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A Working Course of Study.

It is not necessary that the student, especially if he is a workman, should

learn all that is taught in this book, for it contains much that is not only difficult

but also of minor practical importance.

The beginner is therefore advised to master only the following sections :

i, 2, 7 to 15, 22, 25, 31, 32 of the general theory;

-35 to 47 of the spur gear ;

53 to 64 of the involute tooth
;

76, 77, 80 to 83, 89 of the cycloidal tooth
;

91, 95, 97 of the pin tooth
;

98, 99, in, 113 to 119 of spiral and worm gears;

154, 157, 158, 161 to 169 of the bevel gear.

These include not half of the whole matter, but, knowing this much well,

the student has a good outline knowledge of the whole, and he can then take

the balance at leisure.



A TREATISE ON

GEAR WHKELS
1. THEORY OK TOOTH ACTION.

1 . INTRODUCTORY.
The present object is practical, to reach

and interest the man that makes the thing
written of

; the machinist or the millwright
that makes the gear wheel, or the drafts-

man or foreman that directs the work, and

to teach him not only how to make it, but

what it is that he makes.

To most mechanics a gear is a gear.
" A yellow primrose by the shore,

A yellow primrose was, to him,
And it was nothing more ;

"

and, in fact, the gear is often a gear and

nothing more, sometimes barely that.

But, if the mechanic will look beyond the

tips of his fingers, he will find that it can

be something more
;

that it is one of the

most interesting objects in the field of scien-

tific research, and not the simplest one
;
that

it has received the attention of many cele-

brated mathematicians and engineers ;
and

that the study of its features will not only
add to his practical knowledge, but also to

his entertainment. There is an element in

mathematics, and in its near relative, theoreti-

cal mechanics, that possesses an educating
and disciplining value beyond any capacity

for earning present money. The thinking,

inquisitive student of the day is the success-

ful engineer or manufacturer of the future.

2. METHOD.
The method will be fitted to the object, and

will be as simple and direct as possible. It is

not possible to treat all the items in simple

every-day fashion, by plain graphical or arith-

metical methods, but where there is a choice

the path that is the plainest to the average

intelligent and educated mechanic will be

chosen.

A thousand pages could be filled with the

subject and not exhaust anything but the

reader thereof, but what is written should

receive and deserve attention, and must be

condensed within such reasonable limits, that

it shall not call for more time and labor than

its limited application will warrant. Demon-
strations and controversies will be avoided,

and the matter will be confined as far as is

possible to plain statements of facts, with

illustrations. The simplest diagram is often

a better teacher than a page of description.

First, we shall study the odontoid or pure
tooth curve as applied to spur gears, then

we shall consider the involute, cycloid, and

pin tooth, special forms in which it is found

in practice ;
then the modifications of the

spur gear, known as the spiral gear, and the

elliptic gear ; then the bevel gear, and lastly

the skew bevel gear.
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3. PARTICULARLY IMPORTANT.

Begin at the beginning.
The natural tendency is too often to skip

first principles, and begin with more ad-

vanced and interesting matter, and the result

is a trashy knowledge that stands on no
foundation and is soon lost. When a fact

is learned by rote it may be remembered,
but when it follows naturally upon some

simple principle it cannot be forgotten.
Therefore the student is urged to begin

with and pay close attention to the odontoid
or pure tooth curve, before going on to its

special applications, for the apparently dry
and trivial matter relating to it is really the

foundation of the whole subject.
The usual course is to begin at once with

the cycloidal tooth, to hurry over the in-

volute tooth, and then, if there is room, it

is stated that such curves are particular
forms of some confused and indefinite general
curve. Our course will be to study the unde-

fined tooth curve first, and then take up
its particular cases.

4. LITERATURE.

It is impracticable to acknowledge all the

sources from which information has been

drawn, but it is in order to briefly mention
the principal works devoted to the subject.

Professor Herrmann's section of Professor

Weisbach's "Mechanics of Engineering and

Machinery" is the most important work that

can be named in this connection. It treats

of much besides the teeth of gears, but its

treatment of that branch is particularly

valuable. It is not easy reading. Wiley,

$5.00.

Professor Willis' "Principles of Mechan-

ism "
is a celebrated book, now many years

behind the age, but it is, nevertheless, of the

greatest value and interest in this matter. To
Willis we are indebted for many of the most

important additions to our knowledge of

theoretical and practical mechanism. Long-
mans, $7.50. Out of print.

Professor Rankine's "Machinery and Mill-

work "
should not be neglected by the

student, for, although it is the dryest of

books, its value is as great as its reputation.

Griffin, $5.00.

Professor MacCord's "Kinematics" is a

work that abounds in novelties, and is writ-

ten in an attractive style. It contains many
errors, and some hobbies, and needs a thorough
revision, but the student cannot afford to

avoid it, or even to slight it. Wiley, $5.00.

Mr. Beale's "Practical Treatise on Gear-

ing
"

is really practical. Many of the so-call-

ed "practical
" books are neither practical or

theoretical, but we have in this small book

a collection of workable information that

should be within the reach of every man
who pretends to be a machinist. We have

drawn from it, by permission, particularly
with regard to spiral and worm gears.

Mr. Beale's experimental work, in connection

with the spiral gear, has been of great
service. The Brown & Sharpe Mfg. Co.,

cloth $1.00, paper 75c.

Professor Reuleaux's " Konstrukteur "
is a

justly celebrated work in the German lan-

guage. A translation of it is now being

published in an American periodical Me-

chanics.

Professor Klein, the translator of Herr-

mann's work, has lately published the "
Ele-

ments of Machine Design," a collection of

practical examples, with illustrations. J. F.

Klein, Bethlehem, Pa., $6.00.

"Mill Gearing," by Thomas Box, is a

practical work by an engineer, and from it

we have drawn much of our matter on the

cloudy subject of the strength and horse-

power of gearing. Spon, $3.00.

"Elementary Mechanism," by Professors

Stahl and Woods, is a recent work of general
merit. It is well designed as a text book,
and treats the subject in a simple and in-

teresting manner. Van Nostrand, $2.00.

In addition to the above works, reference

may be made to numerous articles to be

found in periodicals, notably in the " Ameri-

can Machinist," the "Scientific American

Supplement," the "Journal of the Franklin

Institute,"
"
Mechanics," and the " Transac-

tions of the American Society of Mechanical

Engineers."



General Theory .

5. KINEMATICS.

This, the science of pure mechanism, re-

lates exclusively to the constrained and

geometric motions of mechanism, and it

has nothing to do with questions of force,

weight, velocity, temperature, elasticity,

etc. The path of a cannon ball is not with-

in the field of kinematics, because it depends

upon time and force. A belt and pulley are

kinematic agents, because the contact be-

tween them can be assumed to be definite,

and the action is therefore geometric, but

the slipping and stretching of the belt is not

kinematic. The action of gear teeth upon
each other is purely kinematic, but we can-

not consider whether the material is wood, or

steel, or wax, whether the gears are lifting

one pound or a ton, or whether they are run-

ning at one revolution per second or one per

day.

6. ODONTICS.

The name "odontics' may be selected

for that limited but important branch of

kinematics that is concerned with the trans-

mission of continuous motion from one

body to another by means of projecting

teeth.

Even this restricted corner of the whole

subject is too large for the present purpose,

for it covers much that cannot be considered

within our set limits, and gear wheels must,

therefore, be defined as devices for trans-

mitting continuous motion from one fixed

axis to another by means of engaging teeth.

Thus confined, gear wheels may be con-

veniently divided into three general classes.

Skew bevel gears, transmitting motion be-

tween axes not in the same plane.

Bevel gears, transmitting motion between

intersecting axes.

Spur gears, transmitting motion between

parallel axes.

The last two classes are particular cases of

the first; for, if the shafts may be askew at

any distance, that distance may be zero, and
if they intersect at any point, that point may
be at infinity.

It would be scientifically more correct to

first develop the skew bevel gear, and from

that proceed to the bevel and spur gear, but

practical clearness and convenience is often

more to be admired than strict accuracy,

and, as the true path is difficult to follow, we
shall enter in the rear, and consider the spur

gear first.

Odontics does not properly include the

consideration of questions of strength, pow-
er and friction, but we must admit certain

important items in that direction.

7. PITCH

The fixed axes are connected with each

other by imaginary surfaces called "axoids,"

or pitch surfaces, touching each other along

a single straight line. We must imagine
that the pitch surfaces roll on each other

without slipping, as if adhering by friction.

The whole object of odontics is to provide

these imaginary surfaces wilh teeth, by

SURFACES.

which they can take advantage of the

strength of their material and transmit

power that is as definite as the geometric

motion.

The pitch surface of the skew bevel gear

is the hyperboloid of revolution, which be-

comes a cone when the axes intersect, and a

cylinder when the axes are parallel.

8. NORMAL SURFACES.

An important adjunct of the pitch surface I For the skew bevel gear there does not

is the normal surface, or surface that is

everywhere at right angles to both pitch sur-

faces of a pair of axes, and upon which the

action of the teeth on each other may best

be studied.

appear to be any normal surface. For the

bevel gear the normal surface is a sphere,

and for the spur gear the sphere becomes a

plane.
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9. UNCERTAINTIES.

The theory of tooth action is not yet full

and definite in all its parts, for there are

some disputed points, and some confusion

and clashing of rules and systems. This is

particularly the case with the theory of spiral

and skew bevel teeth, for much of the work

that has been done is clearly wrong, and

there is little that has been definitely decided.

10. PITCH CYLINDERS.

Fig. 1

'I'itch cylinder*

Two cylinders, A and B, Fig. 1, that will

roll on each other, will transmit rotary mo-
tion from one of the fixed parallel axes c and

G to the other, if their surfaces are provided
with engaging projections.

When these projections are so small that

they are imperceptible, the motion is said to

be transmitted by friction, and it is prac-

tically uniform. But when they are of

large size, and readily observed, the motion,

although it is unchanged in nature, is said to

be transmitted by direct pressure, and it is

irregular unless the acting surfaces of the

projections are carefully shaped to produce
an even motion.

The whole object of odontics is to so shape

these large projections or teeth that they
shall transmit the same uniform motion be-

tween the rotating cylinders, as would be

apparently transmitted by friction.

These cylinders are imaginary in actual

practice, although they are one of the

principal elements of the theory, and they
are called the axoids, or pitch cylinders of

the gears.

The normal surface (8) of the spur gear is

a plane, and, as all sections by normal sur-

faces are alike, we can study the action on

a plane figure easier than in the solid body
of the gear.

Fig. 2.

Tooth action

11. THE LAW OP TOOTH CONTACT.

The common normal to the tooth curves must

pass through the pitch point.

That is, in Fig. 2, if the tooth curves OD
and o d are to transmit the same motion

between the pitch lines pi and PL as

would be transmitted by frictional contact

at the pitch point 0, they must be so shaped
that their common normal Op at their com-
mon point p shall pass through that pitch

point.

Conversely, if the tooth curves are so

shaped that their common normal always

passes through the pitch point, they will

"With the above conditions given we can

deduce the following law:

transmit the required uniform motion.

12. THE ODONTOID.

This universal law enables us to define the

"odontoid," or pure tooth curve, for the

contact of the pitch lines at the pitch point

is continuous and progressive, and, if the

tooth curves are to transmit the same motion,
their normals must be arranged in a contin-

uous and progressive manner. The normals

nl, as in Fig. 3, must be arranged without

a break or a crossing, not only springing
from the odontoid at consecutive points, but

intersecting the pitch line at consecutive

points. This arrangement may be called
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Fig. 3.

Odontoid*

"consecutive," and the definition is not a

law by itself, but an expression of the given
universal law.

It is seen that the odontoid is inseparably

connected with its pitch line, and that the

same curve may be an odontoid with re-

spect to one pitch line, and not with respect

to some other. The curve Fig. 4 is an

odontoid with respect to the pitch Mne pi,

but not with respect to the pitch line pF be-

yond the point p at which the normal is tan-

gent to that pitch line.

The odontoid, so far as defined, is not a

definite thing, and, for practical purposes, it

must be given some particular shape. It

may be involute or cycloidal, or of other

form, but must always have normals ar-

ranged in consecutive order.

13. THE LINE OF ACTION.

As the tooth curves od and OD, Fig. 5,

work together, the point of contact will

travel along a line Op W called the "line of

action."

There is a definite relation between the

odontoid and the line of action, so that, if

either one is given, the other is fixed. If

the odontoid OD is given, with its pitch

line PL, the line of action is determined

without reference to the pitch .line pi or its

odontoid; and, conversely, if the pitch line

and line of action are given, the odontoid to

correspond is determined.

Fig.

Line of
action.

14. INTERCHANGEABLE ODONTOIDS.

This feature leads at once to the broad

and useful fact that all odontoids, on pitch

lines of all sizes, that are formed from the

same line of action, will work together inter-

changeably, any one working with any other.

Therefore, to produce an interchangeable
set of odontoids we can choose any one line

of action, and form any desired number of

them from it.

15. INTERNAL CONTACT.

The pitch lines of Fig. 5 curve in opposite

directions, and the contact is said to be "ex-

ternal." But the principles involved are in-

dependent of the direction of the pitch lines,

and they may curve in the same direction, as

in Fig. 6, in
" internal" contact.

Tooth contact is between lines only, there

being no theoretical need of a solid material

on either side of the line, so that either side

Fig. 0.

Interna.1 action



Cusps and Terminah

of the tooth may be chosen as the practical

working side.

Therefore the internal gear is precisely like

the external gear of the same pitch diameter,
|

working on the same lines of action, so far
j

as the odontoids are concerned, as illustrated

by Fig. 7.
Internal and
external teeth

Fig. 8

16. THE CUSP AND INTERFERENCE.

When, as in Fig. 8, the pitch circle p Ms
so small with respect to the line of action

C' C" W, that two tangent circles G' c' and

C" c" can be drawn to the line of action from

the center G of the pitch line, we shall have

a troublesome convolution in
m
the resulting

flank curve o d. This convolution will be

formed of two cusps, a first cusp c' on the

inner tangent arc, the "base circle" C' c',

and a second cusp c" on the outer tangent

arc G" c".

This happens with any form of odontoid,

although sometimes in disguised form, and

creates a practical difficulty that can be

avoided only by stopping the tooth curve at

the first cusp c'.

Furthermore, any odontoid OD that is to

work with the odontoid o d, must be cut off
j

at the point k on the "limit line" C' k

through the point C' from the center c.

If the odontoids, when the pitch line is so

small that the cusps occur, are not cut off as

required, the action will still be mathemati-

cally perfect, but, as the contact changes at a

cusp, from one side of the curve to the other,

the action is no longer practicable with solid

teeth. The curves will cross each other,

and there will be an interference.

17. THE SMALLEST PITCH CIRCLE.

To determine the smallest pitch circle that

can be used, and avoid the cusps altogether,

find by trial the point C, Fig. 9, from which

but one tangent arc C1

c' can be drawn to the

line of action C' W. This point will be

the center of the smallest pitch circle, and

all points outside of it will avoid interference,

while all inside of it will be subject to it.

Fig

18. THE TERMINAL POESTT,

When a tangent arc can be drawn, from

the pitch point as a center, to the line of

action at any point T, except the vertex W,

Fig. 10, there will be a corresponding cross-

ing of the normals to the odontoid commenc-

ing at the point t, and a termination of the

action when the point t reaches the point T.

As the action approaches the terminal

point T there will be two points of action, Fig. 10.
o
Terminal point
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since the odontoid crosses the line of action

at two points--one point of direct and ordi-

nary action at 8, and another point of retro-

grade and unusual action at F. These two

points of action will come together at T, the

odontoid will leave the line of action, and all

tooth action will then cease. The retro-

grade action is theoretically and actually

correct, but it is so oblique that it is of

no practical value, and therefore the odon-

toid may as well be cut off at its terminal

point t.

19. SPEED OF THE POINT OP ACTION.

Lay off 8, Fig. 5, to represent the speed

of the pitch lines, and draw 8 A at right

angles with the common normal p. Draw

*p C tangent to the line of action at the point

of action p.

Lay off p B equal to A, and draw B C
at right angles to B. Then p G will be

the speed of the point of action along the

line of action.

When the line of action is a circle the

angle 8 A is always equal to the angle
B p C, and therefore the speed of the point

of action is uniform, and equal to that of the

pitch lines.

If the line of action is a straight line the

angle B p G will be constant always zero

and therefore the speed of the point of action

will be uniform and always equal to A.

20. NATURE OF THE TOOTH ACTION.

The nature of the action may be deter-

mined by a study of the normal intersections;

the intersections of the normals with the

odontoid being at uniform distances apart,

their intersections with the pitch lines will

indicate the action of the teeth. If the nor-

mal intersections, as in Fig. 3, are quite regu-

lar, the action of the teeth will be smooth

and regular, while if they are crowded with-

in a narrow space the action of the tooth will

be crowded and jerky.

21. THE SECONDARY LINE OF ACTION.

From the universal law of tooth contact

stated in (11) we can reason that any

point on the tooth curve is in position for

contact whenever its normal passes through

the pitch point 0, and therefore that the

point will then be upon a line of action.

In Fig. 11 the normal to the point p must

cross the pitch line twice at a primary in-

tersection a, and at a secondary intersection

b, and therefore there will be a point of

action on a primary line of action M' at q,

when the curve has moved so that the pri-

mary point of intersection a is at the pitch

point 0, and a point of action w on a second-

ary line of action, when the secondary point

of intersection b has reached the pitch point.

Therefore there will generally be not only
the primary line of action q M or O q' M',

but also a secondary line w T or w' Y1

.

The secondary line of action must have the

same property as the first, as a locus of con-

tact, and therefore if we can so arrange two

pitch lines with their odontoids that their

secondary lines of action coincide, there will

be secondary contact between the odontoids.

Fig

When it so happens that both primary and

secondary lines coincide, we shall have

double contact. Two points of contact will

exist at the same time, one on the primary

and the other on the secondary line of action.

The secondary lines of action cannot be

made to coincide when the contact is exter-

nal, but when it is internal they sometimes

can be, so that the matter has an application

to internal gears.
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It is to be noticed that the primary line is

independent of the pitch line, while the sec-

ondary is dependent upon it.

Secondary contact is an interesting feature

of tooth action, but it is of small importance,
and has been studied but little.

22. THE INTERCHANGEABLE TOOTH.

The simple odontoid so far studied is the

perfect solution of the problem from a

mathematical point of view, for it will trans-

mit the required uniform motion as long as

it remains in working contact. But from a

mechanical point of view it is still incom-

plete, as it works in but one direction,

through but a limited distance, and, although
the odontoids are interchangeable, the gears
are not.

In order that the gears shall be fully in-

terchangeable, it is necessary that the teeth

shall have both faces and flanks, and that the

line of action for the face shall be equal to

that for the flank; that is, the tooth must
have an odontoid -on each side of the pitch

line, the face o d. Fig. 12, outside, and the

flank o d' inside of it, and the line of action

I a for the faces must be like the line of

action I a' for the flanks. If so made, any
gear will work with any other, without re-

gard to the diameters of the pitch lines.

But such a gear will run in but one direc-

tion, and to make it double-acting it must
have odontoids facing both ways, as in Fig.
IS. Gears so made will be both double-act-

ing and interchangeable, and it is not neces-

sary that both sides of the tooth shall be

alike.

Again, the unsymmetrical gear of Fig. 13

fails when it is turned over, upside down,
for then the unlike odontoids come together,

and, to avoid this last difficulty, all four of

the lines of action must be alike, producing
the complete and practically perfect tooth of

Fig. 14.

We can therefore define the completely in-

terchangeable tooth, as the tooth that is

formed from four like lines of action.

Unsynt-inetrical teeth

Fig. 14.

Complete teeth

&. INTERCHANGEABLE RACK TOOTH.

When the pitch line is a circle the flanks of

the tooth are not like the faces, but when it

is a straight line there is no distinction be-

tween face and flank. We then have the im-

portant practical fact that the four odontoid^

of the interchangeable rack tooth are alike.
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24. CONSTRUCTION BY POINTS.

When we have an odontoid and its pitch

line given, it is a very simple matter to con-

struct either the line of action or the conju-

gate odontoid for any other pitch line.

We know, for example, the odontoid p,

Fig. 15, on the pitch line p I, and it is re-

quired to construct an odontoid on the pitch

line P L that is conjugate to it.

As the odontoid is given we know or can

construct its normals. Construct the normal

p a from any chosen point p, draw the radial

line da C, lay off A equal to a 0, draw the

radial line A C, lay off the angle NAD
equal to the angle n a d, lay off P A equal
to p a, and P will be a point in the required

conjugate odontoid 8 P. P A will be a

normal to the curve. Construct a number of

points by this process, and draw the required

curve through them. The tangents * t and

8 T make equal angles with the pitch lines,

so that the required curve can often be fully

determined by drawing its tangent and one

or two points.

To construct the line of action, make the

angle m e equal to the angle n a d,

and lay off q equal to p a. The point

q is on a circle from either p or P drawn
from the centers (7, and is the point at

which p and P will coincide when the two

curves are in working contact, the normals

p a and P A then coinciding with the

radiant q.

Fig. 15.

Construrtio
by points

When the line of action alone is given, the

odontoids for given pitch lines are fully de-

termined, but there seems to be no simple

graphical method for constructing them ex-

cept for special cases. They can be obtained

by the use of the calculus (33), or drawn by
the integrating instrument of (34).

The two tooth curves thus constructed are

paired, and are said to be " conjugate'* to

each other.

25. THE ABC OP ACTION.

The action between two teeth commences
and ends at the intersections m and N of the

line of action with the addendum lines of the

two gears, a I and A L, Fig. 16. The arc

of action is the distance a b on the pitch line

that is passed over by the tooth while it is in

action.

The arc a passed over while the point of

contact is approaching the pitch point, is

called the arc of approach, and b, that

passed over while the action is receding from

that point, is the arc of recess.

With a given line of action the arcs of ap-

proach and recess can be controlled by the

addenda. If it is desirable to have a great
recess and a small approach, the addendum

of the gear that acts as a driver is to be in-

creased. When there is a limit line (16), it

limits the addendum and the arc of action.
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26. OBLIQUITY

When a pair of teeth bear upon each

other, the direction of the force exerted be-

tween them is that of the common normal

Op, Fig. 17, and passes through the pitch

point 0. Except when the point of contact

Is at the pilch point the direction of the

pressure will deviate from the normal to the

line of centers by the angle of obliquity

Z Op, and with many forms of teeth the

angle is never zero.

The force exerted between two teeth at

their point of contact is found by laying off

the tangential force //with which the driv-

ing gear D is turning, and drawing the line

H V parallel to the line of centers, to find

the force V P K. It is proportional to

ihe secant of the angle of obliquity, and in-

creases rapidly with that angle.

The chief influence of the obliquity is

upon the friction between the teeth, and con-

sequent inefficiency of the gear, and upon
the destruction by wearing. It is par-

ticularly important upon the approaching

action, and a gear that is otherwise perfect

may be inoperative on account of excessive

obliquity.

Although the direct pressure of the teeth

upon each other at their point of contact

OF THE ACTION
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will vary with the obliquity, the tangential

force exerted to turn the gear is always
uniform. Leaving friction out of the calcu-

lation, the two gears of a pair always turn

with the same force at their pitch lines.

The obliquity of the action has an effect

upon the direction and amount of the

pressure of the gear upon its shaft bearing,

but the usual variation is of little conse-

quence.
It is desirable that the pressure between

the teeth should be as uniform as possible,

not only in amount, but in direction, and

excessive obliquity is to be carefully avoided.

27. CONSTRUCTION BY MOLDING.

The mode of action of the conjugate teeth

upon each other, suggests a process by which

a given tooth can be made to form its conju-

gate by the process of molding.
The given tooth, all of its normal sections

being of some odontoidal form, is made
of some hard substance, while the blank in

which the conjugate teeth are to be formed

is made of some plastic material. The shafts

of the two wheels are given, by any means,

the same motions as if their pitch surfaces

were rolled together. The hard tooth will

then mold the soft tooth into the true conju-

gate shape.

It matters not what shape is given the

molding tooth, if its sections are all odon-

toidal, and a twisted or irregular shape will

be as serviceable as the common straight tooth.

This process is continually in operation be-

tween a pair of newly cut teeth, or between

rough cast teeth, until the badly matched

surfaces have been worn to a better fit, but

it is too slow for ordinary purposes, and is

of little practical value.

Gears can be formed by this process, by
rolling a steel forming gear against a white

hot blank, but the process can hardly be

called practical.

28. MOLDING PLANING PROCESS.

Although the described molding process

is of limited practical value, having but one

direct application, it leads to a process of

great value when the tooth is straight or of

such a shape that it can be followed by a

planing tool, its normal sections being alike.

The originating tooth is fixed in the shape

of a steel cutting tool C, Fig. 18, which is



Planing Processes. \ \

rapidly reciprocated in guides G, in

the direction of the length of the

tooth, as the two pitch wheels A and
B are rolled together. Although the

tool has but a single cutting edge, its

motion makes it ihe equivalent, of the

molding tooth, and it will plane out
the conjugate tooth D by a process
that is the equivalent of the more

general molding process.
A simple graphical method is

founded upon this molding process,
the shaping tool taking the form of a
thin template (7, Fig. 19, that is re-

peatedly scribed about as the pitch
wheels are rolled together, the marks

combining to form the conjugate
tooth curves D.
This mechanical process has the

decided advantage over the procets
of construction by points (24), that

the tooth is formed with a correct

fillet (44), and is much stronger.
The dotted lines show the tooth that

would be constructed by points.
The only practicable method for

forming the line of action when this

method is used is by observing and

marking a number of points of con-

tact between the teeth. This method
is applicable to all possible forms of

spur teeth, either straight, twisted or

spiral. It can be practically applied

only to the octoid form of bevel tooth.

On account of the fillet (44) that

is formed by this process, the tooth

space cannot be used with a mating
gear having more teeth than that of

the forming gear, although it belongs
to the same interchangeable set. The
tooth space of the figure will not run
with a tooth on a pitch line larger
than the pitch line A.

Therefore the rack tooth must be
useu as the forming tooih, to allow of
the use of all gears of the set up to

the rack. Gears of the set thus formed
will not work with internal gears.

Hlolding planing
method

fttcipro eating
Too/ >-

JFig. 18.

phical molding
method

29 LINEAR PLANING PROCESS.

A second planing process, quite
distinct from the molding process of

(27), is founded upon the fact that

the tooth curves are in contact at a

single point which has a progressive
motion along the line of action.

Therefore if a single cutting point

p, Fig. 20, is caused to travel along
the line of action with the proper
speed relatively, to the speed of the

piich line, it will trim the tooth out-

line to the proper odontoidal shape.
The figure shows the application to Fig. 20.

fn^olu-^-e To Linear plan ing
met

'

OF THZ
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the involute tooth, the path of the cutting

point being the straight line I a, and its speed

being the speed of the base line b I.

When the cutting point follows the circu-

lar line of action with a speed equal to that

of the pitch line, it will plane out the

cycloid al tooth curve.

This process is applicable to all possible

forms of gear teeth, either spur or bevel, in

either external or internal contact.

When the curvature of the odontoid will

permit, the milling cutter may take the place

of the planing tool, and is the equivalent of it.

). THE BACK ORIGINATOR.

The molding planing process of (28) sup-

plies a means for easily and accurately pro

ducing an interchangeable set of gears or

cutters for gears, and it is best applied by
means of the rack tooth as the originator.

All four curves of the rack tooth being alike,

the tooth is easily formed, particularly for

the involute or the segmental systems, and it

is a matter of less consequence that the curves

shall be of some particular form, if care is

taken that it is odontoidal.

It has been taught, and it is therefore some-

times considered, that any
" four similar and

equal lines in alternate reversion" will an-

swer the purpose, but it is necessary that the

four similar curves shall be odontoids. Four

circular arcs,with centers on the pitch line, will

answer the definition, but are not odontoids.

31. PARTICULAR FORMS OF THE ODONTOID.

The odontoid, as so far examined, is un-

defined except as to one feature of the ar-

rangement of its normals, and to bring it

into practical use it is necessary to give it

some definite shape. This is most easily ac-

complished by choosing some simple curve

for the rack odontoid, and from that making
an interchangeable set. A more correct but

much more difficult method would be to

choose some definite line of action, and from

that derive the odontoids.

If the rack odontoids are straight lines,

Fig. 21, the common involute tooth system
will be produced, and the line of action will

be a straight line at right angles with the

rack odontoid. For bevel teeth, as will be

shown, the straight line odontoid produces
the octoid tooth system, while to produce the

involute system it is necessary to define the

line of action as a straight line, and derive

the system from that.

If the rack odontoids are cycloids, as in

Fig. 22, the resulting tooth system will be

ihe cycloidal, commonly misnamed the
"
epicycloidal

"
system. The line of action

will be a circle equal to the roller of the

cycloid.

If the rack odontoids are segments of cir-

cles from centers not on the pitch line, but

inside of it, as in Fig. 23, the tooth system

Fig

Segmental

Fig. 23.
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will be the segmental, and its line of action

will be the loop of the
" Conchoid of Nico-

medes."

If we choose a parabola for the rack tooth,

as in Fig. 24, the parabolic system will be

formed with its peculiar "hour glass" line

of action.

Only three of these tooth systems are in

actual use, the involute and the cycloidal for

spur gears, and the octoid for bevel gears

only, and we will therefore confine the ap-

plication of the theory to them.

Only one of the sys'ems in common use

for spur gears, the involute, should be in use

at all, and we will pay principal attention to

that.

Parabolic

Fig

The segmental system would be superior

to the cycloidal, and in many cases to the in-

volute; but as there is already one system too

many, we will not attempt to add another.

32. THE ROLLED CURVE THEORY.

If any curve R, Fig. 25, is rolled on any

pitch curve p I, a point p in the former will

trace out on the plane of the latter a curve

s p z, called a rolled curve.

The line p q, from the tracing point p to

the point of contact q, is a normal to the

curve * p z, and, as all the normals are ar-

ranged in "consecutive" oraer, that curve

must be an odontoid. The converse of this

statement is also true, that all odontoids are

rolled curves ;
but the fact is general^ . ery

far fetched and of no practical importance.

It is also a property of all such curves

that are rolled on different pitch lines, that

they are interchangeable.

This accidental and occasionally useful

feature of the rolled curve has generally

been made to serve as a basis for the general

theory of the gear tooth curve, and it is re-

sponsible for the usually clumsy and limited

treatment of that theory. The general law

is simple enough to define, but it is so diffi-

cult to apply, that but one tooth curve, the

cycloidal, which happens to have the circle

for a roller, can be intelligently handled

by it, and the natural result is, that that

curve has received the bulk of the atten-

tion.

For example, the simplest and best of

Rolled curve

Fig. 25.

all the odontoids, the involute, is entirely

beyond its reach, because its roller is the

logarithmic spiral, a transcendental curve

that can be reached only by the higher mathe-

matics.

No tooth curve, which, like the involute,

crosses the pitch line at any angle but a

right angle, can be traced by a point in a

simple curve. The tracing point must be

the pole of a spiral, and therefore the trac-

ing of such a curve is a mechanical impossi-

bility. A practicable rolled odontoid must
cross the pitch line at right angles.

To use the rolled curve theory as a base of

operations will confine the discussion to the

cycloidal tooth, for the involute can only be

reached by abandoning its true logarithmic

roller, and taking advantage of one of its

peculiar properties, and the segmental,

sinusoidal, parabolic, and pin tooth, as well

as most other available odontoids, cannot be

discussed at all.

33. MATHEMATICAL RELATION OP ODONTOID AND LINE OF ACTION.

In Fig. 26 the odontoid on the pitch line by the relations P T = p t = y, and T 8
p I is connected with the line of action I a, j

t = x, where P 8 is the normal to the
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odontoid at the point P, T 8 is a tangent to

the pitch line at the intersection of the nor-

mal, and P TMsa normal to the tangent.

When any odontoid is given by its equa-

tion, that of the line of action can be found

by a process of differentiation, and when
the line of action is given by its equation,

that of the odontoid can be found by a

process of integration.

These processes, for the general case where

the pitch line is curved, are quite intricate,

Imt when the pitch line is a straight line,

they are simple, and may be worked as

follows.

To get the equation of-the line of action

from that of the given rack odontoid, ar-

Tange the equation of the odontoid in the

form x f(y), and put its differential co-

efficient - equal to . Thus, the equationd y x

of the straight rack odontoid of the involute

system is y x tan. A, from which
<lx 1 y x

Tj
^

't^TA
' "* =tST^i 1S

the equation of the straight line of action at

right angles to the odontoid. Again, the

equation of the cycloid being x = vi r. sin.- 1

x = ver. sin. -'

Fig. 2V.

and x a
-\-y

a
2ry is the equation of the

circular line of action.

To get the equation of the odontoid when
that of the line of action is given, arrange
the equation of the line of action in the form

=f(y) f put it equal to - -

, and inte-

grate. T.hus, the equation of the straight

line of action being
x

lan. A '

we have
y 1 _ dx
x tan. A

~
dy'

and y x tan. A is the equation of the

straight odontoid at right angles to the line

of action. Again, the equation of the circu-

lar line of action being x* -|- y
2 = 2ry, we

have

and x =
cycloidal odontoid.

34. THE ODONTOIDAL

The form <5f the odontoid to correspond to

& 'given line of action and a given pitch line

can be determined only by the integral cal-

culus (33), it evidently being impossible to

contrive a general graphical or algebraic

method.

But it can be directly drawn by an instru-

ment, the principle of which is analogous to

that of the well-known polar planimeter for

Integrating surfaces.

The bar jR, Fig. 27, moves at right angles
to the line of centers, and it moves the pitch
wheel A, with the same speed at the pitch
line. The bar G has a point p, that is

confined to move in the given line of action

Op W, and it is so guided that it always
passes through the pitch point 0.

The two bars bear upon each other by
friction, and we must suppose that there

5s no other friction to oppose the motion of

the bar C.

Odontoidal Integrate?

Then the pointy will trace out the odontoid

spzupon the pitch wheel A, or upon any
other pitch wheel B rolling with the bar R
on either side of it.



THE SPUR. GEAR IN GENERAL.
35. THE CIRCULAR PITCH.

The distance a 0, Fig. 14, covered by each

tooth upon the pitch circle, is commonly
called the "circular pitch," and often the

"circumferential pitch." The term "pitch
arc" is the most appropriate but is not in

common use.

This was formerly the measurement by
which the size of the tooth was always

stated, a tooth being said to be of a certain
"
pitch," and all of its other dimensions

being expressed in terms of that unit, but it

is fast being replaced, and should be entirely

replaced, by the more convenient "diametral

pitch
"
unit.

The circumference of a circle is measured

in terms of its diameter by means of an in-

commensurable fractional number 3.14159,

called TT (pi), and, therefore, if the tooth is

measured upon the arc of the circle by means

of the circular pitch, one of two inconveni-

ences must be tolerated. Either the pitch

must be an inconvenient fraction, or else the

pitch diameter must be as inconvenient, for

the gear cannot have a fractional number of

teeth. The fractional calculations are so

clumsy that a table of pitch diameters cor-

responding to given numbers of teeth should

be used, and errors in the laying out of the

work are of constant occurrence.

Again, outside of the liability of error in

making calculations, the circular pitch sys-

tem is a constant source of error in the hands

of lazy or incompetent draftsmen or work-

men, for there is a constant temptation,
often yielded to, to force the clumsy figures

a little to produce some desired result. For

example, a millwright has to make a gear of

fourteen inches pitch diameter with fourteen

teeth. He finds by the usual computation
that the circular pitch is 3.14 inches, and, as

his odontograph has a table for three-inch

pitch, he uses that with the remark that it is

"near enough," laying the blame on the

odontograph or on the iron founder if the

resulting gear roars. His next order is for a

gear of one-inch pitch to match others in

use, and to be fourteen and a half inches

diameter. The circumference of the pitch

line is 45.53 inches, and he has his choice be-

tween 45 and 46 teeth, both wrong. Per-

haps the most frequent cause of error is

that the workman is apt to apply a rule

directly to the teeth of a gear he is about to

repair or match, to get the circular pitch,

and the result is more likely to be wrong than

right.

The best plan when using this unit is to

get convenient pitch diameters and let the

pitch come as it will, provided that gears

that work together are*of the same pitch, and

that is simply a roundabout way of using the

diametral pitch unit.

When tbe circular pitch must be used the

following table will greatly assist the work

and save calculation. For example, the

pitch diameter of a gear of three-quarter-inch

pitch and 37 teeth is three-quarters the tabu-

lar number 11.78, or 8.84 inches.

PITCH DIAMETERS.

FOR ON/5 INCH CIRCULAR PITCH.

FOR ANY OTHER PITCH MULTIPLY BY THAT PITCH.

T. P. D.
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that it is fast displacing the circular pitch

unit, and has almost entirely displaced it for

cut gearing. It is so simple that a table of

pitch diameters is entirely useless, although
such useless tables have been published.

The diametral pitch is sometimes defined as

the number of teeth in a gear of one inch

diameter. It is a common, but bad practice,

to designate diametral pitches by numbers,
as No. 4, No. 16, etc.
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2 Pitch.

2 I Pitch.

3 Pitch.

Fig. 29.
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40. THE CLEARANCE.
To allow for the inevitable inaccuracies of

workmanship, especially on cast gearing, it

is customary to carry the tooth space slightly

below the root line to the clearance line c I,

Fig. 30.

The clearance, or distance of the clearance

line inside of the root line, is arbitrary, but it

is convenient and customary to make it one>

eighth of the addendum.

41. THE BACK-LASH.

When rough wooden cogs or cast teeth are

used, the irregularities of the surface, and

inaccuracies of the shape and spacing of

the teeth, require that they should not pre-

tend to fit closely, but that they should clear

each other by an amount b, Fig. 30, called

the back-lash.

The amount of the back-lash is arbitrary,

but it is a good plan to make it about equal
to the clearance, one-eighth of the addendum.

Skillfully made teeth will require less,

back-lash than roughly shaped teeth, and".

properly cut teeth should require no back-

lash at all. Involute teeth require less back-

lash than cycloidal teeth.

42. THE STANDARD TOOTH.

The tooth must be composed of odontoids,

preferably of odontoids of which the proper-

ties are well known, and an advantage is

gained if it is still further confined to a par-

ticular value of that odontoid. If the teeth

are to be drawn by an odontograph some

standard must be fixed upon, since the

method will cover but one proportion of tooth..

For example, the standard involute tooth

is that having its line of action inclined at an

angle of obliquity of fifteen degrees. For
the cycloidal system the standard agreed upon
is the tooth having radial flanks on a gear of

twelve teeth.

43 . ODONTOGRAPHS .

The construction of the tooth is generally

not simply accomplished by graphical means,
as it is generally required to find points in

the curve and then find centers for circular

arcs that will approximate to the curve thus

laid out.

It is sometimes attempted to construct the

curve by some handy method or empirical

rule, but such methods are generally worth-

less.

An odontograph is a method or an instru-

ment for simplifying the construction of the

curve, generally by finding centers for ap-

proximating circular arcs without first find-

ing points on the curve, and those in use will

be described.

44. THE
When the teeth are laid out by theory

there will be a portion of the tooth space at

the bottom that is never occupied by the

mating tooth. Fig. 31 shows a ten-toothed

pinion tooth and space with a rack tooth in

three of its positions in it, showing the un-

used portion by the heavy dotted line.

If this unused space is filled in by a
"

fillet"/ the tooth will be strengthened just

where it needs it the most, at the root.

The fillet is dependent on the mating tooth,

and is therefore not a fixed feature of the

tooth. If a gear is to work in an inter-

changeable set, it may at some time work

with a rack, and therefore its fillet should be

fitted to the rack
;
but if it is to work only

FILLET.

with some one gear it may be fitted to that.

The light dotted line shows the fillet that

would be adapted to a ten-toothed mate.

The fillet to match an internal gear tooth

would be even smaller than that made by the

rack.

31.

The fillet



20 Equidistant Series.

When the tooth is formed by the molding
process of (27), or by the equivalent planing

process of (28), the fillet will be correctly
formed by the shaping tool, but not so when
the linear process of (29) is used. When the

tooth is drawn by theory or by an odonto-

graph the fillet must be drawn in, and can be

most easily determined by making a mating
tooth of paper, and trying it in several posi-

tions in the tooth space, as in the figure.

Except on gears of very few teeth the

strength gained will not warrant the trouble

of constructing the fillet.

45. THE EQUIDISTANT SERIES.

When arranging an odontograph for

drafting teeth, or a set of cutters for cutting

them, we must make one sizing value do

duty for an interval of several teeth, for it is

impracticable to use different values for two
or three hundred different numbers of teeth.

The object of the equidistant series is to so

place these intervals that the necessary errors

are evenly distributed, each sizing value

being made to do duty for several numbers
each way from the number to which it is

fitted, and being no more inaccurate than any
other for the extreme numbers that it is

forced to cover.

This series is readily computed for any
case that may arise, and with a degree of ac-

curacy that is well within the requirements
^>f practice; by the formula

. as
, *-. + -

in which a is the first and z is the last tooth

of the interchangeable series to be covered;

n is the number of intervals in the series, and

* is the number in the series of any interval

of which the last tooth t is required.

For example, it is required to compute the

series here used for the cycloidal odonto-

graph, having twelve tabular numbers to

cover from twelve teeth to a rack.

Putting a = 12, z = infinity, and n = 12,

the formula becomes

12 X 12 12 X 12 144
t =

12 s-f-0
~

12

and then, by putting successively equal to

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, we get

the series of last teeth, 13 r
'

T , 14|, 16, 18, 20|,

24, 28f, 36, 48, 72, 144, and infinity. These

give the required equidistant series of inter-

vals.

12

13 to 14,

15 to 16,

17 to 18,

19 to 21,

22 to 24,

25 to 29

30 to 36,

37 to 48,

49 to 72,

73 to 144,

145 to a rack
;

and the method is as easily applied to any
other practical example.
This formula and method is independent of

the form and of the length of the tooth, and

therefore is applicable to all systems under

all circumstances. This is proper and con-

venient, for these elements can be eliminated

without vitiating the results or destroying the

"equidistant" characteristic of the series.

The formula is an approximation based upon
an assumption, but nothing more convenient

or more accurate has so far been devised by

laboriously considering all the petty elements

involved.

The sizing value, or number for which the

tabular number is computed, or the cutter is

accurately shaped, can best be placed, not at

the center of the interval, but by considering

the interval as a small series of two intervals,

and adopting the intermediate value. The

sizing value for the interval from c to d is

given by the formula
2 cd

Thus, the sizing value for the interval

from 37 to 48 teeth should be 41.8, and that

for the interval from 145 to a rack should be

290.

It is sometimes the practice to size the cut-

ter for the lowest number in its interval, on

the ground that a tooth that is considerably

too much curved is better than one that is

even a little too flat. This makes the last

tooth of the interval much more inaccurate

than if the medium number was used.
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46. THE HUNTING COG.

It is customary to make a pair of cast gears
with incommensurable numbers of teeth so

that each tooth of each gear will work with

all the teeth of the other gear. If a pair of

equal gears have twenty teeth each, each

tooth will work with the same mating tooth

all the time; but if one gear has twenty and

the other twenty-one teeth, or any two num-

bers not having a common divisor, each tooth

will work with all the mating teeth one after

the other.

The object is to secure an even wearing

action; each tooth will have to work with

many other teeth, and the supposition is that

all the teeth will eventually and mysteriously
be worn to some indefinite but true shape.

It would seem to be the better practice to

have each tooth work with as few teeth as

possible, for if it is out of shape it will dam-

age all teeth that it works with, and the

damage should be confined within as narrow

limits as possible. If a bad tooth works with

a good one it will ruin it, and if it works

with a dozen it will ruin all of them. It is

the better plan to have all the teeth as near

perfect as possible, and to correct all evident

imperfections as soon as discovered.

47. THE MORTISE WHEEL.

Another venerable relic of the last century

is the "mortise" gear, Fig. 32, having
wooden teeth set in a cored rim, in which

they are driven and keyed.

Where a gear is subjected to sudden strains

and great shocks, the mortise wheel is better,

and works with less noise than a poor cast

gear, and will carry as much as or more

power at a high speed with a greater dura-

bility. But in no case is it the equal of a

properly cut gear, while its cost is about as

great.

In times when large gears could not be cut,

and when the cast tooth was not even ap-

proximately of the proper shape, the mortise

wheel had its place, but now that the large

cut gear can be obtained the mortise gear

should be dropped and forgotten. Mortise wheel

Fig. 32.

48. FRICTION OF APPROACH.

When the point of action between two

teeth is approaching the pitch point, that is,

when the action is approaching, the friction

between the two tooth surfaces is greater than

when the action is receding. This extra fric-

tion is always present, but is most trouble-

some when the surfaces are very rough, as on

cast teeth, giving little trouble when the teeth

are properly shaped and well cut. When the

roller pin gear (93) is used, the friction

between the teeth is rolling friction, and is

no greater on the approach than on the recess.

tion of
roach

rig. 33.
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The difference in the friction is probably
due to the difference in the direction of the

pressure between the small inequalities to

which all friction is due. When the gear D,

Fig. 33, is the driver, the action between the

teeth is receding, and the inequalities lift over

each other easily, while if F is the driver,

the action is approaching, and the inequalities

tend to jam together.
In the exaggerated case illustrated, it is plain

that the teeth are so locked together that ap-

proaching action is impossible, while it is

equally plain that motion in the other direc-

tion is easy. The same action takes place in

a lesser degree with the small inequalities of

ordinary rough surfaces.

The action of the common friction pawlr

which works freely in one direction and jam&
hard in the other, is upon the same principle.

A weight may be easily dragged over a rough
surface that it could not be pushed over by a

force that is not parallel to the surface.

The extra friction of approaching action

can be avoided by giving the driver the long-

est face. When the driver has faces only,

and the follower has only flanks, the action is

particularly smooth.

Teeth that are subject to excessive maxi-

mum obliquity, such as cycloidal teeth, should

not be selected for rough cast gearing, for it

is the maximum rather than the average obli-

quity that has the greatest influence.

49. EFFICIENCY OF GEAR TEETH.

Much has been written, but very little has

been done to determine the efficiency of the

teeth of gearing in the transmission of power,
and therefore but little of a definite nature

can be said. The question is mostly a prac-

tical one, and should be settled by experi-

ment rather than by analysis.

The only known experiments upon the fric-

tion of spur gear teeth are the Sellers experi-

ments, more fully detailed in (112), and but.

one of these relates to the spur gear. From
that one it is known that a gear of twelve

teeth, two pitch, working in a gear of thirty-

nine teeth, has an efficiency varying from

ninety per centum at a slow speed to ninety-

nine per centum at a high speed. That is,

an average of five per centum of the power
received is wasted by friction at the teeth and

shaft bearings. This result is probably a

close approximation to that for any ordinary

practical case.

Although theory can do nothing to de-

cide such a question as this, it can do much
to indicate probable results.

If a pair of involute teeth, for example,
move over a certain distance, w, either way
from the pitch point, the distance being mea-

sured on the pitch line, they will do work that

is theoretically determined by the formula :

/ P k h
work done = -

. -= =- w 9

& K fl

in which / is the coeflBcient of friction, P is

the pressure, and k and h are the pitch radii

of the gears. The positive sign is to be used

for gears in external, and the negative sign,

for those in internal contact.

The loss by friction, as shown by the for-

mula, decreases directly as the diameters in-

crease, the proportion of the diameters being
constant.

The loss increases rapidly with the distance

of the point of action from the pitch point
When the contact is at the pitch point the

teeth do not slide on each other, and there is

no loss, but away from that point the loss is

as the square of the distance in this case, and

in a still greater proportion in the case of the

cycloidal tooth. Therefore a short arc of

action tends to improve the efficiency.

It has been satisfactorily determined that

the loss is greater during the approaching
than during the receding action. This is not

shown by the formula, but it may be laid to

a variation in the coefficient /.

The formula shows that the loss is inde-

pendent of the width or face of the gear,

and therefore strength can be increased by

widening the face, without increasing the

friction.

If the work of internal gearing is com-

pared with that of external gearing of the

same sizes, the losses are in the proportion,

k h

k-\-h'
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BO that the internal gear is much the more

economical, particularly when the gear and

pinion are nearly of the same size. If the

gear is twice the size of the pinion the loss

is but one-third of the loss when both gears

are external.

Small improvement can DC effected, by put-

ting a small pinion inside rather than outside

of a large gear. A six-inch pinion working
with a six-foot gear has but 1.18 times the

loss by the same gears, when the gear is in-

ternal.

Theoretical efficiency is discussed at great

length in the Journal of the Franklin Insti-

tute, for May, 1887: Also by Reuleaux, and

again by Lanza, in the Transactions of the

American Society of Mechanical Engineers
for 1887, and the discussion has been carried

far enough.
A series of experiments with gear teeth oi

various sizes and forms, of various metals,

would add greatly to our knowledge of this

important matter.

A true determination of the efficiency of

the rough cast gear, as compared with that of

the cut gear, would tend to discourage the

use of the former for the transmission of

power, for experiment would undoubtedly
show that the power wasted by the cast gear
would soon pay the difference in cost of the

better article.

50. STRENGTH OF A TOOTH.

The strength of a tooth is the still load it will

carry, suspended from its point, and is to be

carefully distinguished from the horse-power,

or the load the gear will carry in motion.

The strength of a substance is not a fixed

element, but will vary with different samples,

and with the same sample under different

circumstances ;
allowance must be made for

the amount of service the sample has seen,

concealed defects must be provided against,

and therefore nothing but an actual test will

surely determine its character.

Although no possible rule can be depended

upon, the ultimate or breaking strength of a

standard cast-iron tooth, having an addendum
about equal to a third of the circular pitch,

will average about three thousand five hun-

dred pounds multiplied by the face of the

gear and again by the circular pitch, both

in inches.

But a tooth should never be forced up to

its ultimate strength, and the best practice is

to give it only about one-tenth of the load it

might possibly bear, so that the following

rule should be used : Multiply three hundred

and fifty pounds by the face of the gear, and

again by the circular pitch, both in inches,

and the product will be the safe working
load of one tooth.

Example : A cast-iron gear of one inch

pitch, and two inches face, will safely lift

350 X 2 x 1 = 700 pounds, although it

would probably lift 7,000 pounds.

When there are two teeth always in work-

ing contact, it is safe to allow double the

load, but care must be taken that both teeth

are always in full contact.

A hard wood mortised cog has about one-

third of the strength of a cast-iron tooth :

steel has double the strength ; wrought-iron

is not quite as strong.

A small pinion generally has teeth that are

weak at the roots, and then it will increase

the strength to shroud the gear up to its

pitch line, but shrouding will not strengthen

a tooth that spreads towards its base, like an

involute tooth, and when the face of the

gear is wide compared with the length of the

tooth the shroud is of /ittle assistance.

It does not increase the strength of a tooth

to double its pitch, for when the pitch is

increased the length is also increased, and the

strength is still in direct proportion to the

circular pitch, wnile the increase has reduced

the number of teeth fu contact at a time.

Cut gears and cast gears are about equal

as to actual strength, with the advantages in

favor of the cut gear, that hidden d 3fects are

likely to be discovered, and that it is not as

liable to undue strains on account of defective

shape.

The rules for strength must not be used for

gears running at any considerable speed, for

they are intended only for slow service, as in

cranes, heavy elevators, power punches, etc,
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51. HORSE-POWER OP CAST GEARS.

The horse-po\ver of a gear is the amount
of power it may be depended upon to carry
in continual service.

It is very well settled that continual strains

and impact will change the nature of the

metal, rendering it more brittle, so that a

tooth that is perfectly reliable when new

may be worthless when it has seen some years
of service. This cause of deterioration is

particularly potent in the case of rough cast

teeth, for they can only approximate to

true shape required to transmit a uniform

speed, and the continual impact from shocks

and rapid variations in the power carried

must and does destroy the strength of the

metal.

There are about as many rules for com-

puting the power of a gear as there are

manufacturers of gears, each foundryman
having a rule, the only good one, which he

has found in some book, and with which he

will figure the power down to so many
horses and hundredths of a horse as con-

fidently as he will count the teeth or weigh
the casting.

Even among the standard writers on en-

gineering subjects the agreement is no bet-

ter, as shown by Cooper's collection of

twenty-four rules from many different wri-

ters, applied to the single case of a five-foot

gear. See the "Journal of the Franklin

Institute" for July, 1879. For the single

case over twenty different results were ob-

tained, ranging from forty-six to three-

hundred horse-power, and proving conclu-

sively that the exact object sought is not to be

obtained by calculation.

This variety is very convenient, for it is

always possible to fit a desired power to

a given gear, and if a badly designed gear
should break, it is a simple matter to find a

rule to prove that it was just right, and must

have met with some accident.

Although no rule can be called reliable,

the one that appears to be the best is that

given by Box, in his Treatise on Mill Gear-

ing. Box's rule, which is based on many
actual cases, and which gives among the

lowest, and therefore the safest results, is by
the formula:

12 c 2/ *J~dn
Horse-power of a cast gear = THA^

J ,UUO

in which c is the circular pitch, /is the face,

the M is the diameter, all in inches, and n is the

number of revolutions per minute.

Example : A gear of two feet diameter,
four inches face, two inches pitch, running
at one hundred revolutions per minute, will

transmit

12 X 2 X 2:x 4 X A/ 24 x 100

1,000
= 9.4 h. p.

For bevel gears, take the diameter and

pitch at the middle of the face.

It is perfectly allowable, although it is not

good practice, to depend upon the gear for

from three to six times-the calculated power,
if it is new, well made, and runs without

being subjected* to sudden shocks and varia-

tions of load.

The influence of impact and continued

service will be appreciated when it is con-

sidered that the gear in the example, which

will carry 9.4 horse-power, will carry seventy

horse-power if impact is ignored, and the

ultimate strength of the metal is the only

dependence.
A mortise gear, with wooden cogs, will

carry as much as, or more than a rough cast-

iron gear will carry, although its strength is

much inferior. The elasticity of the wood
allows it to spring and stand a shock

that would break a more brittle tooth of

much greater strength. And, for the same

reason, a gear will last longer in a yielding

wooden frame than it will in a rigid iron

frame.

52. HORSE-POWER OP CUT GEARS.

We know a little, and have to guess the

rest, as to the power of a cast gear, but with

respect to that of a cut gear we are not as

well posted, for there are no experimental

data upon which a reliable rule can be

founded.

Admitting, as we must, that impact is

the chief cause of the deterioration of the
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cast gear, we are at liberty to assume that a

properly cut and smoothly running cut gear

ris much more reliable.

No definite rule is possible, but we can

safely assume that a cut gear will carry at

least three times as much power as can be

trusted to a cast gear of the same size.

i
The great reliance of those who claim that

a cast gear is superior to a cut gear is upon
, the hard scale with which the cast tooth is

covered. This scale is not over one-hun-

dredth of an inch thick, is rapidly worn

away, and is of no account whatever. From
that point of view it is difficult to explain

why a wooden tooth will outwear an iron one,

I although it is softer than the softest cut iron.

Assuming that a cut gear is about three
'

times as reliable as a cast gear, we can com-

pute its power by the formula :

d nc'f

I

Horse-power of a cut gear = -

in which c is the circular pitch, / is the face,

and d is the pitch diameter, all in inches, and

n is the number of revolutions per minute.

3. THE IKVOLUTE SYSTEM.

53. THE INVOLUTE TOOTH.

The simplest and best tooth curve, theo-

retic-ally, as well as the one in greatest prac-

tical use for cut gearing, is the involute.

The involute tooth system is based on the
'

straight rack odontoid, (31) and Fig. 21, and

\
it is illustrated by Fig. 34. If the four odon-

! toids of the rack outline are equally inclined

i to the pitch line, the resulting tooth system

will be completely interchangeable; but if,

as in Fig. 35, the face and flank are inclined

at different angles of obliquity, T SK and

T S K', the system is not interchangeable,

although otherwise perfect.

The rack odontoid cannot have a corner or

change of direction anywhere except at the

pitch line, without causing a break in the

line of action.

As the normals p q are parallel, the line of

action is a straight line W O W at right

angles to the rack odontoid. The inter-

changeable line of action is continued in a

straight line on both sides of the pitch line,

bui the non-interchangeable line changes di-

rection at that line.

In accordance with the universal custom

we will consider that the involute tooth is

'always interchangeable, having a single angle

ot obliquity.

Z/ic involute tooth

interchangeable

Fiff. 34.
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54. THE CUSP.

As a circle t c, Fig. 34, can always be drawn

tangent to the line of action at an interfer-

ence point i, from the center b of any pitch line

B, there will always be a cusp in the curve at

the point c (16), and at that point the working

part of the curve must stop. The working

part of the rack tooth must end at the limit

line i L through the interference point i.

The working curves of any two teeth that

work with each other must each end at the

line drawn through the interference point of

the other, Fig. 43, being limited by limit

lines 1 1 and L L.

r The second branch c m' of the curve is

equal to the first branch c m, but is re-

versed in direction. The second cusp is at

infinity, and therefore has no practical ex-

istence.

The tangent circle i c, through the inter-

ference point and the cusp, is called the

"base line."

It is customary to continue the flank of the

tooth inside the base line by a straight radial

line, as far as may be necessary to allow the

mating gear to pass.

55. INTERFERENCE.

When the point of the tooth is continued

beyond the limit line it will interfere with and

cut away a portion of the working curve of

the mating tooth. Fig. 36 shows a rack tooth

working with the tooth of a small pinion, and

cutting out its working curve.

This cut is not confined to the flank, but

extends across the pitch line into the face, as

shown by the line qmn. The rack tooth of

the figure will not work with the pinion tooth

unless it is cut off at the limit line 1 1 through
the interference point i.

The mathematical action still continues,

and the figure shows the rack tooth in.action

at k with the second branch of the curve.

Effect of Interference

. 36.

56. ADJUSTABILITY.

An interesting and in many cases a valua-

ble feature of the involute curve, and one

that is confined to it, is the fact that its posi-

tion as a whole with regard to the mating
curve is adjustable.

Two involutes, each with its base line, will

work together in perfect tooth contact when

they are moved with respect to each other,

as long as they touch at all. The lines of

action and the pitch lines will shift as the

curves are moved, and will accommodate

themselves to the varying position of the

base lines.

But this valuable feature of the involute

curve is not always available, and involute

gears are not, as commonly supposed, neces-

sarily adjustable, for the conditions are often

such that the teeth will fail to act when the

centers are moved, except within very narrow

limits. Care must be taken that the arc of

action is not so reduced by separating the

centers of the gears that it is less than the cir-

cular pitch, for the former arc is variable and

the latter is fixed. Care must also be taken

that the working curve is not pushed over the

limit line when the centers are drawn to-

gether.

In any limiting case, such as in Fig. 43, the

centers are not adjustable. The gears of the

standard set are either not adjustable at all

or are so within very narrow limits, on ac-

count of the correction for interference.
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57. CONSTRUCTING THE INYOLUTE BY POINTS.

The simple involute curve can be con-

structed by points by the general method of

(24), but it is much better to take advantage
of the property that it is an involute of its

base circle, and construct it by the rectifica-

tion of that circle.

As in Fig. 37 any convenient small dis-

tance A G is taken on the dividers, and the

points on the curve located by stepping

along the circle and its tangent from any

given point to any desired point.

This method is so accurate, if care is taken

to step accurately on the line, that the curve

seldom needs correction; but, when great ac-

curacy is required, correction can be applied

at the rate of one-thousandth of an inch to

the step, if the length of the step is regulated

by the diameter of the circle according to the

following table:

Diameter of Circle :12345 678 9 10 11 12

Length of Step :

.17 .26 .37 .46 .53 .60 .67 .73 .76 .79 .82 .84

For example: If the circle of Fig. 37 is

Construction

points

Fig. 37.

four inches in diameter, and the dividers are

set to .46 inch, the true curve, A b' d', will be

outside of the constructed curve A b d by .002

inch at b and .005 inch at d.

From the table we can form the handy and

sufficiently accurate rule that the length of

the slep should be about one-tenth of the di-

ameter of the circle, for a correction of about

one-thousandth of an inch per step.

Having thus found several points of the in-

volute, we can draw it in by hand, or by con-

structing a template, or by finding centers

from which approximately accurate circular

arcs can be drawn.

58. THE STANDARD INVOLUTE TOOTH.

The tooth that is selected for general use,

and the one that is the best for all except a

few special cases and limiting cases, is the in-

terchangeable tooth having an angle of ob-

liquity of fifteen degrees, an addendum of

one-third the circular pitch, or one divided by
the diametral pitch, and a clearance of one-

-eighth of the addendum.

The standard to which involute cutters are

made is slightly different, having an angle of

14 28' 40", the sine of which is one-quarter,

.and a clearance of one-twentieth of the circu-

lar pitch.

If the obliquity is 15 the smallest possible

pair of equal gears have 11.72 teeth, and

therefore 12 is the smallest gear of the inter-

changeable set.

The base distance, the distance of the base

line inside of the pitch line, is about one-tifty-

ninth of the pitch diameter, and one-sixtieth

is a convenient fraction for practical use.

The limit points of the whole set must be

determined by that of the twelve-toothed

gear, for any gear of the set may be required

to work with that one, and the working curve

of each tooth must end at the point thus de-

termined. As the limit point is always in-

side of the addendum line there must always

be a false extension on the tooth, the point

being rounded over outside of the limit point.

59. THE INVOLUTE ODONTOGRAPH.

As the base line must always be drawn, it

is advisable, to save work, to locate the cen-

ters of the approximate circular arcs upon
that line. It is also necessary that the points

-of the teeth shall be rounded over, to avoid

interference. These requirements made it

impracticable to compute the positions of the

centers, and an empirical rule had to be adopt-

ed instead.

Teeth were carefully drawn by the stepping
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method of (57) on a very large scale, one-

quarter pitch, giving a tooth eight inches in

length. These teeth were corrected for inter-

ference by giving them epicycloidal points

that would clear the radial flanks of the

twelve-toothed pinion.

Then the proper centers on the base line

were determined by repeated trials, and tooth

curves obtained that would agree with the

true involute up to the limit point, and still

clear the corrected point. The odontograph
table is a record of these radii, which are be-

lieved to be as nearly coyrect as the given
: conditions will permit.

It was found that separate curves were,

required for face and flank up to thirty-six

teeth, but that one curve would answer for

teeth beyond.
It was found necessary to devise a separate

method for drafting the rack tooth.

60. TEN AND ELEVEN TEETH.

Theoretically the twelve-toothed pinion is

the smallest standard gear that will have an

arc of action as great as the circular pitch,

but ten and eleven teeth may be used with

an error that is not practically noticeable.

Fig. 38 shows a pair of ten-toothed gears in

action. They can be in correct action only
when the point of contact is between the two
interference points i and J, but they will be
in practical contact for a greater and suffi-

cient distance

Fig. 3S. OdontoyrapJiic pair

61. A BAD RULE.

There is a simple and worthless rule for

involute teeth that deserves notice only be-

cause it is considerably in use.

It constructs the whole tooth curve, face and

flank, for all numbers of leeth, as a single

arc from a center on the base line, and with a

radius equal to one-quarter of the pitch radius,

Fig. 39.

This is wonderfully convenient, but the

convenience is purchased at the expense of
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'ordinary accuracy, for the rule is not even

approximately correct. It is handy, and

nothing else.

Figs. 38 and 40 show the kind of teeth

that are constructed by this rule on gears of

ten and twelve teeth, where its error is the

greatest, and it is reasonable that the invo-

lute tooth should not be in great favor with

those who have been taught to draw it thus.

The error gradually decreases, until, for

more than thirty teeth, it is tolerably correct,

but it gives the rack with the straight, uncor-

rected working face that would interfere, as

shown at g, Fig. 40.

As it is tolerable only for thirty or more

teeth, and not good then, it may well be

dropped altogether.

bad rule

Figl 39.

62. USING THE INVOLUTE ODONTOGRAPH.

INVOLUTE ODONTOGRAPH.

STANDARD INTERCHANGEABLE TOOTH, CENTERS ON

(For Table of Pitch Diameters see 35.) b } j
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To draft the tooth lay off the pitch, ad-

dendum, root, and clearance lines, and space

the pitch line for the teeth, as in Fig. 40.

Draw the base line one-sixtieth of the pitch

diameter inside the pitch line.

Take the tabular face radius on the divid-

ers, after multiplying or dividing it as re-

quired by the table, and draw in all the faces

from the pitch line to the addendum line

from centers on the base line.

Set the dividers to the tabular flank radius,

and draw in all the flanks from the pitch line

to the base line.

Draw straight radial flanks from the base

line to the root line, and round them into the

clearance line.

Fig. 40.

\. SPECIAL RULE FOR THE RACK.

Draw the sides of the rack tooth, Fig. 40,

as straight lines inclined to the line of centers

c c at an angle of fifteen degrees, best

found by quartering the angle of sixty de-

grees,

Draw the outer half a b of the face, one-

quarter of the whole length of the tooth,

from a center on the pitch line, and with a

radius of

2.10 inches divided by the diametral pitch.

.67 inches multiplied by the circular pitch.

64. DRAFTING INTERNAL GEARS.

When the internal gear is to be drawn, the

odontograph should be used as if the gear
was an ordinary external gear. See Fig. 41.

But care must be taken that the tooth of

the gear is cut off at the limit line drawn

through the interference point * of the pin-

ion. The point of the tooth may be left off

altogether or rounded over to get the appear-

|

ance of a long tooth.

The pinion tooth need not be carried in to

the usual root line, but, as in the figure, may
just clear the truncated tooth of the gear.

The curves of the internal tooth and of its

pinion may best be drawn in by points (57),
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for the odomographic corrected tooth is not

as well adapted to the place as the true tooth,

and no correction for interference is needed

on the points of the pinion teeth or on the

flanks of those of the gear.

Care must be taken that the internal teeth

do not interfere by the point a striking the

point b, as they will if the pitch diameters

are too nearly of the same size.

Internal involutes

65. INVOLUTE GEARS FOR GIVEN OBLIQUITY AND ADDENDA.

When the obliquity and addenda, as well

as the pitch diameter and number of teeth in

a gear are given, as is generally the case, we
can proceed to draft the complete gear as

follows:

Draw the pitch line p I, Fig. 42, the ad-

dendum line a I, the root line r I, and the

clearance line c I, as given. Draw the line of

action I a at the given obliquity W Z = K.

Draw the base line b I tangent to the line of

action. Find the interference point * by bi-

secting the chord t.

Draw the involutes i a m and t" a" in",

and a a" will be the maximum arc of ac-

tion.

If the given arc of action a a' is not great-

er than the maximum arc, the pitch line is

to be spaced and the tooth curves drawn in

from the base line to the addendum line.

These tooth curves, when small, are best

drawn as circular arcs from centers on or

|

near the b#se line, one center x for the flank

from the base line to the pitch line, and

another center y for the face from the pitch

line to the addendum line. One involute

i a m should be carefully constructed by
! points, and then the required centers can be

1
found by trial. One center and arc will

!
often answer for the whole curve, and it is

only when great accuracy is required that

more than two centers will be necessary.

Continue the flanks of the teeth toward

center by straight radial lines, and round

j

these lines into the clearance line.

If the interference point for the gear that

the gear being drawn is to work with is at I,

i within the addendum line, the limit line 1 1

i
must be drawn through it, and the points of
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Fig. 42.

Given obliquity and addendum

the teeth outside of this limit must be slightly

rounded over, to avoid interference (55).

If a fillet / is desirable, to strengthen the

tooth, it can be drawn in by the method

of (44).

66. INVOLUTE GEARS FOR GIVEN NUM- '

BERS OF TEETH.

When the numbers of teeth and the pitch

lines are the only given details, the shape and

action of the tooth depends upon the obli-

quity, and the action will fail if the angle is

too small. The principal object is to deter-

mine the least possible angle that is permitted

by the given pitch diameters and numbers of

teeth.

Draw the pitch lines P L and p I, Fig. 43,

lay off the given pitch arc, as a straight line

c d or C D, at right angles to the line of

centers, and draw the line C d or c D. Then

the required line pf action will be I a pass-

ing through at right angles to c D or G d.

The complete teeth can then be drawn in as

previously directed.

In this case, the obliquity WO Z being the

least possible, the limit lines and the adden-

dum lines must coincide, but the addenda

may be reduced by increasing the angle.

Fig. 43.

la

Given numbers of teeth
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67. INVOLUTE GEARS FOR GIVEN OBLIQUITY.

When the pitch diameters and the obliquity

are the only given details, the lines C I and

c i, Fig. 43, drawn from the centers at right

angles to the line of action, will determine

the limit lines. The maximum arc of action

a a' may be found either by drawing the

involutes i a and la', or by continuing the

line G I to the line c d, and measuring the

required distance c d. Any arc of action less

than a a' may be used.

The drawings should always be made to

a scale of one tooth to the inch radius, so

that the pitch arc will be 2*. If the scale

is one tooth to the inch of diameter, the

pitch arc will be ?r.

68. INVOLUTE GEARS WITH LESS THAN FIVE EQUAL TEETH.

The"method of Fig. 43 and (66) will be

found to apply to any given numbers of

teeth not less than five, and to fail, if either

gear has but three or but four teeth. Any
external gear of five or more teeth will work

with any external gear of five or more teeth,

and with an internal gear of any number of

teeth unless stopped by internal interfer-

ence (64).

For example, if a pair having four and five

teeth, Fig. 44, is tried, the four-toothed

pinion will fail, because its tooth will come

to a point upon the line of action before it

has passed over the required pitch arc. The

difficulty cannot be remedied by increasing

the obliquity, for an angle that would allow

the four-toothed pinion to act would also

cause the five-toothed pinion to fail.

The practical limit is five teeth, but the

mathematical limit is the pair having the

fractional number 4. 62 teeth, Fig. 45.

The four-toothed pinion will not work with

any external gear, not even with a rack, but

it will work with an internal gear that has
'

about ten thousand teeth, and is practically a

rack. It will work with any internal gear

having less than ten thousand teeth, and Fig.

46 shows it working with an internal gear of

six teeth. Internal interference will prevent

its working with an internal gear of five

teeth.

The three-toothed pinion has no practical

action. It has a mathematical action with in-

ternal gears of 3.56 or less teeth, as shown

by Fig. 47, but as its limit is less than four, it

cannot work with any whole number. The

figure shows the interference at a.

The extreme mathematical limit may be

said to be the gear of 2.70 teeth, which has a

theoretical action with an internal gear of the

same size, coinciding with it.

4.69 X 4.62 limit 'for equal teeth

Fig. 45.
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Fig

w

69. INVOLUTE GEARS WITH LESS THAN
FIVE UNEQUAL TEETH.

If we drop the condition that the pitch

line must be equally divided into tooth and

space arcs, we can make gears of three and of

four teeth work with external gears by the

method of (65). The failing case of Fig. 44

may be corrected by widening the failing

tooth until it acts, and narrowing the other

tooth to correspond, as shown in broken lines.

In this way a four-toothed pinion will

work with any number of teeth not less than

5.57, at which limit both gears have pointed

teeth, as in Fig. 48.

The three-toothed pinion will work with

any gear having 10.17 or more teeth. Fig. 49

shows the 3x10.17 limiting pair, and Fig. 50

shows the three-toothed pinion working
with an internal gear of five teeth. It will

not work with an internal gear of four teeth,

on account of internal interference, and there-

fore the combination shown by Fig. 50 may
be said to be the least possible symmetrical in-

volute pair.

A gear of 2.70 teeth will work with a rack,

but there seems to be no way to make a

pinion of two teeth work under any circum-

stances.

Fig. 47

5.57 teeth

4 teeth

Fig. 48.
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Fig. 49.

3 X 10.17
Unequal teetU

Fig. 50

70. THE MATHEMATICAL LIMITS.

The above results for low numbered pinions

can be obtained by graphical means, but that

method is not accurate enough to determine

the limits with great precision, and in any
case is tedious and laborious.

The mathematical process is not particu-

larly difficult, and consists in repeated trials

with given formulae.

To determine the obliquity at which a

limiting pinion will be pointed on the line of

action, for tooth equal to space, we use the

formulae :

. . 27T M
tan. h =

M+n 90
~

in which n is the given number of teeth in

the pointed gear, Fig. 51, M is the number
in the gear having the radius M, and h is

the angle c I. Knowing n, we assume a

value for M, and from that find a value

for h by means of the first formula. This

value of 7i, tried in the second formula, will

give an error. A second assumption for M
will give a second error, and if the two

errors are not too great a comparison will

nearly locate the true value of M.

Knowing n and M, we find the obliquity
from

tan. K =
M+n

pointed pinion.

Fig. 51.

In this way the following values were de-

termined :

n
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In this way it was found that a gear of four

teeth will not work with a rack, but will work
with an internal gear having a number of

teeth not easily calculated with existing loga-

rithmic tables, but which is approximately
ten thousand. Also that a pinion of three

j

teeth will not work with an internal gear

having more than 3.56 teeth.

For unequal teeth we can use the formulae,

2 TT n

tan. 7i =

tan. H =

in which N and n are the numbers of teeth

in the pair of pointed gears. By these form-

following results were determined,

N K
oo

n
2.695
3.

4.

4.62

10.17
5.57

4*62

25 27'

33 17
34 11

71. MINIMUM NUMBERS FOR UNSYMMETRICAL TEETH.

If we drop the condition that the fronts

and backs of the teeth shall be alike we have

an unimportant case that is similar to that

already studied, but much more intricate.

If we carry this case to its extreme, and

adopt single acting teeth, we have no mini-

mum numbers at all, for any two numbers

of teeth will then work together. Fig. 52

shows one tooth working with three teeth,

and any other combination can be obtained.

The minimum obliquity for a given pair is

obtained, as in (66), by laying off the known

pitch arc, G D, at right angles to G c, and

drawing the line of action at right angles

to the line D c. The obliquity is also given

by the formula :

2 7T

tan. K = -=-.
,N+n '

in which n and N are the numbers of teeth.

When the obliquity is as great as is often

Fig. 52.

Unsymrnetrical
teeth

the case for very low numbers of teeth the

action may be impracticable on account of

the great friction of approach (48). The

gears of Fig. 52 will not drive each other on

the approach, unless the tooth surfaces are

very smooth,and the power transmitted is

almost nothing.

72. MINIMUM NUMBERS FOR GIVEN ARC OF RECESS.

It has generally been assumed, although
no good reason for the assumption has ever

been given, that the minimum numbers of

teeth occur when the tooth of one of the

gears, Fig. 53, is pointed at the interference

point /, and at the same time has passed

over an arc of recess a that is a given part

of the whole pitch arc a' a.

The solution is simple enough, graphically

by repeated trials, or by a formula that can

be applied directly without the usual process

by trial and error.

But, as involute teeth have a uniform ob-

liquity, there is no necessity for assuming

Fig.

definite arc of recess, and the condition on
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which the problem is based is unwarranted. I spur gears, in either external or internal con-

No real limit is reached, and the matter is I tact, in the Journal of the Franklin Institute

not worth examination at any length. The for Feb., 1888, and it has received more atten-

problem is investigated, for both bevel and I tion than its slight importance entitles it to.

. EFFICIENCY OF INVOLUTE TEETH.

But little can be said in addition to the

matter in (49), for both forms of teeth in

common use are substantially equal with re-

spect to the transmission of power.
From the formula of (49), which is the

formula for the involute tooth, it is seen that

the loss from friction is entirely independent
of the obliquity, and, therefore, all systems of

involute teeth are independent of the ob-

liquity in this respect. This is contrary to
j

the accepted idea that a great efficiency re-

quires a small obliquity.

It has been stated on high authority that

the involute tooth is inferior to the cycloidal
tooth in efficiency, but the statement is not

true. The difference in efficiency is minute,
a small fraction of one per centum, but what

|

little difference there is is always in favor of

the involute tooth.

74. OBLIQUITY AND PRESSURE.

The involute tooth action is in the direction

of the line of action, and the obliquity is

a constant angle. It is variable only when
the shaft center distance is varied.

As the pressure is always equal to the

product of the tangential force at the pitch

line multiplied by the secant of the obliquity,

(26), it is constant for the involute tooth.

Involute teeth, therefore, have a steady ac-

tion that is not possessed by other forms;

particularly by forms which, like the cy-

cloidal, have a pressure and an obliquity that

varies between great extremes.

75. THE ROLLER OF THE INVOLUTE.

The involute odontoid, like all possible

odontoids, can be formed by a tracing point

in a curve that is rolled on the pitch line, and

this roller is the logarithmic spiral with the

tracing point at its pole, (32).

This feature is, however, more curious than

useful, and it is not of the slightest im-

portance in the study of the curve. Neither

is the operation of rolling the involute me-

chanically possible, for the logarithmic roller

has an infinite number of convolutions about

its pole, and the tracing point would never

reach the pitch line.

The involute is often considered to be a

rolled curve, because it can be formed by
a tracing point in a straight line that rolls on
its base line; but, although that is the fact, it

is a special feature and has nothing to do
with the rolled curve theory. The rolled

curve theory requires that the odontoid shall

be forme d by a roller that rolls on the pitch

line only .
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76. THE CYCLOIDAL SYSTEM.

If the curve known as the cycloid is

chosen as the determining rack odontoid,

(31), the resulting tooth system will be

cycloidal.

It is commonly called the
"
epicycloidal

"

system, because the faces of its teeth are

epicycloids, but, as the flanks are hypocy-

cloids, it seems as if the name "epihypo-

cycloidal
" would be still more clumsy and

accurate.

There is no more need of two different

kinds of tooth curves for gears of the same

pitch than there is need of two different

kinds of threads for standard screws, or

of two different kinds of coins of the same

value, and the cycloidal tooth would never

be missed if it was dropped altogether. But

it was first in the field, is simple in theory, is

easily drawn, has the recommendation of

many well-meaning teachers, and holds its

position by means of "human inertia," or

the natural reluctance of the average human
mind to adopt a change, particularly a

change for the better.

77. THE CYCLOIBAL TOOTH.

The cycloid is the curve A that

is traced by the point p in the circle

C that is rolled on the straight pitch
line p I, Fig. 54. The normal at

the point p is the line p q to the

point of tangency of the rolling

circle and the pitch line.

The line of action is the circle I a,

of the same size as the roller C.

As no tangent arc can be drawn to

the line of action from the pitch

point as a center, no terminal

point (18) exists. As there is no

point upon the line of centers from
which a circle can be drawn tangent
to the line of action, there will be no

cusps, (16) except on the pitch line.

The cycloidal tooth can be drawn

by the general method of (24), but

there are several easier methods

which will be described. There

are numerous empirical rules and
short cuts to save labor and spoil

the tooth, which will not be de-

scribed.

When the pitch line is of twice the diame-

ter of the line of action, the flank of the

tooth is a straight line. If the pitch line is

less than twice as large as the line of action,

the flank of the tooth will be under-curved,

as shown by Fig. 55, and it is customary to

avoid the resulting weak tooth by limiting

the line of action to a diameter not greatei

than half that of the smallest gear to be

used.
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78. SECONDARY ACTION.

The secondary line of action (21) is

a circle, Fig. 56, differing from the

pitch circle by the diameter of the

primary line of action, either inside or

outside of it.

When the internal secondary line of

action of an internal pitch line coin-

cides with the external secondary line

of action of its pinion _
there will be

secondary contact between the gears,

the face of the gear working with the

face of the pinion at a point of contact

upon the combined secondaries. Fig.

57 shows this for the cycloidal tooth,

the two faces working together at the

point a. As both secondaries are cir-

cles they must coincide, and the sec-

ondary action will be continuous.

When the teeth are also in contact at

b on the primary line OL action, there

will be double contact.

Undcrcurved flanks

Fig. 55.

Secondary

Fig 56.
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79. INTERNAL INTERFERENCE.

If the secondary lines of action do not

come together the teeth will not touch each

other at all, but if that of the gear is smaller

than that of the pinion the teeth will cross

each other and interfere. The line c. Fig.

57, is the face of the gear tooth, and the line

d is the face of the pinion tooth having a

primary line of action equal to the difference

between the pitch lines. The secondary line

of each gear coincides with the pitch line of

the other, and the faces interfere with each

other the amount shown by the shaded

space.

The only remedy for internal interference

is to reduce the diameter of the primary line

of action to half the difference between the

diameters of the pitch lines, or else to leave

off one of the faces of the teeth.

The discovery of the law of internal cycloid-
al interference is due to A. K. Mansfield,

who published it in the
' ' Journal of the

Franklin Institute" for January, 1877. It

was afterwards re-discovered by Professor

MacCord, and most thoroughly applied and

illustrated in his
" Kinematics."

When interference is avoided by omitting
one of the faces of the teeth the primary line

of action may be enlarged, but it must not

then be larger than the difference between

the pitch diameters.

Fig. 58 shows on the right the action

when the face of the gear is omitted, and on

the left the action when the face of the pin-

ion is left off. The teeth will just clear each

other, each one touching the other at a single

point a in its pitch line.

As the contact at a is not a point of practi-

cal action, care must be taken that the arc of

action at the primary line of action is as

great as the circular pitch, for otherwise, as

in the figure, the gears will not be in continu-

ous primary action.

The rule for internal interference, simply
stated, is that the diameters of the pitch lines

must differ by the sum of the diameters of

the lines of action if the teeth have both

faces and flanks, and by the diameter of the

acting line of action if the face of either gear
is omitted. For the standard interchangeable

system the gears must differ by twelve teeth

Fig 58

if both teeth have faces, and by six teeth if

one face is omitted.

Fig. 62 shows the secondary contact in the

case of a standard internal gear of twenty-

four teeth working with a pinion of twelve

teeth, and it is to be noticed that the teeth

nearly coincide between the two points of

contact. Where there is secondary contact

the teeth practically bear on a considerable

line instead of at a point.
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80. THE STANDARD TOOTH.

The standard tooth (42), selected for the

cycloidal system, is by common consent the

one having a line of action of half the diame-

ter of a gear of twelve teeth, so that that

gear has radial flanks.

The standard adopted by manufacturers of

cycloidal gear cutters is that having radial

flanks on the gear of fifteen teeth, but it is

not and should not be in use for other pur-

poses. If any change is made, it should be

made in the other direction, to make the set

take in gears of ten teeth.

It must be borne in mind that the standard

adopted does not limit the set to the stated

minimum number of teeth, but that it sim-

ply requires that smaller gears shall have

weak under-curved teeth.

81. THE ROLLED CURVE METHOD.

It happens in this case, and in this case

only, that the rolled curve method, which

theoretically applies to all odontoids, can

be actually put into practical use, for the

generating roller is here the circle, the sim-

plest possible curve.

As in Fig. 59, roll a circle of the .diameter

of the circle of action upon the outside of the

pitch line for the faces, and upon the inside

for the flanks, and a fixed point in it will

trace the curve.

The method can be used by actually con-

structing pitch and rolling circles, but the

same result can be reached more easily and

quite as accurately by drawing several cir-

cles, and then stepping from the pitch point

along the pitch line, and back on the circles

to the desired point. If the length of the

Construction by rolling

Fig. 59.

step is not more than one-tenth of the diam-

eter of the circle, the error will not be over

one-thousandth of an inch for each step.

This method is the best one to adopt, ex-

cept for the standard tooth.

82. THE THREE POINT ODONTOGRAPH.

It is a simple matter to draw the tooth

curve by means of rolling circles, but such

a method requires skill on the part of the

draftsman. It is, moreover, nothing but a

method for finding points in the curve for

which approximate circular arcs are then

determined.

The "three point" odontograph is sim-

ply a record of the positions of the centers

of the circles which approximate the most

closely to the whole curve of the standard

tooth. The positions of two .points, a at the

center of the face or of the flank, Fig. 60,

and b at the addendum point or root point

of the curve, were carefully computed, and

then the position of the center C of the

circle which passes through these two

points and the pitch point 0, was calcu-

lated. The circle that passes through these

three points is assumed to be as accurately

approximate to the true curve as any pos-

sible circular arc can be.

The odontograph gives the radius
"
rad."

of the circular arc, and the distance "dis."

of the circle of centers from the pitch line,

for the tooth of a given pitch, and their

values for other pitches are easily found by

simple multiplication or division.

The advantages of this method lie in the

facts that the desired radius and distance

are given directly, without the labor of find-

ing them, and that as they are computed

they are free from errors of manipulation.

In point of time required, the advantage is
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WeofJW*with the odontograph in the ratio of

ten to one.

The greatest error of the odonto

graphic arc, shown greatly exaggerated

by the dotted lines, is at the point c on

the face, and it is greater on a twelve-

toothed pinion than on any larger gear.

For a twelve-toothed pinion of three-

inch circular pitch, a large tooth, the

actual amount of the maximum error is

less than one one-hundredth of an inch,

and its average for eight equidistant

points on the face is about four-thousandths I that stated will be due to manipulation, and
of an inch. Any error that is greater than ! not to the method.

To apply the odontograph to any particu

lar case, tirst draw the pitch, addendum

83. USING THE ODONTOGRAPH.

distance "dis." inside of it. Take the face

radius "rad."on the dividers, and draw in

root, and clearance lines, and space the pitch

line, Figs. 60 and 61.

Then draw the line of flank centers at

the tabular distance "dis." outside of the

pitch line, and the line of face centers at the

all the face curves from centers on the line

of face centers; then take the flank radius

"rad."and draw all the flank curves from
centers on the line of flank centers.

THREE POINT ODONTOGRAPH.
STANDARD CYCLOIDAL TEETH.

INTERCHANGEABLE SERIES.

From a Pinion pf Ten Teeth to a Rack.
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The table gives the distances and radii if

the pitch is either exactly one diametral or

one inch circular, and for any other pitch

multiply or divide as directed in the table.

Fig. 61 shows the process applied to a

practical case, with the distances given in

figures.

Fig. 62 shows the c'ame process applied to

an internal gear of twenty-four teeth work-

ing with a pinion of twelve teeth. It illus-

trates secondary action and double contact.

It also shows the actual divergence of the

Willis odontographic arp from the true

curve.

Odontographic example
Fig. 61.

Internal teeth

Fig. 62.
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84. THE WILLIS ODONTOGRAPH.

This is the oldest and best known
of all the odontographs, but it is

inferior to several others since pro-

posed, not only in ease of operation,

but in accuracy of result.

To apply it, find the pitch point*
a and a' half a tooth from the pitch

point 0, Fig. 63, draw the radii a c

and a' c', lay off the angles cab and
c' a' b', both 75, and Jay off the

distances a b and a' b' that are given

by table.

The centers b and b' thus found are

the centers of circular arcs that are

tangent to the tooth curves at d

and d'. The dividers are set to the

radius b or b' to draw the curves.

The Willis arc touches the true curve only
at the pitch point 0, and its variation else-

where is small, but noticeable. On the face

of the tooth of a twelve-toothed pinion of

three inch circular pitch, its error at the ad-

dendum point is four-hundred ths of an inch,

and it will average three times that of the

three point method (82). The error is shown

by Fig. 62.

The greatest error of the method is due to

manipulation. The angle is usually laid off

by a card, and the center measured in by a

scale on the card. The circle of centers is

TJie Willis odontograph

Fig. 63.

then drawn through the center, and unless

great care is used the chances of error are

great.
180

The angle 90 c ab = JFs= , and the

- sin. W, in whichdistance a b = 5
-

27T t

is the number of teeth in the gear of the

same set which has radial flanks, usually

12
;
c is the circular pitch, and t is the num-

ber of teeth in the gear being drawn. The

positive sign is used for the face radius, and

the negative for the flank radius.

85. KLEIN'S CO-ORDINATE ODONTOGRAPH.

This is a method of finding the positions

of several points on the tooth curve by
means of their co-ordinates referred to axes

through the pitch point. Any point on the

curve is found by laying off a certain dis-

tance on the radius Y, Fig. 64, and then

a certain distance at right angles to it, the

distances being given by a table for a certain

standard tooth.

As many points as required are found by
this method, and then the curve is drawn in

by curved rulers, or by finding the approxi-

mating circular arc.

This odontograph is to be found in Klein's

Elements of Machine Design.
Coordinate odontograpli

Fig. 64.
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86. THE TEMPLET ODONTOGRAPH.

Prof. Robinson's templet odontograph is

an instrument, not a method. It is a piece

of sheet metal, Fig. 65, having two edges

shaped to logarithmic spirals. It is laid

upon the drawing, according to directions

given in an accompanying pamphlet, and

used as a ruler to guide the pen. It can be

fastened to a radius bar, and swung on the

center of the gear, to draw all the teeth.

See Van Nostrand's Science Series, No. 24,

for the theory of the instrument in detail. The templet odontograph
Fig. 65.

87. OBLIQUITY OF THE ACTION.

When the point of contact between two

teeth is at the pitch point 0, Fig. 66, the

pressure between the teeth is at right angles
to the line of centers, but, as the point of con-

tact recedes from the line, the direction of

the pressure varies by an angle of obliquity

which increases from zero until the point K,
at the intersection of the addendum circle

with the line of action, is reached.

The angle K = K W, of the maximum

obliquity, can be found by solving the trian-

gle C c K, and for the standard set we have,

cos. 2 K = ^ ^,3 n-\- 18

in which n is the number of teeth in the

gear.

For the smallest gear of the set, the one

having twelve teeth, K is 20 15', and for the

rack it is 24 5', so that it will always be be-

tween those two limits for external gears,

and greater for internal gears.

The friction between two gear teeth in-

creases with the angle of obliquity, but not

w

Obliquity

Fig. 66.

in direct proportion. With the involute

tooth the work done while going over a cer-

tain arc from the line of centers is propor-
tional to the square of the arc, and for

cycloidal teeth the increase with the arc is

still more rapid. Therefore it is the maxi-

mum obliquity of the action that principally

determines the injurious effects of friction.

THE CUTTER LIMIT.

When the number of teeth in the gear is

less than that in the gear having teeth with

radial flanks, the flanks will be under-curved,

and when too much so they cannot be cut

with a rotary cutter. The teeth of Fig. 55

could not be cut with a rotary cutter beyond
the points where the tangents to the two
sides are parallel.

The limit is reached when the last point

that is cut by the rotary cutter is also the

last point that is touched by the tooth of the

rack in action with it, not allowing for in-

ternal gears.

The diameter of the gear when this limit

is reached is found by the formula,
-" rt T C
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in which D is the diameter of the gear, d is

the diameter of the circle of action, c is the

circular pitch, and a is the addendum
For the common addendum of unity

divided by the diametral pitch this may be

put in the shape, ^
n = s

i

in which * is the number of teeth in the

radial flanked gear, and n is the number in

the required cutter limit.

For the common series, where 8 = 12, we
have n = 8.26; and for the cutter standard of

* = 15, we have n = 10.80, so that cutters

could easily be made to cut gears with less

than s teeth.

When the rolling circle for

the faces is of half the diam-

eter of the pitch line of the

mating gear, the flanks of

both gears will be straight

radial lines, as in Fig. 67.

Such gears are fitted to each

other in pairs, and are not

interchangeable with other

sizes. Their teeth are more

easily made than those of

standard gears. The maxi-

mum obliquity is less, but

the strength of the teeth is

also less than usual. There

is no reason for making such

teeth in preference to the

). RADIAL FLANKED TEETH.

standard, al-

though, for that reason probably, they are

used to a considerable extent. It would be

Radial flanks

Fig. 67.

difficult to devise a form of tooth so whimsi-

cal that it would find no one to adopt and

use it. J

90. THE LIMITING NUMBERS OP TEETH.

When the number of teeth in a driving

gear is small, the point p, Fig. 68, of its

pointed tooth may go out of action by leav-

ing the line of action g before a certain

definite arc of recess r has been passed over,

and the problem is to find the smallest num-

ber of teeth in the following gear that will

just allow the given recess.

This question, which is not a particularly

important one, is discussed at length, and

applied to both bevel and spur gears, in either

external or internal contact, in an article in

the "Journal of the Franklin Institute" for

Feb., 1888, and we will here consider only

the case of the common spur gear.

The recess r is given as a times the cir-

cular pitch, and the thickness a r of the

tooth is given as b times the same. The

diameter of the circle of action is q times

Limiting ttftfth

Fig. 68.

that of the pitch line of the following gear.

The number of teeth in the driving gear is d,

and the number in the following gear is /.
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M is an auxiliary angle equal to -, and

W is an angle / \.

Then the required number / can be found

by a process of trial and error with the

formula,

sin. (M-f W)
sin. W -Tf-

M
For an example, let the recess be of the

pitch, the tooth equal to the space, and the

flanks of the follower to be radial. Let the

problem be to find a follower for a driver of

seven teeth. This gives a = ,
b = $,' q = i,

d = 7, and the formula becomes

gin.in. l^L + 25 43' \

\ J i

sin. 25 43'

If we put / at random, at 20, we shall

get, +.134 = 0. Next, trying/ =10, we

get, .132 = 0, and the opposite signs show

that / is between 20 and 10. Trying 12 the

result is positive, and for 11 it is negative,

showing that 12 is the required value of /.

That is, 7 teeth will not drive less than 12

teeth with radial flanks, unless it is allowed

an arc of recess greater than f of the pitch.

For another example, test MacCord's value

of 382 as the least driver for a follower of

10 teeth, when recess equals the pitch and

the follower has radial flanks. Trying d

382, the error is negative ;
for 383 it is also

negative, but for 384 it is positive, and there-

fore the latter is the true number.

Extensive and sufficiently accurate tables of

limiting values are given by MacCord in his

"Kinematics."

5. 1PITST TOOTH SYSTEM.

91. THE PIN GEAR TOOTH.

The theory of the pin gear tooth is en-

tirely beyond the reach of the "
rolled curve"

method of treatment, and, therefore, writers

who have adopted that method have had to

depend more on special methods adapted to

it alone than on general principles. The re-

sult is that its properties are often given in-

correctly, or with an obscurity and complica-
tion that is bewildering to the student.

Although the tooth is one of the oldest in

use, its theory is so difficult that its defect

was not discovered until within a very few

years, by MacCord, about 1880, and it was

not until it was examined by means of its

normals that a remedy for that defect was

discovered.

By treating the curve on the general prin-

ciples here adopted, as a special form of the

segmental tooth, it can be studied with ease,

and its peculiarities developed in a complete
and satisfactory manner. The method, in

general terms, is to find the conjugate tooth

curve of the gear, for the given circular tooth

curve of the pinion, and it presents no new
features or difficulties.

92. APPROXIMATE FORM OF PIN TOOTH CURVE.

Considered roughly, but accurate enough
for teeth of small size, the form of the

gear tooth b, Fig. 69, is a simple parallel

to the epicycloid E, formed by the center e

of the pin, and is to be drawn tangent to

any convenient number of circles having
centers on the epicycloid.

The action is practically all on one side of

the line of centers, the face of the gear tooth

working with the part of the pin that is
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inside of its pitch line. It is, therefore, all

approaching action when the pin drives and

all receding action when the gear drives, and
it is best to avoid the increased friction of

the approaching action by always putting the

pins on the follower.

Zantern wheel

Fig. 70.
Pin gearing

Fig. 69.

93. ROLLER TEETH.

The pin gear is particularly valuable when
the pins can be made in the form of rollers,

Fig. 70, for then the minimum of friction is

reached. The roller runs freely on a fixed

stud, or on bearings at each end, and can be

easily lubricated.

The friction between the tooth and pin,

otherwise a sliding friction at a line bearing,

is, with the roller pin, a slight rolling fric-

tion, and the sliding friction is confined to

the surface between the roller and its bear-

ings.

When the roller pin is used there can be

no increased friction of approach, and the

pin wheel can drive as well as follow.

For very light machinery, such as clock

work, there is no form of tooth that is su-

perior to the roller pin tooth, and, with the

improvement to be explained, there is no

better form for any purpose.

94. CUTTING THE PIN TOOTH.

The pin gear tooth can be very easily and

accurately shaped by mounting a revolving

milling cutter M, Fig. 71, of the size of the

pin, upon a wheel A, and causing it to roll

with a wheel B, carrying the gear blank Q.

The mill will shape the teeth to the correct

form.

Pin gear cutter

Fig. 71.

95. PARTICULAR FORMS OF PIN GEARS.

When the pins are supported between

two plates, as in Fig. 70, the wheel is called

a "lantern" wheel, and is the most common

form of clock pinion. The pins are some-

times called "staves," and are sometimes

known as "leaves."
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When the diameter of the pin is

zero, Fig. 72, it being merely a

point, the correct tooth curve will

be a simple epicycloid.

When the pin gear is a rack, Fig.

73, the tooth bears on the pin only
at a single point on the pitch line,

and the action is therefore very de-

fective unless the roller form of pin
is used. This form is more properly
a particular case of the Involute tooth,

for the shape of the pin is immaterial if it does

not interfere with the gear tooth. The circle

with center on a straight line is not an

odontoid at all, for, although it coincides as

a whole and for a single instant with a cir-

cular space in the gear, it has no proper and

continuous tooth action.

The gears of Fig. 74, sometimes classed

with pin gearing, are not pin gears at all.

An epicycloidal face working with a radial

flank is a very common combination.

When the diameter of the pin wheel is half

that of the internal gear with which it works,

we have the combination of Fig. 75. The

pins may run in blocks fitted to the straight

slots.

Point gears

Fig. 72.

fin rack

Fig. 73.

Rot pin gears

Fig. 74.

Radial pin teeth

Fig. 75.

). CORRECT FORM AND DEFECT OF PIN TEETH.

Although the pin tooth is apparently of a

very simple form, a close examination will

show that it is really quite complicated, and

that its practical action is incomplete and de-

fective. There is a cusp (16), and conse-

quent failure in the action, that is of small

importance when the teeth are small, but

which is troublesome when they are large.

This defect need not be considered when

pinions for clock work are in view, but if

pin wheels are to be used for large machinery
and heavy power it is important.

If the pin a, Fig. 76, is examined as an

odontoid, it will be seen lhat it is a true

odontoid only within the line TeT that is

tangent to the pitch line at the center of the

pin, for all normals, as pe, from points out-

side of that line, intersect the pitch line at

the center.

Drawing the normals, which are radii of

the pin, we can easily construct the line of

action and the conjugate tooth curve. The
line of action, commencing at the pitch point

0, Fig. 77, is there tangent to the line eOm,
which passes through the center e of the pin,

curves toward Oh, the tangent to the pitch

line at the pitch point, and touches it at the

point h, at the distance Oh, equal to the ra-

dius of the pin. From the point h it follows

the circle hJh' to the point h'
, thence return-

ing to the pitch point and forming the loop

OKL.
From the center c of the gear, Fig. 78, we

can always draw a tangent arc FN to the

line of action at the point F, and therefore

there will always be a cusp at .ZV on the

tooth curve. The tooth curve must end at

the cusp, and, to avoid interference, the pin

must be cut off at the arc W, drawn through
the point F, from the center C.

The whole pin is generally used, and

when it is a roller it must be whole, and
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then interference can be avoided only by
cutting away the tooth curve until it will al-

low it to pass.

The complete tooth curve has a first

branch NOM, Fig. 78, which is the only

part that can be used, an inoperative second

branch from the first cusp N to the second

cusp Q on the arc EQ, and thence an inopera-
tive circle ORQ'.

JLine of action

Fig. 77.
'Correct action

Fig. 78.

97. AN IMPROVED PIN TOOTH.

The cause of the broken action of the pin

tooth is the cusp, which is always present

when the center of the pin is on the pitch

line, and it can be avoided by placing the

center back, as in Fig. 79, to such a distance

inside the pitch line that the cusp does not

occur.

When the center of the pin is inside the

pilch line, the whole circle of the pin is a true

odontoid, and the distance en of the center

from the pitch line can be so chosen that

the cusp is not formed.

This distance does not appear to be sub-

ject to any simply stated rule, but in the

single case of the pin rack it is determined by
the formula:

2 d*

27 D 'x

in which x is the required distance en, D is

the diameter of the gear, and d is the diame-

ter of the pin.

If the angle CeO, Fig. 79, is not less than

a right angle, there will be no cusp on the

Fig. ?9.

90
Corrected pin year

gear tooth if the diameter of the gear is

greater than that of the pin.
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5. STEPPED GEARS.

When two or more gears, Fig. 80, of the

same pitch diameter, are placed in contact en

the same shaft, they will evidently act as in-

dependently of each other as if they were

some distance apart, while they appear to act

together as a single gear with irregular teeth.

They are known as
" Hooke's Gears."

It matters not how many different kinds or

numbers of teeth the several gears may have,

or in what order they are arranged, if those

that work together on opposite shafts are

matched. They may be given an irregular

arrangement, as in Fig. 80
;
a spiral arrange-

ment, as in Fig. 81
;
a double spiral, or "her-

ring-bone
"
arrangement, as in Fig. 82 ;

a cir-

cular arrangement, as in Fig. 83, or other-

wise at will.

Stepped f/ear

Spiral arrangement
Fig. 81.

Double spiral arrangement
Fig. 82.

Circular arrangement
Fig. 83.

99. TWISTED TEETH.

The thickness of the component gears has

nothing to do with the theoretical action of

the stepped gear as a whole, and therefore

we can have them as thin as required. If the

thickness is infinitesimal the component
character of the gear is not apparent, and it

is known as a twisted gear, Fig. 84.

When the teeth are twisted there -may al-

ways be one or more points of contact at the

line of centers, where the theoretical fric-

tion is nothing, and therefore they are par-

ticularly well suited for rough cast teeth.

Furthermore, if the teeth are badly shaped

Tivisted arrangement
Fig. 84.
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the twisted arrangement tends to distribute

the errors so that they are not as noticeable.

The oblique action of twisted teeth tends

to produce a longitudinal motion of the

gears upon their shafts, which must be

guarded against. This end thrust may be
j

avoided by so forming the twist that there
!

are aiways two oblique bearings between the

teeth, acting in opposite directions, as in the

herring-bone arrangement.
The twisted form of tooth is seldom found

in practice, except in the form of spiral and

double spiral teeth, for the difficulty of form-

ing other twists is great.

100. EDGE TEETH.

If the twist of the twisted tooth is such

that some part of the twist at the pitch cylin-

der is always upon the line of centers, the

gears will always be in action whether

there are full teeth or not, and they will

work with theoretical accuracy if they are

reduced to edges in the pitch cylinder, as in

Fig. 85.

The friction of the edge tooth is theoret-

ically nothing, as there is no sliding of the

teeth on each other. There is but one point
of contact, and that is always upon the line

of centers; but if any power is carried the

pressure will soon destroy the single point of

contact.

Fig. 85.

If the edges are thick the action will be

stronger, but there will still be but one point

of contact.

101. INVOLUTE TWISTED TEETH.

When the form of the tooth is the invo- 1 point contact. The straight involute tooth

lute, and the twist is such that some part of

it on the pitch cylinder always crosses the

line of centers, the teeth will remain in con-

tact, when the parallel axes are separated,

until their points are separated, although the

contact may sometimes be very short or even

will fail as soon as the arc of contact is less

than the tooth arc.

Twisted involute teeth are therefore partic-

ularly valuable for gears for driving rolls, or

for other purposes where the shaft distance

is variable.

102. FORMATION OF THE TWISTED TOOTH.

When the twist is a uniform spiral there

are convenient methods for shaping the

tooth, but the twisted tooth in general can be

formed only by the processes of (27), (28) and

(29), and then only when the twist is not

very irregular.

The principle of the linear planing opera-

tion of (29) is the same as for the straight

tooth, but the blank must be rotated accord-

ing to the form of the twist adopted, while

the tool is cutting. The twisting motions

are independent of the feeding motion, and

are repeated at every stroke.

103. SPIRAL GEARS.

The spiral gear is that particular form of

the twisted gear which has uniformly
twisted teeth, and it is, therefore, a particu-

lar form of the common spur gear. It has

such peculiar properties that it is often

classed by itself as a separate form of tooth.
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The normal spiral section is that section of

the teeth of the spiral gear that is made by a

spiral surface, called a helix, that is at right

angles with the teeth. It is the equivalent,

for spiral teeth, of the normal section of the

spur gear that is made by a plane, or of the

normal section of the bevel gear that is made

by a sphere. As with spur and bevel gears,

the action of the teeth on> each other should

be studied upon this normal surface. As the

helix cannot be ^represented upon a plane

figure it must be imagined, and as it is ob-

scure it requires close attention.

Any two spiral teeth will work together,

provided their normal spiral sections are con-

jugate (24), and, as the shape of the normal

spiral section is independent of the angle of

the spiral, two spiral gears will work to-

gether, approximately, on shafts that are

askew. This will be seen more clearly if the

spiral section is imagined to be a flexible

sheet-metal toothed helix, which can be coiled

about the shaft of the gear, for it can evi-

dently be coiled close or loose without affect-

ing the shape of its teeth. If coiled close,

with a short lead, it runs nearly at right

angles to the shaft, and the gear approxi-
mates to the spur gear, while if the lead is

long the gear approximates to the screw.

As the diameter of the spiral gear increases,

the teeth straighten, and when the diameter

is infinite and it is a rack, they are straight
and in no way different from those of a com-
mon rack.

104. THEOKY OF SPIRAL TOOTH ACTION.

The Willis theory of the action of spiral

teeth is the one generally accepted, but it is

not correct. It assumes that the action be-

tween the gears is upon a section by a plane

through the axis of the gear and the common
normal to the two axes, and that the section

of the two gears made by the plane act to-

gether like a rack and gear.

When the axes are at right angles, and the

spiral angle is great, this theory is apparently

correct, the error being practically imper-

ceptible, but, as the axes become more nearly

parallel, the error is more apparent, until,

when they are parallel, the error is plain

enough. Willis applied his theory to worms

and worm gears, on axes at right angles, and

evidently did not consider the spiral gear in

general.

The action between spiral teeth is not upon
the axial section, and it is not that of a rack

and gear, but when there is any action at all

it is upon the normal spiral section. See the

AMERICAN MACHINIST for May 19th, 1888.

When the axes are parallel the normal

spiral sections, as well as the sections made

by a plane normal to the axes, are conjugate,
and therefore the action is correct and along
a line of action. The action is also continu-

ous when the axes intersect and the gears are

bevel gears.

When, however, the axes are askew, the

normal spiral sections are not necessarily con-

jugate, for they coincide only on one line, the

common normal to the two axes. Therefore,
there is no continuous tooth contact, except
in one particular case, the teeth being in con-

tact only for an instant as they pass the

normal.

The special case for which spiral teeth on
askew axes have continuous tooth contact, is

that case of the involute tooth when the base

cylinders are tangent and the gears become

spiraloidal skew bevel gears. See (175) and

(176). In that particular case the teeth have a

sliding conjugate action on each other. As
the spiraloidal gear is fully described in its

place, it will not be further considered here.

This theory is corroborated by experiment-
al gears made for the Brown & Sharpe Man-

ufacturing Company, for whom Mr. O. J.

Beale, to whom the theory of the spiral

gear is much indebted, made a pair of theo-

retically perfect spiral gears, exactly alike,

with a spiral angle of 45, working on shafts

at right angles, and of such a large size that

the action of the teeth could be plainly ob-

served. See Figs. 88 and 90.

Beale's gears cannot be made to run to-

gether properly at any shaft distance, but

if their ends are brought to the common
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normal, and their base cylinders are in con-

tact, they are skew bevel gears and show the

action required by Olivier's theory.

But, although the action of spiral gear
teeth is intermittent, and their contact is the-

oretically perfect at one instant only, when

they are passing the common normal, they
are very nearly in contact all the time and

the action is practically perfect. Spiral teeth

of ordinary sizes work together with a re-

markably smooth action.

105. FORMATION OF THE SPIRAL TOOTH.

As the spiral rack has an ordinary straight

tooth, we can conveniently derive the spiral

tooth in general from it by a method that is a

form of the molding method of (27) for spur

gears.

If a plane is moved in any direction upon a

cylinder it will move it, as if by friction,

with a speed that depends upon the direction

of the motion. If we imagine the same re-

sulting motion between the plane and the

pitch cylinder, and assume that the plane is

provided with hard and straight teeth run-

ning in any direction, it will mold the plastic

substance of the cylinder and form spiral

teeth upon it. All spiral teeth formed by the

same rack will have normal spiral sections

that are approximately conjugate to each

other, and they will work together inter-

changeably.
This process may be put into practical

shape by a modification of the process of (28)

for spur gears, by substituting a planing
tooth for the molding rack tooth. The tooth

has the shape of the normal section of the

rack, and, as it is reciprocated at an angle
with the axis of the gear blank being shaped,

both the tool and the gear blank receive the

motion of the plane and pitch cylinder. The

cutting face of the tool is normal to the direc-

tion of its motion, which motion is tangent

to the direction of the tooth spiral.

The linear process of (29) may be used, the

plane of Fig. 20 representing, approximately,
the normal spiral section of the gear. Thus,

if the planing tool or the equivalent milling

cutter receives a motion as if in a plane roll-

ing upon the base cylinder, the involute tooth

will be produced.

The spiral tooth may be formed by the

linear planing process of (29), directly ap-

plied on the principle that the spiral tooth is

a twisted spur tooth. The planing tool re-

ceives a planing motion in the direction of

the axis of the gear blank, and both tool and

blank receive the feeding rolling motion that

would produce the spur tooth of the section

that is normal to the axis. In addition, the

blank receives a motion of rotation while the

tool moves, that is repeated for every troke

of the tool. The cutting edge of the tool is

set normal to the axis of the gear.

The spiral tooth may also be formed by a

tool that is formed to the true shape of some

section of the tooth, preferably its normal sec-

tion, and which is guided in the tooth spiral.

This is the process used to shape a worm, the

tool being guided by a screw-cutting lathe.

The process generally used to mill the

teeth of the spiral gear is the equivalent of

the operation last described. The milling

cutter is shaped to the normal section of

the tooth space, and is guided in the tooth

spiral by a special feeding device that ro-

tates the blank while the cutter is working
in it.

Of these processes the planing process of

(28) is the best, as it produces the tooth with

theoretical perfection, and because all gears

formed with the same tool are conjugate and

interchangeable. But the screw-cutting and

milling processes are most in use, for the

reason that they are more expeditious and

better adapted to the common machine tools,

and it is therefore necessary to study the

shape of the normal section of the tooth with

1 some care.
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108. THE NORMAL PITCH.

The real pitch of the spiral gear is meas-

ured on a section that is normal to its axis,

and, as in the case of the spur gear, it is

found by dividing the number of teeth by
the pitch diameter, but the shape of the tooth

must be regulated by the normal pitch, or

pitch of its normal section.

The normal pitch is found by dividing the

real pitch by the cosine of the angle made by
the tooth spiral with the axis of the gear.

Thus, if the pitch is 8, and the angle is 45,
the normal pitch is 8, divided by .707, or

11.3.

The normal circular pitch is found by mul-

tiplying the real circular pitch by the cosine

of the spiral angle.

107. THE ADDENDUM.

The addendum of the spiral gear should

not be determined by its real pitch, but by
its normal pitch, for it is then usually possi-

ble to mill the tooth with a milling cutter

that is made for a standard spur gear. A
gear of 8 pitch and 45 angle should have an

1
addendum of

11.3
= .089".

If the addendum is determined by the true

pitch when the angle is considerable, the

tooth will be long and thin. Fig. 86 shows

the normal pitch section of a rack to run

with a pinion of 45 angle, while Fig. 87

shows the true pitch of the same rack. Fig.

88 also shows the true pitch of the pinion,

and, although the tooth appears to be stunted,

it is really of the standard shape.

Spiral Rack,
Fig. 87.

Beetle's Experimental Gears.

Fig. 88.

108. THE AXIAL PITCH.

The section of the spiral gear by a plane

through the axis is that of a rack, and the

axial pitch, or pitch of the rack, is found by
dividing the true pitch by the tangent of the

spiral angle. Thus, if the angle is 45, the

axial pitch is the same as the true pitch, but

the axial pitch of a 70 spiral tooth is but .364

of the true pitch.

109. SHAPING THE TOOL.

When the spiral gear is cut in a milling

machine, or turned in a lathe, it is necessary
to give the tool the shape of the normal sec-

tion of the tooth to be cut, and this is most

readily accomplished by shaping it for the

spur gear that most nearly coincides with that

normal section.

The number of teeth in the gear that is

osculatory to the normal spiral, and therefore

most nearly coincides with it, is found by
dividing the actual number of teeth in the

gear by the third power of the cosine of the

spiral anple.

For example, if we are to cut a gear of 4"
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diameter, 6 pitch, and 24 teeth, at a spiral

angle of 45, the cutter should be shaped to

24 24
cut a spur gear of = = 69 teeth

of
-=^

= 8.5 pitch. If the gear has 28 teeth

of 4 pitch, and an angle of 10, the equiva-
lent spur gear has 29 teeth of 4.08 pitch, as

the gear varies but little from a spur gear.

If the gear is of 5 pitch, and 15 teeth, with

an angle of 80, the equivalent spur gear has

2,830 teeth of 28.7 pitch, and in general,

when the gear has a great angle it is a

worm, the section is practically that of a rack.

Care must be taken, when the gear is a

screw, and is turned in the lathe, that the

tool should be set with its cutting edge nor-

mal to the thread of the screw, if it is shaped

by the above rule. If the tool is set in the

axial section of the screw, and it generally is,

it should be shaped to the axial section of the

worm, and have the axial pitch and adden-

dum. But when the lead of the thread of

the screw is small compared with its diam-

eter the difference between the normal and
axial sections is not noticeable.

110. VELOCITY RATIO OP SPIRAL GEARS.

The spiral gear does not follow the well-

known rule of spur gears, that the velocities

in revolutions in a given time are inversely

proportional to the pitch diameters, but re-

quires that ratio to be multiplied by the ratio

of the cosines of the spiral angles.

In the formula

v I) cos. A
~V

~~ d
cos. a

D and d are the diameters of the gears, A
and a are their spiral angles, and V and

are their velocities in revolutions.

If the angles are equal, the velocity ratio

is the same as for spur gears of the same
diameters. Fig. 88 shows a pair of gears B
and G that are of the same size and have the

same angle in opposite directions, requiring
the shafts to be parallel. See also Fig. 89.

The pair of gears A and B are exactly alike,

with equal angles in the same direction, re-

quiring the shafts to be at an angle equal to

Fig. SO

Spiral Spur Gears

Equa
Gears Fig. 00

twice the spiral angle. See also Fig. 90.

The statement that like spiral gears will not

run together is founded on the Willis theory
of spiral gear contact, and is wrong.

111. SPIRAL WORM AND GEAR.

When the shafts are at right angles, and

the angle on one is so great that it is a screw,

the combination is known as a worm gear

and worm, Figs. 91 and 92, and is much used

for obtaining slow and powerful motions.

It is also too much used for wasting power
and wearing itself out, for its friction is very

great and consumes from one-quarter to

two-thirds of thd power received .

When the screw has a single thread, the

velocity ratio is simply the number of teeth

in the gear, and if th re are two or three

threads it must be modified accordingly.

The spiral worm is adjustable in its gear

both laterally and longitudinally, so that it

will change its position as required by wear

in the shaft bearings.

It is an excellent substitute for the hobbed

worm and gear, and in most cases will serve

practical purposes quite as well.
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Spiral Worm Gear and Worm,
Fig. 91.

Fig. 92

Worm Gears

112. EFFICIENCY OF SPIRAL AND WORM GEARING.

Unless the shafts are parallel the teeth of a

pair of spiral gears are moving in different

directions, and therefore they cannot pass

each other without sliding on each other an

amount that increases rapidly with the angle
of divergence of the directions of motion,
that is, the shaft angle.

This sliding action creates friction and

tends to wear the teeth, and to a very much

greater extent than is generally supposed.
The friction is so great, in fact, that such

gears, particularly worm gears, should be

used only for conveying light powers. They
are extensively used, or rather misused, for

driving elevators, and are even found in mill-

ing machines, gear cutters, planers, and

similar places, in evident ignorance that they
waste from a quarter to two-thirds of the

power received.

The most extensive experiments on the

efficiency of spiral and worm gears ever made
were made by Wm. Sellers & Co., and they

may be found described in great detail in a

paper by Wilfred Lewis in the Transactions

of the American Society of Mechanical En-

gineers, vol. vii. Space will not permit ex-

tensive quotations from this valuable paper,

but the general result of the experiments is

shown by the diagram, Fig. 93. The diagram
shows that a common cast-iron spur gear and

pinion on parallel shafts have an efficiency of

from ninety to ninety-nine per cent., accord-

ing to the speed at which they are working ;

that a spiral pinion of 45, angle working in

a spur gear, with shafts at 45, has an effi-

ciency of from 81 to 97 per cent.
;

that

the efficiency decreases as the angle of the

shafts increases, until, for a worm of a spiral

angle of 5, at a shaft angle of 85, it goes
as low as 34, and does not rise higher than 77

per cent. This includes the waste of power
at the shaft bearings as well as that at the

teeth of the gears. The efficiency is lowest

for slow speeds, and rises with the speed.

The diagram may be relied upon to give its

true value, under ordinary conditions, within

five per cent.

The same experiments developed the fact

that the velocity of the sliding motion of the

cast-iron teeth on each other should not be

over two hundred feet per minute in contin-

uous service, to avoid cutting of the surfaces.

It may be assumed that the efficiency will be

higher when the worm is of steel, particu-

larly when the gear is of bronze.

Diagram, Fig. 94, shows the result of simi-
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lar experiments by Prof. Thurston, with a

worm of 6" diameter and one inch circular

pitch running in a gear of 16" diameter, both

cast-iron.

It is to be observed that it is the shaft angle,
and not the angle of the spiral, that deter-

mines the efficiency. A pair of spiral gears
on parallel shafts are practically as efficient

as gears with straight teeth.

The great friction of worm gearing is of

advantage for one purpose, and for one only,
to secure safety and prevent undesired mo-
tion of the gears. The worm of Fig. 97 will

easily move the gear, but the gear must be

moved with great force to start the worm.
When the angle of the worm is as small as

the "angle of repose" for the metals in

contact, it is impossible for the gear to drive

the worm. This may be an excuse for the use

of the worm gear in elevators, but it would
seem that the safety of the cage should de-

Revolutions of Driverper minute
50 100 150 200 250 300 350 400

Yale & Totvue Experiments
Fig. 94.

pend on devices attached to the cage itself,

rather than to the hoisting machinery or

other distant part.

Unless the friction of the gears must be

depended upon for safety, the worm gear
should be used only for purposes of adjust-

ment, or when speed must be greatly reduced

or power increased within a small compass,
and not for conveying power.
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113. THRUST OF SPIRAL TEETH.

The oblique action of the teeth of

spiral gears on each other tends to throw

the gears bodily in the direction of their

axes, and this tendency creates a thrust

that must be opposed by thrust bear-

ings. The end pressure on the shaft of

a worm is greater than that exerted on

the teeth of the worm gear it is driving.

When the shafts are parallel the

thrust may be completely avoided by
the use of double spiral or "herring-
bone "

teeth, Fig. 82 or 83, which act in

opposite directions, and neutralize each

other.

When the shafts are at right angles

the thrust may be neutralized by op-

posing a second gear in the manner
shown in section by Fig. 95. The two

worms with opposite spirals run in two spiral

worm gears that also work with each other,

and, as the pressure on one gear is opposite

that on the other, there is no thrust on the

shaft. When this combination is made with

worm gears having concave teeth, the teeth

can bear only at their ends.

Arrangement to avoid thrust

Fig. 95.

When the thrust cannot be avoided it

should be taken by a roller bearing, rather

j

than by the common collar bearing. The
I diagram, Fig. 94, shows the superior efficiency
of the roller bearing as compared with the

collar bearing, the gain being from ten to

twenty per cent.

114. THE HOBBED OR CONCAVE WORM GEAR.

If a spiral gear is made of steel, provided
with cutting edges by making slots across its

teeth, and hardened, it will be a practical

cutting tool called a spiral milling cutter or

hob. Fig. 96 shows a spiral milling cutter,

having a great spiral angle, and therefore

called a worm.

If this cutting spiral gear is mounted in

connection with an uncut blank so that both

are rotated with the proper speeds, and the

shafts of the two gears are gradually brought

together while they are revolving, the edge
of the blank will be formed with concave

teeth that curve upwards about the sides of

the cutting gear. If the hob is then replaced

with a spiral gear that is a duplicate of it, ex-

cept that it has no cutting teeth, we shall

have the familiar worm and worm gear of

Fig. 97.

The principle of the concave gear applies

to any pair of spiral gears, on shafts at any

Concave Worm Gear and Worm.
Fig. 97.
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angle, but in practice it is confined to the

worm and gear on shafts at right angles.
The nature of the contact between the

worm and the concaved worm gear has not

yet been definitely determined, but there is

no reason to suppose that it is different from
that between plain spiral teeth, a point con-

tact on the normal spiral, but it is probably
continuous. It is certain, however, that the

contact is considerably closer, more nearly

resembling surface contact, and being sur-

face contact when the diameter of the gear is

infinite.

The worm is adjustable in the concaved

teeth of the gear in the direction of its axis,

A Hob.

and will change its position as required by
the wear of the thrust bearing. It is not ad-

justable laterally.

115. HOBBING THE WORM GEAR.

When the hob is provided it is a simple
matter to cut the gear. The gear is generally

provided with the desired number of notches

in its edge, that are deep enough to receive

the points of the teeth of the hob, and

the hob will then pull it around as it

revolves.

It is a too common practice to make the

hob do its own nicking, for, if it is forced

into the face of the gear as it revolves, it will

pull it around by catching its last teeth in

the nicks made by the first.

If luck is good these nicks will run into

each other, and the gear will be cut with

teeth that appear to be correct, but, as the

outside diameter js greater than the pitch

diameter, there will be one, two, or three

teeth too many. The teeth of the finished

gear are therefore smaller than those of the

worm by an amount that is ruinous if the gear
is small, although it is not noticeable when
the diameter is large. If there are 12 teeth

where there should be but 10, each tooth will

be too small by two-twelfths of itself; but if

there are 102 teeth where there should be but

100, each tooth is too small by but two-

hundredths of itself. This handy makeshift

process will do very well on large ge^rs, but

not on small ones, unless the worm to run in

the gear is made to fit the tooth, with a tooth

that is smaller, and lead that is shorter than

that of the hob.

116. INVOLUTE WORM TEETH.

Worms are generally cut in the lathe, and
!

as a straight-sided tooth is most easily

formed, the involute tooth is generally

adopted.

Strictly, the form of the tool should be

that of the normal section of the thread, and

it should always be set in the lathe with its

cutting face at right angles to the thread.
|

But custom and convenience allow the tooth

to have S'raight sides, and to be set with its

face parallel with the axis of the worm, and

the real difference is not generally notice-

able.

The standard tool has its sides inclined at

an angln of 30, and has a length and a width

dependent upon the pitch.

117. INTERFERENCE OF INVOLUTE WORM TEETH.

There is one difficulty that is seldom recog- 1 pected, and that is interference. The teeth

nized,' but which must be carefully guarded of worm gears will interfere with each other

against if properly running gears are ex- ! when the conditions are right for interference.
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just as spur involute tee.th will interfere, as

shown by Fig. 36. Fig. 98 shows the gear

that would be formed by the usual process.

The difficulty can be remedied by rounding

over the tops of the teeth of the hob and

worm, as described in (55).

It is also a simple matter to avoid the inter-

ference by enlarging the outside diameter of

Interfering Worm,

Fig. 98.

Interference Avoided.

Fig. 99.

\ Involute worm anil gear
twenty-one or more teeth

Fig. 100.
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the worm gear. If, as shown by Fig. 99, the

tooth has but a short flank, or none at all,

and the addendum of the gear is about twice

that by the usual rule, the action will be con-

fined to the face of the gear and the flank of

the worm, and there can be no interference.

By adopting an obliquity greater than 15,
interference can be avoided without changing
the addendum.
This method has the advantage that the

same straight-sided worm and hob can be

used for small gears as for large ones, and

the disadvantage that the action is confined

to the approach and subject to greater fric-

tion (48).

When the standard 30 tool is used, all

gears of 26 teeth, or smaller, should be made
in this way, but the correction is not strictly

necessary for gears of more than 20 teeth,

unless particularly nice work is required.

Fig. 100 shows the proper construction of a

gear of 21 or more teeth, and Fig. 101 shows

that of a gear of less than 21 teeth. In the

former case, the teeth of the worm should be

limited by the limit line II, but the interfer-

ence for 21 to 25 teeth is not noticeable.

Draw worm teeth straight
Draw gear teeth by points (57)

Involute worm
for twenty^ or

118. CLEARANCE OF WORM TEETH.

There is another practical point that is sel-

dom recognized, and that is that worm teeth

should have clearance (40), for there is no

reason for clearing spur teeth that will not

apply quite as well to any other kind.

The clearance is easily obtained by making
the tooth of the hob a little longer than that

of the worm, as shown by the tooth a of Fig.

'100. For the same reason the hob should

have no clearance at the bottom of its thread,

so that the tops of the gear teeth will be

formed of the proper length. The custom

of making the hob and worm of exactly the

same diameters will apply only when the

worm "bottoms" in the gear and the gear
bottoms in the worm.

119. CIRCULAR PITCH WORM TEETH.

The old and clumsy circular pitch system \

were the same as those of common spur gears
is in universal use for worm teeth, for the

|

and racks on the circular pitch system. The
reason that worms are generally made in the

lathe, and lathes are never provided with the

proper change gears for cutting diametral

pitches. The error is so firmly rooted that it

is useless to attempt to dislodge it.

It is therefore necessary to figure the diam-

eters of worm gears as if their throat sections

table of diameters (35) will be of great assist-

ance.

One great objection to the use of the circu-

lar pitch system for spur gears does not ap-

ply to worm gears, that the center distance

between the shafts will always be an incon-

venient fraction, unless the pitch is as incon-
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venient. The worm can be made of any

diameter, and can therefore be made to suit

the pitch diameter of the gear and the center

distance at the same time.

The sides of the tool for circular pitches

should come together at an angle of thirty

degrees, and the width of the point, as well

as the depth to be cut in the worm or in the

hob, should be taken from the following
table. The diameter of the hob should be

greater than that of the worm by the "in-

crease" given.

Make the tool with the proper width at the

point to thread the worm, and then, after

making the worm, grind off half the "
in-

crease" from the length of the tool, and use

it to thread the hob.

TABLE FOR CIRCULAR PITCH WORM TOOLS.

Circular ]5itch
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been stated that the contact is between sur-

faces, the worm tilling the whole gear tooth.

The real contact is not yet certain, but it is

certain that it is not a surface contact. It is

also certain that it is on the normal and not

on the axial section, and that the Hindley
worm hob will not cut a tooth that will till

any section of it. The contact may be linear,

along some line of no great length, but it is

probably a point contact on the normal sec-

tion. The order of the contact is certainly

very close, resembling that of two surfaces.

The worm is limited in length, for the

sides of the teeth cannot slant inward from

the normal to the axis. The end tooth m in

Fig. 102 cannot be used, for it will destroy

the teeth of the gear as it is fed towards

this axis in the operation of hobbing.
It has the one great defect that it is not

adjustable in any direction, and, therefore,

cannot change its position when the shaft

The Hindley
Worm Gear

bearings wear, unless it is itself worn the

same amount. It is doubtful if this form of

gearing has any advantage over the plain

spiral gearing, except when new and in per-

fect adjustment.

123. THE PIN WORM AND GEAR.

If the hob and the worm are shaped by Fig. 102, the gearing produced will have

the pin-shaped revolving milling tool b of
!
linear bearing between the teeth.

The action will be the same as between a

series of pin teeth like the milling tool, each

pin being in the axial section of the worm,
but having a linear bearing on the normal

section of its teeth.

This form of gearing, which is a

modification of the Hindley form,

may take the shape of pin gearing,

the teeth being round pins like the

milling tool. If the pins are mounted

on studs, so as to revolve, a roller pin worm

gear will be produced.

Fig. 103 shows a form of roller pin

gearing in which the pins have been en-2'in worm- year.

Fig. 103. larged.

124. THE WHITWORTH HOBBING MACHINE.

When the amount of work to be done will

warrant the use of a special machine, the

hobbing machine of Sir Joseph Whitworth

may be used. It was invented in 1835, and

has not been materially improved since then,

although there are numerous patents relating

to it. The worm gear to be hobbed is fixed

upon the same spindle with a master worm-

wheel. A driving worm runs in the master

wheel, and it is connected by a train of gear-
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ing with a hob that is so mounted on a

carriage that it caii be fed towards the gear
blank. The hob is slowly forced into the

blank, while both are revolving with the

proper speeds, and the gear is cut without

the assistance of previously made hicks. See

British patent 6,850 of 1835.

loc

Spiral and Spur Gear.

125. THE CONJUGATOR.

This is a machine for cutting spur or spiral

gears by means of a hob, and its principle is

an extension of that of the Whitworth worm

gear hobbing machine.

If, when the hob in the Whitworth ma-

Conjugator. Elevation

Fig.104.

flan

Tig. 105.

chine has reached the full depth of the tooth,

it receives a new .motion in the direction

of the tangent to its pitch spiral, it will

continue the tooth to the edge of the gear,

and form the plain spiral gear of Fig. 91 .

Fig. 104 is an elevation of the machine, and

Fig. 105 is a plan. The hob h is mounted

upon an arbor that is connected by a train of

gearing with the spindle * that carries the

blank gear g to be cut, so that the hob and

blank revolve together with any definite

proportionate speed. The hob is carried

upon a carriage that is fed on a frame /.

The hob swivels upon the carriage, so that

the tangent to its pitch spiral can be set

parallel with the direction of the feed, and

the frame swivels so that the tooth can be

cut at any angle with the gear spindle.

As the blank and the hob are revolving,

the latter is fed into the former, and it will

cut a perfect tooth in the direction that the

frame is set at. As the frame can be set in

any direction, the machine will cut the com-

mon straight tooth, as shown by Fig. 106.

All gears cut by the same cutter will run

together interchangeably, and if two spiral

gears are cut at the same angle in opposite

directions they will run together on parallel

shafts. See U. S. patent number 405,030,

June llth, 1889.
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126. NON-CIRCULAR PITCH LINES.

The consideration of pitch lines that are

not circular, and of the teeth that are fitted for

them, is an interesting but not particularly

important branch of odontics. Such pitch

lines are largely used for producing variations

of speed and power, but have no other prac-

tical applications.

127. THE IRREGULAR PITCH LINE.

The most general case is that of two indefi-

nite irregular curves rolling together, Fig.

107, the only condition being that they
shall be so shaped that they will roll together

continuously.

As the practical importance of the free

pitch line is very small, we shall not ex-

amine it in detail.

Irregular pitch lines

Fig. 107.

128. PITCH LINES ON FIXED CENTERS.

When we attach the condition that the two

pitch lines shall revolve in rolling contact on

fixed centers, we have a definite problem of

more interest and importance than that of the

free pitch line.

If, as in Fig. 108, we have a pitch line A
revolving upon a fixed center a, we can con-

struct a pitch line B that will roll with it,

and revolve on the given fixed center b, by
the following process.

From any pitch point 0, step off equal arcs

Oc, cc, cc ; draw circular arcs cd from the

center a; draw circular arcs dn from the

center b; step off the same equal arcs Oe,

ee, ee, then Oeee will be the required mat-

ing pitch line.

These curves will always be in rolling con-

tact at a point on the line of centers ab, the

pitch point and the angle of the curves with

the line of centers continually changing.
The velocity ratio of the curves will be

Fixed centers

Fig. 108.

variable, and always equal to the inverse pro-

portion of any two mating radiants, ac and be.
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129. CLOSED PITCH LINES.

When one of the curves of Fig. 108 is a

closed curve, the other will in general not

be closed, but by trying different centers, a

curve can be found that will be closed.

If the closed curve a,, Fig. 109, is taken,

the mating curve A l will be closed when the

center is chosen at a certain point B l ,
that can

be found by repeated trials.

The mating closed curves thus constructed

will seldom be alike, but will always have

points of similarity. A salient point q on one

will be paired with a reversed point or notch

on the other, and lobes on one will be repre-

sented by depressions on the other. Half a

revolution of one of the curves, from any

position, will turn the other through half a

revolution.
Set of Multilobes

Fig. 109.

130. MULTILOBES.

If, after finding the center Blt Fig. 109, for

the closed mating curve, other centers are

tried, second, third, and succeeding centers,

B,, BZ, #4 ,
will be found, about which the

mating curves will also be closed.

These closed curves, called multilobes, will

be each divided into like lobes, the second

curve, or bilobe, into two lobes
;
the third, or

trilobe, into three lobes, and so on.

If the center is placed at infinity, the rack

lobe A oo will be formed.

If the center be taken negatively, on the

same .side as the original center b lf at Z> 3 ,

#3, 6 4 , etc., negative multilobes a, a 3 , 4 ,

etc., will be formed about the original curve

a,.

All these multilobes, positive and negative,

will roll together collectively about their fixed

centers, in rolling contact at a common and

shifting pitch point 0.

Any two, of the same sign, will roll in inter-

nal contact, and any two of opposite signs

Train of tnultilobcs

Fig. 110.

will roll in external contact, so that they can

be formed in train, Fig. 110.

When it so happens, as it does with the

ellipse revolving on its focus, or the logarith-

mic spiral revolving on its pole, is taken, that

the first derived pair of curves, or unilobes,

are exactly alike, all the multilobes will be

alike
;
the positive trilobe like the negative

trilobe, and so on, so that any two curves of

such a set will work together in either inter-

nal or external contact, Fig. 111.
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131. CONIC SECTION PITCH LINES.

If two like conic sections are mounted upon
their foci, they will roll together.

Their free foci will revolve at a fixed dis-

tance from each other, and may be connected

by a link. The line of the free foci will in-

tersect the line of the fixed foci at the point
of contact of the pitch lines.

Fig. 112 shows a pair of ellipses, Fig. 113

a pair of parabolas, and Fig. 114 a pair of

hyperbolas.
The elliptic pitch line is the only one

known that will revolve with its equal, and
make a practical and complete revolution.

fixed
Elliptic tnultilobea

Fig. 111.

Ellipticpitch lines

Fig. 112.

Parabolic pitch lines

Fig. 113.

Hyperbolic pitch Hues

> Of

IIVEE3ITY,
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132. THE LOGARITHMIC SPIRAL.

If the radiants a, b, c, d, e, Fig. 115, make

equal angles with each other, and each one

is equal to the adjacent one multiplied by a

constant number, their extremities will deter-

mine a logarithmic spiral.

If the first radiant a is given, with the con-

stant multiplier ??, the second radiant will be

na, the third will be n* a, the fourth will be

n 9
a, and so OD.

If the first and last radiants, a and e, are

given, and there are p equal angles between

them, the constant is

so that it is a simple matter to construct a

logarithmic spiral to connect any two given
radiants at any given angle with each other.

The curve possesses the singular property
that all tangents, A or E, make the same

angle with the radiants at their points of con-

tact. The curves are always inclined to the

line of centers at the constant angle.

The curve continually approaches the

center M, or "pole," making an infinite

number of turns about it, but ntver reach-

ing it.

It also has the entirely useless property that

the pole will trace an involute of the base

circle if it is rolled upon the pitch circle (75).

It possesses the property, not possessed by
any other curve, that it will roll with an

equal mate on fixed centers that can be varied

in position. The curve H will roll with the

curve C, whether its pole is at N, or at 8, or

at F.

Fig. 116 shows a pair of logarithmic spi-

rals in internal contact.

Logarithmic pitch lines

Fig. 115.

Internal logarithmic

pitch lines

Fig. 1W.

133. COMPOSITE PITCH LINES.

Instead of drawing a curve at random,
and finding the mate to run with it, Fig.

108, the complete pitch line may be built

up of a number of curves, of which the

properties are known.

Thus, Fig. 117 shows composite gears,

consisting of circular parts A and a, and an

elliptic trilobe B, working with an elliptic

bilobe b. Fig. 118 shows a combination of a

pair of logarithmic spiral arcs A and a, a

pair of elliptic bilobal arcs B and b, a pair

of logarithmic spiral arcs D and d, and a

pair of elliptic quadrilobal arcs E and e.

An endless variety of combinations can be

made in this way.
It is not necessary that the component
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curves be tangent, if they succeed each other

continuously. Fig. 119 shows a pair of equal

logarithmic spirals with a break at ab, the

action at b commencing just as it ends at a.

Care should be taken to avoid salient

points, breaks, and interruptions of the con-

tinuity of the curve, for there must be

defective tooth action at such points. The
cuives should run smoothly into each other

with gradual changes of curvature.

Composite pitch lines

Fig.

Composite pitch lines

Fig. Broken pitch lines

Fig. 119.

134. TEETH OF NON-CIRCULAR PITCH LINES.

The action of the teeth of non-circular

pitch lines does not, at first sight, appear to

follow the laws pertaining to circular lines,

but there is really very little difference.

If we consider the two pitch lines to be

free, and to be so moved while they roll

together that the pitch point 0, Fig. 107, is

fixed, and so that the fixed line c C is always
at right angles to both curves at their com-

mon point 0, the laws of the tooth action will

be almost precisely the same as laid down
for the circular pitch line. Fig. 107 may be

easily applied to (24) as illustrated by Fig. 15.

When the centers are fixed, the same tooth

action takes place, but the line of action and
the pitch point continually change their

positions.

The teeth of non-circular pitch lines can

therefore be formed either by conjugating a

given odontoid, as in (24), or by the roiled

curve theory of (32).

By all means the most practicable method,
when the circumstances will permit, is to

make up the curve by joining approximating
circular arcs, and to provide each circular

arc with teeth in the ordinary way. See this

process as applied to the elliptic pitch line at

Figs. 129 -and 130.

135. TEETH AT SALIENT POINTS AND BREAKS.

When there is a salient point, or other inter-

ruption of the continuity of the action, as at q,

Fig. 109, or at Mm, Fig. 118, there must be

an interruption in the arrangement of the

normals of any tooth curve, and a consequent
failure of the tooth action.



1-2 Elliptic Pitch Lines.

Fig. 120 shows a cycloidal tooth curve Jf,

at a corner or salient point S, between two

circular pitch arcs. There is a circular arc

A on the odontoid made while the describing

circle is turning about the point 8, and that

arc can have no continuous tooth action.

Therefore the tooth action will fail, unless

the next tooth curve .2V springs from the

salient point.

If a tooth springs from the salient point,

the tooth action will be correct, but mechani-

cally imperfect, as the arc of action of two

teeth cannot lap over each other to allow for

practical defects. And then, as two tooth

curves cannot spring from the same pitch

point in opposite directions, such gears can

run in but one direction, and are not reversi-

ble.

When there is a break, as at ab, Fig. 119,

the teeth must be so cut off that they will

The salient point

Fig. 12O.

separate at a just as they engage at b, for there

is a sudden change in the velocity ratio.

Such combinations are practicable, but in

every way undesirable.

136. THE ELLIPTIC GEAR.

The principal, and almost the only use of

the irregular gear, is to produce a variation

of speed between certain given limits, with-

out conditions as to the variations of speed

and details of the motion between the limits.

When that is the only object, the elliptic

pitch line is the only one that is required, and

it is chosen because it is the only known con-

tinuous closed curve that will work in roll-

ing'contact with an equal mate, and because

it is, next to the circle, the simplest known
curve. Of the elliptic multilobes, the uni-

lobe, or simple ellipse, revolving on one of

its foci as a center, is the only one used to

any appreciable extent, and therefore is the

only one that requires examination in detail.

The use of the elliptic gear is practically

confined to producing a simple variation of

speed between known limits, and to produc-

ing a "quick return motion" for planers,

shapers, slotters, and similar cutting tools, as

well as for pumps, shears, punches, shingle

machines, and others where the work is done

mostly during one-half of the stroke of a

reciprocating piece. The work of a planer

tool or of the plunger of a single acting

pump, is all done during the motion of the

tool or of the plunger in one direction, and

the only object on the return is to get the

piece ready for the next useful operation in

the quickest possible time.

For an example, the bobbin of a spinning

machine is to be wound in a conical form,

the thread being fed to it through a moving

guide, and the necessary variable motion of

the guide, fast at the point of the cone, and

slow at its base, is best given to it by a pair

of elliptic gears. For another example, the

motion of the platen of a printing press

should be rapid when the press is open, and

slow and powerful when the impression is

being taken, and the object can be reached

best by a pair of elliptic gears operating the

platen.

The practical uses of the elliptic gear are

endless, and it would be in greater use and

favor, if it were not for the fact that its pro-

duction, by the means ordinarily in use for

that purpose, is as difficult and costly as the

resulting gear is unsatisfactory.
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137. THE

To thoroughly understand the construc-

tion and operation of the ellipse, it is neces-

sary to learn but a few of its many proper-

ties.

The mechanical definition of the ellipse is

that it is one of the " conic sections." If the

cone, Fig. 121, is cut by a plane G at right

angles with its axis, the outline of the section

will be a circle; if the plane Ecuts the cone at

an angle, the section will be an ellipse; if the

plane P is parallel with the side of the cone,

the section is a parabola, and if the plane H
is at such an angle that it cuts both nappes of

the cone, the section is a hyperbola. All

these curves will roll together when fixed on

centers at certain points called foci, but the

ellipse, and its special case, the circle, are the

only ones that are capable of continuous mo-

tion.

In the ellipse, Fig. 122, the point C is the

center, the longest diameter, AA', is the

major axis, the shortest diameter, BB'
,
is the

minor axis; A and A are the major apices,

and B and B' are the minor apices.

If an arc be drawn from the minor apex,

with a radius equal to the major semi-axis, it

will cut the major axis at points F and F,
called the foci, and one focus must be chosen

as the center, about which the curve is to re-

volve if used as the pitch line of a gear.

It is a property of the curve that the sum

of the distances, PF and PF', from any

point to the foci is equal to the major axis,

AA', and this feature is used as a means of

constructing the curve by points. Draw any
arc at random from one focus with radius

FP. Draw an arc from the other focus with

a radius equal to AA FP, and it will cut

the first arc at a point of the ellipse. When
the point P is near either major apex, the

arcs intersect at such a sharp angle that the

method is nearly useless.

Another, and much the best known method

for constructing the ellipse by points, is to draw

any radial line L, and also circular arcs W
and V, from the center through the apices.

From the intersections, w and v, of the radial

line and the circles, draw lines parallel to the

axes, and they will intersect, always at right

angles, at a point u on the curve. This

ELLIPSE.

Conic sections

Fiy. 121.

The ellipse

Fig. 122.

method is very accurate, and has no failing

position.

Another valuable property of the ellipse is

that if the line pab be so drawn that the dis-

tance pa is equal to BC, and pb to AC, the

point p will be upon the curve if the points a

and b are upon the axes.

The curvature of the ellipse is an important
feature in connection with its use as a gear

pitch line. It is sharpest at the major axis

A, and flattest at the minor apex B, else-

where varying between the two limits.

The radius of curvature at either apex,

that is, the radius of tne circle that most

nearly coincides with the curve, is found by

drawing the lines Bk and Ak at right angles
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with the chord AB. The distance Ch is the

radius of curvature at the major apex A, and

the distance Ck is the radius at the minor

apex B.

The normal PN to the curve at any point

P bisects the angle FPF' between the focal

lines, and the tangent PT is at right angles
to the normal.

138. ELLEPTOGRAPHS.

There are a multitude of elliptographs, or

instruments for drawing the ellipse, but only

two of them are of practical application in

this connection.

The simplest known elliptograph consists

of a couple of pins, a thread, a pencil, and a

stock of patience. The pins are inserted at

the foci, as in Fig. 123, and the curve is

drawn by moving the pencil with a uniform

strain against the string. After a number of

trials, depending in number on the skill of the

draftsman, the curve may be induced to pass

through the desired points. The best result

will be obtained by the use of a well waxed

thread running in a groove near the point

of a hard pencil. The pencil should be long,

.and held by the end, so that the strain on the

string will be uniform, for the elasticity of

the string is the greatest source of

error. This "
gardener's ellipse

"

will generally be accurate enough
for a tulip patch, but should not

be relied upon for mechanical pur-

poses, unless one or more points

between the apices are tested and

found to be correct. If the two

pins and the pencil are circular,

and of the same diameter, ~the ac-

curacy of the ellipse is independent
' of their diameter.

The best elliptograph is the

"trammel," Fig. 124, which takes

a variety of shapes, but which in

its simplest condition consists of

a cross, with two grooves at right

angles, and a bar D with two pins

a and b, and a tracing point P
placed in line. The distance Pb

being set to the major semi-axis, and

the distance Pa to the minor semi-

axis, the point P will trace the ellipse if the

pins are confined to move in the grooves.

lf carefully made, the instrument works

with great precision, is easily handled and

set, and, if the curve drawn is not very

flat, it may be inked. The cheap wooden

Fig. 123.

Gardener's ellipse.

The trammel
Fig. 124=.

trammel should not be tolerated, for the

string and two pins cost less and are more

reliable.
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139. APPROXIMATE CIRCULAR ARCS.

If a well-made trammel is not at hand, the

best plan is to draw the ellipse with a string,

through several constructed points, and then

to ink it by finding centers for approximate

arcs, as shown by Fig. 125. An arc from a

center m on the major axis, will coincide

very well with the curve near the major

apex, a similar arc n from a center on the

minor axis will serve near the minor apex,
and a third center q can be found for an arc

to join the first two. More than three cen-

ters will seldom be required, and when the

ellipse is not very flat the two centers on the

axes will be sufficient.

. 125.

The elliptic involute

140. FOUR CENTER ELLIPSE.

When the ratio of the axes is not less than

eight to ten, as is generally the case, a prac-

tically perfect ellipse may be drawn from

four centers by the following method.

Draw the line CL, Fig. 126, parallel to

A'B, and construct the point u on the ellipse

by the method of (137). Find a point a on

the major axis, from which an arc from A
will pass through u, and it will be the major
center. It may be found by trial, or by
drawing um at right angles to uA, and

bisecting Am in a.

Through a draw ac at right angles to AB,
and its intersection with the minor axis will

be the minor center b. Lay off Co,' and CV

equal to Ca and Cb, and draw be', b'c", and

b'c'".

From the centers a draw the arcs cAc'",

and e'A'c", and from the centers b draw the

arcs cBc' and c"B'c'".

Fig. 126.

al

JS'
Four center method

Lines that are parallel to the pitch line,

such as the addendum, root, clearance, and

base lines, are to. be drawn from the same

centers.

141. ROLLING ELLIPSES.

When two equal ellipses, Fig. 127, are

arranged to revolve on their foci as centers,

with a center distance equal to the major
axis, they will roll together perfectly, and
be fitted to act as the pitch lines of gear
wheels.

of the arrow d, it will drive the follower

Fby direct contact of the pitch ellipses, but

when turning in the other direction with

respect to the follower, as it must during
half of its revolution, it has no direct

driving action, and the follower must be

When the driver D turns in the direction
! kept in contact by some other force.
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As the two ellipses roll together, the free

foci F% and F will always move at a con-

stant distance apart, equal to the distance

between the fixed foci, and therefore they

may be connected by the link L.

The center line of the link will always
cross the fixed center line at the point of con-

j

tact of the ellipses, and the tangent T at that
|

point will pass through the intersection of the

axes.

142. SPACING THE ELLIPSE.

As the ellipses roll together it is essential
|

If the ellipse is drawn by means of the

that the axes come in line, and therefore, if trammel, Fig. 124, it can be accurately spaced
the teeth of one gear are fixed at random, by means of a graduated index circle /, hav-

those of the other must be fixed to corre-
j ing.a diameter equal to the sum of the diam-

spond. If this requirement is satisfied, it
j

eters of the ellipse, for then the center line of

makes no

placed.

difference where the teeth are

It is, however, very desirable that the two

the bar will pass over an arc on the ellipse

that at the apices is exactly equal to half the

arc passed over at the same time on the circle,

gears shall be exactly alike, so that they
can be cut at one operation while mounted

together on an arbor through their focus

holes, and to do this, it is necessary to start

the teeth at different points, according to

whether their number is odd or even.

If the number of teeth is even, one tooth

must spring from the major axis, as shown

by Fig. 128.

If the number of teeth is odd, the major
axis must bisect a tooth and a space, as shown

by Fig. 129. In this case, if one of the 1 and that is elsewhere very nearly in the same

Fig. 128.

gears can be turned over, or.if its other focus

hole can be used as a center, it may have a

tooth springing from the major axis.

The simplest method of spacing the ellipse

is to step about it with the dividers. If the

curve is flat, the dividers should be set to less

than a whole tooth, for equal chords will not

measure equal arcs of the curve.

But this stepping method, although it is

sufficient and convenient for drafting pur-

poses, is wholly unfit for mechanical pur-

poses, and therefore we must have a method

that is not dependent on personal skill.

proportion.

This method is not mathematically exact,

but its accuracy is very far within the re-

quirements of practice. The space on the

quarter, at Q, will be greater than anywhere

else, but the maximum error will in general

be very minute.

For an example, take an extreme practical

case, a gear with axes eight and ten inches

long, and with seventy-two teeth The max-

imum error, the difference between the long-

est and shortest tooth arcs, will be not over

one five-hundredth of an inch. In the mor<
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common practical case of a gear of nine and
ten inches axes, and seventy-two teeth, the

maximum error is about one two-thousandth

of an inch. In both these cases, the differ-

ence between the tooth arc at the major apex
and that at the minor apex is too small to be

readily calculated, but will be about one

twenty-thousandth of an inch. In all cases

likely to be met with in practice, the inevit-

able mechanical errors are greater than the

theoretical errors of the method, and it is

serviceable on ellipses as flat as three to one.

Involute elliptic teeth.

Fig. 129.

143. INVOLUTE ELLIPTIC TEETH.

As in the case of the circular gear, the

best form of tooth for the elliptic gear is the

involute, and for the same reasons.

The base line of the involute tooth is any

ellipse BE, Fig. 125, which is drawn from

the same foci as the pitch ellipse ;
the limit

point i is the point of tangency of a tangent
from the pitch point 0, and the addendum
line a I of the mating gear must not pass

beyond that point. The method of laying
out the tooth and drafting it is so exactly
like the process for the circular gear that

the description need not be repeated.

The centers of involute elliptic gears can

be adjusted without affecting the perfection

of the motion transmitted, but, as the focal

distance remains fixed, the ratio of the axes

will be altered.

The work of drawing the teeth can be

much abbreviated by the process illustrated

by Fig. 129. Find the centers for approxi-

mate circular arcs, preferably by the method

of (140), and then consider the gear as made

up of four circular toothed segments. It is

then necessary to construct but two tooth

curves, one for the major and one for the

minor segment, and the flanks will be radii

of the circular arcs.

The line of action, la, Fig. 125, is not a

straight line, and it is not the same for all

the teeth. It is not fixed when the pitch

point and the line of centers is fixed (134).
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Cycloldal elliptic teeth.

Fig. 130.

144. CYCLOIDAL ELLIPTIC TEETH.

The cycloidal tooth is drawn, exactly as

upon a circular pitch line, by a tracing point

in a circle that is rolled on both sides of the

pitch line. The line of action is not a circle,

and it is not the same curve for all the teeth.

That the flanks shall not be under-curved,

the diameter of the rolling circle should not

be greater than the radius of curvature at

the tooth being drawn, and when, as usual,
the same roller is used for all the teeth, its

diameter should not be greater than the

radius of curvature at the major apex, the

distance Ch of Fig. 122.

Fig. 130 shows a cycloidal gear drawn as

four circular segments, by the methods of

(140) and (83).

145. IRREGULAR TEETH.

It is most convenient to draw all the teeth

alike, with the same rolling circle, or from

the same base line, and also to uniformly

space the pitch line, but such uniformity is

not essential.

The only requirement is that each tooth

curve shall be conjugate to the tooth curve

that it works with, and if that condition is

satisfied the teeth may be of all sorts and
sizes.

146. FAILURE IN THE TOOTH ACTION.

When the major axes are in line the action

of the teeth on each other is nearly direct,

but when the minor axes are in line the action

is more oblique, as shown by Fig. 127. The
teeth tend to jam together when the driver

is pushing the follower, and to pull apart



The Link. 79

when the follower is being pulled, and when
the ellipse is very flat this tendency is so

great that the teeth fail to act serviceably.

At first glance it might appear that this

difficulty in the tooth action of very eccentric

gears might be overcome by making the teeth

radial to the focus, as shown by Fig. 131,

but examination will show that but little can

be gained in that way.
The teeth on the gear G were obtained by

the method of (28) from the assumed tooth

on the gear c, and the effect of the defective

shape of one side of the assumed tooth was to

cut away the conjugate curve of the derived

tooth.

Such teeth would not work as well as the

ordinary form, and their construction would
be very difficult.

Uttrfial teeth

Fig. 131.

147. THE LINK.

When the teeth of the elliptic gear fail to

properly engage, on account of the obliquity

of the action, the difficulty can be entirely

overcome by connecting the free foci by a

link (141), as shown by Fig. 127.

This link works to the best advantage
when the teeth are working at the worst, and

when it fails to act, as it passes the centers,

the teeth are working at their best. There-

fore gears that are connected by a link need

teeth only at the major apices.

When the tooth action is imperfect by rea-

son of its obliquity, and the link is not avail-

able or desirable, the difficulty can be over-

come by using three or more gears in a train,

as shown by Fig. 137, for then the same re-

sult can be obtained by the use of gears that

are much more nearly circular.

148. VARIABLE SPEED AND P.OWER.

If the shaft c, Fig. 132, turns uniformly,
the slowest speed of the shaft C will occur

when the gears are in the position of the

figure, and the proportion between the two

speeds will be the proportion between the

distances cO and CO. The greatest speed

of the driven shaft will occur when the shafts

have turned through a half revolution from

the position of the figure, and the relative

speed will be the same, reversed.

Fig. 132.

The ratio of speed, the ratio of the greatest variation of the axes to produce a decided

speed to the slowest speed, is the square of

the ratio between the speed of the driving
shaft and the greatest or the least speed of the

driven shaft, so that it requires but a slight

variation of the speed.

The following table will give the propor-

tion of minor to major axes that will give

any desired ratio of speeds.
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Ratio of Speeds.
2
3
4
5

6

7...

Ratio of Axes.
985

. .962

.907

.892

.878

.868

.854

.844

.8M

.824

.817

.807

.800

The power is always inversely proportional
to the speed. If the variable shaft is running
twice as fast as the uniform shaft, it will ex-

ert but one-half the force.

When the gears are arranged in a train, as

in Fig. 137, the speed ratio for the second,

third, and following gears will be in the pro-

portion of the first, second, third and follow-

ing powers of the first ratio.

Thus, the ratio for a pair of gears with

axes in the proportion of .952 to 1 being 4

for the second gear, will be 16 for the third

gear, 64 for the fourth gear, and so on.

The use of gears of troublesome eccentric-

ity can be avoided by this means. A train

of three gears of .952 axes, Fig. 137, is

equivalent to a single pair of very flat gears
with .800 axes, Fig. 138, and, in general,

three gears that are nearly circular are equiva-
lent to a single very flat pair.

149. ELLIPTIC QUICK RETURN MOTION.

If the gears are arranged with respect to

the piece to be reciprocated, in the manner

shown by Fig. 133, the time of the cutting

stroke will be to the time of the return stroke,

as the angle PEK is to the angle PEF,
where J^and F are the foci of the ellipse.

The following table will show the ratio of

axes that must be adopted to produce a re-

quired ratio of stroke to return.

Quick Return. Ratio of Axes.

J2tol 964

3 tol 910

4tol 861

5 tot 817

6 tol 778

To determine the ellipse that will give a

required quick return, we lay off the angles

PEK and PEF in the given proportion,

and then find by trial a point P such that the

length PE plus the length of the perpendicu-

lar PF is equal to the known center distance

Ee. F will be the other focus of the re-

quired ellipse.

When the driving gear has turned through

the angle P'EF, from the position of the

figure at the middle of the return, the varia-

ble gear will have turned through the angle

P"eO = P'FO, and we can study the action

of the tool by drawing equi-distant radii

about E, and finding the corresponding radii

about F.

Quick return

Fig. 133.

Fig. 134 shows the arrangement of the

radii (P'F = F'e of Fig. 133) in the case of a

four to one quick return, and it is seen, by
the parallel lines, that the motion of the tool

is very uniform, coming quickly to its maxi-

mum speed, and holding a quite uniform

speed until near the end of the stroke. Fig.

135 shows that the same motion derived from

a simple crank is not as uniform.

When the gears are arranged in a train,

Fig. 137, the quick return ratios can be de-

termined by the construction shown by Fig.

136. Draw Fc at right angles to AA', and

draw cEd through the other focus. The

quick return ratio of the second gear will be

the ratio of the angles a a and ba . Draw

dFe, and the ratio for the third gear will be
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Quick return crank
. 134.

Ordinary crunk

Fig. 135.

that of the angles 8 and &. Draw eEf,

and 4 and Z> 4 will give the ratio for the

fourth gear. And so on, in the same man-

ner, as far as desired, the ratio being greatly

increased by each gear that is added to the

train.

If carefully performed, the graphical pro-

cess is quite accurate. The case of axes in

the proportion of .98 to 1 gave a quick re-

turn of 1.6 for the second gear, and 2.8 for

the third gear, while their true computed
values are 1.66 and 2.74.

The chart will solve quick return

train questions involving gears not

flatter than .80, as accurately as need

be. For example, the ratio of axes

of .95 will give a quick return of

2.25 for the second gear, 4.85 for

the third gear, 9.80 for the fourth
'

gear, and 19.70 for the fifth gear. Again,
the proportion of axes to give a quick return

of 5 for the third gear is .948.

Quick return train

Fig. 130.

Elliptic train Fig. 137

Fig. 138.
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Elliptic Quick Return Chart

,81 .82 .83 .84 .85 .87, *88 ..89 .90 .91 .92 .S

Proportion of Axes
.94 .95 .96 .97 .98 .99 1.00

150. THE ELLIPTIC GEAR CUTTING

MACHINE.

The conditions of the described

-operation of drawing the ellipse by
means of the trammel (138) may be

reversed, the bar being held still

while the paper and the cross are

revolved, and it is evident that the

xesult will be the same ellipse on the

paper as if the bar is revolved as

described.

By thus reversing the process of

describing the ellipse, and by adopt-

ing the improved spacing device of

(142), we can construct a machine

for accurately cutting the teeth in

an elliptic gear, the main features

of which, omitting various unessen-

tial details, are shown by Figs. 139

and 140.

The blank to be cut is fastened

upon a trammel stand, which cor-

responds to the paper in the graphi-
cal process, and revolves upon the

fixed base. The adjustable trammel

pins a and b are fixed in a slot in

the bed, and they fit and slide in the

slots M and N in the under surface

of the stand. The cutter which

corresponds to the tracing point is

fixed with the pitch center of its

Plan
Fig. 139.

Cutter

Elevation
Fig. 14O.
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tooth curve directly over the point P in the

line of the pins. The index plate has a

diameter equal to the sum of the axes of the

ellipse, and it is held by an index pin p,

which slides in the slot, and is always'in the

line of the pins.

Thus arranged, the machine will always
cut its tooth in the true ellipse, and the teeth

will be accurately spaced.

The direction of the tooth will be sub-

stantially at right angles to the pitch line,

and a simple arrangement can be applied to

make it exactly so. An index plate of a

fixed diameter may be used for all sizes of

gears, if the index pin is carried by an arm
which swings about the center of the gear,
and has an adjustable pin that slides in the

slot.

The tops of the teeth are trued by a cutter

having a square .edge, and the line of the

tops will be substantially parallel to the pitch

line.

The blank is held by an arbor through its

focus hole, and the arbor is held by a slide,

which slides in a chuck upon the stand, so

that the focus can be accurately set in the

major axis at the proper distance from the

center.

151. CHOICE OF CUTTERS.

Theoretically, the teeth are of different

shapes, as they are in different positions upon
the ellipse, and, therefore, each space should

be cut with a cutter that is shaped for that

particular space. But as this is impracticable,

it is necessary to choose the cutter that will

serve the best on the average.

Strictly, the cutter should be the one that

is fitted to cut a spur gear having a pitch

radius equal to the radius of curvature of

the ellipse at the major apex, but as that

cutter will be much too rounding for the

minor apex, it is better to choose the one

that is fitted for the medium radius of cur-

vature.

The two radii of curvature are the dis-

tances Oh and Ck, Fig. 122, and the cutter

should be chosen for the radius half way
between the two, approximately half the

sum of the two.

152. THE ELLIPTIC BEVEL GEAR.

An ellipse may be drawn on the surface of

a sphere by means of a string and two pins,

according to the method of (138), and a

pair of such spherical ellipses will roll on

each other while fixed on their foci, their

free foci moving at a constant distance

apart.

Therefore we can have elliptic bevel

gears that are very similar to elliptic spur

gears, as shown by Fig. 141. The two gears

revolve on radial shafts through their foci,

and the link connects radial shafts through
the free foci. The velocity ratio is the ratio

of the perpendiculars a b and a c. The

elliptic bevel gear is the invention of Pro-

fessor MacCord.

The spherical ellipse cannot be drawn by

the trammel method of (138), and therefore

the method of spacing of (142), as well as

Elliptic bevel gears

Fig. 141.

the gear cutting machine of (150), does not

apply.
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153. MATHEMATICAL TREATMENT.

If the major semi-axis is a, and the minor

semi- axis is b, the equation of the curve from

the origin at G is

a* y* -f&z=. a 8
b*,

the major axis being the axis of X.

The distance GF from the center to the

focus will be

c = _&2 = a ^ i _
in which TZ, is the ratio of axes = .

a

The radius of curvature at the major apex

is ,
and that at the minor apex is .

a b

There is no practicable formula for the recti-

fication of the curve, as the length is express-

ible only by a series.

The special spacing method of (142) is true

only at the instant of passing either apex,

for the tracing point describes half the arc

described by the line of the bar on the index

circle only when the bar is at right angles

with the curve. The error will be at its

maximum when the bar is at the maximum

angle with the normal, which is at about an

angle of forty-five degrees with the major
axis. The difference between an ordinary
tooth space at the major apex, and that

at the minor apex, is very minute. A very
careful calculation of the length of the chord

of a gear of seventy-two teeth, and eight and

ten inch axes, gave a chord of .41433" at the

major apex, a chord of .41495" at 45 for the

maximum, and a chord of .41441" at the

minor apex. The difference between the

chords at the apices is .00008", but as the cur-

vature at the major apex is greater than at the

minor apex, the difference between the arcs

would be less, perhaps not over .00004".

The ratio of speeds (148), is

/JL+jv^-^lY
\ i - vi K* i

The ratio of quick return being given as

qr, the value of n is

n = y 2 V rf
8
-f d* 3d8

,

in which <Z = ton. /-
18 X

When the gears are in a train, there seems

to be no simple method for computing the

ratio of axes to produce a given quick

return, but, when the ratio is given, the

quick return for each gear can be computed
best by trial and error with the formula

sin. (M N)
sin. M+sin. N "

in which M is any known angle b, Fig. 136,

and -ZV is the angle b for the next following

gear in the train. Thus, assuming n = .98,

and MI = 90, we find N^ = 67 28'. Then

putting J/8
= 67 28', we find JT, = 48 5'.

Knowing the angles, we compute the

quick return ratio from
'

which, for n = .98 gives qr for two gears

equal to 1.66, and for three gears equal to

2.74. The graphical process of Fig. 136

should first be employed to fix the angles

approximately.
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154. THE BEVEL GEAR.

The theory of the bevel gear cannot be

properly represented, and can be studied

only with the greatest difficulty, upon a

plane surface. It is essentially spherical in

nature, and should be shown upon a spheri-

cal surface, as in Figs. 143 and 144.

This is best done upon a spherometer,

which is simply a painted sphere fitted in a

ring. The sphere rests upon a support, so

that the ring coincides with a great circle

upon it, and the ring is graduated to 360.

A very roughly made wooden sphere and

plain ring will be found to answer the gen-

eral purpose very well, and should be pro-

vided if the study of the bevel gear is

seriously intended. If painted, ink marks
can be scrubbed off, and pencil marks re-

moved with a rubber.

The mathematical treatment is unapproach-
able without a knowledge of the common

principles of spherical trigonometry.
A wide, interesting, and difficult field of

study is offered, but space will permit but a

brief examination of the more prominent
and practical points. A careful examination

would require ten times the available space.

155. THE GENERAL THEORY.

When thus represented upon the spherical

surface, the theory of the bevel gear is so

similar to that of the spur gear, as repre-

sented upon a plane surface, that any de-

tailed description would be mostly a repeti-

tion of what has already been stated.

All straight lines of the spur theory are

represented by great circles, the crown gear

being the rack among bevel gears, and all

distances are measured in degrees.

Irregular pitch lines and multilobes are

managed substantially as for spur gearing.

The elliptic bevel gear has been described in

connection with elliptic spur gears (152).

The tooth surfaces of the bevel gear arc

generally formed by drawing straight lines

from the spherical outline to the center of the

sphere, as in Figs. 143 and 144, the pitch lines

and tooth outlines being the bases of cones

with a common apex.

When limited in width, as is usually the

case, it is by a sphere concentric with the

outside sphere, so that a spherical shell is

formed.

These concentric spherical shells can be

moved on their axes to form twisted and

spiral teeth, Fig. 142, precisely as described

for spur gears (99).

The molding process of (27) will apply per-

fectly, but it has but one practical applica-

tion.

Fig. 142.

Twisted bevel gear.

The planing process of (28) will fail, for

practical purposes, except for one particular

form of tooth, because the shape of the cut-

ting tool cannot in the general case be
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changed in form as it approaches the apex,
and therefore the tooth will not be conical.

The planing process of (29) will apply per-

fectly, the strokes of the tool being radial,

and on this method we must depend for the

accurate construction of all forms of bevel

gear teeth except the octoid and the pin
tooth.

As the diameter of the sphere is increased,

the radii become more nearly parallel, until,

when the diameter is infinite, they are paral-

lel. Therefore the spur gear is a particular
case of the bevel gear, and all formulae and

processes that apply to the bevel gear will

apply to the spur gear if the diameter of the

sphere is made infinite. The most scientific

method of study would be to develop the

theory of the bevel gear, and from that pro-

ceed to that of the spur gear, but such a

method would be difficult to clearly carry

out, and is best abandoned for the more con-

fined process here adopted.

156. PARTICULAR FORMS OF BEVEL TEETH.

As in the case of spur gearing, there can

be an infinite number of tooth curves for

bevel gearing (31), each form having its own
line of action, but as there are only four

forms that are available for practical use by
means of simple processes of construction,

our attention will be confined to them.

These four particular forms are, first, the

involute tooth, having a great circle line of

action; second, the cycloidal tooth, having a

circular line of action; third, the octoid

tooth, having a plane crown tooth, and a

"figure eight" line of action; and, fourth,

the pin tooth, for which one gear of a pair

has teeth in the form of round pins.

157. THE INVOLUTE BEVEL TOOTH.

The spherical involute must be studied as

a whole if its form is to be clearly seen.

Its definition is that it is the tooth curve

having a great circle for a line of action. In

Fig. 143 the great circle line of action la ex-

tends around the sphere at an angle with the

crown pitch line pi, and it is tangent to

two base lines bl and bl'
'

,
that are paral-

lel with the crown line.

The most convenient method of draw-

ing the tooth curve is by rolling the line

of action on the base line, while a point

in it describes the curve on the surface

of the sphere. The equivalent graphical

process is to step along the base line

and any two tangent great circles, from

any point on the curve to any desired

point.

It will take the form shown by the

dotted lines
; rising at right angles to the

base line, it curves until the crown

line is reached, there reversing its curva-

ture and bending the other way until it

meets the other base line. At the base

line it has a cusp, and rises from it to

repeat the same course indefinitely.

Fig. 143 shows a crown gear or rack. The

pitch line is the great circle pi. The line

of centers cOCis a great circle at right angles

with the crown line pi. The line of action

is the great circle la set at a given angle of

obliquity with the crown line. The base

Fit/. 143.
The involtite Tooth
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circles are the small circles bl and bl'. The

spherical involutes have the same property of

adjustability as have the spur involutes, the

motion being confined to the sphere, and there-

fore the gears are adjustable as to their shaft

angle, the apex remaining common to both.

158. THE CYCLOIDAL BEVEL TOOTH.

The definition of the cycloidal tooth is I flank formed by a roller of half the angular
that it is that form which has a circular line diameter of the gear being nearly but not

of action.

The rolled curve method of treatment (32)

applies, and is the best means of studying
the curve.

There is no gear with radial flanks, the

exactly a plane.

The theory differs so little from that of

the spur gear, that but little of interest can

be found, and the curve will not be consid-

ered further.

159. THE OCTOID BEVEL TOOTH.

The definition of this tooth system is that

it is the conjugate system derived from the

crown gear having great circle odontoids.

In Fig. 144 the crown gear has plane
teeth cutting the sphere in great circles,

mOn, while a pinion would have convex

tooth curves conjugate to the great cir-

cles of the crown tooth.

The line of action, from which the

tooth derives its name, is the peculiar
' '

figure eight
"
curve la, which is at right

angles to the tooth curve at the crown

line pi, and tangent to the polar circles

JS and &, to which the great circle crown

odontoids are also tangent.

This tooth owes its existence to the

fact that it is the only known tooth, and

probably the only possible tooth, that

can be practically formed by the mold-

ing planing process of (28).* The cutting

edge of the tool being straight, no

change is required while it is in motion,

except in its position, and that is accom-

plished by giving it a motion in such

a direction that its corner moves in the radial

line of the corner of the bottom of the tooth

space.

The octoid tooth, together with an ingeni-
* Since this statement was made, another bevel

practically constructed by the process of (28).

ous machine for planing it, was invented by

Hugo Bilgram, but it has always been mis-

taken for the very similar true involute tooth.

The Octoid Tooth

Fig. 144.

Bilgram's machine is described in the

AMERICAN MACHINIST for May 9th, 1885,

and in the Journal of the Franklin Institute

for August, 1886.

tooth, the "
planoid

"
tooth, has been invented and

160. THE PIN BEVEL TOOTH.

If the tooth of one gear of a pair is a coni-

cal pin, Fig. 145, with apex at the center of

the sphere, that of the other will be conju-

gate to it, and the combination deserves

notice because it is one of the few forms that

are easily constructed. It may be said that
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Tig. 145.

its practical construction is simpler and easier

than that of any other form of bevel gear
tooth except the skew pin tooth of (180).

The tooth is

preferably, but

not necessarily,

of the conical

form, for other

forms of circu-

lar pins would
serve the theo-

retical p u r -

pose.

Its theory is,
Pin bevel gears.

in the main, the same as that of the spur pin

tooth. It has the same troublesome cusp,

which can be avoided in the same way, b^r

setting the center of ihe pin back from the

pitch line.

It is the only known form of tooth that

can be formed in a practical manner by the

molding process of (27). If the cutting tool

is a conical mill, it will form the conjugate
tooth while the two pitch wheels are rolled

together.

The pins may be mounted on bearings at

their ends,
'

forming roller teeth. They
would be weak, but would run with the

least possible friction, all the rubbing friction,

being confined to the bearings.

161. TREDQOLD'S APPROXIMATION.

The construction of the true bevel gear
tooth curve upon the true spherical surface is

impracticable with the-means in ordinary use,

and the true method of computation by means
of spherical trigonometry is equally unfitted

for common use. But, by adopting Tred-

gold's approximate method the difficulties can

be overcome.

By this method the tooth curves are drawn,
not on the true spherical surface, but, as in

Fig. 146, on cones A and B drawn tangent
to the sphere at the pitch lines of the gears.

The cones are then rolled out on a plane sur-

face, and the gear teeth drawn upon them

precisely as for spur gears of the same pitch

diameter.

Practically correct tooth curves could thus

be drawn on the spherical surface by cutting
the teeth to shape, and bending them down
to scribe around them, but in practice the

back rims of the gears are shaped to the tan-

gent cones so that the teeth lie directly upon
the conical surface.

This method is called approximate, but its

real error would be difficult to determine,

and is certainly not as great as the inevitable

errors of workmanship of any graphical pro-

cess. The tooth outline drawn by it upon
the spherical surface may be considerably

different from that which would be drawn

directly upon it, but it does not follow that

it is therefore incorrect. The only require-

ment is that the engaging curves shall be

Fig

Tredffold's method.

conjugate odontoids, and it is a matter of

very small consequence whether or not the

curve on the sphere is the same kind of curve

as that upon the cone. If the true plane in-

volute curve is drawn upon the developed

cone, the corresponding curve on the sphere

will not be an exact spherical involute, but its

divergence from some true odontoidal shape
must be minute, even when the teeth are very

large indeed. In ordinary cases it cannot be

sufficient to affect materially the constancy

of the velocity ratio. What is sometimes

given as its error is mostly the "difference in

shape" between the plane and the spherical

teeth.
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162. DRAFTING THE BEVEL GEAR.

The practical application of Tredgold's
method is illustrated by Fig. 147.

Draw the axes CA and CB at the given
shaft angle ACE. Lay off the given pitch
radii a and b, and draw the lines c and d in-

tersecting at the pitch point 0. Dra the

center line OC, and lay off the face Of.

The pitch diameters are ON and OM,
and NCO and MCO are the pitch cones.

Draw the back rim line 02) at right an-

gles with the center line, lay off the addenda
Oe and Og, and the clearance gh. Draw the

front rim line parallel to the back rim line.

The center angle is X, the face increment

I

is F, and W is the face angle. The cutting

I

decrement is J, and T is the cutting angle.
! Twice the distance mn is the diameter incre-

! ment, and em is the outside diameter.

The pitch radius of the Tredgold back

cone is OD, and the figure shows the con-

struction of the gear teeth on this cone

developed. The teeth are represented as

drawn upon the figure, but it is better to use

a separate sheet. The odontograph should

be used, calculating the number of teeth in

the full circle of the developed cone.

Drafting the bevel gear*

163. THE BEVEL GEAR CHART.

The drafting of the bevel gear blanks by
means of the method of (162) is simple, but

the method requires drafting instruments,

not always at hand, as well as the ability to

use them accurately. The drawing must be

carefully made, to give correct results, par-

ticularly when the gears are small. After

the drawing is made the various angles and

diameters must be taken off for use at the

lathe, and that is by no means a simple mat-

ter.

So great are the practical difficulties that

any one who has a knowledge of simple arith-

metic will find it not only easier, but more
accurate to use the chart and method by
means of the following rules.
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Shafts at 90

I'roportion.
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FIG. 148.

SAMPLE COMPUTATION.

SHAFTS AT

A RIGHT ANGLE.

Pitch = 3 Prop. = 7 5



92 Chords of Angles.

164. SHAFTS AT BIGHT ANGLES.

1st. Divide the pitch diameter by that of

the other gear of the pair, or else the number
of teeth by that of the other gear, to get the

proportion. Enter the table by means of the

proportion. All numbers for that pair will

be found on the same horizontal line in the

two columns.

2d. The center angles are given directly

by the table at the proper proportion.
3d. Divide the tabular angle increment

by the number of teeth in the gear, to get
the angle increment. This need be done for

but one gear of a pair, as the increment

is the same for both.

4th. Add the angle increment to the cen-

ter angle, to
get

the face angle.

5th. Increase the angle increment by one-

sixth of itself, to get the cutting decrement,

and subtract this decrement from the center

angle, to get the cutting angle.

6th. Divide the tabular diameter incre-

ment by the diametral pitch, to get the

diameter increment, and add that to the pitch

diameter, to get the outside diameter.

Fig. 148 is a sample computation for shafts

at right angles.

165. SHAFTS NOT

The table cannot be entered by means of

the proportion, and the numbers for the two

gears of the pair will not be found on the same

horizontal line, and it will be necessary to

determine the center angles.

As in Fig. 147, draw the axes, at the given
shaft angle, and find the center angles, by the

method described in (162).

Then enter the table, for each gear by
itself, by means of the center angles, and

proceed as for shafts at right angles. The

angle increment and decrement is the same

for both gears of a pair.

Fig. 149 is a sample computation applied

AT BIGHT ANGLES.

to the case of Fig. 147, the center angles be-

ing found by means of the table of chords.

If preferred, the center angles can be found

by means of the formula,

sin. 8
tan. C =

in which C is the center angle of the gear, P
is the proportion found by dividing the num-
ber of the teeth in the gear by the number in

the other gear, and 8 is the shaft angle.

Having found one center angle, subtract it

from the shaft angle to get the other center

angle.

166. THE TABLE OF CHOBD8 AT SIX INCHES.

When the lathesman is provided with a

graduated compound rest which feeds the

tool at any angle, nothing but the computa-
tion is required; but when there is nothing
but the common square feed, the faces must

be scraped with a broad tool. A templet for

guiding the work can easily be made by
means of the table of chords at six inches.

To lay out a given angle, draw an arc

with a radius of six inches, draw a chord of

the length given by the table for the angle,

and then draw the sides oc and ob of the

angle boc, Fig. 150.

For tenths of a degree use the small tables.

The chord of 37.5 is 3.81 + .05 = 3.86

inches.

Fig. 151 shows the manner of using the

angle templet at the lathe.

This table of chords is very convenient for

many purposes not connected with gearing,

and it is more accurate than the common
horn or paper protractor.

167. BILGBAM'S CHABT.

A graphical method for determining the

angle and diameter increments, the invention

of Hugo Bilgram, is described in the AMEBI-

CAN MACHINIST for November 10, 1883. It

determines the required values by the inter-

sections of lines and circles, and requires no

computation.
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Chord of * angle

Fig. 150.

Using the templet

TABLE OF CHORDS OF ANGLES,
AT RADIUS OF SIX INCHES.

Degrees.
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168. ROTARY CUT BEVEL TEETH.

The most common method of forming the ! ehape of the tooth changes, while that of the

teeth of the bevel gear is by cutting them cutter is invariable. Therefore the result

from the solid blank by the use of the com-

mon rotary cutter.

The cutter should be shaped to cut the

tooth of the correct shape at the large end, and

the small end must be shaped either by an-

other cut with a different cutter, or with a file.

It is impossible to cut the tooth correctly

at both ends, for the simple reason that the

must always be an approximation depending

upon the personal skill and experience of the

workman. It is a too common practice to

make the teeth fit at the large ends, and to

increase the depth of the tooth toward the

point, so that the teeth will pass without

filing, but such teeth can be in working con-

tact only at the large ends.

). THE TEMPLET GEAR PLANER.

The most common method of planing the

teeth of bevel gears is by means of devices

adapted to guide the tool by a templet that

has previously been shaped, as nearly as

may be, to the true curve. The arm that

carries the tool is hung by a universal joint

at the apex of the gear, so that all of its

strokes are radial, and a finger placed in the

line of the stroke of the cutting point of the

tool is held against the templet. There are

many different arrangements for the purpose,
but they are all founded on the same princi-

ples, and differ only as to details.

The invention of the templet gear planer is

commonly credited to George H. Corliss,

who patented it in 1849, and was the first to

use it in this country. But it was patented
in France, by Glavet, in 1829, and may be

even older.

It is largely used for planing the teeth of

heavy mill gearing, but has not been, and

cannot be, profitably applied to common
small gear work. Its product is, in any case,

superior to the rough cast tooth, but its accu-

racy is dependent on that of the templet, and

is therefore dependent on personal skill.
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170. THE SKEW BEVEL GEAR.

When a pair of shafts are not parallel, and

do not intersect, they are said to be askew

with each other, and they may be connected

by a pair of skew bevel gears, having

straight teeth, which bear on each other

along a straight line. Such gears are to be

carefully distinguished from spiral gears,

used for the same purpose but having spiral

teeth bearing on each other at a single point

only.

We will endeavor to describe the skew

bevel gear so that its general nature can be

understood, but it is impossible to do so in

simple language. It is the most difficult ob-

ject connected with the subject. The theory

cannot even be considered as yet settled, for

writers upon theoretical mechanism do not

agree upon it, and there are points yet in

controversy.

In the theory of the bevel gear the surface

of reference is the spherical surface upon
which the tooth outlines are drawn, and upon

which the laws of their action may be

studied, for spheres of reference of two sep-

arate gears may be made to coincide so that

the lines upon one will come in contact with

those upon the other. For the spur gear, the

spheres become planes and the process is the

same. But for the skew bevel gear there is

no analogous process, for it is impossible to

imagine a surface of such a nature that it can

be made to coincide with a similar surface

when both are attached to revolving askew

shafts. There are spiral surfaces which will

approximately coincide, and are analogous to

the Tredgold tangent cones of bevel gears

(161), but any tooth action developed upon
such approximate surfaces must, of necessity,

be not only approximate, but also very diffi-

cult to define and formulate.

Of all the skew tooth surfaces that have

been proposed, there is but one, the Olivier

involute spiraloid, that can be proved to be

theoretically correct.

171. THE HYPOID.

The pitch surface of the ?kew bevel gear
is the surface known as the

"
hyperboloid of

revolution," and it is so intimately connected

with the subject that it must be thor-

oughly understood before going further.

The clumsy name may be abbreviated to

"hypoid."
If a line D, Figs. 152 and 153, called

a generatrix, is attached to a revolving
shaft A, so that it revolves with it, it

will develop or ' '

sweep up
"
the hypoid

H in the space surrounding the shaft.

A section of the surface by any plane
normal to the axis is a circle. The com-

mon normal to the generatrix and the

axis is the gorge radius G, and circular

section through that line is the gorge
circle. A section by a plane D, Fig. 152,

parallel to the axis, at the gorge distance

from the axis, will be the pair of straight

lines d and d
', Fig. 153, either one of which

is an element of the surface, and will form it

if used as a generatrix. A section by any

sections.

Fig. 152.

Hyperbolic sections.

Fig. 153.

other plane parallel to the axis will be a

hyperbola, to which the elements d and d'
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are assymptotes, or lines which the curves

continually approach, but reach only at in-

finity. Fig. 153 shows at Q the hyperbolas
cut by the plane Q of Fig. 152, and at R
those cut by the plane R. The principal

hyperbola H is the only one with which

we are concerned .

The hypoid is best studied as projected

upon a plane parallel to the axis, as in Fig.

154, in which A is the projection of the axis,

d is that of the generatrix, dGA is the skew

angle, and //is the principal hyperbola.
When the skew angle and the gorge radius

are given, the hyperbola is easily constructed

by points. Any line ab is drawn normal to

the axis and the gorge distance be= Gg is laid

off from b, the distance ab is made equal to

ec, and a is then a point on the curve. The
curve is to be drawn through several points

thus constructed.

The hyperbola.

Fig. 154.

To draw a tangent to the curve at any

point a, draw a line am parallel to the

assymptote d, lay off mn equal to Gm, and

draw the tangent an.

172. THE PITCH HYPOIDS.

The utility of the hypoid as the pitch sur-

face of the skew gear depends upon the pe-

culiar property that any number of such

surfaces will roll together, and drive each

other by frictional contact with velocity ratios

in the proportions of the sines of their skew

angles, if their gorge radii are in the propor-

tions of the tangents of their skew angles.

It is required to construct a pair of rolling

hypoids that will transmit a given velocity

ratio between two shafts that are set at a

given angle with each other. In Fig. 155,

A and .Bare the given axes, and AGB the

given shaft angle. The directrix D is to be

so drawn that the sines of the skew angles

AGD and BGD are in the proportion of the

given velocity ratio, and this is best done by

drawing lines parallel to the axes, at distances

from G that are in the given ratio, and drawing
the directrix through their intersection D.

In the figure the axes are situated one over

the other at a distance GH called the gorge

distance, and the directrix D is situated be-

tween them so as to pass through the gorge

line and divide the gorge distance into gorge

radii, #TFand HW, which are in proportion

to the tangents of the skew angles. This is

Pitch hypoids.

Fig. 155.

best done by drawing cd normal to GD in

any convenient position, laying off the gorge

distance ce at any convenient angle with cd,

and drawing de and gf parallel to it; cf will

be the goige radius GW for the axis GA,
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and fe will be the gorge radius HW for the

axis OS.

Then, if the directrix, thus situated, is at-

tached first to one shaft and then to the

oiher, and used as a generatrix, it will sweep

up a pair of pitch hypoids that will be in

contact at the directrix, and which will roll

on each other.

They will not only roll on each other in

contact at the directrix, but they will also

have a sliding motion on each other along

that line, the two motions combining to form

a resulting motion that must be seen to be

understood. It is this sliding motion that

makes all the difficulty in the construction of

the teeth, for they must be so constructed

as to allow it. It is also the cause of the

great inefficiency of such teeth in action, for

any possible form must have a lateral sliding

motion, with the consequent friction and

destruction.

If we draw two diameters mn and m'n'

through the same point C on the directrix,

they will be the diameters of circles that will

touch each other while revolving, and may

be called pitch circles. If they are thin, and

provided with teeth in the given velocity

ratio, they will drive each other with a con-

tact that is approximately correct, and if

there are several pairs of such thin gears set

so far apart that they do not interfere with

each other, they will serve light practical

purposes fairly well.

If a face distance CE is laid off on the

directrix and another pair of pitch circles

constructed, the frustra of the hypoids in-

cluded between the circles may be called

pitch frustra, and they will roll together in,

contact at the directrix.

It is to be noticed that the pitch diameters

thus determined are not, as in spur and bevel

gearing, in the inverse proportion of the

velocity ratio of the axes, and therefore if

one diameter of a pair of skew gears to have

a given velocity ratio is given, the other must

be constructed. When the skew angles are

equal, the pitch diameters are equal, but

otherwise the proportion cannot be expressed

in simple terms, and must be determined by
making the drawing.

173. THE LOCUS OF AXES.

The rolling hypoids may be examined
from another and most interesting point of

view. In Fig. 156 the gorge line G is nor-

mal, and the directrix D is parallel to the

plane of the figure. The plane P is normal

to the directrix, and below is a front view of

it. On the plane P draw any straight line L
through the directrix. From any two points
a and b on this line draw lines A and B
normal to the gorge line G, and they will

be axes of pitch hypoids that will roll on

each other in contact at the directrix.

Axes drawn from all points of the line L
will form a continuous surface called a "hy-
perbolic paraboloid," which will be the locus

of all the axes of a set of hypoids that will

mil together collectively in contact at the

directrix. The locus of axes.

Fif/. 156.
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174. CYCLOIDAL TEETH FOR SKEW GEARS.

As any number of hypoids, on axes in the

same locus of axes, will roll together in

either external or internal contact at the

directrix, it might be supposed that a tooth

similar to the cycloidal tooth for bevel and

spur gears might be formed by an element in

an auxiliary hypoid X, Fig. 156, which rolls

inside of one and outside of the other pitch

bypoid.
This is such a plausible supposition that it

long passed for the truth, not only with its

inventor, the celebrated Professor Willis, but

with many other prominent writers, until

shown by MacCord to be wrong. It serves

to illustrate the confusion in which the whole

subject has been and now is.

The tooth surfaces which Willis supposed
to be tangent at the generating element of

the auxiliary hypoid really intersect at that

line, and Fig. 157 shows a pair of such in-

tersecting teeth. The curves of the figure

were drawn by an instrument made for the

Cycloidal tooth Curves
Fig. 157.

purpose, and are, therefore, a better proof of

the intersection of the surfaces than solid

teeth would be.

The cycloidal tooth is examined at consid-

erable length, and the instrumental proof of

its failure is given in the AMERICAN MACHIN-

IST for September 5th, 1889.

175. INVOLUTE TEETH FOR SKEW BEVEL GEARS.

Herrmann's form of the Olivier spirrloidal

tooth is constructed with the directrix of

(172) as a generatrix, as follows :

Suppose that cylinders are constructed

upon the gorge circles of a pair of pitch

hypoids, Fig. 158, and suppose a plane K to

be placed between them. This plane will be

tangent to both cylinders, and will contain

the directrix, and if moved will move the

^cylinders as if by friction. Then imagine
ithe plane to move in a direction normal to

the directrix, and it will carry that directrix

with it as a generatrix always parallel to its

first position. It will sweep up the spiraloid

tooth surfaces 8^ and Sa imperfectly shown

by the figure, or by Fig. 159, and they will

be correct tooth surfaces always in tangent

contact.

Fig. 159 shows #, full involute tooth sur-

face or
"
spiraloid," and Fig. 160 is a full

Olivier skew bevel gear.

The particular involute skew tooth above

described is not the only possible form, but

it has the least possible sliding action, and is,

therefore, the best.

Involute tooth action

Fig. 158.

If the plane K has a generatrix line at any

angles with the axes of the gears, and is

moved in a direction at right angles with that

line, correct tooth surfaces will be swept up.

In fact, any two spiraloids on any two cylin-

ders will work correctly with each other, and

therefore any two spiraloidal gears of the

same normal pitch will work correctly to-

gether.
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Olivier Involute skew Bevel Gear
Fig. 160.

176. HERRMANN'S LAW.

Herrmann gives a law, and claims it to be

universal, to the effect that the skew bevel

tooth must be swept up by a straight line

generatrix that is always parallel to the direc-

trix. He mentions the Olivier tooth, and

claims that it cannot be correct, evidently not

understanding that Olivier's theory clearly

includes the form he himself proposes. His

form of tooth, claimed to be the only possi-

ble form, is really only the best form of the

Olivier tooth.

We will not undertake to state wherein

Herrmann's law is incorrect, but that it is

wrong is clearly shown by the most con-

vincing of all proofs, the reduction to prac-

tice. Beale, for the Brown & Sharpe Mfg.
Co., has made working Olivier gears on a

large scale, which are directly contrary to

Herrmann's law, but which work perfectly,

and demonstrate the truth of Olivier's theory
in a way that admits of no question.

Indeed, the closest possible scrutiny of

Olivier's theory, without the aid of Beale's

experimental work, fails to detect a flaw in

it. Herrmann's condemnation of it is not

based on direct consideration, but simply on

the fact that it does not agree with his own
law.

177. BEALE'S SKEW BEVEL GEARS.

. Beale's gears are the same as Olivier's gears

in general theory, but the improvement in

practical form and application is so great that

they may be considered a distinct invention.

Fig. 161 is a section through one axis, and

at right angles to the other axis of a pair of

Beale gears. Both surfaces of the teeth are

true Olivier spiraloids of Fig. 159, and the

gears will run in either direction. When
corrected for interference they are reversible,

like spur or bevel gears. The gorge cylin-

ders are tangent to each other, and are so cut

away inside as to allow the teeth of the ma-

ting gear to pass.

The Olivier theory requires the teeth to

!
vanish at the gorge, as shown by the single

j

full tooth of Fig. 160, in order to pass, while

i the Beale gear is cylindrical in form as a

I whole, and passes the full tooth at the gorge,

with action over its whole surface. The
; difference is practically very great.

When in action a pair of uncorrected Beale

! gears must be placed as shown by Figs. 161

to 163, and Fig. 169, with one end of each at

I

the gorge, and they will not run together if

placed at random. If either gear extends

beyond the gorge line there is an interfer-

ence between the involute spiraloids which

is the same in kind as that between the in-

volute curves of common spur gear teeth.
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In comparison, the Beale gear is taken so

near the gorge that it is practical and service-

able, having large teeth and small obliquity.

Fig. 161.

Section of Beale's Gears

Each gear can drive in but one direction,

depending upon the position of tbe gear and

the direction of the spiral, and if turned

backwards the action is intermit-

tent and practically useless. The

gears must be placed as in Fig.

162 for right-hand spirals, and as

in Fig. 163 for left-hand spirals,

and the direction of the rotation

is shown by the arrow D, when
the gear bearing the arrow is the

driver.

But, if the direction is to be re-

versed, the gears can be arranged gorge cyu.

as in Fig. 162a, or as in Fig. 163a.

This resetting is the same in effect

as turning the gears half around,

except that opposite sides of the

teeth are in contact in the two

positions of the same gears.

If, however, the interfering parts

of the tooth surface are removed,
the gears will run together per-

fectly and in either direction when

put together at random as in Fig.
168.

In the cases shown by the figures,

the spirals make the angles of forty-

five degrees with the shafts, con-

trary to Herrmann's law, but the

action will be smoother, and the

sliding of the teeth on each other

will be less, if Herrmann's angles
are adopted. These angles are the

same as those made by the conical

face of common bevel gears of the

same proportion with the axes, and

the best angles for the two-to-one

proportion of figures are those of

the line X of Fig. 162, making the

angles 26 34' and 63 26' with the

axes.

The Olivier gear of Fig. 160 is

perfect in theoretical action, but the

teeth must be taken so far from the

gorge that the obliquity of the ac-

tion is excessive, and the arc of

action is so limited that the teeth*

must be small. The sliding and wedging The working length of each gear is as

action is so great that the gears are practically determined by the line L of Fig. 161, and

useless. ! the whole surface of the tooth within that

1 Fig. 162a.

Beale Skew Bevel Gears.
Right Hand Spiral at 45

i Fiy. 163a.

Left Hand Spiral\at 45
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limit will be swept over "by the line of

contact. It the length of each gear is equal
to the radius of the other gear it will always
be long enough.
The action between two gears will be at

the straight, equidistant, parallel lines a a,

Figs. 161 and 162, in the plane of action

tangent to both gorge cylinders.

The shafts of a pair of skew bevel gears

should be as near together as possible, just

far enough apart to allow the shafts to T ass,

so as to avoid the excessive sliding action.

In that case both Beale and Olivier gears

are practically useless, the former on ac

count of the small size of the teeth, and the

latter on account of the great obliquity of

the action.

The common bevel gear becomes the spur

gear when the shaft angle becomes zero, but

the analogous transformation of the skew

bevel gear into a bevel gear by reducing the

gorge distance to zero is not possible.

The skew bevel gear becomes a spur gear
if we imagine the axes to be brought parallel

by removing the gorge to an infinite distance,

for the spiraloids on the gorge cylinders then

become involute surfaces on base cylinders.

But, and it is a curious circumstance, when
the shafts are brought parallel by imagining
the shaft angles to become zero without

changing the position of the gorge, the gorge

cylinders become tangent and the gears do

not become spur gears.

Involute skew bevel gears do not appear
to have any possible adjustment correspond-

ing to the adjustment of the shaft distance

of involute spur gears, or of the shaft angle

of involute bevel gears, (56) and (157).

Beale's gears are fully described in the

AMERICAN MACHINIST of Aug. 28th, 1890.

178. TWISTED SKEW TEETH.

As no two surfaces of reference attached

to a pair of revolving askew shafts can be

made to coincide with each other, like the

planes of spur gears or the spheres of bevel

gears, the twisted or spiral tooth is impossi-

ble, for such a tooth would not permit the

required sliding action.

But, if a line is drawn upon one pitch

hypoid of a pair, a corresponding line may
be drawn upon the other, as if the given

line could leave an impression. Therefore

a tooth having edge contact (100) may be

constructed, provided the twist is such that

one pair of lines always crosses the directrix.

These teeth are purely imaginary, but if the

edges are thick they will have an action upon
each other, at a single point of contact, that

is closely approximate to the theoretical

action, and they will serve the general pur-

pose, if the power carried is inconsiderable.

179. APPROXIMATE SKEW TEETH.

As the true involute skew tooth is diffi-

cult to construct, and in many cases is of

small practical utility, and all other proposed
forms are incorrect, it follows that we must

depend for practical purposes mostly upon
some approximation, provided it is not pos-

sible to avoid the skew gear altogether.

The blanks can be constructed by a definite

process Construct the frustra of the pitch

hypoids by the method of (172) and Fig. 155.

Consider the end sections mn and pq as ends

of a frustrum of a pitch cone, and on this

pitch cone construct the blank gear exactly

as for a common bevel gear.

Having constructed the blanks, the general

direction of the tooth is to be marked upon
them. Mount each blank as in Fig. 155,

with its axis parallel with a plane surface Z.

Set a surface gauge with its point at the line

of the directrix W, and with it mark the po-

sition of the directrix on the pitch line at

each end of the blank.

The tooth must then be cut so that its

direction follows the directrix, and it is to be



102 Substitute Skew Trains,

noticed that it is not only askew with the

axis, but that the tooth outline twists. The

appearance of the tooth on either rim, as

well as upon any section between the two

rims, is the same as upon a common bevel

gear, symmetrical, and not canted to one

side, as is sometimes taught.

The approximate tooth is very similar to

the twisted bevel tooth, see (155) and (99),

with the twist following a straight line set

askew with the axis, and as the line of the

twist is not parallel with the conical face,

that face should be as short as possible.

The process of cutting is not capable of

description, for it depends upon personal

skill and judgment. The workman must

imagine that he sees the twisted cut in the

body of the blank, and then must persuade

the cutter to follow it. Gear cutting ma-

chines are seldom so made that the cutter

can be turned while it feeds, and theretore

i

it must be set to a medium path, and reset

|

two or three times to get the desired form.

The beginner will fail the first time, and

there may be several failures. The best pos-

sible result can be bettered with a file, after

running the cut gears together to find where

they interfere.

In the hands of a skillful workman, a pass-

able approximation can be reached, and if the

axes are very near together compared with the

diameters of the gears, the teeth are small, and

the face is short, the result is satisfactory.

In fact, when the conditions are favorable,

this approximate tooth is more serviceable

than the true tooth.

Substitute train.

Fig. 165.

180. SUBSTITUTES FOR THE SKEW BEVEL
GEAR.

When there is a chance to introduce an

intermediate shaft, the skew bevel gear can

be avoided, and it is not only better, but

cheaper to avoid the objectionable gear at

the cost of the extra mechanism.

Fig. 164 shows how to place an inter-

mediate shaft and gears, when the shafts are

so far apart that the shortest or gorge

distance can be used. Fig. 165 shows how
the skew shafts can be connected by one

pair of bevel gears and one pair of spur

gears, and that is the best device for general

purposes.

Substitute train.

Fig. 164.
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181. SKEW PIN GEARING.

Fig. 166 shows a pair of skew pin gears

commonly called face gears. They will run

together with a uniform velocity ratio if

they are exactly alike and at right angles

with shafts at a distance apart equal to the

diameter of the pins.

If the gears are not alike or not at right

angles, the teeth on one may be straight

pins, but those on the other must be shaped
to correspond.

Such gears are objectionable because they

have but a single point of contact for each

pair of teeth, at which they slide on each

other with great friction.

Face gearing in its various forms is thor-

oughly examined in MacCord's Kinematics.

At the present day they are not in use, and

do not deserve much study.

Skew pin Ttevel gears.

Fig. 206.

Beale gears corrected for interference.

Fig. 168.

Formation of Beale gear.

Fig. 167.

UncorrecUd

Beale gears.

Fig. 169.
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MICHIGAN BRICK AND TILE MACHINE CO.

MORENCI, MICH., Nov. 24th, 1891.

GEORGE B. GRANT. Dear Sir : Two years ago you sent me one of your books on Teeth of

Gears, and I have replaced all of the gears in our brick machinery with new ones from your in-

volute odontograph table. I find that we now have the finest cast gears in the world. I do not

understand why pattern makers don't catch on to your book. It is a sight to see the gear pat-

terns that are made by some men who are called good pattern makers.

O. S. STURTEVANT,

Pattern Makerfor M. B. & T. M. Co.
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