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PREFACE

IN the present treatise the author returns to a subject which

occupied his attention at intervals during a long period, and

which always seemed attractive. Not only has Hydraulics

formed part of his teaching, but he was much engaged in the

early sixties in designing water turbines and centrifugal

pumps, and has had on many occasions since to consider

questions of flow, storage, and measurement of water. In

18*76, he wrote the article
"
Hydraulics

"
for the ninth edition

of the Encyclopedia JSritannica, which he has reason to think

has been useful to many engineers.

Strictly rational hydrodynamics, so far as it has been

developed, is concerned mainly with fluids deprived of viscosity,

and leads to results flagrantly at variance with the action of

actual fluids. Hence in dealing with the practical problems

of hydraulics the engineer has recourse to comparatively

simple mechanical principles and simplified assumptions

which furnish rough formulae, which can be modified by

empirical constants so as to be true to the necessary approxima-

tion over any required range of conditions. There now exists

an enormous mass of experimental data relating to hydraulic

problems, which has been accumulated during a period extend-

ing over two centuries, and which is of very varying trust-

worthiness and importance. It is really on the results of

these investigations that the engineer relies in deciding the

questions which arise in many branches of professional work,

and theoretical formulae only render partial assistance in

reducing to intelligibility and order the mass of empirical

v
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vi HYDKAULICS

observations. The difficulty in treating hydraulics appears

to the author to lie in the need of giving a sufficient account

of experimental investigations to enable a student to realise

the limitations of formulae, and the degree of confidence which

can be placed in calculations, without getting involved in a

cumbrous and confusing amount of empirical details.

Full references have been given to primary sources of

information, in order that students may supplement the neces-

sarily brief statements in the text, by consulting the fuller

details in original memoirs.

As to what is special in the present treatise, the author

thinks it important that the problems concerning the flow of

incompressible fluids, and the closely related problems dealing

with compressible fluids, should be treated together. The

practical importance of the latter class of problems has

increased considerably in recent years.

To most of the chapters numerical examples have been

added, selected from those which the author has set for his

students during many years past.

July 1907.
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INTRODUCTION

UNITS OF MEASUREMENT

1. IN (practical hydraulics the most convenient units of

measurement are the foot, the pound, and the second. In this

treatise these units are used throughout, except in a few cases

where other units are specially mentioned.

It happens that a great number of memoirs on hydraulics
are in French or German, very important researches having
been carried out abroad. In such memoirs metric units are

employed. Hence a student of hydraulics finds it necessary to

become more or less familiar with formulae expressed in either

English or metric units, and often has to convert formulae

from one system to the other. For that reason some particu-

lars of the conversion factors from metric to English units are

given. The convenient units in the metric system are the

metre, the kilogram, and the second.

To avoid confusion, the secondary units employed should

be the square foot (square metre), cubic foot (cubic metre),

foot per second (metre per second), pound per square foot

(kilogram per square metre). But in certain cases, especially

in dealing with air and steam, the pound per square inch

(kilogram per square centimetre) is almost in universal use,

though in some respects inconvenient.

The following table gives the relation of the English
and metric units, and the logarithms of the factors for

conversion :
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INTROD. UNITS OF MEASUEEMENT

2. Units of volume. In most hydraulic calculations

the convenient unit of volume is the cubic foot (or cubic

metre). But in water-supply engineering it has been

customary to use the gallon as the volume unit. The imperial

gallon is defined to be the volume of 10 Ibs. of distilled water

at 62 F. Hence, if in general calculations the cubic foot of

water is taken to weigh 62*4 Ibs., it must also be taken to

be equivalent to 6 '24 gallons. In the metric system the

kilogram is the weight of a cubic decimetre of water at

39'l F. Hence a cubic metre of water of maximum density

weighs 1000 kilograms, and this value is taken in general
calculations on pressure, etc., though at ordinary temperatures
the weight is slightly less. In the United States the wine

gallon, now disused in England, is the ordinary unit of

volume, and is equal to 0'8333 imperial gallon.

CONVERSION TABLE
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introduces into calculation. Eiver and spring water is not

sensibly denser than pure water unless in exceptional cases

or when carrying mud or sewage. Sea water is usually
taken at 64 Ibs. per cubic foot, though its density varies

somewhat in different localities.

Generally V cubic feet of water weigh G-V Ibs. in gravita-

tion units. In treatises on theoretical hydromechanics absolute

units are employed. Then if M is the mass in poundals, the

weight is W = M.g Ibs. where g is the acceleration due to

gravity in the locality considered. Hence if p is the density
or mass of unit volume its weight is gp, and V units of volume

weigh gpV Ibs.

ANALYSES OF SOME TYPICAL WATERS IN PARTS PER 100,000
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DENSITY OP PURE WATER AT DIFFERENT TEMPERATURES

Tempera-
ture Fahr.
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steam temperatures there would be great error in neglecting
the change of density with change of temperature.

4. Intensity of pressure. Very various units of intensity
of pressure are adopted in different cases, depending in part
on the different methods by which the pressure is measured.

The following Table gives equivalent values of various units

and the logarithms of the conversion factors :

UNITS OF INTENSITY OF PRESSURE



INTROD. UNITS OF MEASUREMENT

in ordinary cases. In this treatise g will be taken at 32*18
ft. per sec. per sec., or at 9'8088 metres per sec. per sec.

ENGLISH MEASURES

g= 32-18

= 64-36

= 5-673

= 8-023

^20 = 5-349

Logarithm

1-5076

1-8086

0-7538

0-9043

0-7283

METRIC MEASURES
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B metres in feet are 3'28M, 3'28A, 3-28B. Inserting these in

the equation,

3-28M = x V{3-28A(1 + y x/3'28B)}

/Q..3-28M =x- V{A(1 + y ^3-28 v/B)}

= -552z x/{A(l + l-81y x/B)},

so that the new constants for a formula in metric measures

are 552#, and 1*8 ly.

Hydraulic problems are most conveniently solved by the

use of tables of four-figure logarithms and antilogarithms.

Most hydraulic formulae are affected by empirical constants

which are accurate only to one per cent, or at most in some

cases one per thousand. Hence in the answers it is un-

necessary and useless to keep more than three, or at most four,

significant figures. The short Tables I. and II. in the

Appendix will often be useful in obtaining rapidly approxi-

mate answers.

PROBLEMS

1. A boiler is found to contain 72,000 Ibs. of water at a tem-

perature of 55 F. How many pounds will it contain at a

temperature of 350 F. ? 63,472.
2. How many gallons of water per foot run will a pipe 30 inches in

diameter contain ? 30-63.

3. Convert ten atmospheres of pressure into pounds per square inch,
and into feet of water. 176-4; 407-1.

4. On a mountain the barometric pressure is observed to be 24 inches

of mercury at 32 F. Find the pressure in pounds per square
inch? 11-79.



CHAPTER I

PROPERTIES OF FLUIDS

8. FLUIDS are substances, the parts of which possess an almost

unlimited mobility, which oppose almost no resistance to the

separation of one part from another, or which offer practically

no resistance to distortion of form. A mass of fluid poured
into a vessel takes immediately the shape of the vessel and

exhibits no rigidity of form.

A perfect fluid may be defined as a substance which yields

continually to the slightest tangential stress, so that if it is at

rest there can be no tangential stress. It is easily deduced

from this that the pressure of a perfect fluid is normal to any
surface immersed in it, or that the pressure of one part of a

fluid on another part is normal to the interface which separates

them. The stress at the surface or interface must be a

pressure, not a tension, or there would be separation. Further,

at any point in a fluid the pressure is the same in all direc-

tions, or to put it in another way, the pressure on any small

element of surface is independent of its orientation.

Gaseous and liquid fluids. Fluids are divided into

liquids, or incompressible fluids and gases, or compressible
fluids. Very great changes of pressure change the volume of

liquids only by an extremely small amount, and if the pressure
on them is reduced to zero they do not sensibly dilate. On
the other hand, in gases or compressible fluids the volume

alters sensibly for small changes of pressure, and if the

pressure is indefinitely diminished they dilate without limit.

In practical hydraulics water is treated as absolutely incom-

pressible, so that its density or weight per cubic foot is

considered to be independent of the pressure within the limits
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of accuracy usually required. In dealing with gases the

changes of volume which accompany changes of pressure must

always be taken into account, or in other words, the density is

always expressed as a function of the pressure.

9. Compressibility of liquids. All liquids are slightly

compressible, and up to high pressures the compression is pro-

portional to the pressure. Let AV be the decrement of

volume of V cubic feet for an increment of pressure AP in Ibs.

per square foot. Then AV/V is the compression per unit

volume, and
AP

is called the co-efficient of elasticity of volume. For water,

according to Grassi's observations,^ increases from 42,000,000
at 32 F. to 48,000,000 at 128 F. The average value of k

may be taken at 44,000,000 in ordinary cases, and then the

compression is about '00005V for each atmosphere of pres-

sure. Thus one cubic foot of water subjected to a pressure of

1000 Ibs. per square inch, or about 64 tons per square foot,

would decrease in volume by the amount

One cubic foot weighing 6 2 '4 Ibs. uncompressed would

become '9968 cubic foot when compressed. The weight of

the compressed water would be 62'4/0'9968
= 62'6 Ibs. per

cubic foot. It is obvious that the ordinary assumption that

water is incompressible involves insignificant errors in ordinary

cases.

10. Viscous fluids. Actual fluids do oppose a small re-

sistance to separation of parts and to distortion of form, and

there may exist in them temporarily tangential stresses. Such

fluids are termed viscous fluids.

In an elastic solid a distorting force produces immedi-

ately a definite deformation, which is permanent so long as

the distorting force acts. In a viscous body the distortion

increases as long as the force acts, and an indefinitely large dis-

tortion is produced in time by a distorting force however small.

Alcohol is less, and oil more viscous than water. Certain
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substances, such as pitch or sealing-wax, are properly fluids

with a very high viscosity. Under the action of gravity a

block of pitch will flatten and flow in all directions like water,

only the action is very slow. The resistance to distortion of a

viscous body is proportional to the velocity of the relative

motion of the parts, and becomes zero when the velocity is

indefinitely small.

An interesting experiment due to Lord Kelvin illustrates

the action of bodies so viscous as to have the appearance of

solids. Let a disc of cobbler's wax, about three inches thick,

be fixed in a vessel of water below the surface, and let some

bullets be placed on the wax, and some corks below it.

Under the action of the weight of the bullets and the buoy-

ancy of the corks the wax will slowly yield. After some

weeks it will be found that the bullets have sunk through the

wax and the corks have risen above it. The disc of wax,

however, will be found continuous and unperforated, having
closed up during the passage of the solid bodies.

In ordinary fluids the viscosity is small, and in many
problems may be neglected without sensible error. On the

other hand, when the relative motion of parts of the fluid is

rapid, it produces very considerable effects, and in such cases

the problems are of so great complexity that usually they
have to be dealt with by empirical methods. As water is the

most generally diffused liquid, and the one which has generally
to be considered in engineering problems, it will be taken as the

representative liquid. The great mass of experimental in-

vestigation as to the behaviour of

liquids under the action of forces has

related to water.

11. Free surface of a liquid.

The surface of a liquid at rest is hori-

zontal. For if not, an inclined surface

can be taken cutting the water surface

in two points a and 6. The weight W
of the mass above ab will have a com-

ponent acting down the incline, which Fig. l.

could only be resisted by a tangential

stress. But as there is no tangential stress in a liquid at rest

its surface must be horizontal. In a very large water surface,
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such as that of a sea, the directions of gravity at distant

points are not parallel. In that case the water surface is at

all points perpendicular to the direction of gravity. That

a liquid surface is a plane appears from the fact that it reflects

objects undistorted like a plane mirror
;

and that it is

horizontal appears from the fact that a plumb line and

its reflection are in one straight line. If a vessel filled with

water is moving with uniform velocity the water surface is

still horizontal, for gravity is the only force acting on molecules

at the surface. But if the vessel moves with acceleration

the particles are subjected to a force equal and opposite to the

accelerating force due to their inertia, and the water surface is

then perpendicular to the resultant force acting on the

molecules. For instance, if a vessel has a constant acceleration

p per sec. per sec., the inertia of a molecule of weight W Ibs.

C

Fig. 3.

is P = pW/g. The surface of the water (Fig. 2) is perpendicular
to the resultant K of P and W, which makes with the vertical

the angle a, such that

tan a = =-?-.W g

If a vessel revolves uniformly about a vertical axis, the friction

of the water against the vessel will cause it after a time to

revolve with uniform angular velocity also like a solid. Let

co be the angular velocity, W the weight of a particle at the

surface at P, where the radius is r. The velocity of the

particle at P is cor, and its radial acceleration is C = Wrco2

/g.
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The resultant E of C and W (Fig. 3) makes with the vertical

an angle 0, such that

, C ro)
2

Produce E to meet the axis of rotation in b. The subnormal

ab is

ab = r cot =
-^,
CO

a constant, which is a property of the parabola.

12. Fluid pressure. Pascal's law. Fluid pressure is

not only normal to any surface on which it acts, and independent
of the orientation of the

surface, but it is exerted

equally in all directions

throughout a fluid mass.

Suppose a vessel fitted with

pistons of equal area. Any
inward force P applied to

one of them, A, is instantly

transmitted, and acts as an

outward force P on all the

others.

In any actual fluid the

upper layers press by their

weight on the lower layers. Fig. 4.

Hence, as will be discussed

presently, the pressure in a fluid mass varies with the level. But
there are light fluids, such as air, in which for a considerable

difference of level there is only a small difference of pressure,

and in heavier fluids such as water the general pressure may be

so great, that the differences of pressure, due to such differences

of level as there are in the mass considered, are relatively insig-

nificant. If the pressure at a given level in a mass of water

is 100 Ibs. per square inch, or 14,400 Ibs. per square foot, then

for points 10 feet above and below that level the pressures are

-13,776 and 15,024 Ibs. per square foot, the whole difference

being about 4 per cent. In some practical problems this differ-

ence can be neglected. With lighter fluids, such as air or steam,

the variation of pressure with level is much less, and in a
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large class of problems is disregarded. In the atmosphere a

difference of 1000 feet in level corresponds to less than 4

per cent difference of pressure. Hence it is convenient to

divide problems on fluid pressure into two classes, in one of

which the pressure is regarded as uniform throughout the

mass, as if the fluid were weightless ;
in the other the varia-

tion of pressure with level is taken into account. On a level

plane in a fluid the pressure is always uniform.

Fluid pressures are most conveniently measured in

hydraulic calculations in Ibs. per square foot. But there are

other units of intensity of pressure the relations of which

have been given in 4. Pressures are experimentally
determined by instruments termed gauges, and usually these

measure the excess of the fluid pressure above the atmospheric

pressure at the time and place. To find the absolute pressure

the barometric pressure must be added to the gauge pressure

(see 5). In hydraulic problems the difference of pressure

at two points in the fluid is alone the question, at both of

which the atmospheric pressure is the same. Then the

atmospheric pressure may be disregarded. But in some cases,

for instance the question of the flow of gas in mains, the two

points considered may be far apart and different in level, and

then the difference of barometric pressure at the two points

cannot be disregarded.

13. Uniform fluid pressure on a plane. Consider a

plane MN inclined at to the vertical and subjected to a

uniform pressure p. Let MN be projected on two planes at

right angles, for simplicity suppose horizontal and vertical

planes. If A = U is the area of MN, the area of its horizontal

projection is Ah
= A sin 6, and that of its vertical projection

is AV
= A cos 6. The resultant normal pressure on MN is

~P=pA=pbl. The vertical component of P is V = P sin

0=pA sin 0=pAh. Similarly the horizontal component of

P is H = P cos 0=pA cos 0=pAv. Hence the resultant

pressure on the plane MN in any given direction is the

intensity of pressure p multiplied by the projected area of

MN normal to that direction. This is true whatever the

shape of the plane.

The pressure being uniformly distributed on the surface

MN, the resultant acts through the centre of figure or mass
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centre of MN. Also its components act through the mass

centres of the projections of MN.

Corollary. On a horizontal plane in a fluid the pressure
is always uniform and normal to the surface, and its resultant

acts through the mass centre of the surface.

A
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pressure on the vertical projection cf of the part cd of the sur-

face. The only unbalanced part of the pressure on db is p x

C ae, and the resultant vertical

pressure on the whole curved

surface ACB is p 2 ~a~e, that

is p x the horizontal pro-

jected area of the curved

surface that is, if the ring

is one foot in length, pi Ibs.

Hence the resultant pressure on any curved surface cut off by
a plane is normal to the plane, and equal to the intensity of

pressure multiplied by the area of the projection of the

surface on the plane.

Fig. 7.

Example 1. Consider a hollow cylinder of diameter d feet subjected

to a uniform internal pressure p Ibs. per square foot. Let abed be a

diametral plane dividing the cylinder into halves. The resultant pressure
P on each half is normal to abed, and equal to

P=j0xarea abed

because Id is the area of the projection abed of the semicylinder.

Example 2. Some pumps have trunks of

half the area of the piston.

Let D be the diameter of the piston ab in

feet, d that of the trunk cd, and let pv p2
be the

pressures on front and back of the piston in

Ibs. per square foot. Then ^i=Pi^
2 acte

forward on the back of the piston, and

P
2 =_p2^(D

2 - d2
)
acts backwards on the annular

face of the piston. The resultant force driving the piston is
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bs- If the piston faces are recessed or curved in

any way the resultant driving pressure is not altered.

15. Abutment at dead ends or bends of pipes. The
ends of pipes when blanked oft' are subject to an endways
thrust which, if not resisted by an abut-

ment, would draw the adjacent pipe joints.

Let d be the diameter of the pipe in

inches, h the greatest statical pressure in

the pipe in feet of head, for instance the

difference of level of the surface of water

in the supply reservoir and the pipe end.

Then as, from 4, the pressure is 0'4333 h Ibs. per square

inch, the total thrust on the pipe end is

P = jx -433d% = 0-34d% Ibs.
4

This is often a considerable force. In a 3 6 -inch pipe under
200 feet of head the thrust would be 88,180 Ibs., or nearly

forty tons. Under certain circumstances, such as the sudden

shutting of a valve on a branch near the pipe end, an
additional thrust due to dynamical action might be produced.

Consider next a pipe bend (Fig. 10), and let dOb = 0,d =
the pipe diameter, and h the head in feet. The wedge abed is

acted on by the thrusts P = P =
^
x 6 2'4^ = 49^A Ibs. along

the axis of each pipe. The resultant thrust tending to displace
the bend is

R =2? sin - = 98d% sin Ibs.
2 2

Thus for a 3 6 -inch pipe with a head of 200 feet, bent at an

angle of 120, so that 0=60,

R = 98 x 9 x 200 x sin 30 = 88,200 Ibs.

If the water is flowing round the bend there is additional

thrust due to the deviation of the water, which will be

discussed in a later chapter. It is usual to provide a

masonry or concrete block to resist the thrust in such cases.

The result can be arrived at in another way. If we

suppose the pipe divided into two troughs of semicircular

2
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section by the line ef, all the upward-acting pressures act on

the upper, and all the downward-acting pressures on the lower

trough. The projections of the troughs on a horizontal plane

Fig. 10.

are shown below. The difference of their areas is the area of

the two ellipses, the major axes of which are d and their minor
/a

axes d sin -. Hence the upward thrust is
2

R = sn

16.

pistons

pistons

smaller

exerted

fluid is

P
2
=
Pj

2 radius Oe

Hydraulic press. Suppose a vessel fitted with two

of area a and A normal to the direction in which the

If a downward pressure Px is exerted on themove.

piston a much greater upward pressure P
2 will be

on the larger. The intensity of pressure in the

PI/, and the upward pressure on the large piston is

/a.
This is the principle of the hydraulic press, in
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which pressure produced by the plunger of a small pump is

transmitted to a very large ram.

Obviously the small piston will move a greater distance

a/rea a i!'
1

IM] a/raA

Fig. 11.

than the larger. If v
lt
v
2
are the piston velocities, vjv2

=
A/a.

The volume v^a displaced by the small piston is equal to the

volume v
2
A described by the large piston. Generally the

friction of the pistons is not inconsiderable, and this modifies

somewhat the ratio of the efforts given above.

Example. The pump plunger of a large press is j inch in diameter,
and the press ram is 20 inches in diameter. Then A/a = 202

/(f)
2 = 710.

Suppose a man exerts by a lever a force of P
t
= 150 Ibs. on the plunger.

Then the upward force exerted by the press ram is 710 x 150 = 106,500
Ibs., or 48 tons. That is neglecting the friction of plunger and ram. To
move the press ram one inch the plunger must move through 710 inches.

Forging presses have been made on this principle capable of exerting an
effort of 10,000 tons.

PROBLEMS

1. Treating water as incompressible, find the pressure in tons per
square foot on the bed of the Atlantic, the depth being 5 miles,

weight of sea water 64 Ibs. per cubic foot. 754.
2. With the conditions in the last question, find the weight of a

cubic foot of water at the bed of the Atlantic, taking the com-

pression of the water into account. 66'6 Ibs. per cubic foot

3. A pipe 24 inches in diameter has a right-angled bend. The

pressure in the pipe is 150 feet of head. Find the force tend-

ing to displace the bend. 18*6 tons.

4 Show that the surface of water in the buckets of a water-wheel

revolving uniformly are parts of cylindrical surfaces having
the same axis.



CHAPTER II

DISTRIBUTION OF PRESSURE IN A LIQUID VARYING WITH

THE LEVEL

17. Pressure column. Free surface level. Let a small

vertical pipe AB be introduced into a mass of liquid. The liquid

will rise in the pipe to some level 00, such that the weight
of the column BA balances the pressure on its mouth. This is

true whether the liquid is at rest or in motion, provided the

mouth of the pipe is parallel to the

direction of motion so that the liquid

does not impinge on it. The height
AB = h measures the pressure at A.

Let co be the area of the cross section

of the pipe, p the intensity of pres-

sure at A, and G the weight of a

cubic unit of fluid

. (1).

If h is in feet, p in Ibs. per sq. ft.,

G= 62*4. For metre-kilogram units

Fig. 12. G=1000. The result is expressed

by saying that h is the height due
to the pressure p, or conversely p the pressure due to the

height h. The level 00 is the free surface level.

In general, atmospheric pressure will be acting on the free

surface at 00. Consequently h measures the gauge pressure,

not the absolute pressure at A (5). Let pa be the atmo-

spheric pressure in Ibs. per sq. ft. Then pa/Gr is the height
in feet of water equivalent to atmospheric pressure, and the

absolute pressure at A is p = Gh +pa Ibs. per sq. ft., or h +pa/G-

20
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feet of water. pa/Q is about 3 3 '9 feet on the average. If a

line XX is taken at a height pa/Gr above 00, the absolute

pressure at A is ha feet of water, the layer between XX and
OO representing a layer of water the weight of which is

equivalent to atmospheric pressure. In many hydraulic

problems only differences of pressure at two points are con-

cerned, and atmospheric pressure may then be ignored.
18. Relative level of liquids of different density.

Suppose two liquids of density Gv G2
are placed in a bent

tube. At the level of the plane
of separation 00 the pressure

must be the same in both arms.

Hence the pressure of the two

columns above that level must be

the same

H,

i.o
0,70, = V*i (2)-

As atmospheric pressure is the

same on both columns it does

not need to be taken into con-

sideration.
Fig. 13.

Watt's hydrometer. A bent tube connects two beakers

containing fluids of different densities G
I}
G

2
.

If a partial vacuum is formed in the bent

tube the liquids will rise to different heights

hv h
2

. Let p be the pressure in the bent

tube and pa the atmospheric pressure on the

free surface in the beakers. The pressure

due to the weight of the columns in each

leg must be equal to the difference of pres-

sure^ p . Hence

I
H ,

13 i
G

1/G2
= ^

2/A1 . . (3).

If the density of one of the fluids is known,
y- that of the other can be determined by

measuring the height of the columns.

Mercury siphon gauge. Pressure is

often measured by a siphon gauge AB containing mercury

Lr
-l

Fig. 14.
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and open at one end to the atmosphere. Let Fig. 14a repre-

sent a water main C in which the pressure is to be determined,

and let b be the atmospheric pressure in

inches of mercury, h the difference of level

of the mercury columns in the siphon

gauge in inches. The absolute pressure

at A is b inches of mercury, that at B is

b + h inches of mercury. If the specific

gravity of mercury is 13'57, the absolute

pressure at B is

(b + = 1 -131(6 + h) feet of water.

Fig. 14a.

If, as is often the case, the siphon gauge
is at a considerable height H feet above

the centre C of the main, the absolute

pressure at C is

1*131(6 + h) + H feet of water,

and the gauge pressure, or pressure in excess of atmospheric

pressure, is M3U + H.

19. Pressure on surfaces varying as the depth from

the free surface. In any heavy fluid the pressure must

increase with the depth reckoned from the actual or virtual

free surface.

Let A be a small vertical surface of area sq. ft. at a

depth h ft. The intensity of pressure at that depth is p Gh
Ibs. per sq. ft. The total pressure on

the surface is pa Ghco Ibs. Take *^=--===T=-=I==^-^L=S.-

a surface B equal and parallel to A !

at a distance h, and complete the i*

prism AB. Its volume is hco, and if

composed of fluid its weight is Ghco

Ibs.

Hence the horizontal pressure on

a small vertical surface at the depth
h is equal to the weight of a prism of

fluid of length h and cross section

equal to the area of the surface. It will easily be seen

that the restriction to a vertical surface is not necessary.

B
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But in any case the resultant pressure thus estimated is

normal to the surface.

When the surface is not small it cannot be regarded as

all at the same depth. But for each small element of the

surface the rule applies. Consider a strip abed of a vertical

wall, of width db = b, and height ad = h, supporting water

pressure. Take de = h and complete the wedge dbcdef. At

any depth the intensity of pressure is proportional to the

horizontal thickness of the wedge at that depth. The total

Fig. 16.

pressure on the wall is the weight of a wedge abcdef of fluid.

The volume of the wedge is ^bh
2 and the pressure on the

wall is

P = JG6AMbs. . . . (4).

Further, since the distribution of pressure is represented

by the wedge, the resultant pressure acts through the mass

centre of the wedge, that is at h/3 above the base.

As the pressure varies uniformly the mean pressure in this

case is

pm =
Gbh?/bh

= $Gh Ibs. per sq. ft.,

which is the pressure at the mass centre of abed.

The rule is general. The mean pressure on any immersed
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plane is the pressure at its mass centre due to its depth from

the free surface, and the resultant pressure normal to the

surface is the mean pressure multiplied by the area of the

surface. The point of the surface at which the resultant

pressure acts is not in general the mass centre, and

this will be determined presently. In the case of a curved

surface the total pressure is also the pressure due to the depth
of the mass centre multiplied by the area of the surface, but

this result has little meaning. As the pressure acts every-

where normal to the surface the total pressure consists of

components acting in different directions. The resultant

pressure on a curved surface will be found presently.

Example. A vertical semicircular plate of radius r feet and area

<o = J^rr
2

, supports water on one side level with its straight edge. The

depth of the mass centre of the semicircle is 4r/37r. The mean pressure

on the surface is pm = 4Gr/37r Ibs. per square foot. The resultant pressure

on the surface is

Water at different levels on two sides of a wall. In

cases of this kind it is convenient to consider a strip of the

wall one foot in width (Fig.

b

Fig. 17.

Let h
lt h2 be the depths of water. The distribution of

pressure on each side is given by the dotted triangles with
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bases equal to k lt
Ji2 ,

and the total pressures P
1}
P2 are equal

to the weight of wedges of water one foot thick of the area of

these triangles. Hence the pressures per foot run of wall are

Pj = |GV and P2
= GA

2

2
Ibs. These pressures act at hJS

and h2/3 above the base of the wall, and the overturning
moment about the toe A of the wall is

-V)ft.-lbs. . . . (5).

Let the wall be h feet high and & feet thick, and let GTO be

the weight per cubic foot of masonry. The weight of the

wall is GfJ)h Ibs., and the moment about A resisting over-

turning is QJbh x ^b -JGm&
2
A. If the moment of stability is

to be 2^- times the overturning moment

<>

In this case as the total atmospheric pressure is the same

on both sides of the wall it is neglected without any error.

20. Pressure on a flap valve covering the end of a

pipe of circular section (Fig. 18).

Let d be the diameter of the pipe in feet and the angle
of inclination of the flap to the vertical. The projection of the

flap on a vertical plane is a circle of area Ay
= -d?. Its pro-

jection on a horizontal plane is an ellipse, the principal axes

of which are d and d tan 6. Hence its area is Ah -d? tan 6.

The mean head on the flap is h measured to its centre of

figure. The horizontal and vertical components of the pressure

on the flap are equal to the mean pressure multiplied by the

areas of the vertical and horizontal projections. That is, the

vertical component is

Pv
= Gh x Ah = jGM

2 tan Ibs.,

and the horizontal component is
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The resultant pressure normal to the flap is

P = ^/P + p^2 = Q^A lbs> 9 m (7)

It will be shown presently that the horizontal component acts

at a point h + d?/16h below the water surface, which is more

nearly equal to h as h is greater. If the horizontal component

Fig. 18.

is drawn at this depth, the point where it intersects the flap

is the centre of pressure at which the resultant pressure on the

flap acts.

21. Centre of pressure on any vertical surface. Let

AB (Fig. 19) be any surface of area A square feet, the vertical

projection of which is given on the right. Let h
lt
h2 be the

depths of A and B from the free surface. Let D be the mass

centre of the surface at depth hm and E the centre of pressure
at depth z. The resultant pressure on the surface is

P - Ghm A. Ibs.

Consider a horizontal strip of the surface between the ^ depths
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h and h + dh and of width b. Its area is bdh, and the pressure

on it is Gbhdh. The moment of this, about a horizontal axis

through C, is Gbh2
dh. The total moment of the pressure on

the surface about C is therefore

ftG I

Abh*dh = GI,

where I is the moment of inertia of the surface about a

horizontal axis through C, normal to the plane of the figure.

Fig. 19.

But this must be equal to the moment of the resultant

pressure about the same axis. Hence

(8),

or if I = &2A where k is the radius of gyration of the surface

about the axis through C,

The moment of inertia of a surface about an axis through
the mass centre of the surface is known for various surfaces.

Let I be the moment of inertia of the surface about an axis

through its mass centre and normal to the plane of the figure.
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CENTRE OF PRESSURE AND TOTAL PRESSURE

Surface.
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Then by the well-known rule

CHAP.

AAm
. (10).

Example. Let the surface be a circle of diameter d.

^d* +
-

64 4

22. Pressure and centre of pressure on any plane

surface. Let AB be the surface in a plane normal to the

plane of the figure inclined

&_ -^ at 6 to the horizontal.

>x
x ^ <?

- Take OB for the X axis

/^ v
x
O*^ N

and an axis through per-

pendicular to the plane of

the figure for the Y axis.

Let A be the area of the

surface
;
E the pressure on

it
;
OA =

a?! ;
OB = x2 .

Let c be the mass centre

of the surface and d the

centre of pressure, and let Oc = x
c and Od = xd .

Consider a strip of the surface between x and x + dx of

breadth y. Its depth below the water surface is x sin 0, and
the total pressure on it is Gx sin Oydx. Hence the whole

pressure on AB is

Fig. 20.

R = G sin r* j
xydx.

But xydx = Axc

R = GAzc sin 0,

where Gxc sin 6 is the intensity of pressure at the mass centre

of the surface. Taking moments about the Y axis,

/* /7
<

J x
l
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But
fx

2

xzydx is

J x
l

the moment of inertia I of the surface

about the Y axis, GI sin (9

(11).

But I = tfA where k is the radius of gyration of the surface

about the Y axis, 7.2

xd = - .... (12).

The lateral position of the centre of pressure is found thus :

the mass centre and centre of pressure of the surface are in

the same vertical plane, parallel to the plane of the figure.

When surfaces are not vertical it is often convenient to

find the component pressures on their horizontal and vertical

projections separately and combine them.

The Table on p. 29 gives the pressure and depth of

centre of pressure for various vertical surfaces.

'23. Graphic determination of the pressure on surfaces.

Case of a curved face of a retaining wall or dam. Let

Fig 20a represent the vertical section of a curved wall,
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ABCD, which may be treated as polygonal without serious

error if the divisions are taken small enough. It is con-

venient in such cases to consider one foot length of the wall.

The curved face being divided into lengths AB, BC, CD,
each equal to a, the area of these faces will be a also. Let

hi, h2 , h3,
A4 be the depths of A, B, C, D below the free

surface. Take Aa normal to AB and equal to ^ ;
B5 normal

to AB and equal to A9 . Join ab. Then Aa&B represents
in magnitude and distri-

n ^x^7 bution the normal pressure
on AB. The total pressure
on AB is the weight of

a prism of water Aa&B
one foot thick. That is

Pj = lG<x(A1 -f 7t
2),

and it

acts through the mass

centre C of Aab~B normally
to AB. Similarly the pres-

sures P
2
=

jGa(/i 2
+ 7&

3),

and P
3
= ^Ga (hB

-f- A
4)

can

be found in position and
x

^ / / direction. Draw the force

I / / polygon (Fig. 206) with

\ i i / sides equal on any scale

\ ', / / and parallel to P1?
P2 ,

P3 .

\ i
/

/ The closing line gives the

\
\if

resultant B in magnitude
and direction. Choose a

Fig. 20Z>. pole and draw rays to

the angles . of the force

polygon. Next draw the funicular polygon mnopq with sides

mn, no, op,pq parallel to the rays, taken in order, and intersect-

ing the pressures P
x ,
P2 ,

P3 at n, o, p. Produce the first and

last lines of the funicular polygon to meet in x. Then x

is a point through which the resultant B of the pressure

acts. B can be drawn through x and parallel to B in the

force polygon. The resultant pressure on ABCD is therefore

found in magnitude, position, and direction.

24. Loss of weight of immersed bodies. Buoyancy.

Principle of Archimedes. Let Fig. 21 represent a body
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immersed in water. Consider a prism ab of small cross

section at a depth h. Since the vertical projections of the

two ends of this prism are

equal, and the pressure due to

the depth h is the same on

each, the horizontal forces on

the prism must balance
;
and

since the body can be divided

into such prisms the horizontal

forces on the whole body must

balance also. Next consider

a small vertical prism cd. If

a* is the horizontal cross

section, and h
lf
h2 the depths

of the ends below the free surface, the resultant pressure acting
on it is an upward force Go>(A2 h^. But this is equal and

opposite to the weight of a prism cd of water. Since the

body can be divided into a set of similar vertical prisms, the

whole upward pressure on it must be the weight of a volume

of water equal to the volume of the body. If W re the

weight of the body not immersed, and V its volume, the

upward pressure is GV, and the resultant downward force

W GV. The body loses, when immersed, a weight equal
to the weight of water displaced. The upward pressure GV is

termed the buoyancy, and it acts through the mass centre of

the water displaced, a point termed the centre of buoyancy.
If the body is homogeneous, the centre of buoyancy coincides

with the mass centre of the body, provided it is wholly
immersed. If the body is not wholly immersed, or is hollow

or of varying density, the centre of buoyancy will not generally
coincide with the mass centre of the body.

Note that if GV is greater than W the body will float.

As part of it rises out of the water, the volume V of water

displaced diminishes. The plane of notation when the body
comes to rest is such that GV =W where V is not now the

volume of the body, but the volume of the water displaced,
the buoyancy then exactly balancing the weight.

25. Equilibrium of floating bodies. If a body floats on

water the weight W of the body and the buoyancy B are

equal. But W acts at the mass centre b of the body, and B
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at the mass centre a of the displaced water. If these are not

on the same vertical there is a couple Wx tending to turn the

body, and it must move
till a is on a vertical

through I. The line pass-

ing through a and b when
the body has taken a

position of rest is called

the axis of notation. If

the axis of notation is

known, as in the case

of various symmetrical

bodies, the depth of nota-

tion is easily found. Thus
if the body is a prism of section A perpendicular to the axis

of notation, W its weight, and D the depth immersed,

D = W/GA.

Stability of floating bodies. Metacentre. A body floats

in an upright position if a plane through the axis of flotation

divides it into sym-
metrical parts. The

body is stable if when

slightly displaced it

returns to its former

position, unstable if

a small displacement
tends to increase.

Let Fig. 2 3 represent

a floating body, and

let W be its weight,
V its displacement,

so that W = GV.

Let B be the centre

of buoyancy when the body floats upright, and G its mass centre.

If the body is displaced, the centre of buoyancy moves out to

some point B x
. The weight W and buoyancy GV then form a

couple tending to rotate the body. Let M be the intersection

of GV with the axis of flotation through B and G. This

point is termed the metacentre. If M is above G the body
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will turn so that G sinks and M rises, and the action tends to

annul the displacement. If M is below G the body is un-

stable. If M and G coincide equilibrium is indifferent.

When M is above G the righting couple is Wx, where x is

the horizontal distance between the metacentre M and the

mass centre G. If MG = c and
<f)

is the angle of displacement,

the righting couple is We sin
</>.

It increases, therefore, with

c. On the other hand the rapidity of rolling increases with c,

and therefore thers is a limit to the metacentric height which

is desirable. But these are questions beyond the scope of the

present treatise.

PROBLEMS.

1. If mercury is 13^ times heavier than water, find the height in

inches of a mercury column corresponding to a pressure of

100 Ibs. per square inch. 205-1.

2. A masonry dam vertical on the water side supports water of 100

feet depth. Find the pressure per square foot at 25 and 75

feet from the water surface, and the total pressure on one foot

length of dam. 1560 and 4680 Ibs. per square foot ; 3 1 2,000 Ibs.

3. Find the resultant pressure on a circular plate 5 feet in diameter,
with its top edge 10 feet below the water surface (1) When
the plate is vertical ; (2) When the plate is inclined at 30 to

the horizontal Also the position of the centre of pressure
when the plate is vertical

15,310 and 13,790 Ibs.
;
12-625 feet from surface.

4. A dock entrance is closed by a caisson 50 feet wide at bottom and

60 feet wide at the water surface, 24 feet above the bottom.

Find the total pressure on the caisson when the dock is empty.

958,280 Ibs.

5. Two lock-gates are each 10 feet wide, and support water 10 feet

deep in the head bay, the lock being empty. The gates meet
at an angle of 120. Find the total pressure on each gate,

and the thrust at the hollow quoins. 31,200 Ibs.
; 31,200 Ibs.

6. A ship weighs 1000 tons. Find its displacement in sea water.

350,000 cubic feet

7. If the ship in the last question is vertical-sided near the water-

line, and has a section of 1500 square feet at the water-line, by
how much would the draught change in passing from sea to

fresh water ? 6 feet.

8. A homogeneous log is 3 feet wide, 2 feet deep, and 20 feet long.
Its density is half that of water. It carries at its centre a load

of 2000 Ibs. Find its depth of immersion. 18-4 inches.

9. A dam supporting water pressure is vertical for 20 feet below the

water surface, slopes at 1 in 5 from 20 feet to 30 feet> and at

1 in 3 from 30 feet to 40 feet. Find, graphically, the magni-
tude and position of the resultant water pressure.



CHAPTEE III

PRINCIPLES OF HYDRAULICS

26. Hydraulics is the science of liquids or incompressible
fluids in motion, and comprises

(a) The laws of discharge from orifices, and sluices, and

over weirs. The application of these is chiefly to the measure-

ment of the flow of water.

(6) The laws of flow in pipes, canals, and rivers. The

application of these is partly to water measurement, partly
to the design of pipes and channels.

(c) The laws of impact of water streams on surfaces, the

most important applications of which are to the design of

some types of water motors.

(cT) The laws of the resistance of water to the motion of

bodies immersed or floating in it. The application of these

is to ship design.

Pure theoretical hydrodynamics has proceeded but little

beyond the consideration of the action of a perfect fluid

without viscosity. The conclusions reached are in no case

correct for actual fluids, and in some cases are in startling

contradiction with the facts of experience. In practical

hydraulics it is impossible to proceed on strictly theoretical

lines. There are rational principles which serve for the solu-

tion of some elementary problems. In more complex cases

dynamical reasoning serves as a basis or guide in generalising the

results of experiment. But usually in hydraulics theoretical

conclusions have to be checked and modified by the results of

observation. In rigid dynamics rational solutions of problems
are obtained based on the accurate determination of a few

fundamental physical constants. In hydrodynamics the

conditions are generally so complex that no such simple
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rational conclusions can be found. In the strict sense

hydraulics is not a science. It is embarrassed by tangles of

formulae, which, initially based on imperfect reasoning, have

been modified and adjusted to conform more or less accurately

to the results of experiments, themselves affected to some

extent by observational errors. On the other hand, it must

be recognised that during more than two centuries a very

large mass of experimental observation on the motion of water

in different circumstances has been accumulated. For the

practical purposes of the engineer, the empirical laws of

hydraulics used with proper insight into their limitations

are sufficient and trustworthy as solutions of practical problems.

27. The two modes of motion of water. The first

fundamental difficulty in hydraulics is that water moves in

two different and characteristic ways. When water is acceler-

ated or retarded the inertia forces acting on the mass are the

same as for any other heavy body. But from the extreme

mobility of the parts they readily take relative motions which

absorb energy, which is rapidly destroyed by internal retarding
forces commonly termed frictional resistances, though they are

essentially different from the friction of solids. In certain

cases these frictional resistances vary directly as the trans-

lational velocity of flow, in others they vary nearly as the

square of that velocity. It is clear that in the two cases

there must be an essential difference in the character of the

motion. Using floating threads, or Professor Osborne Reynolds'
method of coloured fluid streams, it is found that in one class

of cases the particles follow very direct and constant paths
or stream lines ;

in the other the particles eddy about in

constantly changing paths of great sinuosity. Professor

Reynolds has pointed out that the surface of a slow current

of clear water sometimes presents a plate -glass appearance,
reflections of objects on the surface being undistorted. That

appearance corresponds to non-sinuous or stream-line motion.

At other times the surface presents a sheet-glass appearance,
reflections being blurred or distorted. That is due to eddy
motions slightly disturbing the water surface. In a river

in flood the continual breaking up of the surface by eddies is

obvious enough.
Now in stream-line motion of the water (Fig. 24, a) the
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(a)

NONS1NUOUS

resistance is due to the laminse sliding on each other with very
small differences of relative velocity. The relative motion is

opposed by the viscosity of the liquid ;
the resistance is of the

nature of a shearing resistance, and is proportional to the

velocity of sliding. On the other hand, in eddying or

turbulent motion (Fig. 24, V) the relative velocities are very

much greater, energy is expended in giving motion to the

eddies, and this energy is gradually dissipated as the eddies

die out in consequence of their mutual friction. The kinetic

energy of an eddy is propor-

tional to the square of its

velocity, and as this must have

a definite relation to the general

velocity of translation of the

stream it is intelligible that

the resistance varies nearly as

the square of the velocity. In

a stream in turbulent motion

there is a continual generation
of eddies and stilling of them

again by fluid friction, and

consequently a continual degra-

dation of mechanical energy
into heat throughout the fluid

mass. The theory of stream-

line motion is much more

perfect than the theory of

turbulent motion
; indeed, in

the strict sense there is no rational theory of turbulent

motion but only empirical laws deduced from experiment.

Unfortunately, almost all cases of practical importance to the

engineer are cases of turbulent motion.

In cases of eddying motion, such as that shown in Fig.

24, b, the motion may be analysed into two parts : (a) a general

average motion of translation, and (5) an eddying motion

superposed which has no resultant motion. It is the former

only with which the engineer is in general concerned, and to

which the empirical laws of flow apply.

As an instance of how eddying may come in to modify the

action of water, an interesting experiment by Mr. Church, at

Or)

TURBULENT

Fig. 24.
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the Cornell University, may be taken. He tried the discharge

through two orifices, A and B (Fig. 25). These were exactly
of the same size, except that B had a smoothly formed con-

traction at the inlet
;

but it was found that B discharged
about 10 per cent more than A. Now,

why should contracting the section increase

the discharge ? The reason is simple, viz.,

that in B the change of section of the

water stream is fairly gradual, and there

is not much tendency to disturb the

stream -line motion and generate eddies.

But in A the abrupt inlet angle generates

eddies, and so destroys part of the head

available for producing the velocity of flow.

But if the velocity of discharge is reduced

10 per cent the kinetic energy of the jet

is reduced about 20 per cent, or nearly
one-fifth of the energy is absorbed by the

eddies due to the sharp corner. That is a

case where the influence of eddies is com-

paratively small. In flow through a long

pipe it is much greater. Take a pipe of

12 inches diameter with a virtual slope of 1 in 1000. If in

such a pipe non-sinuous motion were possible the velocity

would be 72 feet per second. But the actual velocity, the

motion being turbulent,
"

is only l foot per second. The

difference shows the enormous amount of mechanical energy

expended in eddy-making.
28. Uniform and varying motion. Let ab (Fig. 26)

represent a path along which fluid particles are moving. If

the velocity of a particle a is constant

along the path the motion is uniform,

Fig 26 if not it is varying. In the ordinary

cases of turbulent motion it is said to

be uniform if the general velocity of translation is constant,

and varying if it is not constant. In a canal of constant

section the motion along the canal is usually uniform. In a

river the section of which varies the motion is varying, that

is, it is faster where the section is smaller, and slower where

it is greater.
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Steady and unsteady motion. This introduces an idea

special to hydraulics and of great importance. Consider a

definite bounded space (Fig. 27) through which water is flow-

ing along definite stream lines. If in that space the velocity

is constant from minute

> >
~

^_ ^ to minute, or from hour

> * x^ "X
~

to hour, the motion is

> JL \ steady. If it changes

^ ^
7 T the motion is said to

be unsteady. In turbu-

\
j

lent motion, if at a

^ Y

-

\ J given point the general
^ > X / motion of translation is

constant in velocity and

direction, the eddies

Fig. 27. being disregarded, it is

said to be steady. If

not it is unsteady. At a given point on a river bank in

normal conditions the velocity and direction of motion are the

same from day to day. But when rising in flood or subsiding

afterwards, the velocity varies from minute to minute by some

small amount, and the motion is unsteady.
In ordinary streams and rivers in which the motion is

turbulent, the velocity and direction of motion at any point
varies from moment to moment. But if the eddies are dis-

regarded the average velocity over short periods varies very
little either in direction or velocity. If the variations are

regarded as periodic, then the general motion, apart from the

temporary fluctuations, is treated as steady motion. The
motion is regarded as equivalent to simple stream-line motion,

except that the energy absorbed and dissipated in eddies has

to be allowed for by experimental corrections.

29. Volume of flow. Let A (Fig. 28) be any ideal plane

surface, of area o>, in a stream, normal to the direction of

motion, and let V be the velocity of the fluid. Then the

volume flowing through the surface A in unit time is

Q = o>V . . . . (1).

Thus, if the motion is rectilinear, all the particles at any
instant in the surface A will be found after one second in a
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similar surface A', at a distance V, and as each particle is

followed by a continuous thread of other particles, the volume
of flow is the right prism AA' having a base & and length V.

Fig. 29.

If the direction of motion makes an angle 6 with the

normal to the surface, the volume of flow is represented by
an oblique prism AA' (Fig. 29), and in that case

Q = o>V cos . . . (2).

Mean velocity of flow. In most practical cases the

velocity V will be different at different parts of the cross

section A of the stream. In a river, for instance, the velocity

is greater towards the middle and top surface, and less towards

the bottom and sides. If v is the velocity at some small

element da) of the section, the volume of flow is

Q=/fo. . . (3),

where the integration extends to the whole surface &> of the

cross section. The mean velocity over the section is

V -f (4)V m \*h
co

and in a large number of practical problems it is this mean

velocity which is required. Obviously the volume of flow is

Q = V,nW . (5).

If Vm is inclined at 6 to the surface,

Q = V7no>cos6>.

Principle of continuity. Consider a fixed bounded space

through which liquid is flowing. If for any given time the

space is continuously filled with fluid the inflow and outflow

in that time must be equal, for the volume in the space is
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constant. If inflow is reckoned + and outflow
,
the volume

of flow for all the boundaries is

2Q = 0. . . (6).

In general the condition that the space should be con-

tinuously filled is that the pressure must be a thrust every-

where throughout the space. If water contains air in solution

as is ordinarily the case, the air is disengaged, and there is a

break in continuity if the thrust falls below a certain value,

depending on the amount of air in solution.

Let A
I}
A

2
be two cross sections of a stream flowing in

rigid boundaries, and V
1}
V

2
the normal velocities at those

sections. Then from the principle of continuity

that is, the normal velocities are inversely as the areas of the

cross sections. This is true of the mean velocities if at each

section the velocity of the stream varies. In a river of vary-

ing slope the velocity varies with the slope. It is easy, there-

fore, to see that in parts of

large cross section the slope

is smaller than in parts of

small cross section.

If we conceive a space
in a liquid bounded by
normal sections at Ap A2 ,

Fig. so. an(i between A
1?
A

2 by
stream lines (Fig. 30), then,

as there is no flow across the stream lines,

as in a stream with rigid boundaries.

30. Application of the principle of the conservation of

energy to stream-line motion. Bernoulli's theorem.

Let AB (Fig. 31) be any one elementary stream in a

steadily moving fluid mass. Then from the steadiness of the

motion AB is a fixed path in space, and the fluid in it may



Ill PEINCIPLES OF HYDKAULICS 43

be regarded as flowing in a tube. Let 00 be the free surface

level, and XX any horizontal datum plane. Let co be the area

of a normal cross section, v the velocity, p the pressure, and z

the elevation above the datum plane at A, and tolt v^p^ zlt the

corresponding quantities at

B, and let Q be the flow in __ __ ___ ___ ^___ __ ___^ _J?'_
unit time. Suppose that

in a short time t, AB comes

to A'B'. Then AA' = vt

and BB' = v-J, and the vol-

umes of fluid AA', BB',

the equal inflow and out-

flow = Q = covt = to^t. If

all frictional or viscous re-

sistances are absent the Fis- 31 -

work of the external forces

will be equal to the change of kinetic energy.

The normal pressures on the surface of AB, except at the

ends, are everywhere perpendicular to the direction of motion

and do no work. Hence the external forces to be reckoned

are the pressures on the ends and gravity. The work of

gravity when AB falls to A'B' is the same as if AA' were

transferred to BB'. That is

Work of gravity = GQ(z -
zj foot-pounds.

The work of the pressures on the ends, reckoning that at B

negative because it opposes motion, is (pressure x volume

described)

The change of kinetic energy in the time t is the difference of

the kinetic energy of AA' and BB', for in the space A'B the

energy is unchanged when the motion is steady.

The mass of AA' or BB' is Q,t, and the change of kinetic
t/

energy in t seconds is

Equating work expended and change of kinetic energy,
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Dividing by GQt the weight of fluid and rearranging,

B^tr^" (8) '

or as A and B are any two points,

/)2
rn

+ ~ + z = constant = H foot-pounds . . (9),

where the quantities are reckoned per pound of fluid. The

three terms on the left are quantities of energy, and correspond

to the three forms in which energy may exist in a fluid in

motion, due to elevation, pressure, and velocity. They are

commonly called the heads due to elevation, pressure, and

velocity respectively, head being defined as energy per pound
of fluid. H is the total energy per pound. If h is the height
from the point considered measured up to the free surface,

y
2 v
- + ^ - h = H foot-pounds . . (10).

2g (*

The theorem may be expressed thus : The total head or total

energy per pound of fluid, relatively to a given horizontal

datum plane, is uniformly distributed along a stream line.

The term head in hydraulics. The term head is an old

millwright's word. A mill was said to have a good head of

water if it possessed a waterfall which, from its volume of flow

and height, was capable of developing a good amount of power
when used on a water-wheel. The term is now scientifically

understood as just defined. Since a pound of water falling

through a height h acquires li foot-pounds of energy, height
and head of elevation are numerically equal. Hence the term

head is often used loosely as equivalent to height, but this is

misleading. The term head should be restricted to cases in

which energy is considered.

Consider water flowing through a frictionless pipe AB
(Fig. 32), and that for the present viscosity effects such as the

production of eddies are negligible. Let pressure columns be

introduced at A and B. Let z, p, v, be the elevation, pressure,

and velocity at A, and z
1} plf

v
1}

the same quantities at B. The

water will rise in the pressure columns to heights p/Gr and pi/G,
so that the heights of A' and Br

above the datum XX are
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z+p/G and Zi+pi/Q- Join A'B' and draw A'D horizontal.

A'B' is called the line of hydraulic gradient, or slope of the

pressure-column tops when the liquid is flowing. The fall of

the free surface level DB' =p/G + z (pjGr + z^, and this by
the theorem above is equal to (v^ v2

)/2g. Consequently if

distances A'A" = v*/2g and B'B" = v*/2g are set up, A"B" is a

horizontal line at a height H above the datum XX. The

atmospheric pressure is assumed to be the same at both

pressure columns
;

if it is not, the heads due to atmospheric

pressure at A and B must be reckoned as part of the pressure

Fig. 32.

heads. The modification of this when friction has to be

considered will be given later.

It will be seen from Bernoulli's equation that the three

forms of head which make up the total head are convertible.

Thus for points on the same level, if the velocity increases the

pressure must diminish, and vice versa. If the pipe is of

uniform section so that the velocity is uniform, then if the

elevation increases the pressure diminishes, and vice versa.

31. Illustrations of the theorem of Bernoulli. In a

lecture to the mechanical section of the British Association in

1875, the late Mr. W. Froude gave some experimental illustra-

tions of the principle of Bernoulli. Mr. Froude remarked that

it was a common but erroneous impression that a fluid exercises

in a contracting pipe A (Fig. 33) an excess of pressure against

the entire converging surface which it meets, and that, con-
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versely, as it enters an enlargement B, a relief of pressure is

experienced by the entire diverging surface of the pipe.

Further, it is commonly assumed that when passing through a

contraction C, there is in the narrow neck an excess of pressure
due to the squeezing together of the liquid at that point.
These impressions are in no respect correct

;
the pressure is

smaller as the section of the pipe is smaller, and conversely.

Fig. 34 shows a pipe so formed that a contraction is

Fig. 34.

followed by an enlargement, and Fig. 35 one in which an

enlargement is followed by a contraction. The vertical pressure
columns show the decrease of pressure at the contraction, and
increase of pressure at the enlargement. The line abc in 'both

figures shows the variation of free surface level, supposing the

pipe frictionless. In actual pipes, however, work is expended
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in Motional eddies
;
the total head diminishes in proceeding

along the pipe, and the free surface level is a line such as

a\cl} falling below abc.

Mr. Froude further points out that, if a pipe contracts

Fig. 35.

and enlarges again to the same size, the resultant pressure on

the converging part exactly balances the resultant pressure on

the diverging part, so that there is no tendency to move the

pipe bodily when water flows through it. Thus the conical

part AB (Fig. 36) presents the same projected surface as HI,

Fig. 36.

and the pressures parallel to the axis of the pipe, normal to

these projected surfaces, balance each other. Similarly the

pressures on BC, CD, balance those on GH, EG. In the same

way, in any combination of enlargements and contractions there

is a balance of the pressures parallel to the axis of the pipe,

provided the area and direction of the ends are the same. If,

however, the eddy loss is taken into account the balance is
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imperfect, and there is a drag in the direction of the motion

of the water.

Let Fig. 37 represent two cisterns A and E provided with

a converging pipe B and a diverging pipe D. The water will

flow from A, cross the gap C, and fill E, till the level in it is

nearly the same as in A. The pressure head h at the datum

line XX in A becomes a velocity head v
2

/2g at the gap, and

is reconverted into a pressure head nearly equal to h in E.

There is a small loss due to inexact correspondence of the

orifices and to eddy loss. In the jet crossing the gap there is

Fig. 37.

no pressure except the atmospheric pressure acting uniformly

throughout the system.

31 A. Variation of pressure across the stream lines in

two-dimensional motions.
1 Let AB, CD be two stream lines

in the plane of the figure (Fig. 3 *7a). Along the stream lines

the variation of pressure and velocity is determined by
Bernoulli's theorem. Normal to the plane of the figure, since

the stream lines are parallel, the distribution of pressure is

hydrostatic. There remains the direction in the plane of the

figure and along the radius of curvature, that is the direction

PQ. Let PQ be particles moving along the stream lines at

a distance PQ = ds, and let z be the elevation above a datum

1 See Cotterill,
" On the Distribution of Energy in a Mass of Fluid in Steady

Motion," Phil. Mag., February 1876.
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plane, p the pressure, and v the velocity at Q. At Q the

total head or energy per pound of fluid is

Differentiating, the increment of head between Q and P is

._ . dp vdv

But dz = ds cos
<f),

dH =| + ^%<fecos4> . . (11),

where the last term disappears when the motion is in a

horizontal plane.

Fig. 37a.

Imagine a small cylinder of section co described round PQ
as an axis. This will be in equilibrium under the action of

its weight Gcods
;
the pressures on its ends pco and (p + dp)o> ;

and its centrifugal force acting along the radius of curvature
C^ -rJ 9

and equal to
, where r is the radius of curvature at Q.

Taking components parallel to PQ,



50 HYDKAULICS CHAP.

p 2

- Go> cos
y

Introducing this in (11), the increment of head between Q and

<H-nf . . . (13).

Corollary. If the stream lines are straight and parallel

in a horizontal plane, r is infinite and the increment of head

across the stream lines is vdvjg. Comparing this with (11),

dp/G = 0, or the pressure is uniform in a direction normal to

the stream lines. If the stream lines are straight and parallel

in a vertical plane dIL = vdv/g, and comparing this with (11),

dpjQc
= ds cos

<f>
= dz, or p/Q + z = constant, that is, the pressure

along a vertical varies hydrostatically, or in the same way as

in a fluid at rest.

32. Radiating current. Suppose water supplied steadily

at the centre and flowing outwards between two parallel plates

at a distance d apart (Fig. 38). From the uniformity of

conditions the stream lines will be straight and radial. Con-

ceive two cylindric sections of the current at radii r
t
and r

Z)

where the velocities are v
1
and v2 ,

and the pressures pl
and p2 .

Since the flow across each section must be the same,

Q =

The velocity varies inversely as the radius, and would be

infinite at the centre if the radial flow could extend so far.

The motion being steady,

H= pi +v =p2+v
G +

2g G 2g

_2 r
i Vj

2

-G +
r/ 2?

aHft-^Yl-^l (14)G ~2< r.V
' ' ' I4)l
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or in another form

(Ha).

Hence the pressure increases from the interior outwards in a

way indicated by the pressure columns in Fig. 38. In the

plane of the figure the curve

through the pressure column

tops, or curve of the free

surface, is a quasi-hyperbola

of the form xy
2 = c

3
. This

curve is asymptotic to the

vertical axis of the current

and to a horizontal line H
feet above the plane from

which the pressures are meas-

ured It is worth noting
that if the discharge is into

the air the pressure pz/Gr at

the circumference is atmo-

spheric pressure. All the pres-

sures at less radii are smaller

than atmospheric pressure.

Hence the total pressure

above the top plate is greater

than that below it, and if the

top plate is loose it would

tend to approach the lower

plate and not to recede from
Fig. 33.

it.

Free circular vortex. A free circular vortex is a re-

volving mass of water, in which the stream lines are concentric

circles, and in which the total head for each stream line is

the same. Hence, if by any slow radial motion portions of

the water strayed from one stream line to another, they would

take freely the velocities proper to their new positions under

the action of the existing fluid pressures only.

For such a current, the motion being horizontal, we have

for all the circular elementary streams

4)2

H =
p + = constant

;
\3T &y
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/g ^H =
|?

+^ = o .... (15).

Consider two stream lines at radii r and r + dr (Fig. 38).

Then in eq. (13) r = r and ds = dr,

v2 _ vdv
dr+ =0,

grr gr

<&;_ d?'

7" "r 1

v~- (16),
r

precisely as in a radiating current
;
and hence the distribution

of pressure is the same, and formulae 14 and 14a are applic-

able to this case.

Free spiral vortex. As in a radiating and circular

current the equations of motion are the same, they will also

apply to a vortex in which the motion is compounded of these

motions in any proportions, provided the radial component of

the motion varies inversely as the radius as in a radial current,

and the tangential component varies inversely as the radius

as in a free vortex. Then the whole velocity at any point

will be inversely proportional to the radius of the point, and

the fluid will describe stream lines having a constant inclina-

tion to the radius drawn to the axis of the current. That is,

the stream lines will be logarithmic spirals. When water is

delivered from the circumference of a centrifugal pump or

turbine into a chamber, it forms a free vortex of this kind.

The water flows spirally outwards, its velocity diminishing
and its pressure increasing according to the law stated above,

and the head along each spiral stream line is constant.

33. Forced vortex. If the law of motion in a rotating

current is different from that in a free vortex, some force

must be applied to cause the variation of velocity. The

simplest case is that of a rotating current in which all the

particles have equal angular velocity, as for instance when

they are driven round by radiating paddles revolving uniformly.
Then in equation (13), considering two circular stream lines

of radii r and r + dr (Fig. 39), we have r = r, ds = dr. If the

angular velocity is a, then v = ar and dv = adr. Hence
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,TT a2
r, a*rdr 2a2r

7dH = dr + - = dr.
g g g

Comparing this with eq. (11), and putting dz 0, because the

motion is horizontal,

dp

dp_a?Ti

P =
aW

G~ 2<7

dr.

constant (17).

Let plt
r

lt ^j be the pressure, radius, and velocity at one

cylindrical section, p2 ,
r
2 , v

2

those at another
;
then

(18).

That is, the pressure increases

from within outwards in a

curve which in radial sections

is a parabola, and surfaces of

equal pressure are paraboloids

of revolution (Fig. 39). This

case corresponds to a crude

form of centrifugal pump.

Apart from a small head pro-

ducing the radial flow, the lift

of the pump is p feet,

where p2 and p1 are the pres-

sures at the outlet and inlet

of the pump disc.

34. Venturi meter. An Fig. 39.

extremely beautiful application
of this principle has been made by Mr. Clemens Herschel, in

the construction of what he has termed the Venturi meter

for measuring water flowing in pipes. Suppose in any water-
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main a contraction is made (Fig. 40), the change of section

being very gradual to avoid the production of eddies. The

ratio p of the sections at inlet and throat is in actual meters

between 5 to 1 and 20 to 1, and is very carefully determined

by the maker of the meter. Then the ratio of the velocity v

in the main and the velocity u at the throat is definitely

known. Now suppose glass tubes, "piezometer tubes" they

are sometimes called, are inserted, in which the water ascends

to a height which measures the pressure. Since the velocity

is greater at the throat than in the main, the pressure will
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are known, the discharge of the meter is known. Let ft be

the section of the pipe, then fl/p is the section at the throat.

For simplicity let h
1

h2
= h. Then the discharge is

Hence, by a simple observation of the piezometric heights,
the flow in the main at any moment can be determined.

Notice that if a third piezometer is introduced where the

water has regained its original section and velocity, the piezo-
metric height will be the same as at first, except for a small

loss due to the fact that the motion is not quite non-sinuous,
and that some eddies are generated in the meter.

In order to get the pressure head at the throat very exactly,
Mr. Herschel surrounds the throat with an annular passage

communicating with the throat by small holes, sometimes

formed in vulcanite plugs to prevent corrosion.

Although constructed to secure as far as possible non-

sinuous motion, the eddy motion cannot be entirely prevented
in the Yenturi meter. The main effect of this is to cause a

loss of head between the two ends of the meter, varying between

1 foot and 5 feet according to the velocity through the meter.

But the eddying also affects the difference of head at inlet and

throat, from which the discharge through the meter is

calculated
; consequently, even with this meter, an experi-

mental coefficient must be introduced, determined by tank

measurement. However, the range of this coefficient is

surprisingly small. Mr. Herschel found coefficients ranging
between 0*97 and TO for throat velocities varying between 8

feet per second and 28 feet per second, or inlet velocities

varying between 0'9 foot per second and 3'1 feet per second.

Putting eq. (20) in the form

Q = dl v/
|

c. ft. per sec. . (20a),

where c is the coefficient of the meter, the mean value of c is

0'972, and it is rather smaller for small values and greater for

large values of the Venturi head h. It is stated to be desirable

that the throat velocity should be 15 to 40 feet per second.

If the Venturi head is measured by a mercury siphon gauge, let
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hm be the difference of level in the gauge in inches, and let

13 '5 9 be the density of mercury. Then the Venturi head in

feet of water is

m . . (21).

Mr. Kent of Holborn has constructed two meters for

94-inch mains at the reservoir works at Staines. The coned

parts are of riveted steel plates, and have a total length of 84

feet. The throat ratio is 1 to 7, and they can register a flow

varying from 400,000 to 6,000,000 gallons per hour. Two
still larger meters are being constructed for a pumping station

at Divi in the Madras Presidency. The main pipes are 120

inches in diameter. The upstream cones are of steel plate

bedded in concrete, and the downstream cones of concrete only.

Each meter can register from 1 to 11 million gallons per
hour. Various forms of recording apparatus have been used

with the meter. In one, a line proportional in length to the

discharge is drawn on the recording drum at every quarter
hour or other predetermined interval. In another, a line is

drawn showing the Venturi head at each instant. An in-

tegrating arrangement is also used, the total flow for any given
time being shown by a counter.

35. Principle of the conservation of momentum. If a

force P acts on a body of weight W, or mass m = W/g, moving
in the direction of P, the change of velocity from v

1
to v2 in

time t is given by the relation

R-fa-k)-j<*-i) (22),

where Pt in second-pounds is termed the impulse of the force,

and m(v2 vj the change of momentum. Thus the impulse

of a force is equal to the change of momentum in the direction

of the force. Conversely, if the body suffers a decrease of

momentum due to a change of velocity from v2 to v
1}

it must
exert an impulse of ~Pt second-pounds in the direction of the

change of momentum. The principle of momentum is of

special use in hydraulics, because it can be applied irrespectively
of the mutual action of the particles and of their actual motions,

only their velocity components in the direction considered

being required.
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36. Relation of pressure and velocity in a stream in

steady motion when the changes of section of the stream

are abrupt. When a stream changes section abruptly, rotating

eddies are formed which dissipate energy. The energy absorbed

in producing rotation is at once abstracted from that effective

in causing the flow, and sooner or later it is wasted by
frictional resistances due

to the rapid relative

motion of the eddying

parts of the fluid. The

energy thus lost is com-

monly termed energy lost

in shock. Suppose Fig.

41 to represent a stream

having such an abrupt F DD'

change of section. Let

AB, CD be normal sec-

tions at points where ordinary stream -line motion has not

been disturbed and where it has been re-established. Let

o), p, v be the area of section, pressure, and velocity at AB,
and G)J, plt V-L corresponding quantities at CD. Then if no work

were expended internally, and assuming the stream horizontal,

K-8+5J 11 <>

But if work is expended in producing irregular eddying motion,

the head at the section CD will be diminished.

Suppose the mass ABCD comes in a short time t to A'B'C'D'.

The resultant force parallel to the axis of the stream is

where p is put for the unknown pressure on the annular space
between AB and EF. The impulse of that force is

The horizontal change of momentum in the same time is the

difference of the momenta of CDC'D' and ABA'B', because the

amount of momentum between A'B' and CD remains unchanged
if the motion is steady. The volume of ABA'B' or CDC'D',

being the inflow and outflow in the time t, is Q = avt = at^t,
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and the momentum of these masses is Qvt and Qfl^. The

P
change of momentum is therefore Q%j -

v). Equating this

to the impulse,

Assume that PQ=%>, the pressure at AB extending unchanged

through the portions of fluid in contact with AE, BF which

lie out of the path of the stream. Then (since Q =

P

This differs from the expression obtained for cases where no

sensible internal work is done, by the last term on the right.

(u _ )2
That is, has to be added to the total head at CD, which

z
ff

is ~ +
<p to make it equal to the total head at AB, or

^ *'

is the head lost in shock at the abrupt change of section.

But v v
1 is the relative velocity of the two parts of the

stream. Hence, when an abrupt change of section occurs, the

(m - V )
2

head due to the relative velocity is lost in shock, or
2

l

foot-pounds of energy is wasted for each pound of fluid.

Experiment verifies this result, so that the assumption that

Po=p appears to be admissible.

If there is no shock,

Pl _p t^-V
G~G 20

If there is shock,

Pi_P_ v
i(
v
i
~

v)

G~O~ g

Hence the pressure head at CD in the second case is less than
in the former by the quantity
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or, putting co^ = wv, by the quantity

so -.-)* <>

The labyrinth piston packing. Pistons for pumps are

sometimes made with a series of circumferential

recesses without any other packing. The passage
between the cylinder and piston then consists of n

wide spaces of cross section A and n + 1 spaces of

smaller cross section a. Let Q be the amount of

leakage per second. Then the velocity in the narrow
Fig 42<

passages is Q/a, and that in the wide passages is

Q./A. At each change of velocity in passing from a narrow

to a wide passage there will be a loss of head

fy

And as the energy in the last narrow passage is also wasted

the whole loss of head is

1 _ 1\ 2

l_

which when A is large compared with a tends to the limit

2g a?
'

As the total difference of head between the two sides of the

piston which produces the leakage is a fixed quantity, the

greater the head wasted the smaller the leakage. The larger

n and the smaller a the less will be the leakage. There are

in addition some resistances in the small passages which are

not included in this reckoning.

PROBLEMS

1. A pipe AB, 100 feet long, has an inclination upwards of 1 in 4.

The head due to the pressure at A is 50 feet, the velocity is

4 feet per second, and the section of the pipe is 3 square feet.

Find the head due to the pressure at B, where the section is

Ij square feet. 25 feet.
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2. The injection orifice of a condenser is at 12 feet below the surface

of supply tank. The condenser gauge shows a pressure of 5

inches of mercury. Neglecting frictional resistances, find the

velocity at which water will enter the condenser.

50-9 ft. per sec.

3. A Venturi meter has a diameter of 4 feet in the large part and

1-25 feet in the throat. With water flowing through it, the

pressure head is 100 feet in the large part and 85 feet at the

throat. Find the velocity in the small part and the discharge

through the meter. Coefficient of meter taken as unity.
38-3 c. ft. per sec.

4. Ten cubic feet of water are discharged by a pipe per second under

a total head of 100 feet. Find h.p. of the stream. 113.

5. Water flows radially outwards between two parallel plates. At
2 feet radius the pressure head is 10 feet and -the velocity is

10 feet per second. Find the pressure and velocity at 4 feet

radius. 10 ft. per sec.; 14 -7 ft.

6. Ten cubic feet of water per second flow through a pipe of 1 square
foot area, which suddenly enlarges to 4 square feet area. Taking
the pressure at 100 Ibs. per square foot in the smaller part of

the pipe, find (1) the head lost in shock ; (2) the pressure in

the larger part ; (3) the work expended in forcing the water

through the enlargement; (4) the rise of temperature of the

water at the enlargement.
0-87 ft.; 136 Ibs. per sq. in.; 545 ft. -Ibs. per sec.; 0'07 F.

7. A centrifugal pump with radial vanes has diameters of 1 foot

inside and 2 feet outside. It revolves 360 times per minute.

Find the pressure height produced in the pump. 16'6 ft.

8. A Venturi meter is 3 feet in diameter at each end and 1 foot in

diameter at the throat. Find the Venturi head when the inlet

velocity is 3 feet per second. Coefficient 0'97. 10-53 ft.

9. Find the energy stored per cubic foot of water in an accumulator

loaded to 700 Ibs. per square inch. 100,800 ft. -Ibs.

10. In a Venturi meter the diameters at inlet and throat are 12

inches and 5 inches. With water flowing through the meter,
the Venturi head is observed to be 6 inches of mercury. Find
the discharge. 2-9 c. ft. per sec.



CHAPTER IV

DISCHARGE FROM ORIFICES

37. Experimental observations. Some simple laws govern-

ing the discharge from orifices are directly indicated by

simple observations. Suppose a

reservoir arranged as shown in

Fig. 43, with a horizontal orifice

h feet below the free surface and

a vertical jet. That this condition

may be permanent, and the flow

steady, water must be supplied

continuously at the free surface

at the rate at which it is dis-

charged by the jet. The jet rises

very nearly to the free surface

level in the reservoir, and the

small difference hr may reasonably
be attributed to small resistances

of the air or orifice. Neglecting
this small quantity, particles

which rise freely to a height h Fig. 43.

must have issued from the orifice

with a velocity given by the relation

v = *J(2gh) ft. per sec. . . . (1).

This relation was first discovered by Torricelli and Bernoulli.

If the orifice is of a proper conoidal form, the section of the

jet at the orifice is equal to the area of the orifice, and the

elementary streams forming the jet are normal to the orifice.

Let co be the area of the orifice. Then (29) the discharge
must be, neglecting the small resistances,

61
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Q = wfl =

= 8*023o> N/A c. ft. per sec. (la).

The actual velocity and discharge will be slightly less than

this if the resistances are considered.

In the case of a horizontal orifice the head is the same

at all parts of the orifice. But equations (1) and (la) are

used also for the more ordinary

case in which the orifice is

vertical, and the head varies at

different parts of the orifice,

and it is necessary to inquire

how far this is justifiable. In

the case of vertical orifices the

head h is taken to be the head

measured to the centre of the

orifice. Consider a conoidal

Fig 44t rectangular orifice such that the

section of the jet is identical

with the area of the outlet of the orifice (Fig. 44). Let Hj
be the head at the top edge, and H2 that at the bottom edge

of the orifice, and B its breadth. The area is B(H2
- Hj)

and the mean head is h = ^(H2 -f Hj). Putting these values

in eq. (la),

Q = B(H2
-H

1)v/MH2
+ H

1)},

and the velocity of discharge, the same at all parts of the

orifice, on the assumption that the variation of head is

negligible, is

Consider a horizontal lamina issuing between the levels H and

H + <m. Its area is BrfH, and the discharge is

The discharge of the whole orifice is

/H,
; H*<

J H!

Q = Bv/2? H'dH

-^1
} . . (2).

Hence the mean velocity when the variation of head is taken

into the reckoning is
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o _ H * - Hi*

v,
3 (Ht-H1)^(H1

Let Hj = pH2,

*
2 _2v/2 1-p1

Comparing this with the velocity found if the variation of

head is neglected,

. (3).

0-0 0-9428

0-2 0-9797

0-5 0-9952

It is clear that v2 is always a little less than v
lt

but the

difference becomes less as p increases and is negligibly small

if p>0*5. Hence, except when the head on the top of the

orifice is less than half the head on the bottom, the approxi-

mate equation (1) or (la) may be used without sensible error

in place of the more complicated equations (2) and (2 a). The

practically important case when H
x
= will be dealt with

later.

38. Coefficients of velocity and resistance. The ap-

proximate formula just given may be made exact for any

given conditions by introducing an experimental coefficient.

The actual velocity of discharge is

va = cv */tyh . . (4),

where cv is a coefficient termed the coefficient of velocity,

which experiment shows to vary little for a given type of

orifice. For well-formed simple orifices cv is 0'97 to 0'98,

and rather greater for very great heads. The velocity of dis-

charge can be expressed in another way. If h
e
is the actual

height to which the molecules rise, va = \/2ghe
. If the loss

of head Ar
= crAe,

where cr is a coefficient termed the co-

efficient of resistance,

<5>
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Equating the two expressions for vat

CHAP.

(6).

Thus if cv
= 0-97, cr

= 0*0628 ;
and if cv

= 0'98, cr
= 0'0412.

The work of gravity on each pound of water descending

from the free surface level to the orifice is h ft.-lbs., and if

unresisted the water would acquire v^/Zg ft.-lbs. of kinetic

energy. The actual energy of the jet is only va
2

/2g
= h

e ft.-

lbs. per pound. Hence hr
= crva*/2g ft.-lbs. per pound is the

energy wasted in overcoming resistances. With the values of

cr given above, from 6^ to
4-J- per cent of the head is wasted.

Fig. 45.

Coefficient of contraction. When a jet issues from an

orifice it may either spring clear from the inner edge of the

orifice as at a or b (Fig. 45), or it may adhere to the sides of

the orifice as at c. The former condition always obtains if the

orifice is bevelled to a sharp edge as at a, and generally for

cylindrical orifices such as I if the thickness of the plate is

not more than the diameter of the orifice. If the plate

thickness is 1^- times the diameter of the orifice or more, the

condition shown at c obtains, and it is convenient to dis-

tinguish orifices of that kind as mouthpieces. At c the jet

issues
"
full bore," or of the same diameter as the orifice, but

in the other cases the jet contracts to a diameter smaller than
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the orifice in consequence of the convergence of the streams

which make up the jet.

Let & be the area of the orifice and c
co> the contracted area

of the jet. Then c
c is a coefficient to be determined experi-

mentally, called the coefficient of contraction, which is found

to be nearly constant for certain types of orifice. For sharp-

edged or virtually sharp-edged orifices, such as those shown in

a and 5, the average value of c
c is 0'64, but with different

kinds of orifice its value may range from 0*5 to 1/0. With
c
c =0'64 the diameter of the contracted

section of a circular jet is 0*8 of the

diameter of the orifice.

It may be noted that as the stream

lines are curved when approaching the =

contracted section there is a centrifugal
=

pressure across the stream lines (Fig. 46).

Hence the pressure is greater and the

velocity less towards the centre of the

converging jet. At the contracted section

the stream lines become parallel, the

pressure is uniform, and probably the velocity nearly uniform.

Coefficient of discharge. The discharge Q = <ov is

diminished partly by reduc-

tion of velocity, partly by
contraction of section. Hence
the actual discharge is

Fig. 46.

= cv x co> =

or if c
c
cv
=

c, which is termed

the coefficient of discharge,

Qa = ftuV2^ . (7).

For sharp-edged plane ori-

fices c averages about 0'975

x 0-64 = 0*62. But exact

values for different cases will

be given presently.

39. Experimental de-

termination of cv ,
c
c , and c. To determine the coefficient of

contraction, the section of the jet must be measured at a distance

from the orifice equal to about half its diameter. Fig. 4*7 shows

5

*"* 47 -
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an arrangement of set-screws which can be set to touch the

jet, and the distance between them afterwards measured.

When the orifice is not circular the measurement is difficult,

because the section

of the jet is not ex-

actly similar to the

orifice.

The coefficient of

velocity is most easily

found by measuring
the parabolic path of

a horizontal jet. Let

OAB (Fig. 48) be

the path of the jet.

Take OX,OYas hori-

zontal and vertical

co-ordinate axes. Let

h be the head over

the centre of the

orifice, and x, y the co-ordinates of any point A. If va is the

horizontal velocity of the jet, and t the time in which a particle

falls from to A,
1 .* //gx\-*; y = -^', *Vfe>

consequently

Fig. 48

As a check, other co-ordinates, such as x
1} yl} should be measured.

In principle, the coefficient of velocity could be found by

measuring the height h
e (Fig. 43) to which a vertical jet rises

under a head h. Then

V (*)'

but, except for moderately small heads, the measurement is

difficult.

In practical hydraulics the coefficient of discharge is much
more important than the others, and it can be determined with

very great accuracy by tank measurement. In Fig. 49 is

shown an arrangement of a measuring tank for gauging the
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flow from an orifice or notch. The orifice is placed at the end
of the reservoir A, and discharges into the waste channel C,

and the water flows to waste at F. A trough on rollers B can

be slid under the jet, and then delivers the water into the

measuring tank D. In the tank is a stilling screen S, and an

outlet valve E. Means are provided for very accurately

measuring the water-level at the beginning and end of a

convenient interval of time, and the area of the tank must be

carefully determined. Let the water be discharged into the

tank for t seconds, during which the level in the reservoir of

Fig. 49.

area A rises H2
- H! feet, and let h be the head at the orifice,

and w its area.

/TT TT \ A

Q = l

~i
- = coi \/2gh cubic feet per second,

_(H2
-H

1)A
(8).

All the required measurements can be made with great

accuracy, especially if the tank is large enough to contain the

flow during ten or fifteen minutes.

40. Use of orifices in measuring water. The Eomans
used orifices of bronze to deliver regulated quantities of water

from the aqueducts to consumers. The unit of discharge was
that from an orifice 0*907 inches diameter, and was termed a

quinaria. Fifteen sizes were used, the largest being 8*964 inches

diameter, and delivering 97 quinarise. The discharge was
assumed to be proportional to the area of the orifice, and
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although it was known that the discharge depended in some

way on the head, the arrangements adopted to secure approxi-

mate uniformity of head in different cases are not known and

appear to have been imperfect (Frontintis, De Aquis, translated

by Herschel).

In the case of the irrigation works of Northern Italy the

water was supplied to estates through orifices, termed modules,

for which the height and head were legally fixed, and the

width varied according to the amount of water required. This

is an almost exact way of delivering a measured quantity of

water. The Sardinian unit module was an orifice 0'656 feet

square with a head of 0'656 above the top edge, delivering

about 2 cubic feet per second.

An old measure of the discharge of the same kind was the

so-called water inch, defined by some of the older French

hydraulicians as the discharge of an orifice one inch in

diameter, with a head of one line above the top edge. In the

mining district of California a similar method was used in

supplying water to different mines from a supply channel.

The unit of discharge was termed the miner's inch, and was

the discharge through one square inch of orifice with a head

of
6ijr inches, or about 1'5 cubic feet per minute. But as the

form of the orifice and the head were not defined as carefully

as in the Italian regulations, the value of the miner's inch

varied a good deal in different districts. Later legal defini-

tions of the miner's inch were adopted, varying in different

cases from 1:5 to 1-2 cubic feet per minute.

In delivering compensation water from reservoirs to

streams in this country an orifice is used, the head on which

is regulated so as to be constant. The arrangement is such

that any riparian owner interested in the flow in the stream

can at any time see whether the proper head, and therefore the

proper discharge, is maintained.

41. Measurement of the head over an orifice. The
most convenient way of measuring the head over an orifice in

a tank is by a gauge-glass, scale, and vernier (Fig. 50). A
bar AA is rigidly attached to the tank, having a slot in

which the scale BB slides. The scale has at the bottom an

adjusting screw by which its zero can be set exactly to the

level of the centre of the orifice. A slider C, with a finger
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projecting across the gauge-glass, has also a vernier reading
on the scale. The scale is most conveniently divided into

feet, tenths, and hundredths of a foot. The vernier then

reads to O'OOl foot. The zero of the scale can be properly

Fig. 50. Fig. 51.

fixed by very carefully levelling a surface plate between the

orifice and scale, and transferring the centre of the orifice to the

scale by a scribing block.

Another method of measuring the head is by using a float.

If the float has a cord passing over a pulley, a finger attached
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to the pulley will give a magnified motion which can be read

on a dial. In this case the zero of the scale can be deter-

mined by bringing the water-level exactly to the lower edge

of the orifice and noting the reading on the finger of the

dial.

A more accurate method of determining the exact water-

level is the use of the hook gauge, invented by Mr. V.

Boyden in 1840. It consists of a fixed frame with sliding

scale and vernier (Fig. 51). The vernier is fixed to the frame,

and the scale slides vertically. The scale carries at its lower

end a hook with a fine point, and the scale carrying the hook

can be raised or lowered very slowly by a fine-pitched screw.

If the hook is depressed below the water surface and then

raised gradually by the screw, the moment of its reaching the

water surface will be very clearly marked by a sudden re-

flection from a small capillary elevation of the water surface

over the point of the hook. In good light differences of level

of 0*0001 of a foot are easily detected by the hook gauge.
The gauge is specially useful in measuring the head over

weirs which requires to be determined very accurately. The

point of the hook should be set by levelling very exactly at

the level of the weir crest, and a reading taken. Then the

difference of any reading of the water-level and this reading is

the head on the weir. It is generally convenient to place the

hook gauge in a small cistern, communicating with the stream

passing over the weir by a pipe. The water-level in such a

cistern fluctuates less than in the stream, and the gauge is

more easily read.

42. Coefficients for bellmouths or conoidal orifices.

When a bellmouth is formed so as to contract gradually, and

finally become cylindric, when in fact it has nearly the form

of a contracting jet, the contraction occurs within the mouth-

piece and there is no further contraction beyond it. The
section of the jet is then equal to the area co of the smaller

end of the mouthpiece. c
c
= 1

,
and cv for moderate heads is

about 0'97, which is also the value of c,

Q = cv<t>^/(2gh) . . . (9).

For such an orifice Weisbach has found the following
values of the coefficients with different heads :
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Head over Orifice in Feet= h.
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found in Hamilton Smith's Hydraulics (London, 1886), where

the results are discussed and plotted in curves. In cases where

great accuracy is important it is desirable that the coefficients

for the particular orifice used should be determined by direct

experiment. Differences in the condition of the edge and the

position of the orifice relatively to the walls of the reservoir

cause variations of the coefficient which cannot be indicated in

any tables.

Broadly, for large sharp-edged orifices in plane surfaces,

and not near lateral boundaries, under moderately large heads,

the coefficient of discharge has a fairly constant value not

differing much from c=0'595. The value of the coefficient

is greater as the head is smaller, and as the area of the orifice

is smaller. For small orifices under comparatively small heads

it may have the value c=0'650, an increase of 9 per cent.

The following tables contain values selected from Hamilton

Smith's reductions, modified where necessary to be applicable
in the ordinary formula

Q = <W2p . . . (10).

For large vertical orifices under small heads there is a decrease

of c.

COEFFICIENT OF DISCHARGE c OF SQUARE SHARP-EDGED ORIFICES

IN EQ. (10)
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COEFFICIENT OF DISCHARGE c FOR CIRCULAR SHARP-EDGED ORIFICES

IN Eg. (10)
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orifice a minute rounding of the square edge altered the coeffi-

cient from 0*612 to 0*622 under the same conditions exactly.

Mr. Ellis measured indirectly by a weir the discharge

from a sharp-edged orifice 2 feet square, under heads varying
from 2 to 3j feet. For h = 2 feet, c = 0*611. For the larger

heads c was not sensibly different from 0*60 (Trans. Am. Soc.

Civil Engineers, 1876).

Rectangular orifices. Experiments of Poncelet and
Lesbros. For rectangular orifices there is a variation of the

coefficient of discharge c both with the height a and the

width b of the orifice. But for ratios of I/a not exceeding 20,

it appears that c depends chiefly on the smaller dimension of

the orifice independently of the other. The following are a

few values selected from the results obtained by Poncelet and

Lesbros : h2 is the head at the top edge of the orifice, so that

the head to the centre of the orifice is h
z + -. The discharge

is therefore

The sides of the channel of approach were at least 2^6
from the vertical edges, and the bottom at least 2^a from

the lower edge of the orifice. The head was measured not

immediately at the orifice, but at some distance back, where
the water was nearly at rest.

COEFFICIENTS OF DISCHARGE c FOR EECTANGULAR ORIFICES
IN EQ. (11)

Head over
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44. Submerged sharp-edged orifices. If the orifice is

drowned below the tail water the conditions of discharge are

in no important way altered, except that the effective head is

the difference of level of the free surface of the head and tail

water. As there is often some disturbance in the tail water

near the orifice the level of the tail water should be taken at

a point where the disturbance has subsided. So far as is

known, the coefficient of discharge is the same as for an orifice

discharging in the air. Some experiments by Hamilton Smith
show that this must be very nearly the case.

COEFFICIENT OF DISCHARGE c IN EQ. (10) OF ORIFICES DROWNED TO
THE EXTENT OF 0'57 TO 0'73 FEET (HAMILTON SMITH)

Circular, d=Q'Q5.
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invented, and the Spanish module used on the canal of

Isabella II., which supplies Madrid with water, may be taken

as a type. The module, Fig. 53, consists of two chambers,

the upper being in free communication with the canal and the

lower discharging by a culvert to the fields. In the floor

between the chambers there is a sharp-edged orifice in a

bronze plate. Hanging in this is a bronze plug of varying

Fig. 53.

diameter suspended from a float. If the water-level falls the

plug gives a larger opening, and conversely if the water rises

the plug fills a greater part of the orifice. Thus if the plug
is properly formed a constant discharge with varying head is

obtained. The theory of the module is very simple. Let K
(Fig. 54) be the radius of the fixed orifice, r the radius of the

plug at a distance h from the plane of flotation of the float,

and Q the required constant discharge of the module. Then
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Taking c = 0'63,

77

r -
15-88 Jhy

A value of R is chosen such that for the lowest head the

expression in brackets is not negative, and then values of r

can be found for various

values of h, and with

these the curve of the

plug can be drawn.

The module in Fig. 53

discharges 1 c. metre

per sec. The fixed

opening is 0*2 metre

diameter, and the

greatest head above

the orifice is 1 metre. Fig. 54.

47. Flow from

orifices of liquids other than water. The same laws apply

to all liquids, provided the head is measured in feet of the

liquid itself. If a liquid of density Gm Ibs. per cubic foot

issues under a pressure p Ibs. per square foot the correspond-

ing head is p/Grm. Thus if mercury weighs 711 Ibs. per cubic

foot, a pressure of 50 Ibs. per square inch, or 7200 Ibs.

per square foot, corresponds to a head of 7200/711 = 10*12

feet of mercury, and under this pressure the velocity of issue

from an orifice would be N/(64'4 x 10-12)= v/(650'4) = 25'5

feet per second nearly. From a few experiments by Weisbach,

the coefficients of velocity and contraction for mercury are not

very different from those for water.

Hamilton Smith, with a circular orifice 0'02 feet diameter,

found for mercury c = 0'62 for a head of 0'5 feet; 0'607 for

a head of 1 foot
;
0'595 for a head of 3 feet. For lubricating

oil, with the same orifice, c = 0'75 for a head of 0'5 feet; 0'735

for a head of 1 foot
; 0'72 for a head of 3 feet.

48. Imperfect contraction. If the sides of the channel

bounding the stream approaching the orifice are near the edges
of the orifice they interfere with the convergence of the

elementary streams which causes the contraction. Roughly,
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it may be said that the influence of the lateral boundaries is

sensible if their distance from the edge of the orifice is less

than 2
j-

times the corresponding width of the orifice. If a

circular orifice of area o> is at the end of a cylindrical pipe of

area O, then the coefficient of discharge c
f
to be used in eq.

(10) is greater than the coefficient c for the ordinary case in

which the contraction is perfect in about the following ratio :

12

0-1

0-3

0-5

0-75

0-9

c

1-000

1-014

1-059

1-134

1-303

1-470

Partially suppressed contraction. If an orifice has

round part of its edge a rim, or

if over part of the edge the

orifice touches lateral bound-

aries, the convergence of the

streams at that part is pre-
vented and the coefficient of

contraction increased (Fig. 55).

If n is the length of the rim

measured round the edge of the

orifice, and p the whole periphery,
then the coefficients of contraction

are as follow :
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has dimensions not small compared with the head, the jet after

leaving the orifice passes through remarkable changes of cross

section. These were first investigated by Bidone (G. Bidone,

Experiences sur la forme des veines, Turin, 1829) and Magnus,
and later by Rayleigh (Proc. Roy. Soc. xxix. 71). Messrs.

Strickland and Farmer have also made careful observations in

the laboratory at Montreal (Trans. R. S. Canada, 1898).

The jet from a square orifice (Fig. 56)

converges to the vena contracta, where

the section is approximately octagonal.

Beyond this point sheets spread out

perpendicular to the sides of the orifice.

The spreading of these sheets reaches

a limit in consequence of the action of

the surface tension, which then gradu-

ally causes the sheets to subside into

the central portion of the jet. The

distance from the contracted section

to this point, which may be considered

a wave-length, depends on the head.

Beyond this point a second set of

sheets is squeezed out, but in directions

bisecting the angles between the first

sheet, and these are subjected to the same action as the

first sheets. Similarly a third or fourth set of sheets may
be developed till the jet breaks up into spray. The explana-
tion of these changes of form given by Messrs. Strickland and

Farmer is that they are due to the lateral motion of the

filaments converging towards the orifice. Hence any filament

except the central one has a transverse component of velocity

which causes it to press on and displace neighbouring filaments.

It is also true that filaments issuing at different heights from

the orifice when vertical have different horizontal velocities

and tend to describe parabolic paths of different range, and

this must cause mutual pressure.

50. Minimum coefficient of contraction. In one special

case the coefficient of contraction can be determined rationally.

Let Fig. 57 represent a vessel with vertical sides, 00
being the free surface level. The liquid is discharged by a

re-entrant mouthpiece with thin edges. The jet is formed by

Fig. 56.
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filaments converging all round through angles of 180 with

the axis of the jet, and as this is the greatest possible

convergence, the contraction will be greatest and the co-

efficient of contraction a minimum. Let fl be the area of

the mouthpiece AB, a that of the contracted jet aa. Suppose

that in a short time t, the mass OOaa comes to O'O'aV.

The impulse of the ex-

ternal forces estimated

horizontally will be

equal to the horizontal

momentum produced

( 35).

The pressure on 00
will be balanced by that

on OE, and so for other

parts of the mass ex-

cept EF and the surface

AaaE of the jet. Let

pa be the atmospheric

pressure and h the depth
of the centre of EF from

00. The horizontal

pressure exerted by the

vessel on the water at EF is (pa + G-A)fl. The horizontal

pressure of the atmosphere on the surface AaaB, which

is the pressure on its vertical projection, is pa l. Hence

the resultant pressure acting horizontally is (pa + GA)H
pa l = Ghl. Since the motion is steady there is no

change of horizontal momentum in the time t between OO
and aa. The momentum generated is the momentum
of aaa'af. If v is the velocity of the jet, the volume aaa'a!

discharged in the time t is covt. Its mass is (Gnovf)/g and

its momentum (GawPfy/g. Equating impulse and change of

momentum
( 35),

-
ff

gh

Fig. 57.

But neglecting the very small resistances,
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(O 1

(13).

Borda found by experiment c
c
= *5149; Bidone,

c
c
= 0*5547; and Weisbach, c

c
= *5324, results which do not

differ greatly from the theoretical value. The thickness of

the edge of the mouthpiece affects the results. The reaction

of the jet on the vessel is the pressure GM1 In the case of a

simple orifice the velocity of the converging filaments in

contact with the vessel in the neighbourhood of C and D
reduces the pressure there, and hence the pressure on OE is

not balanced by that on OC, and the reaction is greater than

Grhfl. It is easily seen to follow from the equation that the

contraction is less, but the exact amount is not calculable.

51. Application of the principle of Bernoulli to the

discharge from orifices. A jet is composed of elementary

streams, each of which starts

into motion at some point in the A_

reservoir where the velocity is

zero, and gradually acquires the

velocity of the jet. Let Mm
(Fig. 58) be such an elementary

stream, M being a point where

the velocity is insensibly small,

and ra a point in the contracted

section of the jet where the

filaments have become parallel

and exercise uniform mutual

pressure. Take the free surface

AB for datum line, and let plt
vly

h
lt be the pressure, velocity,

and depth below datum at M
; p, v, h, the corresponding

quantities at ra. Then

?. 58.

But at M, since the velocity is insensible, the pressure is

the hydrostatic pressure due to the depth ; that, is vl 0,

Pi=pa + Grhl. At m, p=pa, the atmospheric pressure round

the jet. Hence, inserting these values,

6
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or = 8-025

That is, neglecting the viscosity of the fluid, the velocity

of filaments at the contracted section of the jet is simply the

velocity due to the difference of level of the free surface in the

reservoir and the orifice. If

the orifice is small in dimen-

sions compared with h, the

filaments will all have nearly

the same velocity, and if h

is measured to the centre of

the orifice,the equation above

gives the mean velocity of

the jet.

Case of a submerged
orifice. Let the orifice dis-

charge below the level of the tail water (Fig. 59). Then at

M, v, = 0, pl
= Gr&i +pa ;

at m, p = GhB +pa.

Fig. 59.

g
= h

2
-h

B
= h (15),

where h is the difference of

level of the head and tail

water, and may be termed the

effective head producing flow.

Case where the press-

ures are different on the

free surface and at the

orifice. Let the fluid flow

from a vessel in which the

._*__ .

h

Fig. 60.

pressure is p into a vessel in which the pressure is p
(Fig. 60). Let hQ be the height from the centre of the

orifice to the free surface in the first vessel. The pressure pQ

will produce the same effect as a layer of fluid of thickness
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added to the head water
;
and the pressure p will produce

the same effect as a layer of thickness added to the tail

water. Hence the effective difference of level, or effective head

producing flow, will be

and the velocity of discharge will be

v . '. (16).

We may express this result by saying that differences of pres-

sure at the free surface and at the orifice are to be reckoned

as part of the effective head.

Hence in all cases thus far treated the velocity of the jet

is the velocity due to the effective head, and the discharge,

allowing for contraction of the jet, is

Q = . (17),

where &> is the area of the orifice, ceo the area of the contracted

section of the jet, and h the effective head measured to the

centre of the orifice. If h and G> are taken in feet, Q is in

cubic feet per second.

52. Discharge from a fire nozzle. Mr. John R
Freeman has made very accurate tests of the discharge from

the nozzles used with

orifice&hose in delivering water

in streams at fires. He
has found the coeffi-

cients for such nozzles

so constant that he

suggests their use in

measuring the dis-

charge of pumps and

in similar cases (Trans.
Am. Soc. of Civil

Engineers, 1891). Fig. 61 shows the arrangement adopted.

For three nozzles tried the coefficient of discharge was 0*995,

with heads of 12 to 120 feet. The head was corrected for

^S Stilling^ VJtTi tfon

Fig. 61.
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velocity of approach, but the correction was very small except

for low heads. The nozzles n were If to 2j inches

diameter. They were smoothly tapering, with sides converging

at 5 to 7J degrees to the axis, and polished for 3 or 4

diameters back from the outlet. The pressure in the supply

chamber was taken at a piezometer orifice made carefully

flush with the inside of chamber. With the tin cone removed

and a square corner to the brass flange in which the nozzle

was screwed, coefficients of 0'985 to 0'990 were obtained.

53. Flow from a vessel when the effective head

varies with the time. Various useful problems arise relating

to the time of emptying and filling vessels, reservoirs, lock

chambers, etc., where the flow is dependent on a head which

Head wcJler ueveu
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For the time t during which the initial head H diminishes

to any other value h,

= _flf /2H_ /2h]

~co>(V 9 V 9)

For the whole time of emptying, during which h diminishes

from H to 0,

Comparing this with the equation for flow under a constant

head, it will be seen that the time is double that required for

the discharge of an equal volume under a constant head H.

The time of filling the lock through a sluice in the head

..X

Fig. 63.

gates is exactly the same if the sluice is below the tail-water

level. But if the sluice is above the tail-water level, then

the head is constant till the level of the sluice is reached, and

afterwards it diminishes with the time.

54. Cylindrical mouthpiece. When water is discharged

through a short cylindrical mouthpiece, the axis of which is

normal to the side of the reservoir (Fig. 63) and its length
2 to 3 times its diameter, there is an internal contraction
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at EF due to the convergence of the streams at the inlet, but

the jet then expands to fill the mouthpiece and issues full

bore. Let H be the cross section GH of the mouthpiece and

co the cross section EF of the interior contraction. Then

G>/n
= cc is the coefficient of contraction. Let p and v be

the pressure and velocity at GH
; p1}

v
lt

the pressure and

velocity at EF ; Q, the discharge per second. Then

Q =
wflj

= ttv

% =
v/cc .

Let h be the head over the axis of the jet, and c the co-

efficient of discharge of the mouthpiece, which, as there is no

external contraction, is also the coefficient of velocity. Then

v = c\/2gh .... (19).

Between EF and GH there is the loss of head fa vfjZg
due to the change of velocity from v

1
to v ( 37), and a fric-

tional loss crv
2

/2g which is negligible for very short mouth-

pieces. Hence the total head at GH is less than that at EF

by these losses.

-vY v2
}+%r

But vl
=

vjer and v =

g'-V-IVr-lWV* (20).

Suppose a small vertical pipe dipping into a reservoir at a

lower level (Fig. 64) introduced into the mouthpiece at the

internal contraction. The pressure p acts on the free surface

of the lower reservoir as well as at the outlet of the mouth-

piece, and P! is the pressure inside the mouthpiece. Hence

the water will rise in the tube to a height KL = Jif = (p Pi)/Gr-

If hf
is greater than the distance X between the axis of

the jet and the surface of ' the lower reservoir, the water will

be continuously pumped up from the lower reservoir and

discharged at the level of the mouthpiece. This arrangement
is a jet pump in its crudest form, in which one body of water

descending a distance h pumps up another body of water a

height X. Putting for the moment c = 0'82, c
c
= 0'64, and

neglecting the small quantity cr,

h' =
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which is the greatest value of X at which pumping will occur.

The values assumed will be seen presently to be about average

values of the coefficients.

In order that the continuity of the stream may not be

broken, the lowest pressure must not be negative, that is, pl

: x
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(L iW-K-I-lY^
U? /5fr-tfW /a/

There are therefore three losses of head between CD and GH,
two of which have already been given, and the effective head

producing the velocity v is h less these three losses.

1 \ 2 2

cc

and putting v c

C2 W Cc

and the coefficient of discharge for the mouthpiece is

1 ^

Taking c
c
= 0'64, cv

= 0'97, and neglecting cr,

c = 0-824.

Weisbach made experiments on some cylindrical mouth-

pieces of different diameters, and lengths about three diameters,

and found the following values of c, which do not differ much
from the value just calculated :

Diameter = 0-032 0'066 0'098 0'131 feet.

c= -843 -832 -821 -810

The coefficient varies somewhat with the length of the mouth-

piece. Its average value may be taken to be as follows :

Length^ ^--=1 2 to 3 12
Diameter

c=0-88 0-82 0-77

55. Convergent mouthpieces. With these there is an
external contraction at the outlet as well as the internal

contraction. Two cases may be distinguished; the inner
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angle may be sharp as at A (Fig. 65), or well rounded as at B.

e

Fig. 65.

In the latter case the loss due to the internal contraction is

diminished. The discharge is

(23),

where 1 = j^
2

is the area at the external end. The length

of the mouthpiece is about 3d.

Angle 6

c for case B
c for case A

0-97

0-83

5f
0-95

0-94

0-92

0-92

0-88

0-85

45

0-75

90
0-63

56. Divergent conoidal mouthpiece. Suppose a mouth-

piece with a convergent inlet and divergent outlet so designed

that there is nowhere any

abrupt change of velocity in A
the stream passing through

it, as in Fig. 66. The inlet

may be of the form of a

contracted stream from a

sharp-edged orifice, and the

divergent part should ex-
|_

pand very gradually, becom-

ing cylindrical at the end.

Let ft>, v, p, be the area

of section, velocity, and pres-

sure at CD, and H, v
lf p1}

the same quantities at EF.

Let the atmospheric pressure be pj&= 3 3 '9 feet of water, and

let h be the head over the mouthpiece.

Then the velocity at EF is

Fig. 66.
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#!
= cv \/(2gh) . . . (24),

and the effective head producing this velocity is

So that the head wasted in friction and eddies in the mouth-

piece is /:. _ 2\fc

This wasted head may be taken to consist of two parts: %
wasted in the converging, and z2 wasted in the diverging part
of the mouthpiece. Then if atmospheric pressure is taken

into the reckoning the total head at CD is h+^ z^, and

that at EF is h -\-
P-~ -z

l
- z2. Consequently if pJG = 33'9,

vz p
2g

+ &
/>! 2 i

33-9 (246),

33-9,

or if the jet discharges into the atmosphere pl
= pa ,

and

Then the discharge is

(25),

which is independent of the area at the throat CD. But
there is one obvious

limit to this. As the

velocity is greater at

CD than EF the pres-

sure must be less, that

is, less than atmo-

spheric pressure. If

the ratio of the sec-

tions p = fl/o> is great

enough p becomes zero

or negative, and flow

full bore is impossible.
The stream breaks away from the mouthpiece as in Fig. 67.
But v = pvl} and inserting this in eq. (24&),

Fig. 67.



iv DISCHAEGE FKOM OEIFICES 91

p becomes zero if

83-9

From experiments on bellmouths, z-^ may be taken as about

The value of z2 may be considerably greater. In

an expanding stream there is great instability and tendency
to break up into eddies, which waste energy. If the mouth-

piece is short, the stream breaks into eddies
;

if long, the

friction of the surface gives rise to eddies. The following

short table is calculated for the limiting cases ^2
= and

22
= 0'9A.

LIMITING VALUES OF p

h = 1 5 10 20 50

Whenz = 6-06 2-83 2-13 1'66 1-30

When z" = 0'9h 26*4 8-0 4'5 2*8 1-7

Venturi experimented on a mouthpiece of this kind, and

concluded that the discharge would be a maximum when the

diverging part was of a length equal to nine times its least

diameter and the angle of the cone a little more than 5.

Francis (Lowell Hydraulic Experiments) obtained results with

a similar mouthpiece.
The diameter at CD was 0'102 feet; at EF, 0'321 feet

;

p = 9*9
;
the length of the diverging cone 4 feet

;
the mouth-

piece was drowned, and the difference of level of head and tail

water was from 0*1 to 1*4 feet. The mean coefficient of

velocity (or discharge) was cw =0'23, so that from eq. (24a)
the effective head was 0'23

2A = '053A. Consequently "947A

was the head wasted during the passage of the water through
the mouthpiece. This corresponds to the total head lost

between inlet and outlet of a Venturi meter, h being the

height due to velocity at inlet or outlet.

57. Influence of temperature on the flow from orifices.

Experiments were made by the author (Phil. Mag., 1878)
with a conoidal mouthpiece 0'394 inches diameter, a head of
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1 to 1|- foot. Neglecting the expansion of the reservoir and

orifice, the coefficient is

Temperature F. Value of c.

190 0-9871

130 0-9740

60 0-9418

With a sharp-edged orifice also 0*394 inches diameter and

the same heads, and also neglecting any correction for expan-
sion of the reservoir and orifice

Temperature F. Value of c.

205 -5936

140 -5964

62 -5980

The results show that the influence of temperature is very
small. The correction for expansion of the reservoir and

orifice would be very small.

Mr. Mair repeated these experiments on a much larger
scale. With a conoidal orifice 1-J inch in diameter and a head

of T75 feet, the following values were obtained:

Temperature F. Value of c.

170 0-981

110 0-967

55 0-961

With a sharp-edged orifice 2j inches diameter and 1*75

feet head, the following were the results :
j

Temperature F. Value of c.

179 0-607

110 0-604

57 0-604

In the case of the conoidal orifice the increase of tempera-
ture appears to reduce sensibly the frictional loss. In the

case of the sharp-edged orifice the influence of temperature is

very small.

PROBLEMS

1. The pressure in the pump cylinder of a fire-engine is 14,400 Ibs.

per square foot
; assuming the resistances of the valves, hose,

and nozzle are such that the coefficient of resistance is 0*7, find

the velocity of discharge. 93-5 feet per second.
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2. The pressure in the hose of a fire-engine is 13,000 Ibs. per square
foot ; the jet rises to a height of 150 feet. Find the coefficients

of velocity and resistance. 0*849 and 1*39.

3. A horizontal jet issues under a head of 9 feet At 6 feet from the

orifice it has fallen vertically 15 inches. Find the coefficient

of velocity. 0-89.

4. Required the coefficient of resistance corresponding to a coefficient

of velocity = 0'96. State what percentage of the energy due
to the head is wasted. 0-085. 7 -8 per cent.

5. A fluid of one-quarter the density of water is discharged from a

vessel, in which the pressure is 60 Ibe, per square inch (absolute),
into the atmosphere, where the pressure is 15 Ibs. per square
inch. Find the velocity due to the head. 163-5 ft. per second.

6. Find the diameter of a circular orifice to discharge 2000 cubic

feet per hour under a head of 5 feet. Coefficient 0-62.

3-03 inches.

7. A cylindrical cistern contains water 16 feet deep, and is 1 square
foot in cross section. On opening an orifice of 1 square inch

in the bottom, the water-level fell 7 feet in one minute. Find
the coefficient of discharge. 0'598.

8. A miner's inch is defined to be the discharge through an orifice in

a vertical plane of 1 square inch area, under an average head
of 6j inches. Find the supply of water per hour in gallons.
Coefficient 0-62. 571.

9. A vessel fitted with a piston of 10 square feet area discharges
water under a head of 9 feet. What weight placed on the

piston would double the rate of discharge ? 270 Ibs.

10. Required the discharge from a thin-edged vertical sluice opening
3 feet wide and 1 foot deep. Depth of water to lower edge of

orifice = 7 feet, coefficient of discharge = 0-62.

50'7 cubic feet per second.

11. The discharge from an orifice 10 feet below the water surface is

18 cubic feet per minute. What will be the discharge when
the head is 25 feet? 28*45 cubic feet per minute.

12. Show that about ^ of the energy due to the head is wasted at a

cylindrical mouthpiece. Coefficient 0-83.

The loss is 31 per cent.

13. A jet has a diameter of 3 inches when issuing vertically under a

head of 9 feet. Find its diameter at 6 feet above the orifice.

3-95 inches.

14. What must be the size of a sluice in a lock gate to empty the lock

in ten minutes? Area of water-surface of lock 15 feet by
100 feet. Lift 6 feet. The sluice is below the tail water, and
the coefficient of discharge is 0*75. 2*03 square feet.

15. A vessel is of such a form that its horizontal area is A -f BOJ -f Cx2

at x feet above- the bottom. Show that if there are h feet

initially in the vessel, and it empties through an orifice of area

<o, the time of emptying is given by the equation
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16. Coal gas weighs 0-04 Ibs. per cubic foot. Treating it as a liquid,

find the velocity of discharge from an orifice due to a pressure
of 1 inch of water. Coefficient of velocity 0*96.

87-8 feet per second.

17. A tank 1000 square feet in area discharges through an orifice

1 square foot in area. Calculate the time required to lower

the level in the tank from 50 feet to 25 feet above the orifice.

Coefficient 0'6. 2591 seconds.

18. A vertical-sided lock is 60 feet long and 15 feet wide. Lift

15 feet. Find the area of a sluice below tail water to empty
the lock in ten minutes. Coefficient 0'5. 2 '895 square feet.

19. A Spanish module has an orifice 18 inches in diameter, and the

head in the upper chamber varies from 1-5 to 4 feet. Design
the plug so that the discharge shall be 7 cubic feet per second.



CHAPTEK V

NOTCHES AND WEIRS

58. Large vertical rectangular orifices. When the head

over the top edge of the orifice is less than half the

height of the orifice, the variation of head has an influence

too great to be neglected ( 37). If, as in most cases, there is

contraction of the jet the theory of flow presents some difficulty.

In the plane of the orifice the issuing streams are not normal
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between the levels li and h + dh. Its cross section is bdh, and

neglecting small resistances its velocity is fJ(2gJi\ and its

discharge I ^/(2gh)dh. Hence the whole discharge of the

orifice is

Ch9 f
h

2
dh

-^
1 } (1),

where the numerical factor on the right is a coefficient

depending only on the form of the contracted cross section.

Now let Hj, H2 be the heads at top and bottom edges, and B
the width of the orifice itself. Let

c=

Then the discharge, in terms of the dimensions of the

orifice, is

Q = |cBN/2^{H2

f -H
1

f
}

. . . (2),

which is commonly given as the theoretical formula for

vertical rectangular orifices, and C is often stated to be the

coefficient of contraction. But C is clearly not the coefficient

of contraction, the value of which must be

Equation (2) is only rational if C is understood to be a

coefficient the value of which will vary with the proportions
of the orifice, and experiment shows this to be the case.

59. Notches or weirs. A practically very important
case is that in which Hj = and the jet is discharged from

an open notch or orifice extending up to the free surface.

Weirs in rivers are cribwork or masonry constructions,

primarily intended to raise the surface-level of the river up-

stream, while permitting the passage of floods. Notches for

measuring purposes are weirs fitted with a plate in which an

open notch is formed through which the water passes. The
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notch is usually rectangular, but sometimes triangular or

trapezoidal. As the water surface falls when approaching
the notch, the head h over the bottom of the notch, or over

the crest of the weir, should be measured some distance back

from the weir beyond the origin of the surface curve.

The jet or stream passing over a weir may be termed the

weir sheet. For an ordinary sharp-edged weir or notch the

sheet is of the form shown in Fig. 69, A, B. The weir sheet

contracts at the two ends and at its top and bottom surfaces.

If the length b of the weir is equal to the width of the

channel of approach there are no end contractions, and the

weir is termed a weir with suppressed end contractions. If

the tail-water level is above the crest of the weir it is termed

a drowned weir. If the crest of the weir is broad or rounded,

B
[777

Fig. 69.

or if the upstream or downstream faces of the weir are

sloped, the phenomena of discharge are complex, the water

sheet in some cases springing clear, and in some cases

adhering to the weir (Fig. 69, C).

The equation of discharge for rectangular weirs is found

by putting Hj = in eq. (2). Also let h be the head above

the crest and I the length of the notch or weir. Then

2

(3),

where c is a coefficient of discharge, which varies considerably
in different cases. This is the formula which has been most

generally used in computing weir discharge, and it is trust-

7
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worthy for practical purposes if the value of c is selected

from observations in similar conditions. The following small

tables give values selected from those obtained by Hamilton

Smith from plottings of various experiments by Francis,

Fteley and Stearns, Lesbros, and others. It will be seen that

c varies more for weirs with end contractions than for weirs

with no end contractions.

COEFFICIENTS OF DISCHARGE FOR WEIRS WITH COMPLETE
CONTRACTION (HAMILTON SMITH)

Head on
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the head must be measured where the water has a velocity

too great to be negligible. In that case the observed head

has to be corrected for velocity of approach before using it in

the weir formula.

Let Fig. 70 represent a vertical rectangular orifice at the

end of a channel in which the velocity of approach is u. Let

Fig. 70.

b be the width of orifice, and 7^ h2 be the heads over the top
and bottom edges of the orifice measured at a point in the

channel where the mean velocity is u. It is obvious that

somewhere upstream there must have been a fall of free

surface

in producing the velocity u. Hence the true heads over the

edges of the orifice, reckoned from still water level, are

A! + {)
and h2 + f). Putting these values in eq. (2),

In the case of a notch or weir of length I, ^ = 0, and

may be written h,

&)*-&*}Q =
(5),

which is the equation most generally used for weirs when

velocity of approach must be allowed for. It is not from the

theoretical point of view entirely satisfactory, because in the

section where h is measured the velocity varies, and it is

uncertain in what proportion different portions of the stream
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go to make up the jet over the weir. It is probable that {)

should be affected by an empirical coefficient a to allow for

this. In most cases f) is small compared with h, and the

last term in the bracket is very small. Hence for simplicity

some writers take

at))*}
. . (6),

which is easier to compute. It appears that a = about 1*5.

An analysis of Francis and Fteley and Stearns' experiments
led Hamilton Smith to the conclusion that a should be taken

1*33 for weirs with no end contractions, and 1*4 for weirs

with end contractions. It will be seen later that new experi-

ments by Bazin have led to a better method of dealing with

velocity of approach. The following table will give an idea

of the importance of velocity of approach in weir calcula-

tions :

VALUES OF ft

Velocity of

Approach
u.
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discharge if the velocity of approach is neglected, that

is, by eq. (3). Then u' Q'/fl is an approximate value of

u, and ty = u'
2

/2g is an approximate value of !). Putting
this in eq. (5) or (6) a second approximation Q" to Q is ob-

tained. A third approximation can be found, but this is

rarely necessary.

61. Partially submerged orifices. Drowned weirs.

When the tail-water level is above the lower and below the

upper edge of the

orifice, it divides

the orifice into two

parts in which the

conditions of flow

are different. Let

Fig. 7 1 represent
such an orifice,

where h
1}
h2,

h are

the depths below

the free surface of

the upper and lower
Fig. 71.

edges of the orifice

and the tail water, and b is the width of the orifice. An

elementary stream M.
l
m

l issuing above the tail-water level

has the head h'y which for different parts of the orifice varies

from to h. An elementary stream M2m2 issuing below the

tail-water level has a head h" hf"

1
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where I is the length of the weir, h2 the head over the weir

measured upstream, and h the difference of level of head and

tail water. From some experiments by Fteley and Stearns

(Trans. Am. Soc. of Civil Engineers, 1883) the following

values of c are calculated :

d

h*

0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0-9

0-95

1-0

0-9

0-8

0-7

0-6

0-5

0-4

0-3

0-2

0-1

0-05

o-o

629
614
600
590
582
578
578
583
596
607
628

The weir was sharp edged, 5 feet in length, with end

contractions suppressed. The weir crest was 3 '2 feet above

the bottom of the channel
;
h2 varied from 0*3 to 0*8 feet.

62. Broad-crested weirs. Broad-crested weirs are un-

suitable for water measurement, but it is sometimes necessary
to estimate the flow at such weirs. The following is a theory
of the flow over broad-crested weirs, which is interesting.

Fig. 73.

Let Tig. 73 represent a weir with a crest of width d such

that the stream over it consists of rectilinear and parallel

elementary streams. Let the upstream edge be rounded so'

that there is no contraction there. Consider an elementary
stream aa', the point a being so far from the weir that the

velocity at that point is negligible. Let 00 be the free



v NOTCHES AND WEIES 103

surface, and let a be fi" below OO and h' above a'. Let a! be

z below the free surface at that point. Let h be the head on

the weir crest, and e the thickness of the stream on the crest.

The pressure at a is Gh", and at a' is Gz. If v is the velocity

at a',

and if b is the length of the weir,

e)} . . . (8).

Now Q = for e = and for e = h. The discharge will be a

maximum for a value of e found by putting dQ,/de
= 0. This

gives e =
|7&. Inserting this value,

Q = 0-3856W(20*) . . . (9).

This is equivalent to taking c = 0*5 7*7 in the ordinary

weir formula eq. (3). Experiment shows that the discharge
of broad-crested weirs approaches and even falls below this

value if d is large. The formula is also applicable to large

masonry sluice passages with flat floors, over which the water

passes with a free surface. With h>1'5d the attachment

of the stream to the weir crest is unstable, and with h>2d
the stream springs clear from the upstream edge, and the

conditions approximate to those of a sharp-edged weir.

From various experiments the following values are derived.

If h is the head at the weir, d the width of crest, and c the

coefficient for a sharp -edged weir in the same conditions,

then the coefficient of discharge in the formula

. . . (9a)

may be taken as follows :

h/d=0'25 0-50 0*75 I'OO 1-25 1-50

C/c = 0-75 0-78 0-82 0'86 0'90 0-93

If c = 0-63, C = 0-47 0-50 0'52 0'54 0*57 0'59

The value c = 0'63 is a mean value for weirs with no end con-

tractions.

The following table gives results of experiments by Mr.

Blackwell :
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63. Rafter's experiments on broad -crested weirs.

These experiments were made in 1898 at the Cornell Hydraulic

Laboratory (Trans. Am. Soc. of Civil Engineers, 1900). The

?.74.

height of the weirs varied from 4^ to 5 feet, and the length

of crest was 8 '5 8 feet. The forms used are shown in Fig. 74.

In the form d the upstream edge was rounded to a radius

of 4 inches.

Form of

Weir.
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is 1 to n. The streams through the notches must be made

up of similar and similarly situated elementary streams.

Taking any pair of corresponding elementary streams, their

cross sections must be as 1 to n2
,
their depths below the free

surface as 1 to n, and their velocities as 1 to ^/n. Con-

sequently the discharge of these two streams must be in the

ratio 1 to n . As this holds for all pairs of similarly situated

elementary streams, the total discharge of the notches must

be in the ratio 1 to ri*. But in any one notch, for two

different levels of the water the same must hold, and if

hlt h2 are the heads measured to the vertex of the notch

the discharges must be in the ratio (h^h^. Hence, generally,

if h is the head at any time the discharge is

and this equation has a more rational basis than the ordinary
formula given above for rectangular weirs. It is easy to see

that as the surface width Z varies directly as h, the equation
can be put in the form

where c is a coefficient of contraction, ^clh is the section of

the contracted stream, and Jc is a constant expressing the

ratio of the mean velocity in the contracted stream to the

velocity due to the head. The value of k must be about 8/15.
Prof. James Thomson first indicated the probability that

the coefficient for a triangular notch would be nearly constant.

Writing the formula

Q = TV*M2^) . (10),

he found that for a right-angled notch, sharp-edged, c = 0'617.

For a right-angled notch I = 2h, and the formula becomes

. . . (lOa).

The notch is convenient for measuring a very variable flow

when the quantity is not very large.

65. Rectangular notch with no end contractions.
The length of the notch or weir is equal to the distance

between the walls of the channel of approach. It is desirable

that the side walls should extend a little beyond the crest
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of the notch above its level, but provision must be secured

for the free access of air below the water stream passing over.

As there are no end contractions, and the top and bottom

contractions are the same for all vertical slices of the stream,

the discharge must be accurately proportional to the length

of the weir.

Taking any one vertical slice of the stream of width yh
and head h, its discharge must be, as in the case of the

triangular notch, proportional to 7i*, and as the stream,

whatever the head, can be considered as made up of l/yh such

slices, the whole discharge must be

which can be put in the form

= dh x k*J(2gh),

where c and k have the same meaning, as in the case of

the triangular notch, and k must be about 2/3. Then simply

Q = JcV2^* . . . (11),

where c may be expected to be constant for different values

of*.

The following are values of c deduced from some very

trustworthy experiments on weirs with no end contractions.

The values of h have been corrected for velocity of approach,
but the correction in all cases was small.

Length of

Crest.
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I

i

*.

The coefficient increases with very small heads. Exclud-

ing these cases, it will be seen that c is very nearly constant.

66. Sharp-edged weir with end contraction. Francis's

formula. The influence of the ends in causing contraction

extends only for

a certain distance,

and in a long weir

the discharge over

the middle part is

proportional to the

length, as in a weir

with no end con-

tractions. Let I be

the length of the

part where the dis-

charge is propor-

tional to the length, and \mh the length of the parts near the

ends influenced by end contraction (Fig. 76). Then the whole

length L = 1 -f mh. The two parts at the ends taken together
form a weir of length mh, in which the linear dimensions are

in fixed ratio. The discharge of this part must be given by a

relation of the form

o, - ^,
as in the case of a triangular weir. The middle part is

virtually a weir with no end contractions, and its discharge
must be given by a relation of the form

Fig. 76.

Hence the whole discharge is

which may also be written

2
(12),

in which c and I are constants. This is the rational basis of

a formula for weirs, arrived at in a purely empirical way by
Mr. Francis (Lowell Hydraulic Experiments, New York, 1868),
which has proved of great service in practical calculations.
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For sharp-edged weirs with full end contractions Mr.

Francis found for b the value 0*1. The formula is not

applicable to short weirs in which L is less than 3h, nor to

cases in which h is very small.

VALUES OF c IN FRANCIS'S FORMULA

1
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For the same heads the coefficient m was very approxi-

mately the same for the four lengths of weir used. The

following table gives a selection of the values obtained from

an average of the results on all the weirs. The coefficient

for standard weirs will be denoted by ra :

STANDARD WEIRS, 3-72 FEET HIGH, WITH NO END CONTRACTIONS

Values of Coefficient mQ
in Eq. (13)

Head.
Feet.

h
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To find a general formula accordant with these results,

M. Bazin starts from the well-known eq. (6),

(14),

where u is the velocity of approach, and a is a constant having

usually a value about 1*5. p is a coefficient less than m ,

and connected with it by the relation

or since the second term in the bracket is a small fraction,

(1A
2
\

l + l
'5a

2gh)
neady " " ^'

If p is the height of the weir, the section of the stream

in the channel of approach is (p + h)l, and the velocity of

approach is u =
Q//Q? + ^). Eeplacing Q by its value

where K is a new coefficient. With this relation, m in

eq. (13) can be found directly from the dimensions of the

weir without the need to calculate u. A careful discussion

of all the results leads Bazin to adopt the following values

of m, and he gives the preference to the second as more con-

venient :

The coefficient ^ varies only with the head, and its

average values are :
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Head Value of Coefficient

h p.

0-164 -4481

328 -4322

656 -4215

984 -4174

1-312 -4144

1-640 -4118

1-968 -4092

With these values the coefficient m in eq. (1*7) can be

found, and the discharge over any sharp-edged weir without

end contractions calculated, including the influence of the

velocity of approach. The formula then supersedes for such

weirs the less convenient formulae (5 or 6) previously given.

Further, the values of
//,

are very approximately given by the

relation

For heads from 0*33 to TO ft. with close approximation

which can be used when a possible error of 2 to 3 per cent

can be allowed.

In the case of weirs with vertical faces and flat crests of

a width d, such as weirs constructed of horizontal beams of

square timber, the weir sheet adheres to the crest if JKl'od;
it may adhere or spring clear from the upstream edge if

h>l'5d and<2d; and springs clear if Ji>2d. When the

sheet is adherent to the crest the coefficient of discharge

depends on the ratio h/d, and is approximately for weirs with

no end contractions

7 + 0-185
7

|]
. (19),

where m
Q

is the coefficient for a standard weir of the

same height. Even with a head of 1'48 feet and a width of

crest of 6*6 feet, so that h/d
= 0'22, the coefficient of discharge

was 0*337, which is little different from the value given by
the equation. If h>2d the coefficient of discharge is the

same as for a standard weir of the same height. A rounding
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of the upstream edge of the crest modifies sensibly the

discharge. A rounding to a radius of 4 inches increased the

discharge 12 to 14 per cent.

From some experiments on drowned weirs, much too

extensive to be described here, Bazin obtained the following

expression for the coefficient of discharge :

m= I '05m, (20),

where h is the head above the weir crest on the upstream

side, and h
t
that on the downstream side

; p is the height of

the weir, and z the difference h 7^ of the water-level above

and below the weir. The weirs were without end contractions.

Bazin made a very extensive series of researches on weirs

Fig. 77.

with inclined faces, and with crests either sharp, flat, or

rounded. A short abstract of these would be of little use
;

the original account must be referred to. The weir sheet

takes the following forms : (1) Free weir sheet, as in the case

of a sharp-edged weir, the sheet falling freely in the air.

For this condition the coefficient of discharge is best defined.

(2) Depressed sheet and sheet drowned underneath. If pro-

vision is not made for free access of air below the sheet, and

if the head does not exceed a certain limit, the sheet is

detached from the weir, and encloses a volume of air at less

than atmospheric pressure. The tail water rises in level

behind the sheet, and the sheet is depressed by the excess of at-

mospheric pressure on its outer face (Fig. 77, A). The discharge
is somewhat greater than for a free sheet. If the head increases,

the whole of the air beneath the sheet is expelled, and the

8
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sheet may be said to be drowned underneath (C). It rides over

an eddying mass of water in the space which, with a free sheet,

is occupied by air. The sheet drowned underneath may or

may not be affected by the tail water. If at the foot of the

weir there is a rapid followed by a brusque elevation or stand-

ing wave, the tail-water level does not influence the discharge.

On the other hand, if the tail water covers the foot of the

descending sheet, it may influence the discharge, although its

level is below the weir crest. (3) Adherent sheets (B). In certain

cases with small heads the sheet becomes directly adherent to

the downstream face of the weir, without any eddying mass

of water behind it. This condition corresponds often to a

marked increase of discharge. When the tail water rises

above the weir crest, the sheet drowned underneath preserves
its general form, until for a certain difference of head and tail

water level it breaks into waves.

68. Measurement of the head at weirs. It is assumed

in the preceding discussion that the head on the upstream
side of the weir is measured at a point above the origin of the

curve of surface fall towards the weir. Fteley and Stearns

concluded that the distance from the weir should be at least

two and a half times the height of the weir above the bottom

of the channel of approach, but no doubt this would be an

excessive distance if the height of the weir is large compared
with h. The exact measurement of the head is very important,
and a hook gauge (41) should be used, as accuracy is im-

portant. With h = O'l foot, an error of O'OOl foot, or about

a hundredth of an inch in the measurement of h, causes an
error of

1|- per cent in the calculated discharge. With

greater values of h the percentage error is less, but is not

unimportant. As the water-level fluctuates, a series of read-

ings at equal intervals of time should be observed and the

arithmetical mean taken.

69. Practical gauging by weirs. The most accurate

method of gauging the discharge of small streams, as in ascer-

taining the flow from a catchment basin, is to construct a weir

of timber or concrete across the stream. A single reading of

the head gives the means of calculating the discharge, and
observations are made once or twice a day for as long a period
as necessary. For small flows a triangular notch may be
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used, but ordinarily the notch is rectangular. An auto-

matic registering apparatus may be used, motion being given
to a pencil by a float through the action of a cam designed to

allow for the variation of the coefficient of discharge. The
reduction of the results is simplified if a weir with no end

contractions is used, as the coefficient is nearly constant. The
crest of the weir should be a metal plate, flush with the

upstream face of the weir, with planed edge accurately levelled.

PLAN OF

CAST IRON KEY.

^_ 1y^-v / vv_- *['('*//.'' / *

'<? D ^*0 ^ ^^X) ^ ^ ^

siiip

Fig. 78.

70. Separating weirs. When water is collected in

reservoirs for towns' supply from moorland districts, it is

desirable to separate the clear water of ordinary periods from

the discoloured water in periods of flood. The latter is diverted

to waste or sent to a reservoir used only to supply compensa-
tion water to the streams. This is effected by a separating
weir on the stream feeding the reservoir. Fig. 78 shows one

form of such a weir. With small or moderate flow the water

drops into the circular channel leading to the reservoir. In
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flood-time the water springs over the gap, and flows into a

channel beyond the weir.

PROBLEMS

1. Find the discharge through a rectangular notch, sharp-edged, and

with complete contraction. The notch is 3 feet wide, and the

head 1J feet. Velocity of approach negligible.

13-23 cubic feet per second.

2. What will be the discharge of the same notch if the velocity of

approach is 3 feet per second ? 16'7 cubic feet per second.

3. Find the discharge over a sharp-edged weir 10 feet wide, with a

head of 9 inches. There are no end contractions.

21*55 cubic feet per second.

4. Find the discharge of the same weir by Bazin's formula, taking
the height of the weir to be 2 feet.

22 '96 cubic feet per second.

5. What must be the width of an overfall weir to discharge 24 cubic

feet per second, with 8 inches head ? Coefficient 0'62.

13-32 feet.

6. A district of 6500 acres (1 acre = 43,560 square feet) drains into

a reservoir. The maximum rate at which rain falls is 2 inches

in 24 hours. Supposing this rain to fall when the reservoir

is full, it would have to be discharged over the bye-wash weir.

Find the length of such a weir under the condition that the

head shall not exceed 18 inches. Coefficient of weir 0-66.

84-16 feet.

7. A sharp-edged weir, with full contraction, is 10 feet long, and

has 15 inches of water passing over it. Find the discharge by
Francis's formula. 46'27 cubic feet per second.

8. Find the discharge from a triangular right-angled notch with

2 feet head. 14-93 cubic feet per second.

9. A sharp-edged rectangular weir is to discharge daily 30,000,000

gallons of compensation water, with a normal head of 18

inches. The end contractions are suppressed, and the velocity
of approach negligible. Find the length of the weir.

8-99 feet.

10. Draw a curve of discharge from a right-angled triangular notch

for different heads. The discharge may be calculated for 2,

4, 8, and 12 inches head. Coefficient 0'6.

11. A lake discharges over a weir 5 feet high above the stream bed

and 10 feet wide. The water-level above the weir is 8 feet,

and below the weir 6 feet, above the stream bed. Find the

discharge, taking the coefficient of the weir c = 0'6.

68-1 cubic feet per second.

12. A weir is 30 feet long and has 18 inches head. The height of

the weir is 3 feet. The channel of approach is the same
width as the weir. Find the discharge.

198-6 cubic feet per second.



NOTCHES AND WEIRS 117

13. If the weir in the last question had end contractions, and the

velocity of approach was taken into account, find the discharge.

185-6 cubic feet per second.

14. A weir is 8 feet wide, 2^ feet high, and has a flat crest Ij feet

wide. The head is 15 inches, and there are no end contrac-

tions. Find the discharge. 33-7 cubic feet per second.

15. To determine the quantity of water used by a turbine, a sharp-

edged weir, with full end contractions, was erected in the tail

race. The width of the weir was 12 feet, and the head

measured to still water level was 0'75 foot. Find the discharge

by Francis's formula. 22-1 cubic feet per second.



CHAPTEE VI

STATICS AND DYNAMICS OF COMPRESSIBLE FLUIDS

71. THE present chapter deals with a few problems

relating to compressible fluids which are closely related to

those discussed in the preceding chapters. In compressible
fluids the density varies with ordinary differences of pressure
and temperature instead of being nearly constant as in the

case of liquids. But some reservations may be made. Gases

are so much lighter than water that the variation of pressure
with difference of level can often be disregarded. In some

cases, as for instance the flow of lighting gas in mains, the

difference of pressure causing flow is so small compared with

the absolute pressure that the variation of density can be

neglected without much error. On the other hand, in a large

number of cases the variation of density must be taken into

the reckoning, and then the formulae for compressible fluids are

more complicated than those for water.

Heaviness of gases. The density or weight per cubic

unit of volume, G, must be stated with reference to some
standard pressure and temperature. The most convenient

standards are 32 F., and one atmosphere, or 2116'3 Ibs. per

square foot. The volume V in cubic feet per pound is the

reciprocal of the weight G in pounds per cubic foot. V is

often termed the specific volume.

118
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HEAVINESS OP GASES AT 32 F. AND ONE ATMOSPHERE
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If P
,
V are the values at 32 F. and one atmosphere, then

P V is a constant for each gas which has been determined

with great precision.

Dalton's law. In a mixture of gases the pressure is the

sum of the pressures which would be exerted by each gas

separately if it occupied the space alone. Let v
lt

v2 . . . be

the fractions of a cubic foot of each of the gases in one cubic

foot of mixture at a pressure. P. Then the pressures due to

the different gases are

Pl
=

?Vl', ^2
= PV

2

Let wlt
wz

. . .be the fractions of a pound of each of the

gases in one pound of the mixture, and /i^ /^2 . . . their

molecular weights. Then

(2).

Charles's law. Under constant pressure all gases expand
alike. Thus between 32 and 212 F. one cubic foot expands
to 1'3654 cubic feet, or, putting it another way, a gas expands

1/493 of its volume at 32 for each degree rise of temperature.
Let V be the volume of one pound at 32 and V its volume

at t, the pressure being the same.

If temperatures are reckoned from 461 on the Fahrenheit

scale, in which case they are termed absolute temperatures,
the equation takes a simpler form. Let T, T be the absolute

temperatures corresponding to and 32.

V/V = T/T . . (4).

The laws of Boyle and Charles can be combined to give
the general relation of pressure, volume, and temperature in

gases. For, let P
,
V

,
T be the pressure, volume, and tem-

perature of one pound at 32 F., and P, V, T the same quantities
under other conditions. By Charles's law, if T changes to

T, and V to V7

,
the pressure remaining constant,

V' = V T/T .
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But by Boyle's law the product of pressure and volume is

constant if the temperature does not change. Let P now

change to P and V to V at constant temperature. Then

PV = P V' = P V T/T .

Let P V /T
= K, which is called the gaseous constant. Then

PV = RT . . . . (5)

is the general equation connecting pressure, temperature, and

volume. Values of R are given in the table on p. 119.

73. The Mercurial Barometer. In the mercurial baro-

meter the pressure due to the height of the column h (Fig. 79)
balances the atmospheric pressure. If GTO

= 848*8

is the weight of mercury in pounds per cubic foot,

pa
= atmospheric pressure in pounds per square

foot, and h is in feet,

pa = Gji = 848-8/1 . . (6).

If A is given in inches, and pa is required in

pounds per square inch, pa
= 0*49 12h.

As mercury expands with rise of temperature,
the actual barometer readings should be corrected

to 32 F., the expansion of the brass scale being
also allowed for. The correction depends on the

Fig. 79.

height of the barometer at the time, and tables

are obtainable giving the correction. If t is the temperature
at the time of an observation, the correction for a barometer

with brass casing is approximately

-
32)

- -OOOOl^
-
62)

1 + -0001(*-32)

the scale being assumed correct at 62 F. The correction is

in inches if h is taken in inches.

Let G
rt
be the weight of air in pounds per cubic foot. If

the atmosphere were homogeneous instead of decreasing in

density upwards, the height of the atmosphere would be

H =^ = ^feet . . . (7).
^a ^a

For mercury Gm = 848. The mean barometric pressure at
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sea-level is 29*92 inches, or 2*493 feet, and the weight of air

at 32 and that pressure is Gra
= 0-08073 Ibs. per cubic foot.

Hence

74. Variation of pressure with elevation. Application
of the barometer to determine heights. Let the atmo-

sphere be at 32 F., and let G be its density at h feet above

the point where the pressure is one atmosphere. If p is the

pressure at a height h, the pressure at h + dh will be less by
the weight of a layer of thickness dh. That is,

dp= -Gdh.

But at constant temperature .p/G=j9 /G ,
where pQ)

G are

values at 32 and one atmosphere.

Integrating, since p =pQ ,
when h = 0,

The quantity pjGrQ
is the height H of a homogeneous

atmosphere at 32 F. above a point where there is standard
YATkC3C1TIT*k O T rt f\ f\-n CC1 4~tT
pressure and density

The height above a point where the height of a homogeneous
atmosphere is H is

where p, p are the barometric pressures. ,
If plt p2 are the

barometric pressures at two stations at heights 7i
1}
h2 above

the point where the pressure is one atmosphere,

. . . . (86).
2

Pi/p2 is a ratio, the pressures may be taken in any units,
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for instance inches of mercury. Putting H=26190, and

substituting common for natural logarithms,

h
2
-h

l
= 60300 Iog10

-^ ft.

Pz

Let t
lf

t2 be the temperatures at the two stations. The

mean temperature of the air between the stations is approxi-

mately =
0(^1 + ^2)' But a column of air 1 foot high at 32

expands to

-32

at t. Hence the true height between the stations corrected

for temperature is k(k2 h^.

EXAMPLE. The observed barometric heights at two stations were

30 and 27 inches, and the corresponding air temperatures 65 and 50 F.

h2 -hl
= 60300 log (30/27) = 6437 ft.

The mean temperature was 57*5.

Tc= 1 + (57 '5 - 32)/493 = 1 '05.

Corrected difference of level = 6437 x 1-05 = 6759 ft.

75. Flow of air through orifices under small differences

of pressure. In some cases the air is discharged from a

vessel in which the pressure is rather more than an atmo-

sphere into the atmosphere. In that case the difference of

pressure causing flow is small, and the variation of density

of the air is very small also. For instance, if the difference

of pressure is one pound per square inch the pressure ratio is

15 '7 to 14'7 Ibs. per square inch, or 1*07 nearly, and as in

the cases under consideration there is no material change of

temperature, this is the ratio of variation of density also. In

many practical cases the variation of pressure and density
is even smaller than this. In such cases the flow may be

treated as if the fluid were incompressible.
Let plt p.2 be the absolute pressures in pounds per square

foot inside and outside the reservoir from which the air flows.

Tj the absolute initial temperature F.

v the velocity acquired by the air.

Vj the volume of a pound of air at pressure pl
and

temperature Tj.
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Gj the weight of a cubic foot in the same conditions.

Then neglecting the variation of density, the head produc-

ing flow is (p1 jp2)/Gi'

. ( ~ ~ \

ft. per sec. . . (9).
=

/j

If o> is the area of the orifice in square feet and c the

coefficient of discharge, the volume discharged per second is

Q = CM = co> 2L c. ft. per sec. . (10).

The weight Gx of a cubic foot of air at pressure p^ and

temperature Tj is

Gr
1 =pl/53'2T1

Ibs. per c. ft.

Hence the weight in pounds discharged per second is

Ibs.

. (ii).

/PI(P

V" Tl
Ibs.

When dealing with small differences of pressure, it is

common to measure the pressures in inches of water column.

One inch of water = 5 '2 02 Ibs. per square foot. Hence if the

pressures are in inches of water,

Al(^ (12).

Professor Durley has carried out careful experiments on
the discharge of sharp-edged orifices, -f$ to 4^ inches diameter,
with differences of pressure from 1 inch to 6 inches water

column. The following table gives the coefficients of dis-

charge obtained :
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VALUES OF c.
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small change from V to V + dV the work of expansion is ~PdV.

Hence the whole work of expansion from the state given by

PjVj to that given by P2
V2 ,

reckoned per pound of fluid, is

f
v2

U= PdV ft.-lbs.

J V,

Work of isothermal expansion. Since in this case

PV is constant, the expansion curve CD is a hyperbola.
P = P

1
V

] /V. Hence

u = PlvJ T = Woge
J V,

l

=P^ loge r = P
1
V

1 loge
- ft.-lbs. (13).

Work of adiabatic expansion. In this case PVV=
constant.

U
-, V V

7

iVf-JL _I1
'-HV 1

v/'
1

/

7
-

- ft.-lbs. . (14).

= R(T1
-T

8)

7-1

It is convenient to remember the following relations in

adiabatic expansion :

. (15).
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It is also useful to state the thermodynamic result that the

change of temperature in adiabatic expansion is given by the

relation

T
2

:-
(16).

77. Modification of the theorem of Bernoulli for

compressible fluids. Suppose
that in a short time t the mass

AB comes to A'B'. Let Pp w lt

^i Gj, "V\> T!, be the pressure,

section, velocity, weight per
cubic foot, volume per pound,
and absolute temperature at A.

Let P
2, o>

2,
v
2,
G

2,
V

2 ,
T

2, be the

same quantities at B. The

motion being steady, the weight
of fluid passing A and B in a

given time must be the same. If W is the flow in pounds per

second, W = G

Fig. 81.

If z
l5

z
2
are the heights of A and B above the datum plane,

the work of gravity is

Gr
1
<ta

1
v
l(z1

- z
2)
= W(zl

- z
2)

ft.-lbs. per sec.

The work of the pressures on the sections at A and B is

i-A - P
2
a,
2
v2
= i-1 - 1 W ft,lbs. per sec.

The work of expansion is

w|v
Wv = WU ft.-lbs. per sec.

The change of kinetic energy is the difference of the energy of

W Ibs. entering at A and W Ibs. leaving at B. That is,

W
(v2

2 -
v^) ft.-lbs. per sec.

Equating the work done to the change of kinetic energy, and
for simplicity dividing by W,
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P P -

An expression similar to that for liquids, except that the work

of expansion U appears. The result may be stated thus : the

total head at A, plus the work of expansion between A
and B, is equal to the total head at B. Since A and B are

any two points, it may be said that the total head along a

stream line increases by the work of expansion (or decreases

by the work of compression) to that point. If difference of

level is neglected and the expansion is adiabatic, eq. (14),

. (18).

78. Flow of compressible fluids from orifices when
the variation of density is taken into account. When the

flow is due to pressure differences which are not small com-

pared with the absolute pressures in the fluid, the work of

expansion is not negligible. Suppose the fluid flowing from

a point in a reservoir where the pressure is P
1?
and where it

is sensibly at rest, through an orifice into a space where the

pressure is P2 ,
and where it has acquired the velocity v2.

Neglecting any difference of level, and introducing a coefficient

of velocity cv to allow for the resistance of the orifice, from

eq. (18),

. (19).

Approximate equations. When the pressure difference

is small, let 8 = (Px
-

Pa)/?!, so that p
= P2/PX

= 1-3, where

S is a small fraction.
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Then eq. (19) becomes

*2
=<y{^n^

2

}
- (20),

the approximate equation previously obtained on the assump-
tion that the fluid could be treated as incompressible for small

pressure differences. A closer approximation is obtained by

taking another term in the expansion of

y-l

. (21),

an equation given by Grashof.

Weight of fluid discharged from an orifice. Let a>

be the area of the orifice, and c
c
the coefficient of contraction.

Let PJ, Vj be the pressure and volume per pound in the

reservoir
;
P2 ,

V2 the same quantities in the space into which

the fluid is discharged. Let r be the volume and p the pres-

sure ratio of expansion in the stream issuing from the orifice.

The volume discharged per second, reckoned, at the lower

pressure, is

Q2
= ccfl2

a> cubic feet,

and the weight is

W = ^lbs. per second.
V 2

But V2
= rV

lf
and putting c = c/c, by eq. (18)

But r = l/p\

and this is a maximum when P2/Pi
=
p is
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which may be called the critical pressure ratio. If 7= 1'4, as

for air, the discharge is greatest for <
= 0'528. The maximum

discharge, putting in the value of p just found, is

(24),

and for 7= 1*4 this becomes

the external pressure being then a little more than half

the pressure in the reservoir. When P2/Pi is less than <, the

critical value of the pressure ratio, or in other words if P
x is

greater than
</>P2 ,

the weight of fluid discharged diminishes, a

result which is paradoxical and extremely improbable. It

must therefore be inquired if there is any defect in the

reasoning. There is one assumption which is unverified,

namely, that the expansion is completed at the contracted

section of the jet, and that the pressure at that section is P2 .

Experiments, first made by Mr.

E. D. Napier with steam, showed

that for P2/Pi less than < the

pressure at the contracted section

was greater than the external

pressure P2 ,
and that the fluid

continued to expand after the

contracted section was passed.

Hence the section at which the

pressure is P
2 is a section greater

than c
ca), and may even be greater

The jet when P2/Pj is less than

Fig. 82.

than the area of the orifice.

<f>
takes a form like that shown in Fig. 82.

The centrifugal force of the curved elementary streams

near the contracted section makes the mean pressure there

greater than P2 . Experiment shows further that whenever

P2/Pi is less than
<j>

the discharge is found by substituting

</>Pj
for P2 in the general eq. (22). Hence for such cases

the discharge is found by using eq. (24) instead of eq. (22).

Discharge of air from orifices. For air, 7=1-4 and

<=0'528. Two cases occur. (a) When P2/Pi is greater

than
(j>,

and putting p for P2/Pu
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(6) When P2/Pj is less than <,

W=3-885c<o
ffi

. . . (25a).

It appears that for sharp-edged circular orifices, c = 0'64
;

for short cylindrical mouthpieces without rounding at the

inner edge, c = 0'81 to 0*83; for short conoidal mouthpieces,
c = 0'97 ;

and for coned blast nozzles, c = 0'86.

The discharge of steam under great differences of pressure
is complicated by variations of wetness in the steam and

other circumstances. Careful experiments by Mr. Eosenhain

are described in Proc. Inst. Civil Engineers, cxl. 199. For

dry steam and P2/Pi less than <,

W = 0-1995cco>P1

'

97 Ibs. nearly . . (26),

or, what is the form of the equation more generally given,

where Vx is the specific volume of the steam at the

pressure Px
.



CHAPTEK VII

FLUID FEICTION

79. WHEN a liquid flows in contact with a solid surface, or

when a solid of shipshape form moves in a liquid at rest,

there is a resistance to motion which is termed fluid friction,

though it is wholly different in character from the friction of

solids. At very low velocities the motions of the fluid near

the solid may be stream-line motions, and the resistance is

due to the shearing action of filaments moving with different

velocities. Such conditions hardly ever obtain in cases of

practical interest to the engineer. Whenever the velocity is

not very small, eddies are generated which absorb energy
afterwards dissipated in consequence of the viscosity of the

fluid. The frictional resistance in this case is measured by
the momentum imparted to the water in unit time when a

solid moves in still water, or abstracted from the motion of

translation and dissipated when a current flows over a surface.

The laws of fluid friction may be stated thus :

(1) The frictional resistance is independent of the pressure
in the fluid.

(2) Under certain restrictions to be stated presently the

frictional resistance is proportional to the area of the immersed

surface.

(3) At very low velocities the frictional resistance is pro-

portional to the velocity of the fluid relatively to the surface.

At all velocities above a certain critical value depending on

the general conditions, that is, in all cases in which the motion

of the fluid is turbulent, the frictional resistance is nearly

proportional to the square of the velocity.

Also in cases where the motion is turbulent :

132
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(4) The frictional resistance increases very rapidly with

the roughness of the solid surface.

(5) The frictional resistance is proportional to the density

of the fluid.

These laws can be expressed mathematically for the case

of turbulent motion in this way. Suppose a thin board of

total area a>, wholly immersed, to move through a fluid at

rest with a velocity v. Let / be the frictional resistance

reckoned per square foot of the surface at a velocity of one

foot per second. Then the total resistance of the board is

R=/Wlbs. . . . . (1),

where / is a constant for a given quality of surface and a

fluid of given density. It is convenient to express this in

another way. Let f = (2#/)/G, where f is termed the

coefficient of friction. Then

R . (2).

As the board moves through the fluid the resistance is

overcome through a distance of v feet per second. Hence

the work expended in overcoming friction is

U = ft.-lbs. per sec. (3).

The following are average values of the coefficient of

friction for water, obtained from experiments on large plane

surfaces moved in an indefinitely large mass of water :
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experiments on fluid friction are those carried out by Mr. W.
Froude at Torquay.

1 The method adopted was to tow a thin

board in a still water canal, the velocity and resistance being

simultaneously recorded. The boards were generally 3/16 inch

thick and 19 inches deep, with a sharp cutwater, and from

1 to 50 feet in length. The boards were covered with various

substances, such as paint, varnish, tinfoil, sand, etc., to deter-

mine the influence of different roughnesses of surface. The

results obtained by Mr. Froude may be summarised as

follows :

(1) The friction per square foot of surface varies very

greatly for different surfaces, being generally greater as the

sensible roughness of the surface is greater. Thus, when the

surface of the board was covered as mentioned below, the

resistance for boards 5 feet long, at 1 feet per second, was :

Tinfoil or varnish . . 0'25 Ib. per square foot.

Calico . . . 0-47

Fine sand ....
Coarser sand

(2) The power of the velocity to which the friction is

proportional varies for different surfaces. Thus, with short

boards 2 feet long :

For tinfoil the resistance varied as v2
'

16

For rough surfaces v2 '

00

With boards 5 feet long :

For varnish or tinfoil the resistance varied as v1
"88

For sand -y
2 '

00

(3) The average resistance per square foot of surface was

much greater for short than for long boards
; or, what is the

same thing, the resistance per square foot at the forward part
of the board was greater than the friction per square foot of

portions more sternward. Thus, at 1 feet per second :

Mean Resistance in Ibs.

per Square Foot.

Varnished surface . . 2 feet long 0-41

i,
50 0-25

Fine sand surface 2 0-81

. 50 0-405

1 British Association Reports, 1875.
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This remarkable result is explained thus by Mr. Froude :

" The portion of surface that goes first in the line of motion,

in experiencing resistance from the water, must in turn com-

municate motion to the water in the direction in which it is

itself travelling. Consequently, the portion of surface which

succeeds the first will be rubbing, not against stationary water,

but against water partially moving in its own direction, and

cannot therefore experience so much resistance from it."

The following table gives a general statement of the

numerical values obtained by Mr. Froude. In all the experi-

ments in this table the boards had a fine cutwater and a fine

stern end or run, so that the resistance was entirely due to

the surface. The table gives the resistance per square foot

in pounds, at the standard speed of 600 feet per minute, and

the power of the speed to which the friction is proportional,

so that the resistance at other speeds is easily calculated
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whether the friction is supposed to diminish at the same rate

or not to diminish at all. If the decrease of friction stern -

wards is due to the generation of a current accompanying the

moving plane, there is not at first sight any reason why the

decrease should not be greater than that shown by the experi-

ments. The current accompanying the board might be assumed

to gain in volume and velocity sternwards, till the velocity

was nearly the same as that of the moving plane and the

friction per square foot nearly zero. That this does not

happen appears to be due to the mixing up of the current

with the still water surrounding it. Part of the water in

contact with the board at any point, and receiving energy of

motion from it, passes afterwards to distant regions of still

water, and portions of still water are fed in towards the

board to take its place. In the forward part of the board

more kinetic energy is given to the current than is diffused

into surrounding space, and the current gains in velocity.

At a greater distance back there is an approximate balance

between the energy communicated to the water and that

diffused. The velocity of the current accompanying the board

becomes constant or nearly constant, and the friction per

square foot is therefore nearly constant also.

81. Friction of discs rotated in water. In many
hydraulic machines, turbines, and centrifugal pumps, surfaces

rotate in water, and the friction is an important cause of loss

of energy. A disc rotated in water is virtually a surface of

indefinite length in the direction of motion, and experiments
carried out in this way by the author, Proc. Inst Civil JEng.

Ixxx. 1885, permitted considerable variation of the conditions.

Fig. 83 shows a section of the apparatus. It consisted of

a wooden frame on which was placed a cast-iron cistern C.

A cast-iron bracket B at the top of the frame carried a three-

armed crosshead bb, from which an inner cistern AA was sus-

pended by three fine wires. The crosshead could be adjusted

to any position and clamped by the nut a. Adjusting-
screws in the arms of the crosshead permitted the cistern AA
to be levelled. The discs which were to be rotated in water

were 10, 15, and 20 inches diameter
;
one is shown in position

at DD keyed on a vertical shaft SS. This shaft was centred

on conical ends and driven by a catgut band running on
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pulleys P. The rotating disc is contained in the submerged

copper cylinder AA. The flat bottom of this is fitted with

Fig. 83.

very little play round the gun-metal support of the spindle.

Above the disc was a flat cover EE parallel to the flat bottom

of the cistern. The height of the chamber in which the
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disc revolved could be varied, the disc being always placed in

the centre of the chamber. A thick india-rubber ring bolted

round the cover EE made a water-tight connection with the

cylinder.

To measure the friction of the disc, the reaction tending
to turn the cistern AA was measured, for the reaction on the

chamber must be equal and opposite to the effort required to

turn the disc. To the suspended cylinder was attached an

index-finger moving over a graduated scale. This was adjusted

to zero when the apparatus was at rest. When the disc

234
REVOLUTIONS PER SECOND

Fig. 84.

rotates, the copper cylinder tends to rotate in the same

direction. To measure the effort to rotate which is equal to

the effort turning the disc, a fine silk cord attached to an arc

on the cistern was carried over the pulley e to a scale-pan G-.

Weights in the scale-pan balanced the friction and kept the

index at zero. The rotations were observed by timing the

rotations of the worm-wheel W by a chronograph. A clip

brake K on the shaft was useful in adjusting the speed.

Fig. 84 shows a plotting of one set of results on brass

discs of three sizes. It will be seen that the observations

plot in quite regular curves. The three upper curves are for

a 20 -inch disc of polished brass with lj, 3, and 6 -inch spaces
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between the disc and the flat ends of the cistern. The resist-

ance diminishes a little as the spaces are narrower. The

other curves are for a 15 -inch and 10 -inch disc of brass.

82. Theoretical expression for the friction of a disc

rotating in liquid. Let it be supposed that the general

law of fluid friction which applies to large plane surfaces

moved uniformly in water may be used to determine the

friction of a disc. That is, supposing CD to be the area of

any small portion of the disc moving with the velocity v, let

it be assumed that the friction of that portion of the surface is

fcov
n

;
where / is a constant differing for different surfaces,

and n a constant which at the velocities used in these experi-

ments does not differ greatly from 2.

Let a be the angular velocity of rotation, K the radius of

the disc. Consider a ring of the surface between the radii r

and r -f dr. Its area is 2irrdrf
its velocity is ar, and the

friction of this portion of the surface is therefore, on the

assumption above,

/ x 2-rrrdr x anrn .

The moment of the friction of the ring about the axis of

rotation is then

and the total moment of friction for the two sides of the disc

is then

1.

>n+3

If N is the number of rotations per second, since a = 2?rN,

on+2 _n
M =

2 *__ 3

n + 6

The work expended in rotating the disc is in ft.-lbs. per sec.
1

1 If 7i= 2, from which it never differs much, this formula becomes

Work expended in friction= 623/N
3R5 ft.-lbs. per sec.,

where/ varies from 0'002 to 0*003 for ordinarily rough surfaces, and increases

to 0'007 for the rough surface of a metal disc covered with coarse sand.
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EESULTS OF EXPERIMENTS
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ON ROTATING Discs

Highest
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on+S -j.n+2 JTn+1

The experiments give directly the moment of friction M
corresponding to any speed N for each disc. But for any

given disc

M = cNw . . . . (6),

where c is a constant. Hence for any pairs of values of M
and N obtained in the experiments on a given disc,

logM^logMg
"logN1 -logN2

The mean value of n thus obtained is given for each of the

.surfaces tried. When the mean value of n has been obtained

from pairs of results in which the speed was different, values

of c for each speed were obtained by the formula

log c = log M - n log N,

and the mean values of c thus found are given in the table,

page 140. The values of n for different pairs of speeds never

varied very greatly for any given disc in like conditions,

nor did the values of c vary greatly for different speeds.

Further, the variations from the mean value followed no

regular law, so that they may be attributed to errors of

observation, or to unavoidable small fluctuations of speed

during the observations.

In the formulas above, / is the friction per square foot at

unit velocity, but for any given kind of surface in like

conditions

J
~

Variation of resistance with diameter of disc. Three

sets of experiments with discs 0'8488, 0'6353, and 0'4320

foot virtual radius, rotating in the same chamber of fixed size,

gave moments of resistance in the ratios

1 : 0-2887 : 0'0425,

or for discs of different diameters in a chamber of constant

size the resistance varies as the (n+2'82)th power of the



VII FLUID FKICTION 143

radius. The theoretical formula above (4) is strictly applicable

to discs in chambers the linear dimensions of which are pro-

portional to the diameter of the disc, in which case the

resistances are as the (7i+3)th power of the radius. The
difference of the two cases is not very great, and is consistent

with the experimental result that the resistance with a given
disc is greater as the chamber is larger.

Influence of temperature on the resistance. The

four results with a bright brass disc, experiments 2, 22, 23,

and 24, show that the friction diminishes with unexpected

rapidity as the temperature increases. The diminution is

sensible even for a few degrees difference of temperature, and

hence it appears that a correction for temperature ought to

be introduced in experiments on the flow of water in pipes
and channels. The diminution between 41 and 130 Fahr.

is about 18 per cent, or 1 per cent for 5 increase of

temperature.
The experiments were not numerous enough to determine

exactly the law of variation of friction with temperature, and the

apparatus was not adapted for securing a constant temperature

during a prolonged experiment. The results agree fairly with

the empirical formula

ct
= 0-1328(1 -0-00210 . . . (9),

where c
t

is the value of c for a bright brass disc at the

temperature t.

In the experiments 1 to 17 the temperature varied in

different instances from 53 to 62. The factor

1-0-0021 x 60

1-0-0021*

has been used to reduce the values of c to a standard tempera-
ture of 60. The correction is in any case small, and does

not affect the conclusions drawn from the results.

Influence of roughness of surface. The results of the

experiments are altogether in accord with those of Mr. Froude

as to the influence of the roughness of the surface. Even the

numerical values of the frictional resistance obtained in these

experiments differ very little from those obtained by him for
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long surfaces. Taking Mr. Froude's results for planks 50 feet

long, and comparing them with those obtained in the present

experiments, the resistances in pounds per square foot at

1 feet per second are :

MR. FROUDE'S EXPERIMENTS.

Tinfoil surface .

Varnish .

Fine sand

Medium sand ,

0-232

0-226

0-337

0-456

PRESENT EXPERIMENTS.

Bright brass . 0-202 to 0-229

Varnish . . 0-220 0-233

Fine sand . . 0*339

Very coarse sand . 0-587 0*715

Power of the velocity to which resistance is pro-

portional. There is in this also a remarkable agreement
between the present experiments and those of Mr. Froude.

For the smoother surfaces the resistance varies as the 1*8 5th

power of the velocity; for the rougher surfaces as a power
of the velocity ranging from 1*9 to 2*1. Mr. Froude's results

are precisely the same.

Influence of the size of chamber on the resistance.

In all these experiments, without a single exception, the

friction of the disc increased when the chamber in which it

rotated was made larger. The author is disposed to attribute

this to the stilling of the eddies by the surface of the stationary
chamber. The stilled water is fed back to the surface of the

disc, and hence the friction depends not only on its own surface,

but on that of the open chamber in which it rotates. The
discs were rotated in chambers 3, 6, and 12 inches deep, and
the surfaces of these chambers would be about 1000, 1200,
and 1600 square inches. In the larger chambers the kinetic

energy of the water may be supposed to be more rapidly

destroyed than in the smaller, in consequence of the larger
area of stationary surface. The water being more rapidly

stilled, and the stilled water fed back to the disc in greater

quantity, the resistance of the disc is increased.

Effect of roughening the surface of the chamber. In

experiments 18 and 19 the upper and lower surfaces of the

chamber were covered with coarse sand. Koughening the

surface of the chamber materially increased the friction of

the disc. This may be explained in precisely the same way
as increase of friction due to increasing the size of the

chamber.
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PROBLEMS

1. The resistance of a ship is 1 Ib. per square foot of immersed surface

at 10 knots. Find the H.P. required to drive a ship having
8000 square feet of immersed surface at 15 knots. One knot
= 6086 feet per hour. 829'9.

2. The disc-shaped covers of a centrifugal pump are 2 feet diameter

outside and 1 foot diameter inside. Find the work expended
in friction in rotating the pump at 360 revolutions per minute

/= 0-0025, and n = 2. 326 ft.-lbs. per second.

10
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FLOW IN PIPES

83. Non- sinuous motion of water. When water from a

reservoir which has been at rest long enough for eddies to die

out issues from a sharp-edged orifice, the stream is perfectly

clear and smooth on the surface even at high velocities. Any
disturbance of the water in the reservoir shows itself in

striation of the jet due to the presence of eddies disturbing

the stream-line motion in the jet. The jet from a cylindrical

mouthpiece is always troubled from the formation of eddies

at the inner edge. In capillary tubes, which have been

experimented on by Poisseuille and others, the motion is

generally non-sinuous and free from eddies up to considerable

velocities. But in ordinary water mains the motion is gener-

ally sinuous and turbulent.

Professor Osborne Eeynolds investigated the conditions in

which sinuous and non-sinuous motion occurred in pipes

(Trans. Eoy. Soc. 1884). A steady stream of water was set

up through a glass tube with a flared mouth so that there

was no inlet disturbance. Into the stream a small jet of

coloured liquid was introduced.

So long as the velocity was low enough the coloured water

showed as a straight undisturbed stream line flowing through
the tube with the other water. If the velocity was raised

there came a point at which the coloured liquid suddenly

mingled with the rest of the water, and on viewing the water

by an electric spark it was seen that the water contained a

mass of more or less distinct coloured curls or eddies. With
water at constant temperature and the tank as still as possible

the critical velocity at which the stream lines broke up and

146
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eddies were formed varied almost exactly inversely as the

diameter of the pipe and directly as the viscosity. Very small

disturbing causes, such as a disturbance of the water in the

tank or fine sediment in the water, caused the break-up to

occur at lower velocities. Hence the critical velocity deter-

mined in this way is the higher limit of stable stream-line

flow in pipes. The coefficient of viscosity for water decreases

as the temperature rises, and is given by the equation

0-017
77
~

1 + 0-034* + 0-00023*2

where t is the temperature centigrade. The denominator of

this fraction may be termed the relative fluidity, and will be

denoted by/.
The higher critical velocity as determined by Osborne

Eeynolds by the colour-band method is given by the equation

ve = 0-2458
jj

ft. per sec. . (2),

where d is the diameter of the pipe in feet.

HIGHER CRITICAL VELOCITY

d= J 1 -lj 2 inches

d= -0417 '0833 -1250 -1667 feet

t;c atOC= 5-90 2-95 1'97 1 -4 7 ft. per sec.

Later experiments by Professor Coker, Mr. Clement, and

Mr. Barnes have shown that under certain favourable con-

ditions stream-line flow may subsist to considerably higher

velocities than those observed by Keynolds, and throw a little

doubt on the law that the higher critical velocity varies

inversely as the diameter.1

In another series of experiments Osborne Keynolds
allowed water initially disturbed to flow through a long

smooth pipe. It was found that if the velocity was below a

certain limit the disturbances died out in a short length of

the pipe, and the motion then became non-sinuous. Measur-

ing the resistance to flow in a length of the pipe beyond the

disturbed part, it was found that when the motion was non-

sinuous the resistance varied very exactly as the velocity, but

1 Trans. Royal Society, 1903. Proceedings Royal Society, vol. btxiv.
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that when the motion was turbulent it varied as the

1'7 2th power of the velocity, or nearly as the square of the

velocity. If the velocity in the pipe is slowly increased, the

point at which the eddies cease to die out and there is 'a

deviation from the law that the resistance varies as the

velocity can be observed, and this velocity may be termed the

lower critical velocity. This also was found to vary inversely

as the diameter of the pipe and directly as the viscosity.

The lower limit of critical velocity found by Osborne Eeynolds
is given by the equation

vc = 0'03 8 7 T h. per sec. . . (2a).
jd

LOWER CRITICAL VELOCITY

d= J 1 Ij 2 inches

d= 0-0417 0-0833 0-1250 0-1667 feet

vc at 0C= -928 -465 -310 -232 ft. per sec.

Later experiments by Professor Coker and Mr. Clement

gave the relation

vc = 0-0199 ft. per sec. . . (26),

or about half the values obtained by Osborne Eeynolds. The

reason of the difference has not been explained.

It will be seen that in somewhat wide limits for small

pipes the motion may be sinuous or non-sinuous, but that

above the lower limit very small causes of disturbance render

the motion turbulent. Practically, for the larger pipes and

the velocities with which an engineer has to deal, the motion

is always turbulent.

Let d be the diameter of a horizontal pipe, and p the

difference of pressure in a length I
;
the velocity of flow when

the motion is in rectilinear stream lines is given by the

relation
19.

(3),

where p is in grams per square centimetre and the units are

C.G.S. units. A more convenient form is this. Let h be the

difference of pressure in a horizontal pipe in a distance I

measured in feet of liquid of density p.
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v = 1711-, centimetre units,

=
52150^^ foot units.

Taking for water p = 0'999 and for mercury p = 13'6, then

for h in feet of water

62100-5*1

and for h in inches of mercury . (4).

84. Practical theory of flow in pipes when the motion

is turbulent. In all ordinary cases with which the engineer
has to deal, the water has in addition to its forward motion of

translation a distributed eddying motion. It is beyond hope
to have a theory which will give rationally the velocity of

flow and discharge of pipes in such conditions. It is not only
that the eddying motion of the water is so complicated that

in the strict sense there is no exact theory, but in addition

one of the factors in any formula of flow must express the

exact roughness of the surface of the pipe on which the

production of eddies depends. There is no scientific measure

of roughness, and very small apparent differences in the

quality of the pipe surface cause considerable differences in

the resistance.

Permissible velocities in pipes. Theoretically any given

discharge can be obtained either by varying the pipe diameter

or the head producing velocity of flow, but practically the

range of discharge for a given pipe is much limited. If the

velocity in the pipe is small it must be of large size and

expensive. If great, it is difficult to obtain sufficient pressure
in the distant parts of a district supplied, in hours of large

consumption, and the risk to the mains from sudden variations

of flow, causing what is termed hydraulic shock, is great. A
fair rough rule for pipes used in town's supply is the follow-

ing. Let v be the velocity in a pipe of diameter d (foot

units), then
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d = 6 9 12 18 24 36 inches

= 0-5 0-75 1-0 1-5 2 3 feet

v = 2-7 3-1 3-4 4-2 4-9 6 '3 feet per second.

Of course, cases occur where higher velocities can be

permitted. In short supply pipes to turbines, velocities of

7 to 10 feet per second are not unusual. The reason for

adopting somewhat lower velocities in small mains is that

otherwise the rate of fall of pressure would be excessive.

85. Steady flow in pipes of uniform diameter. If a

long pipe connects two reservoirs at different levels, water

will flow from the upper to the lower, and the conditions

being constant the velocity and rate of discharge will be

constant also. Steady flow being established, since the water

starts from rest and comes back to rest, the work of gravity
on the descending water is exactly balanced by the work of

the resistances, of which much the largest is fluid friction.

Let Q be the discharge in cubic feet per second, H the cross

section and d the diameter of the pipe, v the mean forward

velocity of the water.

Q = iv = d2v cubic feet per second . (5).

As the same quantity of water passes every section in

unit time the velocity must be the same, that is if we under-

stand by v the mean velocity of translation along the pipe.

In fact, the velocity is greater at the centre of the cross

section and less towards the sides of the pipe, and on this

general condition eddying motions are superposed. But the

mean velocity along the pipe is constant, and for simplicity

the complications must be disregarded.

The Chezy formula for flow in pipes. A very simple

theory furnishes an approximate formula which has been of

very great service in hydraulics, and which with tabulated

values of experimental coefficients is still employed more

generally than any other in hydraulic calculations. Let

Fig. 85 represent a short portion of a long pipe through
which water is steadily flowing. The water enters and

leaves at the same velocity, and consequently the work of

external forces must be equal to the work in overcoming
friction. Let dl be the length of the portion of pipe
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considered, z and z + dz the elevations of the end sections

above any horizontal datum XX, p and p + dp the pressures

at the ends, ft the area of cross section, ^ the circumference,

and Q the discharge

per second. Then,

in passing through
the length dl, GQ
Ibs. of water descend *%^ '^"/ p-ty
a distance dz feet,

and the work of

gravity is

Z*dZ

Fig. 85.

a positive quantity
if dz is negative, and vice versa. The resultant pressure on

the two ends in the direction of motion is dp, and the work

of this pressure is

also positive if the pressure is decreasing along the pipe and

dp is negative. The only remaining force doing work on the

water is the frictional resistance. The area of the pipe surface

is %dl, and using the expression obtained above [ 79, eq. (2)]

and putting v for the velocity of the water the frictional

work is

or, since Q = h>,

a quantity always negative because it is work done against a

resistance. Adding these portions of work together and

dividing by GQ,

G
Integrating,

. (6).

Let A and B (Fig. 86) be two sections at distances l
lt

/2
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from any given point, so that the length of pipe now con-

sidered is L = Z2 l
lf
and let plf

z
1
be the pressure and elevation

at A!, p2 ,
z2 , the same quantities at B. Then, if v is the mean

velocity along the pipe,

If pressure columns are introduced at A and B, the water

Fig. 86.

will rise to the levels C and D, such that AC =^ and

P

BD=-p. It is assumed that the atmospheric pressure is the

same at C and D. In a very long pipe this might not be the

case. Consequently

. . (8).

The quantity h is the difference of free surface-level at the

two points of the pipe considered, and is termed the virtual

fall of the pipe. The quantity A/L is termed the virtual slope
of the pipe, and this will be denoted by i. The line CD
passing through the pressure

- column tops is called the

hydraulic gradient. The quantity fl/^ which appears in this

and some other equations is termed the hydraulic mean
radius of the pipe, and will be denoted by ra.
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The general equation for flow in pipes can now be written

more simply
2 fl h

For pipes of circular section and diameter d,m = fl/^
=

d/4.

For such pipes the general equation of flow is

t = *L.= dl
(9)1

20 4 L 4

This equation, with a constant value for f, is the well-known

Chezy formula. It is still extremely useful if values of f,

varying with certain conditions, are used instead of a constant

value.

The following forms of this equation are useful in practical

applications. The virtual fall or head lost in the length L is

* = = 0-0622 feet . . (9a).

The velocity of flow is

= \A 24 E)
= 4 '012

\A? B feet per sec -

The discharge is

Q =
^d

2v = 3 ' 15
/v/(7f")

cubic feet Per sec -

The diameter for a given discharge is

feet . .

The head lost for a given discharge is

h = 0-1008^ f
db

A form of the equation which is in common use is this :

h = 0-1008^ feet . . . (9).

and by some writers this form only is termed the Chezy

equation. The constant c is given by the relation

y20T
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86. Case of a pipe connecting two reservoirs. Inlet

resistance taken into account. Let Fig. 8 7 represent a pipe

connecting two reservoirs at different levels. If the reservoir

levels are constant the velocity in the pipe and the rate of

discharge are constant. The total head causing flow is the

difference of level H, and this is expended in three ways.

(1) To give the initial energy to the water corresponding to

the velocity v there must be expended a head vz

/2g. At the

outlet of the pipe this kinetic energy is wasted in shock and

eddies, so that this is part of the head lost. (2) There is

some resistance due to the form of the inlet, which may be

written %Qv
2

/2g, where f = about 0*5 for a cylindrical inlet, and

Fig. 87.

about 0'05 if the inlet is bell-mouthed. (3) The friction in

the length L has been found to be t-r . ^ feet of head,
a v

eq. (9 a). Adding these together,

-{<"*#}.
(10),

an equation which should always be used for short pipes.
As a matter of fact, water mains are not straight but

curved, to follow the variations of level of the ground. Hence
their length is really greater than the horizontal projection,
and the hydraulic gradient is not strictly a straight line.

But in most practical cases the differences of level of the pipe
are so small compared with its length that there is no error

of practical importance in taking L to be the length of the

horizontal projection of the pipe, or in assuming the hydraulic

gradient to be straight.
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87. Inlet Resistance. The inlet to a pipe may be flush

with the reservoir wall, as at A, Fig. 88
; re-entrant and with

square edges, B; re-entrant with sharp edges, C; or bell-

^^sss/f/s7~)

Fig. 88.

mouthed, D. Values of the coefficient of resistance

1 + f are given in the following table :

Form of Inlet.

A
B
C
D

0-5

0-56

1-30

0-02 to 0-05

1-5

1-56

2-30

1-02 to 1-05

an(i

The inlet resistance is equivalent to the frictional resistance

of a length of pipe given by the equation

(11).

VALUES OF l
Q/d.

f
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velocity is 5 '6 7. The error is here not immaterial, but if the

length of the pipe is 10,000 feet and H= 100, the velocity,

from eq. (10), is 5*65, and if the inlet resistance is neglected
the velocity is 5*6*7, where the difference is in practical cases

negligible.

88. Pressure in the pipe when the water is flowing.
The vertical from the pipe to the hydraulic gradient is the

pressure in the pipe at that point in feet of water, in excess

of atmospheric pressure. If h is the height to the gradient,
h + 34: feet is the pressure, including atmospheric pressure.

Hence there could not be negative pressure in the pipe unless

it rose more than 34 feet above the hydraulic gradient. With

negative pressure the flow would of course be interrupted.

But all ordinary water contains air, which would be disengaged,
and would interfere with flow if the pressure fell much below

atmospheric pressure. Hence, as a practical rule, pipes are

not laid so as to rise above the hydraulic gradient. Further,
at all anticlinal bends air valves are placed so that the air in

the pipe when it is being filled may escape, and also any air

carried into the pipe afterwards, which would accumulate at

the top of vertical bends and interrupt the flow. Unless the

pipe is below the hydraulic gradient these valves cannot act.

89. Darcy's experimental investigation of the resistance

to flow in pipes.
1 An extremely important series of measure-

ments of the flow in pipes with different heads was carried

out by M. H. Darcy, then Engineer of the Paris Water

Supply, under the auspices of the French Government. The

general bearing of the results may be stated thus :

(1) The frictional resistance varies considerably with the

nature and degree of roughness of the surface of the pipes.
This is in accordance with Froude's results already described,

80.

(2) The greater part of the experiments were made on

new and clean pipes, some of them asphalted. A few were

made on old and somewhat incrusted pipes. It was found

that the resistance of old and incrusted pipes was double that

of new and clean pipes.

(3) The simple Chezy formula

1 Recherches exptrimentales relatives au mouvement de I'eau dans les tuyaux.
Paris, 1857.
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very well expressed the results of the tests, if special varying
values were given to the coefficient f

(4) The coefficient f varies with the velocity of flow, with

the diameter of the pipe, and with the roughness of the surface

of the pipe. As, for practical reasons, there is not a wide

variation of velocity in water mains, the dependence of f on

the velocity may be disregarded in most practical calculations,

On the other hand, the diameters of pipes range from 2 inches

to 6 inches, and the variation of f with the diameter is very

important.

Generally, at ordinary velocities and with cast iron or steel

pipes laid in the ordinary way,

D (13),

where the constants have the following values :

ft

Drawn wrought-iron or clean

cast-iron pipes . . . . '00497 '084

Pipes altered by light incrusta-

tions -0100 -084

Or, in an easily remembered form,

Clean and smooth pipes,

Incrusted pipes,

[TABLE.
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VALUES OF DEDUCED FROM DARCY'S FORMULA

Diameter of Pipe.
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account of it is extremely inconvenient. It can be taken

into account in a simpler way, which will be given later.

90. Maurice Levy's formula for pipes. Darcy's experi-

ments were made on pipes not more than 20 inches in

diameter, and within that limit his formula has considerable

authority. M. Maurice Levy came to the conclusion, from

experience, that in the case of large pipes Darcy's formula

makes the resistance greater than it really is, and leads to

the use of pipes unnecessarily large. M. Levy, on partially

theoretical grounds, obtained the following formulae for metric

measures :

For new and clean cast-iron pipes,

0=36-4 <s/{ri(l+

For pipes incrusted,

0=20-5

where r is the radius of the pipe. Eeducing to English foot

units and substituting the diameter for the radius, these

equations become :

For new and clean pipes,

=135(1 + 0-4

For incrusted pipes,

=
42-8(1 + 1-17

. (Ua).

Where in the Chezy formula, eq. (12), the value of f is :

For new and clean pipes,

0-007408

For incrusted pipes,

1 + 0-4

0-02335

+ 1-17 J

. (16).

The following table gives values of f calculated by Levy's
rule for comparison with those of Darcy:
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VALUES OF FROM LEVY'S FORMULA

Diameter of Pipe.
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The following tables give the values of the coefficient

in the Chezy formula

for different kinds of pipe, of different diameters, and with

different velocities of flow, deduced in this way.

VALUES OF

When d in Feet is
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If an expression of the form adopted by Darcy is used,

then the results given above agree fairly closely with the

following values,

VALUES OF

Kind of Pipe.
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VALUES OF FOR NEW STEEL RIVETED PIPES

Diameter in
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It is clear, the author thinks, that during the four years

slimy deposits had accumulated in the main and increased the

resistance to flow. As would be expected, these were almost

entirely in the first length of main from the supply reservoir

to Pompton Notch. In the remainder of the main the

coefficients are not sensibly different from those obtained in

the previous gaugings.

Messrs. Marx, Wing, and Hoskins made gaugings in 1897

and in 1899, by a calibrated Venturi meter, of a remarkable

supply pipe 6 feet in diameter, part of which was riveted steel

and part of wood staves, at the Pioneer Electric Power

Company, Ogden, Utah (Trans. Am. Soc. of Civil Engineers,

xl. 471, and xliv. 34). The results on the steel part of the

pipe plotted in curves furnish the following values for
f.

COEFFICIENT f FOR SIX-FOOT KIVETED STEEL PIPE

v= 1-0 1-5 2-0 2-5 3-0 4'0 5O 5'5

1897 gauging
=0053 -0052 -0053 '0055 -0055 -0052

1899 gauging
=0097 -0076 -0067 '0063 -0061 -0060 -0058 -0058

The increase of resistance with time is very marked at the

low velocities if the measurements at these can be trusted.

It seems probable, however, that in the earlier gauging the

resistance at low velocities was under-estimated, or the resist-

ance at high velocities over-estimated.

93. Timber stave pipes. In the western part of the

United States remarkable pipe lines have been constructed of

wood staves hooped with steel bands. The wood used is redwood

or sequoia, which when wet appears to have great durability.

The staves break joint, and at their ends a thin piece of steel

is jammed in a saw-cut. By slightly humouring the staves

bends of large radius are easily obtained. The staves are

usually 1J inch thick, accurately shaped by machinery. The

steel hoops are spaced at different distances according to the

pressure, and are drawn tight by a screwed end and nut.

These pipes can be put together in difficult country where

transport of metal pipes would be very costly.

The results of the gaugings, by Messrs. Marx, Wing, and

Hoskins, of the part of the pipe at Ogden constructed of wood
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staves'and 6 feet in diameter ( 92), gave the following values

for the coefficient f :

VALUES OP t FOB SIX-FOOT WOOD STAVE PIPE

v= 1-0 1-5 2-0 3-0 4-0 5-0 5-5

1897 gauging
=0064 -0053 -0048 -0043 -0041

1899 gauging
=0048 -0046 -0045 '0044 -0043 -0043 -0043

In these, as in the results on riveted pipe, there seerns

some doubt as to the accuracy of the observations at the

lowest velocity. The variation of f with velocity would be

expected to be greater than in the 1899 gaugings for

frictional surface as smooth as that of a wood pipe.

94. Fire hose pipes. Very careful experiments on the

discharge through fire hose have been made by Freeman

(Trans. Am. Soc. of Civil Engineers, xxi. 303). For 2^-inch
hose pipes of different makes the following were the values of

the coefficient obtained :

VALUES OP
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The head producing flow in the hose pipe is H h, and

therefore

-h)d
v =

. . (17).

95. Practical calculations of flow in pipes. In the

following calculations it is assumed that there are no special

obstructions due to valves, bends, etc., and that the pipe is

so long that only the frictional resistance requires to be

taken into account. In long mains the resistance of ordinary
bends is negligible. The fundamental equations are :

- (i),

Q = -^ . . (3).

From these equations the following are easily derived, and
for convenience are repeated here from 85 :

. (26),

. (Sa),

0-632 . . . (4),

k =
0-1008^ . . (44).
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Kough preliminary calculations can be made by the follow-

ing approximate formulae obtained by taking a fixed value of f.

They are least accurate for small pipes :

For new and clean pipes,

For old and incrusted pipes,

v = 40

Q = 31

yO
2

?,

When the dimensions of a pipe are given and the velocity
and discharge are required there is no great difficulty. If

Darcy's value of f is used it can be found from eq. (1),

and the calculations are straightforward. If a value of f

depending both on the diameter and velocity is to be used,

an approximate value of v can be obtained from eq. (5) or (6),

and then the value of f can be selected from the tables and
v and Q re-calculated. There is rather more difficulty when
the discharge is given and the diameter is required. Some-
times from past experience an engineer can assign probable
values for d and v, or they can be found approximately by
eq. (5) or (6). Then f can be found from Darcy's formula or

from the tables, and a new value of the diameter calculated by
eq. (4). The engineer has to consider whether he will allow for

an increase of resistance as the pipe becomes old and incrusted.

The rate at which a pipe becomes rougher from corrosion

depends on the quality of the water. In some cases the

interior of the pipe remains clean for a long time. In some
other cases the corrosion is rapid. A common rule of thumb
to provide for corrosion is to calculate the diameter of pipe

required when clean, to add one inch, and choose the nearest

larger commercial size.

9 6. Tables of flow in pipes. Tables are published giving
the velocity and discharge of pipes of different diameters with

different heads. Generally these are calculated on a fixed
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value of f, and the results are therefore only approximate.

They are of assistance, however, in settling pipe proportions.

The following may be mentioned :

(1) Hydraulic and other Tables, by Thomas Hennell, Spon,
1884. This is based on the Chezy formula.

(2) Tables for Calculating the Discharge of Water in Pipes,

by A. E. Silk, Spon, 1899. Based on a modified Darcy formula.

(3) Diagrams of Pipe Discharge, by E. B. and G. M. Taylor,

Batsford. These are based on Kutter's formula with a rough-
ness coefficient 0*013.

(4) Tables for the Solution of Ganguillet and Kutter's

Formula, by CoL E. C. S. Moore, RE., Batsford.

(5) Mr. E. 0. W. Eoberts has designed a very convenient

small circular slide-rule for facilitating calculations on flow in

pipes. The graduations are based on Kutter's formula. The

slide-rule is made by Mr. Gr. Kent of Holborn.

97. Secondary losses of head in pipes. In very long
mains the so-called skin friction or resistance of the pipe

surface, which is determined by the equations in 95, is so

large compared with any other losses that the latter are dis-

regarded in ordinary practical calculations or covered by

assuming a rather larger value of
f. It is, however, sometimes

necessary to consider these smaller losses, especially in the

case of comparatively short mains. The inlet loss has already
been considered ( 87), and can be taken into the reckoning
without difficulty. The other losses due to changes of diameter

of the pipe, changes of direction,

valves, etc., are generally of the

nature of losses by shock. All losses

are properly ultimately due to fluid

friction, but it is rather convenient to

speak of these losses as shock losses,

as distinguished from the skin friction

losses previously discussed.

Abrupt enlargement of section.

Let dlt <olf KI be the diameter,
Fi8- 89 -

section, and velocity in the narrower,

and d
2 ,

o>
2 ,
v
2
the same quantities in

the wider part of the pipe, Fig. 89. The head lost in shock

( 36) is
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*$ - a*),

where fe is a coefficient depending only on the ratio of the

sections or diameters at the enlargement.

^ = 1-2 1-5 1-7 2-0 3-0

- = 1-1 1-22 1-30 1-41 1-73

& = 0-04 0-25 0-49 I'OO 4'00

If plf p2
are the pressures in the two parts of the pipe,

.P2-.Pi V

Abrupt contraction of section. When a stream passes
from a larger to a smaller section abruptly
a contraction is formed at aa (Fig. 90),

and the stream then enlarges to fill the

pipe, eddies being formed as at an abrupt

enlargement. Let co be the section, and T;

the velocity, where regular steady motion

is re-established. At the contraction aa the
Fig. 90.

section of the stream is c
ca) and the velocity

is v/cc , where c
c is a coefficient of contraction. Then the head

lost in turbulent motion is

= ic~ (19),

where . is a coefficient. If c
c
= 0'63, as in a free jet,

= 0'345.
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The value of the coefficient is not well ascertained. Weisbach

obtained as the result of experiments the empirical relation

0-077

e- (20).

For a quite sharp edge at the change of section c
c
= 0'62 to

0'64. For a rounded edge c
c
= 0'7 to 0'8.

Gradual enlargement. The resistance in this case can

only be ascertained by experiment. Fliegner found the head

lost to be (Fig. 91)

Elbows. The loss of head at elbows appears to be due

Fig. 91. Fig. 92.

to the formation of a contraction and abrupt increase of
section (Fig. 92). Weisbach, from experiments on a very
small pipe, obtained the expression

= 0'95 2-05

= 20 40

0-14

60

0-37

80

075
90

1-0

100

1-27

. (22).

120'

1-87

This is a loss additional to the pipe friction in the parts
constituting the elbow.

98. Resistance at bends. Till lately the resistance at
bends has been supposed to be a shock loss due to contraction
and abrupt enlargement of the stream at the bend. On this

hypothesis, and using the results of some experiments on small
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bends, Weisbach found the following empirical expression for

the head lost at a bend (Die experimental Hydraulik, p. 156).

Let 6 be the angle subtended by the bend at the centre

of curvature in degrees, v the velocity, r the radius, and d the

diameter of the pipe, and E the radius of curvature measured

to the centre line of the bend. Then p r/K is the curvature.

The head lost is

, . (23).

= 0-131 +

p= 0-l 0-2 0-3 0-4 0-5 0-6 0'7 0'8 0*9 1-0

H/d= 5 2-5 1-67 1-25 1-0 '83 '71 '62 -55 -5

f&
= -13 -14 -16 -21 -29 -44 -66 '98 1-41 1-98

No great confidence has been placed in these results, as

they are based on very limited and small experiments.

Recently Mr. Alexander (Proc. Inst. Civil Engineers, clix. 341)
has made some very careful experiments on small varnished

wood bends (d = 1^- inch) with considerable variation of radius

of curvature and velocity of flow. In spite of the small scale

of these experiments they throw some light on the nature of

the resistance at bends. The most important point is this,

that the total resistance at a bend is made up of the skin

resistance of a straight length of pipe of the same length as

the bend, and an additional resistance due to the curvature

which is not a shock resistance but merely an augmentation of

the skin friction. Hence the total resistance at a bend can

be expressed by the relation

H-fc^Jfeet
- (24),

where I is the length of the bend measured along its centre

line, and d the diameter of the pipe. It appeared in the

experiments that the resistance per foot length of bend did

not regularly decrease with the curvature, but was a

minimum when p = 5, or when the radius of curvature was

2|- times the diameter of the pipe. Mr. Alexander has given
some empirical expressions for loss of head at bends, but they
are inconvenient, and it is sufficient for practical purposes to

proceed in a simpler way. Assuming the result that the
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bend resistance is merely an augmented skin friction resistance,

so that it can be expressed by the equation (24), the value

of f6 may be found from such experiments as are available.

The most valuable experiments are some by Messrs. Williams,

Hubbell and Fenkel, on large bends of asphalted cast iron, and

of these the best are on bends in pipes of 30 inches in

diameter (Proc. Am. Soc. of Civil Engineers, xxvii. 314).

The coefficients are deduced for right-angled bends in which

Z = 7rK/2. For any other bends the resistance will be

proportional to the angle subtended at the centre of curvature,

so that if /! is the length of such a bend the coefficient will

be greater or less than those given below in the ratio
l-^jl.

VALUES OF BEND COEFFICIENT fa FOR RIGHT-ANGLED BENDS

Weisbach, small pipes.

p = -025 -05 -1 -17 -25 -33 0'5

R/d = 20 10 5 32 1-5 1-0

fa
= -001 -002 -004 -008 -012 -018 -046

Williams, Hubbell and Fenkel, 30-inch main.

p = -021 -031 -050 -083 -125 -21

R/d = 24 16 10 6 4 2-4

fa
= -009 -0092 -0118 -015 -0155 -018

For small values of the curvature the coefficient of

resistance of Weisbach's small pipes is much less than that of

the 30 -inch pipe, but for large values of the curvature it is

not very different. It may be suspected that for the small

pipes with small curvature the motion of the water was

possibly approximately non-sinuous.

The results may be put in another way. Let l
t
be the

length of a straight pipe the resistance of which is equal to

that of a right-angled bend of length I along the centre line.

Then if % is the proper coefficient corresponding to the

diameter, velocity, and roughness in the ordinary formula for

pipe friction,

/ILi-X 1*
C
20 d

b̂

2g d
'

*!
= #/ - - (25).

Taking f= 0*005 for a 30-inch asphalted pipe, the

lengths equivalent to a right-angled bend are as follows :
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/>=-021



174 HYDEAULICS CHAP.

P-l-0 ! I I i i i i

^=1-0 0-95 0-86 0-74 0'61 '47 '32 -16
to

fs
= OO 0-07 0-26 0-81 2-1 5-5 17*0 97'8

Some experiments by Kuichling on a 24-inch sluice in a

cast-iron main gave the following results :

p = 0-66 0-60 0-50 0-37 0'25 0-18

fs = 0-8 1-6 3-3 8-6 22-7 41-2

It will be seen how very largely the pressure beyond the

sluice is reduced when the valve is much closed. The form of

the valve casing has a good deal of influence on the resistance.

With various forms of casing the resistance when the valve or

sluice is full open may amount to from two to sixteen times

100. Flow in a main in which there are secondary
resistances. The equation for the velocity of flow becomes

too cumbrous if expressions for the secondary resistances are

inserted. It is best to proceed by approximation. Let H be

the total head in the length I. Then taking account only of

the inlet resistance and skin friction an approximate value of

the velocity v can be found from the equation

Knowing this approximate velocity, the losses of head due

to the secondary resistances can be calculated. Let h = the

sum of these losses. Then a more approximate value of v can

be found from the equation

PROBLEMS.

1. Find an expression for the relative discharge of a square and a

circular pipe of the same section and slope. 1-062 to 1.

2. A pipe is 6 inches in diameter, and is laid for a quarter of a mile at

a slope of 1 in 50
;
for another quarter of a mile at a slope of

1 in 100 ;
and for a third quarter of a mile is level. The

surface of the supply reservoir is 20 feet above the inlet, and
that of the lower reservoir 9 feet above the outlet. Using
Darcy's coefficient for clean pipes, find the discharge. Also
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draw the hydraulic gradient and mark the pressure in the pipe
at each quarter mile. 0'824 cubic foot per second.

3. A pipe, 2000 feet long, discharges Q cubic feet per second. Find
how much the discharge would be increased, if for the last

1000 feet a second equal pipe was laid alongside the first, and
the water allowed to flow equally through both. Show by a

sketch how the hydraulic gradient would be altered.

Ratio of discharge ^ to /s/5.

4. A reservoir, the level of which is 50 feet above datum, discharges
into a reservoir 30 feet above datum through a 12-inch pipe
5000 feet in length. Using Darcy*s coefficient for clean pipes,
find the discharge. 2 '7 10 cubic feet per second.

5. The levels of the pipe in the last question are : at the upper
reservoir, 40 feet ; at 1000 feet, 25 feet ; at 2000 feet, 12 feet ;

at 3000 feet, 12 feet; at 4000 feet, 10 feet; at the lower

reservoir, 15 feet above datum. Sketch the line of hydraulic

gradient, and write down the pressure in the pipe at each of

these points.

6. A pipe, 9 inches in diameter, connects two reservoirs one mile

apart, the water -surfaces being 100 feet and 47 feet above

datum. Using Darcy's coefficient for incrusted pipes, find the

velocity and discharge.
3 -3 feet per second ; 1*46 cubic feet per second.

7. A pipe is 1500 feet long and 6 inches in diameter. It is to

discharge 50 cubic feet of water per minute. Find the loss of

head in friction and virtual slope. Use Darcy's coefficient for

clean pipes. 19'6 feet; 0-013.

8. What is the head lost per mile in a pipe 2 feet diameter discharg-

ing 6,000,000 gallons in 24 hours : (a) when new ; (6) when
incrusted. 10'7 feet ; 21'5 feet.

9. A pipe is to supply 30,000 gallons per hour. The available head

is 80 feet per mile. Find the velocity and diameter (a) from
the approximate formula

; (6) from the tabular value of

corresponding to the approximate velocity and diameter.

571 foot and 5-2 feet per second.

577 foot and 5-10 feet per second.

10. A water main has a virtual slope of 1 in 850, and discharges
35 cubic feet per second. Find the velocity and diameter

(a) approximately by assuming = 0-0064 ; (6) more accurately

by selecting a coefficient from the tables for asphalted cast iron.

3-68 feet and 3-3 feet per second.

3-426 feet and 3*80 feet per second.

11. It is required to discharge water from a reservoir through a

horizontal pipe 6 inches diameter and 50 feet long. Head over

inlet 20 feet Find the discharge, taking into account the

inlet resistance. f= 0-0075. The inlet is flush with the

reservoir. 3-32 cubic feet per second.

12. Find the diameter of a new cast-iron pipe, having a fall of 10 feet

per mile, capable of delivering water with a velocity of 3 feet

per second. 0-1359 foot.
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13. A pipe 12 inches in diameter and 1 mile in length delivers water

from one reservoir to another with a difference of level of

60 feet. The surface area of the lower reservoir is 10,000

square feet, and the water-level is observed to be rising at the

rate of 11 inches per hour. Find the coefficient of friction

of the pipe. 0-0174.

14. A hydraulic main is 6 inches diameter; the velocity is 3 feet

per second
;

and the pressure is 700 Ibs. per square inch.

What is the gross horse-power transmitted. 108 H.P.

15. Supposing the hydraulic main in the last question to be clean

cast iron, find the loss of pressure in pounds per square inch

per mile, and the percentage of the energy transmitted wasted

in friction. 14 '1 Ibs. per square inch ; 2-01 per cent.

16. A horizontal pipe is in three sections, each of 1000 feet in length,
and of diameters 10 inches, 12 inches, and 15 inches respec-

tively. The discharge is 5 cubic feet per second. Taking the

coefficient =0'01, find the loss of head in friction in each

length, and the change of pressure at each abrupt change of

diameter. Friction = 6 -90, 3'96, and 2-03 feet.

Pressure change, 0'555 and 0*288 foot.

1 7. Taking the pressure at the inlet of the pipe in the last question to

be 25 feet, draw the hydraulic gradient with a vertical scale

fifty times the horizontal.

18. A pipe connects two reservoirs 1000 feet apart with a difference

of surface-level of 20 feet. If a sluice at the outlet into the

lower reservoir is partially closed so that the discharge is

reduced to one-half, what will be the change in the hydraulic

gradient ?



CHAPTEK IX

DISTRIBUTION OF WATER BY PIPES

101. Town supply. The amount of water supplied per head

in different towns varies very greatly. For ordinary domestic

purposes 12 gallons per head per day is a small supply, and
18 to 20 gallons an ample supply. For trade and manu-

facturing purposes 6 to 12 gallons per head per day is

generally sufficient. But in a great many towns the supply
is larger, and in some cases this is due to waste of water by
leakage from the mains. In some towns in the United States

the supply reaches 100 to 150 gallons per head per day.
The demand for water varies, being small at night and greatest
at certain hours in the day. In designing water-mains it is

usual to assume the maximum rate of flow to be double the

mean rate. In laying new mains a further allowance is made
for the prospective increase of population.

The greatest statical pressure in the mains is in ordinary
cases 200 to 300 feet of water, and with commercial fittings
a higher pressure is undesirable. The lowest pressure which
should be provided at points of delivery to consumers is 80
to 100 feet. If a district varies considerably in level it is

divided into zones, in each of which the difference of level does

not exceed 80 to 100 feet. An independent supply from a

service reservoir at least 200 feet above the lowest point in

the zone is provided. Such service reservoirs are fed by a

trunk main from the source of supply, and usually contain

three or more days' supply in case of accident to the main.

The distributing mains are calculated so that when losses of

head are allowed for there is adequate pressure at all points
of delivery during the hours of maximum demand.

The zones are divided into subdistricts, each with an

177 12
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independent supply, and these districts vary in area with the

population. One reason for this is the desirability of control-

ling waste of water by waste-water meters, through which the

supply to limited districts can be passed and measured. The

smallest mains used are 3 inches in diameter, but generally
mains are not less than 4 or 6 inches in diameter.

Fig. 95.

102. Water-supply main. Fig. 95 shows the general

arrangement of a water-supply main connecting a storage

reservoir A and a service reservoir B. The line of hydraulic

gradient is drawn from the lowest level in A to the highest

in B, the condition in which the rate of flow will be least.

The pipe line follows generally the contour of the ground, but

Fig. 96.

is everywhere below the hydraulic gradient. At C is a stream,

where the pipe line may be carried under the stream by a

specially constructed steel pipe, termed a siphon, or over it on

a bridge aqueduct. At D is a valley, which may be crossed

by a siphon, or the pipe may be carried on piers. If high

ground occurs on the route it may be necessary to place the

pipes in a tunnel to avoid rising above the gradient. Another
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way of dealing with rising ground between the inlet and outlet

is to adopt a main with pipes of two diameters. Thus, in Fig.

96, the rising ground at C prevents the adoption of a uniform

hydraulic gradient from A to B. Then a larger pipe must be

used from A to C, giving the required discharge on the flatter

gradient ;
and a smaller pipe may be used from C to B, giving

the same discharge on the steeper gradient.

As to the pressure in the main when the outlet is full

open, the pressure in feet of water at any point is the vertical

intercept between the pipe line and the hydraulic gradient.

But if a valve at the outlet is closed and the water is

stationary in the main, the pressure is the vertical intercept

between the pipe line and the horizontal AF. Hence gener-

ally the strength of the pipe has to be calculated for this

latter pressure, if under any circumstances the outlet can be

Fig 97.

closed. Any regulation of the flow at the outlet increases

the pressure in the main. In certain cases, to reduce the cost

of the main, there is no valve at the outlet, and regulation of

flow is effected entirely by a valve at the inlet. In that case

the pressure at any point is never greater than the height to

the hydraulic gradient.

103. Break-pressure reservoirs. When a water-main

is of great length, and when there is a large fall H3 between

the supply reservoir at A and the final service reservoir at

B, it is often necessary to introduce intermediate balancing
or break-pressure reservoirs, such as those shown in Fig. 97
at C and D. The general hydraulic gradient is the line AB
from the surface-level in A to the surface-level in B, and for

this gradient and the required discharge Q the diameter of

the pipes must be calculated. Now, if there are no inter-

mediate reservoirs, the pressures in the main at any point
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when the pipe is delivering the full discharge will be the

height from the pipe to the hydraulic gradient AB. So far

as this condition of things is concerned, intermediate reservoirs

are not necessary. But in the working of the main there

must be times when the delivery of the main is decreased,

and the pressure in the main will then be greater ;
there

must be times when the delivery is stopped, and then the

pressure at any point in the main will be the hydrostatic

pressure due to the depth of the point below the surface-level

in the supply reservoir, or, what is the same thing, the height
from the pipe to the horizontal AE. Thus at D the hydro-
static pressure would be H2 ,

and at B, H3 . Hence, as respects

strength, the pipe must be calculated for the hydrostatic

pressure in the main when the delivery is stopped, and this

may involve inconvenient thicknesses of pipe and unnecessary
cost. By taking the pipe line so as to reach at C and D the

level of the hydraulic gradient, and introducing balancing
reservoirs there, into which one length of main discharges and

from which another receives its supply, the pressure conditions

are ameliorated. With full delivery the hydraulic gradient
is AB as before. But when the delivery is stopped, the

hydrostatic pressure in each length can never exceed that

due to the nearest higher reservoir. Thus at C the pressure
cannot exceed 7^ ;

at D it cannot exceed h2 ;
and at B it

cannot exceed h3.

104. Loss of head in a main consisting of sections of

different diameters. Two cases may be considered, (a) The

discharge may be taken to be constant throughout the main.

(&) The velocity may be taken to be constant throughout,

portions of the flow being abstracted by branch mains at each

change of diameter.

(a) Constant discharge. Let Q be the discharge, d
lt
d

2 ,
d3

the diameters, and l
lt

1
2 ,

13 the lengths of the sections of the

main. Then the velocities are

The losses of head due to friction are



ix DISTKIBUTION OF WATEE BY PIPES 181

where, in approximate calculations, a common mean value can

be selected for f The total loss of head due to friction is

[ 95, eq. (46)]

f 1 1 7 1

(1)-

(b) Constant velocity in the main, the discharge diminish-

ing from section to section. Let Q x , Q2, Q3 be the discharges
in the successive sections, d

lt
d2, dz the diameters, and l

lt
12,

13

the lengths of the sections, and let v be the common velocity

throughout the main. Then the diameters must be fixed by
the relations

i= /
V 1TV TTV 7TV

Introducing these quantities into the ordinary equation for

loss of head in friction, the total loss is [ 95, eq. (2&)]

- . . (2).

The secondary losses of head are neglected in these equations,
and usually have to be allowed for by an addition to H,
determined by experience in similar cases.

105. Equivalent mainof uniform diameter. It sometimes

facilitates calculations of loss of head to substitute for a main

Fig. 98.

in sections of different diameter an equivalent uniform main

having the same discharge with the same loss of head. Let

A (Fig. 98) be a main of varying diameter having lengths
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/... of diameters dv d# d
s
.... It is required

find the length I of an equivalent main B of diameter d.

Let v
lt
v2 ,

v3 ... be the velocities in A, and v the velocity in

B, with any discharge Q. Since the loss of head in B is to

be the same as that in A, from $95, eq. (2&),

"3 "3

d.

where a common mean value can be selected for
f.

But

Consequently

d-d?
+
d?

+
d/

+

(3),

which is the length of the equivalent main.

106. Main in which the discharge decreases uniformly

along the length. In street mains water is delivered into

branch mains or service pipes, so that the discharge pro-

Fig. 99.

gressively decreases. It is useful to consider a limiting case

in which the volume of flow in a main of uniform diameter

decreases proportionately to the length. Let AB (Fig. 99) be a

pipe supplied from a reservoir, and DE its hydraulic gradient.

Let Q cubic feet per second be supplied at A, and discharged into
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service pipes uniformly along the route, so that the pipe loses

q = Q// cubic feet per second per foot run. Let C be any point,

AC = z, AB =
/, hx

= the virtual fall from A to C, ^ = the

virtual fall from A to B, and d = the diameter of the pipe.

The volume of flow at C is Qx
= Q qx. In a short length

dx at C the head lost is [ 95, eq. (46)]

Hence between A and C the head lost is

=
0'1008|P(Q-

JQ
But

/(Q
-

qy-fdx = Qzfdx
-
ZQqfxdx +

f (Q -

JQ

. . (4).

But

AtB,

. / (5).

In other words, the total loss of head is precisely one-third

of what it would be if the flow was uniform along the pipe
instead of uniformly decreasing. The line of hydraulic

gradient in this case is a cubic parabola ;
that is, assuming as

usual that lengths measured along the pipe do not sensibly
differ from their horizontal projections.

Determination of diameter of pipe which delivers water

uniformly en route. Suppose a pipe of uniform diameter d

receives Q cubic feet of water per second at the inlet and

delivers Qz cubic feet at x feet from the inlet, having distri-
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buted qx cubic feet uniformly in that distance. From the

equation above, the loss of head in the distance x is

hx = 0-1008

Now let

Then in a simple form, similar to that for pipes in which the

discharge is uniform along the length,

Q'
2

. . . (6).

But Q' is greater than Qx + ^qx, and is less than Qx

-^qx\ that is, Q
r

lies between Q,x +Q'5qx and Qx +

As an approximation, let Q' = Qx + Q'55gx ;

** 0-1008^(0,
+ 0-550B)

2
. . (7).

So that if the pipe is calculated for the discharge Qx at the

outlet end plus 0'55 of the delivery qx en route, like a pipe
of uniform discharge, it will satisfy the conditions.

[* 107. Pipe connecting a supply and a service reservoir,

and delivering water en route. Let / be the length of the

pipe, and h the difference of surface-level in the reservoirs.

During the night, when the consumption of water en route

is zero, the pipe delivers from A to B (Fig. 100) a quantity of

water given by the relation [95, eq. (4a)]

The hydraulic gradient is then the straight line AB.

When the consumption en route reaches the value ql, Qf

is received at A, and Qx
= Q' ql is delivered at B. From the

equation above,

. (8).

If ql increases Qx diminishes till, when
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the discharge into the reservoir B ceases. The line of hydraulic

gradient is then a cubic parabola with a horizontal tangent at

B. When the service en route increases still more, the pipe is

fed at one end by the reservoir A and at the other end by the

reservoir B. The line of hydraulic gradient remains parabolic,

but its horizontal tangent is at some point C.

Let x
l be the horizontal distance from A to C, and x2 from

C to B, and let hx be the virtual fall from A to C. From

106, eq. (5),
f n*"r 3

hx = 0-1008 i 2
-*L;

and considering the section CB,
f rftcr 8

hx - h = 0-1008
j-,

q
-^- t

li O

also I = x
1 -f x.2. These three relations determine any three of

the quantities h, hx , d, q, x
1}

x.2. It may be noticed that

- (9),

l-x.

108. Branched pipe connecting reservoirs at different

levels. Let A, B, C (Fig. 101) be three reservoirs connected by
pipes as shown. Let l

lt ^, Q x , Vj be the length, diameter,

discharge, and velocity in the pipe AX ;
1
2 , d^ Q2 ,

t?
2
the same

quantities for BX, and /
3 , d

s, Q3,
v
3

for XC. Suppose the
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dimensions and positions of the pipes known and the discharges

required. If a pressure column is introduced at the junction
X the water will rise to a height XE, and aE, &E, cE will be

the hydraulic gradients of the pipes. If the surface-level at

E is above 6, the reservoir A supplies B and C. If the surface-

level at E is below 6, the reservoirs A and B supply C. Con-

_ ;
D o,t/UTn_Lint.

Fig. 101.

sequently there are three cases (a) E above &, Qi = Q2 + Q3 ;

(V) E level with 6, Q l
= Q3 and Q2

=
; (c) E below 6, Qx +

Q2
= Q3

. To determine which case has to be dealt with,

suppose XB closed by a sluice. Then there is a simple main

of two diameters. Let h
a) h

b,
h

c
be the heights of the surface-

level in A, B, and C above datum, and hf
the height of E, on

the assumption that XB is closed. Then by 95, eq.

*.-*' = 0-1008^',

But in the condition assumed Q l
= Q3 .

ha - h'

(10),

from which hf
is easily calculated. If then ~h! is greater than

h b , opening the sluice in XB will allow water to flow into

oir B, and the case is (a). But if hf = hb,
the case is (b) ;

and if hf is less than h
b, opening the sluice will admit water

from B to C, and the case is (c). Having distinguished the

case, the problem can be solved by approximation, choosing a

new value of h between h' and hb,
and recalculating Q 1? Q2 ,

and Q3. The problem is solved when, with the assumed value
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of h, the relations of the discharges are those stated above.

The approximation seems cumbrous, but is really easy.

109. Compound main. It is sometimes necessary to

supplement part of a main by one or more mains laid near it,

or between two points there may be several mains through
which water can flow. Such a system may be termed a

compound main. Suppose the points A and B are connected

by mains ra, n, and p. Let Q1? Q2 , Q3 be the discharges of the

mains, d
lt
d2,

d3 their diameters, l
l}

1
2,

1B their lengths, and h the

virtual fall or difference of level of the hydraulic gradient

between A and B. The total discharge of the mains, from

95, eq. (4a), is

It is sometimes convenient to calculate the diameter of a single

equivalent main having the same discharge as ra, n, and p with

the same virtual fall Let d be its diameter and / its length.

Then

If

110. Hydraulic gradient of a pipe of variable diameter.

-At a change of diameter, where the velocity changes from

Fig. 102.

^2> there is: a change of pressure head (j>2

1;2

2

)/2^, and also usually a loss of head in shock, the
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amount of which for different cases is discussed in S 97.

Suppose for simplicity the shock losses neglected and that a

mean value is selected for the pipe friction coefficient f. Let

Fig. 102 represent a main, the sections of which have

diameters d
lt d2 ,

d3 ..., and lengths l
lt

12,
ls ... ;

and let Q be

the discharge. The losses of head due to pipe friction are

[ 95, eq. (46)],

At B there will be a gain of pressure head due to decrease

of velocity from v-^ to v2 ;
at C and D there will be loss of

pressure head due to increase of velocity from v2 to v3 and

from vs to v. The velocities can be calculated from the

diameters and the discharge, and the changes of head are

The pressure head lost in giving velocity at the inlet is

With these quantities the hydraulic gradient can be drawn,
and the total head lost, or virtual fall of the pipe, is

111. Cost of water-mains. The cost of water-mains

per foot run laid in the ground, with the ordinarily necessary

appendages, is nearly proportional to the diameter, and is

about

C = 5dto7d . . . (13),

where C is in shillings and d in feet. It can be deduced
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from this that it is more economical to deliver water from

one point to another by a single pipe than by several. Hence

more than one pipe should be used only if the limit of size

for a single pipe is reached. The cost of the pipes to convey
a given quantity of water from one point to another is less

as the total quantity to be conveyed is greater. The whole

cost of a distributing system between given points increases

about as the |th power of the volume of water distributed.

112. Corrosion and incrustation. With some qualities

of water, corrosion of iron mains occurs. The corrosion takes

the form of nodular or limpet-shaped masses, which in time

become confluent and reduce the discharging capacity of the

main, partly by reducing its cross section and partly by

increasing the roughness. With some other qualities of water

incrustations of matter derived from the water, such as

carbonate of lime, form on the pipe and have a similar effect.

In the case of some mains the discharge decreases rather

rapidly for some time after they are laid, in consequence of

corrosion and incrustation. The first case in which this was

noticed was at Torquay, where the main had not been coated

with asphalt, the idea being that the pure surface-water from

the Dartmoor hills would have little action on the pipes.

But in eight years the discharge had decreased 5 1 per cent.

At that time Mr. Appold suggested scraping the internal

surface of the main by scrapers driven through by the water

pressure. This plan was adopted, and after scraping, the

delivery increased 28 per cent. The plan has since been

adopted, in many cases, and the discharge has been increased

by scraping by from 28 to 82 per cent in different cases.

If scraping is adopted, however, it requires to be repeated,

for the protective coating of rust and incrustation is removed,

and thus, though slowly, the pipe is worn away. At Torquay
the nodules of rust are ^ to ^ inch in height after twelve

months (Ingham, Proc. Inst. Mech. Engineers, 1873, 1899).
In the case of Torquay the water from a granitic district has

a serious action on iron, possibly from containing an acid

derived from peat. The matter removed by scraping con-

tains about 38 per cent of oxide of iron, 43 per cent of sandy
matter deposited from the water, and 18 per cent of organic

matter. At Southampton, where the water is obtained from
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chalk wells, the incrustation consists of 98 per cent of

carbonate of lime, and a little sulphate of lime and iron oxide.

Well waters from the Old Ked Sandstone do not cause much
corrosion or incrustation. Soft water appears to have greater

action than hard water.1

The best protection against corrosion is to coat the pipes

with what is known as Dr. Angus Smith's composition. The

pipes are heated in a cylindrical stove to about 600 F. and

then dipped in a bath of pitch and oil of such a consistency

as to produce a tough coating. Natural asphalt is preferred

by some, with enough creosote oil to give a tough coat. In

the case of steel pipes they should be cleaned in a sulphuric
acid bath followed by one of lime water to neutralise the acid,

and then dipped in the asphaltic composition kept at nearly

boiling temperature.

Slime deposits in pipes carrying unfiltered water.

A serious decrease of discharge occurred in the first length of

main of the Vyrnwy aqueduct, which has been traced to the

growth of an organic deposit, and no doubt the same cause

has operated in other cases. The organisms are brought into

the pipe with the water and attach themselves to the pipe.

Thread-like organisms with a gelatinous sheath develop, and

iron oxide is deposited in the sheaths, which continue to

thicken. Solid particles in the water are caught by the

gelatinous threads. Acidity other than carbonic acid always
characterises water which produces this slime, and an

appreciable quantity of iron in solution. Mr. G. F. Deacon

has succeeded in removing the slime deposit by a kind of

scraper with whalebone brushes which does not injure the

pipe (I. C. Brown, Proc. Inst. Meek. Engineers, 1903-4).
113. Pipe aqueducts. These are usually of cast iron,

sometimes of steel, and in "Western America of wood. Cast-

iron pipes do not exceed 48 inches diameter, are cast in

lengths of 9 or 12 feet, and have spigot and socket joints,

the joints being filled with lead. Sometimes the pipe lengths
have plain ends, and the joint is made by a collar forming a

double socket in which lead is run. The pipes are almost

always placed in a trench and covered to protect them from

1
Figures of various types of pipe-scrapers are given in Proc. Inst. C.E.

cxvi. p. 307.
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frost. As a protection against corrosion they are heated and

dipped vertically in a bath of pitch and oil, which forms a

smooth hard coating and reduces the frictional resistance to

the flow of water. Steel pipes are much thinner, and therefore

if corroded lose proportionately more strength and are more

liable to deformation by earth pressure. But in some cases

they cost less than cast iron, and can be made of larger size.

They are made from plates riveted, welded, or made with a

special locking-bar joint which is as strong as the solid plate.

They usually have collar joints run with lead.

A pipe aqueduct is carried up hill and down dale

necessarily below the line of hydraulic gradient, but otherwise

at any inclination adapted to the contour of the country, and

in some cases a greater velocity may be permitted in a pipe

than would be suitable for an open conduit. Changes of

direction are effected by special bend pipes, or short straight

lengths (about 3 feet) are jointed by double-socketed bevel

collars about 12 inches long, the sockets being inclined to

each other.

The appurtenances of a pipe line are : (1) Air valves,

which are placed at every summit in the pipe line to permit
the escape of air when the main is filled, and afterwards if any
air is carried into the main. They are also placed on long
stretches of nearly level main. They are generally ball-valves

lighter than water, which close the air vent so long as they
are immersed, but which drop and open the air vent if air

accumulates. (2) Scour valves are placed at the bottom of

all depressions for emptying the main or letting out sediment.

(3) Reflux valves on ascending parts of the main are flap

valves which open in the direction of flow, but which

automatically close if a burst occurs and the water flows back.

They diminish the damage done by escape of water at a burst.

(4) Momentum valves are also intended to limit the escape of

water at a burst. A disc is placed in the pipe on an arm,

counterweighted so that it is not moved by the ordinary flow

of water. If a burst occurs the accelerated flow presses back

the disc, and the arm releases a catch, and another set of

weights cause a disc throttle-valve in the pipe to close

gradually and arrest the flow of the water. (5) Sluice stop-

valves worked by hand or by a hydraulic cylinder for closing
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the main or regulating the flow. In the case of large mains

the pressure on a large sluice-valve is very great, and the

force required to move the sluice when starting from the

closed position is very great. Thus on a 3 6-inch valve, under

250 feet of head the pressure would be nearly 50 tons, and

the frictional resistance to moving the valve perhaps 7 tons.

To facilitate opening, the valve is sometimes divided into

three parts which can be opened separately. In other cases

the valve is made about one-third the area of the pipe. The

pipe is gradually contracted to the area of the valve and

gradually enlarged again. Then, though there is some loss of

head at the valve it is not very serious.

In a long main the flow is usually controlled by a sluice

at the lower end. In that case, although the pressure in the

main when water is flowing is only the pressure due to

the depth below the hydraulic gradient, yet when the sluice is

closed and the water at rest, the pressure is that due to the

depth below the supply reservoir. The strength of the pipes
must therefore be sufficient to sustain at all parts the statical

pressure due to the depth below top water-level in the reservoir.

In the case of the East Jersey main, Mr. Herschel has placed
the controlling sluice at the inlet to the main, directions for

regulating it being transmitted from the outlet end by

telephone. In that case the pressure in the main cannot

exceed at any point the pressure due to the depth below the

hydraulic gradient. The adoption of this plan permits a

material saving of thickness and cost in the pipes.

114. Examples of pipe aqueducts. (1) The Vyrnwy
aqueduct. This aqueduct carries 40 million gallons per day
from the reservoir at Vyrnwy to a service reservoir at

Liverpool, a distance of 68 miles. The water first passes

through the Hirnant tunnel of 7 feet diameter and 3900 yards

long, and for nearly the whole of the rest of the distance

through three lines of cast-iron pipes, each 42 to 39 inches

in diameter. As the statical head on the main would be

excessive if the pipe line was continuous, the total fall from

Vyrnwy to Prescot being 550 feet, balancing reservoirs have

been constructed at five points, breaking the pipe line into

stretches each having its own hydraulic gradient and a

maximum statical pressure due to the level in the reservoir
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feeding it. The greatest pressure at any point is 317 feet of

head One of the 4 2-inch pipe lines, after being laid twelve

years, with an hydraulic gradient of 4*5 feet per mile, dis-

charged 15 million gallons per day. This gives a velocity of

2'892 feet per second, and a coefficient f= 0*0 05*74.

(2) East Jersey steel aqueduct, for the supply of

Newark and other towns in New Jersey, U.S.A. This consists

of a steel riveted main, 48 inches in diameter and 21 miles

long, with a maximum pressure of 340 feet of head. It

delivers 50 million U.S. gallons per day, the velocity in the

main being about 6 feet per second. The chief peculiarity of

this main is that the cross-joints are riveted, so that the pipe

is a continuous riveted structure without provision for expan-

sion. It is calculated that the cross-joints are strong enough to

resist the stresses due to 45 F. change of temperature without

allowing for any assistance from the friction of the ground.

(3) The Coolgardie pipe line. The longest pipe line is

that through which water is pumped from a reservoir at Perth

to Coolgardie and Kalgoorlie, Western Australia. Coolgardie is

on a tableland which is one of the driest places in the world.

A daily supply of 5,600,000 gallons is pumped through a

30 -inch steel pipe of the locking-bar construction with collar

joints run with lead. There are eight pumping stations.

The distance from the storage reservoir to the service reservoir

at Coolgardie is 308 miles, and there is a rise of 1290 feet in

that distance. From the service reservoir the water gravitates,

the total length from Perth being 351^ miles. Most of the pipes

are J inch thick, which is sufficient for heads up to 250 feet.

They were coated with a mixture of one part asphalt and one

part coal-tar, and sprinkled on the outside with sand while

hot. In a test the following results were obtained, the pipes

being new and clean :

Hydraulic Gradient.

Feet per Mile.
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feet per mile has been allowed for, to provide against

contingencies.

115. Pumping main. It is a common case that water

has to be raised by pumping from a river to a reservoir, from

which it gravitates to the town supplied. In that case the

lift of the pumps H is known, the length of the pumping
main I, and the volume Q which must be pumped per second.

In deciding on the diameter of the rising main, it must be

considered that while the smaller the main the less its cost, on

the other hand the greater will be the cost of the pumping

engines and the annual cost of pumping, because the frictional

head to be overcome will be increased. Usually, for various

reasons, the velocity in the pumping main is restricted to from

1^ to 4 feet per second, but within these limits a diameter of

main can be found which is the most economical.

Let

/ = length of main in feet.

Q = volume pumped in cubic feet per second.

d = diameter of main in feet.

H = total lift from river to reservoir.

h = frictional loss of head in main.

p = cost per I.H.P. of pumping engines, including the

capitalised cost of maintenance and working.

q = the cost of the main per foot of diameter and per
foot of length, including cost of laying.

N = total I.H.P. of the pumping engines.

7j
= the mechanical efficiency of the engines.

The total cost of the installation of engines and main is

The frictional loss of head in the main is

Consequently

550?; 77

Inserting this value,

+qdl,
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where d is the only variable. Differentiating and equating
to zero,

. (H).

In practice, d/^/Q, is from 0'75 to I'O. For instance, in the

Coolgardie main

116. Suction pipe of pumps. Let I be the height of

the water barometer or atmospheric pressure in feet of water,

and h the height from the water-level in the suction well to

the bucket of the pump, h must be less than I in any case,

or pumping is impossible. Let ft be the area of the pump
bucket and co the area of the suction pipe, r the radius of the

crank and n the number of revolutions per minute. The

average speed of the crank pin is u= 27rrn/6Q feet per second,

and the connecting rod being supposed long the velocity of the

pump bucket is v = u sin a, where a is the crank angle from

the lower dead point. The acceleration of the pump bucket

at the beginning of its stroke is fu^jr. The corresponding
acceleration of the water in the suction pipe is

fl w2

Let I be the length of suction pipe. The weight of the water

which must be accelerated is GcoL The pressure acting on

the water to make it follow the piston is G(& A)a>, and this

will produce an acceleration

In order that the water may follow the pump bucket,

(b
-
h)g = ft tf

I > w r

Substituting for u its value above, the greatest speed of the

pump is given by the relation

If the speed exceeds this the water will separate from the
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bucket at the beginning of the stroke and overtake it after-

wards with a shock. This may be prevented by increasing

the area co of the suction pipe, or to a great extent by placing

an air vessel on the suction pipe near the pump.
117. Water hammer. When a valve in a long water-

main is rapidly closed, the velocity of the column of water

behind the valve is retarded and its momentum is destroyed.

To change the momentum of the water, a backward force must

be exerted by the valve on the water, or conversely a forward

pressure is exerted by the water on the valve and pipe, which,

if the action is rapid enough, produces a shock termed water

hammer. This action is dangerous, and causes in many cases

fracture of the pipe. It is provided against by arrangements
which prevent a rapid closing of important valves.

If a steam-engine indicator is fitted to the pipe, with an

arrangement for moving the recording barrel uniformly, a

diagram such as is shown in Fig. 1 3 is produced, the abscissae

being time and the ordinates pressure. p is the statical

pressure in the pipe when the valve is closed
; p l

is the initial

pressure with the water flowing before the valve begins to

close. If the valve begins to close at d, the pressure rises to

a maximum at e which is in excess of the statical pressure

pQ by an amount p. ab is the time of closing the valve.

Waves of pressure follow, gradually diminishing till the water

in the pipe comes to rest.

Professor Carpenter made some experiments on a pipe 1^
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inches in diameter, with a ^--inch bib-cock at the end. The

following were the pressures registered when the cock was

suddenly closed. There was a small air chamber near the

valve, which in one set of tests was filled with air and in

another with water.

GAUGE PRESSURES IN I^-INCH PIPE
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The first equation is to be used if t is greater than Z/2250
seconds. This equation gives p = 0, if

= or > (18),

which is the condition to be satisfied in closing the valve if

there is to be no water hammer. The theory involves some

assumptions, and must be taken only as a general guide.

Some very elaborate experiments on water hammer in

pipes were made by Joukowsky at Moscow (Stoss in Wasser-

leitungsrohren, St. Petersburg, 1900). He used pipes 2, 4,

and 6 inches in diameter, and 2494, 1050, and 1066 feet in

length. The valve was closed in 0*03 second. Ten recording

gauges placed along the pipes showed that the maximum

pressures were substantially the same at all points.

The following table gives some of the results :

VALUES OF p+pQ -p1
LBS. PER SQUARE INCH

4-inch Pipe.



CHAPTEE X

LATER INVESTIGATIONS OF FLOW IN PIPES

118. THE different elementary streams which go to form the

flow through a pipe have different velocities parallel to the

axis of the pipe ;
those near the sides are retarded by what is

often termed skin friction, and these in turn retard those

adjacent to them, and so on till the central elementary stream

is reached, which has the greatest velocity. It has not been

found possible to construct a rational theory of flow which

takes account of this distribution of velocity, except at very
low velocities. But experiment shows that the resistance to

flow involves a loss of energy or head which is proportional
to the area of the surface of the pipe and to some function of

the mean velocity parallel to the axis of the pipe. The

assumption on which the Chezy formula is based is that

the resistance varying directly as the square of the velocity.

In a memoir by Prony in 1804, discussing all the experiments
then made, that engineer suggested the expression

j

* = + * .. (2),

in which, for metric measures,

a = 0-0000173, b = 0'000343,

and for English measures,

a -0-0000173, 6=0-000105,

corresponding to f='007l3 at 3 feet per second. This

199
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binomial expression is exceedingly inconvenient for calculation.

It meets the condition that at low velocities the resistance

varies as the velocity, and that at high velocities it varies

nearly as the square of the velocity; but it makes the transition

gradual, whereas it is now known to be abrupt.
119. Kutter's formula for pipes. Messrs. Ganguillet

and Kutter, in a laborious investigation on the results of the

gauging of streams, arrived at the following complicated

empirical formula. Let n be a coefficient of roughness, de-

pending on the character of the surface of the pipe, and m its

hydraulic mean radius, i the virtual slope, and v the mean

velocity ; then, for English measures,

v =

.. a 1-811 -00281
41-6 + + :

1+41-6
00281\ n

\/mi . . (3).

There is no good reason for thinking that this formula is

specially accurate for flow in pipes. Indeed, it is known not

to accord with experiment for small values of i or for small

diameters of pipe. But it has been adopted by some engineers,
and therefore requires to be mentioned. The usual value of n

assumed for clean pipes is '01 3. If in the term 0'00281/i,
which is usually relatively small, i is taken as 0*001, and n
is taken at 0*013, the formula reduces to the simpler form

18372

0-5773

jvm

or, to put it in a form comparable with the more usual

equations,
/ 1-1546X 2

V
1 '

Jd) '+ di- X
2 4

'

where the first term on the left corresponds to f in the Chezy
formula.
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d=
Inches.

3

6

12

24
36
48

Feet.

25

5

1-0

2-0

3-0

4-0

Kutter's value of

r-

0209
0132
0089
0063
0053
0047

120. Defects of the Chezy formula.
1 The Chezy

formula is extremely convenient, but involves, if reasonable

accuracy is required, the selection of the coefficient f amongst
a wide range of values. The variation of f depends on the

following conditions :

(1) In the case of most pipes the loss of head h does not

increase so fast as the square of the velocity v. Consequently

f must have values which decrease as the velocity is greater.

For instance, in a glass pipe on which Darcy experimented,

f changed from 0*010 for a velocity of half a foot per second,

to 0*0062 for a velocity of 7 feet per second, a decrease of

38 per cent. In a new cast-iron pipe f decreased from 0*0114

at half a foot per second to 0*0064 at 10 feet per second, or

a decrease of 50 per cent.

(2) Darcy showed that f decreases as the size of the pipe
is larger. Thus, taking Darcy's experiments on new cast-

iron pipes :

Velocities.

Feet per Second.
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(4) The experiments of Mr. Mair, agreeing with the

author's own experiments on discs, show that the resistance

decreases as the temperature increases. Thus, for a clean

brass pipe, 1|- inches diameter, Mr. Mair obtained the follow-

ing values :

At Velocities in

Feet per Second of
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another modification of the St. Venant formula was given;

this is

r? 1 II
'

<>

This involves three coefficients, derived from experiment. In

the experiments examined by Hagen, he found

so that

in which ra was nearly independent of variations both of

v and of d. But the range of values of d examined was

small.

It is obvious that this form of the equation of flow is

very advantageous, even regarded as an empirical formula,

for the three constants, n, x, and ra, can be taken so as

separately to allow for the three principal causes of variation

of resistance: the variation of velocity, of diameter, and of

roughness of surface.

In a very interesting paper in the Transactions of the

Eoyal Society, 1883, Professor Keynolds has made clearer the

causes of the change in the character of the motion of water,

from the regular stream-line motion at .low velocities to the

eddying motion which occurs in almost all the cases with

which the engineer has to deal. Further, partly by reasoning,

partly by induction from the form of the curves of experi-

ments when plotted, he has suggested the general equation

as applicable both to the case of undisturbed motion and of

eddying motion. The constant n having the value 1 for low

velocities and undisturbed motion, and a value ranging from

1*7 to 2 for greater velocities. Professor Keynolds's formula

reduces to the form

where P is a function of the temperature. Neglecting
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variations of temperature, Professor Keynolds's formula is

identical, for velocities not very small, with Hagen's formula
;

with the exception only that in Eeynolds's formula the indices

of d and of v are related, so that there are only two indepen-

dent constants instead of three. For the purpose of obtaining

the coefficients from experiment, Hagen's formula is the more

convenient.

121. The experimental data available. The earliest

experiments on flow in pipes were made by Couplet in 1732,
and since that time a considerable number of experiments
have been made. In selecting from these it must be borne

in mind that it is extremely desirable to exclude from in-

vestigation any experiments that are really untrustworthy.

No good result can be got by averaging accurate and erroneous

results. On the other hand, it would be absolutely wrong
in principle to exclude results from examination merely
because they did not appear to fit in well with some empirical

law.

All experiments may be at once excluded in which the

means of measuring the loss of the head or the quantity

discharged were unsatisfactory. All experiments may also

be excluded in which the condition of the surface of the pipe

was not noted. With these exclusions, the number of experi-

ments remaining to be examined is greatly reduced.

Of these experiments, by far the most complete and

valuable is the series of experiments on 17 pipes by Henry

Darcy. The care and insight with which these experiments
were made, and the skilful variation of the conditions of the

experiment, are worthy of the highest praise. Of all the

conditions to be noted in experimenting, there is only one

the importance of which did not occur to Darcy. In many
cases he neglected to observe the temperature of the water.

There is, however, one anomaly in Darcy's experiments
which cannot now be fully explained, and the nature of which

can perhaps best be seen in the plottings of some of his

results. Darcy measured the loss of head in two successive

50-metre lengths of his pipes. Now, in almost all cases his

results show a rather greater loss in the second 50-metre

length than in the first, and this is really not intelligible.

On the whole, the author is inclined to think that the
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measurements in the first 50-metre length are more reliable

than those in the second, and only the measurements of

head lost in the first 50 -metre length are used in these

reductions.

From Darcy's experiments have been taken the results

on new, cleaned, and incrusted cast-iron pipes, those on

wrought -iron gas -pipes, and those on lead pipes. These

pipes ranged in diameter from 0'0122 to 0*5 metre, or as

40 to 1. For each pipe the experiments began with a very
small loss of head, often only 0'02 metre in 50 metres. The

author has excluded the observations in which the loss of head

was less than O'l metre, partly because some of the experi-

ments with these very small heads correspond to conditions

of undisturbed motion, for which the law is different, and

partly because the errors in observing very small heads are

likely to be relatively large. Up to 6 metres of head the

heights were measured by a water column, and beyond that

by a mercury column. Now, as the observations with the

water gauge give ample range of velocities for the purpose
in hand, and as the observations with the mercury gauge at

high velocities were, as Darcy mentions, carried out with

great difficulty, the former only have been used in these

reductions. With a loss of head varying from O'l metre to

6 metres, the velocities ranged in different cases from O'l

metre per second to 5 metres per second, a very ample range
for examination.

Of other experiments available, the early (1771) experi-

ments of Bossut on the flow in tin pipes seem very trust-

worthy, and give values of the constants for a very clean

and smooth surface. These extend over a considerable range
of velocity.

Dr. Lampe's experiments on the Dantzig main are ex-

tremely useful, from the care with which they were carried

out, and the fact that they are on a large scale.

Of other experiments, the most valuable are the American

data collected in Mr. Hamilton Smith's Hydraulics. Of these,

there is a very valuable experiment by Mr. Stearns on a cast-

iron asphalted pipe, l metres in diameter. Mr. Hamilton

Smith's own experiments are also very useful, as filling up
and extending the series of results from other sources. This
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makes the range of diameters of new pipes, on which experi-

ments are available, to extend from 0'266 metre to 1/219

metres.

Then there are some experiments on small wrought-iron

gas-pipes, which are useful for comparison with Darcy's, and

some experiments on large wrought-iron riveted water-mains.

122. Method of dealing with the experimental data.

The greater part of the experimental results are found origin-

ally in metric measures. Hence it was convenient to plot the

results in metric measures, and to obtain constants for a

formula in metric measures. These constants were finally

converted to English measures.

Taking Hagen's formula (6), and writing it logarithmic-

ally,

log /t = n log + log -jz
+ log- . . (8),

CL Zy

in which for any given pipe the second and third terms on the

right are constants. This is an equation to a straight line

having log {(ml)/(2gd
x

)}.
for the ordinate at the origin, and a

slope of n to 1. For all the experimental data, arranged
in groups according to the type of pipe, values of log h were

plotted as abscissae and values of log v as ordinates, h and v

being taken in metric units. One of these plottings is given
on a reduced scale in Fig. 104. The values of n correspond-

ing to the average slope of the lines are given in the following
table

1 :-

1 For each of the Darcy pipes two lines are plotted, the full line correspond-

ing to observations in the first, and the dotted to those in the second 50-metre

length.

[TABLE.
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VALUES OF THE INDEX OP VELOCITY

Surface of Pipe.
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at least so far as the variation of velocity with variation of

head is concerned. The following tables give the mean
values of m/d

x found for each pipe, and the result of using the

formula

rS) .<>

to re-calculate h from the observed velocities. It will be seen

that, at least so far as variation of the velocity and head are

concerned, the formula fits the experiments with extraordinary
closeness. The re-calculated values of h approximate to the

observed values throughout the whole range of the experiments,
with differences which do not exceed the probable experimental
errors of observation. Metric measures are used in these

tables.

ASPHALTED CAST IRON

HAMILTON SMITH.
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CLEAN TINPLATE PIPES

BOSSUT.



INVESTIGATIONS OF FLOW IN PIPES 211

KIVETED WROUGHT IRON Continued

HAMILTON SMITH.
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NEW CAST-IRON PIPES (UNCOATED) Continued

DARCY.
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CLEANED CAST IRON

DARCY.
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with Mr. Mair's results. Variation of temperature in the

different experiments examined ranges from 38 F. to 75 F.

In most of the experiments the temperature was between 50

and 70. For 10 difference from 60, the temperature
correction is under 3 per cent, so that it does not make a

great difference whether the temperature correction is applied
or not. In some of Darcy's experiments the temperatures
are not given, but they can be inferred with some degree of

approximation from the dates given.

124. Variation of resistance with the diameter of the

pipe. From the values of m/d* which have been obtained, the

value of x, the index of the diameter in the expression for

the head lost in the pipe, can be found. If m and x for any-

given kind of pipe are strictly constant, and if we plot

logarithmic values of d as ordinates, and m/d
x

as abscissae,

then the points found should lie on a straight line, the slope

of which is the required value of x. Broadly speaking, the

points corresponding to each set of experiments fell pretty

closely on a straight line, those for the pipes with rougher
surfaces lying higher than those for the pipes with smoother

surfaces. It is not surprising that the lines are more irregular
than those previously plotted, for this reason. The points
in these lines correspond, not to a series of experiments on

one pipe, but to different series of experiments on different

pipes. Small differences of roughness in these pipes would

quite account for such discrepancies as were found.

On examining the lines, it was found that in all cases

the slope is greater than 1 to 1, so that the index x of d,

in the formula of loss of head, must be greater than unity,

a result in accordance with Darcy's deductions from his

experiments. The slope is lowest (1*10 to 1) for the tin-

plate pipes of Bossut, which were very smooth, and in which,

probably, the joints did not affect the flow so much as in

other pipes. Generally, the slope does not exceed T2 to 1
;

but there are one or two exceptions.

The riveted wrought-iron pipes of Hamilton Smith give
a slope of 1'39 to 1, which may possibly be due to the

different relative effect of the obstruction of the rivet-heads

and joints in pipes of different diameters of this kind.

Putting aside exceptional values of the index x, the fact
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that all the other results give values of x lying between

I'lO and 1'21 shows a very satisfactory constancy in the

coefficient.

According to Professor Keynolds's formula, the head lost

should vary as

That is, x should have the value 3 n. The following table

shows how far this reduction of the most trustworthy experi-

ments confirms this law :

Kind of Pipe.
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Kind of Pipe.
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closeness, if the following mean values of the coefficients

are taken, the unit being a metre :

Kind of Pipe.
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127. Distribution of velocity in the cross section of a

pipe. The mean velocity of translation along a pipe is

necessarily

Strictly, in consequence of the turbulence of the motion, the

velocity and direction of motion vary from moment to moment
at every point of the cross section. But at each point the

variations are temporary^ fluctuations about a fixed mean value.

The mean direction must be parallel to the axis of the pipe,

and at each point there must be a constant mean velocity in

that direction. Observation shows that these mean velocities

at different points are greater near the centre of the cross

section and less towards its boundary. Messrs. Williams,

Hubbel, and Fenkel found the mean velocity vm of the whole

cross section to be 0'84 of the central mean velocity, and the

mean velocity near the boundary to be '5 of the central mean

velocity. At a radius 0'75 of the radius of the pipe the

velocity was equal to the mean velocity vm of the whole cross

section.

The most exact research on the distribution of velocity in

pipes is one made by Bazin on a cement pipe 0*8 metre

diameter and 8 metres long (" Experiences nouvelles,"

M6m. de I'Acaddmie des Sciences, xxxii., 1897). Let E be

the radius of the pipe, and r the radius at which the velocity is

observed
;

let V be the maximum velocity at the centre, v the

velocity at radius r, and vm the mean velocity for the whole

cross section. Bazin obtained the following results :

r

R
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Let i be the virtual slope of the pipe. Then

Atwhere k varies from 33 to 42, and is on the average 38.

the sides, where r = K, the velocity is w V S

The mean velocity of the whole cross section is

On the average V/vm = 1*24
;

vmjN = 0*8
; w/vm

= 0'64, and

w/V = 0'51. At radius 0'74R the velocity is equal to vm .

Fig. 105.

Fig. 105 shows the velocities at different radii found by
Bazin.

128. Influence of temperature on the resistance in

pipes. In the experiments on discs, 82, it appeared that

the frictional resistance diminished as the temperature
increased. Froude found a similar result for boards towed

in water. Some experiments on flow of water at different

temperatures in a brass pipe 1^- inch diameter and 25 feet

long were made by Mr. J. G. Mair (Proc. Inst. of Civil

Engineers, Ixxxiv.). The head at inlet was taken at 1 2 inches

from the end of the pipe, to exclude loss at entry. The results

agree extremely closely with the equation

77?
,,1-795

2g

The values of ra were as follows :
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Temperature F. m
57 0-0178

70 169

80 166
90 161

100 157
110 151

120 147
130 145

160 133

The resistance is therefore 25 per cent less at 160 than at

57. The resistance varies directly as m, and m is given very

closely by the empirical relation

77i = 0-02(1 -0-002150-



CHAPTER XI

FLOW OF COMPRESSIBLE FLUIDS IN PIPES

129. Notation. Let

P = absolute pressure in Ibs. per square foot.

T = absolute temperature F.

G = weight of one cubic foot of fluid in Ibs.

V = volume of one pound of fluid in cubic feet.

u, v, = velocities in feet per second.

W = weight of fluid per second in Ibs.

n = area of cross section of pipe in square feet.

d = diameter of pipe in feet.

L, /,
= length of pipe in feet.

E = constant in gaseous equation.

When air flows along a pipe there is necessarily a fall of

pressure due to the resistance of the pipe, and consequently

the volume and velocity of the air increase going along the

pipe in the direction of motion. The effect of the resistance

is to create eddying motions which, as they subside, give back

to the air the heat equivalent of the work expended in pro-

ducing them. The result is that, apart from conduction

through the walls of the pipe, the flow is isothermal.
1

130. Flow in pipes under small differences of

pressure. In a large number of cases the pressure in a fluid

is one atmosphere or more, but the difference of pressure

causing flow is only a few inches of water. This is the case

in the distribution of lighting gas and in some cases of

compressed air transmission. Let P
x ,
P

2
be the absolute

1 This was pointed out by the author in a discussion on Pneumatic

Transmission in 1875 (Proc. Inst. C. E. xliii.). The formula for air -flow in

this chapter was first given by the author in 1875 in a paper on the "Motion of

Light Carriers in Pneumatic Tubes
"

in the same volume.

221
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pressures at the inlet and outlet of a pipe. Then when

P! P
2

is small compared with P 1? the variation of density

during flow may be neglected without great error and the

hydraulic formulae are applicable.

Let d be the diameter, I the length of the pipe in feet, v

the velocity, P
x

P
2
the pressure difference causing flow in

Ibs. per square foot, and h the same pressure difference in feet

of the fluid itself. If G- is the weight of the fluid in Ibs. per
cubic foot, Pj P

2
= Gh. Then, as in 85,

(i).

2gdh\ l(2gd(P, - P9)l ,

~77T I

-
* / 1 ~TH n f

*eefc Per second
4Y / \/ ^v ^ '

Q = -d2v cubic feet per second

If T is the absolute temperature F., then, by the gaseous

equation 72,
a=p

1/(RT).

If hw is the pressure difference measured in inches of

water, then

Example. Air initially at one atmosphere and 60F. (521 absolute)
flows through a 12 -inch pipe one mile long under a pressure difference of

10 inches of water. G = 21 16'3/(53'2 x521) = O0764 Ibs. per cubic foot.

Pj
- P

2
= 5-2 x 10 = 52 Ibs. per square foot. The value of f may be taken

At 0-004. Then

22'77 feet per second.

The discharge is 0-7854 x 22-77 = 17-88 cubic feet per second, or 17-88

x 0-0764 = 1-367 Ibs. of air per second.

131. Flow of lighting gas in mains. Lighting gas is

distributed in cast-iron mains under pressure differences of

about 2 inches of water column per mile of main, or 2 x 5'2

= 10*4 Ibs. per square foot. The velocity is generally not

more than about 15 feet per second. In such conditions

the hydraulic formulae are applicable with very little error.

Pressures in gas mains are usually measured by water
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siphon gauges open to the atmosphere. They indicate there-

fore the excess of pressure in the main over atmospheric pres-

sure. If hw is the gauge pressure in inches of water, and the

atmospheric pressure is 34 feet of water, then the absolute

pressure in the main is 34 + -^hw feet of water, or 62'4 (34
= 2121 + 5'2hw Ibs. per square foot.

Head lost in a horizontal main. Let Fig. 106 represent

a length I of horizontal main through which gas of density s

(air=l) is flowing. The difference y^y^ of the water

columns in the siphon gauges is the head lost in the length I.

B

y

Fig. 106.

Let Gw G ,
G

g
be the weights in Ibs. per cubic foot of water,

air, and gas respectively. Then -G^
= sGa ,

where for ordinary
conditions of pressure and temperature Ga

= 0'08 nearly, and

Grv = 62*4. Then if ylt yz
are measured in inches of water,

the height of a column of gas equivalent to y^ y2
is

feet (2),

and this introduced in the hydraulic equations (1) will give

the velocity of flow and discharge.

Head lost in an inclined gas main. In a falling main

(Fig. 107) the atmospheric pressure is greater at B than at A
by the amount Ga (zl z2) Ibs. per square foot, or
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water

a quantity which is negative for a rising main. Hence,

taking yl y2
in feet, the head causing flow in feet of gas is

-zfl

(3).

Taking the values given above, and now supposing y l
and y2

given in inches of water,
/ -I \

. . (3a).

This is the value of h to be used in the hydraulic equations ( 1 ).

When there is much difference of level of A and B, the last

Fig. 107.

term is too large to be neglected. In some rising mains the

difference shown by the siphons is negative.

The coefficient of friction in gas mains. Unfortunately
there are very few experiments on the friction in gas mains,
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and even those which are available are not very satisfactory.

A discussion by the author of such results as are available

(Proc. Inst. of Gas Engineers, 1904) led him to adopt pro-

visionally the following value :

This gives higher values of f than those deduced from tests

of air mains, but on the other hand gas mains are rather

more roughly jointed, and there were probably in the mains

tested some special resistances due to bends, etc.

VALUES OF f FOR GAS MAINS

Diameter of Pipe. f

2 inches 0-0082

6 -0057

12 -0050

18 -0048

24 -0047

Examples. Let 50,000 cubic feet of gas per hour, or 13-9 cubic feet

per second, of density s = 0-4, be conveyed in a horizontal main, and let

it be required to find the pressure head lost in friction per mile of main.

(a) Let the main be 8 inches or 0-666 foot in diameter. Then

=0-0044(1 +0-2 14) = 0-005 3. The cross section of the main is 0-349

square foot, and the velocity is 13-9/0-349 = 40 feet per second. Using
eq. (1),

h = 0*0053

of gas. Taking air in these conditions to weigh 0*08 Ib. per cubic foot,

the gas weighs 0-4 x 0-08 = 0-032 Ib. per cubic foot Hence the pressure
difference required per mile of main is 0-032 x 4178 = 133-8 Ibs. per
square foot, or 133-8/5-2

= 25-7 inches of water.

(6) If the main is sixteen inches or 1-333 feet in diameter, the other

conditions being the same, f=0*0044(1 + 0-107) = 0-00487. The cross

section of main is 1-395 square feet. The velocity is 13-9/1-395 = 10 feet

per second.

of gas, equivalent to 3-84 Ibs. per square foot, or 0'74 inch of water

per mile of main.

(c) If in the case of the 8-inch main in (a), the outlet end is 150 feet

above the inlet, the frictional loss is the same, but there is a difference

of the pressures at the siphon gauges. Using eq. (3a),

15
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= 162-

2/i
~

2/2
= 24-33 inches of water.

(d) Similarly, if in the case of the 16-inch main in (&), the outlet

end is 1 50 feet above the inlet,

2/i
-
2/2=

- 0-647 inch of water.

That is, the upper siphon-gauge pressure would be greater than the lower.

132. Flow of air in a long uniform pipe, when the

variation of density is taken into account. In this case

the velocity increases along the pipe as the density diminishes.

The work of expansion of the fluid is not negligible. The

expansion will be taken to be isothermal.

For air, P/G=53'2T ( 72), and if the temperature is

60 F., so that T = 521, then P/G= 27710.

In steady flow the same weight of air must pass every
section in any given time. Let W be the weight of air

flowing per second, u the velocity, and O the area of

cross section. ~ p
^-*

T-?T^ ytjy

Consider a short length dl of the pipe, Fig. 108, between

transverse sections A Ar Let d be

*--oll * the diameter, U the cross section, m
.

-K
the hydraulic mean radius. Let P

\f and u be the pressure and velocity

;

at A
Q ,
P + dP, and u -f du the corre-

--^
spending quantities at A

x
. Let W

oo 1^1 be tne weight of air flowing per

Fi 108
second units feet and pounds.

If in a short time dt the mass

A Aj_ comes to A^A'j, then A A' = udt and AjA'j = (u + du)dt.
Since in a short length the change of density is small the

head lost in feet of fluid is

or if H =
v?/2g, the head lost in friction is

fHM/m feet . . . (6).
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And since Wdt Ibs. flow in the time dt, the work expended in

friction is

- i-Wdl dt ft.-lbs. (7).
771

x '

The change of kinetic energy in the time dt is the

difference of the kinetic energy of AjA'j, and A A'
, that is

= ududt = WdHdt ft.-lbs. . (8).
9

The work of expansion of fludt cubic feet of air to

l(u + du}dt at a pressure initially P is SiPdudt. But
from (5)

RTW
nar

*OL- RTW
dP~

""
and the work of expansion is

RTW-
^^dPdt ft.-lbs. . (9).

The work of gravity is zero if the pipe is horizontal, and in

many other cases is negligible.

The work of the pressures on the ends of the mass is

P&udt -
(P + dP)Q(u + du)dt

= -
(Pdu + ud?)Qdt.

But if the temperature is constant, ~Pu is constant, and
~Pdu + udP = Q. Hence the work of the pressures is zero.

Adding the quantities of work and equating them to the

change of kinetic energy,

dPdt - C- Wdldt
r m

prp TT

-dP + i-dl = Q
P m
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But
KTW

tf R2T2W2~~

For pipes of uniform section, II and m are constant, for

steady motion W is constant, and for isothermal flow T is

constant. Integrating,

0122P2
I

log H +
2

+ C = constant '

For
I = 0, let H = H

x
and P = P

L

I = L, let H = H
2
and P = P

2

where P
x

is the greater and P
2
the less pressure. By replacing

H,, H2
, and W,

Hence the initial velocity in the pipe is

v%/{/*rir~
:^\} (13) -

\. ^ -1- 1 / c.
-1-1 1 *- 1 \ S

When L is great, log Pj/P2
is small compared with the other

term in the bracket. Then

'
( } *

For pipes of circular section and diameter d in feet, m =
d/4.

Let T= 521, then for air RT = 27710, and let plf p2
be the

pressures in Ibs. per square inch. Then
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This equation is easily used. In some cases the approxi-

mate equation

^ =
(1-1

32
-0-726^) /(222900:0

. (13c)

may be more convenient.

If the terminal pressure p.2 is required in terms of the

initial pressure pl}
then

/ , *... 9T

. . (U).22290<W/

133. Variation of pressure and velocity in long air

mains. The following cases have heen calculated to give an

idea of the way in which pressure and velocity vary in long
mains conveying air. The main is assumed to be 1 2 inches in

diameter, and the coefficient of friction to be f= 0'003.

AIR MAINS

CASE I.

Pressure (absolute)
in Ibs. per sq. in.

Velocity in main in

ft. per sec.

CASE II.

Pressure (absolute)
in Ibs. per sq. in.

Velocity in main in

ft. per sec.
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diameter, and in some tests the length of main tested was

10 miles. Experiments also were made by Mr. Stockalper
on the compressed air mains at the St. Gothard tunnel, which

were 0*492 and 0'656 feet in diameter.
1

=
Mean for 0'492 foot pipe . . . '00449

0-656 ... -00377

0-980 ... -00290

These results agree with the relation

{ = 0-0027
(l

+A) . . (15 ).

Mr. Batcheller, who has developed and carried out the

remarkable systems of pneumatic transmission of parcels in

the United States, has also made careful experiments on the

resistance to the flow of air in mains. The pipes used were

cast-iron pipes bored smooth.

Air is supplied at a pressure of 6 Ibs. per square inch,

and a carrier weighing 1 Ib. 7 oz. passed through with the

air. For a main 6-J- inches or 0*51 foot diameter the meano

value of the coefficient of friction was 0*00435. By the

formula above it would be 0'00429.

The coefficient is applicable to gases of other densities.

135. Distribution of velocity in an air main. Threl-

fall has made experiments on the distribution of velocity in

air mains by means of a Pitot tube (Proc. Inst. of Electr. Eng.

1903; Proc. Inst. Mech. Eng. 1904). The average ratio of

mean to maximum central velocity was 0*873 constant at

different velocities. The velocity at 0*775 of the radius from

the centre was equal to the mean velocity. The highest

velocity tried was 60 feet per second. The velocity curve on

a diameter approximates to an ellipse.

1 Min. Proc. Inst. Civil. Eng. Ixiii. 29.
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UNIFORM FLOW OF WATER IN CANALS AND CONDUITS

136. IN flow through pipes the section of the stream of

water is determined by the cross section of the pipe, and the

velocity depends not on the actual slope of the pipe but on

that of the hydraulic gradient. When water flows along open

channels, its surface is parallel to the bed of the stream, or

nearly so, and the velocity depends on the actual slope of the

surface of the water. If the slope of the stream-bed varies,

the velocity of the stream varies also, being greater where the

slope is greater, and vice versa. Since in steady motion the

same quantity of water must pass every cross section in a

given time, the cross sections of the stream must vary inversely

as the velocity, being less where the slope is greater and greater

where the slope is less.

In artificial canals and conduits for conveying water the

slope is constant, and the cross sections of the channel are all

similar. In such cases the velocity is uniform, the cross

sections of the water stream normal to the direction of flow

are equal and similar, and the water surface is parallel to

the bed.

137. Steady flow of water in channels of constant

slope and section. Let aa'W (Fig. 109) be two normal

cross sections at a distance dl. Since aa'lib' moves uniformly,

the forces acting on it are in equilibrium. Let fl be the area

of cross section, ^ the wetted perimeter pq + qr + rs, and

w = n/x the hydraulic mean depth. Let v be the mean

velocity, i the slope bejab in feet per foot, W = Gldl the

weight of aa'bb'.

The external forces acting on aa'lfo' parallel to the direc-

231
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tion of motion are (a) the pressures on CM' and bb
f

, which

are equal and opposite since the sections are equal and similar
;

(>) the component of W parallel to ab, that is Gfldl x the

cosine of the angle between W and ab, or Gfldl cos abc

= Gtlidl
; (c) the friction on the surface of the channel.

Fig. 109.

This is proportional to the wetted area ydl and to a function

of the velocity which may be written f(v), where f(v) is the

friction per square foot at the velocity v. Hence the fractional

resistance is xdlf(v). Equating the sum of the forces to zero

GQidl -
xdlf(v) = 0.

&} - ? J
G X

But it has been shown in 79 that f(v) = fG ^-,
and hence

-1,2

or if

. (i);

(2);

where
5"

an(l c are coefficients depending on the size of the

channel and its roughness, and to a smaller extent on the

velocity. This is the Chezy formula previously found for

flow in pipes ( 85).

In the case of open channels there is a much greater
variation of size and of roughness than in the case of pipes,

and consequently a wide variation of values of f and c must
be expected in different cases. Imperfect as the theory above

is, as a theory of flow, the formula is very convenient in
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practical calculations, and it can be made to give accurate

results if the values of f and c are those found by experiment
in similar cases. Hence the practically useful problem is to

find means of selecting values of f and c in any given case.

138. Darcy's research on the value of f for open
channels. M. Darcy carried out an extremely important

series of gaugings of the flow in artificial channels of very

varied character, and M. Bazin, his successor, continued the

investigation after his death. The conclusion arrived at was

that the value of f depended chiefly on the roughness of the

channel and its size, being less for large channels and greater

for small ones. It appeared that the influence of size could

be provided for by taking for f the expression

an expression similar to that previously found for pipes. To

take account of the roughness of the channels, of which there

is no definite measure, Darcy adopted a classification of

channels according to their roughness. The following table

gives the values of a and yS for the different categories in

which channels were classed :

Kind of Channel.
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DAROY'S VALUES OF

Hydraulic
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in which n is a "coefficient of roughness," and the other

symbols have the same signification as above. They adopted

Darcy's method of classifying channels according to roughness,
and arrived at the values of n given in the following table :

KUTTER'S CONSTANT n.

n = 0-009. Well-planed timber.

= 0-010. Pure cement plaster, coated clean pipes.
= 0-011. Plaster in cement, iron pipes in best order.

= 0*012. Channels of unplaned timber.

= 0-013. Ashlar and good brickwork, iron pipes in ordinary condition.

= 0-015. Rough brickwork, incrusted iron.

= 0-017. Brickwork, ashlar, in bad condition, rubble in cement in

good order.

= 0-020. Rough rubble in cement, stone pitching.
= 0"025. Rivers and canals in perfect order, free from stones or weeds,

stone pitching in bad condition.

= 0*030. Rivers and canals in good order.

= 0-035. Rivers and canals in bad order.

= 0-050. Torrential streams encumbered with detritus.

In spite of its complication, Ganguillet and Kutter's formula

has been widely adopted, especially in India, where its use has

been facilitated by the publication of extensive tables.

A formula with so many arbitrary constants can of course

be made to agree with any selected set of results of gauging
more closely than a simpler formula. But the formula has

only the authority of the results used in obtaining it. If

some of these are untrustworthy, the formula must be untrust-

worthy also. Now the term 0'00281/i was introduced chiefly

to force the formula into agreement with certain gaugings
of the Mississippi, with very large values of ra and small values

of i. Those gaugings were made by the method of double

floats, and it is now known that the velocities so obtained are

probably greater than the true velocities.

00281
Let 41-6 + - -=k.

i

Then, as Bazin has shown, the formula can be put in the

form

Jmi 1_ kn
(

1 1 V
nv 1-811 *+ 1-811 WOT 1*811/

J
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and if x/ra =1-811, or m=3'28 feet or one metre exactly,

then *Jmijv is equal to 7i/l*811 for all classes of channels.

That is, at this arbitrary limit \fmijv is independent of the

term involving the slope in all cases, and the influence of the

term in brackets is + or according as m is > or < one metre.

This result is improbable. Further, the comparison which

Bazin has made of the formula, with a more extensive list of

gaugings than were available when it was deduced, shows that

it departs widely in some cases from the results of experiment.

Calculation by Kutter's formula is a little facilitated if

the equation is put in the form

M =
1^41-6

>/m/M +

0-00281X

i )

vW;
n V \'mi. (5).
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mi /, B\

-^ =(!+). ... (6)

which proved to be suitable for pipes, the constants a and &
have no very wide range of values so long as the experiments
on pipes only are considered. But in the case of open

channels, with their great diversity of size and character of

surface, the constants a and ft have so wide a range of values

that the expression ceases to be sufficiently useful as a guide.

In addition, the form of the expression is defective. For if

m increases indefinitely, mi/v
2 = a, and this has a different

value for each class of channels. But it is reasonable to

suppose that in indefinitely large channels the influence of the

roughness of the stream bed must indefinitely diminish, so that

in very large channels mi/v
2 should tend to a value common

to all classes of channels.

After many trials, M. Bazin has adopted the following

relation, which obviates the difficulty just stated :

in which the constant a has the same value, 0*00635 (English

measures), for all classes of channels, and ft varies with the

character of the surface of the bed.

If the results of gauging are plotted so that the ordinates

y = ^/mijv,
and the abscissae x= I/ ^/m, the expression may

be written

y = 0-00635 + fix,

or if 7 = ftja

y = 0-00635(1 +yx) . . . (8),

the equation to a straight line. Eesults of this equation

plotted give a pencil of rays starting from a?=0,y = 0'00635.

The inclination measured by the angular coefficient 0*00635y
increases as the roughness of the bed increases. Fig. 110
shows a plotting.

The following are Bazin's values of the roughness coefficient

7 in eq. (8) :
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BAZIN'S VALUES OP y

I. Very smooth. Smooth cement, planed timber . .

II. Smooth. Planks, ashlar, brick ....
III. Rough. Rubble masonry .....
III. bis. Rough. Earth newly dressed, or pitched in whole

or part with stone ......
IV. Very rough. Ordinary earth canals . . .

V. Excessively rough. Canals encumbered with weeds or

boulders........

y = 0'109

y = 0-290

y = 0'83

y = l'54
= 2'36

For practical calculations Bazin's new formula can be put
in the form

157-6 v
-̂. . . . (9).

1 + '

N/m

In this form the equation is extremely convenient for

calculation. If m is known and v is to be found, the equation

030

0-2S

16-0

0-50

4-O

0-75

1-78

1-00

1-00

1-25

0-64

Fig. 110.

can be used quite straightforwardly. If v is given and the

dimensions of the channel are to be found, it is best to proceed

by approximation. Choose from tables or experience any
roughly probable value of m. With this calculate 1 -\-y/ ^/m,
and with this find a new value of m by eq. (9). With
this new value recalculate 1+y/^/m, and then find a more
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approximate value of m by eq. (9). These two steps of

approximation are generally sufficient.

It will be seen that the Chezy form of equation

v = c

is identical with Bazin's, if

or

c =
157-6

1 +

The following tables give values of 1 H = calculated
vm

with Bazin's values of
<y,

for a series of values of m and

for all classes of channels. Also the corresponding values of

f and c in eq. (10).

In selecting values of f or c it should be remembered that

the roughness is often increased by organic growths after the

channel has been some time in use. Fitzgerald has given
some interesting observations on a large aqueduct at Sudbury.
The culvert is circular, 9 feet diameter with an invert of

13' 2 feet radius; it is lined with brick, with cement joints.

It has been found that if the surface of the brickwork is not

cleaned it accumulates in the course of a year so much organic
slime that the discharge flowing full is diminished 1 per cent

(Trans. Amer. Soc. Civil Engineers, xliv. 87).

[TABLE.
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VALUES OF 1 + -4= BAZIN'S EQUATION

Hydraulic
Mean Depth

in Feet.
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BAZIN'S VALUES OF f IN EQUATION (10)
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BAZIN'S VALUES OP c IN THE EQUATION v-

Hydraulic
Mean Depth

in Feet.
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invert was concreted, and about 50 per cent completely lined.

The area when running full was 64*8 sq. feet in the lined

part, and 78*3 sq. feet in the unlined part. With water

flowing 7 feet deep, m = 3'l in the unlined and 2*87 in the

lined part. The gradient is 1 in 5500. The following are

some results obtained by Mr. Bruce (Proc. Inst. Civil Engineers,

cxxiii.) :

LOCH KATRINE CONDUIT

Depth of water
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and (H ^/m)/(r ^/r) are the relative velocities

and discharges with different depths in the channel. The

greatest velocity is when the depth is l'6r, and the greatest

discharge when the depth is I'Sr approximately.

142. Egg-shaped channels or sewers. In sewers for

discharging storm water and house drainage the volume of

flow is extremely variable
;
and there is a great liability for

deposits to be left

^ 4 ->; when the flow is

small, which are not

removed during the

short periods when
the flow is large. The

sewer in consequence
becomes choked. To

obtain uniform scour-

ing action the velocity

of flow should be con-

stant or nearly so
;
a

complete uniformity
of velocity cannot be

obtained with any form of section suitable for sewers, but an

approximation to uniform velocity is obtained by making the

sewers of oval section. Various forms of oval have been sug-

gested, the simplest being one in which the radius of the

crown is double the radius of the invert, and the greatest

width is two-thirds the height. The section of such a sewer

is shown in Fig. Ill, the numbers marked on the figure

being proportional numbers.

The following results facilitate calculations on sewers

flowing partly filled. Let d be the greatest width (that is

four units in the figure). Then

Fig. 111.

Depth of
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The last column gives the relative discharge neglecting the

variation of the coefficient c.

143. Trapezoidal channels. Artificial channels are

commonly trapezoidal in section, the side slopes being deter-

mined by the stability of the banks and the kind of protection

against degradation adopted.

Angle of Side Slopes.
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width equal to ten or twenty times the depth. In valuable

ground the width is restricted and a rectangular section is

used. The longitudinal slope i is determined by the slope of

the country and the limiting velocity which can be permitted

consistently with the stability of the canal bed. The side

slopes are fixed by the character of the banks.

If a channel is constructed for a given discharge and given

longitudinal and given side slopes, then there is a proportion
of breadth to depth which makes the area of cross section, and

therefore the amount of excavation, a minimum. The resist-

ance to flow depends on the wetted perimeter, and the velocity
will be greatest and the section least for that form for which

the wetted perimeter is least.

Differentiating the expressions for fl and ^ given above,

and equating to zero,

db \
,

. + n )a + o + nd 0,
dd J

Eliminating dbjdd,

b

d

n = 0-5 1-0 1J 2 2A 3

5

^=2 1-24 0-82 0'60 0'48 0'38 0'32.

If this value of I is inserted in the expressions for 1 and

X, we get a very convenient characteristic of channels of the

most economical section

Tfl == ^ == ~ -

-j-/ a \ . . (11).

That is, in channels of the most economical form, with

given side slopes, the hydraulic mean depth is half the actual

depth. It will easily be seen that this is a characteristic of

the semicircle, the half square, and the half hexagon. A
simple geometrical construction shows that for all such channels

the sides and bottom are tangents to a semicircle having its

centre on the water-surface.
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Let Fig. 113 represent a trapezoidal channel of minimum

section, for side slopes of n to 1. Let E be the centre of the

//
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The velocity in a channel is

/2gi
U

V f V k
(12).

For a given section of channel the velocity and therefore

the discharge will be greatest if !/*/& is greatest, so that

this can be taken as a value figure for channels of various

forms.

It is not generally convenient to adopt exactly the form

of a channel of minimum section, but the theorem indicates

the form towards which actual channel sections should tend

if practicable. For other forms of section m>d/2, and the

mean velocity for a given longitudinal slope is less. The
other limit to the value of ra is d. For in a channel of great
width

Z>, and small depth d, l = 'bd and % = & nearly, so that

m = d nearly.

The mean velocity varies as Vf
m. Hence, taking the

extreme cases of m =
d/2 and m = d, the corresponding mean

velocities will have the ratio

a. IL
v
2 V 2

0-709.

For a given discharge the areas of the channels would be

in the inverse proportion.
145. Discharge of a channel with different depths of

water flowing. Consider a rectangular channel with a stream

of water of width b and depth d.

The area is O = Id, the hydraulic

mean depth is m =
~bdj(b + 2d). The

<f discharge is

Q = tiv = ci2 Vmi =
_

/ Mi
Vmi = cbd

& + 2^>

Fig. 114.

that is, as i is constant for a given

channel, and c will only vary a little with the variation

of size,
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Q varies as
2d)

If Qj is the discharge determined by gauging for a depth

d
l} then the discharge for any other depth is

Q = QiT (13).

Example. A rectangular channel draining an area of 572,000 acres

is 60 feet wide, with a depth of water of 3 feet it is found to discharge

400 cubic feet per second. Then equation (13) becomes

= 442

(30 + df

The following table gives the mean monthly depth of water deduced

from daily observations and the discharge calculated by tbis formula.

From this the total discharge of the stream in each month can be found,
and this divided by the drainage area, 24,910 million square feet, gives

the depth of rainfall in each month equivalent to the stream discharge.

The observed mean rainfall is also given. The ratio of the stream

discharge or off-flow from the ground to the rainfall varies with the

season, and is an important datum in certain problems of water storage.

DISCHARGE AND KAINFALL ON A DRAINAGE AREA

Month.
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of width I and depth d, if I is large compared with d, O = Id

and m = d nearly. Then

Q = cbd \''di,

that is, for a given channel Q varies as d%. In a triangular
channel the width & is proportional to d, so that H =

/j,d

2 and

m = vd, where
//,
and v are constants depending on the inclina-

tion of the sides of the channel. Then

or Q varies as d?. Ordinary channels are of a form between

these two, so that at least for a limited variation of d in a

given channel the discharge may be taken to vary approximately
as d2

. In that case, if the depths of water are taken as ordinates

and the discharges as abscissae the curve of discharge is a

parabola. It often happens that an approximate estimate of

the total discharge of a stream is required when the only
continuous records available are readings on a gauge of the

surface-level of the stream. In such cases it may be assumed

that Q varies as (d+ S)
2
for the range of variation of level which

occurs in such cases, where

d is the actual depth of

water and 8 a quantity to be

determined. Suppose that,

by gauging, the discharges

Q!, Q2 for two depths d
lt
d2

of water in the stream have

been ascertained.

Take AB = d
l}
BC = Qx ,

115). Then C and E are

points on the discharge

curve, which is assumed to

be approximately a para-

bola with its vertex at

From the properties of the

O
Fig. 115.

some point at 8 below A.

parabola

DE = Q2
=

4=a(d2 + S)
2

,

where a is the parameter of the parabola. Hence
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d-d /
Ql ^

S =

-1

When 8 and a have been determined, the discharge for

any value of d is easily calculated to an approximation sufficient

in many cases where comparisons of stream discharge and

rainfall have to be made.

147. General distribution of velocity at different points

in the cross section of a channel. Even a cursory observa-

tion of flow in an open channel shows that the velocity of

translation along the channel is greater towards the centre

and surface and less towards the bottom and sides. A more

careful investigation indicates some marked peculiarities, and

a knowledge of these is of practical importance in considering

various methods of gauging the volume of flow in streams.

By means to be described presently, the mean forward

velocity at a number of points in the cross section of a stream

can be determined. This was first accomplished in a quite

satisfactory way by Darcy, and an example from his work

will be taken as an illustration.

Fig. 116 shows the cross section of a rectangular channel,

0'25 metre deep and 0*8 metre wide, in which the velocity

was observed at 36 points at the intersection of the verticals

ee,ff, . . ., and the transversals aa, &&,... The velocities

at each point on a transversal set up from the transversal

vertically give points on a transverse velocity curve. Thus

aaa is the transverse velocity curve along aa, 111) that along

11}, and so on. Similarly, the velocities at each point on a

vertical set off from the vertical horizontally give points on a

vertical velocity curve. Thus ee is the vertical velocity curve

for the vertical ee, ff that for ff, and so on. The vertical

curves show that the greatest velocity is not at the surface,

but somewhat below it. From the level of greatest velocity

at any vertical the velocity decreases upwards and downwards.

There is another way of representing the distribution of

velocity. If at points on the vertical curves where the

velocities are 1'2, Tl, TO, 0'9, and 0'8 metres per second,
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horizontals are drawn to the corresponding verticals, points are

found in the section on curves of equal velocity. These curves

correspond to the contours of a solid whose base is the cross

section of the stream, whose height at any point is the velocity
at that point, and whose volume is proportional to the

discharge of the stream per second. The maximum velocity
is on the centre vertical below the surface, and from that

point the velocity decreases in all directions.

Messrs. Fteley and Stearns made very careful gaugings of

the brick conduit at Sudbury with different depths of water

flowing. The conduit is 9 feet diameter, with an invert of

13'2 feet in radius, the height of the conduit being 7*7 feet

(Trans. Amer. Soc. Civil Engineers, 1883). With the greatest
flow the velocity was measured at 167 points in the cross

section. The following are some of the results obtained :

SUDBURY CONDUIT

Depth of water



V
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the depression of the line of maximum velocity increased with

an upstream and decreased with a downstream wind, but this

result has not been found in some other cases. Perhaps it

depends on the presence or absence of waves or ripples on

which the wind can act.

149. Vertical velocity curve. In purely viscous stream-

line motion the vertical velocity curve would be a parabola
with a horizontal axis at the free surface. In ordinary
turbulent motion in streams the vertical velocity curve

agrees fairly well with a para-
bola having a horizontal axis

at the level of maximum vel-

ocity. Without assuming this

to be more than a convenient

approximation, it is a result

useful in discussing the rela-

tions of the velocities at differ-

ent depths in a stream.

Let AOC (Fig. 117) be a

parabolic velocity curve, the

axis being a horizontal through
0. Let V be the maximum,

rig. 117.
v the surface, vb the bed vel-

ocity, and v the velocity at any point P. Let Z be the depth
of the filament of greatest velocity, z the depth of P, and

D the whole depth of the stream. Then from the properties
of the parabola

where K is the parameter of the parabola.

= v- (-^ Z)2

K

Hence

(15).

Mean velocity at a vertical. If a fairly large number
of velocities at equal distances on a vertical are observed, the

arithmetic mean is very approximately the mean velocity at

the vertical. If the number is small the arithmetic mean is

less than the true mean velocity. If through observed points
a fair vertical velocity curve can be drawn, the mean velocity
at the vertical is the area of the curve divided by the depth
of the stream.
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Assuming that the vertical velocity curve is a parabola

such as is shown in Fig. 117, the mean velocity is the mean

ordinate of AOC, that is

U =
g {area EAOCF}

=
ijarea

EGHF -
1 (area AGOK + OLCH)

j

But by the equation above, when

K
(D - Z)

2

~KT

_ D2

DZ_Z
2

3K
+ K K

DZ ID2

= V + -
'

D
If v^ is the velocity at half depth, putting z =

^
in the

equation above,

D2

so that the half-depth velocity is greater than the mean

velocity at the vertical only by the small quantity D2

/(12K),
a result which depends on the assumption of a parabolic curve,

but which cannot be much wrong, and this is useful in practical

gauging. In Cunningham's Eoorkee gaugings with floats, much

attention was paid to this point, and the mid-depth velocity

was found a little greater than the mean velocity at the vertical

in forty-two cases out of forty-six. The average of a large

number of results gave 11/17,= 0*94 to 0'98.
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If two velocities can be observed on a vertical, then a

better approximation to the mean velocity U can be found.

Thus the parabolic law shows that if the velocity at the surface

and --
depth is observed,

150. Transverse velocity curves. In a channel sym-
metrical about its centre line, the transverse velocity curve at

any level shows a maximum velocity at the centre, a slow

decrease of velocity towards the sides, more rapid as the banks

are approached, and very rapid near the banks. In an

Fig. 118.

unsymmetric channel the greatest velocity is over the deepest

part of the stream.

Fig. 118 shows the results of a very careful current-meter

gauging of the Eger at Falkenau by Wilhelm Plenkner of

Prague. The river is 321*6 feet wide. The vertical scale is

exaggerated ten times. The curve 1 passes through the points

of maximum velocity, which throughout is somewhat below

the surface. Curve 2 passes through the points of mean

velocity on each vertical a little below half depth. Curve 3

passes through points where the velocity is equal to the

mean velocity of the whole section. Curve 4 is the transverse

mean velocity curve, that is, its ordinates are the mean
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velocities on each vertical. Curve 5 is the transverse surface

velocity curve.

151. Ratio of mean and surface velocities. In a gauging
of the Rhine at Basel the velocity at 0*58 of the depth was

found to be equal to the mean velocity on the same vertical.

The ratio of the mean to the surface velocity on one vertical

varied from 0'77 to 0'85, the average being 0'82. The ratio

of the mean velocity for the whole cross section to the greatest

surface velocity was on the average 0*73. Harlacher found

the same ratio in gauging the Elbe. The following table

gives some values :
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such an aqueduct is of a composite character part in tunnel

where the ground is above the hydraulic gradient ; part in

cut and cover, that is, built in an open trench and then

covered in. Across valleys the aqueduct must be carried on

piers, or more commonly the water is conveyed in one or more

pipes, termed inverted siphons, falling from the hydraulic

gradient at one end and rising to it again at the other end.

Roman aqueducts. Amongst the most striking engineer-

ing works of antiquity, of which parts still exist, are the

aqueducts constructed for the water-supply of Kome and other

cities of the Eoman empire. The Appian Aqueduct at Borne

was constructed in 3 1 3 B.C., and conveyed water from springs

ten miles distant from the city, in a channel 2^- feet wide by
5 feet deep. Others were subsequently constructed, till there

were fourteen aqueducts, of lengths varying from 11 to

59 miles, and aggregating 359 miles. Of the total length,

55 miles were on arches, and the remainder chiefly under-

ground. The channels were lined with cement and roofed with

slabs, and the gradients varied from perhaps 1 in 500 to

1 in 3000. Herschel estimates the total supply to the city

of Kome at 5 million gallons daily, with an additional supply
to districts outside the city. The water was often distributed

by lead pipes, and lead siphons of 12 to 18 inches diameter

have been found.

Types of aqueducts. Fig. 119 shows cross sections of

some important aqueducts. A, B, C are sections of the

new Loch Katrine aqueduct.

153. Examples of aqueducts. (1) Loch Katrine

aqueduct. This was designed to convey 50 million gallons

per day from Loch Katrine to Glasgow, but the roughness of

the channel was not fully allowed for, and it probably carries

only about 40 million gallons. The top water surface in

Loch Katrine is 367 feet above mean sea-level, and the water

is delivered into a service reservoir at Mugdock, 26 miles

distant, where the top water-level is 317 feet above mean
sea-level. Of the 26 miles of aqueduct, 3|- are cast-iron

pipes across valleys, llj miles are in tunnel, and 10^- miles

are bridges and masonry in cut and cover. The tunnels are

8 feet in diameter, with a fall of 10 inches per mile. The

channel in cut and cover has the same gradient as the tunnels.



CUT AND COVER IN EMBANKMENT

BRJCK LINING IN HEAVY GROUND-

Fig. 119.
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Portions of the pipe line consist of two 4 8 -inch and one

36-inch pipe, or of four 36-inch pipes, the general hydraulic

gradient being 5 feet per mile. An additional aqueduct has

now been constructed following generally the line of the old

aqueduct, with the object of ultimately maintaining a supply
to the city of 100 million gallons per day. In the new

aqueduct, with water flowing 7 feet deep, the area of section

is 78'3 square feet. The wetted perimeter 24'9 feet. The

hydraulic mean depth 3'1 feet. The slope 1 in 5500. The

estimated discharge is nearly 72 million gallons per day

(Proc. Inst. Civil Engineers, 1883).

(2) Thirlmere aqueduct, for the supply of water to

Manchester. This is designed to convey 50 million gallons

per day from Lake Thirlmere to a service reservoir at

Prestwich, a distance of 96 miles. There are 14 miles of

tunnel, 37 miles of cut and cover, and 45 miles of cast-iron

pipes. The tunnels are 7 feet 1 inch wide, the side walls

5 feet high, and the arch rises 2 feet. They are for the most

part lined with concrete, but in parts only the floor is lined.

The thickness of floor lining is 4^ inches in close rock to

18 inches in bad ground. Walls 12 inches to 18 inches

thick. Arch ring 15 inches thick. "Where the tunnels are

unlined their width is increased to 8 feet 6 inches, to allow

for the greater friction due to irregularities of the rough rock

surface. The cut -and -cover channels are also of concrete.

At full supply the water in the conduit will be 5 feet 6 inches

deep. The pipe line was designed to have three parallel

4 8 -inch pipes in the first part, and five parallel lines of

40 -inch pipe in the later part, the pipes varying in thickness

from 1 to 1|- inches, with socket joints run with lead. The

second pipe laid has been increased in diameter from 40 to

45 inches. The surface of the lake when full is at 584 feet

above O.D. The aqueduct starts at 527 feet above O.D. and

ends at Prestwich at 353 above O.D. The ruling gradient
is 20 inches per mile, but extra fall is given to the pipe line.

Along the aqueduct there are manholes at every quarter mile.

New Croton aqueduct, New York, U.S.A. In this

aqueduct there are 30 miles of tunnel, 1 mile of cut and

cover, and 2^ miles of pipe. About 7 miles of the tunnel

is of circular form 1 2^ feet in diameter, and is under pressure.
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amounting at one point to 120 feet of head. The remainder

of the tunnel is horseshoe-shaped, 13 feet 7 inches in width

and height. For 25 miles the gradient is 0'7 feet per mile.

The tunnel is lined with brickwork 12 to 24 inches thick.

The discharge is about 300 cubic feet per second.

154. River bends. In rivers flowing in alluvial plains

the windings which already exist tend to increase in curvature

by the scouring away of material from the outer bank and the

deposition of detritus along the inner bank. The sinuosities

sometimes increase till a loop is formed with only a narrow

strip of land between the two encroaching branches of the

river. Finally a "cut off" may occur, a waterway being

opened through the strip of land and the loop left separated

from the stream, forming a horseshoe-shaped lagoon or marsh.

Professor James Thomson has pointed out (Proc. Royal Soc.

1877, p. 356; Proc. Inst. of Mech. Engineers, 1879, p. 456)
that the usual supposition is that the water, tending to go
forwards in a straight line, rushes against the outer bank and

scours it, at the same time creating deposits at the inner bank.

That view is very far

from a complete account

of the matter, and Pro-

fessor James Thomson
has given a much more

ingenious account of the

action at the bend, which

he has completely con-

firmed by experiment.
When water moves

round a circular curve

under the action of

gravity only, it takes a

motion like that in a free

vortex. Its velocity is

greater parallel to the axis

of the stream at the inner than at the outer side of the bend.

Hence the scouring at the outer side and the deposit at the

inner side of the bend are not due to mere difference of velocity

of flow in the general direction of the stream
; but, in virtue

of the centrifugal force, the water passing round the bend

Fig. 120.
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presses outwards, and the free surface in a radial cross section

has a slope from the inner side upwards to the outer side

(Fig. 121). For the greater part of the water flowing in

curved paths, this
INNE(U5ANK OUTHMMK.

diffel.ence of pressure

produces no tendency
to transverse motion.

But the water im-

mediately in contact
SECT.ON At MM

with ^ rough ^
Fig. 121. torn and sides of the

channel is retarded,

and its centrifugal force is insufficient to balance the pressure

due to the greater depth at the outside of the bend. It

therefore flows inwards towards the inner side of the bend,

carrying with it detritus which is deposited at the inner bank.

Conjointly with this flow inwards along the bottom and sides,

the general mass of water must flow outwards to take its place.

Fig. 120 shows the directions of flow as observed in a small

artificial stream, by means of light seeds and specks of aniline

dye. The lines CO show the directions of flow immediately in

contact with the sides and bottom. The dotted line AB shows

the direction of motion of floating particles on the surface of

the stream.

PROBLEMS.1

1. A river has the following section : bottom width, 300 feet ; depth
of water, 20 feet

;
side slopes, 1 to 1

; fall, 1 foot per mile.

Find the discharge, using Darcy's coefficient for earth channels.

Darcy, c = 100 ; Q = 37,340 cubic feet per second.

2. A canal is to be constructed for a discharge of 2000 cubic feet

per second. The fall is 1-5 feet per mile; side slopes, 1 to 1 ;

bottom width, ten times the depth; c=120. Find the

dimensions of the canal.

Depth, 6-23 feet ; bottom width, 62-3 feet.

3. Required the dimensions of a trapezoidal channel of the most

economical section to convey 600 cubic feet per second, with a

faU of 2 feet per mile, and side slopes l to 1. f
= -0035.

Depth, 7-48 feet; bottom width, 4'49 feet.

1 When not otherwise stated, Bazin's values .of the coefficients for channels

have been used.
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4. Kecalculate the discharge of the channel determined in (3), taking
Bazin's coefficient for sides covered with stone pitching.

388 cubic feet per second.

5. An irrigation canal in earth with side slopes Ij to 1 conveys
600 cubic feet per second at a velocity of 2j feet per second.

Design a suitable canal section with a depth of 3 feet

Area of section, 240 square feet ;
m = 2-687 ;

c = 64-6 ;
i = '000557 or 2'94 feet per mile.

6. A brick culvert, 5 feet 6 inches in diameter and 4000 feet long,

conveys 150 cubic feet per second when running full Find the

fall in feet necessary. 7 '3 feet

7. An oval brick sewer, flowing two-thirds full, is 4 feet wide and

6 feet high. Find the fall in feet per mile to give a velocity of

3 feet per second, and the discharge.
2-4 feet ;

36*3 cubic feet per second.

8. A canal is to be cut in earth with side slopes 2 to 1, and a fall of

9 inches per mile. The discharge is to be 6000 cubic feet per

minute, and the depth 3 feet. Find the dimensions of canaL

(Solve by approximation.)

Assuming ra = 3, 6 = 18*2 feet ;

then m = 2-29, and 6 = 24 feet.

9. A semicircular channel of smooth cement is 5 feet deep and slopes

at 1 in 1000. Find the discharge.
115-7 cubic feet per second.

10. A trapezoidal channel of the most economical form, with sides of

rubble masonry, has a depth of 10 feet and side slopes of 1 to 1.

Find the discharge when the fall is 18 inches per mile.

6 = 8-2; v = 3-28; 12 = 182; Q = 597.

11. A rectangular ashlar masonry channel is 12 feet wide and 4 feet

deep, and has a slope of 1 in 5000. Find the velocity and

discharge. 2-91 feet per second ;
139-6 cubic feet per second.

12. The water section in the aqueduct at Dijon is 2 feet wide and 1 foot

deep, and the sides are smooth cement The slope is 1 in 1000.

Find the velocity and discharge.
3'05 feet per second ; 6-1 cubic feet per second.

13. Find the equation to the discharge parabola of the Sudbury

aqueduct from the data in 147, and draw the curve.

Q = 4(rf + 0-738)
2
.

14. A channel has an hydraulic mean depth of 5 feet Compare the

discharges if the sides are of smooth cement, and of rubble

masonry. 1*30 to 1.

15. The top width of an irrigation canal is 200 feet, the depth 10 feet,

and the side slopes 3 to 1. The slope is 15 inches per mile.

Find the discharge. v = 3-86 ; Q = 6567.



CHAPTER XIII

GAUGING OF STREAMS

155. FOR various purposes the engineer needs to gauge the

flow of streams. For instance, in determining the value of

a fall as a source of water power the volume of flow throughout
the year must be ascertained. The flood discharge is of little

value unless storage reservoirs can be constructed. The

ordinary summer flow and the minimum flow are factors of

greater importance generally. Then again, the water-supply
of many towns is derived from the drainage of large gathering

grounds, flowing off by a stream. In considering the sufficiency

of the supply, the flow must be determined partly by rainfall

observations, partly by gauging the stream so as to establish

a relation between the rainfall and flow from the catchment

basin. Usually gauging operations are carried on for a

considerable period, as accurate statistics are required in the

settlement of difficult questions such as the apportionment
of compensation water. Lastly, in the management of irriga-

tion works it is frequently necessary to gauge the flow in

canals and distribution channels.

156. Water-level gauge. Wherever stream discharge
measurements are carried on, water-level gauges should be

established, on which readings of the varying water-level can

be taken simultaneously with the velocity observations. The

zero of the gauge should be connected by levelling with a

permanent bench mark, and the zero should be below the

lowest water-level to avoid minus readings. The scale of

the gauge should be in feet and tenths. The scale may be

fixed to a pile driven into the stream bed or fixed to a

masonry structure. Sometimes a scale attached to a float

264
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is convenient, the reading being taken against a fixed mark.

Automatic gauges are used in important investigations. A
cord attached to a float gives motion through reducing-gear
to a pencil which records the water-level on a drum driven

by clockwork.

157. Mean velocity calculated from the longitudinal

slope. If the longitudinal surface slope of a stream is

determined in a part where the channel is of fairly regular

section, then the discharge can be ascertained by the formulae

of flow, subject, however, to the difficulty of selecting a

coefficient suitable to the character of the stream. In most

cases, however, the surface slope is an extremely small quantity,

generally less than 1 in 5000, and the oscillations of the

water surface render its determination difficult. The slope

in natural streams often differs to some extent on the two

sides as the current sets to one bank or the other. In

Cunningham's experiments on the Ganges Canal twelve

measurements of slope on symmetrical 2000 and 4000 feet

lengths differed by 25 per cent, but the site was probably a

specially difficult one. Usually the mean of the slope

determined at the two banks is taken as the virtual slope

of the stream.

158. Gauging by observation of the velocity of flow.

In streams of moderate size the most accurate method of

gauging is by a weir constructed for the purpose across the

stream. But often it is impracticable to erect a weir, and

the operation of gauging is then effected by determining the

cross section H and the mean velocity vm of the stream. The

discharge is Q = lvm. For gauging purposes a straight and

unobstructed reach of the stream should be selected, where the

cross section is fairly uniform in area and form. Then two

series of observations are required : (1) a survey of one or

more cross sections of the stream: (2) observations of the

velocity at one or more points of the cross section.

159. Measurement of transverse sections. The depth
of the stream is ascertained at a series of points, equidistant
if possible, along the line of the required cross section. For

small streams a wire may be stretched across, with equal
distances of about 10 feet or less marked on it by tags. If

the wire is first set up on land and stretched with a given
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weight, the position of the tags can be fixed so that their

horizontal distances are equal. The wire is then stretched

across the stream with the same tension. The depth at each

tag can be taken with a light graduated and loaded rod. Care

should be taken that the wire is perpendicular to the thread

of the stream.

For large rivers the position of soundings is fixed by angu-
lar measurement. A base line AB (Fig. 122), parallel to the

stream, is first laid out and

_ . _8 - measured. Next staves are

set up at CA and D along
the line of the required
section and at right angles

to AB. Observers are

placed at C and B
;
a boat

r
'

drops down stream, and at

the moment it crosses the

section at E the observer C

signals, the sounding is

taken in the boat, and B

Fig. 122. with a box sextant takes

the angle ABE. This is

repeated till soundings at a sufficient number of points
have been ascertained from which to plot the cross section.

The soundings may be taken by a graduated rod if the depth
is less than 15 or 18 feet, or by a weighted cord or lead-line

or chain. If the velocity of the stream is considerable, the

weight should be disc-shaped or lenticular, so as to expose as

little surface normal to the current as possible. A simple
winch and wire are convenient for lowering the weight, and

the winch may have a counter which shows the depth. From
the observations the section is plotted, and the area H and

wetted perimeter % are calculated.

The area of a plotted cross section may be obtained by a

planimeter, or by dividing the width of the stream into n equal

spaces and measuring the n + 1 vertical ordinates at the divid-

ing points. Let 6 be the width of a division, and h
,
k

l} . . . hn
be the measured ordinates. Then by the trapezoidal rule the

area is
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If the end ordinates are zero,

267

If there are ten spaces, Simpson's rule may be used with

somewhat greater accuracy

j

As the level of a stream varies from time to time, a level

gauge should be fixed before operations are begun. The water-

level should be noted on this gauge when taking the cross

sections, and afterwards when the velocity observations are

made.

If velocity observations are to be taken, at least two cross

sections should be measured and the average values of ^ and H
computed for use in calculations.

160. Float gauging. The velocity in a stream may be

directly observed by taking the time of transit of a float over

a measured length of stream. Surface floats are used to

determine surface velocities. They may be balls, or discs of

wood or cork. A tuft of oily cotton-wool, which does not get

wet, is a useful means of rendering them visible. Captain

Cunningham at Eoorkee 1 used

thin deal discs 3 inches diameter

and 1 inch thick. Sub -surface

floats. To observe velocities be-

low the surface, a large relatively

heavy float (Fig. 123), connected by
a thin wire (about 0*015 inch thick)

to a small, light surface float, has

been used. It is assumed that the

motion of the combination is prac-

tically that of the sub-surface float,

the influence of the surface float and

connector being negligible. But if

the large float is made nearly of the

density of water, so that the surface float may be small, the

eddies prevent the large float from keeping its depth. If the

1 Eoorkee Hydraulic Experiments, by Captain Allan Cunningham, R.E.

(Thomason College Press).

Fig. 123.



268 HYDEAULICS CHAP.

lower float is heavy, the upper float must be large, and then

its influence on the motion of the combination is not negligible

and the velocity observed is not the true sub-surface velocity.

Fig. 124 shows the form of sub-surface float used by Captain

Cunningham at Eoorkee. It consists of a hollow metal ball

connected to a disc of cork. The influence of the connecting
wire on the motion increases as the depth of the sub-surface

K3 diet*
-t l

float increases, and the observations become less trustworthy the

greater the depth. Twin floats. Fig. 125 shows two equal
balls connected by a wire, the lower being loaded so that the

combination just floats. The motion of the twin float must
be nearly the mean of the surface velocity and the velocity at

the depth at which the lower float swims. Thus if v
s is the

surface velocity, and vd the velocity at the depth d, the velocity

of the twin float is v = -(vs + vd).
If v

s is ascertained by

means of a surface float,

vd = 2v - vs (3).

Captain Cunningham found the twin float more satisfactory
than the sub-surface float, but the influence of the connector

increases with the depth, and also the uncertainty as to whether
the lower float keeps its depth or is tossed about by eddies

in the water.

161. Rod floats. Fig. 126 shows another form of float
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used in some early researches. Its use has been revived by

Captain Cunningham in India. In its simplest form it con-

sists of a wooden rod with a cap at the lower end in which

shot can be placed, so that the rod floats nearly upright, and

with little projection above the

water -surface. Wood rods may
be made in lengths which can be

screwed together. Cunningham
used sets consisting of lengths 0*1,

0'2, 0-3 ... up to 1 foot, and 1,

2, 3 ... up to 12 feet; but tube

rods of tinplate about 1 inch in

diameter made of graduated lengths,

adjusted to float at definite depths

in still water and marked, were

found more convenient. He found

that the velocity of a rod, the

immersed length of which was

nearly equal to the depth of the

stream, is a close approximation
to the mean velocity on the verti-

cal corresponding to its path, and

he considered it the most accurate means of float gauging in

suitable conditions. At any rate the gaugings showed that

though the rod necessarily was shorter than the full depth of

the stream, its velocity was very approximately the mean

velocity at the vertical corresponding to its path. The rod

float is certainly free from the chief objections to the sub-

surface or twin float.

162. Float paths and time of transit. In the part of

the stream selected for gauging two cross sections are fixed at

a measured distance apart, and the time of transit of the floats

between these sections is observed. The floats are thrown in

above the upper section at various points in the width of the

stream. In careful gauging the exact float paths should be

observed. The two end sections may be marked by cords

stretched across the stream, and if these have coloured tags at

equal distances it is possible to note approximately the

distance from the bank at which each float crosses each section.

If I is the distance between the cross sections, and t the

Fig. 126.
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time of transit, then v =
l/t

is the velocity of the stream at the

position of the float path normal to the cross sections.

In large streams the float paths must be observed by box

sextants or theodolites. A base line AB (Fig. 127) is set out

parallel to the thread of the stream.

fi Ranging rods are set up at A
1?
Bp

on lines at right angles to the base,

usually on the lines of surveyed
transverse sections. Observers are

stationed at A and B with sextants.

Floats are dropped into the stream

from a boat upstream of AA .

As the float crosses AA
X
at C, the

observer at A signals, and B takes

B /
x

vlD B, the angle ABC. When the float

crosses BB
X at D, B signals and A

takes the angle BAD. An observer

Fig. 127. also notes with a chronograph the

time between the signals. All the

data are so obtained for calculating the velocity and plotting
the float path CD.

The best length of the float path depends on the velocity
and regularity of the stream; lengths of 50 to 250 feet have

been used. The longer the base the less the error of the

time observation. But, on the other hand, the longer the base

the more the floats stray about into regions of differing velocity.

In the Ganges Canal researches Captain Cunningham found a

run of 50 feet best for the central parts of the stream, but

near the banks this had to be shortened to 12j feet. With

any longer run the floats strayed to the banks.

163. The screw current meter. This was termed by
early hydraulicians the Woltmann Mill. In improved form

it is the most generally useful, and, if properly calibrated, the

most accurate apparatus for measuring velocity in streams.

A screw propeller, like that in Fig. 128, delicately supported,
drives a counter by a worm. The counter can be put in or

out of gear by a cord. The meter is fixed on a rod or length
of gas-pipe, and held in the water in the desired position.

A rudder keeps the propeller facing the stream. The counter

is put in gear for one minute or more, and from the difference
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of the counter readings divided by the duration of run the

velocity is calculated. In its ordinary form the meter must

be lifted from the water to read the counter, and cannot be

conveniently used at greater depths than about seven feet.

Harlacher screw current meter. This is a current meter

with an electrically actuated indicator showing the revolutions.

The meter is on a sleeve which slides on a substantial hollow

cast-iron rod, and can be moved up and down the rod by a

cord passing down inside it. The rod is long enough to be

firmly fixed in the bottom of the river. The cord is wound

Fig. 128.

on a barrel fixed to the rod, and this has an indicator showing
the depth of the meter from the surface. The whole apparatus
is fixed on a raft which can be moved across the stream, and

anchored at each vertical at which the velocities are to be

taken. A current from a small primary battery passes down
an insulated wire and back by the rod. A contact-piece on

the shaft of the screw closes the circuit every revolution.

The current drives a kind of electrical clock with two dials,

one showing revolutions and the other hundreds of revolutions.

The apparatus being fixed at a vertical in the cross section of

the stream, the meter is dropped by the cord to points equi-
distant on the vertical, and at each the revolutions in one
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minute or more are observed. The meter is then moved to

the next vertical, and similar observations made. The mean

velocity on each vertical is calculated from the observations.

Otherwise, the mean velocity on a vertical may be found

directly by moving the meter slowly and regularly down the

vertical, and noting the revolutions and time of transit. It

will be seen that all the observations at each vertical can be

made rapidly without removing the apparatus from the water.

Harlacher used this meter on the Danube in water 26 feet

deep running at 10 feet per second (Proc. Inst. Civil

Engineers, Ixvii., 1881).

Current meter of J. Amsler Laffon (Fig. 128). This can

be used on a rod like the primitive meter, and then its chief

peculiarity is an improved method of putting the counter in

or out of gear. There is a double ratchet, and alternate pulls

on a cord throw the counter into gear and out of gear.

But there is a wholly different way in which this meter

can be used, the meter M being hung in gimbals, permitting
freedom of motion in all directions, and suspended in the

water by a wire (Fig. 129). A conical rudder keeps the

meter facing the current. The suspending wire is coiled on

a small winch A, and this has an index which can be set to

show the precise depth at which the meter is suspended.

Below the meter, to keep the suspension wire vertical, is a

lenticular weight W, of 85 Ibs., presenting little resistance to

the water, so that the wire is practically vertical. For

indicating the revolutions of the meter there is an electric

circuit formed by an insulated wire from a battery B, and

return through the suspension wire. This circuit is closed,

by a contact on one of the counting wheels shown in Fig. 128,

at every hundred revolutions of the screw, and a bell is rung.

It is only necessary, therefore, to note the time by a stop-watch

for 100, 200, or 500 revolutions. A subsidiary arrangement
is that, when the foot of the lenticular weight touches ground,

a contact is made and the circuit closed, so that the bell rings

continuously. The meter is then one foot above the ground.
This gives warning, and has the further advantage that the

apparatus can be used as a satisfactory sounding instrument

in any depth of water.

The suspended meter is generally used thus : The boat
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is anchored at a vertical, its position being fixed by angular
measurement. The meter is then lowered till its axis is at

the water surface and the depth index on the winch is set to

zero. The meter is then lowered till the foot touches bottom.

Fig. 129.

If h
t

is the reading, the whole depth of the stream is

H = ^ + 1. Then velocities are observed.

velocity at h
l ;

v
2
at h

2
= A

x
d

; v^
at h

3
= ^ 2d

;
.

Let
tfj

be the

at hn = h
l (nl}d.

very nearly

The mean velocity on the vertical is

18
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Or the vertical velocity curve may be plotted, and its mean
ordinate found. The meter can be used with great facility

in rivers even in flood.

EXAMPLE OF CURRENT METER OBSERVATIONS ON A VERTICAL

Vertical No. 3.

Depth at vertical, 2-6 feet.

Distance from zero of transverse section, 32 feet.

Water-level on gauge, 1-65 feet.

2 h. 50 m. p.m.

Depth.
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apart in the cross section. The frame carrying the meter

was suspended from a small carriage on two 3-inch pulleys,

and traversed by an endless wire passing over pulleys on the

end supports of the carrying wire. Other wires from the

frame, carried over a pulley on the carriage, served for raising

and lowering the frame. Lastly, a wire with a cast-iron

anchor-plate of 70 Ibs. passed through the frame and over

the carriage, and served to keep the frame vertically in position

during the observations. Insulated wires from the meter,

through which a current passed when contact was made at

the meter, indicated on shore the revolutions of the meter

(Turner, Proc. Inst. Civil Engineers, Ixxx., 1884). In some

cases the meter has been used by observers on a travelling

platform suspended from a wire rope stretched across the

stream. In a gauging of the Khine by Baum (Proc. Inst.

Civil Engineers, Ixxi. 456) the current meter was used on a

platform between two coupled boats, sliding on a T-iron

4" x 2f".

164. Calibrating the screw current meter. The

accuracy of velocity observations by current meter depends

entirely on the care and skill used in determining the constants

of the instrument. If the screw propeller were of uniform

pitch p, and if it were Motionless, then it would make one

revolution for p feet of water passing it. The relation of

velocity v and revolutions per second n would be v=pn. In

any actual instrument these conditions are not satisfied. At
some velocity VQ (about 4 inches per second or less) the meter

ceases to revolve, being held by friction. Also the pitch
cannot be accurately measured. Hence the relation of v and

n must be determined by experiment. It is generally assumed

that the form of the relation is linear, so that

v = an + ft . . . . (5),

where a and /3 are constants, and {$ is the velocity at which

rotation ceases. Exner has shown that the following equation,
on theoretical grounds, is more exact and better agrees with

experiment :

t>= <v/(a%
2 + 2

) . . (6).

But when the lowest velocity is not less than 1 foot per

second, eq. (5) is practically accurate and more convenient.
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Suppose a current meter towed over a length I feet in

still water, and that it makes N revolutions, the time of

transit being t seconds. The speed of towing or velocity of

the water relatively to the meter is
l/t
= v feet per second,

and the speed of the meter is N/ = n revolutions per second.

Let a number of observations be taken in this way at different

speeds, and let n
l}
n

2 , % ... be the meter speeds correspond-

ing to the velocities v
lt

vz , vs . . . Let ra be the number of

observations. Then, assuming the relation v = an + ft, the

values of a and /? may be found by the method of least

squares.

-
2(n)2(wt;)

. (7).

Example. For instance, the following table contains the results of

a series of tests on a meter and the summation of the quantities required

in determining the constants. The length of run was 336 feet.
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A different formula of reduction is used by some American

engineers. If in the equation v = an + ft observed values of

v and n are inserted, then for m observations a series of ra

equations can be formed

an
2
+ /3-v2

=
2
{ . . (8),

where el} e2 are small errors of individual observations. Since

ft enters in the same way into all the equations, its most

probable value is the arithmetical mean. Let nm = (2w)/m be

the] mean value of n, and vm = (2v)/ra the mean value of v.

Then, as the errors cancel,

. . . (9).

Inserting this value in eq. (8),

a(l
~ nm)

~
(
V
l
~ Vm) = fv

To weight these equations multiply each by the coefficient

of a. Then

-*.)-

Adding these equations,

= 0.

and ft can then be found from eq. (9).

Example. Taking the data in the table above, the following are the

quantities required to determine a and /? :
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requiring a good deal of care. It should be repeated many
times to eliminate errors. A better plan is to fix the meter

on a truck running on rails alongside a quay wall Slow

velocities are best obtained by towing the meter by a winch.

Sometimes one current meter can be calibrated by comparing
it with another previously calibrated. It is not very satis-

factory to obtain the constants by placing the meter in a

stream the velocity of which has been determined by floats,

but perhaps good results would be obtained if the speed of a

stream was determined by a Pitot tube and the current meter

used in the same stream at the same place. A check on the

calibration of a current meter has sometimes been obtained

by using it to measure the volume of flow in a channel the

V

B
Fig. 131.

discharge of which was also measured by a weir. In a few

cases the constants of meters have been ascertained by towing
them in the Admiralty tank at Torquay, in which ship models

are tested. The means of registering time and speed are so

perfect in this case that the results are very trustworthy (see

Gordon, Proc. Inst. Mech. Engineers, 1884).
165. Pitot tube and Darcy gauge. A very early

instrument invented by Pitot in 1730, employed in a modified

form by Darcy and Bazin in their classical researches, has

again come into use in determining the velocity of currents of

water and air. Suppose a bent tube, such as that shown in

Fig. 131, immersed in a stream of water. When the mouth

of the tube points upstream as at A, the impact of the fluid

produces a pressure which raises the water in the tube to a

height h above the surface outside. If, as at B, the mouth is
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m

parallel to the stream, there is no impact, and the water inside

and outside are at the same level. If, as at C, the mouth

points downstream there is a certain amount of suction, and

the level in the tube is depressed by
some distance h^ Pitot used two

tubes arranged as at A and B, and

found that the difference of level was

very nearly v2

/2g. Hence the special

advantage of this instrument is that,

if properly constructed, it is almost

independent of the need of calibra-

tion.

An objection to the original Pitot

gauge was the difficulty of reading the

height h when the gauge was in the

water. This is overcome in the modified

Darcy gauge shown in Fig. 132. The

gauge is shown clamped at B on a rod

AA resting on the stream bed. The

tubes corresponding to A and B in

Fig. 131 are at d, being made very
small to avoid disturbing the flow. The
mouth of the statical tube opens down-

wards. The tubes d communicate with

the glass tubes I, b, which can be shut

off by a two-way cock c actuated by
cords. In order to bring the water

columns in &, 5 into a convenient posi-

tion for reading, a partial vacuum is

made above them by sucking out a

little air by the tube m and then

closing a cock at a. The difference

of height of the columns is not altered

by raising them. The columns having
come to rest, the cock c is closed, and

Fig. 132. the readings taken by verniers. For

a velocity of one foot per second

&=0'186 inch, which is rather small, but h increases as

the square of the velocity, so that at 4 feet per second h = 3

inches nearly.
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If v is the velocity of the stream and h the difference of

level of the columns,

. . (11),

where k is a constant depending on the form of the mouths of

the instrument and the way they are placed. But if the tubes

and orifices are small so as not to create eddies, k differs hardly

at all from unity. Darcy calibrated his gauge with great care

in three ways. Towing the gauge in still water he found

k = 1*034
; observing velocities simultaneously in a stream by

floats and by the gauge he found k= 1'006
;
and by taking

a number of readings in the cross section of a channel the

flow in which was known, he found k = 0*993. He concluded

Fig. 133. Fig. 134.

that the true value of k did not sensibly differ from unity.

White (Journ. Am. Assoc. of Eng. Soc., 1901), and Williams,

Hubbell, and Fenkell (Trans. Am. Soc. of Civil Engineers,

1902), found that if the tubes were well formed the

coefficient was unity. Threlfall (Proc. Inst. MecJi. Engineers),

using Pitot tubes in a current of air, found k =0*9 74; and

Stanton, in extremely accurate experiments on the flow of

air, found k= 1'03 (Proc. Inst. Civil Engineers, 1903).
The chief cause of variation of the coefficient seems to be

the action on the mouth of the statical pressure tube. If this

is at all large, the stream lines are bent concave to the mouth

(Fig. 133), and there is a slight sucking action which increases

h. This may be obviated by a plane disc fitted to the tube,

as in Fig. 134. A good arrangement is to form the two tubes
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concentric, as in Fig. 135, and to place the statical pressure

opening on the cylindrical part of the outer tube.

In the case of air of density G Ibs. per cubic foot, the head

x& HOLE. ,& THICK. f fo SLOT.

Fig. 135.

corresponding to P Ibs. per square foot is P/G-. Or if the

pressure is measured in inches of water hw ,
the head is

5'2AW/G in feet of air. Then

If the air is at ordinary pressure and temperature, and

k = unity,

. . . (12).

166. Ratio of different velocities in a stream. Surface

and mean velocities. In reducing gauging observations it

is necessary to know the relation of the velocities at different

parts of a stream. Thus a rough gauging may be made by

observing the greatest surface velocity only, if the relation of

the mean to the greatest surface velocity is known.

Let V be the mean velocity of the whole cross section, and

v the greatest surface velocity, which may be found by using
a surface float or current meter. If O is the area of cross

section the discharge is Q = JYV. Darcy and Bazin deduced

from their researches on small regular channels that

V = v - 25*4 ^mi (13)-

But V = c \frni, where c is a constant for a given type of

channel ( 137). Hence

V =
c + 25-4
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The following table gives values of V/v for the values of

c in 138 :

Hydraulic
Mean Depth

m
in Feet.
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RATIO OP MEAX TO GREATEST SURFACE VELOCITY



XIII GAUGING OF STEEAMS 285

the cross section to the velocity at the centre of figure of the

cross section is a fairly constant ratio. The latter could be

easily determined by a current meter. In the Vyrnwy stream

this ratio was 0*888.

If v
c
is the velocity at the centre of figure and V the mean

velocity for the cross section, Wagner found in rivers

. . (15).

This ratio does not differ much from the ratio of the mean

velocity of cross section to central mid-depth velocity, which

was 0*8 7 6 at the Vyrnwy stream.

167. Velocities on one vertical. The following table

contains averages from the large mass of float gaugings made

by Captain Cunningham on the Ganges Canal.
1 The aqueducts

were 85 feet wide with 10 feet depth and less. The main

embankment site was 170 feet wide with 11 feet depth and

less. The averages are fairly consistent. The individual

results vary a good deal.
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The half-depth velocity was 1 per cent greater than the

mean velocity at a vertical. The rod float velocity was about

4 per cent less than the mean. The mean velocity was com-

puted from double float observations.

Wagner found the mean velocity at a vertical to be 0'8 of

the surface velocity at the vertical when the surface velocity

was not greater than 2 feet per second. The ratio was 0'85

for velocities from 2 to 4 feet per second, and 0*9 for velocities

from 4 to 10 feet per second.

The depth at which the maximum velocity is found at

Section/

SecUon.lI 3

Fig. 136.

the central vertical is from to 0*3 of the whole depth. On
other verticals it varies a good deal according to the form of

the channel section. The position on a vertical at which the

velocity is equal to the mean velocity is fairly constant, and

equal to 0'58 to 0'6 of the whole depth. The mid-depth

velocity is very slightly greater than the mean velocity.

168. Surface or rod float gauging. Fig. 136 shows

a gauging of the Thames by surface floats. Two sections,

I. and II., were surveyed at the ends of a 200-foot base-line.

These sections are divided into ten compartments of equal
width. Between the sections the float paths are plotted. A
base-line AB is taken midway between the sections, and at
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the points where the float paths cross the line AB the

observed velocities are set up as ordinates. Through the

points so found the surface velocity curve is drawn. The

curve of mean velocities on verticals can be found from this

by taking ordinates 0'85 to 0'95 of those of the surface

velocity curve, according to the character of the stream. Let

Hj, H2 . . . be the mean areas of the ten pairs of compartments
in the two end sections in square feet, and v

lt
v2 . . . the mean

ordinate of the curve of mean velocities corresponding to each

compartment in feet per second. Then the discharge of the

stream is

Q =
ft.^ + Q2

v
2
+ . . . + fl

10%) cubic feet per second . (16).

The mean velocities might have been observed directly

by using rod floats or sub-surface mid-depth floats. In that

case the uncertainty due to the selection of the ratio of surface

to mean velocity is obviated. The following table gives the

results of the gauging shown in Fig. 136. The mean velocities

on the verticals are taken at 0*93 of the surface velocities.

RIVER GAUGING, OCTOBER 1877

Compartment
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and ordinates proportional at each point to the discharge at

that point.

Let aeE (Fig. 137) be the stream section, A/B the curve

of mean velocities on verticals. Take ab = af=v ;
ac = k =

any convenient unit. Join ce, and draw bd parallel to it.

Then d is a point on the discharge curve.

Fig. 137.

If D = ae is the depth, and v = af=ab is the mean

velocity at a, the discharge for any small portion dx of the

width of the stream at a is Dvdx, and the whole discharge of

the stream is

Q = f

But ad = (ae x ab}j(ac), that is ad = (Dv)/k. Let y = ad,

then .

. . (17);

that is, the whole discharge is proportional to the area of the

curve A^B.
If the area of the curve is measured in square inches, and

the scales are ra feet per second, and n feet to one inch, and k

is set off in inches, then the area of the curve must be

multiplied by mn2k to give cubic feet per second.

170. Calculation of discharge from the vertical velocity
curves. If the vertical velocity curves have been drawn from

current meter observations at different depths, the discharge
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between each pair of verticals can be regarded as the volume

of a truncated pyramid having the velocity curves as bases.

Let 1,1... (Fig. 138) be the distances between the

Fig. 138.

verticals
;
av a

z
. . . the areas of the vertical velocity curves.

Then the discharge between the verticals ra 1 and ra is

The discharge of the two end sections may be taken as the

volumes of pyramids on the bases ^ and an. Hence the whole

discharge is

Q = 2 (18).

If the vertical velocity curve is plotted so that m feet per

second = one inch, and n feet of depth = one inch, then

one square inch of area represents mn square feet of water

passing the vertical per second. The areas of the curves

measured in square inches should be multiplied by mn, and

the widths taken in feet in the equation, to get the result in

cubic feet per second.

171. Calculation of discharge from contours of equal

velocity. If contours of equal velocity have been plotted,

as in Fig. 116, 147, a method due to Culmann may be

used. Let H be the area of cross section of the stream, and

Op I1
2

. . . the areas included in the successive contours;

these should be reckoned in square feet, so that if the scale is

m feet to an inch the areas measured in square inches must

be multiplied by ra2
. Let d be the intervals of velocity for

which the contours are plotted in feet per second. Then the

discharge of any one layer of thickness d is %(&*
19
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The top layer of small volume will usually have a thickness 8

less than d, and its volume may be reckoned with accuracy

enough as
-f l^S. Hence the whole discharge is

. (19).

172. Gauging streams by chemical means. Mr. C. E.

Stromeyer has experimented with a chemical gauging method

(Proc. Inst. Civil Engineers, clx. 349). A fairly concentrated

solution of a chemical for which a sensitive reagent is known
is discharged at a uniform rate into the stream to be gauged.

Analyses are made of the water before the chemical is added,

and after it has become well mixed with the stream. Let x

be the percentage of chemical in the solution, y the percentage
found in the water, a the volume of solution added per second,

and' Q the discharge of the stream.

Chloride of calcium, of magnesium, or of sodium and other

chemicals may be used.



CHAPTEK XIV

IMPACT AND KEACTION OF FLUIDS

173. WHEN a stream of fluid impinges on a solid surface, it

exerts a pressure on the surface which is equal and opposite

to the force exerted by the surface on the fluid in changing
its momentum.

If a fluid glides over a solid also moving, the motion of

the former can be resolved into two components one a motion

which the fluid and solid have in common, the other a motion

of the fluid relatively to the solid. The motion which the

fluid has in common with the solid cannot be affected by their

contact. The relative component can be altered in direction,

but not in magnitude, for the relative motion must be

tangential to the surface, while the pressure between the

fluid and solid (friction being neglected) must be normal to

the surface. The pressure can deviate the fluid, but cannot

alter the magnitude of the relative motion. The absolute

velocity of the fluid, after contact with the surface, is found

by combining the deviated but otherwise unchanged relative

motion, tangential to the solid at the point where the fluid

leaves it, with the common velocity of fluid and solid.

The principle of the conservation of momentum has

already been explained in 35. The impulse of the mass

of fluid impinging in a given time is equal to the change of

momentum, the impulse and change of momentum being
estimated in the same direction. If Q cubic feet or GQ/<?
units of mass impinge in one second with a velocity vl in a

given direction, and v2 is the velocity in the same direction

after impact, then the pressure exerted, also in the same

direction, is

291
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(I)'

174. Jet deviated wholly in one direction. Let a jet

of water (Fig. 139) impinge on a curved trough-shaped vane

ae, so that it is deviated in the plane of the figure. Let ab

represent in magnitude and direction the velocity v of the jet,

and ac = u that of the vane. Completing the parallelogram,

ab = v may be resolved into two components a velocity in

common with the vane ac = u, and a velocity relative to the
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vane ad = vr In order that there may be no shock or

disturbance of the water at a, the tangent to the lip of the

vane must be parallel to ad. The water glides up the vane

with the velocity vr,
and leaves it tangentially with this

relative velocity unchanged. Take ef tangential to the vane

and equal to v
r)

and eg equal and parallel to the common

velocity ac = u. Completing the parallelogram, eh is the

absolute velocity and direction of motion of the water leaving

the vane. Take ok equal and parallel to eh, and join kb, kc.

Then the initial velocity and direction of motion db are

changed during impact to ok, and kb = w is the change of

motion. If Q cubic feet of water impinge per second the

pressure on the vane is in the direction kb and equal to

Since ak is equal and parallel to eh and ac to eg, kc is equal

and parallel to hg, and therefore to ef. Hence ck, cb are each

equal to vr and parallel to the initial and final directions of

relative motion. It is unnecessary to consider the common

velocity in treating the problem. The change of motion kb

is represented in magnitude and direction by the third side of

an isosceles triangle ckb, the other sides of which are equal to

the relative velocity and parallel to the initial and final direc-

tions of relative motion.

175. A jet of water impinges axially on a solid of

revolution, which is moving in the same direction.

The section of the jet (Fig. 140) is supposed much smaller

than the solid. The water is deviated symmetrically in all

directions and flows away at an angle 6 with the axis, each

elementary stream being deviated through the same angle.

From the symmetry of the conditions the resultant pressure

on the solid will be axial. Let v be the velocity of the water,

u that of the solid. Since the common velocity is the same

before and after impact, it may be disregarded. Parallel to

the axis the relative velocity is v u before impact, and after

impact its component in the same direction is (v u) cos 0.

If a) is the section of the jet, the quantity of water impinging

per second is o)(v u\ and its mass is Ga)(v u)/g. The

resultant pressure on the surface, which is equal to the
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change of momentum per second, estimated in the same

direction, is

P =
o>(#

-
u){(v

-
u)

-
(v

-
u) cos 0}

Ibs. . (2).

Fig. 140.

The work done by the water in driving the solid is

Pw =
a*u(v

-
u)

2
(l

- cos 6) ft.-lbs. per second. . (3).

If the solid is at rest, u = o, and then

P = *o
g

and no work is done. The work done will also be zero if

u = v. Hence there must be an intermediate ratio of u to v,

-COS0),
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for which the work is a maximum. The total energy issuing

from a fixed nozzle would be

G tf G

and the efficiency of the arrangement, considered as a means

of utilising the energy of the jet, is

*?
=

Differentiating and equating to zero,

du

whence rj is a maximum if u = v/3. Inserting this value,

(l~H49 - - (5).

In a number of hydraulic machines, a jet acts on a series

of vanes which succeed one another in the same position at

very short intervals of time. Such vanes are attached to a wheel

and therefore have a circular path. But the path of each

during the action of the jet is very short, and if the radius

of the wheel is large, the curvature of the path may be

neglected. Then the quantity of water per second which acts

on the series of vanes is a)V, and the equations become

P = -wt<;-i*Xl-cos0)lbs. . . (6),
i/

Pu = <avu(v u)(l cos 6) ft.-lbs. per second (7),

2u(v-u)(l -cos0)

The efficiency is greatest if u = v/2, and then

*7ma*
= i(l-cos0) . . (8).

176. Special Cases. Case I. A jet impinges normally
on a plane moving in the same direction. Let v (Fig. 141)
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be the velocity of the jet, and u that of the plane. The

relative velocity is v u. If o> is

the section of the jet, the quantity

of water which reaches the plane is

(t)(v u) cubic feet per second. In

the direction of the jet the initial

velocity of the water is v, and its

final velocity after impact is u. The

pressure on the plane, which is equal

to the change of momentum per

second, is

p
P = u(v

-
u)(v u)

Fig. 141.

and the work done in driving the plane is

= w(v u)
2

Ibs.,
y

~Pu = G>(0
- ufu ft.-lbs. per second.

This is a maximum for u = v/3, and then

Pu = <t)V
B

ft.-lbs. per second.

These results can be obtained by putting = 90 in eqs. (2)

and (3). If the plane is
atjrest,

u = 0, and then

P
P = Wfl

2
Ibs.

9

It appears that if the area of the plane is less than 16

times the area of the jet, the effective deviation is less than

90, and the pressure is less.

Case II. A series of plane vanes are interposed in

front of the jet in succession. The other conditions are

supposed the same as in the last case. This arrangement is

roughly identical with that of an undershot wheel with plane
floats which enter in succession in front of a stream issuing
with the velocity due to the head driving the wheel. The

quantity of water acting per second on the vanes is cov cubic

feet. The pressure on the series of vanes is
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/-^

P =
(jiv(v

-
u) Ibs.

The work done in driving the vanes is

/-i

Pu = (avu(v
-

u) ft.-lbs. per second.

This is a maximum if u = v/2, and then

These results can be obtained by putting 6= 90 in eqs. (6)

and (7).

Case III. A jet of water impinges on a series of hemi-

spherical cups moving in

the same direction (Fig.

142). Here the water is

deviated through 180. The

initial relative velocity is

v u, and the final (v u)
= u v, both parallel to the

direction of the jet. The

quantity of water impinging

per second is cov cubic feet.

P =
(0v{(v u)-(u v)}

p
= 2 a>v(v

-
u) Ibs.

9 Fig. 142.

The work done is

Pu = 2 o>w(v
-

u) ft.-lbs. per second.

This is greatest when u = v/2, so that 2u - v = 0, and then

Pumax = wv3 ft.-lbs. per second,
20

or equal to the whole kinetic energy of the jet.
This roughly

corresponds to the case of the Pelton wheel, which on high

falls reaches an efficiency of 0'8 or more, the loss being due

to friction and imperfect deviation of the water as the buckets

pass in front of and away from the jet.
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177. Pressure of a steady stream of limited section on

a plane normal to the direction of motion. Let CD (Fig.

143) be a thin plate normal to the axis of a pipe through
which water is flowing, which for simplicity is taken horizontal.

The elementary streams, parallel afc A ,
are deviated in front

of the plate, form a contraction at A
lf
and then converge,

leaving a mass of eddies at the back of the plate, and at

some section A2 become parallel again. It may be inferred

from the convexity of the stream lines in front and the

concavity behind the plate that there is an excess pressure

Fig. 143.

in front and a negative pressure behind the plate, the sum

of which forms the reaction E causing changes of momentum
in the water, and which is equal and opposite to the total

pressure of the water on the plate. Since the same amount

of water at the same velocity passes the sections A ,
A2

in a

given time, the kinetic energy flowing in and out is the same,

and the external forces acting on the mass between A and A2

must be balanced. Let H be the section of the stream at

AO or A2 ,
and &> the area of the plate CD. The area of the

contracted section of the stream at A! is cc(H -co), where c
c

is

a coefficient of contraction. For simplicity let l/o>
= p and

Il/{cc(ft )} =r. Then r = p/{cc(p
-

1)}.
Let v be the

velocity at A and A2 ,
and v

t
the velocity at Ax

.

v 12 = c12 - w'

-co)

= rr.
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Let pQ, plt p2
be the pressures at AQ, A

x ,
A2 respectively.

Applying Bernoulli's theorem to A and A
I}

&+*.&*.G +
2g a V

and similarly for Al
and A2 , allowing for the loss in shock

due to the relative velocity v
l

v ( 36),

^i +V_5 +^ + (A^_
2

G 2g G 2g 2g

Pi = P-2 v(Vi-v)
G G g

or replacing v
1 by its value above,

The external horizontal forces acting on the mass between

A and A2 are the difference of the pressures on the sections

A and A2 and the reaction of the plate CD, and these are in

equilibrium, there being no resultant change of momentum.

Hence

and the total resultant pressure on CD is

where K is a coefficient depending only on p and c
c
. Thus if

c
c =0-85,

P= K =
2 3-6

3 1-8

4 1-3

10 -9

50 2-0

As p increases, K diminishes to a minimum and then increases.

This is not intelligible, and therefore c
c
cannot have a constant
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value, or, what probably is the same thing, the influence of the

plate in deviating the stream lines extends only to a limited

distance.

From the equation above,

fl

P1 =p1 --(v1 -v)v

Now in the eddying mass behind the plate the pressure
must be practically identical with plt

and hence the defect of

pressure forming part of the reaction E is

Consequently the front pressure must be

P/= R - P6
=
{GHr

-
I)

2 -
2Go>(r

-
1)}J

=
G{p(r

-
I)

2 -
2(r

-
l)}

The following values have been calculated, using values

of cc selected by Zeuner on the basis of some experiments of

Weisbach.

P= | 4 9

cc
= -824 -852 -873 '892

r= 2-19 1-56 1-36 1-26

K= 3-18 1-26 -81 -68

K6
= 2-38 1-12 -72 -52

K/= -80 -13 '09 -09

178. Distribution of pressure on a plane struck

normally by a jet. Mr. J. S. Beresford made some experi-

ments on the distribution of pressure on a plane struck by a

jet. A small hole in the plane communicated by a flexible

tube with a pressure column. This aperture was moved across

the area struck by the jet. In the following abstract, columns

A give the ratio (distance from axis of jet) /(diameter of jet)

and the columns B the ratio (pressure head) / (velocity head

of jet).
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Jet 0'475 Inch Diameter.

Velocity Head 43 Inches.
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case of the longest prism it would seem that the increase of

resistance is due to skin friction. For a plane one foot

square moved in still water Dubuat found K/
= 1, K5

= 0*433,

K= 1-433. Morin, Piobert, and Didion found K = T36 for

planes moved normally through air, and Thibault obtained a

mean value K = T83.

180. Stanton's experiments.
1 A very careful research

has been carried out by Dr. Stanton at the National Physical

Laboratory. The solids were placed in a cylindrical trunk

2 feet in diameter and 4 feet 6 inches long, through which

a steady current of air was drawn by a fan. It was found

that if the area of a plane placed in this trunk was more

than 1-1 44th of the cross section of the trunk, there was a

perceptible increase of resistance due to the action of the sides

of the trunk which caused an increase of the negative back

pressure. Hence the experiments were limited to very small

planes. The maximum intensity of front pressure at the

centre of a circular or square plane, normal to the current,

was always very approximately

2

G Ibs. per square foot,

and the intensity of pressure diminished towards the edges.

At the back of the plate there was a negative pressure nearly

Front

Back

idsper sa. in.

Fig. 144.

uniformly distributed. Fig. 144 shows the distribution of

pressure on a square plate and some lines of equal pressure.

1 Proc. Inst. Civil Engineers, clvi., 1903-4.
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The average value of K6 was 0'48 for a circular and 0'67 for

a square plate. So far as the tests went, the total resistance

of similar plates when normal to the stream was directly

proportional to the area. The total resistance of square or

circular plates, normal to the stream, the velocity of which

was v feet per second or V miles per hour, was

P = 0-00126^ = 0-0027V2 Ibs. per square foot,

which is nearly in agreement with the result obtained by
Mr. Dines, namely,

P = 0-0029V2
.

If the weight of a cubic foot of air at 60 and 1 atm. is

taken at 0*0764 lb., Stanton's result can be put in the form

v2

P=1-061G Ibs. per square foot,

and using the result as to negative pressure stated above, this

gives
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following are some examples deduced from Dr. Stanton's

results :

Dimensions.

Inches.
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The simplest expression for the pressure on the plane in

the direction of motion is that of Duchemin,

= p -- -
1 + cos2

Ibs. per square foot,

where P is the pressure per square foot on a plane in similar

conditions normal to the direction of the stream. Conse-

quently the normal pressure on the plane is

N _ p
2 cos 2P

1 + cos2 sec + cos 6*

The following table contains some results calculated by
this rule. Dr. Stanton experimented on a small plane 3 inches

by 1 inch, with a velocity of stream of 21 feet per second.

He found the remarkable result that the normal pressure was
different according as the short or the long axis of the rectangle
was normal to the current. Further, in the case of the long
axis normal to the current, the normal pressure for an inclina-

tion of about 45 was considerably greater than when the

plane was normal to the stream.

NORMAL PRESSURE ON THIN PLANES
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a manner that both the pressure in the direction of the air

current and the lateral force were separately measured. These

planes were placed opposite a blast from a fan issuing from a

wooden pipe 18 inches square. The pressure of the blast

varied from -f^ to 1 inch of water pressure. The following
are the results given in pounds per square foot of the plane,

and a comparison of the experimental results with the pressures

given by Duchemin's rule. These last values are obtained by

taking P = 3'31, the observed pressure on a normal surface:
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it will assume a position inclined to the stream such that

the resultant normal pressure passes through the axis

about which it can turn. If, therefore, planes pivoted BO

that the ratio T (Fig. 147) is varied are placed in water, and

the angle they make with the direction of the stream is

f

Fig. 147.

observed, the position of the resultant of the pressures on the

plane is determined for different angular positions. Experi-
ments of this kind have been made by Hagen. Some of his

results are given in the following table :

a

b'
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184. Wind Pressure. One of the most important cases to

the engineer, in which the pressure of a fluid stream on bodies

immersed in it has to be considered, is that of the pressure of

wind on structures. Unfortunately the action of the wind is

so complex and variable that there is not general agreement
as to the allowance to be made for it.

Storm winds are generally rotating eddies generated

between two oppositely flowing air currents not of themselves

of violent character. Once put in motion, the energy of such

LOUIS STORM

Fig. 148.

an eddy accumulates and the distribution of the energy is a

purely mechanical problem. Conditions of dynamical stability

involve this, that the pressure diminishes and the velocity

increases from the circumference to the centre of the eddy

( 33). Fig. 148 is a diagram of the St. Louis storm of 1896,
which shows that the isobars formed closed curves round the

storm centre, the barometric pressure decreasing from 3 inches

at the outside to 29*4 inches at the centre. On the other

hand, the velocity and violence of the wind increase towards

the centre. A storm of this kind is not fixed in position.
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Its centre travels along a track generally in the northern

hemisphere eastwards or north-eastwards. At any given place,

as the storm passes, the wind veers round contrary to the hands

of a watch. The storm centre may travel 20 or 30 miles per

hour, but the wind velocity near the centre of the storm may
be 80 or 100 miles per hour. The area of a storm is

extremely variable. It may be 600 or 1200 miles in

diameter. In other cases the width of the track over

which the wind is violent enough to cause destruction may
be only 60 to 1000 feet. Some whirlwinds cut down the

trees in a forest along a track as narrow as a road, leaving

trees on either side undamaged.
Wind pressures are measured on anemometers of two types,

pressure and velocity anemometers. In the former the pressure

is measured on a thin vertical plate exposed normally to the

wind. It is rare for pressures on such a plate to exceed

30 Ibs. per square foot. But at Bidston Observatory near

Liverpool pressures of 50 to 80 Ibs. per square foot have been

registered. There the anemometer is 56 feet above the

ground and 251 feet above sea-level. The exposure of the

anemometer is complete and severe, but the Board of Trade

Committee on the Tay Bridge disaster found no reason to

doubt the records. Baier came to the conclusion, after

examining some cases of destruction, that the wind pressure

in the tornado at St. Louis in 1896 must have ranged from

45 to 90 Ibs. per square foot.

A large number of records have been obtained with

velocity anemometers of the Eobison type, in which hemi-

spherical cups are rotated by the wind, the velocity of

the cups being about one-third that of the wind. These

records give the average velocity over a more or less consider-

able period of time. The Board of Trade Committee found

that if vm is the mean velocity during an hour, then the

highest pressure during the hour would be approximately

P = O'Olv2 Ibs. per square foot.

Now observations at Aberdeen show a wind travel of

69 miles an hour, corresponding to a maximum pressure of

48 Ibs. per square foot; at Falmouth a travel of 71 miles per

hour, corresponding to 5 Ibs. per square foot
;
at Holyhead a
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travel of 80 miles an hour, corresponding to 64 Ibs. per

square foot. The velocity anemometer is free of inertia errors,

and its indications are not consistent with the supposition

that gusts during which the pressure is excessive are necessarily

of short duration.

185. Increase of pressure with elevation. Numerous

experiments show that the wind velocity and pressure is greater

the greater the height
from the ground. In

some experiments by
Mr. Thomas Stevenson

in 1878, six velocity

anemometers were fixed

on a vertical pole 50

feet in height, and ob-

servations were taken

at various dates when

strong winds were blow-

ing. For a height of

1 5 feet from the ground
the velocities were low

and irregular even when

strong winds were blow-

ing. For heights above

20 feet the velocities

increased in a fairly

Fig. 149. regular way with in-

crease of elevation.

Plotted horizontally the wind velocities gave the irregular

curves in Fig. 149. For heights above 20 feet the velocity

curves agreed fairly with parabolas having their vertices 72
feet below ground-level. If V and v are velocities, and P and

p pressures at heights of H and h feet,

/= i>. /V
H + 72

1772'

H + 72

Suppose that at 25 feet above ground the mean hourly

velocity is 30 miles per hour, corresponding to a maximum
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pressure during the hour of 9 Ibs. per square foot. Then at

higher elevations the velocities and pressures by Stevenson's

rule would be as follows :

Elevation.



312 HYDKAULICS CHAP.

stood for long periods unharmed. Whether any adequate

explanation of the paradox thus presented can be given is

doubtful, but certain considerations may be noted : (a) At any
one place the occurrence of high wind pressure must be very

exceptional ; (&) A structure must be still more rarely struck

normally ; (c) Its form may prevent the creation of a negative

pressure ; (d) Neighbouring obstructions may have the effect

of shielding a structure. In this connection the great decrease

of wind velocity near the ground is instructive.

187. The Forth Bridge experiments. During the con-

struction of the Forth Bridge some important experiments
were carried out by Sir B. Baker. A very large pressure-

plate anemometer was erected on Inchgarvie, 20 feet long

by 15 feet high, facing east and west. Beside it were erected

two small pressure plates, one facing east and west, the other

revolving to face the wind. Between 1883 and 1890, on

fourteen occasions of storm, pressures ranging from 25 to 65

Ibs. per square foot were registered by the revolving pressure

plate. In the same period the pressure on the small fixed

pressure plate ranged from 16 to 41 Ibs. per square foot. Also,

during the same period, pressures were registered by the large

plate of 300 square feet area ranging from 7 to 35 Ibs. per

square foot.

For experiments on bodies of complex form, Sir B. Baker

adopted a very ingenious device. Experiments in wind storms

would have been difficult and inconvenient. Instead of this

a light wooden rod was suspended by a cord. At one end,

the complex form the resistance of which was required was

fixed; at the other, a small cardboard plane. Setting the

apparatus swinging, it was obvious at once at which end of

the rod the resistance was greatest. Then the area of the

cardboard plane was altered until its resistance just balanced

that of the body to be tested. In this way the areas of plane

having resistance equivalent to that of various bodies of

complex form was determined.

For bodies of comparatively simple form, such as cubes

and cylinders, the relative resistances were found to be the

same as those directly determined by earlier observers. The
most interesting point to determine next was the influence of

one surface in sheltering another. With discs placed at from
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one to four diameters apart, there was complete shelter when

the distance was one diameter, the resistance being the same

as for a simple disc. The resistance was increased by 25 per

cent when the discs were 1|-
diameters apart; by 40 per cent

at 2 diameters
; by 6 per cent for 3 diameters

;
and by

80 per cent for 4 diameters. Intermediate discs did not

much increase the resistance. Four discs in series behind

each other, with a total distance between first and fourth of

3^- diameters, had no more resistance than two discs at

4 diameters.

Perforated discs were then tried to imitate the effect of

shelter of one lattice girder on another. With openings in

the discs equal to one-fourth the whole area, the discs being
1 diameter apart, the resistance of the sheltered disc was only
8 per cent of that of the front disc. But with openings half

the whole area, the resistance of the sheltered disc was 30 per
cent of that of the front disc. At 2 diameters apart, the

resistances of the sheltered disc were 40 per cent to 66 per
cent of that of the front disc, and at 4 diameters apart, with

openings half the total area, the resistance of the sheltered

disc was 94 per cent of that of the front disc.

The top members of the Forth Bridge consist each of a

pair of box-lattice girders, that is, they are nearly equivalent
to four single lattice girders in series. Models of single-web

girders made to imitate these were tested in pairs. With
distances apart equal to once, twice, and three times the

depth of the girders, the resistance of the sheltered girder was

20 per cent, 50 per cent, and 70 per cent of the resistance of

the front girder. With additional girders placed between

the others the increase of resistance was small With a

complete model of a bay of one top member of the bridge,
that is, with the equivalent of two single-lattice girders, the

total resistance was 1*75 times the resistance of a plate equal
in area to the projection of one lattice girder, that is, to the

projection of the solid surfaces excluding the openings.
The bottom member of the Forth Bridge consists of two

tubes of circular section braced together by lattice girders. A
complete model of one bay was tested. It had a resistance

10 per cent greater than the resistance of a plane surface of

the projected area of one tube.
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EXAMPLES

1. A jet 3 inches in diameter under a head of 400 feet strikes normally
a plane at rest Find the pressure on the plane. 2452 Ibs.

2. A jet of water delivers 160 cubic feet per minute at a velocity of

20 feet per second, and strikes a plane normally. Find the

pressure on the plane : (1) when the plane is at rest
; (2) when

it is moving at 7 feet per second in the direction of the jet.

In the latter case find the rate at which work is done in

driving the plane.
103'4 Ibs.

;
43-7 Ibs. ;

305-8 ft.-lbs. per second.

3. Water impinges on a Poncelet float at 10 with the tangent to the

circumference of the wheel. The velocity of the water is double

that of the float. Find by construction the angle of the float

to receive the water without shock. A slope of 10 is nearly
1 in 6.

4. A cylindrical chimney shaft 100 feet high and 75 feet in diameter

is exposed to a wind pressure of 30 Ibs. per square foot. Find

the overturning moment. 105,750 Ibs.

5. A fixed curved vane has a receiving edge making an angle of 45
and a delivering edge an angle of 20 with a line AB. A jet
delivers 10 cubic feet per second at a velocity of 30 feet per
second, without shock, so that it is deviated along the vane.

Find the resultant pressure on the vane, the angle it makes
with AB, and the components of the pressure along and at

right angles to AB. 970 Ibs.
; 12| ;

946 Ibs. ;
210 Ibs.

6. Suppose the vane in the previous question is moving in the direc-

tion AB at 10 feet per second, and the jet at 45 with AB at

30 feet per second. Find the angle the receiving edge of the

vane must make with AB that there may be no shock. Also

the relative velocity. 63 ;
24 ft. per second.
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TABLE I. FUNCTIONS OF NUMBERS FROM 0-1 TO 10*0

n.
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TABLE II. VELOCITY AND HEAD

n.
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TABLE III. SLOPE TABLE

Fall in Feet

per Mile.
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TABLE IV. TABLE TO FACILITATE CALCULATIONS ON PIPES

Diameter.
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Acceleration, numerical values of, 7

Air, flow through orifices, 123
; discharge

from orifices, 130 ;
flow in mains,

226

Air-valves, 191

Alexander, 171
Amsler Laffon, 272

Anemometers, 309

Appold, 189

Approach, velocity of, 98, 109

Aqueduct, pipe, 190 ; Vyrnwy, 192
;
East

Jersey, 193
; Coolgardie, 193

Aqueduct, Loch Katrine, 242, 258; Roman,
258 ; Thirlmere, 260 ;

New Croton, 260

Atmospheric pressure, 6

Baker, Sir B., 312

Barometer, 121
;
measurement of heights

by, 122

Batcheller, 230

Baum, 275

Bazin, 109, 113, 218, 235, 236, 279,
282

Bellmouth, 70
Bends of pipes, thrust at, 17 ;

resistance

at, 170 ;
in rivers, 261

Beresford, 300
Bernoulli's theorem, 42

;
illustrations of,

45
; application to orifices, 81

;
modi-

fication for compressible fluids, 127

Bidone, 81

Blackwell, 103

Borda, 81

Bossut, 205

Boyden, 70

Boyle's law, 119

Break-pressure reservoirs, 179

Bruce, 243

Buoyancy, 32

Calibration of current meters, 275
Canals, 230

; Chezy formula for, 232
;

Darcy's research, 233 ; Ganguillet and
Kutter's formula, 234

;
Bazin's investi-

gation, 236
;
of circular section, 243

;

egg-shaped, 244
; trapezoidal, 245

;

minimum section, 245
; parabola of

discharge, 249
; distribution of velocity

in, 251 ; velocity curves, 254
;
mean

and surface velocities, 257

Capillary tubes, 146

Carpenter, 196
Centre of pressure, 26

Channels, see Canals

Charles's law, 120

Chezy formula for pipes, 150, 199, 201,

217 ;
for canals, 232

Church, 38
Coefficients of velocity and resistance, 63

;

of contraction, 64 ;
of discharge, 65

;

for weirs, 98
;
of friction, 133, 157,

161 ;
of friction in gas mains, 224 ;

of

air in mains, 229

Coker, 147

Compressibility of liquids, 10

Conduits, 230. See Canals

Conservation of energy, 42
;
of momen-

tum, 56

Contraction, 64, 77 ; minimum, 79 ;
at

weirs, 97, 110
Conversion of English and metric meas-

ures, 2

Corrosion, 189
Cost of mains, 188

Cotterill, 48
Critical velocity, 147

Cunningham, 255, 284, 285

Current, radiating, 50
Current meters, 270

Dalton's law, 120

Darcy, 156, 160, 167, 201, 204, 233, 279,
282

Darcy gauge, 279

Deacon, 190, 283, 284

Density of water, 4

Discharge curve, 287
Distribution of velocity in pipes, 219

;
in

air mains, 230 ;
in streams, 282

Duchemin, 301, 305

Durley, 124

Eddying motion, 38

Elbows, 170

Exner, 275

Expansion of compressible fluids, 125

325
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Fire-hose pipes, 165
Fire nozzle, 83
Float gauging of streams, 267

Floating bodies, equilibrium of, 33
Fluid pressure, 13

;
on planes, 14

;
on

curved surfaces, 15 ; varying as the

depth, 22
;
on a wall, 24

;
on valve,

25
; graphic determination of, 31

Fluids, properties of, 9

Forth Bridge experiments on wind pres-

sure, 312

Francis, 91, 107, 108
Free surface, 11, 20

Freeman, 83

Friction, fluid, 132
;
of discs in water, 136

Froude, 45, 133

Fteley, 98, 100, 107
Functions of numbers, table of, 317

Gale, 160

Gas, flow in mains, 222
Gaseous laws, 119

Gauging by weirs, 114
;
of streams, 264,

286
; by chemical means, 290

Gordon, 279

Gravity, acceleration due to, 6

Gutermuth, 229

Hagen, 202, 206
Hamilton Smith, 72, 75, 98, 100, 205
Hardness of water, 4

Harlacher, 271

Head, meaning of term, 44
;
measurement

of, 68, 114
Heaviness of water, 3

;
of gases, 118

Herschel, 55, 68, 162, 192
Hook gauge, 70, 114

Hydraulic gradient, 152, 156, 187

Hydraulic press, 18

Impact of fluids, 291
; jet deviated in one

direction, 292
; impact of jet on solid

of revolution, 293
; impact of jet on

planes and cups, 295 ; impact of limited

stream on plane, 298 ;
of unlimited

stream, 301
;
of air on solids, 302

;
dis-

tribution of pressure on surface, 306
Inversion of jets, 78

Jet impinging on curved surface, 292
Jet pump, 86

Joukowsky, 198

Kelvin, Lord, 11

Kuichling, 174
Kutter's formula for pipes, 200 ;

for canals,
234

Labyrinth piston, 59

Lampe, 205

Lesbros, 98

Levy, Maurice, 159

Lock, of canal, 84

Mains, water, 178 ;
of varying diameter,

180
; branched, 185

; compound, 187

Mair, 73, 92, 202, 219

Marx, 164
Mean velocity, 41

Metacentre, 34

Module, 68, 75

Mouthpiece, cylindrical, 85
; convergent,

88
; divergent, 89

Napier, 130
Non-sinuous motion, 146

Notches, 95
; triangular, 105. Se.e Weirs

Orifices, 61
;
use in measuring water, 67 ;

conoidal, 70 ; sharp-edged, 71 ;
rect-

angular, 74 ; submerged, 75 ;
self-

adjusting, 75 ;
flow of fluids other than

water, 77 ; application of Bernoulli's

theorem to, 81
;

head varying with

time, 84
; large rectangular vertical,

95
;
flow of air through, 123, 130

Pascal's law, 13

Pelton wheel, 297

Pipe aqueducts, 190

Pipe scrapers, 189

Pipes, non-sinuous and turbulent condition

of flow, 146
; permissible velocities,

149
; Chezy formula, 150

;
inlet re-

sistance, 155
; pressure in, 156

;

Darcy's investigation, 156
;

Maurice

Levy's formula, 159
;

later investiga-

tions, 160
;
riveted pipes, 162

;
timber

stave pipes, 164
; practical calculations,

166
;
tables of flow in, 167 ; secondary

losses of head, 168
;
later investigation

of flow in, 199
;
Kutter's formula, 200 ;

general formula and constants, 216 :

flow of compressible fluids in, 221
;

tables of discharge of, 321, 322
Pitot tube, 279

Poisseuille, 146

Poncelet, 74
Pressure column, 20

Pressure variation along stream lines, 43
;

across stream lines, 48
;

at abrupt
changes of section 57

Prony, 199, 283

Rafter, 105

Rankine, 5

Reaction of fluids, 291

Reynolds, Osborne, 37, 146, 203

Riedler, 229
River gauging, 265, 286
River weirs, 96

Rivers, velocity curves, 256 ; ratios of

mean and surface velocity, 257
Riveted pipe, 162
Rod floats, 268

Rosenhain, 131
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Scour valves, 191
Screw current meter, 270

Sewers, 244

Shock, 57 ;
in pipes, 196

Siphon gauge, 21

Slope table, 319

Sluices, 173, 191

Specific heat of gases, 119

Stanton, 302, 305
Stave pipes, 164

Steady and unsteady motion, 40, 150

Stearns, 98, 100, 107, 160, 205

Stockalper, 230
Stream lines, 37, 48, 146

Strohmeyer, 290
Suction pipe of pumps, 195

Temperature, influence on flow from

orifices, 91
;
on friction, 143

;
on flow

in pipes, 202, 219
;

correction for,

213

Thomson, James, 106, 261
Town supply, 177
Transverse sections, measurement of,

265

Turner, 275

Units of measurement, 1 ; of intensity of

pressure, 6

Valves, 173 ; scour, 191
; reflux, 191 ;

momentum, 191
; sluice, 191 ; resist-

ance to flow at, 173

Velocity and head, table of, 318

Velocity curves, 251

Venant, de St., 202
Venturi meter, 52

Viscosity. lpT Iffi
Volume of flow, 40

Vortex, free, 51 ; forced, 52

Wagner, 284, 285
Water hammer, 196
Water inch, 68
Water-level gauge, 264
Watt's hydrometer, 21

Weirs, 96
; drowned, 101, 113

;
broad-

crested, 102
;
with no end contractions,

106
;

Francis's formula, 108
; Baziu's

researches, 109
; separating, 115

Weisbach, 81, 88, 171

Wenham, 305

Williams, 172, 218, 281
Wind pressure, 308
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