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A Working Course of Study.

It is not necessary that the student, especially if he is a workman, should
learn all that is taught in this book, for it contains much that is not only difficult
but also of minor practical importance.

The beginner is therefore advised to master only the following sections :

1, 2,7 to 15, 22, 25, 31, 32 of the general theory ;

35 to 4% of the spur gear;

'53 to 64 of the involute tooth

76, 77, 8o to 83, 89 of the cycloidal tooth ;

91, 95, 97 of the pin tooth ;

98, 99, 111, 113 to 119 of spiral and worm gears;

154, 1545, 158, 161 to 169 of the bevel gear.

These include' not half of the whole matter, but, knowing this much well,
the student has a good outline knowledge of the whole, and he can then take
the balance at leisure.



A TREATISE ON

GEAR WHEELS.

1. THEORY OF TOOTH ACTION.

1.—INTRODUCTORY.

The present object is practical, to reach
and interest the man that makes the thing
written of ; the machinist or the millwright
that makes the gear wheel, or the drafts-
man or foreman that directs the work, and
to teach him not only how to make it, but
what it is that he makes.

To most mechanics a gear is a gear.

‘A vellow primrose by the shore,
A yellow primrose was, to him,
And it was nothing more ;"
and, in fact, the gear is often a gear and
nothing more, sometimes barely that.

But, if the mechanic will look beyond the

tips of his fingers, he will find that it can

be something more; that it is one of the
most interesting objects in the field of scien-
tific research, and not the simplest one ; that
it has received the attention of many cele-
brated mathematicians and engineers; and
that the study of its features will not only
add to his practical knowledge, but also to
his entertainment. There is an element in
mathematics, and in its near relative, theoreti-
cal mechanics, that possesses an educating
and disciplining value beyond any capacity
for earning present money. The thinking,
inquisitive student of the day is the success-
ful engineer or manufacturer of the future.

2.—METHOD.

The method will be fitted to the object, and
will be as simple and direct as possible. It is
not possible to treat all the items in simple
every-day fashion, by plain graphical or arith-
metical methods, but where there is a choice
the path that is the plainest to the averagc
intelligent and educated mechanic will be
chosen.

A thousand pages could be filled with the
subject and not exhaust anything but the
reader thereof, but what is written should
receive and deserve attention, and must be
condensed within such reascnable limits, that
it shall not call for more time and labor than

its limited application will warrant. Demon-
strations and controversies will be avoided,
and the matter will be confined as far as is
possible to plain statements of facts, with
illustrations. The simplest diagram is often
a better teacher than a page of description.

First, we shall study the odontoid or pure
tooth curve as applied to spur gears, then
we shall consider the involute, cycloid, and
pin tooth, special forms in which it is found
in practice; then the modifications of the
spur gear, known as the spiral gear, and the
elliptic gear; then the bevel gear, and lastly
the skew bevel gear.

’
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3.—PARTICULARLY IMPORTANT.

Begin at the beginning.

The natural tendency is too often to skip
first principles, and begin with more ad-
vanced and interesting matter, and the result
is a trashy knowledge that stands on no
foundation and is soon lost. When a fact
is learned by rote it may be remembered,
but when it follows naturally upon some
simple principle it cannot be forgotten.

Therefore the student is urged to begin
with and pay close attention to the odontoid
or pure tooth curve, before going on to its

special applications, for the apparently dry
and trivial matter relating to it is really the
foundation of the whole subject.

The usual course is to begin at once with
the cycloidal tooth, to hurry over the in-
volute tooth, and then, if there is room, it
is stated that such curves are particular
forms of some confused and indefinite general
curve. Our course will be to study the unde-
fined tooth curve first, and then take up
its particular cases.

4, —LITE

It is impracticable to acknowledge all the
sources from which information has been
drawn, but it isin order to briefly mention
the principal works devoted to the subject.

Professor Herrmann’s section of Professor
Weisbach’s ““ Mechanics of Engineering and
Machinery” is the most important work that
can be named in this connection. It treats
of much besides the teeth of gears, but its
treatment of that branch is particularly
valuable. It is not easy reading. Wiley,
$5.00.

Professor Willis’ ¢ Principles of Mechan-
ism ” is a celebrated book, now many years
behind the age, but it is, nevertheless, of the
_greatest value and interest in this matter. To
Willis we are indebted for many of the most
‘important additions to our knowledge of
theoretical and practical mechanism. Long-
mans, $7.50. Out of print.

Professor Rankine’s ‘“ Machinery and Mill-
work ” should not be neglected by the
student, for, although it is the dryest of
books, its value is as great as its reputation.
Griffin, $5.00.

Professor MacCord’s ¢‘ Kinematics” is a
work that abounds in novelties, and is writ-
ten in an attractive style. It contains many
errors, and some hobbies, and needs a thorough
revision, but the student cannot afford to
avoid it, or even to slight it. Wiley, $5.00.

Mr. Beale’s *“ Practical Treatise on Gear-
ing” is really practical. Many of the so-call-
ed ‘‘ practical ” books are neither practical or
theoretical, but we have in this small book
a collection of workable information that

RATURE.

should be within the reach of every man
who pretends to be a machinist. We have
drawn from it, by permission, particularly
with regard to spiral and worm gears.
Mr. Beale’s experimental work, in connection
with the spiral gear, has been of great
service. The Brown & Sharpe Mfg. Co.,
cloth $1.00, paper 75c.

Professor Reuleaux’s ‘“ Konstrukteur ” is a
justly celebrated work in the German lan-
guage. A translation of it is now being
published in an American periodical—3Me-
chanics. ]

Professor Klein, the translator of Herr-
mann’s work, has lately published the ‘“ Ele-
ments of Machine Design,” a collection of
practical examples, with illustrations. J. F.
Klein, Bethlehem, Pa., $6.00.

““Mill Gearing,” by Thomas Box, is a
practical work by an engineer, and from it
we have drawn much of our matter on the
cloudy subject of the strength and horse-
power of gearing. Spon, $3.00.

‘‘Elementary Mechanism,” by Professors
Stahl and Woods, is a recent work of general
merit. Itis well designed as a text book,
and treats the subject in a simple and in-
teresting manner. Van Nostrand, $2.00.

In addition to the above works, reference
may be made to numerous articles to be
found in periodicals, notably in the ‘‘ Ameri-
can Machinist,” the ¢ Scientific American
Supplement,” the ‘“ Journal of the Franklin
Institute,” ¢ Mechanics,” and the “‘ Transac-
tions of the American Society of Mechanical
Engineers.”
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5, —KINEMATICS.

This, the science of pure mechanism, re-
lates exclusively to the constrained and
geometric motions of mechanism, and it
has nothing to do with questions of force,
weight, velocity, temperature, elasticity,
etc. The path of a cannon ball is not with-
in the field of kinematics, because it depends
upon time and force. A belt and pulley are
kinematic agents, because the contact be-
tween them can be assumed to be definite,

and the action is therefore geometric, but
the slipping and stretching of the belt is not
kinematic. The action of gear teeth upon
each other is purely kinematic, but we can-
not consider whether the material is wood, or
steel, or wax, whether the gears are lifting
one pound or a ton, or whether they are run-
ning at one revolution per secound or one per
day.

6.—ODONTICS.

The name ‘‘odontics” may be selected
for that limited but important branch of
kinematics that is concerned with the trans-
mission of continuous motion from one
body to another by means of projecting
teeth.

Even this restricted corner of the whole
subject is too large for the present purpose,
for it covers much that cannot be considered
within our set limits, and gear wheels must,
therefore, be defined as devices for trans-
mitting continuous motion from one fixed
axis to another by means of engaging teeth.

Thus confined, gear wheels may be con-
veniently divided into three general classes.

Skew bevel gears, transmitting motion be-
tween axes not in the same plane.

Bevel gears, transmitting motion between
intersecting axes.

T.—PITCIL

The fixed axes are connected with each
other by imaginary surfaces called ‘‘axoids,”
or pitch surfaces, touching each other along
a single straight line. We must imagine
that the pitch surfaces roll on each other
without slipping, as if adhering by friction.

The whole object of odontics is to provide
these imaginary surfaces wilth teeth, by

Spur gears, transmitting motion between
parallel axes.

The last two classes are particular cases of
the first; for, if the shafts may be askew at
any distance, that distance may be zero, and
if they intersect at any point, that point may
be at infinity.

It would be scientifically more correct to
first develop the skew bevel gear, and from
that proceed to the bevel and spur gear, but °
practical clearness and convenience is often
more to be admired than strict accuracy,
and, as the true path is difficult to follow, we
shall enter in the rear, and consider the spur
gear first.

Odontics does not properly include the
consideration of questions of strength, pow-
er and friction, but we must admit certain
.important items in that direction.

SURFACES.

which they can take advantage of the
strength of their material and transmit
power that is as definite as the geometric
motion.

The pitch surface of the skew bevel gear
is the hyperboloid of revolution, which be-
comes a cone when the axes intersect, and a
cylinder when the axes are parallel.

8.—NORMA

An important adjunct of the pitch surface

is the normal surface, or surface that is

everywhere at right angles to both pitch sur-

faces of a pair of axes, and upon which the

action of the teeth on each other may best
be studied.

L SURFACES.

For the skew bevel gear there does not
appear to be any normal surface. For the
bevel gear the normal surface is a sphere,
and for the spur gear the sphere becomes a
plane.
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9.—UNCERTAINTIES.

The theory of tooth action is not yet fall
and definite in all its parts, for there are
some disputed points, and some confusion
and clashing of rules and systems. Thisis

particularly the case with the theory of spiral
and skew bevel teeth, for much of the work
that has been done is clearly wrong, and
there is little that has been definitely decided.

10.—PITCH CYLINDERS.

P

Pitch cylinders

Two cylinders, A and B, Fig. 1, that will
roll on each other, will transmit rotary mo-
tion from one of the fixed parallel axes ¢ and
C to the other, if their surfaces are provided
with engaging projections.

When these projections are so small that
they are imperceptible, the motion is said to
be transmitted by friction, and it is prac-
tically uniform. But when they are of
large size, and readily observed, the motion,

although it is unchanged in nature, is said to
be transmitted by direct pressure, and it is
irregular unless the acting surfaces of the
projections are carefully shaped to produce
an even motion.

- The whole object of odontics is to so shape
these large projections or teeth that they
shall transmit the same uniform motion be-
tween the rotating cylinders, as would be
apparently transmitted by friction.

These cylinders are imaginary in actual
practice, although they are one of the
principal elements of the theory, and they
are called the axoids, or pitch cylinders of
the gears.

The normal surface (8) of the spur gear is
a plane, and, as all sections by normal sur-
faces are alike, we can study the action on
a plane figure easier than in the solid body
of the gear.

11.—THE LAW OF
Fig. 2.

Tooth action

‘With the above conditions given we can
deduce the following law:

TOOTH CONTACT.

The common normal to the tooth curves must
pass through the pitch point.

That is, in Fig. 2, if the tooth curves 0D
and o d are to transmit the same motion
between the pitch lines p! and PL as
would be transmitted by frictional contact
at the pitch point O, they must be so shaped
that their common normal Op at their com-
mon point p shall pass through that pitch
point,

Conversely, if the tooth curves are so
shaped that their common normal always
passes through the pitch point, they will
transmit the required uniform motion.

12.—THE ODONTOID.

This universal law enables us to define the
“‘odontoid,” or pure tooth curve, for the
contact of the pitch lines at the pitch point
is continuous and progressive, and, if the
tooth curves are to transmit the same motion,

their normals must be arranged in a contin-

uous and progressive manner. The normals
nl, as in Fig. 8, must be arranged without
& break or a crossing, not only springing
from the odontoid at consecutive points, but
intersecting the pitch line at consecutive
points. This arrangement may be called
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Fig. 3.
Odontoids

“consecutive,” and the definition is not a
law by itself, but an expression of the given
universal law.

It is seen that the odontoid is inseparably
connected with its pitch line, and that the
same curve may be an odontoid with re-
spect to one pitch line, and not with respect
to some other. The curve Fig. 4 is an
odontoid with respect to the pitch line p?,

224
F’ig- £,

but not with respect to the pitch line pl’' be-
| yond the point p at which the normal is tan-
gent to that pitch line.

The odontoid, so far as defined, is nota
definite thing, and, for practical purposes, it
must be given some particular shape. It
may be involute or cycloidal, or of other
form, but must always have normals ar-
ranged in consecutive order.

13.—THE LINE OF ACTION.

As the tooth curves od and OD, Fig. 5,
work together, the point of contact will
travel along a line Op W called the ‘‘line of
action.”

There is a definite relation between the
odontoid and the line of action, so that, if
either ome is given, the other is fixed. If
the odontoid OD is given, with its pitch
line PL, the line of action is determined
without reference to the pitch line pl or its
odontoid; and, conversely, if the pitch line
and line of action are given, the odontoid to
correspond is determined.

Fig. 5.

Line of
action.

14, —INTERCHANGEABLE ODONTOIDS.

This feature leads at once to the broad
and useful fact that all odontoids, on pitch
lines of all sizes, that are formed from the
same line of action, will work together inter-
changeably, any one working with any other.

Therefore, to produce an interchangeable
set of odontoids we can choose any one line
of action, and form any desired number of
them from it.

15.—INTERNAL CONTACT.

The pitch lines of Fig. 5 curve in opposite
directions, and the contact is said to be ‘‘ex-
ternal.” But the principles involved are in-
dependent of the direction of the pitch lines,
and they may curve in the same direction, as
in Fig. 6, in ‘‘internal” contact.

Tooth contact is between lines only, there
being no theoretical need of a solid material
on either side of the line, so that either side

Fig. G.

Internal action



6 Cusps and Terminals.

of the tooth may be chosen as the practical
working side. Fige 7o

Therefore the internal gear is precisely like
the external gear of the same pitch diameter, |
working on the same lines of action, so far |
as the odontoids are concerned, as illustrated |
by Fig. 7.

Internal and
i cxternal teeth

16.—THE CUSP AND INTERFERENCE.

‘When, as in Fig. 8, the pitch circle p 7 is
so small with respect to the line of action
0.C" C" W, that two tangent circles C' ¢’ and |
C" ¢ can be drawn to the line of action from
the center ' of the pitch line, we shall have
a troublesome convolution in_the resulting
flank curve o d. This convolution will be
formed of two cusps, a first cusp ¢’ on the
inner tangent arc, the ‘‘base circle” (¢,
and a second cusp ¢’ on the outer tangent
arc " ¢".

This happens with any form of odontoid,
although sometimes in disguised form, and
creates a practical difficulty that can be
avoided only by stopping the tooth curve at
the first cusp ¢'. .

Furthermore, any odontoid OD that is to ) required, the action will still be mathemati-
work with the odontoid ¢ d, must be cut off ! cally perfect, but, as the contact changes at a
at the point % on the ‘‘limit line” (" % | cusp, from one side of the curve to the other,
through the point ¢" from the center c. the action is no longer practicable with solid

If the odontoids, when the pitch line is so | teeth. The curves will cross each other,
small that the cusps occur, are not cut off as|and there will be an interference.

The cusp

L.C

17.—THE SMALLEST PITCH CIRCLE.

To determine the smallest pitch circle that Fig. 9.
can be used, and avoid the cusps altogether,
find by trial the point C, Fig. 9, from which
but one tangent arc (' ¢’ can be drawn to the
line of action O ¢' W. This point will be
the center of the smallest pitch circle, and
all points outside of it will avoid interference,
while all inside of it will be subject to it.

0 [& Smallest
radius

] 18.—THE TERMINAL POINT.

‘When a tangent arc can be drawn, from
the pitch point O as a center, to the line of
action at any point 7', except the vertex W,
Fig. 10, there will be a corresponding cross-
ing of the normals to the odontoid commenc-
ing at the point ¢, and a termination of the
" action when the point ¢ reaches the point 7.
As the action approaches the terminal
point 7’ there will be two points of action,

(0]
Terminal poirt

F’l:g. 10.
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since the odontoid crosses the line of action
at two points—one point of direct and ordi-
nary action at S, and another point of retro-
grade and unusual action at V. These two
points of action will come together at 7', the
odontoid will leave the line of action, and all

tooth action will then ceasc. The retro-
grade action is theoretically and actually
correct, but it is so oblique that it is of
no practical value, and therefore the odon-
toid may as well be cut off at its terminal
point Z.

19,—SPEED OF THE POINT OF ACTION.

Lay off O 8, Fig. 5, to represent the speed
of the pitch lines, and draw S A at right
angles with the common normal O p. Draw
«p O tangent to the line of action at the point
of action p.

Lay off » Bequal to O A4, and draw B (
at right angles to O B. Then p € will be
the speed of the point of action along the
line of action.

When the line of action is a circle the
angle 8 O Ais always equal to the angle
B p O, and therefore the speed of the point
of action is uniform, and equal to that of the
pitch lines.

If the line of action is a straight line the
angle B p C will be constant—always zero—
and therefore the speed of the point of action
will be uniform and always equal to O A.

20.—NATURE OF THE TOOTH ACTION.

The nature of the action may be deter-
mined by a study of the normal intersections;
_the intersections of the normals with the
odontoid being at uniform distances apart,
their intersections with the pitch lines will
indicate the action of the teeth. If the nor-

mal intersections, as in Fig. 3, are quite regu-
lar, the action of the teeth will be smooth
and regular, while if they are crowded with-
in a narrow space the action of the tooth will
be crowded and jerky.

21.—THE SECONDARY LINE OF ACTION.

From the universal law of tooth contact
stated in (11) we can reason that any
point on the tooth curve isin position for
contact whenever its normal passes through

' the pitch point O, and therefore that the
point will then be upon a line of action.

In Fig. 11 the normal to the point p must
cross the pitch line twice—at a primary in-
tersection a, and at a secondary intersection
5, and therefore there will be a point of
action on a primary linre of action O M atgq,
when the curve has moved so that the pri-
mary point of intersection a is at the pitch
point O, and a point of action » on a second-
ary line of action, when the secondary point
of intersection b has reached the pitch point.

Therefore there will generally be not only
the primary line of action O ¢ M or 0 ¢' M,
but also a secondary line O w Y or Ow' Y.

The secondary line of action must have the
same property as the first, as a locus of con-
tact, and therefore if we can so arrange two
pitch lines with their odontoids that their
secondary lines of action coincide, there will
be secondary contact between the odontoids.

Seconcary
actio.r

Fig. 11,

‘When it so happens that both primary and
secondary lines coincide, we shall have
double contact. Two points of contact will
exist at the same time, one on the primary
and the other on the secondary line of action.

The secondary lines of action cannot be
made to coincide when the contact is exter-
nal, but when it is internal they sometimes
can be, so that the matter has an application
to internal gears.
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It is to be noticed that the primary line is

Secondary contact is an interesting feature

wmdependent of the pitch line, while the sec- | of tooth action, but it is of small importance,

ondary is dependent upon it.

and has been studied but little.

22.—THE INTERCHANGEABLE TOOTH.

The simple odontoid so far studied is the
perfect solution of the problem from a
mathematical point of view, for it will trans-
mit the required uniform motion as long as
it remains in working contact. But from a
mechanical point of view it isstill incom-
plete, as it works in but one direction,
through but a limited distance, and, although
the odontoids are interchangeable, the gears
are not.

In order that the gears shall be fully in-
terchangeable, itis necessary that the teeth
shall have both faces and flanks, and that the
line of action for the face shall be equal to
that for the flank; that is, the tooth must
have an odontoid ‘on each side of the pitch
line, the face o d, Fig. 12, outside, and the
flank o &' inside of it, and the line of action
! a for the faces must be like the line of
action ! @’ for the flanks. If so made, any
gear will work with any other, without re-
gard to the diameters of the pitch lines.

But such a gear will run in but one direc-
tion, and to make it double-acting it must
have odontoids facing both ways, as in Fig.
18. Gears so made will be both double-act-
ing and interchangeable, and it is not neces-
sary that both sides of the tooth shall be
alike.

Again, the unsymmetrical gear of Fig. 138
fails when it is turned over, upside down,
for then the unlike odontoids come together,
and, to avoid this last difficulty, all four of
the lines of action must be alike, producing
the complete and practically perfect tooth of
Fig. 14.

‘We can therefore define the completely in-
terchangeable tooth, as the tcoth that is
formed from four like lines of action.

Fig, 12,

la
od \|O
A

’
od

la \

Interchangeable
teeth
Fig. 13/
V- T
Zl \\\
\\ ~
\ N\
I/ \\
ll \
i \
\
Unsymmnetrical teeth
Fig.. 14,
o Pt

Complete teeth

23.—INTERCHANGEABLE RACK TOOTH.

‘When the pitch lineis a circle the flanks of | tween face and flank. We then have the im-
the tooth are not like the faces, but when it | portant practical fact that the four odontoids
is a straight line there is no distinction be- | of the interchangeable rack tooth are alike.
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- 24.—CONSTRUCTION BY POINTS.

When we have an odontoid and its pitch
line given, it is a very simple matter to con-
struct either the line of action or the conju-
gate odontoid for any other pitch line.

We know, for example, the odontoid s p,
Fig. 15, on the pitch line p?, and it is re-
quired to construct an odontoid on the pitch
line P L that is conjugate to it.

As the odontoid is given we know or can
construct its normals. Construct the normal
p @ from any chosen point p, draw the radial
lineda O, lay off A Oequal to a O, draw the
radial line A O, lay off the angle N 4 D
equal to the angle » a d, lay off P A equal
to p @, and P will be a point in the required
conjugate odontoid § P. P A will bea
normal to the curve. Construct a number of
points by this process, and draw the required
curve through them. The tangents s ¢ and
S T'make equal angles with the pitch lines,
80 that the required curve can often be fully
determined by drawing its tangent and one
or two points.

To construct the lineof action, make the
angle m O ¢ equal to the angle n a d,
and lay off O ¢ equal to p a. The point
¢ is on a circle from either p or P drawn
from the centers C, and is the point at
which p and P will coincide when the two
curves are in working contact, the normals
p a and P A then coinciding with the
radiant O q.

Fig. 15.

Construction
by points

When the line of action alone is given, the
odontoids for given pitch lines are fully de-
termined, but there seems to be no simple
graphical method for constructing them ex-
cept for special cases. They can be obtained
by the use of the calculus (33), or drawn by
the integrating instrument of (34).

The two tooth curves thus constructed are
paired, and are said to be *‘conjugate” to
each other.

25.—THE ARC OF ACTION.

The action between two teeth commences
and ends at the intersections m and ¥ of the
line of action with the addendum lines of the
two gears, al and A L, Fig. 16. The arc
of action is the distance @ » onthe pitch line
that is passed over by the tooth while it is'in
action.

The arc a O passed over while the point of
contact is approaching the pitch point, is
called the arc of approach, and O b, that
passed over while the action is receding from
that point, is the arc of recess.

With a given line of action the arcs of ap-
proach and recess can be controlled by the
addenda. If it is desirable to have a great
recess and a small approach, the addendum

of the gear that acts asa driver is to be in-
creased. When there isa limit line (16), it
limits the addendum and the arc of action.
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Processes.

26.—OBLIQUITY

When a pair of teeth bear upon each
other, the direction of the force exerted be-
tween them is that of the common normal
O p, Fig. 17, and passes through the pitch
point 0. Except when the point of contact
is at the pitch point the dirsction of the
pressure will deviate from the normal to the
line of centers by the angle of obliquity
Z O p, and with many forms of teeth the
angle is never zero.

The force exerted between two teeth at
their point of contact is found by laying off
the tangential force O H with which the driv-
ing gear D is turning, and drawing the liuve
H V parallel to the line of centers, to find
the force O ¥V = P K. It is proportional to
the secant of the angle of obliquity, and in-
creases rapidly with that angle.

The chief influence of the obliquity is
upon the friction between the teeth, and con-
sequent inefficiency of the gear, and upon
the destruction by wearing. It is par-
ticularly important upon the approaching
action, and a gear that is otherwise perfect
may be inoperative on account of excessive
obliquity.

Although the direct pressure of the teeth
upon each other at their point of contact

OF THE ACTION.
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will vary with the obliquity, the tangential
force exerted to turn the gear is always
uniform. Leaving friction out of the calcu-
lation, the two gears of a pair always turn
with the same force at their pitch lines.

The obliquity of the action has an effect
upon the direction and amount of the
pressure of the gear upon its shaft bearing,
but the usual variation is of little conse-
quence.

It is desirable that the pressure between
the teeth should be as uniform as possible,
not only in amount, but in direction, and
excessive obliquity is to be carefully avoided.

27.—CONSTRUCTI

The mode of action of the conjugate teeth
upon each other, suggestsa process by which
a given tooth can be made to form its conju-
gate by the process of molding.

The given tooth, all of its normal sections
being of some odontoidal form, is made
of some hard substance, while the blank in
which the conjugate teeth are to be formed
is made of some plastic material. The shafts
of the two wheels are given, by any means,
the same motions asif their pitch surfaces
were rolled together. The hard tooth will
then mold the soft tooth into the true conju-
gate shape. :

ON BY MOLDING.

It matters not what shape is given the
molding tooth, if its sections are all odon-
toidal, and a twisted or irregular shape will
be as serviceable as the common straight tooth.

This process is continually in operation be-
tween a pair of newly cut teeth, or between
rough cast teeth, until the badly matched
surfaces have been worn to a better fit, but
it is too slow for ordinary purposes, and is
of little practical value.

Gears can be formed by this process, by
rolling a steel forming gear against a white
bot blank, but the process can hardly be
called practical.

28.—MOLDING PLANING PROCESS.

Although the described molding process
is of limited practical value, having but one
direct application, it leads to a process of

such a shape that it can be followed by a
planing tool, its normal seciions being alike.
The originating tooth is fixed in the shape

great value when the tooth is straight or of

of a steel cutting tool C, Fig. 18, which is
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rapidly reciprocated in guides @, in
the direction of the length of the
100th, as the two piwch wheels 4 and
B arerolled together. Although the
tool has but a single cutiuing edge, its
motion makes it the equivalent of the
molding tooth, and it will plane out
the conjugate tooth D by a process
that is the equivalent of the more
general molding process.

A simple graphical method is
founded upon this molding process,
the shaping tool takivg the form of a
thin template C, Fig. 19, that is re-
peatedly scribed about as the pitch
wheels are rolled together, the marks
combining to form the conjugaie
tooth curves D.

This mechanical process has the
decided advantage over the process
of construction by points (24), that
the tooth is formed with a correct
fillet (44), and is much stronger.
The dotted lines show the tooth that
would be constructed by points.

The only practicable method for
forming the line of action when this
method is used is by observing and
marking a number of points of con-
tact between theteeth. This method
is applicable to all possible forms of
spur teeth, either straight, twisted or
spiral. It can be practically applied
only to the octoid form of bevel tooth.

Oa account of the fillet (44) that
is formed by this process, the tooth
space cannot be used with a matin
gear having more teeth than that o
the forming gear, although it belongs
to the same interchangeable set, The
tooth space of the figure will not run
with a tooth on a pitch line larger
than the pitch line 4.

Therefore the rack tooth must be
usea as the forming tooth, to allow of
the use of all gears of the set up to
the rack. Gears of the set thus formed
will not work with internal gears.

Molding planing
method

Recip rocﬁ'f‘/r'wa
Tool —> &

raphical molding

29 —LINEAR PLANING PROCESS.

A second planing process, quite
distinct from the molding process of
27), is founded upon the fact that
the tooth curves are in contact at a
single point which has a progressive
motion along the line of action.

Therefore if a single cutting point
p, Fig. 20, is caused to travel along
the line of action with the proper
speed relatively. to the speed of the
pitch line, it will trim the tooth out-
line to the proper odontoidal shape.

The figure shows the application to

method
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Fig., 20,
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Particular Forms.

the involute tooth, the path of the cutting
point being the straight line 7 @, and its speed
being the speed of the base line b .

‘When the cutting point follows the circu-
lar line of action with a speed equal to that
of the pitch line, it will plane out the
cycloidal tooth curve.

This process is applicable to all possible
forms of gear teeth, either spur or bevel, in
either external or internal contact.

When the curvature of the odontoid will
permit, the milling cutter may take the place
of the planing tool, and is the equivalent of it.

30.—THE RACK ORIGINATOR.

The molding planing process of (28) sup-
plies a means for easily and accurately pro
ducing an interchangeable set of gears or
cutters for gears, and it is best applied by
means of the rack tooth as the originator.
All four curves of therack tooth being alike,
the tooth is easily formed, particularly for
the involute or the segmental systems, and it
is a matter of lessconsequence that the curves

shall be of some particular form, if care is
taken that it is odontoidal.

It has been taught, and it is therefore some-
times considered, that any ‘¢ four similar and
equal lines in alternate reversion” will an-
swer the purpose, but itis necessary that the
four similar curves shall be odontoids. Four
circulararcg, with centers on the pitch line, will

answer the definition, but are not odontoids.

31.—PARTICULAR FORMS OF THE ODONTOTD.

The odontoid, as so far examined, is un-
defined except as to one feature of the ar-
rangement of its normals, and to bring it
into practical use it is neccssary to give it
gome definite shape. Thisis most easily ac-
complished by choosing some simple curve

- for the rack odontoid, and from that making
an interchangeable set. A more correct but
much more difficult method would be to
choose some definite line of action, and from
that derive the odontoids. .

If the rack odontoids are straight lines,
Fig, 21, the common involute tooth system
will be produced, and the line of action will
be a straight line at right angles with the
rack odontoid. For bevel teeth, as will be
shown, the straight line odontoid produces
the octoid tooth system, while to produce the
involute system it is necessary to define the
line of action as a straight line, and derive
the system from that.

If the rack odontoids are cycloids, as in
Fig. 22, the resulting tooth system will be
the cycloidal, commonly misnamed the
““epicycloidal ” system. The line of action
will be a circle equal to the roller of the
cycloid.

If the rack odontoids are segments of cir-
cles from centers not on the pitch line, but
inside of it, as in Fig. 23, the tooth system

Fig. 1.

Iuvolute

m\ Eig- :?2-

Segmental |

,Fi‘([a 23
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will be the segmental, and its line of action
will be the loop of the ‘ Conchoid of Nico-
- medes.”

If we choose a parabola for the rack tooth,
as in Fig. 24, the parabolic system will be
formed with its peculiar ‘‘hour glass” line
of action.

Only three of these tooth systems are in
actual use, the involute and the cycloidal for
spur gears, and the octoid for bevel gears
only, and we will therefore confine the ap-
plication of the theory to them.

Only one of the systems in common use
for spur gears, the involute, should be in use
at all, and we will pay principal attention to
that.

Parabolic
Fige 24

The segmental system would be superior
to the cycloidal, and in many cases to the in-
volute; but as there is already one system too
many, we will not attempt to add another.

32.—THE ROLLED

If any curve R, Fig. 25, is rolled on any |
pitch curve p 7, a point p in the former will
trace out on the plane of the latter a curve
s p z, called a rolled curve.

The line p ¢, from the tracing point p to
the point of contact ¢, is a normal to the
curve 8 p z, and, as all the normals are ar-
ranged in ‘‘consecutive” oraer, that curve
must be an odontoid. The converse of this
statement is also true, that all odontoids are
rolled curves ; but the fact is generally " ery
far fetched and of no practical imprrtance.

It is also a property of all such curves
that are rolled on different pitch lines, that |
they are interchangeable.

This accidental and occasionally useful
feature of the rolled curve has generally
been made to serve as a basis for the general
theory of the gear tooth curve, and it is re-
sponsible for the usually clumsy and limited
treatment of that theory. The general law
is simple enough to define, but it is so diffi-
cult to apply, that but one tooth curve, the
cycloidal, which happens to have the circle
for a roller, can be intelligently handled
by it, and the patural result is, that that
curve has received the bulk of the atten-
tion.

For example, the simplest and best of

CURVE THEOLY.
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Rolled curve

Fig. 25,

all the odontoids, the involute, is entirely
beyond its reach, because its roller is the
logarithmic spiral, a transcendental curve
that can be reached only by the higher mathe-
matics,

No wooth curve, which, like the involute,
crosses the pitch line at any angle but a
right angle,.can be traced by a point in a
simple curve. The tracing point must be
the pole of a spiral, and therefore the trac-
ing of such a curve is a mechanical impossi-
bility. A practicable rolled odoutoid must
cross the pitch line at right angles.

To use the rolled curve theory as a base of
operations will confine the discussion to the
cycloidal tooth, for the involute can only be
reached by abandoning its true logarithmic
roller, and taking advantage of one of its
peculiar properties, and the segmental,
sinusoidal, parabolic, and pin tooth, as well
as most other available odontoids, cannot be
discussed at all.

33.—MATHEMATICAL RELATION OF ODONTOID AND LINE OF ACTION.

In Fig. 26 the odontoid on the pitch line |
p 1is connected with the line of action!a, |

by the relations P I'=pt =y, and I'S =
t O = z, where P S is the normal to the
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Mathematical Relation.

odontoid at the point P, 77 Sisa tangent to
the pitch line at the intersection of the nor-
mal, and P 7is a normal to the tangent.

When any odontoid is given by its equa-
tion, that of the line of action can be found
by a process of differentiation, and when
the line of action is given by its equation,
that of the odontoid can be found by a
Pprocess of integration.

These processes, for the general case where
the pitch line is curved, are quite intricate,
but when the pitch line isa straight line,
they are simple, and may be worked as
follows.

To get the equation of-the line of action
from that of the given rack odontoid, ar-
Tange the equation of the odontoid in the
form ¢ = f(y), and put its differential co-
da
dy
of the straight rack odontoid of the involute
system is y = « tan. 4, from which
T | iy R
dy  tan. A4 ~ o’ RLY vign A
the equation of the straight line of action at
Tight angies to the odontoid. Again, the
eguation of the cycloid being # = vor, sin.—1
Y— A/2ry —y?, z = ver. sin. -!

da Y 158
iy =B T a

efficient equal to %/- Thus, the equation
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and 2® 4 y® = 2ry is the equation of the
circular line of action. -

To get the equation of the odontoid when
that of the line of action is given, arrange
the equation of the line of action in the form
% = f(¥), put it equal to -g;—, and inte-
grate. Thus, the equation of the straight
line of action being

Y= o 4’
we have
YN 1 _dz
z T tan. A ~ dy

‘and y = « tan. A is the equation of the

straight odontoid at right angles to the line
of action. Again, the equation of the circu-
lar line of action being 2 -+ y2? = 2ry, we
have

I bait)) _d_.'r

T T A ry—y? dy
and 7 = FermtiirlyetjpBrg=y—is the
cycloidal odontoid. A ypead’? ., =

34.—THE ODONTOIDAL INTEGRATER.

“The form of the odontoid to correspond to
@ given line of action and a given pitch line
can be determined only by the integral cal-
culus (33), it evidently being impossible to
contrive a general graphical or algebraic
ethod. Y

But it can be directly drawn by an instru-
ment, the principle of which is analogous to
that of the well-known polar planimeter for
jnotegrating surfaces.

The bar R, Fig. 27, moves at right angles
o the line of centers, and it moves the pitch
wheel A, with the same speed at the pitch
Jine. The bar O has & point p, that is
«confined to move in the given line of action
Op W, and it is so guided that it always
passes through the pitch point 0.

The two bars bear upon each other by
friction, and we must suppose that there
38 no other friction to oppose the motion of
the bar O,

Fig. 270

P

=]
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Odcntoidal Integrater

Then the point p will trace out the odontoid
8pzupon the pitch wheel A, or upon an
other pitch wheel B rolling with the bar
on either side of it.



2. THE SPUR GEAR IN GENERAL.
35.—THE CIRCULAR PITCH.

The distance ¢ O, Fig. 14, covered by each
tooth upon the pitch circle, is commonly
called the ‘‘circular pitch,” and often the
¢ circumferential pitch.” The term *‘ pitch
arc” is the most appropriate but is not in
common use.

This was formerly the measurement by
which the size of the tooth was always
stated, a tooth being said to be of a certain
« pitch,” and all of its other dimensions
being expressed in terms of ‘that unit, but it
is fast being replaced, and should be entirely
replaced, by the more convenient ‘‘diametral
pitch ”” unit.

The circumference of a circle is measured
in terms of its diameter by means of an in-
commensurable fractional number 3.1‘4159,
called = (pi), and, therefore, if the tooth is
measured upon the arc of the circle by means
of the circular pitch, one of two inconveni-
~ences must be tolerated. Either the pitch
must be an inconvenient fraction, or else the
pitch diameter must be as inconvenient, for
the gear cannot have a fractional number of
teeth. The fractional calculations are so
clumsy that a table of pitch diameters cor-
responding to given numbers of teeth should
be used, and errors in the laying out of the
work are of constant occurrence.

Again, outside of the liability of error in
making calculations, the circular pitch sys-
tem is a constant source of error in the hands
of lazy or incompetent draftsmen or work-
men, for there is a constant temptation,
often yielded to, to force the clumsy figures
a little to produce some desired result. For
example, a millwright has to make a gear of
fourteen inches pitch diameter with fourteen
teeth. He finds by the usual computation
that the circular pitch is 3.14 inches, and, as
his odontograph has a table for three-inch
pitch, he uses that with the remark that it is
*“near enough,” laying the blame on the
odontograph or on the iron founder if the
resulting gear roars. His next order is for a

gear of one-inch pitch to match others in
use, and to be fourteen and a half inches
diameter. The circumference of the pitch
line is 45.53 inches, and he has his choice be-
tween 45 and 46 teeth, both wrong. Per-
haps the most frequent cause of error is
that the workman is apt to apply a rule
directly to the teeth of a gear he is about to
repair or match, to get the circular pitch,
and the result is more likely to be wrong than
right.

The best plan when using this unit is to
get convenient pitch diameters and let the
pitch come as it .will, provided that gears
that work together are‘of the same pitch, and
that is simply a roundabout way of using the
diametral pitch unit.

‘When the circular pitch must be used the
following table will greatly assist the work
and save calculation. For example, the
pitch diameter of a gear of three-quarter-inch
pitch and 37 teeth is three-quarters the tabu-
lar number 11.78, or 8.84 inches.

PITCH DIAMETERS.
For ON& INcH CIRCULAR PrrTCH.
FOR ANY OTHER PITCH MULTIPLY BY THAT PITCH.

T. P.D. ||T. P.D. ||T. P.D. || T. P.D.
10| 3.18 33 | 10.50 56 | 17.83 791 25.15
11| 3.50 34 | 10.82 57 | 18.14 80 | 25.47
12 | 3.8 35 | 11.14 58 | 18.46 811 25.79
13| 4.14 36 | 11.46 59 | 13.78 82§ 26.10
14 | 4.46 87 | 11.78 60 | 19.10 831 26.42
15 | 4.78 38 | 12.10 61 | 19.42 84| 26.74
16 | 5.09 39 | 12.42 62 | 19.74 85| 27.
17| 5.41 40 | 12.73 63 | 20.06 86 | 27.388
18| 5.73 41 | 13.05 64 | 20.87 87 | 7.70
19} 6.05 42 | 13.87 65 | R0.69 881 28.01
20| 6.87 43 } 13.69 66 | 21.01 89 | 25.83
21| 6.69 44 | 14.00 67 | 21.33 90 | 28.65
Q| 7.00 45 | 14.33 68 | ®1.65 91| 28 97
23| 7.82 46 | 14.64 69 | 21.97 921 29.29
24| 7.64 47 | 14.96 70 | 22.28 93 | 29.60
R | 7.96 43 | 15.28 71| 22.60 94| 29.92
26 | 8.28 |[[ 49 | 15.60 72 | R2.92 95| 80.4
271 8.60 50 | 15.92 73 | 23.24 96 | 30.56
28 | 8.91 51 | 16.24 74 | 23.56 97 | 30.58
29 | 9.23 52 | 16.55 75 | 23.88 98 | 81.20
30 [ 9.55 53 | 16.87 76 | 24.19 99 | 31.52
31| 9.87 54 | 17.19 77 | 24.51 {[100} 31.83
32 | 10.19 55 | 17.51 78 | 24.88

36.—THE DIAMETRAL PITCH.

This is not a measurement, but a ratio
or proportion. It is the number of teeth in
the gear divided by the pitch diameter of the

gear. Thus, a gear of 48 teeth and 12 inches
pitch diameter is of 4 pitch. The advantages
of the diametral pitch unit are so apparent
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that it is fast displacing the circular pitch| The diametral pitch is sometimes defined as
unit, and has almost entirely displaced it for | the number of teeth in a gear of one inch
It is a common, but bad practice,
pitch diameters is entirely useless, although | to designate diametral pitches by numbers,
as No. 4, No. 16, etc.

cut gearing. Itis so simple that a table of | diameter.

such useless tables have been published.

37.—RELATION OF PITCII UNITS.

The product ¢f the circular pitch by the
diametral pitch is the constant number
3.1416, so that if one is given the other is
easily calculated.

The following tables of equivalent pitches
will be convenient in this connection,

38.—ACTUAL SIZES.

Figs. 28 and 29 show the actual sizes of
standard teeth of the usual diametral pitches,
and give a better idea of the actual teeth than
can be given by any possible description.
They are printed from cut teeth, and may be
depended upon as accurate.
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39.—ADDENDUM

The tooth is limited in length by the circle
a1, Fig. 30, called the addendum line, and
drawn outside the pitch line at a given
distance, called the addendum. Its depth is
also limited by aline 7 7, called the dedendum
or root line, drawn at a given distance inside
of the pitch line.

The addendum and the dedendum are
both arbitrary distances, but, for convenience
in computation, they are fixed at simple
fractions of the unit of pitch that is in use.
When the circular pitch is used the ad-
dendum is one-third of the circular pitch.

When the diametral pitch unit is used
the addendum is one divided by the pitch.

It is customary to make the addendum and
the dedendum the same, except in certain
cases where some special requirement is to
be satisfied.

AND DEDENDUM.

1"[’:7- 30.
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Actual Stizes.

2 J Pitch.

3 Pitch.

Fig. 29.
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40.—THE CLEARANCE.

To allow for the inevitable inaccuracies of
workmanship, especially on cast gearing, it
is customary to carry the tooth space slightly
below the root line to the clearance line ¢/,
Fig. 30.

The clearance, or distance of the clearance
line inside of the root line, is arbitrary, but it
is convenient and customary to make it one-
eighth of the addendum.

41.—THE BACK-LASH.

‘When rough wooden cogs or cast teeth are
used, the irregularities of the surface, and
inaccuracies of the shape and spacing of
the teeth, require that they should not pre-
tend to fit closely, but that they should clear
each other by an amount &, Fig. 30, called
the back-lash.

The amount of the back-lash is arbitrary,

but it is a good plan to make it about equal
to the clearance, one-eighth of the addendum.

Skillfully made teeth will require less.
back-lash than roughly shaped teeth, and:
properly cut teeth should require no back-.
lash at all. Involute teeth require less back--
lash than cycloidal teeth.

42.—THE STANDARD TOOTH.

The tooth must be composed of odontoids,
preferably of odontoids of which the proper-
ties are well known, and an advantage is
gained if it is still further confined to a par-
ticular value of that odontoid. If the teeth
are to be drawn by an odontograph some
standard must be fixed wupon, since the

method will cover but one proportion of tooth..
For example, the standard involute tooth:
is that having its line of action inclined at an
angle of obliquity of fifteen degrees. For
the cycloidal system the standard agreed upon
is the tooth having radial flanks on'a gear of
twelve tecth, '

43.—ODONTOGRAPHS.

The construction of the tooth is generally
not simply accomplished by graphical means,
as it is generally required to find points in
the curve and then find centers for circular
arcs that will approximate to the curve thus
laid out.

It is sometimes attempted to construct the
curve by some bandy method or empirical

rule, but such ‘methods are generally ‘worth~
less. 4

An odontograph is a method or an instru~
ment for simplifying the construction of the
curve, generally by finding centers for ap-
proximating circular arcs without first find-
ing points on the curve, and those in use will
be described.

44.—THE FILLET.

‘When the teeth are laid out by theory
there will be a portion of the tooth space at
the bottom that is never occupied by the
mating tooth. Fig. 31 shows a ten-toothed
pinion tooth and space with arack tooth in
three of its positions in it, showing the un-
used portion by the heavy dotted line.

If this unused space is filled in by a
““fillet” f the tooth will be strengthened just
where it needs it the most, at the root.

The fillet is dependent on the mating tooth,
and is therefore not a fixed feature of the
tooth. If a gear is to work in an inter-
changeable set, it may at some time work
with a rack, and therefore its fillet should be
" fitted to the rack; but if it is to work only

with some one gear it may be fitted to that.
The light dotted line shows the fillet that
would be adapted to a ten-toothed mate.
The fillet to match an internal gear tooth
would be even smaller than that made by the
rack.

Fig. 31.

The fillet
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Equidistant Series.

When the tooth is formed by the molding
process of (27), or by the equivalent planing
process of (28), the fillet will be correctly
formed by the shaping tool, but not so when
the linear process of (29) is used. When the
tooth is drawn by theory or by an odonto-
graph the fillet must be drawn in, and can be

most easily determined by making a mating
tooth of paper, and trying it in several posi-
tionsin the tooth space, as in the figure.

Except on gears of very few teeth the
strength gained will not warrant the trouble
of constructing the fillet.

45.—THE EQUIDISTANT SERIES,

" When arranging an odontograph for
drafting teeth, or a set of cutters for cutting
them, we must make one sizing value do
duty for an interval of several teeth, for it is
impracticable to use different values for two
or three hundred different numbers of teeth.
The object of the equidistant series.is to so
place these intervals that the necessary errors
are evenly distributed, each sizing value
being made to do duty for several numbers
each way from the number to which it is
fitted, and being no more inaccurate than any
other for the extreme numbers that it is
forced to cover.

This series is readily computed for any
case that may arise, and with a degree of ac-
curacy that is well within the requirements
of practice; by the formula

7= an

: as
3 n — 8 + 7
‘in which a is the first and 2 is the last tooth
of the interchangeable series to be covered;
n i3 the number of intervals in the series, and
8 is the number in the series of any interval
of which the last tooth ¢ is required.

For example, it is required to compute the
series here used for the cycloidal odonto-
graph, having twelve tabular numbers to
cover from twelve teeth to a rack.

Putting @ = 12, z = infinity, and » = 12,
the formula becomes

gh= 12 X 12 e 2 SI2 TR R 4
12—3+‘132g? 12—s40" " 1% —s

and then, by putting 8 successively equal to
1,2,8,4,5,6,7,8,9, 10,11 and 12, we get
the series of last teeth, 13/, 142, 16, 18, 204,
24, 28%, 36, 48, 72, 144, and infinity. These
give the required equidistant series of inter-
vals.

12
13 to 14, W to 26
15 to 16, 30 to 36,
17 to 18, 37 to 48,
19 to 21, 49to 72,
22 to 24, 78 to 144,
145 to a rack ;

and the method is as easily applied to any
other practical example.

This formula and method is independent of
the form and of the length of the tooth, and
therefore is applicable to all systems under
all circumstances. Thisis proper and con-
venient, for these elements can be eliminated
without vitiating the results or destroying the
‘“‘equidistant” characteristic of the series.
The formula is an approximation based upon
an assumption, but nothing more convenient
or more accurate has so far been devised by
laboriously considering all the petty elements
involved.

The sizing value, or number for which the
tabular number is computed, or the cutter is
accurately shaped, can best be placed, not at
the center of the interval, but by considering
the interval as a small series of two intervals,
and adopting the intermediate value. The
sizing value for the interval from ¢ tod is

iven by the formula
= % 2 ¢cd

ct+d’

Thus, the sizing value for the interval

=

‘| from 37 to 48 teeth should be 41.8, and that

for the interval from 145 to a rack should be
290.

It is sometimes the practice to size the cut-
ter for the lowest number in its interval, on
the ground that a tooth that is considerably
too much curved is better than one that is
even a little too flat. This makes the last
tooth of the interval much more inaccurate
than if the medium number was used.
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46.—THE HUNTING COG.

It is customary to make a pair of cast gears
with incommensurable numbers of teeth so
that each tooth of each gear will work with
all the teeth of the other gear. If a pair of
equal gears have twenty teeth each, each
tooth will work with the same mating tooth
all the time; but if one gear has twenty and
the other twenty-one teeth, or any two num-
bers not having a common divisor, each tooth
will work with all the mating teeth one after
the other.

The object is to secure an even wearing
action; each tooth will have to work with
many other teeth, and the supposition is that

all the teeth will eventually and mysteriously
be worn to some indefinite but true shape.

It would seem to be the better practice to
have each tooth work with as few teeth as
possible, for if it is out of shape it will dam-
age all teeth that it works with, and the
damage should be confined within as narrow
limits as possible. If a bad tooth works with
a good one it will ruinit, and if it works
with a dozen it will ruin all of them. Itis
the better plan to have all the teeth as near
perfect as possible, and to correct all evident
imperfections as soon as discovered.

47.—THE MORTISE WHEEL.

Another venerable relic of the last century
is the ‘‘mortise” gear, Fig. 382, having
wooden teeth set in a cored rim, in which
they are driven and keyed.

Where a gear is subjected to sudden strains
and great shocks, the mortise wheel is better,
and works with less noise than a poor cast
gear, and will carry as much as or more

power at a high speed with a greater dura- |

bility. But in no case isit the equal of a
properly cut gear, while its cost is about as
great.

In times when large gears could not be cut,
and when the cast tooth was not even ap-
proximately of the proper shape, the mortise
wheel had its place, but now that the large
cut gear can be obtained the mortise gear
should be dropped and forgotten.

Mortise wheel

Fig. 32.

48.—~THE FRICTION OF APPROACH.

When the point of action between two
teeth is approaching the pitch point, that is,
when the action is approaching, the friction
between the two tooth surfaces is greater than
when the action is receding. This extra fric-
tion is always present, but is most trouble-
some when the surfaces are very rough, as on
cast teeth, giving little trouble when the teeth
are properly shaped and well cut. When the
roller pin gear (93) is used, the friction
between the teeth is rolling friction, and is
no greater on the approach than on the recess.

—a

Friction of
approach

Figo 33,
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The difference in the friction is probably
due to the difference in the direction of the
pressure between the small inequalities to
which all friction is due. When the gear D,
Fig. 383, is the driver, the action between the
teeth is receding, and the inequalities lift over
each other easily, while if 7 is the driver,
the action is approaching, and the inequalities
tend to jam together.

In the exaggerated case illustrated, it is plain
that the teeth are so locked together that ap-
proaching action is impossible, while it is
equally plain that motion in the other direc-
tion is easy. ~The same action takes place in
a lesser degree with the small inequalities of
ordinary rough surfaces.

The action of the common friction pawl,
which works freely in one direction and jams
hard in the other, is upon the same principle.
A weight may be easily dragged over a rough
surface that it could not be pushed over by a
force that is not parallel to the surface.

The extra friction of approaching action
can be avoided by giving the driver the long-
est face. When the driver has faces only,
and the follower has only flanks, the action is
particularly smooth.

Teeth that are subject to excessive maxi-
mum obliquity, such as cycloidal teeth, should
not be selected for rough cast gearing, for it
is the maximum rather than the average obli-

quity that has the greatest influence.

49, —EFFICIENCY

Much has been written, but very little has
been done to determine the efficiency of the
teeth of gearing in the transmission of power,
and therefore but little of a definite nature
can be said. The question is mostly a prac-
tical one, and should be settled by experi-
ment rather than by analysis.

The only known experiments upon the fric-
tion of spur gear teeth are the Sellers experi-
ments, more fully detailed in (112), and but.
one of these relates to the spur gear. From
that one it is known that a gear of twelve
teeth, two pitch, working in a gear of thirty-
nine teeth, has an efficiency varying from
ninety per centum at a slow speed to ninety-
nine per centum at a high speed. That is,
an average of five per centum of the power
received is wasted by friction at the teeth and
shaft bearings. This result is probably a
close approximation to that for any ordinary
practical case.

Although theory can do nothing to de-
cide such a question as this, it can do much
to indicate probable results.-

If a pair of involute teeth, for example,
move over a certain distance, w, either way
from the pitch point, the distance being mea-
sured on the pitch line, they will do work that
is theoretically determined by the formula :
VELA k+h

2 k h

work done = 2

OF GEAR TEETH.

the pressure, and % and % are the pitch radil
of the gears. The positive sign is to be used
for gears in external, and the negative sign
for those in internal contact.

The loss by friction, as shown by the for-
mula, decrcases directly as the diameters in-
crease, the proportion of the diameters being
constant,

The loss increases rapidly with the distance
of the point of action from the pitch point.
‘When the contact is at the pitch point the
teeth do not slide on each other, and there is
no loss, but away from that point the loss is
as the square of the distance in this case, and
in a still greater proportion in the case of the
cycloidal tooth. Therefore a short arc of
action tends to improve the efficiency.

It has been satisfactorily determined that
the loss is greater during the approaching
than during the receding action. This is not
shown by the formula, but it may be laid to
a variation in the coefficient f.

The formula shows that the loss is inde-
pendent of the width or face of the gear,
and therefore strength can be increased by
widening the face, without increasing the
friction.

If the work of internal gearing is com-
pared with that of external gearing of the
same sizes, the losses are in the proportion,

E—h

in which f is the coefficient of friction, P is

7y 4
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go that the internal gear is much the more
economical, particularly when the gear and
pinion are nearly of the same size. If the
gear is twice the size of the pinion the loss
is but one-third of the loss when both gears
are external. ‘

Small improvement can pe effected, by puf-
ting a small pinion inside rather than outside
of alarge gear. A six-inch pinion working
with a six-foot gear ltas but 1.18 times the
loss by the same gears, when the gear is in-
ternal.

Theoretical efficiency is discussed at great
length in the Journal of the Franklin Insti-
tute, for May, 1887: Also by Reuleaux, and
again by Lanza, in the Transactions of the

American Society of Mechanical Engineers
for 1887, and the discussion has been carried
far enough.

A series of experiments with gear teeth o\
various sizes and forms, of various metals,
would add greatly to our knowledge of this
important matter.

A true determination of the efficiency of
the rough cast gear, as compared with that of
the cut gear, would tend to discourage the
use of the former for the transmission of
power, for experiment would undoubtedly
show that the power wasted by the cast gear
would soon pay the difference in cost of the
better article.

5C.—~STRENGTH OF A TOOTH.

Thestrength of a tooth is the still load it will
carry, suspended from its point, and is to be
carefully distinguished from the horse-power,
or the load the gear will carry in motion.

The strength of a substance is not a fixed
element, but will vary with different samples,
and with the same sample under different
circumstances ; allowance must be made for
the amount of service the sample has seen,
concealed defects must be provided against,
and therefore nothing but an actual test will
surely determine its character.

Although no possible rule can be depended
upon, the ultimate or breaking strength of a
standard cast-iron tooth, having an addendum
about equal to a third of the circular pitch,
will average about three thousand five hun-
dred pounds multiplied by the face of the
gear and again by the circular piich, both
in inches.

But a tooth should never be forced up to
itsultimate strength, and the best practice is
to give it only about one-tenth of the load it
might possibly.bear, so that the following
rule should be used : Multiply three hundred
and fifty pounds by the face of the gear, and
again by the circular pitch, both in inches,
and the product will be the safe working
load of one tooth.

Example: A cast-iron gear of one inch
pitch, and two inches face, will safely lift
350 X 2 X 1 = 700 pounds, although it
would probably lift 7,000 pounds.

‘When there are two teeth always in work-
ing contact, it is safe to allow double the
load, but care must be taken that both tecth
are always in full contact.

A hard wood mortised cog has about one-
third of the strength of a cast-iron tooth:
steel has double the strength ; wrought-iron
is not quite as strong.

A small pinion generally has teeth that are
weak at the roots, and then it will increase
the strength to shroud the gear up to its
pitch line, but shrouding will not strengthen
a tooth that spreads towards its base, like an
involute tooth, and when the face of the
gear is wide compared with the length of the
tooth the shroud is of rittle assistance.

It does not fncrease the strength of a tooth
to double its pitch, for when the pitch is
increased the length is also increased, and the
strength is still in direct proportion to the
circular pitch, while the increase has reduced
the number of teeth fn contact at a time.

Cut gears and cast gears are about equal
as to actual strength, with the advantages in
favor of the cut gear, that hidden d:fects are
likely to be discoverec, and that it is not as
liable to undue strains on account of defective
shape.

The rules for strength must not be used for
gears running at any considerable speed, for
they are intended only for slow service, as in
cranes, heavy elevators, power punches, etc.
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Horse-Power.
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/

51.—HORSE-POWER OF CAST GEARS.

The horse-power of a gear is the amount
of power it may be depended upon to carry
in continual service.

It is very well settled that continual strains
and impact will change the nature of the
metal, rendering it more brittle, so that a
tooth that is perfectly reliable when new
may be worthless when it hasseen some years
of service. This cause of deterioration is/
particularly potent in the case of rough cast
teeth, for they can only approximate to the
true shape required to transmit a uniform
speed, and the continual impact from shocks
and rapid variations in the power carried
must and does destroy the strength of the
metal.

There are about as many rules for com-
puting the power of a gear as there are
manufacturers of gears, each foundryman
having a rule, the only good one, which he
has found in some book, and with which he
will figure the power down to so many
horses and hundredths of a horse as con-
fidently as he will count the tecth or weigh
the casting.

Even among the standard writers on en-
gineering subjects the agreement is no bet-
ter, as shown by Cooper’s collection of
twenty-four rules from many different wri-
ters, applied to the single case of a five-foot
gear. See the ‘‘Journal of the Franklin
Institute” for July, 1879. For the single
case over twenty different results were ob-
tained, ranging from forty-six to three-
hundred horse-power, and proving conclu-
sively that the exact object sought is not to be
obtained by calculation.

This variety is very convenient, for it is
always possible to fit a desired power to
a given gear, and if a badly designed gear
should break, it is a simple matter to find a
rule to prove that it was just right, and must
have met with some accident.

e

Although n6 rule can be called reliable,
the one that appears to be the best is that
given by Box, in his Treatise on Mill Gear-
ing,/ Box’s rule, which is based on many
actual cases, and which gives among the
lowest, and therefore the safest results, is by
‘the formula:
12¢f 4/ dn

1,000
in which ¢ is the circular pitch, fis the face,
M is the diameter, all in inches, and = is the
number of revolutions per minute.

Example: A gear of two feet diameter,
four inches face, two inches pitch, running
at one hundred revolutions per minute, will
transmit .
12X 8 X DX 4 X 4/ 24 X 100

1,000

For bevel gears, take the diameter and
pitch at the middle of the face.

It is perfectly allowable, although it is not
good practice, to depend upon the gear for
from three to six times-the calculated power,
if it is new, well made, and runs without
being subjected” to sudden shocks and varia-
tions of load.

The irfluence of impact and continued
service will be appreciated when it is con-
sidered that the gear in the example, which
will carry 9.4 horse-power, will carry seventy
horse-power if impact is ignored, and the
ultimate strength of the metal is the only
dependence.

A mortise gear, with wooden cogs, will
carry as much as, or more than a rough cast-
iron gear will carry, although its strength is
much inferior. The elasticity of the wood
allows it to spring and stand a shock
that would break a more brittle tooth of
much greater strength. And, for the same
reason, a gear will last longer in a yielding
wooden frame than it will in a rigid iron

Horse-power of a cast gear =

=94 h. p.

frame.

52.—HORSE-POWER OF CUT GEARS.

We know a little, and have to guess the
rest, as to the power of a cast gear, but with
respect to that of a cut gear we are not as

data upon which a reliable rule can be
founded.

Admitting, as we must, that impact is

well posted, for there are no experimental | the chief cause of the deterioration of the
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cast gear, we are at liberty to assume that a | away, and is of no account whatever. From
properly cut and smoothly runnmg cut gear | that point of view it is difficult to explain
is much more reliable. why a wooden tooth will outwear an iron one,
! No definite rule is possible, but we can |although it is softer than the softest cut iron.
isafely assume that a cut gear will carry at| Assuming that a cut gear is about three
[least three times as much power as can be | times as reliable as a cast gear, we can com-
trusted to a cast gear of the same size. ' pute its power by the formula :

The great reliance of those who claim that c’ “dn
a cast gear is superior to a cut gear is upon | HepSpowar) SE i EN aRETes L %{)
ithe hard scale with which the cast tooth is in which ¢ is the circular pitch, f is the face,
’:‘jcovered. This scale is not over omne-hun- and d is the pitch diameter, all in inches, and
fdredth of an inch thick, is rapidly worn ' » is the number of revolutions per minute.

3. THE INVOLUTE SYSTEM.

53.—THE INVOLUTE TOOTH.

The simplest and best tooth curve, theo-
' retically, as well as the one in greatest prac-

tical use for cut gearing, is the involute.

" The involute tooth system is based on the
| straight rack odontoid, (81) and Fig. 21, and
{it is illustrated by Fig. 34. If the four odon-
toids of the rack outline are equally inclined
to the pitch line, the resulting tooth system
will be completely interchangeable; but if,
as in Fig. 35, the face and flank are inclined The involute tooth
at different angles of obliquity, 77 8 K and interchangeable
7" S K', the system is not interchangeable,
although otherwise perfect.

The rack odontoid cannot have a corner or
change of direction anywhere except at the
pitch line, without causing a break in the T
line of action.

As the normals p ¢ are parallel, the line of IK
action is a straight line W O W at right 1w
angles to the rack odontoid. The inter- L
changeable line of action is continued in a

13
Fig.|34.

straight line on both sides of the pitch line,
bus the non-interchangeable line changes di-
- rection at that line.

In accordance with the universal custom
we will consider that the involute tooth is
'alwa_vs interchangeable, having a single angle
of obliquity.

K
bl

T
Non-interchangenbls
involute

Fig. 35.

<




26

Involute Interference.

54.—THE CUSP.

As acircle ¢ ¢, Fig. 34, can always be drawn
tangent to the line of action at an interfer-
ence point ¢, from the center b of any pitch line
B, there will always be a cusp in the curve at
the point ¢ (16), and at that point the working
part of the curve must stop. The working
part of the rack tooth must end at the limit
line ¢ L through the interference point .

The working curves of any two teeth that
work with each other must each end at the
line drawn through the interference point of
the other, Fig. 43, being limited by limit
lines 77 and L L.

The second branch ¢ m' of the curve is
equal to the first branch ¢ m, but is re-
versed in direction. The second cusp is at
infinity, and therefore has no practical ex-
istence.

The tangent circle ¢ ¢, through the inter-
ference point and the cusp, is called the
‘“base line.”

It is customary to continue the flank of the
tooth inside the base line by a straight radial
line, as far as may be necessary to allow the
mating gear to pass.

55.—INTERFERENCE.

‘When the point of the tooth is continued
beyond the limit line it will interfere with and
cut away a portion of the working curve of
the mating tooth. Fig. 36 shows a rack tooth
working with the tooth of a small pinion, and
cutting out its working curve.

This cut is not confined to the flank, but
extends across the pitch line into the face, as
shown by the line ¢ m n. The rack tooth of
the figure will not work with the pinion tooth

unless it is cut off at the limit line 7 7 through|

the interference point .

The mathematical action still continues,
and the figure shows the rack tooth in.action
at % with the second branch of the curve.

Effect of Interference
Fig. 36,

56.—ADJUSTABILITY.

An interesting and in-many cases a valua-
ble feature of the involute curve, and one
that is confined to it, is the fact that its posi-
tion asa whole with regard to the mating
curve is adjustable.

Two involutes, each with its base line, will
work together in perfect tooth contact when
they are moved with respect to each other,
as long as they touch at all. The lines of
action and the pitch lines will shift as the
curves are moved, and will accommodate
themselves to the varying position of the
base lines.

But this valuable feature of the involute
curve is not always available, and involute
gears are not, as commonly supposed, neces-

sarily adjustable, for the conditions are often
such that the teeth will fail to act when the
centers are moved, except within very narrow
limits. Care must be taken that the arc of
action is not so reduced by separating the
centers of the gears that it is less than the cir-
cular pitch, for the former arc is variable and
the latter is fixed. Care must also be taken
that the working curve is not pushed over the
limit line when the centers are drawn to-
gether.

In any limiting case, such as in Fig. 43, the
centers are not adjustable. The gearsof the
standard set are either not adjustable at all
or are so within very narrow limits, on ac-
count of the correction for interference.
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57.—CONSTRUCTING THE INVOLUTE BY POINTS.

The simple involute curve can be con-
structed by points by the general method of
(24), but it is much better to take advantage
of the property that it is an involute of its
base circle, and construct it by the rectifica-
tion of that circle.

As in Fig. 37 any convenient small dis-
tance A G is taken on the dividers, and the
points on the curve located by stepping
along the circle and its tangent from any
given point to any desired point.

This method is so aecurate, if care is taken
to step accurately on the line, that the curve
seldom needs correction; but, when great ac-
curacy is required, correction can be applied
at the rate of one-thousandth of an inch to
the step, if the length of the step is regulated
by the diameter of the circle according to the
following table:

Diameter of Circle :

3o 2. 38 4 5 6 % 8 910 1 12
Length of Step:
A7 26 .87 46 53 60 .67 .13 .76 .79 .82 .84

For example: If the circle of Fig. 37 is

Construction by
points

Fiy' 37'

four inches in diameter, and the dividers are
set to .46 inch, the true curve, 4 ' &', will be
outside of the constructed curve 4 b d by .002
inch at b and .005 inch at d.

From the table we can form the handy and
sufficiently accurate rule that the length of
the step skould be about one-tenth of the di-
ameter of the circle, for a correction of about
one-thousandth of an inch per step.

Having thus found several points of the in-
volute, we can draw it in by hand, or by con-
structing a template, or by finding centers
from which approximately accurate circular
arcs can be drawn.

58.—THE STANDARD INVOLUTE TOOTH.

The tooth that is selected for general use,
and the one that is the best for all except a
few special cases and limiting cases, is the in-
terchangeable tooth having ap angle of ob-
liquity of fifteen degrees, an addendum of
one-third the circular pitch, or onedivided by
the diametral pitch, and a clearance of one-
eighth of the addendum.

The standard to which involute cutters are
made is slightly different, having an angle of
14° 28' 40", the sine of which is one-quarter,
and a clearance of one-twentieth of the circu-
lar pitch.

If the obliquity is 15° the smallest possible
pair of equal gears have 11.72 teeth, and

therefore 12 is the smallest gear of the inter-
changeable set.

The base distance, the distance of the base
line inside of the pitch line, is about one-fifty-
ninth of the pitch diameter, and one-sixtieth
is a convenient fraction for practical use.

The limit points of the whole set must be
determined by that of the twelve-toothed
gear, for any gear of the set may be required
to work with that one, and the working curve
of each tooth must end at the point thus de-
termined. As the limit point is always in-
side of the addendum line there must always
be a false extension on the tooth, the point
being rounded over outside of the limit point.

59.—THE INVOLUTE ODONTOGRAPH.

As the base line must always be drawn, it
is advisable, to save work, to locate the cen-
ters of the approximate circular arcs upon
that line. It is also necessary that the points
of the teeth shall be rounded over, to avoid

! interference.

These requirements made it
impracticable to compute the positions of the
centers, and an empirical rule had to be adopt-
ed instead.

Teeth were carefully drawn by the stepping
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method of (57) on a very large scale, one-
quarter pitch, giving a tooth eight inches in
length. These teeth were corrected for inter-
ference by giving them epicycloidal points
that would clear the radial flanks of the
twelve-toothed pinion.

Then the proper centers on the base line
were determined by repeated trials, and tooth
curves obtained that would agree with the
true involute up to the limit point, and still

clear the corrected point. The odontograph
table is a record of these radii, which are be-
lieved to be as nearly coprect as the given
conditions will permit.

It was found that separate curves were,
required for face and flank up to thirty-six
teeth, but that one curve would answer for
teeth beyond. )

It was found necessary to devise a separate
method for drafting the rack tooth.

60.—TEN AND ELEVEN TEETH.

Theoretically the twelve-toothed pinion is
the smallest standard gear that will have an
arc of action as great as the circular pitch,
but ten and eleven teeth may be used with
an error that is not practically noticeable.
Fig. 38 shows a pair of ten-toothed gears in

10 Teeth

action. They can be in correct action only
when the point of contact is between the two
interference points ¢ and 7, but they will be
in practical contact for a greater and sutfi-
cient distance

Fig. 38,

10 Teeth

Odontographic pair

61.—A BAD RULE.

There is a simple and worthless rule for|arc from a center on the base line, and with a
involute teeth that deserves notice only be- | radius equal to one-quarter of the pitch radius,

cause it is considerably in use.
It constructs the whole tooth curve, face and
flank, for all numbers of tceth, as a single

Fig. 89.
This is wonderfully convenient, but the
convenience is purchased at the expense of
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‘ordinary accuracy, for the rule is not even
approximately correct. It is bandy, and
nothing else. 4 :

Figs. 38 and 40 show the kind of teeth
that are constructed by this rule on gears of
ten and twelve teeth, where its error is the
greatest, and it is reasonable that the invo-
lute tooth should not be in great favor with
those who have been taught to draw it thus.

The error gradually decreases, until, for
more than thirty teeth, it is tolerably correct,
but it gives the rack with the straight, uncor-
rected working face that would interfere, as
shown at ¢, Fig. 40.

As it is tolerable only for thirty or more

teeth, and not good then, it may well be
dropped altogether.

A bad rule
Fig! 39,

62.—USING THE INVOLUTE ODONTOGRAPH.

INVOLUTE ODONTOGRAPH.

STANDARD INTERCHANGEABLE

(For Table of Pitch Diameters see 85.)

TooTH, CENTERS ON BASE J.aft./
I

Fo) A

{

Divide by the Multliuly by the
Diametral Pitch. | Circular Pitch.
Teeth.
Face Flank Face Flank
Radius. | Radius. | Radius. | Radius.
10 2.28 .69- 18 .22
11 2.49 .83 .76 Brd
12 2 51 .96 .80 .31
18 2.62 1.09 .83 .34
14 2.7 1.22 .87 .89
15 2,82 1.34 .90 .43
16 2.92 1.46 .93 A7
17 3.02 1.58 .96 .50
18 3.12 1.69 .99 .54
-19 3.22 1.79 . 1.08 57
20 3.82 1.89 1,06 .60
21 3:41 1.98 1.09 .63
Pl 3.49 R.06 1.1 .66
23 3.57 215 1.13 .69
24 3.64 .24 1.16 7
25 3.711 ?.83 118 .74
26 8.78 2.42 1.20 7
2 3.85 2.50 1.23 .80
28 3 9” 2.59 125 .82
29 399 2.6Y 1.27 .85 3
30 4.08 2.76 1.29 .88 i
81 4.13 2.85 1.81 .01 [RAl
82 4.20 2.93 1.34 .93
83 4.27. 301 1 36 .96
34 4.33 3.09 1.38 .99
35 4.39 316 1.89 1.01
4.45 3 23 1.41 1.03
4.20. 1.34 <
4.63 1.48
5 06 1.61
5.74 1.83
6.52 .07
.72 2.46
9.78 3.11
13.38 4.26
21.62 BE——
s Foee Red L7

SO R
’me Rad 2.10

W
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To draft the tooth lay off the pitch, ad- | from the pitch line to the addendum line
dendum, root, and clearance lines, and space | from centers on the base line.

the pitch line for the teeth, as in Fig. 40. ’ Set the dividers to the tabular flank radius,
Draw the base line one-sixtieth of the pitch | and draw in all the flanks from the pitch line
diameter inside the pitch line. to the base line.

Take the tabular face radiuson the divid-| Draw straight radial flanks from the base
ers, after multiplying or dividing it as re- line to the root line, and round them into the
quired by the table, and draw in all the faces | clearance line.

Fig- 40,

12 Teeth

Odontographic exumpic

63.—SPECIAL RULE FOR THE RACK.

Draw the sides of the rack tooth, Fig. 40, | quarter of the whole length of the tooth,
as straight lines inclined to the line of centers | from a center on the pitch line, and with a
¢ Oc¢ at an angle of fifteen degrees, best |radius of
found by quartering the angle of sixty de-{ 2.10 inches divided by the diametral pitch.
grees, .67 inches multiplied by the circular pitch.

Draw the outer half a & of the face, one- :

64,—DRAFTING INTERNAIL GEARS.

‘When the internal gear is to be drawn, the | altogether or rounded over to get the appear-
odontograph should be used as if the gear|ance of along tooth.
was an ordinary external gear. See Fig. 41.| The pinion tooth need not be carried in to
But care must be taken that the tooth of | the usual root line, but, as in the figure, may
the gear is cut off at the limit line drawn | just clear the truncated tooth of the gear.
through the interference point ¢ of the pin-| The curves of the internal tooth and of its
ion. The point of the tooth may be left off | pinion may best be drawn in by points (57),
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for the odontographic corrected tooth isnot| Care must be taken that the internal teeth
as well adapted to the place as the true tooth, | do not interfere by the point ¢ striking the
and no correction for interference is needed | point b, as they will if the pitch diameters
on the points of the pinion teeth or on the | are too nearly of the same size.

flanks of those of the gear.

Internal 20 Teers,

»
S

10 Teeth \ <

Internal involutes

ig. 41,

_65.—INVOLUTE GEARS FOR GIVEN OBLIQUITY AXD ADDENDA.

‘When the obliquity and addenda, as well | These tooth curves, when small, are best
as the pitch diameter and number of teeth in |drawn as circular arcs from centers on or
a gear are given, as is generally the case, we | near the base line, one center z for the flank -
can proceed to draft the complete gear as|from the base line to the pitch line, and
follows: | another center y for the face from the pitch

Draw the pitch line pl, Fig. 42, the ad- line to the addendum line. One involute
dendum lire a !, the root line r /, and the ¢ a m should be carefully constructed by
clearance line ¢ 7, as given. Draw the line of | points, and then the required centers can be
action [ @ at the given obliquity W 0 Z = K.  found by trial. One center and arc will
Draw the base line & 7 tangent to the line of | often answer for the whole curve, and it is
action. Find the interference point 7 by bi- only when great accuracy is required that
secting the chord 0. more than two centers will be necessary.

Draw the involutes Z @ m and ¢ a” m", Continue the flanks of the teeth toward
and @ @' will be the maximum arc of ac- center by straight radial lines, and round
tion. these lines into the clearance line.

If the given arcof action @ @’ is not great-| If the interference point for the gear that
er than the maximum arc, the pitch line is ' the gear being drawn is to work with is at 7,
to be spaced and the tooth curves drawn in | within the addendum line, the limit line 77
from the base line to the addendum line. 'wmust be drawn through it, and the points of
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Fig.\42,

Given obliquity land addendum

the teeth outside of this limit must be slightly
rounded over, to avoid interference (55).
If a fillet f is desirable, to strengthen the

tooth, it can be drawn in by the method
of (44).

- 66.—INVOLUTE GEARS FOR GIVEN NUM- °
BERS OF TEETH.

‘When the numbers of teeth and the pitch
lines are the only given details, the shape and
action of the tooth depends upon the obli-
quity, and the action will fail if the angle is
too small. The principal object is to deter-
mine the least possible angle that is permitted
by the given pitch diameters and numbers of
teeth.

Draw the pitch lines P L and p I, Fig. 43,
lay off the given pitch arc, as a straight line
¢ d or C D, at right angles to the line of
centers, and draw the line Cd or ¢ .D. Then
the required line of action will be ! ¢ pass-
ing through O at right anglestoc¢ D or C d.
The complete teeth can then be drawn in as
previously directed.

In this case, the obliquity W O Z being the
Jeast possible, the limit lines and the adden-
dum lines must coincide, but the addenda
way be reduced by increasing the angle.

Fig. £3.

WS N & ‘%7/7[//7////‘ |

0

e

Given numbers of teeth
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67.—INVOLUTE GEARS

‘When the pitch diameters and the obliquity
are the only given details, the lines €' I and
¢ ¢, Fig. 43, drawn from the centers at right
angles to the line of action, will determine
the limit lines, The maximum arc of action
a o may be found either by drawing the
involutes ¢ ¢ and I a', or by continuing the
line ¢ I to the line ¢ d, and measuring the

FOR GIVEN OBLIQUITY.

required distance ¢ d. Ani' arc of action less
than @ o' may be used.

The drawings should always be made to
a scale of ome tooth to the inch radius, so
that the pitch arc will be 2=. If the scale
is one tooth to the inch of diameter, the
pitch arc will be 7.

68.—INVOLUTE GEARS WITH L

The method of Fig. 43 and (66) will be
found to apply to any given numbers of
teeth not less than five, and to fail, if either
gear has but three or but four teeth. Any
external gear of five or more teeth will work
with any external gear of five or more teeth,
and with an internal gear of any number of
teeth unless stopped by internal interfer-
ence (64).

For example, if a pair having four and five
teeth, Fig. 44, is tried, the four-toothed
pinion will fail, because its tooth will come
to a point upon the line of action before it
has passed over the required pitch arc. The
difficulty cannot be remedied by increasing
the obliquity, for an angle that would allow
the four-toothed pinion to act would also
cause the five-toothed pinion to fail.

The practical limit is five teeth, but the
mathematical limit is the pair having the
fractional number 4.62 teeth, Fig. 45.

The four-toothed pinion will not work with
any external gear, not even with a rack, but

ESS THAN FIVE EQUAL TEETH.

theoretical action with an internal gear of the '
same size, coinciding with it.

44,
c

Fig.

¢

Fuailing case

it will work with an internal gear that has
“about ten thousand teeth, and is practically a
rack. It will work with any internal gear
having less than ten thousand teeth, and Fig.
46 shows it working with an internal gear of |
six teeth. Internal interference will prevent
its working with an internal gear of five
teeth. 3

The three-toothed pinion has no practical
action. It has a mathematical action with in-
ternal gears of 8.56 or less teeth, as shown
by Fig. 47, but as its limit is less than four, it
cannot work with any whole number. The
figure shows the interference at a.

The extreme mathematical limit may be
said to be the gear of 2.70 teeth, which hasa

4.62 X 4.62 limit for equal teetl
Fig. 45,
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69,—INVOLUTE GEARS WITH LESS THAN
FIVE UNEQUAL TEETH,

If we drop the condition that the pitch
line must be equally divided into tooth and
space arcs, we can make gears of three and of
four teeth work with external gears by the
method of (65). The failing case of Fig. 44
may be corrected by widening the failing
tooth until it acts, and narrowing the other
tooth to correspond, as shown in broken lines.

In this way a four-toothed pinion will
work with any number of teeth not less than
5.57, at which limit both gears have pointed
teeth, as in Fig. 48.

The three-toothed pinion will work with
any gear having 10.17 or more teeth. Fig. 49
shows the 8x10.17 limiting pair, and Fig. 50
shows the threetoothed pinion working
with an internal gear of five teeth. It will
not work with an internal gear of four teeth,
on account of internal interference, and there-
fore the combination shown by Fig. 50 may
be said to be the least possible symmetrical in-
volute pair. A

A gear of 2.70 teeth will work with a rack,
but there seems to be no way to make a
pinion of two teeth work under any circum-
stanccs.

5.57 teeth

4 teeth
Fiy. 48,
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Fig. 49,

10.17 te

3 X 10.17
Unequal tecth

la

70.—THE MATHEMATICAL LIMITS.

The above results for low numbered pinions
can be obtained by graphical means, but that
method is not accurate enough to determine
the limits with great precision, and in any
case is tedious and laborious.

The mathematical process is not particu-
larly difficult, and consists in repeated trials
with given formulze.

To determine the obliquity at which a
limiting pinion will be pointed on the line of
action, for tooth equal to space, we use the
formulee :

tan. h =~——.r~%—1~r}g~*—
i n(M+4-n)t-4=2
AN hn_
M+n 90 7

in which # is the given number of teeth in
the pointed gear, Fig. 51, M is the number
in the gear having the radius O M, and % is
the angle O ¢ I. Knowing =, we assume a
value for M, and from that find a value
for & by means of the first formula. This
value of %, tried in the second formula, will
give an error. A second assumption for M
will give a second error, and if the two
errors are not too great a comparison will
nearly locate the true value of M.

Knowing » and M, we find the obliquity

from
2w

M4+ n

ton. K =

a1
{4
0
C
Pointed|pinion
Fig. 51,
In this way the following values were de-
termined :
n M K
2.695 1.26 57° 49.
3. 1.51 54° 20
4. 2.86 42° 29'
4.62 4.62 34° 11’
5. 6.75 28° 8'
5.68 ® 0

Having determined the obliquity for the
pointed pinion, we can determine the least
number of teeth it will work with by means
of the following formule :

180 = 90

% tan. K+ tan. K
in which & is the required Tea%h\ll-_xgger.
, — N
e i asecid
l:‘..,..‘i;.VE vl 4 Xl

tan. B =
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In this way it was found that a gear of four
teeth will not work with a rack, but will work
with an internal gear having a number of
teeth not easily calculated with existing loga-
rithmic tables, but which is approximately
ten thousand. Also that a pinion of three
teeth will not work with an internal gear
having more than 3.56 teeth.

For unequal teeth we can use the formuls,

PR

fan- b= W am

2w
NN+ n)+4nr2

in which IV and » are the numbers of teeth
in the pair of pointed gears. By these form-
ulee the following results were determined,

tan. H =

n N K
2.605 o 0
3. 10,17 25° 27’
4, 5.57 33° 17
4.62 4462 34° 11

71.—MINIMUM NUMBERS FOR UNSYMMETRICAL TEETH.

If we drop the condition that the fronts
and backs of the teeth shall be alike we have
an unimportant case that is similar to that
already studied, but much more intricate.

If we carry this case to its extreme, and
adopt single acting teeth, we have no mini-
mum numbers at all, for any two numbers
of teeth will then work together. Fig. 52
shows one tooth working with three teeth,
and any other combination can be obtained.
The minimum obliquity for a given pair is
obtained, as in (66), by laying off the known
pitch arc, ¢ D, at right angles to O¢, and
drawing the line of action at right angles
to the line D e¢. The obliquity is also given
by the formula :

2w
N4n’
in which # and XV are the numbers of teeth.
‘When the obliquity is as great as is often

tan. K =

Unsymmetrical
tecth

the case for very low numbers of teeth the
action may be impracticable on account of
the great friction of approach (48). The
gears of Fig. 52 ‘will not drive each other on
the approach, unless the tooth surfaces are
very smooth,and the power transmitted is
almost nothing.

72.—MINIMUM NUMBERS FOR GIVEN ARC OF RECESS.

It has generally been assumed, although
no good reason for the assumption has ever
been given, that the minimum numbers of
teeth occur when the tooth of one of the
gears, Fig. 53, is pointed at the interference
point 7, and at the same time has passed
over an arc¢ of recess O a that is a given part
of the whole pitch arc a' a.

The solution is simple enough, graphically
by repeated trials, or by a formula that can
be applied directly without the usual process
by trial and error.

But, as involute teeth have a uniform ob-
liquity, there is no necessity for assuming

Fig.

i

53,

a definite arc of recess, and the condition on
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which the problem is based is unwarranted. | spur gears, in either external or internal con-
No real limit is reached, and the matter is|tact, in the Journal of the Franklin Institute
not worth examination at any length. The | for Feb., 1888, and it has received more atten-
problem is investigated, for both bevel and | tion than its slight importance entitles it to.

73.—EFFICIENCY OF INVOLUTE TEETH.

+

But little can be said in addition to the | the accepted idea that a great efficiency re-
_matter in (49), for béth forms of teeth in | quires a small obliquity.
common use are substantially equal with re-| It has been stated on high authority that
spect to the transmission of power. the involute tooth is inferior to the cycloidal
From the formula of (49), which is the | tooth in efficiency, but the statement is not
formula for the involute tooth, it is seen that | true. The difference in efficiency is minute,
the loss from friction is entirely independent | a small fraction of one per centum, but what
of the obliquity, and, therefore, all systems of | little difference there is is always in favor of

involute teeth are independent of the ob- | the involute tooth.
liquity in this respect. This is contrary to |

74.—OBLIQUITY AND PRESSURE.

The involute tooth action is in the direction |
of the line of action, and the obliquity is
a constant angle. It is variable only when |
the shaft center distance is varied. ‘}

As the pressure is always equal to the |
product of the tangential force at the pitch |

line multiplied by the secant of the obliquity, |

(26), it is constant for the involute tooth.

Involute teeth, therefore, have a steady ac-
tion that is not possessed by other forms;
particularly by forms which, like the cy-
cloidal, have a pressure and an obliquity that
varies between great extremes.

The involute odontoid, like all possible |
odontoids, can be formed by a tracing point |
in a curve that is rolled on the pitch line, and |
this roller is the logarithmic spiral with the |
tracing point at its pole, (32).

This feature is, however, more curious than
useful, and it is not of the slightest im-
portance in the study of the curve, Neither
is the operation of rolling the involute me-
chanically possible, for the logarithmic roller
has an infinite number of convolutions about

75.—THE ROLLER OF THE INVOLUTE.

its pole, and the tracing point would never
reach the pitch line.

The involute is often considered to be a
rolled curve, because it can be formed by
a tracing point in a straight line that rolls on
its base line; but, although that is the fact, it
is a special feature and has nothing to do
with the rolled curve theory. The rolled
curve theory requires that the odontoid shall
be formcd by a roller that rolls on the pitch
line only.
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76.—THE CYCLOIDAL SYSTEM.

If the curve known as the cycloid is;pitch than there is need of two different

chosen as the determining rack odontoid,
(31), the resulting tooth system will be
cycloidal. ’

It is commonly called the ¢ epicycloidal ”
system, because the faces of its teeth are
epicycloids, but, as the flanks are hypocy-
cloids, it seems as if the name ‘‘epihypo-
cycloidal ” would be still more clumsy and
accurate.

There is no more need of two different
kinds of tooth curves for gears of the same

kinds of threads for standard screws, or
of two different kinds of coins of the same
value, and the cycloidal tooth would never
be missed if it was dropped altogether. But
it was first in the field, is simple in theory, is
easily drawn, has the recommendation of
many well-meaning teachers, and holds its
position by means of ‘‘human inertia,” or

.{ the natural reluctance of the average human

mind to adopt a change, particularly a

i change for the better.

77.—THE CYCLOIDAL TOOTH.

The cycloid is the curve A that
is traced by the point p in the circle
C that is rolled on the straight pitch
line p 7, Fig. 54. The normal at
the point p is the line p ¢ to the
point of tangency of the rolling
circle and the pitch line.

The line of action is the circle { a,
of the same size as the roller C.

As no tangent arc can be drawn to
the line of action from the pitch
point O as a center, no terminal
point (18) exists. As there is no
point upon the line of centers from
which a circle can be drawn tangent
to the line of action, there will be no
cusps, (16) except on the pitch line.

The cycloidal tooth can be drawn
by the general method of (24), but
there are several easier methods
which will be described. There
are numerous empirical rules and
short cuts to save labor and spoil
the tooth, which will not be de-
scribed.

‘When the pitch line is of twice the diame-
ter of the line of action, the flank of the
tooth is a straight line. If the pitch line is
less than twice as large as the line of action,
the flank of the tooth will be under-curved,

The cycloidal tooth
Fig. 54

as shown by Fig. 55, and it is customary to
avoid the resulting weak tooth by limiting
the line of action to a diameter not greater
than half that of the smallest gear to be
used.
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78.—SECONDARY ACTION,

The secondary line of action (21) is
a circle, Fig. 56, differing from the
pitch circle by the diameter of the
primary line of action, either inside or
outside of it.

When the internal secondary line of
action of an internal pitch line coin-
cides with the external secondary line
of action of its pinion, there will be
secondary contact between the gears,
the face of the gear working with the
face of the pinion at a point of contact
upon the combined secondaries. Fig.
57 shows this for the eycloidal tooth,
the two faces working together at the
point @. As both secondaries are cir-
cles they must coincide, and the sec-
ondary action will be continuous.

‘When the teeth are also in contact at
b on the primary line of action, there
will be double contact.

Secondary 1

Fig.

nes of action

56,

Undercurved flanks
Fig. 55.
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Cycloidal Interference.

79.—INTERNAL

If the secondary lines of action do not
come together the teeth will not touch each
other at all, but if that of the gear is smaller
than that of the pinion the teeth will cross
each other and interfere. The line ¢, Fig.
57, is the face of the gear tooth, and thé line
d is the face of the pinion tooth baving a
primary line of action cqual to the difference
between the pitch lines. The secondary line
of each gear coincides with the pitch line of
the other, and the faces interfere with each
other the amount shown by the shaded
space.

The only remedy for internal interference
is to reduce the diameter of the primary line
of action to half the difference between the
diameters of the pitch lines, or else to leave
off one of the faces of the teeth.

The discovery of the law of internal cycloid-
al interference is due to A. K. Mansfield,
who published it in the ‘“ Journal of the
Franklin Institute” for January, 1877. It
was afterwards re-discovered by Professor
MacCord, and most thoroughly applied and

illustrated in his ‘* Kinematics.”

‘When interference is avoided by omitting
one of the faces of the teeth the primary line
of action may be enlarged, but it must not
then be larger than the difference between
the pitch diameters.

Fig. 58 shows on the right the action |
when the face of the gear is omitted, and on
the left the action when the face of the pin-
ion is left off. The teeth will just clear each
other, each one touching the other at a single
point ¢ in its pitch line.

As the contact at @ is not a point of practi-
cal action, care must be taken that the arc of
action at the primary line of action isas
great as the circular pitch, for otherwise, as
in the figure, the gears will not bein continu-
ous primary action.

The rule for internal interference, simply
stated, is that the diameters of the pitch lines
must differ by the sum of the diameters of
the lines of action if the teeth have both
faces and flanks, and by the diameter of the
acting line of action if the face of either gear
is omitted. For the standard interchangeable

system the gears must differ by twelve teeth

INTERFERENCE.

Secondary
action

e =~ !
\ / % Internal
AN ( \ interference
N\ 7
\\ \ " 1 <
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Fig|58.

if both teeth have faces, and by six teeth if
one face is omitted.

Fig. 62 shows the secondary contact in the
case of a standard internal gear of twenty-
four teeth working with a pinion of twelve
teeth, and it is to be noticed that the teeth
nearly coincide between the two points of
contact. Where there is secondary contact
the teeth practically bear on a considerable
line instead of at a point.
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80.—THE STANDARD TOOTH.

The standard tooth (42), selected for the
cycloidal system, is by common consent the
one having a line of action of half the diame-
ter of a gear of twelve teeth, so that that
gear has radial flanks. .

The standard adopted by manufacturers of
cycloidal gear cutters is that having radial
flanks on the gear of fifteen teeth, but it is

not and should not be in use for other pur-|.

poses. If any change is made, it should be
made in the other direction, to make the set
take in gears of ten teeth.

It must be borne in mind that the standard
adopted does not limit the set to the stated
minimum number of teeth, but that it sim-
ply requires that smaller gears shall have
weak under-curved teeth.

81.—THE ROLLED CURVE METHOD.

It happens in this case, and in this case
only, that the rolled curve method, which
theoretically applies to all odontoids, can
be actually put into practical use, for the
generating roller is here the circle, the sim-
plest possible curve.

As in Fig. 59, roll a circle of the .dlameter
of the circle of action upon the outside of the
pitch line for the faces, and upon the inside
for the flanks, and a fixed point in it will
trace the curve.

The method can be used by actually con-
structing pitch and rolling circles, but the
same result can be reached more easily and
quite as accurately by drawing several cir-
cles, and then stepping from the pitch point
along the pitch line, and back on the circles
to the desired point. If the length of the

Construction by rolling

Fig.59.

step is not more than one-tenth of the diam-
eter of the circle, the error will not be over
one-thousandth of an inch for each step.

This method is the best one to adopt, ex-
cept for the standard tooth.

82.—THE THREE POINT ODONTOGRAPH.

It is a simple matter to draw the tooth
curve by means of rolling circles, but such
a method requires skill on the part of the
draftsman. It is, moreover, nothing but a
method for finding points in the curve for
which approximate circular arcs are then
determined.

The ‘three point” odontograph is sim-
ply arecord of the positions of the centers
of the circles which approximate the most
closely to the whole curve of the standard
tooth, The positions of two points, @ at the
center of the face or of the flank, Fig. 60,
and b at the addendum point or root point
of the curve, were carefully computed, and
then the position of the center C of the
circle which passes t}l);gugh these two

points and the pitch point O, was calcu-
lated. The circle that passes through these
three points is assumed to be as accurately
approximate to the true curve as any pos-
sible circular arc can be. -

The odontograph gives the radius ‘‘rad.”
of the circular arc, and the distance ¢ dis.”
of the circle of centers from the pitch line,
for the tooth of a given pitch, and their
values for other pitches are easily found by
simple multiplication or division.

The advantages of this method lie in the
facts that the desired radius and distance
are given directly, without the labor of find-
ing them, and that as they are computed
they are free from errors of manipulation.
In point of time required, the advantage is
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Cycloidal Odonio graph.

with the odontograph in the ratio of
ten to one.

The greatest error of the odonto-
graphic arc, shown greatly exaggerated
by the dotted lines, is at the point ¢ on
the face, and it is greater on a twelve-
toothed pinion than on any larger gear.
For a twelve-toothed pinion of three-
inch circular pitch, a large tooth, the
actual amount of the maximum error is
less than one one-hundredth of an inch,
and its average for eight equidistant
points on the face is about four-thousandths
of aninch. Any error that is greater than

Line of Slank eenters 5

Three point
odontograph
Fig., 60
that stated will be due to manipulation, and
not to the method.

83.—USING THE ODONTOGRAPI.

To apply the odontograph to any particu-
lar case, tirst draw the pitch, addendum,
root, and clearance lines, and space the piich
line, Figs. 60 and 61.

Then draw the line of flank centers at
the tabular distance ‘“dis.” outside of the
pitch line, and the line of face centers at the

distance ‘“dis.” inside of it. Take the face
radius ‘‘rad.” on the dividers, and draw in
all the face curves from centers on the line
of face centers; then take the flank radius
‘““rad.” and draw all the flank curves from
centers on the line of flank centers.

THREE POINT ODONTOGRAPH.
STANDARD CYCLOIDAL TEETH.

INTERCHANGEABLE SERIES.
From a Pinion of Ten Teeth to a Rack.

For One Z] For One Inch
DIAMETRAL PITCH. CIRCULAR PITCH.
NUMBER OF For any other pltch divide by For any other pitch multiply by
TEETH that pitch. 4 that pitch.
IN THE GEAR. ]
Faces. Flanks. Faces. Flanks.

Exact. | Intervals. Rad. Dis. Rad. t Dis/ Rad. T'is. Rad. Dis.
10 10 1.99 .02 — 8.00 4./00 .62 .01 —2.56 | 1,27
11 1 2.00 .04 —11.05 6.50 .63 .01 —3834¢ | 207
128 12 2.01 .06 @® aigie ) .64 .02 @ @
13 13—14 2.4 07 15.10 /.9.48 .65 02 4.80 | 3.00
1 15—16 2.10 .09 7.86 3 46 .67 .03 2.50 | 1.10
17 17—18 2.14 + 1 6.13 2.20 .68 .04 1.95 | .70
20 1921 220 13 5.12 1.57 .70 .04 1.63 2 .50
23 224 2.26 5 4507 113 72 05 1.43 136
P14 25—29 2.33 .16 4.10 .96 .74 .05 130 .29
83 30- 36 2.40 .19 3.80 R (] .06 . 41.20 .23
2 37—48 2.48 22 3.52 .63 79 07 1z 20
58 49—72 2.60 .25 3.33 .54 33 .08 1.06 17
97 78—144 2.83 .28 3.14 .44 .90 .09 1.00 .14
200 145—300 2.92 .31 3.00 .38 .93 .10 .95 12
@® Rack 2.96 .84 2.96 .34 .94 el .94 A1
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Cycloidal Odontograph.

The table gives the distances and radii if
the pitch is either exactly one diametral or
one inch circular, and for any other pitch

multiply or divide as directed in the table. trates secondary action and double contact.

Fig. 61 shows the process applied to a|It also shows the actual divergence of the
practical case, with the distances given in | Willis odontographic are from the true
figures. curve,

43

Fig. 62 shows the same process applied to
an internal gear of twenty-four teeth work-
icg with a pinion of twelve teeth. It illus-

of __ Jlank Centers

20 teeth,

Odontographic e;m;mp le

Fig. 61,

24 teeth

12 teeth

Internal teeth !

Fig. 62,
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Willes Odontograph.

84,—THE WILLIS ODONTOGRAPH.

This is the oldest and best known
of all the odontographs, but it is
inferior to several others since pro-
posed, not only in ease of operation,
but in accuracy of result.

To apply it, find the pitch points
@ and ¢’ half a tooth from the pitch
point O, Fig. 63, draw the radii @ ¢
and a’' ¢', lay off the angles ¢ @ b and
¢ a' b, both 75°, and lay off the
distances @ b and &' ' that are given
by table.

The centers  and b’ thus found are
the centers of circular arcs that are
tangent to the tooth curves at d
and d'. The dividers are set to the
radius & O or &' O to draw the curves.

The Willis arc touches the true curve only
at the pitch point O, and its variation else-
where is small, but noticeable. On the face
of the tooth of a twelve-toothed pinion of
three inch circular pitch, its error at the ad-
dendum point is four-hundredths of an inch,
and it will average three times that of the
three point method (82). The error is shown
by Fig. 62.

The greatest error of the method is due to
manipulation. The angle is usually laid off
by a card, and the center measured in by a
scale on the card. The circle of ceoters is

The Willis odontograph
Fig. 63,

then drawn through the center, and unless
great care is used the chances of error are

great.
180

The angle 90°—cad = W == and -the
: R SR c AN s q
distance a b = T stn. W, in which s

is the number of teeth in the gear of the
same set which has radial flanks, usually
12; ¢ is the circular pitch, and ¢ is the num-
ber of teeth in the gear being drawn. The
positive sign is used for the face radius, and
the negative for the flank radius.

85. — KLEIN’S CO-ORDINATE ODONTOGRAPH.

This is a method of finding the positions
of several points on the tooth curve by
means of their co-ordinates referred to axes
through the pitch point. Any point on the
curve is found by laying off a certain dis-
tance on the radius Y, Fig. 64, and then
a certain distance at right angles to it, the
distances being given by a table for a certain
standard tooth.

As many points as required are found by
this method, and then the curve is drawn in
by curved rulers, or by finding the approxi-
mating circular arc.

This odontograph is to be found in Klein’s
Elements of Machine Design.
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of Action.

86.—THE TEMPLE

Prof. Robinson’s templet odontograph is |
an instrument, not a method. It isa piece)
of sheet metal, Fig. 63, having two edges
shaped to logarithmic spirals. It is laid!
upon_the drawing, according to directions |
given in an accompanying pamphlet, and |
used as a ruler to guide the pen.
fastened to a radius bar, and swung on the
center of the gear, to draw all the teeth.
See Van Nostrand’s Sciénce Series, No. 24,
for the theory of the instrument in detail.

It can be |

T ODONTOGRAPH.

I t
The templet odontograph
I 'ig. 65,

|

87.—0BLIQUITY

‘When the point of contact between two
teeth is at the pitch point O, Fig. 66, the
pressure between the teeth is at right angles
to the line of centers, but, as the point of con-
tact recedes from the line, the direction of
the pressure varies by an angle of obliquity
which increases from zero until the point K,
at the intersection of the addendum circle
with the line of action, is reached.

The angle K = K O W, of the maximum
obliquity, can be found by solving the trian-
gle C¢ K, and for the standard set we have,

_2n17
08, 2 K = g—nt{-.fS’
in which » is the number of teeth in the

gear.

For the smallest gear of the set, the one
having twelve teeth, K is 20° 15', and for the
rack it is 24° 5', so that it will always be be-
tween those two limits for external gears,
and greater forinternal gears.

The friction between two gear teeth in-
creases with the angle of obliquity, but not

OF THE ACTION.

Obliquity
Fig. 66,

in direct proportion. With the involute
tooth the work done while going over a cer-
tain arc from the line of centers is propor-
tional to the square of the arc, and for
cycloidal tecth the increase with the arc is
still more rapid. Therefore it is the maxi-
mum obliquity of the action that principally
determines the injurious effects of friction.

88.—THE CU’

‘When the number of teeth in the gear is
less than that in the gear having teeth with
radial flanks, the flanks will be under-curved,
and when too much so they cannot be cut
with a rotary cutter. The teeth of Fig. 55
could not be cut with a rotary cutter beyond
the points where the tangents to the two
sides are parallel.

The limit is reached when the last point

TTER LIMIT.

that is cut by the rotary cutter is also the
last point that is touched by the tooth of the
rack in action with it, not allowing for in-
ternal gears.

The diameter of the gear when this Iimit
is reached is found by the formula,

D=2 —

[
o | ey
28in, a
iy
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Limiting Cycloidal Teeth.

in which D is the diameter of the gear, d is
the diameter of the circle of action, ¢ is the
circular pitch, and @ is the addendum

For the common addendum of unity
divided by the diametral pitch this may be

put in the shape, "
n=8— . ST T
28in. 1/_2_
o

in which 8 is the number of teeth in tie
radial flanked gear, and % is the number in
the required cutter limit.

For the common series, where s =12, we
have n = 8.26; and for the cutter standard of
8 =15, we have n == 10.80, so that cutters
could easily be made to cut gears with Iess
than s teeth.

89.—RADIAL FLANKED TEETH.

‘When the rolling circle for
the faces is of half the diam-
eter of the pitch iine of the
mating gear, the flanks of
both gears will be straight
radial lines, as in Fig. 67.

Such gears are fitted to each
other in pairs, and are not
interchangeable with other
sizes. Their teeth are more
easily made than those of
standard gears. The maxi-
mum obliquity is less, but
the strength of the teeth is
also less than usual. There
is no reason for making such

Radial flanks
Fig, 67,

teeth in preference to the standard, al-|difficult to devise a form of tooth so whimsi-
though, for that reason probably, they are |cal that it would find no one to adopt and

used to a considerable extent,

It would be | use it.

y
[ ~A Y
i ¢ —

90.—THE LIMITING NUMBERS OF TEETH.

When the number of teeth in a driving
gear is small, the point p, Fig. 68, of its
pointed tooth may go out of action by leav-
ing the line of action O g before a certain
definite arc of recess O  has been passed over,
and the problem is to find the smallest num-
ber of teeth in the following gear that will
just allow the given recess.

This question, which is not a particularly
important one, is discussed at length, and
applied to both bevel and spur gears, in either
external or internal contact, in an article in
the “*Journal of the Franklin Institute” for
Feb., 1888, and we will here consider only
the case of the common spur gear.

The recess O r is given as @ times the cir-
cular pitch, and the thickness @ r of the
woth is given as b times the same. The
diameter of the circle of action is ¢ times

Limiting tooth
F iga 68,

that of the pitch line of the fo]loiving gear.
The number of teeth in the driving gear is d,
and the number in the following gear is f.
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M is an auxiliary angle equal to ?—’—qu ‘}, and

W isan angle -69(4— —g—)

Then the required number f can be found
by a process of trial and error with the
formula,

_sin. (M + W) d
wn. W gf

For an example, let the recess be 4 of the
pitch, the tooth equal to the space, and the
flanks of the follower to be radial. Let the
problem be to find a follower for a driver of
seven teeth. Thisgives a =4, =14, ¢ =14,
d =1, and the formula becomes

(540 + 25° 45 )
sin. 25° 43’

=0k

sen. 1%
- = —1

7 =10

If we put f at random, at 20, we shall
get, +.184=0. Next, trying f = 10, we
get, — .132 =0, and the opposite signs show
that f is between 20 and 10. Trying 12 the
result is positive, and for 11 it is negative,
showing that 12 is the required value of f.
That is, 7 teeth will not drive less than 12
teeth with radial flanks, unless it is allowed
an arc of recess greater than 4 of the pitch.

For another example, test MacCord’s value
of 382 as the least driver for a follower of
10 teeth, when recess equals the pitch and
the follower has radial flanks. Tryingd =
382, the error is negative ; for 383 it is also
negative, but for 384 it is positive, and there-
fore the latter is the true number.

Extensive and sufficiently accurate tables of
limiting values are given by MacCord in his
“ Kinematics.”

5. THE PIN TOOTH SYSTEM.

91.—THE PIN

The theory of the pin gear tooth isen-
tirely beyond the reach of the ‘¢ rolled curve”
method of treatment, and, therefore, writers
who have adopted that method have had to
depend more on special methods adapted to
it alone than on general principles. The re-
sult is that its properties are often given in-
correctly, or with an obscurity and complica-
tion that is bewildering to the student.
Although the tooth is one of the oldestin
use, its theory is so difficult that its defect
was not discovered until within a very few
years, by MacCord, about 1880, and it was

GEAR TOOTH.

not until it was examined by means of iis
normals that a remedy for that defect was
discovered. ;

By treating the curve on the general prin-
ciples here adopted, as a special form of the
segmental tooth, it can be studied with ease,
and its peculiarities developed in a complete
and satisfactory manmer. The method, in
general terms, is to find the conjugate tooth
curve of the gear, for the given circular tooth
curve of the pinion, and it presents no new
features or difficulties.

92.—APPROXIMATE FORM OF PIN TOOTH CURVE.

Considered roughly, but accurate enough | any convenient number of circles having
for teeth of small size, the form of the |centers on the epicycloid.

gear tooth b, Fig. 69, is a simple parallel

The action is practically all on one side of

to the epicycloid E, formed by the center ¢| the line of centers, the face of the gear tooth
of the pin, and is to be drawn tangent to | working with the part of the pin-that is
- SR %

( > oF
‘(r \'v"?"
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Zhe Pin Tooth.

inside of its pitch line. It is, therefore, all
approaching action when the pin drives and
all receding action when the gear drives, and
it is best to avoid the increased friction of
the approaching action by always putting the
pins on the follower.

Lantern wheel

Fig, 70,

Pin gearing
F iﬂa 69.

93.—ROLLER TEETH.

The pin gear is particularly valuable when
the pins can be made in the form of rollers,
Fig. 70, for then the minimum of friction is
reached. The roller runs freely on a fixed
stud, or on bearings at each end, and can be
easily lubricated.

The friction between the tooth and pin,
otherwise a sliding friction at a line bearing,
is, with the roller pin, a slight rolling fric-
tion, and the sliding friction is confined to

the surface between the roller and its bear-
ings.

‘When the roller pin is used there can be
no increased friction of approach, and the
pin wheel can drive as well as follow.

For very light machinery, such as clock
work, there is no form of tooth that is su-
perior to the roller pin tooth, and, with the
improvement to be explained, there is no
better form for any purpose.

94.—CUTTING THE PIN TOOTH.

The pin gear tooth can be very easily and
accurately shaped by mouuting a revolving
milling cutter M, Fig. 71, of the size of the
pin, upon a wheel 4, and causing it to roll
with a wheel B, carrying the gear blank G.
The mill will shape the teeth to the correct
form.

)
B!
o
)
i
Pin gear cutter

Fi_([. 710

95.—PARTICULAR FORMS OF PIN GEARS.

When the pins are supported between |form of clock pinion.

The pins are some-

two plates, as in Fig. 70, the wheel is called | times called ‘‘ staves,” and are sometimes
a ‘‘lantern” wheel, and is the most common | known as ‘‘leaves.”



Defect of Pin Tooth.

49

‘When the diameter of the pin is
zero, Fig. 72, it being merely a
point, the correct tooth curve will
be a simple epicycloid.

‘When the pin gear is a rack, Fig.
78, the tooth bears on the pin only
at a single point on the piich line,
and the action is therefore very de-
fective unless the roller form of pin
isused. This form is more properly
a particular case of the involute tooth,
for the shape of the pin is immaterial if it does
not interfere with the gear tooth. The circle
with center on a straight line is not an
odontoid at all, for, although it coincides as
a whole and for a single instant with a cir-
cular space in the gear, it has no proper and
continuous tooth action.

The gears of Fig. 74, sometimes classed
with pin gearing, are not pin gears at all.
An epicycloidal face working with a radial
flank is a very common combination.

‘When the diameter of the pin wheel is half
that of the internal gear with which it works,
we have the combination of Fig. 75. The
pins may run in blocks fitted to the straight
slots.

Point gears

Fig. 72.

Pin rack

Radial pin teeth
Fig, 75,

Not pin gears
Fig, 74,

96.—CORRECT FORM AND DEFECT OF PIN TEETH.

Although the pin tooth is apparently of a
very simple form, a close examination will
show that it is really quite complicated, and
that its practical action is incomplete and de-
fective.  There isa cusp (16), and conse-
quent failure in the action, that is of small
importance when the teeth are small, but
which is troublesome when they are large.
This defect need not be considered when
pinions for clock work arein view, but if
pin wheelsare to be used for large machinery
and heavy power it is important.

If the pin e, Fig. 76, is examined as an
odontoid, it will be seen that it is a true
odontoid only within the line 7eZ that is
tangent to the pitch line at the center of the
pin, for all normals, as pe, from points out-
side of that line, intersect the pitch line at
the center.

Drawing the normals, which are radii of
the pin, we can easily construct the line of

action and the conjugate tooth curve. The
line of action, commencing at the pitch point
0, Fig. 77, is there tangent to the line eOm,
which passes through the center ¢ of the pin,
curves toward OZ, the tangent to the pitch
line at the pitch point, and touches it at the
point %, at the distance Ok, equal to the ra-
dius of the pin. From the point % it follows
the circle 2J %' to the point %', thence return-
ing to the pitch point and forming the loop
OKL. :

From the center ¢ of the gear, Fig. 78, we
can always draw a tangent arc FN to the
line of action at the point #, and therefore
there will always be a cusp at ¥ on the
tooth curve. The tooth curve must end at
the cusp, and, to avoid interference, the pin
must be cut off at the arc W, drawn through
the point ¥, from the center C.

The whole pin is geucrally used, and
when it is a roller it must be whole, and
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then interference can be avoided only by
cutting away the tooth curve until it will al-
low it to pass.

The complete tooth curve has a first
branch NOM, Fig. 78, which is the only
part that can be used, an inoperative second
branch from the first'cusp N to the second
cusp @ on the arc K¢, and thence an inopera-
tive circle OR(Q)'.

Line of action

Fig' 770

Fig. 76.

Correct action

Iig, 78,

97.—AN IMPROVED PIN TOOTH.

The cause of the broken action of the pin
tooth is the cusp, which is always present
when the center of the pin is on the pitch
line, and it can be avoided by placing the
center back, as in Fig. 79, to such a distance
inside the pitch line that the cusp does not
occur.

‘When the center of the pin is inside the
pitch line, the whole circle of the pin is a true
odontoid, and the distance en of the center
from the pitch lire can be so chosen that
the cusp is not formed.

This distance does not appear to be sub-
ject to any simply stated rule, but in the
single case of the pin rack it is determined by
the formula:

o Y
DRI
in which « is the required distance en, D is
the diameter of the gear, and d is the diame-
ter of the pin.

If the angle CeO, Fig. 79, is not less than
a right angle, there will be no cusp on the

Fig. 79,

Qc

Corrected pin gear

gear tooth if the diameter of the gear is
greater than that of the pin.



6. TWISTED, SPIRAL, AND WORM  GEARS.

98.—STEPPED GEARS.

When two or more gears, Fig. 80, of the
same pitch diameter, are placed in contact on
the same shaft, they will evidently act as in-
dependently of each other as if they were
some distance apart, while they appear to act
together as a single gear with irregular teeth.
They are known as *° Hooke’s Gears.”

1t matters not how many different kinds or
numbers of teeth the several gears may have,
or in what order they are arranged, if those
that work together on opposite shafts are
matched. They may be given an irregular
arrangement, as in Fig. 80 ; a spiral arrange-
ment, as in Fig. 81 ; a double spiral, or ‘‘ her-
ring-bone ” arrangement, as in Fig. 82; a cir-
cular arrangement, as in Fig. 83, or other-
wise at will.
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Fig.81. Fig. 82. Fig.83.

99, —TWISTED TEETH.

The thickness of the component gears has |
nothing to do with the theoretical action of |
the stepped gear as a whole, and therefore
we can have them as thin as required. If the
thickness is infinitesimal the component
character of the gear is not appareat, and it
is known as a twisted gear, Fig. 84.

‘When the teeth are twisted there .may al-
ways be one or more points of contact at the
line of centers, where the theoretical fric-
tion is nothing, and therefore they are par-
ticularly well suited for rough cast teeth.
Furthermore, if the teeth are badly shaped

Twisted arrangement

Fig. 84,
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Twisted Teeth.

the twisted arrangement tends to distribute | are asways two oblique bearings between the

the errors so that they are not as noticeable.

teeth, acting in opposite directions, as in the

The oblique action of twisted tecth tends |herring-bone arrangement.

to produce a longitudinal motion of the
gears upon ftheir shafts, which must be
guarded against. This end thrust may be
avoided by so forming the twist that there

The twisted form of tooth is seldom found

|in practice, except in the form of spiral and
| double spiral teeth, for the difficulty of form-

ing other twists is great.

100.—EDGE TEETH.

If the twist of the twisted tooth is such
" that some part of the twist at the pitch cylin-
der is always upon the line of centers, the
gears will always be in action whether
there are full teeth or not, and they will
work with theoretical accuracy if they are
reduced to edges in the pitch cylinder, as in
Fig. 85.

The friction of the edge tooth is theoret-
ically nothing, as there is no sliding of the
teeth on each other. There is but one point
of contact, and that is always upon the line
of centers; but if any power is carried the
pressure will soon destroy the single point of
contact.

If the edges are thick the action will be
stronger, but there will still be but one point

of contact.

101.—INVOLUTE

When the form of the tooth is the invo-
lute, and the twist is such that some part of
it on the pitch cylinder always crosses the
line of centers, the teeth will remain in con-
tact, when the parallel axes are separated,
until their points are separated, although the
contact may sometimes be very short or even

TWISTED TEETH.

point contact. The straight involute tooth
will fail as soon as the arc of contact is less
than the tooth arc. - ° .

Twisted involute teeth are therefore partic-
ularly valuable for gears for driving rolls, or
for other purposes where the shaft distance

is variable.

102. —FORMATION OF

When the twist is a uniform spiral there
are convenient methods for shaping the
tooth, but the twisted tooth in general can be
formed only. by the processes of (27), (28) and
(29), and then only when the twist is not
very irregular.

The principle of the linear planing opera-

THE TWISTED TOOTH.

tion of (29) is the same as for the straight
tooth, but the blank must be rotated accord-
ing to the form of the twist adopted, while
the tool is cutting. The twisting motions
are independent of the feeding motion, and
are repeated at every stroke.

103.—SPIRAL GEARS.

The spiral gear is that particular form of
the twisted gear which has uniformly
twisted teeth, and it is, therefore, a particu-

lar form of the common spur gear. It has
such peculiar properties that it is often

classed by itself as a separate form of tooth.
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The normal spiral section is that section of
the teeth of the spiral gear that is made by a
spiral surface, called a helix, that is at right
angles with the teeth. It is the equivalent,
for spiral teeth, of the normal section of the
spur gear that is made by a plane, or of the
normal section of the bevel gear that is made
by a sphere. As with spur and bevel gears,
the action of the teeth on-each other should
be studied upon this normal surface. As the
helix cannot be represented upen a plane
figure it must be imagined, and as it is ob-
scure it requires close attention.

Any two spiral teeth will work together,
provided their normal spiral sections are con-
jugate (24), and, as the shape of the normal
spiral section is independent of the angle of

the spiral, two spiral gears will work to-
gether, approximately, on shafts that are
askew. This will be seen more clearly if the
spiral section is imagined to be a flexible
sheet-metal toothed helix, which can be coiled
about the shaft of the gear, for it can evi-
dently be coiled close or loose without affect-
ing the shape of its teeth. If coiled close,
with a short lead, it runs nearly at right
angles to the shaft, and the gear approxi-
mates to the spur gear, while if the lead is
long the gear approximates to the screw.

As the diameter of the spiral gear increases,
the teeth straighten, and when the diameter
is infinite and it is a rack, they are straight
and in no way different from those of a com-
mon rack.

104.—THEORY OF SPIRAL TOOTH ACTION.

The Willis theory of the action of spiral
teeth is the one generally accepted, but it is
not correct. It assumes that the action be-
tween the gears is upon a section by a plane
through the axis of the gear and the common
normal fo the two axes, and that the section
of the two gears made by the plane act to-
gether like a rack and gear.

When the axes are at right angles, and the
spiral angle is great, this theory is apparently
correct, the error being practically imper-
ceptible, but, as the axes become more nearly
parallel, the error is more apparent, until,
when they are parallel, the error is plain
enough. Willis applied his theory to worms
and worm gears, on axes at right angles, and
evidently did not consider the spiral gear in
general.

The action between spiral teeth is not upon
the axial section, and it is not that of a rack
and gear, but when there is any action at all
it is upon the normal spiral section. See the
AMERICAN MacHINIsT for May 19th, 1888.

‘When the axes are parallel the normal
spiral sections, as well as the sections made
by a plane normal to the axes, are conjugate,
and therefore the action is correct and along
a line of action. The action is also continu-
ous when the axes intersect and the gears are
bevel gears.

When, however, the axes are askew, the
normal spiral sections are not necessarily con-
jugate, for they coincide only on one line, the
common normal to the two axes. Therefore,
there is no continuous tooth contact, except
in one particular case, the teeth being in con-
tact only for an instant as they pass the
normal.

The special case for which spiral teeth on
askew axes have continuous tooth contact, is
that case of the involute tooth when the base
cylinders are tangent and the gears become
spiraloidal skew bevel gears. See (175) and
(176). In that particular case the teeth have a
sliding conjugate action on each other. As
the spiraloidal gear is fully described in its
place, it will not be further considered here.

This theory is corroborated by experiment-
al gears made for the Brown & Sharpe Man-
ufacturing Company, for whom Mr. O. J.
Beale, to whom the theory of the spiral
gear is much indebted, made a pair of theo-
retically perfect spiral gears, exactly alike,
with a spiral angle of 45°, working on shafts
at right angles, and of such a large size that
the action of the teeth could be plainly ob-
served. See Figs. 88 and 90.

Beale’s gears cannot be made to run to-
gether properly at any shaft distance, but
if their ends are brought to the common
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normal, and their base cylinders are in con-
tact, they are skew bevel gears and show the
action required by Olivier’s theory.

But, although the action of spiral i gear
teeth is intermittent, and their contact is the-
oretically perfect at one instant only, when

they are passing the common normal, they
are very nearly in contact all the time and
the action is practically perfect. Spiral teeth
of ordinary sizes work together with a re-
markably smooth action.

105.—FORMATION OF

As the spiral rack has an ordinary straight
tooth, we can conveniently derive the spiral
tooth in general from it by a method that is a
form of the molding method of (27) for spur
gears, }

If a plane is moved in any direction upon a
cylinder it will move it, as if by friction,
with a speed that depends upon the direction
of the motion. If we imagine the same re-
sulting motion between the plane and the
pitch cylinder, and assume that the plane is
provided with hard and straight teeth run-
ning in any direction, it will mold the plastic
substance of the cylinder and form spiral
teeth upon it. All spiral teeth formed by the
same rack will have normal spiral sections
that are approximately conjugate to each
other, and they will work together inter-
changeably.

This process may be put into practical
shape by a modification of the process of (28)
for spur gears, by substituting a planing
tooth for the molding rack tooth. The tooth
has the shape of the normal section of the
rack, and, as it is reciprocated at an angle
with the axis of the gear blank being shaped,
both the tool and the gear blank receive the
motion of the plane and pitch cylinder. The
cutting face of the tool is normal to the direc-
tion of its motion, which motion is tangent
to the direction of the tooth spiral.

The linear process of (29) may be used, the
plane of Fig. 20 representing, approximately,
the normal spiral section of the gear. Thus,
if the planing tool or the equivalent milling
cutter receives a motion as if in a plane roll-
ing upon the base cylinder, the involute tooth

will be produced.

THE SPIRAL TOOTH.

The spiral tooth may be formed by the
linear planing process of (29), directly ap-
plied on the principle that the spiral tooth is
a twisted spur tooth. The planing tool re-
ceives a planing motion in the direction of
the axis of the gear blank, and both tool and
blank receive the feeding rolling motion that
would produce the spur tooth of the section
that is normal to the axis. In addition, the
blank receives a motion of rotation while the
tool moves, that is repcated for every troke
of the tool. The cutting edge of the tool is
set normal to the axis of the gear.

The spiral tooth may also be formed by a
tool that is formed to the true shape of some
section of the tooth, preferably its normal sec-
tion, and which is guided in the tooth spiral.
This is the process used to shape a worm, the
tool being guided by a screw-cutting lathe.

The process generally used to mill the
teeth of the spiral gear is the equivalent of
the operation last described. The milling
cutter is shaped to the normal section of
the tooth space, and is guided in the tooth
spiral by a special feeding device that ro-
tates the blank while the cutter is working
in it.

Of these processes the planing process of
(28) is the best, as it produces the tooth with
theoretical perfection, and because all gears
formed with the same tool are conjugate and
interchangeable. But the screw-cutting and
milling processes are most in use, for the
reason that they are more expeditious and
better adapted to the common machine tools,
and it is therefore necessary to study the
shape of the normal section of the tooth with
some care.



Spiral Gearing.

v
O

106.—THE NORMAL PITCH.

The real pitch of the spiral gear is meas-
ured on a section that is normal to its axis,
and, as in the case of the spur gear, it is
found by dividing the number of teeth by
the pitch diameter, but the shape of the tooth
must be regulated by the normal pitch, or
pitch of its normal section. j

The normal pitch is found by dividing the

real pitch bjf the cosine of the angle made by
the tooth spiral with the axis of the gear.
Thus, if the pitch is 8, and the angle is 45°,
the normal pitch is 8, divided by .707, or
11.3.

The normal circular pitch is found by mul-
tiplying the real circular pitch by the cosine
of the spiral angle.

107.—THE ADDENDUM.

The addendum of the spiral gear should
not be determined by its real pitch, but by
its normal pitch, for it is then usually possi-
ble to mill the tooth with a milling cutter
that is made for a standard spur gear. A
gear of 8 pitch and 45° angle should have an

addendum of —1 = .089".

11.3

If the addendum is determined by the true

pitch when the angle is considerable, the
tooth will be long and thin. Fig. 86 shows
the normal pitch section of a rack to run
with a pinion of 45° angle, while Fig. 87
shows the true pitch of the same rack. Fig.
88 also shows the true pitch of the pinion,
and, although the tooth appears to be stunted,
it is really of the standard shape.

U
Beale’s Experimental Gears.
Fig, 88,

108.—THE AXIAL PITCH.

The section of the spiral gear by a plane
through the axis is that of a rack, and the
axial pitch, or pitch of the rack, is found by
dividing the true pitch by the tangent of the

spiral angle. Thus, if the angle is 45°, the
axial pitch is the same as the true pitch, but
the axial pitch of a 70° spiral tooth is but .364
of the true pitch.

109.—SHAPING THE TOOL.

‘When the spiral gear is cut in a milling
machine, or turned in a lathe, it is necessary
to give the tool the shape of the normal sec-
tion of the tooth to be cut, and this is most
readily accomplished by shaping it for the
spur gear that most nearly coincides with that
normal section.

The number of teeth in the gear that is
osculatory to the normal spiral, and therefore
most nearly coincides with it, is found by
dividing the actual number of teeth in the
gear by the third power of the cosine of the
spiral angle, Y

For example, if we are to cut a gear of 4"
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diameter, 6 pitch, and 24 teeth, at a spiral
angle of 45°, the cutter should be shaped to

4 24
cut a spur gear of RO = 8y = 69 teeth
of —7%—7 = 8.5 pitch. If the gear has 28 teeth

of 4 pitch, and an angle of 10°, the equiva-
lent spur gear has 29 teeth of 4.08 pitch, as
the gear varies but little from a spur gear.
If the gear is of § pitch, and 15 teeth, with
an angle of 80°, the equivalent spur gear has
2,830 teeth of 28.7 pitch, and in general,
when the gear has a great angle it is a

worm, the section is practically that of a rack.
Care must be taken, when the gear is a
screw, and is turned in the lathe, that the
tool should be set with its cutting edge nor-
mal to the thread of the screw, if. it is shaped
by the above rule. If the tool is set in the
axial section of the screw, and it generally is,
it should be shaped to the axial section of the
worm, and have the axial pitch and adden-
dum. But when the lead of the thread of
the screw is small compared with its diam-
eter the difference between the normal and
axial sections is not noticeable.

110.—VELOCITY RATIO OF SPIRAL GEARS.

The spiral gear does not follow the well-
known rule of spur gears, that the velocities
in revolutions in a given time are inversely
proportional to the pitch diameters, but re-
quires that ratio to be multiplied by the ratio
of the cosinesof the spiral angles,

In the formula

v D

cos. A

v cos. «
D and d are the diameters of the gears, A
and @ are their spiral angles, and ¥V and »
are their velocities in revolutions.

If the angles are equal, the velocity ratio
is the same as for spur gears of the same
diameters. Fig. 83 shows a pair of gears B
and C that are of the same size and have the
same angle in opposite directions, requiring
the shafts to be parallel. See also Fig. 89.
The pair of gears 4 and B are exactly alike,
with equal angles in the same direction, re-
quiring the shafts to be at an angle equal to

i
twice the spiral angle. Sce also Fig. 90.
The statement that like spiral gears will not
run together is founded on the Willis theory
of spiral gear contact, and is wrong.

111,—SPIRAL WORM AND GEAR.

‘When the shafts are at right angles, and
the angle on one is so great that it is a screw,
the combination is known as a worm gear
and worm, Figs. 91 and 92, and is much used
for obtaining slow and powerful motions.
It is also too much used for wasting power
and wearing itself out, for its friction is very
great and consumes from one-quarter to
two-thirds of thé power received.

‘When the screw has a single thread, the

velocity ratio is simply the number of teeth
in the gear, and if th re are two or three
threads it must be modified accordingly.

The spiral worm is adjustable in its gear
both laterally and longitudinally, so that it
will change its position as required by wear
in the shaft bearings.

It is an excellent substitute for the hobbed
worm and gear, and in most cases will serve
practical purposes quite as well.
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\
Worm Gears
Spiral Worm r and Worm.
. Fig. 91,
S —
112.—EFFICIENCY OF SPIRAL AND WORM GEARING.
Unless the shafts are parallel the teeth of a | shown by the diagram, Fig. 93. The diagram

pair of spiral gears are moving in different
directions, and therefore they cannot pass
each other without sliding on each other an
amount that increases rapidly with the angle
of divergence of the directions of motion,
that is, the shaft angle.

This sliding action creates friction and
tends to wear the teeth, and to a very much
greater extent than is generally supposed.
The friction is so great, in fact, that such
gears, particularly worm gears, should be
used only for conveying light powers. They
are extensively used, or rather misused, for
driving elevators, and are even found in mill-
ing machines, gear cutters, planers, and
similar places, in evident ignorance that they
waste from a quarter to two-thirds of the
power received.

The most extensive experiments on the
efficiency of spiral and worm gears ever made
were made by Wm. Sellers & Co., and they
may be found described in great detail in a
paper by Wilfred Lewis in the Transactions
of the American Society of Mechanical En-
gineers, vol. vii. Space will not permit ex-
tensive quotations from this valuable paper,
but the general result of the experiments is

shows that a common cast-iron spur gear and
pinion on parallel shafts have an efficiency of
from ninety to ninety-nine per cent., accord-
ing to the speed at which they are working ;
that a spiral pinion of 45°, angle working in
a spur gear, with shafts at 45°, has an effi-
ciency of from 81 to 97 per cent.; that
the efficiency decreases as the angle of the
shafts increases, until, for a worm of a spiral
angle of 5°, at a shaft angle of 85°, it goes
as low as 34, and does not rise higher than 77
per cent. This includes the waste of power
at the shaft bearings as well as that at che
teeth of the gears. The efficiency is lowest
for slow speeds, and rises with the speed.
The diagram may be relied upon to give its
true value, under ordinary conditions, within
five per cent.

The same experiments developed the fact
that the velocity of the sliding motion of the
cast-iron teeth on each other should not be
over two hundred feet per minute in contin-
uous service, to avoid cutting of the surfaces.
It may be assumed that the efficiency will be
higher when the worm is of steel, particu-

larly when the gear is of bronze.

Diagram, Fig. 94, shows the result of simi-
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Fig. 93.

lar experiments by Prof. Thurston, with a
worm of 6" diameter and one inch circular
pitch running in a gear of 16" diameter, both
cast-iron.

It is to be observed that it is the shaft angle,
and not the angle of the spiral, that deter-
mines the efficiency. A pair of spiral gears
on parallel shafts are practically as efficient
as gears with straight teeth.

The great friction of worm gearing is of
advantage for one purpose, and for one only,
to secure safety and prevent undesired mo-
tion of the gears, The worm of Fig. 97 will
easily move the gear, but the gear must be
moved with great force to start the worm.
‘When the angle of the worm is as small as
the ‘“‘angle of repose” for the metals in
contact, it is impossible for the gear to drive
the worm. This may be an excuse for the use
of the worm gear in elevators, but it would
seem that the safety of the cage should de-
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Fig. 94,

pend on devices attached to the cage itself,
rather than to the hoisting machinery or
other distaut part.

Unless the friction of the gears must be
depended upon for safety, the worm gear
should be used only for purposes of adjust-
ment, or when speed must be greatly reduced
or power increased within a small compass,
and not for conveying power.
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113.—THRUST OF SPIRAL TEETH.

The oblique action of the teeth of
spiral gears on each other, tends to throw
the gears bodily in the direction of their
axes, and this tendency creates a thrust
that must be opposed by thrust bear-
ings. The end pressure on the shaft of
a worm is greater than that exerted on
the teeth of the worm gear it is driving.

When the shafts are parallel the
thrust may be completely avoided by
the use of double spiral or ‘‘herring-
bone ” teeth, Fig. 82 or 83, which act in
opposite directions, and neutralize each
other.

When the shafts are at flght a‘ngles Arrangement t‘o avoid thrust
the thrust may be neutralized by op- Fig.95.
posing a second gear in the manner
shown in section by Fig. 95. The two
worms with opposite spirals run in two spiral  When the thrust cannot be avoided it
worm gears that also work with each other, should be taken by a roller bearing, rather
and, as the pressure on one gear is opposite | than by the common collar bearing. The
that on the other, there is no thrust on the i diagram, Fig. 94, shows the superior efficiency
shaft. When this combination is made with | of the roller bearing as compared with the
worm gears having concave teeth, the teeth | collar bearing, the gain being from ten to
can bear only at their ends. | twenty per cent.

114.—THE HOBBED OR CONCAVE WORM GEAR.

If a spiral gear is made of steel, provided
‘with cutting edges by making slots across its
teeth, and hardened, it will be a practical
cutting tool called a spiral milling cutter or
hob. Fig. 96 shows a spiral milling cutter,
having a great spiral angle, and therefore
called a worm.

If this cutting spiral gear is mounted in
connection with an uncut blank so that both
are rotated with the proper speeds, and the
shafts of the two gears are gradually brought
together while they are revolving, the edge
of the blank will be formed with concave
teeth that curve upwards about the sides of
the cutting gear. If the hob is then replaced
with a spiral gear that is a duplicate of it, ex-
cept that it has no cutting teeth, we shall
have the familiar worm and worm gear of
Fig. 97. oo

The principle of the concave gear applies Conoave W";f:‘ ﬁ;’;”‘“m‘ Worm,
to any pair of spiral gears, on shafts at any il
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angle, but in practice it is confined to the
worm and gear on shafts at right angles.

The nature of the contact between the
worm and the concaved worm gear has not
yet been definitely determined, but there is
no reason to suppose that it is different from
that between plain spiral teeth, a point con-
tact on the normal spiral, but it is probably
continuous. It is certain, however, that the
contact is considerably closer, more nearly
resembling surface contact, and being sur-
face contact when the diameter of the gear is
infinite.

The worm is adjustable in the concaved
teeth of the gear in the direction of its axis,

A Hob. Fig. 96.

and will change its position as required by
the wear of the thrust bearing. It is not ad-
justable laterally.

115.—HOBBING THE WORM GEAR.

‘When the hob is provided it i3 a simple
matter to cut the gear. The gear is generally
provided with the desired number of notches
in its edge, that are deep enough to receive
the points of the teeth of the hob, and
the hob will then pull it around as it
revolves.

It is a too common practice to make the
hob do its own nicking, for, if it is forced
into the face of the gear as it revolves, it will
pull it around by catching its last teeth in
the nicks made by the first. i

If luck is good these micks will run into
each other, and the gear will be cut with
teeth that appear to be correct, but, as the
outside diameter js greater than the pitch

diameter, there will be one, two, or three
teeth too many. The teeth of the finished
gear are therefore smaller than those of the
worm by an amount that is ruinousif the gear
is small, although it is not noticeable when
the diameter is large. If there are 12 teeth

- | where there should be but 10, each tooth will

be too small by two-twelfths of itself; but if
there are 102 teeth where there should be but
100, each tooth is too small by but two-
hundredths of itself. This handy makeshift
process will do very well on large gears, but
not on small ones, unless the worm to run in
the gear is made to fit the tooth, with a tooth
that is smaller, and lead that is shorter than
that of the hob. 1

116.—INVOLUTE WORM TEETH.

Worms are generally cut in the lathe, and | But custom and convenience allow the tooth
as a straight-sided tooth is most easily | to have s'raight sides, and to be set with its
formed, the involute tooth is generally | face parallel with the axis of the worm, and

adopted.

the real difference is not generally notice-

Strictly, the form of the tool should be | able.

that of the normal section of the thread, and

The standard tool has its sides inclined at

it should always be set in the lathe with its | an angle of 30°, and has a length and a width

cutting face at right angles to the thread. dependent upon the pitch.

117.—INTERFERENCE OF INVOLUTE WORM TEETH.

There is one difficulty that is seldom recog-

nized, but which must be carefully guarded
against if properly running gears are ex-

pected, and that is interference. The teeth
of worm gears will interfere with each other
when the conditions are right for interference,
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just as spur involute teeth will interfere, as|over the tops of the teeth of the hob and

shown by Fig. 86. Fig. 98 shows the gear | worm, as described in (55).

that would be formed by the usual process. It is also a simple matter to avoid.the inter-
The difficulty can be remedied by rounding | ference by enlarging the outside diameter of

Py &)
Interfering Worm, Interference Avoided,
Fig. 98. Fig. 99.

Involute worm and gear
twenty-one or more teeth

Fig. 100.




62

Worm Gearing.

the worm gear. If, as shown by Fig. 99, the
tooth has but a short flank, or nune at all,
and the addendum of the gear is about twice
that by the usual rule, the action will be con-
fined to the face of the gear and the flank of
the worm, and there can be no interference.
By adopting an obliquity greater than 15°,
interference can be avoided without changing
the addendum.

This method has the advantage that the
same straight-sided worm and hob can be
used for small gears as for large ones, and
the disadvantage that the action is confined

“to the approach and subject to greater fric-
tion (48).

When the standard 80° tool is used, all
gears of 26 teeth, or smaller, should be made
in this way, but the correction is not strictly
necessary for gears of more than 20 teeth,
unless particularly nice work is required.

Fig. 100 shows the proper construction of a
gear of 21 or more teeth, and Fig. 101 shows
that of a gear of less than 21 teeth. In the
former case, the teeth of the worm should be
limited by the limit line 7/, but the interfer-
ence for 21 to 25 teeth is not noticeable.

Draw worm teeth straight
Draw gear teeth by points (57)

{ L —

)
\\j 4

and gear
less teeth

Fig. 101,

l

Involute w brm
for twenty, or

118.—CLEARANCE

There is another practical point that is sel-
dom recognized, and that is that worm teeth
should have clearance (40), for there is no
reason for clearing spur teeth that will not
apply quite as well to any other kind.

The clearance is easily obtained by making
the tooth of the hob a little longer than that
of the worm, as shown by the tooth a of Fig.

OF WORM TEETH.

100. For the same reason the hob should
have no clearance at the bottom of its thread,
so that the tops of the gear teeth will be
formed of the proper length. The custom
of making the hob and worm of exactly the
same diameters will apply only when the
worm ‘‘bottoms” in the gear and the gear
bottoms in the worm.

-

119.—CIRCULAR PITCH WORM TEETH.

The old and clumsy circular pitch system |

is in universal use for worm teeth, for the
reason that worms are generally made in the
lathe, and lathes are never provided with the
proper change gears for cutting diametral
pitches. The error is so firmly rooted that it
is useless to attempt to dislodge it.

It is therefore necessary to figure the diam-
eters of worm gears as if their throat sections

were the same as those of common spur gears
and racks on the circular pitch system. The
table of diameters (85) will be of great assist-
ance.

One great objection to the use of the circu-
lar pitch system for spur gears does not ap-
ply to worm gears, that the center distance
between the shafts will always be an incon-
venient fraction, unless the pitch is as incon-
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venient. The worm can be made of any
diameter, and can therefore be made to suit
the pitch diameter of the gear and the center
distance at the same time.

The sides of the tool for cn'cu]ar pitches
should come together at an angle of thirty
degrees, and the width of the point, as well
as the depth to be cut in the worm or in the
hob, should be taken from the following
table. The diameter of the hob should be
greater than that of the worm by the *“in-
crease” given.

Make the tool with the proper width at the
point to thread the worm, and then, after
making the worm, grind off half the ““in-
crease” from the length of the tool, and use
it to thread the hob.

TABLE FOR CIRCULAR PITCH WORM TOOLS.

Circular pitch......... 2 134 |14 | 134 I 118
Point of hob tool...... .644 | .564 | .483 | .402 .362
Point of worm tool...| .620 | .542 | .466 | .388 .349
Depth of cut in worm |

or hob 1.416 | 1.240 | 1.062 | .886 .797
Increase .166 | 146 | 1.249 { .104 .094
Circular pitch.... .... 1 % 34 % | %
Point of hob tool...... 322 | .282 | .41 | .201|.161
Point of worm tool.. | .810 | .21 | .238 | .194/.155
Depth of cut in worm

orhob. ............. 708 | .620 | .531 | .443).854
Increase ... . ....... .063 | 078 | 062 | .052 .042
Circular pitch. ....... s 34 s Y|
Point of haob tool...... 141 | 121 | 100 | .080 .060
Pointof worm tool .. | .185 | .116 | .097 | .078].058
Depth of cut in worm

orthob e 8. . 310 | .265 | .22 | .177|.133
Increase..... ....... .| -036 | .031 | .06 | .021|.016

120.—DIAMETRAL PITCH WORM TEETH.

If the proper change gears are provided, it
is as easy to cut diametral pitch worm tecth
as any. The proper gears can always be
casily calculated by the rule that the screw
gear is to the stud gear as twenty-two times the
pitch of the lead screw of the lathe is to seven
times the diametral pitch of the worm to be cut.

For example, it is required to cut a worm
of twelve diametral pitch, on a lathe having
a leading screw cut six to theinch. We have

screw gear _ 22 X 6 11 .

stud gear T X 12 7'
and any change gears in the proportion of 11
and 7 will answer the purpose with an error
of 1__0,3) 5 of an inch to the thread of the worm.

If 22 and 7 give inconvenient numbers of
teeth, the numbers 69 and 22 can be used
with sufficient accuracy, and 47 and 15, or
even 25 and 8 may do in some cases.

To save calculation and study, the table of
change gears for diametral pitches is provided,
and it will give the proportion of screw gear
to'stud gear to be used for all ordinary cases.

The pair on the left will give the proper
pitch within less than a thousandth of an
inch, and that on the right will serve with an
error always less than a hundredth of an inch,
and sometimes less than two or three thou-
sandths of an inch.

Having the change gears, figure the pitch

diameter of the gear asif the throat section
is a spur gear on the diametral pitch system.

The sides of the tool should come together
at an angle of thirty degrees, and the width
of the point of the tool, as well asthe depth
to be cut in the worm or in the hob, should be
taken from the following table. The diame-
ter of the hob should be greater than that of
the worm by the ““increase” given.

TABLE FOR DIAMETRAL PITCH WORM TOOLS.

Diametral pitch. .........| 1 2 3 4
Point of hob tool......... 1.035 | .517 '.345 58
Point of worm tool........ .968 | .484 1.323 | .242
Depth of ¢ut in worm or

o5, Goma 30060 Da0 08 = 2.125 | 1.063 | .708 | .532
Inerease.... .............. | %0 | 125 | .083 | .063
Diametral pitehy o i 5 6 7 8
Point of hob tool........ . .207 | 173 | (148 | .129
Point of worm tool.. .194 | (162 | 138 | 1A
Depth of cut in worm or ‘

HODR. oo« cle 5o ae il ...| 425 | .854 | .304 | .266
Increase............cw.... 050 | .042 | .036 | .082
Diametral pitch........... 10 12 14 16
Point of hobtool ...... ..| .104 | .086 | .074 | .065
Point of worm tool....... .097 | .08L | .069 | .060
Depth of cut in worm or

hubiet vt ttonrrale | o o f 218 | AT | 152 | 133
Increase .................. 3 .021 | .018 | .016

Make the tool with the proper width at
the point to thread the worm; and then,
after making the worm, grind off half the
“‘increase ” from the length of_ the tool, and
use it to thread the hob.
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TABLE oF CHANGE GEARS FOR DIAMETRAL Prrcx WoRrwMs.

121.—WIDTH OF WORM GEAR FACE.

The bearing between the tooth of the| The length of the worm need be no more
worm and that of the gear is near the center | than three times the circular pitch, for there
of the gear, and it is quite small (104). It is, | are seldom more than two teeth in contact at
therefore, useless to make the gear with a | once. If, however, the worm is made long,
wide face. If the face is half the diameter | it can be shifted when it becomes worn, so
of the worm it will have all the bearing that | as to bring fresh teeth into working position.
can be obtained, and any extra width will | This provision is wise, for the reason that the
simply add to the weight and cost of the gear. | worm is always worn more than the gear.

122.—THE HINDLEY WORM AND GEAR.

If the cutting hob and the worm is shaped | It is commonly but erroneously stated
by the tool a, and the process indicated by |that this worm fits and fills its gear on the
Fig. 102, the resulting pair of gears is known | axial section, the section that is made by a
as the Hindley worm and gear. The worm | plane through the axis of the worm and
is often called the ‘“hour-glass” worm. normal to the axis of the gear. It has even
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been stated that the contact is between sur-
faces, the worm filling the whole gear tooth. Theé Hindley

The real contact is not yet certain, but it is Hio1anat gar:
certain that it is not a surface contact. It is,
also certain that it is on the normal and not |
on the axial section, and that the Hindley
worm hob will not cut a tooth that will fill
any section of it. The contact may belinear,
along some line of no great length, but it is
probably a point contact on the normal sec-
tion. The order of the contact is certainly‘
very close, resembling that of two surfaces. 1

The worm is limited in length, for the |
sides of the teeth cannot slant inward from?
the normal to the axis. The end tooth = in
Fig. 102 cannot be used, for it will destroy |
the teeth of the gear as it is fed towards
this axis in the operation of hobbing.

bearings wear, unless it is itself worn the
same amount. It is doubtful if this form of

It has the one great defect that it is not gearing has any advantage over the plain
adjustable in any direction, and, therefore, | spiral gearing, except when new and in per-
cannot change its position when the shaft | fect adjustment.

123.—TIIE PIN WORM AND GEAR.

If the hob and the worm are shaped by | Fig. 102, the gearing produced will have
the pin-shaped revolving milling tool & of linear bearing between the teeth.
| The action will be the same as between a
[series of pin teeth like the milling tool, each
pin being in the axial section of the worm,
1but having a linear bearing on the normal
| section of its teeth.

This form of gearing, which is a
modification of the Hindley form,
may take the shape of pin gearing,
the teeth being round pins like the
milling tool. If the pins are mounted
on studs, so as to revolve, a roller pin worm
gear will be produced.

Fig. 103 shows a form of roller pin
Pin worm gear, ’gean'ng in which the pins have been en-

Fig, 103, Ilarged.

124.—THE WHITWORTH HOBBING MACHINE.

‘When the amount of work to be done will | although there are numerous patents relating
warrant the use of a special machine, the|toit. The worm gear to be hobbed is fixed
hobbing machine of Sir Joseph Whitworth | upon the same spindle with a master worm-
may be used. It was invented in 1885, and | wheel. A driving worm runsin the master
has not been materially improved since then, | wheel, and it is connected by a train of gear-
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ing with a hob that is so mounted on a
carriage that it can be fed towards the gear
blank. The hob is slowly forced into the
blank, while both are revolving with the
proper speeds, and the gear is cut without
the assistance of previously made nicks. See
British patent 6,850 of 1835.

il

Fig. 106

4

Spiral and Spur Gear.

125.—THE CONJUGATOR.

This is a machipe for cutting spur or spiral
gears by means of a hob, and its principle is
an extension of that of the Whitworth worm
gear hobbing machine.

If, when the hob in the Whitworth ma-

Conjugator., Elevation

Fig. 104,

Figy. 105.

chine has reached the full depth of the tooth,
it receives a new motion in the direction
of the tangent to its pitch spiral, it will
continue the tooth to the edge of the gear,
and form the plain spiral gear of Fig. 91.

Fig. 104is an elevation of the machine, and
Fig. 105 isa plan. The hob % is mounted
upon an arbor that is connected by a train of
gearing with the spindle s that carries the
blank gear g to be cut, so that the hob and
blank revolve together with any definite
proportionate speed.. The hob is carried
upon a carriage that is fed on a frame f.
The hob swivels upon the carriage, so that
the tangent to its pitch spiral can be set
parallel with the direction of the feed, and
the frame swivels so that the tooth can be
cut at any angle with the gear spindle.

As the blank and the hob are revolving,
the latter is fed into the former, and it will
cut a perfect tooth in the direction that the
frame is set at. As the frame can be set in
any direction, the machine will cut the com-
mon straight tooth, as shown by Fig. 106.
All gears cut by the same cutter will run
together interchangeably, and if two spiral
gears are cut at the same angle in opposite
directions they will run together on parallel
shafts. See U. S. patent number 405,030,
June 11th, 1889.



7. IRREGULAR AND

ELLIPTIC GEARS.

\ 126.—NON-CIRCULAR PITCH LINES.

The counsideration of pitch lines that are
not circular, and of the teeth that are fitted for
them, is an interesting but not particularly
important branch of odontics. Such pitch

lines are largely used for producing variations
of speed and power, but have no other prac-
tical applications.

127.—THE IRREGULAR PITCH LINE.

The most general case is that of two indefi-
nite irregular curves rolling together, Fig.
107, the only condition being that they
shall be so shaped that they will roll together
continuously.

As the practical importance of the free
pitch line is very small, we shall not ex-
_ amine it in detail.

i’rregular pitch lines

Fig. 107.

128.—PITCH LINES ON FIXED CENTERS.

‘When we attach the condition that the two

pitch lines-shall revolve in rolling contact on |

fixed centers, we have a definite problem of
more interest and importance than that of the
free pitch line.

If, as in Fig. 108, we have a pitch line A
revolving upon a fixed center ¢, we can con-

struct a pitch line B that will roll with it,!

and revolve on the given fixed center b, by
the following process.

From any pitch point O, step off equal arcs
Oe, cc, cc,; draw circular arcs ¢d from the
center a; draw circular arcs dn from the
center b, step off the same equal arcs Oe,
ee, ee, then Oece will be the required mat-
ing pitch line.

These curves will always be in rolling con-
tact at a point on the line of centers ab, the
pitch point and the angle of the curves with
the line of centers continually changing.

The velocity ratio of the curves will be

Fixed centers

Fig. 108.

variable, and always equal to the inverse pro-
portion of any two mating radiants, ac and le.
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129.—CLOSED PITCH LINES.

When one of the curves of Fig. 108 is a
closed curve, the other will in general not
be closed, but by trying different centers, a
curve can be found that will be closed.

If the closed curve @,, Fig. 109, is taken,
the mating curve 4, will be closed when the
center is chosen at a certain point B,, that can
be found by repeated trials.

The mating closed curves thus constructed
will seldom be alike, but will always have
points of similarity. A salient point ¢ onone
will be paired with a reversed point or notch
on the other, and lobes on one will be repre-
sented by depressions on the other. Half a
revolution of one of the curves, from any
position, will turn the other through half a
revolution.

Set of Multilobes
Fig. 109.

130.—MULTILOBES.

If, after finding the center B,, Fig. 109, for
the closed mating curve, other centers are
tried, second, third, and succeeding centers,
B,, By, By, will be found, about which the
mating curves will also be closed.

These closed curves, called multilobes, will
be each divided into like lobes, the second
curve, or bilobe, into two lobes ; the third, or
trilobe, into three lobes, and so on.

1f the center is placed at infinity, the rack
lobe A o will be formed.

If the center be taken negatively, on the
same side as the original center b,, at by,
by, by, etc., negative multilobes a., ag, a,,
ete., will be formed about the original curve
a;.

All these multilobes, positive and negative,
will roll together collectively about their fixed
centers, in rolling contact at a common and
shifting pitch point O.

Any two, of the same sign, will roll in inter-
nal contact, and any two of opposite signs

Train of multilobes

Iig. 110.

will roll in external contact, so that they can
be formed in train, Fig. 110.

‘When it so happens, as it does with the
ellipse revolving on its focus, or the logarith-
mic spiral revolving on its pole, is taken, that
the first derived pair of curves, or unilobes,
are exactly alike, all the multilobes will be
alike ; the positive trilobe like the negative
trilobe, and so on, so that any two curves of
such a set will work together in either inter-
nal or external contact, Fig. 111.
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131.—CONIC SECTION PITCH LINES.

If two like conic sections are mounted upon |
their foci, they will roll together.

Their free foci will revolve at a fixed dis-
tance from each other, and may be connected
by a link. The line of the free foci will in-
tersect the line of the fixed foci at the point
of contact of the pitch lines.

Fig. 112 shows a pair of ellipses, Fig. 113
a pair of parabolas, and Fig. 114 a pair of
hyperbolas.

Elliptic multilobes
Fig. 111.

The elliptic pitch line is the only one \\
known that will revolve with its equal, and
make a practical and complete revolution.
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132.—THE LOGARITHMIC SPIRAL.

If the radiants a, 3, ¢, d, ¢, Fig. 115, make
equal angles with each other, and each one
is equal to the adjacent one multiplied by a
constant number, their extremities will deter-
mine a logarithmic spiral.

If the first radiant @ is given, with the con- |
stant multiplier #, the second radiant will be
na, the third will be n2 @, the fourth will be
n® a, and 80 on.

If the first and last radiants, @ and ¢, are
given, and there arec p equal angles between .
them, the constant is : '

n = ‘py_i— |
a
o that it is a simple matter to construct a'
logarithmic spiral to connect any two given
radiants at any given angle with each other.

The curve possesses the singular property
that all tangents, A or K, make the same
angle with the radiants at their points of con-
tact. The curves are always inclined to the
line of centers at the constant angle.

The curve continually approaches the |
center M, or ‘pole,” making an infinite
number of turns about it. but never reach-
ing it.

It also has the entirely useless property that
the pole will trace an involute of the base
circle if it is rolled upon the pitch circle (75).

It possesses the property, not possessed by
any other curve, that it will roll with an
equal mate on fixed centers that can be varied
in position. The curve # will roll with the
curve Cg whether its pole is at ¥, or at S, or
at V.

Fig. 116 shows a pair of logarithmic spi-
rals in internal contact. ‘

Logarithmic pitch lines
Tig. 115.

Internal logarithmic
pitch lines

Fig. 116.

133.—COMPOSITE PITCH LINES.

v

Instead of drawing a curve at random,
and finding the mate to run with it, Fig.
108, the complete pitch line may be built
up of a number of curves, of which the
properties are known.

Thus, Fig. 117 shows composite gears,
consisting of circular parts 4 and ¢, and an
elliptic trilobe B, working with an elliptic

bilobe 5. Fig. 118 shows a combination of a
pair of logarithmic spiral arcs A4 and «, a
pair of elliptic bilobal arcs B and b, a pair
of logarithmic spiral arcs D and d, and a
pair of elliptic quadrilobal arcs £ and e.
An endless variety of combinations can be
made in this way. :

It is not necessary that the component
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curves be tangent, if they succeed each other
continuously. Tig. 119 shows a pair of equal
logarithmic spirals with a break at ab, the
action at b commencing just as it ends at a.
Care should be taken to avoid salient

Camposite pitch lines
Fig, 117,

points, breaks, and interruptions of the con~
tinuity of the curve, for there must be
defective tooth action at such points. The
curves should run smoothly into each other
with gradual changes of curvature.

M
Composite pitel lines

Fig. 118.

2

«

Broken pitch lines
Fig. 119.

134, —TEETH OF NON-CIRCULAR PITCH LINES.

The action of the teeth of non-circular | action takes place, but the line of action and

pitch lines does not, at first sight, appear to
follow the laws pertaining to circular lines,
but there is really very little difference.
_ If we consider the two pitch lines to be
free, and to be so moved while they roll
together that the pitch point O, Fig. 107, is
fixed, and so that the fixed line ¢ C is always
at right angles to both curves at their com-
mon point O, the laws of the tooth action will
be almost precisely the same as laid down
for the circular pitch line. Fig. 107 may be
easily applied to (24) as illustrated by Fig. 15.
‘When the centers are fixed, the same tooth

the pitch point continually change their
positions.

The teeth of non-circular pitch lines can
therefore be formed either by conjugating a
given odontoid, as in (24), or by the rotled
curve theory of (32).

By all means the most practicable method,
when the circumstances will permit, is to
make up the curve by joining approximating
circular arcs, and to provide each circular
arc with teeth in the ordinary way. See this
process as applied to the elliptic pitch line at
Figs. 129-and 180.

135.—TEETH AT SALIENT POINTS AND BREAKS.

‘When there is a salient point, or otherinter- | an interruption in the arrangement of the
ruption of the continuity of the action, asat ¢, | normals of any tooth curve, and a consequent
Fig. 109, or at Mm, Fig. 118, there must be | failure of the tooth action.
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Fig. 120 shows a cycloidal tooth curve M,
at a corner or salient point S, between two
circular pitch arcs. There is a circular arc
A on the odontoid made while the describing
circle is turning about the point 8, and that
arc can have no continuous tooth action.
Therefore the tooth action will fail, unless
the next tooth curve X springs from the
salient point.

If a tooth springs from the sglient point,
the tooth action will be correct, but mechani-
cally imperfect, as the arc of action of two
teeth cannot lap over each other to allow for
practical defects. And then, as two tooth
curves cannot spring from the same pitch
point in opposite directions, such gears can
run in but one direction, and are not reversi-
ble.

‘When there is a break, as at b, Fig. 119,
the teeth must be so cut off that they will

The salient point
Iig. 120.

separate at a just as they engage at b, for there
is a sudden change in the velocity ratio.
Such combinations are practicable, but in
every way undesirable.

136.—THE ELLIPTIC GEAR.

The principal, and almost the only use of
the irregular gear, is to produce a variation
of speed between certain given limits, with-
out conditions as to the variations of speed
and details of the motion between the limits.
When that is the only object, the elliptic
pitch line is the only one that is required, and
it is chosen because it is the only known con-
tinuous closed curve that will work in roll-
ing*contact with an equal mate, and because
it is, next to the circle, the simplest known
curve, Of the elliptic multilobes, the uni-
lobe, or simple ellipse, revolving on one of
its foci as a center, is the only one used to
any appreciable extent, and therefore is the
only one that requires examination in detail.

The use of the elliptic gear is practically
confined to producing a simple variation of
speed between known limits, and to produc-
ing a “ quick return motion” for planers,
shapers, slotters, and similar cutting tools, as
well as for pumps, shears, punches, shingle
machines, and others where the work is done
mostly during one-half of the siroke of a
reciprocating piece. The work of a planer

tool or of the plunger of a single acting
pump, is all done during the motion of the
tool or of the plunger in one direction, and
the only object on the return is to get the
piece ready for the next useful operation in
the quickest possible time.

For an example, the bobbin of a spinning
machine is to be wound in a conical form,
the thread being fed to it through a moving
guide, and the necessary variable motion of
the guide, fast at the point of the cone, and
slow at its base, is best given to it by a pair
of elliptic gears. For another example, the
motion of the platen of a printing press
should be rapid when the press is open, and
slow and powerful when the impression is
being taken, and the object can be reached
best by a pair of elliptic gears operating the
platen.

The practical uses of the elliptic gear are
endless, and it would be in greater use and
favor, if it were not for the fact that its pro-
duction, by the means ordinarily in use for
that purpose, is as difficult and costly as the
resulting gear is unsatisfactory.
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137.—THE ELLIPSE.

To thoroughly understand the construc-
tion and operation of the ellipse, it is neces-
sary to learn but a few of its many proper-
ties.

The mechanical definition of the ellipse is
that it is one of the “ conic sections.” 1f the
cone, Fig. 121, is cut by a plane C at right
angles with its axis, the outline of the section
will be a circle; if the plane K cuts the cone at
an angle, the section will be an ellipse; if the
plane P is parallel with the side of the cone,
the section is a parabola, and if the plane I
is at such an angle that it cuts both nappes of
the cone, the section is a hyperbola. All
these curves will roll together when fixed on
centers at certain points called foci, but the
ellipse, and its special case, the circle, are the
only ones that are capable of continuous mo-
tion.

In the ellipse, Fig. 122, the point C is the
center, the longest diameter, A4A4', is the
major axis, the shortest diameter, BB, is the
minor axis; A and A’ are the major apices,
and B and B’ are the minor apices.

If an arc be drawn from the minor apex,
with a radius equal to the major semi-axis, it
will cut the major axisat points Fand F,
called the foci, and one focus must be chosen
as the center, about which the curve is to re-
volve if used as the pitch line of a gear.

It is a property of the curve that the sum
of the distances, PF and PF', from any
point to the foci is equal to the major axis,
AA’, and this feature is used as a means of
constructing the curve by points. Draw any

Conic sections

Fig. 121.

The ellipse
Fig. 122.

method is very accurate, and has no failing

arc at random from one focus with radius | position.

FP. Draw an are from the other focus with
a radius equal to A4'—FP, and it will cut
the first arc at a point of the ellipse. When
the point P is near either major apex, the
arcs intersect at such a sharp angle that the
method is nearly useless. °

Another, and much the best known method
for constructing the ellipse by points,is to draw
any radial line L, and also circular arcs W
and V, from the center throngh the apices.
From the intersections, w and », of the radial
line and the circles, draw lines parallel to the
axes, and they will intersect, always at right
angles, at a point » on the curve. This

Another valuable property of the ellipse is
that if the line pad be so drawn that the dis-

'tance pa is equal to BO, and pd to AC, the
| point p will be upon the curve if the points «

and b are upon the axes.

The curvature of the ellipse is an important
feature in connection with its use as a gear
pitch line. It is sharpest at the major axis
A, and flattest at the minor apex B, else-
where varying between the two limits.

The radius of curvature at either apex,
that is, the radius of the circle that most
nearly coincides with the curve, is found by
drawing the lines B% and Ak at right angles
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with the chord AB. The distance Chis the] The normal PN to the curve at any point
radius of curvature at the major apex A, and | P bisects the angle FPF' between the focal
the distance C% is the radius at the minor |lines, and the tangent PT'is at right angles

apex B.

to the normal.

138.—ELLIPTOGRAPHS.

"There are a multitude of elliptographs, or
instruments for drawing the ellipse, but only
two of them are of practical application in

with great precision, is easily handled and
set, and, if the curve drawn is not very
flat, it may be inked. The cheap wooden

this connection.

The simplest known elliptograph consists
of a couple of pins, a thread, a pencil, and a
stock of patience. The pins are inserted at
the foci, as in Fig. 123, and the curve is
drawn by moving the pencil with a uniform
strain against the string. After a number of
trials, depending in number on theskill of the
draftsman, the curve may be induced to pass
through the desired points. The best result
will be obtained by the use of a well waxed
‘thread running.in a groove near the point
.of a hard pencil. The pencil should be long,
.and held by the end, so that the strain on the
string will be uniform, for the elasticity of
the string is the greatest source of
-error. 'This ‘‘ gardener’s ellipse ” 5
-will generally be accurate enough
for a tulip patch, but should not

* "be relied upon for mechanical pur-
‘poses, unless one or more points
“between the apices are tested and
found to be correct. If the two
pins and the pencil are circular,
and of the same diameter, the ac-
curacy of the ellipse is independent
<of their diameter.

The best elliptograph s the

“trammel,” Fig. 124, which takes
_a variety of shapes, but which in
its simplest condition consists of
-a cross, with two grooves at right
.angles, and a bar D with two pins
a and b, and a tracing point P
placed in line. The distance Pb
being set to the major semi-axis, and
the distance Pa to the minor semi-
axis, the point P will trace the ellipse if the | trammel should not be tolerated, for the
pins are confined to move in the grooves. |string and two pins cost less and are more
JIf carefully made, -the - instrument works | reliable.

Fig. 123.

Gardener’s ellipse.

The trammel

Iy, 124.
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139.—APPROXIMATE CIRCULAR ARCS.

If a well-made trammel is not at hand, the
best plan is to draw the ellipse with a string,
through several constructed points, and then
to ink it by finding centers for approximate
arcs, as shown by Fig. 125. An arc from a
center m on the major axis, will coincide
very well with the curve near the major
apex, a similar arc » from a center on the
minor axis will serve near the minor apex,
and a third center ¢ can be found for an arc
to join the first two. More than three cen-
ters will seldom be required, and when the
ellipse is not very flat the two centers on the
axes will be sufficient.

/q/m. F

n

The elliptic involute
i

140.—FOUR CENTER ELLIPSE.

‘When the ratio of the axes is not less than
eight to ten, as is generally the case, a prac-
tically perfect ellipse may be drawn from
four centers by the following method.

Draw the line CL, Fig. 126, parallel to
A'B, and construct the point % on the ellipse
by the method of (187). Find a point @ on
the major axis, from which an arc from A
will pass through #, and it will be the major
center. It may be found by trial, or by
drawing wm at right angles to A, and
bisecting Am in a.

Through « draw ac at right angles to AB,
and its intersection with the minor axis will
be the minor center b. Lay off Ca’ and C¥'
equal to Ca and OB, and draw be', b'¢”, and
Blekks

From the centers @ draw the arcs cAc”’,
and ¢'A'¢”, and from the centers b draw the
arcs ¢Bc' and ¢"B'c'".

Fig. 126.

Four center method

Lines that are parallel to the pitch line,
such as the addendum, root, clearance, and
base lines, are to, be drawn from the same
centers.

141.—ROLLING ELLIPSES.

‘When two equal ellipses, Fig. 127, are
arranged to revolve on their foci as centers,
with a center distance equal to the major
axis, they will roll together perfectly, and
be fitted to act as the pitch lines of gear
wheels.

of the arrow d, it will drive the follower
Fby direct contact of the pitch ellipses, but
when turning in the other direction with
respect to the follower, as it must during
half of its revolution, it has no direct

{driving action, and the follower must be

When the driver D turns in the direction | kept in contact by some other force.



Spacing the Ellipse.

As the two ellipses roll together, the free
foci Fy and ¥, will always move at a con-
stant distance apart, equal to the distance
between the fixed foci, and therefore they
may be connected by the link Z.

The center line of the link will always

cross the fixed center line at the point of con- '

tact of the ellipses, and the tangent 7 at that
point will pass through the intersection of the
axes.

i Rolling ellipses.
l Fig. 127.

142. —SPACING THE ELLIPSE.

As the ellipses roll together it is essential
that the axes come in line, and therefore, if
the teeth of one gear are fixed at random,
those of the other must be fixed to corre-
spond. If this requirement is satisfied, it
makes no difference where the teeth are
placed.

It is, however, very desirable that the two
gears shall be exactly alike, so that they
can be cut at one operation while mounted
together on an arbor through their focus
holes, and to do this, it is necessary to start
the teeth at different points, according to
whether their number is odd or even.

If the number of teeth is even, one tooth
must spring from the major axis, as shown
by Fig. 128.

If the number of teeth is odd, the major
axis must bisect a tooth and a space, as shown
by Fig. 129. In this case, if one of the
gears can be turned over, or.if its other focus
hole can be used as a center, it may have a
tooth springing from the major axis.

The simplest method of spacing the ellipse
is to step about it with the dividers. If the
curve is flat, the dividers should be set to less
than a whole tooth, for equal chords will not
measure equal arcs of the curve.

But this stepping method, although it is
sufficient and convenient for drafting pur-
poses, is wholly unfit for mechanical pur-
poses, and therefore we must have a method
that is not dependent on personal skill.

If the ellipse is drawn by means of the

| trammel, Fig. 124, it can be accurately spaced
by means of a graduated index circle 7, hav-
!ing.a diameter equal to the sum of the diam-
| eters of the ellipse, for then the centerline of
the bar will pass over an arc on the ellipse
that at the apices is exactly equal to half the
arc passed over at the same time on the circle,

and that is elsewhere very nearly in the same
proportion.

This method is not mathematically exact,
but its accuracy is very far within the re-
quirements of practice. The space on the
quarter, at @, will be greater than anywhere
else, but the maximum error will in general
be very minute,

For an example, take an extreme practical
case, a gear with axes eight and ten inches
long, and with seventy-two teeth. The max-
imum error, the difference between the long-
est and shortest tooth arcs, will be not over
one five-hundredth of an inch. In the more
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common practical case of a gear of nine and
ten inches axes, and seventy-two teeth, the
maximum error is about one two-thousandth
of aninch. In both these cases, the differ-
ence between the tooth arc at the major apex
and that at the minor apex is too small to be

readily calculated, but will be about one
twenty-thousandth of an inch. In all cases
likely to be met with in practice, the inevit-
able mechanical errors are greater than the
theoretical errors of the method, and it is
serviceable on ellipses as flat as three to one.

Involute elliptic teeth.
Fig. 129.

143.—INVOLUTE ELLIPTIC TEETH.

As in the case of the circular gear, the
best form of tooth for the elliptic gear is the
involute, and for the same reasons.

The base line of the involute tooth is any
ellipse B E, Fig. 125, which is drawn from
the same foci as the pitch ellipse ; the limit
point ¢ is the point of tangency of a tangent
from the pitch point O, and the addendum
line @ ! of the mating gear must not pass
beyond that point. The method of laying
out the tooth and drafting it is so exactly
like the process for the circular gear that
the description need not be repeated.

The centers of involute elliptic gears can
be adjusted without affecting the perfection
of the motion transmitted, but, as the focal

distance remains fixed, the ratio of the axes
will be altered.

The work of drawing the teeth can be
much abbreviated by the process illustrated
by Fig.129. Find the centers for approxi-
mate circular arcs, preferably by the method
of (140), and then consider the gear as made
up of four circular toothed segments. It is
then necessary to construct but two tooth
curves, one for the major and one for the
minor segment, and the flanks will be radii
of the circular arcs.

The line of action, la, Fig. 125, is not a
straight line, and it is not the same for all
the teeth. It is not fixed when the pitch
point O and the line of centers is fixed (134).
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Cycloidal elliptic tceth.
Fig. 130.

144, —CYCLOIDAL ELLIPTIC TEETH.

The cycloidal tooth is drawn, exactly as
upon a circular pitch line, by a tracing point
in a circle that is rolled on both sides of the
pitch line. The line of action is not a circle,
and it is not the same curve for all the teeth.

That the flanks shall not be under-curved,
the diameter of the rolling circle should not
be greater than the radius of curvature at

the tooth being drawn, and when, as usual,
the same roller is used for all the teeth, its
diameter should not be greater than the
radius of curvature at the major apex, the
distance Ck of Fig. 122.

Fig. 130 shows a cycloidal gear drawn as
four circular segments, by the methods of
(140) and (83).

145.—IRREGULAR TEETH.

It is most convenient to draw all the teeth

alike, with the same rolling circle, or from
the same base line, and also to uniformly

space the pitch line, but such uniformity is
not essential.

The only requirement is that each tooth
curve shall be conjugate to the tooth curve
that it works with, and if that condition is
satisfied the teeth may be of all sorts and
sizes.

146.—FAILURE IN THE TOOTH ACTION.

‘When the major axes are in line the action | is more oblique, as shown by Fig. 127. The
of the teeth on each other is nearly direct, | teeth tend to jam together when the driver
but when the minor axes are in line the action |is pushing the follower, and to pull apart
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when the follower is being pulled, and when
the ellipse is very flat this tendency is so
great that the teeth fail to act serviceably.

At first glance it might appear that this
difficulty in the tooth action of very eccentric
gears might be overcome by making the teeth
radial to the focus, as shown by Fig. 131,
but examination will show that but little can
be gained in that way.

The teeth on the gear ¢ were obtained by
the method of (28) from the assumed tooth
on the gear ¢, and the effect of the defective
shape of one side of the assumed tooth was 10
cut away the conjugate curve of the derived
tooth.

Such teeth would not work as well as the
ordinary form, and their construction would
be very difficult. 2

Radial teeth
Fig. 131.

147, —THE LINK.

When the teeth of the elliptic gear fail to
properly engage, on account of the obliquity
of the action, the difficulty can be entirely
overcome by connecting the free foci by a
link (141), as shown by Fig. 127.

This link works to the best advantage
when the teeth are working at the worst, and
when it fails to act, as it passes the centers,
the tecth are working at their best. There-

fore gears that are connected by a link need
teeth only at the major apices.

‘When the tooth action is imperfect by rea-
son of its obliquity, and the link is not avail-
able or desirable, the difficulty can be over-
come by using three or more gears in a train,
as shown by Fig. 137, for then the same re-
sult can be obtained by the use of gears that
are much more nearly circular.

148.—VARIABLE SPEED AND POWER.

If the shaft ¢, Fig. 132, turns uniformly,
the slowest speed of the shaft O will occur
when the gears are in the position of the
figure, and the proportion between the two
speeds will be the proportion between the
distances ¢O and CO. The greatest speed
of the driven shaft will occur when the shafts
have turned through a half revolution from
- the position of the figure, and the relative
speed will be the same, reversed.

The ratio of speed, the ratio of the greatest
speed to the slowest speed, is the square of
the ratio between the speed of the driving
shaft and the greatest or the least speed of the
driven shaft, so that it requires but a slight

Fig. 132.

variation of the axes to produce a decided
variation of the speed.

The following table wiil give the propor-
tion of minor to major axes that will give
any desired ratio of speeds.
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Ratio of Speeds. Ratio of Axes.
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14 . 817
15. . .807
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The power is always inversely proportional
to the speed. If the variable shaft is running
twice as fast as the uniform shaft, it will ex-
ert but one-half the force.

‘When the gears are arranged in a train, as
in Fig. 187, the speed raio for the second,
third, and following gears will be in the pro-
portion of the first, second, third and follow-
ing powers of the first ratio.

Thus, the ratio for a pair of gears with
axes in the proportion of .9532 to 1 being 4
for the second gear, will be 16 for the third
gear, 64 for the fourth gear, and so on.

The use of gears of troublesome eccentric-
ity can be avoided by this means. A train
of three gears of .952 axes, Fig. 187, is
equivalent to a single pair of very flat gears
with .800 axes, Fig. 188, and, in general,
three gears that are nearly circular are equiva-

lent to a single very flat pair.

<

149.—ELLIPTIC QUICK RETURN MOTION.

If the gears are arranged with respect to
the piece to be reciprocated, in the manner
shown by Fig. 133, the time of the cutting
stroke will be to the time of the return stroke,
as the angle PEK is to the angle PEF,
“where K and F are the foci of the ellipse.

The following table will show the ratio of
axes that must be adopted to produce a re-
.quired ratio of stroke to return.

Quick Return. Ratio of Axes.

2 Ho ISR o L e .964
« ¥ 5w (B S SR W s .910
L) St .
L) P AR S A 817
(IS5 56580658 d0a00 000084 8

To determine the ellipse that will give a
required quick return, we lay off the angles
PEK and PEF in the given proportion,
and then find by trial a point P such that the
length P plusthe length of the perpendicu-
Jar PF is equal to the known center distance
Ee. F will be the other focus of the re-
quired ellipse.

When the driving gear has turned through
the angle P'EF, from the position of the
figure at the middle of the return, the varia-
ble gear will have turned through the angle
P'"¢0 = P'FO, and we can study the action
of the tool by drawing equi-distant radii
about %, and finding the corresponding radii
about K.

Quick return

_Fig. 133.

Fig. 134 shows the arrangement of the
radii (P'# = P"¢ of Fig. 133) inthe case of a
four to one quick return, and it is seen, by
the parallel lines, that the motion of the tool
is very uniform, coming quickly to its maxi-
mum speed, and holding a quite uniform
speed until near the end of the stroke. Fig.
135 shows that the same motion derived from
a simple crank is not as uniform.

‘When the gears are arranged in a train,
Fig. 187, the quick return ratios can be de-
termined by the construction shown by Fig.
186. Draw Fe at right angles to 44’, and
draw cEd through the other focus. The
quick return ratio of the second gear will be
the ratio of the angles @, and b,. Draw
dFe, and the ratio for the third gear will be
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Ordinary crank

Fig, 135.

that of the angles a, and b,. Draw eEf,
and e, and b, will give the ratio for the
fourth gear. And so on, in the same man-
ner, as far as desired, the ratio being greatly
increased by each gear thatis added to the
train.

If carefully performed, the graphical pro-
cess is quite accurate. The case of axesin
the proportion of .98 to1 gave a quick re-
turn of 1.6 for the second gear, and 2.8 for
the third gear, while their true computed

values are 1.66 and 2.74.

The chart will solve quick return
train questions involving gears not
flatter than .80, as accurately as need

[
Quick return train

Fig. 136.

n—-.90
L

be. For example, the ratio of axes
of .95 will give a quick return of
2.25 for the second gear, 4.85 for
the third gear, 9.80 for the fourth
gear, and 19.70 for the fifth gear. Again,
the proportion of axes to give a quick return
of 5 for the third gear is .948.

fa B
AN

Elliptic train ~ Fig, 137,

n—.68

Fig., 138,
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Elliptic Quick Return Chart
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150.—THE ELLIPTIC GEAR CUTTING
MACHINE,

The conditions of the described
operation of drawing the ellipse by
means of the trammel (138) may be
reversed, the bar being held still
while the paper and the cross are
revolved, and it is evident that the
Tesult will be the same ellipse on the
paper as if the bar is revolved as
described.

By thus reversing the process of
describing the ellipse, and by adopt-
ing the improved spacing device of
(142), we can construct a machine
for accurately cutting the teeth in
an elliptic gear, the main features
of which, omitting various unessen-
tial details, are shown by Figs. 139
and 140.

The blank to be cut is fastened
upon a trammel stand, which cor-
responds to the paper in the graphi-
cal process, and revolves upon the
fixed base. The adjustable trammel
pins @ and & are fixed in a slot in
the bed, and they fit and slide in the
slots M and IV in the under surface
of the stand. The cutter which
corresponds to the tracing point is
fixed with the pitch center of its

Index Pin

I‘imt
Fiy. 139.

Cutter

| 2,
. il Irndex Wheet 2 m
U T ] ln.lﬂﬂ..llLlLll“f.l'[Alllll"l [
[T N! __ Stand

(= t —Base — |
Elevation
Fig. 140.
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tooth curve directly over the point Pin the
line of the pins. The index plate has a
diameter equal to the sum of the axes of the
ellipse, and it is held by an index pin p,
which slides in the slot, and is alwaysin the
line of the pins.

Thus arranged, the machine will always
cut its tooth in the true ellipse, and the teeth
will be accurately spaced.

The direction of the tooth will be sub-
stantially at right angles to the pitch line,
and a simple arrangement can be applied to
make it exactly so. An index plate of a
fixed diameter may be used for all sizes of

gears, if the index pin is carried by an arm
which swings about the center of the gear,
and has an adjustable pin that slides in the
slot.

The tops of the teeth are trued by a cutter
having a square edge, and the line of the
tops will be substantially parallel to the pitch
line.

The blank is held by an arbor through its
focus hole, and the arbor is held by a slide,
which' slides in a chuck upon the stand, so
that the focus can be accurately set in the
major axis at the proper distance from the

center.

151.—CHOICE

Theoretically, the teeth are of different
shapes, as they are in different positions upon
the ellipse, and, therefore, each space should
be cut with a cutter that is shaped for that
particularspace. But as thisisimpracticable,
it is necessary to choose the cutter that will
serve the best on the average.

Strictly, the cutter should be the one that
is fitted to cut a spur gear having a pitch
radius equal to the radius of curvature of

OF CUTTERS.

the ellipse at the major apex, but as that
cutter will be much too rounding for the
minor apex, it is better to choose the one
that is fitted for the medium radius of cur-
vature.

The two radii of curvature are the dis-
tances Ch and Ck, Fig. 122, and the cutter
should be chosen for the radius half way
between the two, approximately half the

sum of the two.

152.—THE ELLIPTIC BEVEL GEAR.

An ellipse may be drawn on the surface of
a sphere by means of a string and two pins,
according to the method of (138), and a
pair of such spherical ellipses will roll on
each other while fixed on their foci, their
free foci moving at a constant distance
apart.

Therefore we can have elliptic bevel
gears that are very similar to elliptic spur
gears, as shown by Fig. 141. The two gears
revolve on radial shafts through their foci,
and the link connects radial shafts through
the free foci. The velocity ratio is the ratio
of the perpendiculars @ b and a ¢. The
elliptic bevel gear is the invention of Pro-
fessor MacCord.

The spherical ellipse cannot be drawn by

the trammel method of (133), and therefore
the method of spacing of (142), as well as

Elliptic bevel gears
Fig. 141.

the gear cutting machine of (150), does not

apply.
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Elliptic Calculations.

153.—MATHEMATICAL TREATMENT.

If the major semi-axis is @, and the minor
semi-axis is b, the equation of the curve from
the origin at Cis

a®y? 0 2 = a? B?,
the major axis being the axis of X.

The distance CF from the center to the

focus will be
c=4/a*—b =0 /1= n3,
in which # is the ratio of axes = %'

The radius of curvature at the major apex
3
is b:., and that at the minor apex is .aib 5
a

There is no practicable formula for the recti-
fication of the curve, as the length is express-
ible only by a series.

The special spacing method of (142) is true
only at the instant of passing either apex,
for the tracing point describes half the arc
described by the line of the bar on the index
circle only when the bar is at right angles
with the curve. The error will be at its
maximum when the bar is at the maximum
angle with the normal, which is at about an
angle of forty-five degrees with the major
axis. The difference between an ordinary
tooth space at the major apex, and that
at the minor apex, is very minute. A very
careful calculation of the length of the chord
of a gear of seventy-two teeth, and eight and
ten inch axes, gave a chord of .41433" at the
major apex, a chord of .41495" at 45° for the
maximum, and a chord of .41441"” at the
minor apex. The difference between the
chords at the apicesis.00008", but as the cur-

vature at the majorapex is greater than at the
minor apex, the difference between the arcs
would be less, perhaps not over .00004"".

The ratio of speeds (148), is

(_17-}-_341 — nt\?
1— \/ 1 — nt )

The ratio of quick return being given as

gr, the value of n is

n = ‘/2»\/d’—+d4—-—2d’;

in which d = tan. ( 180 )°
gr+1

‘When the gears are in a train, there seems
to be no simple method for computing the
ratio of axes to produce a given quick
return, but, when the ratio is given, the
quick return for each gear can be computed
best by trial and error with the formula

in which M is any known angle b, Fig. 136,
and N is the angle b for the next following
gear in the train. Thus, assuming n = .98,
and M; = 90°, we find N, = 67° 28'. Then
putting M, = 67° 28', we find Ny = 48° 5'.
Knowing the angles, we compute the
quick return ratio from
o= w
which, for n = .98 gives ¢r for two gears
equal to 1.66, and for three gears equal to
2.74. The graphical process of Fig. 136
should first be employed to fix the angles
approximately.

__1’
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154.—THE BEVEL GEAR.

The theory of the bevel gear cannot be
properly represented, and can be studied
only with the greatest difficulty, upon a
plane surface. It is essentially spherical in
nature, and should be shown upon a spheri-
cal surface, as in Figs. 143 and 144.

This is best done upon a spherometer,
which is simply a painted sphere fitted in a
ring. The sphere rests upon a support, so
that the ring coincides with a great circle
upon it, and the ring is graduated to 360°.
A very roughly made wooden sphere and
plain ring will be found to answer the gen-

eral purpose very well, and should be pro-
vided if the study of the bevel gear is
seriously intended. If painted, ink marks
can be scrubbed off, and pencil marks re-
moved with a rubber.

The mathematical treatment is unapproach-
able without a knowledge of the common
principles of spherical trigonometry.

A wide, interesting, and difficult field of
study is offered, but space will permit but a
brief examination of the more prominent
and practical points. A careful examination
would require ten times the available space.

155.—THE GENERAL THEORY.

‘When thus represented upon the spherical
surface, the theory of the bevel gear is so
similar to that of the spur gear, as repre-
sented upon a plane surface, that any de-
tailed description would be mostly a repeti-
tion of what has already been stated.

All straight lines of the spur theory are
represented by great circles, the crown gear
being the rack among bevel gears, and all
distances are measured in degrees.

Irregular pitch lines and multilobes are
managed substantially as for spur gearing.
The elliptic bevel gear has been described in
connection with elliptic spur gears (152).

The tooth surfaces of the bevel gear arc
generally formed by drawing straight lines
from the spherical outline to the center of the
sphere, as in Figs. 143 and 144, the pitch lines
and tooth outlines being the bases of cones
with a common apex.

When limited in width, as is usually the
case, it is by a sphere concentric with the
outside sphere, so that a spherical shell is
formed.

These concentric spherical shells can be
moved on their axes to form twisted and
spiral teeth, Fig. 142, precisely as described
for spur gears (99).

The molding process of (27) will apply per-
fectly, but it has but one practical applica-
tion.

Fig. 142

Twisted bevel gear.

The planing process of (28) will fail, for
practical purposes, except for one particular
form of tooth, because the shape of the cut-
ting tool cannot in the general case be
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Involute Bevel Gears.

changed in form as it approaches the apex,
and therefore the tooth will not be conical.

The planing process of (29) will apply per-
fectly, the strokes of the tool being radial,
and on this method we must depend for the
accurate construction of all forms of bevel
gear teeth except the octoid and the pin
tooth.

As the diameter of the sphere is increased,
the radii become more nearly parallel, until,
when the diameter is infinite, they are paral-

lel. Therefore the spur gear is a particular
case of the bevel gear, and all formulse and
processes that apply to the bevel gear will
apply to the spur gear if the diameter of the
sphere is made infinite. The most scientific
method of study would be to develop the
theory of the bevel gear, and from that pro-
ceed to that of the spur gear, but such a
method would be difficult to clearly carry
out, and is best abandoned for the more con-
fined process here adopted.

156.—PARTICCLAR FORMS OF BEVEL TEETH.

Asin the case of spur gearing, there can
be an infinite number of tooth curves for
bevel gearing (81), each form having its own
line of action, but as there are only four
forms that are available for practical use by

" means of simple processes of construction,
our attention will be confined to them.

These four particular forms are, first, the

involute tooth, having a great circle line of
action; second, the cycloidal tooth, having a
circular line of action; third, the octoid
tooth, having a plane crown tooth, and a
‘““figure eight” line of action; and, fourth,
the pin tooth, for which one gear of a pair
has teeth in the form of round pins.

157.—THE INVOLUTE BEVEL TOOTH.

The spherical involute must be studied as
a whole if its form is to be clearly seen.

Its definition is that it is the tooth curve
having a great circle for a line of action. In
Fig. 143 the great circle line of action la ex-
tends around the sphere at an aagle with the
crown pitch line p/, and it is tangent to
two base lines 4/ and /', that are paral-
lel with the crown line.

The most convenient method of draw-
ing the tooth curveis by rolling the line
of action on the base line, while a point
in it describes the curve on the surface
of the sphere. The equivalent graphical
process is to step along the base line
and any two tangent great circles, from
any point on the curve to any desired i
point.

It will take the form shown by the
dotted lines ; rising at right angles to the
base line, it curves until the crown
line is reached, there reversing its curva-
ture and bending the other way until it
meets the other base line. At the base
line it has a cusp, and rises from it to
repeat the same course indefinitely.

Fig. 143 shows a crown gear or rack. The
pitch line is the great circle pl. The line
of centers ¢O(C is a great circle at right angles
with the crown line pl. The line of action
is the great circle la set at a given angle of
obliquity with the crown line. The base

Fig, 143,
The involute Tooth
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circles are the small circles 87 and b7’. The
spherical involutes have the same property of
adjustability as have the spur involutes, the

motion being confined to the sphere, and there-
fore the gears are adjustable as to their shaft.
angle, the apex remaining common to both.

158.—THE CYCLOIDAL BEVEL TOOTH.

The definition of the cycloidal tooth is
that it is that form which has a circular line
of action.

The rolled curve method of treatment (32)
applies, and is the best means of studying
the curve.

flank formed by a roller of half the angular
diameter of the gear being nearly but not
exactly a plane.

The theory differs so little from that of
the spur gear, that but little of interest can

be found, and the curve will not be consid-

There is no gear with radial flanks, the | ered further.

159.—THE OCTOID BEVEL TOOTH.

The definition of this tooth system is that | ous machine for planing it, was invented by
it is the conjugate system derived from the | Hugo Bilgram, but it has always been mis-
taken for the very similar true involute tooth.

crown gear having great circle odontoids.

In Fig. 144 the crown gear has plane
teeth cutting the sphere in great circles,
mOn, while a pinion would have convex
tooth curves conjugate to the great cir-
cles of the crown tooth.

The line of action, from which the
tooth derives its name, is the peculiar
‘“figure eight” curve la, which is at right
angles to the tooth curve at the crown
line pl, and tangent to the polar circles
Sand &, to which the great circle crown
odontoids are also tangent.

This tooth owes its existence to the
fact that it is the only known tooth, and
probably the only possible tooth, that
can be practically formed by the mold-
ing planing process of (28).” The cutting
edge of the tool being straight, no
change is required while it is in motion,
except in its position, and that is accom-
plished by giving it a motion in such
a direction that its corner moves in the radial
line of the corner of the bottom of the tooth
space.

The octoid tooth, together with an ingeni-

* Since this statement was made, another bevel
dractically constructed by the process of (28).

Bilgram’s machine is described in the
AMERICAN Macuinist for May 9th, 1885,
and in the Journal of the Franklin Institute
for August, 1886.

tooth, the ¢ planoid ” tooth, has been invented and

160.—THE PIN

If the tooth of one gear of a pair is a coni-
cal pin, Fig. 145, with apex at the center of
the sphere, that of the other will be conju-

BEVEL TOOTH.

gate to it, and the combination deserves
notice because it is one of the few forms that
are easily constructed. It may be said that
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Method.

its practical construction is simpler and easier
than that of any other form of bevel gear
tooth except the skew pin tooth of (180).

The tooth is

Ml preferably, but
Z X not necessarily,
%/////// ] of the conical
"""3;%/, form, for other

OIS >

forms of circu-
lar pins would
serve the theo-

retical pur-
pose.
Pin bevel gears. Its theory is,

in the main, the same as that of the spur pin

tooth. It has the same troublesome cusp,
which can be avoided in the same way, by
setting the center of the pin back from the
pitch line.

It is the only known form of tooth that
can be formed in a practical manner by the
molding process of (27). If the cutting tool
is a conical mill, it will form the conjugate
tooth while the two pitch wheels are rolled
together.

The pins may be mounted on bearings at
their ends, ' forming roller teeth. They
would be weak, but would run with the
least possible friction, all the rubbing friction.
being confined to the bearings.

161.—TREDGOLD’S

The construction of the true bevel gear
tooth curve upon the true spherical surface is
impracticable with the-means in ordinary use,
and the true method of computation by means
of spherical trigonometry is equally unfitted
for common use. But, by adopting Tred-
gold’s approximate method the difficulties can
be overcome.

By this method the tooth curves are drawn,
not on the true spherical surface, but, as in
Fig. 146, on cones A and B drawn tangent
to the sphere at the pitch lines of the gears.
The cones are then rolled out on a plane sur-
face, and the gear teeth drawn upon them |
precisely as for spur gears of the same pitch
diameter. |

Practically correct tooth curves could thus
be drawn on the spherical surface by cutting
the teeth to shape, and bending them down
to scribe around them, but in practice the
back rims of the gears are shaped to the tan-
gent cones so that the teeth lie directly upon
the conical surface.

This method is called approximate, but its
real error would be difficult to determine,
and is certainly not as great as the inevitable
errors of workmanship of any graphical pro-
cess. The tooth outline drawn by it upon
the spherical surface may be considerably
different from that which would be drawn
directly upon it, but it does not follow that
it is therefore incorrect. The only require-
ment is that the engaging curves shall be

APPROXIMATION.

Fig. 146.

Tredgold’s method,

conjugate odontoids, and it is a matter of
very smail consequence whether or not the
curve on the sphere is the same kind of curve
as that upon the cone. If the true plane in-
volute curve is drawn upon the developed
cone, the corresponding curve on the sphere
will not be an exact spherical involute, butits
divergence from some true odontoidal shape
must be minute, even when the teeth are very
large indeed. In ordinary cases it cannot be
sufficient to affect materially the constancy
of the velocity ratio. What is sometimes
given as its error is mostly the ¢‘ difference in
shape” between the plane and the spherical
teeth.
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162.—DRAFTING THE BEVEL GEAR.

The practical application of Tredgold’s
method is illustrated by Fig. 147.

Draw the axes A and OB at the given
shaft angle ACB. Lay off the given pitch
radii ¢ and b, and draw the lines ¢ and d in-
tersecting at the pitch point 0. Dra the
center line OC, and lay off the face Of.

The pitch diameters are ON and OM,
and NCO and MCO are the pitch cones.

Draw the back rim line 0D at right an-
gles with the center line, lay off the addenda
Oc¢ and Og, and the clearance gh. Draw the
front rim line parallel to the back rim line.

'\ Fig. 147,

o

@,%

M

| The center angle is X, the face increment

|is #, and W is the face angle. The cutting
decrement is J, and Y is the cutting angle.
Twice the distance mn is the diameter incre-
ment, and em is the outside diameter.

. The pitch radius of the Tredgold back
cone is OD, and the figure shows the con-
struction of the gear teeth on this cone
developed. The teeth are represented as
drawn upon the figure, but it is better to use
a separate sheet, The odontograph should
)be used, calculating the number of teeth in
| the full circle of the developed cone,

Drafting the bevel gears

163.—THE BEVEL GEAR CHART.

The drafting of the bevel gear blanks by
means of the method of (162) is simple, but
the method requires drafting instruments,
not always at hand, as well as the ability to
use them accurately. The drawing must be
carefully made, to give correct results, par-
ticularly when the gears are small. After
the drawing is made the various angles and

diameters must be taken off for use at the
lathe, and that is by no means a simple mat-
ter.

So great are the practical difficulties that
any one who has a knowledge of simple arith-
metic will find it not only easier, but more
accurate to use the chart and method by
means of the following rules.
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Shafts at 90° Center % Ié g Ig. Shafts at 90° Center % I g’! g Ig
Froportion. Angle. |5 '-: g E Proportion. Angle. % -E g E
< g|R R < 2|8 R l
_.10_] 1-10| 572 | 11 | 2.00 |10.00 | 10—1 | s4.28 14| .20
1 |1—9| 633 |13 ] 2.00 |/ 9.00 | 9—1| 8367 |114| .22
13 [1—8| 712 | 14 | 1.99 || 8.00 | 8—1| 8288 |118| .25 |
44 [1— 7| 813 | 16 | 1.98 || 7.00 | 7—1| si.87 | 113| .28 |
A7 | 1—6| 947 | 19 | 1.97 | 6.00 | 61| 8058 |113| .83
20 [1—5| 1.2 |28 | 1.96 | 5.00 | 5—1| 78.68 |112| .39
22 |2—9| 1253 | 25 | 1.95 || 4.50 | 9—2| 77.47 |11 | .48
25 [1— 4| 1405 |28 | 194400 | 4—1| Wwor |[111]| .49
29 |2—7| 1595 |82 | 192850 | 7—2| 7405 |110| .55
30 [3—10| 16.70 | 83 | 1.92 || 8.3 | 10—3| 7330 |109| .58
.83 |1— 3| 1844 | 36 | 1.90 || 8.00 | 8—1 | 71.57 | 109 | .63
.88 | 83— 8| 20.55 | 40 | 1.87 || 267 | 8—3| 69.45 |107| .70
40 |[2— 5| 2180 | 48 [ 1.86 | 2.50 | 52| 68.20 |106| .74
43 |3 7| 2320 |45 | 1.84 || 2.8 | 7—3 | 66.80 |105| .79 |
44 |4—9| 2397 |46 | 1.83 || 2.25 | 9—4 | 66.08 |104| .81
.50 [1— 2| 26.57 | 51 | 1.79 || 2.00 | 2—1 | 63.43 | 103 | .89
.56 |5— 9| 20.05 | 56 | 1.74 || 1.80 | 9—5 | 60.95 | 101 | .97
57 |4—7| 2915 | 57 | 174 || 175 | 7—4] 60.25 | 99| .99
60 [8—5| 80.97 |59 | 172 1.67 | 53| 50.08 | 98] 1.03
63 | 5—8| 32.00 | 61 | 1.69 || 1.60 | 8—5 | 58.00 | 97 | 1.06
67 [2—3| 33.68 | 64 | 1.66 || 1.50 | 3—2| 5632 | 95| 1.11
.70 | 7—10 | 34.99 | 66 | 1.64 || 1.3 | 10—7 | 55.00 | 94 1.15
1| 5— 7| 8558 | 67 | 1.63 || 1.40 | 7—5 | 5447 | 93| 1.16
%5 |8— 4| 36.87 | 69 | 1.60 || 1.83 | 4—8 | 53.13 | 92| 1.20
18 | 1— 9| 87.87 70 | 1.58 || 1.29 | 9—7 | 52.13 91| 1.22
.80 |4— 5] 3867 | 72 | 1.56 | 1.25 | 5—4 | 51383 | 90| 1.25
83 |5—6] 3980 | 73 | 1.54 || 1.20 | 65| 50.20 | 88| 1.28
" 86 [6—7| 4060 |75 | 152 | 1.17 | 7—6| 4940 | 87| 1.31
88 [7—8| 4118 | 76 | 1.50 || 1.14 | 8—7 | 4882 | 86| 1.32
89 [8— 9| 4163 |76 | 1.49 || 1.13 | 9—8| 48.37 | 86| 1.33
90 |9—10] 41.98 | 77 | 1.49 || 1.11 [10—9 | 48.02 | 85| 1.4
1.00 | 1— 1] 45.00 | 81 | 1.41 || 1.00 | 1—1| 45.00 | 81| 1.41
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Chords of Angles.

164.—SHAFTS AT RIGHT ANGLES.

1st.—Divide the pitch diameter by that of
the other gear of the pair, or else the number
of teeth by that of the other gear, to get the
proportion. Enter the table by means of the
proportion. All numbers for that pair will
be found on the same horizontal line in the
two columns.

2d.—The center angles are given directly
by the table at the proper proportion.

3d.—Divide the tabular angle increment
by the number of teeth in the gear, to get
the angle increment. This need be done for
but one gear of a pair, as the increment
is the same for both.

4th.—Add the angle increment to the cen-
ter angle, to get the face angle.

5th. —Increase the angle increment by one-
sixth of itself, to get the cutting decrement,
and subtract this decrement from the center
angle, to get the cutting angle.

6th.—Divide the tabular diameter incre-
ment by the diametral pitch, to get the
diameter increment, and add that to the pitch
diameter, to get the outside diameter.

Fig. 148 is a sample computation for s

hafts
at right angles. d

165.—SHAFTS NOT

The table cannot be entered by means of
the proportion, and the numbers for the two
gears of the pair will not be found on the same
horizontal line, and it will be necessary to
determine the center angles.

Asin Fig. 147, draw the axes, at the given
shaft angle, and find the center angles, by the
method described in (162).

Then enter the table, for each gear by
itself, by means of the center angles, and
proceed as for shafts at right angles. The
angle increment and decrement is the same
for both gears of a pair.

Fig. 149 is a sample computation applied

AT RIGHT ANGLES.

to the case of Fig. 147, the center angles be-
ing found by means of the table of chords,
If preferred, the center angles can be found
by means of the formula,

A e sin. S
_}J-*-cos. S

in which O is the center angle of the gear, P
is the proportion found by dividing the num-
ber of the teeth in the gear by the number in
the other gezir. and 8 is the shaft angle.
Having found one center angle, subtract it
from the shaft angle to get the other center
angle.

166.—THE TABLE OF CHORDS AT SIX INCHES.

When the lathesman is provided with a
graduated compound rest which feeds the
tool at any angle, nothing but the computa-
tion is required; but when there is nothing
but the common square feed, the faces must
be scraped with a broad tool. A templet for
guiding the work can easily be made by
means of the table of chords at six inches.

To lay out a given angle, draw an arc
with a radius of six inches, draw a chord of
the length given by the table for the angle,

and then draw the sides oc and ob of the
angle boc, Fig. 150.

For tenths of a degree use the small tables.
The chord of 387.5° is 3.81 -} .05 = 3.86
inches.

Fig. 151 shows the manner of using the
angle templet at the lathe.

This table of chords is very convenient for
many purposes not connected with gearing,
and it is more accurate than the common
horn or paper protractor.

167,—BILGR

A graphical method for determining the
angle and diameter increments, the invention
of Hugo Bilgram, is described in the AMERI-
cAN MacHinist for November 10, 1883. It

AM’S CHART.

determines the required values by the inter-
sections of lines and circles, and requires no
computation.
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Chord of an angle.

Fig. 150.

-

Using the templet

TABLE OF CHORDS OF ANGLES,
AT RADIUS OF SIX INCHES.

Degrees. | Chord. | Tenths. | Degrees. | Chord. | Tenths. | Degrees.| Chord. | Tenths.
1 .10 31 3.20 61 6.10

2 .20 32 3.31 62 6.19

3 .31 33 3.41 63 6.28

4 .42 34 3.51 64 6.36

5 .52 35 3.61 65 6.45

6 .62 36 3.71 66 6.54

7 13 37 3.81 67 6.62

8 .84 38 3.91 68 6.71

9 .94 39 4.01 69 6.80

10 1.04 40 4.10 70 6.89

11 1:15; 41 4.20 71 6.97

12 1.26 42 4.30 72 7.06

13 1.36 | .1—o1] 43 440 |.1—o1] 73 744 | 4105
14 146 |9 oo 44 450 |9 _o2f 74 795 L1 N
15 1.57 |'s_osl 45 460 | 3—o3l 75 7.31 |3 %%
16 1.67 | .4—.04] 46 469 | 4—04f 76 7.39 | 4—_.03
17 )i 5—.05 47 4.79 .5—.05 77 7.47 | 5—.04
18 1.87 |[.6—.06] 48 488 |.6—05) 78 7.55 | 6—.05
19 198 |.7—o07] 49 498 |.7—.06f 79 7.63 [[7—.06
20 2.08 |.8—.08] 50 5.08 |.8—.07] 80 7.71 |8 08
21 2.18 | -9—09] 51 5.17 |-9—08 1 3] TGO O==0T
22 2.29 52 5.26 82 7.87

23 2.39 53 5.85 83 7.95

24 2.49 54 5.45 84 8.03

25 2.59 55 5 54 85 8.11

26 2.70 56 5.63 86 8.18

27 2.80 57 5.72 87 8.26

28 2.90 58 5.82 88 8.34

29 3.00 59 5.91 89 8.41

30 3.10 60 6.00 90 8.48
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Templet Planer.

168.—ROTARY CUT BEVEL TEETH.,

The most common method of forming the
teeth of the bevel gear is by cutting them
from the solid blank by the use of the com-
mon rotary cutter.

The cutter should be shaped to cut the
tooth of the correct shape at the large end, and
the small end must be shaped either by an-
other cut with a different cutter, or with a file.

It is impossible to cut the tooth correctly
at both ends, for the simple reason that the

chape of the tooth changes, while that of the
cutter is invariable. Therefore the result
must always be an approximation depending
upon the personal skill and experience of the
workman, It is a too common practice to
make the teeth fit at the large ends, and to
increase the depth of the tooth toward the
point, so that the teeth will pass without
filing, but such teeth can be in working con-
tact only at the large ends.

169.—THE TEMPLET GEAR PLANER.

The most common method of planing the
teeth of bevel gears is by means of devices
adapted to guide the tool by a templet that
has previously been shaped, as nearly as
may be, to the true curve. The arm that
carries the tool is hung by a universal joint
at the apex of the gear, so that all of its
strokes are radial, and a finger placed in the
line of the stroke of the cutting point of the
tool is held against the templet. There are
many different arrangements for the purpose,
but they are all founded on the same princi-
ples, and differ only as to details.

The invention of the templet gear planer is
commonly credited to George I. Corliss,
who patented it in 1849, and was the first to
use it in this country. But it was patented
in France, by Glavet, in 1829, and may be
even older.

It is largely used for planing the teeth of
heavy mill gearing, but has not been, and
cannot be, profitably applied to common
small gear work. Its product is, in any case,
superior to the rough cast tooth, but its accu-
racy is dependent on that of the templet, and

is therefore dependent on personal skill.



9. THE SKEW BEVEL GEAR.

'170.—THE SKEW BEVEL GEAR.

When 2 pair of shafts are not parallel, and
do not intersect, they are said to be askew
with each other, and they may be connected
by a pair of skew bevel gears, having
straight teeth, which bear on each other
along a straight line. Such gears are to be
carefully distinguished from spiral gears,
used for the same purpose but having spiral
teeth bearing on each other at a single point
only.

We will endeavor to describe the skew
bevel gear so that its general nature can be
understood, but it is impossible to do so in
simple language. It is the most difficult ob-
ject connected with the subject. The theory
cannot even be considered as yet settled, for
writers upon theoretical mechanism do not
agree upon it, and there are points yet in
controversy.

In the theory of the bevel gear the surface
of reference is the spherical surface upon
which the tooth outlines are drawn, and upon

which ‘the laws of their action may be
studied, for spheres of reference of two sep-
arate gears may be made to coincide so that
the lines upon one will come in contact with
those upon the other. For the spur gear, the
spheres become planes and the process is the
same. But for the skew bevel gear there is
no analogous process, for it is impossible to
imagine a surface of such a nature that it can
be made to coincide with a similar surface
when both are attached to revolving askew
shafts. There are spiral surfaces which will
approximately coincide, and are analogous to
the Tredgold tangent cones of bevel gears
(161), but any tooth action developed upon
such approximate surfaces must, of necessity,
be not only approximate, but also very diffi-
cult to detine and formulate.

Of all the skew tooth surfaces that have
been proposed, there is but one, the Olivier
involute spiraloid, that can be proved to be
theoretically correct.

171.—THE HYPOID.

The pitch surface of the skew bevel gear
is the surface known as the *‘ hyperboloid of
revolution,” and it is so intimately connected
with ‘the subject that it must be thor-
oughly understood before going further.
The clumsy name may be abbreviated to
“ hypoid.”

If a line D, Figs. 152 and 153, called
a generatrix, is attached to a revolving

lines d and d', Fig. 153, cither one of which
is an element of the surface, and will form it
if used as a generatrix. A section by any

shaft A, so that it revolves with it, it

will develop or ‘‘sweep up” the hypoid
H in the space surrounding the shaft.
A section of the surface by any plane
normal to the axis is a circle. The com-
mon normal to the generatrix and the
axis is the gorge radius @, and circular
section through that line is the gorge
circle. A section by a plane D, Fig. 152,

Q
/£ ;Q
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{ } i 1
U i /
' d
Hypotdal sections, Q
i 5
Fig. 152. - - By
Hyperbdolic sections.
Fig. 153.

parallel to the axis, at the gorge distance | other plane parallél to the axis will be a
from the axis, will be the pair.of straight | hyperbola, to-which the elements d and &’
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Rolling Hypoids.

are assymptotes, or lines which the curves
continually approach, but reach only at in-
finity. Fig. 153 shows at @ the hyperbolas
cut by the plane @ of Fig. 152, and at R
those cut by the plane R. The principal
hyperbola H is the only one with which
we are concerped.

The hypoid is best studied as projected
upon a plane parallel to the axis, as in Fig.
154, in which A is‘the projection of the axis,
d is that of the generatrix, dG 4 is the skew
angle, and 7 is the principal hyperbola.

‘When the skew angle and the gorge radius
are given, the hyperbola is easily constructed
by points. Any line ab is drawn normal to
the axis and the gorge distance be= Gy is laid
off from b, the distance ab is made equal to
ec, and a is then a point on the curve. The
curve is to be drawn through several points
thus constructed.

pi g

The hyperbola.
Fig. 154,

To draw a tangent to the curve at any
point @, draw a line am parallel to the
assymptote d, lay off mn equal to Gm, and
draw the tangent an.

172.—THE PITCH HYPOIDS.

The utility of the hypoid as the pitch sur-
face of the skew gear depends upon the pe-
culiar property that any number of such
surfaces will roll together, and drive each
other by frictional contact with velocity ratios
in the proportions of the sines of their skew
angles, if their gorge radii are in the propor-
tions of the tangents of their skew angles.

It is required to construct a pair of rolling
hypoids that will transmit a given velocity
ratio between two shafts that are set at a
given angle with each other. In Fig. 155,
A and Bare the given axes, and AGB the
given shaft angle. The directrix D is to be
so drawn that the sines of the skew angles
AGD and B@D are in the proportion of the
given velocity ratio, and this is best done by
drawing lines parallel to the axes, at distances
from G thatarein the given ratio, and drawing
the directrix thragh their intersection D.

In the figure the axes are situated one over
the other at a distance GH called the gorge
distance, and the directrix D is sitvated be-
tween them so as to pass through the gorge
line and divide the gorge distance into gorge
radii, G Wand HW, which are in proportion
to the tangents of the skew angles. This is

Pitch hypoids.
Fig. 155.

best done by Arawing e¢d normal to GD in
any convenient position, laying off the gorge
distance ce at any convenient angle with cd,
and drawing de and gf parallel to it; ¢f will
be the gorge radius G'W for the axis GA,
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and fe will be the gorge radius W for the
axis GB.

Then, if the directrix, thus situated, is at-
tached first to one shaft and then to the
other, and used as a generatrix, it will sweep
up a pair of pitch hypoids that will be in
contact at the directrix, and which will roll
on each other.

They will not only roll on each other in
contact at the directrix, but they will also
have a sliding motion on each other along
that line, the two motions combiring to form
a resulting motion that must be seen to be
understood. It is this sliding motion that
makes all the difficulty in the construction of
the teeth, for they must be so constructed
as to allow it. It is also the cause of the
great inefficiency of such teeth in action, for
any possible form must have a lateral sliding
motion, with the consequent friction and
destruction.

If we draw two diameters mn and m'n’
through the same point Con the directrix,
they will be the diameters of circles that will
touch each other while revolving, and may

be called pitch circles. 1f they are thin, and
provided with teeth in the given velocity
ratio, they will drive each other with a con-
tact that is approximately correct, and if
there are several pairs of such thin gears set
so far apart that they do not interfere with
each other, they will serve light practical
purposes fairly well.

If a face distance CE is laid off on the
directrix and another pair of pitch circles
constructed, the frustra of the hypoids in-
cluded between the circles may be called
pitch frustra, and they will roll together in
contact at the directrix.

It is to be noticed that the pitch diameters.
thus determined are not, as in spur and bevel
gearing, in the inverse proportion of the
velocity ratio of the axes, and therefore if
one diameter of a pair of skew gears to have
a given velocity ratio is given, the other must
be constructed. When the skew angles are
equal, the pitch diameters are equal, but
otherwise the proportion cannot be expressed
in simple terms, and must be determined by
making the drawing.

173.—THE LOCUS OF AXES.

The rolling hypoids may be examined
from another and most interesting point of
view. In Fig. 156 the gorge line @ is nor-
mal, and the directrix D is parallel to the
plane of the figure. The plane P is normal
to the directrix, and below is a front view of
it. On the plane P draw any straight line L
through the directrix, From any two points
@ and b on this line draw lines 4 and B
normal to the gorge line G, and they will
be axes of pitch hypoids that will roll on
each other in contact at the directrix.

Axes drawn from all points of the line
will form a continuous surface called a *“ hy-
perbolic paraboloid,” which will be the locus
of all the axes of a set of hypoids that will
rll together collectively in contact at the
directrix.

The locus of axes.

Fig. 156.
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Olivier Skew Bevel Gears.

174.—CYCLOIDAL TEETH FOR SEKEW GEARS.

As any number of hypoids, on axes in the
same locus of axes, will roll together in
either external or internal contact at the
directrix, it might be supposed that a tooth
similar to the cycloidal tooth for bevel and
spur gears might be formed by an element in
an auxiliary hypoid X, Fig. 156, which rolls
inside of one and outside of the other pitch
hypoid.

This is such a plausible supposition that it
long passed for the truth, not only with its
inventor, the celebrated Professor Willis, but
with many other prominent writers, until
shown by MacCord to be wrong. 1t serves
to illustrate the confusion in which the whole
subjéct has been and now is.

The tooth surfaces which Willis supposed
to be tangent at the generating element of
the auxiliary hypoid really intersect at that
line, and Fig. 157 shows a pair of such in-
tersecting teeth. The curves of the figure
were drawn by an instrument made for the

Cyclotdal tooth Curves
Fig. 157.

purpose, and are, therefore, a better proof of
the intersection of the surfaces than solid
teeth would be.

The cycloidal tooth is examined at consid-
erable length, and the instrumental proof of
its failure is given in the AMERICAN MACHIN-
1sT for September 5th, 1889.

175.—INVOLUTE TEETH FOR SKEW BEVEL GEARS.

Herrmann’s form of the Olivier spireloidal
tooth is constructed with the directrix of
(172) as a generatrix, as follows :

Suppose that cylinders are constructed
upon the gorge circles of a pair of pitch
hypoids, Fig. 158, and suppose a plane K to
be placed between them. This plane will be
tangent to both cylinders, and will contain
the directrix, and if moved will move the
«cylinders as if by friction. Then imagine
the plane to move in a direction normal to
the directrix, and it will carry that directrix
with it asa generatrix always parallel to its
first position. It will sweep up the spiraloid
tooth surfaces §; and S, imperfectly shown
by the figure, or by Fig. 159, and they will
be correct tooth surfaces always in tangent
contact.

Fig. 159 shows a full involute tooth sur-
face or ‘‘spiraloid,” and Fig. 160 is a full
Olivier skew bevel gear.

The particular involute skew tooth above
described is not the only possible form, but
it has the least possible sliding action, and is,
therefore, the best.

L
&

7

Involute tooth action
Frig. 158.

If the plane K has a generatrix line at any
angles with the axes of the gears, and is
moved in a direction at right angles with that
line, correct tooth surfaces will be swept up.
In fact, any two spiraloids on any two cylin-
ders will work correctly with each other, and
therefore any two spiraloidal gears of the
same normal pitch will work correctly to-
gether.
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A spiraloid
Fig, 1569,

Olivier Involute skew Bevel Gear
Fig. 160,

176.—HERRMANN’S LAW.

Herrmann gives a law, and claims it to be
universal, to the effect that the skew bevel
tooth must be swept up by a straight line
generatrix that is always parallel to the direc-
trix. He mentions the Olivier tooth, and
claims that it cannot be correct, evidently not
understanding that Olivier’s theory clearly
includes the form he himself proposes. His
form of tooth, claimed to be the only possi-
ble form, is really only the best form of the
Olivier tooth.

‘We will not undertake to state wherein
Herrmann’s law is incorrect, but that it is
wrong is clearly shown by the most con-

vincing of all proofs, the reduction to prac-
tice. Beale, for the Brown & Sharpe Mfg.
Co., has made working Olivier gears on a
large scale, which are directly contrary to
Herrmann’s law, but which work perfectly,
and demonstrate the truth of Olivier’s theory
in a way that admits of no question.

Indeed, the closest possible scrutiny of
Olivier’s theory, without the aid of Beale’s
experimental work, fails to detect a flaw in
it. Herrmann’s condemnation of it is not
based on direct consideration, but simply on
the fact that it does not agree with his own
law.

177.—BEALE’S SKEW BEVEL GEARS.

Beale's gears are the same as Olivier’s gears

| vanish at the gorge, as shown by the single

in general theory, but the improvement in | full tooth of Fig. 160, in order to pass, while
practical form and application is so great that | the Beale gear is cylindrical in form asa
they may be considered a distinct invention. | whole, and passes the full tooth at the gorge,

Fig. 161 is a section through one axis, and
at right angles to the other axis of a pair of
Beale gears. Both surfaces of the teeth are
true Olivier spiraloids of Fig. 159, and the
gears will run in either direction. When
corrected for interference they are reversible,
like spur or bevel gears. The gorge cylin-
ders are tangent to each other, and are so cut
away inside as to allow the teeth of the ma-
ting gear to pass.

The Olivier theory requires the teeth to

with action over its whole surface. The
‘, difference is pr'actically‘ very great.

| When in action a pair of uncorrected Beale
| gears must be placed as shown by Figs. 161
to 163, and Fig. 169, with one end of each at
| the gorge, and they will not run together if
placed at random. If either gear extends
beyond the gorge line there is an interfer-
ence between the involute spiraloids which
is the same in kind as that between the in-
volute curves of common spur gear teeth.
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Each gear can drive in but one direction,
depending upon the position of the gear and
the direction of the spiral, and if turned
backwards the action is intermit-
tent and practically useless. The
gears must be placed as in Fig.
162 for right-hand spirals, and as
in Fig. 163 for left-hand spirals,
and the direction of the rotation
is shown by the arrow D, when
the gear bearing the arrow is the
driver.

But, if the direction is to be re-
versed, the gears can be arranged
as in Fig. 162a, or as in Fig. 163a.
This resetting is the same in effect
as turning the gears half around,
except that opposite sides of the
teeth are in contact in the two
positions of the same gears,

If, however, the interfering parts
of the tcoth surface are removed,
the gears will run together per-
fectly and in either direction when Section of Beale’s Gears
put together at random as in Fig.
168.

In the cases shown by the figures,
the spirals make the angles of forty-
five degrees with the shafts, con-
trary to Herrmann’s law, but the
action will be smoother, and the

In comparison, the Beale gear is taken so
near the gorge that it is practical and service-
able, having large teeth and small obliquity.

| Fig. 162a.
1
I

sliding of the teeth on each other st
will be less, if Herrmann’s angles ==wuvi
are adopted. These angles are the =
same as those made by the conical Y i
face of common bevel gears of the Y A Mt ol Bewl’ e
same proportion with the axes, and ">~~~ " Right Hand Spiral at A
the best angles for the two-to-one
proportion of figures are those of , L
the line X of Fig. 162, making the Fig. 163, 'F’-'/' 163a.
angles 26° 34’ and 63° 26’ with the ==
e Vvt TSN

The Olivier gear of Fig. 160 is Jj;;‘;;i?hi. ‘l' :
perfect in theoretical action, but the — ===4-'5"‘:—_-ﬂ'~|‘-

>

teeth must be taken so far from the

gorge that the obliquity of the ac-

tion is excessive, and the arc of

action is so limited that the teeth

must be small. The sliding and wedging
action is so great that the gears are practically
useless.

| Left Hand Spiraljat 45°

The working length of each gear is as
determined by the line L of Fig. 161, and
the whole surface of the tooth within that.
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limit will be swept over by the line of
contact. If the length of each gear is equal
to the radius of the other gear it will always
be long enough.

The action between two gears will be at
the straight, equidistant, parallel lines a a,
Figs. 161 and 162, in the plane of action
tangent to both gorge cylinders.

The shafts of a pair of skew bevel gears
should be as near together as possible, just

far enough apart to allow the shafts to yass, |

s0 as to avoid the excessive sliding action.
In that case both Beale and Olivier gears
are practically useless, the former on ac-
count of the small size of the teeth, and the
latter on account of the great obliquity of
the action.

The common bevel gear becomes the spur
gear when the shaft angle becomes zero, but
the analogous transformation of the skew

bevel gear into a bevel gear by reducing the
gorge distance to zero is not possible.

The skew bevel gear becomes a spur gear
if we imagine the axes to be brought parallel
by removing the gorge to an infinite distance,
for the spiraloids on the gorge cylinders then
become involute surfaces on base cylinders.
But, and it is a curious circumstance, when
the shafts are brought parallel by imagining
the shaft angles to become zero without
changing the position of the gorge, the gorge
cylinders become tangent and the gears do
not become spur gears.

Involute skew bevel gears do not appear
to have any possible adjustment correspond-
ing to the adjustment of the shaft distance
of involute spur gears, or of the shaft angle
of involute bevel gears, (56) and (157).

Beale’s gears are fully described in the
AMER1CAN MacHINIST of Aug. 28th, 1890.

178.—TWISTED

As no two surfaces of reference attached
to a pair of revolving askew shafts can be
made to coincide with each other, like the
planes of spur gears or the spheres of bevel
gears, the twisted or spiral tooth is impossi-
ble, for such a tooth would not permit the
required sliding action.

But, if a line is drawn upon one pitch
hypoid of a pair, a corresponding line may
be drawn upon the other, as if the given

SKEW TEETH.

line could leave an impression. Therefore
a tooth having edge contact (100) may be
constructed, provided the twist is such that
one pair of lines always crosses the directrix.
These teeth are purely imaginary, but if the
edges are thick they will have an action upon
each other, at a single point of contact, that
is closely approximate to the theoretical
action, and they will serve the general pur-
pose, if the power carried is inconsiderable.

179.—APPROXIMATE SKEW TEETH.

As the true involute skew tooth is diffi-
cult to construct, and in many cases is of
small practical utility, and all other proposed
forms are incorrect, it follows that we must
depend for practical purposes mostly upon
some approximation, provided it is not pos-
sible to avoid the skew gear altogether.

The blanks can be constructed by a definite
process. Construct the frustra of the pitch
hypoids by the method of (172) and Fig. 155.
Consider the end sections mn and pg as ends
of a frustrum of a pitch cone, and on this

pitch cone construct the blank gear exactly
as for a common bevel gear.

Having constructed the blanks, the general
direction of the tooth is to be marked upon
them. Mount each blank as in Fig. 153,
with its axis parallel with a plane surface Z.
Set a surface gauge with its point at the line
of the directrix W, and with it mark the po-
sition of the directrix on the pitch line at
each end of the blank.

The tooth must then be cut so that its
direction follows the directrix, and it is to be
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noticed that it is not only askew with the
axis, but that the tooth outline twists. The
appearance of the tooth on either rim, as
well as upon any section between the two
rims, is the same as upon a common bevel
gear, symmetrical, and not canted to one
side, as is sometimes taught.

The approximate tooth is very similar to
the twisted bevel tooth, see (155) and (99),
with the twist following a straight line set
askew with the axis, and as the line of the
twist is not parallel with the conical face,
that face should be as short as possible.

The process of cutting is not capable of
description, for it depends upon personal
skill and judgment. The workman must
imagine that he sees the twisted cut in the

body of the blank, and then must persuade |

the cutter to follow it. Gear cutting ma-
chines are seldom so made that the cutter
can be turned while it feeds, and theretore
it must be set to a medium path, and reset
two or three times to get the desired form.
The beginner will fail the first time, and
there may be several failures. The best pos-
sible result can be bettered with a file, after
running the cut gears together to find where
they interfere.

In the hands of a skillful workman, a pass-
able approximation can be reached, and if the
axes are very near together compared with the
diameters of the gears, the teeth are small, and
the face is short, the result is satisfactory.
In fact, when the conditions are favorable,
this approximate tooth is more serviceable
than the true tooth.

=L N
Substitute train.

Fig. 165.

180.—SUBSTITUTES FOR THE SKEW BEVEL
GEAR.

When there is a chance to introduce an
intermediate shaft, the skew bevel gear can
be avoided, and it is not only better, but
cheaper to avoid the objectionable gear at
the cost of the extra mechanism. :

Fig. 164 shows how to place an inter-
mediate shaft and gears, when the shafts are
so far apart that the shortest or gorge
distance can be used. Fig. 165 shows how
the skew shafts can be connected by one
pair of bevel gears and one pair of spur

gears, and that is the best device for general

purposes.

Substitute train,
Iig. 164,
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181.—SKEW PIN GEARING.

Fig. 166 shows a pair of skew pin gears
commonly called face gears. They will run
together with a uniform velocity ratio if
they are exactly alike and at right angles
with shafts at a distance apart equal to the
diameter of the pins.

If the gears are not alike or not at right
angles, the teeth on ome may be straight
pins, but those on the other must be shaped
to correspond.

Such gears are objectionable because they
have but a single point of contact for each
pair of teeth, at which they slide on each
other with great friction.

Face gearing in its various forms is thor- )
oughly examined in MacCord’s Kinematics. ke pin Level gears.
At the present day they are not in use, and Fig. 166.
do not deserve much study.

Formation of Beale gear.
Fig. 167.

7 s

Beale gears corrected for interference.
Fig. 168.

Uncorrected
Beale gears.
Fig. 169.
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MICHIGAN BRICK AND TILE MACHINE CO.

MogeNcI, MicH., Nov. 24th, 1891.

GEORGE B. GRANT., Dear Sir :— Two years ago you sent me one of your books on Teeth of
Gears, and I have replaced all of the gears in our brick machinery with new ones from your in-

volute odontograph table.

1 find that we now have the finest cast gears in the world.
understand why pattern makers don’t catch on to your book.

Itisa sight to see the gear pat-

terns that are made by some men who are called good pattern makers.

O. S. STURTEVANT,

Pattern Maker for M. B. & 7. M. Co.

I do not
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