc.

64. Scholium. The preceding construction furnishes also the angle

between AB and CD, namely, the angle Bed.
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POLYEDRAL ANGLES.

65. Definition. When three or more planes meet in a common

point, they form a polyedral angle.

Thus, the figure S-ABCD, formed by the

planes ASB, BSC, CSD, DSA, meeting in the

tjommon point S, is a polyedral angle.

The point S is the vertex of the angle ; the

intersections of the planes, 8A, SB, etc., are its

edges; the portions of the planes bounded by
the edges are its faces; the angles ASB, BSC, etc., formed by the

edges, are its /ace angles.

A triedral angle is a polyedral angle having but three faces, which

is the least number of faces that can form a polyedral angle.

66. Definition. Two polyedral angles are equal when they can be

applied to each other so as to coincide in all their parts.

Since two equal polyedral angles coincide however far their edges

and faces are produced, the magnitude of a polyedral angle does not

depend upon the extent of its faces
;
but in order to represent the

angle clearly in a diagram we usually pass a plane, as ABCD, cut-

ting all its faces in straight lines AB, BC, etc.
;
and by the face ASB

is not meant the triangle ASB, but the indefinite surface included

between the lines SA and SB indefinitely produced.

67. Definition, A polyedral angle S-ABCD is convex, when an

section, ABCD, made by a plane cutting all its faces, is a convex

polygon (I. 95).

68. Symmetrical polyedral angles. If we produce the edges ^.aS^

BS, etc., through the vertex S,

we obtain another polyedral

angle ^-^'jB' CD', which is

symmetrical with the first, the

vertex S being the centre of

symmetry.
If we pass a plane A'B'C'D',

parallel to ABCD, so as to

make SA' = SA, we shall also

have SB' = SB, SC = SC, ^'

etc. ;
for we may suppose a third

parallel plane passing through

I

4
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Sj and then AA', BB', etc., being divided proportionally by three

parallel planes (37), if any one of them is bisected at S, the others

are also bisected at that point. The points A'j B\ etc., are, then,

symmetrical with A, B, etc., the definition of symmetry in a plane

(I. 138), being extended to symmetry in space.

The two symmetrical polyedral angles are equal in all their parts,

for their face angles, ASB and A'SB', BSC and B'SC\ are equal,

each to each, being vertical plane angles ;
and the diedral angles at

the edges SA and SA\ SB and SB', etc., are equal, being vertical

diedral angles formed by the same planes. But the equal parts are

arranged in inverse order in the two figures, as will appear more

plainly, if we turn the polyedral angle S-A'B' CD' about, until

the polygon A'B' CD' is brought into the same plane with ABCD,
the vertex S remaining fixed

;
the polygon A'B' CD' is then in the

position ahcd, and it is apparent that while in the polyedral angle

S-ABCD the parts ASB, BSC, etc., succeed each other in the

order /ro9H right to left, their corresponding equal, jmrts aSb, bSc, etc.,

in the polyedral angle S-abcd succeed each other in the order from

left to right. The two figures, therefore, cannot be made to coincide

by superposition, and are not regarded as equal in the strict sense

of the definition (I. 75), but are said to be equal by symmetry.

PKOPOSITION XXV.—THEOREM.

69. The sum of a7iy two face angles of a triedral angle is greater

than the third.

The theorem requires proof only when the third angle considered

is greater than each of the others.

IjetS-ABC be a triedral angle in which the "^

face angle ASC is greater than either ASB or /^vX
BSC; then, ASB + BSC > ASC.

j \\\
For, in the face ASC draw SD making the ^i-;—X--v--N^

angle ASD equal to ASB, and through any point
'

A'
D of SD draw any straight line ADC cutting SA
and SC; take SB == SD, and join AB, BC
The triangles ASD and ASB are equ',1, by the construction (I. 76).

whence AD —- AB. Now, in the triangle ABC, we have

17 N
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AB-i- BC> AC,

and subtracting the equals AB and AD,

BC> DC;

therefore, in the triangles BSC and DiSC, we have the angle BSC >
'

i)SC (I. 85), and adding the equal angles ASB and ASD, we have

ASB -{- BSC> ASC

PROPOSITION XXVI.—THEOREM. i
70. The sum of the face angles of any convex polyedral angle is less

than four right angles.

Let the polyedral angle S be cut by a plane, a

making the section ABCDE, by hypothe-sis, a // ;\\
convex polygon. From any point within this

/ / J \ \
polygon draw OA, OB, OC, OD, OE.

/''i''^-\-\f>
The sum of the angles of the triangles ASB, /\ / V^C' \ /\

BSC, etc., which have the common vertex S, is fF ^ |

equal to the sum of the angles of the same num- *

ber of triangles A OB, BOC, etc., which have the common vertex

0. But in the triedral angles formed at A, B, C, etc., by the faces

of the polyedral angle and the plane of the polygon, we have (69).

SAE + SAB > EAB,

SBA -\- SBC> ABC, etc. ;

hence, taking the sum of all these inequalities, it follows that the'

sum of the angles at the bases of the triangles whose vertex is S is

greater than the sum of the angles at the bases of the triangles

whose vertex is
; therefore, the sum of the angles at S is less than

the sum of the angles at 0, that is, less than four right angles.

PROPOSITION XXVII.—THEOREM.

71. Two triedral angles are either equal or symmetrical, when the

three face angles of one are respectively equal to the three face angles of

the other.

Id the triefl'ra. angles S and
.<?,

let ASB = ash, ASC= asc, and
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BSC -= bsc; then, the diedral angle SA is equal to tie diedral

angle sa.

On the edges of these angles take the six equal distances SA, SB,

SC, sa, sb, sc, and draw AB, BC, AC, ah, be, ac. The isosceles tri-

angles SAB and sab are equal, having an equal angle included by

equal sides, hence AB = ab; and for the same reason, BC = be,

AC= ac; therefore, the triangles ABC and abe are equal.

At any point D in SA, draw DE in the face ASB and DF in the

face ASC, perpendicular to SA ;
these lines meet AB and AC,

respectively, for, the triangles ASB and ASC being isosceles, the

angles SAB and SA C are acute
;

let E and F be the points of meet-

ing, and join EF. Now on sa take sd = SD, and repeat the same

construction in the triedral angle s.

The triangles ADE and ade are equal, since AD = ad, and the

angles at A and D are equal to the angles at a and d; hence,

AE= ae and DE= de. In the same manner, we have AF= af

and DF = df. Therefore, the triangles AEF and aef are equal

(I: 76), and we have EF = ef. Finally, the triangles EDF and edf,

being mutually equilateral, are equal ; therefore, the angle EDF,
which measures the diedral angle SA, is equal to the angle edf, which

measures the diedral angle sa, and the diedral angles SA and sa are

equal (41). In the same manner, it may be proved that the diedral

angles SB and SC are equal to the diedral angles sb and sc, re-

spectively.

So far the demonstration applies to either of the two figures

denoted in the diagram by s-abe, which are symmetrical with each

other. If the first of these figures is given, it follows that S and s

are equal, since they can evidently be. applied to each other so as to

coincide in all their parts (66) ;
if the second is given, it follows that

S and s are synmetrical (68).
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POLYEDRONS.

1. Definition. A polyedron is a geometrical solid bounded by

planes. ll

The bounding planes, by their mutual intersections, limit e^ch

other, and deiar^nine the faces (which are polygons), the edge^i, and

the vertices, ol* \bo polyedron. A diagonal of a polyedron is a

straight line joining any two of its vertices not in the same face.

The least nunibti of planes that can form a polyedral angle is

three
;
but the space within the angle is indefinite in extent, and it

requires a fourth plane to enclose a finite portion of space, or to form

a solid ; hence, the least number of planes that can form a polyedron

is four.

2. Definition. A polyedron of four faces is called a tetraedron;

one of six faces, a hexaedron; one of eight faces, an octaedron;

one of twelve faces, a dodecaedron; one of twenty faces, an icvsa-

edron.

3. Definition. A polyedron is convex when the section, formed by

any plane intersecting it, is a convex polygon.

All the polyedrons treated of in this work will be understood to

be convex.

4. Definition. The volume of any polyedron is the numerical

measure of its magnitude, referred to some other polyedron as

the unit. The polyedron adopted as the unit is called the imit of

volume.

To measy,re the volume of a polyedron is, then, to find its ratio to

the unit of volume.

5. Definition. Equivalent solids are those which have equal

volumes.

i

4

I
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PKISMS AND PAEALLELOPIPEDS.

6. Definitions. A prism is a polyedron two of

whose faces are equal polygons lying in parallel

planes and having their homologous sides parallel,

the other faces being parallelograms formed by
the intersections of planes passed through the

homologous sides of the equal polygons.

The parallel faces are called the bases of the

prism ;
the parallelograms taken together constitute its lateral or

convex surface; the intersections of the lateral faces are its Lateral

edges.

The altitude of a prism is the perpendicular distance between the

planes of its bases.

A triangular prism is one whose base is a triangle.; a quadrangular

prism, one whose base is a quadrilateral ; etc.

7. Definitions, A right prison is one whose lateral

edges are perpendicular to the planes of its bases.

In a right prism, any lateral edge is equal to the

altitude.

An oblique prism is one whose lateral edges are ob-

lique to the planes of its bases.

In an oblique prism, a lateral edge is greater than the altitude.

8. Definition. A regular prism is a right prism whose bases are

regular polygons.

9. Definition. If a prism, ^^CDjE^-J^, is

intersected by a plane GK, not parallel

to its base, the portion of the prism in-

cluded between the base and this plane,

namely ABODE-GHIKL, is called a

truncated prism.

10. Definition. If a plane intersects a prism at right angles t) ita

lateral edges, the section is called a right section of the prism.
17*
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11. Definition. A parallelopiped is a prism

whose bases are parallelograms. It is therefore

a polyedron all of whose faces are parallelo-

grams.

From this definition and (VI. 32) it is evident

that any two opposite faces of a parallelopiped

are equal parallelograms.

12. Definition. A right parallelopiped is a parallelo-

piped whose lateral edges are perpendicular to the

planes of its bases. Hence, by (VI. 6), its lateral

faces are rectangles; but its bases may be either

rhomboids or rectangles.

A rectangular parallelopiped is a right parallelopiped

whose bases are rectangles. Hence it is a parallelopiped all of

whose fiices are rectangles.

Since the perspective of figures in space distorts the angles, the

diagram may represent either a right, or a rectangulff, parallel-

opiped.

13. Definition. A cube is a rectangular parallelopiped

whose six faces are all squares.

^^ ;̂OPOSITION I.—THEOREM. 1
' 14. The sections of a prism made by parallel planes are equal

polygons.

Let the prism AD '

be intersected by the

parallel planes GK, G'K'; then, the sec-

tions, GHIKL, G'HTK'L', are equal

polygons.

For, the sides of these polygons are paral-

lel, each to each, as for example, GH and

G'H\ being the intersections of parallel

planes with a third plane (VI. 25), and

they are equal, being parallels included

between parallels (I. 104) ; hence, also, the

angles of the polygons are equal, each to

I
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each (VL 32). Therefore, the two sections, beiog both mutually

equilateral and mutually equiangular, are equal.

15. Corollary. Any section of a prism, made by a plane parallel

to the base, is equal to the base.

PROPOSITION II.—THEOREM.

y_ 16. Thewtater^t^>^rea of a prism is equal to the product of the perim-

eter of a right section of the prism by a lateral edge.

Let AD' be a prism, an^^^IKL a right

section of it
; then, the arejj^^B convex sur-

face of the prism is equal^^The perimeter

GHIKL multiplied by a lateral edge AA'.

For,, the sides of the section GHIKL being

perpendicular to the lateral edges AA'y

BB ', etc., are the altitudes of the parallelo-

grams which form the convex surface of the

prism, if w^fkke as the bases of these paral-

lelograms the lateral edges, AA' BB'y etc., which are all equal.

Hence, the area of the sum of these parallelograms is (IV. 10),

GH X AA' -{, HI X BB' + etc.

= (GH-ir HI-{- etc.) X AA\

17. Corollary. The lateral area of a right prism is equal to the

product of the perimeter of its base by its altitude.

PROPOSITION III.—THEOREM.

18. The four diagonals of a parallelepiped bisect each other.

Let ABCD-G be a parallelopiped ;
its four diagonals, A

BH, DFj bisect each other.

Through the opposite and parallel edges

AE, CG, pass a plane which intersects the

parallel faces ABCD, EFGH, in the parallel

lines AC and EG. The figure ACGE is a

parallelogram, and its diagonals A G and EC
bisect each other in the point 0. In the

same manner it is shown that A G and BH,
A G and DF, bisect each other

; therefore, the

four diagonals bisect each other in the point 0.

a, EC,
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19. Scholium. The point 0, in which the four diagonals intersect,

is called the centre of the parallelopiped ;
and it is easily proved that

any straight line drawn through and termiiiated by two opposite

faces of the parallelopiped is bisected in that point.

>-'-~"^. PKOPOSITION IV,—THEOEEM.

20. The sum of the squares of the four diagonals of a parallelopiped

is equal to the S2im of the squares of its twelve edges.

In the parallelogram A CGE we have (III. 64), ^ J^

^=^^'AG' -^CE' = 2AE' + 2AC\

nnd in the parallelogram DBFH,

BH^ + DF' = 2BF' + 2BD\

Adding, and observing that BF = AE,
and also that in the parallelogram ABCD,
2AC'' + 2BD' = 4AB' + 4AD\ we have

AG' +CE'-i- BE' + DF' = AAE'' + 4AB' + 4AD\

which proves the theorem.

21. Corollai'y. In a rectangular parallelopiped, the four diagona

are equal to
eS^eh

oth&i^ ; and the square of a diagonal is equal to the

sum of the squares of the three edges which meet at a common vertex.
\

Thus, i? AG is a rectangular parallelopiped, we have, by dividing

the preceding equation )3y/4, )

AG' = AE' + AB' + 3^'.

22. Scholium. If any three straight lines AB, AE, AD, not in the

-^ame plane, are given, meeting in a common point, a parallelopiped

can be constructed upon them. For, pass a plane through the

extremity of each line parallel 'to the plane of the other two; these

{)lanes, together with the planes of the given lines, determine the

parallelopiped.

In a rectangular parallelopiped, if the plane of two of the three

edges which meet at a common vertex is taken as a base, the third

edge is the altitude. These three edges, or the three perpendicular
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distances between the opposite faces of a rectangular parallelopiped,

are palled its three dimensions.

PROPOSITION v.—THEOREM.

23. Two prisms are equals if three faces including a triedral angle of

tK^^ne are respectively equal to three faces similarly placed including a

triedral angle of the other.

Let the triedral angles ^ and

a of the prisms ABODE-A\
abcde-a\ be contained by equal

faces similarly placed, namely,

ABODE equal to abcde, AB'

equal to ah\ and AE' equal to

ae' ] then, the prisms are equal.

For, the triedral angles A and

a are equal (VI. 71), and can be applied, the one to the other, so as

to coincide; and then the bases ABODE, abcde, coinciding, the face

AB' will coincide with ab\ and the face AE' with ae'
)
therefore

the sides A'B', A'E', of the upper base of one prism, will coincide

with the sides a'b'y a'e', of the upper base of the other prism, and

since these bases are equal they will coincide throughout; conse-

quently also the lateral faces of the two prisms will coincide, each

to each, and the prisms will coincide throughout ; therefore, the prisms

are equal.

24. Oorollary I. Two truncated prisms are equal, if three faces in-

cluding a triedral angle of the one are respectively equal to three faces

similarly placed including a triedral angle of the other. For, the pre-

ceding demonstration applies whether the planes Jl'^'C"Z)'J&' and

a'b'c'd'e' are parallel or inclined to the lower bases.

25. Oorollary II. Two right prisms are equal, if they have equal

bases and equal altitudes.

In the case of right prisms, 't is not

necessary to add the condition that

the faces shall be similarly placed ;

for, if the two right prisms ABO-A'

abc-a', cannot be made to coincide by

placing the base ^jSCupon the equal

base abc; yet, by inverting one of the
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prisma and ap^ying the base ABC to the base a'b'c', they wilJ

coincide. /

''/"\o/ PKOPOSiTiON VI.—theorem:

26.
j^r/y mUq^e prism is equivalent to a right prism whose base is a

right sd^ion of the^tque prism, and whose altitude is equal to a lateral

^dge of the oblique prism.

I LetABCDE-A' be the oblique prism. At

any point F in the edge AA\ pass a plane

perpendicular to AA' and forming the right

section FGHIK. Produce AA' to F\ mak-

ing FF'= AA', and through F' pass a

second plane perpendicular to the edge

AA', intersecting all the faces of the

prism produced, and forming another right

section F' G 'HTK' parallel and equal to

the first. The prism FGHIK-F' is a right

prism whose base is the right section and

whose altitude FF' is equal to the lateral edge of the oblique

prism.

The solid ^5 GDjE^-jP is a truncated prism which is equal to the

truncated prism A'B' C'D'E'-F' (24). Taking the first away from

the whole solid J.^Ci)-E-i^', there remains the right prism; taking

the second away from the same solid, there remains the oblique

prism; therefore, the right prism and the oblique prism have the

same/Tolume, that is, they are equivalent.

PROPOSITION VII.—THEOREM.

27. The plane passed through two diagonally opposite edges of a

paralldopiped divides it into two equivalent triangular prisms.

X^ ABCD-A' be any parallelopiped ;
the

plane ACC'A', passed through its opposite

edges J.^' and CC', divides it into two equiv-

alent triangular prisms ABG-A' and ADC-A'.

Let FGHI be any right section of the

parallelopiped, made by a plane perpendicu-

lar to the edge AA'. The intersection, FII,

of this plane with the plane AC', is the di-
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agonal of the parallelogram FGHI, and divides that parallelogram

into two equal triangles, FGI£ and FIH. The oblique prism ABC-A'
is equivalent to a right prism whose base is the triangle FGII and

whose altitude is AA' (26) ;
and the oblique prism ADC-A' is equiva-

lent to a right prism whose base is the triangle FIH and whose

altitude is AA'. The two right prisms are equal (25) ; therefore,

the oblique prisms, which are respectively equivalent to them, are

equivalent, to^ each other.

K
PKOPOSITION VIII.—THEOEEM.

V__\

\zzE

^ 2^. Two rectangular parallelopipeds having equal hoses are to each

other as their altitudes.

Let P and Q be two rectangular par-

allelopipeds having equal bases, and let

AB and CD be their altitudes.

1st. Suppose the altitudes have a com-

mon measure, which is contained, for

example, 5 times in AB and 3 times in

CZ>, so that if AB is divided in 5 equal

parts, CD will contain 3 of these parts ;

then we have

AB _b
CD'~ Z

If now we pass planes through the several points of division of AB
and CD, perpendicular to these lines, the parallelopiped P will be

divided into 5 equal parallelopipeds, and Q into 3 parallelopipeds,

each equal to those in P
; hence,

P_5

and, therefore,
P AB
Q~ CD

2d. If the altitudes are incommensurable, the proof may be given

by the method exemplified in (II. 51) and (III. 15), or, according to

the method of limits, as follows.

Let CD be divided into any number of equal parts, and let cup

of these parts be applied to AB as often as AB will contain it
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Let JR he Si third rectangular parallel-

opiped whose dimensions are m, h and c;

then, R has the two dimensions b and c in

common with P, and the two dimensions

)n and c in common with Q ;
hence (29),
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PROPOSITION XI.—THEOREM.

33. The volume of a rectangular parallelopiped is equal to the pro-

duct of its three dimensions, the unit of volume being the cube whose

edge is the linear unit.

,i/et a, 6, c, be the three dimensions

of the rectangular parallelopiped P;
and let Q be the cube whose edge is the

linear unit. The three dimensions of Q
are each equal to unity, and we have,

by the preceding proposition.

P
_.
aXbXc

Q IXlXl

C I

Q

= aXbXc.

Now, Q being taken as the unit of volume, — is the numerical mea-
Q

therefore the volume
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36. Scholium III. If the three dimensions of a rectangular paral-

lelopiped are each equal to a, the solid is a cube whose edge is a, and

its volume is a y\ a 'X a = a^; or, the volume of a cube is the third

power of its edge. Hence it is that in arithmetic and algebra, the

expression "cube of a number" has been adopii|du-to sig^ifv the

third power of a number." /^^\^^ ^ " *^4p^
' \^ OF THE ^^

PROPOSITION XII.—THEOREM. OIF-

37. The volume of any parallelopiped is equal to the product of its

base by its altitude.

Let ABCD-A' be any oblique parallelopiped, whose base is

ABCD,2iVi([ altitude ^'0.

Produce the edges AB, A'B\ DC, D'C
\
in AB produced take

FG== AB, and through jPand G pass planes, FFTI, GG'H'H,
perpendicular to the produced edges, forming the right parallelopiped

FGRI-F',vflth the base FF'I'I and altitude i^6r, equivalent to the

given oblique parallelopiped ABCD-A' (26).

From F'y draw F'X perpendicular to FI or F'F. Since AF is

perpendicular to the plane FI', the plane of the base and the plane

FI' are perpendicular to each other (VI. 47) ; therefore, F'K is

perpendicular to the plane of the base (VI. 49) and is equal to B' 0,
'

Now the three Vines F'G\ F'l' and F'K are perpendicular to

each other
; consequently the parallelopiped KLMN-F' ,

constructed

U})on them, is rectangular. The parallelopiped FGHI-F', regarded

as an oblique prism whose base is FGG'F' and lateral edge F'I'f

is equivalent to the right prism, or rectangular parallelopiped,

KLMN-F', whose base is the right section F'L and whose altitude
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is F'l' (26). Therefore, the given parallelepiped ABCD-A' is also

equivalent to the rectangular parallelopiped KLMN-F'. The volume

of this rectangular parallelopiped is equal to the product of its base

KM by its altitude F'K\ its base KM is equal to F'H\ or FH,
which is equivalent to AC, and its altitude F'K is equal to B' 0]

therefore the volume of the parallelopiped ABCD-A' is equal to the*

product of its base AChy its altitude B' 0.

PEOPOSITION XIII.—THEOREM.

38. The volume of any prism is equal to the product^ of its base by its

altitude.

1st. Let ABC-A' be a triangular prism.

This prism is equivalent to one-half the par-

allelopiped ABCD-A' constructed upon the

edges AB, BC and BB' (27), and it has the

same altitude. The volume of the parallelo-

piped is equal to its base BD multiplied by its

altitude
; therefore, the volume of the triangu-

lar prism is equal to its base ABC^ the half of BD, multiplied by
its altitude.

2d. Jjei ABCDF-A' be any prism. It may
be divided into triangular prisms by planes

passed through a lateral edge AA' and the sev-

eral diagonals of its base. The volume of the

given prism is the sum of the volumes of the

triangular prisms, or the sum of their bases

multiplied by their common altitude, which is

the base ABCDE of the given prism multiplied by its altitude.

39. Corollary. Prisms having equivalent bases are to each other as

their altitudes; prisms having equal altitudes ai*e to each other as

their bases
;
and any two prisms are to each other as the products

of their bases and altitudes. Any two prisms having equivalent

bases and equal altitudes are equivalent.
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PYEAMIDS.

40. Definitions. A pyramid is a polyedroii bounded by a poJvgoii

and triangular faces formed by the intersections

of planes passed through the sides of the poly-

gon and a common point out of its plane; a?

S-ABCDE.
The polygon, ABODE, is the base of the pyra-

mid
;
the point, S, in which the triangular faces

meet, is its vertex; the triangular faces taken to-

gether constitute its lateral, or convex, surface ; the

area of this surface is tjie lateral area ; the lines

SA, SB, etc., in which the lateral faces intersect,are

its lateral edges. The altitude of the pyramid is the perpendicular

distance SO from the vertex to the base.

A triangular pyramid is one whose base is a triangle; a quadrangvr

tar pyramid, one whose base is a quadrilateral ; etc.

A triangular pyramid, having but four faces (all of which are

triangles), is a tetraedron
;
and any one of its faces may be taken as

its base.

41. Definitions. A regular pyramid is one whose base is a regular

polygon, and whose vertex is in the perpendicular

to the base erected at the centre of the polygon.

This perpendicular is called the axis of the regular

pyramid.

From this definition and (VI. 10) it follows that

all the lateral faces of a regular pyramid are equal

iisosceles triangles.

The slant height of a regular pyramid is the per-

pendicular from the vertex to the base of any one

of its lateral faces.

42. Definitions. A truncated pyramid is the portion of a pyra-

mid included between its base and a plane cutting all its lateral

edges.

When the cutfing plane is parallel to the base, the truncated pyra-

mid is called a frustum of a pyramid. The altitude of a friistum is

the perpendicular distance between its bases.

18 *
,

O
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In a frustum of a regular pyramid, the lateral faces are equal

trapezoids ;
and the perpendicular distance between the parallel

sides of any one of these trapezoids is the §lant h'eight of the

frustum.

PROPOSITION XIV.—THEOREM.

43. If a pyramid is cut hy a plane parallel to its base: 1st, the edges

and the altitude are divided proportionally ; 2d^ the section is a polygon

similar to the base.

Let the pyramid S-ABCDE, whose altitude

is SO, be cut by the plane abcde parallel to the

base, intersecting the lateral edges in the points

a, by c, d, e, and the altitude in o ; then,

1st. The edges and the altitude are divided

proportionally.

For, suppose a plane passed through the ver-

tex S parallel to the base
; then, the edges and

altitude, being intersected by three parallel

planes, are divided proportionally (VI. 37), and

we have

Et'

Sa

SA

Sb

SB
Se

SO
So

SO

2d. The section abcde is similar to the base ABCDE.

For, the sides ab, be, etc., are parallel respectively to AB, BC, etc.

(VI. 25), and in the same directions : therefore the angles of the two

polygons are equal, each to each (VI. 32).

Also, since ab is parallel to AB, and be parallel to BC, the tri-

angles Sab and SAB are similar, and the triangles Sbc and SB Care

similar; therefore,

AB~ SB'^"" BC~ SB
whence

ab
.

be

AB^BC'
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PROPOSITION XV.—THEOREM.

47. The lateral area of a regular pyramid is equal to the product i/

the perimeter of its base by one-half its slant height.

^or, let S-ABODE be a regular pyra-

mid
;
the lateral faces SAB, SBC, etc., be-

ing equal isosceles triangles, whose bases are

the sides of the regular polygon ABODE and

whose common altitude is the slant height

SH, the sum of their areas, or the lateral area

of the pyramid, is equal to the sum of AB,

BO, etc., multiplied by ^SH (IV. 13).

48. Oorollary. The lateral area of the frustum of a regular pyramid
is equal to the half sum of the perimeters of its bases multiplied by the

slant height of the frustum. For, this product is the measure of the

sum of the areas of the trapezoids ABba, BOeb, etc., whose common

altitude is the slant height hH (IV. 17).

PROPOSITION XVI.—LEMMA.

49. A series of prisms may be inscribed in any given triangular

pyramia whose total volume shall differ from the volume of the pyramid

by less than any assigned volume.

'LQtS-ABOhe the given triangular

pyramid, whose altitude is A T. Divide

the altitude AT into any number of

equal parts Ax, xy, etc., and denote

one of these parts by h. Through the

points of division x, y, etc., pass planes

parallel to the base, cutting from the

pyramid the sections DEF, GHI, etc.

Upon the triangles DEF, GHI, etc.,

SLS upper bases, construct prisms whose

lateral edges are parallel to >S'^, and

whose altitudes are each equal to h. This is effected by passing
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planes through EF, HI, etc., parallel to SA. There will thus be

formed a series of prisms DEF-A, GHI-D, etc., inscribed in the

pyramid.

Again, upon the triangles ABC, DEF, GUI, etc., as lower bases,

construct prisms whose lateral edges are parallel to SA, and whose

altitudes are each equal to h. This also is effected by passing planes

through jBC, EF, HI, etc., parallel to SA. There will thus be

formed a series of prisms ABC-D, DEF-G, etc., which may be said

to be circumscribed about the pyramid.

Now, the first inscribed prism DEF-A is equivalent to the second

circumscribed prism DEF-G, since they have the same base DEF and

equal altitudes (39) ;
the second inscribed prism GHI-D is equivalent

to the third circumscribed prism GHI-K; and so on. Therefore, the

sum of all the inscribed prisms differs from the sum of all the cir-

cumscribed prisms only by the first circumscribed prism ABC-D.
But the pyramid is greater than the sum of the inscribed prisms and

less than the sum of the circumscribed prisms ; therefore, the differ-

ence between the total volume of the inscribed prisms anil the volume

of the pyramid is less than the volume of the prism A BC-D.
The volume of the prism ABC-D may be made as small as we

})lease, or less than any assigned volume, by dividing the altitude

A T into a sufiiciently great number of equal parts; for, if the as-

signed volume is represented by a prism whose base is ABC and

altitude Aa, we have only to divide ^T into a number of equal parts

each less than Aa.

Therefore, the difference between the total volume of the inscribed

prisms and the volume of the pyramid may be made less than any

assigned volume.

50. Corollary. If the number of parts into which the altitude is

divided is increased indefinitely, the difference between the volume

of the inscribed prisms and that of the pyramid approaches indefi-

nitely to zero; and therefore the pyramid is the limit of the sum

of the inscribed prisms, as their number is indefinitely increased

(V. 28).
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PROPOSITION XVII.—THEOREM.

51. Two triangular pyramids having equivalent bases and equal alti-

tudes are equivalent.

IjetS-ABC and S'-A'B'C be two triangular pyramids having

equivalent bases, ABCy A'B'G'y in the same plane, and a common

altitude .42!

Divide the altitude AT into a number of equal parts Ax^ xy, yz,

etc., and through the points of division pass planes parallel to the

plane of the bases, intersecting the two pyramids. In the pyramid

/S^^50 inscribe a series of prisms whose upper bases are the sections

DEF, GHI, etc., and in the pyramid S'-A'B'C inscribe a series of

prisms whose upper bases are the sections D'E'F\ G'H'I', etc.

Since the corresponding sections are equivalent (46), the correspond-

ing prisms, having equivalent bases and equal altitudes, are equiva-

lent (39) ; therefore, the sum of the prisms inscribed in the pyramid

S-ABC\s equivalent to the sum of the prisms inscribed in the pyra-

mid S'-A'B'C \
that is, if we denote the total volumes of the two

series of prisms by Fand F', we have

F= V\

Now let the number of equal parts into which the altitude is

divided be supposed to be indefinitely increased; the volume F
approaches to the volume of the pyramid S-ABC as its limit, and

the volume V approaches to the volume of the pyramid S'-A'B'C
as its limit (50). Since, then, the variables F and V are always

equal to each other and approach two limits, these limits are equal

(V. 29) ;
that is, the volumes of the pyramids are equal.

1
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PEOPOSITION XYIII.—THEOKEM.

52. A triangular pyramid is one-third of a triangular prism of the

%ame base and altitude.

Let S-ABC be a triangular pyramid. Through
one edge of the base, as A C, pass a plane ACDE
parallel to the opposite lateral edge SB, and through

S pass a plane SED parallel to the base
; the prism

ABC-E has the same base and altitude as the given

pyramid, and we are to prove that the pyramid is

one-third of the prism.

Taking away the pyramid S-ABC from the prism, there remains

a quadrangular pyramid whose base is the parallelogram AGDE and

vertex S. The plane SEC, passed through SE and SC, divides this

pyramid into two triangular pyramids, S-AEC and S-ECD, which

are equivalent to each other, since their triangular bases AEC and

ECD are the halves of the parallelogram A CDE, and their common

altitude is the perpendicular from S upon the plane A CDE (51).

The pyramid S-ECD may be regarded as having ESD as its base

and its vertex at C; therefore, it is equivalent to the pyramid
S-ABC vfhich has an equivalent base and the same altitude. There-

fore, the three pyramids into which the prism is divided are equiva-

lent to each other, and the given pyramid is one-third of the prism.

53. Corollary. The volume of a triangular pyramid is equal to one-

third of the product of its base by its altitude.

PEOPOSITION XIX.—THEOKEM.

54. The volume of any pyramid is equal to one-third of the product

of its base by its altitude.

For, any pyramid, S-ABCDE, may be di-

vided into triangular pyramids by passing planes

through an edge SA and the diagonals AD, A C,

etc., of its base. The bases of these pyramids
ire the triangles which compose the base of the

Iven pyramid, and their common altitude is the

Ititude SO of the given pyramid. The volume

the given pyramid is equal to the sum of the
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volumes of the triangular pyramids, which is one-third of the sum

of their bases multiplied by their common altitude, or one-third the

product of the base ABODE by the altitude SO,

55. Corollary. Pyramids having equivalent bases are to each other as

their altitudes. Pyramids having equal altitudes are to each other as

tJy^ir bases. Any two pyramids are to each other as the products of

their bases and altitudes.

56. Scholium. The volume of any polyedron may be found by

dividing it into pyramids, and computing the volumes of these pyra-

mids separately. The division may be effected by drawing all the

diagonals that can be drawn from a common vertex
;
the bases of

the pyramids will be all the faces of the polyedron except those

which meet at the common vertex. Or, a point may be taken within

the polyedron and joined to all the vertices
;

the polyedron will

then be decomposed into pyramids whose bases will be the faces of

the polyedron, and whose common vertex will be the point taken

within it.

PROPOSITION XX.—THEOREM.

57. Two tetraedrons which have a triedral angle of the one equal to

a triedral angle of the other, are to each other as the products of the

three edges of the equal triedral angles.

Let ABCD, AB'C'D\ be the

given tetraedrons, placed with their

equal triedral angles in coincidence

at A. From D and D', let fall DO
and D'O' perpendicular to the face

ABC. Then, taking the faces ABC,

AB'C, as the bases of the triangu-

lar pyramids D-ABC, D'-AB'C, and denoting the volumes by F

and F', we have (55),

J^ _ ABCX DO _ ABC ^ D0_~ ~
h'O''V AB'C X D'O' AB'C

By (IV. 22) and (III. 25), we have

ABC __ ABX AC
AB'C~ AB' X AC and

DO AD
D'C AD'
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217

^3

PKOPOSITION XXI.—THEOKEM.

58. A fy^jisium of a triangular pyramid is equivalent to the sum of

three pyramids whose common altitude is the altitude of the frustum,

and whose bases are the lower base, the upper base, and a mean pro-

portional between the bases, of the frustum.

Let ABG-D be a frustum of a tri-

angular pyramid, formed by a plane

DEF parallel to the base ABC,

Through the vertices A, E and C,

pass a plane AEC;, and through the

vertices E, D and G, pass a plane EDO,

dividing the frustum into three pyra-

mids. For brevity, denote the pyramid

E-ABChy P, the pyramid E-DFChyp, and the pyramid E-ADC
by §.

The pyramids P and Q, regarded as having the common vertex

C and their bases in the same plane BD, have a common altitude

and are to each other as their bases AEB and AED (55). But the

triangles AEB and AED, having a common altitude, namely, the

altitude of the trapezoid ABED, are to each other as their bases AB
and DE; hence we have

P_AB
'

Q~ DE

The pyramids Q and p, regarded as having the common vertex

E and their bases in the same plane AF, have a common altitude,

and are to each other as their bases ADC and DCF. But the tri-

angles ADC and DCF, having a common altitude, namely, the alti-

tude of the trapezoid A CFD, are to each other as their bases AG
and DF; hence we have

Q^AG
p DF

^Wf
•f^

Moreover the section DEF being similar to ABC (43), we havp

19
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DE~ DF
and therefore

^=«
Q p'

whence

Q' = FXp, Q^VFxTp;
that is (III. 5), the pyramid Q is a mean proportional between the

pyramids P and p.

Now, denote the lower base ABC of the frustum by B, its upper

ba^e by 6, and its altitude by h. The pyramid P, regarded as having

its vertex at E, has the altitude h and the base B
;
the pyramid p,

regarded as having its vertex at C, has the altitude h and the base

b
;
hence (54),

P=\hXB, p=.\hXb,
and

q = V\h XBXihXb = ih X VB X b;

consequently, Q is equivalent to a pyramid whose altitude is
Jjk
and

whose base is a mean proportional between the bases B and b
;
and

since the given frustum is the sum of P, p and §, the proposition is
'

established. II
] f V denotes the volume of the frustum, the proposition is ex-

pressed by the formula

V=ihXB + ihXb + ihX VWxb,

59. Corollary A frustum of any pyramid is equivalent to the sum of

three pyramids whose common altitude is the altitude of the frustum, and

whose bases are the lower base, the upper base, and a mean proportional

between the bases, of the frustum.

For, let ABCDE-F be a frustum of any pyramid S-ABCDE.
Let S'-A'B'C be a triangular pyramid, having the same altitude

as the pyramid S-ABCDE, and a base A'B'C equivalent to the

base ABCDE, and in the same plane with it. The volumes of the

two pyramids are equivalent (55). Let the plane of the upper base

of the given frustum be produced to cut the triangular pyramid.

I
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The section i^'GT being equivalent to the section FGEIK (iS),

the pyramid S'-F'GT is equivalent to the pyramid S-FGHIK;

and taking away these pyramids from the whole pyramids, the frus-

tums that remain are equivalent ; therefore, denoting by B the area

of ABODE OT of A'B'C\ by b that of FGHIK or of F'GT, and

by h the common altitude of the two frustums, we have for the vol-

ume of the given frustum the same expression as for that of the tri-

angular frustum
; namely,

V=^h {B -\-h -^VTyTh).

TEUNCATED TRIANGULAE PEISM,

PEOPOSITION XXII.—THEOEEM.

60. A truncated triangular prism is equivalent to the mm of three

pyramids whose common base is the base of theprismy and whose vertices

are the three vertices of the iyiclined section.

Let ABC-DEF be a truncated triangular

prism whose base is ABC and inclined sec-

tion DEF.
Pass the planes AEC and DEC, dividing

the truncated prism into the three pyramids,

E-ABC, E-ACD and E-CDF.
The first of these pyramids, E-ABC, has

the base ABC a.nd the vertex E,
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The second pyramid, E-ACD^ is equivalent to the pyramid
B- ACD ;

for they have the same base A CD, and the same altitude,

since their vertices E and B are in the line EB parallel to this base.

But the pyramid B-ACD is the same as D-ABC; that is, it has the

base ABC and the vertex D.

The third pyramid, E-CDF, is equivalent to the pyramid B-A CF;
for they have equivalent bases CDF and ACF in the same plane,

and also the same altitude, since their vertices E and B are in the

line EB parallel to that plane. But the pyramid B-A CF is the

same as F-ABC; that is, it has the base ABC and the vertex F.

Therefore the truncated prism is equivalent to three pyramids

whose common base is ABC and whose vertices are E, D and F.

61. Corollary I. The volume of a truncated right triangular prism

is equal to the product of its base by one-third the sum of its lateral

edges. For. the lateral edges AD, BE, CF, being perpendicular to

the base, are the altitudes of the three pyramids

to which the truncated prism has been proved to

be equivalent ; therefore, the volume is

ABC X iAD + ABC X iBE + ABC X iCF,
^

or

ABCX AD-i-BE-i- CF

62. Corollary II. The volume of any truncated triangular prism is

equal to the product of its right section by one-third the sum of its lateral

edges. For, let ABC-A'B'C be any trun-

cated triangular prism ;
the right section

DEF divides it into two truncated right

prisms whose volumes are, by the preced-

ing corollary.

3

and

3

the sum of which is

3
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SIMILAR POLYEDRONS.

63. Definition. Similar polyedrons are those which &re bounded by

the same number of faces similar each to each and similarly placed,

and which have their homologous polyedral angles equal.

Parts similarly placed in two similar polyedrons, whether faces,

lines, or angles, are homologous.

64. Corollary I. Since homologous edges are in the ratio of simili-

tude of the polygons of which they are homologous sides (III. 24),

and every edge belongs to two faces, in each polyedron, it follows

that the ratio of similitude of any two homologous faces is the same

as that of any other two homologous faces, and this ratio may be

called the ratio of similitude of the two polyedrons.

Therefore, any two homologous edges of two similar polyedrons are

in the ratio of similitude of the polyedrons ; or, homologous edges are

proportional to each other,

Qb. Corollary II. The ratio of the surfaces of any two homologous

faces is the square of the ratio of similitude of the polyedrons (IV. 24) ;

or, any two homologous faces are to each other as the squares of any two

homologous edges.

Hence, by the theory of proportions (III. 12), the entire surfaces

of two similar polyedrons are to each other as the squares of any two

homologous edges.

PROPOSITION XXIII.—THEOREM.

66. If a tetraedron is cut by a plane parallel to one of its facesy the

teiraedron cut off is similar to the first.

Let the tetraedron ABCD be cut by the -^

plane B'C'D' parallel to BCD; then, the A
tetraedrons AB' CD' and J.^CD are simi- // \

lar. // \

For, since the edges AB, ACy AD, shq
^/\"f
—

l^^^
divided proportionally at B\ C, D\ the / \l/^ \
face AB'C is similar to the face ABC, / / \
AC'D' to ACD, and AB'D' to ABD) ^V"'7 --^3
also, B'C'D' is similar to BCD (43). \ / ^^
Moreover, the homologous triedral angles, \y^
being contained by equal face angles simi-

^
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larly placed, are equal, each to each (VI. 71). Therefore, by the

definition (63), the tetraedrons are similar.

PROPOSITION XXIV.—THEOREM.
•*

67. Two tetraedrons are similar^ when a diedral angle of the one is

equal to a diedral angle of the other, and the faces including these angles

are similar each to each, and similarly plaxied.

Let ABCD, A'B'C'D', be

two tetraedrons in which the

diedral angle AB is equal to the

diedral angle A'B', and the

faces ABC and ABD are res-

pectively similar to the faces

A'B'O' and A'B'D') then, the

tetraedrons are similar.

The triedral angles A and A' are equal, since they may evidently

be placed with their vertices in coincidence so as to coincide in all

their parts. Therefore, the angles CAD and C'A'D' are equal. The

given similar faces furnish the proportions

AC
A'C

whence

A'C'~ A'D'*

therefore, the faces ACD and A'CD' are similar (III. 32).

In like manner it is shown that the triedral angles B and B' are

equal, and the faces BCD and B' CD' are similar.

Finally, the triedral angles C and C are equal, since their face

angles are equal each to each and are similarly placed (VI. 71) ;

and the triedral angles D and D' are equal for the same reason.

Therefore, the i\io tetraedrons are similar (63).

AB
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PKOPOSITION XXV.—THEOEEM.

68. Two similar polyedrons may be decomposed into the same numh&i

of tetraedrons similar each to each and similarly placed.

Let ABCDEFGH and abcdefgh be similar polyedrons, of which

A and a are homologous vertices.

Let all the faces not adjacent to Ay in the first polyedron, be

decomposed into triangles, and let straight lines be drawn from A to

the vertices of these triangles ;
the polyedron is then divided into

tetraedrons having these triangles as bases and the common ver-

tex A.

Also decompose the faces not adjacent to a, in the second polye-

dron, into triangles similar to those in the first polyedron and simi-

larly placed (III. 39), and let straight lines be drawn from a to the

vertices of these triangles ;
the second polyedron is then divided into

the same number of tetraedrons as the first, and it is readily proved

that two tetraedrons similarly placed in the two polyedrons are

similar.

We leave the details of the proof to the student. See (III. 39).

69. Corollary. Homologous diagonalsy and in general any two homol-

ogous lineSy in two similar polyedrons^ are in the same ratio as any two

homologous edges, that is, in the ratio of similitude of the polyedrons.

PROPOSITION XXVI.—THEOREM.

70. Two polyedrons composed of the same number of tetraedrons^

similar each to each and similarly placed, are similar.

The proof is left to the student. See (III. 38).
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PROPOSITION XXVII.—THEOREM.

71. Similar polyedrons are to each other as the cubes of their homol-

ogous edges.

1st. Let ABCDj abed, be two

sirnjilar tetraedrons
;
let the similar

tnces BCD, bed, be taken as bases,

and let AO, ao be their altitudes.

Since the tetraedrons are simi-

lar, they may be placed with their

equal homologous polyedral angles

A and a in coincidence, and the

base bed will then be parallel to

the base BCD, since their planes

make equal angles with the plane of the face ABC. The perpen-

dicular AO, to BCD, will also be perpendicular to bed, and Ao will

be the altitude of the tetraedron Abed or abed. Denoting the

volumes of the tetraedrons by V and v, we have (55),

and by (69), we have

BCDX AO



BOOK VII. 225

tetraedrons are to each other as the cubes of their homologous edges ;

but the ratio of the homologous edges of the two similar tetraedrons

is equal to ratio of any two homologous edges of the polyedron (69) ;

therefore, any two homologous tetraedrons are to each other as the

cubes of two homologous edges of the polyedron, and by the theory

of proportion, their sums, or the polyedrons themselves, are in the

same ratio, or as the cubes of their homologous edges.

72. Corollary I. Similar prisms or pyramids are to each other as

the cubes of their altitudes.

73. Corollary II. Two similar, polyedrons are to each other as the

cubes of any two homologous lines.

N

SYMMETKICAL POLYEDRONS.

a. Symmetry with respect to a plane,

74. Definitions. Two points, A and A\ are sym-

metrical with respect to a plane, 3IN, when this j^

plane bisects at right angles the straight Vine AA' I

joining the points. /

Two figures are symmetrical with respect to a

plane, when every point of one figure has its sym-
metrical point in the other.

We leave the proof of the following simple theorems to the

student.

75. Theorem. The symmetricalfigure of a finite

draight line, AB, is an equal straight line, A'B',

^N^^,

76. Theorem. The symmetrical figure of

an indefinite straight line, AB, is another

indefinite straight line, A'B\ which intersects

the first in the plane of symmetry, and

makes the same angle with the plane.

V

^A
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77. Theorem. The symmetricalfigure of a plane angle, BAC, is an

equal 'plane angle, B'A'C (Fig. 1).

Fig. 2.

78. Theorem. The symmetrical figure of a plane ABC, is a plane

ABC ; and the two planes intersect in the plane of symmetry ABN,
and make equal angles with it (Fig. 2).

Corollary. If a plane is parallel to the plane of symmetry, its sym-
metrical plane is also parallel to the plane of symmetry, and at the

same distance from it.

79. Theorem. The symmetrical figure of a diedral angle, CABD,
is an equal diedral angle, C'A'B'D' (Fig. 3).

PROPOSITION XXVIII.—THEOREM.

80. If two polyedrons are symmetrical with respect to a plane, 1st,

(heir homologous faces are equal; 2d, their homologous polyedral angles

are symmetrical.

1st, lict Ay B, C, D, be the vertices of a face

of one of the polyedrons; their symmetrical

points. A', B', C, Z)', are in the same plane

(78) ; tl^e homologous sides of the polygons

ABCD, A'B'C'D', are equal (75), and their

homologous angles are equal (77) ;
therefore

the homologous faces are equal.

2d. The homologous face angles of two

polyedral angles, A and A
',
are equal (77),

and their homologous diedral angles are

equal (79) ;
but if one of the face angles as
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BAD be applied to its equal B'A'D', so as to bring the other edges

of the polyedral angles A and J.' on the same side of the common

plane B'A'D', it will be apparent that the face angles succeed each

other in inverse orders in the two figures ; therefore, the homologous

polyedral angles of the two polyedrons are symmetrical (VI. 68).

81. Corollary. Two symmetrical polyedrons may he decomposed into

the same number of tetraedrons symmetrical each to each. For one of

the polyedrons being divided into tetraedrons by drawing diagonals

from a common vertex, and the homologous diagonals being drawn

in the other polyedron, any two corresponding tetraedrons thus

formed will have their vertices symmetrical each to each, and will

consequently be symmetrical tetraedrons.

82. Scholium. Two polyedrons whose faces are equal each to each

and whose polyedral angles are symmetrical each to each, are called

symmetrical polyedrons, whatever may be their position with respect

to each other, since they admit of being placed on opposite sides of a

plane so as to make their homologous vertices symmetrical with

respect to that plane.

PROPOSITION XXIX.—THEOREM.

83. Two symmetrical polyedrons are equivalent.

Since two symmetrical polyedrons may be decomposed into the

same number of tetraedrons symmetrical each to each, it is only

necessary to prove that two symmetrical tetra-

edrons are equivalent.

Jjet SABC be a tetraedron; let the plane

of one of its faces, ABO, be taken as a plane

of symmetry, and construct its symmetrical

tetraedron S'ABC. The tetraedrons, having

the same base ABC and equal altitudes SOy

S' O, are equivalent (55).

f 6. Symmetry mth respeet to a centre,

84. Definitions. Two points A and A'
,
are sym-

metrical with respect to a fixed point, 0, called

the centre of symmetry, when this point bisects

the straight line, AA', joining the two points. a

./
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Any two figures suce symmetrical with respect to a centre, when

every point of one figure has its symmetrical point on the othen

These definitions are identical with those giveu in (I. 138), but

are here extended to figures in space.

The student can readily establish the following theorems on figur^

symmetrical with respect to a centre.

85. Theorem. The symmetrical figure of a finite straight line, AB^
is an equal straight line, A 'B,' parallel to the first (Fig. 1).

Fig. 2.

Fig. 1.

,'0

86. Theorem. The symmetrical figure of a plane angle, BA C,is ai

equal plane angle, B'A'C (Fig. 2).

87. Theorem. The symmetrical figure of a plane, BAC, is a parallel

plane, B'A'C (Fig. 2).

88. Theorem. The symmetrical

figure of a diedral angle, DAB C, is

an equal diedral angle, D'A'B'C. d 2

£t

B' ;

89. Theorem. If two polye-

drons are symmetrical with re-

spect to a centre, 1st, their ho-

mologous faces are equal; 2d,

their homologous angles are sym-

metrical.

Corollary I. The symmetrical figure of a polyedron is the same,

whether the symmetry be with respect to a plane or with respect to a

centre.

Corollary II. Two polyedrons, symmetrical with respect to a centre^

are equivalent.
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c. Symmetry of a single figure.
X

90. Definition. Any figure in space is called a symmetrical figure,

1st, if it can be divided by a plane into two figures which are sym-
metrical with respect to that plane; 2d, if it has a centre which

bisects ail straight lines drawn through it, and terminated by the sur-

face of the figure ; 3d, if it has an axis which contains the centres

of all the sections perpendicular to that axis.

For example, 1st, the hexaedron SABCS'
is symmetrical with respect to the plane ABC,
which divides the solid into the two symmet-
rical tetraedrons SABC, S'ABC.

2d. The intersection of the four diagonals

of a parallelepiped is the centre of symmetry
of the parallelepiped (18).

3d. The straight line 22', joining the cen-

tres of the bases of a right parallelepiped

AC, is an axis of symmetry of the figure,

since it evidently contains the centre of any
section abed perpendicular to it, or parallel to

the bases. If the parallelepiped is rectangu-

lar, it has three axes xx', yy', zz', perpendicu-

lar to each other which intersect in its centre.

We leave the demonstration of the following theorems to the

student.

91. Theorem. If a figure has two

planes of symmetry, MN and FQ,
the intersection, xx', of these planes,

is an axis of symmetry of the figure.

See (I. 141).

t/ '

.
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9^. Theorem. If a figure has three planes of symmetry perpendiculaf

to each other (VI. 48), the intersections of these planes are three axes

of symmetry, and the common intersection of thes&axes is the centre of

symmetry of the figure.

K THE REGULAR POLYEDRONS.

93. Definition. A regular polyedron is one whose faces are all equal

regular polygons and whose polyedral angles are all equal to each

other.

PROPOSITION XXX.—PROBLEM. 4
94. To construct a regular polyedron, having given one of its edges.

There are five regular polyedrons, which we shall consider in their

order.

Construction of the regular tetraedron.

Let AB be the given edge. Upon AB con-

struct the equilateral triangle ABC. At the

centre of this triangle erect a perpendicular,

OD, to its plane, and take the point D so that

AD = AB; join DA, DB, DC. The faces of

the tetraedron ABCD are each equal to the face

ABC (VI. 10), and its polyedral angles are all

equal (VI. 71) ; therefore, ABCD is a regular

tetraedron.

Construction of the regular hexaedron.

Upon the given edge AB, construct the square

ABCD. The cube ABCDE, whose faces are each

equal to this square, is a regular hexaedron, and the

method of constructing it is obvious.

Construction of the regular octaedron.

Let AB be the given edge. Upon AB construct the square

ABCD, and at the centre of the square erect the perpendicular

FG to ite plane. In this perpendicular, take the points F and G so
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that 0F= OA and OG =- OA, and join FA,

FB, FC, FD, GA, GB, GC, GD. These

edges are equal to each other (VI. 10), and

also to the edge AB, since A OF and A OB
are equal triangles ; therefore, the faces of the

figure are eight equal equilateral triangles.

Since the triangles DFB and DAB are

equal, DFBG is a square, and it is evident

that the pyramid A-DFBG is equal in all its parts to the pyramid

F-ABCD; therefore, the polyedral angles A and F are equal;

whence, also, all the polyedral angles of the figure are equal to each

other, and the figure is a regular octaedron.

Construction of the regular dodecaedron.

Upon the given edge AB, construct a regular pentagon ABODE;
to each of the sides of this pentagon apply the side of an equal

pentagon, and let the planes of these pentagons be so inclined to

that of ABODE as to form triedral angles at A, B, C, D, E. There

is thus formed a convex surface, FGHI, etc., composed of six regu-

lar pentagons.

Construct a second convex surface, F'G'HT, etc., equal to the

first. The two surfaces may be combined so as to form a single con-

vex surface. For, suppose the diagram to represent the exterior of

the first surface and the interior of the second
;

let the point P of

the first be placed on F' of the second
;
then the three equal angles

OFF, P'F'A', A'F'G', can be united so as to form a triedral angle

at F' equal to that at A\ since the diedral angle F'A' is already

that which belongs to such a triedral angle. But when PF coin-

cides with F'G\ there will be brought together at G' three angles

PFA, AFG, F'G'H\ which will form a triedral angle equal to J'
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since the diedral angles at the edges FA and F'G' are already those

which belong to such an angle. Thus, it can be shown, successively,

that all the edges PF, FO, etc., of the first figure, will coincide with

the edges F'G\ G'H\ etc., of the second, and that all the polyedral

angles of the whole convex surface thus formed are equal. This,

fiurface is therefore a regular dodecaedron.

Construction of the regular icosaedron. J
Upon the given edge ABj construct a regular pentagon ABODE,

and at its centre erect OS perpendicular to its plane, taking S so

that SA = AB) then, joining SA, SB, etc., the pyramid S-ABCDE
is regular, and each of its faces is an equilateral triangle. Now let

tnc vertices A and B be taken (as in the second figure) as the vertices

of two other pyramids, A-BSEFG and B-ASCHG, each equal to

the first and having in common with it the faces ASB and ASE,
ASB and BSC, respectively, and in common with each other the

faces ASB and ABG. There is thus formed a convex surface

CDEFGH, composed of ten equal equilateral triangles.

Construct a second convex surface G'D'E'F'G'IF, equal in all re-

spects to the first
; and let the figure represent the exterior of the first

surface, and the interior of the second. Let the first surface be applied

to the second by bringing the point Z), where two faces meet, upon tlie

point C", where three faces meet. The edges DE and DC can then

be brought into coincidence with the edges CD' and C'H\ re-

spectively, to form a m^lyedral angle of five faces equal to S, without

in any way changing the form of either surface, since the diedral

angles at the edges SD, S'C', B'C', are those which belong to such

a polyedral angle. But when DC has been brought into coincidence

with C'H', there have been brought together, at the point H\ five
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equal faces having the necessary diedral inclinations to form another

polyedral angle equal to S; and thus, in succession, it can be shown

that all the outer edges of the first surface coincide with those of the

second, and that all the polyedral angles of the entire convex sur-

face thus formed are equal. This surface is therefore a regular

icosaedron.

yj y^^- PKOPOSITION XXXI.—THEOKEM.

95. Only jive regular {convex) polyedroris are possible.

The faces of a regular polyedron must be regular polygons, and

at least three faces are necessary to form a polyedral angle.

1st. The simplest regular polygon is the equilateral triangle.

Three angles of an equilateral triangle can be combined to form a

convex polyedral angle, and this combination, as shown in the pre-

ceding proposition, gives the regularJetraedron.

The combination of four such angles gives the regular octaedron;

and that of five gives the regular icosaedron. The combination of

six or more (each being -f
of a right angle) gives a sum equal to, or

greater than, four right angles, and therefore cannot form a convex

polyedral angle (VI. 70). Therefore, only three regular convex

polyedrons are possible whose surfaces are composed of triangles.

2d. Three right angles can be combined to form a polyedral angle,

^nd this combination gives the regular hexaedron, or cube. Four

or more right angles cannot form a convex polyedral angle (VI. 70) ;

therefore, but one regular convex polyedron is possible whose surface

is composed of squares.

3d. Three angles of a regular pentagon, being less than four right

angles (each being f of a right angle), may form a polyedral angle,

as in the case of the dodecaedron
;
but four or more would exceed

four right angles. Therefore, but one regular convex polyedron is

possible with pentagonal faces.

4th. Three or more angles of a regular hexagon (each being f of

a right angle) cannot form a convex polyedral angle ;
nor can angles

of any regular polygon of a greater number of sides form such a

polyedral angle.

Therefore, the five regular convex polyedrons constructed in the

preceding proposition are the only ones possible.

20 -»
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96. Scholium. The student may derive some aid in comprehending
the preceding discussion of the regular polyedrons by constructing

models of them, which he can do in a very simple manner, and «,t

the same time with great accuracy, as follows.

Draw on card-board the following diagrams ;
cut them out entire,

ai\,d at the lines separating adjacent polygons cut the card-board

half through ;
the figures will then readily bend into the form of the

respective surfaces, and can be retained in that form by glueing the

Tetraedron.

Hexaedron.
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Let E denote the number of edges of any polyedron, V the num*

ber of its vertices, and F the number of its faces
;
then we are to

prove that

E-\-2= V+F.

In the first place, we observe that if we

remove a face, as ABODE, from any con-

vex polyedron GH, we leave an open sur-

face, terminated by a broken line which

was the contour of the face removed ;
and

in this open surface the number of edges

and the number of vertices remain the

same as in the original surface.

Now let us form this open surface by putting together its faces

successively, and let us examine the law of connection between the

number of edges E, the number of vertices F, and the number of

faces, at each successive step. Beginning with one face we have

E= V. Annexing a second face, by applying one of its edges to an

edge of the first, we form a surface having one edge and two vertices

in common with the first
; therefore, whatever the number of sides

of the new face, the whole number of edges is now one more than

the whole number of vertices ;
that is.

For 2 faces. E= F+1.

Annexing a third face, adjacent to each of the former, the new sur-

face will have two edges and three vertices in common with the pre-

ceding surface; therefore the increase in the number of edges is

again one more than the increase in the number of vertices ;
and we

have

For 3 faces, E= V -\- 2.

At difierent stages of this process the number of common edges to

two successive open surfaces may vary, but in all cases it is ap-

parent that the addition of a new face increases E by one more unit

than it increases V; and hence we have the following series of

results :
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*

the exterior aDgles of one polygon is 4R, and the sum of the exterior

angles of the F polygons is 4R X F; that is,

S-{-UiXF=2Rx2E,
)T, reducing,

^ iS=4i2x (Je;— F>

But by Euler^s Theorem F-- F= F— ? : ^encei
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THE THREE ROUND BODIES.

Of the various solids bounded by curved surfaces, but three are

treated of in Elementary Geometry—namely, the cylindeVj the conef

and the sphere^ which are called the three round bodies.

THE CYLINDER

2. Definition. A cylindrical surface is a curved surface generated

by a moving straight line which continually touches a given curve,

and in all of its positions is parallel to a given fixed straight line not

in the plane of the curve.

Thus, if the straight line Aa moves so

as continually to touch the given curve

ABCDj and so that in any of its positions,

as Bh, Cc, Ddy etc., it is parallel to a

given fixed straight line ilifm, the surface

ABCDdcba is a cylindrical surface. If

the moving line is of indefinite length, a

surface of indefinite extent is generated.

The moving line is called the generatrix ; the curve which it touches

is called the directrix. Any straight line in the surface, as Bh^ which

represents one of the positions of the generatrix, is called an element

of the surface.

In this general definition of a cylindrical surface, the directrix

may be any curve whatever. Hereafter we shall assume it to be a

closed curve, and usually a circle, as this is the only curve whose

properties are treated of in elementary geometry.
238

t
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3. Definition. The solid Ad bounded by a cylindrical surface and

two parallel planes, ABD and abdy is called a cylinder; its plane

surfaces, ABD, abd, are called its bases; the curved surface is some-

times called its lateral surface; and the perpendicular distance be-

tween its bases is its altitude.

A cylinder whose base is a circle is called a eireular cylinder.

4. Definition. A right cylinder is one whose ele-

ments are perpendicular to its base.

5. Definition. A right cylinder mth a circular

base, as ABCa, is called a cylinder of revolution, be-

cause it may be generated by the revolution of a

rectangle A Opa about one of its sides, Oo, as an

axis; the side Aa generating the curved surface,

and the sides OA and oa generating the bases. The fixed side

Oo is the axis of the cylinder. The radius of the base is called the

radius of the cylinder.

.̂,4ifi

PKOPOSITION I.—THEOKEM.

6. Every section of a cylinder made by a plane passing through an

element is a parallelogram.

Let Bb be an element of the cylinder Ac ;

then, the section BbdD, made by a plane

passed through Bb, is a parallelogram.

1st. The line Dd in which the cutting plane

intersects the curved surface a second time is

an element. For, if through any point D of

this intersection a straight line is drawn paral-

lel to Bb, this line by the definition of a cylindrical surface, is an

element of the surface, and it must also lie in the plane Bd\ there-

fore, this element, being common to both surfaces, is their inter-

section.

2d. The lines BD and bd are parallel (VI. 25), and the elements

Bb and Dd are parallel ; therefore, Bd is a parallelogram.

7. Corollary. Every section of a right cylinder made by a plane

perpendicular to its base is a rectangle.
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PROPOSITION II.—THEOREM.

8. The hoses of a cylinder are equal.

Let BD be the straight line joining any
two points of the perimeter of the lower base,

and let a plane passing through BD and the

element Bh cut the upper base in the line hd]

then, BD = bd (6).

Let A be any third point in the perimeter

of the lower base, and Aa the corresponding

element. Join AB^ AD, ah, ad. Then AB = ah and AD = ad

(6) ;
and the triangles ABD, ahd, are equal. Therefore, if the upper

base be applied to the lower base with the line bd in coincidence

with its equal BD, the triangles will coincide and the point a will

fall upon A ;
that is, any point a of the upper base will fall on the

perimeter of the lower base, and consequently the perimeters will

coincide throughout. Therefore, the bases are equal.

9. Corollary I. Any two parallel sections

MPN, mpn, of a cylindrical surface Ah, are

equal.

For, these sections are the bases of the

cylinder 3fn.

10. Corollary IL All the sections of a circular cylinder parallel

to its bases are equal circles
;
and the straight line joining the centres

of the bases passes through the centres of all the parallel sections.

This line is called the axis of the cylinder.

11. Definition. A tangent plane to a cylinder is a plane which

passes through an element of the curved surface without cutting this

surface. The element through which it passes is called the element

of contact.

r
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PKOPOSITION III.—PROBLEM.

12. Through a given point, to pass a plane tangent to a given circular

cylinder.

1st. When the given point is in the curved surface of the cylinder,

in which case the element of ^^ c

contact is given, since it must /^—
7^ /

be the element passing through / s. V /^"^T/ /
the given point. ^Ac-- Aj^s/y, // /

Let the given point be a
^'-^^^'^v''"^i,^"7/b~'/V /

point in the element Aa. At /T / /^^^^// /
A, in the plane of the base, i'4c" -/-.yfe.--//

/s

draw AT tangent to the base, ^"^"^"^^-^'T/o'"^^
and pass a plane lit through ^^"^^^z

Aa and AT; this plane is tan-

gent to the cylinder. For, let Pbe any point in this plane not in

the element Aa, and through P pass a plane parallel to the base, in-

tersecting the cylinder in the circle 3/iVand the plane Bt in the line

MP. Let Q be the centre of the circle MN, and join QM. Since

MP and 31Q are parallel respectively to ^ T and A (VI. 25), the

angle PMQ is equal to the angle TA 0, and PM is tangent to the

circle MN at M; therefore, P lies without the circle MN and conse-

quently without the cylinder. Hence the plane Pt does not cut the

cylinder and is a tangent plane.

2d. When the given point is without the cylinder. Let P be the

given point. Through P draw the straight line PT, parallel . to the

elements of the cylinder, meeting the plane of the base in T. From

Tdraw TA and TC tangents to the base (II. 90) ; through PT and

the tangent TA pass a plane Bt, and through PT and TC pass a

plane Ts. The plane Bt, passing through PTand the point A, must

contain the element Aa, since ^a^is parallel to PT; and it is a tan-

gent plane since it also contains the tangent A T. For a like reason

the plane Ts is a tangent plane.

13. Corollary. The intersection of two tangent planes to a cylinder

is parallel to the elements of the cylinder.

14. Scholium. Any straight line, drawn in a tangent plane and

cutting the eleiient of contact, is tangent to the cylinder. .

21 Q
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THE CONE.

15 DefinU.on. A conical surface is a curved surface generate*

by a moving straight line which continually touches a given curve

and passes through a given fixed point not in the plane of the

onrve.

Thus, if the straight line SA moves so

IS continually to touch the given curve

ABCD, and in all its positions, SB, SO,

JSD, etc., passes through the given fixed

point S, the surface S-ABCD is a conical

surface.

The moving line is called the generatrix ;

the curve which it touches is called the

directrix. Any straight line in the surface,

as SB, which represents one of the positions of the generatrix, is

called an element of the surface. The point S is called the vertex.

If the generatrix is of indefinite length, as ASa, the whole surface"

generated consists of two symmetrical portions, each of indefinite

extent, lying on opposite sides of the vertex, sls S-ABCD and

S-abcd, which are called nappes; one the upper, the other the lower

nappe.

16. Definition. The solid S-ABCD, bounded by a conical surface

and a plane ABD cutting the surface, is called a cone; its plane sur-

face ABD is its base, the point S is its vertex, and the perpendicular

distance SO from the vertex to the base is its altitude.

A cone whose base is a circle is called a circular cone. The straight

line drawn from the vertex
'

of a circular cone to the centre of its

base is the axis of the cone.

17. Definition. A right circular cone is a circular

cone whose axis is perpendicular to its base, as

S-ABCD.
The right circular cone is also called a cone of revo-

lution, because it may be generated by the revolution

of a triangle, SAO, about one of its perpendicular

Bides, SO, as an axis; the hypotenuse SA gener-

ating the curved surface, and the remaining perpen-

dicular <?ide OA generating the base.

i

«
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PKOPOSITION IV.—THEOEEM.

18. Every section of a cone made by a plane passing through its ver-

tex is a tftangle.

Let the cone S-ABCD be cut by a plane SBC which passes

through the vertex S and cuts the base in the straight line BC;
then, the section SBC is a triangle, that is, the

intersections SB and SC with the curved surface

arc straight lines.

For, the straight lines joining S with B and C
are elements of the surface^ by the definition of a

cone, and they also lie in the cutting plane;

therefore they coincide with the intersections of

that plane with the curved surface.

PROPOSITION v.—THEOREM.

19. If the base of a cone is a circle^ every section made by a plane

parallel to the base is a circle.

Let the section abc, of the circular cone

S-ABC, be parallel to the base.

Let be the centre of the base, and let o

be the point in which the axis SO cuts the

plane of the parallel section. Through SO
and any number of elements SA, SB, etc.,

pass planes cutting the base in the radii OA,

OB, etc., and the parallel section in the

straight lines oa, ob, etc. Since oa is parallel to OA, and ob to OB,
we have

oa
So^ ob So

0A~ so^"" dB~sb'
, oa

whence =
OA

ob_

OB

But OA = OB, therefore oa = ob; hence, all the straight lines

drawn from o to the perimeter of the section are equal, and the sec-

tion is a circle.

20. Corollary. The axis of a circular cone passes through the

centre* of all the sections parallel to the base.
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21. Definition. A tangent plane to a cone is a plane which passes

through an element of the curved surface without cutting this sur-

face. The element through which it passes is called the element of

contact.

PROPOSITION VI.—PROBLEM.

22. Through a given pointy to pass a plane tangent to a given circular

cone.

1st. When the given point is in the curved surface of the cone.

Let the given point be a point in the element SA. At A, in the

t^Iane of the base, draw AM tangent to the base, and pass a plane

MP through SA and AM; this plane is tangent to the cone. The

proof is the same as for the tangent plane to the cylinder.

2d. When the given point is a point m without the cone. Join

the vertex S and the point m, and produce Sm to meet the plane of

the base in M. From M draw MA and MC, tangents to the base,

and through SM and these tangents pass the planes MP and ME,
The plane MP, containing the element SA and the tangent MA, is a

tangent plane to the cone, and it also passes through the given

point m ;
and for a like reason, the plane JLTjR also satisfies the con-

ditions of the problem.

23. Scholium I. Any straight line, drawn in a tangent plane and

cutting the element of contact, is tangent to the cone.

24. Scholium II. When the given point is without the cone, the

problem may be stated in the following form :

Through any given straight line passing through the vertex of a cone,

to pass a plar
-

tangent to the cone.
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THE SPHERE.

25. Definition. A ^here is a solid bounded by a surface all the

points of which are equally distant from a point within called the

centre.

A sphere may be generated by the revolution

of a semicircle ABC ahowt its diameter J. as an

axis
;
for the surface generated by the curveABC

will have all its points equally distant from the

centre 0.

A radius of the sphere is any straight line

drawn from the centre to the surface. A diameter

is any straight line drawn through the centre and terminated both

ways by the surface.

Since all the radii are equal and every diameter is double the

radius, all the diameters are equal.

26. Definition. It will be shown that every section of a sphere

made by a plane is a circle ;
and as the greatest possible section is

one made by a plane passing through the centre, such a section is

called a great circle. Any section made by a plane which does not

pass through the centre is called a small circle.

27. Definition. The poles of a circle of the sphere are the extreraiv

ties of the diameter of the sphere which is perpendicular to the plane

of the circle ;
and this diameter is called the axis of the circle.

i

PEOPOSITION VII.—THEOREM.

28. Every section of a sphere made by a plane is a circle.

Let abc be a plane section of the sphere

whose centre is 0.

All the straight lines Oa, Ob, etc., drawn

from to points in the curve of intersec-

tion abc, are equal, being radii of the

sphere ; therefore, the curve abc is the cir-

cumference of a circle (VI. 12), and its

centre is the foot o of the perpendicular Oo

let fall from upon the plane of the section.

29. Corollary I All great circles, as ABC, ADCE, are equal
21*
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f

for, sin.ie their planes pass through the centre of the sphere, their

radii OA, Oa, are radii of the sphere.

30. Corollary II. A small circle abe is the le^s, the greater its

distance Oo from the centre of the sphere.

31. Corollary III. Every great circle divides the sphere into two

equal parts ; for, if the parts be separated and then placed with their

bases in coincidence and their convexities turned the same way, their

surfaces will coincide
;
otherwise there would be points in the spheri-

cal surface unequally distant from its centre. ^

32. Corollary IV. Any two great circles A CBD, AEBF, bisect eaci

other; for, the common intersection AB of

their planes passes through the centre of the

sphere and is a diameter of each circle.

33. Corollary V. An arc of a great circle may
be drawn through any two given points, J., E^

of the surface of the sphere ;
for the two points,

A and E, together with the centre 0, deter-

mine the plane of a great circle whose cir-

cumference passes through A and E (VI. 4).

If, however, the two given points are the extremities A and B of

a diameter of the sphere, the position of the circle is not determined,

for the points A^ and B, being in the same straight line, an infi- mi

nite number of planes can be passed through them (VI. 2). n
34. Corollary VI. An arc of a circle may be drawn through any

three given points on the surface of the sphere ; for, the three points

determine a plane which cuts the sphere in a circle.

^ PROPOSITION VIII.—THEOREM. V
35. All the points in the circumference of a circle of the sphere are

equally distant from each of its poles. P
Let abed be any circle of the sphere and

PP' the diameter of the sphere perpendicu- oj^/_,i^ r-.^^

lar to its plane ; then, by the definition (27),
' ^

Pand P' are the poles of the circle a6cc?. ^
k^li""-'!->T6'

'^^

Since PP' passes through the centre o ^ ^\c\

of the circle, the distances Pa, Pb, Pc, are

>blique lines from P to points a, b, c, equally /*/
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distant from the foot of the perpendicular, and are therefore equal

(VI. 10). Hence, all the points of the circumference abed are equally-

distant from the pole P. For .the same reason, they are equally dis-

tant from the pole P'.

36. Corollary I. All the arcs of great circles drawn from a pole

of a circle to points in its circumference, as the arcs Pa, Fb, Pc, are

equal, since their chords are equal chords in equal circles.

By the distance of two points on the surface of a sphere is usually

understood the arc of a great circle joining the two points. The

arc of a great circle drawn from any point of a given circle abc, to

one of its poles, as the arc Pa, is called the polar distance of the given

circle, and the distance from the nearest pole is usually understood.

37. Corollary II. The polar distance of a great circle is a quad-

rant of a great circle
;
thus PA, PB, etc., P'A, P'B, etc., polar dis-

tances of the great circle ABCD, are quadrants; for, they are the

measures of the right angles AOP, BOP, A OP', BOP', etc., whose

vertices are at the centre of the great circles PAP', PBP', etc.

In connection with the sphere, by a quadrant is usually to be

understood a quadrant of a great circle.

38. Corollary III. If a point P on the surface of the sphere is at

the distance of a quadrant from two points, B and C, of an arc of a

great circle, it is the pole of that arc. For, the arcs PB and PC
being quadrants, the angles POB and POC are right angles ;

there-

fore, the radius OP is perpendicular to each of the lines OB, OC,

.and is consequently perpendicular to the plane of the arc BC
(VI. 13) ; hence. Pis the pole of the arc BC.

39. Scholium. By means of poles, arcs of circles may be drawn

upon the surface of a sphere with the same ease as upon a plane sur-

face. Thus, by revolving the arc Pa about the pole P, its extremity

a will describe the small circle abd
;
and by revolving the quadrant

PA about the pole P, the extremity A will describe the great circle

ABD.
If two points, B and C, are given on the surface, and it is required

to draw the arc BC, of a great circle, between them, it will be neces-

sary first to find the pole P of this circle
;
for which purpose, take

B and C as poles, and at a quadrant's distance describe two arcs on

the surface intersecting in P. The arc PC can then be described

with a pair of compasses, placing one foot of the compasses on P and
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tracing the arc with the other foot. The opening of the compasses

(distance between their feet) must in this case be equal to the chord

of a quadrant ; and to obtain this it is necessary io know the radius

of the sphere.

(

PROPOSITION IX.—PROBLEM.

40. To find the radius of a given sphere.

We here suppose that a material sphere is given, and that only

measurements on the surface are possible.

Fig. 3.

1st. With any point P (Fig. 1) of the given surface as a pole, and

with any arbitrary opening of the compasses, describe a circum-

ference ahc on the surface. The rectilinear distance Pa^ being the

arbitrary opening of the compasses, is a known line.

Take any three points, a, b, c, in this circumference, and with the

compasses measure the rectilinear distances aft, he, ca.

2d. On a plane surface construct a triangle ahc (Fig. 2), with the

three distances ah, he, ca, and find the centre o of the circle circum-

scribed about the triangle (II; 87). The radius ao of this circle is

the radius of the circle ahc of Fig. 1.

3d. With the radius ao as a side, and the known distance Pa as

the hypotenuse, construct a right triangle aoP (Fig. 3). Draw aP'

perpendicular to aP, meeting Po produced in P'. Then it is evident

that PP', thus determined, is equal to the diameter of the given

sphere, and its half PO is the required radius.

41. Definition A plane is tangent to a sphere when it has but one

point in common with the surface of the sphere.

42. Definition. Two spheres are tangent to each ether when their

surfaces have but one point in common.
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)(
PROPOSITION X.—THEOREM. ^

43. A plane perpendicular to a radius of a sphere at its extremity ia

tangent to the sphere.

Let be the centre of a sphere, and ^ "\
let the plane MN be perpendicular to a / \
radius OA at its extremity A ; then, the

[
*2

] jv

plane MN ia tangent to the sphere at the / Vn^ I "]"*-./ 7

point A.
I ^vXJ/l,./ W

For, taking any other point, as H, in / /2\. /

the plane, and joining OH, the oblique
'

L 1 £17

line OH is greater than the perpendicu-

lar OA
;
therefore the point H is without the sphere. Hence the

plane MN has but the point A in common with the sphere, and is

consequently tangent to the sphere.

44. Corollary. Conversely, a plane tangent to a sphere is perpen-

dicular to the radius drawn to the point of contact. For, since every

point of the plane except the point of contact is without the sphere,

the radius drawn to the point of contact is the shortest line from the

centre of the sphere to the plane, therefore it is perpendicular to the

plane (VI. 9).

45. Scholium. Any straight line A T, drawn in the tangent plane

through the point of contact, is tangent to the sphere.

Any two straight lines, AT, A T\ tangent to the sphere at the

same point A, determine the tangent plane at that point.

PROPOSITION XI.—PROBLEM.

46. Through a given straight line without a given sphere, to pass a

plane tangent to the sphere.

Through the given straight line and the centre of the sphere, a

plane can be passed which will cut the sphere in a great circle. Let

the plane of the paper represent this plane ;
let MN be the given

line, the centre of the sphere, and aPcP' the great circle in which

the plane passed through MN and the centre cuts the sphere.

From any point M in the given line draw a tangent MaT to the

great circle aPc, draw MO cutting the circumference of the circle

21**
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in P and P'; let fall ao perpen-

iicular to MO, and join Oa.

Conceive the sphere to be gen-

erated by the revolution of the

semicircle PaP' about its diame-

tei"t and let the tangent Ma re-

volve with it. The line ao, per-

pendicular to the axis, will gener-

ate a small circle abc whose poles

are P and P'
;
the tangent MaT

will generate a conical surface;

and the portion of this surface between the point If and the circum-

ference ahc is the surface of the cone whose vertex is M and whose

base is the circle ahc. Every element of this cone as Mh is a tangent

to the sphere, since it has the point 6, and that point only, in common

with the sphere.

Now, every plane which is tangent to this cone is also tangent to

the sphere ;
for any plane touching the cone in an element Mb, has

the point b, and only the point 6, in common with the sphere.

Therefore the solution of the present problem is reduced to passing

a plane through the given line MN, tangent to the cone M-abe;

which is done by Proposition VI. of this Book, observing the Scho-

lium (24).

Since there are two tangent planes to the cone, there are also two

tangent planes to the sphere, passing through the given line 3IN.

47. Scholium. The indefinite conical surface generated by the

revolution of the tangent MT is circumscribed about the sphere ;
and

the sphere is inscribed in this surface. The circle abc is called the

circle of contact of the cone and sphere.

PROPOSITION XII.—THEOREM.

48. The intersection of two spheres is a circle whose plane is perpen-

dicular to the straight line joining the centres of the spheres, and ivhose

centre is in that line.

Through the centres and 0' of the two spheres, let any plane

be passed, cutting the spheres in great circles which intersect each

other in the points A and B
; the chord AB is bisected at C by the



BOOK VIII. 251

line 00' at right angles (II. 34). If we

now revolve the plane of these two circles

about the line 00\ the circles will gener-

ate the two spheres, and the point A will

describe the line of intersection of their

surfaces. Moreover, since the line AC
will, during this revolution, remain perpendicular to 00\ it will

generate a circle whose plane is perpendicular to 00' (VI. 15), and

whose centre is C.

49. Scholium. Two spheres being given in any position whatever,

if any plane is passed through their centres cutting them in two

great circles, the spheres will intersect if these circles intersect, will

be tangent to each other if these circles are tangent to each other,

etc. For each of these positions, therefore, we shall have the same

relations between the distance of the centres and the radii of the

spheres, as have been established for the corresponding positions of

two circles in Book II.

PKOPOSITION XIII.—THEOKEM.

50. Through any four jjoints not in the same plane, a spherical sur-

face can he made to pass, and bat one.

Let A, B, C, D, be four given points not

in the same plane. These four points may
be taken as the vertices of a tetraedron

ABCD.
Let IE be the centre of the circle circum-

scribed about the face ABC, and draw EM
perpendicular to this face; every point in

EM is equally distant from the points A, B
and C (VI. 10).

Let F be the centre of the circle circum-

scribed about the face BCD, and draw FN perpendicular to this

face
; every point in FN is equally distant from the points B, C

and D.

The two perpendiculars, EM and FN, intersect each other. For,

let H be the middle point of ^0, and draw EH, FH. The lines

EH and FH are each perpendicular to BC (II. 16); therefore, tlie

i/^
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plane passed through EH and FH is perpendicular to BC (VI. 13)

and consequently also to each of the faces ABGy BCD (VI. 47).

Hence, the perpendiculars EM and FN lie in the Same plane EHF
(VI. 50), and must meet unless they are parallel ;

but they cannot be

parallel unless the planes BCD and ABC are one and the same

plajie, which is contrary to the hypothesis that the four given points

are not in the same plane.

The intersection of the perpendiculars EM and FN, being

equally distant from A, B and C, and also equally distant from J5,

C and D, is equally distant from the four points A, B, C and D,

therefore, a spherical surface whose centre is and whose radius is

the distance of from any one of these points, will pass through

them all.

Moreover, since the centre of any spherical surface passing through

the four points A, B, C and D is necessarily in each of the perpen-

diculars E3I, FN, the intersection is the centre of the only spheri-

cal gurface that can be made to pass through the four given

points.

51. Corollary I. The four perpendiculars to the planes of the faces

of a tetraedron, erected at the centres of the faces, meet in the same

point.

52. Corollary II. The six planes, perpendicular to the six edges

of a tetraedron at their middle points, intersect in the same point.

PROPOSITION XIV.—THEOREM.

53. A sphere may be inscribed in any given tetraedron.

Let ABCD be the given tetraedron.

Let the planes OAB, OBC, OAC, bisect the

diedral angles at the edges AB, BC, AC, re-

spectively. Every point in the plane OAB is

equally distant from the faces ABC and ABD
^/r:::rr_.Jv-l----=)c'^

(VI. 55); every point in the plane OBC is

equally distant from the faces ABC and DBC;
and every point in the plane OAC is equally

distant from thQ faces ABC and ADC; there-

fore, the common intersection, 0, of these three planes is equally

distant from the four faces of the tetraedron ;
and a sphere described
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with as a centre, and with a radius equal to the distance of from

any face, will be tangent to each face, and will be inscribed in the

tetraedron.

54. Corollary. The six planes, bisecting the six diedral angles of a

tetraedron, intersect in the same point.

SPHEEICAL ANGLES.

65. Definition. The angle of two eiirves passing through the same

point is the angle formed by the two tangents to the curves at that

point.

This definition is applicable to any two intersecting curves in

space, whether drawn in the same plane or upon a surface of any
kind.

Thus, in a plane, two circumferences inter-

secting in a point A, make an angle equal to

the angle TAT' formed by their tangents at

A. In this case, the angle is also equal to

the angle OAO' formed by the radii of the

two circles drawn to the common point.

In like manner, on a sphere, the angle

formed by any two intersecting curves,

AB, AB\ is the angle TAT\ formed by
the lines AT, AT', tangents to the two

curves, respectively, at their common

point A.

PKOPOSITION XV.—THEOEEM.

56. The angle of two intersecting curves on the surface of a sphere is

equal to the diedral angle between the planes passed through the centre

of the sphere and the tangents to the two curves at their point of in'

ter^section.



254 GEOMETRY.

Let the curves, AB and AB\ on the

surface of a sphere whose centre is 0, in-

tersect at A, and let AT and A T' be the

tangents to the two curves, respectively.

Since J. T and AT' do not cut the curves

at 4> they do not cut the surface of the

sphere, and are therefore tangents to the

sphere. Hence they are both perpendicular to the radius OA drawn

to the common point of contact, and consequently the angle T'ATy

which is the angle of the two curves (55), measures the diedral angle

of the planes OJjT, OAT'j passed through the radius OA and each

of the tangents.

\A>'

PROPOSITION XVI.—THEOREM.

57. The angle of two arcs of great circles is equal to the angle of

their planes, and is measured by the arc of a gi^eat circle described from

its vertex as a pole and included between its sides {^produced if ne-

Let ^5 and AB' be two arcs of great

circles, ^ Tand AT' the tangents to these

arcs at A, the centre of the sphere.

The planes passing through the centre

and the tangents AT, AT', are in this

case the planes of the curves AB, AB',

themselves
; consequently the angleBAB',

or TAT', is equal to the angle of these

planes (56), the edge of this "angle being the common diameter

'aod.

Now let CC be the arc of a great circle described from Jl as a

pole and intersecting the arcs AB, AB' (produced if necessary), in

C and C". The radii OC and OC are perpendicular to AO, since

the arcs AC, AC, are quadrants (37) ; therefore, the angle COG' is

also equal to the diedral angle AO, or to the angle BAB', and it is

measured by the arc CC.
58. Corollary. Any great circle arc J. C", drawn through the pole

of a given great circle CC, is perpendicular to the circumference

CC. For, the pole A being in the diameter A OD perpendicular to
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the plane of CC, the plane of AC is perpendicular to the plane of

CC (VI. 47), and hence the angle C is a right angle.

Conversely, any great circle arc C'A perpendicular to the arc GC
must pass through the pole A of CC.

59. Scholium. If it is required to draw a great circle B'C perpen-

dicular to a given great circle CCE, through a given point B\ we

have only to find the pole iV of the required arc by describing, from

-B' as a pole and at a quadrant's distance, an arc cutting CCE in

N; then, from JV as a pole, the perpendicular B'C can be de-

scribed.

SPHERICAL POLYGONS AND PYRAMIDS.

60. Definition. A spherical polygon is a portion .,^—~~~~~^c

of the surface of a sphere bounded by three or y^ / /\

more arcs of erreat circles, as AB CD, ^
\ *<. /

Since the planes of all great circles pass \ / / \ /

through the centre of the sphere, the planes of \l{[ \J
the sides of a spherical polygon form, at the cen-

^ ^

tre 0, a polyedral angle of which the edges are the radii drawn to

the vertices of the polygon, the face angles are angles at the centre

measured by the sides of the polygon, and the diedral angles are

equal to the angles of the polygon (57).

Since in a polyedral angle each face angle is assumed to be less

than two right angles, each side of a spherical polygon will be as-

sumed to be less than a semi-circumference.

A spherical polygon is convex when its corresponding polyedral

angle at the centre is convex (VL 67).

A diagonal of a spherical polygon is an arc of a great circle join

ing any two vertices not consecutive.

61. Definition. A spherical triangle is a spherical polygon of three

sides. It is called right angled, isosceles, or equilateral, in the same

cases as a plane triangle.

62. Definition. A spherical pyramid is a solid bounded by a spheri-

cal polygon and the planes of the sides of the polygon ;
as 0-ABCD.

The centre of the sphere is the vertex of the pyramid ;
the spherical

polygon is its base.
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63. Symmetrical spherical triangles and polygons. Let ABC be a

spherical triangle, and the centre of the

sphere. Drawing the radii OAy OBj OC, we

form the triedral angle 0-ABC, at the centre.

The sides AB, BC, AQ of the triangle are

respectively the measures of the face angles

AOB,BOC,AOC, of the triedral angle ;
and

the angles A, B, (7, of the triangle are respec-

tively equal to the diedral angles at the edges

OA, OB, OC, of the triedral angle (57).

If the radii AO, BO, CO, are produced to meet the surface of the

sphere in the points A', B', C, and if these points are joined by arcs

of great circles A'B', B'C, A'C, a triedral angle O-A'B'C is

formed symmetrical with 0-ABC (VI. 68), and its corresponding

spherical triangle A'B'C is symmetrical with ABC.
The spherical pyramid O-A'B'C is also symmetrical with the

spherical pyramid 0-ABC
In the same manner, we may form two symmetrical polygons of

any number of sides, and corresponding symmetrical pyramids.

64. Two symmetrical spherical triangles, or polygons, are still

called symmetrical in whatever position they may be placed on the

surface of the sphere. If we place the symmetri- ^
cal triangles of the preceding figure with the ver-

tices A' and B' in coincidence with their homolo-

gous vertices A and B, their third vertices C and

C will lie on opposite sides of the arc AB. In

this position, it is apparent that the order of ar-

rangement of the parts in one triangle is the

reverse of that in the other, and that, in general,

two symmetrical spherical triangles cannot be made to coincide by

superposition.

65. There is, however, one exception to the last remark, namely,

the case of symmetrical isosceles tri-

angles. For, if ABC is an isosceles

spherical triangle and AB = AC,

then, in its symmetrical triangle we

have A'B' = A'C, and consequently

AB = A'C, AC = A'B', and since
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the angles A and A! are equal, if AB be placed on A! C\ AC will

fall on its equal A'B' and the two triangles wijl coincide throughout.

66. In consequence of the relation established between polyedral

angles and spherical polygons, it follows that from any property of

polyedral angles we may infer an analogous property of spherical

polygons.

Reciprocally, from any property of spherical polygons we may
infer an analogous property of polyedral angles.

The latter is in almost all cases the more simple mode of proce-

dure, inasmuch as the comparison of figures drawn on the surface of

a sphere is nearly if not quite as simple as the comparison of plane

figures.

67. Definition. If from the vertices of a spherical triangle as

poles, arcs of great circles are described, these arcs form by their

intersection a second triangle which is called the polar triangle of the

first.

Thus, if Ay B and C are the poles of the arcs

of great circles, B' C\ A'C\ and A'B\ respec-

tively, A'B'C is the polar triangle of ABC.
Since all great circles, when completed, intersect

each other in two points, the arcs B'C'^ A! C\

A!B\ if produced, will form three other triangles;

but the triangle which is taken as the polar tri-

dRgle is that whose vertex J.', homologous to A^ lies on the same

siJe of the arc BC sls the vertex A ;
and so of the other vertices.

^ PKOPOSITION XVII.—THEOKEM.

68. If A'B'C is the polar triangle of ABC, then, reeiprocally,

iBC is the polar triangle of A'B'C,

For, since A is the pole of the arc B'C, the

point ^' is at a quadrant's distance from A
;
and

since C is the pole of the arc A'B', the point B' is

at a quadrant's distance from C; therefore, B' is

the pole of the arc AC (38). In the same man-

ner, it is shown that A' is the pole of the arc BC,
and C the pole of the arc AB. Moreover, A and

A' are on the same side of B'C, B and B' on the same side of A'C,
22* R



258 GEOMETRY.

C aud C on the same side of A'B'
\ therefore, ABC is the polar

triangle of J 'jB'C. .

y^JtjK^^^^^^^^^
PROPOSITION XVIIL—THEOREM.

dD. In two polar triangles, each angle of one is measured by the sup-

plement of the side lying opposite to it in the other.

Let ABC and A'B'C be two polar triangles.

Let the sidesAB and A C, produced if necessary,

meet the side B'C in the points h and c. The

vertex A being the pole of the arc 6c, the angle

A is measured by the arc he (bl).

Now, B' being the pole of the arc Ac and C
the pole of the arc Ah, the arcs B'c and C'h are

quadrants ;
hence we have

B'C -\- be = B'c + C'b :^ a semi-circumference.

Therefore be, which measures the angle A, is the supplement of the

BideJ5'0' (IL 55).

In the same manner, it caa be shown that each angle of either

triangle is measured by the supplement of the side lying opposite to

it in the other triangle.

70. Scholium I. Let the angles of the triangle

ABC be denoted by A, B and C, and let the sides

opposite to them, namely, BC, AC and AB, be

denoted by a, b and c, respectively. Let the cor-

responding angles and sides of the polar triangle

be denoted by A', B', C, a', b' and c'. Also let

both angles and sides be expressed in degrees

(I]. 54). Then, the preceding theorem gives the following relations :

^ + a' = J5 + 6' = -f c' = 180°,

^' + a = ^' + 6 = C" -f c = 180°,

also A — a := A' — a', etc.

71. Scholium II. Two triedral angles at the centre of the sphere,

corresponding to two polar triangles on the surface, are called s^ip-

plementary triedral angles; for, it follows from the preceding
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theorem, and from the relation between any spherical polygon and

its corresponding polyedral angle (60), that the diedral angles of

either of these triedral angles are respectively the supplements of

the opposite face angles of the other. .

+ PROPOSITION XIX.—THEOREM.

72. Two triangles on the same sphere are either equal or symmetrical^

when two sides and the included angle of one are respectively equal to

two sides and the included angle of the other.

In the triangles ABC ojiH DEF, let the angle

A be equal to the angle D, the side AB equal

to the side DE, and the side A C equal to side

DF.

1st. When the parts of the two triangles are

in the same order, ABC can be applied to

DEF, as in the corresponding case of plane

triangles (I. 76), and the two triangles will

coincide
; therefore, they are equal.

2d. When the parts of the two tri-

angles are in inverse order, let DE'Fhe
the symmetrical triangle of DEFy and

therefore having its angles and sides equal,

respectively, to those of DEF. Then, in

the triangles ABC and DE'F, we
^
shall

have the angle BAC equal to the angle

E'DF, the side AB to the side DE\ and

the side AC to the side DF, and these parts arranged in the same

order in the two triangles; therefore, the triangle ABC is equal to

the triangle DE'F, and consequently symmetrical with DEF.
73. Scholium. In this proposition, and in those which follow, the

two triangles may be supposed on the same sphere, or on two equal

spheres.

PROPOSITION XX.—THEOREM.

74. Two triangles on the same sphere are either equal or symmetrical,

when a side and the two adjacent angles of one are equal respectively to

VL Kide and the two adjacent angles of the other.
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For, one of the triaDgles may be applied to the other, or to ita

symmetrical triaugle, as in the corresponding case of plane tri-

angles (I. 78).

V PROPOSITION XXI.—THEOREM.

75 Two triangles on the same sphere are either equal or symmetrical^

when the three sides oj one are respectively equal to the three sides of the

other.

For, their corresponding triedral angles at the centre of the sphere

are either equal or symmetrical (VI. 71).

PROPOSITION XXII.—THEOREM.

76. If two triangles on the same sphere are mutually equiangular,

they are also mutually equilateral; and are either equal or sym-

metrical.

Let the spherical triangles

M and N be mutually equian-

gular.

Let M' be the polar triangle

of if, and N' the polar triangle of N. Since Jf and N are mutually

equiangular, their polar triangles M' and N' are mutually equi-

lateral (69) ; therefore, by the preceding proposition, the triangles M'
and N' are mutually equiangular. But M' and N' being mutually

equiangular, their polar triangles M and iVare mutually equilateral

(69). Consequently, M&nd N are either equal or symmetrical (75).

77. Scholium. It may seem to the student that the preceding

property destroys the analogy which subsists between plane and

spherical triangles, since two mutually equiangular plane triangles

are not necessarily mutually equilateral. But in the case of spheri-

cal triangles, the equality of the sides follows from that of the angles

only upon the condition that the triangles are constructed upon the

same sphere or on equal spheres ;
if they are constructed on spheres

of different radii, the homologous sides of two mutually equiangular

triangles will no longer be equal, but will be proportional to the

radii of the sphere ;
the two triangles will then be similar, as in the

case of plane triangles.
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d^r^

PROPOSITION XXIII.—THEOREM.

78. In an isosceles spherical triangle^ the angles opposite the eqtud

sides are equal.

In the spherical triangle ABC^ let AB=^AC;
then, B= a

For, draw the arc AD of a great circle, from the

vertex A to the middle of the base EC. The tri-

angles ABD and A CD are mutually equilateral,

and in this case are symmetrical (75); therefore

B=C.
79. Corollary. Since the triangles ABD and A CD are mutually

equiangular, we have the angle BAD equal to the angle CAD^ and

the angle ADB equal to the adjacent angle ADC; therefore, the arc

drawn from the vertex of an isosceles spherical triangle to the middle of

the base is perpendicular to the base and also bisects the vertical angle.

80. Scholium. This proposition and its corollary may also be

proved by applying the isosceles triangle to its symmetrical tri-

angle (65).

PROPOSITION XXIV.—THEOREM.

81. If two angles of a spherical triangle are equal, the triangle is

In the triangle ABC let B =^ C; then,

AB = AC.

For, letA'B'C be the polar triangle of ^^C.

Then, the sides A'B' and A'C are equal

(69), and therefore the angles B' and C are

equal (78). But since the angles B' and C
are equal in the triangle A'B'C\ the sides AB
and A C are equal in its polar triangle ABC,
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PEOPOSITION XXV.—THEOREM.

82. Any side of a spherical triangle is less than the sum of the

other two.

Let ABO be a spherical triangle; then,

any side, as A C, is less than the sum of the

other two, AB and BC. 1

For, in the corresponding triedral angle /

formed at the centre of the sphere, we / ,' ^*-

have the angle AOG less than the supa of in-'^"^^'

the angles AOB and BOG (VI. 69); and

since the sides of the triangle measure these angles, respectively, we

have^C<^^ + 5a
c

83. Oorollary. Any side, AB^ of a spherical f/^ >v

polygon ABODE is less than the sum of all the a^ ^-^
other sides.

PROPOSITION XXVI.—THEOREM.

84. In a spherical triangle, the greater side is opposite the greater

angle ; and conversely.

1st. In the triangle AB Csuppose AB0^ AOB', ^

then, A0'> AB. For, draw the arc BD making
the angle DBO= DOB; then, the triangle BDO
is isosceles (81), and D0= DB. Adding DA to

each of these equals we have A0= DB -\- DA.

But DB-\-DA> AB (82) ; therefore, AO>AB.
2d. Conversely, in the triangle J.^ (7 suppose A0'> AB; then

ABO> AOB. For, if ABO were equal to AOB, AO would be

equal to AB (81), which is contrary to the hypothesis ;
and if ABO

were less than AOB, J. would be less than AB, which is also con-

trary to the hypothesis; therefore, ABO must be greater than AOB.

PEOPOSITION XXVIL—THEOREM.

85. Iffrom the extremities of one side of a spherical triangle two area

of great circles are drawn to a point within the triangle, the sum oj

these arcs is less than the sum of the other two sides of the triangle.
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Id. the spherical triangle ABC, let the arcs

BD and CD be drawn to any point D within the

triangle; then, DB -[ DC < AB ^ AC.

For, produce BD to meet AC m E; then we

have DC<DE+ EC (82) ;
and adding BD to

both members of this inequality, we have DB -\- DC <. BE -{- EC
In the same naanner, we prove that BE + EC < AB -{- AC\
therefore, DB ^ DC<AB -]- AC.

:>B t u t \

PROPOSITION XXVIII.—THEOREM.

86. The sum of the sides of a convex spherical polyg&nrisfUea than

the circumference of a great circle.

For, the sum of the face angles of the corresponding polyedral

angle at the centre of the sphere is less than four right angles

(VI. 70). ^, ^ V, ^ r

PROPOSITION "XXIX:.—THEOREM.

87. The sum of the angles of a spherical triangle is greater than

two, and less than six, right angles.

For, denoting the angles of a spherical triangle

by A, B, C, and the sides respectively opposite to

them in its polar triangle by a',h',c', we have (70),

^= 180° — o', jB= 180° — 6', C==180°— c',

the sum of which is

J. + jB + C= 540° — (a' + 6' -f c').

But a' + 6' + c' < 360° (86); therefore, A -^ B -\- C> 180°;

that is, the sum of the three angles is greater than two right angles.

Also, since each angle is less than two right angles, their sum is less

than six right angles.

88. Corollary. A spherical triangle may have two or even three

right angles ;
also two or even three obtuse angles.

89. Definitions. If a spherical triangle ABC has

two right angles, jB and C, it is called a bi-rectangular

triangle ;
and since the sides AB and A C must each

pass through the pole of BC (58), the vertex A is

that pole, and therefore AB and A C are quadrants.
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If a triangle has three right angles it is

called a tri-rectangular triangle; each of

its sides is a quadrant, and each vertex is

the pole of the opposite side. Three planes

passed through the centre of the sphere,

each perpendicular to the other two (VI. 48),

divide the surface of the sphere into eight

tri-rectangular triangles, ABC, A'BC, etc.

RATIO OF THE SURFACES AND VOLUMES OF SPHERICAL

FIGURES.

90. Definitions. A tune is a portion of the surface

of a sphere included between two semi-circumferences

of great circles
;
as AMBNA.

A. spherical ungula, or wedge, is a solid bounded by
a lune and the two semicircles which intercept the

lune on the surface of the sphere ;
as the solid

ABMANB. The common diameter AB, of the semi-

circles, is called the edge of the ungula; the lune is called its

base.

91. Definition. The excess of the sum of the angles of a spherical

triangle over two right angles is callod the spherical excess.

If the angles of a spherical triangle ABC are denoted by J., B
and C, and its spherical excess by E, and if a right angle is the unit

employed in expressing the angles, we shall have

E=A-\^B-\-C—2.

PROPOSITION XXX.—THEOREM.

92. Two symmetrical spherical triangles are equivalent.

Let ABC and A'B'C be two symmetrical triangles with their

homologous vertices diametrically opposite to each other on the

sphere. Let P be the pole of the small circle which passes through

the three points A, B and C. The great circle arcs PA, PB, PC,

are equal (36).
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Draw the diameter POP' and the great

circle arcs F'A\ P'B\ P'C] these arcs

being equal, respectively, to PJ., PB, P(7,

are also equal to each other.

The triangles PAB, P'A'B', are mu-

tually equilateral, and also isosceles;

therefore, they are superposable (65) and

are equal in area. For the same reason

the triangle PA C is equivalent to the tri-

angle P'^'C, and PBC is equivalent to P'B'C. Therefore the

triangle ABC, which is the sum of the triangles PAB, PAC and

PBC, is equivalent to its symmetrical triangle A'B'C which is the

sum of the triangles P'A'B', P'A'C and P'B'C.
If the pole P should fall without the triangle ABC, the triangle

would be equivalent to the sum of two of the isosceles triangles

diminished by the third
;
but as the same thing would occur for the

symmetrical triangle, the conclusion would be the same.

93. Corollary I. If the arcs of two great

circles, ACA', BCB', intersect on the sur-

face of a hemisphere, the sum of the oppo-

site triangles ACB, A' CB', is equivalent to

a lune whose angle is the angle ACB,
formed by the great circles.

For, completing the great circle BCB' C\
the triangles A' CB', ACB, are symmetri-

cal, and therefore equivalent. Hence, the sura of ACB and A' CB'

is equivalent to the sum of ACB and ACB, that is, to the lune

ACBCA, whose angle is the angle ACB.
94. Corollary II. The reasoning employed in the demonstration

of the theorem may be applied also to the pyramids whose bases are

two symmetrical triangles. Hence, two symmetrical spherical triangu-

lar pyt amids are equivalent.

Also by the reasoning in Corollary I. we infer that the sum of the

volumes of two spherical triangular pyramids the sum of whose bases is

equivalent to a lune, is equal to the volume of the ungula whose base is

that lune.

23
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PROPOSITION XXXI.—THEOREM.

95. A lune is to the surface of the sphere as the angle of the lune is

four right angles.

^
Let ANBMA be a lune, and let MNP be

the great circle whose poles are the ex-

tremities of the diameter AB.

Let the circumference of the circle MNP
be divided into any number of equal parts

J/a, ahy etc.
;

and let planes be passed

through the diameter AB and each of the

points of division. The whole surface of

the sphere will evidently be divided into equal lunes of which tbel

given lune will contain the same number as there are parts in
the]

arc MN. Hence, whether the number of the parts in MN and the

number of the parts in the whole circumference 3fNP, are commen-

surable or incommensurable, the ratio of the lune ANBMA to th<

surface of the sphere is the same as the ratio of the arc 3IN to th<

circumference MNP; or, since MN is the measure of the angle of]

the lune, and the circumference MNP is the measure of four right

angles, the lune is to the surface of the sphere as the angle of the

lune is to four right angles.

96. Corollary I. Two lunes, on the same or on equal spheres, are]

to each other as their angles.

97. Corollary II. If we denote the surface of the tri-rectangularj

triangle by T, the surface of the whole sphere will be ST (89) ;i

therefore, denoting the surface of the lune by L and its angle by A,\

the unit of the angle being a right angle, we have

— = ^, whence i = ^ X 2^.

If, further, we take the tri-rectangular triangle as the unit of sur-

face in comparing surfaces on the same sphere, we shall have

L = 2A;

that is, a right angle being the unit of anglesy
and the tri-rectangular
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triangle the unit of spherical surfaces, the area of a lune is expressed by

twice its angle.

98. Corollary III. The tri-rectangular spherical pyramid (that

whose base is the tri-rectangular triangle) being taken as the unit of

volume, the same reasoning may be employed to prove that the

volume of an ungula will be expressed by twice its angle.

\

PKOPOSITION XXXII.—THEOKEM.

99. The area of a spherical triangle is equal to its spherical excess

(the right angle being the unit of angles and the tri-rectangular

triangle the unit of areas).

For, let ABC be a spherical triangle. Complete the great circle

ABA'B\ and produce the arcs AC and BG
to meet this circle in A' and B\ 4-

We have, by the figure,

ABC+A'BC = lune A
ABC-\- AB'C = lune A

and by (93)

ABC+A'B'C= lune a

The sum of the first members of these equations is equal to twice

the triangle ABC, plus the four triangles ABC, A'BC, AB'C,

A'B'C, which compose the surface of the hemisphere. With the

system of units -adopted, the surface of the hemisphere is expressed

by 4; therefore, denoting the area of the triangle ABC by K, and

the numerical measures of its angles by A, B and C, we have (97),

2^-1-4 = 2^ + 2^ + 20,

whence

K= A -\- B -{- C— 2 = spherical excess.

100. Corollary. The same reasoning, in connection with (94) and

(98), may be employed to prove that, if Fis the volume of a spheri-

cal triangular pyramid whose base is the spherical triangle ABC,
and if the unit of volume is the volume of the tri-rectangular spheri*

cal pyramid, we shall have

V= A^ B ^ 0—2.
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101. Scholium. It must not be forgotten that the preceding results

are merely the expression of the ratios of the figures considered to

the adopted units. For example, suppose the angfes of a spherical

triangle are given in degrees as follows : A = 80°, B = 100°,

C= 120°
; then, reducing them to the right angle as the unit,

IpJ^'"^' ^_80_ 100 120_2^4
-^ ^^ 90

^
90
^

90 3

therefore, the area of this triangle is f of the area of the tri-rectangu-

lar triangle.

Also, the volume of the spherical pyramid of which this triangle

is the base is ^ of the volume of the tri-rectangular spherical

pyramid.

Hence, also, it follows that the volumes of two triangular spherical

pyramids are to each other as the areas of their bases.

PROPOSITION XXXIII.—THEOREM.

102. The area of a spherical polygon is measured by the sum of its

angles minus the product of two right angles multiplied by the number

of sides of the polygon less two.
^

Let ABODE be a spherical polygon. From /^^^'^^
any vertex, as J., draw the diagonals A C, AD ; l/i^—^../\
the polygon will be divided into as many tri- K y jj

angles as there are sides less two. The surface \__ -^
of each triangle is measured by the sum of its

angles minus two right angles ; and the sum of all the angles of the

triangles is equal to the sum of the angles of the polygon ;
therefore

the surface of the polygon is measured by the sum of its angles

minus two right angles multiplied by the number of triangles, that

is, by the number of sides of the polygon less two.

103. Corollary I. Denoting the number of sides of the polygon

by n, the sum of its angles by S, and its area by jBT, then, with the

adopted system of units, we have

K=S—2(n — 2) = /S— 2n + 4.

104. Corollary II. The tri-rectangular pyramid being taken as the

unit of volume,- the volume of any spherical pyramid will have the
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same numerical expression as the area of its base
;
that is, the volume

of a spherical pyramid is to the volume of the tri-rectangular pyramid

as the base of the pyramidAs to the tri-rectangular triangle.

Now the volume of the tri-rectangular pyramid is one-eighth of the

volume of the sphere, and the tri-rectangular triangle is one-eighth of

the surface of the sphere ; therefore, the volume of a spherical pyramid

is to the volume of the sphere as its base is to the surface of the sphere.

SHORTEST LINE ON THE SURFACE OF A SPHERE
BETWEEN TWO POINTS.

PROPOSITION XXXIV.—THEOREM.

"^
1 05. The shortest line that can be drawn on the surface of a sphere

between two points is the arc of a great circle, not greater tlian a semi-

circumference, joining the two pohits.

Let AB be an arc of a great circle, less than

a semi-circumference, joining any two points A
and B of the surface of a sphere ;

and let C
be any arbitrary point taken in that arc. Then

we say that the shortest line from A to B, on

the surface of the sphere, must pass through G.

From A and B as poles, with the polar dis-

tances J.C and BC, describe circumferences on the surface; these

circumferences touch at G and lie wholly without each other. For,

let M be any point in the circumference whose pole is A, and draw

the arcs of great circles AM, BM, forming the spherical triangle

AMB. We have, by (82), AM -f BM> AB, and subtracting from

the two members of this inequality the equal arcs AM and A G, we

have BM ^ BG; therefore, M lies without the circumference whose

pole is B.

Now let AFGB be any line from A to B, on the surface of the

.sphere, which does not pass through the point C, and which therefore

cuts the two circumferences in different points, one in F, the other in

G. Whatever may be the nature of the line AF, an equal line can

be drawn from A to G', for, li AG and AF be conceived to be drawn

on two equal spheres having a common diameter passing through A,

and therefore having their surfaces in coincidence, and if one of

23*
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these spheres be turned upon the common diameter as an axis, thft

point A will be fixed and the point F will come into coincidence with

C; the surfaces of the two spheres continuing to coincide, the line

AF will then lie on the common surface between A and C. For the

same reason, a line can be drawn from B to C, equal to BG. There-

forCj
a line can be drawn from A to B, through (7, equal to the sum

ofAF siiid BG, and consequently less than any line AFGB that does

not pass through C. The shortest line from ^ to -B therefore passes

through C, that is, through any, or every, point in AB
; consequently

it must be the arc AB itself.

A
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MEASUREMENT OF THE THREE ROUND BODIES.

THE CYLINDER.

1. Definition. The area of the convex, or lateral, surface of a

cylinder is called its lateral area.

2. Definition. A prism is inscribed in a

cylinder when its bases are inscribed in the

bases of the cylinder.

If a polygon ABCDEF is inscribed in

the base of a cylinder, planes passed

through the sides of the polygon, parallel

to the elements of the cylinder, intersect

the cylinder in parallelograms, ABB'A'y
etc. (VIII. 6), which evidently determine

a prism inscribed in the cylinder.

3. Definition. A prism is circumscribed about a cylinder when its

bases are circumscribed about the bases of the cylinder.

If a polygon ABCD is circumscribed

about the base of a cylinder, planes

passed through the sides of the polygon,

parallel to the elements of the cylinder,

will evidently contain the elements, aa'y

bb\ etc., drawn at the points of contact,

and be tangent to the cylinder in these

elements. The intersection of these

planes with the plane of the upper base

of the cylinder will therefore determine

a polygon A'B'C'D\ equal to ABCD,
circumscribed about the upper base, and a prism will be formed which

is circumscribed about the cylinder.

271
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4. Definition. A right section of a cylin-

der is a section made by a plane perpen-

dicular to its elements
;
as abcdef.

The intei-section of the same plane with

an 'inscribed or circumscribed prism is a

right section of the prism.

5. Definition. Similar cylinders of revolution are those which

are generated by similar rectangles revolving about homologous

sides.

PROPOSITION I.—THEOREM.

6. A cylinder is the limit of the inscribed and circumscribed prisms,

the number of whose faces is indefinitely increased.

Let any polygon abed be inscribed in the base of the cylinder ac'

and at the vertices of this polygon let

tangents be drawn to the base of the

cylinder forming the circumscribed poly-

gon ABCD. Upon these polygons as

bases let prisms be formed, inscribed in,

and circumscribed about, the cylinder.

We shall assume, as evident, that the

convex surface of the cylinder is greater

than that of the inscribed prism and

less than that of the circumscribed

prism.*

Suppose the arcs ab, be, etc., to be bisected and polygons to be

formed having double the number of sides of the first; and upon
these as bases suppose prisms to be constructed, inscribed and circum-

scribed, as before; and let this process be repeated an indefinite

number of times. The difference between the convex surface of the

inscribed prism and that of the corresponding circumscribed prism

will continually diminish and approach to zero as its limit. There

* A proof, however, can be given analogous to that of (V. 32).
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fore these convex surfaces themselves approach to the convex surface

of the cylinder as their common limit.

At the same time, it is evident that the volumes of the inscribed

and circumscribed prisms approach to the volume of the cylinder as

their common limit.

7. Scholium. In the preceding demonstration, the base of the cylin-

der is not required to be a circle, but may be any closed convex

curve. We have, however, tacitly assumed that the curve is the

limit of the perimeters of the inscribed and circumscribed polygons ;

a principle which was rigorously proved in the case of regular poly-

gons inscribed in a circle.

PEOPOSITION II.—THEOKEM.

8. The lateral area of a cylinder is equal to the product of the

perimeter of a right section of the cylinder by an element of the

surface.

Let ^^CD^i^bethe base and^^' any
element of a cylinder, and let the curve

abcdef be any right section of the surface.

Denote the perimeter of the right section

by P, the element AA '

by E, and the lat-

eral area of the cylinder by 8.

Inscribe in the cylinder a prism

ABCDEFA' of any number of faces.

The right section, abcdef of this prism will

be a polygon inscribed in the right section

of the cylinder formed by the same plane.

Denote the lateral area of the prism by s, and the perimeter of its

right section by p ; then, the lateral edge of the prism being equal

to E, we have (VII. 16),

8=pXE.

Let the number of lateral faces of the prism be indefinitely increased,

as in the preceding proposition ; then s approaches indefinitely to /S

as its limit, and p approaches to P; therefore, at the limit, we hav*-

(V.31),

S=PXE.
23** s
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9. Corollary I. The lateral area of a right cylinder is equal to the

product of the perimeter of its base by its altitude.

10. Corollary II. Let a cylinder of revolution hh

generated by the rectangle whose sides are R and H
revolving about the side H. Then, R is the radius of

the base, and H is the altitude of the cylinder. The

perimeter of the base is ItzR (V. 40), and hence, for

the lateral area S we have the expression

S= 2t:R.H.

The area of each base is t:R'^ (V. 43) ;
hence the total area T of

the cylinder of revolution, is expressed by

T= 27:R.H-\- 27:R^ = 1tzR(^H-\- R).

11. Corollary III. Let S and s de-

note the lateral areas of two similar

cylinders of revolution (4) ;
T and t

their total areas; R and r the radii

of their bases; H and h their alti-

tudes. The generating rectangles be-

ing similar, we have (III. 12)

therefore,
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PKOPOSITION III.—PROBLEM.

12. The volume of a cylinder is equal to the product of its hose by iU

altitude.

Let the volume of the cylinder be denoted

by F, its base by B, and its altitude by If.

Let the volume of an inscribed prism be de-

noted by V'i and its base by B'
\

its altitude

will also be H, and we shall have (VII. 38)

V' = B' XS.

Let the number of faces of the prism be

indefinitely increased, as in (8) ;
then the limit

of V is F, and the limit of B' iaB; therefore (V. 31),

V=BXH.
13. Corollary I. Let V be the volume of a cylinder of revolution,

B the radius of its base, and H its altitude ;
then the area of its

base is tzB^ (V. 43) ;
and therefore

V=r:Bm,

14. Corollary II. Let V and v be the volumes of two similar cyl-

inders of revolution ;
B and r the radii of their bases ; H and h

their altitudes; then, the generating rectangles being similar, we

have

JB[_B
h r

and

F_
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THE CONE.

15. Definition. The area of the convex, or lateral, surface of a cone

is called its lateral area.

1§. Definition. A pyramid is inscribed in a

cone when its base is inscribed in the base of

the cone, and its .vertex coincides with the

vertex of the cone.

If a polygon ABCD is inscribed in the base

of a cone and planes are passed through its

sides and the vertex 8 of the cone, these

planes intersect the convex surface of the

cone in right lines (VIII. 18) and determine

a pyramid inscribed in the cone.

17. Definition. A pyramid is circum-

scribed about a cone when its base is cir-

cumscribed about the base of the cone, and

its vertex coincides with the vertex of the

cone.

If a polygon ABCD is circumscribed

about the base of a cone, its points of con-

tact with the base being a, b, c, d, and

planes are passed through its sides and the

vertex S of the cone, these planes will be tangent to the cone m
the elements Sa, Sb, etc. (VIII. 21), and will determine a pyramid
circumscribed about the cone.

18. Definition. A truncated cone is the portion of a cone included

between its base and a plane cutting its convex surface.

When the cutting plane is parallel to

the base, the truncated cone is called a

frustum of a cone; as ABCD-abcd. The

altitude of a frustum is the perpendicular

distance Tt between its bases.

If a pyramid is inscribed in the cone,

the cutting plane determines a truncated

pyramid inscribed in the truncated cone;

and if a pyramid is circumscribed about
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the cone, the cutting plane determines a truncated pyramid circum-

scribed about the truncated cone.

19. Definition. In a cone of revolution, as

JS-ABC, generated by the revolution of the

right triangle SAO about the axis SO, all the

elements, SA, SB, etc., are equal ;
and any ele-

ment is called the slant height of the cone.

In a cone of revolution, the portion of an ele-

ment included between the parallel bases of a

frustum, as Aa, or Bb, is called the slant height

of the frustum.

20. Definition. Similar cones of revolution are those which are

generated by similar right triangles revolving about homologous

sides.

PROPOSITION IV.—THEOEEM.

21. A cone is the limit of the inscribed and circumscribed pyramids,

the number of whose faces is indefinitely increased.

The demonstration is precisely the same as that of Proposition I.,

substituting a cone for a cylinder, and pyramids for prisms.

22. Corollary. A frustum of a cone is the limit of the frustums of

the inscribed and circumscribed frustums of pyramids, the number

of whose faces is indefinitely increased.

V
PROPOSITION v.—THEOREM.

23. The lateral area of a cone of revolution is equal to the product

of the circumference of its base by half its slant height.

Let S-MNPQ be a cone generated by the

revolution of the right triangle SOM about

the axis SO. Denote its lateral area by S,

the circumference of its base by C, and its

slant height SM hy L.

Circumscribe about the base any regular

polygon ABCD, and upon this polygon as a

base construct a regular pyramid S-ABCD
circumscribed about the cone. Denote the

24
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lateral area of the pyramid by s, and the perimeter of its base oy

p ;
its slant height is the same as that of the cone, since it is an ele-

ment of contact, as SMot SN; therefore, we have (YII. 47),

L
s=pXj

Th^ number of lateral faces of the pyramid being indefinitely in-

creased, 8 approaches indefinitely to S, and p approaches indefinitely

to O; therefore, at the limit, we have (V. 31),

.= oxf
24. Corollary I. If jB is the radius of the base, we have C= 2^jB

(V. 40) ;
hence

S= 27rB X - == ^BL.

The area of the base being 7ri2^, the total area T of the cone is

25. CoToUary II. Hence, by the same process as was employed in

(11), we can prove that the lateral areas, or the total areas, of similar

cones of revolution are to each other as the squares of their slant heights,

or as tike squares of their altitudes, or as the squares of the radii of

their bases.

PEOPOSITION VI.—THEOREM.

26. The lateral area of a frustum of a cone of revolution is equal to

the half sum of the circumferences of its bases multiplied by its slant

height.

The plane which cuts off" the frustum

MNPm, from the cone S-MNP, also cuts

off from any circumscribed pyramid a

frustum, as ABCDa, the lateral area of

which is equal to the half sum of the pe-

rimeters of its bases multiplied by its slant

height Mm (VII. 48). When the number

of faces of the frustum of the pyramid is

indefinitely increased, its lateral area ap-

proaches indefinitely to that of the frustum
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of the cone, and the perimeters of its bases approach indefinitely to

the circumferences of the bases of the frustum of the cone
;
and the

slant height Mm is common. Hence, if we express by area Mm,
the area of the surface generated by the revolution of Mm about

the axis, which is the lateral area of the frustum of the cone
;
and

by drc. OM, and circ. om, the circumferences of the bases whose radii

are OM and om; we shall have, at the limit,

area Mm = \ (circ. OM -\- drc. om) X Mm.

27. Corollary. Let IK be the radius of a ^^

section of the frustum equidistant from its

bases
; then, IK=i{OM+ om), (1. 124), and ik̂ .V^K

since circumferences are proportional to their /,-- j-

radii, ctrc. IK =^ ^ {circ. OM -\- drc. om);
^^^' '^

therefore,

area Mm = drc. IK X Mm
;

that is, the lateral area of a frustum of a cone of revolution is equal

to the circumference of a section equidistant from its bases multiplied by

its slant height,

PROPOSITION VII.—THEOREM.

28. The volume of any cone is equal to one-third of the product of

its base by its altitude.

Let the volume of the cone be demoted by

V, its base by B, and its altitude by jET.

Let the volume of an inscribed pyramid be

denoted by V\ and its base by B'; its alti-

tude will also be jBT, and we shall have

(VII 54),

V' = iB'XH.

When the number of lateral faces of the

pyramid is indefinitely increased, V approaches indefinitely to F,

and -B
'

to jB
; therefore, at the limit, we have

V=iBxJI^
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29. Corollai-y I. If the cone is a cone of revolution, let R be the

radius of the base, then B = izR ^ and we have

V=\7:.R\H.

30. Corollary II. Let R and r be the radii of the bases of two

syiiilar cones of revolution
;
H and h their altitudes, V and v their

volumes ; then, the generating triangles being similar, we have

H_R
h r

and hence

V _ijrJR\H_R^ S_H^R^

that is, similar cones of revolution are to each other as the cubes of their

altitudes, or as the cubes of the radii of their bases.

PEOPOSITION VIII.—THEOKEM.

31. A frustum of any cone is equivalent to the sum of three cones

whose common altitude is the altitude of the frustum, and whose ba^ea

are the lower base, the upper base, and a mean proportional between

the bases of the frustum.

Let V denote the volume of the frustum, /(^^^^^
B its lower base, b its upper base, and h its / ///I
altitude.

/-'''' ''r^-"^J I

Let V denote the volume of an inscribed \'^-.^ / ^--jy"''

frustum of a pyramid, B' its lower base, and b'

its upper base; its altitude will also be h, and we shall havb

(VIL 59),

V = \h{B' -i- b' ^ ]/WF).

When the number of lateral faces of the frustum of a pyramid is

indefinitely increased, V, B' and b', approach indefinitely to V, B
and b, respectively ; therefore, at the limit, we have

V=ih{B-]-b-\-l/M),

which is the algebraic expression of the theorem.



BOOK IX. 281

32. Corollary. If the frustum is that of a cone of revolution, and

the radii of its bases are B and r, we shall have

B = 7:.R\ 6 = 7r.r^ \/Bb = 7t,Rr,

and consequently,

V= i7r./i(i2'-|-r' + Rr).

THE SPHERE.

33. Definition. A spherical segment is a portion of a sphere in-

cluded between two parallel planes.

The sections of the sphere made by the parallel planes are the

bases of the segment ;
the distance of the planes is the altitude of the

segment.

Let the sphere be generated by the revolution of

the semicircle EBF about the axis EF; and let Aa
and Bb be two parallels, perpendicular to the axis.

The solid generated by the figure ABba is a spheri-

cal segment ;
the circles generated by Aa and Bb are

its bases
;
and a6 is its altitude.

If two parallels Aa and TE are taken, one of

which is a tangent at E, the solid generated by the

figure EAa is a spherical segment having but one

base, which is the section generated by Aa. The segment is still in-

cluded between two parallel planes, one of which is the tangent

plane at E, generated by the line ET.

34. Definition. A zone is a portion of the surface of a sphere in-

cluded between two parallel planes.

The circumferences of the sections of the sphere made by the

parallel planes are the bases of the zone
;
the distance of the planes

is its altitude.

A zone is the curved surface of a spherical segment.
In the revolution of the semicircle EBF about EF, an arc AB

generates a zone
;
the points A and B generate the bases of the zone

;

and the altitude of the zone is ab.

An arc, EA, one extremity of which is in the axis, generates a
24*
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zone of one base, which is the circumference described by the ex-

tremity A.

35. Definition. When a semicircle revolves about its diameter, the

solid generated by any sector of the semicircle is called a spherical

sector.

Thus, when the semicircle EBF revolves about EFy the circular

sector COD generates a spherical sector.

The spherical sector is bounded by three curved surfaces
; namely,

the two conical surfaces generated by the radii OC and OD^ and the

zone generated by the arc CD. This zone is called the base of the

spherical sector.

PROPOSITION IX.—LEMMA.

^ 36. The area of the surface generated by a straight line revolving

about an axis in its plane, is equal to the projection of the line on the

axis multiplied by the circumference of the circle whose radius is the

perpf.ndlcular erected at the middle of the line and terminated by the

axis

Let AB be the straight line revolving about

the axis XY; ab its projection on the axis
;
01

the perpendicular to it, at its middle point 7, ^a

terminating in the axis
; then, U^\

area AB = ab X circ. 01. ^ ~~"h""^\

For, draw IK perpendicular, and AH par-

allel to the axis. The area generated by AB is

that of a frustum of a cone
;
hence (27),

area AB = AB X drc IK.

Now the triangles ABH and IOK, having their sides perpendicular

each to each, are similar (III. 33), hence

AHorab:AB = IK:Ol

or, since circumferences are proportional to their radii,

a6 : A^ = circ. IK: drc. 01,

wheiice
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therefore,

AB X circ. IK=ab X cire, 01,

area AB := ab X circ. 01.

If AB is taken parallel to the axis, the result is

the same, and in fact has already been proved, since

in this case the surface generated is that of a cylin-

der whose radius is 01 and whose altitude is ab (9).

PROPOSITION X.—THEOREM.

37. The area of a zone is equal to the product of its altitude by the

circumference of a great circle.

Let the sphere be generated by the revolution of

the semicircle ^J5i^ about the axis EF; and let the

arc AD generate the zone whose area is required.

Let the arc AD be divided into any number of

equal parts, AB, BC, CD. The- chords AB, BC,

CD, form a regular broken line, which differs from a

portion of a regular polygon only in this, that the

arc subtended by one of its sides, as AB, is not

necessarily an aliquot part of the whole circumfer-

ence. The sides being equidistant from the centre, a circle described

with the perpendicular 01, let fall from the centre upon any side,

would touch all the sides and be inscribed in the regular broken line.

Drawing the perpendiculars Aa, Bb, Cc, Dd, we have by the preced-

ing Lemma,
area AB = ab X circ. 01,

area BC = be X circ. 01,

area CD = cd X circ. 01,

the sum of which is

or

area ABCD = (ab -{- be -}- cd) X circ. 01,

area ABCD = ad X circ. OL

This being true whatever the number of sides of the regular broken

line, let that number be indefinitely increased
;
then area ABCD,
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generated by the broken line, approaches indefinitely to the area of

the zone generated by the arc AD, and circ. 01 approaches indefi-

nitely to cire. OE, or the circumference of a great circle
; hence, at

the limit, we have

area of zone AD = ad y, cire. OE,

which establishes the theorem.

38. Corollary I. Let S denote the surface of the zone whose alti-

tude is J3", the radius of the sphere being M ; then,

39. Corollary II. Zones on the same sphere, or on equal spheres,

are to each other as their altitudes.

40. Corollary III. Let the arc AD generate a zone ^^-
of a single base ; its area is d/^...

1

tO
Ad X 1it.0A = -K,Ad X AB = Tz , AD'' Qll. ^1)\ /

that is, a zone of one base is'' equivalent to the circle \

whose radius is the chord b/ the generating arc of the \
zone.

B

PEOPOSITION XI.—THEOREM.

41. The area of the surface of a sphere is equal to the product of its

diameter by the circumference of a great circle.

This follows directly from the preceding proposition, since the sur-

face of the whole sphere may be regarded as a zone whose altitude is

the diameter of the sphere.

42. Corollary I. Let S denote the area of the surface of a sphere

whose radius is i2
;
then

S=2^R X 2B = 47rE^;

that is, the surface of a sphere is equivalent to four great circles.

43. Corollary II. Let S and 8' be the surfaces of two spheres

whose radii are R and R' ; then,

S JTtR' (2Ry _R^,
S'~ Ar.R'^~ (2Ry'~ R"'

hence, the surfaces of two spheres are to each other as the squares of

their diameters, or as the squares of their radii.
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PKOPOSITION XII.—LEMMA. y
44. If a triangle revolves about an axis situated in its plane and

passing through the vertex without crossing its surface, the volume

generated is equal to the area generated by the base multiplied by one-

third of the altitude.

Let ABC be the triangle revolving about an axis XY passing

through the vertex A
; then, the volume generated is equal to the

area generated by the base BG multiplied by one-third of the alti-

tude AD.

We shall distinguish three cases :

1st. When one of the sides of the triangle, as ABy lies in the axis.

(Figs. 1 and 2.)

Fig. 1. Fig. 2.

D

Draw CE perpendicular to the axis. According as this perpen-
dicular falls within the triangle (Fig. 1) or without it (Fig. 2), the

volume generated is the sum or the difference of the cones generated

by the right triangles JlCiKand BCE. The volumes of these cones

are (29),

voI.ACE=\t.. CE'x AE,
vol. BCE =^7:.CE'X BE;

if we take their sum, we have in Fig. 1, AE -f BE= AB; if we

take their difference, we have in Fig. 2, AE— BE = AB
;
there-

fore, in either case,

vol.ABC=i7c.CE'xAB= i^. CEX CEXAB;

or, since CE X AB and BCX AD are each double the area of the

triangle, (IV. 13),

vol. ABC= i7t .CEX BCX AD.

But re . CE X BC is the measure of the surface generated hj BC
C24) ; therefore,

vol. ABC=area BCXi AD.
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2d. When the triangle has only the

vertex A in the axis, and the base BC
when produced meets the axis in F
(Fig. 3).

^-

The volume generated is then the

difference of the volumes generated by the triangles J. (ZP and ABF^
and, by the first case, these volumes are

vol ACF= area FC X i AD,
vol ABF=areaFB X ^AD,

the difference of which is

vol ABC= (area FC— area FB) X \AD= area BC X \AD,

3d. When the triangle has only the vertex A in the axis, and the

base J5(7is parallel to the axis (Figs. 4 and 5).

The volume generated is the sum (Fig. 4), or the difference (Fig.

5), of the volumes generated by the right triangles ABD and ACD,
Draw ^jffand C^ perpendicular to the axis. The volume gener-

ated by the triangle ABD is the difference of the volumes of the

cylinder generated by the rectangle ADBH and the cone generated

by the triangle ABH; therefore,

vol ABD = n.AD'x BD— \7: . AD' X BD= liz . AD^ X BD
= 27t.ADX BDX \AD,

or, since 2t: . AD X BD is the lateral .area of the cylinder gener-

ated by the rectangle AHBD (9),

vol ABD = area BD X\AD;
and in the same manner we have

vol ACD = area CD X ^AD.
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Taking the sura of these (Fig. 4), or their difference (Fig. 5), we

have
vol. ABG= area BGX iAD.

Therefore, in all cases, the volume generated by the triangle is equal

to the area generated by its base multiplied by one-third of its

altitude.

PROPOSITION XIII.—THEOREM.

45. The volume of a spherical sector is equal to the area of the zone

which forms its base multiplied by one-third the radius of the sphere.

Let the sphere be generated by the revolution of

the semicircle EBF ahout the axis EF; and let the

circular sector AOD generate a spherical sector

whose volume is required.

Inscribe in the arc AD a regular broken line

ABCDy as in Proposition X., forming with the

radii OA and OD a regular polygonal sector/

OABCD. Decompose this polygonal sector into

triangles A OB, BOC, COD, by drawing radii to

its vertices. Taking the sides AB, BC, CD, as bases, the perpen-

dicular 01 from the centre upon any side is the common altitude

of these triangles.

The volume generated by the polygonal sector is the sum of the

volumes generated by the triangles, and the volume generated by

any triangle is equal to the area generated by its base multiplied by

one-third of its altitude 01 (44) ; therefore,

vol. OABCD == area ABCD X — •

o

When the number of sides of the regular polygonal sector is in-

definitely increased, vol. OABCD approaches indefinitely to the

volume of the spherical sector OAD, area ABCD to the area of the

zone AD, and 01 to the radius OA of the sphere ; therefore, at the

limit, we have

vol. spherical sector OAD = zone ADy^\OA ;

which establishes the theorem.

^
'»^t-^i^jl^
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PROPOSITION XIV.—THEOREM.

46. The volume of a sphere is equal to the area of its surface multi-

plied by one-third of its radius.

This follows directly from the preceding proposition ; for. if a cir-

cula^r sector is increased until it becomes the semicircle which gener-

ates the sphere, the spherical sector which it generates becomes the

sphere itself, ^fcud'lis surface1)ecomes the surface of the sphere.

47. Corollary I. If V denotes the volume of a sphere whose radius

is R, we have (42)

F=4;r.i22 X \R=-i^.R\

Or, if D is the diameter of the sphere, whence D'^ = (2i?)'
= SR\

48. Corollary II. The volumes of two spheres are to each other as the

cubes of their radii, or as the cubes of their diameters.

PROPOSITION XV.—THEOREM.

49. The solid generated by a circular segment revolving about a

diameter exterior to it, is equivalent to one-sixth of the cylinder whose

radius is the chord of the segment and whose altitude is the projection

of that chord on the axis.

Let ANBIA be a circular segment revolving

about the diameter EF, and ab the projection of

the chord AB on the axis. The volume generated

is the difference of the volumes generated by the

circular sector A OB and the triangle A OB. Draw-

ing 01 perpendicular to AB, we have (45), (44),

(38) and (36),

vol. sph. sector A OB ^= zone AB X i OA = | tt . OA^ . ab,

vol. triangle A OB = area AB X ^ 01 = -f
^^ . 7)1^ . ab,

the difference of which gives

vol. segment ANB = f 7r(02'
— 07') X ah.
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But 0A^—0I' = AI' = ilB'; hence

vol. segment ANB = ^t: . AB^ .ab,

which establishes the theorem, since tt . AB^ . ah is the volu.xie of the

cylinder whose radius is AB and whose altitude is ab (13).

PROPOSITION XVI.—THEOREM.

50. The volume of a spherical segment is equal to the half sum of its

baxes multiplied by its altitude plus the volume of a sphere of ivhich

that altitude is the diameter.
E

Lot Aa and Bb be the radii of the bases of a a^^^
spherical segment, and ab its altitude, so that the /T

segment is generated by the revolution of the figure y \

ANBba about the axis EF. \~"
The segment is the sum of the solid generated by \

the circular segment ANB and the frustum of a cone \

generated by the trapezoid ABba
; hence, denoting ^^^

the volume of the spherical segment by V, we have

(49) and (32),

V=ir:.AB\ab + i7z.{Bb' + J^' + Bb.Aa).ab.

Drawing AH parallel to EF^ we have BH = Bb — Aa, and

hence

BH' = Bb' -^ A^' — 2Bb . Aa,

and

AB' = AH' + BH' = '^' J^ Bb'-i-A^' — 2Bb . Aa.

Substituting this value of AB', we have, after reduction,

V=i{r:.Bb' -i- ^.'Aa').ab J^ ^tz .'^\

which establishes the theorem, since tt . Bb' and tt . Aa' represent the

bases of the segment, and I t: . ab^ is the volume of the sphere whose

diameter is ab (47).

51. Corollary. Denoting the radii of the**bases of the spherical

segment by E and r, and its altitude by h, we have, for its volume,

V=i7r(R--^ryi-{-in.h\
25 T ft . ,^ 'I

)^s U
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If the point A coincides with Ey the upper base becomes zero, and

the solid generated becomes a segment of one base. Therefore,

making r == in the above expression, the volume of a spherical

segment of one base is

PROPOSITION XVII.—THEOREM.

52. The volume of a spherical pyramid is equal to the area of its base

multiplied by one-third of the radius of the sphere.

For, let V denote the volume of a spherical pyramid, and s the

area of the spherical polygon which forms its base. Let F, S and

R denote the vol ime, surface and radius of the sphere ;
then

(VIII. 104),

— = -, whence t; = « X ~-

ir

But- = J-R (46) ; therefore,
S

v=sX\R
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EXERCISES IN ELEMENTARY GEOMETRY.

In order to make these exercises progressive as to difficulty, and to bring
them fairly within the grasp of the student at the successive stages of hia

progress, many of them are accompanied by diagrams in which the necessary

auxiliary lines are drawn, or by references to the articles in the Geometry
on which the exercise immediately depends, or by both. These aids are less

and less freely given in the later exercises, and the student is finally left

wholly to his own resources.

GEOMETRY.—BOOK I.

THEOREMS.

1. The sum of the three straight lines drawn from any point
within a triangle to the three vertices, is less than the sum
and greater than the half sum of the three sides of the tri-

angle (I. 33, 66).

1/
2. The medial line to any side of a triangle is less than the

half sum of the other two sides, and greater than the excess

of that half sum above half the thu-d side (I. 66, 67, 112).

3. The sum of the three medial lines of a triangle is less

than the perimeter (sum of the three sides), and greater than

the semi-porimeter of the triangle.

4. If from two points, A and B^ on the same

side of a straight line MN^ straight lines, AP^ BP^
are drawn to a point P in that line, making with it

equal angles APM and BPN, the sum of the lines

APand BPis less than the sum of any other two

Hnes, AQ and BQ, drawn from A and B to any
other point Q in MN{I. 38, 66).

25* 2t3
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5. If f]x»m C^o points, A and B^ on opposite sides

of a straight line MN^ straight lines AP^ BP, are

drawn to a point P in that line, making with it equal

angles APN and BPN^ the difference of the lines

AP and BP is greater than the difference of any
other two straight lines AQ and BQ^ drawn from A
and B to any other point Q in MN.

V 6. The three straight lines joining the middle points of the

angle divide the triangle into four equal triangles (I. 122).

7. The straight line AE which bisects the angle ex-

terior to the vertical angle of an isosceles triangle ABd
is parallel to the base BC.

' ^ 8. In 'any right triangle, the straight line drawn from

the vertex of the right angle to the middle of the hy-

potenuse is equal to one-half the hypotenuse (I. 121,

38, 46).

9. If one of the acute angles of a right triangle is double the other, the

hypotenuse is double the shortest side (Ex. 8), (I. 69, 86, 90).

10. If ABC is any right triangle, and if from

the acute angle A, AD is drawn cutting BCin E
and a parallel to AC m D ^o that ED = 2 AB;
then, the angle DAC is one-third the angle BA C,

(Ex. 8), (I. 69, 86, 49).

11. If J5C is the base of an isosceles triangle ABC, and BD is drawn

perpendicular to AC, the angle DBC is equal to one-half the angled.

(I. 73).

12. If from a variable point in the base of an isosceles tri-

angle parallels to the sides are drawn, a parallelogram is formed

whose perimeter is constant.

1 3. If from a variable point P in the base of an isos-

celes triangle ABC, perpendiculars, PM, PN, to the sides,

are drawn, the sum of PM and PN is constant, and equal

to the perpendicular from C upon AB (I. 104, 83).

I

What modification of this statement is required when Pis taken in

produced?

BC
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14. If from any point within an equilateral triangle, per-

pendiculars to the three sides are drawn, the sum of these

lines is constant, and equal to the perpendicular from any
vertex upon the opposite side (Ex. 13).

*W''hat modification of this statement is required when the point is taken

without the triangle?

15. If ^4jBC is an equilateral triangle, and if BD and

CD bisect the angles B and C, the lines DE^ DF^ paral-

lel to AB^ AC, respectively, divide BC into three equal

parts.

16. The locus of aU the points which are equally distant from two inter-

secting straight lines consists of two perpendicular lines (I. 126, 25).

What is the locus of all the points which are equally distant from two

parallel Hnes?

'

17. Let the three medial lines of a triangle ABC
meet in 0. Let one of them, AD^ be produced to G^

making DG= DO, and join CG. Then, the sides of

the triangle OCG are, respectively, two-thirds of the

medial lines of ^.SC (L 134).

Also, if the three medial lines of the triangle OCG
be drawn, they will be respectively equal to ^AB, iBC
andMC.

18. In any triangle ABC, if AD is drawn perpen-

dicular to BC, and AE bisecting the angle BAC, the

angle DAE is equal to one-half the difierence of the b

angles B and C (L 68).

19. If ii^ bisects the angle jB of a triangle ABC,
and Cj& bisects the exterior angle A CD, the angle E
is equal to one-half the angle A. b

20. If from the diagonal BD of a square ABCD, BE is

cut off equal to BC, and EF is drawn perpendicular to BD^
then, DE=EF=FC.
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21. If Eund Fare the middle points of the oppo-

site sides, AD, BC, of a parallelogram AjBCI), the

straight lines BE, DF, trisect the diagonal AC.

'22. Tlie sum of the four lines drawn to the vertices of a quadrilateral from

!in\' point except the intersection of the diagonals, is greater than tiie sum
of the diagonals.•

,
r»

23. The straight lines joining the middle points of

the adjacent sides of anj^ quadrilateral, form a paral-

lelogram whose perimeter is equal to the sum of the

diagonals of the quadrilateral (I. 122).

24. The intersection of the straight lines

which join the middle points of opposite sides

of any quadrilateral, is the middle point of the

straight line which joins the middle points of

the diagonals (I. 122, 108, 109).

25. The four bisectors of the angles of a

quadrilateral form a second quadrilateral, the

opposite angles of which are supplementary.

If the first quadrilateral is a parallelogram, the second is a rectangle. If

the first is a rectangle, the second is a square.
A ED

26. A parallelogi-am is a sjTnmetrical figure with re-

spect to its centre (intersection of the diagonals), (I. 140).

27. If in a parallelogram ABCD, E and G are

any two symmetrical points in the sides AD, BO,
and F and H any two sjnoimetrical points in the

sides AB, DC, the figure EFGH ya a parallelo-

gram concentnc with ABCD.
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TROBLEM.

29. A billiard-ball is placed at any point i^of a rectangidar table ABCD.
In what direction must it be struck to cause it to return to the

same point F^ after impinging successively on the four sides of

the table, the ball, before and after impinging on a side, moving
in lines which make equal angles with the side ?

What is the length of the whole path described by the ball ?

Show that it is the shortest path that can be described by the

ball touching the four sides and returning to the same point.

GEOMETRY.—BOOK 11.

THEOREMS.

30. The circle is a symmetrical figure with respect to any diameter, or

with respect to its centre.

31 . If P is any point within a circle whose centre is 0,

and APOB is the diameter through /*, then, AP is the

least, and PB the greatest, distance from P to the cir-

cumference.

32. Prove the correctness of the follow-

ing method of drawing a tangent to a given
circumference 0, from a given point A
without it.

With radius A and centre J., describe

an arc B0B\ With centre 0, and radius

equal to the diameter of the given circle,

describe arcs intersecting the first in B and
B\ Join OB, 0B% intersecting the

given circumference in T, T\ Then AT^
A T\ are tangents.

J.:

33. The bisectors of the angles contained by
the opposite sides (produced) of an inscribed

quadrilateral intersect at right angles.

25*'
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34. If fi'om the middle point A of an arc BC, any

chords AB, AE are drawn, intersecting the chord BC
in F and G^ FDEG is an inscriptible quadrilate-

ral. (II. 99.)

35. If A^B^C^ issi triangle inscribed

in another triangle ABC, the three cir-

cumferences circumscribed about the tri-

angles vli?'6'^ BA'C, CA'B', inter-

sect in a common point P.

Let P be the intersection of two of the

circumferences, and prove that the third

must pass through P {11. 99).

36. The perpendiculars from the angles upon the opposite sides of a tri-

angle are the bisectors of the angles of the triangle formed by joining the

feet of the perpendiculars (II. 58, 99).

37. If two circumferences are tangent internally, and the radius of the

larger is the diameter of the smaller, then, any chord of the larger drawn

from the point of contact is bisected by the circumference of the smaller.

(H. 15).

38. If A OB is any given angle at the centre of

a circle, and if BC can be drawn, meeting AO
produced in C, and the circumference in Z>, so

that CD shall be equal to the radius of the circle,

then, the angle C will be equal to one-third the

angle A OB.

Note. There is no method known of drawing BC, under these conditioiH.

and with the use of straight lines and circles only, A OB being nni/ given

angle : so that the trisection of an angle, in general, is a problem that cannot

be solved by elementary geometry.

39. If ABC is an equilateral triangle inscribed in

a circle, and P any point in the arc BC, then PA =
PB -j PC.
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40. If a triangle ABC is formed by the

intersection of three tangents to a circumfer-

ence, two of which, AM and AN^ are fixed,

while the third BC touches the circumference

at a variable point F^ prove that the perimeter

of the triangle ABC'i^ constant, and equal to

AM-\-AN, or 2 AN.

Also, prove that the angle BOC is constant.

41. If ABC is a triangle inscribed in a circle, and

from the middle point D of the arc BC sl perpen-

dicular i>^ is drawn to AB; then, (11. 57), (I. 87),

AE=H^^ + ^C\ BE=IUB— AC).

If the perpendicular D^E^ is drawn from the

middle point 2>^ of the arc BAC, then

AE'=HAB—AC), BE' = h[AB + AC).

Also join AD and draw the diameter Diy
; then,

the angle ADJy is equal to one-half the difierence of the angles ACB and

ABC.

42. If two straight lines are drawn through the point of contact of two

circles, the chords of the intercepted arcs are parallel.

43. Two circles are tangent internally at P, and a chord AB of the

circle touches the smaller at C\ prove that FC bisects the angle

(II. 62).

44. If through P, one of the points of in-

tersection of two circumferences, any two

secants, AFB, CFB, are drawn, the straight

lines, AC, DB, joining the extremities of the

secants, make a constant angle E, equal to

the angle MFN formed by the tangents at F.

larger

AFB

45. If through one of the points of intersection of two circumferences, a

diameter of each circle is drawn, the straiglit line which joins the extremities

of these diameters passes through the other point of intersection, is parallel

to the line joining the centres, and is longer than any other line drawn

through a point of intersection and terminated by the two circumferences.
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46. The feet, a, 6, c, of the perpendiculars let faL

from any point P in a circumference on the sides

of an inscribed triangle ABC, are in a straight line.

Join fib, be, and prove that the angle abC =^ the

angle Abe (11. 99).

47 . If equilateral triangles ABC/^
BCA\ CAB\ are constructed on

the sides of any triangle ABC:
1st. The circumferences circumscrib-

ed about the equilateral triangles in-

tersect in the same point F\ 2d. The

straight lines AA', BB% CC, are

equal and intersect in P\ 3d. The
centres of the three circumferences

are the vertices of an equilateral tri-

angle ocny.

48. The inscribed and the three escribed circles of a triangle ABC
being drawn, as in the figure on p. 86, let />, JY, B^\ D'^\ be the four

points of contact on the same side BC. Designate the sidi' BC, opposite
to the angle A, by «, the side ^IC by h, and the side AB by c; and let

«= ^ (a-f6 + c). Prove the following properties :

BD'' ^Ciy''-=s,

BD'''=CD'' =s—a,
BD =Ciy =8-b,

Bir =CD =s—c.

BIT' =D'''D'-=h,

BD"'' =D'D'' =c,

BD" =--6— 0,
I

Also, let a circumference be circumscribed about the triangle ABC. Prove

that this circumference bisects each of the six lines 0^, 0^^, 0^^\
0' C, 0-' 0''\ C' 0'

;
and that the points of bisection are the centres

of circumferences that may be circumscribed about the quadrilaterals

BO CO', COAO'', AOBO''', ABO'O'', BCO'^O'"', CAO'^'O', re-

spectively.

Finally, designating the radius of the circumscribed circle by R ;
the radius

of the inscribed circle by r
;
the radii of the escribed circles by r\ i/^ '/''

;

the perpendiculars from the centre of the circumscribed circle to the three

sides by p\ p^'', p^'^ ; prove the following relations :

^4.^//+ r^^^ = 4i2 + r,
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LOCI.

49. Find the locus of tlie centre of a circumference which passes through
two given points.

50. Find the locus of the centre of a circumference which is tangent to two

given straight lines.

51. Find the locus of the centre of a circumference which is tangent to

a given straight line at a given point of that line, or to a given circumfer-

ence at a given point of that circumference.

52. Find the locus of the centre of a circumference passing through a given

point and having a given radius.

53. Find the locus of the centre of a circumference tangent to a given

straight line and having a given radius.

54. Find the locus of the centre of a circumference of given radius, tap-

gent externally or internally to a given circumference.

c

N

55. A straight line JiiV, of given length, is

placed with its extremities on two given perpen-

dicular Hues, AB, CD; find the locus of its

middle point F (Ex. 8).

M

iV

56. A straight line of given length is inscribed in a given circle
;
find the

locus of its middle point.

57. A straight line is drawn through a given point

J., intersecting a given circumference in B and C;
find the locus of the middle point, P, of the inter-

cepted chord BC.
Note the special case in which the point A is on

ihe given circumference.

58. From any point A in a given circumference, a straight hne AP o£

fixed length is drawn i)avallel to a given line 3IN; find the locus of the

extremity P.

50. Upon a ^iven base BC^ a triangle ABC'ib constructed having a given
vertical angle A ;

find the locus of the intersection of the perpendiculars
from the vertices of this triangle upon the opposite sides (II. 97).

2R
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60. The angle ACB is any inscribed angle in a

given segment of a circle
; AC is produced to P,

making CP equal to CB : find the locus of P.

61 . From one extremity J^ of a fixed diameter

AB, any chord ^C is drawn, and at C a tangent

CD. From B, a perpendicular BD to the tan-

gent is drawn, meeting J.C in P. Find the locus

of P.

62. A triangle ABC is given, right angled at A.

Any perpendicular, EF, to BC, \s drawn, cutting AB
in Z>, and CA in F. Find the locus of P, the inter-

^

section of BF and CD.

63. The base BC of Si triangle is given, and the me-

dial line BE^ from B, is of a given length. Find the

locus of the vertex A.

Draw A parallel to EB. Since B0= BC, is a

fixed point ;
and since A0=2 BE, OA is a constant

distance.

64, An angle BAC is given in position, and

l)oints B and C are taken in its sides so that

AB -{- AC shall be a given constant length. Find

the locus of the centre of the circle circumscribed

about the triangle ABC (Ex. 41).

Also, if the points B and C are so taken that

AB—AC IS B. given constant length, find the locus

of the centre of the circle circumscribing ABC
(Ex.41).
Also find the locus of the middle point of BC,

65. The base BC of sl triangle ^^^is given in position, and the verti^-.-ii
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angle J is of a given magnitude ;
find the loci of the centres of the inscribed

and escribed circles-

In the figure, p. 86, we have the angles BOC= 90° -\- ^ A, BO'G=
\S0°— BOC=90°— iA, BO''C=BO'''C=hA.
The loci are circumferences whose centres lie in the circumference of the

circle circumscribed about ABC.
66. Find the locus of all the points the sum of the distances of each of

which from two given straight lines is a given constant length (Ex. 13).

Show that the locus consists of four straight lines forming a rectangle.

67. Find the locus of all the points the difierence of the distances of each

of which from two given straight lines is a given constant length (Ex. 13).

Show that the locus consists of parts of four straight lines whose intersec-

tions form a rectangle.

68. If in Ex. 66 by sum is understood algebraic sum, and distances falling

on opposite sides of the same line have opposite algebraic signs, show that

Ex. 66 includes Ex. 67, and the locus consists of the whole of four indefinite

lines whose intersections form a rectangle.

PROBLEMS.

The most useful general precept that can be given, to aid the student m
his search for the solution of a problem, is the following. Suppose the

problem solved, and construct a figure accordingly : study the properties of

this figure, drawing auxiliary lines when necessary, and endeavor to discover

the dependence of the problem upon previously solved problems. This is an

analysis of the problem. The reverse process, or synthesis, then furnishes a

constraction of the problem. In the analysis, the student's ingenuity will be

exercised especially in drawing useful auxiliary lines
;
in the sjnthesis, he will

often find room for invention in combining in the most simple form the

several steps suggested by the analysis.

The analysis frequently leads to the solution of a problem by the intersec-

tion of loci. The solution may turn upon the determination of the position

of a particular point. By one condition of the problem it may appear that

this required point is necessarily one of the points of a certain line
;
this line

is a locus of the point satisfying that condition. A second condition of the

problem may furnish a second locus of the point ;
and the point is then fully

determined, being the intersection of the two loci.

Some of the following problems are accompanied by an analysis to illus-

trate the process.

69. A triangle ABC being given, to draw DE parallel

to the base ^^ so that DE= DB + EC.

Analysis. Suppose the problem solved, and that DE is

the required parallel. Since DE=^ DB -\- EC, we may
divide it into two portions, DP and PE, respectively equal
to DB and EC. Join PB, PC. Then we have the

angle DBP^ DPB =^PBC; therefore, the line PB bi-

sects the angle ABC. In the same manner it is shown that CP bisects
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the angle A OB. The point P, then, Ues in each of the bisectors of the

base angles of the triangle, and is therefore the intersection of these bisectors.

Hence we derive the following construction.

Construction. Bisect the angles B and C by straight lines. Through the

intersection F of the bisectors, draw the line BPE parallel to BC. Thia

line satisfies the conditions. For we have, by, the constniction, the angle
DBP= PBC= BPD\ therefore, PD = DB\ and in the same manner,
PE'= EG\ hence, DE= DB-{- EG.

We have, however, tacitly assumed that DE is

to be drawn so as to cut the sides of the triangle

ABC between the vertex and the base. Suppose
it drawn cutting AB and AC produced. Then the

same analysis shows that the point P is found by

bisecting the exterior angles CBD, BCE. Thus

the problem has two solutions, if the position of

DE is not limited to one side of the base BC.

70. To determine a point whose

distances from two given inter-

secting straight lines, AB, A^B\
are given.

Anahisis. The locus of all the

points which are at a given dis-

tance from AB consists of two

parallels to AB, CE and DF,
each at the given distance from AB. The locus of all the points at a given

distance from A^B'' consists of two parallels, C^E^ and D^F\ each at the

given distance from A^B\ The required point must be in both loci, and

therefore in their intersection. There are in this case four intersections of

the loci, and the problem has four solutions.

Construction. At any point of AB, as A, erect a perpendicular CD, and

make AC "= AD = the given distance from AB
; through C and D draw

parallels to AB. In the same manner, draw parallels to A^B^ at the given

distance A^C^ = A^D^. The intersection of the four parallels determines

the four points Py, Pi, P^, P^, each of which satisfies the conditions.

E c

71. Given two perpendiculars, AB and CD, inter-

secting in 0. To construct a square, one of whose

angles shall coincide with one oi' the right angles at 0,

and the vertex of the opposite angle of the square
shall lie on a given straight line EF. (Two solutions. )
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12. In a given rhombus, ABCD, to inscribe

A sqasLie EFGII. (Ex. 71.)

73. In a given straight line, to find a point equally distant from two given

points without the line.

74. To construct a square, given its diagonal.

75. In a given square, to inscribe a square of given magnitude.

76. From two given ]ioints on the same side of a given straight line, tc

draw two straight lines meeting in the given straight line and making equal

angles with it. (Ex. 4.)

77. Through a given point P within a given angle, to draw a straight line,

terminated by the sides of the angle, which shall be bisected at P.

78. Given two straight lines which cannot be produced to their intersec-

tion, to draw a third which would pass through their intersection and bisect

their contained angle.

79. Through a given point, to draw a straight line making equal angles

with two given straight lines.

80. Given the middle point of a chord in a given circle, to draw the

chord.

81. To draw a tangent to a given circle which shall be parallel to a given

straight line.

82. In the prolongation of any given chord ^J5 of a circle, to find a point

jP, such that the tangent FT, drawn from it to the circle, shall be of a given

length.

83. To draw a tangent to a given circle, such that its segment intercepted

between the point of contact and a given straight line shall have a given

length.

In general, there are four solutions. Show when there will be but three

solutions, and when but two
; also, when no solution is possible.

84. Through a given point within or without a given circle, to draw a

straight line, intersecting the circumference, so that the intercepted chord

shall have a given length. (Two solutions. )

85. Through a given point, to draw a straight line, intersecting two given

circumferences, so that the portion of it intercepted between the circumfer-

^'nces. shall have a given length. (Two solutions. )

86 In a given circle, inscribe a chord of a given length which produced
chall be tangent to another given circle.

87. Construct an angle of 60°, one of 120°, one of 30°, one of 150°, one

of 45° and one of 1 35°.

88. To find a point within a given triangle, such that the three straight

lines drawn from it to the vertices of the triangle shall make three equal

angles with each other.

When will the problem be impossible ?

89. Construct a i)arallelogram, given, 1st, two adjacent sides and one diago-
26 » U
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nal
; Hd, one side and the diagonals ; 3d, the diagonals and the angle they

contain.

90. Construct a triangle, given the base, the angle opposite to the base,

and the altitude.

Analysis. Suppose BAG to be the required tri- x"' "^^^
angle. The side jSC being fixed in position and

~7^^'^7~^^^^\\~
^

magnitude, the vertex A is to be determined. One
j; ^^ -.^ n

locus of A is an arc of a segment, described upon ^^— -^
AB. containing the given angle. Another locus of

^ is a straight line MN drawn parallel to ^C, at a distance from it equal
to the given altitude. Hence the position of A will be found by the inter-

section of these two loci, both of which are readily constructed.

Limitation. If the given altitude were greater than the perpendicular
distance from the middle of ^BC to the arc BAC^ the arc would not inter-

sect the line MN^ and there would be no solution possible.

The hmits of the data, within which the solution of any problem is pos-

sible, should always be determined.

91. Construct a triangle, given the base, the medial Hne to the base, and

the angle opposite to the base.

92. Construct a triangle, given the base, an angle at the base, and the sum
or difference of the other two sides.

Analysis. On the sides of the given angle, jB, take

BG = given ba^e, and BD = given sum or difference

of the sides. Join GD. The problem is reduced to

drawing, from C, a line GA, which shall cut BD, or

BD produced, in a point A, so that GA shall be equal

to AD, which is obviously effected by making the angle DGA = the angle

ADG.
If, when the difference of AB and AG is given, AG is to be the greater

side, BD = AG— AB is to be taken in AB produced through B.

i/ 93. Construct a triangle, given the base, the angle opposite to the base,^^ and the sum or difference of the other two sides.

Analysis. Suppose ABG is the required triangle.

First, when the sum of AB and AG is given, produce

BA to D, making BD = AB + AG. Join GD. The

angle D is one-half of BAG, and is therefore known.

Hence the following construction. Make an angle

BDG equal to one-half the given angle. Take

DB = given sum of sides. From B as centre, and with radius equal to the

given base, describe an arc cutting DG in G. Draw GA, making the

angle DGA = the angle BDG.

Secondly, when the difference of AB and ^C is given; take BD^ ^
AB— AG, and join GD^. The angle AD^G is one-half the supplement

of BA G, and hence the construction can readily be found.

This problem can also be solved by an application of Ex. 41.

I
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94. Construct a triangle, given the base, the sum or difference of the other

two sides, and the difference of the angles at the base.

Anali/sis. In the preceding figure, the angle BCD^ = ^ [ACB— AJ^C)^
and BCD = 90° + BCD^

;
and hence a construction can readily be found.

95. Construct a triangle, given, 1st, two angles and the sum of two sides
;

2d, two angles and the perimeter.

96. Construct a triangle, given,

1st. Two sides and one medial line

2d. One side and two medial lines
;

3d. The three medial lines.

See Exercise 17.

97. Construct a triangle, given an angle, the bisector of that angle, and

the perpendicular from that angle to the opposite side.

98. Construct a triangle, given the middle points of its sides.

99. Construct a triangle, given the feet of the perpendiculars from the

imgles on the opposite sides. (Ex. 36. )

100. Construct a triangle, given the perimeter, one angle, and one

altitude.

101. Construct a triangle, given an angle, together with the medial line

and the perpendicular from that angle to the opposite side.

1 02. Construct a triangle, given the base, the sum or the difference of the

other two sides, and the radius of the inscribed circle. (Ex. 48. )

103. Construct a triangle, given the centres of the three ascribed circles.

104. Construct a triangle having its vertices on two given concentric cir-

cumferences, its angles being given.

105. Divide a given arc into two parts such that the sum of their chords

shall be a given length. (Ex. 41.)

106. Construct a. square, given the sum or the difference of its diagonal

and side. (Ex. 20. )

107. With a given radius, describe a circumference, 1st, tangent to two

given straight lines
; 2d, tangent to a given straight line and to a given cir-

cumference
; 3d, tangent to two given circumferences

; 4th, passing through
a given point and tangent to a given straight line

; 5th, passing through a

given point and tangent to a given circumference
; 6thj having its centre on a

given straight line, or a given circumference, and tangent to a ^ven straight

line, or to a given circumference. (Exs. 52, 53, 54.)

108. Describe a circumference, 1st, tangent to two given straight lines, and

touching one of them at a given point (Exs. 50, 51) ; 2d, tangent to a given
circumference at a given point and tangent to a given straight line

; 3d, tan-

gent to a given straight line at a given point and tangent to a given cir-

cumference (Ex. 51) ; 4th, passing through a given point and tangent to a

given straight line at a given point ; 5th, passing through a given point and

tangent to a given circumference at a given point.

109. Draw a straight line equally distant from three given points.

When will there be but three solutions, and when an indefinite number of

solutions ?
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110. Describe a circumference equally distant from four given points; the

distance from a point to the circumference being measured on a radius, or

radius produced.
In general there are four solutions. If three of the given "points are in a

straight line, one of the four circumferences becomes a straight line.

111. An angle A is given in position, and a point

P in its plane. It is required to draw a straight line

through jP, intersecting the sides of the angle and

forming a triangle ABC of a given perimeter.

(Ex. 40.)

112. With a given point as a centre, describe a circle which shall be

divided by a given straight hne into segments containing given angles.

113. Through a given point without a given circle, draw a secant, so that

the portion of it without the circle shall be equal to the portion within.

(Ex. 96.)

114. Inscribe a straight line MN, of given

length, between two given straight lines AB,
CD, and parallel to a given straight line EF.

115. Inscribe a straight line of given length between two given circumfcr

ences, and parallel to a given straight line.

116. Through P, one of the points of intersection of two circumferences

draw a straight line, terminated by the circumferences, which shall be bi

sected in P.

117. Through one of the points of intersection of two circumferences,

di*aw a straight line, terminated by the circumferences, which shall have a

given length.

118. Given two parallels ^5, CD, and two other parallels ^^^^ C'D\
inclined to the first

; through a given point P, in their plane, draw a straight

line such that the portion of it intercepted between the parallels ^Z^, CD,
shall be equal to the portion of it intercepted between the parallels A^ B\
C'D\ (Ex. 77.)

119. From two given P9ints, J., B, on the same side of a given straight

line il/iV, draw straight lines, meeting in a point P of MN, so that the angle

APM shall be equal to double the angle BPN.
Analyais. The solution of Exercise 76, suggests the possible advantage of
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emplojnng the symmetrical point of one of the given points. Let B^ be

the symmetrical point of B with respect

to MN[l. 135). Join ^^7^ and produce
it toward E. Then, since APM =
2 BFN=^ 2 B'PN- 2 MPE, B'PE bi-

sects the angle APM. Therefore, the

problem is reduced to finding a point

Pin MN such that B'PE shall bisect the angle APM. With B' as centre

describe an arc through A^ cutting MN in C. The perpendicular B^E upon
A C, evidently intersects MN in the required point.

120. With the vertices of a given triangle as centres, describe three cir-

cumferences each of which shall be tangent to the other two. (Four solu-

tions.) (Ex. 48.)

121. Construct a quadrilateral, given its four sides and the straight line

joining the middle points of two opposite sides. (Ex. 24.)

1 22. Construct a pentagon, given the middle points of its sides.

The middle points of all the diagonals can be determined by the principle

of Ex. 23.

1 23. Find a point in a given straight line, such that tangents drawn from

it to two given circumferences shall make equal angles with the line. (Four

solutions. ) Compare Ex. 76.

124. If a figure is moved in a plane, it may be brought from one position

to any other, by revolving it about a certain fixed point (that is, by causing

each point of the figure to move in the circumference of a circle whose centre

is the fixed point). Find that point, for two given positions of the figure.

GEOMETRY.—BOOK IH.

THEOREMS.

125. If three parallels AA\ BB^^ CC\ intercept on two

straight lines J.C, A'C\ the segments AB and BC^ or

A^B^ and B^C\ in a given ratio m : n, that is, if

AB: BC^A'B': B'C' = m:n;

then, (m + n). BB' = n.AA' -f m. CG\

(in. 25, 10.)

126. In any triangle ABC^ if from the vertex J.,

AE is drawn to the circumference of the circumscribed

circle, and AD to the base BC^ making the angles

CAE and BAD equal to each other, then (III. 25),

ABXAC= ADXAE.
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127. From the preceding theorem, deduce as a corol-

lary the following: In any triangle ABC, if from the

vertex A, AE is drawn bisecting the angle J., meeting
the circumference of the circumscribed circle in E and

the base BC m D^ then

ABXAC= ADXAE,
Also deduce (III. 65).

128. If ABCD is a given parallelogram, and AN a variable straight Kne
drawn through A cutting EG m M and CD in N\ then, the product
5J/i)JV is constant. (III. 25.)

129. If ABCD is any parallelogram, and from any point P in the diago-
nal AC (or in AC produced) PM is drawn cutting BA in J/, EC m iV,

AD in M' and DC in N'; then, PM.P]Sr= PM'.PN\ (III. 25.)

130. If a square DEFG is inscribed in a righc triangle ABC, so that a

side DE coincides with the hypotenuse EC (the vertices F and G being in

the sides AC and AE) ; then, the side DE is a mean proportional between

the segments ED and EC of the hypotenuse. (III. 25.)

131. If a straight Hne AE is divided at C and D so that AE.AD =

t^,
and if from A any straight line AEis drawn equal to J. (7; then, JE'C

3ts the angle DEB. (III. 10, 32, 23.)

132. If «, &, c, denote the three perpendiculars from the three vertices of

a triangle upon any straight line MN in its plane, and p the perpendicular

from the intersection of the three medial lines of the triangle upon the same

straight line MN\ then, ^Ex. 125,)

a + 64- c
^

3

133. If ABC and A^BC are two triangles having a common base EG
and their vertices in a line AA^ parallel to the base, and if any parallel to

the base cuts the sides AE and AC in D and E^ and the sides A^E and

A'C in D" and E'
;
then DE = D'E'.

134. If two sides of a triangle are divided proportionally, the straight

lines drawn from corresponding points of section to the opposite angles inter-

sect on the line joining the vertex of the third angle and the middle of the

third side.

135. The difference of the squares of two sides of any triangle is equal to

the difference of the squares of the projections of these sides on the third

side. (III. 48.)

136. If from any point in the plane of a polygon, perpendiculars are drawn

to all the sides, the two sums of the squares of the alternate segments of the

sides are equal. (Ex. 135.)

137. If is the centre of the circle circumscribed about a triangle ABCy
and P is the intersection of the perpendiculars from the angles upon the

opposite sides
;
the perpendicular from upon the side EG ia equal to one-

half the,distance AP (I. 132), (III. 25, 30.)

I
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138. In any triangle, the centre of the circumscribed circle, the intersec-

tion Df the medial lines, and the intersection of the perpendiculars from the

angles upon the opposite sides, are in the same straight line
;
and the dis-

ince of the first point from the second is one-half the distance of the second

t)m the third.

139. If d denotes the distance of a point P from the centre of a circle,

'od r the radius
;
and if any straight line drawn through P cuts the cir-

"umfcrence in the points A and B\ then, the product PA.PB is equal to

^ — d^ if Pis within the circle, and to d^ — r^ if Pis without the circle.

140. In any quadrilateral, the sum of the squares of the diagonals is equal

MO twice the sum of the squares of the straight lines joining the middle points

of the opposite sides. (III. 64) and (Ex. 23.)

141. In any quadrilateral ABCD inscribed in a cir-

cle, the product of the diagonals is equal to the sum
of the products of the opposite sides

;
that is, Df

AC.DB = AD.BC + AB.DC.

(Make the angle DAE= BAG, and prove that

AD.BC=AG.DE, ^nd AB.DC= AC.BK)

142. In an inscribed quadrilateral ABCD^ if P is the intersection of th<i

diagonals J.C and -Bi>; then

AD.AB _AF ,.^^ „. .

crcd-fU ^^'^-"^

143. In an inscribed quadrilateral ABCD.,

AD.AB-j-CB.CD ^ AC
BA.BC+DA.DC BD

144. In an inscribed quadrilateral, the product of the perpendiculars let

fall from any point of the circumference upon two opposite sides is equal to

the product of the perpendiculars let fall from the same point upon the other

two sides. (III. 65.)

145. If from a point P in a circumference,

any chords P4, PjB, PC, are drawn, and any

straight line MN parallel to the tangent at P,

cutting the chords (or chords produced) in a,

A, c; then, the products PA. Pa., PB.Pb,
PC.Pc, are equal.

146. If two tangents are drawn to a circle at the extremities of a diameter,

the portion of any third tangent intercepted between them is divided at its

point of contact into segments whose product is equal to the square of the

radius.

147. If on a diameter of a circle two points are taken equally distant from

the centre, the sum of the squares of the distances of any point cf the cir

cumference from these two points is constant.



312 EXERCISES.

148. If a point P on the circumference of a circle is taken as the centre

of a second circle, and any tangent is drawn to the second circle cutting the

first in M and N; then, the product FM.FN is constant.

149. The perpendicular from any point of a circumference upon a chord in

a mean proportional between the perpendiculars from the same point upon
the tangents drawn at the extremities of the chord.

150. If AB is the chord of a quadrant of a circle whose centre is 0, anl

anj''chord MN parallel to AB cuts the radii OA, OB in P and Q ;
then

MP^ + PN^ = AB\ (III. 48) and (Ex. 139.)

151. If ABCD is any parallelogram, and any circumference is described

passing through A and cutting AB, A C, AD, in the points F, G, II, re-

spectively; then

AFAB + AII^D=:AG.Aa

152. In any isosceles triangle, the square of one of the equal sides is equal
to the square of any straight line drawn from the vertex to the base plus the

product of the segments of the base.

153. If^ and B are the centres of two circles which touch at (7, and Pis
a point at which the angles AFC and BFC are equal, and if from P tan-

gents PI) and FE are drawn to the two circles
; then,

PD.PE= PC\ (III. 21 and 66. )

154. If two circles touch each other, secants drawn through their point of

contact and terminating in the two circumferences are divided proportionally

at the point of contact.

155. If two circles are tangent externally, the portions of their common

tangent included between the points of contact is a mean proportional be-

tween the diameters of the circles.

156. Two circles are tangent internally at A, and from any point P in the

circumference of the exterior circle a tangent FM is drawn to the interior

circle
; prove that the ratio FA : FM is constant.

157. If two circles intersect in the points A and B, and through A any
secant CAD is drawn terminated by the ciicumferences at C and i),

the straight lines BC and BD are to each other as the diameters of the

circles.

158. If a fixed circumference is cut by any circumference which passes

through two fixed points, the common chord passes through a fixed point.

159. Two chords AB and CD, perpendicular to each other, intersect in a

point P either within or without the circle, and the line OF is drawn from

the centre 0. Prove that if J9 is the diameter of the circle,

PA^ + PB^ + W^ + FD^ = D\

and AB^ + CD' + aUP^ - 2 DK
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CI

160. If any number of circumferences pass through the same two points,

and if through one of these points any two straight Unes are drawn, the cor-

respon iing segments of these Unes intercepted between the circumferences

are proportional.

161. If a triangle ABC is inscribed in a circle, and from the vertex A^

AD and AE are drawn parallel to the tangents at B and G respectively and

cutting the base BC in D and E\ then

BD.DE=AD' = AE\

BB:nE=AB':AC\

162. Let AB be a given straight line. At A erect

the perpendicular Al) =AB; in BA produced take

AO = hAB ;
with centre and radius OD describe

a circumference, cutting AB and AB produced in C
and C^

; prove that AB is divided in extreme and

mean ratio, internally at C, and externally at C\

163. If a rhombus ABCD is circumscribed about a circle, any tangent

MN determines on two adjacent sides AB^ AD, two segments BM, DN,
whose product is constant.

164. If in a semicircle whose diameter is AB^ any two chords AC and

BD are drawn intersecting in P, then

AB^ = AC.AP+ BD.BP.

165. If is the intersection of the three medial lines of a triangle ABC,
prove the relations

. AB'+AC' + BC' = S(OA' +OB'-i-OC'),

BG^ -{-SOA^^AC' +SOB' =AB^+3 0C\

166. If is the intersection of the three medial lines of a triangle ABC,
and F any point in the plane of the triangle ; then,

-p2.^ +PB^+FC' =1)1' + OB' +0C' -\-SFO\

167. If R, r, r', r// „.///
,
are respectively the radii of the circumscribed,

the inscribed, and the three escribed circles in any triangle, and if J, d', df\

d^^\ are respectively the distances from the centre of the circumscribed

circle to the centres of the inscribed and escribed circles, prove the relations

-2Rr' = d''^ —2Rr''

d^ -\-d'^+d''^^d'''-

12

2Rr''
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LOCI.

168. From a fixed point 0, a straight line OA is drawn

ID any point in a given straight Hne MN^ and divided at

P in a given ratio m : n [i. e., so that OF : PA= m : n) ;

find the locus of P.

N

169. From a fixed point 0, a straight line OA
is drawn to any point in a given circumference,

and divided at P in a given ratio
;
find tho locus

of P.

170. Find the locus of a point whose distances from two given straight

fines are in a given ratio. (The locus consists of two straight lines.)

171. Find the locus of the points which divide the various chords of a

given circle into segments (external or internal) whose product is equal to a

given constant, h^. (III. 56, 59.)

172. Find the locus of a point the sum of whose distances from twx> given

straight lines is equal to a given constant h.

1 73. Find the locus of a point the difference of whose distances from two

given straight lines is equal to a given constant k.

174. Find the locus of a point such that the sum of the squares of its dis-

tances from two given points is equal to a given constant, h^. (III. 62.)

1 75. Find the locus of a point such that the difference of the squares of

its distances from two given points is equal to a given constant k^. (III. 62. )

176. If J., B and C are three given points in the same straight Hne, find

the locus of a point P at which the angles APB and BPC are equal.

(Ex. 131.)

177. Through Jl, one of the points of intersection of two given circles,

any secant is drawn cutting the two circumferences in the points B and C ;

find the locus of the middle point of BC
178. Through A, one of the points of intersection of two given circles,

any secant is drawn cutting the two circumferences in the points B and C,

aad on this secant AP is laid off equal to the sum of AB and J. (7; find the

locus of P.

179. From a given point 0, any straight line OA is drawn to a given

straight line ifA^ and divided at P (internally or externally) so that the

product OA. OPia equal to a given constant
;
find the locus of P. (P]x. 145.)

180. From a given point in the circumference of a given circle, any

chord I J A is drawn and divided at P (internally or externally) so that the

produof OA. OP is et^ual to a given constant
;
find the locus of P.
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181. From a given point 0, any straight line OA s

drawn to a given straight line MN, and OP is drawn

making a given angle with OA, and such that OP is to

OA in a given ratio
;
find the locus of P.

With the same construction, if OP is so taken that the

product OP. OA is equal to a given constant
;
find the

locus of P.

N

182. From a given point 0, any straight line

OA is drawn to a given circumference, and OP
is drawn making a given angle with OA, and

such that OP is to 0^ in a given ratio; find

the locus of P.

With the same construction, if OP is so taken

that the product OP OA is equal to a given constant
;
find the l"»cus of P.

183. One vertex of a triangle whose angles are given is fixed, while the

second vertex moves on the circumference of a given circle
;
what is the

locus of the third vertex ?

184. Given a circle and a point A ;
find the locus of the point P such

that the distance PA is equal to the tangent from P to the circle 0.

1 85. Find the locus of a point from which two given circles are seen under

equal angles.

Mote. The angle under which a circle is seen from a point is the angle

contained by the two tangents from that point.

186. Find the locus of a point, such that the sum of the squares of its dis-

tances from the vertices of a given triangle is equal to the square of a given

Hne. (Ex. 166.)

187. From any point A within a given circle, two straight lines AAf and

-47V are drawn perpendicular to each other, intersecting the circumference in

M and JV; find the locus of the middle point of the chord MN^.

PROBLEMS.

188. To divide a given straight Hne into three segments. A, Bsmd C, such

that A and B shall be in the ratio of two given straight lines M and iV, and

B and C shall be in the ratio of two other given straight lines P and Q.

1 89. Through a given point, to draw a straight line so that the portion of

it intercepted between two given straight lines shall be divided at the point

in a given ratio.

190. Through a given point, to draw a straight line so that the distances

from two other given points to this line shall be in a given ratio. (Two solu-

tions. )

191. Through a given point P, to draw a straight line cutting two given

parallels in 31 and K, so that the distances A3I and BN of the points of

intersection from two giver, loints A and B on these parallels shall be in a

given ratio.
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192. To d termine a point whose distances from tliree given i oints snail be

proportional to three given straight lines. (III. 79. )

193. To determine a point whose distances from three given indefinite

straight lines shall be proportional to three given straight lines. (Ex. 170.)

194. Given two straight lines which cannot be produced to their intersec-

tion, to draw a straight line through 9 g.ven point which would, if sufficiently

produced, pass through the unknown point of intersection of the given Imes.

(HI. 35.)

195. In a given triangle ABC to draw a parallel EF to the base BQ
intersecting the sides AB and AC in U and F respectively, so that

BE + CF= BC\ or so that BE— CF= BC. (in. 19, 21.)

196. In a given triangle ABC^ to inscribe a square

DEFG. (Exs. 71 and 133.)

197. In a given triangle ABC^ to inscribe a paral-

lelogram DEFG^ such that the adjacent sides DE
and DG shall be in a given ratio and contain a given

angle. (Remark, that the solution of this problem
includes that of the preceding. )

198. Construct a triangle, given its base, the ratio of the other two sides,

and one angle. (III. 79. )

199. To determine a point in a given arc of a circle, such that the chorda

drawn from it to the extremities of the arc shall have a given ratio.

200. To find a point P in the prolongation of a given . chord CD of a

given circle, such that the sum of the two tangents PA and PB^ drawn from

it to the circle, shall be equal to the entire secant PC
201. To divide a given straight line into two segments, such that the sum

of their squares shall be equal to the square of a given straight .ine.

202. Given an obtuse-angled triangle ;
it is required to draw a straight line

from the vertex of the obtuse angle to the opposite side, the square of wnich

shall be equal to the product of the segments into which it divides that

side.

203. Through a given point P to draw a straight line intersecting a given

circumference in two points A and B^ so that PA shall be to PB in a given

ratio.

204. Given two circumferences intersecting

in J.
;
to draw through A a secant, BA C, such

that AB s lall be to J. 6^ in a given ratio.
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205. Given two circumferences intersecting in A
;

to draw through A a secant ABC, such that the

product AB.AC shall be equal to the square of a

given line.

Construction. Produce the common chord AD,
and take E so that AD.AE = the square of the

given line (III. 71). Make the angle AEC equal

to the angle inscribed in the segment ABD, and

let EC cut the circumference in C and C^ Join

AC and A C\ Either of these hues satisfies the

conditions of the problem.

206. To describe a circumference passing

through two given points A and B, and tan-

gent to a given circumference 0.

Analysis. Suppose ATB is the required cir-

cumference tangent to the given circumference

at T, and ACDB any circumference passing
«

through A and B and cutting the given cir-

cumference in C and D. The common chords

AB and CD, and the common tangent at T,

all pass through a common point P (Ex. 15i) ;

from which a simple construction may be infeiTed. There are two solutions,

given by the two tangents that can be drawn from P.

207. To describe a circumference passing through two given points and

tangent to a given straight line. (Two solutions. )

208. To describe a circumference passing through a given point and tan-

gent to two given straight lines.

c
209. To describe a circumference

passing through a given point P, and

tangent to a given straight line MN
and to a given circumference 0.

Analysis. Suppose EPD is one of

the circumferences which satisfy the

conditions, passing through P, touch-

ing 3IN at E and the circumference

lit D. Through the centre 0, draw

COBA perpendicular to MI^', join

CP meeting the circumference EPD
in Q ;

also join CE. It can be proved ^ ^^jb""'
that CE passes through D, and that

EP

CRCQ= CECD^ CA.CB;

the point Q is therefore determined, and the problem is reduced to that of

Ex. 206 or 207. The point Q may be taken either in PC or in PC pro-

duced through C, and thus *\ere will be obtained, in all, four solutions.

27 *
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210. To describe a circumfer-

ence passing through a given

point A and tangent to two given

circumferences, and 0^.

Analysis. If ACDB is one of

the circumferences satisfying the

conditions, we can show that the

Ym^CD^ joining the points of con-

tact with the given circles, passes

through F^ the intersection of the

line of centres, 0\ with a com-

mon tangent TT^^ and that

FC.PD = PT.PT'. Hence, joining PA, we have PA.PB = PT.PT\
and PB is known

;
or ^ is a known point on the required circumference.

The problem is thus reduced to Ex. 20G. By employing also the internal

common tangent, we find, in all, four solutions.

211. To describe a circle tangent to two given straight lines and to a given

circle.

This is reducible to Ex. 208. If both the given straight lines intersect the

given circle, there may be eight solutions.

212. To describe a circle tangfet to two given circles, and to a given

straight line.

This is reducible to Ex. 209. There may be eight solutions.

21 3. To describe a circle tangent to three given circles.

This is reducible to Ex. 210. There may be eight solutions.

*214. To describe a circumference which shall bisect three given circum-

ferences.

*215. To construct a triangle, given its base in position and magnitude,
and the sum (or the difference) of the other two sides, the locus of the vertex

opposite the base being a given straight line.

*216. To construct a triangle, given the product of two sides, the medial

line to the third side, and the difference of the angles adjacent to the third

side.

*217. To construct a triangle, similar to a given triangle, and having its

three vertices on the circumferences of three given concentric circles.

The same problem, substituting three parallel straight lines for the three

circumferences.

*218. In a given circle, to inscribe a triangle, such that

1 St. Its base shall be parallel to a given straight line, and its other two

sides shall pass through two given points in that line
;

or,

2d. Its base shall be parallel to a given straight line, and its other two

sides shall pass through two given i)oints not in that line
; or,

3d. Its three sides shall pass through three given points.

I

Exercises 214 to 218 are intended only for the most advanced stidents.
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GEOMETRY.—BOOK

THEOKEMS.

219. Two triangles which have an angle of the one equal to the supple-

ment of an angle of the other are to each other as the products of the siden

including the supplementary angles. (IV. 22.)

220. Prove, geometrically, that the square described upon the sum of two

straight lines is equivalent to the sum of the squares described on the two

lines plus twice their rectangle.

Note. By the "rectangle of two lines" is here meant the rectangle of

which the two lines are the adjacent sides.

221. Prove, geometrically, that the square described upon the difference

of two straight lines is equivalent to the sum of the squares described on the

two lines minus twice their rectangle.

222. Prove, geometrically, that the rectangle of the sum and the differ-

ence of two straight lines is equivalent to the difference of the scjuares of

those lines.

223. Prove, geometrically, that the sum of the squares on two lines is

equivalent to twice the square on half th-'ir sum plus twice the square on

half their difference.

Or, the sum of the S(iuares on the two segments of a line is equivalent to

twice the square on half the line plus twice the square on the distance ox the

point of section from the middle of the line.

224. The area of a triangle is equal to the product of half its perimet<;r by
the radius of the inscribed circle

;
that is, if a, b and c denote the sidt^ op-

posite the angles^, i? and (7- respectively, r the radius of the ins-. <ibed

circle, S the area, and

then

s = semi-perimeter "= i {a -\- b -\- c),

S = s r.

Also, if r^, r^^, r^^^, denote the radii of the three escribed circles, Throve,

by Ex. 48 with the figure of (II. 95), that

— = -——
» W' ={s— a){s— c),

and hence the following expressions for /S', r, r^, r^^, r^^-',

S=i/s{s-a){s— b){8— c),

s .„ ss ^ s
7^' =

S~b'
^//

i— e

Also prove that

S=\/rr'r''r''
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225. The area of a triangle is equal to the product of its three sidea

divided by four times the radius of the circumscribed circle
;
that is, de-

noting this radius by 7?,

ry _ abc

(IV. 13) and (III. 65.)

226. The area of a triangle is equal to the product of the radius of the

circifmscribed circle by the semi-perimeter of the triangle formed by joining

the feet of the perpendiculars drawn from the vertices of the given triangle

lo the opposite sides.

227. The area of the triangle formed with the three medial lines of a

ffiven triangle is three-fourths of the area of that triangle. (IV. 20) and

(Ex. 17.)

228. The two opposite triangles, formed by joining any point in the interioi

of a parallelogi'am to its four vertices, are together equivalent to one-half the

parallelogram.

229. The triangle formed by joining the middle point of one of the non-

parallel sides of a trapezoid to the extremities of the opposite side, is equiva-

lent to one-half the trapezoid.

230. The figure formed by joining consecutively the four middle points of

the sides of any quadrilateral is equivalent to one-half the quadrilateral.

231. If through the middle point of each diagonal of any quadrilateral a

parallel is drawn to the other diagonal, and from the intersection of the.se

parallels straight lines are drawn to the middle points of the four sides, these

straight lines divide the quadrilateral into four equivalent parts.

232. Two quadrilaterals are equivalent if their diagonals are equal, each

to each, and contain equal angles.

233. If in a rectangle ABCD we draw the

diagonal AC^ inscribe a circle in the triangle

ABC, and from its centre draw OE and OF
perpendicular to AD and DC, respectively, the

rectangle OD wiD be equivalent to one-half the

rectangle ABCD.

234. Let ABC be any triangle, and upon
ihe sides AB, AC, constmct parallelograms

AD, AF, of any magnitude or form. Let

their exterior sides DE, FG meet in M\ join

MA, and upon BC construct a parallelogram

BK, whose side BH is equal and parallel to

MA. Then the parallelogram BK is equiva-

lent to the sum of the parallelogi-ams AD
and AF.
From this, deduce the Pythagorean Theo-

rem. (^v^ 25.)
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235. Upon the sides of any triangle

ABC, construct squares AD, AG, BII;

join EF, GH, DK\ from A draw AF
perpendicular to BC, and produce it to Q,

making Aq-= BC\ join BQ, CQ, BG,
CD, and from D and G, draw DM, GN,
perpendicular U) BC. Prove the following,

properties :

1st. The triangles AEF, CGH, DKB,
are each equivalent U) ABC.

2d. DM+ GN=BC.
3d. ^^ is perpendicular to CD, and

CQ to BG.
4th. CD and BG intersect on the per-

pendicular AF.
5th. The lines AQ and EF bisect each

other at R. ^

6th. EF, GIT, DK, are respectively

equal to twice the medial lines of the triangle ABC
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Oc, are drawn parallel respectively to AA^, BB\ CC\ and terminating
in the same sides, then, the sum of Oa, Ob and Oc is equal to the given
length L

239. If
flf, />, c ana d denote the four sides of any quadrilateral, m and n

it° diagonals, and S its area, then

S = il/(2 /?m + a^ — lj^-hc^ — d-') {2m)i — a^ -f />2 _ ^2 + cP").

If ths quadrilateral is inscribed in a circle, this formula becomes

S = i/{p-a){p-h){p-c){p-d),

in which p ^= ^ {a -\- h -\- c -{- d).

If th« quadrilateral is such that it can be circumscribed about a circle and

also inscribed in a circle, then the formula becomes

S = \/ahcd.

PROBLEMS.

240. To construct a triangle, given one angle, the side opposite to that

angle, and the area (equal to that of a given square).

241. To construct a triangle, given its angles and its area.

242. To construct a triangle, given one angle, the medial Hne from one of

the other angles, and the area.

243. To construct a triangle, given its area, the radius of the inscribed

circle, and the radius of one of the escribed circles
; or, given its area and

the radii of two escribed circles. (Exercises 48 and 224. )

244. Griven any triangle, to construct an isosceles triangle of the same

area, whose vertical angle is an angle of the given triangle.

245. Given any triangle, to construct an equilateral triangle of the same

area.

"~24f). Given the three straight lines EF^ GH and DK^ in the figure of

Exercise 235, to construct the triangle ABC.
247. Bisect a given triangle by a parallel to one of its sides.

Or, more generally, divide a given triangle into two or more parts propor-

tional to given lines, by parallels to one of its sides.
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248. Bisect a triangle by a straight line drawn through a given point in

one of its sides.

249. Through a given point, draw a straight line which shall form with

two given intersecting straight lines a triangle of a given area.

llemark that the area and an angle being known, the product of the sides

uicluding tliat angle is known. (lY. 22.
)

250. Bisect a trapezoid bj'' a parallel to its bases.

251. Inscribe a rectangle of a given area in a given circle.

252. Inscribe a trapezoid in a given circle, knowing its area and the

common length of its inclined sides. (See Ex. 229.
)

253. Given three points, A, B and C, to find a fourth point -P, such that

the areas of the triangles AFB^ AFC, J3F(y\ shall be equal. (Four solu-

tions. )

254. Given three points. A, B and C, to find a fourth point jP, such that

the areas of the triangles AFB, AFC, BFC, shall be proportional to three

given lines L, M, N. (Four solutions. )

See Exercise 1 70.

GEOMETRY.—BOOK Y.

THEOREMS.

255. An equilateral polygon inscribed in a circle is regular.

256. An equilateral polygon circumscribed about a circle is regular if the

number of its sides is odd.

257. An equiangular polygon inscribed in a circle is regular if the number

of its sides is odd.

258. An equiangular polj^gon circumscribed about a circle is regular.

259. The area of the regular inscribed hexagon is three-fourths of that

of the regular circumscribed hexagon.

260. The area of the regular inscnibed hexagon is a mean proportional

between the areas of the inscribed and circumscribed equilateral triangles.

261. A plane surface may be entirely covered (as in the construction ;:f a

pavement) by equal regular polygons of either three, four, or six sides.

262. A plane surface may be entirely covered by a combination of squares

and regular octagons having the same side, or by dodecagons and equilateral

triangles having the same side.

263. The area of a regular inscribed octagon is equal to that of a rectangle

whose adjacent sides are equal to the sides of the inscribed and circumscribed

squares.

264. The area of a circle is a mean proportional between the areas of any
two similar polygons, one of which is circumscribed about the circle and the

other isoperimetrical with the circle. ( Galileo's Theorem. )
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265. Two diagonals of a regular pentagon, not drawn from a common
vertex, divide each other in extreme and mean ratio.

266. If a = the side of a regular pentagon inscribed in % circle whose
radius is R, then,

R
a =

-^V
10 — 2i/5.

26*k, If a = the side of a regular octagon inscribed in a circle whose radius

is R, then,

a = rV'I — i/2.

268. If a = the side of a regular dodecagon inscribed in a circle whose
radius is R^ then,

a = RV2 — j/3.

269. If a = the side of a regular pentedecagon inscribed in a circle whose
radius is /?, then,

« =
^ (l^lO + 2i/5 + i/3 — 1/15).

270. K c? = the diagonal of a regular pentagon inscribed in a circle whose

radius is i?, then,

^=
2 V^IO + 2v'5.

271. IS a = the side of a regular polygon inscribed in a circle whose radius

is i?, and A = the side of the similar circumscribed polygon, then,

A = 2aR 2AR
V'{iR-'—a^) i/(4jK2 4-^2)

272. K a = the side of a regular polygon inscribed in a circle whose radius

is jff, and a^ = the side of the regular inscribed polygon of double the

number of sides, then.

a'^ = r{2R — \/4R^ — a^)'.
3 _ a'-^{iR^ — a'^]

R^

273. K AB and CD are two perpendicular di-

ameters in a circle, and E the middle point of the

radius OC, and if EF is taken equal to EA, then

OF is e(iual to the side of the regular inscribed

decagon, and ^i^^ is equal to the side of the regular

inscribed pentagon.

Corollary. If a = the side of a regular pentagon
and a^ = the side of a regular decagon, inscribed

«n a circle whose radius is R, then,

^2_,^/a /,>2.
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274. In two circles of diifercnt radii, angles at the centres subtended by
arcs of equal length are to each other inversely as the radii.

275. From any point within a regular pol^'gon of n sides, perpendiculars

are drawn to the several sides
; prove that the sum of these perpendiculars

is equal to n times the apothem. (V. 22.
)

What modification of this statement is required if the point is taken with-

out the polygon ?

276. If perpendiculars are dropped from the vertices of a regular polygon

upon any diameter of the circumscribed circle, the sum of the perpendicu-

lars which fall on one side of this diameter is equal to the sum of those which

fall on the opposite side.

277. If n is the number of sides of a regular polygon inscribed in a circle

whose radius is R, and a point P is taken such that the sum of the squares

of its distances from the vertices of the polygon is equal to a given quantity

k^, the locus of F is the circumference of a circle, concentric with the

given circle, whose radius r is^determined by the relation

n
(III. 52 and 53), (Ex. 276.)

PROBLEMS.

278. Divide a given circle into a given number of equivalent parts, by con-

centric circumferences.

Also, divide it into a given number of parts proportional to given Imes, by
concentric circumferences.

279. A circle being given, to find a given number of circles whose radii

shall be proportional to given lines, and the sum of whose areas shall be

equal to the area of the given circle.

280. In a given equilateral triangle, inscribe three equal circles tangent to

each other and to the sides of the triangle.

Determine the radius of these circles in terms of the side of the triangle.

281. In a given circle, inscribe three equal circles tangent- to each other

and to the given circle, y^
Detei-mine the radius of these circles in terms of the radius of the given

circle.

GEOMETRY.—BOOK VI.

THEOREMS.

282. If a straight line AB is parallel to a plane MN^ any plane perpen-
dicular to the line AB is perpendicular to the plane MN.

283. If a plane is passed through one of the diagonals of a parallelogram,
:he perpendiculars to this plane from the extremities of the other diagonal
•1.0 equal.
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284. If the intersections of a number of planes are parallel, all the per-

pendiculars to these planes, drawn from a common point in space, lie in one

plane.

285. If the projections of a number of points on a plane are* in a straight

line, these points are in one plane.

286. If each of the projections of a line AB upon two intersecting planes
is a straight line, the line ^^ is a straight line.

28Ti Let A and B be two points, and M and N two planes. If the sum
of the two perpendiculars from the point A upon the planes M and N is

equal to the sum x)f those from B upon these planes, this sum is the same
for every other point in the straight line AB. (Ex. 125. )

Extend the theorem to any number of planes.

288. Let J., B and C be three points, and M and N two planes. If the

sum of the two perpendiculars from each of the points J., B and C, upon
the planes M and -A^, is the same for the three points, it will be the same

for every point in the plane ABC. (Ex. 287.)

Extend the theorem to any number of planes.

289. A plane passed through the middle point of the common perpen-
dicular to two straight lines in space (VI. 63), and parallel to both these

lines, bisects every straight line joining a point of one of these lines to a

point of the other.

290. In any triedral angle, the three planes bisecting the three diedral

angles, intersect in the same straight line.

291. In any triedral angle, the three planes passed through the edges, per-

pendicular to the opposite faces respectively, intersect in the same straight

line.

^ 292. In any triedral angle, the three planes passed through the edges and

the bisectors of the opposite face angles respectively, intersect in the same

straight line.

293. In any triedral angle, the three planes passed through the bisectors

of the face angles, and perpendicular to these faces respectively, intersect in

the same straight line.

294. If through the vertex of a triedral angle, three straight lines are

drawn, one in the plane of each face and perpendicular to the opposite edge,

these three straight lines are in one plane.

LOCI.

295. Find the locus of the points in space which are equally distant froTu

two given points.

296. Locus of the points which are equally distant from two given planes ;

or whose distances from two given planes are in a given ratio. (Compare
Ex. 170.)

297. Locus of the points which are equally distant from two given straight

lines in the same plane.

298. Locus of the points which are equally distant from three given

points.



EXERCISES. 327

299. Locus of the points which are equally distant from three given

planes.

ooO. Locus of the points which are equally distant from three given

straight lines in the same plane.

301. Locus of the points which are equally distant from the three edges
of a triedral angle. (Ex. 293. )

302. Lovus of the points in a given plane which are equally distant from

two given points out of the plane.

303. Locus of the points which are equally distant from two given planes,

and at the samo time e(iually distant from two given points. ^Exs. 295 and

296.)

304. Locus ot 1 point in a given plane such that the straight lines drawn

from it to two gi i-on points out of the plane make equal angles with the

plane. (IIL 79.)

305. Locus of a point such that the sum of its distances from two given

planes is equal to a given straight line.

306. Locus of a point such that the difference of the squares of its dis-

tances from two given points is equal to a given constant.

307. Locus of a point in a given plane such that the difi'erence of the

squares of its distances from two given points is equal to a given constant.

308. A straight line of a given length moves so that its extremities are

constantly upon two given perpendicular but non-intersecting straight lines
;

what is the locus of the middle point of the moving line?

309. Two given non-intei>ecting straight lines in space are cut by an

indefinite number of parallel planes, the two intersections of each plane
with the given lines are joined by a straight line, and each of these joining

lines is divided in a given ratio in : n; what is the locus of the points of

division ?

\/

PEOBLEMS.

In the solution of problems in space, we assume—1st, that a plane can be

drawn passing through three given points (or two intersecting straight lines)

and its intersections with given straight Hues or planes determined—and 2d,

that a perjiendicular to a given jilane can be drawn at a given point in the

plane, or from a given point without it
;
and the solution of a problem will

consist, not in giving a graphic constraction, but in determining the con-

ditious under which the proposed problem is solved by the application of

these elementary problems. The graphic solution of problems belongs to

Descriptive Geometry.

310. Through a given straight line, to pass a plane perpendicular to a

given plane.

311. Through a given point, to pass a plane perpendicular to a given

straight line.

312. Through a given point, to pass a plane parallel to a given plane.

313. To determine that point in a given straight line which is equidistant

from two given points not in the same plane with the given line.
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3J4. To find a point in a plane which shall be equidistant from three given

points in space.

315. Through a given point in space, to draw a straight Kne which shall

cut two given straight lines not in the same plane.

316. Given a straight line AB parallel to a plane M', from any point A
in AB, to draw a straight line AP, of a given length, to the plane M,

nialfing the angle BAP equal to a given angle.

317. Through a given point ^ in a plane, to draw a straight line AT m
that plane, which shall be at a given distance PT from a given point P
without the plane.

318. A given straight line AB meets a given plane at the point A ;
to

draw through A a straight line AP in the given plane, making the angle
BAP equal to a given angle.

319. Through a given point A, to draw to a given plane M a straight Une

which shall be parallel to a given plane JV and of a given length.

320. Through a given point A, to draw to a given plane M a straight line

which shall be parallel to a given plane iV^ and make a given angle with the

plane M.

321. Given two straight lines, CD and EF, not in the same plane, and

AB any third straight line in space ;
to draw a straight line PQ from AB to

EF which shall be parallel to CD.

322. Given two straight lines AB and CD, not in the same plane ;
to

draw a straight line PQ from AB to CD which shall make a given angle

with AB.

323. Given two straight lines, AB and CD, not in the same plane, to find

a point in J.5 at a given perpendicular distance from CD.

324. Through a given point ,
to draw a straight line which shall meet a

given straight line and the circumference of a given circle not in the same

plane.

325. In a given plane and through a given point of the plane, to draw

a straight line which shall be perpendicular to a given line in space.

(VI. 62.)

326. In a given plane, to determine a point such that the sum of its dis-

tances from two given points on the same side of the plane shall be a

minimum.

327. In a given plane, to determine a point such that the difference of its

distances from two given points on opposite sides of the plane shall be a

maximum.

328. To cut a given polyedral angle of four faces by a plane so that tlin

section shall be a parallelogram.
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GEOMETRY.—BOOK VIL

THEOREMS.

^.

329. The volume of a triangular prism is equal to ine ^luduct of the area

of a lateral face by one-half the perpendicular distance of that face from the

opposite edge.

330. In any quadrangular prism, the sum of the squares of the twelve

edges is equal to the sum of the squares of its four diagonals phis eight
times the square of the line joining the common middle points of the diago-
nals taken two and two.

Deduce (VII. 20) from this.

331. Of all quadrangular prisms having equivalent surfaces, the cube has

the greatest volume.

332. The lateral surface of a pyramid is greater than the base.

333. At any point in the base of a regular pyramid a perpendicular to the

base is erected which intersects the several lateral faces of the pyramid, or

these faces produced. Prove that the sum of the distances of the points of

intersection from the base is constant.

(See Ex. 275.)

_,
334. In a tetraedron, the planes passed through the three lateral edges

and the middle points of the edges of the base intersect in a straight line.

The four straight lines so determined, by taking each face as a base, meet in

a point which divides each line in the ratio 1 : 4.

Note. This point is the centre of graviti/ of the tetraedron.

335. The perpendicular from the centre of gravity of a tetraedron to any

plane is equal to the arithmetical mean of the four perpendiculars from the

vertices of the tetraedron to the same plane. (Ex. 125.)

336. In any tetraedron, the straight lines joining the middle pomts of the

pposite edges meet in a point and bisect each other in that point.

337. The plane which bisects a diedral angle of a tetraedron divides tho

opposite edge into segments which are proportional to the areas of the adja-
cent faces.

338. Any plane passing through the middle points of two opposite edges
of a tetraedron divides the tetraedron into two equivalent solids.

339. If one of the triedral angles of a tetraedron is tri-rectangnlar

[i. <•., composed of three right angles), the square of the area of the face

opposite to it is equal to the sum of the squares of the areas of the three

other faces.

340. If a, h, c, d, are the perpendiculars from the vertices of a tetraedron

upon the opposite faces, and r/, y, </, r?^, the perpendiculars from any point
within the tetraedron upon the same faces respectively, then,

abed
28*
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341. If ABCD is any tetraedron, and any point within it; and if the

straight Unes AO^ BO, CO, DO, are produced to meet the faces in the

points a, b, c, d, respectively ;
then ^

Oa ,0b,0c,0d^,
Aa^ Bb^ Cc

'^ Dd

342^tThe volume of a truncated triangular prism is equal to the product
oi' the area of its lower base by the perpendicular upon the lower base let

fall from the intersection of the medial lines of the upper base.

343. The volume of a truncated parallelopiped is equal to the product of

the area of its lower base by the perpendicular from the centre of the upper
base upon the lower base.

344. The volume of a truncated parallelopiped is equal to the product of

a right section by one-fourth the sum of its four lateral edges. (VII. 62.)

345. The altitude of a regular tetraedron is equal to the sum of the four

perpendiculars let fall from any point within it upon the four faces.

346. Any plane passed through the centre of a parallelopiped divides it

into two equivalent solids.

PROBLEMS.

347. To cut a cube by a plane so that the section shall be a regular

hexagon.

348. Given three indefinite straight lines in space which do not intersect,

to construct a parallelopiped which shall have three of its edges on these

lines.

349. A parallelopiped is given in position, and a straight line in space ;
to

pass a plUne through the Hue which shall divide the parallelopiped into two

equivalent solids.

350. To find two straight lines in the ratio of the volumes of two given

cubes.

351. Within a given tetraedron, to. find a point such that planes passed

through this point and the edges of the tetraedron shall divide the tetraedron

into four equivalent tctraedrons.

352. To pass a plane, either through a given point, or parallel to a given

straight line, which shall divide a given tetraedron into two equivalent

solids.

353. Find the diiference between the volume of the fmstum of a pjTamid

and the volume of a prism of the same altitude whose base is a section of

the frustum parallel to its bases and equidistant from them.

The difference may be expressed in the form —iyB — yb) , if B and

/* ore tho areas of the bases, and h the altitude of the fmstum.
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^ THEOREMS.

354. If through a fixed point, within or without a sphere, three straight
lines are drawn perpendicular to each other, intersecting the surface of the

sphere, the sum of the squares of the three intercepted chords is constant

Also, the sum of the squares of the six segments of these chords is

constant.

355. If three radii of a sphere, perpendicular to each other, are projected

upon any i)lane, the sum of the squares of the three projections is equal to

twice the square of the radius of the sphere. (Ex. 339.
)

356. If two circles revolve about the line joining their centres, a common
tangent to the two circles generates tlie suiface of a common tangent cone to

the two spheres generated by the circles. The vertex of the cone generated

by an external common tangent may be called an external vertex, and that

of the cone generated by an internal common tangent may be called an

internal vertex. These terms being premised, prove the following theorem :

If three spheres of different radii are placed in any position in space,

and the six common tangent cones, external and internal, are drawn to these

spheres taken two and two, 1 st, the three external vertices are in a straight

line
; 2d, each external vertex Hes in the same straight line with two internal

vertices.

357. The volumes of a cone of revolution, a sphere, and a cylinder of

revolution, are proportional to the numbers 1, 2, 3, if the bases of the cone

and cylinder are each equal to a great circle of the sphere, and their altitudes

are each equal to a diameter of the sphere. *

358. An equilateral cylinder (of revolution) is one a section of which

through the axis is a square. An equilateral cone (of revolution) is one a

section of which through the axis is an equilateral triangle. These defi-

nitions premised, prove the following theorems :

I. The total area of the equilateral cjlinder inscribed in a sphere is a

mean proportional between the area of the sphere and the total area of the

inscribed equilateral cone. The same is tme of the volumes of these three

i)odies.

-nJ II. The total area of the equilateral cylinder circumscribed about a sphere
,' is a mean proportional between the area of the sphere and the total area of

the circumscribed equilateral cone. The same is true of the volumes of

these three bodies.

J.

j 359. If h is the altitude of a segment of one base in a sphere whose., ,

radius is r, the volmue of the segment is equal to ttA^ (i?
— i /i). -i- H

>t. pL ^j^

360. The volumes of polyedrons circumscribed about the same sphere aro

.^
proportional to their surfaces.
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LOCI.

361. Locus of the points in space whicli are at a given distance from a

given straight line.

362. Locus of the points which are at the distjftice a from a point J., and

at the distance h from a point B.

363. #Locus of the centres of the spheres which are tangent to three given

planes.

364. Locus of a point in space the ratio of whose distances from two fixed

points is a given constant.

365. Locus of the centres of the sections of a given sphere made by planes

passing through a given straight Hne.

366. Locus of the centres of the sections of a given sphere made by planes

passing through a given point
367. Locus of a point in space the sum of the squares of whose distances

from two fixed points is a given constant. (Ex. 174.)

368. Locus of a point in space the diiference of the squares of whose dis-

tances from two fixed points is a given constant. (Ex. 175.)

PROBLEMS.

369. To cut a given sphere by a plane passing through a given straight

line so that the section shall have a given radius.

370. To construct a spherical surface with a given radius, 1st, passing

througli three given points ; 2d, passing through two given points and tan-

gent to a given plane, or to a given sphere ; 3d, passing through a given

point and tangent to two given planes, or to two given spheres, or to a given

plane and a given sphere ; 4th, tangent to three given planes, or to three

given spheres, or to two given planes and a given sphere, or to a given plane

and two given spheres.

371. Through a given point on the surface of a sphere, to draw a great

circle tangent to a given small circle.

372. To draw a great circle tangent to two given small circles.

373. At a given point in a great circle, to draw an arc of a great circle

which shall make a given angle with the first.

374. To find the ratio of the volumes of two cylinders whose convex areas

are equal.

375. To find the ratio of the convex areas of two cylinders whose volumes

are equal.

376. To find the ratio of the volumes generated by a rectangle revolving

successively about its two adjacent sides.
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INTRODUCTION TO MODERN GEOMETRY.

TRANSVERSALS.

1. DEFimnoN. Any straight line cutting a system of lines is called a

transversal.

PROPOSITION I.—THEOREM.

2. If a tmii/wersal cuts the sides of a triarif/le {produced if necessanj), the

product of three non-adjacent segments of the sides is equal to the product

of the other three segments.

Let ABC be the given triangle, a

and ale the transversal. When the

transversal cuts a side produced, as

the side ^C at a, the segments are

the distances, aB, aC, of the point

of section from the extremities of

the line (III. 22). The segments

aB, bC, cA^ having no extremity

in common, are non-adjacent.

Draw CN parallel to AB. By
similar triangles, we have
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AB izi ^ point whicli we shall call c\ Then by the above theorem, we
hftve

aBXhGXc'A = aCXbAX c'B,

1 ad since by hypothesis we also have

aBXhCXcA = aOXhAX cB,

lere follows, by division,

cA cB'

which can evidently be true only when c^ coincides with c; that is, the

three points a, h and c are in the same straight line,

4. Scholium. The principle in the corollary often serves to determine, in a

vrery simple manner, whether three points lie in the same straight line.

For example, take the following theorem :

The middle points of the three diagonals of a complete quadrilateral are

in a straight line.

A complete quadrilateral is the figure formed by four straight lines inter-

secting in six points, as ABCDEF. The line EF is called the third

diagonal. •'

Let X, Jf, JV, be the middle points of the three diagonals. Let (?, H, K,

be the middle points of the sides of "the triangle FDC. The sides of the

triangle GIIK pass through the points LMN, respectively (I. 121 and 122).

The line ABE^ considered as a transversal of the triangle CDF^ gives

AD.BF.EG= AF.BG.ED.

Dividing each factor of this equation by 2, and observing that we have

Mi> = LK, h BF= MG, etc. (L 121), we find

LKMG.NH=LRMKNG]

therefore, the points L, if, iV, lying in the sides of the triangle GITK,

satisfy the condition of the preceding corollaiy, and are in a straight line.
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PROPOSITION II.—THEOREM.

5. Three straight lines, drawn throvgh the vertices of a triangle and any

point in its plane, divide the sides into segments such that the product of

three non-adjacent segments is equal to the product of the other three.

Let ABC be the triangle, and any point

in its plane, through which Aa, Bb, Cc, are

drawn.

The triangle A Ca is cut by the transversal

Bh] hence, by (2),

aB.ba'A^d^ BC.hA.aC^,

and the triangle ABa, cut by the transversal

Cc, gives
^

BCdO.cA^aCA^cB.

Multiplying these equations together, and omitting the common factors, we
obtain

aB.hQ.cA = aChA.cB.

6. CoroUanj. Conversely, if three points are taken on the sideji of a tri-

angle {all the points being on the sides themselves or two on the sides pro-

duced), so that the product of three non-adjacent segments of the sides «

equal to the product of the other three, the straight lines joining these poinU
with the opposite vertices of the triangle meet in one point.

. The proof is similar to that of (3).

7. Scholium. The principle of this corollary often serves to determine

whether three straight lines meet in a ])oint. For example, if Aa, Bb, Cc,

are the bisectors of the angles of the triangle ABC, we have by (111. 21 ),

aB aC
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ANHARMONIC RATIO.

8. Definition. If foui* points are taken in a straight line, the quotient

obtained by dividing the ratio of the distances of the first two from the third

by the ratio of the distances of the first two from the fourth, is called the

(nihqrmovic ratio of the four points.

Thus the anharmonic ratio of the four \
—-— —

7-\ '

|.oints A, B, C\ A is ^ bo d

CA
,
DA

CB
'

DB'

which for brevity is denoted by [ABCD].
In applying the definition the points may be taken in any order we please,

but the adopted order is always to be indicated in the notation. Thus, the

same points, considered in the order J., C, B, Z), give the anharmonic ratio

9. The anharmonic ratio of four points iS'not changed in value when tico

of the points are interchanged^ provided the other two are interchanged at

the same time.

Thus

[ABCD]

[BADC]

CA
.
DA ^ CA.DB

CB
' DB CB.DA

DB
, CB^ CA.DB

DA '

CA CB.DA

^^^^^^-Jd- BD~BCAD

rnnj^Ai-^^ AD _ ACBD
^^^^^^-'bc'-ac'bcad'

Tlierefore, [^i?CZ)] = [BADC] = [CDAB] = [DCBA]. There are

then four different ways in which the same anharmonic ratio can be ex-

pressed.

There are, in all, twenty-four ways in which the four letters may be

written, and therefore four points give rise to six anharmonic ratios

differing in value. Three of these six are the reciprocals of the other

three.

10. Definition. A system of straight Hnes diverging from a point is called

a pencil; each diverging line is called a ray; and the point from which they

diverge is called the v^-ffx of the pencil.
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PROPOSITION III.—THEOREM.

11. If a pencil offour rays is cut by a transversal, any anJiarmonic ratio

of the four points of intersection is constant for all positions of the trans-

vei'sal.

Fig. 1. Fig. 2.

Let 0-MNPQU the pencil; and let ABCD, A'B'C'D', be any two

positions of a transversal ;
then

[ABCD] = [A'B'C'iy].

For, drawing Bed parallel to 03/, we have by similar triangles,

CA OA DA^OA
DB dBCB cB

Dividing the first of these equations by the second, we have

dB
[ABUU\ cB

Drawing B^cfd^ parallel to J/, we have in the same manner,

d'B'
[A'B'G'I)']

c'B'

The second members of these two equations being equal (III. 35), we have

[ABCD] = [A'B'C'D'l

It is important to observe that the preceding demonstration applies when
the transversals cat one or more of the rays on opposite sides of the vertex,

as in Fig. 2.

12. Defimtion. The anharmonic ratio of a pencil of four rays is the

anharmonic ratio of the four points on these rays determined by any trans-

versal. Thus, [ABCI)]^ [ACBD]^ etc., are the anharmonic ratios of the

pencil formed by the rays OJ/, OiV, OP^ (9 ^, in the preceding figure. To
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distinguish the pencil in which the ratio is considered, the letter at thfi

vertex is prefixed to the ratio
; thus, [ O.ABCD]^ [ O.ACBD]^ etc.

13. The angles of a pencil are the six angles which the rays, ^taken two
and two, form with each other. It follows from the preceding proposition

that the values of the anharmonic ratios in two pencils will be equal, if the

angles of the pencils are equal, each to each.

14. Definition. The anhhrmonic ratio offourfixed

points A, jB, C, D, on the circumference of a circle,

is the anharmonio ratio of the pencil formed by join-

ing the four points to any variable point on the

circumference.

PROPOSITION IV.—THEOREM.

15. The anharmonic ratio of four fixed points on the circumference of a

circle is constant.

For, the angles of the pencil remain the same for all positions, 0, 0^,

etc., of its vertex, on the circumference. (II. 58.)

16. Definition. If four fixed tangents to a circle are cut by a fifth (vari-

able) tangent, the anharmonic ratio of the four points of intersection is

called the anharmonic ratio of the four tangents.

PROPOSITION V.

17. The anharmonic ratio of four fixed tangents to a circle is constant.

For, let four tangents, touch-

ing the circle at the points

A, B, C, D, be intersected by

any fifth tangent in J/, N, F, Q.

The pencil formed by the rays

Oi¥, ON, OF, 0<2, will have

constant angles for all positions

of the variable tangent, since

(as the reader can readily prove)

the angle MON will be meas-

ured by one-half of the fixed arc AB, the angle NOPhy one-half of the arc

BC, and the angle POQ by one-half of the arc CD. The angles of the

pencil being constant, the anharmonic ratio [ 0.MNFQ] is constant.

18. Corollary. The anharmonic ratio of four tangents to a circle ?> equal

to the anharmonic ratio of the four points of contact.

For, if any point 0^ in the circumference be joined to A, B, C, D, the

pencil formed will have the same angles as the pencil formed by the rays

OM, ON, OP, 0^,*since these angles will also be measured by one-half

the arcs AB, BC, CD, respectively.
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1 9. The properties of anharmonic ratios can be applied to the demonstra-

tion of two classes of theorems, in one of which certain points are to be

shown to lie in the same straight line, and in the other certain straight lines

are to be shown to meet in the same point. Corresponding theorems in these

two classes are placed side by side, in the following propositions, in order to

exhibit their analogy.

PKOPOSITION VI.

Theorem,.

2C. When two pencils 0-ABCD,
0^-A^B^C^D^^ have the same anhar-

monic ratio and a homologous ray
OA common^ the intersections 6, c, c?,

of the other three pairs of homx)logous

rays, are in a straight line.

Theorem.

\V-
B B^ C C

For, let the straight line joining h

and c meet OA in a, and let the

points in which it meets OD and

O^D^ be called d and d\ respectively.

By hypothesis we have (11),

[abed]
=

[abcd^],

which can be true only when 8 and d^

coincide
;
but 8 and d^ being on the

different Hues OD and O^D'' can co-

incide only when they are identical

with their intersection d. Therefore,

rt, 6, c, dj are in a straight Una.

22. Corollary. If one of the anhar-

monic ratios of a pencil is equal to

one of those of a second pencil, the

21. When two right-lined figures

of four points A, B, C, D, and

A, B^^ C^, ly^ have the same an-

harmonic ratio and. a homologous

point A common
J
the straight lines

joining the other three pairs of ho-

mologous points meet in the same

point 0.

For, let be the point of meeting
of BB' and CC

;
draw OA and

0D\ and let the point in which 01/
meets AD be called d.

Then we have (11),

[AB'C'D^ = [ABC81

and, by hypothesis,

[AB'C'J)']^[ABCD];

hence,

[ABCd] = [ABCDl

Therefore S coincides with Z>, and

the straight line DD^ also passes

through the point 0.

23. Corollani. If one of the an-

hai^monic ratios of a system of four

points is equal to one of those of a

remaining anharmonic ratios of the
\ second system, the remaining anhar-

29*
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first pencil are equal to those of the

iecond^ each to each.

For, let the pencils be placed so as

to have a common homologous ray.

Since one of the ratios has the same

value in both pencils, the intersec-

tions of the other three pairs of ho-

mologous rays lie in a straight line,

which is a common transversal
;
and

then any two corresponding anhar-

monic ratios in the two pencils will be

equal to that of the four points on the

common transversal (11), and there-

lore equal to each other.

monic ratios of the two systems art

equal, each to each.

For, let the two systems, be placed

so as to have a common homologous

point. . Since one of the anharmonic

ratios has the same value in both sys-

tems, the straight lines joining the

other three pairs of homologous points

meet in a point; and then any two

corresponding anharmonic ratios in

the two systems are equal, being de-

termined in the same pencil (11).

PROPOSITION VII.

Theorem.

24. Iftico triangles, ABC, A'B'C,
are so situated that the three straight

lines, AA\ BB\ CC\ joiinng their

corresponding vertice.'i, meet in a point,

0, the three intei'sections, a, h, c, of

their corresponding sides, are in a

straight line.

Theorem.

25. Iftwo triangles, ABC, A'B'C,
are so situated that the three intersec-

tions, a, b, c, of their corre.<!ponding

sides are in a straight line, the three

straight lines, ^AA^, BB\ CC^, join-

ing their corresponding vertices, meet

in a point, 0.

For, let BA and B'A' meet OC \ For, let the straight line ahc meet

in D and D\ and suppose Oc to be CC^ in d. Taking C and C as the

drawn. The pencil Oc, OB, OA, vertices of pencils having the com
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OC, intersected by the transversals

cD and cD\ gives

[cBAD] = [cB'A'D'],

or considering these ratios as belong-

ing to pencils whose vertices arc C
and C^, respectively,

[acBAD] = [C'.cB'A'D'].

These pencils having a common an-

harmonic ratio and a common ray

CC^, the intersections a, b, c, of the

other three pairs of homologous rays

are in a straight line (20).

mon transversal ac, we have, iden-

tically,

[Ccdha] = [C'.cdbal

The first pencil being cut by the trans-

versal cBAD, and the second by the

transversal cB^A'D^^ the preceding

equation gives (11),

[cDAB] = [cJD'A'B'].

The two systems, c, jB, A, D, and

c, B\ A\ D\ having a common an-

harmonic ratio and a common ho-

mologous point c, the hues BB\
AA', DD' (or CC'\ meet in the

same point (21).

26. Definition. Two triangles ABC^ A^B'C^, which satisfy the con-

ditions of the preceding two theorems, are called homological; the point

is called the centre of Iiomoloc/y ; the line abc is called the axis of homology.

PROPOSITION VIII.

Theorem. Theorem.

27. In any hexagon ABCDEF
inscribed in a circle^ the intersections^

28. In any hexagon ABCDEF
ciratmscribeil about a circle^ tJie three
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X, 3/, N, of the three pairs of oppo-

site sides, are in a straight line.

For, considering two pencils formed

by joining B and F as vertices, with

A, C, D and E^ we- have (15),

[B.ACDE] = [RACJDEl

Cutting. the first pencil by the trans-

versal LPDE, and the second pencil

by the transversal NQDC, the pre-

ceding equation gives (11),

[LPDE] = [NCDQl
Since the two systems of points

LPDE and NCDQ have a common
anharmonic ratio and a common ho-

mologous point Z>, the lines LN, PC,

EQ, joining the other three pairs of

homologous points, meet in a common

point M (21). Therefore L, M, J^,

are in the same straight line.

This theorem is due to Pascal.

29. Corollai-y 1. If the vertex D
is brought nearer and nearer to the

vertex C, the side CD will approach

to the tangent at C', therefore, when

the point D is finally made to coin-

cide with C, the theorem will still

a]>ply to the resulting pentagon if we

substitute the tangent at C for the

side CD. Tlie theorem then takes

the following fonu.

hi any pentagonABCEF inscribed

diagonals, AD, BE, CF, joining the

opposite vertices, intersect in the same

point.

For, regarding AB, BC,' CD and

EF, as fixed tangents cut by the tan-

gent ED in P N, D, E, and by the

tangent FA m A, L, M, F, we have

(IT),

[PiVDE] = [ALMF],

or, considering these anharmonic ra-

tios as belonging to pencils whose ver-

tices are B and O, respectively,

[B.PNDE] = [CAL3JFI
These two pencils, having a common
anharmonic ratio and a common ho-

mologous ray XiV, the intersections,

A, D, 0, of the other three pairs of

homologous rays are in a straight

hne (20). Therefore AD, BE and

CF, meet in the same point 0.

This theorem is due to Brianchon.

30. Corollary 1. If a vertex C is

brought into the circumference, the

sides i^C and CD will become a single

line touching the circle at C. The

theorem will still apply to the result-

ing jientagon if we regard the point

of contact of this side as the vertex

of a circumscribed hexagon. The

theorem then takes the following

form.

In any pentagon ABDEF circnm-

scrihed about a circle, the line joining

a vertex and the point of contact of

the opposite side, and the diagonals

joining the other non-conse^viive ver-

tices meet in a point.
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in a circle, tht intersection N of a side

with the tangent drawn at the oppo-

s^ite vertex, and the intersections L, M,

of the other non-consecutive side^ are

three points in a straight line.

By the same process we can reduce the hexagon to a quadrilateral and

finally to a triangle ;
whence the following corollaries.

31. Corollary II. In any quadri- 32. Corollary II. In any quadri-

lateral inscribed in a circle, if tan- lateral circumscribed about a circle,

if we take the points of contact of two

gents are drawn at two consecutive

vertices, the point of intersection of
eavh of them with the side passing

through the point of contact of the

other, and the intersection of the other

two sides, are three points in a straight

line.

33. Corollary III. In any quadri-

29**

adjacent sides, and join the point of
contact of each side with the vertex on

the other side, and if the remaining two

vertices are joined, the three straight

lines so drawn meet in a point

34. Corollary III. In any quadri-

lato'al circumscrihed about a circle^

the straight lines joining the points of
contact of opposite sides, and. the di-

agonals, are four straight lines which

meet in a point.



846 MODERN GEOMETRY

lateral inscrihed in a circle, the inter-

sections of the tangents drawn at op-

posite vertices and the intersections

of the opposite sides are four points
iti a straight line.

35. Corollanj TV. In any triangle

inscribed in a circle, the intersections

36. Corollary IV. In any triangU
circumscribed about a circle, the

straight lines joining the point of con-

tact of each side with the opposite ver-

tex meet in a point.

of each side icith the tangent drawn
at the opposite vertex are in a straight

line.

37. ScJioJ/'um.. Pascal's Theorem (27) may be applied to the figure

ABODEFA, formed by joining any six points of the

circumference by consecutive straight Hnes in any oi'der

whatever, a figure which may still be called a hexagon

(non-convex), but which for distinction has been called a

hexrigram.

The demonstration (27) applies to this figure, word for

word.

Brianchon's Theorem (28) may also be extended to a

circumscribed hexagram, formed by six tangents at any
six points taken in any assumed order of succession.
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HARMONIC PROPORTION.

38. Definition. Four points A, B, C, D, ! 1 \

are called four harmonic points when their ^ c B D

anharmonic ratio [ABCD] is equal to

unity ;
that is, when

CA_DA^ CA_DA
CB

'

DB '
""^

CB D^

which agrees with the definition of harmonic points in (III. 76).

39. Definition. A harmonic pencil is a pencil of four rays whose anhar-

monic ratio is equal to unity ;
that is, a pencil 0, which determines upon

any transversal a system of four harmonic points

A, B, C, D. From (11) it follows that if one

transversal of a pencil is divided harmonically, all

other transversals of the pencil are also divided

harmonically.

The points A and B are called conjugate points

with respect to C and 7>, that is, they divide

the distance CD harmonically; and C and D <

are called conjugate points with respect to A and /?, that is, they divide the

distance AB harmonically (III. 76). In like manner, the rays OA and OB
are called conjugate rays with respect to the rays OC and OD., and are said

to divide the angle COD harmonicaUy ; and the rays OC and OD are con-

jugate rays with respect to OA and Oi?, and divide tJie angle A OB har-

monically.

PROPOSITION IX.—THEOREM.

40. If a straight line AB is divided harmonically at the points C and D,
the half of AB is a mean proportional between the distances of its middle

point from the conjugate points C and D; that is, OB^ = OC. OD.

For, the harmonic proportion,

CA: CB = DA: DB, ^
>

j, ^ j,

gives, by composition and division (III. 10)

and (III. 9),

CA — CB CA + CB DA — DB DA + DB

or, OC:OB=OB: OD. [IJ

41. Corollary. Conversely, if we have given AB and its middle point 0,

and if C and D are so taken that WB^ = OC. OD, then, A, B, C and D
are fmir harmonic points.
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For, the proportion [1] gives

OB + OC .OB—OC=OD+OB: OB— OB;

*hiit ii CA: CB-=DA: DB. [2]

42. Scholium. The three straight lines AC, AB, AD, are in liarmonic

progression. For, the harmonic proportion [2] may be wiitten thus,

AC : AD = AB — AC : AD — AB,

or, AC, AB, AD, are such that the fir^t is to the third as the difference

between the first and second is to the difference between the second and

third
;
that is, they are in harmonic progression, according to the definition

commonly given in algebra.

Of three straight lines ^C, AB, AD, in harmonic progression, the second

AB is called a harmonic mean between the extremes AC and AD.

PROPOSITION X.—THEOREM.

43. In a complete quadrilateral, each diagonal i<i divided harmonically by

the other two.

Let ABODEF be a complete quadri-

lateral (4), and L, M, N, the intersections

of its three diagonals. In the triangle

AEF^ the transversal DB31 gives (2),

DF.BAME = DA.BE 31F,

and since the three fines AL, FB, ED,
pass through the common point C, we have by (5),

DF.BA.LE = DA.BE.LF.

Dividing one of these equations by the other, we have

ME
LE

MF
lf\

or
ME
MF

LE
LF

therefore, EF is divided harmonicafiy at M and L. Hence, if AM be

joined, the four rays AM, AE, AL, AF, will form a harmonic pencil ;
con-

sequently M, N, B, D, are also four harmonic points, or the diagonal BD is

divided harmonically at M and N. Finally, if FN be joined, the four rays

FM, FB, FN, FD, will form a harmonic pencil ; consequently L, N, C, A,

are four harmonic points, or the diagonal AC is divided harmonically at L
and N.
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POLE AND POLAR IN THE CIRCLE.

44. Definiticm. If through a fixed point Pin the plane of a circle (either

without the circle, Fig. 1, or within it, Fig. 2), we draw a secant and deter-

mine on this secant the point Q the harmonic conjugate of F with respect

i/o the points of intersection C and D, the locus of Q, as the secant turns

about P, is called the polar of the point F. and F is called the pole of this

locus, with respect to the circle.

Fig. 2.

PROPOSITION XL—THEOREM.

45. The polar of a given point with respect to a circle is a straight line

perpendicular to the diameter drawn through the given point.

Let P be the given point (Figs. 1 and 2), the centre of the circle, G
and D the points in which any secant drawn through P cuts the circumfer-

ence, Q the harmonic conjugate of P with respect to and D. Draw QN"
perpendicular to the diameter AB which passes through P. Draw DJSf

meeting the circumference in C\ Join CiV, DA, DB.
Since PNQ is a right angle, the circumference described upon l^Q as a

diameter passes through iV, and since CD is divided harmonically at P and

Q, the line KP bisects the angle CNC (III. 79 and 23) ; therefore the

arcs AC and AC^ are equal. Hence the line DA bisects the angle PDN,
and DB, perpendicular to DA, bisects the angle exterior to PDN\ there-

fore FN is divided harmonically at A and B (III. 79), or N is the har-

monic conjugate of P with respect to A and B. Consequently N is a fixed

point, and Q is always in the perpendicular to the diameter AB, erected at

A'
;
that is, QN is the polar of P.

46. Corollary I. Hence, to construct the polar of a given point P, with

respect to a given circle, find on the diameter^^ drawn through jPthe har-

monic conjugate N of F with resi)ect to A and B, and draw NQ perpen-

dicular to that diameter
;
then NQ is the polar of P.

47. Corollary II. To find the pole of a given straight line NQ, draw a

diameter AB perpendicular to the given line intersecting it in N, and on

30
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this diameter take P the harmonic conjugate of N with respect to A and

B
;
then P is the pole of NQ.

48. Corollary III. Since AB is divided harmonically at P and iV, and

OA = h AB, we have (40),

OA OP. OK

hence, t^he radius is a mean proportional between, the distances of the polar
and its"pole from the centre of the circle.

This principle may be used to determine the point N from P, or P from

N^ instead of the methods of (46) and (47).

49. Corollary IV. When the point P is without the circle, its polar is the

line TT^ joining the points of contact of the tangents drawn from P. For

the secant PCD turning about P approaches the tangent P2^ as its limit

(II. 28) ;
and at the limit, the points Cand D and hence also Q (which is

always between C and D) all coincide with T. Therefore T and T^ are

points of the polar.

50. Corollary V. The polar of a point on the circumference is the tangent

at that point. For, as the point P approaches the circumference, the point

N also approaches the circumference (since OP. ON = OA'^) ;
and when

OP becomes equal to OA, ON also becomes equal to OA.

PROPOSITION XII.—THEOREM.

51. 1st The polars of all the points of a straight line pass through the

pole of that line. 2d. 77ie poles of all the straight lines which pass through
a fixed point are situated on the polar of that point.

Let XFbe any straight line, P its pole with respect to the circle 0, an.l

N^ any point of the line. Drawing OPN, which is perpendicular to .Vi',

we have OP. ON = OA^ (48). Let PP' be drawn perpendicular to OiV^;

then, the similar triangles OPP^, ONN^, give

0P\ ON' = OP.ON= 0A\

therefore, PP' is the polar of N' (48). Hence, 1st, the polar of any point

A^^ of the line XY passes through the pole P of that line; 2d, the ]iole P
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of any straight line XY whicli passes tlirough tlie point N^ is situated on
the polar PP^ of that point.

52. Corollary. The "pole of (\ straight line is the intersection of the polar*

of any two of its points. The polar ofany point is the straight line joining
the poles of any two straight lines passing through that point.

t^l
PROPOSITION XIII.—THEOREM.

53. If through a fixed point P, in the plane of a circle^ any two secants

PCD, PC^Jy, are drawn, and their intersections with the circumference are

joined by chords CC\ DD', CIY, CD, the locus of the intersections, M
and N, of these chords, is the polar of the fixed point P.

PiS-2

For, let K and K^ be the points . in which CD and C^D^ intersect MN.
Then, considering the complete quadrilateral MCC^NDD^, the systems

PCKD, PC'K'D', are harmonic (43) ;
therefore ^ and K' are on the

polar of P (44) ;
that is, MN is the polar of P.

54. Corollary I. The secants NCD\ NC^D, being drawn through N,
the line PM is the polar of N\ and in like manner PN is the polar of M\
therefore, in any quadrilateral, CC^D^D, inscrihed. in a circle, the intersec-

tion P of the diagonals and the intersections 31 and Nof the opposite sides,

determine a tnangle MNP each vertex of ivhich is the pole of the opposite

side.

55. Corollary II. As the transversal PC^D^ approaches to PCD, the

secants MC, MD, approach to the tangents at C and D as their limits
;

therefore, at the limit, the tangents at C and D intersect on the polar of P.

Hence, if through a fixed point P in the plane of a circle any secant PCD
is drawn, and tangents CT and DT to the circle are drawn at the points of

intersection, the locus of the intersection T of these tangents is the polar of the

fixed point P.

56. Corollary III. From the last property it follows, that if we draw tan-

gent« to the circle at the vertices of the inscribed quadrilateral CC^DJy,
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the complete circumscribed quadrilateral thus formed will have for its diago-
nals the three indefinite sides of the triangle MNP. Hence, in any complete
quadrilateral circmnscribed about a circle, {he three diagonals f(irni a tri-

angle each vertex of which is the pole of the ojjposite side.

57. Corollary IV. Combining (54) and (56), we an-ive at the following
proposition: If at the vertices of an insaihed quadrilateral, tangents to the
circle are drawn forming a circumscribed quadrilateral, then, ]st, the interutr

diago'hals of the two quadrilaterals intersect in the same point and form a
harmonic pencil; 2d, the third diagonals of the completed quadrilaterals are
situated on the same straight line, and their extremities are four harmonic
points.

RECIPROCAL POLARS.

58. Definition. From (51) it fol-

lows that if the points M, iV, P, Q,
are the poles of the sides of a poly-

gon ABCD, then the points A, B,
C, D, are the poles of the sides of

the polygon MNPQ. Each of the

two polygons thus related is called

the reciprocal polar of the other,

with respect to the circle, which re-

ceives the name of auxiliai-y circle.

It will be observed that either of

the two reciprocal polars may be

derived from the other by either of

two processes. If the polygon ABCD is given, the polygon MNPQ
may be derived from it, 1st, by taking the poles M, N, P, Q, of the sides

of the given polygon as the vertices of the derived polj^gon, or 2d, the

polars MN, NP, P Q, QM of the vertices of the given polygon may be

taken. as the sides of the derived polj^gon. In like manner, if the polygon

MNPQ is given, the polygon ABCD may be derived from it by either of

these processes.

59. Method of reciprocal polars. Since the relation between two recip-

rocal polars is such that for each line of one figure there exists a correspond-

ing point in the other, and reciprocally, any theorem in relation to the line»

or points of one figure may be converted at once into a theorem in relation

to the points or lines of the other. This is called reciprocating the theorem.

The fecundity of this method is especially proved in its application to the

theory of curves which do not belong to elementary geometiy ;
but we can

give some simple illustrations of the nature of the method by applying it to

rectilinear figures.

The student will have no diflficulty in showing that the theorems which we
have placed against each other, in Proposition YIII., aie reciprocal theo-

rems. Thus, the reciprocal polar of an inscribed hexagon being the circum-

scribed hexagon formed by drawing tangents at the vertices of the first
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(49), (50), we can immediately infer Brianclion's Theorem (28) from Pas-

cal's Theorem (27); for, the diagonals joining opposite vertices of the

circumscribed hexagon will be the polars of the intersections of opposite

sides of the inscribed hexagon (56), and therefore pass through the pole of

the straight line in which these intersections lie (51 ). Similarly, the theorem

of Pascal may be directly inferred from that of Brianchon.

The three following propositions are of frequent use in deducing reciprocal

th«>orems.

PROPOSITION XIV.—THEOREM.

60. The angle contained by two straight lines is equal to the angle con-

tained by the straight lines joining their poles to the centre of the auxilicmj

circle.

For, the poles Pand Q of two straight lines

AB and CD are situated respectively on the

perpendiculars let fall from the centre of the

auxiliary circle upon the lines AB and CJD

(45).

PROPOSITION XV.—THEOREM.

61. The ratio of the distances of any two points from the centre of the

auxiUarij circle is equal to the ratio of the distances of each point from the

polar of the other. (Salmon's Theorem. )

Let F and Q be the points, AB and CD
their polars, PF the distance ofP from CD,
and QE the distance of Q from AB, and

the centre of the auxiliary circle. Draw
PM and OQJSf, which will be parallel to

^£'and /^/'^respectively; draw /*£r perpen-

dicular to OiV^and ^^ perpendicular to OM.
IP ^ is the radius of the circle, we have

R' = OF. 0M= OQ. Oi\r(48), whence

OP
OQ

ON
om'

The similar triangles POH and QOK give

30

OP
OQ

OH
OK
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tberefbre (III. 12),

OP^ 0N+ OH^HN^ PF
OQ 0M-{- OK KM QE

PROPOSITION XVI.—THEOREM.

62. The anharmonic ratio of four jioints in a straight line is equal to thai

of the pencil formed hy the four polars of these points.

For, the pencil formed by joining the four points to the centre of the

circle has the same angles as the pencil formed by their polars (60), and
these pencils have equal anharmonic ratios (13).

PROPOSITION XVII.—PROBLEM.

63. It is a Imown theorem that the three perpendiculars from the vertices

of a triangle to the opposite sides meet in a point ; it is required to determine

its reciprocal theorem hy the method of reciprocal polars.

Let the perpendiculars from the

angles upon the opposite sides of the

triangle ABC meet inP Let A'B' 6"
be the reciprocal polar triangle oi'ABO,
A^ being the pole of J5C, B^ the pole

of AC, and C the pole of AB. The

pole of the perpendicular J.P is a point

L on the line B'C\ since B' C^ is the

polar of ^ (51) ;
the pole of BP is a

point Jf on A^C\ and the pole of CP
is a point N on A'B\ The direct

theorem being that the three lines AP^
BP, CP, meet in a point, the recipro- \

cal theorem will be that their poles X,

M, N, are in a straight line, the polar of P] but we must express the

reciprocal theorem in relation to the triangle A^B'C\ Now joining OL,
OM, ON, and OA', OB', 0C\ the angle A' OL is aright angle, by (6U) ;

and 80 also B' 031 and C'ON are right angles. Hence, the reciprocal

theorem may be expressed as follows :

If from any point in the plane of a triangle A'B'C, straight lines

OA', OB', OC, are draivn to its vertices, the lines OL, OM^ ON, drawn

at perpendicular respectively to the lines OA', OB', OC, meet the sides

respectively opposite to the corresponding vertices in three points, L, M, N,
which are in a straight line.
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RADICAL AXIS OF TWO CIRCLES.

64. Definition. If through a point /*, in the plane of a circle, a straight

line is drawn cutting the circumference in the points A and B, the product
of the segments into which the chord AB is divided at /*, namely, the

product FA.PB, is constant; that is, independent of the direction of (he

secant (III. 61 ). This constant product,

depending upon the position of the point
^

P with respect to the circle, is called the

power of the point with respect to the

circle.

If we consider especially the secant

PCD, drawn through P and the centre

of the circle, and designate the dis-

tance PO by d and the radius of the

circle by ?•, we have, when the point P
is without the circle, PC = d— r, PD = d -{- r, and hence the power of

the point is expressed by the product {d
—

r) [d + r) or d^ — r^.

If the point P is within the circle, the absolute values of PC and PD
are r — d and r -{- d; but the segments PC and 2*D lying in opposite

directions with respect to P, are conceived to have opi)Osite algebraic signs,

so that the product PC.PD must be negative ;
hence the power of the point

P is expressed by the product
—

(r
—

d) [r -{- d) =— (r^
—

d^) '=d''^ — r^.

Thus, in all cases, whether the point is without or within the circle., its power
is expressed by the square of its distance from the centre diminished by the

square of the radius.

65. When the point P is without the circle, its power is equal to the square

of the tangent to the circle drawn from that point.

When the point is on the circumference, its power is zero.

PROPOSITION XVIIL—THEOREM.

66. The locus of all the points whose powers with respect to two given
circles are equal, is a straight line perpendicular to the line joining the centra

of the circles, and dividing this line so that the difference of the squares of
the two segments is equal to the difference of the squares of the radii.

liCt and 0^ be the centres of the two circles whose radii are r and r^
;

let P be any point whose distances from and 0^ are d and d'', then the

powers of P with respect to the two circles are d^ — r^and d^^ — r^^, and
these being equal, by hypothesis, we have d^ — r^ = <^^2 — ^2^ whence
d'^ — d'^ ^r^ —r^^. Now, drawing PX perpendicular to 0\ we have
from the right triangles POX, PO'X,

OT' ~WX'' PO' PO'^ =d^ —d'^^r^—r"'
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therefore, the quantity OX^ — O^X^, being equal Xor^ -~r^^, is constant,
a»id X is a fixed point. Hence the point P is always in the perpendicular

Fig. 1.

io 0(y erected at the fixed point X; that is, this perpendicular is the locua

of P.

67. Definition. The locus, PX^ of the points whose powers with respect to

two given circles and 0^ are equal, is called the radical axis of the two
circles.

68. Corollary I. If the two circles have no point in common, the radical

axis does not intersect either of them. Fig. 1.

If the circles intersect, the power of each of the points of intersection is

equal to zero
; therefore, each of these points is a point in the radical axis

;

hence, in the case of two intersecting circles^ their common chord is their

radical axis. Fig. 2.

If the circles touch each other, either externally or internally, their common
tangent at the point of contact is their radical axis.

69. Corollary II. From (65) and (67) it follows that the tangents PT,
PT", drawn to the two circles from any point of the radical axis witliout the

circles^ are equal.

Hence, if SS^ is a common tangent to the two circles, intersecting the

radical axis in N, we have NS = NS\ Therefore, the radical axis can be

constructed by joining the middle points of any two common tangents.

PROPOSITION XIX.—THEOREM.

70. The radical axes of « system of three circles, taJcen two and two^ meet

in a point.

Let 0, 0^, 0^^, be the given circles. Designate the radical axis of 0^

and 0'' by X, that of and 0'' by X'\ and that of and 0' by X'\
The three centres not being in the same straight line, the axes X and X^,

perpendicular to the intersecting Knes 00^^ and 0^^ 0\ will meet in a
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certain point V. This point will have equal powers with respect to 0^ and

0'^, and with respect to and 0'^, consequently it will also have equal

ij-//

JT"

powers with respect to and (9^, and is therefore a point in their radical

axis A'^^''.
-

71. Definition. The point in which the radical axes of a system of three

circles meet is called the radical centre of the system.

If the three centres of the circles are in a straight hne, the three axes are

parallel, and the radical centre is at an infinite distance.

72. Definition. Two circles and 0^ intersect

orthogonally^ that is, at right angles^ when their

tangents at the point of intersection are at right

angles, or, which is the same thing, when their

radii, OT^ 0^2] drawn to the common point, are

at right angles.

Denoting 0^ by d, and the radii by r and r^,

we have in the right triangle 0T0\ d^ — r^ = r^^
; hence, when two cir-

cles info'sect orthogonally, the square of the radius of either is equal to the

power of its centre with respect to the other circle.

PROPOSITION XX.—THEOREM.

73. The radical axis of two given circles is the locus of the centres jf a

system of circles which intersect both the given cirdes orthogonally; and the

line joining the centres of the given circles is the common radical axis of all

*he circles of that system.

Let P be the centre of any circle which cuts the two given circles and

0^ orthogonally; then, by (72), the powers of the point P with respect to

the two circles are each equal to the square of the radius of the circle P,
that is, equal to each other

; therefore, the centre P is in the radical axis of

the two given circles. .

Again, let P and Q be the centres of any two of the circles which cut both
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and 0' orthogonally. Since the circle cuts the two circles P and Q
orthogonally, its centre lies in the radical axis of P and ^; and for the

Fig. L Fig. 2.

same reas( n the centre 0^ lies in the radical axis ofP and Q\ therefore, the

Hne 0^ is that radical axis, and is consequently the common radical axis

of all the circles which cut both and 0^ orthogonally.

74. Scholium. When the given circles intersect, Fig. 1, the radius of any
^ne of the circles P, Q, etc.

,
is evidently less than the distance of its centre

from 0\ and therefore no one of these circles cuts 0\
But when the circles have no point in common, Fig. 2 (whether one circle

is wholly without the other, as in Fig. 2, or wholly within the other), all the

circles, P, Q^ etc., cut the line 00^\ and since 00^ is their common radical

axis, it is their common chord
; therefore, these circles all pass through two

fixed points L and U in the line 00^.

Also, since 03" is a tangent to the circle P, we have OL. OU =^ OT^ —

~UW
; therefore, the diameter ^jB is divided harmonically at L and U (41).

For a like reason. A'B^ is divided harmonically at L and U.

CENTRES OF SIMILITUDE OF TWO CIRCLES.

75. Definition, If the straight line joining the centres of two circles is

divided externally and internally in the ratio of the corresponding radii, the

points of section are called, respectively, the external and tJie internalcentres

of similitude of the two circles.

PROPOSITION XXI.—THEOREM.

76. Jf in two circles two parallel radii are drawn, one in each circle, the

straight line joining their extremities intersects the line of centres in the exter-

nal centre of similitude if the parallel radii are in the same direction, and in

the internal centre of similitude if these radii are in opposite directions.
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For, OA and 0^A^ being any two parallel radii in the same direction, and

the line A^A intersecting the line of centres in /S^, the similar triangles

SOA, SO'A', give

SO : SO' = OA : O'A',

and therefore, by the definition (75), S is the external centre of similitude.

Also, OA and O'^Ai being parallel radii in opposite directions, and the

line AAi intersecting the line of centres in T, the similar triangles TOA^
TO'A I, give

TO : T0'= OA: O'A,,

and therefore T is the internal centre of similitude.

77. Corollary I. It is easily shown that, conversely, if any transversal is

drawn through a centre of similitude^ the radii drawn to the points in which

it cuts the circumferences will he parallel^ two and two.

Of the four points in which the transversal cuts the circumferences, two

points at the extremities of parallel radii, as A and A\ or B and B\ are

called homologous points; and two points at the extremities of non-parallel

radii, as A and B', or B and A', are called anti-homologous points.

78. Corollary 11. Hence, if a transversal drawn through a centre of

similitude is a tangent to one of the circles it is also a tangent to the other
;

so that when one circle is wholly without the other., the centres of similitude

are the intersections of the pairs of external and internal common tangents^

re^ectively.

Fig. 1.

If the circles touch each other externally (Fig. 1), the point of contact is
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their internal centre of similitude. If they touch internally (Fig. 2),

point of contact is their external centre of similitude.

Fig. 8.

If one circle is wholly within the other (Fig. 3),

both (fehlres of similitude lie within both circles.

79. Corollary III. The distances (as SA and SA\ or TA and TA^, etxj.)

of a centre of similitude from two homologous points are to each other as

the radii of the circles.

80. Corollary IV. Since we have

SO : SO' := TO : TO',

the line 00^ is divided harmonically at S and T; that is, the centres o/

two circles and their two centres of similitude are four harmonic points.

PltOPOSITION XXII.—THEOREM.

81. The product of the distances of a centre of similitude of two circles

from two anti-homologous points is constant

Let a transversal through the centre of similitude >S intersect the circum-

ferences and 0' in the homologous points A, A\ and i^, B\ The line

of centres intersects the circumferences in the homologous points M, M\
and N, N\ respectively. Hence, by (79),

ON
O'N'

SA
SA'

SB
SB'

SM
SM'

SN .

SN''
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irom which equations we deduce

SA. SB' - SA\ SB =^,X SA\ SB\

But >S^^'. 6B' = SM\ SN' (lU. 58) ;
therefore we have

SA. SB' = SA'. SB = SM. SN' = SM'. SN.

The products SM. SN', SM'. SN, are constant
; therefore, the products

SA.SB', SA'.SB, are constant.

82. Corollary I. Hence, if A and B' are anti-homologous points of one

secant drawn through S, and b and a' are anti-homologous points of a

second secant, we have

SA.SB'= Sb.Sa';

therefore, the fcmr points A, B', a', b, lie on the circumference of a

cirde 0".

83. Corollary II. The chords Ab, a'B', joining pairs of anti-homologous

points in the two given circles, may be called anti-homologous chords.

The chord Ab is the radical axis of the circles and 0" ; the chord a'B'

is the radical axis of the circles 0' and 0" (68) ;
and these intersect the

radical axis PX o? the circles and 0' in the same point P (70). Hence,

pairs of anti-homologous chords in two circles intersect on the radical axis

of the circles.

84. Corollary III. K the secant Sa' approaches indefinitely to SA', the

anti-homologous chords a'A', bB, approach indefinitely to the tangents at

A' and B. Hence, at the limit, we infer that the tangents at two anti-

homologous points in two circles intersect on the radical axis.

PROPOSITION XXIII.—THEOREM.

85. Three circles being given, and considered when taken two and two cw

f-orming three pairs of circles; then, 1st. The straight lines joining the

centre of each circle and the internal centre of similitude of the other two

meet in a point; 2d. The external centres of similitude of the three pairs

of circles are in a straight line ; 3d. The external centre of similitude of

any pair and the internal centres of similitude of the other two pairs are

in a straight line.

Let 0, 0', 0", be the given circles
;
S and T the external and internal

centres of simUitude of 0' and 0"
; S' and T' those of and 0"

; S"
and T" those of and 0'. Let R, R' and R" denote the radii of the

three circles.

31
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•^s

1st By the definition (75) we haye

T''0 R TO' R'
T''(y R' TO'r R''

tihe product of wMcli equations gives

T'' 0. TO'. T' 0'' R.R'.R''

T'O R '

1,

or

T'' 0^. T0'\ T' R\R'\R

T'' 0. T0\ T' O'' = T'' a. TO''. T' ;

therefore, in the triangle OO'O" the three straight lines OT, 0'T\
0"T", meet in a point (6).

2d. By the definition we also have

S"0 ^R Sa_^R^ S'O" ^R'\
S"0' R'' SO" R"' S'O i?

'

whence, by mnltiplying these equations together,

S" 0. SO'. S' 0" = S" 0'. SO". S'O;
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therefore, the points S, S% S^^, being in the ades (produced) of the tri-

angle 00' 0^^, are in a straight line (3).

3d. The product of the equations

T''0 R
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same kind (Fig. 1), and tlirough the internal centre of similitude T, when
the contacts are of a different kind (Fig. 2).

Fig. 2.
• ^

88. Corollary. If two variable circles C and c touch two Jixed circles O
and 0^, their radical axis passes through the external centre of similitude

of thefixed circles when the contacts of each of the two circles are of the same

kind, and through their internal centre of similitude when these contacts are

of different kinds.

For, the four points of contact A, B% V, a, (Fig. 1), lie on the circumfer-

ence of a circle (82) which may be designated as the circle Q. The chord

AB^ is the radical axis of the circle Q and the circle C
;
the chord ab^ is

the radical axis of the circle Q and the circle c
;
and these two axes meet the

radical axis of the circles C and c in the same point (70), that is, in the

point S (87). The proof is similar when the contacts are of different, kinds.

PROPOSITION XXV.—THEOREM.

89. The radical axis of two circles which touch three given circles is an
axis of similitude of the three given circles.

Let the circles 31 and N (figure on next page) touch the three given

circles 0, 0^, 0^^, the contacts of each of the two cu'cles being all of the

same kind, that is, all internal in the case of the circle 31, and all external

in the case of the circle H. Let *S', *S^^, S^^, be the three external centres

of similitude of the given circles taken in pairs, so that SS^S'''' is their

external axis of similitude (86).

Since the circles 31 and N touch the two given circles 0^ and 0^^, and,

the contacts are of the same kind in each case, the radical axis of 31 and A''

passes through >S' (88). For the same reason, it passes through S^ and

through S^\ Therefore SS^S'^ is the radical axis of the circles 31 and N.

In the same manner it may be shown that if each of the two circles 31

and N has like contacts with the pair of circles 0^ and 0^^, but unlike

contacts with the other two pairs (that is, if 31 touches both 0^ and 0^^

internally and externally, and N touches both 0^ and 0^^ externally and

internally), the radical axis of 31 and iV is the internal axis of similitude

which passes through the external centre of similitude, S^ of the circles (/

and 0''.
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.AS'

90. Scholium. There are in general eight different circles which can be

drawn tangent to three given circles, and these eight circles exist in pairs

the four radical axes of which are the four axes of similitude of the three

given circles.

91. Corollary. I. When two circles M and N touch three given circles

0, 0^, 0^^, the three chords of contact mn, mfr/, m/^nf^ meet in a point

V^ which is a centre of similitude of the two circles M and Kand the radical

centre of the three given circles 0, 0\ 0^\

For, since the circle touches the circles M and iV", and the contacts are

of different kinds, the chord of contact mn passes through the internal centre
.31 »
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of similitude V of M and N (87) ;
and for the same reason the chords

m^?/ and m^^'n^^ pass through V.

Also, since the two circles and 0^ touch the two circles M and iV, and
the contacts are of diiferent kinds, the radical axis of and 0' passes

through the internal centre of similitude, F, of M and i\^ (88). For the
same reason, the radical axis of 0^ and 0^^, and the radical axis of 0^^ and

(y, pa^ through V. Therefore, V is the radical centre of the three circles

(9, 0^ 0'\
92. Corollary II. 7'Ae pole of the radical axis of the circles M and N,

with reference to any one of the three given circles, lies in the chord of contact

of that circle. Thus, in the case represented in the figure, the pole of

SS^S^' with respect to the circle is a point F lying in the chord of

contact run.

For, let R hi the point of meeting of the tangents to the circle drawn
at m and n. These tangents are equal and touch the circles M and N\
therefore, the point R is on the radical axis of M and iV, that is, upon the

line SS^S^^. But mn is the polar of the point R with respect to the chcle

(49), and therefore the pole of SS^S^^ with respect to the cii'cle is a

point P on the chord of contact mn (51).

1 ROPOSITION XXVL—PROBLEM.

93. To desaihe a circle tangent to three given circles.

As remarked in (90), there are in general eight solutions of this problem.

The solutions may all be brought under two cases: viz.—
1st. A pair of circles can be found one of which will touch all the given

circles internally, and the other will touch all the given circles externally.

2d. A pair of circles can be found one of which will touch the first of the

given circles internally and the other two externally, and the other will touch

the first externally and the other two internally.

By taking each of the given circles successively as the "first," this second

case gives six circles, thus making, in all, the eight solutions.

The principles developed in the preceding proposition furnish the follow-

ing simple and elegant solution of the problem, first given by Gergonne.*

Let 0, 0^ 0^' (preceding figure) be the three given circles. Let SS^S^^

be their external axis of similitude and V their radical centre. Find the

poles /*, P\ P'\ of SS' S^' with, respect to each of the given circles, and

draw VF, VF\ VF", intersecting the three circles in the points m and «,

m' and n\ m" and n"
, respectively. The circumference described through

the three points m, m^ ?>i ', will touch the three given circles internally;

and the circumference described through the three points w, ?t^, n''^ will

touch the tlnee given circles externally.

By substituting successively each internal axis of similitude for SS^S^

vve obtain the other three i)airs of circles.

y/

Annahs de MaifUmatiques, t. IV
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94. Scholium. This general solution embraces the solution of ten distinct

problems, special cases of the general problem, in which one or more of the

given circles may be reduced to points (that is, circles of infinitely small

radius) or to straight lines (that is, circles of infinitely great radius).

EXERCISES,
1. If X and U are two fixed straight lines and a fixed point, and if

through any two straight lines OAA\ OBB'^ are drawn cutting iy in ^
and B and U in A^ and i?^, find the locus of the intersection of the fines

AB' and A'B (43).

2. If the three sides of a triangle pass through three fixed points which

are in a straight line, and two vertices of the triangle move on two fixed

straight lines, the third vertex moves on a straight line which passes through
the intersection of the two fixed lines (25).

3. If the three vertices of a triangle move on three fixed straight lines

which meet in a point, and two sides of the triangle pass through two fixed

points, the third side passes through a fixed point which is in a straight line

with the other two (24).

4. If Q is any point in the polar of a point P with respect to a given

circle, the circle described upon FQ as a diameter cuts the given circle

orthogonally (48).

5. Let the polars of any point P, with respect to two given circles and

0^, intersect in Q. Then, the circle described upon PQ as a diameter cuts

both the given circles orthogonally, and its centre is on the radical axis of

the given circles.

6. Describe a circumference which shall pass through a given point and

cut two given circles orthogonally.

7. The polars of any point in the radical axis of two circles intersect on

that axis.

8. The poles of the radical axis of two circles taken with respect to each

circle, and the two centres of similitude of the circles, are four harmonic

points.

9. The radical axis of two circles is equally distant from the two polars
of either centre of similitude.

10. If the sides AB^ BC, CD^ DA, of a quadrilateral circumscribed

about a circle whose centre is touch the circumference at the points

F, F, G, II, respectively, and if the chords HE and GF meet in P, the

line PO is perpendicular to the diagonal A C.

11. If a quadrilateral is divided into two other quadrilaterals by any
secant, the intersections of the diagonals in the three quadrilaterals are in a

straight line.
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] 2. The anharmonic ratio of four points on the circumference of a circle is

equal to the ratio of the products of the opposite sides of the quadrilateral

determined by these points.

13. If a series of circles ha\ing their centres in a given straight line cut a

given circle orthogonally, they have a common radical axis, which is the

perpendicular let fall from the centre of the given circle upon the given

straight line.

14. The three circles described upon the diagonals of a complete quadri-

lateral as diameters have a common radical axis and cut orthogonally the

circle described about the triangle formed by the three diagonals.

15. Three circles Oi, O2, O3, being given, any fourth circle Q is described

and the radical axes of Q and each of the given circles are drawn forming a

triangle ABC. Another circle Q^ being drawn, a second triangle A'B'C^
is formed in the same manner. Prove that the triangles ABC 2i\A A'B'C
are homological (24), (70).

16. If two triangles are reciprocal polars with respect to a circle, they are

homological (51), (62), (20)!

17. K from the vertices of a triangle ABC perpendiculars J.a, ^6, Cc,

are let fall upon the opposite sides, the three pairs of sides BC and fee,

A C and ac, AB and afe, intersect on the radical axis of the circles circum-

scribed about the triangles ABC and ahe (64, 67).

18. Any common tangent to two circles is divided harmonically by any
circle which has a common radical axis with the two given circles (41).

19. If the sides of a quadrilateral ABCD inscribed in a circle are pro-

duced to meet in E and F^ forming a complete quadrilateral, the square of

the third diagonal EF is equal to the sum of the squares of the tangents

from E and F\ and the tangent from the middle point of EF\& equal to

one-half of EF.
20. Given the three diagonals of a complete quadrilateral inscribed in a

given circle, it is required to construct the quadrilateral (4, 48, 49, 57).

21. Given three circles, it is required to describe a fourth such that the

three radical axes of this circle, combined successively with each of the

given ones, shall pass through three given points (Exercises 3 and 15).
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