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ELEMENTARY DYNAMICS.

CHAPTER I.

ON THE GEOMETRY OF A MOVING POINT, AND THE FUNDA-
MENTAL LAWS AND PRINCIPLES OF DYNAMICS.

1. A POINT is said to be in motion when it changes its

position relative to surrounding objects.

From this definition it will be seen that all cases of

motion which will come under our consideration are essen-

tially relative ; in fact we have no means of measuring
absolute motion or of determining whether any given point
is absolutely at rest in space, or not, and it may even be
doubted whether the human mind is capable of forming
a distinct conception of absolute motion.

We shall not attempt to give a definition of space:
our idea of it must be considered a primary conceiDtion.

Time is defined by the metaphysician as
" the suc-

cessioii of ideas ;" the physicist treats time, like space, as a

primary conception.

Equal times are generally defined as those intervals

during which the earth turns through equal angles relative

to the fixed stars, and any duration of time may then be

measured by the angle turned through by the earth during
the interval. The most obvious unit of time is therefore the

sidereal day, or the period during which the earth makes
a complete rotation on its axis relative to the fixed stars.

The unit generally adopted is the second of mean solar time.

That our fundamental conception of the measurement
of time is not, however, based upon the rotation of the earth

G. D. 1



2 VELOCITY.

is apparent from the fact that we sometimes ask whether the

length of the day has changed during the last two or three

thousand years. Were the definition of equal times to which

we have just alluded generally accepted this question would

be absurd, since all days would be equal by definition. The
test of equality between two intervals of time will be dis-

cussed in connection with the first law of motion, meanwhile
the definition above given will be found sufficient for our

purpose. !

2. The velocity of a point is the rate at which it is

changing its position relative to surrounding objects ;
in

other words, the degree of speed with which it is moving.

A point is moving with imifoimi velocity when it passes
over equal distances in equal intervals of time : under other

circumstances its velocity is said to be variable.

3. If we wish to convey the idea of speed in speaking
of the motion of anything we say that it passed over a certain

distance (say 50 miles) in a certain time (say an hour) ;

while, if we wish to convey an idea of the slowness of the

motion of anything we say that it took a certain time (say
an hour) to traverse a certain distance (say two miles).

Now the velocity of a point, being defined as the degree
of speed with which it is moving, must always be expressed

according to the former method, viz. :
—as so many units of

length per unit of time.

4. The complete representation of any physical quantity
consists of two factors, one of which is the unit in terms of

which the quantity is measured and must be of the same
kind as the quantity itself, while the other is a pure number

indicating the ratio of the quantity to this unit and called

its measure. Velocity like all other quantities must be

measured by its ratio to a unit of its own kind, that is, to a

certain velocity selected as the standard, and the magnitude
of this unit is all that is in our power to select. The velocity
of a point which, moving uniformly, passes over the unit of

length in the unit of time is taken as the unit of velocity,
and the velocity of any other point is measured by its ratio

to this unit. In this case the measure of the velocity of
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a point which is moving uniformly will be equal to the
number of units of length traversed by it in the unit of

time.

5. In order to measure the velocity of a point which is

moving uniformly \ve have but to measure the space tra-

versed in a given time, and dividing this distance by the
measure of the time we have the space traversed during each
second or, in other words, the velocity of the point.

6. When the velocity of a point changes continuously
Ave may speak of its value at some particular instant, but a

little care is required in order to determine exactly what is

meant by the measure of a variable velocity at any particular
instant. If the velocity be increasing then during the

second succeeding the instant in question the point will

move over a greater space than if the velocity were not on
the increase but remained the same as at the commencement
of the second. On the other hand, during the preceding
second the space traversed is less than if the velocity were
constant throughout the second and the same as at the end
of it. We shall obtain a better result if we obsen^'e the space
traversed during the second which contains the instant in

question and half of wdiich precedes while tlie other half

succeeds the instant, but this will not give an accurate result

unless the velocit}^ changes uniformly. If how^ever we take

a very short interval including the proposed instant the

mean or average velocity during that interval w^ill be ob-

tained by dividing the measure of the distance traversed by
that of the interval. Now if the interval taken be exceed-

ingly short the velocity has no opportunity of changing
sensibly during it, and the mean velocity during the interval

cannot sensibly differ from the velocity at an}'' instant con-

tained therein. Hence by making the interval sufficiently
short we can obtain a result which differs by as little as we

please from the velocity at the proposed instant. If we
could make the interval indefinitely short and still perform
the above operation we should realise our conception of the

velocity of the point at a particular instant.

7. It is usual to state that the velocit}'' of a point at a

particular instant is measured when variable by the space

1—2



4 MEASURE OF VELOCITY.

which would be passed over in the unit of time supposing
the velocity constant during the unit and the same as at the

proposed instant. The words in Italics take us back to the

original point, so that we appear to gain very little by the

definition.

8. If the unit of length be increased or decreased,

the unit of time remaining the same, the space passed over

in the unit of time by a point moving with unit velocity is

increased or decreased, and therefore* the unit of velocity

is changed, in that same ratio. If, on the other hand, the

unit of time be increased or decreased, the unit of length

remaining the same, the time required by a point moving
with unit velocity to pass over the unit of length is in-

creased or decreased accordingly. Now the longer the time

occupied by a point in moving over the same distance, the

less must be its velocity, and the shorter the time the

greater the velocity. Hence the unit of velocity must vary

inversely as the unit of time, if the unit of length remain

constant. Also we have just shewn that the unit of velocity
varies directly as the unit of length when the unit of time

is kept constant. Therefore, when all are allowed to vary

together, the unit of velocity will vary directly as the

unit of length, and inversely as the vmit of time. (See
Todhunter's Algebra, Art. 425.)

9. As above stated the mathematical expression for any

physical quantity always consists of two factors, one being
the unit of the same kind as the thing considered, the other

representing the number of such units in the quantity con-

sidered, and constituting the numerical measure of such

quantity. The complete representation of a physical quantity
in mathematical language must therefore consist of two sym-
bols, representing these two factors respectively. The unit is

sometimes represented by a capital letter placed in square
brackets, e.g. the unit of time thus, [T]. Now the equations
used in almost all mathematical investigations are equations
between the numerical measures of quantities, and not

between the quamtities themselves
;
the symbol representing

the unit is therefore omitted, since the unit itself does not

enter into the equations, and in consequence, the habit of
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representing only the numerical measures of quantities has

become so general, that even when the quantities themselves

are considered, but one symbol is generally used, the cor-

responding unit being understood.

Now any quantity being represented by the product of

the unit of the same kind, and the number of such units

contained in the quantity considered, it is obvious that if

the unit change, the quantity measured remaining the

same, the number or units contained in it will be changed
in the inverse ratio of the unit. Hence the numerical

measure of any given quantity varies inversely as the unit

in terms of which it is measured. For example, a stick

72
whose length is 72 inches will measure

r^ ,
or G, feet, and

^ ,
or 2, yards.

10. Applying the principles of the preceding article to

the measurement of velocity, we see that the numerical

measure of any velocity will vary inversely as the unit of

velocity, and it has been shewn that the unit of velocity

varies directly as the unit of length and inversely as the

unit of time. Hence the numerical measure of a velocity

varies inversely as the unit of length and directly as the

unit of time. Thus, a velocity of 10,560 feet per minute is

equivalent to a velocity of 2 miles per minute, or of 120

miles per hour, or of 176 feet per second. Other examples
of the change of units will be found at the end of this

chapter.

The British standard unit of length is the imperial yard,
which is defined to be the distance between the centres of

the lines engraved on two gold plugs in a bronze bar kept in

the Exchequer chambers, and known as the Imperial standard

yard, the temperature of the bar being 62" Fahrenheit. The
unit generally adopted by engineers is one-third of this dis-

tance, and is called a foot. As before stated, the unit of

time generally adopted is the second of mean solar time.

11. If distances measured in one direction along a line

be considered positive, it is usual to consider distances
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measured in the opposite direction as negative. Thus if

distances measured from A towards B be reckoned positive,

C A B

those measured from B towards A or from A towards C
will be negative. The same convention is extended to

velocities. If a point move along a line in the direction

in which distances are reckoned positive, its velocity is

considered positive, but if it move in the opposite direction

its velocity is considered negative. Thus, if a point move
from A to B, it increases its distance from A, measured in

the positive direction, and its velocity is accordingly positive ;

but if it move from B towards A it diminishes its distance

from A, and its velocity is considered negative. Again, if

the jooint move from A towards G, though it increases its

distance from A considered numerically, yet such distance

being negative is decreased algebraically, and the velocity of

the point is accordingly reckoned negative. In a similar

way it will be seen that the velocity of a point moving from

G towards A will be positive. This convention being

adopted, the velocity of a point which continues to move in

the same direction will not change sign when the point

passes through A. This is, of course, as it should be, since

there is no more reason why the velocity of a point should

change sign when the point passes through A than at any
other point of its path.

12. Acceleration is the rate of change of velocity.

It is said to be uniform when equal increments of velocity
are generated in equal intervals of time. If this be not the

case the acceleration is variable.

It is measured, when uniform, by the velocity generated in

a unit of time; when variable, it is measured, at any instant,

"by the velocity which would be generated in a unit of time,

were the acceleration to remain constant during that unit,

and the same as at the proposed instant." All that lias been

said respecting variable velocity applies to the measurement

of variable accelerations.

In order that the above may furnish a proper measure of

acceleration, it will be seen that the unit of acceleration
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must be that of a point whose velocity is increased by the

unit of velocity in the unit of time. If the unit of length

vary, the unit of time remaining the same, it has been shewn
that the unit of velocity will vary in the same ratio; hence,
the unit of acceleration will also vary in the same ratio, and
therefore when the unit of time remains constant, the unit of

acceleration varies directly as the unit of length.

13. Next suppose the unit of length to remain constant,
but the unit of time to vary. Then w^e have seen that the

unit of velocity varies inversely as the unit of time. Now if

the unit of acceleration always allowed the same time for the

generation of the unit of velocity, the unit of acceleration

would then vary directly as the unit of velocity, that is, in-

versely as the unit of time. But the time allowed for the

generation of the unit of velocity does not remain constant;
it is in fact the unit of time, and therefore varies as that unit

varies. Now if the time be diminished in which any given

velocity is generated the acceleration must be proportion-

ately increased; and if the time be increased, the acceleration

must be proportionately diminished. Hence, if the unit of

velocity could be kept constant, the unit of acceleration

would vary inversely as the unit of time, simply because the

time during which the unit of velocity must be generated is

changed. But it has been shewn that if this latter were kept
constant, the unit of acceleration would vary inversely as the

unit of time, solely on account of the change in the unit of

velocity. Hence, taking both reasons into account, when the

unit of length remains constant, the unit of acceleration must

vary inversely as the square of the unit of time. Also it has

been shewn that the unit of acceleration varies directly as

the unit of lenoth when the unit of time remains constant.o
Therefore, when all three are allowed to vary together, the

unit of acceleration must vary directly as the unit of length,
and inversely as the square of the unit of time.

14. The numerical measure of any acceleration varies

inversely as the unit of acceleration. Therefore the numeri-
cal measure of a given acceleration varies inversely as the
unit of length and directly as the square of the unit of

time.
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The above reasoning will be rendered much clearer by
the consideration of an example.

Suppose a certain acceleration to he represented hy 32
when a second and a foot are the units of time and length

respectively ; tuhat will be the measure of the same accelera-

tion when a minute and a yard are units 1

With the acceleration

in 1" there is generated a velocity per \" of 32 feet
;

.-. „ \" „ „ „ „ 60" „ 32x60 feet;

.-. „ 60" „ „ ,, „ 60" „ 32x60' feet.

But 32 X 60^ feet are equivalent to 38,400 yards. Hence
with the given acceleration in one minute there is generated
a velocity of 38,400 yards per minute, and therefore when a

minute and a yard are the units of time and length respec-

tively the acceleration will be represented numerically by
38,400.

15. An acceleration is reckoned positive when the velo-

city of the moving point tends to increase algebraically; if

this velocity tend to diminish algebraically the acceleration

is considered negative. Thus an acceleration is considered

positive if with it a positive velocity increase numerically or

a negative velocity decrease numerically; while an accelera-

tion with which a positive velocity decreases or a negative

velocity increases numerically is considered negative. An
acceleration with which the numerical measure of a velocity
tends to decrease is frequently called a retardation.

16. A velocity is completely known if we know its mag-
nitude and direction. Now a straight line can be drawn in

any direction and of any length; if then a straight line be
drawn in the direction in which a point is moving and of

such length as to contain as many units of length as there

are units of velocity in the velocity of the point, such a

straight line will represent in every respect this velocity.

Similarly an acceleration is completely known if we know
its magnitude and the direction of the velocity generated.
An acceleration may therefore be represented in every respect

by a straight line drawn in the direction of the velocity gene-
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rated, and containing as many units of length as there are

units of acceleration in the acceleration in question. More-

over, since an acceleration is measured by the number of

units of velocity generated in the unit of time, the straight
line which represents an acceleration in magnitude and direc-

tion will also completely represent the velocity generated in

the unit of time to which the acceleration corresponds.

17. Suppose a point to be moving with two independent
velocities in any directions

;
then at any instant the point

must be moving in some definite direction and with some
definite velocity; this velocity must therefore be equivalent
to the two independent velocities, and is called their re-

sultant
;

the independent velocities themselves, considered

with reference to their resultant, are called components.
The same reasoning must apply to any number of inde-

pendent velocities with which a point may be moving, and
which must therefore be equivalent to a single resultant.

Let a point be supposed to move with two independent
velocities, and let it be required to find the actual or re-

sultant velocity of the point. For example, the point may
move with a given velocity along a straight tube, while the

tube, always remaining parallel to its original direction,
slides with a given velocity and in a given direction along a
fixed plane. The problem will then be to determine the

velocity of the point and the direction of its motion relative

to the fixed plane. The two independent velocities in this

case are the velocity of the point along the tube, and the

velocity of the tube relative to the fixed plane.

18. If the two velocities be in the same straight line it

is obvious that the resultant velocity is the algebraical sum
of the two, velocities in one direction being considered posi-
tive and those in the opposite direction negative ;

and

similarly the resultant of any number of independent
velocities in the same straight line is the algebraical sum
of the component velocities.

If the independent velocities be not in the same straight
line their resultant must be found by help of the following

proposition, known as the ''parallelogram of velocities."
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Prop. If a point he moving with two independent velocities

represented in magnitude and direction hy two straight lines

drawn from a point, the resultant velocity will he represented
in magnitude and direction hy the diagonal, drawn from that

point, of the parallelogram constructed upon these two straight
lines as adjacent sides.

Let AB, AG represent in magnitude and direction the

velocities, which we denote by u, v respectively. Then AB,

AG denote the spaces passed over in the unit of time by
points moving with the velocities u, v respectively. Com-
plete the parallelogram ABDG, and draw the diagonal AD.
Then AD shall represent in magnitude and direction the

resultant of the velocities represented by AB and AG
respectively.

Let the moving point be denoted by P, and suppose P
to move along a straight tube OK with uniform velocity u,

while the end of the tube moves uniformly along the

straight line AG, with velocity v, the tube remainiug always
parallel to AB. Then, supposing the point P to start from
A when the tube is in the position AB, if at the end of any
time r we take, along AC, AG equal to vr, and draw OK
parallel to AB, OK will be tlie position of the tube

;
and

taking OP equal to ur, P will be the position of the point.
Draw PxV parallel to AG

;
then

AN= OP=UT\
.'. AN : AO :: ur : VT :: u : V

:: AB : AC.

Therefore the parallelograms ON, CB are similar. But
similar parallelograms which have a common angle are about
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the same diagonal; therefore P lies on the diagonal AD;
and since r may be any interval we please, the point P will

always lie on AB or AD produced; in other words, AD is

the path of P, and therefore always represents its resultant

velocity in direction. Also the resultant velocity of P is

constant in magnitude, for AP, the space passed over during
the inverval r, is always proportional to AN or ut, that is to

T, since u is constant. The space passed over in any time is

therefore proportional to that time, and the velocity of the

moving point is therefore constant in magnitude.

Again, at the end of the unit of time after leaving A the

end of the tube will have reached (7, and the j^oint P will

consequently be at D. Hence in one unit of time P will

have moved from A to D, and we have just shewn that its

path is the diagonal AD and its velocity uniform. Hence
the straight line AD represents in magnitude and direction

the resultant velocity of the point P, that is, the resultant of

the velocities represented by AB and AG respectively.

Therefore, if, &c. Q. E. D.

19. If a particle be moving with more than two inde-

pendent velocities, we can find their resultant by finding first

the resultant of any two, then compounding that with a

third, and so on. Also, since velocities, like forces, are sub-

ject to the parallelogram law of composition and resolution,

the propositions which are true for a system of forces acting
at a point on account of the forces being subject to this lata, are

also true for a number of independent velocities with which
a point may be moving. Thus, if the straight lines repre-

senting the velocities are equal, and parallel to, and in

the same sense as, the sides of a closed polygon taken in

order, the point is at rest; if they form all but one of the

sides taken in order of such a polygon, their resultant is

represented b}''
the remaining side taken in the reverse order.

Similarly we have the triangle of velocities, the parallele-

piped of velocities, and so on.

20. If the velocities of two moving points, A and B, be

given relative to certain points which we consider fixed, we
can by help of the "parallelogram of velocities" determine
the velocity of A relative to B.
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Suppose, for example, that 5 is a point fixed on some
surface which moves in any direction without rotation, and
with known velocity, so that ever}^ point of the surface has
the same velocity as B, and that ^1 is a point which moves
on that surface, the velocity of A, at any instant, relative

to fixed objects around being known
;
then the velocity of

A relative to the surface, that is, relative to B, can be found.

For instance, B may be a point fixed on the deck of a ship
which is moving uniformly on a still sea, and A some point

moving about on deck; the velocities of A and B relative

to the water being given, the velocity of A relative to the

ship's deck can be found.

If the points A and B be moving in the same straight
line and in the same direction with uniform velocities u and
V respectively, it is obvious that the distance between A and
B is increased or diminished during each unit of time

b}''
a

space numerically represented hy u — v, according as A is in

front of, or behind, B; u — v is therefore the velocity of A
relative to B. li u — v be negative, it shews that the velocity
of A relative to B is in the direction opposite to that in

which the points are moving.

If A and B be moving in opposite directions with velocities

represented numerically by u and v respectively, it may be
shewn that the velocity of A relative to B is numerically

represented by u-{-v) but if u and v represent not only the

numerical but the algebraical values of these velocities, then
u and V will be of opposite signs, and the velocity of A
relative to B will be represented hj u — v, as in the case in

which A and B are moving in the same direction.

21. In each of the above cases the velocity of A relative

to B may be found by the following process. Let a velocity

equal and opposite to that of B be supposed given to both

A and B. Then B will be brought to rest, and the same

velocity being impressed on both A and B, their relative

velocity will be unaffected. For example, if a man be walk-

ing on the deck of a ship, his velocity relative to the deck, or

any point upon it, is altogether independent of the ship's

motion, and will remain the same if the ship be brought to

rest. The velocity of A will then be u — v\ and since B will
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have been brought to rest, this will be the velocity of A
relative to B. Hence if two points A and B be moving in

the same straight line Avith velocities represented in magni-
tude and direction by u and v respectively, the velocity of A
relative to B will be represented in magnitude and direction

hj u — v.

If A and B be moving in parallel straight lines with

velocities represented respectively by to and v, we may shew,

by precisely the same method as that adopted above, that

the velocity of A relative to B is ic— v, as before.

22. Suppose A and B to move with velocities repre-
sented by u and v respectively, but not in the same or

parallel directions. Let the velocity of A be represented in

magnitude and direction by OH, and that of B by OK.
Then the velocity of A relative to B will be represented

by KH.

For the velocity of A may be considered as the resultant

of two velocities, viz. the velocity of B, and the velocity of

A relative to B. Hence the velocity represented by OR is

the resultant of two independent velocities, one of which,
that of B, is represented by OK, and the other is the velocity
of A relative to B. But the velocity represented by OH
is, by the "

j^arallelogram of velocities," the resultant of ve-

locities represented b}^ OK smd KH Therefore the velocity
of A relative to B is represented in magnitude and direction

by KH
If this velocity be denoted by lo, we have, since

KH' = OH' + OK' - 20H. OK cos KOH,
w' - u' + v'^

— 2uv cos HOK.
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23. The same result may be obtained in a different way.
As before, let OH, OK represent the velocities of A and

B respectively. Suppose a velocity equal and opposite to

that of B to be impressed upon both A and B. Let OL
represent in magnitude and direction this velocity. Then
OL is equal to KO, and in the same straight line with it.

Also by this means B will be brought to rest while A is

made to move with two independent velocities, viz. its

original velocity represented by OH and the velocity we
bave supposed impressed upon it, which is represented by
OL. Complete the parallelogram OHPL

; then, by the

"parallelogram of velocities," the diagonal OP represents in

magnitude and direction the resultant velocity of A. But
since B is now at rest, the resultant velocity of A is the same
as its velocity relative to B. Also the velocity of A relative

to B will have been unchanged by impressing the same

velocity on both A and B. Hence OP represents in magni-
tude and direction the velocity of A relative to B.

If, then, we wish to find the velocity of a moving point A
relative to another moving point B, we may impress on both

A and B a velocity equal and opposite to that of B, and the

•resultant velocity of A will then be the velocity required.

That this process leads to the same result as the metho.d
of the preceding article is at once obvious, for KOPH is

a parallelogram, and therefore OP is equal and parallel
to KH

If the velocities of A and B be not uniform, the velocity
of A relative to B at any instant may be found as above,
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OH and OK representing in this case the velocities of A and
B respectively at tJie instant in question.

The velocity of B relative to A is of course equal and

opposite to that of A relative to B.

24. Accelerations, also, like forces and velocities, may
be resolved and compounded according to the parallelo-

gram law. This we proceed to prove.

Prop. If a j^oint he moving with two independent ac-

celerations represented in magnitude and direction by two

straight lines drawn from a point, the resultant acceleration

"ujill he represented in magnitude and direction hy the diagonal,
drawn from that point, of the parallelogram constructed on

the two straight lines, representing the accelerations, as ad-

jacent sides.

For simplicity of expression, suppose a second to be the

unit of time. Let AB represent the initial velocity of the

point; BC, BD the accelerations. Then BC, BD represent
the velocities generated in one second correspondiog to

the respective accelerations taken singly. Now since the

accelerations are independent, their combined effect pro-
duced at any instant is the sum of the effects corresponding
to each considered singly at that instant, and hence the

tinal change of velocity produced in one second under the

two accelerations tos^ether is the same as if each had existed

separately during one second, since the effect of an accelera-

tion is independent of the velocity of the moving point.
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Suppose then the acceleration represented by BC to exist

by itself for one second
;
the velocity generated in that

interval is represented by BC, and compounding this with
the original velocity AB of the moving point, it follows

from the parallelogram of velocities that the resultant

velocity is represented by A C. Now suppose the accelera-

tion represented by BD to exist singly for a second, the

point moving, initially, with the velocity represented by
A G. Draw CE equal and parallel to BD

;
then CE repre-

sents the velocity generated in one second corresponding to

the acceleration represented by BD. Combining this with

the velocity which the point already possesses, viz. that

represented by AC, the final velocity is, by the parallelogram
of velocities, represented by AE. But the effect when the

two accelerations exist together for one second is the same
as the whole effect produced when each exists separately for

one second. Hence the effect when the two accelerations

exist together for a second is to change the velocity of the

moving point from that represented by AB to that repre-
sented by AE. The velocity generated when the two accele-

rations exist together for a second is therefore represented by
BE, since BE represents that velocity, which, when com-

pounded with the velocity represented by AB, produces a

resultant represented by AE. But the whole velocity gene-
rated in a second is the measure of the resultant acceleration

;

hence BE represents the acceleration which is the resultant

of the accelerations represented hj BC and BD. But BE is

the diagonal of the parallelogram constructed upon the

straight lines BC, BD as adjacent sides. Therefore, if, &c.

Q. E. D.

Hence, accelerations, like forces and velocities, are sub-

ject to the parallelogram law of composition and resolu-

tion, and any propositions true of forces in consequence
of their being subject to this laiu must also be true of ac-

celerations. We have therefore the triangle, polygon, &c. of

accelerations, and any number of accelerations may be com-

pounded in the same way as a system of forces acting at a

point.

25. By help of the preceding proposition, if the accelera-

tions of two moving points A and B be given, we can, as in
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the corresponding case of velocities, find the acceleration of

A relative to B.

Let OH, OK represent in magnitude and direction the

accelerations of A and B respectively. Sup2:>ose an accele-

ration equal and opposite to that of B impressed upon both

A and B. This cannot affect the relative motions of A and

B, and therefore does not affect their relative accelerations.

(For we may suppose A and B to be points moving about

inside a closed surface
;
then if the same motion in space be

impressed upon the surface and every thing within it, this will

obviously not affect the motions of A and B relative to the

surface or each other.) Let OL represent the acceleration

equal and opposite to that of B. Then OL is equal to KO
and in the same straight line with it. Now an acceleration

equal and opposite to that of B having been impressed upon
it, it will be moving with no acceleration, that is with uni-

form velocity. Suppose a velocity equal and opposite to that

of B impressed on both A and B
;
this wall not affect their

relative velocity, but B will thereby be brought to rest.

Complete the parallelogram OHPL, and draw the diagonal
OF. Then the acceleration oi A is the resultant of two

independent accelerations represented respectively by OH
and OL, and is therefore, by the parallelogram of accelera-

tions, represented in magnitude and direction by the diagonal
OP of the parallelogram constructed upon OH and UL

;

and, since B is now at rest and not possessed of any ac-

celeration, this is the acceleration of A relative to B.

G. D. 2
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Since KOPH is a parallelogram, OP is equal and parallel

to KH', hence KH represents in magnitude and direction

the acceleration of A relative to B.

From the above investigation we see that in order to find

the acceleration of a moving point A, relative to another

moving point B, we have only to impress on. both A and B
an acceleration equal and opposite to that of B. The re-

sultant acceleration of A is then the original acceleration of

A relative to B. Or, more briefly, if the accelerations of A
and B be represented in magnitude and direction by two

straight lines OH, OK respectively drawn from a point 0,

the acceleration of A relative to B will be represented in

magnitude and direction by the straight line KH.

26. If the accelerations of A and B be not uniform, the

acceleration of A relative to B may be found at any instant

by the above process, OH, OK representing the accelerations

of A and B respectively at that instant.

The acceleration of B relative to A is obviously equal
and opposite to that of A relative to B.

If the accelerations of A and B be in the same straight
line and be represented numerically by a and /3 respectively,
the acceleration of A relative to B will be represented by
OL^ j3, according as the accelerations of A and B are in the

same or in opposite directions. If the accelerations be

represented algebraically by a and /3, the acceleration of A
relative to B will be represented in magnitude and direction

by a - ^.

27. If a point move with uniform velocity v, the space

passed over by it in t units of time is equal to vt units of

length. For the distance passed over in each unit of time
is V units of length, and therefore the distance passed over

in t units of time is vt units of length.

If a point move with a constant acceleration always in

the direction of motion and represented by /, the velocity

generated in t units of time and corresponding to this

acceleration is represented by ft. For the velocity gene-
rated in each unit of time is numerically equal to the
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acceleration, and is therefore / units of velocity ;
therefore

the velocity generated in t units of time is ft units of

velocity.

If the direction of the acceleration be always that of the

motion of the point, and its magnitude be constant and

represented by /, and if the point be originally moving with
u units of velocity, its velocity after t units of time will be

represented by u \ ft.

If a point be moving with an initial velocity in a certain

direction, and then continue moving for a given time witli

an acceleration in some other constant direction, since with
a given acceleration the velocity generated at any instant

is independent of the velocity or direction of motion of the

moving point, it follows that the final velocity of the point

may be determined by finding the velocity generated in the
direction of the acceleration, and compounding this with
the original velocity of the point according to the 23arallelo-

gram law.

28. If P represent a point which moves in any manner
relative to 0, and OX be a line through and fixed in direc-

tion, the rate of chansje of the ano-le FOX is the aui^ular

velocity of P about 0.

If P be moving directly towards or from its angul.ir

velocity about is zero.

If P be moving at right angles to OF with velocity i\ and

Pj be its position after a very short time r, then FP^ = vr

and the angle FOF^ described in time r is represented by
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PP VT

p^=y--p. Hence the angular velocity of P about is

represented by yrp'

29. If P be moving with velocity v in a direction making
an angle 6 with OP, and P^ be its position after a very short

time r, then PP^ is represented by vr. Draw ^2^ perpen-
dicular to OP. Then

P^N= PP^ sin e = VT sin 6.

Also the angle POP^ = ^fp
"^

~77p
— ^^^ *^^® angular

n . 1 . r^ ' ^ 1 1,
^ sin ^ i> sin ^ .

velocity about is represented by —Tjp—
or

.^p , since

by taking r sufficiently small OP2 may be made to differ

from OP by a quantity as small as we please.

30. If the point Pis moving along any line A^'P (which

may be straight or curved) the rate of increase of the area

POA is called the areal velocity of P about 0.

Pteferrinof to the figure of the last article, the area of the

triangle POP^ is represented by -^PoxV. 0P= ^ . vr sin 6 . OP
— ^OT sin ^ . r if OP be represented by r. Hence the areal

velocity will be represented by \vr sin 6.

If w represent the angular velocity, then o) = —
^-^
— or

V sin 6 = (jdv. Hence the areal velocity is represented by

31. The rate of change of angular velocity is called

an2;ular acceleration. It is measured when uniform and
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when variable accordiug to the same principles as linear

acceleration.

Rate of change of areal velocity is called areal accele-

ration.

Kinetics.

32. Hitherto we have been considering simply motion
without any reference to the agencies producing it, or the

properties of the thing moved. This portion of the subject,
or the geometry of motion, is frequently called Kinematics.

We must now consider motion with reference to the agencies

producing it, and the things in which it is produced. The
term Dynamics is sometimes confined to this section of our

subject, but it is more frequently known as Kinetics, while

Dynamics is (improperly) understood to embrace both this

and Kinematics.

Matter, like space and time, must be considered as one

of the inevitable primary conceptions of the mind, of which
no satisfactory definition can be given. Many of its pro-

perties are known to us Avith more or less of scientific

exactitude by our everyday experience, and it is to this w^e

must refer for a distinct conception of matter.

33. The most characteristic manner in which matter

affects our senses is through the effort required to produce
in it sudden changes of motion. If a small mirror be held

in the hand a reflected sunbeam may be made to dance

about in any arbitrary manner without any sensible effort on

the part of the operator, for the small exertion of w^hich he
is conscious is the same whether the sun be shining on the

mirror or not. But it is far from easy to move a half

hundred-weight quickly aside and then sharply to bring it

to rest even though it be suspended by a very long string
which supports its weight and allows of its being moved
almost in a horizontal plane. We say that the half hundred-

weight is matter, while we call the sunbeam immaterial.

The character of matter, in virtue of which an effort is

required to rapidly change its motion, is sometimes called

inertia, but as this term only conveys the same idea as the
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word mass, when properly understood, it will not be fre-

quently employed in subsequent pages.

34. A body is a quantity of matter limited in every
direction.

A particle is a portion of mA^tter whose dimensions in

every direction are indefinitely small, and which may there-

fore be treated as a physical point. We however adopt
the convention of conceiving particles to contain a finite

quantity of matter, though it is contrary to experience that

an indefinitely small body should contain a finite quantity
of anything. The conception of a particle simply enables

us to treat a small body as though it were indefinitely small,

and thus enables us to neglect motions of rotation which, if

considered, would remove our investigation to the domain

of
"
Eigid Dynamics."

Force is that which produces or tends to produce motion

in matter, or modifies or tends to modify existing motion.

The mass of a body or particle is the quantity of matter

which it contains.

35. The masses of two or more particles are said to be

equal when the same force acting similarly upon them for

the same time generates in them the same velocity.

If tvv^o bodies of equal mass be connected so as to form

one, the mass of the body so formed is double that of

each of its constituents. Similarly, if three equal masses

be connected together, we get a body of triple mass, and so

on. We thus arrive at a system of measurement applicable
to masses. The British standard unit of mass is the Imperial
standard pound Avoirdujiois, a mass of platinum kept at the

Exchequer chambers. All masses may be expressed in

terms of this unit, or of other units deduced therefrom.

The French Imperial standard of mass is Borda's i^latinum

kilogramme, which was originally constructed so as to con-

tain the same amount of matter as a cubic decimetre of

distilled water at the temperature corresponding to its

maximum density. The pound and the kilogramme are-

standards of mass, nut of force. After stating the laws of
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motion we shall see how unequal masses may be compared
by observing the effects of forces upon them.

We are not at present in a position to explain any system
of measurement applicable to forces. Newton's second law
of motion will however provide us with the means of com-

paring forces, and consequently of measuring them in terms
of some unit.

36. The density of a body, when uniform, is the ratio

of the mass of any volume of the body to that of an equal
volume of some standard substance.

Wlien variable, the density of a body at any particular

point is the ratio of the mass which would be contained in

an}'' volume of the body, were its density constant through-
out that volume and the same as at the proposed point, to

that of an equal volume of the standard substance.

The standard substance is generally so chosen that the

unit of volume of the substance contains the unit of mass of

matter. The unit of density is consequently the density
of a uniform substance, of which the matter contained in

the unit of volume is the unit of mass. Then, the density of

a body, whose density is uniform, will be measured by the

number of units of mass contained in the unit of volume, or,

which is the same thing, the ratio of the number of units of

mass contained in any portion of the body to the number

expressing the volume of that portion.

If the density of a suhstance he uniform, and numericcdly

represented by p, the mass of V units of volume of the

substance will he Yp units of mass.

For each unit of volume contains p units of mass, and

therefore Y units of volume will contain Vp units of mass.

If the density of a body vary from point to point, the

density at any point will be measured by the ultimate ratio

of the number of units of mass in any volume containing
that point to the number of units of volume in the same
when such volume is indefinitely diminished.

37. The momentum of a particle is the product of its

mass and its velocity. The unit of momentum is conse-
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quently the momentum of the unit of mass moving with
the unit of velocity, and the momentum of any moving mass
is measured in terms of this unit. The phrase

"
quantity of

motion
"
was used by Newton in place of the more modern

term " momentum."

88. The vis viva or kinetic energy of a moving particle

may be defined as one half the product of its momentum and
its velocity.

The vis viva is frequently defined as the product of the

mass and the square of the velocity of the moving particle,
and the kinetic energy is called the semi-vis viva; but the

above definition is more convenient, and has moreover the

advantaofe arising^ from the fact that both the momentum
and the velocity of a particle admit of a physical interpre-

tation, while no meaning has been assigned to the square of

a velocity.

39. All the theorems hitherto given have been deduced
from abstract reasoning, and it is impossible for us to con-

ceive of any order of things in which these theorems should

not be true
;
but in order to determine the mutual relations

between force and matter, or, in other words, the effect of

forces upon matter, we must have recourse to experiment.
The conclusions to which such experiments lead us are

embodied in three statements, generally known as the laws

of motion, and first given by Newton. As enunciated by
him these laws are as follows :

Law I. Every body will continue in its state of rest or of
unifo7in motion in a straight line, except in so far as it is

compelled hy impressed force to change that state.

Law II. Change of motion is proportional to the im-

jwessed force, and takes p)lcice in the direction in which that

force acts.

Law III. Action and reaction are always equal and

opposite.

40. The evidence upon which these laws are accepted

may be stated as follows :
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In the first place, our daily observations of phgenomena
around us, and the results of rough experiments, lead us to

infer the probable truth of the jmnciples enunciated in the

statement of the laws
;

it is then found that the more

nearly we make the conditions, which obtain in our experi-

ments, approximate to the ideal conditions of the case to

which the laws are immediately applicable, the more nearly
do the results of our experiments coincide with the principles
laid down in these laws

;
and lastly, the results of long and

complicated calculations based on the assumption of their

truth are exactly in accordance with natural phagnomena.
This last evidence is that on which we chiefly rely, and it

amounts almost to an absolute proof of the points at issue.

Our acceptance of all other physical law^s rests on precisely
the same kind of evidence. As an example we may refer to

the moon, whose motion is calculated on the assumption of

the truth of the laws stated above, and of the law of gravita-

tion; and, notwithstanding the extreme complexity of the

calculation, we are enabled to determine the moon's position
at any instant for years in advance with such precision as

to be within the limits of error of the most exact instru-

ments. It was also by the assumption of the truth of these

same laws that Prof. Adams and M. Le Verrier were enabled

to calculate the position and orbit of the planet Neptune be-

fore it had been seen.

41. We shall now consider each of these laws separately,
and trace them into some of their consequences.

Law I. Every hody luill continue in its state of rest or

of uniform motion in a straight line, except in so far as it is

compelled by impressed force to change that state.

This law supplies us in the first instance with the defini-

tion of foi'ce given above. For if a body do not continue in

its state of rest or of uniform motion in a straisfht line it

must be under the action of force; so that force is that

which tends to change a body's state of rest or of uniform
motion in a straight line. Secondly the law indicates a

mode of measuring time. The velocity of a body is uniform
when the body passes over equal distances in equal intervals

of time. Suppose there are two bodies A and B and that
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110 force acts upon either of ttiem which has a tendency to

change its motion relative to the other. Then by the first

law of motion B must move uniformly in a straight line

relative to A. Hence the intervals of tiftie during Avhich

B moves Over equal distances relative to A must be equal.

Therefore, when applied to this system of only two bodies,

the first law of motion simply defines equal intervals of time

as those during which B moves over equal distances relative

to A, but it states no law of nature. Now suppose a third

body G introduced and consider its motion relative to A.

If G move in a straight line relative to A and pass over

equal distances in the intervals during which B passes over

equal distances, then, B being our time-keeper, it follows that

G moves uniformly relative to A and is therefore, by Law I.,

under the action of no force which has a tendency to change
its motion relative to A. If, however, G do not fulfil this

condition, some force must act upon it in such a way as to

change its motion relative to A. The statement that if

both B and G be under the action of no forces tending to

change their motion relative to A, then G will move over

equal distances in the same intervals during which B moves

over equal distances, is one which considered a j)riori might
or might not have been true, and it is in this statement that

the law consists.

42. If we were furnished only with the system consisting
of A, B and G, v/e might have no better reason for supposing
B to be under the action of no force, than for supposing G
to be free from the action of force. In this case the choice of

B as our time-keeper would be a purely arbitrary choice.

But suppose that there were a large number of bodies

B, G, B... all moving relative to A, and suppose that of this

multitude a certain number L, M, &c. all moved over equal
distances relative to A in the same intervals during which

K moved over equal distances. Then all these bodies,

K, L, M, &c., agree in indicating the same intervals of time

as equal intervals, that is, they all provide us with the same

measure of time, atid if ther6 be no apparent reason why all

these bodies should be similarly acted on by forces, we
have very good reason to believe that each of them is under

the action of no forces and to accept their joint testimony
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as tlie basis for our measuremerit of time, while if the rest of

the bodies By C, D, &c. neither agree with K, L, M, &c.,

nor yet among themselves, we have good reason to believe

that these are acted upon by forces, and to reject them all

as means of measuring time. It is from the contemplation
of such a system of bodies that our highest conception of

the measurentent of time is derived, and though we some-
times speak of equal intervals of time as those during which
the earth turns through equal angles, we really ultimatel}^
refer to the joint testimony of all the heavenly bodies, after

duly allowing for all the forces which we know to act upon
them, in determining our measurement of time, and thus

Ave may ask whether the length of the day (or the rate of

rotation of the earth) is the same now as formerly, a ques-
tion which would be absurd if our fundamental notions of the

measurement of time were based upon the earth's rotation

simply.

43. The first law of motion attributes to matter the

property known as inertia, by virtue of which a finite force

acting during a finite time is required, to produce a finite

change in the velocity of a finite quantity of matter. In

other words, it states that any particle of matter has no power
in itself of changing, of its own accord, any velocity with

which it may be moving. Now that a body, if at rest, will

continue so, ifno force act upon it to disturb it, 6very one will

at once admit as in accordance with everyday observation
;

but that a body in motion will continue to move uniformly
in a straight line is not quite so obvious, because we never

have an opportunity of observing the motion of a body
under the action of no forces. If a stone be projected along
a horizontal plane it will at length come to rest, but if the

stone and plane be made smoother the stone will continue

longer in motion, and this leads us to believe that if all

opposing forces were removed, the stone would never come to

rest. If, however, we reflect on the facts that we have no
notion whatever of absolute motion

;
that all motion which

comes under our notice is essentially relative
;
that a particle

appears at rest when it is moving in the same direction and
with the same velocitv as ourselves

;
and that we have no

means of ascertaining whether a particle is absolutely at rest
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or not, we see that there is no distinction in kind between
uniform motion in a straight line and absolute rest, the latter

being in fact only a particular case of the former. The

assertion, therefore, that a particle under the action of no

forces will remain at rest is entirely without meaning, since

we never know whether a particle is absolutely at rest or not,

unless it be also true that a particle under the action of no

forces will continue to move uniformly in a straight line if it

be once in a state of motion, so that this latter part of the law

is a necessary consequence of the former.

44. Law II. Change of viotion is proportional to the

impressed force ^
and takes place in the direction in which

that force acts.

The phrase "change of motion" here means rate of

change of quantity of motion or of momentum. If the force

be finite it will require a finite time to produce a sensible

change of motion, and the change of momentum produced
by it will depend upon the time during which it acts. The

change of motion contemplated must then be understood to

be the change of momentum produced per unit of time, or

the rate of change of momentum. If the force be variable,

the rate of change of momentum is measured at any instant

by the momentum which would be generated in the unit of

time if the force remained constant during that unit and the

same as at the proposed instant, and this the law asserts to

be proportional to the intensity of the force at that instant.

Now the momentum of a moving particle is the product of

the mass into the velocity ;
if then the mass remain constant

the change of momentum is measured by the product of the

mass into the change of velocity, and the rate of change
of momentum by the product of the mass and the rate

of change of velocity. Bat rate of change of velocity is

acceleration; therefore this law states that any force P acting
on a particle of mass "in is proportional to the product of the

mass m on which it acts, and the acceleration f produced
therein by the force

;

.*. Pec mf.

Hence we may put P equal to hnf where k is some constant.
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45. If the unit of force be taken as that force which pro-
duces the unit of acceleration in the unit of mass, or whicli

acting on the unit of mass for the unit of time generates
therein the unit of velocity, then, if we put m equal to unity,
that is, take the unit of mass, and f equal to unity, that is,

introduce the condition that the acceleration produced therein

should be the unit of acceleration, we must have the force

producing the acceleration equal to the unit of force, or P
equal to unity. Hence k must also be equal to unity, and we
have the equation

P= mf.

The meaning of this equation is as follows : The number
of units of force in any force is equal to the product of the

number of units of mass in any particle on which it may act,

and the number of units of acceleration produced in that

mass by the force in question.

46. Suppose that a second and a foot are the units of

time and length respectively, a pound being the unit of

mass, and that we require to know the corresponding unit of

force, in order that the above equation may be true. We
may argue thus :

—
The unit of force in this case is that force which acting

on the mass of a pound for one second generates in it a

velocity of one foot per second
;
now we know from the re-

sults of experiments, some of which will be described here-

after, that a force equal to the weight of a pound in London,
at the sea level, if acting on the mass of a pound generates in

it in one second, if free to move, a velocity of nearly 32 -^ feet

per second; and hence the unit of force is^^^of the weight

of a pound, or rather less than the weight of half an ounce.

This is the British absolute dynamical unit of force, and is

called a poundal. In order that the equation F='mf may be

universally true when a pound, a second, and a foot are the

units of mass, time, and length respectively, all forces must

be expressed in terms of this unit.

47. If a centimetre be taken as the unit of length, and

a £framme as the unit of mass, a second being the unit of
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time, the unit of force is that which acting on a gramme for

a second produces a velocity of a centimetre per second, and
is called a dyne. The weight of a gramme at the sea level

in Paris is equal to about 981 dynes.

48. Again, from the equation P = mfwe see that a force

is ineasm^ed dynamically by the momentum which it generates
in the unit of time. We have thus a method of comparing
the magnitude o^ one force with that of another, and are

enabled to express any force in terms of the absolute unit

above defined, or of any other unit we may adopt. In fact,

the second law of motion provides us with an absolute mea-
sure of force.

Suppose P units of force to act uniformly for t seconds

on m units of mass, producing / units of acceleration. Then
P . . .

/"= — . Also if V units of velocity be produced in the end^ m J I

P
we have v =ft= — t, or Pt = mv. Hence the product of the

force into the time during which it acts is numerically equal
to the momentum produced by it.

Hence the second law of motion enables us to assign a

physical meaning to momentum. It is the effect or product
of a force acting for an interval of time. A given force

acting for a given time will always generate the same amount
of momentum, whatever be the mass upon which it acts, and
this momentum is measured by the algebraical product of

the measure of the force and of the time during which
it acts.

49. If in the interval during which a force acts its mag-
nitude vary, the acceleration produced by it will vary pro-

portionally. If we split up the time of action of the force

into intervals so short that we may consider the force as

uniform during each interval, the momentum generated during

any interval t during which the force is equal to P units will

be equal to Pr, and so for every interval. So that the

whole momentum generated may be found by multiplying
the number of seconds in each interval by the measure of

the force supposed constant during that interval and adding
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the results. If the number of intervals be increased

and their length diminished indefinitely, we arrive at the

case of a continuously varying force. Those acquainted with

the Integral Calculus will see that the above may be shortly

expressed by saying that the whole momentum generated by
a force is represented by the "

time-integral
"

of the force

itself.

Def. The whole momentum generated hy a force is called

the impidse of the force.

50. If we know the impulse of a force and the time

during which it acts, w^e have only to divide the impulse by
the time in order to obtain the measure of the force, sup-

posing it uniform, or the time-average of the force, supposing
it variable. Sometimes a finite momentum is generated in a

time so short we are unable to measure it. In this case the

force producing it must be very great, but we cannot tell

how orreat because we do not know the time during which it

acts. We know the whole momentum generated, that is, the

impulse of the force, but not the force itself. In other cases

we may be able to find the momentum produced and the

whole time during which the force acts, but may be unable to

trace the variation of the force. In this case we can find the

impulse of the force and its (time) average value, but not

the magnitude of the force at any particular instant.

51. Until recently it has been customary to find the

following definitions in works on Dynamics :
—

A finite force is one which requires a finite time to

ofenerate a finite momentum.

An impulse is a force which generates a finite mo-

mentum in an indefinitely short time.

An impulse is measured by the whole momentum gene-
rated by it.

Now we have no experience of a finite momentum being

generated in an indefinitely short time, and an infinite force

would be required to produce such an effect. Moreover, if

an impulse is measured by the whole momentum generated

by it, it is something quite different from force, being of one
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dimension higher in time. According then to this system
there were two classes of forces, viz. :

—finite forces and im-

pulses which could not be compared with one another, being,
in fact, of different dimensions.

52. The only mode of measuring force now recognised
is that indicated by the second law of motion. If the whole
momentum generated by a force, or the impulse of the force,

be given, then if the force take a long time to generate this

momentum the force itself must be correspondingly small
;

if it take a very short time the force must be correspondingly

great. If we cannot measure the time we cannot determine
the force, and have then to content ourselves with knowing
the momentum generated by it, or its impulse, a term
invented simply to hide our ignorance of the force itself.

A force considered only with reference to the whole
momentum generated by it during its action is called an

impulsive force. Generally the term impulse is applied only
to the effect of forces which act for a time so short that

no sensible changes take place in the configuration of the

system during their action, and hence in considering their

effect we need take no account of forces which require a

much longer interval to produce any appreciable effect.

53. Suppose a force to generate a finite momentum in

Y(i^th of a second. The force may at first increase, then
reach a maximum and subsequently diminish, vanishing at

the end of the above-mentioned interval. Except by very
refined methods we should be quite unable to measure even

approximately the time during which the force acted, and
could therefore form no idea even of its average magnitude,
much less could we detect its variation, and we should have
to speak simply of its impulse. But suppose our faculties or

instruments so much improved that we could appreciate

TooiiFoo^^^ of a second; then we might notonly measure the time

during which the force acted, but determine its mean value

for each separate millionth of a second during its action.

The force would, in fact, be as completely subject to our

measurement as a force which acts for a quarter of an hour
would be to an observer who could measure and appreciate
no interval of time less than a second. Measurements of this
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character have been actually carried out by Professor Abel
and Captain Noble in their determination of the velocity
of a shot at different positions in a Fraser gun, and their

deduction of the pressure which must be exerted upon it in

the several positions by the products of combustion of the

powder.

54. Suppose several forces to act at once on a particle
either at rest or in motion

; then, the second law of motion

being true for every one of these forces, and the effect of a

force being completely determined by that law, it follows that

each must have the same effect, in so far as the change of

motion produced by it is concerned, as if it were the only
force in action; we may therefore infer that

Wlien any number of forces act simultaneously on a body,
whether at rest or i7i motion, each produces the same chaiif/e

in the bodys motion as if it alone had acted on the body
at rest.

This statement expresses the principle of the ''physical

independence of forces.'' From it, taken in conjunction with

Newton's second law of motion, it follows that if any number
of forces act on a particle, initialiy either at rest or in motion,
the equation P=mf will be true for each, / being the ac-

celeration produced by the force P, and this acceleration will

be in the direction in which P acts.

From this result, coupled with the "parallelogram of

accelerations" proved above, the "parallelogram of forces"

immediately follows, and we have at once the wdiole subject
of Statics.

Precisely the same remarks apply to impulses, which may
therefore be resolved and compounded in the samj way as

forces.

55. In all the preceding cases, change of velocity must
be estimated in accordance with the parallelogram law.

Thus, if a straight line AB represent in magnitude and
direction the initial velocity of the particle, and A G its

final velocity, BG will represent the whole change of velocity

produced.

G-D. 3
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56. When it is stated in the second law of motion that
"
change of motion is proportional to the impressed force," it

is not implied that the whole change of motion should be
that of a single particle, or even of a single body, in the
usual sense of the term

;
nor is it necessary that all the

changes of motion in the different parts of a complicated
system, which act on each other by means of their con-

nections, should be at any instant in the same direction.

The change of motion of each particle of the system will be
in the direction of the resultant of all the forces acting upon
it

;
but some of these forces are introduced by the connec-

tions of the system, and the direction of the resultant force

on the particle depends on the nature of these connections.

Since, however, action and reaction between the particles of

the system must be equal and opposite it follows that the
resultant momentum generated in the system, as deter-

mined by compounding the momenta of all the particles

according to the parallelogram law, is proportional to the
resultant of all the forces acting on the system and is the
same as this resultant force would produce in the same time
on a single particle.

When a system is such that the velocity of one particle

being given in magnitude and direction that of all the others

can be found, the fact that the resultant momentum of the

system corresponds to the effect of the resultant of the forces

acting upon it will enable us to determine completely the
motion of the system when known forces have acted upon it

for a given time. We shall meet with examples of this

hereafter.

57. As an application of the second law of motion we

may take the following. It has been established as an ex-

perimental fact that if two or more bodies of different

materials, as, for example, a sovereign and a feather, be
allowed to fall in vacuo simultaneously from rest, if let fall

from any the same height, they will reach the ground
together. Hence their velocities at every instant during
their fall must be the same. Now since the velocities of all

the bodies at ani/ subsequent instant are the same, it fallows

that the accelerations under which they are moving are the

same for all. The force acting on each is, therefore, by the
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second law of motion, proportional to its mass. But this

force is that with which it tends to fall towards the earth;

in other words, its weight. The weight of each body is

therefore proportional to its mass, and independent of the

kind of material of ivliich it is formed. It follows then,

from this experiment, that the earth attracts all kinds of
matter alike.

08. The acceleration of a body falling freely in vacuo is

found to vary slightly with the latitude, and also with the

elevation above the sea-leveL This acceleration is generally
denoted by g, and when we say that at any place g is equal
to 32, we mean that the velocity generated per second in a

body falling freely under the action of gravity at that place
is a velocity of 32 feet per second. The value of g near the

sea-level in the latitude of Edinburgh is 32*2 very yearly.
It may be mentioned here that a body is said to be moving
freely when it is acted upon by no forces except those under

consideration.

If in the equation P=m/ we put for P the weight IF of

the body, we know that the acceleration produced is (7; hence

for/ we must write g, and we get the equation

W = mg,

the unit of weight, or of force, being in this case the absolute

dynamical unit of force.

59. The weight of a body is the force with which it

tends to move towards the earth, and is equal and opposite
to the force which must be exerted in order to support it.

It is equal to the attraction of the earth for the bcdy
diminished (according to the parallelogram law) by the force

necessary to cause the body to participate in the diurnal lo-

tation of the earth, and which produces its whole eifect in

causing acceleration towards the earth's polar axis when the

body is at rest relative to the earth's surface.

GO. AVe have seen that the Aveight of a body is propor-
tional to its mass

;
therefore bodies whose weights at any

given place are equal must contain equal quantities of matter,
and we thus obtain a means of determining the equality of

3—2
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two masses by the use of the common balance. Hence, also,

we have a practical method of comparing the quantities of

matter in two or more different bodies by determining how

many masses, each equal to the standard, are required to

balance each of the bodies whose masses are to be compared.
Sub-multiples of the standard may be obtained at first by
weighing out a quantity of matter equal to the standard unit

of mass and dividing it by trial into the required number of

equal parts, the equality of the parts being tested by the

balance. In this way a system of
"
weights

"
for the mea-

surement of mass may theoretically be obtained.

It should be borne in mind that the ultimate object of

weighing things is not generally to ascertain their tveight,

that is, the force with which the earth attracts them, but to

determine the quantity of matter contained in them, and
this is rendered possible only by the fact that the earth

attracts all kinds of matter alike, a fact which we have
learned by observing that all bodies fall with the same
acceleration in vacuo. The same conclusion also follows

from the result of certain experiments on pendulums, which
shew that, other things being the same, the time of oscil-

lation of a pendulum is independent of the material of

which it is composed.

61. The characteristic difference between the results

obtained by a spring balance and by a pair of scales is this.

A pair of scales is used to determine at once how many
imits of mass are contained in the body weighed. This is

done by determining how many units of mass are attracted

by the earth with the same force as the body in question,
and since, as above stated, all kinds of matter are attracted

alike by the earth, the result is the number of units of mass
contained in the body ;

and this test is entirely independent
of the absolute intensity of gravitation, that is, of the value

of/7, atthe place. The spring balance, on the other hand,

simply measures the force with wliich the earth attracts the

body weighed ;
the apparent weight of a body will therefore

depend on the intensity of gravity at the place. Now the

acceleration produced by gravity in a bod}^ falling freely is

less at the equator than at the poles, and increases continu-

ously with the latitude
;

it also diminishes as the altitude
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above the sea-level is increased. The apparent weight of a''' i

body will consequently be less in low than in high la^titmles,

and a spring balance will be disadvantageous to a merchanty'^/

buying goods in England and selling them at Cape Coast ^^f

Castle; while if a pair of scales or a steelyard be used in its

place, the apparent weight of the merchandise will be inde-

pendent of the latitude.

62. Def. a force is said to do work wdien it moves its

point of application.

An agent is said to do work when it overcomes re-

sistance.

Since action and reaction are exactly equal and oppo-
site it matters not whether we consider the work done

by an agent as proportional to the force exerted, and the

distance through which the point of application is moved in

the direction of the force, or as proportional to the resistance

overcome and the distance throusfh which it is overcome.

The work done by a force whose magnitude and direction

remain constant, is proportional to the product of the in-

tensity of the force into the distance through which its point
of application has been moved in the direction of the force.

From this it will be seen that, if the point of application
move always in a direction perpendicular to that of the

force, the latter does no work. Thus no work is done by
gravity in the case of a particle moving on a horizontal

plane, and when a particle moves on any smooth surface

no work is done by the force which the surface exerts upon
it. If, on the other hand, a^ heavy body be lifted from the

ground, the agent raising it does, work upon it, and the

work done is proportional to the product of the weight of

£he body and the vertical height through which it is raised.

In this case the body is moved in the direction opposite to

that in which its weight acts, and the work done by the

earth's attraction is accordingly negative. When the work
done by a force is negative, that is, when its point of ap-

plication moves in the direction opposite to that in which
the force acts, this is frequently expressed by saying that work
is done against the force. In the above case work is done
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hy the agent lifting the heavy body and against the eailh^'s

attraction. \^
63. Ii the amount of work which is done by the unit of

force, when its point of application moves through the unit

of length in the direction of the force, be taken as the unit

of work, then the measure of the work done by a force whose

magnitude and direction remain constant will be the product
of the numbers representing respectively the force and the

distance traversed by its point of application in the direction

of the force. Choosing it so that this condition may be

satisfied, the British absolute unit of work is that done by
the absolute dynamical unit of force, or poundal, when its

point of application moves through one foot in the direction

of the force, and is called a foot-2)ou7idaL, It is equal to the

work done in lifting rather less than half an ounce one foot

high in the latitude of Edinburgh.
The unit of work generally adopted by engineers is the

foot-pound, that is, the work done against gravity by an

agent in raising the mass of a pound through the vertical

height of one foot. Now the mass of a pound being in-

variable, its weight varies with the locality on account of the

variation of g. The foot-pound is therefore not an invariable

standard but depends on the locality, and is consequently
unsuited for a scientific unit of work. The foot-pound con-

tains g absolute units of work because the weight of a pound
is equivalent to g absolute units of force.

64. When either the magnitude or direction of a force

varies, or if botli of them vary, the work done by the force

during any finite displacement cannot be defined as above.

In this case the work done during any indefinitely small dis-

placement may be found by supposing the magnitude and
direction of the force constant during that displacement, and

estimating the work done in accordance with the above
definition: takiuGf the sum of all such elements of work done

during the consecutive small displacements, which together
make up the finite displacement, we obtain the whole work
done by the force during such finite displacement.

The effect or product of a force, when its point of appli-
cation moves over any distance in the direction of the
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Mfpe,
is a certain amount of work, and this work is measured

^Httie algebraical product of the measure of the force and
o^ne distance moved over by its point of application in its

direction.

65. Def. The rate at which an agent works is measured
when uniform by the amount of work done by it in the unit

^f time : v/hen variable it is measured at any instant by
the amount which would be done by it in the unit of time,
if the rate remained uniform durincj that unit and the same
as at the proposed instant.

The rate at which Work is done by a force is the product
of the force and the velocity of its point of application in the

direction of the force.

Def. The power of an agent is proportional to the rate

at which it can work. An agent capable of performing 3o,00()

foot-pounds of work per minute is said to be of one Horse
Power. Thus, when we say that the actual horse-power of

an engine is ten, we mean that the engine is able to perform
830,000 foot-pounds of work per minute. The nominal

horse-power of a steam-engine depends only on the number
and measurements of its cylinders, and the nature of the

engine, and not upon the actual rate at which it can work,
which varies with the pressure of steam in the boiler and is

limited bv the strens^th of the latter. The letters H. p. are

often used as abbreviations of the words liorse-poiuer.

It will be seen that the horse-power, like the foot-pound,
is not an absolute unit, but depends on the intensity of the

earth's attraction at the place. All such units are sometimes
classed together under the name oi gravitation units.

The British absolute unit of power is that of an agent
which can perform one foot-poundal per second.

QQ. The amount of work which a system is capable of

doing in passing from its present condition to some standard

condition is called its energy.

A S3^stem may possess energy in virtue of its configuration,
or the relative positions of its parts. Thus a distorted spring-
can do work in returnincr to its natural form ;

the svstem

consisting of the earth and a raised weight can do work by
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their mutual approach. The energy which a system pos^
sesses in virtue of its configuration is called potential energy.

07. If we catch a cricket ball when the ball strikes the

hand it exerts a pressure upon it, and unless the hand be

made to move in the direction of the ball's motion it may
inflict a serious injury. If the hand be withdrawn somewhat
as the ball strikes it, the ball exerts pressure upon the hand
while it moves in the direction of the pressure. It therefore

does work and we see that work may be done when two bodies

collide in virtue of their relative motion. In order that work

may be done we must have at least two bodies moving rela-

tively to one another, for if the cricket ball be not acted upon
by any other body it will go on moving indefinitely and have

no opportunity of doing work. Similarly, in order that a

system may have potential energy we must have at least

two bodies or portions of bodies capable of changing their

relative positions.

The energy which a system possesses in virtue of the

relative motions of its parts is called kinetic energy.

68. If a moving body such as a cannon shot strike the

earth and come to rest relative to it, it will not sensibly ,

affect the earth's motion, in consequence of the enormous
mass of the earth compared with the shot. In this case we

may assume that the shot loses the whole of the velocity
which it had relative to the earth, and it will be shewn here-

after (Chapter 11.) that in such a case the number of units of

work done is the same as the number of units of kinetic

energy possessed by the shot as defined in Art. (38). When-
ever we speak of the kinetic energy of a single moving
particle, we mean the kinetic energy possessed by the par-
ticle and the earth in virtue of their relative motions; similarly
when we speak of the potential energy of a raised weight, we
mean the potential energy possessed by the weight and the

earth in virtue of their relative positions.

69. Law III. Action and reaction are always equal
and opposite.

If a body A press against another body B with which it

is in contact, B will exert an equal pressure on A, but in
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the opposite direction. But the application of tins law is

not confined to the mutual actions between surfaces in con-

tact, the statement being true for all kinds of mechanical

action whatsoever. Thus, while in accordance with the

law of gravitation the sun attracts the earth with a certain

force, the earth also attracts the sun with an equal force,

and these two attractions are, of course, in opposite di-

rections. Again, the earth attracts a falling rain-drop with

a certain force, while the rain-drop attracts the earth with

an equal force. The result is that while the rain-drop moves
towards the earth on account of its attraction, the earth

also moves towards the rain-drop under the influence of the

attraction of the latter, but the mass of the earth being

enormously greater than that of the rain-droi3 while the

forces on the two arising from their mutual attractions are

equal, the motion produced thereby in the earth is all but

incomparably less than that produced in the rain-drop, and is

consequently quite insensible. The third law of motion is

also applicable to electrical attractions and repulsions, to

the actions of magnets and of conductors conveying electric

currents on themselves and each other, and in fact to all

cases of mechanical action.

70. The first law of motion states the property of force
and gives us, so to speak, a qualitative test of its presence,
for from it we infer that when a body changes its state

of rest or of uniform motion in a straight line it is under the

action of force.

The second law of motion raises force to the dignity of

a mathematical quantity and explains how it is to be
measured. Combining this law with a purely geometrical
theorem, viz. the parallelogram of accelerations, we learn

how to find the resultant of any number of forces, and have
at once the whole subject of statics.

The third law of motion is a brief summary of a number
of phenomena having a general resemblance but differing
in their details, and is intended rather to be a conventional

mode of expressing in as few words as possible a series of

experimental results, than to connote the several physical

phenomena which it includes.
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71. If one body attract or repel another, the second
attracts or repels the first with an equal and opposite force.

This is true not only of the attractions of the heavenly bodies

but of molecular forces between the particles of matter consti-

tuting any solid, liquid or gas. (Were this not the case we
might have a body A attracting another body B with a force

greater than that with which B attracts A. Then consider-

ing A and B together as forming one system there will be a

resultant force upon the system acting from B towards A and

making its centre of inertia move with an acceleration from
B to A, while no forcie is applied by external agency, and this

is contrary to experience.)

If a body A press against another body B both bodies

being at rest, then every one will at once admit that B
presses A with a force equal and opposite to thai which
A exerts upon B. Thus if a pound v/eight rest on a
horizontal table w^e know that the table exerts a vertical

pressure on the pound equal to the weight of a pound,
because it supJDorts it, and no one will doubt that the

pressure of the weight on the table is equal to the weight of

a pound, (in fact some persons will consider the latter state-

ment more obvious than the former,) so that in this case

action and reaction are equal and opposite.

72. Suppose the finger pressed against a piece of soft putty
or other material so as to penetrate it; the question may be
asked—" Is the pressure of the putty on the finger in this

case equal to the pressure of the finger on the putty, and
if so why does the finger penetrate the putty ?

"
Consider

a very thin section of the finger which includes all the portion
in contact with the putty ;

let m denote the mass of the

section and /' its acceleration towards the interior of the

putty. Then the resultant force on the section is mf towards
the putty, and the pressure exerted on the section by the rest

of the finger must be greater than' the pressure of the putty

upon it by the quantity vif. But by taking the section of

the finger sufficiently thin we can make m as small as we

please. Hence the pressure exerted by the putty upon an

indefinitely thin section of the finger in contact w^ith it is

indefinitely nearly equal to the pressure exerted by the rest

of the finger upon that section, and this latter pressure differs
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by the indefinitely small quantit}^, mf, from the pressure
exerted by the finger on the putty. In this case, then, the

action and reaction between the finger and the putty are

equal and opposite.

If the pressure of the hand on the knuckle end of the

finger be greater than that which the putty can exert upon
the other end, there will be a resultant force upon the finger
towards the putt}^. and this force will produce acceleration

in the finger which will therefore penetrate the putty with

an accelerated motion, and the pressure of the finger upon
the pufty will be equal onfy to the pressure exerted by the

putty on the finger, and not equal to that exerted by the hand
on the knuckle end of the fino^er, the difference beins: that

force required to produce acceleration in the finger, so that

action and reaction between the end of the finger and the

putty are equal and opposite. If the pressure exerted by the

hand on the finger be equal to that exerted by the putty upon
it the finger will remain at rest or penetrate the putty watli

uniform velocity.

73. Suppose two particles wdiose masses are respectively
m and m to be connected, and the particle of mass in to be

acted on, by a force Pin the direction of the line joining the

two. The acceleration of the two particles will be the same
as that of one particle of mass m + m ,

and will therefore be

F , .

denoted by 7. Now the force required to produce this
7n-\- m

.... . , . Pni
acceleration in the particle of mass m is , ,

and this is
711 -\-m

therefore the force with which the first particle acts on the

second arid is in the same direction as P. Also' the force re-

. P .

quired to produce the acceleration -.
—

,
in the first particle

Pm
is

-, ,
and this therefore represents the resultant forcem + m ^

upon it. But one of the forces applied to the particle is P,
and the other is the reaction of the second particle ;

this

latter is therefore in the direction oj^posite to that of P and

equal to P
, ,

that is, to -, ,
and is therefore

m-\- m m + m
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equal and opposite to the action of the first particle upon
the second. Hence in this case action and reaction between
the particles are equal and opposite.

We see then that in all cases in which force is exerted

between portions of matter, whether at rest or in motion,
action and reaction are equal and opposite, and this is as

true for the molecular forces which act between the ultimate

molecules of matter as for the forces of gravitation between
the heavenly bodies.

74. If m denote the mass of a particle, and/ its accelera-

tion, the force mf required to produce this acceleration is

called the effective force on the particle, and is identical with
the resultant of all the forces acting on it.

Imagine any connected system and let m denote the

mass of one of its particles and /"its acceleration. Then the

effective force on the particle will be denoted by mf^ and this

must be equivalent to the resultant of all the forces acting
on the particle and will therefore if reversed maintain equi-
librium with them, and this is true for all the particles in

the system. Therefore the reversed effective forces of all the

particles will balance all the other forces acting throughout
the system. But the forces applied to any particle consist in

the most general case of two classes, viz. :
—those impressed

upon it by external agency, and the forces exerted by the

other parts of the system which we may call internal forces.

But to each force between the parts of the system there is

(by the third law of motion) an equal and opposite reaction,
so that the internal forces taken tJiroughout the system are in

equilibrium amongst themselves. Hence the effective forces

of all the particles when reversed will maintain equilibrium
with the forces impressed from without. This is D'Alem-
bert's principle and it follows at once from Newton's laws

of motion.

All that has been said above is true ho^vever great the

forces may be, or however small the time during which they
act, and will therefore apply equally well to impulses as to

forces.

75. It must be remembered that the action and reaction

contemplated in the third law of motion are action and
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reaction between portions of matter. There is nothing in

nature corresponding to a "
force of resistance against accele-

ration
"
which is supposed by many writers to be exerted by

matter, and it cannot be too strongly urged that reversed

effective forces have no real existence. But Newton's third

law of motion admits of a wider interpretation than this. In

the scholium to this law Newton says :
—

If the action of an agent he measured hy its force and

velocity conjointly ; and if similarly the reaction of the

resistance he measured hy the velocities and amounts of its

several constituents conjointly, whetJier these arise from fric-

tion, cohesion, weight, or acceleration;—action and reaction

in all comhinations of machines will he equal and opposite.

Now it has been shewn that the product of a force into

the velocity of its point of application in the direction of the

force, is the rate at which it luorhs. Newton then in this

scholium measures the action of an agent by the rate at

which it works, and similarly he measures the reaction of

the resistances by the rate at luhich tvork is done against
them. The work done against the resistance arising from

acceleration mentioned in the scholium is the work done by
the effective forces of the system on account of their producing
acceleration and is expended in generating kinetic energy in

the system. Hence the measure of the reaction arising from

acceleration is the rate at which kinetic energy is being

generated in the system, and the scholium when interpreted
into modern phraseology will stand thus :

—
If the action of an agent he measured hy the rate at whicJi

it luorks, and similarly the reaction of the i^esistances arising

from friction, cohesion, and weigJtt hy the rate at which luork

is done against them, and if vje include amongst the measures

of these reactions the rate at wliich kinetic energy is heing

generated in the system ;
—action and reaction in all combi-

nations of macJiines will he equal and opposite.

76. The statement thus interpreted is nothing more nor

less than the enunciation of the great principle of the con-

servation of energy. If an agent work upon a system and there

be no opposing forces such as friction, &c., then the rate of
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change of the kinetic energy of the system is precisely

equivalent to the rate at which the agent works, and
therefore the whole change of kinetic energy produced in

the system in any time is equivalent to the work done on
the system by the agent.

If, however, the action of the agent be opposed by forces

of the nature of friction, &c., the rate of chano^e of kinetic

energy in the system is less than the rate at which the agent
works by the rate at which work is being done against these

opposing forces, g^nd the whole change of the kinetic energy
of the system produced in any time is less than the work
done by the agent in that time by the work done against
friction, &c., and converted into heat or other forms of energy.

Together with friction must be classed all forces whose action

does not remain constant in magnitude and direction whether
the system be at rest or moving in any way whatever,

77. When the agent works against forces of the same
nature as weight, with which we include all those which are

independent of the time, and of the velocity of the system,

depending only on its position and configuration, and which
are sometimes called conservative forces, then the rate of change
of kinetic energy in the system is less than the rate at which
the agent works by the rate at which a work is done against
these other forces, and the work done against these forces in

any time becomes j^otential energy in the system, and can be

converted into kinetic energy by leaving the system free to

return to its original position and configuration.

If friction, or other forces of like nature, act on a system,
then, when the motion of the system is reversed, these forces

are also reversed, and the work done against them is not

converted into kinetic energy on leaving the system free to

return to its original configuration, but is at first converted

into heat, sound, the energy of electric currents, or other

forms of energy.

78. We see then that Newton's third law of motion con-

sists of two distinctly different principles. The first states

the equality of the action and reaction between portions of

matter (and is equally true of electrified and magnetized

matter), in which case both action and reaction are of the
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nature of forces such as those considered in statics, or as a

particular case of these, of great forces acting for a short

time and the effects of which we find convenient to treat

as impulses. The second consists of the great principle
of conservation of energy and asserts the equality of action

and reaction when these terms do not imply statical forces

but rates of doing work
;
that being called action by which

work is done and that against which work is done being
treated as a reaction, the rate of increase of kinetic energy
beino; included anion grst the latter in the statement that

action and reaction are equal and opposite.

The endeavour to make the law apply in its first sense

to the action of a force on a particle, free to move, was the

origin of the introduction of a force of resistance to accelera-

tion equivalent to the efiTective force reversed, to which there

is nothing in nature at all corresponding.

79. Many modern writers, following out the suggestions
of the late Dr Whewell, have enunciated the principle of

''the physical independence of forces" as their second law
of motion, and Newton's second law they have called the

third law of motion. The third law, as given by Newton,

they then either assume as an axiom or treat as a fourth

law. The prevailing tendency amongst mathematicians has

recently been to return to the laws as enunciated by Newton,
and in this form they have been given above.

80. If a particle of mass m be acted upon by a force

P which would cause it to move, were it free to do so, with

an acceleration f, and be prevented from moving by a string
or some other means of constraint, then the string or other

constraint must exert on the particle a force equal to P, but

in the opposite direction
; and, since action and reaction are

equal and opposite, it follows that the particle will exert

a force upon the string or other constraint equal to, and in

the same direction as, the force P. Thus if a heavy particle
be suspended in equilibrium by a vertical string, it exerts a

downward force on the string equal to its own weight.

Similarly a heavy body at rest on a horizontal table exerts

a pressure on the table vertically downwards, and equal to

the weight of the body.
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81. If tlie particle whose motion is constrained by a

string, or other means of constraint, be moving with a ve-

locity uniform in magnitude and direction, since the motion of

the particle is not accelerated there can be no resultant force

acting upon it, and the conditions are j^recisely the same as

if the particle were at rest.

If the particle acted on by the force P, instead of moving
with an acceleration f, be constrained by some other means
to move with an acceleration f^ in the direction in which P
acts, we can find immediately the force exerted by the con-

straint. For since the force P would produce in a particle
of mass m an acceleration denoted by f, we must have P
equal to mf. Also, the particle moves in the direction in

which P acts with an acceleration f^ ;
the resultant force on

it must therefore be in the direction of P, and numerically

equal to mf^. The force exerted by the constraint must
therefore be in the direction in which P acts, and algebraically

represented by mf^
—
mf, or by on

(f^
—
/). If /^ be less than

/, this shews that the force exerted by the constraint is in

the direction opposite to that in which P acts, and nume-

rically represented by m (f—f^).

If the actual acceleration of the particle be in the

direction opposite to that in which P acts, it will be of

negative sign. Suppose it to be —f. Then the force exerted

by the constraint must be in the direction opposite to that

of P, and numerically equal to m (f^ +/), that is to mf^ + P.

If the actual acceleration of the particle be not in the

straight line in which P acts, then we may find the resultant

force which must act on the particle in order to produce
this acceleration, and the force which is exerted by the

constraint is that which must be compounded with P to

produce this resultant. This can be found at once by help
of the parallelogram of forces.

82. As an example of the preceding article, suppose a

heavy particle to rest on a horizontal plane, while the plane
moves vertically downwards with an acceleration f; what
will be the pressure of the particle on the plane, the ac-

celeration produced by gravity in a particle fulling freely

being denoted by ^ ?
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The pressure of the particle on the phxiie must by the

third law of motion be equal and opposite to that of the

pU\ne on the particle, and the only forces acting on the

particle are the earth's attraction and the pressure of the

plane. Now the particle moves downwards with an ac-

celeration /; the resultant force upon it must therefore act

downwards and be numerically equal to mf. But the attrac-

tion of the earth upon the particle acts downwards and is

numerically equal to mg. Hence if /be less than g, the

pressure of the plane on the particle acts upwards and is

equal to mg — mf, that is, to m {g —f) ;
while the pressure

of the jDarticle on the plane, which is equal and opposite to

this, acts vertically downwards and is numerically repre-
sented by the same expression, viz. m {g —f).

If/ be greater than g, the downward force on the particle
must be greater than its weight ;

the pressure of the plane
on the particle must therefore act downwards, and its

magnitude will be represented by m (/— g). The particle
must therefore be underneath the plane, and its pressure

against the plane will be directed upwards.

If / be equal to g the particle is falUng freely, and the

pressure on the plane becomes zero as we should expect.

83. Suppose, for example, the acceleration produced by
gravity in a particle falling freely to be denoted by 32, and
a horizontal plane to move downwards with an acceleration

denoted by 16 : then the pressure on the plane of a heavy
particle resting upon it will be one half the weight of the

particle. Also, if a heavy body be suspended from a spring
balance, and the body and balance together be moved with
an acceleration downwards, the apparent weight of the body
will be diminished.

By precisely similar reasoning it may be shewn that if

a horizontal plane on which a particle rests be made to move
with an acceleration upwards denoted by /, the pressure of

the particle on the plane will exceed its weight by mf units

of force
;
and if a mass m be suspended from a spring balance

which is made to move with an upward acceleration denoted

by / its apparent weight will be increased by the quantity
mf.

G. D. 4
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84. The following example will illustrate the subject of

the preceding article.

A balloon is ascending vertically so that a j)ound weight

2:)r
esses on the hand of the aeronaut sustaining it with a force

equal to the weight of seventeen ounces. Find the acceleration

of the balloon, g being supposed equal to 32 luhen a second

and afoot are tlte units of time and length.

The forces acting on the pound are a force equal to the

weight of 17 oz. acting upwards, and its own weight, that is,

the weight of a pound, acting downwards. The resultant

force is therefore equal to the weight of an ounce acting up-
wards. Now the weight of a pound acting on the mass of a

pound produces in it an acceleration denoted by 32
;
there-

fore, by the second law of motion, a force equal to the weight
of a,n ounce will produce in the mass of a pound an accelera-

tion denoted by 2. Hence the upward acceleration of the

pound weight, and therefore that of the balloon, is such as to

generate in one second a velocity of two feet per second.

85. Before quitting this portion of our subject we will

take one more example, which will be useful to us hereafter.

Two lueights P and Q, whose masses are M and m re-

spectively, are connected by a weightless string luhich j^cisses

over a smooth jndley C. Bupposing M to be greater than m,

find the acceleration of each and the tension of the styling.

Let T denote the tension of the string. The mass of F
has been denoted by Jf

;
its weight is therefore equal to Mg.

Also the weight of Q is equal to mg. The resultant force

acting on F is consequently Mg — T acting downwards, and
the acceleration produced by this is, by the second law of

motion,

Mg-T T

Again, the resultant force acting upwards on Q is T— mg.
The upward acceleration produced in Q by this force is

T
m '^
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Now, since the string remains of invariable length and

always tight, the downward velocity of P is aliuays numeri-

d

I*

cally equal to the upward velocity of Q, so long as the condi-

tions of the motion remain unchanged. Hence the changes
of their velocities in any interval, and therefore their ac-

celerations, must be numerically equal.

Therefore
T T

T=2g
Mm

•

ilf+ 111
'

and the acceleration of each weight is represented numeri-

cally by M-m
^M+m'

The actual acceleration ofP and ^is therefore that which
would be produced in a particle whose mass is the sum of tlie

masses, moved by a force equal to the difference of the weights
of F and Q ;

that is, to the force available for producing
motion in the system.

4—2
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86. The results of maiiy experiments may be cited in

corroboration of the truth of Newton's second law of motion.

We shall describe one piece of apparatus known as Attwood's

machine, and shew how the results of experiments made with

it bear upon this law and other points already mentioned.

Attwood's machine consists of a vertical pillar AB carry-

ing a light brass pulley G; the axle passing through the

centre of C turns, with the pulley, and is supported on the

circumferences of four light brass wheels, called friction

wheels, of which only two, a and h, are shewn in the figure.

As the pulley G turns, its axle rolls on the circumferences of

the four friction wheels, causing them to turn very slowly,
their axles working in fixed bearings supported by the pillar

AB. By this means the resistance to the motion of the

pulley G, due to friction, is very much diminished, since the

only sliding frictions introduced are those against the axles

of the friction wheels, and these turn very slowly indeed

compared with the pulley G. A light string, to the ends of

which two equal weights P and Q are attached, passes over the

pulley C. JSF is a vertical graduated bar upon which the

ring D is capable of sliding, and of being fixed at any posi-
tion by means of a set screw

;
the ring being of such size as

to allow of the weight Q passing freely through it. ^ is a

platform also moveable on the bar SF, and, like the ring D,

capable of being fixed upon it in any position. B is an

elongated weight which may be placed on the top of the

weight Q, but which is incapable of passing with it through
the ring B. The bar SF may be graduated in feet and
hundredths of a foot, or in accordance with any other con-

venient system. A clock whose pendulum beats seconds is

used for timing the experiment, and for the sake of exacti-

tude and convenience other appendages are attached to the

instrument, such as an apparatus for suddenly releasing the

weight Q, an electro-magnet, which when excited presses a

pencil against a cylinder covered with paper and caused to

rotate uniformly by the clock, the connection of the coil of

the electro-magnet with the battery being made and broken

by the motion of Q, &c.
;
but the parts described above form

all the essential portions.

Suppose the weight Q to be raised above the ring B, and
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the weight R placed upon it, and that at a particular instant

the system is left free to move. Then since the weight Q is

equal to P the weight of Q and R together is greater than
that of P; they will therefore descend, and P will be raised.

The time required for the top of Q 'to reach the ring D is

then accurately measured, and as the top of Q passes through
this ring the weight R is removed. Then, since the weights
P and Q are equal, there is no force to change the motion of

the system, which will therefore continue uniform until the

weight Q strikes the platform E. The time elapsing between
the instants when the weight R is removed from Q and when
Q strikes the platform E is accurately observed, and the dis-

tance between the ring D and the top of Q when resting on
the platform is measured by the graduations on the bar SF.
Hence the velocity of Q between D and E can be at once

found.

We shall now describe in detail a few experiments with

Attwood's machine which have an important bearing on
some of the foregoing articles.

87. Exp. I. Let the equal weights P and Q be formed
of the same material, M being the mass of each, and let m
be the mass of R. Let h be the distance between the ringD
and the top of Q when resting on the platform ;

t the time

elapsing between the commencement of the motion and the

instant when the weight R is removed from Q, and t' the

interval between this instant and that at which Q strikes the

platform E.

Then if the same weights be used, and the distance

between D and E kept constant, while the depth of the ring
D below the point at which Q is liberated is varied so as to

vary t, it is found that if' varies inversely as t. Now the

velocity of P or of Q after the latter has passed through D is

constant, and therefore equal to -7 . Hence the velocity varies
z

as t
;
that is, the velocity generated in the moving system by

the weight ofP is proportional to the time during which this

weight acts upon the system. But the velocity generated by
a force is proportional to the time during which that force

acts only when the acceleration produced by it, and therefore
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the force itself, is constant, the mass moved being supposed to

remain unaltered. Therefore the force acting upon the system,
that is, the weight of a mass m (since m is the mass of E)y is

constant and independent of the velocity withwhich the mass is

moving. This being found by experiment to be true for any
body used in place of R, it follows that the earth's attraction

on any mass of matter, that is, its weight, is indepeudent of

the velocity Avitli which it is moving. We may therefore in-

troduce a symbol ^u to represent tlirougJiout the motum the

weight of the mass m, that is, of B.

88, Exp. II. If we neglect the masses of the string and
of the pulley G, the whole mass moved is 2il/+m, and the

force producing the motion is w. Now suppose the weights
P and Q to be changed, P remaining always equal to Q,
while R is unaltered. Tlien 2J/ is changed, and the ratio in

which it is changed may be supposed known, for P, Q, and R
may be formed by joining together equal weights of the same

homogeneous matter, whose masses are consequently equal.

By adding to or removing from P and Q the same number of

sach small equal bodies, the sum of the masses of P, Q, and R,
that is, the whole mass moved, may be changed in various

knoiun ratios. Then it is found from the experiment that the

velocity of Q between D and E varies as —tt . Also, as

was found in the preceding experiment, v/hen 2il/+ m re-

mains constant, the velocity of Q after passing P varies as t.

Hence the velocity generated in the unit of time by the con-

stant force IV varies as r-r-. ; that is, in the inverse ratio
2J7-fm'

'

of the whole mass moved.

The result of this experiment agrees wath that deduced
in Article 85, in which the second law of motion w^as taken

as the basis of the investicration.

89. Exp. III. Suppose, as in the preceding experiment,
that P, Q, and R are all made up of a number of equal email

masses of the same material, and let any equal numbers of

these small weights be removed from P and Q and attached

to R. Then w, the force producing motion, is changed in a
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known ratio
;

for the weights of each of the small bodies

making up R being the same, the weight of R must be pro-

portional to the number of these small weights contained in

it. Also, the whole mass moved is the same as before, and
h

it is found that -, ,
that is, the velocity of the system after Q

has passed through D, varies directly as the product wt.

Therefore the velocity generated in the unit of time varies as

w. But the mass remaining always the same the momentum
varies as the velocity ; therefore, the momentum generated in

the unit of time varies as w, the force producing the motion.

This result is in accordance with that deduced in Article 85

from the second law of motion, and may be taken as direct

evidence in favour of the truth of that law. It also shews

that the momentum generated by a force in the unit of time

is a proper measure of that force, the unit of force in such

case being that force which generates the unit of momentum
in the unit of time.

90. Exp. IV. Let the bodies P and Q be exchanged for

bodies of other, the same, material, whose lueights, as deter-

mined by a balance, are the same as those of P and Q (e.g.

brass weights exchanged for iron, platinum, glass, china or

other material), while B remains unchanged, so that the force

producing motion remains unaltered. Then experiment shews

that the velocity generated in the unit of time is independent
of the material of which P and Q are composed. But by the

second law of motion the momentum generated in the unit

of time is always the same. Hence, since both the velocity
and the momentum generated in the unit of time are inde-

pendent of the material of which P and Q are made, it

follows that the whole mass moved, and, therefore, the masses

of P and Q, are independent of the kind of that material.

But P and Q were taken so that their loeights should remain

unchanged; hence, if the weights of a number of bodies of

different material bo equal, their masses will also be equal:
another proof of the statement that the earth exerts the same
attraction on all kinds of matter alike.

91. The first experiment has shewn us that the at-

traction of the earth on a moving body is independent of
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the velocity witli which it is moving. The second, that the

momentum generated in the unit of time by a constant force
is constant and independent of the mass in which it is gene-
rated. The third, that the momentum generated in the unit

of time in the same mass is proportional to the force pro-
ducingf motion. Combining: the results of the second and
third experiments, we see that the momentum generated in

any mass in the unit of time is proportional to the force pro-

ducing motion, and hence we obtain a dynamical measure of

force. From the result' of the fourth experiment we infer

that the earth exerts the same attraction on all kinds of

matter, or that the weight of a body depends only on the

quantity of matter it contains, and is independent of the kind,
or quality, of that matter.

92. In the preceding experiments suppose -, equal to v.

Then v is the velocity of Q when its top passes through the

ring D; that is, the velocity generated in a mass 2]\f+ ni by
the weight of the mass in acting upon it for a time t (see
Art. 85) ;

and the experiment shews that this velocity is pro-
m

portional to tttt t- We have therefore,^ 2M+m
m

^
2i]I + Qih

g being a constant throughout the series of experiments.
Therefore the velocity generated in the unit of time is

ni
^ 2M + m '

and since the whole mass moved is 2J/ + m, it follows that

the momentum generated in the unit of time is mg. But if

the imit of force be that force which acting on the unit of

mass for the unit of time generates in it the unit of velocity,
it has been shewn that the measure of any force will be the

number of units of momentum generated by it in a given
time. Hence the weight of the mass m is represented

numerically by nig, or

IV = mg.
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The value of g is found to be always the same at the same

place, but to vary with the latitude of the place of observa-

tion, being greater near the poles than at the equator, and

increasing continuously with the latitude. It is also less at

great heights above the sea-level than at that level. In the

latitude of Edinburgh at the sea-level, when a second and a

foot are taken as the units of time and space, the value of g
is found to be 32*2 very nearly.

The value of g at the sea-level in latitude X is approxi-

mately represented by the expression

G (1-0-0025659 cos 2 X),

where G obviously represents the acceleration of gravity at

the sea-level in latitude 45^ and is equal to 32'1703 foot-

second, or to 980"533 centimetre-second, units.

93. We have seen that the momentum generated in a

moving system in the unit of time, by the weight of a mass

m, is represented by m//. Now, in the case of a particle fall-

ing freely, the force producing motion is its weight while the
mass moved is simply its own mass. Hence the velocity

generated in the unit of time will be g, which is therefore

numerically equal to the acceleration produced by gravity
in a body falling freely; and when we say that at a par-
ticular place g is equal to 32*2, we imply that at that j^lace
the attraction of the earth is such as to generate in a body
falling freely a velocity of 32*2 feet during each second of

its fall. Such motion is called uniformly accelerated motion.

This result might of course have been obtained directly
from observations on bodies falling freely, but since it is very
difficult to measure great velocities, especially when they are

continually varying, and since the resistance of the air becomes
considerable when the velocity of the moving body is great,
Attwood's machine is convenient inasmuch as the velocity
to be actually observed is uniform, and, by sufficiently di-

minishing the ratio of m to M, can be made as small as we

please.

94. In the above explanation of the use of Attwood's

machine we have for simplicity neglected the motion of the
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pulley C. The mass of this pulley is, however, generally

comparable with that of P or Q, and the points on the

circumference of C have the same velocity as P or Q, while

the points within the circumference are moving with less

velocity. Were the whole mass of the pulley collected at

the circumference we should only have to add this mass to

that of the other moving bodies to obtain the whole mass

moved; but since that is not the case a complete correction

may be made by adding a term M'
,
less than the number of

units of mass in the mass of C, to the quantity 2il/ + in, and
thus employing 'iM + M' + 'm as the expression for the

whole mass moved. To determine theoretically the value

of M' we require some knowledge of Rigid Dynamics ;
it is

sufficient here to state that it admits of exact determination.

The motion of the friction rollers is so slow and their mo-
mentum consequently so small that they may be altogether

neglected.

95. It is almost unnecessary to remark that the experi-
ments detailed above have never been carried out precisely in

the form there given, nor would the results of such experi-

ments, were they attempted, accurately correspond with those

stated, the j)i'iiicipal cause of the discrepancies being the

mass of the j)ulley (7, for the experiments described were

supposed to be conducted with an apparatus in which the

mass of the pulley was insensible. They however serve to

illustrate the method which might be pursued by a person

ignorant of dynamics, and investigating the laws of motion
^nd of gravitation by means of Attwood's machine, the results

at which he would arrive agreeing sufficiently nearly with

those stated above to suggest the 2^^^ohable truth of those laws

which have been deduced from what would be the result of

experiments performed under the ideal conditions which we
have supposed to obtain. The evidence on which these laws

are accepted must then be looked for from the agreement
with observed phcenomena of calculations based on the as-

sumption of their truth. The experiments described also

illustrate the methods in which such experiments may be

varied so that the ''question asked" in each may be in the

simplest form possible, and the answer obtained may be

simply the answer to that question, and not involve those
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to several others from which it could be disentangled only by
repeatedly varying the conditions.

96. It may be well here briefly to review the several

units v/hich have been already defined, and to shew how
each is connected with the three fundamental units of time,

length, and mass. These three units are chosen arbitrarily,
and upon them the magnitudes of all others employed in

dynamical science depend.

The unit of time universally adopted throughout the

world for scientific purposes is the second of mean solar

time, and is therefore ultimately derived from observations

of the earth's rotation. All measurements of velocities

amount therefore simply to a comparison of the motion of

the body considered with that of the earth about its axis,

time being employed merely as the connecting link.

The unit of length adopted in Britain by engineers is

the foot. This is the third part of the distance between the

centres of two gold plugs, sunk in a bar of bronze, which is

now kept at the Exchequer Chambers and known as the

Imperial Standard Yard, the temperature of the bar at the

time of observation beinsf 62*^ Fahrenheit.

The unit of mass adopted in British measurements is the

Imperial pound, that is, the quantity of matter contained in

a certain mass of Platinum, kept at present in the Exchequer
Chambers, and known as the Imperial Standard Pound Avoir-

dupois.

97. We pass on now to the consideration of the units

derived from the three fundamental units of time, length,
and mass.

The unit of velocity is the velocity of a point which

passes over the unit of length in the unit of time.

If a second and a foot are the units of time and length,
the unit of velocity is the velocity of a point which passes
over one foot in a second.

Suppose that when the unit of time is r seconds and the

unit of length a feet^ the
. velocity/ of a certain point is denoted
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hy w
;
what tuill be the measure of this velocity ivhen the

unit of time is t seconds and the unit of length s feet ?

The number of feet in u units of length, each containing
a feet, is ucr. Let v be the measure required. Tlien

in T seconds the point passes over ucr feet;

.*. in 1 second „ „ — feet:
T

.•. in t seconds
,, „ ucr- feet.

T

But -Mcr-feet are equivalent to u— units of length,
T "ST °

each containing s feet; therefore

o- t

v = u. ~ .- :

s T

tha.t is, a velocity which is denoted by u, when r seconds and
cr feet are the units of time and length respectively, will be

denoted by u .
~ .- ,

wdien t seconds and s feet are units.
•^ ST

The numerical measure of a velocity, therefore, varies

inversely as the unit of length and directly as the unit of

time. This result is also a consequence of the fact, already
stated, that the luiit of velocity varies directly as the unit

of length, and inversely as the unit of time. (See Arts.

8—10.)

98. The unit of acceleration is the acceleration of a

point whose velocity is increased by the unit of velocity in

the unit of time.

If a second and a foot are the units of time and length,
the unit of acceleration is the acceleration of a point wdiose

velocity is increased in one second by one foot ]}er second.

Suppose a certain acceleration to he denoted hy f luhen

T seconds is the tuiit of time and cr feet the unit of length ;

what will he the measure of this acceleration luhen t seconds

and sfeet are the units of time and length respectively '!^
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The velocity generated in r seconds with the given accele-

ration is a velocity of / units of length per t seconds, that is,

of f(7 feet per t seconds, since the unit of length is cr feet.

Hence

with the given acceleration in t" there is generated a

velocity per t" of fa feet
;

.*. with the given acceleration in 1" there is generated a

velocity per t" oif
- feet

;

.-. with the given acceleration in 1" there is generated a

velocity per 1" of/-^ feet
;

.'. with the given acceleration in V there is generated a

velocity per t" of/ -^ feet
;

.'. with the given acceleration in t" there is generated a
f

velocity per t" of/cr -., feet.

Now fcr
- feet are equivalent to /— .

—
, of the new units

•^
T" ST

of length, each of which contains s feet. Hence with the

given acceleration there is generated in the new unit of time
a velocity such that if a point were moving with this velocity

it would pass over a distance equal to/- . -^ of the new units

V f
of leno^th in the new unit of time. Hence f~.—, is the° -^

s r^

measure of tlie acceleration referred to the new units, that is,

an acceleration which, when r seconds and cr feet are the
units of time and length, is denoted by / will be denoted by
a f

{-.—.,, when t seconds is the unit of time and s feet the unit
-^

s r

of lensj^th.

From this result it will be seen that the numerical
measure of an acceleration varies inversely as the unit of

length and directly as the square of the unit of time
;
a re-
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suit previously found by considering the variation of the iinit

of acceleration. (See Arts. 13 and 14.)

99. As examples we may take the following :

Ex. 1. The acceleration ^produced hij gravity in a particle

falling freely being denoted by 32, ivhen a second and a foot
are the units of time and length, lultat tuill be the measure

of this acceleration when a day and the length of the earth's

7'adius are units, the latter being supposed equal to 4000
miles ?

Gravity in V generates a velocity perV of 32 feet;

„ 1 day „ „ „ V „ 32 X 24 X 60-ft.;

„ 1 day „ „ 1 day of 32 x 24' x GO* ft.

32 X 24" x 60*
Now 32 X 24^ X 60* feet are equivalent to 'J^^.,^^

—
r,.7T7r^ o280 X 4000

times the earth's radius. The required measure is therefore

32 X 24'^ X 60*
...:,,r,,

5280 X 4000
'''' ^^'^^^TT-

100. Ex. 2. An acceleration tuhich, when a second and a

foot are units, is represented by 32*2, is represented by 9660, a

yard being the unit of length. Find the unit of time.

Let t seconds be the unit of time. Then

with the acceleration in t" there is generated a velocity per
r of 9660 yds.

,„ .„ 06^
• • >J }} 53 * 33 33 33 ^ >) J. "

33

33

y. -J. 966^
33 33 33 *• 33 33 33

-*" 33 j.i 33

f

,, , . , 9660 X 3 , ,
that IS, 01 ;k leet.

But with the acceleration in one second there is generated
a velocity of 32 2 feet per second

;

9660 X 3
.^^ ^

.'. t = so,

and the unit of time is thirty seconds or half a minute.
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101. The unit of momentum is the momentum possessed
by the unit of mass when moving- with the unit of velocity.

The unit of momentum, therefore, varies directly as

the unit of mass and directly as the unit of velocity : but
this latter varies directly as the unit of length and inversely
as the unit of time. Therefore the unit of momentum varies

directly as the unit of mass, directly as the unit of length,
and inversely as the unit of time. Hence, since the nume-
rical measure of any quantity varies inversely as the unit in

terms of which it is measured, it follows that the numerical
measure of a given momentum varies inversely as the unit

of mass, inversely as the unit of length, and directly as the

unit of time.

If the measure of a momentum referred to any known
set of units be given, its measure in terms of any other

sj^stem of units can be found by the same method as that

adopted above in the case of acceleration, provided that each
of the second system of units is known in terms of the

corresponding unit in the first set.

102. The unit of force is that force which generates the
unit of momentum in the unit of time: or, that force which

acting upon the unit of mass for the unit of time generates
in it the unit of velocity.

If a second, a foot, and a pound be taken as the units of

time, length, and mass respectively, the unit of force is that

force which acting on the mass of a pound for a second

generates in it a velocity of one foot per second. This force

we have shewn to be rather less than the weight of half an
ounce.

A certain force is represented hy P when r seconds, a- feet,
and /jb j^onnds are the units of time, length, and mass respec-

tively : what will be the measure of tins force when t seconds,
s feet^ and m pounds are the respective units ?

Since the force is represented by P in the first system of

units, and a force is measured by the momentum which it

will generate in the unit of time, it follows that the force

acting on a mass of fM pounds for r seconds will generate iu
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it a velocity of P units of length, that is, of Pa feet, per
T seconds.

.*. the force acting on fi lbs. for r" generates a velocity

per T
'

of Per feet;

.-. the force acting on 1 lb. for r" generates a velocity
per t" of Po-/^ feet;

.'. the force acting on 1 lb. for 1" generates a velocity

per T
'

of Pa/i
-

feet;
T

.-. the force acting on 1 lb. for 1" generates a velocity
1

per V of PcTfM -2 feet
;

T

.'. the force acting on 1 lb. for V generates a velocity

per f of Pa/Jb -^ feet
;T

.*. the force acting on 1 lb. for t'' generates a velocity

per t" of Pct/jl
—̂ feet

;

.'. the force acting on m lbs. for t" generates a velocity

per t" of Pa— . —, feet.

But Per — . ^ feet are equivalent to P -
.
—

.
— of the

new units of leng^th. Hence the force acting^ on the new..."
unit of mass for the new unit of time will generate in it a

i2

velocity of P -
.
—

. -^ new units of length j)er the new unit

of time. The measure of the force, expressed in terms of the
±2,

new system of units, is therefore P - .— . -r. .
•^

s m T^

The numerical measure of a force, therefore, varies in-

versely as the unit of mass, inversely as the unit of length,
and directly as the square of the unit of time. This also

follows immediately from the fact that the unit of force

varies directly as the unit of mass, directly as the unit of

length, and inversely as the square of the unit of time.

G. D. 5
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103. Ex. 1. Suppose that afo7xe is represented hy 32'18

when a second, a foot, and a p)oimd are the units of time,

length, and mass resjwctiveli/ : what will be the measure of the

force when the unit of length is the centimetre, and the unit of
mass the gramme, the unit of time remaining the same ; it

being given that a gramme is equal to 15"432. .. grains, and a
centimetre to '03281... /ee^.?

These latter units are those employed in electrical and

magnetic measurements, and the problem amounts to finding
how many of the absolute units of force adopted by electri-

cians are equivalent to the weight of an Imperial pound in

London, since such weight is very nearly equal to 32*18

British absolute units of force.

The given force acting on 7000 grains for V generates
a velocity per 1" of 3218 feet;

.•. the given force acting on 1 grain for V generates a

velocity per 1" of 3218 x 7000 feet;

.'. the given force acting on 15*432 grains for 1' generates
,

.^ ,„ , 3218 X 7000 „ ^a velocity per 1 oi —^ ^ , ^-^ leet.
•^ ^ lo-432

Now a centimetre is equivalent to '03281... feet; hence
3218 X 7000 ^ , •

-, . . 3218 x 7000—, ^ ..^^ leet are equivalent to ^^—r^;^ ttk^^-, centi-
15-432 ^ lo-432 x '03281

metres. The given force will, therefore, in one second gene-

1 '. f 3218x7000 ,,,oaorate m a gramme a velocity oi .rir~r^^ ^.-,^^., ,
or 444,893* ^

1 0-432 X '03281'

centimetres per second, very nearly: hence 444,893 is the

measure required.

From this we see that the weight in London of an Im-

perial pound of matter is approximately equal to 444,893
absolute uuits of force when a second is the unit of time, a

centimetre the unit of length, and a gramme the unit of mass.

The unit of force belonging to the centimetre-gramme-
second system is called a dyne.

104. Ex. 2. If the unit offorce be the lueight of the unit

of mass, the unit of lengtJi being a foot, tvhat must be the imit

of time on the supposition that the acceleration p)t'oduced by

gravity in a body falling freely is denoted by 32 luhen a
second and afoot are units of time and length resp)ectively 'i
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The unit of force, acting on the unit of mass for the unit

of time, generates in it the unit of velocity. Let t seconds be

the unit of time.

Then the weight of the unit of mass generates in that

mass in t seconds a velocity of one foot per t seconds.

Therefore the weight of the unit of mass generates in

that mass in one second a velocity of - feet per t seconds,
z

that is, a velocity of
-7^

feet per second.
c

But the weight of any mass generates in that mass in one

second a velocity of 32 feet per second.

1 1
Therefore -. = 32, or t

Hence the unit of time required is —t= seconds.

105. Ex. 3. If the unit of force he the lueight of 10

pounds, and the unit of acceleration when referred to a

second and afoot as units he denoted hy 8, find the unit of
piass, assuming that the value of g when a second and a foot
are units is 32.

Let m pounds be the unit of mass. The unit of force is

that force which acting upon the unit of mass produces in it

the unit of acceleration.

Therefore the weight of 10 pounds acting on a mass of m
pounds produces in it an acceleration which, when a second

and a foot are units, is denoted by 8.

Therefore the weight of 1 pound acting on a mass of m
pounds produces in it an acceleration which, when a second

o

and a foot are units, is denoted by —r.
' -^ 10

Therefore the weight of 1 pound acting on a mass of

1 pound produces in it an acceleration which, when a second
8nh

and a foot are units, is denoted by ^r—*
-^ 10

5—2
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But the weight of 1 pound acting on a mass of 1 pound
produces in it an acceleration which when a second and a

foot are units, is denoted by 32.

Therefore •

yl^=32;
.'. 7?z = 40;

or the unit of mass is 40 pounds.

106. Ex. 4. The unit of mass being a ton, the unit

of force the weight of one hundred-weight, and the unit of

velocity a velocity of 8 feet per second, it is required to find
the units of time and length, assuming that the velocity

generated in one second by gravity in a body falling freely is

a velocity of 32 feet per second.

Let t seconds be the unit of time.

The unit of force is that force which produces the unit of

acceleration in the unit of mass.

Hence the unit of acceleration is that which is produced
in the mass of a ton by a force equal to the weight of 1

hundred-weight.
Now the weig^ht of 1 ton grenerates in 1 second in the

mass of 1 ton a velocity of 32 feet per second.

Therefore the weight of 1 hundred-weight will generate
32

in a second in the mass of 1 ton a velocity of ^ feet per

second.

The unit of acceleration, therefore, is that with which in

32
one second there is generated a velocity of -^ feet per second.

Therefore with the unit of acceleration there is generated
32

in t seconds, that is, in the unit of time, a velocity of ^^ t

feet per second.

But with the unit of acceleration there is generated in the

unit of time the unit of velocity, which is a velocity of 8 feet

per second.

Therefore Ia ^ = 8
;

. , Z —— 0.
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Hence the unit of time is 5 seconds.

Again, the unit of velocity is a velocity of 8 feet per
second, that is, a velocity of 8 x 5, or 40 feet per unit of

time.

But the unit of velocity is the velocity of a point which

passes over the unit of length in the unit of time.

Therefore the unit of length is 40 feet.

107. The unit of impulse is the impulse of a force which

generates the unit of momentum; or which, acting upon the

unit of mass, generates in it the unit of velocity.

Suppose a given impidse to he denoted hy I when r

seconds, a feet, and fi pounds are the units of time, length, and
mass respectively : ivhat will he the tyieasure of this impulse
when t seconds is the unit of time, s feet the unit of lengthy
and m pounds the unit of mass ?

The given force will generate I units of velocity in the

unit of mass, that is, a velocity of la feet per r seconds
;

.•. the given force generates in
//, pounds a velocity per r"

of la feet
;

.•. the given force generates in 1 pound a velocity per t"

of lafM feet
;

.*. the given force generates in 1 pound a velocity per 1"

of la^ - feet
;T

.*. the given force generates in 1 pound a velocity per t"

of lafjb
- feet

;

T

.*. the given force generates in m pounds a velocity per t"

of Jo- — .
- feet.m T

But la — .
- feet are equivalent to i -

.
—

.
- units ofm T ^

s m T

lenfyth each consistino^ of s feet.

Hence the given force will generate in the new unit of

mass a velocity of /--.— .- new units of lencjth per the new
*^

s m T or
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unit of time. J -
.
- -

.
- is therefore the measure of the im-

s m T

pulse of the force in terms of the new system of units.

We see then that the numerical measure of an im-

pulse varies inversely as the unit of mass, inversely as the

unit of length, and directly as the unit of time. This might
also have been deduced, as in the preceding cases, by con-

sidering the variation of the unit of impulse.

108. Ex. Suppose an Armstrong shaft of 700 pounds
moving with a velocity of 1200 feet per second, to strike an
iron target, and to he brought to rest : what ivill he the

measure of the impulse when one hundred-weight is the unit

of mass, a yard the unit of length, and a minute the unit

of time ?

The force of impact during its action destroys in 700

pounds a velocity of 12U0 feet per second
;

.'. it would destroy

in 1 lb. a velocity per V of 1200 x 700 feet.

„ 1 „ „ „ „ 60" „ 1200 X 700 X 60 „

TioiK fn" 1200x700x60
„ IIZ IDS, „ „ „ OU „

-

z-y^
„

Now
:pr^

feet are equivalent to 150,000 yards.

Hence the impulsive force would destroy (or generate) in

the unit of mass a velocity of 150,000 units of length per
the unit of time.

Therefore 150,000 is the measure required.

109. The unit of work is the work done by the unit of

force when its point of application moves through the unit

of length in the direction of the force.

The variation in the measure of a given amount of work
when the fundamental units are changed may be determined
in precisely the same way as the variation in the measure
of a given force or impulse. It will be found that the nu-

merical measure of a Q-iven amount of work varies inverselv

as tlie unit of mass, inversely as the square of the unit of

length, and directly as the square of the unit of time.
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We will illustrate this by some examples.

Ex. 1. The units of time, length, and mass being the

second, centimetr^e, and gramme respectively, hoiu many of the

corresponding units of work are equivalent to the foot-pound ;

g being represented by *32'18 luhen a second and a foot are

units of time and length ?

We have seen in a previous example (see Art. 103), that,

when g has the value given above, the weight of an imperial

pound is approximately equivalent to 444,893 of the absolute

units of force belonging to the second, centimetre and gramme
system of units.

Therefore the work done by a force equal to the weight
of a pound when its point of application moves through a
distance of one centimetre in the direction of the force is

444,893 of the centimetre-gramme-second units of work.

But a ceutimetre is equal to "03281 feet.

Therefore the work done by a force equal to the weight
of a pound when its point of application moves through a

444893
foot in the direction of the force is equivalent to

centimetre-gramme-second units of w^ork : hence the number
444893

of these units of work contained in a foot-pound is —
,

or 13,559,676, very nearly. The centimetre-gramme-second
unit of work is called an erg.

110. Ex. 2. If an agent luorking at the rate of one horse-

2)ower perform the unit of tuork in the unit of time, and the

acceleration produced by gravity in a body falling freely be

the unit of acceleration, a pound being tJie unit of mass,

find the units of time and length, it being given that g is

equal to 32 tvhen a second and a foot are units.

Let t seconds be the unit of time.

The agent performs 33000 foot-pounds of work per minute,
or 550 foot-j)ounds per second.

Therefore in the unit of time, that is, in t seconds, it per-
forms 550^ foot-pounds.

But it performs the unit of work in the unit of time.
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Therefore 550^ foot-pounds is the unit of work.

Now the unit of force is that force which acting on the

unit of mass produces in it the unit of acceleration.

Therefore the iTnit of force is that force which, actinsf on
the mass of a pound, produces in it the same acceleration

as is produced in it by gravity.

The unit of force is therefore equal to the weight of a

pound.

Again, the unit of work is the work done by the unit

of force when its point of application moves through a dis-

tance equal to the unit of length, and in the direction in

which the force acts, and the unit of work has been shewn
to be 550^ foot-pounds.

Therefore the unit of length is 550t feet.

Again, the unit of acceleration is the acceleration of a

point in which in the unit of time there is generated a

velocity with which if a point move it will pass over the

unit of length in the unit of time.

.*. with the unit of acceleration

in t" there is generated a velocity per t" of 550^ feet.

1
// -.rr ^t)U

j>
-'-

j> }j }> }> )> ^
}) 7 ))

But with the unit of acceleration in one second there is

generated a velocity of 32 feet per second.

Therefore

550

The unit of time is therefore Vjj^ seconds.

Also the unit of length was shewn to be 550^ feet.

Therefore the unit of length is equal to

550 xlTfV feet;

= 04531 feet.

• 0— ... — Hj^.
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111. The unit of density is the density of a uniform

substance, the unit of vohime of which contains the unit of

mass of matter.

It will be seen that the unit of density, and therefore

the measure of the density of any substance, is independent
of the unit of time, and depends only on the units of length
and mass.

Also the unit of density must vary directly as the unit

of mass if the unit of volume remain constant, for if the unit

of mass be changed, the mass of the unit of volume of the

substance whose density is unity will be changed in the same
ratio. Again, if the unit of volume be changed, the unit of

mass remaining the same, the volume which must contain

the unit of mass of the substance whose density is unity will

be changed in the same ratio : therefore, the standard sub-

stance must be changed so that the mass of a given volume
of it may be changed in the inverse ratio of the unit of

volume. Therefore, if the unit of mass remain constant, the

density of the substance whose density is unity, that is, the

unit of density, will vary inversely as the unit of volume. If

the unit of volume be the volume of a cube whose edge is

the unit of length, it follows that the unit of density varies

inversely as the cube of the unit of length. Also it has

been shewn that the unit of density varies directly as the

unit of mass when the unit of volume remains constant.

Hence when all are allowed to vary together, the unit of

density will vary directly as the unit of mass, and inversely
as the cube of the unit of length.

Since tbe numerical measure of any quantity varies in-

versely as the unit in terms of which it is measured, it follows

that the numerical measure of the density of any substance

varies inversely as the unit of mass, and directly as the cube
of the unit of length.

112. Suppose the density of a siihstance to he represented

hy p luhen /m pounds is the unit of inass, and cr feet the unit

of length : luhat loill he the measure of the same density
when m pounds is the unit of mass and s feet the unit of
length ?
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The unit of volume of the sabstance contains p units of

mass when
/j, pounds and o- feet are units of mass and length.

Therefore a^ cubic feet of the substance contain /xp pounds.

1 cubic foot „ „ contains -y „

s^ cubic feet „ „ contain jjip

.3
S LL 9

But
pjjb —3 pounds are equivalent to p

—
.
—

3
units of mass

each containing m pounds.

Therefore the new unit of volume of the substance contains

d— .—^ new units of mass.

The measure of the density in terms of the new system

of units is therefore p
— s'

m a^'

113. Ex. If the unit offorce he the weight of one ounce,

and the mass of a cubic foot of the suhstance whose density
is unity he 162 pounds, the unit of time heing one second,

what is the unit of length, g heing equal ^0 32 when a second

and afoot are units?

Let the unit of length be s feet.

Then the unit of volume is s^ cubic feet.

Since a cubic foot of the standard substance contains 162

pounds of matter, the unit of volume of this substance must
contain 162s^ pounds.

But the mass of the unit of volume of the standard sub-

stance is the unit of mass.

Therefore the unit of mass is 162s^ pounds.

Now the unit of force is that force which acting on the

unit of mass for the unit of time generates a velocity of the

unit of length per the unit of time.
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Therefore, the weight of
oz. lbs. feet.

1 generates in 1" in a mass of lG2s^ a velocity per 1" of s

lib. ,, » „ 162s^ „ „ „ sx 16

1 „ „ „ „ » 1 lb. „ „ „ 5xl6xl62sl

But the weight of one pound acting on the mass of one

pound for a second generates a velocity of 32 feet per second.

Therefore 162s' x 16 = 32;

_1

The unit of length is therefore one-third of a foot, that

is, 4 inches.

EXAMINATION ON CHAPTER I.

Note. In all the Examples, except where otherwise stated, the nume-
rical value of g referred to a foot and a second as units of length and time
is taken to be 32.

1. How must a physical quantity be measured ? Of
what does the complete representation of any physical quan-
tity consist ?

2. Define the velocity of a point.

If a second be the unit of time and an acre be repre-
sented by 10, what will be the measure of a velocity of 45
miles an hour ?

3. If a train move from rest T^dth uniform acceleration,

and in five minutes attain a velocity of 60 miles per hour,
find the measure of its acceleration when a second is the

unit of time and a foot the unit of length.

4. What must we know about an acceleration in order

that it may be completely defined ? Shew that an accelera-

tion can at any time be represented by a straight line.

5. A ship is sailing due North with a velocity of 10

knots an hour, while another is steaming South-West at the

rate of 15 knots an hour. Find the velocity of the second

ship relative to the first.
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6. A ship whose head points N.N.E. is steaming at the

rate of 16 knots an hour in a current which flows E.S.E. at

the rate of 4 knots an hour, find the velocity of the ship
relative to the sea bottom.

7. Explain what is meant by the resultant of two inde-

pendent accelerations, and what by the acceleration of one

point relative to another.

8. Define the density of a body. If one pound be the

unit of mass and a yard the unit of length, find the measure
of the density of water, it being given that a cubic foot

of water contains 1000 ozs.

9. State Newton's second law of motion, and explain

briefly the nature of the evidence on which our acceptance
of this and other physical laws is based.

10. What do you understand by the physical inde-

pendence of forces ?'

11. What is the dynamical unit of force ?

If the unit of mass be a ton, the unit of length a yard,
and the unit of time a minute, compare the unit of force

with the weight of one pound, taking g equal to 32, when
a foot and second are units.

12. During what time must a constant force equal to

the weight of one ton act upon a train of 100 tons to generate
in it a velocity of 40 miles per hour ?

13. Upon what experimental evidence do we base the

assertion that the attraction of the earth upon any body is

proportional to its mass and ipidependent ,of the nature of the

material of which it is formed ?

14. Supposing the attraction of gravitation at the equa-
tor to be "995 of its value in London, if a person sell goods
in London by a spring balance accurately graduated at the

equator, ho;\v much per cent, on the selling price does he

gain in excess of Jiis fair profit ?

15. If the cage of a lift be descending with an accelera-

tion represented by r-^ fj,
find the pressure which a man

of 1 2 stone exerts upon the bottom of the cage.
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Account for the fact that a person after descending the

shaft of a coal-pit in the cage, when being brought to rest

near the bottom, feels as if he were being lifted up again.

16. Explain fully what is meant by the equation P=mf.
If the unit of length be a yard, find the unit of time in

order that the weight of a body may be numerically equal
to its mass.

17. When is a force said to do work ?

If the force required to draw a carriage on a level road

be equal to the weight of 37^ pounds, how many absolute

units of work does a horse do in drawing; the same carriasje

from Ely to Cambridge, a distance of 17 miles ?

If the horse take two hours in performing the journey,

compare the rate at which he works with a horse-power.

18. If the unit of velocity be a velocity of 45 miles per

hour, and the unit of acceleration when referred to a foot

and a second as units of length and time be represented by
11, find the units of length and time.

19. If the weight of one pound be the unit of force, a

velocity of eight feet per second the unit of velocity, and the

acceleration produced by gravity in a particle falling freely
be one-third of the unit of acceleration, find the units of

mass, length, and time.

20. If the density of water be the unit of density, and
10 lbs. the unit of mass, find the unit of length, it being

given that a cubic foot of water contains 1000 ozs.

21. The density of water being the unit of density, the

weight of a cubic foot of water the unit of force and a pound
the unit of mass, find the units of length and time.

22. If the unit of momentum be that possessed by a

mass of 10 lbs. after falling freely from rest during one

second, and the unit of kinetic energy be that possessed by
a pound after falling freely from rest for two seconds, find

the unit of mass and the unit of velocity.

23. If 33,000 foot-pounds be the unit of work, the weight
of a ton the unit of force, and 5 cwt. the unit of mass, find

the units of length and time.



78 EXAMPLES.

24f. If an engine perform 100 units of work in the unit

of time when the unit of mass is a hundred-weisfht, the unit

of acceleration that produced by gravity in a particle falling

freely, and the unit of velocity a velocity of 100 feet per
second, compare the rate at which the agent works with

a horse-power.

EXAMPLES ON CHAPTER I.

1. Supposing the earth to rotate about its axis in

hours 56 minutes, its equatorial diameter being 7925 miles,
find the velocity of a point at the equator relative to the

earth's centre in feet per second, and in miles per minute.

2. What is the measure of a velocity of 45 miles an
hour (1) in feet per second, (2) in chains per minute ?

3. If a day were the unit of time and a thousand miles

the unit of length, what would be the numerical measure of

the velocity of the earth's centre about the sun, supposing it

to describe a circle of 86,000,000 miles radius uniformly in

365J days ?

4. A ship is sailing due North at the rate of 12 knots

an hour, and another is steaming due East at 16 knots an

hour, find the velocity of the first relative to the second, the

ships being so near together that the surface of the water

may be considered plane.

5. Two straight railway lines make an angle of 60° with

each other, and two trains are running each at the rate of

40 miles an hour away from the point of intersection of the

lines, one on one line and one on the other. Find the direc-

tion and magnitude of their relative velocity.

6. A passenger in a railway carriage observes another

train moving on a parallel line in the opposite direction to

occupy two seconds in passing him, but if the other train

had been proceeding in the same direction as the observer,

it would have appeared to pass him in 30 seconds. Compare
the rates of the two trains.

7. A force which can statically support 50 lbs. acts

uniformly for one minute on a mass of 200 lbs.
;

find the

velocity and momentum acquired by the body.
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8. The mass of a balloon aud its appendages is 2 tons,

and that of the air displaced by it is 4800 lbs. Find the

acceleration with which it will begin to ascend.

9. The mass of a train is 200 tons, the resistance

arising from friction, &c. 12 lbs. weight per ton. If the

tractive force upon it be equal to the weight of a ton and
a half, find its acceleration.

10. A mass of 1000 tons initially at rest is acted on by a

force constant in magnitude and direction, and equal to the

weight of 14 lbs. After what interval will it have a velocity
of 1 foot per second ?

11. A force equal to the weight of 300 lbs. acts con-

stantly at an inclination of 30*^ to a line AB. If its point of

application move 100 feet parallel to the line in 1 minute,
find the work done by the force, and the rate of work in

horse-power.

12. Shew that the work done in lifting weights to dif-

ferent heights from the same horizontal plane is equal to the

work done in lifting the sum of the weights to a height equal
to the height of their centre of gravity in their final positions.

A shaft 10 feet in diameter has to be sunk to a depth of

130 fathoms, through chalk : how much work must be ex-

pended in raising the materials if the mass of a cubic foot of

chalk be 2315 ozs. ?

13. Shew that the work done in dragging a body up a

rough inclined plane is the same as that which would be done
in dragging it horizontally along a distance equal to the base

of the plane, the coefficient of friction being the same as in

the first case, and in lifting it vertically through a height

equal to the height of the plane.

14. If a particle slide down a rough inclined plane, shew

that its acceleration is a ^^—--^ where tan cb is equal to
•^

cos
<jb

r ^L

the coefficient of friction.

15. If the mass of the Scotch express be 150 tons, and
the resistances to its motion arising from the air, friction, &c.

amount to 16 lbs. weight per ton, when the train is going at

the rate of 60 miles an hour on a level plane, find the horse-
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power of the engine which can just keep it going at that

rate.

16. If in the preceding example the driving-wheels of

the engine be 8 feet 2 inches in diameter, and during each

revolution of the wheels two pistons make each a complete
stroke (to and fro), the diameter of each piston being 18 inches,

and the length of the stroke 28 inches, find the effective pres-
sure of the steam on each square inch of the pistons necessary
to drive the train at 60 miles an hour, the slip of the driving-
wheels on the metals and the friction of the working parts of

the engine being neglected.

Note. The steam must do as much work per minute on
the pistons as is required to drive the train.

17. Find the actual horse-power of an engine which can

just propel an ironclad ship at the rate of 16 knots an hour
;

the resistance to the ship's motion when steaming at that

rate being equal to the weight of 50 tons, and a knot being
taken equal to 6078 feet.

18. If a point situated at the orthocentre of a triangle
have three component velocities, represented in magnitude
and direction by its distances from the angular points of the

triangle, shew that its resultant velocity will tend to the

centre of the circle circumscribiug the triangle, and will be

represented by twice the distance of the point from the

centre.

19. A train travels at the rate of 45 miles an hour
;
rain

is falling vertically, but owing to the motion of the train the

drops appear, as they fall past the windows, to make an angle
tan~^ 1"5 with the vertical. Find the velocity of the rain-

drops.

20. If in Attwood's machine the string can bear a ten-

sion equal to only one-foui-th the sum of the weights, shew
q

that the least acceleration possible is -^ .

21. A shot of mass m is fired from a gun of mass 71/ with

a velocity u relative to the gun : shew that, if the mass of the

powder be neglected, the actual velocity of the shot is

Mu ,
^
, ^ „ ^, nm

^Tr, and that oi the erun r-^.
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22. A smooth wedge, whose angle is ©, has due f^>ce in *

contact with a horizontal plane. Find the ^'acceleration with
which it must be made to move that a heavy panicle may be^V /
in relative equilibrium on its inclined surface.

23. If a be the distance between two moving points at

any time, V their relative velocity, and ii, v the resolved parts
of Fin, and perpendicular to, the direction of a, shew that

their distance when they are nearest to each other is
-j^ ,

and that the time of arriving at this nearest distance is
-^nr^

.

24. If the acceleration caused by gravity be the unit of

acceleration, and the velocity of a mile in 5 minutes the unit
of velocity, find the unit of length.

25. If the units of length and time be a yard and a

minute respectively, and the unit of force the weight of

32 lbs., find the unit of mass.

26. If the unit of time be 5 minutes, and the unit of

length 5 yards, find the value of ^.

27. If the acceleration of a falling body be the unit of

acceleration, and a velocity of 3 miles an hour the unit of

velocity, find the units of space and time.

28. If the unit of velocity be the velocity of a point
which passes over a feet in t seconds, and the unit of accele-

ration that of a point which acquires in r seconds a velocity
of b feet per t seconds, find the units of length and time.

29. Two nations estimate the acceleration of gravity by
numbers in the ratio of 300 to 1, but the velocity of the

earth in space by numbers in the ratio of 5 to 1. Find the

ratios of their units of time and lengrth.

30. If the area of a ten-acre field be represented by 100,
and the acceleration of a heavy falling particle by 58j,

fiud

the unit of time.

81. If the unit of force be equal to the weight of 5 lbs.,

and the unit of acceleration, when referred to a foot and a

second, be denoted by 3, find the unit of mass.

G. D. 6
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32^. A constant force acts upon a particle during 3

seconds from rest, and then ceases
;
in the next 3 seconds it

is found that the particle describes 180 feet : find the velocity
of the particle at the end of the second second of its motion,
and the numerical value of its acceleration (1) when a second,

(2) when a minute, is taken as unit of time, the unit of length
beino^ 1 foot.

33. If the unit of velocity be a velocity of a feet per t

seconds, and if the weight of 1 pound be the unit of weight,
and a pound the unit of mass, find the units of length and

time.

34. If /p /g be the measures of an acceleration when
772 + n seconds and rti — n seconds are the respective units of

time, and a feet and h feet the respective units of length,

shew that the measure becomes -
{Jf\a

—
Jfj^f when 2n

C

seconds are taken as unit of time and c feet as unit of

lenofth.o

35. The measures of an acceleration and a velocity, when
referred to {a + b) feet (m + n) seconds, and {a

—
h) feet

{m — n) seconds respectively, are in the inverse ratio of their

measures when referred to [a
—

h) feet [m — n) seconds, and

(a + h) feet {;in + n) seconds. Their measures, when referred

to a feet in seconds, and h feet n seconds, are as ma : nh
;

shew that

m y a

30. If f be the measure of an acceleration when a feet

and t seconds are units of space and time, and/" its measure
when a feet and t seconds are units, and if the acceleration

be measured by f+f when c feet and r seconds are units,

shew that

t'
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38. If the unit of length be a yard, the unit of accelera-

tion that produced by gravity in a body falling freely, and the
unit of density that of water, find the number of units of

work required to raise a ton of coals from the bottom of a
mine GOO fathoms deep, assuming that a cubic foot of water

weighs 1000 ozs.

39. Supposing the earth to be a sphere of 4000 miles

radius and mean density 5 6 times that of water; if its mass
be represented by a billion, the density of water by 10, and
the work done in lifting a ton a yard high be the unit of

work, find the units of mass, length, and time, a cubic foot

of water containing 1000 ozs.

40. A circle revolves with uniform velocity in its own

plane about its centre. The centre moves with varying

velocity along a straight line. Find the velocity parallel to

this line, at any instant, of a point on the circumference, and
deduce the acceleration of the centre necessary for this point
to be always moving at right angles to the line.

41. The number expressing the lueight of a cubit foot of

water is ^^th of that expressing its volume, -Jth of that ex-

pressing its mass, and j^th of the number expressing the

tuork done in lifting it one foot. Find the units of length,

mass, and time.

42. The resistance to the motion of a train is equal to

the weight of 10 lbs. per ton of its mass. An engine in

drawing a train of 100 tons along a level line at 50 miles per
hour consumes 33^ lbs. of coal per minute. If the heat re-

quired to raise the temperature of one pound of water through
1*^C. be capable of doing 1390 foot-pounds of work, and if

the combustion of 1 lb. of coal be capable of raising 80 lbs. of

water from the freezing to the boiling point, find how much
of the whole heat generated is usefully employed by the

engine.

43. Given that a quadrant of the earth's surface is 10^'

centimetres, and that the mean density of the earth is 5 "67,

prove that the unit of force will be the attraction of two

G—2
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spheres eacli of 8928 grammes, whose centres are a centi-

metre apart, the acceleration of gravity at the earth's surface

being 981
;

a centimetre, second, and gramme being the

units of length, time, and mass.

(N.B.
—Two spheres attract as if they were particles of

the same mass situated at their centres.)

44. In a certain system of absolute units the acceleration

produced by gravity in a body falling freely is represented by
o, the kinetic energy of a GOO lb. shot, moving with a velocity
of 1600 feet per second, is denoted by 100 and its momentum

by 10; find the units of length, mass, and time, assuming
that g is equal to 82 in the foot-pound-second system.



CHAPTER II.

ON UNIFORM, AND UNIFORMLY ACCELERATED, MOTION.

114. If a point move with uniform velocity v, the space

passed over in t units of time will be denoted by vt For the

space passed over in each unit of time is v units of length,
and therefore the space passed over in t units of time will

be vt units of length.

If a material particle be under the action of no external

force it will remain at rest or move uniformly in a straight
line. Hence, if such a particle be moving at any instant

with velocity v, it will retain that velocity, and the space

passed over in t units of time will be vt.

115. If a point move with a constant acceleration /in
the direction of motion, the velocity generated in each unit

of time is/ units of velocity, and therefore the velocity gene-
rated in t units of time will be ft units of velocity. Hence
if the initial velocity of the point be u, the velocity v at the

end of t units of time will be u -\-ft, and if the point be

initially at rest, its velocity at the end of t units of time will

be ftj or V =ft.

If the acceleration be in the direction opposite to that of

the initial velocity, we must give the negative sign iof and
the above formula will still be true.

If a material particle of mass m be acted on by a constant

force P in the direction of its motion, the momentum gene-
rated by the force at any instant will be in that direction,

and the rate at which the momentum is generated will be

constant, being proportional to the force. Hence the accelera-

tion of the particle will always be in the direction of its
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motion and be constant. If / represents this acceleration

we have mf— P, the unit of force being properly chosen (see

Art. 45). Hence if u be the initial velocity of the particle, the

P
velocity at the end of t units of time will be u -\-ft, ovii-\— t,

and its momentum will be mu + Pt.

116. To find the space passed over in t units of time by
a point moving from rest with uniform acceleration f we

may proceed as follows. Divide the time t into n equal
intervals, each equal to r. Then the velocities of the point
at the beginning of the 1st, 2nd, 3rd,...w*^^ intervals will be de-

noted by 0,yT, 2/t...(?i— 1) T respectively, since its accelera-

tion is uniform. Also the velocities of the point at the end
of the 1st, 2nd, 3rd...7i^^ intervals will be /r, 2/t, 3/t,...??/t

respectively. Hence if the point moved during each interval

with the velocity which it had at the beginning of the

interval, the space passed over in the t units of time would be

. T +/t . t + 2/t . t + . . . + (w
-
1)/t . T

n {n
-

1) ^^,=
-"2-"-^^

'\f{
1--

Again, if the point moved during each interval, with the

velocity which it had at the end of the interval, the space

passed over in the t units of time would be

/t . T -1- 2/t . T + 8/t . T + . . . + nfj . T

n iii + l)= —2 A

-\f^'^'['^^n)'

Now the velocity of the point at any instant of a given
interval is intermediate between its velocities at the beginning
and end of that interval. Hence the space passed over

during any interval is intermediate between that which would
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be passed over by the point if its velocity remained constant

during^ the interval, and the same as at the beii^innins: of the

interval, and that which would be passed over by the point
if its velocity were the same throughout the interval as at

the end of the interval. He.-ice the space actually passed
over by the point during the t units of time Avill be inter-

mediate between that which it would pass over under the

first of the above hypotheses and that which it w^ould pass
over if the second hypothesis were realized, that is, the space

actually passed over by the point is intermediate between

and this is true however great n may be. Now as we
diminish each interval and consequently increase n, each

of the above hypotheses more nearly corresponds with what

actually takes place ;
and if we make each interval indefinitely

small and therefore n indefinitely great,
-
vanishes, and the

above expressions for the space passed over ultimately coin-

cide with each other and therefore with the expression for

the space actually passed over by the point, which is inter^

mediate between the two. Hence the space passed over in

t units of time by a point moving from rest with an accele-

ration /in the direction of motion is -fi^ units of length.

117. From this w^e see that if a material particle, of mass

m, move from rest under the action of a constant force 1\

P
the space passed over in t units of time wdll be ^— f. The

work done upon the particle will therefore (Art. G2) be

P P
P. --

. f. Its velocity will be — i and its momentum Pt.
zm m

1 P
Its kinetic energy will therefore (Art. 38) be

^
P . ^ .

—
t^ that

is ^ ^^, and is therefore numerically equal to the w^ork done

upon the particle by the force.
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If at the end of the t units of time we suppose the direc-

tion of the force reversed so as to retard the motion, the

intensity of the force remaining the same as before, the

velocity of the particle will be destroyed in the same time
as that in which it was generated, and the velocity at any
instant during the retardation will be the same as at the

corresponding instant when the acceleration was positive.
Hence the space passed over by the particle, while tlie

velocity is being destroyed by the force F, is the same as

that passed over during the production of that velocity.
Hence the work done against the force bi/ the particle while

being brought to rest is the same as that done by the force

upon the particle when the velocity of the latter was being
increased, and is therefore numerically equal to the kinetic

energy of the particle. The kinetic energy of a particle is

therefore numerically equal to the amount of work which
it is capable of doing in being brought to rest, and we thus
see a reason for the term '

energy
'

being applied to one half

the product of the momentum and velocity of a moving
particle.

118. The effect of a force when its point of application
moves in its direction is to do work, and we now see that if

it act upon a particle its effect is to generate an amount of

kinetic energy numerically equal to the work done. Now
these effects must be one and the same, and therefore kinetic

energy is mechanically equivalent to work.

The effect of a given force, when its point of application
moves over a given space in the direction of the force, is

always to generate the same amount of kinetic energy re-

presented by the Arithmetical product of these two factors
;

hence while the effect of a force acting for an interval of

time is to generate an amount of momentum measured by
the Algebraical product of these two factors, the effect of

a force when its point of application is moved in its direction

is to generate an amount of kinetic energy measured by the

Arithmetical product of tliese factors. The distinction between
these two products of a force is very imj^ortant. If a given
force act for a given time upon a particle, the distance

through which it will move it will vary inverse!}^ as the

mass, and therefore the kinetic energy generated will vary
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inversely as the mass while the momentum generated is

invariable, but if the distance through which the particle
is moved, instead of the time, remain the same the kinetic

energy generated will remain invariable, but the momentum

produced will be proportional to the square root of the mass.

119. If a point move under the influence of a constant

acceleration f in the direction of motion, but start with an
initial velocity w, a process precisely similar to that adopted
in Art. 116 will enable us to find the space passed over in

any given time.

For, as before, dividing the time t into n equal intervals

each equal to r, the velocity of the point at the beginning
of the respective intervals will be

,
.

u, XI -\-fr, u + S/r, ... u-\-n—l fr,

and its velocity at the end of tliese intervals will be

u -i-fr, u + 2/t, u + ofr, ... u + nfr

respectively. Hence the space actually passed over in t units

of time will be intermediate between

u. T-\-[u^-fT)T+ (li + ^fr) T+ ... + {u-\-n-l .fr) r

and

{u +fT) T-\-{u + Ifr) T^-{ll\- 3/t) t + ... + (^i + nfr) t
;

that is, between

ut +
\fe {\ -

^^
and ut + \fe (l

+
i)

;

and, increasing n indefinitely, each of these becomes ulti-

mately equal to ut + ^ff, which is therefore the space passed

over by the point in t units of time.

120. The space passed over by a point moving under the

influence of a constant acceleration in the direction of motion

may also be found in the following way.

Let time be represented by lengths measured along the
line AB, and let AB represent t units of time and contain t

units of length. Let the velocit}^ of the point at any time be
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represented by a straig^ht line drawn perpendicular to AB
from that point in AB which corresponds to the time in
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of the inscribed parallelograms. Similarly the space passed
over by the point in the same time, if it moved during each

interval with the velocity which it actually has at the end of

the interval, would be represented by the sum of the areas of

the outer series of parallelograms. And this is true, how^ever

great may be the number of intervals into which the time t

is divided. But the actual space passed over by the moving
point must be intermediate between these two

;
and when

the number of intervals into which the time is divided is in-

definitely increased, the sums of the areas of the inner and
outer series of parallelograms ultimately coincide with the

area of the figure CABI). Hence, the number of units of

length passed over by the point in the time represented by
AB is equal to the number of units of area in GABD. But
the figure CABD is made up of the rectangle CABE and
the triangle CED. Therefore its area is equal to

CA.AB + \.CE.ED.2

Now CA represents the initial velocity and therefore con-

tains u units of length, DB represents the velocity at the end

of time t and therefore contains u +ft units of length ;
hence

DE contains ft units of length, and AB or CE contains t

units of length. Hence the area CABD contains ut-\--x .ft . t,

1
or ut-V-^f^ units of area. Therefore the space passed over

in^ units of time by a point starting with initial velocity ^^

and moving with a constant accelerationy in the direction of

motion, contains 'at-\- ^ff units of length.

If the point start from rest ii = 0, and the figure will

contain no rectangle corresponding to CABE. The space

passed over in the time represented by AB will then be

represented by the area of the triangle CEB, and is there-

fore Tiff units of length.

Since DE contains ft units of length, and CE contains t

units, the ratio -^^ is numerically equal to f and therefore
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the acceleration is represented geometrically in the figure by
the tangent of the angle D CE.

(Compare Newton, Lemma X.)

121. If a material particle be under the action of a con-

stant force in the direction of its motion, its acceleration will

be constant, and the above investigation determines the space

passed over by the particle in any given time, substituting
P

for / the expression
—

,
when m is the mass of the particle

and P the force acting upon it.

As an example we may take the following.

A particle is allowed to fallfrom rest under the action of
^ gravity only, find the sjxice moved through hy the particle in

^^ 4 seconds, supposing g = 32 when a foot and a second are

^K miits.

I Here the only force acting on the particle is its weight,
which is constant and equal to 7}ig. Hence it will move with

uniform acceleration g. The space passed over in 4 seconds

will therefore be ^g . 4^ ft. = 8^ ft. = 256 ft.

122. If we wish to find the space passed over in any par-
ticular second, the n^^ for example, by a point moving with

uniform acceleration, we may find the space passed over in 7i

seconds and subtract from it that passed over inn — l seconds,
or we may find the velocity at the beginning of the n^^ second,
and then find the space passed over in 1 second by a point

starting with this initial velocity and moving under the given
acceleration.

For example, let it be required to find the space passed
over by a particle falling freely, during the 7*^ second of its

fall, g being supposed equal to 32.

\ The space passed over in 7 seconds by a particle falling

from rest is
^^ ^ . 7^ft.= 1 6 x 7^ft. That passed over in 6 seconds

is 16 X 6^ ft. The difference, or 16 x 13 ft., is the space passed
over during the 7*^^ second.
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Or we may proceed thus. The velocity at the end of the

6*^ second is 32 x 6 ft. Hence the particle at the beginning
of the 7*^ second has an initial velocity of 32 x G ft., and will

therefore during that second pass over a distance equal to

j(32 xG) + ^,g\ ft., or 32 x 6J ft., putting ^ = 1 in the formula

123. If a point move from rest with a constant accelera-

tion f in the direction of motion, and if v represent its

velocity at the end of t units of time, and 5 the space passed
over by the point during that time, then we have

I ^. 6- v=ft (1),

I ^ 1

B=^lfe (2).

From (1) and (2) we get --^

v' = ifs (3).

These three equations are very important, and should be

remembered.

If it be a material particle of mass m that is in motion,
we obtain by multiplying each side of equation (3) by m and

dividing by 2,

2 -^

Now mf is the force which must act on the particle of

mass m to produce the acceleration f\ and since s is the

space moved through by the particle in the direction of the

force, mf . s is the work done upon the particle by the force,

and we thus see that the kinetic energy of the particle is

equivalent to the whole amount of work that has been done

upon it since the commencement of the motion.

124. If a point start with velocity u, and move with a

constant acceleration / in the direction of motion, and if v
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represent its velocity at the end of t units of time, and s the

space passed over by it during that time, we have

v = u-]-ft (1),

s==ut +
lff ^-)-

Squaring (1) and multiplying (2) by 2/, we see that

'

v' = u' + 2fs (3).

If in this case it be a material particle of mass m that is

in motion, then, multiplying each side of equation (3) by m,

dividing by 2 and transposing, we get

1 1

2 2'^
Here as before mf . s represents the work done upon the

particle by the force producing acceleration, and the expres-
sion on the left-band side of the equation represents the

increase of the kinetic energy of the particle. Hence the

increase of the kinetic energy of the particle during any time

is equivalent to the amount of work done upon it during that

time by the force producing acceleration.

If the direction of the acceleration of the moving point be

opposite to that of its initial velocity, we have only to write
—/ for / in the above expressions, and the equations will

still be true.

125. It must be borne in mind that in all the above

investigations the units of force, work, &c
,
are the absolute

units belonging to the system of fundamental units employed
Thus if we adopt the foot-pound-second system the unit of

force is the poundal which is - of the weight of a pound.

The unit of work is a foot-poundal or - of a foot-pound, and

the unit of energy is equivalent to the unit of work and is

therefore also a foot-poundal.
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Hence since the kinetic energy of a particle of mass vi

moving with velocity ^ is ^ mv^ foot-poimdals it is equal to

y-
mv^ foot-pounds.

126. For example, the number of foot-pounds of work
which can be done by a 6001b. shot moving with a velocity
of 1200 feet per second in coming to rest is

600x1200^^ 600x1200^ .^^ _,^., lo^nnnnn
;t = x^ = 600 X loO = ISoOOOOO
tg 64

foot-pounds.

Again, if in the course of one minute a steam gun project
one hundred 41b. shots with a velocity of 1200 feet per
second the work it does in one minute is

100^^-- = 9000000

foot-pounds, and the horse-power at which the gun works is

9000000 ^ ^^^ _8

33000 ~"'^11'

127. As illustrations of this portion of the subject we

may take the following Examples.

Ex. 1. A heavy imrticle is projected vertically iipuKirds
with velocity u : supposing its tveight to he the onlyforce acting

upon it, it is required to completely determine the motion.

The particle will in this case move with a constant accele-

ration g downwards. We must therefore write —^ for /in
the equations of the preceding Article. Its velocity v at the

end of the time t will therefore be given by

''v= u — gt (i).

The space s passed over in t units of time will be given by

s=^^i-.^9t' ••
vii)-
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If we take t equal to -
,
we see by (i) that the velocity of

the particle is zero, that is, the particle at this instant is at

rest. If t be taken greater than this the velocity becomes

negative, shewing that the particle is descending. Again,
from equation (ii) we see that the space passed over during

the time - is ^
—

;
and since at this time the particle begins

to descend, this is the greatest height to which it will rise
;

or, if h denote this greatest height, we have

Let w be the weight of the particle, m its mass
; then, if

we multiply each side of this last equation by w^ that is mg,
we get

wh — ^ mu^,
2

which shews that the particle attains its greatest height and
comes to rest when the work which it has done against
its weight is numerically equal to the kinetic energy pos-
sessed by the particle at the beginning of the motion.

u
If we make t numerically gi*eater than - , the value of s

1 u^ . 2u
is less than- — , and when t is made equal to — we have

^^
. .

^
. .

V = — ti and s = 0, which shews that the particle will in the

2u
time — return to the point of projection, and on reaching

that point its velocity will be downwards and numerically

equal to u.

By comparing the expressions for v and s it will be seen

that at any point in its descent the velocity of the particle is

numerically the same as when passing through that point in

its upward course.
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128. Ex. 2. A jmiiicle is alloived to slidefrom rest down
a smooth inclined plane, whose inclination to the horizon is ^x,

the only force acting upon it being its weight and the pressure
of the plane. Find the motion.

Let w be the weight of the particle, m its mass, then
the resultant force upon the particle, that is, the force which
tends to produce acceleration, is lu sin a, and acts directly
down the plane. The particle will therefore move with

a constant acceleration
,
that is q sin a, down the plane.

fts velocity at the end of the time t will therefore be given
by the equation

v — g^moL.t',

and the distance along the plane through which the particle
will have fallen in t units of time will be given by

s = 7^ 7 sm a . r.

Comparing these two equations we see that

v^ = 2g sin a . s, or - mv^ = iv sin a . s.

Now ssina is the vertical height through which the

particle has fallen, and we see that its velocity depends only
on this vertical height and is independent of the inclination

of the plane.

129. As a third example we may take the following.

A particle slides from rest down a i^ough inclined plane,
whose inclination is a and coefficient of friction, luhen the

particle is in motion, ,a, determine the motion.

Let W be the weight of the particle, m its mass. If the
friction be insufficient to support the particle, resolviiig the
forces on the particle along the plane, we see that the re-

sultant force acting down the plane is

W sin a — ^R.
G. D. 7
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Resolving perpendicularly to the plane we obtain

B= IF cos a.

Hence the resultant force acting upon the particle is

W (sin oi
—

fi cos a).

It will therefore move down the plane with uniform

acceleration

W
m (sin a— fjL

cos a) or g (sin a — /x cos a).

Its velocity at the end of any time t will be

gt (sin a —
yL6
cos a),

and the space passed over during that time will be

1

2 gf (sin a —
fji

cos a).

In this case the velocity of the particle, and therefore its

kinetic energy, is less than that due to the vertical height

through which it has fallen
;
the energy which is wanting is

in this case transformed into heat by the friction.

130. If a particle of mass m he moving with a velocity

V, and be acted upon by a constant force P tvhich brings it to

- . _.
J

,
,
mv

rest in t units oj time, r must be equal to —— .

For since the force P is constant, the momentum destroyed

by it in each unit of time is the same. But the momentum

destroyed in t units of time is mv. Therefore the momen-



EXAMPLES. 99

7UV
turn destroyed in one unit of time is ——

, which is therefore

the measure of the force.

131. A force P tuliich is constant in magnitude and direc-

tion acts upon a particle of mass m luhile the particle moves

from rest through a space s. Find the velocity generated

by it.

Since the force P is constant in magnitude and direction,
the acceleration produced by it in a particle of mass m is

constant, always in the direction of motion, and is given by
the equation

P= mf
The equation v"^ = 2fs is therefore immediately applicable,

and we have for the velocity required

Ifs

V m

Similarly, if we have given the velocity generated from

rest in a particle of mass m by a uniform force, while the

particle moves over a distance s in the direction of the force,

we can determine the magnitude of the latter; and if the

particle moving initially wdth a velocity v be brought to rest

by the force while moving over the space s, we can from the

equation

rr mv^ = Ps
2

at once determine the maonitude of the force.

If however the particle does not start from rest, or is not

brought to rest by the force, but only has its velocity increased

or diminished while passing over the distance s, we must
determine the magnitude of the force from the equation

^niv^
—

-^
mii^ = Ps,

since the change produced in the kinetic energy of the parti-
cle is equivalent to the work done by the force.

7—2
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lo2. As an example of the preceding article we will

consider the following problem :
—

A force equal to the weight of 1200 tons acts upon an

Armstrong sJtaft of 700 lbs. while it moves from rest through
a distance of 12 ft. in the direction of the force, and then

ceases. If the shaft without diminution of velocity strike a

target and penetrate to a depth of 12 inches, then coming to

rest, find the pressure exerted by the shot on the target, sup-

posing it uniform daring the penetration.

A pound being taken as unit of mass the weight of a

poimd is equal to g absolute units of force. Hence, the mass
of the shaft being denoted by 700, the force acting upon it

will be 1200 x 2240 x g units of force.

The velocity of the shaft when the force ceases is deter-

mined from the equation of energy

-X mv^ = Fs,
2

and this becomes

i 700. t;'= 1200. 2240. ^.12;

/12U0.2240^.12 „ ,= x/ ^,^
"^

teet per second,V SoO

— 96 V 10^ feet per second.

Now this velocity is destroyed by a uniform force while

the shaft moves through a distance of one foot in the direction

opposite to that in which the force acts. Let P' be the

measure of this force in absolute units. Then P' has to be.

determined from the equation

2 71'

^ mv
= P s.

And this becomes in this case

l.lOO.v'^P'.2
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Substituting for v^ we get

P' = 1200. 2240. 12.^.

Hence the "pressure exerted on the target is

1200. 2240. 12. r/

absolute units of force, that is 1200 x 12, or 14,400 tuns'

weight.

In this case the work done upon the target is equal to

the work done originally upon the shot.

If it be required to find the time during which this pres-
sure is exerted, we have simply to make use of the equation

v = — .t,
Til

whence ' =
i20072240Tl2^=

^°^^*'-'

or the time during which the pressure is exerted is about

•00116 of a second.

133. We will now Avork out, in full, a few examples illus-

trating the principles of this Chapter; and it maybe observefl

that much more of a subject may frequently be learned by a
careful study of a few problems worked out in detail, than by
any other method.

Ex. 1. Two heavy particles A and B, ^vliose masses are

respectively M and m, of ivhich M is the greater, are connected

by a string of insensible mass j^assing over a smooth j^eg. Find
the motion, and the space jxtssed over by each in the first t

seconds after the beginning of the motion.

Let T be the tension of the strincr ^vhich will be the

same throughout, since the peg is smooth. Then the forces

acting on the particle A ai'e its weight Mg, acting downwcxrds,
and the tension T of the string acting upwards. The re-

sultant force is therefore il/^
— T acting downwards, and the

acceleration produced by this in the mass M will be

T
9 m

I
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Again, the forces acting on the particle B of mass m are

its weight mg acting downwards, and the tension T of the

j^

string acting upwards. The resultant force is therefore

T— mg acting upwards, and the upward acceleration produced
by this force will be

T
m ^

Now since the string is of invariable length and remains

tight, the acceleration of B upwards must be equal to the

acceleration of A downwards. Therefore

T T
TYl

or ^_ 2g.Mm ^

M+m '

and the acceleration of each particle is

M-m
^M + m'

Hence the velocity v of each particle at the end of time t

is given by M—m
v =M + m gt;
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and the space s moved over by each particle during the time
t is equal to

i M-m
2

The kinetic energy of the system is the sum of the kinetic

energies of the two particles, that is

2
^^^^ + 9 "^^^^

1 ,,, - fM-m ^

l{M-m) „„
\r.2 M + 7n

Also the work done by gravity upon the particle A is

Mas = M- ^^ . oH^,

and the work done against gravity in raising the particle 5 is

mgs, or m .
- ^ gY.

Hence the whole work done by gravity upon the system is

(M- m) - ^^~"^ „r

\'C,that is 5^4^^--2 M+m
and is therefore equal to the kinetic energy of the system.

134. In the preceding prohlem si(2:>pose the string to ex-

tend below the j^^^i'^ticle B, ay^d when the system has been in

niotion for t seconds let a third paj^ticle C, of mass m, initially
at rest, be attached to the end of the stnng beloiu the p irticle

luhose 7)iass is m, the string remaining stretched throughout.
We proceed to determine the motion and the impulsive ten-

sions of the portions of the string.



104 MOTION OF BODIES CONNECTED BY A STRING.

The common velocity of the particles A and B at the end

^

^J

M-m
of t seconds is, by the preceding investigation, -jr

—
9^- Let

this be denoted by v.

Now when C is attached, the string between J5 and
C becomes suddenly tiglit, and C moves off with a jerk.
Let u be the velocity with which C starts off, then tie

impulse of the tension acting upon C must be equal to mu,
which must therefore be the measure of the impulse of the

tension of the string between ^ and G. Now immediate^
after C has been attached, the three particles A, B, and C
must be moving with the same velocity, viz. u, since the

string remains stretched (and we suppose the string inelastic).

The velocity of A is therefore changed from v to u, u being of

course less than v. The impulse of the jerk acting upon A
must therefore be measured by M{v — u), which is conse-

({uently the effect of the impulsive tension of the string be-

tween A and B] and this must be the same throughout.
Hence an impulse represented by ilf(v— w), due to the

impulsive tension of the string above B, is exerted upon the

particle B vertically upwards. But an impulse viu, due t<>

the impulsive tension of the string between B and G, is ex-

erted upon B vertically downwards. The resultant impulse-

upon B is therefore m'u —M (v— u) vertically downwards.
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But the velocity of B is changed thereby from v to u, and B
moves upwards throughout. Therefore

m'u — M(v — u)
= m {v

—
ii),

or (il/+ 711 + in) u= {M+ m) v;

M + m
-t m

M - m
M i- m + m

M-^m + m'^
'

Now the impulse of the tension of the string between A
and B is M [v

—
u), and substituting for v and u, we get for

this impulse
Mm (31- m)

{M + m) (M + m + m)
^^'

Also the impulse of the tension of the string between B
and C is m'u, that is

m' (M — m)
M + m + m' ^

'

After the impulse the system is moving with velocity ?^

and it may be shewn, as in the previous example, that the

jiJfcLeration of A downwards and of B and G upwards is now

M— m— m
M + m + m' ^'

The velocity at the end of t' seconds after C was attached

will therefore be
M—m — m .

M-\-m^m^ '

and the space moved over during these ^' seconds by each

particle will be

, 1 M— m — m ,„

2 Jf4- m +m ^

If m + m' be greater than M the motion will be retarded

after C is attached, and finally be in the opposite direction.

135. In the previous example the velocity u of the system

immediately after C was attached might have been deter-
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mined from the consideration, that since no impulsive force

external to the system of these particles acts upon it in the
direction of the motion*, the momentum of the whole system
immediately before and immediately after C is attached
to the string must be the same, since the weights of the

particles, which are finite forces, cannot generate a finite

momentum in an indefinitely short time. But the momen-
tum of G before being attached to the string was zero, since

it was at rest. Hence we must have

{31 + m) V = {31+ m + m) u,

, 31+ m
whence 2i = -^ -, v,

31 + m + 7n

as in the previous solution.

136. Before quitting this part of our subject we will

consider one other example.

The two particles A and B, whose masses are M and m
respectively, being connected as in the previous examples, after
the system has been in motion fort seconds, a third particle C,

of mass m, originally at rest, is attached to the string above A
;

it is required to find the subsequent motion, the string being
inelastic.

As before, if v be the velocity of the system at the end of

t seconds from the commencement of the motion, we shall

have
3I-m

,
...

v = -Yf gt (A).3I+m^ ^ ^

Now when the particle (7 is attached above A, there will

be an impulsive tension of the string between A and C, and
C will move off with an initial velocity, which we will denote

by u. Also, since the string between A and C is inelastic, it

will remain stretched, and A and G will proceed with a com-
mon velocity, viz. u. The impulse of the jerk which must
act upon G to make it start off with the velocity u is m'u,

* The pressure of the smooth peg is .always at right angles to the motion
of the part of the string on which it acts and therefore cannot change the

velocity.
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which is therefore the effect of the impulsive tension of the

string between A and C. Hence the particle A receives an

C-.

Am

impulse upwards, denoted by mu. But the velocity of A is

changed by this impulse from v to u. Therefore

mu —M [v
—

u),

Mv
or u

gt. (B).

M+m
M{M-m)~

{M^m) {M-\-m)

Now since the velocity of A is diminished, and there is no

impulsive force acting upon B to diminish its velocity, imme-

diately after the impulse B will be moving faster than C
and A. Hence the string between G and B will become

slack, and B will be moving as a particle acted upon by its

own weight only, and projected vertically upwards with an
initial velocity v. The velocity of B at the end of ^' seconds

after C is attached will therefore hQ v — gt' ,
and the height

through which C will have risen in that time will be de-

noted by
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While the string above G is slack, A and G will be fall-

ing freely, having started with an initial velocity it. Hence
the common velocity of A and C at the end of the time t'

will be
u + gt' ;

and the space through which they will have fallen during
this time will be

ut' +
lgt'\

Now the string will become tight when G has descended

through a space equal to that through which B has ascended

in the same time. Hence, if the string become tight at the

end of f seconds after G was attached, we must have

1 1

or gt' =v — u,

whence t' =
9

and substituting for v and u their values from (A) and (B),
we get

.r_M-m M{M-on)~ M + m
~
{M+m') {M+ m)

- ^^'(^^^-^0
^ (C)^

(ilf + m) {M+ m)

and the space through which the system will have moved
since the attachment of G will be

M-m , m'(M-m) , 1 f m(M-m)
9i •

( M , l'\ ( M-h:^ i-^9
2

42

M + m^ (ilf+ m) (ilf+ m) 2 ^
((Jf+ m) (If+ m).

1 m
\

on' [M— my ^"
2 il/ + m] {M + m) {M+ m)'

^^
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Also the velocity of G and A when the string becomes

tii^ht will be

•

,_ M{M-m) m jM-m)
"""^^^

~
{M + m) {M + m)

^^ "^

{M+ m) (M+ m)
^^

_ M - m

the same as the velocity of the system before C was attached.

Also the upward velocity of B when the string becomes

tight is

V — at' = T? Qi
—

T7 -f-T? 7^; fby (A) and (C)-,

M M-m
,

gtM + m M+ m '

Now when the string is tight all the parts of the system
must be moving wdth a common velocity. Hence when the

string becomes tight there will be an impulsive tension.

To determine the common velocity immediately after the

tightening of the string, we may adopt the method of the

last article. The momentum of the whole system must be

the same before and after the tightening of the string.

Hence, if v be the common velocity immediately after the

string becomes tight, we must have

( J/+ m + m) V = (M + m ) -^1=-
— at + v^-

—
,.-Tf gt

(M + mf + m2I M-m

^, „ . (M+7ny + Mm M-m
Ihereiore v = -T-r' ,—7-^7 -tt • -^-r

—

i/ + m' '^1/+/?^'

n
gt.

(M + ^n) (M + m + 7n') 21 + m '

The effect of the impulsive tension of the string may be

determined from the consideration that by it the velocity

of the particle B, whose mass is m, is changed from

M M- m
qt to V .

M-\-m" M + m
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After the string has become tight, since it is inelastic,

it will remain tight, and the system starting with the velocity
V will move with a constant acceleration equal to

M -\-m —m
M + 711 +m'^ '

whence the velocity at any subsequent time, and the space
passed over during any time, can be immediately found.

137. We will leave to the reader to investis^ate the

motion of the system when, after the two weights A and B
have been in motion for t seconds, the weight G, originally
at rest, is suddenly attached to the string between B and the

peg, and at a considerable distance above B. The reason

for introducing the last condition will be readily seen. The
whole problem is very similar to that last investigated, and
will well repay the student for the time he will require to

examine it.

13<S. If a point be moving with a known acceleration in

the direction of its motion, and its initial velocity be given,
the time in which it will describe any portion of its path can

be immediately found from the equation

which is a quadratic equation for finding t.

It u and / be of the same sign, one of the roots of this

equation is negative. The positive root is of course the

one required. The negative root gives the time before

the earliest time considered in the question, at which, if the

point had been at a distance S in the positive direction

from the point from which we have supposed it to start, and

moving with a proper velocity in a direction opposite to its

acceleration, it would have passed through the point from

which we have supposed it to start, and have returned to it

with a velocity u, at the ii^stant at which we have supposed
it to start.

If u and / be of opposite signs both the values of t

are frequently admissible, as for example, in the case of a

i



TIME OF DESCENT DOWN CHORDS OF A VERTICAL CIRCLE. Ill

particle projected vertically upwards, when the smaller value

of t gives the time in which it will reach a point vertically
above the point of projection and at distance S from it

during its ascent, and the larger value of t gives the time
at which it will reach the same point in its descent.

139. As an example of the preceding article we will

consider the following problem.

A heavy particle falls from rest at the highest j^oint of
a vertical circle of diameter a down a smooth chord of the

circle. Find the time of descent.

Let m be the mass of the particle ;
then mg will represent

A

its weight. Let 6 be the inclination of the chord to the

vertical, s its length. Then

s = a cos 6.

Now the resultant force on the particle acts down the
chord and is equal to mg cos 6. The acceleration produced
by this force in the particle whose mass is m is g cos 6.

Hence the particle moves down the chord with imiform
acceleration g cos 0, and if t be the time of descent, we shall

have

s =
-^g

cos 6 . f,

or a cos = ^g cos . f
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Therefore

and is independent of the inclination of the chord.

Hence the time of descent down all chords of a vertical

circle from the highest point is the same, and equal to the

time of descent down the diameter.

Similarly the time of descent from any point of a vertical

circle along the chord to the lowest point is the same as the

time down the vertical diameter.

Since all the sections of a sphere by vertical planes through
its highest point are equal circles, it follows that the times

of descent of a particle down all chords from the highest point
of a sphere are the same.

140. If it be required to find the straight line of quickest
descent to any plane curve AB from a point P in its own

plane, we have only to describe a vertical circle having P
for its highest point and touching the curve. Then the

chord PQ drawn from P to the point of contact of the curve

and circle is the line of quickest descent required. For if

P^ be not the line of quickest descent, let some other

straight line as PK be that of quickest descent. Let PK
cut the circle in L. Then the time down PK is greater
than that down PL. But the tune down PL is equal to the
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time down PQ ;
therefore the time down PK is greater than

that down PQ, which is contrary to the hypothesis that PK
is the straight line of quickest descent from P to the curve.

If it be required to find the straight line of quickest
descent from any point P to a given surface, it is only

necessary to describe a sphere having P for its highest point
and touching^ the surface. The chord drawn from P to the

point of contact will then be the straight line of quickest
descent from P to the surface.

141. If a particle be in motion under the action of a

force always in the direction of its motion, since the work
done by a force is measured

b}''
the product of the force and

the distance moved over by its point of application in the

direction of the force, it follows that the work done on the

particle during any time is measured by the product of the

force and the space passed over by the particle during that

time. Hence the measure of the rate at which the force

does work on the particle at any instant is the product of

the force and the velocity of the particle at that instant, and
is therefore proportional to the velocity. Hence if a particle
move from rest with a constant acceleration in the direction

of its motion, the rate at which work is done upon it is pro-

portional to the time during which it has been moving.

We have said that the work done during^ anv time r by an

uniform force acting upon a partic'e in the direction of its

motion is measured by the product of force and the space passed
over by the particle during the time r. Now if v be the

mean velocity of the particle during the time r, v its velocity
at the beginning, and v + u its velocity at the end of the

time, we have v = v +
-^Uy

and the space passed over during

the time r will be represented by v'r. Hence the work done

by the force during the time r may be represented by the

product of the force, the time r, and the mean velocity v of

the particle. But the product of the force into the time
is the measure of the momentum o^enerated durino; that time.

Hence the work done by the force during any time is

measured by the product of the mean velocity of the particle
and the momentum generated during that time. .

G. D. 8
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Now the kinetic energy of a moving particle has

been defined as one-half the product of its velocity and

its momentum. It is therefore represented by ^ mv . v, or

zmv"^, if V be the velocity and in the mass of the particle.

Now suppose that, during the time r, v is changed to v -{-u.

(By taking r small enough u can be made as small as we

please.) Then the kinetic energy becomes ^m(v-{- uy. The

increment of the kinetic energy is therefore muv + ^mu^.

Hence we have for the increment of the kinetic energy the

expression mu lv-\-~u] . Now mu is the momentum gene-

rated during the time r and v + -
ic is the mean velocity of

the particle during that time, since the velocity changes uni-

formly. Hence the increment of the kinetic energy of the

particle during any time is measured by the product of the

momentum generated during that time and the mean velocity
of the particle during the interval. The increment of the

kinetic energy of the particle is therefore equivalent to the

work done upon it by the force producing acceleration. From
this investigation we see a reason for the definition we have

given of kinetic energy.

142. If the force acting on the particle in the direction

of its motion be not uniform, then if we make r very small

we may consider the force uniform during the interval t, and

the above investigation will hold. Hence in this case the

increment of the kinetic energy produced in any very small

time is equivalent to the work done during that time, and

this being always true, it follows that the increment during

any finite time, being the sum of the increments during the

intervals into which that time may be divided, is equivalent
to the work done on the j^article during that time.

Hence if a particle move from 7^est under the action of

a force in the direction of its motion, whether its magnitude
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be constant or variable, the wliole kinetic energy of the

particle at any time will be equivalent to the whole amount

of work done upon it by the force.

If the force be not in the direction of motion it may
be resolved into two, one in that direction and one perpen-
dicular to it. Now the latter component does no work, since

its point of application moves always in a direction perpen-
dicular to that of the force, and it maybe shewn that it does

not increase the velocity of the particle, but simply tends

to change the direction of its motion, and therefore does not

alter its kinetic energy. Hence the former component is

the only one which we need consider, and it follows that the

whole change of the kinetic energy of the particle during

any time is equivalent to the work done upon it during that

time.

This result is a case of the Principle of the Conservation

of Energy.
143. From the preceding articles it follows that if the

resultant force acting on a particle at every point of its patii

be known, as w^ell as the velocity at any given point, the

velocity at any other point can be found if w^e can find

the work done by the forces in passing from the one poiiit

to the other. Some examples illustrating this result will be

found in Chapter V.

Since the rate at which w^ork is done upon a particle

by a force acting in the direction of its motion is measured

by the product of the force and the velocity of the particle,

it follows that if this rate be uniform, the forco must vary

inversely as the velocity of the particle. Hence if a particle

start from rest, it is impossible for an agent to do work upon
it at a finite rate at the commencement of the motion, since

in order to do this, it would be necessary to exert an infinite

force.

For example, it is i npo sii le for an engine in starting
a train to work up to its tud h;)r. e-pow^er.

14-t. We may illustrate this subject by the following

examples.
Ex. 1. A train whose mass is 100 tons {including the

engine) is draivn hg an engine of 150 Jio7'S3-poiuer. The re-

S-'2
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sistance to motion on a level line due to friction heing eqni-
valeiit to a force 0/ 14 Ihs. iveight for every ton in motion,
and the resistance of the air being neglected, find the maximum
sjjeed which the engine is capable of sustaining on a level line.

The resistance to the motion of the train due to friction,

&c. is 1400 lbs. Hence if v be the velocity of the train

in feet per second, the rate at which its engine works is

1400v foot-pounds per second. But it is capable of doing
150 X 550 foot-pounds per second. Hence we must have,
if v be the velocity required,

1400?; = 150 X 550,

15 X 55
V =

14

1 5 X 55
or the velocity of the train is ——— feet per second, that

is 4:0^^ miles per hour.

145. Ex. 2. If the train described in the preceding ex-

ample be movirg at a partictdar instant with a velocity of
15 miles per hour, and the engine working at full power, what
is the acceleration at that instant'^

The engine is doing 150 x 550 foot-pounds of work per
second, while the train is moving at a rate of 22 feet per second.

Hence the force exerted by the engine is ^ pounds'

weight ;
but of this, 1400 pounds' weight is required to

balance friction. Hence the effective force tending to acce-

lerate the motion of the train, that is of 224000 pounds of mat-
150 X 550

ter, is
-^

1400 pounds' weight, that is 2850 pounds'

weight. Hence the acceleration produced is denoted by

^rr—
—
^

-
q, that is, takinof q = 32, -—-\ foot-second units.

224000^ ' ° ^ '

140

146. Ex. 3. Find the horse-power of an engine required
to drag a train 0/ 100 tons up an incline of 1 in 50 with a

velocity of 30 rniles per hour, the friction being equal to the

weight 0/ 1400 lbs.
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The line is inclined to the horizon at an angle whose sine

is ^- . Therefore the resolved part of the weioht of the train

down the incline is 2 tons' weight. Hence the whole force

tending to stop the motion of ike train up the plane is equal
to the weight of 2 tons and 1400 lbs., that is of 5880 lbs.

Now a velocity of 30 miles per hour is 44 feet per second.

Hence the engine must do 5880 x 44 foot-pounds of work

per second, and the horse-power at which it works must
5880 X 44

therefore be
'— ^^-. =470|. The eng^ine must therefore

ooO "" ^

be of not less than 470f horse-power. This is somewhat
above the power of most locomotive engines.

Since the pressure of the train upon the metals and

bearings of the wheels when on an incline whose inclination

is a, is less than the corresponding pressures on a level line

in the ratio of cos a to 1, the friction will be less in the same
ratio. Hence if the resistance to the motion of the train,
due to friction when on an incline of 1 in 50 be 1400 lbs.

weight, the corresponding resistance when on a level line

will be
1400X 50 70000

pounds' weight.

147. Referring to the example in Art 127, we see that

if a particle be projected vertically upwards with velocity u

it will rise to a heigjht r;- ,
and then come to rest. If the

^^
mass of the particle be denoted by 7?i its weight will be

represented by mg, and in falling from the height
— it

might be made to lift a weight, less than itself, but differing

by as small a quantity as we please, through the same
2 2

11 TThlL

height ;
that is, it may be made to do mg x --

,
or ——

,
units

of work. Now the kinetic energy of the particle when pro-
2 •

jected is represented by—^ ,
and we see that this amount of
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kinetic energy can be converted into the capacity or poiver
of doing tlie same number of units of work due to the sepa-
ration of the body from the earth, i.e. into the same number
of units of potential energy.

If the particle be allowed to fall freel}^ from the height
u' . . .

^, its kinetic energy on reaching the point of projection

2

will be denoted by
-——

. Hence kinetic energy and potential

energy are mutually convertible.

148. In estimatinoc the work done by a force when its~ "...
point of application is moved in a direction not coinciding
with that of the force we may either suppose the force re-

solved into two components respectively parallel and perpen-
dicular to the displacement, and since the former component
is tlie only one by, or against, which work is done, we have

only to multiply it by the displacement. Or we may resolve

the displacement into two parts respectively parallel and

perpendicular to the direction of the force and multiply the

measure of the whole force by the component of the dis-

placement in its own direction. Since forces and displace-
ments are resolved according to the same law these two
methods lead to the same expression for the work done, viz. :

—
P. d. cos a, where P represents the force, d the displacement
of its point of application, and a the angle between the direc-

tion of the force and that of the displacement.

149. In commenting on the Third Law of Motion we
have given Newton's statement of the Principle of the Con-
servation of Energy. We have seen that the work done

against conservative forces has its equivalent in potential

energy generated in the system, while the work done in pro-

ducing acceleration has its equivalent in the kinetic energy
of the system. The destination of the work done against

friction and such like non-conservative forces was unknown to

Newton and was supposed to be lost. It is now known to be

converted into heat or some other form of energy which does

not come under our cognizance when treating of Mechanics.
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The Principle of the Conservation of Energy has been stated

by Clerk Maxwell as follows :
—

" The total energy of any body or system of bodies is a

quantity which can neither be increased nor diminished by any
mutual action of these bodies, though it may be transformed
into any of the forms of tuhich energy is susceptible.''

There is probably no law of nature which stands upon a

firmer basis than this Principle of the Conservation of Energy,
for there is no principle towards the overthrow of which so

much ingenuity has been fruitlessly directed. The searcli

for
" the Perpetual Motion

"
has been carried on continuously

for many generations, and the principle of the Conservation of

Energy merely states that whatever agents may be called int<:)

action,
"
perpetual motion

"
or the creation of energy is im-

possible. (It should be noticed that the perpetual motion is

quite distinct from the motion contemplated in Newton's
first law, for it means perpetual motion against resistance,

and therefore the continuous production of work.) We are

therefore justified in assuming the truth of this principle in

all cases as freely as we assume the first law of motion, and
it will frequently be employed in this way in the following-

pages.

150. We have shewn how to express the energy of

a moving particle, whether expressed in foot-pounds or abso-

lute units, in terms of its mass and velocity. If, then, in

consequence of the constraints we can express the velocity
of every particle of a system in terms of that of one of them
or of any other single variable, and if we know all the ex-

ternal forces acting on a system, so that we can determine
the amount of work done upon or by the system during any
displacement, we can find at once the velocity of everv

particle of the system in any given configuration (compatible
with the constraints to which it is subjected) if we know the

velocity in some standard configuration. The principle of

the conservation of energy thus enables us to express the

velocity of the parts of a system in terms of the displacement
it has undergone without any reference to the time occupied
in the displacement; but the time can be found subsequently,
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if required, from the knowledge of the change of motion and

of the forces.

151. For example : A hody is projected in any direction

with a velocity of 100 feet per second ; find its velocity ivhen it

has reached a j^oint 20 feet higher than the point of jwo-

jection.

The system with which we have here to deal consists

of the earth and the projected body, but in consequence of

the earth's mass we may neglect the work done upon the

earth by the attraction of the body, and, as explained
above, we shall speak of the kinetic energy of the body as

equivalent to that of the whole system. Let m denote the

mass of the body in pounds. Its energy is at first —
^
—

foot-pounds. The work done against gravity in rising 20 feet

is 10m foot-pounds, and if v denote the velocity of the body
in feet j)er second at this height, its kinetic energy is then

mv^
foot-pounds.

^9

Hence we must have

mv^ ^^ 7?ilO0^
+ 20??i =

or ?;' = 100'-40^.

If (/
= 32 we have

^;=93•38...

152. A particle moves under the action of a force which

depends only on its j^osition. The tuork done on the particle in

passing from any point to any other point tvill he independent

of the path pursued.

Let the constraints consist of smooth surfaces or inextensible

strings, since the direction of motion in these cases will be

always at right angles to the constraining force, and therefore

no work will be done by or against them.

Consider two paths A and B between the points P and Q.
Then if the work done upon the particle in travelling from
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P to Q along the path A be not equal to that done in tra-

velling along B, let that done in the path A be the greater
and equal to W, while that done in the path B is denoted

by W^. Suppose the particle to travel from P to Q along A
and to return via B. Then in going from P to Q it will have
W units of work done upon it by the external force and will,

therefore, on reaching Q possesses W units of kinetic energy.
In returning from Q to P it will have to do W^ units of work

against the external force, since this force is independent of

the direction of motion of the particle depending only on its

position. Hence since IF, < W when the particle reaches P
it will have gained W— TF^ units of kinetic energy, and it

will gain this additional quantity of energy every time it

goes round the circuit, and we may abstract W— TFj units of

energy from the particle at the end of every revolution, and

employ it to drive other machiner}'', and the motion will

still be kept up. In fact we have "
the perjietual motion

''

which is contrary to the principle of the conservation of

energy. Hence W— TFj
= 0, or the work done in passing

from P to Q is independent of the path.

153. As a particular case of the preceding article, sup-

pose a particle to be moving under the action of its own

weight only, and suppose Q to be vertically below P, the

path J. to be a vertical straight line, and the path B to be of

any length and form whatever. The work done on the par-
ticle in sliding down B is the same as in falling down A,
and therefore depends only on the vertical distance through
which it descends.

Again, suppose Q not to be vertically below P. Let the

path A consist of a horizontal and a vertical straight line,

and let B as before be of any form. Then the work done in

passing over the horizontal part of A is zero. Hence the

work done in passing over B is the same as in traversing the

vertical portion of A, and depends only on the vertical lieight

through which the particle descends.
"
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EXAMINATION ON CHAPTER II.

1. When is tlie velocity of a moving particle said to be

uniform ? If the velocity of a particle be uniform and
denoted by 6, when a mile is the unit of length and an
hour the unit of time, find the space which it will pass over

in 10 seconds.

2. Find the distance through which a particle will fall

from rest under the action of gravity in 4 seconds.

If the depth of the surface of the water in a well be 256
feet and the velocity of sound 1120 feet per second, find the

time which must elapse after dropping a stone before hearing
it strike the water,

3. What is the numerical measure of the kinetic energy
of a poand which has fallen freely from rest through a

vertical height of 80 feet ?
'

4. If in Attwood's machine the two weights P and Q be
each one pound, and the weight P one ounce, and if the height

through which R falls be 2 feet, find the subsequent velocity
of P and Q.

5. If a particle which has fallen freely from rest move
in one particular second through 176 feet, find how long it

had been falling before the beginning of that second.

6. A particle slides down a smooth plane inclined at

an angle of 30^ to the horizon. Find its velocity after moving
from rest through 10 feet, and the time occupied in moving
over that distance.

7. Find the time occupied by a particle in sliding

through 20 feet down a rough plane inclined 60" to the

horizon, the coefficient of friction being one half: and its

velocity at the end of the time.

8. Shew that the difference of kinetic energy of two

particles after sliding through the same distance down two
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planes equally inclined to the horizon, but one rough and
the other smooth, is numerically equal to the work done

against friction by the former particle.

9. A particle is projected vertically upwards with a

velocity of 100 feet per second
;
find the time occupied by

it in its ascent in describing that portion of its path which
lies between the heights of GO ft. and 120 ft. above the point
of projection.

10. A point P is at a distance of 12 feet from a plane
inclined 30" to the horizon, and is above the plane. Find
the time of quickest descent in a straight line from P to

the plane.

11. Find the measure of the least impulse with which
a particle of mass m can be projected to a vertical height of

400 feet.

12. If the unit of impulse be that required to project
one pound vertically up one foot, find the measure of the

impulse with which 4 lbs. can be projected vertically up
4t feet.

EXAMPLES ON CHAPTER II.

1. A particle descends an inclined plane ;
if the upper

portion be smooth and the lower rough, the coefficient of

friction being /bu,
and if the smooth length be to the rough

length a.s p : q, shew that the particle will just come to rest

at the foot of the plane if fji=
—- tan a, where a is the

inclination of the plane to the horizon.

2. A point moving with uniform acceleration / in the

direction of motion describes o- feet in t seconds, and at the
end of t seconds is moving with velocity v. Find the units

of time and space.

3. Find the Tine of quickest descent from one given
circle to another, the circles being in the same vertical plane.



124 EXAMPLES.

4. The resistance to the motion of a train due to fric-

tion, &c. being equal to the weight of 12 lbs. per ton, if the

train moving at the rate of 40 miles an hour come to the

foot of an incline of 1 in 200, the steam being turned off,

find how far the train will go before it comes to rest.

5. If in the preceding example the train come to the

top of the same incline, find how far it will descend the in-

cline.

6. The resistance to the motion of a train will just
allow it to run with uniform velocity down an incline of

1 in 150. If the train come with a velocity of 20 miles

an hour to the top of an incline of 1 in 100, and run down
this incline for one mile with the steam turned off*, find how
far it will be able to run along a level line from the base

of the incline without turnino- on the steam.o

7. If the resistance to the motion of a train on a level

line be equal to the weight of 12 lbs. per ton of its mass,
and if a train of 120 tons and running on a horizontal line at

the rate of 40 miles an hour be brought to rest in a quarter
of a mile by the application of a break to each wheel of a

break van of 10 tons, the break entirely preventing . the

rotation of the wheels, find the coefficient of friction between
the wheels and rails.

How far would the train have run if the break had not

been put on, and how far if the breaks had been applied
to each of two ten ton break vans ?

8. A shot of 300 lbs. is fired from a thirteen ton gun
with a velocity of 1600 feet per second, the mass of the

powder being 50 lbs.
; supposing the products of combustion

of the powder to leave the gun with the same velocity as the

shot, find the velocity with which the gun will recoil, and

the height to which it will run up a smooth plane inclined

15** to the horizon.

9. Compare the amount of work done on the gun in the

preceding example by the explosion of the powder, with that

done on the shot.
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10. A bullet of 250 grains is fired from a rifle whose
mass is 10 lbs. with a velocity of 1200 feet per second by
the explosion of 2| drams of powder. Supposing the mean

velocity with which the products of combustion of the powder
leave the rifle to be four-fifths that of the shot, and supposing
the rifle to be brought to rest by an uniform force while it

kicks through 3 inches, find the force.

What would be the effect of placing the shoulder against
a tree while firing a rifle ?

11. If >S be the focus of a parabola whose axis is hori-

zontal and plane vertical, and if 8P be the straight line of

quickest descent from aS^ to the curve, shew that SP is in-

clined at an anofle of 60° to the axis.

12. A particle is projected vertically upwards with a

velocity represented by 5g ;
find the time of its reaching

a height Sg, and its velocity at that height.

13. A ball is projected vertically upwards with a given

velocity, and when it has attained half its greatest altitude

another ball is projected vertically upwards with the same

velocity from the same point. Determine when and where

they will meet.

14. A body describes 75 feet from rest and acquires a

velocity denoted by 20, with an uniform acceleration denoted

by 8, in 5 seconds. What are the units of space and time ?

15. If the number of units of space described by a body
in the last second of its fall be to the number of units in

its final velocity as 8 : 9, during how man}'- seconds has the

body been falling ?

16. Find the statical measure of a force which in half

a mile w^ould stop a railway train of 120 tons, moving at the

rate of 25 miles an hour.

17. AP, AQ are two inclined planes of which AP is

rough, the coefficient of friction being equal to tan PAQ,
and AQ is smooth, AP lying above AQ : shew that if bodies

descend from rest at P and Q they will arrive at A, (1) in

the same time if PQ be perpendicular to AQ, (2) with the

same velocity if PQ be perpendicular to AP.
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18. A particle falls freely from A, and a second particle
is allowed to fall from B, vertically below A, at the instant

when the first particle is half-way between A and B. Find
when and where they will be together, and shew that their

velocities will then be as 3:1.

19. A point moving with uniform acceleration describes

20 feet in the half second which elapses after the first second

of its motion
; compare its acceleration with that of a heavy

falling particle ;
and find its numerical measure, taking a

minute as the unit of time and a mile as that of length.

20. A particle has been falling for 40 seconds
;
find the

force which will stop it in 10 seconds
;
find also the force

which will stop it in 10 feet.

21. A particle falling from rest through a feet, with

acceleration /, in t seconds, acquires a velocity h
;
what are

the units of time and length ?

22. A body whose weight is W descends vertically, and
draws an equal body up a smooth plane inclined at an angle
of 30" to the horizon, the two bodies being connected by an

inextensible string passing over the edge of the plane ;
find

the velocity of each body at a given time, and the tension

of the string.

If the inclined plane be the upper surface of a wedge
resting on a smooth horizontal table, find the force necessary
to prevent the wedge from sliding along the table.

23. Two particles are connected by a string which hangs
over a smooth pulley at the top of a smooth plane inclined

30° to the horizon, one of the particles hanging vertically

and the other resting on the plane. If the acceleration of

either be represented by ^ ,
find the ratio of their masses.

2-t. A particle of mass m, acted on by a constant force,

has a velocity with which, if it were free, it would describe

300 feet in one minute, and after 3 seconds it has a velocity
of 2 feet per second. Find the force referred to a minute

as the unit of time, a foot being the unit of length.
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25. A series of particles slide down the smooth faces of

a pyramid, starting simultaneously from the vertex : shew
that after any time t they are all on the surface of a certain

sphere whose radius is gf,

26. A particle is projected with a velocity u, and after

describing a certain space has acquired an additional velocity

V, but to acquire a second additional velocity v it must de-

scribe further a space double what it described in the first

V
instance. Shew that u = 7::.

27. A particle of mass 4P is drawn up a smooth plane,
inclined 30'^ to the horizon, by a second particle of mass 3P,
connected with the former by a string passing over the upper
edge of the plane : find the tension of the string, and the

time before the first particle arrives at the top of the plane.

28. During the 1st, 3rd, 5th,... seconds of a particles
motion it is subject to uniform accelerations/', Sf, of]... in

the direction of motion, and during the 2nd, 4th, 6th, ...

seconds its acceleration is zero. Supposing the particle to

start from rest, find the velocity acquired, and the space

passed over, in "2/1 seconds.

29. A parabola is placed in a vertical plane with its axis

inclined to the vertical. S is the focus, A the vertex, and

(J the puint on the curve which is vertically below ^'. If

SF be the straight line of quickest descent from the focus

to the curve, shew that the angle ASF is equal to twice the

angle FSQ.
80. Two given points are in the same vertical line :

shew that the locus of the points ia a vertical 2:>laue through
them, from which the times of descent down straight lines to

the points are the same, is a rectangular hyperbola.

31. Two particles are let fall at different instants down
two smooth inclined planes from the same point of the hori-

zontal ridge in which they meet. Prove that each describes,

relative to the other, a straight line with uniform accelera-

tion.
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If the direction of the relative motion make an angle 6

with the plane which bisects the external angle between the

two planes, then
2(9 = a~/3,

where a and /S are the inclinations of the given inclined

planes to the horizon.

32. A body moving down a smooth inclined plane is

observed to fall through equal spaces, a, in consecutive

intervals of time r^, r^; prove that the inclination of the

plane to the horizon is

sm 4 .
-^ '

i^^l'^2 ^1 + ^2

83. Two weightless planes, inclined respectively at angles
a and /3 to the horizon, are placed back to back on a rough
horizontal table, and two weights P and Q, whose masses
are m and m respectively, are placed upon them, being con-

nected by a string passing over the common vertex of the

planes. If P predominate, and the motion take place in

a vertical plane, find the pressure on the planes, and shew
that they will slide on the table if the coefficient of friction

be less than

(m sin 7 ~ m sin /5) (m cos a + m cos /3)

(m + mf — (m sin a ~ m sin
ff)'^

84. Two particles start simultaneously from the same

point and move along two fixed straight lines, the one with
uniform velocity, the other from rest with uniform accelera-

tion. Prove that the line joining the particles at any time
is a tangent to a fixed parabola.

35. Shew that if two particles of mass m and rti re-

spectively be suspended by a string over a smooth pulley,
the acceleration of their common centre of gravity is

/7?i — m'Y
\7)i + m /

*

3G. Two particles are connected by a string: one of

them rests on a smooth horizontal table and the other hand's
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over the edge. The sj^stem being allowed to move, determine
the motion of the centre of gravity of the two.

37. Two particles are connected by a string which

passes over a smooth pulley fixed at the top of two smooth
inclined planes having a common height : supposing that one

 

particle moves on each plane, and the whole motion is in

one vertical plane, find the motion of their centre of gTavity.

38. In a system of n pulleys, in which each hangs by
a separate string, the power and weight are in equilibrium,
the power consisting of a suspended weight. If the weight

be doubled shew that its acceleration is / ,
the pulleys^ "I ^

beino^ without w^eisfht.

39. Shew that the straight line of quickest descent from
one curve to another makes the same angle with the normal
to either curve at the point where it meets the curve.

40. A number of equal weights are attached at different

points to a string, and the string then hangs over a smooth

jiulley. Shew that at any subsequent time the tensions of

the successive portions of the string are, on each side, in

Arithmetical progression.

41. A large number of equal particles are attached at

equal intervals, a, to a string, and the whole is heaped up
near the edge of a smooth table, the particle at one extre-

mity of the string being just over the edge of the table.

Shew that, if v be the velocity of the system just before the

(n + 1/^^ particle is set in motion, v is given by the equation

ga (n 4- 1) (2n + 1)
v'

3 11

Hence shew that in the limit, when a is indefinitely small

and 7ia finite, the chain will descend wdth uniform accelera-

tion
"^

.

42. The down Express approaching Abbot's Ripton, with

all breaks on and steam shut off, reduced its speed from 60

to 20 miles per hour in 800 yards. How much additional

G. D. 9
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space would have saved the collision (the other train being
at rest) ?

43. If the kinetic energy of a train of 100 tons moving
at 45 miles an hour be represented by 11, while its momen-
tum is represented by 5, and 40 horse-power is represented

by 15, find the units of length, mass and time, and shew
that the acceleration produced by gravity will be represented

by 201 G, assuming its measure to be 32 in the foot-second

system.

44. Two masses of 3 lbs. and 5 lbs. connected by a

string which passes over a smooth pulley are in motion : if

the acceleration of the system be the unit of acceleration,

and the velocity at the end of 10 seconds from the com-
mencement of the motion be the unit of velocity, find the

units of space and time.

45. An ellipse is placed with its minor axis vertical
;

prove that the normal chord of quickest descent from the '

curve to the major axis is that drawn from a point subtend-

ing a right angle at the foci, if there be such a point. What
is the condition that there may be, and what is the normal
chord of quickest descent if there is not ?

46. A train, of mass 200 tons, is ascending an incline of

1 in 100 at a rate of 30 miles per hour, the resistance of the
rails being equal to the weight of 8 lbs. per ton. The steam

being shut ofi' and the break applied, the train is stopped in

a quarter of a mile. Find the weight of the break-van, the

coefiicient of sliding friction of iron on iron being
-

.

47. Shew that the locus of points reached in a given
time by particles sliding from rest down equally rough
straight lines, originating in a given j^oint, is made up of

two equal segments of spheres.

48. A blacksmith, wielding a 14 lb. sledge, strikes an
iron bar 25 times per minute, bringing the sledge to rest

upon the iron after each blow. If the velocity of the sledge
on striking the iron be 32 feet j^er second, compare the rate

at which the smith works with a horse-power.



CHAPTER III.

ON PROJECTILES.

154. In this Chapter we propose to consider the motion
of a heavy particle projected in a direction inclined to the

vertical and acted upon by its own weight only, together with
some problems immediately connected with this subject.

This is the first case which has come specially under our

notice, in which the force acting upon the moving particle,

and, therefore, its acceleration, are not in the straight line in

which it is moving. The force is in this case always inclined

to the direction of motion, and therefore tends continually to

alter this direction, for the velocity generated in each short

interval of time, being in the direction in which the force

acts, is inclined to the direction in which the particle is mov-

ing at the beginning of the interval. The velocity at the

end of the interval will be found by compounding these two
velocities according to the parallelogram law, and its direc-

tion will be intermediate between those of the two com-

ponents, and will therefore tend to coincide more nearly with

the direction of the force. Hence the direction of motion
of the particle changes continuously, tending always towards
the direction of the force, and the particle will therefore

describe a continuous curve with its concavity do^\mwards.

In the following articles we shall neglect the rotation of the

earth and the friction of the air.

155. A heavy ^particle is projected with velocity u in a
direction making an angle a. with the horizontal plane through
the point of projection; to determine the subsequent motion

and the point luliere the particle again reaches this horizontal,

plane.

9—2
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The whole motion will obviously be in the vertical plane

passing through the line of projection, since there is no
force tending to make the particle move out of this plane.
Also since the resistance of the air is neglected, the only
force acting upon the particle is its weight acting vertically
downwards. Let m be the mass of particle, w its weight,
and let the plane of the paper represent the vertical plane

through the line of projection. Let B be the point of pro-

jection; JBT the direction of projection, BC horizontal, and
let the curve BFAG represent the path of the particle.

Then since BT is the direction in which the particle begins
to move, BT must be the tangent to the path at B. Sup-

pose the velocity of projection, w, to be resolved into two

components, viz. u sin a vertically upwards and ii cos a in

the direction BG.

Now the only force acting on the particle is its weight,
which acts vertically downwards, and since the change of

motion produced by a force at each instant is in the direction

of the force, the velocity generated in the particle at each

instant of its flight is in the vertical direction, and its hori-

zontal velocity remains unaltered throughout, and is therefore

always equal to u cos a.

Again, the acceleration produced by the weight is such

as to generate g units of velocity in the vertical direction

during each unit of time. Hence the vertical component of

the velocity of the particle at the end of t units of time after
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the projection is usma—gt. Also the horizontal velocity
of the particle can have no effect in altering its height
above BG. Hence the vertical height through which the

particle will have risen during the time t is, by equation
(2) Art. (76), equal to

^lsmoi.t — ^ gf.

Also the distance through which the particle will have moved

parallel to BC in the time t is u cos a . t

Let P be the position of the particle at the end of any time

t, PM vertical, then PM= w sin a . ^
—
^ gf, andBM= u cos a . t

and thus the position of P is determined.

u sm CL

If we make t equal to , we see that the vertical

component of the velocity of the particle is zero. The par-
ticle will therefore at the end of this time be moving hori-

zontally. Let A be its position ;
then the tangent to the

path at A is horizontal. Draw AK vertical. Then we have

. T- . 11 sin a 1 fu sin oCs^AK = II sm a .
 —

-^ a
[

1

9 2'^ \ g J

1 u^ sin^ a

Also

9

BA = u cos a .

9
zi^ cos a sin a 1 w^ sin 2 a

9 ^9
Draw PX paraUel to BC. Then PN= BK -BM

1 u^ sin 2a

2 9

sindAN=AK-PM
1 it^ sin^ a

— u cos a . t,

— usmci .t +
-^ gf.2 g _"

— -•"  

2
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-..T -r^ Tiro '^^ siir 2a u^ sin 2a cos a
.

„ „ ,„Now PN^ = -—
j-^ ^ + w cos^a f

;

9

Now since this is independent of t it is true for all

positions of P. Hence the path is a parabola of which A is

the vertex, AK the axis, and whose latus rectum is equal to

2u^ cos^ a ...

(A).
9

Since when the particle is at A its motion is horizontal,
after passing A it will begin to descend. Hence AK is the

greatest height to which it will rise. Therefore if h be the

greatest height to which the projectile will rise,

, -z^^sin^a ,-r.,

''=^f- (^^-

If P be taken on the side of ^^ remote from B, we
wsm 2a

must write for PN uco^a.t —
, hence PN^ is the

^9
same as before, and AN being of the same form as before,
we have still

^^^,^
2^-cos-a

^

9

which shews that after passing A the particle continues to

move in the same parabola as before. Hence KG is equal
to BK, and

BG=2BK

_ u^ sin 2a

9

Hence if r denote the range on the horizontal plane

through the point of projection, we have

u^ sin 23J /^,
r = (C).

9
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The focus will be in AK at a depth below A equal to

one-fourth of the latus rectum. Hence the heioht of the

focus from the ground is

J T^ u~ cos^ aAK ^
—

_ 11^ (sin^ a — cos^ a)

_ u^ cos 2 a „

"""""¥" ^ ''

The directrix will be a line parallel to BC and at a height
above A equal to one-fourth of the latus rectum. Hence the

height of the directrix above the ground is

tc^ (sin^ a + cos^ a)

(E),
u"

and it is therefore at such a height that if the particle were

projected vertically with velocity u it would just reach the

directrix. Hence if a number of particles be j^rojected from
B in the same vertical plane and with the same velocity but

in different directions, the parabolas described by them wdll

all have the same directrix.

From the principle of the conservation of energy com-
bined with the fact that the velocity of projection is such

that if a body were projected vertically with this velocity it

would just reach the directrix, it follows that at any point of

its path the velocity of a projectile is numerically equal to

that, which it would gain in falling vertically from rest at the

directrix to the point at which it is. See Art. 156.

loG. The proof that the path of a projectile is a parabola
is generally given somewhat as follows.

Let the plane of the paper be the vertical plane of pro-

jection, BT the direction of projection making an angle a

with the horizontal line BG, Let ii be the velocity of pro-
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jection. Suppose the velocity of the particle always resolved

into two components, one in the direction BT, and the other

vertically downwards. Now since the only force acting on
the particle is its weight, which acts vertically downwards,
the velocity generated in each instant is always vertical,

and due to a constant acceleration g. Hence during any
particular instant it is only the vertical component of the

particle's velocity which is affected, and this being true for

each instant, it follows that throughout the motion the
vertical component of the velocity is uniformly accelerated

while the component in the direction BT remains the same,
and is therefore always equal to u. The vertical component
of the velocity which is zero at the commencement of the

motion will be denoted by gt at the end of t seconds.

Now since the particle moves with a constant velocity u
in the direction BT, and this velocity is independent of its

vertical velocity, it will, in t seconds, on account of this com-

ponent of its velocity alone have moved through a space ut.

Take BT equal to ut and draw TK vertical. Then since the

other component of the particle's velocity is vertical, the space

passed over during each instant by the particle on account
of this second component of its velocity is always vertical,

and this being true for each instant during its flight, it follows

that the space passed over by the particle during any time
t on account of the second component of its velocity only is

in the vertical direction. Hence at the end of the time T
the particle must lie somewhere in the straight line TK.
Let Q be its position. Now the distance TQ will be

equal to the space passed over by the imrticle in the time f,
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on account of the vertical component of its velocity. But
this component at the end of any time t is equal to gt, hence
the space passed over from rest by the particle in t seconds

moving with this component of its velocity only is
-^gf.

1
Therefore TQ = -

gf. Draw 5 F vertical, and QF parallel to

BT. Then QV= BT=^ut, and BV= QT=\gt\
Zi

g 2^

= ^-^BZ
9

and -— is a constant quantity. But in the parabola

QV = ^SP . PV (Besant's Conies). Therefore, the curve is

a parabola whose axis is vertical and vertex upwards, and the

distance of B from the focus is 7:— , which is therefore also its

^^ distance from the directrix. ^ .-/' , ^
' r • C -7

^ 157. Assuming the path of a projectile to be a parabola,
we can at once find the latus rectum and the position of the

focus. The letters used to designate the equations are the

same as in Art. 98.

Resolving the velocity always into two components, the

first horizontal and the second vertical, these two components
at the end of t seconds from the commencement of the motion
are respectively u cos a and u sin a — gt. The 23oint is moviug
horizontally and is therefore at the vertex A (see figure,
Article 153) of the parabola when its vertical velocity is zero,

that is when t = , We have then
fi

AK=^ u sin oL.t — ^gf

u- sin^ a .-dn

=-%^ ^''^-
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and BK= ii cos a . t

t^ cos a sin a

9
But since tlie curve is a parabola, if Z be the latus rectum

we must have
BK^ = I . AK',

, _ 2w^ cos^ a , .

^
• • 6 = ».. ( ^nL. /.

The range is equal to twice BK, since the parabola is

symmetrical about AK. Hence if r be the range,

2i^^ cos a sin a
r= — —

9
'U^ sin 2a

'

,p,v— WJ-

In order that the range may be a maximum we must
have sin 2a = 1, and therefore a = 45^. Hence for a given
velocity of projection an elevation of 45° gives the greatest
horizontal range.

158. The directrix being at a height above A equal to

one-fourth of the latus rectum, its height above BC is

I (E)-

Now the height of Q above BG at the end of the time t

is
umioL.t—^fjt^.

Hence the distance of Q below the direc-

trix is

u^ 1

^^-usma.-V-gf
(F).

Also the velocity of the particle is the resultant of its hori-

zontal velocity u cos a, and its vertical velocity u sin a — gt,
and these are at right angles. Hence if v denote the velocity
of the projectile at the end of the time t,

V = [u^ cos^a + (w sin a —
gty]''^

=
[u''-2uiimoL.gt + gr]- (G).
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Now the distance, S, of Q below the directrix is given by

u^ . 1
S = ^ u sin a.t + ~

r/f,

and the velocity, V, of a particle falling freely through this

vertical height is given by the equation

.*. F^ = w^ — 2ii sin a.gt + (ff.

Hence the velocity of the projectile at any time is that due
to falling from the directrix to its position at the time. This
is in accordance with the principle, that the increase of the

kinetic energy of the body is equivalent to the work done

by gravity upon it.

159. Def. Tlie angle which the direction of projection
makes luith the hoi^izontal jj^«??e through tlie point of pro-
jection is called the elevation ofp)rojection.

We will now apply the methods and results of the pre-

ceding Articles to some examples.

A bullet is p>rojected with a velocity of 1000 feet per
second at an elevation of 15*^. Find its range on the hori-

zontal plane through the point of projection^ neglecting the

resistance of the air.

The range r is given by the equation

„ , w^sin2a^ ^
r teet = leet

9

1000000.^
= ^ feet

9

1000000^ ,=
--^^— feet,

assuming g equal to 32.

The range is therefore o208J yards. Of course in the
case of bodies moving with such great velocities as 1000 feet
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per second, the resistance of the air is very great indeed, and
the above result is practically worthless. The effect of the

resistance of the air upon cannon shot is such, that the

maximum range is obtained when the elevation of the line

of fire is about 33*^.

160. A particle projected at an elevation a, and with

velocity u, strikes a fixed vertical plane perpendicidar to the

vertical plane of projection, aiid at a distance k from the

point ofprojection. Find the height at ivhich it strikes.

The horizontal velocity of the particle remains constant

and equal to u cos a. Hence if t be the time elapsing after

the instant of projection and before the particle reaches the

plane, we have
k .

t =
u cos a

The height to which the particle will rise in this time is

given by the equation

s = w sin a . ^ — -
gf,

or substituting for f, .
.

1 1^PD = h tan ol
— - a —, s- ,

2'^ u cos a

which determines the point where the particle strikes.

161. Suppose it required to find the point where a pro-
jectile will strike a horizontal plane at a distance h below
the p)oint ofp>Tojection,
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Let, as before, u be the velocity and a the elevation of

projection. The time t in which the j^article will rise to

a height s above the point of projection is given by the

equation

s = u sin a . ^ — -
gf.

In this case we must write - h for s, since the plane is

below the point of projection; we have then

^gf
— u sin OL.t

— h

u sin a + J'lgh + ii sin^'a

.. t = ''^^

Taking the positive value of t and therefore the upper sign
of the root in the above expression, we have

w sin a + J^gh + u' sin^a

and the horizontal distance from the point of projection of

the point at which the particle strikes the plane is

11 cos a . t,

%^ sin a . cos aL-\-\i cos a J^qli + v^ sin^a
or '

.

9

If it be required to find the direction of the particle's
motion when it strikes the plane, we have only to find the

vertical and horizontal components of its velocity at the

instant. The horizontal component is xi cos a, and the verti-

cal component gt
—

ii sin a, that is sj^gh + i^ sin^a. Hence the

tangent of the angle which the direction of motion makes
with the normal to the plane is

wcosa

J^gh + u^ sin^a

162. A particle is projected with velocity u at an ele-

vation a, it is required to find the distance from the p^oitit

of projection of the point luhere it strikes a plane through
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the 2Joint of projection, inclined at an angle 6 to the horizo7i,
and i^erpendicidar to the vertical plane of projection of the

particle.

Let BF represent the inclined plane, and P the point of

IJ

impact. Let t be the time of flight before reaching P. Draw
PM perpendicular to BG. Then

B3f= u cos OL .t and P3I = w sin cc . ^ — -
gf.

But since P lies on the plane, PM= BM tan 6.

Therefore

or

and

M sin a . ^
—

^ gi2

tana

u cos a . t

2u cos a

= tan 6,

tan 0;

.'. t = (tan a
— tan 6) .

2wcoaa

9

Hence B3f= u cos oi.t = . (tan a - tan ^),
9

BP: BM^
cos 6

2it^cos^a, ..=  

7^ (tan a — tan 6),
g cos t7

^ ^

which gives the range on the inclined plane.
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This expression for the range we may put into another

form, thus :
—

7, (2 sin a cos a — 2 cos^ a tan &)
g cos (J

^ ^

——
iPT, (sin 2a cos ^ — 2 cos^ a sin 6)

g cos 6 ^ '

u'=
6-^1 (sin 2a cos 6 — cos 2a sin 6 — sin 6)

a cos ^ ^ ^

^
i^^

gcos^
^ {sin (2a

— 6)— sin
^}.

Now if the inclination of the plane, that is 6y be invaria-

ble, this expression is greatest when sin (2a
—

6) is greatest,
that is when

2a-^ =
|,ora

=
|(|

+
e).

Hence the greatest range is obtained on an inclined 2^^(^ne
when the direction of projection bisects the angle between

the plane and the vertical.

163. We have shewn that the velocity of a projectile
at any point of its path is that which it would gain in falling

freely from the directrix of the parabola which it describes,
to the point in question. Hence if a number of particles
be projected from the same point, in the same vertical plane,
and with the same velocity u, all the parabolic paths described

by the particles will have the same directrix whose height,
hy above the point of jorojection is given by the equation

ic" = 2gh.

Let P be the point of projection, draw FL vertical and of

length equal to ^ . Through L draw LM horizontal and in

the plane of projection. Then LM is the directrix of each

of the parabolic paths or trajectories. Now since the path
of each particle passes through P, its focus must be at a
distance from P equal to FL, and therefore lie on the circle

LKF, whose centre is P and radius FL. This circle is there-
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fore the locus of the foci of all the paths which can be

described by particles projected from P with velocity ic in

the vertical plane containing LM.

164. Suppose we wish to find the range on an inclined

plane PG passing through the point of projection. Let H be

the focus of the parabolic path. Then if It be the point in

PG, which is equidistant from H and the directrix LM, R will

be a point on the parabola, and PR will be the range. Since

the tangent to a parabola at any point P bisects the angle
between the focal distance of P and the perpendicular from
P on the directrix, if H be the focus the direction of projec-
tion will bisect the angle HPL.

In order that PR may be a maximum, P, H and R must be
in one straight line. Hence if S be the point at which the

circle LKF cuts P G, S will be the focus
;
and if SQ be equal

to QN, PQ will be the greatest range which can be obtained

on the plane PG, the velocity of projection being u. The
direction of projection in this case bisects the angle SPL,
that is, the angle between the inclined plane and the verti-

cal, which is the condition for a maximum range which we
found in Art. IGO.

165. Suppose it required to find the point where the

projectile strikes a given plane not passing through the point
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of projection. Let P be the point, and PT the direction, of

projection, and il the initial velocity. Let HQ he the line of

intersection of the given plane with the vertical plane of pro-

jection, which we take as the plane of the paper. Draw
u

PL vertically upwards, and make it equal to ^ . Through

L draw LM horizontal. Then LM is the directrix of the

parabola described by the projectile. With centre P and

radius equal to PL describe the circle LSH. Then the focus

of the path must lie on this circle. Make the angle TPS
equal to the angle LPT, Then S is the focus, and if Q be

the point in HQ equidistant from S and the line LM, Q will

be a point in the path of the projectile. Hence Q is the

point where the particle meets the plane.

Q is of course the centre of the circle which passes through
S, touches the line LM, and whose centre lies on HQ. It

may be found geometrically by producing LM and HQ till

they meet in O, joining OS, in HQ taking any point E, and

with R as centre describing a circle touching L 0, and cutting
SO in V. Then if SQ be drawn parallel to VR and

meeting OH in Q, Q will be the point required.

166. In order that the point where the projectile meets

the plane HQ may be as far as possible from P, the direction

of projection must be such that PSQ is a straight line. For
if we suppose any other direction of projection to give a

greater range on the plane, let S' be the focus of the parabola

G. D. 10
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and Q' the point where the projectile meets the plane. Then
S' Q' is obviously greater than 8Q, But since Q is a point on

a parabola whose focus is S' and directrix LM\ 8'Q' must be

equal to Q'M'. Therefore Q'M' is greater than QM, which is

obviously not the case. Hence the conditions of the problem
will be satisfied when P8Q is a straight line. Q will then

be the centre of the circle which touches the line LM and the

circle LSH, and has its centre on the line HQ.

To find Q geometrically produce PL to K, making LK
equal to PL. Draw KN parallel to LM, By the construc-

tion given in the last article find Q the centre of the circle

which passes through P, touches KN, and has its centre on the

line HQ. Then Q is the point required. For if QN' be

drawn perpendicular to KN and cutting LM in M, QN is

equal to QP. But if >S' be the point where QP cuts the circle

LSH, PS is equal to MK Hence QM is equal to QS, and Q
is the point required.

If PThQ drawn bisecting the angle QPL, PT will be a

tangent to the parabola at P, and hence PT will be the

direction of projection. Also QSP being a focal chord, since

tangents at the extremities of a focal chord of a parabola in-
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tersect at right angles in tlie directrix, Q T will be the tangent
at Q, and will be at right angles to FT. Hence QT is the

direction of the particle's motion when it meets the plane

HQ, and we see that if the particle be projected so that the

point where it meets any plane HQ may be as far as possible
from the point of projection, the direction of its motion when
it meets the plane is at right angles to the direction of pro-

jection.

The curve described by a projectile is frequently called a

trajectory.

167. Referring to the figure of the preceding article, since

QN is equal to QP, it follows that § is a point on the para-
bola whose focus is F and directrix KN. Hence if with F
for focus and L for vertex we construct a parabola, the point

Q at which this parabola cuts any plane will be the point on
that plane farthest from P to which a particle can be thrown
with the given initial velocity.

Again, since TQ is at right angles to FT, it follows that

Qr bisects the angle FQN. Hence QT is the tangent at

Q to the parabola whose focus is F and vertex X. But it has

been shewn that QT is the tangent at Q to the parabola de-

scribed by the particle projected from F so as to pass through
Q. Hence these two parabolas touch at their common point

Q. The parabola whose focus is P and vertex L therefore

touches each of the parabolas described by particles projected
from F, with velocity u, in different directions in the vertical

plane of the paper. The various trajectories through F will

therefore all lie within the parabola so described, and will

each touch it at some point. In such a case the external

curve is said to envelope the series of inner curves, and is

called their envelope. The annexed figure represents the

series of curves in question.

If we suppose the whole figure to revolve about the line

FL, we see that the trajectory of a particle projected
from the point F with velocity u in any direction in space
lies entirely within, but touches the paraboloid of revolution

generated by the enveloping parabola.

A fountain, proceeding from a rose jet, consists of a series

of particles of water projected with something like the same

10—2
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velocity in different directions, and the general outline of the

jet approximates more or less nearly to the above figure.
As a rule in fountains the very oblique jets are not pre-
sent, and the general outline is therefore much narrowed,

consisting only of the portion of the figure near the axis.

The upper part of the jet however corresponds to the en-

veloping parabola.

If a bombshell were to burst at P, the lines of the above

figure might approximately represent the paths described by
the fragments.

168. If a particle of mass m be projected along a smooth

plane inclined at an angle to the horizon, the resultant

force upon it at every instant while in contact witli the plane
is the resolved part of its weight acting down the plane, that

is, Tng sin 0. Hence the motion of the particle will be that of

a projectile acted upon always by an acceleration uniform in

magnitude and direction, and denoted by g sin 6. The direc-

tion of this acceleration is of course perpendicular to the

horizontal line drawn on the plane, and passing through the

point of projection. Hence, if u be the initial velocity, and
a the angle which the direction of projection makes with the

horizontal line through the point of projection lying in the

inclined plane, the particle will describe a parabola whose
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latus rectum is . ^ ;
the greatest height, measured up

2*2U SID. Ot

the inclined plane, to which the particle Avill rise, is
^
—

-.

—
^ ;

the range upon the horizontal plane through the point of

7/ sm 2 y.

projection is  ^ ^ ; the directrix is a horizontal line in^ ^
gsmd

the inclined plane at a distance -—
.
—

,, from the point of
^

2g sm
^

projection ;
the time before the particle reaches the horizontal

plane through the point of projection, which may be called
o *

the time of flight, is^^—-.

—
^ ,

and the velocity at any point is

that due to sliding down the inclined plane from the directrix

to the point in question. These expressions may be at once

obtained by substituting g^iwO for g in the corresponding

expressions of Art. 156, the two problems being precisely the

same, except that the plane of motion being inclined, in this

case, instead of vertical as in Art. 156, the acceleration under
which the particle is moving is g sin 6 instead of g.

160. We have seen tliat the greatest height, measured
2

*
a

up the inclined plane, to which the particle attains isr—-.

—
^,^ ^ ' ^

z^sin o

Hence the greatest height, measured vertically» to which it
2*2

rises is —-^ ,
since 6 is the inclination of the plane. Hence

zg
the particle rises to the same vertical height as if it had been

projected from P with velocity u at an elevation a, and its

motion had been in a vertical plane.

Again, the distance of the directrix from P, measured up

the plane, is ^—'^—^ . Hence its vertical height is —
,
and^

zg sm 6
°

Ig
it follows that the velocity at any point of the parabolic path

li'

is. that due to falling freely from a plane at height— above

the point of projection. This result is the same as for a par-

ticle projected and moving in a vertical plane, and shews that

in this, as in other cases, the change of the particle's kinetic
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energy is simply equivalent to the work done upon it by
gravity.

170. In all the above cases of motion, the component of the

velocity of the moving point in the direction perpendicular to

that of the resultant force remains always constant. Hence
the time taken by the particle to move from any one to any
other point in its path will be found by drawing straight lines

through these points parallel to the direction of the resultant

force. Then the numerical measure of the distance between
these two lines, divided by the numerical measure of the

particle's velocity perpendicular to them, will give the mea-
sure of the time of flight from the one point to the other.

171. As examples of the preceding Articles we may take

the following.

Ex. 1. The greatest range of a rifle bullet on level ground
is 20000 feet. . Find its initial velocity; and its maximum range

iij)
an incline o/30^ neglecting the resistance of the air.

The range on a horizontal plane is a maximum when
u^

the elevation of projection is 45". The range is then — ,
if u

be the initial velocity. Hence — = 20000
;

.-. u' = 20000g

= 640000;

.-. 24 = 800.

The velocity of projection must therefore be 800 ft. per
second.

Again, it has been shewn that the range up an inclined

plane through the point of projection is a maximum when
the direction of projection bisects the angle between the

plane and the vertical, and the range is then represented by
the expression

2i*'cos''a. ^—
TT (tan a — tan a),

gcosO
'
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where 6 is the inclination of the plane, and a the elevation of

projection. (See Art. 162.) In the present case 6= 30°, and
the range being a maximum, a is therefore equal to 60°,

while u is denoted by 800. Hence the expression for the

range becomes

^•(^^^)'-^^^^^^:
(tan 60° -tan 30°)

9

V3-
V3>

cos 30"

_ 2 . 640000~
16 . V3 . 4

_ 20000. 2

3

_ 40000

3

= 13333-3.

Or the range on the inclined plane is 13333*3 feet, that

is, two-thirds of the range on the horizontal plane.

172. A simpler way of treating the latter portion of the

problem is the following; and it has the advantage of not

requiring the general expression for the range on an inclined

plane through the point of projection.

Let PQ be the line along which the range is required,
the inclination oi PQ to the horizon being 30°. Let Q be

'Aa

the point where the particle strikes the plane. Then assuming
that PT, the direction of projection, bisects the angle QPL,
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that is, the angle between P Q and the vertical, we have the

angle TFE equal to 60*^. Hence the vertical component of

the particle's initial velocity is -i^ sin 60*^, and the horizontal

component, which remains constant, is u cos 60^. Let t be the

time of flight from P to Q. Then the height to which the

particle will rise in the time t is usinQO^ .t —^ . Therefore

QP = i^ sin 60V i - i ^f.

Again, the horizontal velocity being constant and equal
to u cos 60°, we have

PP = 'z^ cos 60°. t

But since the angle QFR =
30°, QR = PE tan 30°

;

.-. u sin 60° . t — ^gf — u cos 60° . t . tan 30
;

.'. Su— J'S .gt
= u;

2u
'

And PQ

.^V3

PR ucos60\t
cos 30" cos 30°

u 2u

V3*W3

= -^ = ? 20000, as before.

^g 3

173. Ex. 2. Two halls areprojectedfrom the top ofa tower,

each with a velocity of 50 feet per second, the first at an eleva-

tion of 30° and the second at an elevation of 45°. They strike

the ground at the same point : find the height of the tower.

Let J.P represent the tower, and let Q be the point where
the balls strike the ground. Let the length of AQ be a feety
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and let x feet be the heiglit of the tower. Since the first

particle is projected with a velocity of 50 feet per second, at

u4. a

an elevation of 30^ the horizontal component of its velocity

is 50 cos 30°, or 25^/3 feet per second. Hence its time of

flight from P to Q is
a
r- seconds. Now the heisfht to

25\/3

which the particle will rise in i seconds is

50 sin 30\ ^- ^ g^~ feet (1),

a
and substitatino: 7= for t in this expression, we have for^

25^3
the height AF the expression .

a

2^'2o\'S
-25.

a

25\/3
feet.

Again, the horizontal velocity of the second particle is

50
50 cos 45", that is -j= feet per second. Hence its time of

J2

flight from P to ^ is -^ seconds, and the height above P to

which it will rise in this time is found by substituting this

value for t in the expression

50 sin 45° .t-\gf.
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Hence we obtain for the height of ^P in feet the expression

1 2a'_50 ajl .

2^*50' V2' 50 ^ ^*

These two expressions, (1) and (2), for the height of ^P
must of course be equivalent. Hence equating them we have

-^ _ = _^1_ _ 4.
^50^ ^"^6.25^ V3'

or g (^
a \ V3-1

a =

25V V3
'

V3-1 3.50^

~V3~- g

_ 2500 (3
-

V3)

9

Substituting this value of a in either of the above ex-

pressions for the height AP, we obtain for this height

?500 3_
2500

ff 9

=
(2-V3).(3-V3)^y

and if we take
^r
= 32 we obtain for the height of the tower

26-542968... feet.

This last example is useful as indicating how such

questions may be solved, without any reference to the para-
bola, by simply considering the horizontal and vertical mo-
tions independently, and finding the time of flight.

174. Ex. 3. A shot IS fired at an elevation of 30*^ so as

to strike an object at a distance o/ 2500 feet, and on an ascent
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of 1 in 40. Find the velocity of pivjection, neglecting the

resistance of the air.

This is of course equivalent to finding the velocity of

projection in order that the range on a plane through the

point of projection inclined to the horizon at the angle

sin"* 27 ^^y ^® 2500 feet, the direction of projection beingTV
inclined at an angle of 30*^ to the horizon. We may there-

fore at once use the formula of Art. 160 for the range on an
inclined plane, or we may proceed thus :

—
Let u be the velocity of projection. Then -^— is the

horizontal velocity of the shot. Now the horizontal distance

between the point of projection and the object hit is

(40^ — 1)^
2500 ^^

T7.
—— feet. Hence the time of flif^ht is

40 °

2500 ^—
TTT
—~ —

jr. seconds
40 u^/:^

125J5SS ,= — seconds.
u

Now the vertical velocity of the shot, initially, is u sin 30*^,

that is, ^ . Hence the height to which it will ascend in the

above time is

u 125^533 1 125\53^

2' u 2^- W~ *^^*

125 r^, 1 125^533. ,066 — ^g 2 feet.
2

^ 2^ u""

But the height of the object above the point of projection

is -^
feet, since it lies on an incline of 1 in 40. Hence we

40
must have

125 j-r—
1 125^ 533 _ 2500

T'"'^ 2^' u' 40
'
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2*
*

'2500(7533-1)'
whence it = 810"6..., or the velocity with which the shot

must be fired is 310*62. feet per second, g being taken equal
to 32.

EXAMINATION ON CHAPTER III.

1. What is the greatest height to which a particle will

rise if projected at an elevation of 30° with a velocity equal
to that which it would gain by falling freely through a verti-

cal height of 100 feet?

2. Shew that, at any time during its flight, the kinetic

eiiergy of a particle projected with given velocity depends
only on the vertical distance above or below the point of

projection, and is independent of the elevation of projection.

3. Find the range in vacuo of a rifle-bullet projected with
a velocity of 1200 feet per second, the direction of projec-

tion making an angle sin~^— with the horizon.

4. A particle is projected at an elevation of 60° with a

velocity of 200 feet per second. Find the latus rectum of

the parabola which it describes, and the height of the focus

above the horizontal plane through the point of projection.

5. A number of particles are projected from a point with

difl'erent velocities and in different vertical planes, but at

the same elevation. Shew that the foci of their subsequent
paths all lie on a right circular cone.

6. Find the direction in which a stone must be projected
with a velocity of 80 feet per second in order to strike a

^nlall bird on the top of a vertical pole 20 feet higher than

the point of projection, and 30 feet in front of it.

7. A particle is projected from the lowest point of a

smooth inclined plane, 40 feet in length, directly up the plane,
with a velocity of 50 feet per second, and, passing over the

edge of the plane, describes a portion of a parabola. If the
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inclination of the plane to the horizon be 4.)*', find the point
where the particle will strike the horizontal plane through
the point of projection.

8. A particle is projected along a smooth plane inclined

30^ to the horizon with a velocity of 100 feet per second, and
meets the horizontal plane through the point of projection at

a distance of 625 feet from that point. Find the direction of

projection.

9. A train is moving at the rate of 30 miles an hour,
and a person in one of the carriages projects a ball vertically

upwards with a velocity of 8 feet per second. Find the latus

rectum of the parabola Avhich the ball will describe.

10. The earth's equatorial radius being 3962'5 miles, if

a particle be allowed to fall from the top of a mast at the

height of 100 feet above the deck of a ship, find where it will

meet the deck.

EXAMPLES ON CHAPTER III.

1. Determine the direction and velocity of projection
that a shot may strike the ground after 16 seconds at a dis;

tance of 9000 feet from the point of projection.

2. A plane is inclined at an angle of 30*^ to the horizon : a

particle is projected from a point in it in a direction making
an angle of 60*^ with the horizon. Compare the ranges on the

plane when the particle is projected up the plane, and when

projected down it.

3. A particle is projected with a velocity 4// at an

elevation of 60^' : find the direction of its motion when at

a height 4^/, and its distance from the point of projection at

that time.

4. Given the time of flight of a particle on a horizontal

plane ;
find the greatest height to which it rises.

5. A body is projected horizontally wdth a velocity 4g
from a point whose height above the ground is 16^ : find
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the direction of its motion (1) when it has fallen half way
to the ground, (2) when half the whole time of falling has

elapsed.

6. A shot is fired with a velocity of 1000 feet per second

against a tower, whose height is 100 feet, and horizontal dis-

tance from the gun one half the greatest range which can be
attained with the given velocity of projection. Find between
what limits the angle of projection must lie in order that

the shot may hit the tower, neglecting the resistance of

the air.

7. Heavy particles slide down chords of a vertical circle

from rest at the highest point. Shew that the locus of the

foci of the parabolic paths they describe after leaving the

chords is a circle, and that of their vertices is an ellipse
whose axes are in the ratio of 2 to 1.

8. Two particles are projected simultaneously from the

same point in directions which are in the same vertical

plane ;
shew that, if'they impinge on each other afterwards,

their paths must coincide.

9. If particles be projected from a point with the same

velocity the foci of the parabolas described lie on the surface

of a sphere.

10. Particles are projected from the same point and in

the same plane so as to describe equal parabolas : shew that

the vertices of their paths lie on a parabola.

11. A heavy particle is projected from a given point in

a given direction so as to touch a given straight line. Give

a geometrical construction for determining the point of con-

tact, and the elements of the trajectory.

If the direction of projection be not fixed, find the tra-

jectory, so that the velocity of projection may be the least

possible.

12. A particle is projected with given velocity : find the

elevation of projection that its direction of motion may be

horizontal when it strikes a given inclined plane through the

point of projection.
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13. A ball is projected horizontally from the top of a

staircase, each stair of which is a feet high, and c feet broad,

Avith a velocity represented by J2gnc ;
find from which step

it will first rebound.

14. From a point in a fixed horizontal line, a particle is

projected with a given velocity, along an inclined plane

passing through the line, so that its horizontal range may be
the greatest possible. If the inclination of the plane is varied,
the locus of the vertex of the parabolic path will be a hyper-
bola.

15. If T be the time in which a projectile passes from

any point P to the vertex of its parabolic path, and t the

time of falling, under the action of gravity only, from rest at

the vertex to the focus, shew that r^ + f varies as the dis-

tance of F from the directrix.

16. A particle is projected at right angles to an inclined

plane with the velocity which would be acquired in falling
3

freely through a space equal to ^ of the range on the plane :

find the inclination of the plane.

17. From a point on an inclined plane two particles are

projected with the same velocity in the same vertical plane
in directions at right angles to each other

;
shew that the

difference of their rangfes is constant.'o'

18. If a body be projected at an angle a to the horizon

with a velocity equal to g, its direction of motion is inclined

at an / ^ to the horizon at the end of the time tan ^ ,
and at

the / —^— at the end of the time cot ^ .

19. ABC is a right-angled triangle in a vertical plane
with the hypothenuse AB horizontal. A particle projected
from A passes through G and falls at B

;
shew that the angle

of projection is tan~^ (2 cosec 2^), and that the latus rectum
of the path described is equal to the height of the triangle.
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20. If a particle impinge perpendicularly on a plane
tlirough the point of projection inclined at an ^ a to the hori-

zon, shew that its range on the plane is equal to

W sin a

"^
 

1 + 3 sin'ot
'

where v is the velocity of projection.

21. A particle is attracted to one centre of force and re-

pelled by another, both forces varying as the distance : shew
that if the absolute intensities of the forces are equal, the path
of the particle is a parabola.

22. Heavy particles are projected horizontally with dif-

ferent velocities from the same point : shew that the extremi-

ties of the latera recta of the parabolas which they severally
describe lie on a cone, of which the axis is vertical, and the

vertical angle 2 tan~^ 2. -

23. A smooth rectangle, the lengths of whose edges are

respectively 20 and 10 feet, is placed with its longer edge
horizontal and its plane inclined 30*^ to the horizon : find

the velocity with which a particle must be projected from
one corner so as to leave the plane horizontally at the oppo-
site corner, and shew that the horizontal range after leaving
the plane is one-half that described on the plane.

"

24. A heavy particle is projected from a point so as to

pass through another point not in the same horizontal line

with it. Shew that the locus of the focus of its path will be

a hyperbola.

25. A particle slides from rest down a smooth inclined

plane : shew that the distance from the foot of the plane
of the focus of the parabola which the particle describes

after leaving the plane is equal to the height of the plane.

26. The parabolic paths of two projectiles have the same
focus

;
if tangents be drawn to the parabolas from any point

in their common axis, the velocities of the projectiles at the

point of contact are equal.

27. If t and i be the two times of flight on an inclined

plane through the point of projection, corresponding to any
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iziven ranofe short of the o^reatest, and a the inclination of the

plane, prove that

f + t'^ + 9tt' sin a

is independent of a, the velocity of projection being given.

28. How must a ball be projected from a point distant a

feet from a vertical wall which is c feet high, so that it may
just pass over the wall at an angle of 45" with the horizon,

and fall at a distance of h feet from the wall ?

29. The time during which a projectile moves from one

end to the other end of a focal chord is equal to the time in

which it falls vertically from rest through a space equal to

the length of the chord.

30. If a particle be projected at an elevation of 60" up
a plane inclined at an angle of 30 degrees to the horizon

and passing through the point of projection, shew that the

range in feet is 16 times the square of the time of flight in

seconds.

31. Particles are placed along a rod which revolves

about a hinge in a vertical plane ;
when ascending and in-

clined at an angle of ^o** to the vertical the rod is suddenly

stopped, and the particles proceed to move freely. Shew
that they will all be in the vertical line through the hinge at

the same instant
;
and that if one particle strikes the hinge

at the same moment as another reaches the highest point of

its path, the original distances of these particles from the

hinge were as 1 to 4.

32. Given the point of projection of a projectile and the

range on a horizontal plane, find a geometrical construction

for its focus and directrix, in order that it may pass through
a given point.

33. Two shots are fired at a tower in parallel directions

from two points in the horizontal plane through its base, dis-

tant a and h respectively from the tower. They both hit the

top of the tower. Prove that if the initial velocity be the

same in each case, the heie^ht of the toAver is ^ tan a, where

G. D. 11



162 EXAMPLES.

OL is the inclination to the horizon of the direction in which

the shots are fired.

34. Two inclined planes intersect in a horizontal line,

their inclinations to the horizon being a, y8: if a particle be

projected from a point in the former at right angles to it so

as to strike the latter at right angles, the velocity of pro-

jection must be

sin;8./ . .-g«V sin a — sin/5 cos(a + /Q)

ii being the distance of the point of ]Drojection from the inter-

section 'of the planes.

35. A particle is projected with a given velocity in a

mven direction. After what time will it be movinof at ris^ht

angles to this direction, and what will be its velocity and

position at that time ?

36. Give a geometrical construction for determining the

two directions in which a particle may be projected from a

given point A with a given velocity to pass through another

given point B.

If the velocity of projection be J^lga, and if h, k be the

vertical and horizontal distances of B and A, shew that

when these directions coincide

h'^ = ^a {a
—

h).

87. On the moon there seems to be no atmosphere, and

gravity is about one-sixth' of that here on earth. What space
of country would be commanded by the guns of a lunar fort

able to project shot at 1600 feet per second ?

38, Shew that the whole area commanded by a gun on a

liill-side is an ellipse whose focus is at the gun, whose eccen-

tricity is the sine of the inclination of the hill to the horizon,

and whose semi-latus rectum is the greatest height to which
the oun could send a ball.

"-

39; Particles are projected from the same point with

equal velocities; prove that the vertices of their paths lie on

an ellipse. If they be all equally elastic, and impinge on a
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vertical wall, prove that the vertices of their paths after

impact lie on an ellipse.

40. A shot of m pounds is fired from a gun ofM pounds,
placed on a smooth horizontal plane and elevated at an angle
a. Prove that, if the muzzle velocity of the shot be V, the

range will be

,r (l+g tan«^

^
l + l'l+^Ytan^a

41. A particle is projected from a platform with velocity
V and elevation /S. On the platform is a telescope, fixed at

elevation a. The platform moves horizontally in the plane of

the particle's motion, so as to keep the particle always in the

centre of the field of view of the telescope. Shew that the

original velocity of the platform must be V —^^
,

and its acceleration g cot a.

11—2



CHAPTER IV.

ON COLLISION.

175. If a particle of mass m be moving with a velocity

V, and be retarded by a constant force which brings it to rest

in time t, then the measure of this force we have seen to be

—
. In fact the primary notion of momentum is the effect,

orproduct, of a force acting during a finite time upon matter,
free to move, and it follows from the second law of motion
that that which is produced by a given force acting for a

given time on any quantity of matter free to move, is always
the same amount of momentum, and this is proportional to

the algebraical product of the force and the time during
which it acts. Now suppose the time t during which the

particle is brought to rest to be made very small. Then the

force required to bring it to rest is very large, and if we sup-

pose t so small that we are unable to measure it, then the

force becomes very great, but we are unable to obtain its

measure. In this case then we are compelled to adopt some
other mode of considering the question. Since we are unable
to measure the time during which the velocity of the par-
ticle is being destroyed, we leave the element of time out

of consideration altogether ;
the force we call an impulsive

force, and we measure its impulse by the whole momentum
which it destroys.

Hence it will be seen that the nature of an impulse is

totally different from that of a finite force, and the two

things cannot be compared, for an impulse is the same as the

ultimate effect of a finite force acting for a finite time. Indeed
we speak of the impulse instead of tlie force itself simply on
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account of our inability tomeasure very short intervals of time,
and to observe what takes place during them, there being
no case in nature in which a finite change of motion is produced
in an indefinitely short time

; for, whenever a finite velocity
is generated or destroyed in nature, a finite time is occupied
in the process, though we are frequently unable to measure it

even approximately. For example, if two balls strike one

another, each of them will be more or less compressed or

indented, and they will remain in contact for a finite time;

though the harder the balls, other things being the same, the

less will they be compressed, and the shorter will be the time

during which they will remain in contact. We may here

notice that some bodies when they become indented by
impact retain the indentation, while others more or less

completely resume their original form. The first class are

generally called inelastic, and the second class are called

elastic bodies.

176. Def. Two bodies are said to impinge directly

upon one another when the surface of either at the point of

contact is perpendicular to the direction of their relative

velocity.

When this condition is not fulfilled, the impact is said to

be oblique.

From the definition of direct impact it follows that when
two bodies impinge directly upon one another, the mutual
action between them is entirely in the same straight line as

the velocity of one relative to the other.

Newton found that if he allowed two bodies to impinge
directly upon one another, their relative velocity after impact
bore a constant ratio to that before impact, so long as the

materials of which the bodies were composed were unchanged,
but was in the opposite direction. The numerical value of

this ratio is called the coefficient of mutual elasticity of

the two substances, and is generally denoted by e.

If the incidence be oblique but the surfaces of the bodies

smooth, then the whole action between the two is in the

direction of the common normal to the surfaces at the point
of incidence. In this case the component of the relative
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velocity of the bodies in the direction of the common normal
is changed by impact in the ratio of 1 to e, and reversed in

direction, while the component of the relative velocity in a
direction perpendicular to this remains unchanged.

If the surfaces of the bodies be rough, there is also a

tangential action between them, and the change in the relative

velocity is not wholly in the direction of the common normal
to the surface at tlie point of contact.

When e is equal to 1, or the velocity of one body relative

to the other is the same after impact as before, but in the oppo-
site direction, the bodies are said to be perfectly elastic. If e

be equal to 0, or the bodies after impact go on moving toge-
ther, they are said to be inelastic. No bodies occurring in

nature are either perfectly elastic or inelastic. Glass and
some crystals are amongst the most elastic bodies known,
while clay, putty, &c. have very little elasticity.

177. If the two bodies are of the same material, the

numerical value of the ratio of their relative velocities after

and before impact is called the coefficient of elasticity of

the particular material of which they are composed.

We may remark that the impact of two spheres is direct

when the line joining their centres at the moment of impact
is in the direction of their relative motion.

We shall in this chapter consider the impact of particles
and spheres against one another and against planes only, and,

except when the contrary is stated, we shall suppose their

surfaces smooth.

178. The shnplest case of impact is that of a particle

impinging directly upon a fixed inelastic plane. In this case,

since the coefficient of mutual elasticity is zero, the particle

will come to rest. Now if m be the mass of the particle and

V its velocity, its momentum will be denoted by mv, and since

this is entirely destroyed by the impact, the measure of the

impulse which the plane exerts on the particle is mv
;
and

since action and reaction are equal and opposite, this is also

the measure of the impulse of the pressure exerted by the

particle on the plane.
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179. Next suppose a particle of mass m and moving
with velocity v to impinge directly on a fixed plane, the co-

efficient of elasticity being e. In tliis case the particle will

rebound from the plane with velocity ev. The impulse ex-

erted by the plane on the particle must therefore destroy the

velocity?; with which it is moving, and generate a velocity ev

in the opposite direction. Hence the whole change of the

particle's velocity is numerically equal to v + ev, and the

whole change in its momentum to mv (1 + e). Hence the

measure of the impulse between the particle and plane is

mv (1 + e).

If the plane be perfectly elastic we have e equal to 1, and
the impulse is measured by Imv,

180. Next suppose the plane on wdiich the particle

impinges to be moving with a velocity V in the same direc-

tion as the particle before impact. Then the velocity of the

particle relative to the plane is v — V before impact, and
after impact it is e {v— F), but in the opposite direction. If

we adopt the usual convention with respect to sign, we may
denote the velocity of the particle relative to the plane after

impact by — e(v
— V). The whole change of the velocity of

the particle is {v
— V) (1 -H e), and the change of its momen-

tum is 7?i (v
— F) (1 -f- e)y without regard to sign. This last

expression is the measure of the whole impulse between the

particle and the plane.

Since the velocity of the particle before impact w^as v, and
the change of velocity produced by the impact is (y

— V)
(1 4- e) in a direction opposite to that of v, it follows that the

velocity of the particle after impact \^ v — {v —V) {l-\-e), and
is in the same direction as before, or in the opposite direc-

tion, according as the sign of this expression is positive or

necjative.

If e be zero or the plane inelastic, the velocity after im-

pact is V, as of course it should be. If e be unity or the

elasticity perfect, the velocity after impact is 2F— i', and
this is in the same direction as before, or in the oj)posite

V

direction, according as V is greater or less than ^ .
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The above investigations are true for spherical balls as

well as particles, provided that their centres of gravity coin-

cide with their centres of figure, and that they have no mo-
tion of rotation, unless their surfaces be perfectly smooth. If

the spheres be rough and they have a motion of rotation, or

if their centres of gravity do not coincide with their centres

of figure, the problem becomes much more complicated, and

requires the principles of Rigid Dynamics, to which subject
all problems on the motion of spheres or of any rigid bodies

of finite dimensions properly belong.

181. Suppose a particle of mass 7?z moving with velocity
V along the line QP to impinge obliquely at P, upon the

smooth plane AB, the coefficient of elasticity between the

particle and plane being e. It is required to find the

motion of the particle immediately after impact, and the

impulse on the plane. Let PT be the direction of motion

after impact, PN the normal at P to the plane. Let the

angle QPN be denoted by a, and the angle TPN hj 0. Then
the velocity of the particle before impact may be resolved

into two components, viz.—v sin a along the plane, and v cos a

j^erpendicular to the plane. Since the plane is smooth it is

only the latter component which is altered by the impact, and
this is replaced by a velocity ev cos a in the opposite direction.

The velocity after impact is therefore the resultant of the

two velocities, v sin a along the plane and eycosa perpen-
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dicular to tlie plane, and is therefore numerically repre-
sented by

V J sin'"^ a + e^ cos""^ a
;

and if PTbe the direction of motion after impact,

V sin a

or cot 6 = e cot a.

If the elasticity be perfect, or e equal to 1, we have

equal to a, or the angle of reflexion equal to the angle of

incidence.

It remains to determine the impulse of the pressure
between the particle and the plane. The component of the

velocity of the particle perpendicular to the plane before im-

pact is V cos c(, and after impact it is ev cos a in the opposite
direction. The whole change of velocity produced in the

particle by the impulse is therefore v cos a (1 -f- e), and the

change of momentum is measured by mvcosa(l + e),
which

is therefore the measure of the impulse.

182. If a particle impinge obliquely on a rough plane
whose coefficient of friction is /x, then besides the impulsive

pressure there will be an impulsive friction called into play,
which will be at each instant proportional to the pressure,
and such that its effect is to dimiinsh the velocity of the

particle parallel to the plane.

Referring to the figure of the preceding Article, since

the velocity of the particle perpendicular to the plane is

reversed in direction and diminished in the ratio of 1 to e by
the impact, it follows as before that the measure of the

impulse is mv cos a (1 -f e). Now the impulse of the friction

called into play is
/ul

times this, that is

jjb
. mv cos a (1 + e),

and diminishes the particle's velocity parallel to the jilane.

Hence the velocit}^, parallel to the plane, of the particle after

impact is v sin oc
—

fiv cos a (1 + e). Therefore, if, as in the
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preceding example, 6 denote the angle the direction of motion
after reflexion makes with the normal, we have

, ^ ev cos a
cot^ =

V sin a —
jLLV cos a (1 + e)

ecosa

sin a —
yu,

cos a (1 + e)
*

which gives the direction of motion after impact, and the

velocity can be found as in the previous case.

If the surface upon which the particle impinges be

curved, the effect of the impact is the same as if the surface

were replaced by its tangent plane at the point at which
the particle strikes it. Thus in the preceding Article, if PN
be the normal at P to the surface AB, the whole of the

reasoning will be equally true whether the surface AB be

plane or curved.

183. Hitherto we have considered the obstacle against
which the moving particle impinges to be either fixed, or

made to move in such a manner that its velocity is unaffected

by the collision. We proceed now to the consideration of

the collision of two particles, or two spheres, each free to

move. It will be seen that in order that two spheres may
impinge directly upon one another, the line joining their

centres at the time of impact must be the line of motion of

either relative to the other.

Suppose two particles, or spheres, whose masses are re-

spectively Jf and m, to be moving in the same direction with

velocities V and v respectively, of which V is the greater,
and to impinge directly upon each other

;
it is required to

find the motion of each after impact, the coefficient of elas-

ticity being e.

Let F^, v^ be their respective velocities after impact.
Then whatever be the impulsive action between them at

the moment of impact, the impulse on the first must be

equal and opposite to that exerted on the second. Hence
the momentum generated in the first must be numerically

equal but opposite in direction to that generated in the
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second. Hence, whatever momentam reckoned in the

positive direction may be lost by the first, the same amount
must be gained by the second, and vice versa; consequently
the Alorebraical sum of the momenta of the two balls must
be the same after impact as before. Therefore

MV^-\- mv^ = MV + mv (I).

Again, the relative velocity after impact is to that before

impact as — e to 1, and the velocity of the first relative to the

second before impact is V—v, and after impact it is V^
—

v^.

Therefore

V^-v^ = -e{V-v) (II).

These two equations, (I) and (II), determine F^ and
v^.

From (II) we have

V,
= v^-e{V-v) (III).

Substituting in (I) we get

(il/ + m) v^
= MV-h mv + eM [V-v))

. „ _ MV+mv + eM{V-v)

Hence from (III)

j^ _MV+ mv — em (
V— v)

,^^.
' ll+ ^i

^^'

If the balls be inelastic e is zero, and from equation (II)
we have V^ equal to

v^,
or they proceed with a common velo-

city, in other words they do not separate. Substituting in

equation (I) we have, in this particular case,

' ' M + m ^ ^•

This of course follows immediately from the general

expressions given above for F^ and
v^, by putting e equal to

in them.
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184. If the balls before impact are moving in opposite

directions, we have merely to give opposite signs to V and v.

It remains to determine the impulse of the pressure
between the two balls. We have determined the velocity of

each after impact on the assumption that the changes of their

respective momenta are equal and opposite. To find the im-

pulse we need only consider the change of momentum of one

of the balls.

The velocity of the first before impact is V, and after

impact its velocity is V^, hence the change of its momentum
isM{V- F^), that is

r MV+ mv - em {V-v)\
I ~M-\-m J

'

Hence if / denote the impulse between the balls, we
have

I W+^i J

Mm
^V-v){l+e) (VII).M + m

We may notice that if the masses of the balls are equal
and the elasticity perfect, or e equal to 1, it follows from

equations (IV) and (V) that i\
= K and V^

=
v, or the balls

exchange their velocities. If in the equations we make m in-

finite we obtain the same result as in Art. 180, in fact we
revert to the case of impact against a moving obstacle whose

velocity is unchanged by the collision.

185. We proceed now to consider the case of the impact
of two smooth spheres not moving in the same or in opposite
directions. We shall investigate only the case in which the

centres of the two spheres are moving in the same plane.
The solution of the general case is precisely similar, but the

geometry is more difficult.

Let the two spheres be called A and B respectively, J/

denoting the mass of A, and m that of B.
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Let -^"6^ be the straight line drawn tlirough 0, 0' the

centres of the spheres at the moment of impact. Let DO be

the direction in which the sphere A is moving before impact,
and V its velocity, EO' the direction of motion of B before

impact, and v its velocity. Let V^, v^ be their respective velo-

cities after impact, and OH, 0'L the directions in which they
are respectively moving. Let the angles DOK, EO'K, HOG,
LO'G be denoted by a, /3, 6, 4) respectively. Let e be the co-

efficient of mutual elasticity.

The velocity of A before impact may be resolved into two

components, Fcos a along 00' and F sin a perpendicular to

00'
y
while that of B may be resolved into v cos j3 and v sin /3

in the same directions respectively. Now since the spheres
are smooth, the whole action between them is in the line 00'.

Hence the components of their velocities perpendicular to

this line remain unaffected. We have therefore

Fsin a— F^sin^
V sin /3

=
i\ sin

</>

(I)-

Since action and reaction are equal and opposite, the im-

pulse upon A is equal and opposite to tliat upon B ;
hence

the change of ^'s momentum must be equal and opposite to

that of the momentum of B, and the change in each takes

place wholly in the direction of the impulse, that is, along the
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line 00'. Hence equating the momentum lost by A to that

gained by B, we have

31
(
Fcos OL— V^ cos 6)

= m
{v^^

cos ^ — ?; cos /5),

or M Fj cos 6 + mv^^ cos
(j)

= ifFcos a + onv cos /3 (II).

Also the velocity, in the direction of the impulse, of

either sphere relative to the other after impact is to that

before impact as — e to 1. Hence

FjCos 6 — v^cos(l)
= — e (Fcosa — -ycos/S) (HI).

The four equations (I), (II), and (III) completely deter-

mine Fj, v^,
6 and ^ in terms of the given quantities.

From equations (II) and (III) we obtain, precisely as in

the preceding Article,

^y. - ifFcos a + mi; COS yS
— em ( Fcos Of

—
-y cos jQ) ,^^rs

^.cos^ = M^ -(IV)'

,
i/Fcos a + mv cos B + eM ( Fcos a — v cos 8) ,^,,

V. cos 6 = — —^ ^ —^
. . .(V).

Also from (I)

Fj sin ^ = F sin a,

and v^ sin ^—v sin /3,

hence the components of the velocities of A and B along and

perpendicular to 00' are known, and the values of F^ and v^
can be at once written down. Again, from (I) and (IV),

/I F sin a (if+m) ^ .

tan6' = -vpi7 ; 5
—^—

j^r- ^ (vl),iW K COS a + mv cos p — em ( K cos a — z; cos jS)
^ ^

, ,
?; sin /5 (if+ 77i) /ttttn

^ iz K cos a + ??iv cos ^ + eif ( Fcos ol
— v cos p)

^ ^

Hence the direction of motion of each sphere after impact
is found.

To find the impulse of the pressure between the balls, we
observe that the momentum of A in the direction 00' before
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the impact is MV cos a, and this is changed by the pressure
into M Fj cos 0. The measure of the impulse is therefore

il/(Fcosa- F,cos6'),

or, if this impulse be denoted by I, we have

^, f^^ il/Fcos a +miicos/5 — em(Fco3a — 'ycos/9)|I=M - Fcosa Yr-,
^ —\

[
M + 7n

= J^(7eosa-e;cos^)(l + e) (VIII).

18G. In all the cases we have investigated the expression
for the impulse involves the factor 1+6, and is therefore

greater in the ratio of 1 + e to 1 than it would have been had
e been zero, but all other circumstances the same. Thus if,

in any case of collision, /' measure the impulse when the

coefficient of elasticity is zero, and / be the measure of the

impulse when, all other things being the same, the coefficient

of elasticity is e, we have

I=r{l + e).

Now if we examine somewhat more closely into what
takes place when two bodies strike one another, we find that,

in the first place, each of them becomes compressed or in-

dented, but if they are elastic they subsequently recover more
or less completely their original form. If they are inelastic

they remain indented, and move on together with a common
velocity. Now up to the instant of greatest compression the

action is the same whether the balls are elastic or inelastic,

and therefore at this instant, even though the balls be elastic,

they will be moving with a common velocity, and the change
of momentum produced in either ball up to this instant will

be the same as though they were inelastic. This change of

momentum is sometimes improperly called the "force of com-

pression!' (See Art. 208.) We have denoted it by /'. Now
in the case of elastic balls, after the compression, or inden-

tation, has attained its maximum, the balls begin to recover

their form. The parts which have been compressed conse-

quently swell out against one another, and the force which

they exert on one another serves to separate the balls. The
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impulse of this force is sometimes improperly called the

''force of restitution!' The time taken by the balls to recover

their form, and therefore the time during which this force

acts, is so short, that we are unable to measure it, and we are

consequently compelled in respect of the force of restitution,

like that of compression, to consider the whole momentum
generated ;

in other words, to consider the impulse. Let this

impulse be denoted by /". Then the whole change of mo-
mentum produced in either ball during the impact is that

due to the force of compression, together with that due to the

force of restitution, and is therefore numerically equal to

/' + r. Hence

i^r + r.

But I=r{l+e);

therefore T' = el\

or the "
force of restitution

"
is equal to e times the "

force of

compression." If e be equal to unity or the elasticity be

perfect, the "
forces of restitution and compression

"
are equal.

187. In many treatises the coefficient of elasticity is

defined as the ratio of the "
force of restitution

"
to that of

compression, and it is stated as the result of experiment that

this is constant for the same materials. . It should, however,
be borne in mind, that the element observed in experiments
on this subject is not the forces which act during the collision,

but the velocities of the balls before and after impact, and
the measures of the forces of compression and restitution are

subsequently deduced from the results of these observations

by the help of the Second Law of Motion. It would therefore

seem that the method adopted in the preceding Articles is

the more natural way of treating the subject.

The coefficient of elasticity is sometimes called "the

coefficient of restitution"

188. If when two bodies impinge upon one another they
be acted upon by some finite force, as, for example, gravity,
then, since the time during which they remain in contact is

so short that we cannot measure it, the eftect produced by the
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finite force in that time will also be immeasurably small.

We may therefore neglect it altogether while considering
what happens during the collision. The subsequent motion
of the bodies will, however, of course depend upon the forces

which act upon them.

189. As illustrations of the preceding Articles we will

consider a few examples.

Ex. 1. A hall of 8 pounds and moving luitli a velocity of
1*^ feet per second strikes directhj a hall of 12 pounds vuving
with a velocity of 8 feet per second in the opposite direction,

the coefficient of elasticity heing -. Find the velocity of each

after impact, and the impulse of the pressure hetween the two.

Let V denote the velocity of the first ball in feet per
second, v that of the second, after impact. We will consider

velocity positive when in the direction in which the first

ball is moving before im^oact. Now since the impulses on
the two balls are equal and opposite, the momentum gained
by the one is equal to that lost by the other

;
hence the sum

of the momenta of the two is the same after impact as before.

Now one pound being taken as the unit of mass, and a

velocity of a foot per second as the unit of velocity, the

momentum of the first ball before impact will be represented

by 8 X 12, and that of the second by
— 12 x 8. Therefore

8 . F+ 12y = (8 X 12)
-

(12 x 8)
=

(I).

Again, the velocity before impact of the first ball relative

to the second is 12 + 8 feet per second, while after impact

it is F— V. Therefore since the coefficient of elasticity is -
,

Zi

we have

F-. = -i(12 + 8)

= -10 (II).

The equations (I) and (II) dett ixuine F and v.

G. D. 12
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From (I),

Therefore, from (II),

.=-|f.

|f=-io.

or V= — 6.

Hence v = 4,

and thus the velocities after impact are found. In this

particular case we see that the velocity of each is reversed in

direction and its measure reduced by one half.

To find the impulse we observe that the momentum of

the first ball before impact was represented by 8 x 12, while

its momentum after impact is 8 x (— 6). Hence the change
of momentum produced by the impact is represented by
8 X 18 or 144, that is, the impulse is equivalent to a velocity
of 144 feet per second generated in one pound of matter.

The same results might of course be obtained from the
formulae of Art. 183.

190. Ex. 2. A hall falls from rest at a height of
20 feet above a fixed horizontal plane. Find the height to

3
which it will rebound, the coefficient of elasticity being

~ and

the value of g being ^2 foot-second units.

Let the velocity of the ball when it strikes the plane be
denoted by v. Then since it has fallen from rest through 20
feet under an acceleration denoted by 82, the equation

v^ = 2gs

becomes in this case

^'=G4x20

= 1280.
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If the upiuard velocity of the ball after impact be v feet

per second, we have v =
ev, and therefore

v" = % . 1280
4"

= 720.

Also if h be the height to which it rises in the rebound,

'2

7
^

720

64
or /i = Tr7- = Hi,

or the ball rises to a heidit of 111- feet.

191. Ex. 3. A jjarticle is projectedfrom a point distant

20 feet from a rough vertical wall, tuith a velocity of 60 feet

per second, and at an elevation of 60°, its plane of motion

being perpendicular to that of the luall. Find its velocity
and the direction of its motion immediately after striking the

.3
wally the coefficient of elasticity being ^ ,

and the coefficient ofo

friction ^ .

The initial velocity of the particle may be resolved into

,
a velocity of 30 feet \)er second in a horizontal direction, and

/3
60^ or oOsJo feet per second vertically upwards. Now its

horizontal velocity remains constant until it strikes the wall.

Hence the time elapsing before it strikes the wall, that is,

before it moves over a horizontal distance of 20 feet, is two-

thirds of a second. Its vertical velocity when it strikes the

2
wall is oO\Jo — '^g feet per second. Now since the coeffi-

o

.3
cient of elasticity is^, its horizontal velocity aft^r impact is

o

18 feet per second away from the wall. Hence the whole

change of its horizontal velocity is represented by 48 feet

12—2
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per second, and if m denote the mass of tlie particle, the

impulse of the pressm^e on the wall will be represented by
m . 48. Now when the particle strikes the wall, the compo-

_ 9
nent of its velocity parallel to the wall is 30^3 — %g feet pero

second vertically upwards. Hence the impulsive friction acts

vertically downwards, and since the coefficient of friction is

-
,
the impulsive friction is one-half the impulsive pressure,

and its impulse is therefore numerically equal to 24m, and
this corresponds to a downward velocity of 24 feet per second.

The vertical velocity of the particle after impact wdll there-

9
fore be a velocity of 30/v/3

—
^ ^

— 24 feet per second in the
o

upward direction. Hence, after impact the vertical compo-
nent of the particle's velocity is 6 "63 feet per second very

nearly, and the horizontal comj^onent is 18 feet per second.

If 6 be the angle which its direction of motion makes with

the horizon, we have

tan 6' =
-7-r^ very nearly,

and the velocity of the particle is nearly s}V6'^ + 6"63"'^ feet

per second.

If the friction found as above had been more than suffi-

cient to destroy the particle's upward velocity, only sufficient

friction would have been called into play to destroy this,
 

and the particle after impact would move in a direction

perpendicular to the wall
;
unless the friction possess a

property of the nature of elasticity.

192. Ex. 4. A straight staircase contains any number of
stairs, each one foot tuide and six inches high. A small smooth
hall is projected from a 2)oint on one of the stairs near its edge,
and in the vertical plane perpendicular to the edge ofeach stair.

Find the velocity and elevation ofprojection in order that it may
strike each succeeding stair at the same distancefrom the edge,

the coefficient of elasticity heincj
-

.
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The given condition is of course that which must be ful-

filled in order that the particle may bound down an unlimited

number of stairs, striking each only once.

Let A be the point of projection, B, C, ... the points
where the particle strikes the succeeding stairs

;
let 6 be the

^
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next stair as required, and everything being the same as be-

fore, it will leave C with the same velocity and in the same
direction as it left B, and so on for any number of stairs. We
see, then, that the only other condition which we have to

satisfy, besides that given in (I), is, that the vertical compo-
nent of the ball's velocity on leaving B should be the same
as on leaving A.

The vertical velocity of the ball downwards on reaching B
is gt

— v sin 6, if t be the time of flight from A to B. But t is

equal to- ^. Hence the vertical component of the ball's
^

V cos u

velocity when it reaches B is—'^—^ — v sin 6, But since the
"^ V cos u

coefficient of elasticity is -
,
its vertical velocity on leaving B

is numerically equal to one-half of this. Hence we must have

-
1

—
^^—^ — V sm 6] = V sin 6,

2 \v cos J

or
' —^—K= Sv sin ;

V cose/

.-.2;' sin 2^=^^ (II).

This equation, together with equation (I), determines v

and 6. From (I) and (II) we have
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*

, /jl83
{' J ,

If we take g equal to 32 we get / , ^ y
8 ^/ .

'^'' ^

8 ^<^
 

or the velocity of projection must be _ feet per second, nixl
V 3 ^

i

the elevation of projection we have seen to be 45".

193. Ex. 5. An engine luliose mass is 40 tons, and 20

coal-truchs, each of 15 tons, are at rest on a horizontal line,

tliere being an interval of one foot between the engine and the

first track, arid between each truck and the next succeeding.
The engine starts off and strikes the first truck tvhich then

strikes the second, and so on doiun the train, the trucks being
each inelastic. Supposing the engine to be constantly impelled

by a force equal to the loeight of one ton, find the velocity ivith

which the last truck starts and the tvhole time occupied in

starting the train, neglecting friction, and taking g equal to 32.

Let ^/ be the velocity of the engine when it strikes the

first truck. Then since the mass of the engine is 40 tons,

and it is acted upon by a force e.qual to the weight of 1 ton,

it moves over the one foot between its initial jDosition and

the first truck with a constant acceleration denoted bv -'—
.

-^ 40
Hence we have by Art. 123,

.40

Now when it strikes the first truck the two will proceed
with a common velocity. Let v^ denote this velocity. Then
since the momentum of the engine and truck immediately after

impact is equal to that of the engine before impact, we have

or

(40 + 15) v^
=
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We have now a mass of 55 tons impelled by a constant

force equal to the weight of one ton, and therefore moving

with constant acceleration ^ . Hence if v/ denote its velo-

city when it strikes the second truck, since the space over

which it has passed under this acceleration is one foot, we
have

'2 2 "^ '.^
^ ^ 00

mi r '2 20^.40 + 2^.55
Therefore v,

^ = ~ -^ .
^ 55^

Let ^2 denote the common velocity immediately after

striking the second truck, then since the whole momentum
is unaltered,

(55 + 15) v^
= 55<.

Therefore

'HMf<
'55Y 2g . (4 + 55)

,7oy
•

55^

40 + 55
2^.

70^

We have now a mass of 70 tons moving under a constant
force equal to the weight of one ton. Hence if v^ denote its

velocity when the third truck is struck,

/2 2 ^9
^2 -V~ •

.-. <^ = 2^ .

' 70'

40 + 55 + 70

70'^

When the third truck is struck the mass in motion is

changed from 70 tons to 85 tons. Hence if v^ denote the

common velocity immediately after striking,

70 ,

^'3
=
85^.
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2 /70V o 40 + 55 + 70
or V = U^J • % •

= %.

85/
• ^ •

70*''

40 + 55 + 70

85K'-J

Proceeding in this way we see that the common velocity,

Vjg, immediately after starting the lOtli truck is given by the

equation

40 + 55 + 70+... + 310
^.=%. 325^

>

and if vj be the velocity of the rest of the train at the

instant when the last truck is struck,

2 -9

,2 „ 40 + 55 + 70+... + 310 + 325
or v^, =2g. ^^,

.

But if ^20 denote the common velocity immediately after

starting the last truck,

2 /325V ^ 40 + 55 + 70 + ... + 325
or vj =20

\340J
* ^^ •

325'

40 + 55 + 70 + ... + 325

__^ 3650~
"-^ •

340'^'

3650~ ^ •

340'
'

_ 8 . V365Q
•*• ^20- 34^0

= 1-421...

340^
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Hence the last truck starts with a velocity of 1'421 feet per
second, very nearly.

Since the force producing motion is always equal to the

weight of a ton, if we take a ton for the unit of mass, the
momentum generated in t seconds will be represented by gt
Now since the momentum of the train is unaltered by the

successive impacts, the momentum of the train when the last

truck starts must be that produced by a force equal to the

weight of a ton in the time t, if t be the time which has

elapsed since the engine started. Hence since the mass of

the train is 340 tons,

MOv^^ = gt,

or t =
9

_ 8 78650
"32
= 15-103...,

or the time required to start the train is rather more than
15'1 seconds.

194. Suppose n equal particles, each of mass m, and

moving with a velocity v, to impinge directly upon a fixed

inelastic j^lane surface during t seconds. The surface will in

the course of the t seconds receive n impulses, each repre-
sented by mv, and the whole momentum destroyed by the

surface in the t seconds is represented by 7imv. Now sup-

pose the intervals between successive impacts to be equal to

one another, and, the velocity of each particle remaining the

same, suppose n to increase while m diminishes in the

inverse ratio, so that mn remains constant and equal to M
say. Then the sum of the impulses upon the surface during
t seconds is the same as before, and would generate a mo-
mentum represented by Mv, and this is true however great
n may be. But if n become indefinitely great, we can no

longer distinguish any interval between successive impulsive

pressures ;
in fact the action upon the surface becomes a con-

tinuous and uniform pressure, and tha momentum destroyed
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in t seconds by the reaction of the surface, which is always

equal to this pressure, is Mv. Hence the momentum which
would be destroyed in one second by this pressure is equal to

Mv—
,
which is therefore the measure of the pressure. The

z

reaction of the surface is in fact measured at any time by the

rate at which momentum is being destroyed by it.

195. The pressure of the wind, or of a jet of water upon
any object which it strikes, may be taken as an illustration of

continuous pressure produced by a quick succession of im-

pulses. The air or water, which comes in contact with the

obstacle in the course of a second, consists of a very great
number of particles, each of which strikes the obstacle with
a certain velocity, and the impacts are in such quick suc-

cession that they link themselves together into a continuous

pressure.

196. In the case of a jet of water striking a wall, if the

area of the section of the jet remain always the same, the

amount of matter which strikes the wall in a second will be

proportional to the velocity, and since the momentum of each

particle of water is proportional to its velocity, it follows

that the change of momentum produced by the reaction of

the wall in each second is proportional to the square of the

velocity of the water, supposing this constant, and hence the

pressure on the wall is proportional to the square of the

velocity of the jet.

197. For example, suppose a jet of water, the area of

whose transverse section is one square inch, to impinge

directly upon a wall with a velocity of 128 feet per second,

the coefficient of elasticity being ^n • ^^ proceed to find

the pressure on the wall.

Since the area of the section of the jet is one square inch,

and the velocity of the water 128 feet per second, the volume
of water which strikes the wall in one second is 128 x 12

cub. inches, and since one cubic foot of water contains 1000

ozs. the mass oi this is —7^:^-77^— . 1000 ozs. or -7— pounds.
1728 9 ^
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Now tlie velocity of this before impact is 128 feet per second

128
towards the wall, and after impact it is

-zrj-
feet per second

away from the wall, since the modulus of elasticity is jn •

Hence the change of velocity produced by the impact is 136

feet per second. The change of momentum produced by the

reaction of the wall in one second is therefore ——_

units of momentum. But the weight of one pound generates
in the mass of one pound in one second a velocity of 32
feet per second, or the weight of one pound generates in one
second 32 units of momentum. The reaction of the wall is

therefore equivalent to the weight of —
pounds, and

since action and reaction are equal and opposite, it follows

that the pressure of the jet upon the wall is equal to the

weis^ht of -^—^^— pounds, that is of 236^ lbs.^
9 X 32 -^ -*

This result affords an explanation of the great mechanical
effect produced by the jet from a fire-engine. The result,

that the pressure varies as the square of the velocity, is the

basis of the ordinary theory of fluid resistances.

198. A perfectly flexible uniform string, the mass of each
unit of length of wliich is m, hangs vertically from its upper
extremity ivith the lower end just in contact with an inelastic

table. If the string be allowed to fall, find the pressure upon
the table at any instant during the motion.

If a series of particles are arranged in a vertical line,

and then all allowed to fall freely at the same instant, their

velocities at any subsequent time will be the same, and the

distance through which they will have fallen will be the

same for each. Hence they will always remain in a vertical

straight line at the same distance apart as when they started,

although they are perfectly free. Consequently if they be
so connected together that they are unable to alter their

distances from each other, there will be no stress on the

connections and the motion will be unaffected thereby.
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Hence in the case of the falUng chain, each particle of the

chain will fall as if it were free. Therefore at the end of t

seconds, after the motion has commenced, the velocity of

each particle of the chain will be gt, and the space through

which the upper part will have fallen will be -
gf. There

1
will therefore be a length of chain measured by ^gf coiled

up upon the table. Now if the velocity of the chain were
to remain constant during one second, and the same as at

the time t, the length of chain which w^ould be brought to

rest upon the table during that second would be gt, and its

mass mgt Also its velocity being gt, the momentum which
would be destroyed during the second would be mg'^f.
Hence iiigH^ is the expression for the rate at which momen-
tum is being destroyed at the end of t seconds after the

commencement of the motion. But the rate of change of

momentum is the measure of the force producing that

chans^e. Hence at the end of the time t the reaction of the

table required to destroy the momentum of the falling
chain is numerically equal to mg'f, and therefore the pres-
sure exerted by the falling portion of the chain in coming
to rest upon the table is -denoted by mgH^. But at the end

of the time t there is a length of chain, denoted by
-
gf,

coiled up on the table, and the w^eight of this is

1 1

3
Hence the whole pressure upon the table is ^ m . gH^, that

is, three times the weight of the portion of chain coiled up.
If the lower end of the chain had been at a height h

above the table, the length of chain coiled up at the end of

t seconds would have been ^ gf
— h provided ^ gf be greater

than h, and the whole pressure upon the table would have

been

^ mg^t;'
—

mgh.
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199. A perfectly flexible uniform chain, the mass of each

unit of length of which is m, is coiled up in the hand, and
one end is attached to a fixed point. Suddenly the hand is

removed; it is required to find the force upon the fixed

point at any instant before the whole of the chain has come
to rest.

Each particle of the chain which remains in the coil will

at any subsequent time be falling freely, but successive por-
tions of the coil will be brought to rest, and hang vertically
from the fixed point. The velocity of every particle in the

coil at the end of the time t after the commencement of the

motion will be gt, and the space through which the coil will

have fallen will be denoted by -
gf. Hence the weight of

chain hanging from the fixed point will be -
mgH^. Also, as

in the preceding example, the rate of destruction of momen-
tum will be mg^f. Hence the whole force upon the fixed

3
point will be ^ mg^f, or three times the weight of chain hang-

ing vertically from the point.

The tension at any point of the chain distant h below the

highest point, will be less than the tension at the highest

point by the weight of the length h of the chain, and will

3
therefore be denoted by ^ mg'^f

—
mgh.

200. We will give two other examples of falling chains.

A flexible chain is suspended from a fixed point, and

hangs vertically with its loiuer end just touching an inelastic

horizontal table; it is then alloived to fall. Supposing the

density at any point of the chain to be proportional to the

distance from the lower end, find the 2^ressure on the table at

any subsequent time. >

As in the preceding example the chain will fall freely,
and its velocity at the end of t seconds from the commence-
ment of the motion will be gt, while the length of chain

coiled upon the table will be -
gf.
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Let the density of the chain at a point distant s from the

s
lower end be m ^ • This, then, would be the mass of a unit

of length of the chain, supposing its density uniform and the

same as at the distance s from the lower end. Also the mass
of a thin section of the chain of thickness k at this point

s .

is m-T'^, since we may suppose the density uniform through-

out the section, k being very small. Now if h be the length
of the base of a triangle and h its altitude, the area of an in-

definitely narrow strip of breadth k at distance s from the
s

vertex is b
j.k.

Hence the problem of finding the mass of

any length s of the chain is the same as that of finding the
area of the triangle cut off from the above-mentioned triangle

by a line parallel to the base, and distant s from the vertex,

and the area of this triangle is -h
j.s,

or -
-^

si Therefore

the mass of a length s of the chain measured from the lower

. 1 ^2
end is

-^f^j
• The weight of the chain ujDon the table at

the end of the time t is therefore

1 1/1 ,V 1 g'f

The density of the chain at the point which is just coming
1 of .

to rest is m ^ / ?
^^^ its velocity is gt. Now if the velocity

of the chain remained uniform throuofhout one second and

equal to gt, and if the density of the chain which comes to rest

during that second were uniform and the same as at the point
which is just coming to rest at the end of the time t, the

mass which would be reduced to rest durino: the second would
be the mass of a length gt of the chain, the mass of each unit

T j2 T 2j3

of length of which would be
i^'^n-w- ,

that is -m~- units of

mass. Also the velocity of this being gt the momentum
which would be destroyed during the second would be
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1 qH^^m^ . Hence the rate at which momentum is beinof de-

1 qY
stroyed at the end of the time ^ is ^m ~- units of momen-

jLi III

tum destroyed per second, and the force required to do this

1 qH^
is measured by ^^^^'^ • But the weight of chain upon the

1 qh"^
table is ^ m '~r- . Hence the whole pressure upon the table

^,3^45 q'^f
is -7?^^ ,

that is, five times the weif^ht of the chain coiled

upon the table.

201. Suppose the chain described in the last Article to

he coiled up close to the edge of a smooth table, the end,
which in the last examjjle was in contact ivith the table, being
allotued to hang just over the edge. If the chain is then

alloiued to run off the edge, find the motion, and the tension

close to the edge of the table, at any subsequent time.

Suppose at the end of the time t there is a length s of the

chain in motion, and let v be its velocity. Then the chain is

being pulled off the table at the rate of v units of length

or of m Y v units of mass per second, and the velocity with

which each particle is being started is v. Hence the rate at

which momentum is being generated in the chain just com-
s

ing off the table is measured by m-rV^ units of momentum

per second. The tension of the chain close to the edge of the

table is therefore represented by m j v^, and this tension is

acting upwards upon the length s of chain which is hanging-
over the edge and descending vertically. Now the mass of this

leno-th 5 of the chain is ^ m -r ,
and its weight is therefore° 2/1 °

1 s^
- mg J . Hence the resultant force upon this portion of the
^ lb

1 S^ s
chain is a downward force represented by 3 mg

^

—
mj v^,
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and the acceleration produced by this force in the mass
1 6'^ . 2r
^ m y- will therefore be represented by g . Therefore,

when a length s of the string is in motion, if v be its velocity,

the acceleration under which it "is moving is a—'^—. But° "^
s

the velocity as well as the space passed over in any time

depends upon the acceleration during each instant of the

motion. If then we can determine an expression for the

2v^
acceleration so that throughout the motion

[j
— ~- may be

numerically equal to it, the acceleration so determined will

be that imder which the chain is moving. Now if a particle
be moving under constant acceleration

/,'
the velocity v at any

time t will be equal io ft, and the space s passed over will be

1 . . v"

represented by -yff. Hence in this case — = 2/ and is con-
Zi o

stant. Hence if the end of the chain were movinof with a con-

2y-
stant acceleration f we should have g equal to g

—
4/*,

that is, a constant, whatever be the time which has elapsed
since the beginning of the motion, and we can obviously de-

termine / so that this expression may be equal to /. But
this is the only condition which the motion of the chain has

to fulhl. Hence it'/ be so determined, it will be the accele-

ration under which the chain is descending. To determine
it we have

o

or the end of the chain descends with uniform acceleration

equal to one-fifth of that produced by gravity in a free

particle.

Hence the velocity v at the end of t seconds after the

commencement of motion is given by

1
,

G. D. 13
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and the space s through which the end of the cham has de-

scended is given by
1

^ =
10'^^'-

s'
The weight of the portion of chain in motion is mg -y ,

that is

gH'm .

200/1
'

and the tension at the point where it leaves the table is equal
s

to T/i J v^, that is to

3^4
ft
250A '

or the tension at the jDoint where the chain leaves the table is

four- fifths of the weight of the portion in motion. This

aorees with the result that the acceleration of the fallingr

portion is -
g, that is, that the resultant force upon it is one-

o

fifth of its weight.
•

202. Tivo halls, whose masses are M and m respectively,

moving in the same straigJit line impinge directly upon one

another. It is required to find the change of kinetic energy

produced hy the impact.

Let V, V be their respective velocities before impact,

Fj, i\
their velocities after impact. Then, by Article (183),

we have

^ _ MV+7nv — em {V— v)

3IV+mv + e3I(V-v)
M+m

Let E denote the kinetic energy of the two before im-

pact, F^ their energy after impact. Then

E=l {MV + mv'),
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and

~
2

(
M + m J

"^
2 I M-\-m J

^ (.1/+ m) (il/F+ mvf + (m + 71/) e^ il/??z
(
F-

-?;)"

2 (i¥ + 77^)'

_ {MV-\-mvf + e'MmiV-vY .

^~ 2"(l/+m)

If e be equal to 1, or the elasticity perfect,

_ (MV+ mvf + il/m {V-vY^"
2(i¥ + m)

_ if^F^ + m\'' + iT/77iF^ + Mmv''~
2(il/+??i)

2

Hence if the elasticity be perfect, the total kinetic energy
of the two balls is the same after impact as before.

If e be less than 1 we may put the expression for ^^ into

the form

^ (J/F4- mvf +Mm {V-vf (1
-

e") Mm{V- vf
1""

2(il/+m) 2(i¥+m)

But the first term on the right-hand side we have seen to

be equal to E
;
hence

{l^e')Mm{V-v)\

and the second term on the risfht-hand side of this last

13—2
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equation is necessarily positive. Hence in the direct impact
of imperfectly elastic balls an amount of kinetic energy

Mm
denoted by il—e^) ^ . .,

,

—z(V—vf is lost.
•^ ^ ^

2{M + 7n)
^ '

This kinetic energy is chiefly transformed into molecular
vibrations in the balls and becomes sensible to us in the
form of heat.

203. If the balls considered in the preceding article

impinge obliquely upon one another, then resolving their

velocities as in Art. (185) along and perpendicular to the line

joining their centres, if i, /S be the angles which their direc-

tions of motion make with this line before impact, and 6, (f)

similar quantities after impact, we have from Art. (185)

F^ sin ^= Fsin a ,

j,

Vj^
sin cj)= V sin yS

'

Also

„ - 2IVcosa-\-mvcosS—em(Vcosa—vcos3)^
V. cos d = ^ ^

, il/Fcosa+7?ivcos/3+eil/(Fcosa— vcos)5)
V^ cos

(jE)

=
,rjr-

!^....(II).

Now the kinetic energy of the two balls before imj)act is

1 {MV^ + mr), that is

i [MV (cos'^ OL + sin^ a) + mv" (cos' y5 + sin' /5) ]
.

Let us denote this quantity by E. Then if E^ denote the

kinetic energy after the imioact

^^ = I [MYI (cos' e + sin' B) + mv^ (cos' ^ + sin'
<jf))}.

Now from equations (I)

^ {il/F/sin'6> + mv,' sin'
(/,)
=
I (il/F^ sin'a + 7u^' sin' yS) . . . (Ill)
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and precisely as in the preceding article we may shew from

equations (II) that

I (il/r/ cos^^ + mv; cos^0)

since we have only to wTite Fcos a, v cos /S, V^ cos 6, i\ cos
(f>

for V, V, V^ and v^ respectively in the equations of that

article.

Hence adding equations (III) and (lY) we get

E,= E —(1— e^) iTT-r-f ^ ( T'^cos a - -y cos yS)".

As before, we see that if the elasticity be perfect the

kinetic energy is the same after impact as before, but if it

be imiDerfect there is a loss of energy by the impact.

204. Suppose we have a cylinder of some compressible
material, say one foot in length, and suppose that when a

pressure equal to the w^eight of 10 lbs. is applied at the ends

the length is diminished by "01 inch. Then provided w^e

keep wdthin the limits of elasticity a pressure equal to the

w^eight of 20 lbs. w^ould shorten the cylinder by nearly
'02 inch and so on in proportion. The w^eight of one pound
w^ould diminish the length of the cylinder by '001 inch, or b}^

.^,,, ,
of the orio^inal lensjth. If the cross section of the

12000 "^ °

cylinder be equal to the unit of area the elasticity of the

material as measured by the quotient — becomes 12000,
strain

the weight of a pound being taken as unit of force.

205. Now suppose that the cylinder has 'been shortened

by the application of pressure at the ends, and let the pres-
sure now be gradually diminished. Suppose that as soon as

the pressure is diminished ever so little, the length of the

cylinder begins to increase, and increases in such a way, as

the pressure continues to be diminished, that the length
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under any given pressure is exactly the same as under the

same pressure when the cylinder was being compressed, and
that this continues until the cylinder has regained its original

length. In this case just as much work will be done by the

elastic force during the restitution of form of the cylinder
as was done upon the cylinder during the compression. Such
a cylinder might be alternately compressed and allowed to

expand without any loss of mechanical energy, and without

any heat being produced. Its elasticity or power of regain-

ing its original form may be considered as perfect.

206. On the other hand, it may happen that when the

body has been compressed, though a very great pressure may
have been required to produce the deformation, yet the

whole of this pressure may be removed without the body
shewing any tendency to return to its original form. In such

a body the elasticity or power of restitution of form may be
considered as zero, and nearly the whole of the work done

upon the body during its compression has its equivalent

generally in heat produced within the body.

207. Between these two extremes we may have any
number of intermediate links. Suppose, for example, that

in the case assumed above the cylinder has been loaded with

1000 lbs. and therefore shortened by "1 inch. Now suppose
that the pressure is diminished and that the cylinder retains

its length of 11*9 inches until the pressure has been reduced

to 500 lbs. weight, and that it only begins to return when
the pressure is reduced below this. Suppose also that through-
out the restoration of form the pressure corresponding to any
length of the cylinder is exactly half what it was during the

compression, so that when the length of the cylinder is

11 "95 in. the pressure is equal to the weight of 250 lbs.

and when the length is 11 '99 in. the pressure is equal to the

weight of 50 lbs. and so on. Then exactly one-half of the

amount of work done in compressing the cylinder will be re-

stored by the elastic forces during the restoration of form,
the other half being mostly converted into heat within the

imperfectly elastic material. Generally if the pressure at any
stage during the restoration of form be n times that at the

corresponding stage of the compression, the work done by
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the elastic forces clurincr the restoration will be n times that

done against them during the compression, while the energy
permanently transformed into heat or otherwise wasted (as

far as mechanics is concerned) will he 1 — n times the work
done in compressing the body.

'

208. Now suppose that two bodies are compressed by
impinging against each other, and suppose for the sake of

simplicity that they are both of the same material, whose

elasticity is such that the pressure exerted at any stage

during the restoration of form is n times that required to

produce further compression a.t the same stage, and that the

restoration of form is complete. Now let E denote the number
of units of work done in compressing the bodies up to the

condition of maximum compression, that is, up to the instant

when the relative motion of the centres of gravity of the

bodies is zero. Then up to this instant E units of kinetic

energy will have been lost by the moving bodies having been

expended in doing work in producing compression. During
the restoration of form nE units of work will be done by the
elastic forces and expended in producing motion in the bodies

so that nE units of kinetic energy will be returned to the

system; the remaining (1
—

n) E units of energy being con-

verted into heat or otherwise disposed of. Comparing these

expressions with those obtained in Art. 202, for the kinetic

energy lost by impact we see that n must be equal to e^

Hence e, the coefficient of elasticity, must be equal to the

square root of the ratio of the pressures between the balls at

the same stage of the restitution and compression respectively.
Hence e is equal to the square root of the ratio of the

true force of restitution to the true force of compression in

any, the same, configuration. To use the terms "force of

restitution," and "
force of compression

"
in the sense ex-

plained in Art, 186, is consequently not only to use words in

their wrong senses, but to convey a false impression of Avhat

the relation between the forces of restitution and compres-
sion really is.

209. The coefficient of elasticity, e, is the ratio between
the impulses of the forces of restitution and compression, and
differs from the ratio of the forces, since the time occupied by
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the compression is only e times the time occupied by the

restitution. The basis of this last statement we will now
consider. From the instant of greatest compression up to

that of complete restoration of form, the centres of gravity of

the bodies move relatively to one another over exactly the

same distance as from the commencement to the end of the

compression. Also at any stage in the restoration the pres-
sure between the balls is n times as great as at the same

stage (^. e. the same configuration) during the compression.
Hence the acceleration is n times as great as the retardation

during the compression. Now the time taken to travel over

any distance from rest with uniform acceleration is inversely

proportional to the square root of the acceleration (for

s = \ff), and it may be easily shewn geometrically that if

two points travel over the same distance from rest with

accelerations which vary in any manner, but which bear a

constant ratio, n, to one another, when the points are in the

same positions, then the times taken by two points to travel

the same distance will be to one another in the ratio of

1 to s]n. Also the velocities at the end of the times will be in

the ratio of ^/?^ to 1, for though the first acceleration is n times
that of the second, the time during which the velocity of the

first point is being increased is
—i=.

times that during which

the velocity of the second is being increased so that the final

velocities generated are in the ratio of sjn : 1. If the points
be replaced by material particles the forces upon them will be
in the ratio oi n : 1. The quantities of work done by these

forces since the distance travelled is the same for both, will be
in the ratio of ^i : 1, the velocities generated will be in the
ratio of a/u : 1; and therefore the quantities of kinetic energy
generated will also be in the ratio of n : 1, that is, in the same
ratio as the quantities of work done by the forces Avhich is in

accordance with the principle of the conservation of energy.

EXAMINATION ON CHAPTER lY.

1. Describe what takes place when two elastic balls

impinge on one another, and define the coefficient of elasticity
of two bodies.
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% If a pound fall from a height of 50 feet to the ground,
what is the measure of the impulse of the pressure which it

will exert, supposing it inelastic ?

^ 3. A smooth ball whose mass is 2 oz. movinsf with a

velocity of 10 feet per second, strikes a cushion at an angle
. . 7

of 45^ If the coefficient of elasticity be -, find the impulse on

the cushion and the velocity of the ball after impact.

4. Shew that if two perfectly elastic balls of equal mass

moving in the same straight line impinge upon one another,

they will exchange their velocities.

D 5. A particle strikes a fixed rough plane at an angle of

45", the coefficient of friction being
—

,
and the coefficient of

. . 1
elasticity

—-~ . The velocity before impact being 20 feet per

second, find the velocity and direction of motion after impact.

^ 6. Two smooth billiard-balls moving with equal veloci-

ties V, in directions making an angle of 00*^ with each other,-

impinge, the line joining their centres at the moment of

impact being at right angles to the direction of motion of

one of them. Find the velocity and direction of motion of

.7
each after impact, the coefficient of elasticity being

-
.

o

7. In the case of the preceding question find the im-

pulse of the pressure between the two balls.

8. A particle is projected horizontally with a velocity of

40 feet per second from a point 30 feet above a fixed hori-

zontal plane. Find the height to which it will rise, and its

range after the first rebound, the coefficient of elasticity

being
-

.

9. If a series of perfectly elastic smooth spheres of equal
mass be at rest with their centres in a straight line, and be

followed by a second series of equal spheres, the mass of each
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of which is twice that of each of the former, and if the

first sphere of the first series be projected so as to impinge
directly upon the second, investigate completely the subse-

quent motion.

10. A stream of water falls from rest at a height of 30
feet above a horizontal inelastic plane at the rate of 100

gallons per minute
;

find the pressure on the plane sup-

posing the water to flow freely off it.

^ 11. A ball of 12 pounds and moving with a velocity of

20 feet per second, impinges directly upon a ball of 20 pounds
moving in the same direction with a velocity of 12 feet per
second. Find the amount of kinetic energy lost by the im-

pact, the coefficient of elasticity being zero.

12. An unlimited length of heavy uniform chain is coiled

upon a smooth table of height h, one end hanging over the

edge and just touching the floor. If the chain be allowed

to run down, shew that the velocity of the moving portion

can never be greater than Jgh.

EXAMPLES ON CHAPTER IV.

1. An inelastic ball whose mass is 3 lbs. and which moves
with a velocit}^ of 30 feet per second, impinges directly on a

second inelastic ball of 6 lbs. and moving with a velocity of

8 feet per second in the same straight line. Find their com-
mon velocity after impact.

2. In the case of the preceding question find the number
of units of work lost by the impact.

3. A shot of Too pounds, and moving with a velocity
of 1200 feet per second, enters the side of a ship weighing
GOOO tons and remains imbedded in it. Find the velocity
which it communicates to the ship.

V> 4. A shot of 700 lbs. is fired with a velocity of IGOO feet

per second from a 35 ton gun. Find the velocity with which
the gun recoils, neglecting the weight of the powder.
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If the recoil of the gun be resisted by a steady pressure

equal to the weight of 10 tons, through what space will it

recoil ?

5. A ball of 40 lbs. and moving with a velocity of 80

feet per second, impinges directly on a ball of 100 lbs. and

moving in the same direction with a velocity of 30 feet per

second, their coefficient of elasticity being
-

. Find their
^^

^^ i

velocities after impact and the measure of the impulse
^

between them.

t* 6. A ball of elasticity e is dropped from a height li on to

a horizontal plane. Shew that the whole distance through
which it moves before coming: to rest is

K
1 +e^

1-e'^*

7. A perfectly elastic billiard-ball impinges on an equal

perfectly elastic ball at rest. Shew that after impact their

directions of motion will be at right angles.

8. One ball impinges on another ball at rest
;
find the

condition that after impact their directions of motion may be

at right angles, the coefficient of elasticity being e.

9. A perfectly elastic ball is projected from the middle

point of the horizontal base of a vertical square towards one

of the upper angles, and after being reflected by both the

sides containing that angle falls at the opposite angle. De-
termine the velocity of projection.

f 10. A smooth elastic ball is projected horizontally from
the top of a tower 100 feet high with a velocity of 100 feet

per second, and after one rebound describes a horizontal

range of 40 feet. Find the coefficient of elasticity.

11. A particle falls from rest through 16 feet and then
rises after impact on a horizontal plane. If the coefficient of

elasticity be
^ ,

find its velocity after rising 3 feet and the

time of ascending through this height.
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12. A perfectly elastic ball falls from a height h on a

plane inclined 30° to the horizon
;
shew that it will strike

the plane again after an interval equal to twice the time of

its fall, and that its range on the plane will be 4<h.

13. If two smooth balls impinge on one another, the
motion of their centre of gravity is unaffected by the impact.

14. Two particles whose masses are m, m' are moving in

parallel straight lines distant a feet from one another with

unequal velocities u and v respectively, and are connected by
an inelastic string of length 3a. Find the impulse of the
tension of the string when it becomes tight.

15. Two equal scale-pans, each of mass 31, are connected

by a string which passes over a smooth peg, and are at rest.

A particle of mass m is dropped on one of them from a

height
—

,
the coefficient of elasticity between the scale-pan

and particle being e. Find the velocity of the scale-pan after

the hrst impact.

16. Shew that, if the string in the preceding example be

long enough, the velocity of the scale-pan after the n^^ impact

will be equal to (1 -F e) z. . ?rT>, and that the particle^ ^ ^
1 — e m-\- 2M ^

will come to rest relatively to the scale-pan after a time

2eu

17. Two balls, A and B, whose coefficient of elasticity

is ^, are moving with equal velocities in directions which

make angles of 30*^ with their common tangent at the point
of impact ; compare their masses when the motion of A after

impact is in the direction of that common tangent, and find

the distance between the balls 2 seconds after impact.

18. Find the velocity with which a perfectly elastic ball

must be projected in a given direction from a point in the

side AJ3 of the square ABGD, so that after striking each of

the sides in succession it may return to the point of projec-

tion, BC being vertical.
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19. Two bodies are connected by an inextensible string
wliich passes over a smooth fixed pulley, and are in motion.

Prove that if weights be suddenly attached at the same
instant to both the bodies they can be so arranged that there

shall be no jerk of the string, and that the subsequent accele-

ration of the system will be in that case the same as before,

20. Two heavy bodies, P and Q, whose masses are m
and m respectively, are connected by an inextensible string
which passes over a smooth fixed pulley. The heavier body
P is perfectly elastic, and Q is inelastic; they start from
rest at the same distance a above a fixed horizontal plane, and
when P impinges on the plane and rebounds with unchanged
velocity, Q strikes against a fixed obstacle and is reduced to

instantaneous rest. Determine the subsequent motion, and
shew that the two bodies are again at instantaneous rest

171/ Ct

when P is at a heiofht 7 r-o above the horizontal plane.

21. A, B, C are three points on the circumference of

a circular ring fixed on a smooth horizontal table, and is

the centre. An imperfectly elastic ball is projected from A
alonsf AB and after rebound ino; at B and C returns to A.
Determine the angle AOB.

22. The sides of a triangle ABC subtend equal angles at

a point within it. Prove that if from three perfectly
elastic balls be projected simultaneously with equal velocities

in directions AO, BO, CO produced respectively, they will,

after rebounding from the sides, all meet together simul-

taneously.

2.S. A particle is projected from a point at the foot of

one of two parallel vertical smooth walls, so as after three

reflections at the walls to return to the point of projection,
the last incidence being direct: prove that e^ -]- e^ + e = l,

and that the vertical heights of the three points of impact
above the point of projection are as e'^ : 1 — e" : 1.

24. Two equal smooth balls, A and B, are lying very

nearly in contact on a smooth horizontal table. A third ball,

equal to either, impinges directly on A, the three centres
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lying in a straight line : prove that if e be greater than

3 — 2 J 2, B's final velocity will bear to the initial velocity of

the striking ball the ratio (1 + e)^ : 4.

25. Two equal, smooth and perfectly elastic balls, moving
in directions at right angles to each other, impinge, their

common normal at the instant of impact being inclined at

any angle to the directions of motion: shew that after impact
the directions of motion wdll still be at right angles.

26. Two smooth elastic balls, moving in parallel direc-

tions, impinge on each other; shew that if they are of equal
mass their directions of motion will be turned throusfh a rig^ht

angle, if the inclination of their original paths to the line of

impact be tan~^ Je, where e is the coefficient of elasticity.

27. A ball A impinges obliquely on a ball B at rest
;

if

the masses of A and B be 7?i and vi respectively, and m be

greater than eni, shew that the maximum deviation of ^ is

tan
-1 (1 + e) 7n

2j{'m + m) (m — ein)

28. Two balls, whose masses are 2iii and Sm, are moving
Avith the same velocity in directions making angles of 45"

and 30'^ respectively with the common tangent at the point
of impact ;

find the direction of motion and the velocity of

their common centre of gravity after impact.

29. Two equal balls of elasticity e impinge, having
before impact velocities u^, v^ in the direction of the common
normal at the points of contact, and velocities w^, v^ perpen-
dicular to this normal. If their motions after impact are in

perpendicular directions, prove that

80. Two equal and perfectly elastic spherical balls are

projected in the same vertical plane from two points in the

same horizontal line at a distance —>- from each other
; the

2 '

former vertically with a velocity g, and the latter at an eleva-
tion of 30° with a velocity 2rf. Determine the motion of
each after imjDact.
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SI. A perfectly elastic ball is thrown into a smooth

cylindrical well from a point in the circumference of the

circular mouth. Shew that if the ball be reflected any
number of times from the surface of the cylinder, the in-

tervals between the successive reflections will be equal.

If the ball be imperfectly elastic and be projected so as

to })ass through the axis of the cylinder, shew that the in-

tervals between the successive reflections form a series in

Geometrical Progression.

82. In the last cjuestion, if the perfectly elastic ball be
IT

projected horizontally in a direction making an angle
-
lb

with the tangent at the point of projection, it will reach the

surface of the water at the instant of the nf" reflection, if the

velocity of projection be that due to falling freely through a

vertical space equal to -jin
sin —j , where r is the radius

and d the depth of the well.

S3. There are three equal and perfectly elastic balls

A, B and C. A is let fall from a given point, and at the

moment when it reaches a given horizontal plane B is let

fall from the same point, and at the moment wdien A in

returning meets B, C is let fall. Shew that B will meet C
for the second time where it first met A.

34. ABC is an equilateral triangle; at A lies a ball, an

equal ball strikes it driving it along A C, and itself passing-

through the middle point of BC. Shew that the original
direction of motion of this ball made with AC sua. angle

tan —7^.

2v/3

35. A, B, C are three equal smooth balls situated on a

horizontal table at the angular points of an isosceles triangle

having an obtuse angle at B. If A be struck so that having
hit B it shall hit C, shew that B will move in a direction

inclined to A C at an angle ^, given by the equation

sin 26 = sin 2A,

e being the coeflicient of elasticity of the balls.
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36. A heavy ball is thrown horizontally from A so as to

hit a point B after one rebound from a horizontal plane G.

Supposing e to be the eoefficient of elasticity and the height
of i^ from the plane to be e^ times that of ^, the height of

A being such that a body would drop from it to the plane
in 1 second, shew that the point G where the ball must hit

the plane divides the horizontal distance between A and B
into two parts which are as 1 : e.

37. A ball is projected from a point A at an elevation

of 45^ against a vertical wall BG, and in a vertical plane

perpendicular to the wall
;
after impact at G it strikes the

ground between A and B, and arrives at A after n rebounds.

Find the ratio of BG to AB in terms of the coefficient of

elasticity of the ball.
'

88. A parabola is placed with its axis vertical and ver-

tex downwards. A perfectly elastic ball dropped vertically
strikes the parabola with the velocity acquired in falling

freely from rest through a space equal to one-fourth of the
latus rectum

;
find where it must strike the parabola that

after reflection it may pass through the vertex.

39. A particle is dropped from a point in a fixed circular

hoop whose plane is vertical, the elasticity being perfect.
Shew that after two rebounds it will rise vertically if

2 sin 4^ = tan 6^

where 6 is the angular distance of the point from the highest

point of the hoop.

40. A circular arc has its plane vertical. A perfectly
elastic ball is projected from the arc along a horizontal

diameter, and after one rebound at the arc returns to the

point of projection. Shew that the latera recta of the two

parabolas described are as 4 to 1, and determine the velocity
of projection.

41. A number of balls whose elasticity is -: {J2 — 1)

are let fall on an inclined plane, and each strikes it the

second time twice as far down as it did the first time. Shew
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that the points from which they fall lie in a plane perpen-
dicular to the inclined plane, and intersecting it in a hori-

zontal straight line.

42. A smooth sphere stands on a horizontal plane to

which it is fixed, and from its highest point a perfectly elastic

ball is projected in a direction inclined 45" to the vertical.

Find the velocity of projection in order that the ball may
strike the sphere once only at an angular distance of 45''

from the vertex, and prove that in that case the ball will

strike the plane at a distance from the point of contact of

the sphere equal to its diameter.

43. An elastic ball is projected from a point in a smooth
inclined plane in the vertical plane containing the line of

greatest slope on the plane. Find the condition that after

three reflexions it may return to the point of projection.

44. Each of two planes is inclined 45" to the horizon,
and they intersect in a horizontal straight line

;
from any

point in one of them it is possible to project a perfectly
elastic ball in a plane perpendicular to the intersection of

the planes, so as to return to the point of projection if the

velocity of projection be not less than that acquired in

sliding from the point of projection to the intersection of the

planes.

45. Two vertical walls are inclined to one another at

an acute angle a. A perfectly elastic ball projected horizon-

tally from a point distant c from the ground and b from the

intersection of the walls, comes to the ground, after striking
both of them, at the same point as if it had fallen from
rest. Find the direction of projection, and shew that the

space through which the ball would rise if projected verti-

cally with the velocity of projection is equal to

(h sin a)^

c

46. A series of balls of masses 3L, M,,... are arranored

with their centres in a straight line, and the coefficient of

elasticity between the r*^ and
(?- + 1)*''

balls is
~^'^^

. Prove
r

that if
il/j impinge directly upon M^ at rest, and so on, the

G. D. 14
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velocity of eacli ball between its two impacts will be equal
to the initial velocity of M^.

47. A very small heavy pan is supported by three

strings passing over pullies which are situated in a horizontal

plane at the angular points of an equilateral triangle, the

strings sustaining at the other ends equal weights hanging
freely. If a given weight be dropped into the pan from a

given height, find the velocity with which the pan will begin
to descend.

48. Two equal buckets are connected by a string with-

out weight passing over a smooth pulley, and over one of

the buckets a heavy chain is held by its upper end, with its

lower end just above the bottom of the bucket. If the upper
end of the chain be let go, prove that the equilibrium may
be maintained by pouring water gently and uniformly into

the other bucket, provided the weight of water which can be

poured in is three times the weight of the chain.

After the chain has entirely fallen in, find the pressure
on the bottom of the bucket in which it lies, supposing the

flow of water then to cease.

49. Two equal perfectly elastic balls are let fall at the
1 3

same instant from altitudes ^ g and ^ g respectively above a

horizontal table but not in the same vertical line, shew that

at the end of Qn ±1 seconds the velocity of their centre of

gravity suddenly changes from g to or from to g.

50. A ball A impinges on an equal ball B at rest
;
shew

that if the velocities after impact are equal, the change of

direction in the motion of A is tan~V^-

51. A horizontal circle ABC rests on a smooth table.

A ball projected from A is reflected at B and C and returns

to A, shew that the time from ^ to 5 is to that from C to A
as e to 1.

52. A perfectly elastic ball is dropped from a point P
and impinges on an inclined plane at Q. If FJS^ be i3erpen-
dicular to the jDlane, shew that the range is equal to SQjSf,

and hence find the locus of P in order that the particle may
after one reflexion pass through a fixed point on the plane.
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53. Two weights are connected by a string which passes
over a smooth fixed pulley, and the heavier rests on the

ground ;
the lighter is raised a given height above its posi-

tion of rest and then let go : shew that they will make a

series of jumps decreasing in Geometrical progression, and

find the common ratios, the lighter weight being supposed
never to reach the ground.

54. A rough body whose mass is 2 lbs., rests on a rough

plane inclined oO^ to the horizon, the coefficient of friction

3
being

-
. An inelastic smooth body, whose mass is 1 lb., de-

scends from a point on the plane distant 10 feet from the first

body so as to impinge upon it directly, and the two slide on

together. Find how far they will go before coming to rest.

55. Two smooth planes OA, OB each inclined to the

horizon at the same angle a, which is less than -r
,
intersect

in a horizontal straight line. An inelastic ball descends from

rest at A, shew that the time which elapses before it is re-

duced to rest is to the time of descending AO as

cot^ a ; 1.

oQ. Two elastic balls are moving in opposite directions

before impact with velocities inversely pro]3ortional to their

masses
; compare their velocities after impact.

57. A j)erfectly elastic ball is projected with a given

velocity from a point between two parallel vertical walls, and

returns to the point of projection after being once reflected

at each wall. Shew that the angle of projection may be

either of two complementary angles.

58. A series of perfectly elastic balls are arranged in

the same straight line
;
one of them impinges directly on the

next, and so on
;
shew that if their masses form a geometri-

cal progression of which the common ratio is 2, their velo-

cities after impact will form a geometrical progression of

2
v.hich the common ratio is ^ .

o

U~2
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59. Two equal balls of radius a are in contact, and are

struck simultaneously by a ball of radius c, moving in the

direction of the common tangent to the first two balls at

their point of contact
;

if all the balls be of the same mate-

rial, the coefficient of elasticity being g, find the velocities of

the balls after impact, and prove that the impinging ball will

be reduced to rest if

^ c' {a + cy

a'(2a + c)*

60. A smooth inelastic ball slides from rest down a

length (l) of a plane inclined 30° to the vertical, and im-

pinges on a horizontal rail, parallel to the plane and at a dis-

tance from it equal to one-half the radius of the ball. Neglect-

ing the thickness of the rail, prove that the ball will afterwards

strike the plane at a distance 3/ from its point of contact

when striking the rail.

61. An inelastic ball of mass ??^ lies on a horizontal

plane ;
another inelastic ball of mass m falls vertically and

strikes it in such a manner that the line joining their centres

at the moment of impact makes an angle a with the vertical.

Shew that the direction of motion of the second ball immedi-

ately after impact will make an angle 6 with the vertical

determined by the equation

tan 6 = 7 cot a.
m-\- m

62. A ball of elasticity e is projected from a given point

A, with velocity F, so as to strike a vertical wall distant a
feet from A, and after impact to strike the horizontal plane

through A at a point B, distant b feet from the wall. If c be

the perpendicular distance of A from the line drawn through
B Sit right angles to the wall, shew that the least possible
value of V is given by the equation

V' = ^JcV+[b + ae)\
e

63. A number of particles are let fall from the directrix

upon the convex arc of a parabola whose axis is vertical and
iatus rectum equal to 4a. Shew that the parabolas which

they describe after impact upon the curve have a common
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directrix at a distance a (1
—

e^) below that of the fixed

parabola, where e is the coefficient of elasticity between the

particles and curve.

64. Two equal particles are projected simultaneously
from different points. If they impinge and after impact
move vertically, prove that tan 6 — tan is constant, where 6
and

(^ are the inclinations to the horizon of the directions of

motioQ of the particles at any the same moment previous to

their impact.

65. An elastic sphere is at rest on a plane. The plane
and sphere are simultaneously hit by another smooth sphere,
whose coefficients of elasticity with the first sphere and plane
are the same and equal to e. Determine e when the direc-

tions of motion of the second sphere, after and before impact,
are equally inclined to the plane.

66. A very small elastic ball is projected with a given
velocity from one extremity of a diameter of a horizontal cir-

cular hoop, which rests on a smooth horizontal table, and
after reflexion at the curve passes through the other ex-

tremity of the diameter. Find the coefficient of elasticity
in order that the whole time occupied in the motion may
be n times that of describing the diameter with the initial

velocity, and the greatest and least values n can have.

67. A ball of given mass lies touching a smooth wall.

Another moving at right angles to the wall impinges on it

obliquely. The balls being inelastic, find their velocities

immediately after impact.

68. An imperfectly elastic ball is projected from a given
point in a horizontal plane against a smooth vertical wall in

a direction making a given angle with the vertical : find

where it strikes the horizontal jDlane, and prove that the
locus of these points for different vertical planes of projection
is an ellipse.

69. A heavy chain hangs vertically from its upper end
with its lower end just in contact with a smooth plane in-

clined at an angle a to the horizon : if the string be allowed
to fall, find the pressure on the plane at any time.
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70. Two smooth equal balls are placed in contact on a

smooth table
;
a third ball strikes them simultaneously and

remains at rest after the impact ;
shew that the coefficient of

2
restitution is -

.

o

71. A uniform flexible chain of indefinite length, the

mass of the unit of length of which is m, lies coiled on the

ground while another portion of the same chain forms a coil

on a platform at a height h above the ground, the inter-

mediate portion passing round the barrel of a windlass placed
above the second coil. An ens^ine which can do H units of

work per the unit of time is employed to wind up the chain

from the ground and to let it fall into the upper coil. Shew
that the velocity of the chain can never exceed the value

of V determined from the equation

mghv + -^ = Ii.

72. A, B, C are three perfectly elastic balls of equal
mass lying on a horizontal plane. If A and B are connected

by a tight inelastic string, and G is projected so as to strike

A directly with velocity V, prove that C will rebound with

velocity

,, cos^ 6

'S + sin' d
'

where 6 is equal to the angle BA G and is less than a right
anofle."&

73. A bullet is fired in the direction towards a second

equal bullet which is let fall at the same instant. Prove that

the two bullets will meet and that if they coalesce the latus

rectum of their joint path will be one quarter of the latus

rectum of the original path of the first bullet.

74. A bucket and a counterpoise, connected by an in-

elastic string passing over a pulley just balance one another,
and an elastic ball is dropped into the centre of the bucket
from a distance h above it

;
find the time that elapses before

the ball ceases to rebound, and prove that the whole descent
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4*771/1, fi

of the bucket durini:^ this interval is -—r^ 7- r^ , where° 2M+m (1 -ey
711, M are the masses of the ball aud bucket and e is the

coefficient of restitution.

75. Two equal particles A, B of imperfect elasticity e

move with equal uniform velocity in the same straight line.

B impinges perpendicularly on a wall. Shew that there will

always be two impacts between A and B, and two between
B and the wall, and that if there is a third collision between
the balls,

e < 2 - V3.

76. A particle is projected from a point in a smooth

plane inclined at an angle a to the horizon, in a vertical

plane which cuts the inclined plane in a horizontal line, and
at an angle to the horizon. Prove that after n rebounds
the space traversed in the direction of the line of greatest

slope on the inclined plane is

a sm a tan 6 . ^, ,

\ — e

where a is the horizontal space described, and e the coefficient

of restitution.

77. A ball having descended to the lowest point of a
circle through an arc whose chord is G drives an equal ball

up an arc whose chord is c : shew that the common elasticity

(e) of the two balls is given by the relation

1 : e :: C : 2c-a

78. An elastic ball being projected at any elevation is

continually reflected from a horizontal plane, and the sum of

the areas of all the parabolas described : area of tl?e first

parabola :: 8 : 7. Find the elasticity of the ball.



CHAPTER V.

MISCELLANEOUS.

210. A particle falls down a smooth curved tube ; it is

required to find its velocity at any point of the tube.

Since the tube is smooth the only force which it exerts

upon the particle is at right angles to the direction of the

particle's motion. Hence no work is done upon the par-
ticle by the action of the tube. Hence the only force

which does work upon the particle is its weight and the

kinetic energy generated must be the equivalent of the

work so done, and therefore depends simply on the vertical

height through which the particle has fallen (Art. 142).
Its velocity is therefore the same as if it had fallen vertically

through the same difference of level. Hence if a particle

starting with velocity u move along a smooth tube (or other

surface) through a vertical distance h, its velocity at the end

of the distance will be Ju^ + 2gh. The same will be true if

the particle be constrained by an inextensible string so that

it moves always at right angles to the string.

If the particle start from rest at A its velocity at any point,

whose vertical depth below A is h, will be J2gh.

211. Similarly if a particle be projected up a smooth
tube with velocity u, its velocity after rising through a ver-

tical height h will be J ti^ — 2gh. If h be the greatest height

to which it will rise, we must have ii^ = 2gh, or h == -^ .

Hence the particle will rise up the tube to the same vertical
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height to which it would rise if it were free and projected

vertically upwards with velocity w.

212. If the tube be bent, as in the subjoined figure, and
the particle fall down one arm from a height h above the

lowest point, it will rise up the other arm to the same height,

for its velocity at the lowest point will be J'lgh, and this will

just carry it to a height h up the other arm. The particle will

afterwards descend again, and will continue to oscillate to a

height h on each side of the lowest point of the tube.

213. If a particle move subject to any constraints what-

ever, such that the force exerted upon the particle by the

constraint is always perpendicular to the direction in which
it is moving, no work is done upon or against the particle by
the means of constraint. Hence the change in the kinetic

energy of the particle produced during its motion from one

point to another must be equivalent to the work done upon
it by the forces to which it is subject, the action of the con-

straints being left out of consideration. Hence if a particle
be moving under the action of gravity but constrained by
any smooth surfaces, inextensible strings or system of fric-

tionless link-work, the change in its kinetic energy will

depend only on the vertical distance through which it has

risen or fallen.

We have already, under the head of projectiles, considered

a case in which the force acting upon a moving particle is in-

clined to the direction of motion, and we found that in this

case the kinetic energy of the moving particle depended only
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on its vertical distance below the directrix of the parabola
which it described. The motion of the earth about the sua
affords another example of the motion of a body under the
action of a conservative force but subject to no constraints,
and the velocity of the earth in its orbit depends only on its

distance from the sun.

21 4. As an illustration of the preceding articles we will

take the following example.

A number of heavy pay^tichs slide from rest at the vertex

doivn a smooth tube in the form of a parabola ivhose axis is

vertical, and are alloived to quit the tube at different points.
Find the locus of the foci of the trajectories subsequently* de-

sciibed by them.
^

Let S be the focus of the parabolic tube, ZX its directrix,
AL the tangent at the vertex. Suppose a particle to quit
the tube at any point P. Draw PKH parallel to the a?cis.

Let PT be the tangent at P to the curve of the tube. Then,
since the particle starts from rest at A, its velocity at P is

that due to falling freely from the point K. ^/v must there-

fore be the directrix of the parabola subsequently described

by the particle (see Art. 156), and since PT is the direction

^



Newton's experiment on impact. 219

the tangent at P, if F be the focus of the parabola, the angle
FPT is equal to TPK. Hence F lies in SP, Also FP is

equal to PK and SP to PH. Hence SF is equal to HK,
that is to SA. The locus of the foci is therefore a circle

whose centre is 8 and which passes through A.

Since SF is equal to 8A, >S^ is a point on the trajectory
described by the particle which leaves the tube at P. Hence
>Sf is a point on the parabolas described by each of the parti-
cles after leaving the tube. These parabolas are in fact the

same as would be described by a series of particles projected
in different directions from S, each with the velocity which it

would acquire in falling freely from A to S, and the curve of

the tube is the envelojDe of all these parabolas. (See Art.

165.)

215. In Art. 210, we have supposed the particle to be
constrained to move in a smooth tube, but the proof there

given will be equally true (Art. 213) if the constraint be.

produced by any other means, provided it exert no force upon
the particle in the direction of its motion or in the opposite
direction. For example, if a particle slide down a smooth sur-

face of any form whatever, or if it be fastened to one end of a

string of constant length (and whose mass may be neglected),
the other end of the string being attached to a fixed point.
In all these cases the change of the velocity of the particle
will depend only upon the vertical height through which it

has fallen.

216. We are now in a position to understand the method

by which Newton arrived at the law of impact, enunciated
in Art. 174, and the determination of the coefficient of

elasticity for different substances from the results of experi-
ment.

A and B are two spherical balls suspended by strings
from fixed points so that the centres of both are free to move
in the same vertical plane. Let this plane be that of the

paper. Now, if the diameters of the balls are small compared
with the lengths of the strings, we may, without introducing
any considerable error, suppose them to move as particles
situated at their centres of gravity. The length of each stringy



220 Newton's expekiment on impact,

and its point of suspension are carefully adjusted, so that

when at rest the balls may be just in contact and the line

joining their centres may be horizontal and in the vertical

plane in which they move. Let a, h denote their centres in

this position.

Let the centre of the ball B be raised to B'
,
its strings

being kept tight, and then let B be allowed to fall from rest.

Let the vertical heisfht of B' above the line ah be h feet.

Then the velocity of the centre of the ball when it strikes A
being denoted by il we have

u^ = 2gh ;

.'. u = J2gh,

and this is the velocity of B relative to A just before impact.
Also, since at the instant of impact B is at its lowest position,
its centre will be moving horizontally, that is, along ha. After

impact, the centre of the ball A will move along the arc of a

vertical circle. Let A' be the extreme point which it reaches,
and let the vertical height of A' above the line ah be denoted

by k. Then, since the ball comes to rest at A', the velocity
V with which it left a must be given by the equation

V" = 2gk,

or '^ = J2gk\
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Again, after impact the ball B will, on leaving A, either

return towards B or continue movino: along^ its circle in the
same direction as before, but with a diminished velocity ;

or

it may, as a particular case, come to rest at once. Suppose
it to return towards B' and its centre to rise to a vertical

height K above the line ah. Let v be its velocity immediately
after impact with A. Then, since the greatest height to

which it rises above ah is h!
,
we must have

v'"^ = 2gJi,

or V =
^'Igh'.

Hence the velocity of the centre of B relative to that of

A immediately after impact, that is,
-

(v + v), is numerically

equal to - V2^ (^/^^ + \/h).

Now Newton found by measuring the heights h, h and //,

that so long as the materials of which the balls were com-

posed were the same, the ratio

Jlc+JW
JTi

was always constant, whatever were the relative dimensions

of the balls or the height h to which B was raised. But this

ratio, with a negative sign prefixed, is the ratio of the velocity
of B relative to A after and before impact. Hence this latter

ratio is constant. We have called the ratio ;=
— the mo-

Jh
^

dulus of elasticity, and have denoted it by e. It is always
less than 1,

217. We have said that after impact upon A the ball B
may return towards B\ may come to rest, or may go on in the

same direction as before, but with diminished velocitv. Its

behaviour in this resj^ect will be determined by the value of

e, and the ratio of the masses of the balls. If it come at once

to rest, h! is zero and e becomes —-
. If it proceed in the

same direction as before, but with velocity v'\ then its

velocity relative to A immediately after impact is —(v — v')\
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and if h" be the height to which it rises, we have for the
ratio of the relative velocities, after and before impact, the

expression -,
>
^^^l this expression will be found to be

constant. The modulus of elasticity will in this case be

sjk
—

sjh"

If the balls be inelastic they will proceed after impact
with the same velocity, and will therefore rise to the same

height. Hence h — h" and -j^
— becomes zero, as of^

Jh
 

 

course it should. No known bodies are, however, perfectly
inelastic.

218, We propose now to investigate the motion of a

particle constrained to move under the action of gravity upon
a smooth cycloid whose axis is vertical and vertex downwards.
Before doing this we must examine some of the properties
of the cycloid. The proofs given in the following articles

are due to Mr W, H. Besant, of St John's College.

Def. a cycloid is the curve generated hy a jjoint in

the circumference of a circle, while the circle 7vlls (without

slipping) along a straight line.

Suppose PQK to be the circle, Q the point fixed in its

circumference, and the circle to roll along the under side of

th3 straight line AB, starting from the position in which Q
is in contact with the line at B. Then Q will generate the

cycloid BOA. If be the position of Q when the diameter

through Q is perpendicular to AB, then is called the vertex
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of the cycloid, and OD, the diameter of the generating circle

which passes through 0, is called its axis. The points A
and B are the cusps of the curve, and the line AB its base.

If the diameter of the generating circle be denoted by a,

then OD is equal to a, and -4^ to the circumference of the

circle, that is, to 7ra. The length a of the diameter of the

generating circle is called the parameter of the cycloid.

219. Let Q be any point on the cycloid, and P the point
at which the generating circle touches the base when the

tracing point is at Q. Let Q' be the position of the tracing

point when the circle has turned through the indefinitely
small angle (f)

from this position. Then, as the circle begins
to roll, it turns about the point P as an instantaneous centre

of rotation, and
(p being the angle through Avhich it turns,

QQ'^PQ.cp,

Now if a particle starting from, rest at A fall down the

arc of the cycloid, which we suppose smooth, its velocity at

Q will be given by the equation

V = ^'2g . BJSf.

If we suppose this velocity to remain constant while the

particle moves over the indefinitely small arc QQ\ then

the time taken to pass from Q to Q' will be denoted by
^

Call this time r, then

\^2g .FN
qq: PO

s/2g.PN '^llg.PN
.

(f).
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By similar triangles

PK:PQ::PQ:PN,
or PQ' = aPN)

and this is true for each indefinitely small arc into which AO
may be divided. Hence the time in which the particle will

descend from ^ to is tt a / 7^ , since the circle turns throus:hV 2^
°

two right angles, while the tracing point passes from A to 0.

220. A particle starts from rest at any point in tJie arc

of a smooth cycloid whose axis is vertical and vertex down-
wards ; to find the time of descent to the vertex.

Let T be the point from which the particle starts.

Through T draw TC parallel to AD, and let a second cycloid

OA' be drawn, having its vertex at and OG for axis. Let
OD be denoted by a, OC by a.

Let Q be any point on the first cycloid between T and 0,

Q a contiguous point. Draw Qq, Q'q parallel to AD, meet-

ing the second cycloid in
q, q respectively, and let Qq meet

PK in i\^. Draw Q'L perpendicular to Qq. Then QQ' is
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ultimately perpendicular to PQ, that is, QQ' coincides with

QK when Q' is indefinitely near to Q. Hence

QQ : Q'L :: KQ : KN,

qq^KQ
Q'L KN'

But KN : KQ :: KQ : PK-

KQ _ IPK
'' KN~\f KK'

"
Q'L'^f KN V KN'

Similarly
M. =^^;

•'. QQ' •
5'^'

" Va : Va'.

Now if a particle slide from rest at A' down the arc of

the second cycloid, its velocity at q is the same as the velocity
at Q of the particle which slides from T, since the vertical

heisfht throuo^h which each w^ill have fallen is the same.

Hence the time taken by the second particle to slide down

qq is to that taken by the first to slide down QQ' as arc qq

is to arc QQ' ,
that is, as Va' to Va : and this is true for each

pair of corresponding elements into w^hich the arcs A'O, TO
can be divided. Therefore the time taken by the first particle
to slide down TO, is to that taken by the second particle to slide

down A' as Va to Va . But the time taken by the second

particle to slide down A'O is, by the preceding article,

rjj.
. /^ . Therefore the time taken by the first to slide'^ V 2^7 _

^

from T to is equal to tt a/^ ,
or the time from T to

is the same as from A to 0. Hence the time taken by a

particle to fall from rest at am/ point of the cycloid to the

vertex is the same. This property is called the ''isochronism

of the cycloid."

G. D. 15
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The particle after passing will then ascend the cycloid
to the same height as the point T from which it has fallen.

If we denote by T' the point at which it comes to rest, the

time from T to T' is

^""V 2^'^'''V
/2a
9

The particle will then return from T through to T,
and the whole time occupied in a complete oscillation or
"
swing-swang," that is, in passing from T to T' and back

again, is

27r /2a
V7'

and is constant however great or small the arc of vibration

may be, provided the particle do not leave the curve.

221. Let Q be any point on the cycloid, and PK the

corresponding vertical diameter of the circle. Suppose the

circle to roll through the indefinitely small angle (f>,
and Q

thereby to move to Q' . Let P'K' be the diameter which
then becomes vertical. Then the angle P'CP is equal to ^.
Join QK',

Draw KT parallel to DB and let P'K' meet KT m H.
Draw HF perpendicular to QK. Then QF is ultimately

equal to QK ,
and KF= QK - QK.
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Now when
</>

is indefinitely small, KH is equal to KK\
that is, to CK .

<^.
Hence

Also KF =KH . cos QKT
=KH cos KPQ ;

.^^^acosZPQ^
Jit

or QQ'=^2[QK-QK'),

Hence as the circle rolls through any very small angle, the

increment QQ' of the arc of the cycloid is equal to twice the

decrement of the chord QK-, and this being always true up
to the time when Q coincides with 0, in which case both the

arc QO and the chord QK vanish together, it follows that

the arc QO is equal to twice the chord QK,

Hence also the arc BO '\^ equal to ^PK, that is, to 2a,
and the length of the whole arc of the cycloid is 4a.

222. Let BQOA be a cycloid whose base is AB and
vertex 0. Let the axis OD be vertical and be represented

by a. Then a is the parameter of the cycloid. Produce
OD to X making DX equal to OD. Draw two semicycloids

having their vertices at A and B respectively, and each

having a cusp at X. Then the parameter of each of these

semicycloids is a. Draw XY parallel to AB, and BY per-

pendicular to it. Let PQK be any position of the gene-

rating circle of the first cycloid, Q the corresponding point
on the curve. Produce KP to meet XY in K. On PK
describe a circle, and j^roduce QP to meet this circle in P.
Join K'E.

15—2
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Tlien
TT

Also

XY=l)B =
^a

= avc PQK

K'Y=PB= arc PQ,

and K'X = XY-K'Y;

:. K'X = arc KQ.

But the triang^les PQK, PRK' are equal, and therefore QK
is equal to RK\ Therefore

arc QK= arc K'B.

Hence K'X = arc KB, .

and i? is therefore a point on the cycloid XB. Also by the

preceding article the arc BB is equal to twice the chord BP,
that is, to BQ.

Again, since as B traces out the curve XB, K' is the

instantaneous centre about which K'B is turning, K'B is the

normal at B to the cycloid XB, and BP is the tangent to the

same. Hence if a string be fastened at X, and wrapped

tightly round the cycloid XB, and a particle be attached to

it at B, then if the system be left free to move, the string

remaining tight, the particle will describe the. semicycloid
BO. Then as the string wraps up on the semicycloid XA^
the particle will describe the semicycloid OA. Hence by
this means a particle may be made to oscillate in a cycloid. .
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If the mass of the string be insensible compared with

the mass of the particle, the arrangement is called a simple

pendulum.

If I be the length of the string, then I — 2a, and the time

in which the particle oscillates from its highest position on

one side of to that on the other side of is, by Art. 147,

yiTT "
9

and is independent of the amplitude of the vibration. The
time of a complete oscillation is

'-\/l9

223. When the particle is very near to 0, the string by
which it is suspended will be very nearly straight. Hence if

a circle be described having X for centre and XO for radius,

it will very nearly coincide with the cycloid at points near to

0. Hence if a particle oscillate in this circle through any
small distances on each side of 0, its motion will be nearly
the same as if it moved on the cycloid, and the time of a semi-

oscillation, that is, from the extreme point on one side of

to the extreme point on the other side of 0, will be very

nearly
Try^--.

If the arc of oscillation be more than 3 or 4 desfrees a

considerable difference exists between the time in the circle

and in the cycloid, the oscillations in the circle being slower

the greater the amplitude.

A simple pendulum as described above is of course a pure
conception, and can never be realised experimentally. If,

however, any rigid body be made to oscillate through a very
small angle in one plane about a fixed point under the action

of gravity, if the form and dimensions of the body be known,
as well as its densit}^, at every point we can calculate the length
of a simple pendulum which will oscillate in the same time;
but this calculation requires the methods of Rigid Dynamics.
The simple pendulum which performs its vibrations in the
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same time as any rigid body or compound pendulum is called

the simple equivalent pendulum.

The method of suspension explained in the preceding
article is sometimes adopted in clocks. The pendulum is

supported by a short steel spring which, as the pendulum
oscillates, is made to wrap itself on two cycloidal cheeks, like

the string in the last article. As the arc of vibration of the

pendulum is never more than a few degrees in amplitude,

only a very small portion of the cycloid is required for either

guiding cheek.

Suppose we observe the time in which any known pendu-
lum performs a large number (say 200 or 300) of very small

oscillations. Then, dividing this time by the number of

oscillations, we can find the time occupied by each. Let t

seconds be the time occupied in performing a semi-oscillation
;

then, if I be the length of the simple equivalent pendulum,

Hence, I being known, we can calculate the value of g.
It is from experiments of this description that the most exact

values of g have been determined.

224. As an illustration of the preceding articles we will

determine the length of a simple pendvilum which will per-
form a semi-oscillation in one second in London, the value of

g being supposed equal to 32'19.

A pendulum which performs a semi-oscillation in one

second is called a seconds' pendulum. By "beats" of a

pendulum are always meant semi-oscillations.

If I be the length of the seconds' pendulum in feet, we
have

• 1=
ÎT

_ 32-19~
31416^

= 3-262...
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or the length of the seconds' pendulum is about 89*144

inches.

225. The reason of the isochronism of the pendulum is

simply that the acceleration with which it moves is always
proportional to its distance (measured along the path of the

bob) from its position of rest. If this condition be fulfilled, it

matters not whether the body be moving in a straight or

curved line, it will still be isochronous in its vibrations, and
the solution of the whole problem will be exactly similar to

that of the pendulum. Hence, if a particle of mass M be
free to move in any path under the action of a force along its

path towards some point and always equal to fjiMd, where d

represents the distance of the particle from the point mea-
sured along the path, the particle will perform isochronous

27r
vibrations about whose period will be -^ , no matter what

may be the amplitude of the oscillation.

Jh''

226. Suppose a particle to be describing the curve

APB, and let v be its velocity at F; then, if PT be the

tangent at P, the direction of its motion at P is along PT.
Let Q be a point on the curve very near to P, v the velocity
of the particle at Q, QT' the tangent at Q, and let the normals
at P and Q intersect in 0. Then, when Q is indefinitely
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near to P, is the centre of curvature of the curve APB at

P. Let the angle POQ be denoted by 6, then T'KT is

equal to ^.

Now the velocity of the particle when at P is entirely

along PT \
its velocity parallel to OP is therefore zero. The

velocity of the particle when at Q is v along QT\ and its

velocity parallel to OP is therefore v sin 6. Now the time

occupied by the particle in moving from P to Q lies between

PQ PQand —r ,
and if PQ be indefinitely small, we may take

PQ
V equal v, and the time from P to Q becomes —— . Hence

V

PQ
during the time —

,
a velocity represented by v sin is

generated in the particle in a direction parallel to PO. The
measure of the acceleration which will generate this velocity
• ,1 .

• PQ • • /I
^ -y^ sin ^ , ^m the time —-^ is vsinU . -rrp\ ,

or —j^r^^-- . N ow
V PQ PQ

v^ sin 6 _ 2 ^ si^ ^

~PQ~
~'"

PQ'~e~'

Hence the particle must, while passing from P to Q, be moving
with an acceleration whose measure is the limit of the ex-

pression v^ p^ .
—
-^ ,

when 6 is indefinitely diminished. But

the limit of - ,.—
,
when 6 is indefinitely small, is unity, and

PQ .

the limit of —— is PO, that is, the radius of curvature at P.
V

Let this be denoted by p. Then the accelera^tion of the

particle at P in the direction PO is measured by
—

.

Hence if the mass of the particle be denoted by m, it

must be acted upon by a force in the direction PO repre-

,
, , mv^

sented by
—

.
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If the velocity remain constant, the particle has no
acceleration in the direction of motion. Hence the resultant

771V
force upon it is a force •

acting inwards along the normal

at P.

If the curve described be a circle of radius r, then p is

equal to r, and the particle is always acted upon by a force
2

towards the centre of the circle.
r

This method of determining the acceleration of a point

along the normal to the curve in which it is moving is due
to Mr Besant.

227. In the case of a particle being prevented from

leaving the circle by a string attached to the centre, this

force is supplied by the tension of the string. Hence the

string must exert a force upon the particle represented
v'^ . . .

by m — ,
and since action and reaction are equal and opposite,

it follows that the particle exerts a force upon the string

acting from the centre of the circle, and also represented
v^ . .

hj m —
. This action of the particle upon the string or other

means of constraint is frequently called centrifugal force.

It should always be borne in mind that the force acting upon
the particle is towards the centre of the circle, but that the

action of the particle upon its means of constraint is in the

opposite direction, and is properly termed centrifugal force.

228. As an example of the preceding article we may take

the following. Suppose a particle P, of mass m, to be attached

to one end of a string: of lencrth I, the other end of which is

fixed at A. The particle is made to describe a horizontal

circle with uniform velocity, such that it makes n complete
revolutions per second. It is required to find the inclination,

6, of the string to the vertical, and the tension of the string.

Let be the centre of the circle described by the particle,
V the velocity of tlie latter. The . radius OP of the circle is
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:p

/
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• . Cub " -~~
'Z o 9~7 J

and we have seen that

whence T and 6 are completely determined.

For example, suppose I equal to 2 feet and in to be
20 pounds, and that the system makes 10 revolutions per
second, then taking g equal to 32, we have

^"^^ ^ ~
SOOtt^

~
257r^

'

and T=20.4'.100.2.7r'

= 160007^^

or the tension of the string is IGOOOtt^ dynamical units of

force, that is, equal to the weight of SOOtt" pounds.

If the string in this example be replaced by a rigid rod,

which can turn about ^ in a ball and socket-joint, we obtain

the instrument known as a conical pendulum.

229. The earth's equatorial radius being taken as 4000

miles, it is required to find the force necessary to prevent a

particle of mass m at the equator from leaving its surface on
account of the diurnal rotation.

The time in which the earth makes a complete rotation

365
about its axis is a sidereal day, that is about^rT—. mean solar

-^ 36b

days, or nearly 86164 seconds. The velocity of a point on
.,

, A , ,x. , ,'
'

,^ , 27r. 4000x5280
the equator due to the rotation is therefore c^t^t^pt,

8o1d4
feet per second. Hence the force which must act towards the

centre of the earth to prevent a particle of mass m from

leaving the surface must be

47^^ 4000^ 5280" ^ .
, ., ^ ^m or.i/^^2 Ai^i^r.

—
^^=^?^ dynamical units oi lorce

86164^ 4000 . o280 *^

= '11203??i dynamical units of force very nearly.
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Hence the resultant force upon a particle of mass m at

the equator must act towards the centre of the earth and be

equal to •11203m units of force in order that it may be at

rest on the surface.

Now suppose the force with which the earth attracts the

particle to be denoted by mf, and the pressure of the particle
on the ground to be mg. Then the pressure of the ground
on the particle is also mg, and the resultant force upon it is

mf— 77ig towards the earth's centre
;

••• tn {f
-

g)
= •n20Sm,

or the apparent weight of the particle, viz. mg, is less than
the force with which the earth attracts it by 'IISOS??!.

If we suppose the value of g at the equator to be 32, we
see that the weight of a body in its neighbourhood is di-

1
minished by about --—. of the whole weio^ht on account of the

earth's rotation.

The effect of the earth's rotation upon bodies at the

equator is actually to diminish their apparent weight by

about ^— of the whole. This force produces its whole effect

in changing the direction of the body's motion, that is, in

producing in it acceleration towards the earth's centre. The
value

'^of g at the equator is rather less than 32, but the '

earth's equatorial radius is only about 3962 miles instead of

4000 miles, as we have taken it.

230. If a particle describe a circle of radius r with

uniform velocity v, and pass from P to Q in the time r, then

the arc PQ is equal to vt. But if 6 be the circular measure

of the angle subtended at the centre by the arc PQ, then P Q
is also equal to r^. Therefore

rd = VT,

or — -
T,

r
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and since v is constant, 6 varies as t. If r be equal to one

second we liave ^ = -
, or - denotes the circular measure of

the angle swept out about the centre by the radius through
the particle in each second. This is called the angular
velocity of the particle about the centre, and is frequently
denoted by w.

We have seen that if a particle of mass m describe a circle

of radius r with uniform velocity v, it must be under the

action of a constant force towards the centre measured

by 111 —
,
and this is also the measure of the force from the

centre which the particle exerts against the means of con-

straint which compel it to move in the circle. Now if to be
the angular velocity of the particle about the centre, we have

0) = -
. Hence m - = moi^ r, or the force acting upon the

particle towards the centre is numerically equal to ww^ r,

and its acceleration towards the centre is therefore co^ r.

231. When two or more bodies are so connected that if

the motion of one of them be given, that of each of the others

is known, we can, by help of the equations expressing the

geometrical connections of the system, find the motion of

each part and the forces between the parts when the external

forces acting on the system are known. We have seen ex-

amples of this in the cases of weights connected by a string
over a pulley. The general method of solution of ^oroblems
of this class is to take the acceleration of one of the parts as

the unknown quantity, then by help of the geometrical equa-
tions the accelerations of all the other parts can be expressed
in terms of this. The accelerations of all the parts being
thus expressed in terms of one unknown quantity, the i^e-

sultant force upon each can also be so expressed ;
hence the

reactions between the parts can be expressed in terms of this

one unknown
;
and finally, the resultant force on the first part

of the system being expressed in terms of the external forces

upon it, and the reactions of the other parts of the S3'stem, it

can be expressed in terms of the unknown 'acceleration. But
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it is this force which produces that acceleration in the first

part of the system, and this furnishes us with another

expression for the same force. Equating these two expres-
sions we have an equation to determine the unknown
acceleration. This process will be best understood by an

example.

232. Ex. A smooth wedge A wJiose angle is a and
mass M rests on a smooth plane inclined at the same angle
OL to the horizon, so that one face of the wedge is horizontal.

On the upper surface of the wedge is placed a weight B of
mass m. Find the motion of the system and the pressures
between the parts.

The upper surface of the wedge being smooth, all the

forces upon the weight B are vertical, and therefore this

weight will descend in a vertical straight line. Also since

the weight remains on the top of the wedge, which is hori-

zontal, the vertical motion of the wedge must be the same as

that of the particle, and therefore its vertical acceleration

must be the same. Also the motion of the wedge is always

along the inclined plane, and therefore its acceleration must
be in that direction.

Let / denote the acceleration of B, f that of the wedge
A, then, since their vertical accelerations are the same,

fsma=f;

f
therefore f = -~—

.•^ sin a

3ff
Therefore the resultant force on the wedsje must be ^ —^ sma

along the plane. Let P denote the pressure of the weight B
on the wedge. Then resolving along the plane,

^^-^ = {P + Mg)sma.;sma

,;P = ~^f-Mg,sin a "^
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But the resultant force upon B is mg — P, acting vertically

downwards, and this must therefore be the force required to

produce an acceleration/ in the mass m. Hence

mq —.,—\- Mg = mf,

^ (J/+??i) f/sin^a
or /

= -^—;

'

^ i/ + 7?i sin"'* a

this determines the acceleration of the weight B. The
acceleration of the wedge along the plane is

(il/4- 77z) /7
sina

M + m sin^ a
*

and the pressure, P, between the weight B and the wedge is

fnMg cos^ a

if +77isin"'*a*

Resolving perpendicularly to the inclined plane we see

that the pressure between the wedge and plane is

(P + Mg) cos a,

that IS, M vr ^^ 7 cos a.

283. When the connections between the parts of a

system are such that the motion of all can be expressed in

.terms of that of one of them, and there are no sudden changes
of velocity in any part of the system, we may frequently de-

termine the motion from the consideration that the kinetic

energy of the system is equivalent to the work done upon it

by external forces. We may illustrate this by the following

example.

234. Ex. A lueight of 64 Ihs. is supported in equilibrium

by a weight of 4 lbs. in a si/stem of pulleys in ivhich each

string is vertical. If a half-pound weight be added to the

4 lb. lueight, determine the motion of the system, neglecting the

faction and inertia of the pulleys, strings, <i:c.

Since a weight of 4 lbs. supports in equilibrium a weight
of 64 lbs. it follows from the principle of virtual veloci-
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ties, that if the former fall through a very small space the

latter will rise through -^ of that space, and since the strings
are vertical the system is always similar throughout the

motion. Hence the geometrical connections must be such

that in each displacement throughout the motion the 4 lb.

weight will move through 16 times the space moved through
by the 64 lb. weight, and its velocity and acceleration will

therefore be 16 times that of the larger weight. Hence since

the geometrical connections are undisturbed by adding the

half-pound weight, the same will be true in the motion we
are considering. Let f be the acceleration of the 4^ lbs.

Then
J-;

is the acceleration of the 64 lb. weight, and / will

remain constant throughout the motion, since the conditions

are always the same. Hence the kinetic energy of the system
at the end of time t from the commencement of the motion will

1 1 ff 19
he^A^ .f^f + -^.64},

-^—r, ,
or— f^f units of kinetic energy.

Also, the space described by the 4^ lb. weight will be
1

^ff units, and that through which the 64 lb. weight has

1 f
ascended will be 7; . tt^ ^^ Hence the work done on the

2 lb
1 1

system by gravity will be ^ ^ -^f^ units of work.

1 19 2
Therefore -cjff:=—ff; .'.f=

—
g,

2
and the 4J lbs. will descend with uniform acceleration ^q ^'

235. Or we may proceed thus :
—The tension of the

string supporting the "weight" will always be 16 times that

of the string supporting the "
power," whether the system

be at rest or in motion, since the weights of the' strings and

pulleys are neglected. Let T denote the latter tension in

absolute units, then 16 T will represent the former. The
T

acceleration of the
"
power

"
will therefore he g — -y down-
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iG r '

>
.

'
/

wards, and that of the
"
weight

"

-^-^
—

g upwards. Bitt the
*

acceleration of the "power" is always 16 times that of the '^
t

weight; »/
'^'

< .

/

T 2
and the acceleration of the 4 J lb. weight is ^

— —
^ ,

or
^ ^ r/,

**2 ly

as before.

236. We purpose now to give a few examples of a class

of problems not unfrequently proposed, namely the fol-

lowing :
—

Suppose a system of particles at rest and in equili-
brium under given constraints, and let one of these con-

straints be suddenly removed. It is required to find the

change instantaneously produced in the action of the other

constraints.

The general method to be adopted in order to determine
the initial actions of the remaining constraints is to find the

direction and acceleration with which each particle begins to

move. If we multiply the expression for this acceleration

by the mass of the particle, the product is the measure of

the resultant force upon the particle, and this resultant force

being determined in magnitude and direction, we have suffi-

cient equations for determining all the forces in the system
at the commencement of the motion.

237. Ex. 1. A particle of mass m is suspended from
two points in the same horizontal line hy two strings of equal

lengths. One of the strings is suddenly cut, it is required to

find the initial change of tension of the other string.

Let P be the particle in its position of rest, A, B the

points of suspension. Let AB =
ta,, and let the length of

each string be I. Let the angle BPA be equal to 'Ijl. If

G. D. 16
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T be the tension of each string when there is equilibrium,
we have by resolving vertically

r=_ '^9

2 cos a'

where cos a = -—
-.
—

Now suppose the string AF suddenly cut. Then BF re-

maining of invariable length, the particle will begin to move
at right angles to BF. Hence the resultant force upon it

must be in this direction. Therefore, if T be the tension of

the string BF, immediately after cutting J.P, we have

T' = mg cos a,

and the initial change of tension is

T'-T = mg
'2 cos'' a -1'

, 2 cos a .

If a be less than 45" the tension of BF is suddenly in-

creased, and if a be greater than 45", or I less than J 2 . a, the
tension of BF is suddenly diminished, by cutting AF.

The resultant force upon the particle immediately after

cutting the string AF is mg sin a, acting in a direction per-

pendicular to BF. Hence the initial acceleration of the

particle is in this direction and is numerically equal to

g sin a.

238. Ex. 2. A string having its ends fastened to two

fixed points A and B in the same horizontal straight line has
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four equal particles, each of mass m, attached to it at equal
intervals. If while the system is at rest the string he cut in

the middle, it is required to find the instantaneous change of
tension of the other portions of the string.

When at rest the portion QR of the string will be hori-

zontal, and the system will be symmetrical about the vertical

A 3

line through the middle point of the string. Let a^ denote

the inclination of R8 to the horizon, a^ that of B8. Then,
if T^ represent the tension of QR when the system is in

equilibrium, T^ that of RS, and T^ that of BS, we have
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Also the resultant force upon S perpendicular to BS is

mg cos a^
-
^/ sin

{a^
-

a,),

and its acceleration in this direction is therefore

T'
9 cos 02

-
-^

sin («2
-

«i).

and the component of this in the direction U^ is

{^
^^^ "2

-
-^

sin
(0(2
-

a,)|

sin
(a^
-

a^).

Now since ^R is of invariable length the velocity of R
in the direction RB must always be the same as that of >S'

in that direction. Hence the acceleration of R in the direc-

tion RS must be equal to that of B in the same directioru

The resultant force upon R in the direction R^ is

Tl
— mg sin

a^ ,

and its acceleration in this direction is therefore

T'-^ — qrsina,.

Hence we have
ml rn /

-— — g sin ai=g cos a., sin {a,
—

a.)
^ sin^ (a^

—
a,) ;

therefore

^ ,
sin a, + cos a^ sin (or„

—
a,)

i
,
= mq \ ^-^-^

^ ^
^ ^

1 + sm'
(or^
-

a^)

sin a„ cos (a„
—

&,)= mg ——  
 

,

^

^' .

l + sm(7^-a,)

But T^ = mg sin a^ + ^/ cos
(or,
—

a^) ;

therefore

t: =
2 sin a

2

^ ""'^
1 + sin^ («;_«;)

•

Hence we have found the tensions of the parts of the

string immediately before and immediately after the section.

The difference between the corresponding tensions will of

course be the instantaneous changes required.
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By proceeding precisely in the same way we might find

the tension of the different portions of the string, immediately
after cutting it at any point, whatever be the number of

weights suspended from it.

239. We will conclude this chapter with the following

example, illustrating the application of the theory of energy
to problems connected with uniformly accelerated motion.

Ex. A Nasmyth hammer, moving m a vertical direction,

is driven by steam pressin^e on a circular jnston 40 inches in

diameter. The mass of the hammer and j^iston together is

25 tons, and the jyvessure of steam on the upper side of the

piston is equal to the weight of 50 lbs. per square inch moi-e

than on the loiuer side. Suiyposing the hammer after falling

through 59 inches to strike a mass of iron, compress it ver-

tically through one inch, and then come to rest, find the jyres-

sure exerted by the hammer upon the iron, supposing it

%iniform throughout the compression.

The whole force acting upon the hammer before striking
the iron is equal to the weight of

^. ,

7r.2Q'\50
^^" ^

2240 *'^''

and the whole mass moved being 25 tons, it will fall with

uniform acceleration represented by

/ 7^.20^2^

n^''"224(rJ^^^

The velocity, v, which the hammer will acquire in falling

through 59 inches, is given by the equation

and this velocity is destroyed by a constant force, while the

hammer moves over one inch. Hence ify denote the uniform

acceleration with which the hammer moves throuijhout that

inch, we have

-^
*

12
'
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••6-^='n'
+
i4Jr2'

or/=59£r(^l
+
g). ]

Therefore the resultant force on the hammer, while com-

pressing the iron, is equal to the weight of

57r'
25 X 59 f 1 + — ) tons.

But the downward force upon it due to its weight, and
the pressure of the steam, is equal to the weight of

25(l
+
g)tons.

Hence the vertical pressure of the iron on the hammer, and
therefore the hammer on the iron, is equal to the weight

of 60 X 25
(
1 + -^ j

tons, or about 3183 tons.

240. We might have obtained the result of the pre-

ceding article from the consideration that if a mass move
under unifoim acceleration, the change of its kinetic energy
in any time is always numerically equal to the work done

upon it during the interval. If the acceleration under which
the body is moving be suddenly changed during the motion,
this principle is true for each portion of the motion, and
therefore throughout the whole.

Now the hammer starts from rest, and finally comes to

rest. Hence the whole work done upon it must be zero.

But it falls altogether through 5 feet under a constant force

equal to the weight of 25 1 -|-
—-

)
tons. Hence the work

done upon it by this downward force is 125
(l + fr) foot-

tons. Therefore the work which the hammer must do upon

the iron is 125
(
1 + tt

)
foot-tons. But it compresses the
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iron through
— of a foot. Hence the pressure which it exerts

upon the iron must be equal to the weight of

1500 (l +
'J^)

tons.

EXAMINATION ON CHAPTER V.

1. A particle is projected from the vertex of a smooth

parabolic tube, whose axis is vertical, and latus rectum equal
to 4a, along the tube with a velocity represented by '^2ag.
Find the velocity of the particle at any point in the tube in

terms of the focal distance of the point.

2. Assuming that on descending a mine, g varies directly
as the distance from the earth's centre, find the number of

beats lost in a day by a pendulum which beats seconds at the

sea-level, when carried down a mine to a depth of 400

fathoms, supposing the earth a sphere of 4000 miles radius.

3. Shew that the time of oscillation of a particle under
the action of gravity about the lowest point of a vertical

circle of radius 2a, is greater than the time of oscillation

on a cycloid the diameter of whose generating circle is a,

if the arc of oscillation in the circle be of finite length.

4. A particle slides down the surface of a right circular

cylinder whose axis is horizontal from rest on the highest

generating line. Find the pressure on the cylinder in any
subsequent position of the particle, and the point where the

particle will leave the surface.

5. Supposing the mass of the bob of a conical pendulum
to be 20 lbs., and the length of the string to be 3 feet, find

the inclination of the string to the vertical when the bob is

making 3 revolutions'per second, and its tension.

6. A heavy particle is attached to a string 5 feet long,
and swung round in a vertical circle. Find its velocity at

the highest point in order that the string may just remain

tight.
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7. Explain the action of the conical pendulum as a

regulator or
"
governor

"
for a steam-engine.

8. In the case proposed in question 1, find the pressure
of the particle upon the tube at any point of its path.

9. A train goes round a curve whose radius (i.e. the

radius of the curve lying midway between the two metals)
is 150 yards, at the rate of 50 miles per hour. Find the

height to which one of the metals must be raised above

the other in order that the whole pressure of each carriage
on the metals may be perpendicular to the floor of the

carriage, the breadth of the gauge being 4 ft. 8J ins.

10. A heavy particle is suspended from the angular

points of an equilateral triangle whose plane is horizontal,

by means of three strings each equal in length to one side

of the triangle. If one of the strings be cut, find the initial

change of tension of the other two.

11. A uniform endless string, of length 27ra, is rotating
in its own plane with uniform angular velocity w, under the

action of no external forces. Find the tension of the string,
the mass of each unit of length being m.

12. The mass of a smooth wedg^e whose anole is 30** is

10 lbs., and it rests on a smooth plane inclined 30" to the

horizon, so that the upper surface of the wedge is horizontal.

A weight of 2 lbs. is placed on the top of the wedge. Find
its acceleration and the pressure of the weight on the wedge.

EXAMPLES ON CHAPTER Y.

1. The value of g at Greenwich being 32*1912 and at

Trinidad 32*09 13, find how many beats a Greenwich seconds'

pendulum would lose in a day at Trinidad.

2. Shew that the acceleration of a particle oscillating in

a smooth cycloidal tube whose axis is vertical, is at any point

proportional to its distance from the vertex measured along
the curve.
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8. Find the inclination to the vertical of a conical pen-
dulum 20 inches long, and making 200 rotations per minute.

4. A body whose mass is 10 lbs. is suspended by a string
from a point in the roof of a railway carriage, which is

describing a curve of 509 feet radius at the rate of 45 miles

an hour. Find the inclination of the string to the vertical

when it is in relative equilibrium, and the tension of the string.

5. Find the difference in the pressures exerted on the

metals by a train of 200 tons when going due East, and when

going due West, along a horizontal rail at CO miles an hour
in latitude 60".

6. A pendulum which at A beats seconds, gains 2 beats

an hour at B. Compare the weights of the same substance

at the different places.

7. Two very small imperfectly elastic balls are let fall

simultaneously from different points, their centres moving
on the same cycloid whose axis is vertical and vertex down-
wards. Shew that all their impacts will take place at the

vertex, and find the ultimate range of vibration when the

impacts have ceased.

8. The length of a pendulum which vibrates SO times

in a minute is 156*8 inches, find the space through which
a particle will fall from rest in one second under the action

of gravity.

9. A free body falls from rest through nearly 301J
yards in one-eighth of a minute in the latitude of Greenwich.
How far would a body fall from rest in a quarter of a minute
at a place where the length of the seconds' pendulum is "999

of its length at Greenwich ?

10. The attraction of a planet of mass m on a given

body at a point distant r from its centre, r being greater

than the radius of the planet, varies as -^ . The mass of

the earth is 49 times that of a certain planet, while its radius

is 4 times that of the planet. Prove that a seconds' pen-

dulum carried to the planet would oscillate in about -
^ 4

seconds.
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11. If a simple pendulum 39J inches long oscillate in

one second, what is the length of a pendulum which makes
3540 beats in an hour ?

12. The horizontal attraction of a mountain on a par-
ticle at a certain place is such as would produce in it an

acceleration denoted by
-

g. Shew that a seconds' pendulum

at that place will gain
—

^
— beats in a day, very nearly.

13. Shew that a pendulum one mile long would oscillate

in about = ^22 minutes.

14. A seconds' pendulum is carried to the top of a

mountain 3000 feet high ; assuming that the force of gravity
varies inversely as the square of the distance from the earth's

centre, and that the earth's radius is 4000 miles, find the

number of oscillations lost in a day, neglecting the attraction

of the mountain.

15. A railway train is moving uniformly along a curve

at the rate of CO miles per hour, and in one of the carriages
a pendulum which would ordinarily beat seconds, is observed

to oscillate 121 times in two minutes. Shew that the radius

of the curve is very nearly a quarter of a mile.

Supposing a stone dropped from the window of one of

the carriages, find how much farther from the centre of the

curve is the point at which it strikes the ground than the

point vertically beneath that from which it falls, the height
of the latter point above the ground being 6 feet.

16. A particle is projected horizontally with a given

velocity from the highest point of a smooth sphere. Find
the point where it leaves the sphere.

17. Find the greatest velocity with which a particle

may be projected horizontally from the highest point of a

sphere, so as to begin to move on the surface of a sphere.

18. A smooth straight tube is made to describe a right
circular cone whose axis is vertical and semivertical angle

equal to a, with uniform velocity, the vertical plane through
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the tube turning about the axis of the cone with uniform

velocity co. Find where a particle will be in relative equili-
brium in the tube.

19. Shew that if a heavy particle fall from a cusp down
the arc of a smooth cycloid whose axis is vertical and vertex

downwards, its pressure on the curve at its lowest point will

be equal to twice its weight.

20. Supposing the earth's orbit about the sun to be a

circle of 86,000,000 miles radius, and the earth to describe

this orbit with uniform velocity in 365J days, express the

force exerted by the sun on a pound of matter at the earth's

surface in British absolute units, neglecting the mao^nitude of

the earth in comparison with the sun's distance.

21. If different points be describing different circles

uniformly with accelerations proportional to their radii, their

periodic times wall be the same.

22. A heavy particle is placed very near the highest

point of a smooth vertical circle
;
shew that the latus rectum

of the parabola wdiich it describes after leaving the circle

is to the radius of the circle as 16 : 27.

If retaining the same highest point the circle vary in

size, shew that the locus of the focus of the parabolic path of

a particle so flying off is a straight line.

23. A lamina in the form of a regular hexagon of side

a is placed flat on a smooth horizontal plane and fastened

to the plane. A string of length equal to the perimeter of

the polygon is wound round it, one end being attached to an

angular point, and the other end carrying a particle of mass
m. If the particle be projected horizontally at right angles
to the string with velocity v, find the time after which the string
will be wound up again, and its greatest and least tensions.

24. A skater, whose weight is 12 stone, cuts on the

outside edge a circle of 3 yards radius, wdth uniformly de-

creasing velocity, just coming to rest after completing the

circle in 6 seconds. Find the direction and magnitude,
when he is half way round, of his pressure on the ice.

25. A particle suspended from a point by a string of

length a is projected from its lowest position with velocity
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—
j^
—

s]ga ;
shew that it will pass through the point of sus-

pension, and that the direction of its motion at that point

will make an angle cos~^ -x with the horizon.

26. If a wheel of radius a roll on the lower side of a

horizontal plane so that its centre moves in a straight line

with uniform acceleration ijga, any point on its circum-

ference will move in the same manner as a heavy particle

starting from the cusp of a smooth cycloidal arc whose axis

is vertical, and sliding down it.

27. A particle starts from the extremity of a smooth

cycLjidal arc whose axis is vertical; shew that when it has

fallen through half the distance measured alongr the arc to

the vertex, it will have accomplished f of its vertical descent,
and two-thirds of the time of descent will have elapsed.

28. Three equal smooth spheres are placed in contact

on a horizontal plane, and are connected where they touch.

A fourth equal smooth sphere is placed so as to be supported

by the other three. If the connections between the lower

spheres be simultaneously broken, shew that the pressure
between each and the upper sphere is instantaneously di-

minished by one-seventh.

29. A heavy uniform string rests on a smooth horizontal

table with one end pinned to the table and - of its length

hanging over the edge of the table
;

if the pin be removed
the whole pressure on the table will be instantaneously di-

minished by —3 of the weight of the string.

80. A smooth wedge whose vertical angle is 30" and
mass 10 lbs., is placed on a smooth plane inclined 45" to the

horizon, the edge of the wedge being horizontal and directed

upwards. On the top of the wedge (which is inclined at an

angle of 15" to the horizon) is placed a smooth weight of

5 lbs. Determine the motion, and the pressures between
the weight and wedge, and between the wedge and the

plane.
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31. In a system of pulleys in which all the strings are

vertical, a weight of one pound can support a weight of 32 lbs.

If a weight of one ounce be added to the one-pound weight,
determine the motion of the system and the space through
which the 32 lb. weight will be raised in one minute,

neglecting the friction and inertia of the pulleys, and the

rigidity and inertia of the ropes.

32. A small smooth ball is running horizontally round
the inside of a hemispherical bowl of given size. Shew how
to determine its height above the bottom of the bowl by
observation of the time taken in making each circuit.

33. A circular elastic band is placed round a wheel, the

circumference of which is twice the natural lencyth of the

band ;
if the wheel be made to revclve with constant ans^ular

velocity, find the pressure of the band on the wheel.

S^. A heavy particle is placed very near the vertex of a

smooth cycloid having its axis vertical and vertex upwards ;

find where the particle runs off the curve and prove that it

falls on the base of the cycloid at the distance (—-h^Sja
from the centre of the base, a being the radius of the gene-

rating circle.

35. Pendulums which beat seconds correctly in London

(5r
=

32'19) and Edinburgh (^ = 32"20) respectively are inter-

changed in station. If started simultaneously from the ver-

tical position towards the left, after how many seconds will

they again be both vertical and moving leftwards ?

36. A simple seconds-pendulum is formed by a particle
of given mass suspended by a string. If the length of the

string in any latitude be the unit of length and its tension

the unit of force, and if the unit of density be constant, prove
that the unit of energy is inversely as the unit of acceleration.

37. A parabola is placed with its plane vertical, its ver-

tex upwards and its axis inclined at an angle a to the

horizon : if a j)article start from rest at the highest point it

will leave the curve when its direction of motion makes an

angle equal to tan~^ JUiii a with the horizoD.



CHAPTER YI.

APPENDIX ON THE DYNAMICAL THEOEY OF GASES.

241. A SIMPLE gas may be considered to be a collection

of equal, free, material particles moving about in all direc-

tions. When two of these particles approach one another

they behave like perfectly elastic balls impinging on each

other, that is to say, the velocity of either relative to the
other becomes reversed in direction but is unaltered in

magnitude. We do not say that the particles are perfectly

elastic, because we cannot conceive of a particle suffering

compression and subsequently regaining its original form.

It is probable that when the particles approach very near
one another a repulsive force acts between the two, which
increases as the distance between the particles diminishes.

1

so as to prevent their ever coming into actual contact, and
this force depending only on the distance between the par-
ticles, and not on the direction of their motion, will generate
as much momentum in each as they recede from one another

as it destroyed during their approach. If the particles are
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not moving in the same straight line, since the force between
them does not act in the direction of the motion of either,

the path of each will be curved throughout that portion

during the description of which the force is sensible. Thus
the paths of two particles in the neighbourhood of the least

distance between them will be represented by the lines

A BCD, EFGH, where AB, EF are the directions of motion
before coming sufficiently near together to act sensibly on
one another, and CD, GH the directions in which they are

moving after getting beyond the reach of each other's re-

pulsion.

When the particles of a gas meet with any obstacle,

whose mass is very great compared with their own, they be-

have like elastic balls projected against a fixed surface, and

rebound, their velocity relative to the obstacle remaining
unaltered in magnitude but reversed in direction.

242. If a unit of volume of a gas contain n particles,
each of mass m, then the mass of the unit of volume will

be nm. Now it may be shewn that if a quantity of gas
of mass M be contained within a closed vessel, the resultant

pressure upon the vessel is Mg, that is the weight of the

gas. Hence this can be determined by weighing, and then

M will become known. Hence if the volume of the vessel

be known the mass of unit volume can be foimd. Thus
nm can be found for any particular gas under given circum-

stances
(i.

e. given pressure and temiDerature).

All we know about n is that it lies between certain limits,

which are however so very far apart as to be of little value.

It may be assumed that if the unit of volume be a cubic

foot, n is many trillions at least. Since we are unable to

determine ii, we are equally unable to determine m. Hence
all questions relating to the pressure of gases upon surfaces,

and the like, must be treated in the same manner as the

example in Art. 197.

A cubic millimetre of gas at the ordinary temperature and

pressure probably contains about 5 x 10^^ molecules.

In fact, as we are unable to isolate particular particles (or

molecules as they are called) of a gas and trace out their

personal history, the collisions with other particles which they
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experience, and the like, we have to adopt a statistical method,
and fixing our attention upon some particular condition, we
determine what proportion of the whole number of particles
under our consideration fulfil that condition. Thus we may
consider what proportion of the whole number of particles
in a unit of volume impinges upon a given surface during
a second, or what proportion impinges upon a given surface

the angles of incidence upon it lying between given limits.

The quantity of matter in the unit of volume of a sub-

stance is the measure of its density. Hence we may call nm
the density of the gas, and we shall use this term for nm in

the following articles, and denote it by p,

243. Before considering the pressure exerted by a gas
on any area, the particles of the gas moving in directions

uniformly distributed throughout space, we shall consider

the pressure exerted on the unit of area by an imaginary gas
of density p,

all the particles of which are running in a di-

rection perpendicular to the surface and with the same velocity.

Each cubic foot of the gas contains a mass represented by
p or nm, a foot being the unit of length. Now of the n

particles in the unit of volume one half are moving towards

the plane and one half away from the plane. Let v be the

velocity of each particle in feet per second. Then since each
n

cubic foot of gas contains ^ particles moving towards the

plane with velocity v, the number of particles which strike

nv
a square foot of the plane in a second will be -^ and their

HlfYb

mass
-7^

V. Now after impact they each move from the

plane with velocity v. Hence the change of momentum of

each particle produced by the action of the plane is 2/ny,

and therefore the whole change of momentum produced in

one second by the j)ressure of the plane on the gas is

-^ . 2mv, that is nmi^, and this is therefore the measure of

that pressure. Hence the pressure exerted by the gas on

each square foot of the plane is mnv^, or since nm is equal
to p, the measure of the pressure is pv^.
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244. Next imagine an unlimited volume of gas, of

density p, to consist of particles all of which are moving
in directions making the same angle with the normal to a

fixed plane, and with the same velocity. We propose to find

the pressure exerted by such an imaginary gas upon each
unit of area of the plane.

As in the previous case, of the nm particles contained in

each cubic foot one half will be moving towards the plane,
and one half away from the plane. At points very close to

the plane the particles moving towards it are those just
about to impinge upon it, while those moving from it are

those which have just impinged. These latter, meeting with
others of equal mass coming towards the plane, and each

acting like a perfectly elastic ball, will exchange the com-

ponents of their velocities perpendicular to the plane, and so

on throughout the gas, so that while in every portion of gas
one half of the particles are moving from the plane, it does

not follow that these have just, or ever, impinged upon the

plane. In fact each particle without moving to any sensible

distance from its original position may have the direction of

its motion changed any niunber of times.

In each cubic foot the number of particles fnoving towards

the plane is ^ and their aggregate mass -^ ,
also the resolved

part of the velocity of each perpendicular to the plane is

V cos a, hence the number of particles which strike each

square foot of the plane in one second is ~ v cos a, and their

aggregate mass -^ v cos a. Now the change produced in

the velocity of each by impact is denoted by 2y cos a. Hence
the whole change of momentum produced in one second by
the pressure of a square foot of the plane is nmv^ ^o^cl or

pv^cos\ which therefore is the measure of the pressure of

the gas on the plane.

245. If an unlimited number of lines be drawn from

the centre of a sphere in directions uniformly distributed

throughout space, the number of such lines passing through

any given area of the spherical surface will be proportional

G. D. 17
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to that area, and will therefore bear to the whole number of

lines the same ratio as the given area bears to the whole

area of the sphere. This must be considered the funda-

mental notion of uniform distribution of directions in space.

We have seen that if the directions of motion of all the

particles of a gas were to make the same angle a with the

normal to a plane, and the velocities of all the particles

were the same, the pressure on each unit of area of the plane
would be represented by pv^cos^a. Now in all actual gases
the directions of motion of the several particles are uniformly
distributed in space, and in order to determine the pressure
of such a gas on a plane area exposed to it, we have to

determine the average value of the expression pv'^cos^a. under

this hypothesis. This we proceed to do, and in the first

place we shall suppose the velocities of all the particles to

be the same.

246. Let be the centre of a sphere whose radius we
will suppose for simplicity numerically equal to v. Let AB
be the diameter of the sphere which is perpendicular to the
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through P and Q. They will each cut the sphere in a small

circle, and comprise between them a zone which we shall

call the zone FQ, Let CD be the diameter in the plane of

the paper perpendicular to AB. Draw PN^ QM perpendicular
to 6'i) and P/v perpendicular to Q J/. Then PQ being very
small indeed, we may treat it as a straight line coincident

with the tano-ent at P to the circle APD, Also the anc^le

QPK is equal to a, and therefore PK = PQ cos a.*

Now in a cubic foot of the gas, the number of particles

moving towards the plane, and the directions of whose motion
make with A angles comprised between a and a— 6, is to

the whole number n of particles in the cubic foot as the

area of the zone PQ is to the whole area of the sphere. If

we denote this number by N, we have

area of zone PQN = n
4 Try'''

The velocity of each of these particles perpendicular to

the plane that is in the direction OA lies between v cos a

and'ycosa— ^; hence the number of particles which strike

each square foot of the plane with angles of incidence lying

between a and a— 6 will He between Nv cos a and Nv cos ct— 6,

and when 6 is indefinitely small, we may say that this number
is equal to Nv cos a, that is, to

Tarea of zone PI
n .V .

—
7. cos a.

47ru

Now PQ cos a = QK. Hence the area of the zone PQ is

to the area of the ring generated by the revolution of PK
about AO as 1 is to cos a. The ring generated by PAT is

in fact the projection of the zone PQ upon the plane through
P perpendicular to A 0. We shall call this ring the ring PK.

m, -VT areaof rincrPiiT
i ben Nv cos OL = nv. -.

—^ .

47n;

Now the velocity of each of these particles perpendicular

to the plane lies between v cos a. and v cos a— 6, and when
is indefinitely small, we may suppose it to be v cos a for each.

*
See Appendix, page 232.

17—2



260 PRESSURE OF A SIMPLE GAS.

After impact this velocity is reversed. Hence the change
of momentum of each particle produced by the impact is

m?; cos Of. Therefore the whole change of momentum pro-
duced in one second by the pressure exerted by one square foot

of the plane upon particles whose directions of motion make

with OA angles lying between a and a — ^ is represented by

area of rinsj PK ^
nv . -.

—
;F . 2mv cos a

area of -ringj PK= 2nm . V . -.

—
^~ . V cos a.

Let this be denoted by Fa. Now v cos a = PN. Hence

(area of ring PK) x v cos a is equal to the volume of the

cylindrical shell generated by the revolution of the rectangle
PM about AO. We shall call this the shell PM, and we have

ry ^ volume of shell PM
J^a — 2n.m,v ,

—
o
—

.

4<7rv

This is therefore the measure of the pressure exerted upon
each square foot of the plane by particles which impinge

upon it at angles of incidence between a and a— 6.

Hence the whole pressure upon a square foot of the plane
is the sum of all such quantities for values of a lying between

zero and — . But when their breadth is indefinitely small,

the sum of the volumes of all the cylindrical shells similar to

the shell PM is equal to the volume of the hemisphere, since

these shells make up the hemisphere. Hence the whole pres-
sure n of the gas on each square foot of the plane is given by I

T-r ^ volume of hemisphere
'

H = 2nmv .

= 2nmvri—?
47rv

= - nmv
o

"3 *

2
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247. Now m being the mass of one of the particles, and

V its velocity, ^ mv'^ is its kinetic energy, and therefore1.1.-
nmv'\ or -

pv^, is the aggregate kinetic energy of all the

particles in a cubic foot of the gas. Hence we see that if

the velocities of all the particles were the same, the pressure
of the gas upon a unit of area of a plane exposed to its

action would be numerically equal to two-thirds the kinetic

energy of a unit of volume of the gas.

Now the particles of any actual gas are not only moving
in different directions, but they are also moving with different

velocities. Suppose a cubic foot of the gas to contain n^

particles each moving with a velocity equal to
v^, n^ each

moving with a velocity v^,
and so on, where n^ + ^g + ^^- ~ '^^'

Thus the mass of each particle being 7?i, and the kinetic

energy of a cubic foot of the gas being denoted by E, we have

Ti" 12 14. ^?iVi^ + ^^oV/ + &c. .

It we make v equal to -^—^ ^^
,
v/e may write

The quantity v^ is the mean of the squares of the velo-

cities of the i^articles: v is sometimes called "the velocity
of mean square."

The pressure produced by the gas upon any area will be

the sum of the pressures produced by the systems of parti-
cles moving with the velocities Vj, Vg,

&c. respectively. Now
the pressure exerted on a square foot by the particles moving

with velocity v^
we have seen to be -

n^nv^, where
??^

is the
o

number of such particles in each cubic foot of gas, and similar

expressions hold for the pressures exerted on a square foot

by each of the other systems of particles. Hence the whole

pressure, P, exerted on a square foot by the gas is given by
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P = -
{n^mv^ + n,/nv^^ -\- ... &c.)

1 .= -nmv
o

and this is true however many quantities similar to v^ we

may consider. Hence the pressure exerted by any gas on ^
each unit of area of a jDlane is numerically equal to two-

thirds the kinetic energy of a unit of volume of the gas.

It will be observed that the energy possessed, as well as

the pressure exerted, by any gas is the same as if each

particle were moving with the ''velocity of mean square."

248. In the preceding article we have found the pres-

sure exerted by a gas upon each unit of area of a plane.

If a curved surface be exposed to the action of a gas, the

pressure upon any very small portion of the surface will be 4
the same as if it were plane, and hence if S denote the area

of the whole surface, the whole pressure upon it will be

The whole pressure which a gas exerts upon any unit of

area of a surface exposed to its action is called the pressure
of the gas. The pressure of a gas may, imder certain circum-

stances, vary from point to point. In such case the pressure
at any point is measured by the pressure which Avould be

exerted on the unit of area if the pressure of the gas were

uniform over that area, and the same as at the j)roposed

point.

249. If the densities of two gases be different, but their

pressures the same, we have pv^ the same for each. Hence,
the pressures being the same for each, v^ is inversely propor-
tional to the density of the gas. Also the kinetic energy

possessed by a given volume of all gases at the same pres-

sure is the same, for the pressure is numerically equal to
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two-thirds of the kinetic energy possessed by a unit of

volume of the gas.

If V remain constant for any particular gas, then P, its

pressure, varies directly as p. Now if V be the volume of

a given mass M of gas, M =
pV. Hence p oc -—

,
and there-

fore P cc
^, or PF is constant.

Again, the equation

may be put in the form

p=\p.
2

3F '

or PV=\Mv\

Therefore the product of the pressure and the volume of

a given mass of gas varies directly as its kinetic energy.
But (see Besant's Hydrostatics, p. 73) the product of the

pressure and the volume of a given mass of gas increases

uniformly with the temperature. Hence the kinetic energy
of a given mass of gas increases uniformly with its tempera-
ture. But the kinetic energy of a mass M varies as Mv^.

Therefore v^ increases uniformly with the temperature. Hence
the value of v for any particular kind of gas depends only
on its temperature. Let T denote this temperature; then
if the zero of temperature be so chosen that T and v vanish

together, T will always be proportional to v^, and if V be the

volume occupied by a constant mass M of the gas, we have
PVccT. The temperature is then called the absolute tem-

perature of the gas. But if E denote the kinetic energy
of a mass M of the gas, PVozE. Therefore E^T, or the

kinetic energy of a given mass of gas varies as its absolute

temperature.

Again, since for a given mass of gas PVozT, if P be

kept constant, V ozT, the principle of the air-thermometer.
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250. Before proceeding further with this subject we will

find the value of v for some of the jDrincipal simple gases at

a given temperature. We commence with Hydrogen. The
mass of a cubic foot of hydrogen, which, at the tempera-
ture of melting ice, exerts a pressure equal to the weight of

2116*4 pounds upon each square foot of surface exposed to

its action, in a place where ^ = 82*2, is known from experi-
ment to be '005592 pounds. The pressure upon a square
foot of the surface is 2116*4 x 32*2 absolute units of force.

Hence P = 2116*4 x 32*2. Also the mass of a cubic foot of

the gas being '005592 pounds, we have p = "005592. Hence,
since v"^ is determined from the equation

," „ ^ 2116*4x32-2
we have v = S. —r^r^K^crn

—
'005592

= 36593916;

therefore ?; = 6097;

or the velocity of mean square for particles of hydrogen at

this temperature is a velocity of 6097 feet per second.

The velocity of some of the particles may be considerably

greater than this, and that of others less, but the velocity of

the majority of the particles will be not very widely different

from this quantity.

The pressure of any gas we have seen to be proportional
to the kinetic energy of the unit of volume of the gas.

Hence, if the pressures of two different gases be the same,
the value v'^ for each will vary inversely as its density.
Now the density of oxygen is found by experiment to be

always 16 times that of hydrogen at the same temperature
and pressure. Hence the value of v for oxygen is one-fourth

that for hydrogen ;
that is, the velocity of mean square for

oxygen at the temperature of melting ice is 1524*25 feet per
second.

The density of nitrogen is 14 times that of hydrogen at

the same temperature and pressure. Hence, at the tempera-
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ture of melting ice, the velocity of mean square for nitrogen is

-i=- feet per second.

251. We have seen that if P represents the pressure and
y the volume of a given mass il/ of gas, then PV increases

vmiformly with the temperature. Now it is found from ex-

periment that the increase of PF for an increase of tempera-
1

ture of one degree centigrade is —- of its value at the

temperature of melting ice, and is the same for all gases.
Hence the zero of absolute temperature is the same fur all

gases, and is 273° centigrade below the temperature of melt-

ing ice.

From this it follows that if T^ represents the temperature
of a gas in degrees centigrade reckoned from the zero of the

centigrade scale, that is, the temperature of melting ice, the

absolute temperature T of the gas will be equal to 273*^ + 1\.

We have seen that the value of v^ for any particular gas
is proportional to the absolute temperature. Hence if the

value of V for any gas at the temperature of melting ice be

known, its value at any temperature T^ can be found by

multiplying this value of v by \/273 + T^.

252. Suppose a mass M of gas to be contained in a cylinder
of transverse section A, closed by a piston which is made to

move with a small uniform velocity u away from the gas.

Suj)pose the piston to be at the distance x from the bottom
of the cylinder.

When the piston is at a distance x from the bottom of

the cylinder, the volume occupied by the gas is Ax, and its

M
density p is therefore equal to

-j-
.

Suppose a cubic foot of the gas to contain n^ particles

moving with velocity v^,
in directions making an angle a^

with the axis of the cylinder. Then of these particles ^n^

are moving towards the piston. The velocity of each of these
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relative to the piston is
v^^

cos a^
— u. Hence the number of

these particles which strike each square foot of the area of the

piston in a second is -
n^ {v^

cos
a^
—

u). Now by the impact

the velocity of each relative to the piston is reversed. The

change of the velocity of each is therefore 2
{v^

cos a^
—

m) ;

and if in be the mass of each the pressure exerted on each

unit of area of the piston by particles moving with velocity

i;, in directions making an anojle a, with the axis of the
1 O O 1

cylinder will be n^n {v^
cos d — uf. Now during any small

time T the piston will move over a space ut in the direction

of this pressure, and u and r being both small we may sup-

pose the pressure to remain uniform during this displace-
ment. Hence the work done during the time r upon the

piston by the pressure exerted by the particular set of parti-
cles under our consideration is A . n[m \i\

cos a — uY . ut.

Again, the component of the velocity of each particle

perpendicular to the axis of the cylinder is unaltered by
impact on the piston while the component parallel to this

axis is chano^ed from v, cos a, to v, cos a,
— 2i^. Hence the

kinetic energy lost by each particle on account of the

collision is

-^[{v^
cos ay —

[v^
cos a^

—
2w)^]

= 2mu
(v^

cos a^
—

u).

Also, the rate at which these particles strike the piston is

-^ {v^cos cc^

—
u) per second on each unit of area; and there-

fore the number which strike the piston in the small time r ^

is —^

(Vj^cosa^
—

u) At; and since the kinetic energy lost by

each particle is 2mu
(v^

cos a^
—

v.), the kinetic energy lost by
the system of particles we are considering is numerically

equal to n^m {v^co^a^
— uf Aut, that is, to the work done

upon the piston by this particular set of particles.

Similarly, if we consider the set of particles moving with

any other velocity, and whose directions of motion make any
other angle with the axis of the cylinder, we obtain the same
result

; and, this being true for each set of particles, is true
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for the whole gas. Hence the loss of kinetic energy of the

gas within the cylinder during any small time t is equal to

the work done upon the piston by its pressure.

Also, this being true for each small interval of time t, it

follows that the whole work done upon the piston during any
finite time is numerically equal to the whole loss of kinetic

energy sustained by the gas.

If the gas were contained within any other form of en-

velope, and this were allowed to expand in any way, it might
be shewn that the whole work done upon the envelope by
the pressure of the gas is numerically equal to the kinetic

energy lost by the gas.

253. Since the temperature of a given mass of gas is

proportional to its kinetic energy, it follows that if a gas be

allowed to expand and do work upon the vessel which con-

tains it, the temperature of the gas will be diminished, and
the fall of temperature will be proportional to the work
done by the gas.

If in the case considered in the j^receding article u be

very sin^all compared with v, the pressure upon the piston

during any very small interval of time r may be considered

uniform, and the same as if the piston were at rest. The

pressure upon the piston will therefore be -
pv^A, and the

o

work done upon it in time r will be ;r pv^Aur ;
this will

o

therefore be the measure of the kinetic energy lost by the

gas. But the whole kinetic energy of the gas is ^ Mv^ or

-
pv^Ax ; and, since the absolute temperature of a gas is pro-

portional to the kinetic energy of a given mass, it follows

that if T were the absolute temperature when its volume
was V, and T' the loss of temperature in exj^anding to the

volume V + V where V is very small compared with Y,

r :T :\UT :x'.: V : V, or T'=y T, where V and T'

are each indefinitely small.
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In exactly the same way it may be shewn that if a given
mass of gas be compressed its temperature will be raised

;

and if the change of volume be very small, the increase of

temperature will be approximately proportional to the de-

crease of volume.

Also, whatever be the change of volume of the gas, it

may be shewn, as in the case of expansion, that the increase

of temperature of a given mass of the gas is proportional to

the work done upon it by the agent compressing it, and that

the increase of its kinetic energy is numerically equal to this

amount of work.

254. If we make the piston in the case investigated in

Art. 252 move through a given space with a velocity greater
than that of any of the particles of the gas, and then sud-

denly come to rest, it is obvious that none of the particles of

gas will impinge upon it during its motion, since they will be
unable to overtake it, and when they do impinge upon it the

piston will be at rest; and in this case the numerical mea-
sure of the velocity of each particle will be unaltered by
impact, and therefore the kinetic energy of the gas. will be

unchanged. Hence also its temperature will be unchanged.

Of course we cannot experimentally make a piston move
with a velocity greater than that of any of the particles of

a gas, but if two chambers be separated by a diaphragm, one
of them containing gas and the other a vacuum, and if the

diaphragm be suddenly removed, the effect will be the same
as if it were moved with infinite velocity to the extremity of

the vacuum chamber. For the diaphragm substitute a tap
or valve closing a pipe which connects the two otherwise
closed chambers, and we have an experimental realisation of

the hypothesis ;
and we infer that if by such a contrivance a

gas be allowed to expand into vacuum, its temperature will

be unaltered by the expansion. This result was obtained

experimentally by Dr Joule.

255. We have seen (Art. 250) that the velocity of mean

square of a gas is inversely proportional to the square root

of its density. Suppose two gases at the same temperature
and pressure to be separated by a porous diaphragm. Then at
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first the number of molecules of each gas which will pass

through the diaphragm into the other will be proportional to

the velocity of mean square of the particles, and we have an

explanation of Graham's law of diffusion, viz. that gases diffuse

into one another at rates inversely proportional to the square
roots of their densities.

Again, some of the gas in the first compartment having

passed into the second and existing there as gas w^ill return

through the partition into the first. The amount of the first

gas passing through from the first compartment to the second

in the unit of time will depend on the density of the gas in

the first compartment. The amount of the first gas passing
from the second compartment into the first will depend on

the density of this gas in the second compartment. When
the density of the first gas in the second compartment is the

same as in the first the amount passing per second from the

first to the second will be equal to that passing in the other

direction, and then it will appear as if there were no diffusion

going on at all. The same will be true for the second gas,
so that ultimately the two gases will be uniformly mixed in

both compartments. Except that the collisions impede the

process of diffusion
"
different gases act to one another as

vacua." It is from the rate of diffusion of gases that w'e

estimate the number of collisions or
" encounters

" which the

molecules suffer per second, and hence deduce the number of

molecules present in a unit of volume.

256. It may be shewn that if two different sets of

molecules are in communication the average kinetic energy of

each will be finallv the same. Hence the mass of a molecule

of a gas must be inversely proportional to the mean square of

the velocity at a given temperature, and we have seen that

this is inversely proportional to the density of the gas. Hence
the mass of each molecule is proportional to the density of the

gas, and the number of molecules per unit volume is the same
for all gases at the same temperature and pressure. This is

quite in accordance with the fact that the chemical combining
weight of a gas is proportional to its density and with Dalton's

Atomic Theory.

257. The mode in which we have treated this subject in

the preceding articles is not that which we should have
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adopted liad our object been to develope its relations to the

dynamical theory of heat. We have indeed only introduced
the notion of temperature because it enables us to define in

a few words the condition of the gas we are considering.
The definition given of temperature in treatises on heat is of

course different from that which we have given, though the
connection between the two is intimate. The subject of

gases has been introduced here simply because it affords an

example of some of the methods adopted in treating pro-
blems on elementary dynamics, the mode of investigation

being merely an extension of that followed in the chain

problems of Chapter IV. The student who desires a further

acquaintance with the subject is referred to the articles upon
it in the last chapter of Professor Clerk Maxwell's Theory of
Heat,

MISCELLANEOUS EXAMPLES.

1. The mass of each of two hammers is 30 tons, and it

is moved through 3 ft. 6 in. by a constant force equal to half

the weight of the hammer, the two moving in opposite direc-

tions towards one another. An inelastic mass of iron placed
between the two is thus compressed so that its thickness is

diminished by one inch. Supposing the pressure exerted upon
the iron by each hammer to be constant throughout the com-

pression, find its measure in pounds' weight, and the time

during which the pressure acts.

Shew that the diminution of thickness of the iron pro-
duced by the blow of the two hammers is twice that which
either hammer would produce if the mass of iron were placed

against a fixed anvil.

2. Two particles A and B, of masses 8m and m respec-

tively, lie together at a point on a smooth horizontal plane,
connected by a string of insensible mass which lies loose on
the plane : B is projected at an elevation of 30" with a velo-

city equal to ^ ;
if the string become tight the instant before

B reaches the plane again, and break when it has produced
^
half the impulse it would have produced if it had not broken,
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and if the particle rebound at an elevation of 30^ shew that
*^

the coefficient of elasticity between it and the plane is -
,

3. A number of heavy particles are projected from the

same point, (1) with the same vertical velocity, (2) with the

same horizontal velocity. Shew that in each case the locus of

the foci of their paths is a parabola with its focus at the point
of projection and axis vertical, but in (1) the vertex is up-
wards, and in (2) downwards.

4. Prove that the angular velocity of a projectile about
the focus of its path varies inversely as its distance from the

focus.

5. Three equal particles are projected from the angular

points of a triangle along the sides taken in order with veloci-

ties proportional to the sides along which they move. Prove
that their centre of gravity remains at rest.

Hence shew that if P, Q, R be points in the sides

BC, CA, and AB respectively of the triangle ABC, such

that t^tts
= -TTT = ^FTr. ,

then the centre of o-ravity of the tri-
GP AQ BR ^ ^

angle PQR coincides with that of AB C.

6. A parabola is placed with its axis vertical and vertex

upwards. Prove that the square of the time of quickest
descent from a given point in the axis along a chord to the

curve varies as the sum of the latus rectum and the hori-

zontal chord through that point.

7. A solid smooth cylinder of radius r lies on a smooth
horizontal plane, to which it is fastened, and an inelastic

sphere of radius 2?' moves along the plane in a direction at

right angles to the axis of the cylinder. Find the condition

that it may pass over the cylinder.

If the sphere be elastic and the modulus of elasticity

be greater than -
, prove that it cannot in any case pass over

the cylinder, and if e be less than -, find the condition that
8
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tlie sphere may, after its first ascent, fall on the top of the

cylinder.

8. A particle is oscillating on the arc of a smooth cycloid
whose axis is vertical. Shew that the sum of its kinetic

energies at any two points where the directions of motion are

at right angles to each other is constant.

9. There are three accelerations in Arithmetical pro-

gression, which when referred to three different units of

time are represented by numbers in increasing Geometrical

progression, and when referred to the same units in inverse

order form a decreasing Geometrical progression, of which
the common ratio is four times that of the former. If the

space described from rest by a particle moving with the third

acceleration in the third unit of time be two feet, determine
the accelerations and the three units of time.

10. In. the case of a single moveable pulley, with the

several portions of the string vertical, if the free end of the

string pass over a fixed pulley, and if a weight be attached

to the free end equal to three-fourths of the weight at-

tached to the moveable pulley, prove that the acceleration

of the latter is '-
,
and find the tension of the strino:.

8 ®

If at the end of one second after the commencement of

the motion the ascending weight be suddenly increased by
one-half of itself, prove that its velocity will be instan-

taneously changed into ^ ,
and find the impulse of the tension

of the string round the moveable pulley.

11. In a system of pulleys in which all the strings are

parallel, a weight of C41bs. is supported by a weight of

4 lbs. Suppose half a pound added to the 4 lb. weight, and
the system allowed to move, find the acceleration of the
64 lb. Aveight, neglecting the masses of the pulleys, strings,
&c.

What will be the measure of the momentum of the
whole system at the end of 10 seconds, if a minute be the
unit of time, 40 inches the unit of length, and 2^ lbs. the
unit of mass ?
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'12. In a single moveable pulley, when there is equi-
librium, the weights hang by vertical strings :

—one weight
beinu; doubled and the other halved, motion ensues. Prove
that if the friction and inertia of the pulley be neglected the

tension of the string will remain unaltered.

18. If a ball ^ move in the same direction as B, with

five times its velocity, find the ratio of the masses of the balls

that A may be reduced to rest by the impact, the modulus of

elasticity being
-

.

14. To one end of a string which passes over a fixed

pulley is fastened a weight nW : to points A^, A^,...A^^ in

the string, distant a ajDart, are fastened n weights each

equal to W: the latter are placed close together on a hori-

zontal plane, and motion is allowed to take place : find the

velocity of the system when the last of the weights W is

raised from the plane, and the time required to start the

whole.

15. A smooth parabolic tube whose latus rectum is 4a
revolves about its axis, which is vertical, with uniform angu-
lar velocity co. Shew that a heavy particle will rest in the

tube in any position if w = . / ^^
_

16. Two particles are projected from the same point at

the same time with different velocities and in different di-

rections
;
find the curve described by their centre of gravity.

17. Two given weights, whose masses are M and m
respectively, are connected by an inextensible string which

passes over a smooth fixed pulley. The system being initi-

ally at rest, determine the weisjht which let fall at the

beginning of the motion from a point vertically above the

ascending weight so as to impinge upon it will instanta-

neously reduce the system to rest.

18. A ball is projected from the middle point of one

side of a billiard table so as to strike in succession on^ of the

sides adjacent to it, the side opposite to it, and a ball placed
in the centre of the table. Shew that if a and h be the

G. D. 18
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lengths of the sides of the table, and e the coefficient of elasti-

city of the ball and cushion, the inclination of the direction of

projection to the side a of the table from which it is projected
must be

tan'
la

'

1 -\-e

19. A string charged with ?i + m+ 1 equal weights fixed

at equal intervals along it, and which would just rest on a
smooth inclined plane with m of the weights hanging over

the top, is placed on the plane with the (m + 1)*^ weight just
over the top ;

shew that if a be the distance between each
two adjacent weights, the velocity which the string will have

acquired, at the instant the last weight slips off the plane, will

be Jnag.

20. Shew that if a particle start from rest at one ex-

tremity of the base of a cycloidal tube, whose axis is vertical

and vertex downwards, the velocity at any point is propor-
tional to the radius of cvirvature at that point.

21. The tangents of the angles of a triangle ABC are in

geometrical progression, tan B being the mean proportional :

a ball is projected in a direction parallel to the side BG so as

to strike in succession the sides AB, BC. Shew that, if its

course after the first impact be parallel to AC, its course

after the second will be parallel to AB
',
and that if e be the

coefficient of elasticity,

e2 _|_ Q-h = sec B.

22. The barrel of a rifle sighted to hit the centre of the

bull's-eye, which is at the same height as the muzzle, and
distant a yards from it, would be inclined at an elevation a to

the horizon. Prove that if the rifle be wrongly sighted so

that the elevation is a + ^, 6 being small compared with a,

Q> COS 2(X
the taro'et will be hit at a heis^ht 7.

—
. 6 above the centre* ° cos a

of the bull's-eye.

If the range be C60 yards, tlie time of flight 2 seconds,
and the error of elevation 1", the height above the centre of

the bull's-eye at which the target will be hit will be nearly

-Jth of an inch.
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23. If the weifijht attached to the free end of the strinor

in the system of pulleys in which the same string passes
round each of the pulleys be m times that which is neces-

sary to maintain equilibrium, shew that the acceleration of

the ascendincr weifjht is n, where n is the number of

strings at the lower block, and the grooves of the puUej^s are

supposed perfectly smooth.

24. Two spherical balls, of elasticity e, moving in paral-
lel directions with equal momenta, impinge ; prove that if

their directions of motion be opposite the}^ will move after

impact in parallel directions with equal momenta
;
and that

these directions will be perpendicular to the original direc-

tions if their common normal at the point of impact is in-

clined at an angle sec"^ (1 + e) to that direction.

25. A hollow spherical shell has a small hole at its

lowest point, and any number of particles start down chords

from the interior surface at the same instant, pass through
the hole and then move freely. Shew that before and after

passing through the hole they lie on the surface of a sphere ;

and determine its radius and position at any instant.

26. A string, passing over a pulley at the top of an in-

clined plane, connects two equal particles, one of which is

placed on the plane and the other hangs freely ;
below the

descending particle is a perfectly elastic horizontal plane ;

prove that if the string become stretched when this particle
has reached its greatest height after the n^^ rebound^ the

4?i — 1
inclination of the plane is sin"^ -^

—-^.^

{ill— If

27. A sphere is fixed upon a horizontal plane ;
find

from what point in the plane a particle must be projected,
with a velocity due to falling down a vertical space equal to

the diameter of the sphere, so that the focus of its path may
be in the centre : shew that after reflexion at the sj^here, it

will strike the horizontal plane at a distance from the point
of projection equal to the diameter of the sphere, if the

elasticity be perfect.

18—2
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28. Two projectiles start from the same point at the

same instant with equal velocities in the same vertical plane ;

prove that they will both be moving in a common tangent to

their paths at the same instant after an interval of time

which is the mean between the times in the two paths frona

the point of projection to the point where the paths meet

again.

29. If n equal masses are placed in contact in a line oil

a smooth table, each being connected with the next by an
inelastic string of length a, and another equal mass is at-

tached to the foremost of the n masses by a string which

passes over a pulley at the edge of the table, supposing
none of the n masses to leave the table before the last is set

in motion, shew that of the kinetic energy generated before

the last is set in motion the fraction ^r- z-, is lost.
2

(?i + 1)

80. If for one of the weights in Atwood's machine a

pulley is substituted, round which passes a string connecting
two masses P, Q, which hang freely, shew that if the ratio

of P to Q lie between 3 and ^ ,
certain values of the other

o

weight may be found which will keep either P or Q station-

ary, and that these values are to one another respectively as

SP- Q to SQ-P
31. ABCD is a quadrilateral inscribed in a circle : if an

imperfectly elastic particle reflected at the circumference can
describe the sides in order, the quadrilateral must have two
of its angles right angles.

32. Particles slide from rest from a given point down
straight lines to a given vertical straight line

; prove that the
locus of the vertices of the parabolas subsequently described
is an ellipse.

33. If T be the time of descent to the vertex of a

cycloid whose axis is vertical, and two particles start from
one extremity of the base at an interval r, their vertical

distance when either of them is at the vertex is equal to
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the vertical distance when the second started, and their

T-T
vertical distance is neatest after a time —^

—
.

34. An elastic ball lying at a point ^ on a smooth
horizontal plane is driven perpendicularly against a vertical

wall by the direct impact of a similar and equal ball
;

after

rebounding from the wall at a point G, it is brought to rest

by a second impact at B : shew that BC = eA C, where e is

the coefficient of elasticity between the balls.

Prove that if the stationary ball had not been in the way,
the other ball would have rebounded to A in the time that

was occupied in bringing the former to rest.

35. Find the latus rectum of a parabola so that when

placed in a vertical plane with its axis horizontal, the least

time of a particle falling from rest down a normal to the

curve may be one second.

36. An inelastic particle falls from rest to a fixed in-

clined plane, and slides down the plane to a fixed point in it :

shew that the locus of the starting point is a straight line

when the time to the fixed point is constant.

37. A series of smooth vertical circles touch at their

highest point and particles slide down the arcs, starting from

rest at the highest point: prove that the foci of the free paths
of the particles lie on a straight line whose inclination to the

vertical is tan"^ ~o ~
•

o

38. According to the theory of gravitation, the attraction

of a sphere of radius r and density p, on a particle of mass

4m at its surface, is ^ irprm. Shew that if the mean density of
•3

the earth be 5*5 times that of water, the density of water

in terms of the standard with reference to which p is mea-

sured is -000000067.

If 1 foot be the unit of lensfth, find the unit of mass.

39. A string having weights to
,
w" attached to its

extremities, passes over two smooth fixed pulleys very close

together. If a third pulley carrying a weight w be sus-
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pended by the string between the two fixed pulleys, so that

all the portions of the string are vertical, and the system
be left to itself, the weight lo will descend with acceleration

w {w -f w") — ^w'w'
^' w (w' + w") + 4!ivw'

40. Free particles, projected simultaneously from points
on the circumference of a vertical circle towards the highest

point of the circle with the velocities which would be ac-

quired by sliding down to those points from the highest point,
all reach the circumference again in the same time

;
and

in double that time they are all in another circle of three

times the radius of the former.

41. Prove that in order to produce the greatest de-

viation in the direction of a smooth billiard-ball of diameter

a, by impact on another equal ball at rest, the former must

be projected in a direction making an angle sin~^
c V 3 _ e

with the line (of length c) joining the two centres
;

e being
the coefficient of elasticity.

42. If a heavy particle be projected with given velocity
in vacuo, and a point be supposed to begin moving with an
acceleration equal and opposite to that of gravity from the

point of projection at the instant of projection, prove that

at any subsequent time the particle will be moving directly

away from the point, and with a velocity which in the time

elapsed would have carried it over the distance between
them.

43. Prove that, if the velocity of a particle be resolved

into several components in one plane, its angular velocity
about any fixed point in the plane is the sum of the angular
velocities due to the several components.

44. If a particle move from rest with an acceleration

in the direction of motion which is at first zero and increases

uniformly with the time, the space described from rest in t

units of time is -^ff',f being the measure of the accelera-

tion at the end of the first unit of time.
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45. A string is loaded with n equal particles A^,A^,...A^
and stretched on a smooth horizontal table in a direction

perpendicular to the edge ;
the first particle A^ being drawn

just over the edge, the system is left to the action of gravity.
If the distances

c^, c^,...
between the particles be such that

successive particles pass over the edge at equal intervals

of time, and if tv be the velocity of the system when the r"^^

particle, A^, is passing over the edge, and c^ be the distance

between A^ and A^^^, shew that

c = r'c, and i' = r (r
—

1) ^ /^^^ .
1 *• ^ V 2/1

46. The axis of a rough helix is vertical, and a small

ring slides down the helix with uniform velocity. If the

coefficient of friction be
/jl,

find this velocity.

47. A perfectly elastic ball is projected against one side

of a smooth plane polygon, and is reflected at the other sides

in succession, the polygon being such that the angle of

incidence on each side is the same; find the impulse on
the particle at each impact, and deduce the expression for

the normal pressure, [ J
,
on a particle moving freely on a

curve under the action of no other imj)ressed forces.

48. If a heavy particle move on a smooth curve of such

form that the resultant force on the particle is equal to its

weight, the radius of curvature at any point will be twice the

intercept of the normal cut off by the horizontal line through
the point where the velocity will be zero.

49. A thin chain is jolaced on a smooth horizontal table

in the form of the curve in which it would hang under the

action of gravity if its ends were supported, and two impulsive
tensions are applied at its extremities, which are to each

other as the tensions at the same points in the hanging
chain. Prove that the wdiole will move without chanoe of

form parallel to the straight line which was vertical in the

hano'ino^ chain.



CHAPTER YII.

APPENDIX ON THE DIMENSIONS OF UNITS.

258. A LINE, whether straight or curved, being "length
without breadth," possesses only one degree of extension in

space. In the neighbourhood of any point, not being a

singular point on a curve, the line extends in only one

direction and its opposite, and is the simplest form of ex-

tension of which we can conceive. A line is therefore said

to be of one dimension in space, a point being that which
has no dimensions but position only.

The magnitude of a line is completely known when we
know its length, and is expressed in terms of the unit of

length. Thus, if we say that the length of a straight line

is /, we mean that it contains I units of length, and if [X]
denote the unit of length, the complete expression for the

length of the line is I [L]. Now if the unit of length [X] vary
while the line considered remains invariable, the expression
I [L] must remain constant, while \L\ varies, and therefore

I must vary inversely as [X]; in other words the numerical

measure of a given line varies inversely as the unit of length
in terms of which the line is measured, and therefore in-

versely as the number expressing the unit of length in terms

of some invariable unit.

250. A superficies, whether plane or curved, possesses

"only length and breadth," and is therefore extended in two
directions. A superficies is consequently said to be of two

dimensions in space, and its magnitude is completely known
when we know its area. All areas are measured in terms of

the unit of area which is the unit of two dimensions in space.
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Thus when we say that the area of a superficies is a, we
mean that the figure contains a units of area, and if [^4]

denote the unit of area, the complete expression for the

magnitude of the superficies is a \_A\ and, as in the case of

a Hne, we see that if [A] varies while the figure considered

remains unchanged, a must vary inversely as [^], or the nu-

merical measure of an area varies inversely as the unit of area.

Now, invariably in mathematical investigations, and

generally in practical measurement, the unit of area adopted
is the area of a square the length of whose side is the unit

of length: and this may be represented by [X]l It must
be borne in mind that the symbol [LY ^^^^ ^^^ represent
an Algebraical product, since [Z] is not a number, but it

represents a jAysical quantity of a totally different nature

from that expressed by [L], which is defined as the area of

a square whose side is equal to the quantity [L].

260. It may be proved geometrically tliat the number
of units of area in any rectangle, when the unit of area

is defined as above, is equal to the product of the numbers
of units of length in two adjacent sides, and therefore the

number of units of area in any square is equal to the

algebraical square of the number of units of length in its

side. The areas of different squares are therefore to each

other in the duplicate ratio of the number of units of length
in their respective sides, and therefore different units of
area are to one another in the ratio of the squares of the

numbers expi^essing the measures of the corresponding units

of length in terms of one and the same unit. The words

placed in Italics are very important; from them it follows,

since the numerical measure of an area varies inversely as

the unit of area, that the numerical measure of an area
varies inversely as the square of the number expressing the

unit of length in terms of some invariable unit. For the

sake of brevity it is frequently stated that the numerical
measure of an area varies inversely as the square of the

unit of length, but the two latter terms of the proportion
must be reduced to numerical measures before they can
be Algebraically compared. With this understanding we
shall in future c^enerallv use the abbreviated form of ex-

pression.
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261. A solid is extended in three directions in space,
since it possesses length, breadth, and thickness, and is

said to be of tlwee dimensions in space. Its magnitvide is

known when we know its volume, and is expressed in terms
of the unit of volume. Thus when we say that the volume
of a solid is c, we mean that it contains c units of volume,
and denoting the unit of volume by [C] the complete ex-

pression for this is c [C], and as in the other cases con-

sidered, the numerical measure of a given volume varies

inversely as the unit of volume.

262. The unit of volume generally adopted is the volume
of a cube, whose edge is equal to the unit of length, and this

may be represented by [Lf, this symbol representing a phy-
sical quantity of a totally different nature from those con-

sidered in the preceding articles, and not capable of being
measured in terms of them. By reasoning similar to that

of the preceding articles it may be shewn that, when the unit

of length varies, the volume of this cube varies directly as the

cube of the number expressing the unit of length in terms of

some constant unit, and we therefore infer that the numerical

measure of a volume varies inversely as the cube of the number

expressing the unit of length in terms of a constant unit, or, as

it is generally expressed, inversely as the cube of the unit of

length.

263. We have thus seen that the numerical measures of

quantities of one, two, and three dimensions in space vary in-

versely as the first, second, and third powers of the unit of

length respectively. We shall not proceed to consider higher
dimensions in space because most persons are unable to form
a distinct conception of space of more than three dimensions,
but shall now turn our attention to physical quantities of

a different nature.

264. The magnitude or duration of an interval of time is

measured in terms of the unit of time, and if we say that its

measure is t we mean that it consists of t units of time, and
the complete expression for the interval is t[T], where [T]
denotes the unit of time. The numerical measure of a given
interval will therefore vary inversely as the unit of time in

terms of which it is measured, ny analogy an interval of
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time may be said to be of one dimension in time. At pre-
sent we know of nothing of more than one dimension in time,

though we shall presently meet with quantities of negative
dimensions in time.

2G5. The quantity of matter in a body, that is, its mass,
is measured in terms of the unit of mass, and if its numerical

measure be vi, the complete exj^ression for the mass of the

body is m [M], where [31] represents the unit of mass. The
numerical measure of a quantity of matter varies inversely as

the unit of mass, while mass, like time, being a primary con-

ception, its unit is completely arbitrary. A quantity of

matter may be said to be of one dimension in mass.

266. Having thus considered the j)rimary units we pro-
ceed to the consideration of complex or derived units, that is,

of units derived from the three fundamental units of time,

length, and mass.

The unit of velocity is the velocity of a point which

passes over the unit of space in the unit of time. If v denote

the measure of the velocity of a point and [F] the unit of

velocity, the complete expression for the velocity will be

V [F], Avhere v rejDresents a number only, and [F] a physical

quantity. Now the space passed over in the time ^ by a

point moving with uniform velocity v is equal to vt units

of length, and is therefore completely represented by vt [L\
or by / [L], where Z is a number equal to vt. But the com-

plete representation of the product of the velocity ^[F] in

the time t [T] is y [F] ^ [T\ Hence we have the equation

vt[V][T] = vt[Ll

or [F] [T]
= [LI

Therefore [^J =m W-

= [i][yr (II).

or the unit of velocity is of the nature of the line of unit

length divided by the unit of time. This is expressed by
saying that the unit of velocity is of one dimension in

length, and of minus one dimension in time, as shewn by
equation (il).
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The unit of velocity therefore varies directly as the unit of

length, and inversely as the unit of time, and since the

numerical measure of a given velocity varies inversely as the

unit of velocity, the numerical measure of a velocity varies

inversely as the unit of length, and directly as the unit of

time.

267. The unit of acceleration is that of a point whose

velocity is changed by the unit of velocity in the unit of time.

If [F] denote the unit of acceleration, the complete represen-
tation of an acceleration whose measure is f is f\_F\ and f
varies inversely as [i^] if the acceleration remain constant.

Also the velocity generated in t units of time is ft units of

velocity, and the complete representation of the product when
a point moves with an acceleration f[_F^^ for a time t [T] is

the product /[i^] t\_T\ Hence we have the equation

ftm[T]=ft[V];

therefore \_F]
=

^i^ ,

'

or an acceleration may be said to be of one dimension in

velocity and of minus one dimension in time. But by the

preceding article

[7] = [Z][Tr;
therefore [F] = [L] [TY\

The unit of acceleration is therefore of one dimension in

length, and of minus two dimensions in time, and varies

directly as the unit of length, and inversely as the square of

the unit of time. Hence since the measure of any accelera-

tion varies inversely as the unit of acceleration, it follows that

the numerical measure of a given acceleration varies inversely
as the unit of length, and directly as the square of the unit

of time.

2G8. We may remark that whenever in the definition

of a quantity the word j^er is introduced, it implies that the

quantity is of minus one dimension in the element immedi-

ately succeeding the
j;)er,

and if the word per is introduced

twice in the definition, each time it is introduced it implies

ipinus one dimension. in the quantity immediately succeed-

ing. Thus velocity is space passed over per unit, of time, and
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is of minus one dimension in time, while the unit of accelera-

tion is that which generates per unit of time a velocity of

unit length jyer unit of time, and is of minus two dimensions

in time. Similarly, if the price of oranges be so much per
dozen oranges, the price is of minus one dimension in oranges,
and the product of the price into a number of oranges is an

amount of money shewing that the price is also of one di-

mension in money, and the price will vary directly as the

number of oranges per which it is quoted.

269. The unit of momentum is the momentum possessed

by the unit of mass moving with the unit of velocity. If [A^]

represent the unit of momentum, a momentum whose mea-
sure is k will be represented by k \_K\ and if this momentum
remain constant k must vary inversely as [_K\ Also the

momentum of a mass m moving with velocity v is riiv units

of momentum, that is mv [K\ But the momentum of a

particle is possessed by it in virtue of the two factors, its

mass and velocity, and is completely rej)resented by this pro-

duct, that is, by m [J/] v [F]; hence

therefore [K1^
= W\ [^]

The unit of momentum is therefore of one dimension
in mass, one in length, and minus one in time, and the

measure of a given momentum will therefore vary inversely
as the unit of mass, inversely as the unit of length, and

directly as the unit of time.

270. The unit of force is that force which orenerates the

unit of momentum in the unit of time, and tlie product of

the numerical measure of a force into the number of units of

time during which it acts is the number of units of momen-
tum generated thereby. If p be the numerical measure of a

force, and [P] represent the unit of force, the complete repre-
sentation of the force is p [P], and while the force remains
constant p varies inversely as [P]. But the effect of a force

p acting for a time t is to generate p^ units of momentum,
and the complete representation of the product of a force

p [P] during a time t [T] is p [P] t [T]. Hence

pt[P][T]=pt[K],
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Therefore [P] [T] = [K]
=m [L] [TJ

and [P]
= [M] [L] [TJ

Hence the unit of force is of one dimension in mass, one

in length, and minus two in time, and the measure of a given
force will therefore vary inversely as the unit of mass, in-

versely as the unit of length, and directly as the square of the

unit of time.

These conclusions might have been deduced from the

consideration that a force is that which produces acceleration

in mass, and is measured by the product of the mass and

of the acceleration produced therein.

271. The unit of work [TF] is that which is performed by
the unit of force when its point of application moves over the

unit of length in the direction of the force. The work done

by any force measured in terms of this unit of work is equal
to the product of the measure of the force and the number of

units of length passed over by its point of application in the

direction of the force. Hence if the point of application of a

force ]) [P] move over a space I [L] in the direction of the

force, the work done is comjDletely represented by jd?[TF].
But the product of a force jj [P] working through a distance

I [P] is completely represented by p [P] I [P]. Hence

pl[W]^pl[P]iLl

[F] = [P][i]
=m [LY [TV.

The unit of work is therefore of one dimension in mass,
two in length, and minus two in time, and the numerical

measure of a given amount of work will therefore vary in-

versely as the unit of mass, inversely as the square of the

unit of length, and directly as the square of the unit of

time.

272. The unit of kinetic energy \_E] is tiuice the energy

possessed by a particle moving with unit momentum and unit

velocity, or in other words, by a particle of unit mass moving
with the unit of velocity. The kinetic energy of any
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moving particle is measured in terms of this dpit by one- ,y
half the product of its momentum and velocity. ,Hence^ if

its momentum be k [^], and its velocity v [F], its et^ergy fs;.

1
^ • /

^ kv [E]. But one-half the product of the momentuifi and

velocity is represented completely by ^ ^

\h[K]v[V]. ,

r

Hence
\

lev [£] = |
i'w [A'] [ F],

therefore [£']
= [K] [ F] = [J/] [ 1 'J

The unit of energy is therefore of one dimension in mass,
two in space, and minus two in time. It is therefore of pre-

cisely the same nature as the unit of work, and we have seen

(Art. 124) that when work is done on a free particle, an equi-
valent amount of energy is always given to it; this could not

be the case were work and energy of different natures, that is,

of different dimensions in the three fundamental mechanical
units. The numerical measure of the kinetic energy of a

moving particle will of course vary inversely as the unit of

mass, inversely as the square of the unit of lengthy and

directly as the square of the unit of time.

273. The unit of density [D] is the density of a body
the unit of volume of which contains the unit of mass. The

density of any homogeneous body is measured in terms of

this unit by the number of units of mass j^er unit of volume,
and we therefore infer that while the unit of density is of

one dimension in mass it is of minus one dimension in

volume, that is, of minus three dimensions in space, since

volume is of three dimensions in space. The same conclusion

might have been derived from the consideration that the

mass of any homogeneous body is the product of its volume
and density, or if v' [L]^ be its volume, d [D] its density, its

mass is v'd [J/], whence, as in other cases, we get

iD][LY^[M],
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The numerical measure of the density of a given body'will
therefore vary mversely as the unit of mass, and directly as

the cube of the unit of length.

274. If the body considered be of the nature of a string,
then its linear density, that is, its mass per unit of length, is of

one dimension in mass, and of minus one in length, as shewn

by the per, and its measure will vary directly as the unit

of length, and inversely as the unit of mass.

If the body be a thin lamina, its surface density, that is,

its mass per unit of area, is of one dimension in mass and
of minus one in area, that is, of minus two in space, and the

numerical measure of its density will therefore vary inversely
as the unit of mass, and directly as the square of the unit

of length.

275. The unit of Impulse is the impulse of a force

which generates the unit of momentum. An impulse is

measured by the number of units of momentum generated.

Hence, if [/] denote the unit of impulse, and i the measure of

a given impulse, the momentum corresponding to the impulse
i [I] is ^ units of momentum, and this is denoted by i [-£"],

where [K] represents the unit of momentum, and we have
therefore

^[/] = ^[A^,

[I]
= [K]
= [M] [L] [T]-\ (Art. 269.)

The unit of impulse is therefore of one dimension in

mass, one in length, and minus one in time, and the

numerical measure of an impulse varies inversely as the unit

of mass, inversely as the unit of length, and dh^ectly as the

unit of time.

Impulse is of the same dimensions and therefore of the

same nature as momentum, just as kinetic energy is of the

same dimensions and nature as work.

276. As another example we will consider the dimen-
sions of the Astronomical unit of mass in terms of the funda-

mental units. The Astronomical unit of mass is defined as

that quantity of matter which acting upon an equal quantity
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of matter at unit distance (each mass being supposed con-

densed at a point), attracts it with the unit of force. The
law of gravitation is, that the attraction between two ma-
terial particles varies directly as the product of their masses,

and inversely as the square of the distance between them.

Hence, if m^, m^ denote the masses of two particles expressed
in terms of the Astronomical unit, and r the measure of the

distance between them, the number of units of force with

which each attracts the other is —Sr^. Hence, if \N'\ de-

note the unit of mass, we have

where [P] represents the unit of force.

But the unit of force being that force which acting en

the unit of mass produces in it the unit of acceleration,

is of one dimension in mass, one in length, and minus

two in time, and is therefore represented by [iV] [L] [T]~^

(Art. 270),

therefore
-^MJ^j^^^^^X] ^ [m

therefore
[^

=
[L] [T]-,

therefore [N] = [LJ [T]-\

The Astronomical unit of mass is therefore of three

dimensions in space and of minus two in time.

The unit of density is of one dimension in mass and

of minus three in length. Hence the Astronomical unit

of density is of minus two dimensions in time only. The
Astronomical unit of density therefore depends solely on the

unit of time and is independent of the unit of length,

277. Each of the above units might of course be ex-

pressed in terms of any of the others instead of the funda-

mental units; for example, the unit of mass might be said

to be of one dimension in force, minus one in length, and

G. D. 19
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,of two in time; the unit of acceleration, of one dimen-
sion in work or energy, minus one in length, and minus one

in mass; the unit of time, of one dimension in velocity,
and of minus one in acceleration, and so on; but it is very
seldom indeed that such expressions are of service. It is

highly important to remember the dimensions of all the

units in terms of the fundamental units of mass, length,
and time, since then we can immediately find the measure
of any quantity in terms of any given system of units.

278. For example, Suppose it required to find hoiu many
units of work of the metric system are equivalent to a foot-

j)ound, the unit of mass being the gramme, that is, 15'4.32

grains, and the unit of length the centimetre, that is, '08281

feet, the value of g in Bi^itish measure being 32*1 91 2.

The unit, of work is one dimension in mass, two in

leno^th, and minus two in time. Hence the measure of a
• • • «

quantity of work varies inversely as the unit of mass, m-

versely as the square of the unit of length, and directly as

the square of the unit of time. In the present example the

unit of time remains unaltered. The foot-pound is equal to

32'1912 British absolute units of work. Hence the measure
of a foot-pound, referred to the above metric units, is

= 13,564,400 nearly.

We shall not work any more examples of the change of

units, but recommend the student to solve all the Examples
on units given in Chapter I. and elsewhere by the methods

given in this Chapter.

279. The units recommended for general use by the

Committee of the British Association are those belonmno-
to the centimetre-gramme-second system, in which the unit

of length is the centimetre or '03281 feet, and the unit of

mass the. gramme, or 15*432 grains, the unit of time being
one second.

The c. G. s. unit of force is that force which acting on a

gramme of matter for a second generates in it a velocity of

one centimetre per second, and is called a dyne^
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' The C.G.s. unit of work is the work done by the (hjne
in working through a centimetre, and is called an erg, or ergon..
The unit of energy being mechanically equivalent to the unit

of work the Same name is applied to it.

The C.G.S. unit of power is the power of doing work at

the rate of one erg per second.

For  

multiplication or division by a million the prefixes

mega-, or megal-, and micro-, may be employed ; thus, a

megadyne is a milhon of dynes and a microdyne the millionth

of a dyne. . ,

The prefixes Icilo-, hecto-, deca-, deci-, centi-, milli-, may
also be employed in their usual senses, that is to say, thi pre-
fixes kilo-^ hecto-, deca-, deci-, centi-, milli-, imply respectively

multiplication by 1000, 100, 10,
—

^
, tttt^ , tttttttj so that a

^ -^ 10 100 1000

kilo-gramme is a thousand grammes while a centi-graninis is

the one-hundredth of a gramme.

For the expression of high decimal multiples and sub-

multiples the exponent of the power of ten which serves as

multij^lier is denoted, when positive, by an appended cardinal

number, and when negative, by a prefixed ordinal number.

Thus 10^ grammes constitute a gramme-nine, while

—
Tg

of a gramme constitutes a ninth-gramme. A megalerg

is equivalent to an erg-six, while a microdyne is a sixth-dyne.

The weight of a gramme is about 980 dynes or rather

less than a kilodyne.

The weight of a kilogramme is rather less than a

megadyne.

The dyne is about 1*02 of the weight of a milligramme
at any j^oint of the earth's surface; and the megadyne about

1*02 of the weight of a kilogramme.

The kilogramnietre, or work done against gravity in

lifting a kilogramme one metre in height, is rather less than

the ergon-eight, being about 98,000,000 ergs.

The gramme-centimetre is rather less than the kilerg,

being about 980 ergs.
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The value ofg in the above statements is taken as 980
C. G. S. units of acceleration.

The weight of a poimd is about 445,048 dynes.

A foot-pound is equivalent to about 18,564,400 ergs, or

rather more than 13^ megalergs.

One horse-power is about 7'46 erg-nines per second.

Nearly the whole of this article has been taken almost

verbatim from the report of the British Association for the

Advancement of Science for 1873.

Note on the Average Yalue of cos^a for Uniform |
Distribution in Spack

The following method of determining the average value

of cos^a is due to Mr J. A. Fleming, of St John's College.

Eeferring to the figure Art. 246 and supposing it to re- j

volve about the line AB, let g- denote the area of the zone

PQ and a the angle AOP, PQ being indefinitely small.

Then denoting the radius of the sphere by v, the area of the

annulus MN is a cos a, while PN=vco^a. Hence, the

volume of the cylindrical shell generated by PM is o-z;cos^a.

But the sum of all such shells makes up the volume of the

2
hemisphere, or ^ irv^. Hence S {gv cos^ a) for all values of a

tf

_ 2
between and

-^
is equal to ^ ttv^, and % (cr

cos^ a) is equal

2
to Q TTv^ since v is constant. But the sum of all such zones

o
as (7 makes up the surface of the hemisphere, or ^irv"^.

Hence S (cr)
=

Ittv"", and
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CHAPTER I.

Examination.

In these results it is taken to be 3-1416.

22
2. 1. 3.

75'

6. 1 6*49 . . .knots per hour.

7
1 1 . Yoh ^^ ^ pound weight.

14. -5025...

16. -306... second.

18. 396 ft.; G seconds.

5. 2 3 -17...knots per hour.

8. 1687|.

12. 3 rain. 3^ sec.

15. 151 '2 lbs. weight.

17. 107,712,000; -85 h. p.

1
19.

^
lb.

3
ft. -sec.

20. 6-514. ..ins. . 21. 3-0237. ..ins. -0112. ..sees.

22. 25 lbs. 12-8 ft. per second. 23. 144^ ft. -339. ..sees.

24. 2036^\ H. p.

1. 17-338...; 1525-7,

3. 1479-31.

5. 40 miles per hour.

7. 480 ft. per second.

8.
Yi^'

Examples.

2. ^(j; 60.

4. 20 knots per hour.

6. 7:8.

96,000 units of momentum.

9. T^rr foot-second units.
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10. Ihr. 23miii. 20 sec.

11. 25,980-7... foot-pouncls. -787... h. p.

12. 1,543,238-68... foot-tons. 15. 384 h. p.

16. 25|4 lbs.' weight per square inch. 17. 5500y|^| H. p.

19. 44 ft. per second, 22. ^tana.

24. 9-68 feet. 25. 1,228,800 lbs.

26. 192,000. 27. -605 ft. -1375 sec.

^2 2 2 ,
.

28. ^ ft. ^ sees. 29. 60 : 1. 12 : 1.

30. 11 seconds. 31. 53^ lbs.

32. 40 ft. per second. 20 ; 72,000. 33. -^ ft. ^ seconds.

37. 90,000,000. 38. 1592f. :

39. 6,055,723,745-28 tons. 13947 ft. nearly. 1190-2. ..days.

41 1 ft 1 o7 1 «apo 4-9 33^^' 100 ^^-J 800^^-' 160 *'*^^* ^^' 2TWQ'

44. 600 feet. 1200 lbs. 7J seconds.

CHAPTER 11.

Examination.

1. 88 ft. 2. 256 feet. 4 ^
sees.

3. 2560. 4. 8 ./ :^ ft. per second.

7. 1-424... seconds. 28-08 ft. per second nearly.

9. -9463... sec. 10. i /
^

sec.
2 V cos^ 15"

11. 160wi foot-second units. 12. 8.
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Examples.

2. -^seconds. 2o- 4-o feet. 4. 5192-3... feet.

5. 281i- miles. 6. 465G| feet.

7. i^. 10038^4 ft. 706-4... ft.

252 .

-^
.

8. 19^^ ft. per second. 22-32G... ft. along the plane.

9. 5:416. 10. 17-05... pounds' weight.

12. 2 sees, or 8 sees.; 3^,

13. They meet - '^''
,^ seconds after proiectino^ the second

ball, and at a height above the point of projection equal to

—
•
—Tw^ • 14. 2 seconds. 3 feet. 15. 44 seconds.

16. Equal to the weight of 19 cwt.lOf lbs. 19. 32 : ^; 21^\.

20. The resultant force on the pai'ticle must in the first case

he 4 times its weight, and in the second case 2560 times its

weight.

21. -^^ seconds, ^feet. ,22. .\ gt ',

~ W. W^~ .

b 4 4 8

23. 2 : 1.
* *

24. 3600 m.

/28/
27. 24 P. . / V- seconds, where I is the leni^th of the

plane.

.(2 „ 1 1)
28. wy units of length per second.

,'^/^^
^i" +

^
^^ + o t feet.

42. 100 yards. .
43. 14175 feet, 945 seconds, 88 tons.

44. 800 feet. 10 seconds. 46. lly\ tons.

48. 28 : 165.
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CHAPTER III.

Examination.

1. 25 feet. 3. 900 ^99 feet.

4. 625 feet. 312-5 feet.

6. The elevation of projection is tan~^ - '^
*

o

7. Nearly 66 feet from the point of projection.

8. The direction makes an angle of 45" with the lines of

slope. 9. 121 feet.

10. '218... cosX inches to the East of the foot of the mast,
where A is the latitude of the place.

Examples.

512
1. 618-01 feet per second : tan'^-V^;-^. 2. 1:2.^ ' 1125

3. Inclined 45" to the horizon. 158-6., .feet or 372*3. ..feet.

5. Inclined 45" to the horizon. Inclined at an angle tan~^ ,_

to the horizon.

6. Between 15*' and 15" 42' 43" nearly, or between 75" and
74^ 56' 36" nearly.

13. The {JV+ ly^ stair from the top where iVis the greatest

integer in . 16. 30".
c

23. 8 ^10 feet per second.

28. Velocity = Jg{2c + {a
~

b)}. Elevation = tan"
'

, and

we must have c =
, .

a~

35. Time after projection
=—

. ; velocity = u cot a
;
where

a is the elevation and u the velocity of projection.

37. Nearly 26000 square miles.
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CHAPTER IV.

Examination.

2. 40 J 2,

3. 1 -6 5 7... units of force. 9 '68 3 4... feet per second.

2
5. The direction of motion makes an ande tan

' —
^z=r

2 73 - 1

with the plane, and the velocity is 6*478... feet per second.

6. The directions of motion after impact make with the line

32
ioinin<:c the centres at the instant of impact the angles tan"' —
•^ °

.

""

\oJ-i

and tan~^—^ respectively. The velocities are l*288...v and

•5029... 2? respectively.

7. '839 8... 7?iv absolute units.

8. 7-5 feet. 54-772... feet.

10. 22-82... pounds' weight.

11. 240 (1
-

e") units of energy.

Examples.

. 1. 15J, the balls moving at first in the same direction.

2. 484 absolute units. /

o 1200 .
,

,

3.
Tq^TyT

leet per second.

4. 14f feet per second ;
11 -.\ feet.

5. 26y and 51y ft. per second; 21425- absolute units of impulse.

8. The mass of the moving ball must be e times that of the

ball at rest.

q

9. The velocity is equal to -
Joga, where a represents the

4

side of the square.

G. D. 20
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2 1
10. 7^. 11. 8 feet per second

; t second.
25

^ '
4:

mm' (u- v) 3 - _, mu ,^
 

.

14. ^—H- —7-. 15. -^^ (1 + e).m + m 2^72
2if+w^ ^

17. 2:1. -y feet, where v represents the velocity of each

before impact.

18. If ^ denote the elevation of projection and a the length

of a side of the square, v= . / ^ ttt"-
—

t; 7^ •^ ' V 2 cos ^ (sm 6 - cos d)

21. TT - 2 tan"' e . / -—^
. •V 1 + e + e^

3 — 2 /2
28. The direction makes an ande tan"' .- ,- with the

common tangent, and the velocity is -80... times the velocity of

either ball before impact.

/3
30. The first ball will fall at a distance g

~- from its point

of projection, and the second at the point of projection of the first.

37. 1-e-e' +€"'' : l-e\

38. At one extremity of the latiis-rectum.
"

42. V = /v/ ,
where a is the radius of the sphere.

45. It makes an angle
— a with the plane through the point

of projection and the intersection of the walls.

48. If m be the mass of the chain, and M that of each bucket,

,, . J/-f3m
the pressure is

j^
—

^ mg.

52. The range is equal to %QN. The locus is a straight line

through the fixed point inclined to the plane at an angle whose tan-

gent is one-ninth of the cotangent of the inclination of the plane.
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54. They will continue to descend with an acceleration

-—-——
g. 56. Inversely as their masses.

M
65. e = -r-7

—-—
,
where M is the mass of the moving sphere,

and m that of the sphere initially at rest.

4 _ ^2
QQ. e =—s— : n must lie between J 2, and 2.

n ^

CHAPTER V.

Examination.

1. v = J'^ys, if s be the focal distance of the point.

2. 4i^ nearly.

4. It leaves the surface after sliding through a vertical

distance equal to one-thii-d the radius of the cylinder.

5. The inclination of the string to the vertical is cos"' ..-o „ ,

lOoTT"

and the tension is equal to 21607r^ absolute units of force.

6. 4^10 feet per second. 8. Zero. 9. 19'77... inches.

w
10. Change of tension =—~. 11. ma'of.

3^0
2

12. =£. If lbs.' weight.

Examples.

1. 134-1.... 2. cos"^ ,,, 3
. 4. tan"'-——.

1257r^ 4072

5. 179 'IS... pounds' weight, the earth's radius being taken

to be 4000 miles.

6. 1 : 1-00111, .. 8. 16-12... feet.

9. 1206-2925 yards. 11. 404§ inches.
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14. 12y\ nearly. 15. 1*1 feet nearly. 17. Jgr.

Q COS ex

18. Distance from vertex = —2 . ^;j-^— . 20. '018.
oi^ sm" a

23.
V ^

6a
' a

'

TT / 1 + 47r
"

24. Inclination to tlie vertical = tan"^ —^ ^^ . Magnitude
32 °

198-08 lbs.' weight nearly.

^4^2 +2 cos 15"
30. Acceleration of wedge =

9

T. r.. • 1. ^ 1
40 cos IS'^- 10^2,, ,

l^ressure between weight and wedge = o
^^— lbs.

weight.

^ ,, 1,1 4572 + 20,73 cos 15°-5V6Pressure between wedge and plane =— ^
^^^—

lbs.' weight.

2
31. Acceleration of weight = 7-=^ .° 35

Space -102|- feet.

THE END.
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Thucydides. The History of the Peloponnesian War. By Eichard
Shilleto, M.A. Book I. 8vo. 6s. 6d. (Book II. in the press.)

Greek Testament. By Henry Alford, D.D. 4 vols. 8vo. (Sold
separately.) Vol. I. U. 8s. Vol.11. 11. 4s. Vol. III. 18.s. Vol. IV. Part 1. 18s.;
Part II. 14s.; or in one Vol. 32s.

LATIN AND GREEK CLASS-BOOKS.
Auxilia Latina. A Series of Progressive Latin Exercises, By

M, J. B. Baddeley, M.A. Fcap. 8vo. Part I. Accidence. Is. 6d. Pai-t 11.

Second Edition, 2s.

Latin Prose Lessons. By A. J. Church, M.A. 2nd Edit. Fcap. 8vo.
2s. 6d.

Latin Exercises and Grammar Papers, By T. Collins, M.A, 2nd
Edition. Fcap. 8vo. 2s. 6d.

Analytical Latin Exercises. By C. P, Mason, B,A. 2nd Edit. 3s. &d.

ScalaGrseca: aSeriesof Elementary Greek Exercises. ByEev. J.W.
Davis, M.A., and R. W. Baddeley, M.A. 3rd Edition. Fcap. 8vo. 2s. 6d,

Greek Verse Composition. By G. Preston, M.A. Crown 8vo.
4s. 6d.

By the Eev. p. Eeost, M.A., St. John's College, Cambkidge.

Eclogae Latinse
; or, Fhst Latin Eeading-Book, with English Notes

and a Dictionary. New Edition. Fcap. 8to. 2s. 6d.

Materials for Latin Prose Composition. New Edition. Fcap. 8vo.
2s. 6d. Key, 4s.

A Latin Verse-Book. An Introductory Work on Hexameters and
Pentameters. New Edition. Fcap. 8vo. 3s. Key, 5s.

Analecta Grseca Minora, with Introductory Sentences, English
Notes, and a Dictionary. New Edition. Fcap. 8vo. 3s. 6d.

Materials for Greek Prose Composition. New Edit, Fcap, 8vo.
3s. 6d. Key, 5s.

Florilegium Poeticum. Elegiac Extracts from Ovid and Tibullus.
New Edition. With Notes. Fcap. 8vo. 3s.

By the Eev. F, E, Gketton,
A First Cheque-book for Latin Verse-makers. Is, 6d.

A Latin Version for Masters. 2s. Qd.

Reddenda
;
or Passages with Parallel Hints for Translation into

Latin Prose and Verse. CroTSTi 8vo. 4s. 6d.

Reddenda Reddita {see next page).
By H. a, Holden, LL,D.

Fohorum Silvula, Part I, Passages for Translation into Latin
Elegiac and Heroic Verse. 8tli Edition. Post 8vo. 7s. 6d.

Part II. Select Passages for Translation into Latin LjTic
and Comic Iambic Verse. 3rd Edition. Post 8vo. 5s.

Part III, Select Passages for Translation into Greek Verse.
3rd Edition. Post 8vo.
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Folia SilvxQse, sive Eclogae Poetarum Anglicorum in Latinum et

Graecum couversas. 8vo. Vol. I. 10s. Qd. Vol. II. 12s.

Folioriim Centurise. Select Passages for Translation into Latin
and Greek Prose. 6tli Edition. Post 8vo. 8s.

TRANSLATIONS, SELECTIONS, &c.

*^^* Many of the following books are well adapted for School Prizes.

-Slschylus. Translated into English Prose by F. A. Paley, M.A.
2ud Edition. 8vo. 7s. 6d.

Translated into English Verse by Anna Swanwick. Crown
8vo. 2 vols. 12s.

Foho Edition, with 33 Illustrations after Flaxman. 21. 2s.

Anthologia Graeca. A Selection of Choice Greek Poetry, with Notes.
By F. St. Jolin Thackeray, ith and Cheaper Edition. 16mo. 4s. 6d.

Anthologia Latina. A Selection of Choice Latin Poetry, from
N^vius to Boethius, with Notes. By Rev. F. St. John Thackeray." Re\-ised
and Cheaper Edition. 16mo.

Aristophanes : The Peace. Text and Metrical Translation. By
B. B. Rogers, M.A. Fcap. 4to. 7s. 6d.

The Wasps. Text and Metrical Translation. By B. B.
Rogers, il.A. Fcap. 4to. 7s. 6d.

Corpus Poetarum Catinorum. Edited by Walker. 1vol. 8vo. 18s.

Horace. The Odes and Carmen Saeculare. In English Verse by
J. Conington, M.A. 7th edition. Fcap. 8vo. 5s. 6d.

The Sathes and Epistles. In English Verse by J. Coning-
ton, M.A. 4th edition. 6s. 6d.

Illustrated from Antique Gems by C. W. King, M.A. The
text revised with Inti-oduction iDy H. A. J. Munro, M.A. Large 8vo. 11. Is.

Mvsae Etonenses, sive Carminvm Etonaa Conditorvm Delectvs.
By Richard Okes. 2 vols. 8vo. 15s.

Propertius. Verse translations from Book V., with revised Latin
Text. By F. A. Paley, M.A. Fcap. 8vo. as.

Plato. Gorgias. Translated by E. M. Cope, M.A. 8vo. 7s.

Philebus. Translated by F. A. Paley, M.A. Small 8vo. 4s.

Theaetetus. Translatedby F. A.Paley,M.A. Small 8vo, 4s.

Analysis and Index of the Dialogues. By Dr. Day. Post
8vo. 5s.

Reddenda Reddita : Passages from English Poetry, with a Latin
Verso Translation. By F. E. Gretton. Cro\\Ti 8vo. 6s.

Sabringe Corolla in hortulis Eogia3 Schohi? Salopiensis contexiierunt
tres viri floribus legendis. Editio tertia. 8vo. 8s. 6d.

Sertum Carthusianum Floribus trium Seculorum Contextiim. By
W. H. Bro^\^l. 8vo. 14s.

Theocritus. In English Verse, by C. S. Calverley, M.A. Crown
8vo. 7s. 6d.

Translations into English and Latin. By C. S. Calverley, M.A.
Post 8vo. 7s. 6d.

By E. C. Jebb, M.A.
;
H. Jackson, :\r.A.. and W. E. Currey,

M.A. Grown Svo. 8s.

into Greek and Latin Verse. By E. C. Jebb. 4to. cloth

gilt. 10s. 6d.
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REFERENCE VOLUMES.
A Latin Grammar. By T. H. Key, M.A. 6th Thousand. PostSvo.

8s.

A Short Latui Grammar for Schools. By T. H. Key, M.A.,
F.R.S. lltli Edition. Post 8vo. 3s. 6d.

A Guide to the Choice of Classical Books. By J. B. Mayor, M.A.
Revised Edition. Crown 8vo. os.

The Theatre of the Greeks. By J. W. Donaldson, D.D. 8th
Edition. Post 8vo. 5s.

A Dictionary of Latin and Greek Quotations. By H. T. Eiley.
Post 8vo. 5s. With Index Vei'bornm, 6s.

A History of Roman Literature. By W. S. Teuffel, Professor at
the University of Tubingen. By W. Wagner, Ph.D. 2 vols. Demy 8vo. 21s.

Student's Guide to the University of Cambridge. Eevised and
corrected. 3rd Edition. Fcap. 8vo. 6s. 6d.

CLASSICAL TABLES.
Greek Verbs. A Catalogue of ^^erbs, Irregular and Defective

;
their

leading formations, tenses, and inflexions, with Paradigms for conjugation.
Rules for formation of tenses, &c. &c. By J. S. Baird, T.C.D. 2s. 6d.

Greek Accents (Notes on). By A. Barry, D.D. New Edition. Is.

Homeric Dialect. Its Leading Forms and Peculiarities. By J. S.

Baird, T.C.D. New edition, by W. G. Rutherford. Is.

Greek Accidence. By the Kev. P. Frost, M.A. New Edition. Is.

Latin Accidence. By the Kev. P. Frost, M.A. Is.

Latin Versification. Is.

Notabilia Qusedam ; or the Principal Tenses of most of the
Irregular Greek Verbs and Elementai-y Greek, Latin, and French Con-
struction. New edition. Is.

Richmond Rules for the Ovidian Distich, &c. By J. Tate,
M.A. Is.

The Principles of Latin Syntax. Is.

CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A Series of Elementary Treatises for the use of Students in the

Universities, Schools, and Candidates for the Public
Examinations. Fcap. 8vo.

Arithmetic. By Ptev. C. Elsee, M.A. Fcap. 8vo. 9th Edit. 3s. &d.

Algebra. By the Kev. C. Elsee, M.A. oth Edit. 4s.

Arithmetic. By A. Wrigley, M.A. 3s. 6d
A Progressive Course of Examples, With Answers. By

J. Watson, M.A. +th Edition. 2s. 6d.

Algebra. Progressive Course of Examples. By Kev. W. F.
M'Michael, M.A., and R. Prowde Smith, M.A. 3s. 6d. With Answers, is. 6d,
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Plane Astronomy, An Introduction to. By P. T. Main, MA
3rd Edition. Is.

Conic Sections treated Geometrically. By W. H. Besant, M.A.
oi-d Edition. 4.s. Gd.

Elementary Conic Sections treated Geometrically. By W. H.
Besant, M.A. [^Iti the Press.

Statics, Elementary. By Eev. H. Goodwin, D.D. 2nd Edit. 3.9.

Hydrostatics, Elementary. By W. H. Besant, M.A. 9th Edit. 4.9.

Mensuration, An Elementary Treatise on. By B. T. Moore, M.A.
OS.

Newton's Principia, The First Three Sections of, with an Appen-
dix; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th

Edition, by P. T. Main, M.A. is.

Trigonometry, Elementary. By T. P. Hudson, M.A. 3.9. Qd.

Optics, Geometrical. With Answers. By W. S. Aldis, M.A. 3.9. Qd.

Analytical G-eometry for Schools. By T. G. Vyvj'an. 3rd Edit.
4s. 6d.

Greek Testament, Companion to the. By A. C. Ban-ett, A.M.
3rd Edition. Fcap. 8vo. 5s.

Book of Common Prayer, An Historical and Explanatory Treatise
on the. By W. G. Hnmphry, B.D. 5th Edition. Fcap. 8vo. ^is. 6d.

Music, Text-book of. By H. C. Banister 8th Edit, revised. 5.9.

Concise History of. By Rev. H. G. Bouavia Hunt, B. Mus.
Oxon. 4th Edition rcA-ised. .3s. 6d.

ARITHMETIC AND ALGEBRA.

Principles and Practice of Arithmetic. By J. Hind, M.A. 9th
Edit. 4s. 6d.

Elements of Algebra. By J. Hind, M.A. 6th Edit. 8vo. 10s. &d.

Choice and Chance. A Treatise on Permutations and Combina-
tion?. By W. A. Whitworth. 2nd Edition. Crown 8vo. 6s.

GEOMETRY AND EUCLID.
Text-Book of Geometry. By T. S. Aldis, M.A. Small Svo.

4s. 6d. Pai-t I. 2s. 6d. Part II. 2s.

The Elements of Euchd. By H. J. Hose. Fcap. Svo. 4s. Qd.
Exercises separately. Is.

The First Six Books, with Commentary by Dr. Lai'dner.
lOth Edition. Svo. 6s.

The First Two Books explained to Beginners. By C. P.

Mason, B.A. ^nd Edition. Fcap Svo. 2s. 6d.

The Enunciations and Figures to Euclid's Elements. By Eev.
J. Brasse, D.D. ovd Edition. Fcap. Svo. Is. On Cards, in case, 5s. 6d.
Withont the Figiires, 6d.

Exercises on Euclid and in Modern Geometry. By J. McDowell,
E.A. Cro^m Svo. 2nd. Edition revised. 6s.
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Geometrical Conic Sections. By W. H. Besant, M.A. 3rd Edit.
4s. Q^..

Elementary Geometrical Conic Sections. By W. H. Besant,
M.A. [In the Press.

The Geometry of Conies. By C. Taylor, M.A. 2nd Edit. 8vo.
is. 6d.

Solutions of Geometrical Problems, proposed at St. Jolin'a

CoUege from 1830 to 1846. By T. Gaskin, M.A. 8vo. 12s.

TRIGONOMETRY.
The Shrewsbury Trigonometry. By J. C. P. Aldous. Crown

8vo. 2s.

Elementary Trigonometry. By T. P. Hudson, M.A. 3s. 6d.

Elements of Plane and Spherical Trigonometry. By J. Hind,
M.A. 5tli Edition. 12mo. 6s.

An Elementary Treatise on Mensuration. By B. T. Moore,
M.A. 5s.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analjrtical Plane Geometry. By W. P.
Tunibull, M.A. 8vo. 12s.

Treatise on Plane Co-ordmate Geometry. By M. O'Brien, M.A.
8vo. 9s.

Problems on the Principles of Plane Co-ordinate Geometry.
By W. Walton, M.A. 8vo. 16s.

Trilinear Co-ordinates, and Modern Analytical Geometry of
Two Dimensions. By W. A. "VYhitwortli, M.A. Svo. 16s.

An Elementary Treatise on Solid Geometry. By W. S. Aldis,
M.A. 2nd Edition revised. Svo. 8s.

Geometrical Illustrations of the Differential Calculus. By
M. B. Pell. 8vo. 2s. 6d.

Elementary Treatise on the Differential Calculus. By M.
O'Brien, M.A. Svo. 10s. 6tl.

Notes on Roiilettes and Glissettes. By W. H. Besant, M.A,
Svo. 3s. 6d.

Elliptic Functions, Elementary Treatise on. By A. Cayley, M.A.
Demy Svo. 15s.

MECHANICS &. NATURAL PHILOSOPHY.
statics, Elementary. By H. Goodwm, D.D. Fcap. Svo. 2nd

Edition. .3s.

statics. Treatise on. By S. Earnsliaw, M.A. 4tli Edition. Svo.

10s. 6d.

Dynamics, A Treatise od Elementary. By \V. Garnett, M.A.
2ik1 Edition. Crown Svo. 6s.

Statics and Dynamics, Problems m. By ^V. Walton, M.A. Svo.
JOs. 6d.
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Theoretical Mechanics, Problems in. By W. Walton. 2nd Edit.
revised and enlarg-ed. Demy 8vo. 16.s.

Mechanics, An Elementary Treatise on. By Prof. Potter. 4th
Edition revised. 8.s. 6c!.

Hydrostatics, Elementary. By Prof. Potter. 7s. 6tZ.

Hydrostatics. By W. H. Besant, M.A. Fcap. 8vo. 9tli Edition. 4s.

Hydromechanics, A Treatise on. By W. H. Besant, M.A. 8vo.
New Edition revised. lO.s. 6d.

Dynamics of a Particle, A Treatise on the. By W. H. Besant, M.A.
[Pi-eparing.

Dynamics of a Rigid Body, Solutions of Examples on the. By
W: N. Griffin, M.A. 8vo. Qs. 6(1.

Motion, An Elementary Treatise on. By J. E. Lunn, M.A. 7s. 6d.

Optics, Geometrical. By W. S. Aldis, M.A. Fcap. 8vo. 3s. 6d.

Double Refraction, A Chapter on Fresnel's Theory of. By W. S.

Aldis, M.A. Svo. 2.s.

Optics, An Elementary Treatise on. By Prof. Potter. Part I.

3rd Edition. 9.s. Qd. Part II. 12s. Qd.

Optics, Physical; or the Nature and Proj^erties of Light. By Prof.

Potter, A.M. 6.s. Qd. Part II. 7.s. Qd.

Heat, An Elementary Treatise on. By W. Garnett, M.A. Crown
Svo. 2nd Edition revised. 3s. 6c?.

Geometrical Optics, Figures Illustrative of. From Schelbach.
By W. B. Hopkins. Folio. Plates. 10s. Qd.

Newton's Principia, The First Tlii-ee Sections of, with an Appen-
dix

; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
Edition. Edited by P. T. Main, M.A. 4s.

Astronomy, An Introduction to Plane. By P. T. Main, M.A.
Fcap. Svo. cloth. 4s.

Astronomy, Practical and Spherical. By E. Main, M.A. Svo. 14s.

Astronomy, Elementary Chapters on, from tlie ' Astronomic
Physique' of Biot. By H. Goodwin, D.D. Svo. 3s. Qd.

Pure Mathematics and Natural Philosophy, A Compendium of
Facts and Formula) in. By G. R. Smalley. Fcap. Svo. 3s. Qd.

Elementary Course of Mathematics. By H. Good\vin, D.D.
6th Edition. Svo. 16s.

Problems and Examples, adapted to the '

Elementary Course of
Mathematics.' 3rd Edition. Svo. 5s.

Solutions of Goodwin's Collection of Problems and Examples.
By W. W. Hutt, M.A. 3rd Edition, revised and enlarged. Svo. 9s.

Piu'e Mathematics, Elementary Examples in. By J. Taylor. Svo.
7s. Qd.

Euchd, Mechanical. By thelate W.^Vliewell, D.D. 5th Edition. 5s.

Mechanics of Construction. With numerous Examples. By
S. Fenwick, F.R.A.S. Svo. 12s.

Anti-Logarithms, Table of. By H. E. Filipowsld. 3rd Edition.
Svo. 15s.

Mathematical and other "Writings of R. L. Ellis, M.A. Svo. 16s.

Pure and Apphed Calculation, Notes on the Principles of. By
Rev. J. Challis, M.A. Demy Svo. 15s.

Physics, The Mathematical Principle of. By Eev. J. Chalhs, M.A.
Demy Svo. 5s.
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HISTORY, TOPOGRAPHY, &c.

Home and the Campagna. By E. Burn, M.A. With 85 En-

gravings and 26 Maps and Plans. With Appendix. 4to. 31. 3s.

Old Rome. A Handbook for Travellers. By R. Burn, M.A.
With Maps and Plans. Demy 8vo. 10s. 6cl.

Modern Europe. By Dr. T. H. Dyer. 2nd Edition revised and
continued. 5 vols. Demy 8vo. 21. 12s. 6d.

The History of the Kings of Rome. By Dr. T. H. Dyer. 8vo. 16s.

A Plea for Livy. By Dr. T. H. Dyer. Bvo. Is.

Roma Regalis. By Dr. T. H. Dyer. Bvo. 2s. 6d.

The History of Pompeii : its Buildings and Antiquities. By
T. H. Dyer. 3rd Edition, brought down to 1874. Post 8vo. 7s. 6d.

Ancient Athens : its History, Topography, and Remains. By
T. H. Dyer. Super-royal 8vo. Cloth. 11. 5s.

The Decline of the Roman Republic. By G. Long. 5 vols.

8vo. 14s. each.

A History of England during the Early and Middle Ages. By
C H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol. I.

16s. Vol. II. 14s.

Historical Maps of England. By C. H. Pearson. Folio. 2nd
Edition revised. 31s. 6d.

History of England, 1800-15. By Harriet Martineau, with new
and copiovxs Index. 1 vol. 3s. 6d.

History of the Thirty Years' Peace, 1815-46. By Harriet Mar-
tineau. 4 vols. 3s. 6d. each.

A Practical Synopsis of English History. By A. Bowes. 4th

Edition. 8vo. 2s.

Student's Text-Book of Enghsh and General History. By
D. Beale. Crown 8vo. 2s. 6d.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 6 vols. 5s. each. Abridged
Edition, 1 vol. 6s. 6d.

Eginhard's Life of Karl the Great (Charlemagne). Translated

with Notes, by W. Glaister, M.A., B.C.L. Crown 8vo. 4s. 6d.

Outlines of Indian History. By A. W. Hughes. Small post
8vo. 3s. 6d.

The Elements of General History. By Prof. Tytler. New
Edition, brought down to 1874. Small post 8vo. 3s. 6d.

ATLASES.

An Atlas of Classical Geography. 24 Maps. By W. Hughes
and Gr. Long, M.A. New Edition. Imperial 8vo. 12s. 6d.

A Grammar-School Atlas of Classical Geography. Ten Maps
selected from the above. New Edition. Imperial 8vo. 5s.

First Classical Maps. By the Rev. J. Tate, M.A. 3rd Edition.

Imperial 8vo. 7s. 6d.

Standard Library Atlas of Classical Geography. Imp. 8vo. 7s. 6J.
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PHILOLOGY.
WEBSTERS DICTIONARY OF THE ENGLISH LAN-

GUAGE. Re-edited by N. Porter and C. A. Goodi-ich. With Dr. Mahii's

Etymologry. 1 vol. 21.s. With Appendices and 70 additional pages of

Illustrations, 31s. 6d.
• The best practical English Dictionary extant.'—QuaHerhj Review, 187 .

Prospectuses, with specimen pages, post free on application^

New Dictionary of the English Language. Combining Explan-
ation with Etymology, and copiously illustrated by Quotations from the
best Authorities. By Dr. Richardson. New Edition, with a Supplement.
2 vols. 4to. 41. 14.S. 6cl.; half russia, 51. 15s. 6d.; russia, 61. 12s. Supplement
sepai-ately. 4to. 12s.

AnSvo. Edit, without the Quotations, 15s.; half russia, 20s.; nissia, 24.<!.

The Elements of the English Language. By E. Adams, Ph.D.
15th Edition. Post 8vo. 4s. 6d.

Philological Essays. By T. H. Key, M.A., F.E.S. 8vo. lO.s. Qd.

Language, its Origin and Development. By T. H. Key, M.A.,
F.R.S. 8vo. 14s.

Synonyms and Antonyms of the English Language. By Ai-ch-
deacon Smith. 2nd Edition. Post 8vo. 5s.

Synonyms Discriminated. By Arclideacon Smith. DeraySvo. 16s.

Etymological Glossary of nearly 2500 EngUsh Words in
Common Use derived from the Greek. By the Rev. E. J. Boyce. Fcap.
8vo. 3s. 6(1.

A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo. 7s. 6d.

A Grammar of the Arabic Language. By Eev. W. J. Beau-
mont, M.A. 12mo. 7s.

Who Wrote It ? A Dictionary of Common Poetical Quotations.
3rd Edition. Fcap. 8vo. 2s. 6d.

DIVINITY, MORAL PHILOSOPHY, <Sic.

Novum Testamentum Grascum, Textus Stephanici, 1550. By
F. H. Scrivener, A.M., LL.D. New Edition. 16mo. 4s. 6d. Also on
Writing Paper, with Wide Margin. Half-bound. 12s.

By the same Author.

Codex Bezae Cantabrigiensis. 4to. 26.5.

A Full Collation of the Codex Sinaiticus with the Eeceivcd Text
of the New Testament, with Critical Introduction. 2nd Edition, revised.

Fcap. 8vo. 5s.

A Plain Introduction to the Criticism of the New Testament.
With Forty Facsimiles from Ancient Manuscripts. 2nd Edition. Svo. 16s.

Six Lectures on the Text of the New Testament. For English
Readers. Crown 8vo. 6s.

The New Testament for English Readers. By the late H. Alford,
D.D. Vol. I. Part I. 3rd Edit. 12s. Vol. I. Part II. 2nd Edit. 10s. 6d.

Vol. II. Part I. 2nd Edit. 16s. Vol. II. Part II. 2nd Edit. 16s.

The Greek Testament. By the late H. Alford, D.D. Vol. I. 6th
Edit. 11. 8s. Vol. II. 6th Edit. \l. 4s. Vol. III. 5th Edit. 18s. Vol. IV.
Part I. 4th Edit. 18s. Vol. IV. Part II. 4th Edit. 14s. Vol. IV. U. 12.s.
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Companion to the Greek Testament. By A. C. Barrett, M.A.
3rd Edition. Fcap. 8vo. 5s.

Liber Apologeticus. The Apology of TertulHan, with Enghsh
Notes, by H. A. Woodliam, LL.D. 2nd Edition. 8vo. 8s. 6d.

The Book of Psahns. A New Translation, with Introductions, &c.

By the Very Rev. J. J. Stewart Perowne, D.D. 8vo. Vol. I. 4t]i Edition,
IBs, Vol. il. 4tli Edit. 16s.

Abridged for Schools. 3rd Edition. Crown 8vo. 10s. Qd.

History of the Articles of Rehgion. By C. K. Hard^vick. 3rd
Edition. Post 8vo. 5s.

Pearson on the Creed. Carefully printed from an early edition.

With Analysis and Index by E. AYalford, M.A. Post 8vo. 5s.

Doctrinal System of St. John as Evidence of the Date of his

G-ospel. By Rev. J. J. Lias, M.A. Crown 8vo. 6s.

An Historical and Explanatory Treatise on the Book of
Common Prayer. By Rev. W. G. Humphry, B.D. 5th Edition, enlarged.
Small post 8vo. 4s. 6d.

The New Table of Lessons Explained. By Eev. W. G. Humphry,
B.D. Fcap. Is. 6d.

A Commentary on the Gospels fos the Sundays and other Holy
Days of the Christian Year. By Rev. V/. Denton, A.M. New Edition.
3 vols. 8vo. 54s. Sold separately.

Commentary on the Epistles for the Sundays and other Holy
Days of the Christian Year. By Rev. W. Denton, A.M. 2 vols. 36s. Sold

separately.

Commentary on the Acts. By Eev. W. Denton, A.M. Vol. I.

8vo. IBs. Vol. II. 14s.

Notes on the Catechism. By Eev. A. Barry, D.D. 5th Edit.

Fcap. 2s.

Catechetical Hints and Kelps. By Eev. E. J. Boyce, M.A. 3rd

Edition, revised^ Fcap. 2s. 6d.

Examination Papers on Rehgious Instruction. By Eev. E. J.

Boyce. Sewed. Is. 6d.

Church Teaching for the Church's Children. An Exposition
of the Catechism. By the Rev. F. W. Hai-per. Sq. fcap. 2s.

The Winton Church Catechist. Questions and Answers on the

Teaching- of the Church Catechism. By the late Rev. J. S. B. Monsell,
LL.D. 3rd Edition. Cloth, 3s.; or in Four Parts, sewed.

The Church Teacher's Manual of Christian Instruction. By
Rev. M. F. Sadler. 16th Thousand. 2s. 6d.

Short Explanation of the Epistles and Gospels of the Chris-
tian Year, with Questions. Royal 32mo. 2s. 6d.; calf, 4s. 6d.

Butler's Analogy of Rehgion ;
with Introduction and Index by

Rev. Dr. Steere. New Edition. Fcap. 3s. 6d.

Three Sermons on Human Nature, and Dissertation on
Virtue. By W. Whewell, D.D. 4th Edition. Fcap. 8vo. 2s. 6d.

Lectures on the History of Moral Philosopliy in England. By
W. Whewell, D.D. Crown 8vo. 8s.

Elements of Morahty, including Polity. By W. "Wliewell, D.D.
New Edition, in 8vo. 15s.

Astronomy and General Physics (Bridgewater Treatise). New
Edition. 5s.
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Kent's Commentary on International Law. By J. T. Abdy,
LL.D. Now and Cheap Edition. CI•o^^l 8vo. 10s. 6cl.

A Manual of the Roman Civil Law. By G. Leapingwell, LL.D.
8vo. 12s.

FOREIGN CLASSICS.

A senes for use in Schools, icith English Notes, grammatical and

explanatory, and renderings of difficidt idiomatic expressions.

Fcap. 8vo.

Schiller's Wallenstein. By Dr. A. Bnchlieim. New Edit. 6s. &d.
Or the Lager and Piccolomini, 3s. 6d. Wallenstein' s Tod, 3s. 6d.

Maid of Orleans. By Dr. W. Wagner. 3s. 6rf.

Maria Stuart. By V. Kastner. 3s.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and
E. Wolfel. 2s. 6d.

German Ballads, from Uhland, Goethe, and Schiller. By C. L.
Bielefeld. 3s. 6d.

Charles XII., par Voltaii-e. By L. Direy. 3rd Edition. 3s. &d.

Aventures de Telemaque, par Fenelon. By C. J. Delille. 2nd
Edition. 4s. 6d.

Select Fables of La Fontaine. By F. E. A. Gasc. New Edition. 3s.

Picciola, by X. B. Saintine. By Dr. Dubuc. 4th Edition. 3s. 6d.

FRENCH CLASS-BOOKS.

Twenty Lessons in French. "With Vocabulary, giving the Pro-
nunciation. By \V. Brebner. Post 8vo. is.

French Grammar for Public Schools. By Eev. A. C. Clapin, M.A.
Fcap. 8vo. 7th Edit. 2s. 6d.

French Primer. By Eev. A. C. Clapin, M.A. Fcap. 8vo. 3rd Edit.

Primer of French Philology. By Eev. A. C. Clapin. Fcap. 8vo. Is.

Le Nouveau Tresor
; or, French Student's Companion. By

M. E. S. 16th Edition. Fcap. 8vo. 3s. 6d.

F. E. A. GASC'S FEENCH COUESE.

First French Book. Fcap 8vo. 76th Thousand. Is. &d.

Second French Book. New Edition. Fcap. Svo. 2s. &d.

Key to First and Second French Books. Fcap. Svo. 3s. 6d.

French Fables for Begmners, in Prose, with Index. New Edition.
12mo. 2,s.

Select Fables of La Fontaine. New Edition. Fcap. Svo. 3s.

Histoires Amusantes et Instructives. "With Notes. New Edition.

Fcap. Svo. 2s. 6d.
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Practical Guide to Modern French Conversation. Fcap. 8vo.
2s. 6d.

French Poetry for the Young. With Notes. Fcap. 8vo. 2s.

Materials for French Prose Composition ; or, Selections from
the best Eng-lish Prose Writers. New Edition. Fcap. 8vo. 4s. 6d. Key, 6s.

Prosateurs Contemporains. With Notes. 8vo. New Edition,
x'e\nsed. 5s.

Le Petit Compagnon ;
a Freiieh Talk-Book for Little Childrea.

16mo. 2s. 6d.

An Improved Modern Pocket Dictionary of the French and
Enorlish Languages. 25th Thousa.nd, with additions. 16mo. Cloth. 4s.

Also in 2 vols., in neat leatherette, 5s.

Modern French-Enghsh and EngUsh-French Dictionary. 2nd
Edition, i-evised. In 1 vol. 12s. 6d. (formerly 2 vols. 25s.)

GOMBEET'S FEENCH DEAMA.

Being a Selection of the best Tragedies and Comedies of Moliere,
Racine, Comeille, and Voltaire. With Arguments and Notes by A.
Gombei-t. New Edition, I'evised by F. E. A. Gasc. Fcap. 8vo. Is. each ;

sewed, 6d. Contents.
Moliere :

—Le Misanthrope. L'Avare. Le Bourgeois Gentilhomme. Le
Tartuffe. Le Malade Imaginaire. Les Femmes Savantes. Les Fourberies
de Scapin. Les Precieuses Ridicules. L'Ecole des Femmes. L'Ecole des
Mai'is. Le Medecin malgre Lui.

Racine :
—Phedre. Esthei-. Athalie. Iphig^nie. Les Plaideurs.

Th^baide
; or, Les Freres Ennemis. Andromaque. Britannicus.

P. CORNEiLLE :
—Le Cid. Horace. Cinna. Polyeucte.

Voltaire :
—Zaire.

GERMAN CLASS-BOOKS.
Materials for German Prose Composition. By Dr Buchheim.

6th Edition, revised, wHth an Index. Fcap. 4s. 6d. Key, 3s.

A German Grammar for Public Schools. By the Eev. A. C.
Clapin and F. Holl Miiller. Fcap. 2s. 6d.

Kotzebue's Der Gefangene. With Notes by Dr. W. Stromberg. Is.

ENGLISH CLASS-BOOKS.
The Elements of the Enghsh Language. By E. Adams, Ph.D.

15th Edition. Post 8vo. 4s. 6d.

The Rudiments of EngUsh Grammar and Analysis. By
E. Adams, Ph.D. New Edition. Fcap. 8vo. 2s.

By C. p. Mason, B.A. London University.

First Notions of Grammar for Young Learners. Fcap. 8vo.
Cloth. 8d.

First Steps in Enghsh Grammar for Junior Classes. Demy
ISmo. New Edition. Is.

Outlines of English Grammar for the use of Junior Classes.
6th Edition. Crown Svo. 2s.
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English Grammar, including the Principles of Grammatical
Analysis. 2:h-a Edition. Post 8vo. 3s. 6cl.

A Shorter English Grammar, with coi)ious Exercises. Cro'wn 8vo.
3s. 6d.

Enghsh Grammar Practice, being the Exercises separately. Is.

The Analysis of Sentences applied to Latin. Post 8yo. Is. 6d.

Analytical Latin Exercises : Accidence and Shnple Sentences, &c.
Post 8vo. 38. 6d.

Edited for Middle-Class Examinations.

With Notes on the Analysis and Parsing, and Explanatoiy Remarks.

Milton's Paradise Lost, Book I. With Life. 3rd Edit. Post 8vo.
2s

Book II. With Life. 2nd Edit. Post Svo. 2s.

Book III. With Life. Post Bvo. 2s.

Goldsmith's Deserted "Village. With Life. Post Svo. Is. M.

Cowper's Task, Book II. With Life. Post Svo. 2s.

Thomson's Spring. With Life. Post Svo. s.

Whiter. With Life. Post Svo. 2s.

Practical Hints on Teaching. By Eev. J. Menet, M.A. 4th Edit.
Crown Svo. cloth, 2.--. 6(1. ; paper, 2.s.

Test Lessons in Dictation. Paper cover, Is. 6rf.

Questions for Examinations in Enghsh Literature. By Eev.
W. W. Skeat. 2s. M.

Drawing Copies. By P. H. Delamotte. Oblong Svo. 12s. Sold
also in parts at Is. each.

Poetry for the School-room. New Edition. Fcap. Svo. Is. 6cZ.

Select Parables from Nature, for Use in Schools. By Mrs. A.

Gatty. Fcap. Svo. Cloth. Is.

School Record for Young Ladies' Schools. 6rf.

Geographical Text-Book
;
a Practical Geography. By M. E. S.

12mo. 2s.

The Blank Maps done up separately, 4to. 2s. coloured.

A First Book of Geography. By Eev. C. A. Johns, B.A., F.L.S.
&c. Illustrated. 12mo. 2s. 6c?.

Loudon's (Mrs.) Entertaining Naturahst. New Edition, Eevised

by W. S. Dallas, F.L.S. 5s.

Handbook of Botany. New Edition, greatly enlarged by
D. Wooster. Fcap. 2s. Qd.

The Botanist's Pocket-Book. With a copious Index. By W. E.

Hay^ard. 2nd Edit, revised. Crown Svo. Cloth limp. 4?. 6d.

Experimental Chemistry, founded on the Work of Dr. Stockhardt.

By C. W. Heaton. Post Svo. 5s.

Double Entry Elucidated. By B. W. Foster. 7th Edit. -ito.

8s M.
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A New Manual of Book-keeping. By P. Crellin, Accountant.
CTo^vn 8vo. 3?. ed.

Picture School-Books. In Simple Language, with numerous
UliLstratioiis. Eoyal 16mo.

School Primer. 6d.—Sctool Reader. By J. Tilleard. 1?.—Poetrr Book
for Schools. Is.—The Life of Joserilu 1?.—The Scripture Parables. By the
Eev. .J. E. Clarke. L?.—The Scriptore Miracles. Bv the Rev. J. E. Clarke.
1«.—The Xew Testament BQstorv. Bv the Rev. J. G. Wood, M.A. L?.—The
Old Testament Hirtorj. Bv the* Rev. J. G. Wood, M.A. Ls.—The Storv of
Bunran's Pilsrim's Prosress. Is.—The Life of Christopher Columbus. By
Sarah Crompton. Is.—The Life of Martin Luther. By Sarah Crompton. Is.

BOOKS FOR YOUNG READERS.
In 8 vols. Limp cloth., 6i. each.

The Cat and the Hen ; Sam and his Do? Red-leg : Bob and Tom Lee : A
Wredc The 5ew-bom Lamb ; Rosewood Box ; Poor Fan ; Wi.=e Do? The
Three Montevs Storv of a Cat. told bv Herself The Blind Bov ;

The Mute
Girl; A XeW Tale of Babes in a Wood-^^—The Devandthe Knight ; The New
Bank-note ; The Roval Visit ; A King's Walk on a Winter's Day Qu^en Bee
and Busy Bee Gull's Crag, a Story of the Sea.

BELL'S READING-BOOKS.
FOR SCHOOLS AND PAROCHIAL LIBRARIES.

The popularity which the 'Books for Young Eeadei^' have attained is

a sufficient proof that teachers and pupils aKke approve of the use of inter-

<»ting etori^ with a simple plot in pla^ of the dry combination of letters and
syllables, making no impression on the mind, of which elementary reading-
books generally consist-

The Publishers have therefore thought it advisable to extend the application
of this principle to books adaprted for more advanced readers.

Xow Beady. Post Svo. Strongly bound.

Masterman Ready. By Captain Marryat, E.N. Is. 6(2.

The Settlers in Canada. By Captain Marryat. K.N. Is. 6d.

TaxdJolea from Nature. (Selected.) By Mrs. Gatty. Is.

Friends in Fur and Feathers. By Gwynfryn. Is.

Bobiason Crusoe. 1?. C)d.

Andersen 3 Danish Tales. (Selected.) By E. Bell, M.A. Is.

Southey s Ldfe of Nelson. (Abridged.) Is.

Grimms German Tales. (Selected,) By E. Bell, M.A. Is.

Ldfe of the Duke of Wellington, with Maps and Plans. Is.

Marie: or. Glimpses of Life in France. By A. B. Ellis. Is.

Others in Preparation.
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